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SUMMARY

Living cells are enclosed by a protein integrated lipid bilayer membrane that separates
them from other cells and the extracellular medium. They grow and communicate with
each other by exchanging water, ions, and other macromolecules with the extracellular
~ fluid through complex physiological processes that involve multitude of temporal and
spatial scales. Biological membranes guard the cell structural integrity and rely on two
main transport mechanisms to maintain basic biological functions: (i) the secretion of
neurotransmitters/molecular messengers through a process of exocytosis, and (i)
water/ions transport mediated by the channel proteins. Understanding of biomembrane
transport mechanisms is one of the key issues in modern biophysics. This understanding
has direct impact on developing new diagnostic tools for human diseases as well as
clinical treatments from gene therapy, to drug delivery, and to tissue engineering of
artificial organs.

An integrated atomic force (AFM) and scanning electrochemical (SECM) microscope

is a new instrument that provides a unique opportunity to study the cell communication

ﬁrocesses in-situ with unprecedented spatial/temporal resolutions. One of the main
challenges in AFM-SECM experiments lies in data interpretation during imaging of
biological cells. For example, deformation of the cell membrane, intra and extra cellular
electrolyte flow, species transport and reaction kinetics, and the electric current response
detected by an electrode are intimately coupled processes resulting in data convolution
and difficulty of result interpretation. Thus, development of the fundamental sound, yet
computationally efficient theoretical models to resolve the interacting physical

phenomena in the AFM-SECM probing process is necessary to optimize the operating
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conditions of the instrument and to understand/interpret the biological phenomena from
the experimental data under actual physiological conditions.

This thesis is divided into three integral parts, addressing fundamental issues from
fluid mechanics and surface force analysis in AFM imaging to molecular messengér
transport during a vesicular exocytotic event and its detection by a SECM
microelectrode. In chapter 1, the effect of fluid mechanics of the inner and outer cellular
fluids combined with the simplified bilayer membrane biomechanics is quantified for a
noncontact, nonresonant mode AFM imaging process. In chapter 2, the analysis is
extended to investigate the interactions between a dielectric AFM tip and a charged
bilayer membrane in a dilute electrolyte solution. The coupled electric double-layer
theory is solved in conjunction with the membrang biomechanics and
electrohydrodynamics in the limits of the continuum theories. In chapter 3, a theoretical
model is developed to simulate the intimately coupled transport and kinetics of an
exocytotic release of molecular messengers. The analysis considers the pbre expansion
dynamics, membrane unfolding, and granular matrix swelling that culminates with the
neurotransmitter/hormone release. The simulation results are qualitatively compared with
the experimental results from the literature of in vitro electroanalytical measurements.
' Finally, an important analytical technique, the boundary integral method, is applied to
solve the model governing equations and it is briefly summarized in Appendices A and
B.

The major original contribution of this work is in two aspects: (i) development of the
self-consistent theory for coupled electrohydrodynamics and biomechanics of AFM

imaging of soft lipid bilayers and biomembranes, and (ii) development of the first-

Xvi



principle model that predicts the biofluidic and biomechanical forces driving the
exocytotic messenger release dynamics. Two peer-reviewed archival articles’? have been
published based on the results of this thesis research, and the third article® on the

dynamics of exocytosis is being prepared for submission.
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CHAPTER 1

Analysis of Hydrodynamic Interactions during AFM Imaging of

Biological Membranes

The physical processes taking place during AFM imaging of soft biological
membranes are investigatéd in this chapter. A particular emphasis is placed on
understanding of hydrodynamics effects in the fluid inside and outside of the cell
associated with elastic deformation of the membrane in response to AFM tapping action
for the entire probing cycle. For the first time, it is theoretically shown that "hysteresis"
in the membrane deformation versus tip-sample separation curve is due to strong
coupling of fluid motion and kinematics of the membrane bending for the noncontact,
nonresonant mode of measurements in liquid environmeni. The effects of the AFM tip
opening angle and the membrane elasticity constants such as bending rigidity and
spontaneous curvature are investigated in detail to establish the structure of the flow field
and dynamics of the membrane evolution, leading to theoretical interpretation of AFM

imaging experiments.

1.1 Introduction

The atomic force microscope (AFM) provides a unique opportunity to investigate
spatially resolved structure, morphology, and mechanical properties of biological
membranes down to the nanometer or atomic scale,’ and these studies can be performed
in-situ, i.e., in a natural aqueous environment for cells. Examples of using AFM in

biology include investigation of the membrane structure, mechanical properties, and



surface charge of living osteoblasts,® measurement of molecular level interactions in
microbial cells,” and even assessment of electricaliy excited cardiac activities in living
cells.®?

Mechanical properties of the cell membranes are typically deduced by generating an
applied force versus distance curve when the AFM tip scans the surface and then fitting
the experimental results to the simple Hertz model for the maximum distance between
two elastically deformed surfaces.!® Further, to preserve the integrity of the biological
sample under investigation, the tapping mode of operation is used by vibrating the AFM
tip at high frequency during surface scanning. However, since biological membranes are
highly-deformable, fluid-like surfaces, the actual deformation of the membrane cannot be
measured, thereby shading doubts on the validity of straight-forward application of the
Hertz model to deduce mechanical properties of the membrane. Indeed, a more detailed
model is needed which accounts for interactions between an AFM tip and the membrane
surface through hydrodynamic coupling via the fluid layer between the tip and
membrane. Such a model would provide a fundamental basis for quantitative
interpretation of AFM imaging experiments as well as serve as a framework for
designing new imaging modalities for non-invasive imaging of soft biological samples.

In this chapter, the development of the theoretical model and simulation results
are presented for fluid mechanics of the AFM imaging of biological membranes. The
model couples dynamics of the biological membrane deformation and fluid motion inside
and outside of the cell as the AFM tip probes the membrane interface in periodic tapping
mode. The fluid motion is modeled by the Stokes creeping flow, and Helfrich's theory for

the equilibrium shape of an infinitely thin biological membrane'"'? is used to determine



an instantaneous position of the flexible boundary that links fluid flows inside and
outside of the cell. The boundary element method"? is used as a‘ numerical technique for
computationally efficient solution of the problem. The results of simulations are intended
to demonstrate the fundamental physics of what happens during AFM imaging of soft
biological membranes as well as to assess the effect of main instrument/sample
parameters (e.g., an AFM tip opening angle and the membrane elasticity constants such
as bending rigidity and spontaneous curvature) on the force vs. distance response curves
generated in the AFM imaging experiments. The cell membrane behavior when an AFM
tip moves in forward and reverse directions is also observed. The practical benefits from
this research are twofold. First, the cell mechanical properties can be obtained from a
modified hydrodynamic force vs. distance curve without actually contacting or indenting
the sample so that cell damage can be prevented. Second, the methodology to simulate
the tip-sample interactions provides a theoretical foundation for interpretation of the
convoluted experimental information obtained when multiple imaging functions are

integrated into an AFM tip."

1.2 Theoretical Development

1.2.1 Hydrodynamics Analysis

Figure 1.1 shows a schematic view of the AFM tip approaching a deformable cell
surface. The size of the biological cell is usually much larger then that of an AFM tip, so
that a simplified representation with an initially planar membrane surface can be adapted.

In biological environment, the activities of microorganisms and living cells in the fluid
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Figure 1.1 Schematic view of an AFM tip approaching a cell membrane and

definition of the computational domain.



are usually characterized by the low Reynolds number flow because of the small velocity
and length scales. For example, the size of biological cells ranges from few micrometers
to several millimeters,'> whereas the AFM tip is only tens to hundreds of nanometers in
radius and up to several micrometers in height. Choosing the length scale as the height of

an AFM tip, L~5 um, and assuming that the cell living environment is an acqueous

solution with viscosity u~0015g/cm-s and density p~10g/cn?, the low Reynolds
number criteria [ Re = pVL/ 12 << O(1)] are satisfied as long as the characteristic speed ¥,
of an AFM tip is less than 1¢cm/s (Re~0.03). In.AFM imaging, we aésume that the tip-
to-sample distance is of the order of 5 um and the vertical scanning frequency is around
f ~10Hz .’ Thus, the resulting characteristic velocity V,~0.01cm/s is much less than
the minimum velocity dictated by the low Reynolds number criteria for the Stokes flow;
hence, the advection inertia force can be neglected. The characteristic time scale for the
system is r=1/f~0.1s, leading to the forcing frequency parameter pL?/uzr of the

order of 10™ so that the acceleration force can also be neglected as compared to the
viscous forces. Thus, the Stokes flow approximation is clearly justified for the system
under consideration.

For simplicity, the fluids outside and inside of the cell are assumed incompressible
Newtonian fluids with the same density and viscosity. A typical eukaryotic cell
membrane with lipid bilayers and integrated glycoproteins is approximately 5»m thick,
so that the membrane thickness can be neglected in comparison to the size of an AFM tip.
Thus, the membrane can be mathematically treated as an infinitesimally thin interface.
Besides, for the continuous fluid representation to be applicable, the thermal fluctuations

are assumed to be negligible so that the membrane surface is perfectly smooth. Also the



system is assumed isothermal, no other body forces are involved, and the cell membrane
is non-permeable. Furthermore, the molecular level interaction forces and the surface
electrostatic force are not included in the analysis, as they become significant only at the

tip-membrane separation around 50nm or less. Specifically, the van der Waals,

electrostatic double layer, and solvations forces are significant when the interface

separation distance is less then 10nm, and their effective range is rarely longer than
100 nm .'® Thus, neglecting molecular level interactions is justified in the present analysis,
as it is correct to the order of magnitude of the the AFM tip radius (500 #m ).

On the basis of the Stokes flow approximation, the dynamics of both fluids, i.e.,
inside (Q,-domain) and outside (Q, -domain) of the cell (Figure 1.1), is governed by the
following momentum gnd mass conservation equations

V-1(x)=-Vp(x)+ uV?v(x)=0, xeQ, +Q, (1-1)

V-v(x)=0, xeQ+Q, (1-2)

respectively, where 1 is the viscous stress tensor, p is the hydrodynamic pressure, v is

the velocity field vector, 4 is the dynamic viscosity assumed constant, and x denotes a

position vector in the Cartesian coordinate system. The kinematic boundary conditions
for the flow field are no-slip at both the AFM tip and the membrane surfaces,

v(x)=V,¢,, xedQ, (1-3)

v(x)=v,,, x €dQ,, (1-4)

where ¥, is a prescribed appproach speed of the AFM tip, €, is the unit vector along the

x-axis direction (Figure 1.1), and v,, is an unknown local migration velocity of the cell

membrane. The rest of the unbounded fluid domain is assumed quiescent at infinity. The



solution of eqs 1-1 and 1-2 requires knowledge of the position of the cell membrane,
which, in turn, is defined by the AFM induced flow in domains Q, and Q, (Figure 1.1),
according to the migration velocity, which is not known a priori. Thus, to complete
formulation of the problem, a dynamic boundary condition is required to couple the fluid
motion on both sides of the cell membrane to determine migration of the membrane due
to the hydrodynamic and membrane elasticity effects. This dynamic boundary condition
can be obtained from the stress balance on both sides of the membrane, and it is
discussed in detail in section 1.2.2.

Although the problem in hand is a transient nonlinear problem owing to an a priori
unknown deformation of the cell membrane, the governing equations (1-1 and 1-2) are
those for the simplified linear, quasi-steady Stokes flow. Thus, the problem can be solved
by the general solution procedure for the Stokes flows,'® while satisfying the nonlinear
boundary condition at the cell membrane via numerical iterations. A convenient way to
solve the linearized fluid flow problem is by using the boundary integral method, which
originates from the Lorentz reciprocal theorem'” in 1907. The integral solution of the
Stokes flow problem was later outlined by Odgqvist'® and Ladyzhenskaya'® by
considering the solution as superposition of the contributions from a single layer (the
flow induced by the continuously distributed point force, Stokeslet) and a double layer
(the flow induced by the continuous point stress, Stresslet) potentials. The details of the
theoretical development and numerical implementation of the integral formulation are
discussed in detail by Pozriki,dis.]:3 The Lorentz reciprocal theorem gives a pair-wise
relation between the real flow in the actual physical domain and the Stokeslet flow

induced by the corresponding Green's function. Following Pozrikidis' derivation,' a



general integral solution of Stokes flow problem satisfies the following boundary integral

equation:

[l )G (% %0) = 227, (X) Ty (5 %) e (X)) =0 (1-5)

2.0}

where the singular source point is located outside the fluid domain, x, ¢ Q, the unit
surface normal vector », points into the fluid domain, v, and 7, represent the physical

velocity and stress fields, respectively, and the fundamental solution (Stokeslet) and its
corresponding stress field (Stresslet) are given by

5[.‘ rr.

118
ij iy _ it jTk
'l"r—3 and ﬂjk(x,xo)——6

J
r5

G, (xxo)= (1-6)

—
respectively, where &;; is the Kronecker delta function, r=x-x, is the position vector
between the given field point and a source point, and r =|x-x,| is the distance between
them. When the source point is located inside the flow field, x, e Q-8Q, the combined

Stokeslet and Stresslet induced velocity field must satisfy the following general iintegral

solution:

¥y (36) =g [ (0 (00, (1 X0)ACK)+ 5 [ (T (5 X0 g A0 (1-7)

o o0
An integral formulation of the Stokes flow problem for the two-fluid system with a free
moving interface has been- studied previously for fluids with arbitrary viscosity
ratio.’**!"” We use this technique to find the surface force jump condition in the case
when the viscositsf ratio is unity, resulting in vanishing of the double layer integral at the
surface of the cell membrane. To simplify notation, the traction term is replaced by the

surface force expression, f,=r7,n,, and the obvious position symbols are dropped

I

hereafter in this chapter. Applying eq 1-7 to fluid 2 (inside of the cell) and eq 1-5 to fluid



1 (outside of the cell) and then combining the resulting equations, the flow field inside of

the cell (domain Q,) can be expressed in terms of the surface force jump,
o= D=1,

1 1 1
v =——— |Af,G, dA+—— |G dd—— T, n,d4 1-8
/ 87rﬂadl;ﬁ v 8ﬂﬂar-[ﬁ Y 87 J" vk Tk (1-8)

aQ,
with Af, becoming the source density acting on fluid 2 from the cell membrane surface.
Here, 8Q,, and 6Q, denote the surfaces of the cell membrane and of the AFM tip,
respectively, and the superscripts (1) and (2) refer to the fluid domains outside (€,) and
inside (Q,) of the cell, respectively. Note that eq 1-8 is still valid even when the source

point x, is approaching the membrane surface, since the improper double layer integral

(_l;Q v.TundA ) vanishes. Similar arguments can be applied to develop an integral
momentum conservation equation for the fluid 1 oustide of the cell,

1 1 1
W =—— |A,G, dA+— |fPG,dAd—— |OT, n,dAd 1-9
’ 877/‘36[ % 8mu J.f' U 8r Iv' i (1-9)

J
aQ, aQ,
An improper integral of the double layer potential (the third term in eq 1-9) is interpreted
in the sense of Cauchy principal value when the source point is approaching the AFM tip

surface, where we have

pv.
xlirgln VT, ndAd =-4mv, + Iv,.(')T,jknde (1-10)
0 lm’ m’

To generalize the approach, the govéming equations are non-dimensionlized by
describing the fluid motion and membrane dynamics using the following scales: length
scale is given by the AFM tip radius R, velocity is scaled by the tip approach velocity

V,, time is scaled by R/V,, the local surface tension y is scaled by ¥,u, the membrane



bending rigidity B is scaled by V,uR?, the membrane mean curvature H and the

spontaneous curvature c, are scaled by 1/R, the Gaussian curvature K is scaled by

1/R?, and the surface force f and pressure p are both scaled by V,u/R. Using these

scales, the dimensionless integral form of the governing equations (1-8 and 9) becomes

p.v. for
Xp€0Q),

1
v, =—— J-Aqu dA+ J-f(l)G"fdA_a aé[v,.T,jknde (1-11)

J

where

_{1 for x,€Q+Q, +8Q,, (1-12)

112 for x, €89,

with the boundary conditions

v(x)=18&, for xedQ,, v(x)=v, for xedQ,, v(x)=0 for x> (1-13)
Since the AFM tip, the céll membrane, and induced flow are axisymmetric, the surface
integrals in eq 1-11 can be reduced to the line integrals by transforming the Cartesian
coordinates to the polar cylindrical coordinates through (x,y,z)=(x,oc0s6,0sind), and
then integrating eq 1-11 along the azimuthal @ direction. As shown in Figure 1.1, x is
the coordinate along the axial direction, o is the coordinate along the radial direction,

and ¢ is the azimuthal angle. The integral eq 1-11 is reduced to one-dimensional form by

using the integral over the arc length s along the membrane boundary within a vertical
plane defined by the constant azimuthal angle. The transformed integral equation is then

expressed as

p.v. for
Xp€00,

OV, =—— IM"ﬁ Afy ds+ IM“/’ f/?)ds -—— IQaﬂr v, nyds (1-14)
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where o is defined in eq 1-12, the Greek symbols «, B, y denote either x or o
directions, and the kernel functions M, and Q,, are the transformation matrices from

Stokeslet and Stresslet in the Cartesian coordinate system.>** Each matrix element in

M5 and Q,p, can be determined in terms of the complete elliptic integrals of the first

Q,
and second kind and is either approximated by the asymptotic polynomials or computed
by direct numerical integration. The details of transformations are given in the Appendix

C for completeness.

1.2.2 Deformation of the Biological Membrane

Unlike the free interface between two immiscible fluids, mammalian cell membranes
are constructed by amphiphilic molecules such as phospholipids or glycolipids with.
integrated functional proteins. The flexible and fluid-like lipid bilayers form an elastic
interface which can resist bending and stretching to maintain the integrity of the
membrane surface.? Since the lipid mblecules are free to migrate or rearrange locally
within the surface of the fluid-like membrane, the surface tension could be assumed
locally isotropic on the time scale of interest in this study as long as the lipid bilayer has
negligible shear elasticity and the membrane deformation is dominated by its bending
rigidity. Considering a dynamic boundary condition for the surface fofcejump in a three
dimensional free surface flow, a postulation generalized by Landau®* and Scriven® takes
the form

(r,-n—1,-n)+V,y—yn(V,-n)=0 (1-15)

where 1,-n—1,-n is the net surface traction acting along the surface normal n and

tangent t, directions, V, is a surface gradient operator, and y is the surface tension. For

11



a fluid-like membrane characteristic to cells, the normal force component (¥ V, -n) in eq

1-15 has to be generalized using the fluid membrane theory originated from Helfrich;'!
see also ref 2 in conjunction with a more recently developed equation for the equilibrium
shape of a vesicle membrane.'*?”2 It is now known that the major factor that defines an
equilibrium shape of the cell membranes is the bending stiffness,?’ and the equilibrium
membrane shape of a spherical vesicle is determinéd by the minimization of the curvature

free energy, or shape energy”®
_l 2 i
E—EBJ‘(cl+cz—co) dd+ap [V + [yda (1-16)

where B is the apparent bending rigidity, ¢, and ¢, are the two principal curvatures, c,

is the effective spontaneous curvature that is used to describe various asymmetric effects

in the membrane itself and its living environment,” Ap=p,, - p,, is the osmotic pressure

difference between outer and inner fluids of the cell, y is the local surface tension, and

_[(...)dV and I()dA are integrals over the volume and surface of the cell, respectively.

Taking the first variation of the shape energy given by eq 1-16, and treating Ap and y as

the Lagrange multipliers for the volume and surface conétraints, respectively, Zhong-can

and Helfrich?” derived the equilibrium shape equation for the vesicle membranes
Ap -2y H +BQ2H + ¢ )2H? = 2K —cyH)+2BV*H =0 (1-17)
where H =—(c, +c,)/2 is the mean curvature, K = c,c, is the Gaussian curvature, and V>

is the Laplace-Beltrami operator for the curvilinear surface. In a dynamic system such as
an AFM cell membrane immersed into a liquid, the viscous effects associated with

motion of fluids on both sides of the interface must be included in eq 1-17 to describe the

12



surface force jump across the cell membrane. Thus, the balance of the normal force has to

be generalized to obtain a Laplace-like formula, as shown by Zhong-can,®
(T, n—1,-n)-n=[Ap—2y H + BQH +c)2H? 2K —c,H)+2BV?H|  (1-18)
Assuming that the initial osmotic pressure difference Ap is zero for the planar membrane
interface, the dynamic boundary condition (eq 1-15) can be modified as follows:
M =[-2y H+BQH +¢,)2H? -2K —c,H)+ 2BV H |n -V y (1-19)
where Af=1,-n-1,-n enters the Stokes system describing ﬂuid motion through eq 1-

14.
In the free surface problems, the surface force jump Af is solely determined by the
surface geometry. For the flexible membrane, however, eq 1-19 shows that the local

tension force y must be known a priori in order to determine the surface force jump.

Thus, an additional equation needs to be introduced based on the membrane surface
constraint to complete the formulation. From differential geometry, the two surface

curvilinear coordinates ¢ and n can be introduced to describe the position vector r(&,7)

defining the membrane surface. There exist two tangential vectors and the surface normal

defined by
r=or/of, v, =or/on, n=(r;xr,)/r, xr,| | (1-20)
and a useful covariant metric tensor defined for the general curvilinear system by
8y =¥, (1-21)
where i and j are either & or n directions. In the case of a locally incompressible cell

membrane, the surface area must remain locally constant in time so that the dilation rate

of a differential surface element satisfies the constraint
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5(dA)
ot

=%N§ dé dn=0 | (1-22)

with the 2-D Jacobian of the transformation given by

Vg =, fdet(g,) =|r; xr,| (1-23)
Then eq 1-22 can be written in differential form
nofryxr)=0 (1-24)
Using the orthogonal curvilinear surface coordinates, that is, the arc length s and the
azimuthal angle @, as ¢ and 7, respectively, the time derivative of eq 1-24 can be
expressed in terms of componénts of the surface migration velocity v,
n-(v, xr, +r,xv,)=0 (1-25)
For r=(x,ocos0,0sinf) and v=(v,,v,cosé, v, sind), one can relate the unit tangent
vector t, along the arc length coordinate s to the surface normal n by
t,=-né +neé (1-26)

With that, we can further simplify eq 1-25 to obtain

~

ot

v, =0 (1-27)
Os

Note that eq 1-27 is consistent with the Pozrikidis derivation for a nonisotropic stretching
membrane by considering the constraint of the principal extension ratios.*® Substituting

eq 1-14 into eq 1-27 for x, € Q,,, we obtain the membrane area constraint in the final

compact form,

14
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where a,f denote either o or x directions, and the unknown local tension force y can
be obtained implicitly from Af given by eq 1-19.

In summary, the linear integral equations (1-14 and 1-28) are developed for the
boundary value problem that, combined with the flow boundary conditions given by eq 1-
13 and the nonlinear interface; boundary condition eq 1-19 defining the surface force
jump as a function of the membrane geometry and the local surface tension, describes the
flow of fluids inside and outside of the cell as well as membrane deformation durfng the

AFM imaging process.

1.3 Numerical Method

The coupled fluid-membrane system is solved using the Boundary Element Method

(BEM) with discretization along the surfaces of the AFM tip and the cell membrane. One
advantége of this method is that no discretization of governing equations is needed inside
the solution domain, but only along the boundaries. Once the boundary values are
obtained, the field solutions (i.e., inside the domain) can be obtained through simple and
computationally efficient post-processing calculatiohs. Also, for 4the axisymmetric
formulation, the dimensionality is further reduced to a one-dimensional problem, which

significantly simplifies the solution of the problem.
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The model is described by four integral equations (eq 1-14, given that a denotes two
diretions, x and o, and w is defined by eq 1-12), and subject to one constraint integral
equation (eq 1-28) for five unknown functions, v, (x) and v,(x) for xedQ,,, f.(x) and
7, (x) for xedQ,, and y(x) for xeaQ,,. The calculations use N, and N,, collocation
points for the AFM tip and the cell membrane, respectively. After descretization and
numerical approximation of the integral equations, there are total 2N, +3N,, linear
algebraic equations to be solved simultaneously at each time step. The initial state
assumes that the membrane is planar and the AFM tip to the membrane separation
distance is 10R (recall that R is the radius of the AFM tip). The position of an AFM tip
and that of the cell membrane are advanced following the local velocity field at every
time step using the Euler time integration method for each collocation point3' On the
fluid membrane, the collocation points are rearranged at every time step by cubic spline
interpolation with node clustering near the membrane center, while maintaining the total
- number of elements fixed. Observing that the decay of the Green's function is of the order
of (1/r), and that of the Stresslet is of the order of (1/r2), the surface integrals can be
truncated without loss of accuracy at sufficiently large ». Although the membrane area
also increases proportional to r, the truncation is still justified in evaluation of the first
integral term in eq 1-11 because the surface curvatures ( H and K') and the gradient of the

surface tension V y vanish at large distances r where the membrane becomes planar,

resulting in fast decay of the surface force jump Af, with the distance r according to eq

1-19. In numerical calculations, the integral is truncated at the dimensionless radius

o ~150. The appropriate truncation distance is justified through sensitivity studies. The
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element level integral is evaluated by the Gaussian quadrature,®’ and the system of
algebraic equations is solved by the Gauss elimination method.*’

Further, if we assume that the local membrane tension force y is isotropic, the

tangent component of the interface stress in eq 1-19 can be expressed in terms of an arc-

length coordinate s as follows:

v,y =224 (1-29)
os

Since y is an unknown, this surface gradient operation is implemented in an implicit
finite difference form to achieve numerical stability. The derivatives of the
transformation matrices 6M,, /ds and 8Q,, /ds in eq 1-28 are evaluated by the central
difference at the integration points. In general, the membrane boundary can be defined by
the parametric equations, x=x(s), o =0(s) with s being the arc-length along membrane
interface 0Q,, measured from the center point (Figurel.l). From differential geometry,

the parametric forms for the mean curvature H# and Gaussian curvature X are derived:

H(x(s),a(s»=""5‘"+;‘;“"""’" (1-30)
K(x(5) 0(6)) = 220 (131)

Also, the Laplace-Beltrami term in eq 1-19 can be expressed in terms of the arc-length

coordinate s as

(1-32)

In the evaluation of membrane curvatures in eqs 1-30 and 1-31, the continuous first- and

second-order derivatives of x(s) and o(s) along the arc-length are evaluated on a cubic
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spline. The mean curvature H(s) may exhibit small.oscillations in the second order
derivatives which prohibit the Laplacian operation in eq 1-32. A remedial way to increase
the smoothness of the mean curvature is to use the piecewise polynomial fit along the
arc-length s in the least-squares sense®' and to compute the Laplaéian directly from the
polynomial representation. Numerical test showed that a third-order piecewise
polynomial with between six to twelve point window size can filter out the small
oscillation ih H(s).

It should be noted that mathematical developments above assume that all functions
and their derivatives are sufficiently smooth to perform the differential operations.
Besides, the uniqueness of the solution of the coupled integral equations (1-14 and 1-28)
cannot be easily proven, since the unknown local membrane tension y is defined as a
Lagrange multiplier which may render multiple solutions of the problem. Our numerical

experiments show that multiple converged solutions for ¥ do indeed exist, but the
physically plausible solution is the one that results in ¥ =0 at o — o, i.e. at the truncated

membrane location, or an a priori known constant value for the planar membrane at the

initial stage.

1.4 Results and Discussion

There are three basic interaction processes in respect to direction of the tip movement
to characterize the fundamental modes of tip-membrane interactions in non-contact
tapping mode: first, the AFM tip is approaching an initially planar membrane with a
constant velocity in the positive x direction (forward) until the tip-membrane separation

distance is equal to R (where R is the tip radius); second, the tip returns to its initial
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position moving in the negative x direction (reverse); and third, the tip stops at its upper
state and the membrane is allowed to freely relax and slowly return to its undeformed
planar shape (relaxation). It should be noted that the driving mechanisms for the
membrane deformation are different from those responsible for the free liquid-liquid
interface evolution?! because of the additional effects arising from the surface bending
energy and the local tension or compression force induced by the constant area constraint,
reflecting the assumption of the local membrane incompressibility. Although a harmonic,
rather than a piece-wise-constant-velocity, motion of the cantilever is more realistic
representation of the actual AFM tapping-mode operation, the main goal of this article is
to uncover fundamental modes of fluid-membrane interactions under conditions which
are relevant, but not necessarily identical, to current practices of using AFM for imaging
soft samples. Indeed, the tip acceleration/deceleration under the harmonic cantilever
motion will only convolute the insight into the basic physics of the problem, and
simplified cantilever motion with a piecewise constant velocity provides an opportunity
to reveal the key physical mechanisms of the AFM imaging process necessary for
understanding and optimization of the process. Thus, because of the overwhelming
complexity of the problem, the main goal here is to gain a fundamental insight and
resolve kéy interaction mechanisms independently.

The results of presented simulations are based on the geometry of the computational
domain defined by the following dimensionless quantities: the AFM tip height is 10 R,
the initial tip-sample separation is 10 R, and the dimensionless time step is set to 0.1 and
is increased to 2.0 in the final stage of the slow membrane relaxation. Several test cases

with the dimensionless bending rigidity B varying from 0.1 to 20.0, the tip opening angle
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ranging from 15° to 90°, and the spontaneous curvature c, changing from -0.1 to -5.0 are
investigated by comparing corresponding force versus di;c.tance response curves. In all
reported simulations, a total of 40 boundary elements are used for the tip and 60 elements
are used for the cell membrane with element clustering around the center portion where
the deformation is more significant. This set of simulation parameters was selected after
an extensive grid sensitivity study based on its ability to produce the mesh-independent
results with temporal and spatial resolutions sufficient for capturing the essential details
of the system dynamics.

Figure 1.2 shows the membrane evolution during forward, reverse, and relaxation
modes of AFM imaging. As a result of viscous flow induced by an AFM motion in fluid
outside of the cell, the membrane is pushed forward (bends down) by the hydrodynamic
piston force, and the fluid within the cell is in turn moved by the membrane with the
highest local velocity around the center location. The curvature-dependent bending
energy continuously changes with the membrane bending, thereby providing a local
resistance to any deformation away from the planar, equilibrium state of the membrane of
the minimum energy. This resistance causes different transient behavior during forward
and reverse modes of AFM operation. In the forward (push) motioﬁ mode, an increase in
the bending energy induces upward motion of the fluid above the membrane (negative
local migration velocities of the fluid 1) against the hydrodynamic (forward directed)
forces. On the other hand, in the reverse (pull) mode of operation, a decrease in the
bending energy assists initially the membrane to withdraw from its highly deformed

bend-down state. However, once the membrane returns to and passes its equilibrium
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Figure 1.2 Full cycle evolution of the fluid membrane with bending rigidity

B=1.0 and spontaneous curvature ¢, =-2.0 induced by the AFM tip with an

opening angle a =60°.
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planar position going upward, the bending energy again starts increasing and begins to
resist any further deformation of the membrane until the membrane reaches its maximum
negative deformation when the AFM tip stops in its upper position. In the final relaxation
stage, the migration of the membrane is slow and solely depends on its bending energy
and the fluid viscosity. The evolution shows that the viscous hydrodynamic forces affect
the membrane state even in the far field along the radial direction, which is a typical
dragging behavior of the Stokes flows. If the simulations are continued for sufficiently
long time, the membrane eventually returns to its equilibrium planar shape and the fluid
velocity, the hydrodynamics forces, and the membrane surface forces vanish everywhere.

Figure 1.3 shows the axisymmetric streamlines and contours of the velocity field at
the end of the forward and reverse motion of the AFM tip at time moments ¢ =15.9 and

31.8, respectively, for B=1.0, ¢, =-2.0, and a =60°. The velocity field is computed as a

post-processing step using eq 1-14 with 2=1.0 after the boundary values of the velocity
are calculated. The velocity field reveals the kinematics of the flow produced by the
coupling effects of the AFM tip motion and elastic deformation of the cell membrane. A
relatively high speed flow is induced in the wake behind the flat bottom area of the AFM
tip due to the strong viscous dragging force from the bottom surface and a relatively
weak response from the membrane. Right near the front of the AFM tip and around the
cone-shaped surface of the tip, the induced flow field is suppressed by the strong opposite
single-layer force potential distributed along the surface of the deformed membrane. As a
result, the velocity magnitude is reduced but the local velocity gradient becomes greater.
The moving tip causes a converging/diverging streamline pattern around the tip

circumference, which is the behavior generally observed in the Stokes flows when the
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Figure 1.3 Instantaneous normalized velocity contours (left), and streamlines

(right) around the AFM tip and the cell membrane at the following time instants:
(a) +=15.9 in the forward direction (b) #+=31.8 in the reverse direction for the
membrane with bending rigidity B= 1.0, spontaneous curvature ¢, =-2.0, and the

AFM tip with opening angle « = 60°.



flow field is perturbed by a moving body of an arbitrary shape. The contours show that
the velocity field decays significantly along the radial o axis away from the centerline,
which supports our choice of truncating the computational domain along the membrane at
o=150R. For the case shown in Figure 1.3, the velocity magnitude diminishes by
almost 80 percent when o reaches 20 R, which is about twice as large as the tip height,
and the same feduction percentage is achieved at the location o =10R for the case with
the narrow tip shown later in Figure .1.7. Note that both the velocity contours and the
streamlines express the continuity of the velocity distribution and the viscous stress jump
across the infinitesimally thi.n membrane interface. The stress jump becomes more
significant as the membrane elasticity and the membrane tension force increase around
the membrane center where the membrane bending is the greatest.

Figure 1.4 depicts the local isotropic tension (¥ >0) or compression (y <0) forces
acting on the membrane with respect to the radial position during forward, reverse, and
relaxation modes of operation. When the AFM tip is moving forward, the membrane is
pushed down by the fluid flow and the tension force is induced to drag the membrane into
the center area to satisfy the surface area constraint imposed by the membrane
incompressibility (eq 1-28). In the reverse motion, compression is observed as the
membrane is pulled back and forced to adopt a new shape with the smaller area. Even
when the memBrane recedes over its neutral equilibrium position in the reverse motion
(Figure 1.2), the surface force is still in the compression mode because the strong
hydrodynamic forces overcome the force induced by the slow membrane self-relaxation,

thereby maintaining the compression state of the membrane on a shorter time scale.
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Figure 1.4 Isotropic local tension/compression force of the deforming membrane
with bending rigidity B=1.0 and spontaneous curvature ¢, =-2.0 probed by the

AFM tip with an opening angle a =60°.
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Figure 1.5 shows the instantaneous maximum deformation of the membrane (at the
center) as a function of the instantaneous tip-membrane separation distance in a full cycle
simulation. Clearly, this plot is analogous to the typical sampling force (proportional to
membrane deformation) versus distance curves obtained experimentally during actual
AFM imaging of biological cells. The range of experimentally measured bending rigidity

values reported in the literature is 1.3x102° ~7x10™°J with the nominal value about

1071° 732333435 which translates into paramefer B values ranging between 0.1 and 20.
The greater bending rigidity translates into stronger membrane resistance to deformation
as demonstrated by the smaller variation range for the trace curve along the y-axis. At the
same time, during the reverse operation mode and when the bending rigidity is
sufficiently large, the membrane initially moves faster ‘than an AFM tip owing to the
strong bending force acting on the membrane. This fact is manifested in Figure 1.5 by a
decrease of the tip-membrane separation distance below 1.0 at the time moment just past
12.6, for the case of B=5.0. The lagging response is also observed when the minimum
tip-membrane separation distance (equal to 1.0) is maintained at times r=18.6, 17.1, 15.9,
12.6, and 10.4 for the cases with bending rigidity B=0.1, 0.5, 1.0, 5.0, and 20.0,
respectively. In the AFM imaging experiments, such an irreversible “hysteresis™ behavior
in respect to the forward and reverse motion of an AFM tip is frequently observed for soft
samples, and the simulations provide the first theoretical evidence that this behavior is

“due to coupling of hydrodynamic and elastic membrane' effects. Also, in the forward
operation mode, as the tip approaches the membrane the tip-sample interaction becomes

stronger and this results in a locally increased slope of the deformation curves when the

tip-membrane separation distance approaches unity. The slope also appears much greater
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Figure 1.5 Effect of the bending rigidity on the hysteresis curve of the membrane
deformation vs tip-sample separation distance for the membrane with spontaneous

curvature ¢, =-2.0 and the AFM tip opening angle a =60°.
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(i.e., a steeper change in the membrane deformation) in the beginning of the tip reverse
motion due to contributions from both the bending force acting in upward direction and
the upward hydrodynamic pull force induced by the reverse motion of the AFM tip. After
passing through the equilibrium membrane position with zero bending energy, the
bending force begins to act in the opposite direction relative to the hydrodynamic force
leading to a decrease in the slo'pe of deformation curves continuously until the AFM tip
comes to rest at its upper elevated position. Finally, in the membrane relaxation mode,
the deformation curves for all three bending rigidities. are identical and the membrane
relaxes to its equilibrium position. as expected, featuring linear dependence on the tip-
membrane separation distance.

In the AFM probing experiments, choosing the tip geometry is based on the
characteristics of the sample surface and the requirements of the image resolution. Two
of the most important factors affecting the image resolution are the tip sharpness
(represented by the tip radius R) and the tip aspect ratio (represented by the tip opening
angle «). Since our system is made dimensionless using the tip radius as a scale, the

effect of the tip radius R is reflected in Figures 1.2-1.5. The effects of the tip opening

angle are presented in Figures 1.6 and 1.7. Figure 1.6 illustrates the hysteresis plot for
four different cases with the opening angle ranging from 15° to 90°. Clearly, a decrease in
the AFM tip opening angle (tip 5harpening) results in significant enhancement of the
AFM sensitivity, as even small me:mbrane deformation leads to a fairly large change in
the separation distance between the tip and the cell membrane (Figure 1.6). This is

because sharpening of the tip results in focusing of the hydrodynamic push/pull force into
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Figure 1.6 Effect of the AFM tip opening angle on the hysteresis curve of the

membrane deformation vs. tip-sample separation distance for the membrane with

bending rigidity B = 1.0 and spontaneous curvature ¢, =-2.0.
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Figure 1.7 Instantaneous normalized velocity contours and streamlines around the

AFM tip and the cell membrane at time instants: (a) r=12.5 in the forward.

direction and (b) r=25.0 in reverse direction for the membrane with bending

rigidity B= 1.0, spontaneous curvature ¢, =-2.0, and the AFM tip with an opening

angle a =15°.
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a much smaller region of the membrane, as illustrated by a decrease in size of the induced
fluid flow domain and, in turn, much greater local velocity gradients in the flow field
exemplified by the velocity contours and streamlines in Figure 1.7. In some sense, the
effect_ of tip sharpening (Figure 1.6) is equivalent to an increase in the apparent bending
rigidity of the membrane (Figure 1.5), which results i‘n enhanced spatial resolution and
sensitivity of the imaging process. Further, the duration of the full probing cycle
decreases, thereby allowing for an increase in speed of the membrane scanning process.
Previous studies?? for the elastic properties of giant vesicles indicate that the
bending rigidity of the membrane B serves only as a scaling factor for the membrane

curvature effect (see eq 1-17), whereas the spontaneous curvature c, controls the

equilibrium shape of the vesicles. Indeed, the spontaneous curvature represents a
phenomenological constant to accommodate various effects due to the asymmetric fluid
environment inside and outside of the cell and in the lipid bilayer structure of the
membrane. It is obtained by fitting the experiment data of the equilibrium vesicle shape
to the curvature elasticity model as shown in Deuling and Helfrich's work.?® For example,

they showed that a red blood cell features a shape of a biconcave disk with negative

spontaneous curvatures. Although the elasticity model®® does not impose any restrictions
on the sign of the spontaneous curvature, the positive ¢, is rarely, if ever, found in the
experiments. Our simulations show that positive spontaneous curvatures ¢, result in

physically unrealistic results, for example, with the bending elastic force further
augmenting the hydrodynamic push force in the forward operation mode. Thus, we only

present the results for the negative spontaneous curvature by varying c, over a broad
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range from -0.1 to -5.0, which corresponds to the values found in the experiments with

giant vesicles and red blood cells.?>**

Figure 1.8 shows the hysteresis curves that reflect the effect of the membrane
spontaneous curvature. Clearly, with a decrease in an absolute value of c,, the maximum
membrane deformation increases until it reaches the saturation limit at ¢, — 0. The

"hysteresis" curves shown in Figure 1.8 exhibit a qualitatively similar behavior to that of
the "hysteresis" curves shown in Figure 1.5 which expresses the effect of another elastic
constant, the bending rigidity B. Therefore, in practical applications, consolidating these
two elastic constants, B and c,, may provide a basis for the simplified curvature
elasticity model to be used as the dynamic boundary condition eq 1-19 for interpretation

of AFM images using analytical techniques.
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Figure 1.8 Effect of the spontaneous membrane curvature on the hysteresis curve
of the membrane deformation vs tip-sample separation distance for the membrane

with bending rigidity B = 1.0 and the AFM tip with an opening angle a = 60°.

33



1.5 Conclusions

The hydrodynamic interactions during AFM imaging of biological membranes have
been investigated through fundamental theoretical analysis and numerical simulations.
The model devéloped couples the Stokes flow induced by an AFM tip motion and the
elastic membrane dynamics extended from Helfrich's theory.!' The governing equations
are solved by the boundary element method. In the calculations, the molecular level
interactions are disregarded by keeping an AFM tip sufficiently far away from the
membrane. The details of the membrane transient deformation and fluid motion (inside
and outside of the cell) are described for three probing regimes: forward motion, reverse
motion, and relaxation. In each case, a number | of interesting and sometimes
counterintuitive phenomena were observed such as (a) dominance of the compression
force acting on the membrane in the reverse (pull-back) mode of AFM operation even
after the membrane passes its equilibrium planar state; (b) a local instantaneous decrease
in separation between the AFM tip and the membrane in the beginning of the reverse
mode operation when the bending rigidity of the membrane is sufficiently large; (c) the
tip parameters (the radius of curvature and the opening angle) define the sensitivity,
resolution, and speed of the imaging process; and (d) the probing cycle lasts longer in the
case of a softer membrane with smaller bending rigidity and smaller spontaneous
curvature as well as when the AFM tip opening angle is large. The "hysteresis" behavior
observed in the full cycle noncontact probing experiments using AFM for imaging soft
biological samples has been explained by the strong coupling of hydrodynamic effects
(fluid motion) and elastic deformation of the membrane when imaging takes place in the

liquid environment. The numerical results show that the highest tensile force (scaled by
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Vou) induced by the fluid motion is of the order of 107 mN/ m, which falls in the range of
values measured in the micropipet experiments.*® The predicted tensile force is also far

below the observed rupture tension force ~10 mN/m,> indicating that the induced viscous

stress will not damage the cell membrane.
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CHAPTER 2

Electrohydrodynamics and Surface Force Analysis in AFM Imaging of a Charged,

Deformable Biological Membrane in a Dilute Electrolyte Solution

Surface forces arising in AFM imaging of a deformable, negatively charged
biological membrane in an electrolyte solution are investigated in the limit of continuous
electrohydrodynamics. Specifically, the study extends the analysis from the previous
chapter of purely hydrodynamic interactions between an AFM tip and the elastic cell
membrane by accounting for electric double-layer forces under the assumptions of a
dilute electrolyte solution and local electrochemical equilibrium. The solution of the
problem is obtained by integrating the quasi-steady, electrically forced Stokes equation
for the electrohydrodynamic field, the linearized Poisson-Boltzmann equation for the
electrostatic field in the electrolyte inside and outside of the cell, and the Laplace
equation for the electrostatic field within a dielectric AFM tip. Helfrich and Zhong-can’s
equation for an equilibrium shape of the cell membrane is employed as a quasi-steady,
nonlinear boundary condition linking the stress fields on both sides of the cell membrane
augmented by the local. membrane incompressibility condition in order to find the local
tension/compression force acting on the membrane. An integrated framework for the
dynamic coupling of the membrane double-layer effects and the AFM tip-electrolyte-
membrane motion is established that allows for characterizing of the local electrolyte
flow field, the electrostatic field, the elastic deformation of the membrane, and the
electrohydrodynamic surface force acting on the AFM tip in great detai]. The résults of

the analysis provide information on the motion of the membrane and the surface forces
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induced by both an electrolyte motion and the Maxwell stresses resulting from the
electric double layer for a full cycle motion of the AFM tip during noncontact,

nonresonant mode imaging of a simple cell membrane.

2.1 Introduction

Atomic force microscopy (AFM) provides a unique opportunity to investigate the
‘structure, morphology, micromechanical properties, and biochemical signaling activity of
cells, subcell structures, and even a single molecule with high temporal and spatial
resolutions. #*7*%¥40 'biological applications, AFM imaging of living cells needs to be
performed in their natural aqueous environment in order to observe molecular level
interactions and biochemical processes in situ in the electrolyte solution and to avoid the
interference due to the capillary adhesion forces. Despite significant advances made in
experimental application of AFM in cell imaging, the data interpretation and associated
theoretical models are still in their infancy. This is perhaps owing to the ovthelming
complexity of the physical/chemical phenomena taking place during AFM imaging of
flexible, electrochemically active biological samples, which includes intimately coupled
fluid flow (inside and outside of the cell), dynamics of the cell membrane deformation,
electrokinetics of ionic interactions in the electrolyte, the electric double-layer induced
surfaces forces, and other long- and short-range effects. As pointed out by Kamm in his

! understanding of these interactions is of

recent review of cellular fluid mechanics,*
critical importance because of the key role played by the electrolyte flow conditions in

defining the biological functions, normal physiology, and diseases of living cells. In

previous chapter, the physical processes taking place during AFM imaging of soft
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biological membranes in an aqueous environment were investigated. A particular
emphasis was piaced on the understanding of hydrodynamic effects in the fluid inside
and outside of the cell associated with elastic deformation of the membrane in response to
the AFM tapping action for an entire probing cycle. It was also assumed that for an
electrolyte with high ionic strength the tip-membrane separation distance is sufficiently
large as compared to the thickness of the electric double layer. Thus, the electric double-
layer force can be safely neglected in the electrically screened flow domain. In this
chapter, the AFM tip-membrane separation distance down to 30 nm is considered in a
dilute electrolyte solution. The focus of this chapter is on electrohydrodynamic and
elastic interactions between the AFM tip and the cell membrane as observed in
noncontact, nbnresonant imaging experiments that focus on inferring the local
micromechanical properties of biomembranes that are obscured by fhe dynamic response
of the cell (membrane) as a whole.*? This should not be confused with another important
resonant tapping-mode AFM‘ imaging modality commonly used in biological
applications, wherein the AFM cantilever is oscillated at the kiloHertz-level resonant

frequencies and change in the amplitude or resonant frequency upon interaction with the

substrate is used for image interpretation. The problem of hydrodynamic effects relevant
to interpretation of the tapping-mode images was successfully attacked by Sader* and by
the Rajagopalan’s grdup.‘m’45 The difference with this study is in two aspects: (1) Sader’s
and Rajagopalan’s works were concerned with the hydrodynamic aspects of fluid-AFM
cantilever beam (not a tip) interactions, and (2) their focus was not hydrodynamics, but
the effect of fluid. damping on the resonance dynamic behavior of the AFM cantilever

beam in the tapping mode imaging.
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For mammalian cells, the cytoplasm is enclosed by a deformable fluidlike membrane
assembled by the lipid bilayers with integrated proteins. Due to the large concentration of
charged proteins, the water rﬁolecules inside the cell become structured, formiﬁg cytosol
and making the solution properties inside the cell very different from those of the cell
exterior. Such a complex biophysical system is far beyond the reach of current theoretical
understanding in the field, especially, in combination with simulation of the instrument
and of the imaging process. However, complementary theoretical modeling and
experiments are feasible for the simplest “artificial” cell without the space-filled
cytoskeleton such as vesicles or artificial synthetic bilayers. The investigation of such
simplified systems can provide a significant insight into membrane biomechanics,
thereby making the first important step toward basic understanding of the fundamental
structure and properties of living cells. |

The bending elasticity of the electrically charged lipid bilayers was first studied
theoretically by Mitchell and Ninham,*® Winterhalter and Helfrich,*’ and Chou et al.*®
Experimentally, in the early 1990s, Tao et al.*’ used AFM to measure the local elastic
modulus of the hydrated cow tibia, and Radmacher et al.> investigated the viscoelastic
properties of a living platelet. A summary of more recent work is also available. 67!
Typically, the AFM tip force versus separation distance curves generated during AFM
imaging experiments are used to determine the micromechanical properties of the cell by
fitting the expérimenta] data to the appropriate physical model of the AFM tip-to-sample
interactions. Recently, McElfresh et al.*? used AFM to decouple the mechanical response

of the cell from the molecular binding event in order to quantify the local interactions.
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Butt®>>33 éppears to be thé first researcher who analyzed the static tip-to-sample
interactions by identifying the contribution from the electrostatic, van der Waals, and
hydration forces in a quiescent electrolyte solution. A similar solution methodology can
also be found in Grant and Saville's study™ of the particle-rigid plate interactions under
various charge conditions of significance to colloidal systems. For a deformable
interface, the early work on the dynamic fluid stress induced by the deformation of a free
surface by a solid particle was performed by Lee and Leal®! using the Stokes fundamental
solution. More recently, the static eQuilibrium analysis of the interactions between a
charged sphere and a charged monolayer-type interface was reported by Dungan and
Hatton®® who considered the balance of double-layer, gravity, and constant surface
tension forces. Although the fluid motion induced by the probing process is observed in
most experiments, the analysis becomes rather complex so that most researchers try to
- eliminate or at least reduce the contribution from the hydrodynamic forces acting on the
AFM tip by reducing the probing speed. Only in very recent studies of the flow slip on

].57

hydrophilic surfaces, Bonaccurso et al.”’ published measurements with the surface force

apparatus which account for the interaction forces due to both hydrodynamic and electric
double-layer effects on the solid surface and Vinogradova and Yakubov®® reported a
hydrodynamic force acting on a colloidal probe in a lub.rication regime.

These early pioneering Works in different areas of colloid and interface sciences as
well as the new developments in the area of multifunctional AFM-SECM scanning

1459 provided a stimulus to our study on the pure hydrodynamics of noncontact

probes
AFM imaging of a soft biological membrane in an aqueous environment,! which is

reported in chapter 1. In this chapter, the analysis is extended by considerihg the effect of
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the electric double layer in the coupled AFM tip-electrolyte-membrane system to
characterize the local electrolyte flow field, the electrostatic field, the elastic deformation
of the membrane, and the surface forces acting on the AFM tip. In this model, the
parameters are designed to match the character.istic scales of the above referenced
experimental studies.”*"* Specifically, we used an AFM tip size equal to 3 pm, and a
vertical scanning distance of 500~1000 nm, and the AFM is operated at a low vertical
scanning frequency of about 5-10 Hz.

The analysis neglects molecular level interactions and other short-range effects, and is
limited to a dilute eléctrolyte under local electrochemical equilibrium. The minimum tip-
to-sample separation distance commonly used in the tapping mode experiments could be
an order of magnitude smaller than the value used in the simulations and, at contact, even
_ becomes zero. The reasons for keeping the minimum separation distance greater than 30
nm are as follows. First, the theoretical analysis is based on the “continuum”
electrohydrodynamics and elasticity theories and thus is strictly valid for fluid length
scales of the order of 30 nm or greater. The discrete nature of surface charges, the details
of the protein structures/domains formed within the membrane, and the complex short-
range force interactions arising when the AFM tip is in very close proximity to the
membrane are beyond the reach of the present model as the “continuum” theory breaks
down at such small scales. Second, although the currently available AFM instrﬁments do
not allow for control of the tip-to-sample separation diétance when imaging soft
biological membranes, it ought to be emphasized that, if either the membrane
deformation or the tip-to-membrane distance can be measured using an alternative

experimental technique (e.g., AFM-scanning near-field optical microscopy (SNOM)
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combination), the mathematical relation between the surface force and the membrane
deformation developed here may provide a basis for a new noncontact AFM imaging
method that avoids the problems of tip contamination and possible cell damage due to the
contact with the AFM tip.

The current analysis developed for a dilute electrolyte environment may provide a
basis for qualitative interpretation of the AFM studies of electrophysiological properties
of real membranes®®' or supported artificial membranes wherein the ionic comf)osition
of the solution can be varied on both sides of the membrane. For a nondilute electrolyte
(e.g., ~0.15 M salt balance inside a typical cell and the buffer solution), the Debye length
is very small, less than 1 nm. As a result, the electrostatic field is almost completely
screened, there is no electric force acting on the AFM tip until it almost contacts the
membrane, and the electric force is no longer coupled to the fluid system. Therefore, to
simulate the AFM tip and membrane interactions in a nondilute electrolyte, one can
simply modify the phenomenological elastic properties of the membrane to account for
various surface charge conditions*®*’ and then model the AFM tip-fluid-membrane

interactions using purely hydrodynamic analysis as described in chapter 1.

2.2 Theoretical Development

2.2.1 Scaling and Governing Equations

Figure 2.1 shows a schematic view of the idealized physical arrangement that
includes the vertically moving (probing) AFM tip and a biological cell bounded by a

charged, deformable membrane and immersed in an electrolyte solution. In the analysis,
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Figure 2.1 Schematic view of an AFM tip approaching a cell membrane and
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the representative parameters of the AFM tip and of the noncontact probing process are
taken to be 3 um (the tip height), 30 nm (the tip radius), 300 nm (the initial tip-to-
membrane separation distance), and 30 nm (the minimum tip-to-membrane separation
distance). An electrolyte solution is characterized by its ionic strength n,, density p,
dynamic viscoéity u, and thermal energy kT, with k; and 7 being the Boltzmann
constant and the absolute temperature, respectively. We assume that the AFM tip moves
at the piecewise constant probing speed ¥, in the forward and reverse directions defined
by the scanning frequency of around 5~10 Hz and the vertical probing distance of around
500~1000 nm. A biological cell is characterized by its equivalent diameter D and the
effective membrane bending rigidity B.

A dilute electrolyte features a greater (more diffuse) electric double layer extending
further away from the charged membrane surface. As a result, the fluid flow induced by
the AFM tip motion may encompass or be encompassed by the double layer during
different periods of the AFM probing cycle. Since the focus of the present analysis is on
the electrohydrodynamic interactions and the membrane charge double-layer effects, the
Debye length of the electric double layer ! is chosen as the characteristic dimension for
scaling the electrolyte systems with the varying ionic strength. Four time scales can be
identified as relevant to the problem in hand. These are as follows:

(i)  The forcing velocity time scale, {,,,, characterizes the driving force of the fluid

motion, and is defined by the ratio of the characteristic length scale, the Debye

length x', to the characteristic velocity, ¥,, of the vertical probing motion of the

AFM tip.
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(i)

(iii)

(iv)

The viscous diffusion time scale, ¢, ., characterizes the viscous force induced by
the fluid motion, and is defined by the square of the diffusion length across the
electric double layer, x~2, divided by the viscous diffusivity, s/ p.

The ionic migration time scale, ¢, characterizes an accelerated motion of the

mig >

volumetrically charged fluid element induced by the Coulombic force

pE~ Zz,.en,Vqﬁ relative to the baseline thermal energy k,7/e and the bulk ionic
strength of the solution »_ ~ szn,f“ . In other words, the time scale is derived from
i
the following balance equation p,E~ zen V¢ ~rinkyT, where p, is the
i

volumetric charge density, E is the local electric field, z; is the valence number, e
is the single electron charge, and #, is the number density of each ionic species.

Note that such a scaling is consistent with the result obtained by the linear
approximation of the charge density.

The simplified membrane bending relaxation time scale without considering the
fluid resistance, ¢,,,,, characterizes the accelerated motion of the membrane driven
by the bending elasticity, and is defined by the bending rigidity B, the judiciously
selected cell diameter D (used instead of x™' for the length scale), and a
representative total volume based on the selected length scale for the cell diameter,

D*.

In summary, the four corresponding time scales are expressed as

1/2

tfarc ~ (KVO )_I s Dise ™ p/(KZ/J)S tmig ~ (p/KZanBT)Hz > Lhena ~ (PDS /B) (2-1)
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For the typical values of 7, =10'5m/; , n,=10°M ~10"*M and x™' =300~30nm, the
forcing time scale is of the order of 10'2~10'3.;. For the electrolyte properties,
p~10°kg/m’ and p~1.5x10"kg/m-s at room temperature, the viscous diffusion time
scale is of the order of 107 ~107'° s, and the ionic migration time scale is of the order of
10 ~107% 5. For a cell whose representative diameter is greater than the height of the
AFM tip, for example, a 10 pm cell, and a nominal bilayer bending rigidity of
2x107"° J,*** the membrane bending relaxation time scale is of the order of 1072s.

Therefore, if we focus on the dynamic effects associated with forced motion of the AFM

tip, the characteristic time scale for the problem ¢,, should be given by the forcing

velocity time scale ¢, and the following scale hierarchy can be established,

{ (2-2)

char visc

=t}m ~ lyeng >> e > 1
The comparison of time scales in eq 2-2 clarifies some key time-domain limitations of the
present analysis: (i) the selected forcing time scale resolves the effects resulting from the
AFM tip motion as well as the membrane deformation induced by the fluid flow; (ii) the
viscous time scale is much smaller than the characteristic forcing time scale which
supports the quasi-steady approach to theA analysis of the fluid motion (i.e., a vanished
time derivative term in the Navier-Stokes equations) because the viscous diffusion affects
flow on a much shorter time scale than that of the AFM tip motion; and (iii) the much
smaller ionic migration time scale, as compared to the characteristic forcing time scale,

implies that the local electrochemical equilibrium can be assumed to exist in the

electrolyte solution. Further, owing to the very low Reynolds number, Re = p¥, / xu ~ 10°

to 107, the flow inertial forces are negligibly small as compared to the viscous forces
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and, thus, the nonlinear advection term in the Navier-Stokes equations can be also
dropped.

We consider a homogeneous electrolyte with uniform electrical and fluid properties
on both sides of the cell membrane, whose surface potential or charge density is assumed
uniform and described by a symmetric value of the zeta potential. The short-range
structural, hydration, van der Waals, and other molecular level interactions are neglected
as compared to the electric force acting on the AFM tip when it penetrates into the
charged double layer of the membrane down to the minimum tip-to-membrane separation
distance of about 30 nm. It is also aésumed that the AFM tip is made of a dielectric
material, for example, silicon nitride, both the environment fluid and the fluid inside the
cell are incompressible Newtonian fluids with the same density and viscosity, and the
Coulombic electric force is the only body force involved in the probing process. The
membrane thickness is neglected so the membrane can be mathematically treated as an
infinitesimally thin interface. Thermal fluctuations due to Brownian motion are assumed
to be insignificant to perturb a sufficiently rigid cell membrane from its perfectly smooth
and, initially, equilibrium flat shape. Further, the interior of the cell is assumed
electrochemically isolated from the exterior environment without considering any ion
transport across the cell membrane.

The dynamics of both ﬂuids_, i.e., inside (Q, -domain) and outside (Q,-domain) of the
cell (Figure 2.1), is governed by the steady-state, electricallyr forced nonhomogeneous
Stokes equation and the continuity equation:

-Vp+Viv+p,E=0, xeQ,,Q, (2-3)

V.v=0, x€Q,,Q, (2-4)
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where p, v, and u are the pressure field, the velocity field, and the dynamic viscosity,
respectively, p, is the local volumetric charge density, E is the electric field vector
related to the electric potential ¢ by E=-Vg, and x denotes a position vector in the
Cartesian coordinate system. The charged membrane induces an electric field in the
electrolyte solution, which is screened by the electric double layer and also coupled to the
electric field within the AFM tip through the electric boundary conditions. Applying
Gauss’ Law leads to the Poisson equation for the electric potential in the electrolyte

environment,

Vig= L pe, XxeQ,, Q 2-5
15 3¢2
£4&¢

where ¢, is the electrolyte relative permittivity, and g, is the permittivity of a vacuum,
and to the Laplace equation for the electric potential distribution in the dielectric AFM tip
which has no free or fixed charges inside,

V=0, xeQ, (2-6)
where the Q, domain indicates the dielectric material of the AFM tip (Figure 2.1). Recall

that the scale relationship given by eq 2-2 permits us to use the local electrochemical

equilibrium since the ion relaxation occurs on a much shorter time scale than the
cilaracteristic vforcing time scale based on the AFM tip probing speed. The local
electrochemical equilibrium condition for a dilute system leads to the nonlinear Poisson-
Boltzmann equation owing to a nonlinear dependence of the charge density on the
electric field potential in eq 2-5.%% To facilitate the complete integral solution of the

problem, only a simple case of the Debye-Hiickel linear approximation® is considered

for a system with a small electric potential, |g|<<k,T/e~25mV at 25°C, where e is a
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single electron charge. This linear approximation reduces the volumetric charge density
to
Pe(x)~ (=2¢’n. 1 k5T) §(x) 2-7)
By substituting eq 2-7 into eqs 2-3 and 2-5, the nonhomogeneous Stokes equation is
obtained, expressed as
—Vp+uViv+ e’V =0, xeQ,,Q, (2-8)
and the linearized Poisson-Boltzmann equation becomes
V=x’¢, xeQ,,Q, 2-9)

where the Debye length x™ is related to the ionic strength n_ by

k=260, 1 £,60k,T ' (2-10)

The dynamic boundary condition at the membrane interface can be obtained from the
stress balance on both sides of the membrane.”* We assume that the membrane
deformation is dominated by its bending rigidity and the fluidlike membrane has locally
isotropic surface tension on the time scale of interest and has negligible shear elasticity.!
Under these conditions, the quasi-steady stress balance for the cell membrane can be
expressed as

(‘rgh-n—'rf"-n)+ny—7n(VJ-n)+flM +fM =0 (2-11)
where Af* =15 -n-1{".n is the surface force jump condition induced by the
electrohydrodynamic stresses from the adjacent fluids, and V, y— yn(V, -n) is defined by
the membrane geometry including the shear component given by the surface tension
gradient in the tangential direction s of the membrane and the normal component given

by Helfrich and Zhong-can's membrane mechanics and the equilibrium shape equation.'"
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122628 The last two terms £} +f}' are added to account for the electrostatic force induced
by the asymmetric (relative to the membrane) electric screening fields on both sides of

the membrane. The electric force is computed from the Maxwell electric stress tensor

as a function of the local electric field,®*
M = oM -n=s,go(EE—%E-E6J-n (2-12)

where the term in front of the Kronecker delta (8) denotes the isotropic component of the
electric stress tensor. Using Helfrich and Zhong-can's membrane equilibrium shape
equation, eq 2-11 can be rearranged' to the following jump condition suitable for the

integral formulation of the problem described in the next section:

AP ==V _y— AfM +(- 2y H +BQ2H +c¢,)(2H? =2K ~c,H)+ 2Bv2H)n | (2-13)
where y is the local tension force, B is the apparent bending rigidity, H is the mean
curvature, K is the Gaussian curvature, ¢, is the effective spontaneous curvature, V? is

the Laplace-Beltrami operator for the curvilinear surface, V, is a surface gradient

operator, and A" =f" +f;' =3’ -n—1}"-n is the net electric force applied to the
membrane due to the asymmetric electric fields in the electrolyte on both sides of the
membrane. Note that the normal direction n follows the definition in Figure 2.1, and the
mean and Gaussian curvatures can be transformed into parametric forms in terms of the

derivatives of the axisymmetric coordinates (x,o) with respect to the arc-length

coordinate s along the membrane interface 6Q, as H=[x'-o0"x'+00'x"|/2c° and
K =[o"x'x"—o"’x'2:|/0'. Further, since the local tension force y is not known a priori in

the dynamic boundary condition, eq 2-13, an additional equation needs to be introduced
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based on the membrane surface area constraint condition, 8(d4)/¢=0, to complete the

formulation. The general form of the constraint equation for a locally incompressible
membrane was first derived by Pozrikidis®® for the deformation of a red blood cell in the

shear flow, and it can be expressed in terms of the arc-length coordinate with the local

surface tangent t,(x€dQ,,):

of, - Livg, =0  @-14)
T Os

To generalize the formulation, the governing equations are made dimensionless by
the following scales: the length scale is given by the Debye length ', velocity the v is

scaled by the AFM tip approach speed V,, time is scaled by the characteristic forcing

time ¢,,, =(x¥,)"', the local surface tension  is scaled by V,u, the membrane bending

rigidity B is scaled by V,u/x?*, the membrane mean curvature H and spontaneous
‘curvature ¢, are both scaled by the inverse of the Debye length x, the Gaussian
curvature K is scaled by x?, the surface force f and pressure p are both scaled by
Voux , and the electric potential ¢ is scaled by ¢ (£ =k,T/e). Using these scales, the

following dimensionless governing equations can be derived:

~Vp+Viv+agVg=0, V.-v=0 for xeQ,Q, (2-15)
Vig=¢, xeQ, Q, (2-16)
V=0, xeQ, 2-17)

where the dimensionless parameter @ measures the relative strength of the electric force
as compared to the viscous force in the electrolyte solution (provided, of course,

#V ¢~ O(1) and the scale for the surface potential is ¢'):

51



2 .
o= E1E0KG " el.ectrtc Sforce (2-18)
MV, viscous force

And the dimensionless Maxwell surface force, eq 2-12, can be reduced to a function of

the local potential field,

M_,|000¢ 104 04 ]
Z "‘{ax, an 2 ox, axk"fJ (-19)

The dynamic interface boundary condition, eq 2-13, and the membrane surface area
constraint equation, eq 2-14, remain in the same form after being made dimensionless.
Finally, the system of governing dimensionless equations is complemented by the

following boundary conditions, in dimensionless forms:

v(x)=%1¢,, xedQ, no slip condition on the AFM tip (2-20)
v(x)=v,(x), xedQ, no slip condition on the cell membrane (2-21)
v(x)=0, |x|—>w velocity field vanishes at the infinity (2-22)
#(o,x)=0, x—> 0 electric potential field vanishes at the infinity (2-23)
¢l (x)=¢,(x)=¢,, xedQ, symmetrically charged membrane (2-24)
¢ (x)=¢,(x), xedQ, continuity of the electric field on the AFM tip  (2-25)

£,V¢,(x)-n(x)= Vg (x)-n(x), xedQ, -continuity of the potential flux on the AFM tip
(2-26)
where the relative (AFM tip material to environment electrolyte) dielectric constant is

defined by €, =¢,/€g,. Several assumptions are made in the boundary conditions to

simplify the system: (i) the AFM tip approach speed is piecewise constant during the

imaging process; (ii) the apparent electric potential of the membrane is small, |¢|<<¢", so

that the Poisson-Boltzmann equation can be linearized; (iii) the charged molecules and
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polar groups of the lipid molecules uniformly smear out along the surface to maintain
constant zeta potentials® on both sides of the membrane, and the membrane is initially in

its equilibrium flat shape; (iv) the AFM tip has zero surface charge density.

2.2.2 Boundary Integral Formulation

The model equations are intimately coupled and solved by the boundary integral

1 the general integral solution of the

method.’**® According to Ladyzhenskaya,
nonhomogeneous Stokes equation, —Vp+V?v =8, can be written as a combination of

contributions from the Stokeslet, the Stresslet, and the nonhomogeneous source term,

v, (xo) == [$,(X)G, (X x)dV (X) = [z, (X, ()G (x,x,) dA(x)

PV, X€00 (2-2 7)

+ 0T (xx0)m (X)dAC)
oQ

where w=0 for x,¢Q, w=8zr for x,eQ-0Q, and w=4r fqr X, €Q on the
sufficiently smooth boundary. On the right-hand side of eq 2-27, the first term is a
volume integral, and the second and third terms are the single-layer and the double-layer
surface integrals. The unit surface normal vector n, points into the fluid domain,
S, =—ap V¢ represents the vector source term due to the electric force in eq 2-15, and v,
and 7, represent the velocity and electrohydrodynamic stress fields, respectively. Note
that when the source point is located at the boundary, x,edQ, the double-layer
contribution from the Stresslet has to be interpreted in the sense of Cauchy principal
value because of the stronger singularity in the integral kernel 7), . The fundamental
solution, the Stokeslet, and its corresponding stress field, the Stresslet, are given for the

solution of the homogeneous Stokes system, —Vp+V?v =0,
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S, nr; Fr,F
Gylxxo)=—F+—, Tylaxe)=-6—4 (2-28)

respectively, where &, is the Kronecker delta function, and r = x-x, and r = |x-x,| are the

position vector and the distance between the field and the source points, respectively. To
facilitate the advantages of the boundary integral only formulation, the domain integral of
the source term S, =—a¢ V¢ is transformed into the surface integral by incorporating the
divergence free property of the Stokeslet,

V-G, =0 (2-29)

so that
o¢ 1 ) .
I-1[¢_6x, G, dv = 0 ;IV (¢2G,-j )dV (2-30)

Then, by applying the divergence theorem to the right-hand side of eq 2-30, the complete

boundary integral formulation of eq 2-15 can be obtained,

v, =-% j¢26,j n,dA - j £Gy dd+ [v,Ty, nyda (2-31)
N &n (291

with n pointing into the fluid domain and the traction term replaced by the surface force

1,20,21

expression, f;" =z;’n, . It can be proven that for a symmetric and uniformly charged

membrane, the boundary integral solution (eq 2-31) in both fluid domains (i.e., inside and
outside of the cell) can be effectively combined using the dynamic interface boundary

«condition (eq 2-13) leading to the following unified formulation:
| PV, Xo€0Q,

a)vj - IAf;'ehG,j dA + J.,(f‘ieh +%¢12niijdA - J.v,-T;jknde (2'32)
anqQ,, aQ,

aQ,

where w=8r for x, €Q, +Q, +0Q

m?>

and w=4r for x,edQ,. The surface force jump

condition 4f,", given by eq 2-13, in the kernel function can be interpreted as the source
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density acting on the fluid from the cell membrane surface, and ¢, is the induced local

surface potential at the AFM tip.
If the AFM tip, the cell membrane, and the induced flow are axisymmetric, the
complexity of the integral formulations can be further reduced by using the cylindrical

coordinate system (x,y,z)=(x,ocosf,0sind) and expressing the fundamental solutions,

the Stokeslet and the Stresslet, in terms of Green's functions of the ring source type. As
shown in Figure 2.1, x is the coordinate along the axial direction, o is the coordinate
along the radial direction, and @ is the azimuthal angle. Similar to the analysis in chapter

1, 4", £, and v, are independent of the azimuthal angle so that the azimuthal
integration needs to be performed only for Green's function and for its corresponding

stress field leading to the final solution of the three-dimensional axisymmetric problem in

terms of one-dimensional integrals only,

P.v., Xg€0Q),
ov, =-— J'Aflj"Ma/, ds+ I(f;" +£¢,2nﬁ )Ma/, ds— J‘Qaﬂy v, ngds  (2-33)
2
80, 0, a,
where o has been defined for eq 2-32, the Greek symbols «, # and y denote either x or
o directions, and the kernel functions M,, and Q,, are the general coordinate

transformation matrixes for the Stokeslet and the Stresslet in the Cartesian coordinate

1321 which can be expressed in terms of the complete elliptic integrals of the first

system,
and second kinds. Now, by substituting eq 2-33 into eq 2-14, the integral formulation of

the local membrane constraint equation, including the hydrodynamic and electric effects,

takes its final compact form,

P.v.,Xg€0Q,
jAf;” ()T, (x, % )ds(x)— J'(f/‘;" +%¢,2 nl,JH1 ds+ IHZ v,nyds =0 (2-34)
e 2, 2, :
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with the integral kernels expressed as

(s xe)= oo ), (xo)aM“ﬂ((")"‘)) My (xx5) 2:35)
1T, (5x0) = o ) () “ﬂf(("’)"") 0., (xx0) 236)

where a, B and y denote either the o or x directions, and the unknown local

membrane tension/compression force is obtained implicitly from 4f¢ given by eq 2-13.

The tangential derivatives of M,; and Q,, can also, in principle, be expressed in terms

of the complete elliptic integrals of the first and second kinds. However, such a derivation
is quite cumbersome, so in simulations the finite difference technique is used to compute
these terms.

The linearized Poisson and Laplace equations for the electric field potentials can also
be transformed into the integral formulation by using the weighted residual method and
the general Green's identity. The adjoint integral forms of eqs 2-16 and 2-17 are identical

and can be expressed as

opf= j(c;,, Z ¢ aaci”]dA | (2-37)
oaQ
04 .8G
wL¢= GLa—f— E}I_‘-)dA (2-38)
N

where w,=1 for x,€Q,Q,, w,=1/2 for x,€8Q,Q,, w,=1 for x,eQ,, and w,=1/2
for x, € 2Q,. Note that the coefficient value 1/2 is valid only for a smooth boundary. The

fundamental solutions of the adjoint differential operators V2 ~1 and V* in eqs 2-16 and

2-17, respectively, can be derived by the Fourier transform technique and are given by:

Gp=e"l4drxr (2-39)
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G, =1/4xr (2-40)
where r =|x-x,| is the distance between the source and field points. Similar to the Stokes

flow problem, the surface integrals in eqs 2-37 and 2-38 can be reduced to the one-
dimensional line integrals by transforming the Cartesian coordinates to the cylindrical

coordinates,

wp f= J[Mp‘;—f-mp]ds (2-41)

a,¢= [ 1,22~ ¢QLst @42)
aQ '

where w, and @, are the same as those defined for eq 2-37 and 2-38, and the ring source
type Green's function (M) and its normal gradient (Qp ) for the Poisson equation can be
expressed in terms of compact forms,

ok

=o |G,do= J : 2-43
P =0 I 2”(0_0_0)1/2 10 ( )
109G, n_k* ( k (%n, +on, )k* k
QP —O--‘- do 47[ Lz O- 0 l/2 J3] +J21J— 4”0_0 2(0-0_0)”2 J30 +J20 (2‘44)

respectively, where i=x-x,, k=+400,/|x*+(c+0,)*), the field and source point
Y 0 0 0 p

locations are defined by x =(x,0) and x, = (3:0,00), respectively, and the integral J,, is

defined by

; =Ir]_ J(x +Ho+a,) JI-kcos? o (2005 69— 1)"

2-45
" 0 ( —k?cos Hy ( )

Equation 2-45 cannot be integrated analytically or transformed into a simplified form

using the elliptic integrals, so it is necessary to divide the integral into two parts: the first
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part, which includes the singular point when ¥ —1 and 6 — 0, can be asymptotically
expanded into a series in terms of the azimuthal angle as a small parameter, and the
second part can be calculated by direct numerical integration. Similarly, for the Laplace

equation, the ring source type Green's function (M) and its normal gradient (Q; ) are

M, =c*G,do= %Im (2-46)
790G ok oo, o’
o, =°'f ?nia%’:—zlmnx "‘{4_”0131 i 30}% (2-47)

respectively, where the integrals I are derived from the Integral Tables®” and expressed

in terms of the complete elliptic integrals of the first and second kinds, listed in Appendix
C. Note that the surface integrals in eqs 2-41 and 2-42 cannot be arbitrarily truncated
since the membrane surface potential does not vanish wheﬁ o — . Therefore, in the
construction of the computational domain used in numerical simulations, an imaginary,
infinitely long cylindrical wall (or tube) is placed vertically around the system, with a
radius defined by an appropriate truncation distance, about ten folds of total height of the
AFM tip. The boundary condition at the imaginary wall is that of a vanishing gradient for
all scalar quantities along the surface normal. The electric potential should also vanish in
the axial direction as x — *o0. In addition, the required gradient of the potential field in
eq 2-19 can be derived by taking the deriva_tive of the integral solution given by eq 2-41,
although this would increase the kernel singularity and further complicate the numerical

integration. An alternative way to overcome this difficulty is to use the invariant

o¢

coordinate system transformation defined by V¢=Eé" +§£é -5 a¢i

-~ =—n+—t_ in order to
oo on O

obtain the gradients d¢/dx and d¢/ 0o . The normal gradient d¢/0n can be computed
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through the integral solution of eq 2-41, and 84/8s can be calculated using the finite
difference technique. Then, the gradients 64/0x and 64/6c can be computed from

0¢/0n and 8¢/ s by using the rotation matrixes:

[n, —na] for xeoQ,,, [n’ "o ] for x e 0Q, (2-48)
n

o ny s “Hy

In summary, we have developed the system of linear integral equations, eqs 2-33, 34,
41, and 42, that, combined with the boundary conditions, eqs 2-20 to 26, and the
nonlinear membrane boundary condition, eq 2-13, constitut¢ the boundary value problem
for the coupled electric field/fluid flow/membrane deformation problem describing the
dynamics of the noncontact AFM imaging process of the biological membrane. The
system is solved numerically using the boundary element method with discretization
along the surface of the AFM tip and the cell membrane. Note that the electric field
governed by eqs 2-41 and 2-42 is essentially uncoupled from the fluid system, and can be
solved once the moving membrane/tip boundaries are advanced to the next time step
through the Euler time integration method using the velocity field at every collocation

point. The details of the numerical implementation for the fluid system are discussed in

chapter 1, and, therefore, not repeated here.
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2.3 Results and Discussion

The total force acting on the AFM tip is due to: (i) the electrohydrodynamic stress
owing to the electrically (Coulombic force) driven fluid motion, and (ii) the Maxwell
stress generated by the electric field in the vicinity of the AFM tip induced by the charged
biomembrane. The first part is obtained by direct integration of the integral solution, f*
of eq 2-33, along the surface boundary of the AFM tip. The second part, contributed by
the Maxwell stress field, ¥ of eq 2-19, is also obtained by surface integration after the
potential field of eq 2-41 is computed. We demonstrate the results for a dilute solution
with variable ionic strength from #” =10°M to 10~ M for a fixed AFM tip geometry
and membrane elastic properties. The axisymmetric AFM tip geometry is characterized
by a total height of 3 um, a radius of the upper corner 0.3 pm, a tip opening angle of 60°,
a front radius of the tip of 30 nm, and the nominal membrane bending rigidity aﬁd
spontaneous curvature B=2x10"°J and ¢, =—4.0 ™, respectively. The tip moves at a
piecewise constant vertical scanning velocity of £10 pm/s, and is initially placed at a
distance 300 nm above the membrane whose equilibrium position is given by x=0. The
reversing point of the scanning process is set to 30 nm as the minimum tip-to-membrane
separation distance. The relative dielectric constant, ¢, =0.075, and the’ dimensionless
small membrane zeta potential, ¢, =-0.5, are maintained constant. Other dimensionless
parameters used in simulations are listed in the caption of Figure 2.2. The boundary
element method is implemented using a total of 70 and 60 elements along the tip and the

membrane surface, respectively. The numerical results followed are first obtained in
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dimensionless form and then converted to dimensional quantities to facilitate physical
interpretation of the phenomena.

In Figure 2.2, the total force acting on the AFM tip due to the eléctrohydrodynamic
and electrostatic contributions is depicted by the hysteresis curves. The positive force
values represent the repulsion force (toward —x) on the tip, and the negative values
represent the attraction force (toward +x) on the tip. During the simulated probing
process, the case of purely hydrodynamic fluid-membrane interactions' (a =0) is used
for reference. Clearly, similarly to the purely hydrodynamic case, AFM imaging in the
low ionic strength electrolyte (case a) features monotonically increasing repulsive and
decreasing attractive forces during the forward and reverse strokes, respectively. For
solutions with stronger ionic strength, cases b, the electrohydrodynamic force loses its
monotonicity and its behavior is determined by the competitive effects from the bending
resistance of the membrane and the repulsive force generated by the electrostatic charged
double layer. The decrease in magnitude of repulsive forces for the forward strokes is due
to the unsymmetric electrostatic forces‘ that push the membrane away from the tip,
thereby reducing the draglike electrohydrodynamic forces acting on the AFM tip. Such a
behavior is the most profound in cases ¢ and d with the large ratio of the electric to
viscous forces (« is large) and thin Debye layer, wherein the dominant electrostatic force
(acting on the membrane, not the AFM tip) continuously pushes the membrane further
away as the AFM tip approaches. As a result, the AFM tip-to-membrane separation
distance never reaches the minimum threshold distance of 30 nm at which the tip motion
should normally be reversed, and the dynamic behavior of the AFM tip-membrane is

defined primarily by the
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Figure 2.2 The comparison of electrohydrodynamic (A) and electrostatic (B)
forces acting on the AFM tip during the forward and reverse strokes of the AFM
imaging process for four dilute systems: (a) n” =10°M, k™' =304nm, B=144.3,
co=-1.216, a=97, dt=0.01. (b) n°=10"M, K™ =96nm, B=14472,
co=-0384, a=307, dr=003. (c) n’=5x10°M, x'=43mm, B=7211,
co=-0.172, a=686.4, dr=0.05. (d) n®=10"M, x™'=30.4nm, B=14430,
¢, =-0.1216, @ =971, dt =0.1. Note that in case a the entire stroke is within the

Debye layer; in case b the tip enters the Debye layer at the point marked by the
symbol ¥; and in cases ¢ and d the AFM tip remains outside of the Debye layer

for the entire stroke.
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strong repulsive electrostatic force acting on the membrane as it begins to deform. In
simulations, the forward stroke is terminated and reversed at the moment when the tip
travels the distance of 1 pm from the membrane planar equilibrium state (x= 0).

Furthermore, in these two cases, the validity of the boundary condition, y=0, at the

cutoff disténce o~45 pm (which is only 15 times the total height of the AFM tip) is
questionable, since the large membrane deformation induced by the strong electrostatic
force acting on the membrane should result in non-negligible tension in the membrane
even in the far-field. Presently, no theoretically sound approach exists to evaluate the

induced nonzero y-tension in the far-field of the membrane, and our analysis with the

vanishing tension boundary condition is limited to the AFM tip-membrane interactions of
the small perturbation type. Alternatively, for some small and sirhple model cells such as
a red blood cell, the entire cell membrane can be included into a closed simulation
domain, making the boundary condition for the membrane tension no longer necessary.
During the reverse stroke, the electrohydrodynamic force is attractive and its magnitude
is initially smaller for cases a and b because of the assisted bending energy released by

the recovering membrane. In the later stage, however, this attractive force becomes

enhanced as the tip-to-membrane separation increases and their electrostatic coupling
vanishes. In the cases of a stronger electrolyte, for example, cases ¢ and d, the membrane
recovery is resisted by the unsymmetric electrostatic force whicﬁ renders the higher
attractive force acting on the AFM tip in the early stage of the reverse stroke. This
intriguing dynamics is very different from that observed in the experiments for
noncontact AFM imaging of nondeformable solid surfaces® in which the repulsive

electrohydrodynamic force always monotonically increases during the forward stroke
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until exponential saturation within a highly repulsive region where the tip-to-surface
separation distance falls below 30 nm and the short-range forces become significant.
These short-range effects are beyond the scope of our study. The discontinuity in the
electrohydrodynamic force is due to the piecewise constant approach speed of the AFM
tip during the forward and reverse strokes.

The electrostatic force is continuous, always repulsive, and exhibits hysteresis
behavior in the full cycle simulations because of the hysteresis in the membrane
deformation as later shown in Figures 2.3 and 2.4A. The electrostatic interaction of the
AFM tip and membrane increases as the AFM tip penetrates into the charged double layer
of the membrane where the field-affected area of the tip becomes greater and the intensity
of the electrical potential field increases. For the case of a stronger electrolyte with the
large screening effect (case c), the electrostatic force is reduced significantly because
most of the time the tip is outside of the double layer, where the electric field vanishes.
And in case d, the electrostatic force is essentially zero as the tip never penetrates into or
even close to the Debye layer. Note that the AFM tip never touches the membrane and the
total surface force acting on the AFM tip and the membrane is due to a combined
contribution from both the electrohydrodynamic and electrostatic forces as weli as the
membrane bending elasticity. Furthermore, in the reverse stroke the electrostatic force is
greater than it is in the forward stroke, since the AFM tip and the membrane are closer to
each other during the reverse tip motion leading to the greater electric field gradient and,
thus, enhanced electric force. The surface forces illustrated in Figure 2.2 are in the
piconewton and subpiconewton range, and the electrostatic force is an order of magnitude

smaller than the electrohydrodynamic force. This is a result of the assumption made in -
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analysis of the small surface zeta potential (about -12.5 mV) in order to linearize
governing equations. One may expect that for a higher surface potential the electrostatic
force may contribute equally or become even more significant than the combination of
the viscous and osmosis effects described by the electrohydrodynamic force. Indeed, eq
2-19 provides a scaling argument that the electrostatic force should approximately
increase by 2 orders of magnitude as the membrane zeta potential increases 10-fold, if the
ionic strength of the solution or the Debye length remains unchanged. The detailed
simulation of the high zeta potential case demands a more complex analysis involving
solution of the nonlinear Poisson equation for the electric field and is beyond the scope of
this work.

Figure 2.3 demonstrates the instantaﬁeous axisymmetric velocity vectors describing
the flow field and the corresponding electrical equal-potential lines defining the tip-to-
membrane electrostatic interactions for the intermediate case (case b) in Figure 2.2 at the
three time instances, namely, the initial moment and the ends of the forward and reverse
strokes. Both the velocity field and the electric field are computed in a postprocessing
step using eqs 2-33, 41, and 42 after all required boundary values are calculated. The
velocity vector plot reveals the flow structure resulting from the coupling of the AFM tip
motion and the deformation of the cell membrane. The moving tip causes a
converging/diverging flow pattern around the tip circumference, which is the generally
observed behavior for the Stokes flows when the flow field is perturbed by a moving
body of an arbitrary shape. The electrical equal-potential lines show the perturbed double
layer with densely spaced isolines and the induced electric field inside the AFM tip. The

resulting unsymmetric screening field causes a repulsive force acting on both the tip and
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Figure 2.3 Instantaneous velocity vector field (left section) and the electrical
potential isolines (right section) for simulation case b in Figure 2.2 at three time

instances: (A) an initial moment, ¢=0.0s, (B) the end of the forward stroke,

t=0.109s, and (C) the end of the reverse stroke, +=0.218 s.
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the cell membrane. Also, the stress jump becomes more significant as the membrane
tension, the bending forces, and the Maxwell electric forces increase around the
membrane center where the membrane deformation is the greatest. The double-layer
structure on both sides of the membrane exhibits an exponential decay resulting in a
significant electrostatic force acting only on a small portion of the tip front. The electric
field inside of the insulating AFM tip features large gradients to satisfy the continuity of
flux in the electric boundary conditions.

Figure 2.4 shows tﬁe transient evolution of the membrane and the surface
tension/compression force during the forward and reverse strokes, also corresponding to

case b in Figure 2.2 for the time moment r=0.109s at the end of the forward stroke and
t=0.218s at the end of the reverse stroke. The membrane deformation shown in Figure
2.4A reflects the dominance of fluid flow and electric effects over the membrane
relaxation behavior near the center portion of the membrane during different stages of the
imaging process. In particular, at the end of the forward stroke (+=0.109s ) the membrane
shape features a sharp dip in the center where the AFM tip penetrates the deepest into a

charged double layer leading to a local maximum of repulsive electrohydrodynamic shear

and electrostatic forces (see Figure 2.3). The surface tension/compression f(;rces in the
membrane induced by the AFM probing action are shown in F igure 2.4B. At the end of
the forward stroke (#=0.109s ), the membrane switches abruptly from the tension (y >0)
to a compression (y < 0) state because the strongly repulsive electrohydrodynamic stress
and the Maxwell stress favor a compressién deformation mode (¥ <0) near the center

portion of the membrane. This unusual behavior was not observed in the previous study

of chapter 1 due to neglected double-layer interactions.
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Figure 2.4 The transient evolution of the cell membrane (A) and the transient
local tension (positive) and compression (negative) force along the cell membrane
(B) during the forward and reverse strokes of the AFM imaging process

corresponding to case b in Figure 2.2.
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2.4 Conclusions

Electrohydrodymaic and electrostatic forces acting on the AFM tip and a charged
biological membrane have been analyzed for a full cycle of noncontact, nonresonant
AFM imaging in a dilute electrolyte solution. The AFM tip-membfane interactions are
simulated using intimately | coupled continuum theories of electrohydrodynamics,
membrane biomechanics, and electrostatics within an integrated computational
framework. The analysis neglects the molecular-level interactions and it is limited to the
low zeta-potentials of the membrane immersed in the electrolyte which is in the state of
local electrochemical equilibrium. Although greatly simplified, it is the first time when an
integrated model for the coupled electromechanical and hydrodynamic analysis has been
developed for AFM imaging of the soft and charged lipid bilayers and membranes. |

Through careful scaling and simulations, it has been shown that the electrostatic force
between the AFM tip and a membrane is always repulsive and an order of magnitude
smaller than a electrohydrodynamic shear force. The shear force changes its behavior

from repulsive during the forward AFM stroke to attractive during the reverse stroke, and
it becomes significant only when the AFM tip penetrates into the electric double layer of
the membrane. In the latter case, the surface force interactions are influenced by the
strong coupling of the unsymmetric electric field perturbed by the dielectric AFM tip and
the fluid flow induced on both sides of the deforming membrane. This results in an
unusual membrane bending behavior at the end of the AFM forward stroke, which is not
observed in the case of purely hydrodynamic AFM tip-membrane analysis discussed in
chapter 1. The scaling arguments are also presented to extend the results to a more

realistic case of the membrane with higher zeta potential immersed in the high ionic
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strength electrolyte solutions. The fundamental insight obtained should be instrumental
for qualitative interpretation of the AFM measurements of the electrophysiological and
mechanical properties of biomembranes or supported artificial membranes in response to

the change in the ionic strength of the solutions on both sides of the membrane.
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CHAPTER 3

An Integrated Transport Model for Tracking an Exocytotic Event

Dynamics Using a Microelectrode

Vesicular exocytosis is a process by which a vesicle within a cell fuses to a plasma
membrane and releases its contents, one or several biochemical agents, into an
extracellular medium. This process is one of the most important mechanisms in cell
communications. We propose a theoretical model to simulate the intimately coupled
dynamics.and kinetics of an exocytotic event for an opening and expanding of a fusion
pore, leading to vesicular polymer swelling and molecular messenger release. The model -
is based on continuum fluid transport and elasticity theories, and solved by the boundary
integral method. The simulation results are qualitatively compared with experimental
results from the literature of in vitro electroanalytical measurements of the Faradaic
current resulting from messenger oxidation on an electrode surface. The results are
significant as they provide new insight and a basic understanding of the slow and fast
steps of an exocytotic sequence, allowing verification of competing hypotheses on what

controls/limits messenger release during exocytosis.

3.1 Introduction

The complex biophysical process underlying the release of neurotransmitters and
hormones from secretion cells, known as vesicular exocytosis, is an important

mechanism that defines cell signaling and intercellular communication. This phenomenon
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has drawn the attention of neuroscientists and physiologists because abnormal regulation
of the cell signaling process may cause many human diseases. A simplified description of
the exocytotic event starts with protein synthesis and vesicle packing in the cell
cytoplasm, followed by the vesicle transport withi'n the cell, fusion of the vesicle to the
cell membrane by a working protein, and ends with the release of the vesicle content, that
is one or several chemical messengers included in the vesicle granule matrix, to the
extracellular medium. In the case of neurons, the released neurotransmitter crosses the
synaptic cleft and directly binds to a receptor on a postsynapse or a muscle cell. For
endocrine secretion cells, the sequence is similar except that a hofmone is released into
the bloodstream and it targets a particular cell to trigger the corresponding biological
function. In the release process, several fundamental issues have been a focus of active
research for more than a decade. These include the signal pathway that leads to
membrane fusion, the structure and conformation change of the working proteins that
mediate the pore opening, the expansion of a small fusion pore followed by the
membrane unfolding, the role of the swelling granule, the signals that trigger or inhibit
the overall secretion process, and transport mechanisms of these chemical messengers in
a cellular environment.

Bio-transport phenomena of a dynamic exocytotic event involve fluid (due to intra-
and extra- cellular physiological liquid environment) and solid (due to membrane
tension/compression and granule swelling) mechanics that either promote or resist the
messenger release from the fused vesicle granule and its transport through a fusion pore
and a thin cleft to the binding zone of a specific target cell. This process involves two key

features. First, once the fusion pore is opened, the fused membrane continues unfolding
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until its minimum energy state is achieved. Both the cytoskeleton network that supports
the plasma membrane of the host cell and the pre-stressed (higher energy) state of the
fused vesicle membrane may provide the tension force to drive the event dynamics. It is
known that the fused membrane may have nonhomogeneous tension and perhaps even
locally varying elastic properties that, together with the expansion of the swelling granule
matrix and the viscous drag forces in the fluid inside and outside of the cell, drive
expansion of the fusion pore and the messenger release. The second important feature
that has to be carefully considered in the analysis is that the granule inside of the vesicle
undergoes a phase transition from a dense messenger-packed protein matrix to a fully
swollen and empty (free of messengers) state. The granule matrix is a polyelectrolyte
mixture, part of which is a network of proteins, effectively cross-linked by the divalent
cations such as Ca®*, and the rest interstice consists of highly concentrated secretion
messengers and other ionic species. Once granule swelling is triggered by biochemical
changes in the extracellular environment, the matrix transitions to a fully swollen state,
and the negatively charged protein network either dissolves in the environment or resists
further elastic expansion by stretching the polymer strands to maintain its structure.
Similar to an ion exchanger, this transition phenomenon has a cascade behavior triggered
by monovalent cations such as Na" and K*.%8%° These ions from the solution medium
replace the divalent polymer cross-linkers and maintain electroneutrality while the
molecular messengers and cross-linkers are released from the interstice of the protein
network, and at the same time, water molecules gradually fill in the space. These

phenomena are well known in synthetic polymer systems,’® but it has not been clearly
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established how they can be coupled to other transport processes involved in an
exocytotic event. |
Cellular experiments on the organized uptake and release of biochemical agents are
commonly performed by fluorescence imaging techniques.””? Optical limitations,
however, prohibit a more detailed local analysis, which requires higher spatial and
temporal resolutions on the scales below sub-microns and sub-milliseconds, respectively.
In order to resolve these finer scales of local biophysical processes, a microelectrode-
based biosensor is one of the most promising techniques and has been continuously
developed for more than a decade.””*"’%"" The operating principle is rathér simple: a
stationary or a scanning electrode biased at a certain voltage/current level is used to
detect a response current/voltage due to the interfacial flux of reactants in order to
characterize a fingerprint of molecules, the interfacial transport phenomena,
bioreactivities, neurotransmission, or hormone secretion processes. In the field of brain
chemistry and neuroscience, efforts have been devoted to monitoring and characterizing
the release and uptake events of neurotransmitters, with micron resolution, from a single
cell in a culture, and even for mammalian brain tissues in vivo in response to chemical or
electrical pulse stimuli”®*”*% This resolution is possible because these molecular
messengers can be electrochemically oxidized on a carbon fiber electrode and be detected
by electroanalytical methods. As for nonelectroactive molecules, a biological sensing
element, such as an enzyme, is needed to enable electron flow through the electrodé, for
example, insulin detection with a glucose sensor. Enzymatic modification of the electrode
surface has been used in the studies of various nonoxidizable neurotransmitters during

81,82

exocytosis on the time scale of milliseconds, and the chemically-modified electrode
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was employed for detection of insulin release from the pancreatic B cells on a much
longer time scale.®?

To conclude this brief review of the current state-of-the-art in experimental
investigations of exocytosis, in the last decade the efforts have been mainly focused on
chronoamperoinetric real time monitoring of the secretion process by placing a

85,86,87,88,89,90 or directly

rhicroelectrode near the surface of the cultured secretion cell,“’
detecting an isolated, electroporated granule of the mast cells.®®*®! However, owing to the
lack of detailed biochemical information, a broad range of the characteristic length and
time scales, and an overwhelming complexity of the phenomena, there have been only a
few theoretical models developed, all of which are limited to a semi-empirical diffusion-

1.°2 used Monte Carlo

like transport and a simplified cell/vesicle geometry. Stiles et a
simulations to predict the passive diffusion behavior of acetylcholine from a small and
clear synaptic vesicle with spatial and temporal resolutions of tenths of nanometers and
microseconds, respectively. Amatore’s and Wightman's groups®®® developed a semi-
“empirical diffusion-kinetics model to separate the effect of the pore opening kinetics and
diffusional transport based on their experimental observations of adrenaline release from
chromaffin cells. Recently, Farrell and Cox*® also developed a diffusion model for a
class of pore opening functions as a dynamic boundary condition to reproduce the efflux
that matches experiments with mast cells for various vesicle sizes.

Early studies in the area of nanoscale fluid dynamics and transport phenomena in
physiological applications have been reviewed by Ciofalo,* and it appears that the role of

fluid-membrane interactions in exocytosis was first studied by Nir’® using the boundary

integral method adopted from simulation of coalescence phenomena of liquid droplets.
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The importance of conformational dynamics of vesicies, including exocytoéis and
endocytosis, and fluid interactions are perhaps best illustrated in a collection of
pioneering papers edited by Pincus®® and, in particular, the visualization of transient
dynamics of the pore opening and closing of vesicles by Sandre et al.”’

It is apparent that cellular exocytosis is a very complex biophysical process thatv
involves several intimately coupled phenomena that may occur on widely different time
scales. Even an initial phase of exocytosis such as membrane fusion is a very complex
topic that has been actively studied for more than two decades for its fundamental
importance to cell biology. The theory of membrane fusion began with the hypothesis of
stalk formation®®*® associated with a hemifusion diaphragm and its continuous expansion
into to a fusion pore. This model and those reported in numerous follow-up studies were
built on a continuous theory of the curvature energy of an elastic bilayér membrane.
More recent studies are focused on the biological function of protein mediators that
initialize the membrane fusion, and are aimed at finding the molecular structure of these
proteins and their conformational changes at different stages.®®!°! An excellent literature
review on the biophysics of membrane fusion including atomistic simulations can be
found in the recent Jahn and Grubmiiller's article.'® Once fused to the plasma membrane,
sWelling of the vesicle granule matrix is triggered by an “action potential”'® or change in
the solution composition.'® The transition of the condensed granule matrix to a fully
swollen state has similar dynamics to those observed in the swelling of ion exchange
resin.”

Understanding of the intimately coupled dynamics and kinetics of exocytosis is

without doubt a grand-challenge type of a problem that requires concerted experimental
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and theoretical efforts. Many hypotheses have been proposed, and naturally many of
“them contradict one another. For example, it was believed that granule swelling may play
a key factor that causes the fusion pore to expand,®® but Monck et al.'® shed doubts on
this commonly accepted hypothesis by observing similar pore eXpansion velocity for
various swelling conditions in experiments with mast cells. An interesting case was also
observed by Holstein and Tardent'® for an extremely fast nematocyst discharge process
whose dynamics are very different from those of typical exocytosis.

It is too ambitious and perhaps even unrealistic to expect that a general theory can be
developed for such a complex biophysical process as exocytosis. Thus, in this paper we
only focus on the veéicle post-fusion step of the exocytotic sequence, aiming for
development of a theoretically sound modeling framework that can be used to interpret
the electroanalytical meésurements of exocytosis. The set of models we developed are
based on continuum theories with the length and time scales relevant to three specific
experimental studies of exocytosis, which are used for the model validation. These
models are governed by: (i) the quasi-steady Stokes equations of fluid motion induced by
unfolding of the membrane, (ii) a transient, nonhomogeneous diffusion equation for the
molecular messenger distribution inside of the swelling granule matrix, and (iii) a quasi-
steady convection-diffusion equation for the transport of these chemical messengers in
the extracellular solution. We use Helfrich’s curvature energy theory and Zhong-can’s

2 augmented by the constraint equation for local

equilibrium membrane equation,’
membrane incompressibility, as a quasi-steady, nonlinear moving boundary condition to
link the fluid stress fields on both sides of the fused membrane. In addition, to predict the

swelling behavior of the protein network in the granule matrix, we apply the Tanaka,
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Hocker, and Benedek (THB)'®” hydrogel model, originally designed for measuring the
viscoelastic propérties of gels using light scattering spectrosc;opy and later applied by
Tanaka and Fillmore'®® to swelling of a spherical hydrogel.

The simulation results are qualitatively compared with the experimental data from the
literature of the in vitro electroanalytical measurements of the Faradaic current resulting
from the messenger oxidation at the microelectrode %®°1:8392888%50 e pelieve that
biologists and biochemists can find this model useful as a tool to verify competing
hypotheses that control/limit the messenger release process as well as for interpretation of

the electroanalytical measurements of exocytosis.

3.2 Theoretical Development

The model is developed using continuum transport theories of fluid mechanics, mass
transfer, and electrochemistry, linear elasticity mechanics, and bilayer membrane
mechanics. We assume that initially the fusion pore is already in an opened state and the
vesicle and plasma membranes are securely fused (i.e., we do not consider “kiss-and-run”
events), and the fused membrane has a homogeneous simple bilayer structure. The
presence of cytoskeleton is not directly modeled, but it can be potentially included
through the parameters in the macroscopic tension, bending, and viscous forces that
govern unfolding of the membrane. We assume that both the extracellular environment
and the intracellular fluids are homogeneous, incompressible Newtonian fluids with the
same densities, but with different viscosities. We neglect molecular level interactions and
other short-range effects. This includes neglecting electrostatic forces, a good assumption

under normal physiological conditions (ie., an electrolyte buffer strength ~0.1 M), where
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the electric forces are screened by a very thin (<1 nm) electric double layer in the
extracellular medium and in the éytosol. The membrane thickness is also small (~ 5 nm)
relative to the vesicle/cell size, so the membrane can be mathematically treated as an
infinitesimally thin and perfectly smooth interface separating intra- and extra- cellular
environments. We neglect the effect of any heat generation due to nonequilibrium, rapid
matrix swelling. Further, thermally-induced membrane fluctuations are assumed
insignificant as compared to the large deformation of the fused membrane. In this
idealized system, we further assume.that the mechanical work performed by the swelling
granule matrix on the vesicle membrane can be neglected in the limit of small
deformations, meaning that the linear elasticity theory is valid. In the case of large
granule matrix deformation, the two-phase polymer system has to be modeled and a

much more complex, nonlinear analysis would be required.
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Figure 3.1 Schematic of electroanalytical monitoring of exocytosis using a
microelectrode (bottom) and an idealized simulation domain (top).
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3.2.1 Scaling of the Phenomena

In this section, we analyze the time scales involved in the system to properly define
the characteristic time for the process and also to assess whether certain simplifications in
the analysis can be made. Figure 3.1 shows a schematic of the idealized physical

arrangement that includes the intracellular cytosol (Q,,), the extracellular fluid

environment (Q,, ), and a separating boundary established by a fused vesicle/plasma
membrane (8Q,,,, )- The domain of a granule matrix (Q,,, ) is bounded by an interface
(0Q,,,), and the reacting surface of the microelectrode (8Q,,,, ) is placed adjacent to the
pore in the fused membrane in the extracellular environment. An axisymmetric three-
dimensional hourglass shape'® is employed as an initial configuration with the fusion
pore and granule matrix positioned along the centerline. The following notation is used
hereafter: R, is the initial radius of a secretion vesicle, ¥, is the experimentally observed
maximum expansion velocity of the fusion pore, and d is a fixed electrode-to-membrane
separation distance (usually d ~ R,)). The extracellular fluid is characterized by density p
and dynamic viscosity p,,,. The cytosol is approximated by the same fluid density p,

but, in general, has a different viscosity p,. The simplified bilayer structure of the fused

membrane is characterized by its intrinsic elastic properties such as an effective bending
rigidity B, a spontaneous curvature c,, and a local tension force y.

By assuming that the exocytosis dynamics are driven by the interplay between the
membrane relaxation (unfolding) and release and transport of molecular messengers from
the vesicle granule, five time scales can be identified as relevant to the problem in hand.

They all can be expressed in terms of the length scale ¢~ R, as follows:
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(i) The fusion pore expansion time scale, ¢ characterizes the pore expansion

pore 3
dynamics, and is defined by the characteristic length scalé, R,, divided by the
maximum pore expansion velocity, V.

(ii) The \./iscous diffusion time scale, ¢, characterizes 'the viscous driving force of fluid
motion, and is defined by the square of the diffusion length (also scaled by the
vesicle radius R?) divided by the viscous diffusivity of either the cytosol, p,/p or
the extracellular fluid, p.,, /p.

(iii) The messenger diffusion time scale, ¢, ,,, , characterizes the molecular transport to
the electrode through the extracellular electrolyte solution, and is defined by the
square of the distance, d* ~ R, divided by the bulk diffusivity, D, .

(iv) The second characteristic time for messenger transport, td,.ff,,,,a,,;, characterizes the .
apparent diffusion behavior through the protein network inside the granule matrix,

and similarly is defined by R2/ D, .

(v) The collective diffusion time scale, 1, ., , controls the linear swelling dynamics of

the protein matrix, and is defined by Rj/D,,,,, where the physical meaning of the
collective swelling diffusivity D,,,, is discussed later in the manuscript.

To summarize, the relevant time scales for the problems are given by:
tpore ~ RO /VO ’ tvl:c ~ pR02 /l”lcyt ’ td[ﬁ,bulk ~ R(? /Dbulk ’ (3-1)

2 2
tdlﬂ' matrix "~ RO / D matrix td[ﬂ swell ™ RO /D swell
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Note that the electron transfer of the éxidation reaction at the electrode-solution interface
is a much faster process than the dynamics presented (i.e., diffusion-limited transport), so
the electrochemical reaction can mathematically treated as an instantaneous event.

To compare the relative magnitude of the time scales in eq 3-1, we use

experimentally obtained values for the secretion vesicle size R, and the maximum pore
expansion velocity ¥, for different types of vesicles. Specifically, we look at three cases:
(a) the large size vesicles in mast cells R,~ 2.5 pm,”" with a pore expansion velocity Vy ~

20 pm/s;”® (b) the small clear synaptic vesicles, R,~ 20 nm, with a pore expansion

85,92

velocity V,~ 25 pum/s;>* and (c) the medium size vesicles of the chromaffin cells R,~

150 nm® with the expansion velocity ¥, ranging between 0.37 um/s (beginning of the

process) and 18 pm/s (end of process).®’ Based on these experimental data, the
characteristic pore expansion time scales for cases (a), (b), and the fast stage of (c),
respectively, are given by

Lyore ~ (@) 0.125 s, (b) 8.0x10* 5, and (c) 8.33x10™s (3-2)

For a typical physiological cell environment with fluid density p~ 10° kg/m® and

viscosity x,,,~ 1.5x107 kg/m.s (1.5 cp) at room temperature, the viscous diffusion time

scales in the extracellular environment are different for all three cases (a, b, and c)
considered because of the difference in the characteristic length scale:

t,..~(a) 4.2x10°s, (b) 2.7x10™%s, and (c) 1.5x10® s (3-3)

For the purpose of scale analysis, if we assume the viscosity of the cytosol p,, is of the

same order of magnitude as that of the extracellular environment, then the viscous
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diffusion time scales in the cytosol are similar to the extracellular environment values
given by eq 3-3.
Two diffusion time scales based on molecular diffusivities in the bulk solution

(D, ~ 6.0x107"° m%/s'®%) and in the granule matrix (D, ~ 2.0x107'> m*s®®) are given

natrix

by
Lo~ (8) 1.0x107s, (b) 6.7x107 s, and (c) 3.75x107 s (3-4)

tagr.marie™ (8) 318, (b) Not applicable (no granule in the vesicle), and (c) 1.13x107s
(3-5)

Finally, the apparent swelling diffusivity of the granule D, is about 1.4x107" m?/s%

and the corresponding time scales for the cases (a), (b), and (c) are given by

Lug. swen~ (8) 0.45 s, (b) Not applicable (no granule in the vesicle), and (c) 1.6x107 s
: (3-6)

In summary, although the relevant time scales for the problem span a wide range of
magnitudes, they can be grouped into several categories based on their relative order of

magnitudes as follows:

(a) tdlﬁ' matrix =~ tdlﬁ,swell ~1 pore
(b) tpore > tdl_‘ﬂ‘ bulk =7 Lyises Lreaction (3 '7)

(©) Lagg, manix ~ tpore > Ly, swetr
The comparison of time scales given by eq 3-7 is important in two respects: (1) it
establishes certain generality in the dynamics of the exocytotic event regardless of the
specific vesicle type, (2) it is credible enough for theory development as being based on
the direct experimental observations. From the theoretical prospective, eq 3-7 is also very
important as it allows us to reduce the complexity of the models underlying the process

dynamics for different temporal observation windows (e.g., by contrasting the fast versus
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slow processes) and by treating only a limited number of the key phenomena that are

relevant on the time scale for the specific observation window. That is:

(M)

(i)

(iif)

(iv)

The oxidation reactions at the electrode/electrolyte interface are very fast and can be
treated as an equilibrium surface phenomenon. As a result, the transport models in
the bulk fluid environment are free of the source/sink terms associated with the non-
equilibrium species consumption/generation.

The viscous diffusion time scale, ¢,,.., is much smaller than all diffusion time scales,

visc ?

Lag.buk s Lag, swens @04 Ly 00, SO that the quasi-steady approach to the analysis of

the fluid motion (i.e., a vanished time derivative term in the Navier-Stokes
equations), and similarly, the quasi-steady stress balance equation for the deforming
membrane bilayer can be employed.

The ratio of ¢, ,,, 10 ?,,, generates the Peclet number, which compares the species

transport by advection and by bulk diffusion,

Pe lagbu _VoRy (a) 8.3x1072, (b) 8.4x10™, and (c) 4.5x10 (3-8)

A very small Peclet number in case (b) suggests that advection effects are negligible
(i.e., a vanished bulk advection term in the convection-diffusion equation). It also
implies that the pore expansion is relatively slow and, thus, the transient molecuiar
flux is hindered by the small fusion pore when we focus on resolving the diffusion

of neurotransmitters to the microelectrode on the time scale of ¢, ,,, - In cases (a)

and (c), the bulk advection effects are small but may not be negligible.

The comparison of bulk and matrix diffusion times scales, i.€., #,7 s VS- L4 marric »

generates a very small diffusivity ratio,
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)

(vi)

Lag, b Do _ 5y 3 335107, (b) Not applicable, and () 3.33x10°  (3-9)

tdyf , rr;alrix bulk
This implies that the dynamics of the process in cases (a) and (c) is limited by the

diffusion in the vesicle granule matrix. Thus, if time scale #,; ... needs to be

resolved, the quasi-steady analysis can be used for the transport phenomena in the
liquid environment (i.e., a vanished time derivative term in the mass transport
equation), whereas a transient diffusion system should be applied to the matrix
domain.

A transient analysis of the swelling dynamics of the granule matrix is required for
cases (a) and (c) because the messenger concentration field inside the vesicle matrix

is first dominated by the swelling behavior on a shorter time scale, #,; s, and later
by the matrix diffusion on a longer time scale, ¢ .. - The close proximity of the

matrix swelling and hlatrix diffusion time scales makes these two dynamic processes
intimately coupled, thus requiring simultaneous resolution.

Finally, owing to the very low Reynolds number, Re=pV R,/ p,,= 3.3x107 ~
3,3x10’5, the flow inertial forces are negligibly small as compared to the viscous
forces and, thus, the nonlinear advection terms in the Navier-Stokes equations can

be dropped.
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3.2.2 Mathematical Model

Figure 3.1 shows a schematic of the simulation domain used for the model
development. A Eulerian axisymmetric coordinate system with the origin affixed to the

electrode surface and the axial coordinate axis x pointed downward is used to simulate (i)

the intracellular and extracellular fluid motion, messenger transport, and the membrane
deformation, and (ii) the granule elastic deformation and intra-matrix molecular
messenger transport. Due to the lack of the detailed biological information about
extrusion behavior of the granule matrix, we assume that the matrix is suspended at a
fixed position in the extracellular fluid that fills the vesicle when the pore is opened.

In general, the messenger transport in the fluid as well as in the granule matrix is
géverned by the general transient, nonhomogeneous transport equation,

a—%f{)--;-v-(c(x)v(x)):DVZC(x)+S(x), xeO (3-10)

where C is the local neurotransmitter concentration, § is the sink/source term due to

homogeneous chemical reactions involving neurotransmitters (if present), v is the bulk
.advection ﬂuid velocity vector, and D is a d'iffusivity (assumed constant). Further, eq 3-
10 is strictly valid in the limit of the linear Fickian diffusion in a dilute, biﬁary system. It
should also be noted that neurotransmitter transport is intimately coupled to the fluid
dynamics of the extra and intra cellular fluids since eq 3-10 requires' knowledge of the
fluid velocity field as an input. To make the presentation of the model development clear,
we first introduce the model for the fluid motion as it remains the same for all three cases
(a), (b), and (c_:) considered here. Then, we discuss on the case-by-case basis the
governing messenger transport models for cases (a), (b), and (c), because of the

difference in the time scales leading to differences in the mathematical formulation.
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Finally, the fluid and mass transport models are coupled by the initial and boundary
conditions, which are also of a general nature and equally applicable to all three cases (a),
(b), and (c). Such a presentation order not only makes the mathematical logic clearer, but
also allows for case-by-case comparison of vthe model predictions with the experimental

results from the literature.

3.2.2.1 The Fluid System

According to the scaling arguments presented in the previous section, the dynamics of

both fluids, i.e., inside ( Q,,) and outside (L,,,) of the cell (Figure 3.1), is governed by

the quasi-steady Stokes equation and the continuity equation:
—Vp(x)+ 22, V?v(x)=0, V-v(x)=0 for xeQ,, (3-11a)

~Vp(x)+ 1, V?v(x)=0, V-v(x)=0 for xeQ (3-11b)

cyt

where p, v, 4,,, #,, are the pressure, the velocity vector, and the dynamic viscosities

of the extracellular environment and cytosol, respectively, and x denotes a position
vector in the Cartesian coordinate system. For both eqs 3-11a and 11b, the hydrodynamic

pressure is scaled by the fluid viscous force based on the cytosol viscosity u,,, so that

the dimensionless Stokes equations can be written as, regardless of the time scale
selected,

-Vp+AVlv=0, V.v=0, xeQ (3-12a)

env

-Vp+Viv=0, V.v=0, xeQ (3-12b)

oyt

with the viscosity ratio defined by A=p,,/u,,. These governing momentum

conservation equations are subject to the following boundary conditions:
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v=0, |x]>w vanishing velocity (quiescence) at the infinity (3-12c)

v=0, xedQ no slip condition on the electrode surface (3-12d)

elec

V=V,.., XEOQ no slip condition on the cell membrane (3-12¢)

= Y mem mem

It should be emphasized that the scaling arguments indicate that the same Stokes system
of equations is appropriate to describe the fluid motion in all three cases (a), (b), and (c)

that are considered in this study.

3.2.2.2 Case (a): Serotonin Release by an Electroporated Granule of the Mast Cell

In the first case (a) we consider the messenger diffusion in a freely suspended,
electroporated granule matrix as the rate controlling process for the microelectrode
signal. This corresponds to the experimental studies performed by Marszalek et al.®*’
Based on the experimental conditions, the scales for the characteristic time, length, the
messenger concentration, and fluid velocity are given by,

Lehar ~Laiomare ~ 318, £~Ry~2.5 pm, (3-13)

C~Cy~ 3.37 moles/m® (3.37x10° M), v~D,,,. /R, ~0.8 um/s,
respectively. Here, C, is the initial concentration of serotonin in an isolated granule bf
the mast cell. In the experiments, electroporation was used to disrupt the granule
membrane, and the pore expansion velocity was estimated to be close to 10~25 pm/s.”!
Using the scaling arguments from the previous section, the serotonin concentration field
in the extracellular fluid Q,,, should be in a quasi-steady state, the advection mass

transport is negligible in a quiescent fluid environment, and no homogeneous reactions

involving serotonin take place. With these observations, the mass conservation equation,
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eq 3-10, governing serotonin transport in the extracellular fluid environment reduces to a
simple Laplace equation,

ViC=0, xeQ (3-14)

On the other hand, the serotonin transport inside of the granule matrix with fast swelling
behavior is described by the transient diffusion-advection system with the local matrix

bulk velocity v related to the matrix swelling deformation u (v =du/ot ),

oC

'E"'V‘(CV):DmameZC, xeQ (3-15)

‘mat

In eq 3-15, the bulk advection term V-(Cv) can be separated into sum of two
components, v-VC and C(V-au/at). Since we only consider small matrix deformation,

we assume that the contribution from the first term is relatively small as compared to the

divergence effect given by the second term C(V-du/ar). Physically, the divergence term

represents a pseudo-sink (dilution effect) in the system caused by the volumetric

expansion of the granule. It is interesting to note that since £, umic > tug sven @nd We are

fdcusing on resolVing the matrix diffusion process, the local matrix dilution effect
dominates the system dynamics at the very beginning of the process and it vanishes as the
process continues with the diffusion effect taking control at a longer time. With the above
mentioned assumptions, the governing equation describing neurotransmitter transport in
the granule matrix, eq 3-15, can be expressed in the following dimensionless form,

X _vic-c(v-owdr), xeQ

- (3-16)

mat

The system is completed by specifying the initial and boundary conditions, also
expressed in a dimensionless form,
C=1, xeQ,, at t=¢

mat
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uniform initial concentration of neurotransmitters in the matrix (3-172)
C=0,xeQ,, at t=¢,
initial absence of neurotransmitters in the fluid environment (3-17b)

C=0, |x]>ew

neurotransmitter concentration vanishes at the infinity (3-17¢)
C=0 , X €0Q,,,
infinitely fast neurotransmitter oxidation at the electrode surface (3-17d)

oC/on=0, xedQ,,,

nonpermeable membrane (everywhere except the open pore) (3-17¢)
Chratric =Coms X€0Q,,
continuity of the concentration field at the matrix interface (3-179)
DVC, . n=VC,, n, xedQ,,
continuity of the messenger flux through the matrix interface (3-17g)

In' the last eq 3-17g, the relative diffusivity is defined as D, =D,,,,/D,,- The
displacement of the swelling matrix and that of the matrix/solution inte;'face is governed
by the Tanaka, Hocker, and Benedek (THB) hydrogel model,'®” which is described later
in some details. The effect of the pore expansion of the electroporated membrane on the
neurotransmitter transport is simulated by tracking the opening of the pore area of the
membrane (using the constant lateral pore expansion speed). Naturally, everywhere
where the pore is open the coupling boundary conditions, eqs 3-17f and 17g, are applied;
whereas the membrane outside of the open pore is treated as a nonpermeable interface

described by eq 3-17e.
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3.2.2.3 Case (b): Neurotransmitter Release by a Small and Clear Synaptic Vesicle

In the previous case, we focused on the serotonin .transport in an electroporated

granule of the mast cell with the temporal scale, f,; ,... » of the order of milliseconds.

Here, in case (b), we change our focus to a much faster exocytotic event, that is
neurotransmitter release by a small and clear (i.e., without a granule inside) synaptic
vesicle.*®? The length/time scales for this process are in a nanometer/microsecond range
and defined by the bulk diffusion in the extracellular fluid. The order-of-magnitude
values for other characteristic scales are given by,

tchar ~ tdl;ﬁ',bu”t ~ 0.67 [J,S, 'e ~ Ro ~ 20 nm, (3'1 8)

C ~C, ~270 moles/m> (0.27 M), v~ D, /R, ~0.03 m/s
Here, C, is the initial concentration of the neurotransmitter inside of the clear vesicle at

the beginning of the pore expansion process. Based on the previous scaling results, the
bulk advection effect can be neglected in describing the neurotransmitter transport in the
extracellular fluid, owing to a very small Peclet number. Thus, a simple transient

diffusion equation can be used to simulate messenger transport,

o« vic, xeQ,,
ot

(3-19)
with the initial and boundary conditions given by the following dimensionless equations:

C=1 ,xeQ at t=1,

vesicle

uniform initial concentration of neurotransmitter inside the vesicle (3-20a)

C=0,xeQ,, Q. at t=t,

initial absence of neurotransmitters in the fluid environment (3-20b)

C=0, |xl—>oo
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neurotransmitter concentration vanishes at the infinity (3-20¢)
C=0, xedQ,,.
infinitely fast oxidation of neurotransmitters on the electrode surface ~ (3-20d)

0C/on=0, xedQ

nonpermeable membrane (3-20¢)
Note that in this case the vesicle is free of a granule matrix, and the lumen contained

is considered to be a part of Q,,, with

env

inside the vesicle, and denoted as a domain Q

vesicle »

the constant diffusivity D,, assumed the same as in the solution environment. Based on

8592 the initial radius of the fusion pore upon opening is about 1

the experimental results,
nm. The pore expansion continues at the speed ~25 nm/ms until the pore radius reaches
an approximately 5 nm and then the neurotransmitters continuously diffuse out through

the fixed in size fusion pore.

3.2.2.4 Case (c): Adrenaline Release by a Medium Size Vesicle in the Chromaffin Cell

The case (c¢) is the most complex and it includes the main aspects of the previous two
models to simulate the release of adrenaline from the granule matrix enclosed by a

vesicle of the chromaffin cell. We select #,; ,,,,, as the characteristic time scale in order

to match the sub-millisecond temporal resolution of experiments reported in the
references.®®***® Based on the experimental conditions, the reference values for the
scaling parameters are given by

Lohar ~tdw",matrix ~ 11.3 ms, £~ RO ~150 nm, (3'21)

C~C, ~ 600 moles/m® (0.6 M), v~D,,./R,~13.3 pm/s
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where C, is the initial concentration of adrenaline inside the granule matrix. In the fluid
domains, the quasi-steady diffusion-advection equation is applied,

D,(v-vC)=VC, xeQ (3-22)

Where the relative diffusivity is defined by D, =D,,,../ D, as in the case (a). The
neurotransmitter concentration inside of the granule matrix is described by the transient
diffusion equations with the sink term on the right-hand-side representing the matrix

dilution due to fast swelling,

%f—: ViC-C(V-ower), xeQ,, (3-23)
The initial and boundary conditions are given by:

Cc=1,xeQ,, at t=¢,

uniform initial concentration of neurotransmitters in the matrix (3-24a)
C=0,xeQ,, at =y,

initial absence of neurotransmitters in the fluid environment (3-24b)
C=0, x>

neurotransmitter concentration vanishes at the infinity (3-24c)
C=0, xedoQ,,

infinitely fast neurotransmitter oxidation on the electrode surface (3-24d)
0C/d0n=0, xedQ,,,

nonpermeable membrane (3-24¢)
Cmatrix = Cenv > XE anar

continuity of the concentration field at the matrix interface (3-241)

r matrix

D VC, -n=VC, -n, xedQ,,
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continuity of the messenger flux through the matrix interface (3-24g)

3.2.2.5 First Dynamic Boundary Condition: Large Deformation of the Fused Membrane

The first dynamic boundary condition describes the continuous expansion of the
fusion pore and the unfolding behavior of the fused membrane, both modeled by a
continuous deformation of a simple lipid bilayer structure. We assume that the large
deformation of the membrane is driven by the local tension applied to the fused
membrane and by the curvature induced bending energy. We also assume that the simple
fluidlike bilayer membrane has locally isotropic tension on the time scale of interest and
has negligible shear elésticity. In our earlier works,"? a generalization of the interfacial
force jump condition for a two-fluid system® has been developed by including the

1136 and Zhong-can’s membrane

formalisms of Helfrich’s curvature energy theory
mechanics.?® To summarize these results, the surface force jump condition for the fluid
interface is governed by a quasi-steady stress balance in the fluids (cytosol and the
extracellular environment in this case) adjacent to both sides of the membrane,

('rcy, ‘n-1,, -n)+ v, 7—yn(Vs -n)=0, X€0Q,.m (3-25)

where 1 denotes the fluid stress tensor, (r n-t,, -n) is the net surface traction

o
induced by the hydrodynamic stresses from the adjacent fluids and acting along the
surface normal n. The fluid stresses are balanced by the isotropic local
tension/compression of the membrane expressed in terms of V,y—yn(V, -n), where V,

represents the surface gradient operator. The shear component V,y is given by the

membrane tension gradient along the tangential direction s of the membrane, the normal

component yn(V, -n) is defined by the membrane equilibrium shape equation.'>*® Both
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terms solely depend on the instantaneous geometry of the evolving membrane and its
elastic properties. By using the Zhong-can’s equilibrium shape equation for
biomembranes,”® eq 3-25 can be rearranged to become the following force jump
condition, which is suitable for the boundary integral solution of the problem:

Af =V, +(-2y H + BQH + co) (2H? = 2K — c,H)+ 2BV*H ) n (3-26)
Here, Af=1,,-n-1,,-n is the net surface traction, H is the mean curvature, X | is the

Gaussian curvature, B is the apparent membrane bending rigidity, ¢, is the effective

spontaneous curvature, and V? is the Laplace-Beltrami operator for the curvilinear
surface. An additional assumption of membrane local incompressibility, a(d4)/at=0, is
enforced based on the membrane surface area constraint condition to complete the
formulation since the local tension force y is an additional unknown introduced by the

1,2

boundary condition.”* A general form of the constraint equation for a locally

incompressible membrane was first derived by Pozrikidis® to study deformation of red

blood cells in the shear flow and it can be expressed in terms of the arc-length coordinate,

~ aV 3
O't:'-ta—S'FV'ea:O, xeaﬂmm

3-27)
where t, denotes the local surface tangent, o is the coordinate along the radial direction,

and v is the local migration velocity of the fused membrane. The suitable scales for the

parameters in the membrane dynamic boundary condition are defined by
y~Du,, /Ry, B~Du,R,, H~1/R,, (3-28)
K~1/R}, cy~1/Ry, f~Dpy,/R;
where D=D,,, in the case (b), and D=D,,,, in the case (c). Using these scales, it is

apparent that both the stress balance condition, eq 3-26, and the membrane area
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constraint equation, eq 3-27, retain their original forms after being made dimensionless.
Finally, it is worth mentioning that the mean curvature and the Gaussian curvature can be
transformed into the parametric forms in terms of the arc-length coordinate s along the

membrane interface 89, .2

3.2.2.6 Second Dynamic Boundary Condition: Swelling Matrix Interface

Experimental results®®®!

suggest that the vesicle granule matrix increases by 30~40%
in radius and 2~3 fold in volume during the swelling process as compared to its
condensed state, thus a dynamic boundary condition is required to describe the interfacial
location of the swelling matrix. Further, the local internal elastic deformation of the
matrix is needed to compute the pseudo-sink terms describing the matrix dilution in the
messenger transport equations, eqs 3-16 and 3-23. To accomplish these objectives, we
use the phenomenological Tanaka-Hocker-Benedek (THB) model'® for elastically
expanding hydrogels. This theory has been shown to be fairly accurate and it is also
described by a simple differential equation, whose analytical solution can be explicitly
integrated into an overall model describing the fluid flow-membrane dynamics-
messenger transport. The origin of the THB model lies in linear elasticity theory, and
incorporates an assumed Stokes-like friction force between the interlinked polymer
network and the liquid solution during the.swelling process. A brief derivation is given
here starting from the géneral quasi-steady Cauchy equation of motion for a linear elastic
body undergoing a small deformation,

V-1(x)+F(x)=0, xeQ,, (3-29)

where F is the body force term, and 1, is the stress tensor for a linear elastic body. The

- constitutive relation between the stress and strain is linear and defined by the Hook’s law,
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ou ;
7 =ng:—’<5,,. +2G[%(%+—a‘l)-%zﬁaﬁJ (3-30)
k i X Xk

7 i
where u, is the equilibrium displacement vector, X is the bulk modulus of elasticity, G

is the modulus of elasticity in shear, and ¢, is the Kronecker delta function. In his

pioneering paper,'”’ Tanaka et al. postulated that a friction force in the polymer matrix
should be simply added as a body force to Cauchy’s equation. In this case, the
interactions between the polymer network and the solvent contained in the matrix are

represented by an effective friction coefficient f . By combining Tanaka’s postulation
F=—f(6u/ar) and eq 3-30 , the so-called “THB hydrogel model”'® can be derived on

the basis of eq 3-29:

a_uzgvzu+wv(v.u), xeQ,,
o0 f f

(3-31)
In the considered cases (a) and (c), we assumed that the swelling of the protein matrix is
uniformly triggered by the monovalent cations diffusing into the matrix from the
extracellular solution, owing to the fast diffusion in the liquid solution. Here, we further
assume that the matrix is swelling uniformly and the spherical symmetry is maintained in

the linear deformation process as observed in the spherical hydrogel system.!% Then, for

the cases (a) and (c) wherein ¢

char

~ Lug maruc » ©4 3-31 can be reduced to the following

dimensionless, spherically-symmetric form,

2
Dmalrix (%) —_ i{iM} (3'32)

D o) orl|rt or

swell
where u, and r are the radial displacement and the spatial variable in the radial

direction, respectively, and D,,,, =(K+4G/3)/f represents an apparent collective

S
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diffusion coefficient determined by the elastic properties and the effective friction
coefficient. In a typical case of G<<K, the collective diffusion coefficient is
approximated by D, ~K/f and is experimentally found to be ~1.4x10" m%/5.5% The

108

eigenvalue problem for eq 3-32 was solved analytically ™ using an initial condition of the

uniform, positive osmotic pressure =, that ensures the stress balance throughout the gel,

o, =m,8;, and the boundary conditions of central symmetry, u(0,¢)=0, and stress-free

outer interface of the gel, o,, =0 at r = a. The initial condition can be further reduced to

the equation, KV -u=ur,, with the solution of the THB model given by'%

wlio)=sa L), oo, =2 (3-33)
a

where =, is the initial uniform stress (positive osmotic pressure), a is final radius after
swelling, Agq, is the total displacement of the interface, and a — A g, is the initial radius of

the matrix. The general solution of eq 3-32 is given by a series expansion in terms of

eigenfunctions'®® for the radial displacement of the gel,

zl(r,z)=6moi}(;2"{“;}(ﬂ;')— Sz;(’fsf )}exp(— b.gY), req,, (3-34)

where B, =nn/a are the eigenvalues, n=1,2,...,0, and the diffusivity ratio is defined by

Dr = DsweII /Dm

atrix *

For reference, injbot:h cases (a) and (c) considered in this work, the
diffusivity ratio is around 7.0. Finaliy, 1t should be noted that the solution u represents
the point displacement inside the network from its final equilibrium location after the
matrix is fully swollen, that is, » — 0 everywhere at ¢+ — «. Accordingly, the divergence

of the displacement velocity is
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au(rt =6Aq Z( 1){ D, ZSin(f"r)}exp(—ﬁ,ﬂ:t), reQ,. (3-35)

The simplified THB model presumes that the swelling polymer matrix has a sharp
interface separating the protein network from the liquid environment, and the radius of

the moving interface is therefore given by R, (1)=a—-u(a,r) with the diffusivity ratio

assumed constant during the swelling process.

3.2.2.7 Electroanalysis: Faradaic Current Response

Once the messenger concentration field is determined everywhere, the Faradaic
current response of the microelectrode can be obtained by integrating the local molecular
flux over the active surface area of the electrode, including the conversion from

dimensionless to dimensional form,

I(e)=nFD,,,CoR, [VC-mdd, xedQ, (3-36)

anclcc

where F is the Faraday constant, »n is the valence number of the released

neurotransmitter [#n=4 for cases (a) and (b), and »=2 for case (c)]. Alternatively, the local

current density distributed along the electrode surface can be computed as

i(e)=dIe)/ (R(f dA) =nFD,,,Co(VC- n)éﬂm /Ry

3.2.3 Boundary Integral Formulation

The intimately coupled governing equations for the fluid flow and neurotransmitter
transport are reformulated in terms of integral equations based on the fundamental
solutions of the Stokes and Laplace differential operators, and the system of integral

equations is then solved by the boundary element method (BEM) and by the dual
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reciprocity boundary element method (DRBEM). The general integral solution of the
Stokes flow equation, —Vp+ £V?v=0, combines contributions from the single-layer and

the double-layer surface integrals,'*'’

¥.,X €00
(ovj(xo)=— jr,.k(x)nk (x ,j(x,xo)dA(x)+p Iv,(x ik (x,xo)nk(x)dA(x) (3-37)
a0 oQ
where ©=0 for x, ¢Q, w=87u for x, e Q-0Q, and w=4xu for x, €dQ on a sufficiently
smooth boundary. The unit surface normal vector », points into the fluid domain, v; and
1, represent the velocity and hydrodynamic stress fields, respectively. Note that when
the source point is located at the boundary, x, e dQ, the double-layer contribution from

the Stresslet has to be interpreted in the sense of Cauchy principal value because of the

stronger singularity in the integral kernel T}, . The fundamental solution, the Stokeslet,

and its corresponding stress field, the Stresslet, are available for the homogeneous
system,'?

o. rr, 7,
Gywxo) =L+ L, T, (nx;)=-6"42 - (39)

¥

respectively, where §; is the Kronecker delta function, and r=x-x, and r=|x-x,| are,
respectively, the position vector and the distance between the field and the source points.
The boundary integral formulation based on the Stokes fundamental solution has been
proven a very efficient technique to solve many fluid-fluid interfacial problems with
various viscosity ratios.2>*' This technique was also adapted in our previous work
focused on the AFM-fluid-membrane interactions,? albeit with a simplified assumption

for the viscosity ratio A=, /u,,=1. Similarly, the problem in hand is solved by

combining the boundary integral solutions of the flow fields in the cytosol and
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environmental fluid domains (i.e., inside and outside of the cell) through the use of the
dynamic interface boundary condition (eq 3-26). We skip the lengthy derivation and only
present the final solution of the flow field for the combined intra and extra cellular

simulation domains expressed in a dimensionless form,

: PV Xg €Ky PVaXg €K,
dnvi(x)=a, [AGdd+a,  [vTyndd+a, [fG,dd+a,  [vTmdd (3-39)
Qe Qe OQ e+ [z

Here, v,(x,) is the velocity field, f,=r,n, is the surface force acting on the interface,
and the surface force jump condition Af; in the first integral is given by eq 3-26, which

can be physically interpreted as the source density acting on the fluid from the fused
membrane surface. The coefficients g, through a, in eq 3-39 can be derived for an

arbitrary physical domain with sufficiently smooth boundaries and equal to:

-1 1-2 1 -1
et IS ol YR Ep for x,edQ 3-40a
WETI T BT BT X0 € e ( )
a=2, o =122 a2l 401 for x,e00,,+00,, (3-40b)
x ;\' ;\' mai elec
-1 1-A 1 -1
a=—, a=——, G=—, a,=— for x,e€Q,, 3-40c
1 2 2 2 3 21 4 ) 0 en ( )
a=2t a=E a=2, a=Tt for xeq, (3-40d)

The boundary only formulation in a three-dimensional space for the linear fluid system is
exact and complete at this point. However, the complexity of the integral formulation can
be further reduced for an axisymmetric system by using the cylindrical coordinate
transformation (x,y,z)=(x,ocos6,osin6) and expressing the fundamental solutions, the
Stokeslet and the Stresslet, in terms of the Green's functions of the ring-source type. As

shown in Figure 3.1, x is the coordinate along the axial direction, o is the coordinate
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along the radial direction, and 6 is the azimuthal angle. Thus, the surface integral in the

cylindrical coordinate system is d4d=cdf8d¢ where d¢ denotes a line integral. For an
axisymmetric system, the unknown functions Af;, f;, and v, are independent of the

azimuthal angle so that the azimuthal integration needs to be performed only for the
Green's function and for its corresponding stress field, leading to the final solution of the

three-dimensional axisymmetric problem in terms of one-dimensional integrals only,

PVXg€0Q,..0 PV, Xg€0Q,,,

v, (xg)=q, IMaﬂAfﬂ di+a, Qa/,,vrnﬂdl +a, J.Ma/}fﬂ di+a, J'Qaﬁ,vrnﬂdl
o Qe Qe+ 0y 8,

(3-41)

where coefficients a, ~a, are defined in eq 3-40, the Greek symbols a, 3 and y denote

either x or o directions, and the kernel functions A, and Q,, are the general

afy
coordinate transformation matrices for the Stokeslet and the Stresslet in the Cartesian
coordinate system, which can be expressed in terms of the complete elliptic integrals of
the first and second kinds."**! Notice that in eq 3-41, either the traction or the interfacial
velocity has to be specified along the integration domain boundary oQ,,,. This is an
important observation for proper integration of the Eulerian fluid flow-membrane
deformation analysis with the Lagrangian simulation of the granule matrix swelling, if
the mafrix is free to move. Indeed, if the interfacial velocity is specified, the presence of
the surface force resulting from solving eq 3-41 would violate the boundary condition
required for the validity of the THB model, i.e., o, =0 at r=a. Likewise, if the
vanished surface force is specified, the sphericalfy symmetric shape of the granule matrix
will be distorted by the nonuniform interfacial velocity distribution resulting from

solution of eq 3-41. Rigorously, this contradiction may only be overcome by full
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simulation of the two-phase granule system. Here, as a first approximation we assume
that the interfacial velocity vanishes on the matrix interface, but the matrix surface force
is compromised in a way that the symmetric swelling behavior is imposed. In principle,
one may assign a single velocity value from the experimental observation to advance the
granule in the Eulerian coordinate system and, consequently, to relocate the Lagrangian
coordinate systeni affixed to tﬁe center of the granule matrix. However, such an approach
requires detailed biological information that is currently not available.

By substituting eq 3-41 into eq 3-27, the integral formulation of the local membrane

constraint equation, eq 3-27, takes the final compact form,

p.v.,Xo€0Q,
a, Il'I, (x,x,)Af, ) (x)de(x)+ a, J.Hz v, nde + a; II'I, fpal+ ay _[Hz vngdl=0 (3-42)
aQ, a0 8y +8es e
with the modified integral kernels expressed as:
OM o (x, xo) 00,5,

HI(X’XO)::G(XO)tu(XO)W-‘-MUﬂ(XlXO)’ HZ =ol, +Qaﬁ7 (3-43)
0

Os
where o, B and y denote either the o or x directions, and the unknown local membrane

tension/compression force is obtained implicitly from Af given by eq 3-26. The exact

integral forms for the tangential derivatives of these kernel functions, oM, /ds and
004,/ Os can be expressed in terms of the complete elliptic integrals of the first and

second kinds and are listed in Appendix D for completeness.

The integral formulation for the transient, nonhomogeneous, diﬁ"usion-advection
system requires special treatment for the domain integration since a simple fundamental
solution is not available for the system with a nonuniform velocity field. A convenient

way to treat a diffusion-dominated system (low Peclet number) in an integral form is to
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use the fundamental solution of the Laplace operator. By applying the weighted residual
formulation and the general Green's identity, the integral form of the general mass

transport equation can be expressed as follows:

—wC+ J(GLB—C-C-@QL]M: [6,bar (3-44)
n on on a ,

where w=1 for x, €eQ and w=1/2 for x, €2Q on a sufficiently smooth boundary. At the

right hand side, the transient, advection, and the nonhomogeneous terms are grouped into

a pseudo-source term b as a local intensity of the domain integral,
b= 4v-VCHgC (3-45)

where g=V-8u/dt is given by eq 3-35. The three-dimensional fundamental solution of
the Laplace operator is G, =1/4nr with r =|x-x,| being the distance between the source

and field points. The reason for not using an obvious time-dependent fundamental
solution for the transient diffusion operator but including the contribution of the initial
condition into the pseudo-source term is because in the axisymmetric transformation, the
time dependent Green’s function contains a complex combination of trigonometric and
exponential functions so that the explicit form of the ring-source type integral kernel
cannot be readily established. On the other hand, the. fundamental solution of Laplace
operator has a simple form amenable for transformation using elliptic integrals.

In summary, we have developed a complete system of linear integral equations, eqs
3-41, 42, and 44, that, combined with the boundary conditions, eqs 3-17a~g, 20a~e, and
24a~g, and the dynamic interfacial conditions, eqs 3-26 and 34, constitute a boundary
value problem for the coupled fluid flow/messenger transport/membrane deformation

problem describing the local dynamics of a single exocytotic event. The numerical
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technique applied for solving the integral equations is described in detail in the following

section with a focus on the numerical approximation of the domain integrals.

3.3 Numerical Implementation

An approach to numerical solution of the Stokes flow system for two fluids (e.g.,
intra and extra cellular solutions) interacting via interfacial coupling governed by the
. membrane biomechanics has already been reported. Therefore, the focus of this

discussion is on numerical solution of the boundary integral equation (eq 3-44) that
describes the transient molecular messenger transport. Specifically, the source term on
the right hand side of eq 3-44 requires special treatment in order to accurately evaluate
the value of the integral. Among several numerical approximation methods, the dual
- reciprocity boundary element method (DRBEM), originally proposed by Nardini and
Brebbia,'!® appears to be the most promising strategy for constructing the domain
integral. General reviews of BEM and DRBEM are available in the literature.!"'2 The
key idea behind DRBEM is to expand the nonhomogeneous term in terms of its values at
the nodes using a set of interpolating functions. The approximation for the source term is

expressed as a finite sum of interpolating functions at the boundary and internal nodes,

N+L

bm(xm)= Z¢mk(xm’xk)ak: m=1,2,...,N+L (3-46)

k=1
where N and L are the total numbers of the boundary elements and of the selected

internal nodes, respectively. The interpolation function ¢,, isan N+L by N+ L square

matrix whose elements depend on the location of a pair of collocation points (x,,x, ). The

column vector o, is a set of unknown interpolation coefficients to be determined, and the
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column vector b, is the nonhomogeneous or pseudo-source term evaluated at each nodal
point. If b, includes the derivative of the unknown variable, another set of interpolating
function is required for the approximation, and such a case is often seen in the transport
equations. The selection of internal nodal points can be considered extra degrees of
freedom for the approximation. There is no rigorous mathematical rule to justify how to
select the arbitrary internal nodes and how many nodes should be selected, but physically
it is reasonable to increase the degrees of freedom by clustering nodes in the solution
domain where it is expected to have a higher gradient of the dependent variable. The
discussion and numerical tests of various approximation functions can be found in the
literature.!">!!* The numerical experiments showed that the radial basis functions, given
by low degree polynomials, are often ;1 good choice for the interpolatidn functions,

B =17+ +.. (3-47)
where the radial basis r,, =[x, —x,| is the distance betWeen a pair of boundary or internal

nodes. In practical computations, only one set of basis functions is required and we use
¢ =1+r . Using this simplest basis function, the corresponding particular solution f,, can

be readily obtained that satisfies the Poisson equation
sz;nk = Ot (3-48)
This solution is f=r*/6+r>/12, and now eqs 3-44, 46, and 48 can be combined to

obtain an approximation of the domain integral given by

N+L 2
dA=1G, 3. (V2 £, Jor av (3-49)

Q

ocC 0G,,
on n

-0oC+ | (GL——C——
a0 0
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We can factor the coefficients o, out of the integral, and transform the domain integral

to a boundary only integral formulation by applying the Green's second identity to the

Laplace operator,

N+L
—aC+ j(a Z—C—CaG’JdA=Zak|:—wfmk GL%”‘ fmkaGL) ] (3-50)
) a0 h k=1

on A

It should be noted that the bracketed term on the right hand side of eq 3-50 depends on
the domain geometry only, and the contribution from the source function is embedded

into the unknown set of coefficients a, . Since the series expansion in eq 3-46 is based on

a set of linearly independent functions, ¢, is invertible and o, are uniquely determined
by

O )i (3-51)

N+L
oy = - (

m

where (), are the elements of the inverse of the matrix ¢,,, .
The pseudo-source term b, includes two derivatives: the time derivative can be

approximated by any time-domain finite difference scheme, whereas the spatial
derivative requires further approximation for the concentration field using a second set of
unknown interpolating coefficients B, in the linearly independent series expansions,

N+L N+L

Cm (xm)= Z¢mk (xm’xk) ﬂk ’ VC Z V¢)mk )Bk (3-52)
k=1

k=1

Similarly, B, is uniquely determined by

Bk = ((b)km m (3-53)

m—
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By combining eqs 3-52 and 53, including the result into eq 3-46, and then substituting

the latter into eq 3-51, the equation for the unknown set of coefficients ¢, takes the final

form:

m=1

ak=Nf(¢"‘){ me(vm[Z(sﬁ )} s

where the velocity field is obtained by solving the Stokes fluid system at each time step.
Similar to the fluid system, in the axisymmetric case, the surface integrals in eq 3-50
can be reduced to line integrals by using the polar coordinate transformation. For
axisymmetric applications, Sarler'’® further suggested the axisymmetrig forms of the
interpolation function ¢, and the particular solution f,,. Thus, eq 3-50 can be written as
a line integral form, with indices i and j representing the source and field points of the
discretized domain,
—wC, + I(M —-—-CQL]de Nfak {-wfk j( ﬁ-j,.,‘QLJde} (3-55)
oQ; an

Here, the ring-source type Green's function M, and its normal gradient Q,, the new
interpolation function &, the partiéular solution 7 and its normal gradient &f/on are
listed in Appendix E for completeness.

With the background developed in the previous paragraphs, the algorithm for solving
the system of coupled integral equations for the problem can be described as a sequence

of the following steps. First, the computational domain boundaries 6%,,,,., 09,,.,, and

09Q,,,. (Figure 3.1) are partitioned into a finite number of boundary elements 62, with j

being an element index. A few nodal points are also distributed in the aqueous

environment for solving the pseudo-source term of the transient diffusion-advection
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equation. For each element, the physical parameters are assumed constant, and by
subétituting the element level integration into the integral equations 3-41, 42, and 55, the
system is rearranged into a set of linear algebraic equations. The next step is to cast the
system into a fully implicit form and set up the system of algebraic equations describing
the initial and boundary conditions. The discretized forms of equations 3-41 and 42 are
lengthy but straightforward, and therefore we only present the discretization of the
diffusion-advection system, eq 3-55, in the Appendix F in order to clarify some matrix
manipulations. The moving boundary problem is simultaneously solved for two sets of
unknowns: (i) v(xeéQ,,,), f(xedQ,,..0Q,,) and y(xedQ,,,) for the fluid motion
system, and (ii) C(xeQ,,,,Q,,) and V,C(xedQ,,., 8Q,,) for the diffusion-advection
- transport system. The internal velocity field v(xe,,) required for the diffusion-
advection system is calculated at the post-processing stage upon solving the Stokes flow
problem at each time step, and the membrane evolution is advanced following the local
velocity field at every time step using a simple time integration at each collocation point.
The matrix interface is explicitly defined by the analytical solution a—-u(a,t) of the THB
model, eq 3-34. Further, the computational domains Q,, and Q,,, both share the same
boundary nodes at the m.atrix-environment interface 6Q,,, , so that the coupling boundary

conditions requiring continuity of the messenger concentration and its flux across the
interface, eqs 3-17f,g and 24f,g, can be simultaneously solved. In the next section, we
discuss the numerical results and qualitatively compare them to the experimental results

for the three types of vesicles considered in this study.
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3.4 Results and Discussion

3.4.1 Case (a): Serotonin Release by an Electroporated Granule of the Mast Cell

Whilé the simulations are performed in terms of dimensionless variables, all
simulation results, with an exception of the messenger concentration, are presented in
dimensional form to facilitate comparison with the experimental data. Figure 3.2 presents
the numerical results for the benchmark case (a): an electroanalysis of serotonin transport
in an electroporated granule of the mast cell. Alihough electroporation induces opening
of the pores throughout the vesicle membrane, the simplest configuration with only two
pores, located at the north and south poles of the vesicle, is simulated here. This
simplification was suggested by Marszalek et al.,*® and it is based on the observation that
for the large vesicles of the mast cell (radius about 2.5 pum°®') only the messengers
released from the pore that is in immediate vicinity to the microelectrode ‘would
contribute to the detected electrical current. Further, in the analysis it is assumed that the
pores are initially fully closed and they expand with a cénstant velocity, assumed to be

9193 until the membrane

close to the maximum pore expansion velocity ¥, =10~25 pm/s,
(shown by the bold solid line in Figure 3.2B) is completely open. Figure 3.2A shéws the
radial distributiqns of the transient local current density i(¢) at the microelectrode surface
at several consecutive time instants for the simulations with ¥, =25 pm/s. As expected, at
the very beginning the current density is at its maximuh at the center of the electrode, as
it corresponds to the shortest travel distance for the released serotonin to reach the

electrode. Furthermore, the peak magnitude increases in time and it broadens, owing to

an increase in the size of the pore opening with time. The normalized serotonin local
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Figure 3.2 Simulation results for the serotonin release by an electroporated granule:

(A) Transient, radially distributed local current density i(o,#) at the microelectrode
for several consecutive time instances (pore expansion velocity ¥,=25m/s is

constant), (B) Normalized instantaneous serotonin concentration field C/C,
superimposed with the velocity field resulting from swelling of the granule matrix

(time instant ¢=155 ms and pore expansion velocity ¥V, =25um/s), (C) Transient
total current response I(¢) (solid lines) for pore expansion velocities ¥, =25 zm/s and
V,=10m/s, superimposed with the dynamics of the radius of the swelling matrix

(dash line) expanding from 2.5 pm to 3.375 pum.
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concentration ﬁeld shown in Figure 3.2B indicates that the concentration gradient is the
greatest within the granule matrix ‘near the interface, owing to almost two orders of
magnitude smaller diffusivity of the D, as compared to the Bulk solution diffusivity
D, - This implies that the main resistance to the messenger transport is near the
interfacial region of the matrix. However, the rate of the matrix swelling, as given by the
swelling velocity ou(r,r)/0t, is also the greatest near the interface, at least in the
beginning of the process, which partially improves the situation by contributing to a
decrease in the near interface transport resistance due an increase in the surface area. It is
interesting to note that the maximum of the matrix swelling velocity gradually moves
from the interfacial area towards the granule center (not shown in Figure 3.2) with time
as the matrix approaches its fully swollen state.

The surface integration of the transient current density profiles (Figure 3.2A) results

in the transient total current response I(r) detected by the microelectrode, as shown in

Figure 3.2C. It should be noted that the current density distribution in Figure 3.2A is

.

shown for the case of the pore expansion velocity V;~25 um/s, whereas the total current
responses in Figure 3.2C are shown for two representative pore expansion velocities of
10 and 25 pm/s. It is clear from Figure 3.2C that the current spike is stronger (maximum
~270 pA) and its duration is shorter (~300 ms) in the case of the higher pore expansion
.velocity. This is because at the higher expansion velocity, the pore opens much faster
establishing a bigger in size window for the messenger release from the granule matrix.
And the size of this release window is the parameter that controls the total rate of the

messenger release (and, in turn, the total current signal) since the local messenger flux is

114



essentially independent of the magnitude of the pore expansion velocity, at least in the
beginning of the process when the granule matrix is messenger-rich and undiluted. It is
important to state that the characteristic rising time (~180 ms) and the magnitude of the

total microelectrode current (~270 pA) for the case of ¥, =25um/s are very consistent

with the experimental results.®®*! This favorable comparison of the predictions with the
experiments for the current rising phase is also important for one additional reason: as
shown by the dash line in Figure 3.2C, it is also during the rising phase of the process

when the matrix swells from its initial condensed state, R ., = 2.5 um, to nearly an
equilibrium, fully swollen state of R, = 3.375 pm. Thus, this indicates that accounting

for the matrix swelling dynamics is essential to understanding the sequence of the
exocytotic events.

As the pore opening continues to expand, the radial distribution of the current density
or a messenger flux reaching the electrode changes dramatically from unimodal to
bimodal due to local depletion of the matrix near the center portion (e.g., compare t=93

ms versus =155 ms in Figure 3.2A). The bimodal current density distribution features

peaks of the smaller magnitude (due to overall matrix dilution as the neurotransmitters
are being released), but much greater broadening owing to matrix expansion. Overall,
however, the total current detected by the electrode continues to increase, albeit at a
slower rate, due to an increase of the total open pore window through which the
messengers can leave the matrix. Eventually, an increase in the pore size can no longer
compensate for a serotonin dilution in the fully swollen matrix, and the total current
(Figure 3.2C) begins to decrease with the dynamics of the messenger diffusion in the

matrix being the rate-defining process. The process continues until ~2000 ms when the
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entire serotonin content of the matrix is released to the environment. In comparison with

8891 the model overpredicts the rate of drop in the total current signal

the experiments,
after the peak value is reached. The reason for this disagreement, we believe, lies in the
fact that the pore expansion velocity is probably not constant, but decreases as the pore
opens more and more. It is probably a good assumption to use the maximum pore
expansion velocity in the beginning of the process when the membrane/pore system is
farthest from the equilibrium, and that is why the comparison with experiments is
sétisfactory in this case. The only way to test this hypothesis is to perform more detailed

biological studies of the exocytotic pore opening dynamics leading to the time resolved

pore expansion velocity measurements.

3.4.2 Case (b): Neurotransmitter Release by a Small and Clear Synaptic Vesicle

Prior to analyzing the simulation results in this case, a brief discussion is needed of
the proper boundary condition and the elastic properties for the membrane for self-
consistent formulation. This is important because, unlike in the previous case (a) pf a
freely suspended vesicle, the simulations must now include the fluid-membrane
interactions. This requires an additional boundary condition to specify the membrane
tension force y that should produce the prescribed pore expansion velocity. Here, we
only consider a reduced dynamic model of the membrane, which is driven purely by the
local tension force with vanished edge energy and the bending rigidity. There are several
reasons why we neglected the contribution from the bending energy. First is purely
computational as it is very difficult to achieve a stable, fully converged and physically

meaningful solution of the problem that involves such a large curvature on a very small
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spatial scale in the vicinity of the pore area where the vesicle and the cell membranes
merge‘. Second reason is more physical and it rests on the assumption that the bending
energy alone cannot provide a driving force that is sufficiently strong to overcome the
edgé energy and the fluid viscous force while unfolding the membrane leading to the
rupture of the small fusion pore. Finally, the short-range electrostatic forces between the
connecting edges of the fused vesicle and cell membranes may also reduce the potential
of the bending rigidity and the pore edge energy to mediate the membrane unfolding
process. Clearly, further invesﬁgation is réquired to addréss these issues in full details.
Our previous analysis' shows that a surface tension » (a Lagrange multiplier in the
Helfrich’s curvature energy theory) has to be assigned at the far field (a truncation point
in the simulations) of the membrane in order to obtain mathematically well-behaved or
physically reasonable results for the local tension/compression force. Similarly in this
case, a certain finite tension/compression force y has to be brescribed in the far field in
order to provide a driving force for unfolding of the membrane and pore opening with the
required expansion velocity ¥,. Indeed, Monck et al.''® provide experimental evidence
that the membrane of the secretory vesicle is under a tension force by measuring the
reduction of the capacitance during the fusion event. Thus, it is very possible that both
the vesicle and the cell plasma-membranes are pre-stressed during the fusion process.
Once the fusion pore is opened, the tension forces in the cell and vesicle membranes
acting outward along the radial direction near the neék area of the pore work together in
order to overcome the edge energy of the small fusion pore, leading to unfolding of the
membrane. A simple way to incorporate this idea iﬁto our model is by assigning certain

finite tension force y at o — 0 (the center of the vesicle membrane) and o — o« (far-

117



field of the cell membrane, truncated in simulations at the dimensionless radius o =8),

while everywhere else the local tension force should satisfy the membrane constraint
equation (eq 3-27). Such an approach is rather general and provides a way to impose a
required/measured tension force at any place in the membrane if needed for validation the
biological hypothesis. For example, if a particular protein is speculated to provide radial
tension or circumferential contraction edge energy near the pore area, such a hypothesis
can be indirectly vériﬁed using this macroscopic approach.

The results of numerical simulations of the neurotransmitter transport by a small and
clear synaptic vesicle are shown in Figure 3.3 We used the pore size suggested by Stiles

1.°2 with the pore radius of 1 nm initially and increasing to 5 nm during the pore

eta
expansion. Figures 3.3A and B show the instantaneous radial current density distributions
and the normalized neurotransmitter concentration field, respectively, for the case of high

pore expansion velocity up to ¥, ~63wn/s. The magnitude of the current density is

always maximized at the center of the electrode, which corresponds to the shortest
diffusion path through the pore for the released neurotransmitter to reach the electrode.
This is in contrast to transition from the uni-modal to the bimodal current density
distribution observed in the previously discussed case of an electroporated granule of the
mast cell. This is because there is no matrix in the case of a small and clear synaptic
vesicle, and diffusivity of the neurotransmitters in the extracellular fluid is much higher
than that in the matrix. It is also interesting to note that the magnitude of the current
density increases during the first 18 ps, and then begins to decrease owing to dilution of
the vesicle with time. This is perhaps better observed on the transient total cur.rent

response, shown in Figure 3.3C for three representative pore expansion velocities of
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Figure 3.3 Simulation results of the neurotransmitter release by a small and clear
synaptic vesicle: (A) Transient, radially distributed local current density i(c,?) at
the microelectrode for several consecutive time instances (average pore expansion
velocity ~63 um/s), (B) Normalized instantaneous serotonin concentration field
C/C, (time instant r=10 ps and an average pore expansion vélocity ~63 um/s),
superimposed with the final membrane position (dotted line) with the pore
opening radius of 5 nm, (C) Transient total current response- I(t) for the average

pore expansion velocities Vg =63, 20, and 0 gm/s.
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0, 20, and 63 pm/s. This is the curve that is measured in the typical exocytosis
experiments involving microelectrode. The model predicts a spike shape which is similar
to the experimental results®> with an almost instantly rise phase and a longer decaying
tail. However, the time rate of rise to the maximum total current response, computed to
be less than 18 ps, is overpredicted as compared to the reported experimental values of
25~80 ps®? and ~90 usgs for the neurotransmitter release from the small synaptic vesicles.
Further, our predictions in Figure 3.3C indicate that the current spike can reach a value
greater than 100 pA, which is more than an order of magnitude higher than the
experimental result, ~5 pA, measured by Bruns and Jahn.*> We are not sure what causes
such a significant difference between predictions and experiments in both the amplitude
and time constant. There could be important phenomena that we overlooked in our
model, but a simple analysis of the experimental data® suggests that for the measured
4200 messenger molecules released during the time period of 160 ps, the current spike
magnitude should reach a value at least of the order of several tens of picoampere, not ;5
pA, measured by Bruns and Jahn.®® The reasons for this inconsistency of results may

include poor control of the microelectrode position during the experiment (e.g., tilted

electrode) resulting in a smaller amount of detected neurotransmitters, the finite rate of
the electrode reaction -kinetics (althoughl less probable), additional resistances to the
messenger transport within the narrow pore, a reduction in the number of messengers
released due to the “kiss and run” events, or a smaller diffusivity of the lumen region
inside tﬁe small vesicle as compared to the bulk extracellular environment value that we

assigned to it in our simulations.
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Despite the lack of quantitative agreement, some interesting qualitative conclusions
can be drawn by comparing the current response in Figure 3.3 for the cases with an

expanding (non-zero pore expansion velocity V,,, ~20um/s & 63um/s) and a stationary

vg
(¥, =0) pore. The simulation results show that the pore opening velocity is not important
for the messenger transport during the initial few microseconds when three current
signals (for different velocities) rise quickly and overlap until the amplitude reaches ~70
pA. This suggests that the neurotransmitter diffusion within the vesicle or in the
extracellular environment, but not in the neck area of the pore, initially dominates the
transport. However, once the concentration fields within the extracellular and
intravesicular environments are established, the rate of neurotransmitter release becomes
limited by diffusion through the constriction provided by the pore. As a result, greater is
the pore expansion velocity, the bigger in size pore becomes, and the smaller is the pore
resistance to the transport. As a result, the current spike magnitude increases and the
current decay time constant decreases drastically with an increase in the pore expansion
velocity (see Figure 3.3C). This is well illustrated by the normalized local concentration

field shown in Figure 3.3B which indicates the greatest concentration gradient within the

neck area of the narrow fusion pore, proving that this is the area of the bottleneck

resistance to the molecular transport.

3.4.3 Case (c): Adrenaline Release by a Medium Size Vesicle in the Chromaffin Cell

In the case (c), we apply an integrated messenger transport-release model to simulate
the adrenaline release by a medium size vesicle in the chromaffin cells. The biophysical
parameters from the simultaneous amperometry and membrane capacitance

1.89

measurements by Amatore et al.”” are used as in input in our simulations. The process
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dynamics is treated as a two-stage process, as conceptually suggested by amperometric
experiments showing a constant rate of the neurotransmitter release (the current plateau)
through a stable fusion pore (the “pore-release”™ stage with the low pore expansion
velocity) followed by a sudden increase in current through an enlarged pore with the
granule matrix totally exposed to the extracellular environment (the “full-fusion” stage
with high pore expansion velocity).?” The model we propose to interpret the experiments
is different from the semi-empirical kinetics model developed by Amatore and co-
workers ® in the following important aspects: (i) We account for the fact that a granule
matrix is surrounded by the lumen fluid before and after the small fusion pore is opened
as well as during the swelling process. We do not impose the constraint on the matrix
interfacial area exposed to the fluid medium, but allow it to expand according to the THB
swelling model. Similar molecular diffusivities are assumed for the monovalent ions in
both lumen and extracellular fluids that trigger the matrix swelling, and, thus, local
electroneutrality is maintained owing to an immediate replenishmént of counter-ions that
surround the granule matrix during the swelling process. (ii) Both the membrane

dynamics and messenger transport are simultaneously considered with a minimum

number of physically meaningful tuning parameters to match the experimental results.
(iii) The pore edge energy is not considered in our model. Instead, the surface energy is
indirectly evaluated from the computed local tension force y rather than approximating
the nonequilibrium pore energy using equilibrium thermodynamics. The magnitude of the
tension force far away from the pore is assigned based on the apparent pore opening
velocity measured in experiments. (iv) The advection effect induced by the suddenly |

enlarged pore promotes and locally redistributes the molecular flux to the electrode
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surface and is accounted for. It is demonstrated that the advection contribution is
significant, especially for the cases with higher Peclet number flows corresponding to the

vesicles whose size are comparable to or greater than the nominal size (R, =150 nm) of
vesicles in chromaffin cells and for a higher pore opening velocity (¥, = 18 pm/s).

The simulation results shown in Figure 3.4 are intended to match the experimental
data® and obtained for the following conditions. During the “pore-release” stage, the
messengers are released through a small pore with initial radius ~0.5 nm which slowly
expands to ~4.2 nm, corresponding to the average pore expansion velocity of about 0.37
um/s. After 10 milliseconds, the “pore-release” process transition into a “full-fusion”
stage with a much higher pore expansion velocity about 18 pum/s. In the simulations, the
change in the pore expansion velocity is enforced by changing the magnitude of the

membrane tension y from 2.0 nN/m (the dimensionless tension force ~0.1) to 1.2 uN/m

(the dimensionless tension force ~60), respectively, in the far-field and at the symmetry
plane of the membrane, as discussed in great details in the previous section for the
simulation case (b). For the reference, the membrane tension force required to overcome
the viscous drag force alone during the fast opening stage is three order of magnitude
smaller than an estimated edge energy (~ 1 mN/m)*° and four order of magnitude smaller
than the rupture tension force of a lipid bilayer membrane.®® For the simulations, we
estimated the pore expansion velocities for the slow “pore-release” and fast “full-fusion”
stages of exocytosis from the transient measurements of change in the capacitance
induced by the fact that the vesicle membrane area is incorporated into the cell
membrane.®® The swelling matrix is assumed to expand symmetrically from the

dimensionless radius 0.7 to 0.945 with a ~150% increase in volume,
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Figure 3.4 Simulation results of the adrenaline release by a medium size vesicle in
the chromaffin cell: (A) Transient, radially distributed local current density i(o,f) at
the microelectrode for several consecutive time instances, ¢+=0.23, 9.94, 11.80, 15.76,
and 20.00 ms, (B) Instantaneous snapshots of the dynamic membrane evolution
corresponding to the time instances of the plot in A, superimposed with the initial and
final interfacial locations (dash lines) of the granule matrix, (C) Transient total
current response I(¢f) in the two-stage pore opening process (a slow “pore-release™ at
0.37 pm/s and a fast “pore-fusion” at 18 pum/s), superimposed with the case (dashed

line) simulated where the fluid advection effect is negected.
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the matrix diffusivity is set to D, ~ 2.0x10"? m%s, and both of these conditions are

maltrix

approximated from the measurements of an electroporated granule matrix.®®*’

In Figure 3.4A, the local current density as detected by a microelectrode increases
slowly during the initial “pore-release” stage with maximum amplitude at the center of
the electrode. After 10 ms, the fast “full-fusion” stage starts and the current density
sharply and almost instantly rises to its maximum value around 3300 pA/um?, with a rise
time of only 2 ms, and then slowly decays with the time to full decay being about 8 ms. A
drastic change in the messenger flux (as expressed by the total microelectrode current)
for the slow-to-fast stage transition is also well illustrated by Figure 3.4C, where the
signal slowly increases from 50 to 120 pA during the “pore-release” stage followed by an
almost immediate current spike to a peak value of up to 310 pA in the beginning of the
“full-fusion” stage. The simulated shape of the current spike and its decay as shown in
Figure 3.4C qualitatively agree very well with the experimental results.®****® However,
there is a lack of quantitative agreement between our predictions using the medium

vesicle size (R, =150 nm) and the experimental data®®*: the predicted magnitude of

the current spike is four to five times higher, i.e., predicted 310 pA versus measured
60~80 pA, and the decay is three to four times faster, predicted 10 ms versus measured
30~40 ms. This significant difference between predictions and experiments in both the
amplitude and the time constant could be due to several reasons. First, we suspect that
adrenaline oxidation on the microelectrode may not be infinitely fast (as assumed by
experimentalists), and the finite electrode kinetics would result in the diminished
molecular flux oxidized at the electrode and consequently reduced the current spike

amplitude and increased decay time. Unfortunately, the electrode kinetics was not
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characterized by Amatore et al.®% making inclusion of kinetics effects into simulations
very speculative. Other possible reasons include the greater diffusion resistance due to
possible lower-than-assumed diffusivity of the water molecules and counter-ions in the
lumen fluid between the granule matrix and the vesicle membrane (see Figure 3.4b), the
nonhomogeneous diffusivity inside the granule matrix caused by partially exposed matrix
interface and highly localized swelling dynamics®, or a very complex interaction induced
by an extrusion behavior of the granule matrix. Neither of the above mentioned facts has
been characterized experimentally, and, therefore, it would have been be too speculative
to include these effects into our simulations. It would suffice to say that the first model
developed for the electroporated granule matrix in the simulation case (a) should be
accurate enough to predict the diffusion behavior of the partially exposed matrix®® as long
as symmetric elastic deformation of matrix is a reasonable approximation. However, for
the case involving the matrix extrusion behavior, there is presently no physically sound
understanding of the process to be able to mathematically model this complex
phenomenon. Whether the matrix extrusion significantly affects the membrane dynamics
remains an open question from both the experimental and theoretical perspectives.
Despite the lack of detailed biological information for further theoretical comparison
of many competing hypotheses of exocytosis, we do observe several interesting
phenomena exclusively from the modeling results: (i) If the matrix swelling is relatively
symmetric by allowing the fluid medium flow in and fill the gap between the matrix
interface and the vesicle membrane, the second half of the membrane unfolding process
during the “full-fusion” stage, that is, when the opening angle89 o(t) = n/2, does not pléy

any significant role in the messenger release process, at least for the case when the pore
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opening velocity is close to the order of 18 pm/s. (ii) During the “pore-release” stage and
the initial rise phase of the “full-fusion” stage (the time period 0~12 ms), the rate of the
messenger release is hindered by the narrow fusion pore. As a result, the two-step slow-
to-fast rising behavior in the current signal (Figure 3.4C) is determined by the pore
opening size, which corresponds in turn to the two different pore opening velocities. The
current decay at the end of the “full-fusion” stage (time course > 12 ms in Figure 3.4C)
is, however, obviously limited by the messenger diffusion within the swollen matrix. (iii)
The inclusion of advective transport associated with the bulk extracellular fluid motion
enhances the amplitude of the current spike, e.g., by 5~6% for a pore opening velocity of
18 pm/s, as shown by comparison with the simulation with a neglected advection (dashed
line) in Figure 3.4C. Thus, the fact that the Peclet number given by eq 3-8 is small (only
4.5x10"%) can be rather misleading as it artificially neglects an increasingly important
messenger transport by advection in the region away from the fusion pore, where the
diffusion flux is much smaller than the species transport by bulk flow induced by the
large membrane deformation (see Figure 3.4B). Therefore, use of a single characteristic

diffusion length scale (e.g., given by the vesicle radius) is not appropriate to justify the

simplifications in the diffusion-advection transport equation for such a multiscale process
as vesicular exocytosis. Instead, several characteristic length scales (e.g., vesicle radius,
pore opening radius, electrode-to-membrane distance) should be locally used to facilitate

reduction in the model complexity without loss of the accuracy.
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3.5 Conclusions

In summary, we have developed a new, integrated theoretical model of the bio-
transport phenomena underlying dynamics of exocytotic events for several different
vesicle/cell types. The model considers the opening and expansion of the fusion pore,
vesicular matrix swelling, elastic membrane unfolding, and molecular messenger release
in the limits of the continuous fluid transport and elasticity theories. Only a simplified
dynamic model of the membrane is used here that assumes that the membrane evolution
is driven purely by the local tension force with vanished edge energy and the bending
rigidity. The solution of the problem is obtained using the combination of the boundary
integral and the dual reciprocity boundary element methods. The simulation results are
qualitatively compared with the experimental data from the literature of the in vitro
electroanalytical measurements of the Faradaic current resulting from the messenger
oxidation on the microelectrode. The results are significant as they provide new insight
and basic understanding of the slow and fast steps of an exocytotic sequence, allowing
verification of competing hypotheses on what control/limit the messenger release during
exocytosis. The following specific conclusions can be drawn:

o Proper selection of the time and length scales involved in exocytosis allows one to
simplify significantly the dynamic models of the process without loss of the essential
biophysical features of the process.

. Accountiﬁg for the matrix swelling dynamics is essential for correct prediction of
the rise time in the electric current signal in the electroanalytical measurements of
exocytosis using microelectrode. A simple Tanaka-Hocker-Benedek (THB) model'%"!8

for elastically expanding hydrogels has been shown to be fairly accurate for prediction of
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the matrix swelling dynamics, and its analytical solution can be explicitly integrated into
an overall model describing the fluid flow-membrane dynamics-messenger transport
during exocytosis.

» The transient change in the pore expansion velocity is very important for prediction
the total amount of the messengers released during different stages of the exocytotic
process. Unfortunately, currently available experimental data is limited to the estimates
of the maximum pore expansion velocity, which is not sufficient for development of fully
accurate dynamic models.

e The shape and behavior of the predicted and measured total current vs. time
response curves are in good agreement, but there is lack of quantitative agreement in the
time and magnitude of the total current rise recorded by the electrode in tracking the
neurotransmitter release from a small and clear synaptic vesicle and a medium size
vesicle in the chromaffin cell. It is possible that the model we developed does not take
into account other important phenomena that limit the release process, but this would
require further, more detailed experimental work to refine the biophysical fundamentals

beyond the current state of understanding. There is also an apparent inconsistency in the

reported experimental results, which may partially explain the lack of agreement between
the predictions and measurements.

e In the case of a small and clear vesicle, the pore expansion velocity is very
important to define the magnitude of the current rise and the time constant for the current
decay, but only after the neurotransmitter release and the exocytosis dynamics become
limited by diffusion through the neck area of the fused pore connecting the cell and

vesicle membranes.
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¢ In the case of a medium size vesicle in chromaffin cells, a two-stage pore opening
process appears to be a suitable conceptual formalism to describe the essential features of
the messenger release dynamics. It consists of the slow “pore-release” and fast “full-
fusion” processes, when the pore expands with distinctly different opening velocities.
The simulations reveal that an initial rise in the rate of the messenger transport is defined
mainly by the pore opening velocity, whereas the decay time when the current slowly
decreases from its peak value is limited by the messenger diffusion inside of the granule
matrix. Further, it is demonstrated that the advection transport of molecular messengers
induced by large membrane deformations may be significant and cannot be neglected
solely based on the small magnitude of the global flow Peclet number.

o The size of the opening pore and the pore opening velocity play the key roles in
controlling the messenger release kinetics in all three simulated cases, in a way they
affect the rising time and the spike amplitude of the total current response. The internal
diffusion of messengers inside of the granule matrix is important only for the non-clear
vesicles, cases (a) and (c), as it extends the decay time of the release process until the

matrix is fully depleted.
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CHAPTER 4
Conclusions and Recommendations for Future Work

Unlike any man-engineered systems, biological systems can hardly be fully
understood through theoretical analysis and modeling, at least based on the current level
of basic knowledge in the field. However, theoretical analysis definitely has its value in
comparative hypothesis verification, gaining an insight on the system behavior in
response to environmental and physiological changes, and defining the directions for
potential research. Therefore, it is very important to clearly understand and state the
validity limits of the biophysical theories. In this chapter, such limits are summarized for
the models developed in this thesis work followed by the discussion on the
recommendations for future work, including needed experiments, routes for extension of
the theories, and numerical simulation methods.

The model of AFM-biomembrane hydrodynamic interactions described in Chapter 1
neglects a number of possibly important effects, including a heterogeneous nature of the
cell membrane, the structure and properties of the cytoskeleton network, as well as
presence of various internal organelles. This model is perhaps the best suited to describe
the interactions between an AFM tip and a simplest prototype of the cell membrane such
as the planar sheet of a synthetic lipid bilayer or a self-assembled vesicle. To extend the
model application to more realistic cell membranes, the following studies are
recommended for future research:

1; The effect of a much higher viscosity of the intercellular environment (cytosol) as

compared to the extracellular solution should be incorporated into an analysis.
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There is no fundamental difficulty in this extension and it could be done by
adopting the same theoretical approach as the one described in Chapter 3 of this
thesis.

In general, a viscoelastic fluid model is expected to be a more general description
of the cytosol as a structured liquid due to possibly high concentration of charged
proteins packed inside of the cell. However, such a model can only be realized if
the viscoelastic properties of the protein solutions are experimentally determined
and properly correlated with the protein type and concentration.

. The local arrangement of the membrane cytoskeleton network may provide a
major resistance to the membrane deformation. The current model can only be
applied for an isotropic and homogeneous membrane or membrane/skeleton
system. For a system with the more complex structural organization and an
anisotropic skeleton structure, the investigation of the AFM tip-membrane
interactions in the limit of small deformations may require a full three-
dimensional analysis near the scanning area rather than an axisymmetric analysis
performed here. This is not presently clear and further investigation is needed on
both experimental and theoretical fronts.

In addition to vesicles forming a lipid bilayer structure of the cell membrane, the
proteins, carbohydrates, and other complex molecules are integrated into a cell
membrane to perform many physiological functions of the biological cell. Only in
the case when the integrated molecules are uniformly distributed within the cell
membrane, it is perhaps possible to simplify thé membrane structure by using a

homogenization-like algorithm to resolve the heterogeneities and accommodate
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the multiscale phenomena. The analysis of a confluent monolayer of cells may
also adopt this strategy for a simplified analysis. An alternative approach would
require the molecular discrete-level modeling. However, the latter can be reliably
implemented only if the fine details of the molecular structure and force
interactions are known, and also requires significant computational
simplifications to obtain meaningful results for such a complex system as a
biological cell. In the future, one shall consider this possibility only if the
molecular dynamics simulations can shake hands with the continuum models in
self-consistent fashion without currently used numerous ad hoc numerical
manipulations.

5. The first step in the experimental verification of the model is investigation of
AFM noncontact imaging of the scale-up model membrane system, such as the
planar sheet of a synthetic lipid bilayer membrane or a giant vesicle. By labeling
the membrane area of interest with fluorescent labels, it should be possible to
trace the dynamics of the membrane deformation using a conventional or a
confocal microscope and use the particle imaging/tracing technique to construct a
three-dimensional topological map of motion. Environment parameters such as
imposed flow or pressure fields and the membrane-supporting device, such as a
micropipette, can be easily integrated into the theoretical model developed in
Chapter 1.

In Chapter 2 the analysis focused on the effect of the membrane electric field on the
AFM imaging of a bilayer membrane in a dilute environment. In most AFM experiments,

this effect is not significant as the experimentalists commonly use the high ionic strength
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buffers to minimize the thickness of the Debye electric double layer, thereby essentially

screening the membrane electric field. However, there is a need for characterizing the

electric double layer in many systems of interest to colloidal and interfacial sciences,

whether or not a biological sample is involved. Thus, the practical value of the

mathematical method and the solution technique developed in Chapter 2 is much broader

and not limited to the biological applications only. It should be perhaps viewed as a more

universal theoretical tool when one wants to use the AFM to investigate the complex

microfluidic systems involving interactions between solid and soft matters on the small

scale. The following studies are recommended for future research:

1.

The limitation of the low zeta potential of the charged membrane used in the
present study to linearize the electric system should be resolved. It can be done by
solving the nonlinear Poisson-Boltzmann equation for the electric potential in the
electrically-responsive media by using a numerical technique that can handle the
domain integral terms such as, for example, the dual reciprocity boundary element
method described in Chapter 3 of this thesis.

It should be possible to combine a simplified algebraic model for an electric

double layer used in this thesis and the van der Waals forces in the framework of
the DLVO theory of colloidal stability'® if the parameters of the constitutive
equation for the interaction potential energy can be experimentally determined.

The interplay between the short- and long-range electric force interactions may
become important when focus is on the analysis of asymmetric and locally

nonhomogeneously charged membranes. This definitely warrants further
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investigation even on the purely theoretical ground and requires transition to a
fully three-dimensional analysis.

Finally, in Chapter 3 the mathematical models are developed to analyze the molecular
messenger release process and compared with experimental results for various vesicle
and cell types. Careful design of the model system is necessary for meaningful
comparison of the transient simulations and in-situ experiments. Only through such a
direct comparison, a better understanding may emerge of the linkage between the
exocytosis triggering mechanisms at the molecular level, an individual exocytotic event,
and the signaling at the cell and tissue levels. Many limitations made in design of the
theoretical models discussed in Chapter 3 are either because of the lack of biological
information or owing to the computational challenges. The following studies are
recommended for future research:

1. The granule matrix of the vesicle serves as an active engine for release of the

ch;mical messengers. It is necessary to develop a basic experimental method that
can measure the effective transport properties (e.g., diffusivity) of the messengers

stored in the matrix at a submicron scale to properly describe transport of

messengers under realistic conditions. The transport property measurements have
to be coupled with the develbpment of suitable predictive models for polymer-
solvent interactions at various transition states.

2. The two-phase polymer model should be able to better describe the
nonhomogeneous, nonlinear, and asymmetric deformation of the vesicle granular
matrix. By incorporating the mechanisms of momentum transport for both

polymer and solvent phases, limitations of the phenomenological THB elastic
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model and the simplified boundary condition at the matrix/solution interface can
be relaxed. A mesoscale modeling technique such as Lattice Boltzmann
Simulations (LBS) can be recommended to simulate the hydrodynamics of non-
equilibrium two-phase polymer system. These hydrodynamic interactions can
then possibly be incorporated into the phenomenological THB hydrogel model or
be directly combined with other possible continuum models for the multiscale
analysis of the granule swelling. In addition, the matrix swelling induced by
membrane tension also needs to Be resolved.

. A consistent thermodynamic theory for evaluation for the edge energy of the
fusion pore is still needed to settle many inconsistencies in the experimental
results reported in the literature. Detailed measurements are needed to identify the
responsible proteins and to quantify the molecular forces acting along the radial
and circumferential directions of the membrane during the pore opening process.
It is possible and straightforward to extend the model of the post fusion
exocytosis dynamics developed in Chapter 3 if a better knowledge of the local

membrane tension force is available through direct measurements using, for

117 Knowledge of the driving tension force

example, an optical tweezer technique
can lead to a more accurate prediction of the fluid flow pattern, the membrane
unfolding dynamics, and thus the messenger transport phenomena into the
extracellular medium.

. The difficulties in computational solution of the governing boundary integral

equations increase drastically as more and more various transport mechanisms

need to be sixﬁultaneously considered. Development of hybrid approaches that
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combine the field solution methods with the purely boundary integral method is
recommended. For example, the finite volume schemes can be used for solving
the nonlinear, heterogenous species transport equations, while the Stokes integral
solutions can still be used to solve the linear fluid system with complex moving
boundary conditions in the limit of low Reynolds number flows.

. The uncertainties of electroanalysis, such as the electrode size, geometry,
position, electrochemical properties and sources of contaminations, the redox
reaction kinetics, among others can be critical factors that prevent accurate
correlations between theoretical predictions and electroanalytical measurements.
Thus, only carefully calibrated measurements on the well-characterized biological
system c;m provide a route for development of realistic models of the exocytosis

leading to complete fundamental understanding of the cell signaling.
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APPENDIX A
Fundamentals of Boundary Integral Method

The boundary integral method is used for computationally efficient solution of the
models developed in chapters 1 through 3. All theoretical formalism is expressed in the
integral form and solved by the boundary element method (BEM) and dual reciprocity
boundary element method (DRBEM) in a coherent way. Fundamentals of this solution
methodology are briefly reviewed in this Appendix.

Engineering and physical problems are commonly formulated in terms of a system of
differential equations for certain continuous field variables. However, equivalent integral
formulation is often preferred since it directly represents the governing physics, for
example, in the case of conservation laws in fluid mechanics and heat/mass transfer. In
addition, integral equations can be more effectively solved as compared to the differential
equations, and the numerical schemes are inherently preserving conservation laws. In
general, there are two different ways to obtain the integral formulation: using the
variational principle and the weighted residual technique. As a starting point, the
variational principle assumes that the physical problem can be expressed in terms of a
minimum value of a certain functional. The functional is in an integral form and usually
represents the system energy, action, distance, surface area or any physical quantity that
makes sense to minimize. However, it is often very difficult to find the variational
formulation for more complex problems, for example, the fluid flow prdblems.
Therefore, to circumnavigate this problem one needs to work in a reverse way — first,

derive the differential system from the first principles governing the physics of the
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problem, then use the weighted residual method to define the equivalent integral
formulation. Weighted residual method is used for both finite element (FEM) and
boundary element (BEM) applications. At the transformation level, the difference
between FEM and BEM is that FEM only performs integration by parts once to obtain
the weighted residual formulation (weak formulation), whereas BEM requires second
integration by parts to generate an adjoint integral formulation (or reverse formulation).
For example, consider a differential equation, Lu=f , where L is a linear differential

operator and « is an unknown function which satisfies this equation with given boundary

conditions. If the inverse operator L™ exists and if there is an integral operator with the

kernel G(x,t) such that
(C'u)(x)= [Gex,yucyr (A-1)
then we can express the solution of the problem as
u(x)=LL"u(x)=L IG(x, Hu(t)dt = jLG(x, Du(t)dt (A-2)
Clearly, the only way for the statement A-2 to be true for all continuous functions u is if
the kernel G(x,r) is defined by a distribution solution of the fundamental equation
LG(x,t)=06(x—1) (A-3)
where G(x,t) is the fﬁndamental solution or the free space Green's function of the
differential opgrator L,and 6(x—1t) is Dirac delta function with the field point x and the

source point ¢. The idea of fundamental solutions of linear differential operators is
essential to apply integral analysis as a solution technique.

Further, let's now consider the general Green's identity given by!!%!1"°

| (vLu - uL'v)d V= {I(u,v)-ndd (A-4)

Q
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where u and v are continuous functions with continuous derivatives of the order of L
(let m be the differential order of L), L' is an adjoint operator of L defined by the inner

product < Lu,v>=<u,L'v>, and the conjunct term J is a bilinear vector form of functions
u and v with highest derivative of the order m —1 or less. Here the solution domain Q is
bounded in R? by a sufficiently smooth boundary 8Q, d¥ is the volume element, and
dA is the surface element of the boundary with an outward unit normal n. Obviously, a
frequently seen Green's theorem is a special case of eq A-4 in the case of the Laplace
differential operator.

The fundamental solution, eq A-3, and the general Green's identity, eq A-4, are two
most important ingredients of the integral or inverse formulation that lead to the weighted
residual method. Assuming « is the solution we want, the residual of eq A-1 can be set to
zero in an average sense over the field Q weighted by a function G, i.e.,

KIIG(Lu -)dQ=0 (A-5)

The weighting function G, also called the basis function, is used for construction of the
approximation solution. By comparing with the general Green’s identity (eq A-4), eq A-5

can be expressed as

[uL'GdV + [J -ndA— [GfdV =0 (A-6)
Q on Q

Equation A-6 is now a complete integral form of the differential equation (A-1). And, if
G is the fundamental solution that satisfies the singularly-forced adjoint differential
equation,

L'G==5(x,1) (A-7)
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We can further substitute eq A-7 into eq A-6 to obtain the exact solution for the source
point located inside the solution domain (¢t € Q-8Q),

u= [J-ndd-[GfdV | (A-8)
on Q

In summary, eqs A-6 and A-8 provide a very powerful way to find the solution of the
original differential equation. The presented integral formulation is built on the classical
mathematical theory by George Green, who introduced the Green's function in 1828'%,
and many recent developments. Among the latter, the potential theory'?! was developed
in the early nineteen century, and it established the foundation for application of integral
equations in the boundary value problems for conduction heat transfer, electrostatic,

122,123

magnetostatic, elastic, and potential flow. Also the integral equation theory (most

importantly, the Fredholm's alternative theorem) and the differential/integral linear

119,124 provided the grounding work for BEM. When computers became

operator theory
available in mid 20™ century, numerical implementation of BEM has received many
attentions for solutions of very complex integral equations. The numerical algorithms for

1LI25126 and the generic solution

BEM implementation can be found in many references,
sequence can be summarized as follows:
(i) express the governing differential equations in an integral form using the
weighted residual method,
(ii) find the fundamental solution of the differential operator,
(iii) reduce the integral equation to a boundary only integral using Green's
identity, Gauss divergence theorem, or direct integration by parts,

(iv) discretize the integral equation to a system of linear algebraic equations, and

(v) solve the linear system using one of the available matrix inversion methods.
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The greatest advantage of using the boundary integral method is that it allows for
reducing the dimensionality and hence the complexity of the problem by an order of one,
and, for a number of systems, only the boundary integrals (i.e., no domain integrals) are
remained in the final integral formulation of the problem. From the numerical point of
view, computations are very efficient, and only a fairly small amount of computer
memory is required for variable storage. Other advantages include:

(i) integral solution is semi-analytical, thus, one can obtain a better physical

insight into the simulation results,

(i) discretization of the differential operator is not needed, that prevents

truncation errors and numerical instabilities

(iii) computer coding is relatively concise compared with traditional finite

difference, finite volume, or finite element methods.
However, these advantages come with a number of difficulties arising when the problem
becomes complicated:

(i) derivation of the fundamental solution can be very difficult,

~ (ii) singular integration requires special efforts and has to be done very
carefully,

(iii) solvability condition raised by the integral equation, in general, is difficult to

prove rigorously, and

(iv) if the domain integrals cannot be transformed to the boundary integrals,

direct domain discretization or further approximations such as DRBEM are

required and the integral method may lose its computational superiority.
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APPENDIX B
Integral Solution of Stokes System

Quasi-steady Stokes flow problem can be conveniently solved by using boundary
integral method. The theory was originally proposed by Lorentz in 1907. In fact, Lorentz
reciprocal theorem'’ g'ives a pairwise relation between the flow velocity and its
corresponding stress by linking the real flow in the actual physical domain to the so-
called Stokeslet flow induced by the corresponding Green's function, the Stokeslet. The
integral solution was later outlined by Odqvist'® and Ladyzhenskaya'® by considering the
flow field as a superposition of the contributions from a single layer potential (the flow
induced by the continuously distributed point force, Stokeslet) and a double layer
potential (the flow induced by continuous point stress, Stresslet). The details of the theory
development and numerical implementation of the integral formulation can be found in
references'™'®. According to Ladyzhenskaya,'® the nonhomogeneous Stokes equation and
its singularly-forced adjoint equation can be written as

V-1(v,p)=puviv-Vp=8§ (B-1).

V-1'(v,p') = uV2v' + Vp' = §(x - x, )& (B-2)

respectively, where S is a combination of nonhomogeneous terms, v and p are the
velocity and pressure solutions of the nonhomogeneous Stokes system with dynamic

viscosity ux, v' and p' are the fundamental velocity and pressure solutions for the
singularly-forced system (B-2), x and x, denote the field and source points, respectively,

and T and 1’ are the corresponding second order stress tensors. Similarly to eq A-4, the

general Green's identity for the Stokes problem was derived by Ladyzhenskaya,'”
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' 2 ap 2.0 6P’ _ ’ ' _
r3[|:v,.(,u‘7 v, —gx—)—v,.(,uv v, +a dV—aE[(r,.jv,.nj—rUv,.nj)dA (B-3)

i i

here the unit surface normal vector n; points into the fluid domain Q. Note that if the

system is homogeneous and the source point x, does not belong to the domain Q, the

right hand side of eq B-3 reduces to the Lorentz Reciprocal Identity,'” expressed in

differential form as V-(v’r -v,.z',’j)=0. Now, combining eq B-2 with the continuity

ity
equation, V-v'=0, the fundamental solutions for velocity v' (Stokeslet), pressure p’,

and their corresponding stress tensor ' (Stresslet) can be derived by Fourier transform."

Finally, since the continuity equation is satisfied by both v and v', eq B-3 provides a
mechanism to derive an integral form of nonhomogeneous Stokes equation by combining

Stokeslet, Stresslet, and contributions from the nonhomogeneous terms,

Elr; .[S, (X)G, (x,x,)dV (x)
Q

(B-4)

+ _871r—;1 E('[Tik (X)n, (X)G; (x,X,) dA(x) - é ai"i (X)T e (%, %0) 1, dA(x) =0

where the singular source point is located outside the fluid domain, x,¢Q, the unit
surface normal vector n; points into the fluid domain, S; represents the vector source
term, v, and z; represent the physical velocity and stress fields, respectively. The
fundamental solution (Stokeslet) and its corresponding stress field (Stresslet) are given

13

by

iy ]

S : FiFiFy
Gy(x, %) = —rj"+—j‘ » Tyr(%.X) = ~6—

J

r5 (B-S)

l‘3
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respectively, where §;; is the Kronecker delta, r=x-x, is the position vector between the

given field and source points, and r =|x-x,| is the distance between the field and source

points.

When the source point is located inside of the flow field, x, e Q-8Q, the induced

velocity field must satisfy the general integral equation:

—1
V}'(XO) =8_ “-SI(X)GU(X’ xo)dV(x)
o
1 1 (B-6)
_ @aif,-k (x)m (x)Gy (%, %) dA(x) + g“_[v, ()T (%, Xo) 1, dA(X)
whereas if the source point is located on the sufficiently smooth boundary, x, € 3Q, the

double layer contribution (last term in eq B-6) has to be interpreted in the sense of

Cauchy principal value because of the stronger singularity in the integral kernel T . For

a homogeneous Stokes system, the domain integrals in eqs B-4 and B-6 vanish and both
equations reduce to the formulation with the boundary integrals only. In the thesis, eqs B-
4 and B-6 are the key equations used for deriving solutions for the low-Reynolds number

fluid flow in two coupled domains (inside and outside of the cell) which are linked by the

moving boundary of the deforming membrane. It should be emphasized that many
complex transport problems can be solved by the general solution procedure for Stokes

flow even with the nonlinear sources and nonlinear boundary conditions.
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APPENDIX C

In terms of the Green's function expressed in the Cartesian coordinates, the

transformation matrices are given by13

M. =
*=% ) g G, cosp+G_ sing

0 Xy

ZT{GH G,, cos ¢ +G,, sin ¢]

T T, cosp+T,, sing
Qxaﬂ=o- . T 52 T <2 7 . d b
ol Ty COSP+ T, sing T, cos” g+7,,,sin” §+27T,,, cosgsing
' 2 T T, cosg+T,,sing
af = O d
Coas 3| Tyycosp+T,, sing T, cos’ p+T,, sin’ §+2T,, cosgsing ¢

After simplifications, the elements of the transformation matrices are given by
Mxx=0'(110+£2]30)’ an=:30'(0'130—0'013,),
M, =30(0 Iy ~0ols)s My =0y + (02 + 0251 — 000 (s + Iy )]
ox =XO\O 31 —0Opl3p), oo =0 11 ¥\O +0¢ Ji31 —00g\i30 T 132))5
23
Qm—-—Gx O'Iso,
Qo =—6-’220'(0'150 —0'0151),

Oxax = Pxxos

O =-630{02 15y + 0815y ~ 200,15, ),

O oxx =—5£20(0151 —0ols0)s

Ooox = Qoo s

Ons = 63002 + 02 Iy - 000 (159 + I ),

Qaaa="6°'[03151 —0'20'0(150+2152)+<70§(153‘*'2151)‘0'3152]
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The general expression for 7,

is given by,

4™ /2 (2sin ly

Iﬁ I'Il 1
n (4660 /290 [l—kZSl (e)]w/z

where k= J4aao /(fcz +(o+0, )2), *¥=x-x,, and the field and source point locations are

x=(x,0) and x,

=(xy,0,), respectively. The general form

expressed in terms of complete elliptic integrals:®’

2k

lLy=——=F> I =

(o)

o PE
= ’
0 2(ooy )3/2 1-k2

m[&—kz)F—ZE],

1 k*-8k*+8 2
132—(0'0'0)3/2]([ 1) E+(2k 4)F],

. k5 2-2)

" 24(00, ) (1-k2)| 1-42 £ F}

_ k3 okt -k241) . a
151_24(0’0'0)5/2(1—](2)_ 1- k2 us Z)F}
Iy = k (_k6+6k2_4)E—(k"+8k2—8)F,
2 2400, R 1-R2)  1-4

1

81 kS —33k* + 64k — 32)

TR

1-k%

of integrals I,

can be

E -+ (K® +30%* - 96K + 64)F}

The complete elliptic integrals of the first and second kind and the modulus are defined

by, respectively,

/2

Fy="| ——22
0

, E(k)= I 2 sin

1-k%sin2 6
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APPENDIX D

The tangential derivatives of the transformation matrices M, and Q,,, are computed

as follows:
oM o0
af afy
=t,-VM_,, ——=t,-VQ,
Os y b Os oty
where
oM . o a
2 = g3l +30%° Iy —20%15, ,
0
oM - -
5 2 = 62, — 00,1y +3025° I, ~300,%° 1, ,
O
oM - -
30— 50415 — 300,57 L5, — 025 +30% 52,
Ox,
M . - - - -
éai=— I, + 30033, —30%0,3l, ~30% 0,51, +30°%Ls,
Oo
oM . -
— % = g2, + 0015, + 36251, — 300,71,
0ox,
oM . - - - -
5 Z = —okl, —30%0,%ls, + 30035, +30°7], ~30% 0,31,
To
oM, . . - - -
98 = g%l + 3002k, +30°%]5, —30% 0%l —30% 0,y ,
. ‘
M
aaaw =06y1; -0 Ly, +30%02 1 + 602021, —300315, —60°0,15, —36°0,1; +30° 1, ,
0
00,x

=2 —180x21, - 3005 I, ,
0

e _ 3000,%°1,, —306°%°I,, ,
)
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s _ 1207715, —300%%° 1, —1200,%1s, +3000,%°1,;,
Xo

00y

5 2 =3000y% 15, —300° %% 1, +60%°I5; 30005 %%1,, +300°0,%* 1, ,
Oy

anUx _ an.w ancrx — anxa

Ox, o, 0o, da

b

9 . . .
—-aQﬂ =601 —300°%% 1,y —120%0, I, +600%0,%1,, + 600215, 30002571, ,
X0

? R . . .
% =3000yxl,, 300" %I, +120% %1, —600% 0231,
0y
+600°0(%15, —1200,%15, +30003%1 4, ~300%62 %1, ,
00 ox

=9 — 12631, —300%5° 1, —1200 %1, +3000,%° I, ,
0

gaQ;m =300%0y%l,, —300°%*1,, +60%* I, — 30005 I,y +300°6,%°1,, ,
)

%Y

== = 6ggels +60°I5, —300053% 1, —300° %21,
0

—60%0y1s —60%0015, +300%0,% 1, +300%0,%%1,,,

d . . . "
% = 60070y 51, —300* $1,, + 602515, ~30020251,,
0o

+60%%1, ~60020231,, +300° 0kl ,; —1200,%5, +30003%1,, ,

00e _ 0mo  uer _ use

b

2

g Ox, 0o, oo,
5 ) ) ) ) ) )
—aQ-ﬂ =-3002023%15; +600° 6%l + 30003515, — 300 1, +300° 0y 21, — 60020351, ,
Xo :
d
__aQ””” =-12020,1 + (120’3 +1800} )152 +60°15 ~240% 0I5, =300° 55 1,
0o

+(600% 0, +600203 )1, ~ (3000¢ +300° +1200°02 )1, +(600* 0o +600263 )1y ~306°6 21
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The lower order terms, I, Iy, Iy, I3, I3, Isys Is, Isy, and Ig; are listed in
Appendix C in terms of complete elliptic integrals of first kind F and second kind E

with the modulus &, and therefore are not repeated here. The remaining higher order

terms are:
7 4 _ 2
L= k [Sk 23k2+23 Ba 4(k2_2)F],
480(co, Y 2(1-k2F L 1=k
2-k? 1
I, = ©2 70_20601503
k' —4k? +4 4k* -8 4
I,= I+ L,
& Kt " (400, k? 50 (400,) 02
o8 +—12k2+241 +—6k4+24k2—241 +—k6+6k4—12k2+81
» (400, ) 10 (400, ) K? 3 (400, K %0 kS ™
64 k® —8k® +24k* —32k* +16 8k° —48k* +96k* — 64
Iy = 7 Lt 8 o + 6 Isy
(40(50) k k (400, )k
24k* —96k* +96 32k* -64
(400, ) k* * (400, ) k? 10
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APPENDIX E

The ring-source-type Green’s function M, and its normal gradient Q, for the

Laplace operator are calculated by azimuthal integration of the three-dimensional forms,

21 o
ML=cr_[)GLd0=4—”-1w,

oG % 2
.= ;n . de—‘jxlao"x '*'['G_Go L; _0_130]"5
)4 4n

on 4n
Similarly, the axisymmetric interpolation functions g,, , the gradient of the interpolation
functions Vg,,, the particular solutions f£,,, and their normal gradient &f,,/6n can be

derived,

b

2n
B = [(+7,4)d0 = 274 2Nn%

J p

V¢mk=‘£mk110éx+( wd10 = O 11)

ﬂ:k;j(r_'ék'*%%hﬁ’%ﬂ(Z-pz) 8(6"'6" ™ fe-27)e+ (o7 1)),

0 3p
Mk = J.Vf;nk 2 (i‘mknx + o-mna)
2 , ‘ 2 _ ’ 2 _
+ Tn :emkEn.x + Op + Oy — 20—1: 2p2 1 Eno‘ + zo-k 2 1 Fna'
p 3p 3p

A 2 2 A
Where b= ‘\/40',"O'k /(xmk + (O-m + o-k) ) s X = ('xm’o—m) s Xp = (xk’o-k)5 and Xk = Xpy — Xp
At a singular point, x,, =x, , the above expressions can be further reduced to become

G =27 +80;, ﬁnk=2—”0'k2+%0'2, i;fk 20,n, 207
n

3 + 4ak)

whereas Vg, remains unchanged.
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APPENDIX F

Let the matrix be defined by
- o -
Sy =-0fi+ I (ML"EJL" ijL)dZ
aQ, "

Then, the consolidation of the intermediate terms yields

N+L

Aim = ZSI (Z)l:::x 4

k=1

=380 tv v, o

£=1 { m=1

A fully implicit form of the integral convection-diffusion equation can be written as

n+l S oC ml & Aij n+l
oC™ =Y [My,de DY [0 at |+ LB+ dyg; |iC
J=1 [\ aq

J=1\ aq, J
N+L (4 | 1 AL
U
* 2|\ By 4 O = = D 4 C
J=N+1 At At j=1

where i, j, n and Ar denote the source point, field point, index of time step, and the
magnitude of the time step, respectively; g; =(V-6u/at)j is the quasi sink term due to

the matrix dilution; N is the total number of boundary elements, and L is the total
number of internal nodes. In the above equations, the terms that include 1/A¢ should be

omitted for the steady state system, the advection terms that include B, should be
removed for a purely diffusion system, and g; should be removed for a homogeneous

system. The constant coefficients or dimensionless groups can be multiplied to the

matrices 4 and B according to the corresponding differential equations.
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