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SUMMARY

At the Los Alamos Neutron Science Center accelerator complex, protons are accel-

erated to 800 MeV and directed to two tungsten targets, Target 4 at the Weapons Neutron

Research facility and the 1L target at the Lujan Center. The Department of Energy requires

hazard classification analyses to be performed on these targets and places limits on certain

radionuclide inventories in the targets to avoid characterizing the facilities as “nuclear facil-

ities.” Gadolinium-148 is a radionuclide created from the spallation of tungsten. Allowed

isotopic inventories are particularly low for this isotope because it is an alpha-particle emit-

ter with a 75-year half-life. The activity level of Gadolinium-148 is low, but it encompasses

almost two-thirds of the total dose burden for the two tungsten targets based on present

yield estimates. From a hazard classification standpoint, this severely limits the lifetime of

these tungsten targets. The cross section is not well-established experimentally and this is

the motivation for measuring the Gadolinium-148 production cross section from tungsten.

In a series of experiments at the Weapons Neutron Research facility, Gadolinium-148

production was measured for 600- and 800-MeV protons on tungsten, tantalum, and gold.

These experiments used 3 µm thin tungsten, tantalum, and gold foils and 10 µm thin alu-

minum activation foils. In addition, spallation yields were determined for many short-lived

and long-lived spallation products with these foils using gamma and alpha spectroscopy and

compared with predictions of the Los Alamos National Laboratory codes CEM2k+GEM2

and MCNPX.

The cumulative Gadolinium-148 production cross section measured from tantalum,

tungsten, and gold for incident 600-MeV protons were 15.2±4.0, 8.31±0.92, and 0.591±0.155,

respectively. The average production cross sections measured at 800 MeV were 28.6±3.5,

19.4±1.8, and 3.69±0.50 for tantalum, tungsten, and gold, respectively. These cumula-

tive measurements compared best with Bertini and were within a factor of two to three of

CEM2k+GEM2.

x



CHAPTER I

INTRODUCTION

“Fundamentally, you have a straightforward thesis.” Prof. Nolan Hertel, 2002.

At present, no new nuclear reactors are being built in the United States, which leaves us

with aging reactors that do not offer any great flexibility in neutron production. Therefore

a new technology must be used to produce broad ranges of neutron sources. Accelerator-

based facilities are fulfilling this goal with neutrons being produced by high-energy protons

(E >∼ 1 GeV), including spallation of nuclei in a heavy metal target. Accelerators offer

greater flexibility in terms of particle energies and types, which can lead to a variety of

applications. Accelerator-based neutron scattering facilities in the U. S. currently in op-

eration are the Los Alamos Neutron Science Center (LANSCE) at Los Alamos National

Laboratory (LANL) in New Mexico and the Intense Pulsed Neutron Source at Argonne

National Laboratory in Illinois. These facilities use tungsten and uranium, respectively, as

accelerator targets. The Spallation Neutron Source (SNS) being built at Oak Ridge Na-

tional Laboratory in Tennessee will provide North America with the most intense pulsed

neutron beams using a liquid mercury target when it comes online, planned for 2006.

Spallation occurs when incident particles (E >∼ 100 MeV) interact with individual nu-

cleons in the target nuclei and cause reactions, consisting of an intranuclear cascade and an

evaporation-fission stage (Figure 1). The intranuclear cascade is initiated when incoming

particles collide with individual nucleons, as opposed to the nucleus as a whole, leaving the

nucleus in an excited state. The nucleus can relieve its excitation energy by processes of

fission or evaporation of nucleons or small groups of nucleons until the excitation energy

falls below the nucleon binding energy of several MeV, when gamma-ray emission removes

the final few MeV of excitation energy. During the intranuclear cascade phase, several

high-energy particles can leave the nucleus and initiate a spallation reaction in neighboring
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nuclei, resulting in a ’fission-like’ chain reaction process that eventually dies out when sec-

ondary particles no longer have enough energy to initiate a spallation event.

Spallation/high-energy fission

Spallation 
product

Evaporationn

Incident
proton

Intranuclear
cascade

High-energy
neutron

High-energy
proton

Gamma
ray

Competing
processes

High-energy 
fissionn

Fission
products

He

Low-energy
neutron

Lead

 

Figure 1: Spallation interaction processes

When heavy metal targets, such as tungsten, are bombarded with protons greater than

a few hundred MeV, hundreds of different nuclides are produced, ranging from the atomic

number of hydrogen to nuclides with atomic number just above that of the target material.

These nuclides are both stable and radioactive and are created by spallation or secondary

reactions with neutrons and other nuclear particles made in the target. These products

are distributed somewhat heterogeneously throughout a thick target because of the energy

dependence of the cross sections and energy loss of the proton beam within the target.
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From this standpoint, it is difficult to measure nuclide production cross sections for a given

energy proton in a thick target.

At the LANSCE accelerator complex, protons are accelerated to 800 MeV and directed

to two tungsten targets, Target 4 at the Weapons Neutron Research (WNR) facility and

1L target at the Manuel Lujan Jr. Neutron Scattering Center (Figure 2). The U. S. De-

partment of Energy (DOE) requires hazard classification analyses to be performed on these

targets and places limits on radionuclide inventories in the targets as a means of determin-

ing the “nuclear facility” category level (Table 1) [1]. When a facility becomes a “nuclear

facility,” more engineering safeguards and administrative measures are required. So it is

advantageous for a facility to maintain a low hazard classification. A Category-3 nuclear

facility is considered to represent a low hazard, where there is only potential for “significant

localized consequences” due to presence of radionuclides. The threshold values of radionu-

clide inventory of a Category-3 facility represent levels of material which, if released, would

produce less than 10 rem effective whole body dose at 30 meters based on 24 hour exposure

and no radioactive decay.

In an accident scenario, radiological inventory from one of the tungsten targets would

be dispersed as a result of loss of cooling, oxidation of the target and dispersal with a 100%

airborne release fraction. This accident scenario drives the hazard classification for the two

tungsten targets at LANSCE. Presently, WNR Target 4 is a non-nuclear facility while the

Lujan 1L target is classified as a Category-3 nuclear facility, one level above a non-nuclear

facility. To be a non-nuclear facility, DOE requires the cumulative sum of all radionuclides

produced in WNR’s Target 4 to be less than 0.6 of the Category-3 threshold [2].

Table 1: Nuclide inventory limits for the 1L target [5].

nuclide half-life decay mode Curies
53 I 131 8.04 d β− 1.3E-01
53 I 126 13.02 d ε + β+, β− 2.7E-01
53 I 124 4.18 d ε + β+ 7.6E-01
64 Gd 148 75 y α 1.3E+00
53 I 125 60.14 d ε 3.4E+00
75 Re 182b 64.0 h ε + β+ 6.8E+01
72 Hf 181 42.4 d β− 8.1E+01

3



(Table 1 continued)

nuclide half-life decay mode Curies
75 Re 184 38.0 d ε + β+ 8.2E+01
63 Eu 145 5.94 d ε + β+ 1.0E+02
64 Gd 146 48.3 d ε 1.1E+02
64 Gd 147 38.1 h ε + β+ 1.1E+02
64 Gd 153 242 d ε 1.1E+02
63 Eu 147 24.1 d ε + β+ 1.4E+02
63 Eu 146 4.61 d ε 1.5E+02
64 Gd 149 9.4 d ε + β+ 1.5E+02
65 Tb 151 17.6 h ε + β+ 1.6E+02
73 Ta 184 8.7 h β− 2.6E+02
66 Dy 155 10.0 h ε + β+ 2.7E+02
66 Dy 157 8.1 h ε + β+ 3.0E+02
66 Dy 159 144.4 d ε 3.0E+02
72 Hf 172 1.87 y ε 3.0E+02
75 Re 181 20 h ε + β+ 3.1E+02
68 Er 161 3.24 h ε + β+ 4.0E+02
71 Lu 172 6.70 d ε + β+ 4.0E+02
71 Lu 173 1.37 y ε 4.7E+02
73 Ta 182 115.0 d β− 5.5E+02
69 Tm 167 9.24 d ε 6.6E+02
70 Yb 166 56.7 h ε 7.1E+02
69 Tm 166 7.70 h ε + β+ 7.3E+02
72 Hf 170 16.01 h ε 7.6E+02
73 Ta 183 5.1 d β− 7.8E+02
71 Lu 169 34.06 h ε + β+ 8.0E+02
70 Yb 169 32.01 d ε 9.3E+02
71 Lu 170 2.00 d ε + β+ 9.4E+02
73 Ta 173 3.65 h ε + β+ 9.5E+02
71 Lu 171 8.22 d ε + β+ 1.1E+03
73 Ta 174 1.2 h ε + β+ 1.1E+03
72 Hf 173 24.0 h ε + β+ 1.2E+03
74 W 177 135 m ε + β+ 1.2E+03
73 Ta 175 10.5 h ε + β+ 1.3E+03
72 Hf 175 70 d ε 1.5E+03
73 Ta 176 8.08 h ε + β+ 1.6E+03
74 W 178 21.7 d ε 2.0E+03
74 W 181 121.2 d ε 5.7E+03
74 W 185 75.1 d β− 1.6E+04
74 W 187 23.9 h β− 3.4E+04

Gadolinium-148 is a radionuclide created from the spallation of tungsten and other heavy

elements. Allowable isotopic inventories in the target are particularly low for this isotope
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Figure 2: LANSCE accelerator complex, indicating the location of Target 4 at WNR and
the 1L Target at the Lujan Center

(8.2x10−2 Ci for Category-3 threshold) because it is an alpha-particle emitter with a 75-year

half-life. When α-particle emitters are inhaled, the emitted α particles deposit all of their

energy locally, and, because of their high linear energy transfer have ten to twenty times the

dose equivalent as β- and γ-rays depositing the same amount of energy. The activity level

of 148Gd is generally low, but it encompasses almost two-thirds of the total inhalation dose

burden in an accident scenario for the two tungsten targets at LANSCE based on present

yield estimates (Table 2) [3–5]. The total dose burden is defined as the sum of the acute

dose from submersion in the radioactive aerosol plus the committed dose due to inhalation

of the nuclides. From a hazard classification standpoint, this severely limits the irradiation

lifetime of these tungsten targets.

As 800-MeV protons pass through the tungsten target at WNR and the upper tungsten

target at the Lujan Center, the proton energy is degraded to 600 MeV upon exiting the

target. Since the facility classification is partly driven by the inventory of 148Gd, a better

estimate of the true production rate in tungsten targets is needed.
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Table 2: Committed Effective Dose Equivalent (CEDE) per Unit
Release at 960 m from the 1L Target [5]

nuclide CEDE at 960 m nuclide CEDE at 960 m
(Sv/Ci) (Sv/Ci)

64 Gd 148 3.20E-02 69 Tm 167 1.08E-06
72 Hf 172 1.12E-04 64 Gd 149 8.28E-07
73 Ta 182 1.54E-05 66 Dy 159 8.28E-07
53 I 126 1.54E-05 64 Gd 147 6.53E-07
53 I 131 1.13E-05 71 Lu 169 5.75E-07
53 I 125 8.28E-06 73 Ta 184 5.39E-07

64 Gd 146 8.12E-06 72 Hf 170 3.33E-07
71 Lu 173 8.12E-06 73 Ta 176 3.31E-07
53 I 124 7.33E-06 65 Tb 151 3.15E-07

72 Hf 181 5.75E-06 69 Tm 166 3.15E-07
64 Gd 153 3.33E-06 75 Re 181 3.14E-07
70 Yb 169 2.87E-06 74 W 185 2.47E-07
72 Hf 175 2.11E-06 74 W 187 2.44E-07
71 Lu 172 2.09E-06 73 Ta 175 2.17E-07
75 Re 184 1.89E-06 72 Hf 173 1.66E-07
73 Ta 183 1.89E-06 73 Ta 173 1.55E-07
63 Eu 146 1.54E-06 66 Dy 155 1.15E-07
63 Eu 147 1.15E-06 74 W 178 1.12E-07
71 Lu 170 1.12E-06 68 Er 161 1.10E-07
71 Lu 171 1.12E-06 74 W 177 9.44E-08
75 Re 182b 1.12E-06 73 Ta 174 6.14E-08
63 Eu 145 1.12E-06 66 Dy 157 5.80E-08
70 Yb 166 1.08E-06 74 W 181 5.75E-08
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From a basic nuclear physics standpoint, the ideal strategy would be to measure the

148Gd production cross sections individually for each tungsten isotope. However, obtaining

isotopically pure tungsten foils is costly. An alternative is to perform measurements with a

mono-isotopic element with an atomic number close to that of tungsten (Z=74). Tantalum

(Z=73), which is 99.988% 181Ta, provides a good alternative for testing the physics models

used to estimate spallation products at these energies. Furthermore, tantalum is used

as target cladding materials at the KENS (Japan) and ISIS (United Kingdom) spallation

neutron source facilities. These facilities operate at 500 MeV and 800 MeV, respectively.

By measuring production from Ta, nuclear physics models can be used in conjuction with

production cross section measurements from elemental W, to gain a better understanding

of production rates for individual W isotopes. Gold, another monoisotopic element (Z=79),

is also of interest to the Spallation Neutron Source project because of its proximity to

mercury (Z=80), the candidate target material, in the periodic table. Therefore, measuring

production from Ta and Au will help evaluate dose burdens at other spallation neutron

source facilities, as well as test the physics models used to estimate spallation products.
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CHAPTER II

BACKGROUND

“All models are wrong; some models are useful.” Vic Reis

2.1 Theoretical predictions

Because the accuracy of predicting the cumulative 148Gd production cross section by

the available physics models is unknown, the procedure approved by DOE regulators for

calculating the 148Gd inventory in the targets requires the predicted value be multiplied by

a factor of 1.5 in order to account for this uncertainty. The magnitude of this uncertainty

factor further limits the lifetime of the target. Two LANL physics codes used for calculating

nuclide production are MCNPX [6] and CEM2k+GEM2 [7, 8]. The three stages of spalla-

tion, the intranuclear cascade (INC), preequilibrium, and the fission/evaporation stage, all

contribute to nuclide production in these codes and experimentally. A description of each

code and their stages follows in the next sections.

2.1.1 MCNPX

MCNPX is a general purpose Monte Carlo radiation transport code that started as an

extension of MCNP and LAHET. Monte Carlo n-Particle (MCNP) code transports neu-

trons from 10−11 to 20 MeV, photons from 1 keV to 100 GeV, and electrons from 1 keV to

1 GeV. [9]. Los Alamos High Energy Transport (LAHET) is the LANL modification of the

HETC Monte Carlo code for transport and interaction of nucleons, pions, and muons, orig-

inally developed at Oak Ridge National Laboratory [10]. The LAHET portion of MCNPX

has generally been used above 20 MeV. With the extension of tabular neutron cross-section

data between 20 and 150 MeV for select nuclides of interest [11], the LAHET portion is now

used above 150 MeV where it is more reliable. Below 150 MeV, tabular cross section data

are used for neutron transport. For each feature in the portion of MCNPX above tabular
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regions, there are typically at least two different physics models to choose from. The nuclide

yields predicted by MCNPX depend on the physics models chosen to simulate high-energy

(>150 MeV) nucleon interaction. For this reason, this study focuses on the default physics

models of MCNPX: Bertini intranuclear cascade [12,13], the multi-stage preequilibrium exci-

ton model (MPM) [14], Dresner evaporation with Gilbert-Cameron-Cook-Ignatyuk (GCCI)

level density [15], and the Rutherford Appleton Laboratory (RAL) fission model [16].

The Bertini intranuclear cascade model describes the nucleon-nucleus interaction below

3.5 GeV and the pion-nucleon interaction below 2.5 GeV. Instead of tracking trajectories of

individual nucleons, Bertini uses approximations, but has proven to be applicable for most

design applications. The cascade model starts when an incident particle enters the nucleus

at a point uniformly selected over the projection area. The total particle-particle cross

sections and region-dependent nucleon densities are used to select a path length for the

projectile particle. The momentum of the struck nucleon, the type of reaction, momentum,

and scattering angle of the reaction product are then determined using statistical sampling.

The particle interactions considered include scattering, charge exchange scattering (for π-

nucleon reactions), production of π-mesons, and pion absorption. The cascade continues

until the energy of the excited nucleus is ∼7 to 10 MeV above the Fermi breakup energy,

a rather crude approximation. The Fermi breakup energy can be described in terms of the

Pauli exclusion principle, which forbids interactions where the collision products would be

in occupied states. For a Fermi gas, levels are filled starting from the lowest level. The

Fermi breakup energy is the minimum energy allowed for the low-energy product of a colli-

sion, which corresponds to the lowest unfilled level of the system. Below the Fermi energy,

particles are considered to be absorbed by the nucleus.

In the Bertini model, the density distribution inside the nucleus is described by three

concentric spheres (one central sphere and two surrounding spherical shells), each with uni-

form density of neutrons and protons. The radii of the spheres are determined by distances

at which the Fermi-type charge-distribution function reached various fractions of the central

density. As cascade particles crossed region boundaries, they gained or lost kinetic energy

in the amount in which the potential was more negative or less negative. Cascade particles
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move through the nucleus with velocity greater than the velocity with which a disturbance

is likely to be propagated. Most of the time, cascade particles pass through undisturbed

nuclear matter.

The MPM preequilibrium model is invoked at the end of the INC with an initial hole-

particle exchange, an excitation energy, and exciton number (sum of excited holes and pairs)

determined by the INC. If this exciton number is greater than the equilibrium exciton num-

ber, then the further emission of fragments are simulated. At each stage, the excited nucleus

may emit a neutron, proton, deuteron, triton, 3He, or alpha particle and does not allow

fission. The fragment kinetic energy, scattering angle (using isotropic angular distribution),

and momentum are sampled by Monte Carlo techniques. The characteristics of the residual

nucleus are then updated and the process repeats. The model ends when reaching the equi-

librium exciton number, at which point an evaporation or Fermi-breakup model is applied

to the residual nucleus with the remaining excitation energy.

In the Dresner evaporation model, energy is relieved by evaporation of n, p, d, t, 3He,

and α particles. The other option in the evaporation/fission stage is to use the Rutherford

Appleton Laboratory (RAL) fission model by Atchison. This model allows fission for Z ≥71

and has different routines for actinides (Z ≥89) and subactinides (71≤ Z ≤88). For the

actinide case, a fixed fission barrier of 6 MeV is used and the probability of fission is based

solely on the charge of fissioning the nucleus, not on its energy. These approximations are

based on experimental data. For subactinides, a statistical model is used with a probability

of fission based fission barrier energy. Fission barriers are determined as differences between

the saddle-point and ground state masses and are a function of A, Z, and excitation energies

of fissioning nuclei. Only when a neutron is chosen for evaporation in the Dresner model

is fission considered. Then, fission or evaporation is chosen according to the probability of

fission. The subactinide fission routine has been determined to suppress fission for some

subactinides at intermediate energies.

These physics models have been well accepted and used for many design applications in

projects such as the Spallation Neutron Source (SNS), European Spallation Source (ESS),

10



and the Japanese Spallation Neutron Source (JSNS). These default physics models in MC-

NPX will hereafter be referred to as “Bertini.”

2.1.2 CEM2k+GEM2

The Cascade Exciton Model (CEM) by Stepan Mashnik et al. has been merged with the

Generalized Evaporation Model (GEM) code [17] by Furihata to become the CEM2k+GEM2

model. CEM was developed to describe the yields of spallation products and spectra of sec-

ondary nucleons. The intranuclear cascade model is based on the Boltzmann equation with

two exceptions. The cascade particles and target-nucleus nucleons are considered as two dif-

ferent types of particles, and the collisions between particles of the same type are neglected.

At each step in the cascade, the type of interaction, momentum, and scattering angle are

decided by Monte Carlo techniques. Cascade particles are described by the equation of state

for an ideal gas. The nuclear radial density is described by the Fermi distribution with two

parameters taken from the analysis of electron-nucleus scattering. The nucleus is described

by seven concentric spheres of equal density [18]. The end of the INC cascade in CEM is de-

termined by a cutoff energy of 1 MeV above the Fermi breakup energy for incident energies

above 150 MeV. The excited residual nucleus at the end of the INC determines the particle-

hole configuration in the preequilibrium model, modified excition model (MEM) [19]. This

preequilibrium model works similarly to MPM except that the equilibrium exciton number

(sum of excited particles and holes) is determined by the probability of increasing energy

equalling the probability of decreasing energy. The MPM only considers increasing energy.

The level density model used is essentially the Ignatyuk model [20] modified by Sierk and

Mashnik [21]. CEM2k also includes real binding energies, whereas Bertini uses 7 MeV.

Subsequent evaporation and fission takes place in GEM2. The GEM model is an exten-

sion and modification by Furihata of the evaporation and fission models used in MCNPX.

One of the extensions includes the evaporation of up to 66 types of particles and fragments,

compared to the six that are allowed in MCNPX, which increases the run time. The 66

types include naturally existing isotopes or isotopes close to the line of stability, with Z≤12,
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and half-lives longer than 1 ms. The subactinide fission model is the same as that of Atchi-

son. The actinide model was updated from the Atchison model with newer experimental

fission-fragment mass distributions, charge distributions, and kinetic energy distributions.

The GEM2 model was modified slightly for use with CEM2k by adjusting the level density

parameter to yield the proper fission cross section. At the present time, some production re-

actions at the borders between fission and fragmentation or between fission and emission of

heavy fragments like Na or Mg are poorly described. Otherwise CEM2k+GEM2 describes

reasonably well many spallation, fission, and fragmentation reactions.

The independent production cross sections as a function of mass number for Bertini

and CEM2k+GEM2 for 800-MeV protons interacting with tungsten are compared in Fig-

ure 3. There are two distinct humps, one for production by spallation without fission

for higher masses and charge, and another for nuclide production by spallation followed

by fission for lower masses and charge. In both mass and charge curves, 148Gd does not

have a significant contribution from fission and is produced by evaporation. In general,

CEM2k+GEM2 has higher predictions for production than CEM2k+GEM2, with Bertini

predicting higher yields only in the transition region from evaporation to fission. At the

lower end of the curves, CEM2k+GEM2 predicts higher production cross sections for Z≤10

and A≤20 because the GEM2 evaporation/fission model includes up to 66 types of particles

and fragments, compared to the six in Bertini.

2.2 Previous measurements

The 148Gd inventory in a thick target is difficult to deduce because 148Gd decays only

by alpha-particle emission with no associated gamma-ray emission. To date, only one

measurement of the number of 148Gd atoms produced in tungsten has been made. A ra-

diochemistry analysis, done as part of the APT Project decay heat experiment, measured

the number of 148Gd atoms in the center of three tungsten foils irradiated with 800-MeV

protons [22,23]. Assuming that the isotope is only produced within the beam spot, a cumu-

lative cross section of 16.40±0.41 mb can be inferred from this measurement. Cumulative
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(a)

(b)

Figure 3: Production cross section curves of 800 MeV p + W for Bertini and
CEM2k+GEM2 as a function of (a) mass and (b) charge.
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yields include production from the decay of radioactive parents. Appendix A shows the de-

cay scheme feeding 148Gd with all the modes of decay and half-lives. A current theoretical

estimate by CEM2k+GEM2 for cumulative production from tungsten is 41.38±0.39 mb at

800 MeV and 21.63±0.28 mb at 600 MeV. The Bertini model yields 20.87±1.59 mb at 800

MeV and 10.92±0.16 at 600 MeV for cumulative production from tungsten. A compari-

son of independent and cumulative production yields from CEM2k+GEM2, Bertini, and

the APT measurement can be found in Figure 4. This figure shows that the independent

148Gd production contribution is only 5 to 15% of the cumulative 148Gd production for

CEM2k+GEM2, whereas Bertini indicates that this contribution is 30 to 45%. The dom-

inant factor between the cumulative 148Gd production cross sections is the difference in

152Er production (Table 3). Figure 5 shows the independent production cross sections as

a function of product mass and Z for Z=64 to 72. These rare earth curves indicate that

CEM2k+GEM2 typically predicts a higher cross section for the lower masses than Bertini

for a given Z, whereas Bertini predicts a higher cross section for the higher masses for a

given Z. These figures and tables demonstrate how different these two intranuclear cascade

models are in calculating production yields for the rare earth metals.

Several other measurements of spallation product yields exist for intermediate-energy

protons on W, Ta, and Au foils (Table 4) [24–33]. Previous measurements used gamma

spectroscopy, radiochemical analysis, or a fragment separator to determine independent

and cumulative spallation product yields. Bertini and CEM2k+GEM2 have been com-

pared with some of these measurements and are generally within a factor of two of the

measurement. For 800-MeV proton-irradiated 197Au, a comparison was made between

measurements at Gesellschaft fuer Schwerionenforschung (GSI) in Darmstadt, Germany;

Institute for Theoretical and Experimental Physics (ITEP) in Russia; and Zentrum fuer

Strahlenschutz und Radiooekologie Universitaet (ZSR) in Germany and the LAHET and

CEM2k simulations [34]. There is general agreement between the measured data with an

average mean squared deviation factor < F >= 1.5 [30]. However the agreement between

simulations was much worse. The average < F > for CEM2k compared with the three

measurements was 2.1, and for LAHET was 2.8. It is important to note that the paper did
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Figure 4: Calculated 148Gd production cross sections for W(p,x)148Gd by
CEM2k+GEM2, Bertini in MCNPX, and an inferred measurement from
APT [23]. Error bars are smaller than point ticks.
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Table 3: Comparison of independent radionuclide production cross sections used
in calculating the cumulative 148Gd production cross sections from 800-MeV
protons incident on tungsten for Bertini and CEM2k.

% contribution Independent cross section (mb) Bertini/CEM2k
to cumulative Bertini CEM2k ratio

148Gd 100 9.26±1.58 4.65±0.14 1.99
148Tb 100 5.59±0.13 6.98±0.17 0.80
148Dy 100 3.28±0.10 12.9±0.2 0.25
148Ho 100 0.003±0.003 0.812±0.058 0.003
152Dy 0.1 13.9±0.19 8.17±0.18 1.71
152Ho 23.0 4.87±0.12 9.56±0.20 0.51
152Er 91.2 1.72±0.07 13.7±0.2 0.13
152Tm 91.2 0.003±0.003 0.428±0.042 0.006
156Tm 0.007 3.08±0.09 7.07±0.17 0.44
156Yb 9.13 0.455±0.035 9.52±0.20 0.048
156Lu 86.6 0.000±0.000 0.093±0.019 0.00
160Hf 0.064 0.011±0.005 1.11±0.07 0.010
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: Independent radionuclide production curves from 800 MeV protons incident on
tungsten for Z=64 to 72. Open blue squares represent CEM2k+GEM2 and red-filled circles
represent Bertini.
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not state which LAHET physics models were used, clouding the meaning of the LAHET

comparison. Another simulation/measurement comparison paper by Mashnik et al. [35]

found that in general the simulations were reasonable for most of the nuclides in the spal-

lation region not far from the target nuclide. The predictive power in the low fission region

is worse.

Table 4: Number of previous measurements of spallation product
yields and their methods of analysis

Target Energy γ radiochemical fragment
Material (MeV) spectroscopy analysis separator

Tungsten 500 1
800 2 1

500 1
Tantalum 660 1

800 1

500 1
550 1

Gold 580 1
660 1
760 1
800 1 2
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CHAPTER III

METHODS

“...there are known knowns; there are things we know we know. We also know
there are known unknowns; that is to say we know there are some things we do
not know. But there are also unknown unknowns - the ones we don’t know we
don’t know.” –Donald Rumsfeld

In order to accurately assess the production of 148Gd in a thick target within the inci-

dent proton range of 600 to 800 MeV, a series of thin or thick target experiments within

the energy range of interest must be performed. There are several methods by which 148Gd

production can be determined. One method is a thick target experiment, where a cylindri-

cal target similar to the ones at LANSCE is irradiated. The target would be cut into thin

slices to determine production within small proton energy intervals since the initial proton

energy is degraded as it passes through the target. The irradiated target would then be

destructively assayed to determine quantities of isotopes produced. By measuring the pro-

duction rate of 148Gd as a function of depth in a target, the amount of this isotope created

as a function of proton energy can be deduced. The primary drawback to this method is

contamination by high-energy secondary protons.

Another method is to irradiate thin foils at specific proton energies to obtain production

cross sections. Nuclear reaction models can then “tune” to more closely match the mea-

sured production cross section for an array of heavy metals (tungsten, tantalum, and gold).

Thin foil experiments allow foils of different materials to be irradiated at the same time.

Since the proton energy loss through each foil is negligible, all foils are essentially exposed

to a single proton energy. Not only do the foils need to be thin enough to have negligible

energy loss during irradiation, they also need to be thin enough for 148Gd decay alphas to

later escape and be detected. It was decided to use the thin foil method for measuring the

148Gd production cross section because it could help evaluate dose burdens at spallation

neutron source facilities, as well as provide the nuclear physics modeling community with
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cumulative cross sections for a nuclide with mass well below the target nucleus mass.

3.1 148Gd production cross section derivation

In order to measure the W(p,x )148Gd cross section, the 148Gd production rate in the

foil (R), the proton flux (φ), and number of W atoms (N) must be known:

Nσφ = R (1)

To determine the activity in the foil, one must first determine the activity at the end of the

irradiation. During the irradiation, assuming beam fluctuations are infrequent and small,

the rate of change in the number of 148Gd atoms (n) is

dn = R dt − λn dt (2)

Solving this equation for n(t) gives

n(t) =
R

λ

(
1 − e−λt

)
+ n0e

−λt (3)

where λ is the radionuclide decay constant. Since there is no 148Gd initially, n0 = 0 and

the activity becomes

Ai = λn(t = ti) = A (t = ti) = R
(
1 − e−λti

)
(4)

where ti is the irradiation time. For a counting time t1 > ti to t2 > t1, the cumulative alpha

emission is related to the alpha detection rate (C) by

C

ε
=

∫ t2

t1
Aie

−λtdt (5)

where ε is the overall detection efficiency. Integrating over the counting time, t1 to t2, gives

C

ε
=

Ai

λ

(
e−λt1 − e−λt2

)
(6)

Substituting Ai from equation (4) and rearranging the resulting equations yields

R =
Cλ

ε (1 − e−λti) (e−λt1 − e−λt2)
= Nσφ (7)
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In addition to relating the 148Gd activity to the 148Gd production cross section, this equation

can be used to determine the proton flux by using the known reaction cross section of

27Al(p,x )22Na.

φp =
1

NAl σNa

CNa λNa

εNa (1 − e−λNati) (e−λNat1 − e−λNat2)
(8)

This proton flux can in turn be used to determine a production cross section for W(p,x )148Gd.

σGd148 =
1

NW φp

CGd λGd

εGd (1 − e−λGdti) (e−λGdt1 − e−λGdt2)
(9)

3.2 22Na Activation

In order to determine the proton flux given in equation (8) of the previous section,

aluminum foils would be irradiated with the tungsten, tantalum, and gold foils. Protons

interact with aluminum to produce the 27Al(p,x )22Na reaction, where (p,x ) represents a

combination of any number of reactions from incident protons to produce the radionuclide.

The 22Na radionuclide produced emits a 1274 keV photon that can be counted with a γ-ray

detector.

Seven measurements of this reaction cross section exist for 800 MeV protons, and five

measurements for 600 MeV protons (Figure 6) [36–46]. The conclusion from surveying the

available experimental data is that Tobailem et al.’s measurement in 1981 at 600 MeV [38]

and George Morgan et al.’s recent measurement at 800 MeV [40] are the most reliable. These

cross section values, 16.0±1.1 mb and 14.3±0.4 mb, at 600 and 800 MeV, respectively, were

used in this analysis. The average of the cross section data at 800 MeV is 14.3±0.4 mb,

which is the value of George Morgan et al.’s measurement and the average cross section data

at 600 MeV is 15.9±0.8 mb, close to Tobailem et al.’s measurement. However, the other

600 and 800 MeV cross section data are not reliable for reasons such as how the absolute

proton flux measurement is done or variations of the cross section with respect to other

energies.
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Figure 6: Previous measurements for 22Na production cross sections at 600 and 800 MeV.
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3.3 Foil setup

Thin foil irradiation was chosen as the preferred method for measuring the 148Gd pro-

duction cross section from tungsten, tantalum, and gold. A foil stack to be irradiated would

consist of one aluminum foil, three tungsten, tantalum, or gold foils, followed by three alu-

minum foils. Stacks of three foils are used to investigate any possible loss of 148Gd and

22Na recoils in the material of interest. When determining the proton flux and production

cross section, only the middle foil in a stack is counted, assuming recoil from the first foil

balances the loss by recoil to the third foil.

Another method is to irradiate only one foil, sandwiched between two aluminum catcher

foils. In this case, the sum of 148Gd counted from the heavy metal foil and the two alu-

minum catcher foils would be used to determine the production cross section. This approach

is viable because 148Gd is not produced by spallation reactions in Al. The portion of 148Gd

recoiling forwards and backwards can be determined by this method.

All foils used in this work were made by Goodfellow Corporation and are 5 cm x 5 cm

with a tolerance in size of 2% (±1 mm). Descriptions of the foils can be found in Table 5.

Since the foils are thin, they can have pinholes in them and the theoretical density cannot

be used in determining the number of atoms (N) in the foil. Each foil was weighed and the

size was measured to obtain the average areal density in mg/cm2 (Table 6). Assuming the

foil has a uniform thickness over the area, N can be obtained from the weight of the foil.
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Table 5: Summary of foil information provided by Goodfellow Corporation

Thickness Purity Impurities Pinholes
Material (µm) (%) (wppm) present

Ca<20, Cu<20, Fe 20, Mg<10, Mo 150,
Tungsten 3.00±0.75 99.95 Ni<20, Pb<50, Si<50, Sn<30, Ti<20, yes

C 30, H 6, N 10, O 30

Al 5, Ca 2, Co 1, Cr 5, Cu 2, Fe 30,
Tantalum 3.00±0.75 99.9 Mg 5, Mn 2, Mo 100, Na 10, Nb<500, yes

Ni 3, Si 10, Sn 2, Ti 20, V

Ag 300, Al 1, B 1, Bi 2, Ca 4, Cd 4,
Gold 3.00±0.75 99.9 Cr 5, Cu 500, Fe 2, K 15, Mg 1, yes

Mn 1, Na 1, Ni 100, Pb 15, Pd 7

Aluminum 10.00±1.50 99.0 Cu<1000, Fe<7000, Mn<1000, no
Si<5000, Zn<1000
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Table 6: Measurements of the weight and size of each foil

foil weight area areal density thickness
(mg) (cm2) (mg/cm2) (µm)

Al1 63.3 26.01 2.43 9.01
Al2 63.0 26.01 2.42 8.97
Al3 62.7 26.01 2.41 8.93
Al4 62.9 26.01 2.42 8.96
Al5 62.4 25.50 2.45 9.06
Al6 62.5 26.01 2.40 8.90
Al7 62.8 26.01 2.41 8.94
Al8 61.8 25.50 2.42 8.98
Al9 62.5 26.01 2.40 8.90
Al10 63.1 26.01 2.43 8.99
Al11 62.0 25.76 2.41 8.92
Al12 62.4 26.01 2.40 8.89
Al13 62.3 25.76 2.42 8.96
Al14 62.8 26.01 2.41 8.94
Al15 62.1 25.50 2.44 9.02
Al16 63.1 26.01 2.43 8.99
Al17 61.3 25.50 2.40 8.90
Al18 63.4 26.01 2.44 9.03
Al19 62.3 26.01 2.40 8.87
Al20 62.4 26.01 2.40 8.89
Al21 64.7 25.00 2.59 9.59
Al22 65.7 25.50 2.58 9.54
Al23 65.3 25.50 2.56 9.48
Al24 66.4 26.01 2.55 9.46
Al25 66.0 25.50 2.59 9.59
Al26 66.9 26.01 2.57 9.53
Al27 65.7 26.01 2.53 9.36
Al28 65.3 25.00 2.61 9.67
Al29 65.0 25.00 2.60 9.63
Al30 66.4 25.75 2.58 9.55
Al31 66.4 25.75 2.58 9.55
Al32 70.5 27.04 2.61 9.66
Al33 66.1 26.00 2.54 9.42
Al34 62.3 25.00 2.49 9.23
Al35 65.7 26.00 2.53 9.36
Al36 68.6 27.04 2.54 9.40

Ta1 113.2 25.00 4.53 2.73
Ta2 127.0 25.25 5.03 3.03
Ta3 123.5 25.25 4.89 2.95
Ta4 121.9 25.50 4.78 2.88
Ta5 121.4 25.50 4.76 2.87
Ta6 117.7 25.50 4.62 2.78
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(Table 5 continued)

foil weight area areal density thickness
(mg) (cm2) (mg/cm2) (µm)

Ta7 123.8 25.00 4.95 2.98
Ta8 120.0 25.00 4.80 2.89

W1 172.5 25.00 6.90 3.57
W2 176.2 25.50 6.91 3.58
W3 172.6 25.50 6.77 3.51
W4 194.8 26.01 7.49 3.88
W5 163.8 25.50 6.42 3.33
W6 167.1 25.50 6.55 3.39
W7 177.0 25.50 6.94 3.60
W8 144.5 25.00 5.78 2.99

Au1 164.6 26.01 6.33 3.28
Au2 154.2 25.50 6.05 3.13
Au3 160.7 25.00 6.43 3.33
Au4 154.5 25.25 6.12 3.17
Au5 141.4 25.50 5.55 2.87
Au6 138.1 25.25 5.47 2.83
Au7 150.1 25.25 5.94 3.08
Au8 149.1 25.25 5.90 3.06

Each foil was sandwiched between two aluminum frames for ease of handling, with an

exposed area of 4 cm x 4.4 cm. Aluminum was chosen for the frame material because it is

a low Z material and if activated, would not produce radionuclides above Z=15, resulting

in no 148Gd production. Foils would then be assembled together and irradiated with 600-

or 800-MeV protons.

3.4 Detection

After irradiation, the foils are counted by α and γ spectroscopy. The charged-particle

spectroscopy system is used to detect the 3.18-MeV α decay from 148Gd. The γ spectroscopy

system is used to detect the 22Na (1274-keV line) to determine the proton flux, as well as

detect other γ-emitting radioisotopes that have been produced in the tungsten, tantalum,

and gold foils.
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3.4.1 Charged-particle spectroscopy

The charged-particle spectroscopy system includes a silicon semiconductor diode de-

tector. When a charged particle passes through a semiconductor, electron-hole pairs are

produced along the track of the particle. With an applied field, the electrons created on

the conduction band and holes created on the valence band move in opposite directions.

The charges are collected at either boundary of the semiconductor with blocking electrodes.

At the junction between the two bands, there is repulsion of majority carriers (electrons in

n-type and holes in p-type) so that a depleted region exists, which is the sensitive detector

volume. A reverse bias voltage can be applied in the depleted region to widen the band until

the point of voltage breakdown. This extends the volume over which radiation-produced

charge carriers can be collected. The semiconductor material in this case is a thin strip of

silicon implanted in the detector. A summary of the detector properties can be found in

Table 7 [48,49] and a list of the electronics used can be found in Table 9. The detector and

sample are placed in rough vacuum (∼1 torr) since 3.2-MeV α particles can only travel ∼2

cm in air (Figure 7).

Table 7: Properties of ORTEC charged-particle detectors

ULTRA ULTRA-AS
U-014-050-100 U-019-300-AS

Active area (mm2) 50 300

Range of active thickness (µm) 100-500 100

Implanted boron– Implanted boron–
Diode structure N-type Si implanted N-type Si implanted

As partial depletion As partial depletion

Resolution (keV FWHM) 14 19
for 241Am at 5.486 MeV

The overall efficiency of the detector system was determined by using calibrated 148Gd

and 241Am sources. Efficiency is a factor of geometry, distance, solid angle, intrinsic detector

efficiency (virtually 100% for α particles in Si), electronics, and quality of vacuum. The
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Figure 7: Schematic diagram of the charged-particle spectroscopy system

efficiency curve was essentially linear with respect to energy for the charged-particle system

and depended heavily on the distance and solid angle from the sample to the detector.

Gadolinium decays by a single 3.18-MeV α emission. The range of a 3.18-MeV α particle

in tungsten (19.3 g/cm3) is 4.76 µm, according to SRIM [47]. In order to count all of the

148Gd α particles in a foil, the thickness had to be less than this value. Figure 8 shows

the stopping power of an alpha particle in tungsten, gold, tantalum, and aluminum. The

thinnest foil that could be manufactured without using permanent mylar support backing

was 3 µm for tungsten and therefore this thickness was chosen for all three materials. The

energy loss of the 148Gd α particle passing through 3 µm of tungsten is 1.7 MeV. In counting,

one expects to see a broad peak ranging from ∼1.5 to 3.18 MeV for tungsten and gold, since

they have the same density. In the counting of tantalum foils, however, a broad peak from

∼1.8 to 3.18 MeV should occur, because of its different density. The 148Gd α peak should

be almost level over the energy range, since the stopping power is relatively linear over this

range (Figure 8). The aluminum foil thickness (10 µm) was chosen to be thicker and less

fragile than the heavy metal foil, since α particles can travel much further in aluminum.

A wide energy range of beta particles from various radionuclides are also emitted from

the foils and will deposit energy in the detector. Only low energy electrons will deposit

all of their energy. Higher energy electrons will deposit only a portion of their energy.
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Figure 8: SRIM calculation of the energy loss of an alpha particle
through tungsten, gold, tantalum, and aluminum

However, sharp peaks in the beta spectrum can be observed since some electron paths will

lie completely in the depleted region of the detector. This complicates the alpha counting

since the lower energy portion of the alpha peak is superimposed on a beta background.

There are several ways to solve this problem. One method is to place a sufficiently thick

aluminum foil in front of the irradiated foil to block all alphas from reaching the detector.

The beta spectrum can then be subtracted from the combined alpha/beta spectrum to

produce a clean alpha peak. A second method would be to sweep away the betas instead

of the alphas by placing a magnet around the foil or detector, taking care not to block the

view of alphas reaching the detector.

In addition to charged-particles, the foils will also emit γ-rays, which can be detected by

the semiconductor detector. Like the electrons, only low energy photons will deposit all of

their energy in the detector. To determine the γ portion of the spectrum, sufficiently thick

aluminum is placed in front of the detector to block all alphas and betas from reaching the

detector. The γ portion of the spectrum would then have to be corrected for attenuation

through the aluminum.
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3.4.2 Gamma spectroscopy

A high-purity Ge (HPGe) detector system inside a copper-lined, lead-brick housing is

used to detect γ rays. The Ge detector is also a semiconductor and behaves in the same

way as the silicon detector regarding charge collection. However, γ spectroscopy behaves

in an extremely different manner than charged-particle spectroscopy. In the Si detector, α

particles deposit all of their energy so that intrinsic efficiency is near 100%. In the HPGe

detector, γ rays can have many different types of interactions and may not deposit all of

their energy in the detector, making intrinsic efficiency range from 10 to 100%, depending

on the detector. Photoelectric effect, Compton scattering, and pair production cause single

escape, double escape, bremsstrahlung, and backscatter peaks along with the full energy

peak. When the foils are activated, there are literally hundreds of full-energy peaks in the

spectrum, so that care must be taken to consider all the different types of peaks when

analyzing spectra. The specifications of the HPGe detector used are found in Table 8 [50].

The electronic setup of the Ge detector system is the same as the Si detector system in

Figure 7 except that the counting is not done in vacuum and the preamp is built onto the

end of the detector. A complete list of the electronics used can be found in Table 9. To

reduce background, a lead crypt was built around the detector and foil counting area and

lined with copper sheet to reduce the x-ray fluorescence radiation energy from lead x rays.

This reduced the background by several orders of magnitude.

Table 8: Properties of ORTEC GAMMA-X HPGe coaxial de-
tector for a 60Co source

GMX-20195-P
Relative photopeak efficiency (%) 20

Resolution at 5.9 keV (eV FWHM) 650

Resolution at 1.33 MeV (keV FWHM) 1.90

Peak to Compton ratio 40:1
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The γ-spectroscopy system was used not only for measuring 22Na, but also for measur-

ing other radionuclide production cross sections. Hundreds of peaks below 1600 keV were

found with an 8192 channel multichannel analyzer. Pulse-height spectrum analyses were

performed by PCGAP, a software program by Killian and Hartwell at INEEL [52]. PCGAP

provided detector efficiency curve fitting, energy calibration, and photopeak identification

and fitting techniques. A library of radioisotopes (see Appendix B) was made for PCGAP

to identify peaks. Once PCGAP found photopeaks in a spectrum, they were fitted to a

Gaussian shape to determine areas, centroids, widths, and their uncertainties. The fitting

procedure is an iterative method that minimizes the sum of the squares of the deviations

of data from a Gaussian form. For those peaks that could not be fit with this nonlinear

technique, a linear least squares algorithm was used. This algorithm assumes that the

photopeak is Gaussian and has a linear background. The Gaussian height and coefficients

of a linear spectral background line are determined from the fit. Energy calibration and

photopeak width were determined automatically by the program using a 152Eu calibration

spectrum. PCGAP located five of the fourteen photopeak lines (121.8, 344.3, 778.9, 1112.1,

and 1408.0 keV) in the spectrum, performed a least squares fit of the centroids and photo-

peak energies to get a second order polynomial energy scale. The widths and centroids were

fit with a first order polynomial to determine the coefficients of the FWHM versus channel

function. All of the 152Eu energy lines and intensities are listed in Appendix Table B.1.

The overall efficiency of the HPGe detector system was measured using a calibrated

152Eu source (Figure 9) with and without attenuator plates at a distance of 19.5 inches. A

stack of aluminum attenuator plates were used so that foils could be counted shortly after

irradiation when the count rate was high. In the case of Ge detector systems, the efficiency

curve is not linear over the energy range of interest (10-1600 keV). Up to ∼40 keV, the

interaction efficiency is dominated by the attenuation of photons by materials outside the

detector and by any dead layers on the detector edge. Up to 200 keV, virtually all incident

photons are detected. Above this energy, the interaction efficiency falls off with the total

absorption cross section of Ge, which is dominated by the fall-off in the photoelectric cross

section [51].
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Figure 9: Overall efficiency for the HPGe detector, with and without
attenuator plates

Table 9: Electronics for the detector systems
γ-ray α-1 α-2

High Voltage ORTEC 459 ORTEC 556 Tennelec 953

CSTA1 from Institut
Preamplifier (with detector) fur Kernphysik ORTEC 142

T. H. Darmstadt

Amplifier ORTEC 672 ORTEC 571 ORTEC 571

ADC Amptek MCA8000 ORTEC ORTEC
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CHAPTER IV

EXPERIMENTS

“Why think? Why not try the experiment?” John Hunter

A series of foil irradiations with 600- and 800-MeV protons were performed in the Blue

Room at WNR (Figures 2 and 10). Anticipated beam spot sizes were 1 cm in diameter,

so each foil had to be sufficiently large, 4 cm x 4.4 cm inside the frame, to subtend all of

the proton beam. Framed foils were stacked together and mounted on a larger frame that

centered the foils inside the vacuum chamber where they were to be irradiated. The vacuum

chamber was located at the back of the Blue Room, upstream of the last steering magnet

(Dorothy J) for Target 4.

To aid in positioning and shaping the beam spot, a phosphor was mounted on a frame

and placed in the vacuum chamber. The vacuum chamber was made so that the foils and

phosphor could be pushed in and out of the beam line, without having to break vacuum

(Figure 11). At the beginning of each experiment, the foils were placed out of beam while

operators tuned onto the phosphor at low current. The phosphor would glow where the

proton beam was hitting it, giving a good indication of the size and shape of the beam spot.

Once tuning was complete, the phosphor was pulled out of the beam line, and foils were

pushed in to the beam line.

After the irradiations, radiograph image plates were exposed to the β- and γ-rays emit-

ted from the foils to determine the exact location, size, and shape of the beam spot. The

imaging plate is comprised of a BaFBr:Eu2+ ionic crystals where the Ba is replaced with

Eu2+ to create a solid solution. During exposure to the irradiated foil, part of the Eu2+

ions become Eu3+ through x-ray ionization. These electrons are trapped into the Br ion

empty lattices of the lattice defects, and color centers of the metastable state are formed.

When the image plates are read by laser, the light absorbed by the color center is irradiated
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and the trapped electrons are liberated again into the conduction band. The light is then

collected and guided towards a photomultiplier tube to produce the image. Because of

parallax, a geometric distortion effect, the images detected on the image plate were slightly

larger than the actual profile. To determine the true profile of the beam, a gaussian profile

was assumed and the parallax was modeled in MCNPX with a gaussian source.

Figure 10: Blue room setup for foil irradiation at WNR. Protons enter from the left.

The irradiations took place in two modes, sole use and parasitic. Behind the Dorothy

J steering magnet is Target 4 at WNR, where neutrons are produced and scattered to dif-

ferent beamlines for experiments. When in sole use, Target 4 was used as a beam stop, not

for production of neutrons. In parasitic mode, the proton beam passed through the foils

and then on to Target 4 for neutron production. The energy loss through the foils was neg-

ligible (≤0.11 MeV) so all the foils saw essentially the same energy, with no proton energy
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Figure 11: Close up of vacuum box in WNR’s Blue Room.
The foil pack is out of beam and the phosphor is in the beam-
line. Protons enter from the right.

loss to Target 4. It was determined that as much as 30 mg/cm2 could be placed in the

beam without significantly degrading the neutron production from Target 4 downstream.

Because of the long distance to Target 4 and low probability of backscatter upstream, there

was essentially zero probability of neutrons from Target 4 interacting with the foils.

The first irradiation employed sole use of the LANSCE facility and took place July 5-7,

2002. The experiment required reducing the proton energy from a normal operating mode

of 800 MeV down to 600 MeV. The foil arrangement front to back was one aluminum, three

tungsten, one aluminum, three tantalum, one aluminum, three gold, and three aluminum

foils. The aluminum foils between the tungsten, tantalum, and gold foils were to prevent

cross-contamination between the three metals. The three aluminum foils at the back were

used to determine the proton flux. The proton energy degradation through this foil stack

(73 mg/cm2) was negligible (0.11 MeV) so all the foils saw essentially the same proton

energy. The irradiation lasted for two days at 3 µA and activated the foils to >5 rem/hr

on contact (Figures 12a, 13a, 14a).

The second irradiation (August 8-9, 2002) ran in parasitic mode, where production of

neutrons from Target 4 played an important role. This experiment was scheduled during
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Target 4 neutron production, which was of higher priority. A phosphor aided in tuning

the beam to just right of center and small in size, but still tuned to Target 4. This 800-

MeV experiment irradiated in front-to-back order one aluminum, three tantalum, and three

aluminum foils (24 mg/cm2) for 17 hours at an average current of 2.4 µA. Problems with

vacuum and beam spill from our targets caused significant drops in current (from 4.0 µA to

1.5 µA) which reduced the number of neutrons produced from Target 4 and ultimately, the

end of the irradiation (Figure 12b). The foils read 600 mrem/hr on contact three days after

the irradiation. Radiographing the foils indicated that a small portion (∼5%) of the beam

had irradiated the edge of the aluminum frames, which caused the beam spill problems

(Figures 13b, 14b).

The third and fourth set of irradiations took place October 12-15, 2002 in parasitic mode

at 800 MeV. Tuning the beam to the foil stack and Target 4 required moving the beam from

the lower right hand corner of the frame towards the lower center of the foil. The first set

of foils irradiated were three gold foils and four aluminum foils (28 mg/cm2) for 32 hours.

Then, three tungsten and four aluminum foils (30 mg/cm2) were irradiated for 20 hours.

Both irradiations received an average current >4 µA, without any observed problems with

vacuum, beam spill, or significant interference to neutron production on Target 4 (Figure

12c). Both foil stacks read >5 rem/hr on contact two hours after beam shutdown. Radio-

graph images of the foils showed later that during the tungsten irradiation, the beam was

moved towards the lower right hand corner, where a small percentage of the beam hit the

frame (Figures 13c, 13d, 14c, 14d).

All of the previous irradiations employed the three-foil method. The final irradiation

took place January 13-15, 2003 with single foils in Blue Room sole use time, with no pro-

duction at Target 4. The foil stack was arranged front to back as follows: one aluminum,

one tungsten, two aluminum, one tungsten, two aluminum, one tantalum, two aluminum,

one tantalum, two aluminum, one gold, two aluminum, one gold, and three aluminum foils.

Two aluminum foils were placed in between each single foil to prevent cross-contamination

on the aluminum catcher foils. The beam spot was tuned right of center and oblong in

shape (Figures 13e, 14e) and the current was steady at 3 µA (Figure 12d). Six days after
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the irradiation, the foil packs read 2 rem/hr on contact.

(a) (b)

(c) (d)

Figure 12: Current monitor readings for the (a) 600-MeV irradiation of stacked W, Ta, Au,
(b) 800-MeV irradiation of stacked Ta, (c) 800-MeV irradiation of stacked Au and W, and
(d) 800-MeV irradiation of single W, Ta, and Au foils.

During the irradiations, monitors upstream of the Blue Room took current readings

every second. These current monitor readings (3% uncertainty) were compared with the

measured 22Na activation from the aluminum foils (7.7% uncertainty at 600 MeV and 4.1%

uncertainty at 800 MeV) in Table 10. The proton flux measured from 22Na activation was

within eight percent of the current monitor, generally on the higher side. The current mon-

itors were upstream of the Blue Room and a small percent of the proton beam could be

lost between the monitors and the foils. All of the aluminum foils on irradiated frames were

mounted onto unirradiated frames before 22Na counting was done to exclude 22Na produced
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(a) (b)

(c) (d)

(e)

Figure 13: Radiograph images in linear color map of the (a) 600-MeV irradiation of stacked
W, Ta, Au, (b) 800-MeV irradiation of stacked Ta, (c) 800-MeV irradiation of stacked Au,
(d) 800-MeV irradiation of stacked W, and (e) 800-MeV irradiation of single W, Ta, and
Au foils. Orientation shows top as beam up and right as beam right. The inside of the
frame is indicated by a rectangle.
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(a) (b)

(c) (d)

(e)

Figure 14: Relative beam profiles from radiograph images and fits of the (a) 600-MeV irradi-
ation of stacked W, Ta, Au, (b) 800-MeV irradiation of stacked Ta, (c) 800-MeV irradiation
of stacked Au, (d) 800-MeV irradiation of stacked W, and (e) 800-MeV irradiation of single
W, Ta, and Au foils. The x and y profiles show the interior of the frame from 0-4 cm and
0-4.4 cm, respectively.
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off the frames.

Table 10: Irradiations performed in the Blue Room at WNR during the 2002-2003 run
cycle. Each irradiation measured the proton flux with Al foils for 22Na activation and
current monitors upstream of Blue Room

Integrated φp (p/s) Ratio of
Metal Singles or Mode of Ep

22Na Current 22Na to
Foils Stacked Foils operation (MeV) Activation Monitor Monitor

W, Ta, Au stacks of 3 sole use 600 1.76 × 1013 1.63 × 1013 1.08±0.09
Ta stacks of 3 parasitic 800 1.42 × 1013 1.32 × 1013 1.08±0.05
Au stacks of 3 parasitic 800 2.38 × 1013 2.32 × 1013 1.03±0.05
W stacks of 3 parasitic 800 2.41 × 1013 2.48 × 1013 0.972±0.049

W, Ta, Au singles sole use 800 1.83 × 1013 1.72 × 1013 1.06±0.05
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CHAPTER V

CROSS SECTION MEASUREMENT RESULTS

“Results! Why man, I have gotten a lot of results. I know several thousand
things that won’t work.” -Thomas A. Edison

5.1 Uncertainty in the measurements

From equations (8) and (9) in chapter 3, the uncertainty (u) in the proton flux and cross

section can be given as

uφp
2 =

(
Aφp

εNa NAl σNa

)2
[
uCNa

2 + CNa
2

(
uεNa

2

εNa
2

+
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2
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)]
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2
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2

NW
2 +

uφp
2

φp
2

)]
(11)

where

Aφp =
λNa

(1 − e−λNati) (e−λNat1 − e−λNat2)

AσGd
=

λGd

(1 − e−λGdti) (e−λGdt1 − e−λGdt2)
.

Goodfellow Corporation reported a nominal uncertainty of 25% in the thickness of the

foils. Prior to the experiments each foil was weighed and the size was measured to determine

the areal density in mg/cm2. This lowered the uncertainty from ∼25% to a few percent,

assuming the thickness is uniform over foil. When the 148Gd production cross sections for

tungsten were first measured, there was a large variation between the experiments. This

raised some doubt that the tungsten foil thicknesses were uniform across the area of the foil,

resulting in 25% uncertainty again. Table 11 demonstrates how this uncertainty dominated

the uncertainty in the cross section.

To reduce the uncertainty in the areal density of the foils, x-ray fluorescence (XRF) was

used to map out the relative thickness pixel-by-pixel over the area of the irradiated foils.

The micro-XRF instrument used a polychromatic Mo x-ray source to produce a shower of
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Table 11: Sources of error in 148Gd production cross section at 600 and 800
MeV prior to improving the areal density uncertainty

Uncertainty (%)
600 MeV 800 MeV

Individual Total Individual Total
Proton flux 7.7 4.1

-Ge detector efficiency (1.9) (1.9)
-Areal density of Al (2.8) (2.8)
-22Na cross section (6.9) (2.4)
-22Na counting statistics (0.3) (0.3)

Si detector efficiency 2.0 2.0
Areal density of W, Ta, Au 25.0 25.0
148Gd counting statistics 0.5 0.5
148Gd production cross section 26.2 25.4

bremsstrahlung in a ∼300 µm spot size [54]. The foil was placed in between the source and

detector, which detected the Lα x-ray for the material. The Lα energies were 8.4 keV for

W, 8.1 keV for Ta, and 9.7 keV for Au. The more counts the detector collected, the thicker

the foil. One second counts were taken for each pixel over a 128x128 pixel array. The color

map given by the instrument software was then converted to a numerical array that was

scaled to the maximum number (Figure 15). This XRF analysis was performed for three

tungsten foils (the middle foils from the 600- and 800-MeV stacked foil irradiations and one

from the single foil irradiation) and one tantalum and gold foil, both from the single foil

irradiation. It was clear that there was some loss of tungsten within the beam spot, but

not so much for the tantalum and gold. During the irradiations, some of the tungsten must

have sputtered off. The effect is less for the stacked foil irradiations, meaning that what

was lost from this foil was offset by the surrounding foils sputtering onto it.

As can be seen from Figure 15, the analysis had noisy data. To smooth this out, each

point in the 105x118 array inside the frame was averaged over a 5x5 array. This reduced the

uncertainty in the XRF analysis to ∼1.5% for each foil. The array was then normalized by

the average areal density in mg/cm2, measured by weight and size prior to the irradiations

and weighted by the flux profile array obtained from the image plates by

< ρA >=

∫
y

∫
x φ(x, y)ρA(x, y) dx dy∫

y

∫
x φ(x, y) dx dy

. (12)
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(a) (b)

(c) (d)

(e)

Figure 15: Relative thickness maps of (a) 800-MeV single foil irradiation of Au7 (b) 800-
MeV single foil irradiation of Ta7 (c) 800-MeV single foil irradiation of W4 (d) 800-MeV
stacked foil irradiation of W7 and (e) 600-MeV stacked foil irradiation of W1.
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By weighting the thickness maps by the flux profile, the areal density decreased by

two percent, at most (Table 12). This change in areal density increased the cross section

measurements by only two percent but decreased the uncertainty in the cross section from

26% to 11% at 600 MeV and from 25% to 6% at 800 MeV, with the uncertainty now being

dominated by the uncertainty in the proton flux (Table 13).

Table 12: Change in the areal density and its uncertainty by XRF analysis

areal density (mg/cm2)
foil irradiation prior to XRF after XRF % change
W1 600 stacked 6.900±1.725 6.891±0.529 -0.14%
W7 800 stacked 6.941±1.735 6.806±0.283 -1.99%
W4 800 single 7.489±1.872 7.327±0.303 -2.21%
Ta7 800 single 4.952±1.238 4.908±0.203 -0.89%
Au7 800 single 5.945±1.486 5.889±0.244 -0.95%

Table 13: Sources of error in 148Gd production cross section at 600 and 800
MeV after improving the areal density uncertainty with XRF

Uncertainty (%)
600 MeV 800 MeV

Individual Total Individual Total
Proton flux 7.7 4.1

-Ge detector efficiency (1.9) (1.9)
-Areal density of Al (2.8) (2.8)
-22Na cross section (6.9) (2.4)
-22Na counting statistics (0.3) (0.3)

Si detector efficiency 2.0 2.0
Areal density of W, Ta, Au 7.7 4.1
148Gd counting statistics 0.5 0.5
148Gd production cross section 11.1 6.2

5.2 148Gd production cross section

Two alpha counting chambers were used to count the charged particle spectra. Each of

the tantalum and tungsten foils were counted over a two-to five-day period, and the gold

foils were counted for a week to two weeks due to the low count rate. One of the gold
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foils from the 800-MeV single foil irradiation, Au5, was not analyzed because it had a large

puncture hole in it made before the irradiation. Placing it in the alpha chamber under

vacuum might have damaged the foil further and contaminated the chamber.

For the stacked foils, only the middle foils were analyzed; whereas, the single foils plus

the aluminum catcher foils had to be analyzed. The low-energy end of the 148Gd plateau is

easy to distinguish from the β + γ spectrum for the tantalum foils, because of its density.

However, the end of the 148Gd plateau for the tungsten and gold foils was not separate in

energy with the β + γ curve. To determine the end of the 148Gd plateau, the β + γ curve

was subtracted from the α+β + γ curve. All Al catcher foil spectra and β + γ spectra were

normalized to the counting times of the α + β + γ spectra.

The alpha chamber setup was modeled in MCNPX with a 3.18-MeV α source evenly

distributed over the beam profile and thickness of each foil. An F8 pulse height tally detected

the number of times α’s deposited energy in a silicon detector with a brass collimator in a

given number of energy bins. In other words, the F8 tally calculates the efficiency of the

detector system. These curves are then normalized to a point in the measurement plateau

and scaled with the actual measurement. All of the charged particle spectra and MCNPX

fits can be seen in Figures 16-26. The MCNPX calculations show the low-energy end of

the 148Gd α plateau as higher in energy by several hundred keV than the measurement.

This difference can be due to non-uniformity in the foil and that the foils are not perfectly

flat. Some α’s may have penetrated through more thickness than the actual foil thickness,

leaving the α particles with less energy than expected. The low energy end of the plateau

predicted by MCNPX agrees well within 100 keV of that predicted by SRIM.

From the 800-MeV single foil irradiation, the distribution of the recoils were determined

(Table 14). Recoils on the aluminum catcher foils comprised only 10% of the total counts,

with the forward recoils contributing 90-95% to the total recoils, as expected.
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Figure 16: Charged particle spectrum of W1 from the 600-MeV
stacked foil irradiation. Counting time was 2 days.

Figure 17: Charged particle spectrum of W7 from the 800-MeV
stacked foil irradiation. Counting time was 3 days.
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Figure 18: Charged particle spectrum of W4 and the surrounding Al
foils from the 800-MeV single foil irradiation. Counting time was 5
days.

Figure 19: Charged particle spectrum of W8 and the surrounding Al
foils from the 800-MeV single foil irradiation. Counting time was 3
days.
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Figure 20: Charged particle spectrum of Ta2 from the 600-MeV
stacked foil irradiation. Counting time was 5 days.

Figure 21: Charged particle spectrum of Ta5 from the 800-MeV
stacked foil irradiation. Counting time was 2 days.
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Figure 22: Charged particle spectrum of Ta7 and the surrounding Al
foils from the 800-MeV single foil irradiation. Counting time was 3
days.

Figure 23: Charged particle spectrum of Ta8 and the surrounding Al
foils from the 800-MeV single foil irradiation. Counting time was 4
days.
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Figure 24: Charged particle spectrum of Au2 from the 600-MeV
stacked foil irradiation. Counting time was 13 days.

Figure 25: Charged particle spectrum of Au6 from the 800-MeV
stacked foil irradiation. Counting time was 6 days.
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Figure 26: Charged particle spectrum of Au7 and the surrounding
Al foils from the 800-MeV single foil irradiation. Counting time was
7 days.

Table 14: The 148Gd α count rate for each middle and catcher foils. Uncertainty
in the count rates were less than 1%.

count rate (cps)
middle foil front Al back Al total

Ta2 600 MeV stacked 0.159 0.159
Ta5 stacked 0.097 0.097
Ta7 800 MeV single 0.283 0.001 0.025 0.309
Ta8 single 0.256 0.005 0.053 0.313

W1 600 MeV stacked 0.118 0.118
W7 stacked 0.212 0.212
W4 800 MeV single 0.276 0.001 0.019 0.297
W8 single 0.248 0.001 0.019 0.268

Au2 600 MeV stacked 0.007 0.007
Au5 800 MeV stacked 0.043 0.043
Au7 single 0.040 0.001 0.005 0.046
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To determine the 148Gd production cross section, the constant variables in each calcu-

lation were the detector efficiency (8.12×10−4) and the half-life of 148Gd (74.6 y). All other

variables depended on the irradiation time and current, the mass of the foil, and the counts

under the alpha plateau. Tables 15-17 list these variables for each foil analyzed.

Table 15: The 148Gd production cross section for tantalum

Ta2 Ta5 Ta7 Ta8
600 MeV 800 MeV 800 MeV 800 MeV
stacked stacked single single

flux (p/cm2s) 9.98×1011 7.94×1011 1.04×1012 1.04×1012

N (at) 2.95×1020 2.80×1020 2.88×1020 2.82×1020

ti (s) 149577 62005 156929 156929
t1 (s) 7674297 8113405 10554089 10899329
t2 (s) 8113343 8287618 10813528 11236541
counts 70094 16918 80125 105448
148Gd prod σ (mb) 15.2±4.0 29.7±7.6 27.6±1.7 28.6±7.3

Table 16: The 148Gd production cross section for tungsten

W1 W7 W4 W8
600 MeV 800 MeV 800 MeV 800 MeV
stacked stacked single single

flux (p/cm2s) 9.98×1011 1.37×1012 1.04×1012 1.04×1012

N (at) 3.99×1020 3.93×1020 4.23×1020 3.34×1020

ti (s) 149577 85256 156929 156929
t1 (s) 11219577 16680600 5715329 9080129
t2 (s) 11387097 16955970 6132414 9350379
counts 19792 58371 123673 72523
148Gd prod σ (mb) 8.31±0.92 19.5±1.2 18.0±1.1 20.7±5.3
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Table 17: The 148Gd production cross section for gold

Au2 Au6 Au7
600 MeV 800 MeV 800 MeV
stacked stacked single

flux (p/s) 9.98×1011 1.35×1012 1.04×1012

N (at) 3.26×1020 2.95×1020 3.18×1020

ti (s) 149577 117683 156929
t1 (s) 11823477 5381100 12171929
t2 (s) 12928599 5899841 12795193
counts 7591 22412 27059
148Gd prod σ (mb) 0.591±0.155 3.86±0.98 3.52±0.22

The 148Gd production cross section measurements were not only calculated for the en-

tire thickness of the foil, but also as a function of depth in the foil. By using the energy

loss curve for alpha’s through a material in Figure 8 and knowing the thickness of the

material, the alpha energy at a particular depth could be determined. For each foil, the

counts in each spectrum were summed from a particular energy (1.5, 1.75, 2.0, 2.25, 2.5,

or 2.75 MeV) to 3.18 MeV and scaled by the percent depth to determine the cross section

at that depth (Tables 18-20). The counts as a function of depth for the aluminum foils

behind the single foils were also included. In general, the cross sections as a function of

depth agree well within the uncertainty of the cross sections measured for the entire plateau.
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Table 18: The 148Gd production cross section as a function
of depth for tantalum

148Gd production cross section (mb)
range of Ta2 Ta5 Ta7 Ta8
counts 600 MeV 800 MeV 800 MeV 800 MeV
(MeV) stacked stacked single single

E>2.75 MeV 15.2 30.2 28.2 37.2
E>2.50 MeV 15.1 30.5 27.8 34.2
E>2.25 MeV 15.1 30.3 27.2 32.0
E>2.00 MeV 15.1 30.2 26.9 31.0
E>1.75 MeV 15.1 30.0 26.7 30.3
E>1.50 MeV 14.9 28.6 26.3 28.4
entire plateau 15.2±4.0 29.7±7.6 27.6±1.7 28.6±7.3

Table 19: The 148Gd production cross section as a function
of depth for tungsten

148Gd production cross section (mb)
range of W1 W7 W4 W8
counts 600 MeV 800 MeV 800 MeV 800 MeV
(MeV) stacked stacked single single
E>2.75 9.12 21.3 18.2 20.4
E>2.50 9.28 21.1 18.9 20.3
E>2.25 9.29 21.0 19.2 20.1
E>2.00 9.31 21.0 19.4 20.2
E>1.75 9.33 20.9 19.5 20.1
E>1.50 9.23 20.7 19.5 19.8

entire plateau 8.31±0.92 19.5±1.2 18.0±1.1 20.7±5.3
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Table 20: The 148Gd production cross section as a func-
tion of depth for gold

148Gd production cross section (mb)
range of Au2 Au6 Au7
counts 600 MeV 800 MeV 800 MeV
(MeV) stacked stacked single
E>2.75 0.592 3.57 3.60
E>2.50 0.600 3.55 3.59
E>2.25 0.596 3.57 3.57
E>2.00 0.599 3.54 3.52
E>1.75 0.588 3.55 3.49
E>1.50 0.591 3.54 3.46

entire plateau 0.591±0.155 3.86±0.98 3.52±0.22

The 148Gd production cross section measurements compared well with both previous

measurements and theoretical estimates (Table 21). The production cross sections measured

at 600 MeV were 15.2±4.0, 8.31±0.92, and 0.591±0.155 for Ta, W, and Au, respectively.

The average production cross sections measured at 800 MeV were 28.6±3.5, 19.4±1.8, and

3.69±0.50 for Ta, W, and Au, respectively. The average measurement for W at 800 MeV was

18% higher than the previous measurement by Henry and the average for Au at 800 MeV

was 2% less than the previous measurement by Rejmund, et al. Theoretically, Bertini better

predicted the 148Gd production than CEM2k+GEM2. Bertini ranged from 2-25% of the Ta

and W measurements and 35-50% higher than the Au measurements. The CEM2k+GEM2

predictions were a factor of two to three higher than the measurements. The comparisons

for both Bertini and CEM2k+GEM2 were best for Ta and worst for Au. This was possibly

due in part to the fact that Ta is closer in nucleon number to Gd, compared to W and Au,

and therefore it is easier to predict 148Gd from the spallation of Ta.
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Table 21: Cumulative 148Gd production cross section measurements and comparisons to
theoretical predictions and previous measurements

148Gd cumulative production cross section (mb)
Energy Foil Current Previous Theoretical

Target (MeV) Setup Measurement Measurement CEM2k+GEM2 Bertini
600 stacked 15.2±4.0 29.4±0.2 15.5±0.2

Ta stacked 29.7±7.6
800 single 27.6±1.7 45.6±0.3 24.4±0.3

single 28.6±7.3

600 stacked 8.31±0.92 21.6±0.3 10.9±0.2
W stacked 19.5±1.2

800 single 18.0±1.1 16.4±0.8a 41.4±0.4 20.9±1.6
single 20.7±5.3

600 stacked 0.591±0.155 1.41±0.04 0.929±0.049
Au 800 stacked 3.86±0.98 3.74±0.19b 12.9±0.1 7.23±0.14

single 3.52±0.22

a [23] Henry et al. APT Internal Report, LLNL 1999.
b [29] Rejmund et al. Nucl Phy A683 2001 540-565.
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5.3 Other radionuclide production cross sections

Many other radionuclides are produced from the spallation of heavy metals and were

measured from the Ta, W, and Au foils. This section shows the results from counting with

the γ-ray detector system.

Because the foils were too radioactive to handle immediately after irradiation, radionu-

clides with half-lifes less than 8 days were not considered in the analysis. Radionuclides with

emission energies exclusively below 125 keV were also not considered. The 152Eu source

used to determine efficiency and energy calibrations of the system did not have a photon

emission below 125 keV. In addition, x-rays interfered with photopeak determination below

80 keV.

Each foil was counted at least three times over a period of a few months to over a year,

depending on the foil. Cross sections were measured at each emission energy line for a

given radionuclide and a given foil. An average radionuclide production cross section was

then produced from all the emission energy lines for all single and stacked foils of the same

material at 600 and 800 MeV. The following criteria were given to a particular emission

energy cross section: (1) the radionuclide must not have decayed more than five half-lifes,

(2) no other radionuclide contaminated the emission energy of interest, and (3) if another

radionuclide contaminated the emission energy peak of interest, then the contaminant must

decay more than five half-lifes before considering the peak of interest. Tables 22-27 show

all the cross sections determined for each radionuclide emission energy for W, Ta, and Au

for the 600- and 800-MeV irradiations. Blank spaces in the tables indicate that no clean

peak could be determined. Values in italics indicate clean peaks but possible contamination

from other radionuclides or the radionuclide of interest had decayed over 5 half-lifes.

Some of the cross sections measured for a specific time looked unreasonable compared

to cross sections at an earlier or later time period, or compared to neighboring radionu-

clide measurements. However, a contaminant could not be found and therefore the cross

section measured was considered. Examples of this include 83Rb in Table 22; 127Xe and

133Ba in Table 23; 83Rb and 85Sr in Table 24; 126I and 131I in Table 25; and 133Ba in Table 27.
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Table 26: Radionuclide production cross section measurements for W at 800 MeV
as function of days after irradiation. Values in italics were not used in the average
because of interference from other radionuclides or the radionuclide of interest had
decayed over 5 half-lifes.

cumulative production cross sections (mb)
branch W7 (6.2% uncertainty)

th Eγ ratio with plates without plates
(d) (keV) (%) 28 d 48 d 92 d 182 d 223 d 392 d

Sc-46 83.79 889.28 100.00 0.51 0.52 0.43 0.36 0.33 0.16

V-48 15.97 944.10 7.76 0.00 0.00 0.00
983.52 100.00 0.10 0.11 0.14 0.00 0.00 0.00

1312.10 97.50 0.12 0.13 0.17 0.00 0.00 0.00

Mn-54 312.30 834.85 100.00 0.46 0.39 0.33 0.39 0.37 0.41

Fe-59 44.50 1099.25 56.50 0.18 0.18 0.24 0.24 0.20 0.00

Zn-65 243.90 1115.55 50.60 0.71 0.80 0.62 0.51 0.48

Se-75 119.78 264.66 58.90 1.13 1.08 1.32 1.34 1.98
400.66 11.50 1.36 1.58 3.14

Rb-83 86.20 520.39 44.70 0.20 0.45 0.64 0.66 0.69 0.33
529.64 29.30 2.13 1.73 2.46 3.90 4.86 14.0

Y-88 106.60 898.04 93.70 0.63 0.31

Zr-88 83.40 392.87 100.00 0.31 0.34 0.36 0.38 0.36 0.50

Nb-95 34.98 765.79 100.00 0.31 0.28 0.52 0.63 15.7

Rh-102 207.00 556.41 96.00 0.20 0.08 0.17 0.19

I-126 13.11 388.63 34.10 0.00 0.00 0.00
753.82 4.16 0.00 0.00 0.00

Ba-131 11.80 496.33 47.00 1.92 1.87 3.93 45.5 0.00 0.00

Ba-133 3837.28 302.85 18.30 1.30 1.50 1.57
356.02 62.00 1.39 1.44 1.34
383.85 8.94 10.3 2.40 2.14

Ce-139 137.64 165.85 79.90 2.95 3.89 4.29 4.49 4.74 4.31

Pm-144 363.43 618.01 98.60 0.15 0.22 0.15
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(Table 26: W, 800 MeV continued)

cumulative production cross sections (mb)
branch W7 (6.2% uncertainty)

th Eγ ratio with plates without plates
(d) (keV) (%) 28 d 48 d 92 d 182 d 223 d 392 d

Eu-145 5.93 653.51 15.00 11.1 11.0 0.00 0.00 0.00 0.00

Eu-147 23.96 601.45 5.88 24.9 20.9 24.8 39.5 49.5 0.00
677.52 9.80 23.3 19.4 20.1 21.5 23.4 0.00

1077.04 6.15 24.0 19.6 19.7 21.1 16.8 0.00

Eu-148 54.51 414.04 20.50 0.68 0.93 0.86 0.96 0.76 0.00
571.96 9.56 3.40 1.76 1.33 1.35 0.00
725.67 12.70 0.00
869.89 5.49 1.12 0.77 0.67 0.79 0.00

1033.99 7.77 0.60 0.80 0.67 0.88 0.81 0.00

Eu-149 93.06 277.09 3.55 21.4 22.0 25.1 25.0 25.9 30.7
327.53 4.03 24.2 22.1 28.3 26.0 26.3 28.4

Gd-149 9.38 149.74 48.20 20.5 22.8 0.00 0.00 0.00 0.00
298.63 28.60 21.1 20.8 23.1 0.00 0.00 0.00
788.88 7.34 12.2 21.5 0.00 0.00 0.00 0.00

Gd-151 123.96 174.70 2.96 11.0 24.3

Gd-153 241.60 97.43 27.60 21.6 18.6 19.8 27.3 27.0 28.8

Tm-168 93.10 184.24 17.50 0.30
447.51 23.00 0.96 1.05 0.76 0.87 0.88 0.79
730.66 5.07 0.21 0.86 0.48 0.53
815.99 49.00 1.01 1.04 0.99 1.31 1.45 2.92
821.16 11.50 0.56 0.70 0.62 0.76 0.77
829.96 6.72 0.78 0.51 0.81 0.75

Yb-169 32.01 130.52 11.30 56.4 54.8 54.6 54.0 58.2 0.00
177.21 22.20 57.9 56.5 52.6 64.0 42.9 0.00
307.74 10.10 59.5 57.3 58.6 68.7 74.9 347

Lu-171 8.24 739.78 47.80 60.0 62.6 0.00 0.00 0.00 0.00

Lu-173 499.69 171.40 18.50 37.0 46.9 67.8 52.0 48.3 52.7
272.00 21.20 83.5 61.4 56.1 57.3 57.0 58.2

Lu-174 1208.70 1241.85 5.14 1.99 1.63 2.19

Hf-172 682.40 125.82 11.30 28.7 34.9 39.4 41.3 43.1 45.1
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(Table 26: W, 800 MeV continued)

cumulative production cross sections (mb)
branch W7 (6.2% uncertainty)

th Eγ ratio with plates without plates
(d) (keV) (%) 28 d 48 d 92 d 182 d 223 d 392 d

Hf-175 70.00 343.40 84.00 53.4 51.9 53.6 54.5 54.3 54.1

Hf-181 42.40 133.02 43.30 1.23 0.00
482.18 80.50 1.30 1.26 1.26 1.55 1.90 13.5

Ta-182 115.00 222.11 7.49 13.6 12.5 12.8 13.7 13.7 13.6
1189.05 16.20 13.0 12.8 13.0 12.7 12.7 12.6
1221.41 27.00 13.4 13.0 13.1 12.9 12.8 13.2
1231.02 11.40 13.3 13.1 13.5 13.0 14.8 13.1

Re-183 70.02 162.33 23.30 1.80 1.22 2.19 2.08 2.12 2.63

Re-184 37.96 792.07 37.50 0.86 1.00 1.08 1.70 2.27 15.4
894.76 15.60 18.5 3.43 1.91 0.00
903.28 37.90 0.00
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Table 27: Radionuclide production cross section measurements for Au at 800 MeV
as function of days after irradiation. Values in italics were not used in the average
because of interference from other radionuclides or the radionuclide of interest had
decayed over 5 half-lifes.

cumulative production cross sections (mb)
branch Au6 (25.5% uncertainty)

th Eγ ratio with plates without plates
(d) (keV) (%) 29 d 49 d 93 d 188 d 225 d

Sc-46 83.79 889.28 100.00 0.07 0.11 0.16 0.18 0.15

V-48 15.97 944.10 7.76 0.00 0.00 0.00
983.52 100.00 0.00 0.00 0.00

1312.10 97.50 0.04 0.02 0.00 0.00 0.00

Mn-54 312.30 834.85 100.00 0.31 0.31 0.27 0.30 0.30

Fe-59 44.50 1099.25 56.50 0.44 0.32 0.44 0.39

Zn-65 243.90 1115.55 50.60 0.59 0.48 0.55 0.54 0.54

As-74 17.78 595.85 59.00 1.31 1.09 1.18 0.00 0.00

Se-75 119.78 264.66 58.90 0.89 0.83 1.04 1.07 1.17
400.66 11.50 1.30 1.29 1.69 1.85

Rb-83 86.20 520.39 44.70 8.15 2.71 1.81 1.95 2.03
529.64 29.30 2.40 2.94 2.75 3.60 4.78

Sr-85 64.84 514.01 96.00 1.62 2.27 2.18 2.09

Y-88 106.60 898.04 93.70 1.52 1.63 1.98 2.31 2.63

Nb-95 34.98 765.79 100.00 1.31 1.34 1.76 3.52 4.88

Rh-102 207.00 556.41 96.00 0.15

I-126 13.11 388.63 34.10 0.00 0.00 0.00
753.82 4.16 0.00 0.00 0.00

Ba-131 11.80 496.33 47.00 1.99 3.69 21.6 983 5E+03

Ba-133 3837.28 302.85 18.30
356.02 62.00
383.85 8.94

Ce-139 137.64 165.85 79.90 0.09 0.20 0.42 0.58
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(Table 27: Au, 800 MeV continued)

cumulative production cross sections (mb)
branch Au6 (25.5% uncertainty)

th Eγ ratio with plates without plates
(d) (keV) (%) 29 d 49 d 93 d 188 d 225 d

Eu-145 5.93 653.51 15.00 1.17 0.00 0.00 0.00 0.00

Eu-147 23.96 601.45 5.88 3.38 4.00 4.38 33.2 78.6
677.52 9.80 2.61 2.91 2.96 7.72 19.9

Eu-148 54.51 414.04 20.50
571.96 9.56 4.02 2.35 1.63 1.87 2.87
725.67 12.70
869.89 5.49 0.87

1033.99 7.77

Eu-149 93.06 327.53 4.03 5.21 6.22 6.96 9.33 9.35

Gd-149 9.38 149.74 48.20 4.21 4.39 0.00 0.00 0.00
298.63 28.60 3.27 2.67 0.00 0.00 0.00
788.88 7.34 2.46 3.06 0.00 0.00 0.00

Gd-151 123.96 174.70 2.96 2.31

Tm-168 93.10 184.24 17.50
447.51 23.00 0.24 0.13
631.70 8.91 187
720.39 12.00
730.66 5.07
815.99 49.00 0.18 0.23 0.30 0.52 0.58
821.16 11.50
829.96 6.72 56.4 17.6 1.07

Yb-169 32.01 130.52 11.30 34.9 34.1 35.7 48.0 57.2
177.21 22.20 33.0 32.5 32.5 29.0 32.5

Lu-171 8.24 739.78 47.80 38.5 38.9 35.6 0.00 0.00

Lu-173 500.03 171.40 18.50 79.8 66.2 37.6 36.9 42.0
272.00 21.20 43.4 39.6 42.1 42.4 43.0

Hf-172 682.87 125.82 11.30 35.6 39.0 39.3 36.8 35.6

Hf-175 70.00 343.40 84.00 43.6 43.5 42.6 42.0 45.9
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(Table 27: Au, 800 MeV continued)

cumulative production cross sections (mb)
branch Au6 (25.5% uncertainty)

th Eγ ratio with plates without plates
(d) (keV) (%) 29 d 49 d 93 d 188 d 225 d

Hf-181 42.40 133.02 43.30 0.00
482.18 80.50 0.09 0.21 0.67 1.40

Ta-182 115.00 222.11 7.49 3.00 0.94 0.48 0.65
1189.05 16.20
1221.41 27.00
1231.02 11.40 0.40 0.42

Re-183 70.02 162.33 23.30 51.7 49.2 49.7 47.1 50.6

Re-184 37.96 792.07 37.50 0.49 0.49 0.82 2.36 3.83
894.76 15.60 2.18 0.68 4.33
903.28 37.90 0.00

Os-185 93.63 646.12 78.00 48.5 48.2 48.0 48.8 49.6
874.81 6.29 48.4 50.3 50.6 49.1 49.6
880.52 5.17 91.0 74.4 63.3 50.3

Ir-190 11.78 361.14 13.00 2.53 3.10 0.00 0.00 0.00
371.26 23.00 3.93 4.05 15.2 3E+03 0.00
397.39 6.54 3.58 3.93 0.00 0.00 0.00
407.24 28.50 3.77 3.86 0.00 0.00 0.00
518.55 34.00 6.53 5.96 0.00 0.00 0.00
569.31 28.50 3.65 3.69 2.96 0.00 0.00

Ir-192 73.83 295.96 28.70 1.04 2.54 2.21 2.20 2.44
316.51 82.80 2.16 2.24 2.32 2.31 2.43
468.07 47.80 2.15 2.21 2.29 2.20 2.30
604.41 8.23 27.9 12.3 2.06 2.57 2.47

Pt-188 10.19 195.05 18.60 32.6 32.9 0.00 0.00 0.00
381.43 7.50 32.5 30.6 0.00 0.00 0.00

Au-196 6.18 426.00 7.00 48.2 0.00 0.00 0.00 0.00

88



T
ab

le
27

:
A

u,
80

0
M

eV
co

nt
in

ue
d)

cu
m

ul
at

iv
e

pr
od

uc
ti

on
cr

os
s

se
ct

io
ns

(m
b)

br
an

ch
A

u5
(2

5.
5%

un
ce

rt
ai

nt
y)

A
u7

(6
.2

%
un

ce
rt

ai
nt

y)
av

er
ag

e
t h

E
γ

ra
ti

o
w

it
ho

ut
pl

at
es

w
it

h
pl

at
es

of
A

u6
,

(d
)

(k
eV

)
(%

)
63

d
84

d
12

0
d

15
1

d
52

d
81

d
11

5
d

A
u5

,
&

A
u7

Sc
-4

6
83

.7
9

88
9.

28
10

0.
00

0.
37

0.
41

0.
45

0.
39

0.
38

0.
40

0.
45

0.
14

V
-4

8
15

.9
7

94
4.

10
7.

76
0.

00
0.

00
0.

00
0.

00
0.

00
0.

03
98

3.
52

10
0.

00
0.

42
0.

45
0.

58
0.

00
0.

40
0.

49
0.

40
13

12
.1

0
97

.5
0

0.
44

0.
49

0.
66

0.
46

0.
43

0.
46

0.
44

M
n-

54
31

2.
30

83
4.

85
10

0.
00

0.
98

1.
05

1.
09

1.
08

0.
97

1.
00

1.
25

0.
30

Fe
-5

9
44

.5
0

10
99

.2
5

56
.5

0
0.

27
0.

51
0.

50
0.

46
0.

48
0.

53
0.

56
0.

45

Z
n-

65
24

3.
90

11
15

.5
5

50
.6

0
0.

52
0.

52
0.

60
0.

56
0.

54
0.

49
0.

56
0.

54

A
s-

74
17

.7
8

59
5.

85
59

.0
0

0.
70

0.
83

1.
48

2.
20

1.
06

1.
33

1.
57

1.
05

Se
-7

5
11

9.
78

26
4.

66
58

.9
0

0.
92

1.
03

1.
07

1.
10

0.
92

0.
99

1.
02

1.
17

40
0.

66
11

.5
0

1.
19

1.
24

1.
26

1.
44

1.
32

1.
13

R
b-

83
86

.2
0

52
0.

39
44

.7
0

1.
93

1.
93

1.
89

1.
92

2.
12

1.
94

2.
03

2.
69

52
9.

64
29

.3
0

3.
00

3.
08

3.
46

3.
99

2.
73

2.
94

3.
41

Sr
-8

5
64

.8
4

51
4.

01
96

.0
0

2.
04

Y
-8

8
10

6.
60

89
8.

04
93

.7
0

1.
70

1.
99

2.
22

2.
27

1.
66

1.
97

2.
24

2.
01

N
b-

95
34

.9
8

76
5.

79
10

0.
00

1.
39

1.
69

2.
17

2.
69

1.
30

1.
63

2.
08

1.
74

89



(T
ab

le
27

:
A

u,
80

0
M

eV
co

nt
in

ue
d)

cu
m

ul
at

iv
e

pr
od

uc
ti

on
cr

os
s

se
ct

io
ns

(m
b)

br
an

ch
A

u5
(2

5.
5%

un
ce

rt
ai

nt
y)

A
u7

(6
.2

%
un

ce
rt

ai
nt

y)
av

er
ag

e
t h

E
γ

ra
ti

o
w

it
ho

ut
pl

at
es

w
it

h
pl

at
es

of
A

u6
,

(d
)

(k
eV

)
(%

)
63

d
84

d
12

0
d

15
1

d
52

d
81

d
11

5
d

A
u5

,
&

A
u7

R
h-

10
2

20
7.

00
55

6.
41

96
.0

0
0.

17
1.

19
0.

16

I-
12

6
13

.1
1

38
8.

63
34

.1
0

3.
26

0.
00

0.
00

0.
00

3.
26

75
3.

82
4.

16
0.

00
0.

00
0.

00

B
a-

13
1

11
.8

0
49

6.
33

47
.0

0
5.

58
14

.5
69

.1
0.

00
3.

87
13

.5
53

.6
3.

18

B
a-

13
3

38
37

.2
8

30
2.

85
18

.3
0

58
.9

35
6.

02
62

.0
0

58
.9

38
3.

85
8.

94

C
e-

13
9

13
7.

64
16

5.
85

79
.9

0
0.

41
0.

50
0.

55
0.

36
0.

46
0.

40

E
u-

14
5

5.
93

65
3.

51
15

.0
0

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

1.
17

E
u-

14
7

23
.9

6
60

1.
45

5.
88

1.
02

1.
86

7.
73

14
.6

2.
68

3.
95

6.
24

2.
86

67
7.

52
9.

80
2.

70
2.

73
3.

71
5.

64
2.

34
2.

58
3.

55

E
u-

14
8

54
.5

1
41

4.
04

20
.5

0
1.

50
57

1.
96

9.
56

1.
55

1.
42

72
5.

67
12

.7
0

86
9.

89
5.

49
0.

26
10

33
.9

9
7.

77

E
u-

14
9

93
.0

6
32

7.
53

4.
03

6.
55

8.
49

8.
36

8.
31

3.
66

7.
11

7.
95

7.
29

90



(T
ab

le
27

:
A

u,
80

0
M

eV
co

nt
in

ue
d)

cu
m

ul
at

iv
e

pr
od

uc
ti

on
cr

os
s

se
ct

io
ns

(m
b)

br
an

ch
A

u5
(2

5.
5%

un
ce

rt
ai

nt
y)

A
u7

(6
.2

%
un

ce
rt

ai
nt

y)
av

er
ag

e
t h

E
γ

ra
ti

o
w

it
ho

ut
pl

at
es

w
it

h
pl

at
es

of
A

u6
,

(d
)

(k
eV

)
(%

)
63

d
84

d
12

0
d

15
1

d
52

d
81

d
11

5
d

A
u5

,
&

A
u7

G
d-

14
9

9.
38

14
9.

74
48

.2
0

4.
35

7.
21

38
.9

0.
00

4.
06

2.
41

25
.1

3.
31

29
8.

63
28

.6
0

0.
00

0.
00

0.
00

0.
00

3.
74

0.
00

46
9

78
8.

88
7.

34
0.

00
10

1
0.

00
0.

00
89

.9
67

.6

G
d-

15
1

12
3.

96
17

4.
70

2.
96

2.
31

T
m

-1
68

93
.1

0
18

4.
24

17
.5

0
0.

51
44

7.
51

23
.0

0
0.

37
0.

03
0.

11
0.

40
63

1.
70

8.
91

72
0.

39
12

.0
0

73
0.

66
5.

07
81

5.
99

49
.0

0
0.

23
0.

27
0.

31
0.

37
0.

21
0.

22
0.

28
82

1.
16

11
.5

0
0.

18
82

9.
96

6.
72

8.
65

2.
42

14
.5

2.
37

0.
43

Y
b-

16
9

32
.0

1
13

0.
52

11
.3

0
33

.1
36

.7
37

.5
39

.9
30

.4
35

.1
35

.5
34

.0
17

7.
21

22
.2

0
27

.9
34

.3
34

.7
35

.3
28

.0
34

.2
33

.8

L
u-

17
1

8.
24

73
9.

78
47

.8
0

44
.8

48
.9

0.
00

0.
00

39
.2

48
.8

0.
00

38
.5

L
u-

17
3

50
0.

03
17

1.
40

18
.5

0
41

.1
49

.7
43

.3
41

.2
46

.1
37

.1
44

.0
41

.0
27

2.
00

21
.2

0
38

.0
39

.9
39

.7
39

.6
37

.5
39

.1
38

.1

H
f-
17

2
68

2.
87

12
5.

82
11

.3
0

26
.4

37
.3

36
.1

35
.6

30
.8

35
.7

33
.8

36
.2

H
f-
17

5
70

.0
0

34
3.

40
84

.0
0

37
.0

42
.3

43
.8

43
.5

35
.8

40
.9

43
.2

42
.0

91



(T
ab

le
27

:
A

u,
80

0
M

eV
co

nt
in

ue
d)

cu
m

ul
at

iv
e

pr
od

uc
ti

on
cr

os
s

se
ct

io
ns

(m
b)

br
an

ch
A

u5
(2

5.
5%

un
ce

rt
ai

nt
y)

A
u7

(6
.2

%
un

ce
rt

ai
nt

y)
av

er
ag

e
t h

E
γ

ra
ti

o
w

it
ho

ut
pl

at
es

w
it

h
pl

at
es

of
A

u6
,

(d
)

(k
eV

)
(%

)
63

d
84

d
12

0
d

15
1

d
52

d
81

d
11

5
d

A
u5

,
&

A
u7

H
f-
18

1
42

.4
0

13
3.

02
43

.3
0

0.
20

48
2.

18
80

.5
0

0.
13

0.
17

0.
14

0.
12

0.
06

0.
14

0.
25

T
a-

18
2

11
5.

00
22

2.
11

7.
49

0.
81

0.
30

1.
19

0.
26

0.
66

11
89

.0
5

16
.2

0
0.

07
0.

08
12

21
.4

1
27

.0
0

0.
04

12
31

.0
2

11
.4

0

R
e-

18
3

70
.0

2
16

2.
33

23
.3

0
41

.8
51

.3
50

.3
42

.8
49

.3
48

.7
48

.4

R
e-

18
4

37
.9

6
79

2.
07

37
.5

0
0.

68
0.

77
1.

06
1.

48
0.

65
0.

76
0.

97
0.

94
89

4.
76

15
.6

0
1.

14
0.

88
1.

19
90

3.
28

37
.9

0

O
s-

18
5

93
.6

3
64

6.
12

78
.0

0
44

.2
46

.1
47

.1
41

.1
41

.9
45

.5
46

.8
47

.2
87

4.
81

6.
29

46
.4

47
.8

46
.7

46
.6

45
.4

47
.4

46
.3

88
0.

52
5.

17
67

.5
62

.8
53

.1
54

.2
70

.0
63

.6
52

.0

Ir
-1

90
11

.7
8

36
1.

14
13

.0
0

3.
33

3.
20

22
.8

0.
00

2.
76

3.
47

0.
00

4.
03

37
1.

26
23

.0
0

7.
14

11
.8

67
.2

0.
00

4.
88

11
.8

48
.6

39
7.

39
6.

54
5.

91
8.

70
31

.0
0.

00
4.

19
10

.2
87

.4
40

7.
24

28
.5

0
3.

68
3.

98
39

.5
0.

00
3.

43
3.

73
34

.8
51

8.
55

34
.0

0
8.

03
24

.0
5

15
5

0.
00

5.
44

22
.0

12
6

56
9.

31
28

.5
0

3.
54

2.
78

26
.6

0.
00

3.
29

2.
62

5.
93

92



(T
ab

le
27

:
A

u,
80

0
M

eV
co

nt
in

ue
d)

cu
m

ul
at

iv
e

pr
od

uc
ti

on
cr

os
s

se
ct

io
ns

(m
b)

br
an

ch
A

u5
(2

5.
5%

un
ce

rt
ai

nt
y)

A
u7

(6
.2

%
un

ce
rt

ai
nt

y)
av

er
ag

e
t h

E
γ

ra
ti

o
w

it
ho

ut
pl

at
es

w
it

h
pl

at
es

of
A

u6
,

(d
)

(k
eV

)
(%

)
63

d
84

d
12

0
d

15
1

d
52

d
81

d
11

5
d

A
u5

,
&

A
u7

Ir
-1

92
73

.8
3

29
5.

96
28

.7
0

1.
65

2.
21

2.
30

2.
33

10
.1

1.
97

2.
20

2.
26

31
6.

51
82

.8
0

2.
08

2.
25

2.
34

2.
30

1.
81

2.
17

2.
25

46
8.

07
47

.8
0

1.
96

2.
20

2.
20

2.
23

1.
90

2.
05

2.
20

60
4.

41
8.

23
6.

06
3.

39
2.

07
1.

74
9.

82
4.

18
2.

54

P
t-

18
8

10
.1

9
19

5.
05

18
.6

0
32

.4
34

.2
13

1
0.

00
29

.4
95

9
12

5
32

.1
38

1.
43

7.
50

29
.4

32
.8

0.
00

0.
00

27
.1

41
.4

59
.7

A
u-

19
6

6.
18

42
6.

00
7.

00
0.

00
60

4
0.

00
0.

00
62

.6
48

0
0.

00
48

.2

93



Summaries of all the radionuclide production cross section measurements with compar-

isons to previous measurements and theoretical predictions are found in Tables 28-33. Many

of the radionuclides used to calculate inventory of the 1L target at LANSCE were measured

and are in bold text in these tables. The theoretical predictions of CEM2k+GEM2 and

Bertini are calculated by adding up all the independent cross sections to determine a cu-

mulative cross section. The radionuclides used in determining the cumulative production

cross section can be found in Appendix C. The only independent yields measured were from

radionuclides that were “shadowed” from beta decay by stable isotopes or by isotopes such

as 148Gd that decay by alpha emission. The “shadowed” isotopes for which independent

yields were measured are 144Pm, 146Pm, 148Eu, 150Eu, 152Eu, 168Tm, 174Lu, and 184Re.

Measurements from the Ta, W, and Au foils irradiated with 600- and 800-MeV protons

compare well with the previous measurements. The theoretical predictions of CEM2k+GEM2

and Bertini compare better for the higher mass radionuclides than the lower mass ra-

dionuclides. Both models were a factor of two to four below the measurements, with

CEM2k+GEM2 being slightly better than Bertini. At the higher masses, Bertini tended to

compare better with the measurements, but both predictions were well within a factor of

two of the measurements.
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Table 29: Cumulative radionuclide production cross section measurements and compar-
isons to theoretical predictions and previous measurements for W at 600 MeV.

cumulative production cross section (mb)
current prev meas theoretical

th measurement Asano [31] CEM2k+GEM2 Bertini
(d) 600 Mev 500 MeV

Sc-46 83.79 0.127±0.006 0.051±0.015 0.037±0.010
V-48 15.97 0.037±0.004 0.011±0.007 0.026±0.008
Mn-54 312.30 0.152±0.007 0.104±0.021 0.071±0.014
Fe-59 44.50 0.186±0.012 0.129±0.023 0.106±0.017
Zn-65 243.90 0.304±0.034 0.154±0.025 0.103±0.016
As-74 17.78 0.315±0.035 0.298±0.035 0.098±0.016
Se-75 119.78 1.66±0.06 0.20±0.06 0.225±0.030 0.140±0.019
Rb-83 86.20 0.373±0.019 0.307±0.035 0.216±0.024
Y-88 106.60 0.422±0.047 0.391±0.040 0.227±0.024
Zr-88 83.40 0.201±0.009 0.29±0.04 0.224±0.030 0.148±0.020
Nb-95 34.98 0.359±0.020 0.046±0.014 0.077±0.014
Rh-102 207.00 0.348±0.028 0.039±0.012 0.055±0.012
Xe-127 36.40 3.14±0.21 0.022±0.009 0.063±0.013
Ba-131 11.80 0.574±0.063 0.076±0.017 0.177±0.022
Ba-133 3837.28 3.39±0.37 0.129±0.022 0.375±0.031
Ce-139 137.64 0.746±0.031 1.20±0.07 2.12±0.07
Pm-144 363.43 0.031±0.003 0.057±0.015 0.343±0.030
Pm-146 2017.14 0.598±0.047 0.007±0.005 0.066±0.013
Eu-148 54.51 0.640±0.038 0.106±0.021 1.140±0.055
Eu-149 93.06 11.5±0.5 16.3±0.2 10.7±0.2
Gd-149 9.38 9.04±1.38 2.8±0.4 16.2±0.2 10.7±0.2
Gd-151 123.96 15.8±1.3 15.8±0.2 13.5±0.2
Gd-153 241.60 12.4±1.3 17.2±0.2 16.2±0.2
Tm-167 9.24 50.1±13.2 49.1±0.5 50.0±0.4
Tm-168 93.10 0.932±0.026 0.836±0.060 0.615±0.040
Yb-169 32.01 59.4±2.2 40±6 50.9±0.5 52.3±0.4
Lu-173 499.69 57.8±4.2 90±10 49.2±0.5 59.6±0.4
Lu-174 1208.70 1.62±0.09 43±4 2.19±0.10 2.70±0.08
Hf-172 682.40 49.9±3.2 35±4 46.3±0.4 46.7±0.4
Hf-175 70.00 59.4±6.4 57±5 46.4±0.4 53.9±0.4
Hf-181 42.40 1.17±0.15 0.4±0.1 0.550±0.049 2.005±0.073
Ta-182 115.00 11.6±0.6 10.0±0.2 14.1±0.2
Re-183 70.02 3.23±0.15 3.3±0.6 5.98±0.16 4.96±0.11
Re-184 37.96 1.40±0.17 3.46±0.13 2.29±0.08
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Table 31: Cumulative radionuclide production cross section measure-
ments and comparisons to theoretical predictionsfor Ta at 800 MeV.

cumulative production cross section (mb)
th current theoretical
(d) measurement CEM2k+GEM2 Bertini

Sc-46 83.79 0.659±0.042 0.110±0.013 0.054±0.012
V-48 15.97 0.490±0.041 0.012±0.004 0.048±0.011
Mn-54 312.30 0.958±0.060 0.152±0.015 0.065±0.013
Fe-59 44.50 0.036±0.009 0.118±0.013 0.081±0.015
Zn-65 243.90 0.708±0.052 0.220±0.018 0.143±0.020
As-74 17.78 0.492±0.043 0.200±0.018 0.116±0.018
Se-75 119.78 0.776±0.058 0.254±0.020 0.140±0.020
Rb-83 86.20 1.92±0.14 0.365±0.024 0.197±0.023
Y-88 106.60 5.14±0.36 0.326±0.022 0.210±0.024
Zr-88 83.40 0.303±0.020 0.196±0.017 0.132±0.019
Nb-95 34.98 0.244±0.019 0.053±0.009 0.062±0.013
Rh-102 207.00 0.189±0.014 0.045±0.008 0.035±0.010
I-126 13.11 55.6±14.2 0.002±0.002 0.075±0.014
I-131 8.02 10.4±2.6 0.000±0.000 0.000±0.000
Xe-127 36.40 0.962±0.125 1.31±0.04 2.37±0.08
Ba-131 11.80 2.05±0.23 3.73±0.08 4.54±0.11
Ba-133 3837.28 2.15±0.20 5.68±0.09 5.73±0.12
Ce-139 137.64 6.89±0.49 11.9±0.1 14.6±0.2
Pm-144 363.43 0.275±0.028 0.258±0.020 1.21±0.06
Pm-146 2017.14 5.00±0.38 0.051±0.009 3.74±0.10
Eu-145 5.93 25.9±6.6 28.1±0.2 20.2±0.2
Eu-147 23.96 27.3±1.4 30.0±0.2 22.5±0.2
Eu-148 54.51 1.44±0.06 0.645±0.032 2.60±0.08
Eu-149 93.06 35.0±2.4 32.3±0.2 23.2±0.2
Gd-149 9.38 50.3±7.9 35.8±0.2 23.0±0.2
Gd-151 123.96 21.1±2.3 28.8±0.2 22.9±0.2
Gd-153 241.60 29.7±2.0 26.5±0.2 27.3±0.3
Tm-168 93.10 1.75±0.06 1.30±0.04 1.28±0.06
Yb-169 32.01 55.8±2.3 37.4±0.2 40.6±0.3
Lu-173 500.03 53.4±2.6 36.8±0.7 41.8±0.3
Lu-174 1208.70 4.60±0.49 3.97±0.08 5.72±0.12
Hf-172 682.87 33.9±5.0 29.4±0.2 29.5±0.3
Hf-175 70.00 45.8±3.1 36.9±0.2 36.0±0.3
Hf-181 42.40 0.178±0.010 0.00±0.00 0.137±0.019
Ta-182 115.00 0.403±0.025 0.00±0.00 0.00±0.00

100



T
ab

le
32

:
C

um
ul

at
iv

e
ra

di
on

uc
lid

e
pr

od
uc

ti
on

cr
os

s
se

ct
io

n
m

ea
su

re
m

en
ts

an
d

co
m

pa
ri

so
ns

to
th

eo
re

ti
ca

l
pr

ed
ic

ti
on

s
an

d
pr

ev
io

us
m

ea
su

re
m

en
ts

fo
r

W
at

80
0

M
eV

.

cu
m

ul
at

iv
e

pr
od

uc
ti

on
cr

os
s

se
ct

io
n

(m
b)

t h
cu

rr
en

t
pr

ev
io

us
80

0
M

eV
m

ea
su

re
m

en
ts

th
eo

re
ti

ca
l

(d
)

m
ea

su
re

m
en

t
T

it
er

an
ko

[2
4]

H
en

ry
[2

3]
C

E
M

2k
+

G
E

M
2

B
er

ti
ni

Sc
-4

6
83

.7
9

0.
46

1±
0.

02
1

0.
2±

0.
1

0.
11

1±
0.

02
2

0.
08

4±
0.

01
5

V
-4

8
15

.9
7

0.
27

2±
0.

02
4

0.
03
±0

.0
1

0.
01

6±
0.

00
8

0.
04

1±
0.

01
1

M
n-

54
31

2.
30

0.
39

1±
0.

01
0

0.
2±

0.
0

0.
14

0±
0.

02
4

0.
07

9±
0.

01
5

Fe
-5

9
44

.5
0

0.
20

9±
0.

00
9

0.
2±

0.
0

0.
12

5±
0.

02
3

0.
13

9±
0.

01
9

Z
n-

65
24

3.
90

0.
59

3±
0.

02
2

0.
29

0±
0.

03
4

0.
18

3±
0.

02
2

Se
-7

5
11

9.
78

1.
28

±0
.0

4
0.

27
3±

0.
03

4
0.

30
2±

0.
02

9
R

b-
83

86
.2

0
2.

17
±0

.0
9

0.
7±

0.
1

0.
42

6±
0.

04
2

0.
51

8±
0.

03
8

Y
-8

8
10

6.
60

2.
70

±0
.2

3
0.

4±
0.

0
0.

37
6±

0.
03

9
0.

34
3±

0.
03

1
Z
r-

88
83

.4
0

0.
35

1±
0.

01
4

0.
29
±0

.0
2

0.
26

8±
0.

03
3

0.
21

8±
0.

02
4

N
b-

95
34

.9
8

0.
27

7±
0.

01
6

0.
05

8±
0.

01
6

0.
13

1±
0.

01
9

R
h-

10
2

20
7.

00
0.

14
5±

0.
00

6
0.

12
1±

0.
02

3
0.

07
1±

0.
01

4
I-

12
6

13
.1

1
0.

59
9±

0.
06

3
0.

00
0±

0.
00

0
0.

03
5±

0.
01

0
B

a-
13

1
11

.8
0

1.
83
±0

.1
2

2.
10
±0

.0
9

3.
00
±0

.0
9

B
a-

13
3

38
37

.2
8

2.
06
±0

.0
6

3.
53
±0

.1
2

4.
16
±0

.1
1

C
e-

13
9

13
7.

64
3.

97
±0

.1
6

4.
85
±0

.2
1

4.
0±

0.
1

8.
66
±0

.1
9

10
.4

7±
0.

17
P

m
-1

44
36

3.
43

0.
15

3±
0.

00
7

0.
2±

0.
02

0.
20
±0

.0
3

0.
95

6±
0.

05
1

E
u
-1

45
5.

93
11

.1
±0

.7
11

.3
9±

0.
46

23
.9
±0

.3
16

.8
±0

.2
E
u
-1

47
23

.9
6

19
.5
±0

.6
18

.4
4±

0.
82

18
.8
±1

.0
26

.2
±0

.3
18

.9
±0

.2
E

u-
14

8
54

.5
1

0.
93

9±
0.

02
2

0.
71
±0

.0
3

0.
38

7±
0.

04
0

2.
28
±0

.0
8

E
u-

14
9

93
.0

6
23

.9
±0

.6
22

.5
±0

.7
29

.4
±0

.3
20

.2
±0

.2
G

d
-1

49
9.

38
19

.8
±0

.5
21

.7
2±

0.
98

29
.1
±0

.3
19

.9
±0

.2
G

d-
15

1
12

3.
96

14
.1
±1

.1
15

.4
±1

.1
25

.7
±0

.3
21

.1
±0

.2
G

d
-1

53
24

1.
60

22
.9
±0

.9
25

.3
4±

1.
23

24
.7
±0

.3
24

.1
±0

.3
T

m
-1

68
93

.1
0

0.
79

1±
0.

01
6

0.
77
±0

.0
4

0.
65

0±
0.

05
3

0.
65

4±
0.

04
2

Y
b
-1

69
32

.0
1

53
.2
±1

.5
59

.8
9±

2.
25

57
.1
±1

.7
38

.5
±0

.4
40

.5
±0

.3

101



(T
ab

le
32

:
W

su
m

m
ar

y,
80

0
M

eV
co

nt
in

ue
d)

cu
m

ul
at

iv
e

pr
od

uc
ti

on
cr

os
s

se
ct

io
n

(m
b)

t h
cu

rr
en

t
pr

ev
io

us
80

0
M

eV
m

ea
su

re
m

en
ts

th
eo

re
ti

ca
l

(d
)

m
ea

su
re

m
en

t
T

it
er

an
ko

[2
4]

H
en

ry
[2

3]
C

E
M

2k
+

G
E

M
2

B
er

ti
ni

L
u
-1

71
8.

24
60

.0
±3

.7
59

.7
0±

2.
12

37
.3
±0

.4
41

.7
±0

.3
L
u
-1

73
49

9.
69

52
.3
±1

.5
61

.6
6±

3.
09

55
.3
±2

.4
37

.9
±0

.4
44

.7
±0

.4
L
u-

17
4

12
08

.7
0

1.
94
±0

.1
2

0.
36
±0

.0
5

2.
09
±0

.0
9

2.
58
±0

.0
8

H
f-
17

2
68

2.
40

41
.1
±2

.9
48

.9
1±

2.
80

43
.9
±2

.2
34

.5
±0

.4
34

.1
±0

.3
H

f-
17

5
70

.0
0

49
.3
±1

.4
56

.0
4±

2.
13

53
.2
±2

.1
35

.2
±0

.4
39

.9
±0

.3
H

f-
18

1
42

.4
0

1.
11

±0
.0

4
1.

4±
0.

0
0.

43
4±

0.
04

4
2.

18
±0

.0
8

T
a-

18
2

11
5.

00
12

.2
±0

.2
16

.9
5±

0.
85

13
.0
±0

.4
8.

07
±0

.1
9

14
.9
±0

.2
R

e-
18

3
70

.0
2

1.
86

±0
.0

9
3.

6±
0.

1
3.

42
±0

.1
2

3.
54
±0

.1
0

R
e-

18
4

37
.9

6
1.

34
±0

.0
5

1.
5±

0.
1

2.
07

±0
.1

0
1.

50
±0

.0
6

102



T
ab

le
33

:
C

um
ul

at
iv

e
ra

di
on

uc
lid

e
pr

od
uc

ti
on

cr
os

s
se

ct
io

n
m

ea
su

re
m

en
ts

an
d

co
m

pa
ri

so
ns

to
th

eo
re

ti
ca

lp
re

di
c-

ti
on

s
an

d
pr

ev
io

us
m

ea
su

re
m

en
ts

fo
r

A
u

at
80

0
M

eV
.

cu
m

ul
at

iv
e

pr
od

uc
ti

on
cr

os
s

se
ct

io
n

(m
b)

t h
cu

rr
en

t
pr

ev
io

us
80

0
M

eV
m

ea
su

re
m

en
ts

th
eo

re
ti

ca
l

(d
)

m
ea

su
re

m
en

t
G

SI
[2

8,
29

]
IT

E
P

[3
4]

M
ic

he
l
[3

0]
C

E
M

2k
+

G
E

M
2

B
er

ti
ni

Sc
-4

6
83

.7
9

0.
13

7±
0.

01
6

0.
22

5±
0.

03
2

0.
16

6±
0.

01
6

0.
19

2±
0.

01
8

0.
16

6±
0.

02
2

V
-4

8
15

.9
7

0.
03

0±
0.

00
6

0.
02

9±
0.

01
1

0.
08

3±
0.

01
2

0.
14

0±
0.

02
0

M
n-

54
31

2.
30

0.
29

8±
0.

03
4

0.
31

2±
0.

05
1

0.
39

0±
0.

04
5

0.
43

2±
0.

02
7

0.
29

0±
0.

02
9

Fe
-5

9
44

.5
0

0.
45

0±
0.

02
9

0.
47

6±
0.

03
5

0.
56

3±
0.

05
0.

25
2±

0.
02

3
0.

31
0±

0.
03

0
0.

5±
0.

03
Z
n-

65
24

3.
90

0.
54

1±
0.

03
5

0.
46

6±
0.

02
4

0.
55

4±
0.

16
0

0.
95

8±
0.

04
0

0.
42

7±
0.

03
5

A
s-

74
17

.7
8

1.
05

±0
.0

9
1.

10
1±

0.
11

1
1.

42
±0

.1
1

1.
37
±0

.1
11

1.
20
±0

.0
4

0.
48
±0

.0
4

Se
-7

5
11

9.
78

1.
17

±0
.0

6
0.

90
9±

0.
03

3
1.

16
±0

.0
89

1.
50
±0

.0
5

0.
55
±0

.0
4

0.
97
±0

.0
7

R
b-

83
86

.2
0

2.
69
±0

.1
4

1.
80

6±
0.

12
2

2.
67
±0

.2
4

1.
99
±0

.1
4

2.
69
±0

.0
7

0.
91
±0

.0
5

2.
32
±0

.3
2

Sr
-8

5
64

.8
4

2.
04
±0

.2
6

1.
31

7±
0.

12
1

2.
34
±0

.1
6

1.
94
±0

.1
48

2.
29
±0

.0
6

0.
79
±0

.0
5

1.
77
±0

.1
4

Y
-8

8
10

6.
60

2.
01

±0
.1

3
2.

11
7±

0.
17

9
2.

82
±0

.2
00

2.
45
±0

.1
92

3.
05
±0

.0
7

1.
15
±0

.0
6

2.
23
±0

.1
6

N
b-

95
34

.9
8

1.
74
±0

.1
2

1.
11

5±
0.

07
8

2.
03
±0

.1
3

1.
65
±0

.1
3

0.
61

4±
0.

03
2

0.
46

7±
0.

03
7

1.
25
±0

.1
5

R
h-

10
2

20
7.

00
0.

16
2±

0.
02

9
0.

54
1±

0.
10

7
0.

63
1±

0.
03

2
0.

35
3±

0.
03

2
I-

12
6

13
.1

1
3.

26
±0

.8
3

0.
00

3±
0.

00
2

0.
04

9±
0.

01
2

B
a-

13
1

11
.8

0
3.

18
±0

.3
6

0.
10

6±
0.

01
3

0.
42

1±
0.

03
5

B
a-

13
3

38
37

.2
8

58
.9
±1

5.
0

0.
16

5±
0.

01
6

0.
61

3±
0.

04
2

C
e-

13
9

13
7.

64
0.

39
6±

0.
03

2
0.

75
7±

0.
05

0.
56

9±
0.

04
0.

72
1±

0.
03

5
2.

17
±0

.0
8

E
u-

14
5

5.
93

1.
17
±0

.3
0

2.
76

1±
0.

15
5

1.
69
±0

.1
6

1.
42
±0

.1
5

4.
82
±0

.0
7

5.
02
±0

.1
1

1.
21
±0

.1
0

E
u-

14
7

23
.9

6
2.

86
±0

.1
7

4.
65

5±
0.

26
0

3.
08
±0

.3
0

2.
66
±0

.2
5

6.
37
±0

.0
9

6.
24
±0

.1
3

103



(T
ab

le
33

:
A

u
su

m
m

ar
y,

80
0

M
eV

co
nt

in
ue

d)

cu
m

ul
at

iv
e

pr
od

uc
ti

on
cr

os
s

se
ct

io
n

(m
b)

t h
cu

rr
en

t
pr

ev
io

us
80

0
M

eV
m

ea
su

re
m

en
ts

th
eo

re
ti

ca
l

(d
)

m
ea

su
re

m
en

t
G

SI
[2

8,
29

]
IT

E
P

[3
4]

M
ic

he
l
[3

0]
C

E
M

2k
+

G
E

M
2

B
er

ti
ni

E
u-

14
8

54
.5

1
1.

50
±0

.1
6

0.
08

0±
0.

01
0

0.
14

9±
0.

01
41

0.
04

6±
0.

00
9

0.
91

4±
0.

05
1

E
u-

14
9

93
.0

6
7.

29
±0

.5
0

3.
52

1±
0.

16
7

72
.2
±6

.2
4

9.
19
±0

.1
0

7.
08
±0

.1
3

G
d-

14
9

9.
38

3.
31
±0

.5
0

6.
89

8±
0.

34
9

3.
91
±0

.3
0

4.
49
±0

.3
4

9.
17
±0

.1
0

6.
43
±0

.1
3

2.
76
±0

.2
5

G
d-

15
1

12
3.

96
2.

31
±0

.5
9

3.
31

0±
0.

19
0

9.
11
±0

.1
1

8.
59
±0

.1
5

T
m

-1
68

93
.1

0
0.

51
0±

0.
03

8
0.

04
0±

0.
00

5
0.

28
3±

0.
04

72
0.

04
1±

0.
00

8
0.

08
3±

0.
01

5
Y

b-
16

9
32

.0
1

34
.0
±1

.7
34

.4
2±

1.
92

39
.4
±2

.4
0

34
.1
±0

.2
31

.3
±0

.3
L
u-

17
1

8.
24

38
.5
±9

.8
37

.7
9±

2.
14

48
.1
±2

.9
0

35
.1
±0

.2
33

.7
±0

.3
L
u-

17
3

50
0.

03
41

.0
±1

.9
43

.4
5±

2.
04

47
.6

0±
3.

10
62

.4
±5

.1
3

37
.1
±0

.3
38

.2
±1

.3
73

.6
±5

.3
H

f-
17

2
68

2.
87

36
.2
±6

.5
40

.7
5±

2.
20

44
.6

0±
2.

80
39

.4
±0

.3
31

.6
±0

.3
H

f-
17

5
70

.0
0

42
.0
±2

.7
45

.6
5±

2.
45

52
.9

0±
3.

50
49

.6
±3

.7
6

38
.2
±0

.3
38

.3
±0

.3
42
±3

H
f-
18

1
42

.4
0

0.
19

9±
0.

02
0

0.
00
±0

.0
0

0.
00
±0

.0
0

T
a-

18
2

11
5.

00
0.

66
5±

0.
06

7
0.

01
0±

0.
00

8
0.

02
6±

0.
00

7
0.

02
3±

0.
00

8
R

e-
18

3
70

.0
2

48
.4
±3

.2
51

.9
7±

2.
95

62
.9
±4

.1
49

.7
±4

.2
7

38
.2
±0

.3
45

.4
±0

.4
R

e-
18

4
37

.9
6

0.
94

4±
0.

06
3

1.
18
±0

.1
5

1.
01
±0

.0
4

0.
88

3±
0.

05
0

O
s-

18
5

93
.6

3
47

.2
±2

.1
30

.1
0±

1.
88

60
.5
±3

.8
63

.3
±4

.7
6

35
.8
±0

.2
40

.5
±0

.3
53

.7
±3

.8
Ir

-1
90

11
.7

8
4.

03
±0

.2
1

6.
02
±0

.7
7

4.
36
±0

.2
7

3.
45
±0

.0
7

5.
01
±0

.1
2

4.
67
±0

.4
0

Ir
-1

92
73

.8
3

2.
26
±0

.0
8

4.
18
±0

.5
4

2.
76
±0

.1
7

2.
91
±0

.2
3

1.
42
±0

.0
5

3.
67
±0

.1
0

2.
91
±0

.2
3

P
t-

18
8

10
.1

9
32

.1
±4

.1
39

.6
6±

2.
48

48
.0
±3

.0
46
±3

.7
0

31
.2
±0

.2
31

.6
±0

.3
A

u-
19

6
6.

18
48

.2
±1

2.
3

57
.9

8±
5.

46
82

.8
±5

.0
66
±7

.0
4

39
.4
±0

.3
74

.6
±0

.5
66
±7

104



CHAPTER VI

DISCUSSION AND CONCLUSION

“The only relevant thing is uncertainty-the extent of our knowledge and igno-
rance. The actual fact of whether the events considered are in some sense deter-
mined, or known by other people is of no consequence.” Kristian Zarb Adami

Two tungsten targets at LANSCE’s accelerator complex interact with 800-MeV protons

to produce high- and low-energy neutrons. These targets also produce hundreds of differ-

ent nuclides ranging from the atomic number of hydrogen to nuclides with atomic number

justs above that of the target. These radionuclide products are distributed somewhat het-

erogeneously throughout the thick target because of the energy dependence of the cross

sections and energy loss of the proton beam within the target. The U. S. Department of

Energy requires hazard classification analyses to be performed on these facilities and limits

the radionuclide inventories in the targets to avoid characterizing the facilities as “nuclear

facilities.” Gadolinium-148 is one radionuclide produced from the spallation of tungsten.

Allowed isotopic inventories are particularly low for this isotope because it is an alpha-

particle emitter with a 75-year half-life. It’s activity level is low, but encompasses almost

two-thirds of the total dose burden for the two tungsten targets based on present yield

estimates. From a hazard classification standpoint, this severely limits the lifetime of the

tungsten targets.

The 148Gd production cross section has not been well measured for tungsten within

the energy range of the upper Lujan target, 600 to 800 MeV. A series of experiments at

LANSCE’s WNR Blue Room facility irradiated 3-µm thin W, Ta, and Au foils with 600-

and 800-MeV protons to measure the 148Gd production cross section, and other radionu-

clides of interest to the spallation target community. The foils were sufficiently thin so that

no secondary spallation reactions would likely occur, yielding a discrete energy dependent

production cross section. The foils also had to be thin enough to allow 148Gd decay alphas
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to later escape and be detected. The proton flux was measured during the irradiation with

current monitors upstream of the Blue Room, and with aluminum activation foils irradiated

with the stack of W, Ta, and Au foils to produce 22Na. The proton flux from the current

monitors agreed within 10% of the 22Na activation measurements.

The 600-MeV irradiation consisted of W, Ta, Au, and Al foils in stacks of three, where

the middle foil accounted for recoil gains and losses from the surrounding foils of the same

material. The 800-MeV experiments used this stacked foil method for one irradiation each

of W, Ta, and Au. In addition, another 800-MeV irradiation used single foils of W, Ta,

and Au, surrounded by aluminum catcher foils to determine what percentage of the 148Gd

recoiled onto the surrounding foils and compare methods for measuring the cross section.

The 148Gd production cross sections were measured by charged particle spectroscopy,

while all other radionuclide yields were measured with γ-ray spectroscopy. All of the cross

sections measured from the stacked and single foils agreed well within the uncertainty of

the measurements. A summary of the 148Gd measurements and predictions can be found

in Table 34. The 148Gd recoils were ∼10% of the total 148Gd measured, with the majority

of the recoils scattered forward.

The 148Gd production cross section measurements at 800-MeV for W and Au were

within 20% of the previous measurements, which used radiochemical analysis and inverse

kinematics via a fragment separator. This lends credibility to the charged particle thin foil

method used here. The theoretical predictions by CEM2k+GEM2 were within a factor of

two of the measurements, with Bertini giving better agreement to the measurement. This

is partly due to the large contribution from 152Er in CEM2k+GEM2 versus Bertini. The

physics models are so different, a particular part of the codes cannot be pinpointed as the

root of this difference.

Other radionuclide production cross sections compared well with previous measure-

ments for low, medium, and high mass nuclide products. Like the 148Gd comparison, the

theoretical predictions were within a factor of two of the other radionuclide production

measurements. The worst agreements were for those products that had a low Z and mass
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Table 34: Summary of cumulative 148Gd production cross section measurements and com-
parisons to theoretical predictions and previous measurements

148Gd cumulative production cross section (mb)
Energy Current Previous Theoretical

Target (MeV) Measurement Measurement CEM2k+GEM2 Bertini
Ta 600 15.2±4.0 29.4±0.2 15.5±0.2

800 28.6±3.5 45.6±0.3 24.4±0.3

W 600 8.31±0.92 21.6±0.3 10.9±0.2
800 19.4±1.8 16.4±0.8 41.4±0.4 20.9±1.6

Au 600 0.591±0.155 1.41±0.04 0.929±0.049
800 3.69±0.50 3.74±0.19 12.9±0.1 7.23±0.14

significantly lower than the target mass. In this region, Bertini and CEM2k+GEM2 typi-

cally underpredicted by a factor of two to three. In the region of higher mass radionuclide

products, the codes tended to slightly overpredict the cross section, but agreed well within

a factor of two of the cumulative measurements.

The absolute uncertainties in the cross section measurements are difficult to quantify

but the reproducibility of the cross sections at 800 MeV over several experiments with

different methods lends confidence that the cross sections measured are valuable to the

spallation target community. However, more measurements over broader energy ranges are

needed with isotopically pure tungsten foils, and the ability to measure shorter-lived (<3 d

half-life) radionuclides that feed into the 148Gd cumulative production cross section.

The fifteen radionuclides analyzed for the Lujan 1L tungsten target hazard classifica-

tion agreed well within a factor of two of previous measurements and theoretical predictions,

lending some confidence in the codes’ abilities to predict radionuclide production for spal-

lation targets within 600 to 800 MeV. Bertini compared much better than CEM2k+GEM2

with the radionuclides of interest that were measured. Bertini’s predictions were higher

than the measurements for the radionuclides listed in Table 1 that are most limited by the

amount of curies that can be produced. Bertini’s predictions were then slightly lower than

the measurements for radionuclides in Table 1 least limited by the amount of curies that

can be produced. Bertini overpredicted the most limiting cases, where the curie limits are
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several orders of magnitude less than the other radionuclides (Tables 1 and 2). Therefore,

it is the recommendation of this work that Bertini be used to calculate the radionuclide in-

ventory for the spallation targets at LANSCE. Furthermore, the factor of 1.5 that has been

applied to the cumulative inventory to account for uncertainties in the predictions and for

radionuclides without dose conversion factors should be reduced to 1.0 for the radionuclide

measurements presented in this work. For all other radionuclides of interest that were not

measured, the factor 1.5 should remain the same. As a result, the anticipated cumulative

dose at 960 m should decrease by 30% and therefore the tungsten targets at LANSCE would

have an extended lifetime of 30%.
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APPENDIX A

DECAY FEEDING 148GD SCHEMES

Figure A.1: Decay diagram feeding 148Gd

Table A.1: Half-lifes of 148Gd decay feeding diagram radionuclides

radionuclide half-life radionuclide half-life
160Hf 13.6 s 152Er 10.3 s
156Hf 25 ms 152Ho 161.8 s
156Lu 494 ms 148Ho 2.2 s
152Lu 0.7 s 152Dy 2.38 h
156Yb 26.1 s 148Dy 3.1 m
152Yb 3.04 s 148Tb 60 m
156Tm 83.8 s 148Gd 74.6 y
152Tm 8.0 s
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APPENDIX B

RADIONUCLIDE LIBRARY

Table B.1: Radionuclide library used in PCGAP with lists of contaminants and
their half-lifes for each energy. Half-lifes, emitting energies, and branching ratios
were obtained from [53].

branching
Isotope half-life Eγ ratio contaminants

(keV) (%)
4 Be 7 53.1 d 477.60 10.52

11 Na 22 2.6 y 1274.53 99.94

21 Sc 46 83.8 d 889.28 99.98 Lu-171 (8.3 d)
1120.55 99.99 Ta-182 (115 d), Re-182 (2.7 d)

23 V 48 16.0 d 944.10 7.76
983.52 99.98 Lu-170 (2 d)
1312.10 97.50

25 Mn 54 312.3 d 834.85 99.98 Lu-172 (6.7 d)

26 Fe 59 44.5 d 1099.25 56.50

27 Co 57 271.8 d 14.41 9.16
122.06 85.60
136.47 10.68

27 Co 58 70.9 d 810.78 99.00 Lu-172 (6.7 d)

27 Co 60 5.3 y 1173.24 99.97
1332.50 99.99

30 Zn 65 243.9 d 1115.55 50.60 Lu-172 (6.7 d)

33 As 73 80.3 d 53.44 10.34

33 As 74 17.8 d 595.85 59.00
634.78 15.40 Eu-146 (4.6 d), Ge-77 (11.3 h)

33 As 76 1.1 d 559.10 45.00
657.04 6.20

34 Se 75 119.8 d 121.12 17.20 Eu-152 (13.5 y), Co-57 (272 d)
136.00 58.30 Hf-181 (42.4 d), Co-57 (272 d)
264.66 58.90 Gd-149 (9.3 d), Lu-172 (6.7 d)
279.54 24.99 Eu-149 (93.1 d), Re-182 (2.7 d)
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(Table B.1 continued)

branching
Isotope half-life Eγ ratio contaminants

(keV) (%)
34 Se 75 119.8 d 400.66 11.47 Lu-172 (6.7 d)

35 Br 77 2.4 d 239.00 23.00
520.64 22.40

36 Kr 79 1.5 d 261.35 13.00
397.54 9.30
606.09 8.12

37 Rb 83 86.2 d 520.39 44.70 Ir-190 (11.8 d), Br-77 (2.4 d)
529.64 29.30
552.63 16.00 Eu-148 (54.5 d)

38 Sr 83 1.4 d 381.53 14.10
762.65 30.00

38 Sr 85 64.8 d 514.01 96.00

39 Y 87 3.3 d 388.53 82.00
484.81 89.70

39 Y 88 106.6 d 898.04 93.70
1836.06 99.20

40 Zr 88 83.4 d 392.87 100.00

41 Nb 95 35.0 d 765.79 100.00

45 Rh 101 3.3 y 127.23 68.00 Hf-172 (1.9 y)
197.99 73.00
325.23 11.83

45 Rh 102 207.0 d 475.10 38.40 Pm-144 (363 d)
556.41 96.00 Ir-190 (11.8 d)

45 Rh 105 1.5 d 306.25 5.10
319.14 19.00

49 In 111 2.8 d 171.28 90.00
245.40 94.00

50 Sn 113 115.1 d 391.69 64.00

51 Sb 122 2.7 d 564.12 71.00

53 I 124 4.2 d 602.73 63.00
722.79 10.35 Tm-168 (93.1 d), Eu-148 (54.5 d)
1690.98 10.88
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(Table B.1 continued)

branching
Isotope half-life Eγ ratio contaminants

(keV) (%)
53 I 125 60.1 d 35.49 6.68

53 I 126 13.1 d 388.63 34.10 Y-87 (3.3 d)
666.33 33.10 Lu-171 (8.2 d), Eu-146 (4.6 d)
753.82 4.16

53 I 131 8.0 d 284.31 6.14 Re-182 (2.7 d)
364.49 81.70
636.99 7.17

54 Xe 127 36.4 d 124.60 69.00 Ba-131 (11.8 d), Hf-172 (1.9 y)
172.50 37.90 Lu-173 (1.4 y), Gd-151 (124 d)
172.13 25.50 Lu-173 (1.4 y), Gd-151 (124 d)
202.86 68.30 Lu-172 (6.7 d)
374.99 17.20 Ba-131 (11.8 d)

55 Cs 129 1.3 d 371.92 30.60
411.49 22.31

56 Ba 131 11.8 d 123.81 28.97 Xe-127 (36.4 d)
216.08 19.66 Re-184m (165 d)
373.25 14.04 Xe-127 (36.4 d)
496.33 47.00

56 Ba 133 10.5 y 80.99 34.10
276.40 7.16 Eu-149 (93 d), Re-182 (2.7 d)
302.85 18.33
356.02 62.05 Ta-183 (5.1 d), Au-196 (6.2 d)
383.85 8.94

58 Ce 139 137.6 d 165.85 79.90

60 Nd 140 3.4 d 35.55 21.00
36.03 38.30
40.75 7.08

61 Pm 143 265.0 d 741.98 38.50

61 Pm 144 363.4 d 476.78 42.00 Be-7 (53.1 d), Rh-102 (207 d)
618.01 98.60 Ag-106m (8.3 d)
696.49 99.50 Lu-172 (6.7 d)

61 Pm 145 17.7 y 67.20 0.55
72.40 1.85

61 Pm 146 5.5 y 453.88 65.00 Eu-145 (5.9 d), Hf-179m2 (25 d)
735.72 22.50 Eu-150 (36.9 y)
747.16 34.00 Eu-146 (4.6 d), Eu-150 (36.9 y),

Gd-149 (9.4 d)
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(Table B.1 continued)

branching
Isotope half-life Eγ ratio contaminants

(keV) (%)
62 Sm 145 340.0 d 61.22 12.20

63 Eu 145 5.9 d 653.51 15.00
893.73 66.00 Gd-147 (1.6 d), Re-184 (38.0 d)
1658.53 14.90
1997.00 7.20

63 Eu 146 4.6 d 633.08 35.90 As-74 (17.8 d), Ir-188 (1.7 d)
634.14 45.00 As-74 (17.8 d), Ir-188 (1.7 d)
665.42 7.23 I-126 (13.1 d), Lu-171 (8.2 d)
747.16 98.50 Pm-146 (5.5 y), Eu-150 (36.9 y)
1297.03 5.39
1533.71 6.08

63 Eu 147 24.0 d 121.22 22.90 Se-75 (120 d), Eu-152 (13.5 y)
197.30 27.00 Yb-169 (32 d), Rh-101 (3.3 y)
601.45 5.88 I-124 (4.2 d)
677.52 9.80
1077.04 6.15 Re-182 (2.7 d)

63 Eu 148 54.5 d 414.03 10.33
414.06 10.15
550.23 98.60 Rb-83 (86.2 d)
553.23 12.90 Rb-83 (86.2 d)
553.26 5.00 Rb-83 (86.2 d)
571.96 9.56 Ir-190 (11.8 d)
611.25 20.10 Ir-192 (73.8 d)
629.93 70.50 Tm-168 (93.1 d)
725.67 12.73
869.89 5.49
1033.99 7.77

63 Eu 149 93.1 d 22.51 2.40
277.09 3.55 Re-182 (2.7 d), Ba-133 (10.5 y),

Se-75 (120 d)
327.53 4.03 Rh-101 (3.3 y)

63 Eu 150 36.9 y 333.97 96.00 Au-196 (6.2 d)
439.40 80.40
584.27 52.60
737.46 9.60 Pm-146 (5.5 y), Lu-171 (8.2 d)
748.06 5.18 Pm-146 (5.5 y)
1049.04 5.38

63 Eu 152 13.5 y 121.78 28.58 Se-75 (120 d)
244.70 7.58 Gd-151 (124 d), Ta-183 (5.1 d),

Ir-189 (13.2 d), In-111 (2.8 d)
344.28 26.50
778.90 12.94
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(Table B.1 continued)

branching
Isotope half-life Eγ ratio contaminants

(keV) (%)
63 Eu 152 13.5 y 964.08 14.61

1085.87 10.21
1112.07 13.64
1408.01 21.01

64 Gd 146 48.3 d 114.71 44.00 Lu-177 (6.7 d), Re-184 (38.0 d)
115.51 44.00 Lu-177 (6.7 d), Re-184 (38.0 d)
154.57 46.60 Gd-151 (124 d), Ta-182 (115 d)

64 Gd 147 1.6 d 229.32 63.00
370.00 17.20
396.00 34.30
559.07 6.45
765.81 11.30
893.50 8.10
929.01 20.20
1069.35 7.20
1130.90 6.40

64 Gd 149 9.4 d 149.74 48.20
298.63 28.60
346.65 23.90 Eu-152 (13.5 y), Hf-181 (42.4 d)
748.60 8.22 Eu-150 (36.9 y)
788.88 7.34

64 Gd 151 124.0 d 153.60 6.20 Gd-146 (48 d), Ta-182 (115 d)
174.70 2.96 Lu-172 (6.7 d)
243.29 5.60 Ta-182 (115 d), Eu-152 (13.5 y)

64 Gd 153 241.6 d 69.67 2.32
97.43 27.60 Au-195 (186.1 d), Ta-183 (5.1 d)
103.18 19.60 Re-184m (165 d)

65 Tb 153 2.3 d 82.84 5.90
102.26 6.40
109.76 6.76
170.45 6.30
212.00 31.00

65 Tb 155 5.3 d 86.55 31.80
105.32 24.90
180.08 7.40
262.32 5.29

65 Tb 157 150.1 y 54.50 0.01

66 Dy 159 144.4 d 58.00 2.22

69 Tm 165 1.3 d 47.16 16.90
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(Table B.1 continued)

branching
Isotope half-life Eγ ratio contaminants

(keV) (%)
69 Tm 165 1.3 d 54.42 7.21

242.92 35.50
297.37 12.71
806.37 9.50

69 Tm 167 9.2 d 207.80 41.00

69 Tm 168 93.1 d 79.80 10.53
184.24 17.45 Gd-149 (9.3 d)
198.24 52.60 Yb-169 (32 d), Rh-101 (3.3 y)
447.51 23.00
631.70 8.92
720.39 12.00
730.66 5.07
741.36 12.32
815.99 49.00
821.16 11.54
829.96 6.72

70 Yb 166 2.4 d 82.29 100.00

70 Yb 169 32.0 d 63.12 44.20
109.78 17.47 Re-184 (38 d)
130.52 11.31 Rh-101 (3.3 y), Re-182 (2.7 d)
177.21 22.16 Tb-155 (5.3 d)
197.96 35.80 Rh-101 (3.3 y), Tm-168 (93.1 d)
307.74 10.05 Ir-192 (73.8 d)

71 Lu 169 1.4 d 191.21 20.60
889.75 5.36
960.62 23.40
1149.74 9.92

71 Lu 170 2.0 d 84.25 9.00
985.10 5.54
1280.25 8.18
2041.88 6.10
2126.11 5.13

71 Lu 171 8.2 d 19.39 13.70
75.88 6.08
667.40 11.04
739.78 47.80 Eu-150 (36.9 y), Tm-168 (93.1 d)

71 Lu 172 6.7 d 52.39 49.50
78.74 10.60
181.53 20.60
203.44 5.02
697.30 6.13
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(Table B.1 continued)

branching
Isotope half-life Eγ ratio contaminants

(keV) (%)
71 Lu 172 6.7 d 810.06 16.63

900.72 29.80
912.13 15.25
1002.75 5.25
1093.66 62.50

71 Lu 173 1.4 y 78.70 11.10
100.70 4.51 Ta-182 (115 d)
171.40 18.50
272.00 21.23

71 Lu 174 3.3 y 76.47 5.93
1241.85 5.14

71 Lu 177 6.7 d 112.95 6.40
208.37 11.00

71 Lu-m 174 142.0 d 44.68 12.40
67.06 7.25

72 Hf 172 1.9 y 23.98 20.30
67.35 5.31
125.82 11.30 Xe-127 (36.4 d), Rh-101 (3.3 y)

72 Hf 173 1.0 d 123.67 83.00
139.63 12.70
162.01 6.46
296.97 33.90
306.57 6.42
311.24 10.75

72 Hf 175 70.0 d 343.40 84.00 Eu-152 (13.5y)

72 Hf 181 42.4 d 133.02 43.30 Ba-131 (11.8 d)
136.27 5.85 Co-57 (272 d)
345.93 15.10 Hf-175 (70 d), Eu-152 (13.5 y),

Gd-149 (9.4 d)
482.18 80.50 Y-87 (3.3 d)

73 Ta 177 2.4 d 112.95 7.20

73 Ta 182 115.0 d 67.75 41.20
100.11 14.10 Lu-173 (1.4 y)
152.43 6.93 Gd-151 (124 d)
222.11 7.50 Re-182 (2.7 d)
1121.30 34.90 Sc-46 (83.8 d)
1189.05 16.23 Re-182 (2.7 d)
1221.41 27.00 Re-182 (2.7 d)
1231.02 11.44 Re-182 (2.7 d)
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(Table B.1 continued)

branching
Isotope half-life Eγ ratio contaminants

(keV) (%)

73 Ta 183 5.1 d 46.48 5.80
52.60 5.80
99.08 6.70
107.93 11.00 Tb-153 (2.3 d), Yb-169 (32 d)
161.35 8.90
244.26 8.50 Eu-152 (13.5 y)
246.06 27.00
353.99 11.20

75 Re 182 2.7 d 67.75 22.20
100.11 16.40
130.80 7.50
152.43 8.50
156.39 7.20
169.15 11.30
191.38 6.70
221.59 6.40
222.11 8.50
229.32 26.00
247.44 5.00
256.45 9.50
276.31 8.70
281.46 5.70
286.55 7.00
339.06 5.60
351.07 10.30
1076.30 10.50
1121.30 22.00
1189.05 9.00
1221.41 17.40
1231.02 14.90
1427.37 9.79

75 Re 183 70.0 d 46.48 7.97
162.33 23.30 Ta-183 (5.1 d)

75 Re 184 38.0 d 111.21 17.10 Yb-169 (32 d), Lu-177 (6.7 d),
Ta-177 (2.4 d)

792.07 37.50
894.76 15.63
903.28 37.90 Eu-145 (5.9 d)

75 Re 186 3.8 d 137.16 9.42

75 Re-m 184 165.5 d 104.73 13.40
216.55 9.43 Ba-131 (11.8 d)
252.84 10.70
920.93 8.14
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(Table B.1 continued)

branching
Isotope half-life Eγ ratio contaminants

(keV) (%)

76 Os 185 93.6 d 646.12 78.00
874.81 6.29
880.52 5.17 Re-184 (32.8 d)

77 Ir 188 1.7 d 155.03 29.70
477.99 15.00
632.99 18.00
634.98 5.00
829.49 5.14
1209.80 6.90
1715.67 6.20
2059.67 7.10
2096.90 5.70
2214.62 18.70

77 Ir 189 13.2 d 245.09 6.00 Eu-152 (13.5 y)

77 Ir 190 11.8 d 186.72 52.40 Pt-188 (10.2 d)
294.75 6.60 Ir-192 (73.8 d)
361.14 13.00 Pt-191 (2.9 d)
371.26 23.00 Ba-131 (11.8 d)
397.39 6.54
407.18 23.90 Pt-191 (2.9 d)
407.54 4.60
518.55 34.00
557.97 30.10 Rh-102 (207 d)
569.31 28.50 Eu-148 (54.5 d)
605.24 39.90 Ir-192 (73.8 d)

77 Ir 192 73.8 d 295.96 28.67 Ir-190 (11.7 d)
308.46 30.00 Yb-169 (32 d)
316.51 82.81
468.07 47.83
604.41 8.23 I-124 (4.2 d), Ir-190 (11.7 d)
612.47 5.31 Eu-148 (54.5 d)

78 Pt 188 10.2 d 187.59 19.40 Ir-190 (11.8 d)
195.05 18.60
381.43 7.50 Ba-133 (10.5 y)

78 Pt 191 2.9 d 359.90 6.00
409.44 8.00
538.90 13.70

79 Au 194 1.6 d 293.55 10.40
328.46 61.00
1468.91 6.40
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(Table B.1 continued)

branching
Isotope half-life Eγ ratio contaminants

(keV) (%)
79 Au 195 186.1 d 98.85 10.90

79 Au 196 6.2 d 332.98 22.90 Eu-150 (36.9 y)
355.68 87.00 Ba-133 (10.5 y), Ta-183 (5.1 d)
426.00 7.00

80 Hg-m 195 1.7 d 37.09 1.84
261.75 30.90
387.87 2.15
560.27 4.00

80 Hg 197 2.7 d 77.35 18.70
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APPENDIX C

CUMULATIVE PRODUCTION CROSS SECTIONS

Table C.1: Radionuclides used in calculating cumulative production cross
sections

Cumulative Sum of Independent Radionuclides
Radionuclide and their contribution

46Sc 46Sc

48V 48V+48Cr+48Mn+48Fe+48Co

54Mn 54Mn

59Fe 59Fe+59Mn+59Cr

58Co 58Co

65Zn 65Zn+65Ga+65Ge+65As+65Se

74As 74As

75Se 75Se+75Br+75Kr+75Rb+75Sr

83Rb 83Rb+83Sr+83Y

88Y 88Y+88Zr+88Nb+88Mo+88Tc+88Ru

88Zr 88Zr+88Nb+88Mo+88Tc+88Ru

95Nb 95Nb+95Zr+95Y+95Sr+95Rb+95Kr+95Br

101Rh 101Rh+101Pd+101Ag+101Cd+101In+101Sn

102Rh 102Rh

124I 124I

126I 126I

131I 131I+131Te+131Sb+131Sn+131In
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(Table C.1 continued)

Cumulative Sum of Independent Radionuclides
Radionuclide and their contribution

127Xe 127Xe+127Cs+127Ba+127La+127Ce+127Pr

131Ba 131Ba+131La+131Ce+131Pr+131Nd+131Pm+131Sm

133Ba 133Ba+133La+133Ce+133Pr+133Nd+133Pm+133Sm

139Ce 139Ce+139Pr+139Nd+139Pm+139Sm+139Eu+139Gd

144Pm 144Pm

146Pm 146Pm

145Eu 145Eu+145Gd+145Tb+145Dy+145Ho+145Er+149Tb(0.167)
+149Dy(0.167)+149Ho(0.167)+149Er(0.167)+149Tm(0.167)
+153Er(0.088)+153Tm(0.152)+153Yb(0.0835)

146Eu 146Eu+146Gd+146Tb+146Dy+146Ho+146Er+146Tm(0.550)
+150Dy(0.360)+150Ho(0.360)+150Er(0.360)+150Tm(0.360)
+154Tm(0.158)+154Yb(0.345)+154Lu(0.345)+154Hf(0.345)
+158Hf(0.152)+158Ta(0.332)+158W(0.345)+162W(0.071)
+162Re(0.316)+162Os(0.345)+166Os(0.051)+166Ir(0.297)

147Eu 147Eu+147Gd+147Tb+147Dy+147Ho+147Er+147Tm(0.900)
+151Tb(9.5e-5)+151Dy(0.056)+151Ho(0.264)+151Er(0.264)
+151Tm(0.264)+151Yb(0.264)+151Lu(0.185)+155Er(1.23e-5)
+155Tm(0.005)+155Yb(0.235)+155Lu(0.258)+155Hf(0.264)
+159Lu(2.01e-6)+159Hf(0.097)+159Ta(0.226)+159W(0.264)
+163Ta(4.02e-9)+163W(0.040)+163Re(0.159)+163Os(0.264)
+167Re(2.81e-11)+167Os(0.027)+167Ir(0.159)+171Ir(2.81e-11)
+171Pt(0.026)+175Au(2.64e-11)+175Hg(0.026)

148Eu 148Eu

149Eu 149Eu+149Gd+149Tb(0.833)+149Dy(0.833)+149Ho(0.833)
+149Er(0.833)+153Er(0.441)+153Tm(0.798)+153Yb(0.815)
+157Lu(0.798)+157Hf(0.813)+161Ta(0.040)+161W(0.674)

149Gd 149Gd+149Tb(0.833)+149Dy(0.833)+149Ho(0.833)+149Er(0.833)
+153Er(0.441)+153Tm(0.798)+153Yb(0.815)+157Lu(0.798)
+157Hf(0.813)+161Ta(0.040)+161W(0.674)

150Eu 150Eu
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(Table C.1 continued)

Cumulative Sum of Independent Radionuclides
Radionuclide and their contribution

152Eu 152Eu

151Gd 151Gd+151Tb+151Dy(0.938)+151Ho(0.732)+151Er(0.732)
+151Tm(0.697)+151Yb(0.697)+151Lu(0.488)+155Er(2.06e-4)
+155Tm(0.014)+155Yb(0.653)+155Lu(0.688)+155Hf(0.688)
+159Lu(5.64e-6)+159Hf(0.268)+159Ta(0.604)+163Ta(1.12e-8)
+163W(0.110)+163Re(0.426)

153Gd 153Gd+153Tb+153Dy+153Ho+153Er(0.470)+153Tm(0.042)
+153Yb(0.021)+157Yb(0.235)+157Lu(0.223)+157Hf(0.049)

167Tm 167Tm+167Yb+167Lu+167Hf+167Ta+167W+167Re+167Os(0.33)
+171Pt(0.337)+171Ir+171Os(0.017)+175Pt(0.011)+175Au(0.94)
+175Hg(0.337)+179Hg(0.006)

168Tm 168Tm

169Yb 169Yb+169Lu+169Hf+169Ta+169W+169Re+169Os(0.890)
+173Os(2.1e-4)+173Ir(0.070)+173Pt(0.759)+177Pt(1.18e-5)
+177Au(0.028)+177Hg(0.649)+181Hg(4.23e-6)

171Lu 171Lu+171Hf+171Ta+171W+171Re+171Os(0.983)+175Ir(0.0085)
+175Pt(0.629)

172Lu 172Lu+172Hf+172Ta+172W+172Re+172Os(0.990)+172Ir(0.970)
+172Pt(0.058)+176Ir(0.021)+176Pt(0.990)+176Au(0.970)
+176Hg(0.058)+180Au(3.78e-4)+180Hg(0.475)

172Hf 172Hf+172Ta+172W+172Re+172Os(0.990)+172Ir(0.970)
+172Pt(0.058)+176Ir(0.021)+176Pt(0.990)+176Au(0.970)
+176Hg(0.058)+180Au(3.78e-4)+180Hg(0.475)

173Lu 173Lu+173Hf+173Ta+173W+173Re+173Os+173Ir(0.93)
+173Pt(0.149)+177Pt(0.113)+177Ir(0.060)+177Au(0.440)
+177Hg(0.192)+181Au(7.8e-4)+181Hg(0.041)

174Lu 174Lu

175Hf 175Hf+175Ta+175W+175Re+175Os+175Ir+175Pt+179Pt(0.0024)
+179Au(0.222)+179Hg(0.634)

181Hf 181Hf+181Lu+181Yb

182Ta 182Ta+182Hf+182Lu
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(Table C.1 continued)

Cumulative Sum of Independent Radionuclides
Radionuclide and their contribution

183Ta 183Ta+183Hf+183Lu

183Re 183Re+183Os+183Ir+183Pt+183Au(0.997)+183Hg(0.880)

184Re 184Re

185Os 185Os+185Ir+185Pt+185Au+185Hg(0.94)

189Ir 189Ir+189Pt+189Au+189Hg

190Ir 190Ir

192Ir 192Ir

188Pt 188Pt+188Au+188Hg

195Au 195Au+195Hg

196Au 196Au
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