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SUMMARY

The objective of this research is to develop a novel computational prediction al-

gorithm for non-coding RNA (ncRNA) genes using features computable for any genomic

sequence without the need for comparative analysis. Existing comparative-based methods

require the knowledge of closely related organisms in order to search for sequence and struc-

tural similarities. This approach imposes constraints on the type of ncRNAs, the organism,

and the regions where the ncRNAs can be found. We have developed a novel approach

for ncRNA gene prediction without the limitations of current comparative-based methods.

Our work has established a ncRNA database required for subsequent feature and genomic

analysis. Furthermore, we have identified significant features from folding-, structural-, and

ensemble-based statistics for use in ncRNA prediction. We have also examined higher-order

gene structures, namely operons, to discover potential insights into how ncRNAs are tran-

scribed. Being able to automatically identify ncRNAs on a genome-wide scale is immensely

powerful for incorporating it into a pipeline for large-scale genome annotation. This work

will contribute to a more comprehensive annotation of ncRNA genes in microbial genomes

to meet the demands of functional and regulatory genomic studies.

xix



CHAPTER I

INTRODUCTION

The objective of this research is to develop a novel computational prediction method for

non-coding RNA (ncRNA) genes. Non-coding RNA genes function without being translated

into proteins. The majority of annotation analyses in the past two decades have focused

on identifying protein-coding genes. While important, the identification of ncRNA genes

did not receive much attention until its recent discovery in the regulation of a diverse

range of cellular processes. Previous approaches to ncRNA prediction primarily relied on

homology-based methods to search for sequence and structural similarities across different

genomes. While most existing methods attempt to find conserved functional ncRNAs,

there is an urgent demand for new algorithms that do not rely on the knowledge of closely

related organisms. This approach will be advantageous, as more diverse genomes are being

sequenced each year. This work will contribute to a more comprehensive annotation of

ncRNA genes in microbial genomes to meet functional and regulatory genomic studies. To

address this challenging issue, we propose to develop a feature-based learning method to

predict ncRNA genes.

The main contributions of this dissertation work address a challenging problem in the

interdisciplinary field of bioinformatics by proposing a novel algorithm to identify microbial

ncRNA genes on a genome-wide scale. A further contribution is the additional biological

insight gained from the features used to distinguish between the ncRNA genes and genomic

background. The broader contribution of the computational prediction tool is its potential

use in existing pipelines to perform routine annotation of ncRNA genes, similar to how

protein coding genes are currently annotated. The annotation of ncRNA genes paves the

way for understanding its role in cellular regulation and complex diseases.
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1.1 Background

In recent years, there has been enormous interest in the field of signal processing to apply

techniques from pattern recognition, controls, and dynamic modeling to the growing inter-

disciplinary field of bioinformatics [5, 36, 37, 54, 74, 89, 116, 139, 148, 138, 170]. Signal

processing offers valuable tools to tackle new and challenging problems in bioinformatics.

In this work, we propose a data mining-based approach for the genomic annotation of non-

coding RNA genes. We first give a brief review of the central dogma of molecular biology.

Next, we provide the motivation for our problem by identifying the existing challenges and

approaches in non-coding RNA gene finding.

1.1.1 The need for genome annotation

The completed draft of the Human Genome Project (HGP) in 2001 [86, 149] represents a

landmark milestone to an 11-year international collaborative project to decipher the three

billion nucleotides that code for life. In the mid-1990s, there were fewer than half a dozen

published complete genomes [92]. With the draft of the HGP, the number of published

genomes grew to 72. Today, there are more than 481 published genomes and more than

100 more unpublished genomes. With more than 170 Gigabases of nucleotides and almost

2,000 more ongoing sequencing projects, researchers in the field of bioinformatics are faced

with the daunting task of how to interpret this data. The demand for accurate labeling of

this data is at the focus of genome annotation. With reliable annotation, researchers have

the blueprint by which they can explore the complexity of life.

1.1.2 Central dogma

The code for all life and its complexity is encoded in DNA sequences consisting of nucleotide

(nt) bases (A, C, G, T). Within the DNA sequence, there are regions called genes that encode

specific functions. These genes form the basis for all annotation work in an organism. The

central dogma of molecular biology is the information transfer from DNA to RNA to protein,

as summarized in Figure 1.1. DNA is converted to messenger RNA (mRNA) through the

process of transcription in which nucleotide T is replaced by nucleotide U. Through the
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Figure 1.1: Central dogma of molecular biology.

process of translation, sequences of three nucleotides (codons) on the mRNA, representing

the code for a specific amino acid, are assembled into proteins with the help of other RNAs.

These proteins help carry out many cellular processes and were once thought to be the only

functional biomolecule in a cell.

1.1.3 Review of non-coding RNA genes

The majority of annotation analyses in the past two decades have focused on identifying

protein-coding genes [49, 50, 125]. As such, the other class of genes that function as RNA

without being translated into protein, called non-coding RNA (ncRNA) genes or small non-

coding RNA (sRNAs) genes, have mostly been overlooked as intermediary molecules that

help translate mRNA into protein. It was not until Fire and Mello’s 1998 Nobel-winning

discovery of how some small RNAs could switch off certain mRNAs (RNA-interference) [51]

that researchers began to change their view on RNA. In humans, it is estimated that about

98% of the genome gets transcribed, of which only 2% correspond to protein coding genes

[102, 103, 140]. Furthermore, the complexity of an organism is not proportional to the

number of protein coding genes. Besides mechanisms like alternative splicing, regulation

by ncRNA genes is believed to account for an organism’s complexity [102, 103]. The iden-

tification of ncRNAs is needed for a better understanding of the entire genomic landscape

of an organism. It is hoped that the knowledge gained from ncRNAs will play a major

role in shaping our view of diseases in the coming century. Mutations in ncRNAs and their

associated proteins have been implicated in genetic diseases, neurological disorders, and

cancer [39, 67, 57, 112, 17]. The identification and better understanding of these ncRNAs

are crucial for the development of effective therapies in these and other viral-based diseases

such as HIV, hepatitis, influenza, and SARS [57].

Non-coding RNAs are involved in various aspects of cellular processes, including regu-

lation of gene expression, controlling activation of regions in chromosomes, intron excision,

DNA packaging, and RNA modification and editing [58, 66]. The major classes of RNA
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as modified from [16] are shown in Figure 1.2. Within the ncRNAs, transfer RNA (tRNA)

and ribosomal RNA (rRNA) have important roles in protein synthesis. Current computa-

tional methods take advantage of the structural and sequence conservation of tRNA [98]

and rRNA [84] to identify them across species. As such, these two particular classes of

ncRNA are not included in the scope of the proposed work. The class of interest in our

work involves ncRNAs ranging in size from about 20-1000 nt. The various ncRNA classes

as modified from [13, 101] are summarized in Table 1.1.

Figure 1.2: Major classes of RNA.

Table 1.1: Classes of small non-coding RNAs with the function, approximate size, or-
ganism where found, and references for existing computational prediction methods. The
abbreviations represent (in order of appearance): snRNA, small nuclear RNA; snoRNA,
small nucleolar RNA; gRNA, guide RNA; SRP, signal recognition particle; miRNA, mi-
cro RNA; siRNA, small interfering RNA; piRNA, piwi-interacting RNA; rasiRNA, repeat
associated siRNA; tmRNA, transfer messenger RNA.

Class Function Size (nt) Organism Reference

RNA processing and modification

RNase P RNA tRNA/rRNA maturation 220-440 All [61]
snRNA mRNA splicing 100-160 Eukarya
C/D snoRNA tRNA/snRNA/rRNA methylation 60-80 Archaea, Eukarya [99]
H/ACA snoRNA snRNA, rRNA pseudouridylation 130 Eukarya [134, 133, 43]
gRNA RNA editing 40-80 Kinetoplastids
4.5S RNA SRP protein secretion 300-400 Eukarya

Regulation

miRNA gene silencing 21-24 Multicellular [90, 91]
siRNA gene silencing 22 Multicellular
piRNA gene silencing 26-32 Mammals [19]
rasiRNA gene silencing 24-29 Drosophila
antisense RNA gene silencing/activation 50-250 Bacteria [58]
6S RNA transcription regulation 200 Bacteria

Genome stability

telomerase RNA telomerase synthesis 150-1300 Eukarya

Translation

tmRNA releases stalled mRNA 300-400 Bacteria [88]

Because of the laborious nature of wet lab identification of ncRNAs [67], it is necessary to
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Figure 1.3: Sequence signals for protein-coding genes. Protein coding genes are charac-
terized by conserved sequence motifs in the promoter, ribosomal binding site (RBS), and
terminator regions. Additionally, proteins contain open reading frames as shown by frames
1-3 that code for specific start and stop codons.

find computational methods to narrow the search space of potential candidates. Given the

importance of identifying ncRNAs, we next explore, in the following sections, the challenges

in predicting ncRNAs and the limitations of current approaches.

1.1.4 Challenges in computational non-coding RNA gene finding

The identification of ncRNA genes is more challenging than protein coding genes because

of the lack of sequence signals. Unlike protein coding genes, non-coding RNA genes do not

contain signals such as open reading frames (i.e., sequence containing a start through a

stop codon), codon bias (hexamer frequency), or ribosome binding sites (RBS), as shown in

Figure 1.3. Although some ncRNA genes have signals such as promoters and terminators

[6, 21], the identification of these transcriptional features is not easily recognizable and also

varies depending on which RNA polymerase is used for transcription [40]. Furthermore

from Table 1.1, several classes of ncRNA genes have much shorter length as compared to

protein coding genes, which tend to be longer than 900 nt [15]. The smaller size makes

it more challenging to find ncRNAs using similarity searches as commonly used in protein

gene finding [4].

1.1.5 Review of computational methods for non-coding RNA gene finding

Methods for ncRNA gene finding can be roughly categorized into two classes: those that

identify members based on prior knowledge of a family of ncRNAs and those that find

new ncRNAs [105, 13, 39]. We briefly summarize both approaches and discuss in more

detail the latter since finding novel ncRNAs is the main focus of the proposed work. We

exclude discussion of miRNA prediction since this class of ncRNAs is not currently known
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to exist in prokaryotic organisms and very specific algorithms already exist to identify them

[90, 85, 14, 62, 76, 155, 164, 171].

1.1.5.1 Methods to detect new members of well-characterized ncRNAs

When one or a set of ncRNA sequences belonging to the same class is available, there are

various approaches that can be used to identify new or similar members. These methods

utilize sequence similarity (homology) or a combination of sequence and structural-based

homology searches.

Sequence-based homology search

blast [4] is a widely used program for finding high-scoring local alignments in a reference

database given a single query nucleotide sequence. A few highly conserved ncRNAs in closely

related species have been identified using this approach [158, 6, 135]. Compared to protein

coding genes, there are many fewer ncRNA sequences available in current databases to run

effective blast searches. Furthermore, since blast comparisons on ncRNAs are performed

at the nucleotide level instead of the protein amino acid level, variations in the nucleotide

sequence greatly affect the sensitivity of the searches. The short length of ncRNAs also

makes it hard to distinguish weakly conserved genes from random hits. Besides, within

closely related species, the identification of ncRNAs using this approach has not had much

success [31, 146, 81].

If, however, a set of ncRNA sequences belonging to the same class were known, common

characteristics such as sequence motifs could be described using profile hidden Markov

models (HMM). In profile HMMs, the set of ncRNA sequences are aligned and used to

compute a probabilistic model based on nucleotide frequencies from each column. The

resulting profile HMM is then used to search a database for new matches similar to the

motif in the original set [53]. The reliability of this approach heavily depends on the

accuracy of the alignment.

Both blast and profile-HMMs have been used to identify protein coding genes; however,

the results are not good when applied to ncRNA genes. This poor performance is due to the

fast rate of evolution or mutation in ncRNA sequences [114]. Even though the sequences
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may change, as long as the change does not affect the structure, the essential function of the

ncRNAs is still preserved. For this, another class of methods, which incorporates secondary

structure conservation, has been utilized [170].

Structural-based homology search

The secondary structure of RNA consists of nucleotide base pairing onto itself. There exists

efficient programs based on minimizing the folding energy [175, 65] or maximizing the

number of base pairing [24] to predict RNA secondary structure. This secondary structure

can be incorporated into the homology search by using a class of models based on context-

free grammars (CFG) or the probabilistic version of CFG, stochastic context-free grammar

(SCFG), to describe the RNA secondary structure [170]. Given one or a set of aligned

ncRNA sequences along with the predicted structure, a model can be generated and used

to search a database for new instances [59, 80, 56, 41, 169]. The use of this approach has

enabled the computational identification of C/D snoRNA in mammals [168], yeast [99], and

other archaea organisms [111]. While useful for predicting homologous ncRNAs, the models

are class specific and computationally intensive since they must be optimized for each class

[53].

In summary, the above sequence and structural-based homology methods are effective

only when the sequence or structure is evolutionarily conserved among different species.

The high rate of mutation in ncRNAs compared to protein-coding genes makes it difficult

to use sequence homology approaches. Additionally, structural homology approaches fail to

detect ncRNAs with little to no RNA structure [40, 13].

1.1.5.2 Methods to predict novel ncRNAs

A more challenging case is predicting novel ncRNAs where what we are searching for is un-

known. Methods that predict novel ncRNAs typically use some combination of comparative

analysis, structural information, and genomic signals. We discuss each of these approaches

below.

Comparative analysis based on intergenic regions
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Sequence-based homology methods have also been used to find novel ncRNAs in E. coli

[173] and other bacterial organisms [118]. This search is done by first extracting sequences

between protein coding genes (intergenic regions) and then running blast. The protein

coding regions are excluded to prevent contamination of false positives from homologous

proteins. Intergenic segments conserved among closely related sequences are used with

additional information from transcriptional signals [158, 21, 118, 97, 96], structural conser-

vation [8], or gene expression data [158] to identify new ncRNA candidates. The inherent

limitations of homology searches have been discussed in a previous section. Additionally,

by narrowing the search space to intergenic regions, existing algorithms currently miss all

the ncRNAs that may be buried within or overlap protein coding genes. For example, it

is well known that about half of C/D snoRNA genes fall within or overlaps protein coding

genes [9].

Structural analysis in conserved genomic alignments

Similar to structural-based homology methods, approaches in this class work by finding

stable secondary structures from sequence alignments. The assumption is that in order to

carry out its function, the structure of ncRNA genes must be conserved among two or more

organisms. In this case, however, we do not have a set of known ncRNAs to work with

but instead rely on genomic regions that are conserved among different species. From these

regions, pairwise or multiple sequence alignments can be constructed to identify conserved

structures. Various approaches have been used to model the structural information, ranging

from analyzing the mutation patterns to examining the RNA structural folding.

One approach to analyzing the mutation patterns of RNA structure uses pairwise align-

ment between sequences in two related genomes [122, 123, 104]. The alignment is compared

to three different probabilistic models for the pattern of mutation. These three models are

(i) the null model based on a HMM of background base frequencies, (ii) the protein coding

model characterized by a HMM for codon mutations to preserve the same amino acid code

(synonymous codon), and (iii) the RNA model as represented by a SCFG, which takes

into account the higher rate of substitution in complementary pairs in order to preserve
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the secondary structure. Log-odd scores are computed to determine whether the pairwise

alignment contains RNA, protein coding genes, or other genomic elements. This approach,

as implemented in qrna, relies heavily on the evolutionary distance between the two se-

quences used and as such, can suffer from low reliability if the distance lies outside an

optimal range [157]. Additionally, the evolutionary distance of the three models used must

be the same or else it distinguishes the alignments based on the level of conservation instead

of the required pattern of mutation [123].

Other methods search for the conserved RNA secondary structure in multiple sequence

alignments [26, 32, 115, 156]. These methods have been primarily applied to vertebrates

such as mice, rats, and humans, where large regions of conserved genomic sequences are

available. One widely used program is rnaz [156], which uses conserved multiple alignments

without gaps. To identify functionally conserved ncRNAs, a support vector machine is used

to combine (i) the z-score of the minimum folding energy (MFE) of each individual sequence

in the alignment, (ii) the structure conservation index defined on the alignment, (iii) the

mean pairwise identity, and (iv) the number of sequences in the alignment. rnaz and

other related programs [26, 32, 115, 156] require the alignments to be precomputed. To

compensate for this drawback, other approaches have been proposed to compute both the

alignment and secondary structure prediction simultaneously to optimize the structural

alignment [147]. Unfortunately, this comes at a large computational cost.

The limitation of this class of approaches is that it requires alignments of at least two or

more sequences, which may not always be available. Furthermore, it fails to detect ncRNAs

with little RNA structure, such as in the case of some snRNAs and C/D snoRNAs [13].

Genomic features

All the methods surveyed to this point have relied, to some extent, on comparative genomics.

The last class of methods presented in this section is based on using information extracted

by the genome itself. Similar to the idea of how genomic signals can be used in protein

coding genes, approaches in this branch of novel ncRNA gene finding use information from

transcriptional signals, namely, promoters and terminators, along with base composition
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variations and other features. A common approach has been to search the intergenic re-

gions to find promoter regions that appear within a short distance of terminator signals

[6, 21, 165]. Transcription signals together with specific sequence motif searches in the in-

tergenic regions have discovered specific ncRNAs in more than 60 microbial genomes [83].

The use of these transcriptional elements is limited to only genomes with well-understood

regulatory signals. Furthermore, promoter and terminator prediction is neither robust nor

comprehensive. For example, current terminator prediction programs can only search for

the structurally conserved class of the so-called Rho-independent terminators while missing

all the Rho-dependent ones [30]. This limitation imposes constraints on the ncRNA genes

and organisms that can be searched.

Base composition methods have had some limited success, primarily in specific organisms

where there is bias in the underlying genome. For example, in hyperthermophilic organisms

with a genome rich in nucleotide bases A and U/T, the ncRNA genes tend to have high

levels of nucleotide bases G and C [81, 132]. The high (G+C)% is believed to make the

ncRNAs more stable in order to withstand high temperatures above 90◦C [81]. Besides

hyperthermophiles such as Methanococcus jannaschii and Pyrococcus furiosus, this feature

has also been used to identify ncRNAs in the amoeba Dictyostelium discoideum [64] and the

malaria parasite Plasmodium falciparum [146]. The (G+C)% is defined in Eq. (1), where

nα for α = {A, C, G, U} is the number of nucleotide α in the sequence.

(G + C)% = 100
nG + nC

nA + nC + nG + nU

(1)

Other compositional measures were also examined [132] but were not found useful. These

measures included the compositional difference measures: (G − C)% = 100nG−nC

nG+nC
and

(A − T )% = 100nA−nT

nA+nT
. Another method used to find bacterial ncRNAs [18] has applied

mono- and di-nucleotide frequencies together with MFE and known RNA motifs, including

(i) structural motifs {UNCG, GNRA, CUYG, AAR} and (ii) an observed DNA sequence more

common to bacterial ncRNAs {CUAG}, where N is any nucleotide, R=purine={A,G}, and

Y=pyrimidine={C,T/U}. The use of mono-, di-, and tri-nucleotide frequencies has also been

explored with MFE and a similarity measurement from blast to identify ncRNAs in E.
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coli [153]. The main drawback to using compositional-based features is that it may only

apply to a small group of organisms, as in the case of (G+C)%.

As mentioned previously, there have been a few attempts to use MFE to distinguish

between real and random ncRNAs. Rivas and Eddy [121] embedded a real ncRNA gene

into a random sequence with identical mono-nucleotide base composition and found that

the z-score of the MFE alone was not statistically significant to be useful in a ncRNA

gene finder. Other authors [162] have noted that secondary structure prediction programs

compute the MFE by adding stabilizing energy from stacked base pairs with destabilizing

energy from loops. Henceforth, shuffled ncRNA must be generated with the same mono- and

di-nucleotide composition for any valid conclusions to be drawn about the MFE. Since then,

several authors [24, 52] have found that various classes of ncRNAs have MFE significantly

lower than its mono- and di-nucleotide shuffled versions. In summary, this result indicates

that the MFE of predicted secondary structure is potentially useful for identifying ncRNAs,

especially if used together with other features.

Besides the MFE statistics, some authors have proposed some structural folding mea-

sures to evaluate the reliability of RNA secondary structure prediction [69, 52]. This helps

to identify those ncRNAs that fold more uniquely than their shuffled counterpart. One

of these measures is based on the base pairing probability, Pi,j , for the RNA secondary

structure between a nucleotide position i with position j [69]. This probability is assessed

using the Shannon base pairing entropy as defined in Eq. (2), where Si is defined by Eq.

(3) and n is the length of the RNA sequence.

Shannon base pairing entropy =
1

n

n
∑

i=1

Si (2)

Si = −
∑

j

Pi,jlog(Pi,j) (3)

Although never applied for genome-wide prediction, the Shannon base pairing entropy and

other folding measures have been evaluated to test their ability to discriminate between

various classes of ncRNA and its shuffled sequences [52]. Another recent program called

coding or non-coding [94], conc, uses known protein features to help distinguish between

proteins and ncRNAs. The set of features used includes peptide (amino acid) length, amino
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acid composition, percentage of residues in certain predicted protein secondary structures,

percentage of exposed residues, compositional entropy, number of homologs in database

search, alignment entropy, nucleotide frequencies (mono, di, tri), and average hydrophobic-

ity of amino acid residues. This method was applied to detect ncRNAs in certain eukaryotic

organisms. The recent growth of genomic-based features for ncRNA gene finding is promis-

ing; however, more work remains to be done.

1.1.6 Operon prediction

Furthermore, we choose to examine higher-order genome organization because little is

known about the transcriptional mechanism of ncRNA genes. By examining the position of

ncRNAs in relation to these genomic structures, we are able to infer information about how

it is transcribed (i.e., whether it is transcribed together with operons or not). The idea is

that if it is transcribed together with operons, we can use knowledge of operon structures

to help narrow the search space. Genome annotation of operons enables a more thorough

understanding of the higher-level organization of genes.

The operon is the most basic level of gene organization in prokaryotes and consists of two

or more protein-coding genes that are transcribed together on a single mRNA transcript.

The characterization of operons represents an important step in understanding many cellular

processes and deciphering transcriptional regulatory networks [145]. Due to the arduous

nature of experimentally determining operons on an individual basis, there is a need for

computational approaches for operon prediction.

Table 1.2: Overview of common features used in operon prediction methods.

Comparative analysis Phylogenetic profiles [23]
Conserved gene order across different genomes [46, 22, 120, 161, 154]

Sequence features Intergenic distances [131, 107, 27, 23, 161]
Codon usage [12, 120]
Short DNA motifs [28]
Transcriptional signals (promoter, terminator) [166, 27]

Functional annotation Pathways [174, 126, 71]
Expertly curated information [131]
Gene Ontology (GO) similarity [28]
Clusters of Orthologous Genes (COG) class [23, 154]

Experimental data DNA microarray [27, 128, 12, 29]
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Existing operon prediction methods use information from comparative analysis, se-

quence features, functional annotation, and experimental data, as summarized in Table 1.2.

Of particular interest are three operon predictors considered to be better methods among

all publicly available operon prediction programs. The first program is Joint Prediction of

Operons (JPOP) [23], which trains a neural network on three features: intergenic distance,

similarity between their phylogenetic profiles, and relatedness of their annotated functions

from clusters of orthologous genes (COG) [143]. The second program, Operon Finding Soft-

ware (OFS) [161], applies a näıve Bayes method on conserved gene-order information across

multiple genomes together with intergenic distance and similarity information of annotated

gene functions to make operon predictions. The third program, developed by the Virtual

Institute for Microbial Stress and Survival (VIMSS) [120], is similar to the first two pro-

grams because it uses intergenic distance and COG information. VIMSS differs, however,

in also employing the codon adaptation index (CAI) and applying a different approach for

comparative genome analysis to make operon predictions. The results are incorporated into

a näıve Bayes approach to make predictions.

1.1.7 Summary

Within the past decade, the main approaches used for ncRNA gene prediction have been

based on comparative genomics. The inherent limitation of these approaches lies in their

difficulty in finding ncRNA genes not conserved among closely related species. Techniques

to identify novel ncRNAs using comparative analysis of intergenic regions limit the avail-

able search space and thus prevent the identification of ncRNAs contained in or overlapping

protein coding regions. Methods relying on multiple alignments to search for stable ncR-

NAs add another level of complexity in requiring the existence of conserved alignments.

Approaches based on transcriptional and compositional features have had some limited

success, although their application to all organisms is questionable. In general, there is

a need for non-homology-based methods to expand upon the number of ncRNAs able to

be detected. The exploration of more features to better characterize ncRNAs and the

understanding of the role of higher genomic structures are needed in order to apply the
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search universally across a large set of organisms. This investigation is at the focus of our

dissertation work.

1.1.8 Organization of this Dissertation

The dissertation is organized as follows:

In Chapter 2, we will present a novel neural network-based meta-learner for operon pre-

diction [145]. This method has been applied to predict operons in the bacteria Escherichia

coli and Bacillus subtilis and the hyperthermophilic archaeon Pyrococcus furiosus. Knowl-

edge of the operon organization will enable us to study the context of ncRNA genes and

better understand its transcriptional environment.

Next, in Chapter 3, we will present a de novo computational method for predicting

ncRNA genes. We have developed a data set of ncRNA genes obtained from literature and

existing databases. We also identify unique features inherent to ncRNAs in order to develop

a machine learning classifier to predict ncRNAs on a genome-wide scale.

Then, in Chapter 4, we will discuss some additional applications of our computational

method for predicting ncRNA genes. We present the relationship found between ncRNAs

and operons.

Finally, in Chapter 5, we will summarize this dissertation and suggest topics for future

research. To aid readability, we have attempted to keep every chapter as self contained as

possible.
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CHAPTER II

OPERON PREDICTION IN PYROCOCCUS FURIOSUS 1

To provide insight into the transcriptional mechanisms of non-coding RNA genes, we ex-

amine higher order genomic structures, namely operons. The ability to predict operons

enhances our knowledge of gene regulation and function. Our later studies of non-coding

RNA genes in the context of operons will provide additional insight on how these non-coding

RNA genes are transcribed to determine whether there is a preference for these genes to be

independently transcribed or whether they are transcribed with operons. In this chapter,

we explore a novel meta-learner approach for operon prediction.

2.1 Abstract

Identification of operons in the hyperthermophilic archaeon Pyrococcus furiosus represents

an important step to understanding the regulatory mechanisms that enable the organism

to adapt and thrive in extreme environments. We have predicted operons in P. furiosus

by combining the results from three existing algorithms using a neural network. These

algorithms use intergenic distances, phylogenetic profiles, functional categories, and gene

order conservation in their operon prediction. Our method takes as inputs the confidence

scores of the three programs, and outputs a prediction of whether adjacent genes on the

same strand belong to the same operon. In addition, we have applied Gene Ontology (GO)

and KEGG pathway information to improve the accuracy of our algorithm. The parameters

of this neural network predictor are trained on a subset of all experimentally-verified operon

gene pairs of B. subtilis. It subsequently achieved 86.5% prediction accuracy when applied

to a subset of gene pairs for E. coli, which is substantially better than any of the three

prediction programs. Using this new algorithm, we predicted 470 operons in the P. furiosus

genome. Of these, 349 were validated using DNA microarray data.

1This chapter was published in [145] and is a result of joint work with Phuongan Dam, Zhengchang Su,
Farris L. Poole, II, Michael W. W. Adams, G. Tong Zhou, and Ying Xu.
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2.2 Introduction

Pyrococcus furiosus is a hyperthermophilic anaerobic archaeon that grows optimally near

100◦C using carbohydrates and peptides as carbon and energy sources [48]. This organism

is commonly found in hydrothermal vents on the seafloor near volcanos. Its ability to grow

to high cell densities under laboratory conditions without the need of elemental sulfur, and

thus production of toxic hydrogen sulfide, has made it a useful model organism with which

to study thermostable enzymes and adaptations to high temperature environments [1].

The genome sequence of P. furiosus has been determined [124, 119] and is available at

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&val=18976372. The lat-

est annotation contains 2,125 genes, which is used for the study herein. Like most genome

annotations, that of P. furiosus provides a unique source of information for molecular and

biochemical studies, but it is mostly gene-centric and does not provide much structural and

functional information about higher-level organizations. In this chapter, we present our

recent work on the identification of operons in P. furiosus.

An operon is defined as a basic transcriptional unit in prokaryotes. Characterization

of operons represents an important step in understanding many cellular processes and de-

ciphering transcriptional regulatory networks. Insights into the function and regulation of

genes in the context of pathways and networks can be gained if we can annotate operons

accurately. Due to the arduous nature of experimentally determining operons on an in-

dividual basis, several computational approaches have been proposed for predicting them

[23, 120, 46, 161, 174, 22]. Generally, these approaches use information derived from com-

parative genomics, transcriptional signals up- and downstream of operons, features such

as intergenic distances, functional annotation of genes, and experimentally-derived DNA

microarray data.

We have recently developed a novel method for operon prediction by integrating three

existing operon-prediction methods and have applied it to the bacteria Escherichia coli and

Bacillus subtilis, and P. furiosus. The three methods were chosen because they are consid-

ered as better prediction methods among all publicly available operon prediction programs.
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All three prediction programs assume that genes within an operon are in the same direc-

ton, which is defined as consecutive open reading frames (ORFs) transcribed in the same

direction with no intervening ORF on the opposite strand [23, 120, 161]. The first program

is the JPOP (Joint Prediction of Operons) program [23], which classifies each pair of con-

secutive genes as an “operonic” or an “non-operonic” boundary based on their intergenic

distance, similarity between their phylogenetic profiles, and relatedness of their annotated

functions from COGs [143]. Each of these sets of supporting data is integrated using a

neural network to generate operon predictions. The second program, Operon Finding Soft-

ware (OFS) [161], combines conserved gene-order information across multiple genomes with

intergenic distance and similarity information of annotated gene functions to make operon

predictions. This work generalized the gene order conservation approach used in [46] by

relaxing the adjacency and orthology criteria. The authors of OFS [161] claimed to be able

to predict operons without extensive training. The third program, developed by the Virtual

Institute for Microbial Stress and Survival (VIMSS) [120], is similar to the first two pro-

grams because it uses intergenic distance and COG information. VIMSS differs, however,

in also employing the codon adaptation index (CAI) and applying a different approach for

comparative genome analysis to make operon predictions. The comparative genome analysis

examines how often orthologous genes are close to each other within 5 kb across multiple

genomes, while the CAI measures synonymous codon usage. Another operon prediction

method developed by The Institute for Genomic Research (TIGR) [46] was considered but

not integrated into our method due to the high number of missing confidence values be-

tween adjacent gene pairs in the same directon. A summary of the default operon prediction

results for the three programs for E. coli and B. subtilis are shown in Figure 2.1. The Venn

diagram displays the number of gene pairs predicted to be within operons by each program

and the overlap in gene pairs predicted among the three programs. Out of a total of 2,985

adjacent gene pairs in the same directon in E. coli, 1,885 gene pairs are predicted to be in

operons by at least one program and only 55% (=1037/1885) of gene pairs are predicted

to be in operons by all three programs. Likewise in B. subtilis with a total of 3,005 gene

pairs, 2,122 gene pairs are predicted to be in operons, but only 28% (=599/2122) of gene
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pairs are predicted by all three programs. With low consensus among individual operon

prediction programs, there is a need to incorporate the additional information provided by

each program into a general operon predictor.

Figure 2.1: Venn diagrams of adjacent gene pairs in the same directon predicted to be
operon gene pairs by the three prediction programs: JPOP, OFS, and VIMSS for (A) E.
coli and (B) B. subtilis. The operon predictions are the result of using an optimal threshold
that maximizes the (Sensitivity+Specificity) value fixed from B. subtilis training for all
programs. In (A), 1,885 (= 124 + 256 + 100 + 1037 + 104 + 91 + 173) gene pairs are
predicted to be operon gene pairs by at least one prediction program. Likewise in (B), this
number is 2,122 (= 286 + 129 + 191 + 599 + 75 + 657 + 185) gene pairs. Examining those
operon gene pairs in common from all three prediction programs, there is only a 55% (=
1037/1885) and 28% (= 599/2122) overlap in predicted gene pairs in E. coli and B. subtilis,
respectively, indicating little consensus among the three programs.

Our initial prediction stems from training a neural network-based classifier (to classify a

pair of adjacent genes as either operonic boundary or not), based on the outputs of the three

aforementioned programs. Furthermore, we use additional computational data from (a)

Gene Ontology (GO) information, (b) known pathway information, and (c) log-likelihood

intergenic distance to improve the operon prediction accuracy. The GO classification is

used to compute a functional similarity score between pairs of adjacent genes in the same

directon. Additionally, we have computed KEGG pathway scores based on whether or not

gene pairs belong to common KEGG pathways. The intergenic distance feature as used

in previous studies is also inputted directly into the neural network to aid prediction since

it has been found to be a strong discriminatory feature [23, 107, 131]. Three-fold cross-

validation and train/test set validation was analyzed for E. coli and B. subtilis to examine

the performance of these features within and across species, respectively. Using the optimal
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training set, our method is applied to make operon predictions in P. furiosus. We have used

experimental data obtained from time-course microarray gene expression data to verify these

operon predictions. The idea is that genes in the same operon should in general exhibit

similar expression patterns under any experimental conditions. All predicted operons are

available at http://csbl.bmb.uga.edu/∼tran/operons along with the prediction program.

2.3 Materials and Methods

We present our method by first introducing how the positive and negative sets for training

and testing were generated. Then, we discuss the various features used to train the operon

predictor: confidence scores from JPOP, OFS, and VIMSS, GO similarity scores, KEGG

pathway scores, and intergenic distances. Next, we explore the design of our neural network

(NN) based predictor. Finally, we examine how we use the available microarray data to

validate our predictions in P. furiosus.

2.3.1 Generation of the positive and negative data sets

Since no genome-wide operons in P. furiosus have been experimentally determined, we

have benchmarked our program using operons from E. coli and B. subtilis, which have been

experimentally validated. The true positive (TP) set in E. coli are the transcriptional unit

gene pairs extracted from the RegulonDB database [130]. The generation of the negative set

represents a challenge in this study since current operon prediction programs typically only

output the confidence score of adjacent gene pairs in the same directon. Defining a negative

set using gene pairs from opposite strands as used in [23] is not applicable to our approach

because the confidence scores are not defined. These gene pairs are considered trivial by

current prediction methods since opposite strand information alone is enough to classify

them. Furthermore, using an intergenic-distance cutoff to generate a negative set may

impose certain biases and prevent the identification of operonic gene pairs that are located

far away. We generate our negative data set as follows: two adjacent genes in the same

directon are considered as a true negative (TN) gene pair if they are not transcriptionally

co-expressed, i.e., not in the same transcriptional unit. These TN gene pairs also include

adjacent genes not in a transcriptional unit with one that is present in a transcription unit.
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This approach has been used by other authors [107, 73, 71, 46, 44]. Operons of B. subtilis

obtained from [30] were extracted similarly. In addition, we consider only gene pairs with

confidence measures from all three prediction programs when generating the true positive

and true negative sets. The number of TP gene pairs in E. coli and B. subtilis are 711 and

628, respectively. The number of TN gene pairs in E. coli and B. subtilis are 374 and 556,

respectively.

In addition to the above two sets, we also consider the whole operonic gene pair set

(TP set plus those without confidence scores defined by all three prediction programs) and

a non-operon set defined as pairs of adjacent genes, with one gene on one strand and the

other gene on the opposite strand. We refer to these sets as operon and non-operon gene

pair sets, not to be confused with the true positive (TP) and true negative (TN) sets as

defined earlier. The operon set contains 821 gene pairs in E. coli and 806 gene pairs in B.

subtilis, while the non-operon set contains 1,256 gene pairs in E. coli and 1,099 gene pairs

in B. subtilis. By having the non-operon set, we know for sure that gene pairs from the

opposite strands do not belong to the same operon. This allows us to detect any biases

induced by our definition of the TN set when we examine the different features.

2.3.2 Operon prediction by existing software

Executable codes for JPOP were obtained from http://csbl.bmb.uga.edu/downloads/ [23].

The software for OFS was downloaded from

http://www.cse.wustl.edu/∼jbuhler/research/operons. We have applied OFS using the de-

fault values for all parameters and β = 0.35 as used in [161]. VIMSS had precompiled operon

predictions for some organisms, available at http://www.microbesonline.org/operons [120].

Perl scripts were written to extract the confidence values for each gene pair in the TP and

TN set. For all organisms studied in this paper, the focus is on operons with two or more

genes.

2.3.3 Gene Ontology (GO) similarity analysis

One additional source of evidence used to improve our neural network predictor is the GO

classification [7], which encompasses three levels of biological functions: biological process,
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molecular function, and cellular component. It is known that genes in the same operon are

involved in the same or similar biological processes; hence GO ontology information should

in principle be helpful for operon prediction. A similarity score is used as defined in [163],

which examines the GO-based functional assignments for each gene pair and uses an acyclic

graph [160] in the form of a tree structure to compute the depth of the common terms. The

higher the score, the more similar the two genes are since they share more common GO

terms.

The distribution of GO similarity scores for operon and non-operon gene pairs of E.

coli and B. subtilis are shown in Figure 2.2. We also include the distribution for the

{TP,TN} set in order to compare with the operon,non-operon set. As shown in Figure 2.2,

the non-operon and TN gene pairs tend to have lower GO similarity scores compared to

operon and TP gene pairs. This capability to discriminate between operon and non-operon

gene pairs makes this feature useful in our neural network predictor. The coverage of GO

similarity scores with annotation in E. coli, B. subtilis, and P. furiosus is 50%, 45%, and

29%, respectively.

2.3.4 Pathway assignment

Genes within the same operon generally encode proteins that function in the same metabolic

pathway or biological process. As such, we have generated scores based on the pathway in-

formation collected from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database

[77]. The KEGG (prokaryotic) pathways are organized into four general categories (level

1): Metabolism, Genetic Information Processing, Environmental Information Processing,

and Cellular Processes. These categories are further subdivided into level 2 and level 3

pathways. The authors of KEGG have used KEGG Orthology (KO) terms to describe each

pathway. Given a genome with annotated genes, one can assign KO terms to each gene and

determine directly the pathway in which it is involved. The KO terms can be obtained for

each organism using the following methods:

1. KEGG Orthology (KO) flatfile contains manually curated data linking KO labels to

genes of various organisms. This flatfile was obtained from
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Figure 2.2: Distribution of GO similarity scores. The probability distribution for operon
and non-operon pairs is plotted over the range of possible GO similarity scores for (A)
E. coli and (B) B. subtilis. Non-operon gene pairs tend to have lower similarity scores
compared to operon gene pairs. The probability distribution for the true positive (TP) and
true negative (TN) gene pairs used in the validation studies are given for (C) E. coli and
(D) B. subtilis. A similar trend is observed in which the majority of TN gene pairs clusters
around lower GO similarity scores compared to TP gene pairs.
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ftp://ftp.genome.jp/pub/kegg/tarfiles/ko and processed to obtain all genes in the or-

ganism with KO annotation.

2. KO-Based Annotation System (KOBAS) software [100] was used to annotate the KO

terms based on sequence-similarity searches. The program uses BLAST to assign KO

labels to genes with an E-value < 10−5 along with some additional information.

3. KEGG Automatic Annotation Server (KAAS) was also used to annotate the genes.

This annotation uses a bi-directional best hit of BLAST with a threshold BLAST bit

score > 60.

The results of these three programs were combined using the following simple heuristic

rule: when the annotation results are different among the three different methods, we use the

result by the method with the highest priority score. The KO flatfile annotation is given the

highest priority score since the results are manually curated. KOBAS is given the second

highest priority since its annotation agrees with the KO flatfile more often than KAAS.

Lastly, if the KO flatfile and KOBAS cannot assign a gene to a pathway, the annotation

result from KAAS is used. By using multiple sources to assign the KO terms, we have

increased the coverage of ORFs with KO annotation. In E. coli, the numbers of ORFs

in the KO flatfile represents 55% of all protein-coding ORFs. By adding similarity search

annotation methods like KOBAS and KAAS, the coverage improves to 61%. Likewise for

B. subtilis, the coverage improves from 46% to 54%. For P. furiosus, where the number of

manually curated ORFs in the KO flatfile represents only 38% of all protein-coding ORFs,

the addition of similarity search methods improves the coverage up to 46%.

Once the ORFs are assigned KO annotation, the KEGG pathways can be inferred

directly. A KEGG pathway score of 1, 2 or 3, was assigned to a gene pair if they share the

same level 1, level 2, or level 3 pathway, respectively. The higher this score, the higher the

chance the two gene products are in the same pathway, and hence it is more likely that the

two genes belong to the same operon. A score of -1 was assigned to a gene pair if none of

them have pathway annotation while a score of 0 was assigned if only one gene has pathway

annotation. The score distribution for the operon, non-operon and TP, TN data sets for
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Figure 2.3: Distribution of KEGG pathway scores. The probability distribution for operon
and non-operon pairs is plotted over the range of possible KEGG pathway scores for (A)
E. coli and (B) B. subtilis. A score of 1, 2, or 3 indicates that a gene pair shares common
level 1, level 2, or level 3 KEGG pathway, respectively. A score of 0 indicates that KEGG
pathway annotation is only available for one of the gene pairs. A score of -1 indicates that
KEGG pathway annotation is not available for both of the gene pairs. Operon gene pairs
typically have a KEGG pathway score of 3 (i.e., share the same level 3 KEGG pathway).
The probability distribution for the true positive (TP) and true negative (TN) gene pairs
used in the validation studies are given for (C) E. coli and (D) B. subtilis.

E. coli and B. subtilis are shown in Figure 2.3. Operon gene pairs typically have the same

level 3 pathway.

2.3.5 Intergenic distance-based log likelihood score

Another input to our NN-based predictor is an intergenic distance-based log likelihood

score defined by Eq. 4. This score for a gene pair is computed as the log ratio between the

probability that their distance belongs to the distance distribution of the TP set and the

probability this distance belongs to the distance distribution of the TN set [131]. Although

this feature is already included in JPOP, OFS, and VIMSS, adding it to the input of the
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neural network predictor is shown to improve the prediction in some cases. For our current

study, the intergenic distances were computed based on the training sets and applied to score

the distances on the test set. This is necessary since the true positive and true negative

distributions are not known. The histogram of intergenic distances for the different sets

is shown in Figure 2.4. There is a clear peak separation between the {TP,TN} set in B.

subtilis whereas in E. coli, the TN set is less pronounced and has approximately a uniform

distribution. This suggests that the performance in using the intergenic feature will vary

between B. subtilis and E. coli based on our choice of the TP and TN set. In the general

case; however, the intergenic feature is beneficial in discriminating between the operon and

non-operon gene pairs.

LL(d(ga, gb)) = ln
P (d(ga, gb)|TPgenepair)

P (d(ga, gb)|TNgenepair)
(4)

2.3.6 Neural network-based operon predictor

An artificial neural network was implemented to integrate the outputs from three operon

prediction programs in order to attain a more robust and efficient tool for operon prediction.

Intuitively, by utilizing and consolidating the strengths of these programs into a single

operon prediction tool, improved results can be realized. The question is how to best

combine the programs to produce the best possible prediction results. Neural network is

a proven technique for combining multiple sources of information, without assuming the

underlying relationships among the individual data sources. This technique is robust for

noisy data and has been widely used for many biological data analysis problems [18, 167].

The design of our NN-based predictor is achieved through three main steps: (a) data

pre-processing (feature extraction and normalization), (b) selection of appropriate network

architectures (e.g., number of layers, number of neurons), and (c) training and testing.

Iterations of (b) and (c) are needed to identify the best network architecture based on the

prediction performance.
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Figure 2.4: Histogram of intergenic distances. The counts of intergenic distance for
operon and non-operon pairs are plotted over the intergenic distance range of -50 to 300
nt for (A) E. coli and (B) B. subtilis. The same is done for that of the true positive (TP)
and true negative (TN) set for (C) E. coli and (D) B. subtilis. Comparing (C) and (D), the
distribution of the intergenic distance for B. subtilis has two well-defined peaks whereas in
E. coli, the TN distribution is more uniform. This is due to the inherent property of the
TN set in these two organisms. As discussed in the results, using the log-likelihood of the
intergenic distance in the B. subtilis data set improves performance more than in the E.
coli data set because its distribution is more “discriminative”.
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2.3.6.1 Score normalization

Normalization of the confidence scores of the three prediction programs is needed to ensure

that the dynamic range of the individual programs does not influence the performance of

the neural network. For each program, the prediction confidence measure for each gene pair

was extracted and normalized to between 0 and 1, where a value above 0.5 indicates that

the corresponding gene pair belongs to the same operon. A linear mapping was performed

to recenter the JPOP confidence scores between [0 1]. This scaling was used to keep it

consistent with the probability-based confidence measures from VIMSS and OFS. The GO

similarity score, KEGG pathway scores, and log likelihood score of intergenic distance were

also linearly normalized into the range [0 1].

2.3.6.2 Neural network training

The idea behind a neural network is to train a set of parameters to give a desired output

target (t), for a given input data (x). A trained network can then be applied to new data

x′ to predict the outcome t′. In our approach, we present the confidence measures from

each of the three prediction programs, x = [xi] for i = 1, 2, 3 to a feed-forward network

architecture (see Figure 2.5). Various combinations of GO similarity, KEGG pathway, and

intergenic distance scores were also tested as additional inputs into the NN-based predictor.

The desired output target is 0/1 {1= “gene pair in an operon”, 0= “gene pair not in an

operon”}. The training algorithm optimizes the weights W = [wi]
T and a bias, b, of the

network during the training (supervised learning) phase to minimize the error between the

network output, a, and the desired output, t, on the training data. Our neural network was

trained using MATLAB R©’s neural network toolbox. The network parameters are optimized

using the Levenberg-Marquardt algorithm. Other network training functions were tested

but either the results are not as good or the differences are insignificant compared with

our selected network (results not shown). The network architecture parameters are (a) the

transfer function (f), (b) the number of neurons, and (c) the number of layers. Various

network architectures were tried and tested on the E. coli and B. subtilis data sets. Based

on the performance on B. subtilis data, an optimal network architecture is selected and
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Figure 2.5: Schematic illustration of a one-layer neural network architecture with three
inputs from existing programs. The confidence values xi of each operon prediction program
are inputs into a neuron consisting of a summation unit and a transfer function, f , to
produce an output a.

applied to predict operons in E. coli and P. furiosus.

Plots of the receiver operating curve (ROC) [47] were generated to compare our operon

predictor with the three programs. The ROC plots the sensitivity versus (1-specificity) over

a range of program thresholds. For each classifier, the area under its receiver operating curve

(AUROC) can be computed to give a qualitative measure of the performance not dependent

on a specific threshold. Generally, the higher the AUROC, the closer the classifier’s ROC

is to the “optimal” performance, i.e., higher sensitivity and higher specificity. We have

also calculated the sensitivity, specificity, and accuracy values of our predictions, as defined

by Eqs. 5, 6, and 7, where TP is the true positive, TN is the true negative, FP is the

false positive, and FN is the false negative. The overall prediction accuracy takes into

consideration both the number of true positive and true negative correctly predicted to

provide for a good comparison of the performance among the individual programs.

Sensitivity = Sn =
TP

TP + FN
(5)

Specificity = Sp =
TN

FP + TN
(6)

Accuracy =
TP + TN

TP + FN + FP + TN
(7)
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2.3.7 Microarray data analysis

Microarray gene expression data can be used to verify the operon prediction in P. furiosus.

Genome-wide cDNA microarray data representing the original 2,065 genes in the P. furiosus

genome have been published in response to changes in carbon source [136] and cold shock

[159]. Available microarray data in P. furiosus are analyzed by two methods. The first

one applies a correlation approach to cluster time series microarray data. It is expected

that genes within an operon exhibit similar trends in their expression profiles. The second

method analyzes all published microarray data sets to identify significantly expressed gene

pairs. This approach has been applied in [136] and [159] to identify groups of putative

operons. We have re-analyzed the raw data here in order to standardize the preprocessing

procedure among the data sets.

2.3.7.1 Kinetic cold shock-microarray data and application

In this method, the expression trends of genes within an operon over time are analyzed by

using available time series (kinetic) cold shock microarray data. In the kinetic cold shock

experiment [159], the organism was grown at 95◦C and then subjected to cold shock at 72◦C

starting at time t = 0. The intensity values of the cDNA microarray were monitored at

time t = 1, 2, and 5 hour(s). The kinetic cold shock experiment consisted of two replicates

done on different dates. Each replicate consists of two duplicate slides with each having

three copies of the ORF spotted on the cDNA array. The copy, duplicate, and replicate

terminology is illustrated in Figure 2.6. The raw data were preprocessed as follows. Any

signal or reference data point with an intensity value <2000 was set to 2000 as values under

this cutoff are considered too low to be significant. Reference intensities are the initial

condition immediately before cold shock at t = 0. The log2(signal/reference) ratio is then

computed where a positive value indicates up regulation, zero indicates no regulation, and a

negative value indicates down regulation. An averaging step then averages the log2 ratios of

duplicates with copies that are all nonzero. Non-zero duplicates within the same replicate

were averaged and then combined with non-zero replicates to generate a single average log2

ratio to represent the expression of each ORF for time t = 1, 2, and 5 hour(s), respectively.
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Figure 2.6: Experimental setup of the kinetic cold shock microarrays for P. furiosus. The
kinetic cold shock experiment consists of two replicates done on separate dates. For each
replicate, there are two duplicates on two separate slides. For each duplicate, there are 3
copies of each ORF where it is spotted on the cDNA array. Having these multiple copies
and duplicates helps average out errors due to slide contamination and fabrication while
having multiple replicates helps average out experimental variability.

The Pearson correlation coefficient r as defined in Eq. 5, where x = [xt0, xt1, xt2] and

y = [yt0, yt1, yt2] represent the time series profiles for adjacent ORF x and ORF y at t0

= 1 hour, t1 = 2 hour, and t2 = 5 hour. Adjacent ORFs of the same directon with

a Pearson correlation coefficient >0.5 and intergenic distance ≤ 75 bp are predicted to

be in the same operon. The intergenic distance cutoff was determined from examining

a list of 33 known/putative operons published in literature [151, 136, 159, 82] where the

longest intergenic distance between an operonic gene pair was 74 bp. Using the correlation

coefficient and intergenic distance cutoff, we generate a “microarray evidence list” consisting

of 357 operons to validate the operon predictions of P. furiosus.

r(x, y) =

∑n
i=1(xi − x̄)(yi − ȳ)

√
∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
(8)

2.3.7.2 Generation of putative operon list based on microarray data

To date, the only studied operons in P. furiosus have been the lamA [151] and POR/VOR

[82] operons, both involved in energy metabolism. Several putative operons have been sug-

gested in [136] and [159] based on peptide+sulfur versus maltose+sulfur and batch/kinetic

cold shock data, respectively. The raw data values for these microarray experiments were

obtained from the original authors and the preprocessing was standardized among all of
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these data sets. A one-sample, two-sided unpaired t-test was performed on the log2 ratios

to identify differentially expressed ORFs and the p-value was determined by applying the

Holm’s step-down correction similar to the original papers. Unlike the original paper, the

average fold change was computed using only non-zero log2 ratios. This results in less bias

of the fold change towards lower values due to the inclusion of noisy data points. Adjacent

ORFs with an average fold change ≥ 2, a Holm’s adjusted p-value ≤ 0.01, and an intergenic

distance ≤ 30 bp were predicted as putative operon gene pairs. We refer to this list of

operons as the “putative operon list”. An intergenic distance cutoff of 30 bp is used, as it

is small enough so as not to contain any internal promoters such as TATA-boxes known to

be upstream of the transcriptional start site.

2.4 Results and Discussion

Our approach seeks to produce operon predictions with a higher accuracy (overall correct

predictions) compared to any of the three individual programs. In order to find the optimal

set of input features, we first run 3-fold cross-validation on E. coli and B. subtilis. Using

these features, we evaluate the performance across species by training on one organism and

applying it to another. After predicting the operons for P. furiosus, we apply the microarray

results to identify a putative list of operons to do further experimental study. We describe

the results of each procedure in the following sections.

2.4.1 Cross-validation on E. coli and B. subtilis

A 3-fold cross-validation was performed on E. coli and B. subtilis data using various combi-

nations of inputs into the neural network. From the ROC curves, the AUROC was computed

to compare the performance of our NN-based predictor with the three existing programs

as summarized in Table 2.1. For comparison and reproducibility, we fix the network to be

a single neuron 1-layer network with a transfer function f=logsig. This network will be

used unless otherwise specified. By integrating the confidence scores of the three existing

programs, we are able to achieve prediction results better than any single program. Even

better performance was achieved by incorporating GO, pathway, and the intergenic distance

information. For E. coli, the most useful features (in order of most to least helpful) are
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pathway, GO, and intergenic distance. On the other hand, for B. subtilis, the intergenic

distance was most beneficial, while the pathway and GO information achieved comparable

performance. As expected, using the two most helpful features for both organisms produced

slightly better results. The two sets of features that performed best can be observed in Fig-

ures 2.7 and 2.8. At virtually all threshold levels, the NN-based predictor achieves both

higher sensitivity and higher specificity than any of the three programs. For E. coli, adding

the intergenic distance actually decreased the performance compared to using inputs from

the three programs with GO and pathway information. In this case, the intergenic distance

adds more noise rather than helping. This can be explained by examining the histogram of

the intergenic distance for E. coli compared with B. subtilis on the {TP,TN} set as shown

in Figure 2.4. While the best performance for E. coli was achieved using additional GO and

pathway information, B. subtilis benefited from using all three additional features. This

is analyzed in further detail in the next section. As a side note, increasing to a two-layer

neural network with more neurons only improves the AUROC by less than 0.01 (results not

shown).

2.4.2 Validation on E. coli using B. subtilis training set

Based on the optimal set of input features determined in the previous section, we train our

NN-based predictor using the entire B. subtilis data set and test on E. coli. The results of

comparing the performance of the NN-based predictor (3 programs + GO + pathway) with

and without the intergenic distance are shown in Table 2.2. The overall accuracy on the test

set of the NN-based method is higher than any of the three existing programs. Since the

test accuracy of the NN-based method is comparable with or without the use of intergenic

distance, we decide to use the NN-based predictor with the six inputs including the inter-

genic distance because of the observed higher training accuracy. Using this architecture,

the neural network was further optimized to a 2-layer (2 hidden neurons, 1 output neuron)

to improve the overall accuracy of the test set from 0.8544 to 0.8645 as shown in Table 2.2.

The sensitivity of our NN-based predictor is comparable to OFS and JPOP; however, there

is over 6% to 8% improvement in the specificity, respectively. For VIMSS with the highest
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Table 2.1: Three-fold cross-validation results for E. coli and B. subtilis. The area under
the receiver operating curve (AUROC) is given for the three existing programs (JPOP,
OFS, VIMSS) and different sets of inputs into the neural network. The number of inputs
along with the different combinations of inputs is given from 3-fold cross-validation for
each organism. The ‘3 only’ represents the use of only the confidence scores of the three
existing programs. The ‘3 + GO’ represents the use of the three existing programs and
GO similarity score for a total of 4 inputs into the neural network. Combinations using
the pathway score and the intergenic distance scores are also given similarly. The neural
network was fixed to be a simple 1-layer 1-neuron neural network with transfer function
f=logsig. The majority of the improvement is realized by just combining the confidence
scores from the three programs (3 only); however, there is further improvement by including
other features such as GO similarity score, KEGG pathway score, and intergenic distance.
The highest AUROC for each organism is shown in bold.

3-fold cross validation results

# inputs AUROC E. coli B. subtilis

- JPOP 0.8967 0.8568
- OFS 0.9105 0.8381
- VIMSS 0.9044 0.6207

3 3 only 0.9225 0.8787
4 3 + GO 0.9262 0.8797
4 3 + pathway 0.9279 0.8798
4 3 + intergenic 0.9170 0.8926
5 3 + GO + pathway 0.9284 0.8802
5 3 + GO + intergenic 0.9218 0.8955
5 3 + pathway + intergenic 0.9267 0.8948
6 3 + GO + pathway + intergenic 0.9275 0.8963
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Figure 2.7: Three-fold cross validation results with 5 neural network inputs: 3 programs,
GO similarity score, and KEGG pathway inputs for (A) E. coli and (B) B. subtilis. For
all threshold levels, the neural network (NN) predictor is able to achieve higher Sensitivity
and Specificity or comparable performance to the other existing operon prediction pro-
grams (JPOP, OFS, VIMSS). Each plot displays the ROC from the three existing programs
{JPOP, OFS, VIMSS}, the performance of using only the GO similarity score {GO}, the
performance of using only the pathway score {pathway}, and the performance of the neural
network based predictor incorporating all of the aforementioned (5) features {NN}. The
numbers in the legend correspond to the points indicated by an asterisk (*) in the plot
showing each program’s threshold that maximizes the (Sensitivity + Specificity) value.
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Figure 2.8: Three-fold cross validation results with 6 neural inputs: 3 programs, GO
similarity score, KEGG pathway, and log-likelihood intergenic distance scores for (A) E.
coli and (B) B. subtilis. For all threshold levels, the neural network (NN) predictor is able
to achieve higher Sensitivity and Specificity than the other existing operon prediction pro-
grams (JPOP, OFS, VIMSS). Each plot displays the ROC from the three existing programs
{JPOP, OFS, VIMSS}, the performance of using only the GO similarity score {GO}, the
performance of using only the pathway score {pathway}, the performance of using only
the log likelihood score of the intergenic distance {intergenic}, and the performance of the
neural network based predictor incorporating all of the aforementioned (6) features {NN}.
The numbers in the legend correspond to the points indicated by an asterisk (*) in the plot
showing each program’s threshold that maximizes the (Sensitivity + Specificity) value.
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specificity among the three existing programs, the NN-based predictor was able to improve

the specificity slightly and improve the sensitivity by almost 4%. In summary, the NN-

based predictor was able to achieve higher sensitivity, specificity, and accuracy compared to

the three existing programs. The graphical representation and parameters of this optimal

network are shown in Figure 2.9 and Table 2.3. The corresponding ROC curves for the

training and the testing sets are shown in Figure 2.10. The AUROC for our predictor on

the E. coli test set is higher than any of the three other programs examined. We have also

tested the scheme by reversing the training and testing data; however, the improvement to

overall accuracy was marginal possibly because features in B. subtilis are more generalizable

to other organisms. As a side note to Figure 2.10A, using only the intergenic distance in

the B. subtilis training set seems to outperform the existing programs. As discussed in the

previous section, this is not true in the case of E. coli so therefore additional features are

still needed to aid prediction. Various factors have contributed to differences in performance

among the programs, including (a) how other programs define their true positive/negative

sets, (b) gene annotation data available at the time of prediction, (c) the prior distribution

used in generating the intergenic distance scores, and (d) the contribution of the intergenic

distance to each program’s prediction. It is worth discussing why VIMSS performs poorly

on the B. subtilis data set. We have investigated this by examining the histogram of the

confidence scores for each program in Figures 2.11-2.13. The distribution of the VIMSS

scores for B. subtilis seems to have poor discriminatory power between the TP and TN set.

Of the reasons mentioned earlier, this is most likely due to the differences in the B. subtilis

data sets used. Our training data set consisted of a list of 340 known operons published

recently for B. subtilis versus the data set of 100 known operons as used in VIMSS. This

and previously mentioned reasons could be investigated in later studies to help explain the

poor performance of VIMSS on B. subtilis but good performance on E. coli.

2.4.3 Validation on P. furiosus prediction using B. subtilis training set

The parameters trained on B. subtilis were then applied to two data sets from P. furiosus: a

“known operon” list consisting of 33 known/putative operons collected from the literature,
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Table 2.2: Results of testing on E. coli after fixing network parameters and threshold from
B. subtilis. The table presents the existing programs and various combinations of inputs
into the NN predictor. The number in brackets [.] following each NN predictor indicates the
number of neurons used in each layer. For example, [1] represents a single layer neuron with
1 neuron where [2,1] represents a two layer neuron network with two neurons in the hidden
layer and 1 neuron in the output layer. For each program the following are given: the fixed
threshold from B. subtilis training, sensitivity (Sn), specificity (Sp), and accuracy. In the
E. coli testing set, there is improvement in overall accuracy, sensitivity, and specificity of
the NN-based method over the existing three programs.

fixed Train (B. subtilis) Test (E. coli)
Program threshold Sn Sp Acc Sn Sp Acc

JPOP 0.3427 0.7962 0.8147 0.8049 0.8819 0.7433 0.8341
OFS 0.7494 0.8025 0.7788 0.7914 0.8819 0.7647 0.8415
VIMSS 0.6740 0.5892 0.6187 0.6030 0.8453 0.8182 0.8359

NN (3+GO+pathway)[1] 0.4164 0.8519 0.7788 0.8176 0.9241 0.7273 0.8562
NN (3+GO+pathway+intergenic)[1] 0.4756 0.8662 0.8219 0.8454 0.8903 0.7861 0.8544
NN (3+GO+pathway+intergenic)[2,1] 0.5876 0.8328 0.8651 0.8480 0.8847 0.8262 0.8645

Figure 2.9: Two-layer neural network architecture used in the training/test set validation.
The inputs to the network are confidence scores from each operon prediction program and
additional features from GO similarity, KEGG pathway, and intergenic distance scores {xi}.
The first-layer (hidden layer) consists of two neurons with transfer function f1. The second-
layer (output layer) consists of one neuron with transfer function f2. The superscripts

indicate the layer number of each parameter. Weights are denoted by w
<layer#>
<destination,source>

and biases are denoted by b
<layer#>
<neuron#>.
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Figure 2.10: (A) ROC for the B. subtilis training set. (B) ROC for E. coli using trained
parameters from B. subtilis. Each plot displays the ROC from the three existing programs
{JPOP, OFS, VIMSS}, the performance of using only the GO similarity score {GO}, the
performance of using only the pathway score {pathway}, the performance of using only
the log likelihood score of the intergenic distance {intergenic}, and the performance of the
neural network based predictor incorporating all of the aforementioned (6) features {NN}.
The numbers in the legend correspond to the points indicated by an asterisk (*) in the
plot showing each program’s threshold that maximizes the (Sensitivity+Specificity) value.
For any threshold, the NN-based method has higher performance than any of the existing
programs.
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Figure 2.11: Histogram of JPOP confidence scores. The counts of the confidence scores
for the true positive (TP) and true negative (TN) set are given for (A) E. coli and (B) B.
subtilis. The histogram for each organism shows the TP data clustering around high JPOP
confidence scores and the TN data clustering around low JPOP confidence scores.
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Figure 2.12: Histogram of OFS confidence scores. The counts of the confidence scores
for the true positive (TP) and true negative (TN) set are given for (A) E. coli and (B) B.
subtilis. The histogram for each organism shows the TP data clustering around high OFS
confidence scores while the distribution for the TN set is more uniform.
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Figure 2.13: Histogram of VIMSS confidence scores. The counts of the confidence scores
for the true positive (TP) and true negative (TN) set are given for (A) E. coli and (B) B.
subtilis. The histogram for E. coli shows the TP data clustering around high VIMSS confi-
dence scores while the distribution for the TN data clusters around lower scores. However,
in the B. subtilis data set, the histogram of the TP and the TN set is bimodal and quite
similar. This indicates lower performance of VIMSS for B. subtilis in separating the TP
and TN set as used in this study.
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Table 2.3: Optimal two-layer neural network parameters used in the training/test set
validation. The notation in the table can be found in Figure 2.9.

and the “microarray evidence list” as described in the Methods section. The testing results

on these two sets are shown in Table 2.4. It is interesting to note that the prediction sensi-

tivity is much higher at the expense of specificity. This is probably an intrinsic limitation

of applying trained parameters from one species to another (more distant) species. The

optimal performance for the “known operon” list can be found in Figure 2.14 and Table

2.5. From Table 2.5, using the optimal P. furiosus threshold, the NN-based prediction has

highest accuracy compared to any of the three methods. Depending on the tradeoff between

the sensitivity and the specificity, a user can best decide which threshold is best for their

specific application. Whichever way the threshold is chosen in P. furiosus (whether the de-

fault training threshold from B. subtilis or the optimal threshold), the prediction sensitivity

is consistently higher at the expense of lower specificity. A similar trend was observed with

the “microarray evidence list” over a range of threshold values as shown in Figure 2.15.

Although the NN-based method achieves the primary goal of our study in having higher

overall accuracy compared to other programs, the results tend to over-predict operons and

give a higher number of false positives. Between sensitivity and specificity; however, we

would prefer a higher sensitivity so as not to miss many operons. Since the objective of

our computational prediction is to provide a list of potential operons in P. furiosus so that

further experimental validation can be performed, this prediction is acceptable in our case

since we have microarray data to further filter out the false predictions. It should be noted
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Table 2.4: Results of testing on P. furiosus using fixed network parameters and threshold
from B. subtilis. The results are from applying an optimal 2-layer (2-neuron hidden layer
with a tansig transfer function and a 1 output neuron with a logsig transfer function) neural
network. The NN-based method presented uses inputs from the three existing programs
together with GO, pathway, and intergenic scores. The sensitivity (Sn), specificity (Sp),
and accuracy are given for each program under each test set. “Known operons” is a limited
set of 33 known/putative operons from literature. The microarray evidence list is described
in the microarray data analysis section.

[2,1] tansig logsig fixed known operons microarray evidence list
Program threshold Sn Sp Accuracy Sn Sp Accuracy

JPOP 0.3427 0.8972 0.6129 0.8333 0.8198 0.5657 0.7453
OFS 0.7494 0.8505 0.7419 0.8261 0.5545 0.6936 0.5953
VIMSS 0.6740 0.8972 0.7097 0.8551 0.7249 0.6970 0.7167
NN 0.5876 0.9907 0.5806 0.8986 0.9022 0.5354 0.7947

Table 2.5: Results of applying the “known operons” data set of P. furiosus at the optimal
threshold. The results are from applying an optimal 2-layer (2-neuron hidden layer, 1 output
neuron) neural network trained on B. subtilis. For each program the following are given:
the optimal threshold from testing, sensitivity (Sn), specificity (Sp), and accuracy.

[2,1] tansig logsig optimal known operons
Program threshold Sn Sp Accuracy

JPOP 0.6299 0.8692 0.7097 0.8333

OFS 0.6793 0.9065 0.7097 0.8623

VIMSS 0.8683 0.7944 0.9032 0.8188

NN 0.7293 0.9533 0.7097 0.8986

that these two test sets in P. furiosus are by no means complete and this initial attempt

to assess the performance of the NN-based method on a new organism is a rough indicator

for what one can expect based on this limited data.

2.4.4 Whole-genome operon prediction

The parameters trained on the B. subtilis set were applied to the entire genomes of E. coli,

B. subtilis, and P. furiosus. A summary of the predicted operons for E. coli, B. subtilis, and

P. furiosus is shown in Table 2.6. The NN-based method predicted 470 operons covering

1,460 ORFs in P. furiosus. An average operon consists of 3.1 ORFs. A summary of the

number of operons predicted for each organism along with other statistics for the different

programs is given in Table 2.7.
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Figure 2.14: ROC curve for the “known operon” test set from P. furiosus, which consists
of 33 known/putative operons from literature. The results use an optimal 2-layer (2-neuron
hidden layer, 1 output neuron) NN trained on B. subtilis. The plot displays the ROC
from the three existing programs {JPOP, OFS, VIMSS} and the performance of the neural
network based predictor using 6 (JPOP, OFS, VIMSS, GO similarity, pathway, intergenic
distance) features {NN}. The values in the legend correspond to the points indicated by
an asterisk (*) in the plot showing each program’s threshold that maximizes the (Sn +
Sp) value. The overall accuracy at this optimum threshold is highest in the NN method
compared to any of the other programs. The actual values are computed in Table 2.5.

Figure 2.15: ROC curve for the “microarray evidence list” test set from P. furiosus, as
discussed in Section 2.3. The results are from applying an optimal 2-layer (2-neuron hidden
layer, 1 output neuron) neural network trained on B. subtilis. The plot displays the ROC
from the three existing programs {JPOP, OFS, VIMSS} and the performance of the neural
network based predictor using 6 (JPOP, OFS, VIMSS, GO similarity, pathway, intergenic
distance) features {NN}. The values in the legend correspond to the points indicated by
an asterisk (*) in the plot showing each program’s threshold that maximizes the (Sn + Sp)
value. Over a range of threshold values, the Sn of the NN-based method is higher than
the other programs at the expense of Sp. With improved GO and pathway annotation in
P. furiosus, it is expected that the performance of the NN-based method will improve over
other methods at other thresholds.
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Table 2.6: Characteristics of operons predicted by the NN-based method for each organism.
For each organism, the number of open reading frames (ORFs) included in the operon
prediction, the number of operons, the average operon size, and the percent of gene coverage
(=100*#ORFs included in the operon prediction/Total #ORFs in the organism) are given.

Organism # ORFs # operons Ave op size % gene coverage

E. coli 2490 806 3.0893 59%
B. subtilis 2288 747 3.0629 56%
P. furiosus 1460 470 3.1064 69%

Table 2.7: Summary of the predicted operons from each program at the optimal B. subtilis
training threshold. For each program and organism, the number of open reading frames
(ORFs) included in the operon prediction, the number of operons, the average operon size,
the percent of gene coverage (=100*#ORFs included in the operon prediction/Total #ORFs
in the organism), and the number of gene pairs included in the operon prediction are given.
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Figure 2.16: Venn diagram of overlap between gene pairs for operons predicted from the
NN-based method, the “microarray evidence list”, and the “putative operon list”. Predicted
operons from the NN-based method overlapping the “microarray evidence list” and the
“putative operon list” represent strong candidates for further experimental studies.

2.4.5 Functional annotation of P. furiosus operons

The predicted operons that overlap the “microarray evidence list” are annotated and can

be found at http://csbl.bmb.uga.edu/∼tran/operons. The annotation for P. furiosus was

obtained from Genbank and the TIGR-Comprehensive Microbial Resource [117]. In ad-

dition, a subset of this list that overlaps the “putative operon list” can be found at

http://csbl.bmb.uga.edu/ tran/operons. The number of overlapping gene pairs from these

files are summarized in the Venn diagram as shown in Figure 2.16. The 646 (=489+157)

gene pairs common to our predicted operons and the “microarray evidence list” represent

349 unique operons. The 157 gene pairs that overlap all three lists form 98 operons. The

novel operons in this set provide biologists a list of targets for further experimental studies.

The 71 (=64+6+1) gene pairs in Figure 2.16, which were not predicted by the NN-based

method may be due to a combination of microarray experimental errors, the methodology

used in microarray analysis, or prediction errors. The “putative operon list” has higher

specificity than the “microarray evidence list” in terms of applying a lower intergenic dis-

tance cutoff and more microarray conditions, which can help to reduce the number of false

predictions. As a result, the majority of the gene pairs from the “putative operon list”

overlap with the NN-based prediction. The gene pairs in the microarray evidence list not

predicted by the NN-based method represent a small fraction of total gene pairs in the list
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(∼10%). These gene pairs may be errors in predictions or could be due to noisy microarray

data. The 331 gene pairs predicted by the NN-based method but not present in either of the

microarray lists may be due to over-prediction or because the condition for co-expression

may not have been tested in the microarray data available.

Our NN-based method was able to detect both of the two operons in P. furiosus that are

previously known, namely the lamA and POR/VOR operons. In the case of the POR/VOR

operon, which consists of 3 mRNA transcripts: [PF0965 PF0966 PF0967] [PF0968 PF0969

PF0970] [PF0971], our method predicted these as one large operon from PF0965 to PF0971.

This is attributed to the fact that all three existing programs predict the POR/VOR operon

as one single transcript. This is an intrinsic limitation in combining existing methods though

we expect that such cases are rare.

2.4.6 Summary

Operon prediction allows for the functional inference of hypothetical and conserved hypo-

thetical genes, and represents a key step in reconstructing biological pathways and networks

for prokaryotes. A novel neural network-based approach for operon prediction is described

herein that integrates the strengths of existing prediction algorithms, which use various

sequence features such as codon usage and intergenic distance, conserved gene order, phy-

logenetic profiles of genes, and COG functional annotation. By integrating the prediction

results of the three programs, we are able to achieve better performance by taking advan-

tage of the complementary information provided by each individual program. By using GO

annotation, KEGG pathway, and intergenic distance information as additional inputs into

our program, we have further improved upon the accuracy. The improvement in perfor-

mance by our new algorithm is demonstrated through cross-validation on E. coli and B.

subtilis, and also through the test results on E. coli using B. subtilis data as the training

set.

The use of GO annotation and KEGG pathway only improves the NN-based prediction

results slightly. This is partially due to the low coverage of GO and KO annotation in each

of the involved organisms. Even with a well-studied organism like E. coli, the coverage
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is only 50% and 61% for GO and KO annotation, respectively. With improved genome

annotation, it is expected that the application of such information should provide a higher

level of improvement in the NN-based method. One major limitation of our method, which

is typical of most machine learning approaches, is that it requires the use of training data.

In our case, the parameters of the NN and the optimal threshold were fixed based on B.

subtilis data, and applied to other prokaryotic organisms. This is a general problem with

existing operon prediction algorithms which use features that could be species dependent.

For example, the intergenic distance to distinguish between operon gene pairs and non-

operon gene pairs can vary substantially depending on species.

For our future work, other machine learning methods such as support vector machines

and decision trees can also be investigated as alternative approaches to improve the pre-

diction results. Furthermore, the NN-based prediction method can be expanded to include

newer operon prediction programs as they become available. Further analysis to reduce the

dimension of the input feature space could also be performed. This could involve testing a

neural network architecture based on only one or two existing programs in conjunction with

combinations of the GO similarity, KEGG pathway, and intergenic distance score. With

a list of predicted operons in P. furiosus, further study can be done to identify potential

regulons (groups of operons sharing a common regulatory mechanism). For each operon,

we can examine the region approximately 250 bp upstream and use prediction algorithms

such as CUBIC [110] or MEME [10] to predict potential binding sites for transcriptional

factors, and use the shared binding motifs as initial indicators for potential regulons.

The operon prediction algorithm presented in this paper coupled with GO, KEGG,

and microarray analysis brings forth the most comprehensive prediction of operon struc-

ture in the organism P. furiosus to date. This approach can similarly be applied to other

prokaryotic organisms with complete genomes. The computationally predicted operons for

P. furiosus in this study paves the way for further computational and experimental inves-

tigation into a better understanding of the regulatory pathway of this hyperthermophilic

archaeon.
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CHAPTER III

DE NOVO COMPUTATIONAL PREDICTION OF NON-CODING

RNA GENES IN PROKARYOTIC GENOMES1

The computational identification of non-coding RNA (ncRNA) genes represents one of the

most important and challenging problems in computational biology. Existing methods for

ncRNA gene prediction rely mostly on homology information, thus limiting their applica-

tions to ncRNA genes with known homologues. We present a novel de novo prediction al-

gorithm for ncRNA genes using features derived from the sequence and structures of known

ncRNA genes in comparison to decoy sequences. Using these features, we have trained

a neural network-based classifier and have applied it to Escherichia coli for genome-wide

prediction of ncRNAs. Our method has an average prediction sensitivity and specificity of

68% and 70%, respectively, for identifying windows with potential for ncRNA genes. By

combining windows of different sizes, we can recover 84/93 known ncRNA genes in E. coli.

However, this approach results in a relatively high false positive rate, which can be reduced

through additional filtering strategies. We performed Northern blot analysis on six candi-

dates and found expression of three candidates, which may be stable decay intermediates

or in one case a potential riboswitch. Our approach enables the identification of both cis-

and trans- acting ncRNAs in partially or completely sequenced microbial genomes without

requiring homology or structural conservation.

3.1 Introduction

Non-coding RNA (ncRNA) or small RNA (sRNA) genes, which encode functional RNA

molecules that are not translated into proteins, are involved in a variety of cellular processes

ranging from regulation of gene expression to RNA modification and editing [58, 66]. In

humans, it is estimated that about 98% of the genome can be transcribed, of which only

1This chapter is a result of joint work with Fengfeng Zhou, Sarah Marshburn, Mark Stead, Sidney R.
Kushner, and Ying Xu.
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∼2% encodes protein genes [140], suggesting the possibility that a large percentage of the

genome may encode ncRNA genes. It is believed that cellular regulation by ncRNAs account

for much of an organism’s complexity, particularly for higher-level organisms [102, 103].

Although the vital importance of ncRNA genes in cellular activities is well recognized,

our current knowledge about the collection of all ncRNA genes encoded in a particular

genome is very limited because of the lack of effective capabilities, either computational or

experimental, for elucidating them.

It is generally believed that the identification of ncRNA genes, particularly in prokary-

otic genomes, is more challenging than protein-coding genes. Unlike protein-coding genes,

ncRNA genes do not contain easily detectable signals such as open reading frames (i.e., a

sequence between an in-frame start codon and the first in-frame stop codon going from the

5’ to the 3’ end of the sequence), codon biases, or ribosome binding sites (RBS). Although

some ncRNA genes have recognizable promoters and terminators [6, 21], the identification

of such regulatory signals is quite challenging [40]. This identification problem is further

complicated by the fact that most ncRNA genes are much shorter than protein-coding genes

[4].

A number of computational methods for identifying ncRNA genes have been developed

and reported [6, 158, 97, 170, 173, 118, 156, 21, 165, 83, 81, 132]. These methods generally

fall into two classes: (1) methods that identify members of an ncRNA family based on

homology information and (2) methods that find novel ncRNAs based on general features

common to ncRNA genes.

(1) Homology-based methods for ncRNA gene prediction: Homology-based methods have

been widely used for the prediction of ncRNA genes with known sequence or structural

homologues by using BLAST or more sophisticated search techniques [6, 158, 53]. While

effective for identifying numerous ncRNA genes across different genomes [97], they are

not designed to find novel ncRNA genes. Compared to protein-encoding genes, additional

challenges hinder the identification of homologous RNA-encoding genes since (a) ncRNAs

are generally much shorter compared to protein-coding genes and (b) ncRNA sequences

appear to be significantly less conserved than protein-encoding sequences [31, 146, 81, 114].
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To overcome these issues, the secondary structures of ncRNA genes, which are more

conserved than sequences, have often been used to complement sequence-based homology

search. One popular class of prediction methods employs stochastic context-free grammars

(SCFG) to incorporate secondary structure information into the search for homologous

ncRNAs [170]. By combining aligned sequences from a specific class of ncRNAs and their

predicted secondary structures, a SCFG model can be generated and used to search a

database for new candidates [59, 80, 56, 169].

(2) De novo methods for novel ncRNA gene prediction: Two methods have been de-

veloped to predict novel ncRNAs. The first method identifies (relatively long) conserved

sequences in the intergenic regions across closely related genomes. This method is based on

the assumption, which is generally true for prokaryotic genomes, that such conserved re-

gions encode functional trans-acting ncRNAs and not cis-regulatory motifs. Such a strategy

has used to mine E. coli [173] and other bacterial organisms [118] for novel ncRNAs. By

limiting the search to intergenic regions, one could realistically search for ncRNA genes on

a genome-wide scale. However, this approach will miss ncRNAs that overlap protein-coding

genes, either cis- or trans-, and ncRNA genes that are unique to a genome. For example, it is

known that ∼25% of the C/D snoRNA genes overlap protein-coding genes in the Pyrococcus

abyssi genome [55]. A generalization of this type of method is to predict novel ncRNA genes

through the identification of conserved RNA secondary structures across related genomes

and further analyze their mutational patterns [122, 123] or evaluate for the folding energy

of the predicted structures [26, 32, 115, 156]. However, such structure-based methods may

suffer from having low prediction reliability [156].

The second method predicts novel ncRNA genes based on identifying both common

and distinguishing features of known ncRNA genes in target genomic regions. The features

used have included predicted promoters and terminators, as well as the base compositions

of target sequences. Typical requirements mandate that such a region be short and flanked

by promoter and terminator signals [6, 21, 165, 83]. Clearly, such methods are limited in

their effectiveness to reliably predict novel ncRNA genes for two main reasons: (a) accurate

prediction of such signals is very challenging and unreliable and (b) only a fraction of

51



terminators, namely, rho-independent terminators in prokaryotes, can be computationally

predicted [79].

Although nucleotide composition-based methods have had some success in ncRNA gene

prediction, these methods are limited to organisms with compositional bias in their ncRNA

genes in relation to their underlying genome. For example, in A/T-rich hyperthermophilic

genomes, the ncRNA genes are in general highly G/C rich [81, 132, 87]. In addition to

base composition (or mono-nucleotide composition), some programs have employed di- and

tri-nucleotide frequencies to distinguish ncRNA genes from the genomic background [153].

Such information has also been further enhanced through the use of folding energy and

known RNA motifs [18] for the prediction of ncRNA genes in E. coli.

In this paper, we present a de novo method for predicting ncRNAs in prokaryotic

genomes, using a number of novel structural features associated with known ncRNA genes.

A neural network-based classifier was trained to predict the ncRNA genes on a genome-wide

scale. We have applied this classifier to RNA gene prediction in E. coli and have compared

our predictions to other existing programs. Furthermore, we also experimentally investi-

gated six of the novel candidates identified by the algorithm using Northern blot analysis

and identified a potential riboswitch that may help regulate the expression of the mreB

gene.

3.2 Materials and Methods

To train a classifier for the de novo prediction of ncRNAs genes, we first generated a positive

data set containing known ncRNA genes and identified a set of sequence and structural-

based features that could distinguish the positive data set from non-ncRNA genes. We

assume that ncRNA genes are no longer than 1,000 nucleotides (nt), which covers the vast

majority of the known ncRNAs in prokaryotes.

3.2.1 Data set generation

Our positive ncRNA data set was derived from three existing sources: (1) the NONCODE

database [93], (2) published literature, and (3) GenBank. We did not consider tRNAs and

rRNAs in our positive data set, since they can be identified using current methods [98, 84].
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Non-coding RNA sequences from the NONCODE database were downloaded and filtered

to extract only those belonging to prokaryotic organisms. We used BLASTN to find the

exact position of each ncRNA in its host genome. Our literature search yielded ncRNA gene

annotations for four prokaryotic organisms [141, 142, 78, 111, 172]. Additionally, the NCBI

RNA annotation was searched for entries containing “RNA” but not “tRNA” or “rRNA.”

These searches yielded 427, 426, and 1,105 ncRNAs from NONCODE, published literature,

and NCBI, respectively, for a total of 1,540 non-overlapping ncRNAs, which we refer to as

“Positive1540” for future reference.

To remove redundant sequences within this data set, we applied the Markov cluster

(MCL) algorithm to group together similar sequences using the default inflation parameter

and a BLAST bit-score cutoff of 5 [45]. Application of this algorithm resulted in 936 clusters

from which we randomly selected one ncRNA from each cluster to use in our final training

data set. We refer to this data set as “Positive936” to represent our known positive controls.

The generation of the negative control represented a challenge in our work since there

are no known negative sets, i.e., regions of the genome known not to contain ncRNA genes.

Approaches using segments of the genomic background [18, 132, 129] as the control inher-

ently assume that ncRNA genes make up only a small portion of the entire genome, which

may not be correct. Other methods use randomly shuffled permutations of known ncRNA

genes to build a negative training data set [25, 81, 162, 121]. We constructed our negative

set by shuffling sequences of known ncRNA genes, while preserving both the mono- and

di-nucleotide frequencies. This approach prevented the negative set from being biased to

certain regions of the genome. The rationale for preserving the compositional frequencies

was that it enabled the calculation of the minimum folding energy (MFE) without bias-

ing the stabilizing and destabilizing energy from stacked base pairs or loops, respectively

[162, 25, 52]. We used the shuffling strategy implemented in Clote et al. [25], based on the

Altschul and Erickson algorithm [3]. We use the term “di-shuffle” to represent the shuffling

procedure that preserves the mono- and di-nucleotide frequencies. For each known ncRNA

sequence in “Positive936,” we generated 1,000 di-shuffled sequences, to which we refer as

“Dishuffle936.”
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3.2.2 Features used

Secondary structures play a key role in the functions of ncRNAs and are more highly

conserved than the primary sequences. Accordingly, we investigated a number of secondary

structure-based features in terms of their power to differentiate between ncRNAs and their

di-shuffled sequences, including novel features such as structural and ensemble statistics,

plus a few previously used features such as folding statistics.

3.2.2.1 Folding statistics

We examined the MFE [156, 18, 153] distributions for real ncRNAs and their di-shuffled

sequences. Although useful, the current thermodynamic model used in RNA secondary

structure prediction is accurate to only within 5-10% of the actual MFE, making the accu-

racy of the current MFE-based structure predictions around 50-70% [42]. Therefore we used

other features in conjunction with MFE to assess the reliability of the secondary structure

prediction. One of these features was the Shannon base-pairing entropy measure [52, 69].

Given an RNA sequence, the Shannon entropy can be computed from the ensemble of

predicted secondary structures, as shown in Eqs. 9-10, where Pi,j is the probability of base-

pairing between nucleotides at sequence positions i and j, and n is the length of the RNA

sequence. Note that the higher the entropy, the lower the structural prediction reliability.

Shannon base pairing entropy =
1

n

n
∑

i=1

Si (9)

Si = −
∑

j

Pi,jlog(Pi,j) (10)

Figure 3.1 shows the folding statistics (MFE and Shannon entropy) for each ncRNA in

Positive936 compared to Dishuffle936. In agreement with [52, 25], the ncRNAs in our data

set were observed to have lower MFE and Shannon entropy than their di-shuffled sequences.
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Figure 3.1: Boxplots for the (A) MFE and (B) Shannon entropy folding measures vs. se-
quence lengths for ncRNAs (Positive936) and decoys (Dishuffle936). The outliers indicated
by the tick marks are values more than two times the inter-quartile range. The MFE and
Shannon entropy of ncRNAs tend to be smaller than for their shuffled sequences.

3.2.2.2 Ensemble statistics

Besides the Shannon base-pairing entropy, we investigated three other ensemble-based fea-

tures to assess the global folding reliability between all structures in the Boltzmann ensem-

ble. These features included (1) the free energy of the thermodynamic ensemble, (2) the

ensemble diversity statistic computed by RNAfold, and (3) the frequency of the MFE struc-

ture. These features measured the average free energy, base-pair distance, and uniqueness

of the MFE structure [60]. The free energy of the ensemble for ncRNAs tended to be lower

and hence more stable, while the ensemble of ncRNA structures tended to be less diverse,

indicating that the structures were more unique compared to their di-shuffled sequence, as

shown in Figure 3.2.

Since the prediction accuracy of secondary structures can improve substantially with the

inclusion of suboptimal structures near the MFE [72], we applied an RNA secondary struc-

ture clustering algorithm, RNACluster [95], to cluster 1,000 predicted structures sampled

from all possible secondary structures according to the Boltzmann equilibrium probability

distribution [35]. Using the base-pairing distance between predicted secondary structures

[95], we calculated various statistics to assess the cluster quality of the sampled structures.

One statistic measured the compactness of each cluster (or cluster density) as defined in [95]
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Figure 3.2: Ensemble statistics. Boxplots for the (A) free energy of the thermodynamic
ensemble and (B) ensemble diversity folding measures vs. length for ncRNAs (Positive936)
and their decoys (Dishuffle936). The outliers indicated by the tick marks are values more
than two times the inter-quartile range. The free energy of the ensemble for ncRNAs tend
to be lower and hence more stable. The ensemble of ncRNA structures tend to be less
diverse, which indicates that their structures tend to be more unique compared to their
decoys.

and shown in Eq. 11, where dij is the base-pair distance and m is the number of structures

within a cluster.

compactness =

∑

i

∑

j dij

m(m − 1)
(11)

Unlike the clustering analysis of predicted secondary structures done by the authors of

Sfold [20, 33, 34], our approach used a rigorous and unique clustering method employed in

RNACluster [95]. RNACluster identifies dense clusters in the space of all predicted struc-

tures by representing the structures as a minimum spanning tree (MST) and by identifying

subtrees of the MST that form statistically significant clusters. We calculated five statis-

tics, based on Chan et al. [20], for discriminating structural RNAs from their decoys using

RNACluster: (1) the number of high-frequency base-pairs in the ensemble, (2) the average

number of high-frequency base-pairs per cluster, (3) the average base-pair distance between

the MFE structure and the ensemble, (4) the between-cluster sum of squares (BSS), and (5)

the within-cluster sum of squares (WSS). The BSS statistic measures the base-pair distance

between the cluster centroid and the ensemble centroid, while the WSS statistic measures

the base-pair distance between the cluster centroid with all structures within that cluster
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[20].

We define the centroids in a data set using the notation from Ding et al. [33] and

Liu et al. [95]. Given a set of m secondary structures I1, I2, . . ., Im with Ik = Ik
ij for

1 ≤ k ≤ m, where Iij = 1 if base i pairs with base j or Iij = 0 otherwise, the centroid

of a set represents a structure Ī where Īij = 1 if
∑m

k=1 Ik
ij > 0.5m or Īij = 0 otherwise.

For the ensemble centroid, the set is taken over the entire ensemble secondary structures,

while for the cluster centroid, the set is taken over the individual cluster. These centroids

define the optimal structure with the smallest base-pair distance to other structures [33].

Besides using this definition of centroid based on the optimal structure, we also selected

a non-optimal structure, Iz, for 1 ≤ z ≤ m, from the set of m structures that minimizes

∑m
k=1 D(Iz, Ik), where D(· , · ) is the base-pair distance. We recalculated the BSS and WSS

statistics based on this non-optimal “centroid” structure, which we denoted as BSS point

and WSS point, respectively. In addition, we incorporated the following novel statistics

related to the compactness of a cluster: (i) the average compactness, (ii) the maximum

compactness, (iii) the minimum compactness, (iv) the compactness of the largest cluster,

and (v) the overall compactness to assess the cluster quality generated by RNACluster.

Note that the average compactness is the mean of the compactness statistic over all the

clusters, while the overall compactness is taken over the entire collection of structures, i.e.,

the sum of all the distances normalized by the number of structures in the entire collection

of structures. The average compactness gives a more localized view of the density of the

clusters while the overall compactness gives a more global view of the density of all the

structures. Finally, we examined the number of clusters as found by RNACluster.

The statistics calculated by RNACluster were found to be highly discriminatory for

separating ncRNAs from their di-shuffled versions, as shown by the P-values in Table 3.1.

Using the RNACluster method, the structures of known ncRNAs tended to form fewer

clusters and be more densely clustered than their di-shuffled versions, as shown in Figure

3.9A. Additional compactness-related boxplots are shown in Figure 3.3. The statistics

from the largest cluster, as shown in Figure 3.4, also reflected the same trend for lower

compactness statistics in the positive set compared to the di-shuffled set. Our calculation of
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the relevant statistics from Chan et al. [20], utilizing RNACluster agrees with the authors’

results, as shown in Figures 3.5-3.7. The main advantage of using RNACluster is that

it automatically determines the optimal number of clusters through the use of the MST

clustering algorithm. This approach reduced some computational complexity in having to

compute the CH index, as needed in Sfold, to determine the optimum number of clusters

from the hierarchical clustering method [33, 35]. We showed that our calculation of the

WSS point statistic using RNACluster was more discriminative than the WSS statistic

from Sfold in Figure 3.9B and Figure 3.6B, respectively. These results are also reflected in

the P-value in Table 3.1.

3.2.2.3 Structural statistics

We also considered another set of novel structural features derived from the predicted

RNA secondary structures that was useful for the identification of ncRNAs. We examined

various properties of known RNA secondary structural elements, i.e., stems and loops for

their possible discerning power between actual ncRNAs and their di-shuffled sequences.

For each stem, loop, internal-loop, and bulge structural element, as shown in Figure 3.8,

we computed the 18 statistics defined in Table 3.2. These statistics included the number

of structural elements present in the structure, the number of nucleotides present, and

the average length of each structural element. We also examined the total internal-loop

statistics, taking into account both internal loops and bulges. The number of multiloops

and an estimated number of multiloop branches were also computed. It should be noted

that some structural features such as stem statistics have been previously used in other

applications for phylogeny studies and for identifying microRNA precursors, which have a

characteristic stem-loop structure [108]. To the best of our knowledge, these features have

not been applied in the de novo identification of ncRNAs.

From the structural statistics shown in Figure 3.10, real ncRNAs tended to have fewer

stem branches, but the stems tend to be longer on average. This longer stem preference

contributes to more stability in the RNA secondary structure. Real ncRNAs also tend

to have more loops, as shown in Figure 3.11A. This is in agreement with the published
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Table 3.1: P-value from Wilcoxon signed rank, rank sum, and paired t-test for all features.
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Figure 3.3: Ensemble statistics (RNACluster). Boxplots for the (A) number of clusters,
(B) average compactness, (C) minimum compactness, (D) maximum compactness, and (E)
overall compactness vs. length for ncRNAs (Positive936) and their decoys (Dishuffle936).
The outliers indicated by the tick marks are values more than two times the inter-quartile
range. In general, ncRNAs tend to have fewer clusters that are more dense (lower compact-
ness measure) than their decoys.
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Figure 3.4: Ensemble statistics (RNACluster). Boxplots for the (A) size of the largest
cluster and (B) compactness measure of the largest cluster vs. length for ncRNAs (Posi-
tive936) and their decoys (Dishuffle936). The outliers indicated by the tick marks are values
more than two times the inter-quartile range. For most samples, the size of the largest clus-
ter in known ncRNAs tends to be greater than their decoys. The compactness measure for
the largest cluster is also consistent with Figure 3.3.

Table 3.2: Defined RNA secondary structural statistics and computed statistics for the
RNA secondary structure from Figure 3.8.

stem count # of stem branches 5

stem nt # of nucleotides in stem base pairing 28

stem ave average length (nt) per stem = stem nt
2×stem count

2.8

loop count # of hairpin loops 2

loop nt # of nucleotides in hairpin loops 9

loop ave average length (nt) per hairpin loop = loop nt

loop count
4.5

internal count # of internal loops (excludes bulges) 1

internal nt # of nucleotides in internal loops (excludes bulges) 2

internal ave average length (nt) per internal loop = internal nt
(2×internal count)

1

internal asymmetry ave average difference in size for each side of internal loop 0

bulge count # of bulges 1

bulge nt # of nucleotides in bulges 1

bulge ave average length (nt) per bulge = bulge nt

bulge count
1

total internal count # of all internal loops = (2 × internal count) + bulge count 3

total internal nt # of nucleotides in all internal loops = internal nt + bulge nt 3

total internal ave average length (nt) per all internal loops = total internal nt
total internal count

1

multiloop count # multiloops 1

multiloop ave loop count in multiloop (estimate for # of branches) 2
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Figure 3.5: Ensemble statistics from Sfold computed using RNACluster. Boxplots for the
(A) number of high frequency base-pairs in ensemble, (B) average number of high frequency
base-pairs per cluster, and (C) average base-pair distance of MFE in ensemble vs. length for
ncRNAs (Positive936) and their decoys (Dishuffle936). The outliers indicated by the tick
marks are values more than two times the inter-quartile range. The results are consistent
with the results from [20].
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Figure 3.6: Ensemble statistics from Sfold computed using RNACluster. Boxplots for the
(A) between-cluster sum of squares (BSS) and (B) within-cluster sum of squares (WSS) vs.
length for ncRNAs (Positive936) and their decoys (Dishuffle936). The outliers indicated
by the tick marks are values more than two times the inter-quartile range. The results are
consistent with the results from [20].

Figure 3.7: Ensemble statistics (RNACluster). Boxplots for the (A) between-cluster
sum of squares (BSS point) and (B) within-cluster sum of squares (WSS point) vs. length
for ncRNAs (Positive936) and their decoys (Dishuffle936). The outliers indicated by the
tick marks are values more than two times the inter-quartile range. The BSS point and
WSS point are generally smaller in known ncRNAs than in their decoys. The results are
consistent with the results in Figure 3.6 and may be more discriminative on visual compar-
ison of Figures 3.7 (B) and 3.6 (B).
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Figure 3.8: Basic RNA secondary structural elements consist of stems, hairpin-loops,
internal-loops, and multiloops. RNA can fold onto itself by forming three, two, or one hy-
drogen bond(s) between nucleotide pairs C-G, A-U, and G-U pairs, respectively. The stems
are regions with hydrogen bond base pairing represented by a connecting line. Consecutive
stem base pairings are called branches. Single-stranded regions with no base pairing be-
long to hairpin-loops, internal-loops, or multiloops. Hairpin-loop regions are single-stranded
segments of the secondary structure closed by exactly one branch, whereas internal-loops
are closed by exactly two branches. Multiloops are special cases in which three or more
branches are connected. A bulge is a special case of an internal-loop in which one side does
not have extra single-stranded bases.

literature where the single-stranded regions of loops can play an important role in RNA-

protein interaction [2, 63, 75, 38]. In addition, loops often times contain regions of target

complemetarity between ncRNAs and their mRNA targets in microbes. The presence of

more loops may also be related to the functional role of the ncRNAs. When multiloops are

present, there tended to be more loops in real ncRNAs than in their di-shuffled version, as

shown in Figure 3.12. Not all single-stranded regions were more dominant in real ncRNAs.

As seen in Figure 3.11B, the total internal-loops consisting of internal loops and bulge

regions were actually less in ncRNAs than in their di-shuffled sequences. This tendency for

ncRNAs to have fewer of such structural elements may have some functional interpretation

that can be applied to ncRNA gene finding. Additional boxplots for loop-related structures

are shown in Figures 3.13-3.14.
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Figure 3.9: Ensemble statistics. Boxplots for the (A) overall compactness and (B) within
cluster sum of squares vs. sequence lengths for ncRNAs (Positive936) and their decoys
(Dishuffle936). The outliers indicated by the tick marks are values more than two times
the inter-quartile range. In general, ncRNAs tend to have fewer clusters that are denser
(lower compactness measure) than their decoys and their within-cluster sum of squares is
generally smaller than that of their decoys.

3.2.2.4 Significant features

For all the features examined above, we used hypothesis testing to identify those features

that can potentially distinguish known ncRNAs from their di-shuffled sequences. We per-

formed a paired t-test, comparing the mean of the features from the Positive936 data set

with the mean from the Dishuffle936 data set, and computed the P-value estimating the

probability that these samples have the same means, as summarized in Table 3.1. Since the

t-test assumes distributions of equal variances, we also computed the significance according

to the Wilcoxon signed rank and rank sum test not based on this assumption and found

similar results. We manually selected a set of 25 features with significant P-values below

0.05, which we refer as the f25 feature set. This set included two folding statistics, two

ensemble statistics, 14 RNACluster statistics, and seven structural statistics, as shown in

Table 3.1. All features were length normalized (when applicable) before using them for

genome-wide prediction.

3.2.3 Application to genome-wide prediction

We extracted all 93 known ncRNAs for E. coli from the Positive1540 data set. Using

these ncRNAs as queries, we ran an all-versus-all BLASTN search against the Positive936
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Figure 3.10: Structural statistics. Boxplots for the (A) stem count and (B) stem average
vs. lengths for ncRNAs (Positive936) and their decoys (Dishuffle936). The outliers indicated
by the tick marks are values more than two times the inter-quartile range. In general,
ncRNAs tend to have fewer stem regions while each stem region is longer on average than
their decoys.

data set and removed all the Positive936 hits below an E-value cutoff of 10−5. We re-

duced the original Positive936 data set to 800 unique ncRNAs after removing sequences

homologous to the 93 known ncRNAs. We then used this data set without known ncR-

NAs in E. coli for training and refer to it as Positive800 ecoli. We explored four different

sets as the negative training data sets for training our classifiers. The prediction consis-

tency among the trained classifiers based on these different negative sets helped to enhance

confidence in our feature-based prediction of ncRNAs. Negative Set1 used the di-shuffled

sequences of Positive800 ecoli. Negative Set2 consisted of di-shuffled randomly selected se-

quence segments in E. coli to ensure that no ncRNA-related secondary structures were

present. Negative Set3 took di-shuffled random segments in E. coli corresponding to where

samples of Positive800 ecoli were found, i.e., intergenic, protein-overlapping, or antisense to

protein-coding region. Negative Set4 was similar to Negative Set3 but the sequences were

not di-shuffled. Additional details on each negative set are shown in Table 3.3.

For each negative training set, we computed all the f25 significant features and an addi-

tional 20 sequence-based statistics, namely, four mono- and 16 di-mer frequencies because

they were useful in distinguishing between real ncRNAs and decoys by previous algorithms

[81, 132, 18, 153, 94]. We used a feature-ranking procedure based on the F1 score to assess
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Table 3.3: Negative sets tested using E. coli genome.

Negative Set1 (Dishuffle ncRNAs)

If si represents the ith sequence where 1 ≤ i ≤ 800, Negative Set1 was generated
by dishuffling each sample in Positive800 ecoli, i.e., dishuffle(si). This shuffling
procedure allowed the mono- and di-nucleotide frequencies to be preserved while disrupting
any secondary structure present in the positive set.

Negative Set2 (Dishuffle random positions in organism)
For Negative Set2, we generated a negative sample corresponding to
dishuffle(random(genome(Ecoli),length(si))), which randomly selects a genomic
segment in the E. coli genome of length corresponding to the original Positive800 ecoli
and then apply the dishuffling strategy. This negative set approach allows for base
composition differences among various organisms to be taken into account but at the same
time distorting any sort of secondary structure that may be present in the random sampling.

Negative Set3(Dishuffle random positions in organism sampled with a priori genomic location)
For each sample in the Positive800 ecoli data set, Negative Set3 was generated as a
function of dishuffle(random(genome(Ecoli),length(si),caseid(si))) where the random
sample in E. coli is taken as a function of the length of the original sequence and
where caseid(si) can be ‘intergenic’, ‘CDS same’, ‘antisense’, or ‘other’. ‘Intergenic’
corresponds to those regions in which the ncRNA does not overlap any annotated
protein-coding genes. ‘CDS same’ refers to the case when the ncRNA overlaps an annotated
protein-coding gene transcribed on the same strand. ‘Antisense’ is the case when the ncRNA
overlaps an annotated protein-coding gene transcribed in the opposite strand. The ‘other’
case captures any other case not previously caught, e.g., when an ncRNA could overlap
protein-coding genes on both the same strand and the opposite strand. This negative set
allows for the sampling to be more constrained to specific regions of the genome by
imposing the additional condition of caseid.

Negative Set4(Random positions in organism sampled with a priori genomic location)
Negative Set4 is similar to Negative Set3; however, we do not perform the dishuffling
strategy but instead use the sampled sequence from the organism, i.e., the negative set
is defined as random(genome(Ecoli),length(si),caseid(si)). This negative set
was generated so that we can assess the performance of the shuffling procedure
preserving mono- and di-nucleotide frequencies.
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Figure 3.11: Structural statistics. Boxplots for the (A) hairpin-loop count and (B) total
internal-structure count (internal-loop and bulges) vs. lengths for ncRNAs (Positive936)
and their decoys (Dishuffle936). The outliers indicated by the tick marks are values more
than two times the inter-quartile range. In general, ncRNAs tend to have more loop regions
and fewer internal-loops on average than their decoys.

the discrimination power as defined in Eq. 12 [108], where m and s represent the mean

and standard deviation of the positive (p) and the negative (n) distribution, respectively.

Higher F1 scores indicated features with higher discriminative power between the positive

and the negative sets. The top t features, as ranked by the F1 score, were used to train a

neural network-based classifier to discriminate Positive800 ecoli from a given negative set.

F1 score = |
µp − µn

σp + σn
| (12)

Neural networks (NN) are a class of machine learning algorithms, widely used for solv-

ing classification problems based on multiple sources of information without assuming the

underlying relationships among the individual information sources. This technique is ro-

bust for noisy data and has been widely used for many biological data analysis problems

[18, 167, 145].

We trained our NN-based classifier using MATLAB’s NN toolbox using the input fea-

tures derived from our data set. The network parameters were optimized using the Levenberg-

Marquardt algorithm to obtain the desired binary (1/0) classification label depending on

whether each sample contains an ncRNA or not. Our classifier has a single layer, one-neuron

architecture using a logsig activation function. Other NN architectures with more neurons
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Figure 3.12: Structural statistics. Boxplots for the multiloop average vs. length for
ncRNAs (Positive936) and their decoys (Dishuffle936). The outliers indicated by the tick
marks are values more than two times the inter-quartile range. In general, ncRNAs tend to
have higher number of multiloops (branches) than their decoys.

Figure 3.13: Structural statistics. Boxplots for the (A) loop count and (B) loop average vs.
length for ncRNAs (Positive936) and their decoys (dishuffle936). The outliers indicated by
the tick marks are values more than two times the inter-quartile range. In general, ncRNAs
tend to have more number of loop regions and each loop region is shorter on average than
their decoys.
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Figure 3.14: Structural statistics. Boxplots for the (A) total internal count and (B) total
internal nucleotide vs. length for ncRNAs (Positive936) and their decoys (Dishuffle936).
The outliers indicated by the tick marks are values more than two times the inter-quartile
range. In general, ncRNAs tend to have fewer internal-loops and each internal-loop is
shorter in length than their decoys.

in the current one-layer and two- and three- layer networks were also examined, but the

performance improvements were negligible (data not shown). We tested each negative set

by applying its corresponding trained NN to genome-wide prediction of ncRNAs in E. coli

K12 (NC 000913). To do this, we divided the whole genome into sequences of overlapping

windows with lengths w = 40, 80, . . . , and 280 nt, on both the forward and the reverse

strands, where consecutive windows overlap by w/2, as illustrated in Figure 3.16. These

window lengths were reflective of the typical lengths of known ncRNAs, whose distribution

in E. coli is shown in Figure 3.15. For each window, the features were computed and a

class label was assigned depending on whether or not the window overlapped an ncRNA.

A schematic of the training/testing procedure is summarized in Figure 3.16.

3.2.3.1 Comparison of negative sets

The training results based on the four different negative sets are shown in Table 1, where

the largest area under the receiver operating curve (AUROC) is shown. The AUROC gives

a measure of the prediction performance of the trained classifier, independent of a specific

threshold. In general, a larger AUROC reflects higher sensitivity and higher specificity. A

smaller AUROC was observed for Negative Set1 compared to the others since the latter
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Figure 3.15: Histogram plot of the number of ncRNAs at each length contained in the
known E. coli set.

Figure 3.16: Schematic of the training/testing procedure for de novo genome-wide predic-
tion of ncRNA genes. For each negative set, the features were extracted for each sample i of
the positive and negative set for 1 ≤ i ≤ k. Each sliding window, w, and the corresponding
features were used as inputs to our NN-based classifier to predict if that sequence has the
potential to contain an ncRNA gene.
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benefits from having training samples with organism-specific structure and sequence infor-

mation. Negative Set2 gave the best performance when using 25 features, which can be

found in Table 3.4. Repeated simulations on five different instances of Negative Set2 gave

similar AUROC values with an overall mean of 0.6438 and a standard deviation of 0.0115.

Also, if we used all 45 features available, the performance of our trained classifier based on

Negative Set2 and Negative Set3 was comparable (data not shown), thus justifying our use

of Negative Set2 for additional analyses. Furthermore, Negative Set3 added the complex-

ity and an additional assumption on the prior distribution of where ncRNAs were found,

e.g., intergenic, within protein-coding regions or antisense to protein-coding regions. Nega-

tive Set3 resulted in a marginal improvement in AUROC over Negative Set4, implying that

the di-shuffling procedure does not bias the feature discrimination for identifying ncRNAs.

3.2.3.2 Meta-learner classifier to combine information from different window sizes

From Table 3.5, we noted that the prediction performance of our trained classifier var-

ied depending on the window size used. We speculated that by combining the prediction

performance across the different window sizes, we could further improve the prediction per-

formance. By doing so, it enabled each classifier of a different window size to distinguish the

positive (ncRNAs) from the negative training data for genes of different lengths. Hence, we

modified the training/testing procedure slightly by training the classifier for each window

size separately and then combining the prediction results of each classifier using a voting

classifier, called a meta-learner, as summarized in Figure 3.17. We omit further technical

details about dealing with overlapping windows of different sizes.

3.2.3.3 Filter using conservation, promoter, terminator, and positional information

To reduce the false positive rate in our predictions, we explored various filtering strate-

gies based on other available data from E. coli. Like other approaches, we analyzed our

predictions in conjunction with other sequence-level signals such as sequence conservation,

promoter, and terminator information [6, 21].

For each prediction, we ran BLASTN to search against GenBank and collected all the hit

sequences with E-value < 10−5. We also used the promoter and transcription factor binding
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Table 3.4: Features used in Negative Set2 as sorted by the F1 score, the higher the score
the more discriminative the feature.
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Table 3.5: AUROC values for the four negative training sets. Each row represents the
AUROC values for a different window size, w, using both the forward and reverse strands.

Figure 3.17: Schematic of classifier architecture used for genome-wide prediction. The
results of each NN-based classifier are then post-processed and combined into a final NN-
based classifier to make the final prediction. The output of the length-specific NN-based
classifiers and voting classifier are labeled by score ri for 0 ≤ i ≤ N and score s, respectively.

74



site information from RegulonDB [130] to compile promoter regions within 300 nucleotides

upstream of the predicted ncRNA. TransTermHP [79] was used to predict rho-independent

transcription terminators downstream of our predicted ncRNAs.

In addition, we analyzed the position of known ncRNAs in E. coli by classifying each one

into four classes: (1) intergenic, (2) cds samestrand, (3) antisense, and (4) other cases. An-

tisense and cds samestrand cases corresponded to occurrences when an ncRNA overlapped

with an annotated protein-coding region on the antisense strand or the same strand, respec-

tively. The other cases capture special situations where sections of an ncRNA overlapped

both an antisense and a cds samestrand case.

Our analysis of the known ncRNA genes in E. coli indicated that 52% were found in

intergenic regions. This location bias could be due to the fact that previous studies on

ncRNA genes have been mostly focused on intergenic regions. Antisense, cds samestrand,

and other cases represent 26%, 19%, and 3% of the known ncRNA genes in E. coli, respec-

tively. Antisense and cds samestrand cases were further subcategorized into those ncRNAs

that fully or partially overlapped a protein-coding region. We focused on the partially over-

lapping subcategories because (1) in both Positive800 ecoli and our E. coli data set, the

partially overlapping case was approximately twice as common as the fully overlapping case

and (2) experimental validation of fully overlapping cases is difficult [68]. For the partially

overlapping cases, we computed the log likelihood score using Eq. 13, where ntoverlap is

the number of nt in overlap between the ncRNA and the protein-coding region. The log

likelihood for the antisense and cds samestrand cases with partial overlap is shown for the

Positive800 ecoli dataset in Figure 3.18. We noted that ncRNA genes partially overlapped

protein-coding regions by no more than ∼50 nt, which is good for discriminating between

the positive and negative sets.

We exhaustively tested different combinations of conservation, promoter, terminator,

and positional cases based on the above observations to obtain our final list of candidate

ncRNA genes.

LL(ntoverlap(ncRNA, CDS)) = ln
P (ntoverlap(ncRNA, CDS)|TP )

P (ntoverlap(ncRNA, CDS)|TN)
(13)
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Figure 3.18: Log likelihood for the cds samestrand and antisense cases with partial overlap
for the Positive800 ecoli data set. A positive log likelihood score for nucleotide overlap <

50 nt indicates that ncRNAs tend to overlap protein-coding genes by less than this cutoff.

3.2.3.4 Filtering with tiling array data to identify candidates for experimental valida-
tion

To identify a manageable list of candidates for experimental validation, we employed data

from a high-density tiling array. Such an array permits an unbiased analysis of complete

genomic transcription, including ncRNAs. By comparing our predictions to tiling array

candidates, we significantly reduced the number of potentially false positive predictions. The

whole genome-tiling array data set was derived by comparing an RNase E deletion strain

of E. coli with a wild type control (Stead, M., Marshburn, S., Castillo, L.P., Ray, D.,van

Bakel, H., Hughes, T., and Kushner, S., manuscript in preparation). This strain was chosen

because RNase E has been shown to play an important role in general RNA metabolism

in E. coli [11, 113, 11]. The authors identified 402 possible ncRNA candidates based on

increased steady-state RNA levels in the RNase E deletion strain compared to a wild type

control (Stead, M., Marshburn, S., Castillo, L.P., Ray, D.,van Bakel, H., Hughes, T., and

Kushner, S., manuscript in preparation). Overall, we filtered our program’s predictions

based on the following conditions: (1) the potential ncRNA was conserved; (2) it contained

either a predicted promoter or terminator; (3) its overlap with a protein-coding region (if
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applicable) was < 50 nt; and, (4) it overlapped candidates derived from the tiling array.

3.2.3.5 Bacterial strains, isolation of total RNA and Northern analysis

The E. coli strains used in this study were MG1693 (thyA715 rph-1 ), which was provided

by the E. coli Genetic Stock Center (Yale University) and an isogenic derivative, SK3564

(rne∆1018::bla thyA715 rph-1 recA56 srlD::Tn10/pDHK30(rng-219 Smr/Spr)/pWSK129

(Kmr) which has been described previously [106]. Both strains were grown in Luria broth

supplemented with thymine (50 µg/ml) at 37◦C. For MG1693, cells were harvested at 3.5, 6,

8, and 10 hours post-inoculation, corresponding to mid-log, early stationary, mid stationary

and late stationary phase growth. For SK3564 the cells were grown in the same manner,

but in order to account for its slower growth rate, were harvested at 11.5, 17.5, 20 and 23

hours post-inoculation. Harvested cells were mixed with an equal volume of crushed frozen

TM buffer (10 mM Tris [pH 7.2]/5 mM MgCl2) containing 20 mM NaN3 and 0.4 mg/ml

chloramphenicol [109]. The cells were then centrifuged at 5,000 rpm for 10 min at 4◦C.

The cell pellets were subsequently resuspended in Trizol (Invitrogen) and total RNA was

extracted according to the manufacturer’s instructions. The RNA samples were treated

with DNase I using a DNA-free kitTM (Ambion), ethanol precipitated, quantitated with

a Nanodrop apparatus (NanoDrop Technologies) and visualed on 1.0% agarose gels. For

Northern analysis, 30 µg of total RNA was loaded in each lane and separated on either 6% or

8% polyacrylamide/8.3 M urea gels [150] and subsequently transferred onto Magnacharge

nylon membranes (GE Water & Processing technologies) by electroblotting (1 h, 80 V,

4◦C). Membranes were prehybridized in ULTRAhyb Ultrasensitive Hybridization Buffer

(Ambion) at 68◦C and probed with internally labeled, in vitro transcribed RNA oligomers

(oligonucleotide sequences used to generate the probes are available on request). The mem-

branes were washed twice with 2X SSC/0.1% SDS at room temperature for five minutes

each and then twice with 0.1X SSC/0.1% SDS at 68◦C for 15 minutes each. Hybridization

was visualized on a Storm 840 PhosphorImager (Molecular Dynamics).

By utilizing folding, ensemble, and structure-based features, we developed our NN-based

meta-learner for the de novo search of ncRNAs on a genome-wide scale. We compared the
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prediction results of our method in E. coli to existing programs relying on homology and

other information and found that our results are as good or in some cases better than these

methods.

3.2.4 ncRNA prediction in E. coli

Table 3.6 summarizes the detailed prediction performance of the meta-learner. Our trained

meta-learner achieved an average prediction sensitivity of 68%, specificity of 70%, and an

overall accuracy of 70% for predicting windows containing ncRNAs in E. coli. By combining

prediction results from individual window-specific NN-based classifiers, our meta-learner

improved the prediction performance of the best individual window-specific classifier by

∼10% as measured by the AUROC values. The optimal AUROC performance was achieved

using three window sizes, w = 100, 120, and 160 nt, corresponding to three peaks of the

ncRNA-length distribution in E. coli. If no such prior knowledge for a target genome is

available, the user could use the default seven window sizes of 40, 80, 120, 160, 200, 240,

and 280 nt to combine the scores into a meta-learner. Although the performance using

these seven windows yielded an average sensitivity of 73%, specificity of 52%, and overall

accuracy of 52%, it was still better compared to using any single window size. The trade-off

for higher sensitivity is lower specificity in the forward strand. The accuracy approximates

the specificity since the size of the true negative set is substantially larger than the size of

the true positive set.

We used the results from the three window sizes to further analyze the predictions for

E. coli. The AUROC curve for the E. coli test performance is given in Figure 3.19. For

other organisms, users can select a threshold necessary to obtain a desired sensitivity and

specificity trade-off for their application. For example from Figure 3.19, if we require a high

specificity >90% for our application, we can choose a more stringent threshold of 0.75 to

give sensitivities of 44% and 33% on the direct and reverse strands, respectively. These

performance measurements assess the ability of our classifier to identify windows with the

potential to contain an ncRNA.

We then obtained a unique list of candidates for the genome by labeling continuous
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Table 3.6: Performance of our ncRNA gene prediction using different combinations of
window sizes. Rows 2 and 3 show prediction results from three window sizes, w = 100, 120,
160. Rows 4 and 5 show prediction results from seven window sizes, w = 40, 80, 120, 160,
200, 240, 280. The performance is separately given for the forward and reverse strand in
terms of true positive (TP), false positive (FP), false negative (FN), and true negative (TN).
The prediction sensitivity, specificity, and accuracy are computed as Sn=TP/(TP+FN),
Sp=TN/(TN+FP), and (TP+TN)/(TP+FN+FP+TN), respectively. All these prediction
results are based on using the same NN output threshold from training. It should be noted
that the AUROC was computed independent of threshold.

# win strand TP FP FN TN Sn Sp Acc AUROC

3 plus 395 77802 155 153630 0.7182 0.6638 0.6640 0.7557

3 minus 328 63072 180 168402 0.6457 0.7275 0.7273 0.7628

7 plus 440 127456 110 103976 0.8000 0.4493 0.4501 0.7014

7 minus 331 94896 177 136578 0.6516 0.5900 0.5902 0.6548

regions with NN scores above the user chosen threshold. For example, when we used the

training threshold, we predicted a total of 16,571 ncRNAs (8,712 on the forward strand, and

7,859 on the reverse strand) for the entire E. coli genome. Within this set, 51 candidates

on the forward strand and 42 candidates on the reverse strand overlapped a known ncRNA

gene. After accounting for overlap to a known ncRNA gene, these positive candidates corre-

sponded to 47 out of 51 ncRNAs on the direct strand and 37 out of 42 ncRNAs on the reverse

strand, giving rise to a prediction sensitivity of 90% (Sn=TP/(TP+FN)=(47+37)/(51+42))

and a positive predictive value (PPV) of 0.56% (PPV=TP/(TP+FP)=(51+42)/16571).

Higher PPV measurements are preferred since they indicate how likely a positive prediction

is really an actual ncRNA. For example, by selecting a more stringent threshold of 0.75 as

shown in Figure 3.20, we increased the PPV to 0.85% while maintaining an ncRNA gene

sensitivity of 69%. These performance measurements assessed the ability of our classifier

to identify ncRNA genes given all our positive predictions.

Additionally, we ran BLASTN on all our predicted candidates and found that over 95%

of the hits had significant conservation (E-value ¡ 10−5) to other non-E. coli organisms,

as shown in Figure 3.21. For the intergenic case, 93% predictions were conserved in other

prokaryotic species, suggesting that these predictions were highly conserved independent of

ORF conservation.
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Figure 3.19: ROC curves for E. coli test performance on the direct and reverse strands.

3.2.5 Comparison of our prediction with other programs

We filtered our 16,571-predicted set using conservation, promoter, terminator, and posi-

tional information. The performance results presented here were strand independent since

some existing programs [123, 153] gave E. coli ncRNA coordinates without specific strand

information. Figure 3.22 shows a scatter plot of the sensitivity vs. PPV for various filtering

combinations on our predictions compared to other programs in E. coli. As we can see from

Figure 3.22, our prediction sensitivity and PPV values were comparable to or better than

the best existing programs. Depending on the specific data available for filtering, we could

identify a final set of candidates depending on whether preference is given towards choosing

candidates with high sensitivity or high PPV.

Our de novo approach combined with specific filtering criteria outperformed three of

the five existing programs as shown in Figure 3.22. In each of these cases, we could select

specific filtering criteria that produce predictions with better sensitivity and PPV results

than predictions by these programs. For illustration purposes, we selected a simple filtering

strategy to balance the overall sensitivity and PPV that requires the ncRNA prediction to

(1) fall into an antisense case and (2) have nucleotide overlap < 50 nt with a protein-coding
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Figure 3.20: Sensitivity of known ncRNAs found (direct and reverse strands) versus NN
threshold for E. coli. The total number of positive predictions versus NN threshold is also
given. By adjusting the cutoff for the NN threshold, we can select the best trade-off in
sensitivity and number of positive predictions.

region.

Based on the filtering criteria, we predicted 601 candidates and recovered 41% of known

ncRNAs in E. coli with a PPV of 6%. Our list of 601 candidates included 23 candidates

that overlapped known strand-specific ncRNAs, four candidates that overlapped annotated

tRNAs, and 574 novel candidates. A summary of the prediction sensitivity (Sn) and positive

prediction values (PPV) for the different programs is summarized in Table 3.7. Rivas et al.

[123] had an overall better sensitivity and PPV than ours. However, their program relied on

using prior knowledge of multiple alignments for identification of conserved regions, which

may not be generally available for all genomes. Chen et al. [21] had better PPV but lower

sensitivity than our program. Compared to Carter et al. [18], we had over 6% improvement

in sensitivity with approximately equal PPV. Our predictions were also significantly better

in Sn and PPV compared to Saetrom et al. [129] and Wang et al. [153].
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Figure 3.21: Number of non-E. coli BLAST hits for different positional cases: intergenic,
antisense, cds samestrand, and cds other. Antisense and cds samestrand cases are further
subcategorized into those that partially or fully overlap (within) a protein-coding region.
Significant BLAST hits were found in over 95% of our total predictions.

Table 3.7: Comparison of prediction performance by different programs. The
number of predictions, sensitivity (Sn=TP/(TP+FN)), and positive prediction value
(PPV=TP/(TP+FP)) is given for each program [18, 21, 122, 129, 153].

Program # predictions Sn PPV

Carter 563 0.3441 0.0568

Chen 227 0.2903 0.1189

Rivas 275 0.4086 0.1382

Saestrom 306 0.1183 0.0359

Wang 420 0.0753 0.0167

Tran 601 0.4086 0.0632

3.2.5.1 Experimental verification of selected ncRNA candidates

By applying a specific set of filtering criteria based on conservation, promoter/terminator,

positional, and tiling array data, we predicted 31 candidates for further validation, of which

17 overlapped with known ncRNA genes or annotated tRNA/rRNA genes in E. coli. From

the 14 remaining novel predictions, eight were excluded because they overlapped with pre-

dicted ncRNA genes derived from other programs [18, 21, 122, 129, 153, 144]. The remaining

six candidates (#5, 6, 8, 9, 11 and 12), as shown in Table 3.8, did not overlap with pre-

dictions by the other prediction programs, and had higher steady-state levels in the RNase

E mutant. Based on our Northern analysis, three of the candidates (5, 6, and 8) were not

observed in either the RNase E mutant or the wild type control (data not shown). Since
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Figure 3.22: Comparison of performance for different programs in E. coli. The sensitivity
(Sn=TP/(TP+FN)) and positive predictive value (PPV=TP/(TP+FP)) is shown for each
program [18, 21, 122, 129, 153].

the tiling array has a higher sensitivity than the Northern analysis, we suspect that these

potential ncRNAs are transcribed at such low levels that they could not be detected even

in the RNase E deletion mutant.

Candidate 9 overlaps a region downstream of the rho-independent transcription termi-

nator associated with the ydgA gene. It also overlaps a repetitive extragenic palindrome

called RIP126 [127]. Using an RNA probe of 130 nt, a large species of 480 nt was observed

in mid-log phase cells in a wild type strain (data not shown). Interestingly, significant

Table 3.8: Coordinates for the six ncRNA candidates chosen for experimental validation.
The id, strand (0=direct, 1=reverse), start, and stop positions are given for each candidate.

candidate # strand start stop

5 0 3086121 3086340

6 0 4213201 4213520

8 0 770261 770500

9 0 1689401 1689600

11 1 3399181 3399240

12 0 3483881 3484140
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amounts of smaller species of 140, 170, and 215 nt appeared as the cells entered stationary

phase (data not shown). However, there is considerable nucleotide sequence conservation

among the various RIP elements; hence we designed a second RNA probe (a 30-mer) that

was specific for RIP126. With this probe, we observed only the 480 nt species, which was

visible in both mid-log and early stationary phase cells (data not shown). While we cannot

conclude at this time if this species is a true ncRNA, we believe that it either represents

a stable decay intermediate of the upstream ydgA mRNA or, if independently transcribed,

contains a significant region of antisense to the 3’ terminus of the adjacent uldC mRNA,

which is transcribed in the opposite direction. It should also be noted that at least some of

the RIP elements accumulate in stationary phase cells (data not shown).

Candidate 12 is located in the 5’ untranslated region (UTR) of the crp gene. Previous

experiments have shown the existence of three potential promoters (P1, P2, and P3) for

this gene [70]. Transcription initiation from P3 would generate a 5’ UTR of 167 nt. The

RNA probe used was 89 nt in length and would detect RNA species arising from all three

promoters. As shown in Figure 3.23A, a large number of discrete species were detected in

the exponentially growing wild type cells, but most of them rapidly disappeared as the cells

entered a stationary phase (data not shown). Strikingly, in the RNase E deletion the ∼700

nt transcript was the predominate species, demonstrating that almost all of the smaller

products observed in the wild type control arose from RNase E cleavages. An ∼150 nt

species was still detected in the RNase E mutant, which could have arisen from inefficient

cleavages by RNase G. Since the large species detected in both the RNase E mutant and the

wild type control was of the approximate size of the full-length crp mRNA, we speculate

that all of the species observed in wild type cells (Figure 3.23A) are relatively stable mRNA

decay products that retain some or all of the 5’ UTR.

Candidate 11 falls within the 5’ UTR of the mreB gene, a locus that is involved in

establishment of the rod shape of the cell [137]. Transcriptional analysis of this gene has

identified three potential promoters based on primer extension analysis [152]. Transcription

from the most distal promoter would generate a 5’ UTR of 267 nt. Using an RNA probe of

145 nt, we detected numerous species in the exponentially growing wild type cells (Figure
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3.23B). Surprisingly, in the RNase E deletion strain, only a single 215 nt species was de-

tected. Examination of the nucleotide sequence indicated that the potential P2 promoter

observed by Wachi et al. [152] may represent an RNase E cleavage site (Figure 3.23C).

In addition, when the 5’ UTR was folded using RNAstar program, we observed a highly

structured molecule (Figure 3.23C). While we cannot rule out at this time that there is

a transcription termination site at the downstream stem-loop shown in Figure 3.23C, we

believe that the there is a strong possibility that this candidate represents a riboswitch that

helps regulate the expression of the mreBCD operon.

Figure 3.23: Analysis of predicted ncRNA candidates 11 and 12. (A) Northern analysis
of candidate 12. Thirty µg of total RNA from exponentially growing MG1655 (rne+) and
SK3564 (∆rne) was separated on a 6% PAGE as described in the Materials and Methods.
Transcript sizes were estimated from a New England Biolabs low range ssRNA ladder. (B)
Northern analysis of candidate 11. Thirty µg of total RNA from exponentially growing
MG1655 (rne+) and SK3564 (∆rne) was separated on a 8% PAGE as described in the
Materials and Methods. Transcript sizes were estimated from a New England Biolabs
low range ssRNA ladder. (C) RNAstar secondary structure prediction of a portion of the
mreB leader (nucleotides -269 to -58). Nucleotides shown in red at positions -269 and -106
correspond to the primer extension products detected by Wachi et al. [152]. Position -106
was originally identified as a potential transcription start site but probably represents an
RNase E cleavage site.
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3.3 Summary

In this study, we identified a number of sequence and structure-based features that can

distinguish known ncRNAs from their di-shuffled versions, which do not rely on a priori

knowledge of sequence alignments, conservation with closely related organisms, or structural

conservation. By utilizing these novel features, we developed a classifier for ncRNA gene

prediction. The use of training samples from a large class of ncRNAs from diverse organisms

enabled us to find different categories of ncRNAs from various organisms. Our program

allows a user to include any prior knowledge about the target ncRNA genes while using our

prediction program. For example, if a user has knowledge about the approximate length of

ncRNAs, he/she can set the prediction window size accordingly, which could possibly result

in an improved prediction, as we have demonstrated with E. coli in this study. In addition,

specific filtering strategies can be customized based on the organism under investigation.

For example, for some organisms, data from transcriptional signals such as promoters and

terminators may not be readily available. In that case, one can use other data to narrow

down the list of candidates after prediction.

Application of our program has led to a number of novel ncRNA gene predictions. Using

Northern blot analysis, we were able to find expression in three out of six target candidates

under our tested conditions. We believe the expressed candidates are stable decay products

and one has the potential to be a riboswitch. Further functional experimental studies will

be needed in order to fully verify these as real ncRNAs since transcription does not imply

function.

The results of our ncRNA prediction in E. coli are shown to be highly competitive with

or better than the existing prediction programs as we have well demonstrated in this study.

Overall our genome-scale prediction results indicate that there may be many more ncRNAs

in E. coli, particularly in non-intergenic regions, which have been missed by previous studies.

Further functional studies on these predicted ncRNA genes are needed to better understand

its role and mechanism in regulation.
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CHAPTER IV

APPLICATIONS OF NON-CODING RNA PREDICTION

The purpose of this chapter is to investigate applications related to ncRNA gene prediction.

4.1 Relationship between operon structure and ncRNA gene prediction

We explore the location of ncRNAs in relation to the genomic structure of an organism

by examining higher-order gene organization, namely, operons, the basic transcriptional

unit in prokaryotes. Very little is known about the transcriptional mechanism for ncRNAs.

Besides being transcribed independently through promoter and terminator signals, ncRNAs

are also believed to be processed from messenger RNA (mRNA) [31]. For example, in some

small nucleolar RNAs (snoRNAs), the transcription of the ncRNA is initiated from the

host gene’s promoter [31]. Previous methods have relied on the assumption that ncRNAs

are independently transcribed and have found ncRNAs by searching for short regions with

promoter and terminator signals [6, 21]. In this study, we investigate whether operon

information can be used to facilitate the identification of ncRNAs and find those potentially

processed from a larger mRNA transcript.

We have examined where known ncRNAs are arranged in relation to operons. We divide

the ncRNA arrangements into four different cases, as shown in Figure 4.1. Case1 occurs

when an ncRNA does not overlap any ORF and therefore does not overlap any operon.

Case2 is subdivided into case2(s) and case2(m) depending on whether the overlapping ORF

belongs to a single gene operon or multiple gene operon, respectively. Case3 illustrates the

condition when the ncRNA lies within an operon but does not overlap any ORFs. Case3 is

an interesting situation where perhaps the operon’s promoter initiates the transcription of

the ncRNA gene.

Using our operon prediction results from [145], we examined the arrangement of 93

known ncRNAs in E. coli. The results are summarized in Table 4.1 for ncRNAs falling into

the four different categories with and without regard to strand direction. Many ncRNAs
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Figure 4.1: Schematic of different ncRNA arrangements in relation to operon structure.

Table 4.1: Percentage of ncRNAs cases with respect to operon structure for 93 known
ncRNAs in E. coli.

E. coli ncRNA-operon case with regard to strand direction without regard to strand direction

case1 77.42% 51.61%

case2(s) 10.75% 36.56%

case2(m) 11.83% 11.83%

case3 0 0

belonging to case1 when strand direction was considered actually was recategorized into

case2(s) when strand direction was not considered. This result is illustrated by the increase

in the percentage of ncRNAs in case2(s) contained in the without regard to strand direction

column of Table 4.1. Unfortunately, no examples of case3 were found in E. coli. The lack

of case3 in E. coli may be due to various reasons, including the bias for genes within an

operon to have shorter intergenic distances [131] and other reasons which we will discuss

later.

We also investigated the ncRNA and operon genomic arrangement for other organisms

using the 800 known ncRNAs across 194 different organisms introduced in Section 3.2.3.

We used all available operon prediction results from [145, 161, 120]. The results of the four

different categories with and without regard to strand direction are given in Table 4.2. This

analysis also found similar results to E. coli since most of the ncRNAs fall into case1. It

is interesting that up to 7% of known ncRNAs belong to case3 and have the potential to

be processed from mRNA transcripts. An examination of the list of ncRNAs categorized

as case3 indicates that the majority have lengths 40-60 nt. These ncRNAs are mostly

annotated as snoRNAs.

The relatively low abundance of known ncRNAs falling into case3 may be the result of
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Table 4.2: Percentage of ncRNAs cases with respect to operon structure for the dataset
of 800 ncRNAs.

800 ncRNAs-operon case with regard to strand direction without regard to strand direction

case1 77.00% 65.38%

case2(s) 7.25% 18.88%

case2(m) 8.75% 9.13%

case3 7% 6.63%

several factors. Operon prediction methods, including ours [145], apply intergenic distance

as a feature used in prediction. The constraint on the intergenic distance also imposes a

limitation on the type of ncRNAs that can be found. In our case, most of those found in

case3 corresponded to snoRNAs. The typical lengths of snoRNAs (40-60 nt) actually favors

their neighboring ORFs to be classified as a “within operon” gene pair. Additionally, current

methods for finding ncRNAs are biased to finding candidates with independent transcription

so the existing data set may have fewer examples of those transcribed together with other

operons.

Based on the results of the ncRNA operon arrangement analysis, the use of operon

prediction results do not seem to aid the general identification of ncRNAs. Perhaps only

snoRNAs may potentially benefit from the additional analysis with operons. The use of

operon prediction is recommended for further investigation in higher-level organisms with

both operon structure and the presence of multiple mechanisms for mRNA processing, such

as alternative splicing. Such organisms include the nematode, Caenorhabditis elegans, where

various ncRNA transcriptional mechanisms have been proposed [31].

4.2 Application of ncRNA predictor to find ncRNAs in Sulfolobus sol-

fataricus

We illustrate the robustness of our ncRNA predictor to search for ncRNAs in the ther-

mophilic archaeon, Sulfolobus solfataricus (NC 002754). The Sulfolobus species inhabit

volcanic springs and geothermal areas of 75-80◦C in an optimal pH of 2-3. The study of

DNA replication in Archaea such as Sulfolobus are of interest since the mechanisms are evo-

lutionarily conserved to that of Eukaryotes. Furthermore, the thermostability of proteins

in Sulfolobus organisms has made them useful model organisms in wet labs. Recently, Tang
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Figure 4.2: Histogram plot of the number of ncRNAs at each length contained in the
known S. solfataricus set.

et al. [142] have used specialized cDNA library from S. solfataricus to identify 57 novel

ncRNA candidates and confirmed their expression by Northern blot analysis. We chose to

perform genome-wide prediction of ncRNAs using our predictor to assess the performance

against all the known ncRNA genes in S. solfataricus. We have extracted all 74 known ncR-

NAs for S. solfataricus from the Positive1540 data set. This comprehensive list of ncRNAs

includes all known candidates from [142], NONCODE, and GenBank. Using these ncRNAs

as queries, we ran an all-versus-all BLASTN search against the Positive936 data set and

removed all the Positive936 hits below an E-value cutoff of 10−5. We reduced the original

Positive936 data set to 864 unique ncRNAs after removing sequences homologous to the 74

known ncRNAs. We use this data set without known ncRNAs in S. solfataricus for training

and refer to it as Positive864 Sso. The length distribution for the ncRNAs in S. solfataricus

is shown in Figure 4.2.

We used the same methodology used previously for E. coli in generating the negative

set, which di-shuffles randomly selected sequence segments in S. solfataricus to ensure that

no ncRNA-related secondary structure is present. The results from our ncRNA predictor
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Table 4.3: AUROC performance of different window sizes and top number of features for
direct and reverse (rc) strands.

are summarized in Table 4.3. The best average performance for S. solfataricus is obtained

by using the top 10 features. The AUROC decreases for higher window sizes because

fewer training samples are available and the neural network classifier tends to overfit the

training data leading to lower generalization power in the test set. Examining the top 10

features for the window size w = 40 yields the following discriminative features (in de-

scending order): diversity free energy thermo ensemble, kmer CG, structuralstatistics mfe,

kmer G, kmer GC, kmer UA, kmer U, kmer AU, rnacluster ave num hifreq bp percluster,

kmer GG.

By applying the meta-learner to combine the prediction from different window sizes, we

are able to obtain the final prediction results shown in Table 4.4. We present the results

using three window sizes, w=40, 80, 120 and the results using all seven standard window

sizes w=40, 80, 120, 160, 200, 240, 280. Similar to E. coli, we observe higher performance

when we use typical window sizes corresponding to the lengths of the ncRNAs found in the

organism.
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Table 4.4: AUROC performance of ncRNA meta-learner predictor for direct and reverse
strands using different number of features.

The application of our ncRNA meta-learner predictor to S. solfataricus is highly promis-

ing. We demonstrate that by selecting the top three window sizes corresponding to typical

ncRNA lengths found in the organism, we can obtain AUROC above 0.7 for predicting win-

dows with potential for ncRNAs. Using the standard window sizes gives somewhat lower

performance; however, we can still obtain AUROC above 0.64 if we limit the number of

features used to help the classifier generalize better to the test set.
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CHAPTER V

CONCLUSIONS

In this dissertation, we applied pattern recognition approaches from signal processing to re-

search in the area of genome annotation. We demonstrated the use of meta-learner classifiers

in both operon prediction and ncRNA gene prediction. We have confirmed the results of the

predictors by comparing the performance to existing algorithms and applied experimental

validation when available.

5.1 Contributions

We have presented results in the following two main areas:

• Our work on operon prediction demonstrates how we can improve upon the accuracy

of existing methods using a meta-learning approach. We have successfully applied our

novel method to predict operons in the bacteria Escherichia coli and Bacillus subtilis

and the hyperthermophilic archaeon Pyrococcus furiosus. Our operon predictions

show significant improvement in performance above existing methods. The ability

to predict operons allows for the functional inference of hypothetical and conserved

hypothetical genes, and represents a key step in reconstructing biological pathways

and networks for prokaryotes.

• We developed a de novo computational method for the prediction of ncRNAs in

prokaryotes. Our work on non-coding RNA gene prediction enables the identification

of both cis- and trans- regulating ncRNAs without limiting the search space and

requiring prior knowledge of sequence alignments, conservation with closely related

organisms, or structural conservation. We believe that this work will contribute to

a more comprehensive annotation of ncRNAs in partially and completely sequenced

microbial genomes.
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5.2 Publications

The work related to this dissertation has led to the following list of publications:

Journals

1. T. T. Tran, F. Zhou, S. Marshburn, M. Stead, S. R. Kushner, and Y. Xu, “De

novo computational prediction of non-coding RNA genes in prokaryotic genomes,”

submitted, 2009.

2. T. T. Tran, P. Dam, Z. Su, F. L. Poole II, M. W. Adams, G. T. Zhou, and Y. Xu,

“Operon prediction in Pyrococcus furiosus,” Nucleic Acids Res, vol. 35, no. 1, pp.

11-20, 2007.

3. F. Zhou, T. Tran, and Y. Xu, “Nezha, a novel active miniature inverted-repeat

transposable element in cyanobacteria,” Biochem Biophys Res Commun, vol. 365,

pp. 790-4, Jan 25 2008.

Books

4. P. Dam, F. Mao, D. Che, P. Wan, T. Tran, G. Li, and Y. Xu, “Computational elu-

cidation of operons and uber-operons,” in Computational Methods for Understanding

Bacterial and Archaeal Genomes, vol. 7, Y. Xu and J. P. Gogarten, Eds.: Imperial

College Press, 2008.

Conferences

5. T. T. Tran, V. A. Emanuele II, and G. T. Zhou, “Techniques for detecting approx-

imate tandem repeats in DNA,” Proc. IEEE Intl. Conference on Acoustics, Speech,

and Signal Processing, pp. 449-452, Montreal, Canada, May 2004.

6. V. A. Emanuele II, T. T. Tran, and G. T. Zhou, “A Fourier product method for

detecting approximate tandem repeats in DNA,” Proc. IEEE Workshop on Statistical

Signal Processing, Bordeaux, France, July 2005.

94



7. T. T. Tran, F. Poole, G. T. Zhou, and Y. Xu, “An integrative approach to operon

prediction in Pyrococcus furiosus,” Poster presentation at the First Annual Sympo-

sium on Computational and Systems Biology, Athens, Georgia, USA, November 11,

2005.

8. T. T. Tran and Y. Xu, “On the road to genomic annotation: from operons to

non-coding RNAs,” Poster presentation at the Second Annual Symposium on Com-

putational and Systems Biology, Athens, Georgia, USA, March 23, 2007.

9. T. T. Tran, Q. Liu, and Y. Xu, “Investigation of RNA Secondary Structure Clus-

tering for the Identification of Small Non-coding RNAs,” Poster presentation at the

Third Annual Symposium on Computational and Systems Biology, Athens, Georgia,

USA, March 21, 2008.

5.3 Future Work

The following represents a list of interesting research topics for future investigation:

• Investigate the functions of structural non-coding RNAs by identifying their possi-

ble messenger RNA (mRNA) targets. Examine functional Gene Ontology (GO) and

KEGG Orthology (KO) significance of mRNA targets.

• Incorporate the operon prediction and ncRNA gene prediction into an automated

pipeline for large-scale genome annotation. Automate a web-server to update the

training set and compute predictions accordingly from the latest releases of ncRNA

databases and GenBank annotation. Create a user-friendly web interface to allow

users to submit partial or completely sequenced genomes for ncRNA gene annotation.

• Perform large scale ncRNA gene prediction on various groups of organisms, including

Cyanobacteria, to study the role of ncRNAs in regulation and their ability to enable

the organism to adapt and thrive in extreme environments.

• Examine the role of ncRNAs in specific regulatory and metabolic pathways for its

application to alternative energy sources such as biofuels.
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• Apply our ncRNA gene prediction method to identify human microRNAs (miRNA)

and small interfering RNAs (siRNAs). Investigate the role of ncRNAs in complex

diseases such as cancer.
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