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SUMMARY

Processing and optimizing ad-hoc and continual queries in an open environment
with distributed, autonomous, and heterogeneous data servers (e.g., the Internet) pose
several technical challenges. First, it is well known that optimized query execution plans
constructed at compile time make some assumptions about the environment (e.g., network
speed, data sources’ availability). When such assumptions no longer hold at runtime, how
can I guarantee the optimized execution of the query? Second, it is widely recognized that
runtime adaptation is a complex and difficult task in terms of cost and benefit. How to
develop an adaptation methodology that makes the runtime adaptation beneficial at an
affordable cost? Last, but not the least, are there any viable performance metrics and
performance evaluation techniques for measuring the cost and validating the benefits of
runtime adaptation methods?

To address the new challenges posed by Internet query and search systems, several
areas of computer science (e.g., database and operating systems) are exploring the design
of systems that are adaptive to their environment. However, despite the large number of
adaptive systems proposed in the literature up to now, most of them present a solution
for adapting the system to a specific change to the runtime environment. Typically, these
solutions are not easily “extendable” to allow the system to adapt to other runtime changes
not predicted in their approach.

In this dissertation, I study the problem of how to construct a framework where I
can catalog the known solutions to query processing adaptation and how to develop an
application that makes use of this framework. I call the solution to these two problems the
Ginga approach.

I provide in this dissertation three main contributions: The first contribution is the
adoption of the Adaptation Space concept combined with feedback-based control mech-

anisms for coordinating and integrating different kinds of query adaptations to different

xiii



runtime changes. The second contribution is the development of a systematic approach,
called Ginga, to integrate the adaptation space with feedback control that allows me to
combine the generation of predefined query plans (at compile-time) with reactive adaptive
query processing (at runtime), including policies and mechanisms for determining when to
adapt, what to adapt, and how to adapt. The third contribution is a detailed study on how
to adapt to two important runtime changes, and their combination, encountered during the

execution of distributed queries: memory constraints and end-to-end delays.
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CHAPTER 1

INTRODUCTION

1.1 Daissertation Context

The problem of query optimization has been studied extensively in centralized, parallel, and
distributed local area networked environments. The cost-driven query optimization tech-
nology is known as a unique characteristic that differentiates DBMS from other computer
systems. Conventional approaches to distributed query optimization [40] are designed for

database environments characterized by three fundamental assumptions:
1. Data sources typically consist of a small fixed number of databases.

2. Databases are described by a global schema and managed centrally by database ad-

ministrators.

3. The runtime environments of such distributed database systems (e.g., communica-
tion links and response time from different data servers) are relatively stable and

predictable.

However, optimization and execution of queries over wide-area distributed data sources
impose significant new challenges. First, the number of data sources accessible via the
Internet is huge and continuously growing. Second, there are semantic and performance
problems that arise due to the heterogeneity and rapid evolutionary nature of the data
sources. Such heterogeneity and rapid evolution happen at both the content structure level
and the access interface and connectivity level. Third, the runtime environment involves
a large number of remote data sources, intermediate sites, and communication links, all
of which are vulnerable to congestion and failure. Such vulnerability leads to the high

response-time variability! experienced by many Internet users. Finally, the optimizer has

!The time required for obtaining data from remote sources can vary significantly, depending on the specific
data sources accessed and the current state of the network at the time that such access is attempted [2].



little or no reliable statistics about the data (e.g., cardinalities, histograms) collected from
the remote sites. Without such estimates, it is almost impossible for the optimizer to
guarantee that the generated plan will have optimized execution.

To address the new challenges posed by Internet query and search systems, several areas
of computer science (e.g., database and operating systems) [49, 54, 24] are exploring the
design of systems that are adaptive to their environment. A system is considered to be
adaptive if its behavior can adapt gracefully and transparently to structural and behavioral
changes in the environment. In the context of wide-area information systems, the adaptive
query processing addresses query optimization and execution issues encountered by large-
scale query engines that operate in an unpredictable and rapidly changing environment.

However, despite the large number of adaptive systems proposed in the literature to
date, most of them present a solution for adapting the system to a specific change in the
runtime environment. Typically, these solutions are not easily “extendable” to allow the
system to adapt to other runtime changes not predicted in their approach. If T could have
a framework that allows me to integrate and combine almost any adaptation approach, I
could have a system that is intelligent enough to cope with most runtime changes.

In this dissertation, I study the problem of how to construct a framework where the
known solutions to query processing adaptation can be cataloged and how to develop an
application that makes use of this framework. I call the solution to these two problems the
Ginga approach. The discussion of the adaptation framework proposed in this dissertation
is not necessarily restricted to adaptation query processing; it could be applied to any other
system where adaptation is advantageous.

The core of the Ginga Approach is the concept of adaptation spaces (see Chapter 3).
An adaptation space is a powerful abstraction and framework that describes a collection
of possible adaptations of a software component or system and provides a uniform way of
viewing a group of alternative software adaptation processes. In addition, adaptation spaces
describe the different means of monitoring the conditions that different adaptation processes
depend on and the particular configurations through which adaptive systems navigate for

coping with runtime changes.



The remainder of this chapter is organized as follows: To make the discussion of query
adaptation more concrete, I describe in Section 1.2 a real-world application drawn from the
bioinformatics domain, where the deployment of Ginga can be advantageous. Section 1.3
sets the scope of the Ginga approach as compared with the current query adaptation ap-
proaches. Section 1.4 lists my research contributions, and Section 1.5 lists the key assump-
tions that I made for the Ginga approach. I conclude the chapter with the dissertation

organization in Section 1.6.

1.2 Motivation Application Scenario

There are more than 500 well known Bioinformatics data sources accessible on the Internet,
which are used by many biologists around the world. For example, these data sources are
used in the discovery of new drugs that may effectively treat serious diseases, such as AIDS,
which is caused by Human Immunodeficiency Virus (HIV). There are several distinct fea-
tures of such applications. First, the application needs to access and integrate information
contained in different bioinformatic-specialized web services. Second, many sources ex-
perience unstable network connections and suffer from unpredictable latency fluctuations.
Last, but not least, typical information collection processes in the bioinformatics domain
are complex, requiring multiple steps with partial execution dependencies. In addition, the
amount of data that needs to be processed can be larger than expected, causing variation
in memory requirements.

Specifically, T use a next-generation-drugs discovery application as the running example
scenario throughout the dissertation to illustrate the Ginga approach to distributed query

processing adaptation.

Example 1 (Next-Generation-Drugs application) Consider a company specialized in
developing Next Generation Drugs. In the rest of the dissertation, this company is referred
to as NGD for presentation convenience. For each new drug that NGD starts to develop,
the first step is to gather all the available information about the virus that the new drug
will attack. In general, this information describes the nucleotides, proteins, and protein

structures associated with the virus, along with assay results on how chemical compounds



can affect the virus and its sub-structures. From the nucleotides, the NGD pharmacologist
can generate the proteins that the virus produces, and from the protein structures he
identifies the protein compounds that can be manipulated using drugs. The drug discovery
process is then guided mainly by the assay results of using different drugs against the
virus proteins. The pharmacologist can also obtain further information about the virus by
performing BLAST (Basic Alignment Search Tool) searches, which finds protein sequences
similar to those found in the virus. This information may be relevant, for example, when
determining what the possible side effects of the new drug over other similar proteins would
be.

Typically, collecting the information described above requires contacting several web
services, such as NCBI Entrez? for data on nucleotides, SWISS-PROT? for proteins, PDB*

for protein structure, and NCBI BLAST® for similar protein sequences.’

Figure 1 shows
the latency fluctuations experienced with NCBI, SWISS-PROT, and PDB. Both graphs are
plotted with the average response times measured every 15 minutes for 32 days (from April
11, 2002, to May 13, 2002) between 8:00 and 22:00 EST. Figure 1(a) shows the average
response times from PDB, SWISS-PROT, and NCBI Entrez to a keyword query on “HIV”.
Figure 1(b) shows the average response times from NCBI BLAST searches on nucleotide
and protein sequences that are similar to a nucleotide and a protein sequence found in HIV,
respectively.

From Figure 1, it is observed that the response time of these popular web services can
be very unpredictable. Concretely, I observe three interesting facts. First, NCBI BLAST
service not only has relatively slower responses from 10:00 to 22:00 but also has frequent
fluctuations throughout the day (see Figure 1(b)). A similar situation is experienced with
PDB (see Figure 1(a)). In comparison, SWISS-PROT and NCBI Entrez are relatively

stable. Second, even though NCBI Entrez (see Figure 1(a)) offers relatively stable perfor-

mance, it experiences visible delays from 8:00 to 9:00 and from 16:00 to 17:00 daily between

2http://www.ncbi.nlm.nih.gov/Entrez

*nttp://ca.expasy.org/sprot

*http://www.rcsb.org/pdb

Shttp://www.ncbi.nlm.nih.gov/BLAST/

SFor illustration purpose, in this example I omit the collection of assay results.
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Figure 1: Average response times measured every 15 minutes for 32 days (from 4/11/2002
to 5/13/2002) between 8:00 and 22:00 EST. (a) A keyword query on “HIV” using PDB,
SWISS-PROT, and NCBI Entrez; (b) NCBI BLAST searches on nucleotide or protein
sequences, matching a nucleotide or a protein sequence found in HIV.

4/11/2002 and 5/13/2002. Furthermore, SWISS-PROT, in general, has up to a 12-second
latency compared with NCBI; however, the visible delays at SWISS-PROT often occur from
13:00 to 14:00 and from 15:00 to 16:00. Third, although NCBI Entrez has a fast response
time (on the order of a few seconds), waiting for PDB results can take up to 34 seconds,
depending on what time of day the query request is posted to the site. Therefore, consid-
ering that the data collected from different web services have to be combined or integrated
before delivering to the users, such differences in response time could become costly. The
situation may become aggravated when NGD needs to execute this type of query repeatedly
(practically, one for each new chemical compound that can potentially affect the virus). The
cumulative effect of these delays can significantly affect the company’s productivity.

One possible solution that NGD may use is the Ginga approach (see Chapter 4). Ginga
uses a two-phase distributed query adaptation mechanism to overcome not only the un-
predictability of the response time from web services due to end-to-end delays and latency
fluctuations, but also the unexpected memory requirement changes when the amount of

data that needs to be processed is larger than predicted.

Example 2 (NGD Web Service) To illustrate how NGD could use Ginga, let us assume



that this company has an internal web service NGD-WS that is responsible for gathering
the data needed to begin the development of a new drug. The pharmacologist enters the
virus name, and NGD-WS executes query @ expressed in an SQL statement” as shown in
Figure 2(a), and it returns the result to the pharmacologist.

NGD-WS implements a distributed query scheduler (DQS), a query scheduling algorithm
that consists of three main steps: query routing, query decomposition, and query post-
processing generation [32, 31]. DQS takes as input the user query statement expressed in
SQL and generates an initial query tree 7" annotated with the potential data sources that
can be used to answer the query (query routing [30]).8 Then, T is broken into a collection
of subqueries, where each query is targeted at a given data source (query decomposition).
Finally, an optimized query plan is constructed for combining the results returned from the
subqueries (query post-processing generation) [32].

Let us assume that during query routing, NGD-WS has identified and selected the
following bionformatics sources:” NCBI for nucleotides, SWISS-PROT for proteins,
and PDB for protein structures. Then assume that after query decomposition and query
post-processing generation, plan P depicted in Figure 2(b) is produced. In this plan,
nodes represent atomic physical operators (e.g., select, project, join), and edges represent
dataflow. NGD-WS executes the physical operators of plan P according to the iterator-
based model [21], i.e., operators are scheduled in a left-deep recursive way (see Section 4.3.2
for details on the query execution model).

Now suppose that during the execution of P, NCBI takes too long to respond or the
data collected from this same source is larger than anticipated, thus affecting the memory
requirements. If no adaptation is fired, the whole query execution will be delayed either
due to unexpected delays or to an increase of paging. In this dissertation, I describe how

the Ginga approach attempts to adapt the query execution plan to overcome these two

"Any other query language, such as XQuery, could very well be used instead.

8The initial query tree T is generated using the available global schema and completely disregarding the
distribution of the data. Thus, T can be constructed using any optimization method proposed for single
database management systems that produces a binary query operator tree [18].

% Although there are many sources that could be used for answering query @, for simplicity, I assume that
only these three sources were selected.



Schema
Nucleotides (ID,protID,desc, nuc_other_attrs)
Proteins (ID,desc,prot_other_attrs)
Prot_Struct (protID,compoundID , desc,ps_other_attrs)

Query
Q: SELECT N.ID,N.desc, P.ID, P.desc, PS.compoundID, PS.desc
FROM Nucleotides N, Proteins P, Prot_Struct PS
WHERE N.protID = P.ID AND P.ID = PS.protID AND N.desc LIKE "%HIV%"
AND P.desc LIKE "%HIV%" AND PS.desc LIKE "%HIV%"

(a) Global schema and query Q

OPTIMIZED QUERY PLAN: P

Legend:
NGD-WS o C: LIKE "%HIV%"

L;: Network

Connection i

L1/ Lz\ L, \Internet
/ \ AN

NCBI SWISS-PROT PDB
(Nucloetides) (Proteins) (Prot_Struct)
Site 1 Site 2 Site 3

(b) Optimized Plan P

Figure 2: Query plan for collecting specific information on HIV.
problems, namely, changes in memory requirements and unexpected end-to-end delays. O

So far, I have discussed how the delays of bioinformatics web services can affect the
productivity of my fictitious NGD company and have demonstrated how Ginga can improve
NGD'’s productivity. In the next paragraphs, I describe the current cross-database search

service provided by NCBI-Entrez and argue that Ginga could also improve this service.

The NCBI-Entrez Case: NCBI-Entrez offers the end-user a service for cross-database
search over a number of different databases with bioinformatic-related information through
the interface shown in Figure 3. Some of these databases are PubMed (citations and
abstracts of biomedical literature), GenBank (nucleotide sequence database), and PopSet
(population study data sets). However, this search service is limited to running the same

keyword query in all of the databases maintained by NCBI-Entrez without combining any



information. If a user is looking for all related information on “HIV,” as in Example 1, he

has to combine the information retrieved by NCBI-Entrez manually.
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Figure 3: Snapshot of NCBI-Entrez cross-database search service (Source: http://
www.ncbi.nlm.nih.gov/Entrez/).

NCBI-Entrez could certainly benefit if an “information consolidation” (IC) service were
provided through its portal. For instance, companies like NGD would be potential heavy
users of this service. However, considering that NCBI-Entrez databases are geographi-
cally distributed, end-to-end delays are likely to occur during the execution of consolida-
tion queries. In addition, given the high number of user accesses to their site, it is also
possible that memory constraints will be observed during the execution of these consol-
idation queries due to server overload. Consequently, the response time of each request
submitted to the NCBI-IC service would be quite unpredictable. To support these obser-
vations, I provide the following concrete statistical evidence obtained from the NCBI web

site (http://www.ncbi.nlm.nih.gov/).

e The NCBI-Entrez databases are quite large, which translates into the transmission of



a large amount of data over network connections, when requests are submitted to the
IC service. For example, consider the GenBank database. As of January 2003, this
database stores approximately 28,507,990,166 bases in 22,318,883 sequence records
(see Figure 4(b)), where the average size of each record is 20Kbytes. This means that

currently (year 2003) the size of the GenBank database is about 440 Gigabytes.

If T submit a keyword search on “HIV” to GenBank, I get a result with around 111,500
records, a total of 200MBytes. Considering that these data will be transmitted back
to the IC service through network connections that are not necessarily stable, the
chances of experiencing end-to-end delays are high. As a matter of fact, end-to-end

delays do occur, as reported in the graph in Figure 1(a).

e To give an idea of the chances of experiencing memory constraints due to server
overload, consider the graph shown in Figure 4(a) delineating the growth of total
of searches submitted to PubMed alone in the last six years. In January, 1997, the
total number of searches was 163,000, and in March, 2003, this number had jumped to
39,238,000: an increase of about 240%! Assuming that this trend toward an increasing
number of searches is similar to that of the other databases under NCBI-Entrez, it is
very likely that the execution of IC requests will experience memory constraints due

to server overload.
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Figure 4: (a) PubMed searches (Source: http://www.ncbi.nlm.nih.gov/About/tools/
restable_stat_pubmed.html); (b) Growth of GenBank (Source: http://
www.ncbi.nlm.nih.gov/Genbank/genbankstats.html).



Based on this evidence, it is clear that Ginga could certainly be a good approach for

the NCBI-IC service to handle the unexpected response time fluctuations.

1.3 Adaptive Query Processing and the Ginga Approach

Adaptive query processing has been recognized as an important area with significant re-
search activities in both Internet data management and quality-of-service communities.
Most of the previously proposed approaches to adaptive query processing can be classified
as either predefined or reactive [4].

Predefined approaches generate, prior to runtime, a set of predefined plans where each
plan is optimized for one possible combination of values that resource parameters (e.g.,
memory size, network transfer rate) may assume at runtime. At start-up time (i.e., just
before starting the query execution), the query engine reads the current values of the re-
source parameters and selects the appropriate plan that fits these values. Figure 5 shows

the control flow of predefined approaches.
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Figure 5: Control flow of predefined approaches to query adaptation.

According to the size of the set of alternative plans, predefined solutions are further
classified as parametric query optimizer and selective query optimizer. The former gener-
ates one optimized plan for each possible combination of resource parameter values, while
the latter generates plans for only those combinations of values that represent interesting
situations where adaptation is beneficial. An interesting situation is represented by a com-

bination of resource parameter values that are likely to occur during query execution and
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may represent a fluctuation in the runtime system.

Most of the current predefined solutions are based on the parametric query optimizer
approach [27, 12]. The advantage of these solutions is the guarantee that the query engine
will start executing a query plan that is optimized for the current runtime resources avail-
ability. However, if not designed properly, predefined approaches can incur considerable
overhead at compile-time to generate a large number of alternative query plans where only
a few are likely to be used. In addition, these approaches have the following limitation: once
the optimized plan is selected at start-up time, the query engine does not re-optimize the
plan in case of unexpected changes to the runtime resources availability (e.g., unexpected
end-to-end delay).

At compile-time, reactive approaches generate a query plan that, at runtime, monitors
the resource parameters that are likely to change (e.g., transfer rate of unstable network
connections). Upon detecting changes in these parameters, the query reacts by generating
and switching to an alternative query plan that takes these changes into consideration.

Figure 6 depicts the control flow of reactive approaches.

Query Processing
(Reactive Method)

! . . . !
| Compile-time | Runtime |
I I
I
! I I
| | * |
I . Resource current parameter |
I .
| ! Monitors values |
QL query ! Query I I
| Pre—processing ! Query |
I :
I ! observed change . '
| ; Re-Optimizer |
: parse : . data detected :
! tree I . !
. | re-optimize plan I
! " : Q“er}’ new optimized plar| |
! (Initial) Query | Execution i
! e I | answer
! Optimization | (Runtime System T
I I
! I
. ‘ estimated values | I
T I
: for resource parameters - T |
I P ! |
| 0pt|m|;ed qry ! Base Data }
. execution plan | I
I I
I | I
: ! !

Figure 6: Control flow of reactive approaches to query adaptation.

When compared to the predefined solutions, the advantage of reactive approaches is
runtime adaptation to dynamic changes to the runtime environment. But reactive solutions

have two problems: The first problem is the overhead incurred during query execution to
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generate the alternative plan. The second problem is that they may react to any change in
the runtime resources, even if this change represents a small system fluctuation.

In general, existing solutions to predefined and reactive methods suffer from one major
weakness: they are targeted to adapt the query execution plan to a single type of runtime
change (e.g., for distributed queries, the change in data transfer from remote data servers).
In addition, the combination of these solutions to address different runtime changes is not
a trivial task.

To address the problems and limitations of predefined and reactive approaches, in this
dissertation I present Ginga [41, 43], a hybrid query adaptation approach, which is a combi-
nation of both predefined and reactive methods. The Ginga approach combines predefined
(compile-time) alternative query plan generation with reactive (run-time) monitoring of
runtime changes and consequent switching to a better-suited plan. Figure 7 shows the

control flow for the hybrid approach to query adaptation.
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Figure 7: Control flow of hybrid approaches to query adaptation.

Ginga improves existing predefined approaches in two ways: First, Ginga generates
optimized plans for only the combination of resource parameter values that are likely to
occur at runtime (i.e., interesting situations) instead of generating a plan for each possible
combination (selective query optimizer), thus reducing the overhead at compile-time. Sec-

ond, Ginga supports query adaptation not only at start-up time, but also at runtime. In
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contrast, predefined solutions adapt only at start-up time.

Ginga also improves the reactive approaches in two different aspects: First, Ginga by-
passes the overhead required to generate the alternative plans at runtime. Second, unlike
reactive approaches, Ginga does not react to every single change to the runtime resource
availability. Based on the set of interesting combinations of resource parameter values,
Ginga is able to determine whether a change in the runtime resources represents a small
fluctuation or a situation in which it is worth firing the adaptation.

To address the problem of enabling query adaptation to more than one type of run-
time change, Ginga has at its core an adaptation space model that allows the systematic
organization and combination of different solutions to predefined and reactive methods.

In this dissertation, I assume that I can efficiently generate, at compile-time, the set
of alternative query plans. My main focus is on how one can organize and combine these
predefined plans into an adaptation space used for query adaptation so that I can efficiently
cope with various types of runtime changes. Investigating the costs and the mechanics
involved in the generation of alternative plans is part of my future research work.

I also assume that the transition from one query plan to another at runtime can be
done “smoothly”, i.e., the consistency of the query execution state is maintained (e.g.,
data will neither be missed nor will duplicated data be generated). When this transition
cannot be done smoothly, I may need to have a dynamic query re-optimizer which generates
an optimized plan for executing the remainder of the query. The work described in [29]
proposes a re-optimization approach when operator selectivities are detected to be different
from those assumed during plan generation. [59] studies the re-optimization approach for
the case when end-to-end delays are detected during the execution of a distributed query.
Incorporating dynamic query re-optimization into Ginga approach is part of my future

research work.

1.4 Dassertation Contribution

In this dissertation, I provide the following contributions:
e The adoption of the Adaptation Space concept combined with feedback-based control
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mechanisms for coordinating and integrating different kinds of query adaptations to

different runtime failure types, namely, memory constraints and end-to-end delays.

e The development of a systematic approach, called Ginga, to integrate the adapta-
tion space with feedback control that allows me to combine predefined and reactive
adaptive query processing, including policies and mechanisms for determining when

to adapt, what to adapt, and how to adapt.

e A detailed study of how to adapt to two important failure types, and their combi-
nation, encountered during the execution of distributed queries: memory constraints

and end-to-end delays.

1.5 Dzissertation Main Assumptions
For work that I describe in this dissertation, I make the following assumptions:
1. Queries submitted to Ginga are processed over read-only data (e.g., data warehouse).

2. Network connections between client and servers are independent of each other, in the

sense that the failure of a connection does not affect the others.

3. Remote data servers deliver the requested data as a sequence of small fixed-size pages.

I specify the exact size of each page in my experiments.
4. Queries are executed in a multi-user environment, where memory blocks are shared.

5. Queries submitted to Ginga involve the processing of Gigabytes of data.

1.6 D:issertation Organization

This dissertation is organized as follows: Chapter 2 revises the related work. Chapter 3
describes the adaptation space model. Chapter 4 presents the Ginga approach which has at
its core the adaptation space model. In Chapter 5 and Chapter 6, I use Ginga to investigate
the benefits and trade-offs of query adaptation when coping with memory constraints and
end-to-end delays. Chapter 7 presents a study on Ginga performance characteristics when

both end-to-end delays and memory constraints are detected at runtime. I conclude the
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dissertation in Chapter 8 with a summarization of the work presented and a discussion of

future research work.
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CHAPTER II

RELATED WORK

2.1 Research Context

There are three main research streams that are related to the Ginga approach: program
generalization and specialization, adaptation space generation, and adaptive query process-

ing.
2.2 Program Generalization and Program Spectalization

The adaptation space based approach for program adaptation described Chapter 3 can be
seen as a seamless generalization and evolution of program specialization concept [13, 57,
60, 48, 37]. Program adaptation is a generalization of program specialization in both the
objectives of adaptation and the methods of adaptation. Similar to program specialization,
program adaptation presents an approach for adapting a generic program component to
a given use context. However, program specialization is commonly viewed as a means for
performance optimization. More concretely, given a use context, program specialization
aims at achieving performance gains by adapting programs to the specialized code where
all the aspects, which do not directly concern the given context, are eliminated. Thus, the
cost of conducting unnecessary consistency checking on the irrelevant aspects is avoided.
Program adaptation aims at a wider spectrum of enhancement of system capabilities, in-
cluding performance, quality of service, and survivability. Program adaptation provides
a uniformed framework for adapting programs to different levels of code specialization or
capability relaxation (degradation) according to the various quality of service requirements
and resource availability. For instance, thrashing and crashes occur in system saturation
for many statically adaptive resource management algorithms, including CPU, memory,
and network congestion. Program adaptation supports alternative responses to saturation

control, maintaining program and system stability and progress, instead of thrashing.
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2.3 Adaptation Space Generation

Another stream of related work to the Ginga approach is on the generation of adaptation
spaces, which can be created statically (i.e., at compile-time) and/or dynamically (i.e., at
runtime). Two classical projects on to the generation of adaptation space at compile-time
are Volcano Dynamic Plan [23, 12] and Parametric Query Optimization [27]. Volcano
Dynamic Plan uses choose-plan operators to enable the optimizer to cope with the inability
to precisely estimate all the resource parameter values at compile-time. For every set of
incomparable plans for each operator, the optimizer inserts in the query tree a choose-plan
operator, which will group these plans. For example, if the optimizer cannot determine the
selectivity of a SELECT operator, all possible alternative ways of executing this operator
(e.g., file scan or index access) will be grouped using a choose-plan operator. At start-up-
time, when the exact values for the unknown resource parameters (e.g., operator selectivity)
are available, the optimizer re-calculates the cost of each alternative plan under choose-plan
operator and chooses the plan with the least cost. The query then runs to its completion.
[12] has implemented an algorithm based on Volcano Query Optimizer Generator [22] that
generates alternative plans only for the case when operator selectivities are unknown.

Parametric Query Optimization [27] attempts to generate one optimized query execution
plan for each possible combination of values for the resource parameters that are unknown
at compile-time. At start-up time, based on the current values for these parameters, the
optimizer chooses the respective optimized query execution plan. [27] has implemented
randomized algorithms for generating alternative plans for different sizes of memory (fail-
ure mode: memory constraints). These algorithms were based on Simulated Annealing,
Iterative Improvement, and Two Phase Optimization [26].

One representative work on the dynamic generation of adaptation space is [50]. This
work proposes an adaptive resource allocation (ARA) mechanism to be used in conjunc-
tion to high-performance real-time applications. These applications have very strict timing
constraints and very dynamic resource requirements. Guaranteeing the proper resource
allocation to these applications at all time so that they can meet their timing constraints

is the challenge that ARA addresses. ARA dynamically constructs an adaptation space,
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where each adaptation case represents the best resource allocation to the running applica-
tions at a given moment. Whenever this allocation is detected to be no longer appropriate,
ARA will dynamically generate another resource allocation (i.e., adaptation case).

Another approach on dynamic generation of adaptation space is the work by Bodorik et
al. [8]. According to [8], the execution of a distributed query proceeds through three phases:
Phase one monitors the execution progress of the query. Phase two decides whether a new
strategy for executing the query should be computed. Phase three is a corrective one where
the current execution maybe aborted and a new execution is initiated. Similar solution was
proposed in Rdb/VMS [5].

Antoshenkov [5] presents a solution for generating the most appropriate query execution
plan by suggesting a competition method. For a given query, different execution plans are
fired concurrently, and the most appropriated one is kept. More specifically, the approach
addresses only the retrieval of a single table. Given that it is possible to have different
indexes for that table, the question is to how to determine the best combination of indexes to
be used for the query. After an initial stage (at compile time), which arranges the available
useful indexes into single or combined scan strategies, two communicating processes are
fired: foreground and background. They compete to “find” the best strategy for the table
retrieval, where the best one runs to completion, having the other plan aborted.

In this dissertation, I do not describe, implement, or evaluate a detailed algorithm for
generating the adaptation space for the execution of distributed queries. Developing and

evaluating such algorithm is part of my future research work.

2.4 Adaptive Query Processing

Adaptive query processing has been an important area of research, starting from early
90’s [27, 23, 12], and continuing to today [29, 2, 58, 59, 4, 25, 28, 6, 39, 1, 56, 17, 35]. In
section 1.3, I have broadly classified adaptive approaches to query processing into predefined
and reactive methods. Another way to group the existing work on adaptive query processing
is based on which runtime changes they attempt to adapt the query execution plan. In that

respect, I identify two major groups: (1) approaches that adapt to changes in memory
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constraints, and (2) approaches that adapt to fluctuation of end-to-end delays. Changes in
memory constraints occur when the memory requirements for the execution of a query plan

varies at runtime.
2.4.1 Adaptation to Memory Constraints

There are three main problems related to memory management for query execution un-
der memory constraints. The first problem focuses on how to allocate memory blocks to
concurrent operators within a query in a way that will minimize the total query response
time. Different approaches to memory allocation were proposed in the literature [38, 10] for
addressing this problem. These approaches, which assume that query execution follows the
Segmented Execution Model (see Section 4.3.2), can be broadly classified into static and
dynamic memory allocation strategies. The former is executed at start-up time whereas
the later is applied at runtime, before executing each segment. [38] has proposed and
evaluated four static memory allocation strategies, which included Max2Min (also called
SMALL). As reported in [38], in general Max2Min presented best performance. However,
the main problem with static strategies is that they allocate memory based on estimated
size of intermediate results. If there is a significant difference between actual and estimated
sizes of these results, query plans using static memory allocation strategies may have sub-
optimal performance. [10] addresses this problem with a dynamic strategy that I call in
this dissertation AlwaysMax. As demonstrated in [10], in general AlwaysMax presents bet-
ter performance than Max2Min. However, as shown in Section 5.4.2, there are situations
where Max2Min can be a better choice than AlwaysMax. Ginga considers both strategies
at runtime, before executing each segment, and selects the one that yields the best response
time.

The second problem associated to managing memory constraints represents the situa-
tion where memory has been properly allocated to the query but the estimated sizes for
the intermediate results were inaccurate, which may result in a significant increase of pag-
ing. Research work on query re-optimization [29, 6, 39, 46, 47] addresses this problem.

Mid-query re-optimization [29] attempts to re-optimize the query execution whenever a
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significant difference between estimated and observed values for operators’ selectivity is
detected at runtime. Eddies [6] suggests the re-ordering of operators in the presence of
configuration fluctuations of the runtime environment during query execution. Similar so-
lution is proposed by dQuob [46, 47], which re-order the select operators on the fly as
their selectivity changes. [39] assumes that the estimated values for operators’ selectivity
and base relation sizes are not accurate and constructs the query plan at runtime as data
become available. Ginga is similar to these approaches in the sense that it also provides
query re-optimization. However, these approaches are limited to use only the adaptation
actions that they propose. Extending these approaches to handle runtime changes other
than inaccurate estimated values is a non-trivial task. In contrast, Ginga uses a unified
simple model based on adaptation space that allows the incorporation of other dynamic
adaptation methods to handle different runtime changes in memory constraints.

The last problem related to managing memory constraints is how to allocate memory
blocks available in the system among concurrent queries, which is addressed by the research
work on multi-query optimization [14, 61]. [14] proposes a global optimization where the
idea is to optimize all query plans at once while determining how to distribute among the
concurrent queries the memory blocks available in the system. [61] introduces the concept of
return on consumption for studying the overall performance improvement of individual join
queries due to additional memory allocation. The inclusion of multi-query optimization
techniques into Ginga system is part of my future research work. In this dissertation,
I assume that the Memory Manager will handle the problem of distributing the system
memory blocks among the concurrent queries.

Methodologically, the Ginga system follows my previous research on program special-
ization [37]. In program specialization, I take advantage of quasi-invariants to eliminate
unnecessary work. Similarly, Ginga uses the memory constraint predicates in adaptation
conditions to optimize query execution. The monitoring of adaptation events is similar
to the guarding of quasi-invariants, when an invalidation causes re-plugging of specialized
code. Unlike program specialization, which relies primarily on program manipulation meth-

ods such as partial evaluation, Ginga uses many different techniques such as switching join
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algorithms, operand ordering, and memory allocation strategies to optimize query process-

ing.
2.4.2 Adaptation to End-to-End Delays

In this section, I review the adaptive approaches to distributed query processing that cope
with fluctuation on end-to-end delays. During the execution of a distributed query, end-
to-end delays occur possibly due to the following reasons: connections to the remote data
sources experience unpredictable bandwidth and latency fluctuations, remote server is over-
loaded, or both network and remote server experience performance problems. Adapting to
such variations is important because they directly affect the query response time as the
remote data is delivered at unpredictable rate.

Two reactive approaches for adapting to end-to-end delays that are closely related to
Ginga are Query Scrambling [2, 4, 59] and Dynamic Query Scheduler [9]. Query Scrambling
uses materialization and operator synthesis to adapt the execution of distributed queries in
the presence of initial delay and bursty arrival. Initial delay occurs when there is a delay
from the remote data server on responding to the data request posted by the client. After
that, no further delay is observed, and data transmission resumes to its expected rate. With
bursty arrival, the data downloaded from the remote server is delivered at an unpredictable
rate.

The reactive approach implemented by the Dynamic Query Scheduler (DQS) [9] also
adapts the execution of distributed queries in the presence of slow delivery. The slow
delivery state is detected when the data transmitted by the remote data source is being
delivered at a slower rate than the one expected.

In comparison, Ginga uses a unified framework (adaptation space model), which is
powerful enough for me to study initial delay, bursty arrival, and slow delivery, as well as
other constraints such as memory shortage and sudden unavailability of remote data servers.

There are several other approaches to reactive adaptive methods that address adaptation
to end-to-end delays. MOOD [39], a heterogeneous distributed database, optimizes the

query execution at runtime as the results from the sub-queries become available. The
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Tukwila project [28] proposes query (re-)optimization based on rules defined over possible
end-to-end delays. XJoin [58], a modified version of hash join, provides query adaptation
at the operator level by transparently absorbing the fluctuation of the data delivery rate
from remote operands. While these projects propose more sophisticated operators and
mechanisms to support adaptation, Ginga uses a unified simple model and feedback-based
monitoring mechanism to support both predefined and reactive adaptation using the existing

relational operators.
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CHAPTER III

ADAPTATION SPACE MODEL

3.1 The Core of Ginga Approach

The core of Ginga approach is the adaptation space model [42], which can be applied not
only for query processing adaptation, but also to any other system (or program, or function)
that requires adaptation. Taking the scenario from my motivation application described in
Section 1.2 where a web service needs to adapt its execution to unexpected runtime changes,
I describe the adaptation space model assuming that I want to adapt a web service.

The core of this adaptation model is the notion of adaptation space and the mechanisms
for coordinating and integrating different kinds of adaptations. An adaptation space is
defined by a use context and a partial order of adaptation cases. Each adaptation case
describes a specific adaptation of a program or component of a system. Given a program

or component, say T, the adaptation process typically consists of three steps:

Step 1: what to adapt construct an adaptation space for T" where preferred adaptation
alternatives are specified by a use context and a partial order of adaptation cases (see

Section 3.3 for concrete syntax);

Step 2: when to adapt monitor the use conditions of each specified adaptation alterna-
tive in the adaptation space of T', and notify the adaptation engine whenever a use

condition becomes true;

Step 3: how to adapt turn on the appropriate adaptation case to prevent the running
program or component from unnecessary lost of performance, thrashing, abnormal
exit, or crash. The selected adaptation case fulfills this job by redirecting the on-
going program to run using specialized code that can accomplish the intended task
through partial evaluation, such as using specialized code with either fewer resources

or requiring fewer capabilities.
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There are three main thrusts of adaptation space based approach: First, program adap-
tation presents a unified framework for representing and viewing of multi-dimensional adap-
tation context and adaptation opportunities for a given program or component of a web
service. Second, program adaptation provides a uniformed way of capturing and coor-
dinating different kinds of adaptation at different levels of a web service. Third, program
adaptation promotes a declarative and incremental approach to define the multi-dimensional
adaptation context and adaptation alternatives, allowing the seamless incorporation of new
adaptation behavior of a web service into the existing adaptation framework.

The rest of this chapter proceeds as follows: Section 3.2 motivates the adaptation space
based approach using the example describe in Section 1.2. Section 3.3 provides an informal
introduction to the concept, the syntax, and the semantics of adaptation cases and adap-
tation spaces. Section 3.4 presents the formal semantics of the adaptation space model. I
illustrate the adaptation space concept and semantics by walking through the application
scenario introduced in Section 3.2. Section 3.5 discusses various relationships between two
adaptation spaces that may have potential interest to the reasoning of adaptation behavior
of a given program component. Section 3.6 examines the issues that should be addressed

by the adaptation space model. I summarize the chapter in Section 3.7.

3.2 Walkthrough Example

Before presenting the details of the adaptation approach, let me briefly illustrate its ap-
plication using the NDG-WS web service scenario described in Example 2 (Section 1.2).
NGD-WS is responsible for gathering the needed data for starting the development of a
new drug. The pharmacologist enters the virus name, and NGD-WS executes query Q)
expressed in a SQL statement shown in Figure 8(a), and returns the result back to the
pharmacologist. The information on nucleotides, protein, and protein structures is typi-
cally provided by remote web services such as NCBI Entrez (nucleotides), SWISS-PROT
(proteins), and PDB (protein structures). However, the response time from these web ser-
vices can be very unpredictable as discussed in Sectionl.2. Considering that NGD-WS has

to combine the collected data before delivering them to the pharmacologist, the difference
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in response times could become costly.
One possible solution for NGD-WS is to adapt the execution of query ) by modifying
the data collection and integration process so that the fluctuation on end-to-end delays can

be masked. I illustrate next how to implement this solution using adaptation space.

Schema Query
Nucleotides (ID,protID,desc, Q: SELECT N.ID,N.desc, P.ID, P.desc, PS.compoundID, PS.desc
nuc_other_attrs) FROM  Nucleotides N, Proteins P, Prot_Struct PS
Proteins (ID,desc,prot_other_attrs) WHERE N.protID = P.ID AND P.ID = PS.protiD
Prot_Struct (protID.compoundID , AND N.desc LIKE "%HIV%" AND P.desc LIKE "%HIV%"
desc,ps_other_attrs) AND PS.desc LIKE "%HIV%"

(a) Global schema and query Q

. Legend: Alternative Plan: P_netDelayL1
OPTIMIZED QUERY PLAN: P, C: LIKE "06HIVOG" COPING WITH DELAYSON L
L;: Network
NGD-WS e Connection i NGD-WS e
'—;/ Lz\ L, \|nternet [ L, \ Internet
/ \ Rate(L,) degrades ya
(o)
NCBI SWISS-PROT PDB NCBI SWISS-PROT PDB
(Nucloetides) (Proteins) (Prot_Struct) (Nucloetides) (Proteins) (Prot_Struct)
Site 1 Site 2 Site 3 Site 1 Site 2 Site 3
(b) Optimized Plan P (c) Alternative Query Plan

Figure 8: (a) Query @ and associated global schema; (b) Optimized query plan Py; (c)
Alternative query plan Py,c;peayr1 for coping with delays on network connection L.

Example 3 (Adapting to End-to-End Delays) Let us assume that NGD-WS gener-
ates the optimized query plan P, (see Figure 8(b)) for executing @), and that the expected
transfer rate for the network connection' L; is Rate(L;) = 1Mbps, for 1 < i < 3. Now,
suppose that as NGD-WS starts the execution of Py the transfer rate of connection L
degrades from 1Mbps to 500Kbps causing the data from NCBI to be slowly delivered. As-
suming that Py is executed according to the iterator-based model [21], i.e., query operators
are scheduled in a left-deep recursive way, without adaptation, the execution of Py will be
delayed. One way to solve this problem is to start collecting the data from SWISS-PROT
and caching it locally while slowly receiving data from NCBI. Figure 9 presents a sketch

of such an adaptation case, declaring an adaptation opportunity: mask the slow delivery

'T use the term end-to-end delay to refer to the delays experienced by the clients due to both bandwidth
fluctuation in networks and contention at the servers. In this chapter, I concentrate my study on end-to-end
delays caused by bandwidth fluctuation, which results in slow delivery, i.e., the data from the remote server
arrives at a rate slower than expected.
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of data from NCBI while executing other parts of the query. If NCBI is completed down-
loaded by the time the data from SWISS-PROT is fully cached, the query execution can
then proceed without affecting considerably the final response time.

Based on this adaptation specification, the adaptation engine can infer that this adap-
tation can be done at compile time if the connection to remote source NCBI is known to
be slow. Otherwise, the adaptation must be done at runtime, and query plan Py will be
replaced by Pe;peiayr,1 shown in Fig. 8(c).

More concretely, the adaptation case ac_caseNetDelayL1 specifies that the initially op-
timized query plan P will be transformed to plan Pye¢peiayr1 whenever data from NCBI
is slowly delivered. The choice of switching Py to the specialized query plan Ppeipeiayrt
can be made at compile time only if the use-condition of adaptation case ac_netDelayli1
can be verified at compile-time. Otherwise, the decision should be made at runtime (see

Section 3.6 for further discussion).

ADAPTATION CASE ac_caseNetDelayLLl adapts execution of query Q.
goal: query adaptation when Rate(L;) degrades.
context
resource objects
Nucleotides = {NCBI}; Proteins = {SWISS-PROTY}; Prot_Struct = {PDB};
NetworkLinks = {L1, L2, L3}
memory_size(Q) // Memory blocks allocated for executing Q.
resource object parameters
must-provide
ID, desc from Nucleotides; ID, desc from Proteins;
compoundID, desc from Prot_Struct; bandwidth from NetworkLinks
require
Nucleotides.protID, Proteins.ID where Nucleotides.protID = Proteins.ID
Proteins.ID, Prot_Struct.protID where Proteins.ID = Prot_Struct.protID
Nucleotides.desc where Nucleotides.desc LIKE virusName
Proteins.desc where Proteins.desc LIKE virusName
Prot_Struct.desc where Prot_Struct.desc LIKE virusName
adapted query plan: Py.;peiayr1 (see Fig. 8(c))
adaptation condition
(Rate(L1) < 1Mbps) A (Rate(L2) > 1Mbps) A (Rate(L3) > 1Mbps)A
available( Nucleotides) = true A available(Proteins) = true A available(Prot_Struct) =
true
adaptation action
“collect and cache data from Protein while slowly receiving data from Nucleotide.”

end ac-_caseNetDelayL1l

Figure 9: Adaptation case that adapts the execution of Q when Rate(L1) < 1Mbps.

26



ADAPTATION CASE ac.initialP adapts execution of query Q.
goal: fast response time with survivability to network delays.
context
resource objects
// Same as resource objects described in ac_caseNetDelayL1l (Fig. 9).
resource object parameters
// Same as resource object parameters described in ac_caseNetDelayL1 (Fig. 9).
adapted query plan: Py (Fig. 8(b))
adaptation condition
available( Nucleotides) = true A available(Proteins) = true A available(Prot_Struct) =
true A
{Vl € NetworkLinks, Rate(£) > 1Mbps}A
{J; is hash-join and |left_Operand(J;)| < |right_operand(J;)|, where i = 1,2} A
{memory_size(Q) matches the number of blocks expected by the optimizer}
adaptation action
none.

end ac_initialP

Figure 10: Initial adaptation case definition.

ADAPTATION CASE ac_netDelayl.2 adapts case ac_initialP.
goal: query adaptation when Rate(L2) degrades.
context
resource objects
// Same as resource objects described in ac_caseNetDelayL1l (Fig. 9).
resource object parameters
// Same as resource object parameters described in ac_caseNetDelayL1 (Fig. 9).
adapted query plan: P> (see Fig. 14)
adaptation condition
(Rate(L2) < 1Mbps) A (Rate(L1) > 1Mbps) A (Rate(L3) > 1Mbps)A
available( Nucleotides) = true A available(Proteins) = true A available(Prot_Struct) =
true
adaptation action
“collect and cache data from Prot_Struct while slowly receiving data from Protein.”

end ac_netDelayL2

Figure 11: Adaptation case that adapts the execution of @ when Rate(Ls) < 1Mbps.

3.3 Adaptation Space Model: An Overview

In this section, I describe the concept of adaptation case and adaptation space, and present
an overview of the syntax for specifying adaptation cases and adaptation spaces. I illustrate

the core components for declaring adaptation cases and adaptation spaces by examples.
3.3.1 Adaptation Cases

Adaptation cases define the adaptation behavior of a web service program in anticipation of
resource shortage or in the need for performance optimization. More concretely, an adapta-

tion case defines a context for adaptation through program specialization or generalization.
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ADAPTATION CASE ac_netDelayl.12 adapts case ac_netDelayL1.
goal: query adaptation when Rate(L1) and Rate(L2) degrade.
context
resource objects
// Same as resource objects described in ac_caseNetDelayL1l (Fig. 9).
resource object parameters
// Same as resource object parameters described in ac_caseNetDelayL1 (Fig. 9).
adapted query plan: P»; (see Fig. 14)
adaptation condition
(Rate(L1) < 1Mbps) A (Rate(L2) < 1Mbps) A (Rate(L3) > 1Mbps)A
available( Nucleotides) = true A available(Proteins) = true A available(Prot_Struct) =
true
adaptation action
“collect and cache data from Prot_Struct while slowly receiving data from Nucleotides
and Proteins.”

end ac_netDelayL.12

Figure 12: Adaptation case that adapts the execution of ) when Rate(Ls) < 1Mbps and
Rate(La) < 1Mbps.

For instance, it identifies what components of a web service should be specialized for adap-
tation to resource availability or for performance optimization in the presence of certain
quasi-invariants [15, 60, 48].

Generally, adaptation cases are concerned with data and control flow exchanges between

2 are the currency

a collection of program components, modules, and systems. Resources
of exchange among these system components. In object-oriented systems, all resources are
ultimately provided by classes. However, it is not always the case in most of the legacy
systems. Therefore, in the proposed adaptation space model, both classes and modules
are units that provide a set of resources and require another set of resources. Without
loss of generality, let us assume in the sequel that the granularity of an adaptable program
component is a class described by a set of methods attached to it or a module described by
its interfaces (input required) and outerfaces (outputs required). Each adaptation case is
specific to a class or a module (a program) in the target system. I refer to such a class or
a module as a target unit of the adaptation in the rest of this paper.

Specifically, given a target web service and a reference program unit, an adaptation case

description includes

%A resource is any entity that can be named in a programming language (e.g., variables, contents, pro-
cedure, type definitions, etc.) and which can be actually be made available for reference by other program
components, modules, or subsystems within a large software system.
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e case name, described by a character string;
e goal description (optional), specified by the synopsis of the goal;

e context of the case, defined by a list of resource parameters internal to the reference
program unit and critical to the specification of adaptation behavior of the reference
program. In addition, a pointer to the adapted code for the reference program is

provided.

e use condition, expressed by a Boolean expression that indicates when it is appropriate
to use this adaptation case; Variables in use conditions are defined in the adaptation

case context;

e adaptation action describes the action that is fired when the use condition is satisfied.

To enable on-demand generation of adaptation action, I need to capture type, state,

and alternation of each resource parameter specified in the adaptation case context.

e The type of a resource parameter can be either primitive types such as integer, char,

float, Boolean, or structured types as those defined in object-oriented systems.

e The state of a resource parameter includes provide, must-provide, require, must-
require. Such state information distinguishes (1) the required resources from the pro-
vided resources, and (2) the mandatory provide-parameters or require-parameters from

optional ones.

e The attribute alternation indicates the possible alternatives of the given resource
and a list of degradation attributes such as extra-cost, freshness, extra-overhead, to
name a few. I can use the predicates as a form of specification of alternation semantics

to allow the list of possible alternatives to be added at runtime.

The complete syntax of the adaptation case description language is still under develop-
ment. Below, I present a simple example to illustrate the general idea of adaptation cases.

I provide a richer example in the next section.

29



Example 4 Recall the query plan depicted in Figure 8(b). Figure 10 presents the initial
adaptation case for the execution of query @), which describes the target program (in this
case the query @) in terms of the adaptation model syntax and the particular adaptation
context defined in its adaptation space (see Section 3.3.2 for further detail). For instance,
from the SQL statement given in Figure 8(a), @ provides four output data items from
Nucleotides and Protein_Structure and three output data items from Proteins, and requires
the input condition that the data collected is relevant to HIV. I list these resources along
with the network links in the initial case ac_initialP as critical parameters for defining the

adaptation behavior of Q).

I can define as many as needed adaptation cases for a given query execution plan. For
instance, in addition to degradation of Rate(L;) (Figure 9), I can also define one adaptation
case for () that deals with degradation of only Rate(L2) (Figure 11) and another that deals
with degradation of both Rate(L;) and Rate(L2) (Figure 12).

The automatic generation of program adaptation code from the original code may not
always be feasible, especially when the target software is a legacy system with sophisticated
procedures and state transitions. The potential for generating specialized code for adap-
tation cases primarily depends on the declarative nature of the program. I believe that
programs written in declarative languages are more likely to be supported for automatic
generation of specialized code. The development of mechanisms for semi-automatic or au-
tomatic generation of specialized adaptation code for given adaptation cases is part of my

ongoing research work.
3.3.2 Adaptation Space

An adaptation space consists of a reference context which sets up the scope of adaptation
behavior and a partial order of adaptation cases, each case representing a specific way of
adapting the same program unit. In addition to the set of adaptation cases, an adaptation

space description includes the following header information:

e Name of the adaptation space, served as a unique identifier;
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e Goal description, consisting of a list of objectives and a set of quasi-invariants for this

adaptation space;

e Reference context description, describing the common resources that all adaptation
cases may share, and the nominal functionality and behavior of the program compo-
nent that this adaptation space deals with. This description may distinguish “required
aspects” from “desired aspects”. A reference context can be an initial adaptation case
which describes the original, unspecialized program component. The main compo-

nents of the reference context include:

— the initial case (also called the root case).
— the set of common resource parameters that all adaptation cases may share.

— the set of local parameters used in the goal description and use condition speci-

fication.

e Use condition, specifying the general condition to turn on this adaptation space.

Note that the local parameters and common resource parameters, once defined or de-
clared in the adaptation space, can be used by all the adaptation cases within the given
adaptation space. They can be referenced as global variables in individual adaptation cases
without declaration.

Quite often, the use condition of an adaptation space (logically) implies the use condition
of some adaptation case within the given space. It is also possible that the use condition
used to turn on an adaptation space may lead to more than one adaptation cases eligible
to be activated. In this case a selection policy is required to make a choice [36]. There is

only one case active at any given point in time for any adaptation space.

Example 5 Recall the examples shown in Figure 9, Figure 10, Figure 11, and Figure 12.
The initial adaptation case ac_initialP and the specialized adaptation cases for coping with

network delays together form an adaptation space named as_space(Q as shown in Figure 13.
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ADAPTATION SPACE as_spaceQ adapts the execution of query Q.
goal: ¢;: fast response time with survivability in the presence of network delays.
reference context

initial-case: ac_initialP;
resource-object: Nucleotides
parameters
ID, protID, desc, nuc_other_attrs; instance: NCBI
resource-object: Proteins
parameters
ID, desc, prot_other_attrs; instance: SWISS-PROT
resource-object: Prot_Struct
parameters
prot_ID, compound_ID, desc, ps_other_attrs; instance: PDB
resource-object: NetworkLinks
parameters
bandwidth; instances: Lp, Lz, L3
adaptation condition
dz € NetworkLinks, Rate(z) < 1Mbps

end as_spaceQ

Figure 13: Example of an adaptation space description for the execution of query Q.

The reference context of this space includes the resource objects and their descriptive
attributes that are involved in @), in addition to the initial adaptation case ac_initiaP. This
adaptation space is equipped with a single goal: to cope with network delays with the price

of increasing memory contention once that concurrent caching processes are fired.

Given a program component, there may be more than one adaptation space, each hold-
ing a different set of goals and a specific context for adaptation. Different adaptation spaces
of the same program present different adaptation dimensions. For example, I may create
and maintain an adaptation space for a given query plan (reference program) with perfor-
mance optimization as my goal, by specializing the query plan to cope with the resource
degradations. At the same time, I may also want to build an adaptation space that pro-
motes query relaxation, which generalizes the query to require fewer (or different) data
sources. The latter space could be used when some of the remote sources are completely

unreachable.

3.4 Adaptation Space Model: Formal Semantics

In this section I formally describe the concept of adaptation case, adaptation space, and re-
lated notions (such as adaptation-of relationship) using graph-based notation, and illustrate

these concepts by examples. The formal definitions introduced in this section will be served
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as the basis for defining adaptive coordination mechanisms that guarantee the correct use

of adaptation cases and adaptation spaces.

3.4.1 Basic Definitions

Given a program component 7" in a target web service, I can define the adaptation behavior
of T' through introduction of multiple adaptation cases. Each adaptation case is applicable
when its use-conditions become true.

A use-condition is a Boolean expression involving comparisons between functions, and
between functions and constants. Comparison operators include both the usual arithmetic
operators (==,=,#,<,<,>,>) and the set comparison operators (==,=,#,C,C) and

membership operators (€, €).

Definition 1 (Use Condition) Let 7' denote a program component in a target web ser-
vice. Let Param(T) denote the list of adaptation context parameters of T', and dom/(P;)
denote the domain of possible values of an adaptation parameter P; (P; € Param(T)). A
use-condition, denoted by F', can be defined recursively as follows:

(a) F =0 is a use-condition (empty condition);

(b) F = P,©OP;, P;Ouv;j, or v;;OP; are use-conditions, where

(i) P; and Py are comparable functions returning atomic values, P;, P, € Param/(T)

Vij € dom(B)’ and © € {::a:a#a < Sa >, 2}7

(ii) P; and Py are comparable functions returning set values, v;; C dom(F;), and

O c{==,=#0C,C}

(c) If F,Fy, and Fy are use-conditions, then the conjunction Fy A Fy, the disjunction

F} V F5, and the negation —F are use-conditions;

(d) If F is a use-condition, and z is a free variable in F', then (3z)F(z) and (Vz)F(x) are

use-conditions;

(e) Nothing else is a use-condition. O
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The use-conditions in the form (i) and (ii) are called atomic Boolean expressions (atoms).

All variables referenced in use-condition are strongly typed.

Definition 2 (Adaptation Case) Let T denote a program component in a target web
service. An adaptation case of T' is described by a tuple (N, TARG,GOAL,CTX,UC, AACTION)

where

N is the name of the adaptation case.

T ARG specifies the identifier of the target adaptation unit. It can be a regular class,

a module, a program, a procedure, or an existing adaptation case.

GOAL is a character string, presenting the goal description of the adaptation case.

CTX is the context description of the case, defined by three components: a pointer
to the adapted code, the list of resource objects used in the reference program, and
the list of resource object parameters, where each parameter is further described by a

quadruple (Pr, State, Type, Rdom), where

Pr is a name for the resource parameter;

— State(Pr) specifies one of the following use states of the resource parameter Pr:

provide, must-provide, require, must-require.

Type(Pr) defines the type of the resource parameter Pr and optionally the do-

main constraint of the parameter Pr.

Rdom(Pr) defines the set of permissible values of the resource parameter Pr.

e UC is a set of use-condition, expressed by a Boolean expression, indicating when it
is appropriate to use this adaptation case. Variables in use conditions are defined in

the adaptation case context.

e AACTION is the adaptation action to be fired when UC is satisfied. O

Example 6 Recall adaptation case ac_netDelay2 (Figure 11). According to Definition 2, I

can describe this adaptation case as follows:
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N (ac_netDelayL2) = ac_netDelayL2.

T ARG (ac_netDelayL2) = ac_initialP.

GOAL(acnetDelayl.2) = “query adaptation when Rate(Ly) degrades”.

CTX (ac_netDelayL2) = { (Pi2), (NetworkLinks, {(bandwidth, must-provide)}),
(Proteins, { (ID, desc, must-provide)}), (Nucleotides, {(ID, desc, must-provide)})
(Prot_Struct, { (compoundID, desc, must-provide)})}

UC'(ac_netDelayL2) = {(Rate(L2) < 1Mbps)A (Rate(L1) > 1Mbps) A (Rate(Ls) > 1Mbps)A

available( Nucleotides) = true A available(Proteins) = true A available(Prot_Struct) = true }
AACTION (ac_netDelayL2) = “collect and cache data from Prot_Struct while slowly receiving

data from Protein.”

Definition 3 (Adaptation-of Relationship) Let 7' denote a program component in a
target web service. Let a and 8 denote two adaptation cases of T', where each case is
described by a tuple (N, TARG,GOAL,CTX,UC,AACTION). The case 8 is said to
have an adaptation-of relationship with the case «, denoted by o = 3, if and only if the

following conditions are verified:

1. TARG(B) = case a.

2. Vz € CTX(B)Jy € CTX () s.t. identical(xz,y) V (specialized_version_of (z,y)A

3. Vp e UC(a)3q € UC(P) s.t. degradation_of(q,p).
4. Vp e UC(a)Vq € UC(B), (¢ = p) V degradation_of(q,p).

5. AACTION(B) = AACTION («) + new_action

The case « is said to be adaptable by case §. The relationship between a and f is

referred to as adaptation-of relationship. T call case « supercase and case 8 subcase. O

This definition states that new adaptation cases can be defined incrementally in terms

of existing adaptation cases, rather than being defined from scratch. However, the intuition
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between supercase and subcase is quite different from the superclass and subclass relation-
ship in object-oriented systems. For example, a subcase in the adaptation model may have
more restricted use conditions but may consume fewer resources than its supercase. More

concretely,

e Condition (1) specifies that each subcase takes its immediate supercase as the target

unit of adaptation.

e Condition (2) amounts to saying two points: (i) not every resource of a supercase will
be used in its subcases, and (ii) for any resource of a subcase, its implementation may
be more specialized than the corresponding one in its supercase (e.g., an alternative

remote data source, which has better response time, can be accessed instead).

e Condition (3) states that there must exist at least one condition in UC(S) that rep-

resents a degradation of some resource parameter used by T'.

e Condition (4) asserts that the state of all resource parameters listed in case a are

either degraded or remain unchanged in case .

e Condition (5) specifies that the adaptation action of a subcase consists of all the
actions considered by its supercase plus a new one. The intuition is that besides all
the actions that were taken to cope with the runtime changes up to this moment, an
additional adaptation action is needed to consider the new degradation of the runtime

environment configuration described in the subcase’s use condition.
To illustrate the above definition more intuitively, let us look at the following example:

Example 7 Recall the adaptation cases depicted in Figure 9, Figure 10, Figure 11, and

Figure 12. By Definition 3, I have:

ac_initial P => ac_netDelay L1,
ac_initial P = ac_netDelay L2,
ac_netDelayLl = ac_netDelayL12,

ac_netDelayL2 = ac_netDelayL12.
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In general, given an adaptation case, each of its immediate subcases describes an adap-
tation alternative. The subcases that are siblings with one another may have use-conditions
that are either mutually exclusive or overlapping. Thus, it is possible that more than one
sibling cases are eligible for adaptation at the same time. Selection policies [36] are there-
fore required to reconcile the situation and guarantee that there is only one adaptation
case being activated at any specific point in time. I call such case the active case of the

adaptation space.

Definition 4 (Adaptation Space) Let T' denote a program component in a target web
service. An adaptation space of T is defined as a labeled directed graph G = (V, L, E) where
V is a finite set of adaptation vertices of GG; L is an ordered set of labels, each described
by a set of use-conditions; F is a ternary relation on V' x L x V, representing adaptation

edges. For any o, f € V and £ € L, if « = (3, then (a, ¥, ) € E. O

Given an adaptation space graph G = (V, L, F), each vertex in V represents an adapta-
tion case and each label in (u,?,v) € V' x L x V represents a use condition describing when
to switch off case v and turn on case v.

The reference case of the adaptation space of G is a special vertex in V', which cannot
be adaptation reachable by any other vertices of V' and there exists no other vertices from

which this special case can be adaptation reachable.

Example 8 Recall the four examples of adaptation cases for @) given in Figure 9, Figure 10,
Figure 11, and Figure 12. The root adaptation case (labeled as ac_initial P) is the initial
optimized query plan Py (unspecialized reference program), and the other nodes represent
alternative query plans (adapted code) when network delays occur. I can describe this

adaptation space for query @ as a graph G = (V, L, E'), where

V = {ac_initial P,ac_netDelay L1, ac_netDelay L2, ac_net Delay L12}
L = {(Rate(L1) < 1Mbps), (Rate(L2) < 1Mbps)}
E = {(acunitial P, Rate(L1) < 1Mbps,ac-netDelayLl),

(ac_initial P, Rate(Ly) < 1Mbps, ac_netDelayL?2),
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(ac_netDelayLl, Rate(L9) < 1Mbps,ac_netDelayL12),

(ac_netDelayL2, Rate(L;) < 1Mbps,ac_netDelayL12)}

The initial case ac_initialP can be adapted (i) by ac_netDelayLl when Rate(L;) de-
grades, (ii) by ac_netDelayL2 when Rate(Ls) degrades, and (iii) by ac_netDelayL12 when
both Rate(L1) and Rate(Ls) degrade. If Rate(L1) < 1 Mbps, the adaptation case ac_netDelayL1
will be turned on to adapt Fy to cope with the unexpected delay at network link L;.

The four adaptation cases are related with one another through the adaptation-of rela-

tionships, and together they form an adaptation space for @), as shown in Figure 14.

Interesting to note that not all transitions in the adaptation space are relevant. For
instance, the transition from ac_netDelayL2 to ac_netDelayL12 is not relevant because by
the time connection Lo is detected to be slow, I may have already downloaded the data
from A if I assume a hash-based join. In Figure 14, the irrelevant transition is represented

by a dotted line.

3.4.2 Adaptation Reachability

Adaptation reachability refers to the capability of adapting a program to different kinds
of adaptation at different levels of a web service. More concretely, for any two adaptation
cases in a given adaptation space, say « and 3, I say that the case § is adaptation reachable

if and only if 8 has a direct or indirect adaptation-of relationship with «.

Definition 5 (Adaptation Reachable =—>*) Let T' denote a program component in a
target web service and G = (V, L, E') be an adaptation space graph of T. A vertex y € V
is adaptation reachable from vertex a (a € V'), denoted by o =* ~, if and only if one of

the following conditions is satisfied:

(i) a="1.
(ii) (a,f,7v) € E.

(iii) 3 e V,f # v and B # «, s.t. « =" f and f =* 7. O
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Figure 14: Example of an Adaptation Space.

This definition formally introduces the concept of adaptation reachability: for any two
adaptation cases a and v, if v is adaptation reachable from case «, then either « and 7y
are identical case, or there is an adaptation-of relationship between v and «, i.e., « = 7y
holds, or there exists another adaptation case § satisfying that S is adaptation reachable
from «, and vy is adaptation reachable from g.

This adaptation reachability concept is powerful in the sense that it provides a uniformed
adaptation framework which is independent of the objectives, context, and methods of
adaptation spaces. For instance, when applied to the kind of adaptations designed for
capability relaxation scenario, the adaptation reachability concept means that a case with
more capabilities can be adapted to a case with less or weaker capability. When applied

to adaptations for performance gains (program specialization), the adaptation reachability

means that a case with generic assumptions (such as the transfer rate of all network links

39



are at least 1Mbps) can be adapted to a case with specific assumptions (such as some of
the network links have transfer rate less than 1Mbps, and this condition will hold over a

certain period of time).

Example 9 Let us take a look at Figure 14. According to Definition 5(ii), the vertex
of ac_net-DelayLL12 is adaptation reachable from vertex ac_initialP, ac_netDelayL1l, and

ac_netDelayL2. That is:

e ac_initial P =" ac_netDelayL1

e ac_initial P =" ac_netDelayL2

e ac_initial P =" ac_netDelayL12

e ac_netDelayLl =—* ac_netDelayL12

e ac_netDelayL2 =—* ac_netDelayL12

The following proposition proves that “=—*” is the transitive closure of F, since it is
reflexive, antisymmetric and transitive. No cyclic adaptation path is allowed. An adaptation

space graph is considered legal if there are no cyclic adaptation paths:

{aeV|BeV,st. B#aand a =" = a} =10

This condition is served as one of the guidelines to check the consistency of adaptation
case specifications. In the sequel, we assume that adaptation space graphs are legal.

*** Proposition: Partial order for the adpatation space.

Proposition 1 Let T denote a program component in a target web service and G =
(V, L, E) be an adaptation space graph of T. The adaptation reachable relation =—* is a

partial order over V X V. O

Proof:
Case (a) By Definition 5(i), Va € V, @ =* « holds. Thus =* is reflexive.

Case (b) To prove =" is antisymmetric, we need to prove that, Vo, 5 € V, if « =* 3, then
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B =" a. By @« =*  and the antisymmetric property of the subset inclusion operator C

and logical implication operator —, f =" a holds.

Case (c) Similarly, we can prove that =* is transitive, i.e., Vo, 8,y € V, if « =* 3 and

B =", then a =" 1. O
This proposition ensures that the incremental adaptation specification yields a partial

order of adaptation cases within any given adaptation space.

3.5 Advanced Properties of Adaptation Spaces
3.5.1 Basic Relationship of Adaptation Spaces

Given two adaptation spaces S; and So, if S; and Sy share the same initial case (root
adaptation case), then an immediate question one would ask is “are these two adaptation
spaces comparable?” If Sy and Sy are comparable, are they equivalent? Does one cover,
overlap with, or disjoint with, another? In this section, I formally define the notion of
comparable adaptation spaces and the concept of equivalence, coverage (inclusion), overlap

and disjoint of two adaptation spaces.

Definition 6 (Equivalent Adaptation Cases) Two adaptation cases o and [ are con-
sidered to be equivalent, denoted by « ~ (3, if and only if the following conditions are

satisfied:
(i) TARG(a) = TARG(B).
(i) CTX(a) = CTX(B).
(iii) UC(a) = UC(B).
(iv) AACTION (a) = AACTION(B). 0

This definition says that two adaptation cases can have different case names and goal

description syntax, but still be functionally equivalent.

Definition 7 (Comparable Adaptation Spaces) Let S; and Sy denote two adaptation

spaces. Let initial(S) denote the initial case of adaptation space S, SCT X (S) denote the
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set of parameters referenced in the reference context of S, and SUC(S) denote the union
of the set of use-conditions of S and of its adaptation cases. Two adaptation spaces are

considered comparable if and only if the following conditions are satisfied:
(i) initial(S1) ~ initial(S2).
(ii) SCTX(S1) = SCTX(S2). O

Note that two adaptation spaces S; and S are comparable even if they have completely

different space names, and different sets of adaptation-conditions. Let us look at an example:

Example 10 Recall the query plan Py shown in Figure 8(b). Assume the root of the
adaptation space for query @ is the initial case ac_initialP (Figure 10). Besides adapting
to changes in transfer rates, one could also adapt the execution of query @ to changes in
memory constraints (see Chapter 5). Suppose that at runtime the data to be delivered
by NCBI is larger than expected. Consequently, the execution of join J; in plan Py will
require more memory blocks than originally assumed by the optimizer. If there are more
memory available in the system, the query engine can request the extra memory blocks and
the performance of P, is not affected. However, if extra memory is not available, then the
execution of J; will thrash given the increase of I/Os due to extra paging. Assuming that
J1 is a hash-join, one way to address this problem is by switching the operands of J; if I
can detect that the data to be delivered by NCBI is larger than the data to be delivered by
SWISS-PROT. Similar analysis applies to J, if |J;| > |PDB|.

The adaptation space graph for this example is described as follows:

V = {ac_initialP MC, ac_switchOprnd_1, ac_switchOprnd 2}
L = {|NCBI| > |SWISS-PROT|,|J,| > |PDB|}
E = {(ac_initialP.MC,|NCBI| > |SWISS-PROT|,ac_switchOprnd 1),

(ac_initialP MC,|J;| > |PDB|,ac_switchOprnd 2) }

Let @S1 the adaptation space given in Figure 14 and @S2 the adaptation space in
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Figure 15: Example of an Adaptation Space for coping with end-to-end delays.

Figure 15. Comparing the initial case of )S1, namely ac_initialP, with the initial case of

@S2, namely ac_initialMemP, I observe the following facts:
(1) ac_initialP and ac_initialP_MC are equivalent (by Definition 6)

(2) SCTX(QS1) =SCTX(QS2) = {Nucleotides, Proteins, Prot_Struct, memorySize,
NetworkLinks}

(3) SUC(QS1) = {Rate(L1) < 1Mbps, Rate(Ls) < 1Mbps}
SUC(QS2) = {|NCBI| > |SWISS-PROT),|J.| > |PDB|}
Thus, SUC(QS1) # SUC(QSs2)

I can conclude that @S7 and QS are comparable adaptation spaces, but they are not

equivalent.

Definition 8 (Adaptation Scope) Let o denote any adaptation case in a given adap-
tation space G = (V, L, E). An adaptation scope of «, denoted as Ascope(a) is the set of

adaptation cases that are adaptation-reachable from .
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Ascope(a) = {y]a,y € V,a =" v}.

Example 11 Recall Example 8 and Figure 14. T have

Ascope(ac_initialP) = { ac_initialP, ac_netDelayLl, ac_netDelayL2,

ac_netDelayL12}
Ascope (acnetDelayL1l) = {ac_netDelayLl, ac_netDelayL12}
Ascope (ac_netDelayL2) = {ac_netDelayL2, ac_netDelayL12}

Ascope(acnetDelayL12) = {ac_netDelayL12}

Given an adaptation space case «, the adaptation scope of « identifies the adaptation
context of a. It helps the system to keep track of the adaptation behavior of «, and
facilitates the monitoring of use-conditions and quasi-invariants of the goals involved in the

adaptation scope of a (See Section 3.6 for further detail).

Definition 9 (Equivalence Relationship) Let S; and S3 denote two comparable adap-
tation spaces. Let SUC(S7) denote the set of use-conditions of S; and its adaptation cases.
I say that S; is equivalent to So, denoted by S; ~ Ss, if and only if the following conditions

are satisfied:

(i) SUC(S)) = SUC(Ss)

(ii) Yo € S1, 3B € Sy such that a ~ § (i.e., @ and (3 are equivalent cases), and vice-versa.

|

Definition 10 (Inclusion Relationship) Let S; and Sy denote two comparable adapta-
tion spaces. Let SUC(S;) denote the set of use-conditions of S; and its adaptation cases.
I say that Sy covers (or includes) Si, denoted by S; 1 Sy, if and only if the following

conditions are satisfied:
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(i) SUC(S1) 2 SUC(Ss).

(ii) For any adaptation case o € So, there is an adaptation case 5 € Si, such that a ~ f.

|

Definition 11 (Overlap Relationship) Let S; and S denote two comparable adapta-
tion spaces. Let SUC(S;) denote the set of use-conditions of S; and its adaptation cases.

I say that S; overlaps with Sy, if and only if the following conditions are satisfied:

(i) SUC(S1) N SUC(S,) # 0.

(ii) Ja € Sy and 3B € Sy such that a ~ S. O

Recall Example 10. The two adaptation spaces, @51 and Q)S3, do not overlap because

SUC(QS;) N SUC(QS,) = 0.

Definition 12 (Disjoint Relationship) Let S; and S; denote two comparable adap-
tation spaces. Let SUC(S;) denote the set of use-conditions of S; and its adaptation
cases. | say that Si disjoints with Sy, if and only if the following condition is satisfied:

SUC(S,)NSUC(Sy) =0. O
3.5.2 Composition of Adaptation Spaces

It is interesting to study the composition of adaptation spaces, especially the composition
of comparable adaptation spaces.

The more sophisticated composition of different adaptation spaces requires more thought
and careful analysis of the benefits and usage of the adaptation space. I discuss composition

of adaptation spaces in Chapter 7.
3.5.3 Other Complications

One complication is the question of what kind of adaptation derivation I would like to have.
For instance, an adaptation case may also be derived from more than one existing adaptation
cases. Do I need such kind of complication? What are the benefits and applications I can

obtain? Studying these issues is part of my future research agenda.
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3.6 Issues of Using Adaptation Space Model

I have formally described the adaptation space model and the inherent properties. In this
section, I summarize my discussion by classifying the concepts introduced into the following

three categories: (1) what to adapt, (2) how to adapt, and (3) when to adapt.

What to adapt The first task I need to deal with in adaptation specification is how to
identify the program components of a web service that should adapted. I have addressed
this issue by identifying what should be included in an adaptation context and what are

the target units that I consider in my adaptation model.

e Adaptation context: The key elements of the adaptation context include the goal of
adapting a given component, the reference case (e.g., the source code of a component
to be adapted), the set of use conditions, and the resources required. In this paper,
I have concentrated my discussion on performance gain-driven adaptation, namely
specialization. Another representative type of query adaptation is relaxation-based
adaptation, where a more generic SQL statement is generated, and the response re-

turned to the user is a super-set of the result expected from the initially submitted

query.

e Adaptation target units: In general, the adaptation target units may range from
a software system (a set of programs), a complete program (a set of modules), a
module (a class, a set of functions), a function (procedure), to a block of code (within
a function). The choice of a particular entity depends on the language structure, the

adaptation context, and the power of the given program adapter.

When to adapt I have defined the use condition and the incremental approach for adap-
tation case specification in Section 3.3 and Section 3.4. The key points are summarized as

follows:

e Use conditions: A use condition is a set of predicates over some parts of the program

state or adaptation space state, which hold over a period of time. It identifies when
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the corresponding adaptation case should be activated. In contrast to program spe-
cializers which usually consider equality predicates, and perform specialization when
some specific variables having some specific values, program adaptation allows the use
condition to be predicates consisting of inequalities, and possibly involving external

events.

e Incremental adaptation: Usually, a set of use conditions may not become true all at
once. Some use conditions may even be in conflict with each other. Therefore is useful
to be able to describe a partial order of adaptation contexts for a given query execution
so that it can be adapted further as more use conditions become satisfied. In the
proposed adaptation model, the notion of adaptation space is introduced to capture

the partial order of adaptation cases (contexts) for each given program component.

How to Adapt The question of how a program component should be adapted involves
the operational aspects of adaptation, which include issues such as how to monitor the use
conditions, when to produce the adaptation code, how to apply (trigger) an adaptation,

and how to integrate the adaptation code into the program.

e Compile-time vs. runtime adaptation: In general, given an adaptation case, if its
use condition can be evaluated at compilation stage, then I refer to the use condition
as compile-time use condition and the adaptation case as compile-time adaptation.
Otherwise, it is called runtime adaptation and its use condition is called runtime use
condition. Note that for those adaptation contexts depending only on compile-time
use conditions, adaptation can be applied either at compile-time or at runtime. For
the other contexts, adaptation must be applied at runtime. In this chapter, I only

considered runtime use conditions.

e Monitoring use condition: In the runtime adaptation case, I need some runtime
support which detects when all the predicates in the use condition become valid, and
when the adaptation is triggered to replace the target component. There are a number

of ways to conduct situation monitoring. For example, I can use periodic monitoring
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with regular or irregular time interval [34]. This approach allows us to check the use
condition periodically with reasonable frequency and trigger the adaptation whenever
the use condition is evaluated to be true. Another alternative approach for monitoring
use conditions is to use the content-based update monitoring [34], which checks the
use condition whenever there is a new update to some context variables involved in

the use condition.

Triggering adaptation: Once the use condition becomes true, an immediate ques-
tion to ask is when to apply adaptation. Both eager approach and lazy approach can
be used here. When the use condition is evaluated to be true, the eager approach ap-
plies adaptation and replaces the component immediately, whereas the lazy approach

only replaces the component at the time when the component is used.

Preserving adaptation validity: For runtime adaptation case, the runtime sup-
port must preserve the validity of the adaptation. This implies two basic tasks: (1)
detecting when the predicates in the use condition are invalidated, and (2) replacing
the adaptation component by an appropriate adaptation case whose use condition is
satisfied. A sophistication here is the situation where there may exist more than one
adaptation cases whose use conditions are true during the given period of time, and
thus the runtime support has to decide which one to pick. The decision is particularly
difficult when the candidate adaptation cases have potentially conflicting goals and

interests [36].

3.7 Summary of Adaptation Space Model

In this chapter, I have described the notation and the formal semantics of the adaptation

space model used for designing adaptive web services. The core of this adaptation model

is the notion of adaptation space and the mechanisms for coordinating and integrating

different kinds of adaptations. An adaptation space is defined by a use context and a

partial order of adaptation cases. Each adaptation case describes a specific adaptation of

a program or component of a web service. There are three main thrusts of the adaptation
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space approach. First, it defines a multi-dimensional adaptation context for capturing and
coordinating different kinds of adaptation at different levels of a web service. Second, it
provides a uniformed way for representing and viewing a collection of alternative adaptations
for a given query program or component of a web service. Third, it promotes a declarative
and incremental approach to adaptation specification, allowing the incorporation of new
adaptation behavior of a web service in terms of existing adaptation cases.

In the next chapter, I describe the Ginga approach, which has in its core the adaptation
space model describe in this chapter. For the remaining of the dissertation, I use Ginga to

investigate the trade-offs and benefits of using proposed the adaptation space model.
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CHAPTER IV

GINGA: AN ADAPTIVE APPROACH TO QUERY
PROCESSING

4.1 Overview

In contrast to the closed world assumption taken by most of conventional database ap-
plications, advanced Internet applications use an open world assumption. The runtime
environment may change dynamically. Data sources available on-line are constantly chang-
ing in number, volume, content, and capability. The assigned resources for executing a
query constantly change in their configuration and their availability. There are several
mechanisms that help users to query these massive data. However, these mechanisms are
either limited to local search indexes (e.g., search engines) or do not have means to adapt
to the sudden changes of the runtime environment.

In this chapter, I describe Ginga [41, 43], an adaptive approach to query processing
based on feedback control. My approach aims at providing continuously efficient query
execution, taking into account the important changes to the runtime environment. I am
particularly interested in distributed queries that are long running or need to be executed
more than once (e.g., continual query [33]).

Ginga has three interesting features. First, it utilizes the Adaptation Space concept to
manage the predefined generation of query plans. These parameterized plans will service
as alternatives to react to unexpected shortages of runtime resources. Second, it provides
feedback-based control mechanism that allows the query engine to switch to alternative
plans upon detecting runtime environment variations. Third, it describes a systematic
approach to integrate the adaptation space with feedback control that allows me to combine
predefined and reactive adaptive query processing, including policies and mechanisms for

determining when to adapt, what to adapt, and how to adapt.
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4.2 System Architecture

The Ginga query adaptation engine is a distributed software system that supports adaptive
query processing. When executing a query in a highly unstable runtime environment, the
query processor needs to be highly adaptive in order to cope with unpredictable runtime sit-
uations (e.g., unexpected end-to-end delays, latency fluctuations, memory shortage). Ginga
is a Brazilian word typically used to describe a quality that a person needs to have when
dancing samba. Like the quick rhythm and movements of samba, the query processing sys-
tem equipped with Ginga query adaptation engine can quickly and efficiently change the
execution of a query plan in order to keep up with the rhythm imposed by the runtime
variations in the environment.

Figure 16 shows a sketch of the Ginga system architecture. A query submitted to
the Ginga query system is initially processed by the query manager. The major tasks of
the query manager are to coordinate clients’ query sessions and to invoke query routing
process [30], which performs source selection by pruning those data sources that cannot
directly contribute to the answer of the query. After query routing, each end-user query is

transformed into a set of subqueries associated with some execution dependencies. Each of

such subqueries is targeted to one of the chosen data sources.
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optimized plan and some alternative execution plans that may be used when the runtime
environment state changes significantly. The query adaptation in Ginga combines an Adap-
tation Space Generation phase (AdaptS-GP), before query execution, with an Adaptation
Space Ezploration phase (AdaptS-EP) during the execution. At AdaptS-GP, an adaptation
space is built with the initial optimized plan as the root and the alternative plans as the
non-root nodes. During query execution, Ginga monitors the runtime environment and
resource availability continuously, and determines when to change the query plan and how
to adapt by choosing an alternative plan from the corresponding adaptation space in the

AdaptS-EP.

4.3 Adaptation Space Generation Phase

In the Adaptation Space Generation phase (AdaptS-GP), Ginga builds the initial query
plan Py and establishes a selection of alternative plans for adaptation. The first task is to
generate the initial optimized plan. This can be done using any existing query optimization
algorithm for distributed databases [55, 19, 7, 32, 51, 40]. The second task is to generate
query adaptation alternatives ({P;,7 = 1,... n}). Since there are many potential alternative

plans, Ginga organizes them into an adaptation space.

4.3.1 Ginga’s Adaptation Space

In Chapter 3, I discussed and formalized the notion of adaptation space for the general
situation of program adaptation. In this section, I specialize the adaptation space for the
Ginga approach.

In Ginga, I organize the opportunities for adaptation and alternative query plans into
an adaptation space. An adaptation space is a directed graph where the nodes are called
adaptation cases and the arcs are called adaptation triggers. An adaptation_case(F;) is a
pair (P;, adaptation_condition(F;)), where P; is a query plan and adaptation_condition(P;)
is the set of predicates over runtime parameters under which P; was optimized (e.g., how
many memory blocks have been allocated and the assumptions made about join operand
sizes and network transfer rates).

An adaptation_trigger(P;) is a quadruple (adaptation_event(P;), adaptation_action(P;, P;),
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adaptation_condition(P;), wait_time) where P; is the current plan executing under adap-
tation_condition(#;). When a change in system parameters invalidates a predicate in
adaptation_condition(P;) (e.g., unexpected latency fluctuation while receiving data from
remote servers), adaptation_event(F;) is fired. Then, adaptation_action(P;, P;) finds adap-
tation_case(P;) such that adaptation_condition(P;) has become valid by the adaptation_e-
vent(P;). Since P; is the plan optimized for the new set of predicates over runtime parame-
ters, the adaptation_action(P;, P;) switches from P; to P; by replacing code or runtime flags
in all the nodes involved in processing this query.

The wait_time component of an adaptation trigger indicates for how long the invalidation
of the predicate in adaptation_condition(P;) must hold before the described transition takes
place. This wait_time is used to prevent oscillations in feedback-based adaptation when, for
example, temporary network latency and bandwidth fluctuations (i.e., end-to-end delays)
cause repeated transitions back and forth between two query plans. As in all feedback-based
adaptation, a short wait_time results in fast adaptation soon after the onset of end-to-end
delay. A long wait_time slows down the adaptation process, but it decreases the probability
of an oscillation. A precise setup for wait_time is a hard problem yet to be solved as it
implies being able to predict the future state of a runtime environment.

In the experimental studies reported in this dissertation, I take a simple assumption
that once the adaptation process has taken place, Ginga does not backtrack when the
invalidated predicates are validated again. Incorporating various types of oscillations in a
runtime environment into the query adaptation decision-making process is an important
and interesting subject, which I defer to future research work.

During the AdaptS-GP, Ginga builds an adaptation space for executing query @ through
three main steps. First, Ginga generates the initial query plan Py under the initial as-
sumptions made about the runtime environment (e.g., expected memory size) in adap-
tation_condition(Fy). Second, Ginga creates the set of monitors that trigger an adapta-
tion_event when one of the predicates in adaptation_condition(F,) becomes invalid. Third,
for each such event, Ginga creates a new set of predicates over runtime parameters and an al-

ternative query plan optimized for it (adaptation_condition(F;)) and adaptation_trigger(F).
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This process is repeated for each one of P; until all the runtime parameter predicates have
been covered.

The construction of an adaptation space can be eager, as outlined above, or lazy, when
the alternative query plans are generated only when needed. In general, the trade-offs in
adaptation space generation are a subject for future research and beyond the scope of this
dissertation (see Section 4.5). For a relatively small adaptation space, it is reasonable to
generate it at initialization time. This is the assumption made in this dissertation.

In this dissertation, I do not describe, implement, or evaluate a detailed algorithm
for generating the adaptation space. Developing and evaluating of such algorithm is part
of my future research work. Thus, when I study Ginga’s performance characteristics in
Chapter 5, Chapter 6, and Chapter 7, I assume that the associated adaptation space has
been previously generated.

I now illustrate the adaptation space construction process using a simple example.

Legend:
QUERY Plan A AE: Adaptation Event
Q_2: SELECT * J1: Hash Join AC: Adaptation Action
FROM R1,R2
WHERE KEY_R1 =KEY_R2
R1 R2
@
AE(P): large_operands AE(P): sorted_operands
AC(P,Pa): Switch R1,RR AC(P,Pa): Change J.method
to Sort-Merge-Join
UERY PLAN P
Q Plan P; Plan ab
J1: Hash Join J1: Hash Join J1: Sort-Merge Joi
R1 R2 R2 R1 R1 R2

(b) (©

Figure 17: (a) Query Q2 and (b) associated optimized query plan P; (¢) An adaptation
space for Q9.

Example 12 Consider query Q2 shown in Figure 17(a) where base relations are local. Also,
let assume that I want to adapt the execution of ()2 to changes in memory constraints. In
the first step of adaptation space construction for (Q2, Ginga generates the optimized query
plan P shown in Figure 17(b). This plan is created based on the set of resource parameter

predicates in adaptation_condition(P) summarized in Table 1. On Step 2, Ginga generates
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the monitors that will trigger the adaptation events listed in Table 2. In this table, I also
describe the associated adaptation action to be executed. In Step 3, the alternative plans
are generated for each new adaptation condition created. In this example, Ginga creates
two new adaptation conditions as described in Table 3. Observe that it is possible for
both adaptation triggers to be fired at the same time. In this case, Ginga will select the
adaptation action that yields a query plan with the least cost. Figure 17(c) depicts the

adaptation space for P. O

Table 1: Resource Parameter Predicates in adaptation_condition(P).

| Predicate Name | Description |
OperandOrganization | isSorted(R;) == FALSE and isSorted(R2) == FALSE
OperandSize |R1| < |R2|

Table 2: Adaptation events and adaptation actions.

| adaptation_event(P) [ Invalidated Predicate | adaptation_action(P,P;) |

sorted_operands OperandOrganization change Ji.method from Hash Join to Sort-Merge Join.
large_operands OperandSize switch the operands of .J;.

Table 3: Generated Adaptation Conditions.

adaptation_condition(FP,)
Predicate Name Description
OperandOrganizationP, | isSorted(R;) == FALSE and isSorted(R>) == FALSE
OperandSizeP, |R1| > |R2|

adaptation_condition(FP;)
Predicate Name Description
OperandOrganizationP, | isSorted(Ri) == TRUE and/or isSorted(R2) == TRUE
OperandSizeP, |R1| < |R2|

Discussion on the construction of an adaptation space: Constructing an adaptation
space with adaptation cases for every single change to the runtime environment is unrealistic
due to the following reasons. First, it is very unlikely that all possible changes will indeed
occur. Second, the overhead cost for constructing such adaptation space is prohibitive. A

more realistic approach for constructing an adaptation space is to generate adaptation cases
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for only those runtime environment changes that are known to occur with a frequency above
a realistic threshold.

In Ginga approach, for the changes to the runtime environment that are not covered by
the adaptation space, no adaptation action is fired. However, new adaptation cases can then
be inserted to the adaptation space as I learn more about the runtime environment behavior
over multiple runs of the same query. I gather information of the runtime environment by

monitoring the usage of the resources allocated during the query execution.
4.3.2 Query Execution Model

In Ginga, query plans are processed according to the Segmented Execution Model (SEM)
as described in [53]. In this model, a query plan P; is first decomposed into a set of right-
deep segments. Then, a segment execution schedule, sch(P;), is generated by assigning
numbers to each segment in a left-deep recursive manner. Segments are executed one at a
time. For example, suppose that P; is the query plan shown in Figure 18(a). According
to SEM, P; will be divided into two segments, Segment; and Segments (Figure 18(b)),
where sch(P;) =< Segment;, Segments >. Segments are further represented as a sequence

of operators. In this example, Segment; =< J; > and Segmenty =< Jy, J3, Jo >.

J4

T

Ji J

3
R1 R2 R3 J2
R4 R5

Segmentl

Legend:
Ji: Hash Join i
Rj: Base Relation j

Segment2

(a) Query Plan P_i (b) Segmented Query Plan P_i

Figure 18: Query plan decomposed into right-deep segments.

Segments are right-deep because right-deep trees allow me to pipeline the execution
of hash joins and achieve inter-operator parallelism. If enough memory is available for
constructing the hash tables (or at least part of them, if partitioning is needed) for the join

operators involved in a right-deep (sub) tree, then I can execute these operators concurrently
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in a pipeline fashion. The advantage is that I can eliminate the need for caching intermediate
results into disk (as needed) and consequently improve the query total response time. SEM
assumes that join operators are hash-based.

Considering that at any given moment there will be only one segment s € sch(FP;) being
executed, in the rest of this dissertation, I study how to adapt the execution of s; when
there is a violation of predicates in adaptation_condition(P;) that affects the execution of
si. Observe that by adapting s, Ginga generates a new query plan P;.

When generating the initial plan P, Ginga’s initial query optimizer can consider different
tree shapes for P: left-deep, right-deep, and bushy. As demonstrated in [53], bushy trees
are the most general and the most interesting because they offer the best opportunities to
minimize the size of intermediate results. Thus, I assume that Ginga’s initial optimizer
will always favor for bushy trees. However, for most of my experiments reported in this
dissertation, I use right-deep trees because I want to investigate the efficiency of Ginga’s
adapting each individual segment.

In this dissertation, I concentrate on adaptation actions are applied to a single segment.
Consequently, actions that consider join re-ordering across multiple segments are not cov-
ered. The implementation of such adaptation actions translates into the construction of a

dynamic query re-optimizer, which is part of my future research work.

4.4 Adaptation Space Exploration Phase

So far, I have discussed the Adaptation Space Generation phase, where the initial query
plan P is chosen for the input query () and its adaptation space is constructed to cover
those degradation situations that I am interested in providing adaptation support. Once
the adaptation process is initiated, the schedule for the initial query plan is sent to the
scheduler for execution and the Adaptation Space Exploration phase (AdaptS-EP) receives
the associated adaptation space. In addition, the newly created adaptation space for @ is
stored in the Adaptation Space Repository.

Before executing segment s, the scheduler checks with AdaptS-EP whether adaptation

is needed for s. For example, AdaptS-EP can adapt segment s by changing the memory
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allocation strategy and/or changing the method of some of the operators. Once the adap-
tation is done (if any), the revised segment is returned to the scheduler, which in turn will
submit it to the runtime system. When the runtime system finishes executing the segment,
it sends an end-of-sequence message to the scheduler.

During the execution of a segment, the runtime system keeps AdaptS-EP informed of
the observed values of the resource parameters and AdaptS-EP monitors the the validity
of the resource parameters predicates in adaptation_condition(F;). If one (or more) predi-
cate in adaptation_condition(P;) becomes invalid, an adaptation_event(F;) is generated and
adaptation_trigger(P;) is fired. Ginga makes the transition in the adaptation space to the
next query plan P; by matching the new set of runtime parameter predicates with adap-
tation_condition(P;). The query execution continues with P;. Observe that changing from
one query plan to another may change the sequence of segments that a scheduler needs to
submit for execution. Consequently, when the scheduler receives the end-of-sequence from
the runtime system, the scheduler needs to contact the AdaptS-EP to get the next segment
to be executed (if any).

At the end of the query execution, the scheduler sends the result R of query @ to the
Query Manager, which in turn delivers R to the caller process.

For the subsequent executions of @), the AdaptS-GP will do one of the following ac-
tions: If no new adaptation techniques for adapting the query execution are available, then
AdaptS-GP will load Q’s adaptation space from the Adaptation Space Repository. Oth-
erwise, AdaptS-GP will not only load @Q)’s adaptation space, but also update it with the
new adaptation techniques. For example, consider that at first Ginga had only adaptation
techniques available for coping with end-to-end delays. Then, as the server where Ginga
is running becomes overloaded, the system administrator decides to also incorporate adap-
tation techniques for memory constraints. Now, when Ginga executes the new (and old)

queries, it will also incorporate the memory constraint adaptation techniques.
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4.5 Discussion: Combining Adaptation Space Generation
and Ezxploration Phases

To gain a better understanding of the cost and effectiveness of adaptation space generation
and exploration, I conducted a series of experiments comparing the performance of (1)
no adaptation, (2) static generation of adaptation plans, and (3) dynamic generation of
adaptation plans for the case where the distributed query experiences end-to-end delays
(i.e., the remote data is delivered at a slower rate than expected). Figure 19 compares
the total query execution time of the three cases, taking into account the execution of
successive query plans as well as the adaptation overhead. For generating this graph, I used
the experimental setup described in Section 6.3.1 (Chapter 6: Adaptation to End-to-End

Delays).

Varying the % of cases covered by the adaptation space - Slow Rate = 256Kbps

Average Response Time (sec)

No Adapatation
—— Static Generation (100% of cases covered)
s —+— Static Generation (75% of cases covered) ||
—— Static Generation (50% of cases covered)
—6— Static Generation (25% of cases covered)
— - Dynamic Generation
I I

70 1 1 I I
0 20 40 60 80 100 120
Number of Delayed Pages

Figure 19: Static and Dynamic Generation of Alternative Query Plans

The graph shows the total query response time (seconds) as a function of network
delay (number of pages delayed) in a representative scenario (with detailed explanations in
Section 6.3.1). The graph shows (not surprisingly) that the query response time is longest

without adaptation (the top line). Then, as the number of alternative query plans becomes

99



larger, covering an increasingly larger number of cases (from 25% to 100% of the cases), the
response time improves significantly (about 20% faster for the 100% coverage in the middle
of the graph). Dynamic generation (the “staircase” curve) fits between the 25% and 50%
coverage in most cases, improving more when delays become longer.

This study (Figure 19 and other graphs omitted due to similarity) shows that static
generation of alternative query plans is advantageous in many cases of interest. Even when
only 25% of the adaptation cases have been generated, for a small number of delayed pages
static generation can still be more efficient since dynamic generation has to compensate
for the generation cost. The vertical jumps in the dynamic generation “staircase” line are
due to the overhead of dynamically generating new query plans to cope with the increasing

number of delayed pages. In this dissertation, I adopt the static generation approach.

4.6 Summary of Ginga Approach

Adaptive query processing is an active research area that has received considerable attention
(see Section 2.4) due to the increasing openness of information systems such as Internet,
where sudden changes such as network delays are common. Most of the previously proposed
approaches can be classified into predefined (compile-time or start-up time generation of
foreseeable query plans) or reactive (runtime adaptation according to actually observed
environmental changes). In this chapter, I described Ginga, an approach to adaptive query
processing that combines generation of predefined query plans with run-time monitoring
and reactive switching of query plans.

Ginga has two main phases: Adaptation Space (AdaptS) Generation and Adaptation
Space Exploration. At AdaptS Generation phase, prior to runtime, Ginga generates an
adaptation space for the input query. At runtime, AdaptS Exploration phase monitors the
use conditions. Whenever one or more use conditions become true, Ginga then navigates
the adaptation space, selects the most appropriate adaptation case, and fires the associated
adaptation action which replaces the current query plan with an alternative one optimized
for the changes to the runtime environment configuration.

In the next chapters, I analyze the benefits and trade-offs of using Ginga for adapting to
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two different failure types, namely, memory constraints (Chapter 5) and end-to-end delays
(Chapter 6). In Chapter 7, I investigate Ginga’s performance characteristics when both

memory constraints and end-to-end delays are detected at runtime.

61



CHAPTER V

ADAPTATION TO MEMORY CONSTRAINTS

5.1 Coping with Memory Allocation Mismatches

Despite the continued evolution of computer systems under Moore’s Law, real world database
systems almost always need more main memory than is available. This is the case for com-
plex decision support queries involving large relations and also in multi-user environments
where a number of concurrently executing queries compete for a finite amount of main
memory. Careful memory management for query execution under memory constraints has
been studied by several researchers, as summarized in Section 2.4.1.

During the execution of a complex query, the relationship between memory resource
availability and query processing requirements may change for a number of reasons. On
the query processing requirements side, for example, if intermediate join result sizes turn
out to be significantly different from what is estimated at query plan generation time, the
execution may thrash due to insufficient memory. Similarly, a large number of concurrent
queries in the system may result in a query execution receiving fewer memory blocks than
the requirements established at the query plan generation time.

In this chapter, I investigate several dynamic adaptation techniques that overcome the
variable memory constraint bottlenecks when available memory no longer matches query
processing requirements at runtime [45]. These adaptation techniques are organized into an
adaptation space, which provides a uniformed way for representing and viewing a collection
of alternative adaptations to memory constraints for a given query execution plan.

The rest of the chapter is organized as follows. Section 5.2 presents preliminary back-
ground related to the adaptation techniques described in Section 5.3. Also in Section 5.3,
I discuss how to organize these techniques into an adaptation space G, and how Ginga
navigates G to get around the changes in memory constraints. Section 5.4 studies the per-

formance of the three techniques for representative scenarios. Section 5.5 summarizes the
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chapter.

5.2 Preliminaries

In this section, I first revisit three classical join algorithms and discuss their memory require-
ments. Then, I describe three alternative memory allocation strategies for query execution
plans. Both join algorithms and memory allocation strategies are used for defining the

adaptation techniques described in Section 5.3.
5.2.1 Join Methods

In a relational database environment, three join algorithms have been commonly used:
nested-loop join, hash join, and sort-merge join [18, 52]. Each of these operators can operate

) and maximum (M22,,)

. . . .« . O
in a range of memory allocations between their minimum (M, o

min
requirements with different performance. If the memory allocate to an operator is smaller

than M°P

min» the operator cannot be executed [16]. When the maximum memory required is
allocated to the operator, it has optimal performance. The operator performance degrades
if memory allocation falls between M. and M2, ..

In the remainder of this section, for each join method, I present their minimum and
maximum memory requirements, and briefly discuss how the memory blocks allocate to
each operator is used.! I assume that I am joining relations R and S using M memory

blocks, where |R| < |S|, for |R| representing the size of R in pages.

Hash Join: For Hash Join method, M = /5« [R] and MJ

min mar — 0 * |R|, where ¢ is an

overhead factor for the hash table. When |M| > M}

o 2 hash join can be execute in two

steps. In the first step, the tuples from R are hashed and a hash table is built in main
memory. In the second step, tuples from S are sequentially read and used to probe R’s
hash table in main memory. If a match is found, an output is generated by concatenating
the corresponding tuples from R and S and adding it to the result relation.

When M < |M| < M

mazx’

I use a hybrid hash join algorithm [52] that executes the

!An in-depth discussion on how minimum and maximum memory requirements are defined for each
operator can be found in [52]. Presenting this discussion in this dissertation is out of the scope.
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join in three main steps.

Step 1: Hash tuples from R into multiple partitions, where the first partition is kept in

main memory, and the others are flushed to disk.

Step 2: Hash tuples from S into multiple partitions using the same hash function, where
the tuples that are hashed into the first partition are joined with those tuples from R

kept in main memory in Step 1. The other partitions of S are flushed to disk.

Step 3: Join the remaining partitions. For each pair of corresponding partitions, construct
in main memory the hash table with the tuples from R and use the tuples from S to

probe the hash table to find a match.

The number of partitions in Step 1 is chosen in a way that the hash table for each

partition alone can fit in main memory.

Sort-Merge Join: For Sort-Merge Join method, M*™ = /[S] and M = |S|. SMJ
has three phases. In the first phase, each operand is scanned and sorted runs are produced.
In the second phase, the sorted runs from each operand are merged to generate a single
sorted relation. In the third phase, R and S are joined by merging the matching tuples on
the join attribute. When |M| > M:™ phases one and two can be combined together. If
one or both operands are sorted, phases one and two are bypassed and M M7 and MM

min max

are equal to two memory blocks: one for each operand.

Nested-Loop Join: For Nested-Loop Join method, M:l% = 2 and MW = |R|. The
algorithm for NLJ is a simple one: scan the outer relation R once, and for each tuples of
R scan S, the outer relation, to find a possible match. The minimum memory amount
is two memory blocks: on for the outer relation and another for the outer relation. If
M:l% < |M| < M., the inner relation will be read % times. For |[M| > M!J both
inner and outer relation need to be read only once.

Table 4 summarizes the memory requirements for the joins discussed above. Note that

I also include the requirements for a simple variation of the HJ methods, that I call Hash
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Table 4: Memory requirements for join methods.

| Method | Minimum | Maximum |
Nested-Loop Join 2 |R|
Hash Join /0 %|R| § % |R)|
Hash Join Improved \/6*min(|R\,\S|) d «min(|R|,|S])
Sert-Merge Join \/ﬁ |R| +|S]

Join Improved (HJ-Improved). Before starting its execution, HJ-Improved checks whether
the left operand is indeed smaller than the right operand. If this is not the case, then HJ-
Improved switches the operands. As I demonstrate in Section 5.4.1, this simple modification
can maintain the efficiency of the hash join method when the left operand becomes larger

than expected at runtime.
5.2.2 Memory Allocation Strategies

Memory allocation strategies address the problem of how to allocate memory to concurrently
running operators of a query in a way that will minimize the total query response time.
There are at least three memory allocation strategies proposed in the literature: Equal [38,
10], Max2Min [38, 10], and the strategy proposed in [10], which I refer in this chapter as
AlwaysMax.

The FEqual strategy evenly distributes the memory blocks among the operators in a
segment. It first assigns to each operator the minimum memory required and then evenly
distribute the remaining memory blocks (if any) among the operators. This strategy can
hardly be optimal as it does not take into consideration the real memory requirements
of each operator. In fact, as demonstrated in [10], Equal does present poor performance
in many different scenario, and I do not further consider this allocation strategy in this
dissertation.

The Maz2Min strategy follows the heuristic described in [61]: in order to obtain better
return on memory consumption, allocate the maximum amount of memory to operators
with small maximum memory requirements. For each segment, Max2Min first assigns each
operator with the minimum memory requirement. Then, the remainder memory blocks

are distributed as follows. First, operators are sorted in reverse order with respect to
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their maximum memory requirements. Then, distribute the remaining memory blocks by
following the sort order and trying to match the maximum memory requirements of the
first operators.

The AlwaysMaz strategy attempts to always provide the operators with their maxi-
mum memory requirements. When there is not enough memory to match these maximum
requirements, the segment is divided in two sub-segments, which will be executed sequen-
tially. The idea is to free up as much memory as possible for executing the joins in each of
the segments. However, the main disadvantage of this approach is the need to write to the
disk the intermediate result generated by the first segment. Nevertheless, as shown in [10],

the extra I/O cost can be amortized when using bushy query trees.

5.3 Adaptation Space Generation and Exploration: Mem-
ory Constraints

In this section, I first discuss how the adaptation cases for memory constraints are con-
structed. Then, I discuss how the adaptation space is generated, by Adaptation Space
Generation phase, prior to runtime, and navigated (as needed) by Adaptation Space Ex-

ploration phase, at runtime.
5.3.1 Adaptation Cases

Given an adaptation_case(P;), when one of its memory constraint predicates described in
adaptation_condition(P;) becomes invalid, Ginga needs to provide an alternative adapta-
tion case. This new adaptation case has a new set S of memory constraint predicates and an
alternative query plan P; optimized for S (adaptation_condition(P;)) along with the respec-
tive adaptation_trigger(P;). The new adaptation case is represented as adaptation_case(Pj)
and the adaptation_event that fires the transition from adaptation_case(P;) to adaptation_—
case(P;) is described in adaptation_trigger(P;).

A key component of adaptation_trigger(F;) is adaptation_action(P;, Pj) (see Section
4.3.1), which Ginga uses for generating P;. In the next subsections, I describe three adap-
tation actions that Ginga can use for generating alternative query plans (and the associated

adaptation case) for coping with variable memory constraints. These adaptation actions
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are (1) changing join algorithms, (2) switching operands of a hash join if left operand is
larger than right operand, and (3) choosing a memory allocation strategy appropriate for
the query plan and memory available.

I observe that these three adaptation actions are based on the decisions that a query
optimizer makes while constructing the optimized query plan. Ginga uses these actions
to re-adjust the optimizer’s decisions in case some of the estimated runtime environment
parameters used at plan generation are found to be different from their actual (observed)

values during query execution.
5.8.1.1 Adaptation Action: Changing Join Algorithm

The first adaptation action, “Changing Join Algorithm”, consists of selecting the join
method JM that yields the least cost based on the file organization of the input operands
and the actual memory allocated to JM. When I compare the three methods described in
Section 5.2.1, nested-loop join (NLJ) has the worst performance. In general, hash join (HJ)
offers superior performance [52]. However, sort-merge join (SMJ) can outperform HJ if at
least one of the operands is sorted (see Section 5.4.1). Based on this observation, I define
“Changing Join Algorithm” adaptation action (Figure 20) as follows: Given s, the current
segment to be executed from input plan P;, for all join operator op; € si, if op; is a HJ and

at least one of its operands is sorted, then change op; to SMJ.

ADAPTATION ACTION adapt_action_chgJoinAlgo
Input: P;: current plan.
Output: P;: plan P; adapted.

1: Let sy =< op1,---,0pn >€ sch(P;) be the current segment to be executed.
2: P; = copyOf(P;); // Make a copy of P; to generate the adapted plan FP;.
3:

// For each join operator in sji, check whether I should change its method.

4: for Vop; € s do

5:  if (op;.method # sort_merge_join) and (isSorted(op;.leftOperand) or isSorted(op;.rightOperand)) then
6: op;.method = sort_merge_join;

7: return Pj;

Figure 20: Adaptation Action “Changing Join Algorithms.”
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5.8.1.2  Adaptation Action: Switching Operands of Hash Joins

The adaptation action “switching operands of hash joins” is a simple one: if the actual

size? of the left operand of a hash join is larger than the size of the right operand, then
switch the operands. However, despite its simplicity, this action has interesting properties,
as [ illustrate next. I assume that operands are switched before starting the execution of

the hash join. Figure 21 depicts the adaptation action for switching operands.

ADAPTATION ACTION adapt_action_switchJoinOprnd
Input: P;: current plan.
Output: P;: plan P; adapted.
1: Let s =< op1,---,0pn >€ sch(P;) be the current segment to be executed.
2: Pj = copyOf(P;);
// For each hash join operator in s, check whether I should switch its operands.

3: fori=mn,---,ido

4: Let op; € s // Iterate thorugh the operators of sj in reverse order.

5:  if (op;.method == hash_join) and (size0f(op;.leftOperand) > size0f(op;.rightOperand)) then

6: aux = op;.leftOperand;

7 opi.leftOperand = op;.rightOperand; // Switching operands of op;.

8: op;.rightOperand = auz;

9: opi.method = hash_join_improved; // Flag that this join was improved.
// Check whether the switching of operands will result in changing the shape of the query
tree.

10: if op; is not the last operator in s; then

11: Pj.reshapeQryTree(op;); // Divide sj at op; and change the shape of the tree.

12: break; // Interrupt the for-loop.

13: return Pj;

Figure 21: Adaptation Action “Switching Operands of Hash Joins.”

Example 13 Consider the query plan Py shown in Figure 22(a) where sch(Py) =< Segment; >.
Also, assume that size0f(Ry) > size0f(R3) and size0f (R;) > size0f(J;), where size0f (X)

returns the size of X in bytes and size0f(.J;) is the result size of .J;.

Plan PO Plan P1 Plan P2

Segmentl.2
Legend
JIE Hash Join i Segmentl Segmentl Segment1.1
Rj: Base Relation j
(a) Initial Segment (b) Switching operands of J1 (c) Switching operands of J2

Figure 22: Effects of switching operands.

2The observed size at runtime of a base relation or intermediate result.
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When Ginga executes adapt_action_switchJoinOprnd, the current segment of Py to
be executed is Segment; and Jj is the first operator considered in the for-loop of Line 3.
J1 satisfies the condition in Line 4 and its operands are switched generating a new plan, Py
(Figure 22(b)). A similar process is executed for the next operator Jo, resulting in query
plan P, shown in Figure 22(c).

When Ginga switches the operands of Ji, the original tree shape of Py is not affected.
However, by switching the operands of Js, the original right-deep tree is transformed into
a left-deep tree. In this case, Ginga needs to change Segment; by dividing it in two sub-
segments, namely, Segment;; and Segment; s, and updating the segment schedule of P,
to sch(Py) =< Segmenty 1, Segmenty o >. The division of Segment; is necessary because
I am using SEM, where each segment is a right-deep (sub) tree. By switching the operands
of Ja, I violated this property. The process of detecting the change in shape of a query plan

tree and updating the respective segment schedule is captured in Lines 9 and 10 (Figure 21).

The process of re-shaping the query tree by simply switching the operands of a hash
join has two interesting properties. First, I can perform a simple re-optimization of the
current query plan by improving the performance of hash joins. Second, if the size of the
left operand is larger than expected, it is likely that the result of the associated hash join
operator will also not match its estimated size. By changing the shape of the query tree,
I am able to (1) stop the propagation of inaccurate estimated size of intermediate results
up into the tree and (2) handle the estimation error when I schedule the next segment
generated in the re-shaping process. This is possible because Ginga adapts each segment of

a plan P; as they are scheduled (see Section 4.3.2).
5.8.1.3 Adaptation Action: Choosing Memory Allocation Strategy

Our third adaptation action for coping with variable memory constraints chooses the ap-
propriate memory allocation strategy for distributing the available memory among the op-
erators of a segment so that the total query response time is minimized. Figure 23 depicts
the adaptation action for choosing the appropriate memory allocation strategy.

Given s, the current segment to be executed from input plan F;, Ginga first estimates
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the costs of executing sj using Max2Min and AlwaysMax. Then, Ginga chooses the strategy
that yields the least response time. An important parameter for estimating the execution
cost of s, is memory_size. Considering that each segment is executed one at a time,
memory_size is equal to the memory allocated by the Memory Manager for executing P;.
Ginga estimates the cost of executing s; using the function segmentExecCost described
in Figure 25. When a segment has a single operator, there is no need to determine which
allocation strategy to choose. All the memory blocks allocated for the query will be assigned

to the only operator.

ADAPTATION ACTION adapt_action_chooseMemAlloc
Input: P;: current plan.
Output: P;: plan P; adapted.
1: Let sy =< op1,---,0pn >€ sch(P;) be the current segment to be executed.
2: Pj = copyOf(P;);
// Calculate the cost of executing s; using Max2Min.
3: minCost = segmentExecCost(sy, max2min, memory_size);
4: allocAlgo = max2min;
// Calculate the cost of executing §j using AlwaysMax.

5: alwaysMazxCost = segmentExecCost(sy, alwaysMax, memory_size);
// Choose the allocation strategy that yields the least cost.
6: if (minCost > alwaysMazCost) then
7 allocAlgo = alwaysMax;
8: si.memAllocAlgo = allocAlgo; // Records the selected memory allocation strategy.
9: return Pj; // sy € sch(P;).

Figure 23: Adaptation Action “Choosing Memory Allocation Strategy.”

FUNCTION estimatedExeCost
Input: (1) P;: current plan; (2) memory_size: memory allocated to execute P;.
Output: relativeCost: cost of executing P; starting at sg, the current segment to be executed.
: Let sch(P;) =< s1,--+,8n >
Let si € sch(P;) be the current segment to be executed and k < n;
relativeCost = 0;
for j =k, ---,n do
relativeCost = relativeCost+ segmentExecCost(s;, sj.memAllocAlgo, memory_size);
return relativeCost;

Figure 24: Segment cost estimation.

5.3.2 Adaptation Space

So far, I have described three adaptation actions for generating adaptation cases to get
around changes to memory constraints during the execution of query plan P;,. In this

section, I briefly describe how to organize these actions into an adaptation space G, and
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FUNCTION segmentExecCost
Input: (1) si: segment to be executed; (2) allocStrat: memory allocation strategy for sg;
(3) memory_size: memory allocated to execute sj.
Output: segCost: cost of executing s,.
1: Let sy =< op1,---,0pn >;
2: allocate_memory(sg, allocStrat,memory_size); // Allocate memory to operators in si using allocStrat
strategy.
segCost = 0;
fori=1,---,n do
segCost = segCost + op;.cost(); // opi.cost() is the cost function of HJ or SMJ.
return segCost;

Figure 25: Cost estimation of a query plan, starting from the current segment to be
executed.
how Ginga navigates G for coping with variable memory constraints.

Ginga will adapt the execution of P; when at least one of the memory constraint pred-
icates listed in Table 5 is invalidated. The associated adaptation events and actions to be
fired are summarized in Table 6. For example, if the predicate Operand_Predicate is invali-
dated, then event large_operands is fired and adapt_action_switchJoinOprnd is executed.
Based on these events and actions, Ginga generates the adaptation space for P; shown in
Figure 26. I now describe how Ginga navigates this adaptation space.

Table 5: Memory Constraint Predicates for plan P;, where s; € sch(F;) is the current
segment to be executed.

| Predicate Name | Description
Algo_Predicate Yop; € sy, if op;.method == SM J,
then isSorted(op;.leftOperand) == TRUE or isSorted(op;.rightOperand) == TRUE;
Operand_Predicate Yop; € s, if op;.method == HJ,

then size0f(op;.leftOperand) < size0f(op;.rightOperand).

MemorySize_Predicate | memory allocate to P; is greater or equal to the expected memory size
(i.e., the memory size assumed during the optimization process).

Table 6: Adaptation events and adaptation actions.

adaptation_event(P;) | Invalidated Predicate | adaptation_action(P;,P;) |

sorted_operands Algo_Predicate adapt_action_chgJoinAlgo
large_operands Operand_Predicate adapt_action_switchJoinOprnd
small_memory MemorySize_Predicate adapt_action_chooseMemAlloc

Let evnts(P;) be the set of adaptation events of P; that were fired, and let comb_evnts(P;)

be the set of all possible combination of these events. I call each combination apy €
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Legend:
AE: adaptation_event
AC: adaptation_action

AE(P): small_memory

AC(P,,P}): chooseMemAlloc AE(P): large_operands

AC(P,P,): switchJoinOprnd

AE(P ): sorted_operands
AC(P,P,,): chgJoinAlgo

PanP, | | PlanP,| | PlanP, |

e

AE(P12)5 small_memory
AC(Piz,PH): chooseMemAlloc

AE(PJS): small_memory

AC(PJS,PJS): chooseMemAlloc

AE(P ): large_operands AE(P ,): sorted_operands
AC(P ,,P5): switchJoinOprnd AC(P ,,P,): chgloinAigo
' PanP, | | PlanP,| | PanP,| | PlanP,|
AE(P 5): small_memory AE(P ,): small_memory
AC(P 5,P,): chooseMemAlloc AC(P ;,P,): chooseMemAlioc

Figure 26: Adaptation space for coping with memory constraints.

comb_evnts(P;) an adaptation path, which describes a possible path in the adaptation space

that Ginga can navigate to find the appropriate alternative plan for P;.

Example 14 Consider the adaptation space shown in Figure 26. Now, suppose that both
Algo_Predicate and Operand_Predicate of plan P; were invalidated, firing events sorted_operands
and large_operands, respectively. In this case, I have comb_evnts(P;) = { (sorted_operands,
large_operands); (large_operands, sorted_operands)}. If Ginga follows the first adaptation
path in comb_evnts(P;), plan Pjs will be selected (see Figure 26). On the other hand,
following the second adaptation path, Ginga will choose plan Pj7. The decision on which
plan to use is made by comparing the cost of each plan. Ginga selects the plan with the

least cost. The algorithm for navigating the adaptation space from Figure 26 is described
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in Figure 27.

It is important to observe that not all paths in comb_evnts(P;) are relevant. For example,
if both Algo_Predicate and MemorySize_Predicate are invalidated, the alternative plan gen-
erated by executing first adapt_action_chooseMemAlloc followed by adapt_action_chgJoinAlgo
is not a good solution. The selection of the appropriate memory allocation strategy is
based on the memory requirements of the operator algorithms in the segment. If after the
selection is done I change the operator algorithms, this will invalidate the decision made
adapt_action_chooseMemAlloc. The adaptation space depicted in Figure 26 shows only the
relevant adaptation paths.

When Algo_Predicate or Operand_Predicate are invalidated, MemorySize_Predicate may
also become invalid. This occurs because as Ginga changes the configuration of join opera-
tors, the expected memory size for executing the new plan may also change. Consequently,
small_memory may be fired if the modified join operators require more memory than what

was originally allocated to P;.

5.4 Performance Analysis

For all experiments reported in this chapter, I use a simulator (based on the CSIM toolkit)
that models a server machine running Ginga. Table 7 lists the classical parameters [10, 52,
61] used in configuring the simulator. All base relations involved in the queries submitted
to Ginga are assumed to be available on the server’s local disk. I use different sizes of base
relations, where each tuple in a relation has 200 bytes. In particular, the size of the relations
reflect the size of the answers provided by web services such as NCBI-Entrez discussed in
Section 1.2.

The experiments are divided into three groups: The first group (Section 5.4.1) studies
the effects of changing join algorithms or operand ordering. The second group (Section 5.4.2)
studies the effects of changing memory allocation strategies. The third group (Section 5.4.3)

studies the combination of different algorithms and strategies.
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ADAPTATION SPACE NgtMemoryConstraints
Input: adapt_space(P;): adaptation space for P;.
Output: P;: plan P; adapted.
Require: at least one of memory constraint predicates in adaptation_condition(P;) is invalidate.
1: minCost = oo;
// Adaptation Path: (small_memory)
if (MemorySize_Predicate(P;) == FALSE) then
adapt_action_chooseMemAlloc(P;, Pj1);
minCost = estimatedExeCost(Pj1, memory_size);
Pj = Pjy;

// Adaptation Paths: (sorted.operands); (sorted_operands, small_memory);

// (sorted_operands, large_operands); and (sorted_operands, large_operands, small_memory).
7: if (Algo_Predicate(P;) == FALSE) then
8:  adapt_action_chgJoinAlgo(F;, Pj2);
9:  if (MemorySize_Predicate(P;2) == FALSE) then

10: adapt_action_chooseMemAlloc(P;j2, Pj4);

11: cost;4 =estimatedExeCost(Pj4, memory_size);

12: if (minCost > costj4) then

13: minCost = costja;

14: P; = Pj4; // Adaptation Path: (sorted_operands, small_memory)
15:  else if (Operand_Predicate(P;2) == FALSE) then

16: adapt_action_switchJoinOprnd(Pj2, Pj5);

17: if (MemorySize_Predicate(Pj5) == FALSE) then

18: adapt_action_chooseMemAlloc(Pjs, Pjg);

19: costjg =estimatedExeCost(Pjg,memory_size);

20: if (minCost > cost;g) then

21: minCost = cost;s;

22: Pj = Pjg; // Adaptation Path: (sorted_operands, large_operands, small_memory)
23: else

24: costjs =estimatedExeCost(Pj5,memory_size);

25: if (minCost > cost;s) then

26: minCost = costjs; P; = Pjs;// Adaptation Path: (sorted_operands, large_operands)
27:  else

28: costjp =estimatedExeCost(Pj2,memory_size);

29: if (minCost > costjz) then

30: minCost = costjz; Pj = Pj2;// Adaptation Path: (sorted_operands)
31:

// Adaptation Paths: (large_operands); (large_operands, small_memory);

// (large_operands, sorted_operands); and (large_operands, sorted_operands, small_memory).
32: if (Operand_Predicate(P;) == FALSE) then
33:  adapt_action_switchJoinOprnd(P;, P;3);
34:  if (MemorySize_Predicate(P;3) == FALSE) then

35: adapt_action_chooseMemAlloc(P;3, Pj¢);

36: cost;¢ =estimatedExeCost(Pj¢, memory_size);

37: if (minCost > costje) then

38: minCost = costjs; Pj = Pjg;// Adaptation Path: (large_operands, small_memory)
39:  else if (Algo_Predicate(P;3) == FALSE) then

40: adapt_action_chgJoinAlgo(P;3, Pj7);

41: if (MemorySize_Predicate(Pj7) == FALSE) then

42: adapt_action_chooseMemAlloc(Pj7, Pjg);

43: costjo =estimatedExeCost(Pjg, memory_size);

44: if (minCost > costjg) then

45: minCost = costjg;

46: Pj = Pjo;// Adaptation Path: (large_operands, sorted_operands, small_memory)
47: else

48: costj7; =estimatedExeCost(Pj7, memory_size);

49: if (minCost > costj7) then

50: minCost = cost;jr; P; = Pjr;// Adaptation Path: (large_operands, sorted_operands)
51: else

52: cost;3 =estimatedExeCost(Pj3, memory_size);

53: if (minCost > costj3) then

54: minCost = cost;3; P; = Pj3;// Adaptation Path: (large_operands)

55: return Pj;

Figure 27: Adaptation Space for Managing Memory Constraints.
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Table 7: Simulation Parameters

| Parameter | Value | Description |
Speed 100 | CPU speed (MIPS)
AvgSeekTime 8.9 | average disk seek time (msecs)
AvgRotLatency 5.5 | average disk rotational latency (msecs)
TranferRate 100 | disk transfer rate (MBytes/sec)
DskPageSize 8192 | disk page size (bytes)
MemorySize 10---100 | memory size (MBytes)
DiskIO 5000 | instructions to start a disk I/O
Move 2 | instructions to move 4 bytes
Comp 4 | instructions to compare keys
Hash 25 | instructions to hash a key
Swap 100 | instructions to swap two tuples
F 1.2 | incremental factor for hash join

5.4.1 Join Algorithms

To study the effects of changing join algorithms and operand ordering, I use a simple
workload: a single join J = Ry X Ry, where I fix |Ry| = 50 M Bytes and vary the size of Ry
from 5M Bytes to 200M Bytes using two different memory sizes, namely, 25 M Bytes and
50M Bytes. Arguably, more sophisticated joins will contain this elementary configuration
as a subset and the results of this simple experiment will apply to them as well. Although
the join algorithms are well known, I was surprised by the non-trivial differences among
them. I ran experiments with a variety of operand and memory sizes to test the sensitivity
of the parameter settings, and found similar results.

The graphs in Figure 28 show the response time of executing join J as a function of R;
size using four different methods, namely, nested-loop join (NLJ), sort-merge join (SMJ),
hash join (HJ), and hash-join improved (HJ-Improved). HJ-Improved switches the operands
when the left is larger than the right operand. For sort-merge join, I study four subcases:
with R; sorted, Ry sorted, both sorted, and neither sorted.

When there is enough memory to fully execute J in main memory, all four join methods
have similar performance. The difference between their response time stems from the dif-
ferent number of CPU instructions. However, as the size of the left operand (R;) increases,
requiring I/O operations, significant differences arise. First, as expected, NLJ has the worse
performance. The vertical lines at 25MB in Figure 28 (a) and at 50MB in Figure 28 (b) show

the well understood scalability problems of NLJ and I do not discuss it further. However,

75



Memory Constraints; Alternative join methods; Workload: (R1 JOIN R2) Memory Constraints; Alternative join methods; Workload: (R1 JOIN R2)
Remote sources; R2=50MBytes; **Memory Size:25MBytes** Remote sources; R2=50MBytes; **Memory Size:50MBytes**
T T T T T T T T

1200

1200 T T T T T T T T
—&— SMJ (R1,R2 not sorted) —8- SMJ (R1,R2 not sorted)
—+— SMJ (Only R2 sorted) —— SMJ (Only R2 sorted)
—— SMJ (Only R1 sorted) —— SMJ (Only R1 sorted)
1000H —©— SMJ (R1,R2 sorted) 1000H —©— SMJ (R1,R2 sorted)
—— HJ —— HJ
—&— HJ-Improved —£— HJ-Improved
> NLJ —>— NLJ
—~ 800 —~ 800
@ G
@ [
o 2
o [0}
£ £
=
600 r, 600
12 (23
2 2
o o
Q aQ
@ @
@ z &
400 . 400
200 /j/ 200
0 . . . . . . . . . 0 . . . . . . . . .
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Size of R1 (MBytes) Size of R1 (MBytes)

(a) (b)

Figure 28: Response time of alternative join algorithms using two memory sizes: (a)
25MBytes and (b) 50MBytes.

NLJ can be improved when an index on the join attribute is available for at least one of the
join operands [20]. The reason is because for each tuple on the left (outer) operand, I can
use the index to quickly determine whether there is a match on the right (inner) operand.

For the main memory size of 50MB, Figure 28 (b) shows that SMJ is the fastest join
method when R; or both Ry and Ry are sorted. It also shows that when only Rs is sorted,
SMJ is still better than HJ, but HJ-Improved now performs better than SMJ. This is an
interesting observation, since SMJ is slower than HJ in the general case, when both R; and
Ry are unsorted. The figure shows that when one of the operands is sorted, it is worth
switching to SMJ in most situations. Similarly, HJ-Improved is a significant improvement
over static HJ, since HJ-Improved is able to cope with an increasingly larger size of left
operand by always switching the smaller operand to the left.

For a smaller main memory size of 25MB, Figure 28 (a) shows that the relative per-
formance of HJ, HJ-Improved, and SMJ becomes more intricate when the memory con-
straints are tighter. While the shape of the curves remained the same, vertical displace-
ments changed the trade-offs among them. First, since Ry does not fit in main memory

anymore, when only R; is sorted, SMJ is significantly slower than when both operands are
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sorted. Second, the advantage of HJ-Improved starts later, losing to SMJ Rs-sorted for a

significant range of smaller R; sizes.
5.4.2 Memory Allocation Strategies

To study the effects of different memory allocation strategies, I chose the simple example
query plan Py (right-deep tree) depicted in Figure 29 with the following configuration:
|Ri| = 25M Bytes, |Rs| = 50M Bytes, |Rs| = 100M Bytes, and |Jo| = 25M Bytes. 1
ran experiments with a variety of tree shapes, and operand and memory sizes to test the
sensitivity of the parameter settings, and found similar results.

The graphs in Figure 30 show the response time of executing Py as a function of the
memory size allocated to this plan using two different memory allocation strategies, namely,
Max2Min and AlwaysMax. For a smaller intermediate result (50MB), Figure 30 (a) shows
that AlwaysMax loses to Max2Min when main memory size is smaller (less than 20MB).
The reason for that is because the intermediate result will not fit in main memory, and it
will have to be completely cached into disk and read back again. For intermediate memory
sizes (between 20MB and 75MB), AlwaysMax wins. This occurs because the extra I/O
cost is amortized by the gain that I get by giving the maximum memory blocks to each
operator. But, as I increase the size of the result of the Jy, even by amortizing the I/O

cost, AlwaysMax will be no better than Max2Min (Figure 30(b)).

Legend
Ji: Hash Join i Segmentl
Rj: Base Relation j

Figure 29: Query Plan Py used in the experiments described in Section 5.4.2 and Sec-
tion 5.4.3.

In Figure 30(a) and (b), I can see 3 inflection points in the AlwaysMax curve, dividing
it into 4 segments. In the first segment (up to about 30MB main memory), the response

time rapidly decreases because each join operator is receiving all memory blocks that are
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Figure 30: Performance of alternative memory allocation under two scenarios as I vary the
memory size: (a) |Ji| = 50M Bytes; (b) |J1| = 100M Bytes.

available to execute Py. The second segment (between 30MB and 60MB) the response time
does not decrease as fast as before because now J; (the smaller of the two join operators
with respect to memory requirements) receives all the memory that it needs to execute in
its best performance (i.e., without incurring any I/O costs), but .J; still does not receive
its maximum required memory to also execute without I/O cost. The third segment shows
intermediate results still present. Finally, when both joins can be executed in main memory,
no more disk costs are necessary for caching the intermediate result. That explain why
around 92MBytes I have a sudden drop in the response time for AlwaysMax. From this
point on response time becomes dependent only on CPU cost for performing the actual
joins and I/O costs for reading the base relation. Similar observations are applied to the
graph shown in Figure 30(b).

In contrast, the Max2Min curve has one inflection point in Figure 30(a) and two in Fig-
ure 30(b). Up to 30MB of main memory, both operators increasingly receive more memory
blocks, resulting in a fast decrease of the response time. For the smaller intermediate result,
Figure 30(a), the same processing rate continues. However, for a larger intermediate result,

Figure 30(b), the smaller join receives its maximum required memory, and the decreasing
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rate of the response time is given by the improvement in performance of the execution of
J1, which receives more memory blocks. Finally, at around 92MBytes, the response time
becomes dependent only on CPU costs.

Figure 30(a) shows a non-trivial relationship between the two memory allocation strate-
gies. It is non-obvious when it is better to use one or the other. So I can conclude that
indeed it is advantageous to choose the most appropriate memory allocation strategy for the
current memory constraints. As it is clearly shown in this graph, there are moments where
it is beneficial to use AlwaysMax and moments where Max2Min is a better alternative. A
third line (the bottom most) illustrates the adaptive strategy, where it will always provide
the response time using the memory allocation strategy that yields the fastest response

time.
5.4.3 Combination of Adaptation Actions

One of the main results of using adaptation space is Ginga’s ability to combine different
adaptation strategies in a systematic way. My next experiments combine the join method
adaptations described in Section 5.4.1 with the memory allocation strategy adaptations
described in Section 5.4.2. T again use query plan Py from Figure 29, but this time with the
following configuration: |R;| = 25M Bytes, |Re| = 50M Bytes, |Rs| = 100M Bytes, |Ji| =
10M Bytes, and |Jo| = 25M Bytes. Observe that with this configuration two adaptation
events will be fired during the execution of Py: sorted_operands and large_operands. 1 also
assume that event small_memory is fired. I ran experiments with a variety of tree shapes,
and operand and memory sizes to test the sensitivity of the parameter settings, and found

similar results.

Table 8: Adaptation Paths for the Experiments

| Adapt. Path | Events | Sequence of actions |

1 (memory_size) Choosing Memory Allocation Strategies
(sorted-operands, memory_size) | Changing Join Algorithm —

Choosing Memory Allocation Strategies
3 (large_operands, memory_size) Switching Hash Join Operands —
Choosing Memory Allocation Strategies

The graphs in Figure 31 and Figure 32 show the response time of executing Py as a
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Workload: (R1 JOIN (R2 JOIN R3)) right-deep

|R1|=25MB; |R2\ =50MB; |R3| 100MB; \JZ\ =25MB; |J2|=10MB; **R3 SORTED**

Memory Size (MBytes)

(a)

Performance of combining adaptation actions:
sorted.

Workload: (R1 JOIN (R2 JOIN R3)) right-deep

Memory Size (MBytes)

(a)

Performance of combining adaptation
operands are sorted.

80

Workload: (R1 JOIN (R2 JOIN R3)) right-deep

|R1|=25MB; |R2| 50MB; |R3\ 100MB; |J2| 25MB; |J2|=10MB; **R2 SORTED**

el Only Mem Alloc. Strategy
—#— Chg. Join Algo.->Mem.Alloc.Strategy
—&— Switch Operands—>Mem.Alloc.Strategy

—— Ginga [

30 40 50 60 70 80

Memory Size (MBytes)

(b)

(a) No operand is sorted; (b)

Workload: (R1 JOIN (R2 JOIN R3)) right-deep

|R1\ =25MB; |R2| 50MB; \HS\ 100MB; |J1|=10MB; |J2| 25MB; **R1,R2,R3 SORTED**

— Only Mem Alloc. Strategy

- Ginga

—+— Chg. Join Algo.->Mem.Alloc.Strategy
—— Switch Operands->Mem.Alloc.Strategy i

Memory Size (MBytes)

(b)

actions: (a) Only Rj is sorted; (b) All



function of the memory size allocated to this plan when Ginga navigates the adaptation
paths listed in Table 8. T omit the analysis of other adaptation paths such as (large_operands,
sorted_operands, memory_size) and (sorted_operands, large_operands, memory_size) since

they are subsumed by the cases in Table 8.
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Figure 33: Performance of adaptation action Switching Operands, when no operands are
sorted and memory size equal to (a) 5MBytes and (b) 10 MBytes.

Figure 31(a) shows the benefits of switching the operands (Section 5.3.1.2) and called
the HJ-Improved case in the figures in Section 5.4.1. (I include this case here to simplify
the explanation of figure 31(b).) By switching the operands alone, Ginga can improve the
response time modestly up to memory size of 30MBytes, when both operands fit in main
memory and the response time of switching versus not switching the operands becomes the
same. Figure 31(b) shows the effects of combining adaptive memory allocation with operand
switching and changing to sort-merge join when one (or both) of the operands is sorted. As
expected, if the sorted relation has a small size (e.g., Ry), the benefits are also small (not
shown). When a larger relation (Ry) is sorted, Figure 31(b) shows an improvement of up to
20% compared to the reference line (adaptive memory allocation only). With an even larger
relation (R3) sorted, Figure 32(a) shows an improvement of up to 42% over the response

time of the reference line. When all operands are sorted, Ginga shows an improvement in
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the response time of up to 70% for Py (Figure 32(b)), since the main memory requirements
are minimized. The benefits of adaptation action “Changing Join Algorithms” (Adaptation
Path 2) are maximized when the last operator (op,) of a segment s is switched to SMJ.
By changing op,, to SMJ, all join operators in s that depend on the result of op, (i.e., all
remaining operators op; € s, 1 < i < n) will also change to SMJ. Consequently, all SMJ
join operators in s will have at least one operand sorted. As demonstrated in Section 5.4.1,
with this configuration, SMJ outperforms HJ in most situations.

I now further analyze the benefits and trade-offs of adaptation action “Switching Hash
Join Operands” (Adaptation Path 3) using the experiment results reported in Figure 33.
The graphs in this figure show the response time of executing Py as a function of result
size of Jy using two different memory sizes, namely, 5MBytes and 10MBytes. The graph
shows an improvement of up to 10%, when |J;| < |R;i|. As |Ji1| becomes larger than |R;|
(=25MB), Ginga will no longer switch the operands, and the response time becomes the
same as the reference line (memory allocation only).

In Figure 33(a), the reference line (higher curve) has one inflection point, dividing it into
two segments. In the first segment (up to |J1| =13MB), Ginga chooses AlwaysMax as the
memory allocation strategy. In this strategy, if each operator in the segment cannot receive
their maximum required memory, the segment is cut, and the intermediate result between
the two sub-segments must be cached into disk. AlwaysMax yields better performance than
Max2Min for small intermediate result size. However, as the size of the intermediate result
grows large, Max2Min becomes a better choice. In the second segment of the reference
curve, Ginga uses Max2Min memory allocation strategy. Similar observations are applied
to the graph shown in Figure 33(b).

In contrast, the lower curve for Adaptation Path 3 in Figure 33(a) has two inflection
points, dividing it into 3 segments. In the first segment (up to 5MB), the hash table for the
left operand of Jo, which now is Jp, can fit in main memory. In the second segment (between
5MB and 25MB), hash table for J; no longer fits in main memory, requiring increasingly
I/O operations for execution Jy. In the third segment, because |J;| > |R;|, Ginga no longer

switches the operands, and Adaptation Path 3 and reference line become the same. Similar
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observations apply to Figure 33(b).

Figure 33(a) shows an interesting situation when 17TM B < |J;| < 25M B, where switch-
ing operands becomes worse than only selecting memory allocation strategy. The reason
for that is the following. When Ginga switches the operands of Jy, query Py is trans-
formed in the left-deep tree, which results in two segments, with a single operator each.
Consequently, each operator will receive all memory available for its execution, and if the
intermediate result does not fit in main memory, it will have to be cached into disk. For
S5MB < |Ji| < 17TM B, the extra I/O due to caching |.J;| is amortized by the improvement
of switching the operands of Jy. However, when |J1| > 17M B, the benefits of switching
operands no longer pays off if I compare it with the reference line. At this point, the
caching cost can no longer be amortized by the improvements for Jy, and the response time
for Adaptation Path 3 becomes worse than the reference line. In Figure 33(b) this situation
is not observed due to two reasons. First, with larger memory size (=10MB), J; and J
have better performance. Second, given the improved performance of the hash joins, the
cost of caching |J;| can always be amortized by the improvement of switching the operands

of JZ-

5.5 Summary of Adaptation to Memory Constraints

With the availability of ever increasing data, more sophisticated queries will take longer
time, and more likely the statically-generated initial query processing plan will become
suboptimal during execution. For example, inaccurate selectivity estimates may cause the
left operand of a hash join to become larger than the right operand, causing the algorithm
to require more main memory than necessary or additional I/O overhead. Similarly, as
main memory availability changes due to system load, memory allocation strategies may
slow down query processing at different degrees due to thrashing. While individual memory
adaptation methods have been studied in the past, combining them has been a non-obvious

task due to the non-trivial interactions among the methods and system components.
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In this chapter, I used Ginga to study the trade-offs of different adaptation strate-
gies when query execution becomes suboptimal due to memory constraint changes (Sec-
tion 5.3.1). While a number of unrelated adaptation techniques have been known to be
effective in isolation, Ginga uses the concept of adaptation space to organize and combine
them. In the case of memory constraints, I apply and combine several dynamic adaptation
methods such as choosing sort-merge join when operands are sorted, switching the operands
for hash joins when the left operand is found to be larger, and selecting memory allocation
strategies, e.g., between Max2Min and AlwaysMax as appropriate.

I used Ginga’s query processing simulation system to evaluate the effectiveness of these
three methods in isolation and in combination (Section 5.4). My experimental results con-
firm that each method improves query response time by reducing memory bottlenecks. More
significantly, combined query adaptation can achieve significant performance improvements
(up to 70% of response time gain for representative system and workload configurations)
when compared to individual solutions. These results show that it is a good idea to combine
adaptive methods to address memory constraints at runtime, and Ginga offers a systematic
approach to organize and combine these methods in an effective way. The Ginga approach
also offers promise for the incorporation of other dynamic adaptation methods to handle
runtime changes in memory constraints.

In the next chapter, I use Ginga to investigate the benefits and trade-offs of different
adaptation strategies for coping with end-to-end delays during the execution of distributed

queries.
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CHAPTER VI

ADAPTATION TO END-TO-END DELAYS

6.1 Surviving to Unstable Connections Between Clients and
Servers

During the execution of a distributed query, end-to-end delays occur possibly due to the
following reasons: connections to the remote data sources experience unpredictable band-
width and latency fluctuations, remote server is overloaded, or both network and remote
server experience performance problems.

In this chapter, I investigate the trade-offs and benefits of using the following two adap-
tation actions for coping with end-to-end delays: concurrent caching and keeping download
alive. Concurrent caching suggests that Ginga executes other parts of the query while wait-
ing for the slow data to be delivered. With keeping download alive, for the sources known
to be problematic with respect to the download process, Ginga contacts their mirror sites
in parallel. These adaptation techniques are organized into an adaptation space, which pro-
vides a uniformed way for representing and viewing a collection of alternative adaptations
to end-to-end delays for a given query execution plan.

The rest of the chapter is organized as follows: Section 6.2 first discusses how Ginga
constructs the adaptation cases using the two adaptation techniques for coping with end-
to-end delays. Then, also in this section, I describe how to organize these techniques into
an adaptation space G, and how Ginga navigates G to get around unpredictable end-
to-end delays. Section 6.3 studies the performance of these techniques for representative

scenarios [43], and Section 6.4 summarizes the chapter.
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6.2 Adaptation Space Generation and Exploration: End-
to-End Delays

In this section, I first discuss how the adaptation cases for end-to-end delays are constructed.
Then, I discuss how the adaptation space is generated by Adaptation Space Generation
phase, prior to runtime, and navigated (as needed) by Adaptation Space Exploration phase,

at runtime.
6.2.1 Adaptation Cases

When coping with end-to-end delays during the execution of a distributed query @, the
adaptation condition predicates of an adaptation_condition(P;) in @’s adaptation space
are defined over the transfer rate of the remote data servers involved in Q. When one of
these predicates becomes invalid, Ginga needs to provide an alternative adaptation case.
This new adaptation case has a new set S of data transfer rate predicates and an alter-
native query plan P; optimized for S (adaptation_condition(P;)) along with the respective
adaptation_trigger(P;). The new adaptation case is represented as adaptation_case(Pj) and

the adaptation_event that fires the transition from adaptation_—case(P;) to adaptation_case(Pj)
is described in adaptation_trigger(F;).

A key component of adaptation_trigger(P;) is adaptation_action(P;, Pj) (see Section
4.3.1), which Ginga uses for generating P;. In the next subsections, I describe two adapta-
tion actions that Ginga can use for generating alternative query plans (and the associated
adaptation case) for coping with end-to-end delays. These adaptation actions are (1) con-

current caching and (2) keeping download alive.
6.2.1.1 Adaptation Action: Concurrent Caching

During the execution of distributed query @, if one of the remote data server involved in
Q starts delivering data at a transfer rate slower than expected, Ginga can use adaptation

action “Concurrent Caching” (Figure 34), which has two main steps:

Step 1: Cache independent segments from the original schedule while continuing to process

the data retrieval through the slow network connection. I call independent segment a
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segment from the original plan that does not depend on the input from the delayed
source. When no more independent segments can be cached and the problematic

connection is still slow, move to Step 2.

Step 2: Create and cache the result of new joins between the relations that were cached in

Step 1.

I assume that when a caching operating is initiated, it will completely cache the respec-
tive operand or join result. The term cache in this scenario is similar to the concept of
materialization [18], where the intermediate result of a query is materialized either in disk

or in main memory.

ADAPTATION ACTION adapt_action_concurrentCaching

Input: P;: current plan for the input query Q.

Output: P;: plan P; adapted.
1: Let s =< op1,---,0pn >€ sch(P;) be the segment currently been executed.
2: Pj = copyOf(P;); // Make a copy of P; to generate the adapted plan P;.
3:

// Step 1: If there is an independent segment to be executed.

if (3Is¢ € sch(Pj) such that s, # si A sy is-independent-of s;,) then
s¢ =< cacheOperator > +sy;
CachedSegments = CachedSegments U {s,};
segmentExec(sy); // Execute s; concurrently with s

// Step 2: Check whether I can create new joins.
9: else if (size0f(CachedSegments) > 2) then
10 Let G(V, E) be the query graph of Q.
11:  Let result0£f(s) be a function that returns the result relation of segment s, where s € sch(FPj).
12

// If there are two cached relations that can be joined.
13:  if (3s41, s¢2 € CachedSegments such that (result0f(s,;),result0f(sy2)) € F) then

14: sg3 =< cacheOperator > + <(result0f(s;;) X result0f(ss)>;

15: CachedSegments = CachedSegments — {s¢1,S¢2};

16: CachedSegments = CachedSegments U {s;};

17: update(sch(Pj), s¢1, 502, 5¢3); // Replace s;1,5p2 with spg in sch(P;).
18: segmentExec(sy3); // Execute sy3 concurrently with sy

19: return Pj;

Figure 34: Adaptation Action “Concurrent Caching.”

The goal of concurrent caching adaptation action is to generate an alternative query plan
that minimizes the effects of a slow connection upon the final query response time while
maximizing the use of the resources originally allocated to query execution. For example,
while waiting for the slow data to arrive, the CPU can be allocated to process other parts

of the query. I discuss the details of this adaptation action with the following example.
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Example 15 Recall the next generation drugs discovery scenario described in Section 1.2.
Assume that NGD uses Ginga to add query adaptation into their query processing system.
In addition, consider that now the company has grown larger, and the assay results on how
chemical compounds can affect the virus proteins are now available at remote labs. Let
still assume that a pharmacologist wants to investigate new drugs to treat HIV. So now,
NGD-WS will produce following SQL statement for collecting the necessary data to start

the investigation:

Q2: SELECT
FROM Nucleotides N, Proteins P, Prot_Structure PS, Assay_Results AR
WHERE N.generateProtID = P.ID
AND P.ID = PS.ProtID
AND PS.compoundID = AR.compoundID
AND N.description LIKE "JHIV}"
AND P.description LIKE "}HIV%"
AND PS.description LIKE "YHIV%"
AND AR.description LIKE "}HIVY"

This query is first processed by the Ginga query router, which identifies the bioinformat-
ics sources that can provide the requested information. Although there are many sources
that could be used for answering this query, for simplicity, I assume that only the following
sources were selected: NCBI for nucleotides, SWISS-PROT for proteins, PDB for pro-
tein structures, and RemoteLab for the results on how chemical compounds can affect the
proteins identified.

Let assume that the expected transfer rate for the network connection L; is Rate(L;) =
1Mbps, for 1 <i < 4. Ginga will adapt the execution of () whenever Rate(L;) drops below
w X 1Mbps, 0 < w < 1, which will cause slow delivery.

Now, suppose that as Ginga initiates the execution of query plan QPF,, slow delivery is
detected on connection L. In order to cope with this end-to-end delay, Ginga fires the con-
current caching adaptation action (cc_adaptAction(QPFy)), which returns plan Q P, which
concurrently caches the the search results from SWISS-PROT (cache(SWISS-PROT)). If
Ginga finishes processing NCBI search results while concurrently running cache(SWISS-
PROT), then no further adaptation is necessary. However, if the slow delivery on L;
delays the processing of NCBI results beyond the completion of cache(SWISS-PROT),

then Ginga fires cc_adapt Action(QPy1), which returns QPyo. Plan QPio (Figure 36) starts
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Schema
Nucleotides (ID,protID,desc,
nuc_other_attrs)

Proteins (ID,desc,prot_other_attrs)
Prot_Struct (protID,compoundID ,

desc,ps_other_attrs)
Assay_Results (compoundID ,desc,

ar_other_attrs)

Query Q,
SELECT *
FROM Nucleotides N, Proteins P, Prot_Struct PS, Assay_Results
WHERE N.protlD = P.ID AND P.ID = PS.protID
AND PS.compoundID = AR.compoundID
AND N.desc LIKE "%HIV%" AND P.desc LIKE "%HIV%"
AND PS.desc LIKE "%HIV%" AND AR.desc LIKE "%HIV%"

(a) Global schema and query Q,

OPTIMIZED QUERY PLAN: QP

NGD-WS

Legend:

C: LIKE "%HIV%"

L;: Network
Connection i

L1/ Lz\ L / L, Internet
/ / N\

NCBI SWISS-PROT PDB RemoteLab
(Nucloetides) (Proteins) (Prot_Struct) (Assay Results)
Site 1 (S1) s2 S3 S4

(b) Optimized Plan QP

Figure 35: Query plan for collecting specific information on HIV.

concurrently the caching of join between the search results from PDB and RemoteLab
(cache(join(PDB, RemoteLab))). The goal of both QP;; and QP2 is to change the re-
trieval and processing order of sources, so the fast sources are processed concurrently with
the delayed source. At any point during the query execution, there is only one plan that is
being used. When Ginga changes from plan QP to plan QP;; or from QP;; to QPo, the
operator schedule is changed accordingly, as indicated in Figure 34.

When there are no more independent segments from the original plan to be executed
and cached and Ginga still has not finished processing NCBI results, cc_adaptAction will
start creating and caching new joins (Step 2). In this example, the new query plan QPi3
will create and cache the result of a new join with the relation and join results that QP
cached. Ginga creates new joins by following the query graph associated with QF,. Only
those relations that can be joined (i.e., there is an edge in the query graph connecting them)
are considered during the creation of new joins. This way, Ginga avoids the generation of

new joins that result in Cartesian products.
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Plan QP

-
[
IS
S

L
/
ra
i [
proc(S1) > et(AAction11) proc(S1) > et(AAction12)
Legend: Sites:
proc(S1) total execution time to 315 NCBI site .
process data from S1 S2: SWISS-PROT site
S3: PDB site

et(action_i) :total execution time of

S4: Remotelab site

adaptation action_i

Figure 36: Alternative query plans for coping with end-to-end delays on connection L.

The eager execution of these expensive new join operators is a departure from the initial
optimized plan QFPy. This means that QP35 was considered sub-optimal when compared to
QP, originally. Therefore, ()P;3 may or may not finish before QPy;,7 < 3, depending on
the completion time of processing NCBI results. An alternative solution is to use a detailed
dynamic adaptation query plan generation to take these factors into account. This is similar
to query re-optimization [29, 59].

The scheduling of Q) P;3 results in changing the right operand of the originally scheduled
join between NCBIand SWISS-PRO T results. In my implementation of Ginga, this scenario
is possible because I assume that all joins operators are hash-based [52] and the execution
of a query plan follows the model presented in 4.3.2.

Figure 36 summarizes the adaptation actions used for coping with end-to-end delays
detected on connection L;. For each action, the caching operations are numbered in the
order they should the executed. Observe that these new caching operations are scheduled

in a way that allows a smooth transition from one query plan to another at runtime.
6.2.1.2 Adaptation Action: Keeping Download Alive

In the previous section, I described concurrent caching adaptation action, which assumes
that the data will be constantly delivered, but at a slower rate. In this section, I describe

keeping download alive (KDA) adaptation action, which assumes that the data server is
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likely to unexpectedly stop sending data either due to a local software or hardware failure
or due to a broken network connection.

There are at least two approaches for solving this problem. The first approach is to
close the connection to the failed server and contact a mirror site (if any) to download the
missing data. The second approach is to use query relaxation. The input query is re-written
so that it returns partial answer to the user [3].

The implementation of both approaches involves solving the following important and
difficult problem: how to determine when a remote server is indeed not responding. If I
mistakenly close the connection to the server, which was momentarily out, using the first
approach, I will be unnecessarily returning an imprecise answer to the input query. By using
the second approach, the final response time may be considerably affected because I will
have to pay an extra connection cost to the mirror site. Furthermore, the second approach
incurs another problem, which is how to avoid (or minimize) the download of redundant
data.

In this dissertation, I focus on second the approach, contacting alternative servers.
Incorporating the first approach, query relaxation, to Ginga is part of my future research
agenda.

The kernel of my approach to contacting alternative servers is an operator that I call
Data Collector (DC). DC has two operands, where each operand represents a remote data
server. Briefly, DC collects and combines the data from both data servers and deliver the
collected data to the calling process. When DC detects that at least one of the servers
is not responding, or not delivering data at the rate that it was expected, DC generates
the adaptation event DC_frequent_timeout and adaptation action “keeping download alive”
(KDA) is executed.

Adaptation action KDA is based on the assumption that for each remote base relation
R involved in a distributed query @ there will be at least two remote data servers that can
provide R. When the data collection slows down, KDA will close the connection to the
slowest (or not responding) server, and establish another connection to an alternative site.

In the next paragraphs, I describe in more details the data collector operator and the
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adaptation action KDA.

Data Collector Operator The data collector has two operands: the left data stream
(LDS) and the right data stream (RDS). DC receives the data from these two operands,
union the data, and the result to the caller. To avoid duplicates, LDS delivers the data
in ascending order and RDS in descending order. This way, I can minimize the amount of
duplicated data.

Figure 37 depicts a possible execution of DC where remote relation A is downloaded
from two data servers. I assume that both servers are able to sort A accordingly. DC will
consume the data from the page buffer. When the buffer becomes empty, DC waits for
a timeout interval. After n failed trials of consuming data from the buffer (i.e., timeout
expires n times), DC checks on the Mean Time Between Timeouts (MTBT). If MTBT is
equal to timeout, it means that timeouts has become too frequent, and I should adapt the
execution of the query. Ginga will then execute adaptation action KDA. MTBT is refreshed

each time a timeout is detected.

Caller
operator

{}

Data Collector

i

pageBuffer Ginga Server

Tt o)
TBArrivals-LDS TBArrivals-RDS
monitor monitor

P - ) o~

~

( / Internet )
~_ \ P
~L o\ _~

Relation A Retlation A
(ascendi?g order) (descending order)

() —Ethernet = g Ethernet
m T
=i ~ Dﬂﬂﬂl]l]ﬂ

DB-A1 Data Server A1 Data Server A2 DB-A2

Figure 37: Data Collector operator.
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CLASS DEFINITION DataCollector

// Attributes

networkConnection leftServer;

networkConnection rightServer;

boolean leftServer_alive; // TRUE after receiving the first page from LEFT server.
boolean rightServer_alive; // TRUE after receiving the first page from RIGHT server.
int totalLeftPages; // Total number of pages delivered by the LEFT server.

int totalRightPages; // Total number of pages delivered by the RIGHT server.
queueOfPages pageBuffer; // Pages received from the servers are stored in this queue.
int numDfExpectedPages; // Total number of expected pages to be downloaded.

int currentNumQfPagesRec; // Current number of pages received so far.

double timeOut; // Timeout value.

double MTBT; // Mean Time Between Timeouts parameter.

double denMTBT; // Used for refreshing MTBT.

double forgetFactor; // Forgetting factor [0..1].

double t_lastTimout; // Time when occurred the last timeout.

// Methods
void open();
page next();

void close();

Figure 38: Data Collector Operator class definition.

As described in Section 4.3.2, Ginga processes queries according to the Segmented Ex-
ecution Model, which in turn in based on the iterator model [21]. In the iterator model,
each operator is considered as an iterator that supports three methods: open, next, and
close. In general, open prepares the operator for producing an item, next produces an
item, and close performs final clean up. In the next paragraphs, I describe these three
methods for the data collector operator. The class definition of the this operator is depicted
in Figure 38.

The open method for DC is depicted in Figure 39. In this method, DC first connects
to both operands and establishes the timeout value as the maximum expected value for the
time between arrivals (TBArrivals) of each page delivered by the two servers. Then, DC
starts the monitor for the TBArrival for each of the servers. Each monitor will maintain
the average of TBArrival for the associated servers. The information maintained by these
monitors is used by the KDA adaptation action when deciding which server should be
replaced. Finally, DC initializes the mean time between timeouts (MTBT) parameter, used
for deciding when to generate the adaptation event DC_frequent_timeouts.

The next method of DC is depicted in Figure 40. The pages received from the operands

are stored in the local pageBuffer. When DC receives a next call, if there are pages in
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METHOD DataCollector::open
Input: ff: forget factor that this DC should use; r: data request to be sent to the operands;
Output: void;

// Contact left and rignt servers.

1: connect(leftServer);

2: leftRequest = r;

3: sendRequest(leftRequest,leftServer,ascending_order);

4: connect(rightServer);

5: rightRequest = r;

6: sendRequest(rightRequest,rightServer,descending_order);

T
// Set timeout to 10% higher than the maximum expected Time Between Arrival (TBA)
// of pages from each server.

8: timeQut = (1.10) * max(expectedTBA(leftServer),expectedTBA(rightServer));

9:

// Start the monitors for the TBA from each page.
// Each monitor mantains the mean TBA for the associated server.
10: startMonitorTBArrivals(leftServer);
11: startMonitorTBArrivals(rightServer);
12: leftServer_alive = FALSE;
13: rightServer_alive = FALSE;
14: numOfExpectedPages — leftServer.expectedSize;
15: currentNumOfPagesRec = 0;
16: totalLeftPages = 0;
17: totalRightPages = 0;

// Set the forgetting factor.
19: forgetFactor = ff;

// Initialize Mean Time Between Timeouts (MTBT) parameter.
21: MTBT = 0;
22: denMTBT = 0;
23: t_lastTimout = 0;

24: return;

Figure 39: Data collector OPEN method.

pageBuffer, then DC returns one page of this buffer, which in turn is updated accordingly.
However, if there are no pages available, DC waits for a timeOut. After n failed trials of
consuming data from the buffer, DC checks on the MTBT. If MTBT is equal to timeOut,
it means that timeouts have become too frequent, and I should adapt the execution of the
query. Ginga will then execute adaptation action KDA.

When DC receives a next call and all pages have been received and returned to the
caller, the NULL value is returned. In turn, the caller invokes DC’s close method, which
closes the connections to both operands.

MTBT is a critical and important parameter because it determines when adaptation
should take place. Every time a timeout is detected, the MTBT is refreshed using the
method refreshMTBT depicted in Figure 41. If the time interval t between the last timeout

t_lastTimeout and the current one t_timeout is close to timeOut, it means that two
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METHOD DataCollector::next
Input: void;
Output: page: one page received from one of the remote servers;
// If we have received all the expected pages, return NULL.

1: if (numOfExpectedPages == currentNum0fPagesRec) then
2: return NULL;
3:
// If there are pages in pageBuffer, then return the page at the head of the queue.
4: if (sizeOf(pageBuffer) > 0) then
5: currentNumOfPagesRec = currentNumOfPagesRec + 1;
6: page = pageBuffer.head();
T

// Record which server has delivered the page being returned.
8:  if (belongsTo(page) == LEFT_SERVER) then

9: totalLeftPages = totalLeftPages + 1;

10:  else

11: totalRightPages = totalRightPages + 1;

12:  return page;

13: else

14:  // There is no page available and Ginga needs to wait for the next page to arrive.

15: num0fTrials = 0;
16:  while (1) do

17: wait(timeQut); // Wait for a page to arrive from one of the servers.
18: num0fTrials = num0fTrials + 1;
// If no pages has been received after timeout...
19: if (sizeOf(pageBuffer) == 0) then
20: // If we have tried 10 times or if both servers are alive but not responding
21: if (num0fTrials > 10 or (leftServer_alive and rightServer_alive)) then
22: // Initialize or refresh the MTBT parameter.
23: if (t_lastTimout == 0) then
24: t_lastTimout = clock; // Current clock;
25: MTBT = 0;
26: else
27: refreshMTBT (clock);
28:
// If we are timing out too frequently, then we should adapt this operator.
29: if (MTBT > 0 and MTBT == timeQut) then
30: ADAPT(*this); // Request adaptation for this operator.
// Re-initialize the MTBT.
31: MTBT = 0;
32: denMTBT = 0;
33: t_lastTimout = 0;
34: num0fTrials = 0;
35:
36: else
37: // Return the page that we have received within timeQut.
38: page = pageBuffer.head();
39: currentNumOfPagesRec = currentNumQfPagesRec + 1;
40:
// Record which server has delivered the page being returned.
41: if (belongsTo(page) == LEFT_SERVER) then
42: totalLeftPages = totalLeftPages + 1;
43: if (LeftServer_alive == FALSE) then
44: leftServer_alive == TRUE; // LEFT server is ALIVE.
45: else
46: totalRightPages = totalRightPages + 1;
47: if (rightServer_alive == FALSE) then
48: rightServer_alive == TRUE; // RIGHT server is ALIVE.
49:
50: return page;
endWhile // For receiving one page from one of the servers.
endIf
51:

Figure 40: Data collector NEXT method.
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consecutive timeouts have occurred within a short period of time. In this case, I assume that
the runtime environment is becoming unstable, and I should forget some of the “timeout
history” embedded in MTBT. Without forgetting some of MTBT history, consecutives
timeouts detected after a long period without timeouts may never be detected by the DC.
Consequently, Ginga will miss potential adaptation opportunities for improving the query
execution.

I use the parameter forgetFactor to determine the percentage of MTBT that I need to
forget when refreshing the MTBT in case consecutive timeouts are detected. For forgetFactor
= 0, [ always remember everything, whereas for forgetFactor = 1, I forget everything. As
I demonstrate in my experiments (Section 6.3.2), depending on how unstable is the runtime

environment, a particular forgetFactor will be the best solution.

METHOD DataCollector::refreshMTBT
Input: t_timeout: time when the timput occurred.
Output: void;
// If the difference between t_timeout and t_lastTimout is close to
// timeDut, then we should forget some of the MTBT history, using the forgetting factor.
t = t_timeout - t_lastTimout;
if (timeOut < t < timeQut * 1.10) then
MTBT = (1 - forgetFactor) * MTBT;

// Refresh MIBT
denMTBT = denMTBT + 1;

__ rdenMTBT—1 t_timeout —t_lastTimout 7,
MTBT = [ denMTBT MTBT] + [ denMTBT L

t_lastTimout = t_timeout;
return;

Figure 41: Function for refreshing the MTBT.

Keeping Download Alive The adaptation action keeping download alive (KDA) is
depicted in Figure 42. KDA first checks whether there are alternative servers to be contacted
for data collector DCy (Line 5). If no alternative server is available, then no adaptation
takes place. However, if there is at least one alternative server srv, KDA will close the
connection to the server with the largest mean time between page arrivals (AVG_TBArrivals)
and establish the connection with srv.

An important method call in KDA is the constructNewRequest (requestSrv,srv_slow).

This method, invoked in Line 8 and Line 15 (see Figure 42) takes as input the request
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ADAPTATION ACTION adapt_action_KDA
Input: P;: current plan for the input query Q.
Output: P;: plan P; adapted.
1: Let s, € sch(P;) be the segment currently being executed.
2: Let DCy € s be data collector currently being executed and have generated a DC_frequent-timeout adaptation
event.
i: P; = copyOf(P;); // Make a copy of P; to generate the adapted plan Pj.
// If there are alternative server to contact
// (Obs.: If no alternative server is available, then no adaptation takes place.
5: if (3 server srv to be contacted for DC;) then

// If the average time between arrivals (TBArrivals) for the left server
// is larger than the TBArrivals for the right server, then...
7:  if (AVG_TBArrivals(DCj.leftServer) > AVG_TBArrivals(DC).rightServer)) then

8: r = constructNewRequest(leftRequest,leftServer);

9: leftRequest = r; // Store the current request for the left server.
10: DCy.1leftServer = srv;

11: reconnectServer(DCy.leftServer); // Contact an alternative server for DC).leftServer
12: sendRequest (leftRequest,leftServer,ascending_order);

13:  else

14: // Otherwise, contact another server for DCy.rightServer

15: r = constructNewRequest(rightRequest,rightServer);

16: rightRequest = r; // Store the current request for the right server.
17: DCy.rightServer = srv;

18: reconnectServer(DC) .rightServer);

19: sendRequest (rightRequest,rightServer,descending_order);

20: return Pj;

Figure 42: Adaptation Action “Keeping Download Alive.”

requestSrv sent to the server srv_slow, determines how much srv_slow has already deliv-
ered, and constructs a new request for returning only the missing data. In my implementa-
tion of constructNewRequest, I assume that as DC consumes pages from the pageBuffer
in Line 6 and Line 40 of Figure 40, I am able to determine from which server the page was
originated. I assume that each server attaches this information to each page it delivers to
DC.

Once KDA has completed the adaptation process, the control is returned to data col-

lector DCy, which then proceeds with the download process.

6.2.2 Adaptation Space

So far, I have described two adaptation actions for generating adaptation cases to get around
end-to-end delays during the execution of a distributed query plan F;. In this section, I
describe how to organize the cases generated by these actions into an adaptation space G,
and how Ginga navigates G for coping with unexpected end-to-end delays.

Ginga will adapt the execution of P; when at least one of the end-to-end delay predicates
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Table 9: End-to-End Delay Predicates for plan P;, where s € sch(P;) is the current
segment being executed.

| Predicate Name | Description |

join_operand_Predicate | V join operator j; € sg,

ji-num0fTrials < trialsThreshold;
dc_mtbt_Predicate V data collector operator dc; € sg,

dc; MTBT > dc;.time0Out or dc; MTBT == 0;

Table 10: Adaptation events and adaptation actions for coping with end-to-end delays.

[ adaptation_event(P;) | Invalidated Predicate | adaptation_action(P;, P;) |

JOIN_frequent_timeout join_operand_Predicate adapt_action_concurrentCaching
DC_frequent_timeout dc_mtbt_Predicate adapt_action_.KDA

listed in Table 9 is invalidated. The associated adaptation events and actions to be fired
are summarized in Table 10. For example, if the predicate join_operand_Predicate is invali-
dated, then event JOIN_frequent_timeout is fired and adapt_action_concurrentCaching is
executed. Based on these events and actions, Ginga generates the adaptation space for P;
shown in Figure 43.

The algorithm for navigating the adaptation for coping with end-to-end delays is de-
picted in Figure 44. The order in which I process the events is not relevant, and both adapta-
tion events have the same “priority.” The adaptation decisions made by adapt_action_concur-
rentCaching does not invalidate any of the changes that adapt_action . KDA makes to the
query plan.

It is important to observe that the decision for firing the adaptation process using KDA
adaptation action is different from the decision on when to adapt using the concurrent
caching adaptation action. The former is based on MTBT while the latter is based on

number of timeouts observed.

6.3 Performance Analysis

For all experiments reported in this chapter, I use a simulator (based on the CSIM toolkit)
that models a client-server system with one client running Ginga and n remote data servers.

All base relations involved in the queries submitted to Ginga are assumed to be available
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Legend:
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Figure 43: Adaptation Space for coping with end to end delays.

ADAPTATION SPACE MNgtEndToEndDelay

Input: adapt_space(P;): adaptation space for P;.

Output: P;: plan P; adapted.

Require: at least one of memory constraint predicates in adaptation_condition(P;) is invalidate.
1: P; = copyOf(P;); // Make a copy of P; to generate the adapted plan P;.
2.

// Adaptation Path: (JOIN_frequent_timeout)
if (join_operand_Predicate(P;) == FALSE) then

adapt_action_concurrentCaching(P;, Pj1);

Pj = Pjy;

// Adaptation Path: (DC_frequent_timeout)
if (dc_mtbt_Predicate(P;) == FALSE) then
adapt_action_concurrentCaching(P;, Pj2);
Pj = Pja;

H
s )

—_

return Pj;

Figure 44: Adaptation Space for Managing End-to-End Delays.

at the remote servers. The size of the relations reflect the size of the answers provided by
web services such as NCBI-Entrez discussed in Section 1.2.

Table 11 lists the classical parameters [10, 52, 61, 4] used in configuring the simula-
tor. Client and server machines have the same hardware configuration. Disks are modeled
as FIFO queues. I model end-to-end delays in terms of degradations to network band-
width. Network connections are independent of each other, in the sense that the failure
of a connection does not affect the others. The network transfer rates and their respec-
tive degradations considered in my experiments represent those typically observed in the

Internet environment.
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Table 11: Simulation Parameters

| Parameter | Value | Description |
Speed 100 | CPU speed (MIPS)
AvgSeekTime 8.9 | average disk seek time (msecs)
AvgRotLatency 5.5 | average disk rotational latency (msecs)
TranferRate 100 | disk transfer rate (MBytes/sec)
DskPageSize 8192 | disk page size (bytes)
MemorySize 10---100 | memory size (MBytes)
DiskIO 5000 | instructions to start a disk I/O
Move 2 | instructions to move 4 bytes
Comp 4 | instructions to compare keys
Hash 25 | instructions to hash a key
Swap 100 | instructions to swap two tuples
F 1.2 | incremental factor for hash join

The experiments are divided into three groups: The first group (Section 6.3.1) studies
the benefits and trade-offs of concurrent caching (CC) adaptation action. The second group
(Section 5.4.2) investigates the performance characteristics of keeping download alive (KDA)

adaptation action. The third group (Section 5.4.3) studies the combination of CC and KDA.
6.3.1 Concurrent Caching

For the experiments described in this section, it is assumed that during Adaptation Space
Generation phase, Ginga builds the initial query plan Py depicted in Figure 45, where each
remote source is expected to return 10,000 objects of 200 bytes each. I use a bushy tree
because it allows me to fully investigate all aspects of Ginga adaptation engine. Neverthe-
less, similar results were obtained for left-deep and right-deep query trees as reported in
Section 6.3.1.1.

Joins are assumed to be hash-based and relations can be equijoined in any order, always
on the same attribute. Two memory sizes were considered for executing the query at the
Ginga site: limited and unlimited. With limited memory, all operators are executed with the
minimum memory requirement, while with unlimited memory the operators are executed
at their optimal performance. For example, in a hash-join between relations R and S the
minimum memory requirement is /[R] x F, where |R| < |S| and F represents the overhead
factor due to the hash structure [52]. With minimum memory allocation, executing a hash-
join implies partitioning the relations, which results on I/O costs. With unlimited memory,

hash-join has optimal performance because |R| x F' fits in main memory, and no I/O cost
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is incurred during the execution.

Ginga Server query result

ST

G Internet

Legend:
L;: Network connection (i = A, B, C,D,E,F)

Figure 45: Initial optimized plan P used for the experiments on concurrent caching.

The remainder of this subsection is organized as follows. I first investigate the effective-
ness of Ginga while coping with end-to-end delays when using concurrent caching. Then, I
introduce errors to the selectivity of the newly created joins (Step 2 in Figure 34) to explore

the performance boundaries of Ginga approach.
6.3.1.1 Effectiveness Analysis of Ginga Adaptation

I first present the adaptation performance results for the commonly explored case when
delays are observed for the network connection linking the left-most remote source of plan
Py (i.e., connection Ly from Figure 45) to the query site. Then, I show that similar
results are observed when delays are detected for the other connections. Finally, I present

performance numbers when end-to-end delays are detected in multiple network connections.

Delay in a Single Connection The graph in Figure 46(a) shows the response time of
Ginga’s adapted plans when slow delivery is first detected in three different situations while
retrieving data from Source A: (1) at the beginning, (2) after 50%, and (3) after 75% of pages
were received without delay. Once the delay is detected, I assume that the data is slowly
delivered under a degraded rate Rate(L4) = 128 Kbps. The duration of the slow delivery is

represented by the x-axis. The response time of the original plan (without adaptation) is
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represented by the dotted line. For the experimental results reported in this section, it is
assumed that all intermediate results have 5,000 objects and the query is executed under

limited memory size.
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Figure 46: (a) Limited Memory ; Normal Rate = 5Mbps ; Degraded Rate(L4) = 128 Kbps.
(b) Percentage of improvement in response time; Limited Memory; Degraded connection:
L4 ; Slow delivery detected while retrieving the first page from remote Source A.

As it can be observed from the graph from Figure 46(a), the benefits of adapting the
query execution in the presence of slow delivery are significant. This fact is illustrated
by the “staircase” lines for the case when the adaptation process is used. The horizontal
length of each step in each adaptation line represents the amount of slow delivery that each
alternative query plan can absorb after Ginga schedules it. The height of each step shows
the response time of the adapted query execution if Rate(L 4) resumes to its expected data
transfer rate of 5Mbps after a period of observed slow delivery. The label in each step
indicates the query plan being used. A description of all alternative plans are depicted in
Figure 47.

For short duration of slow delivery (less than 4 seconds), Ginga can practically maintain
the same query response time as the initial plan when executed without delay. This can be

observed from the solid line in Figure 46(a). However, this scenario does not occur for the
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Figure 47: Adaptation actions for coping with delays on network connection L 4.

‘50%’- and ‘75%’-lines. In fact, in these two cases, for slow delivery with very short duration
the response time with adaptation is worse than the response time with no adaptation. The
investigation of mechanisms to avoid this anomaly is part of my future research agenda.
For slow delivery duration longer than 4 seconds, Ginga’s query adaptation is beneficial
even when end-to-end delays are detected after 50% and 75% of pages were downloaded
without delay. The longer the duration of slow delivery, the more processing can be done
concurrent while downloading the slow data. However, 1 observe that there are a few
moments when using adaptation can result in a query response time that is almost as bad
as no adaptation. One of these moments can be observed at 5 seconds with the ‘50%’-line.
The improvements provided by Ginga adaptation process are limited by the number of
alternative query plans. When it is no longer possible to fully process the slow data while
executing the sequence of caching operations from query plan Py,, there is nothing left to
be done other than process the slow data as it arrives. This explains why after 65 seconds of

slow delivery the solid-adaptation line becomes parallel to the no adaptation line. However,
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Ginga adaptation is still beneficial even though it can no longer absorb all the slow delivery.
The number of needed alternative query plans is reduced according to when the slow
delivery is first detected and how seriously the Rate(L ) is degraded. From the ‘75%’-line
in the graph of Figure 46(a), it can clearly be observed that Ginga adaptation process uses
only up to query plan Ps,. This occurs because when the end-to-end delay is detected there
are only a few pages left from A that need to be processed concurrently with the sequence
of scheduled caching operations. In other words, less critically the Rate(L,) is degraded
and later the slow delivery is detected, fewer the alternative query plans that are needed.

Figure 46(b) shows the comparative benefits of using Ginga versus no query adaptation
when slow delivery is first detected at the beginning under three different degraded rates
for connection L 4: 128 Kbps, 256 Kbps, and 500K bps. The x-axis represents the number
of pages delayed, and the y-axis represents percentage of improvement in response time
obtained by using Ginga. As it can be observed from the graph, in this experiment Ginga
can provide up to 40% of improvement on the query response time when compared with
the no adaptation case.

The spikes in each curve in Figure 46(b) represent the moments at which Ginga switches
plan. When there are no more alternative plans to schedule and the number of pages delayed
increases, the response time improvement due to adaptation starts to gradually decrease.
This occurs because the last scheduled plan can no longer fully absorb the processing of
the slow data. Line ‘128Kbps’ represents this scenario. In contrast, for the ‘256Kbps’
and ‘500Kbps’ lines, Ginga never experiences a situation where the alternative query plans
cannot fully absorb the slow delivery.

The results from the experiments with slow delivery detected for the other network
connections of query plan Py (Figure 45(a)) are similar to the results described so far in

this subsection.

Delay in Left-Deep and Right-Deep Trees 1 also ran experiments with left-deep and
right-deep trees using the same number of remote sources. As shown in Figure 48, similar

results were obtained. The main difference is with respect to the alternative query plan
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used for these trees. Different from the bushy tree considered so far, most of alternative
query plans initially scheduled for left- and right-deep trees involve the caching of single
remote relation. As a consequence, the query response time improvement due to adaptation
is not significant until 34 seconds of slow delivery duration for left-deep and 22 seconds for
right-deep. After this moment, the caching of joins created using previously cached data
is then scheduled. It also important to observe that with small duration of slow delivery,

there are moments where the response time with adaptation is worse than no adaptation.
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Figure 48: Performance results for (a) Left-deep and (b) Right-deep trees when the left-
most remote relation is delayed ; Limited Memory; Normal Rate = 5Mbps ; Degraded
Rate = 128 Kbps.

Delay on Multiple Connections According to the adaptation process described in
this chapter, upon detecting slow delivery on one network connection, Ginga schedules
alternative query plans. In this case, having slow delivery over multiple remote data sources
means that new end-to-end delays are detected while switching plans.

I present here a performance study for the case when slow delivery is detected for two
network connections. I find this case to be representative for the generic case of multiple

delayed connections.
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Figure 49 summarizes the alternative query plans for coping with end-to-end delays on
connections L4 and Lp. Upon detecting slow delivery on L 4, Ginga schedules the caching
of Source B (cache(B)). However, delays on connection Lp are also detected. At this
moment, Ginga suspends cache(B) and switches to alternative query plan P4, which will
be used to absorb the slow delivery from connections L4 and Lpg. As the total duration
of slow delivery increases and P4, can no longer complete the caching operation cache(Js)
concurrently, Ginga switches to Py,. Similarly, as the slow delivery duration grows larger,

Ginga will switch to the other alternative query plans.
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Figure 49: Summary of adaptation actions when slow delivery is detected on network
connections L and Lp.

Figure 50(a) shows a 3-D graph when Rate(L 4) and Rate(L ) are degraded to 500K bps

106



and slow delivery is detected while downloading the first page from Source A and Source
B. The x-axis represents the slow delivery duration (seconds) observed for Ly, the y-axis

the slow delivery for Lp (seconds), and the z-axis represents the response time (seconds).
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Figure 50: (a) Degraded Rate(Ls) = 500Kbps and degraded Rate(Lp) = 500Kbps ;
Limited Memory ; Normal Rate = 5Mbps ; (b) Percentage of improvement in response
time under two situations: (1) When only the first page from Source B is delayed and
(2) when all pages from source B are delivered under degraded Rate(Lp) = 500K bps.
For both situations, I vary the amount of slow delivery observed for L4, where degraded
Rate(L 4) = 500K bps.

Similar to the case of single connection delay, the same “staircase” effect is observed
for the graph in Figure 50. This effect can be observed, for example, if I fix the number
of delayed pages downloaded from Source B and vary the slow delivery duration observed
for L 4. By doing this, I provide two interesting observation about the Ginga adaptation
effectiveness.

The first observation is that not all alternative query plans are needed while coping with
slow delivery. Consider the situation where only the first page of Source B is delayed as
I vary the amount of slow delivery observed for L 4. The adaptation line for this scenario
is the one that includes points Ty, T5, and T3 (see Figure 50(a)). Note that Ginga only

uses up to alternative query plan P3,;,. Such phenomenon occurs because in this scenario
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connections L4 and Lp do not degrade considerably. The smaller the degradation of a
connection transfer rate, the fewer alternative query plans are needed to cope with slow
delivery.

The second observation is that alternative query plans can be bypassed if I know that
a given amount of slow data will certainly occur during query execution. Consider the
case when all pages from B are delayed as I vary the slow delivery duration for L4. The
adaptation line would then include points Ty, T5, Tg, and T7. Observe that Ginga switches
directly to alternative query plan Pj4;, bypassing plans Py, and Psg,. This occurs because
neither Pj,, nor Py, can fully absorb the total slow delivery observed on L4 and Lg. As
the slow delivery on L4 increases, Ginga switches to alternative plan Py, and Psqp. At 19
seconds of slow delivery on L4, Ps,, can no longer fully absorb the total delay observed on
connections L4 and Lp, and the response time with adaptation starts to increase linearly.

Figure 50(b) shows the comparative benefits of using Ginga versus no query adaptation
for the two situations described above. As it can be observed, Ginga query adaptation is
still a better solution than not having adaptation when end-to-end delays are detected over
multiple network connections. Ginga is able to provide up to 39% of improvement on the

query response time when compared with the no adaptation case.
6.3.1.2 Ginga Performance Boundaries

I now analyze Ginga’s performance boundaries when significant variance is observed for the
selectivity of the newly created joins used by some of the alternative query plans. I consider
two situations: when the memory is limited and when memory is unlimited. With limited
memory, some of the query plans require a large number of disk I/Os that can lead Ginga
to worse performance than no adaptation. On the other hand, with unlimited memory,
I/O costs are not incurred, but CPU power processing can be a bottleneck for Ginga’s
adaptation process.

Figure 51(a) shows the experimental results under limited memory when newly created
joins used on query plans Ps,, Ps,, and Pr, (see Figure 47) produce 5,000; 25,000; and

50,000 objects. The ‘5,000’-line in the graph represents the situation studied previously. For
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new joins resulting in 25,000 objects, the response time with adaptation is still acceptable.
However, when compared with the ‘5,000’-line, the response time for 25,000 objects increases
significantly (up to 32%) because for each new join, it is necessary to partition the relations
due to the limited memory size. This situation is aggravated when the new joins produce
50,000 objects. In this case, there are moments when the response time with adaptation
becomes worse than the response time with no adaptation. In other words, this means
that waiting for Rate(L 4) to resume to its expected rate is better than adaptation. Similar
results were obtained for different degraded rates and having slow delivery first detected at
different moments.

Figure 51(b) shows the experimental results under unlimited memory, which are analo-
gous to the results in Figure 51(a). By assuming unlimited memory size, all the joins are
executed in main memory eliminating I/O costs. However, note that unlimited memory
still does not prevent the ‘5,000’-line from crossing the no-adaptation line. Intuitively, from
this result, I conclude that Ginga’s adaptation process is not only memory bounded, but
also CPU bounded. Adapting the query execution to memory and CPU constraints is part

of my ongoing research study.
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Figure 51: Ginga’s performance under different result sizes for the newly created joins. (a)
Limited Memory ; Normal Rate = 5Mbps ; Degraded Rate(L ) = 128 Kbps; (b) Unlimited
Memory ; Normal Rate = 5Mbps ; Degraded Rate(L4) = 128 Kbps.
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6.3.2 Keeping Download Alive

In this section, I analyze the performance of the data collector operator in conjunction
with the “keeping download alive” (KDA) adaptation action. Similar to the experiments
described in the previous section, for these experiments, I also model end-to-end delays in
terms of degradations to the network transfer rate. Remote servers are expected to deliver
data at 5Mbps.

Figure 52 shows the workload used for the experimental results reported next: a single
scan (or fetch) operator that retrieves remote relation A, where |A| = 50M Bytes. Associ-
ated with scan(A) there is a data collector, which initially contacts two remote servers (left
and right) containing relation A. The left server delivers relation A in ascending order and
the right in descending order. Each server is assumed to crash after delivering 25% of rela-

tion A. In addition, each server is assumed to deliver data with a certain delay probability.!

Scan(A)

Data
Collector
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monitor monitor
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Figure 52: Workload for KDA experiments.

'For example, for delay probability equals to 0.9, every time a server delivers a page to the client, this
page has 0.9 probability of being delivered with a degraded transfer rate.
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The graph in Figure 53(a) shows the average response time?

for executing scan(R) as
a function of the delay probability associated with each server when DC uses six different
forget factors, namely, 1, 0.9, 0.75, 0.5, 0.25, and 0.1. As expected, for small delay probabil-
ity, the best response time is given by large forget factors. When the runtime environment
is relatively stable (i.e., small delay probability), every small runtime environment change
should be considered for adaptation. This means that Ginga should always remember the
recent past of the timout history embedded in MTBT. Conversely, as the runtime envi-
ronment becomes more unstable (i.e., delay probability increases), Ginga needs to be more
conservative with respect to firing adaptations. Therefore, Ginga should forget less about

the MTBT timeout history. In fact, in the graph of Figure 53(a), for delay probability

equals to 0.9, the best response time is given by forget factor 0.1.
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Figure 53: Data collector performance: (a) Average response time; (b) average number of
remote server contacted.

For delay probability (dp) equals to 0.1, forget factor f = 1 gives the best response
time. However, it is interesting to observe that the smallest response time for f = 1 occurs
when dp = 0.2. The reason for that is because for runtime environment with good stability
(i.e., very few changes), a more tight (fine grained) monitoring may be necessary. Clearly,
as currently implemented, the proposed approach for firing the adaptation process does
not work satisfactorily for close-to-stable runtime environment. To address this problem,

Ginga needs to reduce the timeout value used by the data collector. With a timeout smaller

For all the experiments reported in this chapter, the average response time is calculated as the average
response time of five runs of a query for each point in the x-axis of the graph.
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than what Ginga currently uses, MTBT is updated more frequently, and consequently the
adaptation process is fired sooner, providing better response time when dp = 0.1 and f = 1.

The graph in Figure 53(b) shows the average number of servers contacted by the data
collector operator as a function of the delay probability when DC uses different forget
factors. Given the workload used for the experiments reported in this section, it is expected
that at least 4 servers should be contacted to fully collect relation A (each server crashes
after delivering 25% of A). It is interesting to observe that for each forget factor line, before
the data collector DC reaches its best response time shown in Figure 53(a), DC will contact
on average five servers. Once the best response time is reached, then the number of servers
contacted increases as the delay probability increases. The reason for that is because, before
reaching its best performance, the data collector using a forget factor f is not able to react
fast enough and contact alternative servers that could deliver the data faster. However,
as delay probability increases and f becomes best suited for determining when to adapt,
data collector is able to contact more servers, thus achieving better response time. By
continuing to increase the delay probability, data collector using forget factor f will provide
better response time than DC’s response time using forget factors that are smaller than f.
Now, the reason for that is because with forget factor smaller than f, DC is more aggressive
(i.e., adapts more frequently) than it is with f. Consequently, the response time becomes
worse.

In summary, I conclude that the proposed approach for adapting the download process
of data from remote data servers was proved to be beneficial when the appropriate forget
factor is chosen. However, the challenge yet to be addressed is how to determine which forget
factor to use for a runtime environment with unpredictable changes, where in some moments
it is close-to-stable and in other moments it is extremely unstable. One possible solution
to address this problem is, for example, to have a counter in the refreshMTBT method
(Figure 41) for the number of consecutive timeouts observed so far. If the counter becomes
larger than a given threshold, this means that too many timeouts have occurred and Ginga
should decrease the forget factor so that less adaptation would be fired. Conversely, if the

interval between the occurrence of consecutive timeouts increases above certain threshold,
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then Ginga should increase the forget factor. In this case, I have a situation where the
runtime system was quite unstable and now it has achieved certain stability. Incorporating

this solution into Ginga approach is part of my future research work.
6.3.3 Combination of Adaptation Actions

Finally, in this section I analyze the performance characteristics of Ginga when combining
both concurrent caching and keeping download alive adaptation actions. The experimental
results described next are grouped into three subsections. Subsection 6.3.3.1 analyzes the
scenario of single join queries. Then, Subsection 6.3.3.2 considers the case when the query
plan generated is a left-deep tree. Finally, Subsection 6.3.3.3 investigates the case for right-

deep trees.
6.3.3.1 Single Join

For the experimental results reported in this section, I used the workload depicted in Fig-
ure 54: a join between remote relations A and B. The size of both relations is 50M Bytes
and the expected data transfer rate is 5Mbps. The join is hash-based and it is executed
without incurring I/O cost (i.e., the hash table for A, the build relation, can fit entirely in
main memory). Only the servers providing relation A are considered to crash after down-
loading 25% of A. Servers for relation B are only delayed. When concurrent caching is
executed, B, the probe relation, is cached. I executed a number of experiments using differ-
ent workload configuration for the join considered in this section, and similar results were
observed.

The graph in Figure 55(a) shows the average response time for executing the single join
using only KDA adaptation action as a function of delay probability observed for all remote
servers. The following six different forget factors for each DC involved in the join were
considered: 1, 0.9, 0.75, 0.5, 0.25, and 0.1. For this scenario, I get similar results to those
reported in Section 6.3.2. That is because the data collector of each base relation behaves
similarly to the data collector shown in Figure 52 where no concurrent caching is being
executed. Consequently, the final cost of the hash join in Figure 54 is the sum of each data

collector cost plus the cost of executing the join itself.
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Figure 54: Single-join workload for experiments combining adaptation actions for coping
with end-to-end delays.
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Figure 55: Single join: Average response time (a) without concurrent caching; and (b) with
concurrent caching.

The graph in Figure 55(b) shows the average response time for executing the same join

as function of the delay probability observed for all remote servers, but this time using both

adaptation actions. When compared to the case using only KDA adaptation action, the

response time with concurrent caching is worse for small delay probability. That is because

hash join tolerates few timeouts and concurrent caching adaptation action ends up always

been executed (see Section 6.2.2). For small delay probabilities, the extra I/O cost incurred

for caching relation B is not masked by the delays and crashes incurred while downloading

relation A.
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Figure 56: Single join: comparing the average response time of running with and without
caching when the forget factor is equal to (a) 1, and (b) 0.5.
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Figure 57: Single join: caching versus no caching when forget factor is equal to (a) 0.25,
and (b) 0.1.

As the delay probability increases, using concurrent caching provides better response
time than without using concurrent caching. This situation can be clearly observed in the
graphs of Figure 56 and Figure 57. These graphs only provide a better comparison for each
pair of forget factor lines shown in Figure 55(a) and Figure 55(b). The challenge here is
how to determine when concurrent caching should be used. The main complication is that
not only Ginga cannot accurately predict the cost of downloading relation A, but also it is
not possible to know exactly the cost of downloading B given that DC(B) also experiences
delay in receiving B data. Consequently it becomes very difficult to decide whether or not
to use concurrent caching. For the particular case described in this section, I argue that

Ginga can always use concurrent caching because the response time for both cases are in
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general close to each other.
In summary, I conclude that by combining both concurrent caching and KDA adaptation

actions, Ginga can further improve (or maintain) the query execution performance.
6.3.3.2 Left-Deep Trees

For the experimental results reported in this section, I used the workload depicted in Fig-
ure 58(a): a two-way join left-deep query tree. The size of each relation is 50M Bytes and
the expected data transfer rate is 1M bps. The result size of join J; is 50M Bytes. The joins
are hash-based and they are executed without incurring I/O cost (i.e., the hash table for
A, the build relation, can fit entirely in main memory). Only the servers providing relation
A are considered to crashed after downloading 10% of A. Servers for relations B and C
are delayed by half of the delay probability applied to servers delivering relation A. For
example, if servers for relation A deliver data with delay probability of 0.5, the servers for
the other two relations will experience delay probability of 0.25. I executed a number of
experiments using different workload configuration for the left-deep query tree considered
in this section, and similar results were observed.

When concurrent caching is executed, first Ginga caches relation B. Then, relation C
is cached, and finally the result of the join between B and C' (both available at the local
disk) is cached. However, these caching operations will be executed only when needed (see

Section 6.2.1.1).
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Figure 58: (a) Left-deep tree workload for experiments combining adaptation actions; (b)
Left-deep tree decomposed in segments.
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The graph in Figure 59(a) shows the average response time for executing the left-deep
join using only KDA adaptation action as a function of the delay probability observed in
each server delivering relation A. The following six different forget factors for each DC are
considered: 1, 0.9, 0.75, 0.5, 0.25, and 0.1. For this scenario, I get similar results to those
reported in Section 6.3.2. That is because the data collector of each base relation behaves
similarly to the data collector shown in Figure 52 (see discussion in Section 6.3.3.1) where

no concurrent caching is being executed.
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Figure 59: Left-deep tree: Average response time (a) without concurrent caching; and (b)
with concurrent caching.

The graph in Figure 59(b) shows the average response time for executing the same left-
deep query tree as a function of the delay probability observed in each server delivering
relation A but this time using both adaptation actions. When compared to the case using
only KDA adaptation action, the response time with concurrent caching is always better.
The reason for that is because according to Segmented Execution Model (see Section 4.3.2),
the left-deep tree workload used in my experiment will be divided into two segments as
depicted in Figure 58(b). For small delay probabilities, it is likely that only relation B is
cached. As discussed in Section 6.3.3.1, caching relation B when executing Segment 1 may
not always be beneficial. However, this caching pays off when Ginga proceeds with the
execution of Segment 2.

As the delay probability increases, the benefits of using concurrent caching versus not

using it increases as the delay probability increases. This situation can be clearly observed
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Figure 60: Left-deep query tree: comparing the average response time of running with and
without concurrent caching when the forget factor is equal to (a) 1 and (b) 0.5.
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Figure 61: Left-deep query tree:

forget factor is equal to (a) 0.25, and (b) 0.1.

(b)

concurrent caching versus no concurrent caching when

in the graphs of Figure 60 and Figure 61. These graphs only provide a better comparison

for each pair of forget factor lines shown in Figure 59(a) and Figure 59(b).

6.3.3.3 Right-Deep Trees

I conclude the experimental results on combining concurrent caching and KDA adaptation

actions by analyzing Ginga’s performance when the optimized generated plan is a right-deep

query tree. The workload use for this final set of experiments is depicted in Figure 62(a): a

two-way join right-deep query tree. The size of each relation is 50M Bytes and the expected

data transfer rate is 1Mbps. The result size of join J; is 50M Bytes. The joins are hash-

based and they are executed without incurring I/O cost (i.e., the hash table for A, the




build relation, can fit entirely in main memory). Only the servers providing relation A
are considered to crashed after downloading 10% of A. Servers for relations B and C' are
delayed by half of the delay probability applied to servers delivering relation A. I executed
a number of experiments using different workload configuration for the right-deep query
tree considered in this section, and similar results were observed.

When concurrent caching is executed, first Ginga caches relation B. Then, relation C
is cached, and finally the result of the join between C' and B (both available at the local

disk) is cached.
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Figure 62: (a) Right-deep tree workload for experiments combining adaptation actions; (b)
Segment decomposition for the right-deep tree.

The graphs in Figure 63(a) and Figure 63(b) show the average response time for exe-
cuting the right-deep query plan when using only KDA adaptation action and when using
both adaptation actions, respectively. The x-axis of these graphs represents the delay prob-
ability observed for the servers of relation A. The following six different forget factors were
considered for each DC: 1, 0.9, 0.75, 0.5, 0.25, and 0.1. I observe that the experimental
results reported in these graphs are similar to those presented in Section 6.3.3.1. By taking
a close look at the single join scenario from Section 6.3.3.1 and the scenario considered
in this section, it can be observed that both scenarios represent the same situation: the
execution of a single segment. Therefore, similar results are obtained.

The key reason to decompose the query plan into right-deep segments is because right-

deep trees allow Ginga to pipeline the execution of hash joins and achieve inter-operator
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Figure 63: Right-deep query tree: Average response time (a) without concurrent caching;
and (b) with concurrent caching.

parallelism. However, if the initial probe relation in this segment has to be first cached into
disk and then read back again, the benefits of the SEM is reduced. This situation can be
observed in the graphs of Figure 64. These graphs only provide a better comparison for
each pair of forget factor lines shown in Figure 63(a) and Figure 63(b). For small delay

probability, without using concurrent caching Ginga can provide better response time than

if it uses concurrent caching. This situation is changed as the delay probability increases.
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Figure 64: Right-deep query tree: comparing the average response time of running with
and without concurrent caching when the forget factor is equal to (a) 1, and (b) 0.5.

In Section 6.3.3.2, T observed that for left-deep trees, using concurrent caching in con-
junction with KDA adaptation action was always better than using only KDA. Based on this
observation and the discussion presented in the previous paragraph, one could intuitively

conclude that having left-deep trees would be a better query tree shape than right-deep tree
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to use for running distributed queries. However, this is not the case as I demonstrate in the

graphs of Figure 65. Therefore using right deep trees is the best alternative.
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Figure 65: Comparing average response time for left-deep and right-deep query trees when
executed (a) without using concurrent caching, and (b) with concurrent caching.

6.4 Summary of Adaptation to End-to-End Delays

In this chapter, I used Ginga to study the benefits and trade-offs of different adapta-
tion strategies when query execution becomes suboptimal due to end-to-end delays (Sec-
tion 6.2.1). While a number of unrelated adaptation techniques have been known to be
effective in isolation, Ginga uses the concept of adaptation space to organize and combine
them. In the case of end-to-end delays, I apply and combine two dynamic adaptation meth-
ods: concurrent caching and keeping download alive. Concurrent caching suggests that
Ginga executes other parts of the query while waiting for the slow data to be delivered.
With keeping download alive, for the sources known to be problematic with respect to the
download process, Ginga contacts their mirror sites in parallel.

I used Ginga’s query processing simulation system to evaluate the effectiveness of these
two adaptation methods in isolation and in combination (Section 6.3). My experimental
results confirm that each method improves query response time by efficiently masking un-
expected end-to-end delays. More significantly, combined query adaptation can achieve
significant performance improvements (up to 30% of response time gain for representative

system and workload configurations) when compared to individual solutions. These results
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show that it is a good idea to combine adaptive methods to address end-to-end delays at
runtime, and Ginga offers a systematic approach to organize and combine these methods
in an effective way. The Ginga approach also offers promise for the incorporation of other

dynamic adaptation methods to handle runtime changes in end-to-end delays.

122



CHAPTER VII

ADAPTATION TO COMBINED FAILURE TYPES

7.1 Coping with Multiple Failures

In the last two chapters, I studied how Ginga adapts the execution of a query to each failure
type (memory constraints and end-to-end delays) individually. As I demonstrated, for each
failure type, having a single adaptation action is not appropriate, as the failure type can
have a number of “side effects” in the query execution. I investigated how to combine the
alternative adaptation actions associated with each failure type, and promising results were
reported.

In this chapter, I study how to combine the adaptation actions to adapt the query
execution to combinations of failure types [44]. One of the goals of this chapter is to

investigate how the different adaptation actions are related to each other.

7.2 Adaptation Space Generation and Ezxploration: Mem-
ory Constraints and End-to-End Delays

In this section, I first discuss how to generate the adaptation cases for an adaptation space
that supports query adaptation to both memory constraints and end-to-end delays. Then,

I describe how this adaptation space is navigated at runtime.
7.2.1 Adaptation Cases

Adaptation cases are generated using the adaptation actions described in Chapter 5 and
Chapter 6.

The decisions involved in creating the adaptation cases for memory constraints do not
affect the decisions made in generating the cases for end-to-end delays. However, there
is one situation where the decision made by adaptation actions for coping with end-to-
end delays may cause changes in memory constraints. This situation occurs when new

joins are created by the concurrent caching adaptation action. Memory blocks allocated
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to the query plan are entirely devoted to the segment that is currently being executed.
If a concurrent join needs to be executed, then extra memory will be required. If extra
memory blocks are available in the system, Ginga can request these blocks to allocate to
the concurrent join. However, if no spare memory blocks are available, there are at least
two alternative approaches to handle the situation. The first approach is a simple one: do
not execute the concurrent join. This approach may not be the best one because Ginga will
be losing adaptation opportunities. The second approach is to pre-empt memory blocks
from the operators in the current segment to allocate to the concurrent join. With this
approach, Ginga can take advantage of the adaptation opportunity at the risk of degrading
performance of the current segment execution.

In this dissertation, when the situation described in the previous paragraph is detected,
I assume that there will be available in the system the minimum memory required for
executing the concurrent join without having to pre-empt memory blocks from the operators
in the current segment. Incorporating existing approaches into Ginga to handle the situation

where memory blocks need to be pre-empted (e.g., [62]) is part of my future research work.
7.2.2 Adaptation Space

When constructing an adaptation space for combined runtime failures, the first step is to
determine the order (total or partial) in which the adaptation cases for each failure type
should be considered during the query execution. The next step is to use this order to
organize the cases into the adaptation space.

For memory constraints and end-to-end delays, the order in which Ginga considers the
associated adaptation cases is clear. Adaptation cases for memory constraints adapt the
query plan before the execution of each segment, whereas cases for end-to-end delays are
focused on adapting the plan during segment execution. Therefore, when constructing the
adaptation space for the combination of these two failure types, Ginga first creates the cases
for memory constraints followed by the creation of cases for end-to-end delays. Figure 66
depicts this adaptation space, and Figure 67 shows the respective navigation algorithm.

The navigation of the adaptation space is straightforward. Depending on the adaptation
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Figure 66: Adaptation Space for the combination of two failure types: memory constraints
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ADAPTATION SPACE MNgtCombinedFailureTypes

Input: combined_adapt_space(P;): adaptation space for P;.

Output: P;: plan P; adapted.

Require: at least one of memory constraint or end-to-end predicates in adaptation_condition(P;) is invalidate.

1:
// Adaptation event: memory constraints

2: if (adaptation_event == sorted_operands or adaptation_event == large_operands or adaptation_event ==
small_memory) then

3: P; = MgtMemoryConstraints(combined_adapt_space(F;));

4:

// Adaptation event: end-to-end delays

5: if (adaptation_event == JOIN_frequent_timeout or adaptation_event == DC_frequent_timeout) then
6: P; = MgtEndToEndDelay (combined_adapt_space(F;));

T

8: return Pj;

Figure 67: Adaptation Space for Managing the combination of memory constraints and
end-to-end delays.

event generated, the respective navigation algorithm is invoked. Note that more than one
adaptation event can be generated at the same time. The order in which simultaneous

events should be handled is managed by the respective navigation algorithm.

7.3 Performance Analysis

For all of the experiments reported in this chapter, I use a simulator (based on the CSIM
toolkit) that models a client-server system with one client running Ginga and n remote
data servers. All base relations involved in the queries submitted to Ginga are assumed to
be available at the remote servers. The size of the relations reflect the size of the answers

provided by web services such as NCBI-Entrez discussed in Section 1.2.

Table 12: Simulation Parameters

| Parameter |  Value | Description |
Speed 100 | CPU speed (MIPS)
AvgSeekTime 8.9 | average disk seek time (msecs)
AvgRotLatency 5.5 | average disk rotational latency (msecs)
Tranfer Rate 100 | disk transfer rate (MBytes/sec)
DskPageSize 8192 | disk page size (bytes)
MemorySize 10---100 | memory size (MBytes)
DiskIO 5000 | instructions to start a disk I/O
Move 2 | instructions to move 4 bytes
Comp 4 | instructions to compare keys
Hash 25 | instructions to hash a key
Swap 100 | instructions to swap two tuples
F 1.2 | incremental factor for hash join
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Table 12 lists the classical parameters [10, 52, 61, 4] used in configuring the simula-
tor. Client and server machines have the same hardware configuration. Disks are modeled
as FIFO queues. I model end-to-end delays in terms of degradations to network band-
width. Network connections are independent of each other, in the sense that the failure
of a connection does not affect the others. The network transfer rates and their respec-
tive degradations considered in my experiments represent those typically observed in the
Internet environment.

The experiments are divided into three groups: The first group (Section 7.3.1) analyzes
Ginga’s performance when executing alternative join algorithms in the presence of end-to-
end delays. The second group (Section 7.3.2) investigates how end-to-end delays can affect
Ginga’s decision when selecting the appropriate memory allocation strategy. The third

group (Section 7.3.3) combines all of the adaptation actions discussed in this dissertation.
7.3.1 Join Algorithms with End-to-End Delays

In this section, I analyze how end-to-end delays affect the performance of the join algorithms
(hash join and sort-merge join) used by adaptation action “changing join algorithm” (see
Section 5.3.1.1) for coping with memory constraints. In the experiments, I used the workload
depicted in Figure 68: a join between remote relations A and B. The size of both relations
is 50M Bytes, and the expected data transfer rate is 5bMbps. In addition, both relations
are assumed to be sorted, and 25 M Bytes of memory are allocated for the execution of this
join. Only the servers providing relation A are considered to crash after downloading 25%
of A. Servers for relation B are only delayed. When concurrent caching is executed, B is
cached. I executed a number of experiments using different workload configurations for the
join considered in this section, and similar results were observed.

L of executing hash join and

The graphs in Figure 55 show the average response time
sort-merge join as a function of the delay probability that each server experiences when
delivering the requested data. In the graph of Figure 55(a), when no concurrent caching

is used, sort-merge join performs better than hash join. However, as the delay probability

!For all of the experiments reported in this chapter, the average response time is calculated as the average
response time of five runs of a query for each point in the x-axis of graph.
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Figure 68: Single-join workload for experiments on alternative join algorithms.

increases, both join algorithms have similar performance. In fact, for delay probability equal

to 0.9, hash join outperforms sort-merge join by 36 seconds. Similar analysis applies to the

graph in Figure 55(b), where concurrent caching is also used for adapting the execution of

the two join algorithms. However, in this case, for delay probability equal to 0.9, hash join

does not outperform sort-merge join.
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Figure 69: Single join: Average response time (a) without concurrent caching; and (b) with
concurrent caching.

The graphs in Figure 70 compare the performance of each join algorithm when executed

with and without concurrent caching. As discussed in Section 6.3.3.3, using concurrent

caching is not advantageous when the query plan is decomposed into a single segment.

The reason is that the extra I/O cost degrades the pipeline execution of the segment. The
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Figure 70: Single join: comparing the average response time of running with and without
caching when the forget factor is equal to (a) 1, and (b) 0.5.

experimental results reported in Figure 70 confirm this observation.?
7.3.2 Memory Allocation Strategies with End-to-End Delays

I now turn my attention to experiments where I investigate how end-to-end delays can affect
Ginga’s decision on which memory allocation to use when coping with memory constraints
(adaptation action “choosing memory allocation strategy,” Section 5.3.1.3). The workload
that I used for the experimental results reported in this section is depicted in Figure 71: a
two-way join right-deep query tree, where |A| = 50Mbytes, |B| = 100Mbytes, and |C| =
25Mbytes. The expected data transfer rate is 1Mbps. The resulting size of join J; is
50M Bytes. The joins are hash-based. Only the servers providing relation A are considered
to crash after downloading 10% of A. Servers for relations B and C are delayed by half
of the delay probability applied to servers delivering relation A. In particular, I fixed the
delay probability at 0.9 for relation A servers and the forget factor at 0.25 for all the data
collectors. I executed a number of experiments using different workload configurations for
the right-deep query tree considered in this section, and similar results were observed.
When concurrent caching is executed, first Ginga caches relation B. Then, relation C
is cached, and finally the result of the join between C' and B (both available at the local

disk) is cached.

2A query with a single join has only one segment.
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Figure 72: Right-deep tree: Average response time (a) without concurrent caching; and
(b) with concurrent caching.

The graphs in Figure 72 show the average response time for executing the right-deep
query plan P (Figure 71) when using three alternative memory allocation strategies (Max2Min,
AlwaysMax, and Ginga memory allocation) as a function of the memory allocated for ex-
ecuting P. As described in Section 5.3.1.3, before executing each segment s of a query
plan, Ginga memory allocation strategy chooses the allocation strategy that yields the best
estimated response time for executing s. However, in the graph in Figure 72(a), where no
concurrent caching is used, it is interesting to observe how the unpredictable end-to-end
delays can affect Ginga’s decision on the appropriate memory allocation strategy. For ex-

ample, when memory allocated for executing P is equal to 15MBytes, instead of selecting
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Max2Min as the appropriate allocation strategy, Ginga selects AlwaysMax. The reason for
that is because when deciding which allocation strategy to use, the cost of reading the data
from the operands of each operator in the segment is not taken into account. In this case, if
no problem occurs while downloading the remote operands (i.e., no unpredictable delays or
server crashes), Ginga is able to make the right decision about which memory allocation to
use. Otherwise, there is the situation reported in the graph in Figure 72(a), where wrong
decisions are made.

When concurrent caching is used for executing query plan P of Figure 71, Ginga is
able to make the correct decision on which memory allocation to use. Figure 72(b) shows
this situation. The reason for this is that with concurrent caching it is likely that by the
time Ginga has finished collecting the slow delivered data for relation A, both relation B
and relation C' have already been cached. The unpredictable cost of downloading the data
for these relations is then masked by the delays caused by the servers delivering relation
A. Therefore, when Ginga finishes downloading A, relations B an C are already available

locally, and no further unpredictable reading cost of these two relations is likely to occur.
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Figure 73: Comparing Ginga decision’s effect with and without caching.

Finally, the graph in Figure 73 contrasts the response time of Ginga using concurrent
caching and without concurrent caching. I observe that using concurrent caching is benefi-
cial in the sense that it helps Ginga in guaranteeing that the correct decision is made with
respect to which memory allocation strategy to use. However, it is important to note that
this observation applies to the case where the maximum required memory for join operators

in the segment is not provided. When operators are executed at their optimal performance
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(see Section 5.2.1), using concurrent caching is not always a good solution for adaptation

(see Section 6.3.3.3) when executing right-deep trees.?

7.3.3 Combining All Adaptation Actions

I conclude my experimental results on coping with the combination of memory constraints
and end-to-end delays by analyzing Ginga’s performance when all the adaptation actions
discussed in this dissertation are combined. In particular, I revisit the experiments on
memory constraints reported in Section 5.4.3, where all adaptation actions for memory
constraints are combined, and combine these actions with the adaptation actions for end-
to-end delays. This way, I have a scenario in which it is possible to analyze the benefits
and trade-offs of adapting a query execution using the Ginga approach for coping with
simultaneous multiple failure types.

In Section 5.4.3, I analyzed Ginga’s performance when different adaptation paths are
navigated within the adaptation space for memory constraints. More specifically, I consid-
ered the adaptation paths listed in Table 13. In the experiments reported next, I augment
these paths with the adaptation events for end-to-end delays. Observe that by doing so, I am

covering most of the adaptation paths within that adaptation space depicted in Figure 66.

Table 13: Adaptation Paths for coping with memory constraints.

| Adapt. Path | Events | Sequence of actions |
1 (sorted_operands, memory_size) | Changing Join Algorithm —
Choosing Memory Allocation Strategies
2 (large_operands, memory_size) Switching Hash Join Operands —
Choosing Memory Allocation Strategies

For this final set of experiments, I used a workload similar to the one used for the
experiments described in Section 7.3.2. The only difference is with respect to the fixed
delay probability and forget factor. For the experiments reported in this section, I fixed
delay probability at 0.5 for relation A servers and forget factor at 0.25 for all of the data

collectors. I executed a number of experiments using different workload configurations for

3When Ginga allocates the maximum required memory for each join operator, it does not matter which
memory allocation strategy it uses. All operators will receive all of the memory they need to perform at
their optimal performance.

132



the right-deep query tree considered in this section, and similar results were observed.
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Figure 74: None Sorted: (a) WITHOUT concurrent caching; (b) WITH concurrent caching.
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Figure 75: Only R2 Sorted: (a) WITHOUT concurrent caching; (b) WITH concurrent

caching.

All of the graphs presented in this section show the average response time of executing

the right-deep query plan tree depicted in Figure 71 as a function of the size of the memory

allocated to it when Ginga navigates the adaptation paths listed in Table 13, augmented

by the adaptation events generated due to end-to-end delays.

The graphs in Figure 74 contrast the response time of Ginga using concurrent caching

and without concurrent caching when all input relations are not sorted. In accordance with

what I discussed in the previous section, when no concurrent caching is used, Ginga still

makes wrong decisions about the adaptation process. For example, in Figure 74(a), when

90MBytes are allocated to the query, Ginga should follow the adaptation path (sorted_operands,
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Figure 76: Only R3 Sorted: (a) WITHOUT concurrent caching; (b) WITH concurrent
caching.
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Figure 77: ALL Sorted: (a) WITHOUT concurrent caching; (b) WITH concurrent caching.

memory_size) instead of (large_operands, memory_size) (see Table 13). However, when con-
current caching is used, Ginga is able to cope correctly with the runtime variations. Similar
analysis applies to the pair of graphs in Figure 75, Figure 76, and Figure 77. In each of
these figures, the graph on the left side reports the average response time when the query
is executed without concurrent caching, and the graph on the right side considers the query
execution with concurrent caching.

I presented in Section 5.4.3 a detailed discussion on the curves for the different adapta-
tion paths for memory constraints considered in the experiments reported in this section.
Therefore, I omit the discussion on these curves here and refer the reader to Section 5.4.3.

The point that T want to make with the experimental results of this section is that when I
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use adaptation actions for memory constraints combined with adaptation actions for end-
to-end delays, I get results similar to those presented in Section 5.4.3. This can be clearly
observed when I compare the graphs on the right side of Figure 75, Figure 76, and Figure 77
with the graphs shown in Figure 31 and Figure 32 of Chapter 5. This means that for the
runtime change scenarios considered in this dissertation, Ginga is able to successfully adapt

the query execution plan to cope with these changes.

7.4 Summary of Adaptation to Combined Failure Types

In this chapter, I demonstrated how to combine the adaptation spaces for memory con-
straints and end-to-end delays, and how Ginga navigates the combined adaptation space
at runtime for coping with the combination these two failure types. To evaluate Ginga’s
performance, I used workloads similar to those used in Chapter 5 (Adaptation to Memory
Constraints) and Chapter 6 (Adaptation to End-to-End Delays) so that I could determine
whether Ginga would, in fact, be effective. From the experimental results, I conclude that
when Ginga combines all adaptation actions, improved performance can be achieved when

coping with the failure types addressed in this dissertation.

135



CHAPTER VIII

CONCLUSION

8.1 D:issertation Summary

Processing and optimizing ad-hoc and continual queries in an open environment with dis-
tributed, autonomous, and heterogeneous data servers (e.g., the Internet) pose several tech-
nical challenges. First, it is well known that optimized query execution plans constructed
at compile time make some assumptions about the environment (e.g., network speed, data
sources’ availability). When such assumptions no longer hold at runtime, how can I guar-
antee the optimized execution of the query? Second, it is widely recognized that runtime
adaptation is a complex and difficult task in terms of cost and benefit. How to develop an
adaptation methodology that makes the runtime adaptation beneficial at an affordable cost?
Last, but not the least, are there any viable performance metrics and performance evalu-
ation techniques for measuring the cost and validating the benefits of runtime adaptation
methods?

To address the new challenges posed by Internet query and search systems, several
areas of computer science (e.g., database and operating systems) are exploring the design
of systems that are adaptive to their environment. However, despite the large number of
adaptive systems proposed in the literature until now, most of them present a solution
for adapting the system to a specific change in the runtime environment. Typically, these
solutions are not easily “extendable” to allow the system to adapt to other runtime changes
not predicted in their approach.

In this dissertation, I study the problem of how to construct a framework where the
known solutions to query processing adaptation can be cataloged and how to develop an
application that makes use of this framework. I call the solution to these two problems the
Ginga approach.

I provide in this dissertation three main contributions:
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First Contribution: The adoption of the Adaptation Space concept (Chapter 3) com-
bined with feedback-based control mechanisms for coordinating and integrating different
kinds of query adaptations to different runtime failure types, such as memory constraints
and end-to-end delays.

An adaptation space is a powerful abstraction and framework that describes a collection
of possible adaptations of a software component or system and provides a uniform way of
viewing a group of alternative software adaptation processes. Adaptation spaces provide
application designers with a framework in which to reason about various adaptation meth-
ods. By using such a framework, designers can enhance their confidence that all adaptation
methods have been considered, and they can have a better understanding of what will

happen to the system in each case.

Second Contribution: The Ginga approach (Chapter 4) to adaptive query processing.
This approach has three interesting features: First, it utilizes the Adaptation Space concept
to manage the predefined generation of query plans. These parameterized plans will serve
as alternatives to react to unexpected shortages of runtime resources. Second, it provides
a feedback-based control mechanism that allows the query engine to switch to alternative
plans upon detecting runtime environment variations. Third, it describes a systematic ap-
proach to integrate the adaptation space with feedback control that allows the combination
of predefined and reactive adaptive query processing, including policies and mechanisms for

determining when to adapt, what to adapt, and how to adapt.

Third Contribution: A detailed performance study, using Ginga, of how adapt to
two failure types, and their combination, encountered during the execution of distributed
queries: memory constraints and end-to-end delays. The results reported in Chapter 6,
Chapter 5, and Chapter 7 show that Ginga holds promise both as an approach and as a
system for adaptive query processing. Ginga is a good approach since Adaptation Space
supports a variety of adaptation actions through a uniform framework. Ginga is a good
system due to the effectiveness of its adaptation policies and mechanisms, as demonstrated

by my experimental evaluation.
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8.2 D:iscussion of Open Issues

I conclude with a discussion of interesting open issues that are not addressed in this disser-

tation but that are relevant to the context of the Ginga approach.

Adaptation Space

e Develop an algorithm for automatically generating adaptation spaces. In this dis-
sertation, I focused on adaptation spaces for the execution of distributed queries. It
would be interesting to develop an algorithm that is generic enough so that it could
be specialized to different types of “application domain” (e.g., query processing do-
main, real-time application domain, resource allocation domain). Ultimately, it would
be interesting to study how to combine these different specialized (domain-specific)
adaptation spaces so that a system that is intelligent enough to survive almost any
runtime change could be developed. Runtime change does not only refer to failure
types like those that I have studied in my dissertation work. One can think of runtime
changes due to system upgrades, which require application re-configurations to adapt

to the new environment.

e Investigate how Volcano Dynamic Plans (VDP) [23, 12] and Parametric Query Op-
timization (PQO) [27] could be extended to generate the adaptation space. There
are two main limitations with these two approaches that would need to be addressed:
First, they were designed to address the changes of one specific resource parameter.
VDP is targeted to the case where selectivities are unknown, and PQO is restricted
to memory constraints. Scaling their plan generation algorithm to any number of
resource parameters is not a trivial task. The second limitation is that neither VDP
nor PQO considers changes to the runtime environment during query execution. They
provide only a one-time adaptation (at start-up time) for a query execution. They do

not address the issue of changing from one plan to another.

e Develop an algorithm for checking when adaptation cases are equivalent. By using this

algorithm as a primitive, an algorithm for determining when two adaptation spaces are
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comparable could be developed. Being able to determine when two adaptation spaces
are similar can help when determining which adaptation spaces should be stored in

the Ginga Adaptation Space repository.

Ginga Approach

e Develop a domain specific language (DSL) for query adaptation using the Ginga ap-
proach.” In this dissertation, the definition of a number of adaptation actions for
coping with memory constraints and end-to-end delays is presented. The manner
in which these actions have been described is generic enough to be applied to any
input query (provided that queries are executed according to the segmented execu-
tion model). With a language in which the primitives are these adaptation actions,
the system administrator could program Ginga to adapt to specific runtime changes,
as needed. In addition, as new adaptation action primitives become available, the

administrator could re-program Ginga to use these new adaptation processes.

e Extend the Ginga approach to accept query inputs expressed in query languages
other than SQL. One immediate query language that would be interesting to consider
is XQuery. However, this would probably result in having to develop new adaptation

actions for adapting the execution of XML queries.

e Develop a query optimizer for creating the initial query plan Py that Ginga uses for
generating the adaptation space. One possible, and immediate, approach is to ex-
tend the Distributed Query Scheduler (DQS) [32] prototype to generate Py. DQS was
developed as an extension to the traditional cost-based query optimizer for process-
ing distributed queries. An alternative approach to generate Py would be the Least
Ezpected Cost query optimization (LEC) [11], which assumes that there is a probabil-
ity distribution of the possible runtime parameter values. When using LEC, optimal
query plans are chosen based on their expected cost instead of their cost at a specific

parameter setting. This approach is motivated by the following two observations:

1T would call this language “Balance” because it would allow the system to maintain its “balance” as the
runtime changes unpredictably.
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First, if the goal is to minimize the expected running time of the plan, then choosing
a specific value is not necessarily the right thing to do. In general, the expected best
plan is not the plan that is best under the assumption that the parameter takes on its
expected value. Second, if the performance of the plan chosen can vary significantly,
depending on the parameter value, then the plan chosen by the optimizer might be

far from optimal.

Construct a query optimizer for incrementally generating the alternative query plans
associated with each adaptation case. This optimizer should generate alternative plans
in a way that yields “smooth” transition from one plan to another at runtime, in case
adaptation is deemed necessary. The goal is to minimize, as much as possible, the
need for transferring state from one plan to another. Otherwise, the cost of executing
the adaptation could be considerably high. This incremental query optimizer should

be based on adaptation actions, such as those described in this dissertation.

Investigate when would be the best moment to construct the adaptation space for
an input query. Analogous to the division of adaptation space (AdaptS) generation
phase before query execution and AdaptS exploration phase during query execution,
the alternative query plans P; can be generated statically, before the query execu-
tion starts, or dynamically, during the query execution. Static generation offers fast
adaptation by simple selection at runtime, but it takes more time and space at the
beginning (usually an offline process). In contrast, dynamic generation saves time and

space at the beginning, but it may slow down the adaptation process at runtime.

Investigate when to adapt. Determining exactly when to adapt is one of the most
difficult challenges of my work. In the Ginga approach, I address this problem as fol-
lows: Each adaptation trigger has a wait_time component (see Section 4.3.1), which
indicates the length of time the trigger condition must hold before the adaptation
action occurs. This wait_time is used to prevent oscillations in feedback-based adap-
tation, when, e.g., temporary network latency and bandwidth fluctuations (detected

as end-to-end delay) cause repeated transitions back and forth between two query
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plans. As in all feedback-based adaptation, a short wait_time results in fast adap-
tation soon after the onset of end-to-end delay. A long wait_time slows down the
adaptation process, but it decreases the probability of an oscillation. A precise setup
for wait_time is a difficult problem yet to be solved as it implies being able to predict

the future state of a runtime environment.

e Study query adaptation to other failure types. In this dissertation, I study two classical
failure types in the execution of distributed queries, namely, end-to-end delays and
memory constraints. Another possible failure type would be disk contention, when
there are a large number of queries trying to access data from the same local disk.
The side effect on the query processing side would be similar to end-to-end delays.
However, how one could detect this situation? In addition, caching other parts of the
query for coping with this failure type may not be the best solution. This is because
the same failure type may re-occur later when the query engine reads the cached result

from the disk.

Adaptation to End-to-End Delays

e Integrate Ginga approach with existing monitoring tools for end-to-end delays. One
of the possible causes of end-to-end delay is the delay of the network connection due
to, e.g., unexpected latency fluctuation. Detecting this type of failure is possible if we
use some of the network monitoring tools currently being developed under projects

like Web100,2 Net100,> and NetLogger.*

e Extend the data collector (DC) operator (see Section 6.2.1.2) to consider the situation
where multiple data streams are arriving. In this dissertation, I assume that DC had
only two streams of data arriving at any given moment. However, if more data streams
are used, the time to download the requested data from a given remote server with a

large number of mirror sites can be improved. The major challenge is how to identify

*http://www.web100.org/
*nttp://www.net100.org/
*http://www-didc.1bl.gov/NetLogger/
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and discard duplicated data efficiently.

Adaptation to Memory Constraints

e Construct adaptation actions for adapting a segment to changes in memory constraints
during its execution. In this dissertation, I adapt a segment only before its execution,
by choosing sort-merge join when operands are sorted, switching the operands for hash
joins when the left operand is found to be larger, and selecting memory allocation
strategies, e.g., between Max2Min and AlwaysMax as appropriate. However, if I have
a segment with at least two join operators and the size of intermediate results within
the segment are detected to be larger than expected, then adaptation may be required.
One possible approach to address this problem is to re-allocate the memory blocks
among the operators in the segment to minimize the amount of extra paging due to the
oversized intermediate result. However, implementing this approach is not a trivial
task because it requires preempting memory blocks from one operator to allocate to
another operator. The work described in [62] proposes a possible solution to this
approach. It would be interesting to investigate how to incorporate this solution into
the Ginga approach so that segments can be adapted not only before, but also during,

its execution.

Adaptation to Combined Failure Types

e Investigate the scenario where more than one adaptation action can be fired to cope
with unexpected changes in the runtime environment. In this dissertation, I study the
situation in which, when a failure type is detected, there is only one adaptation action
to be fired. In addition, I consider only the scenario where at a given moment, only
one failure type is detected. However, when more than one failure type is detected at

the same time, which adaptation action should Ginga fire?
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