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SUMMARY

In this research, the homogenization relations for elastic prep&t isotropic and
anisotropic materials including composites and polycrystalliatenals are studied by
applying two-point statistical mechanics theory. The validity tbé results is
investigated by direct comparison with experimental results.

In today’s technology, where advanced processing methods can provid&alsate
with a variety of morphologies and features in different scalemethodology to link
properties to microstructure is necessary to develop a framedaonkaterial design.
The link between structure of materials in any length scaben(ihano to macro) and
their properties whether they are mechanical, electricalpetiag or optical is critical in
every engineering discipline. For this purpose, this researchodasdéd on the
homogenization relationships based on two-point statistical informtticorrelate the
microstructure of the materials to their mechanical proper&¢atistical distribution
functions are commonly used for the representation of microstesciamd also for
homogenization of materials properties. The use of two-point &tatistiows the
materials designer to include the morphology and distribution in addition to the pFsperti
of the individual phases and components. Statistical mechanics modelingnigot
enables us to correlate the morphology of the microstructurpsoperties, it can also
predict the microstructures from the properties. The latgereisvhich is called inverse
structure-property problem has received a lot of attention in matea@ommunity in

recent years.
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Microstructure design based on statistical mechanics &esit and optimizes
choosing the microstructures of materials for specific desigh desired properties.
Therefore studying the statistical mechanics theory inréifitdength scale becomes very
important.

In this research, the main focus was to study the effect of oné-gad two-point
statistics on homogenization relationship for elastic propertiesatérials. Applying the
homogenization relations to the microstructure of simulated isotrapic anisotropic
composites, the mathematical representation of two-point probahilitgtions was
modified in anisotropic composites and the contribution of one-point and two-point
statistics in the calculation of elastic properties wadistl. Then, this methodology was
applied to two samples of Al-SiC composites which were falatichly extrusion (PSR:
2:1 and PSR: 8:1). Finally, the technique was extended to completetiom and
textured polycrystalline materials and the effect of coldmglion the annealing texture
of near-a Titanium alloy was presented.

It was shown analytically and numerically that the two-poinisties measurement
does not contribute to the calculation of elastic properties in isotmgpnposites and
random polycrystalline materials; however, its contribution is Bagmt in anisotropic
composites and textured polycrystalline materials (70% more tlemrdntribution of
one-point statistics). Furthermore, the results show that thepdwd statistics can
represent the effect of clustering in properties in two anisotrsgnples of Al-SiC
composite. Although the volume fraction of the two samples was the, sam-point
statistics was able to capture the morphology of both microstesctumd predict the

differences in their elastic modulus and shear modulus. In additwasishown that the

Xii



contribution of two-point statistics in calculation of elastic prapsrtof textured
polycrystalline is much smaller than its contribution for anisotrepmposite materials.
All the final results were compared to several micromechanimdels. Comparing the
computational results to experimental results shows that thisodeogy is a good tool
for structure-property relationships, and can lead to the design neeriaisa with

optimized properties as a fundamental backbone to microstructure design.
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CHAPTER 1

INTRODUCTION

Structure, properties, and processing are the three signifieaneris in materials
design. In today's technology, where advanced processing metlaodgprovide
materials with a variety of size and scales, the need for togeoperly select advanced
materials such as composites and nano materials with desiredtigso® recognized.
Further, a methodology to predict properties from any microstryancemicrostructure
from properties is definitely required in a unified methodology for materi&jnles

Statistical representation of the microstructure and applyingt#tistical mechanics
modeling enable us to correlate properties, microstructure andspitogdan a unified

methodology (Figure 1.1)

S
e

[ Mechanical Desig;n] —

Statistical Representation
n-peini Functions

Figure 1.1 A schematically representation of mechacal design parameters



Statistical distribution functions are commonly used to represembsiiuctures in
digital forms. Two-point statistical functions can be used astaorder correction to the
average (volume fraction) representation. Two-point correlation funciwosgide
information about near neighbor and far field effects and allow thectdsensitive
properties to be incorporated in the analysis.

Statistical continuum mechanics provides a direct link betweerostiaocture and
properties (elastic and plastic) in terms of these two-poitiststal functions. The
prediction of mechanical properties from the details of the ntrercisire such as phase,
crystalline grain orientation distribution and morphology has receivsggzbaial attention
in the mechanics and materials community (Torquato, 1982; Adams, 1987). In
polycrystalline microstructures, internal structure refers e size and shape of
crystallites (grain), the distribution of their crystallographiientations (texture), and the
spatial correlations between these geometrical and crystgbloigrfeatures. However, in
composites, internal structure refers to spatial correlatebhseen geometrical features
of the two phases. The mathematical description of heterogdrastyeceived some
breakthroughs in the last few decades with the works of Kroner (197Z) and Beran
(1968). More progress has been achieved to calculate the effectpertprs by making
simple assumptions about the microstructure distribution (random, isotaopigeriodic
microstructures) or the shape of the second phase (spherical, @dipshi These
studies have relied primarily on the one-point probability functions (numbeolume
fractions of individual states within the microstructure), which igdoshape and
geometric characteristics of the microstructure( Beran (19B8)an and Molynex

(1966), and Hashin (1962) ). (Some of these models will be reviewdthpier 2.) It



was realized that in order to use the measured material®dterty it is necessary to
incorporate two and higher order probability functions. However progvasshindered
due to lack of experimental techniques to obtain two and three-pomglation
functions. These techniques are now available which makes it possilbleasure
individual crystalline orientations in polycrystalline materialsctension of this effort to
non-random microstructures requires proper definitiontlofdegree statistical correlation
functions.

Microstructure can be represented by a set of two-point cooelatnctions for a
variety of states. In a polycrystalline material, eachntait®on is considered a different
state and an n-dimensional space is then formulated for the homogenizdation
(Garmestani, 2001; Adams, 2002). For instance, Orientation Distribution i¢Gtunct
(ODF) is a one-point statistical distribution function that only abersi volume
fractions (or number fractions) of crystallites with the samentation. However recent
improvements in electron microscopy and image analysis have led to meigtess for
analyzing the structure of polycrystalline materialshatgcale of the crystalline grains.
Orientation Imaging Microscopy (OIM) provides information on the spattahgement
of lattice orientations in polycrystalline structures and is dasm Kikuchi
diffractometry (Garmestani, 1998). A two-phase composite consistayfwo phases
and the n-dimensional space is reduced to a two-dimensional statei@g that the
anisotropic properties within each phase are ignored. In composites, ifah&bon of
each phase is ignored, the correlation functions can be measured imsiging
techniques (optical, SEM,..). The use of OIM for the measurementeoitation for a

multiphase composite can introduce a large amount of detail and camplérerefore,



higher order statistical formulations will be needed to incorpasath information for
each phase and also the interaction of the two phases.

This research is focused on studying the effect of anisotroplyeonomogenization
relations based on two-point statistics. An analytical solutioh bvelderived for the
contribution of two-point statistics in homogenization relations fasted properties of
composites and polycrystalline materials. The importance of comtimbaf one-point
and two-point statistical information will be investigated inca&dtion of elastic
properties of composite and polycrystalline materials. In additiorexatanation will
be provided why the effect of two-point statistical informatioaswiot observed in
previous works. (Adam 1995, Garmestani 2000)

Several micromechanics models based on one-point probability informaii be
reviewed in chapter two and an overview on statistical continuum mesttaeory will
be studied in chapter three. Two-point distribution functions will be thed ts
characterize and represent heterogeneity in two-phase compositespiter four and
five. An empirical form of the two-point statistical functionused which allows the
construction of a composite enclosure (property enclosure is defsna@diniverse of all
variation in inter relation among several properties for the sammstructure). Two
different composites (isotropic and anisotropic) are considered areffédoe of one-
point and two-point statistics for the prediction of the elastic properties issdest.

For this purpose, first, the elastic properties for an isotropicaarsbtropic Al-Pb
composite with quantified microstructures are computed in chapter fn this
simulation a mathematical form for the two-point correlation tioncis considered in

isotropic composites. In addition, the mathematical formulation for pritya



functions is extended for anisotropic composites. A new design vandblee defined
to introduce anisotropy in the microstructures. The simulated vataempared with
some micromechanics models including Voigt (upper) and Reuss (lbeends, and
Hashin-Shtrtikman bounds. Then, two-point probabilities are measured f8ICAI-
composite with two different PSR (Particle Size Ratio) andelhstic properties are
estimated for this composite directly from the measured two-mtattstics of the
microstructure. Finally, the simulation results will be comganeth experimental
results from mechanical testing and ultrasounds.

In chapter six, the structure-property relations will be dsyed for random and
consequently for textured polycrystalline materials. In polychystamicrostructures,
two-point statistics are measured by considering the orientasfotiferent grains and
their coordinates. Therefore, first the methodology is appliedatsimulated
polycrystalline aluminum microstructure with completely randonergation of
crystallites and also including different percentage of textune direction, then the
methodology will be applied to two samples of nearFitanium alloy (as received and
60% cold rolled) where the crystal structure is HCP. One anepbiva statistics of
lattice orientation distributions are measured using the OIM dild the effect of
statistical measurement will be studied in calculation of tielagroperties. The
simulation results will be compared with Taylor upper and lower boandghe effect
of texture on properties of two samples will be studied. In additioel&stic properties
of two samples will be measured by ultrasound techniques to weefysimulation

results.



PART I:
BACKGROUND AND LITERATURE REVIEW



CHAPTER 2

MICROMECHANICAL MODELS FOR ELASTIC PROPERTIES

In this section, several theories to predict the elastic prepeofi heterogeneous
materials which consist of several phases of the same phadéerendistates will be
reviewed.

For heterogeneous materials with arbitrary microstructurés niot possible to find
a general analytical solution form elastic properties. Thexdfwgre are two ways to
approximate the elastic properties of the materials: rigorous banmtiapproximation
solutions. Both these evaluations are called micromechanics modsiftlate elastic
properties of a heterogeneous material. In other words these naodelse primary
tools for homogenization of materials’ elastic properties. oAllhese models use one-
point probability distribution functions (number or volume fractions of imtlial states
within the microstructure) or use an assumption for the distributionmamghology of

the second phase(s ) in the matrix.

2.1 Rigorous Bounds: Variational Method

As it was mentioned before, bounding theories are among the methoddimgies
homogenize the effective properties of materials based on som@stmictural
information. Bounds can be shown as limiting values (upper and lower bownds) f
properties for any computational work (Torquato 2000). Therefore knowing the

properties of each phase and their volume fraction, there anmalsegerous bounding



relationships to calculate the elastic properties of heterogsnmmaterials. All of these
models assume a mathematical representation for the miumtosée for the calculation
of the effective properties. All of these bounds get close when mmmstructural
information is used in the approximation.

To calculate a variational bound, the effective properties can fessed with a
functional that has to be optimized. This kind of variational analysis forcefasperties
of random heterogeneous media dates back to the work of Beran (1965)ranchBa
Molynex (1966). To derive a rigorous bound on elastic properties, tam slastic
energy in the system needs to be defined, and then this function hamioilb&ed so
that the system reaches a stable state. In this section, apgpdower bounds will be
determined based on the minimum potential energy principle.

Effective stiffness and compliance of the representative voluanebe represented
by:

C|jk| :<C|jkl>
(2-1)
Sie = (s
Where ¢ and s are local variables and <h> is the ensemble average of Vasiathlean

be defined by the following equation (Kroner, 1972):

(hy=(h(x)) = \% jv h(x)dV = %ih(x) (2-2)

A composite is composed of M anisotropic phases. Therefore thecigfatnsor

can be shown by the following equation: (Torquato, 2001)

C(x):écil(”(x), (2-3)



where | (‘)(x) is the indicator that is equal to 1 in phase i and O if it ismphase i. This

function is defined as:

Nwﬁz{t :5: (2-4)

Here, a brief overview of homogenization relations in elastic dom#litbe shown
(more details for homogenization relationship based on two-poinststatiwill be
presented in later chapters). The equilibrium equation and the abwstgquation for

static state can be shown by:

O (x)=0

a(x)=c(x)e(x) -

where, o(x),c(x), and £(x) are local variables. Also assuming the matesiala

(2-5)

homogenous media, the effective elastic stiffnessle defined by:
(o) =C(¢) (2-6)

Local elastic stiffness and stress can be defiyedBeran (1965))

e=(e)+&

(2-7)

og=(0)+7’
where ¢ and £ are deviation or fluctuation fields. The local ene stored in a

homogenous linearly elastic material is equeﬂzmﬁx)c(x)g(x), and the macroscopic

values of the strain energy can be defined by (Bdiaff, 1956):
(2-8)

There are two general theorems applied on enengfygewation:



Theorem 1. For ergodic macroscopically anisotropic multiphaseposites, the elastic

strain energy is equal to the ensemble averaggedbtal strain energy.

Lievciey=Lie:ce
e e e
§<a> C’1:<a>=—<a ct a>

Theorem 2. The effective stiffness tensor is symmetric andtpasdefinite.

Recall: Suppose B is a second order matrix, thens@mi-positive if for any vectar:

aB;a; 2 0
If only the inequality applies f@ # 0, then B is called positive definite.

For the general equilibrium equation in elasticttygre are two types of boundary

conditions that can be applied (Brush, 1975):

Type . Displacement boundary condition: displacetma(x) is prescribed on the
boundaryfdV or S). In other words; strain has been defined fordmain:

- a
:1[ﬂ+_'] (is definedfor all x OV) (2-10)

E.. =
1j 2 d( d(l

J

Type IlI: Traction boundary condition: surface t'rantt”(x) Is prescribed on the

boundary for alk (] S.
Assuming the first type of boundary conditicm(ux) is the true displacement field

and fluctuation I(x) is the new displacement field wheré(x)=0whenx(S.

Therefore the strain field can be defined by:

A A
g +& =1 ﬂ+_‘ +1 £+—' (2-11)

Hence the strain energy in the system can be dkebge
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W+V~V:% (‘9 & )(£m+gm)

Cljkl é‘ijg‘kl )+%C”-k| ing (by symmetn
———

20

W+ Ijk| é]]gkl +& gkl +£ gkl ) (2_12)
W+

Since C is a positive definite matri% ¢, £, =0 ), therefore the other term can be

calculated by:

a, A,
X K

S\ 5 —1 K
Cin (£i€4) = Oy &y _Eakl( +

a, , .
=g,— (sinceg, =0, )
K d(| K 1k

. doy, |~ )
X(akluk) (leuk (2-13)

%
= %(Uklak) (Sinc{gkl j =0)

(0,0,), (shorthandhotation)

The total macroscopic strain energy can be caledlby:

W =< w>= j j wadV (2-14)

The increase in elastic energy due to the fluabudield is:

AW = m 108,80V + mc”k, £,V (2-15)

%—/
>0

The first term on the right hand side is positisiace C is positive definite (theorem
2). The second integral can be converted into fasaiintegral by applying Divergence

theorem:

”.[Ciik' &ij £qdV = j_'._[(akl Uy )u dv

o N (2-16)
= ”Umﬁkrh dS=”t|ﬁ”)ude: O(sincel, =0onYS)
S S
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Note that the second term in eq. (2-15) becomes &&en the displacement satisfies
the boundary conditions. Therefore, the displacdrfield that satisfies the equilibrium
equation and the displacement boundary conditivasy@here will result in an increase
in the strain energy of the system or:
AW =0 (2-17)
So the principle of Minimum Energy can be statetbdews:
“Of all displacement fields satisfying the presedbdisplacement boundary
conditions (type 1), that field which satisfies ess equilibrium and is
symmetric minimizes the stored elastic energy ef gsistem, W.” (Hirt and
Lother, 1968)
The same steps can be applied to boundary condygenll. In that case the minimum
complementary potential energy can be stated ksl
“Among all those stress fields that satisfy thespribed stress boundary
condition, the field that satisfies the stress Eoyuiim and are in equilibrium
with the external loads acting on the body, truesst, minimizes the strain
energy distribution.” (Hirt and Lother, 1968)
This theory has an application in finding the boanydrelationships for elastic

properties of composites and polycrystalline matsyiwhich will be shown here:

Assuming uniform strain in both phases:
(r)=(e)=¢ (2-18)
Average elastic energy density in a representateme is related to the effective or

macroscopic stiffness C and is equal to the aves&tjee microscopic strain energy:

<W> = <%gij Cij €w > = %<‘9ij >Cijkl <‘9k| > (2-19)

12



Assuming £*(x) as a strain field that satisfies boundary condgicof type |
(prescribed displacement field @R ) bute* # (¢), The principle of minimum energy

can be implied as follows (Beran, 1996):

1 =1 10 *
<2&CGéEy =S < >Cijk| SEy >S <5 ECéy > (2-20)

Now assumings* =< £ >
%< gij > Cijkl < gkl > = %< < gij > Cijkl < gkl >> E% < gij >< Cijkl >< gkl > (2_21)
Therefore:
Cijkl < <Cijkl> (2-22)

This is called Voight upper bound which will be dissed in later sections in more
detail.
Alternatively the elastic strain energy in the systcan be represented with an

expression in terms of the compliance tensor

—e 1 =1
(<W>_<Eaijsljmak| >—E<Uij >S|jkl <0y >)

Choosingr* =< g >:

1 1 =1
3<0; >S5 <0y > £<3<0;>s, <0y >>=1<0; ><5, ><0, > (2-23)

Therefore:
Si < (Si) (2-24)

This is called Reuss upper bound on elastic comgdia
Inverting the above equations (eq. (2-21) and2@&3)) and combining them, the

bounds for effective elastic constants can be tatled by (Beran 1996):

-1
<g ><gy ><g ><<g; >Cy <g ><<¢g ><qy ><Ey >

Kl ijki

(2-25)
-1
<0, ><Cy ><0y ><<0; >§; <Oy ><<0; ><§y ><0, >
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or:

glj Cljk|

! 2-26
s s (2-26)

ij Ijk| ij Ijk| ij

)
|/\
O
|

|j ijki

i SiE
iCiiE

o)

These are bounding relationship that can be usechlmulate upper and lower

bounds. It is very important to consider that thbsends are on the energy of the
representative volume. Therefofe) = £ or (o) = & can not be omitted from the two
sides unless the applied strain or stress wouldtrigssuch. To make more clarification

on the use of these bounding relationships, motailglewill be discussed in next

section.

2.1.1 Voigt model (upper bound)
Voigt model assumes a uniform strain in throughthet phases in the composite.
(Voigt, 1889)
(r)=(e)=¢ (2-27)
Effective elastic properties through the matesalefined by:
o =C¢g, (2-28)
therefore:

(ce)=Cg =(c&)=(c)g=C=(c) (2-29)

<=

Figure 2.1 Voigt model: Uniform strain field in both phases



Therefore the effective elastic stiffness which bancalculated as <c> represents the
upper bound. The average ensemble of stiffnesbeaalculated by the rule of mixture.
Assumingv,and v, as the volume fractions of two phases, the tatadd in the media
can be calculated by:

F=F, +F,=g,A +7,A, =(C'A +C?A ) (2-30)

The average stress in the media can be calculgted b

o =CF = % - (ClAl +ACZA2)"F - (Clv1 + szz)‘? (2-31)

Therefore elastic stiffness is:
M . E—
C=>vc =C (2-32)
i=1
This is called Voigt upper bound.(Voigt, 1889)

2.1.2 Reuss Model (lower bound)
Reuss model assumes a uniform stress throughophtses (Reuss, 1929):
o(r)=(0)=0, (2-33)
the average strain can be defined by:

£=(g)=(s0) (2-34)

< JEENAN—

Figure 2.2 Reuss model: Uniform stress field in bbtphases
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By applying eq. (2-33) the above equation can bmaulated as:
£=(so)=(s0)=0(s)=0S, (2-35)
therefore:
S=(s)=>C=(s)" (2-36)

The effective elastic compliance in this case isaédqo the average of compliances
which can be obtained by rule of mixture. This eahepresents the upper bound for
compliance (S) or lower bound for stiffness. Assugnv, and v, as the volume fractions,
the total increase in length of the media is edtchas follows:

Al =Al +AlL, =¢gl, +&,l, (2-37)

Dividing both sides by total length ), the average strain is estimated by:
g=—="11 _"22 =glgy, +S%g,v, =(v,S" +v,S%)T (2-38)

Using eq. (2-35), it follows:
S=v,S" +v,S? (2-39)

Or:
M . p—
s=c* :ZViS' =S (2-40)

i=1

2.2 Degraded bounds for elastic coefficients based on minimuemergy

theory

The elastic strain energy functional was derivadafforce-free homogenous medium
in the previous section and the upper and lowemtdsuwere developed in general by

minimizing the energy. Here the bounds for eacmmanent of the elastic stiffness
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tensor will be derived.

For this purpose, first averview of different symmetry

operations applicable to crstalline materials aodesponding elastic stiffness tensors

will be presented. (Lai, 1993)

For a general case of a homogenous medium, impliagsymmetric properties of

stress and strain and the positive definite progeerof strain energy, there are 21

independent terms in the stiffness matrix. Theeefine general form of stress-strain

relationship of a general case can be shown as1R8aB):

O

1111

@)

1122

1133

1123

O 00

1113

@)

| 1112

1122

2222

2233

2223

2213

OO0 0000

1222

1133

2233

3333

2333

1343

OO0 0000

1233

1123

2223

2333

2323

2313

OO0 0000

1223

1113

2213

1333

2313

1313

OO0 0000

1213

O

1112

O

1222

O

1233

1223

1213

O 00

1212

(2-41)

Monoclinic anisotropic linearly elastic solid isfoleed in such a way that the linearly

elastic solid has one plane of symmetry. Theretbere are 13 independent elastic

coefficients, and the resulting tensor can be &mits follows (Lai, 1993):

w w N =

SIS

N

1122

2222

2233

O 000

2223

0
0

1133

2233

3333

O000

2333

0
0

1123

2223

2333

O 000

2323

0
0

o O O

0
Ciais
Cross

C

o O O

0
Crais

1212 |

511
6?22
553
28,
284,

| 2¢,, |

(2-42)

If the elastic body has two mutually perpendicydlmnes of symmetry, then the material

is called orthotropic and there are only 9 indeendoefficients (Lai, 1993).
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0y Cun Cuz Cuss O 0 0 &
P Ciuzz Cop Crss O 0 0 | &
O3 — Cuss Coss Caes O 0 0 €33 (2-43)
[ 0 0 0 Cu,ys O 0 |28,
[ 0 0 0 0 Cpuiz 0 |28
10, | O 0 0 0 0 Cppull 28,

Whereas for a transverse-isotropic media, therguatés nonzero coefficients where only
five of them are independent (Lai, 1993):

C.,—C
— ' ' — . . — . — 1111 1122
Cllll - C2222’ C3333’ C1133 - C2233’ Cll22’ C1313 - C2323’ C1212 - 2

(2-44)

In addition if the media is isotropic, there wit bvo independent stiffness coefficients:

_ C1111 B C1122

Cllll; C1122; ClZlZ - 2

In next subsection, bounds will be derived for amhatropic media which has 9

independent elastic stiffness coefficients.

2.2.1 Bounds for diagonal terms of the matrix
Recalling the bounding relationship in eq. (2-2Bg bounds will be derived here for
diagonal terms of the elastic stiffness matrix.s#ming the uniaxial tensile test the only

nonzero component of the induced strain wilEQet 0, (Kroner, 1977)

&, 0 O
e=|0 0O (2-45)
0 0O
Therefore the strain bounding relations for straithbe summarized by:
Ellél._l.lil.lgll < gllcllllgll < gllc_:llllgll (2'46)

and therefore:
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Siu<Cuu<Chy
In general, these bounding relations can be reptegas follows:
(2-47)
Note that there is no summation on the indicese 3dme philosophy can be assumed for

other diagonal termdQd,,,,,C .,5.).

On the other hand, assuming pure torsion teshi®sample results in nonzero

component of shear strain as in the following (Knri977):

0 &, O
e=|g, 0 O (2-48)
0 0

Substituting in the bounding relationship (2-25he tfollowing inequality will be
acheived:

4512§1_2121.2§12 < 4512C1212§12 < 4512c_:1212§12 (2'49)
or:

. _
S1212 < C1212 < C1212
So in general, it follows:

<C.

Sii <Cy; <Cy (2-50)

ijij

Note that i and j are free indices and vary betwkand 3.

2.2.2 Bounds for off-diagonal terms

Now that the bounds are known for the diagonal serthe effect of bounding

relationships will be studied for other coefficienExpanding the right hand side of the
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eq. (2-25) or (2-26), §,C &, < ?k,C_:ijk,?k,) results in the following equation (Kroner,
1977):
EnCrinin T 2811C1100E 20 + E5,Co00nE 2 < E11Co11E 1 + 2811C 100800 + E2,C000E 20
(2-51)
Assuminge,; # (and £,, # Oand other components as zero, then the aboveieguean
be rewritten as:

2§11C:1122§22 = 2Ellc_:llZZEZZ + 5121 (Cllll - Cllll) + 5222 (62222 - C2222) (2_52)

. £ .
Assuming-% = ¢, it follows:
11

2C(C1122 - c_:1122) s (C_:1111 - C1111) + Cz (62222 - szzz) (2'53)
Both sides of the equations can be divide@¢yTherefore there are two cases that can

be considered:
CASE 1: Positivec:
Since the bounds have been calculated fer:@nd G222 in eq. (2-47),

= 1 _,/= - C(= -
Ci122S Crippt zgi(c wi S %11)1'*' E(C 2077 O 122): (2-54)

#(¢)

(a)-CALCULATION OF ¢ AND UPPER BOUND:

Minimizing function ¢ results in:

~ _a-l
d_(” =0=¢C= Ciin 111 (2-55)

dp c_:2222 - §2_2122

The upper bound would be (Proust, 2005):

C1212 = C_:1212 + \/ (C_:1111 - __1111)(62222 - §2_2122) (2-56)
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CASE 2: Negativep:

= 1 _,/= - C(= -
Ci1222 Cpppt Z_Cgil(c i S ilj)l-l- E(C 2077 O 122): (2-57)

(<)

(b)-CALCULATION OF p AND LOWR BOUND:

dg _ 0= = Cuu S11111 (2-58)
d¢ Co2o = Soono

The lower bound can be calculated:

Cio 2 C_:1212 - \/ (C_:1111 - __1111)(62222 - §2_2122) (2-59)
The following equation is obtained by combiningat&ns (2-56) and (2-59) (Proust,

2005):

62I.212 - \/( 1111 Sllll)( 2222 222) < C1212 < 6:I.212 + \/( 1111 Sllll)( 2222 §2_2122)
(2-60)
Now by considering the left hand side of the eeR%2,

& Sl]klgkl <&

ij Cljkl Ey S Eij Cijkl Ex s

ijl

Another set of upper bound and lower bound wilthkeulated for &2, as follows:

__2151.2 - \/( 1111 S.I.lll)( 2222 S2_2122) 1212 = S.I.212 + \/( 1111 Sllll)( 2222 2222) (2 61)

Comparing (2-59) and (2-60) the final relationstigr the degraded bounds will

be(Proust, 2005):

(2-62)

MAX (3_2112’ c_:1212) - \/(C 1111 §_1111 (C 2222 §_122)

2
<Cp, < MIN (01212 121) + \/( 1111 §_111)1( 2222 g_lzz)z:
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2.3 Hashin-Shtrikman Variational Method

In this section a brief review on the bounds of H&sShtrikman (1962, 1963) for
elasticity will be presented. In this variatiomaéthod, the upper and lower bounds on
elastic properties will be derived based on stesiargy variation of a quasi-isotropic and
guasi-homogenous media. The microstructure ofbdia has been assumed arbitrary
which includes a number of isotropic and homogeradastic phases.

As it was mentioned before, the effective elastmpprties of the media (composite)
can be calculated by the average of microscopainsémergy of the system that has been
subjected to a surface displacement or tractiomceSit is not possible to calculate the
local stress and strain at each point, therefogevtriational principle is a good tool to
bound the strain energy and consequently the eféeetastic properties of the media.

Hashin and Shtrikman have worked on variationalhao@s$ for isotropic case in
(1961) and for the general anisotropic case in Z196lIn this section the variational
method for nonhomogenous and isotropic elasticity lve reviewed for a multiphase
media.

Hook’s law is given by:

0° =Cy&° = A€ 0, +2G,€7, (2-63)

where, g andej are the stress and strain tensor fields in a defdrefastic body of

volume V and surface S (the case of no body fordédw the body changes to a material

with different microstructures and propertie€g; = A&, 9, + 2G¢;))

The stress polarization tensor is defined by:
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o. =C%. +0. (2-64)
It follows:
0, =Cg -C%, =(C-C°)g (2-65)
Define the deviation of strain as:
= = 0
£ =&,¢; (2-66)
Now define the strain energy as a general form:
1
W = EIO—” g;dv
This equation can be reduced to the following form:

w=Lotesav oL (5,600 2w, - L[l (- -ae ~2merhy 67

1

Equilibrium equation on the other hand can be reduo:

T | :O:CO(EU ),,- +0;;=0= (4 +Go)aj,ji +Goll j +0y; =0,

Finally the following PDE and the boundary conditizas to be solved:

g](i;:G ?))l,]j;DJrsGqu” "m0 (2-68)
Eq. (2-65), eqg. (2-66) and eq. (2.68) are showirgy gecond boundary problem of the
theory of elasticity (Sokolnikoff, 1956). Therefotee stationary value of W is an
absolute maximum when (Shtrikman, 1962)
A>1,,G>G, (2-69)

And an absolute minimum when:

A<A,,G<G, (2-70)
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For a composite body of M different phases, a exfee cube with a unit volume in
composite will be considered. The reference cubg toabe chosen large enough

compared to the size of inhomogeneity and smallgh@ompared to the whole medium

size. Therefore the average strain within each aiilhée assumed as; .

The elastic strain energy in the media is show(Shrikman, 1962):
— 1 2 0,0
W= > 9Kg; +2Gej€; |, (2-71)

where £,ande, are the isotropic and deviatoric parts of the straatrix (&) = £,0; +€;

ij?
andg, = %skk) and K and G are the effective bulk and shear rusdu

Applying the variational method and assuming th&uwe fraction of each phase
isv,, it will be found that the following upper and lewbounds for elastic properties are
satisfied:

K* <K <K*,, (2-72)
where K* and K*, are the upper and lower bounds on Bulk modulusaaacdestimated

as follows (Hashin and Shtrikman, 1962):

K *1 = Kl + 1+'A~1
a
A (2-73)
.
2 2 1+0'nAn

Where:
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_N N
3 Ai'.z 1

73K, v a6, Tk
1 ! where Lo (2-74)
_ 3 n-1 V|
a, =-—— A=Y — 1
3Knl +4Gn i=1 1 -a
K -K "

The upper and lower bounds for shear modulus camralcalated as in the following:

G* <G<G*, (2-75)
Where:
G*, =G, A
L+ /B (2-76)
G* 4B |
2= 2 1+ﬁan
Where:
N N
ﬂ:_ 3(K1+261) Bl_; 1 _ﬁ
' SGl(sKl + 4Gl) and 2(Ki - Kl) ' (2_77)
g = 3K, +2G,) =S v
" 5G,(3K, +4G,) nT #_ﬂ
2(G| _Gn) "

Note that K, G; and K,, G, are respectively the smallest and the largestiela®duli
among all the phases.

For a two-phase composite material these formulatidl reduce to:

V.
K*, =K, + 2
! ! 1 3v,
K,-K, 3K, +4G
2 1 1 1 (2'78)
V.
K*, =K, + 1
2 2 1 3\/2
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\
1 + 6(K1 + 2G1)V1
Gz - G1 5C':‘1(3K1 + 4G1)
Vi
1 + 6(K2 + ZGz)Vz
Gl - Gz 5G2 (3K2 + 4G2)

G*, =G, +

(2-79)
G*,=G,+

Here K>K; and G>G;. This variational method has been extended two#nmipic and

non-homogenous forms (Hashin and Shtrikman, 19@2i;h are not discussed here.

2.4 Approximation Methods

As it was mentioned before, an exact solution fibective properties of materials
might not be attainable. In the last section it w@entioned how rigorous bounds can
provide a rigorous statement for elastic propeniesomposites. (This can be applied for
polycrystalline materials as well). On the othanti, assuming some microstructural
information, the effective elastic properties cam dpproximated. These methods are
applicable when some simple microstructural infdiamasuch as volume fractions and
properties of each of the phases are known. Volfrawions here are assumed as one-
point probabilities. Having more information abdlkié microstructures and using higher
order probabilities are the solutions to get a elagpproximation to the real values of
elastic properties. This will be discussed indatkapters. In this section, it will be
shown that in many case, the calculation of theaotffe properties of heterogeneous
materials, requires the solution to a boundarye/gitoblem for a single inclusion. As a
result some form of averaging method has to beiegppd homogenize the properties of a

heterogeneous medium.
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2.4.1 Maxwell approximation method

Here the Maxwell approximation method to calcuthte effective properties (elastic)
will be reviewed in detail (Maxwell, 1873). This@pximation relies on the knowledge
of the value of the effective elastic propertiesioigle inclusion under a strain fiel .,
at infinity (Torquato, 2001).

Therefore here, a problem of single inclusion widldius R and Lame constants
A,, andG, which is embedded in an infinite matrix with Lamenstants A,, andG, is
considered.

The Navier’s equation has to be solved for a singtiision: (Torquato, 2001)

(A4 +G,)0.(0u)+G,Au=0, r=R

2-80
(4, +G,)0.(0u) +G,Au =0, r<R (2:60)

€ ppp
Al’ Gl

A
2

@
N

A 4

Figure 2.3 A Schematic diagram to show the singlgkerical inclusion in an infinite matrix

and the following boundary conditions has to bésSat, (because of the continuity of

the fields) :
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R
nr,=nr_, r=R (2-81)
0]

To solve the above equations, first a hydrostaid thas been applied:

&
Erer =2 (2-82)

where | is the second order identity tensd)rjkl(:%(dikdj, +5“5].k)) and ¢,,is the

applied scalar field.
Applying the boundary condition, eq. (2-80) candmdved for displacement u and

then strain field can be obtained as follows (fetadls refer to Torquato, 2001)

= {gAPP +K21R3t(r)'£APP’ rzR (2-83)

Eppp ~ K1 ppps r<R

wheret(r)is the dipole tensor and is defined by:

t(r) = DD(%) = 3”:‘3_ | (2-84)

and k., is the bulk modulus polarizability:

K2_Kl
4
K2+§G1

Ky = (2-85)

Furthermore, the displacement field inside andidetthe inclusion can be calculated
as follows when the deviatoric strain has been iagpht infinity (tr(&,,) = 0):
(Torgquato, 2001)

U=Epppl +BEp I r<R

(. A 6B 2C 5B) Nr;r, , (2-86)
Ui _(1_r_3+r_5_r_3j(£APP)ij r+ 3(C_r_2j ;(‘SAPP)jk rzR
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where A, B, and C can be estimated by applyingbthendary conditions. Knowing the
displacement field, the strain can be calculatetthéninclusion; however the derivation is
beyond the discussion here. (for more details tef@orquato, 2001)
Combining the hydrostatic and deviatoric straindfiestrain inside the inclusion will be
calculated by:

E=Tepm <R, (2-87)
where, T is the fourth rank tensor:

1 1
T= aa_u 5k| (1_ K21) + [(a_ika_n + 5i| 5jk )_Ea_ij 5,4 }(1_ :uzl)' (2‘88)

where «,, has been defined in eq. (2-85) auglis the shear modulus polarizability and is

defined by:
G, -G
= 2-89
Ho G, +H, ( )
where: H, = Gy[3K, /2+4G, /3]
K,+2G,

Now that the strain field for each inclusion ha®rbealculated, the approximated
elastic properties can be calculated as follows:
Consider a large sphere of radiugcBntaining M smaller spheres with radius R and

Lame’s constantd,, andG,in a matrix with Lame’s constards andG,.
The volume fraction of each sphere is:
v, =M(R/R,)’ (2-90)
It should be noted that the interactions betweensipheres can be neglected since the

volume fraction of the spheres is assumed to bg sreall.
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Now suppose that the strain hydrostatic field, has been applied at infinity. The strain

field at distance r can be evaluated by superposdf the fields of each small sphere:

3
E(r) =&, + VoRoK [3nn = 1] e (2-91)

r3
where k,, has been defined by equation(2-84)

On the other hand the large sphere which includesdl spheres can be considered as
a homogeneous sphere which has the effective batkulus as: K. Therefore the strain

field that has been induced at distance r wichrgd compared togR Torquato, 2001)

3
£(r) = Epp + Rf;’s(l [30n = 1] £, (2-92)

where polarizablity is defined by:

K-K,

Kel = —4, (2'93)
K+-G,
3
Making eq. (2-91) and eq. (2-92) identical resuits i
Kel = V2K21’ (2-94)
where this equation can be rewritten as:
K-K, —y K, - K, (2-95)

4 2 4
K+G K+ G

Therefore knowing the bulk modulus of two phased toeir volume fractions, the
effective bulk modulus of the composite can be aged.

The same procedure can be done for the shear nwdiuthe composite, whereas the
applied field at infinity will be a uniform sheatrain. The following equations are

obtained for effective shear modulus (G) (Torquat1):
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G-G, _,[6,-G (2-96)
G+H, G, +H,

where:

G| 3K +56
2 3

! K, +2G,

Figure 2.4 Effective properties of a composite witlspherical inclusion - Maxwell approximation

Now assume there are M-1 different types of sghé>2) with volume fractions

v,,K ,v,,and the properties oK,,G,K ,K,,,G,,, then the Maxwell's formula can be

applied as (Maxwell, 1873):

K-K, :iv' K, -K,
K+ig = | K +2G
3 iTg, (2-97)
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When all the inclusions are stiffer than the mapiase, this approximation is equal
to Hashin-Shtrikman lower bound. The Maxwell appnoxiion results in a good
approximation when the spheres are separated femtn ether and they are non-dilute

(Torguato, 2000)

2.4.2 Self-Consistent approximation method

This method is based on the solution to an auyiliaclusion problem where a single
ellipsoidal /spherical inclusion is embedded in iafinite medium which has the
unknown effective elasticity and compliance ten@dil, 1965). The bond between
inclusion and the infinite medium is assumed t@édect, resulting in displacement and
traction continuity across the interface betweeasgl.In this method, uniform stresses
or strains are applied at infinity with the objeetiof determining the stresses and strains
in the inclusion. Eshelby (1975) has shown thdhese types of problems, the stress and
strain fields in the inclusion are uniform. Thefs®insistent method can be used to
estimate the effective properties when the padidistribution is assumed random and

the effect of interaction is considered.

2.4.2.1 Random distribution of spherical micro-usibn

In this model all the microinclusions have beensidered as spherical inclusions.
Both the matrix and inclusions are elastic andregmt with different elastic properties.
Assume a macroscopically isotropic composite whretludes M different types of
spheres with volume fractiomsK ,v,,, and bulk and shear mod#lj,G,K ,K,,,G,, .The
effect of all the inclusions outside the inclusiois to produce a homogenous medium

with effective bulk modulus K where the value ofstreffective modulus has to be
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calculated. For this purpose, first a dilute daisttion of the inclusion is considered and
an effective elasticity and compliance tensor ef RVE is calculated. Then, by applying
self-consistent method the interaction of the iso will be considered in the
calculation of the overall elasticity tensors. Asgsog plane stress, the two independent
elastic constant for the isotropic composite cacdleulated by the following equation: (

for further explanation refer to (Nemaat Naser, 999

-1
£=1—V2 K(Kl_KZ)( K _§1j
K, K (K -K,)| K=K,

. (2-98)
G _ GG, -G,) & _
—=1-v, -5,
G, G,(G-G,)\G-G,

Figure 2.5 A portion of an RVE containing sphericalmicro-inclusion, Self-Consistent

approximation
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Where S, and§S, are Eshelby tensors and are calculated in this case as follows:

(2-99)

Note that:

- _ (3K -2G)

Therefore the equations for effective bulk modulus and shear modulus (K and €upled and

they can be solved by iteration method.

2.4.2.2 Effective moduli of an elastic plate contad] aligned reinforcing fibers

In this section the composite has been assumed to haveietsstic matrix and elastic
aligned reinforcing fibers. The fibers can be assumed ascidimglers. Therefore the composite
is considered transversely isotropic. Engineering elastic amsstan be calculated lNemaat

Naser (1999)

-1
K1 Kl(K_KZ) K_Kz

. (2-101)
G _ GG -G,) & _
__1_V2 )
G, G,(G-G,)|G-G,
Where:
5= 2
1k (2-102)
= = K
KTy
and
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2
g=3- 86(% + 'éij (2-103)
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CHAPTER 3

STATISTICAL MECHANICS MODELING

In the last chapter, several micromechanics made¢stimate the elastic properties
of multi-phase heterogeneous materials were studiedit was shown all of those
models were based on volume fractions which arepan& probability functions and
involve some assumptions on the shape of the imelsslt is clear that such a
construction that uses volume fraction of the sdcphase can only present a limited
description of the microstructure (composite/pojgtalline). Therefore in this
research, two-point correlation functions are ussdadditional parameters for the
description of a composite. They can incorporateé only the distribution and
interaction of the two phases but also informabarthe shape and morphology of each
individual phase.

As it was mentioned in the introduction, two-postatistics provide information
about near neighbor and far neighbor at each poitite microstructure, and statistical
information enables us to incorporate the spati@ngement in the microstructure in
addition to phase’s properties.

In this section, first an overview on statisticapresentation of the microstructure
and the measurement of one-point and two-pointissta will be shown. Then
statistical continuum mechanics theory which cated the microstructure and
properties and the related assumptions will be istudcand the homogenization

formulation for materials based on two-point statswill be established. Then in later
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chapters the homogenization relations will be exéehto anisotropic distribution and

the effect of one-point and two-point statisticd e studied in details.

3.1 Statistical Continuum Mechanics Theory

Statistical continuum mechanics is used to solablpms in continuum mechanics
based on statistical information. This theory canused to predict the properties of
materials when some structural information is knoand has applications in
polycrystalline aggregates, layered structures,tiphdse mixtures, composites etc.

Here are some statistical definitions which aredusehis theory (Kroner 1972):
3.1.1 Distribution functions and density functions

a) Probability distribution functions

Assume u is an arbitrary outcome of an experinagak is a real number between

—oand+ o . The probability of the outcome of the experiménat lies between
—oand u is shown by, (u) and is called probability distribution function.i$ obvious
that (Kroner, 1972):

lim, _ F,(u)=0lim, .. F(u)=1 (3-1)
and the probability that u lies between a and b is

P(asu<b)=F,(b)-F,(a) (3-2)

b) Probability density functions
When the difference between two points becomesiiteimal, the probability
density is defined by (Kroner, 1972):
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Plasus<a+da), =F(a+da)-F,(a) = dF,(a)/da (3-3)
Therefore the probability density for variable unche evaluated by the following
equation:
P,(u) = dF, (u)/du (3-4)

This is the probability of an outcome in the ran@éu...u + du> , Where:

J'_mw p,(u)du =1 (3-5)
Higher dimensional probabilities are correspondirdgfined as:

p,(u,,Us,....u,)=8"F, (u,u,,...,u, )/du,du,..du, (3-6)

3.1.2 Important average quantities

a) Expectations

The expectation of a random variable u is defireetha weighted mean of u:

E(u)

a TuPl(u)du (3-7)

If u is a discrete variable then the integral canréplaced by a sum. Furthermore, the

expectation for a function f(u) is defined by (Kewvn1972):

E(f(u))sm{f(u)a(u)du (38)

b) Moments of the form u"

The moments of a density functicF@(u) are defined by (Kroner, 1972):
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u" = E(u”): ju”F}(u)du (3-9)
whereU is the mean value of u anEis the moment.

c) Correlation functions

One-dimensional moment has been defined in se¢bpnHere the moment for a

two-dimensional function is defined (Kroner, 1972):

uluf = Elwul) =" 7 wufp, (u,u,)dudu, (3-10)

A moment of this kind is called two-point corretatifunction.
3.2 Statistical Descriptions of Microstructure

The statistical details of a microstructure candp@esented by an n-point probability
distribution function. The volume fractions, and v, define the one-point probability
distribution function that can be used to give stineate of the effective properties.

The details of the shape and morphology of theastoucture including the interaction
of the second phase in composite and orientatistnitalition of crystallographic grains
(texture) can only be realized by using higher pwistribution functions (Torquato,
1982; Corson, 1976; Adams, 1999).

The generalized distribution of the microstructgaen be defined by (x,c,¢,q,...),
where the variables x, ¢, angl indicates composition, phase and lattice oriepati
respectively. One and two-point statistics can leasared for local states including X,

c, org.
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Figure 3.1 OIM representation of the microstructure

3.2.1 One-point probability functions

To measure a one-point probability function, a mandchumber of points (N) have to
be inserted in the microstructure. The number dhtgolocated in one phase with

respect to the total number of points (N) indicatese-point probability:

: (3-11)

where phase one and phase two have been considsrethatrix and particles

respectively, and the following normalization reaship is always satisfied:

P(¢1) + P(¢2) =1 (3'12)

3.2.2 Two-point probability functions

A two-point probability function can be definedasonditional probability function
when the statistics of a three-dimensional vectdri$ investigated once attached to

each set of the random points in a particular nsicuzture. A two-point statistics can
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Figure 3.2 Schematic representations of one-pointatistics measurement in a two-phase composite

microstructure

be calculated by the probability of a specific ghas the head of the vector given the
phase at the tail of the vector and can be showR(ibj{12},{12}). The following

normalization relationship is valid for all the fitrons:

PitP,=v,

Py + Py =V, (3-13)
PitP,+P, +PF,;, =1

Figure 3.3 Schematic representations of two-pointastistics measurment in a two-phase composite

microstructure
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As it is observed from the above normalizationtrefeship, P, is the only independent

variable.

3.2.3 Mathematical configuration of two-point statistical functions

The exponential form of the distribution functios @roposed by Corson (1976) has

been shown to be appropriate for random microsirast It is represented as,
P, (r)=A +B; eXp(_Cijrnij ) (3-14)
where A; and B; are functions ofv, andv; (volume fractions of phase i and j). For a

two-phase composite, i and j correspond to phasasdl2, and for a polycrystalline
material i and j can get values from 1 to M whishthe total number of grains. For a

two-phase composite, the components of A and Blawe/n in Table 3.1:

Table 3.1 Empirical coefficients in Corson's equatin for a two-phase composite

i=Lj=1 i=Lj=2 1=2]=1 i=2j=2
Aj Vlvl V1V2 V2V1 V2V2
B,; V,V, -V,V, —V,V, V,V,

As it was shown before, the microstructure candpasented by (x,c,¢,9,...),
where phaseg), and orientations (g) can be considered as statables in composite
and polycrystalline materials respectively.

The present form of eq. (3-14) is sufficient whdr tstatistical information is
uniform in one dimension for the composite. A thdemensional form of the

distribution can also be introduced. The threeetigional form requires data from a
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variety of sections through the sample. For contg@®snormality relations were
defined by (3-13).

Since P, = P,;, for a homogenous two-phase composite, it is olesketivat only P
can be treated as an independent variable.

In addition, a closed form of probabilities is sagtgd by Torquato (1985) for

random and homogenous system of impenetrable sphere
Po=Py=v, P, , (3-15)

wherep is the number density of spherag, andv, are the volume fractions, r is the

distance between two points, and V(r) and M(r)de®ned by :

3
V(r)=4—ﬂ{1+3—r} r<2

37 4 16 (3-16)
8mr
V(r)=— r>2
(=2
3 4 6
M(r)=| -0 e 16T 0sr <2
9 3 10 1260 9
3 4 6
M(r) = 256_128 32 5° r* r ,72+16”2 o<t <d
35 9 5 9 10 1260 9
9
(3-17)

In Figure 3.4 Corson’s equation, Torquato equat@amd real data of two-point

statistics are shown. Corson’s equation is a gppdoximation for real data.
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Figure 3.4 Comparison of different proposed formula for probability functions (Corson and

Torquato equation)
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3.3 The Basic Assumptions of Statistical Continuum Mechanics

As it was mentioned before Statistical informatadrthe microstructure can be used
to predict the elastic properties. In this thedrgre are some assumption for the samples
and the domains as follows:

A. All the random variables of the media such as stresain, moduli and compliance
have to obey the ergodic hypothesis. Thereforetisemble average of each variable

can be defined as (Kroner, 1972):
<Cijkl > = <Cijkl (X)> = \%L Ciw (X)dV = zcijkl (x) (3-18)

B. Distribution of the elastic and plastic moduli ovire particles of the media is
assumed statistically homogenous. This assumptioesrdt prevent using the
heterogeneous microstructures. Since the micrdsteican be heterogeneous in each
section however to calculate the overall elastiopprties the microstructure is
assumed to be statistically homogenous (Kroner2)197

C. The linear elastic bodies which are infinite inettare assumed to be in equilibrium
condition at each point.

D. Distribution of the elastic and plastic moduli ovire particles of the media is
assumed statistically homogenous. This assumptioesrdt prevent using the
heterogeneous microstructures. Since the micrdseican be heterogeneous in each
section however to calculate the overall elastiopprties the microstructure is

assumed to be statistically homogenous.
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E. The linear elastic bodies which are infinite ineattare assumed to be in equilibrium

condition at each point.

3.4 Homogenization Relations for Elastic Properties

In the following section, the full homogenizatiaglations for an elastic medium are

derived for a representative volume element. dduélibrium equation is defined by:

o . =0, (3-19)
where g; (x) is the local stress. The elastic constitutivatiehs are satisfied locally
throughout the heterogeneous medium:

T; (X) = €y (X)&, (X) (3-20)
ci(x), 0;(x), and ¢, (x) are local fields of stiffness, stress and straispectively.
The strains are related to the displacement veattiisough:

& =U/2)(dy, /ox; +0du;, /0x;) (3-22)
Let’s define an effective elastic modul@s, such that
<Uij > = Cija (&) (3-22)
where symbol < h > denotes the ensemble averagegoams (phases. components...)

at state h. S«écijkI > is the average of the local stiffness defined devis:

<Cijk| > = <c”.k| (x)> = \% L Gy (X)aV (3-23)

The same definition is applicable for stress, steaid compliance. The local moduli

and compliance as well as the local stress anthstem be defined as a perturbation
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from the average (mean) values <..> by definingew rparameter(..j as in the

following equations( Adams 1995, Garmestani 2000):

Ci (X) = (Cyjy > + Eijkl (X)
Siu (X) = (S > + §jk| (X)
0;(X) = <Jij> g, (X) ’

£ (X) = <£ij > +&(X)

(3-24)

wherec, (X) .5, (X), T, (X), and &, (x)are, respectively, the deviation field of

stiffness, compliance, stress and strain at eadht groom the mean value. The

following equations should always be satisfieddatatistically homogenous media:
(G () =0,(5 () =0 325

(G (0)) = 0.(&a () =0

In the following, statistical continuum mechanicsbysis is applied to a two-phase
composite for the prediction of elastic propertigstheoretical framework has already
been developed for isotropic distributions in cosifes by Garmestani, et. al. (1999,
2000) and for a textured polycrystalline materigl Adams, et.al. (1995). Here, a
detailed discussion is provided for the calculatidrihe effective elastic constants for

isotropic distribution and will be extended in nekipter to anisotropic distributions.

Taking ensemble (average) from eq. (3-20):
<aij (X)> = <Cijkl (X)&y (X)> (3-26)

Substituting the local strain and stiffness frors.€§-24) into eq. (3-26):
<Jij (X)> = <(<Cijkl > + Cijq (X))«gm > + &y (X))> =
<aij (X)> = <<Cijkl (X)><£kl (X)> + <Cijkl (X)>:§kl (x) + Eijk <5k| (X)> + Eijkl (X)Em (X)> (3-27)
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The ensemble value gt (x)) and (g, (x)) are independent of x, so that they can

be taken out of the ensemble:

0
—9— ——t—

(0,0 = (G (X)) (& (X)) + (G (X)){E 0 + (G50 () ) (&5 (X)) + (G (0 (%)) (3-28)
Applying eq. (3-25) into eq. (3-28), the averagest is calculated by:

<Uij (X)> = <Cijkl ><‘9k| > + <6ijk| (X)Ey (X)> (3-29)

A fourth rank tensom, ., defined here in such a way to show the heterogeireit

mnkl

strain field by the following relationship (Garmast, 2000):
Eq = Ay <‘9k|> (3-30)
Substituting the definition of effective elasticnsbant from eq. (3-22) into eq. (3-

29) and using eg. (3-30), the effective elasticstamts can be derived as:
Cia = (G ) * (Cjm (N aiq (%)) (3-31)

Therefore, in order to calculate effective elasbastants, the second term in eq. (3-
31) needs to be calculated since the first termbmaoalculated easily by assuming an
average value for elastic stiffness. For this pagpthe equilibrium equation (eq. (3-
19)) has to be solved in order to estingfg. By substituting local stress and strain
from eq. (3-20), into the equilibrium equations @g. (3-19), an equation for
displacement is obtained. Differentiating this égqraand multiplying the result twy,, ,
the second term in eq. (3-31) can be derived. Tiewing is the details of the

derivations:

Substituting the local moduli in the equilibriumuadjon,
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((<Cijkl > + Eijkl (X))gkl )’j =0
(<Cijkl > + Eijkl (X)),J. &y (X) + (<Cijkl > + Eijkl (X))fkl,j (X) =0=
Cin; (X €q (x)+ <C|jkl >€kl,j (x)+ Ciw (X & (x)=0=

(610 (024 (X)) + (4 )&, (x) =0 (3-32)

Now, substituting local strain in eq. (3-32):

(Eijkl ()€ (X)),,- + <Cijkl >(<£k|,j > + &y (X)),]_ =0= (Eijkl ()€ (X)),j + <Cijkl >Ekl,j (X) =0 (3-33)
Substituting strain in terms of displacement fram (@-21) into eq. (3-33):

(Eijkl (X)€, (X)),j + <Cijkl (X)>UKITJ + <Cijkl (X)> U =0 (3-34)

The repeated indices (k) in the last term in 8¢34) can be reversed, therefore:

(610 0924 (), + {0 ()22 + (e () 2 =0, (3-35)
since(cy, ) = (Cy ), €q. (3-35) can be rewritten as::

(Eijkl (X) &y (X))'j + <Cijkl (X)>Uk,|j (X) =0

(Gya )00, /0, 9%, +0/0x; [, (x)e, ()] =0 (3-36)

The solution for this PDE can be written as angrdaeequation using the Green’s

function defined by the following PDE (Kroner, 1972
(G )07Gig (%, X) /0, 0%, +0,0(x=X) =0, (3-37)

where xand x are two different positions in the media, ad(k—x is)the Dirac’s

delta function for the vector relating any two gsim the microstructure, and the term
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0,,0(x ~ X) represents the ith component of a unit force gatinand being parallel to

the direction p for a fixed point, p (Zarka,1987).

Green'’s function in the case of isotropy can bengelf by a closed form and for the
case of anisotopy has to be calculated numericallje details of the calculations of
Green’s functions for both cases are presentecppeAdix A1 and A2 . (Bacon (1978),
Adams et. Al. (1998), and Garmestani (2000)).

Therefore, the displacement from the above PDEbeasolved by:
0, (%) = [ Gy (X O[& s (x Je.o (x )} /0 X, (3-38)
\%

where dXis the volume integral on the volume element adoowsition X,

By differentiating the above equatiap, (x) is calculated:

0

0, (x)= J.ka,u (x, x')a[épl,s(x')s,s(x')]/ax,' dX + \J;ka (x,x')a[ép,,s(x')s,s(x')}/ax' ox,dX’

\%

(3-39)

It is observed that the second term is zero, stheeterm [Eplrs(x')g,s(x')] IS just a

function of x whereas the derivative is with respect to x. Tteeee the strain can be

calculated as:
£, = J' %[ka,u (x, x')+ Guox (x, X )]O[Eplrs(x' )e,s(x')]/ax,' dX’ (3-40)
\

Defining the first derivative of the Green'’s furartias follow:

Ky = (Gipw + Gupic )12 (3-41)
and multiplying the strain in eq. (3-40) by theuebf the local modul€,,, (x) and

averaging with respect to x:
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<6ijku ‘gku '['[Kkpu uku a[Cplrs( ) rs (X')]/aX; dXdX ' (3'42)

where dX is the volume integral on the volume elehagound position x. Applying the

equation for local strain from eq. (3-24):

(B (0B () =] JKkpua[ajku e (X /0, X dX (e, (x)

, (3-43)
+I I Kkpua[cljku plrs( I)grs (X. )]/axl dx dx
Vv
the integral over the variable x can be shown aetisemble average:
<Eijku (X)gku (X) = I Kkpua<6ijku( plrs( )>/0X| rs dx
(3-44)

+ j Kkpua[ Ciua (X p,,s(x')Ers(x'»]/ax,'dX'

In above equation<§jku(x)Epmrs(x'» is called two-point correlation function and

based on the definition of the correlation funcsion chapter 3, this function for

variablesc,, andc,,, is defined through the following equation:

(G (o6 ) = [ [ G (s ()P (x X [ W), (3-45)

where B is a two-point probability function for two states handh', and this function
can be derived for composites by the following treteship:

It is observed that the second term is a threetmarrelation function. At this time
the calculation is truncated up to a two-point @tabty function. For this research the
second term is neglected. Therefore to get theastiarctural information and correlate
them to properties, one needs to calculate theifitsgral in eq. (3-44). This term has
been calculated numerically for isotropic compasitey Adams and Garmestani in
previous works. However, it will be shown analyligan next chapters that since the

composite was assumed isotropic, their final resdltin’t include the morphological
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information. It will be proved in next chaptersatithis term consists of two integrals
where one of them is completely dependant on om&-poobabilities which shows up in
calculations of elastic properties of isotropic @msite. Although this term appears in the
form of two-point correlation functions in the foahations. In later chapters, analytical
and numerical analysis of the results will illustrahat the contribution of two-point
statistics is significant for anisotropic compositand therefore the homogenization
relations will be extended to anisotropic composéerd textured polycrystalline

microstructures to observe the two-point statistid@rmation contributions.
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PART II:

EXTENSION OF HOMOGENIZATION RELATIONS TO

ANISOTROPIC DISTRIBUTION
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CHAPTER 4

ANISOTROPIC HOMOGENIZATION RELATIONS

The effect of anisotropy was not investigated ith ifuprevious works (Adams 1995
and Garmestani 2000) and no other work clearly stvnether and how the one-point
and two-point statistics contribute in differenpég of distributions. Therefore it is very
important to extend homogenization relations teatnopic distributions and study the
effect of two-point statistics. In this chaptere tborrelation function is studied in detail
for composites and polycrystalline materials anéiaalytical form will be derived for its

representation.

4.1 Two-Point Probability Functions for Composites

For two-phase composite structures, the applicatiotwo-point statistics requires
two different sets of probability functions: thesti set can be chosen to describe the
probability distribution functions for the interam of the two phases. This reduces the
problem to a composite formulation ignoring thestajline phase for each component.
The two phases can then be taken as isotropicnjsotaopic) phases and the effect of
textures can be incorporated in the anisotropyrpaters in the constitutive relations.
The second set can consist of the probability ibistion functions for the individual
crystalline phases. This means incorporating tfecebf orientation for each phase.
Based on the arguments presented earlier, thedpgtoach will use the composite

formulation and develop the property space fortiih@phase structure. Recall eq. (3-
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45) the correlation term can be calculated by tilwing equation when the Lame’s

constants are known for the two isotropic phases.

(0 (e () = s P + s s Py + C s P + E 7 s i
(4-1)

where, C*,C? are defined as the difference between propertiesaoh phase and the

average value:

Ct=C'-(c)=C'-(uC* +v,C?)=(ct -C?),

€7 =C7-()=C7 - [uc* +v.C7)=(c7 ', )

4.2 Modified Corson’s Probability Function

As introduced in the previous chapter, Corson’sophbality function is appropriate
for a random orientation. For a two-phase comppsdad j correspond to phases 1 and
2, and for a polycrystal i and j can take valuesrfrl to n which is the total number of
grains.

This reduces the number of two-point functions darf R(r), Pix(r), P(r), and
P,2(r) in the case of composites. Whereas for a hommgge composite, there is just one
independent probability function {f. The other constantsj cand r are also
microstructure parameters; i$ equal to 1 for a random microstructure (Gokh20©3)
and g is a scaling parameter representing the corr@lalistance. Corson’s equation
works very well for distribution in random micrasttures, however to capture the
anisotropy the equation needs to be modified. Thaseirical coefficients can be

reformulated into an anisotropic form,

G;(6.A)=c?(A+(1- A)cog6-6,)), (4-3)
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where A is a material parameter that represents dibgree of anisotropy in a

microstructure such that A =1 corresponds to amrapec microstructure and A=0

represents a complete anisotropic composite,c#mhd g, are the reference empirical

coefficients and can be calculated from the micuastiral statistical information. By
applying this formulation the anisotropy can betaegd in all direction by throwing
vectors in different angles. A schematic diagramshiswn to represent the measurement

of two-point statistics in anisotropic microstrugs. This equation will be further

TQMPQ]
0t 5h

(@) w=10 (b) =30 (c) v =60 (d) =050

studied in detail in the next chapter.

LSy (Y (Y4
NENT A I
o8| [a 4 |4/

Figure 4.1 Schematic representation of two-point mbabilities measurements in an anisotropic

microstructure

4.3 Two-Point Probability Function for Polycrystalline Materials

If all the volume elements possessing a uniquentai®n are denoted by dV, and
the total volume of the sample is denoted by Vnthe orientation distribution function

f (g) can be defined by:
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v _ ]
v = f(9)dg, (4-4)

if all orientations have been considered in the @om

J N =[1(e)o=1, (4-5)

dv . . . . . .
where Vshows the volume fraction of a specific orientatidghat is one-point

statistics. By measuring the two-point statistibe tstimation of properties can be
related to the morphology.
The two-point correlation functions can be extendedoolycrystalline cases by
rewriting eq. (3-10) in the following way:
<Eijku (X)Epmrs (X' )> = _[J.Eijku (X)Epmrs (X' )PZ(X| g, X | g;)dg;dg;, (4-6)
where i and j are the indicators for each crysi#hwpecific orientation and they can
vary from one to the total number of crystals (Mhd B is a two-point probability

function that measures the correlation between emdfft orientations in the

polycrystalline microstructure. This can also hewn in the form of summation:

(1 OComs (X)) = 2D Cyas (X)Cpes (IR (4-7)

i=1 j=1
where P is defined for different orientations ine timicrostructure. A schematic
representation for the measurement of two-pointissizs is shown in Figure 4.2. To
measure two-point probabilities, orientations facle of two crystals that are connected
by a vector iy have to be known. More explanation will be givercirapter 6, where the

statistical homogenization will be applied to palstalline microstructures.
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Figure 4.2 Schematic representation of orientatiowoherence function for polycrystalline

microstructures

4.4 Analytical Analysis of Homogenization Relations

It was shown earlier that the effective moduluga@ be calculated through eq. (3-
31), where the second term is defined by eq. (3-Rérall eq.(3-44) and ignore the

three-point statistical term:

(C (80 () = [ Kigu0(E (s (x )) 0 ()X (4-8)

\%
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A fourth ran tensor <a> was introduced as the diewvian the strain field,
<‘§ku> = <akurs><£rs> ’ (4_9)
Substituting the above equation in eq. (4-8) andtorg <£ku> from two sides, reduces

the equation to:

<Eijku (X)akurs> = I Kkpua<6ijku (X pIrs( )>/0X| dx (4-10)

\%

Applying integration by part to the above equatibran be rewritten as follows:

<Eijku (X)akurs(x)> = _[al_Kkpu <Eijku (X plrs( ) l/axl dX' - _[Kkpul X, X )<C|Jku plrs( ')>dX' ,

(4-11)

whereK,,, is the second derivative of the Green’s function:

Kioun = (Grpun + Gupn) /2 (4-12)
Let's rewrite the above equation as a summatiawofintegrals as in the following:
<6ijku(x)akurs(x)> = Pies + 1 Ziis, (4-13)
where the two terms df's, | %is can be calculated by
s = ] 0 X ) (G (s )] ,0X (4-14)
v
and

1 Zis = = K g 06 X ) (G (0T s (X ) )X’ (4-15)

v
In last sections, two-point probabilities were defi in composites and
polycrystalline microstructures, now the integraisequations (4-14) and (4-15) are

calculated here:

59



The first integral is a volume integral which candonverted to a surface integral by
applying Gauss’ theorem. Guess Theorem convertgdlene integral in a sphere with
infinite radius to a surface integral with the bdary of this sphere. The resulting
surface integral requires evaluation on a surfagafmity and on a surface enclosing

the singularity ofK, ,, at x=0.

kpu

Choosing both surfaces as spheres and applyingsGaesrem:

¥ [I (G (%) s x’)>KkpudAnj (4-16)

X=X' - 00

s = [I (6 ()€ (X) KkPUdAnj

x=-X'-0

To calculate the two surface integrals, the coti@a term shown

bY (€1, (X)C,ms (X)) has to be evaluated when-x — 0 and X=X - . When the

distance between x ankl reaches zero, then the correlation will be indepan of x
(constant), and when the distance between xangkaches infinity, there will be no
correlation between the two points (zero). This banproved for the case of a two-
phase composite by using eq. (3-14).

P11 -V
When x-x - 0 then:<P, - 0
P, -V,

Substituting these values in the definition of etation term (eq. (4-1)):
<E‘;”-ku (x)Epmrs(x')> = élijkuélpmrsvl + ézijkuézpmsvz = Const , (4-17)

2
P11 -V

and whenx—-x — o, then: = Y
12 7 V1V2

2
P, -V,
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Substituting these values in the definition of etation term in eq. (3-46) and applying
the values ofC! and C?into eq. (4-1):
(G (s (X)) = (C, = C, V2V = 2(C, = C, v vy, +(C, —C, Vv =0 (4-18)
Therefore, the second term in eq. (4-15) will baeado zero and the components of
the first integral (%is) can be calculated by:
ijrs = (€€ pmrsVy + €€ pmrsV, )KC (4-19)

where:

)

KCunm = | KA, (4-20)

and is evaluated as follows:

i 8C_;
Ke,, =Kc,, = (43-45x) , (4-21)
8G
Kcijji = Kij = Kciijj = Kcjjii = —(2/3+—2_/15X)
8G
where y is the average properties of two phases:
A+G
=L = 4-22
X A +2G ( )

Note that i and j can vary from 1 to 3, but ther@® summation on the indices in eq.
(4-21). It is observed thdltis is the contribution of one-point statistics sirtae only
variable contributed in the calculations of eq2@)-is ¥ and this is the average value
of elastic properties of the material. Therefoiie term reduces to the volume fractions
of two phases as the limiting values of two-poirghabilities.

Recall the second term in eq. (4-13):
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1 2irs = = [ K g (% X ) (G () s (X)X,

v

To calculate this integral, this integral has tachiulated over a sphere with infinite
radius. The infinite sphere here is defined as fzerp where for bigger spheres the
correlation term will be zero. Analytical analysé this integral illustrates that when

r -~ 0orr — o the correlation term will be a constant value aad be taken out of

(x,x)dX and multiplying that by the correlation term,

the integral. Evaluatinq K koum
\

|%jrs is calculated for two limiting values. It can deown that this integral is zero (the
proof is shown on the following pages).
Therefore, the second integriliys is now needed to be evaluated between two

limits of r, and R. Theses values are defined as the limiting vaioethe radius of the
sphere.R. is large enough so that the correlation will dissgr for larger values than

that and ¢ is small enough so that the value of the volunegiral (second integral) will
not change by changing its value. The other impbrissue here is thay has to be
chosen small enough so that changing its value ndloehange the probabilities
measured in the microstructure anymore.

Recall that there is just one independent proldgdilinction when the composite is
isotropic (R1) and also this is a function of r. Therefore,ater probability functions
can be rewritten in terms of fas follows:

I:)12 = I:)21:\/1_ Pl:l
and
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For the case of isotropic composites B just a function of the value of vector r.

Let’'s assume an exponential form far,RANd then the correlation term can be rewritten

as.

(CComs) = 01 + 1, exd-cr") (4-23)

Therefore, the second integral in eq. (4-13) aanelwritten as:

| %jrs = —J. K oum (% x')[/(1 + K, Exp(—cr “)]dX' (4-24)
\%

By using the definition of isotropic Green’s furwti K,um is derived to be (details

are shown in the appendix):

Kigun =Y [ K 8,80 + (K = (8,00 + 3,04) ] I

um™ pk

+[(3_3K)(r MO +T rub—kp)dukdpm_ 3<(rmrp5ku 1050 + Tl 5O + 1O ]/| |

[ rprmrurk /| r|’ ]

, (4-25)

Some components of the integtdls are evaluated here as an example:

jKlde J/87zu”j[ (K - 29 sip+( 6 1K) cdo sip+ 16 ct8 S|

rég

[k, +K,Exp ~¢" |Jrdrdédg= 0
jKlde J/87zu”j[K sing- K sifg+ 18 sifg cdd shp|| k, +x,Exp ~¢r" | (4-26)

rée

/rdrdédg= 0
IKllzde ]/87;11[” - ) sinp+( 3- X) sifg sitg- B cd¥ sip
rée
+ K5 Sl Ce5 W [kt Kk Exp o’ ]/r)drdedqo: 0
It's observed that the terms that have to be iateghk with respect to r are

completely separated from the rest. Therefore twhe following integrals have to be

calculated as:
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jdr/r—llm(ln(r)r%)& _=In(R./1,)

-0

2 N R
jExp( cr' dr/r %{In In Exp( cr ))+|n(EXp(—Cr”)+ n (E;(DZ(' cr )+K}
1
E{In In Exp( cR" )/In(Exp( or, ))
+In(Exp(-cR")/Exp(-cry")

+In? (Exp(—c&“)/ Exp(—crO“))/2.2!+K }
So, the integration with respect to r will giveiaite value and the integration over

@ and ¢ for the rest of the integrand will result in zeBn, the whole integration will
result in zero.
In the same way, the general form of the integaal lbe shown as:

[Kii (xx)dx =0

\Y%

j K (% x)dX =0, (4-27)

\%

[Kiy (xx)ax’ =0
\

where i and j vary from 1 to 3 indicating threeedtions in the spherical coordinates.
Note that there is no summation on the indicegyin4-27).

Considering eq. (4-24) and eq. (4-2Tjis will be shown to be zero for isotropic
materials. This is in agreement with the numenieallts of Adams et al. (Beran, 1996).
In their work, as the Oxygen Free electronic (ORE)y 101 copper plates were nearly
isotropic, it was observed numerically that the tdbntion of the second integral is
almost zero in the calculation of elastic properti&o the effect of spatial arrangement

of the crystals was not observed.
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Also note that in the previous works by Garmestfi00) only an isotropic
composite was considered. Therefore, the effemt@phology and spatial arrangement
in the microstructure on properties was not conafeevident. This fact has been
derived and proven in this chapter analytically.rtfermore it has been shown
analytically that the contribution of the two-poistiatistics is not zero in anisotropic
composites. In the following chapters, the effdfobne-point and two-point statistics in
the homogenization relationship for elastic prapsriof materials will be studied in

detail and analyzed numerically for composites jgolgicrystalline materials.

4.4 Implementation of the Structure-Property Relations Basedn Two-Point

Statistics

Now that the homogenization relations has beemeleie to anisotropic distribution
and the effect of one-point and two-point has be&ndied analytically, several
programs will be written to implement the formutetts. Therefore the numerical results
will also show the contribution of one-point andotwoint statistics in structure-
property relationships. Figure 4.3 shows the fitwart of programs written based on the
homogenization relations. The spatial informatiobowt the morphology of the
microstructure (composite or polycrytslalline), theperties of the constituent phases
and the sample symmetry is assumed to be as igpat kinplementing the established
structure-property relationships the correlationwieen the microstructure and their
properties will be observed and studied and miouosire optimization will be

performed based on that.
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CHAPTER 5

HOMOGENIZATION RELATIONS IN COMPOSITES

As it was discussed in last chapter, the two-pstatistics has a significant role in
calculating the elastic properties of anisotropamposites. This has been proven
analytically in the last chapter. In this chaptBe homogenization relationships will be

applied for several isotropic and anisotropic cosil@s.

5.1 Simulation of Al-Pb Composite- Property Enclosure

In this section the homogenization relationshigrevious sections are applied to
two types of composites that are computer generdt@dt an isotropic composite with
a randomly distributed second phase is considelreduch a composite, the probability
distribution functions are isotropic and indeperideh orientation. In this case the
probability functions in eq. (3-14) are sufficietd characterize the microstructure.
Next, a special case of an anisotropic compositecassidered such that the
microstructure of any section perpendicular to ai@aar direction has the same
statistics. The anisotropy is then considered iy two sections of the composite. In the
simulation of this microstructure, the probabildystribution function changes with
orientation and magnitude of the vectot for each section which was shown in Figure
4.1. The measurements of this composite on artioegeerpendicular to one particular
direction provides the same statistical informatithin which the statistics maybe

anisotropic.
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5.1.1 Isotropic distribution

For a randomly distributed isotropic composite, tbarelation functions are
independent of orientation and are just functiothef magnitude of “r’. Therefore, the
volume integral in eq. (4-12) can be separated twtnintegrals in which one of them

includes the variable r and the other one inclgdesld. The integral has been shown

to be zero in this case (egs. (4-26)). This méhatthere is no contribution from the
two-point statistics for an isotropic material amly the first integral or the one-point
statistics (volume fractions) contributes to thieeive elastic properties. This result is
in good agreement with the experimental resultsAdédms et. al. on Oxygen Free
electronic (OFE) alloy 101 copper plates (BerarQ6)9 In their work experimental

results showed that there is a negligible contrdoutfrom the second term as the
material had a very small anisotropy.

In this work, the two reinforcing phases are Aluorm and Lead with Lame’s
constants of 4 =64.286,G =25) andA =25.88, G=4.926), respectively. The effective
elastic modulus for an isotropic distribution i®féd as a function of volume fraction
in Figure 5.1 and Figure 5.2. Also, in these fegyrVoigt upper bound and Reuss lower
bound that are calculated by an imposed uniformirstand stress in both fibers and
matrix are shown. (Voigt, 1889; Reuss, 1929). ddion the results based on Self-
Consistent method, Hashin-Shtrikman bounds, andwdlxapproximations are shown
for comparison. The simulation data has been asopared to Paul model (Johnson,

1991). This model assumes all the particles ab&c@and an average value for
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Figure 5.1 Effective elastic modulus of Al-Pb comsite (isotropic)

elastic modulus is calculated. This model showsnérmediate value between upper
and lower bounds. As it was mentioned before, tlaxwll approximation is equal to
HS lower bound since the second phase is stiffer.

Figure 5.1 shows the variation of the elastic modulor Al-Pb composite for
different volume fractions of Aluminum. It illusttes that the statistical model provides
a good estimate for the elastic properties. Tlegliptions of the statistical model seem
to be closer to the upper bound for larger volumaetfons and closer to the lower
bound for smaller volume fractions. The differermmween the predictions and the

upper bound decreases from 80% to 13% as the spt@se volume fraction increases.
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In addition, for smaller values of volume fractiom®st of the models are coincident
whereas for large values of volume fraction thdlydpart.

The statistical predictions for the shear modufithe composite (commonly known
as G) are shown in Figure 5.2. Three elastic aeffts (G111, Ci122 and G17) can be
independently predicted for this simulation. Thea modulus, @) can be predicted
from Cy111and Gigothrough the isotropic relation as:

G=@/2)(Cyy;—Cyyp) (5-1)

Shear Modulus of Al-Pb

O T T T T
0 0.2 0.4 0.6 0.8 1

volume of the second phase(Al)

=== Upper Bound = |ower Bound == C1212(sts)
—a = G(stst) == SC —@— Maxwell

Figure 5.2 Effective elastic shear modulus of Al-Plisotropic)
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The simulations show that the values obtainedfgs are very close (identical) to

the upper bound. The differences between theselatdd values and the upper bound is
less than 4%. Therefore, calculated value gfi{drom simulation doesn’t provide any

new information. However the values obtained froftY2)(C,,,-C,,,, are good

estimatedor the shear modulusy) of the composite. It is observed that the resoits
the simulation are very close to the upper boundtlie larger volume fractions of
aluminum, and closer to the lower bound for smaliglues of volume fractions. The
statistical simulation values have in addition canmsal with Hashin-Shtrikman bounds,
Self-Consistent and Maxwell model. It is that tresults are in good agreement

especially for smaller values of volume fractiofsh@ second phase.

3

Figure 5.3 Digital representation of the anisotropi composite
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5.1.2 Anisotropic distribution

The effect of anisotropy is examined here by caréig) a special type of a two-
phase composite that gives the same anisotropitribdison in every plane
perpendicular to a particular direction (Z-direatid=igure 5.3). This means that the
three-dimensional distribution function can be nuead to be identical from any plane
normal to this direction. The two individual phasgshe composite are considered to
be isotropic and volume fractions ) and the degree of anisotropy (A), which was
defined previously, are considered as two desigarpaters in this work. In this section
the degree of anisotropy is calculated for threapas of Al-Pb composite by having
the distribution of . The volume fraction of Al in the samples is 2B0%, and 40%

respectively. Recall eq. (4-3), at

0=6,-[c]  =¢

- A=|g 1 =yasEC o (53
6=6,+7 - ¢ A=[6,],,,/[6],., = VASPECT RATIO (53)

ij

Jw =07
Therefore to calculate A, the lowest and largefitevaf “c” needs to be identified.
In other words,8°has to be known. As an example the measured valugs have
been shown in Table 5.1. It is clear that the maxmvalue for m is 1.092 & = 90and
its minimum value is 0.028 &t= 0. Therefore, the value of A has been calculatdatto
0.0258 for the case wf=30%. The values of A forv=20%and 40% have been

calculated to be 0.01 and 0.048 respectively whrehin agreement with the aspect ratio

of corresponding microstructures.
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Table 5.1 Calculation of Degree of Anisotropy (A)n modified Corson’s equation

cua(measured) 6 (calc)

0-5 0.028 0.121
5-15 0.151 0.213
15-25 0.364 0.392
25-35 0.591 0.56
35-45 0.753 0.71
45-55 0.89 0.84
55-65 0.987 0.95
65-75 1.027 1.028
75-85 1.067 1.076
85-90 1.092 1.092
K(aspect R) 30.87

A 0.0258

As an example the fitted curve through the modifteadson’s equation for the case of
30% is shown in Figure 5.4. The fourth rank tersoelastic constants is calculated for
the three samples and the effect of the degreaisbi@opy on properties is studied in
transverse plane. In Figure 5.5 the variationro$atropy is shown for different values
of A for the case of vol2=30%. Note that as Asgdbser to 1, Gi1gets closer to £,

which corresponds to an isotropic distributionramsverse plane.
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Figure 5.4 Modified Corson's equation fitted to meaured values of i,

Al_Pb composite Vol2=30%
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Figure 5.5 Variation of anisotropy in the microstructure for different values of A
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Property Enclosure
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Figure 5.6 A property enclosure for anisotropic comosite Al-Pb (anisotropy)

Figure 5.6 illustrates the property enclosure (tinererse of all variation in inter
relation among several properties for the sameasiaucture) of the composite Al-Pb.
Each point in this enclosure represents a microgtre distribution with a specific
volume fraction and specific anisotropy “A”. Fotaenple, if the axial elastic constant
and shear elastic constant of 35 GPa and 53 GPaneeded respectively, the
microstructure with vol (Pb) =30% and A (degreeanisotropy) of 0.0048 would be an
answer.

In Table 5.2 the effective elastic coefficien®s,,,;and C,,,, of the composite are
also calculated for three samples. In this pddicmicrostructure, Z-direction may be

chosen such that the elastic properties in thactdon,C,,,,, are smaller thai©,,,,. It
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is also evident that although the two phases ateojsic, the statistical model results in
an anisotropic behavior for the elastic modulus.

The contribution of the different higher order stal terms for the calculation of
C,, and C.,,, is also shown in this Table. Thé"@nd & column show the
contribution from the two-point statistical funat® that are included in the second
integral in eq. (4-11). This contribution is 15827% in the calculation of,,,,. For
the case df,,,;, the contribution of the second term is betwee¥ 3hd 47%. As it

was noted before, the second term does not cotdrilon the case of isotropy and is

only observed in the anisotropic case.

Table 5.2 Contribution of one-point and two-point satistics in effective elastic stiffness

Al- | Upper Cun 1-point | 2-point 1-point | 2-point | Lower

C3333

vf Bound Statistics| Statistics Statistics| Statistics| Bound

20%| 51.45 | 42.47| -6.58 2.39 41.89 -6.58 2.97 41.43

30%|59.30 | 51.59 | -6.49 1.20 46.99 -6.49 5.82 45(02

40%| 67.15 | 59.129 -5.85 2.17 53.92| -5.85 7.37 49.28

5.1.3 Composite design

To illustrate the use of the present methodologyomposite design, an example is
given for a certain design project requiring knadge of the variations in the ratio of
the elastic moduli €334Ci11;. The composite system will be limited to the one

discussed in the previous sections (Al-Pb). Letissider a certain design in which the
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ratio of the elastic moduli £534C1111 needs to be minimized. The composite in this
design project is quantified using the two-poirtistical functions defined in equation
(4-3). The design variables are now defined basetivo parameters: volume fraction
and degree of anisotropy as the representatiomefamd two-point functions. Let us
consider the example above and for the purposiusefration, the three microstructures
above are considered. It is clear that these thmiesostructures can be extended to a
large set of microstructures by varying A and tléume fraction of the second phase.
The connection can be set up as an analyticalftoaesign using the homogenization
relations explained above. Calculating the raficCes34C;11;1 for different values of
volume fractions of (Al) and A (degree of Anisqiy), the statistical analysis above
shows that for any given values of A, the composigs the lowest ratio of the
longitudinal elastic properties with respect tongverse elastic properties at vol
(Al)=30%(Figure 5.7). It means this methodologynche used to predict the
microstructure in a specific design. The designst@ints would lead us to a set of
optimized properties as needed. The microstruabfirdhe composite is predicted in
terms of the statistical parameters (here as volfrawtions and degree of anisotropy
factor). However this microstructure is not unigé®r instance for this case, having
vol(Al)=30% and A(degree of anisotropy)=0.0258 réhare a variety of microstructures
that ensure this specification. Meanwhile, knowihgse two parameters limits the
microstructure to a subset of microstructures &ipecific volume fraction and degree
of anisotropy. Therefore, two parameters definedthis section are adequate to

represent the microstructure needed for design.
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Figure 5. 7 Composite Design- Minimizing the longitdinal/transverse properties of anisotropic Al-

Pb composite

5.1.4 Numerical analysis

To calculatd?®js, 1/3 Simpson integration method (the detail of thde is
demonstrated in the Appendix) has been used astagration method. For this

purpose, a sphere is divided info<n, xn,units. Wheren, is the number of sections
for variable r (radius) andn,and n,are the number of sections for variables

8{2nandX¢(n, respectively. The variable r also changes betvweando. There
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are two issues to be taken into account to pertbarintegration. One is the singularity
of the Green’s function at r=0 and the other isdé@nition of o for r in the integration.
Empirical forms of the probability density funct®mvere introduced earlier. It can
be shown that for all physically realizable forniglee probability density functions in a
random media, they merge to a constant value ge lar(as shown schematically in

Figure 5.8)

ViV b

Figure 5.8 Schematic diagrams of probability functbns

The correlation function defined in eq. (4-1) beesnzero when the probabilities
P11, P12, Po1, and B, reach their limits. Therefore, a Coherence RadRy will be
defined as the limiting value of the probabilitynfions. This value should be used as
an upper limit (oreo) for r in the triple integral. Since the Greefuaction is undefined
at r=0 therefore r should be chosen a small nonzate. For this purpose, a numerical
procedure should be adopted that calculateginaby reducing r until a saturation is

reached for the value of the integral. On the ottend “g” has to be chosen small
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enough so that the measured probability functioms'tdchange for smaller values.
Time of operation is another aspect that has todmsidered. For instance, in the case
of Al-Pb composites (Garmestani, 2004);0,#0.03 micron and\r=0.1 micron, it takes
about 20 minutes for the codes to calculate onstiel@onstant in a Pentium IV
machine, 2.4 MHZ. Thought, if is chosen the same and=0.01 then it takes about 2
hours and 35 minutes to calculate one elastic aanstThe difference between the two
results is about 0.04 percent. Whereas for r=0.0030.01 it takes about 20 hours

where the differences in the calculation compatmtie first case is about 0.5 percent.

5.2 Samples of Al-SiC Composite

Elastic homogenization relations based on two-psiististics have been applied to a
two-phase composite in previous chapters. It wasvahanalytically and numerically
that two-point statistics doesn’t contribute in teealuation of elastic properties of
isotropic composites; nonetheless it has a corafiereffect in the case of anisotropy.
The key to this approach is the correct representatf the microstructure. In previous
chapters a simplified empirical form of the two4poprobability function was used for
the microstructure representation whereas in #isian the statistical information will
be measured directly from the microstructure.

For this purpose, elastic properties of two sampfeal-SiC composite are calculated
by using the two-point statistical homogenizatienhnique, and the contribution from
the two-point statistics is discussed. The resfltse simulation will be compared with
experimental values to validate the applied homizgéion observed technique. The

composite was fabricated by extrusion with differdistributions of the two different
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sizes of Al particles in SIC particles. So thefetgnce in initial particle sizes of SiC
reinforcement phases and Al-alloy matrix results tme heterogeneity of the
microstructure. The micrographs of the two samptesshown in Figure 5.9. Itis from
the micrographs that the particles of SiC are ehest in the case of PSR: 8.1, therefore,
they introduce more anisotropy in the microstruetur one direction compared to the
microstructure with PSR: 2:1. The validation ofstpresumption will be studied by
computing the elastic properties of the two sampl@he distribution of the two-point
correlation functions in these microstructuresyimsetric with respect to the extrusion
axis. Therefore, the extrusion axis is chosenhas vertical axis. The probability

distribution function changes with orientatgppnand magnitude of the vector™on
each section, Figure 5.10. The measurementstdmposite on any section including
the vertical axis (in direction 3) provides the sastatistical information within which
the statistics maybe anisotropic. Therefore, nressent of two-point correlations on
just any section which includes the axis of symgnetisufficient for simulation.

In this simulation, the two-point probability funats are measured directly from the
microstructure and averaged as follows [Gokhal®320

joz”[pij (r,6)], d6

T (5-3)
A dé

(py(r)) =
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Figure 5.9 Micrographs of two samples of Al-SiC
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where

b, (r.6) = J’OA p; (r.6,4)singdg (5-4)
g, and ¢ are respectively the angles with respect to x-axid z-axis in spherical

coordinates.

3 (Extrusion direction
, Axis of Symmetry)

A

v
N

()

/

1

Figure 5.10 Representatiof symmetry in samples of Al-SiC

As an example the measured valuesjefgpe shown in Figure 5.11 as a function of r

and ¢ in each section containing extrusion axis. Als@@son’s equation is used to

measure values ofiPin Figure 5.12. It is observed that the measueddes show an

exponential trend which is the same as Corson’$3et4), and empirical factor “n”
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Figure 5.11 Measurement of two-point statistics iwvertical section for two samples
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Figure 5.12 Curves fitted to the measured values &f; for sample of Al-SiC with PSR: 2:1
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Figure 5.13 Measured P11 for two samples of Al-Si€omposite
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is calculated near 1 that is in agreement with ltesef (Gokhale,2003). {? for two

samples a¥0n ¢ n 45are shown in Figure 5.13. For the case of PSRH&Malues of
P1; reaches to its limit\@ =0.4761) faster than the values of the sample REIR:8:1
reaching its limit > =0.4489).

Using the measured two-point probabilities and aneyg the simulation code based
on the theory described in previous section caleuddastic stiffness matrices for each
sample. The mechanical properties of each phasassemed as follows: (based on
previous experimental data):

E(A)=69 0 GPa ,v (Al)=0.33 ; E(SiC)=393GPa v (SiC)=0.19

In this simulation both integrals in eq. (4-13) Mdk calculated, as the samples are
considered anisotropic. The second integral indudbe two-point statistics
information, which has a major role in the calcalatof effective elastic properties for
anisotropic cases. Therefore the effect of anipgtias introduced by clustering will be
studied in the estimation of elastic propertiesthidse two samples. To validate the
simulation results, ultrasonic techniques were usegheasure the elastic properties of
the two samples.

For the measurements of the fourth rank elasticutusdboth mechanical testing
and non-destructive testing based on ultrasonienigqoes were utilized. Here a brief

overview on ultrasounds is discussed.

5.2.1 Ultrasounds technique

Since sound provides valuable information by trangethrough the media, it plays a

significant role in the nondestructive testing avdluation of materials.
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Ultra-sound is an extension of audible sound witsthér magnitude in frequency.
The wave length of ultrasounds decreases as & mdsncreasing the magnitude of the
frequency into several MHZ. Therefore, ultrasouraile able to detect the smaller
substrate defects, whereas audible sounds detertltdtively large defects in very large
material structures. The ultrasound technique ssesd wave with high frequency,

typically from 100 KHz to 5 MHz to inspect a samfffégure 5.14)

I
Sub | [
SO | Audible Range | —— UHrascric Range ——
Rarge | |
I

I
I
I
I
I
C

1a 100 1k 10k 700k 1M M 100 1G

Figure 5.14 Range of frequency in ultrasound

This technique uses two kinds of waves: (a) theitodinal wave in which the
direction of particles displacement and wave pragiag are the same. (b) the shear
wave in which the direction of particles displacemend wave propagation are
perpendicular ( Mahesh, 1986).

For this purpose, two transducers were used inilthesonic device to propagate the
longitudinal and shear wave and measure the timdigit (tof). The following
equation will is used to estimate the Lame’s cartstay this measurement (Pulse-Echo

mode).
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: (5-5)

where ¢, and c, are the longitudinal and shear wave velocities, lamglthe thickness of
the sample . Alsa, andt_are travel time for longitudinal and shear waveeesively.

Lame’s constants can be evaluated by the followopgations:

G=c’
s P (5-6)
A=clp-2u

5.2.2 Results

In this section all the components of the fourthkralastic stiffness tensor for two
samples of Al-SiC composites are calculated andpewmed with experimental data. For
this purpose both integrals in eq. (4-13) are dated. The statistical results and the
contribution of one-point and two-point statistigaformation for one of the samples

are shown in Table 5.3.

Table 5.3 Nonzero terms of elastic stiffness tens@or Al-SiC (PSR: 2:1) to represent the

contribution of one-point and two-point statistical information

Elastic Upper | Statistics| One- Two- Lower
Stiffness Bound | Result | Point Point Bound
Cii11 Ci1 | 221.76] 196.81 | -16.19 8.76 136.70
Co222 Cyy | 221.76] 196.81 | -16.19 8.76 136.70
Casss Cs3 | 221.76] 214.82 | -16.19 -9.25 136.70
Cii22 Ci» | 149.56] 101.05 | 19.16 0.94 64.5
Ci133 Ci3 | 149.56] 104.53 | 19.16 -2.54 64.5
Co233 Cys | 149.56] 104.53 | 19.16 -2.54 64.5
Cio12 Cuq | 69.469| 62.82 -2.73 3.90 35.29
Ci313 Ces | 69.469| 70.75 -2.73 -4.02 35.29
Cos23 Css | 69.469| 70.75 -2.73 -4.02 35.29
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It is observed that the contribution of the secondgral is about 30 percent in the
calculation of G; and about 60 percent in the calculation gf.C1 and 3 indicate
transverse and longitudinal (extrusion) directidfer example when i equals to 1, C
refers to Gi11.

In the previous section, it was shown tHafs is zero for isotropic composites
however it is nonzero and needs to be evaluatesjb{4-14) in anisotropic composites.
As a numerical proof to show how this term is tbatabution of two-point function, a
numerical example is shown here:

If two different values ofC*™ or (C“"per +Clo )/2 are used in the calculation of

the second integrall{is), it is observed that the value ofjs is calculated to be the
same. In other words the calculation I5frs doesn’t depend on the average value of
elastic properties. This shows that the secondjiates completely the contribution of
two-point statistics and shows the morphology @& thicrostructure, whereas the first
integral is the contribution of one-point statistic

Calculating the inverse of the elastic stiffnesdrimacalculated above, the elastic
modulus and shear modulus in two directions willdadculated from the following

matrix (Lai 1993):
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i Vo TV 0 0 0
E B EK
T e 2 ] - 5
€1 E, E E, 0 0 0fg,
€2 Vi Vi 1 0 0 0 Oz
833 — E1 E1 E3 0-33 (5_7)
26, 0 0 0 1 0 0 |29
28, Gia 20,
2¢,, 0 0 o o X o 20y,
S G ) )
0 0 0 0 0 1
Gy, |

Inverting the elastic stiffness tensor and commatathe above tensor, engineering
elastic coefficients (E and G) in different plamas be estimated. The calculated values
of transverse shear modulusiffsand the corresponding measured values by Ultra

sounds are shown in Table 5.4. In addition Haslkitmi#8nan upper and lower bounds

Table 5.4 Measured and calculated values of transkse elastic shear modulus ()
for two samples of Al-SiC composite

Upper Lower Ultra
Transverse | Voigt HS Statistic SC HS Reuss | Sounds
Shear S
Modulus
69.46 41.71 62.82 40.79 39.17 35.5 41.3
PSR=2:1
72.43 43.94 65.52 42.29 40.92 36.18 37.00
PSR=8:1
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Figure 5.15 Comparing the slope of the elastic regm of stress-strain curves with the simulation

results and other bounds
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(Hashin-Shtrikman, 1962), Voight and Reuss bouadd, Self-consistent approximation
are shown for comparison. The results show tretthasured value for shear modulus
by ultra sounds has a bout 30% error with respedhé statistical calculation. The
reason is that the ultra sound measures the elasgerties of the materials including
the porosity, whereas in statistical calculatioa plorosity has not been taken care of in
the simulation. Therefore, mechanical testing @la better tool to verify the statistical
mechanics methodology.

Using the simulated values of the longitudinal &tasiodulus, the linear behavior of
the stress-strain curve in elastic region is showigure 5.15. The stress-strain curves
obtained through mechanical testing have beengadan elastic region and have been
shown in the graphs. In addition, upper bound (Ydl$¢89) and lower bound (Reuss,
1929), Hashin-Shtrikman upper and lower bound, 8eti-Consistent approximation
are calculated and shown in the Figure for compariso the simulation and
experimental results. It is observed that thedingastic modulus calculated from the
statistical simulation results is the best slopetlie experimental stress-strain curves in
elastic region. The error is estimated to be betm@87% and 20%, where 20% error
relates to the points that have the largest dewiatiom experimental data in elastic
region. As it is observed from the graph, the otbeunds do not provide good
approximations for the elastic behavior of the wstructures.

The elastic moduli in two different directions (fptudinal and transverse) are
plotted for two samples in Figure 5.16. The micapip shows that clustering in the
sample with PSR 8:1 introduces more anisotropyhédlastic modulus than the other

sample. This verifies with the results of the siatan in Figure 5.15. The volume
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fraction of the second phase (SiC) in two micragtices with 2:1 and 8:1 PSR is
estimated to be 31% and 33% respectively. Althotlgh volume fractions are very
close, two-point statistics modeling shows a ddfgrdegree of anisotropy (about 15%
in the two samples). The upper Hashin-Shtrikmannbdeufor two samples are also
shown in this figure and the results show that buand is not able to distinguish the
anisotropy in the system. The upper bounds for kathples show an identical slope.
Therefore it can be concluded that the two-poiatistics contributes in the calculation
of the elastic properties for anisotropic mediagwreas it doesn’t contribute in the case

of isotropic composites.

E3-E1
200 PSR 8:1 |

PSR: 2:1

0 T T T
0 50 100 150 200
E1(GPa)
—eo—PSR:2.1 —A—PSR:8.1

—m - HS (upper B) 221 —=— HS (upper B) 8:1

Figure 5.16 Comparison of longitudinal elastic modulus (E) vs transverse elastic modulus (g for

two samples of Al-SiC composite
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CHAPTER 6
HOMOGENIZATION RELATIONS IN POLYCRYSTALLINE
MATERIALS

Elastic homogenization relations based on two-psiatistics have been applied to
two-phase composites in previous chapters. It masvs analytically and numerically
that two-point statistics doesn’t contribute in tbéealuation of elastic properties of
isotropic composites. However it has a consideraffext in the case of anisotropy.

In the extension of the research on composite maderapplying statistical
continuum mechanics modeling as a homogenizatidmtgque, the effect of two-point
statistics on elastic properties calculation wi# bBtudied in random and textured
polycrystalline materials in this section. For tpsirpose, first a brief review of
statistical measurements in polycrystalline makeriaill be provided and then the
methodology will be applied to random and textuggmlycrystalline materials. A
random and textured polycrystalline Al alloy wille bdigitally constructed in the
computer and the effect of one-point and two-pdimtctions will be investigated in
detail. Then the effect of rolling on elastic prapms of neara Ti-alloy will be
investigated and the contribution of two-point istats will be studied. These
simulations will be compared with experimental iesuo validate the proposed

homogenization technique.

6.1 Statistical Mechanics Modeling for Polycrystalline Microstructure
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As it was stated in third chapter, the probabifitpctions can be defined for any
state variables in the microstructure such as pltaseposition, or lattice orientation. In
the case of polycrystalline materials the one-poimto-point and higher order
probabilities can be defined for orientations dfetent crystals. The orientations of
polycrystalline materials are conventionally sholy ODF (Orientation Distribution
Functions), however in this work the correlatiortween all the orientations will be
considered to be included in the homogenizatioatigiship for elastic properties of
polycrystalline materials. Orientation Coherencendtion (OCF) which has been
introduced by Adams et. al. (1987) and used by @atami et. Al. (1998) is the basis to
include the spatial orientations of crystals in dmnputational simulations (Adams et
al., 1988, 1990). OCF is the probability densityofstalline orientation;gt point i and
orientation gat point j. In other words, OCF represents theetation between every
two grains which are connected to each other bgdaov. Therefore two-point OCF
requires 9 independent parameters to representatnelations, where 6 of them are
orientational and 3 of them are positional. Thiswhaown in Figure 4.2.

The orientation of crystal lattices can be measurgdBackscattered Diffraction
(EBSD) which is a technique that measures crygjediohic information of the
microstructure in Scanning Electron Microscope (SEM

In this technique a stationary electron strikestadt sample and then a pattern will
be formed on the fluorescent screen. This pattem lme used to measure crystals
orientations, mis-orientations and also texturee Tihformation such as locations,

orientations, image quality and confidence index lba stored in a file to visualize the
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microstructure. This file including all of this mfmation is called OIM or Orientation

Imaging Microscopy. This was first used by Adamd &Vright (1993).

Figure 6.1 Representation of Euler's angles

In the mathematical representation, the orientadfoeach crystal which is calleg
can be shown by Euler’s ang(¢§, o, ¢2), wherep, , and ¢, are rotation with respect to

the z-axis and® is the rotation with respect to the x-axis of tigstal (Figure 6.2).

Euler has proved that each orientation in the 3edisional space can be converted to
another orientation by 3 single rotati((¢§ <D,¢2) about x axis, z axis and x axis
respectively. Furthermore, the position of eachstaycalled pcan be shown by 3
variableqr, 8,¢) in spherical coordinates. Therefore the speciicabf each grain can

be shown by 6 independent parameters (3 rotatiads3apositions). By having this
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information, the arrangement of crystals will beowm very accurately and the one-
point and two-point statistics can be measured.

When the properties of the reference crystal hatirgg same orientation as the
sample coordinates is formulated, the propertiestioér crystals can be calculated by

the following relationship (Morris, 1970 and Bund882):
CI‘1i2K in = ailjlaiZjZK ainjn CilizK in? (6-1)
where the matrix[a,.j} is the transformation matrix for the coordinatg/z of an

arbitrary point in the crystal systerKB:{X'Y'Z'} expressed by means of the

coordinatesxyz in the sample coordinate syst&mn= {XYZ} :

Recall the probability for polycrystalline and ndkat here; the orientation of each
crystal is a state variable whereas in compoditestate variables are different phases.
Several sections with differenf are considered for the measurement of the
probabilities. In each section the probabilitiee aneasured for different r apd
Therefore having the statistical information frohe tmicrostructure and the elastic
properties of each crystal the homogenization teglenthat was explained in earlier
chapters correlates the microstructure to the ptigge In the next two sections this

methodology will be applied to simulated and regktalline microstructures.

6.2 Aluminum Alloy Polycrystalline Microstructures

To expand the homogenization technique based onrpoid probabilities to
polycrystalline materials, a digital microstructwél be simulated for a polycrystalline

material in a spherical coordinates and the twaovpcbrrelation functions will be
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measured in this framework. Recall eq. (3-31) iapthr (3) which was derived to

calculate the elastic properties of compositesdasgwo-point statistical information:
Ci = <C|jkl > + <6|jmn (X)@rmq (X)> ,
where the correlation term can be calculated bydhewing two integrals(eq. (4-13)):

(0 002, 0) = [ 0] g (B (00 06 D]/ 0X = [ K b )G ()20 ¢ o0

In above equation<c”.k|> can be obtained using Taylor bound. Two-point

probabilities have been defined in the last sectanpolycrystalline microstructures.
Therefore the two integrals can be estimated ared dfiective stiffness will be

calculated. For this purpose the digital spheréivgded into n, xn, xn crystals to

display the simulated polycrystalline microstrueturA random distribution of
orientations will be assigned to each crystal d&edcbllection of all orientations will be
saved in a file. The elastic properties of a simaglestal (Al alloy) with cubic symmetry
are assumed to be known and shown by C;,, and G,. Having the orientations of
each crystal, the elastic constants can be estihiateeq. (6-1) for each grain. Then
applying Taylor approximation the average elastigpprties is calculated. Therefore
deviation in strain and stress tensor, also intielasodulus and compliance, is assumed
to be in each crystal with different orientationmgmaring to the Taylor average.

Similar to composites, the same method was appl@dhe polycrystalline
microstructure and the stiffness tensor is evatueBence the microstructure is assumed
to have axial symmetry about Z axis, thereforentgasurement of two-point statistics
needs to be performed on one section which incltiteeaxis of symmetry (axis z). As a

result, 9 independent constants are expected talbalated. Then this simulation was
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extended to textured polycrystalline materials bgigning a specified orientation for a
large number of crystals. In this case <0 0 1>am®imed to be the texture direction,
and the results are shown in Figures 6.2 to Figbires

In these graphs the degree of texture varies fromhizh refers to a random
orientation to 100% which is a completely textuggalycrystalline Aluminum. The
polycrystalline microstructure includes 120 graiwhere some of them have the <0 0
1> orientations for the cases of textured micrastmes. For example in Figure 6.2,
20%, 40%,...,and 90% means 20%, 40%,..., and 90% ofgthms have the same
orientations as <0 0 1>.

As it is observed from the graphs, the upper amgetdoounds are very close when
the polycrystalline microstructure gets closer tsirggle crystal (completely textured
polycrystalline) and the bounds are apart whemtloeostructure is completely random.

In Table 6.1, the values of some of the non-zerapgmnents of the elastic stiffness
matrix for the random and 90% textured microstrieguare shown to illustrate the
contribution of the one-point and the two-pointtistacs in the calculation of elastic
properties. As it is observed for a random micradtire, the effect of two-point
statistics in the calculation of elastic stiffnesssery small and varies between 0.04%
and 5%. This is in agreement with the results ftash chapters where it was stated that
the contribution of two-point statistics is nedhitg in calculating the isotropic
microstructure’s elastic properties. However thetabution from two-point statistics in
textured microstructures is between 20% and 50%eréfore the statistical
microstructural information has a significant cdmition in the estimation of elastic

properties of textured polycrystalline materials.
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Figure 6.2 Elastic stiffness of Al polycrystallinemicrostructures in (123) directions for different

percentages of texture in <0 0 1> direction
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C1212 (Al alloy)
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Figure 6.3 Elastic shear stiffness of Al Polycrysthine microstructures for different degree of

texture in <0 0 1> direction
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Figure 6.4 Elasticshear stiffness of Al Polycrystalline microstructues for different degree of

texture in <0 0 1> direction
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Table 6.1 Comparison of contribution of one-point ad two-point statistics in elastic stiffness

calculation for different samples of simulated polgrystalline Aluminum with different textures

Microstructure Taylor | Statistical | One- | Two- Lower
Bound | Simulation | point | Point Bound
Ci111 | 137.73 | 130.77 -6.96/ -0.0029 117.99
Random G122 | 108.04 | 81.08 3.38| -0.16 57.54
Ciz12 | 30.23 | 25.32 -5.20| -0.29 14.85
Cii1a | 116.74 | 115.03 -1.45] 0.26 114.60
90% Textured | G2 | 92.24 | 88.23 0.69| -0.33 83.66
Ci212 | 39.90 | 39.35 -0.68| -0.14 36.37

6.3 Neara Titanium Polycrystalline Microstructures

This method has been applied to nearfi alloy in this section. The as-received

sample of Ti-1100 (commercial CP-Ti) has the follogvcomposition:

Ti+ 6% Al +2.7% Sn + 4% Zr + 0.4% Mo + 0.45% Si

These samples are 5/8” thick plate which wererbliéd and annealed at 600°C for 1

hour. The samples with 3*4*5/8 (inch) were cut frohe plate. Then they were cold-

rolled with 20% 60%, 80%, and 95% reduction. Tha@as were additionally

103



2(RD)

| > 1(TD)

3(ND)

Figure 6.5 Representation of the cross section dfé microstructure to measure OIM and two-point

statistics

submitted to a conventional duplex annealifgd° C for 30min /785° C for 15min). In
order to evaluate the texture gradient throughdwt thickness after the thermo-
mechanical processing, each specimen was groungalighed removing 5%, 15%,
30% and 50% from its thickness. The as-receivetesrand 60% cold rolled samples
have been selected here to study.

A perpendicular section to the normal directiorg(ffe 6.5) has been considered to

obtain metallographic information of the microsture. The information about the

104



60.00 um = 30 steps

(a) As received Cp-Ti (C1=0.883; 1Q=94)

] Boundary levels: 15°
15.00 ym = 30 steps  1Q 5.347...107.471, IPF [001]

(a) 60% cold rolled Cp-Ti (Cl=0.3; 1Q=40)

Figure 6.6 Microstructures of Cp-Ti and their OIM r epresentations
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microstructure has been obtained with using OIMerTthe simulation codes written for
the simulated polycrystals have been extendedad tiee data from the OIM file that
includes the information about the spatial distiifu of the crystals and convert them
to two-point statistical information. For this poge, the microstructure is assumed to
be a cube where the microstructural informatiorthef transverse plane (as shown in
Figure 6.5) is known. On the other hand, it is assd that this plane is repeated in
every section parallel to transverse plane. Theagraphs of two samples are shown in
Figure 6.6. Both microstructures show a randomridigion of orientations. This
micrograph is assumed to be repeated in all theeplaerpendicular to ND.

Therefore, in this case also, by applying the haenagation relations, the effect of
two-point statistics on the evaluation of the pmtips has been studied. Note that in
previous works by Adams (1999) on polycrystallineatemials, the FCC crystal
symmetry was assumed, whereas in Ti-1100 alloyctiistal symmetry considered is
HCP. The sample symmetry is assumed to be orthdstwom

The pole figures for the two samples are showniguré 6.7. There appears to exist
a large component of <0 0 1> about 5 degrees tonthieal direction (ND) titled
towards transverse direction.

The elastic stiffness matrix has been calculated&h cases. The results for 60%
cold rolled sample are shown in table 6.2. Therssfce crystal has been considered to
have anisotropy in direction 3, {££3>Ci117) Whereas the pole figures show some
anisotropy in ND. Therefore the properties in tteemal direction (direction 3) are

larger than the other direction, since the distrdyuin transverse plane is assumed to
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Figure 6.7 Pole figures for two samples of Cp-Ti (& received and 60% cold rolled)

be repeated along axis 3. In addition, since #&mepde has been rolled in direction 2, it

is expected to contain anisotropy in that directidawever, as it was mentioned
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earlier, the reference crystal is assumed to bsoampic in normal direction and in the

other hand the pole figures show texture in NDdfoge theses

Table 6.2 Elastic stiffness tensor calculated for®% cold rolled Cp-Ti samples

Stiffness Taylor | Statistics | One- | Two- Lower

Bound Point Point Bound

C1114(TD) | 162.655 | 162.044 | -0.645 -0.035 161.337

Cx2{RD) | 165.756 | 165.282 | -0.490 -0.016 164.685

CsszdND) | 171.468 | 170.89 -0.651| -0.074¢ 170.049

Ci122 85.293 83.976 0.153 -0.0212 82.613
Co233 74.383 72.671 0.3520 0.0369 71.1234
Cii33 78.789 76.971 0.369 0.0504  75.284
Ci212 40.043 39.519 -0.342] 0.1811] 39.34(
Caz23 47.921 47.678 -0.239| 0.004 47.398
Ciz13 43.445 43.255 -0.248| -0.057 42.876

assumptions and observations results in diminishireg effect of texture in rolling

direction on the properties of the sample. Theraassignificant texture observed in
rolling direction and this verifies the simulaticesults where there is not much
anisotropy observed in the sample in transverséose{in RD) and as a result the
contribution of two-point statistics is not sige#int. In other words the microstructure

stays almost isotropic in transverse directionpiesof the applied rolling.
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To verify the methodology with experimental resultse elastic modulus for the
samples have also been measured by ultrasounddaesrand shown in table 6.3. The
measured values of elastic modulus and shear medylwltrasound are smaller than
the predicted values by statistical formulationeTieason is that the porosity is not
considered in the computations. On the other hamte the samples don’t have a
significant porosity, the difference between theamweed values and computational
results is less than 15%. Therefore, the statisesimations are in good agreement

with experimental results.

Table 6.3 Elastic modulus of two samples in different directhns- Statistical and Ultrasounds

measurement

Sample E(transverse) | Es(Normal) | Ej(transverse)

(Statistics) (Statistics) | (Ultrasounds)

Cp-Ti 107.53 112.36 90.78

Ti 107.53 113.64 91.2

60%cold rolled

It has been shown in this section that the stesisttontinuum mechanics modeling
is a good tool to correlate the morphology of pojgtalline microstructures to their
properties for both cubic and hexagonal crystahisTmethodology is applicable in
random and textured polycrystalline materials aad be used for inverse structure-

properties in future research.
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Table 6.4 Elastic shear modulus of two samples of Titanium itransverse plane- Statistical and

Ultrasounds measurement

Sample G (Transverse) | G (Transverse)
(Statistics) (Ultrasounds)

Ti-Cp 39.063 30.3

Ti 39.52 29.7

60%ocold rolled

It was also observed that rolling did not introdaceignificant difference in elastic
properties. This maybe due to the original micrastire is in rolled condition and

further rolling did not have a significant influenm elastic properties.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

In this work statistical mechanics theory is applie composites and polycrystalline
materials to extend the homogenization relations #&misotropic and textured
microstructures. Statistical functions are usegkfesent the microstructure and used the
statistical information from the microstructure testablish structure-properties
relationships. For this purpose one-point is emgibgis a volume fraction and two-point
statistics as higher order probability functions represent the heterogeneity in the
microstructure. Although there are some works mneslly done in this area, none of them
considered the anisotropy in the microstructurecisipally and the effect of two-point
statistics was not observed. Therefore the homaggan relations have been extended
to anisotropic composites and textured polycryisilimaterials and studied the effect of
one-point and two-point statistical informationrfraghe microstructure on their properties
analytically and numerically.

To study the effect of one-point and two-point istats, several samples of Al-Pb
composite were generated in the computer whichudeclisotropic microstructure and
anisotropic microstructures with different morphpjo and measured probability
functions. Corson’s equation was utilized to lfie tmeasured values and it was observed
that the equation works very well for random disition. The modified Corson’s

equation was though introduced to capture the &ogp in the microstructure. That
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enabled us to show how to represent anisotropyennticrostructure as an additional
parameter for material design and microstructuteropations.

The results have been compared with some micromashmodels and experimental
data. Although there are several micromechanicsefsdd predict the elastic properties,
all of them need to have some assumptions for #atufes of the microstructure.
However using two-point statistics enables us tdrée of any assumptions. In addition,
one of the advantages of statistical mechanics hmagis the use of the homogenization
relations to predict the microstructure from thepgarties for reverse structure-properties
problems. This issue has got a lot of attentioeméyg.

It has been shown that the contribution of two-petatistics is very significant in the
calculation of elastic properties of anisotropianpmsites and textured polycrystalline
microstructures, though that is negligible in ispic and random distribution. This was
the reason that in previous works by Adams (199%) Garmestani (2000) the effect of
two-point statistics was not observed explicitly tire computations. The composite
microstructures were simulated in the computer gngas concluded that structure-
property relations are in good agreement with nme¥ohanics models for smaller values
of volume fractions of the second phase. Though, dliference becomes larger for
higher values of volume fractions. In additionpgpng the methodology to samples of
Al-SIC, it was observed that two-point statistinformation is able to capture the effect
of clustering in the microstructure although othecromechanics are not so.

The simulated data and micromechanical results hbgen compared with
experimental data from stress-strain curve in iel@sgion and the statistical data was the

closest value for elastic moduli compared to oth@romechanics models. This shows
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that statistical functions are good tools to repnéghe microstructures and are able to
capture the morphology of the microstructures.

This methodology was also applied to computer-gaedr random and textured
polycrystalline microstructure, and it was obsentbdt the contribution of two-point
statistics for textured polycrystalline microstures is significant compared to one-point
statistics. However in general, the contributidrone-point and two-point statistics is
much smaller in textured polycrystalline microstires than anisotropic composites.
The reason is that when the polycrystalline mictm$tire has a high percentage of
texture, it gets closer to single crystal and tipper and lower bounds get closer,
therefore statistical information doesn’t play gngficant role. Finally in this work, the
effect of rolling was presented for near-Titanium and it was observed that not much
additional texture was introduced as a result 8b&old rolling and the elastic properties

didn’t changes in the results.

7.2 Contributions

These are some of the contributions of this reseénc computational materials

scientific community:

» Extending the homogenization relations for elaptioperties of materials based

on two-point statistics to anisotropic distribution
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* Introducing a new formulation for two-point probkyi functions in anisotropic

composites and defining a new design parametenéberials optimization

* Analytical derivation of one-point and two-pointasstics contributions in the
calculation of elastic properties of isotropic aadisotropic composites and

random and polycrystalline microstructures

» Application of homogenization relations to polydalBne microstructures with

different textures to observe the effect of teximestatistical estimation

* Application of homogenization relations to HCP muiystalline structures and

observe the differences with composites

7.3 Future Works

Here are some works that can be done in extensithmsaesearch:

» Application of homogenization relations based oon-pwint statistics for porous

materials

» Extending the homogenization relations based onpeint statistics for plastic

deformations
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Using the homogenization relations to solve theers® problem (predicting

microstructure from properties) , MSD (microstruet&ensitive Design)

Considering three-point probabilities in derivatioh homogenization relations

and observe its contribution for different types dv$tribution , isotropic and

anisotropic composites and random and texturedcpgdialline materials
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APPENDIX

A.1 Green’s Function Definition

Green’s function for the case of isotropic matarialdefined by the closed form

eqguation as in the following (Zarka 1986):

. _ A+ [
Gy, (%, X) = 1/8ar,| ) 25, ~2—L| 5, — 2222 |l (A-1)
A+20 1|

where A and L are the average values of Lame’s Constants indimpasite.
But in the case of orthotropy and texture, themoi€losed form, and it can be written in
the following numerical form (Bacon, 1979):

1

G, (x-X) :mi(zz);lds, (A-2)

where:
(), =Cqz2 (A-3)
z, =cosfl; +sin6M (A-4)

T is the unit vector in the direction of the linenmecting two position x and x’. The
general expression for the nth derivative of thedats function is given in the following

formulations(Bacon, 1979):

- (‘1)N T T, % A :(zz)i}lzsi"'ZSN :

= ds A-5
8 |x - x| C'El 0Z,..9Z, (A-3)
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"o 1 1
c':‘U',S(X—X)—mxZ(J‘zl[TS(ZZ)ij —ZSFU}dS (A-6)
_ 1 -1
Gii,Sf (X_ X') _mx¢|:2-rs r (ZZ)”. B 2(ZsTr + ZrTs) I:ij tzz Eijj|ds (A7)
where:
F, = (2), @), [(@),. +(12),] (A-8)

£, =[(@) + (12, [ @), + (@R, |- 220 @) (TT), (A9)
The resulting integral is a line integral around dircle defined by the tip of the unit

vector M fore on the interval (02).
A.2 First and the Second Derivatives of Green'’s function

As it was mentioned in last section the Green’sfim for isotropic composites has

a closed form and the first derivative and secagrivdtive can be derived directly:

‘ K =2)r,0,, + K|r,0 + 120, [P SO
ka’i(X,X) :l/(8/777) ( ) 12i ~kp (312p ki 11X~ p ) _ 3< 12k 12[:3 12 , (A'lO)
el el
where
K=A*H (A-11)
A+20
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K-2)3.0, +K(5.3 +3.0,
ka’ij(X,X):]_/(g/jn-)[( ) kp ll-||- |£ pj “ki + pi kl)
r.12

(6_3K)r12ir12j5kp - 3<(rl2pr12]5ki ety 125pi)_ 3((!’ 1l 1Q6|j I p?k, b I&épj)

5
Ir,|

+

+ 15Kr12i M2iMal 12 }

7
Ir|

(A-12)

A.3 Empirical Coefficients in Corson’s Equation

It has been proved (Gokhale, 2004) that the scalamgmeter “n” is equal to 1 in
Corson’s equation. Here, the proof is reviewed.

In quantitative analysis of the microstructurese tfest lines are thrown in the
microstructure to measure some morphological
Suppose P is the average number of intersections betweenthal test lines and

boundaries per unit length of test lines and issghim the following form:

_ Number of intesrsections with boundari_eF { N[ P (r.@) +Py(r ¢)]}
P = =lim, , ,

Total length of test lines

‘
(A-13)

where N is the total number of the vectors ani the total length of the test lines.

When r reaches a small values close to zero, #tdines intersect the boundaries of the

features (crystals, particles...) not more than ofberefore the following equation will

satisfy:

lim, o{P.(r.¢)/r} =R /2 (A-14)
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In the other hand, the probabilities can be measshyeCorson’s equation which can

be written in Taylor series expansion as follows:

B, =V\V,—Vy.expc, ™ )=vy 2( 1- expter” )

Pt = o[- (1= (1-erm e crny 2k et/ 3e L))

(A-15)
= vlvz(cr“‘l +c7r Y 21-c3r Y3 )
Comparing eg. (A-14) and (A-15) results in:
n=1 (A-16)

A.4 Implementation of the Homogenizations Relations in C++

Programming

As it was mentioned in chapter 4, several progrdrage been implemented to
employ the homogenization relations for calculathastic properties. The program that
is shown here is written for general case of armgit¢ distributions. The input data are
two-point probabilities for Al-SiC composite or amgher microstructure and also the
properties of each phase. The output is theahk tensor of elastic constants. Green’s
function has been calculated in another progranepeddently. It is assumed that the
samples have axis of symmetry and the measurerfanpsobabilities have been done
on just one section. In addition, to apply the bgemnization relations to polycrystalline
microstructures, the first step was to generate rntherostructure in computer with
different orientations. First a random orientatisrconsidered and then a percentage of
the crystals are assumed to have a specific otientalhis percentage changes from

10% to 90% such that the microstructure shows cetalyl random till almost a single
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crystal microstructure. The Green’s function and-point probabilities are calculated in
another program separately. Some of the correspgmpbgrams are shown here:

#include <stdlib.h>
#include <math.h>
#include <stdio.h>

#define Pl 3.141592654

void INDS(int caseO);

void Integs_KKkilj();

void matrix(double leimina, double miu, double d§B¥3][3]); /*PRODUCING
MATRIX FOR STIFFNESS*/

void read_probabiltiesfile();

int del(int i,int j);

double Kisjr(int n0,int i0,int mO,int jO,double @ Houble rs20,double rs30);
double f(double teta,double phi,double r,int i0);

double g( double teta);

double h(double teta,double phi);

[*CASE 6 : Al, Sic */
Double
lambdal=51.084,lambda2=152.60,miul=26,miu2=165;

double

p11[18][1000], p12[18][1000], p22[18][600],

cp1[3][3][3][3], cp2[3][3][3][3].

teta[251],phi[1081],r[1000],

m11[10], m12[10], m21[10], m22[10],n11[10], n12[1@R1[10], n22[10],
voll,vol2, Kc[3][3][3][3],amiu,alambda,K;

int
nteta=30; nphi=36*10,
i_count/* the number of rs that have been read fptsn file*/
indl1, ind2, ind3, ind4, num,caseO0;

char str[25];

FILE *fpl,*fpccl,*fpt;

HIFTERM 1 Integral over surface *//ll/
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void Integs_KKkilj()

{

int k0,i0,j0,10;

amiu=miul*voll+miu2*vol2;
alambda=lambdal*voll+lambda2*vol2;
K=(alambda+amiu)/(alambda+2*amiu);

I* Kc[2][2][2][2]=Integral(Kkpu dA™m) Integrated Aaytically in Spherical
Coordinates on a small sphere around X-X'=0 (8124 terms)(27 terms has
symmetry in Kkpu) */

I/l These values are for the sphere surrounding be@ the surface vector is
outward, so in calculation they have to be mukiglby negative sign.
for (k0=0;k0<=2;k0++)
for (i0=0;i0<=2;i0++)
for (10=0;10<=2;|0++)
for (j0=0;j0<=2;j0++)
Kc[kO][i0][l0][j0]=0;

Kc[OJ[L][0][1]= - ( 4/3 - 4*K/5 ) / (8*amiu);
Ke[][0][L][0]= - (4/3 - 4*K/5) / (8*amiu);
Kc[O][2][0][2]= - ( 4/3 - 4*K/5 ) / (8*amiu);
Kc[2][0][2][0]= - (4/3 - 4*K/5 ) / (8*amiu);
Ke[1][2][1][2]= - (413 - 4*K/5 ) / (8*amiu);
Ke[2l[L[2[1]= - (4/3 - 4*K/5) / (8*amiu);

Kc[OJ[1][1][0]= Kc[L][L][0][0]= ( 2*K/15+2/3 ) / (8*amiu);
Kc[o][2][2][0]= Kc[2][2][0][0]= ( 2*K/15+2/3 )/ (8*amiu):
Ke[1][2][2][1]= Ke[2][2][L[1]= ( 2*K/15+2/3) / (8*amiu);

Kc[OJ[O][1][1]= Kc[L][O[0][L]= ( 2*K/15+2/3 ) / (8*amiu);
Kc[o][0][2][2]= Kc[2][0][0][2]= ( 2*K/15+2/3 ) / (8*amiu);
Ke[1][1][2][2]= Ke[2][L[L][2]= ( 2*K/15+2/3 )  (8*amiu);

Kc[O][0][0][0]= ( 16*K/15 ) / (8*amiu);
Ke[1][4][L][1]= ( 16*K/15 ) / (8*amiu);
Ke[2][2][2][2]= ( 16*K/15 ) / (8*amiu);
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void main()

{

double
FIBIEBIBEIEIEIEIEIE]L S_Integ[3][3][3][3], V_I nteg[3][3][3][3],
ce[3][3][3][3], cc1[3][3][3][3], ccu[3][3][3][3],
cc2[3][3][3][3],ccb[3][3][3][3],cclo[3][3][3][3],del00,del11,del22,
ttemp[3][3][3][3], term1,term2,term3,term4;
pll terml,pl2_terml,p22_term1;

int
i, k.1, i, jj, Kk, Il, count=0, shomar;

FILE *fpccul;

[*reading volume fractions and probabilities */
read_probabiltiesfile();

for (i=0;i<=2;i++)
for (j=0;j<=2;j++)
for (k=0;k<=2;k++)
for (I=0;l<=2;|++)

{

celilKI[=0;
ce1[if][I[N=0;

co2[fjKI=0;
ccbliIGKII=0;cclofGIKIIN=0;
cpLITGIII=0; cp2flfilikI[I=0;
V_Integif][k|[1=0;

[*INPUT DATA: GREENS FUNCTION DATA
EMPRICAL PARAMETERS
MATERIAL PROPERTIES, VOLUME FRACTION FOR DIFFERENT
PHASES

THIS PROGRAM IS FOR TWO ISOTROPIC PHASES IN AN
ANISOTROPIC COMPOSITE,
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THE PROBABILITY DISTRIBUTION FUNCTIONS ARE CONSIDERD
ORIENTATION DEPENDENT AND GREENS FUNCTIONS ARE ALSO
CALCULATED IN THE SAME WAY.

*/

HIHHHTHTTHNNPUT DATATTTTTTTTTTTTTTTTTTTHIT
sprintf(str,"res2.1-%d-%d-AlSiC.dat",nteta,nphi);

fpl=fopen(str,"w");
if(fp1l==NULL){printf("result.dat can't be opened trite.\n");
exit(1);}

fprintf(fp1,"nteta=%d nphi=%d\n",nteta,nphi);
fprintf(fpl,"indices  Cupper C(statisticalp-integl V-integral Clower \n
\n");

matrix(lambdal, miul, ccl);
matrix(lambda2, miu2, cc2);

Integs_KKkilj();

for(i=0;i<=2;i++)

for(j=0;j<=2;j++)

for(k=0;k<=2;k++)

for(1=0;l<=2;|++)
printf("%A\n",Kc[i][1[KI[D);

for(i=0;i<=2;i++)

for(j=0;j<=2;j++)

for(k=0;k<=2;k++)

for(1=0;l<=2;|++)

{
ceb[i[j1IK][=voll*cc[i][jl[K][+vol2*cc2[il[j]  [KI[I];
ceuli][Ik]M=ccb[ihk]L;
if (ccb[i][IIKIMNI|0)
cclo[iI[IKI[N=cc 0K cc2[ilhlKIM/(v  oll*cc2[i][j]IK][l]+Vvol2*cc
[01KI0);
else cclo[i][j][K][1]=0.0;

}

del00=cchb[0][0][0][0]-cclo[O0][0][0][O];
delll=ccb[1][1][1][1]-cclo[A][2][1][];
del22=ccb[2][2][2][2]-cclo[2][2][2][2];

ccu[0][0][1][1]=cclo[O][0][1][1]+sqrt(delOO*delll);
ccu[1][1][0][0]=ccu[O][O][L][1];
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ccu[0][0][2][2]=cclo[0][0][2][2]+sqrt(del00*del22);
ccu[2][2][0][0]=ccu[O][O1I2][2];

ccu[1][1][2][2]=cclo[1][1][2][2]+sqrt(del1l1*del22);
ccu[2][2][1][1]=ccul1][1][2][2];

cclo[1][1][2][2]=ccb[1][1][2][2]-sqart(dell1*del22);
cclo[2][2][1][1]=cclo[1][1][2][2];

cclo[0][0][2][2]=ccb][0][0][2][2]-sqrt(del00*del22);
cclo[2][2][0][0]=cclo[0][0][2][2];

cclo[0][0][1][1]=ccb[O0][0][1][1]-sqrt(del0O*delll);
cclo[1][1][0][0]=cclo[O][O][1][1];

for(i=0;i<=2;i++)
for(j=0;j<=2;j++)
for(k=0;k<=2;k++)
for(1=0;l<=2;|++)

{

cp[ij[]k]N=cc1i][]K]I[]-ccbliGIKIII];
} cp2[i][i][K][]=cc2[i][][K][]-ccbihKI;
shomar=0;

[* Integration on the sphere volume*/

teta[0]=0;
for (i=0;i<=(nteta-1);i++) teta[i+1]=teta[i]+2*teta,

phi[0]=0;
for (i=0;i<=(nphi-1);i++) phi[i+1]=phi[i]+PI/npl

for (case0=0;case0<=8;case0++)

{

INDS(case0);
terml=g(teta0]);
term2=0;

for (i=1;i<=(nteta-1);i=i+2)
term2=term2+g(tetali]);
term3=0;

for (i=2;i<=(nteta-2);i=i+2)
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term3=term3+g(teta]i]);
term4=qg(teta[nteta));
V_Integ[ind1][ind2][ind3][ind4]=(term1+4*term2+2*ten3+term4)*(teta[
nteta]-t eta[0])/(3*nteta);
}

pll_terml=voll*voll+voll*vol2; //v1l
pl2_terml=voll*vol2-voll*vol2;//0
p22_terml1=vol2*vol2+voll*vol2;//v2

for(i=0;i<=2;i++)
for(j=0;j<=2;j++)
for(k=0;k<=2;k++)
for(1=0;l<=2;|++)

{
S_Integ][i][j][K][]=0.0;
for(ii=0;ii<=2;ii++)
for(jj=0:jj<=2;jj++)
for(kk=0;kk<=2;kk++)
for(1=0;ll<=2;l1++)
{
FOIOKIN kI =
cp[iI[IkKIMM*epd[i][ilIKI[T*pl 1_termil+
cpd[illkK]NT*cp2[ii][jjl[K][I*pl2 _terml+
cp2[il[jl[kK][M*cpd[i][jj[K][*pl2 _terml+
cp2[i][][KK][IN*cp2fil[jkI[*p2 2_term1;
ttemp[i]§][KI[]= FOIGIKKIING] - OiKI0T(-Ke[iikkIO);
/I The values that are calculated for Kc are tHaesaover a sphere
surroundind r-0 but the normal unit is outward
} S_Integ[i][][K][I=S_Integ[i][i][K][]+ ttemp[i] (][K][I];
}

T T T L T ]
for(i=0;i<=2;i++)
for(j=0;j<=2;j++)
for(k=0;k<=2;k++)
for(1=0;l<=2;|++)

{
ce[ii][kI=ccbiIKIN+S_Integ[ililIK][]  -V_Integ[i[I[KI[];
fprintf(fpl, "%d %d %d %d %f %f %f odfef\n",i+1,j+1,k+1,1+1,
ccu[i][ITk]T, cefilhk],

} S_Integ[i][1(K][1],V_Integ[il[]IK][].ccloliIl  KIIID;

fclose(fpl);
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}Y/main

return;

double Kisjr(int n0,int i0,int mO,int jO,double @Xouble rs20,double rs30)

{

}

double rr,term1,term2,term3,term4,term5,r12[ 3] eal

r12[0]=rs10;
r12[1]=rs20;
r12[2]=rs30;
rr=sqrt(pow(rs10,2)+pow(rs20,2)+pow(rs30,2));

term1=15*K*r12[mO0]*r12[i0]*r12[n0]*r12[j0])/pow(rr.7);

term2=( -3*K*(
r12[mO]*r12[i0]*del(n0,j0)+r12[n0]*r12[i0]*del(mO0,DP)+r12[mO]*r12[n0]*del(iO,
j0) ) -3*K*(r12[i0]*r12[j0]*del(n0,mO0) ) )/pow(rr,5;

term3= ( K*del(n0,m0)*del(i0,j0) )/pow(rr,3);

term4=(K-1)*( del(n0,j0)*del(m0,i0)+del(n0,i0)*deh0,j0)) /pow(rr,3);
term5=(3-3*K)*( r12[mO0]*r12[j0]*del(n0,i0)+ r12[n0jr12[jO]*del(i0,m0O) )
/pow(rr,5);
value=(terml+term2+term3+term4+term5)/(8*3.1415%26iu);

return value;

IISUBROTINES

void matrix(double leimina, double miu, double dEBH3][3])

{

}

inti,j,k,l;

for(i=0;i<=2;i++)

for(j=0;j<=2;j++)

for(k=0;k<=2;k++)

for(1=0;I<=2;|++)
ccli]jlk][l]=leimina*del(i,j)*del(k,I)+miu*del(i, k)*del(j,I)
+miu*del(i,l)*del(j,k);

return;

void read_probabiltiesfile()

{

FILE *fp,*fpr,*fp1l,
int io;
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double as, dif;

fp=fopen ("input-2.0t.txt","r");
dif=0.001;

i_count=-1,;
do
{

i_count=i_count+1;

fscanf(fp,"%If%If%If%lf%If%If%If%If%If%If%If%If%If% [f%If%If%If%l
f%If%If%IAN",&r[i_count],&p11[0][i_count],&p11[1][i_count],&pll1[2][i
_count],&p11[3][i_count],&p11[4][i_count],&pl1[5][icount],&pl1[6][i
count],&p11[7][i_count],&pl11[8][i_count],&p11[9][icount],&pl1[10][i_
count],&p11[11][i_count],&p11[12][i_count],&pl1[13] count],&pll[14
1[i_count],&p11[15][i_count],&p11[16][i_count],&plll7][i_count],&vol
1,&vol2);

voll=1-vol2;
/[There are no more than i_count r in probabililsy, fso if i_count goes

beyond that we have to stop it.
for (hum=0;num<=17;num-++)

{
if (p11[num][i_count]==0.00)
{
pl2[num][i_count]=0;
p22[num][i_count]=0;
}
else
{
pl2[num][i_count]=voll-pl1[num][i_count];
p22[num][i_count]=vol2-p12[num][i_count];
}
}
}

while(  (fabs(p11[0][i_count]-vol1*voll)>=difj)
(fabs(pl11[1][i_count]-voll*voll)>=dif) ||
(fabs(pl11[2][i_count]-voll*voll)>=dif) ||

(fabs(p11[3][i_count]Htévoll)>=dif) ||

(fabs(p11[4][i_count]4tévoll)>=dif) ||
(fabs(p11[5][i_count]-vol1l*voll)>=dif) ||
(fabs(pl11[6][i_count]-voll*voll)>=dif) ||
(fabs(pl11[7][i_count]-vol1l*voll)>=dif) ||
(fabs(p11[8][i_count]-voll*voll)>=dif) ||
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(fabs(p11[9][i_count]-vol1l*voll)>=dif) ||

(fabs(p11[10][i_count]-voll*voll)>=dif) ||
(fabs(pl1[11][i_count]-voll*vol1l)>=dif) ||
(fabs(p11[12][i_count]-voll*voll)>=dif) ||
(fabs(p11[13][i_count]-vol1l*voll)>=dif) ||
(fabs(pl11[14][i_count]-voll*voll)>=dif) ||
(fabs(p11[15][i_count]-vol1l*voll)>=dif) ||
(fabs(p11[16][i_count]-voll*voll)>=dif) ||
(fabs(p11[17][i_count]-voll*voll)>=dif));

fpl=fopen(“filep.dat","w");

for (num=0;num<=17;num-++)

for (10=0;i0<=i_count;i0++)

fprintf(fp1,"%If %lIf %If\n *, p11[num][i0],p12[nuni{i0],p22[num][i0]);
fclose(fpl);

as=i_count%?2;

if (as==0) i_count=i_count;
else i_count=i_count-1;
fclose(fp);
printf("i_count=%d\n",i_count);

}

int del(int i, int j)

{
if(i==j)return 1,
return O;

}

double g(double teta)

{
double gt,terml,term2,term3,term4;
int i;

terml=h(teta,phi[0]);

term2=0;

for (i=1;i<=(nphi-1);i=i+2) //+2
term2=term2+h(teta,phili]);

term3=0;

for (i=2;i<=(nphi-2);i=i+2) //+2

term3=term3+h(teta,phili]);

term4=h(teta,phi[nphi]);

gt=(term1+4*term2+2*term3+term4)*(phi[nphi]-phi[{3*nphi);
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return gt;

double h(double teta,double phi)

{

double htp,term1,term2,term3,term4;
inti;

if ( ( (phi >=0) && (phi<( 5*P1/180)) )| ( (phi >175*P1/180) &&
(phi<=(180*P1/180)) ) ) num=0;

else if (( (phi >=( 5*P1/180)) && (phi<(10*P1/180) || ( (phi >(170*P1/180))
&& (phi<=(175*P1/180)) ) ) num=1;

else if (( (phi >=(10*P1/180)) && (phi<(15*P1/18)) || ( (phi >(165*P1/180))
&& (phi<=(170*P1/180)) ) ) num=2;

else if (( (phi >=(15*P1/180)) && (phi<(20*P1/18)) || ( (phi >(160*P1/180))
&& (phi<=(165*P1/180)) ) ) num=3;

else if (( (phi >=(20*P1/180)) && (phi<(25*P1/18)) || ( (phi >(155*P1/180))
&& (phi<=(160*P1/180)) ) ) num=4;

else if (( (phi >=(25*P1/180)) && (phi<(30*P1/18)) || ( (phi >(150*P1/180))
&& (phi<=(155*P1/180)) ) ) num=5;

else if (( (phi >=(30*P1/180)) && (phi<(35*P1/18)) || ( (phi >(145*P1/180))
&& (phi<=(150*P1/180)) ) ) num=6;

else if (( (phi >=(35*P1/180)) && (phi<(40*P1/18)) || ( (phi >(140*P1/180))
&& (phi<=(145*P1/180)) ) ) num=7;

else if (( (phi >=(40*P1/180)) && (phi<(45*P1/18)) || ( (phi >(135*P1/180))
&& (phi<=(140*P1/180)) ) ) num=8;

else if (( (phi >=(45*P1/180)) && (phi<(50*P1/18)) || ( (phi >(130*P1/180))
&& (phi<=(135*P1/180)) ) ) num=9;

else if (( (phi >=(50*P1/180)) && (phi<(55*P1/18)) || ( (phi >(125*P1/180))
&& (phi<=(130*P1/180)) ) ) num=10;

else if (( (phi >=(55*P1/180)) && (phi<(60*P1/18)) || ( (phi >(120*P1/180))
&& (phi<=(125*P1/180)) ) ) num=11;

else if (( (phi >=(60*P1/180)) && (phi<(65*P1/18)) || ( (phi >(115*P1/180))
&& (phi<=(120*P1/180)) ) ) num=12;

else if (( (phi >=(65*P1/180)) && (phi<(70*P1/18)) || ( (phi >(110*P1/180))
&& (phi<=(115*P1/180)) ) ) num=13;

else if (( (phi >=(70*P1/180)) && (phi<(75*P1/18)) || ( (phi >(105*P1/180))
&& (phi<=(110*P1/180)) ) ) num=14;

else if (( (phi >=(75*P1/180)) && (phi<(80*P1/18)) || ( (phi >(100*P1/180))
&& (phi<=(105*P1/180)) ) ) num=15;

else if (( (phi >=(80*P1/180)) && (phi<(85*P1/18)) || ( (phi >( 95*P1/180))
&& (phi<=(100*P1/180)) ) ) num=16;

else num=17;

test=0;
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term1=f(teta,phi,r[0],0);

term2=0;
for (i=1;i<=(i_count-1);i=i+2) term2=term2+f(tegahi,r[i],i);

term3=0;
for (i=2;i<=(i_count-2);i=i+2) term3=term3+f(te phi,r[i],i);

term4=f(teta,phi,r[i_count],i_count);
htp=(term1+4*term2+2*term3+term4)*(r[i_count]-r[@{3*i_count);

return htp;

double f(double teta,double phi,double r, int i0)

{
double func,Kvar,Fvar, T[3]={0,0,0},sum1, F[3][3][3][31[3][3][3];
inti,,s,q;

T[O]=r*sint(phi)*cost(teta);

T[1]=r*sint(phi)*sint(teta);
T[2]=r*cost(phi);
sum1=0;

for (i=0;i<=2;i++)

for (s=0;s<=2;s++)

for(j=0;j<=2;j++)

for (q=0;9<=2;g9++)

{
Flind1][ind2][i][s][j][q][ind3][ind4]=
cpl[ind1][ind2][i][s]*cpl[j][q][ind3][ind4]*p11[num][i0]+
cpl[ind1][ind2][i][s]*cp2[j][q][ind3][ind4]*p12[num][i0]+
cp2[ind1][ind2][i][s]*cpl[j][q][ind3][ind4]*p12[num][i0]+
cp2[ind1][ind2][i][s]*cp2[j][q][ind3][ind4]*p22[num][iO];

Kvar=Kisjr(i,j,s,q,T[0], T[1], T[2]);
Fvar=F[ind1][ind2][i][s][j][q][ind3][ind4];
suml=suml+Kvar*Fvar;

Yisjq

test=test+1;

func=suml*pow(r,2)*sint(phi);
return func;
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void INDS(int case0)

{
if (case0== 0) {ind1=0;ind2=0;ind3=0;ind4=0;}
else if (case0==1) {ind1=1;ind2=1;ind3=1;ind4=1;}
else if (case0== 2) {ind1=2;ind2=2;ind3=2;ind4=2;}
else if (case0== 3) {ind1=0;ind2=1;ind3=0;ind4=1;}
else if (case0==4) {ind1=1;ind2=2;ind3=1;ind4=2;}
else if (case0==5) {ind1=0;ind2=2;ind3=0;ind4=2;}
else if (case0== 6) {ind1=1;ind2=1;ind3=2;ind4=2;}
else if (case0==7) {ind1=0;ind2=0;ind3=2;ind4=2;}
else if (case0== 8) {ind1=0;ind2=0;ind3=1;ind4=1;}
return;

}

kkkkkkkkkkkkkkkkkkkhkkkkkkhkkkkkkkkkkkkkkkhkkkkkkkkkkkk kkkkkkkkkkkkkkkkkhkkik

[* This program is written to produce the polycafBhe microstructures with different
textures (10% to 90%), and calculate the corrataoms for those microstructures*/

#includefirstinteg.h”
#include"ghte.h"
#include "vardef.h"
#include"mathfunc.h"

/lread greensfunction.dat
/l read orientation.dat

/ITHIS PROGRAM IS WRITTEN TO CALCULATE THE firshtegral in <c a>

T T T inn§n
*VARIABLES*/

float a[3][3],

phi1[10000],phi2[10000],PHI[10000],*r,/*r[10000] Ateta[10000]*/*teta, *phi;
float fr,fteta,fphi,fphil,fPHI,fphi2;

float Rf,XtalVf[1000];

float *p;

float CTaylor[3][3][3][3],CC[1000][6][6],C1_INV[6]pB],Ctotal_INV[6][6];
int nr,gR_1,gR_2,gR_3,ntetal=10;
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float F[3][3][3][3],CCL[6][6],C_L66[6][6];
I T

void caseNcall(caseNO0);

void main()

{

int
i0,jO0,caseN,jpV,kpV,i,j,k,Lip,jp,kp,Ip,s,q,91,02igc,
int shomar,ir,it,iph;

double

) Clo[3][3][3][3],VC_term[3][3][3][3], Cup[3][3][3][3];

char
str[101],strr[102],str2[100];

float
SUM,varp,cR[3][3][3][3],CStat[3][3][3][3].S_Intg[3][3][3][3].
terml,term2,term3,term4,GF,deltetal, delladdel22, rr,phii;

FILE
*fpp,*ft,*fp2,*fp3,*ftaylor;

/IREADING INPUT DATA
ft=fopen("orientation.dat","r");
if(ft==NULL){printf("orientations.dat can't be aggned to be read.\n");
exit(1);}
fscanf(ft,"%s \n",str);
fscanf(ft,"%d \n",&Ntotal);
fscanf(ft,"%s\n",str);
fscanf(ft,"%d\n",&Ototal);

fpG=fopen("Greensfunctions.dat”,"r");
if(fpG==NULL){printf("Greensfuncs.dat can't be aped to be read.\n");
exit(1);}

fscanf(fpG,"%s %s %s\n",str,str,str);

fscanf(fpG,"%d %d %d\n",&nrr,&nteta_l,&nphi);
for (i=0;i<=2;i++)

for (s=0;s<=2;s++)

for(j=0;j<=2;j++)
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for (g=0;q<=2;q++)
for (ir=0;ir<=(nrr);ir++)
for (it=0;it<=(nteta_l);it++)
for (iph=0;iph<=(nphi);iph++)
{

fscanf(fpG,"%f",&GF);
Kisjr[i][][s][allitl[iph][ir]=GF;

fclose(fpG);

r=malloc((Ntotal+1)*sizeof(float));
teta=malloc((Ntotal+1)*sizeof(float));
phi=malloc((Ntotal+1)*sizeof(float));

for (9=1,9<=(Ototal-1);g++) XtalVfg]=1./(Ntot}
XtalVf[Ototal]=(Ntotal-Ototal+1.)*1./(Ntotal);

delphi=P1/nphi;
delteta=(2*Pl)/nteta_|I;

/I When we want to calculate S_integ. In that casgust need to calculate the
surface integral on 1/8 of the sphere

for (ip=0;ip<=2;ip++)
for (jp=0;jp<=2;jp++)
for (kp=0;kp<=2;kp++)
for (Ip=0;lp<=2;Ip++)

CTaylorfip][jp][kp][Ip]=0;
cR[ip][iplikp][lp]=0; /*Reference Crystal*/
Clofip][ip][kp]llp]=0;

} VC_term[ip][ip][kp][lp]=0;

/[Aluminium Single Crystal Cubic
cR[O][O][O][0]=cR[1][1][1][1]=cR[2][2][2][2]=108.2;
cR[O][1][0][1]=cR[O][1][1][0]=cR[1][O][O][1]=cR[1] [O][1][0]=46.1;
cR[0][2][0][2]=cRI0][2][2][0]=cRI[2][0][0][2]=cR[2] [O][2][0]=46.1;
cRI1][2][1][2]=cR[1][2][2][1]=cR[2][1][1][2]=cR[2] [1][2][1]=46.1;

cR[O][0][1][1]=cR[1][1][0][0]=cR[O][0][2][2]=cR[2][ 2][0][0]=cR[1][1][2][2]=cR
[2][2][1][1]=93.4;

fscanf(ft,"%s %s %s %s %s\n",str,str,str,str, str)
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for (i=0;i<=Ntotal-1;i++)

{
fscanf(ft,"%d %f %f %of %f  %f
%f\n",&g,r+i,teta+i,phi+i,phil+i,PHI+i,phi2+i);
printf("%d %d %f %f  %f %f %f
%f\n",i,qg,r[i],teta[i],phi[i],phil[i],PHI[i],phi2[i]);

}

fclose(ft);

p=malloc((Ototal+1)*(Ototal+1)*sizeof(float));

SUM=0;
shomar=0;
for (i=1;i<=(Ototal);i++)
for (j=1;j<=(Ototal);j++)

if (i==)) {
p[i*Ototal+j]=XtalVf[i]; //XtalVf[i]=XtalVf[j]
shomar=shomar+1;
SUM=SUM-+pl[i*Ototal+i];

}

else p[i*Ototal+j]=0;

}

c=malloc((Ototal+1)*81*sizeof(float));
cp=malloc((Ototal+1)*81*sizeof(float));

for (ip=0;ip<=2;ip++)
for (jp=0;jp<=2;jp++)
for (kp=0;kp<=2;kp++)
for (Ip=0;lp<=2;Ip++)
for (g=1,g<=Ototal;g++)

i_c=(27*(Ototal))*ip+(9*(Ototal))*jp+(3*(Ototal))*kp+((Ototal))*Ip+g;
c[i_c]=0;

}

for (ip=0;ip<=2;ip++)
for (jp=0;jp<=2;jp++)
for (kp=0;kp<=2;kp++)
for (Ip=0;lp<=2;Ip++)
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for (g=1;g<=(Ototal);g++)

{ XtalRotMatrix(phil[g]*PI1/180,PHI[g]*P1/180,phi2[¢P1/180);
[ICALCULATING THE COMPONENET OF ROTAION
MATRIX

i_c=(27*(Ototal))*ip+(9*(Ototal))*jp+(3*(Ototal))*kp+(Ototal)*Ip
+0;

c[i_c]=0;

for (i=0;i<=2;i++)

for (j=0;j<=2;j++)

for (k=0;k<=2;k++)

for (I=0;l<=2;|++)

[ITHE STIFFMESS OF EACH CRYSTALL BY CONSIDERING
IT'S ORIENTATION

{

ﬁ][i__C]=C[i_C]+a[ip][i]*a[ip][i]*a[kp][k]*a[lp][ll*c RG]
JICALCULATIN TAYLOR BY ASSIGNING EQUAL
WEIGHT FOR EACH XTAL

}

1IJ_Value(ip,jp.kp.Ip);
CClall[I]=cli_c];

CTay|0r[iD][ip][kp][lp]=CTay|0f[ip][il;][kp][|p]+0[ i_c]*XtalVflg];

}

ftaylor=fopen("CTaylor.dat","w");
if(ftaylor==NULL){printf("CTaylor.dat can't be op®d to to write.\n");
exit(1);}
for (ip=0;ip<=2;ip++)
for (jp=0;jp<=2;jp++)
for (kp=0;kp<=2;kp++)
for (Ip=0;lp<=2;Ip++)
fprintf(ftaylor,"%d%d%d%d %f\n",ip,jp.kp,Ip,CTaythp][iplkplllp]);

fclose(ftaylor);
for (i0=0;i0<=5;i0++)

for (j0=0;j0<=5;j0++)
Ctotal INV/[iO][j0]=0;
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for (g=1;g<=Ototal;g++)

{
for (i0=0;i0<=5;i0++)
for (j0=0;j0<=5;j0++) CCit[i0][jo]=CCJg][iO][jOF,
Inverse_ FUNC(CCt,C1_INV); //inverse of C for hawystal
for (i0=0;i0<=5;i0++)
for (j0=0;j0<=5;j0++)
Ctotal_INV[i0][jO]=Ctotal_INV[iO][j0]+XtalVf[g]*C 1_INVJ[iO][jO];
}

Inverse_ FUNC(Ctotal _INV,C_L66);

for (1=0; I<=5;l++)
for (J=0; J<=5;J++)

{
ijkl_Value(l,J);
Clo[11][J1][K1][L1]=C_L66[I][J];
Clo[J1][I1][K1][L1]=Clo[I1][I1][K1][L1];
Clo[J1][11][L1][K1]=Clo[I1][I][K1][L1];
Clo[11][J1][K1][L1]=Clo[I1][I1][K1][L];
}

/[Calculating Upper and Lower BDS (DEGRADED BOUNDS)

for (i=0;i<=2;i++)

for (j=0;j<=2;j++)

for (k=0;k<=2;k++)

for (1=0;I<=2;|++)
CuplihlIK]M=CTaylor[i][IK]LI];

del00=CTaylor[0][0][0][O]-Clo[O][O][O][O];
del11=CTaylor[1][1][1][1]-Clo[1][1][1][1];
del22=CTaylor[2][2][2][2]-Clo[2][2][2][2];

Cup[O][0][1][1]=Clo[0][0][L][1]+sqrt(del00*del11);
Cup[1][1][0][O]=Cup[O][O][1][1];

Cup[0][0][2][2]=Clo[0][0][2][2]+sqrt(del00*del22);
Cup[2][2][0][0]=Cup[O][0][2][2];

Cup[1][1][2][2]=Clo[1][L][2][2]+sart(del11*del22);
Cup[2][2][1][1]=Cup[1][1][2][2];
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Clo[1][1][2][2]=CTaylor[1][1][2][2]-sqrt(del11*deR2):
Clo[2][2][1][1]=CTaylor[1][1][2][2];

Clo[0][0][2][2]=CTaylor[0][0][2][2]-sqrt(del00*deR?2);
Clo[2][2][0][0]=CTaylor[O][0][2][2];

Clo[0][0][1][1]=CTaylor[0][0][1][1]-sqrt(del00*dell1);
Clo[1][2][0][0]=Clo[0][O][2][1];

for(ip=0;ip<=2;ip++)

for (jp=0;jp<=2;jp++)

for (kp=0;kp<=2;kp++)

for (Ip=0;lp<=2;Ip++)

for (g=1;g<=Ototal;g++)

{
i_c=(27*(Ototal))*ip+(9*(Ototal))*jp+(3*(Ototal))*kp+((Ototal))*Ip+g;
cpli_c]=ci_c]-CTaylor[ip][ip][kp][Ip];
printf("C=%f CTaylor=%f
Cp=%f\n",c[i_c],CTaylor[ip][jp]lkp][lp].cpli_cI);

}

free(n);

free(teta);

free(phi);

/**'k*******************'k************'k*'k************ **'k******'k****/
/* Integration on the sphere volume*/

rr_l=malloc((nrr+1)*sizeof(float));
teta_I=malloc((nteta_l+1)*sizeof(float));

tetal I=malloc((ntetal+1)*sizeof(float));
phi_I=malloc((nphi+1)*sizeof(float));

deltetal=2*Pl/ntetal;

Rf=20; //we ahve to read it from the 2pgeneratey@m
delrr=Rf/nrr;

teta_I[0]=0;

for (i=0;i<=(nteta_I-1);i++)
{
teta_I[i+1]=teta_l[i]+delteta;
}

tetal_I[0]=0;

for (i=0;i<=(ntetal-1);i++) tetal I[i+1]=tetal[i]+deltetal;
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phi_I[0]=0;
for (i=0;i<=(nphi-1);i++) phi_I[i+1]=phi_I[i]+dephi;

rr_1[0]=0.03;
for (i=0;i<=(nrr-1);i++) {rr_I[i+1]=rr_I[i]+delrr;

for (jpV=0;jpV<=18;jpV++)
for (kpV=0;kpV<=40;kpV++)
for (g1=1;g1<=Ototal;g1++)
for (g2=1;92<=0total;g2++)
pVIipVlkpV][g1][g2]=0;

/IREADING PROBABILITIS FUNCTUINS
phii=0;

for (jpV=0;jpV<=18;jpV++)//phii loop

{

rr=0.05;
for (kpV=0;kpV<=40;kpV++)//rr loop
{
sprintf(strr,"prob-%3.1f-%3.2f",phii,rr);
printf("%s\n",strr);
if( (fpp = fopen(strr, "r")) == NULL )
{ exit( 1); printf("%s couldnt be opened\nt31}

for (i=0;i<=4;i++) fscanf(fpp,"%s \n",str2);
/* Cycle until end of file reached: */

while( !feof( fpp) )

{

fscanf(fpp,"%d %d %f",&g1,&92,&varp);
pVipV]kpV][gl][g2]=varp;

printf("%f\n", pV[jpV][kpV1[g1][92]);

}
fclose(fpp);
rr=rr+0.2;
HI rr loop
phii=phii+10;
H/phii loop

fp3=fopen("Results.dat","w");
if(fp3==NULL){printf("Results.dat can't be openeal write.\n");
exit(1);}
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fprintf(fp3," ijkl cTaylor cstat S-integ CLower \n");

for (caseN=1;caseN<=8;caseN++)
{
caseNcall(caseN);
for (i=0;i<=2;i++)
for (s=0;s<=2;s++)
for(j=0;j<=2;j++)
for (g=0;q<=2;q++)
{
FllIs]i[a]=0;
for (g1=1;g1<=(Ototal);gl++)
for ( g2=1;92<=(Ototal);g2++)

Flls]GIal=Fills]ial+cp[(27*(Ototal))*ind1+( 9*(Ototal))*ind
2+(3*(Ototal))*i+((Ototal))*s+gl1]*cp[(27*(Ototal))j+(9*(Ototal)
)*q+(3*(Ototal))*ind3+((Ototal))*ind4+g2]*p[gl*((Obtal))+g2];

}

terml=g_I(teta_I[0]);

term2=0;

for (i=1;i<=((nteta_I-1)-2);i=i+2)
term2=term2+g_I(teta_lI[i]);

term3=0;

for (i=2;i<=((nteta_I-1)-1);i=i+2)
term3=term3+g_I(teta_I[i]);

term4=g_|I(teta_I[nteta_I-1]);

S_Integ[ind1][ind2][ind3][ind4]=(term1+4*term2+2*ten3+term4)*(teta_
I[nteta_I]-teta_I[0])/(3*nteta_l);

Calculate_secondInteg();

CStat[ind1][ind2][ind3][ind4]=CTaylor[ind1][ind2][nd3][ind4]+S _Inteq]i
nd1][ind2][ind3][ind4]-V_Integ[ind1][ind2][ind3][ird4];

forintf(fp3, "%d%d%d%d  %f %f %f %f
%f\n",ind1,ind2,ind3,ind4,Cup[ind1][ind2][ind3][ir&], CStat[ind1][ind2][
ind3][ind4],S_Integ[ind1][ind2][ind3][ind4],V_Intefnd1][ind2][ind3][in
d4],Clo[ind1][ind2][ind3][ind4]);

}

fclose(fp3);
free(teta_l);
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free(phi_D);
free(rr_l);

free(p);

free(c);
free(cp);

void XtalRotMatrix(float phil, float PHI,float ph)2

{
a[0][0]=cos(phil)*cos(phi2)-sin(phil)*sin(phi2)*soPHI);
a[0][1]=sin(phil)*cos(phi2)+cos(phil)*sin(phi2)*e@PHI);
a[0][2]=sin(phi2)*sin(PHI);
a[1][0]=-cos(phil)*sin(phi2)-sin(phil)*cos(phi2)ts(PHI);
a[1][1]=-sin(phil)*sin(phi2)+cos(phil)*cos(phi2)bs(PHI);
a[1][2]=cos(phi2)*sin(PHI);
a[2][0]=sin(phil)*sin(PHI);
a[2][1]=-cos(phil)*sin(PHI);
a[2][2]=cos(PHI);

}

float Kijs(inti_n,int j_n,int s_n,float teta,flogthi)

{
float value,terml,term2,term3,term4;
int i;
terml=Integrand(i_n,j_n,s_n,teta,phi,tetal_I[0]);
term2=0;
for (i=1;i<=(ntetal-1);i=i+2)

term2=term2+Integrand(i_n,j_n,s_n,teta,phi,teli);
term3=0;
for (i=2;i<=(ntetal-2);i=i+2)
term3=term3+Integrand(i_n,j_n,s_n,teta,phi,teli);

term4=Integrand(i_n,j_n,s_n,teta,phi,tetal I[rita
value=(terml1+4*term2+2*term3+term4)tée_|I[ntetal]-tetal [[0])/(3*ntetal);
return value;

}
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float Integrand(int i_n,int j_n,int s_n,float tefégat phi, float tetal)

{

float value,numi,domin;

z[3]={0,0,0},zz1[3][3]={0,0,0,0,0,0,0,0,0},T[3]={00,0},zz[3][3]={0,0,0,0,0,0,0,0
,0},72[3][3]={0,0,0,0,0,0,0,0,0},zT[3][3]={0,0,0,®,0,0,0,0}, TT[3][3]={0,0,0,0,0
,0,0,0,0},FF[3][3]={0,0,0,0,0,0,0,0,0},

E[3][3]={0,0,0,0,0,0,0,0,0};

int s0,r0,i0,j0,m0,w0,k0,1,k;

T[O]=sint(phi)*cost(teta);//unit vectorrO*sint(phi)*cost(teta)/rr0
T[1]=sint(phi)*sint(teta);
T[2]=cost(phi);

z[O]=sint(teta)*cost(tetal)-cost(phi)*cost(tetajigtetal);
z[1]=-cost(teta)*cost(tetal)-sint(teta)*cost(pluirit(tetal);
z[2]=sint(phi)*sint(tetal);
/[Calculation of zz[3][3]
for(s0=0;s0<=2;s0++)
for(r0=0;r0<=2;r0++)
{ zz[sO][rO]=0;

for (I=0;l<=2;++)

for (k=0;k<=2;k++)

zz[s0][r0]=zz[sO][r0]+CTaylor[K][sO][rO][I]*z[K*z[];

}
/[calculation of zz1[3][3]

for(i0=0;i0<=2;i0++)
for (j0=0;j0<=2;j0++)//(j0=0;j0<=2;j0++)
{
numi=0.0;
domin=0.0;
for (s0=0;s0<=2;s0++)
for (m0=0;m0<=2;m0++)
for (w0=0;w0<=2;w0++)
for (r0=0;r0<=2;r0++)
numi=numi+e(i0,s0,m0)*e(j0,r0,w0)*zz[s0][rO]*zz[mB}O];

for (s0=0;s0<=2;s0++)
for (m0=0;m0<=2;m0++)
for (w0=0;w0<=2;w0++)
domin=domin+2*e(s0,m0,w0)*zz[0][s0]*zz[1][mO]*zz[A\O];
zz1[i0][jO]=numi/domin; /[*z-1*/
}

/I Calculation of zT[2][2],Tz[2][2],TT[3][3] toevaluate FF
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for (m0=0;m0<=2;m0++)
for (k0=0;k0<=2;k0++)
{
zT[mO][kO]=0;
Tz[mO][k0]=0;
TT[mO][kO]=0;
for (i0=0;i0<=2;i0++)
for (j0=0;j0<=2;j0++)
{
zT[mO][k0]=zT[mO][kO]+z[i0]*CTaylor[i0][mO][jO][ kO]*T[jO];
Tz[mO][kO]=Tz[mO][kO]+T[iO]*CTaylor[i0][mO][jO][ kO]*z[jO];

TT[mO][kO]=TT[mO][kO]+T[i0]*CTaylor[i0][mO][jO0][kO] *T[jO];
/[sum on i,

}
//[Evaluation of FF[3][3]

for (i0=0;i0<=2;i0++)
for (j0=0;j0<=2;j0++)

FF[i0][j0]=0;
for (m0=0;m0<=2;m0++)
for (k0=0;k0<=2;k0++)

FF[i0][j0]=FFIiO][j0]+2z1[i0][mO0]*zz1[KO][jO]*(zT[m O][k0]+Tz[mO][kO])
}

/[Evaluation of E[3][3]

for (i0=0;i0<=2;i0++)

for (j0=0;j0<=2;j0++)

{
E[i0][j0]=0;
for (m0=0;m0<=2;m0++)
for (k0=0;k0<=2;k0++)
E[i0][jO]=E[i0][jO]+( zT[mO][kO]+Tz[mO][kO] )*(
FF[i0][mO0]*zz1[kO][j0]+zz1[i0][mO]*FF[KO][jO] )-
2*zz1[i0][mO]*zz1[kO][jO]*TT[mO][kO];//sum on m,k

}
value=1/(2*8*PI*P1/*pow(rr0,2)*)*( T[s_n]*zz1[i_A[j_n]-(z[s_n]*FF[i_n][j_n])
+T[i_n]*zz1[s_n][j_n]-(z[i_n]*FF[s_n][j_n])
);

return value;
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float f_I(float teta,float phi/*,float rr0*/)

{

float func, T[3]={0,0,0},sum1;

inti,},s,q;
sum1=0;
for (i=0;i<=2;i++)

for (s=0;s<=2;s++)

for(j=0;j<=2;j++)

for (g=0;9<=2;q++)

{ suml=suml1+Kijs(i,j,s,teta,phi)*F[i][s][][q]*¢
rhat(qg,teta,phi)*sint(phi));//the unit vector isaard the center so rhat has
to be negative

Hiisjq
func=suml;
return func;
}
float g_I(float teta)
{

float gt, term1,term2,term3,term4;

int i;

term1=f_I(teta,phi_I[O]);

term2=0;

for (i=1;i<=(nphi-1);i=i+2) //+2

term2=term2+f_|I(teta,phi_lI[i]);
term3=0;

for (i=2;i<=(nphi-2);i=i+2) //+2

term3=term3+f_I(teta,phi_I[i]);

term4=f_I(teta,phi_I[nphi]);

gt=(term1l+4*term2+2*term3+term4)*(phi_I[nphi]-pH[0])/(3*nphi);
return gt;
}
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float rhat(int g_A,float teta_A,float phi_A)

{
float value;
if (_A==0) value=cost(teta_A)*sint(phi_A);
if (_A==1) value=sint(teta_A)*sint(phi_A);
if (_A==2) value=cost(phi_A);
return value;

void caseNcall(caseNO0)

{
if (caseN0==0) {ind1=0;ind2=0;ind3=0;ind4=0;}
else if (caseNO==1) {ind1=1;ind2=1;ind3=1;ind4=1;}
else if (caseN0==2) {ind1=2;ind2=2;ind3=2;ind4}2;
else if (caseN0==3) {ind1=0;ind2=0;ind3=1;ind4=1;}
else if (caseN0==4) {ind1=1;ind2=1;ind3=2;ind4=2;}
else if (caseN0==5) {ind1=0;ind2=0;ind3=2;ind4=2;}
else if (caseN0==6) {ind1=0;ind2=1;ind3=0;ind4=1;}
else if (caseN0==7) {ind1=1;ind2=2;ind3=1;ind4=2;}
else if (caseN0==8) {ind1=0;ind2=2;ind3=0;ind4=2;}

#include "vardef.h"
#include "mathfunc.h"

float fV_I(float teta,float phi,float rr0);
float gV_I(float teta);
float hV_I(float teta,float phi);

float S_total[3][3][3][3].test;
int ITETA,iPHLIR,IpV,JpV,KpV,g1,92;

kkkkkkkkkkkkkkkkkkkkkkkkkhkkkhkkkkkkhkkkkkkhkkkhkkkkkkkkkkk kkkkkkkkkkkkhkkkkkkkkk

[*This program is written to calculate the secomi@gral in <c a> in polycrystalline
microstructures*/

void Calculate _secondinteg()

{
FILE *fp2;
float term1,term2,term3,term4,term_extra;
int ip,jp,kp,Ip,i_c;
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fp2=fopen("c-cp-data2.dat","w");
if(fp2==NULL){printf("c-cp-data2.dat can't be oped to to write.\n");
exit(1);}
for (ip=0;ip<=2;ip++)
for (jp=0;jp<=2;jp++)
for (kp=0;kp<=2;kp++)
for (Ip=0;lp<=2;Ip++)
for (g1=1;g1<=(Ototal);gl++)

{
I_c=(27*(Ototal))*ip+(9*(Ototal))*jp+(3*(Ototal)) kp+((Ototal))*Ip+g1;

fprintf(fp2,"%f %f\n",c[i_c],cp[i_c]);

fclose(fp2);

ITETA=0;
terml=gV_I(teta_I[iITETA));
printf("term1=%f\n",term1);
term2=0;
for (TETA=1,iITETA<=((nteta_I-1)-2);iTETA=ITETA+2
term2=term2+gV_I(teta I[ITETA]);
printf("term2=%Mn",term2);

term3=0;

for (TETA=2;iITETA<=((nteta_I-1)-1);iTETA=ITETA+2
term3=term3+gV_I(teta_I[ITETA]);
printf("term3=%M\n",term3);

iITETA=nteta_I-1;
term4=gV_lI(teta_I[ITETA));

ITETA=nteta_lI;
term_extra=gV_I(teta_I[iTETA]);

printf("term4=%f\n",term4);
V_Integ[ind1][ind2][ind3][ind4]=(term1+4*term2+2&rm3+term4)*(teta_I[nteta
_l]-teta_I1[0])/(3*nteta_l);

}
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float gV_I(float teta)
{

float gt,term1,term2,term3,term4;

iIPHI=0;

term1=hV_I(teta,phi_I[iPHI]);

term2=0;

for (IPHI=1;iPHI<=(nphi-1);iPHI=iIPHI+2) term2=ter2+hV _I(teta,phi_I[iPHI]);

term3=0;

for (iPHI=2;iPHI<=(nphi-2);iPHI=iPHI+2) term3=ter@+hV_I(teta,phi_I[iPHI]);
IPHI=nphi;

term4=hV_I(teta,phi_I[iPHI]);

gt=(term1+4*term2+2*term3+term4)*(phi_I[nphi]-ph[0])/(3*nphi);
return gt;

}

float hV_I(float teta,float phi)
{

float htp,term1,term2,term3,term4;

if (phi==0) JpV=0;

else if ( (phi>0) && ( phi<=(10*P1/180) ) ) JpV=1;

else if ( (phi>(10*P1/180)) && (phi<=(20*P1/180)) JpV=2;
else if ( (phi>(20*P1/180)) && (phi<=(30*P1/180)) JpV=3;
else if ( (phi>(30*P1/180)) && (phi<=(40*P1/180)) JpV=4;
else if ( (phi>(40*P1/180)) && (phi<=(50*P1/180)) JpV=5;
else if ( (phi>(50*P1/180)) && (phi<=(60*P1/180)) JpV=6;
else if ( (phi>(60*P1/180)) && (phi<=(70*P1/180)) JpV=7;
else if ( (phi>(70*P1/180)) && (phi<=(80*P1/180)) JpV=8;
else if ( (phi>(80*P1/180)) && (phi<=(90*P1/180)) JpV=9;
else if ( (phi>(90*P1/180)) && (phi<=(100*P1/180))JpV=10;
else if ( (phi>(100*P1/180)) && (phi<=(110*P1/18D) JpV=11;
else if ( (phi>(110*P1/180)) && (phi<=(120*P1/18D) JpV=12;
else if ( (phi>(120*P1/180)) && (phi<=(130*P1/18D) JpV=13;
else if ( (phi>(130*P1/180)) && (phi<=(140*P1/18D) JpV=14;
else if ( (phi>(140*P1/180)) && (phi<=(150*P1/18D) JpV=15;
else if ( (phi>(150*P1/180)) && (phi<=(160*P1/18D) JpV=16;
else if ( (phi>(160*P1/180)) && (phi<=(170*P1/18D) JpV=17;
else if ( (phi>(170*P1/180)) && (phi<=(180*P1/18D) JpV=18;

IR=0;
term1=fV_I(teta,phi,rr_I[iR]);
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term2=0;
for (IR=1;iR<=(nrr-1);iR=iR+2)

{

term2=term2+fV_I(teta,phi,rr_I[iR]);
}
term3=0;

for (IR=2;iR<=(nrr-2);iR=iR+2) /*+2*/
{term3=term3+fV_I(teta,phi,rr_I[iR]);
}

iR=nrr;

term4=fV_I(teta,phi,rr_I[iR]);

htp=(term1+4*term2+2*term3+term4)*(delrr)/3;

return htp;
}
float fV_I(float teta,float phi,float rr0)
{

float func, T[3]={0,0,0},sum1,
inti,},s,q;

if (rr0<=0.05) KpV=0;

else if ( (rr0>0.05) && (rr0<=0.25) )R/=1;
else if ( (rr0>0.25) && (rr0<=0.45) ) KpV=2;
else if ( (rr0>0.45) && (rr0<=0.65) ) KpV=3;
else if ( (rr0>0.65) && (rr0<=0.85) ) KpV=4;
else if ( (rr0>0.85) && (rr0<=1.05) ) KpV=5;
else if ( (rr0>1.05) && (rr0<=1.25) ) KpV=6;
else if ( (rr0>1.25) && (rr0<=1.45) ) KpV=7;
else if ( (rr0>1.45) && (rr0<=1.65) ) KpV=8;
else if ( (rr0>1.65) && (rr0<=1.85) ) KpV=9;
else if ( (rr0>1.85) && (rr0<=2.05) ) KpV=10;
else if ( (rr0>2.05) && (rr0<=2.25) ) KpV=11;
else if ( (rr0>2.25) && (rr0<=2.45) ) KpV=12;
else if ( (rr0>2.45) && (rr0<=2.65) ) KpV=13;
else if ( (rr0>2.65) && (rr0<=2.85) ) KpV=14;
else if ( (rr0>2.85) && (rr0<=3.05) ) KpV=15;
else if ( (rr0>3.05) && (rr0<=3.25) ) KpV=16;
else if ( (rr0>3.25) && (rr0<=3.45) ) KpV=17,;
else if ( (rr0>3.45) && (rr0<=3.65) ) KpV=18;
else if ( (rr0>3.65) && (rr0<=3.85) ) KpV=19;
else if ( (rr0>3.85) && (rr0<=4.05) ) KpV=20;
else if ( (rr0>4.05) && (rr0<=4.25) ) KpV=21,;
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else if ( (rr0>4.25) && (rr0<=4.45) ) KpV=22;
else if ( (rr0>4.45) && (rr0<=4.65) ) KpV=23;
else if ( (rr0>4.65) && (rr0<=4.85) ) KpV=24;
else if ( (rr0>4.85) && (rr0<=5.05) ) KpV=25;
else if ( (rr0>5.05) && (rr0<=5.25) ) KpV=26;
else if ( (rr0>5.25) && (rr0<=5.45) ) KpV=27,;
else if ( (rr0>5.45) && (rr0<=5.65) ) KpV=28;
else if ( (rr0>5.65) && (rr0<=5.85) ) KpV=29;
else if ( (rr0>5.85) && (rr0<=6.05) ) KpV=30;
else if ( (rr0>6.05) && (rr0<=6.25) ) KpV=31,;
else if ( (rr0>6.25) && (rr0<=6.45) ) KpV=32;
else if ( (rr0>6.45) && (rr0<=6.65) ) KpV=33;
else if ( (rr0>6.65) && (rr0<=6.85) ) KpV=34;
else if ( (rr0>6.85) && (rr0<=7.05) ) KpV=35;
else if ( (rr0>7.05) && (rr0<=7.25) ) KpV=36;
else if ( (rr0>7.25) && (rr0<=7.45) ) KpV=37,;
else if ( (rr0>7.45) && (rr0<=7.65) ) KpV=38;
else if ( (rr0>7.65) && (rr0<=7.85) ) KpV=39;
else KpV=40;

sum1=0;
for (i=0;i<=2;i++)
for (s=0;s<=2;s++)
for(j=0;j<=2;j++)
for (g=0;9<=2;q++)
{

S_total[i][s][i][a]=0;
for (g1=1;g1<=Ototal;gl1++)
for ( g2=1;92<=0total;g2++)

S _total[i][s][jl[q]=S _total[i][s][jl[a]+cp[(27*((Ototal-1)+1))*ind1+(9*((Ototal-
1)+1))*ind2+(3*((Ototal-1)+1))*j+((Ototal-1)+1)*q+d]*cp[(27*((Ototal-
1)+1))*i+(9*((Ototal-1)+1))*s+(3*((Ototal-1)+1))*im3+((Ototal-
1)+1)*ind4+g2]*pV[JIpV][KpVI[g1][92];

suml=suml1+Kisjr[i]jl[sI[a]lliTETA][iPHI][IR]/*Kisj r(i,j,s,q,teta,phi,rr0)*/*S_tot
alfil[s]0lial;
Misjq
func=sum1*pow(rr0,2)*sint(phi);
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return func;
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