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SUMMARY  
 

 

 

It is becoming increasingly important to understand biological networks in order 

to understand complex diseases, identify novel, safer protein targets for therapies and 

design efficient drugs. „Systems biology‟ has emerged as a discipline to uncover 

biological networks through genomic data. Computational methods for identifying these 

networks become immensely important and have been growing in number in parallel to 

increasing amount of genomic data under the discipline of „Systems Biology‟. 

In this thesis we introduced novel computational methods for identifying 

topological and dynamic properties of biological networks. Biological data is available in 

various forms. Experimental data on the interactions between biological components 

provides a connectivity map of the system as a network of interactions and time series or 

steady state experiments on concentrations or activity levels of biological constituents 

will give a dynamic picture of the web of these interactions.  Biological data is scarce 

usually relative to the number of components in the networks and subject to high levels 

of noise. The data is available from various resources however it can have missing 

information and inconsistencies. Hence it is critical to design intelligent computational 

methods that can incorporate data from different resources while considering noise 

component.  

This thesis is organized as follows; Chapter 1 and 2 will introduce the basic 

concepts for biological network types. Chapter 2 will give a background on biochemical 

network identification data types and computational approaches for reverse engineering 

of these networks. Chapter 3 will introduce our novel constrained total least squares 
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approach for recovering network topology and dynamics through noisy measurements. 

We proved our method to be superior over existing reverse engineering methods.  

Chapter 4 is an extension of chapter 3 where a Bayesian parameter estimation algorithm 

is presented that is capable of incorporating noisy time series and prior information for 

the connectivity of network. The quality of prior information is critical to be able to infer 

dynamics of the networks.  The major drawback of prior connectivity data is the presence 

of false negatives, missing links. Hence, powerful link prediction methods are necessary 

to be able to identify missing links.  At this junction a novel link prediction method is 

introduced in Chapter 5. This method is capable of predicting missing links in a 

connectivity data. An application of this method on protein-protein association data from 

a literature mining database will be demonstrated. In chapter 6 a further extension into 

link prediction applications will be given. An interesting application of these methods is 

the drug adverse effect prediction. Adverse effects are the major reason for the failure of 

drugs in pharmaceutical industry, therefore it is very important to identify potential 

toxicity risks in the early drug development process. Motivated by this chapter 6 

introduces our computational framework that integrates drug-target, drug-side effect, 

pathway-target and mouse phenotype-mouse genes data to predict side effects. Chapter 7 

will give the significant findings and overall achievements of the thesis. Subsequent steps 

will be suggested that can follow the work presented here to improve network prediction 

methods.  
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CHAPTER 1 

                           

       INTRODUCTION 

 

 

 

Most biological functions arise from complex interactions between cell‟s 

numerous components, such as, DNA, RNAs. metabolites and proteins.  These 

interactions form complex networks involving thousands of genes, proteins and 

metabolites. Understanding these networks helps scientists shed light on the complex 

diseases such as cancer and diabetes as well as control and manipulate biological 

functions in living organisms. Two important components of a network are the topology 

and dynamics. Topology refers to wiring diagram of the network, in other words it is the 

connectivity in a network. Dynamics of the network is the quantification of the 

connections and time course response of the networks. Many diseases are due to 

interaction of complex networks from different tissue and organ levels. It is important to 

understand both topology and dynamics of these networks to be able to identify novel 

targets for interventions that may help prevent or cure the diseases. A major challenge in 

biology is to map out and model the connectivity and dynamical properties of these 

networks.  

Motivated by this in this research we developed computational approaches for 

identifying biological networks. The goals in this thesis can be stated in two ways; 

Predicting network topology and dynamics to understand complex machinery of biology 

and finding missing and significant links that have various applications in getting a better 

picture of network wiring. Following sections will give an introduction to biological 
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networks, biological data types, important computational aspects and applications for 

reverse engineering. 

 

1.1 Types of Biological Networks 

At a highly abstract level the components of a living organism can be reduced to a series 

of nodes that are connected to each other by links, with each link representing the 

associations between two components. These associations can be in the form of  binding 

of one component to the other thereby affecting its function. In gene regulatory networks 

specialized proteins bind to genes to modulate their expression level. Drug target 

networks can be another example for this kind of association where a link represents 

binding between a drug and a target. In metabolic networks a component can catalyze 

reactions where each reaction and catalysis action of an enzyme on this reaction can be 

represented as a link in the network. The notion of a biological network can sometimes be 

extended for defining more abstract associations between biologically relevant 

components where the exact mechanisms are not yet known.  Drug side effect networks 

can be given as an example for this type of networks.  There are different kinds of 

biological networks that take part in different functions of the living organisms at 

different levels. In the next few paragraphs we will give brief information on each type of 

networks.  

Metabolic pathway networks are the series of reactions that share reactants and 

products. Enzymes catalyze these reactions and often require dietary minerals and 

vitamins and other co-factors in order to function properly. Because of the large number 

of metabolites involved these networks can be quite complex and numerous pathways 
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may exist within these networks.  A substrate enters a metabolic network leading to a 

series of reactions and the production of intermediates and final molecules. This final 

product molecule may be used as a substrate for another network.  

Protein-Protein interaction occurs when two proteins bind together often to carry 

out a biological function. These interactions are at the core of entire interactomics system 

of many living organisms. Signals from exterior of a cell are conducted to the cell trough 

through protein-protein interactions. This is also called signal transduction. Signal 

transduction networks refer to the interactions where an extracellular molecule activates a 

membrane protein that in turn alters a cascade of intracellular proteins creating a 

response. These molecular cascades detect, amplify and integrate diverse external signals 

to generate responses such as enzyme activity, gene expression, or ion-channel activity. 

Diseases may be due to malfunction of one or more signal transduction networks.  

Transcriptional regulation is the most common way in which cells use these 

interaction webs to perform its functions. This is achieved by cell‟s specialized proteins 

called transcription factors. A transcription factor or a combination of transcription factor 

can bind to an upstream of a gene and modify that gene‟s output. A gene‟s product is the 

mRNA (Messenger RNA ) and mRNAs are translated into proteins. Therefore, it is a 

higher level control mechanism in cell that can account for functional diversity of cells 

and it can control metabolic, transduction and protein interaction networks.  

In addition to these networks, more abstract level of biological associations is 

studied as networks. For example, drug – side effect networks are one of them. A side 

effect is an effect, whether therapeutic or adverse, that is secondary to the one intended. 

Side effects are also called adverse effects. An adverse effect can also apply to 
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unintended but beneficial consequences of a drug though it commonly refers to its toxic 

results. Drug-target networks are another interaction webs where potential target proteins 

of drugs are collected and analyzed. In the pharmaceutical industry it is often important 

to analyze combination of these networks in addition to the molecular networks to 

identify novel targets and predict possible toxicity of developed drugs. 

 

1.2 Computational Methods for Biological Network Identification 

System biology has emerged as a discipline to understand and reverse engineer biological 

networks through biological data at a systems thinking level. It uses methods from 

mathematics, statistics, biology, information technology and the technology of high 

performance computing and the manipulation of large datasets.  This discipline is 

developing in parallel with the amount and quality of biological data becoming available. 

The approaches that are employed changes with respect to the amount of information 

available and the resolution and accuracy of prediction needed. A detailed modeling 

effort can include the differential equation representation of the network in continuous 

time domain. These methods usually target small portions of the network and they require 

topology information. Other methods include causal networks such as Boolean and 

Bayesian networks. Sometimes biological networks are simplified to bipartite network 

representations in the case of drug-target and drug-side effect networks.   

Recently, large amounts of diverse types of genomic data are obtained to shed 

light on these networks. For transcription regulation, e.g., DNA sequence data, micro-

array gene expression data, protein-DNA binding data are the major data sources. For 

metabolic networks metabolomics data is predominantly used. Signal transduction 
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network inference methods utilize protein-protein interaction data as well as protein 

phosphorylation data. There are several information resources available for drug-target, 

drug-side effect, as well as pathway-target networks. These resources are crucial for 

understanding diseases and designing novel drugs. Next Chapter will give a background 

on network inference efforts and data types.  
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    CHAPTER 2 

 

                           BACKGROUND 

 

 

 

This section starts with the definition of transcriptional regulation and elaborates on the 

data types and methods for inference of regulatory networks. Microarray technology is an 

experimental method where thousands of gene expression levels are measured 

simultaneously. This technology has created means to generate abundant data to shed 

light on gene networks [4]. Therefore, many efforts of biological network applications 

particularly focused on inferring gene regulatory networks from microarray data. The 

noise levels in microarray data is high [5] and only small portion of these studies 

concentrated on addressing this problem [62]. Hence, in chapter 3 we will develop 

identification methods of regulatory networks under noisy measurements.  

The second part of this chapter introduces the link prediction methods in 

biological networks. These methods are essential to uncover hidden connections and can 

be potentially used in improving the topology of networks. As biological networks are 

complex, connectivity information is crucial for reverse engineering methods. However 

this information can have noise in the form of inconsistencies, false links and missing 

links.  Link prediction methods are usually based on scoring a pattern or a link in the 

topology of the network and they can potentially be a remedy to improve the topology of 

the network. Common link prediction methods are based on the notion that nodes they 

share common features are more likely to be linked. These features are usually based on 

common number of nodes that are shared by pair of nodes, shortest path between the pair 

of nodes or topological features of the nodes in the neighborhood of the node pairs. 
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However there is no probabilistic approach that considers degree distribution of the nodes 

in a systematic and comprehensive way in the network when scoring the local structures 

in the context of biological networks.  In chapter 5 we introduced a score function based 

on a probabilistic framework to quantify links in biological networks. 

The last part of this chapter provides a background on drug-side effect network 

prediction methods as well as drug-target networks. These networks are commonly used 

by pharmaceutical industry to bring novel protein targets for drugs or to predict potential 

toxicity risks involved with them.  

 

2.1 Transcriptional Regulation 

 

Two foundational concepts in molecular biology are: (i) genes, the fundamental units of 

heredity, are encoded as sequences of chemical bases in DNA and (ii) a gene is expressed 

when its DNA sequence is transcribed into an RNA intermediate and then translated into 

proteins. Proteins, in turn, perform regulatory, catalytic, mechanical, and electrical 

functions [1].  

Gene expression is the process by which cells produce proteins from the 

information encoded in DNA [1]. The information flow from DNA to proteins occur in 

following steps: Specialized proteins transcribe a region of DNA (gene) into a Messenger 

RNA molecule, and RNA molecule is translated into a polypeptide chain, and 

polypeptides fold into three dimensional structures and modified with additional proteins 

to become biochemically active [1].  
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Figure 2.1: Gene expression is shown as a three step process [2]. 

Initiation of transcription in eukaryotes is a complicated process that depends on the 

binding of transcription factors (TF) to the promoter region as well as the action of RNA 

polymerase complex to the transcription start site. Transcription occurs as a result of 

combinatorial and cooperative binding of multiple factors on the same promoter region. 

TFs regulate the transcription process either positively of negatively. Occupancy of a 

transcription region by a TF is a necessary but not sufficient condition for that gene to be 

activated or inhibited. 

 
 

Figure 2.2: Transcription process by transcription factor and RNA polymerase action 

[67]. 

The process of gene expression allows for control at many levels. Changing the 

rate of transcription into a RNA molecule, stalling the process of its translation into 

protein, and cleaving the final product protein into pieces can serve as mechanism for 
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controlling the gene expression. Cells have evolved to use all of these mechanisms, but 

regulation of the transcription process is the most common. Transcription factors are the 

proteins that can bind to the DNA in order to regulate this process [1]. 

Genes, proteins, and metabolites can regulate one another in various ways. 

Regulatory proteins bind to a DNA molecule to affect the transcription of genes. Proteins 

can also combine to form multi-protein complexes that can take part in various functions 

in regulation, for example unzipping a DNA molecule or cleaving an RNA molecule. 

Metabolites can also attach proteins to alter their activity level [1]. 

2.2 Data types on gene networks 

Previous section gave a description of gene regulatory networks. This section will 

introduce types of experimental data that are used for understanding gene networks. 

Microarray and protein-DNA binding experiments are two major data sources for 

regulatory networks. 

2.2.1 Micro-array data 

Micro-array is a chemical assay that uses fluorescent labeling to measure the RNA 

concentrations of all the genes in a cell in single experiment. A micro-array includes 

thousands of distinct chemical probes, each specific for a gene‟s RNA, arranged on 

silicon or glass substrate in the size of a coin [1]. Total RNA is fluorescently-labeled and 

washed over the chip and the chip is illuminated. Each probe will fluorescence according 

to how much labeled-RNA is bound. Therefore, fluorescence pattern on the chip provides 

a global picture of gene expressions for a given experiment. Unlike physical binding 

interactions between molecules, micro-array experiments only provide indirect evidence 

for gene interactions [1]. 
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DNA micro-arrays have been used to measure mRNA abundance for essentially 

all protein-coding genes in the genome under a large number of conditions. These data 

provide measurement of expression levels of thousands of genes simultaneously, and 

promise to be a very important tool in revealing the gene networks. 

 

 

 

 

Figure 2.3: A DNA micro-array is a collection of DNA fragments attached to a solid 

surface which serves probes for specific genes[68] 

 

 

 

Figure 2.4: A DNA micro-array data is shown. Each dot corresponds to the mRNA level 

for a specific gene with respect to a reference level. Red color shows an increase in 

expression level, green color indicates a decrease, and black color corresponds to an 

undetectable change [69].  
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There are two kinds of micro-array data obtained to infer gene regulatory 

networks: Steady-state measurements and time-course data.In steady-state data, upon a 

single gene knockout, over expression or simultaneous perturbation of a group of genes, 

the system reaches to a new steady state. The gene expression levels are measured against 

the reference steady state values. In algorithms using steady state data, a major drawback 

is the necessity of keeping the perturbation levels sufficiently low to render final results 

reliable. 

In time-series data, the system is perturbed and measurements of gene expression 

levels with respect to unperturbed level are obtained in successive time points. Compared 

to steady-state data, time series offer rich opportunities for understanding the dynamics of 

biological processes [6]. 

Limitations of micro-array data 

Micro-array data is scarce for the gene regulatory networks inference methods which 

require large data set. These data are expensive to obtain and include experimental noise 

up to 15% . In other words, micro-array data are typically noisy, high dimensional, and 

significantly undersampled [2]. 

2.2.2 Binding Data 

Chromatin immuno-precipitation (ChIP) is an experimental method in molecular biology 

to quantify the occupancy of upstream non-coding regions by transcription factors. In 

budding Yeast Saccharomyces Cerevisae, ChIP has been used to globally map the 

binding sites over a hundred transcription factors [7].  

 

Limitations of Binding data 



 

 

12 

 

Occupancy of the promoter region of a gene by a transcription factor protein is necessary 

but not a sufficient condition for a gene to be regulated by it [7]. As a result, 

quantification of genome wide transcription binding patterns by ChIP experiments alone 

can only indicate the potential for a gene to be regulated by a given TF [7]. Independent 

information will be required to establish that the gene is indeed a functional target. 

Binding of a TF on a promoter region of a gene is leads to observation of a link between 

for that TF-gene pair from the perspective of a network. However as binding of a TF 

protein to a gene doesn‟t necessarily mean regulation of this gene by TF protein this link 

is considered as a false link. Binding data has been obtained for a limited number of 

organisms. So far, protein-DNA interaction quantification has been studied for K12 

E.Coli [8], and for yeast.  

The microarray and protein-DNA binding data may not be sufficient for a detailed 

reverse engineering of the gene networks due to the high number of TF proteins, genes 

and mechanisms involved in these networks. Therefore researchers resort to certain 

abstractions in inference algorithms. Next section will give the details of such 

simplifications and assumptions.  

 

2.3 Main assumptions in gene network inference algorithms 

 

Gene networks contain the complex and nonlinear interactions of proteins, metabolites 

and genes. However, micro-array data provides only mRNA concentration information. 

Protein and metabolite concentration (proteomics and metabolomics) data are still 

difficult to obtain. As a result, network inference methods based on micro-array data can 

only capture the regulation dynamics in an indirect manner [10, 1]. In other words, all 

these techniques make the implicit assumption that the expression of the transcription 
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factor genes can be used as a proxy for the true transcription factor activity-the 

concentration of the protein in the form of that is able to bind and induce/repress 

transcription [10]. Nevertheless, algorithms based on revealing gene to gene relations, 

provides a global view of gene regulation [2]. 

Another challenge is the scarce nature of micro-array data. The reverse 

engineering approach requires large amounts data and extensive computational resources 

[11]. Typically, there are a huge number of network topologies that fit a given set of 

expression data [11]. To circumvent this problem, many research efforts have focused on 

clustering,.i.e grouping genes into hierarchical functional units based on correlations in 

expressional patterns [12, 13, 14]. A fundamental shortcoming of the clustering approach 

is that they are based on the assumptions that: gene regulatory networks are hierarchical 

in the structure and genes performing related biological functions exhibit similar 

expression patterns. These assumptions may not always be valid [15].Due to data 

scarcity, several studies have targeted small networks using many different frameworks. 

The most popular way to get around the scarce data problem is the assumption of 

sparse connectivity in gene networks. This assumption greatly decreases the number of 

parameters to be inferred thus let researches tackle otherwise underdetermined problem 

[15]. However, this comes at the cost of computational complexity; a heuristic or Monte 

Carlo search for the best combination of regulators of each transcript is required.  

One of the main challenges among gene regulation inference is the validation of 

the method. Upon application of methods on experimental data, researchers try to 

validate their method by delving into biological literature. While this approach can give 

some confidence in the algorithm, it does not solve the problem of the lack of knowledge 
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about the phenomena under study. For this reason, researchers usually apply their 

algorithms on well studied, usually small size networks.  

As a second approach, the algorithms are applied to synthetic data sets. In order to 

obtain an objective validation for the methods proposed, Mendes et al introduced a 

nonlinear continuous differential equation model that mimics characteristics of known 

gene networks as much as possible [16] (See Section C.1). Researchers measure the 

performance of their algorithms against synthetic data by various ways. The two common 

ways of measuring performance is the coverage of connections (true positives) and false 

positives in recovered network. True positive ratio is the proportion of the number of 

correct connections identified to the total number of connections in the true network. 

False positive ratio is the proportion of incorrect connections in recovered model to the 

total number of recovered connections. [17]. 

2.4 Reverse engineering strategies for gene networks 

Engineers and scientists have previously developed reverse engineering techniques in the 

fields of computer science, engineering, and statistics, which are respectively called 

machine learning, system identification and statistical learning [75]. With the emergence 

of DNA micro-array data, researches proposed many approaches to reverse-engineer the 

mechanism of transcriptional regulation [2].  
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Figure 2.5:  General Strategy for reverse engineering transcription control systems [2]. 

Several approaches have been proposed to reconstruct the gene regulatory network from 

the data. One can broadly group these methods in two categories: Stochastic and 

deterministic approaches.  

2.4.1.1          Stochastic Approaches 

 

Many stochastic approaches have been proposed to reverse-engineering of gene 

networks. Among these, Bayesian Networks and Dynamic Bayesian networks are the 

most popular ones.  

2.4.1.2 Bayesian networks 

Bayesian network is one of the popular frameworks that have been applied successfully 

for gene networks. Bayesian network methods were first proposed by Friedman et al. 

[18], and further developed by Hartemink et al [19].  

A Bayesian network is a graphical model that represents the causal relationship in 

random variables [70]. In the context of gene networks, each gene represents a node in 

the graph and expression level of each gene is represented as a continuous random 

variable. The probability density function for that random variable is assumed to be 
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conditionally dependent on the expression levels of other genes. In a Bayesian 

framework, the task to infer the network is to identify the weight of these dependencies 

[1] (Section A.1). 

The probabilistic structure of a Bayesian network enables straight-forward 

incorporation of prior knowledge via Bayes rule, thus one can complement the micro-

array data with prior information.  

The network structure is usually determined using heuristic search, such as a 

greedy-hill climbing approach or Markov-Chain Monte Carlo method [76]. For each 

network structure searched, algorithms find the maximum likelihood parameters and 

compute a score for each structure using Bayes rule. The Bayesian network approach 

typically requires a vast data set and it can-not handle cycles in the network [1]. 

 

 

2.4.1.3 Dynamic Bayesian networks 

 

Dynamic Bayesian networks represent the dependency in gene expression levels based on 

time-course data. The directed graph of the causal relationship among N  random 

variables is then constructed by estimating the bipartite graph of transcription factor 

proteins and genes. (See Section A.2). A Hidden Markov model can be considered as the 

simplest dynamic Bayesian network [65].  

Bayesian network is a quite powerful method to model networks however they 

require a vast amount of data. Data is scarce in biological networks [2] and subject to 

high levels of noise [66]. Therefore, Bayesian networks can only target small networks 

whereas linear and deterministic models are capable of identifying larger networks. The 

next section will introduce deterministic methods for the network inference problem.  
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2.4.2         Deterministic Approaches 

 

Most studied modeling schemes for gene networks are deterministic approaches. The  

methods of ordinary differential equations and Boolean methods are two of the most 

popular deterministic methods employed for the inference of gene networks. 

 

2.4.2.1 System of differential equations 

The most common approach to the modeling of dynamics of gene regulation is to view a 

gene regulatory network as a biochemical network of gene products, typically mRNA and 

proteins, and to describe their rate of changes through a system of ordinary differential 

equations[6, 15, 21, 22, 24, 28]. Therefore, the modeling framework is that of continuous 

time and, deterministic dynamical system often cast as ordinary differential equations 

(ODEs). (See Section B.1). 

Linear Methods 

In many studies using ODEs, the main underlying assumption is that the system is 

operating near a steady state, so that dynamics can be approximated by linear differential 

equations (See Section B.1).Several groups have applied linear ODE models to infer gene 

networks [15, 21, 22]. These methods usually require a certain degree of prior 

information. One of popular approach is to infer networks using steady state data on 

linear models [22, 23, 6]. Gardner et al. [22] proposed NIR (Network Identification by 

Multiple Regression) algorithm to reverse engineering a SOS network (DNA damage 

response pathway) using linear ODE model structure and steady state measurements. In 

the study of Gardner et al. [22], experimental data are collected by artificially increasing 

the level of RNA for individual genes in the network. In each perturbation the system re-
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settles to a new steady-state. The response of the system is calculated by the shift of the 

state variable from the initially observed steady-state. Though steady state data models 

can shed light on the structure of the network, they cannot give details on the dynamics of 

the networks.  

In Bansal et al [21], an algorithm to infer gene networks is proposed. They used 

time series data instead of steady state perturbations. They perturb a gene of interest and 

subsequently measured the gene expression profiles at multiple time points. However 

their model didn‟t consider any noise element in their study. In their method they 

identified the parameters (regulatory strengths in the network ) in the discrete domain and 

transform estimated parameters into the continuous domain. Noise in the data will lead to 

noisy parameter estimation in discrete domain and this error is further amplified when the 

system is transformed into the continuous domain. Therefore it is crucial to consider 

noise and any possible correlation structure in it.  

S-System based models 

 

Genetic networks are complex nonlinear systems.  The S-System is one of the best 

formalisms to estimate mechanism of interactions in gene regulation.  It is one of the 

most well studied methods [24-28]. The structure of S-System is rich enough to capture 

many relevant biological dynamics.  

The S-system belongs to the type of power-law formalism because it is based on a 

particular type of ordinary differential equation in which the component processes are 

characterized by power-law functions [28, 29]. (See Section B.2 ).  

The major disadvantage of S-System formalism is that it requires a large number 

of parameters to be estimated. Thus, this formalism is demanding in terms of data. In 
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gene regulatory network applications, where the data is highly limited, only small size 

networks can be the target of estimation by S-Systems.  

 

2.4.2.2 Boolean Networks 

First proposed by Kaufman (1969), Boolean networks represents gene networks as 

logical switching networks; it is a coarse grain approximation of the real network. In this 

model, time is taken discrete and gene expression is discretized into two qualitative 

states, present or absent. Several algorithms have been proposed for inferring Boolean 

networks [30, 31]. The goal is to construct an algorithm to find an optimal Boolean 

function for the given state data. A sparseness assumption is made to make the problem 

tractable under scarce data. The number of inputs to a function is limited to a certain 

degree. The main disadvantage of the Boolean algorithm is that it loses large amounts of 

information as the expression levels are reduced to only ON/OFF.  

True behavior of biological networks are highly nonlinear, therefore nonlinear 

ODE approaches such as S-Systems can model networks accurately. The major issues 

with nonlinear modeling efforts are the number of parameters to be estimated ,data 

scarcity compared to network complexity, and the difficult of constraining model 

behavior outside the range of measured data so that reasonable generalization error 

results. On the other end of spectrum sits Boolean methods. They are very simplistic 

representation of network interactions. Though they can give an idea about the initial 

picture of the networks they are far from providing dynamic details of the system. Linear 

continuous and discrete time models can give enough details with reasonable data 

requirements. However the majority of these models do not consider the noise component 

in the biological measurements. Measurement noise can lead to large errors in the 
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topology and parameter estimation. Furthermore, these methods assumed known 

topologies or didn‟t use topological information available from different resources.  

 

2.4.3 Methods integrating diverse types of genome data 

 

Some research has been directed to reveal the transcription factor activities using  micro-

array data alone or with binding data [ 7, 10, 32- 40]. Liao et al. [32] proposed Network 

Component Analysis (NCA) to infer transcription factor activities, which can incorporate 

prior knowledge. However, the NCA method imposes strong restrictions on the network 

topologies. Alter and Golub [40] introduced an approach for integrating binding and 

micro-array data using pseudo-inverse projection. 

Boulesteix and Strimmer [35] proposed a statistical approach based on partial 

least squares regression to infer the true transcription factor activities from a combination 

of mRNA expression and DNA-protein binding data. 

Gao et al [7] presented MA-Networker algorithm that combines micro-array and 

binding data and infer the activity of transcription factors using multivariate regression. 

Brynildsen et al. [34] proposed a Gibbs sampling algorithm combining two types of data 

which concentrates on the instances of agreement of both data. By doing this, they aimed 

at minimizing the effects of experimental noise in the data, and lack of correlation 

between binding and regulation. 

Sabatti and James [37] introduced an algorithm using sequence and expression 

data to infer transcription factor activities. They used sequence data to define a prior 

distribution on the topology of the network and expression array data allows them to 

identify which of the potential binding sites are actually used by regulatory proteins and 

their activation profile. To carry out their reconstruction algorithm, they proposed using a 



 

 

21 

 

Bayesian framework to identify unknowns in a linear model [37]. In matrix notation, 

their model is represented as follows; 

 PAE                             (2.1) 

where E  represents the micro-array data. In   MN

ijeE


  row indices correspond to the 

gene numbers and each column represents an experiment at a different time point. N  is 

the number of genes and M is the number of experiments.      LN

ijaA


  is the regulatory 

strength  matrix denoting the effect of TF proteins on gene expression. L is the number of 

transcriptional proteins. Each element, ija  shows the regulatory effect of the thj  TF 

protein on the expression of the thi gene ( mRNA level ). A is usually a tall matrix as the 

number of TF proteins is smaller than number of genes. ( NL  ). It is unknown along 

with the   MP

jtpP


   matrix representing TF levels at different time points.   MN

it


   

captures the measurement error in each gene expression level. Each it s assumed to be 

i.i.d  according to the Gaussian distribution,  2,0 iN  .  

  LN

ijzZ


  is a binary matrix with  element ijz  is 1 if thj  TF factor is regulating thi gene  

and zero otherwise.  

The Bayesian reconstruction framework becomes as follows; 

     222 ,,,Pr,,,|Pr|,,,Pr  PAZPAZEEPAZ   
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In this reconstruction framework, the unknowns are A  the regulatory strength 

matrix, Z the binary version of A  and P  is the TF protein levels in different time points 

and 2 is the variance vector storing the variances of measurements of each gene‟s 

expression level. 
ia  and 

iz  represent the thi column of A  and Z matrices respectively. 

tp  is the vector of elements in P  matrix in row number, t . The vector form is adopted 

in order to have a compact representation for the expressions. The posterior distributions 

of Z , A  , P and 2 are obtained according to the Bayesian rule shown in equation (2.2). 

ija , jtp  and 2

i  assumed to be mutually independent with following distributions; 

   2,01|Pr aijij Nza            2,0 pij Np   

  ijijz 1Pr                               ii

i

Gamma 


,
1

2
                                           (2.3) 

In this equation, i , i , 2

a , 2

p  are assumed to be hyper parameters. In the 

presence of a regulatory relation ( 1ijz ), the regulatory strength term, ija has Gaussian 

distribution with zero mean and a variance of  2

a  . Zero mean indicates that there is no 

information on the regulatory strength a priori.  Similarly, ijp has Gaussian distribution 
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with zero mean with a variance of 2

p . The distribution on each element of binary matrix, 

Z  is considered to be binomial with parameter, ij . This parameter is obtained through 

sequence information. The difference between model and measurement is also assumed 

to have Gaussian distribution with zero mean shown in the first term in the right hand 

side of  equation (2.3). 

Sabbatti and James used a collapsed Gibbs Sampling algorithm to solve the 

problem sequentially and applied their methodology to the E.Coli expression data. Sun et 

al. [38] introduced a Bayesian error analysis model to integrate binding and gene 

expression data to reconstruct transcriptional regulatory network. In their algorithm, they 

accounted for measurement errors in both types of data by considering these within a 

Bayesian model framework. Transcriptional factor activities and their effect on genes 

defined as parameters and along with unknowns defined for error models are merged in 

this framework [38]. 

Sun et al‟s method is a slightly different version of the approach employed by Sabatti and 

James [37]. The major contribution in the paper is modeling transcription process as a set 

of biochemical reactions and ending up with the identical linear model between 

expression levels and TF protein that was adopted in [37] ( Equation (2.1) ).  They also 

assumed measurement noise has independent structure and Gaussian distribution where 

the variances are among the unknowns in the inference algorithm.  Unlike in [37], instead 

of Gamma distribution, they assumed an inverse gamma distribution on the variance of 

measurement noise.  

Their model is identical to equation (2.1). Instead of sequence data, they used 

protein-DNA binding data. They considered transcriptional regulation networks 
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consisting of two components; a binary connectivity matrix,  
ijrR   and regulatory 

strength matrix,  
ijaA   ( equation (2.1)). R is binary version of A  and essentially 

shows the presence and absence of the edges in the network where nodes representing 

gene expression and TF levels. Through protein-DNA binding data, the observed binary 

binding information  
ijzZ   is obtained. This Z  matrix is analogous to the Z  matrix in 

[37], but note that Sabatti and James obtained this observation through sequence analysis 

instead of protein-DNA binding data. 

 As Z  has observational errors (false positives and false negatives), they 

introduced an misclassification model between Z and R  ( observed and real binary 

binding matrices , respectively). Their misclassification model is as follows; 

  prw ijij  1|1Pr                     prw ijij  11|0Pr  

  qrw ijij  0|0Pr         qrw ijij  11|0Pr                                              (2.4) 

 

where p  and q  are true positive and true negative rates respectively. They obtained 

relative binding intensity data through protein-DNA binding experiments and represented 

it as,  
ijbB  . The regulatory strength, ija  is approximated by using binary binding 

information, ijr and binding intensity, ijb according to the following formula; 

ijijij rba                           (2.5) 

In [37], there was no binding intensity information, and regulatory strengths ija  

have Gaussian distributions with zero mean (Equation (2.3)),  however in this study , 

binding intensity is utilized to obtain an approximation for ija  through equation  (2.5).  
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 MCMC is employed as a solution strategy similar to [37]. The method is applied to the 

yeast cell data to illustrate its application.  

In both of these studies [37, 38], the nodes of the gene network are the gene 

expression levels and TF protein levels. TF protein levels are treated as unknown hidden 

variables and expression levels are the variables observed through time series micro-array 

data. 

As genomic data is limited, corrupted by high levels of noise and systems are 

complex, prediction TF protein levels for all time points in addition to regulatory 

strengths may result in inefficient reconstruction. TF protein levels as hidden variables 

will provide additional information on networks, but comes at the cost of higher quality 

and quantity of data. 

In another study Bernard et al [39] presented a dynamic Bayesian method for 

jointly learning models of transcriptional regulatory network from expression and binding 

data. They incorporated expression data in likelihood term and binding data is modeled in 

a probabilistic manner to serve as a prior. Dynamic Bayesian networks is a class of 

Bayesian network model that permit cyclic structures like regulatory feedback loops and 

have been used to analyze the time series data in the context of transcriptional regulation 

[20]. In the process of learning dynamic Bayesian networks, most probable topology is 

determined using Bayes rule given the time-series data. (For detailed discussion of 

Dynamic Bayesian Networks , see section  A.2 in appendix ). The prior on structures is 

usually assumed to be non-informative. In [39], binding location data is used and 

converted to a probabilistic model to serve as an informative prior. Location data 

provides evidence as to whether a regulatory relationship exists. This evidence is 
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signified through p-test. In their probabilistic informative prior model, the more 

significant the location data (the lower the p-value), the more likely the edge is to be 

included).  They employed a function that maps p-values to corresponding probabilities 

of edges being present in the topology, G  of the gene network. In this network, the 

vertices (nodes) are gene expression levels and edges denote the regulatory relationships 

between the genes.  The p-value is defined as a random variable iPr in the interval,  0,1 . 

It is assumed to be exponentially distributed if GEi  , and uniformly distributed if iE  

absent from G . 

 














e

e
GEp

p

ii
1

|PrPr                       (2.6) 

The probability of GEi   is taken as  ,   GEiPr . Using Bayes rule, the 

probability of edge iE  being present in  G after observing the corresponding p-value is 

shown as follows: 

 
  














11
Pr|Pr

ee

e
pGE

p

p

ii                                (2.7) 

 

They applied their framework on both simulated and experimental data and demonstrate 

that regulatory networks recovered through joint learning algorithms from multiple types 

of data are more accurate than those reconstructed from each type of data alone. However 

Bayesian networks are probabilistic frameworks and they require vast amounts of data.  
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2.5  Link Prediction Methods in Biological Networks 

With the advent of new technologies in biology, there are many resources for data types 

for biological networks. Some of this data represents the connectivity structure of the 

biological networks. These networks can be listed as protein-protein interaction, 

regulatory and metabolic networks. For example, Text mining data identifies biological 

relationships based on co-occurrence of gene/protein/drug/disease terms in the abstracts 

of scientific publications [48]. Protein-DNA binding data is another resource for 

connectivity of regulatory networks. PPI (protein – protein interaction) databases are also 

quite commonly used for inference of networks. Recently link prediction has attracted 

increasing attention from network from computer scientists and physicists [57-61]. The 

link prediction problem can be categorized into two groups. The first category concerns 

predicting links that exist yet are unknown. Biological network connectivity prediction 

can be classified under this category. The other link prediction category is predicting 

connections that will become available in the future for networks evolving in time such as 

social networks [49]. For biological networks the discovery of a link is costly and time 

consuming therefore it is logical to make prediction using existing links and focus on 

verifying these predicted links.  

For link prediction first step is to define node similarity in the network depending 

on the commonly shared features. Lieben-Nowell and Kleinberg [50] compared topology 

based node similarity indices for social networks. They showed that Common Neighbors 

(CN) and Adamic Adar (AA) methods are the best in terms of predicting future links in 

social network examples. Common Neighbors method assumes that two nodes are more 

likely to form or have a link if they have many common neighbors. 
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     yxCNScore            (2.14) 

Here,  x  is the set of nodes connected to node-x and similarly  y  is the set of 

neighbors for node-y.  

Adamic-Adar (AA) similarity index is a modification of common neighbors where the in-

degrees of common neighbors are taken into account. It is represented as follows;  

 
      





yxk zk

AAScore
log

1

                                                   

(2.15) 

Jaccard is another quantification of similarity index between two nodes in a 

network. It is simply the number of common neighbors divided by the union set of 

neighbors of the pair of the nodes. Therefore, it is a function of out-degrees of the node 

pair as well as number of common neighbors they have.  

 
   

   yx

yx
JScore




                       (2.16) 

Common Neighbors method only relies only on the number of commonly shared 

nodes therefore it doesn‟t consider degree distribution of the nodes. Jaccard index was 

originally introduced for comparing the similarity between two sets. It is also commonly 

used in graph theory.  For the Jaccard score out-degree of the nodes are considered in 

addition to the number of common neighbors.  On the other hand, Adamic Adar method 

is based on both number of commonly shared nodes and natural logarithm of their degree 

distribution. However this method doesn‟t take into account the out-degrees of the nodes. 

To the best of our knowledge there has been no study on p-value based probabilistic 

approaches for scoring node similarity based on the all three components; out-degree, in-

degree and number of commonly shared nodes . We will present such a method in 

Chapter 5 of this thesis. 
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2.6  Biological Networks as Bipartite Networks 

There are several other biological networks that can be represented in the form of 

bipartite networks. Among them is Drug-target networks.  Identification of drug-target 

interactions (interactions between drugs and target proteins) is a key area in drug 

discovery. Both the number of new drugs and targets has remained rather relatively 

unchanged in the last 20-25 years [51]. Yamanishi et al [52] integrated know drug-target 

information with target protein sequence data and drug chemical structure. In another 

study, Campillos et al [53] used side effect similarity between drugs to predict novel 

targets for drugs. They based their method on the assumption that the drugs that share 

common side effects are more likely to share targets. They combined drug-target, drug-

side effect information with drug chemical similarity. They also validated some of their 

predictions with experimental results. Drug-target information is available through 

different databases. KEGG brite [54], BRENDA [55] and Drugbank [56] are among these 

databases.  

Increasing scientific, regulatory and public scrutiny is focused on the obligation of 

the medical community, pharmaceutical industry and health authorities to ensure that 

marketed drugs have acceptable benefit-risk profiles. In that regard adverse event 

prediction methods for drugs become increasingly important. Drug side effects 

relationships can also be visualized as a bipartite graph. Campillos et al [53] defined a 

similarity measure for drug-drug pairs for their commonly shared side effects. They also 

created a drug-side effect database using drug package inserts (SIDER,[53]). Drug 

package inserts are simply the results of clinical trials where the number of subjects is on 
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the order of thousands. Another database for drug-adverse event is AERS that is 

maintained by FDA. The name AERS stands for Adverse Event Reporting System.  It is a 

collection of Spontaneous reports that are product of surveillance of drugs in the post 

marketing phase. Hence, this database includes exposure of much larger population of 

patients compared to clinical trial data [74].  

It is essential to identify adverse events in the early phases of drug development. 

Two of these early phases include target discovery and animal models. An important 

parameter in target discovery is the side effect [71]. Pathways are crucial components in 

target validation. The knowledge of a pathway allows separate targeting of upstream or 

downstream targets. Inhibition or modulation of selected targets in the same pathway 

could lead to the same therapeutic with fewer side effects or better druggability. 

Furthermore, knowledge of pathways and their relation to each other helps researchers 

understand side effect profiles [71]. A valuable resource for biological pathways is the 

KEGG pathway database [54]. This is a collection of manually drawn pathway maps 

representing the collected knowledge on the molecular interaction and reaction networks 

[54]. This database can be viewed as a bipartite network of the Pathway-Target 

associations.  

In chapter 6 by integrating Pathway–Target relations (ex. KEGG pathway [54]), 

Target-Drug ( ex. Drugbank [56] and Brenda [55] ) and  Drug –Side Effect ( ex. 

SIDER,[53] and AERS ) we formed a multipartite network of Pathway-Target-Drug-Side 

Effect relations.  Integrating these databases and finding significant structures in these 

resulting networks can serve as a framework to associate side effects with targets and 

molecular pathways. This framework can be a useful resource for side effect prediction in 



 

 

31 

 

the early phases of drug development. To the best of our knowledge there has been no 

systematic study of integrating these databases on a network framework to find 

significant Target-Side Effect or Pathway-Side Effect relations.  

 Animal models have specific characteristics that mimic human diseases. The 

technologies for the creation of transgenic animals, where certain genes are either 

deleted, modulated, or added, have progressed tremendously in the last decade. As a 

result, the predictive power of animal models for human disease and pharmacology is 

improving. It is crucial to note that some experts in the pharmaceutical industry and the 

U.S. Food and Drug Administration (FDA) believe that inadequate animal models, or the 

lack of animal models altogether, are a major obstacle in drug discovery and 

development. Pharmaceutical companies have long used model organisms in preclinical 

efficacy [71]. The laboratory mouse is the premier animal model for understanding the 

genetic and molecular basis of human biology and disease
 
[72]. MGI database is a 

comprehensive information source that primarily provides genetic and genomic data to 

support laboratory mouse a model organism. [73] To achieve this goal, MGI maintains a 

comprehensive catalog of mouse genes and other genome features and associates these 

features with orthologous genes in other mammals, human diseases, functional 

annotation, mouse phenotype descriptions, DNA and protein sequence data and 

developmental gene expression information.  

A valuable information resource that can be obtained from MGI database is the 

mouse phenotype-mouse gene associations. These relations can be represented as a 

bipartite network. Combination of „Mouse Phenotype’-„Mouse Gene’ relations and 

orthologous of mouse genes in humans with target-drug network as well as drug-side 



 

 

32 

 

effect network can give a multipartite network of Mouse Phenotype -Mouse Gene-Human 

Target-Drug-Side Effect.  In chapter 6 we will aim at finding significant motifs in such 

networks that can be used as a methodology to associate mouse phenotypes with human 

side effects. There is no network based method for associating mouse phenotypes with 

human side effects.  

2.7     Discussion 

In this chapter a background is given for reverse engineering biological networks. There 

are two broad groups of models for inferring biological networks; probabilistic and 

deterministic. Probabilistic models can give important details however in general these 

methods require a lot of data. This can result in insufficient inference accuracy as 

biological data is scarce, noisy and systems are complex. In deterministic models 

nonlinear modeling approaches such as S-Systems can explain biological data well 

enough however these models have many parameters and they can only target relatively 

smaller size networks. Linear ODE models can involve larger networks with reasonable 

accuracy. Much of the research on these models however didn‟t consider high noise 

component in biological networks. We introduced a novel constrained total least squares 

formulation based on a linear discrete ODE model in Chapter 3 to specifically address 

this problem.  

As biological data become abundant more data has been collected to shed light on 

connectivity of biological networks. There have been several studies on combining 

topology data with dynamic measurements and details of some of these studies are given 

[37-39]. For example, in studies [37, 38] binding or sequence data can provide initial 

connectivity (positions of the linkages) in the networks. As genomic data is scarce and 
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noisy and systems are complex, estimating TF protein levels for all time points in 

addition to regulatory strengths may lead to poor reconstruction accuracy. Estimating the 

levels of Transcription Proteins may give a better picture for understanding regulatory 

networks, but it comes at the cost of higher quality and quantity of data. In [39] Bayesian 

networks are employed to integrate the data but since they are probabilistic frameworks 

the data requirement can be high and for limited data it can lead to poor performance. In 

chapter 4 we introduced a Bayesian parameter estimation framework that integrates 

connectivity and dynamic data. In our model gene to gene connectivity is considered. By 

doing this, we mainly focus on distributions of regulatory strengths between TF genes 

and target genes. These gene levels can be obtained through the microarray data.  

Due to complexity of biological networks accurate prior connectivity information 

is essential to be able to reverse engineer these networks. Missing links in the 

connectivity information can be a major hurdle for prediction of these networks 

dynamics. Therefore predicting missing connections in the networks becomes crucial. 

Link prediction methods are essentially based on estimating links between a pair of nodes 

depending on the commonality of their topological features.  Common Neighbors is a 

standard method of link prediction. It only relies only on the number of commonly shared 

nodes between the pair of nodes therefore it doesn‟t consider degree distribution of the 

nodes. Jaccard index is a variation of CN method in which out-degrees of the nodes are 

considered in the score function.  Adamic Adar method is based on both number of 

commonly shared nodes and natural logarithm of their degree distribution but this method 

doesn‟t take into account the out-degrees of the nodes. There has been no study on p-

value based probabilistic approaches for scoring node to node associations based on the 
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all three components; out-degree, in-degree and number of commonly shared nodes. In 

chapter 5, we introduced a novel link prediction method based on a probabilistic 

approach. 

Many biological networks can be represented as a multipartite network that is a 

combination of several bipartite networks. Predicting significant links on these networks 

can have many potential applications. One important application can be drug side effect 

prediction. Side effect prediction has not been studied from the perspective of networks. 

In chapter 6, we introduce a framework for side effect prediction from targets, pathways 

as well as mouse phenotypes.  
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CHAPTER 3 

 

A NOVEL CONSTRAINED TOTAL LEAST SQUARES METHOD FOR THE 

IDENTIFICATION OF BIOLOGICAL NETWORKS FROM NOISY 

MEASUREMENTS  

 

 

 

3.1 Summary 

A detailed overview of biological networks, data types, and computational methods was 

given in the previous chapter. There are two main issues with network identification 

problem; inference of topology and dynamics. Biological data is quite noisy and can be 

scarce. Furthermore, topological information can be incomplete, inconsistent or unknown 

for many biological systems. Therefore, in this chapter we address the problem of 

biological network identification without prior knowledge on connectivity only using 

noisy time series data. Least Squares is a commonly used method as parameter estimation 

framework for this kind of problem. However a discrete time model for this identification 

problem will lead to noise in both dependent and independent variables. Moreover, this 

error is serially correlated. To address this problem we propose a novel constrained total 

least squares algorithm. We demonstrate its superior performance over commonly used 

regression techniques such as least squares (LS), total least squares and existing 

Constrained Total Least squares approaches [64] on artificial network examples. 

  

3.2 Introduction 

The functions of living organisms are achieved through interactions of cell‟s components. 

These interactions create large networks. It has become essential to understand these 

networks to have a better picture of diseases and design better drugs. Gene regulatory 



 

 

36 

 

networks sit at the core of these diverse networks and they have been studied intensively. 

Since the advent of diverse genomic data techniques from mathematics, statistics, 

engineering and computer science methods have been proposed to understand the 

topology and dynamics of regulatory networks. These methods are collected under the 

umbrella of “Systems Biology” that has emerged as an interdisciplinary science.  An 

outstanding addition to the ability to generate genomic information is the microarray 

technology, and the majority of network inference efforts are focused on reverse 

engineering regulatory networks from time series measurements [6,15,21, 22, 24, 28]. 

These studies model the dynamics of gene regulation as a biochemical network of gene 

products, typically mRNA and proteins, and  describe their rate of changes through 

system of ordinary differential equations. Since the time series experiments are available 

in discrete time points inference methods are developed as discrete time equations. In this 

type of model the expression level of a gene is assumed to be the concentration of its 

transcript. The concentration of a particular transcript at time point 1k , 1ˆ k

ix is given by 

the linear function of the concentrations of other RNA species at time point, k ; 

 

k

i

k

i

N

j

k

jij

k

i uxax 


 
1

1 ˆˆ ,   Ni ,..,1     2,0 e

k

i N                     (3.1)     

                 

 

where N is the number of transcripts in the network and ija  is the regulatory strength 

between gene pairs i  and j .  k

i  is the error term for the difference between observation 

and the model. The errors are assumed to have Gaussian distribution with zero mean and 

standard deviation of 2

e . The input term for this model is represented as k

iu . The aim is 

to estimate parameter values, ija ‟s,  from micro-array observations, k

ix̂ , thereby 
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reconstructing the gene network. A negative ija  indicates an inhibition, and a positive 

value for ija  stands for activation between the gene pair. In general, only a small subset 

of all RNA species regulates a particular transcript, which means most of the ija ‟s are 

zero. In other words, the gene networks are sparse. [4]. 

Microarray data is usually subject to high levels of additive and multiplicative 

errors [5]. Therefore, one can write concentration levels for genes as follows;  

 
k
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i exx ˆ
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i

k

i vuxe              2,0 u

k

i Nu 
        

 2,0 v

k

i Nv                               
(3.2)

                              

            
 

In this equation, k

ix  is the unknown true value for concentration of 
thi gene at 

thk  time 

point and k

ie  is the measurement error. The terms k

i

k

i ux  and k

iv  correspond to 

multiplicative and additive parts of the measurement error. 

Using equation (3.1) and (3.2), one can write the model for all genes,  

 

  kkkkk uexAex


  11                                  (3.3)
  

 

where ,  Tk

N

kk xxx ,...,1
  ,  Tk

N

kke  ,...,1  ,
 

 Tk

N

kk uuu ,...,1 and    N N

ijA a IR       

Equation (3.3) can be written for all time points, Mk ,...,1 , as follows;  

  UEXAEX  122
                        (3.4)  

 

where  MxxX


,...,2

2  ,    11

1 ,...,  MxxX
 ,   MeeE ,...,2

2  ,and  11

1 ,...,  MeeE . 

 

One can see that both dependent and independent variables have error terms (Eq.3.4). 

Furthermore 1E  and 2E  are serially correlated as they have same columns except for the 

first and last columns.  
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Majority of inference algorithms for discrete time models focused on least squares 

regression. Least squares assume error terms are limited to only dependent variables. A 

significant problem from the regression standpoint is that both independent and 

dependent variables have high level of noise. Moreover, these noise terms are serially 

correlated. Noise has significant impact on parameter estimation of the networks. It is 

obvious that more advanced inference algorithms are needed that can take into account 

critical noise component. Kim et al [64]. proposed an application of constrained total 

least squares algorithm (CTLS) that is ideally suited for this model formulation. As seen 

in Equation (3.4) the models is corrupted by noise in both sides of the equation and noise 

is serially correlated.   In their CTLS approach for a multi-variable network model, 

parameter estimation for each dependent variable is calculated separately. However since 

error propagates in time with parameter matrix (Eq. (3.3)) one should estimate parameters 

for dependent variables simultaneously. We introduced a novel CTLS algorithm that 

takes care of correlated noise and estimates parameters for dependent variables 

simultaneously. We compared our methods with Kim et al [61]‟s examples as well as 

other common regression methods. We observed significant improvement over traditional 

regression models and their CTLS framework.  

 

3.3  Methods 

We adopt a  linear discrete time model for gene regulatory network . All equations are 

written for all M  data points and N  nodes in a state space representation. States refer to 

the values of expression levels and errors representation experimental error.   

  UEXAEX  122
                        (3.5)  
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In this representation the observation for dependent and independent variables are 

decomposed into true value and error terms. 

In this equation state matrices are written as  MxxX


,...,2

2  ,    11

1 ,...,  MxxX
 . 

Similarly error matrices are;  ME 


,...,2

2  ,  11

1 ,...,  ME 
 . Each column of error and 

state matrices corresponds to the vectors at thk time step;  Tk

N

kk xxx ,...,1
  ,   Tk

N

kk  ,...,1
 . 

Input matrix is represented as;  MuuU ,...,1 . Parameters are also represented in a matrix 

form;   N N

ijA a IR                

 

Inputs are assumed to remain same for each time step. Equation (3.5) can be rewritten as 

follows; 
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This model can be further extended for a P  parallel experiment case as follows; 
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One can write this equation in a compact form.  

 1122 EXAEX               (3.8) 

If the error terms are ignored the least square estimation for this equation can be written 

as; 
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Total Least Squares  

Total least square estimation for this system is shown for 
thi  dependent variable for all 

data points and experiments as follows;  
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In this equation first term refers to the thi   row of the  2X  and second term is the 
thi row 

of the 2E  . The first term at the right side of the equation is the 
thi  row of the parameter 

matrix A . 

This equation  is rearranged as follows; 
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One can write this equation in a compact form as;  

    0111  CCba N

i

N

i Nifor ,..,1                                                    (3.12) 

Total least square formulation is written as follows;  

2

,
min

Fba
C Subject to Equation (3.12) 

The solution to this becomes;  
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       TT

TLS XXIXXA 21
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ˆ 

           (3.13) 

Where   is the smallest singular value of C . Compared to least squares, the TLS 

solution has a correction term, 2 , in the inverse term. This reduces the bias in the 

solution that is caused by noise in the independent variables. 

 

Constrained Total Least Squares method 

Least squares solution is not optimal when there is noise in independent variables. Total 

least squares takes into account the noise term in the independent variables. However it is 

not the best approach when the noise term is correlated, which is the case in this 

formulation. Kim et al [64]  proposed a CTLS framework that considers correlation in the 

noise term. Their method based on estimating parameters for each dependent variable one 

at a time similar to the TLS methodology. However noise terms in the independent 

variables are correlated as a function of all the rows of parameter matrix rather than each 

row. In our formulation we address this problem and reformulated CTLS framework for 

this model.  

To do that we started with rewriting equation (3.5) as follows;  

             (3.14) 

Here   ik e2
 is the thi column of matrix,  

2Ek  and it stands for error term for all dependent 

variables for all time points at the thk experiment. Similarly    ik e1  and    ik x1  are the thi  

columns of matrices,  
1Ek  and  

2Xk  respectively.  

One can write equation (3.14) for 1i and 2i as follows; 
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The thi column of  
2Ek is identical to the  thi 1 column of the matrix,  

1Ek . Therefore, 

one can write;  

  (3.17) 

If this is plugged in equation (3.16), it becomes;  

  (3.18) 

Equation (3.15)  and  (3.18) will yield the following expression; 

  (3.19) 

Similar to equation (3.17) thi column of  
2Xk is identical to the   th

i 1 column of the 

matrix,  
1Xk . 

  (3.20) 

Plugging equation (3.20) in equation (3.19) and doing necessary cancellations will lead to 

the following; 

  (3.21) 

We assume that input stays constant throughout time for each experiment; 

   1uk =    2uk =…=    1Mk u =  uk                                                                            (3.22) 

Equation (3.21) can be rearranged as;  

  (3.23) 

One can write this equation for all 1M  columns; 

  (3.24) 

Sum of squared error terms for all time points and experiments are represented as 

follows;  

             (3.25) 
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Using equation (3.24) and equation (3.25), we obtain; 

 

 

 

 

 

 

 

 

  (3.26) 

TotalE  is a function of error and state at initial time step for all experiments, as well as 

input and measurements. Constrained total least squares is simply unconstrained 

minimization of TotalE . In this optimization problem decision variables are A ,  uk ,and 

   1

1ek  ; input variables are    1

1xk  and  
2Xk . In other words, optimization should search for 

parameter space ( A ,  uk ) that will minimize the equation (3.26).  

  (3.27) 

We approached this problem in a step wise manner. The first step searches for 

matrix A  that minimizes TotalE  with respect to error at initial time step,    1

1ek . This is 

represented as; 

  (3.28) 
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Least squares solution from equation (3.9) is given as initial condition to this 

minimization problem. Calculating the above equation will give the following set of 

equations ( see Appendix for details) ;  

 

 

 

  (3.29) 

In the second step of minimization problem, the resulting value for the term 

    Tk e 1

1
from the first step will be used. This step searches for parameters that will 

minimize TotalE  with respect to  uk . This is simply the solution for the following 

equation; 
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After several matrix calculus steps this equation will lead to following set of expressions 

(see Appendix for details) ;  

 

 

  (3.31) 

 

In the case of multiplicative and additive noise in measurement are represented as 

in equation (3.2). CTLS framework can be modified to take into account of the nature of 

the noise terms.  
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In the above equation,    j
i

k e  refers to the error for thi state measurement at thj time point 

of the thk experiment. Similarly,    j
i

k x  is the value of thi state at thj time points for the 

thk  experiment.  The term   is assumed to have a normal distribution. b  is a constant 

that accounts for the ratio of variance of the error to the signal. One can redefine the noise 

term  in equation (3.32) as follows;  

          2,0 v

j

i

kj

i

k xbNe                                 (3.33) 

Equation (3.25) can be modified to integrate the noise model in equation (3.33). This is 

achieved by calculating sum of squared of weighted errors. With the new noise model, 

equation (3.25) becomes;  

 

             (3.34) 

In this expression, weight matrix    ik W  is defined as follows;  

           121 Nx

v

NxjkNxNik IxbIW 


          (3.35) 

where,    jk x


 is the state vector of size N at the thj time point for the thk experiment.  

Minimization for the modified term can be calculated similar to the equations 

(3.28-3.31). The weighted version of equation (3.29) becomes;  

 

 

 

  (3.36) 

 

Similarly equation (3.30) can be modified to include weights;  
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(3.37) 

 

3.4 Results 

We applied our algorithm on network models that are presented by Kim et al. Their first 

example network is a four gene network modeled by nonlinear differential equations. The 

model is shown figure (3.1) 
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In this set of equations  tx3
  is the rate of change for the expression of thi gene at time t . 

SV  and K  and  values correspond to maximum enzyme rates and Michaelis constants 

respectively.  Parameter values for this model are given as follows; 51 SV  , 

5.32 SV , 33 SV , 44 SV , 2001 dV , 5002 dV , 1503 dV , 5004 dV , 6.114 aK ,

6.124 aK , 5.132 aK , 15.043 aK , 5.012 iK , 7.031 iK , 301 dK , 602 dK , 103 dK ,

504 dK , 414 A , 424 A , 532 A , 243 A , 112 n , 224 n  , 131 n , 232 n , 243 n . In 
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this model the levels of perturbation for S

iV are 100% from their nominal values. The 

measurement noise is assumed to be zero-mean white Gaussian with variance equal to the 

square of the equilibrium 0.02. Equilibrium state values are given as follows; 

4920.01 eqx , 6052.02 eqx  , 1866.03 eqx  , 6514.04 eqx  [64]. Drift noise case is also 

considered for this model. The details of this noise model can be found in [64]. There are 

four parallel experiments and in each experiment one of the four S

iV values are perturbed 

in negative direction. Within each experiment, measurements are taken at a rate of (36s) 

for a number of time points varying from 3 to 60.  

The second network example is the feedback interactions between the tumor 

suppressor 53p  and the oncogene 2mdm . Feedback mechanism causes oscillations in the 

systems that vary from cell to cell. This model has been received attention in the recent 

literature.  The underlying nonlinear ordinary differential equation for this system is 

given as [64]; 

   53
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5353 ps
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
                              (3.39) 

The level of perturbation on 53p  is negative 10% and the measurement sampling time is 

2 hours and white noise is added to the measurements.  

Jacobian for 4-gene and 2-gene network examples are given as follows [64]; 
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The nonlinear models are perturbed at the equilibrium values to obtain a linear ordinary 

differential equation.  

     tutxFtx                        (3.41) 

where, F is the Jacobian,  tu  is the input term at time t and  tx  is the vector for the 

rate of changes in the deviation of the expression levels of all four genes from their 

equilibrium values.  

The aim of regression methods is to estimate Jacobian matrix correctly under the 

uncertainty and noise in the data. Since the measurement data are taken at discrete time 

steps, the discrete time representation of the equation is employed. This is identical to the 

equation (3.8). 

 1122 EXAEX                                                                                                      (3.42) 

,where 21, XX  is the measurement of the deviation for all states, time steps and 

experiments. The open forms of these matrices are given in equation (3.11). 

A is estimated through different methods in discrete domain. Estimation for 

Jacobian F can be calculated through relation [64]; 

 A
T

F ˆlog
1ˆ


                        (3.43) 

,where T  is the sampling time. Another transformation from discrete to continuous 

domain is the bilinear transformation.  
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 IAIA
T

F            (3.44) 

Jacobian gives a quantitative picture of the local structure of the networks, 

therefore it is important to estimate each element correctly. The estimation error between 
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true Jacobian F  and estimated Jacobian F̂  can be calculated in different ways. We 

adopted the error definitions from [64]. The first error criteria is defined as;  
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where ijf̂  and ijf  are the thi row and thj column elements for matrices F̂  and 

F respectively. 1N  and 2N  terms are the number of non-zero and zeros in true Jacobian 

matrix.  

The second error criterion is defined as follows; 
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i
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j
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N 1 1

2

1
                                           (3.46) 

Where  asign is a function that has the sign of a  as its value,i.e.,-1,0,1 for 0a  

0a , and 0a , respectively. 

The third error definition is based on the Frobenius norm of the difference in true and 

estimated Jacobian matrices. 

FFF  ˆ             (3.47) 

For first four-gene network example all methods are compared according to this 

three error criteria for different number of samples ranging from 6-30. The results are 

generated from 1000 Monte-Carlo simulations and they are tabulated in table 3.1.As it 

can be seen for small numbers of data TLS method has larger error compared to LS. This 

is due to the minimum requirement of data for TLS. Here CTLS-1 refers to the 

constrained total least squares method proposed by Kim et al. Our reformulation for 
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CTLS is represented as CTLS-2. We outperformed all regression methods as well as 

CTLS-1 consistently. Our method reduced M  error by an average of 21% and it  

improved F  by an average of 12% compared to CTLS-1. Compared to CTLS-1 we 

observed an average reduction of 21% and 27% for the standard deviation of M  and F  

errors respectively. For M  all methods give a similar level of performance. It can be 

observed that the accuracy of the estimation increases with increasing data points. 

Table 3.1. Four-gene network example with white noise only 

Number of 

samples 

 

METHODS 
           M               S               F  

Mean STD Mean STD Mean STD 

 

 

6 

LS 16.44 5.25 0.59 0.14 70.92 18.48 

TLS 79.93 333.79 0.74 0.19 580.46 2453.05 

CTLS-1 15.98 6.94 0.64 0.16 69.89 28.22 

CTLS-2 13.58 4.16 0.69 0.17 53.56 14.14 

Number of 

samples 

 

METHODS 
           M               S               F  

Mean STD Mean STD Mean STD 

 

 

9 

LS 7.75 2.53 0.46 0.10 36.00 9.46 

TLS 11.56 9.59 0.54 0.14 64.76 80.98 

CTLS-1 6.58 2.88 0.47 0.11 32.16 13.16 

CTLS-2 5.73 1.78 0.49 0.11 23.70 7.09 

Number of 

samples 

 

METHODS 
           M               S               F  

Mean STD Mean STD Mean STD 

 

 

12 

LS 5.15 1.65 0.40 0.06 24.91 6.62 

TLS 6.20 2.43 0.45 0.09 31.98 15.03 

CTLS-1 3.75 1.47 0.40 0.05 19.62 7.04 

CTLS-2 3.32 1.01 0.40 0.06 14.73 4.45 

Number of 

samples 

 

METHODS 
           M               S               F  

Mean STD Mean STD Mean STD 

 

         

        21 

LS 3.64 1.04 0.38 0.02 17.87 4.27 

TLS 3.61 1.34 0.38 0.02 20.29 8.64 

CTLS-1 2.16 0.68 0.38 0.02 11.31 2.98 

CTLS-2 1.89 0.55 0.38 0.02 9.05 2.30 

Number of 

samples  

 

METHODS 
           M               S               F  

Mean STD Mean STD Mean STD 

 

         

        30 

LS 3.70 0.90 0.42 0.06 17.31 3.74 

TLS 3.47 1.27 0.44 0.07 18.82 7.46 

CTLS-1 2.27 0.57 0.49 0.03 10.01 2.00 

CTLS-2 2.22 0.54 0.48 0.04 9.01 1.61 
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To evaluate to drift noise effect we used the drift noise model in [64]. For different 

strength of drift noise the results for 1000 Monte Carlo simulations are shown in table 

3.2. Our method consistently outperforms all methods for all levels of drift noise. 

 

Table 3.2. Four-gene network example with both drift and white noise  

Strength of 

drift noise 

 

METHODS 
           M               S               F  

Mean STD Mean STD Mean STD 

 

         

        2.0 

LS 8.91 3.50 0.48 0.11 40.61 14.60 

TLS 32.97 190.54 0.59 0.16 244.44 2341.86 

CTLS-1 8.20 4.18 0.52 0.13 40.40 22.61 

CTLS-2 7.31 2.62 0.54 0.13 30.34 10.52 

Strength of 

drift noise 

 

METHODS 
           M               S               F  

Mean STD Mean STD Mean STD 

 

         

        1.0 

LS 6.18 2.07 0.43 0.08 29.17 8.58 

TLS 8.06 4.30 0.49 0.12 43.23 29.42 

CTLS-1 4.97 2.09 0.43 0.09 24.94 10.81 

CTLS-2 4.53 1.48 0.44 0.09 19.24 5.93 

Strength of 

drift noise 

 

METHODS 
           M               S               F  

Mean STD Mean STD Mean STD 

 

         

        0.1 

LS 5.20 1.62 0.40 0.06 25.18 6.69 

TLS 6.30 2.36 0.45 0.09 33.18 16.51 

CTLS-1 3.80 1.52 0.40 0.06 19.54 7.11 

CTLS-2 3.34 1.10 0.40 0.06 14.62 4.47 

 

In the second example with 2-gene network, our reformulation generally shows better 

performance compared to other regression methods. In this example, there are 4 

experiments and the number of samples for each example is varied 8-16. The results are 

tabulated for all error criteria in table 3.3. 
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Table 3.3. Two-gene network example with both drift and white noise  

Number of 

samples 

 

METHODS 
           M               S               F  

Mean STD Mean STD Mean STD 

 

         

        8 

LS 0.82 0.16 0.50 0.00 0.03 0.01 

TLS 15.49 51.01 1.03 0.16 0.66 2.26 

CTLS-1 0.40 0.07 0.50 0.00 0.02 0.00 

CTLS-2 0.31 0.06 0.50 0.00 0.01 0.00 

Number of 

samples 

 

METHODS 
           M               S               F  

Mean STD Mean STD Mean STD 

 

         

        12 

LS 0.50 0.05 0.50 0.00 0.02 0.00 

TLS 15.01 23.02 1.01 0.24 0.94 1.47 

CTLS-1 0.56 0.19 0.54 0.13 0.02 0.01 

CTLS-2 0.35 0.22 0.54 0.13 0.02 0.01 

Number of 

samples 

 

METHODS 
           M               S               F  

Mean STD Mean STD Mean STD 

 

         

       16 

LS 0.45 0.04 0.50 0.00 0.02 0.00 

TLS 13.22 30.86 1.02 0.21 1.11 2.55 

CTLS-1 0.52 0.17 0.53 0.11 0.02 0.00 

CTLS-2 0.45 0.04 0.53 0.11 0.02 0.00 

 

3.5 Conclusions 

In this chapter we addressed the problem of network identification from noisy 

measurements. It is known that biological data has significant levels of noise. In 

regression from dynamic data the resulting estimation model has noise term in both 

dependent and independent variable. TLS is capable of taking error in independent  

variables into account. CTLS is a further improvement on TLS that can incorporate the 

correlation in the noise.  

We demonstrated superior performance of our novel CTLS framework on both 

existing one and other estimation methods on examples under the wide range of data 

points and noise levels.  

Though CTLS methods seem to improve parameter estimation significantly over 

the existing methods, the error levels are still high despite reasonable noise levels. 

Therefore, it is necessary to use network connectivity data with a combination of optimal 
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experimental design to obtain high accuracy parameter estimation. In next chapter we 

will demonstrate our approach for incorporating prior connectivity data with time series 

data.  
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CHAPTER 4 

 

A BAYESIAN APPROACH TO THE REVERSE ENGINEERING OF GENE 

NETWORKS 

 

 

 

 

4.1 Summary 

In the previous chapter we demonstrated the superior prediction power of our CTLS over 

various regression methods when there is no connectivity information is available. 

Connectivity data can be available from various sources such as protein-DNA binding 

data, protein interaction network databases and literature mining data. However this data 

can have high noise levels, inconsistencies or missing information. Time series 

microarray data is also corrupted by noise. It is essential to incorporate connectivity and 

time-series data to reverse engineer biological regulatory networks. The Bayesian 

framework is a powerful technique when there is connectivity and time series information 

with different levels of noise.  In this chapter we introduced a novel Bayesian parameter 

estimation framework that is capable of incorporating noisy topology and time series 

data. We demonstrated our framework on artificial network examples with a varying 

level of noise and number of data points.  

 

4.2 Introduction 

With the advent of various types of genomics data, there is an increasing necessity for 

computational regulatory network inference models that can serve to integrate diverse 

data. In this regard, Sabatti and James [37] introduced a Bayesian estimation framework 

for reconstructing gene networks. They aimed at estimating regulatory strength of TFs on 
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genes along with TF protein levels at different time points using sequence and time-

course micro-array data. In [38], similarly, the authors sought to estimate protein levels 

and regulatory strengths; however, they reached the dynamical model by considering the 

transcription process as a set of biochemical reactions. In both studies, the nodes of the 

gene network are the gene expression levels and TF protein levels. TF protein levels are 

unknown (hidden variables ) and expression levels are the variables observed through 

micro-array data. Binding or sequence data provide topology (positions of linkages) in 

the network. As genomic data is scarce and noisy, estimating TF protein levels in 

addition to regulatory strengths may lead to poor reconstruction accuracy. TF protein 

levels as hidden variables will provide additional information on networks, but comes at 

the cost of higher quality and quantity of data. To this end, we concentrated on gene-to-

gene connectivity and regulatory strength estimation by combined use of binding and 

time-series micro-array data.  We introduce an algorithm that uses connectivity and time-

course gene expression data from micro-arrays. Binding data offers an initial topology for 

the networks, but they do come with significant errors giving false positives and false 

negatives in the network connectivity. Expression data also includes significant levels of 

experimental noise. The key to tackle these problems is that the inaccuracies are less 

likely when the algorithms focus on the agreement of both types of data. Bernard et al. 

[39] used both types of data in the context of dynamics Bayesian networks where binding 

data serves as the prior for the network topology. DBN is a directed graph model for 

representing probabilistic independence relation between multiple interaction entities 

using dynamic data on Bayes rule.  In their DBN approach, gene expression levels are 

random variables and each represents a node in the network. Using the Bayes rule, a 
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posteriori distribution on the graphical structure (topology)  is sought by utilizing time-

course gene expression data. Unlike DBN method, we employ a Bayesian estimation 

model on which a posteriori distributions of model parameters are obtained.  By doing 

this, we mainly focus on distributions of regulatory strengths between TF genes and 

target genes.  We believe Bayesian estimation is a suitable framework to account for 

incorporating diverse types of noisy data and any prior knowledge. A deterministic linear 

model should be capable of revealing useful insights into larger-size networks.  

 

4.3 Problem Formulation 

 

In this section, incorporation connectivity data, micro-array time series data to the 

Bayesian framework and related probabilistic models will be explained in detail. Figure  

(4.1) depicts the pictorial representation of our approach. 

 

 

Figure 4.1: Pictorial representation of our reconstruction framework 

 

DNA-protein binding data is the direct information available to understand the regulators 

involved in transcription. It provides evidence as to whether a regulatory relationship 

exists through quantification binding of TF protein on DNA. This quantification is 

achieved through the use of p-test. The binding between a TF and a gene that gives p-test 

value lower than a certain threshold is assumed to be a regulatory relationship. In a 
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network with the nodes TF proteins and genes, this corresponds to presence of an edge 

between the TF and the gene. In [37] and [38], binding data is utilized as the binary 

connectivity matrix in TF Protein-gene network graph. Therefore, the p-value that is 

below the threshold is associated with the TF-gene pair having an entry 1 in the binary 

connectivity matrix. Otherwise, it is equal to zero. In our approach, we employ the 

similar concept of binary connectivity matrix to incorporate any connectivity data. 

However, instead of TF-gene connectivity, we assumed gene-to-gene connectivity. 

Therefore, the binding between a TF and a gene is interpreted as the connectivity 

between the gene that is producing the TF of interest and the gene being bound by TF 

(target gene).  In [39], protein-DNA binding data is adopted as gene-to-gene connectivity 

and formulated as an informative prior in Dynamic Bayesian network setting. However, 

instead of binary connectivity data, they map the p-values to a probabilistic model 

defining the probability of connectivity between the corresponding gene pairs.  

 

Protein-DNA binding data involves high level of false positives. False positives 

can be due to two kinds of error. A significant binding observation does not necessarily 

indicate a regulation relationship. Secondly, noise in observation and threshold selection 

impose false positives and false negatives. In our model, we adopted a corresponding 

probabilistic model to account for the error between true binary connectivity and 

observed binary connectivity which is obtained through binding data. In figure 7, we 

illustrate true binary connectivity and observed binary connectivity matrices for 4-gene 

network.  
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Figure 4.2: Illustration of true binary connectivity and observed binary connectivity  

 

Note that true binary connectivity is not known and one of the aims of reconstruction 

algorithms is to reveal true connectivity. The discrepancy between true binary,  
ijrR    

and observed binary connectivity,  
ijwW  , is modeled according to the following 

equations; 

  prwp ijij  1|1                 prwp ijij  11|0  

  qrwp ijij  0|0                            qrwp ijij  10|1 ,                                  (4.1) 

 

where p and q   are true positive and true negative rates respectively.  

 

Time-series micro-array expression experiments are a complementary source of 

data, which provides dynamic information about the expressions of thousands of genes 

that are activated or repressed in response to external stimuli [41]. Compared to steady-

state data, time series is more appropriate for understanding the dynamics of biological 

processes. 

Let Ntx    be a vector of expression levels observed in a micro-array 

experiment at time point, t . Expression levels for all time points can be written in a 

matrix form as follows; 
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 MtMN xxxD ,...,,...,1 ,                               (4.2) 

  

An extensive list of studies on gene regulatory network modeling, using time-

series data, have focused on the continuous-time representation via differential equations. 

In our study, we also adopted a differential equation model for gene regulation.In this 

model, the expression level of a gene is assumed to be the concentration of its transcript. 

The rate of change in the concentration of a particular transcript ix  is given by a function 

if   whose arguments are concentrations of other RNA species and parameters; 

   iNii xxftx ,,...,1              Ni ,...,1 ,                                               (4.3) 

 

 

where N  is the number of transcripts in the network. In general, only a small subset of 

all RNA species participates in the regulation of a particular transcript. In other words, 

the networks are sparse [2]. Different forms for if   can be adopted. We adopted a linear 

form for if , and discrete form of equation ( 4.3 ).  The model becomes as follows; 

   



N

j

iiji txatx
1

1 ,                                                                                          (4.4) 

where ( )ix t  expression level of thi gene, and ija  is the regulatory strength between thi  and 

thj  genes. A positive value for ija  indicates activation of thj  gene expression by gene i, a 

negative values corresponds to inhibition of expression level of thj   gene by thi , and a 

zero value shows that there is no regulatory relationship between thi and thj genes. The 

model can be written for all expression levels.  

   txAtx 1 ,                        (4.5)  
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In equation (4.5),   Ntx   is a column vector of expression levels of N  genes 

at time point, t  , and  
ij

NN aA   is the regulatory strength matrix. For all time points, 

equation (4.5) becomes; 

AXX   ,          

    1,..,1  MxxX          MxxX ,..,2           1,  MNXX                                 (4.6) 

where X and X  are obtained from micro-array data matrix,  MtMN xxxD ,...,,..,1  

given in  equation (4.2). M  is the number of time points. (The number of micro-array 

experiments).  

All data that is obtained from true model placed into a Bayesian estimation 

framework with appropriate probabilistic models.  We seek to infer the posterior 

distribution for the parameters (elements of activity matrix),   NN

ijaA  . Doing this 

we are trying to recover the presence, strength and nature of the linkages among the 

nodes in true network. Using the Bayes rule, the posterior distribution over the activity 

matrix, A  can be represented as follows; 

 
   

 WD

WAWAD
WDA

|Pr

|Pr,|Pr
,|Pr


 ,                    (4.7) 

                                             

 

where  WDA ,|Pr  is the posterior distribution on regulatory strength matrix given 

micro-array data, D  and observed binary connectivity, W .  WA |Pr  is the prior on 

regulatory matrix, A  given the observed binary connectivity.  WAD ,|Pr  is the 

likelihood of the micro-array data given the regulatory strength matrix, A .  In the next 

several paragraphs, each term and their mathematical formulations will be explained in 

detail.  
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The prior term,  WA |Pr  is decomposed as follows;  

     WRRAWA |Pr|Pr|Pr  ,                                                                                    (4.8) 

where  
ijrR   is the unknown true binary connectivity introduced in the Bayesian 

framework.  WR |Pr  is simply the error model between true and observed connectivity 

matrix which is given in equation (4.1). The model can be rewritten in matrix form as 

follows; 

         ijijijij rr
N

i

N

j

ij

rr

ij qqwppwWR 


 



 111|Pr
1

1 1

1
,                             (4.9)    

where p  and q  are the rates of true positives and false negatives respectively. It is 

assumed that error for each pairs of genes are independently distributed.  RA |Pr , on the 

hand, is the probability of regulatory strengths given the binary connectivity matrix. It 

models the regulatory strength in each pair of genes, ija , given the presence or absence of 

a connection between them.  The term, ija , is assumed to have a Gaussian distribution 

with mean zero and variance, 1  and variance 2  for given 1ijr   and 0ijr  

respectively.  
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2

exp
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

ij

ijij

a
ra ,                 (4.10) 

 

One can write the probability,  1|Pr ijij ra  as follows;  

                             

   




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 
ijij ra |Pr  is assumed to be independent for each pair of genes, then we obtain the 

following expression;  

 

   
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Using equations (4.9-12), equation (4.8) is rewritten as follows; 
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The likelihood term in Bayesian formula,  AD |Pr  has Gaussian distribution 

with zero mean according to the linear discrete time model given in equation (4.6). The 

corresponding probabilistic model is given as follows; 
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The final form for the Bayesian framework is written as follows and contains the 

unknown true connectivity matrix, R  ; 

       WRRAXAXWDRA |Pr|Pr,|Pr,|,Pr   
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    (4.15) 

 

Solution methodology 

To solve the complicated expression of equation (4.15), a Gibbs Sampler approach is 

employed which samples each component, A  and R  at a time while fixing the other 

components. As maximum a posteriori network is sought, the formulation is modified 

accordingly. In the first step of each iteration, the binary connectivity matrix is held fixed 

and maximum a posterior estimation on A  is calculated according to the following 

formula; 

      RAXXARDA AA |Pr,|Prmaxarg,|Prmaxarg                      (4.16) 

One can take the natural log of the right hand side of equation (4.16) and drop the 

minus sign. The equation becomes as follows; 
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Equation (4.17) is nothing but regularized least squares solution with weights 

proportional to the inverse square of variances.  
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In each iteration, the second step is the maximum a posteriori estimation of binary 

connectivity matrix, R  when regulatory matrix, A  is held fixed at its value calculated in 

the previous step.  
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4.4 Results 

 
To evaluate the performance of the algorithm, we created an ensemble of 100 artificial 

networks. A linear discrete time equation model is assumed for the created networks. 

(See equation (4.4)). In each network, all genes are perturbed randomly, and while the 

system is reaching to a new steady state, measurements are taken for all genes at certain 

time points. We introduced false positive and negative error on the topology to simulate 

noisy prior connectivity data. Furthermore, measurement noise is added to the data with 

varying degree. This procedure is depicted in figure 4.3 
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Figure 4.3 Illustration of data collection and simulating topological and measurement 

errors.  

 

The prediction power of the method is calculated through two performance 

metrics. The first one is defined as the fraction of the eliminated topological errors. It is 

represented as follows;  

 

    

(4.19) 

 

In equation (4.19),  
ijrR   is the true connectivity matrix,  ijwW   is the initial 

observed topology and  ijwW   is the estimated topology. This is represented as 

follows; 

 

                                                                                                                                      (4.20) 
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where ijâ  is the estimated regulatory strength. If it is greater than a certain threshold,   

then the estimated connection between thi  and thj  gene is equal to 1, otherwise it is zero.  

The second performance metrics is the relative error in parameters. This is defined as the 

Frobenius norm of the relative difference between calculated and true parameter matrices.  

 

                                                      (4.21) 

 

The average percentage errors for the ensemble of 100 randomly created artificial 

networks are calculated and plotted against different number of measurements. Each 

network has 10 genes and 30 connections. For each network, topological error is 

introduced as follows; There are total of 12 errors. 3 random connections are deleted 

(false negatives) and 9 false connections (false positives) are added. The multiplicative 

error variance in samples is changed in the range of 5-20% of the signal. In each 

experiment, 8 time points are sampled and the number of experiments changed from 1-6. 
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Figure 4.4 Fraction of eliminated topological error for different levels of measurement 

error and time points. There are 3 false negatives and 9 false positives. 
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It can be seen from figure (4.4)  that  as number of data points is increased the 

fraction of topological error that is eliminated increases. Furthermore, the prediction 

power decreases with the increasing noise levels, which is expected. For example, in 20% 

noise case, 6 parallel experiments with 6 time points in each are required to eliminate 

80% percent of the topological errors.   

In the next step of analysis, we looked into the performance in estimating the 

value of parameters. This is done by plotting the relative error in parameters with respect 

to the number of data and varying multiplicative noise levels.  

. 
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Figure 4.5: Relative error with respect to various number of data points.  

As it is seen from figure (4.5), relative error decreases with increasing number of data. 

Furthermore prediction power decreases with the increasing noise level. For 20% noise 

case, the relative error is approximately equal to 1 for 6 parallel experiments and 6 data 

point in each experiment. Though 80% of topological errors are eliminated for this case ( 

see figure 4.4), relative error in parameters is 1.  

In the second part of analysis total number of topological error is fixed at 12 

again, however we introduced 9 false negatives and 3 false positives. Essentially we 
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increased the number of false positive errors. As it can be seen from figure 4.6 the 

performance of eliminating topological error has significantly decreased even though 

number of error remain constant at 12. Relative error in parameters stayed high and 

didn‟t change significantly. 
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Figure 4.6  Fraction of eliminated error with 15% measurements error for two different 

cases of topological errors. The curve with lower error elimination rate has 9 false 

negatives and 3 false positives. The curve with higher error elimination rate has 3 false 

negatives and 9 false positives. 
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Figure 4.7 Relative error with 15% measurements error for two different cases of 

topological errors. The curve with lower error elimination rate has 9 false negatives and 3 

false positives. The curve with higher error elimination rate has 3 false negatives and 9 

false positives. 
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4.5 Conclusions 

 

Binding data provides an initial topology of the gene networks. However, this data 

suffers from high rate of false positive and negative errors. In these results, we see that 

our algorithm is able to fuse connectivity data and micro-array data and to approach true 

network topology and dynamics provided that enough data is available.  However, for 

reasonable levels of noise in the data (10-20% multiplicative noise) the error in 

parameters is still quite high. This raises the issues of additional prior information 

requirement and optimal experimental design. Furthermore, better error models for both 

micro-array and binding data may significantly decrease the data requirements. The 

major problem in topology data is the false negatives, in other words, missing links in the 

prior topology. It is important to be able to identify missing links in the prior information. 

To this end in next chapter we concentrated on link prediction techniques using 

network‟s topological distribution data. We introduced a novel link prediction method 

that is based on local connectivity information.  
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CHAPTER 5 

 

LINK PREDICTION THROUGH NETWORK CONNECTIVITY USING 

LITERATURE MINING DATABASES 

 

 

 

5.1. Summary 

 

In the previous chapter we introduced a Bayesian method that integrates connectivity and 

time series data. We concluded that in order to utilize the network identification methods 

to their full extent more accurate prior connectivity data is needed. The major problem in 

identifying connectivity is false negatives, in other words, missing links in the network. 

In this chapter we focus on identifying missing links based on existing connectivity 

information. We demonstrate finding missing links in protein target identification using 

literature mining data. Target identification is very crucial in pharmaceutical research.  

The pharmaceutical industry frequently brings a new promising target to clinical trials 

only to find that it has serious safety concerns or lack of efficacy.  A gene downstream or 

upstream in the targeted pathway can serve as a remedy, however, finding such an 

alternative target using existing in-silico or bench tools can be extremely labor-intensive. 

Recently, increasing amounts of information and observations have been compiled from 

different areas of biological research and deposited on databases.  In this work we 

propose a novel computational method to quantify indirect relationships between the 

objects of biological research of interest by using existing relationships from text mining 

databases to automate the search for novel biological targets. We apply our method to 

analyze 10850 proteins in Ariadne database and created a rank-ordered list of protein 

pairs that are most similar to each other. This list can potentially guide researchers in the 
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effort of identifying novel targets that are most similar to the existing unsafe or inefficient 

targets.  We compared the prediction power of our method with the Jaccard and Common 

Neighbors similarity scores. Our method outperformed both methods in predicting the 

links for 10850 proteins in the database. 

 

5.2 Introduction 
 

Biological processes are the result of interactions involving hundreds of thousands of 

molecular entities. These interactions form complex networks. In a biological network a 

node represents a biological entity and a link refers to association between two biological 

entities. This association can be a physical link, a functional similarity or an implicit 

relation. It is becoming increasingly important to approach biological problems from a 

perspective of networks and identify missing links in the network. To understand diseases 

and find new drug targets in a systematic way, it is critical to scrutinize the topology of 

these networks. 

Link prediction methods in complex networks have attracted increasing attention 

from computer scientists and physicists [57-60]. These methods usually aim at estimating 

likelihood of the existence of a link between two nodes based on observed links and the 

attributes on the nodes [61]. Link prediction methods can be classified into two 

categories; the first is prediction of existing but unknown links; the second is prediction 

of future links. Biological link prediction falls into the first category [49]. Discovery of 

links in biological networks can be costly and time consuming through experimental 

means.  Making predictions based on the existing links instead of blindly checking all 

links can considerably reduce the cost, both in time and money. Furthermore, missing 

links can be a major drawback in dynamic modelling of the networks. Prediction of 
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missing links can be potentially used as a tool to improve connectivity information for 

reverse engineering of networks. There are many biological applications of link 

prediction methods. One of them is the target identification. A biological target may refer 

to a protein that has been intended to be a target of a drug.  

Drug-target interaction (interactions between drugs and target proteins) is a key 

area in drug discovery.  Both number of new drugs and targets hasn‟t changed 

significantly in the last 20-25 years [51].  In target identification problem a protein in the 

downstream or upstream of the network might be an alternative to an existing inefficient 

target, however, not all pathways are known, and finding such an alternative target using 

existing in-silico or bench tools can be extremely labor-intensive. A method that can 

automatically find implicit relationships between network nodes (proteins, diseases, 

drugs, compounds etc.) can be invaluable in the search of new target. There are many 

studies on target identification problem. Yamanishi et al [52] integrated known drug-

target information with target protein sequence data and drug chemical structure and 

proposed as a new target-identification tool. In another study, Campillos et al [53] used 

side effect similarity between drugs to predict novel targets for drugs. They based their 

method on the assumption that the drugs that share common side effects are more likely 

to share targets. They combined drug-target, drug-side effect information with drug 

chemical similarity. They also validated some of their predictions with experimental 

results. These studies are based on finding target space for existing drugs. In this study 

we try to find novel targets that are most similar to existing targets based on its 

connectivity in networks that are obtained from literature mining databases. Increasing 

amount of information is compiled into biological network format. Text mining is the 
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automated way of collecting the relationships between biological entities through co-

occurrences within electronically available records [61]. Text mining aims at collecting 

and retrieving useful hidden relations from these resources of information. Therefore, text 

mining databases represent different sets of pre-compiled information on biological 

relationships and associations, interactions and facts which have been extracted from the 

biomedical literature. 

  In this chapter we propose a novel computational method of drug target discovery 

by quantifying indirect relationships between the nodes of biological networks using 

interactions retrieved from mining databases. This method can also be used to annotate 

diseases with similar etiology, reposition existing drugs, or discover adverse events for 

the targets.     

 

5.3. Methods 

 

Our model is based on a computational approach that quantifies the relevance of two 

biological objects such as genes, proteins, compounds, complexes, drugs, diseases 

(hereafter referred to simply as “objects” or “entities”)  by comparing their common 

connections, obtained through databases against a random network model obtained 

through the databases. Denoting an object of interest with „ A ‟, one can identify other 

objects „ B ‟ (See Fig.5.1). 
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Figure 5.1. Random bipartite network model for entities A  and B  

 

The text mining database information can be represented as a directed bi-partite 

network. In graph theory a bipartite graph is graph whose vertices can be divided into two 

sets. This is a directed graph where the relations between the nodes are represented as 

arrows with originating from a source node and ending in a sink node. Out-degree of a 

source node in a directed graph is the number of edges (arrows) originating from the node 

and in-degree of a sink node is the number of arrows ending in a sink node. In other 

words an out-degree is the number of distinct objects that a source node (first set object) 

is effecting and in-degree is the number of distinct objects a sink node ( second set 

object) is being effected by a source node(first set object). Figure (5.1) is a directed bi-

partite graph model where the random network model is sought using the parameters of 

the network. It consists of two sets of nodes. The first set nodes are the source nodes A  

and B and the second set nodes are the sink nodes 71,...,CC . Each node in both sets refers 

to certain biological object. The parameters are the out-degrees of the pair of the entities 

A  and B  and in-degrees of objects in the second set along with the number of entities in 

this set. Out-degrees of A  and B  are represented with 
1N  and

2N , whereas in-degrees are 

denoted as  Sxxx ,..,, 21
.  S  is the total number of entities in the second set of the bi-
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partite graph.  Let us denote the parameter set that we obtain from the database 

with,  SxxxNN S ,,..,,,, 2121 .  

Random graph construction is a method to model the possible ways for A  and B  

to connect to the objects of the second set. This allows us to quantify the likelihood of A  

and B  having common downstream objects when drawn from a random graph.  We 

compare the observed common downstream connections in the database against this 

random graph model to quantify the similarity between A , and B . If A  and B  in the 

database graph share substantially more downstream connections than would be predicted 

by a purely random graph, then we have evidence to suggest that they are similar.  

Let us define the two different events on this bi-partite graph. The first event is 

the number of common entities to which  A  and B  are connected and the second event is 

the set of in-degrees of these common entities.  The joint probability of these two events 

can be represented with following expression; 

 

   |,,...,, 21 kimmmMP k                                             (5.1) 

          

,where M  is the list of the in-degrees of the common downstream entities, and i is the 

number of common entities.  Using the definition of joint probability distribution, one 

can write the following equation;  

    (5.2) 

                                                                                                   

In this equation   |kiP   is the probability of first event given the parameters, and 

  ,|,...,1 kixxMP k   is the conditional probability of second event conditional on the 

first event given the parameters.  

        ,|,...,.||,,...,, 121 kixxMPkiPkixxxMP kk 
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The first term in this equation,  |kiP   can be derived as a function of the 

parameters; 
1N , 

2N  and S . In figure (5.2), a random configuration of bipartite graph for 

A  and B  is shown. Connections that are common for the pair are represented with solid, 

whereas node specific connections are displayed by dashed lines.  

 

 
Figure 5.2. Example of A  and B  having common second set entities, 

2C , 3C . 

 

In order to derive the probabilistic distribution for the number of common objects 

that A  and B  share, we start with enumeration of different possibilities. The number of 

combinations of the 1N  connections that A   can make with S  different second set 

objects is calculated by the following; 
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                         (5.3) 

                      

One can obtain similar equation for B ; 
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Let L  denotes the total number of combinations of A   and B  connections to any 
1N  and 

2N  second set objects. L  can be calculated as the multiplication of the combinations of 

both cases; 
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The number of combinations for A  and B  having k  common downstream objects 

(second set objects or sink nodes) can be represented as follows; 
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Once k  connections of A  and B  are fixed, they have  kN 1
 and  kN 2

 connections 

remaining respectively. The number of objects available in the second set is reduced 

to  kS  . The number of ways that the remaining connections of A  could be chosen out 

of  kS   entities can be calculated as follows;  
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This will fix the number of all 
1N  connections of A  and there will be  1NS   objects left 

for  kN 2
 remaining connections of B . The number of combinations for remaining 

connections of B  for the remaining objects is represented as follows;  
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The overall number of combinations that A  and B  are connected to k  common objects 

will be the denoted with D . It can be written as;  
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The probability that A  and B  are connected to k  common objects is the ratio of the total 

number of combinations of A  and B  are connected to k  objects in common to the total 

number of combinations that the pair is connected to objects in any possible way. This 

probability is written as;  
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After cancelations, we obtain;  
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This expression can be approximated by a Poisson distribution.  
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,where   is  a function of   
1N , 

2N  and S while   is the normalization factor. It 

normalizes the cumulative distribution to one at   
21 ,min NNi   as the probability is not 

defined beyond this point. This approximation allows us to obtain a compact 

representation for the probability term. It is less computationally intensive. The aim is to 

derive a compact similarity score function between two objects that makes sense 

intuitively starting from a formal probabilistic framework. 

To check the validity of the approximation we calculated sum of absolute 

deviation of the equation (11) from the Poisson approximation for all possible values of 
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  21,min,...,1,0 NNi   at different values of 
1N  and 

2N  . This corresponds to the deviation 

of cumulative distributions for Poisson and equation (5.11). We defined the percentage 

deviation as follows;  
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In figure (3), we illustrated the calculation the value of E  on an example. The absolute 

deviation of Poisson approximation corresponds to the sum of lengths of the dotted lines.  
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Figure 5.3. Deviation of the model from Poisson distribution for 101 N , 252 N , 50S  

 

 

In figure (5.4), the curves for various E  values are shown at different values of 
1N  and 

2N . The area under each curve shows the region for the values of  
1N  and 

2N  where 

Poisson approximation exceeds the given percentage deviation. For example the 

deviation of Poisson approximation is less than 10%  when one of the objects has four or 

more connections ( 41 N ) and the other object connected to less than 34% of all second 

layer objects ( SN  34.02
). 

1N  and 
2N  can be used interchangeably and the area under 
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the curves remain same for different values of S  . This figure shows that Poisson 

distribution is a reasonably good approximation for a large span of 
1N  and 

2N  values. 
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Figure 5.4. Deviation of model fromPoisson approximation for different  

1N and 

2N values. 

 

One can also derive the conditional probability term on the right hand side of equation 

(2). In figure (5.5), a possible connection pattern is shown for illustration purposes. k   is 

the number of shared entities between A  and B  (in this example there are two common 

entities) , M  shows the list of common entities and X is the set of in-degree values for 

these commonly shared objects.  

 

 
 

Figure 5.5. Example of A  and B  having common second set entities, 2C , 3C  with their 

in-degrees.  

 

 

Let us consider the general case for k  common objects. The number of possible 

ways for A  and B  to be both connected to a particular second set object (sink node) with 
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a given in-degree of ix   is equal the number of 2-combinations of ix  . In other words, it 

is the number of combinations that two objects ( A  and B  ) can be connected to  a 

particular object that is known to have  ix objects connected to it. It can be calculated as;  

 
 

2

1
2,


 ii

ii

xx
xCc                                                                                                        (5.14) 

  

 

In this equation the number of combinations where A and B are both connected thi object 

is denoted by ic .  

The number of possible connections of A  and B to any k  objects with known in-degrees 

in the downstream is written as follows; 
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zji cccZ
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...                             (5.15) 

 

In this equation there are k  embedded summation terms corresponding to k  common 

objects. Each common object can be chosen out of S  different objects. For large S , this 

summation term would be difficult to calculate. Therefore we introduce the following 

approximation.  

            

                       (5.16) 

 

Here we assume that all ic  terms are equal to an average ĉ  term. If (16) is plugged into 

expression (15), we obtain the following approximation,  

 

           

                       (5.17) 

 

One can represent the number possible ways that A  and B  are connected to k  particular 

objects as follows; 
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
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
k
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icT
1

                  (5.18) 

The probability that A - B  pair are connected to k  particular objects is calculated 

as the ratio of the number of combinations that this pair is connected to k  particular 

objects to the number of different ways that they are connected to  any k  objects.  

 

           

                                                        (5.19) 

 

 

Plugging expression (5.19) and (5.12) into expression (5.2), we obtain  

 

                                                                                                                                                                                                                 

                                                                                                                                      (5.20)                     

 

 

This equation gives us the probability of two entities having k  common 

downstream objects from the set M .  It is derived based on a random bi-partite network 

model using the parameter set,  . The similarity between the pair of entities; A  and B is 

assumed to be based on the statistical significance of their common connections 

according to the probability of occurrence in a random network model. To quantify the 

significance of an observed connectivity structure of the pair that has common 

downstream entities, we defined the following score function;  

 

 

 

 

                 (5.21) 

                                    

 

Hence, the lower the probability of occurrence for a random model is, the more 

significant the event is and therefore the higher the score. One can write score in an open 

form as follows; 
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             (5.22) 

      

One can use Sterling approximation for the term,  !log k ; 

    kkkk  log!log                          (5.23)                                                                                                                         

 

Using (5.23), expression for   in (5.12) and rearranging the terms, expression (5.22) can 

be rewritten as follows;   
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This equation can be further simplified by the following assumption;   
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Finally, one can obtain the following expression;  

   

            

                                                        (5.26) 
 

 

This function gives us the similarity score between A  and B  based on the network 

structure and properties.  In this expression,  cS ˆlog 2  is a network domain-dependent 

constant. A network domain can be defined as part of the network with all biological 

interactions of a certain type. Examples of such domains can be transcriptional 

regulation, protein binding, protein modification and any other biological function that 

connects one biological entity to another. Each domain might have different number of 

second layer entities ( S ) and connectivity structure ( c ).   

One can see that the similarity score is directly proportional to number of 

common downstream objects, k . This is an expected result as one expects two entities to 

be similar when they have more common downstream effects. Score is also inversely 
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proportional to both 
1N  and 

2N .  This can be interpreted as the more connected the 

species are the more likely they have common downstream effect by chance. Finally, the 

score is inversely proportional to in-degree of the common objects connected to the pair.  

This is the result of the fact that the pair will more likely to have common downstream 

entities that have high in-degree by chance. Hence, this commonality gives relatively 

lower significance for the similarity.  

 

5.4 Results 

We applied our algorithm to the Ariadne database. Ariadne is aSystems Biology software 

that consists of computational methods to generate databases from the literature. Ariadne 

database represent different sets of biological relationships which have been extracted 

from the biomedical literature [63]. To test our algorithm we extracted 10850 proteins 

and approximately 200,000 protein-protein associations from Ariadne. Each association 

corresponds to a biological mechanism, such as; binding, regulation, activation, 

inhibition, modification, etc. These proteins are grouped into two. First group is the 

regulators and second group represents the regulatees. We applied our algorithm on each 

pairs of regulators. Note that our algorithm quantifies the relationship between two 

regulator proteins depending on the number of common regulates they share, in-degrees 

of these regulates as well as out-degree of the regulator proteins.(See equation 5.26).   A 

rank list of regulator protein pairs are created, starting from most similar regulator pairs 

going through the least similar ones. Some regulators are actually connected to each 

other. This constitutes the probe set. Probe set is not used in prediction algorithms and it 

is treated as missing links in the network.  Prediction methods are compared based on 
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prediction power on this probe set. To quantify the prediction accuracy we employed 

receiver operating characteristics (ROC) curve approach. ROC curve quantifies 

sensitivity and specificity of a prediction method in a systematic way and it is one of the 

standard methods to measure performance of prediction methods. In the decreasing-order 

rank list of protein pairs, a threshold value for the similarity score is chosen. The pairs 

with similarity score higher than the threshold value are taken as positives and the 

remaining pairs are the negatives. The positive set and negative set is compared to probe 

set to determine true and false positive rates.   

We compared our method with existing similarity index measures. Common 

Neighbors (CN) and Jaccard (J) methods are the most commonly used similarity scores in 

link prediction.  Common Neighbors method assumes that two nodes are more likely to 

form or have a link if they have many common neighbors. 

     yxCNScore            (2.14) 

Here,  x  is the set of nodes connected to node-x and similarly  y  is the set of 

neighbors for node-y .  

Jaccard is another quantification of similarity index between two nodes in a 

network. It is a function of out-degrees of the node pair as well as number of common 

neighbors they have.  

 
   

   yx

yx
JScore




           (2.16) 

ROC curve comparison of the methods is given in figure (5.6). A roc curve plots true 

positive rate with respect to false positive rate. The area under the curve shows the 

prediction power of the corresponding method. 
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Figure 5.6. Receiver operating characteristics curve for Common Neighbors (CN), 

Jaccard (JAC) and our bipartite approach (BP). „Random‟ curve refers to prediction is 

made based on completely naïve random approach.  

 

It can be seen from figure (5.6) that our bipartite approach outperforms Jaccard and 

Common Neighbors methods on the protein-protein interaction network obtained from 

Ariadne database.  

5.5 Conclusions 

The contribution of this work can be summarized in two ways. First, our method is a 

novel computational algorithm to quantify indirect relationships between the objects of 

biological research of interest by using existing relationships from text mining databases 

to automate the search for novel drug targets. This method can also be used for different 

purposes such as; annotating diseases with similar aetiology, reposition of existing drugs, 

or discovering adverse events for the targets. Secondly, in a case study involving 9575 

proteins in the Ariadne database, our method outperformed the Jaccard method for the 
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prediction of existing links for all proteins. This illustrates its prediction capability for 

biological networks. 
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        CHAPTER 6 

 

COMPUTATIONAL ADVERSE EVENT PREDICTION THROUGH A 

NETWORK BASED APPROACH 

 

 

 

We introduced a link prediction method in the last chapter and demonstrated its 

prediction power for protein-protein association networks obtained from literature mining 

databases. However, this method is applicable to the bipartite networks. In this chapter 

we will look into the link prediction methods for multipartite networks. One immediate 

application of this is the adverse event prediction.  

 

6.1 Summary  

Adverse event prediction is becoming increasingly important as health authorities focuses 

on the obligation of the pharmaceutical industry to ensure that marketed drugs have 

acceptable benefit-risk profiles. Therefore, it is critical for pharmaceutical companies to 

identify potential toxicity risks of the drugs during early phases of the lengthy drug 

development process. To date the adverse event prediction methods are mostly 

concentrated on finding novel targets for the drugs as side effects may be due to the 

unintended targets of the drugs. Biological pathway knowledge is a crucial source of 

information that can help predict the side effect profiles of the drugs. Moreover, animal 

models can give clues on possible adverse events in the early phases of drug 

development. To the best of our knowledge there has been no systematic network based 

study for finding significant associations between biological pathways and side effects as 

well as mouse phenotypes and side effects. In this study we introduced a computational 

framework for side effect prediction from pathway and mouse phenotype information. 
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We integrated MGI, KEGG pathway, Drugbank and SIDER information on a multilevel 

network representation. A p-value based approach is introduced to find significant 

associations between pathway-side effect as well as mouse phenotype-side effect pairs. 

We demonstrated the biological relevance of these associations with two examples. 

Finally, we validated the prediction power of our method using ROC curves. 

 

6.2 Introduction  

 
An adverse event (side effect) is an unwanted response to a drug that has happened 

during treatment of patients or clinical trials.  Increasing scientific, regulatory research is 

focused on the obligation of the medical community, pharmaceutical industry and health 

authorities to ensure that marketed drugs have acceptable benefit-risk profiles. In that 

regard adverse event prediction methods for drugs become increasingly important.  

Drugs bind to target proteins and affect biological pathways, and these pathways 

cause phenotype effect. An adverse event can be caused by drugs known targets (target 

effect) or it can be due to proteins that are not yet identified as the targets of the drug (off 

target effects). Adverse events vary from simple symptoms, such as nausea, to critical 

symptoms, such as torsades de pointes. Most side effects are harmful to humans, but side 

effects can also be utilized to find new uses for known drugs. Therefore, it is highly 

desirable to automatically discover new targets for known drugs and to understand the 

mechanisms that cause side effects for target-specific treatments. There are several 

studies concentrated on finding drug targets integrating various information resources. 

Yamanishi et al [52] integrated known drug-target information with protein sequence 

data and drug chemical structure to find novel drug targets. In another study, Campillos et 
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al [53] utilized side effect similarity between drugs to predict novel targets for drugs. 

Their method based on the assumption that drugs that share common side effects are 

more likely to shared targets. They validated some of their predictions through 

experimental results.  

Yamanishi‟s and Campillos‟s studies were focused mostly on finding off-target 

proteins causing the side effects. However it is important to consider biological pathways 

that are affected by the drugs.  Proteins in the downstream of a drug‟s known targets can 

lead to side effects. The knowledge of a pathway allows separate targeting of upstream or 

downstream targets. Inhibition or modulation of selected targets in the same pathway 

could lead to the same therapeutic with fewer side effects or better druggability. 

Furthermore these targets can crosstalk with other pathways which may be potential 

sources of the observed side effects. Therefore the knowledge of pathways and their 

relation to each other helps researchers understand side effect profiles [71]. To the best of 

our knowledge there has been no systematic study of integrating pathway-target-side 

effect relationships on a network framework to find significant Target-Side Effect or 

Pathway-Side Effect relations.  

It is essential to identify adverse events in the early phases of drug development. 

Two of these early phases include target discovery and animal models. Animal models 

have specific characteristics that mimic human diseases. The technologies for the creation 

of transgenic animals, where certain genes are deleted, modulated, or added, have 

progressed tremendously in the last decade. As a result, the predictive power of animal 

models for human disease and pharmacology is improving. It is crucial to note that some 

experts in the pharmaceutical industry and the U.S. Food and Drug Administration (FDA) 
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believe that inadequate animal models, or the lack of animal models altogether, are a 

major obstacle in drug discovery and development. Pharmaceutical companies have long 

used model organisms in preclinical efficacy [71]. The laboratory mouse is the premier 

animal model for understanding the genetic and molecular basis of human biology and 

disease
 
[72].  Therefore, mice models can be a useful resource to understand potential 

side effect of the drugs. To date, there has been no networks based systematic study to 

understand Mouse Phenotype -Human Side Effect relationships.  

In next section we will list the data sources that we used in this research and give 

a brief background for each. We will also introduce the network based methods that we 

employed for finding significant links in resulting multilevel networks created by 

integration of these databases. In the results and discussion section we will validate our 

method through receiver operating characteristics (ROC) curves and point out major 

findings. Finally we will give most significant findings and future extensions of this work 

in the last section 

 
6.3 Methods 

 
In this study we obtained drug-target relationships from Drugbank database [56]. This 

database provides detailed drug (i.e. chemical, pharmacological and pharmaceutical) data 

with comprehensive drug target (i.e. sequence, structure, and pathway) information. The 

database contains 6826 drug entries including 1431 FDA-approved small molecule drugs, 

133 FDA-approved biotech (protein/peptide) drugs, 83 nutraceuticals and 5211 

experimental drugs.  
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Drug-side effect relationships are obtained through SIDER database (Side Effect 

Resource) [53]. This data source is a collection of side effects for marketed drugs that are 

obtained through the drug package inserts[53]. It has 888 drugs and 1450 side effect 

terms associated with them.  

A valuable resource for biological pathways and target association is the KEGG 

pathway database (Kyoto Encyclopedia of Genes and Genome) [54]. This is a collection 

of manually drawn pathway maps representing the collected knowledge on the molecular 

interaction and reaction networks [54]. In this data source there are 203 distinct pathways 

associated with hundreds of protein targets.  

We combined SIDER databases with Drugbank to obtain target-drug-side effect 

relationships. To do that we matched SIDER drug names with Drugbank drug names and 

obtain 708 matching drugs out of 888 SIDER drugs. There are 653 distinct targets 

associated with 708 matching drugs. Furthermore, these 653 targets are matched in 

KEGG database to obtain pathway-target relationships. The integration of these databases 

forms a multipartite network that is shown in figure (6.1).  

 

Figure 6.1. Integration of KEGG, Drugbank and SIDER databases on a multilevel 

network [53,54].  
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A valuable information resource that can be obtained from the MGI database is 

the mouse phenotype-mouse gene associations. The MGI database is a comprehensive 

information source that primarily provides genetic and genomic data to support 

laboratory mouse a model organism. [73] To achieve this goal, MGI maintains a 

comprehensive catalog of mouse genes and other genome features and associates these 

features with orthologous genes in other mammals, human diseases, functional 

annotation, mouse phenotype descriptions, DNA and protein sequence data and 

developmental gene expression information. We matched 429 mouse genes that are 

orthologues of 653 human targets. There are 3637 distinct mouse phenotypes 

corresponding to these 429 mouse genes. We combined MGI database with Drugbank 

and SIDER resources. In figure (6.2) all relationships from mouse phenotypes to human 

side effects are casted on a multipartite network frame. 

 

Figure 6.2 Integration of MGI, Drugbank and SIDER databases on a multilevel 

network.  

 

Our aim is to find significant target-side effect, pathway-side effect and mouse 

phenotype-side effect relationships. In order to identify the significant links in a network, 
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the next logical step is to introduce a random model. By doing this observed structures in 

the network can be scored based on the random model and those with higher scores will 

give the significant links. We employed a p-value based approach to find important links. 

Each level in this multilevel network is randomized as follows; the degree of the nodes 

(number of connection at each node) in each level is kept constant and edges are shuffled 

for a large number of times. This procedure is repeated for each level. By integrating the 

random networks for each level we obtained a random multilevel network at each 

iteration. The resulting ensemble of networks constitutes random multilevel network 

space. Using this random network space the next step is to create a p-value for each 

observed target-side effect, pathway-side effect and mouse phenotype-side effect pairs. 

We based p-value on the count of drugs connecting these each pairs. One can obtain the 

distribution for the number of drugs connecting each pair of association from the random 

network space.  

 
total

k

ij

ij
N

N
kp                (6.1) 

In equation (6.1)  kpij  is the probability of observing k  drugs connecting the thi  target 

(or mouse phenotype, or pathway) with the thj  side effect. k

ijN  refers to the number of 

random networks that have k  drugs connecting the thi  target (or mouse phenotype, or 

pathway) with the thj  side effect. totalN  is the total number of random networks in the 

ensemble. A p-value for each pair of association can therefore be calculated as the 

complementary cumulative distribution function. 
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kk
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ijij kp              (6.2) 

In this equation *k  is the number of observed drugs connecting the thi  target (or 

mouse phenotype, or pathway) with the thj  side effect. ij is the p-value for association 

between the thi  target (or mouse phenotype, or pathway) and the thj  side effect. 

In the next step of our analysis we aim at validating our method by predicting 

each drug‟s side effects through their known pathway information. We utilized receiver 

the operating characteristics curve (ROC). We employed leave-one-out validation 

method. In this method each drug left out one at a time while creating the random 

network space. Significant pathway-adverse event association pairs are obtained using 

this random model. These pairs are then ranked in an increasing order of p-value. A p-

value threshold is chosen and the pairs that have p-value lower than the threshold are 

chosen as significant pairs. From known targets of the drug that is left out one can find 

the related pathways. These pathways are matched in the significant pathway-adverse 

event pairs and the union of corresponding adverse events is the predicted adverse event 

set. Predicted adverse events are then compared with observed adverse events. Observed 

adverse events are the side effect list of the drug that is left out. Comparing predicted 

adverse events with observed ones gives false positive and false negative rates for the 

side effect prediction. By increasing the p-value threshold one can obtain ROC curves for 

each drug that is left out.  This procedure is demonstrated in figure (6.3). 
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Figure 6.3 Procedure for predicting side effect for each drug that is left out. 

A similar procedure can be applied for the prediction of adverse events through mouse 

phenotypes. Significant pathway-Side effect pairs are replaced with mouse phenotype 

and side effect pairs. Moreover from known targets of each drug that is left out one can 

find the corresponding mouse orthologous genes of these targets. From mouse genes 

relevant mouse phenotypes are extracted and considered as relevant mouse phenotypes to 

the drug that is left out. Next section will summarize our findings and validate prediction 

power of the method.  

6.4 Results and Discussion 

We have selected one example of significant link for each of the pathway-side effect and 

mouse phenotype-side effect networks. Calcium is a common signaling mechanism, as 

once it enters the cytoplasm of a cell it exerts regulatory effects on many enzymes and 

proteins. Calcium can act in signal transduction after influx resulting from activation of 

ion channels. It takes part in maintaining the balance of electrical system of the heart. 
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Heart block is an adverse event term that refers to dysfunction of the electrical system of 

the heart. It can cause syncope and palpitations. Calcium channel and Heart Block are 

found to be significantly related ( giving a p-value<0.0001) in our framework. The targets 

and drugs connecting this pair are shown in figure (6.4).  

 

Figure 6.4 Association of Calcium signaling pathway with Heart Block through 

targets and drugs. 

 

 

For mouse phenotype-adverse event association we found abnormal cardiovascular 

system physiology for mouse is significantly associated with congestive heart failure as 

human adverse event (figure (6.5)).  
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Figure 6.5 Association of abnormal cardiovascular system physiology for mouse with 

Congestive Heart failure adverse event through targets and drugs. 

 

To validate our method we calculated ROC curve for 708 drugs when each left 

out at a time as it is outlined in section 6.3. Our aim is to predict side effects of a given 

drug using its pathway information. The ROC curve for each drug is averaged over 708 

drugs. The resulting average ROC curve is shown in figure (6.6). 
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Figure 6.6 ROC curve average for the prediction of side effects from pathways. 

 

 

Similarly we predicted side effects from mouse phenotypes that are relevant to the drug 

targets.  
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Figure 6.7 ROC curve average for the prediction of side effects from mouse 

phenotypes. 
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As it can be seen from figure (6.6) and figure (6.7) our method is capable of predicting 

side effects from pathways and mouse phenotypes. Furthermore, biologically relevant 

pathway-side effect and phenotype-side effect pairs are found to be significantly 

associated in our method. This study is capable of providing a framework for side effect 

prediction in the early phases of drug development using pathway and animal model 

information. It is very critical to design clinical trial to observe any potential side effect 

risks. At this junction our framework for estimating possible toxicity can be a useful tool. 

This framework can further be extended to include different databases, drug chemical 

structure information and genomic information on targets. 

 

6.2 Conclusions  

 
An adverse event (side effect) is an unwanted and harmful response to a drug that has 

happened during treatment of patients or clinical trials.   Increasing regulatory research is 

focused on the obligation of the medical community, pharmaceutical industry and health 

authorities to ensure that marketed drugs have acceptable benefit-risk profiles. It is 

essential to identify adverse events in the early phases of drug development, therefore 

side effect prediction is critical for pharmaceutical research. Two of these early phases 

include target/pathway discovery and animal models. An adverse event can be caused by 

drugs known targets (target effect) or it can be due to proteins that are not yet identified 

as the targets of the drug (off target effects). Most adverse events are harmful to humans, 

but they can also be utilized to find new uses for known drugs. The knowledge of a 

pathway allows separate targeting of upstream or downstream targets. Inhibition or 

modulation of selected targets in the same pathway could lead to the same therapeutic 
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with fewer side effects or better druggability. Furthermore these targets can crosstalk 

with other pathways which may be potential sources of the observed side effects. 

Therefore the knowledge of pathways and their relation to each other helps researchers 

understand side effect profiles [71]. Animal models have specific characteristics that 

mimic human diseases. ]. The laboratory mouse is the premier animal model for 

understanding the genetic and molecular basis of human biology and disease
 
[72].  

In this study we introduced a computational framework for side effect prediction 

from pathway and mouse phenotype information. We integrated MGI, KEGG pathway 

,Drugbank and SIDER information on a multilevel network representation. A p-value 

based approach is introduced to find significant associations between pathway-side effect 

as well as mouse phenotype-side effect pairs. We demonstrated the biological relevance 

of these associations with two examples. Finally, we validated the prediction power of 

our method using ROC curves. 

 It is very critical to design clinical trial to observe any potential side effect risks. 

Our approach can provide a framework for side effect prediction in the early phases of 

drug development using pathway and animal model information. Our framework for 

estimating possible toxicity can be a useful tool. This work can further be extended to 

include different databases, drug chemical information and other genomic resources.  
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CHAPTER 7 

 

CONCLUSIONS AND FUTURE EXTENSIONS 

 
It is immensely important to understand biological networks in order to understand 

complex diseases, identify novel, safer protein targets for therapies and design efficient 

drugs. Computational approaches for identifying these networks become crucial and have 

been growing in parallel with the increasing amount of genomic data. „Systems biology‟ 

has emerged as an interdisciplinary science that has as one of its foci revealing biological 

networks through genomic data.  

The contribution of this thesis to Systems Biology can be stated in two ways; 

Predicting biological network topology and dynamics to understand complex machinery 

of biology and finding missing or significant links that have many important applications 

in getting a better picture of the network wiring of the biological systems.  

In chapter 3 we addressed the problem of network identification from noisy 

measurements. It is known that biological data has significant levels of noise. In 

regression from dynamic data the resulting estimation model has noise term in both 

dependent and independent variable. Total Least Squares (TLS) is capable of taking error 

in independent  variables into account. Constrained Total Least Squares (CTLS)  is a 

further improvement on TLS that can incorporate the correlation in the noise.  

We demonstrated the superior performance of our novel CTLS framework over 

other estimation methods on examples with a wide range of data points and noise levels. 

Though CTLS methods seem to improve parameter estimation significantly over the 

existing methods, the error levels are still high despite reasonable noise levels. Therefore, 
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it is necessary to use network connectivity data with a combination of optimal 

experimental design to obtain high accuracy parameter estimation.  

In chapter 4 we demonstrated our approach for incorporating prior connectivity 

data with time series data. Binding data provides an initial topology of the gene networks. 

However, this data suffers from high rate of false positive and negative errors. We 

showed that our algorithm is able to fuse connectivity data and micro-array data to 

approach true network topology and dynamics provided that enough data is available.  

However, for reasonable levels of noise in the data (10-20% multiplicative noise) the 

error in parameters is still quite high. This highlights the importance of additional prior 

information. The major problem in topology data is the false negatives, in other words, 

missing links in the prior topology. It is important to be able to identify missing links in 

the prior information.  

Possible extensions: In this method the likelihood term can be improved to 

include noise structure. As we demonstrated in Chapter 3, noise in resulting network 

models is correlated along the time domain. Furthermore noise can be multiplicative in 

nature. This information can be used to improve likelihood expression. 

In chapter 5 we concentrated on link prediction techniques using network‟s 

topological distribution data to address the question of filling in possible false negative 

connections. We introduced a novel link prediction method that is based on local 

connectivity information. The contribution of this work can be summarized in two ways. 

First, our method is a novel and effective computational algorithm to quantify indirect 

relationships between the objects of biological research of interest by using existing 

relationships from text mining databases to automate the search for novel drug targets. 
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This method can also be used for different purposes such as; annotating diseases with 

similar aetiology, reposition existing drugs, or discovering adverse events for the targets. 

Second, in a case study involving 9575 proteins in the Ariadne database, our method 

outperformed the Jaccard method for the prediction of existing links for all proteins. This 

illustrates its prediction capability for biological networks. 

Possible extensions: In this work the missing links between pairs of nodes are 

predicted through local connectivity information for the pair of the nodes based on a 

score that is derived from a probabilistic approach. This score function can be further 

extended to consider complementary cumulative distribution for the probability of 

observing shared common nodes with particular in-degree distribution. Complementary 

cumulative function will give one-sided p-value and score function can be based on this 

p-value.  

In chapter 6 we integrated MGI, KEGG pathway, Drugbank and SIDER 

information on a multilevel network representation. A p-value based approach is 

introduced to find significant associations between pathway-side effect as well as mouse 

phenotype-side effect pairs. We demonstrated the biological relevance of these 

associations with two examples. Finally, we validated the prediction power of our method 

using ROC curves. 

  It is very critical to design clinical trial to observe any potential side effect risks. 

Our approach can provide a framework for side effect prediction in the early phases of 

drug development using pathway and animal model information. Our framework for 

estimating possible toxicity can be a useful tool.  
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Possible extensions: This work can further be extended to include different 

databases, drug chemical information and other genomic resources. AERS database for 

drug-side effect relationships can be used in combination with SIDER. AERS includes 

drug-side effect profiles that have exposure to a larger population compared to clinical 

trial data as in the case of SIDER. Therefore, it can give valuable information on rare side 

effects.  Drug Chemical information can give a larger target space possibly including off-

targets.  
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APPENDIX A 

 

STOCHASTIC APPROACHES TO THE GENE NETWORK INFERENCE 

 

 

 

A.1 Bayesian Networks 

 
Bayesian network is a graphical model that represents the causal relationship in random 

variables. Suppose that we have N genes in a graph represented by an array of N random 

variables (expression levels),  1 2,....,, NX X X X . Bayesian networks then enable us to 

compute the joint probability by the product of conditional probabilities [20]. 

 

 
1

( ) |
N

j j

j

P X P X Pa


          (A.1.1) 

 

Where jPa  is the set of random variables corresponding to the direct parents of jX  in a 

given graph, G . By the Bayes theorem, the posterior probability of the graph can be 

represented as 

 

 
( ) ( | )

( | )
( )

P G P X G
P G X

P X
         (A.1.2) 

 

where ( )P G  is the prior probability of the graph, ( | )P X G  is the likelihood of the data 

X. ( )P X  is the normalizing constant [20]. 

 
A.2 Dynamic Bayesian Networks 

 
Dynamic Bayesian networks represent the dependency in gene expression levels based on 

time-course data. Suppose that         1 2, ,..., PX t X t X t X t , each being a random 

variable, are the expression levels of genes at time point t.  1,...,t N [20]. This can be 
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formulated as a bipartite graph with P  nodes that allows edges from   X t  to  1X t  , 

where, 1,..., 1t N  . The directed graph, TG  of the causal relationship among P  

random variables is then constructed by estimating the bipartite graph. Under this 

topology, one can have the decomposition as follows; 

 

           
1 1

Pr 1 ,.. ., Pr | 1
N P

j j

t j

X X t X N X t Pa t
 

  ,   (A.2.1) 

 

Where  jPa t  is the set of random variable at time t corresponding to the direct parent of 

 jX t  in bipartite graph, TG  [20]. In this equation, the distributions are assumed to have 

Markov property with independence along time points and genes.  

 

 

 

 
 

Figure 10. Graphical view of Dynamic Bayesian Network Model. 

 

In Figure A.2.1, the structure of DBN in case of gene regulation is depicted. Micro-array 

data for different time points are shown in a table form. Each row of the table 

corresponds to a single micro-array experiment in a particular time point.  
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The aim of learning the topology of dynamic Bayesian network is to determine the 

topology, G  that is most probable given data D  (See Equation A.1.2 ).  The notion of 

the most probable network is made formal by the Bayesian scoring metric (BSM), which 

is simply the log posterior probability of G  given D : 

 

       : log | log | logBSM G D G D D G G c        (A.2.2) 

 

This is simply derived by taking the logarithm of bayes rule employed in  equation A.1.2 

A common choice for the log prior over structures,  log G , is to assume that it 

uninformative.: every structure is equally likely: in this case, the prior term can be safely 

ignored since it is same for all structures.  
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APPENDIX B 

 

DETERMINISTIC APPROACHES TO THE GENE NETWORK INFERENCE 

 

 

 

B.1 Systems of Differential Equations 

 

A set of ODEs, one for each gene, describes gene regulation as a function of other genes. 

 

 iiNii UXXXfX ,,,...,, 21                     (B.1.1) 

 

where  i  is a set of parameters describing the interactions among genes (the edges of the 

graph), Ni ...1 , N is the number of genes and iU  is the amount of external perturbation 

applied to the gene.  

 

To reverse-engineer a network using ODEs , a functional form for if  is chosen  and then 

the parameters  i  are estimated from the gene expression data using some optimization 

or regression techniques. 

 

Linear form 

 

The linear discrete ODE models for gene network can be written as 

 

il

N

j

jlijil UXAX 
1

                     (B.1.2) 

 

where ilX  is the mRNA concentration of gene i  following the perturbation experiment, 

l ;  

ijA  represent the influence of gene j  on gene i ; ilU  is the external perturbation to the 

expression of gene i  in experiment l  [22]. One can assemble the expressions in a matrix 

form as follows; 
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UAXX            (B.1.3) 

 

 

B.2 S-Systems Approach  

 

S-Sytems approach for gene network can be formulated as follows; 

 

 

 

 

                      (B.2.1) 

 

 

 

where N is the number of state variables ( gene expression levels), iX . The terms, ,i jg  

and ,i jh  define the effect of jX  on iX . The first term includes all effects that increase 

iX , whereas second term includes the influences that decrease iX . S refers to synergism 

and saturation. These are two fundamental properties of biological systems.  
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APPENDIX C 

 

 

 

C.1 Artificial Gene Networks 

 
Mendes et al [16] proposed a nonlinear differential equation system that generates 

random artificial networks according to well-defined kinetic properties. 

In their model, a nonlinear form for if  (right hand side of differential equations 

describing expression level of each gene) is assumed and it is decomposed into two 

components, namely; synthesis and degradation rates.  

 

1( ) ( ,..., ) ( )i i N i ix t S x x D x                               (C.1.1) 

 

where iS  stands for nonlinear synthesis term and iD  is the linear, first order 

degradation. ix is the expression level of thi gene. iS  term encompasses the nonlinear 

relation between transcription rate and inhibitor and activator expression levels. One can 

write this relation as;  

 

 

         

                                            (C.1.2) 

 

 

In this formulation, jx  stands for the inhibitor concentrations and j  is the 

inhibitor index for the regulation of gene i . Similarly, kx  accounts for activator 

concentration and k  is the activator index. The exponents jn  and kn  indicates the 

sigmoidicity of the curves. jK  and  kL  are the constants, and iv  is the synthesis rate 

constant.  
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Along with first order degradation term, gene regulation model becomes; 

 

 

( ) 1

j
k

j j k k

n n
j k

i i i in n n n
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K x
x t v d x

x Lx K

   
     
     

   ,                    (C.1.3) 

 

 

where id  is the degradation constant. 

 

 

 
C.2 Simulation of artificial gene networks and obtaining data 

 
Time-course data 

 

Here we illustrate how we create, simulate and obtain data from the artificial gene 

network on a simple example. In figure 7, a simple network example is shown. In this 

graph, circles (nodes) indicate the genes and an arrow shows activation. 

 

 
Figure 11: A simple 4-gene network. Gene 1 is the regulator for the rest. It is a single-

input motif. Gene 1 is activating gene number 2 and 4, however it inhibits gene A number 

3.  

 

A connectivity matrix for the example network can be obtained as follows; 
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Where rows show the indices of the regulator and column numbers correspond to the 

indices of regulated genes. The system of nonlinear differential equations for this graph 

can be written down as follows [16]; 

 

 

1 1 1 1( )x t v d x   
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Simulating this system with an appropriate numerical method, one can obtain time-course 

data in different time intervals. Different levels of Gaussian noise can be added to the 

data in order to mimic experimental and biological variations.  
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