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SUMMARY 
 

The objective of this work is to develop a non-intrusive and inexpensive detection method 

for generalized-roughness bearing faults in electric machines, with particular interest in 

identifying faults at an early stage. This involves several steps. First, available condition 

monitoring methods for bearings are analyzed and compared. The main objective of this 

comparison is to find the method that is the least intrusive and can be realized with the 

lowest costs. Second, based on the selected monitoring method, a fault index is developed. 

And thirdly, based on this fault index, a threshold is built that indicates the state of the 

bearing’s degradation. Since bearing faults account for approximately one half of all 

electric machine failures, this topic is of practical importance.  

 

Since the method is supposed to be non-intrusive and low-cost, the stator current of the 

electric machines is chosen as the main media to perform the monitoring process. To fully 

appreciate the advantages of stator current-based monitoring, a brief review of different 

bearing condition monitoring methods is presented, with emphasis on their implementation 

requirements. These monitoring methods include vibration, temperature, chemical, 

acoustic emission, sound, laser, and current monitoring. The comparison of these methods 

shows that current-based monitoring is the future trend of bearing condition monitoring, 

while vibration-based monitoring is most widely used at the present time. 

 

A comprehensive survey of literature available on existing current-based bearing fault 

detection techniques is presented. The survey shows that most of the methods are not 

suitable for detecting generalized-roughness bearing faults. It also reveals the major 

disadvantages of current-based monitoring: the fault signatures injected by 

generalize-roughness bearing faults, especially by those at an early stage, are subtle, and no 

physical equations are available to describe the fault signatures. 

 xv



To address those disadvantages, the bearing fault detection problem is examined under the 

signal processing theory. The examination illustrates that the problem is a low 

signal-to-noise ratio (SNR), where noise refers to dominant components in stator current 

that are not related to bearing faults, and signal refers to those components that are injected 

by bearing faults. To effectively solve the problem, it is proposed that a noise cancellation 

algorithm be used.  

 

A survey of different noise cancellation algorithms is performed in order to choose an 

appropriate noise cancellation algorithm. Due to its optimum property in the sense of 

producing the best estimate of a noise-interfered signal and its ability to fully use the 

frequency properties of the noise and the signal, the Wiener filtering technique is selected 

among all the algorithms available. Once the noise cancellation is accomplished, the 

remaining components are related to bearing faults. Specifically, the RMS of the 

noise-cancelled stator current is chosen as the fault index. 

 

To verify the effectiveness of the proposed method, online experiments at constant-load 

and variable-load conditions are performed. An experimental method, known as the shaft 

current method, is employed to generate bearing faults online; the generated bearing faults 

are characteristic of generalized roughness on bearing surfaces and are similar to the 

realistic bearing faults. The industrial vibration standard is applied to provide information 

on the bearing condition as a reference. Since load has drastic impacts on the performance 

of the bearing fault detection, a strategy is proposed to minimize the effects of 

variable-load conditions. For this purpose, the noise cancellation algorithm is applied to 

different load levels separately, and stator current-based speed estimation is used to 

indicate the level of the load. The noise cancellation results for those experiments are 

compared to those of the existing Mean Spectral Deviation (MSD) method. The correlation 

between the stator current measurements and the machine vibration is also evaluated. 
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It is desired to evaluate the bearing condition solely based on the value of the fault index in 

real time. This is achieved by establishing a threshold on the fault index such that when the 

fault index frequently exceeds this threshold, the bearing is in a deteriorated condition. 

This issue is addressed in detail in the dissertation. First, the difficulties relating the fault 

signatures in the stator current to the fault severity evaluation are discussed. Then, to 

minimize the difficulties, it is proposed that statistical methods such as the Statistical 

Process Control (SPC) should be applied to compute the threshold. Finally, the data from 

the on-line experiments is analyzed and the results show that the threshold computed by 

SPC serves the purpose of detecting a deteriorated bearing.  

 

In contrast to most of the existing current monitoring techniques, there are many desirable 

features of the method developed in this research. The method is specifically designed to 

detect generalized-roughness bearing faults. Furthermore, the method is easy to implement, 

since it does not require information about the machine parameters and bearing dimensions. 

Neither does the implementation require a high-resolution spectrum analyzer. These 

features make the method promising for practical use.  
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CHAPTER 1 
 

INTRODUCTION AND OBJECTIVE OF RESEARCH 

 

 

1.1 PROBLEM STATEMENT 

  

Electrical machines are extensively used and are at the core of most engineering systems. 

Unanticipated machine failures incur huge costs for industries. Condition monitoring of 

electrical machines provides the health status of electric machines and recognizes machine 

faults at an early stage. Based on condition monitoring, appropriate maintenance can be 

scheduled and the collapse of industrial processes from machine failures can be avoided. 

Machine failures include stator, rotor, and bearing failures. Bearing failures account for 

approximately 41% of all machine failures [1]. Therefore it is of practical importance to 

monitor bearing conditions in electrical machines.  

 

There are many bearing condition monitoring methods, including vibration monitoring, 

temperature monitoring, chemical monitoring, acoustic emission monitoring, current 

monitoring, etc. Except for current monitoring, all these monitoring methods require 

expensive sensors or specialized tools and are usually intrusive. In current monitoring, no 

additional sensors are necessary. This is because the basic electrical quantities associated 

with electromechanical plants such as currents and voltages are readily measured by 

tapping into the existing voltage and current transformers that are always installed as part 

of the protection system. As a result, current monitoring is non-intrusive and may even be 

implemented in the motor control center remotely from the motors being monitored. 

Therefore, current monitoring offers significant implementation and economic benefits. 
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Another advantage of current monitoring is that an overall electric machine condition 

monitoring package is possible, given the fact that the detection of other machine faults and 

the estimation of machine speed and efficiency have been well achieved via stator current. 

 

Most existing current-based bearing condition monitoring techniques are designed to 

detect the four characteristic bearing fault frequencies: a) the inner raceway fault frequency, 

b) the outer raceway fault frequency, c) the cage fault frequency, and d) the ball fault 

frequency. Such techniques are most effective for detecting bearing faults that are 

generated off-line, for example, by drilling a hole on either part of a bearing. However, for 

many realistic bearing faults that develop during operation in industrial settings, especially 

at an early stage, these characteristic fault frequencies do not appear. These realistic faults 

are often characterized by generalized roughness on bearing surfaces which results in 

subtle fault signatures. Consequently, most existing current-based techniques may not be 

suitable for generalized-roughness fault detection. 

 

In addition to the fact that the fault signatures caused by realistic bearing faults are 

typically subtle, no fundamental relationship is available to describe the fault signatures in 

terms of on-line measurable parameter. This makes it difficult to assess the fault severity 

based on the fault signatures in the stator current even if a fault is recognized. Due to these 

difficulties, there is no current-based bearing fault detection technique presently employed 

in industry.  

 

 1.2 OBJECTIVE OF RESEARCH 

 

The main objective of this research is to develop a new current-based bearing condition 

monitoring method. Such a method should be able to detect incipient bearing faults that are 

characterized by generalized roughness on the bearing surfaces. Other preferred 
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characteristics of such a method include easy implementation and minimal requirements 

for external information or devices. For example, it is desired that the bearing condition can 

still be monitored without the information about bearing dimensions. It is also desired that 

the use of high-resolution power spectrum analyzers, which are employed in most of the 

existing monitoring schemes, be avoided.

  

To meet this objective, the fault signatures for generalized-roughness faults have to be 

extracted. Since they are usually subtle in magnitude and with unpredictable frequencies, 

in this research it is not attempted to locate specific frequencies in the stator current to 

discover the fault signatures. Instead, the problem will be closely inspected using signal 

processing theory and advanced signal processing technologies will be applied to solve the 

problem.  

 

Once the fault signatures are extracted and the fault-related components are isolated, the 

proposed technique should be able to evaluate the condition of the bearings in real-time 

using the magnitude of the components. For this purpose, it is desired to have a threshold 

on the magnitude of these components in order to distinguish between normal bearing 

conditions and degraded bearing conditions. When the measured magnitude exceeds the 

threshold, a warning message about a possible degraded bearing will be generated to attract 

the operator’s attention. The warning threshold will be determined by considering many 

factors. For example, the magnitude of the fault-related components may differ among 

applications. All of these problems will be fully addressed in this work.  

 

Experiments are needed to validate a bearing condition monitoring scheme. A special 

experimental setup is employed to generate bearing faults in situ. The faults generated by 

using this setup are characterized by generalized roughness on the bearing surfaces; thus, 

compared to off-line created bearing faults, they are more representative of realistic faults. 
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On-line experiments will be conducted and the data collected from those experiments will 

be used to validate the algorithms proposed in this research. This is one of the most 

distinctive features of this study, compared to most existing studies where the involved 

bearing faults are created off-line and characterized by distinct, single-point defects on the 

bearing surfaces. 

 

 

1.3 OUTLINE OF DISSERTATION 

 

This dissertation is organized as follows: in Chapter 2, background information is provided 

and existing bearing condition monitoring schemes are discussed. This includes the 

introduction of bearing fault classifications, the survey on different condition monitoring 

methods (vibration-, temperature-, chemical-, and acoustic-based, etc.), and the review of 

existing vibration-based and current-based techniques. The limits and shortcomings of 

these existing techniques are pointed out in order to define the scope of this research: the 

development of a current-based monitoring scheme that is suitable to detect 

generalized-roughness bearing faults. 

 

In Chapter 3, a survey on noise cancellation algorithms is presented, which is the basis for 

the new monitoring concept introduced in Chapter 4. According to this concept, the 

bearing fault detection can be treated as a low signal-to-noise ratio (SNR) problem and a 

noise cancellation algorithm is appropriate to solve the problem. The survey in Chapter 3 is, 

therefore, performed in an attempt to select the best algorithm for bearing fault detection 

purposes. Common noise cancellation structures and algorithms are examined under the 

need of the current-based bearing fault detection in this chapter. 

 

 In Chapter 4, a new method to extract bearing fault signatures in stator current is 
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introduced. The method is based on the concept of treating non-bearing-fault-related 

components as noise. Since those fault-unrelated components are actually dominant in the 

stator current, the problem is formulated as a low signal-to-noise-ratio (SNR) problem, 

where the signal refers to the fault-related components. The components carrying fault 

signatures are extracted via stator current noise cancellation by using the Wiener filtering 

technique. The invention and development of the method is a major contribution of this 

work [71 - 74]. The related theoretical analysis is also presented in this chapter. 

 

Chapter 5 presents the experimental validation of the method under constant-load 

conditions. The experimental method to generate in situ bearing faults is introduced. The 

results of applying the proposed noise cancellation method to those experiments are 

discussed. In addition, the noise cancellation results are compared to those from the 

existing methods. The correlation between the noise cancellation results and the vibration 

measurements is also investigated.  
 
Chapter 6 proposes a scheme to apply the noise cancellation method to variable-load 

conditions. Current-based speed detection is employed to differentiate load levels and the 

noise cancellation method is applied to each load level separately. The results from the 

on-line experiments are presented. 

 

Chapter 7 describes the determination of the warning threshold based on the magnitude of 

fault-related components, where the fault-related components are obtained by using the 

noise cancellation method described in Chapter 4. The warning threshold serves as the 

maximum allowed magnitude of those components under healthy bearing conditions. 

Considering the many critical factors involved, it is proposed that statistical methods are 

appropriate to determine the warning threshold. It is then demonstrated that the statistical 

process control (SPC) theory can be applied to calculate the warning threshold. The results 

obtained by applying the SPC for those on-line experiments are also presented in this 
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chapter.  

 

Finally, major conclusions and contributions are summarized in Chapter 8. 

Recommendations for future work are also presented at the end of the chapter.  
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CHAPTER 2 
 

SURVEY OF BEARING CONDITION MONITORING 

METHODS  
 

 

2.1 BEARING INTRODUCTION AND BEARING FAULTS CATEGORIZATION 

 

This chapter is organized as follows: in Section 2.1, a brief introduction of bearing and 

bearing faults is presented; in Section 2.2, different bearing condition monitoring methods 

are reviewed; in Sections 2.3 and 2.4, representative techniques in vibration monitoring 

and current monitoring are summarized; and in Section 2.5, a summary of this chapter is 

presented. 
 

Bearings are a common element of electric machines. They are employed to permit rotary 

motion of the shafts. Though modern manufacturing has increased the reliability of 

bearings, bearings are subject to fail. In fact, bearings are the single largest cause of 

machine failures. According to some statistical data, bearing faults account for over 41% of 

all motor failures, while rotor cage faults and stator insulation faults account for 10% and 

35%, respectively [1].  

 

Among the different types of bearings, rolling element bearings are most frequently used in 

typical applications. The most common rolling element bearing used in motors is the 

single-row deep-groove ball bearing, as shown in Figure 2.1. This bearing is made up of 

four parts: the balls, the inner raceway, the outer raceway, and the cage.  
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Most current-based bearing fault detection techniques focus on the four characteristic fault 

frequencies [5-9]. However, the four characteristic fault frequencies don't exist in many 

realistic bearing faults [9-11]. This has led to the notion of classifying bearing faults 

according to the fault signatures that are produced [10]. From this notion, bearing faults can 

be categorized into two types: single-point defects or generalized roughness. Single-point 

defects are usually created off-line in a lab or a workshop, for example, by drilling a hole in 

either part of the bearing. Generalized roughness faults are most often generated on-line (in 

situ) and are characterized by the degraded bearing surfaces, but they do not necessarily 

exhibit distinguishing defects.  

 

For single-point defects, the characteristic fault frequencies exist in machine vibration and 

can be reflected into the stator current. Therefore, the faults can be identified by detecting 

the characteristic fault frequencies. For generalized roughness faults, the characteristic 

fault frequencies may not exist in machine vibration or in the stator current. These faults 

may cause broadband changes in machine vibration and can be detected by rudimentary 

techniques based on the general guidelines laid out in ISO 10816 [12, 13]. However, the 

exact effects they have on the stator current are still not very clear at the present time, 

though some preliminary research shows that they may cause similar broadband changes in 

the stator current as in machine vibration [10]. Since generalized roughness faults are most 

often neglected in the literature despite the fact that they widely exist in industries, this 

research will mainly focus on the detection of this type of fault.  
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2.2 BEARING CONDITION MONITORING METHODS 

 

In an effort to fully appreciate the advantages of current-based bearing condition 

monitoring techniques, a brief review of different bearing condition monitoring methods is 

presented. These monitoring methods include vibration monitoring, temperature 

monitoring, chemical monitoring, acoustic emission monitoring, sound pressure 

monitoring, laser monitoring, and current monitoring. They are reviewed in the following 

subsections, with emphasis on their implementation considerations.  

 

 

2.2.1 BEARING CONDITION MONITORING VIA MACHINE VIBRATION 

 

The bearing condition can be very well monitored via machine vibration. This is because 

bearing faults, whether single-point defects or generalized roughness, will typically 

produce salient fault signatures in machine vibration. Vibration has to be measured by 

using vibration sensors, such as accelerometers and vibration velocity transducers. 

Measurements should be taken on the bearings, bearing support housing, or other structural 

parts that significantly respond to the dynamic forces and characterize the overall vibration 

of the machine [12, 13].  

 

It has been recognized for many years that machine vibration is a very reliable indicator for 

bearing faults. Therefore, vibration monitoring is popular in practice, and well-accepted 

standards are available such as ISO 10816 [12, 13]. However, the major disadvantage of 

vibration monitoring is cost. For example, a regular vibration sensor costs several hundred 

dollars. A high product cost can be incurred just by employing the necessary vibration 

sensors for a large number of electric machines. Another disadvantage of vibration 

monitoring is that it requires access to the machine. For accurate measurements, sensors 

 10



should be mounted tightly on the electric machines, and expertise is required in the 

mounting. In addition, sensors themselves are subject to fail. This could be a problem given 

that the typical lifetime of a bearing is several years.       

 
2.2.2 BEARING CONDITION MONITORING VIA CHEMICAL ANALYSIS 
 
When lubricating oils are degraded by heat, they produce a large number of chemical 

products in the form of gas, liquid, and solid states. Also, when bearings are degraded, wear 

debris is likely to be generated and released. Therefore, lubrication oils carry not only the 

products of their own degradation, but also those from the wear of bearings [14]. Thus the 

bearing health can be monitored by performing chemical analysis on the lubrication oil. 

 

Though the detection of oil degradation and wear debris could provide useful information 

about the bearing condition, the detection can be performed only when the lubricating oil is 

available. Therefore, chemical monitoring is only applicable for large machines (above 50 

kW) with oil-lubricated bearings and larger size machines possessing sleeve bearings with 

a continuous oil supply. For small and medium size machines, since greases are usually 

encapsulated inside bearings, chemical analysis methods are not practical.       

 

2.2.3 BEARING CONDITION MONITORING VIA TEMPERATURE MEASUREMENT 

 

Bearing temperatures should not exceed certain levels at rated conditions. For example, in 

the petroleum and chemical industry, the IEEE 841 standard specifies that the stabilized 

bearing temperature rise at rated load should not exceed 45oC (50oC on two-pole motors) 

[15]. The bearing temperature rise can be caused by degradation of the grease or the 

bearing. Some other factors that can cause the bearing temperature rise include winding 

temperature rise, motor operating speed, temperature distribution within the motor, etc [16]. 

Therefore, the bearing temperature measurement can provide useful information about the 
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machine health and the bearing health [17].  

 

The major disadvantage of temperature monitoring is that it takes effort to place embedded 

temperature detectors in bearings. Even if the bearing temperature is available and a 

temperature rise is recognized, further investigation is required to determine the cause of 

the temperature rise. Therefore, temperature monitoring is not very popular today, though 

this is a traditional way to monitor bearing conditions. 

 

2.2.4 BEARING CONDITION MONITORING VIA ACOUSTIC EMISSION 

 

In high-noise environments, the standard vibration monitoring may encounter some 

difficulties. This is because the low-frequency vibrations associated with small bearing 

defects contribute negligible energy to the system in comparison to the surrounding noise. 

For example, the success of vibration monitoring as a bearing diagnostic system for gas 

turbines, aircraft transmissions, and liquid rocket engines has been disappointing [18]. 

However, in such environments, the stress wave emissions in high-frequency regions 

(above 100 kHz) can still provide clear indications of the defects and thus provide an 

earlier and more reliable indication of bearing degradation. The high-frequency stress 

waves, i.e., acoustic emission, can be sensed by acoustic emission transducers.  

 

Compared to classical vibration monitoring, acoustic emission monitoring can provide 

higher signal-to-noise ratio in high-noise environments; however, it also experiences high 

system costs. In addition, specialized expertise is required in measuring acoustic emission.  

 

2.2.5 BEARING CONDITION MONITORING VIA SOUND PRESSURE 

 

Since bearing degradation can affect noise emission from the bearing, sound pressure has 
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been utilized for bearing condition monitoring [19, 20]. The sounds recorded in the 

research are within the frequency range from 0 Hz to 20 kHz. As in vibration, the 

characteristic fault frequencies may be identified in the noise excited by bearing defects.    

 

Since bearing noise can be recorded by using microphones, and even screeching from bad 

bearings can be heard by human ears, sound monitoring seems less intrusive than other 

conventional methods. However, in sound monitoring, background noise and the unwanted 

noise from other bearings must be shielded; otherwise, the bearing noise of interest will be 

corrupted, which could yield incorrect results. Therefore, sound monitoring is not 

applicable for processing facilities having many electric machines in one room until the 

above issue is resolved.  

 

2.2.6 BEARING CONDITION MONITORING VIA LASER DISPLACEMENT MEASUREMENT 

 

Though vibration displacements are usually calculated from vibration accelerations that 

are measured via accelerometers, there might be some calculation errors in this process. To 

eliminate such errors, there is research being done that uses a laser sensor to directly read 

bearing displacements caused by bearing defects [21]. Though this is an alternative way to 

obtain bearing vibrations, it requires that the laser displacement sensor be placed on the 

bearing surface, which is usually not easy to implement.  

 

2.2.7 BEARING CONDITION MONITORING VIA STATOR CURRENT 

 

The basic electrical quantities associated with electromechanical plants are readily 

measured by tapping in to the existing voltage and current transformers that are always 

installed as part of the protection system [14]. These are standard practice, and therefore no 

additional sensors are necessary in current monitoring. As a result, current monitoring is 
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non-invasive and may even be implemented in the motor control center remotely from the 

motors being monitored. Therefore, current monitoring can provide significant economic 

and implementation benefits. Another advantage of current monitoring is that an overall 

machine condition monitoring package is possible, given that the detection of other 

machine faults and the estimation of machine speed and efficiency can be fairly well 

achieved via stator current. 

 

The major disadvantage of current-based bearing monitoring is that bearing-fault 

signatures are very subtle in the stator current where the dominant components are supply 

frequency components. For single-point defects, the subtle fault signatures can be 

discovered by monitoring the characteristic fault frequencies, as illustrated in previous 

research. However, little attention has yet been given to generalized roughness faults. 

Therefore, a challenge will be to apply current monitoring in the detection of these faults. 

 

 

Despite the diversity of bearing monitoring strategies, vibration monitoring and current 

monitoring are popular. Therefore, a review of state-of-the-art techniques in these two 

areas is presented in the following sections.  

 

2.3 VIBRATION-BASED BEARING FAULT DETECTION TECHNIQUES  

 

Considerable research has been carried out in the development of various algorithms for 

bearing fault detection via machine vibration. Those algorithms can be classified into time 

domain, frequency domain, and other algorithms including shock pulse monitoring. They 

are reviewed in the following subsections. 
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2.3.1 TIME-DOMAIN METHODS 

 

A commonly used vibration monitoring method is to measure the RMS value of the 

vibration level over a pre-selected bandwidth. This is often called overall level monitoring. 

The ISO 10816 vibration standard indicates that the RMS value of vibration velocity over a 

frequency range from 10 Hz to 1 kHz should be used to evaluate the condition of the 

machine (see Table 2.1) [12, 13]. Another useful set of criteria is that given in the Canadian 

Government specification CDA/MS/NVSH107. This specification suggests a broader 

bandwidth, namely, from 10 Hz to 10 kHz, but still relies on overall velocity vibration 

measurement. 

Table 2.1 Specifications in ISO 10816 [12, 13]. 

RMS vibration 
velocity (mm/s) 

Class I 
(up to 15 kW)

Class II 
(15 kW to 75 kW) 

Class III 
(large prime movers 

with rigid foundation)

Class IV 
(large prime movers 
with soft foundation)

0.28 
0.45 
0.71 

Normal 

1.12 

Normal 

1.8 
Acceptable 

Normal 

2.8 
Acceptable 

Normal 

4.5 
Unacceptable Acceptable 

7.1 
Unacceptable Acceptable 

11.2 
Unacceptable 

18 
Unacceptable 

28 
45 

Destructive Destructive Destructive Destructive 

 

In addition to the basic RMS value (the 2nd order moment), there are other statistical 

moments that are helpful to detect bearing defects, especially those at an early stage. They 

are the crest factor, the skew value (the normalized 3rd moment), the kurtosis (the 

normalized 4th moment). Intuitively, the RMS value gives the intensity of the signal, the 

skew value measures the degree of symmetry of the shape of the probabilistic distribution 

curve, and the kurtosis measures the Gaussianity of the distribution of the signal. For the 

signal ,  its rth-order moment about its mean)(nx Nn ,...,1= x  is ∑
=

−=
N

k

r
kr xx

N
M

1
)(1 , its RMS 
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Most bearing surfaces exhibit a random distribution of asperities in the direction of the 

machining process, and the distribution of asperity heights for an undamaged surface of 

this type can be assumed to be a Gaussian distribution [22]. From this assumption, for a 

bearing with good quality surfaces, it can be shown that the kurtosis is 3.0 and the odd 

moments are zero. As the bearing becomes degraded and the interface between two 

surfaces in motion begins to break down, the shape of the probability density function 

(PDF) tends to become peaky. As a result, the skew value and the kurtosis increase. The use 

of these statistical moments to detect the bearing faults can be found in [19, 22].  

 

Though most time-domain methods are effective techniques for detecting bearing faults, 

they are limited in fault diagnosis. However, frequency-domain methods are more useful 

for fault diagnosis. 

 

2.3.2 FREQUENCY-DOMAIN METHODS 

 

The most well-known bearing-related frequencies in machine vibration are the 

characteristic fault frequencies defined in Equations (2.1) – (2.6). By monitoring those 

fault frequencies, the component in fault (the inner race, the outer race, the cage or the balls) 

can be specified. However, directly monitoring those frequencies may be difficult, because 

they are low frequencies and can be easily lost in noise. To improve detection performance, 

other techniques are required. Those techniques include the envelope method, the adaptive 

noise cancellation method, and the time-frequency method. 
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The envelope method is also known as the high frequency resonance method. This method 

extracts the characteristic fault frequency components from the frequency bands that occur 

in regions of mechanical resonance (usually above 1 kHz and below 50 kHz). Therefore, 

the low-frequency high-amplitude non-fault signals can be suppressed in this method. 

Implementing this method involves band-pass filtering and rectifying the time-domain 

vibration signal, low-pass filtering the rectified signal to form the envelope, and then 

analyzing the envelope signal. This is shown in the left part of Figure 2.2. The 

demodulation can be done either by using an analogue band-pass filter and rectifier, or by 

using digital filters [23, 24]. A problem with envelope analysis is that salient fault 

information could fall outside the pre-selected frequency band as the fault develops into 

different stages. 
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Figure 2.2 Bearing fault detection by envelope method and adaptive noise cancellation method [25]  

 

The noise cancellation method is also used in some bearing condition monitoring schemes. 

As the name noise cancellation indicates, noise cancellation can be used to remove 

unwanted noise and thus increase the signal-to-noise ratio. This is important in the 

detection of incipient bearing faults; because most difficulties in such detection stem from 

both the presence of a variety of noises and the wide spectrum of a bearing fault signal [25]. 

The detection scheme presented in [25] is illustrated in Figure 2.2. First, an envelope signal 

is obtained by the high-frequency resonance technique (HFRT). Then, this signal passes 

through an adaptive noise canceller (or adaptive line enhancer, ALE). Since any broadband 
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noise is not correlated with its delayed version, it will be eliminated by the filter.    

 

Another example of the use of the noise cancellation method in bearing fault detection can 

be found in [26]. In this research, a reference signal that simulates background noise is the 

input to an adaptive noise cancellation filter. The output of the filter is used to cancel the 

background noise in a primary signal. One acoustic emission transducer is positioned on 

the test bearing housing to measure the primary signal, which includes the bearing fault 

frequencies, the shaft unbalance frequencies, and background noise. A second transducer is 

positioned on the frame away from the test bearing to measure the reference signal, which 

includes the shaft unbalance frequencies and background noise. The experimental results 

in [26] show that the bearing faults can be identified even when the fault frequencies are 

similar to the unbalance frequencies.         

 

2.3.3 SHOCK PULSE METHOD 

 

As a rolling element bearing degrades, small pits may be developed on bearing surfaces. 

When these surfaces interact with other parts of the bearing, stress waves, usually called 

shock pulses, can be generated. These shock pulses are at very high frequencies and can be 

detected by piezoelectric transducers with high resonant frequency (typical 25 kHz to 35 

kHz). A peak holding circuit is employed and the maximum value of shock is then recorded. 

The condition of the bearing will then be assessed by a quantity known as the shock pulse 

value, SPV, defined as [14] 

22
SPV

Fn
R

=                                      (2.7) 

where  is the peak value, n  is the shaft speed, and R F  is a factor relating to bearing 

geometry. Low values indicate bearings in good condition, while high values indicate that 

bearing damage is likely.  
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Though a number of commercial instruments are available based on this method, 

quantitative evaluation using the method remains difficult. Also it works best in 

conjunction with overall level monitoring method. 

 

2.3.4 OTHER METHODS 

 

Other methods in bearing vibration monitoring include the high order spectra (HOS) 

method [27], the artificial neural network (ANN) method [3], the cepstrum method [28], 

the hidden Markov modeling (HMM) method [29], and the time signal averaging method. 

Though these methods have abilities to detect bearing faults in certain applications, they 

have limitations to be a common tool for bearing fault detection.  

 

 

2.4 CURRENT-BASED BEARING FAULT DETECTION TECHNIQUES 

 

It was verified in [30], published in 1995, that the characteristic bearing-fault frequencies 

in vibration can be reflected into the stator current. The relationship between the vibration 

frequencies and the current frequencies for bearing faults can be described by  

bng e vf f m f= ± •                                                       (2.8) 

where , 1, 2,3,...m = vf is one of the characteristic vibration frequencies, ef  is the supply 

frequency, and is the bearing fault frequencies reflected in the stator current.  bngf

 

However, it was discovered in several independent studies [9-11, 31], published from 2004 

to 2005, that for many in situ generated bearing faults, those characteristic fault frequencies 

are not observable and may not exist at all in the stator current. This finding led to the 

classification of bearing faults for bearing fault detection purposes. According to [10], 
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bearing faults can be categorized into two types: single-point defects and generalized 

roughness. Single-point defects are usually created off-line, for example, by drilling holes 

in bearing components. Comparatively, many bearing faults developed through years 

on-line in industrial processes are generalized-roughness bearing faults, especially at an 

early stage. Those faults exhibit degraded bearing surfaces, but not necessarily distinct 

defects.  

 

For single-point defects, the characteristic fault frequencies are a good fault indicator to 

current-based bearing fault detection [30]. Consequently, single-point defects may be 

detected by identifying the characteristic fault frequencies in the stator current. For 

generalized roughness faults, however, those characteristic fault frequencies may not exit. 

Instead, it is believed that those faults may cause broadband changes on the spectrum of the 

stator current [10]. 

 

It is apparent, then, that the bearing fault signatures are markedly different for different 

fault types. Therefore, in this chapter, different techniques for bearing fault detection are 

reviewed under this categorization. Specifically, existing current-based bearing fault 

detection techniques are categorized as those suitable to detect single-point defects and 

those suitable to detect generalized-roughness faults.  

 

2.4.1 TECHNIQUES TO DETECT SINGLE-POINT DEFECTS 

 

Since the characteristic bearing-fault frequencies are a good indicator of single-point 

defects, virtually all current-based techniques to detect single-point defects are based on 

identifying and processing those fault frequencies in the stator current. There are many 

good techniques available in the literature for single-point defect detection. Representative 

techniques include the neural-network clustering approach, the adaptive statistical 
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time-frequency method, the Wavelet packet decomposition method, the statistical 

discrimination method, and the extended Park’s Vector approach, etc.  The basic procedure, 

as well as some related issues, of these techniques is reviewed as follows. 

 

2.4.1.1 The Neural-Network Clustering Approach 

 

This approach is based on an unsupervised neural network and was proposed by Schoen et 

al. in 1995 [32]. In this technique, stator current is sampled and the spectrum of the stator 

current is estimated via Fast Fourier Transform (FFT). A rule-based frequency filter then 

selects frequency components including those at the characteristic fault frequencies and 

those relating to machine conditions. The amplitudes of those components form the input 

of the unsupervised neural network for clustering. After the machine is exposed to all the 

normal operating and load conditions, the clustering is complete and stable. Then, the 

neural network weights are saved. As bearing faults occur afterwards, new clusters are 

formed, which indicate a fault condition. A schematic diagram of this method is shown in 

Figure 2.3. Experiments with a 5-hp motor were performed by the researchers [32] to 

verify the effectiveness of the technique on bearing fault detection.  

 

This method has led to a significant amount of research in neural network applications in 

this area. However, rules have to be made in this method, which requires the knowledge of 

the spectrum distribution of the stator current.  
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Figure 2.3 Schematic diagram of current monitoring technique using unsupervised neural network. 

 

 

 21



2.4.1.2 The Adaptive Statistical Time-Frequency Method 

 

Yazici and Kliman proposed a time-frequency technique in 1999 to detect bearing faults [5]. 

A schematic diagram of this technique is illustrated in Figure 2.4. This technique treats 

stator current as a non-stationary signal. First, a time-frequency spectrum is estimated after 

preprocessing, and feature vectors are extracted from the spectrum. In this research, the 

feature vectors include frequency components located in the neighborhood of the 

characteristic fault frequencies (along the frequency axis). Next, the feature space is 

segmented into various normal conditions of the motor (along the time axis) by a 

probabilistic method that maximizes the conditional joint distribution probability density 

function of the feature vectors within a time window. The resulting segments form different 

operating modes, according to some statistical distance metric. Then, a set of 

representatives and thresholds is determined for each of the modes. Once the algorithm is 

trained for all the normal operating conditions, a data base is formed to store all the mode 

information. For testing data, after the same preprocessing, short-time Fourier transform 

and feature extraction, the distance between the test feature vector and the representatives 

of each normal mode is calculated. If this distance is greater than all the mode thresholds, 

i.e., the test feature vector falls outside the normal modes, then the test measurement is 

tagged as potential faulty. Experiments with a 3/4-hp motor were performed by the 

researchers to verify the effectiveness of the technique. 

 

This method provides a useful means to look into the non-stationarity of stator current. 

However, it involves complicated procedures to calculate the boundaries of those modes.  

 
Figure 2.4 Schematic diagram of current monitoring technique based on time-frequency transform. 
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2.4.1.3 The Wavelet Packet Decomposition Method 

 

A bearing fault detection scheme based on wavelet packet decomposition was proposed by 

Eren and Devaney in 2004 [6]. A schematic diagram is shown in Figure 2.5. First, the stator 

current signal is pre-processed as usual. Next the signal is decomposed linearly within the 

0-240 Hz band and decomposed logarithmically for higher-frequency bands to minimize 

the computational effort while not losing the characteristic fault frequencies. Then, the 

signal is further decomposed into 7.5-Hz wavelet packets (nodes) over the 0-240 Hz 

frequency band using a FIR filter-bank structure. After that, the nodes covering the 

characteristic fault frequencies are selected, and the wavelet coefficients for these nodes 

are used to calculate the RMS value of these nodes. This is repeated for a set of healthy 

bearings to form baseline data (In this research eight healthy bearings were used). 

Specifically, the mean and the standard deviation of the RMS value of the selected nodes 

from the healthy bearings are calculated and saved as the baseline data. For a testing 

bearing, the RMS value of the selected nodes is calculated. A significant increase of the 

RMS value indicates a bearing fault condition. Experiments with a 1-hp motor were 

performed by the researchers to verify the effectiveness of the technique. This research is 

extended in [33], where a neural network is used to process the results from the wavelet 

packet decomposition instead of the statistical method.  
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Figure 2.5 Schematic diagram of current monitoring technique based on wavelet packet decomposition. 
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2.4.1.4 The Statistical Discrimination Method 

 

The research in [34] published in 2005 develops a general diagnosis tool for motor 

condition monitoring. The tool is intended to analyze differences between signals of 

normal and damaged motors, by using statistical discrimination measures for 

time-frequency features. The first-order statistics and the second-order statistics of the 

filter responses are used as the discrimination measures. A notable conclusion from this 

research is that detection of bearing faults is more difficult at a full-load level than at a 

no-load level since full load could cause various disturbances. Experiments with a 20-hp 

motor were performed by the researchers to verify the effectiveness of the technique. 

 

2.4.1.5 The Extended Park’s Vector Approach 

 

The research in [39] published in 2005 proposed a bearing fault diagnosis technique based 

on the extended Park’s transform on the three-phase stator currents. The current Park’s 

Vector modulus ( 2

d qi i+ ) was introduced as the fault indicator. It was derived that this 

modulus contains additional fault components at multiples of the characteristic fault 

frequencies in the presence of single-point defects. This is compared to the fault 

components at the modulated frequencies as described by Equation 2.8 in the power 

spectra of the stator currents themselves. Experiments with a 4-hp motor were performed 

by the researchers to verify the effectiveness of the technique. 

 

This approach seems simple while effective for detecting single-point defects. However, it 

requires collecting the stator currents for all three phases at the same time.  
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It should be noted that the methods (2.4.1.1) – (2.4.1.5) involve inflicting artificial defects 

to a bearing off-line, and then placing the faulty bearing in a test motor. Two drawbacks 

exist with this process. First, the off-line generated defects are not very representative of 

realistic faults [9-11, 31]. Second, disassembling and reassembling a motor can cause 

unpredictable changes to the stator current spectrum [35]. Therefore, studies on 

generalized roughness faults, (caused by in situ ageing) are necessary and are of practical 

importance.     

 

 

2.4.2 TECHNIQUES TO DETECT GENERALIZED ROUGHNESS FAULTS 

 

Generalized-roughness faults are what typically occur in practice. For such faults, new 

techniques need to be developed to detect those faults, since the characteristic fault 

frequencies may not exist [9-11, 31]. Currently, few techniques that aim to detect 

generalized-roughness faults are available in the literature.  

 

A technique called the “mean spectrum deviation (MSD) method” was proposed for this 

detection purpose in 2004 in [31]. A schematic diagram is shown in Figure 2.6. In this 

method, stator current is first notch filtered at 60 Hz and 180 Hz by analog filters. Then it is 

sampled, and further filtered by a bank of digital filters. The frequencies filtered by the 

digital filters include 

a) the supply harmonic frequencies  

nFF *ehar =                                             (2.9) 

b) the load variation frequencies and eccentricity frequencies  
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c) the slot harmonics  
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In these equations, , ,  are integers,  is the fundamental supply frequency (60 Hz), n m k eF s  

is the slip,  is the number of poles,  is the number of rotor slots,  is the order of the 

rotating eccentricity (For a static eccentricity, 

p R dN

0=dN  while 1=dN  for a dynamic 

eccentricity), and  is the order of the stator magnetomotive force (MMF) harmonics.  wN

 

The resulting signal is then modeled as an autoregressive (AR) process driven by white 

noise, and its power spectrum is estimated from the following equation  

2
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where  and  are the model coefficients. The difference between the power 

spectrum of real-time data and baseline data is computed, and its mean over the entire 

frequency band of interest is chosen as the fault index. Successful on-line experiments with 

a 5-hp motor were performed by the researchers to verify the effectiveness of the 

technique.             

)(kaP )0(b

    

Analog Notch Filters
(60 Hz, 180 Hz)

Low Pass 
Filter

A/D 
Converter

Bank of 
Digital 

Notch Filters

Compute 
Spectrum 
Estimate

Analog Notch Filters
(60 Hz, 180 Hz)

Low Pass 
Filter

A/D 
Converter

Bank of 
Digital 

Notch Filters

Compute 
Spectrum 
Estimate

MSD

Baseline 
Data

Real time 
Data

 
Figure 2.6 Schematic diagram of the MSD method. 
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This method is promising; it is the first current-based technique known in the literature 

designed to detect generalized roughness bearing faults. However, it has some 

disadvantages. First, in this method, thorough knowledge of the stator current spectrum 

distribution is required. Second, it assumes that during the filtering process, no fault 

information will be lost. However, it is possible that fault information can exist in the 

components at the frequencies predicted by Equations (2.9)-(2.12) in practice. For example, 

it has been shown in [11] that contamination of bearings with floor dusts can result in an 

increase of the components at the eccentricity frequencies predicted by Equation (2.10). 

Third, machine speed has to be measured or estimated. Machine parameters are also 

required in this method.  

 

Therefore, the objective of this research is to develop a new improved current-based 

method to detect bearing faults, including generalized-roughness faults, which overcomes 

the disadvantages of the existing methods. 

 

2.5 SUMMARY 

 

Different bearing condition monitoring methods have been reviewed in this chapter. The 

notion of categorizing bearing faults as single-point defects or generalized-roughness 

faults has been discussed. Various vibration- and current-based condition monitoring 

techniques have been reviewed. The shortcomings of these techniques have been pointed 

out to define the scope of this research. 
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CHAPTER 3  
 

SURVEY OF NOISE CANCELLATION  
STRUCTURES AND ALGORITHMS 

 
 

3.1 INTRODUCTION 

This chapter is organized in the following manner: in Section 3.1, a brief introduction of 

noise cancellation and its applications is presented. In Section 3.2, various noise 

cancellation structures are reviewed. In Section 3.3, various noise cancellation algorithms 

are reviewed.  A summary of the chapter is presented in Section 3.4. 

 

 

Noise cancellation, also known as Active Noise Control (ANC), utilizes anti-noise to 

cancel unwanted noise. In most cases, the anti-noise is desired to be equal in magnitude and 

opposite in phase to the noise; adding the anti-noise and the noise cancels both. Active 

Noise Control is developing rapidly because, (1) in many cases, passive noise control such 

as using enclosures, barriers, and silencers either does not have the desired performance or 

shields interested signals as well, and (2) active noise control permits improvements in 

noise control, often with potential benefits in size, weight, volume, and cost thanks to 

favorable DSP systems [36].  

 

Though it is desired to cancel unwanted noise in all noise cancellation applications, the 

objective of a specific application may be different. In some applications, the target signal 

consists of noise only, and to cancel the noise is the only objective. Examples include 

electronic mufflers for exhaust and induction systems, lawn mowers, vacuum cleaners, 
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transformers, power generators, ear protectors, etc. In many other applications, however, to 

recover a desired signal corrupted by background noise is as important, if not more so, to 

cancel the noise. Examples include observing a fetus’ heartbeat buried in higher-amplitude 

background noise from the mother’s body, communication between pilots in airplanes, 

meetings in quiet zones in noisy plants, etc. The objective of noise cancellation for stator 

current-based bearing fault detection in this research is to recover the bearing fault signal 

by canceling background noise.  

 

When noise cancellation is used for recovering a desired signal, the characteristics of both 

the desired signal and the background noise need to be considered. Depending on its 

application, the structure and algorithm of a noise cancellation system may be different as 

reviewed below.  

 

3.2 NOISE CANCELLATION STRUCTURES 

 

From the control standpoint, two broad categories of basic noise cancellation structures are 

feedforward control and feedback control. In addition to the basic structures, hybrid noise 

cancellation structures exist and are built upon those basic structures. In the following 

review, for convenience, feedforward control structures are further categorized as 

broadband feedforward and narrowband feedforward control in accordance with the 

frequency properties (broadband or narrowband) of a noise signal.  

 

From an adaptation standpoint, a noise cancellation system can be either non-adaptive or 

adaptive. A non-adaptive system applies to stationary signals and is easy to implement, 

while an adaptive system may be desired for non-stationary signals and requires additional 

sensors. Both the adaptive version and non-adaptive version of the noise cancellation 

structures are addressed in the following review. 

 29



3.2.1 BROADBAND FEEDFORWARD NOISE CANCELLATION STRUCTURES 

 

For broadband feedforward structures, in addition to a primary sensor, a secondary sensor 

is usually employed to collect reference signal data. A generic non-adaptive broadband 

feedforward noise cancellation structure is shown in Figure 3.1. The processor estimates 

the primary noise from the reference signal by utilizing the coherence between the primary 

signal and the reference signal.  

 

Figure 3.1 Generic non-adaptive broadband feedforward noise cancellation structure 

 

For a non-adaptive structure as shown above, an error sensor is not necessary. For an 

adaptive structure, however, an error sensor is required to measure the difference between a 

primary signal and the estimated noise, as shown in Figure 3.2. A processor dynamically 

adjusts the inherent coefficients to minimize the error signal to accommodate the 

non-stationarity of the primary noise. 

 
  Figure 3.2 Generic adaptive broadband feedforward noise cancellation structure 

 

In both of the above structures, it is assumed that a reference noise source is available. 

Unfortunately, in many applications, a reference signal is neither available nor affordable. 
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If, however, the noise and the desired signal have different characteristics, it is still possible 

to achieve good performance by using a delayed version of the primary signal as a 

reference signal, as shown in Figure 3.3.  

z−∆

 
Figure 3.3 Broadband feedforward noise cancellation without a reference 

 

As shown in the figure above, noise can be a broadband signal and the signal can be 

narrowband such as consisting of multiple sinusoids at different frequencies. Through the 

delaying operation, the broadband noise is filtered out from the output of the processor, 

since a broadband signal is not correlated with its delayed versions. 

 

In some applications, several practical issues need to be addressed. This is illustrated by a 

simplified acoustic application shown in Figure 3.4.  

 

The first issue is non-causality caused by the processing time. As illustrated in this figure, 

after the reference signal is picked up by the reference sensor, the processor will take some 

time to calculate the correct output to the canceling speaker. If this time delay becomes 

longer than the acoustic delay (from the reference microphone to the canceling speaker), 

the processor response is noncausal. If the non-causality happens, then the system can 

effectively control only narrowband or periodic noise [36].  
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Figure 3.4 Illustration of an Acoustic Noise Cancellation System 

 

The second issue concerns the secondary-path effects. In the case of the adaptive 

realization, the error signal is fed back to the processor as shown in the dashed line in 

Figure 3.4, and the summing junction in Figure 3.2 represents acoustic superposition in the 

space from the canceling speaker to the error microphone, where the primary noise is 

combined with the output of the canceling speaker. Therefore, when modeling this system, 

it is necessary to compensate for the secondary-path transfer function from the canceling 

speaker to the error microphone, which includes the digital-to-analog (D/A) converter, 

reconstruction filter, power amplifier, speaker, acoustic path from speaker to error 

microphone, error microphone, preamplifier, antialiasing filter, and analog-to-digital (A/D) 

converter.  

 

In addition to the secondary-path effects as mentioned above, the feedback effects from the 

canceling speaker to the reference microphone also need to be considered. Otherwise, the 

reference signal will be corrupted by the antisound that radiates from the canceling speaker, 

and will result in a degraded system performance.  

 

For the bearing fault detection in this research, all information is processed in the digital 
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domain once the A/D conversion is completed and no D/A conversions are necessary. 

Therefore, those practical issues mentioned above are not relevant to this research and are 

not considered further.  

 

3.2.2 NARROWBAND FEEDFORWARD NOISE CANCELLATION STRUCTURES 

 

Narrowband noise exists in many applications, such as noise generated by engines, 

compressors, motors, fans, and propellers. Generally, an electrical reference signal is 

obtained by using an appropriate sensor (e.g., a tachometer), which provides the 

mechanical motion data from such sources. This reference signal contains the fundamental 

frequency and all of the harmonics of the primary noise. A generic narrowband noise 

cancellation structure is shown in Figure 3.5. 

 

Figure 3.5 Generic narrowband noise cancellation structure  

 

As shown in the figure above, a reference signal is internally generated at the frequencies 

of the signal acquired by the nonacoustic sensor. The processor then adjusts the amplitude 

and phase of the components in its output signal at those frequencies to match the primary 

noise, as well as compensates for the secondary path delay and other delays. 
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There are two types of reference signals that are commonly used in narrowband noise 

cancellation systems: 1) an impulse train with a period equal to the inverse of the 

fundamental frequency of the periodic noise, and 2) sinewaves that have the same 

frequencies as the corresponding harmonic tones to be canceled [36]. Two such methods, 

called the waveform synthesis method [40] and the adaptive notch filter method [41], are 

shown in Figure 3.6 and Figure 3.7, respectively.  
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Figure 3.6 Equivalent diagram of waveform synthesis method 
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Figure 3.7 Single-frequency adaptive notch filter method     

 

The waveform synthesis method stores and dynamically adjusts canceling noise waveform 

samples; noise cancellation is achieved by retrieving the stored samples for each sampling 

period, controlled by interrupts generated from the synchronization signal. The adaptive 

notch filter method generates a canceling signal with a phase opposite to the primary noise 

phase and a frequency the same as the primary noise frequency, by adaptively adjusting the 

two taps corresponding to the reference signal and its quadrature version. Since two 

coefficients are required for each canceling frequency, the order of the adaptive notch filter 
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can be high in practical applications where noise contains multiple frequencies.  

 

For current-based bearing fault detection, once stator current data is acquired, the same 

task as the narrowband noise cancellation by using a reference signal can be achieved by 

using digital notch filters designed at the primary noise frequencies which are assumed to 

be known. This is the essence of the MSD method [38], where the frequencies of the 

dominant components in the stator current are calculated from the machine theories and a 

bank of filters at the calculated frequencies are then applied to filter out these components. 

 

 

3.2.3 FEEDBACK NOISE CANCELLATION STRUCTURES 

 

For the feedforward noise cancellation structures above, the reference signal has been the 

signal collected by a secondary sensor, a delayed version of the primary signal, or 

internally generated waveforms having frequencies derived from a mechanical motion.  

 

For feedback noise cancellation structures, however, such a reference signal is generated 

from the output of an error sensor, rather than from the primary noise or a secondary noise 

reference. Furthermore, the system stability needs to be addressed for a feedback system. It 

also should be noted that under certain conditions, an adaptive feedback system is 

equivalent to a feedforward system, as discussed below.  

 

3.2.3.1 Non-Adaptive Feedback Noise Cancellation 

 

The block diagram of a basic non-adaptive feedback noise cancellation system is shown in 

Figure 3.8. In this figure, is the primary noise, is the residual error, is the 

secondary anti-noise signal, is the transfer function of the controller, and is the 

)(nd )(ne )(ny
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transfer function of the secondary path. Under steady state conditions, the z-transform of 

the error signal can be expressed as 

 
Figure 3.8 Non-adaptive feedback structure 
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Therefore, the closed loop transfer function from the primary noise to the error signal 

can be expressed as 
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To minimize ,  is desired to be as large as possible. If the frequency 

response of is flat, then this in turn requires the gain of to increase without limit 

so that the overall transfer function is marginal. However, this is rarely the case in 

practice, since the response of the secondary source usually introduces a significant phase 

shift and there is some propagation delay from the output of the control filter to the error 

sensor [42]. If a phase shift of 180°occurs, the desired negative feedback becomes 

positive feedback leading to instability. A careful design of  is required to avoid the 

situation of instability. A full discussion of the design of the non-adaptive feedback system 

is available in References [36, 42 - 44].    
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3.2.3.2  Adaptive Feedback Noise Cancellation [36] 

 

A typical adaptive feedback noise cancellation structure is shown in Figure 3.9. As in the 

previous figure, is the primary noise, is the residual error, is the secondary 

antinoise signal, is an adaptive filter, and is the transfer function of the 

secondary path. The synthesized reference signal obtained from the error signal is , 

 is the estimate of the primary noise, and  is the estimate of . From the figure, 

the following equations can be obtained: 
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Figure 3.9 Adaptive feedback structure 
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Therefore, the primary noise can be estimated inside the processor, i.e., , 

if the secondary path can be sufficiently accurately modeled, i.e., if . This is the 

reference signal synthesis (regeneration) technique, whereby the secondary signal  is 

filtered by the secondary-path estimate  and then combined with  to regenerate 

the primary noise. Under the same assumption of , the overall transfer function 

 of the feedback noise cancellation system from  to  is 
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Thus, under the ideal condition that the secondary path is accurately modeled, the adaptive 

feedback noise cancellation system shown in the figure above, is equivalent to a 

feedforward system.    

 

If the secondary path effect is a pure (acoustic or electrical) delay, such as in the case of a 

simplified, unidirectional acoustic duct, i.e., , then the overall transfer function 

is , and the original system shown in Figure 3.9 is identical to the 

system shown in Figure 3.10. 
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Figure 3.10 Equivalent system scheme of adaptive feedback noise cancellation system 

 

It is clear that the system shown in the above figure is identical to the feedforward noise 

cancellation system without a reference as shown in Figure 3.3.  

 

3.2.4 HYBRID NOISE CANCELLATION STRUCTURES 

 

Based on the feedforward and feedback structures, hybrid noise cancellation systems can 

be built. A generic hybrid system for acoustic noise cancellation is shown in Figure 3.11. 
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Figure 3.11 Hybrid noise cancellation system [36] 

In the hybrid system shown above, it is hoped that the acoustic cues of the primary noise 

source that are not picked up by the reference sensor, will propagate forward and be picked 

up by the error sensor. The canceling signal fed to the speaker is the sum of the outputs of 

both the feedforward and feedback controllers. 

 

Usually, a hybrid system can achieve the same performance with a lower order filter 

compared to either the feedforward or the adaptive feedback system alone [36].  

 

3.2.5 OTHER NOISE CANCELLATION STRUCTURES 

 

Some other noise cancellation structures are multiple-channel noise cancellation systems, 

lattice filter-based noise cancellation systems, subband filter-based noise cancellation 

systems, and frequency domain noise cancellation systems, etc. [36].  

 

Multiple-channel systems employ several secondary sensors, error sensors, and perhaps 

even several primary sensors, and are mainly for the noise field in an enclosure or a 

large-dimension (e.g. 3-dimension) duct that is more complicated than in a usual, narrow 

duct. Lattice filters and subband filters are employed in some adaptive noise cancellation 

systems, with a common aim to improve the condition of the reference signal via 

appropriate filter structures rather than conventional transversal filters. A frequency 
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domain adaptive filter transforms the primary and reference signals into the frequency 

domain using the fast Fourier transform (FFT) and processes these signals by an adaptive 

filter. This frequency-domain technique saves computations by replacing the time-domain 

convolution by multiplication in the frequency domain.  

 

All of the schemes mentioned above attempt to improve the performance of noise 

cancellation systems by employing more sensors, subband filters, optimizing filter 

structures, or reducing computation burdens, rather than by tuning the inherent algorithms 

that are used to solve the coefficients of those filters. Therefore, they are more related to 

implementation issues rather than algorithmic issues. For this reason, the details of these 

schemes are not addressed in this research, and readers are referred to reference material in 

the bibliography [36-37, 45-47] for more information about these schemes. Instead, the 

different algorithms employed to solve and adjust the coefficients of the filters in different 

noise cancellation systems are reviewed in the following section. 

 

 

3.3 NOISE CANCELLATION ALGORITHMS 

 

Several algorithms can be used for noise cancellation purposes. The adaptive transversal 

filter using the Filtered-X Least Mean Square (FXLMS) algorithm is the most widely used 

technique for acoustic noise cancellation systems, owing to its simplicity and robustness 

considering the secondary-path effects and other effects [36]. In addition to the classical 

LMS algorithm, other algorithms exist, such as the Finite Impulse Response/Infinite 

Impulse Response (FIR/IIR) Wiener filtering algorithm, the Recursive Least Squares (RLS) 

algorithm, the fuzzy-neural network (FNN) algorithm, and the Deconvolution algorithm. 

These algorithms are reviewed in the following sections. 
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3.3.1 THE FIR/IIR WIENER FILTERING ALGORITHM 

 

A digital Wiener filter is an optimum digital filter in the sense of producing the best 

estimate of the signal in the presence of noise or other interfering signals. This is compared 

to a classical filter such as a lowpass, highpass, or bandpass filter, in which it is difficult to 

recover the signal that is corrupted and distorted by noise.  

 

The basic principle of Wiener filtering is illustrated in Fig. 3.12 [37, 46]. The objective of 

the Wiener filter for noise cancellation purposes is to estimate the primary noise signal, 

, from the secondary noise signal (reference), .  )(nd )(nx

�( )d n
 

Figure 3.12 Illustration of the general Wiener filtering problem 

 

The solution is obtained by minimizing the mean-square error between the desired signal 

and its estimate: 

}|)({| 2neE=ξ , where .                             (3.7) 
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Assuming the Wiener filter is a (p-1)st-order FIR filter, i.e., , it follows 
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of ξ  with respect to  equal to zero for )(kw 1,...,1,0 −= pk , and after some mathematic 

manipulations, the following equations, known as the Wiener-Hopf equations, can be 

obtained. 
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, denoted by  dxx rwR =

(3.8) 

where { })()()( * knxlnxElkrx −−=− , { })()()( * knxndEkrdx −= are correlation and 

cross-correlation functions respectively (usually replaced by sample averages during 

implementation), and *  denotes conjugate. 

 

The solution for an IIR Wiener filter can also be obtained, and is in the following form 
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for a causal IIR Wiener filter.              (3.10) 

In the above equations,  is the spectral factorization of the power 

spectrum of the input signal ,  is the cross-power spectral density of  and 

, and [ ]  indicates the “positive-time part” of the sequence whose z-transform is 

contained within the brackets ( ) [37, 45]. 
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3.3.2 THE STEEPEST DESCENT ALGORITHM 

 

Instead of setting the derivatives of )(nξ  as in the Wiener filter algorithm above, the 
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steepest descent algorithm finds the filter that minimize the error { }2)(neE=ξ  by 

searching for the solution using the method of steepest descent, which involves an iterative 

procedure summarized as follows [37]: 

1. Set an initial estimate, , of the optimum weight vector . 0w w

2. Update the estimate at time n  by adding a correction that is formed by taking a 

step of size µ  in the negative gradient direction 

{ }(n)xww *
n1n )(neEµ+=+ ,                                       (3.11a) 
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3. Repeat Step 2. 

In the update equations above, { }(n)x*)(neE  is the negative gradient vector of )(nξ  with 

respect to the weight vector, w . If  and  are jointly wide-sense stationary, then 

this term becomes 
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It then follows that, 

( )nxdxn1n wRrww −+=+ µ  .                                    (3.11b) 

The equations above show that for jointly wide-sense stationary processes, and , 

if a proper step size is assigned, the steepest descent adaptive filter converges to the 

solution in the Wiener-Hopf equations, i.e., 

)(nx )(nd

dx
1

xn rRw −

∞→
=

n
lim .                                                  (3.13) 

Usually, it can be chosen such that max/20 λµ << , where maxλ is the maximum eigenvalue 

of . xR
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Although for stationary processes the steepest descent adaptive filter converges to the 

solution in the Wiener-Hopf equations, it finds difficulty in adaptive filtering applications 

since the ensemble average, { }(n)x*)(neE , is generally unknown in practice. Instead, the 

Least Mean Square (LMS) algorithm is widely used in practice.  

 

3.3.3 THE LMS ALGORITHM AND THE NORMALIZED LMS ALGORITHM 

 

Under the same framework as the Steepest Descent Algorithm, the Least Mean Square 

(LMS) algorithm replaces the expectation { }(n)x*)(neE  in the weight vector update 

equation by 

{ }
^

( ) ( )E e n e n=*x (n) x (n)*

)

                                          (3.14) 

Thus the weight vector update equation becomes 

( )e nµ+ = + *
n 1 nw w x (n                                            (3.15) 

The update equation for the th coefficient of the filter is simply stated as  k

*
1 ( ) ( ) ( ) ( )n nw k w k e n x n kµ+ = + − .                                     (3.16) 

However, to ensure convergence, the selection of the step size µ  is important. A rough 

selection range can be 
}|)({|)1(

20 2nxEp +
<< µ  [37].  

 

By replacing  by its estimate, 2{| ( ) | }E x n
^

2 2

0

1{| ( ) | } | ( ) |
1

p

k
E x n x n k

p =

=
+ ∑ − , in the upper 

bound of µ  and substituting the results in the weight vector update equation, it follows that 

2 ( )
|| ||

e nβ+ = +
*

n 1 n
x (n)w w
x(n)

, 0 2β< <                            (3.17) 

This is known as the Normalized Least Mean Square ( LMS)  Algorithm. 
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3.3.4 DIFFERENT FORMS OF THE RLS ALGORITHM 

 

The Wiener filter algorithms, the gradient descent algorithm, the LMS algorithm, and the 

Normalized LMS algorithms are all targeted to minimize the mean square error: 

}|)({| 2neE=ξ , where .                            (3.7) 
^

)()()( ndndne −=

Minimizing the mean-square error produces the same set of filter coefficients for all 

sequences that have the same statistics, i.e., they have the same auto-correlation and 

cross-correlation. For some applications, it is desired to minimize the following least 

squares error (or a weighted version of it) 

∑
=

=
n

i
ien

0

2|)(|)(ε .                                             (3.18) 

By doing so, the resulting filter coefficients are optimal for the given data, instead of being 

statistically optimal for the process.  

 

The Recursive Least Squares (RLS) algorithm is an efficient algorithm for performing this 

minimization. It does not require the statistics of the underlying processes and offers fast 

convergence in many applications. According to how the squared errors are weighted, 

different forms of the RLS algorithm can be obtained: the exponentially weighted RLS, the 

growing window RLS, the sliding window RLS, etc.  

 

The exponentially weighted RLS algorithm tries to minimize the exponentially weighted 

least squares error 

∑
=

−=
n

i

in ien
0

2|)(|)( λε ,                                       (3.19) 

where 10 ≤< λ  is an exponential weighting (forgetting) factor. The basic procedure to 

compute the filter coefficients is as follows [37]. 

1. Set initial estimate values, 0 and , for the filter coefficient vector w  IP 1)0( −= δ
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and the inverse auto-correlation matrix  of the input signal, respectively. Here P δ  

is a small positive constant. 

2. Update the filtered information vector , the gain vector )()1()( * nnn xPz −=

1( ) ( )
( ) ( )Tn
n nλ

=
+

g
x z

nz , the a priori error , the filter 

coefficient vector 

)()()( 1 nndn T
n xw −−=α

)()(1 nnnn gww α+= − , and the inverse auto-correlation matrix 

[ ])()()1(1)( nnnn HzgPP −−=
λ

. 

3. Repeat Step 2. 

 

In the above procedure, if 1=λ  is set, the algorithm becomes the growing window RLS 

algorithm, since all the errors (the previous and current) are treated equally and therefore 

the computation window never decreases. In comparison, the sliding window RLS 

algorithm aims to minimize the sum of the squares of  over a finite window, i.e., to 

minimize 

)(ie

∑
−=

=
n

Lni
L ien 2|)(|)(ε , where 1+L  is the length of the window.               (3.20) 

The procedure to compute the filter coefficients is similar to the exponentially weighted 

RLS algorithm and available in the referenced material in the bibliography [37, 46]. 

 

 

3.3.5 NONLINEAR FILTERING APPROACHES  

 

In the Wiener filter algorithm, the steepest descent algorithm, the LMS algorithm, and the 

RLS algorithm, the error is defined as the difference between the desired signal and its 

estimate, which is the output of a Wiener filter or adaptive filter. In these algorithms, 
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−

 is used to calculate the error , where , 

, are the filter coefficients. The estimated signal is essentially a linear 

combination of the input samples.  

^
( ) ( ) ( )e n d n d n= − )(lw

0,1,..., 1l p=

 

In many situations, such a linear model has satisfactory performance. However, in 

situations where the system nonlinearity is significant, a nonlinear filtering approach may 

be desired. 

 

Nonlinear filtering approaches include the fuzzy-neural network approach, particle swarm 

optimization, cellular neural networks, etc. Fuzzy-neural networks are hybrids of artificial 

neural networks and fuzzy logic. Such hybridization combines the human-like reasoning 

style of fuzzy systems with the learning and connectionist structures of neural networks. 

Particle swarm optimization was inspired by the social behavior of animals, such as bird 

flocking or fish schooling, when they search for food. Particle swarm optimization is 

usually used for optimization in a multi-dimensional search space. Cellular neural 

networks were inspired by a nonlinear analog circuit which features a multi-dimensional 

array of neurons and local interconnections among the cells.  

 

There is one study in the literature on the application of discrete-time cellular neural 

networks combining with particle swarm optimization to image noise cancellation [49]. In 

comparison, several studies on applying a fuzzy-neural network to noise cancellation have 

been reported [50-53]. Since particle swarm optimization and cellular neural networks are 

usually suitable for multi-dimensional problems and do not provide obvious advantages 

over other methods in noise cancellation for bearing fault diagnosis, only the fuzzy-neural 

network approach is discussed further in the following section. 
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3.3.6 THE FUZZY-NEURAL NETWORK ALGORITHMS 

 

The basic structure of a fuzzy-neural network is shown in the following figure [51].  

#
#

#

#

#

#

1x

rx

1w

uw

jw y

 

Figure 3.13 Fuzzy-neural network structure [51] 

The system shown in Fig. 3.13 is based on a modified Radial Basis Function (RBF) neural 

network and has the following five layers.  

Layer 1: Input layer - Each node in this layer represents an input linguistic variable. 

Layer 2: Membership function layer - Each node in this layer represents a membership 

function (MF), which is usually a Gaussian function. The output of the j th membership 

function, ijµ , given the th input , is calculated as i ix

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−= 2

2)(
exp)(

j

iji
iij

cx
x

σ
µ , ri ,...,2,1=  and uj ,...,2,1=                    (3.21) 

where  and ijc jσ  are the center and the width of the j th Gaussian function of , 

respectively; 

ix

r  and  are the number of the input variables and the number of 

membership functions, respectively.  

u

Layer 3: Fuzzy rule “If-part” layer - Each node in this layer carries out a possible “If-part” 

for fuzzy rules, and represents an RBF unit. The number of nodes in this layer is equal to 

the number of fuzzy rules. For the j th rule , its output is jR
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Layer 4: Normalization layer - The output of each node in this layer is the corresponding 

node in Layer 3 normalized by the sum of all outputs in that layer, i.e., 

∑
=

= u

k
k

j
j

1

φ

φ
ψ .                                                     (3.23) 

Layer 5: Output layer and also fuzzy rule “Then-part” layer - This layer carries out the 

summation of the outputs of Layer 4, i.e., 

∑
=

=
u

k
kkwy

1
ψ ,                                                   (3.24) 

where  is the output and  is the weight of the k th rule which is a linear combination 

of input variables, i.e.,  

y kw

rkrkkk xhxhhw +++= "110 , where  are real-valued parameters.          (3.25) kih

Several learning algorithms for noise cancellation purposes are available, such as the 

modified dynamic fuzzy neural networks (MDFNN) and enhanced dynamic fuzzy neural 

networks (EDFNN) learning algorithms in [51, 53], and the self-tuning fuzzy filtered-U 

algorithm in [54]. To illustrate the problems in Fuzzy Neural Networks (FNNs), the basic 

procedure of the MDFNN algorithm in [51] is discussed below as an example.  

 

For the k th observation ( , ), find the smallest distance, , between  

and the center  ( ) of the existing RBF units as follows 

)(kX )(ky mind )(kX

jC T
rjjjj cccC ],...,,[ 21=

ujCkXkd jj ,,2,1,)()( …=−=                              (3.26) 

))(min(argmin kdd j= ,                                      (3.27) 

where  and  are the received samples of the secondary signal T
rxxxkX ],...,,[)( 21= )(ky
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and the primary signal, respectively. 

1. If , generate a new rule, with its centers and widths allocated as follows dkd >min

min),( dkkXC ovlpii == σ ,                                 (3.28) 

where  is the threshold for the radius of accommodation boundary, and 

 is an overlap factor. 

dk

(1.05 1.2)ovlpk ∈ −

2. Calculate the error reduction ratio (ERR) for each RBF unit, and delete the RBF 

units whose ERR is less than a preset threshold . I.e., errk

If errerri k<η , delete the i th RBF unit,.                          

where erriη  is the ERR of the i th RBF unit, calculated according to a 

computationally complicated  procedure described in the material referenced in the 

bibliography [51]. 

3. Use the Least Squares Error method to adjust the weight matrix W , i.e., 

1)( −= TT PPYPW , 

where , ],...,,...,,...,,,...,[ 1111010 urruu hhhhhhW = ),...](),...,2(),1([ kyyyY = , and 
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(3.29) 

where  (same as ( )ja k jψ  above) is the normalized output from Layer 4, 

. uj ,...,2,1=

4. Repeat the process above. 

 

In noise cancellation applications, the noise to be estimated,  in Figure 3.12, is 

usually embedded in the primary signal (the primary signal is composed of noise and useful 

)(nd
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signals, and only the primary signal can be measured) and is not directly measurable. 

Therefore, the system error, which is defined as , can not be used as a 

guide to dynamically generate RBF neurons as in many other applications. Consequently, 

the accommodation boundary is used as the only condition to determine the neuron 

generation process, as shown in Step 1 above. This in turn requires the threshold for the 

radius of accommodation boundary (  above) to be properly chosen. However, in stator 

current-based bearing fault detection, it is difficult to set this threshold due to the 

complexity of the problem. Therefore, the performance of the system can not be assured 

when it is used to detect real bearing faults.  

^
)()()( ndndne −=

dk

 

Another disadvantage of the FNN method in the sense of bearing fault detection is as 

follows: it is well known that the changes in the stator current that are caused by bearing 

faults are usually reflected in the frequency domain. Unlike a Wiener filter or other digital 

filters, which fully utilizes the frequency properties of signals (such as narrowband vs. 

broadband) to accomplish noise cancellation, the FNN algorithm does not fully take 

advantage of the particular frequency patterns that are injected by bearing faults.  

 

3.3.7 THE DECONVOLUTION ALGORITHM 

 

Deconvolution is performed to restore a true signal from convolutional distortion. For 

example, in image processing, blurring due to linear motion in a photograph may be 

modeled as a convolution problem. This can be formulated to recover (deblur) the true 

signal  from the observations , i.e., to solve  from )(nd )(nx )(nd

)()()()( nwngndnx +∗= ,                                    (3.30) 

where  models the ‘blurring’ effect, and  is additive noise. )(ng )(nw
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If , which is called the convolution kernel, is known, then this is the classical image 

restoration problem. In this case, several approaches can be used, such as inverse filtering 

and Wiener filtering. For example, an optimum Wiener filter for deconvolution may be in 

the following form [37] that is similar to Equations (3.9)-(3.10). 
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However, if the convolution kernel is not known, then this is a blind deconvolution 

problem. Several methods have been proposed for blind deconvolution, such as the 

independent component analysis method, the iterative blind deconvolution method, the 

higher order statistics method, and the annealing method. The details of those algorithms 

are beyond the scope of this research. 

 

Research work on applying a deconvolution algorithm to noise cancellation problems has 

been done primarily in certain areas such as image processing and communication channel 

equalization [37, 55-57]. This is because in those areas, the observed signal can be well 

modeled as a convolution of signals. However, in stator current-based bearing fault 

detection, especially to the generalized-roughness bearing faults detection, it has not been 

established that the measured stator current is viable to be modeled as the convolution of 

signals. For example, it has been observed that at an incipient stage, generalized-roughness 

bearing faults are likely to cause subtle broadband changes, such as changes in the position 

of the noise floor, in the sampled stator current signal primarily consisting of sinusoidal 

components. Such changes are difficult to model as convolution effects. Therefore, a 

deconvolution formulation faces difficulties in practice for stator current-based bearing 

fault detection, at least at the present time.  
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3.4 SUMMARY 

 

In this survey, different noise cancellation structures and algorithms have been reviewed. 

These structures and algorithms are summarized as follows, considering their potential 

applications in current-based bearing fault detection.  

 

3.4.1 SUMMARY OF THE DIFFERENT STRUCTURES 

 

Noise cancellation structures fall into different categories according to the inherent control 

strategy: feedforward structures, feedback structures, hybrid structures and other structures. 

Feedforward noise cancellation systems utilize the coherence between secondary signal 

and primary signal to estimate the noise. Feedback noise cancellation systems estimate the 

noise from the output of an error sensor. Hybrid noise cancellation systems can be built by 

combining feedback structures and feedforward structures. In a specific application, a 

proper structure should be chosen by considering factors such as the availability of a 

secondary signal. For example, if a secondary signal is not available, a feedback structure 

can be used, or a feedforward structure can be applied with a delayed version of the 

primary signal as secondary signal. Further more, a feedback system is equivalent to a 

feedforward system given that the secondary path can be well modeled.  

 

In stator current-based bearing fault detection, a secondary signal is not available, and the 

secondary path modeling is not necessary since all the information is processed in the 

digital domain once the stator current is sampled by an Analog/Digital converter. Hence, a 

feedforward structure is appropriate and a delayed version of the primary signal should be 

used as a secondary signal for noise cancellation purposes.     

 

If non-stationarity of the primary noise is significant, then an adaptive strategy may be 
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applied. For adaptive noise cancellation, an error signal is measured and used as a guide in 

filter weights adjustment. Further more, additional issues such as stability, convergence 

speed, and computation burden should be carefully considered during implementation.  

 

In current-based bearing fault detection, non-stationarity is the property of both the 

fault-related and non-fault-related components of the stator current. However, the 

non-stationarity of the non-fault-related components of the stator current can be neglected 

under steady state at the same load condition. Furthermore, when the bearing fault 

characteristic frequencies are present in the stator current, an adaptive strategy will 

unavoidably filter out those frequencies, which is not desired. Therefore, from the above 

analysis, an adaptive noise cancellation does not obviously perform better than a 

non-adaptive strategy and it may mistakenly remove the non-stationary part of the 

fault-related components from the final output of the system. This is true especially if the 

bearing fault frequencies present in the stator current.  

 

Some practical issues related to the structures of noise were also discussed, such as 

secondary path modeling, and feedback effects from anti-speaker. Though they are 

important issues in many applications, they do not apply to current-based bearing fault 

detection. 

 

3.4.2 SUMMARY OF THE DIFFERENT ALGORITHMS 

 

Different noise cancellation algorithms were reviewed in this chapter, including the 

FIR/IIR Wiener filtering, the steepest descent algorithm, the LMS algorithm, the RLS 

algorithm, the nonlinear filtering algorithms, the fuzzy-neural network algorithm, and the 

deconvolution algorithm. 
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The Wiener filtering is well developed and has numerous applications in practice. It has 

proven to be effective in most applications. Wiener filter-based noise cancellation is a 

classical noise cancellation algorithm. It can fully use the frequency characteristics, such as 

the broadband and narrowband properties, of signals to differentiate between noise and 

desired signal. Also, many adaptive filters converge to the Wiener solution, and Wiener 

filters can achieve deconvolution if the convolution kernel is known. 

 

In current-based bearing fault detection, it has been observed that bearing faults, especially 

the generalized roughness faults, may cause broadband changes in the power spectra of the 

stator current. Therefore, the Wiener filtering is chosen as the tool for stator current-based 

bearing fault detection.  

 

The steepest descent algorithm is an iterative algorithm that tries to search for optimum 

filter coefficients in the negative gradient direction of the error space. Therefore, it 

converges to an optimum Wiener filter solution for wide-sense stationary processes. 

However, it has little practical use because it requires the expectation  to be 

known. By replacing this expectation with a simple estimate , the LMS 

algorithm and the normalized LMS algorithm were derived by whom. The LMS algorithm 

and the normalized LMS algorithm are widely used in practice, though it requires effort to 

choose a proper step size to ensure convergence. However, the LMS algorithm and the 

normalized LMS algorithm might experience slow convergence. To overcome this 

problem, the RLS algorithm can be used, which tries to find optimal solutions for given 

data, disregarding the statistics of the underlying processes. Different forms of the RLS 

algorithm exist, such as the exponentially weighted RLS, the growing window RLS, and 

the sliding window RLS. 

})({ (n)x*neE

(n)x*)(ne

 

In current-based bearing fault detection, if an adaptive filter has to be used to accommodate 
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the non-stationarity of the stator current, then the LMS algorithm or the normalized LMS 

algorithm can be used. The RLS algorithm does not have any advantage except fast 

convergence, which is obtained in the cost of an increased computation burden at each 

iteration cycle. 

 

Non-linear filtering approaches for noise cancellation were also reviewed, including 

particle swarm optimization, the cellular neural networks approach, and the fuzzy-neural 

networks approach. The amount of the research work of applying those approaches to noise 

cancellation is limited in the literature. Since particle swarm optimization and cellular 

neural network are usually suitable for multi-dimensional problems and don’t see obvious 

advantages in the noise cancellation for bearing fault diagnosis, only the dynamic 

fuzzy-neural network approach was further evaluated. The dynamic fuzzy-neural network 

approach developed for noise cancellation purposes can not use a system error as a guide to 

dynamically generate neurons, and its performance relies heavily on a proper choice of the 

inherent parameters.  

 

A bigger disadvantage of the fuzzy-neural network approach in the sense of stator current 

bearing fault detection is as follows: it is well known that the changes in the stator current 

that are caused by bearing faults are usually reflected in the frequency domain. Unlike a 

Wiener filter or other digital filter, which fully utilizes the frequency properties of signals 

(such as narrowband vs. broadband) to accomplish the noise cancellation, the FNN 

algorithm does not take full advantage of the particular frequency patterns of the fault 

signatures that are injected by bearing faults.  

 

The deconvolution algorithm has applications in the areas of image processing and 

communication channel equalization. A primary assumption of this algorithm is that the 

observed signal can be modeled successfully as a convolution of signals; its performance 
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relies heavily on the closeness of this assumption to the real situation. For stator 

current-based bearing fault detection, especially for generalized-roughness bearing faults 

detection, it has not been well established that the stator current can be correctly modeled 

as the convolution of bearing fault signal and other signals. For example, it has been 

observed that at an incipient stage, generalized-roughness bearing faults are likely to cause 

subtle broadband changes, such as changes in the position of the noise floor, in the sampled 

stator current signal primarily consisting of sinusoidal components. Such changes are 

difficult to model as convolution effects. Therefore, a deconvolution formulation faces 

difficulties in practice for stator current-based bearing fault detection, at least at the present 

time. 
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CHAPTER 4 
 

BEARING FAULT DETECTION VIA  
STATOR CURRENT NOISE CANCELLATION (SCNC) 

 

Since current monitoring offers significant economic savings and easy implementation, 

current monitoring is receiving more and more attention. Specifically, many studies show 

how single-point defects on bearings can be successfully detected via stator current. 

However, much work remains to be done on detecting generalized-roughness faults. The 

objective of this chapter is to introduce a new current monitoring technique that aims to 

detect generalized-roughness faults. 

 

It is well known that bearing fault signatures are significantly less prominent in the stator 

current than in machine vibration. Additionally, for generalized roughness faults, the 

characteristic fault frequencies may not appear in the stator current. For these reasons, the 

current-based method proposed in this chapter does not attempt to identify the specific 

fault frequencies. Instead, the proposed method treats the detection problem as a low 

signal-to-noise ratio (SNR) problem, where all components in the stator current that are not 

related to the fault are considered to be noise, while the components injected by the fault 

are considered to be the signal. According to this notion, the noise could be 104 times 

stronger than the signal (as tens of Amperes vs. mili-Amperes). For such a low SNR 

problem, a noise cancellation method is very useful. Therefore, in the proposed method, 

the noise components in the stator current are estimated by a Wiener filter and then 

cancelled by their estimates in a real-time fashion. A fault indicator is formed from the 

remaining components.  
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A theoretical analysis of the proposed method is presented in this chapter. It includes the 

noise cancellation concept, and the noise cancellation model for bearing fault detection, the 

design of the Wiener filter, and system performance analysis. Experimental verification of 

the proposed method is provided in the next two chapters. 

 

 

4.1 NOISE CANCELLATION AND BEARING FAULT DETECTION 

 

4.1.1 INTRODUCTION  

 

Noise cancellation is an attractive means to achieve large amounts of noise reduction in a 

small package, particularly at low frequencies. As mentioned in the previous chapter, noise 

cancellation has been applied to a wide variety of problems in manufacturing, industrial 

operations and consumer products.  

 

In the concept of noise cancellation, noise is defined as any kind of undesirable disturbance, 

whether it is borne by electrical, acoustic, vibration, or any other kind of medium. Noise 

cancellation algorithms usually involve a digital system that cancels the primary noise 

based on the principle of superposition; specifically, an estimated noise of equal amplitude 

and same (or opposite) phase is generated and subtracted from (or added to) the primary 

noise, thus resulting in the cancellation of both noises. Figure 4.1 shows a typical noise 

cancellation system. In this system, a corrupted observation that is recorded by the primary 

sensor includes a desired signal and unwanted noise. A secondary sensor is placed within 

the noise field. Then a digital signal processor generates an estimate of the primary noise 

from the noise (the reference signal) measured by the secondary sensor. After subtraction, 

the desired signal is recovered. Usually, the noise measured by the secondary sensor has the 

same source as the primary noise, or at least they should be correlated. 
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Figure 4.1 Noise cancellation model using a secondary sensor to measure the additive noise. 

 
To better illustrate the use of such a system, consider situations in air-to-air 

communications between pilots in fighter aircraft or in air-to-ground communications 

between a pilot and the control tower [37]. In such situations, engine and wind noise within 

the cockpit of the fighter aircraft usually conceal the pilot’s voice. However, if a secondary 

sensor (microphone) is placed within the cockpit, the noise that is transmitted when the 

pilot speaks into the microphone can be estimated. Subtracting this estimate from the 

transmitted signal significantly increases the signal-to-noise ratio.  

 

When the digital signal processor in Figure 4.1 is a Wiener filter, the coefficients of the 

filter  can be solved from the Wiener-Hopf equation [refer to Section 3.3.1]: w

212 vvv rwR =                                       (4.1)   

where is the autocorrelation matrix of the reference signal and is the vector of 

cross-correlation between the primary noise  and the reference signal .  

2vR )(2 nv
21vvr
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As can be seen from Equation (4.1), to compute the coefficients of the Wiener filter, neither 

the autocorrelation nor the frequencies of the primary noise is required. This makes noise 

cancellation preferable to notch filtering in many applications. For example, though noise 

having known frequencies can be filtered by notch filters, such filtering process could 

make the desired signal un-recoverable if the desired signal and the noise have components 

at the same frequencies. This is the case in the bearing fault detection problem, where the 
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eccentricity components in the stator current exist before and after the presence of a 

generalized-roughness fault and therefore, are desired to be removed to uncover the faulted 

bearing signal. However, it is possible that the changes in the current, caused by the bearing 

fault, may simply be an increase in the amplitude of the eccentricity components [11]. If 

notch filters are used to remove these components, the useful information about the bearing 

fault is lost. Therefore, in this case, noise cancellation should be employed instead of notch 

filtering. 

 
4.1.2 STATOR CURRENT NOISE CANCELLATION 
 
Though the application of noise cancellation in aircraft communications is straightforward, 

its application in current-based bearing condition monitoring is not obvious. However, the 

basic idea is similar. Dominant components in the stator current of a typical induction 

motor are supply fundamental and harmonics, eccentricity harmonics, slot harmonics, 

saturation harmonics, and other components from unknown sources, including 

environmental noises [20]. Since these dominant components exist before and after the 

presence of a bearing fault, a large body of the information they contain is not related to the 

fault. In this sense, they are basically noise for the bearing fault detection problem. From 

this notion, an interesting analogy between aircraft communication (human voice) and 

motor condition monitoring (fault signal) can be found as illustrated in Table 4.1. (Note: 

The noise here and hereafter refers to the components in stator current that are not related 

to bearing faults, unless where stated otherwise.) 

Table 4.1 Analogy between aircraft (human voice) and motor (fault signal) in signal detection. 

Aircraft Motor  
Source Level Source Level 

Signal Human voice 
from the pilot Low Fault signal 

from the bearing Low 

Propeller, 
Engine, 

Wind, etc. 
High 

Supply, 
Load, 

Misalignment, etc. 
High Noise 

Measurement Negligible Measurement Negligible 
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To uncover the bearing fault signal in the stator current, it is desirable to remove the noise 

components mentioned above. Ideally, a secondary sensor should be used to provide a 

reference signal (a stator current without a fault signal) that can be used to estimate these 

noise components. However, this has difficulties, since it is not practical to have an 

additional machine identical to the testing machine to provide the reference signal. Even if 

an identical machine is available, noise components can still be injected by other factors 

besides the machine structure, such as reassembling actions and misalignments. For these 

reasons, the model with a secondary sensor shown in Figure 4.1 cannot be applied in the 

bearing fault detection problem. Instead, a model without a reference signal, as shown in 

Figure 4.2, should be considered. In this model, the noise components are estimated from 

previous samples of the stator current, rather than from a reference signal. Note that at 

constant loads, the dominant noise components (sinusoidal) essentially do not change, 

either in magnitude or in frequency; therefore, they can be predicted by using the most 

recent samples of the stator current. 

Predictor

Delay

++

-

Stator Current

Noise Components

Fault 
Components

 
 

Figure 4.2 Noise cancellation model for bearing fault detection. 

 

For the current-based bearing fault detection in this research, a Wiener filter has been 

chosen, based on the survey performed in Chapter 3. By using a Wiener filter, the noise can 

be optimally estimated in the Least Mean Square sense and the frequency properties of the 

noise (i.e. consisting of the sinusoidal components) can be fully utilized. 

 

When the predictor is a Wiener filter, the model can be redrawn, as shown in Figure 4.3, 
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where 

x(n)  is the stator current; 

y(n)  is the remaining components in the stator current after noise cancellation;  

(n)d1

1

 is the noise components;  

Λ
(n)d1  is the estimated noise components;  

d(n)  is the fault signal;  

(n)v  is the measurement noise;  

Λ
(n)v1  is the estimated measurement noise; and 

0nz −  is a delay of  data samples.  0n

Wiener Filter

++

-

Stator Current

Noise Components

0nz −

W(z)

(n)vd(n)(n)dx(n) 11 ++= d(n)y(n) ≈

ΛΛ
(n)v(n)d 11 +

Remaining Components

 
 

Figure 4.3 Noise cancellation model with a Wiener filter as the predictor. 

 

From the model, it can be seen that if the Wiener filter W(z) has a good performance, i.e., 

 is close to , the remaining part of the stator current after noise 

cancellation will be the fault signal . Usually, the measurement noise  is negligible, 

given today’s advanced data acquisition techniques.  

ΛΛ
(n)v(n)d 11 + (n)v(n)d 11 +

d(n) (n)v1

 

Another interpretation of the above model is that the remaining components in this model 

are the prediction error of the Wiener filter [37]; when the bearing fault develops and the 
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condition of the system changes, the prediction error increases. This interpretation is 

illustrated in an equivalent model in Figure 4.4.  

x(n)  y(n)e(n) =

W(z)zH(z) n01 −−=
 

 
Figure 4.4 Interpretation of the noise cancellation method from prediction error filtering. 

 

 

4.2 WIENER FILTER DESIGN 

 

The Wiener filter should be designed such that (a) it can estimate most noise components in 

the stator current and (b) the fault signal should not be included in its output. Therefore, it is 

clear that the Wiener filter should be designed from pure noise data that does not include 

fault information. This can be achieved by designing the Weiner filter using the stator 

current data for a healthy bearing condition. Since all the components in the stator current 

at a healthy bearing condition are noise, no fault information is embedded into the 

coefficients of the Wiener filter. Therefore, when the fault develops, the Wiener filter 

predicts only the noise components and keeps the fault information intact during the noise 

canceling process. Consequently, the prediction error shown in Figure 4.4 gets larger when 

the system enters a bearing fault condition from a healthy bearing condition. 

 

The design system for the Wiener filter is shown in Figure 4.5. The stator current x(n)  does 

not contain the fault signal  in the system since it is for a healthy bearing condition. In 

practice, it usually takes a long time (typically months or years) before a bearing starts to 

fail, and it is justified to assume such healthy bearing condition is available. 

d(n)

 64



Wiener Filter

++

-

Stator Current

0nz −

W(z)

(n)v(n)dx(n) 11 +=
Prediction Error

g(n)x(n)e(n) −=

g(n)

Predicted Stator 
Current

 

Figure 4.5 Wiener filter design system. 
 

The objective of the design work is to minimize the prediction error in the mean-square 

sense. The coefficients of the Weiner filter are assigned by using the minimum 

mean-squared error (MMSE) method, which is formulated as follows. 

Solve for to minimize  ,...,p,w(k),k 10=
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where is expected value, is the delay of the input x(n) , are the 

coefficients of the Wiener filter, and is the order of the filter. 

{}⋅E 0n ,...,p,w(k),k 10=
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The coefficients are found by setting the partial derivatives of  with respect to equal 

to zero, as follows 
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Substituting )(
)(
)(

0 knnx
kw
ne

−−−=
∂
∂  into Equation (4.3) yields 

{ } 0)()( 0 =−− knnxneE ;   ,...,p,k 10=                                (4 .4) 

which is known as the orthogonality principle or the projection theorem. Substituting 

 into Equation (4.4) yields ∑
=
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p

j
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0
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or equivalently, 
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By assuming that the signal  is wide-sense stationary (WSS), then )(nx
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Equation (4.6) is simplified to 
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In matrix form, Equation (4.8) can be written as    
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or denoted by 

rwR =x .                                                                                                                               (4.10) 

The autocorrelation sequences in Equation (4.9) can be estimated by time averages when 

implementing this method. For finite data records, , )(nx 10 −≤≤ Nn , the autocorrelation 

sequences can be estimated by 

∑
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x knxnx

N
kr                                        (4 .11) 

The matrix R is a symmetric Toeplitz matrix and can be solved efficiently by the 

Levinson-Durbin Recursion algorithm [37]. 

x

 

4.3 SYSTEM PERFORMANCE 

 

If the noise cancellation model is viewed as a prediction error filter (PEF), as illustrated in 

Figure 4.4, then the system performance can be measured by the prediction error of the 
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filter. That is, to have good performance, the prediction error should be significantly larger 

for a faulted bearing condition than for a healthy bearing condition.  

 

In this section, the performance of the system is examined. First, a general equation 

describing the prediction error is given, and then specific equations for the system 

performance for a healthy-bearing condition and a bearing-fault condition are derived, 

respectively. Finally, observations are made based on the equations.  

 

By definition, a general equation for the mean-square prediction error of the system is 
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This is the same error as in Equation (4.2), which was minimized to find the coefficients of 

the Wiener filter. Upon expansion, the above equation can be rewritten as 
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4.3.1 SYSTEM PERFORMANCE FOR A HEALTHY-BEARING CONDITION 

 

Since the Wiener filter is designed to minimize the error in Equation (4.12) by using 

healthy bearing data, this prediction error is small for a healthy-bearing condition. In fact, 

for a healthy-bearing condition, since ,...,p,w(k),k 10= , are solutions to Equation (4.8), the 

second term of the right hand side (RHS) of Equation (4.13) is zero. Therefore, the 

prediction error for a healthy-bearing condition is 

∑
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At such a condition, since (n)v(n)dx(n) 11 += , therefore, it follows that 
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{ } { } { } { }k)(n(n)vvEk)(n(n)dvEk)(n(n)vdEk)(n(n)ddE +++++++= 11111111           (4.15) 
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Since  and  are jointly WSS, (4.15) becomes )(nd1 1

1111

1

11 1
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)()(2)()( krkrkrkr vvddx ++=                                              (4.16) 

Since the measurement noise is random, its power spectrum is distributed over a 

broad frequency range; its autocorrelation is pulse-like and its cross-correlations with other 

signals are zero. (The autocorrelation sequences of a signal are the inverse Fourier 

transform of its power spectrum by definition.) It follows from Equation (4.16) that 
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Substituting Equations (4.17) into Equation (4.14) yields 
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To further investigate the performance of the system, let the noise components (including 

the supply fundamental and harmonics, the eccentricity harmonics, the slot harmonics, etc.) 

be 

∑
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where , , mA mω mϕ , , are the amplitudes, the frequencies, and the angles of ,...,Mm 1=

M noise components in the stator current. It is desired to compute the autocorrelation 

sequences of the signal . By definition, )(nd1
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Equation (4.20) can be reduced by recognizing the following relationships: 
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Therefore, the autocorrelation sequences of the signal are simply )(1 nd
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(Equation (4.23) can also be derived from the inverse Fourier transform of the power 

spectrum of the signal , which is not shown here.)  )(nd1

 

Finally, substituting Equation (4.23) into Equation (4.18) yields the prediction error of the 

filter for a healthy-bearing condition as 
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4.3.2 SYSTEM PERFORMANCE FOR A FAULTY-BEARING CONDITION 

 

For a faulty bearing condition, the mean square prediction error can still be calculated from 

the general equation (4.13). For convenience, Equation (4.13) is repeated here as 
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However, different from the situation of a healthy-bearing condition, the second term on 

the right hand side of (4.25) for a faulty-bearing condition is not zero, because of the 

presence of the fault signal  in the stator current, which is d(n) (n)vd(n)(n)dx(n) 11 ++= . It 

follows that 
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Assuming ,  and  are jointly WSS, then Equation (4.26) becomes )(1 nd )(nd )(1 nv
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As for a healthy-bearing condition, assume now that the measurement noise is a 

broadband signal and not correlated with  and . It then follows that 
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Now, in addition to  as in the previous subsection, let the fault 

components be 
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where , , ,  are the amplitudes, the frequencies, and the angles of Q  fault 

components in the stator current injected by a bearing fault. The autocorrelation sequences 

of  can be calculated as in Equations (4.20)-(4.23). The result is 
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For , , , following the same steps as in Equations 

(4.20)-(4.23), the cross-correlation sequences between the noise components  and the 

fault components  become 
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Finally, combining equations (4.25)-(4.32), the prediction error for a faulty-bearing 

condition can be obtained as 
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(4.33) 

where ξ  is the prediction error for a healthy-bearing condition expressed in Equation 

(4.24).  

min

 

 

4.3.3 OBSERVATIONS 

 

The following several observations can be made based on Equation (4.33).  

(1) For a healthy-bearing condition, all ’s are zero, and Equation (4.33) is reduced to 

Equation (4.24), as expected.  

qB

(2) The prediction error increases as the bearing fault develops; the degree of the increase 

is related to the power of the fault signal. For this reason, the fault index is chosen to be 

the RMS value of the noise-cancelled stator current. 

(3) For generalized-roughness faults, the frequencies of the fault signal, ’s,  are difficult 

to locate and may spread out. Also, the magnitudes of the fault components, ’s, are 

small. These two facts make it difficult to detect a specific fault component. However, 

the method considers a collective effect of the fault components and thus facilitates the 

fault detection.  

qω

qB

(4) If the fault signal, , is a broadband signal, then it has the same effect as the 

broadband measurement noise . Since the power of the broadband signal remains 

)(nd

(n)v1
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in the prediction error (both for a healthy-bearing condition and for a faulty-bearing 

condition), the presence of the fault signal results in an increase of the prediction error. 

(5) If , there is a smaller increase in the prediction error, since the third term on the 

right hand side of Equation (4.33) is zero, while the second term is nonzero. This means 

that if the fault components and the noise components have common frequencies, (for 

example, when the bearing fault augments the dynamic eccentricity of the motor), the 

fault information is still conserved in the resulting predictor error.  

mq ωω =

 

 

4.4 SUMMARY 

 

In this chapter, a new current-based technique has been proposed to detect generalized 

roughness bearing faults. The technique decomposes the stator current into noise 

components and bearing fault related components. The noise components are estimated by 

using a Wiener filter and then are cancelled to uncover the bearing fault signal.  

 

The proposed noise cancellation method has been analyzed in detail from the signal 

processing theory. The analysis has shown that the bearing fault indicator developed can 

provide the information about bearing faults. To further validate the proposed method, 

several experiments have been done and they are presented in the next chapter.  
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CHAPTER 5 
 

SCNC BEARING FAULT DETECTION UNDER 

CONSTANT-LOAD CONDITIONS  
 

This chapter presents the experimental validation of the proposed method under 

constant-load conditions. In Section 5.1, experimental methods to generate bearing faults 

are discussed. In Section 5.2, a special experimental method used in this research, i.e. the 

shaft current method is described. In Section 5.3, the stator current noise cancellation 

results of several on-line experiments are presented. In Section 5.4, the noise cancellation 

results are compared to the results from the existing Mean Spectral Deviation method. In 

Section 5.5, the correlation between the noise cancellation results and vibration 

measurements is evaluated. In Section 5.6, the proposed noise cancellation method is 

applied to vibration measurements and the results are provided. A summary of this chapter 

is provided in Section 5.7.   

  

5.1 EXPERIMENTAL METHODS TO GENERATE BEARING FAULTS 

 

The life of a bearing can be affected by many factors, including load, speed, lubrication, 

clearance, temperature, misalignment, and steel compositions. Among these factors, the 

effect of the load on the lifetime of the bearing is the most fundamental, and research shows 

that bearing life is inversely proportional to the load cubed [2]. When a bearing fails, it 

causes extreme vibration, leading to catastrophic damage to the whole process in a plant. 

 

Despite many ways in which a bearing could fail in real life, experimental methods to 

generate bearing faults play an important role in the bearing fault study. This is because the 
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expected lifetime of a typical bearing in industry is several years. Therefore, experimental 

methods are required to accelerate the bearing failure process for research purposes. It is 

also desired that the entire lifecycle of a bearing should be documented, studied, and used 

to test various condition monitoring schemes in a reasonable timeframe achieved via 

experimental methods.  

 

Bearing faults can be generated off-line, as in most experimental methods reported in the 

literature. For example, bearing faults can be generated by drilling a hole in the bearing, 

scratching the bearing with diamonds or rotary tools, or by electric discharge machining 

(EDM). These faults can be located on any of the four parts of a bearing: the inner raceway, 

the outer raceway, the balls, and the cage. After a fault is introduced off-line, the bearing is 

then placed back in an electric machine. Though it is very convenient and time saving to 

generate bearing faults off-line, it has the following two major drawbacks. 

a)  Though such faults exist in real life, they can not represent most realistic faults. Most 

realistic bearing faults, especially at early stages, are generalized-roughness faults and 

often do not produce the characteristic fault frequencies. However, the faults generated 

off-line are single-point defects and produce the characteristic fault frequencies.  

b)  The act of disassembling, reassembling, remounting, and realigning the test machine, in 

itself causes significant additional changes to the spectrum of the stator current. This 

can potentially conceal fault signatures or contribute to misleading results [35].  

 

Therefore, experimental methods to generate bearing faults on-line (in situ) are required. 

The faults generated on-line should have similar mode as realistic faults; that is, the faults 

are due to metal fatigue and are developed over time. It is also desirable to have 

information about the different development stages of the faults. The incipient stage of a 

fault is especially of interest, because bearings with incipient faults should be replaced as 

soon as possible (after all, bearings are cheap). By predicting a fault at an early stage, 
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potential catastrophic damage can be avoided.  

 

 An experimental method to generate bearing faults was proposed in [35]. This method 

utilizes shaft current to accelerate the bearing failure process. Experiments have shown that 

this method is successful to fail bearings in a reasonable time, and the resulting faults are 

generalized-roughness faults. Therefore, this method is employed in this research to 

generate bearing faults. It is described in detail in Section 5.2.  

 

There is another method in the literature to generate generalized-roughness faults. It uses 

material from the floor of a machine shop to contaminate bearings [11]. The resulting faults 

are more representative of general bearing failures than machined faults. The study does 

not describe if the faults were generated on-line. However, it seems unlikely that the 

bearing could be contaminated without disassembling the machine even with a special test 

rig like the one used in that study. Also, the test bearing is at the non-drive end of the 

machine, while in practice the drive end bearings are more likely to fail because of stronger 

impact from load. Another disadvantage of this method is that the contamination cannot be 

quantified. 

 

 

5.2 SHAFT CURRENT EXPERIMENTAL SETUP 

 

Bearings can be damaged by shaft currents. For example, shaft currents cause electric 

discharge machining (EDM) inside a bearing when a film of lubricant is formed around the 

rotating bearing. The film of lubricant can be viewed as a capacitor, and if the voltage 

across it exceeds the dielectric strength of the grease, EDM current flows and pits are 

created on the bearing surfaces. The EDM current also generates heat inside the bearing 

which damages the lubricant and the bearing. For technical details on the mechanisms by 
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which shaft currents cause bearing failures, the reader is referred to [35] and other related 

materials. 

 

A great deal of research has been performed to minimize shaft currents and prolong bearing 

life. However, the effects that shaft currents have on bearing life have been utilized in [35] 

to accelerate the bearing failure process for the bearing fault study. Successful experiments 

have been done on a 5-hp induction motor by using the shaft current method (shown in 

Figure 5.1) proposed in [35]. It was shown that by this method bearings can be failed 

within several days. Therefore, the experimental method and the experimental setup in this 

research are based on the work in [35]. However, two changes are made, as illustrated in 

Figure 5.2:  

a) A 20-hp induction motor is now employed as the test machine. For this larger machine, 

more time is required to fail the bearings. Also the experiments show that bearing faults 

in the larger machine are more difficult to detect via current monitoring. This may be 

because, for larger machines, the bearing-to-machine size ratio is smaller and thus 

bearing fault signatures are less prominent. Random noises due to loads may be also 

larger for larger machines.  

b) An isolation transformer is added in the shaft current circuit to prevent the shaft current 

from entering the measurement circuit. An accelerometer is attached to the motor frame 

and its transducer power module is supplied from the utility. Therefore, if the isolation 

transformer is not included, a branch of the shaft current could be formed through the 

vibration transducer path due to the same utility ground of the transducer voltage and 

the shaft voltage. This branch of the shaft current may interfere and even corrupt 

measured signals. The setup used in [35] with no isolation is shown in Figure 5.1; the 

improved setup used in this research with an isolation transformer added is shown in 

Figure 5.2. In both figures, the paths of the shaft current are marked with bold lines. 
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Figure 5.1 Schematic diagram for the shaft current experimental setup without an isolator. 

 

The test machine is a 20 hp, 230 V, three phase, four pole, General Electric induction motor 

(model number 5KE256BC205B). This motor is supplied directly from the 230 V, three 

phase utility power. For convenience and availability, the shaft voltage is also taken from 

the utility power, and a variable autotransformer and an isolation transformer are employed 

to provide adjustability and isolation, respectively. The shaft current flows from the voltage 

source to the motor via a carbon brush. A 1 Ω, 200 W ballast resistor is placed in series with 

the voltage source to limit the shaft current. An aluminum disk is mounted on the shaft to 

provide a smooth contact surface for the brush. The part number for the test bearing 

(shaft-end) is SKF 6309 2Z or Koyo 6309 ZZ, and the part number for the rear bearing is 

SKF 6307 2Z. Since the rear bearing is electrically insulated from the stator, the shaft 

current is forced to flow from the shaft through the test bearing to reach the stator frame.  

 

The adjustable load for the motor is provided by a dynamometer that is connected to the 

motor shaft via an electrically insulated Lovejoy coupling. The dynamometer is a 10 hp 

Westinghouse dc generator that supplies power to a resistor bank. The dynamometer is 

equipped with a speed sensor to record the operating speed. A photograph of the actual 
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setup is provided in Figure 5.3.  

Figure 5.2 Schematic diagram for the improved shaft current experimental setup 

with an isolation transformer included. 
 

 

Accelerometer 

Resistor Bank 

Isolation 

Transformer 

Dynamometer
Shaft Current Circuit

Test Motor 

Autotransformer 

 
Figure 5.3 A Photograph of the shaft current experimental setup. 
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Three sensors are used to collect all the data as illustrated in Figure 5.4. One phase of stator 

current and the shaft current are each measured with Tektronix A6303 current probes and 

AM503 current probe amplifiers. A Wilcoxon model-P704B accelerometer (100mV/G) is 

mounted on the stator housing directly above the test bearing. The resonant frequency of 

the accelerometer is approximately 25 kHz. To implement current monitoring in practice, 

none of the above sensors would be needed, since a successful current monitoring scheme 

by itself could detect bearing faults and the stator current signal is readily available in the 

motor protection system. All measurements are collected by a National Instruments 

SCXI-1000 chassis. This chassis contains an SCXI-1141 programmable cutoff frequency, 

8th order elliptical anti-aliasing analog filter and an SCXI-1305 BNC connector block. Data 

from this chassis is then captured by a National Instruments (NI) PCI-6251M, 16-bit data 

acquisition card. This data is then acquired by LabView 7.1, which is running on a 1.7 GHz 

Pentium 4 computer with Windows Xp professional. All data is sampled at 6 kHz, and the 

cutoff frequency for the programmable anti-aliasing filter is automatically set by internal 

NI program, and is about 2 kHz. Since the working range of the PCI-6251M is set to ±5 V, 

an analog notch filter and several amplifying circuits are employed, as shown in Figure 5.4, 

to best utilize the dynamic range of this data acquisition system. The notch frequency of the 

analog notch filter is 60 Hz. The amplifying circuits were designed (by previous 

researchers) such that the output of each sensor is approximately ±5 V when the sensor is 

reading its maximum expected value. For the vibration measurement, since useful 

information also exists in high frequencies beyond the cutoff frequency of the anti-aliasing 

filter, an additional circuit is provided to compute the RMS value of the vibration sensor 

over its entire working frequency response ranges. The details about the preprocessing 

circuits are available in [38]. 
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Figure 5.4 Instrumentation setup used for all data acquisition in the shaft current experiment. 

 
The amount of time taken for a bearing to fail, by using this method, is variable and 

depends mainly on the shaft current level and the amount of grease in the bearing. The load 

and the environmental temperature also affect the bearing lifetime, to a lesser degree. The 

shaft current is adjusted between 6 A and 15 A (in RMS) in the experiments performed in 

this research. To control the amount of grease inside a bearing, the bearing is first soaked in 

a degreasing solution to remove all of the grease; then the bearing is repacked with a small 

amount of the original grease. Usually an amount of about 5% of the original grease is 

repacked. Then the bearing is placed in the motor, and an experiment starts. The 

experiment should be run continuously if possible, to minimize the amount of time it will 

take to fail the bearing. 

 

5.3 EXPERIMENTAL RESULTS 

 

Several tests have been done to evaluate the proposed bearing condition monitoring 
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scheme under constant-load conditions. For each test, a new bearing is cleaned and 

repacked with smaller amount of grease, before installing it into the test motor. After a few 

hours of steady operation, the machine reaches thermal steady state, and then the data 

acquisition process starts. (In real life, a run-in period should be considered when taking 

data for monitoring purposes.) The sampling frequency is 6 kHz. Every 15 minutes a 10 

second window of data is sampled and stored in a new file each time. The data in the first 

file is used as the baseline data for the test. Since it usually takes several days for the 

bearing to fail, it is justified that the baseline data can be tagged as a healthy bearing 

condition. The coefficients of the Wiener filter are solved from the baseline data and are 

stored. Then the Wiener filter estimates the noise components in the real-time data from the 

recent data samples. Finally the estimated noise components are subtracted from the 

real-time data, and the RMS value of the resulting (noise-cancelled) data is calculated. The 

schematic diagram of this process is shown in Figure 5.5.  

    
 

Figure 5.5 Schematic diagram of the bearing condition monitoring via stator current noise 
cancellation. 

 

For each of the following tests, the length of the Wiener filter is chosen as 100 data samples, 

i.e., its order is 99 data samples. The delay of its input is one data sample. Therefore, for a 6 

kHz sampling frequency, one cycle (of 60 Hz signal) of previous data samples is used to 

predict the next data sample. Different values of the length of the Wiener filter have also 
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been tried, including 200 data samples and 50 data samples, however, no significant 

differences have been found on the experimental results. Trials with different input delays 

yielded no significant differences either. 

 

For the following tests, several vibration-based fault indices are calculated. They include 

the RMS value of the vibration acceleration from 0 to 1 kHz, the RMS value of the 

vibration velocity from 10 Hz to 1 kHz (the ISO 10816 measurement, see Section 2.3.1), 

and the RMS value of the vibration velocity from 1 kHz to 3 kHz. These indices are used to 

approximate the actual bearing health according to the ISO 10816 standard. The RMS 

value of vibration velocity from 1 kHz to 3 kHz is calculated, since a higher signal-to-noise 

ratio is expected in this range than the range from 10 Hz to 1 kHz especially when the fault 

is at its early stage. This is similar to the envelope method in Section 2.3.2 which tries to 

extract the characteristic fault frequencies in high-frequency regions.  

 

Since only the vibration acceleration measurement is available in each test, the following 

formulas are used to calculate the vibration velocities from the vibration acceleration [12]. 
22 23
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where  are the RMS value acceleration values in meters per square second, 

 are frequencies in hertz,  is the associated RMS velocity in millimeters per 

second.  
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5.3.1 CONSTANT LOAD EXPERIMENT 1 (50% LOAD TEST) 

 

Results from the 50% load test are shown in Figure 5.6.  The top plot in this figure shows 

the RMS value of the noise-cancelled stator current minus the baseline value; the middle 
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shows the RMS value of the vibration acceleration; and the bottom plot shows the RMS 

value of the vibration velocities.    

 

From Figure 5.6, one can see that both the noise-cancelled stator current RMS and the 

vibration RMS increase as the fault develops, though the increase is accompanied by 

several occasional decreases or dips. This is typical to all experiments performed in this 

research and other research as well [38]. Specifically, according to the vibration velocity 

from 1 kHz to 3 kHz, the incipient fault builds up between the 30th and the 55th hour.  

During this same time period, the noise cancellation method increases. From the 60th hour 

to the end of the experiment, both the noise-cancelled current RMS and the vibration RMS 

remain at relatively high levels due to the bearing fault developed. Also from Figure 5.6, 

one can see that the ISO 10816 metric (the RMS of the vibration velocity from 10 Hz – 1 

kHz) can be used to monitor the bearing health, as expected. It seems, however, that in this 

experiment and others done by the author that acceleration and velocity above 1 kHz are 

more sensitive to incipient bearing faults. This verifies that in many situations the fault 

signatures from incipient bearing faults are more salient in high frequencies [2, 14, and 18]. 

The linear correlation between the noise-cancelled stator current and the vibration 

acceleration is 0.69 (see Section 5.5 for details about the correlation between machine 

vibration and the noise-cancelled stator current). 
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Figure 5.6 Results for bearing type-6309 at a 50% load level. (top) The RMS value of the 
noise-cancelled stator current increases as the fault develops. (middle and bottom) The RMS 
values of the vibration acceleration and the vibration velocities also increase as the fault develops. 

 
 
 
5.3.2 CONSTANT LOAD EXPERIMENT 2 (33% LOAD TEST) 

 

The results from the 33% load test are shown in Figure 5.7. As in Figure 5.6, the top plot 

shows the RMS value of the noise-cancelled stator current minus the baseline value; the 

middle and the bottom plots show the RMS of the vibration acceleration and the vibration 

velocities, respectively.    
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Figure 5.7 Results for bearing type-6309 at a 33% load level. (top) The RMS value of the 
noise-cancelled stator current indicates the presence of the incipient bearing fault. (middle and 
bottom) The RMS values of the vibration acceleration and the vibration velocities indicate the 
presence of the incipient bearing fault. 

 

Figure 5.7   shows an abnormal peak in the top plot at the second data point (i.e., at the end 

of the first half hour).  It is probable that this abnormality is due to bad data, since the points 

around it are still at a low level. With exception of this point, generally speaking, the noise 

cancellation curve (the top plot) mainly follows the vibration curves (the middle and the 

bottom plots). From the 25th to the 35th hour, the incipient fault builds up which can be seen 

from the 1k-3k Hz vibration velocity curve. Correspondingly, there is a substantial increase 

in the noise-cancelled current RMS during this time period. From the 40th hour to the end of 
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the experiment, the RMS value of both the vibration and the noise-cancelled current 

become unstable because of the deteriorated bearing condition. The bearing emits 

screeching sounds after 40 hours of operation; and the sound level increases until the 

experiment is ceased during the 50th hour. The linear correlation between the 

noise-cancelled stator current and the vibration acceleration is 0.5. 

 
 
5.3.3 CONSTANT LOAD EXPERIMENT 3 (20% LOAD TEST) 

 

The results from the 20% load test are shown in Figure 5.8. As in the previous figure, the 

top plot illustrates the RMS value of the noise-cancelled stator current; the middle and the 

bottom plots illustrate the RMS value of the vibration acceleration and the vibration 

velocity, respectively. 

 

As seen from Figure 5.8, the RMS of the noise-cancelled stator current is at a relative high 

level from the 20th hour to the end of the experiment than the baseline level from the start to 

the 20th hour. Comparatively, from the 20th hour, the vibration becomes unstable due to the 

developing bearing fault. Again, as in the previous experiment, the bearing condition is 

reflected in changes in the RMS of both the machine vibration and the noise-cancelled 

stator current.  
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Figure 5.8 Results for bearing type-6309 at a 20% load level. The RMS of the noise-cancelled stator 
current and the vibration becomes unstable because of degraded bearing condition. 
 
 
 
5.3.4 CONSTANT LOAD EXPERIMENT 4 (2% LOAD TEST) 
 

The results for this near no-load experiment are shown in Figure 5.9. The top plot shows 

the RMS value of the noise-cancelled stator current minus the baseline value; the middle 

and the bottom plots illustrate the RMS value of the vibration acceleration of 0-1 kHz and 

the entire range (0-Infinite Hz), respectively. 
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As in the previous tests, there is variation in both the RMS of the noise-cancelled stator 

current and the RMS of the vibration as a result of the developing bearing fault. 

Specifically, the increases in those curves are accompanied by decreases in the fashion of 

increase-decrease-increase. For example, the machine vibration increases almost twice 

from the starting level around the 5th hour and remains at this level for 8 hours, and then it 

decreases back to the starting level. During the time, except the increase around the 5th hour, 

the noise-cancelled stator current remains at a relatively low level. Around the 25th hour, 

both the noise-cancelled stator current and the vibration increase again, After 30 hours’ 

operation, a strange sound was emitted from the bearing and the machine was stopped. It is 

noted that in this experiment the shaft current is about 15 A, in the contrast to the level of 

6-10 A in the previous experiments; consequently, it took only 5 hours for the machine 

vibration to increase substantially.     
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Figure 5.9 Results for bearing type-6309 at a 2% load level. Variation in both the stator current and 
vibration measurements is observed as a result of the degraded bearing condition.   
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5.3.5 CONSTANT LOAD EXPERIMENT 5 (10% LOAD TEST) 
 
The results for this experiment are shown in Figure 5.10. This figure shows that the 

noise-cancelled stator current is closely correlated to the machine vibration in the sense of 

reaching peaks at the same time. Two peaks on the vibration curves around the 5th hour and 

the 8th hour, respectively, correspond to those on the current curve, indicating a degraded 

bearing health. Nearing the end of this experiment, a loud noise was emitted from the 

machine, which confirmed a degraded bearing condition because of the applied shaft 

current at about 15 A.  
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Figure 5.10 Results for bearing type-6309 at a 10% load level. The noise-cancelled stator current and 
the machine vibration change in a similar fashion as the fault develops. 
 
 
5.3.6 CONSTANT LOAD EXPERIMENT 6 (15% LOAD TEST) 
 
The results for this experiment are shown in Figure 5.11. As in the previous experiments, 
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the vibration increases during the experiment because of the degraded bearing condition, 

while the increase is accompanied by the dip around the 10th hour. The noise-cancelled 

stator current is correlated to the vibration and the linear correlation is 0.43. The 

experiment was stopped after one day’s operation when a strange sound was emitted from 

the bearing.  
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Figure 5.11 Results for bearing type-6309 at a 15% load level. The noise-cancelled stator current and 
the vibration increase as the fault develops.  
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5.4 COMPARISONS OF THE SCNC METHOD AND THE MSD METHOD 

 

The Mean Spectral Deviation (MSD) method is the only algorithm available in the 

literature that was designed to detect generalized-roughness bearing faults via stator 

current (see Section 2.3 for details). Therefore, it will be interesting to compare the 

proposed Stator Current Noise Cancellation (SCNC) method to the MSD method. 

 

First, it is noted that both methods are able to remove those dominant components in the 

stator current that are not related to bearing faults. In other words, the noise cancellation 

effects are significant in both methods, as shown in Figure 5.12. From the figure, it can be 

seen that the RMS curve of the stator current without noise cancellation (top plot) doesn’t 

contain any bearing fault information, while the SCNC results (2nd plot) and the MSD 

results (3rd plot) contain valuable information about the fault. It can be clearly seen that 

there is no correlation between the stator current without noise cancellation and the 

machine vibration (bottom plot). The results shown in the figure are typical to all 

experiments performed in this research. 

 

Secondly, it is noted that the two methods remove those dominant components in the stator 

current in quite different ways. In the MSD algorithm, the supply harmonics, eccentricity 

harmonics, and slot harmonics, etc. are filtered out from the sampled stator current by 

using traditional FIR/IIR digital filters. The spectral deviation of the remaining 

components is treated as the fault indicator. In the signal-noise point of view, the noise 

components are explicitly defined and then removed via the notch filtering operation. In 

the SCNC method developed in this research, the noise components in the stator current are 

estimated via a Wiener filter and are then removed via the noise cancellation technology. 

The RMS of the noise-cancelled stator current is the fault indicator.  
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Figure5.12 Illustration of the noise cancellation effects by the noise cancellation method and results of 
the MSD method. 

 

Thirdly, it is noted that the noise cancellation approach in the SCNC method is preferable 

to the notch filtering approach in the MSD method, because  

1) In the noise cancellation approach, the frequencies of the noise components are not 

required, while in the notch filtering approach the frequencies of the noise components 

need to be calculated (from those equations as listed in Section 2.3). Further, the 

accuracy of the calculation is dependant upon the accuracy in rotor speed estimation 

and availability of machine parameters;  
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2) Unlike the noise cancellation process, the notch filtering operation can’t separate a 

signal and noise having the same frequencies; this may be a problem of the MSD 

method, since the filtered components by the MSD method may actually contain 

bearing fault signatures [11]; and 

3) The MSD method involves complicated calculations to obtain the fault indicator (i.e. 

computing the spectral deviation after notch filtering), while in the SCNC method only 

the RMS of the signal needs to be calculated once the noise components are removed. 

Because of these reasons, the SCNC method outperforms the MSD method in many cases, 

as illustrated in Figure 5.13. It can be seen that the SCNC results contain useful information 

about the bearing health, while the MSD method failed in this test.   
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Figure 5.13 The noise cancellation algorithm outperforms the MSD algorithm in some cases as verified 

by a real test on a 20-hp induction motor experiment at a 33% load. 
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Lastly, it is noted that the MSD algorithm should provide similar results as the SCNC 

method if the noise components can be completely removed by notch filters while not 

affecting fault-related components. This is because the integration of the power spectrum 

of a signal, i.e. the fault indicator of the MSD method, is equal to the square of the RMS of 

that signal, i.e. the fault indicator of the SCNC method, according to Parseval’s theorem 

which is stated by the following equations [47]: 

1 1
2

2
0 0

1 1[ ] [ ]
N N

n k

2x n X
N N

− −

= =

=∑ ∑ k                                      (5.2) 

where [ ]X k  is the discrete Fourier transform of the signal [ ]x n  of length . This is 

verified by experiment results, as shown in Figure 5.12 above and Figure 5.14 below. 
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Figure 5.14 Results from the MSD method and the SCNC method applied to the same data collected 

from a 20 hp motor at 20% load. 
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5.5 CORRELATION BETWEEN STATOR CURRENT NOISE CANCELLATION 

RESULTS AND VIBRATION MEASUREMENTS 

 

Vibration monitoring has been proved a reliable means for bearing fault detection. 

Therefore, it is of interest to evaluate the correlation between the SCNC results and 

vibration measurements. Typically, vibration measurements at different frequency bands 

have different sensitivities to bearing faults. For example, vibration in high-frequency 

ranges, especially around the mechanical resonance frequency, may be more sensitive to 

incipient bearing faults. Consequently, the correlation between SCNC results and vibration 

measurements of different frequency ranges may be different. In this research, the 

correlation between the noise cancelled stator current and the machine vibration over 

different frequency ranges (0-1kHz, 1kHz - 2kHz, 2kHz - 3kHz, 0-3kHz and 0-infinite Hz) 

is calculated.  

 

Table 5.1 shows the correlation between the noise-cancelled stator current and the vibration 

measurements for the experiments performed in this research, including those under 

constant-load conditions and variable-load conditions. The details of the variable-load 

experiments are provided in the next chapter.  

 

The p-Values for testing the hypothesis of no correlation are also given in Table 5.2. Each 

p-Value is the probability of getting a correlation as large as the observed value in Table 5.1 

by random chance, when the true correlation is zero. Usually, if the p-Value is less than 

0.05, then the correlation is significant [66]. The smaller the p-Value is, the higher the 

confidence in the correlation.  
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Table 5.1 The correlation coefficients between the RMS of the noise-cancelled stator current and the 
RMS of the vibration acceleration (The cells with coefficient larger than 0.4 are shadowed) 

Vibration acceleration 
No. # Noise-cancelled state current 

0-1kHz 1k-2kHz 2k-3kHz 0-3kHz 0-inf Hz 

1 1 0.69 0.64 0.68 0.68  0.66 

2 2 0.48 0.47 0.53 0.53   0.58 

3 3 0.34 0.46 0.44 0.45  0.42 

4 4 0.22 0.16 0.17 0.19 0.21 

5 5 0.55 0.41 0.53 0.53 0.53 

6 

Constant Load 
Experiment # 

6 0.08 0.08 0.41 0.39 0.43 

7 Exp. 1 Load 1 0.77 -0.31 0.53 0.28 0.72 

8 Exp. 1 Load 2 0.25 0.27 0.28 0.28 0.28 

9 Exp. 2 Load 1 0.39 0.83 0.86 0.85 0.86 

10 Exp. 2 Load 2 0.46 0.43 0.32 0.34 0.36 

11 

Variable Load 
Experiment # 

Exp. 2 Load 3 0.72 0.79 0.60 0.64 0.66 

 
Table 5.2 The p-Value between the rms of the noise-cancelled stator current and the rms of the 
vibration acceleration 

Vibration acceleration 
No. # Noise-cancelled state current 

0-1kHz 1k-2kHz 2k-3kHz 0-3kHz 0-inf Hz 

1 1 4.7E-52 3.6E-42 2.4E-49 4.8E-49 2.7E-45

2 2 6.6E-13 1.8E-12 5.6E-16 2.0E-16 2.2E-19

3 3 2.5E-08 6.9E-15 9.1E-14 6.3E-14 2.8E-12

4 4 1.0E-02 6.4E-02 5.6E-02 2.7E-02 1.5E-02

5 5 6.8E-05 4.4E-03 1.2E-04 1.2E-04 1.4E-04

6 

Constant Load 
Experiment # 

6 6.0E-01 5.8E-01 3.2E-03 5.0E-03 1.9E-03

7 Exp. 1 Load 1 3.5E-20 2.3E-03 3.5E-08 6.2E-03 1.0E-16

8 Exp. 1 Load 2 3.4E-03 1.3E-03 8.7E-04 7.9E-04 9.8E-04

9 Exp. 2 Load 1 5.4E-03 7.5E-14 5.6E-16 4.1E-15 1.3E-15

10 Exp. 2 Load 2 5.3E-04 1.3E-03 1.7E-02 1.2E-02 6.8E-03

11 

Variable Load 
Experiment # 

Exp. 2 Load 3 3.4E-08 1.9E-10 1.7E-05 3.4E-06 1.3E-06
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From these results, it is clear that the correlation of the noise-cancelled stator current and 

the machine vibration is significant and almost all p-Value’s are much smaller than 0.05. 

The highest correlation coefficient is 0.86; and in  9 out of the 11 tests listed in Table 5.1, 

the correlation coefficient is greater than 0.43. Also, in 4 out of the 11 tests, the correlation 

is greater than 0.69, and in 6 out of the 11 tests, the correlation greater than 0.55.  

 

Comments about those correlation coefficients: 

The following equation is used to calculate the correlation coefficients in Table 5.1  

1

2 2

1 1

( )( )

( ) ( )

n

i i
i

xy n n

i i
i i

x x y y
r

x x y y

=

= =

− −
=

− −

∑

∑ ∑
                                      (5.3) 

where  is the correlation coefficient of the variable X and Y, xyr x  and y  are the mean of X 

and Y, ix  and  are samples of X and Y. Specifically, the variable X is the RMS value of 

noise-cancelled stator current and Y is the RMS of the vibration measurement over one of 

the frequency ranges.   

iy

 

It is noted that the correlation coefficient calculated as above only measures the goodness 

of fitting the data to the model Y = a + bX, where a and b are the parameters to minimize 

the fitting error. In other words, the square of the above correlation coefficient is the 

coefficient of determination for this first-order linear polynomial model [67], i.e., 
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                                              (5.4) 

The correlation coefficient from Equation (5.3) may not be able to fully describe the 

relationship between the variables X and Y for practical problems. For example, suppose X 

is uniformly distributed on the interval from -1 to 1 and 2Y X= . Then Y is completely 

determined by X, but the correlation coefficient according to Equation (5.3) is zero.  
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Since the bearing-machine system is a complex system, both electrically and mechanically, 

the above model may not be able to fully describe the relationship between the 

noise-cancelled stator current and the vibration measurements. For example, Table 5.3 and 

Table 5.4 show the correlation coefficients (or the square root of the coefficient of 

determination of the fit) obtained based on third-order polynomial and nine-order 

polynomial fits, as described by the following expressions, respectively 

2
0 1 2 3Y a a x a x a x= + + + 3                                             (5.5) 

9

0
1

i
i

i
Y a a x

=

= +∑                                                        (5.6) 

It can be seen that the coefficients in Table 5.4 are larger than those in Table 5.3 and that the 

coefficient in both tables are larger than those in Table 5.1. Specifically, in 8 of the 11 tests, 

the correlation coefficient is equal to or larger than 0.7, and in 2 tests of the 11 tests, the 

correlation coefficient is close to 1.0, based on the nine-order polynomial fit according to 

Table 5.4. It is possible to obtain higher correlation coefficients by increasing the order of 

the polynomial or by using other models. The results here as shown in Tables 5.1 – 5.4 

demonstrate that the noise-cancelled stator current is closely correlated to the machine 

vibration, but not limited to the first-order linearity. This provides a sound basis for bearing 

fault detection via the noise-cancelled stator current alone.  

 

The relationship can also be explained by the following equation from Ampere’s Law  

R NIΦ =  and gR
Aµ

=                                           (5.7) 

where Φ  is the flux, R is the reluctance of the magnetic path, N is the stator winding turns, 

I is the stator current, g is the air gap length, µ  is the permeability, and A is the 

cross-section area. Anomalies in the air gap (g) caused by a degraded bearing condition 

produce radial magnetic force and increase the machine vibration; such anomalies also 

affect the (noise-cancelled) stator current according to Equation (5.7) [68-70].   
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Table 5.3 The correlation coefficients between the RMS of the noise-cancelled stator current and the 
RMS of the vibration acceleration (based on a third-order polynomial fit) 

Vibration acceleration 
No. # Noise-cancelled state current 

0-1kHz 1k-2kHz 2k-3kHz 0-3kHz 0-inf Hz 

1 1 0.71 0.71 0.71 0.71 0.72 

2 2 0.57 0.61 0.63 0.63 0.66 

3 3 0.55 0.64 0.62 0.61 0.63 

4 4 0.28 0.23 0.33 0.33 0.35 

5 5 0.53 0.71 0.48 0.53 0.53 

6 

Constant Load 
Experiment # 

6 0.48 0.37 0.45 0.42 0.46 

7 Exp. 1 Load 1 0.82 0.67 0.64 0.52 0.79 

8 Exp. 1 Load 2 0.37 0.38 0.34 0.37 0.36 

9 Exp. 2 Load 1 0.90 0.96 0.98 0.98 0.98 

10 Exp. 2 Load 2 0.85 0.89 0.78 0.79 0.82 

11 

Variable Load 
Experiment # 

Exp. 2 Load 3 0.73 0.85 0.71 0.74 0.75 

 
Table 5.4 The correlation coefficients between the RMS of the noise-cancelled stator current and the 
RMS of the vibration acceleration (based on a nine-order polynomial fit)  

Vibration acceleration 
No. # Noise-cancelled state current 

0-1kHz 1k-2kHz 2k-3kHz 0-3kHz 0-inf Hz 

1 1 0.74 0.74 0.77 0.76  0.75 

2 2 0.66 0.67 0.70 0.68  0.71 

3 3 0.57 0.69 0.66 0.66 0.67 

4 4 0.44 0.35 0.44 0.40 0.40 

5 5 0.70 0.78 0.70 0.71 0.71 

6 

Constant Load 
Experiment # 

6 0.55 0.53 0.53 0.59 0.54 

7 Exp. 1 Load 1 0.84 0.76 0.65 0.54 0.79 

8 Exp. 1 Load 2 0.40 0.46 0.57 0.51 0.51 

9 Exp. 2 Load 1 0.93 0.98 1.00 0.99 0.99 

10 Exp. 2 Load 2 0.92 0.98 0.93 0.94 0.95 

11 

Variable Load 
Experiment # 

Exp. 2 Load 3 0.81 0.89 0.75 0.79 0.79 
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5.6 APPLYING THE NOISE CANCELLATION ALGORITHM TO VIBRATION 

SIGNAL  

 

It is interesting to note that the proposed noise cancellation algorithm can also be applied to 

vibration measurements. Similar to the case for stator current, bearing fault-related 

components in vibration remain in the system output and the majority of non-fault-related 

components is removed during the noise cancellation process. This can be clearly seen in 

both Figure 5.15 and Figure 5.16. For example, in the beginning of the two tests, the RMS 

of the noise-cancelled vibration is around 0.02G (top plot in each figure) and the RMS of 

the original vibration around 0.06G (bottom plot in each figure). Therefore, nearly 2/3 of 

this 0.06G has been removed during the noise cancellation process.  
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Figure 5.15 Results attained by applying the noise cancellation algorithm to the machine vibration in 

Experiment - 1  
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It is also clear that the trend of the vibration measurement doesn’t change after the noise 

cancellation process. Since the change (the trend) in the vibration measurements is directly 

related to the development of the bearing fault in the tests, this indicates that bearing 

fault-related components are not affected by the noise cancellation process. The results 

here are typical to all experiments performed in this research.  
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Figure 5.16 Results attained by applying the noise cancellation algorithm to the machine vibration in 

experiment 2 
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5.7 SUMMARY  

 

In this chapter, the need of on-line generating bearing faults was discussed and the 

experimental setup used in this research to generate in situ bearing faults was described.  

By using the setup, several on-line experiments under constant-load conditions have been 

performed. The results attained by applying the proposed noise cancellation method to 

those experiments were presented. These results have confirmed the effectiveness of the 

proposed noise cancellation method in bearing fault detection. Further more, the 

performance of the proposed method was compared to the existing MSD method; 

theoretical analysis has shown that the noise cancellation method is preferable if the noise 

components and the fault-related components have similar frequencies. It was also shown 

that the noise-cancelled stator current is closely correlated to the vibration measurements. 

Finally, it is of special interest to note that the proposed method is applicable to processing 

vibration measurements and that bearing fault-related components are not affected by the 

noise cancellation process, as verified by experiment results.  
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CHAPTER 6 
 

SCNC BEARING FAULT DETECTION UNDER 

VARIABLE-LOAD CONDITIONS 
 

This chapter is broken into six sections as follows: Section 6.1, which discusses the effects 

of load on the stator current and the machine vibration regarding bearing fault detection; 

Section 6.2, proposing a bearing fault detection scheme considering the load effects; 

Section 6.3, which addresses the issue of current-based speed estimation – a key element of 

the detection scheme; Section 6.4, which presents the experiment results; and lastly Section 

6.5 which summarizes the chapter.   

 

6.1 BEARING FAULT DETECTION WITH VARYING LOAD 

 

6.1.1 INTRODUCTION  

 

Generally, it is more complicated to detect bearing faults under variable-load conditions 

than constant-load conditions. This is a result of the effects that variable loads may 

overwhelm bearing fault signatures, in addition to the dominant components in the signal.  

 

When monitoring vibration with a varying load, vibration evaluation shall be made under 

all conditions at which the machine would be expected to operate for prolonged periods 

(ISO 10816). The maximum measured value under these conditions shall be considered 

representative of vibration severity. As a criterion for evaluating the severity of vibration, 

both the magnitude of observed broad-band vibration and changes in the magnitude need to 
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be considered [12-13]. 

 

For current monitoring with a variable load, the type of fault under detection plays an 

important role. For single-point defects, the detection usually relies on localizing the 

characteristic fault frequencies, which are determined by the supply frequency, the bearing 

dimensions, and the machine speed. A significant increase in the magnitude of the fault 

components indicates a bearing fault. Research studies have been published for 

single-point defects detection via stator current considering variable load conditions [5, 32]. 

For generalized roughness faults, the characteristic fault frequencies may not exist [9-11, 

31], and therefore, little research in this area is available.  

 

Given the current status of the research in the area, the purpose of this chapter is to extend 

the noise cancellation algorithm to the detection of generalized roughness faults under 

variable-load conditions.  

 

6.1.2 LOAD EFFECTS ON MACHINE VIBRATION AND STATOR CURRENT  

 

Load has significant effects on the machine vibration and the stator current. Variable load 

can nonlinearly alter the level of machine vibration and distort the machine vibration 

monitoring results; thus caution should be taken when this occurs [38, 58]. The 

experiments performed in this research show that the vibration at a lower frequency range 

(i.e. below 1 kHz) is more sensitive to load changes than that at higher frequency range or 

the entire frequency range. Nevertheless, machine vibration is still effective for bearing 

fault detection for both constant-load and variable-load conditions.  

 

In comparison, load effects on the stator current are more drastic in the sense of its 

influence on the bearing fault detection. This is due to the dominant components in stator 
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currents that are directly determined by the triplet: the load, the supply, and the machine 

itself. Even a slight change of the load may overwhelm the bearing fault signatures in the 

stator current. The load effects on the stator current regarding bearing fault detection are 

listed as follows: 

1) When load changes, the sensitivity of the stator current to a bearing fault will 

change. For example, as the load increases, the magnitude of the dominant 

components may increase accordingly, as well as the level of the noise floor in the 

sampled signal, while the bearing fault signatures may remain essentially same. 

Consequently, the bearing fault signatures are likely to be pushed closer to the noise 

floor at a higher load level. In the noise-signal view, variable load essentially 

changes the signal-to-noise ratio (SNR). This is especially problematic because 

even at no-load the SNR is already low, i.e., the bearing fault signatures are already 

close to the noise floor in the sampled signal even at no-load. 

 

2) When load changes, the load-related frequencies in the stator current will change. 

For example, the frequencies of the eccentricity harmonics, the slot harmonics and 

the broken bar harmonics will change as the load changes. This requires the noise 

cancellation algorithm to be able to change its frequency response to suppress those 

noise components accordingly.   

 

3) Load changes can introduce transient processes, the pattern of which is usually 

unpredictable and random in nature. Therefore, when the pattern of the processes is 

similar to that of a bearing failure, it can be misinterpreted by a fault detection 

algorithm as the presence of a bearing fault.   

 

The load effects on the stator current are illustrated in Figure 6.1, where the power spectra 

of the stator current at two load levels are plotted. The data for the plots were collected 
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from the same machine (4-pole, 20 hp) with healthy bearings at same conditions except the 

load level. As shown in the figure, the magnitude of the dominant components and the 

position of the noise floor changed significantly following the load change. The 

eccentricity-related components have also shifted in frequency.  
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Figure 6.1 Illustration of load effects on the power spectrum of the stator current. 

 

 

6.2 SCNC BEARING FAULT DETECTION UNDER VARIABLE-LOAD CONDITIONS 

 

At different load conditions, the sensitivity of the stator current to bearing faults varies, as 

discussed in the previous section. Therefore, the RMS of the noise-cancelled stator current 

should be tracked over a same load level to provide meaningful results. In practice, the 

RMS of the noise-cancelled stator current should be compared to the baseline that is 
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obtained under the same load level, and this should be done for each load level under which 

the machine would be expected to operate for prolonged periods. Sometime, it is also 

appropriate to apply the noise cancellation algorithm when the machine reaches a steady 

state following a load change, to avoid the interference from the transient process 

associated with the load change. 

 

To address the above issues, a bearing fault detection scheme for variable load conditions is 

introduced. This scheme is shown in Figure 6.2. The implementation procedure is as 

follows: 

 

1) Obtain the speed (load level) from real time stator current data. 

A speed estimation algorithm may be involved to obtain the speed and thus the 

load level. For true non-intrusive fault diagnosis, the algorithm should be 

current-based – discussed in the next section. 

 

2) Determine whether a load change has occurred. 

If a load change has been detected, then further determine whether the current load 

level is a new level (i.e. unseen before). If the current load level is new, a set of 

parameters of the noise canceller (i.e., the coefficients of the Wiener filter) should 

be computed after the machine reaches a steady state following the load change. 

Save those parameters, tagged with the load level, in a database. If the current load 

level is not new, then the parameters of the noise canceller are retrieved from the 

database.  

 

3) Apply the noise cancellation algorithm to the sampled stator current data. 

With the parameters obtained in Step 2, apply the noise cancellation algorithm to 

the sampled stator current data if the machine is at a steady state. Calculate the 
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RMS of the noise-canceled stator current. If the current load level is new as 

determined in Step 2, save the RMS value as the baseline for this new load level. 

Therefore, each load level has a baseline value. 
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Figure 6.2 Schematic diagram of bearing fault detection via stator current noise cancellation under 

variable load conditions. 
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4) Make decisions about the bearing health from the noise cancellation results. 

For each load level, plot the deviation of the RMS of the noise-cancelled stator 

current from the baseline value along the time. A final decision about the bearing 

health condition should be made by considering the results obtained at all load 

levels under which the machine has been operating for prolonged periods. Usually 

a threshold is computed and drawn on these plots. The RMS value frequently 

falling outside the threshold indicates a deteriorated bearing condition. The 

determination of the threshold is achieved by using statistical methods such as the 

statistical process control, which is addressed in the next chapter. 

 

For simplicity, in the experiments performed in this research, the induction machine with 

the speed varying within the extent of 5 rpm is regarded as operating under a same load 

level. For example, a machine is treated as running under the same load level for a speed of 

1790 rpm, for a speed of 1795 rpm and for any speed in [1790, 1795] rpm. The range the 

speed is allowed to vary under a “same” load level can be different in practice. It is also 

possible to apply the procedure in [58] to divide the entire operation range into different 

load levels and the noise cancellation algorithm would be applied to those load levels 

separately.  

 

 

6.3 CURRENT-BASED SPEED ESTIMATION FOR BEARING FAULT DETECTION 

 

6.3.1 INTRODUCTION 

As discussed in the previous section, speed estimation is required to differentiate load 

levels for current-based bearing fault detection. Usually, for bearing fault detection 

purposes, the fundamental component in the stator current at 60 Hz is notched by an analog 

filter. Advanced current-based speed estimation seems appropriate to estimate the load 
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level since the torque or the power can’t be estimated from the notched stator current. In the 

detection of single-point-defect faults, speed information is also required to calculate those 

characteristic fault frequencies. In this research, current-based speed estimation is 

employed as a non-intrusive means to obtain load level information of induction machines. 

 

The basic principle of current-based speed estimation is to calculate the machine speed 

from the speed-related frequencies in the stator current [59-60]. The speed-related 

frequencies include the eccentricity frequencies and the slot harmonic frequencies, as 

described by the following equation 

  1
(1 )( )seh d w

sf f kR n n
P
−⎡ ⎤= + +⎢ ⎥⎣ ⎦

.                                       (6.1) 

where sehf  is the speed-related frequency, 1f  is the fundamental supply frequency,  is an 

integer,  is the number of pole pairs, 

k

P R  is the number of rotor slots,  is the slip,  is 

the order of the rotating eccentricity (For a static eccentricity, 

s dn

0dn = ; for a dynamic 

eccentricity, ),   is the order of the stator magneto motive force (MMF) 

harmonics. 

1dn = wn

 

In the above equation, when , 0k = 1wn = , 1dn = ± , it follows 

1
1(1 )seh

sf f
P
−

= ±                                                    (6.2) 

This is known as the eccentricity frequency equation. The frequencies obtained from 

Equation (6.1) when  are known as the slot harmonic frequencies. The machine 

speed, denoted by 

0k ≠

rω , is related to the slip by  

160 (1 )
r

f s
P

ω
−

= .                                                    (6.3) 

Therefore, the speed can be calculated from above equations, once the eccentricity 
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frequencies or the slot harmonic frequencies (along with the rotor number R ) are known.  

 

Since the slip, , is usually close to zero under normal conditions, the eccentricity 

frequencies are low frequencies and often can be clearly identified on the power spectrum 

of the stator current, provided a high frequency resolution exists. Comparatively, the slot 

harmonics have high frequencies and usually are undistinguishable from noise. The 

accuracy of speed estimation via the slot harmonic frequencies can be high, which is 

s

R
P

 

times that of the estimation of slot harmonics.  

 

For bearing fault detection, if time is not a critical factor and long data records are available, 

the speed estimation via the eccentricity frequencies is recommended due to its ease of use. 

However, in some applications, such as those in a wireless network environment, short data 

records are desired due to limited network throughput and speed should be estimated by 

using slot harmonics for a satisfactory accuracy. 

 

 

6.3.2 SPEED ESTIMATION USING ECCENTRICITY HARMONICS 

 

To effectively search the eccentricity harmonics in the stator current, the search region can 

be significantly narrowed down by using the proper range of the slip, 0 , which 

holds under normal conditions. For example, for a 4-pole machine (

0.0s≤ ≤ 5

2P = ), it follows from 

Equation (6.2) that the search region for the lower and higher eccentricity harmonics can be 

narrowed down by using  as 0 0.0s≤ ≤ 5

130 31.5ehf≤ ≤ , 288.5 90ehf≤ ≤  

rather than the region [30, 90] Hz by assuming 0 1s≤ ≤ . This is shown in Figures 6.3 – 6.4. 
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Figure 6.3 The power spectrum of the stator current (notched at 60 Hz) from 10-second data 
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Figure 6.4 the location of the lower eccentricity harmonic (left) and the higher eccentricity harmonic 

(right) on the frequency axis of the stator current for 10-second data 

 

The accuracy in the speed estimate shown in Figure 6.4 is determined by the frequency 

resolution, which is in turn determined by the length of the time window associated with 
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the sampled data. Specifically, the frequency resolution is given by [37] 

1

samp

f
T

∆ =                                                             (6.4) 

where sampT  is the time window associated with the sampled data and f∆  is the frequency 

resolution. For example, for 10-second samples, the frequency resolution is 0.1 Hz; for a 

4-pole motor, the error is less than 6 rpm, which can be calculated from Equations 6.2-6.3. 

As a test example, the machine speed obtained from the eccentricity harmonics shown in 

Figure 6.4 is 1746 rpm; this value compares to the reading of 1751 rpm from a tachometer 

amounted on the motor.  

 

Shorter data records yield lower accuracy. For the same machine, the maximum error from 

a 2-second window of data for is as large as 30 rpm, due to the poor frequency resolution as 

shown in Figure 6.5. Such a large error is not acceptable for distinguishing load levels. In a 

scenario as such, sometimes the estimation accuracy can be improved by zero padding, as 

shown in Figure 6.6. As a test example, the speed is estimated as 1740 rpm according to 

Figure 6.5, and 1752 rpm according to Figure 6.6, compared to the tachometer reading 

1751 rpm. It should be pointed out that the inherent frequency resolution thus the 

maximum error in the speed estimation can not be improved by the zero padding. Instead, 

the accuracy in the speed estimation can be improved by enlarging the sampling time 

window or by using slot harmonics.  
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Figure 6.5 Illustration of the frequency estimation of the lower eccentricity harmonic (left) and the 

higher eccentricity harmonic (right) for 2-second data 
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Figure 6.6 Illustration of the frequency estimation of the lower eccentricity harmonic (left) and the 

higher eccentricity harmonic (right) for zero-padded 2-second data 
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6.3.3 SPEED ESTIMATION USING SLOT HARMONICS 

 

6.3.3.1 Determining Rotor Number  

As seen from Equation (6.1), for the speed estimation using slot harmonics, the slot number  

 is required which is usually not shown on the name plate. However, by the following 

procedure, known as the initialization process in [59], it is possible and very often 

successful to determine the slot number  solely from stator current measurements. 

R

R

 

First substitute , ,1wn = ± 0dn = 1k =  in Equation (6.1) to obtain the principle slot 

harmonic frequency as the function of the slot number R, as given by  

1
1 1seh

sf f R
P
−⎡ ⎤= ±⎢ ⎥⎣ ⎦

.                                                  (6.5) 

where the slip s is obtained from the eccentricity harmonics as shown in the previous 

subsection. The only unknown parameter in Equation (6.5) is . Further more, it is known 

from the machine design theory that the possible values of R are (1  for most 

small- and medium-size motors [59].  Therefore, the second step is to find the best match 

between the possible values of R and the prominent peaks (not including MMF harmonics) 

on the power spectrum of the stator current and then determine the value of R . This is 

illustrated in Figure 6.7, where the data was collected from a 20-hp induction motor. It can 

be seen clearly that the prominent slot harmonics are located at 1103.45 Hz and 1223.45 Hz; 

with the slip s of 0.03 determined from the eccentricity harmonics, this leads to a rotor bar 

number of 40. (After disassembled the motor, it was found this is correct.) 

R

4 26) P− ⋅

 115



1080 1110 1140 1170 1200 1230 1260
-150

-140

-130

-120

-110

-100

-90

-80

-70

Hz

dB
(P

ow
er

)

mtach between calculated slot harmonics and actual slot harmonics

Best Match @ R=40
1103.45Hz; 1223.45Hz

MMF Harmonics
19th and 21st

 
Figure 6.7 The match between the calculated slot harmonics and the prominent slot harmonics on the 

frequency axis 

  

6.3.3.2 Estimating Speed from Short Data Records 

 

Once the slot number  is known, the speed can be obtained by using slot harmonics with 

short data records while meeting an acceptable accuracy. The equation to calculate the 

speed from slot harmonic frequencies is given by 

R

1
(1 )( )seh d w

sf f kR n n
P
−⎡ ⎤= + +⎢ ⎥⎣ ⎦

.                                         (6.6) 

Since slot harmonics are small in magnitude, it is desired to reinforce these harmonics via 

aliasing on the frequency axis [59]. This is possible since they are separated exactly by 

12 f⋅  on the frequency axis due to the multiple-value odd  in the above equation [59]. To 

achieve this, band-pass filtering, down sampling, spectrum estimation, and frequency 

conversion are required.  

wn
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Band-pass filtering is used to suppress low frequencies since the slot harmonics are at high 

frequency. The pass band of the band-pass filter should cover a proper region where slot 

harmonics are possibly located. In practice, by assuming 1k = , 0dn = , ,  and 

, the pass band is set as 

0 0.05s≤ ≤

1 ~ 7wn = ±

1 1
1 0.05 1 07 , 7f R f R

P P
⎛ − −⎡ ⎤ ⎡−⎜ ⎢ ⎥ ⎢⎣ ⎦ ⎣⎝ ⎠

⎞⎤+ ⎟⎥⎦
.                                       (6.8) 

To make the slot harmonics alias together and also the MMF harmonics alias together, the 

new sampling frequency should be 12 f⋅ . If the raw data is sampled at another sampling 

frequency, interpolation and down-sampling (decimation) are required. For example, if the 

original sampling frequency is 4 kHz, it can be (digitally) resampled at 160 f , and then 

decimated at 12 f⋅ . The interpolation provides sufficient amount of data for 

down-sampling by an integer factor, for example, from 160 f  to 12 f⋅ . The interpolation is 

not necessary if the original sampling frequency is already integer times of 12 f⋅ . 

 

After the above operations, the slot harmonic frequency is salient on the normalized 

aliasing frequency axis due to the overlapping effect and the speed is calculated from this 

frequency. One way to calculate the speed that is possibly easier than the original method in 

[59] is to use the shift of the slot harmonic frequency on the aliased frequency axis, as 

derived below. 

1

( )seh
d

f skR n
f P

∆
∆ = +                                                 (6.9) 

,sh norm
Ps f
R

∆ = ∆  (assume 1, 0dk n= = )                                   (6.10) 

1 1
,

60 60
rpm sh norm

f fs
P R

ω
⋅ ⋅

∆ = ∆ ⋅ = ⋅∆f                                   (6.11) 

r base rpmω ω ω= + ∆                                                         (6.12) 
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where ,sh normf∆  is the shift of the slot harmonic frequency on the aliased 

normalized-frequency axis, rω  is the actual speed, and baseω  is the baseline speed obtained 

from the eccentricity harmonics.  

 

In the above derivation, the shift of the slot harmonic frequency on the normalized aliasing 

frequency axis was assumed to be less than 1, which is true in most cases. In some cases, 

the shift, 
1

sehf
f

∆ , can be larger than 1, for example, when 1sR
P
∆

>  (e.g., 

). Then the conversion from the aliased frequency to the actual 

frequency is not unique. This problem can be solved by adjusting the sampling frequency 

of the aliased signal to 4  in addition to that of 2

1, 0.05, 20P s R= ∆ = >

1 1f⋅ f⋅ , which would limit the shift not 

crossing the boundaries of the normalized frequency axis, and the speed is obtained by 

considering the results under the both sampling frequencies. Another solution to this 

problem is to apply the technique described in [59], which uses an estimate of the 

eccentricity frequency or an indication of the load to help to find the precise location of the 

slot harmonic frequency on the actual frequency axis.    

 

To calculate the shift of the aliased normalized-frequency, ,sh normf∆ , different spectral 

estimation algorithms can be used. Here the MUSIC (MUltiple SIgnal Classifier) 

algorithm is applied for an example. The aliased spectra estimated by the MUSIC 

algorithm for a real test are given in Figure 6.8. The solid line is from baseline data (of 

10-second time window), collected at 50% load level, and the corresponding speed is 1751 

rpm. The dash line is from test data of 10 cycles of a 60Hz signal (of 0.167-second time 

window). The shift in the slot harmonic frequency can be clearly seen on the aliased spectra 

in the picture, based on which the new speed was calculated as 1783 rpm, compared to the 

reading of a tachometer of 1784 rpm, which indicates a 20% load level. 
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Figure 6.8 The shift of the saliency slot harmonic frequency on the aliased normalized-frequency axis 

is used to obtain the machine speed 

 

 

6.4 VARIABLE LOAD EXPERIMENTAL RESULTS 

 

Both constant and variable-load tests have been performed to validate the proposed 

algorithm. The constant-load test results, as well as the details regarding the experimental 

setup and the data acquisition instrument, are presented in Chapter 5. The results of the 

variable-load tests are presented in this section.  

 

For all variable-load tests, a dynamometer (a DC generator connected to the 20-hp 

induction machine) serves as the load. By switching the resistors on the resistor banks that 

are connected to the dynamometer on and off, the output power of the dynamometer, thus 

the load of the induction machine, can be adjusted to a desired level. For each variable-load 

test, after a new bearing is refilled with a reduced amount of grease, it is installed and the 

experiment starts. After a few hours of operation, the machine reaches a thermal steady 

state and the data acquisition process starts. During each test, the load is adjusted to 
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different levels, while the bearing fault develops. At the same time, the proposed bearing 

condition monitoring scheme is applied. Specifically, the sensorless speed algorithm is 

applied to estimate the load level and the noise cancellation algorithm is applied to obtain 

the bearing fault signature. A final decision on the condition of the bearing is made by 

considering results obtained at all load levels at which the machine has been operated for 

prolonged periods.  

 

 

6.4.1 VARIABLE LOAD EXPERIMENT 1 

 

The results of this experiment are shown in Figures 6.9-6.11. Figure 6.9 shows that the 

RMS of the machine vibration, both of the entire range and of the 0 - 1 kHz range, increases 

significantly as the bearing health condition degrades due to the added shaft current. At the 

24th hour, the load is increased to a new level, resulting in a speed change from 1790 rpm to 

1778 rpm. The load change has minimal effects on the magnitude of the vibration of the 

entire range (theoretically from 0 Hz – infinity). In contrast, it has noticeable effects on the 

magnitude of the vibration from 0 – 1 kHz and causes a big drop as shown in the figure 

(middle plot). During the remainder of the experiment, because of the continuous 

deterioration of the bearing condition, the vibration over the 0 – 1 kHz frequency range, as 

well as that of the entire range, increases substantially. Overall, it seems that the vibration 

of the entire frequency range serves as the reference of the bearing condition better than 

that of the range 0 – 1 kHz.   

 

Since the machine experiences two load levels, the noise cancellation algorithm should be 

applied to the two load levels separately. Following the load change at the 24th hour, the 

bearing detection algorithm recalculates the Wiener filter coefficients and the baseline for 

the new load level. Figure 6.10 and Figure 6.11 show the results for the two load levels.  
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Figure 6.9 Variable load experiment -1: the RMS of vibration increases significantly indicating a 

deteriorating bearing condition during the 2-speed test. 

 

From Figure 6.10, the noise-cancelled stator current increases substantially during the first 

load level section due to the degraded bearing condition and is closely correlated to the 

machine vibration.   
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Figure 6.10 The noise-cancelled stator current and the vibration increase substantially during the first 

speed section (1790-1792 rpm).  

 

Figure 6.11 shows the results for the second load level. From this figure, it can be seen that 

there is an increase in both the noise-cancelled stator current and the vibration at this load 

level. 
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Figure 6.11 There is increase in both the noise-cancelled stator current and the machine vibration 

during the second speed section (1776-1778 rpm). 

 

 

6.4.2 VARIABLE LOAD EXPERIMENT 2 

 

The results of this experiment are shown in Figures 6.12 – 6.15. As shown in the top plot of 

Figure 6.12, three different load levels are involved in this experiment. The first load level 

is at the speed around 1790 rpm; the operation time is from the beginning to the 12th hour 
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and from the 36th hour to the 36.5th hour near the end of the experiment. The second load 

level is at the speed around 1750 rpm; the operation time is from the 12th hour to the 25th 

hour and from the 36.5th hour to at the end (i.e. the 37th hour). The third load level is at the 

speed around 1777 rpm; the operation time is from the 25th hour to the 36th hour.  The 

bottom plot shows that the machine vibration of the entire frequency range increases 

significantly as the fault develops. 
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Figure 6.12 Variable load experiment -2: the RMS of vibration increases significantly indicating a 

deteriorating bearing condition during the 3-speed test 

 

The results of the noise-cancelled stator current under the first load level are shown in the 

top plot in Figure 6.13. It can be seen that from the beginning to the 12th hour, the RMS of 

the noise-cancelled stator current remains at a low level; during the half hour following the 

36th hour, the RMS of the noise-cancelled stator current is much higher due to the degraded 

bearing health. Again, the noise-cancelled stator current is closely correlated to the 

machine vibration.  
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Figure 6.13 RMS value of the noise-cancelled stator current and the machine vibration during the first 

speed section (1790-1792 rpm)  

 

The results for the second load level are shown in Figure 6.14. Only near the end of the 

experiment, the noise-cancelled stator current and the vibration display a significant 

increase due to the deteriorated bearing condition; and from the 12th hour to 35th hour, there 

is no substantial change in the both measurements.    
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Figure 6.14 RMS value of the noise-cancelled stator current and the machine vibration during the 

second speed section (1751-1755 rpm).  

 

The results of the third load level are shown in the top plot in Figure 6.15. From this figure, 

it can clearly be seen that both the vibration and the noise-cancelled stator current increase 

substantially from the 28th hour to the 36th hour, which indicates that the bearing fault is 

developing rapidly during this period. The correlation between the noise-cancelled stator 

current and the vibration is about 0.72 (refer to Table 5.1 on Page 96). 
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Figure 6.15 The RMS of the noise-cancelled stator current increases significantly for the third speed 

section (1775-1778 rpm)  

 

 

6.5 SUMMARY  

 

In this chapter, the stator current noise cancellation method has been extended to variable 

load conditions. First discussed were the load effects on the stator current and thus on the 

performance of current-based bearing fault detection. Secondly, to minimize the negative 

effects of load changes, a strategy was introduced for variable-load applications – using a 

current-based speed estimation algorithm to differentiate load levels. The speed estimation 
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algorithm by using eccentricity and slot harmonics was then illustrated with results from 

real tests. This speed estimation algorithm was originally from Reference [59] but was 

modified for bearing fault detection purposes in this research. Finally, the current-based 

bearing fault detection strategy was applied to the on-line variable load experiments. In 

those experiments, the noise cancellation method successfully detected the in situ bearing 

faults.  
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CHAPTER 7 
 

DETERMINATION OF SCNC WARNING THRESHOLD  
 

The RMS of noise-cancelled stator current has been established as the fault indicator. It has 

been shown that the fault indicator changes significantly as bearing faults develop. A 

remaining issue then is to evaluate a deteriorated bearing condition based on the value of 

the fault indicator in real time. This issue is addressed in this chapter. First, an introduction 

is presented in Section 7.1, where the difficulties in determining the threshold on the fault 

indicator are discussed. To minimize those difficulties, it is then proposed that statistical 

methods such as the Statistical Process Control (SPC) should be applied. In Section 7.2, the 

Statistical Process Control theory is introduced. The principle of calculating the statistical 

control limits is discussed in Section 7.3. The process of determining a warning threshold 

for bearing fault detection purposes is described in Section 7.4. Experimental verification 

is presented in Section 7.5. And finally, the chapter is summarized in Section 7.6.  

 

7.1 INTRODUCTION 

 

It has been verified that the noise cancellation method is effective in removing noise 

components in the stator current. It is also noted the noise-cancelled stator current is 

closely correlated to machine vibration. This makes it possible to monitor the bearing 

condition in an electric machine solely based on its stator current signal.  

 

Based solely on the stator current results, a critical issue then is how to decide when a 

bearing condition is degraded such that maintenance care is required. Essentially, this is a 

fault severity assessment problem. Difficulties in solving the problem are significant. First, 
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it is difficult to relate fault signatures in stator current to the bearing fault severity. This 

difficulty comes from the fact that no physics equations are available to describe fault 

signatures in stator current injected by most realistic bearing faults. Second, this is an 

underdeveloped research area, and there is no industry standard. Limited experience exists 

in dealing with the problem. Third, given the subtleness of bearing fault signatures in stator 

current, it is difficult to predefine severity levels that are useful in practice. For different 

applications, the magnitude of the fault signatures varies. This adds another aspect of 

difficulty to the approach of predefining severity thresholds.  

 

Therefore, it seems appropriate to establish a warning threshold based on the statistics of 

the signal of an application, rather than to preset a universal limit for all applications. This 

can be achieved by using a statistical method that can distinguish abnormal changes in the 

noise-cancelled stator current that are caused by a bearing fault, from ambient changes. In 

this research, a statistical method known as the Statistical Process Control (SPC) is applied. 

The details of the SPC and its application in this research are presented the following 

sections. 

 

7.2 STATISTICAL PROCESS CONTROL  

 

Statistical Process Control is a statistical tool for monitoring and improving a process. The 

essence of SPC is that there is variability in any process and that variation can be classified 

as controlled and uncontrolled. Controlled variation is characterized by a stable and 

consistent pattern of variation over time, usually driven by random factors in the process 

[61]. For example, a bearing production line may be designed to produce bearings with the 

diameter of 210.0 mm. However, the diameter of some bearings will be slightly larger than 

210.0 mm (e.g., 210.005mm) and some smaller (e.g., 209.995mm), in accordance with 

some distribution. Such variation is controlled variation. Uncontrolled variation, on the 
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other hand, is characterized by a pattern of variation that changes over time, and the 

changes are caused by assignable causes rather than random factors. For example, as one or 

two components of the production line wear out, the diameter of the bearings no longer 

follow the distribution and may become unacceptably large (e.g., 210.9mm). Such 

variation is uncontrolled variation caused by the assignable cause (the wearing out of the 

components). 

 

By the notion of controlled and uncontrolled variation, there are two ways to improve any 

process: 

1) “When a process displays controlled variation, the process is stable and consistent 

and the variation consists only of that which is inherent in the process itself. The 

only way to improve the process is to change the process itself” [61], for example, 

by adopting new technologies or new materials. 

2) “When a process displays uncontrolled variation, the process is both inconsistent 

and unstable” [61]. The variation in the process is caused by some assignable cause. 

To improve the process, the assignable cause needs to be identified and if 

detrimental, removed from the process. 

 

The SPC theory was published by Dr. Walter A. Shewhart in the 1920’s [65]. It was 

expanded by Dr. W. Edwards Deming and later by Dr. Donald J. Wheeler, Dr. John S. 

Oakland, and others. It gained extensive use in the manufacture of war materials during 

World War II in the United States and led to spectacular reductions in both scrap and 

rework. The SPC methods were successfully introduced in Japan around 1950 and the 

world after that. So far the SPC methods have been widely used in numerous areas, and 

have seen increasing interest in practice. Some examples of the application areas of the 

SPC methods include: 

o Process monitoring and improvement in manufacture, 
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o Enterprise business and management improvement, 

o Software development, 

o Orbiter processing activities at space centers, 

o Biomedical engineering,  

o Fault diagnosis. 

 

7.3 STANDARD DEVIATION AND CONTROL LIMITS 

 

Standard deviation is a measure of the extent of variation in process data. Therefore, most 

control limits in SPC are built on the standard deviation of the process data. The meaning 

of standard deviation is perhaps most easily explained in terms of normal distribution. If 

measurements from a stable process are normally distributed, then 68.3% of the 

measurements will fall within one-sigma (standard deviation denoted as sigma) distance of 

the central (mean), 95.4% within two-sigma, and 99.7% within three-sigma, as illustrated 

in Figure 7.1. Therefore, one may be confident that almost all measurements will lie 

between the values of σµ 3±  if the process is stable, where µ  is the mean and σ  is the 

standard deviation. In other words, if new measurements of the process frequently fall 

outside the three-sigma region, then the process is no longer stable and uncontrolled 

variation occurs.  

 

If the measurements from the stable process are not distributed normally, according to the 

central limit theorem, the distribution of sample means will approach a normal distribution 

with a mean µ  and a standard error of the means of n/σ  as the sample size  increases. 

Therefore, even if the individual measurements are not normally distributed, the 

distribution of the means will tend to have a normal distribution; the larger the sample size 

the greater this tendency will be. For practical engineering problems, it can be assumed that 

n

 132



the distribution of the sample means will be very nearly normal, even if the parent 

population is not normally distributed [62]. This provides a sound basis for the Shewhart’s 

Control Charts which will be discussed later.   
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Figure 7.1 The bell curve of the standard normal distribution (with mean 0, standard deviation 1) 

 

 For convenience, the central limit theorem is given as follows, while the mathematical 

proof is referred to mathematical textbooks.  

Let  be a sequence of random variables which are defined on the 

same probability space, share the same probability distribution D  and are 

independent. Assume that both the expected value 

…,,, 321 XXX

µ  and the standard deviation 

σ  of exist and are finite.  D

Consider the sum nn XXS ++= …1 . Then the expected value of  is nS µn  and 

its standard error is nσ . Furthermore, informally speaking, the distribution of 

 approaches the normal distribution  as n  approaches .  nS ),( 2nnN σµ ∞
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According to this theorem, the distribution of the sample means n
n

S
X

n
=  approaches 

 as  increases. 2( , / )N µ σ n n

 

Therefore, the standard deviation can be used to establish thresholds to distinguish samples 

of an unstable process from those of a stable process. For different applications, different 

criteria can be applied to set those thresholds. For example, the 3-sigma lines can be used 

as warning/action thresholds and 6-sigma lines as severe danger thresholds. Also it is a 

common practice to monitor both the means and the ranges of the samples, by drawing 

so-called X , and R charts. For simplicity, the 3-sigma criterion is applied in this research. 

Determination of the standard deviation of both sample means and sample ranges is 

discussed below. 

 

Suppose the process measurements are assumed to come from a Normal 2( , )µ σ  

population. If the parameters µ  and σ  are known, then in the usage of the X chart, one 

has 

3UCL
n
σµ= +            and             3LCL

n
σµ= −                        (7.1) 

as the upper and lower 3σ  control limits, respectively, for the sample means with sample 

size n. In above equations, 
n
σ  is the standard distribution of the sample means. If the 

parameters µ  and σ  are unknown, on the other hand, and if one has k  preliminary 

samples each of size , the following quantities  n

1

1 k

i
i

X X
k =

= ∑          and           
1

1 k

i
i

R R
k =

= ∑                             (7.2) 

can be calculated to construct the X chart. Usually, measurements that are obtained at a 
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given point in time constitute one sample, or called one subgroup, and the size of the 

subgroup/sample is the number of individual measurements in that subgroup. In above 

equations, iX  and iR  are the mean and range obtained from the ith sample for 

; 1, 2, ,i k= … X  is called the grand average, which is the center of the X  chart, and R  is 

known as the average range, which is the center of the R chart. Generic X , and R charts are 

shown in Figure 7.2.   

iX

iR

 

Figure 7.2 Generic Shewhart’s control charts based on subgroups 

While X  can be used as a pooled unbiased estimate of µ , one has to consider 

l
1 2 2

1 k
i

i

R R
k d d

σ
=

= =∑                                               (7.3) 

as a  pooled unbiased estimate of σ  [64]. In the above equation,  is the expected value 

of the sample range in a sample of size n from the standard normal distribution. The values 

of  can be computed mathematically and they are tabulated in many statistics 

handbooks [61-64]. The computation of  is beyond the scope of this research and 

interested readers are referred to [64]. The derivation of  is given below [63].  

2d

2d

2d

2d
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Assuming  Y ~ Normal 2( , )µ σ  

2( ) ( ) yE R Rf R dR d σ
∞

−∞
= =∫                              (7.4) 

where  with  the largest value in a sample of size n and 

 the smallest value, f(R) represents the probability density function for the 

range, E(R) is the expected value of the range, and  depends upon n. Therefore, 

it follows that one would estimate 

max min( )R y y= − maxy

miny

2d

yσ  as  

l
l

2 2

y
y

R
d d
µ

σ = =                                             (7.5) 

where R  is the average of the ranges for a set of subgroups. 

By using these pooled unbiased estimates, in the implementation of the X  chart, the upper 

and lower control limits can be calculated as 

2UCL X A R= +            and             2LCL X A R= −                           (7.6) 

where 2
2

3A
d n

=  is constant as calculated from the value of  and the sample size.  2d

 

The constant needed for the construction of the range chart can be determined similarly. As 

mentioned before, the center line of the R chart is at R . For the determination of the lower 

and upper control limits of this chart, one first writes the variable of the sample range R as 

R Wσ=                                                       (7.7) 

where W is the sample range (also a variable) in a sample of size n from the standard 

normal distribution.  Then the standard deviation of R can be written as 

R Wσ σ σ=                                                     (7.8) 

where Wσ  denotes the standard deviation of the sample range in a sample of size n from 
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the standard normal distribution. The values of Wσ  can be computed mathematically and 

be found in many statistics handbooks [61-64]. Since σ  is unknown, by using its estimate 

2

R
d

 (Equation 7.3), one can estimate Rσ  by 

l
2

R W
R
d

σ σ=                                                  (7.9) 

Finally, one can obtain the lower and upper control limits on the range chart as 

3
2

3 WLCL R R D R
d
σ

= − =           and         4
2

3 WUCL R R D R
d
σ

= + = .         (7.10) 

In the above equations, 3
2

3
1 WD

d
σ

= −  and 4
2

3
1 WD

d
σ

= + . Note that for some values of n, 

 may turn out to be negative in which case it may be taken to be 0 for obvious reasons. 

For convenience, the values of , , , and  for n = (2-10) are provided in Table 

7.1.  

3D

2A 2d 3D 4D

 

Table 7.1 Constants for Average and Range Charts Based on the Average Range [61] 

n  2 3 4 5 6 7 8 9 10 

2A  1.880 1.023 0.729 0.577 0.483 0.419 0.373 0.337 0.308 

2d  1.128 1.693 2.059 2.326 2.534 2.704 2.847 2.970 3.078 

3D  -- -- -- -- -- 0.076 0.136 0.184 0.223 

4D  3.268 2.574 2.282 2.114 2.004 1.924 1.864 1.816 1.777 
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7.4 WARNING THRESHOLD FOR DETERIORATED BEARING CONDITION 

 

In the case of bearing fault detection in this research, the RMS of noise-cancelled stator 

current can be treated as an output measurement of the complicated machine-bearing 

process. The variation in the RMS of noise-cancelled stator current can be attributed to a) 

random factors, if the variation is in control, and b) assignable causes, if the variation is 

out-of-control. Since dominant non-bearing fault components are already removed in the 

RMS of noise-cancelled stator current, the uncontrolled variation is most likely caused by 

bearing faults. The controlled variation driven by random factors, on the other hand, is 

normal and no actions are required to ‘correct.’ Theoretically, any statistical method that 

can detect the uncontrolled change caused by a bearing fault will work for the bearing fault 

detection purpose. In this research, the three-sigma control limits calculated by using the 

SPC as described above serve as warning threshold regarding a deteriorated bearing 

condition.  

 

In current-based bearing fault detection, data of one phase of stator current usually is 

collected for further processing. Therefore, at a given point in time, one measurement is 

obtained. Consequently, the subgroup size is one and the subgroup range does not exist. To 

accommodate this, the procedure described in Section 7.3 can be slightly modified; the 

so-called X chart and mR (the acronym for “moving Range”) chart can be applied to 

monitor the process [61]. The generic X chart and mR chart are illustrated in Figure 7.3. 

The center of the X chart is X , i.e., the mean of the individual samples, in which case X  is 

the same as X .  The center of the mR chart is the mean of differences of adjacent 

individual measurements. The individual measurements are plotted on the X chart and the 

differences (i.e., moving range) are plotted on the mR chart.  
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iR

 
Figure 7.3 Generic Shewhart’s control charts for Subgroup Size One 

 

Since individual values are plotted on the X chart, the control limits for individual values 

(rather than the sample means), sometimes called Natural Process Limits (NPL), should be 

applied, which are [61] 

2

3X
RUNPL X
d

= +                and            
2

3X
RUNPL X
d

= −                  (7.11) 

Further more, R  is substituted by mR, by using 2 1.128d = ( 2n = ), one has 

2.660XUNPL X mR= +          and        2.660XLNPL X mR= −               (7.12) 

which are the upper control limit and lower control limit for the X chart. For bearing fault 

detection in this research, since the SPC is applied to noise-cancelled stator current, a 

sample falling below a lower control limit means a better bearing condition and therefore, 

is not of concern. In the following discussions, only upper control limits are of interest. 

 

The upper control limit for the mR chart is 

3.268RUCL mR=                                                (7.13) 

where ( ) has been used. (In above equations, the equivalent subgroup 4 3.268D = 2n =
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size n = 2 is applied, indicating that the moving range of the individual values is taken as a 

second measurement at each given point in time [61].) The lower control limit for the mR 

chart is zero, as can be seen in Table 7.1.  

 

Alternatively, one can group the measurements that are obtained over a short interval as 

one subgroup. In bearing fault detection, since bearing faults develop over a prolonged 

period, it may be reasonable to subgroup several adjacent measurements in time as one 

subgroup. By doing so, the control limits for sample means and sample ranges discussed in 

the previous section would apply.  

 

The above two sets of control charts, i.e. the set (of the X , and R charts with the limits 

determined by Equations 7.6 & 7.10) and the set (of the X, and mR charts with the limits 

determined by Equations 7.11 & 7.12) both can be applied. It should be noted that no 

matter which set of control charts is applied, the key is the detection of uncontrolled 

variation in the noise-cancelled stator current is helpful to detect a deteriorated bearing 

condition. Specifically, the sample frequently falling outside the control limits indicates a 

deteriorated bearing condition. The idea of combining the stator current noise cancellation 

method and the statistical process control for bearing fault detection is illustrated in Figure 

7.4.  

 

 

Figure 7.4 Illustration of current-based bearing condition monitoring by combining SPC and SCNC 
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A block diagram of the Noise Canceller in Figure 7.4 is shown in Figure 5.5 in Chapter 5 

for constant-load conditions and Figure 6.2 in Chapter 6 for variable-load conditions. A 

block diagram of the SPC Processor is shown in Figure 7.5.  

 

Figure 7.5 A block diagram of the statistical processor for bearing fault detection. 

 

To avoid misjudgment due to insufficient data, the Processor starts after receiving enough 

samples of noise-cancelled stator current, say, after receiving over 100 samples as 

recommended in the references  [61, 65]. The control charts are updated periodically, such 

as each hour as shown in the figure. In each period, first, the control limits are computed 

based on all the previous samples acquired prior to that period; therefore, the calculated 
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limits would apply to all the previous samples prior to that period. Then, the variation of the 

process is measured by calculating the percentage of the samples outside the updated 

control limits among all the previous samples prior to that period. Samples that fall outside 

a control limit are also called out-of-control samples. If there are many samples, e.g. over 

10%, outside the control limits (i.e., over 10% out-of-control samples), a warning message 

about the bearing condition will be sent.  

 

 

7.5 EXPERIMENT RESULTS ANALYSES 

 

The scheme based on the combination of the SPC technique and the SCNC method has 

been applied to the experiment data collected in this research. The results show that at the 

beginning of those tests, no obvious uncontrolled variation was observed, and after the 

machine was running for a while in each test, some degree of uncontrolled variation was 

observed because of the deteriorated bearing conditions. Therefore, by detecting 

uncontrolled variation in the SCNC results, information about a deteriorated bearing 

condition can be generated.  

 

The data collection system, the experiment setup, and the detailed stator current noise 

cancellation results for those experiments are provided in previous chapters. The SPC 

results for those experiments are shown in this section. 

 

7.5.1 CONSTANT LOAD EXPERIMENT TEST 1 

 

The SPC procedure described in the previous section is illustrated in details by using the 

data from this experiment – Constant-Load Experiment 1. The same procedure is also 
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applied to the other tests and the results are presented in the next subsections without 

details for conciseness.  

 

The X-mR charts for this experiment are shown in Figure 7.6. Each point in the top plot 

stands for one RMS value of the noise-cancelled stator current and the x-axis is the time. 

The middle plot illustrates the moving range (i.e. the difference between two adjacent RMS 

values) of the noise-cancelled stator current along the time. The bottom plot records the 

RMS of the machine vibration, which indicates that a bearing fault is developing in this 

test.  
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Figure7.6 The X-mR Charts with updated control limits clearly show uncontrolled variation in the 

SCNC results as the bearing fault develops 

 

Figure 7.6 also shows the level of the control limits calculated in each processing period 
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(five hours in this case), where the control limits are calculated based on all previous 

samples acquired prior to that period. It can be seen clearly that uncontrolled variation 

takes place on both the charts as the bearing condition degrades.  

 

It should be pointed out that the stator current measurement frequently falling outside the 

control limits means a deteriorated bearing condition. It should not be expected that the 

measurement should always fall outside those limits after a bearing fault has occurred. This 

is because the assignable cause of uncontrolled variation may come and go [61]. This is 

also reflected in the vibration measurement; as shown in the figure, the vibration decreases 

around the 60th hour following the increase around the 55th hour.  

 

To quantify the degree of uncontrolled variation in the process along the time, the 

percentage of the out-of-control (OOC) samples was calculated, following the procedure 

depicted in Figure 7.5. Specifically, the percentage of the OOC samples on the X chart and 

the mR chart, as well as the total percentage, was calculated; the results are drawn in Figure 

7.7. The control charts and the calculation were updated hourly. The percentage at each 

hour is the ratio of the number of OOC samples prior to that hour vs. the number of total 

samples acquired prior to that hour, and the OOC samples are those fall outside the control 

limits calculated based on all samples acquired prior to that hour. The calculation started at 

the 25th hour, in order to avoid possible misjudgment due to insufficient data at the 

beginning. Around the 46th hour, the total percentage of the OOC samples exceeded 10% 

and a warning message was sent. As seen from the figure, the total percentage of OOC 

samples increases from 3% to 23%, and the percentage of OOC samples on the X chart 

increases from 2% to 19%.  

 

The percentage of OOC samples on the mR chart relates to the change rate in adjacent 

sample values. A relative large value indicates a relatively fast-changing process regardless 
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of a large or small sample value. The bottom plot in Figure 7.7 indicates that the process 

changes relatively fast from the 53rd hour to the 80th hour. This is verified by the vibration 

measurement as shown in Figure 7.6.  
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Figure 7.7 The Percentage of the Out-of-Control Samples along the time for Constant-Load 

Experiment 1 

 

It is also noted that X -R charts would deliver similar information as X-mR charts for the 

same process. For example, the X -R charts shown in Figure 7.8 were drawn by grouping 

the four adjacent values of the RMS of the noise-cancelled stator current in time as one 
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subgroup. I.e., four adjacent samples on the X chart in the top plot of Figure 7.6 were 

grouped as one subgroup on the X  chart in the top plot of Figure 7.8. It can be seen that 

Figure 7.8 shows similar results as Figure 7.6.  
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Figure 7.8 Similar results to the X-mR charts observed on the X -R Charts (subgroup size 4)  
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7.5.2 CONSTANT LOAD EXPERIMENT TEST 2 

 

Similar results to those of Constant-Load Experiment Test 1 are obtained for this 

experiment (Constant-Load Test 2). Figure 7.9 shows the percentage of OOC samples by 

applying the SPC to this experiment. One can see that uncontrolled variation occurs as the 

result of the deteriorated bearing condition and the uncontrolled variation is significant 

after the 33rd hour. Specifically, the percentage of the out-of-control samples increased 

from 6% to over 20% during the experiment.   
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Figure 7.9 The Percentage of Out-of-Control Samples along the time for Constant-Load Experiment 2 
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7.5.3 VARIABLE LOAD EXPERIMENT TEST 1 

 

Variable-load Experiment 1 involves two load levels. The vibration at the two load levels is 

shown in Figure 7.10, which indicates that the bearing condition is degraded along the time 

during the experiment.  
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Figure 7.10 The RMS value of the vibration at the two load levels during Variable-Load Experiment 1 

 

By applying the SPC to the noise-cancelled stator current, a warning message about the 

bearing condition was generated around the 15th hour during Load Level 1. The percentage 

of out-of-control samples for the load level is shown in Figure 7.11. It can be clearly seen 

that the total percentage of out-of-control samples increases from 0% to 32% for this load 

level.  

 148



4 6 8 10 12 14 16 18 20 22 24
0%

10%

20%

30%

40%

Time(-th hour)

P
er

ce
nt

ag
e

Variable Load Experiment-1, Load level 1  
Total Percentage of Out-of-Control Samples      

4 6 8 10 12 14 16 18 20 22 24
0%

10%

20%

30%

40%

Time(-th hour)

P
er

ce
nt

ag
e

Percentage of Out-of-Control Samples on the X chart

4 6 8 10 12 14 16 18 20 22 24
0%

2%

4%

6%

Time(-th hour)

P
er

ce
nt

ag
e

Percentage of Out-of-Control Samples on the mR chart

Warning Sent

 
Figure 7.11 The percentage of out-of-control samples under the first load level during Variable-Load 

Experiment 1 

 

Figure 7.12 shows the percentage of out-of-control samples for the second load level. The 

percentage of out-of-control samples increases from 3% to 9% in the operation at this load 

level alone. It should be pointed out that the noise cancellation algorithm processes the data 

from the two load levels separately (see Section 6.2, Chapter 6). For bearing fault diagnosis 

purposes, the SPC results for the second load level should be considered in conjunction 

with the results obtained from the previous load level, in order to properly track the bearing 

condition during the entire operation period. In other words, for real-time bearing condition 

monitoring, the percentage of out-of-control samples increases from 35% to 41% during 

the second half of the experiment, where the percentage 32% at the end of the first load 

level period has been carried on to the calculations for the second load level. Nevertheless, 
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the increase in the percentage of out-of-control samples at both load levels indicated the 

degradation of the bearing condition. 
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Figure 7.12 The percentage of out-of-control samples under the second load level during 

Variable-Load Experiment 1 

 

 

7.5.4 VARIABLE LOAD EXPERIMENT TEST 2 

 

Similar results to those of Variable-Load Experiment Test 1 are obtained for this 

experiment. The percentage of out-of-control samples increases significantly during the 

operation and, specifically, as shown in Figure 7.13, the percentage of out-of-control 

samples increases from 0% to nearly 20%, which indicated that the bearing health is 

degraded.  
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Figure 7.13 The percentage of out-of-control samples increases during Variable Load Experiment 2 

  

Similar results are obtained from all other experiments performed in this research which 

are not shown here for conciseness.  

 

7.6 SUMMARY 

 

The main objective of this chapter is to develop a scheme to distinguish a deteriorated 

bearing condition from normal conditions, solely relying on stator current measurements. 

First, the difficulties in bearing fault detection and fault severity assessment solely based 

on stator current measurements were discussed. Then it was proposed that statistical 

methods such as the statistical process control can be applied to calculate the warning 

threshold for stator current measurements. The statistical process control was further 

evaluated and its principle was discussed. Based on the discussion, the process of 

determining the warning threshold for the samples of noise-cancelled stator current was 
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described. Finally, the results attained by applying the SPC tool to the data collected during 

the on-line experiments were presented. It was observed that the percentage of 

out-of-control samples increases significantly as the bearing condition degrades. The 

results demonstrated that it is possible to detect realistic bearing faults by detecting 

uncontrolled variation, specifically by detecting the percentage of out-of-control samples 

in the noise-cancelled stator current. 
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CHAPTER 8 
CONCLUSIONS, CONTRIBUTIONS, AND 

RECOMMENDATIONS 
 

8.1 SUMMARY AND CONCLUSIONS 

 

The goal of this research was to advance the field of bearing condition monitoring for 

electric machines. Bearing faults account for approximately half of all machine failures; 

therefore, an early detection of faltering bearings is of practical importance.  

 

Many methods have been proposed in the literature to monitor bearing condition; those 

methods include vibration, chemical, temperature, acoustic emission, sound pressure, laser, 

and current monitoring. Each monitoring method has its own advantages and 

disadvantages. Because of its unique properties stator current monitoring was chosen to be 

the main topic of this research. Current monitoring is non-intrusive, can be implemented 

remotely, and is convenient and inexpensive. However, detecting bearing faults via stator 

current monitoring is known to be a difficult task. The difficulty comes from the fact that 

bearing fault signatures are subtle in the stator current, and the fact that the research is 

limited in this area. For many realistic bearing faults, the fault frequencies are not 

predictable, which adds another level of difficulty.  

 

Most available current-based techniques rely on the observability of certain frequencies in 

the stator current. Consequently, they are most effective for detecting single-point defects 

in bearing surfaces. However, for realistic bearing faults that are developed on-line in 

industrial settings, especially at an early stage, those frequencies are not observable and 

may not exist at all.  
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Therefore, there was no attempt to localize specific frequencies in the stator current in this 

work; instead, the problem of detecting realistic bearing faults has been restated as a low 

signal-to-noise ratio (SNR) problem. It is known that the dominant components in the 

stator current are not related to bearing faults, and subtle bearing fault signatures can be 

well masked by the dominant components. Following the signal-noise notion, it was 

desired to separate the bearing fault-related and non-related components in the stator 

current via noise cancellation techniques. By effectively removing those dominant, 

fault-non-related components, the remaining components related to the bearing faults were 

better accessible.  

 

Due to its optimum property in the sense of producing the best estimate of a 

noise-interfered signal, Wiener filtering has been chosen to accomplish the noise 

cancellation. Since Wiener filtering is very common in practical applications, there are 

efficient algorithms like the Levinson-Durbin Recursion algorithm that solve for the 

unknown coefficients.  

 

Once the fault-related components were separated, further analysis was applied. 

Specifically, it was desired to evaluate the bearing condition based on the magnitude of 

those components obtained in real time. By using a statistical tool such as Statistical 

Process Control, a warning threshold was computed and applied to the magnitude of those 

components. The warning threshold was used to distinguish a deteriorated bearing 

condition from normal conditions.  

 

To validate the proposed noise cancellation method, on-line experiments have been 

performed.  A unique feature of those experiments is that bearings were failed over time by 

increasing generalized roughness on the bearing surfaces. Thus, the bearing failure 

mechanism is similar to many realistic situations. A medium-size induction motor (20 hp) 
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was employed as the test motor, in contrast to most previous research studies where only 

small-size motors were involved. The size of test bearings is type 6309 2Z. The duration of 

experiments ranged from tens of hours to several weeks. Vibration measurements were 

collected as a reference for the bearing health. 

 

Six constant-load experiments and two variable-load experiments have been performed. 

Over 10 bearings have failed during the tests and among them the data for 8 bearings were 

successfully recorded. The two variable-load experiments involved 5 load levels. To avoid 

the drastic influence from load changes on the stator current, the noise cancellation was 

applied to each load level separately, while the results were considered together. To realize 

the true non-intrusiveness, a current-based speed estimation algorithm was employed to 

obtain the load information. Significant changes have been observed in the machine 

vibration and in the noise-cancelled stator current as the bearing faults developed. The 

experimental results showed that the first-order correlation between the noise-cancelled 

stator current and the machine vibration was highest as 0.86; in 4 out of the 11 load sections, 

it was greater than 0.69; in 6 out of the 11 load sections, it was greater than 0.55; and in 9 

out of the 11 load sections, it was greater than 0.43. Due to the complexity of the system, 

higher-order fitting models provided better results. For example, by assuming a nine-order 

polynomial fit between the noise-cancelled stator current and the machine vibration, the 

correlation coefficient between the two measurements was found to be 1.0 in 2 out of the 11 

load sections, and equal to or larger than 0.8 in 6 out of the 11 load sections, larger than 0.6 

in 9 out of the 11 load sections. 

 

The results attained by applying the noise cancellation method to vibration signals further 

demonstrated that bearing fault-related components were not affected by the noise 

cancellation process. In addition, the performance of the proposed method was compared 

to the existing Mean Spectral Deviation method. In one of those experiments, the MSD 
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method failed to detect the bearing fault, while the proposed method clearly indicated the 

deteriorated bearing condition.  

 

Experimental results also showed that as the bearing condition was degraded, significant 

uncontrolled variation occurred in the noise-cancelled stator current. By applying the 

statistical process control technique, it was observed that the out-of-control samples (of the 

noise-cancelled stator current) increased from 3% to over 20% in those experiments. The 

results showed that it is possible to detect a deteriorated bearing condition by observing 

the percentage of out-of-control samples of the noise-cancelled stator current.  

 

For convenience, the maximum allowed percentage of out-of-control samples under 

normal bearing conditions was preset and served as the warning threshold. Theoretically, 

the out-of-control samples should be 0.3% for a sample set drawn from a normal 

distribution, since 99.7% of the samples fall within the three-sigma limit. For practical use, 

a margin should be provided considering the factors that could affect this number: the 

completeness of the noise components removal during the noise cancellation process, the 

size of the sample set, the accuracy of the assumption of the normal distribution, and the 

random effects from unknown sources. In the experiments performed in this research, 10% 

served the purpose, though this threshold should be adjusted to meet specific needs in 

practical applications.  
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8.2 CONTRIBUTIONS 

 

The contributions of this research are summarized as follows: 

 Surveys in the following areas have been performed: 

- Various bearing condition monitoring methods, considering implementation 

requirements, 

- Vibration-based bearing condition monitoring techniques, 

- Existing current-based bearing condition monitoring techniques, and 

- Various noise cancellation structures and algorithms. 

 A new method to detect bearing faults via stator current monitoring has been 

developed and experimentally verified. 

- A new concept to formulate the bearing fault detection problem as a low 

signal-to-noise (SNR) problem was proposed. It follows that stator current 

noise cancellation is appropriate to solve the problem. 

- A detailed theoretical analysis of the stator current noise cancellation method 

based on Wiener filtering was presented. 

- The noise cancellation method successfully detected the degraded bearing 

conditions in the experiments performed in this research. 

- The proposed noise cancellation method is simple and easy to implement.  

 A strategy to extend the proposed method to variable-load conditions has been 

developed and experimentally verified.  

- A current-based speed estimation algorithm was implemented to detect a load 

change. 

- The negative effects of load changes on bearing fault detection were 

minimized by applying the noise cancellation method to each load level 

separately, while the results were considered together.  

- True non-intrusive bearing fault detection was achieved by using the strategy. 
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 A method to determine warning threshold for current monitoring has been developed 

and experimentally verified. 

- The challenges in determining warning threshold for current monitoring were 

discussed. To minimize those difficulties, it was proposed that statistical 

methods should be applied. 

- The new monitoring method was based on the combination of the statistical 

process control and the noise cancellation technique.  

- Experimental results have shown that it is highly possible to detect bearing 

faults by detecting uncontrolled variation in the noise-cancelled stator current. 

Experimental results have shown that the percentage of out-of-control 

samples provides valuable information about the bearing condition. As the 

bearing conditions were degraded in those experiments, the percentage of 

out-of-control samples increased from 3% to over 20%.  

 An existing experimental setup for generating generalized-roughness bearing faults 

was improved and a number of bearings have been failed by using this setup. 

- An isolation transformer was added to the original setup to prevent 

interference between the shaft current circuit and the measurement circuit. 

The interference could corrupt bearing data.  

-  Different from most previous research studies, a medium-size motor has 

been used as the test motor. A medium-size motor could produce less 

prominent fault signatures in the stator current compared to small-size motors 

because of reduced bearing-machine size ratio and increased noise from the 

load.  

- A number of bearings have been successfully failed by using the setup. The 

faults are characterized by generalized roughness on the bearing surfaces, 

which is similar to most realistic bearing faults.  
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8.3 RECOMMENDATIONS  

 

Some recommendations are listed for continuing investigation in this research field: 

 More experiments need to be carried out to further evaluate the sensitivity and 

reliability of the proposed detection scheme on a wide range of electric machines of 

different motor size, load types, and installations. Small-size motors may have 

relatively prominent bearing fault signatures. For large-size motors, such as 

medium-voltage motors, new challenges may exist for current-based bearing fault 

detection. 

 For electric machines under continuous non-stationary operations, bearing fault 

detection via stator current may be more challenging than in stationary situations. The 

effects of non-stationary operations on the stator current need to be investigated for 

bearing fault detection purposes. 

 Further work is needed to investigate the applicability of other signal processing tools 

in characterizing the fault signatures injected by realistic bearing faults. Those tools 

include, but not limited to, Kalman Filtering, Wigner-Ville Distribution (WVD), and 

Homomorphic (cepstrum) Transformation.  

 It is desired that a detection method should be able to detect bearing faults of both 

types: single-point defects and generalized roughness. Reliable techniques in detecting 

single-point defects are available in the literature. Therefore, some work remains to be 

done on how to incorporate the techniques developed in this research along with those 

techniques available in the literature. By doing so, a complete bearing condition 

monitoring solution can be realized. 

 Some work remains to be done to determine how the detection methods developed in 

this research interact with other fault detection methods such as stator fault detection 

methods and rotor fault detection methods, if all these methods are going to be 

implemented in a same microprocessor in practice.  
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