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PREFACE

This thesis is for the dissertation of my Ph.D. study at the Department of Industrial and

Systems Engineering at Georgia Institute of Technology. It serves as documentation of my

work during the study, which has been made from fall 2000 until spring 2005. The study has

been supported in part by The Logistics Institute – Asia Pacific, a collaboration between

the Georgia Institute of Technology and the National University of Singapore.

This thesis consists of three chapters with conclusions and appendices. Each chapter

contains the paper that is submitted to or intended for an international journal or proceed-

ings. Therefore, each chapter is self explanatory without the cross references from other

chapters.

The first chapter gives an overview of the maritime shipping industry and provides a

focused survey on the problems of ship routing and scheduling of bulk materials. The

second chapter focuses on the formulation of a model for finding a minimum cost routing in

a network for a heterogeneous fleet of ships engaged in pickup and delivery of several liquid

bulk cargos subject to the inventory level of each product in each port being maintained

between certain levels. The third chapter shows this combined multi-ship pickup-delivery

problem can be decomposed into several subproblems by dualizing coupling constraints and

suggests a solution method using Lagrangian relaxation and a randomized greedy heuristic

approach. Appendices consist of theoretical results regarding linear relaxation techniques,

a glossary of notation, etc.
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SUMMARY

Vehicle routing and scheduling has been studied extensively in the context of truck

transport and, to a lesser extent, in the context of rail transport. However, relatively little

work has been done on ship routing and scheduling even though approximately 90% of the

volume and 70% of the value of all goods transported worldwide is carried by sea.

In the first chapter, we survey the literature on maritime transport of liquid bulk prod-

ucts with an eye on challenges that lend themselves to solution by operations research

methodology. The survey is by no means exhaustive and is intended as an introduction to

the subject for researchers new to the field. Only brief synopses of the articles are used to

capture the flavor of the type of problems that arise and the models and solution strate-

gies that have been proposed to deal with them. While the paper focuses on routing and

scheduling problems, other important problems are also identified.

In the second chapter, we formulate a model for finding a minimum cost routing in

a network for a heterogeneous fleet of ships engaged in pickup and delivery of several

liquid bulk cargos. The problem is frequently encountered by maritime chemical transport

companies, including oil companies serving an archipelago of islands. The products are

assumed to require dedicated compartments in the ship. The problem is to decide how

much of each product should be carried by each ship from supply ports to demand ports,

subject to the inventory level of each product in each port being maintained between certain

levels that are set by the production rates, the consumption rates, and the storage capacities

of the various products in each port. This important and challenging inventory constrained

multi-ship pickup-delivery problem is formulated as a mixed-integer nonlinear program.

We show that the model can be reformulated as an equivalent mixed-integer linear program

with special structure. Over 100 test problems are randomly generated and solved using

CPLEX 7.5. The results of our numerical experiments illuminate where problem structure

can be exploited in order to solve larger instances of the model.
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The third chapter of this thesis deals with solution algorithms that take advantage of

model properties. We show that the mixed-integer linear program can be decomposed

into several subproblems by dualizing coupling constraints. We solved this minimization

problem by the Lagrangian Relaxation method to get a better lower bound and to measure

the quality of solutions obtained from two suggested randomized greedy heuristic methods.

We conducted numerical studies to establish the goodness of our combined Lagrangian

Relaxation/Heuristic approach. Test results show an average duality gap of 26.8% and an

average optimality gap of 12.5% on small sized problems. More importantly, our solution

times are, on average, three orders of magnitude faster than getting a first feasible solution

by CPLEX when using the default options of the solver.
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CHAPTER I

MARITIME TRANSPORT OF BULK MATERIALS: AN
OPERATIONS RESEARCH PERSPECTIVE

1.1 Introduction

Many industries face the daily challenge of determining the flows in supply chain networks

in order to meet customer demand at minimum cost. Such problems have been studied ex-

tensively for road and rail networks and for the intermodal hubs that connect them. These

studies have provided solutions that have become the logistical frameworks for the advance-

ment of intercontinental trade. However, globalization of trade has placed a heavy burden

on maritime shipping. In the face of this growth, many of the world’s major ports have

installed modern equipment to load, unload and store the ever increasing volumes of goods

passing through them. To secure even more efficiency for modern ports (and simultaneously

decrease the expenses of shipping companies), optimal routing and scheduling of maritime

fleets is needed. This chapter focuses on the state of the art of modeling and on solving

problems related to the maritime transport of liquid bulk materials. These problems are

much less understood than container transport problems.

We have concentrated on the shipment of liquid bulk materials because container ship-

ping is more closely related to vehicle routing in terms of both the types of challenges that

arise and the mathematical methodologies that are employed to model and solve them.

Moreover, bulk transportation constitutes more than 80% of both global waterborne trade

and fleet size compared with 10% for container shipping [55]. Also, bulk transportation

accounts for up to 80% of the total ton-miles by water, according to Ballou [3]. By com-

parison, the freight moving in container ships is far less in tonnage, but it is much more

efficiently processed. This is because the use of containers reduces handling time, allows

intermodal transfer, and reduces loss and damage to the goods.

Transportation is a significant fraction of the economies of most developed nations. It
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accounts for approximately 15% of the U.S. gross national product. Worldwide, approx-

imately 90% of the volume and 70% of the value of all goods is transported by sea (see

Transportation Science [39]). Given the (relatively) long delivery times associated with

marine transport, the impact of inefficiencies in maritime shipping can easily be magnified

throughout the supply chain. As globalization of multinational enterprises increases, the

demand for maritime transport capacity could eventually outstrip supply, a situation that

would lead to increased prices for finished goods. It would take several years for additional

capacity to be built, and by then the marketplace could change again. The economic sig-

nificance of such potential problems has motivated both private companies and academic

researchers to pursue the use of modern decision support systems to arrive at better uti-

lization of existing resources and to make better planning decisions. A recent issue of the

Journal Transportation Science [39] on Maritime Transportation focused on this problem

area and published only four papers. These papers represent only a small sampling of the

many challenges confronting companies operating at different locations in the supply chain.

In this chapter, we give an overview of the maritime shipping industry and provide a fo-

cused survey of the problems of ship routing and scheduling of bulk materials. In particular,

we are interested in issues and models that have been successfully tackled via Operations

Research (OR) methodology. In recent years, OR has had much success in solving a growing

array of complex decision problems confronting managers of large organizations that require

the efficient use of materials, equipment, and human resources. In the areas of logistics and

supply chains, OR analysts determine the optimal means of coordinating diverse elements

of an enterprise in order to achieve specified goals by applying mathematical principles to

organizational problems.

One of the most successful applications of Operations Research has been in vehicle

routing. This problem calls for determining the most efficient use (either in the sense of

cost minimization or profit maximization) of a fleet of vehicles that must make a number

of stops to pick up and/or deliver passengers or products. Most of the major trucking

companies in the United States currently have implemented OR techniques to manage their

fleet assignment and vehicle routing. The container maritime transportation industry has

2



benefited from this early work because container ports are hubs of the intermodal networks

that transfer containers from sea to land. Consequently, many container shipping problems

have been looked at to some degree because of their similarity to rail-truck intermodal

networks on land. Lagging far behind are issues relating to bulk (liquid and dry) maritime

shipping.

Maritime transportation of bulk materials is of increasing importance to the island na-

tions of Pacific Asia because of their growing interdependence as a result of globalization

and the limited transportation capacities available by truck, rail and pipeline. It is safe to

say that the rapid economic growth of Pacific Asia nations can be sustained only if logistics

systems for bulk cargo keep pace with increasing demand. Table 1 from the reference [55]

shows that 12 (italicized) of the top 25 ports in the world are in the Pacific Asia region, but

they receive more than 60% of worldwide port calls. This significance may increase as the

region’s economy expands. According to [54], more than half of the world’s supertankers

pass through the South East China sea from the Middle East to countries with large energy

appetites such as Japan, South Korea, and China. Additionally, many major oil compa-

nies have refining centers in this region, most notably in Singapore. To fuel anticipated

economic growth, significant increases in maritime transported liquid bulk petrochemical

products must be accommodated within the existing transportation networks. This fuels

the need to apply operations research methodology to the situation in order to find ways to

more efficiently utilize existing systems and to make better strategic decisions on capacity

expansions.

With annual growth in maritime shipping being measured in the billions of U.S. dollars,

maritime transportation companies can expect large gains from improving the routing and

scheduling of their ships. According to Chajakis [13], a 7% reduction in the costs of logis-

tics in the refinery industry increases annual profits by 23%. Moreover, such a reduction

can be attained easily through intelligent scheduling and the use of modeling tools without

recourse to large amounts of capital investment. However, the OR literature shows that

relatively few research and implementation studies have been done on maritime industries

in comparison with the number done on the other transportation modes of air, rail and

3



Table 1: Top 25 World Ports(italicized Asian Ports) by Calls, 1997

Ports Calls Percentile Ports Calls Percentile
1 Singapore 45,816 16.14% 15 Felixtowe 7,266 2.56%
2 Hong Kong 31,352 11.05% 16 Priraeus 7,023 2.47%
3 Rotterdam 15,852 5.59% 17 Houston 6,803 2.40%
4 Antwerp 14,265 5.03% 18 New Orleans 6,762 2.38%
5 Kaohsiung 13,402 4.72% 19 Barcelona 6,649 2.34%
6 Yokohama 13,043 4.60% 20 London 6,649 2.34%
7 Busan 11,958 4.21% 21 Shanghai 6,376 2.25%
8 Hamburg 11,704 4.12% 22 Le Havre 5,960 2.10%
9 Nagoya 10,274 3.62% 23 Tokyo 5,937 2.09%
10 Europort 10,048 3.54% 24 Genova 5,612 1.98%
11 Kobe 9,772 3.44% 25 Los Angeles 5,585 1.97%
12 Port Kelang 9,683 3.41% Total 283,627
13 Jakarta 8,351 2.94% All ports 1,298,757
14 Osaka 7,658 2.70% Top 25 (percent) 22.1 %

motor vehicles. To keep the cost of consumer products low, it is essential that maritime

transportation companies operate efficiently by determining routes and schedules that min-

imize total distribution costs while satisfying various requirements such as ship capacity,

time windows on pick-up and/or delivery, timely availability of ships, etc.

The purpose of this chapter is to help the maritime transportation industry better

understand the potential impact of applying OR techniques to its business. Also, we hope

to stimulate increased academic research by surveying the open literature on maritime

transportation, classifying the models that have been developed, and summarizing proposed

solution techniques.

The remainder of this chapter is organized as follows. In section 1.2, we review the

important items that should be considered when operations research methods are used to

model ship routing and scheduling. In section 1.3, we present the typical types of ship

routing and/or scheduling problems that arise in the bulk shipping industries.
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1.2 The Maritime Transportation Industry

It is helpful to consider the principal components of maritime transportation as listed in the

Table 2 in order to understand the routing and scheduling problem and to help formulate

models for finding the efficient use of a fleet. The principal components are modified from

Fisher and Rosenwein [27] by considering additional parameters such as, but not limited

to heterogeneous types of ships, multicompartment ships, and the storage capacities of

ports. As can be seen, the components listed are merely the major problem parameters

and constraints that need to be considered. The presence or absence of any component

in a model is determined by a specific situation that may dictate the need for additional

constraints not listed in Table 2, such as minimum load and unload amounts or the need,

especially for chemical products, for setup times to load and unload different cargoes. It is

safe to say that most real ship routing problems need to consider most of the components,

thus making the problem very complex.

Cargo can be categorized from an OR point of view as either discrete or continuous.

Discrete cargoes are itemized by containers and transported by container ships. Each cargo

is specified by load port, delivery port, time window, etc. Continuous cargoes are referred

to as bulk. Typically they are divided into dry bulk and liquid bulk. Most (but not all)

of the (petro)chemical products are categorized as liquid bulk and are carried in special

vessels whose specifications are determined by the characteristics of the chemicals involved.

For example, Liquified Natural Gas (LNG) carriers should be designed to maintain high

pressure. For some chemicals, storage-vessels should be designed to guard against chemical

reactions with the tank. Therefore, liquid bulk is usually carried by dedicated ships or in

designated compartments of multicompartment ships. Dry bulk commonly consists of break

bulk materials such as steel, logs, lumber, wood pulp, paper, etc., and the term general

dry bulk covers such cargoes as grain, coal, fertilizer, coke, sulfur, etc. While dry bulk

deals with discrete objects, shipping decisions are based on weight, volume, area, etc.; i.e.,

continuous measures.

Ports usually offer facilities for storage of specified cargoes, railroad switching services,

materials handling equipment such as pipelines, heavy lift cargo handlers, and other general

5



Table 2: Principal Components of Maritime Transportation.

Major categories Components
Cargoes types of cargo

quantity of each
load ports for each type cargo
delivery ports for each type cargo
time-window constraints on load and delivery times

Ports number of ports
navigable water depth
distance between ports
loading/discharging duration for each cargo type
storage capacity for each cargo type
facilities needs to load or unload for specific cargo

Ships capacity
compartments
number of ships
types (heterogeneous or homogeneous)
limitation on ports or canals
maximum speed
location at the start of scheduling horizon
time of availability

Costs spot charter rates
port and canal dues
idle ship and demurrage charges
operating costs for ships in fleet
- crew
- bunker fuel
- flushing between loads
- maintenance and repair
- port charges

services such as bunker fuel. Because different ports offer different levels of such infrastruc-

ture, the business requirements of maritime companies frequently predetermine the ports

that should be visited in a routing problem. The problem remains of how to best — with

“best” usually equating to least cost — sequence the visits within permitted time windows

while satisfying demand.

Several types of water carriers are used. In general, they can be classified as either

barges, or bulk carriers (liquid or dry), or container ships, or special purpose carriers such

as car carriers, Liquified Natural Gas (LNG) carriers and passenger ships. Barges have
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standardized dimensions of either 26 by 175 feet or 35 by 195 feet and tow up to 40,000 tons

(See Ballou [3]). Bulk carriers are of two types, one for transportation of bulk liquids such as

crude oil, chemicals and petrochemicals, and the other for transporting dry bulk such as coal,

sand, grain, etc. Depending on the purpose of the ship, it can have several compartments,

including dedicated compartments for bulk liquids, and/or movable compartment partitions

for dry bulk carriers that add the flexibilty of changing compartment sizes to accommodate

varying cargo dimensions. A typical (average-sized) bulk liquid carrier for crude oil has a

200,000m3 cargo hold capacity, while a dry bulk carrier’s cargo hold is about 100,000m3

(See [51]).

Several types of vessels are shown below with graphics from the reference [51]. General

bulk carriers (see Figure 1) can transport several types of cargo at the same time, without

restrictions on specific cargoes. Ore, bulk and oil (OBO) carriers (see Figure 2) are ded-

icated carriers called OBO’s. Some of them are designed for carrying only ore and these

are called ore carriers (see Figure 3). General cargo ships (see Figure 4) carry a variety of

packaged freight of any kind, heavy or light, liquid or solid. Most of these are equipped with

stevedoring lifts. Oil tankers (see Figure 5) are designed for carrying crude oil for relatively

long distances. Typically, these are very large and cannot navigate canals and certain wa-

terways. Chemical tank carriers are related ships designed for transporting (petro)chemical

products. Liquified Petroleum Gas (LPG) and Liquified Natural Gas (LNG) carriers (see

Figure 6) have compartments that maintain high pressure and low temperature in order to

transport large volumes of the products in stable states. Container carriers (see Figure 7)

haul containers inside the hull and atop of the deck.

Figure 1: General Bulk carrier
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Figure 2: Ore, bulk and oil (OBO) carrier

Figure 3: Ore carrier

Figure 4: General cargo ship

Figure 5: Oil tanker

Figure 6: LPG, LNG carrier
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Figure 7: Container carrier

Table 3: Average Freight Ton-Mile Transportation Price by Mode 96

Mode Price (cents/ton-mile) Scaled percentage
Truck 25.08 100
Rail 2.50 10
Pipe 1.40 6
Water 0.73 3
Air 58.75 234

Low cost is one of the distinctive characteristics of water transportation. The costs in

Table 3 (see Ballou [3]) are averages that result from the ratio of freight revenue generated

by a mode to the total ton-miles shipped in 1996. The third column of the table gives the

cost of the different modes relative to truck transport. With truck ton-mile transportation

cost representing 100%, water transport costs 3% of the cost of truck transport, followed

by 6% for pipeline transport and 10% for rail transport. However, while the ton-mile cost

is low, other associated expenses such as terminal costs, including harbor fees, and the cost

for loading and unloading cargo are relatively high. In spite of these high terminal costs, the

low “line-haul cost” ensures that the marginal ton-mile cost drops significantly as distance

and shipment size increases; thus the need for ever-larger ships. Consequently, in large

enough vessels, water is the least-expensive transportation mode for bulk commodities in

substantial volume over long distances.

New technological advances, such as GPS (global positioning systems) and GIS (geo-

graphic information systems), provide new tools for dynamically improving ship routing and

scheduling. Although not in general use in the maritime industry, systems are available that

allow ships at sea to interact in real time with the main office and receive instructions about
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any modifications in their route and schedules that take advantage of favorable currents or

revised delivery agreements. The instructions are communicated by a main computer that

regularly receives information from all the ships in a company’s fleet as well as from ports

about any docking delays. The computer also solves new (re-routing) problems that may be

presented by the information arriving either from the ships or from ports. Such capabilities

are possible and would give a maritime enterprise a significant edge over its competition.

To date, however, few maritime enterprises have embraced quantitative decision tools to

help with operational planning. This failure puts the industry far behind the trucking and

airline industries, which are realizing enormous gains from their implementation of similar

tools.

1.3 Maritime Logistics Problems

This section gives a brief overview of several maritime logistics problems, including brief

synopses of the literature on attempts at tackling related problems. We begin by pointing

out the major differences between routing and scheduling problems for land networks and

for water networks. First, ports (nodes in the transportation network) are usually multi-

functional, serving as supply points, demand points, distribution centers and intermodal

centers, all depending on the cargoes, ships, and harbor facilities. Second, compared with

vehicle routing, relatively few ships and ports are involved. Third, ships tend to travel long

distances at relatively low speeds, and they are able to travel 24 hours a day for weeks

at a time. Therefore, maritime transportation usually poses no critical planning horizon.

Generally, an optimal solution (route and schedule) varies according to the changes in the

planning horizon, and random effects increase as the planning horizon lengthens. It is stan-

dard to set the planning horizon according to the fiscal period of a business. Alternatively,

one can consider a meaningful period of time or implement a rolling horizon concept (see

Sherali et al [49]). Moreover, different ships on the same route differ in performance. An-

other difference between ship and vehicle scheduling is that in ship scheduling, fleet size is

a much more important factor. This is because the cost of operating one additional ship

has a much larger impact on the solution than would one more vehicle.
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The earliest work on ship routing and scheduling has been surveyed by Ronen [43, 45].

Ronen [43], categorizes 1970’s and earlier ship routing problems into the three categories

of liner, tramp, and industrial operations. The liner operational problem is analogous to

the ship routing model in our categorization scheme. Tramp operation is the problem of

assigning an optimal sequence of cargoes to each vessel in a given fleet, which falls into

the categorization of ship routing and scheduling in our schema. Industrial operations

are problems in which the owner of the cargo controls the ship, and this also falls into our

categorization of ship routing and scheduling. Ten years later, Ronen [45] updated his survey

to cover the 1980’s models. This time the author categorized the problem into four major

categories of fleet sizing, inventory routing, optimal cruising speed, and ship scheduling. In

contrast to Ronen [45], our survey is more focused on the routing itself rather than on fleet

sizing and speed of the ship, although those problems are defined herein to illustrate the

breadth of the challenges facing the industry.

Bulk shipping is set apart by the continuous nature of the product. The decision variable

of quantity load and/or unload is continuous and seems easier to solve compared with

problems with integer variables. However, products involved with bulk shipping have more

restrictions, such as the requirement that a product be handled separately, which means

each ship must have a dedicated compartment or dedicated ships in the case of liquid bulks.

Therefore, usually we need to consider assignment of the product into the compartment,

and this complicates the problem. Typical of the nature of liquid products, most crude oil

carriers must return empty from the destination to the origin.

In the remainder of this section, maritime transportation logistics problems of bulk

materials are classified into four categories of Ship Routing, Ship Routing and Scheduling,

Inventory Routing and other combined and complex models. Ship Routing problems involve

decisions on the sequence of ports to visit for each fleet of ships on a fixed route. Ship

routing and scheduling problems consider the distribution problem in a case in which sets

of cargoes are specified by loading, discharging port, and time, whereas Inventory routing

is constrained to maintain local inventory of the product. Typical examples of enterprises

confronted with these problems are briefly overviewed, and the recent literature in each
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problem area is surveyed.

1.3.1 Ship Routing

The objective of ship routing is to maximize profit by determining the optimal sequence

of ports of call for each ship, the number of trips each ship makes in a planning horizon

and the amount of cargo transported between any two ports by each ship. In the operation

of charters, the goal is to find the best route and to evaluate the profit potential for each

ship in order to determine if chartering additional vessels makes sense. Shipping companies

operating fleets of ships for general cargo transportation on a particular trade route fixed

by two end ports must deal with this kind of problem. For example, a company operating

a regular route with two ships for pickup and delivery of cargoes will want to determine the

best sequence of ports for each ship (see Figure 1.3.1).

Node 1
 Node 2
 Node 3
 Node 4
 Node 5


Node 1
 Node 2
 Node 3
 Node 4
 Node 5


Routing of ship 1


Routing of ship 2


Figure 8: A possible route of two ships for fixed route

Periods of excess demand and/or capacity create a need for chartering decisions. Faced

with high demand, a company may want to charter one or more ships for a certain period.

In this case, knowing the profit potential of all candidate ships is crucial to a decision

designed to meet all of the forecasted demand. On the other hand, a business downturn

that creates excess capacity presents opportunities to fill the space using modern techniques

of yield management that were pioneered by the airline industry.
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1.3.1.1 Literature Survey

Rana and Vickson [41] formulated a mathematical programming model for optimally rout-

ing a chartered container ship that helps to manage the decision of whether to charter a

container ship, and, if so, which size/type of ship is most appropriate in order to maxi-

mize profit. The model determines the optimal route, the number of containers transported

between ports, and the number of trips the ship makes during the charter period. The prob-

lem is formulated as a nonlinear integer programming problem which is converted into to a

linear mixed-integer programming problem by fixing an integer variable to a constant and

solving it several times by changing the value of this integer variable. The mixed-integer

problem is solved by the Benders decomposition method by solving the cargo allocation

subproblem and the integer network subproblem.

In a later work, Rana and Vickson [42] considered the scenario of a maritime company

whose fleet of ships must service a network of ports. This differs from the above model

suggested by Rana and Vickson [41] by considering multiple ships, and its objective is to find

the best route for each of the ships. The nonlinear integer programming formulation is solved

by the Lagrangian relaxation method. The Lagrangian relaxation problem is separated into

nonlinear integer programming subproblems and each subproblem is decomposed further

into several linear mixed-integer programming problems and solved independently.

Fagerholt [21] considers the problem of finding an optimal number of fleets and routes

for a liner service. Their approach solves the problem by generating feasible routes using a

dynamic programming algorithm for each ship and then applying a partitioning formulation

to obtain an optimal solution.

Boffey et. al [9] studied heuristic algorithms to determine good routes for the container

ships so as to increase the revenue of a liner service on the North Atlantic. Nemhauser and

Yu [34] studied the common carrier transportation system to determine the number and

the starting time of services so that the total profit is maximized.
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1.3.2 Ship Routing and Scheduling

The objective of determining optimal routes and schedules is to minimize the cost of ship

operation within a planning horizon under the condition that all cargoes are transported

to their destination within time windows. Usually, there exists a single source of supply for

each product type, and each cargo consists of the same product with discharging locations

and time windows.

1.3.2.1 Literature Survey

Psaraftis et al [40] suggest an optimal polynomial time algorithm for a single ship routing

and scheduling problem with time windows in a case in which the shoreline is a straight

line. It also presents heuristics for a general problem.

The paper of Brown et al [12] presents and solves a crude oil tanker routing and schedul-

ing problem. Each tanker is assigned to a single origin and to a single destination with full

shipload. All tankers are assumed to be of the same size and to have a single compartment.

Each cargo has loading and discharging dates and ports. To obtain an optimal solution for

this routing and scheduling problem, all feasible schedules are first generated for each cargo.

Second, an optimal speed is selected for each cargo schedule. Finally with these all feasible

schedules, this method solves a set partitioning problems to determine the least expensive

schedule for each cargo.

The paper of Fisher and Rosenwein [27] considers the efficient scheduling of ships en-

gaged in pickup and delivery of bulk cargoes. Each cargo consists of a designated quantity

of a product to be lifted from one or more load ports to one or more destination ports

with time windows. This algorithm first generates a candidate schedule for each ship that

contains all feasible solutions. This guarantees optimality, or alternatively can be heuristi-

cally limited to contain only those schedules likely to be in an optimal solution according

to the size of the problem and the computational time requirement. Choosing one optimal

solution within the candidate schedule is formulated as a set-packing problem and solved by

a dual method of the lagrangian relaxation algorithm. A similar study by Kim and Lee [29]

describes a decision support system formulated as a set packing problem.
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The paper of Sherali et al [49] present a solution for routing and scheduling oil tankers

transporting multiple cargoes that are compartmentalized with loading and unloading time

windows. Each voyage has a single origin and destination and each cargo is a full shipload.

It considers a pre-determined penalty that is incurred when shipments are not delivered

within time windows. Taking a different approach from those proposed by Brown et al [12]

and by Fisher and Rosenwein [27], Sherali et al [49] do not generate a feasible schedule

but instead incorporate the process of selecting a feasible schedule within the mixed-integer

programming model itself. The formulation is enhanced by inclusion of valid inequalities

(see Nemhauser and Wolsey [33]) and by incorporating a rolling horizon concept. The

problem is solved by the branch and bound method to obtain a near optimal 5% gap of the

lower bound of the solution.

The paper of Ronen [44] addresses the problem of finding the route and schedule that

minimizes the cost of travel and port charges. This paper considers a fleet of ships of

different sizes (capacities) that deliver bulk or semi-bulk cargoes from a single origin to

many destinations and then return. Time windows are not considered.

The paper of Ronen [44] addresses the problem to find the route and schedule that

minimizes the cost of traveling and port charges. The set of ships with different sizes

(capacities) deliver a set of different bulk or semi-bulk from the single origin to many of their

destinations and return back to the single origin without considering time windows. Their

approach assesses the utility of three algorithms: a single-step cost minimization heuristic

solution and a biased random generator of schedules that selects the least expensive schedule

out of the many generated; and an optimizing algorithm based on a mixed binary nonlinear

formulation suitable only for small problems. Later work done by Cho and Perakis [14]

reformulates Ronen’s [44] nonlinear, mixed-integer program into a linear one by eliminating

the nonlinearities of the original model and reducing the integer variables.

The paper of Papadakis and Perakis [35] discuses the problem of a fleet of ships car-

rying a specific amount of bulk cargo to several destination ports within a specified time

window. Each vessel of the fleet may load at any origin, and unload at the destination and

return to the same origin. It formulates the problem to minimize the operating cost by
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considering speed selection and vessel allocation problems at the same time. The solution

strategy incorporates methods that under certain conditions allow the decoupling of the

vessel allocation and speed selection problems. In a general case, it arrives at a solution

through a Lagrangian algorithm.

The purpose of the papers of Fagerholt and Christiansen [24, 25] is to solve a ship

scheduling and allocation problem in a situation in which a fleet of ships is engaged in the

pickup and delivery of various dry bulk products within specified time windows. Each ship

is equipped with flexible cargo holds to separate different types of dry bulk cargo. The

formulation of their ship scheduling and allocation problem is based on knowledge of a

candidate schedule for each ship and for each cargo. To generate the candidate schedule for

the formulation, a traveling salesman problem with allocation, time window and precedence

constraints should be solved as a subproblem. This subproblem is solved as a shortest path

problem on a graph whose nodes are the states representing the set of nodes sequenced

in the path, the last visited node in the path and the accumulated cargo allocation when

leaving the last visited node. The arcs of the graph represent transitions from one state

to another. The optimal solution is achieved by a set partitioning approach consisting of

two phases. In the first phase, numerous candidate schedules are generated by a forward

dynamic programming algorithm that extends an existing schedule by adding one more

cargo at a time. This generates candidate schedules and ship scheduling. In the second

phase, the formulation of a set partitioning problem is solved for an optimal solution by

using candidate schedules generated in the first phase.

The paper of Fagerholt [23] deals with a topic similar to that of Fagerholt and Chris-

tiansen [25], but it considers more of the issue of soft time windows by allowing controlled

time window violations at an appropriate penalty cost for some customers and by searching

for possibilities that significantly reduce the transportation cost. It separates time windows

for each cargo into two categories of inter- and outer-time windows. It starts by generating

feasible candidates for each ship and calculates the corresponding operations cost including

the inconvenience (penalty) cost. At the next step, the algorithm solves a set partitioning

problem.
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Many navy applications require the solution of routing and scheduling problems. Naval

applications have specialized objectives such as maximizing the utility of a fleet of vessels as

opposed to the objective of minimizing the cost of operating the vessels in general. Related

papers include Cline et al [19], Brown et al [11, 10], and Darby et al [20].

In general, ship routing and scheduling problems are formulated as set partitioning

problems with preprocessing used to generate candidate schedules for each ship. In contrast,

Sherali et al [49] use a different approach that incorporates mixed-integer programming with

a branch and bound method. Ronen [44], and Papadakis and Perakis [35] also differ in their

solution approaches by formulating the problem as a nonlinear program and solving it by

a Lagrangian algorithm. In all of the cited works on ship routing and scheduling, the

satisfaction of time windows creates most of the computational complexity.

There are differences between each paper in modeling considerations. Fagerholt and

Christiansen [24], [25] and Fagerholt [23] consider multiple compartments with flexible cargo

holds, but Brown et al [12] consider only one product that represents a full shipload, an

approach that simplifies the problem. Fisher and Rosenwein [27] take an approach in

which cargoes can be less than a full shipload. However, in Fisher and Rosenwein [27]

cargoes can be loaded after every remaining cargo has been unloaded, while Fagerholt

and Christiansen [24], [25] permit loading before other cargoes are unloaded. In another

variation, Brown et al [12] and Papadakis and Perakis [35] consider the selection of optimal

speed. Bausch et al [5] and Sherali et al [49] deal with fixed multiple cargo space while

Fagerholt and Christiansen [24], [25] consider flexible cargo holds. Sherali et al [49], and

Fagerholt [23] introduce into consideration flexible time windows with a penalty concept.

1.3.3 Inventory Routing

The inventory routing problem is a distribution problem in which each customer main-

tains a local inventory of a product. Some nodes consume a certain amount of product daily,

and others produce a certain amount of product each day. The objective is to minimize de-

livery costs while attempting to ensure that no customer runs out of the commodity, and no

producer has to stop production because of limited storage capacity. This type of problem is
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typically faced by major oil companies that directly control fleets of ships or sometimes use

spot chartered vessels for the transport of raw materials used in their business. Generally,

the ship owner transports the cargo (usually chemical products) so as not to be short of

the resources needed to operate. Sometimes in chemical industries, continuous production

is required because of the huge setup costs to restart production. In such cases, proper

inventory maintenance is critical.

1.3.3.1 Related surveys

Miller [32] described a fleet scheduling and inventory resupply problem faced by an

international chemical company that transfers multiple chemicals from one point to multiple

destinations with a requirement to maintain a specified level of inventory.

Christiansen [15] presents a two-pronged problem that combines inventory management

and routing with time-window constraints. A fleet of ships transports a single bulk product

between production and consumption harbors. The quantities loaded and discharged are

determined by the production rates of the harbors, stock levels, and the actual ship visiting

the harbor. The paper formulates the problem into network flow models with consideration

of loading and discharging conditions, time constraints and inventory levels at the har-

bor. The solution is determined by the Dantzig-Wolf decomposition method in which ship

routing and inventory management are decomposed into subproblems. Each subproblem is

formulated as a shortest path problem and solved by a dynamic programming algorithm

explained in Christiansen and Nygreen [18]. By solving dynamic programming problems

for each ship and harbor, this method generates paths for each ship, including information

about the geographical route, the load quantity, and the start time at each harbor arrival.

Similar paths also are generated for each harbor, including information about the number

of arrivals at the harbor, the load quantity, and the start time at each harbor arrival. The

best columns that correspond to the ship route and the harbor visit sequence are gener-

ated by solving subproblems. The complexity of the problem depends on the number of

possible routes for each ship. The paper by Christiansen and Nygreen [17], introduces the

idea of reducing the size of the time windows and decreasing the route possibilities, which
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is actually a preprocessing phase to solve the master problem posed by Christiansen [15].

The paper of Larson [30] presents a problem of transporting sludge from 14 wastewater

treatment plants in New York city to disposal sites 106 miles off shore. Each plant has an

average sludge production rate and a holding capacity. First the author calculates the safety

stock level and the maximum deterministic time interval, accounting for the probabilistic

behavior of inflowing sludge, that a ship has to pump out sludge so that storage tank

capacity is not exceeded at any plant. Second, using the time interval determined in the

preceding stage, candidate vessel tours are generated. The next step is to select, by a

heuristic algorithm, the best tour generated.

The nature of inventory management forces us to analyze stochastic system behavior.

The general approach is to consider the time interval in which each facility should be loaded

or unloaded considering the safety stock level. Without interrupting continuous production

of each facility, candidate schedules of vessels are generated and the best route is selected.

1.3.4 Other Combined and Complex Models

In the real world, ship routing and scheduling problems can be partial or total combi-

nations of the models suggested in the previous sections. In either combination, the scale

and complexity of the problem increases dramatically and becomes harder to solve. This

is especially true when other decision variables such as ship speed, multiple compartments,

or special parameters such as ocean currents and weather conditions become factors.

According to Ronen [45], reducing speed by 20% will reduce fuel consumption by about

50%, and from 20% to 60% of daily operating cost is dependent on fuel cost. As the price of

fuel increases, this area of study becomes particularly important. As we can imagine, speed

and fuel consumption are nonlinearly dependent and make the problem harder if combined

with other decision factors. Related studies include Berford [7], Papadakis and Perakis [35],

Perakis [36], Perakis and Papadakis [37], Perakis and Papadakis [38], Brown et al. [12],

Bausch et al. [4], Schrady and Wadsworth [47].

The amount of research done on multicompartment ship transportation is very limited.

This is because container ships do not need to consider multicompartments, and a typical
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type of bulk material such as crude oil is transported usually by one ship. Another reason

is because of the difficulty of designing a multicompartment ship unless decisions are made

at the shipbuilding stage about what bulk material each compartment will be used for.

However, some multicompartment ships are used in non-ocean going areas such as on the

Great Lakes, in the Philippines, and on the Mississippi River. Because of the nature of bulk

liquids, compartments typically are dedicated to a specific product. This compartment

dedication is not typical when the cargoes are dry bulk. That is why some of the ships for

transportation of dry bulk have flexible compartments with multiple bulkheads positions.

The study for the fixed compartment ship routing and scheduling is done by Bausch et

al. [5]. Fagerholt and Christiansen [24, 25], and Fagerholt [22] studied the ship routing and

scheduling problem for multiple products with flexible compartments.

Other researchers, including Williams [57], have used heuristic algorithms to tackle the

problem of replenishment at sea. Lo and McCord [31] used technological advances in satellite

altimetry to factor ocean currents into their study of transportation by ship. Wang and

Chretienne [56] used dynamic programming to suggest a heuristic approach to situations in

which weather forecasts are only available for a limited time ahead of a ship’s travel.

In this dissertation, we introduce the problem of designing a minimum cost routing

schedule for a heterogeneous fleet of ships engaged in pickup and delivery of various liq-

uid bulk cargoes. Each port is defined as either a supply or demand port, according to

the chemical involved, and production and consumption rates and storage capacities are

specified. Each ship has dedicated compartments for multiple products. This problem falls

into the categorization of inventory routing. It is formulated as a mixed-integer nonlinear

program and transformed into a mixed-integer linear program. This problem extends the

bulk-shipping model of Christiansen [15] and Christiansen and Nygreen [17, 18] in several

ways. Specifically, we consider pickup and delivery of multiple commodities using ships

having multiple dedicated compartments. Additionally, we allow more than one ship to be

docked in a harbor at the same time. The papers by Fagerholt and Christiansen [24, 25]

deal with multiple products and compartments. However, these papers assume flexible

cargo holds that are suitable only for dry bulk products and not for liquid bulk products in
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dedicated compartments such as those considered in this dissertation.
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CHAPTER II

APPLICATIONS AND MODEL

2.1 Introduction

This chapter addresses the problem of determining a minimum cost routing schedule for

a heterogeneous fleet of ships engaged in pickup and delivery of various bulk liquid cargos

across a set of supply and demand harbors with specified product availabilities and needs,

respectively. Due to the nature of the products, it is impossible to carry more than two

products without being separated into dedicated compartments of the ships. The optimal

routing schedule should specify how much of each product to carry from which port to

which port, at what time, and on which ship, subject to the conditions that all ports must

have sufficient product for consumption, and the stock levels of the products cannot exceed

the inventory capacity of that port.

This problem is motivated by a real logistics problem faced by an oil company in Asia

Pacific serving an archipelago of islands. This company has a fleet of tankers and barges that

transport petrochemical products between various plants and has many storage terminals

and direct customers. Since plants and customers are dispersed over many islands, and since

there is no terrestrial transportation infrastructure, such as a pipeline network connecting

the islands, it is necessary to carry all inter-island supply and demand by ships. Each

island has a different production and consumption rate for specified products, and the inter-

island transport schedule should be such that proper stock levels for the petrochemicals are

maintained at each island during the planning horizon. The problem is further complicated

by the fact that the ships are able to carry a number of different products at the same time,

and since some of these products cannot mix, these need to be carried in separate dedicated

compartments. Figure 2.1 illustrates the problem for eight harbors, four products, and

three ships in the Philippines.

In this chapter, we first identify the most important logistics considerations for this
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Figure 9: A 4 commodity problem with 8 harbors and 3 ships

difficult ship-routing problem. Next, using a network flow model, we formulate the problem

as a combined multi-ship pickup-delivery problem. The interaction between multiple ships

arriving at the same destination makes the formulation highly nonlinear. We use novel lin-

earization schemes to develop an equivalent mixed-integer linear programming reformulation

for the problem.

The remainder of this chapter is organized as follows. In Section 2.2, we review the

existing literature on ship routing problems. Section 2.3 describes the critical character-

istics of the problem under consideration. Section 2.4 develops an optimization model for

the problem, and Section 2.5 presents equivalent linear reformulations of the nonlinear con-

straints in this model. Section 2.6.1 shows an illustrative example with the optimal solution

obtained by a commercial optimization solver. Finally, Section A.4 offers some concluding
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remarks. Two appendices include a notational summary and the proof of a key result.

2.2 Maritime Routing and Scheduling Literature

Operations Research has long recognized the need for systematic mathematical techniques

for the optimal routing and scheduling of vehicles to meet the needs of a dispersed set of

customers. Models and solution algorithms for these so-called vehicle routing (cf., [53, 26])

problems have revolutionized the operations of trucking industries. However, even though

approximately 90% of the volume and 70% of the value of all goods transported worldwide

is carried by sea [39], until recently, relatively little work has been done on optimization

based routing and scheduling of ships. In this section, we review some of the existing work

done in this area.

Miller [32] described a fleet scheduling and inventory resupply problem faced ay an

international chemical company that transfers multiple chemicals from one origin to multi

destinations under the condition that certain inventory level is maintained.

Ronen [44] addresses a problem of scheduling the shipment of large quantities of a bulk

or semi-bulk commodity from one origin area to many destination ports. A set of ships

with different capacities deliver a set of different shipments to their destinations and return

back to the single origin. The model doesn’t consider any time window constraints. The

paper suggests and compares three different algorithms: a single step cost minimization

heuristic, a biased random search that chooses the cheapest schedule out of many generated

schedules, and an optimizing algorithm based on a mixed binary nonlinear formulation.

Brown et al. [12] discuss the problem of routing and scheduling crude oil tankers. The

problem is faced by a major oil company which controls a fleet of several dozen crude oil

tankers of similar sizes, and uses them to ship crude oil from the Middle East to Europe

and North America. A voyage usually has a single loading port and a single discharg-

ing port and the cargo is a full shipload. The paper explicitly considered constraints on

loading/discharging durations (time windows) for each port. The authors suggested an

enumerative solution method where all feasible schedules are generated, and the cheapest

schedule is selected.
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Baush et al. [5] discuss the distribution of multiple liquid bulk products among plants,

distribution centers, and industrial customers by using vessels equipped with multiple com-

partments during the planning horizon of 2-3 weeks. Each cargo consists of earliest loading

date and location, and latest discharging date and location. Authors generate all feasi-

ble schedules for all vessels and choose best schedule for each vessel to minimize the cost

of schedule which includes idle cost of vessels and spot charter cost during the planning

horizon.

Fisher and Rosenwein [27] considered a bulk shipping problem, where each cargo consists

of a designated quantity of a product to be lifted from one or more load ports and delivered

to one or more destination ports within specified time windows. The solution algorithm

proposed in this paper first generates a menu for each ship that contains all feasible solutions

that guarantee optimality or alternatively can be heuristically limited to contain only those

schedules likely to be in an optimal solution. One optimal solution is then chosen from the

menu by formulating a set-packing problem and solving it using Lagrangian relaxation.

Papadakis and Perakis [35] discuss the problem of a fleet of ships carrying a specific

amount of bulk cargo from several destination ports during a specified time interval. Each

vessel in the fleet may load at an origin, unload at a destination and return to its origin.

The problem considers only one type of cargo. In addition to ship routing and pickup, the

paper also considers optimal speed selection for the ships. The solution method is based on

decoupling the speed selection problem from the vessel allocation problem using Lagrangian

relaxation.

Christiansen [15] presents a combined inventory management problem and ship routing

problem with time windows. A fleet of ships transport a single product between production

and consumption harbors. The quantities loaded and discharged are determined by the

production rates of the harbors, possible stock levels, and the actual ship visiting the harbor.

The author combines a Dantzig-Wolf decomposition approach with branch-and-bound to

solve the problem.

Christiansen and Nygreen [18] consider the same problem as in [15]. In this paper, the

authors used a path flow formulation to generate paths for each ship including information
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about the geographical route, the load quantity, and the start time for each harbor arrival.

The method also generates paths for each harbor including information about the number

of arrivals to the harbor, the load quantity, and the start time for each harbor arrival. The

path generation problems are used as subproblems in a column generation scheme to solve

the overall planning problem. The authors also consider methods for reducing the width of

the time windows to reduce the number of feasible paths generated [17].

Fagerholt and Christiansen [24] consider a combined multi-ship pick up and delivery

problem with time windows and multi compartments for dry bulk. Each ship in the fleet is

equipped with a flexible cargo hold that can be partitioned into several small holds in a given

number of ways. Consequently, multiple products can be delivered by the same ship at the

same time. A set partitioning approach with two phases is proposed as a solution method.

In the first phase, a number of candidate schedules for allocation of cargos to the ships’

cargo holds is generated. In the second phase the total transportation cost is minimized by

solving a set partitioning problem where the columns correspond to the candidate schedule

generated in the first phase. Fagerholt and Christiansen [25] consider a special type traveling

salesman problem with allocation, time windows and precedence constraints. This problem

occurs as a subproblem of the model in [24].

Ronen [46] addresses inventory routing problem faced by producers of multiple liquid

bulk products. The objective is to minimize the cost of shipping while ensuring the stock

level requirements of the producing origins and consuming destinations. Author segmented

the planning horizon on daily basis and decide the time, quantity, origin and destination

for each product to deliver.

A recent review of ship routing and scheduling by Christiansen et al. [16] includes some

papers above ([44], [12], [5], [15], [18], [24] [46].) The authors survey the literature for various

models that have been developed and solved catagrized by type of operations (tramp, liner,

industrial, millitary, etc.)

Recently, Jetlund and Karimi [28] consider the maximum profit scheduling for a fleet

of ships delivers multiple liquid bulk cargoes. Each cargo needs to be delivered from the

pick-up port to discharge port with time windows. Author formulate a mixed-integer linear
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programming problem and suggest a heuristic method with the result of profit increase

compared to the schedule actually used by a multi national shipping company in the Asia

Pacific region.

2.3 Multi-Commodity Bulk Shipping

In this section we describe some of the critical characteristics of the multi-commodity bulk

shipping problem under consideration.

We consider a heterogeneous fleet of ships and barges. The ships have dedicated multiple

compartments to be able to carry different products simultaneously. The ships in the fleet

differ by size, number of compartments, and the set of products they can carry.

The fleet is used to distribute multiple liquid bulk products amongst geographically

dispersed ports. Each port is either a producer or a consumer for a certain commodity, and

the average production and consumption rate for each commodity is known. A ship loads

a product from a producing port or harbor, and unloads it at a consuming harbor. Partial

loading of the ship is allowed.

The loading and unloading of a ship at a harbor is carried out in one of the piers or

jetties. It is assumed that each harbor has enough piers to accommodate all incoming ships.

There is no dedicated pier for any cargo type. However it is impossible to simultaneously

load or unload different products onto a ship at a pier. Furthermore, more than two ships

cannot be simultaneously loading and/or unloading the same product.

Under the above conditions, our problem is to determine which product is to be loaded

into (or unloaded from) which compartment of which ship, the quantity to be loaded/unloaded,

the time period of loading/unloading, and to schedule the arrivals and departures of the

ships so as to maintain the inventory levels between operating bounds during the planing

horizon. The overall plan should minimize the total daily cost of the ships: fuel costs, port

and canal dues, and loading and unloading charges over a finite planning horizon. Our

model considers a captive fleet of ships and does not consider chartering vessels.

At the beginning of planning horizon Ti, it is assumed that the starting position and

the cargo for each ship is known. Finally, it is also assumed that each ship starts from some
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harbor in the beginning of the planning horizon and finishes in some harbor at the end of

the planning horizon. However, in practice, we would deal with the situation that ships are

enroute at the start and end of a planning horizon by implementing a rolling horizon concept

as follows. At the start of the first planning horizon T1, we generate dummy harbors (with

no supply or demand) at the position of the ships in the middle of the sea. The problem is

solved based on the current information (e.g., location of ships, inventory levels of products,

etc.). At a specified time prior to the end of T1, we begin a new planning horizon T2 with

routing decisions from all enroute dummy harbors replacing the destinations determined by

the previous planning horizon T1.

The above ship routing problem is quite similar to the bulk-shipping problems considered

by Christiansen [15] and Christiansen and Nygreen [17, 18]. As in these papers, we consider

inventory constrained scheduling of a heterogeneous fleet of ships, where there is no central

source of supply. On the other hand, the major difference is that we consider pickup

and delivery of multiple commodities using ships with multiple dedicated compartments.

Additionally, we allow more than one ship to be docked in the same harbor at any given

time. The papers by Fagerholt and Christiansen [25, 24] deal with multiple products and

compartments. However, these papers assume flexible cargo holds that are suitable only

for dry bulk products and not for liquid bulk products in dedicated compartments such as

those considered in this paper. These difference increase the complexity and difficulty of

the problem considered herein.

2.4 Model Formulation

In this section, we describe a mathematical model for the problem under consideration. The

model is developed along the lines of Christiansen [15], but with significant modifications to

account for multiple commodities, dedicated ship compartments and multi-ship port calls

with overlapping docking times. In the following formulation, the decision variables are

written in lower case letters and the parameters and sets are written in upper case letters.

To keep the notation relatively simple, we assume that all ships are in ports at both the

start and finish of the planning horizon; i.e., no ship is enroute at the beginning and end of
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the model’s scheduling period.

2.4.1 Routing Constraints

The routing constraints define and link the sequence of arrivals and departures of the

various ships to and from various harbors. Let V denote the set of all ships. Following

Christiansen [15], let us define a network whose nodes are labelled (i,m), where i denotes

a harbor, and m is the arrival number at that harbor within the planning horizon. For

example, node (2, 1) denotes the first arrival to harbor 2. We shall refer to such a pair

as a position. Figure 10 is an example network for 2 ships, and 3 harbors each having 2

positions. Let HT be the set of all harbors, and let Mi be the set of possible arrival numbers

1,1


1,2


2,1


2,2


3,1
 3,2


Figure 10: Network model of 2 ships, 3 harbors with 2 positions for each harbor

{1, 2, . . . , µi} at harbor i where µi is a specified number of arrivals to harbor i. We let ST

denote the set of all feasible positions (harbor-arrival pairs); i.e., ST = {(i,m) | i ∈ HT ,m ∈
Mi}. Let (iv,mv) ∈ ST denote the initial position of ship v. For example, if ship v is initially

located at harbor i, then iv = i. If harbor i initially has only one ship v, then mv = 1. In

cases when there are ρi ships starting at harbor i, then arbitrarily set an arrival sequence

number mv ∈ {1, 2, . . . , ρi} for each ship v ∈ {v1, v2, . . . , vρi}. Let S0 := {(iv,mv)|v ∈ V }
be the set of initial positions for all ships. Then SN := ST \S0 is the set of all possible

positions that ships can occupy after leaving their starting positions.

For i 6= j, for all (i,m) ∈ SN ∪ {(iv,mv)}, and (j, n) ∈ SN , we set the binary variable

29



ximjnv equal to 1 if ship v ∈ V has a route segment that includes harbor i as the m-th

arrival followed immediately by a visit to harbor j as the n-th arrival.

2.4.1.1 Initial Position Constraints

The following constraints enforce the requirement that each ship v must depart from its

initial position:

∑

(j,n)∈SN

xivmvjnv = 1, for every v ∈ V. (C1)

To allow for ships to remain unused in a harbor for the entire planning horizon, we introduce

the binary variable zimv to equal 1 if ship v ends its route as the m-th arrival to harbor i.

The constraint

∑

(j,n)∈SN

xivmvjnv + zivmvv = 1, for every v ∈ V.

ensure that ship v will not depart its initial position whenever zivmvv = 1.

2.4.1.2 Flow Conservation Constraints

Flow conservation constraints ensure that the m-th arrival to harbor i should either leave

harbor i or end its route there. The flow conservation constraints

∑

(j,n)∈ST

xjnimv −
∑

(j,n)∈SN

ximjnv − zimv = 0, for every (v, i,m) ∈ V × SN (C2)

guarantee that zimv = 0 if (i,m) is an intermediate position (non-initial position) and must

equal to 1 if it is the final position of ship v’s schedule. This is because for each (v, i,m),

at most one ship v can occupy position (i,m) by the forthcoming constraints (C4); thus,
∑

(j,n)∈ST
xjnimv ≤ 1. If there is such an arrival, then it must depart unless harbor i is

the terminal point of the ship’s journey during the planning horizon. In the latter case,
∑

(j,n)∈SN
ximjnv = 0 so that constraint (C2) enforces zimv = 1.

2.4.1.3 Route Finishing Constraints

To simplify our notation, we will assume that at the beginning and end of planning horizon,

all ships are in port and not enroute to some destination. Terminating journeys at a port
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can be achieved by imposing the constraints

∑

(i,m)∈SN

zimv = 1, for each v ∈ V. (C3)

When ships are allowed to stay at their initial positions, we need to replace SN by SN ∪
{(iv,mv)} in constraint (C3).

2.4.1.4 One Time Visit Constraints

These constraints ensure each harbor-arrival pair (i,m) is visited at most once. Let the

binary variable yim equal to 1 when position (i,m) is not visited. Then,

∑

v∈V

∑

(j,n)∈ST

xjnimv + yim = 1, for every (i,m) ∈ SN . (C4)

ensure that at most one ship can be the m-th arrival to harbor i and yim must be 1 when

position (i,m) is not visited.

2.4.1.5 Arrival Sequence Constraints

Since it is not known a priori how many visits will be made to each harbor during a planning

horizon, it is necessary to create enough positions (i, m) to allow as many visits as needed

for an optimal solution. Clearly, not all positions in every harbor will be utilized. However,

if harbor i does not have the (m − 1)-th arrival, then it cannot have the m-th arrival;

conversely, if there is an m-th arrival, there must have been an (m − 1)-th arrival. This

property can be expressed by the constraints

yim − yi(m−1) ≥ 0, for every (i,m) ∈ SN . (C5)

2.4.2 Constraints for Loading and Discharging

Constraints are needed to connect the quantities of various products to be loaded and

unloaded at the various harbors to the capacities of the ships visiting these harbors. We

introduce the following three sets of variables: qimvk, which correspond to the quantity of

product k loaded onto or unloaded from ship v at position (i,m); limvk, which correspond

to the quantity of product k onboard ship v as it departs from position (i,m); and oimvk

is a binary variable indicating whether product k is loaded onto (or unloaded from) ship
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v at position (i,m). The following sets of parameters will also be used: Jik is equal to

+1 (respectively, −1) if harbor i is a producer (respectively, consumer) of product k, and

0 otherwise; Qvk is the quantity of product k loaded onto ship v at the start of planning

horizon; CAPvk is the capacity of the compartment onboard ship v dedicated to carry

product k. The set of all products that ship v can carry is denoted by Kv.

2.4.2.1 Ship Load Constraints

If a ship v travels from position (i,m) to position (j, n), then the quantity ljnvk of product

k onboard at departure from (j, n) should equal the quantity limvk onboard at departure

from (i,m) plus, if Jjk = +1, (respectively, minus, if Jjk = −1) the quantity qjnvk loaded

(respectively, unloaded) at (j, n). But this will only happen if ship v travels from (i,m) to

(j, n); i.e., if ximjnv = 1. Therefore, the loading constraints can be expressed as

ximjnv[limvk + Jjkqjnvk − ljnvk] = 0,

for each v ∈ V and every (i,m, j, n, k) ∈ Av ×Kv (1)

where Av := {(i,m, j, n)|i 6= j, (i,m) ∈ SN ∪Sv
0 , (j, n) ∈ SN} is the set of all feasible arcs for

ship v in the network. The above constraints are nonlinear, but we will derive an equivalent

linear system in Section 2.5.

2.4.2.2 Initial Ship Load Constraints

The amount livmvvk of product k onboard ship v at departure from the initial position

(iv, mv) should be equal to the initial quantity Qvk onboard plus if Jivk = +1 (respectively,

minus if Jivk = −1) the quantity qivmvvk loaded (respectively, unloaded) at the initial

position. Thus,

Qvk + Jivkqivmvvk − livmvvk = 0, for each v ∈ V and every k ∈ Kv. (C6)

2.4.2.3 Compartment Capacity Constraints

The amount limvk of product k onboard ship v at departure from position (i,m) cannot

exceed the capacity CAPvk of the compartment dedicated for product k. However, this will
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only meaningful if ship v visits (i,m); i.e.,
∑

(j,n)∈ST
xjnimv = 1, otherwise the quantity

limvk = 0. Therefore, the compartment capacity constraints can be expressed as

limvk ≤
∑

(j,n)∈ST

CAPvkxjnimv, for each v ∈ V and every(k, i,m) ∈ Kv × SN . (C7)

2.4.2.4 Servicing Product Constraints

Introduce the variable oimvk to indicate when product k is serviced at position (i,m) by

ship v. We want oimvk to be 1 if qimvk is positive, otherwise it should be 0. That is, we

want to ensure that the quantity qimvk of product k loaded onto ship v at position (i,m)

cannot exceed the capacity CAPvk of the compartment of ship v dedicated for product k.

This is expressed as

qimvk ≤ CAPvkoimvk, for each v ∈ V and every (k, i, m) ∈ Kv × ST . (C8)

2.4.3 Constraints for Time Aspects

Constraints are needed to define the arrival and departure times of the m-th arrival to

harbor i. The variables used are: tim is the time of the m-th arrival to harbor i; and tEim

is the departure time of the m-th arrival to harbor i that is the service ending time at

position (i,m). The following parameters are also used: TQik is the time required to load

(unload) one unit amount of product k at harbor i; Wi is the set-up time required to service

a product at harbor i (for notational simplicity, we assume fixed set-up times for a port no

matter what products are being serviced); and Tijv is the time required by ship v to sail

from harbor i to harbor j plus the set-up time required at harbor j immediately preceding

loading and unloading service times.

2.4.3.1 Service Time Sequence Constraints

Clearly, the m-th visit should occur after the (m− 1)-th visit. That is,

tim − ti(m−1) ≥ 0, for every (i,m) ∈ SN . (C9)
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2.4.3.2 Service Finishing Time Constraints

The time of departure for the m-th arrival to harbor i (namely, tEim) equals the m-th arrival

time (tim) plus the time required to service all products (
∑

v∈V

∑
k∈Kv

TQikqimvk) plus the fixed setup time Wi (incurred
∑

v∈V

∑
k∈Kv

oimvk times) for switching

from one product to another. This constraint is given by:

tim +
∑

v∈V

∑

k∈Kv

TQikqimvk + Wi

∑

v∈V

∑

k∈Kv

oimvk − tEim = 0,

for every (i,m) ∈ ST . (C10)

2.4.3.3 Route and Schedule Compatibility Constraints

If ship v travels from position (i,m) to (j, n) — that is, ximjnv = 1 — then the arrival time

tjn at (j, n) is the sum of the departure time tEim from (i,m) and the travel time Tijv from

harbor i to harbor j by ship v. Thus,

ximjnv[tEim + Tijv − tjn] ≤ 0, for each v ∈ V and every (i,m, j, n) ∈ Av. (2)

Notice that these constraints are only valid when the positions (i, m) and (j, n) are di-

rectly connected by ship v; i.e., when ximjnv = 1. Constraints (2) are nonlinear, but we

shall present equivalent linear reformulations (in Section 2.5) that are derived from global

optimization theory.

2.4.4 Constraints for the Inventories

Inventory constraints connect the required stock levels at the harbors to the quantities

loaded onto and unloaded from the visiting ships. The following variables are used: simk is

the stock level of product k in harbor i at the time of the m-th arrival; sEimk is the stock

level of product k in harbor i when the m-th ship departs; and pim is a binary variable

which is equal to zero if the m-th and (m− 1)-th arrivals to harbor i overlap; i.e., the m-th

ship arrives before the (m− 1)-th ship departs harbor i. The set KH
i represents the set of

products that harbor i produces and consumes. The parameters used here are as follows:

Jik is set equal to +1 (respectively, −1) if harbor i is a producer (respectively, consumer)

of product k; Rik > 0 is the production (if Jik = +1) or consumption (if Jik = −1) rate
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of product k in harbor i; T is the length of the planning horizon; SMNik is the minimum

allowable stock level of product k at harbor i (safety stock); and SMXik is the maximum

allowable stock level of product k at harbor i (production/deliveries must stop when this

level is reached).

2.4.4.1 Initial Inventory Constraints

We classify the harbors into two groups: those that have ships and those that do not

at the start of the planning horizon. For those harbors that do not have ships (namely,

HN := HT \{j | (j,m) ∈ S0}) the stock level si1k of product k in harbor i at the time of the

first ship arrival is the amount ISik of product k in harbor i at the start of the planning

horizon plus the amount produced when Jik = +1 (or minus the amount consumed when

Jik = −1) until the arrival ti1 of the first ship; i.e.,

si1k = ISik + JikRikti1, for every (i, k) ∈ HN ×KH
i . (C11)

For those harbors that do have ships at the start of the planning horizon, ti1 = 0 so that

si1k = ISik.

2.4.4.2 Inventory Level Constraints

Constraints are needed to measure the inventory level of product k at harbor i when the

m-th arrival departs. (Recall that we allow the simultaneous servicing of multiple ships

in the same harbor.) Suppose now that there are two ships in harbor i at the same time.

Although the notation (i,m) determines which of the ships arrived first, it is not clear which

ship leaves first. This can cause difficulties in modeling the inventory constraints. To tackle

this issue, we make the simplifying assumption that the second ship entering harbor i will

load or unload its quantity of product k with complete knowledge of how much of the same

product the first ship will be loading or unloading. So, even when the first ship completes

its service later than the second ship, the stock levels sim and sEim will always be within

their bounds (see constraints (C15) and (4)).

For product k in harbor i, if ship v is the m-th arrival, then the stock level sEimk equals

the level simk before ship v arrives less the amount qimvk loaded if Jik = +1 (or plus the
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amount qimvk unloaded if Jik = −1) plus the amount produced (if Jik = +1) while ship v is

being loaded (or minus the amount consumed (when Jik = −1) while ship v is unloading)

at the rate Rik during the time period tEim − tim. These inventory constraints can be

expressed as follows:

simk −
∑

v∈V

Jikqimvk + JikRik(tEim − tim)− sEimk = 0,

for every (i,m, k) ∈ ST ×KH
i . (C12)

2.4.4.3 Stock Level Constraints

Constraints are needed to ensure that the stock levels of a product are consistent between

successive arrivals to a harbor. If only a single ship is allowed in a harbor at any time

during the planning horizon, the constraints can be simply stated as:

sEi(m−1)k + JikRik(tim − tEi(m−1))− simk = 0, for every (i,m, k) ∈ SN ×KH
i .

Now suppose that there are two ships in harbor i, which arrived as the (m−1)-th and m-th

ship. It could easily be the case that the m-th ship starts servicing a product k, before the

(m− 1)-th ship begins its servicing of the same product. However, in our model, we make

the simplifying assumption that the m-th ship will load or unload product k only after the

(m− 1)-th ship has completed its loading or unloading of the same product. The two ship

constraint becomes:

sEi(m−1)k + JikRik[tim − tEi(m−1)]pim = simk, for every (i,m, k) ∈ SN ×KH
i . (3)

Here, pim is 0 if there are two or more ships in harbor i during the m-th arrival. Thus, if

there are two ships, constraint (3) sets sEi(m−1)k = simk so that overlapping does not cause

problems. The following constraints force pim to take on the right 0 or 1 value:

tim − tEi(m−1) ≥ [pim − 1]T, for every (i,m) ∈ SN , (C13)

[tim − tEi(m−1)] ≤ Tpim, for every (i,m) ∈ SN , (C14)

We only need constraints for two ships because, by assumption, the ships will have products

serviced consecutively in the order they arrive. The above constraints enforce pim to be equal
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to 0 if [tim − tEi(m−1)] < 0 (overlapping) and equal to 1 if [tim − tEi(m−1)] ≥ 0. Appealing

to well-known results from global optimization theory, equivalent linear representations of

nonlinear constraints (3) are presented in Section 2.5.

2.4.4.4 Stock Level Bounds

At any position (i,m), the stock level of product k should be within the prescribed levels

at the beginning and ending of service. Thus,

SMNik ≤ simk ≤ SMXik, for every (i,m, k) ∈ ST ×KH
i , (C15)

SMNik ≤ sEimk + JikRik(T − tEim)(yi(m+1) − yim) ≤ SMXik, (4)

for every (i,m, k) ∈ ST ×KH
i .

Constraint (4) considers the stock level of product k not only at the end of each service but

also at the end of the planning horizon. It has the term (yi(m+1) − yim) which is 1 if (i,m)

is the last position for harbor i; otherwise, 0. Recall that yim = 1 if position (i,m) is not

visited; otherwise, 0. Therefore, the term Rik(T − tEim)(yi(m+1) − yim) is only activated

when (i,m) is the last position for harbor i. Equivalent linear representations of nonlinear

constraints (4) are also presented in Section 2.5. Notice that yim = 1 implies yi(m+1) = 1

because of the arrival sequence constraint (C5).

2.4.5 Objective Function

The objective of our ship routing and scheduling model is to minimize total operating

costs over the planning horizon. The key cost components are the traveling costs, which

include fuel and ship operating costs, and the loading/unloading costs, which include port

operations, duties, etc. The parameter Cijv denotes the total traveling cost for a ship v

from harbor i to harbor j, and CWik is the fixed cost of loading or unloading product k at

harbor i. The cost function of the problem can then be expressed as follows:

∑

v∈V

∑

(i,m,j,n)∈Av

Cijvximjnv +
∑

(i,m)∈ST

∑

v∈V

∑

k∈Kv

CWikoimvk. (O)
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The optimization model for our problem is to find (x, y, z, l, q, o, t, tE , s, sE , p) that min-

imize (O) subject to linear constraints (C1) through (C15) and nonlinear constraints (1)

through (4) as well as variable bounds on (l, q, t, tE , s, sE) and binary integrality restrictions

on (x, y, z, o, p). We will define equivalent linear representations for constraints (1) through

(4) to yield a mixed-integer linear programming formulation for our model.

2.5 Linear Reformulation

In this section, we linearize the nonlinear terms and reformulate the problem into an equiv-

alent mixed-integer linear program.

2.5.1 Linearizing Ship Load Constraints

The feasible region defined by ship load constraints (1) has the following general nonlinear

structure:

{(x, y) | xf(y) = 0, x ∈ {0, 1}, y ∈ Y}, (5)

where f(·) is a function with domain Y. Specifically, setting x := ximjnv, y := (limvk, ljnvk, qjnvk),

and f(y) := limvk + Jjkqjnvk − ljnvk in (15) yields constraint (1).

The constraint set given by (15) has a simpler characterization. First we need the

following result.

Proposition 2.5.1. Consider the set S := {(x, y) | xf(y) = 0, x ∈ {0, 1}, y ∈ Y}, where

{f(y) | y ∈ Y} is compact; i.e, there exist bounds [L,U ] such that L ≤ f(y) ≤ U for all

y ∈ Y. Then, set S is equivalent to:

S′ := {(x, y) | L(1− x) ≤ f(y) ≤ U(1− x), x ∈ {0, 1}, y ∈ Y}.

Proof. The proof of the above result is straightforward and omitted.

For constraint (1), f(y) := limvk + Jjkqjnvk − ljnvk is linear and −CAPvk and CAPvk

are valid lower and upper bounds. Using Proposition 2.5.1, we can then replace (1) with

the equivalent linear constraints:

limvk + Jjkqjnvk − ljnvk + CAPvkximjnv ≤ CAPvk, (C16)

for every v ∈ V, and every (i,m, j, n, k) ∈ Av ×Kv,
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limvk + Jjkqjnvk − ljnvk − CAPvkximjnv ≥ −CAPvk, (C17)

for every v ∈ V, and every (i,m, j, n, k) ∈ Av ×Kv.

2.5.2 Linearizing Route and Schedule Compatibility Constraints

Note that the route and schedule compatibility constraints (2) also have the same structure

as (15). Here, setting x := ximjnv, y := (tEim, tjn), and f(y) := tEim + Tijv − tjn in

(15) gives constraint (2). In this case the upper bound on f(y) is 2T . Notice that (2)

are inequality constraints. Using Proposition 2.5.1, we can replace (2) with the equivalent

linear constraint:

tEim + Tijv − tjn + 2Tximjnv ≤ 2T, (C18)

for every v ∈ V, and every (i,m, j, n) ∈ Av.

2.5.3 Linearizing Stock Level Constraints

The stock level constraints (3) given by:

sEi(m−1)k + JikRik[tim − tEi(m−1)]pim = simk, for every (i,m, k) ∈ SN ×KH
i

are linearized using the convex envelope of bilinear forms (see Al-Khayyal and Falk [2], Al-

Khayyal [1], Sherali and Alameddine [50], Sherali [48], and Tawarmalani and Sahinidis [52]).

The linearization process is accomplished in the following way. First, derive bounds

for (tim − tEi(m−1)). Noting that either a service time or the time between a departure

and the next arrival can be as large as the entire planning horizon with the other quantity

being small, we conclude that −T ≤ (tim − tEi(m−1)) ≤ T . Next introduce a new variable

wim in place of [tim − tEi(m−1)]pim, and replace (3) by the linear system of equations and
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inequalities (cf., [2], [1]):

sEi(m−1)k + JikRikwim = simk, for every (i,m, k) ∈ SN ×KH
i , (6)

wim ≥ −Tpim, for every (i, m) ∈ SN , (7)

wim ≥ tim − tEi(m−1) + Tpim − T, for every (i, m) ∈ SN , (8)

wim ≤ tim − tEi(m−1) − Tpim + T, for every (i, m) ∈ SN , (9)

wim ≤ Tpim, for every (i, m) ∈ SN , (10)

pim ∈ {0, 1}, for every (i, m) ∈ SN . (11)

Remark. The projection of the set defined by (6) through (11) onto the vector space

determined by constraints (3) is a polyhedral outer approximation of the constraint region

(3). This result follows from Proposition A.3.2 by taking x := pim and f(y) := tim−tEi(m−1)

together with [L,U ] = [−T, T ], {l, u} = {0, 1} and [a, b] = [−∞,∞]. While (6) through (11)

represent a polyhedral relaxation of (3), we show in Theorem 1 that, under optimization,

our reformulation is exact; i.e., the optimal solution with linear constraints (6) through (11)

is also optimal for the nonlinear model having constraints (3).

Alternatively, instead of linearizing [tim − tEi(m−1)]pim with one variable wim, we can

consider linearizing the two terms timpim and tEi(m−1)pim separately by introducing two

sets of variables, w1
im and w2

im, respectively, in the following way. Both tim and tEim are

bounded below by 0 and above by T . Using these bounds, analogous to (6) through (11),

we can replace (3) by the system of linear equations and inequalities:

sEi(m−1)k + JikRik[w1
im − w2

im] = simk, for every (i,m, k) ∈ SN ×KH
i (C19.a)
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w1
im ≥ 0, for every (i,m) ∈ SN , (C19.b)

w1
im ≥ tim + Tpim − T, for every (i,m) ∈ SN , (C19.c)

w1
im ≤ tim, for every (i,m) ∈ SN , (C19.d)

w1
im ≤ Tpim, for every (i,m) ∈ SN , (C19.e)

w2
im ≥ 0, for every (i,m) ∈ SN , (C19.f)

w2
im ≥ tEi(m−1) + Tpim − T, for every (i,m) ∈ SN , (C19.g)

w2
im ≤ tEi(m−1), for every (i,m) ∈ SN , (C19.h)

w2
im ≤ Tpim, for every (i,m) ∈ SN . (C19.i)

pim ∈ {0, 1}, for every (i,m) ∈ SN . (C19.j)

Analogous to the first alternative, applying Proposition A.3.2 twice to (3) yields the

linear relaxations (c1.a) through (C19.j) which are exact under optimization by Theorem 1.

By virtue of Proposition 2.5.2, the reformulation obtained by linearizing terms timpim

and tEi(m−1)pim separately using two variables is tighter than that obtained by linearizing

[tim−tEi(m−1)]pim using a single variable. While the two reformulations are equivalent when

the integrality restriction on pim is included (c.f., Theorem 1), the tighter reformulation is

preferable from a computational viewpoint when the integrality restriction is relaxed. Note

that the two reformulations define feasible sets in higher dimensions than the region defined

by (3). When comparing tightness of relaxations we will always be looking at the projection

of each relaxation onto the space of original variables; i.e., the space defined by (3).

Denote the continuous relaxation of (C19.j) as (C19.j) and (11) as (11); i.e., both (C19.j)

and (11) label the conditions 0 ≤ pim ≤ 1 for every (i,m) ∈ SN .

Proposition 2.5.2. For each point feasible to (c1.a) through (c1.i) and (C19.j), there is a

corresponding point feasible to the continuous relaxation of (6) through (10)and (11).

Proof. This result is stated and proved in a more general setting in Appendix A, Proposition

A.3.6. 2

Remark. Let S1 be the projection of the set defined by (c1.a) through (c1.i) and (C19.j)

onto the vector space of the feasible set of the general model in Section 2.4 given by (C1)
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through (C15) and (1) through (4). Now let S2 be the projection of the continuous relaxation

of (6) through (10) and (11) onto the same vector space. Then, by Proposition 2.5.2, we

have S1 ⊆ S2; i.e., (C19) yields a tighter relaxation of (3).

We next show why our linear reformulations are exact under optimization. First, we

need the following results.

Proposition 2.5.3. Consider the nonlinear feasible region P1, where L ≤ U and l ≤ u,

and the relaxation P2 defined as

P1 := { (x, y) | a ≤ xf(y) ≤ b, L ≤ f(y) ≤ U, x ∈ {l, u} }

P2 := { (x, y, z) | a ≤ z ≤ b, L ≤ f(y) ≤ U, x ∈ {l, u},

z ≥ lf(y) + Lx− Ll, z ≥ uf(y) + Ux− Uu,

z ≤ uf(y) + Lx− Lu, z ≤ lf(y) + Ux− Ul }.

If (x, y, z) ∈ P2, then z = xf(y) and (x, y) ∈ P1.

Proof. There are two cases

Case 1. (x = l) We have from P2

z ≥ lf(y) + Ll − Ll ⇒ z ≥ lf(y),

z ≥ uf(y) + Ul − Uu ⇒ z − uf(y) ≥ U(l − u)

z ≤ uf(y) + Ll − Lu ⇒ z − uf(y) ≤ L(l − u)

z ≤ lf(y) + Ul − Ul ⇒ z ≤ lf(y).

Thus, z = lf(y) and U(l − u) ≤ z − uf(y) ≤ L(l − u) ⇒ L ≤ f(y) ≤ U because l ≤ u and

z − uf(y) = f(y)(l − u).

Case 2. (x = u) We have from P2

z ≥ lf(y) + Lu− Ll ⇒ z − lf(y) ≥ L(u− l),

z ≥ uf(y) + Uu− Uu ⇒ z ≥ uf(y),

z ≤ uf(y) + Lu− Lu ⇒ z ≤ uf(y),

z ≤ lf(y) + Uu− Ul ⇒ z − lf(y) ≤ U(u− l).
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Thus, z = uf(y) and L ≤ f(y) ≤ U . Therefore, if (x, y, z) ∈ P2, then z = xf(y) and

(x, y) ∈ P1.

If f(y) is discrete and x is continuous, we have the analogous statement.

Proposition 2.5.4. For given L ≤ U and l ≤ u, define the sets

P ′
1 := { (x, y) | a ≤ xf(y) ≤ b, l ≤ x ≤ u, f(y) ∈ {f(L), f(U)} }

P ′
2 := { (x, y, z) | a ≤ z ≤ b, l ≤ x ≤ u, f(y) ∈ {f(L), f(U)},

z ≥ f(L)x + lf(y)− lf(L), z ≥ f(U)x + uf(y)− uf(U),

z ≤ f(U)x + lf(y)− lf(U), z ≤ f(L)x + uf(y)− uf(L) }.

If (x, y, z) ∈ P ′
2, then z = xf(y) and (x, y) ∈ P ′

1.

We can now state the main result.

Theorem 1. Let (P ) denote an optimization problem which has terms xf(y), where (x, y) ∈
P1 ∪P ′

1, and let (PR) denote the corresponding relaxed problem obtained by replacing xf(y)

with z, P1 with P2, and P ′
1 with P ′

2. Then the (x, y) component of the optimal solution of

problem (PR) is optimal for problem (P ).

Proof. Follows from Propositions A.3.2, and A.3.3.

Remark. The relaxation of (P ) given by (PR) is exact in the sense that it will always

produce an optimal solution for (P ). More precisely, if (x∗, y∗, z∗) solves (PR), then (x∗, y∗)

solves (P ).

2.5.4 Linearizing Stock Level Bounds Constraints

The stock level constraints (4) can be rewritten as

SMNik ≤ sEimk + JikRikT (yi(m+1) − yim)

−JikRiktEimyi(m+1) + JikRiktEimyim ≤ SMXik, for every (i,m, k) ∈ ST ×KH
i .

We shall linearize this constraint using the reformulation technique explained in Sec-

tion 2.5.3. Using Proposition 2.5.1, we linearize the terms tEimyi(m+1) and tEimyim by
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introducing the two sets of variables u1
im and u2

im, respectively, together with the bounds

0 ≤ tim, tEim ≤ T . It follows that constraints (4) are equivalent (under optimization) to

the system of linear inequalities:

SMNik ≤ sEimk + JikRik(T )(yi(m+1) − yim)− JikRiku
1
im + JikRiku

2
im ≤ SMXik,

for every (i, m, k) ∈ ST ×KH
i , (C20.a)

u1
im ≥ 0, for every (i,m) ∈ ST , (C20.b)

u1
im ≥ tEim + yi(m+1) − T, for every (i,m) ∈ ST , (C20.c)

u1
im ≤ tEim, for every (i,m) ∈ ST , (C20.d)

u1
im ≤ yi(m+1), for every (i,m) ∈ ST , (C20.e)

u2
im ≥ 0, for every (i,m) ∈ ST , (C20.f)

u2
im ≥ tEim + yim − T, for every (i,m) ∈ ST , (C20.g)

u2
im ≤ tEim, for every (i,m) ∈ ST , (C20.h)

u2
im ≤ yim, for every (i,m) ∈ ST , (C20.i)

yim ∈ {0, 1} for every (i,m) ∈ ST . (C20.j)

2.6 mixed-integer Linear Programming Formulation

Combining all linear reformulations of the nonlinear constraints (1) - (4) with the linear

constraints (C1) - (C15) yields the mixed-integer linear program

min
(x, y, z, l, q, o, t, tE

s, sE , p, w1, w2, u1, u2)

Objective function (O)

subject to Constraints (C1) through (C20.j),

tim ≤ T, for every (i, m) ∈ ST ,

tEim ≤ T, for every (i,m) ∈ ST ,

l, q, s, sE , w1, w2, u1, u2 nonnegative vectors

(possibly with given upper bounds),

x, y, z, o, p binary vectors.
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Below, we solve a small illustrative example and vary some model parameters to gain some

insights into developing solution algorithms that exploit problem structure.

2.6.1 Example

Consider the case of 2 ships (V = {1, 2}) carrying 2 products (Kv = {1, 2}, ∀v ∈ V ) between

3 harbors (HT = {1, 2, 3}), with each harbor handling both products (i.e., KH
i = {1, 2} for

i = 1, 2, 3). Furthermore, harbor 1 consumes product 1 (J11 = −1) and produces product

2 (J12 = +1), while harbors 2 and 3 both consume product 2 (Ji2 = −1, for i = 2, 3)

and produce product 1 (Ji1 = +1 for i = 2, 3). We want to find the optimal ship routing

for a 2 day planning horizon (T = 2). Assume that ship 1 is initially located in harbor

1 ((i1,m1) = (1, 1)) with capacities CAP11 = 10 and CAP12 = 10 for products 1 and 2,

respectively. Further assume that ship 2 is initially located in harbor 3 ((i2,m2) = (3, 1))

with capacities CAP21 = 10 and CAP22 = 25 for products 1 and 2, respectively. Finally,

assume that the compartments of both ships are initially empty (Qvk = 0, ∀v ∈ V, k ∈ Kv).

Initial inventory levels of all products (ISik, ∀i ∈ HT , k ∈ KH
i ) at each harbor are given

in Table 4, while the production rates (Rik, ∀i ∈ HT , k ∈ KH
i ) of all products at each

harbor are listed in Table 5, where positive rates are production and negative rates are

consumption. Assume that it takes 0.3 days to travel from one harbor to each of the

Table 4: Initial inventory levels ISik for product k in harbor i

IS11 IS12 IS21 IS22 IS31 IS32

10 15 5 15 10 15

Table 5: Daily rates Rik for product k in harbor i

J11R11 J12R12 J21R21 J22R22 J31R31 J32R32

−10 20 5 −10 5 −15

others for each ship (Tijv = 0.3, ∀i, j ∈ HT , i 6= j, v ∈ V ); however, the cost for traveling

between the harbors is different for each ship. It costs $1 for ship 1 to travel between

any two harbors (Cij1 = 1, ∀i, j ∈ HT , i 6= j) and it costs $1.5 per trip to operate ship 2
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(Cij2 = 1.5, ∀i, j ∈ HT , i 6= j). The unit cost of loading or unloading any product at any

harbor is taken as $0.5 (CWik = 0.5, ∀i ∈ HT , k ∈ KH
i ). The time it takes to service one

unit of any product is assumed to be 0.01 days (TQik = 0.01, ∀i ∈ HT , k ∈ KH
i ), and set up

times are taken as 0 (Wi = 0, ∀i ∈ HT ). Figure 11 shows a feasible route for this example,
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Figure 11: A feasible route

where each node represents a position (defined as pairs of harbor and arrival numbers).

The feasible schedule illustrated in Figure 11 determines the inventory levels over time

of all products at each harbor, and this is displayed in Figure 12 for our planning horizon of

2 days. In each chart, the solid line represents the change of inventory level as ships load or

unload, while the dashed line represents the change of inventory if no loading or unloading

occurs. For example, the chart for product 1 in harbor 1 shows that the initial inventory

level starts from 10, and is consumed at the rate of 10. If no ship arrives (represented by

a dashed line) before time 1.0, the stock is depleted by the end of the first day. However,

before time 0.5, our feasible solution has the first ship unloading 10 units of product 1 so
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Figure 12: Examples of movement of inventory levels of products at harbors

that the stock level is maintained between its upper (capacity limit) and lower levels, 20

and 0, respectively, during the planning horizon.

Notice that the inventory level of product 1 in harbor 2 increases because our feasible

solution does not call for loading this product by any ship during the planning horizon. As

can be seen, inventory levels of all products in all ports are maintained between their upper

and lower levels.

The mixed-integer linear program for this problem has 384 constraints and 155 variables

including 61 binary variables. It is solved optimally by ILOG CPLEX 7.500 in 0.02 seconds

on a four-CPU Sun E450 server machine using only the default options of the solver. The

optimal solution turns out to be the feasible solution displayed in Figure 11. The total cost

is $7, consisting of $4 for travel costs for the single trip of ship 1 and the two trips of ship

2, and $3 for loading and unloading (ship 1 loads and unloads product 1, and ship 2 loads

and unloads both products 1 and 2 for a total of six service calls costing $0.5 each).

For the purpose of this illustrative example, we are not interested in devising the best

CPLEX solution strategy. Rather, we seek to use the exact CPLEX solutions to uncover

the problem parameters most sensitive to scaling, and to use this knowledge in developing
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a solution strategy for solving larger instances of the model. This will be presented in the

next chapter.

2.6.2 Computing Time

Since it is not known a priori how many visits will be made to each harbor during a planning

horizon, it is necessary to create enough positions (i,m) to allow as many visits as needed for

an optimal solution. However, the number of binary variables and the number of constraints

in the model grow exponentially with the number of positions (harbor-arrival pairs), while

an insufficient number of positions may lead to an infeasible problem; i.e., a model with no

feasible solutions. In this section, we first investigate the impact of the number of positions

on computing time, and later show the relationship between the number of positions and

the solution quality.

To measure the increase in solution time as a function of the number of positions in the

model, a preliminary computational experiment was conducted on one-hundred randomly

generated test problems. For our experiment, we chose ten different settings of the triple

(|HT |, |V |, |K|), as listed in Table 6, and generated ten test problems for each setting.

Table 6: Ten test configurations (number of harbors |HT |, ships |V |, and products |K|)

(3, 2, 2) (3, 2, 3) (3, 3, 2) (3, 3, 3) (4, 2, 2)
(4, 2, 3) (4, 3, 2) (4, 3, 3) (4, 4, 2) (4, 4, 3)

For our test problems the |HT | harbors are first randomly located on the plane within

a box. For each i ∈ HT , the location of port i, denoted by (ai, bi), is randomly generated

by taking ai, bi ∼ U[0, 10], where U[α, β] denotes the uniform distribution over the interval

[α, β]. For simplicity, the distance between harbors i and j is assumed to be the Euclidian

metric

‖(ai, bi)− (aj , bj)‖ =
√

(ai − aj)2 + (bi − bj)2.

To differentiate between our vessels, we generate a weighting factor wv ∼ U[0.5, 1] for each

v, that influences the travel cost and travel time. In particular, travel cost (Cijv) for vessel
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v is taken to be proportional to travel distance with constant of proportionality wv. On the

other hand, as travel costs go up, we would expect travel times (Tijv) to go down. This is

accomplished by taking simplifying assumption that travel time to be proportional to travel

distance with constant of proportionality 1/wv. The values for each problem’s parameters

were generated in accordance with Table 7. The ranges for the uniform distributions and

Table 7: Generation of parameters for test problems

Parameter Distribution / Value

T : Planning horizon 10

Cijv: Cost of travel form port i to j by ship v wv ×
p

(ai − aj)2 + (bi − bj)2

Tijv: Travel time between ports i and j by ship v T/5 + 0.4
p

(ai − aj)2 + (bi − bj)2/wv

CAPvk: Capacity of product k on ship v U[20, 70]
Qvk: Initial quantity of product k on ship v CAPvk× U[0, 1]
CWik: Fixed cost to service product k in port i U[5, 10]
Jik: +1, if port i produces product k, either +1 or −1 with probability 1/2

−1, otherwise
Rik: Rate of production or consumption U[1, 6]

of product k in port i
SMXik: Minimum stock level of product k in port i U[20, 70]
SMNik: Maximum stock level of product k in port i 0
ISik: Initial stock level of product k in port i SMXik ×U[0.3, 0.7]
TQik: Time to load/unload product k in port i U[0, 0.03]
Wi: Set-up time to change-over products in port i U[0, 0.1]

scaling factors for travel times were selected to create nontrivial problems.

To complete the specification of our test problems, we need to fix the number of possible

visits µi for harbor i. We need to choose µi large enough to admit an optimal solution, but

not too large as to require long solution times.

To that end, we first determine the minimum number of visits to each harbor within

the planning horizon. This minimum, mi, for harbor i can be calculated by considering the

length of the planning horizon (T ), the maximum and the minimum stock levels (respec-

tively, SMXik and SMNik) of product k in harbor i, the capacity (CAPvk) of each product k

on ship v, the initial inventory level (ISik) for each product k in harbor i, and the produc-

tion/consumption rate (Rik) of each product k in harbor i. For each harbor i that produces

or consumes product k, this quantity is given by

mi = max
k∈KH

i

mik,
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where

mik =





⌈
T×Rik+(ISik−SMXik)

maxv∈V {CAPvk}
⌉

if Jik = +1

⌈
T×Rik+(SMNik−ISik)

maxv∈V {CAPvk}
⌉

if Jik = −1

is the minimum number of loadings (if Jik = +1) or unloadings (if Jik = −1) of product k

in harbor i within the planning horizon.

The minimum (un)loadings mik are determined based on the assumption that the ship

with the largest capacity for product k is the only one visiting harbor i. So we calculate

how many times it needs to visit based on rate Rik, stock level ISik, maximum harbor

capacity SMXik, and minimum harbor capacity SMNik. For Jik = +1, we assume that the

vessel with the largest capacity for product k loads at harbor i when the inventory level is

at SMXik. Starting from level ISik, it takes (SMXik − ISik)/Rik time units for the storage

tanks to reach this level. With

T −
(

SMXik − ISik

Rik

)
=

TRik + (ISik − SMXik)
Rik

time units remaining in the planning horizon, we again assume that the largest capacity

vessel reloads when inventory has reached SMXik. The time it takes to reach that level,

starting from SMXik −maxv∈V {CAPvk}, is

maxv∈V {CAPvk}
Rik

.

Therefore, after the first visit, this ship will need to reload

TRik+(ISik−SMXik)
Rik

maxv∈V {CAPvk}
Rik

=
TRik + (ISik − SMXik)

maxv∈V {CAPvk}

more times. By rounding up any fractional values for this quantity, we capture the first visit

to yield the minimum number of visits mik for product k in harbor i. A similar argument

holds for the case Jik = −1 of harbors i consuming product k, except now the largest

capacity ship is unloading instead of loading.

To the minimum number of visits mi, we add m′ ∈ {1, 2, 3, 4}. Thus, each harbor has

mi + m′ positions. Also, for each harbor i, we fix the variable yin = 0,∀n ≤ mi, so that the

harbor is visited at least mi times; otherwise, the problem would be infeasible.
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Each test problem was solved four times by taking m′ ∈ {1, 2, 3, 4} in order to observe

the impact on solution time of growth in the number of positions in the model. The results

for the different settings were similar. The case (|HT |, |V |, |K|) = (3, 2, 2) is depicted in

Figure 13. The fitted curve was developed using exponential regression. The other cases
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Figure 13: Average solution times for ten (|HT |, |V |, |K|) = (3, 2, 2) test problems as
function of m′

are listed in Table 8 and shows similar exponential growth characteristics. These results

Table 8: Average computing times (seconds) for each configuration

Additional Configurations
Harbor Visitis (3,2,3) (3,3,2) (3,3,3) (4,2,2) (4,2,3) (4,3,2)

1 12.0 0.1 1.8 5.3 2.7 389.3
2 135.4 16.9 1535.3 205.8 491.5 9083.7
3 392.2 282.4 29579.4 1722.2 15812.4 >>15801.4†

4 953.0 2901.4 71675.8 14974.8 >>29328.4* >>67257.1 ‡

clearly suggest that it is advantageous to limit the number of possible positions in the model

for each port. The asterisk(*) indicates the average computing time for 4 problems with 6

problems not terminating before the time limit of 4.5E+5 seconds. The dagger(†) indicates

the average computing time for 4 problems with 6 problems still running at time 4.5E+5

seconds. The double dagger(‡) indicates the average computing time for 2 problems with 8
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problems exceeding the time limit of 4.5E+5 seconds.

In the foregoing, we constructed different test problems by varying the number of pos-

sible visits µi = mi + m′ for m′ ∈ {1, 2, 3, 4}. While solution times are faster for smaller µi,

it is possible for the problem to be infeasible if µi is too small for some i. This is illustrated

in Table 9 which lists the results of test runs on four problems of different sizes taken from

our one-hundred problem test bed.

Table 9: Optimal costs and computing times (seconds) as number of possible harbor visits
increases

Additional Problems
Harbor 1 (3,2,3) 2 (3,2,2) 3 (3,3,2) 4 (3,3,3)

Visits (m′) Cost Time Cost Time Cost Time Cost Time
1 inf < .01 36.2 0.1 70.9 0.4 inf < .01
2 77.4 0.1 36.2 0.6 64.3 139.8 98.8 8938.7
3 77.4 0.5 36.2 21.9 64.3 2480.8 76.2 2.1E+5
4 77.4 2.1 36.2 371.5 64.3 25284.4 75.3 >4.5E+5

For each problem, the objective cost and solution time is listed and the triple (·, ·, ·)
denotes the problem settings (|HT |, |V |, |K|). While problems 2 and 3 only require m′ = 1

to be feasible, that is not the case for problems 1 and 4. Moreover, problem 4 requires

m′ ≥ 4 in order to find an optimal solution. We should point out that we are adding the

same number of additional visits m′ to each harbor, so it is conceivable that the times

for problem 4 can be reduced by allowing the additive amount to vary; i.e., by taking

µi = mi + m′
i for m′

i ∈ {1, 2, 3, 4}.

2.7 Concluding Remarks

In this chapter we have developed a comprehensive mathematical model for planning the

sailing routes and loading/unloading schedules for a fleet of ships carrying liquid bulk cargos

across a network of harbors during a specified planning horizon. The objective is to mini-

mize the sum of the travel costs and the fixed costs incurred when products are loaded or

unloaded. More precisely, our model is to optimize (O) subject to constraints (C1) through

(C20). The model differs from existing work in this area in that it considers ships with

multiple compartments that are dedicated to carrying different cargo types. Furthermore,
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our model allows the simultaneous servicing of multiple ships at a harbor. We resolved some

inherent nonlinearities in the problem by using some novel linearizing schemes from global

optimization theory. We illustrated the model on a small example that was solved using a

commercial solver for mixed-integer linear programming. Numerical experiments with this

solver demonstrate the need for specialized algorithms that exploit the structure inherent

in the model. In particular, exponential growth in the solution times as the number of

harbor visits increases is not surprising. However, the results in Table 9 suggest that a solu-

tion scheme that starts with a small number of possible visits and selectively increases this

quantity should lead to a robust procedure that can solve larger problems than currently

possible. This will be the topic of the next chapter.
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CHAPTER III

SOLUTION STRATEGY

3.1 Introduction

In this chapter, we first present a brief summary of the optimization model discussed in

the previous chapter focusing on the structure of the problem. Using the structure of the

problem, we decomposed the problem into ship sub-problems and harbor sub-problems by

dualizing the coupling constraints. Ship sub-problems and harbor sub-problems are reduced

to network flow problems and small sized integer programming problems, respectively.

We examine a method for solving large-scale linear integer programming problems via

Lagrangian Relaxation. We introduce an iterative scheme to update the Lagrange multi-

pliers in order to increase the lower bound on the problem. Because of the duality gap

this method only produces a lower bound on the optimal objective value. We introduce

two randomized greedy heuristic methods and use the lower bound obtained by Lagrangian

relaxation to measure the goodness of the (primal feasible) heuristic solution.

3.1.1 Problem Assumptions

The motivating application is an oil company serving an archipelago of islands in Asia

Pacific. The problem consists of a fleet of ships that delivers chemical products to terminals

and direct customers nationwide in the Philippines. The Philippines consist of islands and it

is cost-effective to distribute chemical commodities by ship. Each harbor (island) has storage

tanks for specific commodities. Each harbor has its own production and consumption rate

for a specific commodity and this determines the harbor as being either a producing harbor

or a consumption harbor for that commodity. We have a heterogeneous fleet of vessels

equipped with commodity dedicated multi-compartments. Our objective is to minimize the

cost of operating ships to satisfy the stock level of each product in each harbor which must

be sufficient to meet demand, and the stock level cannot exceed the inventory capacity of
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that harbor within the planning period. The assumptions of the models are:

• Operation

1. Shipping multiple bulk commodities from producing harbors (exporting harbors)

to the consuming harbors (importing harbors) defined by each commodity.

2. Each ship starts and finishes its route at a harbor at the start and end of the

planning period (i.e., ships cannot be at sea when the planning period begins

and ends).

3. Fixed planning period.

• The ships

1. Heterogeneous types of ships in terms of size, number of compartments, available

commodities, cost of operation, and speed.

2. Commodity dedicated multi compartments for each ship.

3. The location of the ship at the start of the planning period is known.

4. Ship’s keel may preclude entry to certain harbors.

• The harbors

1. Known consumption and production rate for each commodity for each harbor.

2. Known inventory level for each commodity at the start of the planning period.

3. Multiple ships can load or unload at the same time at the same harbor.

4. Set-up time needed for each commodity to be loaded or unloaded.

5. Limited inventory capacity for each commodity.

6. Navigable depth.

• The commodities

1. Commodities can be loaded and/or unloaded partially by traveling through the

harbors.
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2. The amount of each commodity in each ship is known at the starting time of the

planning period.

• The costs

1. Daily cost of the ships.

2. Bunker fuel.

3. Harbor and canal dues.

4. Loading and unloading charges.

3.1.2 Mathematical Model

The problem is to minimize the operating cost while satisfying four groups of constraints

on binary flow through a network, ship loading and discharging, time restrictions, and

inventory levels. We define the state of the transportation system as being specified by

(i,m) where i is the physical harbor and m is the arrival number in that harbor i. We

formulate this problem as a mixed-integer problem in which each state is indicated by a

node and the arc flow variable is defined by ximjnv which takes on the value 1 if the states

(i,m) and (j, n) are directly connected by ship v, and the value 0 otherwise. The complete

set of notation is defined in Appendix A. Also a detailed description is given in Chapter II.

Figure 14 shows an example of routes between states where two ships are visiting three

harbors when ship 1 is located at harbor 1 and ship 2 is located at harbor 3 at the start

time of the planning period. According to the definition of flow variable ximjnv, Figure 14

indicates the specific arc flow variables; for example, x11221 = 1 and x11211 = 0. Notice that

the state (2, 3) is not visited by any ship. This is because we generate the possible set of

arrivals for each harbor before we solve the problem.

3.1.2.1 Objective Function

We want to minimize the cost of operation. It consists of the traveling cost Cijv incurred

each time ship v moves between harbors i and j, and the loading and unloading cost CWik

incurred if product k is loaded or unloaded at harbor i. Variable oimvk is 1 if product k is
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Figure 14: An example of a possible sequence of visits for two ships with 3 harbors.

serviced (loaded or unloaded) at state (i,m) by ship v. The objective is to minimize the

function

∑

v∈V

∑

(i,m,j,n)∈Av

Cijvximjnv +
∑

i∈HT

∑

m∈Mi

∑

v∈V

∑

k∈Kv

CWikoimvk. (O)

Set V is the set of all ships indexed by v, HT is the set of total harbors, Mi is the set of

arrival numbers generated for harbor i, and Kv is the set of products that ship v can carry.

The set Av is the collection of all feasible arcs for ship v expressed as (i, m, j, n). According

to the example in Figure 14, arc [(1, 1), (3, 2)] is not an element of the set A2 because ship

2 cannot start its route at state (1, 1) which is occupied by the starting state for ship 1.

The set Av, ∀v ∈ V , can be determined in the preprocessing step. If ship v cannot navigate

harbor i for some physical reason, such as navigable depth of the harbor i, or ship v does

not carry a commodity that harbor i handles, then we do not need to consider arcs whose

head or tail is state (i,m), ∀m ∈ Mi, where Mi is the set of possible arrivals to harbor i.

3.1.2.2 Routing Constraints

This group of constraints keep track of the route of ships in the network formulation.

Let ST := {(i,m) : m ∈ Mi, for i ∈ HT } be the total set of states (i,m) and S0 :=

{(iv,mv) : v ∈ V } be the set of initial states (iv,mv) of all ships v ∈ V , then define the
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set of non-initial states as SN := ST \S0. In the case when there are ρi ships starting at

harbor i, then arbitrarily set the arrival sequence number mv ∈ {1, 2, . . . , ρi} for each ship

v ∈ {v1, v2, . . . , vρi}. The routing constraints are

∑

(j,n)∈ST

xjnimv −
∑

(j,n)∈SN

ximjnv − zimv = 0, for every (v, i, m) ∈ V × ST , (12)

∑

(i,m)∈ST

zimv = 1, for each v ∈ V, (13)

∑

v∈V

∑

(j,n)∈ST

xjnimv + yim = 1, for every (i, m) ∈ ST , (14)

yim − yi(m−1) ≥ 0, for every (i,m) ∈ SN . (15)

Flow conservation constraints (12) ensure that the m-th arrival to harbor i should

either leave harbor i or end its route there. Variable zimv is equal to 1 if ship v ends its

route at the state (i,m), otherwise 0. Therefore, route finishing constraints (13) ensure

that any ship should finish its route at some state (i,m). In the example in Figure 14,

z321 = z332 = 1 and the others are 0. One time visit constraints (14) ensure that every

state should be visited at most once. Variable yim is a binary variable which is 1 if the state

(i,m) is not visited, otherwise 0, so that y23 = 1 and the others are all 0 for the example

in Figure 14. By the arrival sequence constraints (15), we can specify how many times

the harbor i is visited.

3.1.2.3 Constraints for Loading and Discharging

This group of constraints keep track of the amount onboard for each commodity. The set

Kv is the set of products that ship v carries, while KH
i is the set of products that harbor i

handles. The constraints are

limvk + Jjkqjnvk − ljnvk + CAPvk
ximjnv ≤ CAPvk

,

for every v ∈ V, and every (i,m, j, n, k) ∈ Av ×Kv, (16)

limvk + Jjkqjnvk − ljnvk − CAPvk
ximjnv ≥ −CAPvk

,

for every v ∈ V, and every (i,m, j, n, k) ∈ Av ×Kv, (17)
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Qvk + Jikqivmvvk − livmvvk = 0, for each v ∈ V and every k ∈ Kv, (18)

limvk ≤
∑

(j,n)∈ST

CAPvk
xjnimv, for each v ∈ V and every(k, i,m) ∈ Kv × SN , (19)

qimvk ≤ CAPvkoimvk, for each v ∈ V and every (k, i, m) ∈ Kv × ST . (20)

Ship load constraints (16) and (17) consider the case when ship v journeys from state

(i,m) to state (j, n). Then ljnvk, the amount of product k onboard of ship v after finishing

service at state (j, n), will be equal to the sum of limvk, the amount of commodity k onboard

before state (j, n) is serviced, and qjnvk, the amount of product k loaded or unloaded at

state (j, n) by ship v. Parameter Jik is 1 if harbor i is producing product k, otherwise −1.

Initial Ship load constraints (18) show that the amount livmvvk of product k onboard

ship v at departure from the initial position (iv,mv) should be equal to the initial quantity

Qvk onboard plus, if Jivk = +1 (respectively, minus if Jivk = −1), the quantity qivmvvk

loaded (respectively, unloaded) at the initial state. Compartment capacity constraints

(19) guarantee that the amount of each commodity onboard after servicing a state is less

than or equal to the ship’s compartment capacity for each commodity. Servicing product

constraints (20) ensure that the quantity qimvk of product k loaded onto ship v at position

(i,m) cannot exceed the capacity CAPvk of the compartment of ship v dedicated for product

k.

3.1.2.4 Constraints for Time Aspects

This group of constraints are for the relationships between the service time and the travel

time between harbors. Variables tim and tEim represent the times to start and finish ser-

vice, respectively, at state (i,m) during a planning horizon of length T . The time aspect

constraints are

tim − ti(m−1) ≥ 0, for every (i,m) ∈ SN , (21)

tim +
∑

v∈V

∑

k∈Kv

TQikqimvk + Wi

∑

v∈V

∑

k∈Kv

oimvk − tEim = 0,

for every (i,m) ∈ ST , (22)
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tEim + TSijv − tjn + 2Tximjnv ≤ 2T,

for every v ∈ V, and every (i,m, j, n) ∈ Av. (23)

Service time sequence constraints (21) enforces the requirement that the m-th arrival

should occur after the (m−1)-th arrival. Service finishing time constraints (22) identify

the time to finish service at each state. At the state (i, m), service finishing time tEim equals

service starting time tim plus the time required to service the m-th ship in harbor i. The

quantity TQik is the time it takes to service a unit amount of product k at harbor i, and

Wi is the set-up time to start service. It is assumed that the setup time is the same for any

product at a harbor. Route and schedule compatibility constraints (23) check the

service starting time at state (j, n). If ship v travels from position (i,m) to (j, n) — that

is, ximjnv = 1 — then the arrival time tjn at (j, n) is the sum of the departure time tEim

from (i,m) and the travel time Tijv from harbor i to harbor j by ship v.

3.1.2.5 Constraints for the Inventories

This group of constraints ensure that the stock level is within the physical capacity limits of

the harbor. The following variables are used: simk is the stock level of product k in harbor

i at the time of the m-th arrival; sEimk is the stock level of product k in harbor i when

the m-th ship departs; and pim is a binary variable which is equal to zero if the m-th and

(m− 1)-th arrivals to harbor i overlap; i.e., when the m-th ship arrives before the (m− 1)-

th ship departs harbor i. The parameters used here are as follows: Jik is set equal to +1

(respectively, −1) if harbor i is a producer (respectively, consumer) of product k; Rik > 0

is the production (if Jik = +1) or consumption (if Jik = −1) rate of product k in harbor

i; SMNik is the minimum allowable stock level of product k at harbor i (safety stock); and

SMXik is the maximum allowable stock level of product k at harbor i (production/deliveries

must stop when this level is reached). The inventory constraints are

si1k = ISik + JikRikti1, for every (i, k) ∈ HN ×KH
i , (24)

simk −
∑

v∈V

Jikqimvk + JikRik(tEim − tim)− sEimk = 0,

for every (i,m, k) ∈ ST ×KH
i , (25)
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tim − tEi(m−1) ≥ [pim − 1]T, for every (i,m) ∈ SN , (26)

[tim − tEi(m−1)] ≤ Tpim, for every (i,m) ∈ SN , (27)

sEi(m−1)k + JikRik[w1
im − w2

im] = simk,

for every (i,m, k) ∈ SN ×KH
i , (c1.a)

w1
im ≥ 0, for every (i,m) ∈ SN , (c1.b)

w1
im ≥ tim + Tpim − T, for every (i,m) ∈ SN , (c1.c)

w1
im ≤ tim, for every (i,m) ∈ SN , (c1.d)

w1
im ≤ Tpim, for every (i,m) ∈ SN , (c1.e)

w2
im ≥ 0, for every (i,m) ∈ SN , (c1.f)

w2
im ≥ tEi(m−1) + Tpim − T, for every (i,m) ∈ SN , (c1.g)

w2
im ≤ tEi(m−1), for every (i,m) ∈ SN , (c1.h)

w2
im ≤ Tpim, for every (i,m) ∈ SN . (c1.i)

SMNik ≤ simk ≤ SMXik, for every (i,m, k) ∈ ST ×KH
i , (28)

SMNik ≤ sEimk + JikRikT (yi(m+1) − yim)− JikRik(v1
im − v2

im) ≤ SMXik,

for every (i, m, k) ∈ ST ×KH
i , (c2.a)

v1
im ≥ 0, for every (i,m) ∈ ST , (c2.b)

v1
im ≥ tEim + yi(m+1) − T, for every (i,m) ∈ ST , (c2.c)

v1
im ≤ tEim, for every (i,m) ∈ ST , (c2.d)

v1
im ≤ yi(m+1), for every (i,m) ∈ ST , (c2.e)

v2
im ≥ 0, for every (i,m) ∈ ST , (c2.f)

v2
im ≥ tEim + yim − T, for every (i,m) ∈ ST , (c2.g)

v2
im ≤ tEim, for every (i,m) ∈ ST , (c2.h)

v2
im ≤ yim, for every (i,m) ∈ ST . (c2.i)
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Initial inventory constraints (24) stipulate that the stock level si1k of product k in

harbor i at the time of the first ship arrival is the amount ISik of product k in harbor i at

the start of the planning horizon plus the amount produced, when Jik = +1 (or minus the

amount consumed when Jik = −1), until the arrival ti1 of the first ship. The harbors have

ships at the start of the planning horizon, ti1 = 0 so that si1k = ISik. Inventory level

constraints (25) calculate the sEimk, the stock level of product k at the end of service at

state (i,m). For product k in harbor i, if ship v is the m-th arrival, then the stock level

sEimk equals the level simk before ship v arrives less the amount qimvk loaded if Jik = +1

(or plus the amount qimvk unloaded if Jik = −1) plus the amount produced (if Jik = +1)

while ship v is being loaded (or minus the amount consumed (when Jik = −1) while ship v

is unloading) at the rate Rik during the time period tEim − tim. Stock level constraints

(c1.a)-(c1.i) represent an equivalent linearized formulation (see, Al-Khayyal and Hwang [?])

of the constraints

sEi(m−1)k + JikRik[tim − tEi(m−1)]pim = simk, for every (i,m, k) ∈ SN ×KH
i

that ensure the stock levels of a product are consistent between successive arrivals to harbor

i. Here, pim is 0 if there are two or more ships in harbor i during the m-th arrival. Thus,

if there are two ships, the above equation sets sEi(m−1)k = simk so that overlapping does

not cause conflicts. Constraints (26) and (27) force pim to take right 0 or 1 value. Stock

level bounds constraints (28) and (c2.a)-(c2.i) guarantee that the stock level of products

should be between specified minimum and maximum stock levels at the beginning and

end of service. Constraints (c2.a)-(c2.i) represent an equivalent linearized formulation (see,

Chapter II) of the constraint

SMNik ≤ sEimk + Rik(T − tEim)(yi(m+1) − yim) ≤ SMXik,

for every (i,m, k) ∈ ST ×KH
i .

If the stock level for a product at both service starting time and finishing time is within

its bounds, then the stock level will be between the minimum and maximum stock levels

during the entire planning period. This is because the stock level at the end of the m-th
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service and at the start of the m + 1-th service for a specific harbor must always be within

the minimum and maximum bounds under the assumption that the rate of consumption

and production is constant.

3.1.2.6 Variables

The decision variables in the mixed-integer linear program are

〈ximjnv, oimvk, zimv, yim, pim〉 ∈ {0, 1}η, (29)

〈qimvk, limvk, tim, tEim, simk, sEimk, w
r
im, vr

im〉 ∈ [ν, µ] (30)

where η denotes the number of binary variables and [ν, µ] denotes the hyper-rectangle

defined by a lower bound vector ν and an upper bound vector µ for all continuous variables.

(In (29) and (30), we use braces “〈” and “〉” to represent a column vector with sub-vectors

defined by all elements of one variable listed before the next variable is listed.) All of the

continuous variables are bounded because they are related to the quantity of the products,

and to time, which are physically bounded by the ship and inventory capacity and the

planning period. Also, the integer variables are all binary so that every variable in our

model is bounded. Therefore, our problem has a compact feasible set.

3.1.3 Size of the Problem

This problem has a very large number of constraints and variables. As the length of the

planning period increases, both the number of constraints and the number of variables

increase dramatically, because we need to consider many more possible visits that each

harbor may process. This will increase the cardinality of the set Mi, the set of arrival

numbers at harbor i. An example of 5 ships carrying 5 commodities to 10 harbors is

illustrated in the Figure 15 as the arrival number is increased. It shows that the problem

size, in terms of number of variables and constraints, increases exponentially when the

planning period is expanded.
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binary variables
 3740
 15635
 35630
 63725


Total variables
 5500
 19375
 41350
 71425


3
 6
 9
 12


Constraints
 35810
 160265
 373820
 676475


3
 6
 9
 12


Figure 15: Number of variables and constraints when each port is restricted to 3 through
12 possible arrivals during the planning period.

3.2 Structure of the Problem

The constraints of the original problem can be decomposed into two polyhedra with coupling

constraints. One polyhedron is defined by ship related constraints and the other one is

defined by harbor related constraints. Each polyhedron has the special structure that

allows it to be decoupled into several sub-polyhedra.

3.2.1 Decomposition of the Problem

In this chapter, we show how to decompose the constraints into three sets of constraints

(namely, ship, harbor, and coupling constraints) by introducing new variables and con-

straints. The number of constraints in each polyhedron is still large. Specifically, the ship

polyhedron is decoupled into |V | sub-polyhedra, and the harbor polyhedron is decoupled

into |H| sub-polyhedra, where |V | and |H| are the number of ships and harbors, respectively.

Notice that constraints (12), (13), and (16)-(20) are defined for each ship v ∈ V and all

the variables in these constraints are defined for each ship v. We call these ship constraints.

Constraints (15), (21), (24), (26), (27), (c1.a)-(c1.i), (28), and (c2.a)-(c2.i) are defined

for each state (i,m) and variables in those constraints have index (i,m) without index

v. Therefore, those constraints are related only to each state defined. The remaining

constraints (14), (22), (23), and (25) define the relationship between ships and states.

These constraints are composed of ship related variables (which have index v) and harbor
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related variables (which do not have index v). These are called coupling constraints.

Now define the new variable qimk for the amount of product k transferred to the state

(i,m). Also, let the binary variable oimk be 0 if no product k transactions are made at the

state (i,m); then

∑

v∈V

qimvk = qimk, ∀ k ∈ KH
i , (i,m) ∈ ST , (31)

∑

v∈V

oimvk = oimk, ∀ k ∈ KH
i , (i,m) ∈ ST . (32)

This is because the state (i, m) — corresponding to a node in our network formulation —

can be visited at most once by one of the ships v ∈ V . By using these relationships, we can

replace (22), and (25) with

tim +
∑

k∈KH
i

TQikqimk + Wi

∑

k∈KH
i

oimk − tEim = 0,∀ (i,m) ∈ ST , (33)

and

simk − Jikqimk + RikJik(tEim − tim)− sEimk = 0,∀ k ∈ KH
i , (i,m) ∈ ST , (34)

respectively.

This transformation allows the constraints (31) and (32) to be coupling constraints in-

stead of (22) and (25). Then we have constraints (33) and (34) as harbor related constraints.

Here, the objective is to minimize the function (O) and the constraints are given by

(12) through (30), with (22) and (25) replaced by (33) and (34), respectively, after adding

constraints (31) and (32). Therefore, we have four types of coupling constraints (14), (23),

(31) and (32) with ship constraints (12), (13), (16)-(20) and harbor constraints (15), (21),

(24), (26), (27), (c1.a)-(c1.i), (28), (c2.a)-(c2.i), (33) and (34).

After augmenting the inequality constraints with slack and surplus variables, and re-

laxing the binary variables, the relaxation of the shipping model we want to solve has the
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general structure (See Table 15 in Appendix C)

(P ) min
x,y

cx

Subject to D1x + D2y = b0

F1x = b1,

F2y = b2,

x ∈ [νx, µx],

y ∈ [νy, µy].

where c is the objective coefficient row vector, and [νx, µx] and [νy, µy] denote hyper-

rectangles defined by lower bound vectors νx and νy, and upper bound vectors µx and

µy. Additionally, D1, D2, F1, and F2 are real matrices and x and y are column vectors

where1

x := 〈ximjnv, zimv, oimvk, qimvk, limvk, timv, tEimv〉

y := 〈yim, oimk, pim, qimk, simk, sEimk, w
r
im, vr

im, tim, tEim〉

range over the values defined as follows: for each v ∈ V , (i,m, j, n) ∈ Av, k ∈ KH
i ∩ Kv

and (i,m) ∈ ST , and for each k ∈ KH
i , position (i,m) ∈ ST . Notice that all the elements

of variable x have index v but y do not.

As noted above, even relaxing the binary variables to the interval [0, 1] will yield a

large-scale linear program with a technology matrix



D1 D2

F1 0

0 F2




which is not totally-unimodular (Tables 15, 16 and 17 in Appendix C show the sparsity of

1Recall, the braces 〈αij , βkl〉 are to be read that all components of column vector α are listed before those
of β.
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the sub-matrices). The dimension of each component matrix can be expressed as follows;

D1 : o(|ST |2|V |)× o(|ST |2|V |),

D2 : o(|ST |2|V |)× o(|ST ||K|),

F1 : o(|ST |2|V ||K|)× o(|ST |2|V |),

F2 : o(|ST ||K|)× o(|ST ||K|)

where |ST |, |V |, and |K| are the cardinalities of the set of states, ships, and commodities,

respectively.

We can rewrite problem (P ) in concise form as

min
x,y

cx

s.t. D1x + D2y = b0

x ∈ P1,

y ∈ P2.

Ship polyhedron P1 and harbor polyhedron P2 are defined as

P1 := {x|F1x = b1, x ∈ [νx, µx]}

and

P2 := {y|F2y = b2, y ∈ [νy, νy]}

The original vector x can be expressed as the partitioned vector2 x := (xd, xc), where

the discrete (binary) vector is given by xd := 〈ximjnv, zimv, oimvk〉 and the nonnegative

continuous vector is given by xc := 〈qimvk, limvk, timv, tEimv〉. The ship polyhedron can be

written as

P1 := {x|F1x = b1, xd ∈ {0, 1}, xc ∈ [νxc , µxc ]}.

where [νxc , µxc ] denotes a hyper-rectangle defined by a lower bound vector νxc , and an upper

bound vector µxc for all continuous variables xc.

2For convenience, given column vectors a, b, c, we suppress the transpose superscript “T” and write a =
(b, c) instead of aT = (bT , cT ) when there is no ambiguity.
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Similarly, vector y can be expressed as y := (yd, yc), where binary vector yd := 〈yim, oimk, pim〉,
and nonnegative continuous vector yc := 〈qimk, simk, sEimk, w

r
im, vr

im, tim, tEim〉 are parti-

tioned to give the harbor polyhedron

P2 := {y|F2y = b2, yd ∈ {0, 1}, yc ∈ [νyc , µyc ]},

where [νyc , µyc ] denotes the bounding hyper-rectangle for continuous vector yc.

Polyhedron P1 can be decomposed into |V | ship-sub-polyhedra, one for each ship v ∈ V

because every constraint is a restriction on a single ship. Table 16 in Appendix C shows the

staircase structure of the matrix F ′
1 defining polyhedron P1, after rearranging the rows and

columns of the matrix F1. Similarly, polyhedron P2 can be decomposed into |H| harbor-

sub-polyhedra, one for each harbor i ∈ H because each constraint defining P2 involves only

a single harbor. Table 17 in Appendix C shows the staircase structure of the matrix F ′
2

defining polyhedron P2, obtained by rearranging the rows and columns of the matrix F2.

Therefore, we can rewrite P1 and P2 after rearranging x, y, b1 and b2 into x̂, ŷ, b̂1 and b̂2,

and defining the matrix decomposition

F ′
1 =




F11 0 0 0

0 F12 0 0

0 0
. . . 0

0 0 0 F1|V |




and F ′
2 =




F21 0 0 0

0 F22 0 0

0 0
. . . 0

0 0 0 F2|H|




,

as P1 := {x̂|F ′
1x̂ = b̂1, x̂ ∈ [ν̂x, µ̂x]} and P2 := {ŷ|F ′

2ŷ = b̂2, ŷ ∈ [ν̂y, µ̂y]}. Thus, the

constraints in P1 and P2 can be written as

F11x
1 = b11,

F12x
2 = b12,

...

F1|V |x|v| = b1|V |,

xv ∈ [νxv , µxv ], ∀v ∈ V,
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and

F21y
1 = b21,

F22y
2 = b22,

...

F2|H|y|H| = b2|H|,

yi ∈ [νyi , µyi ], ∀i ∈ H,

respectively. Here for v ∈ V , each sub-vector xv of x̂ = (x1, x2, . . . , x|V |) consists of compo-

nents

xv := 〈ximjnv, zimv, oimvk, qimvk, limvk, timv, tEimv〉,∀(i, m) ∈ ST , (i, m, j, v) ∈ Av, k ∈ KH
i .

Similarly, for i ∈ H, sub-vector yi of ŷ := (y1, y2, . . . , y|H|) consists of components

yi := 〈yim, oimk, pim, qimk, simk, sEimk, w
r
im, vr

im, tim, tEim〉,∀(i, m) ∈ ST .

Define sub-polyhedra

P1
v := {xv|F1vx

v = b1v, xv ∈ [νxv , µxv ]}, ∀v ∈ V

and

P2
i := {yi|F2iy

i = b2i, yi ∈ [νyi , µyi ]},∀i ∈ H.

Let D′
1 and D′

2 be the coupling matrices rearranged from D1 and D2 corresponding to the

vectors x̂ and ŷ, respectively, and let b̂0 and ĉ be the vectors rearranged from b0 and c,

respectively. Then Problem (P ) can be rewritten as

(P ) min
x̂,ŷ

ĉx̂

s.t. D′
1x̂ + D′

2ŷ = b̂0

xv ∈ P1
v , ∀v ∈ V

yi ∈ P2
i , ∀i ∈ H.

Below we show that, for each v ∈ V , ship polyhedron P1
v has network structure with

side constraints. For each i ∈ H, the special property of harbor polyhedron P̄2
i is that it

has a small number of binary variables 〈yim, oimk, pim〉.
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3.2.2 Structure of Ship Sub-Polyhedra

For each v ∈ V in our model, vector xv consists of both continuous and discrete variables.

By partitioning xv in a certain way, we can uncover hidden totally unimodular constraint

sub-matrices.

The ship sub-polyhedron P1
v is defined by constraints F1vx

v = b1v, xv ∈ [νxv , µxv ] which

can be partitioned as

F1vx
v =




F 11
1v 0

F 21
1v F 22

1v







uv

wv


 =




b1v
1

b1v
2


 = b1v

where uv := 〈ximjnv, zimv〉 and wv := 〈oimvk, qimvk, limvk, timv, tEimv〉, and the matrix F 11
1v

is totally unimodular.

Now we can rewrite the linear relaxation of our model as

(P ) z∗ = min
uv ,wv ,yi

∑

v∈V

cv
uuv +

∑

v∈V

cv
wwv (35)

Subject to
∑

v∈V

(D1
1vu

v + D2
1vw

v) +
∑

i∈H

D2iy
i = b0,

F 11
1v uv = b1v

1 , ∀v ∈ V,

F 21
1v uv + F 22

1v wv = b1v
2 , ∀v ∈ V,

F2y
i = b2i, ∀i ∈ H,

uv ∈ [0, 1], ∀v ∈ V,

wv ∈ [νwv , µwv ], ∀v ∈ V,

yi ∈ [νyi , µyi ], ∀i ∈ H,

where cv
u and cv

w are partitioned sub-vectors of objective coefficient vector c = (cu, cw)

associated with sub-vector xv = (uv, wv). Accordingly, matrices D1
1v, D2

1v and D2i are

70



partitioned in the following way

D′
1x̂ + D′

2ŷ = b̂0 =

[D1
11, D

2
11, . . . D

1
1|V |, D

2
1|V |]




u1

w1

...

u|V |

w|V |




+ [D21, . . . , D2|H|]




y1

...

y|H|




.

3.2.3 Structure of Harbor-Sub-Polyhedra

For each i ∈ H, polyhedron P2
i := {yi|F2iy

i = b2i, yi
d ∈ {0, 1}, yi

c ∈ [νyi
c
, µyi

c
]} has o(|Mi||KH

i |)
binary variables 〈yi′m, oi′mk, pi′m〉 where |Mi| and |KH

i | are the cardinalities of the arrival

numbers and products, respectively. Therefore, we can implement the binary branch and

bound process to solve quickly the harbor sub-problem.

3.3 Solution by Lagrangian Relaxation Method

In this section we briefly summarize our solution strategy based on the Lagrangian Relax-

ation Method [33]. The foregoing showed how our relaxed model can be decomposed into

|V | + |H| ship and harbor polyhedra, each living in its own space, in addition to a set of

coupling constraints. By dualizing the coupling constraints of our model, as well as the

side constraints within all ship polyhedra, the Lagrangian dual problem decomposes into

|V |+ |H| ship and harbor subproblems. Each subproblem has a nice structure that can be

solved quickly.

3.3.1 Lagrangian Relaxation Problem

The general idea is to dualize the coupling constraints
∑

v∈V (D1
1vu

v+D2
1vw

v)+
∑

i∈H D2iy
i =

b0, and the side constraints F 21
1v uv + F 22

1v wv = b1v
2 , ∀v ∈ V ; thereby, yielding a Lagrangian

relaxation which is decoupled in u, w and y. Recall, x = (u,w) ∈ P1 and y ∈ P2, where

u = (u1, . . . , u|V |) and w = (w1, . . . , w|V |). It is convenient to rewrite problem (P ) in the
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more compact notation

(P ) z∗ = min
u,w,y

cuu + cww

s.t. u ∈ Υ,

y ∈ P2,

(u,w, y) ∈ C,

w ∈ [νw, µw],

where the set C := {(u,w, y)|∑v∈V (D1
1vu

v + D2
1vw

v) +
∑

i∈H D2iy
i = b0, F 21

1v uv + F 22
1v wv =

b1v
2 , ∀v ∈ V } denotes the hyperplane defined by coupling constraints (14), (23), (31), and

(32) (see Table 15 in Appendix C), and side constraints (16) - (20) (see Table 16 in Appen-

dix C). Set Υ := Υ1 × · · · ×Υ|V |, where Υv := {uv|F 11
1v uv = b1v

1 , uv ∈ [νuv , µuv ]},∀v ∈ V .

For notational simplicity, let us rewrite the sets C := {u|A1u + A2w + A3y = a0} and

Υ := {u|Eu = a1, u ∈ [0, 1]} and P2 := {y|F2y = b2, y ∈ [νy, µy]}. Then problem (P ) has

the structure

(P ) z∗ = min
u,w,y

cuu + cww

Subject to A1u + A2w + A3y = a0,

Eu = a1,

F2y = b2,

u ∈ [0, 1], w ∈ [νw, µw], y ∈ [νy, µy],

where a0 = (b0, b1
2) for b1

2 = 〈b1v
2 〉v∈V , a1 = b1

1 for b1
1 = 〈b1v

1 〉v∈V , and b2 = 〈b2i〉i∈H .

By dualizing the coupling and side constraints (u,w, y) ∈ C with Lagrange multiplier

row vector λ, we can compute, for each fixed value of λ ∈ Rτ , the Lagrangian dual objective

function by solving the linear program

L(λ) = λa0 + min
u,w,y

(cu − λA1)u + (cw − λA2)w − λA3y (36)

s.t. Eu = a1,

F2y = b2,

u ∈ [0, 1], w ∈ [νw, µw], y ∈ [νy, µy].
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where τ is the number of rows of A1. This problem can be decomposed as L(λ) = λa0 +

S(λ) + H(λ), where

S(λ) = min
u,w

(cu − λA1)u + (cw − λA2)w (37)

s.t. Eu = a1,

u ∈ [0, 1], w ∈ [νw, µw],

and

H(λ) = min
y

−λA3y (38)

s.t. F2y = b2,

y ∈ [νy, µy].

In the notation of this section, our original problem (before relaxation) is the mixed-

integer linear program (MILP)

(IP ) z∗ = min
u,w,y

cuu + cww

Subject to A1u + A2w + A3y = a0,

Eu = a1,

F2y = b2,

u, wd, yd ∈ {0, 1},

wc ∈ [νwc , µwc ], yc ∈ [νyc , µyc ].

Imposing the binary restriction on the Lagrangian dual L(λ) gives another (in fact tighter)

Lagrangian dual objective as the solution of the MILP

LIP (λ) = λa0 + min
u,w,y

(cu − λA1)u + (cw − λA2)w − λA3y (39)

s.t. Eu = a1,

F2y = b2,

u, wd, yd ∈ {0, 1},

wc ∈ [νwc , µwc ], yc ∈ [νyc , µyc ].
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While LIP (λ) is the optimal value of a parameterized mixed-integer linear program, we will

later refer to the above MILP as problem LIP (λ).

Problems S(λ) and H(λ) can be decoupled into smaller sized subproblems. As we have

seen in Section 3.2, we can decouple each problem into several subproblems. Restricting

(37) and (38) to binary variables gives,

SIP (λ) = min
u,w

(cu − λA1)u + (Cw − λA2)w

s.t. Eu = a1,

u, wd ∈ {0, 1}, wc ∈ [νwc , µwc ],

and

HIP (λ) = min
y

−λA3y

s.t. F2y = b2,

yd ∈ {0, 1}, yc ∈ [νyc , µyc ],

where vector u := 〈ximjnv, zimv〉 is binary and w is expressed as w := (wd, wc) where the in-

dices of discrete (binary) vector wd := 〈oimvk〉 and the nonnegative continuous vector wc :=

〈qimvk, limvk〉. Vector y is expressed as y := (yd, yc) where the indices of (binary) vector yd :=

〈yim, oimk, pim〉 and the nonnegative vector yc := 〈simk, sEimk, qimk, w
r
im, vr

im, tim, tEim〉. In

summary, LIP (λ) = λa0 + SIP (λ) + HIP (λ) and we want to find λ∗ that solves the dual

problem maxλ∈Rτ LIP (λ).

It is well known [33] that if the solution (u∗, w∗, y∗) of LIP (λ) satisfies the dualized

coupling and side constraints, then it is a solution of the original problem (IP ); otherwise,

we have found a better lower bound than that obtained from the LP relaxation of the

original problem. That is, maxλ∈Rτ LIP (λ) ≥ maxλ∈Rτ L(λ).

Let υ1, υ2, . . . , υN denote the vertices of polyhedron

Q := {(u,w, y)|u ∈ Υ, y ∈ P2, w ∈ [νw, µw]}.

Suppose it is bounded, then z = (u,w, y) ∈ Q can be written as

z = α1υ1 + α2υ2 + · · ·+ αNυN , where,
N∑

i=1

αi = 1, αi ≥ 0, ∀i ∈ {1, 2, . . . , N}.
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We can rewrite

L(λ) = min
1≤i≤N

φ(υi, λ),

where, φ(υi, λ) = λa0 + [cu − λA1, cw − λA2 − λA3]υi. For fixed υi, the objective φ is a

linear function of λ. As λ varies, the optimal vertex υi changes and this implies that L(λ)

is a piecewise linear concave function, since L(λ) is the pointwise minimum of N linear

functions.

Similarly, let ῡ1, ῡ2, . . . , ῡM denote the vertices of the convex hull of points in

Q := {(u,w, y)|u ∈ Υ, y ∈ P̄2, wd ∈ {0, 1}, wc ∈ [νwc , µwc ]}

and write z as

z = β1ῡ1 + β2ῡ2 + · · ·+ βM ῡM , where
M∑

i=1

βi = 1, βi ≥ 0, ∀i ∈ {1, 2, . . . , M}.

Then we can write

LIP (λ) = min
1≤i≤M

φ(ῡi, λ). (40)

Let z̄∗ denote the optimal cost of the original problem (IP ) and let its linear relaxation

(P ) have optimal objective value z∗. Let λ∗ be an optimal solution of the dual maxλ L(λ)

and let λ̄∗ be an optimal solution to the dual maxλ LIP (λ). Then, it is well known that

z̄∗ ≥ LIP (λ̄∗) ≥ LIP (λ∗) ≥ L(λ∗) = z∗.

The first inequality holds because an optimal solution to (IP ) is feasible to LIP (λ) for all

λ. The others readily follow by definition.

Figure 16 shows the piecewise linear concave function LIP (λ) and L(λ).

3.3.2 Dual Ascent Method

Our objective is to find an optimal λ∗ that maximizes LIP (λ). We applied the Dual Ascent

method [8] to obtain λ∗. As we have seen, LIP (λ) is a piecewise linear concave function of

λ. By using the basic property of concave functions, we verify optimality of the current λk

at each iteration k. If the current λk is not optimal, we derive an improving direction, and

choose the step size along the improving direction.
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Figure 16: Domination of piecewise linear concave function LIP (λ) over L(λ)

3.3.2.1 Optimality Condition

For a smooth concave function f , which generally means a twice continuously differentiable,

concave function, x∗ is optimal if and only if its gradient vanishes at x∗. However, the

optimal value function LIP (λ) is not differentiable at certain points as shown in Figure

16. If the minimum in (39) is not obtained uniquely for some λ = λ̂, then LIP (λ) is not

differentiable at λ̂.

Let V (λ) = {ῡi|LIP (λ) = φ(ῡi, λ), i = 1, 2, . . . , M} and let I(λ) = {i|LIP (λ) =

φ(ῡi, λ), i = 1, 2, . . . ,M}. Here, V (λ) is the set of all extreme points that solve the MILP

(40), and I(λ) is the index set for the points in V (λ). For (ui, wi, yi) ∈ V (λ), it can be

shown (Chapter 6, [6]) that the vector
∑

i∈I(λ) αi(a0 − A1u
i − A2w

i − A3y
i) ∈ ∂LIP (λ)

for all αi ≥ 0 such that
∑

i∈I(λ) αi = 1; that is, for every (ui, wi, yi) ∈ V (λ), the vector

a0 −A1u
i −A2w

i −A3y
i and all convex combinations are subgradients of LIP at λ, where

∂LIP (λ) denotes the subdifferential of LIP at λ.

By the concave and piecewise linear properties of LIP (λ), the multiplier λ∗ is an opti-

mal solution to maxλ LIP (λ) if and only if Lagrange multiplier λ∗ satisfies the first order

optimality condition 0 ∈ ∂LIP (λ∗).

Next we present our development of computational methods for maximizing this piece-

wise linear concave function. For given λ, at each iteration the method finds a vertex in

V (λ) and checks for the optimality condition 0 ∈ ∂LIP (λ). As more vertices of V (λ) are

found, eventually we will have enough to verify optimality or conclude λ is not optimal.
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Note that 0 ∈ ∂LIP (λ) can be determined without finding all vertices in V (λ) if the right

ones are found early. When λ is not optimal, the method determines an improving search

direction which is followed for an optimal step size to fix the value of λ for the next iteration.

3.3.2.2 Improving Direction

At iteration k, we have for λk, a set of extreme points Vk(λk) ⊆ V (λk) that solve LIP (λk),

with associated index set Ik(λk) ⊆ I(λk). Note that |V (λk)| = |I(λk)| = 1 if problem

LIP (λk) has a unique solution.

We want to know if 0 ∈ ∂LIP (λk). This is equivalent to verifying the existence of αi

such that

∑

i∈Ik(λk)

αi(a0 −A1u
i −A2w

i −A3y
i) = 0,

∑

i∈Ik(λk)

αi = 1, αi ≥ 0, ∀i ∈ Ik(λk).

We can check the condition by solving the Phase I linear problem < PH1(k) >

min
τ+1∑

j=1

sj

s.t. (A1u
1 + A2w

1 + A3y
1)α1 + · · ·+ (A1u

n + A2w
n + A3y

n)αn + Is = a0, (41)

α1 + · · ·+ αn + sτ+1 = 1,

αi ≥ 0, ∀i ∈ {1, 2, . . . , n},

sj ≥ 0, ∀j ∈ {1, 2, . . . , τ + 1},

where n := |Ik(λk)| and τ is the number of rows of matrix A1 (i.e., the number of coupling

and side constraints that were dualized).

Iteration k

Solve < PH1(k) >. There are three possible outcomes.

Case I: optimal cost 0.

This means 0 ∈ ∂LIP (λk). Therefore, λk is optimal to maxλ LIP (λ)

Case II: optimal cost is positive.

Then an improving search direction is found as follows.
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Let (ρk, ρk
0) be dual optimal to < PH1(k) >, then,

ρk(A1u
i + A2w

i + A3y
i) + ρk

0 ≤ 0, ∀i ∈ Ik(λk). (42)

ρka0 + ρk
0 > 0 ⇒ −ρka0 < ρk

0. (43)

By (42), and (43), we have

ρk(a0 −A1u
i −A2w

i −A3y
i) > 0, ∀i ∈ Ik(λk). (44)

Thus, ρkgi > 0, ∀i ∈ Ik(λk), where gi := a0 −A1u
i −A2w

i −A3y
i is a subgradient of

LIP (λ) at λ = λk.

Suppose that we have all of the optimal vertices for problem LIP (λ). If ρgi > 0 for

all i ∈ I(λk), then the direction ρ is an improving direction [6], because, for every convex

combinations, say g, of gi, ∀i ∈ I(λk), we must have ρg > 0. However, we only know that

ρgi > 0,∀i ∈ Ik(λk) ⊆ I(λk).

Therefore, we want to check that the direction ρk is an improving direction for λk by

verifying that the directional derivative of LIP (λ) at λk in direction ρk is positive; i.e.,

lim
t↓0

LIP (λk + tρk)− LIP (λk)
t

> 0. (45)

In practice, we used small positive t to solve LIP (λk +tρk) and verified that LIP (λk +tρk) >

LIP (λk).

Now Case II has two subcases:

Case II-1: Condition (45) holds (ρk is an ascent direction).

Find tk that solves the step size problem

max
t≥0

LIP (λk + tρk). (46)

Define λk+1 = λk + tkρ
k.

Let (uk+1, wk+1, yk+1) be an optimal solution of MILP

min{(cu − λk+1A1)u + (cw − λk+1A2)w − λk+1A3y|(u, w, y) ∈ Q}. (47)

Define Vk+1(λk+1) = {(uk+1, wk+1, yk+1)}.
Set k ← k + 1 and repeat iteration k.
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Case II-2: Condition (45) does not hold (ρk is a non-ascent direction).

This case can only happen if |V (λk)| > 1. Then, a new optimal solution (us, ws, ys) /∈
Vk(λk) of LIP (λk) is found (See Proposition 3.3.1) by pivoting.

Update Vk(λk) ← Vk(λk) ∪ {(us, ws, ys)}. This amounts to adding a new column



A1u
s + A2w

s + A3y
s

1




to problem < PH1(k) >.

Return to the beginning of iteration k and solve problem < PH1(k) >.

The following result is well known (e.g., Theorem 6.3.4 in [6]). We include a statement

and proof in our notation for completeness.

Proposition 3.3.1. Suppose LIP (λk + tsρ
k) ≤ LIP (λk), for ts > 0 sufficiently small and

ρk is an optimal dual sub-vector associated with constraints (41) of problem < PH1(k) >.

Let the vertex (us, ws, ys) be an optimal solution of LIP (λk + tsρ
k). Then (us, ws, ys) ∈

V (λk)\Vk(λk).

Proof. We first show that (us, ws, ys) ∈ V (λk). By contradiction, suppose (us, ws, ys) /∈
V (λk). For small ts > 0 we are given that

LIP (λk + tsρ
k)

= (λk + tsρ
k)a0 + (cu − (λk + tsρ

k)A1)us + (cw − (λk + tsρ
k)A2)ws − (λk + tsρ

k)A3y
s

= λka0 + (cu − λkA1)us + (cw − λkA2)ws − λkA3y
s + tsρ

k(a0 −A1u
s −A2w

s −A3y
s)

≤ LIP (λk).

Moreover, LIP (λk) < λka0 + (cu − λkA1)us + (cw − λkA2)ws by the assumption that

(us, ws, ys) /∈ V (λk). Let

δ := λka0 + (cu − λkA1)us + (cw − λkA2)ws − LIP (λk).

Then

LIP (λk + tsρ
k) = LIP (λk) + δ + tsρ

k(a0 −A1u
s −A2w

s −A3y
s).
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Since δ > 0, then there exists a ts > 0, sufficiently small, such that LIP (λk+tsρ
k) > LIP (λk),

which contradicts our assumption that LIP (λk + tsρ
k) ≤ LIP (λk) for ts > 0 sufficiently

small. Therefore, the vertex (us, ws, ys) ∈ V (λk).

We now show that (us, ws, ys) /∈ Vk(λk). By the above argument, we know that

(us, ws, ys) ∈ V (λk). Then,

LIP (λk + tsρ
k)

= λka0 + (cu − λkA1)us + (cw − λkA2)ws − λkA3y
s + tsρ

k(a0 −A1u
s −A2w

s −A3y
s)

= LIP (λk) + tsρ
k(a0 −A1u

s −A2w
s −A3y

s)

≤ LIP (λk).

This implies ρk(a0 −A1u
s −A2w

s −A3y
s) ≤ 0. However, we have from (44) that ρkgi > 0

for all i ∈ Ik(λk), where gi := a0 − A1u
i − A2w

i − A3y
i. Therefore, s /∈ Ik(λk) so that

(us, ws, ys) ∈ V (λk)\Vk(λk); that is, the vertex (us, ws, ys) is a new optimal solution of

LIP (λk).

As we have seen, at each step we found an improving direction. Let λ0 be our first guess

for the Lagrange multiplier, then it is clear that

LIP (λ0) < LIP (λ1) < LIP (λ2) < · · · .

Under the assumption of a bounded feasible set, LIP (λ) is bounded by the optimal cost of

the original problem, so that {LIP (λk)} is an increasing bounded sequence. Therefore, it

converges to some limit point. Proposition 3.3.3 in Section 3.3.2.3 will establish that, in

fact, it converges to maxλ LIP (λ).

Summary of Dual Ascent approach:

Algorithm 3.3.2. (Dual-Ascent-Direction)

Given ε > 0 small ;

Set V0(λ0) ← ∅ ;

Choose λ0 ∈ Rτ arbitrarily ;

Solve LIP (λ0) — Let (u0, w0, y0) be an optimal solution ;

80



V0(λ0) ← V0(λ0) ∪ {(u0, w0, y0)} ;

Set k ← 0, Ψ ← 1 ;

while (Ψ 6= 0)

Given Vk(λk), construct < PH1(k) > ;

Solve < PH1(k) > ;

Set ρk ← dual optimal sub-vector of (41) ;

Set Ψ ← optimal cost of < PH1(k) > ;

if (Ψ = 0)

terminate the algorithm, λk maximizes LIP (λ) ;

else

Solve LIP (λk + ερk) — Let (us, ws, ys) be an optimal solution ;

if LIP (λk + ερk) > LIP (λk)

Determine step size tk from (46) ;

Set λk+1 ← λk + tkρk, and find vertex set Vk+1(λk+1) from (47) ;

k ← k + 1 ;

else

Vk(λk) ← Vk(λk) ∪ {(us, ws, ys)} ;

end while

end of Algorithm.

Remark. The initial choice of Ψ is arbitrary so long as Ψ 6= 0. While λ0 may be chosen

arbitrarily, we will use the dual optimal sub-vector of the corresponding LP relaxation. In

practice, as a stopping rule, we used Ψ < δ for specified δ > 0.

3.3.2.3 Step Size Rule

At the k-th step, with given Lagrange multiplier λk and improving direction ρk, we want

to find the optimal step size tk by solving

max
t≥0

Φk(t), (48)

where Φk(t) := LIP (λk + tρk). Recall that LIP (λk + tρk) is a piecewise linear concave

function of t and (48) is a one-dimensional optimization problem, as shown in the Figure 17.
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One way of solving the step size problem is to use a modified Bolzano’s bisection method

(see Bazaraa et al. [6]). The modification addresses how to proceed at points where Φk is

nondifferentiable. We first capture tk in an interval of uncertainty for which ∂Φk(t) is

positive for some tp and negative for some tn > tp. At each iteration, solve LIP (λk + t̄ρk)

where t̄ is the midpoint of the current interval of uncertainty. If ∂Φk(t̄) > 0 then tk ≥ t̄;

else tk ≤ t̄. We only obtain one of the elements of ∂Φk(t) at t̄ by solving LIP (λk + t̄ρk).

However, taking any one element of ∂Φk(t̄) yields the same result that one-half the interval

of uncertainty is discarded at each iteration. If an exact solution is sought, the method is

guaranteed to converge in the limit point. We will present next a procedure which converges

finitely to the exact solution, but the rate of reduction in the interval of uncertainty is not

fixed at each iteration.

As shown in Section 3.3.2.2, firstly we choose t > 0 small to verify that ρk is an improving

direction. Let γk(t) ∈ ∂Φk(t) denote a subgradient of Φk(t). Choose tp > 0 such that

γk(tp) = ρk(a0 − A1u
1 − A2w

1 − A3y
1) > 0 where (u1, w1, y1) solves LIP (λk + tpρ

k). Now

choose tn > tp so that it is large enough to have its γk(tn) < 0. At tp and tn, we know their

subgradients, so that we can calculate the point t̂ where two lines, with slopes γk(tp) and

γk(tn), intersect. Now solve LIP (λk+t̂ρk). Suppose γk(t̂) = ρk(a0−A1u
2−A2w

2−A3y
2) > 0.

Then change tp to t̂, otherwise tn to t̂. Figure 17 shows the movement of tp as t1, t2, . . . and

movement of tn as t̄1, t̄2, . . .. This procedure terminates when tp = tn.

Figure 17: Choice of t to maximize one dimensional function LIP (λk + tρ)

As we stated in Section 3.3.2.2, the Dual Ascent approach converges. We want to show

that the sequence {LIP (λk)} converges to the optimal Lagrangian dual objective value. It is

well known that Lagrangian relaxation methods converge to dual bounds. for completeness,
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we include our proof below based on our search directions coupled with exact line searches.

Proposition 3.3.3. Let (ρk, ρk
0) be dual optimal for < PH1(k) >, t∗k ∈ argmax{LIP (λk +

tρk), t ≥ 0}, and λk+1 = λk + t∗kρ
k. The sequence {LIP (λk)} → maxλ LIP (λ).

Proof. If the sequence {LIP (λk)} is finite, then it must terminate at some iteration K for

which < PH1(K) > has optimal cost 0. By concavity of LIP (λ), we must have LIP (λK) =

maxλ LIP (λ).

Now consider the case that {LIP (λk)} is an infinite sequence. For contradiction, suppose

that {LIP (λk)} converges to L < maxλ LIP (λ). Let λ̄ satisfy L < LIP (λ̄) ≤ maxλ LIP (λ).

For ς > 0 sufficiently small, the vector ρ̄k := ς(λ̄ − λk) satisfies LIP (λk + ρ̄k) > LIP (λk)

at any iteration k. However, by the definition of t∗k and the contradiction assumption, the

direction λ̄− λk was not generated by < PH1(k) > at any iteration.

Let us define

ρ̄k
0 := min

i∈Ik(λk)
{−ρ̄k(A1u

i + A2w
i + A3y

i)}

then,

ρ̄k
0 ≤ −ρ̄k(A1u

i + A2w
i + A3y

i), ∀i ∈ Ik(λk),

so that

ρ̄k(A1u
i + A2w

i + A3y
i) + ρ̄k

0 ≤ 0, ∀i ∈ Ik(λk).

This implies that (ρ̄k, ρ̄k
0) is dual feasible to < PH1(k) >.

As (ρk, ρk
0) is dual optimal solution for < PH1(k) >, we have

ρ̄ka0 + ρ̄k
0 ≥ ρka0 + ρk

0 = θ > 0

where θ is the optimal cost of < PH1(k) >. However, we can choose ς > 0 sufficiently

small that satisfies

ρ̄ka0 + ρ̄k
0 = ς(λ̄− λk)a0 + min

i∈Ik(λk)
{−ς(λ̄− λk)(A1u

i + A2w
i + A3y

i)} < θ

which is a contradiction that (ρk, ρk
0) is dual optimal for < PH1(k) >. Therefore, {LIP (λk)}

converges to maxλ LIP (λ).
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3.4 Solution Strategy by Heuristic Method

In practical applications, problems as large and complex as ours take far too long to solve for

an optimal solution. Even the method above yields only a bound on the optimal objective

value because of the duality gap. While the general approach can be imbedded in a branch-

and-bound technique to successively improve the dual bounds, this would be prohibitively

expensive. We must therefore be able to compute primal feasible solutions and use the dual

bound as a worst-case measure of how far a primal feasible point is away from optimality.

Here we suggest heuristic methods that are fast and find a solution with known worst case

optimality gap since a lower bound is obtained by the Lagrangian relaxation method.

The heuristic methods presented below are based on the following observation. In gener-

ating a sequence of cost effective greedy moves for each ship that satisfy harbor requirements,

there are imbedded decision factors that can be randomized at each stage of the process

and that produce a different feasible solution according to the random number generated.

We can run these heuristics as many times as desired and then choose the best solution

among the random trials.

3.4.1 Harbor-First Heuristic

To simplify our notation, we will describe the steps of an iterative process while suppressing

the iteration counter. The steps in one iteration begin with first finding the harbor which

most urgently needs service for one of the products it either supplies or demands. For the

selected urgent harbor, we identify the set of ships that can provide service to that harbor.

Among the set of ships, choose the one which is the most cost effective, and service the

maximum possible quantities of all products.

3.4.1.1 Harbor Selection

We first select the harbor which most urgently needs to be serviced. For harbor i, urgent

time Ui is defined as

Ui = CHTi + min
k∈KH

i

Uik (49)
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where

Uik =





SMXik−CSik
Rik

if Jik = +1

CSik−SMNik
Rik

if Jik = −1

is the urgent time of product k at harbor i. Here, CHTi is the current time of harbor i

which is initialized as 0 and updated whenever harbor i is serviced. Additionally, CSik is

the current stock level (at time CHTi) of product k at harbor i which is initialized as ISik,

the initial stock level of product k at harbor i. The time Uik is the time that the stock level

of product k reaches the minimum (SMXik if Jik = −1) or maximum (SMNik if Jik = +1)

stock level bound based on the production/consumption rate (Rik) of product k in harbor

i. Figure 18 shows the relationship between CSik, CHTi, and Uik.

Stock Level


Time


Stock Level


Time


Figure 18: Calculation of the urgent time of product k at harbor i.

Each port should be visited by some ship that can service its needs before time Ui < T .

(Recall, T is the length of the planning period of the model.) The procedure terminates

when Ui ≥ T, ∀i ∈ H.

3.4.1.2 Ship Selection

Suppose harbor i is the most urgent. Identify the ships that are able to reach harbor i from

their current positions CPv to the urgent port i; that is, the travel time TCPviv from current

position CPv to urgent harbor i by ship v should allow it to reach harbor i before urgent
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time Ui. This condition is satisfied when

CTv + TCPviv ≤ Ui (50)

where CTv is defined as ship v’s current time, which must be the earliest time that ship v

can start moving.

Let UKi denote a product that determines the urgent time Ui of harbor i; i.e., UKi ∈
argmin{Uik : k ∈ KH

i }. Among ships that satisfy condition (50), choose the subset that

have a sufficient amount of product UKi (if JiUKi = −1) or sufficient space to download

product UKi (if JiUKi = +1). We refer to this subset of ships as candidate ships. Among

the candidate ships, we consider two criteria to choose which ship to send to the urgent

harbor.

First, we can choose the ship which is the most cost effective one; namely, the candidate

ship v with the least travel cost CCPviv from current position CPv to urgent port i. A second

criterion is to choose the ship which can service the largest quantity (
∑

k∈KH
i

SQivk). Here

the service quantity SQivk can be calculated as described in Section 3.4.1.3 below.

These two different ship selection rules can be combined by constructing a weighted

function fs(v) as

fs(v) := ωtCCPviv +
ωq∑

k∈KH
i

SQivk
(51)

where ωt, and ωq are, respectively, weights for the travel cost and for the reciprocal of the

total amount of all products serviced by ship v.

We choose the ship v that determines the minimum fs(v) among the candidate ships.

Notice that fs(v) is small if the travel cost CCPviv from current position CPv to urgent

harbor i is small and the total quantity
∑

k∈KH
i

SQivk to be serviced by ship v is large.

The random generation of weights ωt and ωq results in a different choice of ship to

send to the urgent harbor for each random pair. However, because the scale of CCPviv and
∑

k∈KH
i

SQivk are different, we impose the relationship between weights

ωt +
ωq

Ω
= 1, (52)
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where Ω := (minv∈Vc{CCPviv})(maxv∈Vc{
∑

k∈KH
i

SQivk}) and Vc is the set of candidate

ships. For example, suppose ships 1 and 2 are in Vc. For ships 1 and 2, take the travel

costs CCPviv from the current position to harbor i to be 20 and 10, respectively, and let

the total service quantities
∑

k∈KH
i

SQivk be 100 and 50, respectively. If ωt = 0.5, then

ωq = 500, because Ω = 1000. For ωt = 0.5, we have fs(v) = 15 for each ship 1 and 2. If we

take ωt < 0.5, then fs(1) < fs(2), so that we put more weight on quantities to be serviced.

Therefore, for ωt small, the choice of ship is likely to depend on ship v’s travel cost CCPviv

rather than the quantity
∑

k∈KH
i

SQivk that will be serviced at urgent port i.

3.4.1.3 Service quantity

Suppose ship v is chosen to service urgent harbor i. Let SQivk be the maximum possible

service quantity based on ship v’s stock level of product k and the stock level of product k

at harbor i. First, consider the harbor i stock level of product k at the time when ship v

arrives. It can be calculated as

TempSTik = CSik + JikRik(CTv + TCPviv − CHTi), (53)

because CTv +TCPviv−CHTi is the time when ship v arrives at port i. Then the maximum

possible service quantity can be calculated as

SQivk =





min{TempSTik − SMNik, CAPvk − CQvk} if Jik = +1

min{SMXik − TempSTik, CQvk} if Jik = −1
(54)

where the current product quantity level CQvk is the quantity of product k onboard ship

v at current time CTv. It is initialized as CQvk = Qvk, the initial quantity of product k on

ship v at the start of the planning period.

3.4.1.4 Update Ship and Harbor Status

Suppose ship v services urgent harbor i in the amount SQivk as determined by (54), and

the stock level CSik of product k in port i at the end of service is updated according to

(53). Then
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• Harbor i was serviced at the time when ship v arrives at port i, so that the current

time of harbor i is updated to

CHTi ← CTv + TCPviv

• The current position of ship v is updated to

CPv ← i

• The earliest time that ship v can depart for any new service is the time at which it

completes its service at port i. Therefore, current time CTv of ship v is updated to

CTv ← CHTi +
∑

{k∈KH
i |SQivk 6=0}

(Wi + TQikSQivk)

• The quantity CQik of product k onboard ship v after completing harbor i service is

updated to.

CQvk ← CQvk − JikSQivk.

Repeat all three steps of harbor selection, ship selection and update ship and harbor

status until Ui ≥ T, ∀i ∈ H.

Remark. For given weights (wt, wq) at each iteration, this method is not guaranteed to

produce a feasible schedule. However, by randomizing the weights for each iteration and

repeating the process multiple times, we successfully generated feasible schedules for all

problems tested.

3.4.1.5 An Example

We illustrate the heuristic with the example in Figure 19. At the initial step, we assume

that every ship should service as much as possible in its initial position. we can interpret

this as a snapshot of a system in progress with initial time axis shifted to the present.

In Figure 19, we denote port i’s status by the current time and stock level information;

namely, CHTi : (CSi1, CSi2, UTi1, UTi2). Ship v’s status is denoted by the current time and

the quantity onboard; that is, CTv : (CQv1, CQv2). Ship movements are expressed as solid
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Figure 19: An example of Harbor-First Heuristic with 3 ports, 2 ships and 2 products
with a planning horizon of 10 time units.

lines and dashed lines for ships 1 and 2, respectively. Moves at each iteration are marked

as circled iteration numbers on the arcs. For example, at the first step, we decided to send

ship 1 from the initial position to port 3 because port 3’s urgent time is 5, and it is the

most urgent among all other harbor urgent times. Furthermore, ship 1 is the only available

ship that can be chosen among the set of ships.

3.4.2 Ship-First Heuristic

Here we consider an alternative heuristic method. We generate a sequence of ships in a

random order. For the first ship, say v, in the sequence, we choose a harbor based on

service urgency and the quantities that the first ship can service. This choice can be done

using the same criterion function as (51), except here the argument is harbors since the

ship has already been selected

fH(i) := ωtCCPviv +
ωq∑

k∈KH
i

SQivk
. (55)

We choose the harbor i that determines the minimum fH(i) among the candidate harbors

whose urgent time Ui, calculated in (49), is less than the planning period and satisfies
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condition (50) for ship v. The random fixing of weights ωt and ωq leads to different choices

of harbors.

After sending the first ship to the harbor that determines the minimum of fH(i) defined

by (55), we eliminate the first ship in the sequence. This is one step of the heuristic. At each

step, the urgency of harbors, current stock levels and time for harbors and ships are updated

in exactly the same way as done in the previous Section 3.4.1. This algorithm continues

until every harbor’s urgent time is greater than the length of the planning horizon.

Remark. As with the first heuristic, feasible solutions are not guaranteed but our com-

putational experience shows that the randomization process helps in generating feasible

schedules after several trials.

3.4.2.1 An Example

Figure 20 shows the result of the Ship-First Heuristic. We assume that every ship services
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Figure 20: An example of Ship-First Heuristic (under ship sequence 1, 2, 1, 2) with 3 ports,
2 ships and 2 products with a planning horizon of 10 time units.
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as much as possible in the initial position. We use the sequence of ships {1, 2, 1, 2, . . .} and

choose the harbor to service by neglecting the costs of travel; i.e., we only consider the

quantities to be serviced. The solution is totally different from the one obtained by our

Harbor-First Heuristic (see Figure 19).

3.5 Computational Results

In this section, we apply the Dual Ascent method to four test problems taken from our

test bed, generated in Section 2.6.2, assuming four additional harbor visits. Table 10 shows

how close the lower bound, obtained by the Dual Ascent method, is to the optimal cost

obtained by CPLEX using the default options of the solver. For each problem, we list the

optimal objective cost and the solution time required by CPLEX, and the lower bound and

the solution time taken by the Dual Ascent method. The triple (·, ·, ·) denotes the problem

setting (|HT |, |V |, |K|). The duality gap (percentile) is calculated as

Optimal cost− Lower bound
Optimal cost

× 100.

Table 10: Quality of the lower bounds and computing times (seconds) by Dual Ascent
Method

Test CPLEX Dual Ascent Duality
Problem Optimal Solution Time Lower Bound Solution Time Gap (%)
(3,3,2) 64.3 25284 47.1 271 26.8
(3,3,3) 75.3 450815 43.7 395 42.0
(4,2,2) 39.0 13327 25.3 252 35.1
(4,2,3) 50.2 28648 27.9 312 44.4

For the Dual Ascent method, we choose the initial guess λ0 as the dual optimal sub-

vector corresponding to the coupling and side constraints of the original linear programming

relaxation. We chose the step size t = 0.001 to verify the condition (45) which is checked

by LIP (λk + tρk) > LIP (λk).

To get a feasible solution for these four test problems, we applied both the Harbor-

First and Ship-First heuristic methods. Table 11 shows the objective costs of the solutions

obtained by these two heuristic methods along with the solution times. The optimality gap

91



is calculated based on the better solution from the Harbor-First and Ship-First heuristics

compared to the optimal cost from CPLEX. We ran these randomized greedy methods 5000

times for each heuristic method. The optimality gap (percentile) is calculated as

Table 11: Quality of the solution from the heuristic methods and computing times (sec-
onds)

Test Harbor-First Ship-First Optimality
Problem Cost Solution Time Cost Solution Time Gap (%)
(3,3,2) 101.2 31.2 73.5 27.4 12.5
(3,3,3) 96.5 34.2 84.7 29.2 11.1
(4,2,2) 90.2 30.4 51.3 26.5 24.0
(4,2,3) 54.7 35.7 67.3 31.0 8.2

Minimum cost of two heuristics−Optimal cost
Minimum cost of two heuristics

× 100.

Our combined Dual Ascent/Heuristic approach produced an average duality gap of 37%

and average optimality gap of 13.9%. More importantly, our solution times are on average

three orders of magnitude faster than getting the exact solution by CPLEX. As an example,

the case (3, 3, 2) takes a total of 329.6 seconds to find a lower bound and a feasible solution

with 26.8 % duality gap and 12.5% optimality gap, while CPLEX takes 25,284 seconds to

find an optimal solution.

To test our method on bigger problems, we used the method in Section 2.6.2 to generate

ten more test problems with 6 harbors, 4 ships, 3 products, and allowing 3 additional

visits for each harbor. We first solved these mixed-integer linear programming problems by

CPLEX using only the default options of the solver. We wait until the first integer feasible

solution is found and record the solution time and the lower bound on the optimal objective

value that CPLEX has calculated at this point. Next, we applied the Dual Ascent method

and recorded the solution time and the lower bound obtained. We compare these results in

Table 12, where the LP Relaxation column gives the optimal objective values of (35). The

results in Table 12 show, on average, that the lower bounds obtained by the Dual Ascent

method are worse than CPLEX’s results; however, their average computing time was 0.28%

of CPLEX’s average time.
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Table 12: Lower bounds and computing times (seconds) by CPLEX and the Dual Ascent
Method

Test LP CPLEX Dual Ascent
Problem Relaxation Lower Bound Solution Time Lower Bound Solution Time

1 21.0 94.1 244,908 32.0 471
2 12.2 60.1 287,003 28.6 442
3 52.3 87.2 114,494 61.3 387
4 35.7 53.7 89,371 50.3 520
5 27.9 45.8 109,823 42.7 382
6 36.8 83.1 215,744 67.5 551
7 86.3 121.4 175,428 101.4 541
8 39.1 57.8 57,487 56.5 334
9 28.7 44.9 58,332 39.9 442
10 24.5 68.7 185,424 59.5 342

Average 36.5 71.7 153,801 54.0 441

The Dual Ascent method produces a lower bound on the optimal MILP. With a feasible

solution, this bound can be used to establish posterior error bounds on how close that

feasible solution is to optimality. This is very important since for most heuristically obtained

solutions there is no mechanism for determining how good that solution is. Table 13 shows

the objective cost obtained from our two heuristic methods, where the second column is the

objective value of the first incumbent found by CPLEX and the last two columns are the

minimum of the upper bounds produced by the two heuristics and the total time taken by

the two heuristics. We ran each heuristic method 5000 times and chose the best solution

among those random trials.

Test results in Table 13 show, on average, that the upper bounds obtained by our two

heuristic methods are better than CPLEX’s results. Additionally, our heuristic methods

gave smaller upper bounds for all but three (problems 7, 8 and 10) out of ten cases. More-

over, in our experiments, CPLEX never found a feasible solution to problems bigger than

the size of our test problems (namely; 6 harbors, 4 ships, 3 products and 3 additional harbor

visits) within our pre-set time limit of 500K seconds.

A comparison of the worst case analysis by CPLEX and the Dual Ascent with heuristics

method for these ten problems is shown in Table 14. On average, CPLEX spends 153,801

93



Table 13: Objective costs of feasible solutions and their computing times (seconds) by
CPLEX and two heuristic methods

Test CPLEX Harbor-First Ship-First Best Heuristic
Upper Upper Solution Upper Solution Upper Solution

Problem Bound Bound Time Bound Time Bound Time
1 172.9 253.1 72.8 158.4 49.8 158.4 122.6
2 251.4 232.3 73.5 342.8 48.9 232.3 122.4
3 210.9 179.3 71.2 198.7 50.1 179.3 121.3
4 421.0 197.5 75.3 212.7 49.2 197.5 124.5
5 251.0 184.7 75.3 314.3 47.8 184.7 123.1
6 248.4 352.4 74.5 198.5 46.7 198.5 121.2
7 261.7 336.4 72.1 385.4 49.5 336.4 121.6
8 167.5 245.8 75.3 198.4 48.3 198.4 123.6
9 195.7 185.7 74.6 275.6 50.1 185.5 124.7
10 157.6 374.5 71.5 167.4 49.5 167.4 121

Average 233.8 254.1 73.61 245.2 49.0 203.8 122.6

Table 14: Worst case analysis by CPLEX and Dual Ascent Method with computing times
(seconds)

Test CPLEX Dual Ascent/Heuristics
Problem Worst Case (%) Solution Time Worst Case (%) Solution Time

1 45.6 244,908 79.7 593.6
2 76.1 287,003 87.6 564.4
3 58.6 114,494 65.7 508.3
4 87.2 89,371 74.5 644.5
5 81.8 109,823 76.9 505.1
6 66.5 215,744 65.9 672.2
7 53.6 175,428 69.9 662.6
8 65.5 57,487 71.5 457.6
9 77.1 58,332 78.5 566.7
10 56.4 185,424 64.4 463.0

Average 66.8 153,801 73.4 563.8

seconds to get a solution with an average posterior bound gap of 66.8% while the Dual

Ascent method with two heuristics spends 563 seconds with an average posterior bound

gap of 73.5%. However the Dual Ascent with heuristics takes only 0.4% of the solution time

required by CPLEX.
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3.6 Summary and Concluding Remarks

This research deals with chemical transport problems involving maritime pick up from and

delivery to storage tanks that are continuously filled and drained. More specifically, we

developed decision technology to determine the efficient use of multi-compartment bulk

ships to transport chemical products while ensuring continuous production with no stock-

outs, so that the inventory level of chemical products in storage tanks are maintained

between prescribed upper and lower stock levels during the planning horizon. Due to the

nature of the products, it is impossible to carry more than two products without these

being separated into dedicated compartments of the ships. We need to decide how much of

each product to carry, on which ship, subject to the conditions that all harbors must have

sufficient product to meet demand, and the stock levels of the products cannot exceed the

inventory capacity of that harbor.

We have formulated this ship-routing problem as a combined multi-ship pickup-delivery

problem with inventory constraints. The original problem is a large-scale non-convex mixed-

integer programming problem. All non-convexities involved weighted sums of products

of two variables, one of which is binary and the other is continuous but bounded. We

have shown that the structure gives rise to an equivalent large-scale linear mixed-integer

programming problem (MILP).

We studied the underlying structure of the MILP and investigated several possible solu-

tion approaches. As a solution strategy for this large scale MILP with special structure, the

Lagrangian relaxation method was used to find a bound (because of the duality gap) on the

optimal objective value. Lagrangian relaxation takes advantage of the constraint structure

of the model. By dualizing the coupling and side constraints, we generate a master problem

for a given set of Lagrange multipliers. The master problem itself can be decomposed into

several more tractable subproblems. One set of subproblems can be solved using network

flow technology and the other set of subproblems can be solved by integer programming

technology as the number of binary variables is relatively small. Using the solutions from

the subproblems, we can update the Lagrange multipliers and solve a new master problem,

and so on. Lagrange multipliers are updated in such a way that the optimal cost of the
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master (lower bounding) problem keeps increasing. To do this, we first find an improving

direction from the current Lagrange multiplier vector and solve the optimal step size along

that direction. With updated Lagrange multipliers the master problem is solved again, and

so on until no improving direction exists.

To get a feasible solution, we devised heuristic methods that are fast and find a good

solution. We generate a sequence of greedy moves for each ship that satisfy harbor require-

ments and that are as cost effective as possible. These greedy heuristics imbed decision

factors that can be randomized at each stage of the process, and that produce a different

feasible solution according to the random number generated. We can run these heuristics

as many times as desired and then choose the best solution among the random trials.

Details of the Lagrangian relaxation method were presented and convergence to the dual

solution was established. However, because of the duality gap, a primal feasible solution

is generally not available. Heuristic methods for finding primal feasible solutions were also

developed. Numerical experiments on small test problems indicate that the heuristics are

very effective at finding good solutions quickly.

We conducted numerical studies to establish the goodness of the heuristic solution, on

average, when compared to the dual bounds. This gives a worst case analysis since the dual

bounds manifest a duality gap with respect to the primal optimal objective value. However,

in theory at least, the dual bounds can be tightened by performing branch and bound

on the primal binary variables and solving the subproblems by the Lagrangian relaxation

method. One way of performing the branch and bound process is as follows. Assume

that the Dual Ascent method terminates with δ-optimal objective value of problem <

PH1(k) > in step k. Solving the < PH1(k) > produces optimal coefficients αi that

satisfy the constraints (A1u
1 + A2w

1 + A3y
1)α1 + · · · + (A1u

n + A2w
n + A3y

n)αn = a0

(See (41)) of problem < PH1(k) >. The convex combination of the solutions of the master

problem (i.e., (α1u
1 + · · ·+ αnun, α1w

1 + · · ·+ αnwn, α1y
1 + · · ·+ αnyn)) can be fractional

valued for components that are required to be binary. We can branch on those variables as

0 or 1. At the termination of this branch and bound process, one has a convex combination

of the solutions of the master problem which is feasible to the original problem because
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constraints (41) are satisfied and all mixed-integer decision vectors meet their integrality

requirements. A few steps of this approach can be used to tighten the error bound but this

would not be an efficient approach to solve our maritime routing and scheduling problem.
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APPENDIX A

NOTE ON CONVEX UNDERESTIMATES OF SUMS OF
PRODUCTS OF LINEAR FUNCTIONS

In this appendix we describe a technique for reformulating some structured nonlinear

programs into linear programs by introducing additional variables. Specifically, we show

that a nonlinear mixed-integer program can be reformulated into an equivalent mixed-

integer linear program under certain conditions. In some cases, the reformulation can be

tightened by judiciously choosing the nonlinear terms to be linearized.

A.1 Introduction

The purpose of this appendix is to derive some results of convex underestimates of sums of

products of linear functions that are useful in certain applications. This appendix demon-

strates straightforward extensions and results of Al-Khayyal and Falk [2] (See also Al-

Khayyal [1]) and later extended by Sherali and Alameddine [50] and Sherali and Adams [48],

as well as by Tawarmalani and Sahinidis [52]. We will derive the basic ideas of this useful

relaxation technique and illustrate some extensions in Section A.2. In Section A.3, we apply

this result to general linear functions. We also show that a particular type of non-linear

mixed-integer program can be reformulated into an equivalent mixed-integer linear program

under certain conditions, thereby making problem solving relatively easy. Also it compares

two alternative relaxation methods and shows one is better than the other in the sense of

tighter relaxation.

A.2 Simplification and extensions

In this section we will discuss the linearization of the feasible region defined by a special

nonlinear equation formed by the product of variables. We will preliminarily start to inves-

tigate the linearization technique for the nonlinear form of the product of two variables xy

and extend it to the form of x
y .
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A.2.1 Relaxation of product of two variables

Consider the compact set B defined by x, y ∈ R

B := {(x, y)|Lx ≤ x ≤ Ux, Ly ≤ y ≤ Uy}.

It is formed by the four constraints

i) x− Lx ≥ 0 ii) Ux − x ≥ 0

i’) y − Ly ≥ 0 ii’) Uy − y ≥ 0.

By writing the four ways of multiplying these nonnegative quantities, we obtain the set CI

of implied constraints which is defined as

CI := {(x, y)|xy ≥ Lyx + Lxy − LxLy, xy ≥ Uyx + Uxy − UxUy

xy ≤ Uyx + Lxy − LxUy, xy ≤ Lyx + Uxy − UxLy}.

Specifically, we have

x− Lx ≥ 0, y − Ly ≥ 0,

⇒ (x− Lx)(y − Ly) ≥ 0,

⇒ xy ≥ Lyx + Lxy − LxLy

Ux − x ≥ 0, Uy − y ≥ 0,

⇒ (Ux − x)(Uy − y) ≥ 0,

⇒ xy ≥ Uyx + Uxy − UxUy

x− Lx ≥ 0, Uy − y ≥ 0,

⇒ (x− Lx)(Uy − y) ≥ 0,

⇒ xy ≤ Uyx + Lxy − LxUy

y − Ly ≥ 0, Ux − x ≥ 0,

⇒ (y − Ly)(Ux − x) ≥ 0,

⇒ xy ≤ Lyx + Uxy − UxLy.
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Notice that B ⊆ CI . Now for notational simplicity, introduce the notation

[L,U ] := {(x, y)|Lx ≤ x ≤ Ux, Ly ≤ y ≤ Uy}, where L :=




Lx

Ly


 , U :=




Ux

Uy


 .

Then B = {(x, y)|(x, y) ∈ [L,U ]}. Now consider the set B′ in higher dimensional space

B′ := {(x, y, z)|(x, y) ∈ [L,U ], z = xy}
⋂
{(x, y, z)|(x, y) ∈ CI , z = xy}.

Then, set B′ has constraints as follows,

z = xy,

Lx ≤ x ≤ Ux,

Ly ≤ y ≤ Uy,

z ≥ Lyx + Lxy − LxLy,

z ≥ Uyx + Uxy − UxUy,

z ≤ Uyx + Lxy − LxUy,

z ≤ Lyx + Uxy − UxLy.

Notice that the projection B′ onto the x-y plane is exactly B itself. By eliminating constraint

z = xy in B′, we obtain the relaxation B̃′ of B′

B̃′ := {(x, y, z)|(x, y) ∈ [L,U ]}
⋂
{(x, y, z)|(x, y) ∈ CI , z = xy}.

Then, B′ ⊆ B̃′. Now, the projection of B̃′ onto the x-y plane is

ProjR2B̃′ := {(x, y)|(x, y, z) ∈ B̃′ for all z}.

Then, it is clear that B ⊆ ProjR2B̃′ which means that for all (x, y) ∈ B, there exist z such

that (x, y, z) ∈ B̃′.

Notice that B̃′ ⊆ {(x, y, z)|(x, y) ∈ CI , z = xy} so B̃′ has constraints defining CI which are

obtained by substituting z = xy, that is

z ≥ max{Lyx + Lxy − LxLy , Uyx + Uxy − UxUy}, (56)

z ≤ min{Uyx + Lxy − LxUy , Lyx + Uxy − UxLy}. (57)
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Then, (56) and (57) represent convex and concave envelope of xy over [L,U ] respectively.

So, whenever xy appears in a problem with bounded variables, we can linearize xy by in-

troducing the new variable z = xy and adding constraints CI with z = xy.

As an example, consider feasible region S with [L,U ] = [0, e], where e = (1, 1)T , and the

additional constraint xy ≤ 1
2 . Then we can express S̃′ as

z ≥ max{0, x + y − 1}, z ≤ min{x, y}, z ≤ 1
2
.

Now Figure 21 shows the feasible regions S and S̃′. Set S is a two-dimensional space in the

x-y plane. Set S̃′ is in the 3-dimensional space of (x, y, z). As shown in the Figure 21, for
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Figure 21: Example of nonlinear feasible region and its convex relaxation

every point (x, y) ∈ S, there exist z such that (x, y, z) ∈ S̃′. The projection of S̃′ onto the

x-y plane is shown in Figure 22. It illustrates why the feasible region S is a subset of the

convex set ProjR2B̃′.

101



0 0.5 1
0

0.2

0.4

0.6

0.8

1

x−axis

y−
ax

is

Figure 22: Original nonlinear feasible region and projected region

A.2.2 Extension to the form of x
y

Consider feasible region F generated by x, y ∈ R for 0 < Ly ≤ Uy, and suppose there exist

additional constraints with the term x
y . Then, the hyperrectangle

Lx ≤ x ≤ Ux,

Ly ≤ y ≤ Uy

is equivalent to

Lx ≤ x ≤ Ux,

1
Uy

≤ 1
y
≤ 1

Ly
.

So we can apply the same result of (56) and (57) as follows

Lx ≤ x ≤ Ux, Ly ≤ y ≤ Uy,

z ≥ x

Uy
+

Lx

y
− Lx

Uy
, z ≥ x

Ly
+

Ux

y
− Ux

Ly
,

z ≤ x

Ly
+

Lx

y
− Lx

Ly
, z ≤ x

Uy
+

Ux

y
− Ux

Uy
.
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By letting 1
y = w we can rewrite it as

yw = 1,

Lx ≤ x ≤ Ux,

Ly ≤ y ≤ Uy,

z ≥ x

Uy
+ Lxw − Lx

Uy
,

z ≥ x

Ly
+ Uxw − Ux

Ly
,

z ≤ x

Ly
+ Lxw − Lx

Ly
,

z ≤ x

Uy
+ Uxw − Ux

Uy
.

Then, substituting z′ = wy and applying the same method with bounds on w ∈ [ 1
Uy

, 1
Ly

],

we get

z′ = 1,

Lx ≤ x ≤ Ux,

Ly ≤ y ≤ Uy,

z ≥ x

Uy
+ Lxw − Lx

Uy
,

z ≥ x

Ly
+ Uxw − Ux

Ly
,

z ≤ x

Ly
+ Lxw − Lx

Ly
,

z ≤ x

Uy
+ Uxw − Ux

Uy
,

z′ ≥ Lyw +
y

Uy
− Ly

Uy
,

z′ ≥ Uyw +
y

Ly
− Uy

Ly
,

z′ ≤ Uyw +
y

Uy
− 1,

z′ ≤ Lyw +
y

Ly
− 1.
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Substituting z′ = 1 gives

Lx ≤ x ≤ Ux,

Ly ≤ y ≤ Uy,

z ≥ x

Uy
+ Lxw − Lx

Uy
,

z ≥ x

Ly
+ Uxw − Ux

Ly
,

z ≤ x

Ly
+ Lxw − Lx

Ly
,

z ≤ x

Uy
+ Uxw − Ux

Uy
,

1 ≥ Lyw +
y

Uy
− Ly

Uy
,

1 ≥ Uyw +
y

Ly
− Uy

Ly
,

2 ≤ Uyw +
y

Uy
,

2 ≤ Lyw +
y

Ly
.

For example, suppose we have constraints with a term x
y in a compact set defined by

0 ≤ x ≤ 1,

1 ≤ y ≤ 2.

Applying the result we get the convex relaxation as follows

x− 2z ≤ 0,

x + w − z ≤ 1,

x− z ≥ 0,

x + 2w − 2z ≥ 1,

2w + y ≤ 3,

4w + y ≥ 4,

w + y ≥ 2,

0 ≤ x ≤ 1,

1 ≤ y ≤ 2.
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If we have constraint x
y ≤ 1 and objective function to maximize x + y then the optimal

solution to the original problem is (x∗, y∗) = (1, 2) and the optimal solution to the relaxed

problem is determined at (x∗, y∗, z∗, w∗) = (1, 2, 1
2 , 1

2).

A.3 Product of Linear Functions

In Section A.2, we have seen the relaxation technique for the form of product of variables.

In this section we will investigate the product form of linear functions as a generalization of

the result from Section A.2. Furthermore, we will show that some cases of relaxation give

exact reformulation and others give tighter relaxations.

A.3.1 Product of linear functions

Given f(x) and g(y) are linear functions of vectors x and y. Consider the feasible region F

generated by the following constraints

f(x)g(y) ≤ U,

Lf ≤ f(x) ≤ Uf ,

Lg ≤ g(y) ≤ Ug.

Consider the linearization of f(x)g(y) by substituting f(x)g(y) = z, define the feasible

region F ′ as

z ≤ U,

Lf ≤ f(x) ≤ Uf ,

Lg ≤ g(y) ≤ Ug,

z ≥ Lgf(x) + Lfg(y)− LfLg,

z ≥ Ugf(x) + Ufg(y)− UfUg,

z ≤ Ugf(x) + Lfg(y)− LfUg,

z ≤ Lgf(x) + Ufg(y)− UfLg.
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Then F ′ is a relaxation of F and it is convex. Since

f(x)− Lf ≥ 0, g(y)− Lg ≥ 0

⇒ (f(x)− Lf )(g(y)− Lg) ≥ 0

⇒ f(x)g(y) ≥ Lgf(x) + Lfg(y)− LfLg, (58)

Uf − f(x) ≥ 0, Ug − g(y) ≥ 0

⇒ (Uf − f(x))(Ug − g(y)) ≥ 0

⇒ f(x)g(y) ≥ Ugf(x) + Ufg(y)− UfUg, (59)

f(x)− Lf ≥ 0, Ug − g(y) ≥ 0

⇒ (f(x)− Lf )(Ug − g(y)) ≥ 0

⇒ f(x)g(y) ≤ Ugf(x) + Lfg(y)− LfUg, (60)

g(y)− Lg ≥ 0, Uf − f(x) ≥ 0

⇒ (g(y)− Lg)(Uf − f(x)) ≥ 0

⇒ f(x)g(y) ≤ Lgf(x) + Ufg(y)− UfLg. (61)

From equation (58) and (59), we have

f(x)g(y) ≥ max{Lgf(x) + Lfg(y)− LfLg , Ugf(x) + Ufg(y)− UfUg}, (62)

and from equation (60) and (61) we get

f(x)g(y) ≤ min{Ugf(x) + Lfg(y)− LfUg , Lgf(x) + Ufg(y)− LgUf}. (63)

Combining (62) and (63), we see that the product f(x)g(y) of two linear functions is bounded

below by a piecewise linear convex function and bounded above by a piecewise linear concave

function. So, if we replace the product form of f(x)g(y) by z then we can rewrite the
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expression (58) through (61) as follows

z ≥ Lgf(x) + Lfg(y)− LfLg,

z ≥ Ugf(x) + Ufg(y)− UfUg,

z ≤ Ugf(x) + Lfg(y)− LfUg,

z ≤ Lgf(x) + Ufg(y)− UfLg.

It is clear that linearization of the product of functions can also be extended to the case of

f(x)
g(x) . The basic idea of Section A.2 can be applied directly to such an extension and the

desired relaxation can easily found.

A.3.2 Exactness of convex relaxation

Now we want to investigate exactness of this relaxation under certain conditions. The

following Proposition A.3.1 is a well known result that commonly arises in optimization

problems in the situation when something happens (x = 1) then another condition should

follow that is represented by f(y) = 0.

Proposition A.3.1. Consider the set S := {(x, y) | xf(y) = 0, x ∈ {0, 1}, y ∈ Y}, where

{f(y) | y ∈ Y} is compact; i.e, there exist bounds [L,U ] such that L ≤ f(y) ≤ U for all

y ∈ Y. Then, set S is equivalent to :

S′ := {(x, y) | L(1− x) ≤ f(y) ≤ U(1− x), x ∈ {0, 1}, y ∈ Y}.

Proof. Suppose x = 1, then f(y) = 0 for both set S and S′. If x = 0 then any y satisfies

L ≤ f(y) ≤ U is in the set S and S′.

The set S′ can be derived exactly from applying the relaxation technique of Section A.3.1.

Now we will state a more general result of exactness which follows readily from the foregoing

technique.

Proposition A.3.2. Consider the following nonlinear feasible region P1, where L ≤ U and
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l ≤ u, and the relaxation defined by P2.

P1 := { (x, y) | a ≤ xf(y) ≤ b, L ≤ f(y) ≤ U, x ∈ {l, u} }

P2 := { (x, y, z) | a ≤ z ≤ b, L ≤ f(y) ≤ U, x ∈ {l, u},

z ≥ lf(y) + Lx− Ll, z ≥ uf(y) + Ux− Uu,

z ≤ uf(y) + Lx− Lu, z ≤ lf(y) + Ux− Ul }.

If (x, y, z) ∈ P2, then z = xf(y) and (x, y) ∈ P1.

Proof. We can divide P2 into two cases that is x = l and x = u. If x = l then the last four

equations in P2 are

z ≥ lf(y) + Ll − Ll,⇒ z ≥ lf(y),

z ≥ uf(y) + Ul − Uu,⇒ z − uf(y) ≥ U(l − u),

z ≤ uf(y) + Ll − Lu,⇒ z − uf(y) ≤ L(l − u),

z ≤ lf(y) + Ul − Ul,⇒ z ≤ lf(y).

Then z = lf(y) and U(l − u) ≤ z − uf(y) ≤ L(l − u) ⇒ L ≤ f(y) ≤ U because l ≤ u and

z − uf(y) = f(y)(l − u). Now if x = u then

z ≥ lf(y) + Lu− Ll,⇒ z − lf(y) ≥ L(u− l),

z ≥ uf(y) + Uu− Uu,⇒ z ≥ uf(y),

z ≤ uf(y) + Lu− Lu,⇒ z ≤ uf(y),

z ≤ lf(y) + Uu− Ul,⇒ z − lf(y) ≤ U(u− l)

gives z = uf(y) and L ≤ f(y) ≤ U . Therefore, if (x, y, z) ∈ P2, then z = xf(y) and

(x, y) ∈ P1.

If f(y) is discrete and x continuous, we have the analogous result.
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Proposition A.3.3. For given L ≤ U and l ≤ u, define the sets

P ′
1 := { (x, y) | a ≤ xf(y) ≤ b, l ≤ x ≤ u, f(y) ∈ {f(L), f(U)} }

P ′
2 := { (x, y, z) | a ≤ z ≤ b, l ≤ x ≤ u, f(y) ∈ {f(L), f(U)},

z ≥ f(L)x + lf(y)− lf(L), z ≥ f(U)x + uf(y)− uf(U),

z ≤ f(U)x + lf(y)− lf(U), z ≤ f(L)x + uf(y)− uf(L) }.

If (x, y, z) ∈ P ′
2, then z = xf(y) and (x, y) ∈ P ′

1.

Taking Propositions A.3.2 and A.3.3 together, we have the following

Theorem A.3.4. Consider an optimization problem (P ) which has terms xf(y), where

(x, y) is constrained to be in either P1 or P ′
1, and the corresponding relaxed problem (PR)

obtained by replacing xf(y) with z and respectively, P1 with P2 (P ′
1 with P ′

2). It follows that

the (x, y) component of the optimal solution of problem (PR) is optimal for problem (P ).

Remark. Thus the relaxation of (P ) given by (PR) is exact in the sense that it will always

produce an optimal solution for the original problem.

Corollary A.3.5. Consider optimization problem (P̄ ) which has terms xf(y), where (x, y)

is constrained to be in either P̄1 or P̄1
′ whose binary terms in P1 and P ′

1 are linearly

relaxed, and the corresponding relaxed problem (P̄R) obtained by replacing xf(y) with z and

respectively, P̄1 with P̄2 (P̄1
′ with P̄2

′). If optimal solution (x∗, y∗, z∗) to (P̄R) satisfies

x∗ ∈ {l, u} or f(y∗) ∈ {F (L), F (U)} then (x∗, y∗) is optimal for problem (P̄ ).

Remark. Thus the relaxation of (P̄ ) given by (P̄R) is exact in the sense that if any one

variable of an optimal solution of (P̄R) is at the boundary point, then it will always produce

an optimal solution for the original problem.

A.3.3 Tighter relaxation

Now we want to show that one of two alternatives of relaxation is tighter than the other.

Both ways are exact when one of the variable or function is binary by the exactness shown

above.
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Proposition A.3.6. Consider the following nonlinear feasible region

S := {(x, y, z) | (f1(x)− f2(y))g(z) ≤ U, Lf1 ≤ f1(x) ≤ Uf1 ,

Lf2 ≤ f2(y) ≤ Uf2 , Lg ≤ g(z) ≤ Ug}.

Let S1 be the projection of the reformulation onto the space of S obtained by linearizing

(f1(x) − f2(y))g(z) by a single variable, and let S2 be projection of the reformulation onto

the space of S obtained by linearizing f1(x)g(z) and f2(y)g(z) using two separate variables.

Then S2 is a tighter reformulation than S1, i.e. S2 ⊂ S1.

Proof. Consider the nonlinear function

(f1(x)− f2(y))g(z)

over a domain such that each component function has known lower and upper bounds over

its domain or subset of interest; i.e.,

Lf1 ≤ f1(x) ≤ Uf1 ,

Lf2 ≤ f2(y) ≤ Uf2 ,

Lg ≤ g(z) ≤ Ug.

Define w = f1(x)− f2(y) which has bounds

Lf1 − Uf2 ≤ w ≤ Uf1 − Lf2 .

Let u = wg(z), then

u ≥ (Lf1 − Uf2)g(z) + Lg[f1(x)− f2(y)]− Lg(Lf1 − Uf2) = α,

u ≥ (Uf1 − Lf2)g(z) + Ug[f1(x)− f2(y)]− Ug(Uf1 − Lf2) = β,

u ≤ (Uf1 − Lf2)g(z) + Lg[f1(x)− f2(y)]− Lg(Uf1 − Lf2) = γ,

u ≤ (Lf1 − Uf2)g(z) + Ug[f1(x)− f2(y)]− Ug(Lf1 − Uf2) = δ.

The latter four inequalities can be summarized as

max{α, β} ≤ u ≤ min{γ, δ}. (64)
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Now, let v1 = f1(x)g(z) and v2 = f2(y)g(z). Then

v1 ≥ Lgf1(x) + Lf1g(z)− Lf1Lg = α1,

v1 ≥ Uf1g(z) + Ugf1(x)− Uf1Ug = β1,

v1 ≤ Ugf1(x) + Lf1g(z)− Lf1Ug = γ1,

v1 ≤ Lgf1(x) + Uf1g(z)− LgUf1 = δ1,

v2 ≥ Lgf2(y) + Lf2g(z)− Lf2Lg = α2,

v2 ≥ Uf2g(z) + Ugf2(y)− Uf2Ug = β2,

v2 ≤ Ugf2(y) + Lf2g(z)− Lf2Ug = γ2,

v2 ≤ Lgf2(y) + Uf2g(z)− LgUf2 = δ2.

We can summarize the latter eight inequalities as

max{α1, β1} ≤ v1 ≤ min{γ1, δ1}, (65)

max{α2, β2} ≤ v2 ≤ min{γ2, δ2}. (66)

Since u = v1 − v2, the bounds on v1 − v2 can be determined from (65) and (66) as

max{α1, β1} −min{γ2, δ2} ≤ v1 − v2 ≤ min{γ1, δ1} −max{α2, β2}. (67)

Moreover, since α = α1 − δ2, β = β1 − γ2, γ = δ1 − α2, and δ = γ1 − β2, the bounds given

by (64) can be written as

max{α1 − δ2, β1 − γ2} ≤ v1 − v2 ≤ min{δ1 − α2, γ1 − β2}. (68)

We will now show that the lower bounds specified by (67) are always greater than or equal

to the lower bounds determined by (68) and the upper bounds of (67) are always less than

or equal to the upper bounds of (68); i.e., the bounds on v1 − v2 given by (67) are tighter

than those given by (68).

For the lower bound, there are two cases to consider.
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case 1 α1 − δ2 ≥ β1 − γ2. Consider the four subcases

(i) α1 ≥ β1, γ2 ≥ δ2,

(ii) α1 ≤ β1, γ2 ≥ δ2,

(iii) α1 ≥ β1, γ2 ≤ δ2,

(iv) α1 ≤ β1, γ2 ≤ δ2.

For each of these subcases, it follows that

max{α1, β1} −min{γ2, δ2} ≥ α1 − δ2 = max{α1 − δ2, β1 − γ2}.

case 2 β1− γ2 ≥ α1− δ2. For the same foregoing subcases (i) through (iv), it follows that

max{α1, β1} −min{γ2, δ2} ≥ β1 − γ2 = max{α1 − δ2, β1 − γ2}.

An analogous argument is applied for the upper bound as follows.

case 1 δ1 − α2 ≤ γ1 − β2. Consider the four subcases

(i) δ1 ≥ γ1, α2 ≥ β2,

(ii) δ1 ≤ γ1, α2 ≥ β2,

(iii) δ1 ≥ γ1, α2 ≤ β2,

(iv) δ1 ≤ γ1, α2 ≤ β2.

For each of these subcases, it follows that

min{γ1, δ1} −max{α2, β2} ≤ δ1 − α2 = min{δ1 − α2, γ1 − β2}.

case 2 γ1− β2 ≤ δ1−α2. For the same foregoing subcases (i) through (iv), it follows that

min{γ1, δ1} −max{α2, β2} ≤ δ1 − α2 = min{δ1 − α2, γ1 − β2}.

A.4 Concluding remarks

We have discussed a useful convex relaxation technique which can be applied to various

extensions to the form of product of variables and/or functions. Also we found that if
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one of the variable or the function is optimal at the boundary point under the convex

relaxation, then the projection of such an optimal point onto the domain of the original

problem produces an optimal solution to the original problem. In the sense of better bound,

we suggested a tighter relaxation of the product form by introducing more variables.
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APPENDIX B

GLOSSARY OF NOTATION

B.1 Variables

B.1.1 Variables for Network Flows

• ximjnv : Arc flow variable is 1 if harbor arrivals (i,m) and (j, n) are directly connected

in ship v’s route; otherwise, 0.

• zimv : Route end indicator variable is 1 if (i,m) is the end of the route for ship v;

otherwise, 0.

• yim : Slack variable is 1 if (i,m) is not visited; otherwise, 0.

B.1.2 Variables for Loading and Unloading

• limvk : Load onboard in the compartment for product k of ship v when leaving (i,m).

• qimvk : Quantity of product k loaded into or unloaded from ship v’s in position (i,m).

B.1.3 Variables for Time Aspect

• oimvk : Binary variable is 1 if product k is loaded or discharged at harbor arrival (i,m)

by ship v; otherwise, 0.

• tEim : Ending service time at (i,m).

B.1.4 Variables for Inventories

• simk : Stock level of product k in harbor i when service starts at (i,m). Also we know

the value of simk for all (i,m) ∈ SF .

• sEimk : Stock level of product k in harbor i when service finishes at (i,m).
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B.1.5 Variables for Stock Levels

• pim: Binary variable is 0 of there are two or more ships at harbor i during the the

m-th arrival; otherwise, 0.

B.2 Sets

B.2.1 Sets for Network Flows

• ST : Set of all harbor arrivals (i,m) for i ∈ HT and m ∈ Mi.

• HT : Set of total harbors.

• Mi : Set of arrival numbers at harbor i.

• S0 : Set of initial positions {(iv,mv)|v ∈ V }. If more than one ship starts from the

same harbor, then they are assigned a departure sequence number mv; otherwise,

mv = 1.

• V : Set of available ships indexed by v.

• Hv : Set of harbors that can be visited by ship v.

B.2.2 Sets for Loading and Unloading

• Av : Set of all feasible arcs for ship v.

• K : Set of products.

• Kv : Set of products that ship v can carry.

• KH
i : Set of products that harbor i handles.

B.3 Parameters

B.3.1 Parameters for Network Flows

• iv : Starting harbor of vessel v.

• mv : Assigned arrival sequence number for vessel v in harbor iv.
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B.3.2 Parameters for Loading and Unloading

• Jjk : Indicator variable is 1 (if product k is loaded at harbor j), 0 (if product k passes

through harbor j), or −1 (if product k is unloaded at harbor j).

• Qvk : Quantity of product k on ship v at start of planning horizon.

• CAPvk : Capacity of the compartment for product k in ship v.

B.3.3 Parameters for Time Aspect

• TQik : Time required to load a unit of product k at harbor i.

• Wi : Setup time to change products for loading and unloading at harbor i.

• Tijv : Sailing time from harbor i to harbor j.

B.3.4 Parameters for Inventories

• ISik : Initial stock level of product k at harbor i.

• Rik : The consumption or production rate for product k in harbor i.

• SMNik : Minimum stock level at harbor i.

• SMXik : Maximum stock level at harbor i.

• T : Length of planning period.

B.3.5 Parameters for Objective function

• Cijv : Cost for ship v to sail from harbor i to harbor j.

• CWik : Loading and unloading charges incurred at harbor i for product k.
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