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To DOT,

of which sole existence is shaping up to be a center of my research
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PREFACE

In a quantum dot system, a small number of electrons is confined in a finite region of

space (the dot), which in turn is coupled via tunneling junctions to conducting leads.

Transport characteristics of quantum dot systems exhibit a very strong dependence

on the externally controlled parameters, such as gate potential, magnetic field, etc.

This strong dependence forms the basis for the potential applications of quantum dot

systems as nanoscale alternatives of the conventional field-effect transistors.

The tunneling between the dot and the leads induces transitions within the oth-

erwise degenerate ground state manifold of the dot. These transitions give rise to the

well-known many-body phenomenon - the Kondo effect, which dominates the prop-

erties of quantum dot systems at temperatures of the order of or below the so-called

Kondo temperature.

In this thesis I first review the basic physics of the Kondo effect and its manifes-

tations in quantum dot systems. Then I will concentrate on the dependence of the

characteristic energy scale of the effect, the Kondo temperature, on the gate volt-

age, and show it to be very different from that in the conventional Anderson impurity

model, commonly employed for the analysis of the experimental data. Some technical

details are relegated to the Appendix.
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SUMMARY

The low-energy properties of quantum dot systems are dominated by the

Kondo effect. We study the dependence of the characteristic energy scale of the effect,

the Kondo temperature TK , on the gate voltage N0, which controls the number of

electrons in the strongly blockaded dot. We show that in order to obtain the correct

functional form of TK(N0), it is crucial to take into account the presence of many

energy levels in the dot. The dependence turns out to be very different from that in

the conventional single-level Anderson impurity model. Unlike in the latter, TK(N0)

cannot be characterized by a single parameter, such as the ratio of the tunneling-

induced width of the energy levels in the dot and the charging energy.
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CHAPTER I

KONDO EFFECT IN A SINGLE-ELECTRON

TRANSISTOR

Advances in nanoscale fabrications and manifestations allow one to establish systems

unapproachable in the past; single electron transistors (SET) and single molecule de-

vices to name a few. Among a few interesting features of such devices, transport in

nanostructures is of importance considering the weight of electronics and its applica-

tion. A quantum dot is a common implementation of single electron transistors, and

an ideal candidate for the study of transport in nanostructures [1, 2].

In quantum transport, a quantum dot (two-dimensionally confined region at the

interface of two semiconducting layers, for instance, GaAs/AlGsAs in a lateral dot

system) is capacitively connected via tunneling junctions to two massive conducting

leads, the source and the drain [1, 2]. The differential conductance dI/dV of such

device displays dependence on the external parameters such as temperature T , Zee-

man energy due to a magnetic field B = gµBH, and the source-drain bias V . The

dependence of the differential conductance is well described by a formula in terms of

the external parameters [3]

dI

dV
∝ e2

h

[
ln

max{T, eV,B}
TK

]−2

, (1.1)

where TK is the characteristic energy scale in this transport. This anomalous be-

havior of the differential conductance was reported in various systems such as lateral

semiconductor quantum dots [4, 5, 6, 7, 8, 9, 10], vertical quantum dots [11, 12],

carbon nanotubes [13, 14], and single-molecule transistors [15, 16, 17], etc.

The logarithmic behavior of the transport coefficient over the external parameters

has been known in condensed matter physics for a long time. When there is a magnetic
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impurity in a host metal [18, 19], the resistivity of the system exhibits non-monotonic

temperature dependence as well (the conventional Kondo effect) [20, 21, 22].

1.1 Conventional Kondo effect due to a magnetic impurity

The Kondo effect [23], the existence of the resistivity minimum at a certain non-zero

temperature was discovered in the early 1930s [24]. From the experimental data,

the contribution to the resistivity of the impurity in a metal was empirically given

by [23, 25]

δρ (T ) ∝ ni ln(εF/T ), (1.2)

with the impurity concentration ni and the Fermi energy εF . It is obvious that the

impurity contribution Eq. (1.2) has a extremum to have a resistivity minimum, as

the electron-phonon scattering contribution to the resistivity monotonically decreases

when decreasing T . It should be mentioned again that the resistivity minimum de-

velops only when the impurity atoms are magnetic [23]. The proportionality δρ ∝ ni

has been verified down to the lowest impurity concentrations experimentally allowed,

which suggests that the phenomenon is due to a single magnetic impurity. Kondo

suggested the simplest model considering the local exchange interaction J between

the magnetic impurity and itinerant electrons at the impurity site from these obser-

vations [23],

HK = H0 + J(s ·S) . (1.3)

Here H0 =
∑

ks ξkψ
†
ksψks describes the noninteracting electron gas (ξk are single-

particle energies of itinerant electrons), s = 1
2

∑
kk′ss′ ψ

†
ksσ̂ss′ψk′s′ is the spin density of

itinerant electrons at the impurity site (with the Pauli spin matrices σ̂ = (σ̂x, σ̂y, σ̂z)),

and S is the spin-1/2 operator for the magnetic impurity.

It should be noted that the phenomenological Kondo model Eq. (1.3) (in other

words, the s-d model) can be reduced from the microscopic Anderson impurity model
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with the help of the Schrieffer-Wolff transformation [26, 27]

H = H0 + Ed

∑

σ

ndσ + Und↑nd↓ +
∑

kσ

Vkdc
†
kσckσ + H.c., (1.4)

where

H0 =
∑

kσ

εknkσ

∆(ω) =
∑

k

|Vkd|2δ(ω − εk)

and the Coulomb interaction

U =

∫
φ∗d(r)φ

∗
d(r

′)
e2

|r− r′|φd(r)φd(r
′)drdr′

(here, the Bloch wavefunction φ).

According to Kondo [23], the lowest order of perturbation theory in the exchange

constant J is not sufficient to show the logarithmic dependence in Eq. (1.2) due to the

non-commutativity of the spin operators in the model, Eq. (1.3). Beyond the Born

approximation, however, Kondo showed that the logarithmic temperature dependence

appears in the third order in J [23],

δρ ∼ ni (νJ)2
[
1 + 2νJ ln(D0/T )

]
. (1.5)

Here, ν is the density of states of itinerant electrons (as a result, νJ # 1 is a dimen-

sionless parameter) and D0 ∼ εF is the high-energy cutoff in Eq. (1.3).

Further study after Kondo showed that logarithmically-divergent terms exist in

all orders of perturbation theory, eventually leading to a geometric series [28]

δρ(T )/δρ(0) ∝
{ ∞∑

n=0

(νJ)n
[
ln(D0/T )

]n−1

}2

=

[
νJ

1− νJ ln(D0/T )

]2

. (1.6)

Rewriting this sum, bearing Eq. (1.1) in mind, reads

δρ(T )/δρ(0) ∝
[
ln(T/TK)

]−2
, (1.7)
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with the Kondo temperature TK (characteristic energy scale in Eq. (1.1)) defined by

ln(D0/TK) = (νJ)−1. (1.8)

Eq. (1.8) gives the estimate of TK with logarithmic accuracy. A more accurate esti-

mate from Renormalization Group, see Appendix A, reads

TK ) D0(νJ)1/2 exp(−1/νJ). (1.9)

It should be noted that the Kondo effect does not always bring out the increase

of the resistance like Eq. (1.7) when lowering the temperature. In fact, the Kondo

effect increases the probability for an electron to scatter off the impurity by forming a

resonant ground state. Thus, the scattering probability increases when the energy of

the scattered electron is close to the Fermi level due to the resonance. For a magnetic

impurity in a bulk sample, the scattering probability off the impurity contributes to

the resistivity increase as a result of non-specific orientation of scattered electrons, as

in the conventional Kondo effect.

On the other hand, for a impurity in a tunneling barrier splitting two conductors,

the increased scattering probability turns into the probability for an electron to tunnel

through the barrier, and the differential conductance thus increases when decreasing

the external parameters in Eq. (1.1). These zero-bias anomalies in differential con-

ductance are also the signature of the Kondo effect, and are well understood in this

context [29, 30, 31].

1.1.1 Renormalization Group

Eq. (1.7) is the leading term of the asymptotic expansion of the resistivity in powers

of 1/ ln(T/TK), and represents the impurity contribution to the resistivity in the

leading logarithmic approximation. As explained above, it is a result of summing

up the most diverging terms in all orders of perturbation theory. Moreover, it turns

out that the Kondo temperature, Eq. (1.8) is a non-analytic function of J . One
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needs to come up with a better approach to resolve these issues. For a prescription,

the Renormalization Group (RG), which is to be used in later chapters, provides

the mathematical framework to study the Kondo effect in this thesis. RG [32] is

based on the fact that the main contribution to observable quantities are from the

electronic spectrum proportional to the temperature ∼ T about the Fermi level. At

temperatures of the order of TK , when the Kondo effect governs the low temperature

physics, the spectrum of relevance becomes much narrower (∼ TK) compared to the

bandwidth D0 of the Hamiltonian (1.3).

The exchange interaction in Eq. (1.3) induces transitions between the states near

the Fermi level and the states near the band edges. Any such transition costs high

energy (∼ D0), and, therefore, can only occur virtually. Virtual transitions via the

states near the band edges result in the second-order correction ∼ J2/D0 to the

exchange amplitude J for states in the proximity to the Fermi level. Consider a narrow

strip of energies δD # D0 near the band edge. As the strip contains νδD electronic

states, the total correction to the exchange amplitude due to virtual transitions is [32]

δJ ∼ νJ2δD/D0.

This correction is hence reflected on the exchange constant in the effective Hamil-

tonian H̃, which has the same form as the original Kondo hamiltonian (1.3), except

that it is defined for reduced energy bandwidth D0 − δD, |ξk| < D0 − δD. The

renormalized exchange constant reads

JD0−δD = JD0 + νJ2
D0

δD

D0
, (1.10)

with JD0 in the original Hamiltonian.

Reducing the bandwidth by infinitesimal δD can be considered as a continuous

process during which the original Hamiltonian (1.3) with D = D0 is transformed to

the effective Hamiltonian with the bandwidth D # D0. From Eq. (1.10), one then
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gets the differential scaling equation of the exchange constant [32, 33]

dJD

dζ
= νJ2

D, ζ = ln (D0/D) . (1.11)

This form of the scaling equation above is quite common in the Kondo effect up to

the second order in J . The solution of the scaling equation with the initial condition

JD0 = J is

νJD =
1

ln(D/TK)
(1.12)

with the scaling invariant TK = D0 exp(−1/νJ) (the Kondo temperature). The

reduction of the bandwidth in RG can be treated as a unitary transformation that

decouples the high energy states near the band edges from the rest [34, 35, 36, 37]

(this point of view is discussed in the Appendix A). Any such transformation should

also affect the operators of the observable quantities. However, the “current” operator

is not affected during RG, and evaluation of the conductivity (and resistivity) can be

carried out at any stage of RG, yielding the same result.

The whole advantage of RG becomes apparent when it is pushed to its limit.

The renormalization Eq. (1.11) works until the bandwidth D becomes of the order of

the energy scale ∼ T of real transitions. At this termination of RG, the third-order

correction to the resistivity in Eq. (1.5) is ignorable, whereas the main (second-order)

contribution takes the form

δρ(T )/δρ(0) ∝
(
νJD∼T

)2
=

[
ln(T/TK)

]−2
, (1.13)

consistent with Eq. (1.7) of perturbation theory.

1.1.2 Kondo singlet

We next replace the local spin density of itinerant electrons s in Eq. (1.3) with a single

spin-1/2 operator S′ to capture the idea of the Kondo effect and the Kondo singlet in

many body systems. The ground state of this toy model of two spins H ′ = J(S′ · S)

is a spin singlet for the antiferromagnetic case J > 0 (a triplet for the ferromagnetic
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one J < 0). The excitation energy for a triplet is J . This energy J can be viewed as

the binding energy of the singlet.

Turning back to the Kondo Hamiltonian, one would expect the analogy of this

spin singlet in the Kondo model. However, s (instead of a single spin S′) in Eq. (1.3)

is a spin density of itinerant electrons at the impurity site. It is therefore difficult

for the impurity to capture an itinerant electron and form a singlet as in the toy

model. Nevertheless, RG suggests that even a weak bare exchange constant becomes

effectively strong for the electrons close to the Fermi level, see Eq. (1.11), and therefore

suffices to form a singlet ground state [32, 38, 39, 40] – the Kondo singlet. The binding

energy for this Kondo singlet is not the exchange constant J but the exponentially

small Kondo temperature TK in Eq. (1.8).

It should be noted that the Kondo effect lifts the degeneracy of the ground state.

It is the main reason for the logarithmic divergences in perturbation theory, too. By

taking J = 0 as usual in perturbation theory, the ground state is doubly degenerate

as a spin-up and spin-down state of the impurity. Then, perturbation theory in J is

applicable when the temperature is greater than the binding energy for the Kondo

singlet, i.e., T & TK , and the result is Eq. (1.7)

δρ(T )/δρ(0) ∝
[
ln(T/TK)

]−2
.

In the opposite limit T # TK , Fermi liquid theory (beyond the scope of this thesis)

reads [41],

1− δρ(T )/δρ(0) ∝ (T/TK)2, T # TK . (1.14)

To summarize, Eqs. (1.7) and (1.14) are valid in the weak (T & TK) and strong

(T # TK) coupling limits, respectively. In addition, the Kondo effect is a crossover

phenomenon, unlike a phase transition [32, 38, 39, 40], and thus the resistivity

δρ(T )/δρ(0) is a smooth function in the crossover region of T ∼ TK .
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1.2 Coulomb blockade in a quantum dot

In recent years, interest in the Kondo effect grew again [42] due to advances in exper-

imental techniques as well as nanoscale fabrication. Progress in fabrication enables

one to design artificial nanoscale magnetic impurities. Contemporary experimental

techniques provide direct access to transport properties of such artificial impurities

as well.

The Coulomb blockade [20, 21, 43, 44, 45, 46] is the key to understanding the

nanoscale phenomena, especially quantum transport. The Coulomb blockade were

first reported in several pioneering experiments [47, 48, 49, 50, 51]. In a single electron

transistor (SET) setup [43, 44, 45], a quantum dot is connected to two conducting

leads L and R via tunneling junctions and is capacitively coupled to the gate in

Fig. 1.1.

L Rdot

CL CR

Cg

VL Vg VR

GL GR

Figure 1.1: Equivalent circuit for a quantum dot connected to two massive con-
ducting leads by tunnel junctions with conductances GL,R and capacitances CL,R and
capacitively coupled to the gate electrode Vg, adopted from Pustilnik and reprinted
with the permission of John Wiley and Sons.

The electrostatic energy of a dot with charge Q is classically

E(Q) =
Q2

2C
−Q

Cg

C
Vg, (1.15)

where C = CL + CR + Cg is the total capacitance of the dot, and Vg is the potential

on the gate, see Fig. 1.1. Plugging Q = eN into the energy, where N is the number

8



of excess electrons in the dot, one obtains

E(N) = EC

(
N −N0

)2
+ const, (1.16)

where EC = e2/2C is the charging energy and N0 = CgVg/e is the dimensionless gate

voltage.

1.2.1 Model of a lateral quantum dot system

The simplest Hamiltonian for the dot accounting for the electrostatic energy (1.16) is

Hd =
∑

ns

εnd
†
nsdns + EC

(
N̂ −N0

)2
. (1.17)

Here, the first term represents the single-particle (noninteracting) part, and the second

term is from Eq. (1.16) after replacing N with the corresponding number operator

N̂ =
∑

ns d†nsdns.

The Hamiltonian (1.17) (known as the Constant Interaction Model) could be

justified microscopically [20, 21, 46] for dots with no spatial symmetries, which are

large compared with the effective Bohr radius a0 = κ!2/e2m (here m is the effective

mass, and κ is the dielectric constant). Both conditions are usually satisfied for lateral

quantum dots formed by the electrostatic depletion of the two-dimensional electron

gas at the interface of semiconductor heterostructure such as GaAs/AlGaAs [4, 43, 44,

45]. For a ballistic 2D dot of linear size L, the capacitance C ∼ κL and the mean level

spacing between the single-particle energy levels can be estimated as δ ∼ !2/mL2.

Accordingly,

EC/δ ∼ L/a0 & 1. (1.18)

For example, for GaAs-based semiconductor quantum dot systems [1, 2, 4, 5, 6, 7, 8,

9, 10, 43, 44, 45], a0 ≈ 10 nm, and a relatively small dot with L ∼ 100 nm contains

about 10 electrons. The charging energy of such a dot is of the order EC ∼ 1 meV,

while the mean single-particle level spacing δ is roughly 10 times smaller. Hence,

both the charging effects and the effects associated with the quantization of the
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single-particle energy levels can be resolved in transport experiments performed in

dilution refrigerators with base temperatures below 50 mK [43, 44, 45].

The electrostatic potential defining lateral quantum dot systems varies smoothly

on the scale of the de Broglie wavelength at the Fermi energy. Dot-lead junctions

thus act as electronic waveguides with a well-defined number of propagating modes of

an electronic wave. The Coulomb blockade emerges when the last propagating mode

in each junctions is pinched off. This allows one to model the leads as reservoirs of

one-dimensional electrons [20, 21, 46, 52, 53],

Hleads =
∑

αks

ξkc
†
αkscαks, α = R, L (1.19)

with the density of states ν. Tunneling between the dot and the leads is

Htunneling =
∑

αkns

tαc†αksdns + H.c., (1.20)

where we neglected the dependence of the tunneling amplitudes on n (see the discus-

sion in Chapter 2 and Appendix B) without loss of generality, so that each single-

particle energy level in the dot acquires the same level-width Γα = πt2α due to the

tunneling to lead α.

The conductance Gα of the dot-lead junction due to tunneling is

Gα = (4e2/!)(Γα/δ).

The tunneling Hamiltonian Eq. (1.20) is valid for an almost closed dot, i.e., when

Gα # e2/h, and hence the total width Γ0 = ΓL + ΓR, the mean level spacing δ, and

the charging energy EC establish a well-defined hierarchy in a later quantum dot

Γ0 # δ # EC . (1.21)

1.2.2 Charge quantization and Coulomb blockade oscillations

Let’s consider an isolated dot (tα → 0) where the number of electrons N in the dot

is a good quantum number at low temperatures. The electrostatic energy to add an
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electron to the dot is

EN+1 − EN = 2EC

(
N∗

0 −N0

)
, N∗

0 = N + 1/2 = half-integer.

From this, one sees that the N and N + 1 electron states are degenerate at each

N0 = N∗
0 = half-integer. At low enough temperatures T # EC , the average number

of electrons N(N0) = 〈N̂〉 over the dimensionless gate N0 should be staircase-like as

in Fig. 1.2(a) with the step-width ∆ ∼ T/EC . These regions in the vicinity of the

degeneracy within ∆ are called the mixed-valence regions. In other words, the charge

quantization is expected over the entire region of the gate voltage except for the

mixed-valence regions. The charge quantization remains intact at low temperatures,

even when the tunneling is introduced. At very low temperatures T ! Γ, however, the

step-width ∆ ∼ Γ/Ec comes with the renormalized level-width Γ " Γ0 (see Chapter

2) instead of the temperature T , and hence the width of the mixed-valence regions is

renormalized as well.

!

!!!! !!!!

"

!! ! "

!"# !$#

Figure 1.2: (a) Average number of electrons in a dot N = 〈N̂〉 at T # EC as a
function of the dimensionless gate voltage N0. The number of electrons N differs
significantly from integer values in the narrow mixed-valence regions of the width
∆ ∼ max{Γ, T}/EC about N0 = N∗

0 = half-integer.
(b) At Γ ! T # EC the conductance is small in the wide Coulomb valley of the
width of almost 1 in the dimensionless gate voltage due to the Coulomb blockade.
Adopted from Pustilnik and reprinted with the permission of John Wiley and Sons.

The charge quantization in the dot translates into the conductance G through the

dot. At high temperature T & EC , the Coulomb interaction in Eq. (1.17) (and hence

the gate voltage dependence) has no effect since the thermal excitation is big enough

to wipe out the staircase-like charge quantization. The conductance in this high-T

11



limit is small, G∞ # e2/h, and the classical resistance addition formula gives

1

G∞
=

1

GL
+

1

GR
. (1.22)

Things change dramatically at low temperatures. The conductance starts to de-

pend on the gate voltage N0 at all T ! EC . When the gate voltage is outside the

mixed-valence regions, in Fig. 1.2(a), adding or removing an electron costs approx-

imately the charging energy EC in Eq. (1.17). From the energy conservation for a

real transition, the probability to have an electron with energy EC is proportional

to exp(−EC/T ) outside the mixed-valence regions. That is, the conductance is ex-

ponentially suppressed at T # Ec (Coulomb blockade valley, hereafter CB valley).

On the other hand, the energy cost in the mixed-valence regions is much smaller due

to the degeneracy, and the conductance is relatively large in these regions (Coulomb

blockade peak, hereafter CB peak)

In the low-T limit, i.e., at T # EC , the conductance G(N0) displays a quasi-

periodic behavior of narrow CB peaks of the width ∆ # 1 accompanied by wide CB

valleys in Fig. 1.2(b). In terms of the dimensionless gate voltage N0, the spacing

between two neighboring CB peaks ≈ 1 in Fig. 1.2(b).

Thorough study on the Coulomb blockade was done in the light of the orthodox

theory by Shekhter [54, 55, 56, 57, 58]. The orthodox theory is based on the rate

equation formalism at T & δ (Numerical approach to solve the rate equations of a

quantum dot is shown in Bonet [59]). The orthodox theory assumes that the inelastic

electron relaxation rate in a dot is large compared with the electron escape rate Γ/!.

In this approximation, the tunneling via each junction through the dot can be treated

as an independent process.

According to the orthodox theory, the Coulomb blockade peaks saturate to half

of their high-temperature conductance G∞ when decreasing T . However, the dis-

creteness of the energy levels becomes more relevant at T # δ. The rate equation

formalism is yet applicable at T & Γ [60, 61], and the Coulomb blockade peaks

12
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Figure 1.3: (a) The height of a Coulomb blockade peak vs. the temperature in the
mixed-valence regions.
(b) Conductance vs. the temperature in the middle of a Coulomb blockade valley.
Adopted from Pustilnik and reprinted with the permission of John Wiley and Sons.

increase as in Fig. 1.3(a) up to ∼ e2/h & G∞ [46, 60, 61].

In the Coulomb blockade valleys, the real transitions are strongly suppressed due

to the low thermal activated transport at low temperatures, as explained. But, the

virtual transitions of high order process could yet contribute to the conductance in

Fig. 1.3(b). In this co-tunneling mechanism in Fig. 1.4, the virtual transitions are

not restricted by energy conservation. Thus, the tunneling from one lead into the

dot, and tunneling from the dot to the another lead is a single quantum process, for

example, from the left lead to right lead in Fig. 1.4 [47, 48, 62].

The co-tunneling contribution is very sensitive to the tunneling amplitudes in

Eq. (1.20) as well as to the details of the model. In particular, the result in Fig. 1.3(b)

is valid for large chaotic semiconductor quantum dots [43, 44, 45, 62], as is our case.

In this case, it is well-known that the elastic co-tunneling is the main source of the

mesoscopic fluctuations in the Coulomb blockade valleys at all temperatures T !

EC [63, 46, 20, 21].

1.3 Kondo effect in a single electron transistor

In order for the artificial impurity to be spin like in the conventional Kondo model,

N in the dot must be obviously odd-integer in the Coulomb valleys. The uppermost

13
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Figure 1.4: Various second-order (co-tunneling) processes adopted from Averin et
al.
(a) Inelastic co-tunneling: an electron tunnels from the left lead into one of the un-
occupied single-particle levels in the dot, whereas an electron occupying some other
level tunnels out to the right lead, leaving an electron-hole pair behind. The contri-
bution to the conductance scales with temperature as T 2.
(b) Elastic co-tunneling: unlike the in-elastic case, occupation of electrons in the dot
is the same through the co-tunneling process. This contribution to the conductance
is T -independent.
(c) Spin-flip co-tunneling process: the origin of the Kondo effect in the dot.
Adopted from Pustilnik ad reprinted with the permission of John Wiley and Sons.

level in the dot is singly occupied in the ground state, which is either a spin-up

or a spin-down state of the electron. Now, the artificial impurity is magnetic and

doubly degenerate with a spin S = 1/2. This singly-occupied level is a key element in

transport at low temperatures T # Ec, as a source of a elastic co-tunneling spin-flip

process in Fig. 1.4(c). This is the same spin-flip process of a magnetic impurity in a

host metal, which is the origin of the Kondo effect in a quantum dot [29, 30, 31, 64, 65].

So, an odd number of electrons in the dot are not subject to the Coulomb blockade at

T → 0. Hence, one expects the enhanced conductance in the Coulomb valleys when

lowering the temperature in Fig. 1.5(a) only when there are odd number of electrons.

To reduce the quantum dot Hamiltonian to the Kondo model, one has to work

on the Hamiltonian Eqs. (1.19)-(1.20). Instead of the conduction electron operators

cR,(L) in the right (left) leads, one can introduce linear combinations to decouple the

irrelevant operators,



c

c′



 =
(
t2R + t2L

)−1/2




tR tL

−tL tR








cR

cL



 . (1.23)
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Figure 1.5: (a) The conductance vs. the temperature in the Coulomb blockade valley
with an odd number of electrons in the dot.
(b) Conductance vs. the gate voltage at T → 0.
Adopted from Pustilnik and reprinted with the permission of John Wiley and Sons.

Without dependence on n, it is clear from Eqs. (1.19) and (1.20) that only c-electrons

in the new basis couple to the dot [66]. The effective Hamiltonian with c-electrons

becomes (decoupling c′-electrons)

H =
∑

ks

ξkc
†
kscks + t0

∑

kns

(
c†ksdns + H.c.

)
+

∑

ns

εnd
†
nsdns + EC

(
N̂ −N0

)2
(1.24)

with the tunneling amplitude t0 =
√

t2R + t2L in the new basis. Eq. (1.24) is the

simplest multilevel generalization of the Anderson impurity model, Eq. (1.4), in the

dot [26]. For N ≈ odd integer, it could be further reduced to the Kondo Hamilto-

nian Eq. (1.3).

HK = H0 + J(s ·S)

The spin operator S here represents the spin doublet of the ground state of the dot

equivalent to the magnetic impurity spin, and the estimation of the exchange constant

reads

J ∼ t20
min{E±}

, (1.25)

where E± is the electrostatic energy to add (remove) an electron to (from) the dot.

It should be noted that the exchange interaction describes a second-order process in

Fig. 1.4(c), which comes with two tunneling events, the factor t20, and an intermediate

virtual state with N ± 1 electrons in the dot via a spin-flip process. The energy
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cost via virtual transition is E±, hence the factor min{E±} in the denominator.

According to Eq. (1.25), the dependence of the exchange constant (and, therefore, of

the Kondo temperature) on the gate voltage N0 is nonmonotonic, with a minimum in

the middle of the Coulomb blockade valleys. At this point, E± = EC and min{J} ∼

t20/EC . While the estimate (1.25) is qualitatively correct, actual dependence of the

exchange constant on the gate voltage turns out to be much more complicated than

that prescribed by Eq. (1.25). Understanding this dependence is the main goal of this

thesis, and is described in details in the Chap. 2.

First, we briefly describe the conductance at zero temperature due to the Kondo

effect. Since the Kondo effect lifts the degeneracy at any gate voltage, one could use

the Landauer formula to calculate the conductance via the transmission probability

through the dot. According to the scattering theory [67], the transmission proba-

bility is related to the scattering phase shifts of the itinerant electrons. As shown

earlier, only c-electrons are coupled to the dot and scattered off in the model. The

conductance is given by [20, 21]

G = G0
1

2

∑

s

sin2 δs, (1.26)

where δs is the phase shift at the Fermi level of c-electrons with spin s, and

G0 =
2e2

h

[
2tLtR

t2L + t2R

]2

. (1.27)

Fortunately, the Friedel sum rule relates the occupation number to the phase shifts

in the model

δs = πNs, Ns =
〈∑

n

d†nsdns

〉
.

The Kondo singlet reads Ns = N/2 for both spin states, Eq. (1.26) then gives

G = G0 sin2(πN/2). (1.28)

From this, one can see the conductance reaches its maximum G0 at N = odd integer

in the Coulomb valleys in Fig. 1.5(b) at zero temperature, which is the signature of

the Kondo effect.
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CHAPTER II

KONDO TEMPERATURE OF A QUANTUM DOT.

As discussed in Chapter 1, at certain gate voltages, the conductance of a quantum dot

system increases with the decrease of temperature. The increase takes place when the

dot has an odd number of electrons, and, therefore, has a non-zero spin in the ground

state. Moreover, the dependence of the conductance on temperature is logarithmic.

These facts suggest that the origin of the enhanced conductance is the Kondo effect,

with the dot behaving essentially as an artificial magnetic impurity.

As mentioned above, for odd N a generic model of a quantum dot system is

equivalent at low energies to an appropriate Kondo model (1.3). In this chapter, we

demonstrate this equivalence explicitly, and discuss the dependence of the exchange

amplitude (hence, the Kondo temperature) on the gate voltage N0.

Our starting point is the Constant Interaction Model

H =
∑

ks

ξkc
†
kscks +

∑

ns

εnd
†
nsdns + EC

(
N̂ −N0

)2
+ t0

∑

kns

(
c†ksdns + H.c.

)
, (2.1)

introduced in Eq. (1.24) above. Without loss of generality, we assume that the Fermi

level in the dot corresponds to ε0 = 0. Otherwise, the single-particle levels in the dot

εn are characterized by a finite level spacing δ. For lateral quantum dot systems in

the weak tunneling regime, the tunneling-induced level width Γ0 = πνt20, the level

spacing δ, and the charging energy EC form a well-defined hierarchy Γ0 # δ # EC ,

see Eq. (1.21).

For N0 tuned away from the mixed valence regions, at

N0 ≈ N∗ = odd integer

(notice the difference between integer N∗ and half-integer N∗
0 introduced in Chapter 2)
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the dot has an odd number of electrons N = 〈N̂〉 ≈ N∗, and its ground state has spin

S = 1/2. In the low-energy sector, both charge excitations of the dot, characterized

by the energy cost to add/remove an electron

E± = 2EC

∣∣N0 −N∗ ∓ 1/2
∣∣, (2.2)

and the intradot excitations (the corresponding cost is the level spacing δ) are absent.

Our strategy is to project Eq. (2.1) onto this low-energy domain, and the projection

will result in the effective Hamiltonian with the bandwidth

D0 = min{δ, E±}. (2.3)

As the first step, we project Eq. (2.1) onto the three lowest-energy charge states

of the dot, |N〉 and |N ± 1〉, which gives

H = Hc + H+
t + H−

t + Hd, (2.4)

where Hc =
∑

ks ξkc
†
kscks describes the conduction electrons,

H+
t = t0

∑

kns

c†ksdns |N + 1〉〈N |+ H.c., (2.5)

H−
t = t0

∑

kns

c†ksdns |N〉〈N − 1|+ H.c., (2.6)

describe the tunneling, and

Hd =
∑

ns

εnd
†
nsdns + E+ |N + 1〉〈N + 1|+ E− |N − 1〉〈N − 1| . (2.7)

describes the isolated dot.

The next step depends on the relation between δ and EC . We discuss first the

(unphysical) limit δ & EC , corresponding to the single-level Anderson impurity

model [26, 68, 69].

2.1 Anderson model: δ ! EC

For δ & EC all but n = 0 energy levels in the dot are either empty or doubly occupied.

Projecting these levels out, we write Hd → 2EC [n↑n↓ − (N0 − 1/2)(n↑ + n↓)], where
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n↑ and n↓ are spin-up and spin-down occupations of the n = 0 level. At energies lower

than E±, tunneling-induced transitions to states with N ± 1 electrons in the dot are

virtual. To second order in tunneling amplitude, these transitions can be taken into

account by means of the Schrieffer-Wolff transformation [27].

Consider a unitary transformation

H → eSHe−S, S = −S†

with S ∝ t0. Applying the Baker-Hausdorff formula, we find

eSHe−S = Hc + Hd + Ht +
[
S,Hc + Hd

]
︸ ︷︷ ︸

∝ t0

+
[
S,Ht

]
+

1

2

[
S, [S,Hc + Hd]

]

︸ ︷︷ ︸
∝ t20

+ O(t30)

If S satisfies

Ht +
[
S,Hc + Hd

]
= 0, (2.8)

the first-order contribution is absent, and

eSHe−S ≈ Hc + Hd +
1

2

[
S,Ht

]
. (2.9)

The generator of the transformation, satisfying Eq. (2.8), is given by

S = S+ + S−

with

S+ =
∑

ks

t0
ξk + E+

c†ksd0s |N + 1〉〈N | − H.c., (2.10)

S− =
∑

ks

t0
ξk + E−

d†0scks |N − 1〉〈N | − H.c.

Using Eqs. (2.9) and (2.10), the identity

2 δs1s2
δs′1s′2

= δs1s′1
δs′2s2

+ σs1s′1
· σs′2s2

, (2.11)

(here σ = (σx, σy, σz) are the Pauli matrices), and projecting the result onto the

subspace of the Hilbert space with N electrons on the dot, we arrive at the Kondo

Hamiltonian

H = Hc + V ρ + J(s · S), (2.12)
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where ρ =
∑

kk′s c†ksck′s and s =
∑

kk′ss′ c
†
ks(σss′/2)ck′s′ represent the local particle

and spin density of conduction electrons, and the spin S describes the state of the

dot.

The amplitude of the potential scattering in Eq. (2.12) reads

V = − t20
2

(
1

E+
− 1

E−

)
. (2.13)

This term breaks the particle-hole symmetry of the model, thus reflecting the devia-

tion of the number of electrons in the dot N from the integer value N∗ [70],

∆N = N −N∗ ≈ −2νV. (2.14)

When the gate voltage approaches the mixed-valence region, say, at N0 ≈ N∗ + 1/2,

Eq. (2.14) reduces to V ≈ −t20/2E+. The requirement of N being close to an integer

|∆N | # 1 and Eqs. (2.2) and (2.14) then give

∣∣N0 −N∗ ± 1/2
∣∣ & Γ0/EC , (2.15)

which implies that the mixed-valence regions in the Anderson model have width

∼ Γ0/EC , in agreement with [68, 69].

The exchange amplitude in Eq. (2.12) is given by

J = 2t20

(
1

E+
+

1

E−

)
=

J0

1− 4(N0 −N∗)2
(2.16)

with

νJ0 =
4νt20
EC

=
4

π

Γ0

EC
. (2.17)

The exchange amplitude (2.16) (and, therefore, TK) has a minimum at the particle-

hole symmetric point N0 = N∗, where J
∣∣
N0=N∗ = J0. Accounting for higher orders in

t0 contributions (which amounts to going beyond the accuracy of the Schrieffer-Wolff

transformation) merely results in a small correction [68, 69, 71],

∆J0/J0 ∼ νJ0 # 1. (2.18)
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The Anderson model therefore provides a qualitatively correct description of the

dependence TK(N0). The dependence is non-monotonic with a minimum in the middle

of the Coulomb blockade valley. This is why Eq. (1.9) with D0 and J given by Eqs.

(2.3) and (2.16) is often employed to fit the experimental data, see, e.g., [4, 5, 6].

2.2 Realistic quantum dot: δ " EC

We turn now to the realistic limit δ # EC . Although the Anderson model is no

longer applicable in this limit, its prediction for min{J(N0)} = J0, see Eqs. (2.16)

and (2.17), remain intact. Instead of Eq. (2.18), the leading correction now reads [71]

∆J0/J0 ∼
Γ0

δ

[
1 + α

ln(EC/δ)

EC/δ

]
, (2.19)

where α ∼ 1 is a numerical coefficient [71]. Although the correction (2.19) is larger

than that in the Anderson model by a factor EC/δ & 1, see Eq. (2.18), the separation

of the energy scales Eq. (1.21) ensures that it is still relatively small, ∆J0/J0 # 1.

This changes dramatically [72] when the gate voltage is tuned away form the

middle of the Coulomb blockade valley N0 = N∗. Indeed, it is well-known [73] that

when the gate voltage is close to (but still outside) the mixed valence region, say, at

Γ0/EC # N∗ −N0 + 1/2 # 1 (2.20)

(more careful estimate is given below), transitions between the two almost degenerate

charge states of the dot |N〉 and |N + 1〉 result in diverging logarithmic corrections

to the tunneling amplitude. The origin of these corrections is again the Kondo effect,

with the two charge states playing the part of the impurity spin [52, 73].

2.2.1 Kondo effect in the charge sector

To make the connection with the Kondo problem explicit, we, following [73], project

out virtual transitions to the state |N − 1〉, associated with high energy cost

E− ≈ EC & E+.
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This amounts to the introduction of a high-energy cutoff in Eq. (2.4):

|ξk|, |εn| < D ∼ EC .

The projected Hamiltonian can be brought into the form of an anisotropic two-channel

Kondo model in a magnetic field with the physical spin s representing the channel

index [73],

H =
∑

s

Hs + E+T̂z (2.21)

Hs =
∑

pα

εpαψ†
spαψspα + tzτ

z
s T̂z + t⊥

(
τ+
s T̂− + τ−s T̂+

)
.

In terms of |⇓〉 and |⇑〉, representing, respectively, charge states with N∗ and N∗ + 1

electrons in the dot, the pseudospin operators in Eq. (2.21) are given by

T̂z =
1

2

(
|⇑〉〈⇑| − |⇓〉〈⇓|

)
, T̂+ = T̂ †

− = |⇑〉〈⇓| .

The operators ψ in (2.21) are the relabeled operators c and d of Eq. (2.1),

ψs,p,α=⇑ = dn→p,s , ψs,p,α=⇓ = ck→p,s .

Accordingly, the single-particle energies εp,α = −ε−p,α are characterized by the pseudospin-

dependent densities of states

ν⇑ = 1/δ, ν⇓ = ν.

Finally, the local pseudospin density in Eq. (2.21) are given by

τs =
∑

pp′αα′

ψ†
spα

σ̃αα′

2
ψsp′α′ ,

where components of the vector σ̃ are the Pauli matrices acting on the pseudospin

degree of freedom.

The bare (corresponding to the bandwidth D ∼ EC) values of the coupling con-

stants in (2.21) are

t⊥ = t0, tz = 0. (2.22)
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The derivation of the scaling equations for the model (2.21) follows closely that

in Appendix A. In terms of the dimensionless coupling constants

Iz =
1

2
(ν⇑ + ν⇓)tz, I⊥ = 2(ν⇑ν⇓)

1/2t⊥, (2.23)

and the running variable ζ = ln(EC/D), the RG equations are identical to Eqs.

(A.21)-(A.23) with M = 2,

dIz

dζ
= = I2

⊥ − I2
⊥Iz, (2.24)

dI⊥
dζ

= IzI⊥ −
1

2

(
I2
z + I2

⊥
)
I⊥. (2.25)

Renormalization also generates terms of the type
∑

pp′α ψ†
spαψsp′αT̂z. These terms

lead to small pseudospin-dependent corrections to the density of states [74], which we

neglect.

Detailed analysis of the scaling equations (2.24)-(2.25) subject to the initial con-

ditions

I2
⊥(0) = 4νt20/δ = 4Γ0/πδ, Iz(0) = 0, (2.26)

see Eqs. (2.22) and (2.23), is presented in the Appendix, see Section A.1.2. The

coupling constants Iz(ζ) and I⊥(ζ) diverge at ζ → ζC = ln(EC/TC), where the Kondo

temperature for the charge Kondo effect is given by

TC ) ECγ0 exp[−π/2γ0], γ0 = I⊥(0) =
√

4Γ0/πδ. (2.27)

In the so-called scaling limit (corresponding to TC # D # EC), the solutions of Eqs.

(2.24)-(2.25) take the form

I2
⊥(D) ≈ γ2

0 + Iz(D) ≈ γ2
0 +

1
[
ln(D/TC)

]2 , (2.28)

see Section A.1.2. The right hand side (hereafter, r.h.s) of Eq. (2.28) contains a sum

of two contributions, the bare value of I⊥, and the correction due to a logarithmic

renormalization associated with the charge Kondo effect. Note that in order to obtain

this result, it is crucial to take into account the third-order terms in the r.h.s. of Eqs.

(2.24) and (2.25).
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2.2.2 Reduction to the Kondo model

The scaling described by Eqs. (2.24)-(2.25) continues as long as the two charge states,

|N〉 and |N + 1〉, can be treated as degenerate, and as long as the discreteness of the

dot’s spectrum can be neglected. In other words, as long as the bandwidth D in

Eq. (2.21) exceeds both the addition energy E+ and the single-particle level spacing

in the dot δ. At smaller D,

D ! D∗ = max
{
δ, E+

}
, (2.29)

the effective Hamiltonian is given by Eq. (2.21) with renormalized coupling constants.

Restoring the notations of Eqs. (2.4)-(2.7), we write it as

H =
∑

ks

ξkc
†
kscks +

∑

ns

εnd
†
nsdns + E+ |N + 1〉〈N + 1| (2.30)

+t
∑

kns

(
c†ksdns |N + 1〉〈N |+ H.c.

)

with the renormalized tunneling amplitude given by

t2 = t2⊥(D∗) = t20 +
δ

4ν
[
ln(D∗/TC)

]2 . (2.31)

In writing Eq. (2.30), we have omitted the potential scattering terms arising from the

z-component of the exchange in Eq. (2.21).

Further reduction of the bandwidth from D∗ down to D0, see Eq. (2.3), can be

carried out without regard to the presence of multiple energy levels in the dot (these

levels have been already accounted for in the renormalization of the tunneling ampli-

tude). In other words, Eq. (2.30) is equivalent to the Anderson model in the strongly

anisotropic limit. Accordingly, virtual transitions to the state |N + 1〉 can be taken

into account by means of the Scrieffer-Wolff transformation, see Section 2.1. The

transformation results in the Kondo Hamiltonian (2.12) with the exchange constant

νJ =
2νt2

E+
=

EC

2E+

(
νJ0 +

δ/Ec[
ln(D∗/TC)

]2

)
, (2.32)
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and with the potential scattering amplitude V ≈ −J/4. Repeating the argument

that led to Eq. (2.15) above, we find that Γ0 in the r.h.s. of (2.15) is replaced by the

renormalized width

Γ = πνt2
∣∣
D∗=δ

= Γ0 +
πδ

4
[
ln(δ/TC)

]2 , (2.33)

which translates into the restriction on the allowed values of the addition energy in

Eq. (2.32), E+ & Γ.

2.2.3 Discussion

The exchange amplitude (2.32) determines the value of the Kondo temperature Eq. (1.9).

Compared with the Anderson model result J = (EC/2E+)J0, see Eq. (2.16), Eq. (2.32)

contains an additional contribution, which comes from the renormalization of the tun-

neling amplitude.

The correction to the tunneling amplitude is of the order of or larger than its bare

value if γ0 ln(D∗/TC) ! 1, see Eq. (2.28). With γ0 and TC given in Eq. (2.27), we

arrive at the condition

D∗ ! ECγ0 ∼ EC

√
Γ0/δ . (2.34)

In view of Eq. (2.34), the most interesting limit is realized when

(δ/EC)2 # Γ0/δ. (2.35)

For large lateral quantum dots, the left hand side of Eq. (2.35) is controlled by

the size of the dot L, δ/EC ∝ 1/L, see the discussion in Section 1.2.1, while the

r.h.s is proportional to the conductance of the dot-lead contact. Experimentally,

these quantities can be tuned independently of each other [20, 21, 43, 44, 45]. This

allows one to satisfy the inequality (2.35) simultaneously with the condition of the

applicability of the tunneling Hamiltonian description Γ0 # δ.

The inequality (2.35) is equivalent to

ln(δ/TC) #
√

δ/Γ0,
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and is compatible with the condition that D ∼ δ belongs to the weak coupling regime

of the Kondo effect in the charge sector, i.e., ln(δ/Tc) & 1. This in turn ensures that

the renormalized level width Γ,

Γ ≈ δ
π/4

ln2(δ/Tc)
,

see Eq. (2.33), is not only large compared with the bare width Γ0, but is also small

compared with the level spacing δ,

Γ0 # Γ # δ. (2.36)

Under the conditions (2.35) and (2.36), Eq. (2.32) shows that

νJ(N0) ≈
1

πEC∆(N0)
×






Γ, Γ/EC # ∆(N0) ! δ/EC

Γ0, ∆(N0) "
√

Γ0/δ
, (2.37)

where

∆(N0) = N∗ −N0 + 1/2 (2.38)

is the distance in the dimensionless gate voltage to the charge degeneracy point; in

terms of ∆(N0), the addition energy is given by E+(N0) = 2EC∆(N0), see Eq. (2.2).

The dependences Eq. (2.37) coincide with that in the Anderson model, see Eq. (2.16),

except that the two asymptotes correspond to two different Anderson models: one

characterized by the bare level width Γ0, another by the renormalized level width

Γ & Γ0.

The crossover between the two asymptotes in Eq. (2.37) is smooth, and is described

by

νJ(N0) ≈
δ

4EC∆(N0)

1

ln2
[
EC∆(N0)/TC

] , δ/EC ! ∆(N0) !
√

Γ0/δ , (2.39)

see Eq. (2.32).

The dependence of the Kondo temperature on the gate voltage is sketched in

Fig. 2.1. In this drawing, we took into account that stretching Eqs. (1.9) and (2.32)
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√
Γ0/δδ/ECΓ/EC

Γ

TK

Γ0

δ ! EC

δ ! EC

∆(N0)

Figure 2.1: Sketch of the dependence of the Kondo temperature TK on the distance
in the dimensionless gate voltage to the charge degeneracy point ∆(N0), see Eq. (2.38)
The solid line corresponds to a quantum dot (δ # EC) with the bare level width Γ0.
The dashed lines represent single-level Anderson impurity models (δ & EC) with
different level widths, Γ and Γ0.

to the border of the domain of their applicability, ∆(N0) ∼ Γ/EC , gives the estimate

max{TK} ∼ Γ.

Our results show that while the non-monotonic dependence TK(N0) prescribed

by the Anderson model s qualitatively correct, it is not possible to choose a single

parameter characterizing this model (e.g., the tunneling-induced level width) to fit

the TK(N0) in the entire Coulomb blockade valley with an odd number of electrons.

It should be noted that the dependence TK(N0) in quantum dots with almost open

contacts [52, 53, 75] is also very different compared with that in the Anderson model.

In this case, (νJ)−1 ∼ (EC/δ)R cos2
[
π(N−N∗)

]
with R # 1 [75]. This result applies

to dots which are in the mixed valence regime at all values of N0. Understanding

the crossover between the result of [75] and our Eq. (2.32) would require a detailed

description of an intermediate regime between the strong and weak Coulomb blockade.

Although the above derivation did not take into account the disorder, our main

conclusion remains intact even in the presence of the disorder TK(N0) for a quantum

dot interpolates between the corresponding dependencies for two different Anderson
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models. One of these models is characterized by the bare level width for the Fermi

level in the dot, Γ0, while in the second, Γ0 is replaced by renormalized width Γ. The

renormalization of the width is the result of summing up contributions from a large

number (∼ EC/δ & 1) of energy levels in the dot.
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APPENDIX A

SCALING FOR THE MULTICHANNEL KONDO MODEL

In this Appendix, we consider the standard anisotropic multichannel Kondo Hamil-

tonian

H = H0 +
∑

αm

Jαsα
mSα, Jx = Jy = J⊥ /= Jz (A.1)

where

H0 =
∑

mks

ξkψ
†
mksψnks,

m = 1, ...,M labels the channels, independent species of conduction electrons, par-

ticipating in the exchange, and the local spin densities of conduction electrons are

defined as

sα
m =

∑

kk′ss′

ψ†
mks

σα
ss′

2
ψmk′s′ , α = x, y, z.

To proceed, it is convenient to change the notations according to

ψmks =






ψmks, |ξk| ≤ D − δD

φmks, D − δD < |ξk| ≤ D
, (A.2)

where φnks represent the electronic states with single particle energies within narrow

strips of the width δD # D near the edges of the band. We write the exchange term

in Eq. (A.1) as
∑

αm

Jαsα
mSα = Hex + V, (A.3)

where V includes the contributions which do not conserve separately the numbers of

ψ and φ particles,

V =
∑

Jα

(
ψ†

nks

σα
ss′

2
φnps′

)
Sα + H.c.. (A.4)

Eq. (A.4) describes transitions between the high-energy states (φ) and the rest of

the band (ψ). Our goal is to find approximately a unitary transformation UHU † that
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eliminates such processes, similar to the Schrieffer-Wolff transformation in Section 2.1.

We seek U in the form

U = exp

( ∞∑

n=1

Ωn

)
, Ωn = −Ω†

n ∝ Jn, (A.5)

and require in addition that the Ωn, just like V , do not contain terms that commute

with both Nψ and Nφ (this requirement removes all ambiguities in the determination

of Ωn). Using the Baker–Hausdorff formula

eAOe−A = O + [A,O] +
1

2!
[A, [A,O]] +

1

3!
[A, [A, [A,O]]] + ...

and collecting terms of the same order in J , we get

UHU † =
∞∑

n=0

h(n), h(n) ∝ Jn (A.6)

h(0) = H0

h(1) = Hex + {V + [Ω1, H0]}

h(2) = [Ω1, V ] +
1

2
[Ω1, [Ω1, H0]] +

{
[Ω1, Hex] + [Ω2, H0]

}
,

etc. Requiring ψ-φ mixing terms (these terms are placed in curly brackets) to be

absent in every order, we get a set of equations

[Ω1, H0] + V = 0

[Ω2, H0] + [Ω1, Hex] = 0, (A.7)

etc. Substitution of Eqs. (A.7) into (A.6) yields

UHU † = H0 + Hex +
1

2
[Ω1, V ] +

1

2
[Ω2, V ] + O(J4). (A.8)

Eqs. (A.7) are easily solved, resulting in

Ω1 =
∑ Jα

ξk − ξp

(
ψ†

mks

σα
ss′

2
ϕmps′

)
Sα − H.c. (A.9)

Ω2 =
∑ JαJβ

(ξk − ξp)
(
ξk − ξp + ξk1 − ξk′1

)
[
ψ†

mks

σα
ss′

2
ϕmps′S

α, ψ†
m′k1s1

σβ
s1s′1

2
ψm′k′1s′1

Sβ

]

+
∑ JαJβ

(ξk − ξp)
(
ξk − ξp + ξp1 − ξp′1

)
[
ψ†

nks

σα
ss′

2
ϕnps′S

α, φ†
n′p1s1

σβ
s1s′1

2
φn′p′1s′1

Sβ

]
− H.c.
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So far, no approximations have been made. This stage comes when one tries to

actually evaluate the effective Hamiltonian Eq. (A.8). Since our ultimate interest

is in the properties of the system at very low energies (much lower, than D − δD),

we can simplify the Hamiltonian even further. First of all, we need to keep only

the lowest (not higher than linear) order in δD/D contributions. Second, products

of the operators will be normal-ordered (for example, we replace
∑

k Akψ
†
nksψnk′s by

∑
k Ak

〈
ψ†

nksψnk′s

〉
+

∑
k Ak :ψ†

nksψnk′s :), and we keep only the most relevant contribu-

tions (those that contain products of no more than 2 conduction electron operators).

Third, we replace F in the expressions such as
∑

ks Fss′(ξk, ξk′) : ψ†
nksψnk′s′ : by its

value at the Fermi energy ξk = ξk′ = 0. To this end, it is sufficient to use the

following simplified expression for Ω2,

Ω2 ≈
∑ JαJβsβ

m

(ξk − ξp)2
ψ†

mks

σα
ss′

2
ϕmps′

[
Sα, Sβ

]
− H.c., (A.10)

where sβ
m is to be treated as a c-number when calculating, for example, [Ω2, V ] in

Eq. (A.8).

A straightforward (although somewhat lengthy) calculation yields

1

2
[Ω1, V ] ≈ δD

D
ν

∑

m

{
J2
⊥(sz

mSz) +
1

2
JzJ⊥(s+

mS− + s−mS+)

}
(A.11)

1

2
[Ω2, V ] ≈ = −δD

D

N

2
ν2

∑

m

{
J2
⊥Jz(s

z
mSz) +

1

4
(J2

z + J2
⊥)J⊥(s+

mS− + s−mS+)

}

These terms are of the same form as Hex =
∑

m

{
Jz(sz

mSz) + 1
2J⊥(s+

mS− + s−mS+)
}

in

Eq. (A.8). Therefore, apart from the reduced bandwith D − δD, the only difference

between the transformed Hamiltonian (A.8) and the original one (1.2.1) is in the

values of the coupling constants [73],

Jα → Jα + δJα

with

D
δJz

δD
= νJ2

⊥ −
N

2
ν2J2

⊥Jz, D
δJz

δD
J⊥ = νJzJ⊥ −

N

4
ν2

(
J2

z + J2
⊥
)
J⊥. (A.12)
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Taking here the continuum limit δD/D → −dD/D = dζ, ζ = ln(D0/D), yields the

scaling equations [73]

dJz

dζ
= νJ2

⊥ −
N

2
ν2J2

⊥Jz, (A.13)

dJ⊥
dζ

= νJzJ⊥ −
N

4
ν2

(
J2

z + J2
⊥
)
J⊥ . (A.14)

Eqs. (A.13) and (A.14) describe the renormalization of the coupling constants of

the Hamiltonian (A.1) with the lowering of the bandwidth. Since we are ultimately

interested in physical observables such as the impurity spin operator, the unitary

transformation applied to the Hamiltonian should be applied to the operators corre-

sponding to the observable quantities as well.

Of particular interest is the impurity spin operator Sα. Unlike the transformed

Hamiltonian, USαU † contains terms that mix ψ and φ states. These terms, however,

do not contribute to the physical quantities such as susceptibility etc., since corre-

sponding processes involve a large (∼ D) energy transfer. Therefore, these terms can

be neglected as long as D & B, T, etc. (Note that the scaling Eqs. (A.13), (A.14)

are also valid only in this limit.) With this approximation,

USαU † = Sα +
1

2

[
Ω1, [Ω1, S

α]
]
+ O(J3). (A.15)

Keeping only the least fluctuating terms in [Ω1, [Ω1, Sα]], we find

USαU † =

{
1− δD

D

M

4

∑

β -=α

(νJβ)2

}
Sα. (A.16)

This can also be written as

U(µαSα)U † = (µα + δµα) Sz, (A.17)

and interpreted as a renormalization of µα (with the initial condition µα = 1),

D
δµα

δD
= −M

4

∑

β -=α

(νJβ)2µα. (A.18)
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Taking the continuum limit in (A.18), and setting Jx = Jy = J⊥, one obtains

dµz

dζ
= −M

2
(νJ⊥)2µz , (A.19)

dµ⊥
dζ

= −M

4

[
(νJz)

2 + (νJ⊥)2
]
µ⊥ . (A.20)

A.1 Solution of the scaling equations

Upon introducing dimensionless coupling constants Iα = νJα, Eqs. (A.13), (A.14),

and (A.19) can be written as

dIz

dζ
= I2

⊥ −
M

2
I2
⊥Iz, (A.21)

dI⊥
dζ

= IzI⊥ −
M

4

(
I2
z + I2

⊥
)
I⊥, (A.22)

dµ

dζ
= −M

2
I2
⊥µ, (A.23)

where µ ≡ µz. It is easy to check that the quantities

A =
I2
⊥ − I2

z

1− M
2 Iz

, B =
µ

1− M
2 Iz

(A.24)

remain invariant under the RG flow: dA/dζ = dB/dζ = 0.

A.1.1 Isotropic limit

In the SU(2) invariant case Jz = J⊥ = J , and Eqs. (A.21) and (A.22) reduce to a

single equation for I = νJ ,

dI/dζ = I2 − (M/2)I3. (A.25)

By construction, this equation is applicable in the weak coupling regime I # 1.

Accordingly, for M ∼ 1, the cubic term in the r.h.s. is small, and one can write

dI

I2 − (M/2)I3
≈ dI

(
1

I2
+

M

2I

)
= dζ,

which gives

I(ζ) ≈ (ζK − ζ)−1, ζK = 1/I(0) + (M/2) ln
[
1/I(0)

]
. (A.26)
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By definition, ζK = ln(D0/TK), and Eq. (A.26) reduces to

νJ(D) =
[
ln(D/TK)

]−1
(A.27)

with

TK ) D0(νJ)M/2 exp(−1/νJ), (A.28)

where J is the bare value of the exchange constant. In the single channel case (M = 1)

Eq. (A.28) coincides with Eq. (1.9).

A.1.2 Strongly anisotropic limit

Here we consider Eqs. (A.21)-(A.23) for M ∼ 1 subject to the initial conditions

Iz(0) = 1− µ(0) = 0, I⊥(0) = I0 /= 0. (A.29)

In this case, Eqs. (A.24) yield

I2
⊥(ζ)− I2

z (ζ) = I2
0µ(ζ), µ(ζ) = 1− (M/2)Iz(ζ) (A.30)

By excluding I⊥ from Eq. (A.23) with the help of Eq. (A.30), we obtain an equation

for η = 1− µ,

dη

dζ
=

MI2
0

2
(1− η)2 +

2

M
η2(1− η), η(0) = 0. (A.31)

Eq. (A.31) is applicable for small η. As in the isotropic case above, the role of higher-

order terms in the r.h.s. is to produce a sub-leading logarithmic correction to TK . To

lowest order in η, Eq. (A.31) reduces to

dη

dζ
≈ MI2

0

2
+

2

M
η2. (A.32)

Solution of this equation reads [73]

η(ζ) =
MI0

2
tan(I0ζ). (A.33)

At ζ → π/2I0 the argument of the tangent in (A.33) approaches π/2, and η(ζ)

diverges as

η(ζ) ≈ M/2

ζK − ζ
, ζK ≈ π/2I0. (A.34)
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Similar to the isotropic case above, taking into account the cubic term in the r.h.s.

of Eq. (A.31) produces a subleading logarithmic correction to ζK . Consider ζ in the

range

ζ0 ! ζ # ζK

with ζ0 choosen so that η0 = η(ζ0) ∼ I0 # 1. In this so-called scaling limit, Eq. (A.31)

reduces to

dη

dζ
≈ 2

M
η2(1− η),

which yields Eq. (A.34) with

ζK =
M

2

(
1/η0 − ln η0

)

Comparison with ζK given in Eq. (A.34) shows that, apart from the logaritmic cor-

rection, the two expressions coincide for η0 = MI0/π # 1,

ζK = π/2I0 + (M/2) ln(1/I0) = ln(D0/TK). (A.35)

This then yields the Kondo temperature

TK ) D0I
M/2
0 exp(−π/2I0). (A.36)

Finally, using Eqs. (A.30) and (A.34), we write explicitly solutions of the RG

equations (A.21)-(A.23) in the scaling limit,

Iz(D) =
1

ln(D/TK)
, (A.37)

I2
⊥(D) = I2

⊥(D0) +
1

[
ln(D/TK)

]2 , (A.38)

µ(D) = 1− 1

ln(D/TK)
. (A.39)
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APPENDIX B

DISORDER IN A QUANTUM DOT

In a quantum dot system, the study of the mesoscopic fluctuations of the Kondo

temperature has been reported in Kaul et al. [76] within the framework of a single-

level impurity. However, the mean level spacing δ of a quantum dot has not been of

interest until now (see Chap. 2 in details), and this is the motivation of this chapter.

B.1 Introduction

Deviations from an ideal shape of a quantum dot, fluctuations in the quasiparticle

and the level spacing due to the gate in transport experiments cause the Kondo

temperature to show variations in measurement [77].

The effects of the disorder are already observed in transport experiments in the

Coulomb blockade regime [78, 79, 80]. For instance, the statistics of the Coulomb

blockade such as spacing between two neighboring peaks, heights of peaks, and the

correlation functions were extensively studied both theoretically and experimentally.

In addition, mesoscopic fluctuations of the Kondo temperature in the conventional

Kondo effect is also reported with help of the Random Matrix Theory (RMT) [76,

81, 82, 83, 84]. Remembering the effects of the mean level spacing δ in Chap. 2, one

would expect that δ affects mesoscopic fluctuations. It turns that δ is substantial,

and leads to the analytic form of the probability density of the Kondo temperature

P (TK) even in the presence of the disorder.
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B.2 Fluctuation in tunneling amplitudes

The Hamiltonian under consideration is expressed with tunneling amplitudes tn de-

pending on the dot level n. The tunneling Hamiltonian becomes

Ht =
∑

knσ

(tnc
†
kσdnσ + H.c.). (B.1)

The RG correction to each tunneling amplitude tn in Eq. (B.1) due to the disorder

effects is given by a quadratic form of the integrated-out tunneling amplitudes tp [73].

δtn =
1

D

∑

|εp|∈δD

t2p, (B.2)

where D − δD < |εp| < D. All levels in a dot except a d0 level at the Fermi level are

integrated out as a result of RG, during which the eliminated high energy terms are

absorbed into and reflected on, as in Eq. (B.2), the renormalized tunneling amplitude

t′0 = t0 + δt0. Therefore, one gets

Ht =
∑

kσ

(t′0c
†
kσd0σ + H.c.). (B.3)

The effective low energy Hamiltonian of a quantum dot is (here, omitting the irrele-

vant terms in the Hamiltonian)

Heff =
∑

k,σ

(t′0c
†
kσd0σ + H.c.) + Ec(N −N0)

2. (B.4)

The Schrieffer-Wolff transformation [27] and the use of SU(2) identity relation

2δσ1σ2δσ′1σ′2
= δσ1σ′1

δσ′2σ2 + σσ1σ′1
· σσ′2σ′2

(B.5)

reduces the effective Hamiltonian to the form of the Kondo model

HK = H0 + Js · S, (B.6)

with the spin density of itinerant electrons s = c†kσ1

(σσ1σ′1
2 ck′σ′1

and the dot spin S =

d†0σ2

(σσ2σ′2
2 d0σ′2

. The anisotropic exchange constant is

J =
4t′20

min{E±}
(B.7)
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with the renormalized t′0 instead of a bare t0. As usual, the energy cost is E± =

E|N±1〉 − E|N〉 in the dot.

B.3 Random Matrix Theory

According to random matrix theory, the intensity of tunneling amplitude t2n follows

one of the random matrix ensemble, which is gamma distributions, with a breed-

number (α, β) reflecting the symmetry in systems [85, 86]

P (x) =
1

βαΓ(α)
xα−1e−

x
β . (B.8)

Types of random matrix ensembles, in accordance with its symmetry are the Porter-

Thomas distributions (Gaussian Orthogonal Ensemble) for (α, β) = (1/2, 1) and the

Gaussian Unitary Ensemble for (α, β) = (1, 1), respectively. [85]

As a result, the probability density of intensity t2n is given with proper normaliza-

tion as

P (t2n) =
1

βαΓ(α)

t2n
α−1

t2n
α e

− t2n

βt2n (B.9)

with the first moment of x = t2n

x = αβt2n

and the second moment

x2 = α(α + 1)β2t2n
2.

B.4 Consequences of mesoscopic fluctuations

Familiarized with the random matrix theory, one is ready to delve into the mesoscopic

fluctuations in the dot. We first begin inspecting the middle of the Coulomb blockade

valleys, and then switch our interest to the mixed valence regions by tuning the gate

voltage, which affects the high energy cut-off of RG in different regions (see Table B.1),

Dc(N0) = max{E±(N0), δ}. (B.10)
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Table B.1: A table of high energy cut-off D of renormalization group in different
regions over the gate voltage.

Gate voltage Vg cut-off D
In the middle of the Coulomb valleys E+(−)

In the intermediate regions max{δ, E+(−)}
In the vicinity of the mixed valence regions δ

B.4.1 In the Coulomb blockade valleys

In the middle of the Coulomb blockade valleys, the contribution of higher level states

to the zeroth level of a quantum dot at the Fermi level is small due to the high energy

cut-off determined by an energy scale of relevance

E± ≈ Ec & δ. (B.11)

Let the gate voltage be tuned at N0 ≈ N∗ = odd-integer, so that Dc ≈ E+. At this

gate, where RG runs from D0 through E+, Eq. (B.2) becomes

δt0 ≈
t2p
D0

. (B.12)

Thus, the mesoscopic fluctuations as a result of RG are

teff = t0 + δt0 ≈ t0. (B.13)

In other words, the single level contribution dominates the fluctuations, and the result

of this fluctuation is expressed as the Porter-Thomas distribution as introduced.

P (x) =
1√
2πx

e−x, (B.14)

where x = t20 . In the Coulomb valleys, the exchange interaction also follows the

Porter-Thomas distribution since

νJ ≈ νJ0 = 4νt20/Ec. (B.15)

This is quite a consistent and complementary result with earlier work [76], which

dealt with the Anderson impurity model, and hence fluctuations of the single level at

the Fermi level likely in the middle of the Coulomb valleys here.
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B.4.2 Near the mixed-valence regions

The fluctuation is surprisingly suppressed when approaching the mixed-valence region

due to many uncorrelated levels in the dot, which are integrated-out during RGs.

The high energy cut-off of RG is now near the mixed-valence regions

Dc = δ. (B.16)

About 2D0/δ (here, ∼ 2Ec/δ) number of levels, which are eliminated during RG,

contribute to the d0 level tunneling amplitude t0 in t′0 = t0+δt0, and this contribution

is greater than the first term, so t′0 ≈ δt0. This number of eliminated levels is

sufficient to apply the central limit theorem to the systems, as often is the case in a

large quantum dot. One thus gets the Gaussian distribution due to the mesoscopic

fluctuations

P (D0δt0) =
1√

4πD0αβ2(t2n)2/δ
e
−
(D0δt−2D0αβt2n/δ)

2

4D0αβ2(t2n)2/δ (B.17)

with a bare energy bandwidth D0 ∼ Ec (Recall, any t2n follows one of the random

matrix ensemble, though.)

This translates into the mesoscopic fluctuations in the Kondo temperature by

changing variables in Eq. (B.17) to the Kondo temperature TK from t′0

t′0 =
1

2

√
E+

νc

(
ln

E+

TK

)− 1
2

, (B.18)

and one gets

dt′0
dTK

=
1

4

√
E+

ν

(
TK ln

E+

TK

)− 3
2

. (B.19)

It is also shown that TK is well bounded (see Chap. 2),

Tmin
K ! TK ! Γ. (B.20)

Then, with the help of the probability relation [87]

P (TK)dTK = P (t′0)dt′0,
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the probability density P (TK) is calculated from Eqs. (B.17)-(B.19) with proper nor-

malization, which results in a log-normal distribution [86, 88]

P (TK) =
N
TK

ln−
3
2

(
E+

TK

)
Exp



−

(
Ec

√
E+/4ν ln(E+/TK)− Ect0 − Ecαβt2p/δ

)2

2Ecαβ2t2p
2/δ





(B.21)

with the normalization coefficient N given by

N =

√
EcE+δ

32πναβ2t2n
2



1 + Erf



Ect0 + Ecαβt2n/δ√
2Ecαβ2t2n

2/δ








−1

, (B.22)

where Erf(x) is the error function. We did normalize the probability above approxi-

mately (by extending the lower limit and upper limit of the integration) without the

introduction of any significant error in the calculation,

∫ E+

Tmin
K

P (TK)dTK ∼
∫ ∞

0

1

χ3/2
e−

1
2σ2 (A/

√
χ−B)

2

dχ (B.23)

with χ = ln(E+/TK).
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[10] D. M. Zumbühl, C. M. Marcus, M. P. Hanson, and A. C. Gossard. Cotunneling
spectroscopy in few-electron quantum dots. Phys. Rev. Lett., 93(25):256801,
2004.

[11] S. Sasaki, S. De Franceschi, J. M. Elzerman, W. G. van der Wiel, M. Eto,
S. Tarucha, and L. P. Kouwenhoven. Kondo effect in an integer-spin quantum
dot. Nature, 405(6788):764–767, 2000.

42



[12] S. Sasaki, S. Amaha, N. Asakawa, M. Eto, and S. Tarucha. Enhanced kondo
effect via tuned orbital degeneracy in a spin 1/2 artificial atom. Phys. Rev. Lett.,
93(1):017205, 2004.

[13] J. Nyg̊ard, D. H. Cobden, and P. E. Lindelof. Kondo physics in carbon nanotubes.
Nature, 408(6810):342–346, 2000.

[14] P. Jarillo-Herrero, J. Kong, H. S. J. van der Zant, C. Dekker, L. P. Kouwenhoven,
and S. De Franceschi. Orbital kondo effect in carbon nanotubes. Nature, 434
(7032):484–488, 2005.

[15] J. Park, A. N. Pasupathy, J. I. Goldsmith, C. Chang, Y. Yaish, J. R. Petta,
M. Rinkoski, J. P. Sethna, H. D. Abruna, P. L. McEuen, and D. C. Ralph.
Coulomb blockade and the kondo effect in single-atom transistors. Nature, 417
(6890):722–725, 2002.

[16] W. Liang, M. P. Shores, M. Bockrath, J. R. Long, and H. Park. Kondo resonance
in a single-molecule transistor. Nature, 417(6890):725–729, 2002.

[17] L. H. Yu and D. Natelson. The kondo effect in c60 single-molecule transistors.
Nano Letters, 4(1):79–83, 2004.

[18] D. C. Mattis. Symmetry of ground state in a dilute magnetic metal alloy. Phys.
Rev. Lett., 19(26):1478–1481, 1967.

[19] G. Gruner and A. Zawadowski. Magnetic impurities in non-magnetic metals.
Reports on Progress in Physics, 37(12):1497–1583, 1974.

[20] M. Pustilnik and L. Glazman. Kondo effect in quantum dots. Journal of Physics:
Condensed Matter, 16(16):R513, 2004.

[21] L. I. Glazman and M. Pustilnik. Course 7 low-temperature transport through a
quantum dot. In S. Guron G. Montambaux H. Bouchiat, Y. Gefen and J. Dal-
ibard, editors, Nanophysics: Coherence and Transport, cole d’t de Physique des
Houches Session LXXXI, volume 81 of Les Houches Summer School Proceedings,
pages 427 – 478. Elsevier, 2005.

[22] M. Pustilnik. Kondo effect in nanostructures. Phys. Stat. Sol. (a), 203(6):1137–
1147, 2006.

[23] J. Kondo. Resistance minimum in dilute magnetic alloys. Progress of Theoretical
Physics, 32(1):37–49, 1964.

[24] W. J. de Haas, J. de Boer, and G. J. van den Berg. The electrical resistance of
gold, copper and lead at low temperatures. Physica, 1(7-12):1115 – 1124, 1934.

[25] A.C. Hewson. The Kondo problem to heavy fermions. Cambridge studies in
magnetism. Cambridge University Press, 1997.

43



[26] P. W. Anderson. Localized magnetic states in metals. Phys. Rev., 124(1):41–53,
1961.

[27] J. R. Schrieffer and P. A. Wolff. Relation between the anderson and kondo
hamiltonians. Phys. Rev., 149(2):491–492, 1966.

[28] H. Suhl. Dispersion theory of the kondo effect. Phys. Rev., 138(2A):A515–A523,
1965.

[29] J. Appelbaum. “s− d” exchange model of zero-bias tunneling anomalies. Phys.
Rev. Lett., 17(2):91–95, 1966.

[30] P. W. Anderson. Localized magnetic states and fermi-surface anomalies in tun-
neling. Phys. Rev. Lett., 17(2):95–97, 1966.

[31] E. Burstein and S. Lundqvist. Tunneling phenomena in solids: lectures. Plenum
Press, 1969.

[32] P. W. Anderson. A poor man’s derivation of scaling laws for the kondo problem.
Journal of Physics C: Solid State Physics, 3(12):2436, 1970.

[33] P. W. Anderson, G. Yuval, and D. R. Hamann. Exact results in the kondo
problem. ii. scaling theory, qualitatively correct solution, and some new results
on one-dimensional classical statistical models. Phys. Rev. B, 1(11):4464–4473,
1970.

[34] F. Wegner. Flow-equations for hamiltonians. Annalen der Physik, 506(2):77–91,
1994.

[35] J. W. Franz. Flow equations for hamiltonians. Nuclear Physics B - Proceedings
Supplements, 90:141 – 146, 2000.

[36] S. D. Glazek and K. G. Wilson. Perturbative renormalization group for hamil-
tonians. Phys. Rev. D, 49(8):4214–4218, 1994.

[37] S. D. Glazek and K. G. Wilson. Asymptotic freedom and bound states in hamil-
tonian dynamics. Phys. Rev. D, 57(6):3558–3566, 1998.

[38] K. G. Wilson. The renormalization group: Critical phenomena and the kondo
problem. Rev. Mod. Phys., 47(4):773–840, 1975.

[39] A. M. Tsvelick and P. B. Wiegmann. Exact results in the theory of magnetic
alloys. Advances in Physics, 32:453–713, 1983.

[40] N. Andrei, K. Furuya, and J. H. Lowenstein. Solution of the kondo problem.
Rev. Mod. Phys., 55(2):331–402, 1983.

[41] P. Nozières. A “fermi-liquid” description of the kondo problem at low tempera-
tures. Journal of Low Temperature Physics, 17:31–42, 1974.

44



[42] L. Kouwenhoven and L. Glazman. Revival of the kondo effect. Physics World,
14:33–38, 2001.

[43] L. L. Sohn, L. P. Kouwenhoven, and G. Schön. Mesoscopic electron transport.
NATO ASI series: Applied sciences. Kluwer Academic Publishers, 1997.

[44] M. A. Kastner. The single-electron transistor. Rev. Mod. Phys., 64(3):849–858,
1992.

[45] U. Meirav and E. B. Foxman. Single-electron phenomena in semiconductors.
Semiconductor Science and Technology, 11(3):255, 1996.

[46] I. L. Aleiner, P. W. Brouwer, and L. I. Glazman. Quantum effects in coulomb
blockade. Physics Reports, 358(5-6):309 – 440, 2002.

[47] I. Giaever and H. R. Zeller. Superconductivity of small tin particles measured
by tunneling. Phys. Rev. Lett., 20(26):1504–1507, 1968.

[48] H. R. Zeller and I. Giaever. Tunneling, zero-bias anomalies, and small supercon-
ductors. Phys. Rev., 181(2):789–799, 1969.

[49] J. Lambe and R. C. Jaklevic. Charge-quantization studies using a tunnel capac-
itor. Phys. Rev. Lett., 22(25):1371–1375, 1969.

[50] C. J. Gorter. A possible explanation of the increase of the electrical resistance of
thin metal films at low temperatures and small field strengths. Physica, 17(8):
777 – 780, 1951.

[51] C. A. Neugebauer and M. B. Webb. Electrical conduction mechanism in ultra-
thin, evaporated metal films. Journal of Applied Physics, 33(1):74–82, 1962.

[52] K. A. Matveev. Coulomb blockade at almost perfect transmission. Phys. Rev.
B, 51(3):1743–1751, 1995.

[53] A. Furusaki and K. A. Matveev. Theory of strong inelastic cotunneling. Phys.
Rev. B, 52(23):16676–16695, 1995.

[54] R. I. Shekhter. Zero Anomalies of the Resistance of Tunnel Junctions Containing
Metallic Inclusions in the Oxide Layer. Sov. Phys. JETP, 36:747, 1973.

[55] I. O. Kulik and R. I. Shekhter. Kinetic Phenomena and Charge Discreteness
Effects in Granulated Media. Sov. Phys. JETP, 41:308, 1975.

[56] D. V. Averin and K. K. Likharev. Coulomb blockade of single-electron tunneling,
and coherent oscillations in small tunnel junctions. Journal of Low Temperature
Physics, 62:345–373, 1986.

[57] L. I. Glazman and R. I. Shekhter. Coulomb oscillations of the conductance in
a laterally confined heterostructure. Journal of Physics: Condensed Matter, 1
(33):5811, 1989.

45



[58] B. L. Altshuler, P. A. Lee, and R. A. Webb. Mesoscopic phenomena in solids.
Modern problems in condensed matter sciences. North Holland, 1991.

[59] E. Bonet, M. M. Deshmukh, and D. C. Ralph. Solving rate equations for electron
tunneling via discrete quantum states. Phys. Rev. B, 65(4):045317, 2002.

[60] C. W. J. Beenakker. Theory of coulomb-blockade oscillations in the conductance
of a quantum dot. Phys. Rev. B, 44(4):1646–1656, 1991.

[61] D. V. Averin, A. N. Korotkov, and K. K. Likharev. Theory of single-electron
charging of quantum wells and dots. Phys. Rev. B, 44(12):6199–6211, 1991.

[62] D. V. Averin and Yu. V. Nazarov. Virtual electron diffusion during quantum
tunneling of the electric charge. Phys. Rev. Lett., 65(19):2446–2449, 1990.

[63] I. L. Aleiner and L. I. Glazman. Mesoscopic fluctuations of elastic cotunneling.
Phys. Rev. Lett., 77(10):2057–2060, 1996.

[64] A. F. G. Wyatt. Anomalous densities of states in normal tantalum and niobium.
Phys. Rev. Lett., 13(13):401–404, 1964.

[65] R. A. Logan and J. M. Rowell. Conductance anomalies in semiconductor tunnel
diodes. Phys. Rev. Lett., 13(13):404–406, 1964.

[66] T. K. Ng and P. A. Lee. On-site coulomb repulsion and resonant tunneling.
Phys. Rev. Lett., 61(15):1768–1771, 1988.

[67] R. G. Newton. Scattering theory of waves and particles. Dover books on physics.
Dover Publications, 2002.

[68] F. D. M. Haldane. Scaling theory of the asymmetric anderson model. Phys. Rev.
Lett., 40(6):416–419, 1978.

[69] F. D. M. Haldane. Theory of the atomic limit of the anderson model. i. pertur-
bation expansions re-examined. Journal of Physics C: Solid State Physics, 11
(24):5015, 1978.

[70] M. Pustilnik and L. Borda. Phase transition, spin-charge separation, and spin
filtering in a quantum dot. Phys. Rev. B, 73(20):201301, 2006.

[71] I. Garate and I. Affleck. Kondo temperature in multilevel quantum dots. Phys.
Rev. Lett., 106(15):156803, 2011.

[72] S. Nah and M. Pustilnik. Kondo temperature of a quantum dot. ArXiv e-prints,
2011.

[73] K. A. Matveev. Quantum fluctuations of metallic particle charge under coulomb
blockade conditions. Sov. Phys. JETP, 72:892–899, 1991.

46



[74] M. Pustilnik, Y. Avishai, and K. Kikoin. Quantum dots with even number of
electrons: Kondo effect in a finite magnetic field. Phys. Rev. Lett., 84(8):1756–
1759, 2000.

[75] L. I. Glazman, F. W. J. Hekking, and A. I. Larkin. Spin-charge separation and
the kondo effect in an open quantum dot. Phys. Rev. Lett., 83(9):1830–1833,
1999.

[76] R. K. Kaul, D. Ullmo, and H. U. Baranger. Mesoscopic fluctuations in quantum
dots in the kondo regime. Phys. Rev. B, 68(16):161305(R), 2003.

[77] I. L. Aleiner and L. I. Glazman. Mesoscopic charge quantization. Phys. Rev. B,
57(16):9608–9641, 1998.

[78] S. R. Patel, S. M. Cronenwett, D. R. Stewart, A. G. Huibers, C. M. Marcus, C. I.
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