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SUMMARY

A low-complexity method of interleaver design, sub-vector interleaving, for

both parallel and serially concatenated convolutional codes (PCCCs and SCCCs,

respectively) is presented here. Since the method is low-complexity, it is uniquely

suitable for designing long interleavers.

Sub-vector interleaving is based on a dynamical system representation of the con-

stituent encoders employed by PCCCs and SCCCs. Simultaneous trellis termination

can be achieved with a single tail sequence using sub-vector interleaving for both PC-

CCs and SCCCs. In the case of PCCCs, the error floor can be lowered by sub-vector

interleaving which allows for an increase in the weight of the free distance codeword

and the elimination of the lowest weight codewords generated by weight-2 terminating

input sequences that determine the error floor at low signal-to-noise ratios (SNRs).

In the case of SCCCs, sub-vector interleaving lowers the error floor by increasing the

weight of the free distance codewords. Interleaver gain can also be increased for SC-

CCs by interleaving the lowest weight codewords from the outer into non-terminating

input sequences to the inner encoder.

Sub-vector constrained S-random interleaving, a method for incorporating S-

random interleaving into sub-vector interleavers, is also proposed. Simulations show

that short interleavers incorporating S-random interleaving into sub-vector inter-

leavers perform as well as or better than those designed by the best and most com-

plex methods for designing short interleavers. A method for randomly generating

sub-vector constrained S-random interleavers that maximizes the spreading factor,

S, is also examined.

The convergence of the turbo decoding algorithm to maximum-likelihood decisions

xii



on the decoded input sequence is required to demonstrate the improvement in BER

performance caused by the use of sub-vector interleavers. Convergence to maximum-

likelihood decisions by the decoder do not always occur in the regions where it is

feasible to generate the statistically significant numbers of error events required to

approximate the BER performance for a particular coding scheme employing a sub-

vector interleaver. Therefore, a technique for classifying error events by the mode of

convergence of the decoder is used to illuminate the effect of the sub-vector interleaver

at SNRs where it is possible to simulate the BER performance of the coding scheme.
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CHAPTER I

INTRODUCTION

In 1948, Claude Shannon published his famous paper, “A Mathematical Theory of

Communications,” in which he determined that every communication channel has a

maximum capacity for reliable transmission. Transmitting at a rate below capac-

ity with a good code of sufficient block length, n, results in reliable communication.

Transmitting at rates greater than channel capacity results in unreliable communica-

tion, no matter how good the code. Shannon’s theory promised the existence of codes

for which the bit error rate (BER) in the received sequence could be made arbitrarily

small for increased block length, n. The goal of researchers for the past half-century

has been to find these codes.

Turbo codes are a class of error correcting codes introduced in 1993 which came

closer to approaching this theoretical limit than any other class of error correcting

codes known at that time. Furthermore, they achieved their remarkable performance

with relatively low complexity encoding and decoding algorithms.

Random interleaving is key to the remarkable performance of turbo coding schemes

at low signal to noise ratios (SNRs). Previous attempts to optimize these interleavers

fall into one of two categories: interleavers chosen by a random search performed to

optimize a particular cost function as in [15],[17], [37], and [30], or specially designed

linear block interleavers as in [4], [12], [14], and [26]. The best methods for designing

short interleavers involve random searches, which make these approaches impractical

for designing long interleavers. The simplest methods for optimizing interleavers are

based on block interleavers and have resulted in designs that, while performing well

for short interleavers, do not achieve the reduction in BER that is expected with

1



increased interleaver length.

The goal of this research is to develop low-complexity methods of designing inter-

leavers for turbo codes, to explain analytically the improvements in BER performance

caused by the use of these interleavers, to compare the performance of turbo codes

employing these interleavers to the performance of turbo codes employing interleavers

designed by other methods, and to verify the improvements in BER performance that

were predicted analytically.

1.1 Overview

This dissertation is divided into three main parts:

• Background information on turbo codes in Chapter 2,

• Original contributions of the research performed in Chapters 3-6,

• Summary of the work done and possible directions for future research in Chapter

7.

Chapter 2 contains background information on turbo codes, including a descrip-

tion of the constituent encoders employed by turbo coding schemes, the difference

between parallel and serially concatenated turbo coding schemes, a description of the

algorithms used to decode turbo codes, and the purpose of the interleaver in a turbo

coding scheme. Different approaches to interleaver design reported in the literature

are discussed in this chapter. Methods of analyzing turbo codes that were used in

this research are described in Chapter 2 as well.

In Chapter 3, the first original contributions of this research are reported. In this

chapter, a method of modeling the constituent encoders in a turbo coding scheme

as dynamical systems is described. The dynamical system model of the constituent

encoders is key to understanding interleaver properties that led to the low-complexity

method of interleaver design, “sub-vector interleaving,” that is the main contribution

2



of this research. Chapter 3 addresses the low-complexity design of interleavers for

parallel concatenated convolutional codes (PCCCs). It is shown in this chapter how

sub-vector interleaving can allow for dual trellis termination with a single tail se-

quence appended to the input sequence to the encoder. The performance of a PCCC

employing a sub-vector interleaver is predicted analytically, and then the performance

is verified with simulations of the PCCC where the encoded sequences are transmit-

ted over a channel corrupted by additive, white, Gaussian noise (AWGN) at different

noise levels.

Sub-vector interleaving for serially concatenated convolutional codes (SCCCs) is

presented in Chapter 4. This method of interleaving has the added benefit of in-

creasing the interleaver gain of an SCCC. An upper bound on the interleaver gain for

an SCCC, which is dependent on the constituent encoders employed by the SCCC,

is derived in this chapter. As in Chapter 3, a method of modeling the constituent

encoders as dynamical systems, which led to the method of sub-vector interleaving

for SCCCs, is presented. Termination of the inner and outer encoders of the SCCC

with a single tail sequence appended to the input sequence to the overall encoder

is possible with sub-vector interleaving, a result not presented in the literature for

any other method of interleaver design for SCCCs. The BER performance of SC-

CCs employing sub-vector interleavers is predicted analytically and is also verified by

computer simulation.

A method of incorporating S-random interleaving [17] into sub-vector interleaving

is outlined in Chapter 5. S-random interleaving is a simple, but effective, method of

generating interleavers for turbo codes. It is widely used in simulations reported in the

literature because of the simple nature of the algorithm used to design S-random in-

terleavers, the effectiveness of the resulting interleaver in improving BER performance

of the coding scheme, and the adaptability of the method to turbo coding schemes

3



employing different types of constituent encoders. In Chapter 5, it is shown that S-

random interleaving incorporated into sub-vector interleaving (sub-vector constrained

S-random interleaving) results in an improvement to both methods of interleaving.

The S-parameter in an S-random interleaver describes the spreading of the bits in

the input sequence that the interleaver causes. The maximum possible spread, Smax,

is discussed in this chapter and a technique for generating Smax-random interleavers

is outlined. The effect of the sub-vector constraint on S in a sub-vector constrained

S-random interleaver is also discussed, and a method for randomly generating sub-

vector constrained Smax-random interleavers is described. Simulations of the BER

performance of PCCCs and SCCCs employing sub-vector constrained S-random in-

terleavers are also presented in this chapter.

Analysis of turbo codes to quantify the improvement in bit-error rate (BER) per-

formance caused by the use of sub-vector interleavers proved to be difficult, especially

in the case of SCCCs. Sub-vector interleavers improve the performance of coding

schemes by reducing the number of low weight codewords and increasing the weight

of the free distance codewords for a particular PCCC or SCCC. The convergence of

the turbo decoding algorithm to maximum-likelihood decisions on the decoded input

sequence is required to demonstrate the improvement in BER performance caused

by the use of sub-vector interleavers. Convergence to maximum-likelihood decisions

by the decoder did not occur in the regions where it was feasible to generate the

statistically significant numbers of error events required to approximate the BER

performance of the coding schemes employing sub-vector interleavers in the case of

SCCCs. Therefore, a technique for classifying error events by the mode of conver-

gence of the decoder was used to illuminate the effect of the sub-vector interleaver at

SNRs where it was possible to simulate the BER performance of the coding scheme.

These results are presented in Chapter 6.

4



Chapter 7 is a summary of the original contributions and results presented in this

dissertation. Suggestions are made for future areas of research in interleaver design

for turbo codes that seem promising in light of these contributions.
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CHAPTER II

BACKGROUND: TURBO CODES

Turbo codes comprise two or more convolutional encoders connected in parallel or in

series by an interleaver. We refer to codes generated by encoders connected in parallel

as “parallel concatenated convolutional codes,” or PCCCs. We refer to codes gener-

ated by encoders connected in series as “serially concatenated convolutional codes,”

or SCCCs. The constituent encoders in a PCCC are always recursive convolutional

encoders. An SCCC must have an inner recursive convolutional encoder, but the

outer encoder may be either recursive or non-recursive.

2.1 Recursive Convolutional Encoders

A recursive convolutional encoder is a convolutional encoder with feedback. The

encoder in Fig. 1 is a three delay state recursive convolutional encoder. In this

example, the outputs from the last two delay states are fed back into the input. The

parity bits for this encoder are a mod 2 sum of the input to the encoder and the

output from each of the delay states.

Since the encoder has feedback, it generates an infinite weight parity sequence in

response to an impulse (i.e., a single non-zero input bit). Input sequences that drive

an encoder away from the zero state and then back to the zero state before the end

of the sequence (possibly multiple times) are called “terminating input sequences.”

The lowest weight terminating input sequence possible for a recursive convolutional

encoder has weight 2. This is in contrast to a non-recursive convolutional encoder for

which weight 1 terminating input sequences exist.
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The generator matrix for the recursive convolutional encoder in Fig. 1 is given by

G =

[
1,
n (D)

d (D)

]
=

[
1,
1 +D +D2 +D3

1 +D2 +D3

]

It is shown in [9] that a weight-2 input sequence of length = 2k, where k is the number

of delay states of the encoder and 2k − 1 is the period of the feedback polynomial of

the encoder, d (D), is the shortest weight-2 terminating input sequence for a recursive

convolutional encoder. Thus, a length-8 input sequence

m =
[
1 0 0 0 0 0 0 1

]

is a terminating input sequence for the recursive convolutional encoder in Fig. 1.

2.2 Parallel vs. Serial Concatenation

Parallel concatenation was the original configuration, proposed in the seminal paper

published by Berrou, et al., in [12], of the constituent encoders and interleaver that

comprise a turbo coding scheme. Though Berrou, et al., were able to demonstrate

the superb performance of parallel concatenated turbo codes in their seminal paper,

they did not initially offer an explanation of this performance. Numerous authors,

including Berrou, et al., sought to explain the performance of parallel concatenated

turbo codes and the techniques of designing and decoding parallel concatenated turbo

codes in [6], [9], [11], [42], and [43], in addition to many others.

In the parallel concatenated turbo coding scheme shown in Fig. 2, the input

sequence m is encoded by the top encoder. An interleaved version of the input

sequence, mπ, is encoded by the lower encoder. We assume that the decoder has

knowledge of the interleaver, and thus the input sequence must only be transmitted

once across the channel. So, the overall rate for the turbo coding scheme in Fig. 2

would be 1
3
, before puncturing.

Serially concatenated turbo coding and decoding was introduced by Benedetto,

et al., in [8], and further developed in [10] and [7]. In a serially concatenated turbo

8
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Figure 2: Parallel concatenated convolutional encoding scheme

coding scheme, the input sequence m is encoded only by the outer encoder. The

parity bits from the outer encoder are interleaved into the sequence y
1,π
and then

encoded by the inner encoder. The inner encoder generates the sequence y
2
. Fig. 3

shows a flow diagram of a serially concatenated coding scheme.

2.3 Decoding Algorithm

In the parallel concatenated turbo coding scheme, the input sequence to each of the

encoders are decoded separately using a soft-output a posteriori probability (APP)

decoding algorithm. Information about the decoded input sequence is passed iter-

atively between the two decoders, until the decoders converge to a decision on the

input sequence. The decoder output at the final step is given by m̂B in Fig. 4.

In the serially concatenated turbo coding scheme, the parity sequence output by

the outer encoder and the input sequence to the inner encoder are decoded separately

by the soft-output APP decoding algorithm. The input sequence to the outer encoder

is decoded as a final step taken after the outer and inner encoders have converged to

a decision on the interleaved sequence passed between them. The decoder output at

9
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Figure 5: Flow diagram of the encoder, channel, and decoder for a serially concate-
nated convolutional coding scheme

the final step is given by m̂A in Fig. 5.

There are many variations on the decoding algorithm. The original turbo decoder

was based on the Bahl, Cocke, Jelinek, Raviv (BCJR) algorithm [3], which was de-

veloped around the same time as the better known Viterbi algorithm, for decoding

convolutional codes.

The BCJR algorithm seeks to maximize the probability that each bit in the input

sequence is decoded correctly. This is different from the Viterbi algorithm, which

seeks to maximize the likelihood that the entire code sequence is decoded correctly.

The BCJR algorithm is roughly twice as complex as the Viterbi algorithm. The

primary reason it is used in the turbo decoding algorithm is that its output is a soft

decision on the input bits, which makes it suitable for use in an iterative decoder. It

has also been shown to have superior performance to the Viterbi algorithm at low

SNRs, albeit at a cost of twice the complexity of the Viterbi algorithm.

Less complex decoding algorithms for turbo codes also exist, such as the soft

11



output Viterbi algorithm (SOVA) proposed for use in decoding turbo codes in [24].

These algorithms are inferior to the BCJR algorithm for decoding turbo codes in

terms of BER performance. Therefore, the research described in this proposal relies

on the BCJR algorithm in its simulations.

2.4 Purpose of the Interleaver

The primary function of the interleaver is to improve the distance properties of the

concatenated coding scheme. In PCCCs, the ideal interleaver permutes input se-

quences that generate low weight codewords from one encoder into input sequences

that generate high weight codewords from the other encoder. In SCCCs, the ideal in-

terleaver permutes low weight codewords from the outer encoder into input sequences

generating high weight codewords from the inner encoder.

To a lesser extent the interleaver also serves to reduce the correlation between the

input sequence and the parity bits associated with the interleaved input sequence.

Because an independence assumption is made on the sequence being decoded and the

extrinsic information related to the sequence, it is important to make sure that the in-

put sequence and the parity bits associated with the interleaved input sequence are as

uncorrelated as possible. It was shown in [39] that addressing this issue when design-

ing interleavers improves the convergence properties of PCCCs and SCCCs employing

short interleavers. Long interleavers (i.e., length-N > 500) selected randomly have

been shown in [28] to have good correlation properties, as good as long interleavers

designed specifically for those properties.

Low weight codewords in a turbo coding scheme are generated in a two step

process. In the first step, an input sequence that begins with one of the constituent

encoders in the all-zero state and returns that encoder to the all-zero state at the end

of the input sequence is encoded. The parity sequence generated by such an input

sequence terminates when the last non-zero bit of the input sequence is encoded. If

12



the distance between the first and last non-zero bit of this terminating input sequence

is small, then the codeword it generates will have relatively low Hamming weight. In

the second step, either the input sequence itself or the parity sequence it generates (in

the case of a PCCC or SCCC, respectively) is interleaved so that another low weight

codeword is generated by the other constituent encoder.

Example 1 Assuming that the parallel concatenated coding scheme in Fig. 2 employs

as its constituent encoders the recursive convolutional encoder shown in Fig. 1, the

upper encoder in Fig. 2 is terminated by the length-14 input sequence

m =
[
0 0 1 0 1 1 0 0 0 0 0 0 0 0

]
,

and generates the parity sequence

y
1
=
[
0 0 1 1 1 1 0 0 0 0 0 0 0 0

]
.

If m is interleaved into

mπ =
[
1 1 0 0 0 1 0 0 0 0 0 0 0 0

]
,

the lower encoder in Fig. 2 is also terminated and generates the parity sequence

y
2
=
[
1 0 1 1 0 1 0 0 0 0 0 0 0 0

]
.

The Hamming weight of the overall codeword generated in this case is the Hamming

weight of m+ y
1
+ y

2
= 3 + 4 + 4 = 11.

However, if m is interleaved into

mπ =
[
1 0 0 1 0 0 0 1 0 0 0 0 0 0

]
,

the lower encoder in Fig. 2 is not terminated and generates the parity sequence

y
2
=
[
1 1 0 0 0 1 1 0 1 0 0 1 0 1

]
.

In this case the Hamming weight of m+ y
1
+ y

2
= 3 + 4 + 7 = 14. Furthermore, the

Hamming weight of the parity sequence y
2
would increase with increased block length

since the input sequence mπ =
[
1 0 0 1 0 0 0 1

]
did not terminate the lower encoder.
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Because of the infinite impulse response of the constituent recursive convolutional

encoders and the use of a random interleaver to couple the concatenated encoders,

relatively few low weight codewords exist in a turbo coding scheme. This phenomena,

described as “spectral thinning” in [36], is the cause of the very low BERs of turbo

coding schemes at low SNRs.

2.4.1 Spectral Thinning and Random Interleavers

PCCCs always employ recursive convolutional encoders, which have an infinite im-

pulse response, as the constituent encoders. Therefore, most input sequences to

PCCCs generate parity sequences that are not terminated (i.e., the parity sequence is

terminated artificially at the end of the input sequence, but would not terminate given

an infinite length input sequence) in one or both of the encoders. We define a ter-

minating input sequence to be an input sequence that drives both of the constituent

encoders back to the zero state before the end of the sequence.

The situation is slightly different in the case of SCCCs. The outer encoder in

a SCCC typically is not a recursive convolutional encoder, but some other type of

encoder with a high weight free distance codeword. Employing a non-recursive outer

encoder with a high weight free distance codeword in an SCCC improves the overall

distance properties of the SCCC by increasing the spectral thinning caused by the

interleaver, a topic that will be addressed in the following sections.

2.4.1.1 Parallel Concatenated Convolutional Codes

A random interleaver used in a PCCC achieves spectral thinning for the overall code

by permuting low weight codewords in one encoder into similar low weight codewords

in the second encoder with a probability proportional to 1
Nd−1 , where N is the length

of the interleaver and d is the weight of the input sequence generating the codeword.

We see the effect of spectral thinning when we calculate the probability of a bit error

resulting from an error pattern that corresponds to a single terminated codeword,

14



where error patterns are caused by the channel corrupting the signal with additive

white Gaussian noise. A single terminated codeword is a codeword generated by a

weight-d terminating input sequence that causes both of the constituent encoders to

diverge from and reemerge to the zero state exactly once. If p1 and p2 are the parity

sequences from the constituent recursive convolutional encoders generated by the

weight-d terminating input sequence, then an input weight-d terminated error pattern,

ed,p, causes d bit errors when it is incorrectly decoded as a terminated codeword with

Hamming weight p = d + p1 + p2. Using the idea of a uniform random interleaver

developed in [9], which performs as the average of all length-N random interleavers,

the probability of a bit error resulting from a terminated error pattern ed,p incorrectly

decoded as a single terminated codeword can be expressed as:

Pb
(
e | ed,p

)
≈
(
d
N

)
(N−l1+1)(N−l2+1)(

N
d

) Q
(√

p · 2Rcεb
N0

)

<
(
d
N

)
· (d!) ·

(
N2−d

)
· e−p

(
Rcεb
N0

)
,

(1)

where Q (x) = 1√
2π

∫∞
x e

−t2

2 dt, Rc is the overall rate of the turbo coding scheme,
εb
N0
is

the SNR per bit, and l1 and l2 are the distances between the first and last non-zero

bits of the input sequence of the terminated codeword before and after interleaving,

respectively.

We define an input weight-d multiply terminated codeword as a codeword gener-

ated by a weight-d terminating input sequence that drives the constituent encoders to

and from the zero state multiple times. The probability of a bit error resulting from

an error pattern ed,p decoded as an input weight-d multiply terminated codeword

where the parity sequence intersects the zero state in the first encoder n1 times and

in the second encoder n2 times is calculated as

15



Pb
(
e | ed,p

)
≈
(
d
N

)

(
N − l1 + n1

n1

)(
N − l2 + n2

n2

)

(
N
d

) Q
(√

p · 2Rcεb
N0

)

<
(
d
N

)
·
(

d!
n1!n2!

)
·
(
Nn1+n2−d

)
· e−p

(
Rcεb
N0

)
,

where l1 and l2 are the sum of the distances between the first and last non-zero bits

of the n1 and n2 individual terminated codewords, respectively [36].

Since the constituent encoders in a turbo coding scheme are recursive, there are

no weight-1 input sequences that generate terminated codewords. We see in (1)

that the probability of a bit error resulting from a single weight-d input sequence

that generates a terminated parity sequence decreases at a rate proportional to 1
Nd−1 .

Therefore, input weight-2 single terminated error patterns contribute to the BER with

probability inversely proportional to N , while all single terminated error patterns

with higher input sequence weight contribute to the BER with probabilities inversely

proportional to higher powers of N .

Another class of error patterns with bit error probability inversely proportional

to N correspond to codewords with an even input weight d that generate parity

sequences that diverge from and reemerge to the zero state the maximum number

of times possible. The maximum number of times the parity sequence can diverge

and reemerge with the zero state is given by r =
⌊
d
2

⌋
. Terminated error patterns

corresponding to these types of codewords can be described as the concatenation of

individual input weight-2 terminated error patterns. The probability of a bit error

resulting from this type of error pattern is calculated as

Pb
(
e | ed,p

)
≈
(
d
N

)

(
N − l1 +

d
2

d
2

)(
N − l2 +

d
2

d
2

)

(
N
d

) Q
(√

p · 2Rcεb
N0

)

<
(
d
N

)
·
(

d!
d
2
! d
2
!

)
· e−p

(
Rcεb
N0

)
.
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As in the case of single input weight-2 terminated error patterns, these terminated

error patterns have bit error probabilities proportional to
(
1
N

)
. However, they are

associated with at least twice the number of parity bits as the single input weight-2

terminated error patterns and, therefore, do not contribute as significantly to the

overall BER of a turbo coding scheme.

2.4.1.2 Serially Concatenated Convolutional Codes

As for PCCCs, a random interleaver used in an SCCC achieves spectral thinning

for the overall code by permuting low weight codewords from the outer encoder into

input sequences resulting in low-weight parity sequences from the inner encoder with

a probability inversely proportional to powers of the interleaver length, Nin.

Because the input sequences to the inner encoder are the output codewords from

the outer encoder in an SCCC, the minimum weight of the input sequence to the

inner recursive convolutional encoder in an SCCC is typically greater than two. The

spectral thinning that occurs in an SCCS is, therefore, greater than what occurs

in a PCCC. We see this when we calculate the probability of a bit error resulting

from an error pattern edfree,p, which corresponds to the free distance weight-dfree

codeword of the outer encoder, that is interleaved into an input sequence resulting

in a weight-p parity sequence from the inner encoder. Using the idea of a uniform

random interleaver, as before, we can calculate the probability of a bit error resulting

from a particular error pattern edfree,p. Assuming that this error pattern corresponds

to a weight-dfree input sequence to the inner encoder that causes that encoder to

diverge and reemerge from the zero state exactly once, the probability of a bit error

resulting from edfree,p is calculated as:

Pb
(
e|edfree,p

)
≈
(

w
Nout

)
(
Nout
dfree

)
(Nin−l+1)(

Nin

dfree

) Q
(√
(dfree + p) · 2Rcεb

N0

)

∝ (Nin)
1−dfree · e−(dfree+p)

(
Rcεb
N0

)
,

17



where w is the weight of the input sequence to the outer encoder, Nout is the length

of the input sequence to the outer encoder, Nin is the length of the input sequence

to the inner encoder, N out
dfree

is the number of weight-dfree codewords from the outer

encoder, l is the distance from the first to last non-zero bit of the interleaved error

pattern, Q (x) = 1√
2π

∫∞
x e

−t2

2 dt, Rc is the overall rate of the SCCC, and
εb
N0
is the

SNR per bit.

Low weight codewords from the outer encoder that are interleaved into codewords

that cause the inner encoder to diverge and reemerge with the zero state more than

one time correspond to another set of important error patterns in an SCCC. Since

the inner encoder in an SCCC is recursive, there are no weight-1 input sequences to

the inner encoder that cause it to diverge and reemerge with the zero state. At a

minimum, a weight-2 input sequence is required for this to happen. If dfree > 3, it

is possible that an error pattern corresponding to a codeword for the outer encoder

could be interleaved into multiple concatenated terminated error patterns for the

inner encoder. If dfree is even, such an error pattern may comprise a maximum of
(
dfree
2

)
terminated error patterns for the inner encoder; if dfree is odd, it may comprise

a maximum of
(
dfree−1

2

)
terminated error patterns.

The probability of a bit error resulting from an error pattern corresponding to an

odd weight-dfree codeword for the outer encoder that is interleaved so that it corre-

sponds to the concatenation of the maximum number of terminated error patterns

for the inner encoder is calculated as

Pb
(
e|edfree,p

)
≈
(

w
Nout

)

(
Nout
dfree

)

Nin − l +

(dfree−1)
2

(dfree−1)
2




(
Nin

dfree

) Q
(√
(dfree + p) · 2Rcεb

N0

)

∝ (Nin)
−
(dfree+1)

2 · e−(dfree+p)
(
Rcεb
N0

)
.

(2)

Similarly, the probability of a bit error resulting from an error pattern corresponding

to an even weight-(dfree + 1) codeword for the outer encoder that is interleaved so

18



that it corresponds to the concatenation of the maximum number of terminated error

patterns for the inner encoder is proportional to

Pb
(
e|edfree+1,p

)
∝ (Nin)

−
(dfree+1)

2 · e−(dfree+1+p)
(
Rcεb
N0

)
. (3)

We see from (2) and (3) that spectral thinning in SCCCs is inversely proportional

to higher powers of the interleaver length, Nin, than for PCCCs. However, the re-

duction in BER resulting from spectral thinning calculated in (2) and (3) assumes

maximum likelihood decoding is possible. Since the turbo decoding algorithm does

not converge to the maximum likelihood decisions at low and moderate SNRs in the

“waterfall” region of the BER performance curve, maximum likelihood decoding is not

available at the SNRs of interest in some systems. Also, PCCCs have been shown in

[10] to have better convergence properties than SCCCs in the waterfall region. There-

fore, PCCCs can outperform SCCCs of the same complexity and decoding delay at

low and moderate SNRs.

2.5 Approaches to Interleaver Design

Since the interleaver is the key to the BER performance of PCCCs and SCCCs at

low SNRs, much attention has been paid to the design of interleavers to be used in

these applications. The approaches to designing interleavers that improve the BER

performance of a PCCC or SCCC range from heuristic searches, suitable for only short

interleavers because of their complexity, to simple block interleavers that fall short of

ideal, especially for designing long interleavers. Two of the approaches fall somewhere

in between: a technique based on a fairly simple semi-random search making it useful

for designing short or long interleavers, and another approach that is the subject of

this thesis’s research. The following sections in this chapter will serve to describe the

relative strengths and weaknesses of the known approaches to interleaver design for

PCCCs and SCCCs.
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2.5.1 Iterative interleaver growth algorithms

Iterative interleaver growth algorithms constitute the class of interleaver design meth-

ods that are most successful in improving the BER performance of PCCCs and SC-

CCs. These algorithms are initialized with a short interleaver and then grown to a

desired length element by element while satisfying particular design criteria or mini-

mizing a particular cost function.

2.5.1.1 S-random algorithm

The S-random interleaver originally was developed in [17] for use with PCCCs, but

has since shown its suitability for use with SCCCs as well. The S-random algorithm

generates permutations of any length, long or short, that perform well for use with

either PCCCs or SCCCs. The idea behind the S-random algorithm is to permute

elements in the input sequence that are separated by a distance less than S to positions

in the output sequence that are separated by a distance greater than S.

The permutations are generated as follows: Select a randomly generated integer

as the first element of the permutation. For each subsequent element of the permuta-

tion, randomly generate another integer and compare it to the S previously selected

elements. If the current selected element of the permutation is within a distance ±S

of any of the S previously selected elements, discard it and randomly select another

integer. Repeat this process till the permutation is complete with every element

satisfying the S-random criteria.

The S-random algorithm has two very attractive features:

• It is simple to implement and computationally efficient.

• It performs very well, considerably better than an average random interleaver

does, in both PCCCs and SCCCs.

The drawbacks to the S-random algorithm include:

20



• Searching time increases with the desired amount of separation, S, and the

length of the interleaver.

• The algorithm is not guaranteed to finish successfully in any case. (In prac-

tice, most experimenters choose S <
√
N/2 in order to achieve a solution in a

reasonable amount of time.)

• The S-random algorithm is generic in the sense that it does not consider the

constituent encoders of the PCCC or SCCC and the codewords that are most

significant in terms of BER contribution in a particular system.

• Interleaving the concatenation of multiple codewords is not addressed by the

algorithm.

The third drawback of the S-random algorithm is addressed by Feng, et al., in [19]

and [44]. Their method of interleaver design adds another criterion to the S-random

search routine. In addition to satisfying the spread requirement, their algorithm

also analyzes the distance spectrum of the component codes and makes sure that

their interleaver breaks up input patterns that are most significant in terms of BER

contribution. This additional criterion, however, increases the searching time of the

algorithm and is less likely to converge to a solution than the S-random algorithm.

The fourth drawback of the S-random algorithm is addressed by Fragouli, et al.,

in [21]. Their method attempts to consider spreading the concatenation of two or

more low weight codewords into higher weight codewords. However, when double

concatenations are considered, the complexity of the algorithm is O (N 2), vs. O (N)

for the standard S-random algorithm.

2.5.1.2 Iterative interleaver growth algorithm of polynomial complexity

An iterative interleaver growth algorithm of polynomial complexity was presented by

Daneshgaran and Mondin [15]. This method of interleaver design was tailored to a
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particular coding scheme by considering the types of error patterns that are significant

for the constituent encoders the coding scheme employs.

Daneshgaran and Mondin’s technique for generating the interleaver permutation

is unique and fundamental to their design method. They describe their interleavers as

sliding-window transposition boxes. As the sliding window moves across the data, the

data element at the far edge of the sliding window is either output from the sliding

window or transposed with another data element within the sliding window. The

length of the sliding window is equal to the delay of the permutation, or the maximum

time between an element entering and exiting the sliding-window transposition box.

Daneshgaran and Mondin propose the design of interleavers that minimize a cost-

function based on the types of error patterns determined to be significant to a par-

ticular coding scheme. Their interleavers grow iteratively to the desired length, with

the cost function minimized at each step of the process.

The complexity of this design method depends on the types of errors on which

the cost-function is based. Single terminated errors are most significant for short

interleaver lengths. Considering only these types of error patterns, the complexity

of the interleaver design is O (N 3). If even a single double terminated error pattern

is considered, however, the complexity increases to O (N 4). They have determined

that, for interleavers of length 120-500, double terminated error patterns contribute

significantly to the BER. For interleavers longer than 500, triple and quadruple

terminated error patterns are significant. Accounting for these error patterns increases

the complexity of the interleaver design to O (N 5) and O (N 6), respectively.

2.5.2 Interleavers with Structure

Interleavers with structure range from the simplest rectangular interleaver (write by

row, read by column), to more sophisticated constructions that take into account the

code structure and the elimination of significant error patterns.
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2.5.2.1 Block interleavers

Berrou, et al., proposed a rectangular interleaver for use in PCCCs in [11]. The

method of interleaving proposed there was simple: write the sequence to be interleaved

into a 120 × 120 matrix row by row, and read the interleaved sequence column by

column. The method suffered, in particular, from error patterns at the very end of the

code block, since these patterns were not broken with this type of interleaving, and

from a high multiplicity of weight-4 terminating input sequences. In [36] it was shown

that the multiplicity of the weight-4 terminating input sequences was a consequence of

the rectangular interleaver itself, and that the multiplicity of these error patterns did

not increase with interleaver length (i.e., no interleaver gain for these error patterns).

Fig. 6 illustrates the problem of weight-4 terminating input sequences in a block

interleaver for PCCCs. In this example, we assume the interleaver is designed for a

PCCC employing the three delay state encoders in Fig. 1 as constituent encoders. In

Section 2.1, we explained that weight-2 input sequences of length = 2k, where k is the

number of delay states for a recursive convolutional encoder, are terminating input

sequences for the encoder. Since the constituent encoders have three delay states, a

length-8 input sequence to the upper encoder

m =
[
1 0 0 0 0 0 0 1

]

that is interleaved into an identical input sequence

mπ =
[
1 0 0 0 0 0 0 1

]

for the lower encoder generates terminated parity sequences from both constituent

encoders. Fig. 6 illustrates how this happens for a length-70 block interleaver used

with the PCCC in this example.

Perez, et al., point out in [36] that the number of weight-4 terminating input

sequences in the example in Fig. 6 increases with the length of the interleaver. This
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Figure 6: Weight-4 terminating input sequences that are not interleaved in a block
interleaver for a PCCC employing the three delay state encoders in Fig. 1 as con-
stituent encoders.

means that the interleaver gain is eliminated since the probability of a bit error due to

an error pattern corresponding to one of these weight-4 terminating input sequences

is no longer a function of the interleaver length:

Pb
(
e | e4,p

)
≈ C ·Q

(√
p · 2Rcεb

N0

)
,

where C ≈ a constant for all interleaver lengths. Thus, this error probability forms

a floor on the BER performance of the PCCC that does not decrease with increased

interleaver length.

An improvement on the block interleaver that addresses error patterns at the end

of the block was proposed in [26]. This rectangular interleaver specifies that the input

sequence be written row by row, and read column by column in the reverse direction

that the input sequence was written. Reading in the reverse direction solves the

problem of error patterns at the end of the input sequence, since error patterns at

the end of the input sequence to one encoder are interleaved to the beginning of the

input sequence for the other encoder.

24



2.5.2.2 Optimal period interleavers

Qi, et al., [37] propose designing interleavers for parallel concatenated turbo codes

based on an optimal period interleaver. This method achieves some measure of weight

spectrum thinning in the resultant turbo codes and an improvement in the BER

performance over random interleaving.

An optimal period interleaver is one that permutes all terminated codewords with

length equal to the period of the impulse response of the encoders (except for the

all-zeros and all-ones input sequences) into non-terminating input sequences. The

procedure for designing an interleaver based on an optimal period interleaver is as

follows:

1. Perform a column permutation of a matrix with the input sequence bits read

in row-wise by permuting the elements in each row of the matrix according to

the optimal period interleaver.

2. Interleave along the columns of the matrix in a prescribed manner such that

nearby elements of the matrix are separated far apart after interleaving.

Permuting the columns in the first step will break up all terminated codewords

with length less than the period of the impulse response of the encoder (except for the

all-zeros and all-ones codewords) into non-terminated codewords. Because weight-2

input sequences corresponding to terminated codewords are longer than one period

of the impulse response of the encoders, column interleaving is necessary to increase

the Hamming weight of the parity sequences associated with these problematic input

sequences. Qi, et al., [37] used a method of interleaving described in [?] to per-

form column interleaving. They use the same interleaver for each column and then

incrementally shift each column.
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2.5.2.3 Design of interleavers using the Hungarian method

It is not possible to interleave all weight-2 input sequences corresponding to termi-

nated codewords into non-terminating sequences. It is shown in [30] that at most it

is possible to break all terminating weight-2 input sequences with span < K2 where

K = 2r − 1 into non-terminating input sequences, leaving 1/K of the total number

of terminating weight-2 input sequences unbroken.

A simple method for achieving this type of interleaving is to fill a K × Nout/K

matrix with the elements of a length-Nout input sequence read in row-wise, and then

circularly shift the elements of ith row by i elements. Khandani proposes this type

of interleaving in [30], but notes that it is not sufficient to break up the terminating

weight-2 input sequences without taking into account weight-3 and higher input se-

quences. Khandani notes that his shift interleaver retains the property of breaking

the weight-2 input sequences when interleaving is performed over the columns of the

matrix. The method of interleaving he chooses to perform along the columns of the

K ×Nout/K matrix is based on the Hungarian method used to optimize the distance

between elements in each column of the matrix. He does not consider interactions

between elements in different columns in his method.

2.5.3 Design of Self-Terminated Interleavers

Hokfelt, et al., [27] outline the benefits of terminating at least one of the constituent

encoders in a PCCC employing a pseudo-random interleaver. Appending a tail se-

quence to the input of one of the constituent encoders that drives the encoder back to

the zero state can do this. Not terminating either of the constituent encoders increases

the probability that bits (in a randomly or pseudo-randomly generated interleaver)

at the end of the input sequence will be decoded incorrectly.

A method of designing interleavers for parallel concatenated turbo codes that

leaves both constituent encoders in the same final state is proposed in [25] and [5].
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By appending a single tail to the input sequence of the encoders, both encoders can

be driven to the zero state at the end of the input sequence as long as the length-N

interleaver satisfies a simple constraint:

π (i)modL = imodL, 0 ≤ i ≤ N − 1

where L is the period of the constituent encoders of the parallel concatenated coding

scheme.

Terminating the input sequences to the encoders improves the performance of the

decoder at the end of the input sequence. Using a single tail appended to the input

sequence to terminate both encoders as suggested in [25] and [5] also improves the

throughput of the code by eliminating the need for a second tail sequence.

2.6 Turbo Code Analysis

The BER rate performance of PCCCs and SCCCs is determined by the free distance

of the coding scheme and its interleaver, and by the convergence of the decoding

algorithm to the bounds predicted by the code’s distance properties. Section 2.6.1

outlines an efficient method used in this research for computing the free distance of

a PCCC or SCCC. Section 2.6.2 discusses the modes of convergence of the iterative

decoder used to decode SCCCs and PCCCs, and methods for predicting the SNRs

where convergence of the decoder to maximum likelihood decisions on the decoded

bits will occur.

2.6.1 Free Distance Computation

It is well known that the slope of the BER of a PCCC or SCCC is very steep at low and

medium SNRs (the “waterfall” region of the error performance curves) but flattens

out dramatically once the BER has converged to the error floor. The error floor is

caused by error patterns corresponding to low weight codewords not being corrected

by the decoder. The expected number, or multiplicity, of low weight codewords for a
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particular turbo coding scheme employing a randomly generated interleaver decreases

at a rate inversely proportional to the length of the interleaver in the case of a PCCC,

or the length of the interleaver to powers ≥ 2 for a SCCC, as seen in Section 2.4.1.

Thus, simply increasing the length of the randomly generated interleaver can lower

the error floor.

Designing interleavers that can lower the error floor of a turbo code for a set length

interleaver could improve the BER performance of the coding scheme. It would also

allow the use of a shorter interleaver to achieve a given BER, which would reduce the

latency in the transmitted data.

In order to evaluate the design of interleavers with good distance properties (i.e.,

higher free distance codewords with lower multiplicities), it is useful to be able to

compute the actual distance properties of a particular interleaver. A fast algorithm

for computing the distance properties of interleavers is described in [22].

The free distance codeword of a parallel concatenated turbo code can be computed

using the following algorithm:1

1. Consider a set of length-i input sequences, ui, to the turbo encoder, where

0 < i ≤ N and N is the length of the interleaver. Compute the Hamming

weight of the parity sequence output by each of the encoders subject to the

following conditions:

(a) Assume that the free distance of the turbo code will be less than some

nominal value, d∗.

(b) For the encoder receiving the un-interleaved input sequence, compute the

first i terms of the parity sequence, v1 (ui) , and calculate its Hamming

weight, w (v1 (ui)).

1This is intended to be a broad description of the overall algorithm and, as such, a few details
are omitted.
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(c) For the encoder receiving the interleaved input sequence, compute the

minimum weight path, v2 (ui), through the entire code trellis of the re-

cursive convolutional encoder, constraining it to pass through edges of

the trellis corresponding to the interleaved bits of the length-i input se-

quence. Garello, et al., [22] refer to this constrained minimum distance

path through the trellis as the “constrained subcode.” The Hamming

weight of the constrained subcode is designated by w (v2 (ui)).

2. If the Hamming weight of the input sequence, w (ui), plus the Hamming weight

of the parity sequences, w (v1 (ui)) + w (v2 (ui)), is less than d∗, then set d∗ =

w (ui) + w (v1 (ui)) + w (v2 (ui)).

3. All elements of ui satisfying w (ui) + w (v1 (ui)) + w (v2 (ui)) ≤ d∗ survive to

the next iteration. To create the set of elements ui+1, we take the surviving

elements from ui and append either a 0 or a 1 to the end of the input sequence

to create two elements of ui+1 from each surviving element of ui.

4. Repeat from step 1 until i = N . At the end of the i = N th iteration, we have

computed the free distance of the turbo code, dfree = d∗.

With a few simple modifications, this algorithm can be used to compute the mul-

tiplicity of the free distance codewords, as well as the multiplicities of higher weight

codewords for use in a distance spectrum analysis of a turbo code and interleaver

combination.

2.6.2 Convergence of Decoding Algorithm

The turbo code decoding algorithm is described as a discrete dynamical system in

[1], iterating on the extrinsic information output from the constituent decoders. As

a result, modes of convergence of the decoding algorithm can be described in terms

of its properties as a dynamical system.
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Agrawal and Vardy [1] offered proofs that in the extreme cases of the SNR ap-

proaching zero or infinity asymptotically, the turbo decoding algorithm has unique

fixed points corresponding to mostly incorrect or correct decisions on the input se-

quence, respectively. In between these extreme SNRs (i.e., at practical SNRs), the

turbo decoding algorithm exhibits three modes of convergence: convergence to an

unequivocal fixed point, convergence to an indecisive fixed point, convergence to an

invariant set. Simulations in [1] and [38] have demonstrated these types of conver-

gence and the types of errors with which they are associated:

1. For the case of convergence to an unequivocal fixed point, most decisions by the

decoder correspond to maximum-likelihood decoding of the received sequence.

Errors that occur when the decoder has converged to an unequivocal fixed point

typically correspond to low weight codewords for the turbo coding scheme.

2. In the case of convergence to indecisive fixed points, the extrinsic information

passed between the two decoders remains very low, indicating that the decoding

algorithm is ambiguous regarding the values of the information bits. These

unequivocal fixed points can correspond to a large number of bit errors in the

decoded sequence.

3. The case of convergence to an invariant set generally occurs in the “waterfall

region” of the range of SNRs and occurs when an indecisive fixed point bifur-

cates. In practice this is observed as the decoder converging on a set of fixed

points and oscillating among them periodically.
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CHAPTER III

INTERLEAVER DESIGN FOR PARALLEL

CONCATENATED CONVOLUTIONAL CODES

A typical PCCC, as shown in Fig. 7, consists of two systematic recursive convolutional

encoders and an interleaver operating on the input bits to the second encoder. The

input bits to the two encoders are the same, except that they are interleaved before

entering the second encoder.

The discussion in this chapter is based on the PCCC shown in Fig. 7 consisting of

two identical, rate 1
2
, eight state (or three delay state) recursive convolutional encoders

with generator matrix G =
[
1,
(1+D+D2+D3)
(1+D2+D3)

]
. However, it is straightforward to

apply these ideas to PCCCs employing non-identical constituent encoders or PCCCs

employing constituent encoders with fewer or more delay states than the encoder in

Fig. 7. Chapter 4 will address the application of these ideas to SCCCs.

3.1 Analysis of Recursive Convolutional Encoders

This section presents a new, novel representation of a recursive convolutional encoder

as a dynamical system, developed in order to understand better the relationship

between the interleaver in a PCCC and the constituent encoders. The results in

this chapter are based on the analysis of a PCCC whose constituent encoders are

represented by a state variable model of a discrete dynamical system.

3.1.1 Recursive Convolutional Encoder as a Dynamical System

For the encoder shown in Fig. 7, the state variable model consists of a state vector v,

containing the delay states v1, v2, v3, and the input m that is the next input sequence
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Figure 7: Parallel Concatenated Convolutional Coding Scheme

bit to be encoded. The output, y, could also be included in the state variable model,

but it is not necessary for this discussion. Note that since this is a binary coding

scheme all addition is mod 2.


v1 (n+ 1)
v2 (n+ 1)
v3 (n+ 1)


 =



0 1 1
1 0 0
0 1 0






v1 (n)
v2 (n)
v3 (n)


⊕m (n)



1
0
0


 (4)

In practice, there are a finite number, N , of input sequence bits to be encoded.

We can think of these bits as being placed into a length-N vector m to be queued into

the encoder as shown in Fig. 7. As each bit is shifted to the right into the encoder,

we place a 0 into the left-most element of m until all N input sequence bits have been

encoded and m is a vector of zeros. This leads to an interpretation of the encoder as

an autonomous dynamical system where the delay states v and input sequence vector
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m are the state variables:



v1 (n+ 1)
v2 (n+ 1)
v3 (n+ 1)
m1 (n+ 1)

...
mN−2 (n+ 1)
mN−1 (n+ 1)
mN (n+ 1)




=




0 1 1 1 0 · · · 0 0
1 0 0 0 0 · · · 0 0
0 1 0 0 0 · · · 0 0
0 0 0 0 1 · · · 0 0
...

. . .

0 0 0 0 0 · · · 1 0
0 0 0 0 0 · · · 0 1
0 0 0 0 0 · · · 0 0







v1 (n)
v2 (n)
v3 (n)
m1 (n)
...

mN−2 (n)
mN−1 (n)
mN (n)




= A

[
v (n)
m (n)

]

Furthermore, we notice that after N time steps the state of the system is given by

[
v (N)
m (N)

]
= A ·

[
v (N − 1)
m (N − 1)

]
= AN ·

[
v (0)
m (0)

]
(5)

where

v (0) =
[
0 0 0

]′
(6)

m (N) =
[
0 0 · · · 0

]′
(7)

and

AN =




x x x 1 0 0 1 1 1 0 · · · 1 0 0 1 1 1 0
x x x 0 0 1 1 1 0 1 · · · 0 0 1 1 1 0 1
x x x 0 1 1 1 0 1 0 · · · 0 1 1 1 0 1 0
0 0 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 0
...

...
...

...
0 0 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 0




. (8)

The first three rows of the matrix AN from column 4 to column N + 3 consist of a

pattern of bits that repeats periodically. The remainder of the rows of AN are filled

entirely with zeros. This is true of AM for all M ≥ N . Careful observation shows

that these bit patterns, which have the same period as the feedback polynomial of

the encoder, correspond to what we refer to as the “impulse responses of the delay

states of the encoder,” as seen in Fig. 8. The rows of AM containing the delay state

impulse responses will change as AM is iterated; however, since the rows of AM are

linear combinations of the rows of AN , the delay state impulse responses of AM will

always be elements of the vector space spanned by the rows of the delay state impulse

responses of AN .
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Figure 8: Impulse response of the delay states of the encoder

In Fig. 8 we introduce notation for the matrix Vk,ln that contains the k delay state

impulse responses over n length-l periods of the encoder. The encoder in Fig. 8 has

k = 3 delay states and an impulse response with period l = 7. Thus, V3,7 is a matrix

containing the three delay state impulse responses over a single length-7 period of the

impulse response of the encoder.

An important relationship exists between the impulse responses of the delay states

and a class of error patterns called terminated errors. This relationship leads to new

insights into interleaver performance and design that we will discuss in Section 3.1.2.

3.1.2 Fundamental Properties of Interleavers

A terminating input sequence is an input sequence that begins with the encoder in

the all-zero state (i.e., with v(0) =
[
0 0 0

]′
) and returns the encoder to the all-

zero state after its last non-zero bit has been encoded. PCCCs employ recursive

convolutional encoders, which have infinite impulse responses, as their constituent

encoders. Therefore, most input sequences to the encoders generate parity sequences

that are not self-terminated (i.e., the parity sequence is terminated artificially at
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the end of the code block, but would not terminate given an infinite length code

block) in one or both of the encoders. As a result, most codewords in a PCCC

have high Hamming weight. The error patterns most likely to be uncorrected by

a maximum likelihood decoding algorithm are those corresponding to low Hamming

weight codewords in both of the constituent encoders. These codewords are generated

by the terminating input sequences that remain as terminating input sequences after

interleaving.

One of the interesting properties of a terminating input sequence is that a row

vector containing a length-N terminating input sequence is always (mod 2) orthogonal

to each of the delay state impulse responses of that encoder. This property allows us

to make some fundamental observations about recursive convolutional encoders and

the terminating input sequences associated with them.

We will use the notation d1,d2, and d3 for the length-N delay state impulse re-

sponses of the encoder in Fig. 8 such that1



d1
d2
d3


 =

[
V3,7 · · · V3,7

]

=



1 0 0 1 1 1 0 · · · 1 0 0 1 1 1 0
0 0 1 1 1 0 1 · · · 0 0 1 1 1 0 1
0 1 1 1 0 1 0 · · · 0 1 1 1 0 1 0


 .

(9)

A row vector containing a terminating input sequence mt, given by

mt =
[
mt (0) mt (1) · · · mt (N − 1)

]
,

and a delay state impulse response

dn =
[
dn (0) dn (1) · · · dn (N − 1)

]
, 0 ≤ n ≤ k,

are orthogonal if they satisfy:

dn ·m′
t = dn (0)mt (0)⊕ dn (1)mt (1)⊕ · · · ⊕ dn (N − 1)mt (N − 1) = 0

1For ease of notation, we assume here that N is an integer multiple of the period of the feedback
polynomial of the encoder, but this is not a necessary condition for our argument.
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where ⊕ denotes mod 2 addition. By definition, a terminating input sequence will

leave the encoder in the zero-state after all its bits have been encoded. After a length-

N terminating input sequence has been encoded, the state of the encoder is given by

v(N) =
[
0 0 0

]′
. Simplifying (5) through (8) and incorporating notation from (9)

for the delay state impulse responses, we get the following expression for the state of

the encoder after a length-N terminating input sequence has been encoded:



v1 (N)
v2 (N)
v3 (N)


 =



1 0 0 1 1 1 0 · · · 1 0 0 1 1 1 0
0 0 1 1 1 0 1 · · · 0 0 1 1 1 0 1
0 1 1 1 0 1 0 · · · 0 1 1 1 0 1 0







mt (0)
...

mt (N − 1)




=



d1
d2
d3







mt (0)
...

mt (N − 1)


 =



0
0
0


 ,

(10)

which shows thatm′
t is (mod 2) orthogonal to the impulse response of each delay state

of the encoder. This observation leads to two fundamental properties of recursive

convolutional encoders:

Lemma 1 For a recursive convolutional encoder with k delay states, out of all 2N

possible input sequence patterns where N is the length of the input sequence vector m,

at least 2N−k of these are terminating input sequences.

Proof. The set M of length-N input sequences forms an N -dimensional vector

space over GF (2). Since each coordinate of an input sequence can be either a 1 or a

0, the cardinality of an N -dimensional vector space M is 2N .

A terminating input sequence mt is, as shown in (10), an input sequence whose

transpose is orthogonal to each of the delay state impulse responses of the encoder:




d1
d2
...
dk



mt =




0
0
...
0




Thus, Mt, the set of all length-N terminating input sequences mt, is the dual space

to a vector subspace ofM that is spanned by the transpose of the delay state impulse
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response vectors
{
d′1, d

′
2, · · · d′k

}
. If the k delay state impulse response vectors are

linearly independent, then the dimension of Mt is N − k. If the delay state impulse

response vectors are not linearly independent, then the dimension of Mt is greater

than N − k. As a result, there are at least 2N−k terminating input sequences for an

encoder with k delay states.

Lemma 2 For a recursive convolutional encoder with k linearly independent delay

state impulse responses, out of all 2N−k possible terminating input sequences, it is

possible to interleave at most 2N−k
(
2k−1
2k

)
terminating input sequences into non-

terminating input sequences.

Proof. After interleaving, a terminating input sequence mt is given by the vector

P ·et where P is a permutation matrix. The terminating input sequences m̃t that are

not interleaved into non-terminating input sequences satisfy:




d1
d2
...
dk



P · m̃t =




0
0
...
0




Thus, the non-interleaved input sequences m̃t constitute the dual space of the

vector subspace spanned by the vectors
{
d′1, d

′
2, · · · d′k, P

′ · d′1, P
′ · d′2, · · · P

′ · d′k
}
. If

the k delay state impulse responses and the k permuted delay state impulse responses

are linearly independent, then the dual space to the vector space spanned by these 2k

basis vectors has dimension N−k−k. This N−k−k dimension vector space consists

of 2N−k−k vectors. Thus, there are at least 2N−k−k terminating input sequences that

cannot be interleaved into non-terminating input sequences.

Note that significantly different proofs of Lemma 1 and Lemma 2 were given

by Khandani in [30] and [31], and that the results presented here were developed

independently and published in [32]. Furthermore, we will show in Section 3.2 that

the proofs presented here lead to a low-complexity method for designing interleavers
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that satisfy the upper bound set forth in Lemma 2 on the number of terminating

input sequences that can be interleaved into non-terminating input sequences. We

will also show how to choose these interleavers to achieve significant gains in the BER

performance of PCCCs.

3.2 Sub-vector Interleaving

By rewriting (10) in terms of the matrix V3,7 defined in Section 3.1.1 and shown in

Fig. 8, we see that for the encoder with three delay states shown in Fig. 7 coupled

with a length-N interleaver where N is a multiple ofm = 7, the period of the feedback

polynomial of the encoder, all terminating input sequences mt must satisfy




1 0 0 1 1 1 0
0 0 1 1 1 0 1
0 1 1 1 0 1 0
︸ ︷︷ ︸

V3,7

· · ·
· · ·
· · ·

1 0 0 1 1 1 0
0 0 1 1 1 0 1
0 1 1 1 0 1 0
︸ ︷︷ ︸

V3,7



·mt =

[
V3,7 · · · V3,7

]
·mt

=



0
0
0


 .

For the recursive convolutional encoder being considered here, there exist 1344

length-7 interleavers that can be used to satisfy the upper bound given in Lemma 2,

and these are easily found by exhaustive computer search over the 7! possible length-7

interleavers. We will refer to such an interleaver as Popt,7, since it is optimal in the

sense that it can be used to interleave the maximum fraction of length-7 terminating

input sequences into non-terminating input sequences in a PCCC.

Expressing the terminating input sequence mt as the vertical concatenation of

length-7 sub-vectors, we see in (11) that the (mod 2) summation of these sub-vectors
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is also a terminating input sequence:

[
V3,7 · · · V3,7

]
·mt =

[
V3,7 · · · V3,7

]
·




mt1
...
mtN

7




= [V3,7]
[
mt1 ⊕mt2 ⊕ · · · ⊕mtN

7

]

=



0
0
0


 .

(11)

The dimensions of Popt,7 correspond to the period of the feedback polynomial of

our recursive convolutional encoder. As a result, we can place our length-7 interleaver

on the diagonal of an N ×N (choosing N to be a multiple of 7) permutation matrix

to create a length-N interleaver Popt,N that shares the properties of Popt,7 in that

it interleaves the maximum fraction of length-N terminating input sequences into

non-terminating input sequences:

[
V3,7 · · · V3,7

]
·




Popt,7 0 · · · 0
0 Popt,7 · · · 0
...

. . .
...

0 0 · · · Popt,7



·




mt1
...
mtN

7




= [V3,7] · Popt,7 ·
[
mt1 ⊕mt2 ⊕ · · · ⊕mtN

7

]
.

(12)

We refer to this method of interleaving as “sub-vector interleaving.” Sub-vector

interleavers effectively permute the columns of a d× N
d
matrix, where d is the length

of the sub-vectors being considered and N is the length of the interleaver, with the

input sequence read in row-wise.

We now need to consider interleaving not just the maximum fraction of terminat-

ing input sequences, but those input sequences that generate the codewords that are

most significant in terms of their effect on the BER performance of the PCCC. We

will discuss these error patterns and their contribution to the BER in Section 3.4.
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3.3 Dual Trellis Termination with Minimum Length

Tail Sequence for PCCCs

In this section we will show that it is possible to append a single terminating tail

sequence to the input of the PCCC that causes each of the constituent encoders to be

terminated in the zero state and allows for sub-vector interleaving to occur without

affecting the encoder termination. Note that other researchers have reported similar

results for encoder termination using other types of interleavers in [29], [5], and [13].

3.3.1 Dynamical System Representation of a PCCC with a sub-vector

Interleaver

To compute a tail sequence that will terminate the constituent encoders of a PCCC,

it is helpful to represent the entire PCCC as a dynamical system. This dynamical

system takes as its input an entire length-η sub-vector of the input sequence m at

each iteration.

Thus, the dynamical system representation of the top encoder alone in the PCCC

shown in Fig. 7 employing a length-14 sub-vector interleaver is given by:2




v1 (n+ 14)
v2 (n+ 14)
v3 (n+ 14)︸ ︷︷ ︸

v(n+14)



=



1 0 0
0 1 0
0 0 1






v1 (n)
v2 (n)
v3 (n)


+

[
V3,7 V3,7

]



m (n)
...

m (n+ 14)


 . (13)

The dynamical system representation of the bottom encoder alone in the PCCC shown

in Fig. 7 employing a length-14 sub-vector interleaver, P , is given by:




vπ1 (n+ 14)
vπ2 (n+ 14)
vπ3 (n+ 14)︸ ︷︷ ︸

vπ(n+14)



=



1 0 0
0 1 0
0 0 1






vπ1 (n)
vπ2 (n)
vπ3 (n)


+


V3,7 V3,7︸ ︷︷ ︸

V3,14


 · P ·




m (n)
...

m (n+ 14)


 , (14)

2The choice of sub-vector length will be explained in Sec. 3.4
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where

V3,14 =



1 0 0 1 1 1 0 1 0 0 1 1 1 0
0 0 1 1 1 0 1 0 0 1 1 1 0 1
0 1 1 1 0 1 0 0 1 1 1 0 1 0




and

P =




0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0




(15)

(this chioce of sub-vector interleaver, P , will be explained in Section 3.4), which gives

us

[V3,14] · P =



1 0 1 0 1 1 0 1 0 0 1 1 0 1
1 0 1 1 1 0 1 1 1 1 0 0 0 0
0 1 0 0 1 1 1 1 0 1 0 1 1 0




=
[
Vπ3,14

]

If we combine (13) and (14) and incorporate the input sequence, m, into the state

equations for the dynamical system, the result is an autonomous dynamical system

representation of the entire PCCC, including the sub-vector interleaver:



v (n+ 14)
vπ (n+ 14)
m (n+ 14)


 =




I 0 V3,14 0
0 I Vπ3,14 0
0 0 0 I
0 0 0 0






v (n)
vπ (n)
m (n)


 ,

where v (n) contains the delay states of the top encoder at time n, and vπ (n) contains

the delay states of the lower encoder at time n. The vector m(0) contains the entire

length-N input sequence to the PCCC. As the autonomous dynamical system iterates,

length-14 sub-vectors of m are encoded and then shifted out the top of m, while a
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length-14 zero vector shifts into the bottom of m. Therefore, m(N) is a length-N

zero vector.

If the autonomous dynamical system is iterated N
14
times, the final state of the

constituent encoders at time n = N can be expressed as a mapping of the input

sequence m at n = 0:

[
v (N)
vπ (N)

]
=

[
V3,14 V3,14 · · · V3,14 V3,14
Vπ3,14 Vπ3,14 · · · Vπ3,14 Vπ3,14

]
m (0) ,

which implies that

[
v (N)
vπ (N)

]
=

[
V3,14
Vπ3,14

]
mΣ,

where mΣ (0)
′ =

[
mΣ1 mΣ2 · · · mΣ13 mΣ14

]
is the mod 2 summation of length-14

sub-vectors of the input sequence contained in m (0).

If v (N) =
[
0 0 0

]
and vπ (N) =

[
0 0 0

]
, then the input sequence to the PCCC

is a terminating input sequence, mt. The rows of the matrices V3,14 and Vπ3,14 and

mΣt , the mod 2 summation of the length-14 sub-vectors of mt, are mod 2 orthogonal:

[
V3,14
Vπ3,14

]
mΣt =




0
0
0
0
0
0




This yields to the following relationship between the elements of the vector mΣt :




mΣt1 ⊕mΣt4 ⊕mΣt5 ⊕mΣt6 ⊕mΣt8 ⊕mΣt11 ⊕mΣt12 ⊕mΣt13

mΣt3 ⊕mΣt4 ⊕mΣt5 ⊕mΣt7 ⊕mΣt10 ⊕mΣt11 ⊕mΣt12 ⊕mΣt14

mΣt2 ⊕mΣt3 ⊕mΣt4 ⊕mΣt6 ⊕mΣt9 ⊕mΣt10 ⊕mΣt11 ⊕mΣt13

mΣt1 ⊕mΣt3 ⊕mΣt5 ⊕mΣt6 ⊕mΣt8 ⊕mΣt11 ⊕mΣt12 ⊕mΣt14

mΣt1 ⊕mΣt3 ⊕mΣt4 ⊕mΣt5 ⊕mΣt7 ⊕mΣt8 ⊕mΣt9 ⊕mΣt10

mΣt2 ⊕mΣt5 ⊕mΣt6 ⊕mΣt7 ⊕mΣt8 ⊕mΣt10 ⊕mΣt12 ⊕mΣt13




=




0
0
0
0
0
0




. (16)

A length-6 terminating tail sequence,

mtail =
[
m (N − 5) m (N − 4) · · · m (N − 1) m (N)

]
,

42



appended to a length-(N − 6) input sequence leads to the following relationship be-

tween mΣ and mΣt : 


mΣ1

mΣ2

...
mΣ8

mΣ9 ⊕m(N − 5)
mΣ10 ⊕m(N − 4)
mΣ11 ⊕m(N − 3)
mΣ12 ⊕m(N − 2)
mΣ13 ⊕m(N − 1)
mΣ14 ⊕m(N)




=




mΣt1

mΣt2
...

mΣt8

mΣt9

mΣt10

mΣt11

mΣt12

mΣt13

mΣt14




. (17)

Substituting (16) into (17) yields six linearly independent equations which can be

solved for mtail:




0 0 1 1 1 0
0 1 1 1 0 1
1 1 1 0 1 0
0 0 1 1 0 1
1 1 0 0 0 0
0 1 0 1 1 0







m (N − 5)
m (N − 4)
m (N − 3)
m (N − 2)
m (N − 1)
m (N)




=




1 0 0 1 1 1 0 1 0 0 1 1 1 0
0 0 1 1 1 0 1 0 0 1 1 1 0 1
0 1 1 1 0 1 0 0 1 1 1 0 1 0
1 0 1 0 1 1 0 1 0 0 1 1 0 1
1 0 1 1 1 0 1 1 1 1 0 0 0 0
0 1 0 0 1 1 1 1 0 1 0 1 1 0







mΣ1

mΣ2

...
mΣ12

mΣ13

mΣ14




−→




m (N − 5)
m (N − 4)
m (N − 3)
m (N − 2)
m (N − 1)
m (N)




=




0 1 1 0 0 0 1 0 0 0 0 1 1 1
1 0 1 0 1 1 0 0 1 1 1 1 0 0
0 1 1 0 1 0 0 0 0 1 1 0 0 1
1 0 0 1 0 1 1 0 1 0 0 0 0 1
1 0 1 0 0 1 1 1 0 1 0 0 1 1
0 0 1 0 1 1 0 0 1 0 0 0 0 0







mΣ1

mΣ2

...
mΣ12

mΣ13

mΣ14




.

Sub-vector interleaving effectively permutes the columns of a matrix with the infor-

mation sequence, m, read in row-wise. Permutations along each of the columns of

this matrix do not affect the termination of the encoder, since the vector mΣ which

contains the mod 2 sum of the elements in each of the columns is unaffected.
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3.4 Lowering the Error Floor of Turbo Codes

We saw in Section 2.4.1.1 that at low SNRs, weight-2 terminating input sequences

corresponding to codewords that generate parity sequences with the lowest possible

Hamming weight determine the BER of the PCCC. In the particular case of a PCCC

employing encoders as in Fig. 7, this codeword is generated by the input sequences

m = mπ =
[
1 0 0 0 0 0 0 1

]

that generates the parity sequence outputs

y = y
π
=
[
1 1 0 1 1 1 0 1

]

The probability of such an error pattern corresponding to this codeword being uncor-

rected in the decoder is given by (1) evaluated with d = 2 and p = d+ p1 + p2 = 14,

l1 and l2 = 8, and Rc =
1
2
:

Pb
(
e | e2,14

)
≈
(
2·2!
N3

)
(N − 7)2Q

(√
14 · εb

N0

)
(18)

At asymptotically high SNRs, error patterns corresponding to the free distance code-

word are the most likely to be uncorrected in the decoder. The free distance codeword

for this encoder is generated by the input sequence

m = mπ =
[
1 1 1 0 1

]

that generates the parity sequence outputs

y = y
π
=
[
1 0 0 0 1

]

The probability of an error resulting from an error pattern corresponding the free

distance codeword is given by (1) evaluated with d = 4 and p = d + p1 + p2 = 8, l1

and l2 = 5, and Rc =
1
2
:

Pb
(
e | e4,8

)
≈
(
4·4!
N5

)
(N − 4)2Q

(√
8 · εb

N0

)
(19)
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The sum of the error probabilities in (18) and (19) forms a lower bound on the BER

for our PCCC (see Fig. 11).

For our interleaver design to improve the performance of the PCCC over a wide

range of SNRs, we must target the weight-2 terminating input sequences that generate

low-weight parity sequences in addition to targeting the error patterns corresponding

to the free distance codeword. To take into account the weight-2 terminating in-

put sequences that correspond to low-weight codewords, we increased the sub-vector

length to 14 and searched over length-14 interleavers for a suitable sub-vector inter-

leaver. We were able to find many length-14 interleavers that permuted all weight-2

terminating input sequences with span < 14 into non-terminating input sequences.

Within this collection of interleavers, we found several that interleaved all length-14

cyclic shifts of the error patterns corresponding to the free distance codewords into

higher weight error patterns.

We used the permutation P in (15) as the length-14 sub-vector interleaver to create

a length-14000 interleaver as in (12) that also satisfied the design criteria described in

the previous paragraph. This sub-vector interleaver effectively permutes the columns

of a 1000× 14 matrix with information bits read in row-wise. Since some terminating

input sequences will (by Lemma 2) be interleaved into similar low-weight terminating

input sequences after the columns are permuted, we can reduce the probability that

they are not corrected in the decoder by interleaving randomly over each column of the

matrix. This increases the expected weight of the parity sequences of the terminating

input sequences that are not interleaved into non-terminating input sequences by our

sub-vector interleaver and allows us to scale up the interleaver to any length desired

while achieving the BER reduction expected with increased interleaver length (i.e.,

the interleaver gain).
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3.4.1 Distance Spectrum Analysis

Using the method outlined in [22], we are able to compute the weight distribution

of codewords for a PCCC employing a particular length-N interleaver. Performing

this analysis over a large number (≈ 10000) of interleavers gives us an average weight

distribution for a PCCC. By doing this we have found that sub-vector interleavers

increase the average free distance codeword weight of a PCCC. Fig. 9 compares the

average free distance codeword weight of a PCCC employing either a random or a

sub-vector interleaver as a function of interleaver length.3

Our weight distribution analysis allowed us to compute the BER contribution

of input sequences as a function of their Hamming weight. In Fig. 10 we plot the

BER contribution of the most significant (in terms of BER contribution) codewords

generated by weight-2 terminating input sequences assuming a length-14000 average

random interleaver. For reference, we also plot the BER contribution of the free

distance codeword (generated by a weight-4 terminating input sequence in this case).

The BER contribution most significant codewords can be eliminated by sub-vector

interleaving, and the free distance codeword weight can be increased. Results of a

simulation of a PCCC employing the two types of interleaving will be shown in Sec.

3.4.2.

3.4.2 Simulation Results

The simulation results of the PCCC employing a length-14000 sub-vector interleaver

are reported in Fig. 11 along with the results of the simulation of the same scheme

3Note that the interleaver lengths are not quite equal for the sub-vector interleaved and randomly
interleaved PCCC. Since the sub-vector interleaved PCCC can be terminated with a single tail
sequence while the randomly interleaved PCCC requires a separate tail sequence to terminate each
of the constituent encoders, we chose to keep the total length of the input sequence plus the two
parity sequences, including tail bits, equal rather than the interleaver lengths. This allowed for a
more accurate comparison between the average free distance codeword weights for the two types of
interleavers. Thus, the interleaver length for the sub-vector interleaved PCCC is slightly longer than
that of the randomly interleaved PCCC.
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Figure 9: Average free distance codeword weight as a function of interleaver length
for a PCCC employing encoders shown in Fig. 7 and a random interleaver and the
same scheme employing an sub-vector interleaver.
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Figure 10: BER contribution of selected weight-2 terminating input sequences and
the weight-3 terminating input sequence that generates the free distance codeword for
the PCCC in Fig. 7 and a length-14000 random interleaver. Sub-vector interleaving
eliminates the BER contribution of the two most significant weight-2 terminating
input sequences.
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employing a length-14000 random interleaver. We calculated that the lowest Ham-

ming weight of a codeword generated by a weight-2 terminating input sequence for

the PCCC employing a length-14000 sub-vector interleaver is the codeword generated

by the input sequence, m, and interleaved into the identical input sequence, mπ:

m = mπ =
[
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

]
.

Both m and mπ generate identical parity sequences

y = y
π
=
[
1 1 0 1 1 1 0 0 1 0 1 1 1 0 1

]
.

Thus, the lowest Hamming weight of a codeword generated by a weight-2 terminating

input sequence is increased to p = 22 for sub-vector interleaving from p = 14 for

random interleaving.

The weight of the free distance codeword for sub-vector interleaving, which is

generated by the input sequence

m =
[
0 0 0 1 0 0 1 0 0 1 0 1 0 0

]

that is interleaved into

mπ =
[
0 0 1 1 1 0 1 0 0 0 0 0 0 0

]

and generates the parity sequences

y =
[
0 0 0 1 1 0 0 0 1 0 0 1 0 0

]

and

y
π
=
[
0 0 1 0 0 0 1 0 0 0 0 0 0 0

]
,

respectively, is increased to p = 10 from p = 8 for the average random interleaver.

The lower bounds for both random interleaving and sub-vector interleaving are plotted

alongside the simulated performance curves. These curves show that the probability of

a bit error converges to these asymptotic lower bounds for a length-14000 interleaver.
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Figure 11: Simulated BER plots for a PCCC employing encoders shown in Fig. 7
and a random interleaver and the same scheme employing an optimal sub-vector
interleaver. The interleaver length is 14000 in both cases and the simulated BERs
are plotted along with their lower bounds.
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3.5 Summary

PCCCs employing sub-vector interleavers have BERs significantly lower than the

same schemes employing random interleavers. Sub-vector interleavers are optimal in

the sense that they interleave the maximum fraction of terminating input sequences

into non-terminating input sequences, as set forth in Lemma 2. At the same time,

these interleavers can be designed to

• significantly decrease the BER of the coding scheme at low SNRs by increasing

the minimum Hamming weight of codewords with low weight input sequences,

and

• increase the free distance of the overall PCCC and thereby lower the BER at

high SNRs.

The key feature of sub-vector interleaving is its low-complexity design, which typ-

ically involves searching over interleavers equal in length to only a few periods of

the feedback polynomial of the encoders. Sub-vector interleaver design yields a type

of block interleaver in which columns are permuted in order to eliminate the error

patterns that are most significant in terms of their contribution to the BER. By in-

corporating random interleaving over each of the columns of the block interleaver into

the design of sub-vector interleavers, we maintain the gain in performance expected

with increased interleaver length. This allows us to scale up our design to form any

length-N interleaver without additional computation.

Our simulations show that sub-vector interleavers improve the BER performance

of PCCCs by lowering their error floor. This is accomplished by increasing the free

distance of the coding scheme and eliminating the lowest Hamming weight codewords

generated by weight-2 terminating input sequences. Random interleaving over the

columns of the sub-vector interleaver is key to being able to scale this method up to

any length interleaver desired without additional design complexity.
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The contributions of the research described in this chapter are as follows:

• Dynamical system representation of PCCCs.

• Constructive proofs of Lemma 1 and Lemma 2.

• Sub-vector interleaving for PCCCs, a key method of interleaving that

– has low complexity design,

– adds no additional complexity to the encoding or decoding,

– lowers the error floor of the PCCC,

– scales up to any length-N interleaver without additional design complexity,

– increases average free distance codeword weight for the coding scheme

employing a sub-vector interleaver with randomly generated row permuta-

tions.
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CHAPTER IV

INTERLEAVER DESIGN FOR SERIALLY

CONCATENATED CONVOLUTIONAL CODES

A typical SCCC, as shown in Fig. 12, comprises an outer, non-systematic convo-

lutional encoder, an interleaver, and an inner, systematic, recursive convolutional

encoder connected in series. The input sequence to the outer encoder contains the

message bits to be encoded and transmitted. The input sequence to the inner encoder

contains an interleaved version of the bits of the codeword generated by the outer

encoder.

The discussion in the chapter, previously described in [33], can be applied to an

SCCC with either a recursive or non-recursive outer encoder. We base our discussion

in the first part of this chapter on an SCCC that uses a rate 2
3
, non-systematic con-

volutional encoder with total memoryM = 2 as the outer encoder and a rate 1
2
, eight

state (or three delay state) recursive convolutional encoder with generator matrix

G =
[
1,
(1+D+D2+D3)
(1+D2+D3)

]
as the inner encoder, as shown in Fig. 12. This particular

SCCC was chosen because the BERs expected from it are fairly high, allowing us to

demonstrate the substantial reduction in BER caused by use of our interleavers in

a relatively short simulation in Section 4.6. However, it is straightforward to apply

the methods presented here to SCCCs employing other types of constituent encoders,

and we will show the results of the simulation of a more powerful SCCC in Chapter

5 of this thesis.
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Figure 12: Serially Concatenated Turbo Coding Scheme

4.1 Dynamical System Representation of SCCC

As in the case of interleaver design for PCCCs, our method for designing interleavers

for SCCCs is based on the analysis of an SCCC whose constituent encoders are

represented by state variable models of discrete dynamical systems.

For the inner encoder shown in Fig. 12, considered in isolation from the rest of

the SCCC, the state variable model consists of a state vector v, containing the delay

states v1, v2, v3, and the input pπ (s) which is the next bit to be encoded. The output,

y, could also be included in the state variable model, but it is not necessary for this

discussion. Note that since this is a binary coding scheme all addition is mod 2.


v1 (s+ 1)
v2 (s+ 1)
v3 (s+ 1)


 =



0 1 1
1 0 0
0 1 0






v1 (s)
v2 (s)
v3 (s)


⊕ pπ (s)



1
0
0




In practice, there are a finite number, Nin, of input sequence bits to the inner

encoder to be encoded by the inner encoder. We can think of these bits as being

placed into a length-Nin vector pπ to be queued into the encoder as shown in Fig. 13.

As each bit is shifted to the right into the encoder, we place a 0 into the left-most

element of p
π
, until all Nin input sequence bits have been encoded and pπ is a vector

of zeros. This leads to an interpretation of the encoder as an autonomous dynamical
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Figure 13: Impulse response of the delay states of the encoder

system where the delay states v and input vector p
π
are the state variables:




v1(s+ 1)
v2(s+ 1)
v3(s+ 1)
pπ0(s+ 1)...

pπNin−3
(s+ 1)

pπNin−2
(s+ 1)

pπNin−1
(s+ 1)




=




0 1 1 1 0 · · · 0 0
1 0 0 0 0 · · · 0 0
0 1 0 0 0 · · · 0 0
0 0 0 0 1 · · · 0 0

...
. . .

0 0 0 0 0 · · · 1 0
0 0 0 0 0 · · · 0 1
0 0 0 0 0 · · · 0 0







v1 (s)
v2 (s)
v3 (s)
pπ0 (s)...

pπNin−3
(s)

pπNin−2
(s)

pπNin−1
(s)




= A

[
v (s)
p
π
(s)

]

Furthermore, we notice that after Nin time steps the state of the system is given by

[
v (Nin)
p
π
(Nin)

]
= A ·

[
v (Nin − 1)
p
π
(Nin − 1)

]
= ANin ·

[
v (0)
p
π
(0)

]

where

v (0) =
[
0 0 0

]′
, p

π
(Nin) =

[
0 0 · · · 0

]′
,

and

ANin =




x x x 1 0 0 1 1 1 0 · · · 1 0 0 1 1 1 0
x x x 0 0 1 1 1 0 1 · · · 0 0 1 1 1 0 1
x x x 0 1 1 1 0 1 0 · · · 0 1 1 1 0 1 0
0 0 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 0
...

...
...

...
0 0 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 0




.
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The first three rows of the matrix ANin from column 4 to column Nin+3 consist of a

pattern of bits that repeats periodically. The remainder of the rows of ANin are filled

entirely with zeros. This is true of AM for all M ≥ Nin. Careful observation shows

that these bit patterns, which have the same period as the feedback polynomial of

the inner encoder, correspond to what we refer to as the “impulse responses of the

delay states of the encoder,” as seen in Fig. 13. The rows of AM containing the delay

state impulse responses will change as AM is iterated; however, since the rows of AM

are linear combinations of the rows of ANin , the delay state impulse responses of AM

will always be elements of the vector space spanned by the rows of the delay state

impulse responses of ANin .

In Fig. 13 we introduce notation for the matrix Vk,ln that contains the k delay state

impulse responses over n length-l periods of the encoder. The encoder in Fig. 13 has

k = 3 delay states and an impulse response with period l = 7. Thus, V3,7 is a matrix

containing the three delay state impulse responses over a single length-7 period of the

impulse response of the encoder.

If we remove the interleaver from our coding scheme, we can represent the entire

SCCC as a discrete dynamical system. We express the delay states v1, v2, and v3,

after every third iteration on the input pπ (s) to the inner encoder, corresponding to

the three output bits produced after every iteration on the two input bits to the rate

2
3
outer encoder, as a function of the outputs from the outer encoder, p1, p2, and p3:



v1 (n+ 1)
v2 (n+ 1)
v3 (n+ 1)


 =



1 1 1
1 1 0
0 1 1






v1 (n)
v2 (n)
v3 (n)


⊕



1 0 1
0 1 0
1 0 0






p1 (n)
p2 (n)
p3 (n)


 .

Furthermore, we can express the outputs of the outer encoder, p1, p2, and p3, as a

function of the input sequence, m:

p1 (n) = m (2n) +m (2n− 2) +m (2n− 3)
p2 (n) = m (2n− 1) +m (2n− 2)
p3 (n) = m (2n) +m (2n− 1) +m (2n− 2)

This representation again leads to an interpretation of the entire SCCC as an
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autonomous dynamical system where the inner encoder delay states v, the outer

encoder outputs p
o
, and the input sequence vector m are the state variables:




v1 (n+ 1)
v2 (n+ 1)
v3 (n+ 1)
p1 (n+ 1)
p2 (n+ 1)
p3 (n+ 1)
m0 (n+ 1)...

mNout−3 (n+ 1)
mNout−2 (n+ 1)
mNout−1 (n+ 1)




=




1 1 1 1 0 1 0 0 0 0 · · · 0 0
1 1 0 0 1 0 0 0 0 0 · · · 0 0
0 1 1 1 0 0 0 0 0 0 · · · 0 0
0 0 0 0 0 0 1 0 1 1 · · · 0 0
0 0 0 0 0 0 0 1 1 0 · · · 0 0
0 0 0 0 0 0 1 1 1 0 · · · 0 0
0 0 0 0 0 0 0 0 1 0 · · · 0 0
0 0 0 0 0 0 0 0 0 1 · · · 0 0

. . .

0 0 0 0 0 0 0 0 0 0 · · · 1 0
0 0 0 0 0 0 0 0 0 0 · · · 0 1
0 0 0 0 0 0 0 0 0 0 · · · 0 0
0 0 0 0 0 0 0 0 0 0 · · · 0 0







v1 (n)
v2 (n)
v3 (n)
p1 (n)
p2 (n)
p3 (n)
m0 (n)
m1 (n)
...

mNout−4 (n)
mNout−3 (n)
mNout−2 (n)
mNout−1 (n)




= B



v (n)
p
o
(n)

m (n)


 ,

(20)

Note that Nout, the length of the input sequence to the outer encoder, is equal to

2
3
Nin. Thus, we have



v (Nout)
p
o
(Nout)

m (Nout)


 = B ·



v (Nout − 1)
p
o
(Nout − 1)

m (Nout − 1)


 = BNout ·



v (0)
p
o
(0)

m (0)


 .

Since we assume the outer encoder is in the zero state before the first bits of the

input sequence are encoded, we set
[
m0 (0) m1 (0)

]
=
[
0 0

]
. In this case, the matrix

BNout is given by:

BNout =




x x x x x x x x 0 1 1 1 1 1 1 0 0 0 0 1 1 0 · · · 0 1 1 1 1 1 1 0 0 0 0 1 1 0
x x x x x x x x 0 1 1 0 0 1 1 1 1 1 1 0 0 0 · · · 0 1 1 0 0 1 1 1 1 1 1 0 0 0
x x x x x x x x 1 0 0 0 0 1 1 0 0 1 1 1 1 1 · · · 1 0 0 0 0 1 1 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . .

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 0 0 0 0 0 0 0 0




.

(21)

We will refer to the first three rows of the matrix BNout from columns 9 to Nout + 6

as the “multiplexed delay state impulse responses,” since they correspond, with some
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cyclic shifting (see Fig. 13), to two delay state impulse responses multiplexed into a

single sequence.

An important relationship exists between the multiplexed delay state impulse

responses and a class of input sequences that correspond to terminating codewords.

This relationship leads us to a method described in Section 4.2 for terminating both

the outer and inner encoder in the zero state by simply appending a tail to the input

sequence to the SCCC.

4.2 Terminating the Inner and Outer Encoders

The outer non-recursive convolutional encoder in an SCCC is terminated by an input

sequence mt, which has a tail sequence of zeros appended to it of length equivalent

to the memory of the encoder (i.e. mt =
[
m 0 0

]
). The inner encoder in an SCCC

is terminated by an input sequence p
πt
that begins with the encoder in the all-zero

state (i.e., with p
o
(0) =

[
0 0 0

]′
and v (0) =

[
0 0 0

]′
) and returns the encoder to

the all-zero state after its last non-zero bit has been encoded. Since the inner encoder

of an SCCC is typically recursive, most codewords generated by the outer encoder

are interleaved into input sequences p
π
that do not terminate the inner encoder.

As for PCCCs, we increase the weight of the parity sequences associated with non-

terminating error patterns that appear at the end of the input sequences to the

encoders by appending tail sequences that terminate the constituent encoders. In

this section, we will show that it is possible to terminate both encoders in the zero

state by appending a short tail to the input sequence m, which permits the type of

interleaving that we will discuss in Section 4.3. We will show in Section 4.3 that these

interleavers:

• Increase the interleaver gain of the SCCC and

• Can be scaled up to any desired length without additional design complexity.
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By definition, a terminating input sequence to the inner encoder will leave the

inner encoder in the zero-state after all of its bits have been encoded. After a termi-

nating input sequence p
πt
has been encoded, the state of the inner encoder is given

by v (Nout) =
[
0 0 0

]′
. Simplifying (20) through (21) and incorporating the notation

for V3,14, which is a 3× 14 matrix with dimensions chosen so that each row contains

exactly one period of each of the multiplexed delay state impulse responses, we get

the following expression for the state of the inner encoder after the input sequence m

to the outer encoder that generates the input sequence p
t
to the inner encoder has

been encoded:


v1 (Nout)
v2 (Nout)
v3 (Nout)


 =

[
V3,14 · · · V3,14

]



m (0)
...

m (Nout − 1)


 =

[
V3,14 · · · V3,14

]
·m

=
[
V3,14 · · · V3,14

]
·




m1...
mNout

14




= [V3,14] ·
[
m1 ⊕mt2 ⊕ · · · ⊕mNout

14

]
=



0
0
0


 .

(22)

From (22), we see that a sufficient condition to guarantee that a particular input

sequence m generates a codeword p
t
that terminates the inner encoder would be

for each row of the 14 × Nout

14
matrix composed of input sequence bits to the outer

encoder read in column-wise to have a parity sum equal to zero. It is apparent that

this condition can be achieved by appending the appropriate length-14 tail sequence

to the end of our original input sequence m. Careful analysis of individual constituent

encoders reveals that only 3 bits appended to m are required to terminate the inner

encoder. This result is derived in Section 4.5.

By setting the last two bits of the input sequence to the outer encoder m equal to

zero (i.e.,
[
m (Nout − 2) m (Nout − 1)

]
=
[
0 0

]
), we guarantee that the outer encoder

is always terminated in the zero state. Since this does not affect the parity sum in

(22), we now have both the inner and outer encoders in the SCCC terminated by a

tail sequence appended to the input sequence to the outer encoder.
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This type of termination is significant because it can be achieved by appending a

tail to the end of the input sequence to the outer encoder, not the inner encoder. This

result, achieved with insight gained from the dynamical system analysis of the SCCC,

has not been shown elsewhere, and it makes possible the increase in interleaver gain

achieved by the method of interleaving that is described in Section 4.3.

4.3 Sub-vector Interleaving

The goal of the interleaver, PNin
, for an SCCC1is to permute all low weight output

sequences from the outer encoder, p, into input sequences, p
π
, that do not terminate

the inner encoder. If we restrict the set of valid input sequences to the outer encoder

to contain only those sequences that terminate both encoders, then a maximum like-

lihood decoding algorithm would correct error patterns that do not correspond to

sequences that terminate both encoders. Thus, an interleaver that permutes low

weight codewords from the outer encoder into non-terminating input sequences to

the inner encoder would prevent the most significant set of error patterns, in terms

of their BER contribution, from being decoded as codewords of the SCCC.

In an expression similar to (22), we can relate an un-interleaved input sequence

that terminates the inner encoder, p
t
, to the inner encoder delay state impulse re-

sponses:

[
V3,7 · · · V3,7

]
· p

t
=



0
0
0


 . (23)

The notation V3,7 describes a 3× 7 matrix with dimensions chosen so that each row

contains exactly one period of each of the delay state impulse responses of the inner

encoder. We would like for our interleaver, PNin
, to permute the bits of the output

sequence from the outer encoder such that the low weight codewords from the outer

encoder, p, do not form terminating input sequences for the inner encoder:

1We will use notation PNin
to describe an interleaver that permutes the output sequence from

the outer encoder of an SCCC into the length-Nin input sequence to the inner encoder.
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[
V3,7 · · · V3,7

]
· PNin

· p
t
=
[
V3,7 · · · V3,7

]
· p

π
6=



0
0
0


 .

Expressing an input sequence p
t
that satisfies (23) as the vertical concatenation

of length-7 sub-vectors, we see that the (mod 2) summation of these sub-vectors is

also a terminating input sequence:

[
V3,7 · · · V3,7

]
· p

t
=
[
V3,7 · · · V3,7

]
·




p
t1...

p
tN

7




= [V3,7] ·
[
p
t1
⊕ p

t2
⊕ · · · ⊕ p

tN
7

]

= [V3,7] · ptsub =



0
0
0


 .

By searching over all length-7 interleavers, it is often possible to find an interleaver

P7 that permutes the weight-dfree and weight-(dfree + 1) input sequences ptsub
(and

all of their cyclic shifts over a length-7 sub-vector) into input sequences that do not

correspond to codewords for the inner encoder:

[V3,7] · P7 · ptsub 6=



0
0
0


 .

Since the dimensions of P7 correspond to the period of the feedback polynomial of

our recursive convolutional encoder, we can place P7 on the diagonal of an Nin ×

Nin (choosing Nin to be a multiple of 7) permutation matrix to create a length-Nin

interleaver PNin
:

[
V3,7 · · · V3,7

]
·




P7 0 · · · 0
0 P7 · · · 0...

. . .
...

0 0 · · · P7




︸ ︷︷ ︸
PNin

·




p
π1...

p
π
Nin
7




= [V3,7] · P7 ·
[
p
π1
⊕ p

π2
⊕ · · · ⊕ p

π
Nin
7

]
.

The interleaver PNin
shares the property of P7 in that it interleaves all shifts of

the weight-dfree and weight-dfree+1 input sequences corresponding to codewords for
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the outer encoder into input sequences that do not correspond to a codeword for the

inner encoder. We refer to this method of interleaving as “sub-vector interleaving”

for SCCCs.

It is straightforward to show that, by adding the type of tail described in Section

4.2 to the end of our input sequence, the length-7 sub-vectors of the output sequence,

p =
[
p
1
· · · pNin

7

]′
, of the outer encoder have the property

[
p
1
⊕ p

2
⊕ · · · ⊕ pNin

7

]
=



0
...
0


 .

Since interleaving over a length-7 sub-vector effectively permutes the columns of a

Nin

7
× 7 matrix with the sequence p read in row-wise, we have that p

π
also satisfies

[
p
π1
⊕ p

π2
⊕ · · · ⊕ p

π
Nin
7

]
=



0
...
0


 .

Therefore, the interleaved input sequence p
π
also terminates the inner encoder in the

zero state since

[
V3,7 · · · V3,7

]
· p

π
= V3,7 ·



0
...
0


 =



0
0
0


 .

The sub-vector interleaver PNin
effectively permutes the rows of a Nin

7
× 7 matrix

with information bits read in row-wise. Since some weight-d, where d ≥ (dfree + 2),

input sequences to the inner encoder corresponding to codewords of the outer encoder

will be interleaved into terminating input sequences for the inner encoder, we need to

increase the expected weight of the parity sequences from the inner encoder of these

types of input sequences by employing some type of interleaving over each of the

columns of the sub-vector interleaver. As in sub-vector interleaver design for PCCCs,

the simplest approach is to interleave randomly over each column of the sub-vector

interleaver. This approach has the unique advantage of being practical for use in the

design of extremely long interleavers.
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In Section 4.6 we will show the results of a Monte Carlo simulation of an SCCC

using our method of sub-vector interleaving integrated with random row interleaving

to create a length-231 sub-vector interleaver.

4.4 Increasing Interleaver Gain in an SCCC

A sub-vector interleaver designed to interleave all weight-dfree and weight-(dfree + 1)

codewords from the outer encoder into non-terminating input sequences for the inner

encoder would prevent error patterns corresponding to these sequences from being

incorrectly decoded as codewords of the SCCC, given maximum likelihood decoding.

Similarly to what was done in Section (2.4.1.2), we compute the probability of a

decoding error resulting from an odd weight-(dfree + 2) error pattern corresponding

to a codeword from the outer encoder that is interleaved into an input sequence that

terminates the inner encoder:

Pb

(
e|p

dfree+2,p

)
≈
(

w
Nout

)
(
No

(dfree+2)

)

 Nin

(dfree+1)
2




(
Nin

dfree + 2

) Q
(√
(dfree + 2 + p) · 2Rcεb

N0

)

∝ (Nin)
−
(dfree+3)

2 · e−(dfree+2+p)
(
Rcεb
N0

)
,

(24)

where w is the weight of the input sequence to the outer encoder, Nout is the length of

the input sequence to the outer encoder, N o
(dfree+2)

is the number of weight-(dfree+2)

codewords from the outer encoder, l is the distance from the first to last non-zero bit

of the interleaved error pattern, Q (x) = 1√
2π

∫∞
x e

−t2

2 dt, Rc is the overall rate of the

SCCC, and εb
N0
is the SNR per bit.

Comparing the BER contribution of the most significant error pattern in a sub-

vector interleaved SCCC calculated in (24) to the BER contribution of the most

significant error pattern in an SCCC employing an average random interleaver,

Pb

(
e|p

dfree,p

)
∝ (Nin)

−
(dfree+1)

2 · e−(dfree+p)
(
Rcεb
N0

)
, (25)
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shows that we have increased the interleaver gain of the sub-vector interleaved SCCC

by a factor of Nin.

4.4.1 Upper Bound on Interleaver Gain

We have shown that the interleaver gain in an SCCC can be increased by using sub-

vector interleaving to increase the minimum weight of terminating input sequences to

the inner encoder. Since sub-vector interleaving does not address the interleaving of

multiple terminated output sequences from the outer encoder into non-terminating

input sequences for the inner encoder, a loose upper bound on the interleaver gain

exists for sub-vector interleaving.

Fig. 14 shows how two weight-dfree terminated output sequences from the outer

encoder are interleaved into dfree weight-2 terminating input sequences for an SCCC

shown in Fig. 15 with identical eight state recursive convolutional outer and inner

encoders.

We would like to use the notation

π14 =
[
π0 π1 · · · π12 π13

]

to describe an interleaver that operates on a length-14 sequence where the ith element

of the interleaved sequence is the πthi element of the input sequence. In this way, the

column permutation used by the sub-vector interleaver in the example in Fig. 14 is

given by

π14 =
[
8 2 5 12 6 9 0 4 11 7 3 10 1 3

]
.
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Figure 14: Two weight-dfree terminated output sequences interleaved into dfree
weight-2 terminating input sequences.
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Figure 15: A diagram of an SCCC employing identical rate- 1
2
recursive convolutional

encoders with three delay states.

The probability of a bit error resulting from the incorrect decoding of two weight-

dfree codewords that have been interleaved into dfree weight-2 terminating input se-

quences for the inner encoder is computed as follows:

Pb

(
e|p

2dfree,p

)
≈
(

w
Nout

)

(
Nout

2

)(
Nin

dfree

)

(
Nin

2dfree

) Q
(√
(2dfree + p)

(
2Rcεb
N0

))

∝ Nout

Nin
dfree

e
−(2dfree+p)

(
Rcεb
N0

)
= 1

2Nin
dfree−1 e

−(2dfree+p)
(
Rcεb
N0

)
(26)

In (26), we see that the interleaver gain of the SCCC can be increased to at most

1

Nin
dfree−1 by sub-vector interleaving.

2 Therefore, sub-vector interleavers need not be

designed to interleave greater than weight-(2dfree − 2) into non-terminating input

sequences for the inner encoder for the purpose of increasing interleaver gain.

A tighter upper bound on interleaver gain exists and can be seen by computing

an upper bound on the minimum weight of a single terminating input sequence to

the inner encoder that must exist given any type of sub-vector interleaver that leaves

the inner and outer encoder terminated in the zero state. No matter what type of

outer encoder the SCCC employs, the terminated output sequences from the outer

2Note that for dfree = 3, the interleaver gain is not increased by sub-vector interleaving since
(dfree+1)

2 = dfree − 1. However, the error floor can still be lowered in this case by sub-vector
interleaving.
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encoder constitute a dimension m vector space Γp. If the outer encoder is a sys-

tematic recursive convolutional encoder, the terminated output sequences from the

outer encoder comprise a Nout − ko dimension vector space, where Nout is the length

of the input sequence to the outer encoder, and ko is the number of delay states

in the outer encoder. Interleaved versions of the terminated output sequences from

the outer encoder form the input sequences to the inner encoder. These input se-

quences, p
π
, are linear combinations of the interleaved versions of the basis vectors,

{bπ1 , bπ2 , . . . , bπm}, which span the dimension m vector space Γpπ constituted by the

2m interleaved terminated output sequences from the outer encoder:

p
π
= a




bπ1

bπ2

...
bπm−1

bπm



,

where a =
[
a1 a2 · · · am−1 am

]
is an arbitrary 1×m binary vector.

The final state of the inner encoder is a linear mapping, L, of the interleaved

output sequence from the outer encoder to a dimension ki vector space Γvi , where ki

corresponds to the number of delay states of the inner recursive convolutional encoder:

L : p
π
∈ Γpπ → vi ∈ Γvi ,

where vi is a length-ki vector containing the values of the ki delay states of the inner

encoder after the length-Nin vector pπ is encoded. Since L is a linear mapping,

L
(
p
π

)
= a1L (bπ1

) + a2L (bπ2
) + · · ·+ amL (bπm) .

We have assumed that the sub-vector interleaver is designed to leave both the inner

and outer encoder terminated. Therefore, valid input sequences to the inner encoder

(i.e., terminating input sequences) satisfy the following:

L
(
p
π

)
= a1L (bπ1

) + a2L (bπ2
) + · · ·+ amL (bπm) =

[
0 · · · 0

]
. (27)

67



From (27) we see that valid input sequences are mapped by the inner encoder to

linearly dependent combinations of the vectors vi ∈ Vi.

Lemma 3 The minimum weight codeword from the outer encoder that corresponds to

an input sequence to the outer encoder that leaves both the outer and inner encoders in

an SCCC terminated in the zero state is bounded from above by the minimum weight

of all codewords p
max

, where p
max

is the maximum weight codeword in the vector

subspace of Γp spanned by the ki+1 basis vectors
{
bπs1 , bπs2 , . . . , bπski

, bπski+1

}
, for all

(
m

ki + 1

)
combinations of

{
bπs1 , bπs2 , . . . , bπski

, bπski+1

}
such that s1, s2, . . . , ski , ski+1

≤ m and s1 6= s2 6= · · · 6= ski 6= ski+1.

Proof. The inner encoder is a linear mapping the vector subspace of Γpπ spanned by

the interleaved basis vectors
{
bπs1 , bπs2 , . . . , bπski

, bπski+1

}
to the ki dimension vector

space Γvi . Since
{
bπs1 , bπs2 , . . . , bπski

, bπski+1

}
spans a dimension ki + 1 vector space,

there is a linear dependence in the vectors corresponding to their mapping to a ki

dimension vector space

Γvi :
{
L
(
bπs1

)
, L
(
bπs2

)
, . . . , L

(
b
πski

)
, L
(
b
πski+1

)}
.

The linearly dependent combinations of the vectors in the space spanned by

{
L
(
bπs1

)
, L
(
bπs2

)
, . . . , L

(
b
πski

)
, L
(
b
πski+1

)}

correspond to terminated codewords from the outer encoder that are interleaved into

terminating input sequences to the inner encoder. The codewords that are mapped

to linearly dependent vectors in Γvi are determined by the particular interleaver em-

ployed. Therefore, an upper bound exists on the minimum weight of terminating

input sequences to the inner encoder that correspond to terminated output sequences

from the outer encoder of a particular SCCC employing an arbitrary sub-vector in-

terleaver. This upper bound is the minimum weight of all vectors p
max
, where p

max

is the maximum weight codeword in a ki + 1 dimension subspace of Γpπ .

68



Lemma 4 Codewords that correspond to vectors in Γpπ that are mapped to zero vec-

tors in Γvi form a vector subspace of Γpπ .

Proof. Since L (· · ·) is a linear transformation, if L
(
p
π1

)
=
[
0 · · · 0

]
and L

(
p
π2

)
=

[
0 · · · 0

]
, then L

(
p
π1

)
+L

(
p
π2

)
= L

(
p
π1
+ p

π2

)
=
[
0 · · · 0

]
. Therefore, the vectors

p
π
∈ Γpπ such that L

(
p
π

)
=
[
0 · · · 0

]
form a vector subspace of Γpπ .

A basis of a ki+γ dimension subspace Γki+γ ⊆ Γp will be interleaved and mapped

by the inner encoder to Γvi . This basis will be mapped to at least γ linearly dependent

vectors in Γvi . Thus, the vectors of the ki + γ dimension subspace of Γp that are

interleaved and mapped to the zero vector in Γvi constitute a γ, or higher, dimension

subspace Γγ ⊆ Γki+γ . It is well-known that the minimum weight codeword in an

(n, γ) binary block code is less than or equal to n2γ−1

2γ−1 for γ > 1. We calculate that

the maximum dimension of Γγ as

γmax = R (n− l)− ki + 1,

where l is the minimum length of a terminated output sequence from the outer en-

coder, n > l is the length of the block code, and R is the rate of the outer encoder.

Since the codewords in Γγ form a binary block code, we have another upper bound

on the maximum weight of a terminating input sequence to the inner encoder that

corresponds to a terminated output sequence from the outer encoder.

Lemma 5 The minimum weight codeword from the outer encoder that corresponds to

an input sequence to the outer encoder that leaves both the outer and inner encoders

in an SCCC terminated in the zero state is bounded from above by the minimum value

of n2γmax−1

2γmax−1 for all n equal to an integer multiple of 1
R
.

The function f (n) = n2γmax−1

2γmax−1 for n equal integer multiples of
1
R
is a local minimum

when

f (n) < f
(
n+

1

R

)
and f (n) < f

(
n− 1

R

)
.
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This occurs when both

log2 (nR + 2) < R (n− l)− ki + 2

and

R (n− l)− ki + 1 < log2 (nR + 1) .

The results of this minimization for different SCCC configurations are given in

Table (1). These values are compared to the achievable minimum weight terminating

input sequence weight determined experimentally by searching over all possible sub-

vector interleavers matched to a particular SCCC.

The following example will illustrate the concepts described in Lemmas 3-5 for

the SCCC in Fig. 12.

Example 2 For the SCCC in Fig. 15 with identical eight state outer and inner re-

cursive convolutional encoders, a basis for a five dimensional vector subspace spanned

by terminated codewords from the outer encoder is given by:




b1
b2
b3
b4
b5



=




1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1



.

Since these five basis vectors will be mapped by the interleaver and inner encoder

to a three dimensional vector space, Γvi , we know that there at least two vectors

corresponding to the mapping of

{b1, b2, b3, b4, b5}

to

Γvi : {L (b1) , L (b2) , L (b3) , L (b4) , L (b5)}
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Table 1: A table relating outer encoder free distance codeword weights to both the
upperbound on and the actual minimum weight terminating input sequences to the
inner encoder for SCCCs employing sub-vector interleavers and different combinations
of inner and outer encoders.

Outer Encoder Inner Encoder

Minimum Terminating

Generator Matrix Generator Matrix Input Sequence Weight

G = dfree = G = Upper Bound Achievable

[
1,
(1+D+D2)
(1+D2)

]
5

[
1,
(1+D+D2)
(1+D2)

]
8 7

[
1,
(1+D+D2)
(1+D2)

]
5

[
1,
(1+D+D2+D3)
(1+D2+D3)

]
9 7

[
1,
(1+D+D2+D3)
(1+D2+D3)

]
6

[
1,
(1+D+D2)
(1+D2)

]
9 7

[
1,
(1+D+D2+D3)
(1+D2+D3)

]
6

[
1,
(1+D+D2+D3)
(1+D2+D3)

]
10 8
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are linearly dependent on the others.

The weight enumerator of codewords in the vector space spanned by {b1, b2, b3, b4, b5}

is given by

A (z) = 1 + 4z6 + 10z7 + 6z8 + 4z9 + 3z10 + 2z11 + z12 + z14.

Because of the linear dependence in the vectors {L (b1) , L (b2) , L (b3) , L (b4) , L (b5)},

we know that at least four codewords (including the zero codeword) in the span of

{b1, b2, b3, b4, b5} are interleaved in to a terminating input sequence for the inner en-

coder. Therefore, by considering the weight enumerator for the codebook spanned by

{b1, b2, b3, b4, b5} , we gave found that an upper bound on the minimum weight codeword

to terminate the inner encoder is 11.

The codewords in the span of {b1, b2, b3, b4, b5} that are interleaved into terminating

input sequences for the inner encoder form a two (or greater) dimensional vector sub-

space of the vector space spanned by {L (b1) , L (b2) , L (b3) , L (b4) , L (b5)} . We know

that the average weight of codewords in this vector space is equal to

n2γmax−1

2γmax − 1 ≤
16 · 22−1
22 − 1 = 10

2

3
.

The minimum weight of codewords in this vector space cannot be greater than the

average weight; therefore, a tighter upper bound on the minimum weight codeword

interleaved into a terminating input sequence for the inner encoder is 10. In practice,

we have found that the true upper bound on the minimum weight terminating input

sequence to the inner encoder is 8, because there does not exist a two-dimensional

vector subspace of {b1, b2, b3, b4, b5} that does not include a weight-8 codeword.

4.5 Trellis Termination with a Minimum Length

Tail Sequence

In Section 4.2, we showed that it is possible to terminate both the inner and outer

encoders in an SCCC with a single tail sequence appended to the input sequence
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Table 2: A table of outer encoder terminating input sequences and terminated
output sequences that generate weight-6 and weight-7 input sequences to the inner
encoder for the SCCC in Fig. 15.

Input Sequence, m Output Sequence, y[
1 0 1 1 0 0 0

]
→

[
1 1 1 1 0 0 0

]
[
1 1 1 0 1 0 0

]
→

[
1 0 0 0 1 0 0

]
[
1 1 0 0 0 1 0

]
→

[
1 0 1 1 0 1 0

]
[
1 0 0 0 1 0 1

]
→

[
1 1 0 1 0 0 1

]

to the outer encoder. This type of termination allows for the method of sub-vector

interleaving described in Section 4.3.

In this section we will describe the process of designing a minimum length ter-

minating tail sequence and illustrate the process with the use of a detailed example.

We will show that such a tail sequence must be no longer than the combined length

of the sequences necessary to terminate the encoders separately.

The SCCC for which we will design a minimum length terminating tail sequence

employs two identical rate- 1
2
recursive convolutional encoders with three delay states

and generator matrix G =
[
1,
(1+D+D2+D3)
(1+D2+D3)

]
. A diagram of this SCCC is shown in

Fig. 15.

4.5.1 Sub-vector Interleaver Choice

A sub-vector interleaver that interleaves the low-weight terminated codewords from

the outer encoder into non-terminating input sequences for the inner encoder should

be chosen for use in an SCCC. The lowest weight codewords generated by the outer

encoder in the SCCC in Fig. 15 have weight = 6 and weight = 7. These codewords

form the input sequences to the inner encoder listed in Table 7. The inner encoder

terminating input sequences and the terminated output sequences that correspond to

the low weight input sequences to the inner encoder are listed in Table 6.
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Table 3: A table of the weight-6 and weight-7 input sequences to the inner encoder
that correspond to terminated codewords generated by the outer encoder of the SCCC
in Fig. 15.

Input Sequence, p[
1 1 0 1 1 1 1 1 0 0 0 0 0 0

]
[
1 1 1 0 1 0 0 0 1 1 0 0 0 0

]
[
1 1 1 0 0 1 0 1 0 0 1 1 0 0

]
[
1 1 0 1 0 0 0 1 1 0 0 0 1 1

]

Table 4: A table of the weight-6 and weight-7 permuted input sequences to the inner
encoder that correspond to terminated codewords generated by the outer encoder of
the SCCC in Fig. 15.

Permuted Input Sequence, p
π[

1 1 1 1 1 0 1 0 1 0 0 0 0 0
]

[
1 1 0 0 0 1 1 1 0 0 0 0 1 0

]
[
1 1 1 0 0 1 0 0 1 0 1 0 0 1

]
[
1 1 0 1 0 0 0 1 1 1 0 1 0 0

]
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The terminating input sequence

m =
[
1 0 0 0 1 0 1

]

and the terminated output sequence

y =
[
1 1 0 1 0 0 1

]

for the outer encoder generate a terminating input sequence

p =
[
1 1 0 1 0 0 0 1 1 0 0 0 1 1

]

for the inner encoder. Therefore, it is necessary to design a sub-vector interleaver

to interleave the input sequence to the inner encoder so that there are no weight-6

or weight-7 terminating input sequences that correspond to terminated codewords

from the outer encoder.3 A quick search over length-7 permutations yields many

permutations that transform all weight-6 and weight-7 codewords from the outer

encoder into non-terminating input sequences to the inner encoder. We chose to use

the permutation

P7 =




0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0
0 0 0 0 1 0 0




(28)

for this example. Table 4 lists the results of this permutation.

4.5.2 Dynamical System Representation with Sub-vector Interleaving

We can incorporate the sub-vector interleaver, P7, in (28) into the dynamical system

representation of the entire SCCC. To do this, it is simplest to consider encoding entire

length-7 sub-vectors of the input sequence, m, at each iteration of the dynamical

3If there were no weight-6 or weight-7 terminating input sequences to the inner encoder corre-
sponding to terminated codewords from the outer encoder, then the sub-vector interleaver could
simply be an identity permutation.
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system. The dynamical system representation for the outer encoder in this case is

given by



vo1 (n+ 7)
vo2 (n+ 7)
vo3 (n+ 7)


 =



1 0 0
0 1 0
0 0 1






vo1 (n)
vo2 (n)
vo3 (n)


+ [V3,7]




m(n)
m(n+ 1)
m(n+ 2)
m(n+ 3)
m(n+ 4)
m(n+ 5)
m(n+ 6)




,

where vo=
[
vo1 (n) vo2 (n) vo3 (n)

]
is the state of the outer encoder at time n, and

V3,7 =



1 0 0 1 1 1 0
0 0 1 1 1 0 1
0 1 1 1 0 1 0




is a matrix containing one period of each of the delay state impulse responses of the

outer or inner encoder in each of its rows.

The inner encoder encodes a concatenation of the input sequence to the outer

encoder, m, and the output sequence generated by the outer encoder, y. We can

express a length-7 sub-vector of the output sequence of the outer encoder,

y =
[
y (n) y (n+ 1) y (n+ 2) y (n+ 3) y (n+ 4) y (n+ 5) y (n+ 6)

]
,

as a function of a length-7 sub-vector of the input sequence, m, and the state of the

outer encoder at time n:




y (n)
y (n+ 1)
y (n+ 2)
y (n+ 3)
y (n+ 4)
y (n+ 5)
y (n+ 6)




=




1 0 0 1 0 0 0 0 0 0
0 1 1 1 1 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0
1 1 1 1 0 1 1 0 0 0
1 0 1 1 1 0 1 1 0 0
0 0 1 1 1 1 0 1 1 0
0 1 0 0 1 1 1 0 1 1







vo1 (n)
vo2 (n)
vo3 (n)
m(n)

m(n+ 1)
m(n+ 2)
m(n+ 3)
m(n+ 4)
m(n+ 5)
m(n+ 6)




. (29)

If we consider encoding a length-7 sub-vector of the input sequence, m, and a

length-7 sub-vector of the output sequence from the outer encoder, y, at each iteration
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of the dynamical system representation of the inner encoder, then the state of the

inner encoder can be expressed as



vi1 (n+ 7)
vi2 (n+ 7)
vi3 (n+ 7)


 =



vi1 (n)
vi2 (n)
vi3 (n)


+

[
V3,7 V3,7

]
·
[
P7 0
0 P7

]
·




m(n)
y(n)

m(n+ 1)
y(n+ 1)
m(n+ 2)
y(n+ 2)
m(n+ 3)
y(n+ 3)
m(n+ 4)
y(n+ 4)
m(n+ 5)
y(n+ 5)
m(n+ 6)
y(n+ 6)




︸ ︷︷ ︸
p

. (30)

The sub-vector interleaver, P7, we have chosen permutes the input sequence to

the inner encoder, p, as follows:

[
P7 0
0 P7

]
·




m(n)
y(n)

m(n+ 1)
y(n+ 1)
m(n+ 2)
y(n+ 2)
m(n+ 3)
y(n+ 3)
m(n+ 4)
y(n+ 4)
m(n+ 5)
y(n+ 5)
m(n+ 6)
y(n+ 6)




︸ ︷︷ ︸
p

=




y(n)
m(n)

y(n+ 2)
y(n+ 1)
m(n+ 3)
m(n+ 1)
m(n+ 2)
m(n+ 4)
y(n+ 3)
m(n+ 6)
m(n+ 5)
y(n+ 6)
y(n+ 4)
y(n+ 5)




︸ ︷︷ ︸
p
π

. (31)

Combining equations (29), (30), and (31) gives us the following expression for

the state of the inner encoder at time (n+ 7) as a function of the state of the inner

encoder at time n and a length-7 sub-vector of the input sequence to the outer encoder,
[
m (n) m (n+ 1) m (n+ 2) m (n+ 3) m (n+ 4) m (n+ 5) m (n+ 6)

]
:
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


vi1 (n+ 7)
vi2 (n+ 7)
vi3 (n+ 7)
vo1 (n+ 7)
vo2 (n+ 7)
vo3 (n+ 7)




=




1 0 0 1 1 0
0 1 0 1 1 1
0 0 1 1 1 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1







vi1 (n)
vi2 (n)
vi3 (n)
vo1 (n)
vo2 (n)
vo3 (n)




+




0 0 0 0 1 1 0
0 0 0 0 1 1 1
1 0 1 1 1 1 0
0 0 1 1 1 0 1
0 1 1 1 0 1 0
1 1 1 0 1 0 0







m (n)
m (n+ 1)
m (n+ 2)
m (n+ 3)
m (n+ 4)
m (n+ 5)
m (n+ 6)




.

Including the input sequence in the states of the dynamical system representation

of the SCCC yields the following autonomous dynamical system representation of the

SCCC:



vi (n+ 7)
vo (n+ 7)
m (n+ 7)


 =




1 0 0 1 1 0 0 0 0 0 1 1 0 0 · · · 0
0 1 0 1 1 1 0 0 0 0 1 1 1 0 · · · 0
0 0 1 1 1 1 1 0 1 1 1 1 0 0 · · · 0
0 0 0 1 0 0 0 0 1 1 1 0 1 0 · · · 0
0 0 0 0 1 0 0 1 1 1 0 1 0 0 · · · 0
0 0 0 0 0 1 1 1 1 0 1 0 0 0 · · · 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

. . .

1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0
...

...
0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0




︸ ︷︷ ︸
B



vi (n)
vo (n)
m (n)



,

where

v′i (n) =
[
vi1 (n) vi2 (n) vi3 (n)

]
,

v′o (n) =
[
vo1 (n) vo2 (n) vo3 (n)

]
,

m (n) contains the entire length-Nout input sequence at n = 0 :

m′ (n) =
[
m (1) m (2) · · · m (Nout − 1) m (Nout)

]
,
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and m (Nout) is a length-Nout zero vector:

m′ (Nout) =
[
0 0 · · · 0 0

]
.

Iterating the autonomous dynamical system representation Nout

7
times, which cor-

responds to the time after which the last length-7 sub-vector of the input sequence

m has been encoded, allows the state of the outer and inner encoder at time Nout to

be expressed as a mapping of the input sequence m by a matrix containing the delay

state impulse responses of the outer and inner encoder in each of its rows:
[
vi (Nout)
vo (Nout)

]
=
[
V6,14 · · · V6,14

]
·m. (32)

The matrix V6,14 contains one period of each of the delay state impulse responses of

the inner encoder in each of the first three rows (the period of the inner encoder’s

delay state outputs in response to an impulse to the outer encoder is 14), and two

periods of the outer encoder’s delay state impulse responses in the next three rows:

V6,14 =




0 0 0 0 1 1 0 0 1 0 0 0 0 1
0 0 0 0 1 1 1 1 0 1 0 1 0 0
1 0 1 1 1 1 0 0 0 0 1 1 0 1
0 0 1 1 1 0 1 0 0 1 1 1 0 1
0 1 1 1 0 1 0 0 1 1 1 0 1 0
1 1 1 0 1 0 0 1 1 1 0 1 0 0




. (33)

4.5.3 Minimal Length Terminating Tail Sequence

From (32), we see that a terminating input sequence mt, which leaves the outer and

inner encoder in the zero state after its last non-zero bit has been encoded, is mod 2

orthogonal to each of the delay states of the outer and inner encoders:

[
V6,14 · · · V6,14

]
·mt =




0
0
0
0
0
0




.

The mod 2 sum of length-14 sub-vectors of an input sequence m is given by

m′
Σ =

[
mΣ1 mΣ2 · · · mΣ13 mΣ14

]
,
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and the mod 2 sum of length-14 sub-vectors of a terminating input sequence mt is

given by

m′
Σt =

[
mΣt1 mΣt2 · · · mΣt13 mΣt14

]
.

From (32) and (33), we see that mΣt that satisfies the following:




mΣt5 ⊕mΣt6 ⊕mΣt9 ⊕mΣt14

mΣt5 ⊕mΣt6 ⊕mΣt7 ⊕mΣt8 ⊕mΣt10 ⊕mΣt12

mΣt1 ⊕mΣt3 ⊕mΣt4 ⊕mΣt5 ⊕mΣt6 ⊕mΣt11 ⊕mΣt12 ⊕mΣt14

mΣt3 ⊕mΣt4 ⊕mΣt5 ⊕mΣt7 ⊕mΣt10 ⊕mΣt11 ⊕mΣt12 ⊕mΣt14

mΣt2 ⊕mΣt3 ⊕mΣt4 ⊕mΣt6 ⊕mΣt9 ⊕mΣt10 ⊕mΣt11 ⊕mΣt13

mΣt1 ⊕mΣt2 ⊕mΣt3 ⊕mΣt5 ⊕mΣt8 ⊕mΣt9 ⊕mΣt10 ⊕mΣt12




=




0
0
0
0
0
0




. (34)

Therefore, a length-6 tail can be appended to the end of a length-(Nout − 6) input

sequence, m, that will convert m to a terminating input sequence, mt:

m′
t =


m(1) m(2) · · · m(Nout − 5) m(Nout − 4) · · · m(Nout − 1) m(Nout)︸ ︷︷ ︸

terminating tail sequence, mtail


 .

The relationship between mΣ and mΣt in this case is expressed as:




mΣ1

mΣ2

...
mΣ9 +m(Nout − 5)
mΣ10 +m(Nout − 4)
mΣ11 +m(Nout − 3)
mΣ12 +m(Nout − 2)
mΣ13 +m(Nout − 1)
mΣ14 +m(Nout)




=




mΣt1

mΣt2
...

mΣt9

mΣt10

mΣt11

mΣt12

mΣt13

mΣt14




. (35)

Therefore, from (34) and (35) we see that a length-6 terminating tail sequence

must satisfy:




1 0 0 0 0 1
0 1 0 1 0 0
0 0 1 1 0 1
0 1 1 1 0 1
1 1 1 0 1 0
1 1 0 1 0 0







m(Nout − 5)
m(Nout − 4)
m(Nout − 3)
m(Nout − 2)
m(Nout − 1)
m(Nout)




(36)
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=




mΣ5 ⊕mΣ6 ⊕mΣ9 ⊕mΣ14

mΣ5 ⊕mΣ6 ⊕mΣ7 ⊕mΣ8 ⊕mΣ10 ⊕mΣ12

mΣ1 ⊕mΣ3 ⊕mΣ4 ⊕mΣ5 ⊕mΣ6 ⊕mΣ11 ⊕mΣ12 ⊕mΣ14

mΣ3 ⊕mΣ4 ⊕mΣ5 ⊕mΣ7 ⊕mΣ10 ⊕mΣ11 ⊕mΣ12 ⊕mΣ14

mΣ2 ⊕mΣ3 ⊕mΣ4 ⊕mΣ6 ⊕mΣ9 ⊕mΣ10 ⊕mΣ11 ⊕mΣ13

mΣ1 ⊕mΣ2 ⊕mΣ3 ⊕mΣ5 ⊕mΣ8 ⊕mΣ9 ⊕mΣ10 ⊕mΣ12




, (37)

which can be rewritten to show that



m(Nout − 5)
m(Nout − 4)
m(Nout − 3)
m(Nout − 2)
m(Nout − 1)
m(Nout)




=




mΣ1 ⊕mΣ2 ⊕mΣ3 ⊕mΣ6 ⊕mΣ7 ⊕mΣ9

mΣ1 ⊕mΣ6 ⊕mΣ7 ⊕mΣ10

mΣ1 ⊕mΣ2 ⊕mΣ4 ⊕mΣ5 ⊕mΣ6 ⊕mΣ7 ⊕mΣ8 ⊕mΣ11

mΣ1 ⊕mΣ5 ⊕mΣ8 ⊕mΣ12

mΣ1 ⊕mΣ2 ⊕mΣ5 ⊕mΣ7 ⊕mΣ8 ⊕mΣ13

mΣ1 ⊕mΣ2 ⊕mΣ3 ⊕mΣ5 ⊕mΣ7 ⊕mΣ14




.

4.5.4 Weight Distribution Analysis

Using the method outlined in [22], we were able to compute free distance codeword

weight an SCCC employing a particular length-Nin interleaver. We performed this

analysis for the SCCC in Fig. 16 for a large number (≈ 100000) of interleavers to

find the average free distance codeword weight for this SCCC. The result of this

analysis is shown in Fig. 17 which compares the average free distance codeword weight

of the SCCC employing either a random or a sub-vector interleaver as a function

of interleaver length. These results show that sub-vector interleaving increases the

average free distance codeword weight.

Extending the method outlined in [22], we were able to compute expected multi-

plicity for codewords of the SCCC in Fig. 12 as a function of the codeword’s Ham-

ming weight. The results of this analysis are presented in Table 5 which lists the

expected input sequence weight, E [w], and expected multiplicity, E [mult], of code-

words with Hamming weight ≤ 20 assuming a length-231 average random and average

sub-vector interleaver. These results allowed us to compute the BER contribution of

error patterns corresponding to weight-(d+ p) codewords generated by weight-w in-

put sequences:

Pb
(
e | ew,d,p

)
≈
(
E[w]
Nout

)
· E [mult] ·Q

(√
(d+ p) · 2Rcεb

N0

)
.
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Figure 16: A diagram of an SCCC employing identical rate- 1
2
recursive convolutional

encoders with two delay states.
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Figure 17: Average free distance codeword weight of the SCCC in Fig. 16 employing
a sub-vector interleaver and an average random interleaver as a function of interleaver
length.
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Table 5: Weight distribution up to weight 20 of SCCC in Fig. 12 employing average
length-231 random and sub-vector interleavers. The codeword weight, d, expected
input sequence weight, E [w], and expected multiplicity, E [mult], was computed
from an ensemble of 100, 000 randomly generated interleavers.

Random Sub-vector

d E [w] E [mult] E [w] E [mult]

6 3.56 9
10000

− -

7 1.98 506
10000

− -

8 3.64 33
10000

− -

9 2.06 369
10000

4.09 5.5
10000

10 3.49 129
10000

4.44 4.5
10000

11 2.08 1013
10000

3.97 18.4
10000

12 3.38 325
10000

4.00 10
10000

13 1.86 925
10000

4.40 100
10000

14 4.04 575
10000

4.83 120
10000

15 2.47 2950
10000

4.35 460
10000

16 3.11 2325
10000

5.36 250
10000

17 3.02 2150
10000

5.20 710
10000

18 4.34 2900
10000

4.95 1280
10000

19 3.42 5600
10000

5.01 2070
10000

20 3.83 6725
10000

5.58 1610
10000

In Fig. 18 we plot the BER contribution of error patterns corresponding to code-

words with Hamming weight d + p ≤ 11. Our weight distribution analysis shows us

that the BER contribution of the codewords with Hamming weight d + p ≤ 8 can

be eliminated by sub-vector interleaving, and the multiplicity of other low Hamming

weight codewords is reduced. Results of a Monte Carlo simulation of this SCCC

which confirms this analysis will be shown in Sec. 4.6.
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Figure 18: BER contribution of error patterns corresponding to codewords with
Hamming weight d + p ≤ 11 for the SCCC in Fig. 12 and a length-231 random
interleaver. Sub-vector interleaving eliminates the BER contribution of the error
patterns corresponding to codewords with Hamming weight d+ p ≤ 8.
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4.6 Simulation Results of a Serially Concatenated

Turbo Coding Scheme

Because of the difficulty of performing Monte Carlo simulations of coding schemes

with extremely low BERs, we have chosen to design an interleaver for a relatively weak

SCCC with a length-154 input sequence (including the tail). As shown in Fig. 12, we

employ a rate 2
3
non-systematic convolutional encoder with memory = 2 as the outer

encoder and a rate 1
2
systematic recursive convolutional encoder as the inner encoder

in our simulation. Since we have a rate 2
3
outer encoder, a length-154 input sequence

requires a length-231 interleaver.

The minimum weight of a codeword from the outer encoder in this SCCC is

dfree = 3. However, the free distance codeword in this scheme is generated by a

weight-4 codeword from the outer encoder that is interleaved into the input sequence

to the inner encoder

p
π
=
[
1 1 1 0 1

]

which generates the parity sequence output

y =
[
1 0 0 0 1

]
.

The overall weight of this codeword is then d + p = 4 + 2 = 6. By sub-vector

interleaving, we were able to cause all weight-3 and weight-4 input sequences to the

inner encoder to correspond to codewords with non-terminating parity sequences from

the inner encoder. Table 6 list the weight-5 and weight-6 terminating input sequences

to the inner encoder for our sub-vector interleaver.

In our simulation with a length-231 interleaver, the most significant error pattern

for the sub-vector interleaver, in terms of its contribution to the BER at low SNRs, of

the SCCC employing our sub-vector interleaver is a single terminating error pattern.

It corresponds to a codeword with a weight-5 output sequence from the outer encoder
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Figure 19: Simulated BER plots for the SCCC shown in Fig. 12 and a random inter-
leaver and the same scheme employing a sub-vector interleaver. The input sequence
length is 154 in both cases, resulting in a length-231 interleaver. The simulated BERs
are plotted along with their lower bounds.

and a weight-4 output sequence from the inner encoder. Such a codeword has total

weight d + p = 5 + 4 = 9. Table 7 shows the outer encoder output sequence p

interleaved into the inner encoder input sequence p
π
that generates the free distance

codeword for the sub-vector interleaved SCCC.

Our simulation shows that we were able to decrease the BER of the sub-vector

interleaved SCCC significantly over the same scheme employing random interleaving.

These results are shown in Fig. 19. We see that the BER in the randomly inter-

leaved simulation converges to its lower bound at 4.5 dB. The BER of the sub-vector

interleaved simulation shows approximately 1.75 dB improvement over the average

random interleaver at an SNR of 3 dB and has begun to converge to its lower bound

at an SNR of 5 dB.
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Table 6: A table of outer encoder terminating input sequences and terminated out-
put sequences that correspond to weight-5 and weight-6 terminating input sequences
to the inner encoder for the SCCC in Fig. 12.

Input Sequence, m Output Sequence, p

[
1 0 1 0 0 1 0 0

]
→


 0 1 0 1 0 1 0
1 0 0 1 0 0 0




[
1 1 0 1 1 1 0 0

]
→


 1 1 0 0 0 0 0
1 0 0 1 1 0 0




[
0 1 1 0 0 0

]
→


 0 1 1 0 0 1 1
1 1 0 0 0 0 0




[
1 1 1 0 1 1 0 1 0 0

]
→


 1 1 0 1 1 0 0
0 1 0 0 0 1 0




[
1 0 1 1 0 1 1 0 0 1 0 0

]
→




0 1 0 1 0 0 1

0 0 0 0 0 1 1

0 0 1 0 0 0 0




[
0 1 1 1 0 1 1 0 1 1 0 1 0 0

]
→




0 1 1 0 1 0 0

0 0 0 0 1 0 0

1 0 0 0 1 0 0




[
1 0 0 1 1 1 0 1 1 1 0 1 0 0

]
→




1 0 1 1 0 0 0

1 0 0 0 0 0 1

0 0 0 0 1 0 0




Table 7: The free distance codeword for the SCCC in Fig. 12 employing a sub-vector
interleaver has Hamming weight = d+ p = 5 + 4 = 9.

Outer Encoder Inner Encoder Inner Encoder

Output Sequence, p Permuted Input Sequence, p
π

Output Sequence, y
 1 1 0 0 0 0 0
1 0 0 1 1 0 0


 →


 1 1 0 1 1 0 0
1 0 0 0 0 0 0


 →


 1 0 1 0 0 1 0
1 0 0 0 0 0 0



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4.7 Summary

Sub-vector interleavers significantly improve the performance of SCCCs compared to

SCCCs employing an average random interleaver. By terminating both the inner and

outer encoders in the zero state and increasing the minimum weight of codewords

from the outer encoder that are interleaved into codewords with terminating parity

sequences in the inner encoder, sub-vector interleavers both:

• Decrease the BER floor of the SCCC by increasing the average free distance

codeword weight.

• Increase the interleaver gain of the SCCC.

The key feature of the method of interleaving by sub-vector is its low-complexity

design, which typically involves searching over interleavers equal in length to only a

few periods of the feedback polynomial of the inner recursive convolutional encoder.

Sub-vector interleaver design results in a type of block interleaver in which rows are

permuted in order to eliminate the error patterns that are most significant in terms

of their contribution to the BER. By incorporating random row interleaving into the

design of sub-vector interleavers, we increase the gain in performance expected with

increased interleaver length and are able to scale up our design to form any length-Nin

interleaver without additional computation.

The contributions of the research described in this chapter are as follows:

• Dynamical system representation of SCCCs.

• Sub-vector interleaving for SCCCs, which extends to the benefits of sub-vector

interleaving for PCCCs to SCCCs:

– low complexity design,

– no additional complexity to the encoding or decoding,
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– lowering of the error floor of the SCCC,

– ability to be scaled up to any length-N interleaver without additional de-

sign complexity,

– Self-termination of the inner and outer encoders in an SCCC, allowing

for increased interleaver gain when designing sub-vector interleavers for

SCCCs.

– increase in the average free distance codeword weight for the coding scheme

employing a sub-vector interleaver with randomly generated row permuta-

tions.
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CHAPTER V

SUB-VECTOR CONSTRAINED S-RANDOM

INTERLEAVING

The S-random algorithm was developed in [17] to generate permutations of any

length, long or short, that perform well for use with either PCCCs or SCCCs. The

S-random algorithm seeks to permute elements in the input sequence that are sepa-

rated by a distance less than S to positions in the output sequence that are separated

by a distance greater than S. The idea behind the S-random algorithm is that

short terminating input sequences of length < S will be “broken” by the S-random

interleaver and will become either long terminating or long non-terminating input

sequences which will in turn generate high weight parity sequence outputs for the

coding scheme.

We would like to use the notation

πN =
[
π0 π1 · · · πN−2 πN−1

]

to describe an interleaver that operates on a length-N sequence where the ith element

of the interleaved sequence is the πthi element of the input sequence.

Using this notation, the S-random algorithm is described as follows:

1. Randomly select the first element of the permutation, π0, such that

π0 ∈ {0, 1, . . . N − 1} .

2. For each subsequent element of the permutation, πn, randomly select another

integer from the set

{0, 1, . . . N − 1} \ {π0, π1, . . . πn−1}
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and compare it to the S previously selected elements {πn−S, πn−S+1, . . . πn−1}.

3. If |πn − πn−m| ≥ S for all m ∈ {1, 2, . . . , S}, set πN (n) = πn. Otherwise,

repeat the previous step.

4. Continue this iterative process until the permutation is complete with every

element satisfying the S-random criteria.

Though the S-random algorithm is simple to implement and computationally ef-

ficient, it is a generic algorithm in the sense that it does not consider the constituent

encoders of the PCCC or SCCC for which it is designed. This drawback can be ad-

dressed by incorporating S-random interleaving into the sub-vector interleaver design

algorithm.

Incorporating concepts from S-random interleaving into the sub-vector interleav-

ing method leads to an improvement on both of these methods of interleaver design

(see Fig. 20 for an illustration) previously described in [34]. This variant of sub-vector

interleaving employs S-random, instead of random, interleavers over the columns of

the sub-vector interleaver to design a length-N interleaver. The algorithm for com-

puting the S-random column interleavers can be described as a sub-vector constrained

version of the original S-random algorithm:

1. Permute the columns of a matrix with the integers {0, 1, . . . , N − 1} read in

row-wise using the length-η interleaver

πη =
[
π0 π1 · · · πη−2 πη−1

]
.

2. Randomly select the first element of the permutation, π0,0, such that
1

π0,0 ∈ {π0, π0 + η, π0 + 2η, . . . , π0 +N − η} .

1We use the notation πm,n to designate the interleaver element in the mth row of the nth column
of the sub-vector interleaver, πN (m,n).
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3. For each subsequent element of the permutation, πm,n, randomly select another

integer from the set

{πn, πn + η, πn + 2η, . . . , πn +N − η} \ {π0,n, π1,n, . . . , πm−1,n}

and compare it to the S previously selected elements.

4. If distance between πm,n and the S previously selected elements is ≥ S, set

πN (m,n) = πm,n. Otherwise, repeat the previous step.

5. Proceed row-wise through the sub-vector interleaved sequence until the per-

mutation is complete with every element satisfying the sub-vector constrained

S-random criteria.

Note that this method of designing constrained S-random interleaving consid-

ers the relative distance between interleaved elements in different columns of the

sub-vector interleaved sequence when computing the S-random row interleavers. In-

corporating sub-vector interleaving does not increase the complexity of the S-random

algorithm, though it may cause the algorithm to converge more slowly to the final

solution than the straight S-random algorithm.

5.1 S Parameter

The value of S chosen for an S-random interleaver is an important design consid-

eration. The larger the value of S chosen, the greater the spreading of the input

sequence. However, increased values of S lead to increased time to convergence of the

S-random algorithm. Designers typically choose a value of S less than the square root

of half the interleaver length, S <
√

N
2
. This value was suggested in [17] where the

S-random algorithm was originally described since it leads to good spreading in the

resulting interleaver and reasonable computational time for the S-random algorithm.

Incorporating S-random interleaving into sub-vector interleaving puts an addi-

tional constraint on the S-random algorithm since the pseudo-random search for
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Figure 20: Sub-vector constrained S-random algorithm, S = 2. Sub-vector length
= 7.
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subsequent values of the interleaver are limited to a fraction Nr

η
of the remaining

possible choices, where Nr is the remaining number of interleaver values and η is the

length of the sub-vector.

In Section 5.1.1, we will discuss the maximum possible value of S = Smax that can

be achieved in an S-random interleaver. We will describe a systematic method for

obtaining an Smax-random interleaver (note that some similar ideas for generating in-

terleavers to protect convolutional coding schemes from burst errors were described by

Dunscome, et al., in [18]). In Section 5.1.2 we will discuss the impact of constraining

the S-random algorithm to a sub-vector interleaver on the value of Smax.

5.1.1 Increasing S for S-random Interleavers

We can modify the S-random algorithm slightly by allowing two parameters to de-

scribe the algorithm: Sa and Sb. The modified version of the S-random algorithm is

as follows:

1. Select a randomly generated integer as the first element of the permutation.

2. For each subsequent element of the permutation, randomly generate another

integer and compare it to the Sa previously selected elements.

3. If the current selected element of the permutation is within a distance Sb of any

of the Sa previously selected elements, discard it and randomly select another

integer.

4. Repeat this process till the permutation is complete with every element satis-

fying the S-random criteria.

An S-random interleaver that satisfies the Sa constraint can be generated as fol-

lows:

1. Divide the length-N interleaver into Sa + 1 bins with
N

Sa+1
elements placed

randomly in each bin.
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2. Choose an element from one of the Sa + 1 bins. Compute the distance S
∗
b

between the element and the closest element from the Sa previously chosen

elements.

3. Repeat for all n elements by cycling through the Sa + 1 bins and choosing an

element from each one in succession. Sb is the minimum of all S
∗

b .

Lemma 6 The minimum separation, S
∗

b , between the f irst S
∗

a + 1 elements chosen

for a length-N interleaver is maximized when S
∗

b =
⌊
N−1
S
∗

a

⌋
.

Proof. A length-N interleaver is given by

π =
[
π0 π1 · · · πN−2 πN−1

]

where the mth element in the interleaved sequence is the πthm element of the input

sequence. Without loss of generality, assume that the first S
∗

a + 1 elements of a

length-N interleaver are ordered such that π0 < π1 < ... < πS∗a . S
∗

b is the minimum

(πm − πm−1) form ∈
[
1, . . . , S

∗

a

]
. The average separation between successive elements

(πm − πm−1) is given by

∑S
∗

a
p=1 (πp − πp−1)

S∗

a

≤ N − 1
S∗

a

.

S
∗

b is maximized when the separation between successive elements (πm − πm−1) is

uniform and equal to the maximum average separation N−1
S
∗

a
. In general,

S
∗

b,max =

⌊
N − 1
S∗

a

⌋
.

From Lemma 6, we have that the maximum separation between S
∗

a+1 consecutive

elements is S
∗

b,max =
⌊
N−1
S
∗

a

⌋
. Therefore, we can choose at most S

∗

a + 1 =
⌊

N−1
S
∗

b,max

⌋
+ 1

elements in succession and maintain a separation S
∗

b,max between each of them. We
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will show that for a fixed value of Sb and a length-N interleaver, Sa can be maximized

when N = (Sa + 1)Sb, since

⌊
N − 1
Sb

⌋
=

⌊
(Sa + 1)Sb − 1

Sb

⌋

=
⌊
SaSb + Sb − 1

Sb

⌋

=
⌊
Sa +

Sb − 1
Sb

⌋
= Sa,

and there exists a systematic method for designing a length-N interleaver such that

Sa and Sb satisfy N = (Sa + 1)Sb:

1. Consider the permutation of the integers
(
0 · · · N − 1

)
.

2. Partition the integers into Sa + 1 bins where

B0 = {Sb − 1, . . . 1, 0}

B1 = {2Sb − 1, . . . , Sb + 1, Sb}
...

BSa = {(Sa + 1)Sb − 1, . . . , SaSb + 1, SaSb}

3. Choose the first element from the first bin as the first element of the interleaver.

Repeat for all Sb bins. Then repeat with the next element from each bin. Cycle

through the bins until the interleaver is complete.

If we set Sa = Sb = S, we have that

Smax =
−1 +

√
1 + 4N

2
≈
√
N.

Example 3 The following length-12 interleaver satisf ies Smax =
−1+

√
1+4·12
2

= 3:

π12 =
[
2 5 8 11 1 4 7 10 0 3 6 9

]
.
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5.1.2 Increasing S for Sub-vector constrained S-random Interleavers

For sub-vector constrained S-random interleavers, the maximum values of the pa-

rameters Sa and Sb are functions of the sub-vector length, η, as well as the type

of sub-vector interleaver employed. For the case where the sub-vector interleaver is

the identity permutation (this is common in the case of sub-vector constrained S-

random interleavers for SCCCs), Sa and Sb are jointly maximized when they satisfy

the following:

Sa,max =
N

mη + 1
− 1

Sb,max = mη + 1

where m is an integer value.

Example 4 For a length-15 sub-vector interleaver employing a length-4 identity col-

umn permutation, we can choose m = 1 to permute the integers
(
0 · · · 14

)
written

row-wise into a 4× 4 matrix as follows:



0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 −


→




4 9 14 3
8 13 2 7
12 1 6 11
0 5 10 −


 .

In this example, the S-parameters can be described as Sa = 2 and Sb = 5.

The column permutation chosen for the sub-vector interleaver decreases the maxi-

mum possible S-parameters. Each case must be analyzed to determine the maximum

values of Sa and Sb.

Example 5 Consider a length-16 interleaver employing the following length-4 column

permutation:

π4 =
[
2 3 1 0

]
.
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We can choose m = 1 to permute the integers
(
0 · · · 15

)
written row-wise into a

4× 4 matrix as follows:



0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15


→




2 3 1 0
6 7 5 4
10 11 9 8
14 15 13 12


→




2 7 9 12
14 3 5 8
10 15 1 4
6 11 13 0


 .

In this example, the S-parameters can be described as Sa = 4 and Sb = 2.

5.1.3 Sub-vector Constrained Smax-random Interleaving

The methods for maximizing S for straight S-random and sub-vector constrained S-

random interleavers described in Section 5.1.1 and Section 5.1.2 are not recommended

as methods for designing interleavers for turbo codes. Since achieving Smax requires

the interleaver to be completely constrained (i.e., no random dimension remains in

the design technique), we know that interleaver gain will be compromised. We will

illustrate this concept with the example of an interleaver designed for the PCCC in

Fig. 7.

Example 6 We will use the column permutation given in (15),

π14 =
[
4 1 11 6 3 5 9 10 13 2 7 12 8 0

]
,

to create a length-210 structured sub-vector interleaver

π210 =




4 15 25 34 45 61 79 94 111 128 147 166 176 196
18 29 39 48 59 75 93 108 125 142 161 180 190 0
32 43 53 62 73 89 107 122 139 156 175 194 204 14
46 57 67 76 87 103 121 136 153 170 189 208 8 28
60 71 81 90 101 117 135 150 167 184 203 12 22 42
74 85 95 104 115 131 149 164 181 198 7 26 36 56
88 99 109 118 129 145 163 178 195 2 21 40 50 70
102 113 123 132 143 159 177 192 209 16 35 54 64 84
116 127 137 146 157 173 191 206 13 30 49 68 78 98
130 141 151 160 171 187 205 10 27 44 63 82 92 112
144 155 165 174 185 201 9 24 41 58 77 96 106 126
158 169 179 188 199 5 23 38 55 72 91 110 120 140
172 183 193 202 3 19 37 52 69 86 105 124 134 154
186 197 207 6 17 33 51 66 83 100 119 138 148 168
200 1 11 20 31 47 65 80 97 114 133 152 162 182




, (38)
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for a PCCC employing identical rate- 1
2
recursive convolutional encoders with three

delay states. For the length-210 interleaver, π210, Sa = 11 and Sb = 9.

We analyzed the weight-distribution of this interleaver used with the SCCC in

Fig. 7 and found that there are 183 free distance codewords with weight = 22.

We created another length-210 sub-vector interleaver with the same column per-

mutation, but with S-random interleaving over each of the columns of the sub-vector

interleaver:

π210 =




4 29 207 20 45 173 107 94 125 184 147 138 8 84
18 197 39 48 59 75 121 108 97 142 161 152 22 182
32 43 53 62 73 89 205 122 139 156 21 166 176 196
46 57 67 76 31 103 93 136 153 170 203 12 190 112
60 71 81 90 101 33 135 164 181 198 7 54 64 42
74 85 95 104 115 131 163 150 195 58 175 208 78 0
88 99 109 118 129 145 51 178 167 30 189 40 204 154
102 113 123 132 3 61 177 192 83 16 49 26 36 98
116 127 137 146 157 187 79 206 13 2 35 96 50 70
130 141 151 160 171 117 191 10 27 44 63 82 106 126
144 155 165 174 185 201 9 24 41 114 77 68 92 140
158 169 179 188 199 19 149 38 55 72 91 110 162 28
172 183 193 202 17 5 37 52 69 86 105 124 134 168
186 15 25 6 143 159 65 80 111 100 133 180 120 56
200 1 11 34 87 47 23 66 209 128 119 194 148 14




, (39)

In order to make the algorithm for finding the sub-vector constrained S-random

simulation run faster, we seeded the interleaver with the permutation in (38). We then

modified the sub-vector constrained S-random algorithm to allow random permutations

of elements within the interleaver to occur only when they did not decrease the values

of Sa and Sb of the original permutation in (38). We allowed this algorithm to iterate

until at least 5, 000 swaps of interleaver elements had occurred.

The weight distribution analysis of the sub-vector constrained S-random inter-

leaver showed 104 weight-22 free distance codewords. Though the free distance code-

word weights are the same for both interleavers, the multiplicity of the free distance

codewords for the sub-vector constrained S-random interleaver is almost half that of

the structured sub-vector interleaver. Fig. 21 shows the error floors due to the BER

99



ü ü�ý þ üäý ÿ üäý � ü�ý � � ��ý þ �Jý ÿ �Jý � �Jý � þ��ü�� �

��ü�� �

��ü�� �

��ü�� �

��ü�� 	


���
���������� ���������

 ! " #
$$%
$$&" #

')(+*-,/.0(+,1*3254768,:9<;>=/2�.�(>?@*BA�C)(�20*8DE2�F0=/2�*
'),19<;>=G25.0(�?@*B.5?@C<6H(I*3F�A�C/2�4J'/;>*3F0C/4)?@KLAMC1(�20*8DE2�F�=/20*

Figure 21: BER contribution of free distance codewords for the length-210 sub-
vector constrained S-random interleaver in (39) and the length-210 structured sub-
vector interleaver in (38).

contribution of the free distance codewords for both interleavers.

We discussed Smax-random interleavers in order to compare the bounds on the

design parameter S for S-random and sub-vector constrained S-random interleavers.

We then modified the algorithm for creating sub-vector constrained S-random inter-

leavers by allowing them to be seeded with a sub-vector constrained Smax-random

interleaver. This modification greatly decreases the amount of time necessary to find

a sub-vector constrained S-random interleaver for large values of S. We will call this

technique “sub-vector constrained Smax-random interleaving.”
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The following is an outline of the method for creating sub-vector constrained

Smax-random interleavers, valid for length-N sub-vector interleavers where N ≥ η2:

1. Permute the columns of a matrix with the integers {0, 1, . . . , N − 1} read in

row-wise using the length-η interleaver

πη =
[
π0 π1 · · · πη−2 πη−1

]
.

2. Choose the first η elements of the permutation so that they constitute a set

{π0,0, π0,1, . . . , π0,η} with increasing values such that π0,0 < π0,1 < . . . < π0,η.

3. If an identity column permutation is used, the spacing between elements can

be uniform and equal to mη + 1, where m is a positive integer, m ≥ 0. For

maximum spacing choose, m =
⌊
N−1
η

⌋
. For non-identity column permutations,

the spacing between elements will not be uniform.

4. For subsequent rows of the interleaver, choose πa,b = πa−1,b + η. This initial

permutation is used to seed the sub-vector constrained S-random algorithm.

Analyze the interleaver to determine the values of Sa and Sb.
2

5. Beginning with the first element in the interleaver, π0,0, randomly select a dif-

ferent element from the same column of the interleaver, πa,0, to swap positions

with π0,0:

πa,0 ∈
{
π0,1, π0,2, π0,3, . . . , π0,N/η−1

}
.

6. If distance between the new values of π0,0 and πa,0 and the Sa previously selected

elements is ≥ Sb, set πN (0, 0) = πa,0 and πN (a, 0) = π0,0. Otherwise, do not

allow the swap.

2This can be done manually for short interleavers, or by computer search for longer interleavers.
Possible values of Sa and Sb would be chosen with the length of the critical low-weight codewords
for the PCCC or SCCC in mind.
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Figure 22: A diagram of a PCCC employing identical rate- 1
2
recursive convolutional

encoders with two delay states.

7. Proceed row-wise through the sub-vector interleaved sequence until a predeter-

mined number of swaps have been performed successfully. The interleaver is

complete with every element satisfying the sub-vector constrained S-random

criteria.

5.2 Sub-vector Constrained S-random Interleav-

ing for PCCCs

We designed a length-162 sub-vector constrained S-random interleaver for a PCCC

shown in Fig. (22) employing identical two delay-state recursive convolutional en-

coders. We chose a length-6 interleaver to permute the columns of the sub-vector

interleaver,

π6 =
[
0 1 2 5 3 4

]
,

since this length corresponds to two periods of the feedback polynomial of the con-

stituent encoders. Therefore, it is possible to use the length-6 sub-vector column

interleaver to break up the shortest weight-2 terminating input sequences for these
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encoders:

π6
([
1 0 0 1 0 0

])
→

[
1 0 0 0 1 0

]

π6
([
0 1 0 0 1 0

])
→

[
0 1 0 0 0 1

]

π6
([
0 0 1 0 0 1

])
→

[
0 0 1 1 0 0

]

However, not all cyclic shifts of the weight-3 terminating input sequence that gen-

erates the weight-5 free distance codeword for the constituent encoders are interleaved

into non-terminating input sequences by this sub-vector interleaver:

π6
([
1 1 1 0 0 0

])
→

[
1 1 1 0 0 0

]

π6
([
0 0 0 1 1 1

])
→

[
0 0 0 1 1 1

]

In fact, an exhaustive search of length-6 interleavers reveals none that can achieve

this goal. Therefore, the S-random interleaving performed over each column of the

sub-vector interleaver is what increases the minimum free distance codeword weight of

this coding scheme. For the length-162 sub-vector constrained S-random interleaver,

we chose S = 7, since this spread is sufficient to break-up the terminating input

sequences that generate the free distance codewords for the PCCC.

The BER performance of this PCCC employing length-160 interleavers designed

by three different short interleaver design methods was simulated by Daneshgaran and

Mondin and reported in [15]. To verify the performance of our method of sub-vector

constrained S-random interleaving, we repeated the simulations published in [15] of a

length-160 straight S-random interleaver (again, S = 7) and a length-160 interleaver

designed by the method described in [15]. We compared them to the simulation of our

sub-vector constrained S-random interleaver and found that sub-vector constrained

S-random interleaving outperforms all of these methods at the SNRs we simulated.

We computed the weight distribution of this encoding scheme using the method

described in [22]. The lower bound on the BER suggested by the weight distribution
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Table 8: Weight distribution up to weight 21 of PCCC in Fig. 22 employing three
different types of interleavers. Interleaver lengths are approximately 160, d is the
codeword weight, w is the input sequence weight, and mult is the codeword mutiplic-
ity.

S-random Daneshgaran and Mondin [15] Sub-vector Constrained S-random

d w mult mult mult

14 2 7 − −
15 2 1 − −
16 2 10 − −
17 2 1 − −

3 − 4 −
18 2 9 14 17

3 1 − −
19 2 1 − −

3 4 18 5

20 2 7 26 −
3 2 − −
4 10 5 1

6 − 4 −
21 2 2 − −

3 6 33 8

5 − − 5

is also lower than the bounds of the other methods reported in [15]. These lower

bounds are a “truncated” union bound on the PCCC which is a sum of the BER

contribution of the lowest weight codewords which was computed using data from

the weight distribution analysis presented in Table 8. Results of these simulations

and their lower bounds are shown in Fig. 23.
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Figure 23: Simulated BER plot for a PCCC employing identical two delay-state
encoders and interleavers designed by three different methods. The interleaver lengths
are ≈ 160 and the simulated BER is plotted along with its lower bound.
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5.3 Sub-vector Constrained S-random Interleav-

ing for SCCCs

Incorporating concepts from S-random interleaving into the sub-vector interleaving

method leads to an improvement on both of these methods of interleaver design, as it

did in the case of PCCCs. The algorithm for incorporating S-random concepts into

sub-vector interleavers for SCCCs is the same as for PCCCs.

Distance spectrum analysis shows that the average free distance codeword weight

is increased with sub-vector constrained S-random interleaving compared to straight

S-random interleaving.

5.3.1 Distance Spectrum

As in Section 4.5.4, we were able to compute expected multiplicity for codewords of

the SCCC in Fig. 12 as a function of the codeword’s Hamming weight. The results

of this analysis are presented in Table 9 which lists the expected input sequence

weight, E [w], and expected multiplicity, E [mult], of codewords with Hamming weight

≤ 20 assuming a length-84 average S-random and a length-84 average sub-vector

constrained S-random interleaver.

In Fig. 24 we plot the BER contribution of error patterns corresponding to code-

words with Hamming weight d ≤ 9. Our weight distribution analysis shows us that

the BER contribution of the codewords with Hamming weight d ≤ 8 can be elimi-

nated by sub-vector interleaving, and the multiplicity of other low Hamming weight

codewords is reduced.

Results of a Monte Carlo simulation of this SCCC which confirms this analysis

will be shown in Sec. 5.3.2.

5.3.2 Simulation Results

We simulated the performance of the SCCC in Fig. 15 employing both a length-84 S-

random interleaver and a length-84 sub-vector constrained S-random interleaver. We
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Table 9: Weight distribution up to weight 20 of SCCC in Fig. 12 employing an aver-
age length-84 S-random and an average length-84 sub-vector constrained S-random
interleaver. The codeword weight, d, expected input sequence weight, E [w], and ex-
pected multiplicity, E [mult], was computed from an ensemble of 100, 000 randomly
generated interleavers.

S − random Sub-vector constrained S-random

d E [w] E [mult] E [w] E [mult]

6 5.00 4
10000

− −
7 3.00 386

10000
− −

8 4.31 72
10000

− −
9 3.31 408

10000
3.98 98

10000

10 3.57 614
10000

4.63 82
10000

11 2.54 1834
10000

4.12 360
10000

12 3.62 1186
10000

4.83 384
10000

13 3.02 2662
10000

4.93 1737
10000

14 4.24 4204
10000

5.30 2377
10000

15 3.68 9580
10000

5.10 6030
10000

16 4.22 11520
10000

5.88 6480
10000

17 4.72 15210
10000

5.88 15930
10000

18 5.18 24810
10000

6.33 22350
10000

19 5.08 38650
10000

6.35 43100
10000

20 5.64 61020
10000

7.23 60580
10000
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Figure 24: BER contribution of error patterns corresponding to codewords with
Hamming weight d ≤ 9 for the SCCC in Fig. 12 and a length-84 S-random inter-
leaver. Sub-vector interleaving eliminates the BER contribution of the error patterns
corresponding to codewords with Hamming weight d ≤ 8.

108



Table 10: Weight-3 and weight-4 codewords from the outer encoder of the SCCC in
Fig. 12.

Weight-3 Codewords Weight-4 Codewords[
1 1 1

] [
1 1 0 0 1 1

]
[
1 1 0 0 0 0 1

] [
1 0 1 1 0 0 1

]
[
1 1 0 1 0 0 0 0 1

]
[
1 0 1 0 0 1 0 0 0 1

]
[
1 1 0 0 0 0 0 1 0 0 0 0 1

]

chose a length-7 identity permutation for the columns of our sub-vector interleaver,

π7 =
[
0 1 2 3 4 5 6

]
,

since the low weight codewords from the outer encoder do not correspond to termi-

nating input sequences for the inner encoder. Table 10 lists the weight-3 and weight-4

codewords from the outer encoder.

The free distance codeword for the length-84 S-random interleaved SCCC in

Fig. 12 is expected to occur in 4
10000

randomly generated S-random interleavers.3

This codeword is generated by a weight-4 input sequence, m, to the outer encoder:

m =
[
1 0 1 1 0 1 0 0

]
.

The input sequencem generates the parity sequence output, p, from the outer encoder:

p =
[
1 0 1 0 0 1 0 0 0 1 0 0

]
.

The parity sequence output, p, can be interleaved by an S-random interleaver π that

satisfies the constraint S = 3 as follows:

π
([
1 0 1 0 0 1 0 0 0 1 0 0

])
→
[
1 1 1 0 1 0 0 0 0 0 0 0

]

3Here we used S = 3, a low value for the spread, so that our simulations would generate errors
more quickly.
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This interleaved sequence p
π
generates the following weight-2 parity sequence output

from the outer encoder:

[
1 0 0 0 1 0 0 0 0 0 0 0

]
.

The result is the weight-6 free distance codeword for the SCCC employing an S-

random interleaver.

The free distance codeword for the length-84 sub-vector constrained length-84 S-

random interleaved SCCC in Fig. 12 is expected to occur in 98
10000

randomly generated

sub-vector constrained S-random interleavers.4 This codeword is generated by a

weight-5 input sequence, m, to the outer encoder:

m =
[
1 1 0 1 1 1 0 0

]
.

The input sequencem generates the parity sequence output, p, from the outer encoder:

p =
[
1 1 0 0 0 0 0 1 0 0 1 1

]
.

The parity sequence output, p, can be interleaved by a sub-vector constrained S-

random interleaver π that satisfies the constraint S = 3 as follows:

π
([
1 1 0 0 0 0 0 1 0 0 1 1

])
→
[
1 0 0 0 1 0 0 1 1 0 1 0

]

This interleaved sequence p
π
generates the following weight-2 parity sequence output

from the outer encoder:

[
1 1 0 1 0 0 0 0 0 0 1 0

]
.

The result is the weight-9 free distance codeword for this SCCC employing a length-84

sub-vector constrained S-random interleaver.

We computed the weight distribution of this encoding scheme using the method

described in [22] for the SCCC employing both average length-84 S-random and

4Again, we used S = 3
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sub-vector constrained S-random interleavers (as before, using S = 3). The weight

distribution of codewords up to weight-20 is presented in Table 9. The codeword

weight, d, input sequence weight, w, and expected multiplicity, m, was computed

from an ensemble of 100, 000 randomly generated interleavers in both cases.

The BER performance of this SCCC in Fig. 12 employing length-84 S-random and

sub-vector constrained S-random interleavers is presented in Fig. 25. Lower bounds

on the BER are plotted beneath the performance curves. These lower bounds are

a “truncated” union bound on the SCCC which is a sum of the BER contribution

of codewords less than weight-24 which were computed from the weight distribution

analysis (partial results of this analysis are presented in Table 9).

5.3.3 Average Free Distance

Using the same method used to compute the weight distribution of the SCCC, we

computed the average free distance codeword weight for the SCCC in Fig. 16 employ-

ing both an S-random interleaver and a sub-vector constrained S-random interleaver

as a function of interleaver length. We punctured the parity sequence output from

the inner encoder so that the overall rate of the SCCC was 1
3
. We see in Fig. 26 that

the average free distance codeword weight for the sub-vector constrained S-random

interleaver is greater than that of the S-random interleaver. The difference between

the average free distance codeword weights also increases with interleaver length.

5.4 Summary

For short interleavers in particular, sub-vector constrained S-random row interleaving

does a better job than random row interleaving for breaking the low input weight-2

and weight-3 terminated codewords.

Results presented in Section 3.4.2 of the BER simulation of a PCCC with a

length-162 interleaver and two delay-state recursive convolutional encoders suggest

that sub-vector constrained S-random interleavers perform better than some of the
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Figure 25: Simulated BER of the SCCC in Fig. 12 employing a length-84 sub-vector
constrained S-random interleaver versus a length-84 S-random interleaver.
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Figure 26: Average free distance of the SCCC in Fig. 16, with the inner encoder
parity sequence punctured so that the overall rate of the coding scheme is 1

3
, employing

a length-N sub-vector constrained S-random interleaver versus a length-N S-random

interleaver. S =
√

N
2
.
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best methods known for designing short interleavers for PCCCs.

The contributions of the research described in this chapter are as follows:

• A method for computing the maximum spread, Smax, possible for a length-N

S-random interleaver.

• A systematic method for choosing S-random interleavers that satisfy S = Smax.

• Sub-vector constrained S-random interleaving for PCCCs and SCCCs, a method

of interleaving of the same complexity as S-random interleaving, but with better

BER performance in the error floor.
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CHAPTER VI

DECODER CONVERGENCE

Simulations in previous chapters of PCCCs and SCCCs employing sub-vector inter-

leavers show improvement over the average random (in Fig. 11 and Fig. 19) and

S-random (in Fig. 23 and Fig. 25) interleavers. However, these simulations do not

always show convergence to the lower bounds computed analytically, especially in the

case of coding schemes employing short interleavers and at low SNRs.

The turbo code decoding algorithm is described as a discrete dynamical system

in [1], iterating on the extrinsic information output from the constituent decoders.

As a result, the modes of convergence of the decoding algorithm can be described in

terms of its properties as a dynamical system, as in [38].

These modes of convergence are as follows:

1. Convergence to an unequivocal fixed point: Most decisions by the decoder cor-

respond to maximum-likelihood decoding of the received sequence. Errors that

occur when the decoder has converged to an unequivocal fixed point typically

correspond to low weight codewords for the turbo coding scheme.

2. Convergence to an indecisive fixed point: The extrinsic information passed be-

tween the two decoders remains very low, indicating that the decoding algorithm

is ambiguous regarding the values of the information bits. These unequivocal

fixed points can correspond to a large number of bit errors in the decoded

sequence.

3. Convergence to an invariant set: This generally occurs in the “waterfall region”

of the range of SNRs and occurs when an indecisive fixed point bifurcates. In
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practice this is observed as the decoder converging on a set of fixed points and

oscillating among them periodically.

Sub-vector interleavers are designed to increase the free distance weight of code-

words in a PCCC or SCCC, and also to decrease the multiplicity of some low-weight

codewords in a PCCC or SCCC. Improvement to the BER of a PCCC or SCCC can be

attributed to the impact of the sub-vector interleaver on the first mode of convergence,

convergence to an unequivocal fixed point. Maximum-likelihood decoding of an error

pattern will result in the decoding of the error pattern as a codeword of the PCCC or

SCCC. Elimination of certain low-weight or high-multiplicity codewords improves the

performance of the coding scheme in the error floor region where the decoder typi-

cally converges to an unequivocal fixed point corresponding to a maximum-likelihood

decision on the decoded sequence. However, sub-vector interleaving does not affect

the bit error rates when the second two modes of convergence, convergence to an

indecisive fixed point and convergence to an invariant set, prevail. At low SNRs,

these two modes of convergence dominate the performance of the coding scheme and

improvement in BER performance due to sub-vector interleaving is difficult to detect.

In this section, the results of simulations of PCCCs and SCCCs at SNRs in the

waterfall region and below will be shown where the mode of convergence was deter-

mined to be either to an unequivocal fixed point, an indecisive fixed point, or an

invariant set. By classifying decoding errors according to the mode of convergence of

the decoder, the predicted improvements in BER performance of coding schemes em-

ploying sub-vector interleaving can be observed, even in regions where Monte Carlo

simulations do not show convergence of the BER to the lower bounds computed an-

alytically.
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6.1 Determining the Mode of Convergence of the

Decoder

We used a variation of a method for determining when decoding should be terminated

proposed in [38], which was a hybrid of methods proposed in [23] and [41], to classify

decoded frames according to the mode of convergence of the decoder. The goal was to

extract the errors that occurred when the decoder converged to a maximum-likelihood

decision on the input sequence. By doing this, we were able show improvement in

the BER performance of the coding scheme when employing sub-vector interleavers.

Each decoded frame was classified as corresponding to an indecisive fixed point, an

invariant set, or an unequivocal fixed point by the following steps:

1. Indecisive fixed point: In order to identify errors that occurred when the de-

coder converged on an indecisive fixed point, we determined a threshold on the

average extrinsic information passed between the two decoders. If the average

magnitude of the extrinsic information did not exceed this threshold, conver-

gence to an indecisive fixed point was declared for the frame. The threshold

was obtained by performing a trial run of the decoder at each SNR to be sim-

ulated where the average value of the magnitude of the extrinsic information,

µe, of 1000 correctly decoded frames was calculated. The variance, σ
2
e was also

calculated, and a threshold set at µe − 1.5 · σe.1

2. Invariant set: The sign of the extrinsic information associated with each de-

coded bit was determined after each iteration of the decoder. If the threshold on

average extrinsic information was met, but the number of sign changes between

each iteration did not equal zero before a predetermined maximum number of

iterations, convergence to an invariant set was declared for the frame.2

1In practice this variance was very small due to the residual values added to the extrinsic infor-
mation at each decoding iteration to prevent numerical overflow.

2If the extrinsic information > 0, this implies that a hard decision on the decoded sequence = 0,
based on the extrinsic information. If the extrinsic information < 0, this implies that a hard decision
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3. Unequivocal fixed point: Decoding errors that were not determined to have

occurred as a result of decoder convergence to an indecisive fixed point or an

invariant set were assumed to have occurred as a result of decoder convergence

to a maximum-likelihood decision on the encoded sequence.

Fig. 27 shows the simulated BER performance of the SCCC shown in Fig. 16 em-

ploying both length-120 S-random and sub-vector constrained S-random interleavers.

This particular SCCC was chosen for simulation because the fact that it is associated

with relatively low-weight codewords (compared to a SCCC with more delay states

or a more powerful outer encoder) should lead to better convergence properties in the

decoder at low SNRs, as described in [2]. These results are plotted along with a lower

bound on the BER (i.e., the free distance codeword asymptote). We see that the BER

performance has not come close to approaching the error floor at the SNRs used in

the simulation. We have found that the lack of convergence of the BER performance

at low SNRs to the lower bounds computed analytically is particularly noticeable in

SCCCs. Furthermore, SCCCs have lower error floors with steeper slopes than PCCCs

and, at SNRs where we might expect to find convergence to the error floor in our

simulations, the error rates are lower than we can attempt to simulate!

6.2 Analysis of SCCCs Employing Very Short

Interleavers

Simulations of the SCCC shown in Fig. 16 were performed with length-24 and length-

36 sub-vector interleavers. The free distance codeword of the outer encoder is gener-

ated by the input sequence

m =
[
1 0 1

]

on the decoded sequence = 1, based on the extrinsic information.
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Figure 27: Simulated BER performance of the SCCC shown in Fig. 16 employing
both length-120 S-random and sub-vector constrained S-random interleavers. The
free distance codeword asymptotes are plotted below the performance curves.
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that combines with the parity sequence output from the outer encoder to create the

weight-5 free distance codeword

p =
[
1 1 0 1 1 1

]
.

All length-6 cyclic shifts of the free distance codeword, as well as the weight-6 code-

words, generated by the outer encoder can be interleaved into a non-terminating input

sequence for the inner encoder by a length-6 identity interleaver

π6 =
[
0 1 2 3 4 5

]
,

used to permute the columns of our sub-vector interleaver. As in shown (25), inter-

leaving the weight-dfree and weight-dfree + 1 codewords into non-terminating input

sequences to the inner encoder increases the interleaver gain of the SCCC by a factor

of
(
1
N

)
.

The simulated converged BER of the SCCC in Fig. 16 employing both a length-24

and a length-36 sub-vector interleaver is also shown in Fig. 28. The converged BER

is the BER computed for the frames that have been determined to correspond to

unequivocal fixed points of the decoder by the steps outline above. The converged

BER is compared to the BER computed when including frames that correspond to

all modes of decoder convergence in Fig. 28. The converged BER shows a significant

improvement over the all-inclusive BER. However, we see in Fig. 29 that the overall

rate of the coding scheme is reduced by almost 10% at moderate SNRs, up to more

than 50% when the SNR is 0dB.

Length-24 and length-36 sub-vector interleavers were chosen for simulation be-

cause their short lengths made them easier to analyze:

• It was easier (i.e., faster) to generate a statistically significant number of errors

to accurately estimate the BER in the error floor region of SCCCs employing

short interleavers rather than longer interleavers because of the relatively high

error floors present when using the short interleavers.
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Figure 28: Simulated BER and converged BER plots (i.e., BER when decoder has
converged to unequivocal fixed points) for an SCCC employing the two identical rate
1
2
four state encoders shown in Fig. 16 and both a length-24 and a length-36 sub-vector
interleaver.
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Figure 29: Rate reduction in the simulation of the BER of the SCCC shown in
Fig. 16 caused by rejecting frames determined to have converged to indecisive fixed
points or invariant sets of the decoder.
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• It was feasible to compute the union bound for the SCCC employing short

interleavers.

The union bound for the SCCCs was obtained using the method outlined in [22] to

compute the weight distribution of all codewords for the SCCC. An average weight

distribution of length-24 and length-36 interleavers was calculated by taking the av-

erage of 100, 000 weight distributions of randomly generated length-24 and length-36

sub-vector interleavers, respectively. Partial results, up to weight-48 codewords, of

the average weight distributions are presented in Table 14 and Table 15.

A lower bound on the sub-vector interleaved SCCCs was obtained by computing

the weight distribution of all codewords generated by a weight-7 input sequence to

the inner encoder. The free distance codeword of this particular SCCC was generated

by a weight-7 input sequence

p
π
=
[
1 1 0 1 0 1 0 1 0 1 1

]

to the inner encoder that generated a weight-2 parity sequence output

y =
[
1 0 0 0 0 0 0 0 0 0 1

]

from the inner encoder, for an overall weight-9 free distance codeword. The high

multiplicity codeword (i.e., dfree,eff ) for this SCCC was generated by the same weight-

7 codeword from the outer encoder as the free distance codeword (see Table 12)

interleaved into three separate terminating input sequences to form the input sequence

p
π
=
[
1 1 1 · · · 1 0 0 1 · · · 1 0 0 1

]

to the inner encoder that generate a weight-10 parity sequence output

y =
[
1 0 1 · · · 1 1 1 1 · · · 1 1 1 1

]

from the inner encoder, for an overall weight-17 effective free distance codeword.

123



The probability of a bit error due to an error pattern corresponding to a weight-

dfree = 9 codeword is computed using the data in Table 14:

Pb
(
e | ew,dfree

)
≈
(
E [w|d = dfree]

Nout

)
· E [mult|d = dfree] ·Q

(√
(dfree) ·

2Rcεb
N0

)

≈
(
3.89

25

)
·
(

23

10, 000

)
·Q

(√
(9) · 2Rcεb

N0

)
, for the length-24 sub-vector interleaver

≈
(
3.86

36

)
·
(

4

10, 000

)
·Q

(√
(9) · 2Rcεb

N0

)
, for the length-36 sub-vector interleaver

The probability of a bit error due to an error pattern corresponding to a weight-

dfree,eff = 17 codeword is computed using the data in Table 14:

Pb
(
e | ew,dfree

)
≈
(
E [w|d = dfree]

Nout

)
· E [mult|d = dfree] ·Q

(√
(dfree) ·

2Rcεb
N0

)

≈
(
4.06

24

)
·
(
50197

10, 000

)
·Q

(√
(17) · 2Rcεb

N0

)
, for the length-24 sub-vector interleaver

≈
(
4.00

36

)
·
(
16143

10, 000

)
·Q

(√
(17) · 2Rcεb

N0

)
, for the length-36 sub-vector interleaver

These two error probabilities form an asymptotic lower bound on the BER and are

plotted as lower bounds in Fig. 30 and Fig. 31.

We computed the total weight distribution for average length-24 and length-36

sub-vector interleavers by averaging the weight distributions of 100, 000 randomly

generated sub-vector interleavers. Using these average weight distributions, we com-

puted the union bounds for the SCCC employing average length-24 and length-36

sub-vector interleavers. We see in Fig. 30 and Fig. 31 that the simulated converged

BER performance is bounded above and below by these two bounds at low SNRs,

and approaches the lower bound at moderate and high SNRs.

6.2.1 Interleaver Gain

Using the weight distributions computed for length-24 and length-36 average random

and average sub-vector interleavers (see Tables 15 and 14), we plotted the union

bound on the BER for the SCCC in Fig. 16 employing these four types of interleavers
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Figure 30: Simulated converged BER of the SCCC shown in Fig. 16 employing
a length-24 sub-vector interleaver plotted along with the union bound and a lower
bound on the SCCC.

Table 11: A table of outer encoder terminating input sequences and terminated
output sequences that generate weight-7 terminating input sequences to the inner
encoder.

Input Sequence, m Output Sequence, y

[ 1 0 1 0 1 0 0 ] → [ 1 1 0 1 1 0 0 ]
[ 1 1 0 1 0 1 1 ] → [ 1 0 0 0 0 0 1 ]
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Figure 31: Simulated converged BER of the SCCC shown in Fig. 16 employing
a length-36 sub-vector interleaver plotted along with the union bound and a lower
bound on the SCCC.

Table 12: Weight-7 interleaver input and output sequences

Interleaver Input Interleaver Output
p p

π



1 1 0
1 1 0
0 1 1
1 0 0


 ,




1 1 1
0 0 0
1 0 0
0 1 0
1 1 0






1 1 0
1 0 1
0 1 0
1 1 0






1 1 0
1 1 0
0 1 1
1 0 0


 ,




1 1 1
0 0 0
1 0 0
0 1 0
1 1 0







1 1 1
0 0 · · ·
1 0 0
1 0 · · ·
0 1 0
0 1 0
0 0 · · ·



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Table 13: dfree and dfree,eff codewords

Inner Encoder Input Inner Encoder Output

dfree



1 1 0
1 0 1
0 1 0
1 1 0






1 0 0
0 0 0
0 0 0
0 1 0




dfree,eff




1 1 1
0 0 · · ·
1 0 0
1 0 · · ·
0 1 0
0 1 0
0 0 · · ·







1 0 1
0 0 · · ·
1 1 1
1 0 · · ·
0 1 1
1 1 0
0 0 · · ·




in Fig. 32. In Fig. 33, we plotted the ratio of the union bound on the BER for the

coding scheme employing the length-24 and length-36 average random interleavers

and compared it to the ratio of the union bound on the BER for the coding scheme

employing the length-24 and length-36 average sub-vector interleavers. We see in

Fig. 33 that the BER decreases approximately 1.43 times faster (roughly equal to

the increase in the length of the interleavers) for the average sub-vector interleaver

than for the average random interleaver. This is what we described as an increase in

the interleaver gain in Section 4.3 due to sub-vector interleaving of the weight-dfree

and weight-dfree + 1 codewords from the outer encoder into non-terminating input

sequences for the inner encoder.
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Table 14: Weight distribution up to weight 48 of SCCC in Fig. 16 employing an
average length-24 and an average length-36 sub-vector interleaver. The codeword
weight, d, expected input sequence weight, E [w], and expected multiplicity, E [mult],
was computed from an ensemble of 100, 000 randomly generated interleavers.

Length-24 Length-36
d E [w] E [mult] · 10000 E [w] E [mult] · 10000
9 3.89 25 3.86 4
10 2.90 9 2.00 1
11 3.85 1044 3.85 195
12 2.94 430 2.91 53
13 3.86 6362 3.96 1445
14 3.27 3682 3.14 601
15 3.88 20696 3.91 5490
16 3.94 20105 3.64 3791
17 4.06 50197 4.00 16143
18 4.59 69212 4.23 16561
19 4.51 102568 4.25 41349
20 5.13 154461 4.77 57131
21 5.17 183954 4.77 107762
22 5.57 238186 5.30 174220
23 5.78 265790 5.41 293380
24 5.97 275248 5.81 490880
25 6.27 274155 6.03 789250
26 6.42 243034 6.34 1271700
27 6.80 198344 6.60 1936800
28 6.93 159948 6.88 2921500
29 7.44 110411 7.16 4163400
30 7.46 72489 7.42 5753100
31 7.85 50095 7.70 7560800
32 9.09 29401 7.96 9489000
33 8.17 14174 8.24 11428000
34 7.79 3643 8.49 12991000
35 8.31 2179 8.76 1417000
36 7.94 131 9.02 14648000
37 − − 9.27 14374000
38 6 15 9.54 13477000
39 − − 9.79 11933000
40 − − 10.05 10064000
41 − − 10.30 8058700
42 − − 10.56 6082100
43 − − 10.81 4366100
44 − − 11.06 2951000
45 − − 11.32 1866900
46 − − 11.56 1118600
47 − − 11.85 620820
48 − − 12.19 327670
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Figure 32: Error floor for the SCCC shown in Fig. 16 employing length-24 and
length-36 average random sub-vector interleavers.
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Figure 33: Ratio of length-24 to length-36 error floors for both average random and
average sub-vector interleavers for the SCCC shown in Fig. 16.
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Table 15: Weight distribution up to weight 48 of SCCC in Fig. 16 employing an
average length-24 and an average length-36 random interleaver. The codeword weight,
d, expected input sequence weight, E [w], and expected multiplicity, E [mult], was
computed from an ensemble of 100, 000 randomly generated interleavers.

Length-24 Length-36
d E [w] E [mult] · 10000 E [w] E [mult] · 10000
7 3.89 41 4.80 11
8 2.90 24 4.48 6
9 3.89 394 4.81 141
10 2.90 614 4.75 169
11 3.85 2563 4.88 913
12 2.94 3717 4.90 1017
13 3.86 9121 4.97 3098
14 3.27 14157 5.07 3928
15 3.88 26566 5.20 8183
16 3.94 44877 5.42 11615
17 4.06 75606 5.63 20879
18 4.59 127113 6.00 33009
19 4.51 197733 6.30 55540
20 5.13 302844 6.79 91721
21 5.17 428350 7.23 151528
22 5.57 581556 7.76 259581
23 5.78 745551 8.23 435621
24 5.97 889280 8.72 745241
25 6.27 1000725 9.19 1250965
26 6.42 1051819 9.62 2083833
27 6.80 1028959 10.04 3389708
28 6.93 939935 10.45 5383614
29 7.44 803775 10.87 8206630
30 7.46 634427 11.27 12095315
31 7.85 467703 11.67 17146812
32 9.09 322422 12.07 23281193
33 8.17 201610 12.46 30250507
34 7.79 116828 12.86 37611086
35 8.31 63358 13.25 44622945
36 7.94 29007 13.64 50564538
37 − 10360 14.03 54667228
38 6 3976 14.42 56360350
39 − 1565 14.80 55395911
40 − 274 15.19 51893789
41 − − 10.30 46296176
42 − 21 15.57 39339862
43 − − 15.96 31793380
44 − − 16.34 24422132
45 − − 16.73 17800211
46 − − 17.11 12294438
47 − − 17.50 8029649
48 − − 17.88 4940102
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CHAPTER VII

CONCLUSION

This chapter is a summary of the contributions of this research. Areas where this

research may be continued in future work are also noted here.

7.1 Dynamical System Representation of Turbo

Codes

The constituent encoders in a turbo coding scheme can be represented as dynamical

systems. In this representation, the input to the dynamical system are the message

bits to be encoded, and the states of the dynamical system correspond to the delay

states of the encoder. This representation of the overall turbo coding scheme led to

new insights in the performance of interleavers in turbo codes. These insights led to

a method of interleaving called “sub-vector interleaving.”

Future research in this area could include representing the constituent encoders

in a turbo-coded modulation scheme as dynamical systems.

7.2 Sub-vector Interleaving

Sub-vector interleaving is a low-complexity method of interleaving that was devel-

oped based on the understanding of interleaver performance in turbo codes gained

by examining the constituent encoders as dynamical systems. Sub-vector interleavers

can be used with both PCCCs and SCCCs. In both of these cases, the free dis-

tance codeword can be increased, and the multiplicity of low weight codewords can

be decreased. Sub-vector interleavers can be scaled up to any length desired without

altering the original design properties and without increasing the complexity of the
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method.

Sub-vector interleaving allows for the constituent encoders to be terminated in the

zero state by appending a single tail sequence to the input sequence. Normally, tail

sequences must be applied to the input sequence at each encoder, since interleaving

interferes with the terminating tail sequence in most cases.

Distance spectrum analysis of the turbo codes employing sub-vector interleaver

showed that sub-vector interleaving increases the average free distance codeword

weight and lowers the error floor compared to an average random interleaver. These

analytical results were verified by simulation the turbo code performance in a channel

corrupted by additive white Gaussian noise.

In the case of SCCCs, the interleaver gain of the coding scheme can be increased

with the use of sub-vector interleavers. An upperbound on the amount of increase in

the interleaver gain was derived.

Future work in this area could include examining the delay characteristics of a

sub-vector interleaver, an issue addressed in [16]. Also, the application of sub-vector

interleaving with tail-biting termination to PCCCs or SCCCs could be studied.

Tail-biting termination for a recursive convolutional encoder1 allows the encoder

to be initialized in any state (not just the zero state) as long as the final state of the

encoder is the same as the initial state. For example, we can determine the initial

and final states of a recursive convolutional encoder that results in tail-biting termi-

nation by revisiting the autonomous dynamical system representation of a recursive

convolutional encoder in (5):

[
v (N)
m (N)

]
= A ·

[
v (N − 1)
m (N − 1)

]
= AN ·

[
v (0)
m (0)

]

1Assume the usual case of a primitive feedback polynomial. The period of a primitive feedback
polynomial, σ, is 2k − 1, where k corresponds to both the degree of the polynomial and the number
of delay states of the encoder.
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where

v (0) = v (N) = v, for tail-biting termination, (40)

m (N) =
[
0 0 · · · 0

]′
, (41)

and

AN = Am·σ =




AN
k Vk,σ · · · Vk,σ
0 0 · · · 0
...

...
...

0 0 · · · 0



.

The k× k matrix, AN
k , in the left hand corner of A

N is the state transition matrix of

the non-autonomous dynamical system representation of the encoder given in (4) to

the N th power. Therefore, tail-biting termination is achieved when the summation

of the length-σ sub-vectors of the input sequence contained in m (0), mσ (0) ,satisfies

the following:

(
I + AN

k

)
v = [Vk,σ] ·mσ (0) .

As usual in the case of PCCCs, error patterns corresponding to codewords generated

by terminating input sequences for both encoders are least likely to be corrected by

the decoder:

v =
(
I + AN

k

)−1
[Vk,σ] · (mσ (0) + eσ)

=
(
I + AN

k

)−1
[Vk,σ] ·mσ (0) , if [Vk,σ] · eσ = 0.

Sub-vector interleavers are designed to permute terminating input sequences to one

encoder into non-terminating input sequences to the other encoder. Therefore, sub-

vector interleaving should perform well in the case of tail-biting termination just as

it did for the case of zero-state termination explored in this research.
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7.3 Sub-vector Constrained S-random Interleavers

Incorporating S-random interleaving into the sub-vector interleaving method resulted

in another method of interleaving called “sub-vector constrained S-random interleav-

ing.” This combination of methods of interleaving caused improvements in the BER

performance of turbo codes using either straight S-random or sub-vector interleavers.

The spread parameter, S, is an important design consideration since it governs

the amount of spread between bits in the output sequence of the interleaver, but it

also affects the time required for the S-random interleaver to generate an interleaver.

A maximum value for the S-parameter based on the length of the interleaver was

described. The effect of the sub-vector constraint on the spread parameter was also

investigated. A technique for randomly generating sub-vector constrained S-random

interleavers with maximum spread was presented.

Future work in this area could include investigating prunable sub-vector con-

strained S-random interleavers, as discussed in [20], for use in applications where

various interleaver lengths are required and storage of multiple interleavers is not an

option.

7.4 Decoder Convergence

The convergence of the turbo decoding algorithm to maximum-likelihood decisions

on the decoded input sequence is required to demonstrate the improvement in BER

performance caused by the use of sub-vector interleavers. Convergence to maximum-

likelihood decisions by the decoder did not always occur in the regions where it was

feasible to generate the statistically significant numbers of error events required to

approximate the BER performance for a particular coding scheme employing a sub-

vector interleaver. Therefore, a technique for classifying error events by the mode

of convergence of the decoder was used to illuminate the effect of the sub-vector

interleaver at SNRs where it was possible to simulate the BER performance of the
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coding scheme.

Future work in this area could include developing fast simulation methods for

turbo coding schemes. Research described in [35] [40] could be adapted for use in

turbo coding schemes.
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