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La Curiosité nous tourmente et nous roule, Comme un Angel qqui fouette des
soleils. Singuliere fortune ou le but se déplace, Ettanit nulle part, peut étre n’importe
ou ! Ou ’'homme, dont jamais I'espérance n’est lasseyBouver le repos court toujours
comme un fou'!

— Charles Baudelaire, Les Fleurs du Mal, 1861

Curiosity tortures and turns us Like a cruel angel whipphggun.
Whimsical fortune, whose end is out of place, And, being nenghcan be anywhere!

Where Man, in whom Hope is never weary, Runs ever like a madmearching for repose.

— Gedtfrey Wagner, Selected Poems of Charles Baudelaire (NY: GPo¥ss, 1974)
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SUMMARY

In a large number of scientific and engineering applicatitmescost of deploying high-
tech sensors and the time required to acquire high-resalsignals have become impracti-
cal. To address this issue, the theory of Compressed Se(@@8)gvas developed as a hew
acquisition scheme that can outperform traditional Nyrage systems. This approach
yields significant savings during acquisition by pushing domputational burden to the
processing stage, as the recovery of a signal from its CSur&agnts can be a com-
putationally expensive problem. One classic approachisogioblem, known as sparse
recovery problem, consists in solving a complex optim@atprogram. Despite the nu-
merous digital solvers proposed to perform this task, noeearently éicient enough to
achieve real-time recovery of very large signals.

Meanwhile, optimization has become a major tool to recadtsaive many problems
in addition to sparse recovery and across many scientificatsn Developing ficient
discrete-time algorithms to solve general classes of apéition programs has driven many
research €orts in the digital signal processing community. Despiteriany advances in
digital technology, the speed and powé&iaency of digital computers reaches a bottleneck
when the size of the data becomes extremely large. On theacgnadvances in analog
technology, such as very-large-scale integrated circhdse the potential to outperform
digital computing, yielding gains in both speed and powf#ciency for certain problems
of very large size. For this reason, there is a renewed sit@reising dynamical systems
to solve complex optimization programs.

To answer the need for a fast solver for the sparse recovehtgim, a continuous-time
dynamical system, called the Locally Competitive AlgamitlfLCA), has been proposed.
Its evolution is ruled by a set of ordinaryftiérential equations (ODESs) with a highly par-
allel structure. Implementing this system on a dedicatedagnchip has the potential to

yield a faster and more powefheient solver. However, before investing significant time

Xiv



and money to develop and manufacture this circuit, it is irtgyd to assess its performance
guarantees. The goal of this thesis is to provide a matheatatnalysis of the solution pro-

vided by the LCA as it is evolving with time. The contributaf this thesis are threefold.

e First, theoretical tools for the analysis of nonlinear réuwetworks for optimization
are developed in a general setting. In particular, new tesuk presented for the
convergence study of a class of networks that extend themustate of research in
the field. In Chaptee, the background material necessary to develop the analytic
tools is presented, along with a summary of the previoudtsesuthe literature. In
Chapter3, the theoretical findings obtained for an extended clas®ofal networks
are gathered. These findings include a proof of convergeheawhe fixed points of
the system are isolated, a proof of convergence in the caseevitie fixed points are

not isolated, and an analytic expression for the converspeed.

e Second, in Chapted, the previous results are specialized to the case where the
network solves the;-minimization program to recover a sparse signal. The
minimization program is the most famous optimization pewgifor sparse recovery
in CS and comes with strong performance guarantees. Thgsaat Chapted
shows that the LCA takes arfieient path toward the solution of this program and
yields an estimate for the convergence speed that depehdsmihe problem pa-
rameters. Several interesting parallels to propertiesgifad sparse recovery solvers

are brought to light in this study.

¢ Finally, the convergence properties of the LCA and of theatiee Soft-Thresholding
Algorithm (ISTA) — its discrete-time counterpart — are 3zald in the case where the
underlying sparse signal is time-varying and the measuntsage streaming. Such a
study is of great interest for practical applications thastoperate in real-time, such
as tracking problems or closed-loop control systems. Widule/ergence guarantees

exist for most sparse recovery solvers in the static casalythamic case surprisingly
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lacks theoretical analysis. Of particular interest is tbensrio where the number
of iterations is constrained by the sampling rate. Thisasitun arises in practical
applications, where data are streaming at high rates ordimpgtational resources
are limited. The results of this study are presented in Ghidptand demonstrate
that the LCA and ISTA canficiently track a time-varying signal from streaming

measurements and achieve an error that is essentiallyaptim

The contributions of this thesis are organized in FigurBrior to this work, the existing
analysis was concentrated on discrete-time algorithmsh@mrecovery of static signals.
For instance, the ISTA has been shown to converge with lirearto the solution of the
¢1-minimization recovery problem, which comes with accurgagrantees. This thesis has
provided convergence and accuracy results for the contsitilme LCA for the recovery of
static signals, and for the discrete-time ISTA and the carmus-time LCA for the recovery

of time-varying (dynamic) signals.

.. .. A
Static input Dynamic input
4 ) -ISTA - ISTA
Discrete- - linear convergence - linear convergence
time - accuracy result - accuracy result
algorithm
Chapter V
. -LCA -LCA
Continuous- | exponential convergence | - exponential convergence
time - accuracy result - accuracy result
algorithm
\_ Chapters III and IV Chapter V Y,

Figure 1:Visualization of the thesis contributions. The cells inlgargrey represent the ar-
eas where this thesis has made significant contributiors cé&h in lighter grey represents
the prior state of knowledge. The cells contain a summarhefésults and the chapters
where they appear.

XVi



CHAPTER|

INTRODUCTION

Optimization plays a key role in many modern signal-proicesapplications, including
image denoising, recovery, and inpainting, data clusgeand more. In the emerging field
of CS, a complex optimization program composed of a dataitydielrm and a nonlinear
sparsity-enforcing term can be used to recover sparselsifpoan few linear measure-
ments. However, when signals are high-dimensional or rsirgga at high rates, digital
solvers tend to be too slow and computationally intensiveeldorm real-time recovery.
On the contrary, analog networks have a long history as againon solvers and have been
shown to yield significant speed and power improvement dwagr tligital counterpartdlj.
The focus of this thesis is to understand what type of cootisttime architectures can be

used to solve optimization problems and to analyze thefopmance mathematically.

1.1 Compressed sensing

Researchers in all fields, ranging from such disparate feddwedical imaging to cosmol-
ogy, are currently faced with increasing amounts of datadda with this problem and
reduce this data to a more manageable size, CS theory hasspp new method for
acquiring signalsg, 3]. In place of sampling a high-resolution signal and comsiresit
as a post-processing step, only a small number of linearune@ents are acquired in the
CS approach. Thanks to this technique, the number of seasdracquisition time may be
greatly reduced, thus limiting the cost at the front-enchefdata stream in a wide range of

applications.

1.1.1 Sparse representation
Underlying CS theory is the fact that most signals can beesaprted by a sparse vector

in an appropriate dictionary. A vecta in RN is calledS -sparsdf it contains onlyS



non-zero cofficients. Throughout this thesis, the vecadris unknown and referred to as
target signal The termoptimal supportrefers to the support &, i.e., the set of indices
that correspond to the non-zero entrieinand is denoted by;. If the location of the
non-zero elements are known, the sigaatan be acquired, represented, transmitted, and
stored diciently. The main advantage of CS is to provide an acquisgitheme that only
requires the number of measurements to be on the order ohttexlying sparsitys rather
than the ambient dimensid, even when the location of the non-zero entries is not known

in advance. CS measurements are non-adaptive and takettte fo
y=da" +e¢, (1)

where the matrixp, calledsensingor measurement matrias dimensiom x N, where

typically M < N, ande is a noise vector iiRN.

1.1.2 Restricted isometry property

The choice of the measurement matrix is critical to the recpef the target signal’ from
CS measurements. Intuitively, the vectoobtained via 1) must retain the information
contained im’. For this condition to hold, one possible requirement isffdo satisfy the

Restricted Isometry Property (RIP) developed4h [

Definition 1 (Restricted Isometry PropertyJhe matrix® satisfies the RIP of order K if
there exists a constante (0, 1), such that for any K-sparse vectorexRV, the following
holds:

(1= 6) XI5 < XI5 < (1 + 6) I (2)

If this is the case, the matrik is also said to satisfy the RIP with parametéks ). The

RIP-constanty of order K is defined as the smallest positive conséasdtisfying(2).

Whené is close to 1, the matrid acts as a near isometry on &lsparse vectors.
WhenK = 2S, the RIP ensures that two distirfstsparse vectors will remain distinguish-

able after they have been projected onto the rang®.ofln addition to being used to



establish recovery results, the RIP yields several bounde@eigenvalues of certain sub-
matrices of®'® that are presented in Appendx and are useful to the analysis of both

the LCA and its digital counterparts.

1.1.3 Subgaussian random matrices

Some classes of matrices are known to satisfy the RIP with pwigbability. In particular,
Theorem 5.65 inq] states that if® is anM x N random matrix whose columnb, are
independent subgaussian random vectoiMmwith ||@,, = 1, then for any sparsity level
1 < S < Nandanys € (0,1), the matrix® satisfies the RIP with parametdS, ) with
high probability, provided

where> means that the quantity on the left is greater than the oyantithe right up to
a scaling factor. Examples of subgaussian matrices inaladdéom matrices with inde-
pendent and identically distributed Bernoulli columnshainit norm and matrices whose
columns are drawn independently and uniformly at randommftiee unit sphere. In prac-
tice, it is unknown how to determine the RIP constant for agimatrix in polynomial

time. However, rearranging the terms in the expressionapokes a useful estimate:

Slog(N/S)
6~ T 3)

where~ means “equal up to a constant factor”. This estimate is afted to evaluate
the number of measurements necessary for a digital solwvecctiver a sparse signal (see
Section2.1) and will be useful to compare the theoretical guarantetaimdd for the LCA

to standard digital approaches in Chapter

1.1.4 Sparse signal recovery
Ideally, the following optimization program could be usedrécover the target signal

from its compressed measurements:

~ 1
a' = arg minz lly — @all5 + Allallo - (4)

acRN



The first term is a data fidelity term (the mean-squared eand) the second term is the
{o-pseudo-norni-||o, which counts the number of non-zero elements. The paramere-
vides a tradefd between the two objectives. While it could recover the adrselution, this
program is NP-hard, meaning that it is unknown if a solutian be attained in polynomial
time.

To obtain a solution to the sparse recovery problem in patyiabtime, one of the most
famous and well-studied approaches is £heninimization problem, which replaces the
{o-regularizer in 4) with its closest convex nornjlal|; = >; |a|. This choice of regularizer
yields the following convex program:

&' = arg min lly - ®al + lal. (5)
acRN
This technique is known as convex relaxation. Th@orm makes this program easier to
solve while still enforcing sparsity on the solution, andlgls comparable performances to
the ideal sparse recovery probled) [6].

Generalizing further, the following objective functionnche minimized:

N
V(@) = 5lly- al + " Claw). ©)
n=1

whereC(-) : R — R is referred to agost functionand is chosen to enforce the sparsity
requirement on the solution. For instance, a class of fanstcalledsparseness measures

was developed in7] and shown to yield sparse solutions.

Definition 2 (Sparseness Measurd function f(:) : [0, o) — [0, o) is called asparseness
measuréf it is nondecreasing, not identically zero, witlj0) = 0 and such that x> f(x)/x
is nonincreasing o0, «). Then, the associated (sparsity-inducing) cost funcsatefined

for alla € RN by

N N
2, Clan) = ) f(iau.
n=1 1

n=

In particular, the identity function satisfies the requiestts to be a sparness measure,

so thef;-norm is a sparsity-inducing cost functions according te tefinition.



1.1.5 Recovery guarantees

The sharpest result obtained for the constrained formdfgquires the measurement ma-
trix @ to satisfy the RIP with parameters§2v2 — 1) [8]. In [9], an expression for the
error associated with solving) under assumptions similar to the RIP is given and can be

re-written for the purpose of this thesis as
|a" - a'||, < Cod VS + Cyo, (7)

whereC, andC; are some small constants amds a bound on the energy of the noise:
llell, < o. These results show that recovery wi) (s uniform and stable Uniform
recovery means that one choice of a measurement n@atran recoveeverysparse signal,

while stable recovery means that the error scales slowly thi noise level.

1.2 Locally Competitive Algorithm

The Locally Competitive Algorithm (LCA) proposed by Rozalid al. in 200810] is a
continuous-time dynamical system that is designed to seihagse recovery problems in
the form of ). This algorithm can be viewed as a network of nodes whoskigwno is

described by a first-order ordinaryfidirential equation.

1.2.1 The LCA differential equation

To each columm,, of the matrix® is associated a node or “neuron” in the network, whose
internal state is modeled by a continuous-time variai(®, forn = 1,...,N. The evolu-
tion of the state variables with time is governed by a set apbed nonlinear ODEs of the

form
TUt) = -u(t) — (®T® - a(t) + dTy
: (8)
at) = Tu(u)
dF(t)
dt
of ® are assumed to be normalized to oni&€, ||, = 1. The input to the network is a

The notatior(-) refers to the derivative with respect to tinfe(t) = . The columns

vector of measurementsin RM whose projection ont@ generates the set afriving



inputs @y, forn=1,...,N. These scalar values reflect how well the ingunatches
each dictionary element. The state variables produce ta#pufor n=1,..., N through
the activation functioril,(-) : R — R. By a slight abuse of notatior,,(-) applied to

a vectoru € RN means that the function is applied entry-wise. Each ouspufeeds
back into each noda, proportionally to the corresponding feedback weig¥t, of the
interconnection matridV = ®"® -1 (i.e., a modified Grammian matrix for the dictionary).
There is no self-feedback, as the diagonal elementg afe zero. When two nodes overlap
(resulting in a large inner product), the correspondingliieek weight is close to one,
while it is zero for orthogonal dictionary elements. Thouba interconnection matrix is
symmetric, the total inhibition is not because it is also mlated by the activity of each
individual node. This feedback structure ensures thatstit carry the same information
about the signal inhibit each other. The parametegpresents the time constant of the
analog system implementing the ODE, and is characterizetidyhysical properties of
the system (such as capacitance, resistance and levelsotiigent). Since it does not
affect the mathematical analyses of the LCA, it is assumed ifalh@wving thatr = 1
except when its influence on the convergence speed is madleiexphe architecture of

the LCA is shown in Figur.

1.2.2 A Hopfield-type neural network

Due to its feedback structure combined with an activatiorcfion before the output stage,
the LCA is a type of Hopfield neural network (HNN), a pionegrgystem of analog com-
puting. The first HNN introduced by John J. Hopfield in the yd®80s is a network of
simple computing units that can take on one of two valdds [Contrary to earlier neural
networks, such as the perceptrdi?], the HNN contains feedback from every output to
every input variable. This structure is characteristic dftvare now known aecurrent
neural networksin a later paper, Hopfield proposed the same network streigtith neu-
rons that have graded, rather than binary, respod$gsif both cases, Hopfield shows that

a global behavior emerges from this intricate structurerévipecifically, Hopfield shows



Figure 2: The LCA neural network is designed to solve sparse recovailems. The
activation function may be unbounded and not strictly iasieg. The matrixp has di-
mensionM x N with M < N, so the interconnection matri% may be singular and have
both positive and negative eigenvalues.

that the state variables of the network evolve to approadbl@agequilibrium point.

1.2.3 Limited analysis

An important contribution of Hopfield’s work resides in piog theoretically that the out-
puts evolve towards an equilibrium. For this proof, Hopfidkfines a function that rep-
resents a notion of energy for the system known agapunov functionthat is presented
in more detail in ChapteR. If this energy function is always strictly decreasing as th
network evolves, then the output trajectories evolve tdwarstable fixed point. Similarly,
Rozell and al. showed irL[)] that the objective function irg) is decreasing along the LCA
trajectories provided thalt)(u) > 0 onR and that the following relationship between the
cost penalty tern€(-) and the activation functiom,(-) is satisfied for alk, € R such that

a, # 0:
,4C(@) _

da, Un — @n = Up — T, (Un).



Figure 3:Plot of the soft-thresholding activation function. Wherstlunction is used as the
activation functionr ,(-), the LCA solves the class#z-minimization optimization problem
used in many sparse approximation applications.

In the case of;-minimization, the cost penalty i8(x) = |X| and the associated activation

function is the soft-thresholding function shown in Fig@rand defined by:

0, lun(t)] < A

an(t) = Ta(un(t)) = .
Un(t) — A sign(un(t)), un(t)l > A

9)

While a nonincreasing objective function is a necessarypégnty for a network that
solves an optimization problem, it is notfBaient to conclude that the state converges to a
fixed point (or to a subset of fixed points). To prove convecgeithe Lyapunov approach
requires that the objective be strictly decreasing on riatiemary trajectories. Moreover,
one must show that the fixed points correspond to actualisnokiof the optimization pro-
gram. Both of these results are necessary guarantees tooefake relying on a system in
engineering applications. Such guarantees have beemebta the literature for related
networks and are presented in Chaj&eiHowever, several characteristics distinguish the
LCA from previous studies and make its analysis particulanallenging. First, the LCA
activation function is often nonlinear and unbounded fafbems of interestin CS. In fact,
the LCA objective and activation functions are usually ndiiedtentiable everywhere. Sec-
ond, the LCA interconnection matri¥/ has a potentially large nullspace, sifde< N in

CS applications. For these reasons, it has be@culi to provide convergence guarantees



for the network. The mathematical tools necessary to dpualanalysis in this thesis and

previous results in the literature are the focus of the neapter.



CHAPTER I

BACKGROUND

The impetus of this thesis is théieient recovery of sparse signals from compressed mea-
surements using a continuous-time solver. This chaptanbeygth a review of standard
methods and solvers for sparse recovery. In addition teic@asethods and results for the
analysis of neural networks, more recent breakthroughsredlimitations are discussed.
Also introduced as needed are the analytic tools necessaytain the results presented

in this chapter and the findings in later chapters.

2.1 Sparse signal recovery

Significant €forts have been put into developing algorithms that can sbkveparse recov-
ery problem §) efficiently. These algorithms can broadly be divided into twtegaries:
relaxation methods that solve an optimization program aeddy algorithms that recover
the locations of the non-zero déieients iteratively. The LCA belongs to the class of
relaxation methods. Convergence and accuracy resultsbeare obtained in the digital
community via the RIP ing) for many algorithms. There are typically two kinds of re-
quirements that emerge from those studies: eithewst scale as/1VS or 6 is a small
constant independent of the sparsity leSelUsing the estimate faf in (3) for subgaus-
sian random matrices, the corresponding number of measmtsnareO (Szlog(N/S))
andO (Slog(N/S)), respectively. In practice, the results obtained for a nemd§ mea-
surementV = 0(82 Iog(N/S)) are stronger, but it is more desirable to obtain guarantees
that require a smaller number of measureméntS log(N/S)). Presented below are sev-
eral recovery algorithms that, while digital, show inténeg parallels to the properties of

the LCA that arise from the analysis in this thesis.
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2.1.1 Relaxation methods

While the accuracy results associated with £heninimization program ing) presented
in Sectionl.1.5are the most favorable to date, current digital solvergfaninimization
sufer from high computational costs and tend to lack converggimee guarantees. Some
state-of-the art solvers (e.g14-18]) can handle large-scale problems, but they usually do
not have strong guarantees about their running time. Onttiex band, iterative threshold-
ing schemes (e.g1p,20]) are simple and come with guarantees on the number ofibesat
needed to achieve a certain accuracy. Unfortunately, timsher may be large. Homotopy-
based schemes solv®) by tracing a piecewise-linear solution path as the trédesram-
eter A is varied R1,22]. If the solution is very sparse and the number of measurésrisn
large enough, these approaches can converge in eXadiyations, known as th8-step
property. For instance, for subgaussian random matrices that\w&Bsfthe homotopy for
(5) converges irs-steps for a number of measuremekts- 0(82 Iog(N/S)) [23]. While
the accuracy guarantees for the above algorithms leadt®atdhe-art results, their com-
plexity prevents their use in real-time applications fonmarge signals or data sampled at

very high rates.

2.1.2 Greedy algorithms

Greedy algorithms solved] by recovering the support of the original signal iteratve
These solvers are faster than relaxation methods in gebetdlave less sharp performance
guarantees. The most basic greedy algorithm is Orthogoréativhg Pursuit (OMP),
which adds to the support the element that has the strongasiation with the resid-
ual at each iteration. Conditions on the RIP for OMP to rective target signal accurately
in O(S) iterations were obtained in the noisele2d][and noisy case<2f]. In the case of
subgaussian random matrices satisfyi8ig the corresponding number of measurements is
on the order oD (Slog(N/S)). Recent work has also shown that OMP can recove®-an
sparse signal in exactly iterations {.e., has theS-step property)26]. The corresponding

number of noiseless measurements is on the ord@(®flog(N/S)) for random matrices
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satisfying @). In contrast to OMP, Regularized Orthogonal Matching Bii(ROMP) [27]
and Compressive Sampling Matching Pursuit (CoSaMB))4dd a set of nodes at each it-
eration. Both ROMP and CoSaMP guarantee uniform and stabteery inO(S) iterations
from only O(S log(N/S)) measurements for random matrices satisfyB)g KHowever, the

requirements on the RIP constant for these algorithms agletlsi stricter than necessary

for £1-minimization:dgs <
logS

andds < 0.1 for ROMP and CoSaMP respectively.

2.2 Neural network analysis

Contrary to the solvers discussed in the previous secti@ ] CA is a continuous-time

algorithm, and belongs to the class of Hopfield-type neuetdvarks. The convergence
analysis for a continuous-time system cannot be done instefmumber of iterations as
in the digital case. When analyzing a neural network, thenrgaal is to determine the be-
havior of the state and output variables with respect to.tim@articular, the outputs need
to settle to an appropriate equilibrium point for the netvtar be suited for optimization,

and an estimate for the convergence speed needs to be detdrniihis section presents

some definitions and some tools for determining the stglwfia network.

2.2.1 Stability and convergence

For any functiorF(-) : RN — RN, afixed pointof the ODE
X(t) = F(x(t),  vt>0, (10)

is a constant vectax € RN such that-(x*) = 0. There exist several notions of stability
that describe the evolution of trajectories both locallg giobally near a fixed point. First,
the notion of Lyapunov stability describes the behaviorha trajectories locally around
a fixed point and guarantees thak(f) starts close to a fixed point, it will remain nearby.
Formally, a fixed pointx* of (10) is (Lyapunov)stableif for eache > 0, there exists an

R > 0 such that, for all starting pointg with [|[X, — X*|| < R (i.e.,, X € Br(X*)) and all

12



Figure 4: A point is (Lyapunov) stable if a trajectory that starts tgafwithin a ball of
radiusR) remains nearby (within a ball of radiu$.

solutionsx(-) : R — RN with x(0) = Xo,
IXt) - X <e,  Vt>O0. (11)

This property is illustrated in Figuré As can be seen in the figure, this type of stability
does not guarantee that trajectories approach a fixed oiimha goes to infinity. However,
a fixed pointx* is calledasymptotically stablé, for any initial statest, € RN such thaix,

is in a neighborhoo®g(x*) of the fixed point for som® > 0, the solutionx(-) : R — RN
with x(0) = %o satisfytlimo X(t) = X*. It is globally asymptotically stabli this limit holds

for any X, € RN. In this case, every trajectory is guaranteed to approaahicue fixed
point ast goes to infinity.

These notions extend to neural networks. The netwdbgk i said to beglobally con-
vergent or equivalentlyglobally asymptotically stablef there exists a unique fixed point
x* that is globally asymptotically stable. On the other hamdhe trajectories can only
be shown to approachsetof stable fixed points, then the neural network is catiedsi-

convergent
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In addition to the question of stability, it is essential twokv how fast trajectories con-
verge for real-time applications. Of interest in this tlsasithe notion of an exponential
rate of convergence. The network(} is calledexponentially convergeno a fixed point
x* if there exists a constant> 0 such that for any initial point(0), there exists a constant
ko > 0 (which may depend or(0)) for which the solutionx(:) : R — RN of (8) with
X(0) = xg satisfy

lIX(t) — X|| < ko€, vt > 0.

The constant is referred to asonvergence speaif the system. When a network is expo-
nentially convergent, the distance to the fixed point decagglly and can be considered
small fort ~ 1/c. Whenc is known, an exact time to achieve a specified error can be

computed.

2.2.2 Lyapunov’s direct method

Lyapunov’s direct method, developed by Russian mathematitleksandr M. Lyapunov
in the late nineteenth century, makes the mathematicaysisabf the stability and con-
vergence of some neural networks easi)].[ The key to this method resides in finding a
positive-definite function that represents a notion of gndor the dynamical systeni().

If the energy function is nonincreasing along the systerajettories, then the fixed points
are stable. If in addition the energy function is strictlcrgEasing along all the nonstation-

ary trajectories, the fixed points are also asymptoticadple.

Theorem (Lyapunov’s Direct method)If there exists an open s&tthat contain) and a
function () : Q — R which is continuous and positive definite @nwith V() < 0 for
all x € Q, then \{-) is called a weak Lyapunov function f¢t0) and, the solution {t) = 0
is a stable fixed point of10).

If, in addition, V(X) < O for all x € Q\{0}, then \{) is called a Lyapunov function or strict

Lyapunov function fo10) and the solution ) = 0 is asymptotically stable.
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The time derivative/(-) can be computed using the classic chain rule:
V(X(1) = VV(X)TX() = VV(X)TF(X(),

whereV,V(x) denotes the usual gradient\éf-) at x. Since the ternx(t) does not appear in
the above expression, it is neither necessary to solve ffeettial equationl(0) explicitly
nor to apply the definition of stability directly to determithe stability of the fixed point.
These simplifications make the Lyapunov method extremedyulsand powerful for the
convergence analysis of neural networks.

The theorem can easily be adapted to a fixed pdinlifferent fromx(t) = 0. For this

case, it sffices to apply the theorem to the translateffiedential equation:
u(t) = F(u(t) + x9),

whereu(t) = x(t) — x*. Using the translated Lyapunov functig¥(t) = V(u(t) + x*), u(t) = 0

is a solution of the above ODE that has the same stabiligftas- x*.

2.2.3 Previous work
Using Lyapunov’s direct method, Hopfield showed that the Hdbviverges to a stable
fixed point that corresponds to the minimum of the energy tionc[13]. Later, these
ideas naturally led Hopfield to consider the reverse probl&tarting from an objective
function to minimize, he showed how to choose the neural ot\warameters to perform
the desired computatioB(]. He applied this technique to the traveling-salesmanlprab
in[30] and to linear programming ir8fl]. These were pioneering steps in the field of analog
computing that paved the way for many extensions. In pdaticthe LCA descends from
this lineage of neural networks designed for a specific agtition.

Unfortunately, not all optimization programs have the rssegy properties for Lya-
punov’s method to apply. Specifically, Hopfield’s paper oreéir programming3l] re-
stricts the matrixV to be symmetric with zeroes on the diagonal, the activatioiction to

be nondecreasing everywhere, and the activation and olgdahctions to be smooth and
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accept a derivative everywhere. The need for neural neswvbrkt can solve more com-
plex optimization programs has led researchers to analgumhnetworks that extend the
classic HNN.

To remove the symmetry condition on the interconnectiorrimahe authors of 32]
prove global asymptotic convergence when the intercororeatatrix is lower triangular.
In [33], the interconnection can be non-symmetric but must hawensgtric and positive
semidefinite submatrices. The result 8] removes the symmetry assumption altogether.
However, these results require the activation functiongdbunded and strictly increas-
ing. In [35], this condition is also removed by letting the activatiomdtion be possibly
unbounded and with slope zero. This result is particulargresting for the LCA, whose
activation function contains a thresholding region whéee dutputs are exactly zero over
some interval. Unfortunately, to show global asymptoticv@gence of such a system, the
authors of B5] develop the notion of a Lyapunov Diagonally-Stable matwkich requires
that the interconnection matrW be nonsingular. As stated before, for problems in CS

recovery, the interconnection matiki¥ may have a large nullspace.

2.3 Nonsmooth neural networks

While the LCA architecture is a type of HNN, its objective @fion does not satisfy the
smoothness requirement of the traditional Lyapunov amtroln an €ort to extend neu-
ral networks to more general classes of optimization, s¢y&pers have considered nons-
mooth objective functions. Their analysis relies on thearobf subgradient developed by
Clarke 6], and on the theory of dlierential inclusions as studied by Filippd®7]. The

typical approach considers a network that satisfiestaréntial inclusion of the form

X(t) € —aF(x(t)),

wheredF(X) represents the subgradientfef) at x. The next sections will introduce the

notions of subgradient, regularity and some useful cakrdsults.
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2.3.1 Subgradient

The subgradient extends the traditional notion of gradiefiinctions that are locally Lip-
schitz but not necessarilyftierentiable. The definition ;fubgradientalso calledyeneral-
ized gradientdeveloped in36] and [38] is used in this thesis.

A function F(-) : RN — R is calledlocally Lipschitzat x € RN if there existe > 0
and K > 0 such that for allx;, x; € B.(X) (i.e, in ane-neighborhood ofx), one has
IF(x1) — F(x2)| < K|[x1 — %2||. Alocally Lipschitz function is not necessarilyftérentiable.
However, Rademacher’s theorem implies that a locally lhggdunctionF(-) is differen-
tiable almost everywhere (a.e.) on any neighborhoadinfwhich F(-) is Lipschitz.

For a functionF(:) : RN — R locally Lipschitz atx € RN, there exist several definitions
related to the standard notion of directional derivativéhe Tusualone-sided directional

derivativeof F(-) atx € RN in the directiorv € RN is

F(x+tv) — F(X)
n :

F'(xV) = I{IQ

Since some nonsmooth functions may fail to admit one-sided/atives, this definition

can be relaxed to the following notion géneralized directional derivative

F°(x;v) = lim supF(er ) - F(y).

y—X t
tl0

With this definition, the existence of directional derivas of F(-) at x are not necessary.
For instance, the quantify’(x; v) is well-defined wheri(-) is only locally Lipschitz. This
notion has been generalized even further to functions tieadmly directionally Lipschitz
[39], but this is beyond the scope of this thesis.

Thesubgradienbf F(-) at x is the subset akN defined by
OF(¥) = {¢ e RV st F°(xv) 2 €'v, YveRN}.

For a locally Lipschitz function, this set is well-definedynempty and convex. Since

Rademacher’s theorem implies that) is differentiable a.e., the s&t- of points where
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F(-) fails to be diferentiable has Lebesgue measure zero. Then, the subdrsidigfifies

to the following definition 86):
OF (X) = co{_nm V(X)X — X% & S, % ¢ QF},
|—00

whereco is the convex hull, andS is any set of Lebesgue measure ORN. In other
words,dF(X) is the smallest convex set containing the limit points & ¢iiadients along
any sequence of pointg;} approaching while avoidingQr U S. WhenF(+) is smooth at
X, dF (X) is a singleton that coincides with the classic notion otiggatoF (x) = {VF(X)}.
For a convex function, this notion also coincides with th&éaroof subgradient in convex

analysis.

2.3.2 Generalized chain rule and calculus

The notion of regularity is essential to easily compute thiggsadient and apply the chain
rule to nonsmooth functions with equalfityThe functionF(:) : RN — R is regular at x

if F’(x;V) exists andF’(x;Vv) = F°(x;v) for all v € RN [36, Def. 2.3.4]. The following
chain rule concerns functions of the foi@(:) = F o H(:), whereH(:) : RM — RN and
F():RN = R.

Theorem (Chain Rule 1) Assume that the function(l : RM — RN has component func-
tions H,(:) : RM = R forn = 1,..., N, that each K() is locally Lipschitz and gferen-
tiable at xe RM, and ) : RN — R is locally Lipschitz and regular at £). Then, the

function G-) = F o H(') is locally Lipschitz and regular at x and

N
0G(X) = dF o H(X) = {Z {hVHL(X) st. ¢ € OF(H(X)) and? = (4, .. .,gN)}. (12)

n=1

In addition, Corollary 3 of Propositions 2.3.1 and 2.3.338][imply that if N functions
Fo() :RN =R forn = 1,...,N are locally Lipschitz and regular at anda,, > 0 for

n=1,...,N,then
N N
) [Z anFn) (%) = ) @ndFa(). (13)
n=1 n=1

without the notion of regularity, most of the propertiestirstsection hold only with an inclusion in one
direction rather than an equality between two sets.
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Finally, if G(-) = F o x(-) with x(-) : [0, +c0) — RN, then Theorem 2.3.10 ir8f] given
below yields a special case of the chain rule that is ofter uisehe study of the LCA

trajectories.

Theorem (Chain Rule 1) If F(-) : RN — R is locally Lipschitz and regular o®N and
X(") : [0, +0) — RN is differentiable o0, +c0), then Fx(-)) is also locally Lipschitz and

regular on[0, +0), its time derivative- (x(t)) exists for almost all (a.a.) * 0 and satisfies
FO() =Tx(). V¢ € aF(x(1). (14)

This theorem states that any elemérni the subgradient can be used to compute the

time derivative ofF (x(t)).

2.3.3 Previous work
Using these new tools, several papers have given convexgeslts for nonsmooth neural
networks. Unfortunately, several characteristics digtish the LCA from previous studies.
In [40], the objective function is linear, while it is piecewisadiar in B1], and nonlinear
but increasing and bounded in34, 42, 43]. On the contrary, for cases of interest, the
LCA activation function is nonlinear, unbounded, and elyantro on the intervalf2, 1].
Furthermore, contrary to previous work on nonsmooth systerammal shows that the
LCA dynamics satisfy

u(t) € —daV(a(t)),

rather tharu(t) € -9,V (u(t)) or a(t) € —0,V(a(t)) as in B4-46]. This difference is signifi-
cant since the state variablg3) could still be evolving while the objectivé(a(t)) remains
constant. Finally, the LCA interconnection mati¥ has a potentially large nullspace
sinceM < N, whereas other analyses assume the interconnection nato positive
definite @1] or nonsingular 83, 35]. For these reasons, it has beeffidult to provide

convergence guarantees for the LCA network.
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2.4 Finite length of trajectories

Techniques based on Lyapunov functions only prove connesy& a set of fixed points.
If there exists a set of connected fixed points, the trajeet@re only guaranteed to evolve
towards this set, but there is no certainty that they wilv@ge towards one unique point
in the set. In other words, trajectories are not preventeh fgrowing unbounded or os-
cillating indefinitely as they approach the solution set.c&# papers have developed a
new technique based on the tojasiewicz inequalli} fo overcome this limitation. While
the results obtained with this technique are strong, thegpataeadily apply to the LCA

specifics.

2.4.1 Subanalicity and Lojasiewicz inequality

The Lojasiewicz (gradient) inequality relies on geomepioperties of a function, and
relates diferences of a function near a point to the value of its gradiettiat point 7.
Formally, it states that for a real-analytic functi) : RN — R and for allx € RN, there

existsy € [0, 1), C > 0 andA > 0 such that the functioR(-) satisfies
IF(X) - FXI" < CIIVF(XII, VX € Ba(X).

Using this inequality, tojasiewicz showed that the trapeiets of networks of the form
X(t) = =VF(x(t)) have finite length, thus ensuring their convergence tanglsion even
when the fixed points are not isolatetl].

Recently, an extension of the tojasiewicz inequality wasgettgoed for nonsmooth
functions B4, Th 3.1.]. The gradient in the original formulation is regga by the non-

smooth slope, which represents the smallest norm of angpwviecthe sebF ().

Theorem (Nonsmooth tojasiewicz inequalitySuppose that a function(lf : RN — R is
subanalytic and continuous @& . Then, for any € RN, there exist € [0, 1), C > 0, and
A > 0 such that

IF() - F(QI" < CmOF(x),  Vxe Ba(X),
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where thenonsmooth slopef F(:) at x € RN is defined as

m(OF (¥)) = inf{lill,, & € OF (X)}. (15)

The nonsmooth tojasiewicz inequality requires the functid-) to be subanalytic
This property does not require the function to bfeatentiable, but it involves geometric
properties of the graph, such as algebraic manipulatiomsiis and intersections) of sets
defined by real-analytic equations and inequalities. Moegigely, a sef c RN is said to

besemianalytidf each pointx € RN admits a neighborhoot for which

q
AnN = J(){xeN, £ =0, g;() >0},
=1

p

i=1
where fi;(-), gij(-) : N — R are real-analytic functions forall¥ i < p, 1< j < g, and
p andq are some integers. A s8tis said to besubanalytidf it is locally the projection
of a semianalytic sef,e., each pointx € RN admits a neighborhood/ such thatB n
N ={xe RN, (xy) € A}, whereA is a bounded semianalytic subsefidf x R™ for some
M > 1. Finally, a functionF(-) : RN — R is said to besubanalytidf its graph, GraF =

{(x,y) st.y = F(X)}, is a subanalytic subset 8 x R.

2.4.2 Previous work
Several recent papers have used the tojasiewicz ineqt@mbtyow convergence of specific
neural networks to a single point even when the fixed poirgsnat isolated. In42], a

general approach is taken where the network’s equatioriegd®tm

u(t) = —Du(t) — VF(a(t))

a(t) = T(u())
In this paper, the functioris(-) andT () are assumed to be analytic (which implies the exis-
tence of derivatives of any order), and the activation fiomct (-) is required to be bounded

and strictly increasing. Thanks to the extension of the &iej@icz inequality to nonsmooth

functions, the result of this paper was extended to the noonimtase in45]. However, in
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this later paper only quadratic programming with linearstaaints is considered. 1@4],
the authors show how a network satisfying thfatential inclusioru(t) € —dF (u(t)) has
finite-length trajectories if-(-) is subanalytic and either lower semicontinuous convex or
lower-C2. Unfortunately, as explained in secti@r8.3 the LCA cannot be put in this form
as it satisfies a elierent inclusion, namely(f) € —0,V(a(t)) (see Lemmad). Finally, the
authors of 3] make use of the nonsmooth tojasiewicz inequality to préwa & network
of the form

u(t) € —Du(t) — aV(a(t)) + 0

a(t) = T(u(t)
converges to a singleton. However, the activation funatiust be bounded and the matrix
D must be diagonal with strictly positive entries, which daescomply with the specifics

of the LCA.
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CHAPTER Il

PROPERTIES FOR GENERIC SPARSE RECOVERY

For any engineering application, it is essential to obthevotetical guarantees on the be-
havior of a system before its deployment. The previous @ragbtowed that significant ad-
vances have been made in the field of neural network analysfertunately, the specifics
of the LCA neural network do not fit the necessary criteriaday of the existing ap-
proaches. In this chapter, theoretical results that expeedous requirements for neural
network analysis (in particular on the activation functard the feedback matrix) are pre-
sented. Using tools from nonsmooth analysis, the resutts®€thapter prove that the LCA

is well-suited for solving a wide class of nonsmooth optiatian programs by showing that

¢ the fixed points of the neural network correspond to critaints of the desired

objective function,

¢ the network trajectories converge to a fixed point from attyalstate when the fixed

points are isolated,

¢ the network trajectories converge to a fixed point from afityalstate even when the

fixed points are not isolated,
e the support of the solution is recovered in finite time, and
¢ the network trajectories converge exponentially fast fieomy initial state.

These guarantees are essential for a dynamical systemrmddsdig solve an optimization
program in real-world applications. The resulting classnefiral networks extends the

neural networks previously studied in the literature anth@results published idB-50].
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3.1 Nonsmooth objective

In the most generic case, the LCA is designed to solve opditioz programs with an

objective function of the form
1
V(@) = 3 lly - @al; + C(a), (16)

whereC(:) : RN — RN. For many practical applications, the cost funct®) is separable

into its component in each dimension:

N
C(a) = Z C(ay), VYa=(a,...,ay) € RN (17)
n=1

For instance, the cost function in theminimization objective takes the form of7) with
C(a,) = Ala,| for somed > 0. Sparseness measures presented in Defirtiprovide
another example of such separable cost functions. The mflioutty for the analysis
is the fact that the objective function is not necessariljedentiable everywhere. For
instance, the’;-minimization objective is not dierentiable at pointa € RN that have
one or more entries equal to zero. The theoretical resuliiseiriollowing sections show
under what conditions on the activation function the LCA barused to solve optimization
programs of the form1(6). The conditions imposed on the activation function areegain

and encompass a wide variety of objective functions usegarsg recovery.

3.2 Fixed points

The first result of this chapter concerns the fixed points eflt€A neural network and
presents a condition for them to correspond to solutionshefdesired objective. The

condition is general and assumes nothing about the formecdi¢hivation function.

Theorem 1. Assume that the cost functi@f-) : RN — RN in (16) is locally Lipschitz and
regular onRN. If the activation function T{-) : RN — RN in (8) and the cost function
satisfy, for all ac RN,

u—a=u-T,(u) e aC(a), (18)

then the fixed points of the LCA are critical points of the obye function.
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Critical points of the objective function iri6) are defined as points < RN that satisfy
0 € 9V(a*). The set of critical points includes the local minima andkime of V(). If the
objective is convex, then all of the critical points are lowenima. If it is strictly convex,
then there is a unique minimum and, as a consequence, the BEA tinique fixed point.
In Theoreml, the cost function is only required to be locally Lipschitdlaegular, which
is a weak requirement satisfied by many functions that are imspractice. For instance,
the cost function does not need to bé&elientiable. The&;-norm satisfies this condition,
and it will be shown later that the soft-thresholding satstihe relationshipl@) for this
cost function. For this theorem, the activation does noegssarily have to be continuous.
In the following, a cost function satisfyind9) is derived for the famous hard-thresholding
function, which is not continuous. Other activation funas satisfying 19) for several
sparsity-inducing cost functions of interest can be founfbl]. In the special case where

the cost functiorC(-) is separable and takes the form @¥), the following corollary holds.

Corollary 1. Assume that the cost functior{:-C: R — R in (6) is locally Lipschitz and
regular onRN. If the activation function J() : R — R in (8) and the cost function ©

satisfy, for all 4 € R,
Up — @ = Up — T/l(un) € ac(an), (19)

then the fixed points of the LCA are critical points of the obye function.

For example, when solving-minimization, since the left and right derivative of the
cost functionC(a,) = 1|a,| exist for alla, € R, the cost function is obviously locally
Lipschitz (with Lipschitz constant) and regular, and it is easy to check that its subgradient
is

Asign(a,), fora, #0
dC(an) = :

[-4,1], fora, =0
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Since the soft-thresholding functiof)(satisfies

Asign(uy) = A sign(a,), if |uy| > A (for which |a,| > 0)
Uy — @ = Up — T (Uy) =
Un, if u, € [-1,4] (for which a, = 0)

by Corollaryl, this expression shows that the soft-thresholding fundtiq9) satisfies 19)

and can be used to solve theminimization programg).

3.2.1 Simulations

Unless stated otherwise, all of the experimental resultthis thesis are obtained from
simulating the LCA dynamical equation8) (n Matlab using a first-order discrete approx-
imation with a step size of.001 and a time constant chosen to be equal #00.01. The
internal states are started at rast.(u(0) = 0) and the system is given enough time to
converge.

To illustrate the fact that the fixed points of the LCA corresg to critical points of
the desired objective function, three examples are studiethe first case, the soft- and
hard-thresholding functions are used to recover a spagsaldrom CS measurements. In
the second case, Tikhonov regularization is used as thetorgdéunction. The fixed point
reached by the LCA is compared to the solution of a digitalesdior sparse approximation,
called SpaRSAY42]. In addition to being a state-of-the-art solver, SpaRSAised for
comparison because it can take as an argument the speciffteosonC(:) to be used in

the optimization, while most other existing solvers onlydie £;-minimization.

3.2.1.1 Sparse recovery

Two optimization programs for sparse recovery are consdlidfirst, the soft-thresholding
functionin Q) is used. Since th&-norm was shown to satisfit9), Theoreml implies that
the LCA should solve thé;-minimization program ing). Second, the hard-thresholding
function defined byT,(u) = uif |u > A4 andT,(u) = O otherwise is considered. In Ap-
pendixD, it is shown how to construct an associated cost functiongaiisfies {9) when

the activation function has discontinuities. While theresponding cost function does not

26



exactly correspond to th&-pseudo norm (which is not locally Lipschitz at 0), it hasbee
shown in RQ] that the hard-thresholding function can be used to apprately recover the
solution to the ideaf,-minimization program4) (with a traded parameter ofi?/2).

To test these statements, a ve@dof lengthN = 512 is generated by selectiSg= 10
non-zero entries uniformly at random. Amplitudes for the+zero entries are drawn from
a uniform distribution on [13] anda’ is normalized to have unit norm. The dictionary
® is a union of the canonical basis and a sinusoidal basis galimensiondM x N with
M = 256. The vector of measurementsyis= ®a' + €, wheree is a Gaussian random
noise vector with standard deviation= 0.1||®a’||,/ VM (which is a moderate level of
noise). The threshold for the activation functiontis= 0.025. Figure5 shows that the
fixed pointa* reached by the LCA is indeed close to the target veatdn both cases,
though the amplitudes cannot be exactly recovered becduke ooise, as predicted by
CS theory. The solutions reached by the network are clogesetproduced by the digital
solver SpaRSA used with thig-norm and/y-pseudo norm, respectively. This experiment
confirms that the fixed points of the LCA correspond to sohgiof the desired objective

function as predicted by Theorein

3.2.1.2 Tikhonov regularization

For the second example, the target signal does not need fmabges In Tikhonov regular-
ization, the cost function irf] is C(a,) = 1 |a,|>. An activation function satisfyingl@) can
be easily checked to bE,(u,) = u,/(1 + 21). The parametet is chosen to regularize the
solution when the matri® is ill-conditioned.

To illustrate this program, a Gaussian random mabrioaf size 256x 256 is generated.
After taking a singular value decomposition, the last 5@siar values ofd are set to a
small value by multiplying them by 1€°. The columns ofd are then normalized to have
unit norm. A vectom' of lengthN = 256 is obtained by generating a random linear combi-
nation of the 20 first right singular vectors. Geents of the linear combination are drawn

from a standard Gaussian distribution. The vector of memsants is/ = ®a’ + €, where
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Figure 5: Outputa* of the LCA after convergence. Only non-zero elements artquo
The fixed point reached by the system is close to the initiatspvector used to create the
measurements (it cannot be exact due to noise). The soistalso close to the solution
of the standard digital solver SpaRSA.

e is random Gaussian noise with standard deviation 0.1||®af||, / VM. The regulariz-

ing parameter is set td = 0.25. The closed-form solution to the Tikhonov regularizatio

problem can be computed explicitly as
a™ = (oTd +211) " @y

In Figure6, the absolute error in the Tikhonov soluti{:aj”‘ - ak| is plotted for the fixed
points of LCA and SpaRSA. Both algorithms yield an output tkavery close to the true

closed-form solution. This experiment again agrees wighctbnclusion of Theorerh

3.2.2 Proof of Theoreml
Before proving the main theorem, the fundamental lemmavbedalefines the LCA as a

differential inclusion.

Lemma 1. Assume that the cost functi@q-) in (16) is locally Lipschitz and regular oRN
and that the LCA activation function {8) satisfieq19). Then the LCA trajectories satisfy

the following diferential inclusion:

—U(t) € aV(a()). (20)
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Figure 6: Absolute error of the outputs of the LCA and SpaRSA relativéhe Tikhonov
solution.

Proof. The objective functionV/(:) is locally Lipschitz and regular oRN as the sum of
C(-), which is locally Lipschitz and regular dRN by assumption, and a quadratic form,
which is Lipschitz and regular aRN. Consequently, the rules of calculus for subgradients

presented in SectidB.1imply that
aV(a(t)) = 0"y + O' da(t) + C(a(t)). (21)
Sinceu(t) satisfies 8), condition 9) yields

—u(t) = u(t) — alt) + " da(t) - o'y
€ 0C(a(t)) + " da(t) — d'y

e aV(a(t)) O
The proof of the theorem follows trivially.
Proof of Theorenml.. Any fixed pointu* of (8) satisfies
u*(t) = 0.
Applying Lemmal, this equality implies that

OeogV(a),
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wherea” = T,(u*). This equation is exactly the condition fat to be a critical point of

V(). 0

The corollary can be proven easily by explicitly computihg subgradient of a sepa-

rable cost function in the form ofL{).

Proof of Corollaryl. A separable cost functio@(-) in the form of (L7) can be rewritten as

N
C(a = ), Ca(a),
n=1

whereC,(-) : RN — R is defined byC,(a) = C(a,) forn = 1,..., N. SinceC(') is locally

Lipschitz and regular o, equality (L3) implies thatva € RN
N
9C(a) = Y 3Cy(a).
n=1

EachC,(-) can be viewed as the composition®f) and the projectiodl,(:) : RN — R
that returns the™ component of a vector. The projection operdip(-) is differentiable
onRN and it is simple to compute its gradieWil,(a) = (0,...,1,...,0)", where the 1 is
at positionn. Then the chain rule inlQ) yields

9Cq(a) = {£VIT(8) st. & € IC(TTx(a)))

={0.....4n,...,0)" st. & € dC(an)}.

Putting everything together,

0C(a) = {¢ st. £=(41,....&))" and & € aC(ay)}. (22)

As a consequence, if hypothesi®) holds, then the subgradient satisfies, foraatt RN
andalln=1,...,N,

fn =Uy—an € aC(an)

Thus,u—a= (&4,...,&n) € 0C(a), and applying Theorer finishes the proof. O
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3.3 Global asymptotic convergence

The result on the fixed points presented in the previous@eigeneral, and the require-
ments on the activation and cost functions are minimal. Tdrethresholding function,
for instance, is not continuous, but there exists a localpsthitz cost function that sat-
isfies relationshipX9). Despite its large scope, Theordnonly guarantees that the fixed
points are critical points of the corresponding objectivathing can yet be said about how
the trajectories evolve with time. In this section, a Lyapuitype approach is taken to
prove that the LCA network converges to a set of fixed pointss property is known as

quasi-convergence.

3.3.1 Conditions on the activation function

To give the first convergence result for the LCA, the actaatiunction needs to satisfy
several requirements. The first natural condition is forabgvation function to be non-
decreasing everywhere. This property is necessary forlifeztive function to be nonin-
creasing almost everywhere as the system evolves and todmelalate Lyapunov function
for the network. A second requirement is for the activationction to be continuous,
which ensures that the objective function is also contisuothis requirement prevents
scenarios where the objective is decreasing for almosinad but returns to a high value
at points of discontinuity and thus never reaches a stabi@mim. If, in addition, the ac-
tivation function is locally Lipschitz, its slope is bourdlen bounded intervals and results
from nonsmooth analysis apply. The form of the activatiomction and complete list of

necessary conditions are summarized below.

Assumption 1. The activation function [{:) is locally Lipschitz continuous, odd and non-

decreasing orR. In addition, there exist > 0, and locally finitely many(vy, Wk, Z)}exc IN
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R x R x R, with \{ < wg, such that F(-) has the form
0, un| < 2
an = Ta(un) =1z, Un € Ukese [Vio Wil := Z (23)

is strictly increasing otherwise witly, > 0, V¢, € oT,(uy)

and satisfies

ITa(Un)l < Junl,  VUn €R. (24)
Explicitly, the form in (23) means that J()

e is exactly zero on the interviha, 1],

e is constant on a countable and locally finite number of irdésdenoted byZ (which
include the interva[-24, A] and potentially the case wherg g equal to infinity for

some k), and

e is otherwise strictly increasing on any open interddlin R\ Z (where T,(:) is not

constant) with strictly positive subgradients.

For anya > 0, it is guaranteed that,(u) > O for allu > A. In the case wherg > 0, the
activation function is exactly zero on the nontrivial intar[-2, A]. This form is common
for activation functions used in sparse recovery probldmtsitively, many elements with
small amplitude are forced to zero, thus promoting a spargaut The case where= 0
is less interesting for sparse recovery problems, as it doegield sparse outputs, but it
encompasses other types of regularizers su€{@g = A |a,|* for Tikhonov regularization
(whose associated activation functiomigu,) = u,/(1 + 21)).

If one of the interval limitswy is equal to+co, the resulting activation function is con-
stant on an interval of the fornw], +o0) and is obviously bounded. However, the for23)
allows for activation functions that grow unboundedias- oo.

The last requiremeng4) is less intuitive. To understand it, it is necessary to tacs a

cost function associated withy(-) such that the relationshig9) in Theoreml is satisfied.
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Itis possible to build such a cost functi@g-) that is continuous, even and nondecreasing on
R (see Lemmd in AppendixA). Looking at the form T5) of the cost function constructed
in the proof of Lemmad, it is clear that conditionZ4) forcesC(-) to increase with the
absolute value of the céiecients. This property is essential for solving sparse regov
problems as it again encourages zero and smatficants in the solution. If condition
(24) was replaced by the stronger conditign< 1 for all u, € R and{, € dT,(u,) (which
simplifies toT/(u,) < 1 whenT,(:) is differentiable), then the functid®(u,)/u, would be
nonincreasing on (@). The resulting cost function would satisfy all of the regumnents to
be a sparseness measure (see DefinR)olowever, the weaker conditio24) is similar
in nature and dtticient to prove convergence of the LCA network.

The soft-thresholding function ir9) is one of the main focuses in this thesis and satis-
fies all of the requirements. More generally, activationchionsT,(-) satisfying Assump-
tion 1 correspond to a large class of cost functions that are ofed in practice31]. A

generic stylized activation function that satisfies thes®ditions is shown in Figuré.

3.3.2 Notation
This section introduces some notations that will be usedutinout this thesis. For an

activation function of the form23), the LCA nodes can be split into several sets.
e Theactive sef(t) contains indices such that
n e I'(t) =3 lu,(t)] > 4 and |ay(t)| > 0.

Indeed, outside of the intervals I where it is constant, the activation function is
strictly increasing. As a consequence, state variables#iesfy|u,(t)| > 1 generate
outputs that satisfia,(t)] > 0. These nodes are calladtive nodesOn the contrary,
state variables that satigfy,(t)| < A generate outpus,(t) = 0 and are callethactive

nodes Their indices belong to th@active sefl™(t).
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Figure 7: The dashed red curve is a generic activation function gatgfAssumption 1.

It has three intervals of the fornv{, wi] where it is constant. The area in gray represents
where the activation function must lie to satisfy condit{@4). The function in black is the
soft-thresholding activation function used #arminimization.

e Theconstant seZ(t) contains indices such that

nezt) o  uw®eZ=|JM-wl anda) =z
keK

For nodes in this set, the output is a constant aif) = 0. This set includes the
inactive set for whictg, = 0, and nodes in this set are referred t@wasstant nodes
On the contrary, for a nodein the complement Zt), the state variabla,(t) belongs

to an intervall{ c R\Z, the outputa,(t) is not constant and every subgradient

{n € AT (uy(1)) is strictly positive/, > O.
e The setA4(t) contains they indices with largest magnitude ut).

As the system evolves with time according to the ODE8) the nodes may switch from
one set to its complement and back. As a consequence, tleesbte defined above will

depend on the specific time Nevertheless, their dependence on time is often omitted in
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the notation for the sake of readability. When it is cleanirthe context, they will simply
be denoted aF, Z andA.

The notationdgs represents the matrix composed of the column® afidexed by the
setS, setting all the other entries to zero. Similal, andas refer to the elements in the
vectorsu anda indexed bysS setting other entries to zero.

Finally, the sequencf},.y of switching timess defined such that the seft) = I'y is
constantvt € [ty, tx,1). In other words, awitchoccurs if a node either leaves or enters the

support of the outpua(t).

3.3.3 Convergence result

The theorem below summarizes the first convergence resuliéd CA network obtained
via a Lyapunov approach. It extends the results publishdd9h where the activation
function may only be constant on the intervali] 1], while being strictly increasing and
differentiable otherwise. Under the more general conditioAsgumptiorl, the following

convergence result holds.

Theorem 2. If the LCA system defined by the ODH®&) has an activation function satis-

fying Assumptiond, then

1. the output is globally quasi-convergent in the senseitl@inverges to the set E of

fixed points for any initial state(Q) € RN:

at) — E:= {a e RN st a'(t) =0};

2. if in addition the fixed points are isolated, the output atate variables are globally

convergent, i.eyu(0) € RN, 3! a*, u* € RN such that

a(t) — a’ and u(t) — u.

When the fixed points are isolated, this theorem says thasybem converges to a

unique fixed point. This is the case for a strictly convex otie, for instance. The proof
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Figure 8: Plot of the evolution over time of several LCA nodegt). The plain lines
correspond to nodes that are active in the final solution haediashed lines correspond to
nodes that are inactive in the final solution.

of the theorem in SectioB.3.5relies on splitting the ODESs into two sets offfiérential

equations that are partially decoupled.

3.3.4 Simulations

The example of SectioB.2.1is reused, focusing on the case where the LCA solves the
{1-minimization program¥%) with a unique minimum. In this scenario, Theorérguaran-
tees that the LCA has a unique fixed point, and Theo2dahmt it is globally convergent.
Figure8 shows the evolution of a few nodeg(t) selected at random from the active and
inactive sets of the solution. Both active and inactive socverge to their final value in
only a few time constants. Figugdllustrates the global convergence behavior by showing
the evolution over time of several trajectories foffelient initial points. Two nodes in the
support ofa* are chosen at random and their evolution over time is plattéte state-space
defined by those two nodes for 30 random initial points. THerogradient in each curve
represents the evolution of time, a lighter gray correspantb times closer to zero. All

resulting trajectories evolve towards a single point inaorence with Theorerf.
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Figure 9:Trajectoriesu(t) of the LCA for 30 random initial points, projected on thermma
defined by two active nodes chosen at random. The color graitidicates the time evo-
lution. The red cross indicates the fixed point of the network

3.3.5 Proof of Theorem2
Proof. First, a cost functiorC(-) associated td ,(-) is constructed as in Lemm&in Ap-
pendixA. By Lemma6 and Corollary2, the resulting objectiv®/(a(-)) is continuous and
regular onR* and converges to a constant valMieast — oo. Thus, its time derivative
V(a(t)) tends to zero as— . Using equationq7) that was derived using the chain rule
(14), the following holds for a.at > O:
V(aw) = - Y 7 (O
ngz =N
for any ¢, € dT,(u,). Sinces, > 0 forn ¢ Z anday(t) = 0 for n € Z, the previous
observations imply tha}LJLEnlla(t)llz = 0. This limit shows that the outputs converge to the
setE = {a: st. a(t) = 0}, which proves that the LCA outputs are quasi-convergent.
Moving on to the second part of the theorem, the fixed poitsiasumed to be isolated.
In this case, the theorem states that both active and iambigles converge to a single fixed

point. The first part of the proof showed that the outputs eay® to the set of fixed points
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E. Thus, for any small valuB > 0, there exists a timg and a fixed poin&” € E such that
a(ty) € Br(a"), i.e., the output is within a ball of radiuR arounda®. Since the fixed points
are isolated, there must exist a b8ll(a*) of radiuse > 0 arounda* that does not contain

any other fixed point:
a e€E, and Yae B.(a"), axa = a¢E.

SinceV(a(t)) < 0 for a.a.t > 0, Lyapunov’s direct method states that the network is stabl
As a consequence, by the definition of (Lyapunov) stabifitfdil), for £/2 there must exist
anRsuch that, ifa(ty) € Br(a"), thena(t) € B.,,(a*) for all t > t,. It was shown earlier that
such a timd, exists for anyR > 0. As a consequence, once the trajectory is close enough

to one elemend” in E, it must converge to the poiat, i.e.,

lim a(t) =a". (25)

t—+o00

Letting
u=-d'da" +d'y+a’,
the LCA ODE @) can be rewritten in terms of the distaraig) = a(t) — a* as
u(t) = —u(t) — d"da’ + 'y + a — dTPA(L) + at)
= —u(t) + u* - (@T® - 1))
Solving this ODE (see AppendB) yields, for allt > 0,
u(t) = u* + et (u(0) — u’) + et fo t e’ (0T - 1)a(s)ds

While itis difficult to say anything directly about the trajectory of thetsys, it is helpful to
consider a surrogate trajectory that is a straight line éensttate-spacesr* + e (u(0) — u*).
This linear path obviously converges to the fixed paint If the actual trajectoryu(t)
asymptotically approaches this idealized linear path the system is guaranteed to con-

verge tou*. Taking this approach, the norm of the quantity

h(t) = u(t) - u* — e (u(0) — u*),
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which is the deviation from the linear path, can be bounddadlasvs:

Ih(®ll, = [ju(t) — u” — e (u(0) — u*)

2
e fo eS(CDT(D—I)E(s)d%

t
<e'|oTe- |||2fO e la(s)ll, ds

2

and converges to zero. Sinag) — 0, for anye > 0 there exists a timg > 0 such
—+00

thatVvt > t., |[a(t)l|, <'e. Moreover, sincdia(t)||, is continuous and goes to zerotages to

infinity, it admits an upper boundt > 0. Thus, there exisig > 0 such thatfa(t)||, < u for

all't > 0. Thus, for allt > 2t., the integral can be split into two parts to obtain

e t

Ih@®l, < e*||o"® - |||2,uf eds + e'][oTd - IHZEI eds
0 te

< ||(DT(I) B I||2:u [e_t+tc _ e—t] + ||CI)TCI) _ |||2g[1 _ e—t+tc]

<|oTo - 1|,ule? -] + [[0TD- 1|,z

The first term in the right-hand side converges to zerb as «o, while € can be chosen
to be arbitrarily small. Thus the deviati¢ih(t)||, converges to zero and the trajectoxy)
converges to the trajectory + e (u(0) — u*) ast goes to infinity. This result shows that
u(t) —— u*. Therefore, both the output and state variables converganpinitial state,

t—+o0

which concludes the proof that the system is globally caypet. O

3.4 Recovery of the support in finite time

As the system evolves, nodes can cross from the active det tndctive set andce versa
Even if the LCA converges to a unique fixed poirif there could be infinitely many such
switches. Some mild assumptions on the fixed point guarahttenodes switch only a
finite number of times between the active and inactive segsivalently, this result states
that the suppoii, of the fixed poin&* is recovered in finite time. For this result to hold, the

entries ofu* must lie outside of a margin of widthr Zaround the threshold. The margin
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r must be strictly positive, but can be arbitrarily small. Qaxpects this condition to hold

with near certainty for any signal that was not patholodycabnstructed.

Theorem 3. If the systen{8) converges to a fixed point such that there existsx* 0 that

satisfies

Uy > A+r, Ynerl,,

ul<a-r, vneTs,

then the support of*as recovered in finite time.

3.4.1 Simulations

To illustrate the number of switches that occur during cogeece, the same matrix as
in example in SectioB.2.1is reused. However, this time the sparsity leSebf the tar-
get is varied from 2 to 50 and the threshaldrom 0.02 to 0.2. For each paif{1), 10
sparse vectora’ and measuremenysare generated as in Secti8r2.1, and the number of
switches that occur during convergence is recorded. Fitiigea plot of the average num-
ber of switches for each pair. Also plotted is the best lirsggoroximation of the minimum
threshold value for the number of switches to be less thasphesityS. For a threshold
A below this line, the system makes more tt#aswitches during convergence. Above
the line, the system makes fewer switches. This experintlestrates that the number of
switches is finite and on the order of the sparsity. For snalies of the threshold, more
nodes are expected to become active, which corresponds bmttom half of the figure. In
addition, this experiment reveals that for a reasonablé&ehuf the threshold (on the order
of the noise variance), the number of switches is smaller the number of active nod&

in the optimal support. This situation can only happen ifrtbdes in the final solution enter
the active set one at a time and never leave the active séte lptimization literature, this
property is referred to as tl&-step propert}23,53], and is characteristic of a solver taking

an dficient path toward the solution. Conditions that providergngees on the size of the

40



0.2 : : : : 166
0.15} { 27

<
ie]
S
3 0.1} 4
£

11

10 20 30 40 50
sparsity S

Figure 10:Number of switches during convergence of the LCA networkveotous values

of the sparsityS and thresholdl, averaged over 10 trials for each pair. The blue line
represents the best linear approximation to the minimunnevat the threshold above which
the system makes less th&8rswitches during convergence.

active set during convergence are studied theoreticallyhi®/;-minimization program in

Chapter.

3.4.2 Proof of Theorem3
The proof uses the fact that, if the fixed point does not liecdyan the transition surface
between an active and inactive set for any node, there cdentore switches after some

long enough period of time.

Proof. Let T, be the set of active nodes in. By contradiction, assume that the sequence

of switching timegty},.y is infinite. Since the LCA converges to, then
U(tk) — u.
k—+o0

As a consequence, for> 0, there existK € N such thatvk > K, |u(ty) — u*||, < r. The
following shows that for alk > K, the state variablag(ty) are in the subsystein.. There

are two possible cases:
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e A nodenis active inu®. In this casen is also active inu(ty). Indeed,yn € I,

r> |un(t) —

>

U — [un(ti)l = A+ 1 — |un(t)l

= |un(ty)| > .

Moreover, nodes in I, are active with the correct sign irfty), otherwise,

r > |un(t) — U >A+ A+

= |un(tk)| + U;

= 0> A,
which is a contradiction.

e A nodenis inactive inu*, in which case it is also inactive u(ty). Indeed¥n e I'¢,

-r<0

|Un(t)l = A < Jun(tl = |ui| = 1 < Jun(t) — u;

= |Un(tW)| < A.

As a consequencé&y =T, for all k > K. However,I'y andI'y,; must be diferent to define
the switching timdy, ,, which yields a contradiction. This contradiction provieattafter a

finite number of switchek, there cannot be any switching out of the subsydtem [

3.5 Finite length of trajectories

While the previous three sections show the potential of thA ks an éicient solver for op-
timization problems of the forngj, the results obtained so far are ifistient to prove that
the outputs converge to a single point when solution$péke not isolated. This limitation
is characteristic of convergence results obtained via @lugav approach. Intuitively, if the
solution set is continuously connected, the trajectoreegccoscillate indefinitely or grow
unbounded (if the set of fixed points is unbounded for insgarEen though they are get-
ting closer to the set of solutions. Recently, several mapersented in Sectidh4.2have

used a new technique to overcome this problem. Using thestenjgcz inequality 47], the
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authors show that the outputs of certain networks convergedingleton even when the
fixed points are not isolated. Unfortunately, the speciffdb® LCA network do not fit any
of the previous studies directly. In particular, the LCAie&tion function is zero on some
interval and may be unbounded. In addition, the interconmematrix W may be singular
(see the discussion in Secti@w.]). To utilize the Lojasiewicz inequality, the following

additional requirements on the activation function aresseary.

Assumption 2. The activation function {-) is subanalytic orR and for all open and
bounded intervald/ c R\Z where T,(-) is not constant, there exists a constggt > 0

(that may depend o®/) such that
0< By <&, Yu, € U andV¢, € T, (up). (26)

The first condition ensures that the c@&{t) and thus the objectiv¥/(-) are subana-
lytic, which is necessary to apply the Lojasiewicz inegyall his notion was presented in
Section2.4.1and does not require the function to be continuous. Usinglteesen piece-
wise analytic functions47], it is possible to check that if the activation function hhe
form of (23) and is analytic on the intervafe c R\Z where it is not constant, then it
is subanalytic. For instance, the soft-thresholding fiomcin (9) is subanalytic. Condi-
tion (26) is slightly stronger than the previous condition on theggaldients {, > 0) in
Assumptionl, and requires the existence of a strictly positive lowerrizban the subgra-
dients ¢, > Bu) on bounded intervals where the activation function is oistant. For the
soft-thresholding function, this condition holds wigh = 1 for all open (even unbounded)
intervals?{ c R\Z. Because this requirement is only for bounded intervaldpés not
prevent the subgradients from tending to zero,as> c. For instance, an activation func-
tion equal tovu, — A for all u, > A does not satisfy conditior26) on open intervals of the
form (ug, +0) since its derivative tends to 0 &s» co. However, on any bounded interval
of the form (U, U;) C (1, +0), the derivative admits a strictly positive lower boundrrey

1/2+/Uz), and thus this function satisfies Assumptin
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The main contribution of this section is to apply a variatidnhe t.ojasiewicz inequal-
ity for nonsmooth functions44] to show two results. First, the outpaft) of the network
converges to a single fixed point when starting from anyahgoint, even if the fixed points

are not isolated;e., a(t) is globally asymptotically convergent

Theorem 4. If the activation function J{(-) satisfies Assumptiorisand 2, the output &)
of (8) is globally asymptotically convergent; i.e., for alfa) € RN, there exists a unique
a* € RN such that

att)y — a".

t—o0

Second, the statgt) also converges to a single fixed point even if the fixed pangs

not isolated. As a consequence, the LCA networgdadally asymptotically convergent

Theorem 5. If the activation function J(-) satisfies Assumptiorisand 2, the state (t)
of (8) is globally asymptotically convergent, i.e., for a0} € RN, there exists a unique
u* € RN such that

U(t) t—> U*.

These two theorems extend the analysis publishesldjyhere the activation function
was not allowed to be constant outside of the interval jt].

With a little more work, it seems possible to extend the tssafithis section to the case
where the activation function is discontinuous. For thisezat is necessary to carefully
redefine the cost functiory$) associated with (), which is done in Appendi. The
associated cost functid@(:) is still Lipschitz continuous, and so Theoredhsnd5 still

hold in that case.

3.5.1 Simulations
To illustrate the two theoretical results above, an exarpkmn £;-minimization problem
for which there exists a subspace of non-isolated solut®eseated. The matri® has

dimensionM = 256 byN = 512 and is generated uniformly at random from a Gaussian
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distribution (then normalized to have columns with unitmrA sparse vecta' is gener-
ated by selecting uniformly at random the location of 5 nemzntries. Their amplitudes
are generated from a normal distribution and normalizect@morm one. One column of
® corresponding to one of the 5 non-zero entrieg’iis replaced by a random linear com-
bination of the other 4 columns and re-normalized to 1. Thasuements ane= ®a’ +e,
wheree is a Gaussian noise vector with standard deviatioa 0.01. The threshold is set
to A = 0.03. Since the target vectar belongs to a set of 5 linearly dependent columns of
®, there exists an infinite subspace of solutions to the cpording,-minimization prob-
lem. The trajectories for 20 random starting points pr@écinto the space spanned by two
randomly selected nodes in the supporabére plotted in Figurd 1. Despite the solutions
being non-isolated and lying on an (unbounded and connglitedr subspace, the system
converges and reaches a single fixed point for every stgoong in concurrence with the

theorem’s claims.

3.5.2 Proof of Theorems4

First, the Losajiewicz inequality is used &ff-) to show that the output trajectories neces-
sarily converge to a single fixed poiat. The following proof extends the proof ib()
whereZ was assumed to reduce ted, 1] and Z=I'. On the contrary, in the following,
the activation function has the form dt3) and is allowed to be constant on a locally finite

number of intervals ifR.

Proof. The cost functiorC(-) associated witi ,(-) is again constructed as in Lemma
Applying Corollary?2, the corresponding objective functidfa(-)) converges to a constant
V* > 0 ast — oo. In addition, by Lemma, a(t) is bounded for alt > 0. Applying the
Bolzano-Weierstrass theorem, there exists a sequencerebsing timesty},.,; such that
{a(ty) ey CONVerges ak — oo. Leta* be the limit point of this converging sequence. The
following shows that the outpuat(t) converges t@* by contradiction. By the continuity of

V(a(-)) with respect to time, the limit of the sequerd&a(ty))}. Satisfiesv(a’) = V*.
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Figure 11: Convergence of LCA trajectories obtained for 2@elient initial points and
projected onto the space spanned by two randomly chosererorentries in the support
of a’. The color gradient indicates the time evolution. A red srioslicates the fixed point
reached by the system.
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Sinceu(t) is bounded for alt > 0 by Lemma?, and since there are only finitely many
intervals of the formy, wi] on any bounded set af by Assumptiorl, u(t) visits a finite
number L of constant setg ¥r allt > 0. Foralll = 1,...,L, the functionW(-) is defined
by

Wi(az) = V(a), Va e RN.
SinceV(+) is subanalytic oiRN, Wi(-) is also subanalytic. For dll=1,..., L, applying the
nonsmooth tojasiewicz inequality in Theoredm.1to W(:) at a*, there exist, € [0, 1),

C, > 0, andA, > 0 such that
V(@) - V" = [Wiaz) - Wiay)| < CimaWi(az)),  VaeBy(@).  (27)

Define

Vzlmin v €[0,1),

=1..L
C= maxC >0, (28)
A= minZl A > 0.

.....

Fix a¢ € (0, A]. Since{a(ty)}ir cOnverges ta*, there existK € N such that

S
lla(te) — a’ll, < 7 Vk > K. (29)

SinceV(a(+)) is decreasing and convergesuy there exisl,, T, > 0 such that

0<V@t) -V <1  Vt>Ty, (30)
and .
0< V(@) - V' < [M] L Vt>Ta (31)
4Cqa

whereC andyv are defined in28) anda, B are defined in Corollarg.

Letting T = max(Ty1, T»), there exists a time index

p=minfke Nst. k> Kandt,>T}.
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Time t, exists, since the sequence of timégy.y is increasing and goes to infinity. In

addition,t, is such that it satisfie2), (30) and @1). Finally, define the following time:
ty = sup{t > 1, st.Vse [tp, t) lla(s) — a’ll, < 6}.

If t; = +o0, then for all timet > t,, ||la(t) — a’l, < 6. Sinceé can be chosen arbitrarily
small, this inequality proves that the out@(t) converges to the single fixed poit

By contradiction, assume thit < +co. This condition implies that for all time <
[tp, tq), the output trajectory remains within a ball of radiiaround the fixed point,e.,

la(s) — all, < 8, but leaves this ball at timg, i.e., [|a(ty) - &

, = 0. According to the
inequality involvingg in Corollary3 and using the chain ruld.g), the following holds for

a.a.t >0, foralln¢ Z and anyZ, € oT,(un(t)):
l12a(®)ll2 = IZatUn(®)ll2 > B llUa(V)Il -
In addition, to computéWi(az:) more easily, observe that
Wi(az) = V(@) = V(azs + zz), vaeR",

wherez, is the value taken on by the constant outpgs(see the form of the activation

function in 23)). As a consequence, defining the functiei) : RN — RN by
Hi(a) = az + 7z, Yae RN,
implies thatWi(azs) = (V o Hi) (a). Applying the chain ruleX2), it is easy to check that
oW (az) = aazlcVVI(azf) = Hze0Wi(aze) = Tz:0V(a),

wherellz<(-) is the projection onto the set of indiceS Finally, since the LCA satisfies the

differential inclusion-u(t) € oV (a(t)) by Lemmal, then

~Uz:(t) € M0V (a(t)) = W (azs()).
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Putting everything together,

1@, = 13zl
> Bz,
> |z (O,
>  MOW(aze)).

for somel between 0 and.
Furthermore, combining’@) and (77) implies that for a.at > 0 and any,, € 9T ,(uy(t))

UEOEEDY 43 (I < —% a3

nez¢ =N

This inequality shows that

B

V@) < - 1l < -2 jayl, m(aw(az)).

By definition oft, andt,, and sincey < A < A, the output satisfiea(t) € B;(a*) c B, (a)

for allt € (tp, t), and s0 27) yields

V(a®) < -2 all, m(oWi(az)
a

< —E i, (V) - vy
aC|

<P i, (vaw) - vey,
aC

where the last inequality comes from the definition®andv in (28) and the fact that

0 < V(at)) - V* < 1, forallt > t,, by (30). Rearranging the terms yields

aC  -V(a(t))

la)ll; < B V@) - V)
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This result yields a bound on the following integral:
{q .
Jatty) - )], = | [ a(s)d%
t

).

t,
aC (% V(a(9)

g Jy, (V@(s)-V)
aC Vet gy
B vty (V—V*)

P 2
q

la(s)ll, ds
C

- s | (Ve - V) - (Ve - v )|
< g Ve -V
< % (from (31))

Finally, the derivation above shows that

6 = |latty) - &

, < |alty) - atp)||, + [Jatp) — @

0 0
+

2

<

NS B
SN

<

This is a contradiction, which proves thgt = +co. Consequently, it must hold that
la(t) —a’|l, < ¢ for all t > t,. Sinceé can be chosen arbitrarily small, this derivation

shows that lim a(t) = a*, and thus the output converges. 0J

t—+o00

3.5.3 Proof of Theorem5

The following proof shows that the state variables also eay® to a single fixed point'.

Proof. By Theoremd, the output converges to some fixed painte RN. The dynamical
equation 8) can be written in terms of the distanag) = a(t) —a* of the output to the fixed
point:

u(t) = —u(t) — d'da* + 'y + a — T PA(L) +a(t).
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Definingu® = —®"da* + ®"y + a* yields the following equation:
U(t) = —u(t) + u* — (@' — 1) A.
The solutions of this dierential equation have a known form (see Apperg)i¥t > O:
t
ut) = u* + et () — ) + e f e (0T - 1)a(s)ds
0

The terme™ (u(0) — u*) obviously converges to zero agoes to infinity. To prove thai(t)
converges tar*, it remains to show that the last term in the right-hand slde eonverges

to zero. Denoting this integral term It) and analyzing its norm yields
t
Ih(t)ll, = [let f e(oTo- I)E(s)d%'
0 2

t
_ e_tf =
0

t
<eloy f & [AS), ds
0

(07 - |)a(s)H2ds

whereo; > 0 is the largest eigenvalue of the interconnection matix= ®®™ — |. To
show convergence to zero, the integral is split into twoga8incea(t) converges t@®,
a(t) converges to 0 as— +oo. Thus, for anye > 0 there exists a timg > 0 such that
la(t)|l, <€, Yt > t.. Moreover, sincéa(t)|l, is continuous and goes to zerotagoes to

infinity, it admits a maximunu, Yt € R. These two bounds yield, for &l 2t.,

to t
Hh(t)Hz < e_t ||q)Tq) - |||2,uf esds + e—t ||(DT(D _ |||2~€f est
0 e
<[oT@—1],ulete—e] + 07D 1], E[1-e]

<[loTo 1|l ule? -] + |oTo-1|,=

Since the left term converges to 0 andan be chosen to be arbitrarily small, this compu-
tation shows that the trajectounyt) converges to the trajectory + e (u(0) — u*) ast goes

to infinity, and thusu(t) P u. O
—+00
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3.6 Exponential rate of convergence

Convergence to the correct solution for any starting state fundamental property for
any system intended to solve an optimization program. Everenmteresting for practical
applications is knowing how fast the trajectories conveaythe solution. In this section,
the LCA network is shown to convergxponentially fasto a unique fixed point* under
some condition on the matrik. Furthermore, an analytic bound for the convergence speed
is derived® Such a bound is especially important for implementationeai-world appli-
cations, which must guarantee solution times. The resbligimed in this section extend
further those published imP], where the activation function was assumed to be strictly
increasing and dierentiable outside of the intervat{, 1].

To state the theorem regarding the convergence speed ofGQAethere must exist a

bound on the eigenvalues of the matfix® when it is applied to certain vectors.

Assumption 3. There exists a constafit< d < 1 such that
(1-d) IR < IDAWI2 < (1 + d) IR, (32)
for allt > 0 and all output trajectories(t) = a(t) — a".

The constand depends on the singular values of the madryy, and, as a consequence,
on the sequence of active s@iig}, Visited by the system. This constant may not be well
defined for every matrix or inputy. However, in many interesting cases in CS, the con-
stantd is close to 0 and the dictionary elements are almost orthamldonany small enough
active set$4]. If condition (32) is satisfied, the LCA can be shown to converge exponen-
tially fast to a unique fixed point. The expression for thewaygence speed dependsan
and on the bound on the subgradients of the activation functiog;, « is such that for all

U, € R and for allZ, € 9T, (up)

Idnl < .

The time constantis reintroduced in this discussion to make ifeet on the convergence speed explicit.
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The existence of the constants guaranteed by Lemnta In the following theorem, the

two constantsl anda are directly related to the convergence speed of the network

Theorem 6. Assume that the activation function() satisfies Assumptiohand that the
constant d in Assumptia®is well-defined. If the constantsand d, defined ir{74) and
(32), respectively, satisfy

ad < 1, (33)

then the LCA network i8) is globally exponentially convergent to a unique fixed point

with convergence speed

Explicitly, for all u(0) € RN, there exist a unique*ue RN and a constant > 0 (that may

depend on (D)) such that
) - ull, < ke —edt/t g5 o (34)

Condition @3) is necessary to ensure that the convergence speed ivpa@sid mean-
ingful. The time constant of the physical solver implementing the LCA neural network
appears in the expression for the speed of convergence. nmalées the time constant,
the faster the system converges. In general, analog systanessmaller time constants
than their digital counterparts and scale better with theblgm size 1]. In the case of
{1-minimization, the bound on the subgradients of the sattgholding function isr = 1,
and condition 83) reduces tal < 1. Assuming that the active sgft) has only a small
number of active components for all time> 0, Assumption3 with d < 1 corresponds
exactly to the RIP condition fo. Unfortunately, the sequence of active sets visited by
the network is signal dependent and cannot be predictedvanad. Nevertheless, a set of
conditions for the active set to remain bounded throughomtergence is the object of the

next chapter.
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3.6.1 Simulations
To illustrate the result on the convergence rate, the examging/;-minimization (for
which @ = 1) for sparse recovery in Sectidh2.1is again used. The evolution of the
normalized/,-distance from the LCA trajectories to the fixed point

[Juct) — ull

[l

is recorded. This quantity is equal to 1 tor 0 since the system starts at rest. To demon-
strate the validity of the theoretical expressi8d)(for the decay, it is necessary to estimate
what the constard in (32) is. The constand must be an upper bound for the eigenvalues
of the matrixd).;d)f, wherel =T UT,. As a consequence, the largest suppgk reached
by the network during convergence is also recorded. Twonesés ford are testedd, cor-
responds the largest eigenvalue of the malxﬁz@n —1, anddax corresponds to the largest
eigenvalue of the matrisib}maxtbrmax — |. Since there may be many more nodes entering the
active set during convergence than in the final suppht, is expected to be larger than
d., and the corresponding bound on the decay to be less tighs hipothesis matches
what is observed in Figurg2. The two colored dashed lines correspond to the theoretical
decaye -9V for the two estimated values df As expected, the theoretical decay com-
puted withdnax is an upper bound for the convergence speed. However, tinsads seems
too conservative, and the bound computed wlitis a better estimate for the experimental
decay. This simulation illustrates that the theoreticgdamential convergence appears to

capture the essential system behavior.

3.6.2 Proof of Theorem6

Below is a proof of the exponential convergence of the LCAettories.

Proof. The expression of the convergence speed is establisheldevsidy of the follow-

ing energy function:

E(t) = %Irﬁ(t)llﬁ, (35)
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Figure 12:Convergence of the experimental normaliZgdlistance from the state variables
to the fixed point. Also plotted is the theoretical decay i) (®r two estimated values of
the constandl: d. is computed by using the final solution support, arg, is computed on
the largest active set visited.

where the variablesanda measure the distance of the states and outputs from anseaybit

fixed pointu* anda* = T,(u") of (8):

To(t) = Un(t) - U
(36)

an(t) = an(t) - a; = Ta(tn(t) + Up) — Ta(up).
The sefl” denotes the support @fand is equal ta” = T U T, whereT, is the support of
the fixed pointa*. Like I, the sefl” depends on time, but the time index is omitted from
the notation to increase readability. To show that the fondB5) converges exponentially
fast to zero, it is first analyzed on the set of indi€es
Using the fact that® is a fixed point of §) (i.e., u*(t) = 0), rewriting the dynamics in

terms of the new variables i13¢) yields
7U(t) = -TU(t) - (@@ - 1)A). (37)

. . . 1, . .
First, the partial energy functioB=(t) = 5 ||Uf(t)||§ is shown to converge exponentially
fast. From this result, the behavior of the outputs can beicedl Then, the result on the

output is used to prove the convergence of the entire statenvi® the fixed pointr-.
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Using the chain rule, the time derivativeBf(t) along the network trajectory is for a.a.
t>0
- =T
TER(Y) = 7Ur (DUR(Y)
= —TL(t) (T(t) + (L0 - I5) A (t))
- - [m 0l - o (0F 0 - 1730

Assumptior3 implies that the eigenvalues ®§(I)F lie between (+ d) and (1+ d) and so:
H(cDiT’ch - 'F)EFHZ < “q)%q)f - 'F“ 3],
<max(1+d)-1, 1-(1-d)} |,

= d =

Finally, property {ii) of Lemmabs states that for any séf, |[§¢||§ < aznurng. Using the

Cauchy-Schwartz inequality and putting everything toggth

0 (oo - 17) & < |, |(ofor - 1) &

< [l Ira"fllz

< ad [T

As a consequence, the time derivative of the partial enemggtion satisfies

TEF(t)< ” (t)||2+ad|| (t)“z

< ~2(1 - ad) Ex(0).

Using Gronwall’s inequality in AppendiB on the interval {, ti.1] whereT is constant

yields
Ex(t) = || (t)||2_ || (tk)||2 g2ttt/

Sincel@t)ll, < o [[U(t)|,, Vt € [t tieeal:

Al < o [T, e oD, (38)
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Using this result on the output, the staig) can now be shown to converge exponen-
tially fast. Using the equality form of Gronwall’'s Lemma irppendixB, the solution to

(37) can be expressed as followse [ty, tx,1]:

t
TUt) = e W) + e W/ f W (] — T D) A(v)dy.
tk

Denoting byh(t) the second term in the right-hand side, and pluggin@8), the norm of
h(t) can be bounded by

t
||h(t)||2 < e—(t—tk)/Tf e(v—tk)/T

ty

(070 - |)a(v)“2dv

t
<ot [ oo 1 o, o
t ~———

=C;

t
< e f Cacr [T, €709/l

tk

— % ”U“r‘(tk)Hz g (t=t)/7 [ead(t—tk)/r _ 1]
< C2 ||Hf(tk)||2 e—(l—ad)(t—tk)/r
< Co [u(tll, e,
whereC;, = (||@®7® - ]|, 7/d). Plugging this bound back in the expressiont) yields
DOl = [l 7Tt + h(o),
< [l € 4 + [ Ih(t)]l,
< Tl €9/ + Cy Uty € et/
< (1+ Cy) [Tt |, & H-odtre
= Cs[[U(t)llp &,

whereC; = 1+C,. Since|[u(t)||, is continuous for all time, it is easy to show (by induction

onty) thatvt > 0
[T, < &N Cy o), - (39)

This last inequality shows that the state variable conveegg@onentially fast to a unique

fixed pointu* with convergence speed {lad)/z. O
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CHAPTER IV

PROPERTIES FOR CS RECOVERY

The exponential rate of convergence of the LCA in Theoferm difficult to interpret in
general because it requires the existence and an estimiateefoaonstantl in (32). This
constant depends on the singular values of submatricésaoid on the specific path taken

by the network trajectories, which is signal-dependenthécontext of CS recovery, how-
ever, the well-known RIP in2) guarantees the existence of such a constant for any vector
that is sdficiently sparse. The objective of this chapter is to make tiskeoRIP to pro-

vide convergence guarantees in the special case where thedl@es the/;-minimization
problem §) to recover a sparse signal. In this case, the conatan{74) is equal to 1, and

the constantl can be estimated. The contributions of this chapter are

e two theorems that guarantee that the size of the active metime bounded through-

out convergence using the RIP,

e application of the results to the special case of CS randotricea and comparisons

to well-known digital solvers in terms of number of measueaits,

¢ to obtain an estimate for the convergence speed that depahgdsn the problem

parameters and is signal-independent, using known egtinfiait the RIP constant,

e some intuition on the advantage of using a decreasing tbigsthen solving(;-

minimization.

Moreover, the fect of the noise vectoe appears clearly in the results, making the

noiseless setting a special case of this study. The resuttsis chapter were published

in [55].
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4.1 Bounding the LCA active set

In this section, two theorems are presented that give gtesaron the size of the active
set throughout convergence undeffelient conditions on the problem parameters. The

following quantities appear in both theorems and their fgoo
b=bs=(1+06)(1-0)72
Bs(p) = b(|[a’||,+ VI-3llell, + 1VP).

Whens is an RIP constant, then©6 < 1, and it follows thab > 1.

4.1.1 Bounding the active set by the optimal support
The first result contains a set of conditions for the actitd'de be a subset of the optimal
supportl’; throughout convergence. This result ensures that theeaséiynever contains

more than thé& optimal nodes, and thus is always boundedshy size.

Theorem 7. Assume that the dictionar satisfies the RIP with paramete(S + 1, )
and that the suppoiif(0) of the initial output 40) is a subset of the optimal support (i.e.,
['(0) c Ty). If the following two conditions between the original sidja’, the thresholdt,

the noise, the sparsity S and the RIP constardre satisfied:
Ja" — a(0)||, < Bs(S), (40)
(1-b5VS) 4> bs(|fal],, + VI=5llell,) + |

: (41)

(o)

then nodes i never cross threshold (i.d(t) c I';, Yt > 0).

This first result provides guarantees similar to 8step property in that only th8
nodes that belong to the optimal suppbftbecome active. In addition, it is shown in
Section4.2 that the requirements on the RIP constant are similar tcetfasthe S-step

property to hold for several digital solvers.

4.1.2 Bounding the size of the active set by a constant
Similar to the analysis of some digital solvers discusse8ention2.1, weaker require-

ments on the RIP constant still yield interesting convecgeresults. In this section, the
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outcome of Theoremniis relaxed in that more than ti&optimal nodes may become active.
The maximum number of active nodes is denotedjywhereq may be larger tha® but
remains small. In contrast to the analysis for digital sdyéhese conditions do not result
in a bound on the number of “steps” or iterations to achievertam error, but bounding
the size of the active set yields an explicit estimate forekgonential convergence speed

of the network.

Theorem 8. Assume that the dictionady satisfies the RIP with paramete(rS +q, 5) for
some ¢ 0. If the original signal &, the initial state (0), the thresholdt, the noise, the

parameter q and the RIP constansatisfy

U0, < A v, (42)
1+6 1 =
1> 1_+35ﬁ(||a*||2+ V15 lell,). (43)

then the active sdt never contains more than q nodes (i|lE(t)| < g, Yt > 0).

The simulations in SectioA.5 show that useful values fay are typically small mul-
tiples of S. In the next section, the implications of the two theoremgh@nRIP constant
are studied. In concurrence with results for digital sadveresented in Sectiohl, the

requirements of Theore®on the RIP constant are weaker than for Theorem

4.1.3 Remarks and consequences on the RIP constant
Conditions 40), (41), (42) and @3) in Theorems/ and 8 involve complex relationships
between the various problem parameters. Below are a few@igms and an analysis of
their implication on the RIP constant.

First, condition 40) of Theorem7 constrains the starting point to be reasonably close

to the optimuma’. When the system starts at rag()) = 0 and condition40) becomes
Jafll, < b({lalll, + VI=Gllell, + 1VS),

which always holds since > 1. Similarly, if the system starts at rest, conditiat2y
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obviously holds. Thus, na priori information on the signal is necessary for the two
theorems to apply.

To analyze the requirements of the theorems on the RIP meilg,d¢he target signal is
assumed to have unit norme(, |[a’||, = 1) without loss of generality. For now, it is also
assumed that there is no noise( e = 0); the noise level is addressed in Sectb? It is
also instructive to look at the scenario where all of the mere entries ira” have the same

magnitude. Indeed, fron86), the solutiora” is a thresholded version af:

a =ar - ’l(q)lt*q)r*)_l a.

If some nodes i have small amplitudes, they do not contribute much to thaadig
energy and setting them to zeroahmay be acceptable. When the nodesiirhave the
same magnitude, however, they contribute equally to trgetagignal’s energy and it is
important to recover them all. If the threshold is too larde, outputs of the LCA simply
remain zero. Whetffa'||, = 1, each non-zero element af is equal to+1/ VS, thus the
threshold must be smaller thari 4S. On the other hand, conditiond) and @3) of the
two theorems require the threshold to bdfisiently large. Takingl = r/ VS, for some
0 <r < 1, and rearranging the terms 1] in Theorem? yields the following condition

on the RIP constant:
r

0 —m.
(1+1rbvsS
Consequently, for the active set to remain a subset of thmapsupport, the RIP constant

(44)

needs to scale with/1VS.
Sinceq is typically a small multiple ofS, takingq = BS in Theorem8 for a small

constanp3, inequality @3) becomes
< TVB-1
ryp+1

Thus, for the active set to contain less tiganodes, the RIP constant needs only to be

(45)

bounded by a small constant that does not deperfdl amymore, which is more favorable

than condition44) as will be discussed in the next section.
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4.2 Application to Compressed Sensing matrices

Theorems7 and8 are deterministic. However, when the mat@ixs a classic CS random
matrix, the results can be interpreted using a known estifatthe RIP constant. For
instance, assuming is a subgaussian random matrix as in Secfidn3 a good estimate

for the RIP constant is given bg)

5 Slog(N/S)
~ ‘/T'

4.2.1 Theorem? with CS matrices
The implications of Theoren7 on the problem parameters, specifically the number of

measurements and noise level, are examined first.

4.2.1.1 Measurements

Plugging the estimate3) for ¢ in (44) yields

VM > S+flog(N/S) (+ r)b,

r

where the notatior means greater up to a constant factor. WBeg M, ¢ is small and

b ~ 1, so the term (% r)b/r is a small constant. As a reference:

e if r=095ands <0.5,thenb< 6 and(1 +r rb

<183,

e if r =0.95 ands < 0.1, thenb < 1.358 and < 3.

(1+r)b
r

This estimate shows that the numibérof measurements for a subgaussian random matrix
® must be on the order &2 log (N/S).

This result strongly resembles the condition for the Hompgtalgorithm to satisfy the
S-step property 23], which requires tha§ < (1 +;f1) /2, whereu is the mutual coher-
ence p6] and leads to the same number of measurements MFerO (82 Iog(N/S)), the
Homotopy algorithm on the parametebehaves like a pursuit algorithm, where nodes are
added to or removed from the active set and the solution esafva piecewise-linear man-

ner. Likewise, the LCA solution evolves according to a combius switched linear system
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of ODE and nodes enter or leave the active set until the soiusi reached. Both results
ensure that only nodes present in the optimal support dmteadtive set. The OMP solver,
which is a greedy algorithm, was also shown to recoveBSaparse signal in exactlg
steps provided thab satisfies the RIP withs,; < 1/ (3 \/§) This bound is similar to that
of (44) obtained for the LCA. Likewise, this result for OMP Ieads{;‘t()s2 Iog(N/S)) mea-
surements6]. Consequently, despite the continuous-time nature of @ trajectories,
bounds on the RIP constant comparable to those obtainedd@mnalysis of digital solvers

emerge from this study.

4.2.1.2 Noise level

Whene is a Gaussian white noise vector whose entries have variaficéine terms due
to the noise in41) become|ell, ~ VMo and||®"el|_ ~ +/logNe with high probability.
Taking these terms into account i1} does not change the bound 6rn (44) by more

than a constant if the following is true:

b6 VI—6 |lell, + H@Ec_e

= «bs
2

for some constant > 0. Using the estimate3], along withS < N, M ~ S?log(N/S),

b~1,bv1l-6~ 1, andreorganizing the terms yield a noise variance of
- bok
bs V1 -6 VM + +/logN

Slog(N/S)
K ‘/T

" /SIog(N/S) + ylogN

K 1
logN
1+ SIOZ%N/S) 4
K 1
-
1+ ﬁ N

. . . -1
Thus, the total energy allowed in the noise vector is on tleoof|e|, ~ (1 +1/ \/§) ,

which is approximately on the same order as the energy ofiginals
This result can be improved upon. Theor@ns stated for any fixed noise vecter

In the case where the noigels assumed to be a Gaussian random vector, the proof of

63



Lemmallin AppendixB hints that the bound used fa™ — a'||, can be improved. An
essential step in the proof is to boulf@  ®.)®[¢||,. It is a simple calculation to show

that
T V1T 12l — 2 T V-1 So?
E{”((DF(DF) cpre||2} = o* Trace((@]0) ) < T~
Moreover, standard tail inequalities] [show that this random variable concentrates around
its mean. Thus, when the noise is Gaussiaii,— 6 |||, can be replaced by/So with
high probability in 41). From the equations in the previous paragraph, the noisence

has the form
box

K 1
ag ~ ~ .
bs VS + \logN 1+ +/logN VS
The total energy allowed in the noise vector becoifetis ~ \/M/S/(l + +/log N), which

increases with the number of measuremeis

4.2.2 Theorem8 with CS matrices
The implications of the second theorem on the problem paemare now studied. The
following shows that the number of necessary measurenmestsaller than for Theoreih

and again matches conclusions drawn for digital solvers.

4.2.2.1 Measurements
For subgaussian random matrices, using the estinSit®K the RIP constang of order
S+9g=(1+B)Sin (45 yields
N ryvp+1
VM > [(1+pB)Slo ( ) .
L+ASIo\ T ps) TvE-1

If g is a small constant, the number of measurements is on the ofd(Slog (N/S)).

For reference, iB = 30 andr = 0.95, then 45) yields§3;5 < 0.25. In comparison, OMP
has been shown to converge fi3is < 1/3 [25]. The result obtained for ROMP in5}]
has a slightly worse form since it depends on the spa&ityith 6gs < 0.01/ 4/logS. Fi-
nally, CoSaMP was shown to converge fg < 0.1 in [28]. For all of these algorithms,

the reported RIP constants lead to the same order of measots@(S log(N/S)). This
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observation brings to light another interesting paralletween the LCA and its digital
equivalents. Letting more than ti&optimal nodes enter the active set still yields good
convergence results, while giving better scaling on the &iRstant and number of mea-
surements. Contrary to the digital solvers, however, thelitmns are only necessary to
guarantee a bound on the exponential speed of convergeiiece b€A, and not to prove
convergence. TheorenZsand 3 guarantee that the LCA converges to the solutionS)f (
without any requirement on the RIP constant. In additioa,dhror achieved by the LCA
is linked to the performance guarantees associatedéthinimization, as discussed in

Sectionl.1.5

4.2.2.2 Noise level
The influence of the noise appears clearly in the results.nbise vector in43) does not

affect the bound og in (45) by more than a constant if
V1-6|lell, = k

for somex > 0. Assuming again thatis a Gaussian white noise vector, whose entries have
varianceo?, and thai|a’||, = 1 yields a noise variance of
K 1 1
VI—s VM VM

As a consequence, the total eneliglf, allowed in the noise vector i8 (1), which is the

o

same order as the energy of the signal. Here again, assuhahthe noise is Gaussian
in the proof of the theorem itself leads to a sharper boundndJhe same concentration
argument as before, the tervil — ¢ |||, can be replaced by/Go- with high probability in
(43). This analysis yields a new noise variance of the form «/ 4/q and the energy in the
noise vector becoméf||, ~ \/M_/q This result again shows that the noise variance can
increase as the number of measurements increases withemgioly the condition on the

RIP constant too much.
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4.3 Decreasing threshold

An interesting observation emerges from the analysis & ¢hapter. The proofs of The-
orems7 and8 in Section4.6 hint that the results possibly still hold when the threshsld
not constant but instead decreases at an exponential ratbe proof of Theoren?, the
lower bound on the thresholtidepends on the quantifja(t) - a||,, while it depends on
lu(t) — u¥l|, in the proof of Theoren8. If the network is exponentially convergent, both
guantities should decrease exponentially fast over tichesTthe threshold could be de-
creased according to an exponential decay while stillfyaiig the inequalities in the two
theorems. Decreasing the threshold would allow the systepotentially recover more
nodes froma" while keeping the size of the active set bounded and yielfiistpr conver-
gence. This hypothesis is confirmed in simulation (see &edtb). Interestingly, similar
observations have been made for digital solvers (e.g58h fhe threshold is decreased
according to a geometric progression to speed up recovely\wever, there has been no
analytic justification for the observed increase in speddmnow to choose the decay rate.
While our analysis suggests the potential advantage oédsirg the threshold at an expo-
nential rate, the additional dynamics on the threshold dalséstically change the nature
of the analysis, starting with the proof of convergence im@br3, where the threshold is
considered to be constant throughout. This open problemtengally an object of future

research.

4.4 Estimate of the convergence speed

In Theorem?, the active set visited during convergence was shown torre@rgain more
than theS optimal nodes under some strong condition on the RIP. TBigdtrevas general-
ized in Theoren8 to allowing no more thag nodes to become active, wheyés typically

a small multiple ofS. With such guarantees, Assumpti®closely resembles the RIP. In-

deed, if the theorems hold, the active set never containe thatq nodes and the matrik
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satisfies the RIP with parametes$ + ), then the constamt exists and can be approxi-
mated by the RIP consta#fit In practice, it is reasonable to expect tBaif theq nodes that
do become active belong to the optimal supfortAs a consequence, the RIP®fcan be
relaxed to only hold with parameter§ ) in practice. For instance, whanis a subgaus-
sian random matrixgd may be approximated by the classic estimgf®log(N/S)/M as
in (3). The convergence irB@) being exponential (specifically thg-distance to the fixed
pointu* is bounded by -9V it is clear that a small multiple af/(1 — d) will make the
{>-distance infinitesimally close to 0. As a consequence, dimeargence time of the LCA

is on the order of
-

o )
1- {Slog(N/S)/M
wherer is the time constant of the physical solver implementingimE.

For comparison, the digital solvers Homotopy, OMP, ROMP @o&aMP have been
proven to have running times on the order@(fS MN) floating point operations (flops)
when the number of iterations is finit@3, 25, 28,57]. This estimate can typically be
reduced if a fast multiply fo and®T is available. It is important to keep in mind that the
time constant for the LCA has the potential to be much smaller than the tionefdigital
solver to perform a single matrix multiplyp9]. As a consequence, the scaling properties

of the LCA seem more favorable for large problems than thdskégital algorithms.

4.5 Simulations

The simulations in this section illustrate the previoustietical findings. As an example,

a sparse vectar' of lengthN = 400 withS non-zero entries is generated by selecting
indices uniformly at random, drawing§ amplitudes from a normal distribution and nor-
malizing them so thaffa||, = 1. A numberM = 200 of measurements are generated via
a Gaussian random matrii of size 200x 400, with entries drawn independently from a

normal distribution and columns normalized to have unitmoA Gaussian white noise

IMatlab code for running the experiments in this section cas Hownloaded from
http://users.ece.gatech.edu/~abalavoine3/code/LCA_CS_exp.zip
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vector with standard deviatian = 0.025 is added to the measurements soyhatba’ +e.

The LCA is always started at rest witki0) = 0.

4.5.1 Hfect of the threshold on the size of the active set

First, the €fect of the threshold on the size of the active set during convergence is ex-
plored. Figuresl3 and14 illustrate the theoretical findings of Theorefsnd8 respec-
tively. For each pixel on the figures, 100 random draws of asspeectora’ and a mea-
surement matrixd are simulated, assuming that no noise is present.

In Figure 13, the percentage of the 100 trials where only nodes that ateopshe
optimal support; become active is shown. For lar§e (approximatelyS > 28), the
transition phase fon follows a curve that resembled ¥S. For smallS, the behavior
appears qualitatively eferent. Both follow the general prediction fromhlj:

b
A2 ———.
1-bsVS

Above this value, in the white region, only nodes in the oplisupport’; become active
for all 100 trials. In the black region, one or more nodes ioetshe optimal support
became active for all 100 trials. The transition betweentteeregions seems to sharpen
asS increases.

In Figure 14, the color coding represents the ratio of the maximum nurobexctive
elementg during convergence over the sparsity leSelThe phase transition on this plot
follows a 1/ VS behavior, as expected from3). For most of the pairsi( S), the maximum
number of active nodesis contained betweerSland 1@, illustrating thatq is typically
a small multiple ofS and that the active set remains bounded. When the threshtbd i
high, no nodes become active. The results shown in FigjlBend Figurel4 thus confirm

the qualitative behavior of the bounds derived in Theor@rasd8.

4.5.2 Decreasing the threshold during convergence
As mentioned in SectioA.3, the proofs of Theoreméand8 suggest that the active set re-

mains bounded even when the threshold is decreased at amesitjad rate, while yielding
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threshold A

20 40 60 80 100
sparsity S

Figure 13: Percentage of the trials where no more than $heodes from the optimal

supportl’; become active during convergence,, I'(t) c I';, Yt > 0. The value 1 means
that 100% of the trials satisfied this condition.

100

10

threshold A

10.01

0
20 40 60 80 100
sparsity S

Figure 14:Ratio of the maximum number of active elemeqtduring convergence over

the sparsity leve$, i.e., max.o [I'(t)|/S. For instance, a value of 10 in the color bar means
that the largest active set during convergence contaiBsatfive elements.
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Figure 15:Number of active nodes (left column) and fixed paintreached by the LCA
(right column) for diferent choices of the threshold. The red crosses represeatitinal
signala” and the blue rounds represent the solut@n4 fixed thresholdl = 0.3 was used
in the first row,4 = 0.08 in the second row, and the threshold was decreased ff®to 0
0.08 according to an exponential decay in the third row.

faster convergence. To illustrate that this fact is confdnmepractice, the LCA is first run
with a high threshold value of = 0.3. As shown in the first row of Figur#5, in this case
the active set never contains more than three nodes thaadrefphe optimal support, but
the final solution is missing two nodes from the target sigiialin the second row} is
fixed to a low value of @8. The final solution recovers all the nodes framHowever, the
largest active set visited during convergence now contpg nodes and the convergence
is slower. Finally, in the last row, the threshold is star@.3 and decreased to the value
0.08 according to an exponential decay. As expected, the folatisn is the same as in
row 2. However, in this case the active set never containg thamn the five nodes from the
optimal support. Moreover, the support is recovered fastdess than 2 compared to 3

in row 2.
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theoretical decay (dashed line) as the problem parameteisded.
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4.5.3 Estimate of the convergence speed
Finally, the experimental results in this section are usetgst that the bound on the nor-
malized¢,-distance predicted by Theoresn

u® ~wllo _ a-awr (46)
llur(l2

holds in practice. Both sides of the above expression aral &gy att = 0. Since the matrix
® is random Gaussian, it was shown in Secdofithat the constart can be approximated
by the RIP constant ~ /Slog(N/S)/M. In Figure 16, the theoretical decay on the
right-hand side of46) (dashed lines) is plotted, along with the experimentahradized
{,-distance on the left-hand side (solid lines) averaged d06rtrials. When they are not
varying, the threshold is fixed td = 0.1, the number of measurementshb= 200, the
sparsity toS = 5, and the signal length td = 400.

As expected, the theoretical curves approximate the axeertal decay. These upper
bounds are not strict in practice since they rely on an eséiioa the RIP constardt which
cannot be exactly determined. However, these curvesriiigsthat the experimental curves
gualitatively follow the theoretical predictions as thegraeterdN, M or S are varied in
Figurel6a 16¢ and16b, respectively.

In Figure16d, the dfect of the threshold on the experimental decay is explored. For
values of2 larger than @6, the bound46) with d = /STog(N/S)/M (dark blue dashed
line) is valid even though more the® nodes may become active. Indeed, according to
Figurel4, for A = 0.06, the maximum size of the active set averaged over 108 iggl=
23 = 4.6S, which is larger thais. As 1 becomes smaller, more nodes are likely to enter the

active set. To reflect this, the theoretical decay on the-tigimd side 0f46) is plotted again

with d = /5Slog(N/S)/M (yellow dashed line). The resulting curve is an upper bound
even for very small values of the threshold, for which muchertban % nodes become
active during convergence. For instance, the maximum diteecactive set averaged over
100 trials fora = 0.02 is 180= 36S, which is much larger thang Consequently, the size

of the largest active set during convergence seems to yielddnservative of a bound for
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most of the examples in practice.

4.6 Proofs

The proofs of the two main theorems of this section are givedavla Both proofs rely on

several lemmas and observations derived in the appendices.

4.6.1 Proof of Theorem7
The proof that the active sétis a subset of; for all timet > O is done by induction over

the switching times.

Proof. The first induction hypothesis is that for all switching tisng < tx, the following
holds:
luj )] < 4, Vj e IS andVt € [ty, tis). (47)

If this condition is satisfied for all timé > 0, then nodeg € I'; stay below threshold and
the next active selfy,; = I'(t.1) is a subset of’;, so the theorem holds. An additional

necessary induction hypothesis is
o (t) - &, < B4(S). (48)

By the theorem hypotheses, the initial active set is a sulfdét and @0) holds, proving
readily that 47) and @8) hold att = 0. Next, assume that the two induction hypotheses
hold for a particular switching timé&. If there is no more switching aftedg, then the
theorem is proven. Otherwise, using the dynamic8#), (it follows that for allj € I'; c T}

and for allt € [ty, tk.1]
t
uj(t) = e_(t_tk)utjk +et f €p;j(v)dv,
ty

with p;(v) = d)JT (Y — @r.ar(v)) . The absolute value of the expression above can be bounded
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|u;(t)] =

t
e‘(t—tk)utjk +e—tf e”pj(v)dv
tk

< e—(t—tk)

ti
U;

t
+e_tfev pj(v)|dv
ty

S e_(t_tk)

ti
U;

+(1—e‘(“tk)) sup |p;(V)|.

V€[t te1]

Since, at timey, nodej € F‘T’ is inactive, therﬁutjk

< A. As a consequence, conditiofif is
satisfied if

sup |pi(v)| < 4. (49)

V€[t tke1]

Since the matrixIJjT(I)FT is a submatrix ofb™ ® — | with (S + 1) distinct columns, and since
® satisfies the RIP of ordeS(+ 1), Lemmal5yields that”(l)}(brj“ < 6. Then, for all time

t € [ty, tks1] and for all nodeg € IS,

o] = [@] (v ~ Prar ©)]
= |®] ((Drj_ a +e— (I)Fkark(t))’ (y=r,a +e)
= 0] D, (aT -~ ark(t)) + (DJ-Te' (sincel’y c ;)
<|@j @, (a" - ark(t))‘ +| 0] ¢
< [T [[la" - an )], + |0k

<6lla" - ar M|, + H(D;?G

(o)

Lemmal2is now applied to obtain a bound that holds uniformly acroset
[a" — a@)||, < Bx(S). Ve[t tea] .

In particular,||ar,, (1) — af||, < Bs(S) and the induction hypothesid&) remains true at

timety,,. Putting the pieces together and using conditi),(for all timet € [ty, tc.1] and
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for all nodesj € I'Y, the following holds:

loi(0)] < By(S) + |l

(o)

<A(1-bs VS +bs VS)

=A

This computation shows thad ) holds for all timet € [t, tx.1]. Since @7) holds at time
tw.1, it necessarily holds until the next switching tityg, (since, by definition, a switch
occurs if a node crosses threshold), then the inductionthgse 47) must hold for all

t € [tx.1, tki2), and the proof by induction is complete. O

4.6.2 Proof of Theorem8

The following presents a proof by induction on the switchiimgest, that no more than
nodes are active during convergence, [I'(t)] < qfor allt > 0. The proof uses the set
A(t) containing theg largest nodes in(t). While this set depends on time, the time index

is removed in the notation for readability.

Proof. By Lemmal3, if
luso @], < A3 (50)

for all timet > 0, then the theorem holds. The two induction hypothesestosgave this

result are thatg0) and
Ja(t) - a'||, < Bs(a) (51)
hold for allt < ty.

By (42), the first condition$0) holds att = 0. Moreover,

|a(0) - a'll, < lla@)I, + ||,
< u()ll, + [|a’]l,
< Avg+ [ja',

< Bx(a).
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so (61) also holds at = 0.

Next, assume that for some switching titpe(50) and 61) hold. If there is no more
switching, the theorem is proven. Otherwise, sire® folds at time,, Lemmal2 can be
applied readily to prove that the induction conditid&i)is true at timety,;. To prove that
(50) holds, the dynamics on for t € [ty, tx,1] are written as in§0):

t
) = V) + € [ epana
wherepa(v) = ar(v) — @ ®a(v) + ®y. Thel,-norm of this quantity can be bounded as
follows:

t
lua(®)ll, < €9 ua(tdll, + et f e sup llea(v)ll, dv

ty V€l

< e—(t—tk) ||UA(tk)||2 + (1 _ e—(t—tk)) sup ||PA(V')||2' (52)

Vet tks1

By the induction hypothesi®(), the following is true

IUa(tidll2 < 40,

and Lemmal3implies thatl'(ty) = '« ¢ A andI'x contains fewer thaq nodes. The last

step is to obtain a bound for dlk [t, tx, 4] for
loa®)ll; = [[as () - D @a(t) + @Ly]],
_ Hag + (1 - O[0) (a(t) - &) + (DZe“

o
<laill, + 1 - @Fer.or,

a® = &ll, + [|o3e]l,-

Sinced satisfies the RIP with paramete&{ p, 5) andI'y c A, Lemmal5can be applied

to the matrixl, — ®{ @, , with 'y = A andl’; = T';, and Lemmal4 can be applied td,.
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This results in a uniform bound on the quantity

loa®lz < |8k, + [1s - @Xr,

< |a"|l, + 6Bs(@) + (L + ) llell,

a® = &'ll, + [|22e]

= (1+6@+0)1-0)7) [,
1+ 3)(5(1 _52V1-5+ 1)||e||2
+6(1+6)(1-6)21+/0

<(1+8)(1- 5)—2(||aﬁ||2 + V1= 5l + o2 \/a).
Applying the theorem hypothesi43) yields

lloa®)ll; < (1-6) (136 +6(1+6)) AV

= A3

Plugging this result into§2) shows thatju(t)ll, < A+/qfor all t € [ty, ti.1]. In particular,

the induction conditiong0) holds atty,;, which finishes the proof. O

4.7 Summary

In this chapter and Chaptdy the mathematical analysis of the LCA was carried out. De-
spite a nonsmooth activation function and possibly singungerconnection matrix that
prevented the application of existing analytic results, tletwork was shown to converge
exponentially fast from any initial point to the optimal sbbn. Prior to this study, algo-
rithms for sparse recovery had been exclusively studietiendigital domain. The ISTA
provides a useful reference as it is also designed to sokvé;tminimization program

by taking a discrete step in the direction of the negativeligrat and thresholding. This
discrete-time algorithm was shown to converge with a limate in 60] to the solution of
the ¢;-minimization program, for which an accuracy analysis wasied out in P]. These

two results are combined in the summary below.
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ISTA for static recovery: If ® satisfies the RIP, the threshold satisfies
AVA 2 ¢ |8, + 2o

for some constants,oc; > 0, and the step sizg is in the interval(0,2||<DT<D||_1), then
ISTA converges with a linear rate; i.e., there exist (0, 1) and two constants £C, > 0

such that for all iterations & 0
|a@t) - a'||, < CoC" + C1.
The constant Crepresents the optimal errgf@’ — a'||, when solving5) and satisfies
C1 < Cod\fG + Caor

for some g> 0 (which is typically on the order of S) and some constant<g > 0.

The results of Chaptesand4 have provided similar convergence and accuracy guar-
antees for the LCA. Since the fixed points of the networks varewn to correspond
to the solution to the;-minimization program when the activation function is tlodts
thresholding function, the accuracy result 6f holds for the LCA as well. The analytic
findings obtained for the LCA are summarized below.

LCA for static recovery: If ® satisfies the RIPand the threshold satisfies

AA 2 co|[a’||, + caor

for some constantsoc; > 0, then the LCA converges with an exponential rate; i.e.,gher

exist ve (0, 1) and two constants £Cs > 0 such that for all time & 0
|a(t) - a'||, < C4e™ + Cy,

where G is again the optimal error achieved when solvif). In addition, the output of

the LCA never contains more than q non-zergficients.

2In [9], the author actually uses a slightly more generalotothan the RIP, but the quantities used can be
related to the classic RIP.
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For the continuous-time algorithm, the linear rate of cogeace becomes an exponen-
tial rate. The analysis in this thesis has also shown thaothpeut of the LCA remains
sparse, similar to the analysis carried out for certaindyemlvers such as OMP, ROMP,
etc This collection of results demonstrates that the LCA issso@able solution for sparse
recovery that is worth implementing in analog VLSI for eregning applications. Eventu-
ally, a dedicated analog chip will have the potential to gigantly improve the speed and

power consumption necessary for real-time signal proogsgoplications.

79



CHAPTER YV

TRACKING OF TIME-VARYING SIGNALS

While there exist many well-established techniques witbvkm performance guarantees
to recover sparse signals from compressed measuremerits sidtic case, only a few
methods have been proposed to tackle the recovery of timgagesignals, and even fewer
benefit from a theoretical analysis. In this chapter, thexcey to perform this tracking in
real time is studied for both the LCA and ISTA, its discrated analogue. ISTA is a well-
known digital solver for static sparse recovery, whosetien is a first-order discretization
of the LCA differential equation. The results of this chapter show thabthputs of both
algorithms can track a time-varying signal while comprdsseasurements are streaming,
even when no convergence criterion is imposgt].[ The {,-distance between the target
signal and the outputs of both discrete- and continuous-8wivers is shown to decay

exponentially fast to a bound that is essentially optimal.

5.1 Background and related work

First, the ISTA discrete iteration is reviewed, and a sunynadrresults obtained in the
static case is given along with several approaches thatlhese proposed in the literature

to perform dynamic recovery.

5.1.1 The ISTA

The ISTA is one of the earliest digital algorithms developadsparse recoverylp], and
although it tends to converge slowly, many state-of-thes@lvers are only slight variations
of its simple update rulelp, 52,62,63]. The ISTA is defined by a discrete update rule that

can be seen as a generalized gradient step fof;th@nimization problem in§). Thel®
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iteratea(l) € RN is defined by

a(l +1) =T, (a(l) + n(@" (y - @a(l)))). (53)

The activation functiofT,(-) is the soft-thresholding function i®). The constani repre-
sents the size of the gradient step, which is usually requode contained in the interval
(O, 2||CDTCD||_1) to ensure convergence. Several papers have shown that IS&rges to
the solution of §) from any initial pointa(0) with a linear rate$8, 60.

To match the LCA equation, the extra variabi@) is introduced in the ISTA update

iteration:

ul +1) =a(l) +nd" (y - da(l))
, vl > 0.

al +1) =T,(u(l + 1))
With this formulation, it is easy to see that ISTA is a firster (or Euler method) dis-
cretization of the LCA dynamics. Using a step sdidfor the discretization equal to the

LCA time-constantl = t,; — t; = 7, the LCA ODE 8) becomes

u(l + 1) — u(l)
.
-

a(l +1) = T,(u(l + 1)),

= —u(l) + a(l) + ®T(y — da(l))

which can be written as

ul+1) =a()+oT(y - oa(l))

all +1) =Ty(u(l +1)) |
This formulation matches the ISTA iteration whes 1. As a consequence, simulating the
ISTA on a digital computer with the appropriate parameteiaiputs the LCA in the same

framework as existing digital algorithms and facilitatee tomparison of convergence time

and computational complexity carried in SectmB.

1The iterate numbdris in parenthesis, analogous to the continuous time index tleen™ entry of the
vector is put in subscripty(l).
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5.1.2 Related work

Several approaches have been proposed to tackle the gauflarhigh-dimensional sparse
signal evolving with time from a set of undersampled stremymeasurements. Classical
methods for tracking signals include Kalman filtering andtipke filtering [64]. These
methods require knowledge of the underlying dynamics ofdhget and exploit no sparsity
information. Some recent papers have built on these methypdsorporating a sparsity-
aware criteria, either via convex relaxati@b[66] or greedy method%][7], and still require

a priori knowledge of the target dynamics.

Another class of methods relies on building a probabilistmdel for the evolution of
the target’s support and amplitudes, and uses Bayesiaeinte techniques to estimate the
next time sampleg8-70]. These methods also necessitatpriori knowledge of the tar-
get’s behavior to adjust many parameters, and the recoaerpe sensitive to inaccuracies
in the model. While TO] proposes estimating the model parameters online, it oagsd
so in the non-causal smoothing case, which can become catignally expensive as the
number of parameters is large.

Finally, the last class of methods is based on optimizatieor. instance, inq1, 72,
an optimization program is set up to account for the tempmoaklation in the target, and
the recovery is performed in batches. #8], the best dynamical model is chosen among
a family of possible dynamics or parameters. The performarithis technique is limited
by the resolution and accuracy of the available dynamicalets In R2], a continuation
approach is used to update the estimate of the target usngpthtion from the previous
time-step. In Y4-77], the optimization is solved using low-complexity itekagischemes.
Unfortunately, these methods lack theoretical guaranteed best provide convergence
and accuracy results in the static case. Finally,7i@|,[a very general projection-based
approach is studied. A convergence result is given, butnbisclear how the necessary

assumptions apply in the time-varying setting and it doeésame with an accuracy result.
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The ISTA and LCA belong to the class of optimization-basdtestes. The two al-
gorithms do not rely on any model of the underlying dynamaeg] a minimal number of
parameters need to be adjusted that are already preserdt #tattic case. In the follow-
ing analysis, convergence to the minimum of the objectivi@)ror to a stopping criterion
is not required. Rather, the LCA output evolves continupuwgth time as the input is
streaming, while the standard ISTA iteration is performedew measurements become
available. This setting is particularly useful when signale streaming at very high rates
or computational resources are limited. Despite this sasptting, the analysis shows that
the LCA and ISTA can both track a moving target accurately @modides an analytic ex-
pression for the evolution of th&-distance between the output of both algorithms and the
target for all timet. The techniques developed in this section provide a gooddation
for the analysis of other algorithms that currently lackattetical analysis, in particular

iterative-thresholding schemes that extend the clas3i&.IS

5.2 Tracking a time-varying input
In this section, the model used for the target signal andtbertain theorems are presented.
The resulting analysis provides an explicit expressiorntertracking abilities of the ISTA

and LCA when recovering a time-varying inpaii(t).

5.2.1 Signal model
The underlying target signal (t) and the noise vecta(t) are assumed to evolve continu-

ously with time. As a consequence, the ing(tj is
y(t) = @a’(t) + e(t) (54)

and is also continuous with time. The following analysissiders the general case where
the measurements are corrupted by noise, but it remairginaine noise-free case where
e = 0. The target signa'(t) is assumed to remai®-sparsei(e., |I‘T(t)| < Sforallt > 0).

Finally, the energy in the time-derivative of the targetaguired to satisfy the following
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bound for all timet:
. 1
lf, < -=[a'®f, +n  vt=o0. (55)

This condition ensures that the energy in both the timeveltivie |a"(t)||, and the target
itself ||’ (t)||, remains bounded (see Lemr@ Intuitively, the more energy is present in
the target, the slower the variations must be for the algortto track them. The smaller
the time constant of the solver is, the slower the target needs to vary to bésdipée. Note

that only the following condition is actually necessaryhe proof of Theorem.0:
4 1
@l < - [latl, +1 vez0

This condition is less restrictive thaB5), since, as the LCA evolves, the output gets closer
to the target signal and the energyl[a.(t)||, = ||al:(t) — ar(t)||, decreases. However, be-
cause the sdt° changes with time and the sequence of active sets is not kimoadvance,
this condition is dificult to verify in practice.

The columns ofb are assumed to have unit nofid,||, = 1 and® to satisfy the RIP
with parameters§ + g, 6) for someq > 0. Finally, the energy of the noise vector remains

bounded and the constantis defined as

ag
lle(®ll, < N vt>0. (56)

5.2.2 Tracking abilities of ISTA
This section concerns the tracking abilities of the ISTA igemeral setting, where a new

measurement is received evé®) iteration:
y(kP) = ®a’(kP) + e(kP), vk > 0. (57)
In this setting, the ISTA™ iterate simply becomes

u(l+1) = afl) +n(@7 () - @a()))

al+1) =Ty(u(l +1))

., vixo (58)
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at(0) = al(1) =+ =alf(kp=1) # al(kp)=--- ... at(kP+P-1) # af ((k+1)P)
a(0—>a(1) —> -+ a(kp-1) —> a(kP) --- .. a(kP+P-1) —>a((k+1)P)

Figure 17:A new measurement of the underlying continuous-time sigh@) is received
every P ISTA iterate. During the subsequeRt— 1 iterations, the target is treated as
constant in the ISTA update rule. The quantity of interegfai&P) — a' (kP — 1)||,, which

represents the last error before a new measurement isedceiv

For iterated of the forml = kP + i, withi = 0,...,P — 1, since no new measurement has
been received, the target sigrza(kP + i) and the measurementékP + i) are treated as
constant signals (in other words, the algorithm does natrassa model on the dynamics

of the target signal):
a' (kP +i) = a'(kP), vYk>0, Vi=0,...,P-1 (59)

This approach is illustrated in Figutd. The step size for the discretizatiordb= t,; —t;.

As a consequence, properg5 yields the following boun&k > O:

tkp
f a'(t)dt
tkp-1 2

tkp
< [ el a

tkp-1

tkp
< f u dt
tkp-1

= udl. (60)

|a’(kP) - a' (kP - 1)||, =

Note that because the measurement vegijrchanges everP™ iteration, ISTA never
converges to the optimum db)if P is small. This approach is of great interest for scenarios

where the measurements are streaming at very high rates.
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Theorem 9. Assume that the dictionary satisfies the RIP with parametdS + 2q, ) for

some ¢ 0 and that the gradient stepin (58) satisfies
O<np<——. (61)

Define c= |n — 1] + 6n < 1. If the target signal satisfies conditig@0), the initial point g0)

contains less than g active nodes and the following two ¢mmd hold:

ur@(O)]|, < 2 va, (62)

n(L+ 6) max{|[a’(0)]|,. 7} + no < (1 - QA+G, (63)

then
1. the output é) never contains more than q active nodes for al0; and

2. lettingi= (I modP) (i.e.,'k > 0 suchthat I=kP+i, with0 <i < P -1), the
{,-distance between the output and the target signal satigfiesO

i+1
[t + 1) - a' ()], < ¢ ([Ja@) - a'(O)||, - W) + %,1 dl+V, (64)

where

V=(1-07" (o +10), (65)

W = pdl+ V. (66)

1-cP

This theorem shows that at eve?\} iteration, thef,-distance between the outpa(kP)
and the target signal’ (kP — 1) remains bounded and convergekas oo toward

P P
_(1_ot c

V + w dl

with a linear rate of convergence. This final value is esaéintbptimal, with the first term
(1-07t (/1 \a+ no-) corresponding to the error involved with solvirg).( Together with

the bound §3), they resemble the terms of Corollary 5.1 @) pbtained for the static case.
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The additional ternc”(1 — c®)~1u dl behaves likex dI/P and corresponds to the error that
is expected from having a time-varying input. The larger\hgations in the target, the
largeru will be, which corresponds to a morefiditult signal to track and a larger error.
Conversely, the slower the target varies, the larger theevaf P, and as expected, the
smaller the final error is. Wheld — oo, this additional term disappears.

When the ISTA is considered as the discretization of the LtBA,discretization step
dl for the Euler method is equal tg = 1 in (58), andP = 1, soc = ¢ as discussed in

Section5.1.1 Then, the asymptotic final value becomes

S(L-0)t(ru+o+1+0).

5.2.3 Tracking abilities of the LCA
The following theorem shows that the number of non-zero elgmin the LCA output
remains bounded. It also provides an expression for theuswal over time of the/,-

distance between the LCA output and the target signal.

Theorem 10. Assume that the dictionady satisfies the RIP with parametgS + g, §) for
some ¢ 0. The following quantity depends on the threshglthe noise energy boungd,

the energy bound on the target sigpalthe parameter g and the RIP constant

D=1-6)"(tu+0+1+0). (67)

If the initial active sef’(0) contains less than g active nodes and the following two condi

tions hold:

us@(O)]|, < A VA, (68)

5 - max{||a(0) - a"(0)||, . D} + max{|[a’ (0)|, . 7u} + o < 1@, (69)
then

1. the active set never contains more than q active nodesl{{(g| < q);
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2. the energy of the q largest entries in absolute val(t¢in the state satisfiegt > 0
luso®, < €V Jus@©)f, + (1~ &) 2 va; (70)
3. thet,-distance between the LCA output and the target signalfgegigt > 0

”a(t) - aT(t)”2 < g 1-oyr

a(0) - a'(0)||, + (1 — e‘(H)t/T) D. (71)

This theorem shows that tifg-distance between the LCA output and the target signal

converges exponentially fast towards its final value

D=(1-6)"(tu+o+1+0).

This quantity is equal to the final value obtained for ISTA wliecorresponds to the first-
order approximation of the LCA ODE. This bound is again eBayoptimal for the prob-
lem. The first term (+ 6)~ (1 /G + o) corresponds to the expected error when solvi)g (
while the additional term (% 6)‘ru corresponds to the error associated with recovering
a time-varying signal. The error increases withwhich corresponds to the energy of the
variations in the target. Conversely, the error decreagdsdecreasing, corresponding to

a faster solver. It is interesting to note that the initiahditions 68) and €9) are similar to

the initial conditions of Theorem 3 ibp]. In particular, the analysis irbp] shows that for

classic CS matrices for which~ /S/Mlog(N/S), the number of measurements required
for (69) to hold isO (Slog(N/S)).

As a final remark, the convergence rate of both continuousdistete algorithms
depend on the RIP constant of the matbix However, the condition on the RIP constant
is stronger in Theorer. This discrepancy can be explained by the fact that the ISTA i
discrete-time algorithm and, as a consequence, the setivé atement$'(l + 1) may difer
by as much asg elements from the previous active §&t). By contrast, the changes are

continuous in the case of the LCA.
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Figure 18:Evolution of thet,-distance between the target and the output after eR&ry
ISTA iteration.

5.3 Simulations

The simulations in this section illustrate the previoustietical results

5.3.1 Synthetic data
A synthetic sparse vecta (k) for k = 1,...,40 of lengthN = 512 with sparsityS = 40
is generated as follows. F&r= 1, S = 40 random amplitudes are drawn from a standard

normal distribution and normalized to have noenThen, 39 consecutive time samples are

ak+1) = ,/%a(k) + %v(k),

wherev(K) is a vector inRS with amplitudes drawn from a standard normal distribution.

obtained as follows

.....

ferences between consecutive samples have energy pm@intou. To model support
changes, a set of 10 sinusoids with frequencies drawn umiyaait random from [03] and
random phases are generated. For 10 randomly selecteésnthe corresponding target
al (k) is set to the product af,(K) with the positive part of the sinusoids. For 1Gtdi-

ent indices, the corresponding targétk) are set to the product af,(k) with the negative

’Matlab code for running the experiments in this section cams Hownloaded from
http://users.ece.gatech.edu/~abalavoine3/code/LCA_ISTA_exp.zip
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part of the sinusoids. The remainig- 10 nodes in the suppoetf,(k) are assigned to the
remaining amplitudes,,(k). This setup ensures that the sparsityabfs alwaysS = 40
while letting 20 nodes switch between active and inactivdtneWthey are not varied, the
following values are usedy = 1, u = 0.8 andP = 1. The measurement matrii is
256x 512 with entries drawn from a standard normal distributiod eolumns normalized
to 1. A Gaussian white noise vector with standard deviati@j®a'(0)||, / VM is added
to the measurements, which corresponds to a moderate leweise. In Figurel8, the
average over 1000 such trials of theerror|ja(kP) — a(kP - 1)||, is plotted. The curves
tend to a final value that matches the behavior predicted lepEmMO ask — 0. A higher
value of P decreases the quantit§ (1 - cp)_l,u dl and yields a lower final value, while a
larger value ofu yields a larger final value.

Next, the threshold and the sparsity leveb are varied, and for each pair 10 time
samples ofa’(k) and associated measuremey(l§ are generated in the same fashion as
before. The ISTA is run foP = 5 iterations per measurement. In Figli® the average
over 100 such trials of the ratio of the maximum number of mere elements in a(l)
over the sparsity leved is plotted. The figure shows that the maximum number of non-
zero elements remains smailié mostly contained betweergland 1), which matches

the two theorems’ prediction.

5.3.2 Real data

Finally, the performance of ISTA in the streaming settingeisted on real data and com-
pared against SpaRSA, a state-of-the-art LASSO sob#r BPDN-DF (which adds a
time-dependent regularization between frames), RWL1-®ki¢h additionally performs
reweighting at each iterationp§] and DCS-AMP (which uses a probabilistic model to
describe the target’s evolutionj(]. A total of 13 videos representing natural scenes are
used to get 100 random sequences of 40 consecutive franfgisce natural images are

sparse in the wavelet domain, following the work #®], the measurement matrix is taken

3The videos used can be downloadet®atp: //trace.eas.asu.edu/yuv/
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Figure 19:Ratio of the maximum number of non-zero elementser the sparsity leved
for several values of andS averaged over 100 trials.

to be® = AB, whereA consists oM = 0.25N random rows of a noiselet matrix armlis
a dual-tree discrete wavelet transform (DT-DW8Y]. SpaRSA and BPDN-DF are given
the estimate at the previous frame as a warm start for thewoly frame. The results
obtained for the ISTA withP = 1 andn = 1 simulate the LCA ODEs. The regularized
mean-squared error, defined by
Jato - a' ]

@,

is plotted in Figure20g and the number of products involving the matbor its transpose

rMS E(K) =

is plotted in Figure20b, both averaged over the 100 trials. The number of multipbce

by ® or @' is preferred to the CPU time because it is a less arbitrarysoreaof the
computational complexity for each algorithm. In figu2@a the final rMSE reached by
ISTA with P = 3 andP = 10 is contained between those of SpaRSA and BPDN-DF after
about 19 and 6 frames, respectively. The average rMSE fok Mith P = 1 converges
much slower. However, one would expect that an analog img@heation of the LCA would
result in a faster time constant and would more closely mételperformance of ISTA for

P = 10 (assuming an analog constant 10 times smaller than thtalddguivalent). The
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rMSE for RWL1-DF is much lower due to the additional reweightsteps. However, the
complexity for this method is much larger than the other fowhile the complexity of
ISTA for P = 10 is similar to that of DCS-AMP, the complexity fé&t = 3 andP = 1
can be much smaller than any of the other approaches. In@udie ISTA only involves
a single parameter to adjust, while DCS-AMP has around 10eMits parameters are
optimized non-causally for a specific video sequence, D&BAperforms only slightly
worse than RWL1-DF. However, its performance degradeslgmaen the parameters are
not optimized for each individual video as in Fig@a which is a drawback for real-world

applications.

5.4 Proofs
54.1 Lemma2

The following lemma gives a bound on the energy of the tardetwits time-derivative

satisfies §5).

Lemma 2. If the target signal &(t) is continuous and satisfi¢s5) for allt > 0then,vt > 0

'@, < e (

a*(0)||2 - T,u) +Tu

< max{||a*(0)

)

Proof. It suffices to notice that

& (IXOIE)  x)Tx(t)
2Ix®ll, Xl

%(Hx(t)”z) - < IIXO1l

where the last inequality comes from the Cauchy-Schwagquality. Thus,%5) implies

d 1
Gl Ol,) < —=[la’ O, + .

Sincea’(t) is continuous, the first inequality can be deduced from LerfimThe second

inequality immediately follows from the monotonicity ofetexponential. O
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Figure 20:Results of the experiment to recover the waveletiotents averaged over 100
random video sequences of 40 consecutive frames.
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5.4.2 Proof of Theorem9
Proof. To check that < 1, the terms in hypothesi§1) can be reorganized to yield
nl+dé)<2andd<l=ns<n<2-nd

=-1+n<n-1<1-nd

=n-1<1-no

=c<1l
In a first step, it is shown thdiu(1)a(||, < 2@ holdsVI > 0 by induction orl. If so, by
Lemmal3, the active set contains less thalements and part 1) of the theorem is proven.
By (62), this inequality holds fof = 0. Next, assume thijti(1)a(||, < 4 @ for somel > 0.

By Lemmalg, it can be concluded th&il) c A(l) and|I’(l)] < g. As a consequence, the

set

J=J(+1):=A( +1)ur(l) uT:(l)

contains less tha8 + 2q indices. Using the RIP ob, the eigenvalues of the matrix] @,

are contained between €16) and (1+ ¢) and
@I @, - 1| = maxin(1 + 6) - 11 In(1 - 6) - 11}
=n-1+n =c
In addition, the form of the activation functio23) implies that

a0z < lur M, < [luso O, < 2va.
Combining Lemma& with hypothesis§3) yields the following bound
lus(l + 1), = [lp@] @ (&' (1) - a) + &) + n@fe(h)
< |[nel@, - 1s]am)|, + [nole,a O], + [T,
<cllaill, + n(2+a)[[a’ ()|, + nVI+slel.
<cA+/q + n(1+9) max{||a*(0)

< 1.

2,‘['/1} + no
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SinceA(l + 1) c J(I + 1), the induction hypothesis holdslat 1. As a consequence, part
1) of the theorem is proven, as well as the stronger r#s(ll)J(DHz < A4/ VI > 1, which
will be used in the remaining of the proof.

An induction onl is used to show that@) holdsVvIl > 0. It obviously holds foit = 0.
Next, assume thatd) holds for somd > 0. There exist a uniquke > 0 and a unique
0 <i < P-1suchthat = kP +i. In the previous part of the proof, it was shown that
luy (I + 2)Il, < 24/, whered’ = J(1+2) = A(I+2)uT'(I+1)uT (I + 1) and that)’ contains
less tharS + 2q indices. As a consequence, the RIPIGf® , can be used to obtain the

inequality

a@ +2)-a'( + 1), < llad + 2) - uy (1 + 2)ll, + [juy( +2)—a’(l + 1),
<fuy(+2)ll, + [ur@+2)-a'(l+1),
< ANG+ [0l el + 1) + (n@L@, —15) (a7 + 1) - a0 + 1))
<AyG + no + clfa’(l + 1) - a(l + 1)

<A\G + no + clfal + 1) -aQ)|, + cla’®)-al(+1),.

Using the induction hypothesié4) atl, the analysis can be split into two cases.
First case:Wheni = P—1,1 = (k+ 1)P— 1 and 60) yields|a' (I + 1) — a()||, < x dlI.
Thus,

P
lat +2) - a1 + 1), < c(c' (la1) - a' )], - W] + %,1 dl + v) +cudl+ ANG+ o
P+1

< g+t [||a(1) _ aT(O)”z - W] + 1C——cp'u dl+cV+cudl+ A+/q+no

Cc
_CP

< c*[la@) - a'(), - W] + T—grdi+V

Therefore, the induction hypothes& holds forl + 1 = (k + 1)P.
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Second caseWhen 0< i < P - 2, (59) yields|ja’(l + 1) — a’()||, = 0 and so
i+1

(02
1-cP
i+2

lat +2) - &'l + 1), < c(c' (la@) - &' )], - W) + dl+ v) L ANG+ o

< ! [|la() - &' ()], - W] + 10_ s dl+ OV + NG+ o

i+2

< d"|fa(2) - &), - W] + 1° adli+V.

— CP
Sincel +1 =kP+ (i+1),with1<i+1< P-1, this inequality proves the induction

hypothesis§4) in the second case and finishes the proof. O

5.4.3 Proof of Theorem10

Proof. The proof is done by induction on the switching titge The induction hypothesis
is that the active sdfy contains less thaqg active elements and thaf@ and (1) hold
Vi <tk

At time t; = 0, the theorem hypotheses imply thatcontains less thaq active ele-
ments, and thaf7Q) and (71) hold.

Next, assume thatt < t, the active set contains less thamactive elements and that
(70) and (71) hold. In a first step, it is shown thaf ) holdsVt < ty,;. By the induction
hypothesis, the active sEtcontains less thaq active nodes for alt < ty, including the
current active sdfy for t € [t, t,1). AS a consequence, the inequalities in Lenfitbéold
withT; =T andl’, =T for all t < ty,;.

The following time derivative can be computéd< ty,;:

ngt (% lat) - af(t)||j) = 7(a(t) - aﬁ(t))T (am) - a'()
= (a() - a' ()" (-0l drat) + OLy(t) - Asy - 7a' (1))
= —(a®) - a'(t) P Drry (alt) - a'(V)

+(a) - a'®) (dle(t) - asr - ral (1)
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Note that

- (a) - a’(®) DL,y () - a' (1)

o H‘DF (act) - aT(t))Hz +(a®) -a'®) DD (e, )2 (1)

< - ||or (a - aT(t))Hz + Jlac® - &L O], | oF @ rerr, )3l

< -(1-9) [ar ) - 4O, + 6 Jar ) - O, a0,
a0l
+6lar(®) - ar @), [[ar- O,

al.(t)

= ~(1-6) [la(t) — &' O, + (1~ 8) |

<-(1-0)|a)y -a'®|; +|
(@-0)]|a®) - a'@)]|, + o lat) - a'®)]],)

= ~(1-9)[a) - &' O, + -0, [a) - &' O],

|2

Plugging this inequality into the expression for the time\d#ive,

Tdﬂt (% lact) - af(t)||§) +(1-0)||at) - a'@)|;
<|a®) - a'®|, [laj-®, + (at) - aﬁ(t))T (@fe(t) - Asr - ra'(1))

< ||ty —a'@®|, i), + |lat) - a'®)|, [|[@Let) - Asr - ra’®)]],

< [la) - a' @), lar-oll, + [a® - &' @[, ([oF e, + Alsrilo + 7 [& O],
<|la®) —a' @, (|lal®l, + 7 [a"®],) + lat) - &' ®)]|, ( VI + 5 lle(®)ll, + 2 va)

< [lat) - &' @), (cie+ o + A v@)

al.(t)

The bound on the energy in the target’s derivath® (vas used to obtain the last inequality.

Noting that
< (Ix1B)

d
5 (IOl = 2IxON,

the following inequality holds

%(”a(t) - aT(t)||2) <—(1-8)/t|fat) - a' @), + 1/7 (o + AT+ Th).
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Since|ja(t) - a'(t)||, is continuous, Lemmé@ can be applied to obtail't < ti,

e 6)t/T)O'+/1\/_+T/J.

Ja(t) — a’ (||, < e s

a(0) - a'(0), + (1
This inequality shows tha#() holds for allt < ty,;.
Next, the hypothesis7Q) is shown to hold for alt < t..;. Though the seA(t) varies
with time, [|ua(t)||, is continuous for alk > 0 (as a continuous function of the supre-
mum of the continuous functions;(t)]). Moreover, the following time derivative can be

computedvt < ty,;:
jt( ||uA(t)||2) = TUA(t)" Ua(t)
= UA(®)"( - Ua(t) + an(t) - DiDa(t) + DIY(1))
< — (ua®)II3 + lIua®)llz lloa®)llz »
wherep,(t) = aa(t) — @ Pa(t) + @ y(t). This quantity can be boundeft < t,.,; by
loa@®ll, = [|aa(t) — @xda(t) + dRy(t)]|,
- Ha;(t) +(1s - DLO) (at) - &' () + ®ge(t)H2
< [[@ @[, + |Lae®], + [1a = @ZPpury|l[Jat) - &' O,

< max{||a*(0)

2,1/1}+0'+5||a(t)—

where Lemma5with I'; = A andl', = I'y and Lemmé& were applied. Finally, the bound
(71) obtained fora(t) — a’(t)||, for all t < 1 and the monotonicity of the exponential

yield

LT + o+ 5| e

a(0) - a'(0)[, + (1- e ) D]

2+D)

lloa(®)ll < max|

< max{

< A0,

where the last inequality comes from the theorem’s hypaH{69). As a consequence, the

}+a+5max{

following inequality holdsvt < ty,:

S (1) < ~ IOl + VG
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Using Lemmad again yieldsyt < ty1,

t
wmm£€”mmm+@([wumw
0

< e ua(O)ll, + (1 — €)1,

which shows that{0) holds for allt < ty,;.
Finally, the last induction hypothesis is proven to hald;, the next active sdiy,; is
shown to contain less thapindices. Since{0) holdsVt < ty,1, together with §8) this

inequality implies that

Us(ten)llz < €% Jus(O)ll, + (1 - €%/7) 14/G

< 1A

Applying Lemmal3 shows that the active sEt,; contains less thagindices and finishes

the proof. O

5.5 Summary

Previous analysis had shown that the ISTA converges to thé@oof the/;-minimization
problem with a linear rate, and the analysis in Chapdeaed4 showed that the LCA con-
verges to the same solution with an exponential rate whesethlkgorithms are recovering a
static signal ¢f, Sectiord.7). In this chapter, an analysis for both the continuous-li@éa
and discrete-time ISTA was given for the online recovery ¢ih@e-varying signal from
streaming compressed measurements. In this setting, nerg@mce criterion is necessary
before proceeding to the next frame, and a new measurenfedtirsinput as soon as it be-
comes available. The analysis showed that the convergateefrthef,-distance between
the target signal and the output of the ISTA is still linearddhat it is still exponential
for the output of the LCA. In addition, an expression for trestpossible error achiev-
able (corresponding to achieving convergence for eachdyavas given. These results are

simplified and summarized below.
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ISTA for dynamic recovery: If ® satisfies the RIP with parametefs+ 2q, ¢) for

some ¢ 0, the thresholdi satisfies

ﬂ\/aZCGﬁ-I-CﬂT

for some constants;oc7, 3 > 0 such that|a’(t)||, < 8 for all t > 0, and the step sizgis
in the intervaI(O,2(1— 6)‘1), then the ISTA converges with a linear rate; i.e., theretexis

c € (0,1) and two constants £,Cs > 0 such that, for all iterations & 0,
|a@t) - a||, < Csc' + Ce.

The constant grepresents the optimal error if the ISTA had infinite iteoais per frame to
converge and satisfies

CG < C7/l\/a+ C80'+ Cg/l dl

for some constantsCCs, Co, 2 > 0 such that|a’(t)||, < x for all t > 0, and where dl is
the time between two iterates. In addition, the output nevatains more than g non-zero
codficients.

LCA for dynamic recovery: If @ satisfies the RIP with parametdis+ g, ) for some

g > 0, and the threshold satisfies

A4/Q 2 CcgB + Coo

for some constantgace, 8 > 0 such that||aT(t)||2 < pforallt > 0O, then the LCA converges
with an exponential rate; i.e., there exise|0, 1) and two constants £Cg > 0 such that,
for all time t> O,

|a(t) — &', < Cre™ + Ce.

The constant grepresents the steady state error if the LCA converged fon #&@me and
satisfies

Cg < Coa \/EI + C100 + Cpy1u
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for some constantsgCio, C11, 4 > 0 such that|a’(t)||, < u for all t > 0, and wherer is
the time constant of the LCA. In addition, the output of théLt@ver contains more than
g nhon-zero cogcients.

The links between the static setting in Secoriand the dynamic setting above appear
explicitly in this summary. The convergence rates for b discrete- and continuous-
time algorithms remain the same between the two settings. optimal error in the dy-
namic case is composed of the static e@at /g + C”o plus a termu dl or i, which
reflects how much energy is in the derivative of the targetaigshow fast each algorithm
completes one ‘iteration’. Thus, the results of this chaptgurally extend those obtained
in the static setting.

It had been previously observed in literature that limiting number of iterations in the
streaming setting could yield good convergence results.irfsbance, in §7] the authors
mention that a simplified version of their algorithm thatyekecutes one iteration per
measurement still performs well. However, no analysis heshlpreviously provided for
such iteration-limited settings. The analysis presemnighis thesis could potentially be ap-
plied to obtain similar convergence and accuracy resultthfese algorithms that currently
lack analysis. Moreover, while the simulations of the LCA BEXDwith the appropriate
parameters (in particuld® = 1) suggest that its convergence is slow, one would expect
its time constant to be much faster than the tina for a digital algorithm to complete
one iteration. If so, the actual behavior of an analog imgetation of the LCA would be
closer to the ISTA simulated witR = 10 (assuming an analog constant 10 times smaller
than its digital equivalent). Consequently, the resultthaf chapter support the idea that
an analog implementation of the LCA has the potential to keaa low-power solver for

the real-time recovery of time-varying signals.
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CHAPTER VI

SUMMARY AND FUTURE DIRECTIONS

The focus of this thesis was to determine what type of cootisttime systems can be
used to solve nonsmooth optimization problems, with speapplication to CS. The anal-
ysis developed has shown that a class of recurrent neurabriet can be used to perform a
wide class of complex optimization programs. Recurrentalenetworks are characterized
by distributed information-processing units and a matfifeedback interconnections. The
highly parallel structure of these networks makes them atlerto analog implementation,
which designates them as a promising approach for realdippdications. While signif-
icant research has been put into providing performanceagtexs for several classes of
neural networks, this thesis has provided new results tioaiden previous guarantees to a
larger class. The neural networks in this extended clasbeased to solve sparse recovery
problems that arise in CS. In addition, this thesis has pteseconvergence and accuracy

results for the recovery of time-varying sparse signalsimlliscrete and continuous time.

6.1 Summary
6.1.1 General performance guarantees

The first contribution of this thesis was the mathematicalysis of the class of LCA neu-
ral networks. The LCA is characterized by an interconnectiatrix with a nontrivial
nullspace and an activation function that can have flat regand may be unbounded. It
was shown under what conditions the fixed points of thesear&sicorrespond to critical
points of the desired optimization problem. The convergesfdhese networks to their set
of fixed points was proven by taking a Lyapunov-type approddte support of the solu-

tion was shown to be recovered in finite time under a condthahis expected to hold with
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near certainty. A stronger convergence result was theblegtad using a recently devel-
oped analytic tool called the nonsmooth Lojasiewicz indigua/Nith this approach, it was
shown that under some mild assumptions on the activatioctifum which are often true
in practice, the trajectories of both the internal states@utputs converge toward a unique
fixed point, even when there exists a continuous subset atisné to the optimization
problem. Finally, the convergence rate of the LCA networks whown to be exponential,
and an analytic expression for the convergence speed waedleAll of these findings
have expanded the state of knowledge in neural network sisalin addition, they have

shown that the LCA can be used to solve a wide class of opttiaizarograms.

6.1.2 Applicationto CS

The second contribution of this thesis was to specializeptkegious results to CS recov-
ery. When the activation function is the soft-thresholdingction, the LCA solves the
{1-minimization program, which is the most famous objectiwedtion for sparse recovery.
Some strong guarantees are associated with the solutibrsafgtimization program when

it is used to recover a sparse signal. Unfortunately, evemtbst dicient digital solvers
cannot achieve real-time recovery for problems of largessiZ he analysis presented has
shown that the LCA takes arfient path towards recovering the sparse solution. In ad-
dition, an estimate for the convergence speed that onlyrakpen the problem parameters
and is independent of the input signal has been derived. malyss uses the RIP and
has yielded interesting parallels to existing digital aitjons. In particular, an analog to
the S-step property and a less restrictive condition were shaahmotd for the LCA for a
number of measurements equivalent to those obtained fodatd digital solvers. These
findings have demonstrated that the LCA has the potentiat taslked as a real-time solver

with potentially better scaling properties than its dipgquivalents.
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6.1.3 Tracking of time-varying signals

The last contribution of this thesis was to predict the cogeece behavior of the LCA and
ISTA, its discrete-time equivalent, when they are recowgm time-varying signal from
streaming measurements. In this study, the measurementoatinuously fed in input
and the solvers are constrained to operate in real-timedinl @elays. This situation is of
particular interest when the measurements are streamhigtatates or the computational
resources are limited. While guarantees have been obt@neaany solvers in the static
case, few approaches have been developed for the dynaneic arad most lack perfor-
mance guarantees. The findings of this thesis have provigleel bbounds for the evolution
of the error for both solvers over time. These bounds arenéisfig optimal and prove that
the LCA and ISTA can be used to track time-varying signalsifstreaming measurements.
Such theoretical results provide a solid foundation forahalysis of the many solvers that
extend the classic ISTA. In addition, they show the potétixtending CS theory to a

wider range of applications that involve dynamically ewotysignals.

6.2 Comparative overview of results

In this section, a synthesis of some selected results friamature and from this thesis are
presented in parallel to put the contributions of this th@siperspective.

Many digital algorithms for sparse recovery have been stlifior convergence and
accuracy in the static case. For instance, combining theecgance result ing0] for the
ISTA with the accuracy result for thg-minimization program in9] yields the following.

ISTA for static recovery: If ® satisfies the RIP, the threshold satisfies

4G 2 ¢ ||a’]|, + caor

for some constants,cc; > 0, and the step sizg is in the interval(0,2||<DT<D||_1), then
ISTA converges with a linear rate; i.e., there exist (0, 1) and two constants £C; > 0

such that, for all iterations & 0,

|a@t) - a7||, < CoC" + C1.
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The constant Crepresents the optimal err¢

&' - a||, when solving5) and satisfies
C]_ < Cg/l \/a + C30'

for some > 0 (which is typically on the order of S) and constantsC; > 0.

This thesis has extended the previous result to the conisitime LCA algorithm for
{1-minimization. The combination of Theoremdsand 8 with the accuracy result fof;-
minimization in B] implies the following result.

LCA for static recovery: If @ satisfies the RIP and the threshold satisfies
AA 2 ¢z ||a’||, + caor

for some constantsoc; > 0O, then the LCA converges with an exponential rate; i.e.,gher

exist ve (0, 1) and two constants £Cs > 0 such that, for all time ¢ O,
Ja(t) - a'||, < Cse™ + Cy,

where G is again the optimal error achieved when solvifl). In addition, the output of
the LCA never contains more than q non-zergficients.

Finally, Theorems® and 10 have provided similar guarantees in the case where the
ISTA and LCA are driven by a time-varying signal.

ISTA for dynamic recovery: If @ satisfies the RIP with parametefs+ 2q, 6) for

some ¢ 0, the thresholdi satisfies

ﬂ\/aZCﬁﬁ+C70'

for some constants;oc;, 8 > 0 such that|a’(t)||, < g for all t > 0, and the step sizgis
in the interval(0,2(1— 5)‘1), then the ISTA converges with a linear rate; i.e., theretexis

c € (0,1) and two constants£Cs > 0 such that, for all iterations & O,

a(l) — a'l|, < Csc' + Ce.
[ I,
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The constant grepresents the optimal error if the ISTA had infinite iteoais per frame to
converge and satisfies

CG < C7/l\/a+ C80'+ Cg/l dl

for some constants0CCg, Cy, u > 0 such thalﬂz'aﬁ(t)”2 < uforallt > 0, and where dl is
the time between two iterates. In addition, the output nevetains more than q non-zero
cogficients.

LCA for dynamic recovery: If @ satisfies the RIP with parametgis+ g, 6) for some

g > 0 and the threshold satisfies

A/ 2 CgB + Coor

for some constantgacs, 8 > 0 such that||aT(t)||2 < pBforallt > 0O, then the LCA converges
with an exponential rate; i.e., there exise|0, 1) and two constants £Cg > 0 such that,
for all time t> 0,

|a(t) - a'||, < Cre™ + Ca.

The constant grepresents the steady state error if the LCA converged fon #&@me and
satisfies

Cg < Coa \/EI + C100 + Cy1ut

for some constantsgCio, C11, 4 > 0 such thata’(t)||, < u for all t > 0, and wherer is
the time constant of the LCA. In addition, the output of théLi@ver contains more than
g non-zero cofcients.

The four results synthesized above bring to light the threesawhere this thesis has
provided significant contributions: the continuous-tireeavery of static signals, and the
discrete- and continuous-time recovery of dynamic signalsese results also show the
parallels that exist between the discrete- and contintious-algorithms, for which similar
optimal errors are achieved but with linear and exponengi@s of convergence, respec-

tively. Finally, these results highlight the links betwestatic and dynamic recovery, where
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an additionalru or u dl term appears to capture the traffedoetween the energy in the

derivative of the target and the time constant of the cooedjmg solver.

6.3 Future directions
6.3.1 Discontinuous activation functions

The convergence results obtained in this thesis have askiinaithe LCA activation func-
tion is continuous. However, several programs that ariséSirecovery necessitate a dis-
continuous activation function, including the idégtminimization problem. Extending
the results of this thesis to discontinuous activation fioms would further broaden the
tools available for neural network analysis and demorestira ability of the LCA to solve
these complex optimization programs. A first step in thiedion has been presented in
AppendixD, which shows that the convergence result when the fixed panetnot isolated
still holds in the discontinuous case. In a similar way, #&res possible to extend most of
the results in this thesis using Filippov’s approach to apipnate solutions of ODESs with

discontinuous right-hand sides with absolutely contirsuounctions.

6.3.2 Matrix uncertainty

The results presented in thesis have assumed that the LCAdabBe implemented ac-
curately. Unfortunately, it is well-known that analog ciitty inevitably introduces errors
in its various parameters. For instance, floating-gatesiséors may be used to implement
the weights of the matrices, but will likely ffier from inaccuracies due to the manufac-
turing or programming processesd. In addition, the sharp transition necessary in the
soft-thresholding function may not be realizable in praetiConsequently, a study of the
effect of errors in the various parameters would be valuablenttetstand the level of ac-
curacy achievable in practical applications. Unfortulyateeveral dfficulties arise when
modeling these inaccuracies. In particular, if the intarection matrix is no longer sym-
metric due to inaccuracies, an energy function for the nekwannot be written, and new

analytic tools must be developed to study the network cgarere.
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APPENDIX A

PROPERTIES OF THE LCA

This appendix provides several useful properties of thigatain functionT ,(-), cost func-

tion C(-), and objective functioV(-) under Assumption andor 2.

A.1 Properties of the cost and activation functions

The lemma below presents two relationships satisfied byt#tte and output variables and

a bound on the subgradient of the activation function wheatisfies Assumptioh.

Lemma 3. If the activation function J(-) satisfies Assumptioh then for all 4, € R and

a, = T,(uy) the following properties hold:
sign(u,) = sign(ay), (72)
lanl” < Unan < [unf*. (73)

Moreover, There exist8 < « such that for all non-constant nodese Z¢ and for all

Zn € 0T 4(Un)
G0l < . (74)

Proof. SinceT,(:) is locally Lipschitz onR, Proposition 2.1.2 of36] implies that there
existsa > 0 such thai/] < a for all £ € 0T ,(u,), so (74) holds.
SinceT,(0) = 0 andT,(:) is nondecreasing OR, a, = T,(u,) > O for all u, > 0, and

a, = T,(uy) < 0forallu, < 0, which provesT2). This fact also implies that
nln = sign(@n) [aa| Sign(Un) |Un| = [an| [Un|
for all u, € R. Finally, condition @4) yields that, for allu, € R,
[@nl? < [nl Unl = 8ntn < lunl®,

which proves 73). 0J
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Next, a method for building a cost functi@{-) with useful properties and that satisfies

the relationship19) is presented. This lemma is a foundation for many resul@hiapte3.

Lemma 4. If the activation function J{-) satisfies Assumptidh there exists a cost function

C(-) that satisfies the relationsh{i9) and obeys
1. C() is locally Lipschitz continuous dR,
2. C(-) iseven orR,
3. C(*) is nondecreasing oR",
4. C(0) =0,
5. C()) is regular onR.

Proof. Since the activation functiof,(-) is continuous and increasing &nit is surjective
on [0 a]forall a€ T, (R) (whereT, (R) is the image oR by T,(-)). In other words, for all
v € (0, a) there existsl € R such that = T,(u). As a consequence, a functiert(-) can be
defined onT, (R) as follows:

Vv € T, (R), letu € R such thaty = T,(u).

1. if u € Z° (which is the set of nodes that do not yield a constant outthehu is the

unique point inRkN satisfyingy = T,(u), andz*(v) is defined ag *(v) = u,

2. if u € Z, there existk € K, such that = T,(uy) for all ux € [, W]. In that case,

z1(v) can be chosen to kel(v) = w.

Figure21bshows a visual example of how to constrach(:) for the particular activation
function plotted in Figurla

Using this definition foz"1(-), the following quantity is well-defined of,(R):

C@ = f: ziv) - vdv. (75)
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Figure 21:Example of a generic activation functidn(-) satisfying Assumption 1, associ-
ated inverse functiom*(-) and associated cost functi@f-).

The functionC(-) defined this way is locally Lipschitz of, (R) and diferentiable for a.a.
a € T,(R). Figure2lcshows the cost function associated with the activationtfanc

plotted in Figure21la

The following derivation shows th&(-) indeed satisfiesl@). There are two cases.

1. At pointsa whereC(-) is differentiable, the subgradient reduce®@ia) = {C’'(a)},

and the fundamental theorem of calculus applied®) yields
C@=za)-a=u-a

As a consequence, for suah(19) holds.
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2. For a poinawhereC(:) is not diferentiable,
Ik € K st. Yuk € [Vi, W] a=T,(uy.

SinceT,(-) is continuous and strictly increasing on the intervals madmtely adjacent
to [wk, W], there exist two constanty > 0 andé, > 0 such that\, wi + 61] C
R\ Uk exc[Vie, Wie] @nd M — 82, Vi] € R\ Ukexc[Vies Wi]. In other words, fow; andd,
suficiently small, the activation function is not constant oe ittervals Y, Wi + 61]

and M — 62, W].

Letting {w.}.., be a sequence of points imyf, wi + ¢] that converges tay,, the

m>0
sequencgan) .o = {Ta(Wh)}lmo CONVerges ta = T,(w) by continuity of T,(-).

Similarly, letting{v.}.., be a sequence of points in[- 6, v] that converges te,

m>0
the sequencea,,}, .o = {Ta(Vi)}meo CONVerges t@ = T,(w). Using the fundamental
theorem of calculus and the fact ti@a¢) is difterentiable at}, anday, for allm> 0
(by construction) yieldsyt > 0 suficiently small,

Cla,+t)-Ca;) 1 fa'*“
t Tt

i) —vdy
an

— 7)) - a = W &)

t—0

— W —a
t—0
m—oo

and

Clay-t)-Clay 1 (™ _
" ——¥ja;]_tzl(v)—vdv

o @) ran = oty

t—0

— =\ + a
t—0
m—oo
Using the definition of the subgradient in Sect@®8.1, it can be easily seen that for
all £ € 9C(a), the generalized directional derivative satisf¢a; 1) = w, —a > 1£

andC°(a; -1) = —v + a > —1£. As a consequencé,e [ — a, Wi — a] and thus

0C(a) = [vk —a,w, — a].
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This equality proves that indeef — a € 9C(a) for all uy € [k, W].

As a consequence, the derivation above shows that in eveeyieaa € 9C(a) holds for all
a € T (R), which proves thatl(9) holds.

By inspection of {5), it is immediate tha€(0) = 0.

It is also easy to check that, sin®g(-) is nondecreasing and odd, the functioh(-)
defined above is nondecreasing and odd. As a consequenak ger T,(R), the following

holds:
C(-a) = f - (20) - v) dv
0

— : -1 _
—foa(z ( v)+v) (—dv)

= -1 — =
_fo (Z ) v) dv = C(a).

This computation proves th@x-) is even.

Finally, for all v € T,;(R) such that > 0, lettingu = z 1(v), condition @4) implies that
Z1(v)—v = u-2z(u) > 0. This fact proves thak(-) is nondecreasing dR* by the positivity
of the integral. As a consequen€&a) > C(0) = O for alla € T,(R*) and, by symmetry,
for all a e T (R).

To show thatC(') is regular, it sfices to notice that the usual one-sided derivative exists

for alla e T,(R). There are two cases.
1. For pointa whereC(') is differentiable, the result is obvious.

2. For pointsa whereC() is not diferentiable, it follows by construction af!() that

z1(a) = w, for somek € K. As a consequence, the right-sided derivative exists and

is the limit fort > O suficiently small of

C(a + ti - C(a) — % La+t Z_l(y) -V dV.

By the fundamental theorem of calculus, this quantity cogee toz'(a) — a =

u—aast » 0. SoC'(a;1) = C°(a;1). For the left-sided derivative, takirg> 0
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suficiently small, the following integral can be computed
_ _ a
e R IR SR

t a-t
= —f Z'(v) — v dv,
a-t

wherez'(v) = z}(v) everywhere except @& where the function is defined to be

z,(a) = w. The two integrals are equal because they onffediat one point. The
functionz,*(-) is now continuous ong - t, a] and thus, the one-sided integral exists

and can be computed &s» 0 to getC'(a; -1) = —-v,, + a, = C°(a; —-1).
As a consequencé€(-) is regular onl ;(R). O

The final lemma below gives a set of properties for variatilasare useful in the study
of the LCA dynamics. These variables were defined3®),(and their definition is given

again below:

Un(t) = un(t) — up,
an(t) = an(t) — a; = Ta(Un(t) + Up) — Ta(uy).
Intuitively, these variables measure the distance of #estand outputs from any arbitrary

fixed pointsu* anda* = T,(u*) of (8).

Lemma 5. If the activation function J{-) satisfies Assumptiah then the set of variables

U anda defined in(36) satisfies the following properties:
(i) sign@,) = sign(un),
(i) [anl < atnl,
(i) a3, < ol a, < o®W T, forany7 (in particular for 7~ = T).

Proof. Each of the three properties will be treated separately.
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() For anyu, € R, lets, = sign(u,). Since the activation function is nondecreasing and

odd .e., T y(=un) = =T, (un)),

sh = sign(u,) = 0 < spU,
= SpUy < Syl + SpUy
= Ta(snUy) < Ta(Snln + Spuy,) (sinceT,(-) is nondecreasing)
= ST (Up) < spT, (Un + Uy) (sinceT,(+) is odd)
= 0 < sp [T (Un + Up) — Ta (Up)]
= 0< spa

= sign@,) = sp = sign(ty).

(i) SinceT,(") is locally Lipschitz onR, the mean-value theorem for nonsmooth func-

tions (Theorem 2.3.7 ir8f]) applies and states that there eXiste (Un + ug, uy) and

Z,€0T, (ﬁn) such that
T+ U) = Ta(u) = £, (U + U5 — Ut = £,
Applying the bound74) on the subgradients @f,(-) onR yields

Bl = [T+ U1) = TA(U)| = [Z,T0| < @[Tl

(iif) Properties (i) and (ii) imply the final property:

aar =) aan= ) @l

ne7” ne7”

< D @l = @ ) Udn = alljar

ne7” ne7”

< Y el =a? ) Tl = o*U Ty 0

ne7” ne7”

A.2 Time derivative of the objective function

This section contains results on the evolution of the objedtinction with respect to time.
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Lemma 6. For an activation function satisfying Assumpti@rand a cost function con-
structed as in Lemmd, the objective Va(-)) in (6) is continuous and regular oR*. In

addition, its time derivative satisfies for a.a.>t 0 and for any, € dT,(uy(t)) the two

equalities
V@) = - - &l (76)
n¢zZ
Via) = - 3 = a0 (77)
ngZ =N

Proof. Since the activation functiom,(-) is locally Lipschitz onR, it is differentiable al-
most everywhere. For constant nodes Z, the output is constant and thag(t) = O.
Using the chain rulel2), non-constant nodes faor ¢ Z satisfya,(t) = £,un(t) for any
in € dT (up(t)). SinceC(:) is regular onT,(R), V(a(-)) is regular for allt > 0 and by the
chain rule (4), any element idV(a(t)) can be used to compute the time derivati(e(-))
along the LCA trajectories. In particular, by Lemrbausing—u(t) € oV(a(t)) yields, for

aat>0,
V(a() = -u(n"a()
N
=~ in(an(t)
n=1

== > alin(®)P

n¢Z

==Y 2 al0P,

ngZ é‘n

where the last inequality holds singe> 0 for alln ¢ Z. O

Using the expression for the derivative\o) with respect to time, it is straightforward

to show that the objective functiof(-) is decreasing and converges to a positive value.

Corollary 2. For an activation function satisfying Assumptibmand a cost function con-
structed as in Lemm#é the objective Ya(+)) in (6) is decreasing for all &= 0 and converges

to a limit V* > O as t goes to infinity.

115



Proof. Equation {7) in Lemmab states that a.d.> 0, for any¢,, € 9T, (un(t))

dv(a(t) _ 1,
e ; 2 ENG

with £, > 0 for all n ¢ Z (corresponding to non-constant outputs by definition). aAs

consequence

dV(a(t)

<0, fora.a.t>0
dt

This inequality shows that singg(-) in continuous orT,(R) and lower-bounded by zero
by Lemmad, the objective function/(a(t)) is continuous, bounded below by zero, and
nonincreasing for all > 0. Thus,V(a(t)) converges to a constant valué > 0 ast goes to

infinity (note: the continuity oV (a(t)) is essential for this result to hold). 0J

A.3 Boundedness of the objective, the states and outputs

The following result proves that, while the activation ftioo may be constant on many
intervals and unbounded, the state and output are guadsiotezmain bounded throughout

convergence.

Lemma 7. For an activation function satisfying Assumpti@rand a cost function con-

structed as in Lemmd, the objective Ya(:)) in (6) satisfies for all = 0
0 < V(a(t)) < V(a(0)).
In addition, the output @) and state variables(t) of the systeni8) are bounded/t > 0.

Proof. From (76) and the fact thaf, > O for alln ¢ Z, it can be concluded that(a(t)) < 0

fora.a.t > 0. As a consequencgt > 0

V(a(t) - V(a(0)) = fo V(a(9)ds

and since &< t andV(a(s)) < 0 for a.a.s € (0, t), by the positivity of the integral, it can be
seen thav(a(t)) < V(a(0)) for allt > O.
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In the following, the boundedness of the stafd is shown. For this proof, it is first
shown that botlj®a(t)||, and||®u(t)||, are boundedt > 0. By Lemma4, C(a,) > O for all

a, € R. Thus, for allt > 0,
1 2
0<3ly- Pa(t)ll; < V(a(t)) < V(a(0)).

The triangle inequality yields

[Pa(t)ll - Iyl < v2V(a(0)).

This inequality shows thaba(t)||, is bounded/t > 0. As a consequence, there must exist

a constan€; > 0 such thatyt > 0,
(1 = @@")@a(t) + @Ty||, < oy [Dat)ll, + |||, < Cu.

whereo; > 0 is the largest eigenvalue of the interconnection matfix ®®" — |. This
inequality implies that|®u(t)||, is also bounded fot > 0. Indeed, using the Cauchy-
Schwartz inequality, the time-derivative o;fZJld)u(t)ll% satisfies

dﬂt 2 IPuI3 = ueTwi)
= U d(-u(t) + at) - dTda(t) + d'Y)
< — || @u(t)|3 + || Pu(t)]l, Cy

< = [[ou®)ll; (IPu)ll, — Ca) -

As a consequence, the :{sete RN st. [|dull, < Cl} is attractive, and by continuitjgbu(t)||,

is boundedvt > 0. It is not possible to conclude directly thhi(t)||, is bounded because
the matrix® may be singular. Any vectar in its nullspace can grow unbounded while
|®ull, remains bounded. However(t) can be decomposed into its compone{t) that
lies in the nullspace ob and its component,(t) that lies in the range ob™. These two
vectors are orthogonal (this property comes from the sargdlue decomposition @b),

and the following shows that each of them is bounded. Sin( is in the nullspace of
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@, du(t) = Duy(t). Sinceuy(t) is in the range ofd", there existst(t) € RM such that

Uo(t) = @7 x(t). Using the Cauchy-Schwartz inequality yields

%)l U, > Xo(t) " Dut)
= Xo(t)" Dup(t)
= Xo(t) DD X, (t)

> 3 || %I,

whereo, > 0 is the smallest singular value & restricted to its range (so it is strictly

positive). Lettingos be the largest singular value @f
Iu2(t)llz = [|@T %), < T3liXell < T305% DU,

The inequality above shows thi,(t)||, is bounded, sincgdu(t)||, is bounded. More-
over, using the fact thabuy(t) = 0, the time-derivative of A2|ju,(t)||5 can be computed as
follows:

di

55 lur()115 = U (t)T s (t)

= uy(t)" (-u(t) + a(t) + Ty - (I)T(I)a(t))l

= —uy(t) ug(t) + ug(t)Tau(t) < O,

where the last inequality follows fron¥8). As a consequencéy(t)|l, is also bounded
¥t > 0. The two bounds obtained prove thiaft)|, < [|ui(t)ll, + lJu2(t)ll, is bounded/t > 0.
Finally, sinceT,(:) is continuous orR and|u(t)||, is boundedvt > O, ||T,(u(t))ll, is

boundedvt > 0, which means thaa(t)||, is bounded/t > O. O

The following corollary demonstrates that under certaindstions of Assumptiong
and2, the subgradients of the activation function at non-cortstades are lower-bounded

by a strictly positive constant.
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Corollary 3. If the activation function J{:) in (23) satisfies conditionf24) and (26), then
there exist two constan® < B8 < a such that for all non-constant nodesenZ¢, vt > 0,

and¥¢, € 4T ,(un(t)), the following holds:

Proof. The proof that 24) implies the existence af was done in Lemma. By Lemma?,
there exists a bound > 0 such thatjuy(t)|l, < u for all t > 0. Since by Assumptiod,
there exists only a finite number of intervalsgh(whereT,(-) is constant) on any bounded
interval ofR, there must also exist only a finite number of open internval8,iu]\Z. Each
of these open intervall c [0, u]\Z is obviously bounded, and thug6) guarantees the
existence of a constagt, > 0 such that, > gy for all u, € U and all, € dT,(u,). As
a consequence, since there is only a finite number of thesevat$ 24, the minimumg
over all the constanig, exists, and it is guaranteed that- 0. Thus, the first part of the

corollary’s inequality holds for any, € [0, u]\Z, and as a result for ail> 0. O

A.4 Subanalicity of the objective

The final part of this appendix proves that if the activatiandtionT,(-) is subanalytic,
then the associated cost function and objective functienadéso subanalytic. The proof
only uses the facts that,(-) is subanalytic and bounded on bounded intervals, buttedta

under the stronger conditions in Assumptidrend2.

Lemma 8. If the activation function () satisfies Assumptiodsand2, then the associated
cost function @) constructed as in Lemné&and the objective function(d(-)) in (6) are

subanalytic.

Proof. From Assumptior2, T,(:) is subanalytic. As a consequence, by the definition of
a subanalytic function in Sectidh4.], every point ¢,a) € R x R admits a neighborhood

Bs,(u) X Bs,(a) for somed, 5, > 0, such that

(u,a) € GrafT, N (Bs,(u) X Bs,(a)) < (u,a) €A,
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whereA is a bounded semianalytic subsetfof R. Furthermore, sincd,(-) is locally
Lipschitz, it is locally bounded, and so for any, &) € GrafT,(R), there exists a bounded

.....

and analytic functiongi(-,-,-) : Ii x Jy x B —» Rfori = 1,..., psuch that
filuay) =0,  Y(uay)e (Grafl; x B)n (li x J X Bj).

Since eacH(-) is analytic, by the implicit function theorem, there exadiinite number of

subsets{Ji’j X Bjj — Ii’j}j:l o C Ji x Bi — [; and analytic functiong;; (-, -) : J; X Bj; — I,

.....

that satisfy
u=gj@y) e filway) =0 Y(uay)e (GrafT,xB)n (I x I x Bj).

As a consequence, for ang, €) € Grafc with |a| < ay,

The derivation above uses the fact that (v), v) € GrafT, by construction oz %(:). Since
eachg;(J; x B;) = Ii; is bounded for anyal < &, then the above expression is also

bounded by some constanit> 0. As a consequence,

(a,c) € Grafc U [—ag, ag] X [0, ¢o] =3

P9
(a : ZZLXB{_ gij(v,y)—vdvdy]n[—ao,ao] x [0, .

i=1 j=1
Since the above expression only contains bounded semiarsdys and analytic functions,
the set Grat is subanalytic, and as a res@lf:) is subanalytic.

To show thatV(:) is subanalytic, its graph is expressed as the projection e first
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and last component of the set

{(a,vl,b,vz,v) eRVXRXRNXRXR st.

1 N
5 lly = @allz = i, 1) Clon) =y, a=ap, V=V + v2}

n=1

= (GrafF, x GrafF, x R) ﬂ {a, an Vi, Vo,veE RN st a=a,, v=v; + vz},

whereF(a) = % ly — @all3 andFy(b) = 3, C(b,) are subanalytic and locally bounded.
The projection theorem o#ifd, Th 2.3] implies that Graf is a subanalytic set. As a conse-

quenceV(:) is subanalytic oiRN O
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APPENDIX B

DIFFERENTIAL EQUATIONS

In this appendix, several properties that apply to soltioh differential equations are

presented. They are then applied to the LCA trajectorieg;iwdre solutions ofg).

B.1 Gronwall's Lemma

The following is a fundamental result for solutions offdrential equations, known as

Gronwall's Lemma. It can take two forms (one with an equaditgl one with an inequality)

that have been combined in the lemma below. This result iddomental for the analyses

of the LCA and is applied on multiple occasions in the proofs.

Lemma 9 (Gronwall's Lemma) Let ae R. If x(:) : R* — R satisfies

dx(t) < —ax(t) + F(x(t), t),
dt
X(0) = Xo,

then the following holdgt > O:
t
X(t) £ €%y + e f e*F(x(9), s)ds
0
Proof. The following derivation hold¥'t > O:

d t _ t t d

o (ex(t)) = ag'x(t) + € ot (x(1))
< aé'x(t) + € (—ax(t) + F(x(t), 1))
< e'F(x(t), 1).

Integrating on both sides from 0 tqusing the positivity of the integral) yields

e*'x(t) — x(0) < ft eF(x(9), s)ds
0
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As a consequence,
t
X(t) £ €% + e f e*F(x(s), s)ds O
0

A proof similar to that of Gronwall’'s Lemma yields the follavg result, which applies

to a linear system of ODEs with a constant matrix.

Lemma 10. Let X°) : R* — RN, A a symmetric matrix iR"N and (-, ) : RNxR* — RN,

The solution to the system of ODE

(1) = AX(®) + b(x(t), 1)
(79)
X(t) = Xk
is ¥Vt >ty
X(t) = AWk 4 At f e Vb(v)dv. (80)

In the case where(h-) = b is a constant vector iiRN, the solution can also be written as
X(t) = AWxk 4 (I - eA(Hk)) Ab.

In the above expressio(t - eA‘) A-lis well-defined even when the matixs singular.
To illustrate this fact, the matriA can be expressed @s= PAP1, whereA is a diagonal
matrix with diagonal elements;; i.e. A = diag(4s,...,4,). Using this decomposition
yields
(1-eAt=P(I-e")AP"
-p diag((l —eh) . (1 et) a;l) p-
The following Taylor expansion a% goes to zero can be used to see that the diagonal

elements are well-defined even when= O:
(1= €M) = A7 (=2t + 0(4P)) = —t + o(Ay).

By continuity,(1- e*') 1* = ~t when; = 0. As a result, the matrifd — e*') A is well
defined.
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B.2 LCA trajectories forf;-minimization

In this section, the activation function is assumed to bestifethresholding function, so
that the LCA solves thé&;-minimization programg). In this case, the LCA is a type
of switched linear systenB[l], where the dynamics are governed by a linear ODE that
changes every time a node crosses threshad (noves into or out of the active set).
Between switching times, the active $eis fixed, ar(t) = Ur(t), and the ODE &) can be

partially decoupled as follows:

ar(t) = —O{ drar(t) + dly — Asr(b), (81)

Ure(t) = —Ure(t) — O Dpar(t) + DLy, (82)

Applying the results in LemmaO0, the solution to 1) on the active sel’ between

switching timedgy andty,, is given by
ar(t) = e AtWak + (I —~ e‘A(t“k)) Al (d)}y —~ Asr), (83)
whereA = @[ @ anda) = a (t). In the case wher®! @ is nonsingular, the point
ar=A" ((D;y —~ ﬂsr)

can be viewed as the steady state &1)(if the active set and sign vectsr remained
unchanged until convergence. The poigtsplay a key role in the analysis of the LCA in
Chapter4 and in the following (see LemnHl).

The solution to the linear ODBEBR) on the inactive se® between switching timetg
andty,, is given by

t
Ure(t) = e WUl + et f & pre(v)dy, (84)

tk

wherepre(v) = @[ (y — Prar(v)) andu}kc = U(t). Lettingt go to infinity in equationsg3)
and @84), the fixed poin&*, which is supported on the final active $gf must satisfy

ar, = (CDII*(DF*)_l (CDRY - ﬂSr*) ;

Upe = O (y - Pr.a;. ).
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Since a nodg is in the inactive sef if and only if |u;| < 4, the two equations above

translate immediately to
-1
ar, = (q);*q)r*) (Q)Ey - ﬂSr*) ;

H‘Dgg (y - q)llal*"*)

which are the two well-known optimality conditions far to be the solution of5) [82).

(85)

' <A
(o]

B.3 LCA inequalities

The proofs of Theoremg and8 make use of the following two lemmas, which provide
bounds on some relevant quantities. The first lemma is stakmlv and bounds thé-

distance between the poirg3 and the target signal'.

Lemma 11. Let & be a vector supported on a sEtthat contains less than p indices,
Sr = sigr(a;"), and assume

OLDa” = DLy — Asy.

Let R= |F UT;| be the number of elements in the suppor@aﬁ“f - a*). If @ satisfies the

RIP with parameter$R, 6), then the following holds:

o -, < @-a)*(a'll, + VI=5llell. + 1vP).

=(1-6)(1+6)71Bs(p)

Proof. Since® satisfies the RIP with paramete& R), using the results in Lemnisd and
15with Il = p< R I'; =T andl; =T, then
Ty \ L -1

)
|ofa o] <o

-1 2
[(@fo) " of| < @-8™
Splittinga’ into its components of andI® yields the two equalities

3 = (af0) " 0lo,d),

O} (aT - a;) = (Drcaltc.
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Applying these facts to finish the proof results in

e~ alf, = |(@Fr)” (@Fy - asr) -l
= [(@f@r) (o] (@a’ + ¢) - Asr) - & - &y,
= |(@f @) Ol opa). + &) + (@) " dfe— (@ 0) s - -l
< |[(@F @) | |orer, | 2k, + 2L,
+|(@rer) ™ o el + (o 0r) | sel
<(@-0)"s|af, + [lafell, + YI—6tllell, + A(1-6)" VP
< (1-0)*(|[a'|l,+ VI-llell, + 21). 0

The lemma below states that thigdistance of the outpua(t) to the target signad’

remains bounded for all time> 0.

Lemma 12. Assume that, at switching timg the current active sdfy contains less than

p indices,® satisfies the RIP with paramete(R,, 5), where R = [, UT|, and that

lacto - a'l|, < Bs(p).

Then, for all te [ty, t,1],

Jat) - a'||, < Bs(p).

Proof. Defineay such thatbf @ a> = @[y - Asp,. Lemmallimplies that

Ja — a||, < (1 - 6)(1 + 6) ™" Bs(p).
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Using the dynamics in83) shows thatyt € [ty, tk.1),

”a(t) - aT“z = ”afk(t) - af”z
= |le " Wap, (t) + (I — e W) afy — a*”z
< (e + et Vi) (a0 - )
* H(' _ At _ e—(1—5)(t—tk)|rc) (a;“ _ aT)H
k k

2

< ||e—A(t—tk) + e @Ot
= k

|ark(tk) - aT||2

# 1 - A _ gl

|a;<:< - aT||2
< e—(1—5)(t—tk) ||al"k(tk) _ aTHZ + (l _ e—(l+6)(t—tk)) ||a10_<i< _ aJF”2
1-6

~(1-6)(t-ty) _ o @ot-t)y -~
<e “Bs(p) + (1 e k)1+5|35(I0)

0]
< Bs(p).

The functionh(-) below is used to prove the last inequality in the above a¢on:

1-6

h(t) = (1-e®)B - (1-e @) —

B.
The derivative oh(t) is

h’(t) = (1 — 5) e—(l—(s)tB _ (1 _ 5) e—(1+5)tB
=(@-9) B(e—(1—5)t _ e—(1+6)t) > 0.
Sinceh(0) = 0, andh'(t) > O for allt > 0, thenh(t) > O for allt > 0, and the inequality (i)

holds.

Finally, since the vectoa(t) — a' is continuous with time:

2., (ts2) — @], = ||ar, (tes) — @', < Bs(p). O

Finally, the lemma below is used repeatedly in the proofsstats that if the energy in
theqg nodes with largest magnitude iit) satisfy a certain inequality, then there is no more

thanq active nodes at time
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Lemma 13. If A contains the indices of the q entries with largest absolaleas in \{t)

and
lus®)ll < 2+,
then the active sdt corresponding to the non-zero elements {t) & T,(u(t)) is a subset

of A and contains less than g indices; i.E.C A, and as a resulll’| < g.

Proof. SinceA contains they nodes with largest absolute valuesu{t), thenVj € A°,

lua (Il <1

Va

As a consequence, nodesAfare below threshold, which proves that only the nodes in

luj(t)] <

can be non-zero ia(t). Thus,I' c Aand|l] < |A| = q. O
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APPENDIX C

MATRIX PROPERTIES

The following lemmas are consequences of the RIP, define?) ith@t are used repeatedly
in the proofs in this thesis. The first lemma has been proveeraktimes in literature (for

instance 28, Prop. 3.1, 3.2]), but it is repeated below for completeness

Lemma 14. If ® satisfies the RIP with parametdS, ) and the sel” contains less than S

indices, thervx € RN supported o andVy € RM, the following holds:

[®fX|, < V1+6lIXl;,
(1= 0) Xl < [|[@f DX, < (1+6) Il

il < (of ) x|, <

X2,
155 5 X2

1-5
M < |(@f )" ofx|, < v_5||x||2.

1

Vi+s
Proof. The RIP implies that th& non-zero singular values df- are contained between
V1 -6 and V1 + ¢, which entails the first inequality. Taking the singularu@tecomposi-
tion of & = UXVT, whereU is aM xS matrix with orthogonal columng, is aSx S matrix
with the S non-zero singular values df- on the diagonal, and is aS x N unitary matrix,
it is easy to check that the singular valuesigid. = VE2VT are contained between 1)
and (1+ ¢), which proves the second inequality. This fact also ingotieat the singular
values of(d)}d)r)_l =V (22)_1 VT are contained between {15)~* and (1- 6)~, yielding
the third inequality. Finally, the singular value deconifios of (d)}d)r)_l @] is equal to
(d)}d)r)_l o = (V (22)_1 VT)VZUT = V=-1UT, which shows that its singular values are

contained betweerv1 + 6~ and V1 - 67 and proves the last inequality. O

The following lemma provides slightly more complicated sequences of the RIP that

involve two (not necessarily disjoint) subsets of indices.
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Lemma 15. If ® satisfies the RIP with parametglS + g, 6), the sefl”; contains less than
g indices, and the sét contains less than S indices, thér € RN supported o™y U T,

the following holds:

]
| oF, 050X, < 612,

(1r, = @F, @) o, < 611X

Proof. Since the sef’; U I', contains less tha$ + g indices, the RIP implies that the

eigenvalues ob|. . @

(F1Ur) , are contained between {b) and (1+6). As a consequence,

(rur

the eigenvalues denoted by gtor spectrum) of the following matrix

. T
G(F1UF2) = I(F1UF2) - q)(F]_UFz)(D(FlUrz)
can be deduced:

SP(Gryury) < max{l—-(1-90),-1+ (1+9)} =0,

and
sp(Gr,ury) = Min{l-(1+6),-1+(1-6)} = 6.
The matricesp;p(mrz) and(Ir, - ®f & ) are submatrices of the matiG,r, in
1

the sense that

-
q)l"l @ (Fgﬂl"z) = Ilr, G(Fl ul2) HFE

and

T
(Irl - CDrl(D(FlUrz)) = Hrle(rlLJFZ)’

wherell, denotes the projection onto the set of indiégs The operator norm of the

projection operatoflr, is 1. As a consequence, the operator norms of the two matrices

T T i
d)FICD(FimFZ) and(lr1 - G)FICD(FMZ)) are bounded by the operator norm of the larger matrix
G(r,ur,), Which its largest eigenvalue and is equadto O
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APPENDIX D

DISCONTINUOUS ACTIVATION FUNCTION

In CS and other applications, it can be useful to consideruaah@etwork with a discon-
tinuous activation function. This appendix provides somediminary results for the study

of such networks.

D.1 Cost function

In a first step, the method developed in Lem#éor building a cost functiorC(-) that
satisfies the relationshid9) is extended to the case where the activation function may
contain discontinuities.

Assumption 4. The activation function J(-) is locally bounded, admits directional deriva-
tives, is odd and nondecreasing &n In addition, there exisi > 0, and locally finitely
many{(Vk, Wk, Z, di) }kexe IN RXR X R, with U, < wg, such that J(-) has a jump discontinuity

at d, and has the form
0, lunl < A

& = Talh) =9z, |unl € Upexc Vo Wid 1= Z (86)

is strictly increasing otherwise witly, > 0, V¢, € oT,(uy)
and satisfies

Ta(U)l < |Unl,  Yun €R. (87)
Explicitly, the form in (86) means that J(-)

e is exactly zero on the intervia, 1],

e is constant on a countable and locally finite number of irdésdenoted byZ (which
include the interva[-24, 1] and potentially the case wherg g equal to infinity for

some k),
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¢ has alocally finite number of pointg dt which is it discontinuous, and

e is otherwise strictly increasing on any open interddlin R\ Z (where T,(:) is not

constant) with strictly positive subgradients.

Lemma 16. If the activation function J{-) satisfies Assumptich there exists a cost func-

tion C(-) that satisfies the relationsh{d9) and obeys

=

. C(*) is locally Lipschitz continuous aR,

2. C(-) iseven oIR,

w

. C(:) is nondecreasing oR*,
4. C(0) =0,
5. C()) is regular onR.

Proof. Similar to the construction of the inverse function in Lem#ahe first step is to
construct an inverse functian?(-) for the activation functior ;(-). For points that belong
to the imageT,(R) of the activation function, the inverse function can be i as in
Lemmad4. To reiterate, for these pointse T,(R), there existsl € R such that = T,(u).
As a consequence, the functiort(-) can be defined of, (R) as follows:

Vv € T, (R), letu € R such thaty = T,(u).

1. if u € Z° (which is the set of nodes that do not yield a constant outthehu is the

unique point inRkN satisfyingy = T,(u), andz(v) is defined ag *(v) = u,

2. if u € Z, there existk € K such thaty = T,(uy) for all ux € [w, Wg]. In that case,

Z1(v) is chosen to be1(v) = w.

For points that do not belong to the image of the activatiorcfiony ¢ T,(R), there exists

a point of discontinuitydy such that

lim T,(u) < v < lim T,(u).
u—dy u—dk

u<dy u>dg
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The two points

[k = lim T,(u),
U—dy

u<dy

mye = [im T,(u),
U—)dk

u>dy
exist sinceT () admits directional derivatives by assumption. Then, timefionz1(v) can
be chosen az*(v) = d for all v € [I,, m). Figure22billustrates how to construa(.)
for a particular activation function plotted in Figuz@a

Using this definition, the following quantity is well-defid®n T ,(R):

C(a) = fo i) —vdv. (88)

The functionC(-) defined this way is locally Lipschitz of, (R) and diferentiable for a.a.
a € T,(R). Figure22cshows the cost function associated with the activationtfanc
plotted in Figure22a

The following derivation shows th&k(-) is regular and satisfied9). There are two

cases.

1. At pointsa whereC(-) is differentiable, the subgradient reduce$@ia) = {C'(a)},

and the fundamental theorem of calculus yields
C(@=za)-a=u-a
As a consequence, for suah(19) holds.

2. For pointsa whereC(-) is not diferentiable, it follows by construction af!() that
z1(a) = w for somek € K. As a consequence, a similar analysis to the proof of
Lemma4 shows that the right-sided derivative®©f-) exists and is the limit fot > 0

suficiently small of

C(a+ti -C@) _ % fa zl(v) - vd.
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Figure 22:Example of a generic activation functidn(-) satisfying Assumption 4, associ-
ated inverse functiom*(-) and associated cost functi@-).
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By the fundamental theorem of calculus, the above quantityerges ta (a)—a =
u—aast - 0, and as aresuli’(a; 1) = C°(a; 1). For the left-sided derivative, the

following integral can be computed for alt 0 suficiently small:
_ _ a
S e AU

t a-t
= —f Z'(v) — v dv,
a-t

wherez,'(v) = z'(v) everywhere except @& where the function is defined to be

z,'(a) = w. The two integrals are equal because they onffediat one point. The
functionz;*(-) is now continuous org - t, a], and thus, the one-sided integral exists
and can be computed &as— 0 to getC'(a;-1) = —-v, + &, = C°(a;—1). Using
the definition of the subgradient in Secti@r8.1, for all £ € dC(a), the generalized
directional derivative satisfi€3’(a; 1) = wy—a > 1¢ andC’(a; —-1) = —w+a > -1¢£.

As a consequencge [V — a, Wi — a], which means that
0C(a) = [k —a, W, — a].
This equality proves that indeegl — a € 9C(a) for all ux € [Vi, Wi].

As a consequencé&() is regular onT,(R), andu — a € dC(a) holds for alla € T,(R),
which proves that9) holds.

By inspection of {5), it is immediate tha€(0) = 0.

It is easy to check that, sindg(-) is nondecreasing and odzt?(-) defined above is also

nondecreasing and odd. As a consequence, farall ,(R), the following holds:
—a
C(-a) = f (z*() - v) dv
0
a
= f (Z_l(—v) + v) (—dv)
0

I _ _
- fo (z*() - v) dv=C(a).

This computation proves théx-) is even.
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Finally, for all v € T,(R) such thatv > 0, lettingu = z1(v), condition 87) implies
thatz*(v) — v = u-z(u) > 0. This bound proves th&(-) is nondecreasing oR* by the
positivity of the integral. As a consequen€&a) > C(0) = O for alla € T,(R*), and by
symmetry for alla € T,(R). O

Hard-thresholding function
Using this technique, it is possible to build a cost functgatisfying (9) for the hard-

thresholding activation function, defined by

0, if u<a
Ta(u) = )
u, if Ju>2Aa

The associated inverse functiart(-) constructed as in Lemntbis

A, ifvel0,A)

Z'v)=4-4, ifve[-4,0)-

v, if v|>A4

Integrating the functior*(v) — v between 0 and yields the cost function:
2

a
Alal—-—=, ifla<A
|al > |al

C(a) = (89)

5 .
— if la >4

2 b
For large values o4, this function behaves like the ide@-pseudo norm scaled bif/2.
This observation matches the result2@], which states that the hard-thresholding function
can be used to approximately solve the idgaminimization problem4) with a traded

parameter ofi?/2.

D.2 Solutions to ODEs with a discontinuous right-hand side

Because the activation functidn(-) may now have points of discontinuity, the theory de-

veloped in ChapteB does not apply. In a first step, it is necessary to define whalugien
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of the ODE @) might be when the right-hand side is discontinuous. A westiablished
approach in mechanics and nonlinear neural networks demsiapproximating the trajec-
tory u(-) by the solution of 8) in the sense of Filippov37]. Using the theory of Filippov, a
functionu(’) : R* — R is a solution of 8) if it is absolutely continuous oR* and satisfies

the diferential inclusion:
u(t) € —u(t) + (I = @' d)co{T,(u(t))} + @y, fora.a.t >0,
whereco{T,(u)} = (co{T,(u1)},...,co{T,(uy)})" and
co{Ta(un)} = [Ta(Uy). Taur)]
is the traditional convex hull with

Ta(uy) = !,'_rm Ta(v),

v<u

Ta(u) = !}mj Ta(v).

v>u
At pointsd, whereT,(:) is discontinuous;o{T,(dy)} is an interval while it is a singleton at
points whereT ,(-) is continuous. A functiorr(-) : R — R is calledabsolutely continuous

onR if for any € > 0, there exist®R > 0, such that for all finite sequences of intervals

{(% Vi) koo disjoint inR

D-x)<R = Y IFM-F)I<e.
k k

It is well know that for an absolutely continuous functiéif), the theorem of calculus

yields thatF(-) is differentiable a.e. and the following holds:

F(y) = F(X) + fyG(v)dv,

whereG(v) = F’(v) for a.a.v € R. Moreover, it was shown ir8f3] that the chain ruleX4)

holds whenx(:) is only absolutely continuous on any bounded intervat of
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D.3 Convergence result

Unfortunately, the proof of convergence of the LCA with acdistinuous activation func-
tion does not derive readily from previous analysis obtaifoe neural networks with dis-
continuities. For the analysis i88], the activation function needs to be bounded, and the
interconnection matrix®' ® — 1) needs to be Lyapunov diagonally stable, which requires
that it is nonsingular. Similarly, ing4], the interconnection matrix is nonsingular and the
activation function is bounded. 185, 86], the boundedness assumption on the activation
function is dropped, but the interconnection matrix is assd to be nonsingular ir8p]
and to be Lyapunov diagonally stable B6], which also implies nonsingularity.
Nevertheless, the proof of Theorehand5 in Section3.5is based on the Lojasiewicz
inequality and only requires the cost function to be cordisi As seen in Lemmi, it is
possible to create a cost functi@g) that is locally Lipschitz continuous and satisfi&9)(
even when the activation function has discontinuities. Asm@sequence, Theoremand

5 still hold without modifications.
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