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La Curiosité nous tourmente et nous roule, Comme un Ange cruel qui fouette des

soleils. Singulière fortune où le but se déplace, Et, n’´etant nulle part, peut être n’importe

où ! Où l’homme, dont jamais l’espérance n’est lasse, Pour trouver le repos court toujours

comme un fou !

– Charles Baudelaire, Les Fleurs du Mal, 1861

Curiosity tortures and turns us Like a cruel angel whipping the sun.

Whimsical fortune, whose end is out of place, And, being nowhere, can be anywhere!

Where Man, in whom Hope is never weary, Runs ever like a madmansearching for repose.

– Geoffrey Wagner, Selected Poems of Charles Baudelaire (NY: GrovePress, 1974)



A mes parents, Sophie et Xavier,

avec tout mon amour toujours et ma reconnaissance.
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SUMMARY

In a large number of scientific and engineering applications, the cost of deploying high-

tech sensors and the time required to acquire high-resolution signals have become impracti-

cal. To address this issue, the theory of Compressed Sensing(CS) was developed as a new

acquisition scheme that can outperform traditional Nyquist rate systems. This approach

yields significant savings during acquisition by pushing the computational burden to the

processing stage, as the recovery of a signal from its CS measurements can be a com-

putationally expensive problem. One classic approach to this problem, known as sparse

recovery problem, consists in solving a complex optimization program. Despite the nu-

merous digital solvers proposed to perform this task, none are currently efficient enough to

achieve real-time recovery of very large signals.

Meanwhile, optimization has become a major tool to recast and solve many problems

in addition to sparse recovery and across many scientific domains. Developing efficient

discrete-time algorithms to solve general classes of optimization programs has driven many

research efforts in the digital signal processing community. Despite the many advances in

digital technology, the speed and power efficiency of digital computers reaches a bottleneck

when the size of the data becomes extremely large. On the contrary, advances in analog

technology, such as very-large-scale integrated circuits, have the potential to outperform

digital computing, yielding gains in both speed and power efficiency for certain problems

of very large size. For this reason, there is a renewed interest in using dynamical systems

to solve complex optimization programs.

To answer the need for a fast solver for the sparse recovery problem, a continuous-time

dynamical system, called the Locally Competitive Algorithm (LCA), has been proposed.

Its evolution is ruled by a set of ordinary differential equations (ODEs) with a highly par-

allel structure. Implementing this system on a dedicated analog chip has the potential to

yield a faster and more power-efficient solver. However, before investing significant time

xiv



and money to develop and manufacture this circuit, it is important to assess its performance

guarantees. The goal of this thesis is to provide a mathematical analysis of the solution pro-

vided by the LCA as it is evolving with time. The contributions of this thesis are threefold.

• First, theoretical tools for the analysis of nonlinear neural networks for optimization

are developed in a general setting. In particular, new results are presented for the

convergence study of a class of networks that extend the current state of research in

the field. In Chapter2, the background material necessary to develop the analytic

tools is presented, along with a summary of the previous results in the literature. In

Chapter3, the theoretical findings obtained for an extended class of neural networks

are gathered. These findings include a proof of convergence when the fixed points of

the system are isolated, a proof of convergence in the case where the fixed points are

not isolated, and an analytic expression for the convergence speed.

• Second, in Chapter4, the previous results are specialized to the case where the

network solves theℓ1-minimization program to recover a sparse signal. Theℓ1-

minimization program is the most famous optimization program for sparse recovery

in CS and comes with strong performance guarantees. The analysis in Chapter4

shows that the LCA takes an efficient path toward the solution of this program and

yields an estimate for the convergence speed that depends only on the problem pa-

rameters. Several interesting parallels to properties of digital sparse recovery solvers

are brought to light in this study.

• Finally, the convergence properties of the LCA and of the Iterative Soft-Thresholding

Algorithm (ISTA) – its discrete-time counterpart – are analyzed in the case where the

underlying sparse signal is time-varying and the measurements are streaming. Such a

study is of great interest for practical applications that must operate in real-time, such

as tracking problems or closed-loop control systems. Whileconvergence guarantees

exist for most sparse recovery solvers in the static case, the dynamic case surprisingly

xv



lacks theoretical analysis. Of particular interest is the scenario where the number

of iterations is constrained by the sampling rate. This situation arises in practical

applications, where data are streaming at high rates or the computational resources

are limited. The results of this study are presented in Chapter 5, and demonstrate

that the LCA and ISTA can efficiently track a time-varying signal from streaming

measurements and achieve an error that is essentially optimal.

The contributions of this thesis are organized in Figure1. Prior to this work, the existing

analysis was concentrated on discrete-time algorithms forthe recovery of static signals.

For instance, the ISTA has been shown to converge with linearrate to the solution of the

ℓ1-minimization recovery problem, which comes with accuracyguarantees. This thesis has

provided convergence and accuracy results for the continuous-time LCA for the recovery of

static signals, and for the discrete-time ISTA and the continuous-time LCA for the recovery

of time-varying (dynamic) signals.

Figure 1:Visualization of the thesis contributions. The cells in darker grey represent the ar-
eas where this thesis has made significant contributions. The cell in lighter grey represents
the prior state of knowledge. The cells contain a summary of the results and the chapters
where they appear.
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CHAPTER I

INTRODUCTION

Optimization plays a key role in many modern signal-processing applications, including

image denoising, recovery, and inpainting, data clustering, and more. In the emerging field

of CS, a complex optimization program composed of a data fidelity term and a nonlinear

sparsity-enforcing term can be used to recover sparse signals from few linear measure-

ments. However, when signals are high-dimensional or streaming at high rates, digital

solvers tend to be too slow and computationally intensive toperform real-time recovery.

On the contrary, analog networks have a long history as optimization solvers and have been

shown to yield significant speed and power improvement over their digital counterparts [1].

The focus of this thesis is to understand what type of continuous-time architectures can be

used to solve optimization problems and to analyze their performance mathematically.

1.1 Compressed sensing

Researchers in all fields, ranging from such disparate fieldsas medical imaging to cosmol-

ogy, are currently faced with increasing amounts of data. Todeal with this problem and

reduce this data to a more manageable size, CS theory has proposed a new method for

acquiring signals [2,3]. In place of sampling a high-resolution signal and compressing it

as a post-processing step, only a small number of linear measurements are acquired in the

CS approach. Thanks to this technique, the number of sensorsand acquisition time may be

greatly reduced, thus limiting the cost at the front-end of the data stream in a wide range of

applications.

1.1.1 Sparse representation

Underlying CS theory is the fact that most signals can be represented by a sparse vector

in an appropriate dictionary. A vectora† in RN is calledS -sparseif it contains onlyS

1



non-zero coefficients. Throughout this thesis, the vectora† is unknown and referred to as

target signal. The termoptimal supportrefers to the support ofa†, i.e., the set of indices

that correspond to the non-zero entries ina†, and is denoted byΓ†. If the location of the

non-zero elements are known, the signala† can be acquired, represented, transmitted, and

stored efficiently. The main advantage of CS is to provide an acquisition scheme that only

requires the number of measurements to be on the order of the underlying sparsityS rather

than the ambient dimensionN, even when the location of the non-zero entries is not known

in advance. CS measurements are non-adaptive and take the form

y = Φa† + ǫ, (1)

where the matrixΦ, calledsensingor measurement matrix, has dimensionM × N, where

typically M ≪ N, andǫ is a noise vector inRN.

1.1.2 Restricted isometry property

The choice of the measurement matrix is critical to the recovery of the target signala† from

CS measurements. Intuitively, the vectory obtained via (1) must retain the information

contained ina†. For this condition to hold, one possible requirement is forΦ to satisfy the

Restricted Isometry Property (RIP) developed in [4].

Definition 1 (Restricted Isometry Property). The matrixΦ satisfies the RIP of order K if

there exists a constantδ ∈ (0, 1), such that for any K-sparse vector x∈ RN, the following

holds:

(1− δ) ‖x‖22 ≤ ‖Φx‖22 ≤ (1+ δ) ‖x‖22 . (2)

If this is the case, the matrixΦ is also said to satisfy the RIP with parameters(K, δ). The

RIP-constantδK of order K is defined as the smallest positive constantδ satisfying(2).

WhenδK is close to 1, the matrixΦ acts as a near isometry on allK-sparse vectors.

WhenK = 2S, the RIP ensures that two distinctS-sparse vectors will remain distinguish-

able after they have been projected onto the range ofΦ. In addition to being used to

2



establish recovery results, the RIP yields several bounds on the eigenvalues of certain sub-

matrices ofΦTΦ that are presented in AppendixC, and are useful to the analysis of both

the LCA and its digital counterparts.

1.1.3 Subgaussian random matrices

Some classes of matrices are known to satisfy the RIP with high probability. In particular,

Theorem 5.65 in [5] states that ifΦ is an M × N random matrix whose columnsΦn are

independent subgaussian random vectors inRM with ‖Φn‖2 = 1, then for any sparsity level

1 ≤ S ≤ N and anyδ ∈ (0, 1), the matrixΦ satisfies the RIP with parameters(S, δ) with

high probability, provided

M &
S
δ2

log
(N
S

)
,

where& means that the quantity on the left is greater than the quantity on the right up to

a scaling factor. Examples of subgaussian matrices includerandom matrices with inde-

pendent and identically distributed Bernoulli columns with unit norm and matrices whose

columns are drawn independently and uniformly at random from the unit sphere. In prac-

tice, it is unknown how to determine the RIP constant for a given matrix in polynomial

time. However, rearranging the terms in the expression above gives a useful estimate:

δ ∼
√

S log(N/S)
M

, (3)

where∼ means “equal up to a constant factor”. This estimate is oftenused to evaluate

the number of measurements necessary for a digital solver torecover a sparse signal (see

Section2.1) and will be useful to compare the theoretical guarantees obtained for the LCA

to standard digital approaches in Chapter4.

1.1.4 Sparse signal recovery

Ideally, the following optimization program could be used to recover the target signala†

from its compressed measurements:

â† = arg min
a∈RN

1
2
‖y−Φa‖22 + λ ‖a‖0 . (4)
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The first term is a data fidelity term (the mean-squared error)and the second term is the

ℓ0-pseudo-norm‖·‖0, which counts the number of non-zero elements. The parameter λ pro-

vides a tradeoff between the two objectives. While it could recover the correct solution, this

program is NP-hard, meaning that it is unknown if a solution can be attained in polynomial

time.

To obtain a solution to the sparse recovery problem in polynomial time, one of the most

famous and well-studied approaches is theℓ1-minimization problem, which replaces the

ℓ0-regularizer in (4) with its closest convex norm:‖a‖1 =
∑

i |ai |. This choice of regularizer

yields the following convex program:

â† = arg min
a∈RN

1
2
‖y−Φa‖22 + λ ‖a‖1 . (5)

This technique is known as convex relaxation. Theℓ1-norm makes this program easier to

solve while still enforcing sparsity on the solution, and yields comparable performances to

the ideal sparse recovery problem (4) [6].

Generalizing further, the following objective function can be minimized:

V (a) =
1
2
‖y− Φa‖22 +

N∑

n=1

C(an), (6)

whereC(·) : R → R is referred to ascost functionand is chosen to enforce the sparsity

requirement on the solution. For instance, a class of functions calledsparseness measures

was developed in [7] and shown to yield sparse solutions.

Definition 2 (Sparseness Measure). A function f(·) : [0,∞)→ [0,∞) is called asparseness

measureif it is nondecreasing, not identically zero, with f(0) = 0 and such that x7→ f (x)/x

is nonincreasing on(0,∞). Then, the associated (sparsity-inducing) cost function is defined

for all a ∈ RN by
N∑

n=1

C(an) =
N∑

n=1

f (|an|).

In particular, the identity function satisfies the requirements to be a sparness measure,

so theℓ1-norm is a sparsity-inducing cost functions according to this definition.
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1.1.5 Recovery guarantees

The sharpest result obtained for the constrained form of (5) requires the measurement ma-

trix Φ to satisfy the RIP with parameters (2S,
√

2 − 1) [8]. In [9], an expression for the

error associated with solving (5) under assumptions similar to the RIP is given and can be

re-written for the purpose of this thesis as

∥∥∥â† − a†
∥∥∥

2
≤ C0λ

√
S +C1σ, (7)

whereC0 andC1 are some small constants andσ is a bound on the energy of the noise:

‖ǫ‖2 . σ. These results show that recovery with (5) is uniform and stable. Uniform

recovery means that one choice of a measurement matrixΦ can recovereverysparse signal,

while stable recovery means that the error scales slowly with the noise level.

1.2 Locally Competitive Algorithm

The Locally Competitive Algorithm (LCA) proposed by Rozelland al. in 2008 [10] is a

continuous-time dynamical system that is designed to solvesparse recovery problems in

the form of (6). This algorithm can be viewed as a network of nodes whose evolution is

described by a first-order ordinary differential equation.

1.2.1 The LCA differential equation

To each columnΦn of the matrixΦ is associated a node or “neuron” in the network, whose

internal state is modeled by a continuous-time variableun(t), for n = 1, . . . ,N. The evolu-

tion of the state variables with time is governed by a set of coupled nonlinear ODEs of the

form 

τu̇(t) = −u(t) − (ΦTΦ − I )a(t) + ΦTy

a(t) = Tλ(u(t))

. (8)

The notationḞ(·) refers to the derivative with respect to time:Ḟ(t) =
dF(t)

dt
. The columns

of Φ are assumed to be normalized to one:‖Φn‖2 = 1. The input to the network is a

vector of measurementsy in RM whose projection ontoΦ generates the set ofdriving
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inputsΦT
ny, for n = 1, . . . ,N. These scalar values reflect how well the inputy matches

each dictionary element. The state variables produce outputs an, for n = 1, . . . ,N through

the activation functionTλ(·) : R 7→ R. By a slight abuse of notation,Tλ(·) applied to

a vectoru ∈ RN means that the function is applied entry-wise. Each outputam feeds

back into each nodeun proportionally to the corresponding feedback weightWn,m of the

interconnection matrixW = ΦTΦ− I (i.e., a modified Grammian matrix for the dictionary).

There is no self-feedback, as the diagonal elements ofW are zero. When two nodes overlap

(resulting in a large inner product), the corresponding feedback weight is close to one,

while it is zero for orthogonal dictionary elements. Thoughthe interconnection matrix is

symmetric, the total inhibition is not because it is also modulated by the activity of each

individual node. This feedback structure ensures that nodes that carry the same information

about the signal inhibit each other. The parameterτ represents the time constant of the

analog system implementing the ODE, and is characterized bythe physical properties of

the system (such as capacitance, resistance and level of bias current). Since it does not

affect the mathematical analyses of the LCA, it is assumed in thefollowing that τ = 1

except when its influence on the convergence speed is made explicit. The architecture of

the LCA is shown in Figure2.

1.2.2 A Hopfield-type neural network

Due to its feedback structure combined with an activation function before the output stage,

the LCA is a type of Hopfield neural network (HNN), a pioneering system of analog com-

puting. The first HNN introduced by John J. Hopfield in the early 1980s is a network of

simple computing units that can take on one of two values [11]. Contrary to earlier neural

networks, such as the perceptron [12], the HNN contains feedback from every output to

every input variable. This structure is characteristic of what are now known asrecurrent

neural networks. In a later paper, Hopfield proposed the same network structure with neu-

rons that have graded, rather than binary, responses [13]. In both cases, Hopfield shows that

a global behavior emerges from this intricate structure. More specifically, Hopfield shows
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Figure 2: The LCA neural network is designed to solve sparse recovery problems. The
activation function may be unbounded and not strictly increasing. The matrixΦ has di-
mensionM × N with M ≪ N, so the interconnection matrixW may be singular and have
both positive and negative eigenvalues.

that the state variables of the network evolve to approach a global equilibrium point.

1.2.3 Limited analysis

An important contribution of Hopfield’s work resides in proving theoretically that the out-

puts evolve towards an equilibrium. For this proof, Hopfielddefines a function that rep-

resents a notion of energy for the system known as aLyapunov functionthat is presented

in more detail in Chapter2. If this energy function is always strictly decreasing as the

network evolves, then the output trajectories evolve towards a stable fixed point. Similarly,

Rozell and al. showed in [10] that the objective function in (6) is decreasing along the LCA

trajectories provided thatT′λ(u) ≥ 0 onR and that the following relationship between the

cost penalty termC(·) and the activation functionTλ(·) is satisfied for allan ∈ R such that

an , 0:

λ
dC(an)

dan
= un − an = un − Tλ(un).
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Figure 3:Plot of the soft-thresholding activation function. When this function is used as the
activation functionTλ(·), the LCA solves the classicℓ1-minimization optimization problem
used in many sparse approximation applications.

In the case ofℓ1-minimization, the cost penalty isC(x) = |x| and the associated activation

function is the soft-thresholding function shown in Figure3 and defined by:

an(t) = Tλ(un(t)) =



0, |un(t)| ≤ λ

un(t) − λ sign(un(t)), |un(t)| > λ
. (9)

While a nonincreasing objective function is a necessary property for a network that

solves an optimization problem, it is not sufficient to conclude that the state converges to a

fixed point (or to a subset of fixed points). To prove convergence, the Lyapunov approach

requires that the objective be strictly decreasing on non-stationary trajectories. Moreover,

one must show that the fixed points correspond to actual solutions of the optimization pro-

gram. Both of these results are necessary guarantees to makebefore relying on a system in

engineering applications. Such guarantees have been obtained in the literature for related

networks and are presented in Chapter2. However, several characteristics distinguish the

LCA from previous studies and make its analysis particularly challenging. First, the LCA

activation function is often nonlinear and unbounded for problems of interest in CS. In fact,

the LCA objective and activation functions are usually not differentiable everywhere. Sec-

ond, the LCA interconnection matrixW has a potentially large nullspace, sinceM ≪ N in

CS applications. For these reasons, it has been difficult to provide convergence guarantees
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for the network. The mathematical tools necessary to develop the analysis in this thesis and

previous results in the literature are the focus of the next chapter.
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CHAPTER II

BACKGROUND

The impetus of this thesis is the efficient recovery of sparse signals from compressed mea-

surements using a continuous-time solver. This chapter begins with a review of standard

methods and solvers for sparse recovery. In addition to classic methods and results for the

analysis of neural networks, more recent breakthroughs andtheir limitations are discussed.

Also introduced as needed are the analytic tools necessary to obtain the results presented

in this chapter and the findings in later chapters.

2.1 Sparse signal recovery

Significant efforts have been put into developing algorithms that can solvethe sparse recov-

ery problem (4) efficiently. These algorithms can broadly be divided into two categories:

relaxation methods that solve an optimization program and greedy algorithms that recover

the locations of the non-zero coefficients iteratively. The LCA belongs to the class of

relaxation methods. Convergence and accuracy results havebeen obtained in the digital

community via the RIP in (2) for many algorithms. There are typically two kinds of re-

quirements that emerge from those studies: eitherδ must scale as 1/
√

S or δ is a small

constant independent of the sparsity levelS. Using the estimate forδ in (3) for subgaus-

sian random matrices, the corresponding number of measurements areO
(
S2 log(N/S)

)

andO (
S log(N/S)

)
, respectively. In practice, the results obtained for a number of mea-

surementsM = O
(
S2 log(N/S)

)
are stronger, but it is more desirable to obtain guarantees

that require a smaller number of measurementsO (
S log(N/S)

)
. Presented below are sev-

eral recovery algorithms that, while digital, show interesting parallels to the properties of

the LCA that arise from the analysis in this thesis.
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2.1.1 Relaxation methods

While the accuracy results associated with theℓ1-minimization program in (5) presented

in Section1.1.5are the most favorable to date, current digital solvers forℓ1-minimization

suffer from high computational costs and tend to lack convergence-time guarantees. Some

state-of-the art solvers (e.g., [14–18]) can handle large-scale problems, but they usually do

not have strong guarantees about their running time. On the other hand, iterative threshold-

ing schemes (e.g. [19,20]) are simple and come with guarantees on the number of iterations

needed to achieve a certain accuracy. Unfortunately, this number may be large. Homotopy-

based schemes solve (5) by tracing a piecewise-linear solution path as the tradeoff param-

eterλ is varied [21,22]. If the solution is very sparse and the number of measurements is

large enough, these approaches can converge in exactlyS iterations, known as theS-step

property. For instance, for subgaussian random matrices that satisfy (3), the homotopy for

(5) converges inS-steps for a number of measurementsM ∼ O
(
S2 log(N/S)

)
[23]. While

the accuracy guarantees for the above algorithms lead to state-of-the-art results, their com-

plexity prevents their use in real-time applications for very large signals or data sampled at

very high rates.

2.1.2 Greedy algorithms

Greedy algorithms solve (4) by recovering the support of the original signal iteratively.

These solvers are faster than relaxation methods in general, but have less sharp performance

guarantees. The most basic greedy algorithm is Orthogonal Matching Pursuit (OMP),

which adds to the support the element that has the strongest correlation with the resid-

ual at each iteration. Conditions on the RIP for OMP to recover the target signal accurately

in O(S) iterations were obtained in the noiseless [24] and noisy cases [25]. In the case of

subgaussian random matrices satisfying (3), the corresponding number of measurements is

on the order ofO (
S log(N/S)

)
. Recent work has also shown that OMP can recover anS-

sparse signal in exactlyS iterations (i.e., has theS-step property) [26]. The corresponding

number of noiseless measurements is on the order ofO(S2 log(N/S)) for random matrices
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satisfying (3). In contrast to OMP, Regularized Orthogonal Matching Pursuit (ROMP) [27]

and Compressive Sampling Matching Pursuit (CoSaMP) [28] add a set of nodes at each it-

eration. Both ROMP and CoSaMP guarantee uniform and stable recovery inO(S) iterations

from onlyO(S log(N/S)) measurements for random matrices satisfying (3). However, the

requirements on the RIP constant for these algorithms are slightly stricter than necessary

for ℓ1-minimization:δ8S ≤
0.01

√
logS

andδ4S ≤ 0.1 for ROMP and CoSaMP respectively.

2.2 Neural network analysis

Contrary to the solvers discussed in the previous section, the LCA is a continuous-time

algorithm, and belongs to the class of Hopfield-type neural networks. The convergence

analysis for a continuous-time system cannot be done in terms of number of iterations as

in the digital case. When analyzing a neural network, the main goal is to determine the be-

havior of the state and output variables with respect to time. In particular, the outputs need

to settle to an appropriate equilibrium point for the network to be suited for optimization,

and an estimate for the convergence speed needs to be determined. This section presents

some definitions and some tools for determining the stability of a network.

2.2.1 Stability and convergence

For any functionF(·) : RN → RN, afixed pointof the ODE

ẋ(t) = F(x(t)), ∀t ≥ 0, (10)

is a constant vectorx∗ ∈ RN such thatF(x∗) = 0. There exist several notions of stability

that describe the evolution of trajectories both locally and globally near a fixed point. First,

the notion of Lyapunov stability describes the behavior of the trajectories locally around

a fixed point and guarantees that ifx(t) starts close to a fixed point, it will remain nearby.

Formally, a fixed pointx∗ of (10) is (Lyapunov)stableif for eachε > 0, there exists an

R > 0 such that, for all starting pointsx0 with ‖x0 − x∗‖ < R (i.e., x0 ∈ BR(x∗)) and all
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x
∗ R

ǫ

x0

Figure 4: A point is (Lyapunov) stable if a trajectory that starts nearby (within a ball of
radiusR) remains nearby (within a ball of radiusε).

solutionsx(·) : R→ RN with x(0) = x0,

‖x(t) − x∗‖ < ε, ∀t > 0. (11)

This property is illustrated in Figure4. As can be seen in the figure, this type of stability

does not guarantee that trajectories approach a fixed point as time goes to infinity. However,

a fixed pointx∗ is calledasymptotically stableif, for any initial statesx0 ∈ RN such thatx0

is in a neighborhoodBR(x∗) of the fixed point for someR> 0, the solutionsx(·) : R→ RN

with x(0) = x0 satisfy lim
t→+∞

x(t) = x∗. It is globally asymptotically stableif this limit holds

for any x0 ∈ RN. In this case, every trajectory is guaranteed to approach a unique fixed

point ast goes to infinity.

These notions extend to neural networks. The network (10) is said to beglobally con-

vergent, or equivalentlyglobally asymptotically stable, if there exists a unique fixed point

x∗ that is globally asymptotically stable. On the other hand, if the trajectories can only

be shown to approach asetof stable fixed points, then the neural network is calledquasi-

convergent.
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In addition to the question of stability, it is essential to know how fast trajectories con-

verge for real-time applications. Of interest in this thesis is the notion of an exponential

rate of convergence. The network (10) is calledexponentially convergentto a fixed point

x∗ if there exists a constantc > 0 such that for any initial pointx(0), there exists a constant

κ0 > 0 (which may depend onx(0)) for which the solutionsx(·) : R → RN of (8) with

x(0) = x0 satisfy

‖x(t) − x∗‖ ≤ κ0e−ct, ∀t ≥ 0.

The constantc is referred to asconvergence speedof the system. When a network is expo-

nentially convergent, the distance to the fixed point decaysrapidly and can be considered

small for t ∼ 1/c. Whenc is known, an exact time to achieve a specified error can be

computed.

2.2.2 Lyapunov’s direct method

Lyapunov’s direct method, developed by Russian mathematician Aleksandr M. Lyapunov

in the late nineteenth century, makes the mathematical analysis of the stability and con-

vergence of some neural networks easier [29]. The key to this method resides in finding a

positive-definite function that represents a notion of energy for the dynamical system (10).

If the energy function is nonincreasing along the system’s trajectories, then the fixed points

are stable. If in addition the energy function is strictly decreasing along all the nonstation-

ary trajectories, the fixed points are also asymptotically stable.

Theorem (Lyapunov’s Direct method). If there exists an open setΩ that contains0 and a

function V(·) : Ω −→ R which is continuous and positive definite onΩ, with V̇(x) ≤ 0 for

all x ∈ Ω, then V(·) is called a weak Lyapunov function for(10) and, the solution x(t) = 0

is a stable fixed point of(10).

If, in addition,V̇(x) < 0 for all x ∈ Ω\{0}, then V(·) is called a Lyapunov function or strict

Lyapunov function for(10) and the solution x(t) = 0 is asymptotically stable.
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The time derivativėV(·) can be computed using the classic chain rule:

V̇(x(t)) = ∇xV(x)T ẋ(t) = ∇xV(x)TF(x(t)),

where∇xV(x) denotes the usual gradient ofV(·) at x. Since the termx(t) does not appear in

the above expression, it is neither necessary to solve the differential equation (10) explicitly

nor to apply the definition of stability directly to determine the stability of the fixed point.

These simplifications make the Lyapunov method extremely useful and powerful for the

convergence analysis of neural networks.

The theorem can easily be adapted to a fixed pointx∗ different fromx(t) = 0. For this

case, it suffices to apply the theorem to the translated differential equation:

u̇(t) = F(u(t) + x∗),

whereu(t) = x(t)−x∗. Using the translated Lyapunov functionW(t) = V(u(t)+x∗), u(t) = 0

is a solution of the above ODE that has the same stability asx(t) = x∗.

2.2.3 Previous work

Using Lyapunov’s direct method, Hopfield showed that the HNNconverges to a stable

fixed point that corresponds to the minimum of the energy function [13]. Later, these

ideas naturally led Hopfield to consider the reverse problem. Starting from an objective

function to minimize, he showed how to choose the neural network parameters to perform

the desired computation [30]. He applied this technique to the traveling-salesman problem

in [30] and to linear programming in [31]. These were pioneering steps in the field of analog

computing that paved the way for many extensions. In particular, the LCA descends from

this lineage of neural networks designed for a specific optimization.

Unfortunately, not all optimization programs have the necessary properties for Lya-

punov’s method to apply. Specifically, Hopfield’s paper on linear programming [31] re-

stricts the matrixW to be symmetric with zeroes on the diagonal, the activation function to

be nondecreasing everywhere, and the activation and objective functions to be smooth and
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accept a derivative everywhere. The need for neural networks that can solve more com-

plex optimization programs has led researchers to analyze neural networks that extend the

classic HNN.

To remove the symmetry condition on the interconnection matrix, the authors of [32]

prove global asymptotic convergence when the interconnection matrix is lower triangular.

In [33], the interconnection can be non-symmetric but must have symmetric and positive

semidefinite submatrices. The result in [34] removes the symmetry assumption altogether.

However, these results require the activation function to be bounded and strictly increas-

ing. In [35], this condition is also removed by letting the activation function be possibly

unbounded and with slope zero. This result is particularly interesting for the LCA, whose

activation function contains a thresholding region where the outputs are exactly zero over

some interval. Unfortunately, to show global asymptotic convergence of such a system, the

authors of [35] develop the notion of a Lyapunov Diagonally-Stable matrix, which requires

that the interconnection matrixW be nonsingular. As stated before, for problems in CS

recovery, the interconnection matrixW may have a large nullspace.

2.3 Nonsmooth neural networks

While the LCA architecture is a type of HNN, its objective function does not satisfy the

smoothness requirement of the traditional Lyapunov approach. In an effort to extend neu-

ral networks to more general classes of optimization, several papers have considered nons-

mooth objective functions. Their analysis relies on the notion of subgradient developed by

Clarke [36], and on the theory of differential inclusions as studied by Filippov [37]. The

typical approach considers a network that satisfies a differential inclusion of the form

ẋ(t) ∈ −∂F(x(t)),

where∂F(x) represents the subgradient ofF(·) at x. The next sections will introduce the

notions of subgradient, regularity and some useful calculus results.
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2.3.1 Subgradient

The subgradient extends the traditional notion of gradientto functions that are locally Lip-

schitz but not necessarily differentiable. The definition ofsubgradient, also calledgeneral-

ized gradient, developed in [36] and [38] is used in this thesis.

A function F(·) : RN → R is calledlocally Lipschitzat x ∈ RN if there existε > 0

and K > 0 such that for allx1, x2 ∈ Bε(x) (i.e., in an ε-neighborhood ofx), one has

|F(x1) − F(x2)| ≤ K ‖x1 − x2‖. A locally Lipschitz function is not necessarily differentiable.

However, Rademacher’s theorem implies that a locally Lipschitz functionF(·) is differen-

tiable almost everywhere (a.e.) on any neighborhood ofx in which F(·) is Lipschitz.

For a functionF(·) : RN → R locally Lipschitz atx ∈ RN, there exist several definitions

related to the standard notion of directional derivative. The usualone-sided directional

derivativeof F(·) at x ∈ RN in the directionv ∈ RN is

F′(x; v) = lim
t↓0

F(x+ tv) − F(x)
t

.

Since some nonsmooth functions may fail to admit one-sided derivatives, this definition

can be relaxed to the following notion ofgeneralized directional derivative:

F◦(x; v) = lim sup
y→x
t↓0

F(y+ tv) − F(y)
t

.

With this definition, the existence of directional derivatives ofF(·) at x are not necessary.

For instance, the quantityF◦(x; v) is well-defined whenF(·) is only locally Lipschitz. This

notion has been generalized even further to functions that are only directionally Lipschitz

[39], but this is beyond the scope of this thesis.

Thesubgradientof F(·) at x is the subset ofRN defined by

∂F(x) =
{
ξ ∈ RN s.t. F◦(x; v) ≥ ξTv, ∀v ∈ RN

}
.

For a locally Lipschitz function, this set is well-defined, nonempty and convex. Since

Rademacher’s theorem implies thatF(·) is differentiable a.e., the setΩF of points where
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F(·) fails to be differentiable has Lebesgue measure zero. Then, the subgradient simplifies

to the following definition [36]:

∂F(x) = co
{
lim
i→∞
∇F(xi) : xi → x, xi < S, xi < ΩF

}
,

whereco is the convex hull, andS is any set of Lebesgue measure 0 inRN. In other

words,∂F(x) is the smallest convex set containing the limit points of the gradients along

any sequence of points{xi} approachingx while avoidingΩF ∪ S. WhenF(·) is smooth at

x, ∂F(x) is a singleton that coincides with the classic notion of gradient∂F(x) = {∇F(x)}.

For a convex function, this notion also coincides with the notion of subgradient in convex

analysis.

2.3.2 Generalized chain rule and calculus

The notion of regularity is essential to easily compute the subgradient and apply the chain

rule to nonsmooth functions with equality1. The functionF(·) : RN 7→ R is regular at x

if F′(x; v) exists andF′(x; v) = F◦(x; v) for all v ∈ RN [36, Def. 2.3.4]. The following

chain rule concerns functions of the formG(·) = F ◦ H(·), whereH(·) : RM → RN and

F(·) : RN → R.

Theorem (Chain Rule I). Assume that the function H(·) : RM → RN has component func-

tions Hn(·) : RM → R for n = 1, . . . ,N, that each Hn(·) is locally Lipschitz and differen-

tiable at x ∈ RM, and F(·) : RN → R is locally Lipschitz and regular at H(x). Then, the

function G(·) = F ◦ H(·) is locally Lipschitz and regular at x and

∂G(x) = ∂F ◦ H(x) =


N∑

n=1

ζn∇Hn(x) s.t. ζ ∈ ∂F(H(x)) andζ = (ζ1, . . . , ζN)

 . (12)

In addition, Corollary 3 of Propositions 2.3.1 and 2.3.3 of [36] imply that if N functions

Fn(·) : RN 7→ R for n = 1, . . . ,N are locally Lipschitz and regular atx, andαn ≥ 0 for

n = 1, . . . ,N, then

∂


N∑

n=1

αnFn

 (x) =
N∑

n=1

αn∂Fn(x). (13)

1Without the notion of regularity, most of the properties in this section hold only with an inclusion in one
direction rather than an equality between two sets.
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Finally, if G(·) = F ◦ x(·) with x(·) : [0,+∞) → RN, then Theorem 2.3.10 in [36] given

below yields a special case of the chain rule that is often used in the study of the LCA

trajectories.

Theorem (Chain Rule II). If F (·) : RN → R is locally Lipschitz and regular onRN and

x(·) : [0,+∞) → RN is differentiable on[0,+∞), then F(x(·)) is also locally Lipschitz and

regular on[0,+∞), its time derivativeḞ(x(t)) exists for almost all (a.a.) t≥ 0 and satisfies

Ḟ(x(t)) = ζT ẋ(t), ∀ζ ∈ ∂F(x(t)). (14)

This theorem states that any elementζ in the subgradient can be used to compute the

time derivative ofF(x(t)).

2.3.3 Previous work

Using these new tools, several papers have given convergence results for nonsmooth neural

networks. Unfortunately, several characteristics distinguish the LCA from previous studies.

In [40], the objective function is linear, while it is piecewise linear in [41], and nonlinear

but increasing and bounded in [34, 42, 43]. On the contrary, for cases of interest, the

LCA activation function is nonlinear, unbounded, and exactly zero on the interval [−λ, λ].

Furthermore, contrary to previous work on nonsmooth systems, Lemma1 shows that the

LCA dynamics satisfy

u̇(t) ∈ −∂aV(a(t)),

rather than ˙u(t) ∈ −∂uV(u(t)) or ȧ(t) ∈ −∂aV(a(t)) as in [44–46]. This difference is signifi-

cant since the state variablesu(t) could still be evolving while the objectiveV(a(t)) remains

constant. Finally, the LCA interconnection matrixW has a potentially large nullspace

sinceM ≪ N, whereas other analyses assume the interconnection matrixto be positive

definite [41] or nonsingular [33, 35]. For these reasons, it has been difficult to provide

convergence guarantees for the LCA network.
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2.4 Finite length of trajectories

Techniques based on Lyapunov functions only prove convergence to a set of fixed points.

If there exists a set of connected fixed points, the trajectories are only guaranteed to evolve

towards this set, but there is no certainty that they will converge towards one unique point

in the set. In other words, trajectories are not prevented from growing unbounded or os-

cillating indefinitely as they approach the solution set. Recent papers have developed a

new technique based on the Łojasiewicz inequality [47] to overcome this limitation. While

the results obtained with this technique are strong, they donot readily apply to the LCA

specifics.

2.4.1 Subanalicity and Łojasiewicz inequality

The Łojasiewicz (gradient) inequality relies on geometricproperties of a function, and

relates differences of a function near a point to the value of its gradientat that point [47].

Formally, it states that for a real-analytic functionF(·) : RN → R and for all x̄ ∈ RN, there

existsν ∈ [0, 1),C > 0 and∆ > 0 such that the functionF(·) satisfies

|F(x) − F(x̄)|ν ≤ C ‖∇F(x)‖ , ∀x ∈ B∆(x̄).

Using this inequality, Łojasiewicz showed that the trajectories of networks of the form

ẋ(t) = −∇F(x(t)) have finite length, thus ensuring their convergence to a singleton even

when the fixed points are not isolated [47].

Recently, an extension of the Łojasiewicz inequality was developed for nonsmooth

functions [44, Th 3.1.]. The gradient in the original formulation is replaced by the non-

smooth slope, which represents the smallest norm of any vector in the set∂F(x).

Theorem (Nonsmooth Łojasiewicz inequality). Suppose that a function F(·) : RN → R is

subanalytic and continuous onRN. Then, for anȳx ∈ RN, there existν ∈ [0, 1), C > 0, and

∆ > 0 such that

|F(x) − F(x̄)|ν ≤ C m(∂F(x)), ∀x ∈ B∆(x̄),
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where thenonsmooth slopeof F(·) at x ∈ RN is defined as

m(∂F(x)) = inf
{
‖ξ‖2 , ξ ∈ ∂F(x)

}
. (15)

The nonsmooth Łojasiewicz inequality requires the function F(·) to be subanalytic.

This property does not require the function to be differentiable, but it involves geometric

properties of the graph, such as algebraic manipulations (unions and intersections) of sets

defined by real-analytic equations and inequalities. More precisely, a setA ⊂ RN is said to

besemianalyticif each pointx ∈ RN admits a neighborhoodN for which

A∩N =
p⋃

i=1

q⋂

j=1

{
x ∈ N , fi j (x) = 0, gi j (x) > 0

}
,

where fi j (·), gi j (·) : N → R are real-analytic functions for all 1≤ i ≤ p, 1 ≤ j ≤ q, and

p andq are some integers. A setB is said to besubanalyticif it is locally the projection

of a semianalytic set,i.e., each pointx ∈ RN admits a neighborhoodN such thatB ∩

N =
{
x ∈ RN, (x, y) ∈ A

}
, whereA is a bounded semianalytic subset ofRN × RM for some

M ≥ 1. Finally, a functionF(·) : RN → R is said to besubanalyticif its graph, GrafF =

{(x, y) s.t. y = F(x)}, is a subanalytic subset ofRN × R.

2.4.2 Previous work

Several recent papers have used the Łojasiewicz inequalityto show convergence of specific

neural networks to a single point even when the fixed points are not isolated. In [42], a

general approach is taken where the network’s equation has the form


u̇(t) = −Du(t) − ∇F(a(t))

a(t) = T(u(t))

.

In this paper, the functionsF(·) andT(·) are assumed to be analytic (which implies the exis-

tence of derivatives of any order), and the activation function T(·) is required to be bounded

and strictly increasing. Thanks to the extension of the Łojasiewicz inequality to nonsmooth

functions, the result of this paper was extended to the nonsmooth case in [45]. However, in
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this later paper only quadratic programming with linear constraints is considered. In [44],

the authors show how a network satisfying the differential inclusion ˙u(t) ∈ −∂F(u(t)) has

finite-length trajectories ifF(·) is subanalytic and either lower semicontinuous convex or

lower-C2. Unfortunately, as explained in section2.3.3, the LCA cannot be put in this form

as it satisfies a different inclusion, namely ˙u(t) ∈ −∂aV(a(t)) (see Lemma1). Finally, the

authors of [43] make use of the nonsmooth Łojasiewicz inequality to prove that a network

of the form 

u̇(t) ∈ −Du(t) − ∂V(a(t)) + θ

a(t) = T(u(t))

converges to a singleton. However, the activation functionmust be bounded and the matrix

D must be diagonal with strictly positive entries, which doesnot comply with the specifics

of the LCA.
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CHAPTER III

PROPERTIES FOR GENERIC SPARSE RECOVERY

For any engineering application, it is essential to obtain theoretical guarantees on the be-

havior of a system before its deployment. The previous chapter showed that significant ad-

vances have been made in the field of neural network analysis.Unfortunately, the specifics

of the LCA neural network do not fit the necessary criteria forany of the existing ap-

proaches. In this chapter, theoretical results that extendprevious requirements for neural

network analysis (in particular on the activation functionand the feedback matrix) are pre-

sented. Using tools from nonsmooth analysis, the results ofthis chapter prove that the LCA

is well-suited for solving a wide class of nonsmooth optimization programs by showing that

• the fixed points of the neural network correspond to criticalpoints of the desired

objective function,

• the network trajectories converge to a fixed point from any initial state when the fixed

points are isolated,

• the network trajectories converge to a fixed point from any initial state even when the

fixed points are not isolated,

• the support of the solution is recovered in finite time, and

• the network trajectories converge exponentially fast fromany initial state.

These guarantees are essential for a dynamical system designed to solve an optimization

program in real-world applications. The resulting class ofneural networks extends the

neural networks previously studied in the literature and onthe results published in [48–50].
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3.1 Nonsmooth objective

In the most generic case, the LCA is designed to solve optimization programs with an

objective function of the form

V (a) =
1
2
‖y− Φa‖22 + C(a), (16)

whereC(·) : RN → RN. For many practical applications, the cost functionC(·) is separable

into its component in each dimension:

C(a) =
N∑

n=1

C(an), ∀a = (a1, . . . , aN) ∈ RN. (17)

For instance, the cost function in theℓ1-minimization objective takes the form of (17) with

C(an) = λ |an| for someλ > 0. Sparseness measures presented in Definition2 provide

another example of such separable cost functions. The main difficulty for the analysis

is the fact that the objective function is not necessarily differentiable everywhere. For

instance, theℓ1-minimization objective is not differentiable at pointsa ∈ RN that have

one or more entries equal to zero. The theoretical results inthe following sections show

under what conditions on the activation function the LCA canbe used to solve optimization

programs of the form (16). The conditions imposed on the activation function are general

and encompass a wide variety of objective functions used in sparse recovery.

3.2 Fixed points

The first result of this chapter concerns the fixed points of the LCA neural network and

presents a condition for them to correspond to solutions of the desired objective. The

condition is general and assumes nothing about the form of the activation function.

Theorem 1. Assume that the cost functionC(·) : RN → RN in (16) is locally Lipschitz and

regular onRN. If the activation function Tλ(·) : RN → RN in (8) and the cost function

satisfy, for all a∈ RN,

u− a = u− Tλ(u) ∈ ∂C(a), (18)

then the fixed points of the LCA are critical points of the objective function.
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Critical points of the objective function in (16) are defined as pointsa∗ ∈ RN that satisfy

0 ∈ ∂V(a∗). The set of critical points includes the local minima and maxima of V(·). If the

objective is convex, then all of the critical points are local minima. If it is strictly convex,

then there is a unique minimum and, as a consequence, the LCA has a unique fixed point.

In Theorem1, the cost function is only required to be locally Lipschitz and regular, which

is a weak requirement satisfied by many functions that are used in practice. For instance,

the cost function does not need to be differentiable. Theℓ1-norm satisfies this condition,

and it will be shown later that the soft-thresholding satisfies the relationship (18) for this

cost function. For this theorem, the activation does not necessarily have to be continuous.

In the following, a cost function satisfying (19) is derived for the famous hard-thresholding

function, which is not continuous. Other activation functions satisfying (19) for several

sparsity-inducing cost functions of interest can be found in [51]. In the special case where

the cost functionC(·) is separable and takes the form of (17), the following corollary holds.

Corollary 1. Assume that the cost function C(·) : R → R in (6) is locally Lipschitz and

regular onRN. If the activation function Tλ(·) : R → R in (8) and the cost function C(·)

satisfy, for all un ∈ R,

un − an = un − Tλ(un) ∈ ∂C(an), (19)

then the fixed points of the LCA are critical points of the objective function.

For example, when solvingℓ1-minimization, since the left and right derivative of the

cost functionC(an) = λ |an| exist for all an ∈ R, the cost function is obviously locally

Lipschitz (with Lipschitz constantλ) and regular, and it is easy to check that its subgradient

is

∂C(an) =



λ sign(an), for an , 0

[−λ, λ] , for an = 0

.
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Since the soft-thresholding function (9) satisfies

un − an = un − Tλ(un) =



λ sign(un) = λ sign(an), if |un| > λ (for which |an| > 0)

un, if un ∈ [−λ, λ] (for which an = 0)

by Corollary1, this expression shows that the soft-thresholding function in (9) satisfies (19)

and can be used to solve theℓ1-minimization program (5).

3.2.1 Simulations

Unless stated otherwise, all of the experimental results inthis thesis are obtained from

simulating the LCA dynamical equations (8) in Matlab using a first-order discrete approx-

imation with a step size of 0.001 and a time constant chosen to be equal toτ = 0.01. The

internal states are started at rest (i.e., u(0) = 0) and the system is given enough time to

converge.

To illustrate the fact that the fixed points of the LCA correspond to critical points of

the desired objective function, three examples are studied. In the first case, the soft- and

hard-thresholding functions are used to recover a sparse signal from CS measurements. In

the second case, Tikhonov regularization is used as the objective function. The fixed point

reached by the LCA is compared to the solution of a digital solver for sparse approximation,

called SpaRSA [52]. In addition to being a state-of-the-art solver, SpaRSA isused for

comparison because it can take as an argument the specific cost functionC(·) to be used in

the optimization, while most other existing solvers only handleℓ1-minimization.

3.2.1.1 Sparse recovery

Two optimization programs for sparse recovery are considered. First, the soft-thresholding

function in (9) is used. Since theℓ1-norm was shown to satisfy (19), Theorem1 implies that

the LCA should solve theℓ1-minimization program in (5). Second, the hard-thresholding

function defined byTλ(u) = u if |u| > λ andTλ(u) = 0 otherwise is considered. In Ap-

pendixD, it is shown how to construct an associated cost function that satisfies (19) when

the activation function has discontinuities. While the corresponding cost function does not

26



exactly correspond to theℓ0-pseudo norm (which is not locally Lipschitz at 0), it has been

shown in [20] that the hard-thresholding function can be used to approximately recover the

solution to the idealℓ0-minimization program (4) (with a tradeoff parameter ofλ2/2).

To test these statements, a vectora† of lengthN = 512 is generated by selectingS = 10

non-zero entries uniformly at random. Amplitudes for the non-zero entries are drawn from

a uniform distribution on [1, 3] anda† is normalized to have unit norm. The dictionary

Φ is a union of the canonical basis and a sinusoidal basis having dimensionsM × N with

M = 256. The vector of measurements isy = Φa† + ǫ, whereǫ is a Gaussian random

noise vector with standard deviationσ = 0.1
∥∥∥Φa†

∥∥∥
2
/
√

M (which is a moderate level of

noise). The threshold for the activation function isλ = 0.025. Figure5 shows that the

fixed pointa∗ reached by the LCA is indeed close to the target vectora† in both cases,

though the amplitudes cannot be exactly recovered because of the noise, as predicted by

CS theory. The solutions reached by the network are close to those produced by the digital

solver SpaRSA used with theℓ1-norm andℓ0-pseudo norm, respectively. This experiment

confirms that the fixed points of the LCA correspond to solutions of the desired objective

function as predicted by Theorem1.

3.2.1.2 Tikhonov regularization

For the second example, the target signal does not need to be sparse. In Tikhonov regular-

ization, the cost function in (6) isC(an) = λ |an|2. An activation function satisfying (19) can

be easily checked to beTλ(un) = un/(1+ 2λ). The parameterλ is chosen to regularize the

solution when the matrixΦ is ill-conditioned.

To illustrate this program, a Gaussian random matrixΦ of size 256× 256 is generated.

After taking a singular value decomposition, the last 50 singular values ofΦ are set to a

small value by multiplying them by 10−10. The columns ofΦ are then normalized to have

unit norm. A vectora† of lengthN = 256 is obtained by generating a random linear combi-

nation of the 20 first right singular vectors. Coefficients of the linear combination are drawn

from a standard Gaussian distribution. The vector of measurements isy = Φa† + ǫ, where
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Figure 5: Outputa∗ of the LCA after convergence. Only non-zero elements are plotted.
The fixed point reached by the system is close to the initial sparse vector used to create the
measurements (it cannot be exact due to noise). The solutionis also close to the solution
of the standard digital solver SpaRSA.

ǫ is random Gaussian noise with standard deviationσ = 0.1
∥∥∥Φa†

∥∥∥
2
/
√

M. The regulariz-

ing parameter is set toλ = 0.25. The closed-form solution to the Tikhonov regularization

problem can be computed explicitly as

aTik =
(
ΦTΦ + 2λI

)−1
ΦTy.

In Figure6, the absolute error in the Tikhonov solution
∣∣∣aTik

k − ak

∣∣∣ is plotted for the fixed

points of LCA and SpaRSA. Both algorithms yield an output that is very close to the true

closed-form solution. This experiment again agrees with the conclusion of Theorem1.

3.2.2 Proof of Theorem1

Before proving the main theorem, the fundamental lemma below redefines the LCA as a

differential inclusion.

Lemma 1. Assume that the cost functionC(·) in (16) is locally Lipschitz and regular onRN

and that the LCA activation function in(8) satisfies(19). Then the LCA trajectories satisfy

the following differential inclusion:

− u̇(t) ∈ ∂V(a(t)). (20)
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Figure 6:Absolute error of the outputs of the LCA and SpaRSA relative to the Tikhonov
solution.

Proof. The objective functionV(·) is locally Lipschitz and regular onRN as the sum of

C(·), which is locally Lipschitz and regular onRN by assumption, and a quadratic form,

which is Lipschitz and regular onRN. Consequently, the rules of calculus for subgradients

presented in Section3.1imply that

∂V(a(t)) = −ΦTy+ ΦTΦa(t) + ∂C(a(t)). (21)

Sinceu̇(t) satisfies (8), condition (19) yields

−u̇(t) = u(t) − a(t) + ΦTΦa(t) −ΦTy

∈ ∂C(a(t)) + ΦTΦa(t) −ΦTy

∈ ∂V(a(t))

The proof of the theorem follows trivially.

Proof of Theorem1. Any fixed pointu∗ of (8) satisfies

u̇∗(t) = 0.

Applying Lemma1, this equality implies that

0 ∈ ∂V(a∗),
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wherea∗ = Tλ(u∗). This equation is exactly the condition fora∗ to be a critical point of

V(·).

The corollary can be proven easily by explicitly computing the subgradient of a sepa-

rable cost function in the form of (17).

Proof of Corollary1. A separable cost functionC(·) in the form of (17) can be rewritten as

C(a) =
N∑

n=1

Cn(a),

whereCn(·) : RN → R is defined byCn(a) = C(an) for n = 1, . . . ,N. SinceC(·) is locally

Lipschitz and regular onRN, equality (13) implies that∀a ∈ RN

∂C(a) =
N∑

n=1

∂Cn(a).

EachCn(·) can be viewed as the composition ofC(·) and the projectionΠn(·) : RN → R

that returns thenth component of a vector. The projection operatorΠn(·) is differentiable

onRN and it is simple to compute its gradient∇Πn(a) = (0, . . . , 1, . . . , 0)T, where the 1 is

at positionn. Then the chain rule in (12) yields

∂Cn(a) =
{
ξn∇Πn(a) s.t. ξn ∈ ∂C(Πn(a))

}

=
{
(0, . . . , ξn, . . . , 0)T s.t. ξn ∈ ∂C(an)

}
.

Putting everything together,

∂C(a) =
{
ξ s.t. ξ = (ξ1, . . . , ξN)T and ξn ∈ ∂C(an)

}
. (22)

As a consequence, if hypothesis (19) holds, then the subgradient satisfies, for alla ∈ RN

and alln = 1, . . . ,N,

ξn = un − an ∈ ∂C(an).

Thus,u− a = (ξ1, . . . , ξN) ∈ ∂C(a), and applying Theorem1 finishes the proof.

30



3.3 Global asymptotic convergence

The result on the fixed points presented in the previous section is general, and the require-

ments on the activation and cost functions are minimal. The hard-thresholding function,

for instance, is not continuous, but there exists a locally Lipschitz cost function that sat-

isfies relationship (19). Despite its large scope, Theorem1 only guarantees that the fixed

points are critical points of the corresponding objective;nothing can yet be said about how

the trajectories evolve with time. In this section, a Lyapunov-type approach is taken to

prove that the LCA network converges to a set of fixed points. This property is known as

quasi-convergence.

3.3.1 Conditions on the activation function

To give the first convergence result for the LCA, the activation function needs to satisfy

several requirements. The first natural condition is for theactivation function to be non-

decreasing everywhere. This property is necessary for the objective function to be nonin-

creasing almost everywhere as the system evolves and to be a candidate Lyapunov function

for the network. A second requirement is for the activation function to be continuous,

which ensures that the objective function is also continuous. This requirement prevents

scenarios where the objective is decreasing for almost all time but returns to a high value

at points of discontinuity and thus never reaches a stable minimum. If, in addition, the ac-

tivation function is locally Lipschitz, its slope is bounded on bounded intervals and results

from nonsmooth analysis apply. The form of the activation function and complete list of

necessary conditions are summarized below.

Assumption 1. The activation function Tλ(·) is locally Lipschitz continuous, odd and non-

decreasing onR. In addition, there existλ ≥ 0, and locally finitely many{(vk,wk, zk)}k∈K in

31



R × R × R, with vk < wk, such that Tλ(·) has the form

an = Tλ(un) =



0, |un| ≤ λ

zk, un ∈
⋃

k∈K [vk,wk] := Z

is strictly increasing otherwise withζn > 0, ∀ζn ∈ ∂Tλ(un)

(23)

and satisfies

|Tλ(un)| ≤ |un| , ∀un ∈ R. (24)

Explicitly, the form in (23) means that Tλ(·)

• is exactly zero on the interval[−λ, λ],

• is constant on a countable and locally finite number of intervals denoted byZ (which

include the interval[−λ, λ] and potentially the case where wk is equal to infinity for

some k), and

• is otherwise strictly increasing on any open intervalU in R\Z (where Tλ(·) is not

constant) with strictly positive subgradients.

For anyλ ≥ 0, it is guaranteed thatTλ(u) > 0 for all u > λ. In the case whereλ > 0, the

activation function is exactly zero on the nontrivial interval [−λ, λ]. This form is common

for activation functions used in sparse recovery problems.Intuitively, many elements with

small amplitude are forced to zero, thus promoting a sparse output. The case whereλ = 0

is less interesting for sparse recovery problems, as it doesnot yield sparse outputs, but it

encompasses other types of regularizers such asC(an) = λ |an|2 for Tikhonov regularization

(whose associated activation function isTλ(un) = un/(1+ 2λ)).

If one of the interval limitswk is equal to+∞, the resulting activation function is con-

stant on an interval of the form [vk,+∞) and is obviously bounded. However, the form (23)

allows for activation functions that grow unbounded asun→ ∞.

The last requirement (24) is less intuitive. To understand it, it is necessary to construct a

cost function associated withTλ(·) such that the relationship (19) in Theorem1 is satisfied.
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It is possible to build such a cost functionC(·) that is continuous, even and nondecreasing on

R (see Lemma4 in AppendixA). Looking at the form (75) of the cost function constructed

in the proof of Lemma4, it is clear that condition (24) forcesC(·) to increase with the

absolute value of the coefficients. This property is essential for solving sparse recovery

problems as it again encourages zero and small coefficients in the solution. If condition

(24) was replaced by the stronger conditionζn ≤ 1 for all un ∈ R andζn ∈ ∂Tλ(un) (which

simplifies toT′λ(un) ≤ 1 whenTλ(·) is differentiable), then the functionC(un)/un would be

nonincreasing on (0,∞). The resulting cost function would satisfy all of the requirements to

be a sparseness measure (see Definition2). However, the weaker condition (24) is similar

in nature and sufficient to prove convergence of the LCA network.

The soft-thresholding function in (9) is one of the main focuses in this thesis and satis-

fies all of the requirements. More generally, activation functionsTλ(·) satisfying Assump-

tion 1 correspond to a large class of cost functions that are often used in practice [51]. A

generic stylized activation function that satisfies these conditions is shown in Figure7.

3.3.2 Notation

This section introduces some notations that will be used throughout this thesis. For an

activation function of the form (23), the LCA nodes can be split into several sets.

• Theactive setΓ(t) contains indices such that

n ∈ Γ(t) ⇔ |un(t)| > λ and |an(t)| > 0.

Indeed, outside of the intervals inZ where it is constant, the activation function is

strictly increasing. As a consequence, state variables that satisfy|un(t)| > λ generate

outputs that satisfy|an(t)| > 0. These nodes are calledactive nodes. On the contrary,

state variables that satisfy|un(t)| ≤ λ generate outputsan(t) = 0 and are calledinactive

nodes. Their indices belong to theinactive setΓc(t).
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Figure 7: The dashed red curve is a generic activation function satisfying Assumption 1.
It has three intervals of the form [vk,wk] where it is constant. The area in gray represents
where the activation function must lie to satisfy condition(24). The function in black is the
soft-thresholding activation function used forℓ1-minimization.

• Theconstant setZ(t) contains indices such that

n ∈ Z(t) ⇔ un(t) ∈ Z =
⋃

k∈K
[vk,wk] and an(t) = zk.

For nodes in this set, the output is a constant and ˙an(t) = 0. This set includes the

inactive set for whichzk = 0, and nodes in this set are referred to asconstant nodes.

On the contrary, for a noden in the complement Zc(t), the state variableun(t) belongs

to an intervalU ⊂ R\Z, the outputan(t) is not constant and every subgradient

ζn ∈ ∂Tλ(un(t)) is strictly positiveζn > 0.

• The set∆q(t) contains theq indices with largest magnitude inu(t).

As the system evolves with time according to the ODE in (8), the nodes may switch from

one set to its complement and back. As a consequence, the three sets defined above will

depend on the specific timet. Nevertheless, their dependence on time is often omitted in

34



the notation for the sake of readability. When it is clear from the context, they will simply

be denoted asΓ, Z and∆.

The notationΦS represents the matrix composed of the columns ofΦ indexed by the

setS, setting all the other entries to zero. Similarly,uS andaS refer to the elements in the

vectorsu anda indexed byS setting other entries to zero.

Finally, the sequence{tk}k∈N of switching timesis defined such that the setΓ(t) = Γk is

constant∀t ∈ [tk, tk+1). In other words, aswitchoccurs if a node either leaves or enters the

support of the outputa(t).

3.3.3 Convergence result

The theorem below summarizes the first convergence result for the LCA network obtained

via a Lyapunov approach. It extends the results published in[49], where the activation

function may only be constant on the interval [−λ, λ], while being strictly increasing and

differentiable otherwise. Under the more general conditions inAssumption1, the following

convergence result holds.

Theorem 2. If the LCA system defined by the ODE in(8) has an activation function satis-

fying Assumption1, then

1. the output is globally quasi-convergent in the sense thatit converges to the set E of

fixed points for any initial state u(0) ∈ RN:

a(t) −−−→
t→∞

E ≔
{
a∗ ∈ RN s.t. ȧ∗(t) = 0

}
;

2. if in addition the fixed points are isolated, the output andstate variables are globally

convergent, i.e.,∀u(0) ∈ RN, ∃! a∗, u∗ ∈ RN such that

a(t) −−−→
t→∞

a∗ and u(t) −−−→
t→∞

u∗.

When the fixed points are isolated, this theorem says that thesystem converges to a

unique fixed point. This is the case for a strictly convex objective, for instance. The proof
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Figure 8: Plot of the evolution over time of several LCA nodesuk(t). The plain lines
correspond to nodes that are active in the final solution and the dashed lines correspond to
nodes that are inactive in the final solution.

of the theorem in Section3.3.5relies on splitting the ODEs into two sets of differential

equations that are partially decoupled.

3.3.4 Simulations

The example of Section3.2.1 is reused, focusing on the case where the LCA solves the

ℓ1-minimization program (5) with a unique minimum. In this scenario, Theorem1 guaran-

tees that the LCA has a unique fixed point, and Theorem2 that it is globally convergent.

Figure8 shows the evolution of a few nodesun(t) selected at random from the active and

inactive sets of the solution. Both active and inactive nodes converge to their final value in

only a few time constants. Figure9 illustrates the global convergence behavior by showing

the evolution over time of several trajectories for different initial points. Two nodes in the

support ofa∗ are chosen at random and their evolution over time is plottedin the state-space

defined by those two nodes for 30 random initial points. The color gradient in each curve

represents the evolution of time, a lighter gray corresponding to times closer to zero. All

resulting trajectories evolve towards a single point in concurrence with Theorem2.
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Figure 9:Trajectoriesu(t) of the LCA for 30 random initial points, projected on the plane
defined by two active nodes chosen at random. The color gradient indicates the time evo-
lution. The red cross indicates the fixed point of the network.

3.3.5 Proof of Theorem2

Proof. First, a cost functionC(·) associated toTλ(·) is constructed as in Lemma4 in Ap-

pendixA. By Lemma6 and Corollary2, the resulting objectiveV(a(·)) is continuous and

regular onR+ and converges to a constant valueV∗ as t → ∞. Thus, its time derivative

V̇(a(t)) tends to zero ast → ∞. Using equation (77) that was derived using the chain rule

(14), the following holds for a.a.t ≥ 0:

V̇(a(t)) = −
∑

n<Z

1
ζn
|ȧn(t)|2

for any ζn ∈ ∂Tλ(un). Sinceζn > 0 for n < Z and ȧn(t) = 0 for n ∈ Z, the previous

observations imply that lim
t→+∞

‖ȧ(t)‖2 = 0. This limit shows that the outputs converge to the

setE = {a : s.t. ȧ(t) = 0} , which proves that the LCA outputs are quasi-convergent.

Moving on to the second part of the theorem, the fixed points are assumed to be isolated.

In this case, the theorem states that both active and inactive nodes converge to a single fixed

point. The first part of the proof showed that the outputs converge to the set of fixed points
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E. Thus, for any small valueR> 0, there exists a timetp and a fixed pointa∗ ∈ E such that

a(tp) ∈ BR(a∗), i.e., the output is within a ball of radiusR arounda∗. Since the fixed points

are isolated, there must exist a ballBε(a∗) of radiusε > 0 arounda∗ that does not contain

any other fixed point:

a∗ ∈ E, and ∀a ∈ Bε(a∗), a , a∗ ⇒ a < E.

SinceV̇(a(t)) ≤ 0 for a.a.t ≥ 0, Lyapunov’s direct method states that the network is stable.

As a consequence, by the definition of (Lyapunov) stability in (11), for ε/2 there must exist

anRsuch that, ifa(t0) ∈ BR(a∗), thena(t) ∈ Bε/2(a∗) for all t ≥ t0. It was shown earlier that

such a timet0 exists for anyR > 0. As a consequence, once the trajectory is close enough

to one elementa∗ in E, it must converge to the pointa∗, i.e.,

lim
t→+∞

a(t) = a∗. (25)

Letting

u∗ = −ΦTΦa∗ + ΦTy+ a∗,

the LCA ODE (8) can be rewritten in terms of the distanceã(t) = a(t) − a∗ as

u̇(t) = −u(t) − ΦTΦa∗ + ΦTy+ a∗ − ΦTΦã(t) + ã(t)

= −u(t) + u∗ −
(
ΦTΦ − I

)
ã(t).

Solving this ODE (see AppendixB) yields, for allt ≥ 0,

u(t) = u∗ + e−t (u(0)− u∗) + e−t

∫ t

0
es

(
ΦTΦ − I

)
ã(s)ds.

While it is difficult to say anything directly about the trajectory of the system, it is helpful to

consider a surrogate trajectory that is a straight line in the state-space:u∗ + e−t (u(0)− u∗).

This linear path obviously converges to the fixed pointu∗. If the actual trajectoryu(t)

asymptotically approaches this idealized linear path, then the system is guaranteed to con-

verge tou∗. Taking this approach, the norm of the quantity

h(t) = u(t) − u∗ − e−t (u(0)− u∗) ,
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which is the deviation from the linear path, can be bounded asfollows:

‖h(t)‖2 =
∥∥∥u(t) − u∗ − e−t (u(0)− u∗)

∥∥∥
2

=

∥∥∥∥∥∥e
−t

∫ t

0
es

(
ΦTΦ − I

)
ã(s)ds

∥∥∥∥∥∥
2

≤ e−t
∥∥∥ΦTΦ − I

∥∥∥
2

∫ t

0
es ‖̃a(s)‖2 ds

and converges to zero. Sinceã(t) −−−−→
t→+∞

0, for anyε̃ > 0 there exists a timetc ≥ 0 such

that∀t ≥ tc, ‖̃a(t)‖2 ≤ ε̃. Moreover, since‖̃a(t)‖2 is continuous and goes to zero ast goes to

infinity, it admits an upper bound∀t ≥ 0. Thus, there existsµ > 0 such that‖̃a(t)‖2 ≤ µ for

all t ≥ 0. Thus, for allt ≥ 2tc, the integral can be split into two parts to obtain

‖h(t)‖2 ≤ e−t
∥∥∥ΦTΦ − I

∥∥∥
2
µ

∫ tc

0
esds + e−t

∥∥∥ΦTΦ − I
∥∥∥

2
ε̃

∫ t

tc

esds

≤
∥∥∥ΦTΦ − I

∥∥∥
2
µ
[
e−t+tc − e−t] +

∥∥∥ΦTΦ − I
∥∥∥

2
ε̃
[
1− e−t+tc

]

≤
∥∥∥ΦTΦ − I

∥∥∥
2
µ
[
e−t/2 − e−t

]
+

∥∥∥ΦTΦ − I
∥∥∥

2
ε̃.

The first term in the right-hand side converges to zero ast → ∞, while ε̃ can be chosen

to be arbitrarily small. Thus the deviation‖h(t)‖2 converges to zero and the trajectoryu(t)

converges to the trajectoryu∗ + e−t (u(0)− u∗) ast goes to infinity. This result shows that

u(t) −−−−→
t→+∞

u∗. Therefore, both the output and state variables converge forany initial state,

which concludes the proof that the system is globally convergent.

3.4 Recovery of the support in finite time

As the system evolves, nodes can cross from the active set to the inactive set andvice versa.

Even if the LCA converges to a unique fixed pointu∗, there could be infinitely many such

switches. Some mild assumptions on the fixed point guaranteethat nodes switch only a

finite number of times between the active and inactive sets. Equivalently, this result states

that the supportΓ∗ of the fixed pointa∗ is recovered in finite time. For this result to hold, the

entries ofu∗ must lie outside of a margin of width 2r around the thresholdλ. The margin
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r must be strictly positive, but can be arbitrarily small. Oneexpects this condition to hold

with near certainty for any signal that was not pathologically constructed.

Theorem 3. If the system(8) converges to a fixed point u∗ such that there exists r> 0 that

satisfies

∣∣∣u∗n
∣∣∣ ≥ λ + r, ∀n ∈ Γ∗,

∣∣∣u∗n
∣∣∣ ≤ λ − r, ∀n ∈ Γc

∗,

then the support of a∗ is recovered in finite time.

3.4.1 Simulations

To illustrate the number of switches that occur during convergence, the same matrix as

in example in Section3.2.1is reused. However, this time the sparsity levelS of the tar-

get is varied from 2 to 50 and the thresholdλ from 0.02 to 0.2. For each pair (S, λ), 10

sparse vectorsa† and measurementsy are generated as in Section3.2.1, and the number of

switches that occur during convergence is recorded. Figure10is a plot of the average num-

ber of switches for each pair. Also plotted is the best linearapproximation of the minimum

threshold value for the number of switches to be less than thesparsityS. For a threshold

λ below this line, the system makes more thanS switches during convergence. Above

the line, the system makes fewer switches. This experiment illustrates that the number of

switches is finite and on the order of the sparsity. For small values of the threshold, more

nodes are expected to become active, which corresponds to the bottom half of the figure. In

addition, this experiment reveals that for a reasonable choice of the threshold (on the order

of the noise variance), the number of switches is smaller than the number of active nodesS

in the optimal support. This situation can only happen if thenodes in the final solution enter

the active set one at a time and never leave the active set. In the optimization literature, this

property is referred to as theS -step property[23,53], and is characteristic of a solver taking

an efficient path toward the solution. Conditions that provide guarantees on the size of the
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Figure 10:Number of switches during convergence of the LCA network forvarious values
of the sparsityS and thresholdλ, averaged over 10 trials for each pair. The blue line
represents the best linear approximation to the minimum value of the threshold above which
the system makes less thanS switches during convergence.

active set during convergence are studied theoretically for theℓ1-minimization program in

Chapter4.

3.4.2 Proof of Theorem3

The proof uses the fact that, if the fixed point does not lie exactly on the transition surface

between an active and inactive set for any node, there cannotbe more switches after some

long enough period of time.

Proof. Let Γ∗ be the set of active nodes inu∗. By contradiction, assume that the sequence

of switching times{tk}k∈N is infinite. Since the LCA converges tou∗, then

u(tk) −−−−→
k→+∞

u∗.

As a consequence, forr > 0, there existsK ∈ N such that∀k ≥ K, ‖u(tk) − u∗‖2 < r. The

following shows that for allk ≥ K, the state variablesu(tk) are in the subsystemΓ∗. There

are two possible cases:
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• A noden is active inu∗. In this case,n is also active inu(tk). Indeed,∀n ∈ Γ∗,

r >
∣∣∣un(tk) − u∗n

∣∣∣ ≥
∣∣∣u∗n

∣∣∣ − |un(tk)| ≥ λ + r − |un(tk)|

⇒ |un(tk)| > λ.

Moreover, nodesn in Γ∗ are active with the correct sign inu(tk), otherwise,

r >
∣∣∣un(tk) − u∗n

∣∣∣ = |un(tk)| +
∣∣∣u∗n

∣∣∣ > λ + λ + r

⇒ 0 > λ,

which is a contradiction.

• A noden is inactive inu∗, in which case it is also inactive inu(tk). Indeed,∀n ∈ Γc
∗,

|un(tk)| − λ ≤ |un(tk)| −
∣∣∣u∗n

∣∣∣ − r ≤
∣∣∣un(tk) − u∗n

∣∣∣ − r < 0

⇒ |un(tk)| < λ.

As a consequence,Γk = Γ∗ for all k ≥ K. However,Γk andΓk+1 must be different to define

the switching timetk+1, which yields a contradiction. This contradiction proves that after a

finite number of switchesK, there cannot be any switching out of the subsystemΓ∗.

3.5 Finite length of trajectories

While the previous three sections show the potential of the LCA as an efficient solver for op-

timization problems of the form (6), the results obtained so far are insufficient to prove that

the outputs converge to a single point when solutions of (6) are not isolated. This limitation

is characteristic of convergence results obtained via a Lyapunov approach. Intuitively, if the

solution set is continuously connected, the trajectories could oscillate indefinitely or grow

unbounded (if the set of fixed points is unbounded for instance) even though they are get-

ting closer to the set of solutions. Recently, several papers presented in Section2.4.2have

used a new technique to overcome this problem. Using the Łojasiewicz inequality [47], the
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authors show that the outputs of certain networks converge to a singleton even when the

fixed points are not isolated. Unfortunately, the specifics of the LCA network do not fit any

of the previous studies directly. In particular, the LCA activation function is zero on some

interval and may be unbounded. In addition, the interconnection matrixW may be singular

(see the discussion in Section2.4.1). To utilize the Łojasiewicz inequality, the following

additional requirements on the activation function are necessary.

Assumption 2. The activation function Tλ(·) is subanalytic onR and for all open and

bounded intervalsU ⊂ R\Z where Tλ(·) is not constant, there exists a constantβU > 0

(that may depend onU) such that

0 < βU ≤ ζn, ∀un ∈ U and∀ζn ∈ ∂Tλ(un). (26)

The first condition ensures that the costC(·) and thus the objectiveV(·) are subana-

lytic, which is necessary to apply the Łojasiewicz inequality. This notion was presented in

Section2.4.1and does not require the function to be continuous. Using results on piece-

wise analytic functions [47], it is possible to check that if the activation function hasthe

form of (23) and is analytic on the intervalsU ⊂ R\Z where it is not constant, then it

is subanalytic. For instance, the soft-thresholding function in (9) is subanalytic. Condi-

tion (26) is slightly stronger than the previous condition on the subgradients (ζn > 0) in

Assumption1, and requires the existence of a strictly positive lower bound on the subgra-

dients (ζn > βU) on bounded intervals where the activation function is not constant. For the

soft-thresholding function, this condition holds withβU = 1 for all open (even unbounded)

intervalsU ⊂ R\Z. Because this requirement is only for bounded intervals, itdoes not

prevent the subgradients from tending to zero asun→∞. For instance, an activation func-

tion equal to
√

un − λ for all un ≥ λ does not satisfy condition (26) on open intervals of the

form (u0,+∞) since its derivative tends to 0 ast → ∞. However, on any bounded interval

of the form (u0, u1) ⊂ (λ,+∞), the derivative admits a strictly positive lower bound (namely

1/2
√

u1), and thus this function satisfies Assumption2.
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The main contribution of this section is to apply a variationof the Łojasiewicz inequal-

ity for nonsmooth functions [44] to show two results. First, the outputa(t) of the network

converges to a single fixed point when starting from any initial point, even if the fixed points

are not isolated;i.e., a(t) is globally asymptotically convergent.

Theorem 4. If the activation function Tλ(·) satisfies Assumptions1 and2, the output a(t)

of (8) is globally asymptotically convergent; i.e., for all u(0) ∈ RN, there exists a unique

a∗ ∈ RN such that

a(t) −−−→
t→∞

a∗.

Second, the stateu(t) also converges to a single fixed point even if the fixed pointsare

not isolated. As a consequence, the LCA network isglobally asymptotically convergent.

Theorem 5. If the activation function Tλ(·) satisfies Assumptions1 and 2, the state u(t)

of (8) is globally asymptotically convergent, i.e., for all u(0) ∈ RN, there exists a unique

u∗ ∈ RN such that

u(t) −−−→
t→∞

u∗.

These two theorems extend the analysis published in [50], where the activation function

was not allowed to be constant outside of the interval [−λ, λ].

With a little more work, it seems possible to extend the results of this section to the case

where the activation function is discontinuous. For this case, it is necessary to carefully

redefine the cost function (75) associated withTλ(·), which is done in AppendixD. The

associated cost functionC(·) is still Lipschitz continuous, and so Theorems4 and5 still

hold in that case.

3.5.1 Simulations

To illustrate the two theoretical results above, an exampleof an ℓ1-minimization problem

for which there exists a subspace of non-isolated solutionsis created. The matrixΦ has

dimensionM = 256 byN = 512 and is generated uniformly at random from a Gaussian
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distribution (then normalized to have columns with unit norm). A sparse vectora† is gener-

ated by selecting uniformly at random the location of 5 non-zero entries. Their amplitudes

are generated from a normal distribution and normalized to have norm one. One column of

Φ corresponding to one of the 5 non-zero entries ina† is replaced by a random linear com-

bination of the other 4 columns and re-normalized to 1. The measurements arey = Φa†+ǫ,

whereǫ is a Gaussian noise vector with standard deviationσ = 0.01. The threshold is set

to λ = 0.03. Since the target vectora† belongs to a set of 5 linearly dependent columns of

Φ, there exists an infinite subspace of solutions to the correspondingℓ1-minimization prob-

lem. The trajectories for 20 random starting points projected onto the space spanned by two

randomly selected nodes in the support ofa† are plotted in Figure11. Despite the solutions

being non-isolated and lying on an (unbounded and connected) linear subspace, the system

converges and reaches a single fixed point for every startingpoint in concurrence with the

theorem’s claims.

3.5.2 Proof of Theorems4

First, the Łosajiewicz inequality is used onV(·) to show that the output trajectories neces-

sarily converge to a single fixed pointa∗. The following proof extends the proof in [50]

whereZ was assumed to reduce to [−λ, λ] and Z= Γ. On the contrary, in the following,

the activation function has the form of (23) and is allowed to be constant on a locally finite

number of intervals inR.

Proof. The cost functionC(·) associated withTλ(·) is again constructed as in Lemma4.

Applying Corollary2, the corresponding objective functionV(a(·)) converges to a constant

V∗ ≥ 0 ast → ∞. In addition, by Lemma7, a(t) is bounded for allt ≥ 0. Applying the

Bolzano-Weierstrass theorem, there exists a sequence of increasing times{tk}k∈N such that

{a(tk)}k∈N converges ask→ ∞. Let a∗ be the limit point of this converging sequence. The

following shows that the outputa(t) converges toa∗ by contradiction. By the continuity of

V(a(·)) with respect to time, the limit of the sequence{V(a(tk))}k∈N satisfiesV(a∗) = V∗.
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Figure 11: Convergence of LCA trajectories obtained for 20 different initial points and
projected onto the space spanned by two randomly chosen non-zero entries in the support
of a†. The color gradient indicates the time evolution. A red cross indicates the fixed point
reached by the system.
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Sinceu(t) is bounded for allt ≥ 0 by Lemma7, and since there are only finitely many

intervals of the form [vk,wk] on any bounded set ofZ by Assumption1, u(t) visits a finite

number L of constant sets Zl for all t ≥ 0. For alll = 1, . . . , L, the functionWl(·) is defined

by

Wl(aZc
l
) = V(a), ∀a ∈ RN.

SinceV(·) is subanalytic onRN, Wl(·) is also subanalytic. For alll = 1, . . . , L, applying the

nonsmooth Łojasiewicz inequality in Theorem2.4.1to Wl(·) at a∗, there existνl ∈ [0, 1),

Cl > 0, and∆l > 0 such that

|V(a) − V∗|νl =
∣∣∣∣Wl(aZc

l
) −Wl(a

∗
Zc

l
)
∣∣∣∣
νl
≤ Cl m(∂Wl(aZc

l
)), ∀a ∈ B∆l (a

∗). (27)

Define

ν = min
l=1,...,L

νl ∈ [0, 1) ,

C = max
l=1,...,L

Cl > 0,

∆ = minl=1,...,L∆l > 0.

(28)

Fix aδ ∈ (0,∆]. Since{a(tk)}k∈N converges toa∗, there existsK ∈ N such that

‖a(tk) − a∗‖2 <
δ

4
, ∀k ≥ K. (29)

SinceV(a(·)) is decreasing and converges toV∗, there existT1,T2 ≥ 0 such that

0 ≤ V(a(t)) − V∗ < 1, ∀t ≥ T1, (30)

and

0 ≤ V(a(t)) − V∗ ≤
[
βδ (1− ν)

4Cα

] 1
1−ν

, ∀t ≥ T2, (31)

whereC andν are defined in (28) andα, β are defined in Corollary3.

LettingT = max(T1,T2), there exists a time index

p = min {k ∈ N s.t. k ≥ K andtk ≥ T} .
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Time tp exists, since the sequence of times{tk}k∈N is increasing and goes to infinity. In

addition,tp is such that it satisfies (29), (30) and (31). Finally, define the following time:

tq = sup
{
t ≥ tp s.t. ∀s ∈

[
tp, t

)
‖a(s) − a∗‖2 < δ

}
.

If tq = +∞, then for all timet ≥ tp, ‖a(t) − a∗‖2 ≤ δ. Sinceδ can be chosen arbitrarily

small, this inequality proves that the outputa(t) converges to the single fixed pointa∗.

By contradiction, assume thattq < +∞. This condition implies that for all times ∈
[
tp, tq

)
, the output trajectory remains within a ball of radiusδ around the fixed point,i.e.,

‖a(s) − a∗‖2 < δ, but leaves this ball at timetq, i.e.,
∥∥∥a(tq) − a∗

∥∥∥
2
= δ. According to the

inequality involvingβ in Corollary3 and using the chain rule (14), the following holds for

a.a.t ≥ 0, for all n < Z and anyζn ∈ ∂Tλ(un(t)):

‖ȧn(t)‖2 = ‖ζnu̇n(t)‖2 ≥ β ‖u̇n(t)‖2 .

In addition, to compute∂Wl(aZc
l
) more easily, observe that

Wl(aZc
l
) = V(a) = V(aZc

l
+ zZl ), ∀a ∈ RN,

wherezZl is the value taken on by the constant outputsaZl (see the form of the activation

function in (23)). As a consequence, defining the functionHl(·) : RN → RN by

Hl(a) = aZc
l
+ zZl , ∀a ∈ RN,

implies thatWl(aZc
l
) = (V ◦ Hl) (a). Applying the chain rule (12), it is easy to check that

∂Wl(aZc
l
) := ∂aZc

l
Wl(aZc

l
) = ΠZc

l
∂Wl(aZc

l
) = ΠZc

l
∂V(a),

whereΠZc(·) is the projection onto the set of indices Zc. Finally, since the LCA satisfies the

differential inclusion−u̇(t) ∈ ∂V(a(t)) by Lemma1, then

−u̇Zc
l
(t) ∈ ΠZc

l
∂V(a(t)) = ∂Wl(aZc

l
(t)).
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Putting everything together,

‖ȧ(t)‖2 = ‖ȧZc(t)‖2

≥ β ‖u̇Zc(t)‖2

≥ β
∥∥∥u̇Zc

l
(t)

∥∥∥
2

≥ β m(∂Wl(aZc
l
)).

for somel between 0 andL.

Furthermore, combining (74) and (77) implies that for a.a.t ≥ 0 and anyζn ∈ ∂Tλ(un(t))

V̇(a(t)) = −
∑

n∈Zc

1
ζn
|ȧn(t)|2 ≤ −

1
α
‖ȧ(t)‖22 .

This inequality shows that

V̇(a(t)) ≤ −1
α
‖ȧ(t)‖22 ≤ −

β

α
‖ȧ(t)‖2 m

(
∂Wl(aZc

l
)
)
.

By definition oftp andtq, and sinceδ < ∆ < ∆l, the output satisfiesa(t) ∈ Bδ(a∗) ⊂ B∆l(a
∗)

for all t ∈
(
tp, tq

)
, and so (27) yields

V̇(a(t)) ≤ −β
α
‖ȧ(t)‖2 m

(
∂Wl(aZc

l
)
)

≤ − β
αCl
‖ȧ(t)‖2 (V(a(t)) − V∗)νl

≤ − β
αC
‖ȧ(t)‖2 (V(a(t)) − V∗)ν ,

where the last inequality comes from the definition ofC andν in (28) and the fact that

0 < V(a(t)) − V∗ < 1, for all t ≥ tp, by (30). Rearranging the terms yields

‖ȧ(t)‖2 ≤
αC
β

−V̇(a(t))
(V(a(t)) − V∗)ν

.
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This result yields a bound on the following integral:

∥∥∥a(tq) − a(tp)
∥∥∥

2
=

∥∥∥∥∥∥

∫ tq

tp

ȧ(s)ds

∥∥∥∥∥∥
2

≤
∫ tq

tp

‖ȧ(s)‖2 ds

≤ −αC
β

∫ tq

tp

V̇(a(s))
(V(a(s)) − V∗)ν

ds

= −αC
β

∫ V(a(tq))

V(a(tp))

dV
(V − V∗)ν

=
αC

β (1− ν)

[(
V(a(tp)) − V∗

)1−ν
−

(
V(a(tq)) − V∗

)1−ν]

≤ αC
β (1− ν)

(
V(a(tp)) − V∗

)1−ν

≤ δ
4
. (from (31))

Finally, the derivation above shows that

δ =
∥∥∥a(tq) − a∗

∥∥∥
2
≤

∥∥∥a(tq) − a(tp)
∥∥∥

2
+

∥∥∥a(tp) − a∗
∥∥∥

2

≤ δ
4
+
δ

4

=
δ

2
< δ.

This is a contradiction, which proves thattq = +∞. Consequently, it must hold that

‖a(t) − a∗‖2 ≤ δ for all t ≥ tp. Sinceδ can be chosen arbitrarily small, this derivation

shows that lim
t→+∞

a(t) = a∗, and thus the output converges.

3.5.3 Proof of Theorem5

The following proof shows that the state variables also converge to a single fixed pointu∗.

Proof. By Theorem4, the output converges to some fixed pointa∗ ∈ RN. The dynamical

equation (8) can be written in terms of the distanceã(t) = a(t)−a∗ of the output to the fixed

point:

u̇(t) = −u(t) −ΦTΦa∗ + ΦTy+ a∗ −ΦTΦã(t) + ã(t).

50



Definingu∗ = −ΦTΦa∗ + ΦTy+ a∗ yields the following equation:

u̇(t) = −u(t) + u∗ −
(
ΦTΦ − I

)
ã(t).

The solutions of this differential equation have a known form (see AppendixB) ∀t ≥ 0:

u(t) = u∗ + e−t (u(0)− u∗) + e−t

∫ t

0
es

(
ΦTΦ − I

)
ã(s)ds.

The terme−t (u(0)− u∗) obviously converges to zero ast goes to infinity. To prove thatu(t)

converges tou∗, it remains to show that the last term in the right-hand side also converges

to zero. Denoting this integral term byh(t) and analyzing its norm yields

‖h(t)‖2 =
∥∥∥∥∥∥e
−t

∫ t

0
es

(
ΦTΦ − I

)
ã(s)ds

∥∥∥∥∥∥
2

= e−t

∫ t

0
es

∥∥∥∥
(
ΦTΦ − I

)
ã(s)

∥∥∥∥
2
ds

≤ e−tσ1

∫ t

0
es ‖̃a(s)‖2 ds,

whereσ1 ≥ 0 is the largest eigenvalue of the interconnection matrixW = ΦΦT − I . To

show convergence to zero, the integral is split into two parts. Sincea(t) converges toa∗,

ã(t) converges to 0 ast → +∞. Thus, for anỹǫ > 0 there exists a timetc ≥ 0 such that

‖̃a(t)‖2 ≤ ǫ̃, ∀t ≥ tc. Moreover, since‖̃a(t)‖2 is continuous and goes to zero ast goes to

infinity, it admits a maximumµ, ∀t ∈ R. These two bounds yield, for allt ≥ 2tc,

‖h(t)‖2 ≤ e−t
∥∥∥ΦTΦ − I

∥∥∥
2
µ

∫ tc

0
esds + e−t

∥∥∥ΦTΦ − I
∥∥∥

2
ǫ̃

∫ t

tc

esds

≤
∥∥∥ΦTΦ − I

∥∥∥
2
µ
[
e−t+tc − e−t] +

∥∥∥ΦTΦ − I
∥∥∥

2
ǫ̃
[
1− e−t+tc

]

≤
∥∥∥ΦTΦ − I

∥∥∥
2
µ
[
e−t/2 − e−t

]
+

∥∥∥ΦTΦ − I
∥∥∥

2
ǫ̃.

Since the left term converges to 0 andǫ̃ can be chosen to be arbitrarily small, this compu-

tation shows that the trajectoryu(t) converges to the trajectoryu∗ + e−t (u(0)− u∗) ast goes

to infinity, and thusu(t) −−−−→
t→+∞

u∗.
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3.6 Exponential rate of convergence

Convergence to the correct solution for any starting state is a fundamental property for

any system intended to solve an optimization program. Even more interesting for practical

applications is knowing how fast the trajectories convergeto the solution. In this section,

the LCA network is shown to convergeexponentially fastto a unique fixed pointu∗ under

some condition on the matrixΦ. Furthermore, an analytic bound for the convergence speed

is derived.1 Such a bound is especially important for implementations inreal-world appli-

cations, which must guarantee solution times. The results obtained in this section extend

further those published in [49], where the activation function was assumed to be strictly

increasing and differentiable outside of the interval [−λ, λ].

To state the theorem regarding the convergence speed of the LCA, there must exist a

bound on the eigenvalues of the matrixΦTΦ when it is applied to certain vectors.

Assumption 3. There exists a constant0 < d < 1 such that

(1− d) ‖̃a(t)‖22 ≤ ‖Φã(t)‖22 ≤ (1+ d) ‖̃a(t)‖22 , (32)

for all t ≥ 0 and all output trajectories̃a(t) = a(t) − a∗.

The constantd depends on the singular values of the matrixΦΓ̃(t) and, as a consequence,

on the sequence of active sets{Γk}k∈N visited by the system. This constant may not be well

defined for every matrixΦ or inputy. However, in many interesting cases in CS, the con-

stantd is close to 0 and the dictionary elements are almost orthogonal for any small enough

active set [54]. If condition (32) is satisfied, the LCA can be shown to converge exponen-

tially fast to a unique fixed point. The expression for the convergence speed depends ond

and on the boundα on the subgradients of the activation function;i.e., α is such that for all

un ∈ R and for allζn ∈ ∂Tλ(un)

|ζn| ≤ α.
1The time constantτ is reintroduced in this discussion to make its effect on the convergence speed explicit.
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The existence of the constantα is guaranteed by Lemma3. In the following theorem, the

two constantsd andα are directly related to the convergence speed of the network.

Theorem 6. Assume that the activation function Tλ(·) satisfies Assumption1 and that the

constant d in Assumption3 is well-defined. If the constantsα and d, defined in(74) and

(32), respectively, satisfy

αd < 1, (33)

then the LCA network in(8) is globally exponentially convergent to a unique fixed point

with convergence speed

c =
1− αd
τ
.

Explicitly, for all u(0) ∈ RN, there exist a unique u∗ ∈ RN and a constantκ ≥ 0 (that may

depend on u(0)) such that

‖u(t) − u∗‖2 ≤ κe−(1− αd)t/τ, ∀t ≥ 0. (34)

Condition (33) is necessary to ensure that the convergence speed is positive and mean-

ingful. The time constantτ of the physical solver implementing the LCA neural network

appears in the expression for the speed of convergence. The smaller the time constantτ,

the faster the system converges. In general, analog systemshave smaller time constants

than their digital counterparts and scale better with the problem size [1]. In the case of

ℓ1-minimization, the bound on the subgradients of the soft-thresholding function isα = 1,

and condition (33) reduces tod < 1. Assuming that the active setΓ(t) has only a small

number of active components for all timet ≥ 0, Assumption3 with d < 1 corresponds

exactly to the RIP condition forΦ. Unfortunately, the sequence of active sets visited by

the network is signal dependent and cannot be predicted in advance. Nevertheless, a set of

conditions for the active set to remain bounded throughout convergence is the object of the

next chapter.
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3.6.1 Simulations

To illustrate the result on the convergence rate, the example usingℓ1-minimization (for

which α = 1) for sparse recovery in Section3.2.1 is again used. The evolution of the

normalizedℓ2-distance from the LCA trajectories to the fixed point

‖u(t) − u∗‖2
‖u∗‖2

is recorded. This quantity is equal to 1 fort = 0 since the system starts at rest. To demon-

strate the validity of the theoretical expression (34) for the decay, it is necessary to estimate

what the constantd in (32) is. The constantd must be an upper bound for the eigenvalues

of the matrixΦT
Γ̃
Φ
Γ̃
, wherẽΓ = Γ ∪ Γ∗. As a consequence, the largest supportΓmax reached

by the network during convergence is also recorded. Two estimates ford are tested:d∗ cor-

responds the largest eigenvalue of the matrixΦT
Γ∗
Φ
Γ∗
− I , anddmax corresponds to the largest

eigenvalue of the matrixΦT
Γmax
Φ
Γmax
− I . Since there may be many more nodes entering the

active set during convergence than in the final support,dmax is expected to be larger than

d∗, and the corresponding bound on the decay to be less tight. This hypothesis matches

what is observed in Figure12. The two colored dashed lines correspond to the theoretical

decaye−(1−d)t/τ for the two estimated values ofd. As expected, the theoretical decay com-

puted withdmax is an upper bound for the convergence speed. However, this estimate seems

too conservative, and the bound computed withd∗ is a better estimate for the experimental

decay. This simulation illustrates that the theoretical exponential convergence appears to

capture the essential system behavior.

3.6.2 Proof of Theorem6

Below is a proof of the exponential convergence of the LCA trajectories.

Proof. The expression of the convergence speed is established via the study of the follow-

ing energy function:

E(t) =
1
2
‖̃u(t)‖22 , (35)
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Figure 12:Convergence of the experimental normalizedℓ2-distance from the state variables
to the fixed point. Also plotted is the theoretical decay in (34) for two estimated values of
the constantd: d∗ is computed by using the final solution support, anddmax is computed on
the largest active set visited.

where the variables̃uand̃a measure the distance of the states and outputs from any arbitrary

fixed pointu∗ anda∗ = Tλ(u∗) of (8):

ũn(t) = un(t) − u∗n,

ãn(t) = an(t) − a∗n = Tλ(̃un(t) + u∗n) − Tλ(u
∗
n).

(36)

The set̃Γ denotes the support of̃a and is equal tõΓ = Γ ∪ Γ∗, whereΓ∗ is the support of

the fixed pointa∗. Like Γ, the set̃Γ depends on time, but the time index is omitted from

the notation to increase readability. To show that the function (35) converges exponentially

fast to zero, it is first analyzed on the set of indicesΓ̃.

Using the fact thatu∗ is a fixed point of (8) (i.e., u̇∗(t) = 0), rewriting the dynamics in

terms of the new variables in (36) yields

τ ˙̃u(t) = −ũ(t) −
(
ΦTΦ − I

)
ã(t). (37)

First, the partial energy functionEΓ̃(t) =
1
2

∥∥∥̃ũΓ(t)
∥∥∥2

2
is shown to converge exponentially

fast. From this result, the behavior of the outputs can be deduced. Then, the result on the

output is used to prove the convergence of the entire state vector to the fixed pointu∗.
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Using the chain rule, the time derivative ofEΓ̃(t) along the network trajectory is for a.a.

t ≥ 0

τĖΓ̃(t) = τ
˙̃u

T
Γ̃ (t)̃ũΓ(t)

= −ũT
Γ̃
(t)

(
ũ̃
Γ
(t) +

(
ΦT
Γ̃
Φ
Γ̃
− I
Γ̃

)
ã̃
Γ
(t)

)

= −
∥∥∥̃ũΓ(t)

∥∥∥2

2
− ũT

Γ̃
(t)

(
ΦT
Γ̃
Φ
Γ̃
− IΓ̃

)
ã̃Γ(t).

Assumption3 implies that the eigenvalues ofΦT
Γ̃
Φ
Γ̃

lie between (1− d) and (1+ d) and so:

∥∥∥∥
(
ΦT
Γ̃
Φ
Γ̃
− IΓ̃

)
ã̃Γ

∥∥∥∥
2
≤

∥∥∥∥ΦT
Γ̃
Φ
Γ̃
− IΓ̃

∥∥∥∥
∥∥∥̃ãΓ

∥∥∥
2

≤ max
{
(1+ d) − 1, 1− (1− d)

} ∥∥∥̃ãΓ
∥∥∥

2

= d
∥∥∥̃ã
Γ

∥∥∥
2
.

Finally, property (iii ) of Lemma5 states that for any setT , ‖̃aT ‖22 ≤ α2 ‖̃uT ‖22. Using the

Cauchy-Schwartz inequality and putting everything together,

∣∣∣∣̃uT
Γ̃

(
ΦT
Γ̃
Φ
Γ̃
− IΓ̃

)
ã̃Γ

∣∣∣∣ ≤
∥∥∥̃ũΓ

∥∥∥
2

∥∥∥∥
(
ΦT
Γ̃
Φ
Γ̃
− IΓ̃

)
ã̃Γ

∥∥∥∥
2

≤
∥∥∥̃ũΓ

∥∥∥
2
d
∥∥∥̃ãΓ

∥∥∥
2

≤ αd
∥∥∥ũ̃Γ

∥∥∥2

2
.

As a consequence, the time derivative of the partial energy function satisfies

τĖΓ̃(t) ≤ −
∥∥∥ũ̃Γ(t)

∥∥∥2

2
+ αd

∥∥∥̃ũΓ(t)
∥∥∥2

2

≤ −2(1− αd) EΓ̃(t).

Using Gronwall’s inequality in AppendixB on the interval [tk, tk+1] where Γ̃ is constant

yields

EΓ̃(t) =
1
2

∥∥∥̃ũΓ(t)
∥∥∥2

2
≤ 1

2

∥∥∥̃ũΓ(tk)
∥∥∥2

2
e−2(1−αd)(t−tk)/τ.

Since‖̃a(t)‖2 ≤ α
∥∥∥̃ũΓ(t)

∥∥∥
2
, ∀t ∈ [tk, tk+1]:

‖̃a(t)‖2 ≤ α
∥∥∥̃ũΓ(tk)

∥∥∥
2
e−(1−αd)(t−tk)/τ. (38)
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Using this result on the output, the stateu(t) can now be shown to converge exponen-

tially fast. Using the equality form of Gronwall’s Lemma in AppendixB, the solution to

(37) can be expressed as follows∀t ∈ [tk, tk+1]:

ũ(t) = e−(t−tk)/τ ũ(tk) + e−(t−tk)/τ

∫ t

tk

e(ν−tk)/τ
(
I −ΦTΦ

)
ã(ν)dν.

Denoting byh(t) the second term in the right-hand side, and plugging in (38), the norm of

h(t) can be bounded by

‖h(t)‖2 ≤ e−(t−tk)/τ

∫ t

tk

e(ν−tk)/τ
∥∥∥∥
(
ΦTΦ − I

)
ã(ν)

∥∥∥∥
2
dν

≤ e−(t−tk)/τ

∫ t

tk

∥∥∥ΦTΦ − I
∥∥∥

2︸        ︷︷        ︸
=C1

e(ν−tk)/τ
∥∥∥̃ã
Γ
(ν)

∥∥∥
2
dν

≤ e−(t−tk)/τ

∫ t

tk

C1α
∥∥∥̃ũΓ(tk)

∥∥∥
2
eαd(ν−tk)/τdν

=
C1τ

d

∥∥∥̃ũΓ(tk)
∥∥∥

2
e−(t−tk)/τ

[
eαd(t−tk)/τ − 1

]

≤ C2

∥∥∥ũ̃
Γ
(tk)

∥∥∥
2

e−(1−αd)(t−tk)/τ

≤ C2 ‖̃u(tk)‖2 e−(1−αd)(t−tk)/τ,

whereC2 =
(∥∥∥ΦTΦ − I

∥∥∥
2
τ/d

)
. Plugging this bound back in the expression forũ(t) yields

‖̃u(t)‖2 =
∥∥∥e−(t−tk)/τũ(tk) + h(t)

∥∥∥
2

≤ ‖̃u(tk)‖2 e−(t−tk)/τ + ‖h(t)‖2

≤ ‖̃u(tk)‖2 e−(t−tk)/τ +C2 ‖̃u(tk)‖2 e−(1−αd)(t−tk)/τ

≤ (1+C2) ‖̃u(tk)‖2 e−(1−αd)(t−tk)/τ

= C3 ‖̃u(tk)‖2 e−(1−αd)(t−tk)/τ,

whereC3 = 1+C2. Since‖̃u(t)‖2 is continuous for all timet, it is easy to show (by induction

on tk) that∀t ≥ 0

‖̃u(t)‖2 ≤ e−(1−αd)t/τC3 ‖̃u(0)‖2 . (39)

This last inequality shows that the state variable converges exponentially fast to a unique

fixed pointu∗ with convergence speed (1− αd)/τ.
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CHAPTER IV

PROPERTIES FOR CS RECOVERY

The exponential rate of convergence of the LCA in Theorem6 is difficult to interpret in

general because it requires the existence and an estimate for the constantd in (32). This

constant depends on the singular values of submatrices ofΦ and on the specific path taken

by the network trajectories, which is signal-dependent. Inthe context of CS recovery, how-

ever, the well-known RIP in (2) guarantees the existence of such a constant for any vector

that is sufficiently sparse. The objective of this chapter is to make use of the RIP to pro-

vide convergence guarantees in the special case where the LCA solves theℓ1-minimization

problem (5) to recover a sparse signal. In this case, the constantα in (74) is equal to 1, and

the constantd can be estimated. The contributions of this chapter are

• two theorems that guarantee that the size of the active set remains bounded through-

out convergence using the RIP,

• application of the results to the special case of CS random matrices and comparisons

to well-known digital solvers in terms of number of measurements,

• to obtain an estimate for the convergence speed that dependsonly on the problem

parameters and is signal-independent, using known estimates for the RIP constant,

• some intuition on the advantage of using a decreasing threshold when solvingℓ1-

minimization.

Moreover, the effect of the noise vectorǫ appears clearly in the results, making the

noiseless setting a special case of this study. The results in this chapter were published

in [55].
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4.1 Bounding the LCA active set

In this section, two theorems are presented that give guarantees on the size of the active

set throughout convergence under different conditions on the problem parameters. The

following quantities appear in both theorems and their proofs:

b = bδ = (1+ δ)(1− δ)−2,

Bδ(p) = b
(∥∥∥a†

∥∥∥
2
+
√

1− δ ‖ǫ‖2 + λ
√

p
)
.

Whenδ is an RIP constant, then 0< δ < 1, and it follows thatb > 1.

4.1.1 Bounding the active set by the optimal support

The first result contains a set of conditions for the active set Γ to be a subset of the optimal

supportΓ† throughout convergence. This result ensures that the active set never contains

more than theS optimal nodes, and thus is always bounded byS in size.

Theorem 7. Assume that the dictionaryΦ satisfies the RIP with parameters(S + 1, δ)

and that the supportΓ(0) of the initial output a(0) is a subset of the optimal support (i.e.,

Γ(0) ⊂ Γ†). If the following two conditions between the original signal a†, the thresholdλ,

the noiseǫ, the sparsity S and the RIP constantδ are satisfied:

∥∥∥a† − a(0)
∥∥∥

2
≤ Bδ(S), (40)

(
1− bδ

√
S
)
λ ≥ bδ

(∥∥∥a†
∥∥∥

2
+
√

1− δ ‖ǫ‖2
)
+

∥∥∥∥ΦT
Γc
†
ǫ
∥∥∥∥
∞
, (41)

then nodes inΓc
† never cross threshold (i.e.,Γ(t) ⊂ Γ†, ∀t ≥ 0).

This first result provides guarantees similar to theS-step property in that only theS

nodes that belong to the optimal supportΓ† become active. In addition, it is shown in

Section4.2 that the requirements on the RIP constant are similar to those for theS-step

property to hold for several digital solvers.

4.1.2 Bounding the size of the active set by a constant

Similar to the analysis of some digital solvers discussed inSection2.1, weaker require-

ments on the RIP constant still yield interesting convergence results. In this section, the
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outcome of Theorem7 is relaxed in that more than theS optimal nodes may become active.

The maximum number of active nodes is denoted byq, whereq may be larger thanS but

remains small. In contrast to the analysis for digital solvers, these conditions do not result

in a bound on the number of “steps” or iterations to achieve a certain error, but bounding

the size of the active set yields an explicit estimate for theexponential convergence speed

of the network.

Theorem 8. Assume that the dictionaryΦ satisfies the RIP with parameters
(
S + q, δ̄

)
for

some q≥ 0. If the original signal a†, the initial state u(0), the thresholdλ, the noiseǫ, the

parameter q and the RIP constantδ̄ satisfy

‖u(0)‖2 ≤ λ
√

q, (42)

λ ≥ 1+ δ̄

1− 3δ̄

1
√

q

(∥∥∥a†
∥∥∥

2
+

√
1− δ̄ ‖ǫ‖2

)
, (43)

then the active setΓ never contains more than q nodes (i.e.,|Γ(t)| ≤ q, ∀t ≥ 0).

The simulations in Section4.5 show that useful values forq are typically small mul-

tiples ofS. In the next section, the implications of the two theorems onthe RIP constant

are studied. In concurrence with results for digital solvers presented in Section2.1, the

requirements of Theorem8 on the RIP constant are weaker than for Theorem7.

4.1.3 Remarks and consequences on the RIP constant

Conditions (40), (41), (42) and (43) in Theorems7 and8 involve complex relationships

between the various problem parameters. Below are a few observations and an analysis of

their implication on the RIP constant.

First, condition (40) of Theorem7 constrains the starting point to be reasonably close

to the optimuma†. When the system starts at rest,u(0) = 0 and condition (40) becomes

∥∥∥a†
∥∥∥

2
≤ b

(∥∥∥a†
∥∥∥

2
+
√

1− δ ‖ǫ‖2 + λ
√

S
)
,

which always holds sinceb ≥ 1. Similarly, if the system starts at rest, condition (42)
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obviously holds. Thus, noa priori information on the signal is necessary for the two

theorems to apply.

To analyze the requirements of the theorems on the RIP more easily, the target signal is

assumed to have unit norm (i.e.,
∥∥∥a†

∥∥∥
2
= 1) without loss of generality. For now, it is also

assumed that there is no noise (i.e., ǫ = 0); the noise level is addressed in Section4.2. It is

also instructive to look at the scenario where all of the non-zero entries ina† have the same

magnitude. Indeed, from (85), the solutiona∗ is a thresholded version ofa†:

a∗Γ∗ = a†
Γ∗
− λ

(
ΦT
Γ∗ΦΓ∗

)−1
zΓ∗ .

If some nodes inΓ† have small amplitudes, they do not contribute much to the signal

energy and setting them to zero ina∗ may be acceptable. When the nodes ina† have the

same magnitude, however, they contribute equally to the target signal’s energy and it is

important to recover them all. If the threshold is too large,the outputs of the LCA simply

remain zero. When
∥∥∥a†

∥∥∥
2
= 1, each non-zero element ofa† is equal to±1/

√
S, thus the

threshold must be smaller than 1/
√

S. On the other hand, conditions (41) and (43) of the

two theorems require the threshold to be sufficiently large. Takingλ = r/
√

S, for some

0 < r < 1, and rearranging the terms in (41) in Theorem7 yields the following condition

on the RIP constant:

δ ≤ r

(1+ r) b
√

S
. (44)

Consequently, for the active set to remain a subset of the optimal support, the RIP constant

needs to scale with 1/
√

S.

Sinceq is typically a small multiple ofS, taking q = βS in Theorem8 for a small

constantβ, inequality (43) becomes

δ̄ ≤ r
√
β − 1

3r
√
β + 1

. (45)

Thus, for the active set to contain less thanq nodes, the RIP constant needs only to be

bounded by a small constant that does not depend onS anymore, which is more favorable

than condition (44) as will be discussed in the next section.
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4.2 Application to Compressed Sensing matrices

Theorems7 and8 are deterministic. However, when the matrixΦ is a classic CS random

matrix, the results can be interpreted using a known estimate for the RIP constant. For

instance, assumingΦ is a subgaussian random matrix as in Section1.1.3, a good estimate

for the RIP constant is given by (3):

δ ∼
√

S log(N/S)
M

.

4.2.1 Theorem7 with CS matrices

The implications of Theorem7 on the problem parameters, specifically the number of

measurements and noise level, are examined first.

4.2.1.1 Measurements

Plugging the estimate (3) for δ in (44) yields

√
M & S

√
log(N/S)

(1+ r)b
r
,

where the notation& means greater up to a constant factor. WhenS ≪ M, δ is small and

b ∼ 1, so the term (1+ r)b/r is a small constant. As a reference:

• if r = 0.95 andδ ≤ 0.5, thenb ≤ 6 and
(1+ r)b

r
≤ 13,

• if r = 0.95 andδ ≤ 0.1, thenb ≤ 1.358 and
(1+ r)b

r
≤ 3.

This estimate shows that the numberM of measurements for a subgaussian random matrix

Φ must be on the order ofS2 log (N/S).

This result strongly resembles the condition for the Homotopy algorithm to satisfy the

S-step property [23], which requires thatS ≤
(
1+ µ−1

)
/2, whereµ is the mutual coher-

ence [56] and leads to the same number of measurements. ForM ∼ O
(
S2 log(N/S)

)
, the

Homotopy algorithm on the parameterλ behaves like a pursuit algorithm, where nodes are

added to or removed from the active set and the solution evolves in a piecewise-linear man-

ner. Likewise, the LCA solution evolves according to a continuous switched linear system
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of ODE and nodes enter or leave the active set until the solution is reached. Both results

ensure that only nodes present in the optimal support enter the active set. The OMP solver,

which is a greedy algorithm, was also shown to recover anS-sparse signal in exactlyS

steps provided thatΦ satisfies the RIP withδS+1 ≤ 1/
(
3
√

S
)
. This bound is similar to that

of (44) obtained for the LCA. Likewise, this result for OMP leads toO
(
S2 log(N/S)

)
mea-

surements [26]. Consequently, despite the continuous-time nature of theLCA trajectories,

bounds on the RIP constant comparable to those obtained for the analysis of digital solvers

emerge from this study.

4.2.1.2 Noise level

Whenǫ is a Gaussian white noise vector whose entries have varianceσ2, the terms due

to the noise in (41) become‖ǫ‖2 ∼
√

Mσ and
∥∥∥ΦTǫ

∥∥∥∞ ∼
√

logNσ with high probability.

Taking these terms into account in (41) does not change the bound onδ in (44) by more

than a constant if the following is true:

bδ
√

1− δ ‖ǫ‖2 +
∥∥∥∥ΦT
Γc
†
ǫ
∥∥∥∥

2
= κbδ

for some constantκ > 0. Using the estimate (3), along withS ≪ N, M ∼ S2 log(N/S),

b ∼ 1, b
√

1− δ ∼ 1, and reorganizing the terms yield a noise variance of

σ ∼ bδκ

bδ
√

1− δ
√

M +
√

logN

∼
κ

√
S log(N/S)

M√
S log(N/S) +

√
logN

∼ κ

1+
√

log N
S log(N/S)

1
√

M

∼ κ

1+ 1√
S

1
√

M
.

Thus, the total energy allowed in the noise vector is on the order of‖ǫ‖2 ∼
(
1+ 1/

√
S
)−1

,

which is approximately on the same order as the energy of the signal.

This result can be improved upon. Theorem7 is stated for any fixed noise vectorǫ.

In the case where the noiseǫ is assumed to be a Gaussian random vector, the proof of
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Lemma11 in AppendixB hints that the bound used for
∥∥∥a∞ − a†

∥∥∥
2

can be improved. An

essential step in the proof is to bound
∥∥∥(ΦT

Γ
Φ
Γ
)−1ΦT

Γ
ǫ
∥∥∥

2
. It is a simple calculation to show

that

E

{∥∥∥(ΦT
ΓΦΓ)

−1ΦT
Γǫ

∥∥∥2

2

}
= σ2 Trace

(
(ΦT
ΓΦΓ)

−1
)
≤ Sσ2

1− δ.

Moreover, standard tail inequalities [5] show that this random variable concentrates around

its mean. Thus, when the noise is Gaussian,
√

1− δ ‖ǫ‖2 can be replaced by
√

Sσ with

high probability in (41). From the equations in the previous paragraph, the noise variance

has the form

σ ∼ bδκ

bδ
√

S +
√

logN
∼ κ

1+
√

logN

1
√

S
.

The total energy allowed in the noise vector becomes‖ǫ‖2 ∼
√

M/S
/(

1+
√

logN
)
, which

increases with the number of measurementsM.

4.2.2 Theorem8 with CS matrices

The implications of the second theorem on the problem parameters are now studied. The

following shows that the number of necessary measurements is smaller than for Theorem7

and again matches conclusions drawn for digital solvers.

4.2.2.1 Measurements

For subgaussian random matrices, using the estimate (3) for the RIP constant̄δ of order

S + q = (1+ β)S in (45) yields

√
M &

√

(1+ β)S log

(
N

(1+ β)S

)
3r
√
β + 1

r
√
β − 1

.

If β is a small constant, the number of measurements is on the order of O (
S log (N/S)

)
.

For reference, ifβ = 30 andr = 0.95, then (45) yieldsδ31S ≤ 0.25. In comparison, OMP

has been shown to converge forδ31S ≤ 1/3 [25]. The result obtained for ROMP in [57]

has a slightly worse form since it depends on the sparsityS with δ8S ≤ 0.01/
√

logS. Fi-

nally, CoSaMP was shown to converge forδ4S ≤ 0.1 in [28]. For all of these algorithms,

the reported RIP constants lead to the same order of measurementsO (
S log(N/S)

)
. This
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observation brings to light another interesting parallel between the LCA and its digital

equivalents. Letting more than theS optimal nodes enter the active set still yields good

convergence results, while giving better scaling on the RIPconstant and number of mea-

surements. Contrary to the digital solvers, however, the conditions are only necessary to

guarantee a bound on the exponential speed of convergence ofthe LCA, and not to prove

convergence. Theorems2 and3 guarantee that the LCA converges to the solution of (5)

without any requirement on the RIP constant. In addition, the error achieved by the LCA

is linked to the performance guarantees associated withℓ1-minimization, as discussed in

Section1.1.5.

4.2.2.2 Noise level

The influence of the noise appears clearly in the results. Thenoise vector in (43) does not

affect the bound on̄δ in (45) by more than a constant if

√
1− δ̄ ‖ǫ‖2 = κ̄

for some ¯κ > 0. Assuming again thatǫ is a Gaussian white noise vector, whose entries have

varianceσ2, and that
∥∥∥a†

∥∥∥
2
= 1 yields a noise variance of

σ ∼ κ̄
√

1− δ̄
1
√

M
∼ 1
√

M
.

As a consequence, the total energy‖ǫ‖2 allowed in the noise vector isO (1), which is the

same order as the energy of the signal. Here again, assuming that the noise is Gaussian

in the proof of the theorem itself leads to a sharper bound. Using the same concentration

argument as before, the term
√

1− δ ‖ǫ‖2 can be replaced by
√

qσ with high probability in

(43). This analysis yields a new noise variance of the formσ ∼ κ/√q and the energy in the

noise vector becomes‖ǫ‖2 ∼
√

M/q. This result again shows that the noise variance can

increase as the number of measurements increases without changing the condition on the

RIP constant too much.
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4.3 Decreasing threshold

An interesting observation emerges from the analysis in this chapter. The proofs of The-

orems7 and8 in Section4.6 hint that the results possibly still hold when the thresholdis

not constant but instead decreases at an exponential rate. In the proof of Theorem7, the

lower bound on the thresholdλ depends on the quantity
∥∥∥a(t) − a†

∥∥∥
2
, while it depends on

‖u(t) − u∗‖2 in the proof of Theorem8. If the network is exponentially convergent, both

quantities should decrease exponentially fast over time. Thus, the thresholdλ could be de-

creased according to an exponential decay while still satisfying the inequalities in the two

theorems. Decreasing the threshold would allow the system to potentially recover more

nodes froma† while keeping the size of the active set bounded and yieldingfaster conver-

gence. This hypothesis is confirmed in simulation (see Section 4.5). Interestingly, similar

observations have been made for digital solvers (e.g. in [58], the threshold is decreased

according to a geometric progression to speed up recovery).However, there has been no

analytic justification for the observed increase in speed orfor how to choose the decay rate.

While our analysis suggests the potential advantage of decreasing the threshold at an expo-

nential rate, the additional dynamics on the threshold would drastically change the nature

of the analysis, starting with the proof of convergence in Chapter3, where the threshold is

considered to be constant throughout. This open problem is potentially an object of future

research.

4.4 Estimate of the convergence speed

In Theorem7, the active set visited during convergence was shown to never contain more

than theS optimal nodes under some strong condition on the RIP. This result was general-

ized in Theorem8 to allowing no more thanq nodes to become active, whereq is typically

a small multiple ofS. With such guarantees, Assumption3 closely resembles the RIP. In-

deed, if the theorems hold, the active set never contains more thatq nodes and the matrixΦ
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satisfies the RIP with parameters (δ,S + q), then the constantd exists and can be approxi-

mated by the RIP constantδ. In practice, it is reasonable to expect thatS of theq nodes that

do become active belong to the optimal supportΓ†. As a consequence, the RIP ofΦ can be

relaxed to only hold with parameters (δ, q) in practice. For instance, whenΦ is a subgaus-

sian random matrix,d may be approximated by the classic estimate
√

S log(N/S)/M as

in (3). The convergence in (34) being exponential (specifically theℓ2-distance to the fixed

pointu∗ is bounded bye−(1−d)t/τ), it is clear that a small multiple ofτ/(1− d) will make the

ℓ2-distance infinitesimally close to 0. As a consequence, the convergence time of the LCA

is on the order of

O


τ

1−
√

S log(N/S)/M

 ,

whereτ is the time constant of the physical solver implementing theODE.

For comparison, the digital solvers Homotopy, OMP, ROMP andCoSaMP have been

proven to have running times on the order ofO(S MN) floating point operations (flops)

when the number of iterations is finite [23, 25, 28, 57]. This estimate can typically be

reduced if a fast multiply forΦ andΦT is available. It is important to keep in mind that the

time constantτ for the LCA has the potential to be much smaller than the time for a digital

solver to perform a single matrix multiply [59]. As a consequence, the scaling properties

of the LCA seem more favorable for large problems than those of digital algorithms.

4.5 Simulations

The simulations in this section illustrate the previous theoretical findings1. As an example,

a sparse vectora† of lengthN = 400 withS non-zero entries is generated by selectingS

indices uniformly at random, drawingS amplitudes from a normal distribution and nor-

malizing them so that
∥∥∥a†

∥∥∥
2
= 1. A numberM = 200 of measurements are generated via

a Gaussian random matrixΦ of size 200× 400, with entries drawn independently from a

normal distribution and columns normalized to have unit norm. A Gaussian white noise
1Matlab code for running the experiments in this section can be downloaded from

http://users.ece.gatech.edu/˜abalavoine3/code/LCA_CS_exp.zip
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vector with standard deviationσ = 0.025 is added to the measurements so thaty = Φa†+ǫ.

The LCA is always started at rest withu(0) = 0.

4.5.1 Effect of the threshold on the size of the active set

First, the effect of the thresholdλ on the size of the active set during convergence is ex-

plored. Figures13 and14 illustrate the theoretical findings of Theorems7 and8 respec-

tively. For each pixel on the figures, 100 random draws of a sparse vectora† and a mea-

surement matrixΦ are simulated, assuming that no noise is present.

In Figure 13, the percentage of the 100 trials where only nodes that are part of the

optimal supportΓ† become active is shown. For largeS (approximatelyS > 28), the

transition phase forλ follows a curve that resembles 1/
√

S. For smallS, the behavior

appears qualitatively different. Both follow the general prediction from (41):

λ &
bδ

1− bδ
√

S
.

Above this value, in the white region, only nodes in the optimal supportΓ† become active

for all 100 trials. In the black region, one or more nodes outside the optimal support

became active for all 100 trials. The transition between thetwo regions seems to sharpen

asS increases.

In Figure14, the color coding represents the ratio of the maximum numberof active

elementsq during convergence over the sparsity levelS. The phase transition on this plot

follows a 1/
√

S behavior, as expected from (43). For most of the pairs (λ,S), the maximum

number of active nodesq is contained between 1S and 10S, illustrating thatq is typically

a small multiple ofS and that the active set remains bounded. When the threshold is too

high, no nodes become active. The results shown in Figure13 and Figure14 thus confirm

the qualitative behavior of the bounds derived in Theorems7 and8.

4.5.2 Decreasing the threshold during convergence

As mentioned in Section4.3, the proofs of Theorems7 and8 suggest that the active set re-

mains bounded even when the threshold is decreased at an exponential rate, while yielding
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Figure 13: Percentage of the trials where no more than theS nodes from the optimal
supportΓ† become active during convergence,i.e., Γ(t) ⊂ Γ†, ∀t ≥ 0. The value 1 means
that 100% of the trials satisfied this condition.
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Figure 15:Number of active nodes (left column) and fixed pointa∗ reached by the LCA
(right column) for different choices of the threshold. The red crosses represent the original
signala† and the blue rounds represent the solutionsa∗. A fixed thresholdλ = 0.3 was used
in the first row,λ = 0.08 in the second row, and the threshold was decreased from 0.3 to
0.08 according to an exponential decay in the third row.

faster convergence. To illustrate that this fact is confirmed in practice, the LCA is first run

with a high threshold value ofλ = 0.3. As shown in the first row of Figure15, in this case

the active set never contains more than three nodes that are part of the optimal support, but

the final solution is missing two nodes from the target signala†. In the second row,λ is

fixed to a low value of 0.08. The final solution recovers all the nodes froma†. However, the

largest active set visited during convergence now containsq = 7 nodes and the convergence

is slower. Finally, in the last row, the threshold is startedat 0.3 and decreased to the value

0.08 according to an exponential decay. As expected, the final solution is the same as in

row 2. However, in this case the active set never contains more than the five nodes from the

optimal support. Moreover, the support is recovered faster, in less than 2τ compared to 3τ

in row 2.
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Figure 16:Evolution of the experimental mean-squared error‖u(t) − u∗‖2 (plain line) and
theoretical decay (dashed line) as the problem parameters are varied.
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4.5.3 Estimate of the convergence speed

Finally, the experimental results in this section are used to test that the bound on the nor-

malizedℓ2-distance predicted by Theorem6

‖u(t) − u∗‖2
‖u∗‖2

≤ e−(1−d)t/τ (46)

holds in practice. Both sides of the above expression are equal to 1 att = 0. Since the matrix

Φ is random Gaussian, it was shown in Section4.4that the constantd can be approximated

by the RIP constantδ ∼
√

S log(N/S)/M. In Figure16, the theoretical decay on the

right-hand side of (46) (dashed lines) is plotted, along with the experimental normalized

ℓ2-distance on the left-hand side (solid lines) averaged over100 trials. When they are not

varying, the threshold is fixed toλ = 0.1, the number of measurements toM = 200, the

sparsity toS = 5, and the signal length toN = 400.

As expected, the theoretical curves approximate the experimental decay. These upper

bounds are not strict in practice since they rely on an estimate for the RIP constantδ, which

cannot be exactly determined. However, these curves illustrate that the experimental curves

qualitatively follow the theoretical predictions as the parametersN, M or S are varied in

Figure16a, 16c, and16b, respectively.

In Figure16d, the effect of the thresholdλ on the experimental decay is explored. For

values ofλ larger than 0.06, the bound (46) with d =
√

S log(N/S)/M (dark blue dashed

line) is valid even though more thanS nodes may become active. Indeed, according to

Figure14, for λ = 0.06, the maximum size of the active set averaged over 100 trials isq =

23= 4.6S, which is larger thanS. Asλ becomes smaller, more nodes are likely to enter the

active set. To reflect this, the theoretical decay on the right-hand side of (46) is plotted again

with d =
√

5S log(N/S)/M (yellow dashed line). The resulting curve is an upper bound

even for very small values of the threshold, for which much more than 5S nodes become

active during convergence. For instance, the maximum size of the active set averaged over

100 trials forλ = 0.02 is 180= 36S, which is much larger than 5S. Consequently, the size

of the largest active set during convergence seems to yield too conservative of a bound for
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most of the examples in practice.

4.6 Proofs

The proofs of the two main theorems of this section are given below. Both proofs rely on

several lemmas and observations derived in the appendices.

4.6.1 Proof of Theorem7

The proof that the active setΓ is a subset ofΓ† for all time t ≥ 0 is done by induction over

the switching timestk.

Proof. The first induction hypothesis is that for all switching times tk ≤ tK, the following

holds:
∣∣∣u j(t)

∣∣∣ ≤ λ, ∀ j ∈ Γc
† and∀t ∈ [tk, tk+1). (47)

If this condition is satisfied for all timet ≥ 0, then nodesj ∈ Γc
† stay below threshold and

the next active setΓk+1 = Γ(tk+1) is a subset ofΓ†, so the theorem holds. An additional

necessary induction hypothesis is

∥∥∥aΓk(tk) − a†
∥∥∥

2
≤ Bδ(S). (48)

By the theorem hypotheses, the initial active set is a subsetof Γ† and (40) holds, proving

readily that (47) and (48) hold at t = 0. Next, assume that the two induction hypotheses

hold for a particular switching timetk. If there is no more switching aftertk, then the

theorem is proven. Otherwise, using the dynamics in (84), it follows that for all j ∈ Γc
† ⊂ Γc

k

and for allt ∈ [tk, tk+1]

u j(t) = e−(t−tk)utk
j + e−t

∫ t

tk

eνρ j(ν)dν,

with ρ j(ν) = ΦT
j

(
y− ΦΓkaΓk(ν)

)
. The absolute value of the expression above can be bounded
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by

∣∣∣u j(t)
∣∣∣ =

∣∣∣∣∣∣e
−(t−tk)utk

j + e−t

∫ t

tk

eνρ j(ν)dν

∣∣∣∣∣∣

≤ e−(t−tk)
∣∣∣∣utk

j

∣∣∣∣ + e−t

∫ t

tk

eν
∣∣∣ρ j(ν)

∣∣∣ dν

≤ e−(t−tk)
∣∣∣∣utk

j

∣∣∣∣ +
(
1− e−(t−tk)

)
sup

ν′∈[tk,tk+1]

∣∣∣ρ j(ν
′)
∣∣∣ .

Since, at timetk, node j ∈ Γc
† is inactive, then

∣∣∣∣utk
j

∣∣∣∣ ≤ λ. As a consequence, condition (47) is

satisfied if

sup
ν′∈[tk,tk+1]

∣∣∣ρ j(ν
′)
∣∣∣ ≤ λ. (49)

Since the matrixΦT
j ΦΓ† is a submatrix ofΦTΦ − I with (S+ 1) distinct columns, and since

Φ satisfies the RIP of order (S + 1), Lemma15yields that
∥∥∥∥ΦT

j ΦΓ†

∥∥∥∥ ≤ δ. Then, for all time

t ∈ [tk, tk+1] and for all nodesj ∈ Γc
†,

∣∣∣ρ j(t)
∣∣∣ =

∣∣∣ΦT
j

(
y−ΦΓkaΓk(t)

)∣∣∣

=

∣∣∣∣ΦT
j

(
ΦΓ†a

† + ǫ − ΦΓkaΓk(t)
)∣∣∣∣ (y = ΦΓ†a

† + ǫ)

=

∣∣∣∣ΦT
j ΦΓ†

(
a† − aΓk(t)

)
+ ΦT

j ǫ
∣∣∣∣ (sinceΓk ⊂ Γ†)

≤
∣∣∣∣ΦT

j ΦΓ†

(
a† − aΓk(t)

)∣∣∣∣ +
∣∣∣ΦT

j ǫ
∣∣∣

≤
∥∥∥∥ΦT

j ΦΓ†

∥∥∥∥
∥∥∥a† − aΓk(t)

∥∥∥
2
+

∥∥∥∥ΦT
Γc
†
ǫ
∥∥∥∥
∞

≤ δ
∥∥∥a† − aΓk(t)

∥∥∥
2
+

∥∥∥∥ΦT
Γc
†
ǫ
∥∥∥∥
∞
.

Lemma12 is now applied to obtain a bound that holds uniformly across time:

∥∥∥a† − a(t)
∥∥∥

2
≤ Bδ(S), ∀t ∈ [tk, tk+1] .

In particular,
∥∥∥aΓk+1(tk+1) − a†

∥∥∥
2
≤ Bδ(S) and the induction hypothesis (48) remains true at

time tk+1. Putting the pieces together and using condition (41), for all time t ∈ [tk, tk+1] and
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for all nodesj ∈ Γc
†, the following holds:

∣∣∣ρ j(t)
∣∣∣ ≤ δBδ(S) +

∥∥∥∥ΦT
Γc
†
ǫ
∥∥∥∥
∞

≤ λ
(
1− bδ

√
S + bδ

√
S
)

= λ.

This computation shows that (47) holds for all timet ∈ [tk, tk+1]. Since (47) holds at time

tk+1, it necessarily holds until the next switching timetk+2 (since, by definition, a switch

occurs if a node crosses threshold), then the induction hypothesis (47) must hold for all

t ∈ [tk+1, tk+2), and the proof by induction is complete.

4.6.2 Proof of Theorem8

The following presents a proof by induction on the switchingtimestk that no more thanq

nodes are active during convergence,i.e., |Γ(t)| ≤ q for all t ≥ 0. The proof uses the set

∆(t) containing theq largest nodes inu(t). While this set depends on time, the time index

is removed in the notation for readability.

Proof. By Lemma13, if
∥∥∥u∆(t)(t)

∥∥∥
2
≤ λ√q (50)

for all time t ≥ 0, then the theorem holds. The two induction hypotheses usedto prove this

result are that (50) and
∥∥∥a(t) − a†

∥∥∥
2
≤ Bδ̄(q) (51)

hold for all t ≤ tk.

By (42), the first condition (50) holds att = 0. Moreover,

∥∥∥a(0)− a†
∥∥∥

2
≤ ‖a(0)‖2 +

∥∥∥a†
∥∥∥

2

≤ ‖u(0)‖2 +
∥∥∥a†

∥∥∥
2

≤ λ√q+
∥∥∥a†

∥∥∥
2

≤ Bδ̄(q),
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so (51) also holds att = 0.

Next, assume that for some switching timetk, (50) and (51) hold. If there is no more

switching, the theorem is proven. Otherwise, since (51) holds at timetk, Lemma12 can be

applied readily to prove that the induction condition (51) is true at timetk+1. To prove that

(50) holds, the dynamics on∆ for t ∈ [tk, tk+1] are written as in (80):

u∆(t) = e−(t−tk)u∆(tk) + e−t

∫ t

tk

eνρ∆(ν)dν,

whereρ∆(ν) = a∆(ν) − ΦT
∆
Φa(ν) + ΦT

∆
y. Theℓ2-norm of this quantity can be bounded as

follows:

‖u∆(t)‖2 ≤ e−(t−tk) ‖u∆(tk)‖2 + e−t

∫ t

tk

eν sup
ν′∈tk,tk+1

‖ρ∆(ν′)‖2 dν

≤ e−(t−tk) ‖u∆(tk)‖2 +
(
1− e−(t−tk)

)
sup
ν′∈tk,tk+1

‖ρ∆(ν′)‖2 . (52)

By the induction hypothesis (50), the following is true

‖u∆(tk)‖2 ≤ λ
√

q,

and Lemma13 implies thatΓ(tk) = Γk ⊂ ∆ andΓk contains fewer thanq nodes. The last

step is to obtain a bound for allt ∈ [tk, tk+1] for

‖ρ∆(t)‖2 =
∥∥∥a∆(t) − ΦT

∆Φa(t) + ΦT
∆y

∥∥∥
2

=

∥∥∥∥a†∆ +
(
I∆ −ΦT

∆Φ
)
(a(t) − a†) + ΦT

∆ǫ
∥∥∥∥

2

≤
∥∥∥a†
∆

∥∥∥
2
+

∥∥∥∥I∆ −ΦT
∆ΦΓ†∪Γk

∥∥∥∥
∥∥∥a(t) − a†

∥∥∥
2
+

∥∥∥ΦT
∆ǫ

∥∥∥
2
.

SinceΦ satisfies the RIP with parameters (S + p, δ̄) andΓk ⊂ ∆, Lemma15can be applied

to the matrixI
∆
− ΦT

∆
Φ
Γ†∪∆ with Γ1 = ∆ andΓ2 = Γ†, and Lemma14 can be applied toΦ∆.
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This results in a uniform bound on the quantity

‖ρ∆(t)‖2 ≤
∥∥∥a†
∆

∥∥∥
2
+

∥∥∥∥I∆ − ΦT
∆ΦΓ†∪∆

∥∥∥∥
∥∥∥a(t) − a†

∥∥∥
2
+

∥∥∥ΦT
∆ǫ

∥∥∥
2

≤
∥∥∥a†

∥∥∥
2
+ δ̄Bδ̄(q) + (1+ δ̄) ‖ǫ‖2

=
(
1+ δ̄(1+ δ̄)(1− δ̄)−2

) ∥∥∥a†
∥∥∥

2

+ (1+ δ̄)
(
δ̄(1− δ̄)−2

√
1− δ̄ + 1

)
‖ǫ‖2

+ δ̄(1+ δ̄)(1− δ̄)−2λ
√

q

≤ (1+ δ̄)(1− δ̄)−2
(∥∥∥a†

∥∥∥
2
+

√
1− δ̄ ‖ǫ‖2 + δ̄λ

√
q
)
.

Applying the theorem hypothesis (43) yields

‖ρ∆(t)‖2 < (1− δ̄)−2
(
1− 3δ̄ + δ̄(1+ δ̄)

)
λ
√

q

= λ
√

q.

Plugging this result into (52) shows that‖u∆(t)‖2 ≤ λ
√

q for all t ∈ [tk, tk+1]. In particular,

the induction condition (50) holds attk+1, which finishes the proof.

4.7 Summary

In this chapter and Chapter4, the mathematical analysis of the LCA was carried out. De-

spite a nonsmooth activation function and possibly singular interconnection matrix that

prevented the application of existing analytic results, the network was shown to converge

exponentially fast from any initial point to the optimal solution. Prior to this study, algo-

rithms for sparse recovery had been exclusively studied in the digital domain. The ISTA

provides a useful reference as it is also designed to solve the ℓ1-minimization program

by taking a discrete step in the direction of the negative gradient and thresholding. This

discrete-time algorithm was shown to converge with a linearrate in [60] to the solution of

theℓ1-minimization program, for which an accuracy analysis was carried out in [9]. These

two results are combined in the summary below.
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ISTA for static recovery: If Φ satisfies the RIP2 , the threshold satisfies

λ
√

q & c1

∥∥∥a†
∥∥∥

2
+ c2σ

for some constants c0, c1 ≥ 0, and the step sizeη is in the interval
(
0, 2

∥∥∥ΦTΦ
∥∥∥−1

)
, then

ISTA converges with a linear rate; i.e., there existc̄ ∈ (0, 1) and two constants C0,C1 ≥ 0

such that for all iterations l≥ 0

∥∥∥a(l) − a†
∥∥∥

2
≤ C0c̄

l +C1.

The constant C1 represents the optimal error
∥∥∥â† − a†

∥∥∥
2

when solving(5) and satisfies

C1 ≤ C2λ
√

q+C3σ

for some q≥ 0 (which is typically on the order of S ) and some constants C2,C3 ≥ 0.

The results of Chapters3 and4 have provided similar convergence and accuracy guar-

antees for the LCA. Since the fixed points of the networks wereshown to correspond

to the solution to theℓ1-minimization program when the activation function is the soft-

thresholding function, the accuracy result of [9] holds for the LCA as well. The analytic

findings obtained for the LCA are summarized below.

LCA for static recovery: If Φ satisfies the RIP2 and the threshold satisfies

λ
√

q & c2

∥∥∥a†
∥∥∥

2
+ c3σ

for some constants c2, c3 ≥ 0, then the LCA converges with an exponential rate; i.e., there

exist v∈ (0, 1) and two constants C4,C5 ≥ 0 such that for all time t≥ 0

∥∥∥a(t) − a†
∥∥∥

2
≤ C4e

−vt +C1,

where C1 is again the optimal error achieved when solving(5). In addition, the output of

the LCA never contains more than q non-zero coefficients.

2In [9], the author actually uses a slightly more general notion than the RIP, but the quantities used can be
related to the classic RIP.
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For the continuous-time algorithm, the linear rate of convergence becomes an exponen-

tial rate. The analysis in this thesis has also shown that theoutput of the LCA remains

sparse, similar to the analysis carried out for certain greedy solvers such as OMP, ROMP,

etc. This collection of results demonstrates that the LCA is a reasonable solution for sparse

recovery that is worth implementing in analog VLSI for engineering applications. Eventu-

ally, a dedicated analog chip will have the potential to significantly improve the speed and

power consumption necessary for real-time signal processing applications.
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CHAPTER V

TRACKING OF TIME-VARYING SIGNALS

While there exist many well-established techniques with known performance guarantees

to recover sparse signals from compressed measurements in the static case, only a few

methods have been proposed to tackle the recovery of time-varying signals, and even fewer

benefit from a theoretical analysis. In this chapter, the capacity to perform this tracking in

real time is studied for both the LCA and ISTA, its discrete-time analogue. ISTA is a well-

known digital solver for static sparse recovery, whose iteration is a first-order discretization

of the LCA differential equation. The results of this chapter show that theoutputs of both

algorithms can track a time-varying signal while compressed measurements are streaming,

even when no convergence criterion is imposed [61]. The ℓ2-distance between the target

signal and the outputs of both discrete- and continuous-time solvers is shown to decay

exponentially fast to a bound that is essentially optimal.

5.1 Background and related work

First, the ISTA discrete iteration is reviewed, and a summary of results obtained in the

static case is given along with several approaches that havebeen proposed in the literature

to perform dynamic recovery.

5.1.1 The ISTA

The ISTA is one of the earliest digital algorithms developedfor sparse recovery [19], and

although it tends to converge slowly, many state-of-the-art solvers are only slight variations

of its simple update rule [15,52,62,63]. The ISTA is defined by a discrete update rule that

can be seen as a generalized gradient step for theℓ1-minimization problem in (5). The l th
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iteratea(l) ∈ RN is defined by1

a(l + 1) = Tλ
(
a(l) + η

(
ΦT (y−Φa(l))

))
. (53)

The activation functionTλ(·) is the soft-thresholding function in (9). The constantη repre-

sents the size of the gradient step, which is usually required to be contained in the interval
(
0, 2

∥∥∥ΦTΦ
∥∥∥−1

)
to ensure convergence. Several papers have shown that ISTA converges to

the solution of (5) from any initial pointa(0) with a linear rate [58,60].

To match the LCA equation, the extra variableu(l) is introduced in the ISTA update

iteration: 

u(l + 1) = a(l) + ηΦT (y−Φa(l))

a(l + 1) = Tλ(u(l + 1))

, ∀l ≥ 0.

With this formulation, it is easy to see that ISTA is a first-order (or Euler method) dis-

cretization of the LCA dynamics. Using a step sizedl for the discretization equal to the

LCA time-constantdl = tl+1 − tl = τ, the LCA ODE (8) becomes


τ
u(l + 1)− u(l)

τ
= −u(l) + a(l) + ΦT(y− Φa(l))

a(l + 1) = Tλ(u(l + 1)),

which can be written as


u(l + 1) = a(l) + ΦT(y−Φa(l))

a(l + 1) = Tλ(u(l + 1))

.

This formulation matches the ISTA iteration whenη = 1. As a consequence, simulating the

ISTA on a digital computer with the appropriate parameter choice puts the LCA in the same

framework as existing digital algorithms and facilitates the comparison of convergence time

and computational complexity carried in Section5.3.

1The iterate numberl is in parenthesis, analogous to the continuous time index, and thenth entry of the
vector is put in subscript:an(l).
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5.1.2 Related work

Several approaches have been proposed to tackle the tracking of a high-dimensional sparse

signal evolving with time from a set of undersampled streaming measurements. Classical

methods for tracking signals include Kalman filtering and particle filtering [64]. These

methods require knowledge of the underlying dynamics of thetarget and exploit no sparsity

information. Some recent papers have built on these methodsby incorporating a sparsity-

aware criteria, either via convex relaxation [65,66] or greedy methods [67], and still require

a priori knowledge of the target dynamics.

Another class of methods relies on building a probabilisticmodel for the evolution of

the target’s support and amplitudes, and uses Bayesian inference techniques to estimate the

next time sample [68–70]. These methods also necessitatea priori knowledge of the tar-

get’s behavior to adjust many parameters, and the recovery can be sensitive to inaccuracies

in the model. While [70] proposes estimating the model parameters online, it only does

so in the non-causal smoothing case, which can become computationally expensive as the

number of parameters is large.

Finally, the last class of methods is based on optimization.For instance, in [71, 72],

an optimization program is set up to account for the temporalcorrelation in the target, and

the recovery is performed in batches. In [73], the best dynamical model is chosen among

a family of possible dynamics or parameters. The performance of this technique is limited

by the resolution and accuracy of the available dynamical models. In [22], a continuation

approach is used to update the estimate of the target using the solution from the previous

time-step. In [74–77], the optimization is solved using low-complexity iterative schemes.

Unfortunately, these methods lack theoretical guaranteesor at best provide convergence

and accuracy results in the static case. Finally, in [78], a very general projection-based

approach is studied. A convergence result is given, but it isnot clear how the necessary

assumptions apply in the time-varying setting and it does not come with an accuracy result.
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The ISTA and LCA belong to the class of optimization-based schemes. The two al-

gorithms do not rely on any model of the underlying dynamics,and a minimal number of

parameters need to be adjusted that are already present in the static case. In the follow-

ing analysis, convergence to the minimum of the objective in(5) or to a stopping criterion

is not required. Rather, the LCA output evolves continuously with time as the input is

streaming, while the standard ISTA iteration is performed as new measurements become

available. This setting is particularly useful when signals are streaming at very high rates

or computational resources are limited. Despite this simple setting, the analysis shows that

the LCA and ISTA can both track a moving target accurately andprovides an analytic ex-

pression for the evolution of theℓ2-distance between the output of both algorithms and the

target for all timet. The techniques developed in this section provide a good foundation

for the analysis of other algorithms that currently lack theoretical analysis, in particular

iterative-thresholding schemes that extend the classic ISTA.

5.2 Tracking a time-varying input

In this section, the model used for the target signal and the two main theorems are presented.

The resulting analysis provides an explicit expression forthe tracking abilities of the ISTA

and LCA when recovering a time-varying inputa†(t).

5.2.1 Signal model

The underlying target signala†(t) and the noise vectorǫ(t) are assumed to evolve continu-

ously with time. As a consequence, the inputy(t) is

y(t) = Φa†(t) + ǫ(t) (54)

and is also continuous with time. The following analysis considers the general case where

the measurements are corrupted by noise, but it remains valid in the noise-free case where

ǫ = 0. The target signala†(t) is assumed to remainS-sparse (i.e.,
∣∣∣Γ†(t)

∣∣∣ ≤ S for all t ≥ 0).

Finally, the energy in the time-derivative of the target is required to satisfy the following
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bound for all timet:

∥∥∥ȧ†(t)
∥∥∥

2
≤ −1
τ

∥∥∥a†(t)
∥∥∥

2
+ µ, ∀t ≥ 0. (55)

This condition ensures that the energy in both the time-derivative
∥∥∥ȧ†(t)

∥∥∥
2

and the target

itself
∥∥∥a†(t)

∥∥∥
2

remains bounded (see Lemma2). Intuitively, the more energy is present in

the target, the slower the variations must be for the algorithms to track them. The smaller

the time constantτ of the solver is, the slower the target needs to vary to be tractable. Note

that only the following condition is actually necessary in the proof of Theorem10:

∥∥∥ȧ†(t)
∥∥∥

2
≤ −1
τ

∥∥∥a†
Γc(t)

∥∥∥
2
+ µ, ∀t ≥ 0.

This condition is less restrictive than (55), since, as the LCA evolves, the output gets closer

to the target signal and the energy in
∥∥∥a†
Γc(t)

∥∥∥
2
=

∥∥∥a†
Γc(t) − aΓc(t)

∥∥∥
2

decreases. However, be-

cause the setΓc changes with time and the sequence of active sets is not knownin advance,

this condition is difficult to verify in practice.

The columns ofΦ are assumed to have unit norm‖Φn‖2 = 1 andΦ to satisfy the RIP

with parameters (S + q, δ) for someq ≥ 0. Finally, the energy of the noise vector remains

bounded and the constantσ is defined as

‖ǫ(t)‖2 ≤
σ
√

1+ δ
, ∀t ≥ 0. (56)

5.2.2 Tracking abilities of ISTA

This section concerns the tracking abilities of the ISTA in ageneral setting, where a new

measurement is received everyPth iteration:

y(kP) = Φa†(kP) + ǫ(kP), ∀k ≥ 0. (57)

In this setting, the ISTAl th iterate simply becomes


u(l + 1) = a(l) + η
(
ΦT (y(l) − Φa(l))

)

a(l + 1) = Tλ(u(l + 1))

, ∀l ≥ 0. (58)
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Figure 17:A new measurement of the underlying continuous-time signala†(t) is received
every Pth ISTA iterate. During the subsequentP − 1 iterations, the target is treated as
constant in the ISTA update rule. The quantity of interest is

∥∥∥a(kP) − a†(kP− 1)
∥∥∥

2
, which

represents the last error before a new measurement is received.

For iteratesl of the forml = kP+ i, with i = 0, . . . ,P− 1, since no new measurement has

been received, the target signala†(kP+ i) and the measurementsy(kP+ i) are treated as

constant signals (in other words, the algorithm does not assume a model on the dynamics

of the target signal):

a†(kP+ i) = a†(kP), ∀k ≥ 0, ∀i = 0, . . . ,P− 1. (59)

This approach is illustrated in Figure17. The step size for the discretization isdl = tl+1− tl.

As a consequence, property (55) yields the following bound∀k ≥ 0:

∥∥∥a†(kP) − a†(kP− 1)
∥∥∥

2
=

∥∥∥∥∥∥

∫ tkP

tkP−1

ȧ†(t)dt

∥∥∥∥∥∥
2

≤
∫ tkP

tkP−1

∥∥∥ȧ†(t)
∥∥∥

2
dt

≤
∫ tkP

tkP−1

µ dt

= µ dl. (60)

Note that because the measurement vectory(l) changes everyPth iteration, ISTA never

converges to the optimum of (5) if P is small. This approach is of great interest for scenarios

where the measurements are streaming at very high rates.
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Theorem 9. Assume that the dictionaryΦ satisfies the RIP with parameters(S+ 2q, δ) for

some q≥ 0 and that the gradient stepη in (58) satisfies

0 < η <
2

1+ δ
. (61)

Define c= |η − 1| + δη < 1. If the target signal satisfies condition(60), the initial point a(0)

contains less than q active nodes and the following two conditions hold:

∥∥∥u∆(0)(0)
∥∥∥

2
≤ λ√q, (62)

η(1+ δ) max
{∥∥∥a†(0)

∥∥∥
2
, τµ

}
+ ησ ≤ (1− c)λ

√
q, (63)

then

1. the output a(l) never contains more than q active nodes for all l≥ 0; and

2. letting i= (l mod P) (i.e.,∃!k ≥ 0 such that l= kP+ i, with 0 ≤ i ≤ P− 1), the

ℓ2-distance between the output and the target signal satisfies∀l ≥ 0

∥∥∥a(l + 1)− a†(l)
∥∥∥

2
≤ cl

(∥∥∥a(1)− a†(0)
∥∥∥

2
−W

)
+

ci+1

1− cP
µ dl + V, (64)

where

V = (1− c)−1 (
ησ + λ

√
q
)
, (65)

W =
c

1− cP
µ dl + V. (66)

This theorem shows that at everyPth iteration, theℓ2-distance between the outputa(kP)

and the target signala†(kP− 1) remains bounded and converges ask→∞ toward

V +
cP

1− cP
µ dl = (1− c)−1 (

λ
√

q+ ησ
)
+

cP

1− cP
µ dl

with a linear rate of convergence. This final value is essentially optimal, with the first term

(1 − c)−1
(
λ
√

q+ ησ
)

corresponding to the error involved with solving (5). Together with

the bound (63), they resemble the terms of Corollary 5.1 in [9] obtained for the static case.

86



The additional termcP(1− cP)−1µ dl behaves likeµ dl/P and corresponds to the error that

is expected from having a time-varying input. The larger thevariations in the target, the

largerµ will be, which corresponds to a more difficult signal to track and a larger error.

Conversely, the slower the target varies, the larger the value of P, and as expected, the

smaller the final error is. WhenP→ ∞, this additional term disappears.

When the ISTA is considered as the discretization of the LCA,the discretization step

dl for the Euler method is equal toτ, η = 1 in (58), andP = 1, soc = δ as discussed in

Section5.1.1. Then, the asymptotic final value becomes

. (1− δ)−1 (
τµ + σ + λ

√
q
)
.

5.2.3 Tracking abilities of the LCA

The following theorem shows that the number of non-zero elements in the LCA output

remains bounded. It also provides an expression for the evolution over time of theℓ2-

distance between the LCA output and the target signal.

Theorem 10. Assume that the dictionaryΦ satisfies the RIP with parameters(S+ q, δ) for

some q≥ 0. The following quantity depends on the thresholdλ, the noise energy boundσ,

the energy bound on the target signalµ, the parameter q and the RIP constantδ:

D = (1− δ)−1 (
τµ + σ + λ

√
q
)
. (67)

If the initial active setΓ(0) contains less than q active nodes and the following two condi-

tions hold:

∥∥∥u∆(0)(0)
∥∥∥

2
≤ λ√q, (68)

δ ·max
{∥∥∥a(0)− a†(0)

∥∥∥
2
,D

}
+max

{∥∥∥a†(0)
∥∥∥

2
, τµ

}
+ σ ≤ λ√q, (69)

then

1. the active set never contains more than q active nodes (i.e., |Γ(t)| ≤ q);
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2. the energy of the q largest entries in absolute value∆(t) in the state satisfies∀t ≥ 0

∥∥∥u∆(t)(t)
∥∥∥

2
≤ e−t/τ

∥∥∥u∆(0)(0)
∥∥∥

2
+

(
1− e−t/τ

)
λ
√

q; (70)

3. theℓ2-distance between the LCA output and the target signal satisfies∀t ≥ 0

∥∥∥a(t) − a†(t)
∥∥∥

2
≤ e−(1−δ)t/τ

∥∥∥a(0)− a†(0)
∥∥∥

2
+

(
1− e−(1−δ)t/τ

)
D. (71)

This theorem shows that theℓ2-distance between the LCA output and the target signal

converges exponentially fast towards its final value

D = (1− δ)−1 (
τµ + σ + λ

√
q
)
.

This quantity is equal to the final value obtained for ISTA when it corresponds to the first-

order approximation of the LCA ODE. This bound is again essentially optimal for the prob-

lem. The first term (1−δ)−1
(
λ
√

q+ σ
)

corresponds to the expected error when solving (5),

while the additional term (1− δ)−1τµ corresponds to the error associated with recovering

a time-varying signal. The error increases withµ, which corresponds to the energy of the

variations in the target. Conversely, the error decreases with decreasingτ, corresponding to

a faster solver. It is interesting to note that the initial conditions (68) and (69) are similar to

the initial conditions of Theorem 3 in [55]. In particular, the analysis in [55] shows that for

classic CS matrices for whichδ ∼
√

S/M log(N/S), the number of measurements required

for (69) to hold isO (
S log(N/S)

)
.

As a final remark, the convergence rate of both continuous anddiscrete algorithms

depend on the RIP constant of the matrixΦ. However, the condition on the RIP constant

is stronger in Theorem9. This discrepancy can be explained by the fact that the ISTA is a

discrete-time algorithm and, as a consequence, the set of active elementsΓ(l+1) may differ

by as much asq elements from the previous active setΓ(l). By contrast, the changes are

continuous in the case of the LCA.
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Figure 18:Evolution of theℓ2-distance between the target and the output after everyPth

ISTA iteration.

5.3 Simulations

The simulations in this section illustrate the previous theoretical results2.

5.3.1 Synthetic data

A synthetic sparse vectora†(k) for k = 1, . . . , 40 of lengthN = 512 with sparsityS = 40

is generated as follows. Fork = 1, S = 40 random amplitudes are drawn from a standard

normal distribution and normalized to have norme. Then, 39 consecutive time samples are

obtained as follows

α(k+ 1) =

√
e2 − µ2

e2
α(k) +

µ
√

S
v(k),

wherev(k) is a vector inRS with amplitudes drawn from a standard normal distribution.

Each sample in the sequence{α(k)}k=1,...,40 has energy equal toe in expectation, and dif-

ferences between consecutive samples have energy proportional toµ. To model support

changes, a set of 10 sinusoids with frequencies drawn uniformly at random from [0, 3] and

random phases are generated. For 10 randomly selected indices, the corresponding target

a†n(k) is set to the product ofαn(k) with the positive part of the sinusoids. For 10 differ-

ent indices, the corresponding targeta†n(k) are set to the product ofαn(k) with the negative

2Matlab code for running the experiments in this section can be downloaded from
http://users.ece.gatech.edu/˜abalavoine3/code/LCA_ISTA_exp.zip
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part of the sinusoids. The remainingS − 10 nodes in the supporta†n(k) are assigned to the

remaining amplitudesαn(k). This setup ensures that the sparsity ofa† is alwaysS = 40

while letting 20 nodes switch between active and inactive. When they are not varied, the

following values are used:η = 1, µ = 0.8 andP = 1. The measurement matrixΦ is

256× 512 with entries drawn from a standard normal distribution and columns normalized

to 1. A Gaussian white noise vector with standard deviation 0.3
∥∥∥Φa†(0)

∥∥∥
2
/
√

M is added

to the measurements, which corresponds to a moderate level of noise. In Figure18, the

average over 1000 such trials of theℓ2-error
∥∥∥a(kP) − a†(kP− 1)

∥∥∥
2

is plotted. The curves

tend to a final value that matches the behavior predicted by Theorem9 ask→∞. A higher

value ofP decreases the quantitycP
(
1− cP

)−1
µ dl and yields a lower final value, while a

larger value ofµ yields a larger final value.

Next, the thresholdλ and the sparsity levelS are varied, and for each pair 10 time

samples ofa†(k) and associated measurementsy(k) are generated in the same fashion as

before. The ISTA is run forP = 5 iterations per measurement. In Figure19, the average

over 100 such trials of the ratio of the maximum number of non-zero elementsq in a(l)

over the sparsity levelS is plotted. The figure shows that the maximum number of non-

zero elements remains small (q is mostly contained between 1S and 10S), which matches

the two theorems’ prediction.

5.3.2 Real data

Finally, the performance of ISTA in the streaming setting istested on real data and com-

pared against SpaRSA, a state-of-the-art LASSO solver [52], BPDN-DF (which adds a

time-dependent regularization between frames), RWL1-DF (which additionally performs

reweighting at each iteration) [66] and DCS-AMP (which uses a probabilistic model to

describe the target’s evolution) [70]. A total of 13 videos representing natural scenes are

used to get 100 random sequences of 40 consecutive frames3. Since natural images are

sparse in the wavelet domain, following the work in [79], the measurement matrix is taken

3The videos used can be downloaded athttp://trace.eas.asu.edu/yuv/
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Figure 19:Ratio of the maximum number of non-zero elementsq over the sparsity levelS
for several values ofλ andS averaged over 100 trials.

to beΦ = AB, whereA consists ofM = 0.25N random rows of a noiselet matrix andB is

a dual-tree discrete wavelet transform (DT-DWT) [80]. SpaRSA and BPDN-DF are given

the estimate at the previous frame as a warm start for the following frame. The results

obtained for the ISTA withP = 1 andη = 1 simulate the LCA ODEs. The regularized

mean-squared error, defined by

rMS E(k) =

∥∥∥a(k) − a†(k)
∥∥∥

2∥∥∥a†(k)
∥∥∥

2

,

is plotted in Figure20a, and the number of products involving the matrixΦ or its transpose

is plotted in Figure20b, both averaged over the 100 trials. The number of multiplications

by Φ or ΦT is preferred to the CPU time because it is a less arbitrary measure of the

computational complexity for each algorithm. In figure20a, the final rMSE reached by

ISTA with P = 3 andP = 10 is contained between those of SpaRSA and BPDN-DF after

about 19 and 6 frames, respectively. The average rMSE for ISTA with P = 1 converges

much slower. However, one would expect that an analog implementation of the LCA would

result in a faster time constant and would more closely matchthe performance of ISTA for

P = 10 (assuming an analog constant 10 times smaller than the digital equivalent). The
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rMSE for RWL1-DF is much lower due to the additional reweighting steps. However, the

complexity for this method is much larger than the other four. While the complexity of

ISTA for P = 10 is similar to that of DCS-AMP, the complexity forP = 3 andP = 1

can be much smaller than any of the other approaches. In addition, the ISTA only involves

a single parameter to adjust, while DCS-AMP has around 10. When its parameters are

optimized non-causally for a specific video sequence, DCS-AMP performs only slightly

worse than RWL1-DF. However, its performance degrades greatly when the parameters are

not optimized for each individual video as in Figure20a, which is a drawback for real-world

applications.

5.4 Proofs
5.4.1 Lemma2

The following lemma gives a bound on the energy of the target when its time-derivative

satisfies (55).

Lemma 2. If the target signal a†(t) is continuous and satisfies(55) for all t ≥ 0 then,∀t ≥ 0

∥∥∥a†(t)
∥∥∥

2
≤ e−t/τ

(∥∥∥a†(0)
∥∥∥

2
− τµ

)
+ τµ

≤ max
{∥∥∥a†(0)

∥∥∥
2
, τµ

}
.

Proof. It suffices to notice that

d
dt

(‖x(t)‖2) =
d
dt

(
‖x(t)‖22

)

2‖x(t)‖2
=

x(t)T ẋ(t)
‖x(t)‖2

≤ ‖ẋ(t)‖2 ,

where the last inequality comes from the Cauchy-Schwartz inequality. Thus, (55) implies

d
dt

(∥∥∥a†(t)
∥∥∥

2

)
≤ −1
τ

∥∥∥a†(t)
∥∥∥

2
+ µ.

Sincea†(t) is continuous, the first inequality can be deduced from Lemma 9. The second

inequality immediately follows from the monotonicity of the exponential.

92



5 10 15 20 25 30 35 40

10
−1

Frame Number

M
ea

n 
rM

S
E

 

 
ISTA (P=1, η=1)
ISTA (P=3, η=2)
ISTA (P=10, η=2)

 

 
SpaRSA
BPDN−DF
RWL1−DF
DCS−AMP

(a) Average rMSE

5 10 15 20 25 30 35 40

10
1

10
2

10
3

Frame Number

nP
ro

d 
by

 Φ
 a

nd
 Φ

T

 

 

ISTA (P=1, η=1)
ISTA (P=3, η=2)
ISTA (P=10, η=2)

 

 

SpaRSA
BPDN−DF
RWL1−DF
DCS−AMP

(b) Average number of products byΦ andΦT
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5.4.2 Proof of Theorem9

Proof. To check thatc < 1, the terms in hypothesis (61) can be reorganized to yield

η(1+ δ) < 2 andδ < 1⇒ ηδ < η < 2− ηδ

⇒ −1+ ηδ < η − 1 < 1− ηδ

⇒ |η − 1| < 1− ηδ

⇒ c < 1.

In a first step, it is shown that
∥∥∥u(l)∆(l)

∥∥∥
2
≤ λ√q holds∀l ≥ 0 by induction onl. If so, by

Lemma13, the active set contains less thanq elements and part 1) of the theorem is proven.

By (62), this inequality holds forl = 0. Next, assume that
∥∥∥u(l)∆(l)

∥∥∥
2
≤ λ√q for somel ≥ 0.

By Lemma13, it can be concluded thatΓ(l) ⊂ ∆(l) and |Γ(l)| ≤ q. As a consequence, the

set

J = J(l + 1) := ∆(l + 1)∪ Γ(l) ∪ Γ†(l)

contains less thanS + 2q indices. Using the RIP ofΦ, the eigenvalues of the matrixΦT
JΦJ

are contained between (1− δ) and (1+ δ) and

∥∥∥ηΦT
JΦJ − IJ

∥∥∥ = max
{
|η(1+ δ) − 1| , |η(1− δ) − 1|

}

= |η − 1| + ηδ = c.

In addition, the form of the activation function (23) implies that

‖a(l)‖2 ≤
∥∥∥uΓ(l)(l)

∥∥∥
2
≤

∥∥∥u∆(l)(l)
∥∥∥

2
≤ λ√q.

Combining Lemma2 with hypothesis (63) yields the following bound

‖uJ(l + 1)‖2 =
∥∥∥∥ηΦT

JΦ
(
a†(l) − a(l)

)
+ aJ(l) + ηΦ

T
J ǫ(l)

∥∥∥∥
2

≤
∥∥∥∥
[
ηΦT

JΦJ − IJ

]
a(l)

∥∥∥∥
2
+

∥∥∥ηΦT
JΦJa

†(l)
∥∥∥

2
+ η

∥∥∥ΦT
J ǫ(l)

∥∥∥
2

≤ c‖a(l)‖2 + η(1+ δ)
∥∥∥a†(l)

∥∥∥
2
+ η
√

1+ δ ‖ǫ(l)‖2

≤ cλ
√

q + η(1+ δ) max
{∥∥∥a†(0)

∥∥∥
2
, τµ

}
+ ησ

≤ λ√q.
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Since∆(l + 1) ⊂ J(l + 1), the induction hypothesis holds atl + 1. As a consequence, part

1) of the theorem is proven, as well as the stronger result
∥∥∥u(l)J(l)

∥∥∥
2
≤ λ√q ∀l ≥ 1, which

will be used in the remaining of the proof.

An induction onl is used to show that (64) holds∀l ≥ 0. It obviously holds forl = 0.

Next, assume that (64) holds for somel ≥ 0. There exist a uniquek ≥ 0 and a unique

0 ≤ i ≤ P − 1 such thatl = kP+ i. In the previous part of the proof, it was shown that

‖uJ′(l + 2)‖2 ≤ λ
√

q, whereJ′ = J(l+2) = ∆(l+2)∪Γ(l+1)∪Γ†(l+1) and thatJ′ contains

less thanS + 2q indices. As a consequence, the RIP ofΦT
J′ΦJ′ can be used to obtain the

inequality

∥∥∥a(l + 2)− a†(l + 1)
∥∥∥

2
≤ ‖a(l + 2)− uJ′(l + 2)‖2 +

∥∥∥uJ′(l + 2)− a†(l + 1)
∥∥∥

2

≤ ‖uJ′(l + 2)‖2 +
∥∥∥uJ′(l + 2)− a†(l + 1)

∥∥∥
2

≤ λ√q+
∥∥∥∥ηΦT

J′ǫ(l + 1) +
(
ηΦT

J′ΦJ′ − IJ′
) (

a†(l + 1)− a(l + 1)
)∥∥∥∥

2

≤ λ√q + ησ + c
∥∥∥a†(l + 1)− a(l + 1)

∥∥∥
2

≤ λ√q + ησ + c
∥∥∥a(l + 1)− a†(l)

∥∥∥
2
+ c

∥∥∥a†(l) − a†(l + 1)
∥∥∥

2
.

Using the induction hypothesis (64) at l, the analysis can be split into two cases.

First case:Wheni = P− 1, l = (k+ 1)P− 1 and (60) yields
∥∥∥a†(l + 1)− a†(l)

∥∥∥
2
≤ µ dl.

Thus,

∥∥∥a(l + 2)− a†(l + 1)
∥∥∥

2
≤ c

(
cl

[∥∥∥a(1)− a†(0)
∥∥∥

2
−W

]
+

cP

1− cP
µ dl + V

)
+ cµ dl + λ

√
q+ ησ

≤ cl+1
[∥∥∥a(1)− a†(0)

∥∥∥
2
−W

]
+

cP+1

1− cP
µ dl + cV+ cµ dl + λ

√
q+ ησ

≤ cl+1
[∥∥∥a(1)− a†(0)

∥∥∥
2
−W

]
+

c
1− cP

µ dl + V.

Therefore, the induction hypothesis (64) holds forl + 1 = (k+ 1)P.
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Second case:When 0≤ i ≤ P− 2, (59) yields
∥∥∥a†(l + 1)− a†(l)

∥∥∥
2
= 0 and so

∥∥∥a(l + 2)− a†(l + 1)
∥∥∥

2
≤ c

(
cl

(∥∥∥a(1)− a†(0)
∥∥∥

2
−W

)
+

ci+1

1− cP
µ dl + V

)
+ λ
√

q+ ησ

≤ cl+1
[∥∥∥a(1)− a†(0)

∥∥∥
2
−W

]
+

ci+2

1− cP
µ dl + cV+ λ

√
q+ ησ

≤ cl+1
[∥∥∥a(1)− a†(0)

∥∥∥
2
−W

]
+

ci+2

1− cP
µ dl + V.

Sincel + 1 = kP+ (i + 1), with 1 ≤ i + 1 ≤ P − 1, this inequality proves the induction

hypothesis (64) in the second case and finishes the proof.

5.4.3 Proof of Theorem10

Proof. The proof is done by induction on the switching timetk. The induction hypothesis

is that the active setΓk contains less thanq active elements and that (70) and (71) hold

∀t ≤ tk.

At time t0 = 0, the theorem hypotheses imply thatΓ0 contains less thanq active ele-

ments, and that (70) and (71) hold.

Next, assume that∀t ≤ tk the active set contains less thanq active elements and that

(70) and (71) hold. In a first step, it is shown that (71) holds∀t ≤ tk+1. By the induction

hypothesis, the active setΓ contains less thanq active nodes for allt ≤ tk, including the

current active setΓk for t ∈ [tk, tk+1). As a consequence, the inequalities in Lemma15 hold

with Γ1 = Γ andΓ2 = Γ† for all t ≤ tk+1.

The following time derivative can be computed∀t ≤ tk+1:

τ
d
dt

(
1
2

∥∥∥a(t) − a†(t)
∥∥∥2

2

)
= τ

(
a(t) − a†(t)

)T (
ȧ(t) − ȧ†(t)

)

=
(
a(t) − a†(t)

)T (
−ΦT

ΓΦΓa(t) + ΦT
Γy(t) − λsΓ − τȧ†(t)

)

= −
(
a(t) − a†(t)

)T
ΦT
ΓΦ(Γ∪Γ†)

(
a(t) − a†(t)

)

+
(
a(t) − a†(t)

)T (
ΦT
Γǫ(t) − λsΓ − τȧ†(t)

)
.
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Note that

−
(
a(t) − a†(t)

)T
ΦT
ΓΦ(Γ∪Γ†)

(
a(t) − a†(t)

)

= −
∥∥∥∥ΦΓ

(
a(t) − a†(t)

)∥∥∥∥
2

2
+

(
a(t) − a†(t)

)T
ΦT
ΓΦ(Γc∩Γ†)a

†
Γc(t)

≤ −
∥∥∥∥ΦΓ

(
a(t) − a†(t)

)∥∥∥∥
2

2
+

∥∥∥aΓ(t) − a†
Γ
(t)

∥∥∥
2

∥∥∥∥ΦT
ΓΦ(Γc∩Γ†)a

†
Γc(t)

∥∥∥∥
2

≤ −(1− δ)
∥∥∥aΓ(t) − a†

Γ
(t)

∥∥∥2

2
+ δ

∥∥∥aΓ(t) − a†
Γ
(t)

∥∥∥
2

∥∥∥a†
Γc(t)

∥∥∥
2

= −(1− δ)
∥∥∥a(t) − a†(t)

∥∥∥2

2
+ (1− δ)

∥∥∥a†
Γc(t)

∥∥∥2

2

+δ
∥∥∥aΓ(t) − a†

Γ
(t)

∥∥∥
2

∥∥∥a†
Γc(t)

∥∥∥
2

≤ −(1− δ)
∥∥∥a(t) − a†(t)

∥∥∥2

2
+

∥∥∥a†
Γc(t)

∥∥∥
2
×

(
(1− δ)

∥∥∥a(t) − a†(t)
∥∥∥

2
+ δ

∥∥∥a(t) − a†(t)
∥∥∥

2

)

= −(1− δ)
∥∥∥a(t) − a†(t)

∥∥∥2

2
+

∥∥∥a†
Γc(t)

∥∥∥
2

∥∥∥a(t) − a†(t)
∥∥∥

2
.

Plugging this inequality into the expression for the time derivative,

τ
d
dt

(
1
2

∥∥∥a(t) − a†(t)
∥∥∥2

2

)
+ (1− δ)

∥∥∥a(t) − a†(t)
∥∥∥2

2

≤
∥∥∥a(t) − a†(t)

∥∥∥
2

∥∥∥a†
Γc(t)

∥∥∥
2
+

(
a(t) − a†(t)

)T (
ΦT
Γǫ(t) − λsΓ − τȧ†(t)

)

≤
∥∥∥a(t) − a†(t)

∥∥∥
2

∥∥∥a†
Γc(t)

∥∥∥
2
+

∥∥∥a(t) − a†(t)
∥∥∥

2

∥∥∥ΦT
Γ ǫ(t) − λsΓ − τȧ†(t)

∥∥∥
2

≤
∥∥∥a(t) − a†(t)

∥∥∥
2

∥∥∥a†
Γc(t)

∥∥∥
2
+

∥∥∥a(t) − a†(t)
∥∥∥

2

( ∥∥∥ΦT
Γ ǫ(t)

∥∥∥
2
+ λ ‖sΓ‖2 + τ

∥∥∥ȧ†(t)
∥∥∥

2

)

≤
∥∥∥a(t) − a†(t)

∥∥∥
2

(∥∥∥a†
Γc(t)

∥∥∥
2
+ τ

∥∥∥ȧ†(t)
∥∥∥

2

)
+

∥∥∥a(t) − a†(t)
∥∥∥

2

(√
1+ δ ‖ǫ(t)‖2 + λ

√
q
)

≤
∥∥∥a(t) − a†(t)

∥∥∥
2

(
τµ + σ + λ

√
q
)
.

The bound on the energy in the target’s derivative (55) was used to obtain the last inequality.

Noting that

d
dt

(‖x(t)‖2) =
d
dt

(
‖x(t)‖22

)

2‖x(t)‖2
,

the following inequality holds

d
dt

(∥∥∥a(t) − a†(t)
∥∥∥

2

)
≤ −(1− δ)/τ

∥∥∥a(t) − a†(t)
∥∥∥

2
+ 1/τ

(
σ + λ

√
q+ τµ

)
.
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Since
∥∥∥a(t) − a†(t)

∥∥∥
2

is continuous, Lemma9 can be applied to obtain,∀t ≤ tk+1,

∥∥∥a(t) − a†(t)
∥∥∥

2
≤ e−(1−δ)t/τ

∥∥∥a(0)− a†(0)
∥∥∥

2
+

(
1− e−(1−δ)t/τ

) σ + λ√q+ τµ

1− δ .

This inequality shows that (71) holds for allt ≤ tk+1.

Next, the hypothesis (70) is shown to hold for allt ≤ tk+1. Though the set∆(t) varies

with time,
∥∥∥u∆(t)(t)

∥∥∥
2

is continuous for allt ≥ 0 (as a continuous function of the supre-

mum of the continuous functions|ui(t)|). Moreover, the following time derivative can be

computed∀t ≤ tk+1:

τ
d
dt

(
1
2
‖u∆(t)‖22

)
= τu∆(t)

T u̇∆(t)

= u∆(t)
T
(
− u∆(t) + a∆(t) −ΦT

∆Φa(t) + ΦT
∆y(t)

)

≤ − ‖u∆(t)‖22 + ‖u∆(t)‖2 ‖ρ∆(t)‖2 ,

whereρ∆(t) = a∆(t) −ΦT
∆
Φa(t) + ΦT

∆
y(t). This quantity can be bounded∀t ≤ tk+1 by

‖ρ∆(t)‖2 =
∥∥∥a∆(t) − ΦT

∆Φa(t) + ΦT
∆y(t)

∥∥∥
2

=

∥∥∥∥a†∆(t) +
(
I∆ − ΦT

∆Φ
)
(a(t) − a†(t)) + ΦT

∆ǫ(t)
∥∥∥∥

2

≤
∥∥∥a†(t)

∥∥∥
2
+

∥∥∥ΦT
∆ǫ(t)

∥∥∥
2
+

∥∥∥I∆ −ΦT
∆Φ(∆∪Γk)

∥∥∥
∥∥∥a(t) − a†(t)

∥∥∥
2

≤ max
{∥∥∥a†(0)

∥∥∥
2
, τµ

}
+ σ + δ

∥∥∥a(t) − a†(t)
∥∥∥

2
,

where Lemma15 with Γ1 = ∆ andΓ2 = Γ† and Lemma2 were applied. Finally, the bound

(71) obtained for
∥∥∥a(t) − a†(t)

∥∥∥
2

for all t ≤ tk+1 and the monotonicity of the exponential

yield

‖ρ∆(t)‖2 ≤ max
{∥∥∥a†(0)

∥∥∥
2
, τµ

}
+ σ + δ

[
e−(1−δ)t/τ

∥∥∥a(0)− a†(0)
∥∥∥

2
+

(
1− e−(1−δ)t/τ

)
D
]

≤ max
{∥∥∥a†(0)

∥∥∥
2
, τµ

}
+ σ + δmax

{∥∥∥a(0)− a†(0)
∥∥∥

2
,D

}

≤ λ√q,

where the last inequality comes from the theorem’s hypothesis (69). As a consequence, the

following inequality holds∀t ≤ tk+1:

τ
d
dt

(‖u∆(t)‖2) ≤ − ‖u∆(t)‖2 + λ
√

q.
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Using Lemma9 again yields,∀t ≤ tk+1,

‖u∆(t)‖2 ≤ e−t/τ ‖u∆(0)‖2 + e−t/τ

∫ t

0
eν/τλ

√
qdν

≤ e−t/τ ‖u∆(0)‖2 +
(
1− e−t/τ

)
λ
√

q,

which shows that (70) holds for allt ≤ tk+1.

Finally, the last induction hypothesis is proven to hold;i.e., the next active setΓk+1 is

shown to contain less thanq indices. Since (70) holds∀t ≤ tk+1, together with (68) this

inequality implies that

‖u∆(tk+1)‖2 ≤ e−tk+1/τ ‖u∆(0)‖2 +
(
1− e−tk+1/τ

)
λ
√

q

≤ λ√q.

Applying Lemma13shows that the active setΓk+1 contains less thanq indices and finishes

the proof.

5.5 Summary

Previous analysis had shown that the ISTA converges to the solution of theℓ1-minimization

problem with a linear rate, and the analysis in Chapters3 and4 showed that the LCA con-

verges to the same solution with an exponential rate when these algorithms are recovering a

static signal (cf, Section4.7). In this chapter, an analysis for both the continuous-timeLCA

and discrete-time ISTA was given for the online recovery of atime-varying signal from

streaming compressed measurements. In this setting, no convergence criterion is necessary

before proceeding to the next frame, and a new measurement isfed in input as soon as it be-

comes available. The analysis showed that the convergence rate of theℓ2-distance between

the target signal and the output of the ISTA is still linear, and that it is still exponential

for the output of the LCA. In addition, an expression for the best possible error achiev-

able (corresponding to achieving convergence for each frame) was given. These results are

simplified and summarized below.
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ISTA for dynamic recovery: If Φ satisfies the RIP with parameters(s+ 2q, δ) for

some q≥ 0, the thresholdλ satisfies

λ
√

q & c6β + c7σ

for some constants c6, c7, β ≥ 0 such that
∥∥∥a†(t)

∥∥∥
2
≤ β for all t ≥ 0, and the step sizeη is

in the interval
(
0, 2(1− δ)−1

)
, then the ISTA converges with a linear rate; i.e., there exist

c ∈ (0, 1) and two constants C5,C6 ≥ 0 such that, for all iterations l≥ 0,

∥∥∥a(l) − a†
∥∥∥

2
≤ C5c

l +C6.

The constant C6 represents the optimal error if the ISTA had infinite iterations per frame to

converge and satisfies

C6 ≤ C7λ
√

q+C8σ +C9µ dl

for some constants C7,C8,C9, µ ≥ 0 such that
∥∥∥ȧ†(t)

∥∥∥
2
≤ µ for all t ≥ 0, and where dl is

the time between two iterates. In addition, the output nevercontains more than q non-zero

coefficients.

LCA for dynamic recovery: If Φ satisfies the RIP with parameters(s+ q, δ) for some

q ≥ 0, and the threshold satisfies

λ
√

q & c8β + c9σ

for some constants c8, c9, β ≥ 0 such that
∥∥∥a†(t)

∥∥∥
2
≤ β for all t ≥ 0, then the LCA converges

with an exponential rate; i.e., there exist v∈ (0, 1) and two constants C7,C8 ≥ 0 such that,

for all time t≥ 0,
∥∥∥a(t) − a†

∥∥∥
2
≤ C7e

−vt +C8.

The constant C8 represents the steady state error if the LCA converged for each frame and

satisfies

C8 ≤ C9λ
√

q+C10σ +C11τµ
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for some constants C9,C10,C11, µ ≥ 0 such that
∥∥∥ȧ†(t)

∥∥∥
2
≤ µ for all t ≥ 0, and whereτ is

the time constant of the LCA. In addition, the output of the LCA never contains more than

q non-zero coefficients.

The links between the static setting in Section4.7and the dynamic setting above appear

explicitly in this summary. The convergence rates for both the discrete- and continuous-

time algorithms remain the same between the two settings. The optimal error in the dy-

namic case is composed of the static errorC′λ
√

q + C′′σ plus a termµ dl or τµ, which

reflects how much energy is in the derivative of the target signalvshow fast each algorithm

completes one ‘iteration’. Thus, the results of this chapter naturally extend those obtained

in the static setting.

It had been previously observed in literature that limitingthe number of iterations in the

streaming setting could yield good convergence results. For instance, in [67] the authors

mention that a simplified version of their algorithm that only executes one iteration per

measurement still performs well. However, no analysis had been previously provided for

such iteration-limited settings. The analysis presented in this thesis could potentially be ap-

plied to obtain similar convergence and accuracy results for these algorithms that currently

lack analysis. Moreover, while the simulations of the LCA ODEs with the appropriate

parameters (in particularP = 1) suggest that its convergence is slow, one would expect

its time constantτ to be much faster than the timedl for a digital algorithm to complete

one iteration. If so, the actual behavior of an analog implementation of the LCA would be

closer to the ISTA simulated withP = 10 (assuming an analog constant 10 times smaller

than its digital equivalent). Consequently, the results ofthis chapter support the idea that

an analog implementation of the LCA has the potential to leadto a low-power solver for

the real-time recovery of time-varying signals.
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CHAPTER VI

SUMMARY AND FUTURE DIRECTIONS

The focus of this thesis was to determine what type of continuous-time systems can be

used to solve nonsmooth optimization problems, with specific application to CS. The anal-

ysis developed has shown that a class of recurrent neural networks can be used to perform a

wide class of complex optimization programs. Recurrent neural networks are characterized

by distributed information-processing units and a matrix of feedback interconnections. The

highly parallel structure of these networks makes them amenable to analog implementation,

which designates them as a promising approach for real-timeapplications. While signif-

icant research has been put into providing performance guarantees for several classes of

neural networks, this thesis has provided new results that broaden previous guarantees to a

larger class. The neural networks in this extended class canbe used to solve sparse recovery

problems that arise in CS. In addition, this thesis has presented convergence and accuracy

results for the recovery of time-varying sparse signals in both discrete and continuous time.

6.1 Summary
6.1.1 General performance guarantees

The first contribution of this thesis was the mathematical analysis of the class of LCA neu-

ral networks. The LCA is characterized by an interconnection matrix with a nontrivial

nullspace and an activation function that can have flat regions and may be unbounded. It

was shown under what conditions the fixed points of these networks correspond to critical

points of the desired optimization problem. The convergence of these networks to their set

of fixed points was proven by taking a Lyapunov-type approach. The support of the solu-

tion was shown to be recovered in finite time under a conditionthat is expected to hold with
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near certainty. A stronger convergence result was then established using a recently devel-

oped analytic tool called the nonsmooth Łojasiewicz inequality. With this approach, it was

shown that under some mild assumptions on the activation function, which are often true

in practice, the trajectories of both the internal states and outputs converge toward a unique

fixed point, even when there exists a continuous subset of solutions to the optimization

problem. Finally, the convergence rate of the LCA networks was shown to be exponential,

and an analytic expression for the convergence speed was derived. All of these findings

have expanded the state of knowledge in neural network analysis. In addition, they have

shown that the LCA can be used to solve a wide class of optimization programs.

6.1.2 Application to CS

The second contribution of this thesis was to specialize theprevious results to CS recov-

ery. When the activation function is the soft-thresholdingfunction, the LCA solves the

ℓ1-minimization program, which is the most famous objective function for sparse recovery.

Some strong guarantees are associated with the solution of this optimization program when

it is used to recover a sparse signal. Unfortunately, even the most efficient digital solvers

cannot achieve real-time recovery for problems of large sizes. The analysis presented has

shown that the LCA takes an efficient path towards recovering the sparse solution. In ad-

dition, an estimate for the convergence speed that only depends on the problem parameters

and is independent of the input signal has been derived. The analysis uses the RIP and

has yielded interesting parallels to existing digital algorithms. In particular, an analog to

theS-step property and a less restrictive condition were shown to hold for the LCA for a

number of measurements equivalent to those obtained for standard digital solvers. These

findings have demonstrated that the LCA has the potential to be used as a real-time solver

with potentially better scaling properties than its digital equivalents.
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6.1.3 Tracking of time-varying signals

The last contribution of this thesis was to predict the convergence behavior of the LCA and

ISTA, its discrete-time equivalent, when they are recovering a time-varying signal from

streaming measurements. In this study, the measurements are continuously fed in input

and the solvers are constrained to operate in real-time to avoid delays. This situation is of

particular interest when the measurements are streaming athigh rates or the computational

resources are limited. While guarantees have been obtainedfor many solvers in the static

case, few approaches have been developed for the dynamic case, and most lack perfor-

mance guarantees. The findings of this thesis have provided upper bounds for the evolution

of the error for both solvers over time. These bounds are essentially optimal and prove that

the LCA and ISTA can be used to track time-varying signals from streaming measurements.

Such theoretical results provide a solid foundation for theanalysis of the many solvers that

extend the classic ISTA. In addition, they show the potential of extending CS theory to a

wider range of applications that involve dynamically evolving signals.

6.2 Comparative overview of results

In this section, a synthesis of some selected results from literature and from this thesis are

presented in parallel to put the contributions of this thesis in perspective.

Many digital algorithms for sparse recovery have been studied for convergence and

accuracy in the static case. For instance, combining the convergence result in [60] for the

ISTA with the accuracy result for theℓ1-minimization program in [9] yields the following.

ISTA for static recovery: If Φ satisfies the RIP, the threshold satisfies

λ
√

q & c1

∥∥∥a†
∥∥∥

2
+ c2σ

for some constants c0, c1 ≥ 0, and the step sizeη is in the interval
(
0, 2

∥∥∥ΦTΦ
∥∥∥−1

)
, then

ISTA converges with a linear rate; i.e., there existc̄ ∈ (0, 1) and two constants C0,C1 ≥ 0

such that, for all iterations l≥ 0,

∥∥∥a(l) − a†
∥∥∥

2
≤ C0c̄

l +C1.
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The constant C1 represents the optimal error
∥∥∥â† − a†

∥∥∥
2

when solving(5) and satisfies

C1 ≤ C2λ
√

q+C3σ

for some q≥ 0 (which is typically on the order of S ) and constants C2,C3 ≥ 0.

This thesis has extended the previous result to the continuous-time LCA algorithm for

ℓ1-minimization. The combination of Theorems6 and8 with the accuracy result forℓ1-

minimization in [9] implies the following result.

LCA for static recovery: If Φ satisfies the RIP and the threshold satisfies

λ
√

q & c2

∥∥∥a†
∥∥∥

2
+ c3σ

for some constants c2, c3 ≥ 0, then the LCA converges with an exponential rate; i.e., there

exist v∈ (0, 1) and two constants C4,C5 ≥ 0 such that, for all time t≥ 0,

∥∥∥a(t) − a†
∥∥∥

2
≤ C4e

−vt +C1,

where C1 is again the optimal error achieved when solving(5). In addition, the output of

the LCA never contains more than q non-zero coefficients.

Finally, Theorems9 and 10 have provided similar guarantees in the case where the

ISTA and LCA are driven by a time-varying signal.

ISTA for dynamic recovery: If Φ satisfies the RIP with parameters(s+ 2q, δ) for

some q≥ 0, the thresholdλ satisfies

λ
√

q & c6β + c7σ

for some constants c6, c7, β ≥ 0 such that
∥∥∥a†(t)

∥∥∥
2
≤ β for all t ≥ 0, and the step sizeη is

in the interval
(
0, 2(1− δ)−1

)
, then the ISTA converges with a linear rate; i.e., there exist

c ∈ (0, 1) and two constants C5,C6 ≥ 0 such that, for all iterations l≥ 0,

∥∥∥a(l) − a†
∥∥∥

2
≤ C5c

l +C6.

105



The constant C6 represents the optimal error if the ISTA had infinite iterations per frame to

converge and satisfies

C6 ≤ C7λ
√

q+C8σ +C9µ dl

for some constants C7,C8,C9, µ ≥ 0 such that
∥∥∥ȧ†(t)

∥∥∥
2
≤ µ for all t ≥ 0, and where dl is

the time between two iterates. In addition, the output nevercontains more than q non-zero

coefficients.

LCA for dynamic recovery: If Φ satisfies the RIP with parameters(s+ q, δ) for some

q ≥ 0 and the threshold satisfies

λ
√

q & c8β + c9σ

for some constants c8, c9, β ≥ 0 such that
∥∥∥a†(t)

∥∥∥
2
≤ β for all t ≥ 0, then the LCA converges

with an exponential rate; i.e., there exist v∈ (0, 1) and two constants C7,C8 ≥ 0 such that,

for all time t≥ 0,
∥∥∥a(t) − a†

∥∥∥
2
≤ C7e

−vt +C8.

The constant C8 represents the steady state error if the LCA converged for each frame and

satisfies

C8 ≤ C9λ
√

q+C10σ +C11τµ

for some constants C9,C10,C11, µ ≥ 0 such that
∥∥∥ȧ†(t)

∥∥∥
2
≤ µ for all t ≥ 0, and whereτ is

the time constant of the LCA. In addition, the output of the LCA never contains more than

q non-zero coefficients.

The four results synthesized above bring to light the three areas where this thesis has

provided significant contributions: the continuous-time recovery of static signals, and the

discrete- and continuous-time recovery of dynamic signals. These results also show the

parallels that exist between the discrete- and continuous-time algorithms, for which similar

optimal errors are achieved but with linear and exponentialrates of convergence, respec-

tively. Finally, these results highlight the links betweenstatic and dynamic recovery, where
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an additionalτµ or µ dl term appears to capture the tradeoff between the energy in the

derivative of the target and the time constant of the corresponding solver.

6.3 Future directions
6.3.1 Discontinuous activation functions

The convergence results obtained in this thesis have assumed that the LCA activation func-

tion is continuous. However, several programs that arise inCS recovery necessitate a dis-

continuous activation function, including the idealℓ0-minimization problem. Extending

the results of this thesis to discontinuous activation functions would further broaden the

tools available for neural network analysis and demonstrate the ability of the LCA to solve

these complex optimization programs. A first step in this direction has been presented in

AppendixD, which shows that the convergence result when the fixed points are not isolated

still holds in the discontinuous case. In a similar way, it seems possible to extend most of

the results in this thesis using Filippov’s approach to approximate solutions of ODEs with

discontinuous right-hand sides with absolutely continuous functions.

6.3.2 Matrix uncertainty

The results presented in thesis have assumed that the LCA ODEcan be implemented ac-

curately. Unfortunately, it is well-known that analog circuitry inevitably introduces errors

in its various parameters. For instance, floating-gate transistors may be used to implement

the weights of the matrices, but will likely suffer from inaccuracies due to the manufac-

turing or programming processes [59]. In addition, the sharp transition necessary in the

soft-thresholding function may not be realizable in practice. Consequently, a study of the

effect of errors in the various parameters would be valuable to understand the level of ac-

curacy achievable in practical applications. Unfortunately, several difficulties arise when

modeling these inaccuracies. In particular, if the interconnection matrix is no longer sym-

metric due to inaccuracies, an energy function for the network cannot be written, and new

analytic tools must be developed to study the network convergence.
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APPENDIX A

PROPERTIES OF THE LCA

This appendix provides several useful properties of the activation functionTλ(·), cost func-

tion C(·), and objective functionV(·) under Assumptions1 and/or 2.

A.1 Properties of the cost and activation functions

The lemma below presents two relationships satisfied by the state and output variables and

a bound on the subgradient of the activation function when itsatisfies Assumption1.

Lemma 3. If the activation function Tλ(·) satisfies Assumption1, then for all un ∈ R and

an = Tλ(un) the following properties hold:

sign(un) = sign(an), (72)

|an|2 ≤ unan ≤ |un|2 . (73)

Moreover, There exists0 < α such that for all non-constant nodes n∈ Zc and for all

ζn ∈ ∂Tλ(un)

|ζn| ≤ α. (74)

Proof. SinceTλ(·) is locally Lipschitz onR, Proposition 2.1.2 of [36] implies that there

existsα > 0 such that|ζ | ≤ α for all ζ ∈ ∂Tλ(un), so (74) holds.

SinceTλ(0) = 0 andTλ(·) is nondecreasing onR, an = Tλ(un) ≥ 0 for all un ≥ 0, and

an = Tλ(un) ≤ 0 for all un ≤ 0, which proves (72). This fact also implies that

anun = sign(an) |an| sign(un) |un| = |an| |un|

for all un ∈ R. Finally, condition (24) yields that, for allun ∈ R,

|an|2 ≤ |an| |un| = anun ≤ |un|2 ,

which proves (73).
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Next, a method for building a cost functionC(·) with useful properties and that satisfies

the relationship (19) is presented. This lemma is a foundation for many results inChapter3.

Lemma 4. If the activation function Tλ(·) satisfies Assumption1, there exists a cost function

C(·) that satisfies the relationship(19) and obeys

1. C(·) is locally Lipschitz continuous onR,

2. C(·) is even onR,

3. C(·) is nondecreasing onR+,

4. C(0) = 0,

5. C(·) is regular onR.

Proof. Since the activation functionTλ(·) is continuous and increasing onR, it is surjective

on [0, a] for all a ∈ Tλ (R) (whereTλ (R) is the image ofR by Tλ(·)). In other words, for all

ν ∈ (0, a) there existsu ∈ R such thatν = Tλ(u). As a consequence, a functionz−1(·) can be

defined onTλ (R) as follows:

∀ν ∈ Tλ (R), let u ∈ R such thatν = Tλ(u).

1. if u ∈ Zc (which is the set of nodes that do not yield a constant output), thenu is the

unique point inRN satisfyingν = Tλ(u), andz−1(ν) is defined asz−1(ν) = u,

2. if u ∈ Z, there existsk ∈ K , such thatν = Tλ(uk) for all uk ∈ [vk,wk]. In that case,

z−1(ν) can be chosen to bez−1(ν) = wk.

Figure21bshows a visual example of how to constructz−1(·) for the particular activation

function plotted in Figure21a.

Using this definition forz−1(·), the following quantity is well-defined onTλ(R):

C(a) =
∫ a

0
z−1(ν) − ν dν. (75)
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(a) Example of activation function
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(b) Associated inverse function

z−1 z1 ν

z−1(ν) − ν

a

C(a)

(c) Associated cost function

Figure 21:Example of a generic activation functionTλ(·) satisfying Assumption 1, associ-
ated inverse functionz−1(·) and associated cost functionC(·).

The functionC(·) defined this way is locally Lipschitz onTλ (R) and differentiable for a.a.

a ∈ Tλ (R). Figure21c shows the cost function associated with the activation function

plotted in Figure21a.

The following derivation shows thatC(·) indeed satisfies (19). There are two cases.

1. At pointsa whereC(·) is differentiable, the subgradient reduces to∂C(a) = {C′(a)},

and the fundamental theorem of calculus applied to (75) yields

C′(a) = z−1(a) − a = u− a.

As a consequence, for sucha, (19) holds.
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2. For a pointa whereC(·) is not differentiable,

∃k ∈ K s.t. ∀uk ∈ [vk,wk] a = Tλ(uk).

SinceTλ(·) is continuous and strictly increasing on the intervals immediately adjacent

to [vk,wk], there exist two constantsδ1 > 0 andδ2 > 0 such that [wk,wk + δ1] ⊂

R\⋃k′∈K [vk′ ,wk′ ] and [vk − δ2, vk] ⊂ R\
⋃

k′∈K [vk′ ,wk′ ]. In other words, forδ1 andδ2

sufficiently small, the activation function is not constant on the intervals [wk,wk+ δ1]

and [vk − δ2, vk].

Letting
{
w+m

}
m≥0 be a sequence of points in [wk,wk + δ] that converges towk, the

sequence
{
a+m

}
m≥0 =

{
Tλ(w

+
m)

}
m≥0 converges toa = Tλ(wk) by continuity of Tλ(·).

Similarly, letting
{
v−m

}
m≥0 be a sequence of points in [vk − δ, vk] that converges tovk,

the sequence
{
a−m

}
m≥0 =

{
Tλ(v

−
m)

}
m≥0 converges toa = Tλ(vk). Using the fundamental

theorem of calculus and the fact thatC(·) is differentiable ata+m anda−m for all m≥ 0

(by construction) yields,∀t ≥ 0 sufficiently small,

C(a+m + t) −C(a+m)
t

=
1
t

∫ a+m+t

a+m

z−1(ν) − ν dν

−−−→
t→0

z−1(a+m) − a+m = w+m− a+m

−−−−→
t→0

m→∞
wk − a

and

C(a−m − t) −C(a−m)

t
= −1

t

∫ a−m

a−m−t
z−1(ν) − ν dν

−−−→
t→0
−z−1(a−m) + a−m = −v−m+ a−m

−−−−→
t→0

m→∞
−vk + a.

Using the definition of the subgradient in Section2.3.1, it can be easily seen that for

all ξ ∈ ∂C(a), the generalized directional derivative satisfiesC◦(a; 1) = wk − a ≥ 1ξ

andC◦(a;−1) = −vk + a ≥ −1ξ. As a consequence,ξ ∈ [vk − a,wk − a] and thus

∂C(a) = [vk − a,wk − a].
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This equality proves that indeeduk − a ∈ ∂C(a) for all uk ∈ [vk,wk].

As a consequence, the derivation above shows that in every caseu−a ∈ ∂C(a) holds for all

a ∈ Tλ(R), which proves that (19) holds.

By inspection of (75), it is immediate thatC(0) = 0.

It is also easy to check that, sinceTλ(·) is nondecreasing and odd, the functionz−1(·)

defined above is nondecreasing and odd. As a consequence, forall a ∈ Tλ(R), the following

holds:

C(−a) =
∫ −a

0

(
z−1(ν) − ν

)
dν

=

∫ a

0

(
z−1(−ν) + ν

)
(−dν)

=

∫ a

0

(
z−1(ν) − ν

)
dν = C(a).

This computation proves thatC(·) is even.

Finally, for all ν ∈ Tλ(R) such thatν ≥ 0, lettingu = z−1(ν), condition (24) implies that

z−1(ν)−ν = u−z(u) ≥ 0. This fact proves thatC(·) is nondecreasing onR+ by the positivity

of the integral. As a consequence,C(a) ≥ C(0) = 0 for all a ∈ Tλ(R+) and, by symmetry,

for all a ∈ Tλ(R).

To show thatC(·) is regular, it suffices to notice that the usual one-sided derivative exists

for all a ∈ Tλ(R). There are two cases.

1. For pointa whereC(·) is differentiable, the result is obvious.

2. For pointsa whereC(·) is not differentiable, it follows by construction ofz−1(·) that

z−1(a) = wk for somek ∈ K . As a consequence, the right-sided derivative exists and

is the limit for t > 0 sufficiently small of

C(a+ t) −C(a)
t

=
1
t

∫ a+t

a
z−1(ν) − ν dν.

By the fundamental theorem of calculus, this quantity converges toz−1(a) − a =

u − a as t → 0. SoC′(a; 1) = C◦(a; 1). For the left-sided derivative, takingt > 0
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sufficiently small, the following integral can be computed

C(a− t) −C(a)
t

= −1
t

∫ a

a−t
z−1(ν) − ν dν

= −
∫ a

a−t
z−1

0 (ν) − ν dν,

wherez−1
0 (ν) = z−1(ν) everywhere except ata where the function is defined to be

z−1
0 (a) = vk. The two integrals are equal because they only differ at one point. The

functionz−1
0 (·) is now continuous on [a− t, a] and thus, the one-sided integral exists

and can be computed ast → 0 to getC′(a;−1) = −vn + an = C◦(a;−1).

As a consequence,C(·) is regular onTλ(R).

The final lemma below gives a set of properties for variables that are useful in the study

of the LCA dynamics. These variables were defined in (36), and their definition is given

again below:

ũn(t) = un(t) − u∗n,

ãn(t) = an(t) − a∗n = Tλ(̃un(t) + u∗n) − Tλ(u
∗
n).

Intuitively, these variables measure the distance of the states and outputs from any arbitrary

fixed pointsu∗ anda∗ = Tλ(u∗) of (8).

Lemma 5. If the activation function Tλ(·) satisfies Assumption1, then the set of variables

ũ andã defined in(36) satisfies the following properties:

(i) sign(̃an) = sign(̃un),

(ii) |̃an| ≤ α |̃un| ,

(iii) ãT
T ãT ≤ αũT

T ãT ≤ α2̃uT
T ũT for anyT (in particular forT = Γ̃).

Proof. Each of the three properties will be treated separately.
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(i) For anyũn ∈ R, let sn = sign(̃un). Since the activation function is nondecreasing and

odd (i.e., Tλ(−un) = −Tλ(un)),

sn = sign(̃un)⇒ 0 ≤ sñun

⇒ snu
∗
n ≤ sñun + snu

∗
n

⇒ Tλ
(
snu

∗
n

) ≤ Tλ
(
sñun + snu

∗
n

)
(sinceTλ(·) is nondecreasing)

⇒ snTλ
(
u∗n

) ≤ snTλ
(̃
un + u∗n

)
(sinceTλ(·) is odd)

⇒ 0 ≤ sn
[
Tλ

(̃
un + u∗n

) − Tλ
(
u∗n

)]

⇒ 0 ≤ sñan

⇒ sign(̃an) = sn = sign(̃un).

(ii) Since Tλ(·) is locally Lipschitz onR, the mean-value theorem for nonsmooth func-

tions (Theorem 2.3.7 in [36]) applies and states that there existun ∈
(̃
un + u∗n, u

∗
n

)
and

ζn ∈ ∂Tλ
(
un

)
such that

Tλ(̃un + u∗n) − Tλ(u
∗
n) = ζn

(̃
un + u∗n − u∗n

)
= ζ ñun.

Applying the bound (74) on the subgradients ofTλ(·) onR yields

|̃an| =
∣∣∣Tλ(̃un + u∗n) − Tλ(u

∗
n)
∣∣∣ =

∣∣∣∣∣ζ ñun

∣∣∣∣∣ ≤ α |̃un| .

(iii) Properties (i) and (ii) imply the final property:

ãT
T ãT =

∑

n∈T
ãñan =

∑

n∈T
|̃an| |̃an|

≤
∑

n∈T
α |̃un| |̃an| = α

∑

n∈T
ũñan = αũ

T
T ãT

≤
∑

n∈T
α |̃un|α |̃un| = α2

∑

n∈T
ũñun = α

2ũT
T ũT .

A.2 Time derivative of the objective function

This section contains results on the evolution of the objective function with respect to time.
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Lemma 6. For an activation function satisfying Assumption1 and a cost function con-

structed as in Lemma4, the objective V(a(·)) in (6) is continuous and regular onR+. In

addition, its time derivative satisfies for a.a. t≥ 0 and for anyζn ∈ ∂Tλ(un(t)) the two

equalities

V̇(a(t)) = −
∑

n<Z

ζn |u̇n(t)|2 , (76)

V̇(a(t)) = −
∑

n<Z

1
ζn
|ȧn(t)|2 . (77)

Proof. Since the activation functionTλ(·) is locally Lipschitz onR, it is differentiable al-

most everywhere. For constant nodesn ∈ Z, the output is constant and thus ˙an(t) = 0.

Using the chain rule (12), non-constant nodes forn < Z satisfy ȧn(t) = ζnu̇n(t) for any

ζn ∈ ∂Tλ(un(t)). SinceC(·) is regular onTλ(R), V(a(·)) is regular for allt ≥ 0 and by the

chain rule (14), any element in∂V(a(t)) can be used to compute the time derivativeV̇(a(·))

along the LCA trajectories. In particular, by Lemma1, using−u̇(t) ∈ ∂V(a(t)) yields, for

a.a.t ≥ 0,

V̇(a(t)) = −u̇(t)T ȧ(t)

= −
N∑

n=1

u̇n(t)ȧn(t)

= −
∑

n<Z

ζn |u̇n(t)|2

= −
∑

n<Z

1
ζn
|ȧn(t)|2 ,

where the last inequality holds sinceζn > 0 for all n < Z.

Using the expression for the derivative ofV(·) with respect to time, it is straightforward

to show that the objective functionV(·) is decreasing and converges to a positive value.

Corollary 2. For an activation function satisfying Assumption1 and a cost function con-

structed as in Lemma4, the objective V(a(·)) in (6) is decreasing for all t≥ 0 and converges

to a limit V∗ ≥ 0 as t goes to infinity.
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Proof. Equation (77) in Lemma6 states that a.a.t ≥ 0, for anyζn ∈ ∂Tλ(un(t))

dV(a(t))
dt

= −
∑

n<Z

1
ζn
|ȧn(t)|2 ,

with ζn > 0 for all n < Z (corresponding to non-constant outputs by definition). Asa

consequence

dV(a(t))
dt

≤ 0, for a.a.t ≥ 0

This inequality shows that sinceC(·) in continuous onTλ(R) and lower-bounded by zero

by Lemma4, the objective functionV(a(t)) is continuous, bounded below by zero, and

nonincreasing for allt ≥ 0. Thus,V(a(t)) converges to a constant valueV∗ ≥ 0 ast goes to

infinity (note: the continuity ofV(a(t)) is essential for this result to hold).

A.3 Boundedness of the objective, the states and outputs

The following result proves that, while the activation function may be constant on many

intervals and unbounded, the state and output are guaranteed to remain bounded throughout

convergence.

Lemma 7. For an activation function satisfying Assumption1 and a cost function con-

structed as in Lemma4, the objective V(a(·)) in (6) satisfies for all t≥ 0

0 ≤ V(a(t)) ≤ V(a(0)).

In addition, the output a(t) and state variables u(t) of the system(8) are bounded∀t ≥ 0.

Proof. From (76) and the fact thatζn > 0 for all n < Z, it can be concluded thaṫV(a(t)) ≤ 0

for a.a.t ≥ 0. As a consequence,∀t > 0

V(a(t)) − V(a(0)) =
∫ t

0
V̇(a(s))ds,

and since 0< t andV̇(a(s)) ≤ 0 for a.a.s ∈ (0, t), by the positivity of the integral, it can be

seen thatV(a(t)) ≤ V(a(0)) for all t ≥ 0.
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In the following, the boundedness of the stateu(t) is shown. For this proof, it is first

shown that both‖Φa(t)‖2 and‖Φu(t)‖2 are bounded∀t ≥ 0. By Lemma4, C(an) ≥ 0 for all

an ∈ R. Thus, for allt ≥ 0,

0 ≤ 1
2
‖y− Φa(t)‖22 ≤ V(a(t)) ≤ V(a(0)).

The triangle inequality yields

‖Φa(t)‖2 − ‖y‖2 ≤
√

2V(a(0)).

This inequality shows that‖Φa(t)‖2 is bounded∀t ≥ 0. As a consequence, there must exist

a constantC1 ≥ 0 such that,∀t ≥ 0,

∥∥∥(I − ΦΦT)Φa(t) + ΦTy
∥∥∥

2
≤ σ1 ‖Φa(t)‖2 +

∥∥∥ΦTy
∥∥∥

2
≤ C1,

whereσ1 ≥ 0 is the largest eigenvalue of the interconnection matrixW = ΦΦT − I . This

inequality implies that‖Φu(t)‖2 is also bounded fort ≥ 0. Indeed, using the Cauchy-

Schwartz inequality, the time-derivative of 1/2‖Φu(t)‖22 satisfies

d
dt

1
2
‖Φu(t)‖22 = u(t)ΦTΦu̇(t)

= uTΦTΦ(−u(t) + a(t) − ΦTΦa(t) + ΦTy)

≤ − ‖Φu(t)‖22 + ‖Φu(t)‖2 C1

≤ − ‖Φu(t)‖2 (‖Φu(t)‖2 −C1) .

As a consequence, the set
{
u ∈ RN s.t. ‖Φu‖2 ≤ C1

}
is attractive, and by continuity,‖Φu(t)‖2

is bounded∀t ≥ 0. It is not possible to conclude directly that‖u(t)‖2 is bounded because

the matrixΦ may be singular. Any vectoru in its nullspace can grow unbounded while

‖Φu‖2 remains bounded. However,u(t) can be decomposed into its componentu1(t) that

lies in the nullspace ofΦ and its componentu2(t) that lies in the range ofΦT. These two

vectors are orthogonal (this property comes from the singular value decomposition ofΦ),

and the following shows that each of them is bounded. Sinceu1(t) is in the nullspace of
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Φ, Φu(t) = Φu2(t). Sinceu2(t) is in the range ofΦT , there existsx2(t) ∈ RM such that

u2(t) = ΦT x2(t). Using the Cauchy-Schwartz inequality yields

‖x2(t)‖2 ‖Φu(t)‖2 ≥ x2(t)
TΦu(t)

= x2(t)
TΦu2(t)

= x2(t)
TΦΦT x2(t)

≥ σ2
2 ‖x2(t)‖22 ,

whereσ2 > 0 is the smallest singular value ofΦT restricted to its range (so it is strictly

positive). Lettingσ3 be the largest singular value ofΦT ,

‖u2(t)‖2 =
∥∥∥ΦT x2(t)

∥∥∥
2
≤ σ3 ‖x2‖2 ≤ σ3σ

−2
2 ‖Φu(t)‖2 .

The inequality above shows that‖u2(t)‖2 is bounded, since‖Φu(t)‖2 is bounded. More-

over, using the fact thatΦu1(t) = 0, the time-derivative of 1/2‖u1(t)‖22 can be computed as

follows:

d
dt

1
2
‖u1(t)‖22 = u1(t)

T u̇1(t)

= u1(t)
T
(
−u(t) + a(t) + ΦTy− ΦTΦa(t)

)
1

= −u1(t)
Tu1(t) + u1(t)

Ta1(t) ≤ 0,

where the last inequality follows from (73). As a consequence,‖u1(t)‖2 is also bounded

∀t ≥ 0. The two bounds obtained prove that‖u(t)‖2 ≤ ‖u1(t)‖2+ ‖u2(t)‖2 is bounded∀t ≥ 0.

Finally, sinceTλ(·) is continuous onR and ‖u(t)‖2 is bounded∀t ≥ 0, ‖Tλ(u(t))‖2 is

bounded∀t ≥ 0, which means that‖a(t)‖2 is bounded∀t ≥ 0.

The following corollary demonstrates that under certain conditions of Assumptions1

and2, the subgradients of the activation function at non-constant nodes are lower-bounded

by a strictly positive constant.
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Corollary 3. If the activation function Tλ(·) in (23) satisfies conditions(24) and (26), then

there exist two constants0 < β ≤ α such that for all non-constant nodes n∈ Zc, ∀t ≥ 0,

and∀ζn ∈ ∂Tλ(un(t)), the following holds:

β ≤ ζn ≤ α.

Proof. The proof that (24) implies the existence ofα was done in Lemma3. By Lemma7,

there exists a boundµ > 0 such that‖un(t)‖2 ≤ µ for all t ≥ 0. Since by Assumption1,

there exists only a finite number of intervals inZ (whereTλ(·) is constant) on any bounded

interval ofR, there must also exist only a finite number of open intervals in [0, µ]\Z. Each

of these open intervalsU ⊂ [0, µ]\Z is obviously bounded, and thus (26) guarantees the

existence of a constantβU > 0 such thatζn ≥ βU for all un ∈ U and allζn ∈ ∂Tλ(un). As

a consequence, since there is only a finite number of these intervalsU, the minimumβ

over all the constantsβU exists, and it is guaranteed thatβ > 0. Thus, the first part of the

corollary’s inequality holds for anyun ∈ [0, µ]\Z, and as a result for allt ≥ 0.

A.4 Subanalicity of the objective

The final part of this appendix proves that if the activation functionTλ(·) is subanalytic,

then the associated cost function and objective function are also subanalytic. The proof

only uses the facts thatTλ(·) is subanalytic and bounded on bounded intervals, but is stated

under the stronger conditions in Assumptions1 and2.

Lemma 8. If the activation function Tλ(·) satisfies Assumptions1and2, then the associated

cost function C(·) constructed as in Lemma4 and the objective function V(a(·)) in (6) are

subanalytic.

Proof. From Assumption2, Tλ(·) is subanalytic. As a consequence, by the definition of

a subanalytic function in Section2.4.1, every point (u, a) ∈ R × R admits a neighborhood

Bδ1(u) × Bδ2(a) for someδ1, δ2 > 0, such that

(u, a) ∈ GrafTλ ∩
(Bδ1(u) × Bδ2(a)

) ⇔ (u, a) ∈ A,

119



whereA is a bounded semianalytic subset ofR × R. Furthermore, sinceTλ(·) is locally

Lipschitz, it is locally bounded, and so for any (u, a) ∈ GrafTλ(R), there exists a bounded

semianalytic setB ⊂ Rm, with m≥ 1, a finite stratification{I i , Ji , Bi}i=1,...,p ⊂ [0, u]×[0, a]×B

and analytic functionsfi(·, ·, ·) : I i × Ji × Bi → R for i = 1, . . . , p such that

fi(u, a, y) = 0, ∀(u, a, y) ∈ (GrafTλ × B) ∩ (I i × Ji × Bi) .

Since eachfi(·) is analytic, by the implicit function theorem, there exista finite number of

subsets
{
J′i j × B′i j → I ′i j

}
j=1,...,q

⊂ Ji × Bi → I i and analytic functionsgi j (·, ·) : J′i j × B′i j → I ′i j

that satisfy

u = gi j (a, y) ⇔ fi(u, a, y) = 0, ∀(u, a, y) ∈ (GrafTλ × B) ∩
(
I ′i j × J′i j × B′i j

)
.

As a consequence, for any (a, c) ∈ Grafc with |a| ≤ a0,

c = C(a) =
∫ a

0
z−1(ν) − ν dν

=

p∑

i=1

∫

Ji

z−1(ν) − ν dν

=

p∑

i=1

q∑

j=1

∫

J′i j×B′i j

gi j (ν, y) − ν dν dy.

The derivation above uses the fact that (z−1(ν), ν) ∈ GrafTλ by construction ofz−1(·). Since

eachgi j (J′i j × B′i j ) = I ′i j is bounded for any|a| < a0, then the above expression is also

bounded by some constantc0 > 0. As a consequence,

(a, c) ∈ Grafc∪ [−a0, a0] × [0, c0] ⇔
a ,

p∑

i=1

q∑

j=1

∫

J′i j×B′i j

gi j (ν, y) − ν dν dy

 ∩ [−a0, a0] × [0, c0].

Since the above expression only contains bounded semianalytic sets and analytic functions,

the set Grafc is subanalytic, and as a resultC(·) is subanalytic.

To show thatV(·) is subanalytic, its graph is expressed as the projection onto the first
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and last component of the set

{
(a, v1, b, v2, v) ∈ RN × R × RN × R × R s.t.

1
2
‖y−Φa‖2 = v1, λ

N∑

n=1

C(bn) = v2, a = a2, v = v1 + v2



= (GrafF1 ×GrafF2 × R)
⋂{

a, a2, v1, v2, v ∈ R2N+3 s.t. a = a2, v = v1 + v2

}
,

whereF1(a) =
1
2
‖y−Φa‖22 andF2(b) =

∑N
n=1 C(bn) are subanalytic and locally bounded.

The projection theorem of [44, Th 2.3] implies that GrafV is a subanalytic set. As a conse-

quence,V(·) is subanalytic onRN

121



APPENDIX B

DIFFERENTIAL EQUATIONS

In this appendix, several properties that apply to solutions of differential equations are

presented. They are then applied to the LCA trajectories, which are solutions of (8).

B.1 Gronwall’s Lemma

The following is a fundamental result for solutions of differential equations, known as

Gronwall’s Lemma. It can take two forms (one with an equalityand one with an inequality)

that have been combined in the lemma below. This result is fundamental for the analyses

of the LCA and is applied on multiple occasions in the proofs.

Lemma 9 (Gronwall’s Lemma). Let a∈ R. If x(·) : R+ → R satisfies

dx(t)
dt
≦ −ax(t) + F(x(t), t),

x(0) = x0,

then the following holds∀t ≥ 0:

x(t) ≦ e−atx0 + e−at

∫ t

0
easF(x(s), s)ds. (78)

Proof. The following derivation holds∀t ≥ 0:

d
dt

(
eatx(t)

)
= aeatx(t) + eat d

dt
(x(t))

≦ aeatx(t) + eat (−ax(t) + F(x(t), t))

≦ eatF(x(t), t).

Integrating on both sides from 0 tot (using the positivity of the integral) yields

eatx(t) − x(0) ≦
∫ t

0
easF(x(s), s)ds.
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As a consequence,

x(t) ≦ e−atx0 + e−at

∫ t

0
easF(x(s), s)ds.

A proof similar to that of Gronwall’s Lemma yields the following result, which applies

to a linear system of ODEs with a constant matrix.

Lemma 10. Let x(·) : R+ → RN, A a symmetric matrix inRN×N and b(·, ·) : RN×R+ → RN.

The solution to the system of ODE


ẋ(t) = Ax(t) + b(x(t), t)

x(tk) = xtk

(79)

is ∀t ≥ tk

x(t) = eA(t−tk)xtk + eAt

∫ t

tk

e−Aνb(ν)dν. (80)

In the case where b(·, ·) = b is a constant vector inRN, the solution can also be written as

x(t) = eA(t−tk)xtk +
(
I − eA(t−tk)

)
A−1b.

In the above expression,
(
I − eAt

)
A−1 is well-defined even when the matrixA is singular.

To illustrate this fact, the matrixA can be expressed asA = PΛP−1, whereΛ is a diagonal

matrix with diagonal elementsλi; i.e. Λ = diag(λ1, . . . , λn). Using this decomposition

yields

(
I − eAt

)
A−1 = P

(
I − eΛt

)
Λ−1P−1

= P diag
((

1− eλ1t
)
λ−1

1 , . . . ,
(
1− eλnt

)
λ−1

n

)
P−1

The following Taylor expansion asλi goes to zero can be used to see that the diagonal

elements are well-defined even whenλi = 0:

λ−1
i

(
1− eλi t

)
= λ−1

i

(
−λit + o(λ2

i )
)
= −t + o(λi).

By continuity,
(
1− eλi t

)
λ−1

i = −t whenλi = 0. As a result, the matrix
(
I − eAt

)
A−1 is well

defined.
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B.2 LCA trajectories forℓ1-minimization

In this section, the activation function is assumed to be thesoft-thresholding function, so

that the LCA solves theℓ1-minimization program (5). In this case, the LCA is a type

of switched linear system [81], where the dynamics are governed by a linear ODE that

changes every time a node crosses threshold (i.e., moves into or out of the active set).

Between switching times, the active setΓ is fixed, ȧΓ(t) = u̇Γ(t), and the ODE (8) can be

partially decoupled as follows:

ȧΓ(t) = −ΦT
ΓΦΓaΓ(t) + Φ

T
Γy− λsΓ(t), (81)

u̇Γc(t) = −uΓc(t) − ΦT
ΓcΦΓaΓ(t) + Φ

T
Γcy. (82)

Applying the results in Lemma10, the solution to (81) on the active setΓ between

switching timestk andtk+1 is given by

aΓ(t) = e−A(t−tk)atk
Γ
+

(
I − e−A(t−tk)

)
A−1

(
ΦT
Γy− λsΓ

)
, (83)

whereA = ΦT
Γ
Φ
Γ

andatk
Γ
= a

Γ
(tk). In the case whereΦT

Γ
Φ
Γ

is nonsingular, the point

a∞Γ = A−1
(
ΦT
Γy− λsΓ

)

can be viewed as the steady state of (81) if the active set and sign vectorsΓ remained

unchanged until convergence. The pointsa∞
Γ

play a key role in the analysis of the LCA in

Chapter4 and in the following (see Lemma11).

The solution to the linear ODE (82) on the inactive setΓc between switching timestk

andtk+1 is given by

uΓc(t) = e−(t−tk)utk
Γc + e−t

∫ t

tk

eνρΓc(ν)dν, (84)

whereρΓc(ν) = ΦT
Γc (y− ΦΓaΓ(ν)) andutk

Γc = u
Γc(tk). Lettingt go to infinity in equations (83)

and (84), the fixed pointa∗, which is supported on the final active setΓ∗, must satisfy

a∗Γ∗ =
(
ΦT
Γ∗
ΦΓ∗

)−1 (
ΦT
Γ∗

y− λsΓ∗
)
,

u∗Γc
∗
= ΦT

Γc
∗

(
y− ΦΓ∗a∗Γ∗

)
.
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Since a nodej is in the inactive setΓc
∗ if and only if

∣∣∣u j

∣∣∣ ≤ λ, the two equations above

translate immediately to

a∗Γ∗ =
(
ΦT
Γ∗
ΦΓ∗

)−1 (
ΦT
Γ∗

y− λsΓ∗
)
,

∥∥∥∥ΦT
Γc
∗

(
y−ΦΓ∗a∗Γ∗

)∥∥∥∥∞ ≤ λ,
(85)

which are the two well-known optimality conditions fora∗ to be the solution of (5) [82].

B.3 LCA inequalities

The proofs of Theorems7 and8 make use of the following two lemmas, which provide

bounds on some relevant quantities. The first lemma is statedbelow and bounds theℓ2-

distance between the pointsa∞
Γ

and the target signala†.

Lemma 11. Let a∞ be a vector supported on a setΓ that contains less than p indices,

sΓ = sign
(
a∞
Γ

)
, and assume

ΦT
ΓΦΓa

∞ = ΦT
Γy− λsΓ.

Let R=
∣∣∣Γ ∪ Γ†

∣∣∣ be the number of elements in the support of
(
a∞ − a†

)
. If Φ satisfies the

RIP with parameters(R, δ), then the following holds:

∥∥∥a∞ − a†
∥∥∥

2
≤ (1− δ)−1

(∥∥∥a†
∥∥∥

2
+
√

1− δ ‖ǫ‖2 + λ
√

p
)

︸                                             ︷︷                                             ︸
=(1−δ)(1+δ)−1Bδ(p)

.

Proof. SinceΦ satisfies the RIP with parameters (S,R), using the results in Lemma14and

15 with |Γ| = p ≤ R, Γ1 = Γ andΓ2 = Γ†, then

∥∥∥∥
(
ΦT
ΓΦΓ

)−1
∥∥∥∥ ≤ (1− δ)−1,

∥∥∥∥ΦT
ΓΦΓ†∩Γc

∥∥∥∥ ≤ δ,
∥∥∥∥
(
ΦT
ΓΦΓ

)−1
ΦT
Γ

∥∥∥∥
2
≤ (1− δ)−1.

Splittinga† into its components onΓ andΓc yields the two equalities

a†
Γ
=

(
ΦT
ΓΦΓ

)−1
ΦT
ΓΦΓa

†
Γ
,

Φ
(
a† − a†

Γ

)
= ΦΓca†

Γc.

125



Applying these facts to finish the proof results in

∥∥∥a∞ − a†
∥∥∥

2
=

∥∥∥∥
(
ΦT
ΓΦΓ

)−1 (
ΦT
Γy− λsΓ

)
− a†

∥∥∥∥
2

=

∥∥∥∥
(
ΦT
ΓΦΓ

)−1 (
ΦT
Γ

(
Φa† + ǫ

)
− λsΓ

)
− a†

Γ
− a†

Γc

∥∥∥∥
2

=

∥∥∥∥
(
ΦT
ΓΦΓ

)−1
ΦT
ΓΦΓca†Γc + a†

Γ
+

(
ΦT
ΓΦΓ

)−1
ΦT
Γ ǫ − λ

(
ΦT
ΓΦΓ

)−1
sΓ − a†

Γ
− a†

Γc

∥∥∥∥
2

≤
∥∥∥∥
(
ΦT
ΓΦΓ

)−1
∥∥∥∥
∥∥∥∥ΦT
ΓΦΓ†∩Γc

∥∥∥∥
∥∥∥a†
Γc

∥∥∥
2
+

∥∥∥a†
Γc

∥∥∥
2

+

∥∥∥∥
(
ΦT
ΓΦΓ

)−1
ΦT
Γ

∥∥∥∥ ‖ǫ‖2 + λ
∥∥∥∥
(
ΦT
ΓΦΓ

)−1
∥∥∥∥ ‖sΓ‖2

≤ (1− δ)−1δ
∥∥∥a†
Γc

∥∥∥
2
+

∥∥∥a†
Γc

∥∥∥
2
+
√

1− δ−1 ‖ǫ‖2 + λ(1− δ)−1√p

≤ (1− δ)−1
(∥∥∥a†

∥∥∥
2
+
√

1− δ ‖ǫ‖2 + λ
√

p
)
.

The lemma below states that theℓ2-distance of the outputa(t) to the target signala†

remains bounded for all timet ≥ 0.

Lemma 12. Assume that, at switching time tk, the current active setΓk contains less than

p indices,Φ satisfies the RIP with parameters(Rk, δ), where Rk =
∣∣∣Γk ∪ Γ†

∣∣∣, and that

∥∥∥a(tk) − a†
∥∥∥

2
≤ Bδ(p).

Then, for all t∈ [tk, tk+1],
∥∥∥a(t) − a†

∥∥∥
2
≤ Bδ(p).

Proof. Definea∞
Γk

such thatΦT
Γk
Φ
Γk

a∞
Γk
= ΦT

Γk
y− λsΓk. Lemma11 implies that

∥∥∥a∞Γk
− a†

∥∥∥
2
≤ (1− δ)(1+ δ)−1Bδ(p).
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Using the dynamics in (83) shows that,∀t ∈ [tk, tk+1),

∥∥∥a(t) − a†
∥∥∥

2
=

∥∥∥aΓk(t) − a†
∥∥∥

2

=
∥∥∥e−A(t−tk)aΓk(tk) +

(
I − e−A(t−tk)

)
a∞Γk
− a†

∥∥∥∥
2

≤
∥∥∥∥
(
e−A(t−tk) + e−(1−δ)(t−tk)IΓc

k

) (
aΓk(tk) − a†

)∥∥∥∥
2

+

∥∥∥∥
(
I − e−A(t−tk) − e−(1−δ)(t−tk)IΓc

k

) (
a∞Γk
− a†

)∥∥∥∥
2

≤
∥∥∥e−A(t−tk) + e−(1−δ)(t−tk)IΓc

k

∥∥∥
∥∥∥aΓk(tk) − a†

∥∥∥
2

+
∥∥∥I − e−A(t−tk) − e−(1−δ)(t−tk)IΓc

k

∥∥∥
∥∥∥a∞Γk
− a†

∥∥∥
2

≤ e−(1−δ)(t−tk)
∥∥∥aΓk(tk) − a†

∥∥∥
2
+

(
1− e−(1+δ)(t−tk)

) ∥∥∥a∞Γk
− a†

∥∥∥
2

≤ e−(1−δ)(t−tk)Bδ(p) +
(
1− e−(1+δ)(t−tk)

) 1− δ
1+ δ

Bδ(p)

(i)
≤ Bδ(p).

The functionh(·) below is used to prove the last inequality in the above derivation:

h(t) =
(
1− e−(1−δ)t

)
B−

(
1− e−(1+δ)t

) 1− δ
1+ δ

B.

The derivative ofh(t) is

h′(t) = (1− δ) e−(1−δ)tB− (1− δ) e−(1+δ)tB

= (1− δ) B
(
e−(1−δ)t − e−(1+δ)t

)
≥ 0.

Sinceh(0) = 0, andh′(t) ≥ 0 for all t ≥ 0, thenh(t) ≥ 0 for all t ≥ 0, and the inequality (i)

holds.

Finally, since the vectora(t) − a† is continuous with time:

∥∥∥aΓk+1(tk+1) − a†
∥∥∥

2
=

∥∥∥aΓk(tk+1) − a†
∥∥∥

2
≤ Bδ(p).

Finally, the lemma below is used repeatedly in the proofs andstates that if the energy in

theq nodes with largest magnitude inu(t) satisfy a certain inequality, then there is no more

thanq active nodes at timet.
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Lemma 13. If ∆ contains the indices of the q entries with largest absolute values in u(t)

and

‖u∆(t)‖2 ≤ λ
√

q,

then the active setΓ corresponding to the non-zero elements in a(t) = Tλ(u(t)) is a subset

of∆ and contains less than q indices; i.e.,Γ ⊂ ∆, and as a result|Γ| ≤ q.

Proof. Since∆ contains theq nodes with largest absolute values inu(t), then∀ j ∈ ∆c,

∣∣∣u j(t)
∣∣∣ ≤ ‖u∆(t)‖2√

q
≤ λ.

As a consequence, nodes in∆c are below threshold, which proves that only the nodes in∆

can be non-zero ina(t). Thus,Γ ⊂ ∆ and|Γ| ≤ |∆| = q.
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APPENDIX C

MATRIX PROPERTIES

The following lemmas are consequences of the RIP, defined in (2), that are used repeatedly

in the proofs in this thesis. The first lemma has been proven several times in literature (for

instance [28, Prop. 3.1, 3.2]), but it is repeated below for completeness.

Lemma 14. If Φ satisfies the RIP with parameters(S, δ) and the setΓ contains less than S

indices, then∀x ∈ RN supported onΓ and∀y ∈ RM, the following holds:

∥∥∥ΦT
Γ x

∥∥∥
2
≤
√

1+ δ ‖x‖2 ,

(1− δ) ‖x‖2 ≤
∥∥∥ΦT
ΓΦΓx

∥∥∥
2
≤ (1+ δ) ‖x‖2 ,

1
1+ δ

‖x‖2 ≤
∥∥∥∥
(
ΦT
ΓΦΓ

)−1
x
∥∥∥∥

2
≤ 1

1− δ ‖x‖2 ,
1

√
1+ δ

‖x‖2 ≤
∥∥∥∥
(
ΦT
ΓΦΓ

)−1
ΦT
Γ x

∥∥∥∥
2
≤ 1
√

1− δ
‖x‖2 .

Proof. The RIP implies that theS non-zero singular values ofΦΓ are contained between
√

1− δ and
√

1+ δ, which entails the first inequality. Taking the singular value decomposi-

tion ofΦΓ = UΣVT , whereU is aM×S matrix with orthogonal columns,Σ is aS×S matrix

with theS non-zero singular values ofΦΓ on the diagonal, andV is aS×N unitary matrix,

it is easy to check that the singular values ofΦT
Γ
Φ
Γ
= VΣ2VT are contained between (1− δ)

and (1+ δ), which proves the second inequality. This fact also implies that the singular

values of
(
ΦT
Γ
Φ
Γ

)−1
= V

(
Σ2

)−1
VT are contained between (1+ δ)−1 and (1− δ)−1, yielding

the third inequality. Finally, the singular value decomposition of
(
ΦT
Γ
Φ
Γ

)−1
ΦT
Γ

is equal to
(
ΦT
Γ
Φ
Γ

)−1
ΦT
Γ
=

(
V

(
Σ2

)−1
VT

)
VΣUT = VΣ−1UT , which shows that its singular values are

contained between
√

1+ δ−1 and
√

1− δ−1 and proves the last inequality.

The following lemma provides slightly more complicated consequences of the RIP that

involve two (not necessarily disjoint) subsets of indices.
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Lemma 15. If Φ satisfies the RIP with parameters(S + q, δ), the setΓ1 contains less than

q indices, and the setΓ2 contains less than S indices, then∀x ∈ RN supported onΓ1 ∪ Γ2,

the following holds:

∥∥∥∥ΦT
Γ1
Φ(Γc

1∩Γ2)x
∥∥∥∥

2
≤ δ ‖x‖2 ,

∥∥∥∥
(
IΓ1 −ΦT

Γ1
Φ(Γ1∪Γ2)

)
x
∥∥∥∥

2
≤ δ ‖x‖2 .

Proof. Since the setΓ1 ∪ Γ2 contains less thatS + q indices, the RIP implies that the

eigenvalues ofΦT
(Γ1∪Γ2)Φ(Γ1∪Γ2) are contained between (1−δ) and (1+δ). As a consequence,

the eigenvalues denoted by sp(·) (for spectrum) of the following matrix

G(Γ1∪Γ2) := I(Γ1∪Γ2) − ΦT
(Γ1∪Γ2)Φ(Γ1∪Γ2)

can be deduced:

sp
(
G(Γ1∪Γ2)

) ≤ max{1− (1− δ),−1+ (1+ δ)} = δ,

and

sp
(
G(Γ1∪Γ2)

) ≥ min{1− (1+ δ),−1+ (1− δ)} = −δ.

The matricesΦT
Γ1
Φ(Γc

1∩Γ2)
and

(
IΓ1 −ΦT

Γ1
Φ(Γ1∪Γ2)

)
are submatrices of the matrixG(Γ1∪Γ2), in

the sense that

ΦT
Γ1
Φ(Γc

1∩Γ2) = ΠΓ1G(Γ1∪Γ2)ΠΓc
1

and
(
IΓ1 −ΦT

Γ1
Φ(Γ1∪Γ2)

)
= ΠΓ1G(Γ1∪Γ2),

whereΠΓi denotes the projection onto the set of indicesΓi. The operator norm of the

projection operatorΠΓi is 1. As a consequence, the operator norms of the two matrices

ΦT
Γ1
Φ(Γc

1∩Γ2)
and

(
IΓ1 −ΦT

Γ1
Φ(Γ1∪Γ2)

)
are bounded by the operator norm of the larger matrix

G(Γ1∪Γ2), which its largest eigenvalue and is equal toδ.
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APPENDIX D

DISCONTINUOUS ACTIVATION FUNCTION

In CS and other applications, it can be useful to consider a neural network with a discon-

tinuous activation function. This appendix provides some preliminary results for the study

of such networks.

D.1 Cost function

In a first step, the method developed in Lemma4 for building a cost functionC(·) that

satisfies the relationship (19) is extended to the case where the activation function may

contain discontinuities.

Assumption 4. The activation function Tλ(·) is locally bounded, admits directional deriva-

tives, is odd and nondecreasing onR. In addition, there existλ ≥ 0, and locally finitely

many{(vk,wk, zk, dk)}k∈K in R×R×R, with uk < wk, such that Tλ(·) has a jump discontinuity

at dk and has the form

an = Tλ(un) =



0, |un| ≤ λ

zk, |un| ∈
⋃

k∈K [vk,wk] := Z

is strictly increasing otherwise withζn > 0, ∀ζn ∈ ∂Tλ(un)

(86)

and satisfies

|Tλ(un)| ≤ |un| , ∀un ∈ R. (87)

Explicitly, the form in (86) means that Tλ(·)

• is exactly zero on the interval[−λ, λ],

• is constant on a countable and locally finite number of intervals denoted byZ (which

include the interval[−λ, λ] and potentially the case where wk is equal to infinity for

some k),
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• has a locally finite number of points dk at which is it discontinuous, and

• is otherwise strictly increasing on any open intervalU in R\Z (where Tλ(·) is not

constant) with strictly positive subgradients.

Lemma 16. If the activation function Tλ(·) satisfies Assumption4, there exists a cost func-

tion C(·) that satisfies the relationship(19) and obeys

1. C(·) is locally Lipschitz continuous onR,

2. C(·) is even onR,

3. C(·) is nondecreasing onR+,

4. C(0) = 0,

5. C(·) is regular onR.

Proof. Similar to the construction of the inverse function in Lemma4, the first step is to

construct an inverse functionz−1(·) for the activation functionTλ(·). For points that belong

to the imageTλ(R) of the activation function, the inverse function can be defined as in

Lemma4. To reiterate, for these pointsν ∈ Tλ(R), there existsu ∈ R such thatν = Tλ(u).

As a consequence, the functionz−1(·) can be defined onTλ (R) as follows:

∀ν ∈ Tλ (R), let u ∈ R such thatν = Tλ(u).

1. if u ∈ Zc (which is the set of nodes that do not yield a constant output), thenu is the

unique point inRN satisfyingν = Tλ(u), andz−1(ν) is defined asz−1(ν) = u,

2. if u ∈ Z, there existsk ∈ K such thatν = Tλ(uk) for all uk ∈ [vk,wk]. In that case,

z−1(ν) is chosen to bez−1(ν) = wk.

For points that do not belong to the image of the activation functionν < Tλ(R), there exists

a point of discontinuitydk such that

lim
u→dk
u<dk

Tλ(u) ≤ ν ≤ lim
u→dk
u>dk

Tλ(u).
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The two points

lk = lim
u→dk
u<dk

Tλ(u),

mk = lim
u→dk
u>dk

Tλ(u),

exist sinceTλ(·) admits directional derivatives by assumption. Then, the functionz−1(ν) can

be chosen asz−1(ν) = dk for all ν ∈ [lk,mk). Figure22billustrates how to constructz−1(·)

for a particular activation function plotted in Figure22a.

Using this definition, the following quantity is well-defined onTλ(R):

C(a) =
∫ a

0
z−1(ν) − ν dν. (88)

The functionC(·) defined this way is locally Lipschitz onTλ (R) and differentiable for a.a.

a ∈ Tλ (R). Figure22c shows the cost function associated with the activation function

plotted in Figure22a.

The following derivation shows thatC(·) is regular and satisfies (19). There are two

cases.

1. At pointsa whereC(·) is differentiable, the subgradient reduces to∂C(a) = {C′(a)},

and the fundamental theorem of calculus yields

C′(a) = z−1(a) − a = u− a.

As a consequence, for sucha, (19) holds.

2. For pointsa whereC(·) is not differentiable, it follows by construction ofz−1(·) that

z−1(a) = wk for somek ∈ K . As a consequence, a similar analysis to the proof of

Lemma4 shows that the right-sided derivative ofC(·) exists and is the limit fort > 0

sufficiently small of

C(a+ t) −C(a)
t

=
1
t

∫ a+t

a
z−1(ν) − ν dν.
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d−1
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u

ν

(a) Example of activation function

l−1
m−1 z−1 z1 l1 m1 ν

d−1

v−1

w−1

v0

w0

v1

w1

d1

z−1(ν)

ν

u

(b) Associated inverse function

l−1
m−1 z−1 z1 l1 m1 ν

z−1(ν) − ν

a

C(a)

(c) Associated cost function

Figure 22:Example of a generic activation functionTλ(·) satisfying Assumption 4, associ-
ated inverse functionz−1(·) and associated cost functionC(·).
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By the fundamental theorem of calculus, the above quantity converges toz−1(a)−a =

u− a ast → 0, and as a resultC′(a; 1) = C◦(a; 1). For the left-sided derivative, the

following integral can be computed for allt > 0 sufficiently small:

C(a− t) −C(a)
t

= −1
t

∫ a

a−t
z−1(ν) − ν dν

= −
∫ a

a−t
z−1

0 (ν) − ν dν,

wherez−1
0 (ν) = z−1(ν) everywhere except ata where the function is defined to be

z−1
0 (a) = vk. The two integrals are equal because they only differ at one point. The

functionz−1
0 (·) is now continuous on [a− t, a], and thus, the one-sided integral exists

and can be computed ast → 0 to getC′(a;−1) = −vn + an = C◦(a;−1). Using

the definition of the subgradient in Section2.3.1, for all ξ ∈ ∂C(a), the generalized

directional derivative satisfiesC◦(a; 1) = wk−a ≥ 1ξ andC◦(a;−1) = −vk+a ≥ −1ξ.

As a consequenceξ ∈ [vk − a,wk − a], which means that

∂C(a) = [vk − a,wk − a].

This equality proves that indeeduk − a ∈ ∂C(a) for all uk ∈ [vk,wk].

As a consequence,C(·) is regular onTλ(R), andu − a ∈ ∂C(a) holds for alla ∈ Tλ(R),

which proves that (19) holds.

By inspection of (75), it is immediate thatC(0) = 0.

It is easy to check that, sinceTλ(·) is nondecreasing and odd,z−1(·) defined above is also

nondecreasing and odd. As a consequence, for alla ∈ Tλ(R), the following holds:

C(−a) =
∫ −a

0

(
z−1(ν) − ν

)
dν

=

∫ a

0

(
z−1(−ν) + ν

)
(−dν)

=

∫ a

0

(
z−1(ν) − ν

)
dν = C(a).

This computation proves thatC(·) is even.
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Finally, for all ν ∈ Tλ(R) such thatν ≥ 0, lettingu = z−1(ν), condition (87) implies

thatz−1(ν) − ν = u− z(u) ≥ 0. This bound proves thatC(·) is nondecreasing onR+ by the

positivity of the integral. As a consequence,C(a) ≥ C(0) = 0 for all a ∈ Tλ(R+), and by

symmetry for alla ∈ Tλ(R).

Hard-thresholding function

Using this technique, it is possible to build a cost functionsatisfying (19) for the hard-

thresholding activation function, defined by

Tλ(u) =



0, if |u| ≤ λ

u, if |u| > λ
.

The associated inverse functionz−1(·) constructed as in Lemma16 is

z−1(ν) =



λ, if ν ∈ [0, λ)

−λ, if ν ∈ [−λ, 0)

ν, if |ν| > λ

.

Integrating the functionz−1(ν) − ν between 0 anda yields the cost function:

C(a) =



λ |a| − a2

2
, if |a| ≤ λ

λ2

2
, if |a| > λ

. (89)

For large values ofa, this function behaves like the idealℓ0-pseudo norm scaled byλ2/2.

This observation matches the result in [20], which states that the hard-thresholding function

can be used to approximately solve the idealℓ0-minimization problem (4) with a tradeoff

parameter ofλ2/2.

D.2 Solutions to ODEs with a discontinuous right-hand side

Because the activation functionTλ(·) may now have points of discontinuity, the theory de-

veloped in Chapter3 does not apply. In a first step, it is necessary to define what a solution
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of the ODE (8) might be when the right-hand side is discontinuous. A well-established

approach in mechanics and nonlinear neural networks consists in approximating the trajec-

tory u(·) by the solution of (8) in the sense of Filippov [37]. Using the theory of Filippov, a

functionu(·) : R+ → R is a solution of (8) if it is absolutely continuous onR+ and satisfies

the differential inclusion:

u̇(t) ∈ −u(t) + (I −ΦTΦ)co{Tλ(u(t))} + ΦTy, for a.a.t ≥ 0,

whereco{Tλ(u)} = (co{Tλ(u1)} , . . . , co{Tλ(uN)})T and

co{Tλ(un)} =
[
Tλ(u

−
n ),Tλ(u

+
n )

]

is the traditional convex hull with

Tλ(u
−
n) = lim

v→u
v<u

Tλ(v),

Tλ(u
+
n) = lim

v→u
v>u

Tλ(v).

At pointsdk whereTλ(·) is discontinuous,co{Tλ(dk)} is an interval while it is a singleton at

points whereTλ(·) is continuous. A functionF(·) : R → R is calledabsolutely continuous

on R if for any ε > 0, there existsR > 0, such that for all finite sequences of intervals

{(xk, yk)}k≥0 disjoint inR

∑

k

(yk − xk) ≤ R ⇒
∑

k

|F(yk) − F(xk)| ≤ ε.

It is well know that for an absolutely continuous functionF(·), the theorem of calculus

yields thatF(·) is differentiable a.e. and the following holds:

F(y) = F(x) +
∫ y

x
G(ν)dν,

whereG(ν) = F′(ν) for a.a.ν ∈ R. Moreover, it was shown in [83] that the chain rule (14)

holds whenx(·) is only absolutely continuous on any bounded interval ofR
+.
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D.3 Convergence result

Unfortunately, the proof of convergence of the LCA with a discontinuous activation func-

tion does not derive readily from previous analysis obtained for neural networks with dis-

continuities. For the analysis in [83], the activation function needs to be bounded, and the

interconnection matrix (ΦTΦ − I ) needs to be Lyapunov diagonally stable, which requires

that it is nonsingular. Similarly, in [84], the interconnection matrix is nonsingular and the

activation function is bounded. In [85,86], the boundedness assumption on the activation

function is dropped, but the interconnection matrix is assumed to be nonsingular in [85]

and to be Lyapunov diagonally stable in [86], which also implies nonsingularity.

Nevertheless, the proof of Theorem4 and5 in Section3.5 is based on the Łojasiewicz

inequality and only requires the cost function to be continuous. As seen in Lemma16, it is

possible to create a cost functionC(·) that is locally Lipschitz continuous and satisfies (19),

even when the activation function has discontinuities. As aconsequence, Theorems4 and

5 still hold without modifications.
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