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SUMMARY

Clock synchronization is one of fundamental requirements in distributed net-

works. However, the imperfection of crystal oscillators is a potential hurdle for

network-wide collaboration and degrades the performance of cooperative applications.

Since clock discrepancy among nodes is inevitable, many software and hardware at-

tempts have been introduced to meet synchronization requirements. Most of the

attempts are built on communication protocols that demand timestamp exchanges

to improve synchronization accuracy or resource efficiency. However, link delay and

environmental changes sometimes impede these synchronization efforts that achieve

in desired accuracy.

First, the clock synchronization problem was examined in networks where nodes

lack the high accuracy oscillators or programmable network interfaces some previous

protocols depend on. Next, a stochastic and practical clock model was developed by

using information criteria which followed the principle of Occam’s razor. The model

was optimized in terms of the number of parameters. Simulation by using real mea-

surements on low-powered micro-controllers validated the derived clock model. Last,

based on the model, a clock tracking algorithm was proposed to achieve high syn-

chronization accuracy between unstable clocks. This algorithm employed the Kalman

filter to track clock offset and skew. Extensive simulations demonstrated that the pro-

posed synchronization algorithm not only could follow the clock uncertainties shown

in real measurements but also was tolerant to corrupted timestamp deliveries.

Clock oscillators are vulnerable to noises and environmental changes. As a second

approach, clock estimation technique that took circumstances into consideration was

proposed. Through experiments on mobile devices, the obstacles were clarified in

xiii



synchronization over wireless networks. While the causes of clock inaccuracy were

focused on, the effect of environmental changes on clock drifting was investigated.

The analysis of the observations inspired an M-estimator of clock error that was

accurate but under dominant disturbances such as oscillator instability and random

network delay. A Kalman filter was designed to compensate with temperature changes

and estimate clock offset and skew. The proposed temperature-compensated Kalman

filter achieved the better estimates of clock offset and skew by adjusting frequency

shifts caused by temperature changes.

The proposed Kalman filter-based clock synchronization was implemented in C. A

real-time operation was proved by clock tracking between two mobile platforms that

the synchronization technique was implemented on. Moreover, the technique was

converted to fixed-point algorithm, which might degrade performance, to evaluate

the synchronizing operation on fixed-point processors. The fixed-point simulation

reported performance degradation caused by limited hardware resources; however, it

also corroborated the applicability of the synchronization technique.

xiv



CHAPTER I

INTRODUCTION

1.1 Motivation

Modern technology advances have enabled cheap and small electronic devices capable

of data processing and communications. Thousands of dispersed devices make up

networks in diverse fields such as military, industrial, and environment monitoring [4,

96]. In many of these applications, it is required that nodes in a network operate

independently, yet at the same time cooperate with one another. For the cooperative

tasks, clock synchronization is a fundamental requirement.

Clock synchronization aims to keep a common notion of time among individual

nodes in a network. Each node participating network-wide collaborations has a local

clock that indicates and keeps time at its own rate. A synchronized network can be

achieved by that dispersed nodes exchange their local time and estimate an accurate

time. However, synchronization performance is restricted by the inherent inaccuracy

and instability of clock oscillators. The accuracy of a clock is also affected by some

limitations such as device size, cost, and power supply in many applications [4, 96].

Since an accurate clock tends to be high-priced and consume a considerable amount

of energy [86], selecting a more accurate clock may not be an optimal solution for

establishing a synchronized network. Instead, network-based synchronization tech-

niques can help to keep being synchronized among nodes, which are equipped with

cheap oscillators.

Performance in network synchronization depends on not only oscillator imperfec-

tion, but also transmission delay and measurement error. Unreliable wireless links

delay message transmissions or lose the messages. Moreover, the network topology

1



may change because of the mobility of wireless nodes. All these uncertainties in net-

works and oscillators may disturb to keep consistent in time among nodes. These

uncertainties degrade the performance of cooperative networks.

Many software and hardware attempts have been introduced to meet synchro-

nization requirements in a wide range of applications. Most clock synchronization

techniques are built on communication protocols that demand timestamp exchanges,

and improve synchronization accuracy or resource efficiency. For example, measure-

ment and control systems implemented with networking technologies such as Ethernet

communications are required to synchronize all participating systems in decentralized

architectures [37, 12, 100, 109, 36]. In telecommunications, as network operators mi-

grate to packet-switched next-generation networks, synchronization will become even

more important than traditional synchronization of circuit-switched links in time-

division multiplexing (TDM) [25, 64].

Particularly in wireless sensor networks (WSNs), each node needs a common no-

tion of time for data fusion, which is an important operation to integrate the collected

data from each node into meaningful information [4, 96]. The same notion of time

enables and enhances network and communications protocols such as scheduling for

time division multiple access (TDMA) and for directional antenna reception. Clock

synchronization is also a critical factor in power management such as duty cycling.

Moreover, localization, security, and tracking protocols also demand nodes to record

messages and sensing events by using the same reference time.

However, clock synchronization in WSNs is challenging due to their decentralized

nature and uncertainties introduced by imperfections in hardware oscillators. Clocks

in low-cost sensors tend to be unreliable and vulnerable to noise and environmental

changes. The clocks are easily affected by temperature variations, vibration, and in-

terference, and as a result, they progress erratically [101, 80]. Catastrophic conditions

such as earthquakes, battlefield activity, or forest fires also cause the clocks to deviate

2



significantly from the reference sources. In addition, limited energy sources, unstable

processors, and unreliable low-bandwidth communications, which WSNs suffer from,

impair reliability on the clocks. Therefore, clock synchronization is an important

prerequisite for coordinating distributed nodes, and at the same time, it is one of

research challenges in the design of energy-efficient WSNs.

Several reports have detailed the characteristics of crystal oscillator [2, 1]. Each

oscillator has different stability and accuracy while they are being manufactured,

and possesses different sensitivity to various factors such as temperature, humidity,

shock, and aging [103, 40]. Several oscillator designs reduce the perturbation of these

environmental factors. Temperature-compensated crystal oscillators (TCXOs) with

good temperature characteristics contain temperature-compensation circuits to cancel

out frequency offset. Oven-controlled crystal oscillators (OCXOs) add a heater and

heater control to the oscillator circuit and protect the temperature influenced elements

in a thermally insulated container. These approaches may result in that devices are

sufficiently accurate and tolerant to temperature changes, but the approaches may

prove unaffordable for the production of large networks.

1.2 Objectives

The objective of this research is to develop clock synchronization algorithms in wire-

less networks under unreliable and resource-constrained conditions. Below are specific

goals:

• Address the synchronization problem by exploring the behavior of crystal oscil-

lators and derive clock models that reflect the instability and inaccuracy of the

oscillators.

• Propose clock-tracking algorithms combined with accurate, statistical models.

It is required that the proposed tracking techniques estimate a reference clock

3



and track time-varying drifts under non-deterministic transmission delay, mea-

surement noise, and environmental changes.

• Verify the proposed clock synchronization algorithms through experiments on

wireless devices and prove that the algorithms are suitable for practical appli-

cations.

1.3 Outlines

The rest of this dissertation is organized as follows.

Chapter 2 defines the general terms of clocks and presents the characteristics

of crystal oscillators. This chapter also summaizes the literature survey of clock

synchronization and estimation techniques.

Chapter 3 shows that clock oscillators have time-varying drifts over WSNs, and

derives clock models that follow time-varying drifts by utilizing experimental mea-

surements.

In Chapter 4, a Kalman filter-based tracking technique for low-precision clocks

is developed. The technique is applicable for tracking clocks using the timestamp-

exchange mechanisms, and for enhancing performance. It is proved that this tech-

nique can track clock behavior even when messages are missing or corrupted under

unreliable links.

Since environmental changes perturb the oscillating frequencies of clocks, Chap-

ter 5 investigates the impacts of temperature on clock inconsistency in networks. As a

result of the investigation based on time and temperature measurements, clock error

estimates are derived based on temperature information.

Chapter 6 proposes a clock-tracking technique that compensates clock drifts in

environmental changes. The designed Kalman filter tracks clock drifting caused by

heat as well as clock instability.

Chapter 7 evaluates the realization of the proposed synchronization technique.

4



The real-time tracking between two wireless nodes corroborates the applicability of

the proposed technique.

Chapter 8 introduces the fixed-point simulation of the proposed Kalman filtering.

The simulation casts light on the practical problems of hardware implementation.

Chapter 9 summarizes the contributions of this research and suggests future re-

search directions.
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CHAPTER II

THE IMPERFECTION OF CLOCK OSCILLATORS

2.1 Clock Frequency Uncertainties

A clock consists of a periodic component (e.g., an oscillator) and a counting com-

ponent (e.g., a hardware register). The resolution, which is the smallest measurable

time unit is determined by the combination of the two components. Clock drift refers

to the phenomenon where a clock does not run at the correct speed compared to the

actual time. All clocks drift differently depending on the quality of their oscillators

[101, 80], the power provided from their batteries, temperature, pressure, humid-

ity, age and so on [103]. A clock could have different clock drift rates on different

occasions.

One can grasp clock behavior by examining the physical characteristics of crystal

oscillators. A timekeeping element (resonant) in each elestronic device vibrates or

oscillates repetitively at a certain frequency. A control circuit keeps the element

running and converts its vibrations into a series of pulses. A counter register counts

the pulses and adds them up to convert to time units. The frequency of a crystal

oscillator is determined by the cut, size, and shape of a quartz crystal. An ideal

oscillator would generate a pure sinusoid waveform as

vo(t) = Vocos(2πf0t+ φ0), (1)

where f0 is an ideal frequency for the oscillator, and φ0 is the initial phase at t = 0.

Vo is a tuning voltage, and vo(t) is an output. However, in the real world, oscillating

frequencies are not stabilized at f0 and drift. The frequency of clock A can be written

with a variable term:

fA(t) = (1 + δA(t))f0, (2)
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where δA(t) is a varying frequency error [1]. Clock drifts can be explained from phase

noise that is a common type of noise existing in oscillators. However, because of time

domain instabilities (e.g., jitter), the practical oscillators generate other frequency

components than the intended one. This phenomenon indicates that the phase noise

components spread the power of the signal to adjacent frequencies. The frequency

domain representation of the oscillator output shows some rapid, short-term, random

fluctuations in the phase.

Many factors such as climate changes, aging, driving voltage, and other envi-

ronmental conditions influence an oscillating rate and cause frequency error (δA(t)).

Since these factors are variable in time, a resonant frequency fluctuates. According

to a reference [2], the frequency error by temperature change (0◦C − 50◦C) reaches

2× 10−6, and the error is up to 3−7 per month by aging and 1× 10−7 by line voltage

for crystal oscillators (XOs).

Each clock has a different accuracy and stability. The characteristics of a clock

are highly correlated with its power consumption and its cost. For example, GPSs are

accurate (108 1011), but they demand high power (180 mW) and still are expensive

for many applications. Therefore, TCXOs (temperature compensated XOs) may be

an affordable choice since it consumes less energy (6 mW), but less accurate (6×106)

[86].

2.2 Clock Definitions

The instantaneous clock drift rate is called clock skew and the time difference with

the actual time is called clock offset. The starting values of the counters determine

the initial relative offset between clocks. As a matter of fact, any of two oscillators

can not swing at exactly the same rate, thus, every clock advances at a different rate.

A clock reading comes from a clock counter which increments its value every rising

or falling edge of an output wave of a crystal oscillator. The number of ticks, which
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is a clock counter value at t, is

k(t) =
⌊

∫ t

0

fA(τ) τ
⌋

, (3)

where ⌊a⌋ rounds a to the nearest integer less than or equal to a. The current time by

clock A is decided by the clock register value (the number of ticks) and an expected

nominal frequency:

CA(t) =
kA(t)

f0
. (4)

The clock error of clock A from the absolute time (t), which is called clock offset,

is defined as CA(t)− t. Along this, the relative clock offset between clock A and clock

B is

θ(t) = CB(t)− CA(t) (5)

=
kB(t)− kA(t)

f0
(6)

=
1

f0

⌊

∫ t

0

fB(τ) dτ
⌋

−
1

f0

⌊

∫ t

0

fA(τ) dτ
⌋

. (7)

Clock skew is the derivative of clock offset by time, and the relative clock skew is

α(t) =
dθ(t)

dt
(8)

=
1

f0
[fB(t)− ǫB − fA(t) + ǫA] (9)

≈
[fB(t)− f0

f0

]

−
[fA(t)− f0

f0

]

(10)

= δB(t)− δA(t), (11)

where ǫA and ǫB are less than 1. Thus, they are usually very small compared to fA

and fB, and they can be ignored. Therefore clock skew assessed by time measures

conjectures the frequency error of an oscillator.

In a discrete system, clock offset is defined as a time difference between clocks,

and it is assessed by instantaneous time measurements as

θ[n] = CA[n]− CB[n], (12)
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where n is the sample index, “[·]” is adopted for discrete indexing, Ci[n] is the nth

measurement of clock i. A challenge for clock synchronization is that clock offset

is not constant and varying because of the influences on the oscillating frequency of

each clock. The drifting rate of clock offset is called clock skew, which is defined as

the derivative of clock offset by time. Accumulated clock offset is then updated by

the estimate of clock skew (α̂[n]) and an observation interval as

θ[n] = θ[n− 1] + α̂[n]τ [n] + v[n], (13)

where v[n] is a random variable with zero mean. This recursive form of clock offset

model covers not only uniform interval but also non-uniform interval synchronization

by choosing a different τ [n].

A crystal oscillator can be characterized by frequency accuracy, which is the offset

from the specified target frequency, and stability, which is the spread of the measured

oscillator frequency about its operational frequency in a period time. The defects in

an oscillator definitely cause clock discrepancy in a network. Therefore, it is important

to understand oscillator characteristics to achieve network synchronization.

2.3 Clock Synchronization Techniques

2.3.1 Clock Synchronization Protocols in Wireless Sensor Networks

Many clock synchronization techniques have been proposed over the past few decades.

The most popular and widely used protocol for the Internet is Network Time Protocol

(NTP) [69, 70]. However, NTP provides insufficient accuracy and robustness for

many applications such as network measurement. Several techniques [37, 100, 60, 79]

have improved clock stability and accuracy to satisfy the requirements of demanding

applications. Unfortunately, all these techniques may be inappropriate for WSNs

because of limitations in low-cost devices [4, 96].

With use of the global positioning system (GPS), network devices may be syn-

chronized to fulfill the requirements of network and communications protocols such

9



as carrier sense multiple access with collision avoidance (CSMA/CA) [89, 5]. In ve-

hicular ad-hoc networks (VANETs), each device is equipped with a GPS receiver, and

it can generate a synchronized clock with accurate clock information from satellites.

However, the GPS can not be a solution of network-wide clock synchronization in

some applications because of its cost. WSNs usually consist of low-cost nodes that

do not include a GPS receiver, and they require an affordable way to keep the same

notion of time over the networks. Even when a device receives a GPS signal, it may

not record timestamps stably at its application layer. The random delay from an

antenna to higher layers prevents devices from recording an accurate receiving time

using a GPS-synchronized software clock. Timestamping at a physical layer may help

to avoid a nodal processing delay [37, 24, 106, 62, 3], but a local clock, which is used

for timestamping at the physical layer and not synchronized with a GPS clock, is still

affected by drifts [9]. Hence, still clock corrections or estimation algorithms should

be employed to avoid clock drifts.

Clock synchronization methods for WSNs in [27, 66, 59, 30, 84, 67, 90, 58, 111]

synchronize a sender with a receiver by exchanging current clock values as timestamps.

The sender-to-receiver protocols are vulnerable to variance in message delays between

a sender and a receiver due to network delay and processing overhead. In general, the

time-critical path in a sender-to-receiver synchronization consists of four factors [96]:

(i) the time for message construction and the system overhead of the sender; (ii) the

time to access the transmission channel; (iii) propagation delay; and (iv) the time

spent by the receiver to process the message. The authors of [27] propose the timing-

sync protocol for sensor networks (TPSN) based on a two-way message exchange

mechanism. This protocol consists of two phases. First, each node decides its level,

and then, the nodes correct their clocks through timestamp exchanges by estimating

the clock offset. Another example of synchronization protocols based on a two-way

message exchange mechanism is introduced in [66]. The main difference with TPSN
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is that the network structure is assumed to be a mesh type topology instead of a tree

topology. The approach estimates clock offset, but not clock skew while resulting

in frequent re-synchronization. Another variation of TPSN is proposed in [30] that

builds a tree structure within the network and achieves reasonable accuracy, while

using modest computational resources. Some references [84, 67, 90] also introduce

protocols suitable for environments with strict resource constraints based on sender-

to-receiver synchronization schemes.

sender

receiver

Send Access Transmission 

Transmission Receive  

Propagation

sender-receiver synchronization

receiver-receiver 

synchronization

Figure 1: Time-critical path of a message delivery.

Unlike the previous sender-to-receiver synchronization, some other methods per-

form receiver-to-receiver synchronization [23, 77, 71, 95]. These synchronization meth-

ods exploit the property of the physical broadcast medium, where any receivers in

one-hop away receive the same message at approximately the same time. Such an

approach reduces the message delay variance because non-deterministic delay at the

transmitter no longer affects the accuracy of timestamps. A receiver-to-receiver syn-

chronization is only impacted by propagation delay and processing time spent by the

receiver and hence exhibit smaller variance. The reference broadcast synchronization

(RBS) introduced in [23] seeks to reduce non-deterministic latency using receiver-

to-receiver synchronization and to conserve energy via post-facto synchronization.

RBS is extended in [77] by providing an adaptive feature of allowing to trade-off dy-

namically synchronization accuracy for computational and energy resources. As an

extension of the IEEE 802.11 standard for wireless local area networks, the authors
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of [71] define a continuous clock synchronization protocol in WSNs while mitigating

the transmission path delay. The protocol introduced in [95] operates in alternating

active and inactive phases periodically to enable all the sensors in the network to

have a local time around the network-wide equilibrium time.

2.3.2 Signal Processing for Clock Synchronization

In a WSN, a desirable clock synchronization scheme contemplates energy efficiency

to prolong a battery life. Since transmission costs are much higher than computation

costs as presented in [81], some researchers have recently attempted to deal with the

clock synchronization for WSNs from the signal processing perspective to achieve high

synchronization accuracy.

By assuming that non-deterministic network delay is a random variable, many

clock estimators were proposed [105]. This kind of clock estimation was started in [38,

42] by deriving maximum likelihood estimators (MLEs) of clock offset in exponential

network delay. In the two-way message exchange mechanism (TPSN), the authors of

[76] derive estimation of clock skew as well as that of clock offset. The joint MLEs

of clock skew and offset are derived when the delay is Gaussian distributed, and

a new estimator is proposed when the delay is exponentially distributed. Under an

assumption of the exponential delay, the MLEs of clock skew and offset estimators are

derived though iterative methods in [14]. In [55], the estimator of [76] is generalized

to lower the complexity and enhance the performance. The authors of [13] employ

this estimator [55] for pairwise broadcast synchronization. In [35], the performance

of clock estimation is analyzed in both the cases of a one-way message transmission

and a two-way message exchange. They prove that a one-way dissemination approach

provides more accurate estimation for clock skew, and a two-way exchange scheme

yields better clock offset estimation. Clock drifts are also estimated by using best

linear unbiased estimator (BLUE) [15] and minimum-variance unbiased estimator

12



(MVUE) [16].

Kalman filtering has been used in the context of clock synchronization. In [49],

a Kalman filter was used to model the fluctuation in packet inter-arrival times, after

shaping the fluctuation with low-pass pre-filtering. The authors of [11] introduced

a Kalman filtering algorithm for end-to-end time synchronization. The algorithm

assumed a constant clock skew in the long term, and relies on NTP to exchange

timestamp information. The authors of [6] also assumed a constant clock skew and

relied on the TSC register to count CPU clock cycles. In [31], Kalman filtering was

also employed by assuming that clock skew has a first-order Gauss-Markov model.

Kalman filtering was also used as a clock servo in IEEE 1588 networks to enhance

synchronization accuracy [28]. Instead of 32-bit timestamps, a sign of innovations was

used for Kalman filtering [82], which could be achieved with low-cost communications.

Other than Kalman filtering, many signal estimation techniques were adopted for

synchronization. In [17], a clock synchronization problem that was caused by sleep

nodes was solved by a closed-loop control called a feedback-based synchronization

(FBS) scheme. On the other hand, duty cycling could be used as a time-domain

reference for detecting clock drifts [34]. In [54, 57], the estimation of clock skew,

clock offset and fixed delay was formulated as a linear programming problem. A

joint estimation of synchronization and localization for underwater wireless networks

was proposed in [61]. The joint estimation used feedback loops to each other and

improved accuracy by compensating a stratification effect in the underwater. In [48],

a particle filter was adopted. Some synchronization techniques used some off-line

methods such convex hulls [108], principal component analysis [10], Fourier analysis

[7]. However, some of them demanded high computation loads, which might not be

proper for resource-constrained applications.
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Some synchronization algorithms introduce combinations of synchronization pro-

tocols and signal processing techniques. These algorithms pursue network-wide syn-

chronization and solve network-specific problems. An average consensus algorithm

[65] finds clock offset and skew compensation parameters. As nodes repeat a synchro-

nization round, the network is gradually synchronized. In [56], a belief propagation

is used for network-wide distributed synchronization, which outperforms an average

consensus principle. A distributed asynchronous clock synchronization (DCS) pro-

tocol [18] also achieves global synchronization based on clock reading exchanges for

delay tolerant networks (DTNs). A weighting coefficient is introduced to indicate

the accuracy level of propagated clock information. Moreover, in [92, 29], a spatial

smoothing algorithm is proposed based on an idea that clock offsets between neigh-

boring nodes on a loop in a multi-hop network add up to zero.

2.3.3 Oscillator Frequency Characteristics

Some approaches focus on the characteristics of oscillators in frequency [112]. A time

synchronization algorithm proposed in [88] compensates for the frequency drift of an

oscillator caused by temperature changes. As storing the pairs of temperature and

relative drift into a table, each node can achieve a longer synchronization period.

In [107], assuming that clock skew is a non-stationary random process, a Kalman

filter-based algorithm is proposed to dynamically compensate clock skew. Based on

temperature measurements, this algorithm prolongs the re-synchronization period.

The temperature characteristics of clocks are adopted to security research in [74].

The load on the CPU affects its heat output, and the result of temperature on clock

skew can be remotely detected through observed timestamps.

In [87], instead of clock readings, which are expensive to access and transmit,

manufacturing parameters of crystal oscillators are exploited for clock compensat-

ing and estimating. However, this approach is developed based on an assumption
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that the parameters are known. The combination of manufacturing parameters and

timestamps is used [63]. The proposed algorithm requires significant computation

resources, but achieves network synchronization in a distributed way.
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CHAPTER III

MODELING TIME-VARYING CLOCK DRIFTS

3.1 The Derivation of Clock Models

With an understanding of clock drifts, the variation of a clock is broken down into

three independent components: clock skew α(t), an initial clock offset θ0, and random,

additive noise w(t). The clock offset θ(t) at time t is given as

θ(t) =

∫ t

0

α(τ) dτ + θ0 + w(t). (14)

This model is quite general and subsumes all other existing simple clock models. For

example, if the clock skew α(t) does not change along with time t, the model in (14)

reduces to the constant skew model in [100].

Since clock synchronization is typically achieved by exchanging timestamps, which

are discrete samples of the continuous time, the discrete-time clock model in (15) is

more useful than the model in (14).

θ[n] =

n
∑

k=1

α[k]τ [k] + θ0 + w[n], (15)

where k is the sample index, and τ [k] is the sampling period at the kth sample. Note

that this discrete-time model covers not only uniform sampling, but also non-uniform

sampling by choosing a different τ [k]. Since w[n] is caused mainly by the observation

and measurement noise, it is reasonable to assume w[n]’s are independently and

identically distributed (i.i.d) with variance σ2
w. The variance of w[n] depends on the

time-critical path [96]. The discrete-time clock model can be rewritten in a recursive

form as (13), where v[n] = w[n] − w[n − 1]. Clearly, v[n] is a random variable with

mean 0 and variance σ2
v = 2σ2

w.
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Before the clock skew can be estimated, two extreme cases of clock skew must be

considered.

Constant skew: Suppose the clock skew α[n] is constant as in [100, 73]. From (13),

since θ[k]’s are known for k = 1, . . . , n, if the sampling period τ [k]’s are also

known, the optimal clock skew estimator (in terms of mean-square error (MSE))

is

α̂[n] =

∑n

k=2(θ[k]− θ[k − 1])τ [k]
∑n

k=2 τ
2[k]

. (16)

Independent skew: If the clock skew α[n] changes completely from one sample to

another, the optimal estimator becomes

α̂[n] =
θ[n]− θ[n− 1]

τ [n]
. (17)

These two models are simple, but neither one is practical. Most existing schemes

are based on these two simple models without consideration of any statistical or time-

series models of clock skew. Because of phase noise in the oscillator, clock skew has

a certain randomness. The clock skew is not constant, but time-varying in the real

environment, as shown in the measurement results (see Figure 2). It is not completely

independent for each sample. The constant skew model fails over timescales of several

hours. It is expected that clock skew would vary severely in any harsh environment as

a result of energy insufficiency, or temperature variations. Therefore, it is necessary

to investigate clock models that reflect these time-varying characteristics for clock

skew.

Time-varying clock skew is assumed to be a random process with zero mean and

a small perturbation around the mean. This assumption has been applied in some

previous works (e.g., [100]), which adopt a constant skew. Here the time-varying

skew is modeled as an auto-regressive (AR) process [99]. The smoothness (order of

AR model) of the clock skew is P , which is more general than in the previous works
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[100, 31]. Later, it will be shown that AR model order P can be reasonably small as

a result of real measurements. Thus, the complexity of the model is limited. Given

an AR model with an order P , the time-varying clock skew satisfies the relation as

α[n] =

P
∑

i=1

ciα[n− i] + η[n], (18)

where ci’s are AR coefficients, η[n] is modeling noise with zero mean, and σ2
η is

variance. Usually η[n] is modeled as Gaussian noise because, in general, the phase

noise derivative ∆φ(t) is unbounded, but the frequency drift is focused within a

certain range (which is usually specified by the oscillator manufacturer)1. The skew

model in (18) is general and practical and subsumes the two special cases in (16) and

(17). This model quantifies the drifting of the clock frequency, captures the main

variation of clock skew, and also takes into account the randomness.

The parameters ci’s and the model order P need to be properly determined to

construct a clock skew model. One way to estimate these coefficients is based on

the statistical properties of α[n]. If the auto-correlation function of α(t) is defined as

rα(τ) = E{α(t)α(t+ τ)}, the AR(P ) coefficients ci’s can be derived as


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. (19)

It is clear that as time goes on, the auto-correlation of the clock skew becomes

weaker. In [39], the auto-correlation function is modeled as a decaying exponen-

tial as rα(τ) = σ2
αρ

τ

ν , where ρ denotes the normalized decay in time period ν. Given

the clock observations θ[n], one can obtain samples of the clock skew α[n] using the

independent skew model in (17). Thus, the auto-correlation rα(τ0) and the variance

1Note that this assumption is not required for the derivation of the following Kalman filter.
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can be estimated using sample means. Once the auto-correlation is produced, param-

eters are estimated by setting ν = τ0 and solving for ρ. Then, this auto-correlation

is used to estimate the ci’s for the desired sampling period τ . Theoretically, α(t) is

non-stationary, and thus the coefficients ci’s may change over time. However, the ci’s

change quite slowly relative to the clock offset and thus are taken as quasi-stationary.

Another way to estimate AR coefficients is to use some of the measurements as

training data. Suppose that T observations where T > P were collected as the model

fitting data. Then, (18) can be rewritten as
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. (20)

For simplicity, let z, Z, c and η denote the four column vectors/matrices in (20).

Then, performing QR-decomposition on Z gives an upper-triangular matrix R. (20)

can be written as Rc = d, where d = QTz (Q is an orthogonal matrix). Rc = d

is solved by backward substitution. In this way, given a model order P , the AR

coefficients in (20) are obtained by a least squares approach. The derived model is

general enough to subsume the existing skew models.

3.2 Information Criteria for Selecting a Model Order

The selection of the model order P in (18) is an important step to model the time-

varying clock skew as an AR process. As the order of a model increases, the model

usually better fits the measurements; however, if a model order is too high, there is

a danger of overfitting the data. Overfitting results in a model that is more complex

than necessary, and while the model performs well on the training data, it will perform

poorly on new data. Following the principle of Occam’s razor, information criteria is

adopted to select a proper model order [51, 94, 8, 33, 43, 44].
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One widely adopted information criterion is Akaike information criterion (AIC)

[51]. With finite dimensional AR models, the AIC provides an asymptotically efficient

solution under a quadratic loss function. AIC finds an appropriate order to select the

best fit to the data. It was originally derived from maximizing the likelihood function

of a given model while adding a modeling penalty function, which is a term that

represents the complexity generated as the modeling order increases. The modeling

penalty function in AIC is the number of estimated parameters in the model as

AIC(P ) = −2 × [maximized log likelihood] + 2× [the number of parameters].

(21)

When the noise is Gaussian, the AIC function can be simplified by the least squares

coefficient estimator in (20) as (c.f. [51])

AIC(P ) = T log(2πσ̂2
P ) + 2P, (22)

where σ̂2
P is an estimate of the variance of the modeling error η[n] in (18) as

σ̂2
P =

1

T − P

T
∑

n=P+1

(

α[n]−

P
∑

i=1

ĉiα[n− i]

)2

, (23)

with ĉi denoting an estimate of coefficients for an AR model.

Another often used information criterion is called Minimum Description Length

(MDL). This criterion also consists of the maximized log-likelihood function and a

penalty function:

MDL(P ) = T log(2πσ̂2
P ) + (log T )P. (24)

By multiplying P by log T , the penalty term becomes larger as the number of obser-

vations increases. When a large number of observations are given, MDL tries to find

the smaller number of parameters by adding a heavier penalty than AIC.

The third information criterion used is AICc, which is a modification based on

AIC. AICc gives a better modeling order than AIC when the number of samples is

small. AIC may perform poorly when the number of parameters in the model under
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consideration is a substantial fraction of the sample size. AICc adds
2P (P+1)
T−P−1

to AIC

when a sample size is small.

AICc(P ) = T log(2πσ̂2
P ) +

2T

T − P − 1
P. (25)

An optimal order of an AR process can be decided when the results of these

information criteria are minimized. This optimal order and the parameter estimates

of an AR model are used to construct the time-varying clock skew model in (18).

Note that the optimal model order does not mean the best fit with the measurements

(i.e., data). It balances the model fitting and data fitting, i.e., the smoothness of the

process and the randomness of the measurements. Of the two methods for estimating

the AR coefficients, the statistical method in (19) is more robust and provides better

performance for long data sets, but the training-based method in (20) is easier to

implement and more feasible even for a small amount of data. Here, the training-

based method was adopted for the experimental measurements.

3.3 The Evaluation of Clock Modeling

This sub-chapter verifies the introduced clock modeling process with measurements

of real low-cost clocks and evaluates the derived clock models by showing their per-

formance.

3.3.1 The Measurement of Clock Skew and Offset

To ensure applicable results, a low-powered micro-controller platform similar to that

deployed in sensor networks is used. Like the Mica2 mote [68], the device tested

uses an Atmel ATmega128L processor with a 32.768 kHz crystal oscillator. The

hardware platform differs in that it uses a 16 MHz primary crystal oscillator to drive

the processor instead of the 8MHz oscillator present on the Mica2 mote and lacks the

RF interface.

The device was programmed to maintain two counters representing the time in
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1/32768th of a second. One counter was driven by the 16 MHz external oscillator and

the other counter was driven by the external 32.768 kHz crystal oscillator. The device

was connected to a PC over an RS232 serial interface running at 38400 baud and was

programmed to respond to timestamp queries. The timestamp queries consisted of

the PC sending a single byte as a synchronization point followed by a four-byte

timestamp. The device would then reply by sending a four-byte timestamp for each

of the counters in response. Upon reception of the single byte, the device disabled

interrupts, copied the current time value from both counters to temporary registers,

enabled interrupts, and transmited the timestamps a byte at a time.

Timestamps were recorded on a 2.4GHz Athlon 64 Dual Core PC running Ubuntu

8.04. A program was run on the PC to send timestamp requests and record the

replies in a binary file. In order to reduce latency on the PC, the program used an

“mlockall” call, which preventing the program from being swapped to disk, avoided

paging delays, and enabled real-time scheduling using the SCHED FIFO scheduler.

Additionally, the serial port involved was set to low-latency mode using the setserial

program. CPU frequency scaling and NTP were disabled on the PC to eliminate their

effects on measurements.

Time was estimated on the PC by using the “gettimeofday” call (which uses

the TSC register of the processor for accurate timing) and converting the time to

1/32768th of a second. The PC also recorded the amount of time spent for each

timestamp request to measure the influence of variable delay on the accuracy of the

measurements. For 99.8% of the measurements, processing the timestamp request

took within 1/32768th of a second of the average processing time. Therefore, the

variation of the noise from the duration of the measurement processes is bounded

and negligible in most cases. The device was placed under direct sunlight in the room

during the test to better simulate the outdoor environment of sensors. Timestamps

were collected using this setup every second for over 1.5 months.
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Figure 2: Measurements of time-varying clock skew.

Clock skew between samples separated by a sampling interval was calculated over

all the dataset. The clock skew, which was derived by the measurements, is shown

in Figure 2. This technique removes the effects of quantization noise, but a larger

interval would remove some dynamic components. The instantaneous offset θ[n] was

obtained as θ[n] = tPC[n] − tdevice[n], where tPC[n] is the instantaneous time of the

PC and tdevice[n] is that from the counters of the device, every 900 seconds (four

samples per hour) to reduce the effects of noise in simulations. The skew α[n] was

obtained as α[n] = θ[n+1]−θ[n]
tPC[n+1]−tPC[n]

for the same interval as the offset. Over the course

of the measurements, the clock skew was around 40 ppm for the 32.768 kHz clock

and around 70 ppm for the 16 MHz clock.

Additionally, the skew of each clock varied over time, as much as 3 ppm over this

course. Moreover, the accumulated offset was about 150 seconds for the 32.768 kHz

clock and about 250 seconds for the 16 MHz clock. The variation of clock skew is

also noticeable in one day, as shown in Figure 3. It is observed that the pattern in

this figure tend to be repeated daily.
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Figure 3: Measurements of time-varying clock skew.

3.3.2 Model Validation

The real measurements were used to select a reasonable model order P and validate

the AR(P ) model. The information criteria were employed to find an appropriate

order of an AR model for each clock skew. For the 32.768 kHz clock, the measurements

of a half-day, one day, and three days, respectively, were trained to derive a model

and find an optimal model order. As shown in Figure 4, if more data were trained, the

proper number of parameters for an ARmodel decreased and the curves of information

criteria apparently revealed the proper number. The optimum orders of the models

based on AIC, MDL, and AICc were 8, 7, and 8, respectively, when the measurements

from a single day, i.e., T = 96 were trained.

A training length may affect an optimal order of a model. It is observed that

a longer training length tends to find a sharper curve with a smaller model order

while a shorter training length results in unstable curves of information criteria. This

observation concludes that it is reasonable to train one-day data in order to obtain

24



0 5 10 15 20
−1470

−1460

−1450

−1440

−1430

−1420

−1410

Order

In
fo

rm
at

io
n 

cr
ite

ria

 

 

AIC

MDL

AIC
C

(a) By training 12 hours-data, the optimal orders are 7, 7, and
10 for AIC, MDL, and AICc, respectively.
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(b) By training one day-data, the orders are 7, 8, and 8.
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(c) By training three days-data, the orders are 6, 6, and 6.

Figure 4: Model order selection for the 32.768 kHz clock with different training peri-
ods.
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an AR model order for the given dataset.

Similarly, for the 16 MHz clock, the measurements over one day are used to

calculate the cost of each fitting order of the AR model for each information criterion.

As Figure 5 shows, the results of AIC, MDL, and AICc are similar, and the optimum

order of the model is four. Comparing different criteria, it is observed that the MDL

criterion results in a sharper curve due to the heavier cost function. This indicates

that the MDL criterion is more consistent and reliable when the data set is large and

the measurement duration is long [8, 83]. However, based on the real measurements

for clock skew, all criteria provide similar results. Therefore, one can choose any of

these information criteria to find the optimal model order.
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Figure 5: Model order selection for 16 MHz clock with one-day measurement.

Figure 6 illustrates that the derived AR processes match each clock behavior with

a small order. As an optimal order, P = 4 is employed as the model order for the

16 MHz clock (see Figure 6b), while P = 5 is chosen for the 32.768 kHz clock (see

Figure 6a). Note that the chosen order as the model order of the 32.768 kHz clock

is not an optimum from information criteria. Since clock models in resource-limited
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networks need to be as simple as possible, the order at which a downward tendency

in the information criteria curves decreases was chosen. Numerical simulation shows

that the clock model follows the clock skew closely for the given order. Therefore, in

the following, the model order can be limited to five or less to keep the complexity

low.
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(a) The derived model of 32.768 kHz clock skew.
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(b) The derived model of 16 MHz clock skew.

Figure 6: An AR model and the measurement of clock skew. The models follow the
measurements very closely, which verifies the proposed clock skew modeling process.
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CHAPTER IV

TRACKING CLOCK OFFSET AND SKEW USING

KALMAN FILTERING

Most clock synchronization techniques assume that clock skew is constant; however,

clocks drift at varying rates. This is because of the impacts of environmental changes

as well as the inherent instability of oscillators. This chapter introduces a clock

estimation and synchronization technique that works on low-precision oscillators with

time-varying drift rates.

4.1 Design of a Kalman Filter for Tracking Clocks

Kalman filtering is used for clock synchronization [11, 31, 28]. Here, a Kalman filter

is designed to track the clock uncertainty. In fact, most of the prior protocols fail

when the clock has time-varying drifts. However, as incorporating the clock models

introduced in Chapter 3, a Kalman filter enhances synchronization accuracy. Based

on the measurement results, clock drifting rate, clock skew, was modeled as an AR

process. The optimal parameters could be found by training the measured data.

Suppose that the sampling rate is fixed, i.e., uniform sampling with τ [n] = τ0. Let

θ[n] denote the true clock offset (i.e., θ[n] =
∑n

k=1 α[k]τ [k] + θ0). An extended state

equation is defined as

x[n] = Ax[n− 1] +w[n], (26)

where A is a (P + 1)× (P + 1) transition matrix, and w[n] is a (P + 1)× 1 driving
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noise vector. Each matrix and vector can be represented as

x[n] =


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


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,

where ĉi’s are the estimates of AR coefficients, and η[n] is the modeling noise.

The observation equation is defined as

θ̃[n] = θ[n] + v[n] = bTx[n] + v[n], (27)

where θ̃[n] is an observation of clock offset, bT =

[

1 0 · · · 0

]

, which is a 1×(P+1)

vector, and v[n] is observation noise.

With these conditions, the Kalman filter design is summarized as follows (cf. [45,

Chapter. 13]).

Update :x̂[n] = Ax̂[n− 1] +G[n](θ̃[n]−bTAx̂[n− 1]) (28)

MSE :Σ[n] = AM [n− 1]AT +Cw (29)

M [n] = (I −G[n]bT )Σ[n] (30)

Kalman Gain :G[n] = Σ[n]b
(

σ2
v + bTΣ[n]b

)−1
, (31)

where Σ[n] is the prediction MSE of the estimate when the current observation is

not considered, Ax̂[n − 1]. x̂[n] is the estimate of the offset and skew state at the

nth sample, M [n] is the minimum mean-square error (MMSE) of the estimate, and

G[n] is the so-called Kalman gain. σ2
v is the observation noise variance, and Cw is

the covariance matrix of w[n]when σ2
η is the variance of the driving noise in the state
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equation. The recursion of the Kalman filter is initialized by

x̂[0] =







E{θ[n]}

E{α[n]}1P×1






, M [0] =







σ2
v 01×P

0P×1 σ2
αIP






,

where E{·} denotes the statistical expectation, and 1P×1 is a vector consisting of

P ones. σ2
α is the variance of α[n], and IP is a P × P identity matrix. 01×P and

0P×1 are a horizontal and a vertical vector filled with P zeros, respectively. Since the

Kalman filter does not strongly depend on the initial conditions, the statistical mean

and variance can be replaced with a sample mean and sample variance. For example,

α̂[0] can be initialized as (θ[1]− θ[0])/τ0.

The introduced Kalman filter-based clock synchronization predicts the clock offset

and skew of a local clock for a new incoming clock measurement of a reference. Clock

measurements can be transmitted from a reference node through wireless links in a

network. Therefore, the clock measurements are prone to be distorted by link failure,

and the clock prediction would be affected by this distortion.

4.1.1 Clock Skew and Offset Tracking

A Kalman filter approach will search the behavior of a clock oscillator. Here, the

AR(5) model derived by training the measurements of a single day of the 32.768 kHz

clock (Chapter 3) is integrated into the Kalman filter. Suppose that the sampling

period τ0 is fixed as 900 seconds. The derived AR model is used as a clock skew

model. The measured clock offset and skew are defined as the true clock offset (θ[n])

and the true clock skew (α[n]) since measurement delay is less than one granularity

of the clock, which is 1/32768 second. In other words, based on the experimental

results, it is inferred that uncertainties in a wired connection hardly disturbed clock

information.
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The state equation is defined as (26), where
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.

The estimates of the AR coefficients (ĉi’s) obtained by a training-based approach

(20) are

[

0.9271 0.4163 0.07483 −0.387 −0.03118

]

. The observation equation is

defined as (27), where bT =

[

1 0 0 0 0 0

]

, θ̃[n] is the observation of the clock

offset, and v[n] is observation noise that represents any kind of uncertainties, including

network delay and measurement errors, which can be added to the true data when

the clock offset is observed.

With these conditions, a Kalman filter is designed as (28) - (31). η[n] is the

modeling error whose variance is 3.91502×10−15. The variance is calculated by using

the measured samples. The recursion of the Kalman filter is initialized by

x̂[0] =







θ[0]

α[0]15×1






, M [0] =







σ2
v 01×5

05×1 σ2
αI5






,

where σ2
v is the variance of the observation noise of clock offset which is additional

perturbation, and σ2
α is the variance of clock skew, α[n], which is 1.29446× 10−13.

Figure 7 shows the performance of the Kalman filter to estimate clock skew from

noisy offset observations. Even when the signal-to-noise ratio (SNR) of clock offset

was set to -20 dB by setting σv to 3 × 10−4 seconds, the Kalman filter was able to

estimate the true skew quite closely. This is because the derived skew model reflects

the characteristics of the real clock measurement.
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Figure 7: Tracking clock skew using the Kalman filter.

4.1.2 Performance of Clock Tracking

More simulations validate the Kalman filtering method. The root mean square error

(RMSE) of the prediction MSE (Σ[n]) is used as a performance metric for evalu-

ation. Since clock synchronization consumes resources such as power, bandwidth,

and processing time, many applications need to trade clock estimation accuracy for

low resource consumption. If a re-synchronization rate is high, the accuracy would

be improved, but consume more energy and resource. Therefore, it is important to

determine synchronization periods when a synchronization algorithm is designed.

The performance of the proposed clock tracking is analyzed by looking into the

effects of various sampling rates. Figure 8 depicts the performance of estimating clock

skew and clock offset as synchronization periods vary. The simulation was run for

800 synchronization periods with several different sampling periods. The curves are

drawn by the prediction RMSEs of skew and offset every four samples. The RMSE

of the skew in Figure 8a becomes smaller when the sampling rate is lower. This is
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because a longer sampling period cannot capture the small and fast variations of the

skew; thus the modeling error is smaller. This can also be explained by the calculation

of skew from the offset observations as α[n] = θ̃[n]−θ̃[n−1]
τ0

. Since each offset observation

suffers from noise, v[n], when τ0 is large, the noise variance in the observed clock skew

is reduced to σ2
v

τ2
0

. For the offset in Figure 8b, the RMSEs change little around 10−3.6

seconds even as for the different sampling periods. This means the performance of

tracking the clock offset is not significantly affected by the sampling period.

Both the RMSEs of clock skew and offset in Figure 8 converge to a steady state

after several samples. As the sampling period τ0 increases, the prediction RMSE

approaches its steady-state value in fewer samples. However, since a greater τ0 implies

a larger sampling period, the actual convergence time is longer. Note the performance

shown is only at sampling instants, when new data have just arrived, rather than at

arbitrary time instants. This performance will therefore be better than the true

time-averaged performance.

Figure 9 further clarifies the relationship between sampling rates and clock track-

ing errors by showing how the steady state RMSE varies with the sampling period

(τ0). The simulation was run 200 times, and an average for each sampling point was

obtained. The skew RMSE decreased as a sampling period increased, while the offset

RMSE remained nearly the same. The observation noise variance, rather than the

sampling period, more strongly influenced both the clock offset and the skew. It was

shown that the modeling and tracking method was quite robust for different sampling

periods. Here, a sampling rate means how often the nodes measure local clocks and

exchange the clocks for synchronizing between them. Therefore, the tracking method,

which is less harmed for a long rate may accomplish network synchronization by using

less hardware resource usage and energy consumption.

As illustrated in Figure 10, the proposed clock tracking algorithm performs re-

garding different observation noise variances and converges after several samples even
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Figure 8: RMSEs for various sampling rates.
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Figure 9: Steady state RMSE vs. sampling period.
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when the observation noise is large. To obtain the RMSE curves, the tracking algo-

rithm was run 800 synchronization periods with several different noise variances. The

RMSE of the estimated clock skew, α̂[n], is less than 10−6 even when σv is as high as

0.03 seconds is shown in Figure 10a; the RMSE of the estimated clock offset, θ̂[n], is

less than 10−2 seconds under the same condition, as shown in Figure 10b. Even if the

variance of observation noise is extremely high, the prediction RMSE of the Kalman

filter curves converges in several samples.

For the further evaluation of the clock models, two other skew models were bor-

rowed here and compared to each other. The simulation was repeated 200 times for

4000 synchronization periods with τ0 = 900 seconds and σv = 3× 10−4 seconds. The

RMSEs used as performance metrics for evaluation were defined as

RMSEoffset[n] =

√

√

√

√

n
∑

i=1

(θ̂[i]− θ[i])2

n
,

RMSEskew[n] =

√

√

√

√

n
∑

i=1

(α̂[i]− α[i])2

n
. (32)

For the comparison, an AR(1) model was derived as a clock skew model, while the

recursive model in (13) was used as a clock offset model. As shown in Table 1, both

the skew RMSE and the offset RMSE with the AR(1) skew model are higher than

those with the AR(5) skew model. This shows that the clock skew model with the

model order chosen by information criteria enhances the performance of the Kalman

filter-based method.

Table 1: The comparison of tracking errors for different model orders.

Skew RMSE Offset RMSE (seconds)
AR(5) Skew Model 1.1133× 10−7 2.1307× 10−4

AR(1) Skew Model 1.3282× 10−7 2.5998× 10−4

Constant Skew Model 2.8806× 10−7 6.6122× 10−2

Another skew model for performance comparison is the constant skew model in

(16). When the clock skew is constant, the clock offset represents a linear model.
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Figure 10: RMSEs for various observation noise variances.
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The RMSEs shown in Table 1 were calculated by using a constant skew and a linearly

increasing offset. Both RMSEs are greater than those of the AR(1) and AR(5) models.

The offset RMSE is highly affected and is 102 times worse than those of the AR(1)

and AR(5) models. This shows the importance of using time-varying models for clock

skew. Observation noise was not added for the simulations of a constant skew model

while randomly generating the noise with σv = 3 × 10−4 seconds for the simulations

of the AR(1) and AR(5). Therefore, it can be strongly inferred that a constant skew

model will perform even worse if observation noise is added. Thus, the constant skew

model is not suitable for real clocks with varying skew. Moreover, a higher-order skew

model aids to better fit the clock measurements.

4.2 Clock Tracking over Unreliable Networks

In sensor networks, the links are unreliable and prone to interference. Packets con-

taining timestamps may get lost or suffer from collisions. To handle the message

losses, traditional wired networks simply send extra messages. However, this is not

desirable for WSNs mainly because transmission of each bit consumes more energy

than computational cost, and the retransmission cannot guarantee reliability [96].

Additionally, retransmitted timestamps suffer from increased and variable delay. In

this case, the received timestamps may not be uniform or may be impaired by network

uncertainty. Here it is investigated how to track clocks when transmitted packets are

lost or corrupted.

4.2.1 Tracking Clocks with Missing Data

The tracking performance was evaluated with three types of missing data: (i) uniform

loss, (ii) consecutive loss, and (iii) random loss. Again a Kalman filter is adopted with

the derived model. When an observation is missing, the Kalman filtering method does

not update estimates of clock skew and clock offset. Instead, the predicted estimates

take the absence of observations to find the new estimates of clock skew and offset.
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Figure 11 presents the case that one out of every five observations is dropped and

indicates the points of missing data by vertical lines. For missing data, the observed

clock skew is not updated, however, the estimated clock skew closely tracks the true

clock skew based on the AR model derived. This supports that the AR model captures

the behavior of the clock skew well.
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Figure 11: Uniform loss of data.

Next, let us suppose packets do not arrive at the destination node for more than a

few synchronization periods because of mechanical problems, or channel congestion.

Figure 12 shows an example of tracking clock skew when six consecutive measurements

are missing. During each missing period, clock skew and offset are tracked only with

estimates based on the clock models, which are already established. The estimated

clock skew is close to the true clock skew even for consecutive missing observations.

However, the gap between the estimate of clock skew and the true clock skew

becomes larger as more samples fail to be delivered. This means the approach tracks

an unstable clock when a system drops clock information for a short while; however,

if packets that include clock information are missed continuously for a longer period,
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the estimated clock deviates from the true clock. Because an AR model is a sta-

tistical forecasting model in which future values are computed only on the basis of

past values of time series data, the clock-tracking method can not reach adequate esti-

mates without valid previous data. Therefore, the tracking performance may decrease

significantly when packet loss sequentially occurs for a long period.
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Figure 12: Consecutive loss of data.

For randomly missing data, the RMSEs in (32) for various missing rates are com-

pared at each incoming sample. Here every packet is assumed to have the same

probability of being lost (i.e., the network packet loss rate) and every event is inde-

pendent. The simulation was continued for 100 synchronization periods and averaged

over 200 runs when the sampling period was 900 seconds and the standard deviation

of observation noise of clock offset was set to 3 × 10−4 seconds. In the given con-

ditions, two methods can be considered; the first method is a with-tracking method,

which was applied in the two previous missing cases. This method estimates clock

skew and offset using the clock models if observations are not available. The other
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one is a without-tracking method, which triggers the clock-tracking only when a new

packet arrives.

Figure 13 contrasts the RMSEs of the two methods with different packet loss

rates (10%, 20%, and 50%). Both the methods encounter performance degradation

when compared to the RMSE curves that do not have missing observations; however,

the with-tracking method is more robust for handling missing data compared with

the without-tracking method. The performance of the without-tracking method is

significantly degraded. When the loss rate is 20%, both RMSEs of the without-tracking

method are ten times higher than that of the with-tracking method for the given

duration. When 50% of the observations are missing, the Kalman filter that uses the

with-tracking method may not converge; thus, the performance is poor.

Two observations are observed: (i) that as packet loss rate increases, the tracking

performance gets worse, but the clock-tracking method is fairly robust regarding

missing data; and (ii) that the performance of the with-tracking always outperforms

the without-tracking. The comparison of the two methods strongly supports that the

with-tracking method is powerful in unstable networks.

4.2.2 Tracking Clocks with Dirty Data

In wireless networks, received data can be corrupted by other data packets, channel

noise, or jamming. To differentiate the case of the missing data, the corrupted data

are called dirty data. In this case, the proposed Kalman filtering method alone can not

perform effectively since it can not distinguish dirty data from normal data. However,

dirty data detection methods (e.g. LASSO method) can be adopted and combined

with Kalman filtering. Considering that the observed clock offset could include a

dirty component, the observation equation is redefined as

θ̃[n] = θ[n] + v[n] + ξ[n], (33)
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Figure 13: RMSEs with random loss of data.
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where v[n] is Gaussian observation noise, which usually has little variance, and ξ[n]

is a dirty component that is zero for most samples, but can randomly become very

large.

• Threshold-based method

Dirty data can be detected by a threshold-based method. The removal of dirty

data processes is as follows:

(i) compute observation noise; v̂[n] = θ̃[n]− θ̂[n]

(ii) compute |v̂[n]|
σv

and compare this with a pre-defined threshold; an observation

is determined to be dirty when |v̂[n]|
σv

is greater than the threshold.

(iii) replace θ̃[n] with θ̂[n] when the observation is dirty.

(iv) repeat (i)-(iii) every synchronization period.

This method is intuitive, yet assumes that σv is known. Moreover, the perfor-

mance depends on the selection of the threshold.

• LASSO (Least absolute shrinkage and selection operator)

To identify rarely occurring dirty data, the LASSO method can be employed

as adding a regularization term to a standard least squares problem [98]. Note

that to fit in the tracking algorithm and also keep the complexity low, a scalar

LASSO algorithm is proposed for each observation instead of performing LASSO

for vector observations. Assuming that ψ[n] represents observation noise and a

dirty part, i.e. ψ[n] = v[n] + ξ[n], the problem is formulated as a constrained

ℓ0 norm minimization problem [110]:

argmin
ψ[n]

(

∥

∥

∥
θ̂[n] + ψ[n]− θ̃[n]

∥

∥

∥

2

2
+ λ ‖ψ[n]‖0

)

, (34)

where ‖·‖0 is the ℓ0 norm, ‖·‖2 is the ℓ2 norm, and λ ∈ [0,∞) controls the

sparsity. However, since ℓ0 is not convex in general and is difficult to minimize,
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a common approach is to approximate the ℓ0 norm as an ℓ1 norm as

ψ̂[n] = argmin
ψ[n]

(

∥

∥

∥
θ̂[n] + ψ[n]− θ̃[n]

∥

∥

∥

2

2
+ λ ‖ψ[n]‖1

)

, (35)

where ‖·‖1 is the ℓ1 norm.

Based on a scalar observation, the solution of (35) is expressed in a soft-

threshold version of the least squares estimate, as explained in [26, 113]:

ψ̂[n] = sign(θ̃[n]− θ̂[n])

[

∣

∣

∣
θ̃[n]− θ̂[n]

∣

∣

∣
−
λ

2

]

+

, (36)

where sign(·) denotes the sign operator, and [χ]+:=χ, if χ > 0, and zero other-

wise. The regularization weight factor λ controls the sparsity of the results. If

λ = 0, the result of (35) is a least squares solution, i.e., no sparsity is consid-

ered. If λ goes to infinity, more entries of ψ[n] become zero. The optimal value

of λ depends on the sparsity of the dirty data. Here λ is chosen based on some

numerical tests. If the estimate ψ̂[n] by LASSO is not zero, this observation is

assumed to have a non-zero dirty component and is categorized as dirty data.

Once an observation is categorized as dirty, it is removed and treated as missing

data.

LASSO can be adopted without any knowledge of the noise variance to detect

dirty data. The detection process is applied to every observation; in this way, it is

possible to determine if an incoming sample is corrupted for real-time synchronization.

Combined with LASSO, the tracking method avoids large errors for estimating clock

behavior and becomes more robust regarding network uncertainties.

In the simulation, the dirty components were injected at random time instances.

The amplitude of the dirty component was assumed to be Gaussian distributed with

a mean of zero and a variance of one. The simulation was repeated over 500 runs for

100 synchronization periods, and the outputs were averaged when a synchronization

period was 900 seconds, and σv was 3×10−4 seconds. When dirty data were generated,
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as in Figure 14a, the clock-tracking method that used LASSO detected the position

of dirty data exactly (λ=0.01). The method discarded the possible dirty data and

tracked the clock skew and offset by replacing them with estimates based on the clock

models. Figure 14b demonstrates that the estimated skew tracked the true clock skew

well in spite of the large values of the dirty components.

Figure 15 presents the tracking performance when every packet has a 5% or 1%

probability of being dirty. The upper two curves are the RMSEs when dirty obser-

vations are not detected, the next two curves are those when dirty observations are

detected by LASSO and removed, and the last curve represents the RMSEs when

dirty observations do not exist as a reference. Without the removal of dirty data, the

performance becomes much worse since the Kalman filter utilizes dirty data, which

are incorrect clock information, as an observation. However, the proposed approach

detects dirty data and prevents tracking performance from decreasing. This exam-

ple shows that the clock-tracking method that uses LASSO is robust regarding dirty

data.

The clock model and the tracking method are evaluated by considering missing

or corrupt observations, which may occur in unreliable links. Not only is the Kalman

filter-based clock tracking method robust regarding missing data, but it also inte-

grates well with least absolute shrinkage and selection operator (LASSO) to detect

the corrupt data.

4.3 Clock Tracking with Periodic Training

Several simulations evaluated the effect of clock models on tracking performances.

First, the length of training data was adjusted to 12 hours (48 samples), 24 hours

(96 samples) or 72 hours (288 samples) and the tracking performance for each case

was compared. The normalized MSEs (NMSEs) in (37) used as a performance metric

reduce the influence of original data values. It prevents abnormal peaks from raising
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Figure 14: Tracking clock skew when dirty observations exist.
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Figure 15: The RMSEs of clock skew and offset when dirty data exist.
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mean-square error extremely high. Through simulations, it is discovered that each

training-length results in almost the same NMSE for both clock skew and offset; that

is, the length of training data does not significantly affect tracking performance. The

fairly short length of training data is enough to model time-varying clock skew.

NMSEoffset[n] =
1

n

n
∑

i=1

(θ̂[i]− θ[i])2/
1

n

n
∑

i=1

θ[i]2,

NMSEskew[n] =
1

n

n
∑

i=1

(α̂[i]− α[i])2/
1

n

n
∑

i=1

α[i]2. (37)

Next, the clock skew model was periodically updated through re-training of clock

data. As time went on, clock behavior tended to change as a result of temperature,

humidity variation, and lack of battery. If clock skew changed severely, the clock

model could no longer follow the skew. Re-training clock data periodically provided

an updated model of time-varying clock skew. Here, the re-training periods were

every three days, seven days and 15 days. The simulation was iterated 50 times for

4000 synchronization periods (τ0 = 900 seconds), and the iterations were averaged.

For each run, random noise was added to the measurements. For every re-training,

24-hours data were used to obtain an undated clock model.

As shown in Figure 16, the frequent re-training raised the fitness of the model

to real clock skew and resulted in better performance. Since the clock skew model

drifted more around the 12th day, the current AR model did not fit the measurements.

From the measurements, it is reasonable to keep updating the clock skew model every

seven days since this helps to improve the tracking performance.

Suppose any congestion or interference severely distorts or loses clock information.

In this case, instead of uniformly sampled data, one may have non-uniform and only

incomplete observations. The proposed clock synchronization technique models the

clock skews when every packet has a certain probability of being lost during training,

and tracks clock offset and skew with these models. Table 2 presents the NMSEs with

different packet loss rates (0%, 10%, and 30%). As the packet loss rate increases, the
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Figure 16: Normalized MSE with Various Periodic Training
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performance worsens marginally. This shows that the modeling method performs

even when some packets are lost during a training period, and the tracking algorithm

is quite robust regarding packet loss.

Table 2: The comparison of tracking performance based on clock models derived with
missing observations

Normalized Skew MSE Normalized Offset MSE

No missing 7.8254× 10−6 7.2520× 10−12

10% missing 8.4727× 10−6 7.2930× 10−12

30% missing 9.8558× 10−6 8.0709× 10−12
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CHAPTER V

TEMPERATURE EFFECTS ON CLOCK DISCREPANCY

IN WIRELESS NETWORKS

Since a single oscillator is vulnerable to surroundings such as climate changes, and

aging, it is reasonable to expect that clock inconsistency between nodes pertains to

these changes. One challenge is that these environmental changes and other factors

influence each oscillator in different ways. Some oscillators endure these changes

while others are easily impaired to them. Therefore, employing clock synchronization

techniques is indispensable for many applications where variations in time are not

acceptable.

Another main source of errors in clock synchronization is uncertainty in wireless

links between nodes. During transmission, packets may become corrupted or lost as

a result of a collision with other packets, channel noise, or jamming. A packet, which

conveys a timestamp, suffers from capricious delay, which consists of send and receive

time, processing, and propagation delay. This chapter describes experiments which

investigate how these delays distort network synchronization; it also details how much

the surroundings degrade synchronization accuracy.

5.1 The Evaluation of Clock Error

5.1.1 Experimental Setup for a Wireless Connection

In the previous experiments (Chapter 3), since a sensor module communicated to a

PC via a wired connection, processing time was very short and stable, negligible for

each transmission. This chapter investigates clock error from wireless devices, which

could suffer from a critical timing path [23]. The experiment consists of two nodes,
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and a wireless network is established over the nodes without any central units or a

stable computer, emulating distributed sensor networks. The experiment employs

Pandaboards Rev. A1 [78], which are used as low-power, low-cost, mobile develop-

ment platforms. A Pandaboard features an OMAP4430 processor with a dual-core 1

GHz ARM Cortex-A9.

The exploration of autonomous oscillators in the platforms could reveal uncer-

tainty caused by jitter, fluctuation in time domain, which is equivalent to phase noise

affecting the oscillating frequency. Ubuntu was installed on two Pandaboards and

wireless interfaces were enabled. Some modification after installation optimized the

system for measuring local clocks. First, for both the devices, NTP [69] adjustments

(both ntpd and ntpdate) were prohibited so that the inherent characteristics of the

oscillators could be investigated. Another modification was to disable CPU frequency

scaling in order to avoid an offset caused by changing a CPU frequency, which [72]

evaluated in detail.

Once the nodes were prepared, they worked in the following way. The two closely-

placed nodes establish an IEEE802.11g wireless network. One node becomes an access

point (AP) by broadcasting a beacon frame every pre-defined period, which is 200 ms

in this case. The AP node runs hostapd and udhcpd. The other node that listens to

the beacon requests to join to the network. Each node opens a datagram socket, which

does not guarantee successful transmissions. All packets containing timestamps are

then transmitted via the sockets using user datagram protocol (UDP) to avoid the

overhead of such processing at the network interface level. When the clock reading

program is executed on each node, the program is allocated to one CPU by taskset

to avoid offsets produced by switching CPUs.

After a network is built, one device (sender) disseminates its local time every

synchronization period; the other device (receiver) detects the transmitted times-

tamps and keeps tracking the clock of the sender node. Local time is read by a
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clock gettime() function. Since a sender does not have to be an AP node, the non-

AP node becomes a sender in this experiment. A timestamp is loaded into a payload

in the trial; however, it could be piggybacked into a header or a tail in a packet in

a practical implementation. The receiver node executes the clock reading function

whenever a timestamp arrives at the node.

These transmissions are based on a one-way clock synchronization, as shown in

Figure 17. This kind of clock synchronization method can be extended to larger

networks. In a larger network, each node that listens to a sender node internally

keeps tracking the clock of the sender. As a result, the clock of the sender becomes a

reference, and others keep being synchronized to the reference. A packet may suffer

from unpredictable processing delay as well as varying propagation delay. Despite

the weakness in transmission delay, one-way synchronization has an advantage in

resource consumption since it halves the number of transmissions compared to those

for two-way synchronization.

5.1.2 Time Difference

The two devices communicate to each other and to transmit timestamps for three

weeks. Time differences are calculated by subtracting the collected timestamps as

Creceiver[n] − Csender[n], where Ci[n] is the nth clock reading at node i. As shown in

Figure 18, overall, the time differences seem to be increasing at a monotonic rate.

Node A

Node B

Sync period (τ) τ τ τ

CA[1]

CB[1]

CA[2]

CB[2]

CA[3]

CB[3]

CA[4]

CB[4]

CA[5]

CB[5]

…

Figure 17: One-way timestamp dissemination. Each transmission suffers from a dif-
ferent, unpredictable delay.
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Interestingly, the total increment is more than ten seconds during the period, which

corresponds to about 0.5 seconds per day. The sign presents which node has a faster

clock. Here, the node that sends timestamps (sender) has a faster time than the

node that receives the timestamps (receiver). The initial difference is set to zero to

highlight how much it changes during the observed period.
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Figure 18: Time differences between two wireless nodes show lots of peaks as well as
floating.

Considering that the devices consist of the same hardware components, the time

deviation is much more significant than one might expect. It is obvious that two os-

cillators have different resonant rates. Moreover, the measured results show notably

large peaks, which range from less than a microsecond to one second. This phe-

nomenon is unlikely caused by the instability of the oscillators, since the devices were

not exposed to severe changes. Instead, the peaks can be explained by unpredictable

delay such as nodal processing time and receive/send time while transmitting. The

late arrival of a packet because of unreliable channels causes its receiving time to

deviate from its sending time. This observation seems to support that the network
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uncertainties significantly obstruct timestamp-based clock synchronization and that

what is required is a new synchronization method that is free from large network

uncertainties.

Allan deviation is a metric to gauge the frequency stability of clocks and oscillators

by using noise processes, not systematic errors or imperfections of oscillators, as

representing the variance of fractional frequencies during observation. A low Allan

deviation indicates a clock with good frequency stability. Normally, Allan deviation

becomes lower over a longer period since noise is averaged over the time period, but at

some point, it increases because of the inherent inaccuracy of a clock. The fractional

frequency (ȳ[n]) is represented as x[n+1]−x[n]
τ [n]

, where x[n] is a timestamp. In this

case, x[n] = CB[n], and τ [n] = CA[n]− CA[n − 1]. In Figure 19, the Allan deviation

from the measurement indicates that a longer synchronization period results in better

performance during the given period with raw timestamps, which is counter-intuitive.

This is due to noise variance rather than oscillator instability. As a time period

becomes longer, an absolute time gap (valid data value) increases, while measurement

noise and transmission delay do not depend on the period.

Figure 18 and 19 illustrate that the clock captured by timestamps is neither ac-

curate as a result of inherent frequency gap nor stable because of significant non-

deterministic delay. It is implied that frequent resynchronization by timestamp ex-

changes may not be an optimal solution in some wireless networks. This observation

leads to the proposal of a clock estimation technique to lower the obstruction of link

anomalies in a timestamp-based synchronization.

The time error is not white, which implies that two nodes do not have the same

frequency. Timestamp-based techniques in wireless networks can not avoid being

disturbed by link delay. The time error, which is the difference between receiving

time and sending time in a timestamp, can be separated into two components, an
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Figure 19: Allan deviation from a three-month experiment illustrates that clock differ-
ence between the two nodes was not stabilized even with long time intervals because
of the uncertainties of timestamp transmissions.

offset and a link delay:

terror[n] =Creceiver[n]− Csender[n]

=θ[n] + d[n]. (38)

θ[n] is the difference between the local time of one node and that of the other node,

which can be either positive or negative. If the clock of the receiver indicates a faster

local time than that of the sender, then θ[n] is positive. d[n] is the sum of all delay that

can occur during transmitting, including propagation delay, processing time in both

the sender and receiver, and transmission delay. The delay is positive and generally

assumed to be non-deterministic.

If it is assumed that each clock progresses at a fixed, but different frequency, clock

offset (θ[n]) will increase or decrease at a monotonic rate. Time error (terror[n]) is

fitted to a linear line by using a least squares approach. After being moved along

the y-axis to make positive delay, the fitted line is y[n] = aCreceiver[n] + b, where a is
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−0.0209, and b is −0.0095 in Figure 20. If oscillator frequencies are presumed to be

fixed (a constant skew model), the line will be clock offset, and the slope, a, will be

clock skew. Under the presumption of a constant skew, the link delay is calculated

by terror[n]− y[n] and mostly distributed from zero to 200 ms as shown in Figure 21.

The delay curve has a long tail in a positive direction that corresponds to the peaks

shown in Figure 20. The long tail can be explained by processing delay caused by

other systematic tasks or interruptions rather than by channel delay.
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Figure 20: The best linear fit derived using a least squares approach does not well fit
the time differences between two wireless nodes.

However, except for the long tail, the delay curve is still not Gaussian distributed

even based on a long dataset. So that the curve would fit better, a fitting line is derived

for a short period. From one-day data, the fitting line is −0.0193Creceiver[n]− 0.0095.

As shown in Figure 21, the calculated delay is distributed mainly in a narrower

range, from zero to about 50 ms with a long tail. Two strange peaks demonstrate

that the delay contains not only link delay but also clock variations, which reflect

offsets produced by skew varying. The mean is 0.1182 seconds, and the variance is
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0.0065 for the entire set. For one day data, the mean and variance are 0.0360 and

0.0014, respectively. The insets in Figure 20 also indicate that the linear model does

not fit the measured offsets. The linear fitting reveals that the offset is not linearly

increasing or decreasing, but governed by non-constant clock skew.
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Figure 21: Delay estimates under an assumption that offset increases at a constant
rate. terror[n]− y[n] contains time difference induced by skew variation as well as link
delay.

The behavior of clock skew, in other words, the rate at which offset changes, is

examined here. If one finds clock skew from an independent skew model in (17) with

τ [n] = 60 seconds, assuming random delay, then skew estimates are derived from time

errors as

α̂[n] =E

{

terror[n]− terror[n− 1]

τ [n]

}

=E

{

θ[n] + d[n]− θ[n− 1]− d[n− 1]

τ [n]

}

=
θ[n]− θ[n− 1]

τ [n]
+
E {d[n]− d[n− 1]}

τ [n]
,

where E{d[n]−d[n−1]} is zero. Figure 22 shows that the derived skew is distributed
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symmetrically around a certain non-zero mean. The non-zero, non-constant skew

yields either faster or slower clock drifting. Since the distribution has heavy tails in

both directions, the tails are exempt from fitting. About 70% data, which are close

to their mean are fit to a Gaussian distribution. The heavy tails are likely to be

produced by the peaks in link delays because of nodal processing delay in the sender

or in the receiver.
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Figure 22: Clock skew is Gaussian-like distributed and has heavy tails. It is
fitted to a Gaussian distribution whose probability density function (PDF) is
N(−5.7644, 2.9408).

Several sets of experiments were conducted with temperature measures to reveal

the correlation with heat. One node was placed on a table, while another node

was put into a paper box to produce a temperature gap. Table 3 shows an ambient

temperature difference between the two nodes, a duration, and clock drifts for each set.

The clock drifts are derived based on all of the data for each set. It is observed that a

higher temperature gap causes clock offsets to become higher by shifting skew farther

from zero. However, skew variance does not seem to be correlated to temperature.
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Table 3: Temperature and clock drifts for each experiment.

Low-Low Mid-Low High-Low

Duration Three weeks Five days Six days
Temperature − 0.9− 3.3◦C 4.2− 5.8◦C

Offset (seconds) 10.91 4.15 28.5
Mean(skew) −5.7351× 10−6 −9.3933× 10−6 −5.1912× 10−5

Var(skew) 2.6084× 10−6 2.7276× 10−6 2.2799× 10−6

Figure 23 illustrates the skew distribution of each experiment. Here, the non-zero

mean of clock skew indicates the inaccuracy of the crystal oscillator, and the variance

represents its instability.
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Figure 23: The distributions of clock skew estimates for different temperature condi-
tions.

5.2 The Effects of Environmental Changes

The frequency characteristics of crystal oscillators over environmental changes have

been described in some technical reports [2, 1]. This sub-chapter probes the effect

of environmental changes on not a single oscillator, but on clock discrepancy among
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wireless nodes.

5.2.1 Observed Temperature and Humidity
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Figure 24: Varying environmental factors surrounding two nodes for five days.

The frequency error is noted for a third-polynomial equation of temperature. How-

ever, around 10◦C−40◦C, the error almost linearly depends on temperature. Since it

is conjectured that one simple and apparent cause of the time difference between two

clocks is heat, the experiment includes measuring temperature with local clock read-

ings. The dependency of clock drifting on environmental changes can be explained by

formulating the relationship. Temperature shifts relatively slowly, and its measure-

ments are not impaired by uncertain delays since temperature itself is disassociated

with the current time. The fact that temperature directly acts on clock drifts is one

reason to attempt to achieve an accurate and robust estimation of clock error among

nodes by exploiting temperature rather than timestamps.

Temperature and humidity, which are considered the main factors that perturb

oscillators [103, 40] as well as timestamps, were measured for five days. During this
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period, temperature was not controlled dynamically. Instead, one Pandaboard was

placed into a closed box with a temperature-humidity logger 1 while the other one was

placed on a table. A temperature-humidity logger sensed temperature and humidity

around each platform and recorded them every minute. Figure 24 indicates that

temperature curves have roughly daily patterns, while humidity curves do not show

clear periods. The receiver in the box was hotter and drier than the sender, and the

temperature gap was about 4◦C during the period. The temperature of the receiver

ranged from 27.7◦C to 31.2◦C while that of the sender ranged from 23.1◦C to 27.5◦C

after it was stabilized. Note that humidity is not correlated with temperature in this

experiment.

5.2.2 Time-varying Clock Skew

By looking at the recorded time measurements, one can spot the correlation between

temperature and a clock difference between the nodes. Over the period, the measured

time difference increased, and the clock skew, the solid line in Figure 25, fluctuated

around -15 ppm. Since the measured skew is highly disturbed by random noise, it is

smoothed through pre-filtering to obtain a better estimate for clock skew. To de-noise,

a moving average method can be adopted. However, a moving average spreads error

to many points, or consequently contaminates multiple clock estimates. One may

adopt a least squares approach. However, it is not only expensive in computation,

but also inappropriate to track small variations.

The way used here is to use a median filter whose main idea is to run through the

signal entry by entry, replacing each entry with the median of the neighboring entries.

Median filtering is not used for real-time clock estimation, but it helps to comprehend

clock behavior. In Figure 25, the dashed line represents the skew smoothed by a

median filter (filter length = 60 seconds) that traces the tendency of the measured

1http://www.imagintronix.com/#! download
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Figure 25: Instantaneous clock skew from timestamps (measured skew) is affected by
unpredictable noise, and the smoothed skew follows the trend of the instantaneous
skew.

one. The smoothed skew, which is neither constant nor consistently deviating, implies

that it reflects the effect of the environmental changes.

Clock skew does not follow the temperature or humidity of any one of nodes in

Figure 24; however, it seems to be correlated with a temperature gap between the two

nodes. As shown in Figure 26, the temperature gap between the nodes corresponds

to the measured skew in a negative way, especially at the peaks at around 1120 and

2660 minutes. When the analogy by Pearson’s correlation coefficient is assessed, the

correlation coefficient between the temperature gap and the smoothed skew is -0.5313

every minute, and -0.6066 every ten minutes. The coefficient is not as high as expected

since many other factors can disrupt concurrence among clocks. The correlation

coefficients could confirm that clock drift is correlated to a temperature difference

between nodes, not the temperature in a single node. This makes it necessary to

consider both the temperature of a receiver and that of a sender, which differs from
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approaches used in other references [88, 107].
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Figure 26: Clock drifting and temperature gap are correlated in a negative way.

5.3 Temperature-correlated Clock Skew

5.3.1 The Effect of Temperature on Clock Skew

The experiment is repeated under a temperature-controlled environment during a

short period to restrict other impacts from hindering to the disclosure of the rela-

tionship between temperatures and the frequency drifts of oscillators. Sensors are

likely to be exposed to severe environmental changes during their applications. A

temperature-controlled environment may mimic these changes and make it possible

to observe clock behavior in the devices according to the changes. So that the effect

of temperature, a dominant influencer to clock error, can be maximized, a heater

and a cooler are used for one node in a closed room. An external logger recorded

temperature and humidity every ten seconds while a timestamp was exchanged every

second.

The experiment was completed in one hour, a relatively short period, during which
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the sender stayed at around 27.8◦C. For the receiver, the heater and cooler worked

alternatively, as shown in Figure 27. When the heater turned on, the temperature

around the receiver went up to 36.7◦C. When the heater turned off, the temperature

moved down, and when the cooling device turned on, the temperature reached to

27.7◦C. The temperature around the receiver changed 9◦C during the observation.

Note that temperature and humidity measured in the given time period seem to

correlate. However, this phenomenon may be explained by the heater and cooler

acting on both factors. This is not a general case (see Figure 24).
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Figure 27: A heater and a cooler controlled temperature and humidity for an hour.

In Figure 28a, the time difference of the two nodes, clock offset, increased by

37 ms in an hour. Unlike the previous result, clock offset here did not drift at a

monotonic rate. This is because temperature shift acted as a dominant factor on clock

behavior in this experiment. The abnormal peaks were eliminated by a median filter,
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(a) Clock offset suffering from random noise.
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Figure 28: Clock drifting affected by varying environmental factors lasting an hour.
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which is normally used to reduce noise spatially; at the same time, the median filter

preserved useful details. After median-filtering with the window size 60, the curve

of the clock offset became smooth (the dashed line). The offset decreased when the

heater was working, while it increased when the cooler was working. However, when

both temperature controllers were not operating, the offset is not clearly explained.

Clock skew that is an instant rate of the smoothed offset varies from -140 to 70 ppm

(the solid line in Figure 28b). Since the clock-drifting rate does not change extremely

fast, it is inferred that link delay dominantly causes the high fluctuation of clock skew

estimates. However, defineing the skew as the slope of the smoothed offset every

minute (τ [n] = 60) reveals the moving tendency and shows the skew to be correlated

with temperature, as shown in Figure 27. There are two notable observations. First,

skew moving is coincident with the controlled temperature changes, demonstrating

the thermal effect on a clock oscillator. Secondly, a short synchronization period does

not improve its performance because of the disturbance of noise.

Median filtering can be an off-line approach to extract clock drifts from timestamp

exchanges. However, this approach requires the awareness of prior samples, and

moreover, a proper window size depends on the measured data patterns. Sometimes

valuable phenomena of clock drifting may be lost as a result of smoothing without the

selection of an appropriate window size. Therefore, median filtering can not be a real-

time solution for synchronization, but it can be used as a benchmark for performance

analysis of estimating techniques.

5.3.2 Correlation Analysis

Clock skew is not stationary, but the relationship between clock skew and temper-

ature is stable. However, since temperature is one of the major determinants, but

not the only influence, it is not expected that clock drift is a one-to-one function of
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temperature as there are many other factors. Figure 29 explicitly represents the rela-

tionship between a temperature gap among nodes and clock skew, which is smoothed

by a median filter. Here, since the temperature of the sender was constant (27.8◦C),

its impact can be ignored. The linear line derived by a least squares approach is

y = −4.356x10−6x+ 5.601x10−6.
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Figure 29: Linear relationship between a temperature gap and clock skew. The error
variance is 3.5306× 10−11.

The experimental findings so far support that the correlation coefficient with tem-

perature is very strong (-0.9051) in any circumstance that limits other factors over

a short period. In this measurement, since humidity is highly analogous to temper-

ature (correlation coefficient = -0.9299), it also strongly correlates with frequency

error (0.7907). However, this is because humidity change was a by-product of tem-

perature control caused by fans in the measurement. It is hard to tell which one is

the main influencer of clock error; however, from many measurements, temperature

was a stronger effect than humidity, as was proven in the previous section.

The correlation between temperature and clock skew is clarified when an internal
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sensor for each platform detects CPU temperature. From the user perspective, a

Pandaboard provides access to reading a temperature sensor. Figure 30 shows CPU

temperature, which was measured inside the processor. CPU temperature is much

higher than air temperature sensed by an external logger while showing analogous

patterns. During the observation, the CPU temperature of the receiver (temperature-

controlled node) shifted 23◦C, while that of the sender varied 4◦C.
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Figure 30: CPU temperature by a temperature sensor inside the OMAP chip on a
Pandaboard.

As shown in Figures 31, clock skew has a linear dependency on temperature when

temperature was controlled. The linear line is y = −2.097x10−6x + 2.582x10−6. As

explained in the previous section, clock skew (frequency error) changes almost linearly

around room temperature. The shown linearity corroborates that temperature was

a dominant factor in the measurement. CPU temperature tends to correlate more

strongly with clock skew (correlation coefficient = -0.9836) than with air tempera-

ture, which was measured outside the platform. This is because of the proximity of
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the temperature sensor on the platform to the oscillator. However, an internal tem-

perature sensor is not always available for all devices, and sometimes its resolution

is coarse. In the current experiment, temperature was increased by 0.25◦C − 2◦C,

depending on the temperature ranges.
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Figure 31: Linear relationship between a CPU temperature gap and clock skew. The
error variance is 6.1734× 10−12.

5.4 Maximum-likelihood-type Clock Estimator (M-estimator)

5.4.1 Skew-Temperature Modeling

Here, the solution of clock synchronization is sought not in timestamps but in temper-

ature. Since the previous sections have already confirmed that temperature is a dom-

inant influence on clock error, a formula of clock characteristics on temperature can

now be developed. This sub-chapter introduces the derivation of a skew-temperature

model (STM) from noisy timestamps.

Since each clock oscillator behaves differently depending on its influencers, the

model derivation takes into account both the temperature measurements of the sender
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and those of the receiver. According to some technical reports [2, 1], a crystal oscil-

lator is accurate at T = 25◦C, which means that the oscillator swings at the ideal

frequency. Therefore clock skew to the absolute time is assumed as zero at T = 25◦C,

and an observed clock skew is defined as

αj [i](ppm) = κj(Tj [i]− T0) + εj[i], (39)

where κj is a temperature coefficient of node j, and Tj [i] is the ith temperature

measurement at node j. T0 = 25◦C, and εj[i] is modeling and measurement error.

Based on (39), the relative clock skew of a receiver from a sender (αSR) is expressed

as

αSR[i] = αR[i]− αS[i]

= κR(TR[i]− T0) + εR[i]− κS(TS[i]− T0)− εS[i]. (40)

This problem is solved as a least squares approach. Stacking up valid observations,

one can write the relationship as a matrix formula:
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, (41)

where Υ[i] = εR[i]− εS[i]. Simply, (41) can be represented as

z = Hp+Υ, (42)

where z is clock skew calculated by timestamps, H is a temperature measurement

matrix, p is a temperature coefficient vector, and Υ is a total error vector. The

temperature coefficient vector (p) can be solved by a pseudo inverse:

p̂ = H†z, (43)
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where H† = (HTH)−1HT .

In this case, p̂, derived based on ten-minute measurements over one hour, is

[2.197,−2.099]
T by CPU temperature, and p̂ = [5.559,−3.780]

T by air temperature.

Thus, as an example, the STM derived by ambient temperature between the two nodes

is α̂SR[i](ppm) = 5.559TR[i] − 3.780TS[i] − 44.475. If a sender transmits temperature

measurements, which shift relatively slowly, instead of timestamps, a receiver can

estimate the skew of its local clock from that of the sender based on the established

STM.

This sub-chapter proposes introducing robust regression techniques, called M-

estimators to derive STMs 2:

min
∑

ρ(ri), (44)

where ri = α[i] − α̂[i]. The standard least squares approach adopts ρ(ri) = r2i and

minimizes
∑

r2i . However, this approach is sometimes unstable if outliers exist in the

dataset. As shown in Figure 18, timestamp-transmission algorithms are influenced by

various types of noise and result in outliers in clock estimates. Employing a weight

function, (44) can be written as

min
∑

w(rk−1
i )r2i , (45)

where w(x) is a weight function. For each observation, an error is calculated by being

iteratively re-weighted according to a pre-defined weight function.

Here the M-estimator adopts a Tukey (bisquare) weight function that assigns

heavier penalties to anomalies and excludes huge delays from the estimation. The

temperature coefficients derived by the M-estimator are [5.411,−3.676]
T with a tem-

perature logger, and [2.340,−2.136]
T with a CPU sensor. This derivation was accom-

plished by training ten-minute timestamps with temperature measurements over a

2http://research.microsoft.com/en-us/um/people/zhang/INRIA/Publis/Tutorial-Estim/node24
.html
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one-hour observation. This derivation did not require any pre-filtering or knowledge

about measurement data.

5.4.2 Clock Error Estimation

Clock skew can be estimated by the derived STM with temperature measurements.

Figure 32a shows both skew estimates using a least squares approach and skew es-

timates using an M-estimator based on ambient temperature measurements. Sur-

prisingly, the STMs derived from the noisy (non-filtered) timestamps and ambient

temperature closely track the skew smoothed by a median filter while eliminating

peaks considerably. If the filtered skew is assumed to present true clock behavior,

the mean squared error (MSE) is 1.0041 × 10−10 for the least squares approach and

7.7451× 10−11 for the M-estimator.

Due to the proximity of a heat sensor, the estimates by means of CPU thermal

information are more accurate as shown in Figure 32b. The MSEs of a least squares

and M-estimator are 1.0342×10−11 and 1.6006×10−11. The reason the skews by both

the least squares approach and the M-estimator seem similar is that the noise on the

observed skews is huge but distributed evenly. However, since CPU temperature is

measured in coarse resolutions, the estimation curves show stepwise patterns. Besides,

a CPU temperature sensor may not be available for some hardware.

While building a mapping function of temperature to clock drift, the proposed

technique seeks to deliver both a temperature measurement and a timestamp. How-

ever, after establishing a temperature coefficient vector (p), the estimation method

presented here does not require timestamps, which can be severely disturbed by ran-

dom noise. Clock skew is estimated only with temperature, not with a timestamp.

Based on the experimental results, temperature is less noisy and changes more slowly

than a timestamp. Furthermore, temperature requires fewer bits to be stored in

a transmission packet, which means that it consumes less energy and bandwidth.
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(a) Clock estimation based on ambient temperature.
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(b) Clock estimation based on CPU temperature.

Figure 32: Comparison between clock skew estimates by timestamp and by temper-
ature.
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Table 4: The parameters and accuracy of the derived STMs.

Temperature Estimator Parameters (p̂) MSE

External LS 5.559, −3.780 1.004× 10−10

logger Tukey 5.411, −3.67 7.745× 10−11

CPU sensor LS 2.197, −2.099 1.034× 10−11

Tukey 2.340, −2.136 1.601× 10−11

Therefore, the proposed estimation is suitable for resource-constraint applications.

The proposed estimator is independent of unpredictable network noise and tracks

true clock drifts. If the estimator is updated by periodic training, the accuracy of

clock estimation will be improved.

Table 4 summarizes the temperature parameters derived by using a CPU tem-

perature sensor and by using an external sensor. This table also compare the MSEs

for the two estimators. The estimation by using CPU performs better for any es-

timator, which means that precise temperature information is necessary to improve

synchronization accuracy.
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CHAPTER VI

CLOCK TRACKING IN TEMPERATURE-VARYING

ENVIRONMENTS

6.1 Kalman Filter Representation

The STMs introduced in the previous chapter can estimate clock skew from tempera-

ture measurements. This chapter proposes an enhanced clock-tracking technique that

uses Kalman filtering combined with the STM derived based on the findings from the

experiments. A Kalman filter is often used to solve tracking problems since it brings

an optimal solution for a linear system. The proposed clock-tracking algorithm ac-

tively tracks small variations while compensating clock frequency errors induced by

temperature shifts. The accuracy of the clock-tracking technique that this chapter

introduces is shown and compared to that of the technique that was proposed in

Chapter 4 later.

A Kalman filter is designed to estimate the internal state,

x[n] =

[

θ[n] α[n] . . . α[n− P + 1]

]T

,

given a sequence of noisy observations. Some matrices are specified: A is a transition

matrix; B is a control-input model; Cw is the covariance matrix of process noise.

u[n] is a control vector and sets to

[

∆TS [n] ∆TR[n]

]T

. TS[n] is the temperature

of a sender, and TR[n] is the temperature of a receiver. ∆Tj [n] = Tj [n] − Tj[n − 1]

is a temperature shift during an observation period. As a designed Kalman filter

takes thermal information into the control vector, the filter compensates for frequency

shifts. Here, ambient temperature measurements were utilized because the external

logger recorded temperature with a better resolution than the internal sensor in the

experiments (see Figure 27 and Figure 30).
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The state equation is defined as

x[n] = Ax[n− 1] +Bu[n− 1] +w[n], (46)

where w[n] is a process noise vector. The derived skew model is incorporated into

the transition matrix, and the skew-temperature model is used as an input-control

model:
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0 1 0 . . . 0

0 0 1 . . . 0

...
...

...
...

...

0 0 0 . . . 0

































,B =

































0 0

κA −κB

0 0

0 0

...
...

0 0

































,

where κA and κB are the temperature parameters of a receiver and a sender, re-

spectively, which were derived by using the proposed M-estimation based on the

measurements. The observation equation is written as

θ[n] = bTx[n] + v[n], (47)

where bT =

[

1 0 . . . 0

]

, and v[n] is observation noise.

The nth a posteriori state estimate given observations up to and including the nth

sample is

x̂[n] = Ax̂[n− 1] +Bu[n− 1]

+G[n](θ[n]−bT (Ax̂[n− 1] +Bu[n− 1])), (48)

where x̂[n] is the estimate of the offset and skew state at the nth sample, and G[n] is

a Kalman gain. The predicted (a priori) estimate covariance is

Σ[n] = AM [n− 1]AT +Cw. (49)

The minimum mean squared error (MMSE) of the estimate, which is a posteriori, is

M [n] = (I −G[n]bT )Σ[n]. (50)
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These mean squared errors (MSEs) are the performance metrics for the designed

Kalman filter itself without considering observations.

The optimal Kalman gain, which determines performance of a Kalman filter, is

G[n] = Σ[n]b
(

σ2
v + bTΣ[n]b

)−1
, (51)

where σ2
v is the observation noise variance. On every observation, first, a Kalman

filter predicts a state estimate based on a previous estimate and a control input. Next,

the Kalman filter updates the state estimate by using a current observation. Since

Kalman gain, G[n], assigns a weight on the current observation, finding an accurate

G[n] is crucial for the performance. In (51), it is seen that σ2
v and Σ[n] determine

a Kalman gain. Σ[n] is a prediction MSE, which is calculated by a previous MMSE

and Cw.

Figure 33 presents a graphical expression of the designed filter, which is called a

temperature-compensated Kalman filter (TCKF). For the clock synchronization task,

it is required to append more parts including clock modeling and the calculation of

clock drift. The calculation of a Kalman filter is complicated and requires a great deal

of computation. Moreover, the proposed filter contains matrix operations, and the

size of the matrices depends on the order of the AR process model. Therefore, it is

required that some implementation issues be solved in order to realize the proposed

algorithm. Once the filter is built, it is static in time when temperature is either

changing or constant, different from [107].

6.2 Performance Analysis

Determining covariances is an important step for Kalman filtering. Here, noise vari-

ances are statistically found from observations, and then, based on the variances,

the Kalman filter tracks true clock drifts. However, accurate noise variances are

not always available in real-time tracking applications. The tracking performance
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Figure 33: Signal flow for TCKF.

is predicted regarding different noise variances for which there is no a priori knowl-

edge about data. Generally, the performance is determined based on the interaction

between observation and process noise variances.

Simulations based on the measurements were used to evaluate the proposed TCKF.

First, ten-minute measurements were trained to obtain an AR model for clock skew.

The optimal order (P ) was determined to be three by the result of information criteria,

and the model coefficients were ĉ=[0.4397, 0.3106, 0.1874], which were components

for the transition matrix (A). The derived temperature coefficient vector (p̂) by air

temperature was integrated into the control input model (B). Cw=[τ 20 σ̂
2
α 0 0 0; 0 σ̂2

η

0 0; 0 0 0 0; 0 0 0 0], where σ̂α, σ̂η, and σ̂v were set to the standard derivations of

true skew, the fitting error of the derived AR model, and observed offset, respectively,

with τ0 = 10 seconds. With the given settings, the MSEs of the measured offset and
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skew were calculated from the true offset and skew that had been smoothed by a

median filter.

In (51), σ2
v is in inverse proportion to G[n]. When σ2

v increases, G[n] decreases,

and estimates slowly converge regarding for some changes. However, for a low σ2
v ,

estimates well follow dynamics; meanwhile, anomalies may not be filtered out. In

other words, the Kalman filter becomes unstable, and as a result, may produce high

ripples on its estimates. Figure 34 shows offset and skew MSEs in terms of various

observation noise variances. Around the variance estimate based on observations

(σ̂2
v = 6.9×10−5), is an optimal point (lowest MSE). If the observation noise variance

is lower, the filter can not track small variations. If the observation variance is

higher than the optimal value, the outputs may be distorted by a few abnormal

measurements. A low variance limits the freedom of the designed filter, while a high

variance makes it unstable.

Oppositely, Cw is proportional to the gain, which means that a high Cw allows the

Kalman filter to follow observations closely. Figure 35 presents offset and skew MSEs

regarding process noise variances. The performance of a high process noise variance

worsens as the variance escalates the uncertainty of the linear model. Not only the

optimal process noise but also the stabilized MSEs are influenced by observation

noise variance. The performance of a Kalman filter depends on the selection of noise

variances.

Figures 34 and 35 also show a comparison between the performance of the TCKF

proposed here and that of a Kalman filter (KF) without temperature inputs [46, 47],

which was introduced in Chapter 4. If observation noise variance (σ2
v) increases, the

MSEs of both the TCKF and the KF become higher and finally converge, but the

TCKF performs better than the KF. Each filter is also affected by process noise vari-

ance (σ2
η). In contrast to the previous result, when process noise variance increases,

the MSEs for both the TCKF and the KF perform evenly. If the variance decreases,
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Figure 34: Tracking performance regarding observation noise variance when
σn=6.8578 × 10−6. The designed Kalman filter is combined with an optimal skew
model (AR(3)) and the derived STM.
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Figure 35: Tracking performance regarding measurement noise variance when
σv=0.833× 10−2.
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the TCKF outperforms the KF; however, the performance is limited by observation

noise variances. Because the nodal temperature is leveraged, the TCKF is able not

only to track clock inaccuracy, but also, interestingly, to perform better than the KF

regardless of noise variances. This is because thermal measurements help estimate

frequency variation. The TCKF supplements the inaccuracy of noise variances in the

designed filter.

The performance of a TCKF is also explored regarding skew models. Normally,

as the order of an AR model increases, the model better fits an original dataset.

However, the derived model becomes more complex and raises modeling costs, which

is not desirable for many applications. Figures 36 and 37 show performance regarding

AR(P), where P=1,2,3. AR(1) and AR(2) clock-skew models based on the same

dataset are compared to AR(3), which is the optimal order by information criteria.

The TCKF as well as the KF boost their efficacy with a higher-order AR model. It is

proven that the tracking performance can be improved by generating more accurate

clock models.

Each AR model was found by training the same length of data (one day). The

coefficients for the derived AR(1) and AR(2) are ĉ=[0.8708] and ĉ=[0.5161, 0.4073],

respectively. Since AR(1) and AR(2) demand smaller sizes of matrices and vectors

than AR(3), they are implemented by using less hardware registers and less computing

elements. However, as shown in the figures, AR(1) and AR(2) achieve lower accuracy

for both the TCKF and the KT. Therefore, the synchronization accuracy is traded

with required resources.

For various skew models, a TCKF also outperforms a KF except when the ob-

servation noise variance is set to be lower or the process noise variance is set to be

higher than optimal variances. If the variances for the filter are adequately granted,

a TCKF is able to enhance synchronization accuracy. The use of temperature mea-

surements allows the proposed TCKF to better track varying clock offset and skew
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while avoiding increasing the order of the AR process.

This synchronization problem is approached by investigating the causes of clock

inaccuracy and, at the same time, by looking into the statistical property of clock

drifting. Based on the clock measurements of the mobile devices in a noisy link, this

research discovers that clock skew is correlated with temperature drifting. It further

proposes a Kalman filtering algorithm that compensates with temperature changes

and estimates clock offset and skew in real time. The proposed synchronization

technique is more profitable when temperature considerably changes. Temperature

information is available for many devices, especially monitoring sensors. The proposed

technique can quickly follow varying clock offset and skew by applying frequency shifts

caused by temperature changes.

Kalman filtering is a widely used technique to solve tracking problems. However,

since Kalman filtering requires a great deal of computation for matrix multiplications

as shown in Figure 33, it may need to be simplified or optimized for some resource-

constrained applications. One possible way is to update the demanding calculation

part, which is Kalman gain, periodically instead of on every observation. The periodic

update will save computing resources for the Kalman filter-based approach. Figure

38 presents the proposed architecture for energy-efficient and resource-efficient clock

synchronization.
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Figure 36: The MSEs regarding observation noise variances for different clock model
orders when σn=6.8578 × 10−6. An accurate clock model can improve tracking per-
formance.
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Figure 37: The MSEs regarding process noise variances for different clock model
orders when σv=0.833× 10−2.
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CHAPTER VII

IMPLEMENTING KALMAN FILTER-BASED CLOCK

SYNCHRONIZATION

This chapter explains the implementation of the Kalman filter-based clock tracking

technique introduced in Chapter 4. The tracking algorithm is developed based on a

Kalman filter integrated with the clock models, which can be generally applied and

accurately follow the instability of clock offset and skew. This approach produces

statistical estimates of a drifting clock from noisy time observations, and achieves

synchronization among nodes under non-deterministic network uncertainties. How-

ever, to run an algorithm on a processing unit of a sensor device, one may encounter

some restrictions such as a processing speed and memory spaces. A desirable algo-

rithm should be able to perform on the limited resources of target devices.

The developed Kalman filter-based clock synchronization algorithm was realized

by utilizing restricted resources in a platform, which might degrade synchronization

accuracy. The purpose of this realization was to validate the real-time operation of the

synchronization algorithm. This chapter demonstrates that the algorithm realized in

C runs on Pandaboards [78] and tracks clock offset and skew over a wireless connection

in real time.

7.1 Implementation

The clock synchronization was implemented in C. Figure 39 shows the functional flow,

where each block represents a function in the program. When a packet conveying

a time record of a reference arrives, calculate clock() determines an observed clock

offset and skew based on send and receive timestamps. The observed clock, which is
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an output of calculate clock(), is an input of the designed Kalman filter. The filter

outputs an estimated clock offset and skew from the observed clock. Kalman predict()

predicts clock offset and skew based on a previous estimate and the clock models. In

Kalman update(), the predictions from Kalman predict() are updated by the observed

offset calculated in calculate clock(). This process is triggered by receiving a new

timestamp on a receiver.

calculate_clock()

Kalman_predict()

Kalman_update()

init_Kalman()

Clock estimates

Ti, j

init_clock()

Figure 39: The functional flow of Kalman filter-based clock synchronization.

For each variable, a data type needs to be properly declared. A variable should be

assigned to enough bits to avoid overflow; however, it should not waste resources and

raise implementation costs. A timestamp (time record), which was recorded in µs was

allocated to a 64-bit unsigned integer. Clock offset was declared as a 32-bit signed

integer, which could range from -2147.483648 to 2147.483647 seconds. Clock skew was

assigned to a 32-bit float, whose representable positive value was from 1.18 × 10−38

ppm to 3.4× 1038 ppm.

For the implementation, an AR skew model and variances were assumed known.

The Kalman filter was designed with a fixed AR length (P = 3) for simplicity. The

coefficients of the AR skew model were employed from the previous measurements.

ĉ = [0.4397, 0.3106, 0.1874], each of which was declared as a float. The variances of

the Kalman filter, which were estimated based on previous measurements, were also

declared as a float data type. Except timestamps, all variables and parameters were
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assigned to a 32-bit integer or float.

The clock synchronization technique consists of many matrix arithmetic opera-

tions especially for the calculation of Kalman gain. However, since C language does

not support matrix multiplications, matrices should be broken down into components.

Each component can be operated for multiplication separately and sequentially.

7.2 System and Network Setup

The system and network were set up as same as those in Chapter 5. A wireless net-

work, conforming to IEEE802.11g was established over two Pandaboards that Ubuntu

was installed on. For both the devices, NTP adjustments (both ntpd and ntpdate)

and CPU frequency scaling were disabled to explore the inherent characteristics of

the oscillators. Therefore, this experiment might verify the implemented algorithm

under not only oscillator instability but also wireless link uncertainty.

The two nodes in the wireless network communicated with each other. One node

periodically disseminated timestamps, which were the records of the local time, every

minute. The other node tracked the local clock of the sender by running the proposed

algorithm on its processing unit at the moment that a timestamp arrived. The clock

synchronization may be deferred by pre-allocated system tasks, which have a high

priority. However, by showing that the synchronization task was completed in a

fairly short time, the real-time operation could be verified.

During the observation, the two nodes were placed in close proximity to eliminate

interferences and be free from other access points. The two nodes were exposed to a

moderate environment by being placed in a room without any temperature-controlling

system. Since the aim of the implementation is to verify the real-time operation of

the proposed Kalman filter-based clock synchronization, temperature measure was

exempted for this experiment.
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7.3 Real-time Clock Tracking

The synchronization algorithm was realized by using the hardware resources in the

platform. While the algorithm was running on a receiver, the node could monitor both

a time difference between the two nodes and a synchronized clock. The performance

figures were plotted on the receiver by GNUPLOT, which was a command-line driven

graph utility for Linux, while synchronizing the nodes.

Figure 40 shows clock drifts between the local clock of the receiver and that of

the sender for each observation point. The red lines indicate clock skew and offset

derived by using transmitted timestamps, which were disturbed by measurement

noise and network uncertainties. The measured skew and offset shows many peaks

that explains the disturbance. The total offset during five hours increased about 80

ms in a negative direction, which means that the average drifting rate was about -4.7

ppm. Meanwhile, the skew was not constant and ranged from -190 ppm to 175 ppm.

The filtered clock skew and offset (green lines) represent the synchronized clock every

minute, in other words, the estimated drift of the local clock from the sender. The

execution for synchronization was completed in three to seven cycles in a 32.768kHz

input clock, whose average time is 122 µs. Since the execution time is much less

than a beacon period (200 ms) and a synchronization period (one minute), this clock

tracking can be considered to be accomplished in real time.

The real-time tracking was compared to computer simulations in terms of synchro-

nization performance. Similarly, one node sent its local clock reading periodically.

While the receiver was estimating clock offset and skew, it also collected send, receive

timestamps and clock estimates, and saved them into a file. For fair comparison,

MATLAB simulations were conducted by using the collected timestamps, which were

used for the implemented synchronization. The variances of the Kalman filter were

set to the estimates derived by multiple experiments for both the simulation and the

C implementation.
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Figure 40: Real-time clock synchronization.
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Figure 41 shows tracking by the C program in real time as well as tracking in a

MATLAB simulation when the synchronization period is one minute. Both skew and

offset estimated by on-board, real-time tracking are very close to those estimated by

the simulations, which prove the operation of the implementation. This is because

the platform used for this implementation, Pandaboard, supports floating-point arith-

metic. In other words, the platform has sufficient computational capability for the

proposed clock synchronization. However, the performance may be limited because

each variable is assigned to a fixed number of bits. While MATLAB assigns a double-

precision data type (64 bits) by default, all data, except timestamps, are declared

to 32-bit integer or float types in C. It can be inferred that arithmetic underflow for

some operations occurs during the real-time tracking.

In this work, the Kalman filter-based clock synchronization technique was imple-

mented on a wireless platform. This experiment verified the real-time synchronization

between two mobile nodes and calibrated the performance under the oscillators and

link uncertainties as well as hardware limitations. It was observed that the imple-

mented technique could run on a processor by assigning a fixed number of bits for

each variable and perform in fairly short latency. The experimental results presented

a possibility that the proposed synchronization technique could be used for practical

applications.

94



200 210 220 230 240 250
−20

−15

−10

−5

0

5

10

15

S
ke

w
 (

pp
m

)

Time (minutes)

 

 

Measure
Simulation
Real−time

(a)

200 210 220 230 240 250
1.4352

1.4354

1.4356

1.4358

1.436

1.4362

1.4364

1.4366

1.4368

1.437

1.4372
x 10

7

O
ffs

et
 (

µs
)

Time (minutes)

 

 

Measure
Simulation
Real−time

(b)

Figure 41: Comparison between MATLAB simulation and C implementation at τ0 = 1
minutes, σ2

v = 1.161635× 1010, and σ2
η = 7.421050× 105.
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CHAPTER VIII

FIXED-POINT CLOCK SYNCHRONIZATION

Many digital signal processing algorithms are realized by using floating-point arith-

metic in high-level languages for functional verification. However, to run on a fixed-

point digital signal processor (DSP), the algorithms need to be implemented by using

fixed-point numbers and arithmetic operations. Fixed-point implementation may

lower the performance of the algorithm; however, the algorithm runs on low-cost,

low-power DSPs, which give the benefits of fast execution time and low energy con-

sumption [85, 91].

This chapter presents the conversion to fixed-point realization of the clock synchro-

nization technique introduced in Chapter 4. Similarly, IEEE 1588 synchronization

protocol was prototyped on a fixed-point DSP [41], and some Kalman filter-based al-

gorithms were implemented by using fixed-point arithmetic operations, which allowed

the algorithms to run on a fixed-point DSP [19, 53, 104].

8.1 Fixed Point Representation

Figure 42 shows the process of converting from floating-point to fixed-point algo-

rithms. The conversion replaces floating-point with fixed-point representation for

each variable. A single-precision floating-point number consists of 1 sign bit, 23

fraction bits and 8 exponent bits, and ranges to 3.40282 × 1038. However, a 32-bit

fixed-point unsigned integer varies from 0 only up to 232 − 1. Therefore, an appro-

priate wordlength (WL) for fixed-point representation needs to be selected not only

to represent a variable without overflow but also to avoid a significant quantization

error.
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Figure 42: The conversion from floating-point to fixed-point programs.

Since the Kalman filtering is a recursive method, an output of a fixed-point arith-

metic logic returns to an input of the logic through a feedback loop. In other words,

the WL of the output will increase every iteration. Therefore, to achieve a stable

system, it is necessary to limit wordlengths for a feedback path. However, this may

cause the output to suffer from a quantization error.

The wordlength (WL) of a variable is the sum of an integer wordlength (IWL),

a fraction length (FL), and a sign bit only if the variable is signed. Suppose a is a

floating-point number. A fixed-point number for a can be found by b = a× 2FL for a

certain FL. From bit0 to bitFL−1 in b are selected as a fraction part of the fixed-point

number. From bit0 to bitWL−1 are valid bits. A WL could be equal or larger than the

number of bits of b to prevent the fixed-point number from producing a quantization

error.

Finding a proper FL and WL is critical to determine the accuracy of a fixed-point

implementation. An IWL is decided by log2(max(abs(a))) to avoid overflow. In other

words, a different IWL can be allocated to each variable, depending on its maximum
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value. An FL determines the level of precision, that is, a minimum representable

value. By assigning a reasonable FL, the wordlength is determined as WL = IWL +

FL + S.

8.2 Range Estimation and Wordlength Decision

Determining a wordlength usually consists of two phases, a range estimation and

a wordlength optimization. First, the range estimation phase searches the ranges

of each variable to avoid overflow or underflow. Next, the wordlength optimization

phase finds an optimum wordlength for a variable based on a searching method such

as exhaustive search [97], sequential search [32], or local search [20].

For range estimation, analytical approaches calculate a range by using the propa-

gation of variable ranges [102, 93, 75, 22]. On the other hand, statistical approaches

find a minimum and maximum through simulations [21, 50, 52]. In this clock synchro-

nization technique, a simulation based on the given coefficients provides a minimum

and a maximum for each variable. As explained, since Kalman filtering is a recursive

method, a simulation-based approach is appropriate.

Table 5 shows the ranges of some variables obtained by simulations. Other than

several variables that represent clock offset, many variables have only fractional parts.

The fixed-point representation for small fractional numbers is set to FL > WL. For

example, if a = G[2][n], whereG[2][n] is the second component of a vectorG (Kalman

gain) at nth iteration, then b = a×2FL. If FL = 20, b ranges from 154.141 to 419.430,

whose integer parts can be represented by using eight bits. Therefore, if one sign bit

is added, the wordlength of G[2][n] can be decided as nine.

The accuracy of a fixed-point algorithm depends on the wordlengths used. A short

WL causes distortion of a result, while a long WL can increase implementation cost.

Bit widths for integer and fraction can be decided as

1. Find a range of each variable (a).
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Table 5: One example of fixed point representation for each variable. amax =
max(abs(a)).

Variable Max Min amax log2amax IWL WL FL

θ[n] 152.3181 0 152.3181 7.250943578 7 13 5
x̂[1][n] 152.3182 0 152.3182 7.250944525 7 13 5
x̂[2][n] 0.0023 -0.0096 0.0096 -6.702749879 -7 9 15
G[1][n] 0.684 0.4392 0.684 -0.54793177 -1 9 9
G[2][n] 0.0004 0.000147 0.0004 -11.28771238 -12 9 20

...
...

...
...

...
...

...
...

2. Take floor(log2(abs(amax))) as a IWL.

3. Find an optimum WL.

4. Assign FL = WL - IWL - 1.

Following the process, every variable used for the clock synchronization was rede-

fined as a fixed-point number by defining a proper WL.

8.3 Accuracy Evaluation

The fi, one of the functions in the Fixed-Point Toolbox in MATLAB, is used for

defining a fixed-point number. The WL of an output of an arithmetic operation is

determined by the WLs of its operands. However, since this is a recursive method,

in other words, an output has a feedback loop to an input, intermediate variables as

well as inputs and outputs are confined to limited bit widths. Moreover, since each

component in a matrix has a different range, each is separately considered regarding a

wordlength decision. Finding an optimum WL and FL for each variable will enhance

the accuracy of fixed-point clock synchronization; at the same time, it will spare

the unnecessary implementation costs. One way to optimize a WL is to probe the

performance of the clock synchronization by changing a WL for each variable.

In this analysis, the dependency of bit lengths on system quality was checked by

assigning the same WL for every fraction-only variable. All variables were converted
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into fixed point representation. An IWL for each variable was determined according

to the range estimation. For the variables that had non-zero integer parts, only an

FL was limited, which might have a quantization error in a fixed-point number.

Figure 43 illustrates tracking performance of fixed-point clock synchronization.

The 16-bit Kalman filter reveals an underflow problem, while the 32-bit Kalman filter

performs comparably to the floating-point Kalman filter. This means that the fixed-

point implementation restricts the performance of clock synchronization, however,

the synchronization techniques that are realized by using more numbers of bits may

be able to satisfy required accuracy for certain applications.
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Figure 43: Tracking performance by using the fixed-point Kalman filter.

Figure 44 shows the accuracy of the clock synchronization technique that was

implemented in fixed-point arithmetic. When a certain WL was given, an MSE

was derived based on 1000 iterations for 100 synchronization periods. By default,

a variable was declared as a double-precision data type (64 bits) in MATLAB. The

floating-point clock synchronization performed the most accurately for both clock
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skew and offset. However, as WLs in fixed-point numbers increased, the error de-

creased, which illustrated that bit lengths restricted performance. When WL = 9,

the tracking performance degraded more than 1000 times. However, when a WL was

higher than 18, the MSEs for both clock skew and offset increased only less than 15%.

The fixed-point implementation of the proposed clock synchronization algorithm

depicts that it achieves comparable quality to the floating-point algorithm and yields

only 15% performance degradation by using bit widths which are much less than the

single-precision data length (32 bits). Moreover, this conversion to the fixed-point

synchronization may help hardware implementation since it evaluate total required

bits by finding an optimum WL for the algorithm. Optimizing a WL for each variable

would improve the performance of this fixed-point algorithm.
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Figure 44: The MSEs for different wordlengths in fixed-point numbers.
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CHAPTER IX

CONCLUDING REMARKS AND FUTURE DIRECTIONS

The objective of this research is to develop clock synchronization techniques, which

are efficient for wireless networks under varying environments. First, this research

explored the characteristics of clock oscillators based on time measurements and de-

rived statistical models for clock uncertainties. Combined with the derived models, a

Kalman filter was designed to track time-varying clock drifts and was verified under

many unreliable circumstances through simulations. The other approach to achieve

clock synchronization was to utilize environmental factors to cause an oscillator fre-

quency to float. The experiments exposed the correlation of temperature, which was

one main factor, with clock skew between two nodes in wireless links. A clock-tracking

technique, which was improved by using the temperature characteristics, compen-

sated clock drifts and enhanced tracking performance. For practical applications,

the proposed technique, was implemented on mobile devices. This implementation

demonstrated that one node in a network, through the technique, could estimate

clocks of other nodes in real time. Moreover, the fixed-point Kalman filter, which

was realized by using fixed-point arithmetic operations, presented the applicability of

the technique.

9.1 Contributions

The primary contributions of this dissertation are summarized below:

• Based on the clock measurements of low-cost oscillators, a clock is modeled as

an AR process whose order is determined by using information criteria.

• The derived clock models closely follow the real clock drift.
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• A Kalman filter is designed to track clock uncertainties based on the clock

models.

• The model and the tracking technique are evaluated by considering missing or

corrupt observations which can occur in unreliable links.

• Through experiments on wireless devices, it is shown that timestamp transmis-

sions are notably disturbed by unpredictable delays.

• Temperature is proven as an important factor to cause oscillators erroneous

from real measurements.

• An M-estimator is proposed to estimate clock error induced by temperature

changes.

• Temperature-compensating Kalman filter (TCKF) tracks the variation of the

clock drift and thus enhances the synchronization performance.

• The implementation on devices confirms the real-time operation of the proposed

techniques.

• The fixed-point realization of the Kalman filter-based technique evaluates the

applicability in low-cost processors.

9.2 Future Directions

The following is a list of interesting research topics that can be pursued as extensions

of this dissertation:

• Automatic or periodic updates of noise variances for the designed Kalman filter.

• Improve the resolution of CPU temperature measure to employ for the Temperature-

compensating Kalman filter (TCKF).
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• Hardware implementation of the proposed Kalman filter-based clock synchro-

nization.

• Analyze required resources and timing/area constraints.

• Multi-hop, network-level simulation.

• Fast converging synchronization for resource-constraint networks.
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