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CHAPTER 1
INTRODUCTION AND PRELIMINARIES

1.1 Introduction

Dyadic operators have attracted a lot of attention in the recent years as the dyadic
techniques have been established as fundamental tools in harmonic analysis. The theory
of linear dyadic operators has been proved extremely useful in the advancement of the the-
ory of linear Calder6n-Zygmund operators and their commutarors with locally integrable
functions. The proof of so-called A, theorem (see [1]) consisted in representing a linear
Calder6n-Zygmund operator as an average of dyadic operators, and then verifying some
testing conditions for those simpler dyadic operators. It is now well-known that the linear
Calder6n-Zygmund operators, as well as their commutators with locally integrable func-
tions can be dominated pointwise by sparse dyadic operators. These results have been
particularly helpful in obtaining quantitative weighted inequalities for these operators, in-
cluding the Bloom’s inequality for the commutators in two-weight setting. The objects,
statements, and often proofs are simpler in the dyadic world, but yet illuminating enough

to guarantee that one can translate them into the non-dyadic world.

As in the linear case, we can expect a similar connection between the multilinear
dyadic and non-dyadic worlds. The main goal of this dissertation is to develop a detailed
theory of multilinear dyadic operators (paraproducts and Haar multipliers) and their com-
mutators with locally integrable functions. These multilinear operators can be thought of
as discrete dyadic models of multilinear Calderén-Zygmund operators introduced in [2],
and we can expect that the results obtained in the multilinear dyadic setting will eventually

imply corresponding results in the continuous setting.



We introduce multilinear dyadic paraproducts and Haar multipliers in Chapter 2, where
we motivate their definitions by obtaining a generalized paraproduct decomposition of the
pointwise product of two or more functions. These operators and their commutators with

locally integrable functions are the main objects of our study.

In Chapter 3, we investigate the boundedness properties of multilinear dyadic para-
products and Haar multipliers in the unweighted setting. The corresponding theory of
linear dyadic operators, which we will be using very often, can be found in [3]. In [4], the
authors have studied boundedness properties of bilinear paraproducts defined in terms of
so-called “smooth molecules”. The paraproduct operators we study are general multilinear
operators defined in terms of indicators and Haar functions of dyadic intervals. In [5] Coif-
man, Rochberg and Weiss proved that the commutator of a BM O function with a singular
integral operator is bounded in L?, 1 < p < oo. The necessity of BM O condition for the
boundedness of the commutator was also established for certain singular integral operators,
such as the Hilbert transform. S. Janson [6] later studied its analogue for linear martin-
gale transforms. In Chapter 3, we study commutators of multilinear dyadic operators, and
characterize dyadic BM O functions via the boundedness of these commutators. The cor-

responding theory for general multilinear Calderén-Zygmund operators can be found in [2].

Using the unweighted theory from Chapter 3, and exploring some additional prop-
erties of these multilinear dyadic operators and their commutators, we obtain weighted
estimates for them in Chapter 4. These results are the dyadic analogs of the corresponding
results for multilinear Calderén-Zygmund operators obtained in [7], and are included in
[8]. In this chapter, we also characterize dyadic BM O functions via the boundedness of
the commutators of multilinear dyadic paraproducts in the weighted setting. Such charac-

terization of BM O functions in the continuous case is yet to be known.



Domination by sparse operators has become a very useful idea in better understand-
ing the weighted estimates for various linear and multilinear operators. It is now well
known that a linear Calderén-Zygmund operator can be dominated pointwise by a finite
number of sparse operators. Such domination results are particularly helpful in obtaining
sharp weighted bounds for these operators. M. Lacey [9] showed that given a martingale
transform 7" and a locally supported integrable function f, there exists a sparse operator
S (depending on 7" and f) such that |T'(f)| < S(|f|). Using this result, the author then
established a number of sharp weighted inequalities for martingale transforms, and gave an

elementary proof of the A, bounds in the continuous setting.

A. K. Lerner, S. Ombrosi and I. P. Rivera-Rios [10] obtained a sparse domination
result for the commutator [b, T'] of a linear Calderén-Zygmund operator 7" with a locally
integrable function b, and derived several weighted inequalities for the commutators. In
particular, they obtained quantitative norm inequalities for [b, 7] in two-weight setting.
Study of commutators in two-weight setting was initiated by Bloom [11] who, in 1985,

characterized the boundedness of the commutator of the Hilbert transform H:
[0, H] : LP(X) — LP(u), A p€ Ay, 0 <p < oo,
by a BMO condition on b adapted to the weights A and p; namely

1
b = —— [ |b(x) — (b)|d
Plssio, = s | b(e) = @)11de < oc,

where v = (E)l/p

5 . A modern proof of the same result was given in [12] for p = 2 by L

Holmes, M. Lacey and B. Wick, who in a subsequent paper [13], generalized the result for
the commutators of Riesz transforms for 1 < p < oo, and also obtained the upper bound

for the commutators of linear Calder6n-Zygmund operators in the two-weight setting.



In Chapter 5, we show that the multilinear dyadic paraproducts and Haar multipliers
can be dominated pointwise by multilinear sparse operators, and also obtain similar point-
wise estimates for their commutators with locally integrable functions. We then introduce
and prove the multilinear Bloom’s inequality for the commutators of multilinear Haar mul-
tipliers. These results regarding commutators are new in the multilinear setting, and can be

expected to hold also for the commutators of multilinear Calder6n-Zygmund operators.

1.2 Preliminaries

1.2.1 The Haar System

Let D denote the standard dyadic grid on R,
D={[m27% (m+1)27%) :m,k e Z}.

Associated to each dyadic interval I, there is a Haar function h; defined by

1
h[(ﬂ?) = m—1/2 (].]+ — 1]_) s

where /_ and I, are the left and right halves of /.

The collection of all Haar functions {h; : I € D} is an orthonormal basis of L*(R), and an
unconditional basis of L? for 1 < p < oo. In fact, if a sequence € = {¢;};cp is bounded,

the operator 7, defined by
Tof(x) =Y elf b

1€D

is bounded in L? for all 1 < p < oo. The converse also holds. The operator 7. is called the

Haar multiplier with symbol e.



1.2.2  Weights and A, Classes

A weight w is a non-negative locally integrable function on R such that 0 < w(z) < oo
for almost every x. Given a weight w and a measurable set ¥ C R, the w-measure of E is

defined by

We say that a weight w belongs to the class A, for 1 < p < oo if it satisfies the Mucken-

(i o) (i foro) e

where the supremum is taken over all intervals. The expression on the left is called the A,

houpt condition:

(Muckenhoupt) characteristic constant of w, and is denoted by [w]4,. Note that if p’ is the

. . .1, 1 o 1 P
conjugatelndexofp,l.e.p—l—p,—1,then1 PV=-—75= p.So,

o= ) G )"
“ow () (G )

1 P
It can be shown that 11m w_ﬁ wt re<(1)- This leads to the followin
/i ¢
definition of A, class.

A weight w is called an A; weight if

1 -1
[w)] 4, —sup m lw ™| poo(ry < 0.

Thus [w] 4, is the infimum of all constants C' such that for all intervals 1/,

1
m/lw < Cw(x) forae. ze€l.



The A, classes are increasing with respect to p, i.e. for 1 < p; < py < 00,
[w] Ap2 S [w]Apl N

It is natural to define the A, class of weights by

A =] 4,

p>1

with [w]a,, = inf{{w]a, : w € Ap}.

For 1 < p < o0, the dyadic Ag classes are defined by the same inequalities restricted to the

dyadic intervals. Moreover, A% = U Az.

p>1

1.2.3  Multilinear A 5 Condition

We state the multilinear A 5 condition introduced by Lerner et al. [7].

Let P = (p1, .-y pm) and & = (wy, ..., wy,), where 1 < pq,...,pyp < ococand wy, ...

are non-negative measurable functions. Let pil + -+ pl = z_la'

We say that w satisfies the multilinear A5 condition and we write @ € A if

o (i o) T f ) <o

1 -7
where vz := pr/pj and(ul/ )

S =
N’U\"_‘

m’.ﬁ\‘ =

Using Holder’s inequality, it is easy to see that

ﬁ Apj C AP"
j=1

7wm

is understood as [|w; || o (1) When p; = 1.

Moreover, if W € Ap, vg € Ay,p. We will denote the dyadic multiliner A class by A%.



1.2.4 Lebesgue Spaces

Given 0 < p < 00, the Lebesgue space L?(R) is defined by

LPR) == {f : [l fllp < o0},

1/p
where, | fll, = [|fller = </ |f(x)|pdx) . The Weak L? space, also denoted by
R

LP>(R), is the space of all functions f such that
1Sl ooy = Stugt {z eR: f(z) > t}]"" < .
>

For convenience, we will denote L”(R) and LP*°(R) by L? and L respectively.

Given a weight w, the weighted Lebesgue space LP(R, w) is defined by
LP(R,w) = {f : || fl o) < 00}

1/p
where, || f||Lr@w) = (/ |f(x)|pw(x)d:)s) . Moreover, the weak space LP>°(R,w) is
R

the space of all functions f such that
£l 1= suptu ({z € R: f(x) > )P < oo,
t>

For convenience, we will denote LP(R, w) and LP»*°(R) by L?(w) and L**°(w) respec-

tively.

1.2.5 Maximal Operators

Given a function f, the maximal function M f is defined by

Mf(z) = sup|—}| / @) dt,

1>z



where the supremum is taken over all intervals / in R that contain x.

For ¢ > 0, the maximal operator M; is defined by

/0

Awm:MmW%zewmﬂfW@

1>z

The sharp maximal function M7 is given by

M7 f(x) —suplnf |I\/|f — | dt.

I>x

In fact,

1
where (f); := i /f(t)dt is the average of f over I.
I

Given f = (f1,..., fm), the maximal operators M and M, with r > 0 are defined by

Mmm:mﬂﬁ[wmm

I>z i1

and

1/r
M,.( —bupH (|f| /|f7, Ui |’"dyi) .

I>x i1
We will be using dyadic versions of the above maximal operators which are defined by
taking supremum over all dyadic intervals / > z, instead of all intervals / > x. For conve-

nience, we will use the same notation to denote the dyadic counterparts.

We will use the following results regarding maximal functions. The dyadic analogs of these

statements are also true.

e For any locally integrable function f, |f(x)| < M f(z) almost everywhere. This

inequality is a consequence of Lebesgue differentiation theorem and can be found in

8



any standard Fourier Analysis textbooks, see for example [14] or [15]. In fact, for

any § > 0,if f € L (R), then |f(z)| < Msf(x) almost everywhere.

loc

For 0 < §; < 0y < 00, My, f(z) < Ms, f(x). This simple inequality can be verified

just by using Holder’s inequality.

For w € A, with 1 < p < oo there exists a constant C' such that
M fllerw) < Cllfllerw)-  (See [3], [14D)

Fefferman-Stein’s inequalities (see [16]): Let w € A, and 0 < d, p < co. Then there

exists a constant C'; such that
1M fll oy < CLIME Fll o) (1.2.1)

for all functions f for which the left-hand side is finite.

Similarly, there exists a constant Cy such that
M5 fl| ooy < Call M fl oo ) (1.2.2)

for all functions f for which the left-hand side is finite.

Let P = (P, pm) and W = (wyq,...,wy,), where 1 < py,...,p, < oo with
pil +-- ﬁ = %, and wy, ..., w,, are weights. Then the inequality
IMN N rway < C T2 (1.2.3)
j=1

holds for every f: (fi,..., fm)ifand only if W € Ap. For 1 < py,...,p, < 00,



the same statement is true with the inequality

1Moo <0[Nmm7. (1.2.4)

7=1

These estimates and the one below have been obtained in [7].

e

o If W = (wy,...,wpy) EAﬁ,forﬁ: (p1y .- pm) With 1 < py,...,p, < oo and

1 11 ; e AL
Tt o= then there exists an r > 1 such that w € AP/T, and that

IMe()llzowa) < C TN 2 (- (1.2.5)
j=1

1.2.6 The Dyadic Square Function
The dyadic Littlewood-Paley square function of a function f is defined by
1/2
= (Yo BLAE [(f, hr)|? 2)
1| b))
I€D

For f € LP with 1 < p < oo, we have ||Sf||, ~ || f||, with equality when p = 2.

1.2.7 BMO Spaces

A locally integrable function b is said to be of bounded mean oscillation if

1
|Mmm:ww—/W@—@mM<w
I|]’1

where the supremum is taken over all intervals in R. The space of all functions of bounded

mean oscillation is denoted by BMO.

If we take the supremum over all dyadic intervals in R, we get a larger space of dyadic

BMO functions which we denote by BMO“.

10



For 0 < r < oo, define

BMO, = {b € Ly,(R) : [|b]| paro, < o0},

1/r
where, bl a0, = (Sup |]|/|b D)l dm) |

For any 0 < r < oo, the norms ||b|| prs0, and ||b||saro are equivalent. The equivalence of
norms for r > 1 is well-known and follows from John-Nirenberg’s lemma (see [17]), while

the equivalence for 0 < r < 1 has been proved by Hanks in [18]. (See also [19], page 179.)

For r = 2, it follows from the orthogonality of Haar system that
1/2
HbHBMog = SUP 7 ZV) :
’ | JCI

Given a weight w on R, we define the weighted BM O space BM O(w) to be the space of

all locally integrable functions b that satisfy

/\b by | dx < o0,

where the supremum is taken over all intervals in R. The dyadic counterpart BMO%(w) is

6] Brro(w) = = sup -

defined by taking the suprimum over the dyadic intervals in R.

1.2.8 The Linear and Bilinear Paraproducts

Given two functions f; and f5, the point-wise product f; fo can be decomposed into the

sum of bilinear paraproducts:

fufa = POO(f1, f2) + POV (f1, f2) + PYO(f1, fa),

11



where for @ = (aq, ap) € {0,1}2,

(fi, fo) = Zfl I, a0) fo(I, az)hy 7

1eD

with f;(1,0) = (fi,h), fi(I,1) = (f)1, (@) = #{i : oy = 0}, and h5"” being the

pointwise product hh; ... h; of o(d) factors.
The paraproduct POV (f,, f5) is also denoted by 7y, (f2), i.e

T (f2) = Y (i ha)(fa) tha.

I€D
Observe that
(75, (f2): 9) = <Z<f1,h1><f2>1hl,g> = Z(f17h1><f2>1<9, hr)
I€D IeD

which is equal to

(fo, POO(f1,9)) = <f2> Z<f17h1><97h1>h§>

1€eD

- Z<f1, hi){g, h1){fa, h%)

= > (fr.he){f2)1(g. ).

1€eD

This shows that 77, = POO(fy,-) = POO(., f).

The ordinary multiplication operator M, : f — bf can therefore be given by:
My(f) = bf = POV, f) + POV, f) + PUO(b, f) = my (f) + m(f) + 74 (D).

The function b is required to be in L> for the boundedness of M, in LP. However, the

paraproduct operator 7, is bounded in L? for every 1 < p < oo if b € BMO?. Note that

12



BMO? properly contains L>. Detailed information on the operator 7, can be found in [3]
or [20].
1.2.9 Commutators of Haar Multipliers

The commutator of 7, with a locally integrable function b is defined by

[0, TJ(f) () == Te(bf) () — Mp(Te(f))()-

It is well-known that for a bounded sequence € and 1 < p < oo, the commutator [b, T.] is
bounded in L? for all p € (1,00) if b € BMO?. These commutators have been studied in

[21] in non-homogeneous martingale settings.

1.2.10 Sparse Operators

A collection S of dyadic intervals is said to be sparse if foreach I € S,

1
S5,

JeChs(I)

where Chgs(I) is the collection of maximal dyadic intervals in S which are strictly con-
tained in 1.

Given a sparse collection S of dyadic intervals, the multilinear sparse operator Ag is de-

ﬁﬁ[@h

=1

fined as follows:

Awnwmzz(

Ies
In [22], the authors have proved that if P = (p1,- -+, pm) With 1 < py,--+ | p, < 0o and
1/pr + -+ 1/py = 1/p, then for & = (wy,--- ,w,) € Ap and f: (fi, 5 fm), we
have

. max 1,%,---,% m
[As(Pll sy S 04, { }H 1fill 27 (i) (1.2.6)
=1

13



CHAPTER 2
MULTILINEAR DYADIC OPERATORS: MOTIVATION AND DEFINITIONS

In this chapter, we introduce multilinear dyadic paraproducts and Haar multipliers. Their
definitions are motivated by the generalized paraproduct decomposition of the pointwise
product of two or more functions. These operators and their commutators with locally

integrable functions are the main objects of our study.

2.1 Decomposition of the Pointwise Product H fi
j=1

m

In this section, we obtain a decomposition of the pointwise product H f; of m functions
j=1

that generalizes the following paraproduct decomposition :

fufa = POO(f1, fo) + POV (f1, f2) + PYO(f1, fa).

The decomposition of H f; will be the basis for defining multi-linear paraproducts and
j=1
m-linear Haar multipliers, and will also be very useful in proving boundedness properties

of multilinear commutators.

We first introduce the following notation:

~

-ﬂLm:ﬂD=Uﬂﬁ:4ﬂ@mmM.

o f(I,1):= (f);z%l/lf(x)d:c.
o U, :={(oq,e,...,c) € {0,1}": (1,9, ..., ) # (1,1,...,1)}.

o g(d)=#{i:a;=0}ford = (av,...,ay) € {0,1}™.

14



o (a,1) = (aq,...,qm,1), (i,d) = (i,q1,...,0qp,) ford = (ay,...,q,) € {0,1}™.

o PE(fi, .., fm) =TT (1, a;)h for G € Uy, and I € D.

Wfrreofm) =D PR(fry o fn) = ZHfJJaJ 1] for @ € U,

IeD 1D j=1

With this notation, the paraproduct decomposition of f; f, takes the following form:

fifa = POOfi, fo) + POV (fr, fo) + PYO(fi, fo) = ZP (f1, f2).
aeUs
Note that
Un={(a,1):d € Up_1}U{(a,0):ad€Uyp1}U{(,...,1,0)}. (2.1.1)
To obtain an analogous decomposition of H f;, we need the following crucial lemma:
j=1

Lemma 2.1.1. Given m > 2 and functions f, fo, ..., fm, with f; € LPi|1 < p; < oo,we

have

H F)ali= > Pi(fuforosfm) 1,

aclUy, JCI

forall J € D.

Proof. We prove the lemma by induction on m.

First assume that m = 2. We want to prove the following:

() alfo)als = Y ) PR(fifo) 1

aels JCI

= (Z Pf(o’l)(fl,fz) + pr(l’o)(fth) +ZP1(O’O)(f1,f2)> 1

JcI JcI JcI

= (Z R (fa)rhr + Z<f1>1f§(f)h1 + Z ﬁ(”ﬁ(”ﬁ) 1.

JCI JcrI JCI

15



For 1 < pi < 00, <fl>J1J = (Z ﬁ([)h[) 1;. So,

JCI

<f1>J <f2> 1

(g (gron )

Jcl JCK
= FDhy <Zf2(K)hK+f2 Y+ Y Fa(K )
JCl ICK JCRCT
= { J?() (f2) h1+2f1 f2 h2+Zf1 (Z j/;(K>hK>}1J
JCl JCl JCl JCKCI
= { J?( I)(f2) hI+Zf1 f2 h2+Zf2 Vhic (Zﬁ([)]ﬁ)}h
JCI Jcl JCK Kcl
= { f()f2 h1+2f1 h2+2f2 }1J
JCI Jcl JCK
= { A (f2) h1+2f1 ) fo1 h2+Zf2 }1,]
JCl JCl JCl
= ( J?( ) f2 1h1+z J1) If2 h1+2f1 2) 1.
Jcl Jcl JCl
Now assume m > 2 and that H fivoly = Z ZP (f1, fo, -+, fm—1)1,. Then,
G€Up_1 JCI
H<fj>J1J
=1
m—1
= < <f]>J1J> (fm)sLy
=1
= D D Fi(fifre s fma) (Z fAm(K)hK> L
&€Um_1 JCI JCK
= Z ZPI&(flan ----- Jm—1 (me K)hi + fulI)hs + Z f/n\m(K)hK> 1,
G€Um_1 JCI ICK JCKCI

16



This gives

m

H<fj>J1J

J=1

Z ZPI&(fI,an---»fm—l)(fm>11J+ Z pr(fh--w

A€Upm_1 JCI AE€Um—_1 JCI

+ Z pra(fl,f%---,fml)( Z f;(K)hK>1

€U _1 JCI JCKCI

SN PE S for fd e Y Y PV S

FEUm_1 JCI GE€Up—_1 JCI

3 FaEhi | D ST PR fr e fn) | 1

JCK G€Um_1 KCI

SN P fo f) i Y DY PV (i fon

FEUm 1 JCI FE€Up—1 JCI
+ Z S (E) b (f1) i -+ - (frn1) K 1s
JCK

> ZPI(&’l)(fl,fQ,...,fm)lj—l— S S PO o

acUm—1 JCI acUm,—1 JCI
+ZP ..... f17f27"'7f)J
JCI
Z ZPIa(flaf27”'7fm)1J
aeUy, JCI

The last equality follows from (2.1.1).

Lemma 2.1.2. Given m > 2 and functions fi, fs, ...,

have

Proof. We have already seen that it is true for m = 2. By induction, assume that

Hfj = Z P&(f17f27"'7fm)~
j=1

acUnm

m—1

fj = Z Pi(fl:an"':fmfl)

J=1 a€Um—1

- Z ZPI&(fhfz,-..,fm_l)

aeUpy—1 I€D

17

1) fn(D)R11,

7fm)]'J

7fm)1J

O]

fm, with f; € LP,1 < p; < oo,we



Then,
Hfj = (1__[ fj) fm
= > D P (fifere f) (Zﬂum)

aeUy,—1 I€D JeD
= > > P fore s fn) (Z?;umﬁﬁ(I)hﬁzﬁ(J)m)
a€Uy,_1 IED IcJ JcrI
= > NP b ) i+ Y P (s f ) (D
aeUpy—1 I€D acUp—1 I€D
+ Z ZP]&(flyf%-“yfm—l) (Zf;(J)hJ>
a€Um—1 I€D JCI
= > N P )+ D D PO fa e f)
aeUy,—1 I€D aeUy—1 I€D
+an\m(<])hJ Z Zpld(flaf%”wfm—l)
J A€Upm—1 JCI
= >3 P b f) DY Y PO o fi)
aeUy,—1 I€D aeUy,—1 I€D

+me hJ fl <fm71>.]

= ¥ ZPF’”(fl,fz,...,fm)Jr S S PO fa fn)

aeUpy,—1 1€D a€eUpy,—1 1€D

—i—P(l ..... 1’0)(f1,f2,-'~7fm)
= Z P&(fl,f2>--'7fm)'

G€Upm
Here the last equality follows from (2.1.1). O
2.2 Multilinear Dyadic Paraproducts and Haar Multipliers

On the basis of the decomposition of the pointwise product H;n:l fj» we now introduce
multi-linear dyadic paraproducts and Haar-multipliers. These operators and their commu-

tators with locally integrable functions are the main objects of our study.

18



Definition 2.2.1. Form > 2 and & = (a1, oo, ..., ay,) € {0,1}™, we define multi-linear

dyadic paraproduct operators by

Pd(flyf% .- 7fm) = ZHfj(LO‘j)hCIr(&)

IeD j=1

where f;(1,0) = (fi,hr), fi(I,1) = (fi); and o(d) = #{i : a; = 0}.

Observe that if § = (B1, B2, ..., Pm) is some permutation of @ = (g, s, ..., q,,) and

(91,92, - - -, gm) s the corresponding permutation of (fi, fa, ..., f), then

P&(fl7f27"'7fm) = Pg(glag%---vgm)'

Also note that P9 and P are the standard bilinear paraproduct operators:

POY(fy fo) = Z<fl> hi){f2)ihr = P(f1, f2)

1€eD

P(1’0)<f1,f2) = Z(f1>1<f2, hr)hr = P(f1, f2).

IeD
In terms of paraproducts, the decomposition of point-wise product H f;j, we obtained in
j=1
the previous section takes the form
[Ir= > PUffoitm)
7=1 ac{o,1}m
a#(1,1,...,1)
Definition 2.2.2. For a given function b and & = (o, v, . .., ay) € {0,1}™, we define
the paraproduct operators T by
a a 14+o(a
7Tb (flaf?; .. afm) = P(07 )<b7f1af27 oo afm) = Z(bv h[> Hf](lﬂa]) hl+ @
I€D j=1

where (0,d) = (0, ay, ..., q,) € {0, 1},
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Note that

m(f) = POV, £) = b(1,0)f(1, ) = > (b, hi)(f)ihs = m(f).

1€D 1eD

Definition 2.2.3. Given d = (o, o, ..., a,) € {0,1}™, and a symbol sequence ¢ =

{€r}1ep, we define m-linear Haar multipliers by

TE(frs far- - fom ZQHf]Iozj h .

IeD  j=1

Note that for e; = 1 forall I € D, T% = P,

Besides, multilinear dyadic paraproducts and Haar multipliers, we are interested in study-
ing the commutators of multilinear Haar multipliers with locally integrable functions, which

are defined as follows:

[b’ Tf]i(fbf?v s ,fm)([E) = (Te&(fb s 7bfi> e 7fm) - be(fl?an s ,fm))(l')

where 1 < i <m.
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CHAPTER 3
ESTIMATES FOR MULTILINEAR DYADIC OPERATORS: UNWEIGHTED
SETTING

In this chapter, we study the boundedness properties of multilinear dyadic paraproducts
and Haar multipliers, as well as their commutators with dyadic BMO functions. We also
characterize the dyadic BM O functions via the boundedness of (a) certain paraproducts,

and (b) the commutators of multilinear Haar multipliers and paraproduct operators.

3.1 Main Results

Following are the main results of this chapter.

Theorem: Let @ = (aj,a0,...,q,) € {0,1}™ and 1 < p1,p2,...,pm < o0 with
11

Z— = —. Then

—1 P r

m

S TLI -
j=1

(a) Fora # (1,1,...,1), ||P%(f1, far- -, fin)

(b) For o(@) < 1, |78 (fio for-o o ), S [Blason [ 1filly,. if and only if b €

j=1
BMO“.
) . A ()]
(¢c) For (@) > 1, |75 (f1, fo, .- fm)Hr < CbH || f5llp, if and only if iug T <
i1 €
Q. !
In each case, the paraproducts are weakly bounded if 1 < py,pa, ..., py < 0.
Theorem: Let ¢ = {¢;}/cp be a given sequence and let & = (o, g, . .., ) € U,y Let
11 ;
1 <pi,p2,...,pm < oo with Z — = —. Then T is bounded from LP* x LP2 x - .. x LPm
— Pj r
7j=1

21



to L" if and only if ||¢||« := sup |e/| < oo.
I€D
Moreover, T has the corresponding weak-type boundedness if 1 < py,pa, ..., pm < 00.

Theorem: Let & = (a1, a9, ...,qp) € Uy, 1 <i<m,and 1 < p1,p2,...,Pm,r < 00

m

1 1
with Z — = —. Suppose b € L* for some p € (1, 00). Then the following two statements

=17
are equivalent.

(a) b€ BMO“.

(b) [b,T%; : LP* x LP? x --- x LP» — L" is bounded for every bounded sequence

€= {EI}IGD-

In particular, b € BMO? if and only if [b, P¥]; : LP* X LP? x -+ x LP» — L is bounded.

3.2 Multilinear Dyadic Paraproducts

This section is devoted to the boundedness properties of the multilinear paraproduct oper-

ators P and ;.

m 1
Jj=1 p;

Lemma3.2.1. Let 1 < py,p2,...,pm,7 < 00and = % Thenfora = (o, ..., )

in U,,, the operators P map LP* X --- x LPm — L" with estimates of the form:
m P p

1P, fosoos Fdlle S TL IS,
j=1

Proof. First we observe that, if € I € D, then |(f);| < (|f|); < M f(x), and that

1
% —m/thf
1

| L= [
_ ﬁ(/l+|f|+/l_|f|)
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|<f7h‘1>’ i
So, < o[

<
CaseI: o(a) = 1.
Let aj, = 0. Then
IeD j=1
= > | [T | ios )
rep | j=1
J#Jjo

Using square function estimates, we obtain
1/2

1PECfs for s fdll, S| D TT 117 |<fjoahl>’2|ll

IeD j=1

J#Jo
.

m 1/2
' (Z’ f]mhf |2|[’>

I1eD

A

—
=
S

= I M1 | (SFi)

T

IA

LT 1M F50,115 ol

J#Jo

m
< T,
j=1

where we have used Holder inequality, and the boundedness of maximal and square func-

tion operators to obtain the last two inequalities.
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CaseIl: o(d) > 1.

Choose ;' and j” such that oy = aj» = 0. Then

|P(frs far - fon) ()]

— . <fj7h]> ) 5 1](1,)
— IEZD j:y1<fy>l ]1:[0 \/m <f],h1><fj ,hr) 7]

VE
1;
< ( H Mf](m)) Z’ f]ahl H fj”thH |§|))
Jg#d’ s i" IeD
By Cauchy-Schwarz inequality
1

Sy )| [y )| 282

= 1
< (Zy firshr) !2 ) <Z| fim h)? é‘)) (3.2.1)

I€D I€D

= Sfj’(ﬁ)Sfj"(x)-

Therefore,

|PY(f1, for oo ) ()| < ( 11 ij(@) Sfi(@) S fin(x).

J:g#i’ 3"

Now using generalized Holder’s inequality and the boundedness properties of the maximal

and square functions, we get

1P (fr, far - S]], < ( Hijllpj> 1S firllp, 1S Firllp, 0
J:g#5’s 3"

m
< LT

7j=1
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Lemma 3.2.2. Let & = (aq,...,ap) € {0,1}" and 1 < py1,...,pm,7 < 00 with
m 1 _ 1
Zj:lp_j_r'

a) For o(@) < 1, 7 is a bounded operator from LP* x --- x LP™ to L" if and only i
b

be BMO.
(b) For o(a@) > 1, 7 is a bounded operator from LP* X --- x LP™ to L" if and only if
!<b h1>!
IeD Varl
Proof. (a) We prove this part first for (&) = 0, that is, foray = -+ =, = 1.

Assume that b € BMO®. Then for (f1,..., fi) € LP* X -+ x [P we have

W?(fl;---,fm) = P(U,o?)<b fla--wfm)

= > (b.hy) H fi)iha
J=1

1€D

= Zﬂ'bfl Hfj[hl

1€D

= .P(Oﬂ2 77777 om) (Wb(f1)7f27"'7fm)‘

Since b € BMO% and f; € LP* with p; > 1, we have |7, (f1)ll,, S 10l Bazoall fllp, - So,

7 (oo fdlle = ([P0 “’”)(Wb(fl) foroos fm) Il
S IIWb(fl)llpIHIIfjllpj

=2

m
S Mollsaos [T 15lls,-
j=1

where the first inequality follows from Lemma 3.2.1.

Conversely, assume that 7r(1 """ Y. [P x ... x LPm — L" is bounded. Then for fi =
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7|7 1y(z) with J € D,

Hﬂ-IELl ..... 1)(f1af27"'afm>

< Hﬂ_él,l ..... 1)‘
T

Lr1 ><--~><LPM—>LT7
since || fi]|,, = 1 forall 1 <14 < m. For such f;,

1 1

|7 s for f)| | = Hur(m%*“*m)mﬁ“ """ V15,15,01)

T

= 1717 Db an)ph

1€D

Taking e; = 1if I C J and ¢; = 0 otherwise, we observe that

= || 2 DT

JDIED

= D eb(na)pn

1eD

> b(1)hy

JDIED

r

AN

I

SN

1eD

T

where the last inequality follows from the boundedness of Haar multiplier 7, on L". Thus,

we have

sup |J| 7"
JeD

< sup |7
JeD

> B (1)

1€D

> by

JDIED

T T

AN

Hﬂ_él,l ,,,,, 1)

Y
LP1X---XLPm — [T

proving that b € BMO<,

Now the proof for o(@) = 1 follows from the simple observation that 7{' is a transpose of

ﬂél """ Y. For example, if o(@) = 1 with; = 0and ag = -+ = a,,, = 1 and if 1’ is the
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conjugate exponent of r, then for g € L’

<7rl?7(f1""7fm)7g> = <thl fl’hI Hfj hI’ >
7j=2

IeD

<fj>]<g7 h?)

::13

= Z<b hr)(f1, hr)

IeD J=2
= > . an) ) [ 9
IeD J=1
= <th1 IH f] Ih17f1>
IeD Jj=1
= {a g for o f) 1)
(b) Assume that ||b]|. = s Iegw)’—\/%ﬂ < o0o. For m = 2 we have
/ w0 (f1, f2) “dr = / Z(b,h1><f1,h1><f2,h1>h?($) dz
R Rirep
(@)
< / <§)| b h[ || f17hl>||<f27h1>||]|5/2> da
[{b, k)] L(2)\
S /R;<§1€1D \/|T IGZD’flahl H f27h1>‘ |I’ ) dx
) ()
= ||p||" /(;J Fro o) | {fos hr) | =2 7] )

Using (3.2.1) and Holder’s inequality we obtain

/R ’Wgo,o)(fL f2) du

< bl / SHY (@) (Sh)"

< [BIEIS AL, 1S ol

OIEILF LT, 1 f211, -

IA

N
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Thus we have,

17" s f) e S Bl ol

Observe that

1

m (s F)(10) = (" (e ). ) =

(b, hr){fr, o) {f2, hr)-

Now consider m > 2 and let o(@) > 1. Without loss of generality we may assume that

a1 = ag = 0. Then,

m

T (fr foreos f)lle = ;(b,h1><f1,h1><f2,hl>Hgfj(f’aj)h}w(a)
_ ;ﬁb, BaY iy hr) (o ) Jli £ (Layho@
- ;Wzgo’o)(fu f), hr) ﬁgfj([’aj)h?(&)l
=[PP ) o )| '

0,0
< Im G e TT 15,
j=3

m
< Il T L0,
j=1

where 5 = (0,as,...,am,) € {0,1}™ ! and Wéo’o)(fl, f2) € L7 with p% + piz = é,q > >

1.

Conversely, assume that 7' : [Pt X - -- x LP» — L' is bounded and that o(&@) > 1. Choose
1 1

any J € D, and take f; = |J|* "hyif a; = 0,and f; = |J| % 1;if o; = 1 so that

1/3]lp; = 1. Then,

s Sl < 8 o
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We also have

- 2@ sm 1 )
Ty 1y Jm = J| 2 Zi:lplj b’hJ h1+f7(a)
b ., ;
(@) _1 o(a
= |J|7T (b, hy)| ‘ piHo(@
o(d) 1 _lto(@
= [ o Al (Ll
a(@ 1 _ldo(@ o1
= [ o Al )
_ lh)|
|71
g b, h
Thus &0l < HW?HLM Lo - Since it is true for any J € D, we have sup 1. 2} <
. o JeD  \/|J|
HWI{?HLPIX._,XLM < 00, as desired. 0
Now that we have obtained strong type LP* x --- x LP» — L" boundedness estimates

for the paraproduct operators P with @ € U, and 7 with @ € {0,1}™ in the case when

1 <pi,p2,.-.,Pm,r < o0 and Z;ﬂzl = %, we are interested to investigate estimates cor-

1
P
responding to % < r < oo. We will prove in Lemma 3.2.4 that we obtain weak type esti-
mates if one or more p;’s are equal to 1. In particular, we obtain L' x - - - x L' — L™ esti-
mates for those operators. Then it follows from multilinear interpolation that the paraprod-

uct operators are strongly bounded from LP* X --- x LPm to L" for 1 < py,pa, ..., pm < 00

mo1_1 1
andzjzlp—j— s,evenif - <r < 1.

We first prove the following general lemma, which when applied to the operators P9 and

7 gives aforementioned weak type estimates.

Lemma 3.2.3. Let T' be a multi-sublinear operator that is bounded from the product of

Lebesgue spaces LP* x --- x LP™ to L™ for some 1 < p1,p2,...,Ppm < 00 With
=P T



Suppose that for every I € D, T(f1,..., fm) is supported in I if f; = h; for some i €

{1,2,...,m}. Then T is bounded from L' x - - x L' x LPr+t x -+ x [Pm — L%mfor

eachk =1,2,...,m, where g is given by
1 1
—=(k-1)+ +- 4+ —
qk Pr+1 Pm

In particular;, T is bounded from L' x - x L' to Lm->.

Proof. We first prove that T is bounded from L' x P2 x - .- x LPm to L™

Let A > 0 be given. We have to show that

a1

o [T for s )@ > A (”flnln% Hfj””)

forall (fi, fa,..., fm) € L* x LP2... x LPm,
Without loss of generality, we assume || fi||1 = || f2l/p, = -+ = || fimllp,., = 1, and prove

that

o (T (1, for s fon) ()] > A} S AT

For this, we apply Calderon-Zygmund decomposition to the function f; at height prea
to obtain ‘good” and ‘bad’ functions g; and by, and a sequence {I; ;} of disjoint dyadic

intervals such that

fi=g1+0by;

b1 = Zbl’j with supp(bl,j) g [17j and / b17jd$ = 0;

j I g

and Z |15 < AT wT I fill = ATw (Recall that we have assumed || f1]|; = 1.)

J

Moreover, since 1 < p; < oo, the good function g; € LP* with

p1—1

2 q
gl < (2255 ) 7 | ) = (22w )
p1 1
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where p] is the Holder conjugate of p;.

Since T’ is multi-sublinear,

o [T(frs- o ) ()] > A}

<

{x T (g1 fo, - -y frn) ()] > %H + Hx AT(brs for - s fr) ()| > %H

Since g; € LP* and T is bounded from LP* x --- x LP™ to L"™*°, we have

20l g1llp, [ £:(J. o)
j=2
o [T for- o F)@)] > A2 5 =
= "
2(2»@) g
<
= \
<y,

L_ywm 1 11 implj _ ma
Now, - =371, o = 3 T g implies that r = L. So,

, (Ch(pl —1) . 1) _ Piga (p1611 —§1 — Pi1qa —P1)
pi(q+1) (p1+aq) pi(q +1)
P1q1 (—p1 - Q1)

(1 +q1) pi(qr + 1)
q1

q+1

Thus we have:  [{z : [T'(g1, fo, -, fm)(@)| > A/2} S N Tha
From the properties of ‘bad’ function b; we deduce that (by, h;) # 0 only if I C I, ; for

some j. The hypothesis of the lemma on the support of T'(f1, . .., f,») then implies that

supp (T'(b1, fa, - - -, fm)) € Ul
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Thus,

) L
{47000 o o)) > 5 < 10l < 7785,

Combining these estimates corresponding to g; and b;, we have the desired estimate

o (T(fr, for s fon) ()] > A} S AT

a1 .
Now beginning with the L! x LP? x --- x LPm — La+1"™ estimate, we use the same
argument to lower the second exponent to 1 proving that 7" is bounded from L' x L' x

_92 . .
L3 x oo x [P to Lo, where gz is given by - =14 -+ + -

We continue the same process until we obtain L! x L x - - - x L! — Lam 7" boundedness
of T" with qu =1+1+---41(m—1terms) = m — 1. This completes the proof since

o L O

Q'm“rl m

Lemma 3.2.4. Let @ = (ay,...,0m) € {0,131 < py,...,py < 00 and 37", pij =1

Then
(a) Forad # (1,1,...,1), P% is bounded from LP* x --- x LPm to L.
(b) Ifb € BMO%and o(&) < 1, n is bounded from LP* x --- x LP™ to L.

(0, hur)

(¢) Ifsup = < oo and o(@) > 1, © is bounded from LP* x --- x LP™ to L.
IeD

VI
Proof. By orthogonality of Haar functions, h;(.J,0) = (hr,h;) = 0 for any two distinct

dyadic intervals / and J. The Haar functions have mean value 0, so it is easy to see that
(hry; # Oonlyif J C I

since any two dyadic intervals are either disjoint or one is contained in the other.
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Consequently, if some f; = hy, then

P&(fth, ey fm) = ZHfJ'(‘L Ozj)h;(&)
JCI j=1
and,
w5 (fis far- s fom) —thJ H DRL@,

JCI j=1
which are both supported in /. Since the paraproducts are strongly (and hence weakly)
bounded from LP* x --- x [P — L", the proof follows immediately from Lemma 3.2.3.

]

Combining the results of Lemmas 3.2.1, 3.2.2 and 3.2.4, and using multilinear interpolation

(see [23]), we have the following theorem:

m

1

Theorem 3.2.5. Let d = (g, ..., ) €{0,1}"and 1 < py,...,py < 00 with E — =
— Dj

7=1

1
—. Then
r

(a) Ford # (1,1,...,1), HP‘i(fl,fg,...,fm)Hr S H 1filp,-

(b) For 0-(62) S 1 &<f17f2a"'7fm)||r 5 ||bHBMOdH||fj||pj7 lfal’ld Only lfb €

j=1
BMO“.
b, h
(© Foro(@) > 1, [ (s faoo-s S, < G T 1551 Fand onty ifsup (2L <
Jj=1 \/’[|
Q.

In each of the above cases, the paraproducts are weakly bounded if 1 < pi,pa,...,Ppm <

Q.

3.3 Multilinear Haar Multipliers

In this section, we present the boundedness properties of multilinear Haar multipliers.

33



Theorem 3.3.1. Let € = {€;};cp be a given sequence and let & = (o, ag, . ..,y € Uy,

m

1 1 -

Let1 < p1,pa,...,pm < 00 wWith g — = —. Then T is bounded from L' x LP? x - - X
— Pj r

LPm to L" if and only if ||€||o := sup |e;| < oo.
1eD

Moreover, Tf has the corresponding weak-type boundedness if 1 < p1,pa, ..., pm < OC.

Proof. To prove this lemma we use the fact that the linear Haar multiplier

T.(f) =Y erlf, ha)ha

1€D

is bounded on L? for all 1 < p < oo if ||¢]|o := sup|er| < oo, and that (T.(f), h;) =
1eD

€I<f7 hl)

By assumption o(a@) > 1. Without loss of generality we may assume that a; = 0 if

1 <i<o(d)and a; = 1if o(d) < i < m. In particular, we have a; = 0. Then

€1f1([>@1) = €I<fl>h1> = <Te<f1)7hl> = Te(fl)(L al)-

First assume that ||¢||» := sup |e;| < 0.
IeD

Then,

m

ITE(fr foree Fdlle = (D e [] £(2, )R]

IeD  j=1

T
m

= e L@

1€D =2

= IPUTf), for s fon) e
S Tl TT 1511
j=2

m

< TT0,-
j=1
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Conversely, assume that T% : [Pt x LP? x --- x [Pm — L" is bounded, and let o(@) = k.
Recall that o; = 0if 1 < i < o(d) = kand o; = 1 if k = o(d@) < i < m. Taking f; = h;

if 1 <i<kand f; =1;if K <i < m, we observe that

1/7‘ T 1/"’
a r € € r
s fo Sl = ([ leattlrae) = (50 [utoac) - = 2him,
- 177 Je 1

and

</ |hr(w pzdx)l/pz 1’:11 </R\11(:1:)\pjd:z:)l/pj
(rlem / (x)dx) r | :ljﬂ ( /R y (x)dx> 1n,

1 N\ ,
]I|1/2’ |1/pz) H ml/pa

j=k+1

=

s
Il
—

m
L1050, =
j=1

I
zw

s
I
—

I
_s
L=
— =
=
T/~

~

|I|k/2

Since (f1, fo, ..., fm) € LP* x LP?> x --- x LPm the boundedness of 7. implies that

m
HTea(fh f27 Tt fm)Hr < HTeaHLPl XX LPm — L7 H Hf]Hp]
j=1

| |1/r

. ler]
That is, T < T o . Lo | T2

|]|k/2

sup |e7] < HTE | o1 s pom < 00, as desired.
IeD

for all I € D. Consequently, |||, =

If 1 < p1,pa,. .., pm < 00, the weak-type boundedness of T follows from Lemma 3.2.3.

]

3.4 Commutators of Multilinear Haar Multipliers.

In this section, we study boundedness properties of the commutators of 7% with the multi-

plication operator M, when b € BMO“. For convenience we denote the operator M, by b
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itself. We are interested in the following commutators:

[b’ Te&]i(fhf% s 7fm)(x) (Te&(fh ce 7bfi7 .- 7fm) - bTE(fl,an cee 7fm))('r)

where 1 < <m.

Note that if b is a constant function, [b, T];(f1, fa, - - -, fm)(2) = 0 for all z. Our approach
to study the boundedness properties of [b, 7%); : LP* x LP? x --- x LPm» — L' with
1 < p1,p2y...,Pm < 00 and Zp% = % for non-constant b requires us to assume that
b € LP for some p € (1,00), ajn:d1 that » > 1. However, this restricted unweighted theory
turns out to be sufficient to obtain a weighted theory, which in turn implies the unrestricted

unweighted theory of these multilinear commutators. We will present the weighted theory

of these commutators in the next chapter.

Theorem 3.4.1. Let @ = (ay,qs,...,q,) € Uy. If b € BMO? N LP for some 1 <

p < 00 and ||€||oo := Sup;ep €| < 00, then each commutator [b, T¢|; is bounded from
~1 1

LPv o P2 X oo x LPm — L7 forall 1 < py,pa,...,0m,T < 00 With Z— = —, with
— Pj r
7j=1

estimates of the form: — (|[b, T71i(fi, fas s fo)lr S 16l maroa | [1F5llp,-
j=1

Proof. Tt suffices to prove boundedness of [b, 7], as the others are identical. Moreover,
we may assume that each f; is bounded and has compact support, since such functions are

dense in the LP spaces.

Writing bfy = m,(f1) + 7 (f1) + 7, (b) and using multilinearity of 7%, we have

TEObf1, for- -y fn)
- Ted(ﬂb<f1>7f27 R 7fm) +T6&<7T2<(f1)7f27 R 7fm) + TE(Wﬁ(b)?an R 7fm)
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On the other hand,

VT (frfor oo ) = Y et [[ £i(T, 05)h] ™ (Z&J)m)

IeD Jj=1

+ Z €r H fi, aa)h?(a) (ZZ(J)}U>
IeD j=1 IGJ

+Y e [ £ a)h]@ (Z b<J>hJ>
1ep  j=1 JEl

= ﬂg(fl,...,TE<fi)7 ooy fm)

+ > ety T £i(r, 0)nf
IeD Jj=1

+ S B()hy (Z waju,aj)h?(&))
JeD JCI o j=1

for some ¢ with o; = 0. Indeed, some «; equals 0 by assumption, and for such i, we have

—_—

T.(f:) (I, e0) = T.(fi)(I) = er filD) = er fy(I, ).

For (f1, fay -y fm) € LP* X LP2 x -+« x LPm we have

I (o (1), fos s Sudlle - S ImCf) o LT 150,
j=2

m
< Nbllsaos [T 11l
j=1

ITE @ () oo Fadlle S I )l LT 150,
j=2

m
< AIbllsaros [T 1£illy,-
j=1
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and,

Il (frs o s TCf)s o e S M0lasoall fillpy - - N TeCf)llps -~ .fm
16l sasoa [ 15l -
j=1

Pm

N

So, to prove boundedness of [b, T%], is suffices to show similar control over the terms:

> b(J)h (Z eIHfJ I,a;)h @> (3.4.1)
JeD JcI  j=1 .
and,
Te&(ﬂfl(b)af%"'vf ZEI IHf] I aj & (342)
1€D

Estimation of (3.4.1):

Case I: o(d) odd. In this case,

TH(fr foros ) = S e [ Fi(Laph® =3 e 15 Hfj (I, a;)h

€D j—1 1eD

& 1—o(a) m " ola

So, (TH(fu far- s f) kb = er|T) 2 [ £i(1 a)hs = e || 51, )7
e =1

This implies that

(341) = |3 b(I)hy (Z(Tf(fl, [ ) h1>hf)

JED JcI

r

= Zb fl;fQ;---7fm)>JhJ

JeD

= |lm (T3 (F for s ),

5 ||b||BMOd “T6&<f17f2a"'7fm)||r

m
< Ibllsacos [Tl -
j=1

T
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Case II: o(a) even.

In this case at least two «/s are equal to 0. Without loss of generality we may assume that

oy = 0. Then denoting T,.(f,) by g1, Pe2=am)(f, ... f..) by go, and using the fact that

(91)5(92)s1s = (Z gi1(I)(g2)rhr + Z<91>19A2(])h1 + Z@l(”@“)h%) 1y,

JcI JcI JCI
we have
> " b(1)hy EIHfj([,OzJ)h?(&))
JeD JCI =1 .
= Dbk :(I)@u)hi)
JeD JcI .,
= Z/l)\(J)hJ <91 92 J1J - Zgl 92 Ihl Z<91>19A2([)h1>
JeD JCI JcI ,
< ZZ(J)<91> (92)shs Z b(J 91792)>JhJ
JeD . JeD ,
Z b(J 91, 92))7h
JeD -

S 16l sasodllgillo l192lla + 18l saroa | POV (g1, g2) I + 10 masoall P2 (g1, g2) -

S bllsroallgnllp llg2llq
< lollsaos [T 11l
7=1
1 m
where, ¢ is given by — = Z —. Here the last three inequalities follow from Lemmas 3.2.1
— Dj
7j=2

and 3.2.2, and the fact that ||g1]|,, = [|Tc(f1)llpy S | f1llps-

Estimation of (3.4.2) :

Case I: oy = 0.
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This case is easy as we observe that

(ﬂ-fl()f%"'af 261 IHfJIaJ 7

IeD
= S emn OO [T anh]@ =S ey A [T (1 )b
1eD j=2 1eD j=2
= > WA [[HTa)n] =" er®) i) [ 5T, 05)07
IeD j=2 IeD j=2
= 0.
So there is nothing to estimate.
Case Il: o = 1.
In this case,
T, (0), fou ooy fn) = > er(®)r [] £i(1, )R]
1eD j=1
= > el ) [] £ an)nd @ =" er®) (i [] £, a)h 7@
IeD j=2 IeD j=2
= e Ump 0))r — O () [ £ ag)ng
I1eD j=2

We have assumed that b € L? for some p € (1,00). So, using Lemma 2.1.1, we have

O)r(fi)ilr = Zb (fi)shslr+> (b Vofi(J hJ11+Zb J)h31;
1CJ 1CJ 1CJ
= (mp(f1)) 11 + (mp (D 11+Zb J)h%1;.
I1CJ
Hence, (0)1(f1)11r — (7, (b)) 11r = (m(f1)) 111 + Y b(J)Fa(J)h31;.
1CJ
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So we have

(7Tf1( f?v'--; Z H ]CYJ U
€D

7j=1

:—IZD€I<7be1 ].]‘i‘;b hQ)HfJ]aJ
:—ZEI m(f1) IHf] (L, 5)h h'
IeD
N (ZRJ)E(JM)

IeD IcJ

2
= ~Tdmlfi), for - f >—ZB<J>E<J>h3< qu;-(Laj)h?(&)).
Ic
Since
1T (o (f1)s for - o)l S e (f1) Iy Hfj(J, a;) < |16l saroe H 15l

we are left with controlling

ZE(J)E(JWI (Z e [] i, aj)h?(&))

JeD ICJ  j=2

=

T

m

For this we observe that HTE(QZ """ am)(fo, ..., fm)Hq H | fillp,» and that
2

]:

(1) T (foy o ) = S B(I)Fi(I)h2 (Zezﬂfju,a»h?@)

JeD

> (DA [ £ apns @

JeD

+ZZ<J>ﬁ<J>h3< efﬂfxnaj)h;’@))

JeD
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Now, following the same technique we used to control (3.4.1), we obtain

SO R(I)R? (Z efnfxf,aj)h?(&))

JeD JCI  j=2

m
< bllsaror T IFilly, -
j=1

T

We also have

m
S Nllsaros [T,
j=1

and,
m

> et () F(I) ] £i( . ap)n5 @

JED =2

m
S blsacos [T £l

J=1

r

So we conclude that

m
S blsacos [T 15l

j=1

ENACH (Z eIHfju,aj)h?‘&))

JED IcJ  j=2

i

Thus we have strong type boundedness of

[b, TG&]I — Lpl X LPQ X - -0 X me N Lr

forall 1 < p1,pa, ..., Pm, T < 00 With

]

Note that T® = P% if ¢; = 1 for all I € D. The following theorem shows that the BMO

condition on b is necessary for the boundedness of the commutator [b, P%];.
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Theorem 3.4.2. Let & = (o, ..., ) € Uy, and 1 < py,pa, ..., pm, T < 00 with

3 1.1
=P T
Assume that for given b and i,
H[b7 Po_g]i(fb f27 R fm)”r S CH ”fijj? (343)
j=1

forall f; € LPi. Thenb € BMO“.

Proof. Without loss of generality we may assume that ¢ = 1. Fix I, € D.
Casel: a; = 0,0(d) = 1.

Take f; = 1;, and f; = hl(” for iz > 1, where I((]l) is the parent of /. Then,
0

PE(f1, fareos fn)) = D> (L, ha) (b)) he =0,

IeD
and,
PO foreeveon ) = S iy i)y
1eD
m—1
K(Iy, IV
= > (bly, ha) Ko 1y ) hr
ICIo ‘[O(l)
m—1
| B, 1Y) S (b, b
‘I(l) ICI,
0

where K (1, [él)) is either 1 or —1 depending on whether [ is the right or left half of Iél).
For the second to last equality we observe that, if [ is not a proper subset of I((]l), (b V=
0

0, and that if I is a proper subset of Iél) but is not a subset of Iy, then (bl;,,h;) = 0.
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Moreover, for I C Iy, (bly,, hr) = [ bl1,hr = [ bhy = (b, hy).

Now from inequality (3.4.3), we get

m—1
K (I, 1§V P} Ol
Kt Iy )1 S~ yng | < ol T
7" =2 /11"
ie. |[S || <20 RO
ICIo .
Thus for every Iy € D,
1 141
|2 (b hnhy|| <27 C
‘IO‘T ICIy -
and hence b € BMO“.
CaseIl: a; #0 or o(d) > 1.
hfov if a; = 0
Taking f; = we observe that
1[0, if ; = 1,
PE(fis for f)) = B and PR(bf1, forooosos fin) = (0f1) (T, cn) B

IfOél = O,

— 1
(051) T ) = b (10, 0) = By (1) = [ By, = T [ b1 =0
R R

IfOél = 1,

(bf1)o, 1) = b11,(Lo, 1) = (blp, )1, = (b)1p-
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So in each case,

1. P for o fdlle = [DPT(fas Fore oo fin) = RO for o fu)|
— ||prs® — @) ihg

= |- @nn®|

1
— —(_,)H(b - <b>10)110||r-

(V/11o])7@

r

On the other hand,

1 ST 1

- 1
1fillp; = =z Mol 7o = e[ o[
jl;[l (V1)@ (V[ 1o])7@

Inequality (3.4.3) then gives

WHU) B <b>[0)110||r <C 1

1
IAE
I

(V/11o])7

1
| To

Le. 7 l[(0 = (b))l < C.

T

Since this is true for any Iy € D, we have b € BMO<. U]

Combining the results from Theorems 3.4.1 and 3.4.2, we have the following characteriza-

tion of the dyadic BMO functions.

Theorem 3.4.3. Let d = (ay, 00, ..., 00p) € Uy, 1 < i <m,and 1 < p1,pa,...,Pm,T <
11

oo with Z — = —. Suppose b € LP for some p € (1,00). Then the following two state-
— Dj r
7j=1

ments are equivalent.
(a) b€ BMO.
(b) [b,T%; : LP* x---x LP™ — L" is bounded for every bounded sequence ¢ = {1} rep.

In particular, b € BM O if and only if [b, P%); : LP* x LP? x --- x LPm — L" is bounded.
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CHAPTER 4
ESTIMATES FOR MULTILINEAR DYADIC OPERATORS: WEIGHTED
SETTING

In this chapter, we investigate the boundedness properties of the multilinear dyadic para-
product operators in the weighted setting. We also obtain weighted estimates for the multi-
linear Haar multipliers and their commutators with dyadic BMO functions, and character-
ize dyadic BM O functions by the boundedness of the commutators of multilinear dyadic

paraproducts.

4.1 Main Results

The main results of this chapter are as follows:

Theorem: Let b € BMO?, and € = (¢7)ep be bounded. Suppose T € { P9, T7} with
G € Up,or T = 7§ with @ € {0,1}™. Let & = (wy, ..., wy,) € A% for P = (p1,...,pm)

ah Lo 1L 1
w1thp1—i— —i—pm 5

(@) 1 <pi,...,pm <oo,then || T(f1,..., fu)llLr(y) < CH HfjHij(wj).
=1

(b) Ifl S P1y---3Pm < o0, then HT(fh ey fm)HLP*OO(Vm) S CH ||fjHLPj(wj).

j=1
Theorem: Let @ € U, and ¢ = (e7);ep be bounded. Suppose b € BMO? and W =
(w1, ...y W) EAdﬁforﬁ:(pl,...,pm)withpil—l—---jti:Il)and1<p1,...,pm<oo.

Then there exists a constant C' such that

|16, T8 f1, - - - ’fm)HLp(Vm) < C||bl| saroe H £l 223 () -

J=1
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Theorem: Assume ) " - = » with 1 < p; < oo, and let @ = (wy,...,w,,) with

w; € A,. Then for j € {1,...,m} and & € U,,, the following two statements are
equivalent.
1. be BMO.

2. [b, P]; : LP (wq) X -+ x LP™(w,,) — LP(v) is bounded.

4.2 Multilinear Dyadic Paraproducts and Haar Multipliers

We first present the following property of the multilinear dyadic operators, which will be

very useful for our purpose.

Lemma 4.2.1. Let d = (o, qa,...,a) € {0,1}™, and let T be any of the m—linear

operators P% & or T®. Then for a given function g and J € D, the function
P s T € 8 [Y

T (M;(flv fo, ..., fm)) -T (M;(fllj, foly, ..., fmlJ))

is constant on J. In particular, T(f1, fo,..., fm) — T(f1ly, foly,..., fmly) is constant

on J.

Proof. Fix J € D. Let f;1; = fYand f; — fil; = f°.

Since T'(M}) is multilinear,

T (Mi(f1, for- oo fm)) = T (MY + 2 9+ f5% o fo 4+ )
= T(MIf,... )+ > T(M,?;( fl,...,f,éim)),

Fef0,00)™
B#0

where 5: (Bi,y .-y Bm)-
Observe that if I C J, JZ"\O(I) = g/f?o(l) = (f7°)1 = (9f°)r = 0, since each of the
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functions f7°, g/ is identically 0 on J. So for 5 #* 0,

i ) - B; o(&T) _ . Bj o(a,
T<Mg( 1617"".](51 )) _26§HP} (I’Oéj)hl( T)_ Z(;?;HF_] (]7aj)hl( T)7

IeD  j=1 I.IgJg  j=1
where
4
1, if T = po
07 =9b(J), ifT=nd,
e if T = T8
\
8, e
. f'gv lfj # ?
=3 7
af . ifj=i
and
o(a), if T = P%orT®

ol@)+1, ifT=nf

Since each h; with I ¢ J is constant on .J, so is T (M;( o fﬂ...,fﬁﬁ)) for § +#

0. Consequently, Z T (M;( N I ,fﬁm)> is constant on J, say C;. Then for

Fe{0,001™
5#0
every x € J,

T (My(f1, for - f)) (@) = T (My(T)(fils, fols, -, fnls)) (@) = 5.

Taking g = 1, we see that T(f1, fo, ..., fm) — T(f1l,, fols,..., fily) is constant on
J. [

Lemma 4.2.2. Let b € BMO?, and ¢ = (¢1)jep be bounded. Let T € {P% T} with

@ € Up,orT =7 with@ € {0,1}™. Then for 0 < § < %,andf: (fis fas- ooy fm) €
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LPvx LP?2 x - x P with 1 < p; < oo, we have

F (1)) (2) S M(F) (@),

Proof. Fix a point . We will show that for every dyadic interval I containing x, there

exists a constant ¢y such that

(i

from which the assertion follows. In fact, since

)Wswf)(x),

()| - el

)

() \—Icﬂ < [1(F)ty) ~ ] for

0 < § < 1, it suffices to show that

(i1

Fix a dyadic interval I that contains z, and let f° = f1;, f° = f; — f}.

—

rfiw el ) S M)

—

Writing 0 = (f°,..., f°), Lemma 4.2.1 says that T(f)(y) — T'(f0)(y) is constant for all

—

yin I, say c¢;. We then have T'(f)(y) — ¢; = (fﬁ)( ) forall y € I. So,

(i [ - \)1/5 (7 / <f*><>()w.

We can estimate this using the following form of Kolmogorov inequality:

If 0 < p < ¢ < o0, then for any measurable function f, there exists a constant C' = C'(p, q)

such that

HfHLP( ) <C HfHquo( i) . 4.2.1)

1]

Forp=4,q=1/mand f = T(f?)), (4.2.1) becomes

(ﬁ / 7 f6><y>)5dy) e | )|
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Now,

7(f)) :m( {ver: > }))
| @) ey = S y M)
t t m
< — (y)‘ > —}
G { |f|m 7|
fi fo) ‘ t }m
—= —_ > —
T { (m )W) e
i fo)
= T(—,...,—m (y) :
1] 1] L1 /oo
0
Smce‘T| e L' forall 1 < i < m, it follows from the boundedness of T : L' x - -- x L* —
L1/m:% that
(B, < 1
riri Limes L
_ H/ £
i
= 7 ’fz’
7/
< M(f)(x).
This completes the proof. ]

The following lemma gives us the finiteness condition needed to apply Fefferman-Stein

inequalities 1.2.1 and 1.2.2 for the multilinear dyadic operators.

Lemma 4.2.3. Let w € A% and f = (f1,..., fm) where each f; is bounded and has

compact support. If HM(]?)H » < o0 for some p > 0, then there exists a 6 € (0,1/m)
Lr(w

‘M(f) L) < oo for some p > 0,

DG ——

Proof. We prove the first assertion, the second one follows from similar arguments.

such that HM(; (T(f)) HL w < o0. Similarly, if

then there exists a § € (0,1/m) such that
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Since w € AL, itis in A% for some p, > max(1,prn). Then for any § with 0 < § <

p/po < 1/m, we have

Jass (T ),

< H p/po( (JF))

i} / {(?;5 1 / o dt)m/p}pdw@] w

L P

= -/RM<T(f)p/Po> dw} Lz

- o

Lp(w)

Lo (w)

The boundedness of M : L (w) — L (w) for w € AJ gives

(1)

< HT p/po

LPo (w LP0(w)

Consequently,

Po/p

|22 (7))

< HT(f)p/po

Lr(w) LPo (w)

_ (/‘T Pyl
= ([l

= o)

dw) PO P

Y

LP(w)

So, it suffices to prove that HT( f )

< 00.
Lr(w)

Since each f; has compact support, there exist dyadic intervals S’ = [0,27%) and S” =

—27%0) such that the support of every f; is contained in S = S’ U S”.
PP y
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To prove the assertion, it suffices to show that

||

< 0Q.

< oo and HT f
) (f LP(R\S,w)

Lr(Sw

Since w € Ad wl™ € Ll  for sufficiently small ~, (see [3] or [24]). In particular,

loc

w € L(S) for ¢ := 1+ ~. We can choose ~ small enough so that w € L?(S) and ¢'p > L.

) 1/p
p 1/q 1/q\ /P
dx) (/ wqda:)
S

Then by Holder’s inequality, we have

o = (L7
([

< 00.

s

IN

/

Nz /
Here, the finiteness of / ‘T( f )‘ dz follows from the boundedness of 7" : L™P% x - .. X
S
Lmrd" — [P and the fact that each f; (being bounded with compact support) is in L™? .

We refer to [25] for the unweighted theory of multilinear dyadic operators.

To prove HT(]?)

< 00, it suffices to show that
Lp(R\S,w)

’T(J?)(ﬂf)‘ < C’./\/l(f)(x) for every x € R\ S.
We prove this for T = r’. Proofs for P¥ and T follow similarly.

Fix x € R\S. Let I, be the smallest dyadic interval that contains  and one of the intervals

S" and S”.
For definiteness, assume = > 0. In this case [, is the smallest dyadic interval containing x
and S’. Note that if x ¢ I, h;(z) = 0and, if z € I with I NS’ =0, f;(I, ;) = 0 for each

7. So,
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@] = |0 T Aa) b >'
- [0 [T o)

IA
(]
5
=

A
=
&
g
Q

Elng

where the last inequality follows from the fact that for b € BMO?,

)

b(1) ( 1/2
WS (mjzc:l‘b ’ ) < (|6l pasoa -

|I /|f] |] |]|/|f] - |f] ],and

! whenever I' is the parent of I with

JiD)|
o \/F/fg

since f; is 0 on R\S, we have (|f;|)n

Note that

2
I, C I.So, we have
@] < Wlswor > [T0Ds
121, j=1
1 1 A
||b||BMOd H |fJ I + _mH |fJ _mH |f] Lt
] 1 : :
2m -
= @1 Plowos LI
7j=1
2m -
< 2= 1) 16l garor M(f ) ().
The same proof works for < 0 too. This completes the proof. [l
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Theorem 4.2.4. Let b € BMO?, and € = (e1)ep be bounded. Let T € {P%, T} with

@ € Uy, orT =7l with@ € {0,1}™. Then for w € AL and p > 0,

1T zr ) S IMOU) e
and
1T ey S IMC oo ()
for all m-tuples f = (f1,---, fm) of bounded functions with compact support.
Proof. To prove the first inequality, assume that || M (f )| zrw) < 0o, otherwise there is

nothing to prove. Then by Lemma 4.2.3, there exists a 6 € (0,1/m) such that

< Q.
LP(w)

HMa (T(J?)>

For such 4, we have

|77

i < [¥5 (75)

el ()

()SCHM(J?)

LP(w

Lp(w Lr(w)

where the first and last inequalities follow from pointwise control and the second inequality

is the Fefferman-Stein’s inequality (1.2.1).

Proof of the second inequality follows similarly, by applying Lemma 4.2.3 and using the

Fefferman-Stein’s inequality (1.2.2) for weak-type estimates. 0

Theorem 4.2.5. Let b € BMO“, and € = (¢;)ep be bounded. Suppose T € {P% T}
with & € Uy, or T = 7l with @ € {0,1}™. Let @ = (wy,...,w,) € A%for P =

(1.« Dm) With
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(a) If 1 <p1,...,pm < 00, then

T () zoway < C TNl - (4.2.2)

Jj=1

(b) Iflgpl,...,pm<oo,then

T () 2oy < CTT Nl 0y)- (4.2.3)
=1

Proof. Since the simple functions in L”(w) are dense in L?(w) for any weight w (see [26]),
it suffices to prove the estimates for f= (f1, fo,- .., fm) with f; € LPi(w;) simple. Note
that & = (wy, ..., wy,) € A% implies that v; € AL . So, by Theorem 4.2.4 and the bound-

edness properties of the multilinear maximal function M, we have

1T ey S HME o) S H 1311273 ()

and

||T(f)HLP’°°(vu;) S ||M( ||LP°° H ||fjHij(wj)'
7=1

4.3 Commutators of Multilinear Haar Multipliers

Definition 4.3.1. Let & € U, and € = (¢1)1ep be bounded. Given a locally integrable

function b, we define the commutator [b, T%);, 1 < i < m, by

[b’ TE]i(fl,fQ, s 7fm)($) = b(x)Te&(fhf?? .- 7fm)(z) - Te&(fla s 7bfi7 .- 7fm)(x)

ie. [b,T%; = MyoT% —T% o M,.
Theorem 4.3.1. Let & € U, and € = (¢1)rep be bounded. Let 6 € (0,1/m) and v > 4.
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Then for any r > 1,

— —

ME (I 779:0)) @) S Ibllsaor (Mo(F)@) + My (TE)) (@) @3

for all m-tuples f = (f1, fo, - ., fm) of bounded measurable functions with compact sup-

port.

Proof. Fix x € R. As in the proof of Lemma 4.2.2, it suffices to show that for every I € D

containing x, there exists a constant C'; such that

()

Fix I € D containing z, and take C; = T (M;(f3)> (t) — T2 (M;(f)) (t), where g =

—

0.7 0) — ¢ dt) " < Wllwon (M) + 2, (T7(F) ) (@)

b— (b); and f0 = (f2, ..., f0) with f? = f;1;. Lemma 4.2.1 shows that this is indeed a

constant on /. Since 7™ is multilinear,

b TNE) = O T = TE(frye e bfis s f) (1)
= (b(t) = (0)0) TE)E) = T (froe s (0= B fir o fon) ()

—

= (b(t) — (0)r) TED®) = T (M) (o).

So.
(& [[prcio -af )
- (ﬁ /I (b(t) = (b)1) TE(f)(t) = TF (Méﬂ) <t>‘01‘6dt>1/5
— (ﬁ /I (b(t) = (b)) TE)@) = T (M) <t>’6dt)l/5
< (57 [o0 - w0 Tf‘<*><t>\5dt)l/6+ (i [z (o) (t)rdt)w
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Note that v/ > 1. For any ¢ € (1,~/0), Holder’s inequlity gives

GYACCRCIEAGT 5“)%
< (i f1060) - @l dt) - (i)

[bllar0s My (TE(F)) ()

< bl M, (TE(F)) (@),

AN

As in the proof of Lemma 4.2.2, we can apply Kolmogorov’s inequality to obtain
1 ) 1/6
(i 175t = @t o0 )
< HTea(f{)7 S (b - <b>1)fzo7 R %)(t)H i,oo(l,ﬁ)

1 0 (]
< o [10w- w0 gola T] 5 [180]a

J=1,j#i

oo G fors)” i (o)
< HbHBModﬁ (& [sora) "

< |6l Baros M (F)(2).

‘We thus have

— —

Mf (10, T30 (2) < Ibllsaros (Mo(F)(@) + M, (TE()) ()

O

Lemma 4.2.3 is also true for the commutators of the multilinear Haar multipliers with a

bounded function b.

Lemma 4.3.2. Let w € A% and f= (f1,--., fm) where each f; is bounded and has
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compact support. If HM ﬁ H < oo for some p > 0, and b bounded, then there exists

ad € (0,1/m) such that HM; <b T4, )H

Proof. Since each f; has compact support, there exist dyadic intervals S’ = [0,27%) and
S" = [-27%,0) such that the support of every f; is contained in S = S’ U S,

Following the arguments used in the proof of Lemma 4.2.3, we get

|25 (10, 721:))|

Lr(w) — Lr(w)

So, it suffices to prove that

< Q.

| 6.727:(7)|

- ‘

< o0 and H[b,Tf],-(f)

LP(S,w) LP(R\S,’LU)

Since w € Ago, 1 ¢ L] for sufficiently small v, (see [3] or [24]). In particular,

loc

w € L4(S) for g := 1 + ~. We can choose 7 small enough so that w € L%(S) and ¢'p > 1.

Then by Holder’s inequality, we have

LP(Sw) = (/ bTa f
<(/s Mb’ (/) P

< 0o0.

677107

1/p
wdx)

/ 1/q 1/q\ /P
d:c) (/ wqu>
s

IN

Here, /wqdat < oo because w € LY
S

loc?

and the finiteness of / ’[b, T,( f)‘w dx fol-
lows from boundedness of [b, T%); : L™ x --- x L™ — qu/S’ and the fact that each
f; (being bounded with compact support) is in L™7 . For the unweighted theory of the
commutators of multilinear Haar multipliers we refer to [25]. Note that to prove finiteness
we may assume that the BMO function b is in some L? space with

LP(S,w)
1 < p < o0o. Indeed, for all x € S,

obeTO‘ ()
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— —

b, T8 ) (@) = [b1s, T7N:(f)(2),

forall f = (f1,--., fm) with f; supported in S.

i(f)

< 00, it suffices to show that for every x € R\ S,

Now to prove H[b, T%)( F) B\
LP(R\S,w

Fix = € R\S. For definiteness, assume that + > 0, and let I, be the smallest dyadic
interval that contains z and the interval S’. Note thatif = ¢ I, hy(z) = 0 and, if x € [ with

INS =0, f;(I,a;) =0 for each j. So,

. T (@)
< @) TS fore oo f) @)+ [TE(frs b iy fon) ()]
= b)Y e ] £ ) i@+ D ear®f) o) [T £ ay) b ()
DIy 7j=1 121, ‘;;1

fi(1)
< |b($)|Z|€1| (H |]’) (H <fy>1) 1;(z)

A
+Ho@) Y lerllof) (e | ] ‘ 1T 1l | (=)
ID1, j()[;é:[) |I| ]a;éfl
jF#i jF#i

Fi| |
o = il o] = o i = g = e siee

fiis0onR\S, (|f;|)n = @ whenever I is the parent of I with I, C I. Moreover,

(bf) (1, ai)| < [bI{[ fil)1- So,

We have
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< 2 (swpbe) (soplel) 3 ( Aj(?‘ L 1

< 2] (gl H<f> |

= 2 (sup o)) (suple] (ﬁmh imf:[\f] . Lmlf[\fj L+ )
_ (2j’i 1) (iggyb(x)o (;ggezl) ﬁ(\fjl;z

The same proof works for < 0 with 7, the smallest dyadic interval that contains both x
and the interval S”.

]

Theorem 4.3.3. Let a € U,, and ¢ = (¢1)1ep be bounded. Suppose b € BMO? and w0 =
(Wi, ... W) eA%forﬁ: (pl,...,pm)withpil—i-~-+# = %andl < Plyeey P < 00.

Then there exists a constant C such that

|b.723(5)

< Cllbll zaros H 13l 223 () (4.3.2)

Lr
(Vo jate

Proof. First assume that b is bounded.

Since the simple functions in LP(vz) are dense in LP(vz), it suffices to prove (4.3.2) for
f= (fi, fo, ..., fm) with f; € LPi(w;) simple. For all such f, there exists, by Lemma

< 00. So, for any » > 1 and

432,26 € (0,1/m) such that HM5 ([b,Tf]i(f)) .
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~v > § we have

—

b, 79:(7)

< HMzi[baTe&]i(f)‘

LP(v) LP(vg)

< [mwr)

LP(vg)

A

llssor |47

LP (v

o (7))

L"(Vw)) ’

where the first inequality follows from the pointwise control, the second one is the Fefferman-

Stein inequality (1.2.1) and the last inequality follows from Theorem 4.3.1.

Now we can choose v € (d,1/m) such that HMV (Tf(f)) ‘

LP(vg)

< 00. In fact, looking at

the proofs of Lemmas 4.2.3 and 4.3.2, any «y € (0, p/po) would work. For such -y, we have

M, (15D) |, =22 (250
|, (757 o F(TED),,.
) B
B M(f> Lp(”iE
< M, (f
B (f) Lr(vg)
We thus have
b TLH||, Sl M(F
OSSO R L vy (VG ]
forallr > 1.

Finally, we can choose r > 1 such that the inequality (1.2.5) holds, i.e.

m

H/\/lr(f) S TTIA 2 o)
j=1

LP(vg)

This completes the proof when b is bounded.

Now following [7], we use a limiting argument to prove the theorem for general b €

BMO“.
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Let {b;} be the sequence of functions defined by

Clearly, b; — b pointwise, and we have ||b;|| zrr04 < ¢||b||paro« for all j. In fact, ¢ = 9/4
works (see [24], page 129).

For any ¢ € (1, 00),

T fry -y bifire ooy fn) = T(f1y - bfsy oo fm)  in L%as j — oo

due to boundedness of 7% : L™ x --. x L™? — [4 and the fact that bounded func-
tions fi, ..., fm with compact support are all in L™?. Note that since b;, b € BMO“ and
bounded function f; has compact support b, f; — bf; in L™? as j — oo. Then there exists

a subsequence {b;, } such that

T fry - bjfir ooy fn) (@) = T(fry - bfiy -y fm) () for almost every z.

— —

For such =, we have [b;,, T%):(f)(z) — [b, T;(f)(z). Now,

Ik "€

= b, T (/)
Lp(’/u'i) (/ f
lim inf ( /
k—o0

o lig)i;lf 105, | Baroa H ”fjHij(wj)

J=1

Cllblaos LT 1illees s

Jj=1

) 1/p

0, 77), <f><x>]”dx) "

IN

IN

IN
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where we have used Fatou’s lemma to obtain the first inequality, and the second inequality

follows from the result already proved for bounded function b. [

The following theorem characterizes dyadic BM O functions via the boundedness of the

commutators of multilinear dyadic paraproducts.

Theorem 4.3.4. Assume )", z% = % with 1 < p; < oo, and let W = (wy, ..., wWy)
with w; € Ap,. Then for j € {1,...,m} and & € U, the following two statements are

equivalent.
(a) be BMO.
(b) [b, P, LP*(wy) X -+ X LPm(wy,) — LP(vg) is bounded.

Proof. It suffices to prove the theorem for j = 1.

“(a) = (b)” follows from Theorem 4.3.3, since 7% = P% when ¢; = 1 forall I € D, and
that BMO(v,) = BMO for vy = 1.

To prove the converse, assume that [b, P%]; : LP*(wy) x --- x LPm(wy,) — LP(vg) is
bounded, and fix J € D.

CaseI: d = (a1, ag, ..., ) = (0,1,...,1).

Let J' be the parent of J. Take f; = 1y and fo = --- = f,, = /|J'|hy. Then for

—

f: (fla"'7fm)7

— —

| = [P = PO fore )
= 0= (oL h) (V[T b)) 7

I1eD

1B, P (

= > 1y, )by

I1CJ

— Jb— (B4l 10
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Now,

/|b—<b>J|idzp - /|b— |7 Ty
J
mp )\ Gy
(/ |b— (b) 5" Vu;das) (/ vy " d:B)
J J

mp—1

~ |11/m 1 mp

f) / vg "dx
L(vg) \JJ

mp—1

m 1/m
_1 mp
< (Ilwuuhpuwﬂ> ([ria)
i=1
mp—1 1/py m 1/p; 1/m
(/ wldaj> H (/ widx) )
J :2 /

IN

= |ie.P

T L me
— —mp
= vy "dw
J 1

So,
mp—1 4y 1
mp mp;
/ b — (b),|™ do < (/ m%m) 11 (/ widx) . (4.3.3)
J/ ,L:1 J/
1 / pl —
Letw, :=w; " =w, ", = (w),...,w.,),and P' := (p},...,p.,). Since wg € Ay, 0’
1
satisfies the multilinear A 5, condition. Observing that ) " 1 , =m—-y ", =M=
mP—2 we therefore have
p/(mp—1)
e T <, < oo 434
QH/I>EQN/I ) " sl 439
Note that
, p/(mlp 1) 1
mn _P Py m r 1—mp 1
Vg = H (wz pi) — H (wzpz) — Vi*mp,
i=1 =1
and
S\ P
P\ 7
(w;)l_pi = (wi pi) = W;
So, from (4.3.4), we get
. X m ) p/(mp—1)
Py
v w; <[4,
(WLW’)EQM[ ) " sl



This implies that

p/(mp—1)

(/ ”il’”p)HU wi) "< @l )

= [@]a, ||

=/ mp

= [@]ag [T

Consequently,

mp—1 mp—1

ﬁ me - ) P —»/T; 1 —»/T;
(//Vw dm) H(//wﬂx) < [w]A};/ |J|—2[w]Aﬁ, |J].

Using this in (4.3.3), we get

1.e.

1 Lo\
(7 [ -0t as) s1anE

Since J € D is arbitrary, this proves that b € BMO.

CaseIl: @ = (ay, ag, ..., ) # (0,1,...,1).

In this case, o; = 0 for some ¢ > 1. Let

Vhy, ifa;=0

1J, lfOéZ::l

fi=

Note that if o; = 0, f;(J, ;) = (\/|J|hs, hs) = \/|J|, and if a; = 1, fi(J, ;) =

1.
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Also, if a; = 0,

(bf1)(J, 1) = \/M/Rbhﬂw = \/m|—11]|/Rle = /171(b) s,

and if oy = 1,

(0f1)(J, a1) = (bly)5 = (b) .
So we have,

—

b PWD = [PAF) = PIOA o fo)|
= b(\/1T11)7 @ = (bf1) (], ) (ﬁ Jaz) oD

=2
= |b(\/|T|h)7 D — (b)Y (/| T |hy)°

= [b—(b)s[ 1.

Proceeding as in the first case, we get

1 e m o
/\b— <b>(]|% dr < (/ Vu%m"dx) H (/ widx>
J J 1 \Ju
mp—1 71
S [ 11
which implies that b € BM O. This completes the proof. [

Some Remarks:

1. In the previous chapter, we presented the unweighted theory of the multilinear com-
mutators with some restrictions, where we required that b € L for some ¢ € (1, 00)
and that p > 1. As we have seen, this restricted unweighted theory was sufficient
to obtain the weighted theory presented in this chapter. Taking w; = 1 for all
1 < ¢ < m, we see that the weighted theory implies the unweighted theory for

allb € BMO®and 1/m < p < c0.
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2. With the results obtained in this chapter, it is easy to see that the end-point results
obtained in [7] for the commutators of the multilinear Calderén-Zygmund operators

also hold for the commutators of the multilinear Haar multipliers.
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CHAPTER §
SPARSE DOMINATION THEOREMS AND MULTILINEAR BLOOM’S
INEQUALITY

In this chapter, we show that multilinear dyadic paraproducts and Haar multipliers can be
pointwise dominated by multilinear sparse operators. We also obtain similar pointwise
estimates for their commutators with locally integrable functions. As a consequence, we
obtain various quantitative weighted norm inequalities for these operators. In particular,
we introduce multilinear analog of Bloom’s inequality, and prove it for the commutators of

the multilinear Haar multipliers.

5.1 Main Results

Theorem: Letb € BMO?, and € = (¢/);ep be bounded. Let T' € { P, T} with @ € U,
or T = 7 with @ € {0,1}™. There exists a constant C' so that for every compactly

supported f = (fi,..., fm) € L' x --- x L', there is a sparse collection S of dyadic

—

intervals (depending on 7" and f) such that

T(f)| < CAs(If)).

‘ —

Theorem: Let T’ € {P% T%} with @ € U, and € = (/) ep bounded, or T = 7 with
a € {0,1}™ and b € BMO“. Let P = (p1,-++ ,pm) With 1 < py, -+ . p, < o0 and

1/p1+ -+ 1/pm =1/p. Then for & = (wy,--- ,wy,) € Ap we have

P P
max<q 1,-L ... fm
= _ P P

1T () Lra) < Cr o [0 4, LT filri -
i=1
Theorem: Let 7' := T for some & € U,,, and bounded sequence ¢ = (¢;)ep, and let
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b be a locally integrable function. There exists a constant C' so that for every bounded
f = (f1,..., fm) with compact support, there is a sparse collection S of dyadic intervals

(depending on T, f, and b) such that

71| < 0| 3o = Ol TTAA D+ D10~ D TL0AD

IeS IeS j=1

Theorem: Let P = (p1,--+ ,pm)With1l <py, -+ ,p,, <ocoand 1/py+---+1/p, = 1/p,

and let W = (wy,...,w,) where w;’s are weights. Assume that wy, \; € A,,, and that
W' = (wy, ..., w,) satisfies the A, condition, where P' = (ps, ..., p,,) with 7", —
7 Let & € U, ¢ = (€1)7ep be bounded, and b be locally integrable. Then for ji; =
1
(A1, wa, ..., wy,) and vy = <§’—11> " we have
|71, < 0@ ) blgaro,, [T,
K1 i=1
where O, i, B) = [wy) "0 [y gy mxtrsteind g mosostoot,
Similar estimates also hold for the commutators [b, T%]; with j € {2,...,m}.

5.2 Domination by Sparse Operators

In this section, we first obtain weak type endpoint estimates for the maximal trunctions of
the multiliner dyadic paraproducts and Haar multipliers. Using this result, we will then

obtain pointwise estimates of multilinear dyadic operators and their commutators.

Lemma 5.2.1. Let b € BMO?, and € = (¢1)jep be bounded. Let T € {P% T} with

& € Uy, orT = 7l with & € {0,1}™. Then

m

”Tﬁ(ﬁHL%m < TI0AlL (5.2.1)
=1
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—

where Ty(f) is the maximal truncation given by

T,(f) :=sup | Y oF [] fil,c)h7 7], (5.22)
JED \Tep  i=1

157
with )

1, if T = Po

01 =9b(I), ifT=nf"
€ if T = T4
\

and

o(a), if T = P%orT%

ol@)+1, ifT=nxg

—

Proof. 1t is easy to see that T} is multi-sublinear, and that 7}(f) is supported on I € D if

fi = h; for some 7. So, by Lemma 3.2.3, it suffices to prove that

RTINS (I
=1

m 1 __ 1

i=lp,  p°

for 1 < p;,p < oo with )

For J € D, define
T/ (f) =" of [] £ild ai)h7 .

IeD  i=1
1DJ

—

Note that this is the expansion of 7"/( f) in terms of the Haar basis {/;};cp if and only if

o(a,T) is odd.

Case I: o(a, T') odd.
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In this case, we show that

—

Ty(f)(x) < M(T(f))(z) forevery z € R.

Fix J € D and = € R. Suppose there exists a dyadic interval that properly contains J, and
also contains the point z. Let .J’ be the smallest of such intervals, and let J” be the child of

J' that contains z. Then,

/() = Y of [] £ ah] ()

IeD =1
I2J
= > T[] £ anh] ()
1D =1
nJ

— E:dlelfi(I,ai)h}'(&’T)(x) 1y0(2),
IeD =1
I;JN

= (T(f))sLl(x).

— —

T (F)(@)| < ATl () < MIT(F) (@)

If no dyadic interval containing x properly contains J, we have

‘We then have,

—

()| =0 < MEI(F))(e),

Thus for each J € D and all x € R,

which implies that



Case II: o(a, T') even.

Assume without loss of generality that av; = 0, and define

Tl(f?a s 7fm) = Zé?Hfi([aai)h’}'(&’T)il‘

1€D =2

Note that 77 is an (m — 1)-linear paraproduct or Haar multiplier which is bounded from
LP2 X oo X [Pm — L‘f’1 for g1 given by > ", - = _-. Moreover, ¢(d, T') — 1 being odd,

UAvNIEY =5
Tl 2549/ m -[70 = -

. Writing Ty (fa, - . ., fm) = g, we have

T7(f)(x) = Z5THJ”JO@ K7 & ()

1eD i=1
J

SR R

Yo(aT) =2
IED
127

= Zﬁ(f)ﬁ(l)h?(fv)-

IeD
DJ

With J” as in case I, we have

—

T7(

~—

()

= | X Awampie) | 1),
P

= (f1)am(g)m — Z f1 (z) — Z<f1>1§(])h1($) Ly (z).

The last equality follows from Lemma 2.1.1. We then have,
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()|

< (AN sgl) srlp(z) + | D A ()| 1yn(x) + | D () gIh(x)| 10 ()

1eD 1eD
IQ.]" I;)J//

< M(fr,9)(@) + M(POY(fi, 9))(x) + M(PUO(f1, 9)) ().

The definition of the multilinear maximal function, and the result from case / above imply

the last inequality. If J’ does not exist,

(TJ ‘ =0 < M(f1,9)(x) + M(POY(f1,9))(x) + M(PYO(f1, 9)) ().

Thus, for all x € R,

—

T,(f)(x) < M(f1,9)(2) + M(POV(f1,9))(x) + M(PUO(f1,9)) ().

Using the boundedness properties of the linear/multilinear maximal functions as well as

the multilinear paraproducts and Haar multipliers, we observe that

| @)

|| <r || < TTA
=1

1M Dl o S il 9l S TTIAN s
=1

m

1M POV F o) 1PV Pl S Wil lgllzo S TT il
i=1

and,

[M(PYO )| S NTPEY s ) o S Wl N9l S TLIEl s -
1=1
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—

By the domination of maximal truncation 7}( f) obtained above, we then have

RGNS (T
=1

This completes the proof. 0

Theorem 5.2.2. Let b € BMO?, and € = (¢;)iep be bounded. Let T € {P% T}
with @ € Uy, or T = 78 with & € {0,1}™. There exists a constant C so that for every
compactly supported f: (fi,.- -y fm) € L' x -+« x LY, there is a sparse collection S of

—

dyadic intervals (depending on T' and f) such that
< CAs(|f). (5.2.3)

Proof. 1t suffices to prove the theorem for f = (f1,..., fm) supported on a dyadic interval
Iy = [0,2%). We first obtain a sparse collection S’ such that the corresponding sparse
operator Ag satisfies

T(f)| 1 < € As (). (524)

We use the weak-type estimates for the multilinear maximal function M and the maximal

truncation 7}, namely

= C - m R C - m
o M(F)(@) > N} < s LTI (o T() (@) > A} < s LTI

Let £ = {x €ly: max{M(f)(x),TMf)(x)} > %CO H<|f’|>10} :

i=1

. . 1
Since each fz 1S supported on [0, HfZHLl = / ‘fz‘ = ’[0’ (m/ ‘f”) = |[0’<’f1’>[0 SO,
R ol JIy
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|E| < {x M(f)(z) > Cgl_[|fZ } {ZEITﬁf > COH|fz }‘
21/mC 21 m(
< ol + =7l Kol
Co Co
21/m(Cy + Cy)
- 1/m ’IO|
Co

1
We choose Cj so large that |E| < §|IO|.

Let £ be the collection of maximal dyadic intervals contained in £. We claim that

‘T(f)( ‘]-Io <CH filso + Y ITo(f) (5.2.5)
JeE
where T (f° ZéTHfz (I,a;)h U(QT , and C' = max{Cy, C'Cy} with
IeD =1
ICJ
1, if T = pP?
C' = bl paroe,  ifT =8 -
sup; |e;| if T =T¢

If x € F, there is a unique K € & that contains z. If K is the parent of K, then

T(H@)| 1) < [T¥ ()] + (@)] + [Tk (F)(a)].

5T/Hfz LWt

~

K’ (K’
Notethat\( ) | fi(K)]

|
< b ,
\/W = H HBMOd ’K/|

<A|fil) &, and |{fi) x| < (| fil) - So,
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A
Q
e
=
¥

1, if T = Pa
where nk, = E(Km_'?', if T =nm .
& it T = 7%

‘We thus have

—

(@) 1) < |77 () )‘+C'H|f1 PRSI AGIGIE

Je&

By the maximality of K,

()| < 5C oIT0s Io,andHrfl o < Oon -

—

In fact, if |75 (f)(z)| > 1Co [T/, (| £il) ro» then T%'(f) being constant on K, we have

T (y) = 1T (D)l = 1T (F@)] > con

for every y € K’, which implies that K’ € £ contradicting the maximality of K. On the

1
other hand, if H(‘szK’ > 56’0 H<|fi|>10’ then for every y € K,

i=1 i=1

—

M(F)w) > 56 TN

i=1

which also contradicts the maximality of K. So, for all x € E/ we have
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T(F)@)| 1) = 3G [0 + 3¢ T, + 3 [To(Fw)]

Je&

IN

CTTdfD G + D 1T ().

i= Je&

—

1 m
For z € I\ E, (5.2.5) is obviously true, since 77 (f)(z) < 500 H(]fi|)[0 forall J € D,
=1

—

and T(f)(z) = lim T7% (x), where J* is the dyadic interval of length 27" that contains .

k—o0

—

As the inequality (5.2.5) suggests, we include [ in &’. Now we recurse on T;(f), J € £.
At this stage, we add each member of £ to &’ as the &’-children of [,. The sparseness
condition is satisfied since Y ;.. || < |E| < L|I|. Continuing the recursion, we get the
sparse operator satisfying (5.2.4).

For z ¢ I,

(@) = |6 L0 )

1€eD i=1

= ST A )k D )

121 =1

< S TTdsD-

121 i=0

Clearly, the sparse operator As corresponding to the sparse collection

S=8'U{IeD: 121}

satisfies (5.2.3) with C' = max{Cy, C', C'Cy}. O

As an immediate consequence of this theorem and (1.2.6), we have the following weighted
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estimate for the multilinear dyadic paraproducts and Haar multilpliers.

Theorem 5.2.3. Let T € {P%,T%} with & € U, and € = (¢;)ep bounded, or T = 7§
with @ € {0,1}™ and b € BMO?. Let P = (p1y- -+, pm) With 1 < py,-++ ,pm < 00 and

1/p1+ -+ 1/pm = 1/p. Then for i = (wi,- - ,wy,) € Ap we have

T ()l zowa) < Co i 0], Ve }anzum (5.2.6)

Theorem 5.2.4. Let T := T? for some @ € U,,, and bounded sequence ¢ = (¢;)ep, and
let b be a locally integrable function. There exists a constant C' so that for every bounded
f = (f1, ..., fm) with compact support, there is a sparse collection S of dyadic intervals

(depending on T, f, and b) such that

‘[bT

Z‘b_ Hlf] 111+Z b_ fz IH|fJ

IeS IeS
J#%

(5.2.7)

Proof. It suffices to prove (5.2.7) for ¢ = 1 and for f supported in a dyadic interval [, =

[0, 2%). We first find a sparse collection S’ of dyadic intervals such that

. ()] 15 < € <Z|b—<b>f|H|fJ L+ Y (b~ H<!fgl>111).

Ies’ Ies’ Jj=2
(5.2.8)

Letg: (917927 s 7gm) = ((b - <b>10)f17f27 . '7fm)’ and £ = El U E27 where
By = {x € I : max{M(f)(x), T(f)(2)} > Cy H<|fj\>lo}

and

By = {x € Io - max{M(g)(x), Ty(9)(x)} > Co H<|gj|>fo} :
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Due to weak-type boundedness of M and T}, we can choose Cj so large that | E| < 1{I,].
Let £ be the collection of maximal dyadic intervals contained in E. It suffices to prove the

recursive claim:

—

.71 () ()

110(33) < Cl( ’H |f] Io Io fl IOH |fJ )
J=1 j=2
+Z) b To)() ()| 1 (),

Je&

where T (f) := ZEIHfJ (I,a;)h ”(a)

IeD j=1
IcJ

If x € E, there is a unique K € & that contains z. If K’ is the parent of K, then

— —

b.T)(f)(x) = B.T)(f)() + [b, T] () ()
= [b— ®)1o. T¥I(F) (@) + [, Tx] () ()

—

= (b(x) = (b)1,) T (f)(@) = T*((0 = (B)1o) frs for - fon) (@)

= (b(x) = (D)) T (N @) + (b(w) = bhe) exc [T (K7, ) )

As argued in the proof of Theorem 5.2.2, the maximality of K implies that

T (P@)| < oIl |TL50< 0”@ < o TTA D

T @)@ < CoT[gsha |[TToi(K 0 @) < G [Tgibn
j=1 j=1 j=1
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So, for x € F, we have

—

0. TUA@)| < 1) = )l Co [Tl + o) - <>10|Sup|61|CoH|f]

+CoTLosl + (sup |e1|) o TTaibn + |10 Tl
= <|b($) - <b>10| H<|f]|>fo + Io fl Io H |f] >

—

+|. T (D)

where C' = Cy + (sup; |e;]) Co. Now for = € [\ E, we have

BTN @)| = |1b= B, TI@)
< bl@) = )l [T @)+ 1T@) @)

< Jb@) = Ol [T @) + 1BE@) @)

< Go (!b(iﬂ) - <b>zo|H<|fj\>Io + b)) fil IoH il ) '

Thus the recursive claim is true for all z, and by iterating this estimate, we see that (5.2.8)
holds for the sparse collection S’ that contains / and all the dyadic intervals that are con-

tained in £ and those arising from the iteration.

Now observe that if = ¢ Iy, and I, is the smallest dyadic interval containing [y and z, then

as in the proof of Lemma 4.2.3, we get

< QmQTi : (sl}p|61|> <\b(x) - <b>II’H<’fj|>IZ + ( byr,) f1] IIH |fil > .
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So, (5.2.7) holds for § = S'U{I € D : Iy C I} and C' = max {C’, 72— (sup; |e;]) }. O

5.3 Multilinear Bloom’s Inequality

Theorem 5.3.1. Let P = (P, spm) With 1 < py,-++ pm < o0 and 1/py + -+ +
1/pm = 1/p, and let & = (wy, . .., w,,) where w;’s are weights. Assume that wy, \; € A,,,
and that W' = (ws, ..., w,,) satisfies the Ap, condition, where Pl = (pa,...,pm) with
Doty = o Let @ € Up, € = (€1)1ep be bounded, and b be locally integrable. Then for

1

- P1
1= (M, wa, ..., wy)and vy = (2 )" we have
b ) ) Al )

S C()‘lawv P) HbHBMOL,1 H HfiHLpi(wi)’ (5.3.1)
=1

L = —maxp1p1 L max{p1,p|, ol b g2 max{q,p|, 0l
where C'(A\, W, P) = [w ]Apl { }[ 1}141,1 { }[ 1]A~ farh }

Similar estimates also hold for the commutators [b, T]; with j € {2,...,m}.

Proof. Due to Theorem 5.2.4, it suffices to prove the above estimate for

Asi(F) =3 o= @l [T

IeS
and,
Assal ) =310 = Ol TTAD
€S =2

By Lemma (5.1) in [10], there exists a sparse collection S of dyadic intervals such that

ScS,andforae.zeleS,

[b(z) = ()] <C1 Y (b= (B)saLs.

JeS,JCI
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So,

(b= B = ﬁ / i

SJ |[|/ Z |b_ |f1|1J
JeS,JCI
< 1 Plsso, 1
JeS,JjcI
1
- meHBMO,,l Z ([fi[)ori(J)
JeS,JCI
1
< THb”BMOV Z<|fl|>J/V1]-J
1] 1J - I
€S

1
- m”b”BMoyl/I Z<|f1|>J1J vV

JeS

1
= Tl [ Asthn
= ”bHBMOVl <A5<f1)V1>I-

This implies that,

[ As ()

< 1Bllsuo,

> (Ao [TUAD
IeS =2

Lr(vyz
P(v,) Poa)

- %max{p7p/17"' 7p'/m,} o
16l aso,, [l 4, A (Fi)vall o ) H 1fill i i -

L max{p1,p} }
Note that ||A$‘(f1)V1||LP1()\1) = HAS(JCI)HLm(wl) S w 1]211,1 ' ||f1||LP1 (w1) -
So,

- —max{lnp} %ma DDy P "
[AsastP],, s o™ @ e, T
Viy il
(5.3.2)
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—

Now to obtain an estimate for the norm of As;(f), we observe that

-ASb

<

. __\p/p1, /D2
Since vz, = A7 wy L

)

Lp(”ﬁl)

Now, as shown in [10],

whlPm — )\zlJ/m (wg/m N 'w%pm)p/q _ /\zl)/pl »/q

= > [b— () 121 (| fil)r1

1eS

= > b=l AD H(\fz-|>111

IeS i=

> (ZV)— | ([ /1] J1J> [TdsD:

1eS§ \JeS =2
(Db— {If1l) 1o ) (ZH fil)r )
JeS IeS i=2

Ti(f)Ta(f")  (say).

Vs

_ (/ (Ass(7)” yuldx)l/p

1/p
_ ( / T (f1)PTo( F)W;/plu%qczx)

< ( / Ty ( fl)’”)\ldx) " < / Ty( f_j)quwldx> v

= T ()l |27

Lq (le )

1T (o) S {lwila,, (A m}imx{plpl} 16l aso,, 1l zor an)

and,

|

Lq(’/ujl)

N

(i ]i ax{q,ph,- pm}HHszLPz(wl)
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So,

o

Lp(l’ﬂl)

<

~Y

L max{p1,p) b [ 195 MAX4Ps Pl
{r]ap, Pl o5 bt g esdork }HbHBM%HHﬁum "

Using the above estimates for HAS b1 ( f?)
Theorem 5.2.4 that

L S

, it follows from
) Lr(v,)

S COw D, P) 16 gago, [T IHillos -
Lrwa,) N

To see that the estimate holds for

COn, . P) =

oy max{p1py o}t max{ap - p)
1A, (A ]A,,l o [wl]fﬁxﬁl R
it suffices to prove
— : ) - maxq p,p}, D, . /
[Ml]ﬁ;nax{ppl pm} [ I]Apl { 1 TVL}[wl]Arjlax{qpl pm}

(5.3.3)

p/P1 p/q
Observe tha‘t/yﬁ1 = //\’f/plyli/lq < (//\1> (/ 1/1,31> . So,
I I I I

= su p i Vi ) ( )p/plﬁ(i/wl_p;>p/p§
III I 1| Jr s\
p/p1 P
)\
aln) ()

IN
'U
EEf —_— /\\ P
—_

) G )
GG (GG
= T,
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This gives

max{Pypiy'“ :pin} S [)\1] ﬁ max{pVPI].V"' 7p4n} [u_}q]

P AP1 Aﬁl

Since g > p, (5.3.3) follows. This completes the proof.
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