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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

1.1 Introduction

Dyadic operators have attracted a lot of attention in the recent years as the dyadic

techniques have been established as fundamental tools in harmonic analysis. The theory

of linear dyadic operators has been proved extremely useful in the advancement of the the-

ory of linear Calderón-Zygmund operators and their commutarors with locally integrable

functions. The proof of so-called A2 theorem (see [1]) consisted in representing a linear

Calderón-Zygmund operator as an average of dyadic operators, and then verifying some

testing conditions for those simpler dyadic operators. It is now well-known that the linear

Calderón-Zygmund operators, as well as their commutators with locally integrable func-

tions can be dominated pointwise by sparse dyadic operators. These results have been

particularly helpful in obtaining quantitative weighted inequalities for these operators, in-

cluding the Bloom’s inequality for the commutators in two-weight setting. The objects,

statements, and often proofs are simpler in the dyadic world, but yet illuminating enough

to guarantee that one can translate them into the non-dyadic world.

As in the linear case, we can expect a similar connection between the multilinear

dyadic and non-dyadic worlds. The main goal of this dissertation is to develop a detailed

theory of multilinear dyadic operators (paraproducts and Haar multipliers) and their com-

mutators with locally integrable functions. These multilinear operators can be thought of

as discrete dyadic models of multilinear Calderón-Zygmund operators introduced in [2],

and we can expect that the results obtained in the multilinear dyadic setting will eventually

imply corresponding results in the continuous setting.
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We introduce multilinear dyadic paraproducts and Haar multipliers in Chapter 2, where

we motivate their definitions by obtaining a generalized paraproduct decomposition of the

pointwise product of two or more functions. These operators and their commutators with

locally integrable functions are the main objects of our study.

In Chapter 3, we investigate the boundedness properties of multilinear dyadic para-

products and Haar multipliers in the unweighted setting. The corresponding theory of

linear dyadic operators, which we will be using very often, can be found in [3]. In [4], the

authors have studied boundedness properties of bilinear paraproducts defined in terms of

so-called “smooth molecules”. The paraproduct operators we study are general multilinear

operators defined in terms of indicators and Haar functions of dyadic intervals. In [5] Coif-

man, Rochberg and Weiss proved that the commutator of a BMO function with a singular

integral operator is bounded in Lp, 1 < p < ∞. The necessity of BMO condition for the

boundedness of the commutator was also established for certain singular integral operators,

such as the Hilbert transform. S. Janson [6] later studied its analogue for linear martin-

gale transforms. In Chapter 3, we study commutators of multilinear dyadic operators, and

characterize dyadic BMO functions via the boundedness of these commutators. The cor-

responding theory for general multilinear Calderón-Zygmund operators can be found in [2].

Using the unweighted theory from Chapter 3, and exploring some additional prop-

erties of these multilinear dyadic operators and their commutators, we obtain weighted

estimates for them in Chapter 4. These results are the dyadic analogs of the corresponding

results for multilinear Calderón-Zygmund operators obtained in [7], and are included in

[8]. In this chapter, we also characterize dyadic BMO functions via the boundedness of

the commutators of multilinear dyadic paraproducts in the weighted setting. Such charac-

terization of BMO functions in the continuous case is yet to be known.
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Domination by sparse operators has become a very useful idea in better understand-

ing the weighted estimates for various linear and multilinear operators. It is now well

known that a linear Calderón-Zygmund operator can be dominated pointwise by a finite

number of sparse operators. Such domination results are particularly helpful in obtaining

sharp weighted bounds for these operators. M. Lacey [9] showed that given a martingale

transform T and a locally supported integrable function f , there exists a sparse operator

S (depending on T and f ) such that |T (f)| . S(|f |). Using this result, the author then

established a number of sharp weighted inequalities for martingale transforms, and gave an

elementary proof of the A2 bounds in the continuous setting.

A. K. Lerner, S. Ombrosi and I. P. Rivera-Rı́os [10] obtained a sparse domination

result for the commutator [b, T ] of a linear Calderón-Zygmund operator T with a locally

integrable function b, and derived several weighted inequalities for the commutators. In

particular, they obtained quantitative norm inequalities for [b, T ] in two-weight setting.

Study of commutators in two-weight setting was initiated by Bloom [11] who, in 1985,

characterized the boundedness of the commutator of the Hilbert transform H:

[b,H] : Lp(λ)→ Lp(µ), λ, µ ∈ A2, 0 < p <∞,

by a BMO condition on b adapted to the weights λ and µ; namely

‖b‖BMOν := sup
I

1

ν(I)

∫
I

|b(x)− 〈b〉I |dx <∞,

where ν =
(
µ
λ

)1/p
. A modern proof of the same result was given in [12] for p = 2 by I.

Holmes, M. Lacey and B. Wick, who in a subsequent paper [13], generalized the result for

the commutators of Riesz transforms for 1 < p < ∞, and also obtained the upper bound

for the commutators of linear Calderón-Zygmund operators in the two-weight setting.
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In Chapter 5, we show that the multilinear dyadic paraproducts and Haar multipliers

can be dominated pointwise by multilinear sparse operators, and also obtain similar point-

wise estimates for their commutators with locally integrable functions. We then introduce

and prove the multilinear Bloom’s inequality for the commutators of multilinear Haar mul-

tipliers. These results regarding commutators are new in the multilinear setting, and can be

expected to hold also for the commutators of multilinear Calderón-Zygmund operators.

1.2 Preliminaries

1.2.1 The Haar System

Let D denote the standard dyadic grid on R,

D = {[m2−k, (m+ 1)2−k) : m, k ∈ Z}.

Associated to each dyadic interval I , there is a Haar function hI defined by

hI(x) =
1

|I|1/2
(
1I+ − 1I−

)
,

where I− and I+ are the left and right halves of I.

The collection of all Haar functions {hI : I ∈ D} is an orthonormal basis of L2(R), and an

unconditional basis of Lp for 1 < p < ∞. In fact, if a sequence ε = {εI}I∈D is bounded,

the operator Tε defined by

Tεf(x) =
∑
I∈D

εI〈f, hI〉hI

is bounded in Lp for all 1 < p <∞. The converse also holds. The operator Tε is called the

Haar multiplier with symbol ε.
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1.2.2 Weights and Ap Classes

A weight w is a non-negative locally integrable function on R such that 0 < w(x) < ∞

for almost every x. Given a weight w and a measurable set E ⊆ R, the w-measure of E is

defined by

w(E) =

∫
E

w(x)dx.

We say that a weight w belongs to the class Ap for 1 < p < ∞ if it satisfies the Mucken-

houpt condition:

sup
I

(
1

|I|

∫
I

w

)(
1

|I|

∫
I

w−
1
p−1

)p−1
<∞,

where the supremum is taken over all intervals. The expression on the left is called the Ap

(Muckenhoupt) characteristic constant of w, and is denoted by [w]Ap . Note that if p′ is the

conjugate index of p, i.e. 1
p

+ 1
p′

= 1, then 1− p′ = − 1
p−1 = −p′

p
. So,

[w]Ap = sup
I

(
1

|I|

∫
I

w

)(
1

|I|

∫
I

w1−p′
)1/p′

= sup
I

(
1

|I|

∫
I

w

)(
1

|I|

∫
I

w−
p′
p

) p
p′

.

It can be shown that lim
p→1

(
1

|I|

∫
I

w−
1
p−1

)p−1
= ‖w−1‖L∞(I). This leads to the following

definition of A1 class:

A weight w is called an A1 weight if

[w]A1 := sup
I

(
1

|I|

∫
I

w

)
‖w−1‖L∞(I) <∞.

Thus [w]A1 is the infimum of all constants C such that for all intervals I ,

1

|I|

∫
I

w ≤ Cw(x) for a.e. x ∈ I.
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The Ap classes are increasing with respect to p, i.e. for 1 ≤ p1 < p2 <∞,

[w]Ap2 ≤ [w]Ap1 .

It is natural to define the A∞ class of weights by

A∞ =
⋃
p>1

Ap,

with [w]A∞ = inf{[w]Ap : w ∈ Ap}.

For 1 ≤ p <∞, the dyadic Adp classes are defined by the same inequalities restricted to the

dyadic intervals. Moreover, Ad∞ =
⋃
p>1

Adp.

1.2.3 Multilinear A~P Condition

We state the multilinear A~P condition introduced by Lerner et al. [7].

Let ~P = (p1, . . . , pm) and ~w = (w1, . . . , wm), where 1 ≤ p1, . . . , pm <∞ and w1, . . . , wm

are non-negative measurable functions. Let 1
p1

+ · · ·+ 1
pm

= 1
p
.

We say that ~w satisfies the multilinear A~P condition and we write ~w ∈ A~P if

sup
I

(
1

|I|

∫
I

ν~w

) 1
p

m∏
j=1

(
1

|I|

∫
I

w
1−p′j
j

) 1
p′
j
<∞,

where ν~w :=
m∏
j=1

w
p/pj
j , and

(
1

|I|

∫
I

w
1−p′j
j

) 1
p′
j is understood as ‖w−1j ‖L∞(I) when pj = 1.

Using Hölder’s inequality, it is easy to see that

m∏
j=1

Apj ⊂ A~P .

Moreover, if ~w ∈ A~P , ν~w ∈ Amp. We will denote the dyadic multiliner A~P class by Ad~P .
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1.2.4 Lebesgue Spaces

Given 0 < p <∞, the Lebesgue space Lp(R) is defined by

Lp(R) := {f : ‖f‖p <∞} ,

where, ‖f‖p = ‖f‖Lp :=

(∫
R
|f(x)|pdx

)1/p

. The Weak Lp space, also denoted by

Lp,∞(R), is the space of all functions f such that

‖f‖Lp,∞(R) := sup
t>0

t |{x ∈ R : f(x) > t}|1/p <∞.

For convenience, we will denote Lp(R) and Lp,∞(R) by Lp and Lp,∞ respectively.

Given a weight w, the weighted Lebesgue space Lp(R, w) is defined by

Lp(R, w) :=
{
f : ‖f‖Lp(R,w) <∞

}
,

where, ‖f‖Lp(R,w) :=

(∫
R

|f(x)|pw(x)dx

)1/p

. Moreover, the weak space Lp,∞(R, w) is

the space of all functions f such that

‖f‖Lp,∞(R,w) := sup
t>0

t w ({x ∈ R : f(x) > t})1/p <∞.

For convenience, we will denote Lp(R, w) and Lp,∞(R) by Lp(w) and Lp,∞(w) respec-

tively.

1.2.5 Maximal Operators

Given a function f , the maximal function Mf is defined by

Mf(x) := sup
I3x

1

|I|

∫
I

|f(t)| dt,

7



where the supremum is taken over all intervals I in R that contain x.

For δ > 0, the maximal operator Mδ is defined by

Mδf(x) := M(|f |δ)1/δ(x) =

(
sup
I3x

1

|I|

∫
I

|f(t)|δ dt
)1/δ

.

The sharp maximal function M# is given by

M#f(x) := sup
I3x

inf
c

1

|I|

∫
I

|f(t)− c| dt.

In fact,

M#f(x) ≈ sup
I3x

1

|I|

∫
I

|f(t)− 〈f〉I | dt,

where 〈f〉I :=
1

|I|

∫
I

f(t)dt is the average of f over I.

Given ~f = (f1, . . . , fm), the maximal operatorsM andMr with r > 0 are defined by

M(~f)(x) = sup
I3x

m∏
i=1

1

|I|

∫
I

|fi(yi)|dyi

and

Mr(~f)(x) = sup
I3x

m∏
i=1

(
1

|I|

∫
I

|fi(yi)|rdyi
)1/r

.

We will be using dyadic versions of the above maximal operators which are defined by

taking supremum over all dyadic intervals I 3 x, instead of all intervals I 3 x. For conve-

nience, we will use the same notation to denote the dyadic counterparts.

We will use the following results regarding maximal functions. The dyadic analogs of these

statements are also true.

• For any locally integrable function f , |f(x)| ≤ Mf(x) almost everywhere. This

inequality is a consequence of Lebesgue differentiation theorem and can be found in

8



any standard Fourier Analysis textbooks, see for example [14] or [15]. In fact, for

any δ > 0, if f ∈ Lδloc(R), then |f(x)| ≤Mδf(x) almost everywhere.

• For 0 < δ1 < δ2 < ∞, Mδ1f(x) ≤ Mδ2f(x). This simple inequality can be verified

just by using Hölder’s inequality.

• For w ∈ Ap with 1 < p <∞ there exists a constant C such that

‖Mf‖Lp(w) ≤ C‖f‖Lp(w). (See [3], [14])

• Fefferman-Stein’s inequalities (see [16]): Let w ∈ A∞ and 0 < δ, p <∞. Then there

exists a constant C1 such that

‖Mδf‖Lp(w) ≤ C1‖M#
δ f‖Lp(w) (1.2.1)

for all functions f for which the left-hand side is finite.

Similarly, there exists a constant C2 such that

‖Mδf‖Lp,∞(w) ≤ C2‖M#
δ f‖Lp,∞(w) (1.2.2)

for all functions f for which the left-hand side is finite.

• Let ~P = (p1, . . . , pm) and ~w = (w1, . . . , wm), where 1 < p1, . . . , pm < ∞ with

1
p1

+ · · ·+ 1
pm

= 1
p
, and w1, . . . , wm are weights. Then the inequality

‖M(~f)‖Lp(ν~w) ≤ C

m∏
j=1

‖fj‖Lpj (wj) (1.2.3)

holds for every ~f = (f1, . . . , fm) if and only if ~w ∈ A~P . For 1 ≤ p1, . . . , pm < ∞,

9



the same statement is true with the inequality

‖M(~f)‖Lp,∞(ν~w) ≤ C
m∏
j=1

‖fj‖Lpj (wj). (1.2.4)

These estimates and the one below have been obtained in [7].

• If ~w = (w1, . . . , wm) ∈ A~P , for ~P = (p1, . . . , pm) with 1 < p1, . . . , pm < ∞ and

1
p1

+ · · ·+ 1
pm

= 1
p
, then there exists an r > 1 such that ~w ∈ A~P/r, and that

‖Mr(~f)‖Lp(ν~w) ≤ C
m∏
j=1

‖fj‖Lpj (wj). (1.2.5)

1.2.6 The Dyadic Square Function

The dyadic Littlewood-Paley square function of a function f is defined by

Sf(x) :=

(∑
I∈D

|〈f, hI〉|2

|I|
1I(x)

)1/2

.

For f ∈ Lp with 1 < p <∞, we have ‖Sf‖p ≈ ‖f‖p with equality when p = 2.

1.2.7 BMO Spaces

A locally integrable function b is said to be of bounded mean oscillation if

‖b‖BMO := sup
I

1

|I|

∫
I

|b(x)− 〈b〉I | dx <∞,

where the supremum is taken over all intervals in R. The space of all functions of bounded

mean oscillation is denoted by BMO.

If we take the supremum over all dyadic intervals in R, we get a larger space of dyadic

BMO functions which we denote by BMOd.

10



For 0 < r <∞, define

BMOr = {b ∈ Lrloc(R) : ‖b‖BMOr <∞} ,

where, ‖b‖BMOr :=

(
sup
I

1

|I|

∫
I

|b(x)− 〈b〉I |r dx
)1/r

.

For any 0 < r < ∞, the norms ‖b‖BMOr and ‖b‖BMO are equivalent. The equivalence of

norms for r > 1 is well-known and follows from John-Nirenberg’s lemma (see [17]), while

the equivalence for 0 < r < 1 has been proved by Hanks in [18]. (See also [19], page 179.)

For r = 2, it follows from the orthogonality of Haar system that

‖b‖BMOd2
=

(
sup
I∈D

1

|I|
∑
J⊆I

|̂b(J)|2
)1/2

.

Given a weight w on R, we define the weighted BMO space BMO(w) to be the space of

all locally integrable functions b that satisfy

‖b‖BMO(w) ≡ sup
I

1

w(I)

∫
I

|b(x)− 〈b〉I | dx <∞,

where the supremum is taken over all intervals in R. The dyadic counterpart BMOd(w) is

defined by taking the suprimum over the dyadic intervals in R.

1.2.8 The Linear and Bilinear Paraproducts

Given two functions f1 and f2, the point-wise product f1f2 can be decomposed into the

sum of bilinear paraproducts:

f1f2 = P (0,0)(f1, f2) + P (0,1)(f1, f2) + P (1,0)(f1, f2),

11



where for ~α = (α1, α2) ∈ {0, 1}2,

P ~α(f1, f2) =
∑
I∈D

f1(I, α1)f2(I, α2)h
σ(~α)
I

with fi(I, 0) = 〈fi, hI〉, fi(I, 1) = 〈fi〉I , σ(~α) = #{i : αi = 0}, and hσ(~α)I being the

pointwise product hIhI . . . hI of σ(~α) factors.

The paraproduct P (0,1)(f1, f2) is also denoted by πf1(f2), i.e.,

πf1(f2) =
∑
I∈D

〈f1, hI〉〈f2〉IhI .

Observe that

〈πf1(f2), g〉 =

〈∑
I∈D

〈f1, hI〉〈f2〉IhI , g

〉
=
∑
I∈D

〈f1, hI〉〈f2〉I〈g, hI〉

which is equal to

〈
f2, P

(0,0)(f1, g)
〉

=

〈
f2,

∑
I∈D

〈f1, hI〉〈g, hI〉h2I

〉
=

∑
I∈D

〈f1, hI〉〈g, hI〉〈f2, h2I〉

=
∑
I∈D

〈f1, hI〉〈f2〉I〈g, hI〉.

This shows that π∗f1 = P (0,0)(f1, ·) = P (0,0)(·, f1).

The ordinary multiplication operator Mb : f → bf can therefore be given by:

Mb(f) = bf = P (0,0)(b, f) + P (0,1)(b, f) + P (1,0)(b, f) = π∗b (f) + πb(f) + πf (b).

The function b is required to be in L∞ for the boundedness of Mb in Lp. However, the

paraproduct operator πb is bounded in Lp for every 1 < p < ∞ if b ∈ BMOd. Note that

12



BMOd properly contains L∞. Detailed information on the operator πb can be found in [3]

or [20].

1.2.9 Commutators of Haar Multipliers

The commutator of Tε with a locally integrable function b is defined by

[b, Tε](f)(x) := Tε(bf)(x)−Mb(Tε(f))(x).

It is well-known that for a bounded sequence ε and 1 < p < ∞, the commutator [b, Tε] is

bounded in Lp for all p ∈ (1,∞) if b ∈ BMOd. These commutators have been studied in

[21] in non-homogeneous martingale settings.

1.2.10 Sparse Operators

A collection S of dyadic intervals is said to be sparse if for each I ∈ S,

∑
J∈ChS(I)

|J | ≤ 1

2
|I|,

where ChS(I) is the collection of maximal dyadic intervals in S which are strictly con-

tained in I.

Given a sparse collection S of dyadic intervals, the multilinear sparse operator AS is de-

fined as follows:

AS(f1, . . . , fm) =
∑
I∈S

(
m∏
i=1

1

|I|

∫
I

fi

)
1I .

In [22], the authors have proved that if ~P = (p1, · · · , pm) with 1 < p1, · · · , pm < ∞ and

1/p1 + · · · + 1/pm = 1/p, then for ~w = (w1, · · · , wm) ∈ A~P and ~f = (f1, · · · , fm), we

have

‖AS(~f)‖Lp(v~w) . [~w]
max

{
1,
p′1
p
,··· , p

′
m
p

}
A~P

m∏
i=1

‖fi‖Lpi (wi). (1.2.6)
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CHAPTER 2

MULTILINEAR DYADIC OPERATORS: MOTIVATION AND DEFINITIONS

In this chapter, we introduce multilinear dyadic paraproducts and Haar multipliers. Their

definitions are motivated by the generalized paraproduct decomposition of the pointwise

product of two or more functions. These operators and their commutators with locally

integrable functions are the main objects of our study.

2.1 Decomposition of the Pointwise Product
m∏
j=1

fj

.

In this section, we obtain a decomposition of the pointwise product
m∏
j=1

fj of m functions

that generalizes the following paraproduct decomposition :

f1f2 = P (0,0)(f1, f2) + P (0,1)(f1, f2) + P (1,0)(f1, f2).

The decomposition of
m∏
j=1

fj will be the basis for defining multi-linear paraproducts and

m-linear Haar multipliers, and will also be very useful in proving boundedness properties

of multilinear commutators.

We first introduce the following notation:

• f(I, 0) := f̂(I) = 〈f, hI〉 =

∫
R
f(x)hI(x)dx.

• f(I, 1) := 〈f〉I = 1
|I|

∫
I

f(x)dx.

• Um := {(α1, α2, . . . , αm) ∈ {0, 1}m : (α1, α2, . . . , αm) 6= (1, 1, . . . , 1)} .

• σ(~α) = #{i : αi = 0} for ~α = (α1, . . . , αm) ∈ {0, 1}m.

14



• (~α, i) = (α1, . . . , αm, i), (i, ~α) = (i, α1, . . . , αm) for ~α = (α1, . . . , αm) ∈ {0, 1}m.

• P ~α
I (f1, . . . , fm) =

∏m
j=1 fj(I, αj)h

σ(~α)
I for ~α ∈ Um and I ∈ D.

• P ~α(f1, . . . , fm) =
∑
I∈D

P ~α
I (f1, . . . , fm) =

∑
I∈D

m∏
j=1

fj(I, αj)h
σ(~α)
I for ~α ∈ Um.

With this notation, the paraproduct decomposition of f1f2 takes the following form:

f1f2 = P (0,0)(f1, f2) + P (0,1)(f1, f2) + P (1,0)(f1, f2) =
∑
~α∈U2

P ~α(f1, f2).

Note that

Um = {(α, 1) : ~α ∈ Um−1} ∪ {(~α, 0) : ~α ∈ Um−1} ∪ {(1, . . . , 1, 0)}. (2.1.1)

To obtain an analogous decomposition of
m∏
j=1

fj, we need the following crucial lemma:

Lemma 2.1.1. Given m ≥ 2 and functions f1, f2, . . . , fm, with fi ∈ Lpi , 1 < pi < ∞,we

have
m∏
j=1

〈fj〉J1J =
∑
~α∈Um

∑
J(I

P ~α
I (f1, f2, . . . , fm) 1J ,

for all J ∈ D.

Proof. We prove the lemma by induction on m.

First assume that m = 2. We want to prove the following:

〈f1〉J〈f2〉J1J =
∑
~α∈U2

∑
J(I

P ~α
I (f1, f2) 1J

=

(∑
J(I

P
(0,1)
I (f1, f2) +

∑
J(I

P
(1,0)
I (f1, f2) +

∑
J(I

P
(0,0)
I (f1, f2)

)
1J

=

(∑
J(I

f̂1(I)〈f2〉IhI +
∑
J(I

〈f1〉I f̂2(I)hI +
∑
J(I

f̂1(I)f̂2(I)h2I

)
1J .
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For 1 < pi <∞, 〈fi〉J1J =

(∑
J(I

f̂i(I)hI

)
1J . So,

〈f1〉J 〈f2〉J 1J

=

(∑
J(I

f̂1(I)hI

)(∑
J(K

f̂2(K)hK

)
1J

=
∑
J(I

f̂1(I)hI

(∑
I(K

f̂2(K)hK + f̂2(I)hI +
∑

J(K(I

f̂2(K)hK

)
1J

=

{∑
J(I

f̂1(I) 〈f2〉I hI +
∑
J(I

f̂1(I)f̂2(I)h2I +
∑
J(I

f̂1(I)hI

( ∑
J(K(I

f̂2(K)hK

)}
1J

=

{∑
J(I

f̂1(I) 〈f2〉I hI +
∑
J(I

f̂1(I)f̂2(I)h2I +
∑
J(K

f̂2(K)hK

(∑
K(I

f̂1(I)hI

)}
1J

=

{∑
J(I

f̂1(I) 〈f2〉I hI +
∑
J(I

f̂1(I)f̂2(I)h2I +
∑
J(K

f̂2(K) 〈f1〉K hK

}
1J

=

{∑
J(I

f̂1(I) 〈f2〉I hI +
∑
J(I

f̂1(I)f̂2(I)h2I +
∑
J(I

f̂2(I) 〈f1〉I hI

}
1J

=

(∑
J(I

f̂1(I)〈f2〉IhI +
∑
J(I

〈f1〉I f̂2(I)hI +
∑
J(I

f̂1(I)f̂2(I)h2I

)
1J .

Now assume m > 2 and that
m−1∏
j=1

〈fj〉J1J =
∑

~α∈Um−1

∑
J(I

P ~α
I (f1, f2, . . . , fm−1)1J . Then,

m∏
j=1

〈fj〉J1J

=

(
m−1∏
j=1

〈fj〉J1J

)
〈fm〉J1J

=
∑

~α∈Um−1

∑
J(I

P ~α
I (f1, f2, . . . , fm−1)

(∑
J(K

f̂m(K)hK

)
1J

=
∑

~α∈Um−1

∑
J(I

P ~α
I (f1, f2, . . . , fm−1)

(∑
I(K

f̂m(K)hK + f̂m(I)hI +
∑

J(K(I

f̂m(K)hK

)
1J
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This gives

m∏
j=1

〈fj〉J1J

=
∑

~α∈Um−1

∑
J(I

P ~α
I (f1, f2, . . . , fm−1)〈fm〉I1J +

∑
~α∈Um−1

∑
J(I

P ~α
I (f1, . . . , fm−1)f̂m(I)hI1J

+
∑

~α∈Um−1

∑
J(I

P ~α
I (f1, f2, . . . , fm−1)

( ∑
J(K(I

f̂m(K)hK

)
1J

=
∑

~α∈Um−1

∑
J(I

P
(~α,1)
I (f1, f2, . . . , fm)1J +

∑
~α∈Um−1

∑
J(I

P
(~α,0)
I (f1, f2, . . . , fm)1J

+
∑
J(K

f̂m(K)hK

 ∑
~α∈Um−1

∑
K(I

P ~α
I (f1, f2, . . . , fm−1)

 1J

=
∑

~α∈Um−1

∑
J(I

P
(~α,1)
I (f1, f2, . . . , fm)1J +

∑
~α∈Um−1

∑
J(I

P
(~α,0)
I (f1, f2, . . . , fm)1J

+
∑
J(K

f̂m(K)hK〈f1〉K . . . 〈fm−1〉K1J

=
∑

~α∈Um−1

∑
J(I

P
(~α,1)
I (f1, f2, . . . , fm)1J +

∑
~α∈Um−1

∑
J(I

P
(~α,0)
I (f1, f2, . . . , fm)1J

+
∑
J(I

P
(1,...,1,0)
I (f1, f2, . . . , fm)1J

=
∑
~α∈Um

∑
J(I

P ~α
I (f1, f2, . . . , fm)1J .

The last equality follows from (2.1.1).

Lemma 2.1.2. Given m ≥ 2 and functions f1, f2, . . . , fm, with fi ∈ Lpi , 1 < pi < ∞,we

have
m∏
j=1

fj =
∑
~α∈Um

P ~α(f1, f2, . . . , fm).

Proof. We have already seen that it is true for m = 2. By induction, assume that

m−1∏
j=1

fj =
∑

~α∈Um−1

P ~α(f1, f2, . . . , fm−1)

=
∑

~α∈Um−1

∑
I∈D

P ~α
I (f1, f2, . . . , fm−1)
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Then,

m∏
j=1

fj =

(
m−1∏
j=1

fj

)
fm

=
∑

~α∈Um−1

∑
I∈D

P ~α
I (f1, f2, . . . , fm−1)

(∑
J∈D

f̂m(J)hJ

)

=
∑

~α∈Um−1

∑
I∈D

P ~α
I (f1, f2, . . . , fm−1)

(∑
I(J

f̂m(J)hJ + f̂m(I)hI +
∑
J(I

f̂m(J)hJ

)
=

∑
~α∈Um−1

∑
I∈D

P ~α
I (f1, . . . , fm−1)〈fm〉I +

∑
~α∈Um−1

∑
I∈D

P ~α
I (f1, . . . , fm−1)f̂m(I)hI

+
∑

~α∈Um−1

∑
I∈D

P ~α
I (f1, f2, . . . , fm−1)

(∑
J(I

f̂m(J)hJ

)
=

∑
~α∈Um−1

∑
I∈D

P
(~α,1)
I (f1, f2, . . . , fm) +

∑
~α∈Um−1

∑
I∈D

P
(~α,0)
I (f1, f2, . . . , fm)

+
∑
J

f̂m(J)hJ

 ∑
~α∈Um−1

∑
J(I

P ~α
I (f1, f2, . . . , fm−1)


=

∑
~α∈Um−1

∑
I∈D

P
(~α,1)
I (f1, f2, . . . , fm) +

∑
~α∈Um−1

∑
I∈D

P
(~α,0)
I (f1, f2, . . . , fm)

+
∑
J

f̂m(J)hJ〈f1〉J . . . 〈fm−1〉J

=
∑

~α∈Um−1

∑
I∈D

P
(~α,1)
I (f1, f2, . . . , fm) +

∑
~α∈Um−1

∑
I∈D

P
(~α,0)
I (f1, f2, . . . , fm)

+P (1,...,1,0)(f1, f2, . . . , fm)

=
∑
~α∈Um

P ~α(f1, f2, . . . , fm).

Here the last equality follows from (2.1.1).

2.2 Multilinear Dyadic Paraproducts and Haar Multipliers

On the basis of the decomposition of the pointwise product
∏m

j=1 fj , we now introduce

multi-linear dyadic paraproducts and Haar-multipliers. These operators and their commu-

tators with locally integrable functions are the main objects of our study.
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Definition 2.2.1. For m ≥ 2 and ~α = (α1, α2, . . . , αm) ∈ {0, 1}m, we define multi-linear

dyadic paraproduct operators by

P ~α(f1, f2, . . . , fm) =
∑
I∈D

m∏
j=1

fj(I, αj)h
σ(~α)
I

where fi(I, 0) = 〈fi, hI〉, fi(I, 1) = 〈fi〉I and σ(~α) = #{i : αi = 0}.

Observe that if ~β = (β1, β2, . . . , βm) is some permutation of ~α = (α1, α2, . . . , αm) and

(g1, g2, . . . , gm) is the corresponding permutation of (f1, f2, . . . , fm), then

P ~α(f1, f2, . . . , fm) = P
~β(g1, g2, . . . , gm).

Also note that P (1,0) and P (0,1) are the standard bilinear paraproduct operators:

P (0,1)(f1, f2) =
∑
I∈D

〈f1, hI〉〈f2〉IhI = P (f1, f2)

P (1,0)(f1, f2) =
∑
I∈D

〈f1〉I〈f2, hI〉hI = P (f1, f2).

In terms of paraproducts, the decomposition of point-wise product
m∏
j=1

fj, we obtained in

the previous section takes the form

m∏
j=1

fj =
∑

~α∈{0,1}m
~α6=(1,1,...,1)

P ~α(f1, f2, . . . , fm).

Definition 2.2.2. For a given function b and ~α = (α1, α2, . . . , αm) ∈ {0, 1}m, we define

the paraproduct operators π~αb by

π~αb (f1, f2, . . . , fm) = P (0,~α)(b, f1, f2, . . . , fm) =
∑
I∈D

〈b, hI〉
m∏
j=1

fj(I, αj) h
1+σ(~α)
I

where (0, ~α) = (0, α1, . . . , αm) ∈ {0, 1}m+1.

19



Note that

π1
b (f) = P (0,1)(b, f) =

∑
I∈D

b(I, 0)f(I, 1)hI =
∑
I∈D

〈b, hI〉〈f〉IhI = πb(f).

Definition 2.2.3. Given ~α = (α1, α2, . . . , αm) ∈ {0, 1}m, and a symbol sequence ε =

{εI}I∈D, we define m-linear Haar multipliers by

T ~αε (f1, f2, . . . , fm) ≡
∑
I∈D

εI

m∏
j=1

fj(I, αj)h
σ(~α)
I .

Note that for εI = 1 for all I ∈ D, T ~αε = P ~α.

Besides, multilinear dyadic paraproducts and Haar multipliers, we are interested in study-

ing the commutators of multilinear Haar multipliers with locally integrable functions, which

are defined as follows:

[b, T ~αε ]i(f1, f2, . . . , fm)(x) ≡ (T ~αε (f1, . . . , bfi, . . . , fm)− bT ~αε (f1, f2, . . . , fm))(x)

where 1 ≤ i ≤ m.
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CHAPTER 3

ESTIMATES FOR MULTILINEAR DYADIC OPERATORS: UNWEIGHTED

SETTING

In this chapter, we study the boundedness properties of multilinear dyadic paraproducts

and Haar multipliers, as well as their commutators with dyadic BMO functions. We also

characterize the dyadic BMO functions via the boundedness of (a) certain paraproducts,

and (b) the commutators of multilinear Haar multipliers and paraproduct operators.

3.1 Main Results

Following are the main results of this chapter.

Theorem: Let ~α = (α1, α2, . . . , αm) ∈ {0, 1}m and 1 < p1, p2, . . . , pm < ∞ with
m∑
j=1

1

pj
=

1

r
. Then

(a) For ~α 6= (1, 1, . . . , 1),
∥∥P ~α(f1, f2, . . . , fm)

∥∥
r
.

m∏
j=1

‖fj‖pj .

(b) For σ(~α) ≤ 1,
∥∥π~αb (f1, f2, . . . , fm)

∥∥
r
. ‖b‖BMOd

m∏
j=1

‖fj‖pj , if and only if b ∈

BMOd.

(c) For σ(~α) > 1,
∥∥π~αb (f1, f2, . . . , fm)

∥∥
r
≤ Cb

m∏
j=1

‖fj‖pj , if and only if sup
I∈D

|〈b, hI〉|√
|I|

<

∞.

In each case, the paraproducts are weakly bounded if 1 ≤ p1, p2, . . . , pm <∞.

Theorem: Let ε = {εI}I∈D be a given sequence and let ~α = (α1, α2, . . . , αm) ∈ Um. Let

1 < p1, p2, . . . , pm <∞ with
m∑
j=1

1

pj
=

1

r
. Then T ~αε is bounded from Lp1×Lp2×· · ·×Lpm
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to Lr if and only if ‖ε‖∞ := sup
I∈D
|εI | <∞.

Moreover, T ~αε has the corresponding weak-type boundedness if 1 ≤ p1, p2, . . . , pm <∞.

Theorem: Let ~α = (α1, α2, . . . , αm) ∈ Um, 1 ≤ i ≤ m, and 1 < p1, p2, . . . , pm, r < ∞

with
m∑
j=1

1

pj
=

1

r
. Suppose b ∈ Lp for some p ∈ (1,∞). Then the following two statements

are equivalent.

(a) b ∈ BMOd.

(b) [b, T ~αε ]i : Lp1 × Lp2 × · · · × Lpm → Lr is bounded for every bounded sequence

ε = {εI}I∈D.

In particular, b ∈ BMOd if and only if [b, P ~α]i : Lp1 × Lp2 × · · · × Lpm → Lr is bounded.

3.2 Multilinear Dyadic Paraproducts

This section is devoted to the boundedness properties of the multilinear paraproduct oper-

ators P ~α and π~αb .

Lemma 3.2.1. Let 1 < p1, p2, . . . , pm, r <∞ and
∑m

j=1
1
pj

= 1
r
. Then for ~α = (α1, . . . , αm)

in Um, the operators P ~α map Lp1 × · · · × Lpm → Lr with estimates of the form:

‖P ~α(f1, f2, . . . , fm)‖r .
m∏
j=1

‖fj‖pj

Proof. First we observe that, if x ∈ I ∈ D, then |〈f〉I | ≤ 〈|f |〉I ≤Mf(x), and that

|〈f, hI〉|√
|I|

=
1√
|I|

∣∣∣∣∫
R
fhI

∣∣∣∣
=

1

|I|

∣∣∣∣∫
R
f1I+ −

∫
R
f1I−

∣∣∣∣
=

1

|I|

(∫
I+

|f |+
∫
I−

|f |
)
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So,
|〈f, hI〉|√
|I|

≤ 1

|I|

∫
I

|f |

≤ Mf(x).

Case I: σ(~α) = 1.

Let αj0 = 0. Then

P ~α(f1, f2, . . . , fm) =
∑
I∈D

m∏
j=1

fj(I, αj)h
σ(~α)
I

=
∑
I∈D

 m∏
j=1
j 6=j0

〈fj〉I

 〈fj0 , hI〉hI .
Using square function estimates, we obtain

∥∥P ~α(f1, f2, . . . , fm)
∥∥
r

.

∥∥∥∥∥∥∥∥∥
∑
I∈D

m∏
j=1
j 6=j0

|〈fj〉I |2 |〈fj0 , hI〉|2
1I
|I|


1/2
∥∥∥∥∥∥∥∥∥
r

≤

∥∥∥∥∥∥∥∥
 m∏

j=1
j 6=j0

Mfj


(∑
I∈D

|〈fj0 , hI〉|2
1I
|I|

)1/2

∥∥∥∥∥∥∥∥
r

=

∥∥∥∥∥∥∥∥
 m∏

j=1
j 6=j0

Mfj

 (Sfj0)

∥∥∥∥∥∥∥∥
r

≤
m∏
j=1
j 6=j0

‖Mfj‖pj‖Sfj0‖pj0

.
m∏
j=1

‖fj‖pj ,

where we have used Hölder inequality, and the boundedness of maximal and square func-

tion operators to obtain the last two inequalities.
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Case II: σ(~α) > 1.

Choose j′ and j′′ such that αj′ = αj′′ = 0. Then

∣∣P ~α(f1, f2, . . . , fm)(x)
∣∣

=

∣∣∣∣∣∣∣∣
∑
I∈D

 ∏
j:αj=1

〈fj〉I


 ∏

j:αj=0
j 6=j′, j′′

〈fj, hI〉√
|I|

 〈fj′ , hI〉〈fj′′ , hI〉1I(x)

|I|

∣∣∣∣∣∣∣∣
≤

( ∏
j:j 6=j′, j′′

Mfj(x)

)(∑
I∈D

|〈fj′ , hI〉||〈fj′′ , hI〉|
1I(x)

|I|

)
.

By Cauchy-Schwarz inequality

∑
I∈D

|〈fj′ , hI〉| |〈fj′′ , hI〉|
1I(x)

|I|

≤

(∑
I∈D

|〈fj′ , hI〉|2
1I(x)

|I|

) 1
2
(∑
I∈D

|〈fj′′ , hI〉|2
1I(x)

|I|

) 1
2

(3.2.1)

= Sfj′(x)Sfj′′(x).

Therefore,

∣∣P ~α(f1, f2, . . . , fm)(x)
∣∣ ≤ ( ∏

j:j 6=j′, j′′
Mfj(x)

)
Sfj′(x)Sfj′′(x).

Now using generalized Hölder’s inequality and the boundedness properties of the maximal

and square functions, we get

∥∥P ~α(f1, f2, . . . , fm)
∥∥
r
≤

( ∏
j:j 6=j′, j′′

‖Mfj‖pj

)
‖Sfj′‖pj′ ‖Sfj′′‖pj′′

.
m∏
j=1

‖fj‖pj .
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Lemma 3.2.2. Let ~α = (α1, . . . , αm) ∈ {0, 1}m and 1 < p1, . . . , pm, r < ∞ with∑m
j=1

1
pj

= 1
r
.

(a) For σ(~α) ≤ 1, π~αb is a bounded operator from Lp1 × · · · × Lpm to Lr if and only if

b ∈ BMOd.

(b) For σ(~α) > 1, π~αb is a bounded operator from Lp1 × · · · × Lpm to Lr if and only if

sup
I∈D

|〈b, hI〉|√
|I|

<∞.

Proof. (a) We prove this part first for σ(~α) = 0, that is, for α1 = · · · = αm = 1.

Assume that b ∈ BMOd. Then for (f1, . . . , fm) ∈ Lp1 × · · · × Lpm , we have

π~αb (f1, . . . , fm) = P (0,~α)(b, f1, . . . , fm)

=
∑
I∈D

〈b, hI〉
m∏
j=1

〈fj〉IhI

=
∑
I∈D

〈πb(f1), hI〉
m∏
j=2

〈fj〉IhI

= P (0,α2,...,αm) (πb(f1), f2, . . . , fm) .

Since b ∈ BMOd and f1 ∈ Lp1 with p1 > 1, we have ‖πb(f1)‖p1 . ‖b‖BMOd‖f1‖p1 . So,

‖π~αb (f1, . . . , fm)‖r = ‖P (0,α2,...,αm) (πb(f1), f2, . . . , fm) ‖r

. ‖πb(f1)‖p1
m∏
j=2

‖fj‖pj

. ‖b‖BMOd

m∏
j=1

‖fj‖pj ,

where the first inequality follows from Lemma 3.2.1.

Conversely, assume that π(1,...,1)
b : Lp1 × · · · × Lpm → Lr is bounded. Then for fi =
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|J |−
1
pi 1J(x) with J ∈ D,

∥∥∥π(1,1,...,1)
b (f1, f2, . . . , fm)

∥∥∥
r
≤
∥∥∥π(1,1,...,1)

b

∥∥∥
Lp1×···×Lpm→Lr

,

since ‖fi‖pi = 1 for all 1 ≤ i ≤ m. For such fi,

∥∥∥π(1,1,...,1)
b (f1, f2, . . . , fm)

∥∥∥
r

=

∥∥∥∥|J |−( 1
p1

+ 1
p2

+···+ 1
pm

)
π
(1,1,...,1)
b (1J , 1J , . . . , 1J)

∥∥∥∥
r

= |J |−
1
r

∥∥∥∥∥∑
I∈D

b̂(I)〈1J〉mI hI

∥∥∥∥∥
r

.

Taking εI = 1 if I ⊆ J and εI = 0 otherwise, we observe that

∥∥∥∥∥ ∑
J⊇I∈D

b̂(I)hI

∥∥∥∥∥
r

=

∥∥∥∥∥ ∑
J⊇I∈D

b̂(I)〈1J〉mI hI

∥∥∥∥∥
r

=

∥∥∥∥∥∑
I∈D

εI b̂(I)〈1J〉mI hI

∥∥∥∥∥
r

.

∥∥∥∥∥∑
I∈D

b̂(I)〈1J〉mI hI

∥∥∥∥∥
r

,

where the last inequality follows from the boundedness of Haar multiplier Tε on Lr. Thus,

we have

sup
J∈D
|J |−1/r

∥∥∥∥∥ ∑
J⊇I∈D

b̂(I)hI

∥∥∥∥∥
r

. sup
J∈D
|J |−1/r

∥∥∥∥∥∑
I∈D

b̂(I)〈1J〉mI hI

∥∥∥∥∥
r

.
∥∥∥π(1,1,...,1)

b

∥∥∥
Lp1×···×Lpm→Lr

,

proving that b ∈ BMOd.

Now the proof for σ(~α) = 1 follows from the simple observation that π~αb is a transpose of

π
(1,...,1)
b . For example, if σ(~α) = 1 with α1 = 0 and α2 = · · · = αm = 1 and if r′ is the
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conjugate exponent of r, then for g ∈ Lr′

〈
π~αb (f1, . . . , fm), g

〉
=

〈∑
I∈D

〈b, hI〉〈f1, hI〉
m∏
j=2

〈fj〉Ih2I , g

〉

=
∑
I∈D

〈b, hI〉〈f1, hI〉
m∏
j=2

〈fj〉I〈g, h2I〉

=
∑
I∈D

〈b, hI〉〈f1, hI〉
m∏
j=1

〈fj〉I〈g〉I

=

〈∑
I∈D

〈b, hI〉〈g〉I
m∏
j=1

〈fj〉IhI , f1

〉
=

〈
π
(1,...,1)
b (g, f2, . . . , fm), f1

〉
.

(b) Assume that ‖b‖∗ ≡ sup
I∈D

|〈b, hI〉|√
|I|

<∞. For m = 2 we have

∫
R

∣∣∣π(0,0)
b (f1, f2)

∣∣∣r dx =

∫
R

∣∣∣∣∣∑
I∈D

〈b, hI〉〈f1, hI〉〈f2, hI〉h3I(x)

∣∣∣∣∣
r

dx

≤
∫
R

(∑
I∈D

|〈b, hI〉| |〈f1, hI〉| |〈f2, hI〉|
1I(x)

|I|3/2

)r

dx

≤
∫
R

(
sup
I∈D

|〈b, hI〉|√
|I|

∑
I∈D

|〈f1, hI〉| |〈f2, hI〉|
1I(x)

|I|

)r

dx

= ‖b‖r∗
∫
R

(∑
I∈D

|〈f1, hI〉| |〈f2, hI〉|
1I(x)

|I|

)r

dx.

Using (3.2.1) and Hölder’s inequality we obtain

∫
R

∣∣∣π(0,0)
b (f1, f2)

∣∣∣r dx ≤ ‖b‖r∗
∫
R
(Sf1)

r(x) (Sf2)
r(x) dx

≤ ‖b‖r∗
(∫

R
{(Sf1)r(x)}p1/r dx

)r/p1 (∫
R
{(Sf2)r(x)}p2/r dx

)r/p2
≤ ‖b‖r∗‖Sf1‖rp1‖Sf2‖

r
p2

. ‖b‖r∗‖f1‖rp1‖f2‖
r
p2
.
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Thus we have,

‖π(0,0)
b (f1, f2)‖r . ‖b‖∗‖f1‖p1‖f2‖p2 .

Observe that

π
(0,0)
b (f1, f2)(I, 0) = 〈π(0,0)

b (f1, f2), hI〉 =
1

|I|
〈b, hI〉〈f1, hI〉〈f2, hI〉.

Now consider m > 2 and let σ(~α) > 1. Without loss of generality we may assume that

α1 = α2 = 0. Then,

‖π~αb (f1, f2, . . . , fm)‖r =

∥∥∥∥∥∑
I∈D

〈b, hI〉〈f1, hI〉〈f2, hI〉
m∏
j=3

fj(I, αj)h
1+σ(~α)
I

∥∥∥∥∥
r

=

∥∥∥∥∥∑
I∈D

1

|I|
〈b, hI〉〈f1, hI〉〈f2, hI〉

m∏
j=3

fj(I, αj)h
σ(~α)−1
I

∥∥∥∥∥
r

=

∥∥∥∥∥∑
I∈D

〈π(0,0)
b (f1, f2), hI〉

m∏
j=3

fj(I, αj)h
σ(~α)−1
I

∥∥∥∥∥
r

=
∥∥∥P ~β(π

(0,0)
b (f1, f2), f3, . . . , fm)

∥∥∥
r

. ‖π(0,0)
b (f1, f2)‖q

m∏
j=3

‖fj‖pj

. ‖b‖∗
m∏
j=1

‖fj‖pj

where ~β = (0, α3, . . . , αm) ∈ {0, 1}m−1 and π(0,0)
b (f1, f2) ∈ Lq with 1

p1
+ 1

p2
= 1

q
, q > r >

1.

Conversely, assume that π~αb : Lp1×· · ·×Lpm → Lr is bounded and that σ(~α) > 1. Choose

any J ∈ D, and take fj = |J |
1
2
− 1
pj hJ if αj = 0, and fj = |J |−

1
pj 1J if αj = 1 so that

‖fj‖pj = 1. Then, ∥∥π~αb (f1, . . . , fm)
∥∥
r
≤
∥∥π~αb ∥∥Lp1×···×Lpm .

28



We also have

∥∥π~αb (f1, . . . , fm)
∥∥
r

=

∥∥∥∥|J |σ(~α)2
−
∑m
j=1

1
pj 〈b, hJ〉h1+σ(~α)J

∥∥∥∥
r

= |J |
σ(~α)
2
− 1
r |〈b, hJ〉|

∥∥∥h1+σ(~α)J

∥∥∥
r

= |J |
σ(~α)
2
− 1
r |〈b, hJ〉||J |−

1+σ(~α)
2 ‖1J‖r

= |J |
σ(~α)
2
− 1
r |〈b, hJ〉||J |−

1+σ(~α)
2 |J |

1
r

=
|〈b, hJ〉|√
|J |

.

Thus |〈b,hJ 〉|√
|J |
≤
∥∥π~αb ∥∥Lp1×···×Lpm . Since it is true for any J ∈ D, we have sup

J∈D

|〈b, hJ〉|√
|J |

≤∥∥π~αb ∥∥Lp1×···×Lpm <∞, as desired.

Now that we have obtained strong type Lp1 × · · · × Lpm → Lr boundedness estimates

for the paraproduct operators P ~α with ~α ∈ Um and π~αb with ~α ∈ {0, 1}m in the case when

1 < p1, p2, . . . , pm, r <∞ and
∑m

j=1
1
pj

= 1
r
, we are interested to investigate estimates cor-

responding to 1
m
≤ r < ∞. We will prove in Lemma 3.2.4 that we obtain weak type esti-

mates if one or more pi’s are equal to 1. In particular, we obtain L1×· · ·×L1 → L
1
m
,∞ esti-

mates for those operators. Then it follows from multilinear interpolation that the paraprod-

uct operators are strongly bounded from Lp1×· · ·×Lpm to Lr for 1 < p1, p2, . . . , pm <∞

and
∑m

j=1
1
pj

= 1
r
, even if 1

m
< r ≤ 1.

We first prove the following general lemma, which when applied to the operators P ~α and

π~αb gives aforementioned weak type estimates.

Lemma 3.2.3. Let T be a multi-sublinear operator that is bounded from the product of

Lebesgue spaces Lp1 × · · · × Lpm to Lr,∞ for some 1 < p1, p2, . . . , pm <∞ with

m∑
j=1

1

pj
=

1

r
.
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Suppose that for every I ∈ D, T (f1, . . . , fm) is supported in I if fi = hI for some i ∈

{1, 2, . . . ,m}. Then T is bounded from L1× · · · ×L1×Lpk+1 × · · · ×Lpm → L
qk
qk+1

,∞ for

each k = 1, 2, . . . ,m, where qk is given by

1

qk
= (k − 1) +

1

pk+1

+ · · ·+ 1

pm
.

In particular, T is bounded from L1 × · · · × L1 to L
1
m
,∞.

Proof. We first prove that T is bounded from L1 × Lp2 × · · · × Lpm to L
q1
q1+1

,∞
.

Let λ > 0 be given. We have to show that

|{x : |T (f1, f2, . . . , fm)(x)| > λ}| .

(
‖f1‖1

∏m
j=2 ‖fj‖pj
λ

) q1
1+q1

for all (f1, f2, . . . , fm) ∈ L1 × Lp2 · · · × Lpm .

Without loss of generality, we assume ‖f1‖1 = ‖f2‖p2 = · · · = ‖fm‖pm = 1, and prove

that

|{x : |T (f1, f2, . . . , fm)(x)| > λ}| . λ
− q1

1+q1 .

For this, we apply Calderón-Zygmund decomposition to the function f1 at height λ
q1
q1+1

to obtain ‘good’ and ‘bad’ functions g1 and b1, and a sequence {I1,j} of disjoint dyadic

intervals such that

f1 = g1 + b1;

b1 =
∑
j

b1,j with supp(b1,j) ⊆ I1,j and
∫
I1,j

b1,jdx = 0;

and
∑
j

|I1,j| ≤ λ
− q1
q1+1‖f1‖1 = λ

− q1
q1+1 . (Recall that we have assumed ‖f1‖1 = 1.)

Moreover, since 1 < p1 <∞, the good function g1 ∈ Lp1 with

‖g1‖p1 ≤
(

2λ
q1
q1+1

) 1
p′1 ‖f1‖1/p11 =

(
2λ

q1
q1+1

) p1−1
p1 ,
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where p′1 is the Hölder conjugate of p1.

Since T is multi-sublinear,

|{x : |T (f1, . . . , fm)(x)| > λ}|

≤
∣∣∣∣{x : |T (g1, f2, . . . , fm)(x)| > λ

2

}∣∣∣∣ +

∣∣∣∣{x : |T (b1, f2, . . . , fm)(x)| > λ

2

}∣∣∣∣ .
Since g1 ∈ Lp1 and T is bounded from Lp1 × · · · × Lpm to Lr,∞, we have

|{x : |T (g1, f2, . . . , fm)(x)| > λ/2}| .


2‖g1‖p1

m∏
j=2

fj(J, αj)

λ


r

≤

2
(

2λ
q1
q1+1

) p1−1
p1

λ


r

. λ
r
(
q1(p1−1)
p1(q1+1)

−1
)
.

Now, 1
r

=
∑m

j=1
1
pj

= 1
p1

+ 1
q1

implies that r = p1q1
p1+q1

. So,

r

(
q1(p1 − 1)

p1(q1 + 1)
− 1

)
=

p1q1
(p1 + q1)

(
p1q1 − q1 − p1q1 − p1

p1(q1 + 1)

)
=

p1q1
(p1 + q1)

(−p1 − q1)
p1(q1 + 1)

= − q1
q1 + 1

.

Thus we have: |{x : |T (g1, f2, . . . , fm)(x)| > λ/2}| . λ
− q1

1+q1 .

From the properties of ‘bad’ function b1 we deduce that 〈b1, hI〉 6= 0 only if I ⊆ I1,j for

some j. The hypothesis of the lemma on the support of T (f1, . . . , fm) then implies that

supp (T (b1, f2, . . . , fm)) ⊆ ∪jI1,j.
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Thus, ∣∣∣∣{x : |T (b1, f2, . . . , fm)(x)| > λ

2

}∣∣∣∣ ≤ |∪jI1,j| ≤ λ
− q1

1+q1 .

Combining these estimates corresponding to g1 and b1, we have the desired estimate

|{x : |T (f1, f2, . . . , fm)(x)| > λ}| . λ
− q1

1+q1 .

Now beginning with the L1 × Lp2 × · · · × Lpm → L
q1
q1+1

,∞ estimate, we use the same

argument to lower the second exponent to 1 proving that T is bounded from L1 × L1 ×

Lp3 × · · · × Lpm to L
q2
q2+1

,∞
, where q2 is given by 1

q2
= 1 + 1

p3
+ · · ·+ 1

pm
.

We continue the same process until we obtain L1×L1×· · ·×L1 → L
qm
qm+1

,∞ boundedness

of T with 1
qm

= 1 + 1 + · · · + 1 (m − 1 terms) = m − 1. This completes the proof since

qm
qm+1

= 1
m
.

Lemma 3.2.4. Let ~α = (α1, . . . , αm) ∈ {0, 1}m, 1 ≤ p1, . . . , pm < ∞ and
∑m

j=1
1
pj

= 1
r
.

Then

(a) For ~α 6= (1, 1, . . . , 1), P ~α is bounded from Lp1 × · · · × Lpm to Lr,∞.

(b) If b ∈ BMOd and σ(~α) ≤ 1, π~αb is bounded from Lp1 × · · · × Lpm to Lr,∞.

(c) If sup
I∈D

|〈b, hI〉|√
|I|

<∞ and σ(~α) > 1, π~αb is bounded from Lp1 × · · · × Lpm to Lr,∞.

Proof. By orthogonality of Haar functions, hI(J, 0) = 〈hI , hJ〉 = 0 for any two distinct

dyadic intervals I and J. The Haar functions have mean value 0, so it is easy to see that

〈hI〉J 6= 0 only if J ( I

since any two dyadic intervals are either disjoint or one is contained in the other.
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Consequently, if some fi = hI , then

P ~α(f1, f2, . . . , fm) =
∑
J⊆I

m∏
j=1

fj(J, αj)h
σ(~α)
J

and,

π~αb (f1, f2, . . . , fm) =
∑
J⊆I

〈b, hJ〉
m∏
j=1

fj(J, αj)h
1+σ(~α)
J ,

which are both supported in I. Since the paraproducts are strongly (and hence weakly)

bounded from Lp1 × · · · × Lpm → Lr, the proof follows immediately from Lemma 3.2.3.

Combining the results of Lemmas 3.2.1, 3.2.2 and 3.2.4, and using multilinear interpolation

(see [23]), we have the following theorem:

Theorem 3.2.5. Let ~α = (α1, . . . , αm) ∈ {0, 1}m and 1 < p1, . . . , pm <∞ with
m∑
j=1

1

pj
=

1

r
. Then

(a) For ~α 6= (1, 1, . . . , 1),
∥∥P ~α(f1, f2, . . . , fm)

∥∥
r
.

m∏
j=1

‖fj‖pj .

(b) For σ(~α) ≤ 1,
∥∥π~αb (f1, f2, . . . , fm)

∥∥
r
. ‖b‖BMOd

m∏
j=1

‖fj‖pj , if and only if b ∈

BMOd.

(c) For σ(~α) > 1,
∥∥π~αb (f1, f2, . . . , fm)

∥∥
r
≤ Cb

m∏
j=1

‖fj‖pj , if and only if sup
I∈D

|〈b, hI〉|√
|I|

<

∞.

In each of the above cases, the paraproducts are weakly bounded if 1 ≤ p1, p2, . . . , pm <

∞.

3.3 Multilinear Haar Multipliers

In this section, we present the boundedness properties of multilinear Haar multipliers.
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Theorem 3.3.1. Let ε = {εI}I∈D be a given sequence and let ~α = (α1, α2, . . . , αm) ∈ Um.

Let 1 < p1, p2, . . . , pm <∞ with
m∑
j=1

1

pj
=

1

r
. Then T ~αε is bounded from Lp1 ×Lp2 × · · · ×

Lpm to Lr if and only if ‖ε‖∞ := sup
I∈D
|εI | <∞.

Moreover, T ~αε has the corresponding weak-type boundedness if 1 ≤ p1, p2, . . . , pm <∞.

Proof. To prove this lemma we use the fact that the linear Haar multiplier

Tε(f) =
∑
I∈D

εI〈f, hI〉hI

is bounded on Lp for all 1 < p < ∞ if ‖ε‖∞ := sup
I∈D
|εI | < ∞, and that 〈Tε(f), hI〉 =

εI〈f, hI〉.

By assumption σ(~α) ≥ 1. Without loss of generality we may assume that αi = 0 if

1 ≤ i ≤ σ(~α) and αi = 1 if σ(~α) < i ≤ m. In particular, we have α1 = 0. Then

εIf1(I, α1) = εI〈f1, hI〉 = 〈Tε(f1), hI〉 = Tε(f1)(I, α1).

First assume that ‖ε‖∞ := sup
I∈D
|εI | <∞.

Then,

‖T ~αε (f1, f2, . . . , fm)‖r =

∥∥∥∥∥∑
I∈D

εI

m∏
j=1

fj(I, αj)h
σ(~α)
I

∥∥∥∥∥
r

=

∥∥∥∥∥∑
I∈D

Tε(f1)(I, α1)
m∏
j=2

fj(I, αj)h
σ(~α)
I

∥∥∥∥∥
r

= ‖P ~α(Tε(f1), f2, . . . , fm)‖r

. ‖Tε(f1)‖p1
m∏
j=2

‖fj‖pj

.
m∏
j=1

‖fj‖pj .
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Conversely, assume that T ~αε : Lp1 × Lp2 × · · · × Lpm → Lr is bounded, and let σ(~α) = k.

Recall that αi = 0 if 1 ≤ i ≤ σ(~α) = k and αi = 1 if k = σ(~α) < i ≤ m. Taking fi = hI

if 1 ≤ i ≤ k and fi = 1I if k < i ≤ m, we observe that

‖T ~αε (f1, f2, . . . , fm)‖r =

(∫
R
|εIhkI (x)|rdx

)1/r

=

(
|εI |r

|I|kr/2

∫
R
1I(x)dx

)1/r

=
|εI |
|I|k/2

|I|1/r,

and

m∏
j=1

‖fj‖pj =
k∏
i=1

(∫
R
|hI(x)|pidx

)1/pi m∏
j=k+1

(∫
R
|1I(x)|pjdx

)1/pj

=
k∏
i=1

(
1

|I|pi/2

∫
R
1I(x)dx

)1/pi m∏
j=k+1

(∫
R
1I(x)dx

)1/pj

=
k∏
i=1

(
1

|I|1/2
|I|1/pi

) m∏
j=k+1

|I|1/pj

=
|I|1/r

|I|k/2

Since (f1, f2, . . . , fm) ∈ Lp1 × Lp2 × · · · × Lpm , the boundedness of Tε implies that

‖T ~αε (f1, f2, . . . , fm)‖r ≤ ‖T
~α
ε ‖Lp1×···×Lpm→Lr

m∏
j=1

‖fj‖pj .

That is,
|εI |
|I|k/2

|I|1/r ≤ ‖T ~αε ‖Lp1×···×Lpm
|I|1/r

|I|k/2
, for all I ∈ D. Consequently, ‖ε‖∞ =

sup
I∈D
|εI | ≤ ‖T ~αε ‖Lp1×···×Lpm <∞, as desired.

If 1 ≤ p1, p2, . . . , pm <∞, the weak-type boundedness of T ~αε follows from Lemma 3.2.3.

3.4 Commutators of Multilinear Haar Multipliers.

In this section, we study boundedness properties of the commutators of T ~αε with the multi-

plication operator Mb when b ∈ BMOd. For convenience we denote the operator Mb by b
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itself. We are interested in the following commutators:

[b, T ~αε ]i(f1, f2, . . . , fm)(x) ≡ (T ~αε (f1, . . . , bfi, . . . , fm)− bT ~αε (f1, f2, . . . , fm))(x)

where 1 ≤ i ≤ m.

Note that if b is a constant function, [b, T ~αε ]i(f1, f2, . . . , fm)(x) = 0 for all x. Our approach

to study the boundedness properties of [b, T ~αε ]i : Lp1 × Lp2 × · · · × Lpm → Lr with

1 < p1, p2, . . . , pm < ∞ and
m∑
j=1

1

pj
=

1

r
for non-constant b requires us to assume that

b ∈ Lp for some p ∈ (1,∞), and that r > 1. However, this restricted unweighted theory

turns out to be sufficient to obtain a weighted theory, which in turn implies the unrestricted

unweighted theory of these multilinear commutators. We will present the weighted theory

of these commutators in the next chapter.

Theorem 3.4.1. Let ~α = (α1, α2, . . . , αm) ∈ Um. If b ∈ BMOd ∩ Lp for some 1 <

p < ∞ and ‖ε‖∞ := supI∈D |εI | < ∞, then each commutator [b, T ~αε ]i is bounded from

Lp1 × Lp2 × · · · × Lpm → Lr for all 1 < p1, p2, . . . , pm, r < ∞ with
m∑
j=1

1

pj
=

1

r
, with

estimates of the form: ‖[b, T ~αε ]i(f1, f2, . . . , fm)‖r . ‖b‖BMOd

m∏
j=1

‖fj‖pj .

Proof. It suffices to prove boundedness of [b, T ~αε ]1, as the others are identical. Moreover,

we may assume that each fi is bounded and has compact support, since such functions are

dense in the Lp spaces.

Writing bf1 = πb(f1) + π∗b (f1) + πf1(b) and using multilinearity of T ~αε , we have

T ~αε (bf1, f2, . . . , fm)

= T ~αε (πb(f1), f2, . . . , fm) + T ~αε (π∗b (f1), f2, . . . , fm) + T ~αε (πf1(b), f2, . . . , fm).
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On the other hand,

bT ~αε (f1, f2, . . . , fm) =
∑
I∈D

εI

m∏
j=1

fj(I, αj)h
σ(~α)
I

(∑
J∈D

b̂(J)hJ

)

=
∑
I∈D

εI b̂(I)
m∏
j=1

fj(I, αj)h
1+σ(~α)
I

+
∑
I∈D

εI

m∏
j=1

fj(I, αj)h
σ(~α)
I

(∑
I(J

b̂(J)hJ

)

+
∑
I∈D

εI

m∏
j=1

fj(I, αj)h
σ(~α)
I

(∑
J(I

b̂(J)hJ

)
= π~αb (f1, . . . , Tε(fi), . . . , fm)

+
∑
I∈D

εI〈b〉I
m∏
j=1

fj(I, αj)h
σ(~α)
I

+
∑
J∈D

b̂(J)hJ

(∑
J(I

εI

m∏
j=1

fj(I, αj)h
σ(~α)
I

)

for some i with αi = 0. Indeed, some αi equals 0 by assumption, and for such i, we have

Tε(fi)(I, αi) = T̂ε(fi)(I) = εI f̂i(I) = εIfi(I, αi).

For (f1, f2, . . . , fm) ∈ Lp1 × Lp2 × · · · × Lpm , we have

‖T ~αε (πb(f1), f2, . . . , fm)‖r . ‖πb(f1)‖p1
m∏
j=2

‖fj‖pj

. ‖b‖BMOd

m∏
j=1

‖fj‖pj

‖T ~αε (π∗b (f1), f2, . . . , fm)‖r . ‖π∗b (f1)‖p1
m∏
j=2

‖fj‖pj

. ‖b‖BMOd

m∏
j=1

‖fj‖pj .
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and,

‖π~αb (f1, . . . , Tε(fi), . . . , fm)‖r . ‖b‖BMOd‖f1‖p1 · · · ‖Tε(fi)‖pi · · · ‖fm‖pm

. ‖b‖BMOd

m∏
j=1

‖fj‖pj .

So, to prove boundedness of [b, T ~αε ]1, is suffices to show similar control over the terms:

∥∥∥∥∥∑
J∈D

b̂(J)hJ

(∑
J(I

εI

m∏
j=1

fj(I, αj)h
σ(~α)
I

)∥∥∥∥∥
r

(3.4.1)

and, ∥∥∥∥∥T ~αε (πf1(b), f2, . . . , fm)−
∑
I∈D

εI〈b〉I
m∏
j=1

fj(I, αj)h
σ(~α)
I

∥∥∥∥∥
r

. (3.4.2)

Estimation of (3.4.1):

Case I: σ(~α) odd. In this case,

T ~αε (f1, f2, . . . , fm) =
∑
I∈D

εI

m∏
j=1

fj(I, αj)h
σ(~α)
I =

∑
I∈D

εI |I|
1−σ(~α)

2

m∏
j=1

fj(I, αj)hI .

So, 〈T ~αε (f1, f2, . . . , fm), hI〉hI = εI |I|
1−σ(~α)

2

m∏
j=1

fj(I, αj)hI = εI

m∏
j=1

fj(I, αj)h
σ(~α)
I .

This implies that

(3.4.1) =

∥∥∥∥∥∑
J∈D

b̂(J)hJ

(∑
J(I

〈T ~αε (f1, f2, . . . , fm), hI〉hI

)∥∥∥∥∥
r

=

∥∥∥∥∥∑
J∈D

b̂(J)〈T ~αε (f1, f2, . . . , fm)〉JhJ

∥∥∥∥∥
r

=
∥∥πb (T ~αε (f1, f2, . . . , fm)

)∥∥
r

. ‖b‖BMOd

∥∥T ~αε (f1, f2, . . . , fm)
∥∥
r

. ‖b‖BMOd

m∏
j=1

‖fj‖pj .
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Case II: σ(~α) even.

In this case at least two α′is are equal to 0. Without loss of generality we may assume that

α1 = 0. Then denoting Tε(f1) by g1, P (α2,...,αm)(f2, . . . , fm) by g2, and using the fact that

〈g1〉J〈g2〉J1J =

(∑
J(I

ĝ1(I)〈g2〉IhI +
∑
J(I

〈g1〉I ĝ2(I)hI +
∑
J(I

ĝ1(I)ĝ2(I)h2I

)
1J ,

we have

∥∥∥∥∥∑
J∈D

b̂(J)hJ

(∑
J(I

εI

m∏
j=1

fj(I, αj)h
σ(~α)
I

)∥∥∥∥∥
r

=

∥∥∥∥∥∑
J∈D

b̂(J)hJ

(∑
J(I

ĝ1(I)ĝ2(I)h2I

)∥∥∥∥∥
r

=

∥∥∥∥∥∑
J∈D

b̂(J)hJ

(
〈g1〉J〈g2〉J1J −

∑
J(I

ĝ1(I)〈g2〉IhI −
∑
J(I

〈g1〉I ĝ2(I)hI

)∥∥∥∥∥
r

≤

∥∥∥∥∥∑
J∈D

b̂(J)〈g1〉J〈g2〉JhJ

∥∥∥∥∥
r

+

∥∥∥∥∥∑
J∈D

b̂(J)〈P (0,1)(g1, g2)〉JhJ

∥∥∥∥∥
r

+

∥∥∥∥∥∑
J∈D

b̂(J)〈P (1,0)(g1, g2)〉JhJ

∥∥∥∥∥
r

. ‖b‖BMOd‖g1‖p1‖g2‖q + ‖b‖BMOd‖P (0,1)(g1, g2)‖r + ‖b‖BMOd‖P (1,0)(g1, g2)‖r

. ‖b‖BMOd‖g1‖p1‖g2‖q

. ‖b‖BMOd

m∏
j=1

‖fj‖pj .

where, q is given by
1

q
=

m∑
j=2

1

pj
.Here the last three inequalities follow from Lemmas 3.2.1

and 3.2.2, and the fact that ‖g1‖p1 = ‖Tε(f1)‖p1 . ‖f1‖p1 .

Estimation of (3.4.2) :

Case I: α1 = 0.
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This case is easy as we observe that

T ~αε (πf1(b), f2, . . . , fm)−
∑
I∈D

εI〈b〉I
m∏
j=1

fj(I, αj)h
σ(~α)
I

=
∑
I∈D

εI π̂f1(b)(I)
m∏
j=2

fj(I, αj)h
σ(~α)
I −

∑
I∈D

εI〈b〉I f̂1(I)
m∏
j=2

fj(I, αj)h
σ(~α)
I

=
∑
I∈D

εI〈b〉I f̂1(I)
m∏
j=2

fj(I, αj)h
σ(~α)
I −

∑
I∈D

εI〈b〉I f̂1(I)
m∏
j=2

fj(I, αj)h
σ(~α)
I

= 0.

So there is nothing to estimate.

Case II: α1 = 1.

In this case,

T ~αε (πf1(b), f2, . . . , fm)−
∑
I∈D

εI〈b〉I
m∏
j=1

fj(I, αj)h
σ(~α)
I

=
∑
I∈D

εI〈πf1(b)〉I
m∏
j=2

fj(I, αj)h
σ(~α)
I −

∑
I∈D

εI〈b〉I〈f1〉I
m∏
j=2

fj(I, αj)h
σ(~α)
I

=
∑
I∈D

εI (〈πf1(b)〉I − 〈b〉I〈f1〉I)
m∏
j=2

fj(I, αj)h
σ(~α)
I

We have assumed that b ∈ Lp for some p ∈ (1,∞). So, using Lemma 2.1.1, we have

〈b〉I〈f1〉I1I =
∑
I(J

b̂(J)〈f1〉JhJ1I +
∑
I(J

〈b〉J f̂1(J)hJ1I +
∑
I(J

b̂(J)f̂1(J)h2J1I

= 〈πb(f1)〉I1I + 〈πf1(b)〉I1I +
∑
I(J

b̂(J)f̂1(J)h2J1I .

Hence, 〈b〉I〈f1〉I1I − 〈πf1(b)〉I1I = 〈πb(f1)〉I1I +
∑
I(J

b̂(J)f̂1(J)h2J1I .
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So we have

T ~αε (πf1(b), f2, . . . , fm)−
∑
I∈D

εI〈b〉I
m∏
j=1

fj(I, αj)h
σ(~α)
I

= −
∑
I∈D

εI

(
〈πb(f1)〉I1I +

∑
I(J

b̂(J)f̂1(J)h2J

)
m∏
j=2

fj(I, αj)h
σ(~α)
I

= −
∑
I∈D

εI〈πb(f1)〉I
m∏
j=2

fj(I, αj)h
σ(~α)
I

−
∑
I∈D

εI

(∑
I(J

b̂(J)f̂1(J)h2J

)
m∏
j=2

fj(I, αj)h
σ(~α)
I

= −Tε(πb(f1), f2, . . . , fm)−
∑
J∈D

b̂(J)f̂1(J)h2J

(∑
I(J

εI

m∏
j=2

fj(I, αj)h
σ(~α)
I

)
.

Since

‖Tε(πb(f1), f2, . . . , fm)‖r . ‖πb(f1)‖p1
m∏
j=2

fj(J, αj) . ‖b‖BMOd

m∏
j=1

‖fj‖pj ,

we are left with controlling

∥∥∥∥∥∑
J∈D

b̂(J)f̂1(J)h2J

(∑
I(J

εI

m∏
j=2

fj(I, αj)h
σ(~α)
I

)∥∥∥∥∥
r

.

For this we observe that
∥∥T (α2,...,αm)

ε (f2, . . . , fm)
∥∥
q
.

m∏
j=2

‖fj‖pj , and that

π∗b (f1) T
(α2,...,αm)
ε (f2, . . . , fm) =

∑
J∈D

b̂(J)f̂1(J)h2J

(∑
I(J

εI

m∏
j=2

fj(I, αj)h
σ(~α)
I

)

+
∑
J∈D

εJ b̂(J)f̂1(J)
m∏
j=2

fj(J, αj)h
2+σ(~α)
J

+
∑
J∈D

b̂(J)f̂1(J)h2J

(∑
J(I

εI

m∏
j=2

fj(I, αj)h
σ(~α)
I

)
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Now, following the same technique we used to control (3.4.1), we obtain

∥∥∥∥∥∑
J∈D

b̂(J)f̂1(J)h2J

(∑
J(I

εI

m∏
j=2

fj(I, αj)h
σ(~α)
I

)∥∥∥∥∥
r

. ‖b‖BMOd

m∏
j=1

‖fj‖pj .

We also have

∥∥π∗b (f1) T (α2,...,αm)
ε (f2, . . . , fm)

∥∥
r
≤ ‖π∗b (f1)‖p1

∥∥T (α2,...,αm)
ε (f2, . . . , fm)

∥∥
q

. ‖b‖BMOd

m∏
j=1

‖fj‖pj

and, ∥∥∥∥∥∑
J∈D

εJ b̂(J)f̂1(J)
m∏
j=2

fj(J, αj)h
2+σ(~α)
J

∥∥∥∥∥
r

. ‖b‖BMOd

m∏
j=1

‖fj‖pj .

.

So we conclude that

∥∥∥∥∥∑
J∈D

b̂(J)f̂1(J)h2J

(∑
I(J

εI

m∏
j=2

fj(I, αj)h
σ(~α)
I

)∥∥∥∥∥
r

. ‖b‖BMOd

m∏
j=1

‖fj‖pj .

Thus we have strong type boundedness of

[b, T ~αε ]1 → Lp1 × Lp2 × · · · × Lpm → Lr

for all 1 < p1, p2, . . . , pm, r <∞ with

m∑
j=1

1

pj
=

1

r
.

Note that T ~αε = P ~α if εI = 1 for all I ∈ D. The following theorem shows that the BMO

condition on b is necessary for the boundedness of the commutator [b, P ~α]i.
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Theorem 3.4.2. Let ~α = (α1, α2, . . . , αm) ∈ Um, and 1 < p1, p2, . . . , pm, r <∞ with

m∑
j=1

1

pj
=

1

r
.

Assume that for given b and i,

‖[b, P ~α]i(f1, f2, . . . , fm)‖r ≤ C
m∏
j=1

‖fj‖pj , (3.4.3)

for all fj ∈ Lpj . Then b ∈ BMOd.

Proof. Without loss of generality we may assume that i = 1. Fix I0 ∈ D.

Case I: α1 = 0, σ(~α) = 1.

Take f1 = 1I0 and fi = h
I
(1)
0

for i > 1, where I(1)0 is the parent of I0. Then,

P ~α(f1, f2, . . . , fm)) =
∑
I∈D

〈1I0 , hI〉〈hI(1)0
〉m−1I hI = 0,

and,

P ~α(bf1, f2, . . . , . . . , fm) =
∑
I∈D

〈b1I0 , hI〉〈hI(1)0
〉m−1I hI

=
∑
I⊆I0

〈b1I0 , hI〉

K(I0, I
(1)
0 )√∣∣∣I(1)0

∣∣∣

m−1

hI

=

K(I0, I
(1)
0 )√∣∣∣I(1)0

∣∣∣

m−1∑

I⊆I0

〈b, hI〉hI ,

where K(I0, I
(1)
0 ) is either 1 or −1 depending on whether I0 is the right or left half of I(1)0 .

For the second to last equality we observe that, if I is not a proper subset of I(1)0 , 〈h
I
(1)
0
〉I =

0, and that if I is a proper subset of I(1)0 but is not a subset of I0, then 〈b1I0 , hI〉 = 0.
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Moreover, for I ⊆ I0, 〈b1I0 , hI〉 =
∫
R b1I0hI =

∫
R bhI = 〈b, hI〉.

Now from inequality (3.4.3), we get

∥∥∥∥∥∥∥∥
K(I0, I

(1)
0 )√∣∣∣I(1)0

∣∣∣

m−1∑

I⊆I0

〈b, hI〉hI

∥∥∥∥∥∥∥∥
r

≤ C|I0|
1
p1

m∏
i=2

|I(1)0 |
1
pi√

|I(1)0 |

i.e.

∥∥∥∥∥∑
I⊆I0

〈b, hI〉hI

∥∥∥∥∥
r

≤ 2
1
p2

+···+ 1
pmC|I0|

1
r .

Thus for every I0 ∈ D,

1

|I0|
1
r

∥∥∥∥∥∑
I⊆I0

〈b, hI〉hI

∥∥∥∥∥
r

≤ 2
1
p2

+···+ 1
pmC,

and hence b ∈ BMOd.

Case II: α1 6= 0 or σ(~α) > 1.

Taking fi =


hI0 , if αi = 0

1I0 , if αi = 1,

we observe that

P ~α(f1, f2, . . . , fm)) = h
σ(~α)
I0

and P ~α(bf1, f2, . . . , . . . , fm) = (bf1)(I0, α1)h
σ(~α)
I0

.

If α1 = 0,

(bf1)(I0, α1) = bhI0(I0, 0) = b̂hI0(I0) =

∫
R
bhI0hI0 =

1

|I0|

∫
R
b1I0 = 〈b〉I0 .

If α1 = 1,

(bf1)(I0, α1) = b1I0(I0, 1) = 〈b1I0〉I0 = 〈b〉I0 .
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So in each case,

‖[b, P ~α]1(f1, f2, . . . , fm)‖r =
∥∥bP ~α(f1, f2, . . . , fm)− P ~α(bf1, f2, . . . , . . . , fm)

∥∥
r

=
∥∥∥bhσ(~α)I0

− 〈b〉I0h
σ(~α)
I0

∥∥∥
r

=
∥∥∥(b− 〈b〉I0)h

σ(~α)
I0

∥∥∥
r

=
1

(
√
|I0|)σ(~α)

‖(b− 〈b〉I0)1I0‖r.

On the other hand,

m∏
j=1

‖fj‖pj =
1

(
√
|I0|)σ(~α)

|I0|
1
p1

+···+ 1
pm =

1

(
√
|I0|)σ(~α)

|I0|
1
r .

Inequality (3.4.3) then gives

1

(
√
|I0|)σ(~α)

‖(b− 〈b〉I0)1I0‖r ≤ C
1

(
√
|I0|)σ(~α)

|I0|
1
r

i.e.
1

|I0|
1
r

‖(b− 〈b〉I0)1I0‖r ≤ C.

Since this is true for any I0 ∈ D, we have b ∈ BMOd.

Combining the results from Theorems 3.4.1 and 3.4.2, we have the following characteriza-

tion of the dyadic BMO functions.

Theorem 3.4.3. Let ~α = (α1, α2, . . . , αm) ∈ Um, 1 ≤ i ≤ m, and 1 < p1, p2, . . . , pm, r <

∞ with
m∑
j=1

1

pj
=

1

r
. Suppose b ∈ Lp for some p ∈ (1,∞). Then the following two state-

ments are equivalent.

(a) b ∈ BMOd.

(b) [b, T ~αε ]i : Lp1×· · ·×Lpm → Lr is bounded for every bounded sequence ε = {εI}I∈D.

In particular, b ∈ BMOd if and only if [b, P ~α]i : Lp1 ×Lp2 × · · · × Lpm → Lr is bounded.
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CHAPTER 4

ESTIMATES FOR MULTILINEAR DYADIC OPERATORS: WEIGHTED

SETTING

In this chapter, we investigate the boundedness properties of the multilinear dyadic para-

product operators in the weighted setting. We also obtain weighted estimates for the multi-

linear Haar multipliers and their commutators with dyadic BMO functions, and character-

ize dyadic BMO functions by the boundedness of the commutators of multilinear dyadic

paraproducts.

4.1 Main Results

The main results of this chapter are as follows:

Theorem: Let b ∈ BMOd, and ε = (εI)I∈D be bounded. Suppose T ∈
{
P ~α, T ~αε

}
with

~α ∈ Um, or T = π~αb with ~α ∈ {0, 1}m. Let ~w = (w1, . . . , wm) ∈ Ad~P for ~P = (p1, . . . , pm)

with 1
p1

+ · · ·+ 1
pm

= 1
p
.

(a) If 1 < p1, . . . , pm <∞, then ‖T (f1, . . . , fm)‖Lp(ν~w) ≤ C
m∏
j=1

‖fj‖Lpj (wj).

(b) If 1 ≤ p1, . . . , pm <∞, then ‖T (f1, . . . , fm)‖Lp,∞(ν~w) ≤ C

m∏
j=1

‖fj‖Lpj (wj).

Theorem: Let ~α ∈ Um and ε = (εI)I∈D be bounded. Suppose b ∈ BMOd and ~w =

(w1, . . . , wm) ∈ Ad~P for ~P = (p1, . . . , pm) with 1
p1

+· · ·+ 1
pm

= 1
p

and 1 < p1, . . . , pm <∞.

Then there exists a constant C such that

∥∥[b, T ~αε ]i(f1, . . . , fm)
∥∥
Lp(ν~w)

≤ C‖b‖BMOd

m∏
j=1

‖fj‖Lpj (wj).
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Theorem: Assume
∑m

i=1
1
pi

= 1
p

with 1 < pi < ∞, and let ~w = (w1, . . . , wm) with

wi ∈ Api . Then for j ∈ {1, . . . ,m} and ~α ∈ Um, the following two statements are

equivalent.

1. b ∈ BMO.

2. [b, P ~α]j : Lp1(w1)× · · · × Lpm(wm)→ Lp(ν~w) is bounded.

4.2 Multilinear Dyadic Paraproducts and Haar Multipliers

We first present the following property of the multilinear dyadic operators, which will be

very useful for our purpose.

Lemma 4.2.1. Let ~α = (α1, α2, . . . , αm) ∈ {0, 1}m, and let T be any of the m−linear

operators P ~α, π~αb or T ~αε . Then for a given function g and J ∈ D, the function

T
(
M i

g(f1, f2, . . . , fm)
)
− T

(
M i

g(f11J , f21J , . . . , fm1J)
)

is constant on J. In particular, T (f1, f2, . . . , fm) − T (f11J , f21J , . . . , fm1J) is constant

on J.

Proof. Fix J ∈ D. Let fi1J = f 0
i and fi − fi1J = f∞i .

Since T (M i
g) is multilinear,

T
(
M i

g(f1, f2, . . . , fm)
)

= T
(
M i

g(f
0
1 + f∞1 , f

0
2 + f∞2 , . . . , f

0
m + f∞m )

)
= T

(
M i

g(f
0
1 , . . . , f

0
m)
)

+
∑

~β∈{0,∞}m
~β 6=~0

T
(
M i

g(f
β1
1 , . . . , fβmm )

)
,

where ~β = (β1, . . . , βm).

Observe that if I ⊆ J, f̂∞j (I) = ĝf∞j (I) = 〈f∞j 〉I = 〈gf∞j 〉I = 0, since each of the
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functions f∞j , gf
∞
j is identically 0 on J. So for ~β 6= ~0,

T
(
M i

g(f
β1
1 , . . . , fβmm )

)
=
∑
I∈D

δTJ

m∏
j=1

F
βj
j (I, αj)h

σ(~α,T )
I =

∑
I:I 6⊆J

δTJ

m∏
j=1

F
βj
j (I, αj)h

σ(~α,T )
I ,

where

δTJ =


1, if T = P ~α

b̂(J), if T = π~αb

εJ if T = T ~αε

,

F
βj
j =


f
βj
j , if j 6= i

gf
βj
j , if j = i

,

and

σ(~α, T ) =


σ(~α), if T = P ~α or T ~αε

σ(~α) + 1, if T = π~αb

.

Since each hI with I 6⊆ J is constant on J, so is T
(
M i

g(f
β1
1 , fβ22 , . . . , fβmm )

)
for ~β 6=

~0. Consequently,
∑

~β∈{0,∞}m
~β 6=~0

T
(
M i

g(f
β1
1 , fβ22 , . . . , fβmm )

)
is constant on J, say CJ . Then for

every x ∈ J,

T
(
M i

g(f1, f2, . . . , fm)
)

(x)− T
(
M i

g(T )(f11J , f21J , . . . , fm1J)
)

(x) = cJ .

Taking g = 1, we see that T (f1, f2, . . . , fm) − T (f11J , f21J , . . . , fm1J) is constant on

J.

Lemma 4.2.2. Let b ∈ BMOd, and ε = (εI)I∈D be bounded. Let T ∈
{
P ~α, T ~αε

}
with

~α ∈ Um, or T = π~αb with ~α ∈ {0, 1}m. Then for 0 < δ < 1
m
, and ~f = (f1, f2, . . . , fm) ∈
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Lp1 × Lp2 × · · · × Lpm with 1 ≤ pi <∞, we have

M#
δ

(
T (~f )

)
(x) .M(~f )(x).

Proof. Fix a point x. We will show that for every dyadic interval I containing x, there

exists a constant cI such that

(
1

|I|

∫
I

∣∣∣∣∣∣∣T (~f)(y)
∣∣∣δ − |cI |δ∣∣∣∣ dy)1/δ

.M(~f )(x),

from which the assertion follows. In fact, since
∣∣∣∣∣∣∣T (~f)(y)

∣∣∣δ − |cI |δ∣∣∣∣ ≤ ∣∣∣T (~f)(y)− cI
∣∣∣δ for

0 < δ < 1, it suffices to show that

(
1

|I|

∫
I

∣∣∣T (~f)(y)− cI
∣∣∣δ)1/δ

.M(~f )(x).

Fix a dyadic interval I that contains x, and let f 0
i = f1I , f

∞
i = fi − f 0

i .

Writing ~f 0 = (f 0
i , . . . , f

0
m), Lemma 4.2.1 says that T (~f)(y)− T ( ~f 0)(y) is constant for all

y in I , say cI . We then have T (~f)(y)− cI = T ( ~f 0)(y) for all y ∈ I. So,

(
1

|I|

∫
I

∣∣∣T (~f)(y)− cI
∣∣∣δ)1/δ

=

(
1

|I|

∫
I

∣∣∣T ( ~f 0)(y)
∣∣∣δ)1/δ

.

We can estimate this using the following form of Kolmogorov inequality:

If 0 < p < q <∞, then for any measurable function f, there exists a constant C = C(p, q)

such that

‖f‖Lp(I, dy|I|) ≤ C ‖f‖Lq,∞(I, dy|I|)
. (4.2.1)

For p = δ, q = 1/m and f = T ( ~f 0), (4.2.1) becomes

(
1

|I|

∫
I

∣∣∣T ( ~f 0)(y)
∣∣∣δ dy)1/δ

≤ C
∥∥∥T ( ~f 0)(y)

∥∥∥
L1/m,∞(I, dy|I|)

.
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Now,

∥∥∥T ( ~f 0)(y)
∥∥∥
L1/m,∞(I, dy|I|)

= sup
t>0

t

(
1

|I|

∣∣∣{y ∈ I :
∣∣∣T ( ~f 0)(y)

∣∣∣ > t
}∣∣∣)m

≤ sup
t>0

t

|I|m

∣∣∣∣{y :
1

|I|m
∣∣∣T ( ~f 0)(y)

∣∣∣ > t

|I|m

}∣∣∣∣m
= sup

t>0

t

|I|m

∣∣∣∣{y :

∣∣∣∣T (f 0
1

|I|
, . . . ,

f 0
m

|I|

)
(y)

∣∣∣∣ > t

|I|m

}∣∣∣∣m
=

∥∥∥∥T (f 0
1

|I|
, . . . ,

f 0
m

|I|

)
(y)

∥∥∥∥
L1/m,∞

.

Since
f 0
i

|I|
∈ L1 for all 1 ≤ i ≤ m, it follows from the boundedness of T : L1× · · ·×L1 →

L1/m,∞ that

∥∥∥∥T (f 0
1

|I|
, . . . ,

f 0
m

|I|

)
(y)

∥∥∥∥
L1/m,∞

.
m∏
i=1

∥∥∥∥f 0
i

|I|

∥∥∥∥
L1

=
m∏
i=1

∫
|f 0
i |
|I|

=
m∏
i=1

1

|I|

∫
I

|fi|

≤ M(~f )(x).

This completes the proof.

The following lemma gives us the finiteness condition needed to apply Fefferman-Stein

inequalities 1.2.1 and 1.2.2 for the multilinear dyadic operators.

Lemma 4.2.3. Let w ∈ Ad∞ and ~f = (f1, . . . , fm) where each fi is bounded and has

compact support. If
∥∥∥M(~f )

∥∥∥
Lp(w)

< ∞ for some p > 0, then there exists a δ ∈ (0, 1/m)

such that
∥∥∥Mδ

(
T (~f )

)∥∥∥
Lp(w)

< ∞. Similarly, if
∥∥∥M(~f )

∥∥∥
Lp,∞(w)

< ∞ for some p > 0,

then there exists a δ ∈ (0, 1/m) such that
∥∥∥Mδ

(
T (~f )

)∥∥∥
Lp,∞(w)

<∞.

Proof. We prove the first assertion, the second one follows from similar arguments.
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Since w ∈ Ad∞, it is in Adp0 for some p0 > max(1, pm). Then for any δ with 0 < δ <

p/p0 < 1/m, we have

∥∥∥Mδ

(
T (~f )

)∥∥∥
Lp(w)

≤
∥∥∥Mp/p0

(
T (~f )

)∥∥∥
Lp(w)

=

[∫
R

{(
sup
I3x

1

|I|

∫
I

|T (~f )|p/p0 dt
)p0/p}p

dw(x)

]1/p

=

[∫
R
M
(
T (~f )p/p0

)p0
dw

] 1
p0
× p0

p

=
∥∥∥M (

T (~f )p/p0
)∥∥∥p0/p

Lp0 (w)
,

The boundedness of M : Lp0(w)→ Lp0(w) for w ∈ Adp0 gives

∥∥∥M (
T (~f )p/p0

)∥∥∥
Lp0 (w)

.
∥∥∥T (~f )p/p0

∥∥∥
Lp0 (w)

.

Consequently,

∥∥∥Mδ

(
T (~f )

)∥∥∥
Lp(w)

.
∥∥∥T (~f )p/p0

∥∥∥p0/p
Lp0 (w)

=

(∫
R

∣∣∣T (~f )p/p0
∣∣∣p0 dw) 1

p0
× p0

p

=

(∫
R

∣∣∣T (~f )
∣∣∣p dw)1/p

=
∥∥∥T (~f )

∥∥∥
Lp(w)

,

So, it suffices to prove that
∥∥∥T (~f )

∥∥∥
Lp(w)

<∞.

Since each fi has compact support, there exist dyadic intervals S ′ = [0, 2−k) and S ′′ =

[−2−k, 0) such that the support of every fi is contained in S = S ′ ∪ S ′′.
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To prove the assertion, it suffices to show that

∥∥∥T (~f )
∥∥∥
Lp(S,w)

<∞ and
∥∥∥T (~f )

∥∥∥
Lp(R\S,w)

<∞.

Since w ∈ Ad∞, w
1+γ ∈ L1

loc for sufficiently small γ, (see [3] or [24]). In particular,

w ∈ Lq(S) for q := 1 + γ. We can choose γ small enough so that w ∈ Lq(S) and q′p > 1
m
.

Then by Hölder’s inequality, we have

∥∥∥T (~f )
∥∥∥
Lp(S,w)

=

(∫
S

∣∣∣T (~f )
∣∣∣pwdx)1/p

≤

((∫
S

∣∣∣T (~f )
∣∣∣pq′ dx)1/q′ (∫

S

wqdx

)1/q
)1/p

< ∞.

Here, the finiteness of
∫
S

∣∣∣T (~f )
∣∣∣pq′ dx follows from the boundedness of T : Lmpq

′ × · · · ×

Lmpq
′ → Lpq

′
, and the fact that each fi (being bounded with compact support) is in Lmpq′ .

We refer to [25] for the unweighted theory of multilinear dyadic operators.

To prove
∥∥∥T (~f )

∥∥∥
Lp(R\S,w)

<∞, it suffices to show that

∣∣∣T (~f )(x)
∣∣∣ ≤ CM(~f )(x) for every x ∈ R\S.

We prove this for T = π~αb . Proofs for P ~α and T ~αε follow similarly.

Fix x ∈ R\S. Let Ix be the smallest dyadic interval that contains x and one of the intervals

S ′ and S ′′.

For definiteness, assume x > 0. In this case Ix is the smallest dyadic interval containing x

and S ′. Note that if x /∈ I, hI(x) = 0 and, if x ∈ I with I ∩ S ′ = ∅, fj(I, αj) = 0 for each

j. So,
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∣∣∣π~αb (~f )(x)
∣∣∣ =

∣∣∣∣∣∑
I∈D

b̂(I)
m∏
j=1

fj(I, αj) h
1+σ(~α)
I (x)

∣∣∣∣∣
=

∣∣∣∣∣∑
I⊇Ix

b̂(I)
m∏
j=1

fj(I, αj) h
1+σ(~α)
I (x)

∣∣∣∣∣
≤

∑
I⊇Ix

∣∣∣̂b(I)
∣∣∣√
|I|

 ∏
j:αj=0

∣∣∣f̂j(I)
∣∣∣√

|I|

 ∏
j:αj=1

|〈fj〉I |

 1I(x)

≤ ‖b‖BMOd

∑
I⊇Ix

 ∏
j:αj=0

∣∣∣f̂j(I)
∣∣∣√

|I|

 ∏
j:αj=1

|〈fj〉I |

 ,

where the last inequality follows from the fact that for b ∈ BMOd,

∣∣∣̂b(I)
∣∣∣√
|I|
≤

(
1

|I|
∑
J⊆I

∣∣∣̂b(I)
∣∣∣2)1/2

≤ ‖b‖BMOd .

Note that

∣∣∣f̂j(I)
∣∣∣√

|I|
=

1√
|I|

∣∣∣∣∫ fjhI

∣∣∣∣ ≤ 1√
|I|

∫
|fj|

1I√
|I|

=
1

|I|

∫
I

|fj| = 〈|fj|〉I , and

since fj is 0 on R\S, we have 〈|fj|〉I1 =
〈|fj|〉I

2
whenever I1 is the parent of I with

Ix ⊆ I. So, we have

∣∣∣π~αb (~f )(x)
∣∣∣ ≤ ‖b‖BMOd

∑
I⊇Ix

m∏
j=1

〈|fj|〉I

= ‖b‖BMOd

(
m∏
j=1

〈|fj|〉Ix +
1

2m

m∏
j=1

〈|fj|〉Ix +
1

22m

m∏
j=1

〈|fj|〉Ix + · · ·

)

=
2m

(2m − 1)
‖b‖BMOd

m∏
j=1

〈|fj|〉Ix

≤ 2m

(2m − 1)
‖b‖BMOdM(~f )(x).

The same proof works for x < 0 too. This completes the proof.
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Theorem 4.2.4. Let b ∈ BMOd, and ε = (εI)I∈D be bounded. Let T ∈
{
P ~α, T ~αε

}
with

~α ∈ Um, or T = π~αb with ~α ∈ {0, 1}m. Then for w ∈ Ad∞ and p > 0,

‖T (~f )‖Lp(w) . ‖M(~f )‖Lp(w)

and

‖T (~f )‖Lp,∞(w) . ‖M(~f )‖Lp,∞(w)

for all m-tuples ~f = (f1, . . . , fm) of bounded functions with compact support.

Proof. To prove the first inequality, assume that ‖M(~f )‖Lp(w) < ∞, otherwise there is

nothing to prove. Then by Lemma 4.2.3, there exists a δ ∈ (0, 1/m) such that

∥∥∥Mδ

(
T (~f )

)∥∥∥
Lp(w)

<∞.

For such δ, we have

∥∥∥T (~f )
∥∥∥
Lp(w)

≤
∥∥∥Mδ

(
T (~f )

)∥∥∥
Lp(w)

≤ C
∥∥∥M#

δ

(
T (~f )

)∥∥∥
Lp(w)

≤ C
∥∥∥M(~f )

∥∥∥
Lp(w)

,

where the first and last inequalities follow from pointwise control and the second inequality

is the Fefferman-Stein’s inequality (1.2.1).

Proof of the second inequality follows similarly, by applying Lemma 4.2.3 and using the

Fefferman-Stein’s inequality (1.2.2) for weak-type estimates.

Theorem 4.2.5. Let b ∈ BMOd, and ε = (εI)I∈D be bounded. Suppose T ∈
{
P ~α, T ~αε

}
with ~α ∈ Um, or T = π~αb with ~α ∈ {0, 1}m. Let ~w = (w1, . . . , wm) ∈ Ad~P for ~P =

(p1, . . . , pm) with
1

p1
+ · · ·+ 1

pm
=

1

p
.
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(a) If 1 < p1, . . . , pm <∞, then

‖T (~f)‖Lp(ν~w) ≤ C
m∏
j=1

‖fj‖Lpj (wj). (4.2.2)

(b) If 1 ≤ p1, . . . , pm <∞, then

‖T (~f)‖Lp,∞(ν~w) ≤ C

m∏
j=1

‖fj‖Lpj (wj). (4.2.3)

Proof. Since the simple functions in Lp(w) are dense in Lp(w) for any weight w (see [26]),

it suffices to prove the estimates for ~f = (f1, f2, . . . , fm) with fi ∈ Lpi(wi) simple. Note

that ~w = (w1, . . . , wm) ∈ Ad~P implies that ν~w ∈ Ad∞. So, by Theorem 4.2.4 and the bound-

edness properties of the multilinear maximal functionM, we have

‖T (~f )‖Lp(ν~w) . ‖M(~f )‖Lp(ν~w) .
m∏
j=1

‖fj‖Lpj (wj),

and

‖T (~f )‖Lp,∞(ν~w) . ‖M(~f )‖Lp,∞(ν~w) .
m∏
j=1

‖fj‖Lpj (wj).

4.3 Commutators of Multilinear Haar Multipliers

Definition 4.3.1. Let ~α ∈ Um and ε = (εI)I∈D be bounded. Given a locally integrable

function b, we define the commutator [b, T ~αε ]i, 1 ≤ i ≤ m, by

[b, T ~αε ]i(f1, f2, . . . , fm)(x) := b(x)T ~αε (f1, f2, . . . , fm)(x)− T ~αε (f1, . . . , bfi, . . . , fm)(x).

i.e. [b, T ~αε ]i = Mb ◦ T ~αε − T ~αε ◦M i
b .

Theorem 4.3.1. Let ~α ∈ Um and ε = (εI)I∈D be bounded. Let δ ∈ (0, 1/m) and γ > δ.
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Then for any r > 1,

M#
δ

(
[b, T ~αε ]i(~f)

)
(x) . ‖b‖BMOd

(
Mr(~f)(x) +Mγ

(
T ~αε (~f )

)
(x)
)

(4.3.1)

for all m-tuples ~f = (f1, f2, . . . , fm) of bounded measurable functions with compact sup-

port.

Proof. Fix x ∈ R. As in the proof of Lemma 4.2.2, it suffices to show that for every I ∈ D

containing x, there exists a constant CI such that

(
1

|I|

∫
I

∣∣∣[b, T ~αε ]i(~f)(t)− CI
∣∣∣δ dt)1/δ

. ‖b‖BMOd

(
Mr(~f)(x) +Mγ

(
T ~αε (~f )

)
(x)
)
.

Fix I ∈ D containing x, and take CI = T ~αε

(
M i

g(
~f 0)
)

(t) − T ~αε
(
M i

g(
~f)
)

(t), where g =

b − 〈b〉I and ~f 0 = (f 0
1 , . . . , f

0
m) with f 0

i = fi1I . Lemma 4.2.1 shows that this is indeed a

constant on I. Since T ~αε is multilinear,

[b, T ~αε ]i(~f)(t) = b(t)T ~αε (~f)(t)− T ~αε (f1, . . . , bfi, . . . , fm)(t)

= (b(t)− 〈b〉I) T ~αε (~f)(t)− T ~αε (f1, . . . , (b− 〈b〉I)fi, . . . , fm)(t)

= (b(t)− 〈b〉I) T ~αε (~f)(t)− T ~αε
(
M i

g(
~f)
)

(t).

So,

(
1

|I|

∫
I

∣∣∣[b, T ~αε ]i(~f)(t)− CI
∣∣∣δ dt)1/δ

=

(
1

|I|

∫
I

∣∣∣(b(t)− 〈b〉I) T ~αε (~f)(t)− T ~αε
(
M i

g(
~f)
)

(t)− CI
∣∣∣δ dt)1/δ

=

(
1

|I|

∫
I

∣∣∣(b(t)− 〈b〉I) T ~αε (~f)(t)− T ~αε
(
M i

g(
~f 0)
)

(t)
∣∣∣δ dt)1/δ

.

(
1

|I|

∫
I

∣∣∣(b(t)− 〈b〉I) T ~αε (~f)(t)
∣∣∣δ dt)1/δ

+

(
1

|I|

∫
I

∣∣∣T ~αε (M i
g(
~f 0)
)

(t)
∣∣∣δ dt)1/δ

.
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Note that γ/δ > 1. For any q ∈ (1, γ/δ), Hölder’s inequlity gives

(
1

|I|

∫
I

∣∣∣(b(t)− 〈b〉I) T ~αε (~f)(t)
∣∣∣δ dt)1/δ

≤
(

1

|I|

∫
I

|(b(t)− 〈b〉I)|δq
′
dt

)1/δq′ (
1

|I|

∫
I

∣∣∣T ~αε (~f)(t)
∣∣∣δq dt)1/δq

. ‖b‖BMOdMδq

(
T ~αε (~f)

)
(x)

≤ ‖b‖BMOdMγ

(
T ~αε (~f)

)
(x).

As in the proof of Lemma 4.2.2, we can apply Kolmogorov’s inequality to obtain

(
1

|I|

∫
I

∣∣T ~αε (f 0
1 , . . . , (b− 〈b〉I)f 0

i , . . . , f
0
m)(t)

∣∣δ dt)1/δ

≤
∥∥T ~αε (f 0

1 , . . . , (b− 〈b〉I)f 0
i , . . . , f

0
m)(t)

∥∥
L

1
m,∞(I, dt|I|)

≤ 1

|I|

∫
I

∣∣(b(t)− 〈b〉I) f 0
i (t)

∣∣ dt m∏
j=1,j 6=i

1

|I|

∫
I

∣∣f 0
j (t)

∣∣ dt
≤

(
1

|I|

∫
I

|b(t)− 〈b〉I |r
′
dt

)1/r′ (
1

|I|

∫
I

∣∣f 0
i (t)

∣∣r dt)1/r m∏
j=1,j 6=i

(
1

|I|

∫
I

∣∣f 0
j (t)

∣∣r dt)1/r

. ‖b‖BMOd

m∏
j=1

(
1

|I|

∫
I

|fj(t)|r dt
)1/r

≤ ‖b‖BMOdMr(~f)(x).

We thus have

M#
δ

(
[b, T ~αε ]i(~f)

)
(x) . ‖b‖BMOd

(
Mr(~f)(x) +Mγ

(
T ~αε (~f )

)
(x)
)
.

Lemma 4.2.3 is also true for the commutators of the multilinear Haar multipliers with a

bounded function b.

Lemma 4.3.2. Let w ∈ Ad∞ and ~f = (f1, . . . , fm) where each fi is bounded and has
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compact support. If
∥∥∥M(~f )

∥∥∥
Lp(w)

< ∞ for some p > 0, and b bounded, then there exists

a δ ∈ (0, 1/m) such that
∥∥∥Mδ

(
[b, T ~αε ]i(~f )

)∥∥∥
Lp(w)

<∞.

Proof. Since each fi has compact support, there exist dyadic intervals S ′ = [0, 2−k) and

S ′′ = [−2−k, 0) such that the support of every fi is contained in S = S ′ ∪ S ′′.

Following the arguments used in the proof of Lemma 4.2.3, we get

∥∥∥Mδ

(
[b, T ~αε ]i(~f )

)∥∥∥
Lp(w)

≤
∥∥∥[b, T ~αε ]i(~f )

∥∥∥
Lp(w)

.

So, it suffices to prove that

∥∥∥[b, T ~αε ]i(~f )
∥∥∥
Lp(S,w)

<∞ and
∥∥∥[b, T ~αε ]i(~f )

∥∥∥
Lp(R\S,w)

<∞.

Since w ∈ Ad∞, w
1+γ ∈ L1

loc for sufficiently small γ, (see [3] or [24]). In particular,

w ∈ Lq(S) for q := 1 + γ. We can choose γ small enough so that w ∈ Lq(S) and q′p > 1.

Then by Hölder’s inequality, we have

∥∥∥[b, T ~αε ]i(~f)
∥∥∥
Lp(S,w)

=

(∫
S

∣∣∣[b, T ~αε ]i(~f)
∣∣∣pwdx)1/p

≤

((∫
S

∣∣∣[b, T ~αε ]i(~f)
∣∣∣pq′ dx)1/q′ (∫

S

wqdx

)1/q
)1/p

< ∞.

Here,
∫
S

wqdx < ∞ because w ∈ Lqloc, and the finiteness of
∫
S

∣∣∣[b, T ~αε ]i(~f)
∣∣∣pq′ dx fol-

lows from boundedness of [b, T ~αε ]i : Lmpq
′ × · · · × Lmpq

′ → Lpq
′
, and the fact that each

fi (being bounded with compact support) is in Lmpq
′
. For the unweighted theory of the

commutators of multilinear Haar multipliers we refer to [25]. Note that to prove finiteness

of
∥∥∥[b, T ~αε ]i(~f)

∥∥∥
Lp(S,w)

we may assume that the BMO function b is in some Lp space with

1 < p <∞. Indeed, for all x ∈ S,
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[b, T ~αε ]i(~f)(x) = [b1S, T
~α
ε ]i(~f)(x),

for all ~f = (f1, . . . , fm) with fi supported in S.

Now to prove
∥∥∥[b, T ~αε ]i(~f)

∥∥∥
Lp(R\S,w)

<∞, it suffices to show that for every x ∈ R\S,

∣∣∣[b, T ~αε ]i(~f)(x)
∣∣∣ ≤M(~f)(x).

Fix x ∈ R\S. For definiteness, assume that x > 0, and let Ix be the smallest dyadic

interval that contains x and the interval S ′. Note that if x /∈ I, hI(x) = 0 and, if x ∈ I with

I ∩ S ′ = ∅, fj(I, αj) = 0 for each j. So,

∣∣∣[b, T ~αε ]i(~f)(x)
∣∣∣

≤ |b(x)|
∣∣T ~αε (f1, f2, . . . , fm)(x)

∣∣+
∣∣T ~αε (f1, . . . , bfi, . . . , fm)(x)

∣∣
= |b(x)|

∣∣∣∣∣∑
I⊇Ix

εI

m∏
j=1

fj(I, αj) h
σ(~α)
I (x)

∣∣∣∣∣+

∣∣∣∣∣∣∣∣
∑
I⊇Ix

εI(bfi)(I, αi)
m∏
j=1
j 6=i

fj(I, αj) h
σ(~α)
I (x)

∣∣∣∣∣∣∣∣
≤ |b(x)|

∑
I⊇Ix

|εI |

 ∏
j:αj=0

∣∣∣f̂j(I)
∣∣∣√

|I|

 ∏
j:αj=1

|〈fj〉I |

 1I(x)

+|b(x)|
∑
I⊇Ix

|εI ||(bfi)(I, αi)|

 ∏
j:αj=0
j 6=i

∣∣∣f̂j(I)
∣∣∣√

|I|


 ∏
j:αj=1
j 6=i

|〈fj〉I |

 1I(x)

We have

∣∣∣f̂j(I)
∣∣∣√

|I|
=

1√
|I|

∣∣∣∣∫ fjhI

∣∣∣∣ ≤ 1√
|I|

∫
|fj|

1I√
|I|

=
1

|I|

∫
I

|fj| = 〈|fj|〉I . Since

fj is 0 on R\S, 〈|fj|〉I1 =
〈|fj|〉I

2
whenever I1 is the parent of I with Ix ⊆ I. Moreover,

|(bfi)(I, αi)| ≤ |b|〈|fi|〉I . So,
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∣∣∣[b, T ~αε ]i(~f)(x)
∣∣∣

≤ 2

(
sup
x∈R
|b(x)|

)(
sup
I∈D
|εI |
)∑
I⊇Ix

 ∏
j:αj=0

∣∣∣f̂j(I)
∣∣∣√

|I|

 ∏
j:αj=1

|〈fj〉I |

 .

≤ 2

(
sup
x∈R
|b(x)|

)(
sup
I∈D
|εI |
)∑
I⊇Ix

m∏
j=1

〈|fj|〉I

= 2

(
sup
x∈R
|b(x)|

)(
sup
I∈D
|εI |
)( m∏

j=1

〈|fj|〉Ix +
1

2m

m∏
j=1

〈|fj|〉Ix +
1

22m

m∏
j=1

〈|fj|〉Ix + · · ·

)

= 2

(
2m

2m − 1

)(
sup
x∈R
|b(x)|

)(
sup
I∈D
|εI |
) m∏

j=1

〈|fj|〉Ix

≤ 2m+1

(2m − 1)

(
sup
x∈R
|b(x)|

)(
sup
I∈D
|εI |
)
M(~f )(x).

The same proof works for x < 0 with Ix the smallest dyadic interval that contains both x

and the interval S ′′.

Theorem 4.3.3. Let ~α ∈ Um and ε = (εI)I∈D be bounded. Suppose b ∈ BMOd and ~w =

(w1, . . . , wm) ∈ Ad~P for ~P = (p1, . . . , pm) with 1
p1

+· · ·+ 1
pm

= 1
p

and 1 < p1, . . . , pm <∞.

Then there exists a constant C such that

∥∥∥[b, T ~αε ]i(~f)
∥∥∥
Lp(ν~w)

≤ C‖b‖BMOd

m∏
j=1

‖fj‖Lpj (wj). (4.3.2)

Proof. First assume that b is bounded.

Since the simple functions in Lp(ν~w) are dense in Lp(ν~w), it suffices to prove (4.3.2) for

~f = (f1, f2, . . . , fm) with fi ∈ Lpi(wi) simple. For all such ~f , there exists, by Lemma

4.3.2, a δ ∈ (0, 1/m) such that
∥∥∥Mδ

(
[b, T ~αε ]i(~f )

)∥∥∥
Lp(w)

< ∞. So, for any r > 1 and
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γ > δ we have

∥∥∥[b, T ~αε ]i(~f)
∥∥∥
Lp(ν~w)

≤
∥∥∥Mδ[b, T

~α
ε ]i(~f)

∥∥∥
Lp(ν~w)

.
∥∥∥M#

δ [b, T ~αε ]i(~f)
∥∥∥
Lp(ν~w)

. ‖b‖BMOd

(∥∥∥Mr(~f)
∥∥∥
Lp(ν~w)

+
∥∥∥Mγ

(
T ~αε (~f )

)∥∥∥
Lp(ν~w)

)
,

where the first inequality follows from the pointwise control, the second one is the Fefferman-

Stein inequality (1.2.1) and the last inequality follows from Theorem 4.3.1.

Now we can choose γ ∈ (δ, 1/m) such that
∥∥∥Mγ

(
T ~αε (~f )

)∥∥∥
Lp(ν~w)

<∞. In fact, looking at

the proofs of Lemmas 4.2.3 and 4.3.2, any γ ∈ (δ, p/p0) would work. For such γ, we have

∥∥∥Mγ

(
T ~αε (~f )

)∥∥∥
Lp(ν~w)

.
∥∥∥M#

γ

(
T ~αε (~f )

)∥∥∥
Lp(ν~w)

≤
∥∥∥M(~f )

∥∥∥
Lp(ν~w)

≤
∥∥∥Mr(~f )

∥∥∥
Lp(ν~w)

We thus have ∥∥∥[b, T ~αε ]i(~f)
∥∥∥
Lp(ν~w)

. ‖b‖BMOd

∥∥∥Mr(~f )
∥∥∥
Lp(ν~w)

for all r > 1.

Finally, we can choose r > 1 such that the inequality (1.2.5) holds, i.e.

∥∥∥Mr(~f )
∥∥∥
Lp(ν~w)

.
m∏
j=1

‖fj‖Lpj (wj).

This completes the proof when b is bounded.

Now following [7], we use a limiting argument to prove the theorem for general b ∈

BMOd.
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Let {bj} be the sequence of functions defined by

bj(x) =


j, if b(x) > j,

b(x), if |b(x)| ≤ j,

−j if b(x) < −j.

Clearly, bj → b pointwise, and we have ‖bj‖BMOd ≤ c‖b‖BMOd for all j. In fact, c = 9/4

works (see [24], page 129).

For any q ∈ (1,∞),

T ~αε (f1, . . . , bjfi, . . . , fm)→ T ~αε (f1, . . . , bfi, . . . , fm) in Lq as j →∞

due to boundedness of T ~αε : Lmq × · · · × Lmq → Lq and the fact that bounded func-

tions f1, . . . , fm with compact support are all in Lmq. Note that since bj, b ∈ BMOd and

bounded function fi has compact support bjfi → bfi in Lmq as j → ∞. Then there exists

a subsequence {bjk} such that

T ~αε (f1, . . . , bjkfi, . . . , fm)(x)→ T ~αε (f1, . . . , bfi, . . . , fm)(x) for almost every x.

For such x, we have [bjk , T
~α
ε ]i(~f)(x)→ [b, T ~αε ]i(~f)(x). Now,

∥∥∥[b, T ~αε ]i(~f)
∥∥∥
Lp(ν~w)

=

(∫
R

∣∣∣[b, T ~αε ]i(~f)(x)
∣∣∣p dx)1/p

≤ lim inf
k→∞

(∫
R

∣∣∣[bjk , T ~αε ]i(~f)(x)
∣∣∣p dx)1/p

≤ C ′ lim inf
k→∞

‖bjk‖BMOd

m∏
j=1

‖fj‖Lpj (wj)

≤ C‖b‖BMOd

m∏
j=1

‖fj‖Lpj (wj),
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where we have used Fatou’s lemma to obtain the first inequality, and the second inequality

follows from the result already proved for bounded function b.

The following theorem characterizes dyadic BMO functions via the boundedness of the

commutators of multilinear dyadic paraproducts.

Theorem 4.3.4. Assume
∑m

i=1
1
pi

= 1
p

with 1 < pi < ∞, and let ~w = (w1, . . . , wm)

with wi ∈ Api . Then for j ∈ {1, . . . ,m} and ~α ∈ Um, the following two statements are

equivalent.

(a) b ∈ BMO.

(b) [b, P ~α]j : Lp1(w1)× · · · × Lpm(wm)→ Lp(ν~w) is bounded.

Proof. It suffices to prove the theorem for j = 1.

“(a) ⇒ (b)” follows from Theorem 4.3.3, since T ~αε = P ~α when εI = 1 for all I ∈ D, and

that BMO(ν1) = BMO for ν1 = 1.

To prove the converse, assume that [b, P ~α]1 : Lp1(w1) × · · · × Lpm(wm) → Lp(ν~w) is

bounded, and fix J ∈ D.

Case I: ~α = (α1, α2, ..., αm) = (0, 1, ..., 1).

Let J ′ be the parent of J . Take f1 = 1J and f2 = · · · = fm =
√
|J ′|hJ ′ . Then for

~f = (f1, . . . , fm),

|[b, P ~α]1(~f)| =
∣∣∣bP ~α(~f)− P ~α(bf1, f2, . . . , fm)

∣∣∣
=

∣∣∣∣∣0−∑
I∈D

〈b1J , hI〉〈
√
|J ′|hJ ′〉m−1I hI

∣∣∣∣∣
=

∣∣∣∣∣∑
I⊆J

〈b1J , hI〉hI

∣∣∣∣∣
= |b− 〈b〉J | 1J .
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Now,

∫
J

|b− 〈b〉J |
1
m dx =

∫
J

|b− 〈b〉J |
1
m ν

1
mp

~w ν
− 1
mp

~w dx

≤
(∫

J

|b− 〈b〉J |p ν~wdx
) 1

mp
(∫

J

ν
− (mp)′

mp

~w dx

) 1
(mp)′

=
∥∥∥[b, P ~α]1(~f)

∥∥∥1/m
Lp(ν~w)

(∫
J

ν
1

1−mp
~w dx

)mp−1
mp

.

(
m∏
i=1

‖fi‖Lpi (wi)

)1/m(∫
J

ν
1

1−mp
~w dx

)mp−1
mp

=

(∫
J

ν
1

1−mp
~w dx

)mp−1
mp

{(∫
J

w1dx

)1/p1 m∏
i=2

(∫
J ′
widx

)1/pi
}1/m

.

So, ∫
J

|b− 〈b〉J |
1
m dx .

(∫
J ′
ν

1
1−mp
~w dx

)mp−1
mp

m∏
i=1

(∫
J ′
widx

) 1
mpi

. (4.3.3)

Let w′i := w
1−p′i
i = w

− p
′
i
pi

i , ~w′ := (w′1, . . . , w
′
m), and ~P ′ := (p′1, . . . , p

′
m). Since w′i ∈ Ap′i , ~w

′

satisfies the multilinear A~P ′ condition. Observing that
∑m

i=1
1
p′i

= m−
∑m

i=1
1
pi

= m− 1
p

=

mp−1
p

, we therefore have

(
1

|J ′|

∫
J ′
ν~w′

) m∏
i=1

(
1

|J ′|

∫
J ′

(w′i)
1−pi
) p/(mp−1)

pi

≤ [~w′]A~P ′ <∞. (4.3.4)

Note that

ν~w′ =
m∏
i=1

(
w
− p
′
i
pi

i

) p/(mp−1)

p′
i

=
m∏
i=1

(
w

p
pi
i

) 1
1−mp

= ν
1

1−mp
~w ,

and

(w′i)
1−pi =

(
w
− p
′
i
pi

i

)− pi
p′
i

= wi.

So, from (4.3.4), we get

(
1

|J ′|

∫
J ′
ν

1
1−mp
~w

) m∏
i=1

(
1

|J ′|

∫
J ′
wi

) p/(mp−1)
pi

≤ [~w′]A~P ′ .
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This implies that

(∫
J ′
ν

1
1−mp
~w

) m∏
i=1

(∫
J ′
wi

) p/(mp−1)
pi

≤ [~w′]A~P ′ |J
′|1+

p
mp−1

( 1
p1

+···+ 1
pm

)

= [~w′]A~P ′ |J
′|1+

1
mp−1

= [~w′]A~P ′ |J
′|

mp
mp−1 .

Consequently,

(∫
J ′
ν

1
1−mp
~w dx

)mp−1
mp

m∏
i=1

(∫
J ′
widx

) 1
mpi

≤ [~w′]
mp−1
mp

A~P ′
|J ′| = 2[~w′]

mp−1
mp

A~P ′
|J |.

Using this in (4.3.3), we get

∫
J

|b− 〈b〉J |
1
m dx . [~w′]

mp−1
mp

A~P ′
|J |.

i.e. (
1

|J |

∫
J

|b− 〈b〉J |
1
m dx

)m
. [~w′]

mp−1
p

A~P ′
.

Since J ∈ D is arbitrary, this proves that b ∈ BMO.

Case II: ~α = (α1, α2, ..., αm) 6= (0, 1, ..., 1).

In this case, αi = 0 for some i > 1. Let

fi =


√
|J |hJ , if αi = 0

1J , if αi = 1

.

Note that if αi = 0, fi(J, αi) = 〈
√
|J |hJ , hJ〉 =

√
|J |, and if αi = 1, fi(J, αi) = 〈1J〉J =

1.
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Also, if α1 = 0,

(bf1)(J, α1) =
√
|J |
∫
R
bhJhJ =

√
|J | 1

|J |

∫
R
b1J =

√
|J |〈b〉J ,

and if α1 = 1,

(bf1)(J, α1) = 〈b1J〉J = 〈b〉J .

So we have,

|[b, P ~α]1(~f)| =
∣∣∣bP ~α(~f)− P ~α(bf1, f2, . . . , fm)

∣∣∣
=

∣∣∣∣∣b(√|J |hJ)σ(~α) − (bf1)(J, α1)

(
m∏
i=2

fi(J, αi)

)
h
σ(~α)
J

∣∣∣∣∣
=

∣∣∣b(√|J |hJ)σ(~α) − 〈b〉J(
√
|J |hJ)σ(~α)

∣∣∣
= |b− 〈b〉J | 1J .

Proceeding as in the first case, we get

∫
J

|b− 〈b〉J |
1
m dx .

(∫
J

ν
1

1−mp
~w dx

)mp−1
mp

m∏
i=1

(∫
J

widx

) 1
mpi

. [~w′]
mp−1
mp

A~P ′
|J |,

which implies that b ∈ BMO. This completes the proof.

Some Remarks:

1. In the previous chapter, we presented the unweighted theory of the multilinear com-

mutators with some restrictions, where we required that b ∈ Lq for some q ∈ (1,∞)

and that p > 1. As we have seen, this restricted unweighted theory was sufficient

to obtain the weighted theory presented in this chapter. Taking wi = 1 for all

1 ≤ i ≤ m, we see that the weighted theory implies the unweighted theory for

all b ∈ BMOd and 1/m < p <∞.
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2. With the results obtained in this chapter, it is easy to see that the end-point results

obtained in [7] for the commutators of the multilinear Calderón-Zygmund operators

also hold for the commutators of the multilinear Haar multipliers.
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CHAPTER 5

SPARSE DOMINATION THEOREMS AND MULTILINEAR BLOOM’S

INEQUALITY

In this chapter, we show that multilinear dyadic paraproducts and Haar multipliers can be

pointwise dominated by multilinear sparse operators. We also obtain similar pointwise

estimates for their commutators with locally integrable functions. As a consequence, we

obtain various quantitative weighted norm inequalities for these operators. In particular,

we introduce multilinear analog of Bloom’s inequality, and prove it for the commutators of

the multilinear Haar multipliers.

5.1 Main Results

Theorem: Let b ∈ BMOd, and ε = (εI)I∈D be bounded. Let T ∈
{
P ~α, T ~αε

}
with ~α ∈ Um,

or T = π~αb with ~α ∈ {0, 1}m. There exists a constant C so that for every compactly

supported ~f = (f1, . . . , fm) ∈ L1 × · · · × L1, there is a sparse collection S of dyadic

intervals (depending on T and ~f) such that

∣∣∣T (~f)
∣∣∣ ≤ CAS(|~f |).

Theorem: Let T ∈
{
P ~α, T ~αε

}
with ~α ∈ Um and ε = (εI)I∈D bounded, or T = π~αb with

~α ∈ {0, 1}m and b ∈ BMOd. Let ~P = (p1, · · · , pm) with 1 < p1, · · · , pm < ∞ and

1/p1 + · · ·+ 1/pm = 1/p. Then for ~w = (w1, · · · , wm) ∈ A~P , we have

‖T (~f)‖Lp(v~w) ≤ Cm,~P ,T [~w]
max

{
1,
p′1
p
,··· , p

′
m
p

}
A~P

m∏
i=1

‖fi‖Lpi (wi).

Theorem: Let T := T ~αε for some ~α ∈ Um, and bounded sequence ε = (εI)I∈D, and let
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b be a locally integrable function. There exists a constant C so that for every bounded

~f = (f1, . . . , fm) with compact support, there is a sparse collection S of dyadic intervals

(depending on T , ~f , and b) such that

∣∣∣[b, T ]i(~f)
∣∣∣ ≤ C

∑
I∈S

|b− 〈b〉I |
m∏
j=1

〈|fj|〉I1I +
∑
I∈S

〈|(b− 〈b〉I)fi|〉I
m∏
j=1
j 6=i

〈|fj|〉I1I

 .

Theorem: Let ~P = (p1, · · · , pm) with 1 < p1, · · · , pm <∞ and 1/p1+ · · ·+1/pm = 1/p,

and let ~w = (w1, . . . , wm) where wi’s are weights. Assume that w1, λ1 ∈ Ap1 , and that

~w1 = (w2, . . . , wm) satisfies the A~P 1 condition, where ~P 1 = (p2, . . . , pm) with
∑m

i=2
1
pi

=

1
q
. Let ~α ∈ Um, ε = (εI)I∈D be bounded, and b be locally integrable. Then for ~µ1 =

(λ1, w2, . . . , wm) and ν1 =
(
w1

λ1

) 1
p1 , we have

∥∥∥[b, T ~αε ]1(~f)
∥∥∥
Lp(ν~µ1 )

. C(λ1, ~w, ~P ) ‖b‖BMOν1

m∏
i=1

‖fi‖Lpi (wi),

where C(λ1, ~w, ~P ) = [w1]
1
p1

max{p1,p′1}
Ap1

[λ1]
1
p1

max{p1,p′1,··· ,p′m}
Ap1

[~w1]
1
q
max{q,p′1,··· ,p′m}

A~P1
.

Similar estimates also hold for the commutators [b, T ~αε ]j with j ∈ {2, . . . ,m}.

5.2 Domination by Sparse Operators

In this section, we first obtain weak type endpoint estimates for the maximal trunctions of

the multiliner dyadic paraproducts and Haar multipliers. Using this result, we will then

obtain pointwise estimates of multilinear dyadic operators and their commutators.

Lemma 5.2.1. Let b ∈ BMOd, and ε = (εI)I∈D be bounded. Let T ∈
{
P ~α, T ~αε

}
with

~α ∈ Um, or T = π~αb with ~α ∈ {0, 1}m. Then

∥∥∥T](~f)
∥∥∥
L

1
m,∞

.
m∏
i=1

‖fi‖L1 , (5.2.1)
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where T](~f) is the maximal truncation given by

T](~f) := sup
J∈D

∣∣∣∣∣∣∣
∑
I∈D
I)J

δTI

m∏
i=1

fi(I, αi)h
σ(~α,T )
I

∣∣∣∣∣∣∣ , (5.2.2)

with

δTI =


1, if T = P ~α

b̂(I), if T = π~αb

εI if T = T ~αε

,

and

σ(~α, T ) =


σ(~α), if T = P ~α or T ~αε

σ(~α) + 1, if T = π~αb

.

Proof. It is easy to see that T] is multi-sublinear, and that T](~f) is supported on I ∈ D if

fi = hI for some i. So, by Lemma 3.2.3, it suffices to prove that

∥∥∥T](~f)
∥∥∥
Lp

.
m∏
i=1

‖fi‖Lpi ,

for 1 < pi, p <∞ with
∑m

i=1
1
pi

= 1
p
.

For J ∈ D, define

T J(~f) :=
∑
I∈D
I)J

δTI

m∏
i=1

fi(I, αi)h
σ(~α,T )
I .

Note that this is the expansion of T J(~f) in terms of the Haar basis {hI}I∈D if and only if

σ(~α, T ) is odd.

Case I: σ(~α, T ) odd.
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In this case, we show that

T](~f)(x) ≤M(T (~f))(x) for every x ∈ R.

Fix J ∈ D and x ∈ R. Suppose there exists a dyadic interval that properly contains J, and

also contains the point x. Let J ′ be the smallest of such intervals, and let J ′′ be the child of

J ′ that contains x. Then,

T J(~f)(x) =
∑
I∈D
I)J

δTI

m∏
i=1

fi(I, αi)h
σ(~α,T )
I (x)

=
∑
I∈D
I⊇J ′

δTI

m∏
i=1

fi(I, αi)h
σ(~α,T )
I (x)

=

∑
I∈D
I)J ′′

δTI

m∏
i=1

fi(I, αi)h
σ(~α,T )
I (x)

 1J ′′(x),

= 〈T (~f)〉J ′′1J ′′(x).

We then have,
∣∣∣T J(~f)(x)

∣∣∣ ≤ 〈|T (~f)|〉J ′′1J ′′(x) ≤M(T (~f))(x).

If no dyadic interval containing x properly contains J , we have

∣∣∣T J(~f)(x)
∣∣∣ = 0 ≤M(T (~f))(x).

Thus for each J ∈ D and all x ∈ R,

∣∣∣T J(~f)(x)
∣∣∣ ≤M(T (~f))(x),

which implies that

sup
J∈D

∣∣∣T J(~f)(x)
∣∣∣ ≤M(T (~f))(x)

i.e. T](~f)(x) ≤M(T (~f))(x).
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Case II: σ(~α, T ) even.

Assume without loss of generality that α1 = 0, and define

T1(f2, . . . , fm) :=
∑
I∈D

δTI

m∏
i=2

fi(I, αi)h
σ(~α,T )−1
I .

Note that T1 is an (m − 1)-linear paraproduct or Haar multiplier which is bounded from

Lp2 × · · · × Lpm → Lq1 for q1 given by
∑m

i=2
1
pi

= 1
q1
. Moreover, σ(~α, T ) − 1 being odd,

T1(f2, . . . , fm)(I, 0) =
δTI
∏m

i=2 fi(I, αi)

(
√
|I|)σ(~α,T )−2

. Writing T1(f2, . . . , fm) = g, we have

T J(~f)(x) =
∑
I∈D
I)J

δTI

m∏
i=1

fi(I, αi)h
σ(~α,T )
I (x)

=
∑
I∈D
I)J

f̂1(I)
δTI
∏m

i=2 fi(I, αi)

(
√
|I|)σ(~α,T )−2

h2I(x)

=
∑
I∈D
I)J

f̂1(I)ĝ(I)h2I(x).

With J ′′ as in case I, we have

T J(~f)(x)

=

∑
I∈D
I)J ′′

f̂1(I)ĝ(I)h2I(x)

 1J ′′(x).

=

〈f1〉J ′′〈g〉J ′′ −∑
I∈D
I)J ′′

f̂1(I)〈g〉IhI(x)−
∑
I∈D
I)J ′′

〈f1〉I ĝ(I)hI(x)

 1J ′′(x).

The last equality follows from Lemma 2.1.1. We then have,
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∣∣∣T J(~f)(x)
∣∣∣

≤ 〈|f1|〉J ′′〈|g|〉J ′′1J ′′(x) +

∣∣∣∣∣∣∣
∑
I∈D
I)J ′′

f̂1(I)〈g〉IhI(x)

∣∣∣∣∣∣∣ 1J ′′(x) +

∣∣∣∣∣∣∣
∑
I∈D
I)J ′′

〈f1〉I ĝ(I)hI(x)

∣∣∣∣∣∣∣ 1J ′′(x)

≤ M(f1, g)(x) +M(P (0,1)(f1, g))(x) +M(P (1,0)(f1, g))(x).

The definition of the multilinear maximal function, and the result from case I above imply

the last inequality. If J ′ does not exist,

∣∣∣T J(~f)(x)
∣∣∣ = 0 ≤M(f1, g)(x) +M(P (0,1)(f1, g))(x) +M(P (1,0)(f1, g))(x).

Thus, for all x ∈ R,

T](~f)(x) ≤M(f1, g)(x) +M(P (0,1)(f1, g))(x) +M(P (1,0)(f1, g))(x).

Using the boundedness properties of the linear/multilinear maximal functions as well as

the multilinear paraproducts and Haar multipliers, we observe that

∥∥∥M(T (~f))
∥∥∥
Lp

.
∥∥∥T (~f)

∥∥∥
Lp

.
m∏
i=1

‖fi‖Lpi ,

‖M(f1, g)‖Lp . ‖f1‖Lp1 ‖g‖Lq1 .
m∏
i=1

‖fi‖Lpi ,

∥∥M(P (0,1)(f1, g))
∥∥
Lp

.
∥∥P (0,1)(f1, g)

∥∥
Lp

. ‖f1‖Lp1 ‖g‖Lq1 .
m∏
i=1

‖fi‖Lpi ,

and,

∥∥M(P (1,0)(f1, g))
∥∥
Lp

.
∥∥P (1,0)(f1, g)

∥∥
Lp

. ‖f1‖Lp1 ‖g‖Lq1 .
m∏
i=1

‖fi‖Lpi .
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By the domination of maximal truncation T](~f) obtained above, we then have

∥∥∥T](~f)
∥∥∥
Lp

.
m∏
i=1

‖fi‖Lpi .

This completes the proof.

Theorem 5.2.2. Let b ∈ BMOd, and ε = (εI)I∈D be bounded. Let T ∈
{
P ~α, T ~αε

}
with ~α ∈ Um, or T = π~αb with ~α ∈ {0, 1}m. There exists a constant C so that for every

compactly supported ~f = (f1, . . . , fm) ∈ L1 × · · · × L1, there is a sparse collection S of

dyadic intervals (depending on T and ~f) such that

∣∣∣T (~f)
∣∣∣ ≤ CAS(|~f |). (5.2.3)

Proof. It suffices to prove the theorem for ~f = (f1, . . . , fm) supported on a dyadic interval

I0 = [0, 2k). We first obtain a sparse collection S ′ such that the corresponding sparse

operator AS′ satisfies ∣∣∣T (~f)
∣∣∣ 1I0 ≤ CAS′(|~f |). (5.2.4)

We use the weak-type estimates for the multilinear maximal functionM and the maximal

truncation T], namely

∣∣∣{x :M(~f)(x) > λ}
∣∣∣ ≤ C1

λ1/m

m∏
i=1

‖fi‖1/mL1 ,
∣∣∣{x : T](~f)(x) > λ}

∣∣∣ ≤ C2

λ1/m

m∏
i=1

‖fi‖1/mL1 .

Let E =

{
x ∈ I0 : max{M(~f)(x), T](~f)(x)} > 1

2
C0

m∏
i=1

〈|fi|〉I0

}
.

Since each fi is supported on I0, ‖fi‖L1 =

∫
R
|fi| = |I0|

(
1

|I0|

∫
I0

|fi|
)

= |I0|〈|fi|〉I0 . So,
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|E| ≤

∣∣∣∣∣
{
x :M(~f)(x) >

1

2
C0

m∏
i=1

〈|fi|〉I0

}∣∣∣∣∣+

∣∣∣∣∣
{
x : T](~f)(x) >

1

2
C0

m∏
i=1

〈|fi|〉I0

}∣∣∣∣∣
≤ 21/mC1

C
1/m
0

|I0|+
21/mC2

C
1/m
0

|I0|

=
21/m(C1 + C2)

C
1/m
0

|I0|

We choose C0 so large that |E| ≤ 1

2
|I0|.

Let E be the collection of maximal dyadic intervals contained in E. We claim that

∣∣∣T (~f)(x)
∣∣∣ 1I0(x) ≤ C

m∏
i=1

〈|fi|〉I0 +
∑
J∈E

|TJ(~f)(x)|, (5.2.5)

where TJ(~f) :=
∑
I∈D
I⊆J

δTI

m∏
i=1

fi(I, αi)h
σ(~α,T )
I , and C = max{C0, C

′C0} with

C ′ =


1, if T = P ~α

‖b‖BMOd , if T = π~αb

supI |εI | if T = T ~αε

.

If x ∈ E, there is a unique K ∈ E that contains x. If K ′ is the parent of K, then

∣∣∣T (~f)(x)
∣∣∣ 1I0(x) ≤

∣∣∣TK′(~f)(x)
∣∣∣+

∣∣∣∣∣δTK′
m∏
i=1

fi(K
′, αi)h

σ(~α,T )
K′ (x)

∣∣∣∣∣+
∣∣∣TK(~f)(x)

∣∣∣ .
Note that

|̂b(K ′)|√
|K ′|

≤ ‖b‖BMOd ,
|f̂i(K ′)|√
|K ′|

≤ 〈|fi|〉K′ , and |〈fi〉K′| ≤ 〈|fi|〉K′ . So,

75



∣∣∣∣∣δTK′
m∏
i=1

fi(K
′, αi)h

σ(~α,T )
K′ (x)

∣∣∣∣∣ ≤
∣∣∣∣∣ηTK′

( ∏
i:αi=0

f̂i(K
′)√

|K ′|

)( ∏
i:αi=1

〈fi〉K′
)∣∣∣∣∣ 1K′(x)

≤ C ′
m∏
i=1

〈|fi|〉K′ ,

where ηTK′ =



1, if T = P ~α

b̂(K′)√
|K′|

, if T = π~αb

εI if T = T ~αε

.

We thus have

∣∣∣T (~f)(x)
∣∣∣ 1I0(x) ≤

∣∣∣TK′(~f)(x)
∣∣∣+ C ′

m∏
i=1

〈|fi|〉K′ +
∑
J∈E

∣∣∣TJ(~f)(x)
∣∣∣ .

By the maximality ofK,
∣∣∣TK′(~f)(x)

∣∣∣ ≤ 1

2
C0

m∏
i=1

〈|fi|〉I0 , and
m∏
i=1

〈|fi|〉K′ ≤
1

2
C0

m∏
i=1

〈|fi|〉I0 .

In fact, if |TK′(~f)(x)| > 1
2
C0

∏m
i=1〈|fi|〉I0 , then TK′(~f) being constant on K ′, we have

T](~f)(y) ≥ |TK′(~f)(y)| = |TK′(~f)(x)| > 1

2
C0

m∏
i=1

〈|fi|〉I0

for every y ∈ K ′, which implies that K ′ ∈ E contradicting the maximality of K. On the

other hand, if
m∏
i=1

〈|fi|〉K′ >
1

2
C0

m∏
i=1

〈|fi|〉I0 , then for every y ∈ K ′,

M(~f)(y) >
1

2
C0

m∏
i=1

〈|fi|〉I0

which also contradicts the maximality of K. So, for all x ∈ E we have
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∣∣∣T (~f)(x)
∣∣∣ 1I0(x) ≤ 1

2
C0

m∏
i=1

〈|fi|〉I0 +
1

2
C ′C0

m∏
i=1

〈|fi|〉I0 +
∑
J∈E

∣∣∣TJ(~f)(x)
∣∣∣

≤ C

m∏
i=1

〈|fi|〉I0 +
∑
J∈E

|TJ(~f)(x)|.

For x ∈ I0\E, (5.2.5) is obviously true, since T J(~f)(x) ≤ 1

2
C0

m∏
i=1

〈|fi|〉I0 for all J ∈ D,

and T (~f)(x) = lim
k→∞

T J
k
x (x), where Jkx is the dyadic interval of length 2−k that contains x.

As the inequality (5.2.5) suggests, we include I0 in S ′. Now we recurse on TJ(~f), J ∈ E .

At this stage, we add each member of E to S ′ as the S ′-children of I0. The sparseness

condition is satisfied since
∑

J∈E |J | ≤ |E| ≤
1
2
|I0|. Continuing the recursion, we get the

sparse operator satisfying (5.2.4).

For x /∈ I0,

∣∣∣T (~f)(x)
∣∣∣ =

∣∣∣∣∣∑
I∈D

δTI

m∏
i=1

fi(I, αi)h
σ(~α,T )
I (x)

∣∣∣∣∣
=

∣∣∣∣∣∑
I)I0

δTI

m∏
i=1

fi(I, αi)h
σ(~α,T )
I (x)

∣∣∣∣∣
≤ C ′

∑
I)I0

m∏
i=0

〈|fi|〉I .

Clearly, the sparse operator AS corresponding to the sparse collection

S = S ′ ∪ {I ∈ D : I ) I0}

satisfies (5.2.3) with C = max{C0, C
′, C ′C0}.

As an immediate consequence of this theorem and (1.2.6), we have the following weighted
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estimate for the multilinear dyadic paraproducts and Haar multilpliers.

Theorem 5.2.3. Let T ∈
{
P ~α, T ~αε

}
with ~α ∈ Um and ε = (εI)I∈D bounded, or T = π~αb

with ~α ∈ {0, 1}m and b ∈ BMOd. Let ~P = (p1, · · · , pm) with 1 < p1, · · · , pm < ∞ and

1/p1 + · · ·+ 1/pm = 1/p. Then for ~w = (w1, · · · , wm) ∈ A~P , we have

‖T (~f)‖Lp(v~w) ≤ Cm,~P ,T [~w]
max

{
1,
p′1
p
,··· , p

′
m
p

}
A~P

m∏
i=1

‖fi‖Lpi (wi). (5.2.6)

Theorem 5.2.4. Let T := T ~αε for some ~α ∈ Um, and bounded sequence ε = (εI)I∈D, and

let b be a locally integrable function. There exists a constant C so that for every bounded

~f = (f1, . . . , fm) with compact support, there is a sparse collection S of dyadic intervals

(depending on T , ~f , and b) such that

∣∣∣[b, T ]i(~f)
∣∣∣ ≤ C

∑
I∈S

|b− 〈b〉I |
m∏
j=1

〈|fj|〉I1I +
∑
I∈S

〈|(b− 〈b〉I)fi|〉I
m∏
j=1
j 6=i

〈|fj|〉I1I

 .

(5.2.7)

Proof. It suffices to prove (5.2.7) for i = 1 and for ~f supported in a dyadic interval I0 =

[0, 2k). We first find a sparse collection S ′ of dyadic intervals such that

∣∣∣[b, T ]1(~f)
∣∣∣ 1I0 ≤ C ′

(∑
I∈S′
|b− 〈b〉I |

m∏
j=1

〈|fj|〉I1I +
∑
I∈S′
〈|(b− 〈b〉I)f1|〉I

m∏
j=2

〈|fj|〉I1I

)
.

(5.2.8)

Let ~g = (g1, g2, . . . , gm) = ((b− 〈b〉I0)f1, f2, . . . , fm), and E = E1 ∪ E2, where

E1 =

{
x ∈ I0 : max{M(~f)(x), T](~f)(x)} > C0

m∏
j=1

〈|fj|〉I0

}

and

E2 =

{
x ∈ I0 : max{M(~g)(x), T](~g)(x)} > C0

m∏
j=1

〈|gj|〉I0

}
.
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Due to weak-type boundedness ofM and T], we can choose C0 so large that |E| ≤ 1
2
|I0|.

Let E be the collection of maximal dyadic intervals contained in E. It suffices to prove the

recursive claim:

∣∣∣[b, T ]1(~f)(x)
∣∣∣ 1I0(x) ≤ C ′

(
|b(x)− 〈b〉I0|

m∏
j=1

〈|fj|〉I0 + 〈|(b− 〈b〉I0)f1|〉I0
m∏
j=2

〈|fj|〉I0

)
+
∑
J∈E

∣∣∣[b, TJ ](~f)(x)
∣∣∣ 1J(x),

where TJ(~f) :=
∑
I∈D
I⊆J

εI

m∏
j=1

fj(I, αj)h
σ(~α)
I .

If x ∈ E, there is a unique K ∈ E that contains x. If K ′ is the parent of K, then

[b, T ](~f)(x) = [b, TK ](~f)(x) + [b, TK ](~f)(x)

= [b− 〈b〉I0 , TK ](~f)(x) + [b, TK ](~f)(x)

= (b(x)− 〈b〉I0)TK(~f)(x)− TK((b− 〈b〉I0)f1, f2, . . . , fm)(x)

+[b, TK ](~f)(x)

= (b(x)− 〈b〉I0)TK(~f)(x)− TK(~g)(x) + [b, TK ](~f)(x)

= (b(x)− 〈b〉I0)TK
′
(~f)(x) + (b(x)− 〈b〉I0) εK′

m∏
j=1

fj(K
′, αj)h

σ(~α)
K′ (x)

−TK′(~g)(x)− εK′
m∏
j=1

gj(K
′, αj)h

σ(~α)
K′ (x) + [b, TK ](~f)(x).

As argued in the proof of Theorem 5.2.2, the maximality of K implies that

∣∣∣TK′(~f)(x)
∣∣∣ ≤ C0

m∏
j=1

〈|fj|〉I0 ,

∣∣∣∣∣
m∏
j=1

fj(K
′, αj)h

σ(~α)
K′ (x)

∣∣∣∣∣ ≤ C0

m∏
j=1

〈|fj|〉I0 ,

∣∣∣TK′(~g)(x)
∣∣∣ ≤ C0

m∏
j=1

〈|gj|〉I0 ,

∣∣∣∣∣
m∏
j=1

gj(K
′, αj)h

σ(~α)
K′ (x)

∣∣∣∣∣ ≤ C0

m∏
j=1

〈|gj|〉I0 .
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So, for x ∈ E, we have

∣∣∣[b, T ](~f)(x)
∣∣∣ ≤ |b(x)− 〈b〉I0|C0

m∏
j=1

〈|fj|〉I0 + |b(x)− 〈b〉I0| sup
I
|εI |C0

m∏
j=1

〈|fj|〉I0

+C0

m∏
j=1

〈|gj|〉I0 +

(
sup
I
|εI |
)
C0

m∏
j=1

〈|gj|〉I0 +
∣∣∣[b, TK ](~f)(x)

∣∣∣
= C ′

(
|b(x)− 〈b〉I0|

m∏
j=1

〈|fj|〉I0 + 〈|(b− 〈b〉I0)f1|〉I0
m∏
j=2

〈|fj|〉I0

)
+
∣∣∣[b, TK ](~f)(x)

∣∣∣ ,
where C ′ = C0 + (supI |εI |)C0. Now for x ∈ I0\E, we have

∣∣∣[b, T ](~f)(x)
∣∣∣ =

∣∣∣[b− 〈b〉I0 , T ](~f)(x)
∣∣∣

≤ |b(x)− 〈b〉I0|
∣∣∣T (~f)(x)

∣∣∣+ |T (~g)(x)|

≤ |b(x)− 〈b〉I0|
∣∣∣T](~f)(x)

∣∣∣+ |T](~g)(x)|

≤ C0

(
|b(x)− 〈b〉I0 |

m∏
j=1

〈|fj|〉I0 + 〈|(b− 〈b〉I0)f1|〉I0
m∏
j=2

〈|fj|〉I0

)
.

Thus the recursive claim is true for all x, and by iterating this estimate, we see that (5.2.8)

holds for the sparse collection S ′ that contains I0 and all the dyadic intervals that are con-

tained in E and those arising from the iteration.

Now observe that if x /∈ I0, and Ix is the smallest dyadic interval containing I0 and x, then

as in the proof of Lemma 4.2.3, we get

∣∣∣[b, T ](~f)(x)
∣∣∣

=
∣∣∣[b− 〈b〉Ix , T ](~f)(x)

∣∣∣
≤ 2m

2m − 1

(
sup
I
|εI |
)(
|b(x)− 〈b〉Ix|

m∏
j=1

〈|fj|〉Ix + 〈|(b− 〈b〉Ix)f1|〉Ix
m∏
j=2

〈|fj|〉Ix

)
.
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So, (5.2.7) holds for S = S ′∪{I ∈ D : I0 ( I} and C = max
{
C ′, 2m

2m−1 (supI |εI |)
}

.

5.3 Multilinear Bloom’s Inequality

Theorem 5.3.1. Let ~P = (p1, · · · , pm) with 1 < p1, · · · , pm < ∞ and 1/p1 + · · · +

1/pm = 1/p, and let ~w = (w1, . . . , wm) where wi’s are weights. Assume that w1, λ1 ∈ Ap1 ,

and that ~w1 = (w2, . . . , wm) satisfies the A~P 1 condition, where ~P 1 = (p2, . . . , pm) with∑m
i=2

1
pi

= 1
q
. Let ~α ∈ Um, ε = (εI)I∈D be bounded, and b be locally integrable. Then for

~µ1 = (λ1, w2, . . . , wm) and ν1 =
(
w1

λ1

) 1
p1 , we have

∥∥∥[b, T ~αε ]1(~f)
∥∥∥
Lp(ν~µ1 )

. C(λ1, ~w, ~P ) ‖b‖BMOν1

m∏
i=1

‖fi‖Lpi (wi), (5.3.1)

where C(λ1, ~w, ~P ) = [w1]
1
p1

max{p1,p′1}
Ap1

[λ1]
1
p1

max{p1,p′1,··· ,p′m}
Ap1

[~w1]
1
q
max{q,p′1,··· ,p′m}

A~P1
.

Similar estimates also hold for the commutators [b, T ~αε ]j with j ∈ {2, . . . ,m}.

Proof. Due to Theorem 5.2.4, it suffices to prove the above estimate for

AS,b(~f) :=
∑
I∈S

|b− 〈b〉I |
m∏
i=1

〈|fi|〉I1I

and,

AS,b,1(~f) :=
∑
I∈S

〈|(b− 〈b〉I)f1|〉I
m∏
i=2

〈|fi|〉I1I .

By Lemma (5.1) in [10], there exists a sparse collection S̃ of dyadic intervals such that

S ⊂ S̃, and for a.e. x ∈ I ∈ S,

|b(x)− 〈b〉I | ≤ C1

∑
J∈S̃,J⊆I

〈|b− 〈b〉J |〉J1J .
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So,

〈|(b− 〈b〉I)f1|〉I =
1

|I|

∫
I

|(b− 〈b〉I)f1|

.
1

|I|

∫
I

∑
J∈S̃,J⊆I

〈|b− 〈b〉J |〉J |f1|1J

≤ 1

|I|
‖b‖BMOν1

∑
J∈S̃,J⊆I

ν1(J)

|J |

∫
I

|f1|1J

=
1

|I|
‖b‖BMOν1

∑
J∈S̃,J⊆I

〈|f1|〉Jν1(J)

≤ 1

|I|
‖b‖BMOν1

∑
J∈S̃

〈|f1|〉J
∫
I

ν11J

=
1

|I|
‖b‖BMOν1

∫
I

∑
J∈S̃

〈|f1|〉J1J

 ν1

=
1

|I|
‖b‖BMOν1

∫
I

AS̃(f1)ν1

= ‖b‖BMOν1
〈AS̃(f1)ν1〉I .

This implies that,

∥∥∥AS,b,1(~f)
∥∥∥
Lp(ν~µ1 )

. ‖b‖BMOν1

∥∥∥∥∥∑
I∈S

〈AS̃(f1)ν1〉I
m∏
i=2

〈|fi|〉I1I

∥∥∥∥∥
Lp(ν~µ1 )

. ‖b‖BMOν1
[~µ1]

1
p
max{p,p′1,··· ,p′m}

A~P
‖AS̃(fj)ν1‖Lp1 (λ1)

m∏
i=2

‖fi‖Lpi (wi).

Note that ‖AS̃(f1)ν1‖Lp1 (λ1) = ‖AS̃(f1)‖Lp1 (w1)
. [w1]

1
p1

max{p1,p′1}
Ap1

‖f1‖Lp1 (w1)
.

So,

∥∥∥AS,b,1(~f)
∥∥∥
Lp(ν~µ1 )

. [w1]
1
p1

max{p1,p′1}
Ap1

[~µ1]
1
p
max{p,p′1,··· ,p′m}

A~P
‖b‖BMOν1

m∏
i=1

‖fi‖Lpi (wi).

(5.3.2)
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Now to obtain an estimate for the norm of AS,b(~f), we observe that

AS,b(~f) =
∑
I∈S

|b− 〈b〉I |
m∏
i=1

〈|fi|〉I1I

=
∑
I∈S

|b− 〈b〉I | 〈|f1|〉I
m∏
i=2

〈|fi|〉I1I

≤
∑
I∈S

(∑
J∈S

|b− 〈b〉J | 〈|f1|〉J1J

)
m∏
i=2

〈|fi|〉I1I

=

(∑
J∈S

|b− 〈b〉J | 〈|f1|〉J1J

)(∑
I∈S

m∏
i=2

〈|fi|〉I1I

)
= T1(f1)T2(~f

1) (say).

Since ν~µ1 = λ
p/p1
1 w

p/p2
2 . . . w

p/pm
m = λ

p/p1
1

(
w
q/p2
2 . . . w

q/pm
m

)p/q
= λ

p/p1
1 ν

p/q

~w1 ,

∥∥∥AS,b(~f)
∥∥∥
Lp(ν~µ1 )

=

(∫ (
AS,b(~f)

)p
ν~µ1dx

)1/p

=

(∫
T1(f1)

pT2(~f
1)pλ

p/p1
1 ν

p/q

~w1 dx

)1/p

≤
(∫

T1(f1)
p1λ1dx

)1/p1 (∫
T2(~f

1)qν~w1dx

)1/q

= ‖T1(f1)‖Lp1 (λ1)
∥∥∥T2(~f 1)

∥∥∥
Lq(ν~w1 )

Now, as shown in [10],

‖T1(f1)‖Lp1 (λ1) .
{

[w1]Ap1 [λ1]Ap1
} 1
p1

max{p1,p′1} ‖b‖BMOν1
‖f1‖Lp1 (λ1)

and,

∥∥∥T2(~f 1)
∥∥∥
Lq(ν~w1 )

. [~w1]
1
q
max{q,p′2,··· ,p′m}

A~P1

m∏
i=2

‖fi‖Lpi (wi).
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So,

∥∥∥AS,b(~f)
∥∥∥
Lp(ν~µ1 )

.
{

[w1]Ap1 [λ1]Ap1
} 1
p1

max{p1,p′1} [~w1]
1
q
max{q,p′2,··· ,p′m}

A~P1
‖b‖BMOν1

m∏
i=1

‖fi‖Lpi (wi).

Using the above estimates for
∥∥∥AS,b,1(~f)

∥∥∥
Lp(ν~µ1 )

and
∥∥∥AS,b(~f)

∥∥∥
Lp(ν~µ1 )

, it follows from

Theorem 5.2.4 that

∥∥∥[b, T ~αε ]1(~f)
∥∥∥
Lp(ν~µ1 )

. C(λ1, ~w, ~P ) ‖b‖BMOν1

m∏
i=1

‖fi‖Lpi (wi).

To see that the estimate holds for

C(λ1, ~w, ~P ) = [w1]
1
p1

max{p1,p′1}
Ap1

[λ1]
1
p1

max{p1,p′1,··· ,p′m}
Ap1

[~w1]
1
q
max{q,p′1,··· ,p′m}

A~P1
,

it suffices to prove

[~µ1]
1
p
max{p,p′1,··· ,p′m}

A~P
≤ [λ1]

1
p1

max{p,p′1,··· ,p′m}
Ap1

[~w1]
1
q
max{q,p′1,··· ,p′m}

A~P1
. (5.3.3)

Observe that
∫
I

ν~µ1 =

∫
I

λ
p/p1
1 ν

p/q

~w1 ≤
(∫

I

λ1

)p/p1 (∫
I

ν~w1

)p/q
. So,

[~µ1]A~P

= sup
I

(
1

|I|

∫
I

ν~µ1

)(
1

|I|

∫
I

λ
1−p′1
1

)p/p′1 m∏
i=2

(
1

|I|

∫
I

w
1−p′i
i

)p/p′i
≤ sup

I

(
1

|I|

∫
I

λ1

)p/p1 ( 1

|I|

∫
I

ν~w1

)p/q (
1

|I|

∫
I

λ
1−p′1
1

)p/p′1 m∏
i=2

(
1

|I|

∫
I

w
1−p′i
i

)p/p′i
= sup

I

{(
1

|I|

∫
I

λ1

)(
1

|I|

∫
I

λ
1−p′1
1

) p1
p′1

} p
p1
{(

1

|I|

∫
I

ν~w1

) m∏
i=2

(
1

|I|

∫
I

w
1−p′i
i

) q

p′
i

} p
q

= [λ1]
p
p1
Ap1

[~w1]
p
q

A~P1
.
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This gives

[~µ1]
1
p
max{p,p′1,··· ,p′m}

A~P
≤ [λ1]

1
p1

max{p,p′1,··· ,p′m}
Ap1

[~w1]
1
q
max{p,p′1,··· ,p′m}

A~P1
.

Since q > p, (5.3.3) follows. This completes the proof.
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