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SUMMARY

The amount of information that is churned out daily around the world is stagger-

ing, and hence, future technological advancements are contingent upon development

of scalable acquisition, inference, and communication mechanisms for this massive

data. This Ph.D. dissertation draws upon mathematical tools from information the-

ory and statistics to understand the fundamental performance limits of universal

compression of this massive data at the packet level using universal compression just

above layer 3 of the network when the intermediate network nodes are enabled with

the capability of memorizing the previous traffic. Universality of compression im-

poses an inevitable redundancy (overhead) to the compression performance of univer-

sal codes, which is due to the learning of the unknown source statistics. In this work,

the previous asymptotic results about the redundancy of universal compression are

generalized to consider the performance of universal compression at the finite-length

regime (that is applicable to small network packets). It is proved that the universal

compression of small network packets entails significant redundancy up to a factor

three more than what would have been asymptotically achieved if the packets were

several megabytes in size. To overcome the limits of universal compression for rela-

tively small network packets whenever the network nodes (i.e., the encoder and the

decoder) are equipped with memory, network compression via memory is proposed

as a compression-based solution when massive amounts of previous communication

is available to the encoder and the decoder. In a nutshell, network compression via

memory learns the patterns and statistics of the payloads of the packets and uses

it for compression and reduction of the traffic. Network compression via memory,

xii



with the cost of increasing the computational overhead in the network nodes, signifi-

cantly reduces the transmission cost in the network. This leads to huge performance

improvement as the cost of transmitting one bit is by far greater than the cost of

processing it.
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CHAPTER I

INTRODUCTION

In several studies, the presence of considerable amounts of correlation in network

traffic data is inferred [4, 5, 6, 65, 80, 91, 92]. Specifically, correlation may be broadly

defined in three dimensions as (1) correlation within a content being delivered from a

source/server to a client, (2) temporal correlation/dependency among different con-

tents from the same source/server across different times being delivered to the same

or different clients, and (3) spatial correlation between the content being delivered to

the same client from different but correlated sources/servers in the space.

Network traffic abounds with the first dimension of correlation (i.e., correlation

within a single content itself). For example, if a traffic contains mostly English text,

there is significant correlation in the content. In Chapter 2, the existence of cor-

relation within content for real network data via an experiment is confirmed. The

second dimension of correlation (i.e., temporal correlation/dependency among dif-

ferent contents from the same source/server) is present in principle because of the

correlation that exists among different contents from the same source/server. For

example, suppose a client downloads a content from a web server at time instant

t0. It is quite expected that if the same or another client downloads another con-

tent at some other time instant t1, it would present some correlations with the con-

tent at time t0. Likewise, the third dimension of correlation (i.e., spatial correla-

tion/dependency in different contents from different servers) exists because of the

cross-correlation among different contents from different sources/servers. The exis-

tence of such correlation has also been confirmed using real traces of network traffic

studied by [4, 5, 6, 65, 80, 91, 92]. The third dimension of correlation is present
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because of the wide variety of applications that involve acquiring data from dis-

tributed (i.e., spatially separated) sources that cannot communicate with each other,

such as, acquiring digital/analog data from sensors [79, 56, 71, 54, 35], the CEO

problem [20, 55], delivery of network packets in a content-centric network [44, 40],

acquiring data from femtocell wireless networks [22, 23], and acquiring data chunks

from the cloud storage [7, 36].

The large amount of correlation in the network has motivated the development

of novel correlation elimination techniques for network traffic data. The present

correlation elimination techniques are mostly based on (content) caching mechanisms

used by solutions such as web-caching [39], CDNs [58], and P2P applications [57],

which target the removal of the first two dimensions of correlation in the network.

However, several experiments confirm that the caching approaches, which take place

at the application layer, do not efficiently leverage the network correlation which

exists mostly at the packet level [92, 91, 65, 4, 6, 5]. To address these issues, ad-hoc

methods such as packet-level correlation elimination in which redundant transmissions

of segments of a packet that are seen in previously sent packets are avoided have been

considered in a few recent studies [6, 5]. However, these techniques are limited in

scope and can only eliminate exact duplications from larger segments of the packets

while ignoring the correlation due to the statistical dependency between the symbols

inside the packet.

Please note that universal compression schemes may also be considered as po-

tential end-to-end correlation elimination techniques for network traffic data.1 Since

Shannon’s seminal work on the analysis of communication systems, many researchers

have contributed toward the development of compression schemes with the average

codeword length as close as possible to the entropy, i.e., the fundamental compression

1Please note that in end-to-end universal compression the encoding of the packet is performed at
the server and the decoding of the packet is performed at the client without using the intermediate
nodes in the network, and hence, the name end-to-end.
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limit [28, 94, 95, 88, 87, 31, 10, 72]. Provided that the statistics of the information

source are known, Huffman block coding achieves the entropy of a sequence with a

negligible redundancy smaller than 1 bit, which is due to the integer length constraint

on the codewords [81, 84]. In the network traffic, however, a priori knowledge on the

statistics of the source cannot be assumed while it is still desired to compress the

unknown stationary ergodic source to its entropy rate. This is known as the universal

compression problem [28, 95, 87, 88, 94, 32, 59, 61, 60, 51, 13, 26, 47, 41, 8, 86, 52,

16, 59].

Universality of compression imposes an inevitable redundancy, which is due to the

learning of source statistics. This redundancy depends on the richness of the class of

the sources with respect to which the code is universal [86, 52, 16, 59]. In [77], Shields

showed that a universal redundancy for the class of stationary ergodic sources does not

exist by constructing a stationary ergodic source whose redundancy rate dominates

any given rate. Therefore, in this work, the study is focused on the fairly general class

of parametric sources for which universal redundancy rates are known to exist [59, 60].

The asymptotic behavior of the average redundancy of prefix-free codes on the class

of parametric sources has been investigated in the past and the main terms of the

redundancy have been exactly characterized [86, 60, 13]. In particular, Merhav and

Feder also derived a probablistic lower bound on the average redundancy resulting

from the compression of a sequence of length n from the family of the parametric

sources, where the source parameter follows the capacity achieving prior (i.e., Jeffreys’

prior) [52].

In Chapter 2, a tight probabilistic converse on the redundancy of the compres-

sion of a finite-length sequence from the family of parametric sources is presented.

Achievability of the the derived bound is also provided, which leads to the exact

characterization of the average redundancy of the prefix-free codes. As shall be dis-

cussed in Chapter 2, our results collectively demonstrate that the compression of

3



finite-length sequences (up to hundreds of kilobytes) incurs a significant redundancy

(i.e., overhead). This places a strict performance limit for many practical applications

including network packet compression. In other words, universal compression tech-

niques require very long data before they can effectively remove correlation from the

network packets. Further, the end-to-end traditional information theoretic techniques

would only attempt to deal with the first type of correlation mentioned above (i.e.,

correlation within a content) and lacks the structure to leverage the second dimension

of correlation.

In Chapter 3, network compression via network memory is proposed as a promis-

ing solution to overcome the limitations of universal compression of small network

packets. The basic premise of the network compression relies on the rational that

network elements, such as routers or other intermediate nodes, can be enabled to

memorize the traffic and learn about network source contents as they forward the

packets. This knowledge about source contents is then used by a properly designed

memory-assisted compression mechanism to represent new contents more efficiently

(i.e., smaller codewords). In a nutshell, equipping the network with network memory

elements will enable memorization of the source traffic as it flows naturally (or by

design) through the network. Hence, memory enabled nodes can learn the source data

statistics which can then be used (as side information) toward reducing the cost of

describing the source data statistics in the universal compression. The idea is based

on the fact that training data can be useful in decreasing the redundancy in universal

compression (cf. [47, 45, 93] and the references therein). In this work, the packet

memorization gain problem is theoretically formulate and the fundamental limits of

network compression via network memory is investigated.

Chapter 4 targets the third dimension of the correlation in the network, i.e., the

correlation between the content being delivered to the same client from spatially

separated but correlated sources/servers. Although there are several formulations for

4



the multi-terminal compression problem in the literature (cf. [79, 56, 54, 71, 35, 20, 55]

and the references therein), there are several emerging scenarios (e.g., the content-

centric networks and wireless femtocell networks) that do not fall into the realm of

the existing multi-terminal source coding problems (i.e., Slepian-Wolf, Wyner-Ziv,

CEO problem, etc). Previous work is mostly concerned about the compression of

sequences that bear symbol-by-symbol correlation. On the other hand, the focus of

this work is on the universal compression of the data traffic from multiple sources

with correlated parameter vectors which is a different notion of correlated sources.

In Chapter 4, universal compression of distributed parametric sources with correlated

parameter vectors is introduced and studied. As the most basic case, two parametric

sources S1 and S2 with unknown but correlated parameter vectors are assumed to

communicate with a destination node M . Note that ym and xn are generated as

independent samples of S1 and S2 (given the source parameter vectors are known),

respectively. However, when the source parameter vectors are unknown, ym and xn are

correlated with each other through the information they contain about the unknown

but correlated source parameter vectors. We wish to leverage this correlation in

the encoder of S2 and the decoder of M in the decoding of xn by using the side

information sequence ym (from S1) in order to reduce the average codeword length

of xn. This problem can also be viewed as universal compression with training data

(that is taken from a source with correlated source parameter), where the training

data is only available to the decoder. This problem can also be viewed as universal

compression [28, 94, 88], with decoder side only training data.

In Chapter 5, the source model is extended to a more realistic model for the

compression of network packets. Thus far, in the characterization of the fundamental

benefits of memory-assisted universal compression, it was assumed that the traffic was

generated by a single stationary ergodic source. Clearly, a single stationary ergodic

source does not fully model a real content generator server (for example the CNN

5



news website in the Internet). Instead, a better model is to view every content gener-

ator server as mixture of several information sources whose true statistical models are

not readily available. This issue has been considered in [70] by Sardari et. al., where a

memorization and clustering technique for compression is proposed. However, several

questions still remained open that are addressed in the fourth chapter of this work.

It is proved that the benefits of the optimal memory-assisted universal compression

are obtained by the clustering of the side information sequences in the memory. The

fundamental limits of the performance improvement that is expected from the joint

memorization and clustering versus the memorization without clustering are derived.

Hints are provided on how clustering scheme must be realized to achieve the optimal

compression performance with the joint memorization and clustering. Finally, simu-

lation results on man-made data as well as real traffic traces prove the usefulness of

clustering for memory-assisted compression.

In Chapter 6, the prefix constraint on the code is dropped. Thus far, the focus of

our work has been on prefix-free codes (uniquely decodable codes) where the length

function ln is required to satisfy Kraft’s inequality. Kraft’s inequality ensures that

when several blocks of length n are encoded using cn there exists a uniquely decodable

code with length function ln such that all the blocks can be uniquely decoded. For

the prefix-free codes, it is straightforward to demonstrate that the optimal average

codeword length is bounded below by the entropy. On the other hand, there are

several applications that do not require the unique decodability of the concatenated

blocks since the beginning and the end of each block is already known. For example,

in the compression of network packets, the end of each IP packet is already deter-

mined by the header of the packet. Therefore, in these cases, the unique decodability

condition is indeed too restrictive. Instead, if the mapping cn is injective, it is en-

sured that one block of length n can be uniquely decoded. These codes are known

as one-to-one codes. It has been recently shown that the average codeword length of
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one-to-one codes can be significantly below the entropy, as exactly characterized by

Szpankowski and Verdu [83]. Universal one-to-one codes (without prefix constraints)

are investigated to obtain the optimal universal coding strategy as well as the fun-

damental limits (i.e., the characterization of the achievable rate regions and the cost

of universality). Further, the network compression via network memory setup is ex-

tended to the codes without prefix constraint and the improvements obtained from

memorization of previous packets on universal one-to-one codes are characterized.

Finally, it is worth noting the scope of the network-compression benefits raised in

this work is significant since file sharing and web data is predicted to comprise more

than 45% of network traffic by year 2016 [1] for which, the packet correlation may

reach as high as 40% [92, 5, 75] which cannot be modelled/exploited using the conven-

tional distributed source coding approaches. Further, the memory-assisted universal

compression can also be applied to a range of applications such as storage reduc-

tion of cloud and distributed storage systems, traffic reduction for Internet Service

Providers, and power and bandwidth reduction of wireless communications networks

(e.g., wireless sensors networks, cellular mobile networks, hot spots). We will only fo-

cus on its application to the compression of packets from a single source in this work.

A summary of the achievements and directions for future research are presented in

Chapter 7.
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CHAPTER II

UNIVERSAL COMPRESSION IN FINITE LENGTH

Ever since entropy rate was shown to be the lower bound on the average compression

rate of any stationary source using prefix-free codes, many researchers have con-

tributed toward the development of prefix-free codes with average codeword length

approaching the entropy of the sequence. Provided that the statistics of the infor-

mation source are known, Huffman block coding achieves the entropy of a sequence

with a negligible redundancy smaller than 1 bit, which is due to the integer length

constraint on the codewords [81, 84]. In many applications, however, the sequences to

be compressed does not follow a fixed statistical model. Thus, the underlying prob-

ability distribution of the sequence is a priori unknown requiring the compression to

be universal [28, 94, 88, 63, 32, 31, 10, 14, 47].

In [77], Shields showed that a universal redundancy rate for the class of station-

ary ergodic sources does not exist by constructing a stationary ergodic source whose

redundancy rate dominates any given rate. Therefore, in this work, our study is fo-

cused on the fairly general class of parametric sources for which universal redundancy

rates are known to exist and are asymptotically characterized [59, 60]. The asymp-

totic behavior of the average redundancy of prefix-free codes on the class of parametric

sources has been extensively studied (cf. [86, 60, 13, 52, 24] and the references therein)

and the main term of the average redundancy has been exactly characterized to be

d/2 logn + O(1) [86, 60, 13]. In particular, Merhav and Feder in [52] also derived

a probablistic lower bound on the average redundancy resulting from the compres-

sion of a sequence of length n from the family of the parametric sources, where the

source parameter follows the capacity achieving prior (i.e., Jeffreys’ prior in the case
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of parametric sources).

In this chapter, we provide a tight converse bound on the average redundancy

of two-part codes and by providing the achievability of the bound, we exactly char-

acterize the average redundancy of the optimal two-part code for the family of the

parametric sources. In a two-part code, the coding is performed in two stages. The

first part of the code provides an estimation of the parameter vector obtained from the

sequence to be compressed. The second part of the code is the best (non-universal)

codeword for the sequence based on the estimated parameter in the first part of the

code. We consider both ordinary and normalized two-part codes. The ordinary two-

part codes are not optimal as they asymptotically incur an extra redundancy term

(which is characterized in this chapter) on top of the average minimax redundancy of

the prefix-free codes. On the other hand, the normalized two-part codes are optimal in

the sense that they achieve the average minimax redundancy of the prefix-free codes.

All of the known universal codes that achieve the average minimax redundancy, such

as the context tree weighting algorithm, can be cast as normalized two-part codes,

and hence, fall within the realm of our results. Additionally, we conjecture that our

results also hold for all universal prefix-free codes for parametric sources that satisfy

Kraft’s inequality.

Our contributions in this chapter are summarized in the following:

• A tight probabilistic converse (lower bound) on the average redundancy of the

compression of a finite-length sequence from the family of parametric sources

for the class of two-part codes is derived when the unknown source parameter

follows the least favorable prior.

• Achievability of the the derived bound is provided, which leads to the exact

probabilistic characterization of the average redundancy of the two-part codes

under the least favorable prior.
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• The family of ordinary two-part codes are studied and their performance loss

in comparison with the normalized two-part codes is exactly characterized.

The rest of this chapter is organized as follows. The background review and the

related work is provided in Section 2.1. In Section 2.2, the formal statement of the

problem of redundancy for finite-length universal compression of parametric sources

using the two-part codes is presented. In Section 2.3, our main results on the average

redundancy for universal compression of finite-length sequences are provided. In

Section 2.4, the significance of our results are demonstrated through several examples

using memoryless sources as well as finite memory Markov sources. Finally, the

conclusion is given in Section 2.5.

2.1 Background Review

In the following, we describe our source model together with necessary notations

and related work. Denote A as a finite alphabet. Let the parametric source be

defined using a d-dimensional parameter vector θ = (θ1, ..., θd), where d denotes the

number of the source parameters. Denote µθ as the probability measure defined by the

parameter vector θ on sequences of length n. We also use the notation µθ to refer to

the parametric source itself. We assume that the d parameters are unknown and lie in

the d-dimensional space Λ ⊂ R
d. Denote Pd

Λ as the family of parametric sources with

d-dimensional unknown parameter vector θ such that θ ∈ Λ. The family Pd
Λ contains

all source models that have a minimal representation with a d-dimensional parameter

vector θ. We use the notation xn = (x1, ..., xn) ∈ Ad to represent a sequence of length

n (which is assumed to be a realization of the random vector Xn that follows µθ

unless otherwise stated). Let Hn(θ) be the source entropy given parameter vector θ,
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i.e.,

Hn(θ),E log

(

1

µθ(Xn)

)

=
∑

xn

µθ(x
n) log

(

1

µθ(xn)

)

.1 (1)

In this dissertation log(·) always denotes the logarithm in base 2.

In this work, we consider the family of block codes that map any n-vector to a

variable-length binary sequence [81]. Next, we present the notions of strictly lossless

and almost lossless source codes, which will be needed in the sequel.

Definition 2.1.1. The code cn : An → {0, 1}∗ is called strictly lossless (also called

zero-error) if there exists a reverse mapping dn : {0, 1}∗ → An such that

∀xn ∈ An : dn(cn(x
n)) = xn.

Most of the practical data compression schemes are examples of strictly lossless

codes, namely, the arithmetic coding [49], Huffman [38], Lempel-Ziv [94, 95], and

Context-Tree-Weighting algorithm [88].

On the other hand, in the later chapters of the work, we are also concerned with

almost lossless source coding, which is a the slightly weaker notion of the lossless case.

Definition 2.1.2. The code cpen : An → {0, 1}∗ is called almost lossless with permissi-

ble error probability pe(n) = o(1), if there exists a reverse mapping dpen : {0, 1}∗ → An

such that

E{1e(X
n)} ≤ pe(n),

where 1e(x
n) denotes the error indicator function, i.e,

1e(x
n) ,











1 dpen (cpen (xn)) 6= xn,

0 otherwise.

1Throughout this chapter all expectations are taken with respect to the distribution µθ induced
by the true unknown parameter vector θ.
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The almost lossless codes allow a non-zero error probability pe(n) for any finite

n while they are almost surely asymptotically error free. Note that almost lossless

codes with pe(n) = 0 are indeed strictly lossless codes. Thus, we also use the notation

c0n to denote a strictly lossless code. The proofs of Shannon [74] for the existence of

entropy achieving source codes are based on almost lossless random codes. The proof

of the Slepian-Wolf theorem [79] also uses almost lossless codes. Further, all of the

practical implementations of SW source coding are based on almost lossless codes

(cf. [56, 71]). We stress that the almost lossless source coding is distinct from the

lossy source coding (i.e., the rate-distortion theory). In the rate-distortion theory, a

code is designed to achieve a given distortion level asymptotically as the length of the

sequence grows to infinity. Therefore, since the almost lossless coding asymptotically

achieves a zero-distortion, in fact, it coincides with the special case of zero-distortion

in the rate-distortion curve.

Denote ln(x
n) = l(cn, x

n) as the length function that describes the length of the

codeword associated with the sequence xn. In most of the work except Chapter 6,

we only consider prefix-free length functions, which in turn satisfy Kraft’s inequality,

i.e.,
∑

xn∈An

2−ln(xn) ≤ 1 (2)

Please note that we ignore the integer constraint on the length function, which results

in a negligible redundancy upper bounded by 1 bit analyzed exactly in [30, 81]. Denote

Ln as the set of all prefix-free length functions on an input sequence of length n that

satisfy Kraft’s inequality.

Let In(θ) be the Fisher information matrix for parameter vector θ,

In(θ),
{

Iij
n (θ)

}

=
1

n log e
E

{

∂2

∂θi∂θj
log

(

1

µθ(Xn)

)}

. (3)

Fisher information matrix quantifies the amount of information, on the average, that

each symbol in a sample sequence from the source conveys about the unknown source
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parameters. We assume that the following conditions hold:

1. Λ is a compact convex subspace of Rd.

2. The parametric family Λ ⊂ R
d has a minimal d-dimensional representation.

3. All elements of the Fisher information matrix In(θ) are continuous in Λ.

4. limn→∞ In(θ) exists and the limit is denoted by I(θ).

5.
∫

θ∈Λ |In(θ)|
1
2dθ < ∞.

Let rn(ln, θ, x
n) denote the redundancy of the code with length function ln for the

source parameter vector θ on the individual sequence xn, which is defined as

rn(ln, θ, x
n) , ln(x

n)− log

(

1

µθ(xn)

)

, (4)

where log(1/µθ(x
n)) is the length of the corresponding optimal non-universal code,

which in turn minimizes the average codeword length of prefix-free codes. Note that

the redundancy for an individual sequence xn need not be necessarily non-negative.

Previous works [28, 78] have studied the worst-case minimax redundancy defined as

r̄n , inf
ln∈Ln

sup
θ∈Λ

max
xn∈An

{rn(ln, θ, xn)} . (5)

The worst-case minimax redundancy characterizes the performance of the compres-

sion on the worst-case individual sequence [78, 64, 86, 13, 33, 41, 85, 30]. It has

been shown that the leading term in rn is asymptotically d
2
log n. In particular, Sz-

pankowski derived the asymptotic behavior of the worst-case minimax redundancy

and precisely derived all the terms up to O(n−3/2) [30]. The worst-case minimax

redundancy, by definition, provides a good performance measure whenever bad com-

pression performance is not tolerated on any individual sequence. However, in most

applications, we are interested in reducing the average number of the transmitted

bits, and hence, the average redundancy is a better performance metric as opposed

to worst-case redundancy.
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Denote Rn(ln, θ) as the average redundancy of the code on a sequence of length

n, defined as the difference between the expected (average) codeword length and the

entropy. That is

Rn(ln, θ) , Ern(ln, θ, X
n) = Eln(X

n)−Hn(θ). (6)

The average redundancy is clearly non-negative, where the zero-redundancy is achieved

by the optimal non-universal code. Further, a code is called universal if its average

codeword length normalized to the sequence length uniformly converges to the source

entropy rate, i.e., limn→∞
1
n
Rn(ln, θ) = 0 for all θ ∈ Λ.

Rissanen proved an asymptotic lower bound on the universal compression of in-

formation sources with d parameters as [60, 61]:

Theorem 2.1.3. [60]: In the universal compression of the family Pd
Λ, for all param-

eter vectors θ ∈ Λ, except in a set of asymptotically Lebesgue volume zero, and for

any ε > 0 we have

lim
n→∞

Rn(ln, θ)
d
2
log n

≥ 1− ε. (7)

Rissanen’s bound is asymptotically tight up to o(log n) as it is shown to be achiev-

able as well [60, 88]. Similar results were later derived for more general classes of

sources [32, 52]. While Theorem 2.1.3 determines the asymptotic fundamental limits

of the universal compression of parametric sources, it does not provide much insight

for the case of short length sequences. Moreover, the result excludes an asymptoti-

cally volume zero set of parameter vectors θ that has non-zero volume for any finite

n that needs to be characterized before anything can be stated regarding the coding

performance in the short-length regime.

Let the average minimax redundancy for a code with length function ln be defined

as [24, 90, 29]

R̄n , inf
ln∈Ln

sup
θ∈Λ

Rn(ln, θ). (8)
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The average minimax redundancy is concerned with the performance of the best

code for the worst source parameter chosen by the nature. In [24], Clarke and Barron

derived the average minimax redundancy R̄n for memoryless sources, later generalized

in [8] by Atteson for Markov sources, as the following:

Theorem 2.1.4. [24, 8]: The average minimax redundancy is asymptotically given

by

R̄n =
d

2
log
( n

2πe

)

+ log

∫

|In(θ)|
1
2dθ +O

(

1

n

)

. (9)

The average minimax redundancy characterizes the maximum redundancy over

the space Λ of the parameter vectors. However, it does not say much about the rest

of the space of the parameter vectors. Gallager showed that if µθ(x
n) is a measurable

function of θ for all xn, the average minimax redundancy is equal to the average

maximin redundancy as well as the capacity of the channel between the parameter

vector θ and the sequence xn, i.e., R̄n = maxω I(θ;X
n), where ω(·) is a probability

measure on the space Λ where the parameter vector θ resides [34, 28, 52]. Please note

that average maximin redundancy is defined as the following.

Rn = sup
p

inf
ln∈Ln

∫

θ∈Λ
Rn(ln, θ)p(θ)dθ (10)

The average maximin redundancy is associated with the best code under the worst

prior on the space of parameter vectors (i.e., the capacity achieving Jeffreys’ prior).

The average minimax redundancy is achieved by a code that assumes that the

parameter vector θ follows the capacity achieving prior, i.e., Jeffreys’ prior is both

capacity achieving and minimax optimal [52]. Jeffreys’ prior is given by [90]

pJ(θ) ,
|I(θ)| 12

∫

λ∈Λ |I(λ)|
1
2dλ

. (11)

Rissanen further proved that the redundancy for individual sequences defined in (4),

except for a Lebesgue volume zero set of sequences, is asymptotically given as d
2
logn+
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o(logn). In [52], Merhav and Feder extended Rissanen’s result to more general classes

of sources and demonstrated that asymptotically almost all sources chosen using the

capacity achieving prior (Jeffrey’s prior in the case of parametric sources) have a

redundancy no smaller than the average minimax redundancy of prefix-free codes.

In particular, Merhav and Feder’s result directly implies the following finite-length

result about the average redundancy of prefix-free codes on the parametric sources.

Theorem 2.1.5. [52]: Assume that the parameter vector θ follows Jeffreys’ prior in

the universal compression of the family Pd
Λ of parametric sources. Then, ∀ε > 0, we

have

Pθ

[

Rn(ln, θ)

R̄n

≤ 1− ε

]

≤ e2−εR̄n. (12)

Theorem 2.1.5 provides with a strong lower bound on the average redundancy

of prefix-free codes on the parametric sources when the unknown source parameter

follows the least favorable Jeffreys’ prior for all n. Further, it is not difficult to deduce

Theorem 2.1.3 from this result.

2.2 Universal Compression using Two-Part Codes

In this work, we consider the fairly general family of two-part prefix-free codes. We

provide a tight probabilistic converse bound on the average redundancy of two-part

codes when the unknown source parameter vector follows the least favorable Jeffreys’

prior. We further prove the achievability of our bound leading to the characterization

of the achievable region for coding using two-part codes. This is an important result as

most of the capacity achieving codes, such as the context tree weighting (CTW) [88],

are the concatenation of a predictor and arithmetic coding (which is a practical se-

quential version of the optimal code), and hence, are included in the two-part codes.

Next, we state the average redundancy problem in the finite-length regime, where we

will consider both ordinary two-part and normalized two-part codes.
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2.2.1 Ordinary Two-Part Codes

In an ordinary two-part code, to encode the sequence xn, the compression scheme

first estimates the source parameter vector. Then, in the second part, the sequence

xn is encoded using an optimal code for the estimated parameter vector [62, 11, 37].

Let Φm = {φ1, ..., φm} denote the set of all possible estimates of the unknown source

parameter vector θ, where φi ∈ Λ and m ∈ N is a positive integer denoting the

number of the possible estimate points. Please note that M = M(n) is a function of

the sequence length. The two-part code is given by

c2pn (xn, φi) = [ĉn(φi); ċn(x
n, φi)] , (13)

where ĉn(φi) denotes the optimal prefix-free code that is used for describing the

estimate φi of the parameter vector θ, and ċn(x
n, φi) is the optimal prefix-free non-

universal code for xn given the optimal estimate of the parameter vector is φi.

Let l̂n : ΦM → R denote the prefix-free codeword length function for the estimated

parameter vectors φi ∈ Φm. Let π = (π(φ1), . . . , π(φM)) denote an arbitrary distri-

bution on the set of estimate points in Φm. Hence, as discussed earlier, the optimal

length function hatln is given by l̂n(φi) = − log(π(φi)). On the other hand, the optimal

(non-universal) codeword length l̇n for the sequence xn, given the parameter vector

φi, is simply given by the optimal non-universal code, i.e., l̇n(x
n, φi) = − log (µφi

(xn)).

Accordingly, denote l2pn as the two-part (universal) length function for the compression

of sequences of length n, which is defined as

l2pn (xn) = log

(

1

π(φ?)

)

+ log

(

1

µφ?(xn)

)

, (14)

where

φ? = φ?(xn,Φm) , arg min
φi∈Φm

{

log

(

1

π(φi)µφi
(xn)

)}

= arg max
φi∈Φm

{π(φi)µφi
(xn)} . (15)
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Let L2p
n be the set of all two-part codes that could be described using (14) for an

arbitrary m ∈ N and arbitrary set of estimate points Φm and an arbitrary probabil-

ity vector π. Increasing the budget m for the identification of the unknown source

parameters results in a growth in the number of estimate points, and hence, smaller

l̇n(x
n, φ?) on the average due to the more accurate estimation of the unknown source

parameter vector. On the other hand, m plays a direct role in the first-term of

compression overhead, i.e., − log(π(φ?)) in (14). Therefore, it is desirable to find

the optimal m and π that minimize the total expected codeword length for a large

fraction of sources that follow the least favorable Jeffreys’ prior, which is

El2pn (Xn) = E log

(

1

π(φ?)

)

+ E log

(

1

µφ?(Xn)

)

. (16)

Let the average redundancy of two-part codes be defined as R̄n(l
2p
n ) , El2pn (Xn) −

Hn(θ), which can be expressed as

Rn(l
2p
n , θ) = E log

(

1

π(φ?)

)

+ E log

(

µθ(X
n)

µφ?(Xn)

)

. (17)

Please note that φ? = φ?(xn,Φm) is implicitly a function of the sequence xn, and

thus, the calculation of the above expectations is nontrivial. In Section 2.3.1, we

characterize the average redundancy of ordinary two-part codes in (17) in the small

sequence length regime and derive a probabilistic lower bound on the average re-

dundancy. Further, let R̄2p
n denote the average minimax redundancy of the ordinary

two-part codes, i.e.,

R̄2p
n = inf

l2pn ∈L2p
n

sup
θ∈Λ

Rn(l
2p
n , θ). (18)

In Section 2.3.2, we precisely characterize R̄2p
n and compare it with the average min-

imax redundancy of the prefix-free codes in general.

2.2.2 Normalized Two-Part Codes

Thus far, we presented the universal compression using ordinary two-part codes. In

an ordinary two-part code, we already have some knowledge about the sequence
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xn through the optimally estimated parameter φ?(xn,ΦM) (i.e., maximum likelihood

estimation). This knowledge can be leveraged for encoding xn using the second part of

the code via length function l̇n(x
n, φ?). In fact, the ordinary two-part length function

in (14) defines an incomplete coding length, in the sense that it does not achieve the

equality in Kraft’s inequality. Hence, it is straightforward to show that it does not

achieve the average minimax redundancy of the prefix-free codes either [15, 37]. On

the other hand, conditioned on φ?(xn,ΦM), the length of the codeword for xn may be

further decreased if µ̂φ?(xn) is used instead of µφ?(xn) [62] so that the coding scheme

becomes complete. This is due to the fact that the length function of sequence xn is

now associated with a probability distribution over the sequences of length n in An.

the This complete version of the this coding system is called a normalized two-part

code.

Let S(γ,Φm) ⊂ An denote the set of all xn ∈ An for which the optimally estimated

parameter is γ ∈ Φm, i.e.,

S(γ,Φm) , {xn ∈ An : φ?(xn,Φm) = γ} . (19)

Further, let A(γ,Φm) denote the total probability measure of all sequences in the set

S(γ,Φm) induced by µγ, i.e.,

A(γ,Φm) =
∑

xn∈S(γ,Φm)

µγ(x
n). (20)

Thus, the knowledge of φ?(xn,ΦM) in fact changes the probability distribution of the

sequence. Denote µ̂φ?(xn) as the probability measure of xn induced by the parameter

vector φ? given that φ?(xn,ΦM) is known, which is given by

µ̂φ?(xn) =
µφ?(xn)

A(φ?,Φm)
. (21)

Note that µ̂φ?(xn) ≥ µφ?(xn) due to the fact that A(φ?,Φm) ≤ 1. Let l̈n(x
n, φi) be

the codeword length corresponding to the conditional probability distribution, which
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is given by

l̈n(x
n, φi) = log

(

A(φi,Φ
m)

µφi
(xn)

)

. (22)

Denote ln2pn as the normalized two-part length function for the compression of se-

quences of length n using the normalized maximum likelihood. Then, we have

ln2pn (xn) = log

(

A(φ?,Φm)

π(φ?)µφ?(xn)

)

, (23)

Furthermore, it is clear from this definition that the normalized two-part codes de-

fine a complete coding system in the sense that the universal lengths satisfy Kraft’s

inequality with the equality sign.

Denote Ln2p
n as the set of the normalized two-part codes that are described us-

ing (23). Let R̄n2p
n be the average minimax redundancy of the normalized two-part

codes, i.e.,

R̄n2p
n = inf

ln2p
n ∈Ln2p

n

sup
θ∈Λ

Rn(l
n2p
n , θ). (24)

Rissanen demonstrated that this normalized version of two-part codes is in fact

optimal in the sense that the average minimax redundancy of the normalized two-

part codes is equal to that of the general prefix-free codes [64]. In other words,

R̄n2p
n = R̄n, where R̄n is the average minimax redundancy of the prefix-free codes

defined in (9). In Section 2.3.3, our goal is to investigate the performance of the

normalized two-part codes using (29). In particular, we derive a probabilistic lower

bound on the average redundancy for the compression of parametric sources using

normalized two-part codes.

2.3 Main Results on the Redundancy

In Section 2.3.1, we present a converse bound on the probability of the event that the

average redundancy of ordinary two-part codes is smaller than any fraction of d
2
log n

when the unknown source parameter follows the least favorable Jeffreys’ prior. In

Section 2.3.2, we precisely characterize the average minimax redundancy of ordinary
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two-part codes. In Section 2.3.3, we generalize the main result on the average redun-

dancy to the normalized two-part codes. In Section 2.3.4, we tailor the main results

to the class of finite-alphabet memoryless sources and restate the main results. In

Section 2.3.5, we describe a simple construction that achieves the derived converse

bounds.

2.3.1 Two-Part Code Redundancy

In this section, we restrict the code to the set of ordinary two-part length functions,

i.e., l2pn ∈ L2p
n . We derive an upper bound on the probability of the event that a

sequence of length n from the parametric source µθ is compressed with redundancy

smaller than (1 − ε)d
2
log n for any given n and ε. In other words, we find an upper

bound on Pθ[Rn(l
2p
n , θ) < (1 − ε)d

2
log n], which in turn sets a probabilistic upper

bound on the the average redundancy. Let

Γ(x) =

∫ ∞

0

tx−1e−tdt (25)

denote Euler’s gamma function.

Theorem 2.3.1. Consider the universal compression of the family of parametric

sources Pd
Λ with the unknown parameter vector θ that follows Jeffreys’ prior. Let ε be

a real number. Then,

Pθ

[

Rn(l
2p
n , θ)

d
2
logn

≤ 1− ε

]

≤ Cd
∫

|In(θ)|
1
2dθ

(

d

enε

)
d
2

f(n), (26)

where f(n) = 1 + o(1) and Cd is the volume of the d-dimensional unit ball given by

Cd =
Γ
(

1
2

)d

Γ
(

d
2
+ 1
) . (27)

As we shall see in the following, the proof of Theorem 2.3.1 is constructive, and

hence, the lower bound is indeed asymptotically achievable if we ignore the integer

constraint on the codeword length.
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First, please note that ln2pn (xn) ≤ l2pn (xn). Further, we have

l2pn (xn)− ln2pn (xn) ≥ log

(

1

A(φ?,Φm)

)

. (28)

Therefore, the average redundancy of the normalized two-part scheme is given by

Rn(l
n2p
n , θ) ≤ Rn(l

2p
n , θ)− E log

(

1

A(φ?,Φm)

)

. (29)

To prove Theorem 2.3.1, first, we need to bound the average redundancy in (17).

To proceed, let φ◦ be defined as

φ◦ = φ◦(θ,ΦM) , arg min
φi∈Φm

Dn(µθ||µφi
). (30)

where Dn(µθ||µφ◦) is the non-negative Kullback–Leibler divergence between the prob-

ability measures µθ and µφ◦ given by

Dn(µθ||µφ◦) = E log

(

µθ(x
n)

µφ◦(xn)

)

. (31)

Let Iφ? 6=φ◦(xn, θ,ΦM) be the usual indicator function of the event [φ? 6= φ◦]. Further,

let

B(θ,ΦM) ,
∑

xn∈An

µθ(x
n)Iφ? 6=φ◦(xn, θ,ΦM). (32)

Lemma 2.3.2. If M = O
(

n
d
2
(1−ε)

)

for some ε > 0, then for all ΦM and λ > 0, we

have

Pθ

[

B(θ,ΦM ) ≥ λ
]

= o

(

1

n
d
2
ε

)

. (33)

Proof. See Appendix A.1.

Lemma 2.3.2 lets us deal with φ◦ instead of φ? in the rest of our treatment.

Next, we use a probabilistic treatment in order to bound Dn(µθ||µφ◦) for a certain

fraction of the source parameters. We assume that the parameter vector θ follows the

capacity achieving Jeffreys’ prior. As discussed earlier, this distribution is particularly
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interesting since it results in uniform convergence of redundancy over the space of the

parameter vectors and hence it achieves the average minimax redundancy [47, 90].

In order to bound the average redundancy Rn(l
2p
n , θ), in the following, we find

an upper bound on the Lebesgue measure of the volume of the event defined by

1
n
Dn(µθ||µφ◦) < δ in the d-dimensional space of θ. Since φ◦ ∈ Φm, the total probability

measure of the volume defined by minφi∈Φm
1
n
Dn(µθ||µφi

) < δ would be upper bounded

as well. This represents the probability of the event that the source has a small

redundancy. This enables us to compute the desired upper bound on the probability

measure of the sources with Rn(l
2p
n , θ) ≤ δ.

Lemma 2.3.3. Assume that the parameter vector θ follows Jeffreys’ prior. Then,

Pθ

[

1

n
Dn(µθ||µφi

) ≤ δ

]

=

Cd
∫
|In(θ)|

1
2 dθ

(

2δ
log e

)
d
2
(

1 +O
(

1√
n

))

. (34)

Further, we have

Pθ

[

min
φi∈Φm

1

n
Dn(µθ||µφi

) ≤ δ

]

≤

M Cd
∫
|In(θ)|

1
2 dθ

(

2δ
log e

)
d
2
(

1 +O
(

1√
n

))

. (35)

Proof. See Appendix A.2.

Lemma 2.3.3 states that the probability of the event that 1
n
Dn(µθ||µφi

) < δ does

not depend on φi when θ follows Jeffreys’ prior. Further, the probability of the event

minφi∈ΦM
1
n
Dn(µθ||µφi

) < δ becomes only a function of m. In fact, it is independent

of the choice of the points in Φm in the space of θ, as long as the points are chosen

far apart so that the regions covered by each data point do not overlap. We are now

equipped to prove the main result given in Theorem 2.3.1.

Proof of Theorem 2.3.1. Using Lemma 2.3.2, we can rewrite (17) as:

Rn(l
2p
n , θ) = min

φi∈Φm

{

l̂n(φi) +Dn(µθ||µφi
)
}

w.h.p. (36)
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Hence,

Pθ

[

Rn(l
2p
n , θ)

d
2
logn

≤ 1− ε

]

(37)

≤ Pθ

[

min
φi∈Φm

{

l̂n(φi) +Dn(µθ||µφi
)
}

≤ (1− ε)
d

2
log n

]

(38)

≤
M
∑

i=1

Cd
∫

|In(θ)|
1
2dθ

(

2δ(φi)

log e

)
d
2
(

1 +O

(

1√
n

))

. (39)

The last inequality is obtained using Lemma 2.3.3. Here, δ(φi) is given by

δ(φi) = (1− ε)
d

2n
log n− l̂n(φi)

n
. (40)

The inequality in (39) holds for all values of M and all length functions l̂n corre-

sponding to π. We can minimize the right hand side to find an upper bound that is

independent of the value of M and the length function l̂n.:

Pθ

[

Rn(l2p, θ)
d
2
logn

≤ 1− ε

]

≤ min
M

min
l̂n

{

M
∑

i=1

Cd
∫

|In(θ)|
1
2dθ

(

2δ(φi)

log e

)
d
2

}

(41)

upto a multiplicative constant
(

1 +O
(

1√
n

))

. Carrying out the inner minimization

in (39) leads to l̂n(φi) = logM and hence δop = (1− ε) d
2n

log n− logM
n

, which in turn

leads to the following:

Pθ

[

Rn(l2p, θ)
d
2
logn

≤ 1− ε

]

≤ min
M

{

M
Cd

∫

|In(θ)|
1
2dθ

(

2δop
log e

) d
2

}

(

1 +O

(

1√
n

))

. (42)

Now, by carrying out the outer minimization we find that the optimal value of M ,

denoted by Mop is given by

Mop =
n

d
2
(1−ε)

e
d
2

. (43)

First, note that Mop = O
(

n
d
2
(1−ε)

)

and hence Lemma 2.3.2 applies. Further, we are

interested in points θ ∈ Λ such that E log
(

µθ(x
n)

µφ?(x
n)

)

= O(1). Hence, it is straight-

forward to see that the error term due to using φ◦ instead of φ? can be extracted in
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the 1 + o(1) error term. By using Mop in (41), the desired result in Theorem 2.3.1 is

obtained.

2.3.2 Average Minimax Redundancy of Ordinary Two-Part Codes

In this section, we characterize the average minimax redundancy for two-part codes.

Theorem 2.3.4. In the universal compression of the family of parametric sources

Pd
Λ, the average minimax redundancy of two-part codes is obtained by

R̄2p
n = R̄n + g(d) +O

(

1

n

)

. (44)

Here, R̄n is the average minimax redundancy defined in (9) and g(d) is the penalty

term attributed to the ordinary two-part scheme given by

g(d) = log Γ

(

d

2
+ 1

)

− d

2
log

(

d

2e

)

. (45)

Proof. Let F (n, d, θ, ε) , Cd
∫
|In(θ)|

1
2 dθ

(

d
enε

)
d
2 . Denote Rε , (1 − ε)d

2
logn as a redun-

dancy level. Then, according to Theorem 2.3.1, for any ε such that 1−F (n, d, θ, ε) > 0,

Rε is a lower bound on the maximum redundancy. This is due to the fact that

P [Rn(ln, θ) > Rε] > 0, i.e., there exists at least one parameter θ such that Rn(ln, θ) >

Rε. Moreover, note that the average minimax redundancy is achieved when the pa-

rameters follow Jeffreys’ prior [24, 47]. Therefore, the maximum redundancy in our

case is the average minimax redundancy and we have R̄2p
n > Rε. Note that as de-

scribed in Section 2.3.1, the lower bound in Theorem 2.3.1 is tight and achievable. If

we minimize ε (maximize Rε) with the constraint that F (n, d, θ, ε) < 1, we get the

tightest lower bound on the average minimax redundancy as

R̄2p
n =

d

2
logn− logCd + log

∫

|In(θ)|
1
2dθ − d

2
log

(

d

e

)

, (46)

Theorem 2.3.4 is inferred if Cd is substituted from (27) in (46).

25



2.3.3 Normalized Two-Part Code Redundancy

Thus far, we established a lower bound on the average redundancy for the universal

compression of the family of parametric sources when the coding scheme is restricted

to the ordinary two-part codes. Now, we relax this constraint and obtain the lower

bound on the average redundancy of universal compression for normalized two-part

coding.

Theorem 2.3.5. Assume that the parameter vector θ follows Jeffreys’ prior in the

universal compression of the family of parametric sources Pd
Λ. Let ε be a real number.

Then,

Pθ

[

Rn(l
n2p
n , θ)

d
2
log n

≤ 1− ε

]

≤ 1
∫

|In(θ)|
1
2dθ

(

2πe

nε

)
d
2

f(n), (47)

where f(n) = 1 + o(1).

Note that it is straightforward to deduce Theorem 2.1.3 for the case of normalized

two-part codes from Theorem 2.3.5 for ε > 0 by letting n → ∞. Before we prove the

theorem, we state a corollary that transforms it into a form similar to Merhav and

Feder’s theorem (Theorem 2.1.5 in this dissertation).

Corollary 2.3.6. Assume that the parameter vector θ follows Jeffreys’ prior in the

universal compression of the family of parametric sources Pd
Λ. Let ε be a real number.

Then,

Pθ

[

Rn(l
n2p
n , θ)

R̄n

≤ 1− ε

]

≤ 2−εR̄nf(n), (48)

where f(n) = 1 + o(1) and f(n) < e.

Proof. It is straightforward to transform the result of Theorem 2.3.5 into this form

by using the proper ε. The fact that f(n) < e is deduced from Theorem 2.1.5.

Corollary 2.3.6 provides with a tight converse on the universal compression of

parametric sources.
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The key in the proof of Theorem 2.3.5 is the following lemma that puts an upper

bound on the saving achieved by using the normalized two-part codes.

Lemma 2.3.7. The penalty term in the average redundancy of the two-part coding is

upper bounded as

Rn(l
2p
n , θ)−Rn(l

n2p
n , θ) ≤ g(d) +O

(

1

n

)

. (49)

Proof. See Appendix A.3

Lemma 2.3.7 states that the difference between the average redundancy of two-

part codes with that of the normalized two-part codes is no larger than g(d), which

is the difference between the minimax redundancy of the two-part codes with that of

the normalized two-part codes. We may now prove Theorem 2.3.5.

Proof of Theorem 2.3.5. First note that according to Lemma 2.3.7, we have

Rn(l
2p
n , θ) ≤ Rn(l

n2p
n , θ) + g(d) +O

(

1

n

)

. (50)

Hence,

Pθ

[

Rn(l
n2p
n , θ) + g(d)
d
2
log n

≤ 1− ε̂

]

≤ Pθ

[

Rn(l
2p
n , θ)

d
2
log n

≤ 1− ε̂

]

≤ Cd
∫

|In(θ)|
1
2dθ

(

d

enε̂

)
d
2

, (51)

where the second inequality is due to Theorem 2.3.1, for any ε̂. Now, the desired

result is then achieved if we set ε such that

(1− ε)
d

2
logn = (1− ε̂)

d

2
logn− g(d).
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2.3.4 Two-Part Code Redundancy for Memoryless Sources

In this section, we tailor the results for the class of memoryless sources due to their

importance. Although, the material in this section is directly resulted from the more

general results on the class of parametric sources, alternative proofs for the material

in this section may be found in [15]. LetM|A|
m denote the family ofm-th order Markov

sources with alphabet size |A|. Consequently, M|A|
0 will be used to denote the family

of memoryless sources. Let k = |A| be the size of the alphabet A. The parameter

vector θ = (θ1, ..., θk) can be described as θj = P[X = αj] and
∑

j θj = 1. Note that

the parameters lie in a (k − 1)-dimensional simplex, i.e., d = k − 1. Let ri count the

appearance of symbol αi in sequence xn. Let fi denote the empirical mass function

for the symbol αi, i.e., fi = ri/n. Then, the probability measure µθ over a memoryless

source with parameter vector θ is

µθ(x
n) = P[Xn = xn|θ] =

k
∏

i=1

θrii . (52)

Further, let φ? = (φ?
1, ..., φ

?
k) ∈ Φm denote the optimal estimated point for the se-

quence xn. Then, the probability measure defined by φ? is

µφ?(xn) =
k
∏

i=1

φ?
i
ri. (53)

In the following, we state the main results on the compression of finite-alphabet

memoryless sources:

Corollary 2.3.8. Consider the universal compression of the family of memoryless

sources M0. Assume that the parameter vector θ follows Jeffreys’ prior. Let ε be a

real number. Then,

Pθ

[

Rn(l
2p
n , θ)

k−1
2

log n
≤ 1− ε

]

≤
(

k − 1

enε

)
k−1
2

Dk, (54)

where

Dk =
Γ
(

k
2

)

Γ
(

k+1
2

)

√

1

π
. (55)

28



Note that Dk ≈
√

2
kπ

for k � 2. Corollary 2.3.8 is a direct consequence of

Theorem 2.3.1. In the case of memoryless sources, Jeffreys’ prior for the parameter

vector θ is given by

pJ(θ) =
Γ
(

k
2

)

Γ
(

1
2

)k

k
∏

j=1

1
√

θj
, (56)

where Γ(·) is Euler’s gamma function defined in (25). This is in fact the (1
2
, ..., 1

2
)

Dirichlet distribution. Further, the square root of the determinant of the Fisher

information matrix may be analytically obtained as
∫

Λ

|In(θ)|
1
2dθ =

Γ
(

1
2

)k

Γ
(

k
2

) . (57)

This expression enables us to further simplify the main results in Theorem 2.3.4 for

memoryless sources as the following.

Corollary 2.3.9. Consider the universal compression of the family of memoryless

sources M0. Then, the average minimax redundancy of two-part codes is obtained by

R̄2p
n = R̄n + log Γ

(

k + 1

2

)

− k − 1

2
log

(

k − 1

2e

)

+O

(

1

n

)

, (58)

where R̄n is the average minimax redundancy for memoryless sources given by [24] as

R̄n =
k − 1

2
log
( n

2π

)

+ log

(

Γ
(

1
2

)k

Γ
(

k
2

)

)

+O

(

1

n

)

. (59)

Corollary 2.3.9 gives the extra redundancy due to the two-part coding of the

memoryless sources.

In the following, we present Theorem 2.3.5 for the special case of the memoryless

sources.

Corollary 2.3.10. Assume that the parameter vector θ follows Jeffreys’ prior in

the universal compression of the family of memoryless sources M0. Let ε be a real

number. Then,

Pθ

[

Rn(l
n2p
n , θ)

k−1
2

logn
≤ 1− ε

]

≤ Γ
(

k
2

)

√
π

(

2

nε

)
k−1
2

. (60)
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2.3.5 Achievability

It is not difficult to argue that the converse bound derived so far is indeed achievable.

We only need to demonstrate that a set of non-overlapping d-dimensional ellipsoids

(weighted by the inverse of the least favorable Jeffreys’ prior) can be packed into the

d-dimensional space Λ of the parameter vectors. Since the volume of these ellipsoids

tends to zero as they approach the boundaries of the space, we can move the ellipsoids

toward the boundaries and ensure that they do not overlap whilst covering the same

measure under the least favorable prior. Therefore, by choosing such covering of the

space we can indeed make sure that the bounds are achieved.

Please note that in order to achieve the average minimax redundancy, we will need

to cover the space with ellipsoids [14]. Although sphere packing [9, 53] and sphere

covering [25] are distinct problems, it turns out that in our problem they have similar

limiting behaviors when a set of non-overlapping d-dimensional ellipsoids weighted

by the inverse of the least favorable Jeffreys’ prior are involved.

2.4 Elaboration on the Results

In this section, we elaborate on the significance of our results.

2.4.1 Redundancy in Finite-Length Sequences with Small d

We demonstrate that the average minimax redundancy underestimates the perfor-

mance of source coding in the small to moderate length n for sources with small d. In

Figures 1 and 2, the x-axis denotes a fraction P0 and the y-axis represents a redun-

dancy level R0. The solid curves demonstrate the derived lower bound on the average

redundancy of the normalized two-part codes R0 as a function of the fraction P0 of

the sources with redundancy larger than R0, i.e., Pθ[Rn(l
n2p
n , θ) ≥ R0] ≥ P0. In other

words, the pair (R0, P0) on the redundancy curve means that at least a fraction P0 of

the sources that are chosen from Jeffreys’ prior have an average redundancy that is
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n = 128 (Minimax)

n = 512 (Norm. Two-Part)

n = 512 (Minimax)

Figure 1: Average redundancy of the normalized two-part codes (Norm. Two-Part)
and the average minimax redundancy (Minimax) as a function of the fraction of
sources P0 whose redundancy satisfies Rn(l

n2p
n , θ) > R0. Memoryless source M3

0 with
k = 3 and d = 2.

greater than R0. Note that the unknown parameter vector is chosen using Jeffreys’

prior in all of the examples.

First, we consider a ternary memoryless information source denoted by M3
0. Let

k be the alphabet size, where k = 3. This source may be parameterized using two

parameters, i.e., d = 2. In Figure 1, our results are compared to the average minimax

redundancy, i.e., R̄n from (9). Since the normalized two-part codes achieve the min-

imax redundancy, R̄n is in fact the average minimax redundancy for the normalized

two-part codes (R̄n2p
n ) as well. The results are presented in bits. As shown in Figure 1,

at least 40% of ternary memoryless sequences of length n = 32 (n = 128) may not be

compressed beyond a redundancy of 4.26 (6.26) bits. Also, at least 60% of ternary

memoryless sequences of length n = 32 (n = 128) may not be compressed beyond
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n = 50 (Norm. Two-Part)

n = 50 (Minimax)

n = 202 (Norm. Two-Part)

n = 202 (Minimax)

n = 811 (Norm. Two-Part)

n = 811 (Minimax)

Figure 2: Average redundancy of the normalized two-part codes (Norm. Two-Part)
and the average minimax redundancy (Minimax) as a function of the fraction of
sources P0 whose redundancy satisfies Rn(l

n2p
n , θ) > R0. First-order Markov source

M2
1 with k = 2 and d = 2.

a redundancy of 3.67 (5.68) bits. Note that as n → ∞, the average redundancy

approaches the average minimax redundancy for most sources.

Next, let M2
1 denote a binary first-order Markov source (d = 2). We present the

finite-length compression results in Figure 2 for different values of sequence length

n. The values of n are chosen such that they are almost log(3) times the values

of n for the ternary memoryless source in the first example. This choice has been

made to equate the amount of information in the two sequences from M3
0 and M2

1

allowing a fair comparison. For example, a sequence of length n = 8 from source

M3
0, consisted of 8 ternary symbols, is equivalent to 8 log(3) bits of information that

is almost equivalent to 12 bits in M2
1.
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Figure 3: Average redundancy of the two-part codes (solid) vs average redundancy
of the normalized two—stage codes (dotted) as a function of the fraction of sources
P0. Memoryless source M2

0 with k = 2 and d = 1.

Figure 2 shows that the average minimax redundancy of the normalized two-part

codes for the case of n = 12 is given as R̄12 ≈ 2.794 bits. Comparing Figure 1

with Figure 2, we conclude that the average redundancy of universal compression for

a binary first-order Markov source is very similar to that of the ternary memoryless

source, suggesting that d is the most important parameter in determining the average

redundancy of finite-length sources. This subtle difference becomes even more negli-

gible as n → ∞ since the dominating factor of redundancy for both cases approaches

to d
2
log n.

Further, as demonstrated in Figures 1 and 2, there is a significant gap between

the known result by the average minimax redundancy and the finite-length results

obtained in this chapter when a high fraction P0 of the sources is concerned. The

bounds derived in this chapter are tight, and hence, for many sources the average

33



10
0

10
1

10
2

0.5

1

1.5

2

2.5

3

3.5

4

4.5

 

 

d

g(d)

1/2 log(πd)

Figure 4: The extra redundancy incurred due to the two-part assumption on the
code as a function of d.

minimax redundancy overestimates the average redundancy in universal source coding

of finite-length sequences where the number of the parameters d is small. In other

words, the compression performance of a high fraction of finite-length sources would

be better than the estimate given by the average minimax redundancy.

2.4.2 Two-Part Codes Vs Normalized Two-Part Codes

Next, we compare the finite-length performance of the two-part codes with that of the

normalized two-part codes on the class of binary memoryless source M2
0 with k = 2

(d = 1). The results are presented in Figure 3. The solid line and the dotted curves

demonstrate the lower bound for the two-part codes and the normalized two-part

codes, respectively. As can be seen, the gap between the achievable compression using

two-part codes and that of the normalized two-part codes constitutes a significant

fraction of the average redundancy for small n. For a Bernoulli source, the average
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Figure 5: Average redundancy of the normalized two-part codes (Norm. Two-Part)
and the average minimax redundancy (Minimax) as a function of the fraction of
sources P0 whose redundancy satisfies Rn(l

n2p
n , θ) > R0. First-order Markov source

with k = 256 and d = 65280. The sequence length n is measured in bytes (B).

minimax redundancy of the two-part code is given in (58) as

R̄2p
n = R̄n +

1

2
log
(πe

2

)

≈ R̄n + 1.048. (61)

The average minimax redundancy of two-part codes for the case of n = 8 is given as

R̄2p
8 ≈ 2.86 bits while that of the normalized two-part codes is R̄8 ≈ 1.82. Thus, the

two-part codes incur an extra compression overhead of more than 50% for n = 8.

In Theorem 2.3.4, we derived that the extra redundancy g(d) incurred by the

two-part assumption. We further use Stirling’s approximation for sources with large

number of parameters in order to show the asymptotic behavior of g(d) as d → ∞.

That is, asymptotically, we have

g(d) =
1

2
log (πd) + o(1). (62)
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Figure 6: The Lower bound on compression for at least 95% of the sources as a
function of sequence length n vs. the entropy rate Hn(θ)/n.

Note that o(1) denotes a function of d and not n here. As demonstrated in Figure 4,

g(d) is increasing logarithmically with d as d → ∞. Finally, we must note that

the main term of redundancy in R̄n is d
2
log n, which is linear in d, but the penalty

term g(d) is logarithmic in d. Hence, the adverse impact of the two-part assumption

becomes negligible for the families of sources with larger d.

2.4.3 Average Redundancy for Sources with Large d

In this section, we validate our results that the average minimax redundancy provides

a good estimate on the achievable compression for most sources when d is large for

sufficiently large n. We consider a first-order Markov source with alphabet size k =

256. We intentionally picked this alphabet size as it is a common practice to use the

byte as a source symbol. This source may be represented using d = 256×255 = 62580

parameters. In Figure 5, the achievable redundancy is demonstrated for four different
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values of n. Here, again the redundancy is measured in bits but the sequence length

in this example is presented in bytes. The curves are almost flat when d and n are

very large validating our results that. We further observe that for n = 256kB, we

have Rn(ln, θ) ≥ 100, 000 bits for most sources. Further, the extra redundancy due

to the two-part coding is equal to g(d) ≈ 8.8 bits, which is a negligible fraction of

the average redundancy of 100, 000 bits. This demonstrates that as the number of

source parameters grow, the minimax redundancy well estimates the performance of

the source coding.

2.4.4 Significance of Redundancy in Finite-Length Compression

One of the results of this chapter is to characterize the significance of redundancy

in finite-length compression. Figure 6 demonstrates the average number of bits per

symbol normalized to the entropy of the sequence for different values of entropy rates

required to compress the class of the first-order Markov sources . In this figure, the

dashed red curve demonstrates the lower bound on the achievable compression rate

for at least 95% of sources with entropy rate of 1 bit per source symbol (per byte),

i.e., at least 95% of the sources from this class may not be compressed with a re-

dundancy smaller than the value given by the curve. We consider these sources since

many practical sources have an entropy rate that is smaller than 1 bit per source

symbol. As can be seen, the compression overhead is 38%, 16%, 5.5%, 1.7%, and

0.5% for sequences of lengths 256kB, 1MB, 4MB, 16MB, and 64MB, respectively.

Hence, we conclude that redundancy may be significant for the compression of low

entropy sequences of length up to 1MB. On the other hand, redundancy is negligible

for sequences of length 64MB and higher. This shows that the redundancy is signif-

icant in the compression of small to medium length sequences with large number of

parameters.

37



2.5 Conclusion

In this chapter, the average redundancy rate of universal coding schemes on para-

metric sources in the finite-length regime was investigated. A lower bound on the

probability of the event that an information source chosen using Jeffreys’ prior from

the family of parametric information sources is not compressible beyond any certain

fraction of the average minimax redundancy was derived. This result may be viewed

as the finite-length extension of the existing asymptotic results. It was demonstrated

that the average minimax redundancy underestimates the performance of source cod-

ing in the small to moderate length sequences for sources with small number of param-

eters. The performance of two-part codes was compared with normalized two-part

codes. It was shown that the penalty term of the ordinary two-part coding is negligible

for sources with large d as well as for the sequences of sufficient lengths. Further, as

the number of source parameters grows very large, the average minimax redundancy

provides an accurate estimate for the performance of the source coding. Finally, our

results collectively demonstrate that the redundancy is significant in the universal

compression of small length sequences with large number of source parameters, such

as the network packets.
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CHAPTER III

NETWORK COMPRESSION VIA MEMORY

The presence of considerable amounts of correlation in network traffic data has

motivated the employment of correlation elimination techniques for network traf-

fic data [92, 4, 6, 5, 80]. The present correlation elimination techniques are mostly

based on (content) caching mechanisms used by solutions such as web-caching [39],

CDNs [58], and P2P applications [57]. However, several experiments confirm that

the caching approaches, which take place at the application layer, do not efficiently

leverage the network redundancy which exists mostly at the packet level [92, 4, 6, 5].

To address these issues, a few recent studies have considered ad-hoc methods such

as packet-level Redundancy Elimination (RE) in which redundant transmissions of

segments of a packet that are seen in previously sent packets are avoided [6, 5]. How-

ever, these techniques are limited in scope and can only eliminate exact duplications

from the segments of the packets.

Universal compression schemes may also be considered as potential end-to-end cor-

relation elimination techniques for network traffic data.1 However, as characterized in

Chapter 2, universality imposes an inevitable redundancy, which is due to the learning

of source statistics. In Section 3.1, we will demonstrate that the universal compres-

sion of finite-length network packets (up to hundreds of kilobytes) incurs a significant

redundancy (i.e., overhead). This places a strict performance limit for many practical

applications including compression of packets from a single parametric source in the

network. In other words, such techniques require infinite length data to effectively

1Please note that by end-to-end universal compression we mean that the encoding of the packet
is performed at the server and the decoding of the packet is performed at the client without using
the intermediate nodes in the network, and hence, the name end-to-end.
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Figure 7: The basic scenario of single-source memory-assisted compression.

remove redundancy. Further, the end-to-end traditional information theoretic tech-

niques would only attempt to deal with the first type of redundancy mentioned above

(i.e., redundancy within a content) and lacks the structure to leverage the second

dimension of redundancy.

In this chapter, network compression via memory is proposed. The basic premise

of the network compression relies on the rational that network elements, such as

routers or other intermediate nodes, can be enabled to memorize the traffic and learn

about network source contents as they forward the packets. This knowledge about

source contents is then used by a properly designed memory-assisted compression

mechanism to represent new contents more efficiently (i.e., smaller codewords). In a

nutshell, equipping the network with network memory elements will enable memo-

rization of the source traffic as it flows naturally (or by design) through the network.

As such, memory enabled nodes can learn the source data statistics which can then

be used (as side information) toward reducing the cost of describing the source data

statistics in compression. The idea is based on the fact that training data can be

useful in decreasing the redundancy in universal compression (cf. [47, 45, 93] and the

references therein). We theoretically formulate the packet memorization gain problem

and investigate the fundamental limits of network compression via network memory.

The objective of this chapter is to study the network compression via memory involv-

ing a single source to leverage the two types of redundancy mentioned earlier. This
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is in contrast to the Slepian-Wolf coding that targets the spatial redundancy between

distributed information sources [79, 71, 56].2

The rest of this chapter is organized as follows. In Section 3.1, the concept of

network compression is introduced and the necessary background is presented. In

Section 3.2, the network compression problem setup is defined. In Section 3.3, the

memorization gain is defined and our main results on the memorization gain are pro-

vided. In Section 3.4, the benefits of the memory-assisted compression are demon-

strated in a network through a case study. In Section 3.6, the technical analysis of the

main results of the chapter is presented. Finally Section 3.7 concludes this chapter.

3.1 Basic Concept of Network Compression

The network compression module resides, by design, at the network layer. We describe

network compression in the most basic network scenario depicted in Figure 7. As

described in Section 2.1, we use the notation xn = (x1, ..., xn) to present a sequence

of length n, where each symbol xi is from the alphabet A. For example, for an

8-bit alphabet that has 256 symbols, each xi is a byte. Note also that xn denotes

a single packet at the network layer. We assume that, as shown in Figure 7 as a

basic setup, the network consists of the server S, the intermediate memory-enabled

(relay or router) node M , and the clients C1 and C2.
3 In this scenario, S wishes

to send the packet xn to C2. As a new client, C2 does not have any prior (recent)

communication with the server, and hence, it does not have any memory regarding

the source context. However, as an intermediate (relay or router) node enabled with

memory, the node M has already observed a previous sequence ym from S while

2Please note that in the Slepian-Wolf coding the sequences from the distributed sources are
assumed to have symbol-by-symbol correlation, which is also different from our correlation model in
this work that is due to the parameter vector being unknown in the universal compression.

3The network also possibly contains some other relay nodes in the S-M , M -C1 and M -C2 paths
that are not shown in the figure.
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forwarding it to C1 . Therefore, the server S would encode xn using the memory-

assisted universal compression (which uses the memory ym) and send the resulting

codeword to M . Since M has already established a common memory (ym) with

server S, it can decode the incoming codeword. The node M would then possibly

re-encode the sequence xn using traditional universal compression (without memory)

before sending the new codeword to the client C2, which can decode it using the

corresponding traditional universal compression method. Note that since on the link

from S to M , the packet xn is compressed using memory, we expect to leverage the

knowledge that is provided by the memory about the packet (xn). We will quantify

this memorization gain later in Section 3.3. We emphasize, however, that the above

scenario is simplified for the clarity of the discussion. For example, the memory ym,

in practice, is the result of the concatenation of several previously forwarded packets

by M from the server S in serving various other clients.

Alternatively, in the absence of the network compression, the delivery of the packet

(xn) from S to C2 in Figure 7 is performed using the traditional compression schemes

as follows. Since there is no utilization of memory at M , the source can only apply

traditional universal compression to packet xn and transmit the resulting codeword

to M who simply forwards the incoming codeword to C2. We refer to this latter

method as end-to-end universal compression, which does not utilize memory. Obvi-

ously, there is potential performance benefits offered by network compression (due

to memory) on the link from S to M that is missed in the second method (end-to-

end compression). Note that on the link from M to C2, both network compression

and end-to-end compression have identical performance. Therefore, it is clear from

the above discussion that to characterize the benefits offered by network compres-

sion (which uses memory-assisted compression), we need to quantify the performance

advantage of memory-assisted universal compression over traditional universal com-

pression of a packet on the link from the server to the memory element (i.e., from
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S to M in Figure 7). In the nutshell, as it will become clear, this advantage is due

to the finiteness of the packet length and the penalty incurred by the universal com-

pression of the finite-length sequences. Namely, we would like to answer the following

questions in the above setup:

1. Would the deployment of memory in the source (encoder) and the intermediate

node (decoder) provide any fundamental benefit in the universal compression

of a packet from a single source?

2. If so, how does this gain vary as the packet length n and the memorized context

length m change?

In the context of end-to-end compression, the performance of traditional univer-

sal compression techniques was reviewed in Chapter 2, where using a probabilistic

treatment, a lower bound was provided on the probability measure of the event that

a sequence of finite length n from a parametric source is compressed using the fam-

ily of conditional two-part codes with a redundancy larger than a certain fraction of

the average minimax redundancy. To demonstrate the significance of this result, we

considered an example using a first-order Markov source with alphabet size k = 256.

This source may be represented using d = 256×255 = 62580 parameters. We further

assume that the source entropy rate is 0.5 bit per byte (Hn(θ)/n = 0.5). Please

note that we will confirm this assumption shortly using real network data. Then, our

result from Section 2.4 suggests that the compression overhead is more than 75% for

sequences of length 256kB. Hence, we concluded that redundancy is significant in the

compression of finite-length low-entropy sequences, such as the Internet traffic pack-

ets that are much shorter than 256kB. It is this redundancy that we hope to remove

using the memorization technique. The compression overhead becomes negligible for

very long sequences (e.g., it is less than 2% for sequences of length 64MB and above),

and hence, the benefits of the memorization technique vanish as the sequence length
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Figure 8: The compression rate for LZ77 and CTW compression algorithms on CNN
server files as a function of the sequence length.

grows to infinity. This is due to the fact that the compression overhead is O (log n/n)

which vanishes for large n.

Similar conclusions can be drawn for real network data tarces. To illustrate the

significance of the redundancy when network packets are universally compressed, we

performed several experiments using some well-known universal compression algo-

rithms. In particular, we used packets that were gathered from CNN web server in

seven consecutive days. Although we arbitrarily chose this web server for our illus-

tration, similar conclusions can be drawn using data from other web servers. We

used both Context Tree Weighting (CTW) [88] and LZ77 algorithm [94] for the com-

pression. As shown in Figure 8, a modest performance can be achieved by universal

compression when the length n of the packet to be compressed is relatively small.

For example, for a packet of length n = 1kB, the compression rate is about 5 bits
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per byte. Note that the uncompressed packet requires 8 bits per source byte rep-

resentation. We also note that as the sequence length n increases, the compression

performance improves.4 For very long sequences, the compression rate is about 0.5

bits per byte confirming our earlier assumption of Hn(θ)/n = 0.5. In other words,

comparing the compression performance between n = 1kB and n = 16MB, there is a

penalty of factor 10 on the compression performance (i.e., 5 as opposed to 0.5). This

implies that for network packets which often have short or moderate lengths, there is

a significant loss in the performance of universal compression. It is this redundancy

that we wish to remove using the network memory.

3.2 Setup of the Network Compression

In this section, we attempt to formulate the network compression via memory in

an information-theoretic context. To that end, we limit the scope of the network

compression to the universal compression of packets from a single source. We further

limit our study to the scenario, where the packets are generated by a stationary

source. Evidently, the network compression module, which resides at the network

layer, observes packets that cannot be solely from a single stationary source in a

real-world content server in a network. Although the stationary assumption may

appear a simplistic model, it still provides with useful insight to the fundamental

gain offered by the network compression via memory. Further, as we have presented

in [18, 70], a real content server can be potentially viewed as a mixture of several

stationary sources in which we can solve the network compression via clustering of

packets to different classes, where each class is associated with a distinct stationary

source. Therefore, in the rest of this work, we will pretend that the network server is a

single stationary source, where the source encoder (at the server) wishes to compress

an individual packet. We assume that the source is a parametric information source

4Please note that each sequence can be thought of as the concatenation of several packets.
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Figure 9: Abstraction of the single-source compression.

with parameter vector θ, where θ follows the least favorable Jeffreys’ prior.

As explained in Section 3.1, both the encoder at S and the decoder at the mem-

ory enabled router M , in Figure 7, have another sequence ym from the same un-

known information source (i.e., the server) in common. This common sequence can

be viewed as the concatenation of all previous packets that node M has forwarded

from the source S to different destinations. As discussed earlier, network compression

via memory and the traditional end-to-end compression only differ in the S-M link

where the former utilizes memory-assisted compression for the improved performance.

The model for the coding system is depicted in Figure 9. The memory-assisted com-

pression and the traditional universal compression scenarios correspond to the switch

s being closed and open, respectively. In memory-assisted compression, we wish to

compress the sequence xn when both the encoder and the decoder have access to a

realization ym of the random sequence Y m. This setup, although very generic, can

incur in many applications.

In this setup, let cpen,m : An ×Am → {0, 1}∗ denote the memory-assisted encoding,

which generates a code with the help of a side information sequence of length m.

Further, denote dpen,m : {0, 1}∗ × Am → An as the memory-assisted decoding, which

will reconstruct xn with probability at least (1 − pe) at the decoder with the help

of the same side information sequence of length m. Thus, when the sequence ym

is available to both the encoder and the decoder, the codeword associated with the

compression of the sequence xn with permissible error probability pe is c
pe
n,m(x

n, ym).

This codeword is decoded at node M with the help of ym with permissible error
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probability pe. We have x̂n = dpen,m(c
pe
n,m(x

n, ym), ym). The schematic for the encoding

and decoding is also illustrated in Figure 9

In order to quantify the benefits of the network compression via memory, we

need to investigate the fundamental gain of the memorization in the memory-assisted

universal compression of the sequence xn over traditional universal source coding.

Thus, we introduce the following two schemes.

• Ucomp (Traditional universal compression), in which a sole universal compres-

sion using cpen (·) is applied on the sequence xn without regard to the sequence

ym. This corresponds to switch s being open in Figure 9.

• UcompED (Memory-assisted universal compression), in which the encoder at S

and the decoder at M both have access to the memorized sequence ym from the

source S, and they use ym to learn the statistics of the source S to better com-

press xn. Thus, the compression is performed using cpen,m(·, ·). This corresponds

to switch s being closed in Figure 9.

Let lpen : An → R denote the universal length function for an almost lossless code

with permissible error probability pe. In this work, we ignore the integer constraint on

the length function, which results in a negligible O(1) redundancy analyzed in [30, 81].

Therefore, in Ucomp coding strategy, the length of the code for the compression of

the sequence xn with error pe is denoted by lpen (xn). Further, when the code is strictly

lossless the length is given by ln(x
n) , l0n(x

n). Let Lpe
n denote the space of universal

lossless length functions on a sequence of length n, with permissible decoding error

pe. Denote Rn(l
pe
n , θ) as the expected redundancy of the almost lossless code lpen on a

sequence of length n for the parameter vector θ, defined as

Rn(l
pe
n , θ) = Elpen (Xn)−Hn(θ). (63)

Let R̄Ucomp(n) denote the average minimax redundancy of the Ucomp coding strategy
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as given by

R̄pe
Ucomp(n) , inf

lpen ∈Lpe
n

sup
θ∈Λd

Rn(l
pe
n , θ). (64)

We denote R̄0
Ucomp(n) as the expected minimax redundancy when the compression

scheme is restricted to be strictly lossless, i.e., the case where pe = 0.

In UcompED, denote lpen,m : An ×Am → R as the almost lossless universal length

function for encoding a sequence of length n with permissible error probability pe.

Thus, since both the encoder and the decoder have access to a memorized sequence ym

in UcompED coding strategy, the length function for encoding the sequence xn with

error pe is denoted by lpen,m(x
n, ym). Further, denote Lpe

n,m as the space of such lossless

universal length functions. Further, let R̄UcompED(n,m) denote the corresponding

average minimax redundancy, i.e.,

R̄pe
UcompED(n,m) , inf

lpen,m∈Lpe
n,m

sup
θ∈Λd

Rn(l
pe
n,m, θ). (65)

The following trivial inequality states that the redundancy decreases when side

information is available, i.e., UcompED coding strategy.

Lemma 3.2.1. For a given permissible error probability pe, the average minimax re-

dundancy of UcompED coding strategy is no larger than that of Ucomp coding strategy,

i.e., R̄UcompED(n,m) ≤ R̄Ucomp(n).

Lemma 3.2.1 simply states that the context memorization improves the perfor-

mance of the universal compression.

3.3 Fundamental Gain of Memorization

In this section, we define and characterize the fundamental gain of memorization in

the different coding strategies described in Section 3.2. Roughly speaking, the gain

is the ratio of the expected codeword length of the traditional end-to-end universal

compression (i.e., Ucomp) to that of the universal compression with memorization
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(i.e., UcompED). Let Q(n,m, θ, pe) be defined as the ratio of the expected codeword

length with length function lpen to that of lpen,m, i.e.,

Q(n,m, θ, pe) ,
Elpen (Xn)

Elpen,m(Xn)
=

Hn(θ) +Rn(l
pe
n , θ)

Hn(θ) +Rn(l
pe
n,m, θ)

. (66)

Further, let ε be such that 0 < ε < 1. We define gM(n,m, θ, ε, pe) as the gain of

UcompED strategy as compared to Ucomp. That is

gM(n,m, θ, ε, pe) , sup
z∈R

{z : P[Q(n,m, θ, pe) ≥ z] ≥ 1− ε} . (67)

In other words, gM(n,m, θ, ε, pe) is the fundamental gain of the memorization on a

sequence of length n using UcompED coding strategy with a memory of length m

for a fraction (1 − ε) of the sources from the family Pd, where the permissible error

probability is pe. In other words, memorization of the sequence ym provides at least

a gain gM(n,m, θ, ε, pe) for a fraction (1− ε) of the sources in the family. Our goal is

to derive a lower bound on the fundamental gain of memorization gM(n,m, θ, ε, pe).

The following is a trivial lower bound on the memorization gain.

Lemma 3.3.1. The fundamental gain of memorization is lower bounded by unity,

i.e., gM(n,m, θ, ε, pe) ≥ 1.

Proof. Note that lpen ∈ Lpe
n,m and the proof trivially follows from the definition of the

memorization gain.

According to Lemma 3.3.1, the memorization does not worsen the performance

of the universal compression. We stress again that the saving of memory-assisted

compression in terms of flow reduction is only applicable to the links on the S-M path

in Figure 7. For example, for the given context memorization gain gM(n,m, θ, ε, pe) =

g0, the expected number of bits needed to transfer xn to node M is reduced from

Elpen (Xn) in Ucomp to 1
g0
Elpen (Xn) in UcompM.
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3.3.1 Main Results on the Memorization Gain

Now, we present our main results on the fundamental gain of memorization. The

proofs are deferred to Section 3.6. The next theorem characterizes the fundamental

gain of memory-assisted source coding:

Theorem 3.3.2. Assume that the parameter vector θ follows Jeffreys’ prior in the

universal compression of the family of parametric sources Pd. Then,

gM(n,m, θ, ε, pe) ≥ 1 +
(1− pe)R̄

0
Ucomp(n)− R̂M(n,m)

Hn(θ) + R̂M(n,m)

+
log(ε)− h(pe)− peHn(θ)− log e

Hn(θ) + R̂M(n,m)
+O

(

1

n
√
m

)

,

50



where R̂M(n,m) is defined as

R̂M(n,m) ,
d

2
log
(

1 +
n

m

)

. (68)

and h(pe) is the binary entropy function as given by

h(pe) = pe log

(

1

pe

)

+ (1− pe) log

(

1

1− pe

)

. (69)

Let gM(n,m, θ, ε, 0) denote the fundamental gain of memorization for strictly loss-

less coding schemes. The following corollary bounds the memorization gain in this

case.

Corollary 3.3.3. Assume that the parameter vector θ follows Jeffreys’ prior in the

universal compression of the family of parametric sources Pd. Then,

gM(n,m, θ, ε, 0) ≥ 1 +
R̄0

Ucomp(n)− R̂M(n,m)

Hn(θ) + R̂M(n,m)

+
log(ε)− log e

Hn(θ) + R̂M(n,m)
+O

(

1

n
√
m

)

.

Further, let gM(n,∞, θ, ε, pe) be defined as the fundamental gain of context mem-

orization where there is no constraint on the length of the memorized content, i.e,

gM(n,∞, θ, ε, pe) , limm→∞ gM(n,m, θ, ε, pe). The following Corollary quantifies the

context memorization gain for unbounded memory size.

Corollary 3.3.4. Assume that the parameter vector θ follows Jeffreys’ prior in the

universal compression of the family of parametric sources Pd. Then,

gM(n,∞, θ, ε, pe) ≥ 1 +
(1− pe)R̄

0
Ucomp(n)

Hn(θ)

+
log(ε)− h(pe)− peHn(θ)− log e

Hn(θ)
.
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Next, we consider the case where the sequence length n grows to infinity. Intu-

itively, we would expect that the context memorization gain become negligible for the

compression of long sequences. Let gM(∞, m, θ, ε, pe) , limn→∞ gM(n,m, θ, ε, pe). In

the following, we claim that the context memorization does not provide any benefit

when n → ∞:

Proposition 3.3.5. gM(n,m, θ, ε, pe) approaches unity as the length of the sequence

xn grows, i.e., gM(∞, m, θ, ε, pe) = 1.

Note that these results are valid for finite-length n (as long as n is large enough

to satisfy the central limit theorem criteria).

3.3.2 Significance of the Memorization Gain

Next, we demonstrate the significance of the memorization gain through an example.

We again consider a first-order Markov source with alphabet size k = 256. We also

assume that the source is such that Hn(θ)/n = 0.5 bit per source symbol (byte). In

this example, we focus on strictly lossless compression schemes, and hence, pe = 0. In

Figure 10, the lower bound on the memorization gain is demonstrated as a function

of the sequence length n for different values of the memory size m. As can be seen,

significant improvement in the compression may be achieved using memorization. For

example, the lower bound on gM(32kB, m, θ, 0.05, 0) is equal to 1.39, 1.92, 2.22, and

2.32, when the context parameter m is 128kB, 512kB, 2MB, and 8MB, respectively.

Further, gM(512kB,∞, θ, 0.05, 0) = 2.35. Hence, more than a factor of two improve-

ment is achieved on top of traditional universal compression when network packets

of lengths up to 32kB are compression using the memory-assisted compression tech-

nique. As demonstrated in Figure 10, the memorization gain for memory of size 8MB

is very close to gM(n,∞, θ, ε, 0), and hence, increasing the memory size beyond 8MB

does not result in substantial increase of the memorization gain. On the other hand,
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we further observe that as n → ∞, the memorization gain becomes negligible regard-

less of the memory size. For example, at n = 32MB even when m → ∞, we have

g(32MB,∞, θ, 0.05, 0) ≈ 1.01, which is a subtle improvement. This is not surprising

as the redundancy that is removed via the memorization technique is O(logn/n),

which becomes negligible as n → ∞.

3.3.3 Analysis of the Required Memory Size

Thus far, we have shown that significant performance improvement is obtained from

memory-assisted compression. As also was evident in the example of Section 3.3.2, as

the size of the memory increases the performance of the memory-assisted compression

is improved. However, there is a certain memory size beyond which the improvement

becomes negligible. In this section, we will quantify the required size of memory such

that the benefits of the memory-assisted compression apply.

Let ĝM(n, θ, ε, pe) be defined as

ĝM , 1 +
(1− pe)R̄

0
Ucomp(n) + log

(

ε
e

)

− h(pe)− peHn(θ)

Hn(θ)
. (70)

Then, the following theorem determines the size of the required memory.

Theorem 3.3.6. Let m? be given by

m?(δ, θ) =
1−δ
δ

d
2
log e

Hn(θ)
n

. (71)

Then, for any m ≥ m?, we have

gM(n,m, θ, ε, pe) ≥ (1− δ)ĝM(n, θ, ε, pe).

Proof. Using Theorem 3.3.2, we have

gM(n,m, θ, ε, pe) ≥ ĝM
Hn(θ)

Hn(θ) + R̂M(n,m)
. (72)

Now, the theorem is proved by considering the following lemma, the proof of which

is provided in Appendix A.4.
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Figure 11: The sample network in case study.

Lemma 3.3.7. If m ≥ m?, we have

Hn(θ)

Hn(θ) + R̂M(n,m)
≥ 1− δ.

Theorem 3.3.6 determines the size of the memory that is sufficient for the gain to

be at least a fraction (1 − δ) of the gain obtained as m → ∞. If we again consider

the first-order Markov source example of the previous section, with δ = 0.01, we have

m?(δ, θ) ≈ 8.9MB is sufficient for the gain to reach 99% of its maximum confirming

our previous observation.

3.4 A Simple Case Study on Network

In this section, we would like to demonstrate as to how the memory-assisted compres-

sion gain (over the existing end-to-end compression techniques) is leveraged in terms

of the compression of network traffic. The example illustrates as to how we explore

the memory element for the purpose of the network traffic compression.

We already demonstrated in Section 2 that the redundancy rate for the univer-

sal compression is quite large when the sequence length n is finite. As discussed
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throughout this work, our proposition in memory-assisted compression is to utilize

the memory to achieve a significantly smaller code length. Assume that source S is

the CNN server and the packet size is n = 1kB. Further, assume that the memory size

is 4MB. In Section 2.4, we demonstrated that for this source, the average compression

ratio for Ucomp is 1
n
Eln(X

n) = 4.42 bits per byte for this packet size. We further

expected that the memorization gain for such packet size be at least g = 5. Note that

the rest of this discussion is concerned as to how the memorization gain impacts the

overall performance in the network.

We now demonstrate the gain of network compression in bit×hop (BH) for the

sample network presented in Figure 11, where M denotes the memory element. As-

sume that the server S would serve the client C in the network. The intermediate

nodes Ri are not capable of memorization. Recall that the network compression gain

is measured versus the conventional end-to-end compression. It is also important to

recall that the memorization gain g is leveraged on every link that uses memory. For

example, in the simple network in Fig 7, the gain of UcompED over Ucomp in terms

of flow reduction is only applicable to the links on the S-M path. Hence, for the

given memorization gain g0 = gM(n,m, θ, ε, pe), the number of bits needed to trans-

fer xn from node S to node M is reduced from Eln(X
n) in Ucomp to 1

g0
Eln(X

n) in

UcompED.

To investigate the gain in terms of bit×hop, we consider the two schemes of

UcompED and Ucomp. Let d(S, C) denote the length of the shortest path from

S to C, which is clearly d(S, C) = 3, e.g., using the path e1, e5, e10. Let BH(S, C)

denote the minimum bit-hop cost required to transmit the sequence (of length n)

from S to C without any compression mechanism, which is BH(S, C) = 24kbits

(which is 1kB×8bits/byte×3). In the case of end-to-end universal compression, i.e.,

using Ucomp, on the average we need to transmit BHUcomp = nrnd(S, C) bit×hop

for the transmission of a packet of length n to the client. However, in the case of
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network compression via memory, i.e., using UcompED, for every information bit on

the path from the server to the memory element M , we can leverage the memory,

and hence, we require 1
n
Eln,m(X

n, Y m) bit transmissions per each source symbol that

is transmitted to the memory element. Then, the memory element M will decode

the received codeword using UcompED decoder and the side information sequence

ym. It will then re-encode the result using Ucomp encoder for the final destination

(the client C). In this example, this implies that we require to transmit 2
n
Eln,m(X

n)

bit×hop on the average from S to M on links e1 and e3 (i.e., d(S,M) = 2) for

each source symbol. Then, we transmit the message using Eln(X
n) bit×hop per

source symbol from M to C on the link e9. Let BHUcompED be the minimum bit×hop

cost for transmitting the sequence (of length n) using the network compression, i.e.,

BHUcompED = 2Eln,m(X
n, Y m) + Eln(X

n). Let GBH be the bit×hop gain of network

compression, defined as GBH =
BHUcomp

BHUcompED
. Thus, GBH = 2.14 in this example by

substituting g0 = 5. In other words, network compression (using UcompED)achieves

more than a factor of 2 saving in bit×hop over the end-to-end universal compression

of the packet (using Ucomp).

3.5 Scaling of the Network-Wide Memorization Gain

In [66, 67], Sardari et al. demonstrated that by deploying memory in the network (i.e.,

enabling some nodes to memorize source sequences), the correlation in the network

traffic can be significantly suppressed leading to a much smaller communication cost.

In [66, 67], it was assumed that memorization of the previous sequences from the

same source provides a fundamental gain g (in the path from the source to a memory

node) over and above the performance of the end-to-end universal compression of a

new sequence from the same source. Given the link level gain g, the network-wide

memorization gain G on both a random network graph [66] and a power-law network

graph [67] were derived when a small fraction of the network nodes are capable of
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memorization. Further, the scaling of G with the number of memory elements in the

network was obtained. However, [66] and [67] did not explain as to how the link level

gain g is computed.

3.6 Technical Analysis: Proof of Theorem 3.3.2

In order to establish the desired lower bound on gM(n,m, θ, ε, pe), we need a lower

bound on Rn(l
pe
n , θ). Further, we require a useful upper bound on Rn(l

pe
n,m, θ).

3.6.1 Lower Bound on the Redundancy of the End-to-End Coding Strat-
egy

In the case of the strictly lossless Ucomp coding strategy, the side information se-

quence is not utilized for the compression of xn. It was shown by Clarke and Barron

in [24] and later generalized by Atteson in [8] that:

Theorem 3.6.1. The average minimax redundancy for the strictly lossless Ucomp

coding strategy is given by

R̄0
Ucomp(n) =

d

2
log
( n

2πe

)

+ log

∫

θ∈Λd

|I(θ)| 12dθ +O

(

1

n

)

.

In order to prove Theorem 3.3.2, we need a lower bound on the expected re-

dundancy, i.e., Rn(l
pe
n , θ). To this end, we need a lower bound which was derived

in Chapter 2 in Corollary 2.3.6. The result in Corollary 2.3.6 uses R̄pe
Ucomp(n). By

considering the almost lossless Ucomp coding strategy, we demonstrate the following

lower bound on R̄pe
Ucomp(n).

Theorem 3.6.2. The average minimax redundancy for the lossless Ucomp coding

strategy is lower bounded by

R̄pe
Ucomp(n) ≥ (1− pe)R̄

0
Ucomp(n)− h(pe)− peHn(θ),

where h(pe) is the binary entropy function defined in (69).
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Proof. This is proved in the more general form in Theorem 4.5.1.

The following lemma helps to combine the results of Corollary 2.3.6 and Theo-

rem 3.6.2 for the desired lower bound.

Lemma 3.6.3. For any R̂L ∈ R such that 0 < R̂L ≤ R̄pe
Ucomp(n), we have

P

[

Rn(l
pe
n , θ)

R̂L

≥ 1− δ

]

≥ 1− e2−δR̂L .

Proof. We have

P

[

Rn(l
pe
n , θ)

R̂L

≥ 1− δ

]

≥ P

[

Rn(l
pe
n , θ)

R̄pe
Ucomp(n)

≥ 1− δ

]

(73)

≥ 1− e2−δR̄pe
Ucomp(n) (74)

≥ 1− e2−δR̂L , (75)

where the inequalities in (73) and (75) are due to R̂L ≤ R̄pe
Ucomp(n), and the inequality

in (74) is due to Corrolary 2.3.6.

3.6.2 Upper Bound on the Redundancy of the Memory-Assisted Com-
pression Strategy

Next, we present the upper bound on for UcompED coding strategy. In the case

of strictly lossless UcompED, since a random sequence Y m is also known to the

encoder, the achievable codelength for representing xn is given by H(Xn|Y m). Then,

the redundancy is given by the following theorem.

Theorem 3.6.4. The average minimax redundancy for the strictly lossless UcompED

coding strategy is

R̄0
UcompED(n,m) =

d

2
log
(

1 +
n

m

)

+O

(

1

n
+

1

m

)

.

58



Proof. We prove that the right hand side in Theorem 3.6.4 is both an upper bound

and a lower bound for R̄UcompED(n,m). The upper bound is obtained using the KT-

estimator [47] along with a Shannon code [74] and the proof follows the analysis of

the redundancy of the KT-estimator. In the next lemma, we obtain the lower bound.

Lemma 3.6.5. The average minimax redundancy of UcompED is lower-bounded by

R̄0
UcompED(n,m) ≥ d

2
log
(

1 +
n

m

)

+O

(

1

m
+

1

n

)

.

The proof of Lemma 3.6.5 is provided in Appendix A.5.

In the case of almost lossless UcompED coding strategy, we have the following

upper bound.

Proposition 3.6.6. The average minimax redundancy for lossless UcompED coding

strategy is upper bounded by

R̄pe
UcompED(n,m) ≤ R̄0

UcompED(n,m).

Proposition 3.6.6 sets the desired upper bound on the average redundancy of the

memory-assisted compression.

3.6.3 Main Proof

We are now equipped to present the proof of our main result.
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Proof of Theorem 3.3.2. First note that

Q(n,m, θ, pe) =
Elpen (Xn)

Elpen,m(Xn)
(76)

=
Hn(θ) +Rn(l

pe
n , θ)

Hn(θ) +Rn(l
pe
n,m, θ)

(77)

≥ Hn(θ) +Rn(l
pe
n , θ)

Hn(θ) + R̄pe
UcompED(n,m)

(78)

≥ Hn(θ) +Rn(l
pe
n , θ)

Hn(θ) + R̄0
UcompED(n,m)

(79)

, Q̆(n,m, θ, pe), (80)

where the inequality in (78) follows from the definition of the average minimax

redundancy and the inequality in (79) is due to Proposition 3.6.6. Further, let

ğ(n,m, θ, ε, pe) be defined as

ğ(n,m, θ, ε, pe) , sup
z∈R

{

z : P
[

Q̆(n,m, θ, pe) ≥ z
]

≥ 1− ε
}

. (81)

Equation (80) implies

P [Q(n,m, θ, pe) ≥ z] ≥ P
[

Q̆(n,m, θ, pe) ≥ z
]

. (82)

Thus, gM(n,m, θ, ε, pe) ≥ ğ(n,m, θ, ε, pe). We can now apply Corollary 2.3.6 to

Rn(l
pe
n , θ) in (79). Then, we can consider Lemma 3.6.3 with R̂L obtained from the

result of Theorem 3.6.2. Then, if δ is chosen such that ε = e2−δR̂L , this will provide

with a lower bound on ğ(n,m, θ, ε, pe), which completes the proof by substituting

R̄0
UcompED(n,m) from Theorem 3.6.4.

3.7 Conclusion

In this chapter, network compression via network memory was proposed. It was

demonstrated that using memorization of the previously seen packets, it is possible

to achieve a fundamental improvement over the performance of traditional end-to-

end universal compression. The fundamental gain of memorization was defined and a
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lower bound was derived on the memorization gain. It was concluded that if the in-

termediate nodes in the network are capable of memorization, significant performance

improvement is obtained in the universal compression of network packets. Memory-

assisted compression was shown to offer significant improvement above and beyond

the conventional end-to-end compression. In summary, this chapter demonstrated

that via memorization of the previous packets, the intermediate nodes in the network

can learn about the source statistics, which in turn results in noticeable improvement

of the performance of the universal compression.
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CHAPTER IV

UNIVERSAL COMPRESSION OF DISTRIBUTED

SOURCES

A wide variety of applications involve acquiring data from distributed (i.e., spatially

separated) sources that cannot communicate with each other, such as, acquiring digi-

tal/analog data from sensors [79, 56, 71, 54, 35], the CEO problem [20, 55], delivery of

network packets in a content-centric network [44, 40], acquiring data from femtocell

wireless networks [23, 22], acquiring data chunks from the cloud storage [7, 36], etc.

In all such applications, compression of the data can result in significant performance

improvement by saving bandwidth.

The premise of data compression broadly relies on the correlation in the data.

For instance, data that are gathered from multiple sensors measuring the same phe-

nomenon (e.g., temperature) are clearly correlated. As another example, when chunks

of the same file/content are acquired by a client in a content-centric network, the

data chunks are correlated because they are originated from the same file/content.

Although there are several formulations for the multi-terminal source coding problem

in the literature (cf. [79, 56, 54, 71, 35, 20, 55] and the references therein), there are

several emerging scenarios (e.g., the content-centric networks and wireless femtocell

networks) that do not fall into the realm of the existing multi-terminal source cod-

ing problems (i.e., Slepian-Wolf, Wyner-Ziv, CEO problem, etc). Previous work is

mostly concerned about the compression of sequences that bear symbol-by-symbol

correlation. On the other hand, the focus of this work is on the universal compression

of the data traffic from multiple sources with correlated parameter vectors (which

is a different notion of correlated sources that fits the universal compression of the

62



xn

S2

S1

encoder decoder
cpe(C) x̂n

se sdym

θ(2)

M

θ(1)

Figure 12: The compression model for universal distributed source coding with cor-
related parameter vectors.

Internet traffic data).

In this chapter, we introduce and study universal compression of distributed para-

metric sources with correlated parameter vectors. As the most basic case, we assume

two parametric sources S1 and S2 with unknown parameter vectors θ(1) and θ(2), re-

spectively. The source nodes communicate with a destination node M , as shown in

Figure 12. We further assume that θ(1) and θ(2) are correlated as we will describe the

nature of their correlation in detail in Section 4.1. Note that we assume that ym and

xn are generated as independent samples of S1 and S2 (given the source parameter

vectors are known), respectively. However, when the source parameter vectors are

unknown, ym and xn are correlated with each other through the information they

contain about the unknown but correlated source parameter vectors. We wish to

leverage this correlation in the encoder of S2 and the decoder of M in the decoding of

xn by using the side information sequence ym (from S1) in order to reduce the average

codeword length of xn.

This problem can also be viewed as universal compression with training data that

is available to the encoder and/or the decoder. Thus far, in Chapter 3, we derived

the average redundancy that is incurred in the universal compression of the sequence

xn from S2 when a side information sequence ym from S2 (i.e., the same source) is

available to both the encoder (at S2) and the decoder (at M). This corresponds to

the reduced case of our problem where the correlation between the source parameter

vectors is in the form of exact equality, i.e., θ(2) = θ(1). Further, we only considered
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the encoder-decoder side information case, which occurs when the sources S1 and

S2 are allowed to communicate. However, as we demonstrate in this chapter, the

extension to the multiple spatially separated sources, where the training data is not

necessarily from the same source model and is only available to the decoder raises a

non-trivial set of challenges that are addressed in this work.

The rest of this chapter is organized as follows. In Section 4.1, we describe the

source models. In Section 4.2, we present the formal problem setup. In Section 4.3,

we provide the definition of the minimum average redundancy as the performance

metric for the universal compression of distributed sources. Sections 4.4 and 4.5 give

the main results on the average redundancy of strictly lossless and almost lossless

codes, respectively. In Section 4.6, we provide some discussion on the significance of

our results. Finally Section 4.7 concludes the chapter.

4.1 Source Models: The Nature of Correlation

To proceed, we first review the necessary background. Let A be a finite alphabet with

alphabet size |A|. We define a parametric source by using a d-dimensional parameter

vector θ = (θ1, ..., θd) ∈ Λ, where d denotes the number of the source parameters and

Λ ⊂ R
d is the space of d-dimensional parameter vectors of interest. Denote µθ as the

probability measure defined by a parameter vector θ on sequences of length n from

the source. In this chapter, we consider two parametric sources S1 and S2 with d-

dimensional parameter vectors θ(1) ∈ Λ and θ(2) ∈ Λ, respectively. We further assume

that the parameter vectors are a priori unknown to the encoder and the decoder.

Let xn = (x1, ..., xn) ∈ An be a sequence of length n from the alphabet A.

Throughout this chapter we use the notation Xn ∼ µθ(2) to denote a random sequence

Xn of length n that follows with probability distribution function µθ(2). Similarly, we

use the notation Y m ∼ µθ(1) to denote a random sequence of length m that follows

µθ(1) (i.e., generated by S1).
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As discussed earlier, the least favorable prior on the space of the parameter vectors

is Jeffreys’ prior given in (11). Jeffreys’ prior is optimal in the sense that the minimum

average redundancy is asymptotically achieved by an optimal code when the source

parameter vector is assumed to follow Jeffreys’ prior [24]. This prior distribution is

particularly interesting because it also corresponds to the least favorable prior for the

compression performance of the best coding scheme, i.e., it is the capacity achieving

distribution.

Next, we present our model for the nature of the correlation between the parameter

vectors of the sources S1 and S2. In this model, as we shall see, the correlation

between the two sources is controlled using the single parameter T . Assume that

θ(1) follows Jeffreys’s prior, i.e., θ(1) ∼ pJ or pθ(1)(θ
(1)) = pJ(θ

(1)). Let Z2T be a

random sequence of length 2T that follows µθ(1). We further assume that given Z2T ,

the parameter vectors θ(1) and θ(2) are independent and identically distributed, i.e.,

pθ(2)|z2T (·) = pθ(1)|z2T (·). Then, the conditional distribution of θ(2) given θ(1), i.e.,

pT
θ(2)|θ(1)(·), is given by the following:

pTθ(2)|θ(1)(θ
(2)|θ(1)) =

∑

z2T ∈A2T

p(θ(2), z2T |θ(1)) (83)

=
∑

z2T

pθ(1)|z2T (θ
(2)|z2T )µθ(1)(z

2T ) (84)

= pJ(θ
(2))
∑

z2T

(

µθ(1)(z
2T )µθ(2)(z

2T )
∫

λ∈Λ µλ(z2T )pJ(λ)dλ

)

. (85)

This conditional distribution results in the joint distribution defined in Definition 4.1.1.

Definition 4.1.1. Let θ(1) and θ(2) denote the parameter vectors associated with S1

and S2, respectively. Then, S1 and S2 are said to be correlated with degree T if

(θ(1), θ(2)) have the following joint probability distribution:

pTθ(1),θ(2)(θ
(1), θ(2)) , pJ(θ

(1))pJ(θ
(2))

∑

z2T ∈A2T

(

µθ(1)(z
2T )µθ(2)(z

2T )
∫

λ∈Λ µλ(z2T )pJ(λ)dλ

)

.1

1Please note that we use the superscript T to stress that the conditional distribution is defined as
a function of the parameter T .
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In the following, we state some of the nice properties of this correlation model.

Lemma 4.1.2. The marginal distributions of θ(1) and θ(2) are Jeffreys’ prior, i.e.,

pθ(1)(θ
(1)) = pJ(θ

(1)) and pθ(2)(θ
(2)) = pJ(θ

(2)).

Proof.

pθ(2)(θ
(2)) =

∫

θ(1)∈Λ
pTθ(1),θ(2)(θ

(1), θ(2))dθ(1) (86)

= pJ(θ
(2))
∑

z2T

(

µθ(2)(z
2T )
∫

θ(1)∈Λ µθ(1)(z
2T )pJ(θ

(1))dθ(1)
∫

λ∈Λ µλ(z2T )pJ(λ)dλ

)

(87)

= pJ(θ
(2))
∑

z2T

µθ(2)(z
2T ) = pJ(θ

(2)). (88)

The claim for pθ(1)(θ
(1)) is proved similarly and is omitted for brevity.

Lemma 4.1.3. The conditional distribution of θ(1) given θ(2) is symmetric, i.e.,

pTθ(2)|θ(1)(y|x) = pTθ(1)|θ(2)(y|x).

Proof. The proof is competed by using Bayes’ rule and Lemma 4.1.2.

According to Lemma 4.1.3, the conditional distribution pT
θ(2)|θ(1) is symmetric.

Thus, there is no distinction between S1 and S2. In other words, for any given

T , the problem of the universal compression of a sequence xn from S2 given a side

information sequence from S1 becomes equivalent to the problem of the compression

of a sequence xn from S1 given a side information sequence from S2.

Lemma 4.1.4. If T = 0, then θ(2) and θ(1) are independent, i.e.,

p0θ(2)|θ(1)(θ
(2)|θ(1)) = pJ(θ

(2)).
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Proof. We have

p0θ(2)|θ(1)(θ
(2)|θ(1)) = pJ(θ

(2))
∫

λ∈Λ pJ(λ)dλ
= pJ(θ

(2)), (89)

which completes the proof.

According to Lemma 4.1.4, we can make θ(1) and θ(2) independent by setting

T = 0. In this case, both θ(1) and θ(2) will follow Jeffreys’ prior, i.e., identically

distributed.

Lemma 4.1.5. The parameter vector θ(2) converges to θ(1) in probability as T → ∞.

Proof. See Appendix A.6.

According to Lemma 4.1.5, when T → ∞, we have θ(2) → θ(1) in probability,

which reduces to the universal compression of distributed identical sources problem

studied in [17].

Remark: The degree of correlation between the two parameter vectors θ(1) and θ(2) is

determined via the parameter T . This degree of correlation varies from independence

of the two parameter vectors at T = 0 all the way to their equality when T → ∞.

4.2 Problem Setup

In this section, we present the basic setup of the problem. As shown in Figure 12,

the setup is comprised of two sources S1 and S2. Let y
m and xn denote two sequences

(samples) of lengths m and n, respectively, that are generated by S1 and S2, i.e.,

samples from θ(1) and θ(2). Here, we only consider the case where m = ω(n),2 i.e.,

the length of the side information sequence m is growing with a larger rate than the

sequence length n. We consider four coding strategies (according to the orientation

2f(n) = ω(n) iff limn→∞
n

f(n) = 0.
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of the switches se and sd in Figure 12) for the compression of xn from S2 provided

that the sequence ym from S1 is available to the encoder/decoder or not.3

• Ucomp (Universal compression without side information), where the switches

se and sd in Figure 12 are both open. In this case, the encoder input space is

given by C = An×Z
∗. We let C = (xn, m) denote the input to the encoder. The

decoder input space is denoted by D = {0, 1}∗ × Z
∗ and we let D = (c(C), m)

denote the input to the decoder.

• UcompE (Universal compression with encoder side information), where the

switch se in Figure 12 is closed but the switch sd is open. In this case, the en-

coder input space is given by CE = An ×Am. We let CE = (xn, ym) denote the

input to the encoder. The decoder input space is denoted by DE = {0, 1}∗×Z
∗

and we let DE = (c(CE), m) denote the input to the decoder.

• UcompD (Universal compression with decoder side information), where the

switch se in Figure 12 is open but the switch sd is closed. In this case, the

encoder input space is given by CD = An×Z
∗. We let CD = (xn, m) denote the

input to the encoder. The decoder input space is denoted by DD = {0, 1}∗×Am

and we let DD = (c(CD), ym) denote the input to the decoder.

• UcompED (Universal compression with encoder-decoder side information), where

the switches se and sd in Figure 12 are both closed. In this case, the encoder

input space is given by CED = An ×Am. We let CED = (xn, ym) denote the in-

put to the encoder. The decoder input space is denoted by DED = {0, 1}∗×Am

and we let DED = (c(CED), ym) denote the input to the decoder.

Please note that, from the viewpoint of applications, the interesting coding strategy

in this study is UcompD, where the side information sequence from S1 is available at

3In this chapter, we assume that m and n are a priori known to both the encoder and the decoder.
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the decoder while it is not known to the encoder. The Ucomp coding is the bench-

mark for the achievable universal compression when no side information is present.

Further, UcompED is the benchmark in the evaluation of UcompD but it may not

be practically useful since it requires the sequence ym from S1 to be available at

the encoder of S2, i.e., coordination between the two encoders. Finally, UcompE is

presented for the sake of completeness and as will be revealed, UcompE provides no

significant improvements over Ucomp.

In this chapter, we focus on the family of fixed-to-variable length codes that map

an n-vector to a variable-length binary sequence [81]. We only consider codes that

are uniquely decodable, i.e., satisfy Kraft inequality.

Definition 4.2.1. The code c : C → {0, 1}∗ is called strictly lossless (also called

zero-error) if there exists a reverse mapping d : D → An such that

∀xn ∈ An : d(D) = xn.

Most of the practical data compression schemes are examples of strictly lossless

codes, namely, the arithmetic coding [49], Huffman [38], Lempel-Ziv [94, 95], and

context-tree-weighting (CTW) algorithm [88]. Please note that based on the orienta-

tion of the switches in Figure 12 and the input and output spaces, it is straightforward

to extend the definition of strictly lossless codes to UcompE, UcompD, and UcompED.

On the other hand, due to the distributed nature of the sources, we are also

concerned with the slightly weaker notion of almost lossless source coding:

Definition 4.2.2. The code cpe : C → {0, 1}∗ is called almost lossless with permissible

error probability pe(n) = o(1), if there exists a reverse mapping dpe : D → An such

that

E{1e} ≤ pe(n),
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where 1e(x
n, x̂n) denotes the error indicator function and x̂n = dpe(D), i.e,

1e(x
n, x̂n) ,











1 x̂n 6= xn,

0 otherwise.

This definition also extends to UcompE, UcompD, and UcompED. Please also

note that in this definition we have slightly abused the notation to denote D as the

input to the decoder when the encoder is almost lossless as well as strictly lossless.

The almost lossless codes allow a non-zero error probability pe(n) for any finite

n while they are almost surely asymptotically error free. Note that almost lossless

codes with pe(n) = 0 are indeed strictly lossless codes. Thus, we also use the notation

c0 to denote a strictly lossless code. The proof of the Slepian-Wolf Theorem [79] uses

almost lossless codes. Further, all of the practical implementations of Slepian-Wolf

source coding are based on almost lossless codes (cf. [56] and [71]). We stress that

the nature of the almost lossless source coding is different from that incurred by the

lossy source coding (i.e., the rate-distortion theory). In the lossy source coding, a

code is designed to asymptotically achieve a given distortion level as the length of the

sequence grows to infinity. Therefore, since the almost lossless coding asymptotically

achieves a zero-distortion, it coincides with the special case of zero-distortion in the

rate-distortion curve.

4.3 Minimum Average Redundancy

Let lpe : C → R denote the universal length function for Ucomp coding with per-

missible error probability pe.
4 Denote Lpe as the space of almost lossless universal

length functions. Let R(lpe , θ) be the expected redundancy of the code with length

function lpe(·), defined in (63). Define R̄pe
n as the minimum average redundancy of

4Note that we have ignored the integer constraint on the length functions in our work, which will
result in a negligible O(1) redundancy that is exactly analyzed in [30, 81].
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Ucomp coding when the parameter vector θ is chosen using Jeffreys’ prior, i.e.,

R̄pe = min
lpe

∫

θ∈Λ
R(lpe , θ)pJ(θ)dθ. (90)

It is evident that R̄0 is the average maximin redundancy for the strictly lossless

compression since θ is known to follow the least favorable Jeffreys’ prior (i.e., the

capacity achieving prior). It is straightforward to extend the definitions of the length

function and the minimum average redundancy to UcompE, UcompD, and UcompED

coding strategies that are denoted by R̄pe
E , R̄pe

D , and R̄pe
ED, respectively. Furthermore,

R̄0 and R̄0
ED are also equal to the average minimax redundancy [34, 52]. Please

note that the average redundancy defined here is the fundamental overhead in the

compression for the case pe = 0, i.e., for the strictly lossless codes. For the general

almost lossless codes, Hn(θ) no longer serves as the length of the optimal code in the

compression of a sequence of length n. On the other hand, the average minimum

redundancy defined in (90) can still be employed in the comparison between different

strategies for a given pe.

The following is a trivial statement about the performance of the almost lossless

coding strategy.

Lemma 4.3.1. If p2e ≥ p1e ≥ 0, then R̄p2e ≤ R̄p1e .

Proof. Let ľp
1
e denote code that achieves the permissible error probability p1e. By

definition ľp
1
e also achieves the permissible error probability p2e, which completes the

proof.

The same property holds true for R̄pe
E , R̄pe

D , and R̄pe
ED. The following is obtained

as a simple corollary to Lemma 4.3.1.

Lemma 4.3.2. ∀pe ≥ 0, we have R̄pe ≤ R̄0.

In other words, the strictly lossless codes incur a larger redundancy among all

almost lossless codes. The following intuitive inequalities demonstrate that the re-

dundancy decreases with the availability of the side information.
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Lemma 4.3.3. ∀pe ≥ 0, the following set of inequalities hold:










R̄pe
ED ≤ R̄pe

E ≤ R̄pe

R̄pe
ED ≤ R̄pe

D ≤ R̄pe .
(91)

Proof. Let ľpe ∈ Lpe denote the optimal code with permissible error probability pe.

Then, it is straightforward to see that ľpe ∈ Lpe
E (i.e., ľpe is a code with permissible

error probability pe and encoder side information) since the encoder can choose not

to use the side information sequence ym in the coding. Likewise, if ľpeE ∈ Lpe
E is the

optimal code with permissible error probability pe and encoder side information. We

have ľpeE ∈ Lpe
ED as it is a candidate code for the encoder-decoder side information case

when the coding system is only a function of the side information sequence length at

the decoder and not the side information sequence itself. This completes the proof of

the first set of inequalities. The proof for the second set of the inequalities is similar

and is omitted for brevity.

Before we delve into the main results of this chapter, we present another result

that will be useful in characterizing the redundancy in later sections.

Lemma 4.3.4. If T = 0, we have

R̄pe
ED = R̄pe

D = R̄pe
E = R̄pe.

Proof. It suffices to show that R̄pe
ED = R̄pe. Then, by Lemma 4.3.3, the rest follows.

As pointed out in Lemma 4.1.4, at case T = 0 θ(1) and θ(2) both follow Jeffreys’ prior

and are independent. Then, it is easy to see that in general

pT (xn|ym)

=

∫

(θ(1),θ(2))∈Λ2

µθ(2)(x
n)pTθ(2)|θ(1)(θ

(2)|θ(1))p(θ(1)|ym)dθ(1)dθ(2). (92)
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Then, since when T = 0, θ(1) and θ(2) are independent, we have p0
θ(2)|θ(1)(θ

(2)|θ(1)) =

pJ(θ
(2)). Thus, we can further simplify (92) to get

p0(xn|ym) = p(xn), (93)

which implies that xn and ym are independent. Therefore, H(Xn|Y m) = H(Xn)

which implies that the knowledge of the side information sequence Y m does not

decrease the number of bits needed to describe Xn.

According to Lemma 4.3.4, there is no benefit provided by the side information

when the two parameter vectors of the sources S1 and S2 are independent. This is

not surprising as when θ(1) and θ(2) are independent, then Xn (produced by S1) and

Y m (produced by S2) are also independent. Thus, the knowledge of ym does not

affect the distribution of xn. Hence, ym cannot be used toward the reduction of the

codeword length for xn. Hence, In the case T = 0, the performance of all strategies

is equivalent to R̄pe, which will be characterized in later sections.

Lemma 4.3.5. If T = o(n), we have

R̄pe
ED = R̄pe +O(1).

Proof. In this case, the nature of the correlation is pretty similar to the observation of

a sequence of length O(T ) = o(n) from the source. This does not provide reduction

in the average codeword length as it will be dominated by learning the statistics for

the compression of a sequence of length n, which requires an average of d
2
logn+O(1)

bits.

Lemma 4.3.5 states that when T is not sufficiently large (i.e., when the two pa-

rameter vectors are not sufficiently correlated), knowledge of a sequence from one

would not provide much reduction in the compression of a sequence from the other.
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4.4 Performance of Strictly Lossless Codes

In this section, we present our main results on the minimum average redundancy for

strictly lossless codes. As previously discussed, we only consider the case where m =

ω(n), i.e., when the size of the side information sequence is sufficiently large. In other

words, our focus is not on the transient period where the memory is populated with

data traffic. Instead, we would like to analyze how much performance improvement is

obtained when a sufficiently large side information sequence is used in the compression

of a new sequence.

In the case of Ucomp, the side information sequence is not utilized at the en-

coder/decoder for the compression of xn, and hence, the minimum number of bits

required to represent xn is H(Xn). This coincides with the avearge minimax redun-

dancy characterized in 2.3.4. Hence,

R̄0 =
d

2
log
( n

2πe

)

+ log

∫

λ∈Λ
|I(λ)| 12dλ+ o(1).5

Next, we confine ourselves to UcompE strategy and establish that the side in-

formation provided by ym only at the encoder does not provide any benefit on the

strictly lossless universal compression of the sequence xn.

Proposition 4.4.1. The minimum average redundancy for strictly lossless UcompE

coding is

R̄0
E = R̄0.

Proof. In the case of UcompE coding, since the side information sequence ym is not

available to the decoder, then the minimum number of average bits required at the

decoder to describe the random sequence Xn is indeed H(Xn). On the other hand,

5f(n) = o(g(n)) iff limn→∞
f(n)
g(n) = 0.
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it is straightforward to see that H(Xn) = Hn(θ
(2)) + I(Xn; θ(2)). Further, it is clear

that

I(Xn; θ(2)) = R̄0. (94)

by the redundancy-capacity theorem (cf. [52]).

Considering the UcompD strategy, we establish a result that the side information

provided by ym at the decoder does not provide any performance improvement in the

strictly lossless universal compression of the sequence xn.

Proposition 4.4.2. The minimum average redundancy for strictly lossless UcompD

coding is

R̄0
D = R̄0.

Proof. Since the two sources µθ(1) and µθ(2) are assumed to be from the d-dimensional

parametric sources, in particular, they are also ergodic. In other words, any pair

(xn, ym) ∈ An ×Am occurs with non-zero probability and the support set of (xn, ym)

is equal to the entire An × Am. Therefore, the knowledge of the side information

sequence ym at the decoder does not rule out any possibilities for xn at the decoder,

and hence, the probability distribution of xn remains unchanged (equal to the prior

distribution) after ym has been observed. Proposition 4.4.2 is then completed by

using the known results of strictly lossless compression (cf. [3] and the references

therein).

Finally, we present our main result on the strictly lossless UcompED coding. In

this case, since a side information sequence ym is known to both the encoder and the

decoder, the achievable codeword length for representing xn is given by H(Xn|Y m).

Hence, the redundancy can be shown to be obtained from the following theorem.
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Theorem 4.4.3. For strictly lossless UcompED coding, (a) in the case of T = o(n),

we have

R̄0
ED = R̄0 +O(1),

and (b) in the case of T = ω(n), we have

R̄0
ED = R̂(n,m, T ) + o(1),

where R̂(n,m, T ) is defined as

R̂(n,m, T ) =
d

2
log
(

1 +
n

m
+

n

T
)

. (95)

Proof. Part (a) is obtained from Lemma 4.3.5. To prove Part (b), let Xn ∼ µθ(2) and

Y m ∼ µθ(1). Further, since the encoder also has access to ym and for m = ω(n), we

can use θ̂(ym) (i.e., the estimate of θ(2) via ym) for the compression of the sequence

xn. In this case, R̄ED can be written as

R̄ED = E
{

D(µθ(2)||µθ̂(Y m))
}

h
1

2
E
{

(θ(2) − θ̂(Y m))T I(θ(2))(θ(2) − θ̂(Y m))
}

, 6 (96)

where (96) follows from the following:

D(µφ||µλ) =
1

2
(λ− φ)TI(φ)(λ− φ)

+o(||λ− φ||2). (97)

Please also note that

θ(2) − θ̂(Y m) = (θ(2) − θ(1)) + (θ(1) − θ̂(Y m)). (98)

Further, by definition θ(2) − θ(1) and θ̂(Y m) − θ(1) are independent of each other.

Hence, we have

1

2
E
{

(θ(2) − θ̂(Y m))T I(θ(2))(θ(2) − θ̂(Y m))
}

6f(n) h g(n) iff f(n)− g(n) = o(f(n)).
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=
d

2

( n

T +
n

m

)

log e h
d

2
log
(

1 +
n

T +
n

m

)

. (99)

4.5 Performance of Almost Lossless Codes

In this section, we evaluate the performance of each of the different coding schemes

introduced in Section 4.2 for the universal compression of distributed parametric

sources using their corresponding minimum average redundancy for almost lossless

codes.

In the case of almost lossless coding, we have the following result on the perfor-

mance of Ucomp coding.

Theorem 4.5.1. The minimum average redundancy for almost lossless Ucomp coding

is bounded by

(1− pe)R̄
0 − h(pe)− peHn(θ

(2)) ≤ R̄pe ≤ R̄0,

where

h(pe) = pe log

(

1

pe

)

+ (1− pe) log

(

1

1− pe

)

. (100)

Proof. The upper limit is obvious from Lemma 4.3.2. In order to prove the lower

limit, we consider H(Xn, X̂n, 1e), where X̂n is the decoded vector, i.e., X̂n = d(D). .

Note that 1e(X
n, X̂n) is a deterministic function of Xn and X̂n and hence

H(Xn, X̂n, 1e) = H(Xn) +H(X̂n|Xn). (101)

On the other hand, we can also use the chain rule in a different order to arrive at the

following.

H(Xn, X̂n, 1e) = H(X̂n) +H(1e|X̂n)

+H(Xn|1e, X̂
n). (102)
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Hence,

H(X̂n) = H(Xn) +H(X̂n|Xn)−H(1e|X̂n)−H(Xn|1e, X̂
n)

≥ H(Xn)− h(pe)−H(Xn|1e, X̂
n) (103)

≥ H(Xn)− h(pe)− peH(Xn), (104)

where the inequality in (103) is due to the facts that H(X̂n|Xn) ≥ 0 and H(1e|X̂n) ≤

H(1e) ≤ h(pe) and the inequality in (104) is due to Lemma 4.5.2.

Lemma 4.5.2. H(Xn|1e, X̂
n) ≤ peH(Xn).

The proof of Lemma 4.5.2 is provided in Appendix A.7. The proof of the theorem

is completed by noting that H(Xn) = Hn(θ) + R̄0.

Next, we consider almost lossless UcompE coding. In this case, similar to the

strictly lossless case, we prove that the side information provided by ym at the decoder

does not provide any benefit on the almost lossless universal compression of the

sequence xn.

Proposition 4.5.3. The minimum average redundancy for almost lossless UcompE

coding is

R̄pe
E = R̄pe.

Proof. The proof follows arguments similar to the proof of Proposition 4.4.1 by noting

that the decoder needs to describe the random sequence Xn with a permissible error

probability pe.

In the case of almost lossless UcompD coding, the permissible error probability

pe results in further reduction in the average codeword length relative to Ucomp as

given by the following theorem.
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Theorem 4.5.4. For the minimum average redundancy for lossless UcompD coding

(a) in the case of T = o(n), R̄pe
D is given by

R̄pe
D = R̄0 +O(1),

and (b) in the case of T = ω(n), R̄pe
D is bounded by

R̄pe
ED ≤ R̄pe

D ≤ R̄0
ED + F(d, pe) + o(1),

where F(d, pe) is the penalty due to the absence of the side information at the encoder,

which is given by

F(d, pe) =
d

2
log

(

1 +
2

d log e
log

4

pe

)

. (105)

Proof. Part (a) is trivial by combining Lemmas 4.3.3 and 4.3.5. Regarding Part (b),

the lower limit is previously proved as part of Lemma 4.3.3. In order to obtain the

upper limit on the average redundancy of the almost lossless UcompD coding, we

provide a constructive optimal coding strategy at the encoder such that the sequence

can be decoded with error smaller than the permissible error probability pe at the

decoder, and obtain its achievable minimum average redundancy. Prior to introduc-

ing the coding scheme, we need to establish some results that will be used in the

construction of the coding scheme.

Definition 4.5.5. Let ∆d(φ, δ) ⊂ Λ be the d-dimensional ellipsoid with radius δ

around the source parameter vector φ defined as the following:

∆d(φ, δ) ,
{

λ ∈ Λ| (λ− φ)TI(φ)(λ− φ) < δ
}

, (106)

where I(φ) is the Fisher information matrix.

Let θ̂(xn) denote the maximum likelihood estimate of the parameter vector given

the observed sequence xn, i.e.,

θ̂(xn) , arg sup
λ∈Λ

µλ(x
n). (107)
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Next, we state the following result on the probability of the event that the

maximum-likelihood estimate is far from the true parameter vector.

Lemma 4.5.6. Let Xn ∼ µθ be a sequence of length n from alphabet A that follows

the probability measure µθ. Further, let θ̂(Xn) be the maximum likelihood estimate

defined in (107). Then, we have

P
[

θ̂(Xn) 6∈ ∆d(θ, δ)
]

h Qd

(

δ
n

2

)

, (108)

where

Qd(x) ,











1
Γ(d

2
)
xd−2e−x2

x ≥ 0

0 x < 0
. (109)

The proof of Lemma 4.5.6 is provided in Appendix A.8. Now, let Q−1
d (·) denote

the inverse of the Qd(·). Further, let pe denote a permissible error probability on a

sequence of length n. Then, we have

δ =
2

n
Q−1

d (pe). (110)

In other words, if we only consider the random sequences Xn, such that θ̂(Xn) ∈

∆d(θ, δ), then with probability at least 1 − pe any Xn is covered in this set. In the

following, we will extend this argument so that we will obtain an ellipsoid around

θ̂(Y m) (instead of θ) such that Xn is covered with probability at least 1− pe.

The following is an upper limit on the probability of the event that θ(2) is far from

θ(1).

Lemma 4.5.7. Let (θ(1), θ(2)) ∼ pT
θ(1),θ(2)

be a pair of random parameter vectors in the

space Λ2 chosen according to the distribution pT
θ(1),θ(2)

defined in (86). Then, we have

P
[

θ(2) 6∈ ∆d(θ
(1), δ)

]

. 2Qd

(

δ
T
2

)

.7 (111)

where Qd is defined in (109).

7f(n) . g(n) iff ∀ε > 0 ∃N0 s.t. f(n)
g(n) < 1 + ε for n > N0.
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The proof of Lemma 4.5.7 is provided in Appendix A.9.

Now, we are equipped to present our result on the probability of the event that

θ̂(Xn) is far from θ̂(Y m), which is the following:

Lemma 4.5.8. Let Y m ∼ µθ(1) and Xn ∼ µθ(2) denote two independent (given θ(1)

and θ(2)) random samples from S1 and S2, respectively. Then, we have the following

upper limit

P
[

θ̂(Xn) 6∈ ∆d

(

θ̂(Y m), δ
)]

. 4Qd

(

δ

4

(

1

n
+

1

T +
1

m

))

,

where m? , mT
m+T is the effective size of the side information sequence.

The proof of Lemma 4.5.8 is provided in Appendix A.10. Now, we can set

pe = 4Qd

(

δ

4

(

1

n
+

1

T +
1

m

))

(112)

and solve for ε. We get

δ(d, pe) = 4

(

1

n
+

1

T +
1

m

)−1

Q−1
d

(pe
4

)

. (113)

Next, we present the code, which is adapted from the normalized two–part codes

(cf. [16] and the references therein). A two–part code is comprised of two–parts. Part

one of the code describes a net of parameter vectors in the space of parameter vectors.

Part two of the code is the Shannon code for the sequence using the optimal param-

eter vector from the net. Barron and Cover [14] demonstrated that a net covering

of the space exists using d-dimensional ellipsoids. Let the space be partitioned into

ellipsoids of the form Sn,T ,m(pe). Then, each sequence is encoded within its respec-

tive ellipsoid without regard to the rest of the parameter space. The decoder chooses

the decoding ellipsoid using the ML estimate θ̂Y and the permissible decoding error

probability pe. As the unknown parameter vector is assumed to follow the least favor-

able Jeffreys’ prior, Lemma 2.3.3 bounds the probability measure of the parameter

vectors that are covered by each ellipsoid. As can be seen, the probability measure
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covered by each ellipsoid is Pθ[Sn,T ,m(pe)], which is independent of θ̂Y . This provides

with − logPθ[Sn,T ,m(pe)] reduction in the redundancy. Also, please note that it is

straightforward to show

Q−1
d

(pe
4

)

' d

2
log e+ log

4

pe
(114)

Hence,

R̄pe
ED ≤ d

2
log
( n

2πe

)

+ log

∫

θ∈Λ
|I(θ)| 12dθ

+ logPθ[Sn,T ,m(pe)] +O

(

1

n

)

(115)

' d

2
log
(

1 +
n

T +
n

m

)

+ F(d, pe) + o(1), (116)

where F(d, pe) is defined in (105). This leads to the desired result in Theorem 4.5.4.

R̄pe
ED ≤ d

2
log
( n

2πe

)

+ log

∫

θ∈Λ
|I(θ)| 12dθ + logNε +O

(

1

n

)

. (117)

' d

2
log

(

1 +
2n

T +
2n

m

)

+ 2 + log
1

pe
(118)

In the case of almost lossless UcompED coding, the following theorem quantifies

the performance bounds.

Theorem 4.5.9. For the minimum average redundancy for lossless UcompED coding,

(a) in the case of T = o(n), R̄pe
ED is given by

R̄pe
ED = R̄0 +O(1),

and (b), in the case of T = ω(n), R̄pe
ED is bounded by

(1− pe)R̄
0
ED − h(pe)− peHn(θ

(2)) ≤ R̄pe
ED ≤ R̄0

ED.

Proof. The proof of Part (a) is straightforward by considering Lemma 4.3.5 and the

proof of Part (b) follows the lines of the proof of Theorem 4.5.1.
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4.6 Discussion

In this section, we provide some discussion on the significance of the results for dif-

ferent coding strategies for the case T = ω(n). We discuss the strictly lossless case

followed by two examples that illustrate the impact of the source parameter correla-

tion on the minimum average redundancy of the almost lossless compression schemes.

4.6.1 Strictly Lossless Coding

In the case of Ucomp, (94) determines the achievable minimum average redundancy

for the compression of a sequence of length n encoded without regard to the side infor-

mation sequence ym. Hence, Ucomp is regarded as the benchmark for the performance

of UcompD, UcompE, and UcompED, which use the side information sequence.

For strictly lossless UcompE and UcompD, according to Propositions 4.4.1 and 4.4.2,

the side information provided by ym from S1 does not provide any performance im-

provement in the universal compression of xn assuming the side information is not

present in either the encoder or the decoder. In other words, the best that S2 can do

for the strictly lossless compression of xn is to simply apply a strictly lossless universal

compression without side information (i.e., Ucomp).

When the side information is present at both the encoder and the decoder, from

Lemma 4.3.3 it is expected that the performance of strictly lossless UcompED coding

on the universal compression of xn would be improved with respect to Ucomp, which

is quantified by Theorem 4.4.3 as given by R̂(n,m, T ) in (95). We will discuss the

dependence of R̂(n,m, T ) on the sequence length n, size of the side information m,

and the degree of correlation T in Section 4.6.2.

In summary, for the strictly lossless case, only UcompED offers improvement over

Ucomp but it is not practical for the universal compression of distributed sources as

it requires the encoders to communicate.
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Figure 13: The redundancy rate of the three coding strategies of interest in the
DSC-CPV problem for different correlation parameter vectors, where the memory
size is m = 32kB. The two memoryless sources have alphabet size |A| = 256.

4.6.2 The Degree of Correlation and the Memory Size

Next, we investigate the impact of the degree of correlation T and the size of the

side information sequence m on the main redundancy term R̂(n,m, T ) in (95), which

constitutes the main term in most of the results. In fact, R̂(n,m, T ) can be rewritten

as

R̂(n,m, T ) =
d

2
log
(

1 +
n

m?

)

, (119)

where m? is defined as

1

m?
,

1

m
+

1

T . (120)

Therefore, if n, m, and T are thought of as the values of resistances, m? would be

the parallel resistance of the elements m and T . Thus, R̂(n,m, T ) is determined
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Figure 14: The redundancy rates of the four different codings of interest for the
strictly lossless case (i.e., pe = 0), where the memory size is m = 32kB. The two
identical memoryless sources have alphabet size |A| = 256.

by the ratio n
m? . When m and T are both finite, increasing one of them beyond a

certain limit does not reduce the redundancy as the parallel resistance converges to

the smaller of the two.

It is straightforward to see that R̂(n,m, T ) decreases as the memory size m grows

and for very large memory (i.e., m → ∞) converges to

R̂(n,∞, T ) =
d

2
log
(

1 +
n

T
)

, (121)

which is merely a function of the degree of correlation between the two sources. Thus,

if a sufficiently large memory m is available the performance limitation will become

a function of n
T . Furthermore, when T → ∞, i.e., identical sources as studied in [18],

then R̂(n,m,∞) vanishes as m → ∞.

Figure 13 demonstrates the redundancy rate for different values of T for the case
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Figure 15: The redundancy rates of the four different codings of interest for the
almost lossless case with permissible error probability pe = 10−8, where the memory
size is m = 32kB. The two identical memoryless sources have alphabet size |A| = 256.

of memoryless sources with alphabet size |A| = 256 when m is sufficiently large and

hence m? is dominated by T . As can be seen, as the correlation between the two

parameter vectors increases, the redundancy decreases and eventually converges to

that of the identical source parameter vectors.

4.6.3 Identical Source Parameter Vectors (Case T → ∞)

In this special case, we assume that T → ∞ and hence θ(2) = θ(1). Then, the

performance of strictly lossless UcompED coding and the almost lossless UcompD

coding is quantified by R̂(n,m,∞) given by

R̂(n,m,∞) =
d

2
log
(

1 +
n

m

)

, (122)
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Figure 16: The redundancy rate of the three coding strategies of interest for different
memory sizes, where the permissible error probability is pe = 10−8. The two identical
sources are first-order Markov with alphabet size |A| = 256.

which gives back the main result in [17], where the identical source parameters

were studied. If we further consider the redundancy for large m, we observe that

R0
UcompED(n,∞,∞) = 0. In other words, since the identical parameter vectors will

be known to both the encoder and the decoder, the average codeword redundancy

vanishes and the optimal code for known source parameter vectors is obtained. In

this case, the fundamental limits are those of known source parameter vectors and

universality no longer imposes a compression overhead.-

Figure 14 demonstrates the redundancy rate for the three coding strategies for

memoryless sources with identical source parameter vectors (i.e., θ(2) = θ(1)) and

alphabet size |A| = 256. As can be seen, for both Ucomp and UcompED, the lower

bounds on the lossless coding closely follow the strictly lossless coding. Further, using
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Fact 4.3.2, we conclude that little improvement is obtained over strictly lossless case

when using reasonably small permissible error probability. On the other hand, the

lossless UcompD coding has the potential to significantly improve the performance

over strictly lossless case (as can be seen from the upper bound plotted in Figure 14).

For example, when n = 512B and m = 32kB, if the permissible error probability is

pe = 10−8, the redundancy rate of UcompD coding is upper bounded by approximately

0.05, whereas that of the strictly lossless case is almost 0.62. Note that, however, the

development of a practical coding scheme that achieves the bound remains an open

problem.

Figure 16 demonstrates the redundancy rate for two identical first-order Markov

sources with alphabet size |A| = 256 for different memory sizes. As can be seen the

redundancy rate decreases as m grows. For sufficiently large m, the redundancy rate

approaches zero as previously discussed. Further, comparing Figure 16 and Figure 14,

when the number of source parameter vectors is relatively large (i.e., Markov vs.

memoryless), even with small permissible error probability, UcompD performs fairly

close to UcompED. Finally, UcompD by far outperforms Ucomp in the compression

of short to medium length sequences with reasonable permissible error probability,

justifying the usefulness of UcompD.

4.7 Conclusion

In this chapter, the problem of universal compression of two distributed parametric

sources with correlated parameter vectors was introduced and studied. A correla-

tion model for the two source parameter vectors was formally defined, which departs

from the nature of the correlation in the SW framework. Involving two correlated

sources, the minimum average redundancy for four different coding strategies (based

on whether or not the side information was available to the encoder and/or the de-

coder) was investigated. These strategies are (1) universal compression without side
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information, (2) universal compression with encoder side information, (3) univer-

sal compression with decoder side information, and (4) universal compression with

encoder-decoder side information.

It was proved that as the length of the side information sequence grows to infin-

ity and the source models are almost equal, coding strategy 3 achieves a vanishing

redundancy. We further demonstrated that there is a gap between the performance

of the strategies 2 and 3. It was further demonstrated that for short to medium

length sequences with plausible permissible error probability, strategy 2 by far out-

performs strategy 1, and hence, justifying the usefulness of strategy 2 by providing a

constructive coding for strategy 2. In summary, this chapter demonstrated that the

side information at the encoder and/or the decoder in the network can help to notice-

ably improve the performance of the universal compression on distributed parametric

sources with correlated parameter vectors.
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CHAPTER V

CLUSTER-BASED MEMORY-ASSISTED COMPRESSION

Universal compression aims at reducing the average number of bits required to de-

scribe a sequence from an unknown source from a family of sources, while good

performance is desired for most of the sources in the family. However, it often needs

to observe a very long sequence so that it can effectively learn the existing patterns

in the sequence for efficient compression. Therefore, universal compression performs

poorly on relatively small sequences [16, 52] where sufficient data is not available

for learning of the statistics and training of the compressor. On the other hand,

the presence of side information has proven to be useful in several source coding

applications (cf. [79, 89, 54, 20, 55] and the references therein). In particular, the

impact of side information on universal compression has also been shown to be useful

(cf. [34, 47, 18, 17]). However, to the best of the authors’ knowledge, the impact of

side on information on the universal compression of a mixture of parametric sources

has not been explored in the literature.

In Chpater 3, we proposed universal compression of network packets using network

memory, where the common memory between the encoder router and the decoder

router was used as the side information to improve the performance of universal com-

pression on network packets. As each packet may be generated by a different source,

a realistic modeling of the network traffic requires to consider the content server to be

a mixture of parametric sources [70]. This motivates us to study the universal com-

pression of sequences from a mixture source using common side information between

the encoder and the decoder.
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Figure 17: The basic scenario of universal compression with side information for a
mixture source.

Although the problem formulation is inspired from the network traffic compres-

sion, universal compression of a mixture source with side information finds applica-

tions in a wide variety of problems, such as data storage systems, and migration of

virtual machines, where the compression of data before transmission results in im-

proved performance. As shown in Figure 17, we assume that each sequence (e.g.,

network packet) is a sample of length n from a mixture of K parametric sources. We

consider each source i ∈ [K] , {1, . . . , K} in the mixture as a parametric source with

a di-dimensional parameter vector θ(i) such that θ(i) is drawn independently from Jef-

freys’ prior. As was discussed in Section 2.1, Jeffreys’ prior is assumed to ensure the

worst-case performance analysis. We further assume that each output sequence from

this mixture source is chosen from θ(S), where the index S of the source is chosen at

random from [K] according to the probability law w = (w1, . . . , wK). We consider the

scenario where T sequences from the mixture source are shared as side information

between the encoder E and the decoder D in Figure 17. The first objective is to de-

rive the average redundancy incurred in the optimal universal compression with side

information where optimality is in the sense of minimizing the average redundancy

as a function of n, K, and T . Note that in the network compression application, E

and D, in Figure 17, can be thought of as two routers inside the network that have

a shared common memory of sequences from the mixture source.
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In the previous chapters, we derived the optimal universal compression perfor-

mance with side information for a single source, i.e., K = 1; we proved that significant

improvement is obtained from the side information in the universal compression of

small sequences when sufficiently large side information is available. In [18], we ex-

tended the setup to finite K which is known to the encoder and the decoder a priori.

We further assumed that the indices of the sources that generated the side information

sequences are also known to both the encoder and the decoder (i.e., perfect clustering

of the memory based on the mixture index is possible). We demonstrated that the

universal compression using clustering of the side information by the source indices

offers significant improvement over universal compression without side information.

Inspired from this, in [70], we developed a clustering algorithm for the universal com-

pression with side information based on the Hellinger distance of the sequences and

showed its effectiveness on real network traffic traces. However, it remained an open

problem to determine the optimal strategy that utilizes the side information in the

sense that, given the side information, the minimum codeword length in the univer-

sal compression of a new sequence from the mixture source using side information is

attained.

In this chapter, we generalize the setting of Chapter 3. We let K grow with

n; we drop the assumption that the indices of the sources that generated the side

information sequences are known; we relax the assumption that K is known to both

the encoder and the decoder a priori. We provide theoretical justification of the

clustering solution supplemented by computer simulations. We further develop and

study a clustering algorithm tailored to compression. Our contributions in this work

can be summarized as the following.

• The smallest achievable average redundancy incurred in universal compression

of a random sequence of length n from a mixture source given that the encoder

and the decoder have access to a shared side information of T sequences (each
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of length n from the mixture of K parametric sources) is characterized and

verified using computer simulations.

• It is demonstrated that the performance of the optimal universal compression

with side information almost surely coincides with that of the universal com-

pression with perfect clustering of the memory, and hence, it is concluded that

clustering is optimal for universal compression with side information.

• A parametric clustering strategy based on the K-means algorithm is provided

for the memory-assisted compression that aims at grouping the side information

sequences that share similar statistical properties. A newly generated packet

by the mixture source is classified into one of the clusters for compression. It

is demonstrated through experiments performed on real network traffic traces

that the proposed algorithm is effective.

The rest of this chapter is organized as follows. In Section 5.1, we present the

formal definition of the problem. In Section 5.2, we derive the entropy of the mixture

source, which serves as a lower limit on the average codeword length. In Section 5.3,

we provide the main results on the universal compression of mixture sources with and

without side information and discuss their implications. In Section 5.4, we present

the parametric clustering algorithm used for the compression of the mixture sources.

In Section 5.5, we provide simulation results that support our theoretical results on

the compression of the mixture sources on man-made data as well as data gathered

from real network traffic traces. In Section 5.6, we provide the technical analysis of

the results. Finally, Section 5.7 concludes this chapter.

5.1 Problem Setup

In this section, we present the setup of the universal compression with common side

information at the encoder and the decoder. Let a parametric source be defined
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using a d-dimensional parameter vector θ = (θ1, ..., θd) ∈ Λd that is a priori unknown,

where d denotes the number of the source parameters and Λd ⊂ R
d is the space

of d-dimensional parameter vectors of interest. Denote Rn,d(ln, θ) as the expected

redundancy of the code cn with length function ln on a sequence of length n for the

parameter vector θ.

Let ∆ ,
{

θ(i)
}K

i=1
denote the set of K , |∆| parameter vectors of interest where

θ(i) ∈ Λdi is a di-dimensional parameter vector. Note that we let K deterministically

scale with n. Let dmax , max{d1, . . . , dK} denote the maximum dimension of the

parameter vectors, where we assume that dmax = O(1), i.e., dmax is finite. We further

assume that for any d < d′, we have Λd ⊂ Λd′ , and hence, ∆ consists of K points on

the space Λdmax.

We assume that ∀i ∈ [K], we have θ(i) = (θ
(i)
1 , θ

(i)
2 , . . . , θ

(i)
di
) is chosen at random

according to the Jeffreys’ prior on the di-dimensional parameter space Λdi . In this

setup, as in Figure 17, the source is a mixture of K parametric sources µθ(1), . . . , µθ(K),

where for all i ∈ [K], θ(i) is a di-dimensional unknown parameter vector. For the

generation of each sequence of length n, the generator source is selected according

to the probability law w = (w1, . . . , wK) from the mixture, i.e., ∆. In other words,

p(θ|∆) =
∑K

i=1wiδ(θ − θ(i)), where θ(i) follows Jeffreys’ prior on Λdi and wi is the

probability that the sequence is generated by source θ(i) in the mixture. Please

note that the random set ∆ (which is unknown a priori) is randomly generated once

according to Jeffreys’ prior and is used thereafter for the generation of all sequences

from the mixture source. Let S be a random variable that determines the source

index, and hence follows the distribution w over [K], i.e., P[S = i] = wi. Then, by

definition, we have θ = θ(S) given ∆. Unlike ∆ that is generated once, S is chosen

with w every time a new sequence is generated. Let the mixture entropy H(w) be

defined as H(w) = −∑i∈[K]wi logwi.
1

1We define entropy H(r) for any vector r such that
∑

i ri = 1 in the same manner throughout
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We consider the following scenario. We assume that, in Figure 17, both the

encoder E and the decoder D have access to a common side information of T previous

sequences (indexed by [T ]) from the mixture of K parametric sources, where each of

these sequences is independently generated according to the above procedure. Let

m , nT denote the aggregate length of the previous T sequences from the mixture

source.2 Further, denote yn,T = {yn(t)}Tt=1 as the set of the previous T sequences

shared between E and D, where yn(t) is a sequence of length n generated from the

source θS(t) and S(t) follows w on [K]. In other words, yn(t) ∼ µθ(S(t)). Further,

denote S as the vector S = (S(1), ..., S(T )), which contains the indices of the sources

that generated the T previous side information sequences.

Let l̂(xn,yn,T ) denote a generic length function that utilizes the side information

yn,T in the compression of a new sequence xn. The objective is to analyze the average

redundancy in the compression of a new sequence xn that is independently generated

by the same mixture source with source index Z (which also follows w). We in-

vestigate the fundamental limits of the universal compression with side information

(yn,T ) that is shared between the encoder and the decoder and compare with that

of the universal compression without side information of the previous sequences. It

is straightforward to verify that H(Xn|Yn,T ) and H(Xn) for different values of the

sequence length n, memory (side information) size m = nT , the weight of the mixture

w, and the dimensions of the parameter vectors d serve as two of the main funda-

mental limits of the compression, which seek the minimum number of bits required

to represent a random sequence Xn when Yn,T is present (at both the encoder and

the decoder) or not.

the chapter.
2For simplicity of the discussion, we consider the lengths of all sequences to be equal to n.

However, most of the results are readily extendible to the case where the sequences are not necessarily
equal in length.
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5.2 Entropy of the Mixture Source

Before we state the main results of this work, we need to derive the entropy of the

mixture source.

Definition. Let Hn(∆, Z) , H(Xn|∆, Z) be defined as the entropy of a random

sequence Xn from the mixture source given that the source parameters are known to

be the set ∆ and the index of the source that has generated the sequence (i.e., Z) is

also known.3 In other words, the parameter vector θ(Z) associated with sequence Xn

is known. Then, in this case, by definition

Hn(∆, Z) =
K
∑

i=1

wiHn(θ
(i)), (123)

where Hn(θ
(i)) is the entropy of source µθ(i) given θ(i) defined in (1). Please note

that Hn(∆, Z) is not the achievable performance of the compression. It is merely

introduced here so as to make the presentation of the results more convenient.

Let the set ∆ be written as the following.

∆ = ∪dmax
d=1 ∆d, (124)

where ∆d is the set of the d-dimensional parameter vectors in ∆. Further, let Kd ,

|∆d| be the number of parameter vectors in set ∆d. In other words, Kd is the number

of sources of dimension d in the mixture source. Hence,
∑dmax

d=1 Kd = K. Now,

we can relabel the elements in ∆ according to their parameter vectors. Let ∆d =

{θ(d,1), . . . , θ(d,Kd)}. Denote wd = (wd,1, . . . , wd,Kd
) as the weight of the d-dimensional

parameter vectors. Further, let vd ,
∑Kd

i=1wd,i be the aggregate weight of all d-

dimensional parameter vectors and denote v , (v1, . . . , vdmax). Let ŵd , wd/vd, i.e.,

we have ŵd,i , wd,i/vd, for 1 ≤ i ≤ Kd.

3We assume that the random set of parameter vectors is generated once and used for the genera-
tion of all sequences of length n thereafter. Therefore, throughout the chapter, whenever we assume
that ∆ is given, we mean that the set of the parameter vectors is known to be the set ∆.
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Hence, Hn(∆, Z) can be rewritten as

Hn(∆, Z) =
dmax
∑

d=1

Kd
∑

i=1

wd,iHn(θ
(d,i))

=

dmax
∑

d=1

vd

Kd
∑

i=1

ŵd,iHn(θ
(d,i)). (125)

Next, we derive the entropy of the mixture source (which sets the asymptotic

fundamental lower limit on the codeword length for the known source parameters

case), i.e., when ∆ is known. Define Hn(∆) , H(Xn|∆).

Theorem 5.2.1. The entropy of the mixture source is given by

Hn(∆) = Hn(∆, Z) +H(v) +
dmax
∑

d=1

vdHd +O

(

1

n

)

a.s., 4,5

where Hd is given by

Hd =











H(ŵd) if H(ŵd) ≺ d
2
logn

R̄n,d if H(ŵd) � d
2
logn

, 6 (126)

and R̄n,d is given by (9).

Proof. See Section 5.6 for the proof.

Remark. Theorem 5.2.1 determines the entropy of the mixture source, which cor-

responds to the minimum codeword length when the parameter vectors in the set ∆

are known to the encoder and the decoder (i.e., non-universal compression). Please

note that Hn(∆) also serves as a trivial lower bound on the codeword length for the

case of universal compression (i.e., unknown parameter vectors). Please note that

for sufficiently low-entropy ŵd or for sufficiently small Kd, the price of describing the

4An event A happens a.s. (almost surely) if and only if P[A] = 1.
5Please note that the sample space is the set of all source parameter vectors ∆ =

{

θ(i)
}K

i=1
such

that θ(i) is drawn independently from Jeffreys’ prior.
6f(n) ≺ g(n) if and only if limn→∞

f(n)
g(n) < 1.
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d-dimensional parameter vectors is, on average, equal to H(ŵ), which corresponds to

describing the respective source parameter vector in the encoder.

The following corollary describes the entropy when the number of source param-

eter vectors are sufficiently small.

Corollary 5.2.2. If K = O
(

n
1
2
−ε
)

for some ε > 0, then

Hn(∆) = Hn(∆, Z) +H(w) +O

(

1

n

)

a.s. (127)

Proof. Since K = O
(

n
1
2
−ε
)

for some ε > 0, we have Kd = O
(

n
d
2
−ε
)

for some ε > 0,

and hence, we have H(ŵd) ≺ d
2
logn. Thus, Hd = H(ŵd) for all 1 ≤ d ≤ dmax. The

proof is completed by noting that

H(w) = H(v) +

dmax
∑

d=1

vdH(ŵd).

Remark. According to the corollary, when K = O
(

n
1
2
−ε
)

for some ε > 0, the

optimal coding strategy (when the source parameters are known) almost surely would

be to encode the source index Z and then use the optimal code (e.g., Huffman code)

associated with parameter θ(Z) for sequences of length n to encode the sequence xn.

In fact, if H(w) ≺ d
2
logn, then the cost of encoding the parameter is asymptotically

smaller than the cost of universally encoding the parameter and hence it is beneficial

to encode the parameter vector using an average ofH(w) bits. Further, ifK = 1, then

∆ = θ(1) and Z = 1 would be deterministic. Hence, Hn(∆) = Hn(∆, Z) = Hn(θ
(1)),

which was introduced in (1) as the average compression limit for the case of a single

known source parameter vector.

Corollary 5.2.3. If H(ŵd) � d
2
log n for all 1 ≤ d ≤ dmax such that vd > 0, then

Hn(∆) = Hn(∆, Z) +H(v) +
dmax
∑

d=1

vdR̄n,d +O

(

1

n

)

a.s. (128)
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Proof. The proof is very similar to the previous corollary and is omitted for brevity.

Remark. According to the corollary, in the case where the number of sources in the

mixture is very large, the mixture entropy converges to Hn(∆, Z) plus H(v) plus the

weighted average of the R̄n,d terms (which are exactly the average maximin redun-

dancy in the universal compression of parametric sources with d unknown parameters

given in Theorem 2.1.4). At the first glance, it may seem odd that the codeword

length in the case of known source parameter vectors incurs a term that is associated

with the universal compression of a source with an unknown parameter vector. A

closer look, however, reveals that in this case the cost of encoding the source index

of a d-dimensional parameter vector surpasses the cost of universally encoding the

source parameter vector. Hence, intuitively, it no longer makes sense to encode the d-

dimensional parameter vector for the compression of the sequence xn using an average

of H(ŵd) bits. More rigorously speaking, as is shown in the proof of Theorem 5.2.1

in Section 5.6, the probability distribution of xn given θ ∈ ∆d would converge to

the probability distribution of xn when the source has one unknown d-dimensional

parameter vector that follows Jeffreys’ prior. This in turn results in the R̄n,d term in

the compression performance.

5.3 Fundamental Limits of Universal Compression for Mix-

ture Sources

In this section, we state our main results on the fundamental limits of universal

compression for mixture sources with and without side information. The proofs are

deferred to Section 5.6. In order to see the impact of the universality and side in-

formation on the compression performance, i.e., to investigate the impact of ∆ being
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unknown, we will need to analyze and compare the average codeword length of the

following important schemes described in the sequel.

• Ucomp: Universal compression, which is the conventional compressed based

solution.

• UcompSM: Simple universal compression with side information (common mem-

ory between the encoder and the decoder), which treats the side information as

if it were generated from a single parametric source.

• UcompPCM: Universal compression with perfectly clustered side information

(based on the source indices), which assumes that the source indices of the side

information sequences can be determined using an oracle, and hence, only the

relative side information is used toward the compression of a new sequence.7

• UcompOM: Optimal universal compression with side information, which opti-

mally utilizes the side information sequence yn,T to minimize the average re-

dundancy.

• UcompCM: Universal compression with clustering of the side information, which

is the practical clustering-based scheme proposed in this work and shall be

described in Section 5.4.

Definition. We refer to Ucomp as the universal compression without side informa-

tion, in which a sole universal compression is applied on the sequence xn without

regard to the side information sequence yn,T . We further refer to R(n,w,d) as the

average redundancy of the universal compression of a sequence of length n (in our

problem setup described in Section 5.1). In other words,

R(n,w,d) , H(Xn)−Hn(∆). (129)

7Please note that UcompPCM scheme is not practically interesting as the oracle that provides
the index of the sequence is usually not available.
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Please note that R(n,w,d) also implicitly depends on the prior used on the parameter

vectors, which is Jeffreys’ prior in this work. It is straightforward to show that

Jeffreys’ prior is also the capacity achieving prior for the mixture, i.e., it maximizes

R(n,w,d).

Theorem 5.3.1. In the case of Ucomp, we have

R(n,w,d) =

dmax
∑

i=1

vd(R̄n,d −Hd) +O

(

1

n

)

a.s.,

where Hd is defined in (126).

Proof. See Section 5.6 for the proof.

Remark. According to Theorem 5.3.1, in the universal compression of a sequence

of length n from the mixture source, the main term of the redundancy scales as the

weighted average of (R̄n,d − Hd) terms. This can be significantly large if H(wd) is

much smaller than d
2
logn. Again, if K = 1, we have R(n, 1, d) = R̄n,d; this is exactly

the average maximin redundancy in the case of one unknown d-dimensional source

parameter vector described in Theorem 2.1.4.

Theorem 5.3.1 also suggests that independently from K and H(w), the price to

be paid for universality is given by R̄n,d on top of Hn(∆, Z), i.e., the entropy when

∆ and Z are known. In other words, H(Xn)−Hn(∆, Z) scales like R̄n,d (the price of

universal compression of a sequence of length n from a single source with an unknown

d-dimensional parameter vector that follows Jeffreys’ prior).

Corollary 5.3.2. If H(ŵd) � d
2
log n for all 1 ≤ d ≤ dmax such that vd > 0, then

R(n,w,d) = O

(

1

n

)

a.s.

Proof. Since H(ŵd) � d
2
log n for all 1 ≤ d ≤ dmax, we have Hd = R̄n,d for all

1 ≤ d ≤ dmax such that vd > 0. Hence, the main redundancy term in Theorem 5.3.1

vanishes and the proof is completed.
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Remark. According to the corollary, for large K, we almost surely expect no ex-

tra redundancy associated with universality on top of the mixture entropy. This is

not surprising as even in the case of known source parameter vectors, as given by

Theorem 5.2.1, the redundancy converges to the weighted average of the redundan-

cies for a d-dimensional unknown source parameter vector that follow Jeffreys’ prior.

Therefore, there is no extra penalty when the source parameter vectors are indeed

unknown.

Definition. We refer to UcompSM as the simple universal compression with side

information, in which the encoder E and the decoder D (in Figure 17) both have

access to the memorized sequence yn,T from the mixture source; the sequence yn,T is

used to estimate using the minimax estimator (which is the KT-estimator [47] in the

case of memoryless sources) the source parameter vector as if yn,T were generated by

a single parametric source with an unknown parameter vector. The estimated source

parameter is then used for the compression of the sequence xn. We further refer to

RSM(n,m,w,d) as the average redundancy of UcompSM.

Theorem 5.3.3. In the case of UcompSM, we have

(a) if K = 1, then

RSM(n,m, 1, d) =
d

2
log
(

1 +
n

m

)

+O

(

1

n

)

.

(b) If K ≥ 2, then

RSM(n,m,w,d) = Θ(n) a.s.8

Proof. See Section 5.6 for the proof.

Remark. According to Theorem 5.3.3, when K ≥ 2, then we have RSM(n,m,w,d) =

Θ(n) with probability one, i.e., when a source parameter vector is estimated for the

8f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and g(n) = O(f(n)).
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mixture source, almost surely, the redundancy of UcompSM is asymptotically worse

than that of Ucomp (universal compression without side information) since the latter

scales as d
2
log n. Therefore, it makes no sense to use UcompSM when the data are

generated from a mixture source (K ≥ 2). We shall also see some discussion on

validation of this claim based on simulations in Sec. 5.5. Note that the case K = 1

corresponds to the simple parametric source with side information that is treated

in detail in Chapter 3. Obviously, good performance is obtained in this case as

the scheme is optimal for K = 1 in the sense of achieving the average minimax

redundancy [34].

Definition. We refer to UcompPCM as the universal compression with perfectly

clustered side information sequence yn,T , which is shared between the encoder E and

the decoder D. Further, it is assumed that E and D have access to an oracle that can

determine the index of the source that generated each sequence. Hence, the index

sequence S of the memorized sequences is known to both E and D and the index

Z of the sequence xn to be compressed is known to E. Then, E and D cluster the

side information sequences according to S and use the minimax estimator to estimate

the source parameter vector associated with each cluster; the encoder E classifies

the sequence xn to the respective cluster using the oracle and encodes the sequence

only using the side information provided by the estimated parameter vector of the

respective cluster.

Theorem 5.3.4. In the case of UcompPCM, we have

RPCM(n,m,w,d) =
dmax
∑

d=1

vd

K
∑

i=1

ŵd,iR̂d,i +O

(

1

n

)

a.s.,

where

R̂d,i =











d
2
log
(

1 + n
ŵd,im

)

if H(ŵd) ≺ d
2
log n

0 if H(ŵd) � d
2
log n

. (130)
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Proof. See Section 5.6 for the proof.

Remark. Theorem 5.3.4 characterizes the redundancy of the universal compres-

sion with perfectly clustered side information. It is straightforward to observe that

for sufficiently large m, the redundancy of UcompPCM becomes very small. How-

ever, please note that UcompPCM is impractical in most situations as the oracle

that provides the source index is not available. Furthermore, UcompPCM is also

not necessarily optimal for all n. As an important special case if K = 1, then

RPCM(n,m,w,d) = d
2
log
(

1 + n
m

)

+ O
(

1
n

)

, which reduces to Theorem 2 of [17] re-

garding the average minimax redundancy for the case of a single source with an

unknown parameter vector.

Corollary 5.3.5. Regardless of w and d, we have

lim
T→∞

RPCM(n,m,w,d) = O

(

1

n

)

.

Proof. Note that T → ∞ simply means m → ∞, and d
2
log
(

1 + n
ŵd,im

)

→ 0 as

m → ∞, completing the proof.

Remark. According to the corollary, the redundancy vanishes as T → ∞ (or equiv-

alently m → ∞). Therefore, for sufficiently large m, significant performance im-

provement is expected in terms of the number of bits required to describe a sequence

xn.

Definition. We refer to UcompOM as the optimal universal compression with side

information in the sense that it achieves the minimum average redundancy given the

side information. We further refer to ROM(n,m,w,d) as the average redundancy of

the optimal universal compression with side information of size m in our problem

setup described in Section 5.1, i.e., T = m
n

sequences from the mixture source are
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shared between the encoder and the decoder as side information. As such, we have

ROM(n,m,w,d) , H(Xn|Yn,T )−Hn(∆). (131)

Theorem 5.3.6. In the case of UcompOM, we have

ROM(n,m,w,d) =
dmax
∑

d=1

vd

K
∑

i=1

ŵd,iR̂d,i

+O

(

1√
T

+
1

n

)

a.s.,

where R̂d,i is defined in (130).

Proof. See Section 5.6 for the proof.

Remark. Theorem 5.3.6 characterizes the redundancy of the optimal universal com-

pression scheme with side information, which uses a memory of size m = nT (T

sequences of size n) in the compression of a new sequence of length n. It is natural to

expect that the side information will make the redundancy decrease. The redundancy

of the UcompOM decreases when H(w) or roughly K is sufficiently small. Again,

K = 1, gives ROM(n,m, 1, d) = d
2
log
(

1 + n
m

)

+ O
(

1
n
+ 1√

T

)

. Further, it is deduced

from Theorem 5.3.6 that limT→∞ROM(n,m,w,d) = O
(

1
n

)

(regardless of w), i.e.,

the cost of universality would be negligible given that sufficiently large memory (side

information) is available. Thus, the benefits of optimal universal compression with

side information would be substantial when H(w) is sufficiently small. On the other

hand, when H(w) grows very large, no benefit is obtained from the side information

in the universal compression and the performance improvement becomes negligible.

This is due to the fact that, in light of Theorem 5.3.1, the compression performance

for the known source parameters case is already that of the universal compression.

Corollary 5.3.7. We have

ROM(n,m,w,d) = RPCM(n,m,w,d) +O

(

1√
T

+
1

n

)

a.s.
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Proof. The corollary is proved by combining Theorems 5.3.4 and 5.3.6.

Remark. The corollary has significant implications. It states that the performance

of optimal universal compression with side information (UcompOM), which uses a

memory of size m = nT (T sequences of size n) in the compression of a new sequence

of length n is equal to that of the universal compression with perfectly clustered

memory (UcompPCM) up to O
(

1√
T
+ 1

n

)

terms. Hence, when T is sufficiently large,

we expect that both have the same performance. This indeed demonstrates that

clustering is optimal for the universal compression with side information. As such, we

pursue the clustering of the side information (i.e., memory) in this work in Section 5.4.

5.4 Parametric Clustering for Mixture Models

In this section, we present the parametric clustering solution for network packets.

The K-means algorithm can be used for this purpose provided that proper feature

space and distance metrics are selected.

5.4.1 Feature Extraction

Feature extraction deals with extracting simpler descriptions for a large set of data

that can accurately describe characteristics of original data. For memoryless source

models, the frequency of each alphabet in the sequence defines an empirical prob-

ability density distribution vector which also happens to be the sufficient statistics.

Although for more sophisticated source models, the empirical probability distribution

of the packets is not a sufficient statistics anymore as collisions may occur between

different parametric sources in the marginal symbol distribution, the empirical prob-

ability distribution would still match for packets from the same source. We choose

the vector of the empirical probability distribution as our features and since we work

at the byte granularity (i.e., |A| = 256), the feature vector is 255-dimensional. Please

note that the chosen feature space is not necessary optimal but simulations confirm
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that it works well in practice for packets of size 1,500 bytes.

5.4.2 Clustering

As discussed earlier in Section 5.1, we have a side information sequence of packets

yn,T that consists of T packets that originated from a mixture source model. The goal

is to classify the packets into K different clusters without knowing K. Intuitively, we

can think of a cluster as a group of packets that are close to each other in some space

defined by a distance metric when compared with the distances to points outside of

the cluster. We choose to use the Euclidean distance metric between any two packets.

Please note that Euclidean distance metric is not necessarily the optimal metric for

the purpose of clustering of network packets. For each packet yn(t), we introduce

a binary indicator btk ∈ {0, 1} (where k = 1, . . . , K) that describes which of the K

clusters the packet yn(t) is assigned to, so that if packet yn(t) is assigned to cluster k

then btk = 1, and bik = 0 for i 6= k [21]. We can define an objective function as

J =
k
∑

i=1

K
∑

k=1

bik ||yn(t)− uk|| ,

which represents the sum of the distances of each packet to its assigned vector uk,

where uk is the probability distribution vector of the symbol set. The goal of clustering

algorithm is to find values for the {bik} and the {uk} that minimize J .

5.4.3 Classification

Once the clustering of memory is performed, to compress a test packet xn, we need

to classify the packet to one of the K clusters. Then we use the assigned cluster of

packets as the side information to compress xn. The test packet xn is assigned to the

closest cluster by function

b = arg min
1≤j≤K

||xn − uj|| .
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Figure 18: Average compression-rate for a mixture of five memoryless and five first-
order Markov sources.

5.5 Simulation Results

The simulations are divided to two parts. In the first part, we generate mixture

sources and validate our theoretical findings. Next, we also present results of simula-

tion on real network traffic traces.

5.5.1 Simulations on Man-Made Mixture Models

In order to validate the theoretical results of Section 5.3, we chose to use a mixture

of parametric sources as the content-generator for the traffic. In particular, we used

a mixture of five memoryless and five first-order Markov sources on 256-ary alphabet

(|A| = 256). Consequently for a memoryless Markov source the number of source

parameter d is 255, and for a first-order Markov source d is 256 × 255 which is the

number of independent transition probabilities. Further, we assume that each packet

is selected uniformly at random from the abovementioned mixture. For short-length

sequences, we generate 18,000 packets at random from this source model, where each

packet is 1,500 bytes long. Then, we use 200 packets from each source as test packets
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Figure 19: Average compression-rate for the data gathered from the mixture of 10
network users.

for the purpose of evaluation and average out the result.

Figure 18 demonstrates the results of the simulation on man-made data generated

from the described mixture source. Users U1 through U5 are memoryless whilst users

U6 through U10 are first-order Markov sources. We use lite PAQ-based compression

for Ucomp, UcompSM, UcompCM, and UcompPCM. As can be seen, lite PAQ is

already doing a poor job when the sequence is from a first-order Markov demonstrat-

ing the need for memory-assisted compression. This is also in agreement with the

predictions from [16, 52]. We can see that UcompPCM is consistently better than

UcompSM and UcompCM as it is the optimal way of classification and clustering,

however, UcompPCM is impractical in most scenarios.

5.5.2 Simulations on Real Network Traces

Next, we perform experiments on data gathered from 10 wireless users using real

network traces. We chose to mix the data from these 10 users in order to simulate the

situation that occurs in an intermediate router that is serving these users. Figure 19

contains the average compression-rate on these data. Please note that we slightly
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Table 1: The average compression rate (bits/byte) and average traffic reduction (%)
of different compression schemes on the real network traffic traces using lite PAQ.

Scheme Avg. Comp. Rate Avg. Traffic Reduc.
Ucomp 6.62 17.2%
UcompSM 4.53 43.4%
UcompPCM 3.93 50.9%
UcompCM 3.50 56.2%

abused the notation and used UcompPCM for compression based on the user from

which the data is gathered (and not the unknown content-generating source). Here,

indeed we do not have access to anything other than the user ID. As can be seen,

UcompCM, which is the cluster-based memory-assisted compression presented in this

chapter, consistently outperforms all other schemes as data from one user is not

necessarily from one source. Table 1 demonstrates the average compression-rate over

all the ten users as well the average traffic reduction achieved in this scenario. As can

be seen, while lite PAQ (which is one of the very best compression algorithms) only

offers 17% traffic reduction on average for the data gathered from these 10 users, by

using cluster-based memory-assisted compression more than 50% traffic reduction is

achieved. Furthermore, clustering offers more than 5% improvement over the situation

where the data from the users are clustered according to the user they are destined

to. This confirms that the data destined to a single user are not necessarily from the

same content-generating source.

5.6 Technical Analysis

Proof of Theorem 5.2.1. Let D be the random dimension of the source parameter

vector. Please note that it is straightforward to show that

H(Xn|∆) = H(Xn|∆, Z,D) + I(Xn;Z,D|∆)
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Further, if Z is known, D is determined, and hence, H(Xn|∆, Z,D) = H(Xn|∆, Z)

which is derived in (123). On the other hand, we have

I(Xn;Z,D|∆) = I(Xn;D|∆) + I(Xn;Z|∆, D).

Let us first focus on I(Xn;D|∆). We have

I(Xn;D|∆) = H(D|∆)−H(D|∆, Xn).

Please note that H(D|∆) is by definition equal to H(v). Further,we can use the

maximum likelihood estimator of D using xn, asymptotically as n → ∞, to con-

sistently estimate D and hence H(D|∆, Xn) = O
(

1
n

)

almost surely. Therefore,

I(Xn;D|∆) = H(v) +O
(

1
n

)

.

Next, we consider I(Xn;Z|∆, D). In this case, we have

I(Xn;Z|∆, D) =

dmax
∑

d=1

I(Xn;Z|∆, D = d).

In order to analyze, we need to consider two situations. First, let H(ŵd) ≺ d
2
log n.

We have

I(Xn;Z|∆, D = d) = H(Z|∆, D = d)

−H(Z|Xn,∆, D = d).

Clearly, H(Z|∆, D = d) = H(ŵd) by definition. Furthermore, if H(ŵd) ≺ d
2
log n,

it is straightforward to deduce that H(Z|Xn,∆, D = d) = O
(

1
n

)

a.s. since the max-

imum likelihood estimator for the source parameter vector almost surely converges

to the true θ, which in turn determines Z. Therefore, if H(ŵd) ≺ d
2
logn, then

I(Xn;Z|∆, D = d) = H(ŵd) +O
(

1
n

)

.

To complete the proof of the theorem, we need to show that if H(ŵd) � d
2
log n,

we have I(Xn;Z|∆, D = d) = R̄n,d + O
(

1
n

)

. In this case for any ε > 0, there exists

a subset of the Kd vectors of the d-dimensional parameter vectors indexed with K ′
d,

such that

(1− 2ε)R̄n,d < H(ûd) < (1− ε)R̄n,d,
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where ûd denotes the weight vector of those K ′
d parameter vectors renormalized to

sum to one. Please note that R̄n,d ∼ d
2
log n and hence H(ûd) ≺ d

2
log n. Therefore,

we have I(Xn;Z|∆, D = d) ≥ (1−2ε)R̄n,d+O
(

1
n

)

almost surely. On the other hand,

we also have

I(Xn;Z|∆, D = d) ≤ I(Xn; θ(Z)|D = d) = R̄n,d.

Hence, we deduce that I(Xn;Z|∆, D = d) = R̄n,d +O
(

1
n

)

almost surely, completing

the proof.

Proof of Theorem 5.3.1. Let D be the random dimension of the source parameter

vector. Please note that it is straightforward to show that

H(Xn) = H(Xn|∆, Z,D) + I(Xn; ∆, Z,D) (132)

Again, as shown in the proof of Theorem 5.2.1, H(Xn|∆, Z,D) = H(Xn|∆, Z) as

given by (123). So as to proceed, we have

I(Xn; ∆, Z,D) = I(Xn;D) + I(Xn;Z|D) + I(Xn; ∆|Z,D).

Note that I(Xn;D) = H(v)+O
(

1
n

)

almost surely asH(D|Xn) = O
(

1
n

)

almost surely.

Further, I(Xn;Z|D) = 0 as Xn does not carry any information about the index of

source parameter vector when D is known and no other information is available about

the parameter vectors. Please also note that since the parameter vectors are chosen

independently, we have I(Xn; ∆|Z,D) = I(Xn; θ(Z)|Z,D). Hence,

I(Xn; ∆, Z,D) = I(Xn; θ(Z)|Z,D) +H(v) +O

(

1

n

)

a.s.

In other words, all the information that Xn carries about the set ∆ of the unknown

parameter vectors, the index Z, and the dimension D is contained in I(Xn; θ(Z)|Z,D).

On the other hand, as each of the unknown parameter vectors follow Jeffreys’ prior,

we have I(Xn; θ(Z)|Z = z,D = d) = R̄n,d [52]. Thus,

I(Xn; θ(Z)|Z,D) =
dmax
∑

d=1

vd

K
∑

i=1

ŵd,iI(X
n; θ(Z)|Z = z)
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=

dmax
∑

d=1

vdR̄n,d. (133)

The proof is completed by noting that R(n,w,d) = H(Xn)−Hn(∆) and substituting

Hn(∆) from Theorem 5.2.1.

Proof of Theorem 5.3.3. Recall that UcompSM uses the minimax estimator for the

unknown source parameter vector (which is the KT-estimator [47] in the case of mem-

oryless sources) from the T previous sequences by pretending that all the sequences

were generated by a single unknown parameter vector. Therefore, if K = 1, the

minimax estimator using the previous sequences is consistent and indeed achieves the

average minimax redundancy. On the other hand, Gallager proved that the average

minimax redundancy is equal to the average maximin redundancy [34], which is given

by the capacity of the channel between the observed sequence xn and the unknown

source parameter vector θ given the observed sequence yn,T . Formally,

RSM(n,m, 1, d) = sup
ω(θ)

I(Xn; θ|Yn,T )|ω(θ),

where we use the notation I(Xn; θ|Yn,T )|ω(θ) to emphasize that θ follows the prior

ω(·). Apparently, ω(θ) = pJ(θ) (i.e., Jeffreys’ prior) serves as a lower limit on the

capacity, i.e.,

RSM(n,m, 1, d) ≥ I(Xn; θ|Yn,T )|pJ(θ)

= I(Xn,Yn,T ); θ)|pJ(θ) − I(Yn,T ); θ)|pJ(θ)

Proof of Theorem 5.3.4. The proof follows the lines of the proof of Theorem 5.3.6

and is omitted for brevity.
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Proof of Theorem 5.3.6. In the case of UcompOM, we have

H(Xn|Yn,T )=H(Xn|Yn,T,S, Z)+ I(S, Z;Xn|Yn,T ). (134)

On the other hand, we also have

H(Xn|Yn,T,S,Z) = Hn(∆, Z)+ I(Xn; θ(D,Z)|Yn,T,S,Z). (135)

The proof of (a) is completed by combining Lemmas 5.6.1 and 5.6.2.

Lemma 5.6.1. If K = O
(

n
ď
2
(1−ε)

)

for some ε > 0, then

I(Xn; θ(D,Z)|Yn,T ,S, Z) = R̂i +O(T− 1
2 ),

where R̂i is defined in (130).

The proof of Lemma 5.6.1 is carried out by rewriting the LHS as I(Xn,Yn,T ; θ(D,Z)|S, Z)−

I(Yn,T ; θ(D,Z)|S, Z).

Lemma 5.6.2. If K = O
(

n
ď
2
(1−ε)

)

for some ε > 0, then

I(S, Z;Xn|Yn,T ) = H(w) +O

(

1

n
+

1

T

)

.

The proof of Lemma 5.6.2 is carried out by rewriting the LHS as H(Z|Yn,T ,S) +

H(S|Yn,T ) − H(S, Z|Yn,T , Xn) and demonstrating that the last two terms asymp-

totically vanish. For Part (b), when wi =
1
K

and K = Ω
(

n
dmax

2
(1+ε)

)

for some ε > 0,

we have R(n,w,d) = O
(

1
n

)

a.s. On the other hand, ROM(n) ≤ R(n,w,d), which

completes the proof.

5.7 Conclusion

In this chapter, the problem of memory-assisted network packet compression for mix-

ture sources was studied from a theoretical point of view. Several different possible

schemes for memory-assisted compression of mixture sources were compared. It was
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proved that cluster-based memory-assisted compression is indeed optimal. A simple

clustering algorithm based on K-means clustering was provided for memory-assisted

compression of network packets. Our simulation results validated the effectiveness of

the clustering for memory-assisted of network packets in practice.
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CHAPTER VI

UNIVERSAL COMPRESSION USING ONE-TO-ONE

CODES

Thus far, in all the previous chapters, the scope of the network compression via

memory has been limited to prefix-free universal codes. The prefix constraint (also

known as unique decodability constraint) ensures that a stream of data blocks can be

uniquely decoded. However, this requirement is too restrictive in many applications,

such as the compression of network packets in which IP already marks the beginning

and the end of each packet. In such applications, the goal is to uniquely decode

one block of data. In this scenario, a so called one-to-one code without the prefix

constraint can still be uniquely decoded if it is strictly lossless (bijective mapping as

in Definition 2.1.1).While the average codeword length of prefix-free codes is bounded

from below by the entropy, the average codeword length of one-to-one codes can be

below the entropy (cf. [2, 43, 50, 82, 83] and the references therein).

Many developments on the fundamental limits of one-to-one codes have taken

place very recently. When the source parameter vector is known, the optimal average

codeword length for one-to-one codes is known to be upper bounded by entropy.

Alon and Orlitsky further derived a lower bound on the average codeword length

in [2]. It was shown that the reduction in the average codeword length without

the prefix constraint is at most log(H(Xn) + 1) + log e. It was further shown that

this bound is attained for geometric distribution. In [82], Szpankowski considered

the one-to-one compression of binary memoryless sources and showed that Alon and

Orlitsky’s bound (which is log n+O(1) for memoryless sources) is indeed not tight for

memoryless sources as the average codeword length of the optimal one-to-one coedes
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is asymptotically 1
2
logn + O(1) below the entropy. In [43], Kontoyiannis and Verdu

extended this analysis to general finite-alphabet memoryless sources and proved that

1
2
logn holds for all finite-alphabet memoryless sources.

While the performance of one-to-one codes has been investigated extensively for

the case of known source parameter vectors, our interest is in the performance of

universal one-to-one codes for the reasons pointed out in Chapter 1. As has been

shown in Chapter 2, universality imposes an inevitable redundancy to the performance

of universal compression with prefix constraint. It is desired to know whether or

not universal one-to-one codes can perform significantly better than the universal

prefix-free codes. Universal one-to-one codes are only developed very recently for

memoryless sources by Kosut and Sankar [46], where it was shown that the average

redundancy of their proposed universal one-to-one code scales as |A|−3
2

logn + O(1).

This is significantly above the entropy-rate and it is desirable to know whether or

not this can be improved. Further, it is desirable to extend these results to the more

general class of smooth parametric sources, which contain memoryless and Markov

sources as special cases.

In this chapter, the performance of universal one-to-one codes for parametric

sources is considered. It is shown that the reduction in the average codeword length

due to relaxing the prefix constraint is negligible compared with the overhead asso-

ciated with the universality of the compression. It is also shown that the code of

Kosut and Sankar [46] achieves the optimal second-order term in the redundancy for

memoryless sources.

The rest of this chapter is organized as follows. In Section 6.1, the background on

one-to-one codes is reviewed. In Section 6.2, our main results on the performance of

universal one-to-one codes are presented. The conclusion is given in Section 6.3
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6.1 Background on One-to-One Codes

In this section, the existing results on the performance of one-to-one codes are re-

viewed. Thus far, in all the previous chapters we only considered codes that satisfy

Kraft’s inequality stated in (2), which is

∑

xn∈An

2−ln(xn) ≤ 1.

As described earlier, Kraft’s inequality ensures that a stream of codewords are uniquely

decoded to the original sequences. As discussed in detail in Chapter 2, when Kraft’s

inequality is considered, the minimum average codeword length is achieved using the

optimal non-universal length function

ln(x
n) = log

(

1

µθ(xn)

)

,

and the minimum average codeword length is the entropy. Hence, entropy is a lower

bound on the average codeword length , i.e., Eln(x
n) ≤ Hn(θ). However, the prefix

constraint can be relaxed for the compression of the network packets where the start

and end of a sequence are already marked by the header of the packet. This section

describes the performance improvement obtained by relaxing Kraft’s inequality.

6.1.1 Non-Universal One-to-One Codes

First, we review the non-universal one-to-one codes. Let l?n(·) denote a strictly lossless

one-to-one length function. Further, denote L?
n as the collection of all one-to-one codes

(bijective mappings to binary sequences) on sequences of length n. The following

result due to Alon and Orlitsky sets a lower limit on the one-to-one average codeword

length.

Theorem 6.1.1. [2]: Assume that the entropy of the random sequence Xn is equal

to H(Xn). Then, the

El?n(X
n) ≥ H(Xn)− log(H(Xn) + 1)− log e. (136)
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Remark. Theorem 6.1.1 is indeed a very deep result stating that the reduction

in the average codeword length associated with a random sequence Xn is at most

log(H(Xn) + 1) + log e. Further, Alon and Orlitsky showed that if Xn follows the

geometric distribution, the lower limit is attained. Although this provides with a

lower bound on the performance, it is desirable to see how tight it is.

When the source statistics are known, we can order all probabilities of the 2n

sequences in a decreasing fashion and then assign a codeword length blog jc to the

j-th message sequence. It is straightforward to see that this coding strategy is the

optimal one-to-one code but what is perhaps not straightforward is to analyze the

average codeword length resulting from this coding strategy. In [82], Szpankowski

derived the average codeword length of the non-universal one-to-one codes for binary

memoryless sources, recently generalized by Kontoyiannis and Verdu [43] for finite-

alphabet memoryless sources as the following.

Theorem 6.1.2. [43, 82]: In the non-universal one-to-one compression of finite-

alphabet memoryless sources, the average codeword length is given by

El?n(X
n) = Hn(θ)−

1

2
logn +O(1). (137)

Szpankowski tends to call the second-order term the anti-redundancy [82], which

is the average codeword length reduction below the entropy. Therefore, the anti-

redundancy in the non-universal one-to-one compression of finite-alphabet memory-

less sources is 1
2
log n+O(1) when Kraft’s inequality is relaxed.

6.1.2 Universal One-to-One Codes

Thus far, it was shown that for non-universal one-to-one codes the optimal average

codeword length is below the entropy. On the other hand, several challenges arise

when universal one-to-one codes are concerned. First, the optimal codeword length
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assignment is no longer obvious. Further, the analysis of a given codeword length

assignment is not straightforward.

Let R?
n(l

?
n, θ) denote the average redundancy of the one-to-one code, which is

defined in the usual way as

R?
n(l

?
n, θ) , El?n(X

n)−Hn(θ). (138)

Further, define the one-to-one average maximin redundancy R?
n as

R?
n = sup

p
inf

l?n∈L?
n

∫

θ∈Λ
R?

n(l
?
n, θ)p(θ)dθ, (139)

where the supremum is taken over all distributions over the space Λ. Let the one-to-

one average minimax redundancy R̄?
n be defined as

R̄?
n = inf

l?n∈L?
n

sup
θ∈Λ

R?
n(l

?
n, θ). (140)

It is straightforward to deduce the following.

Theorem 6.1.3. [34]: The one-to-one average minimax redundancy is no smaller

than the one-to-one average maximin redundancy. That is

R̄?
n ≥ R?

n. (141)

Remark. According to Theorem 6.1.3, the average minimax redundancy is always

at least equal to the average maximin redundancy. Please note that for the case of

prefix-free codes it can be shown that they are equivalent [34], while the equivalence

would not readily extend to the one-to-one codes.

To the best of our knowledge, the only existing work on universal one-to-one codes

is by Kosut and Sankar [46], who proposed a so-called type-size coding scheme based

on the type of the sequences [27]. The type of sequence xn is given by

txn(a) =
|i : xi = a|

n
for a ∈ A. (142)
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For a type t, let the type class Tt be defined as

Tt = {xn ∈ An : txn = t}. (143)

Therefore, |Tt| denotes the size of the type class of the type t, i.e., the total number

of sequences with type t. Here, we will present a slightly modified version of the

type-size code for the purpose of clarity of discussion, which has essentially the same

performance. The type-size code essentially sorts the sequences based on the size

of the corresponding type classes in a descending order. Therefore, the sequence xn

may appear before yn only if |Ttxn | < |Ttyn |. Then, the rest is performed by assigning

a codeword length blog jc to the j-th message sequence. Let ltscn denote the length

function associated with the type-size code. The performance of the type-size code

was analyzed in [46].

Theorem 6.1.4. [46]: In the universal one-to-one compression of the class of mem-

oryless sources with alphabet size A, for any ε > 0, we have

R?
n(l

tsc
n , θ) ≤ (1 + ε)

|A| − 3

2
log n+O(1), (144)

where |A| is the size of alphabet.

Remark. According to Theorem 6.1.4, the one-to-one average redundancy for mem-

oryless sources of alphabet size |A| is asymptotically bounded from above by the

expression |A|−3
2

log n + O(1), which is smaller than |A|−1
2

log n + O(1) attributed to

prefix-free universal codes. However, it remains open to see whether this bound can

be further improved and to asses how significant the improvement is.

6.2 Main Results on Universal One-to-One Codes

In this section, our main results on the universal one-to-one compression performance

are presented.
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Theorem 6.2.1. Assume that the unknown parameter vector θ follows Jeffreys’ prior

pJ(·) given in (11), where θ lies in the |A| − 1 dimensional simplex of memoryless

parameter vectors. Then, type-size code is optimal for the universal one-to-one com-

pression of finite-alphabet memoryless sources. That is

ltscn = arg inf
l?n∈L?

n

∫

θ∈Λ
R?

n(l
?
n, θ)p(θ)dθ. (145)

Proof. In order to prove the result, we must demonstrate that type-size coding orders

the sequences in a descending fashion based based on their probabilities. We have

P (xn) =

∫

θ∈Λ
µθ(x

n)pJ(θ)dθ. (146)

On the other hand, since Jeffreys’ prior is asymptotically capacity achieving [34, 52],

it asymptotically results in equiprobable types. In other words,

P[tXn = t] '
(

n+ |A| − 1

n

)

. (147)

where
(

n+|A|−1
n

)

denotes the total number of type classes, which is a constant with

respect to xn. Hence,

P[Xn = xn] '
(

n+|A|−1
n

)

|Ttxn |
. (148)

Therefore, by definition of type-size codes, the type-size coding orders the sequences

in a descending fashion based on their probabilities, which completes the proof.

Remark. According to Theorem 6.2.1, the type-size coding is optimal for the univer-

sal one-to-one compression of finite-alphabet memoryless sources and the type-size

coding is known to achieve a redundancy that is roughly |A|−3
2

logn. However, it

remains open to deduce anything about d-dimensional parametric sources. Further-

more, we restricted the analysis to the case where θ follows the capacity achieving

Jeffreys’ prior. It is desirable to extend the conclusions to cases where θ follows an ar-

bitrary distribution. This can be done by bounding the average minimax redundancy

and the average maximin redundancy.
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Theorem 6.2.2. The one-to-one average maximin redundancy for the family Pd
Λ of

d-dimensional parametric sources is bounded from below by

R?
n ≥ d− 2

2
log

n

2πe
− log 2πe2 +

∫

θ∈Λ
|I(θ)| 12dθ +O

(

1√
n

)

. (149)

Proof. We have

H(Xn) = H(Xn|θ) + I(Xn; θ) (150)

Assuming that θ follows Jeffreys’ prior, we can get

H(Xn) = H̄n + R̄n, (151)

where R̄n is the average minimax redundancy for prefix-free codes given in (9) and

H̄n is given by

H̄n =

∫

θ∈Λ
Hn(θ)pJ(θ)dθ. (152)

Hence, we can now use Theorem 6.1.1 to provide a lower bound onEl?n(X
n). The proof

is completed by seeing that log H̄n ≤ log n and noting that the average redundancy for

the case where θ follows Jeffreys’ prior provides a lower limit on the average maximin

redundancy.

Remark. Theorem 6.2.2 basically states that the one-to-one average maximin re-

dundancy is bounded from below by R?
n ≥ d−2

2
logn+O(1). By using Theorem 6.1.3,

we can deduce that the bound also holds for the average minimax redundancy, i.e.,

R̄?
n ≥ d−2

2
log n+O(1). It is desirable to see how much reduction is offered by univer-

sal one-to-one compression compared with the prefix-free universal compression. By

assessing the constants in Theorem 6.2.2, it is straightforward to show that the perfor-

mance improvement is negligible compared with the overhead imposed by universal

compression (i.e., the average minimax redundancy). This leads to the conclusion

that the universal one-to-one codes are not of much practical interest.
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Finally, let us consider the performance of universal one-to-one codes for the case

of memoryless sources. For the case of memoryless sources, Theorem 6.2.2 can be

translated as

R̄?
n ≥ |A| − 3

2
log n+O(1), (153)

which coincides with the performance of type-size coding. Therefore, we have the

following.

Theorem 6.2.3. Type-size coding is minimax (and maximin) optimal for the univer-

sal one-to-one compression of memoryless sources.

6.3 Conclusion

All the previous chapters focused on the performance of universal compression using

prefix-free codes. There are numerous applications in which the prefix constraint is in-

deed unnecessary, as the beginning and end of each block is already determined using

some other mechanism. In this chapter, the performance of universal one-to-one codes

without prefix constraint was considered. It was proved that the type-size code pro-

posed earlier in the literature is indeed optimal for universal one-to-one compression

of memoryless sources. Further, a lower bound on the average minimax redundancy

of universal one-to-one codes was derived. Finally, it was also demonstrated that the

reduction on the average redundancy by relaxing the prefix constraint is negligible

compared with the cost of universality in universal compression of network packets.
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CHAPTER VII

CONCLUDING REMARKS

7.1 Summary of Achievements

Correlation elimination is a promising solution to reduce the number of bits associ-

ated with the transmission of the ever increasing massive amount of network traffic

as the transmission cost comprises a significant fraction of the costs of maintaining

such massive data. To this end, this Ph.D. dissertation sets the stage for applying

universal compression to this massive data at the packet level just above layer 3 of

the network when the intermediate network nodes are enabled with the capability of

memorizing the previous traffic. Using the insights gained from these fundamental

performance limits, a novel compression-based framework (called network compres-

sion via memory) is proposed to efficiently eliminate the correlation from network

traffic data with superior performance compared with the existing techniques.

First, it is theoretically demonstrated that the well-known prefix-free universal

compression algorithms, when used for the correlation elimination of the relatively

small network packets, suffer from an inevitable large compression overhead (called

redundancy). The same is also confirmed using simulation on real network traf-

fic. Using the insights gained from these fundamental performance limits, a novel

compression-based framework (called network compression via memory) is proposed

to efficiently eliminate the correlation from network traffic data whenever the net-

work nodes (i.e., the encoder and the decoder) are known to be memory-enabled. It

is shown that network compression via memory provides with superior performance

compared with the existing techniques. It is further proved that by choosing the

memory size to be sufficiently large, the correlation in the universal compression can
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be made arbitrarily small. Consequently, memory-assisted universal compression is

an effective correlation elimination technique for network traffic data.

Further, the fundamental limits of elimination of the correlation in the spatial di-

mension are also investigated, i.e., the correlation in the data collected by a common

destination from multiple correlated (but spatially separated) sources. It is shown

that significant performance improvement may be obtained by considering this corre-

lation motivating the development of practical enocding/decoding systems that can

approach the derived limits.

To build a more realistic model for network data, the source model is extended to

a mixture of stationary sources. It is shown that in the presence of such a mixture,

clustering of the packets to their original models from the mixture is almost surely

optimal in terms of the traffic reduction in the context of network compression via

memory. Simulation results demonstrate the effectiveness of the proposed approach

by matching the expected gains predicted by theory using K-means clustering of the

traffic data.

Finally, the network compression via network memory is extended to one-to-one

codes without the prefix constraint. It is shown that in the universal compression for

one-to-one codes without the prefix constraint at the finite-length the compression

overhead is still significant. Furthermore, the impact of memory-assisted compression

is analyzed in this setup.

7.2 Future Research Directions

This Ph.D. dissertation presents the first attempt to suppress network traffic data

at the packet level using universal compression, and hence, several directions exist

for the continuation of this work. In the following, a list of the more important and

impactful future research directions are presented.
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7.2.1 Compression of Multiple Correlated Distributed Sources

In Chapter 4, a novel correlation model was proposed for two distributed sources with

correlated parameter vectors and the fundamental limits of the universal compression

in this setup were studied. It is desirable to extend this correlation model beyond two

sources to multiple sources. This will also enable the study of network compression

with a mixture of correlated sources which is a more realistic model for the content-

generating server at the network.

7.2.2 Optimal Clustering for Memory-Assisted Compression

In Chapter 5, it was proven that clustering of the network packets to their origi-

nal content-generating sources is optimal for achieving the optimal memory-assisted

compression performance. Simulation results using K-means clustering algorithm also

validated the concept. However, it remains open to provide the optimal feature vec-

tor, distance metric, and clustering algorithm for the memory-assisted compression

of network data.

7.2.3 Mismatched Memory in Mobile Users

Throughout this Ph.D. dissertation, it was mainly assumed that the memory (side

information) is commonly shared between the encoder and the decoder. Although

this can be enforced in the backhaul of the network, the majority of the network

nodes are becoming mobile users for which sharing a common memory is unrealistic.

In Chapter 4, this assumption was relaxed and the impact of memory that is only

available to the decoder was considered from a theoretical standpoint. Further, in [68,

69], the impact of mismatched side information between the encoder and the decoder

has been considered. In both cases, achievability schemes were provided by covering

the space with high-dimensional spheres. Although the theoretical developments

are very encouraging about the feasibility of dealing with mismatched memory, the

development of a practical yet efficient method to deal with this problem remains a
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very important open research direction.

7.2.4 Compression of Encrypted Traffic

In this Ph.D. dissertation, the impact of encrypted data was ignored in the memory-

assisted compression. Although a significant chunk of the traffic is unencrypted, the

network traffic content is moving toward being all encrypted in the future. Encryption

aims at generating an encoded sequence that is comprised of independent bits with

equal probability of being 0 or 1. Such a sequence is not compressible in principle,

and hence, compression and encryption are two conflicting goals. On the other hand,

compression of encrypted data is not completely hopeless as there are promising

directions for taking encryption into the picture of compression [42]. However, it

remains an open problem to develop ideas for memory-assisted universal compression

of the encrypted network traffic.

7.2.5 High-Speed Concurrent Compression

This Ph.D. dissertation did not tackle the important problem of compression speed.

This will require efficient implementation of scalable memory-assisted compression

algorithms that can compress network packets at the routers on the fly. Combining

the memory-assisted compression with parallel compression [12, 48] can provide a

fast yet efficient way of implementing this, which remains as an open future research

direction.
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APPENDIX A

PROOFS

A.1 Proof of Lemma 2.3.2

Proof. Since E log
(

µθ(X
n)

µφ? (X
n)

)

= O(1), we know that ||φ?(Xn) − θ|| = O
(

1√
n

)

. Now,

for each λ > 0, the set of points in the space such that B(θ,ΦM) > ε lie around the

midpoints of the lines connecting any φi ∈ ΦM to its nearest neighbors. The volume

for each of these regions is o
(

1

n
d
2

)

and since M = O
(

n
d
2
(1−ε)

)

, the total probability

measure of such θ ∈ Λ is o
(

1

n
d
2 ε

)

.

A.2 Proof of Lemma 2.3.3

Proof. We may use Taylor series to characterize Dn(µθ||µφ◦) as a function of θ at

θ0 = φ◦.

1

n
Dn(µθ||µφ◦) ≈ Eφ◦(θ) +O(||θ − φ◦||3), (154)

where

Eφ◦(θ) =
log e

2
(θ − φ◦)T In(φ

◦)(θ − φ◦). (155)

Since we are interested in points such that 1
n
Dn(µθ||µφ◦) = O

(

1
n

)

, then the error term

in (154) uniformly converges to zero with rate O
(

n− 3
2

)

. Note that Eφ◦(θ) ≤ δ for any

δ > 0 defines an ellipsoid around φ◦ in the d-dimensional space of θ. Let ∆d(φ
◦, δ)

denote the shape characterized by 1
n
Dn(µθ||µφ◦) < δ. Further, let Vd(φ

◦, δ) be the
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volume of ∆d(φ
◦, δ). We have

Vd(φ
◦, δ) =

∫

θ∈∆d(φ◦,δ)

dθ

=
Cd

|In(φ◦)| 12





2
(

δ +O
(

n− 3
2

))

log e





d
2

=
Cd

|In(φ◦)| 12

(

2δ

log e

)
d
2
(

1 +
d

δ
O
(

n− 3
2

)

)

=
Cd

|In(φ◦)| 12

(

2δ

log e

)
d
2
(

1 +O

(

1√
n

))

, (156)

where Cd is the volume of the d-dimensional unit ball.

Since θ follows Jeffreys’ prior, the probability measure covered by the shape shape

∆d(φ
◦, δ) is given by

Pθ [∆d(φ
◦, δ)]=

∫

θ∈∆d(φ◦,δ)

(

|In(θ)|
1
2

∫

|In(λ)|
1
2dλ

)

dθ

=

∫

θ∈∆d(φ◦,δ)





(

|In(φ
◦)| 12 +O

(

1√
n

))

∫

|In(λ)|
1
2dλ



 dθ

= Vd(φ
◦, δ)

(

|In(θ)|
1
2

∫

|In(λ)|
1
2dλ

)

(

1 +O

(

1√
n

))

=
Cd

∫

|In(λ)|
1
2dλ

(

2δ

log e

)
d
2
(

1 +O

(

1√
n

))

. (157)

This completes the proof of the first claim. Please note that although the volume

of the shape is a function of the point φ◦ in the parameter space, the probability

measure of the shape does not depend on the point φ◦.

For the second claim, let the event Vi be the defined as

Vi =

{

ω ∈ Ω :
1

n
Dn(µθ||µφi

) < δ

}

. (158)

Note that there are m choices for φi. For all 1 < i < m, in the first claim, we found

an upper bound on the probability of the event Vi. Thus, using the union bound, we

can upper bound the probability of
⋃m

i=1 Vi. Define the following event.

W =

{

ω ∈ Ω : min
φi∈Φm

1

n
Dn(µθ||µφi

) < δ

}

. (159)
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The second claim is obtained by noting that

W =
m
⋃

i=1

Vi. (160)

A.3 Proof of Lemma 2.3.7

Proof. First, note that

Rn(l
2p
n , θ)−Rn(l

n2p
n , θ) = E log

(

1

A(φ?(Xn))

)

. (161)

According to (43), m increases as ε decreases until ε is minimized and the average

minimax redundancy is achieved as in (46). Let |Sm(φ
?)| be the number of the

sequences whose optimally estimated point (maximum likelihood estimation) is φ?.

Increasing m results in the increase of the number of the estimate points. Thus,

|Sm(φ
?)| decreases with m on the average and so does A(φ?). Therefore, we would

conclude that E log
(

1
A(φ?(Xn))

)

is an increasing function of m. As discussed earlier,

we optimized m in order to find the best lower bound on the average redundancy in

Theorem 2.3.1. As can be seen in (43), the optimal value of m is decreasing with

ε. Thus, in order to maximize E log
(

1
A(φ?(Xn))

)

, we would need to minimize ε. As

discussed in the proof of Theorem 2.3.4, by minimizing ε, we obtain the average

minimax redundancy. Therefore, we have

E log

(

1

A(φ?(Xn))

)

≤ R̄2p
n − R̄n2p

n , (162)

Note that the normalized two-part codes achieve the average minimax redundancy,

i.e., R̄n2p
n = R̄n. Thus,

R̄2p
n − R̄n2p

n = g(d) +O

(

1

n

)

. (163)
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A.4 Proof of Lemma 3.3.7

Proof. By applying the definition of m?, we have

d

2n

n

m
log e ≤ δ

1− δ

Hn(θ)

n
. (164)

By noting that log
(

1 + n
m

)

≤ n
m
log e, we have

d

2n
log
(

1 +
n

m

)

≤ δ

1− δ

Hn(θ)

n
, (165)

and hence, the lemma is proved by noting that R̂M(n,m) = d
2
log
(

1 + n
m

)

.

A.5 Proof of Theorem 3.6.5

Proof. It can be shown that the minimax redundancy is equal to the capacity of

the channel between the unknown parameter vector θ and the sequence xn given the

sequence ym (cf. [52] and the references therein). Thus,

R̄0
UcompED(n,m) = sup

ω(θ)

I(Xn; θ|Y m)

= sup
ω(θ)

{I(Xn, Y m; θ)− I(Y m; θ)}

≥ {I(Xn, Y m; θ)− I(Y m; θ)}|θ∝ωJ(θ)

= R̄0
Ucomp(n+m)− R̄0

Ucomp(m), (166)

where ωJ(θ) denotes the Jeffreys’ prior defined in (11), and R̄0
Ucomp(·) is given in The-

orem 3.6.1. Further simplification of (166) leads to the desired result in Lemma 3.6.5.

A.6 Proof of Lemma 4.1.5

Proof. According to Lemma 4.5.7, for any ε > 0 we have

P
[

θ(2) 6∈ E(θ(1), ε)
]

. 2Qd

(

δ
T
2

)

. (167)

Also please note that Qd(x) converges to zero as x → ∞. Hence, θ(2) converges to

θ(1) in probability as T → ∞ as claimed.
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A.7 Proof of Lemma 4.5.2

Proof.

H(Xn|1e, X̂
n) = (1− pe)H(Xn|1e(X

n, ) = 0, X̂n)

+ peH(Xn|1e = 1, X̂n) (168)

≤ peH(Xn). (169)

The first term in (168) is zero since if 1e = 0, we have Xn = X̂n and hence

H(Xn|1e(X
n, ) = 0, X̂n) = 0. The inequality in (169) then follows from the fact

that H(Xn|1e = 1, X̂n) ≤ H(Xn) completing the proof.

A.8 Proof of Lemma 4.5.6

Proof. Please note that

P
[

θ̂(Xn) 6∈ E(θ, ε)
]

h P
[

(θ̂(Xn)− θ)TI(θ)(θ̂(Xn)− θ) > ε2
]

. (170)

On other other hand, n(θ̂(Xn)− θ)TI(θ)(θ̂(Xn)− θ) follows the chi-squared distribu-

tion with d degrees of freedom, i.e., χ2
d. Thus, we can bound the tail by the following:

P
[

(θ̂(Xn)− θ)TI(θ)(θ̂(Xn)− θ) > ε2
]

=
Γ
(

d
2
, ε2

2
n
)

Γ
(

d
2

) . (171)

Please also note that we have

lim
x→∞

Γ(s, x)

xs−1e−x
= 1. (172)

Therefore, since ε2

2
n → ∞ as n → ∞, we have

P
[

θ̂(Xn) 6∈ E(θ, ε)
]

h Qd

(

δ
n

2

)

, (173)

where Qd(·) is defined in (109), which also completes the proof.
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A.9 Proof of Lemma 4.5.7

Proof. In this case, we have

P
[

θ(2) 6∈ E(θ(1), ε)
]

h P
[

(θ(2) − θ(1))TI(θ(1))(θ(2) − θ(1)) > ε2
]

. (174)

Further, we also have

θ(2) − θ(1) = (θ(2) − θ̂(Z2T )) + (θ̂(Z2T )− θ(1)). (175)

By noting that (θ(2) − θ̂(Z2T )) and (θ̂(Z2T )− θ(1)) are independent by definition, we

see that

P
[

θ(2) 6∈ E(θ(1), ε)
]

h P
[

(θ(2) − θ̂(Z2T ))TI(θ(2))(θ(2) − θ̂(Z2T ))

+ (θ(1) − θ̂(Z2T ))TI(θ(1))(θ(1) − θ̂(Z2T )) > ε2
]

. (176)

Note that we have used the fact that I(θ(2)) → I(θ(1)) in probability in (176). Hence,

by union bound we have

P
[

θ(2) 6∈ E(θ(1), ε)
]

. P
[

θ̂(Z2T ) 6∈ E
(

θ(2),
ε

2

)]

+P
[

θ̂(Z2T ) 6∈ E
(

θ(1),
ε

2

)]

. (177)

The desired result is obtained by applying Lemma 4.5.6 to (177).

A.10 Proof of Lemma 4.5.8

Proof. For any (δ1, δ2, δ3) such that δ1 + δ2 + δ3 = ε, we have

P
[

θ̂(Xn) 6∈ E
(

θ̂(Y m), ε
)]

≤ P
[

θ̂(Xn) 6∈ E(θ(2), δ1)

∪ θ̂(Y m) 6∈ E(θ(1), δ2) ∪ θ(2) 6∈ E(θ(1), δ3)
]

(178)
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≤
{

P
[

θ̂(Xn) 6∈ E(θ(2), δ1)
]

+P
[

θ(2) 6∈ E(θ(1), δ2)
]

+P
[

θ̂(Y m) 6∈ E(θ(1), δ3)
]}

(179)

Hence, we can also optimize (δ1, δ2, δ3) to obtain the best bound as follows.

P
[

θ̂(Xn) 6∈ E
(

θ̂(Y m), ε
)]

≤ min
δ1+δ2+δ3=ε

{

P
[

θ̂(Xn) 6∈ E(θ(2), δ1)
]

+P
[

θ(2) 6∈ E(θ(1), δ2)
]

+P
[

θ̂(Y m) 6∈ E(θ(1), δ3)
]}

(180)

≤ min
δ1+δ2+δ3=ε

{

Qd

(

δ1
n

2

)

+

2Qd

(

δ2
T
2

)

+Qd

(

δ3
m

2

)

}

(181)

= 4Qd

(

ε

4

(

1

n
+

1

T +
1

m

))

(182)

where the inequality in (181) is due to Lemmas 4.5.6 and 4.5.7, and the equality

in (182) is obtained by optimizing (δ1, δ2, δ3).
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