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SUMMARY

Multiple comparisons and selection procedures are commonly studied in research

and employed in application. Clinical trial is one of popular fields to which the

subject of multiple comparisons is extensively applied. Based on the Federal Food,

Drug, and Cosmetic Act, drug manufacturers need to not only demonstrate safety of

their drug products but also establish effectiveness by substantial evidence in order

to obtain marketing approval. However, the problem of error inflation occurs when

there are more than two groups to compare with at the same time. How to design a

test procedure with high power while controlling type I error becomes an important

issue.

The treatment with the largest population mean is considered to be the best one

in the study. Potentially the best treatments can receive increased resources and

further investigation by excluding clearly inferior treatments. Hence, a small number

of possibly the best treatments is preferred. This thesis focuses on the problem of

eliminating the less effective treatments among three in clinical trials. The goal is to

increase the ability to identify any inferior treatment providing that the probability of

excluding any best treatment is guaranteed to be less than or equal to α. A step-down

procedure is applied to solve the problem.

The general step-down procedure with fixed thresholds is conservative in our prob-

lem. The test is not efficient in rejecting the less effective treatments. We propose

two methods with sharper thresholds to improve current procedures and construct

a subset containing strictly inferior treatments. The first method, the restricted pa-

rameter space approach, is designed for the scenario when prior information about

xii



range of treatment means is known. The second method, the step-down procedure

with feedback, utilizes observations to modify the threshold and controls error rate

for the whole parameter space. The new procedures have greater ability to detect

more inferior treatments than the standard procedure. In addition, type I error is

also controlled under mild violation of the assumptions demonstrated by simulation.
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CHAPTER I

INTRODUCTION

1.1 Background

The Federal Food, Drug, and Cosmetic Act was first passed by Congress back in

1938. The Act requested drug labels provide adequate direction for safe use. In

addition, it regulated drug manufacturers prove the safety of their products to the

U.S. Food and Drug Administration (FDA) before entering the market. With growing

concern about high drug prices and misleading or unsupported assertions made by

pharmaceutical companies regarding to their products, Congress amended the Act

and added a requirement for effectiveness in 1962.

The 1962 Drug Amendments contained a provision requiring manufacturers to

establish the effectiveness of their drug products by “substantial evidence” in order to

obtain marketing approval. Substantial evidence was defined in section 505(d) of the

Act as “evidence consisting of adequate and well-controlled investigations, including

clinical investigations, by experts qualified by scientific training and experience to

evaluate the effectiveness of the drug involved, on the basis of which it could fairly and

responsibly be concluded by such experts that the drug will have the effect it purports

or is represented to have under the conditions of use prescribed, recommended, or

suggested in the labeling or proposed labeling thereof.”[1] What components establish

sufficient evidence of effectiveness and how to demonstrate the evidence have became
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a contentious issue since then.

The process of proving the evidence is usually costly and time consuming. To

a pharmaceutical company, the level of effectiveness is one of determinant elements

for whether investing a new drug. In terms of public health, it is important for the

government to set up regulations for drug development. Therefore, it is an essential

topic to research into efficient and sound methodologies for testing the efficacy of

treatments.

1.2 Introduction to clinical trials

A lot of resources have been allotted to the field of clinical trials. The National

Institutes of Health (NIH) had an actual funding of 2,767 million dollars in this field

in FY 2006. The funding level is estimated to be 2,764 and 2,756 million dollars in

FY 2007 and 2008 respectively.

A clinical trial is a research study which tests a treatment in human beings to see

whether it is both safe and effective to remedy a disease or a condition. Each trial

must follow a protocol which explains the intention, the necessity, and the plan of a

study. The clinical trials can provide researchers with information that helps them

better understand the diseases and compare the performance of the treatments under

different conditions. Clinical trials can be generally categorized as follows depending

on the aspects of medical care they serve.

• Treatment trials: Test treatments for specific diseases or conditions.

• Supportive care trials: Study methods to provide a certain group of subjects

2



with a better quality of life.

• Prevention trials: Reduce the risk of developing a disease for healthy people.

• Diagnostic trials: Test new ways to detect a disease earlier and more accu-

rately.

In clinical trials, there are mainly three types of comparisons: trials to show (1)

superiority, (2) equivalence or noninferiority, and (3) dose-response relationship. New

drugs are first tested in laboratories and then on animals. Since clinical trails involve

human beings, they are normally expensive and have strict requirements for safety.

Before carrying out a clinical trial, there needs to be strong evidence that the therapy

is secure to people and is most likely effective to patients. Typically, there are four

stages of clinical trials serving different purposes:

• Phase I:

A small group of people about 20 to 80 participate in the first phase. Researchers

test a new drug or treatment to evaluate its safety, determine a safe dosage

range, and identify side effects.

• Phase II:

A larger group of people around 100 to 300 are recruited in phase II. The

purpose of this stage includes checking whether the drug has effect against the

disease and further evaluating its safety.

• Phase III:
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An even larger group of people from 1,000 to 3,000 are involved in phase III.

But it can be as many as 10,000 patients. The study drug or treatment is

tested to confirm effectiveness, monitor side effects, compare with commonly

used treatments, and collect information that will allow it to be used safely.

• Phase IV:

Post-marketing study are implemented to gain addition information containing

the risks, benefits, and optimal use of a drug.

1.3 Introduction to multiple comparisons and selection pro-
cedures

Multiple comparisons and selection problems are a common topic in many fields. It

is ordinary to have more than two groups to compare with at the same time. For

example, test treatment effects or toxicity levels of a group of chemical compounds

in a dose-response study, analyze consumers’ preference for a series of products in

market surveys, and compare the yield rates from different systems or manufacturing

processes in a quality control study. One typical method to analyze these types of

questions is to apply ANOVA table with F test to examine homogeneity among the

groups. If the null hypothesis of homogeneity is rejected, however, ANOVA table does

not provide further information about which groups are statistically different. The

results of F test may not meet requirement. Therefore, researchers are interested in

investigating multiple comparisons or other methodologies which furnish them with

the relationships among the groups.
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When comparing two population means, type I error is defined as the probability of

incorrectly rejecting the null hypothesis that two meas are equal. The error rate is set

to be protected at or below α. However, the problem of how to meet the probability

constraint becomes more complicated when there are more than two groups. Denote

k as the total number of groups. When k ≥ 3, the all-pairwise comparison family set

contains
(

k
2

)
tests with multiple pairs of null and alternative hypotheses. H0 : µi = µj

vs. Ha : µi = µj, 1 ≤ i, j ≤, k, i 6= j. The corresponding type I error is the

probability of incorrectly rejecting any null hypothesis which brings about the error

inflation problem. If the nominal error rate of an individual test is controlled at

α, the exact type I error rate of an all-pairwise comparison family set is actually

greater than α. For example, an all-pairwise comparison set has 6 tests in studying

four populations. Suppose that type I error of an individual test is maintained not

exceeding 5%. Then, the total error rate of six pairwise tests significantly increases

to 26.5%.

α′ = 1− (1− α)g, g is the total number of tests

The fact demonstrates the importance of the field in multiple comparisons and the

necessity of controlling α value when k ≥ 3. Statistical adjustments for multiplicity

are appropriate for controlling type I error.

The foundation of the field of multiple comparisons were established in late 1940s

and early 1950s. A few principal pioneers are Duncan, Roy, Scheffé, and Tukey.

Some similar ideas can be traced back to the earlier works by Fisher, Gossett, and
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others. Harter (1980)[18] has a detailed description about the early history in mul-

tiple comparisons. The books written by Miller (1966)[30] and by Hochberg and

Tamhane (1987)[25] provide comprehensive multiple comparisons procedures estab-

lished in their eras and point out new research directions in the field.

However, there has been abundant debate and controversy over the need for α

adjustment to take the multiplicity of inferences into consideration. The ideas can be

generally classified into three schools of thought:

• Familywise error rate

• Comparisonwise error rate

• Bayesian

The first school of thought led by Tukey (1953)[40] and Scheffé (1953)[36] adjusts

the error rate of each individual test. This school deems that it is essential to use

multiple comparisons methods which control familywise error rate to ensure that

the probability of having at least one false rejection of the null hypothesis does not

exceed α. The assigned familywise error rate or so called the experimentwise error

rate applies to all of the hypothesis tests in the family set as a whole instead of to

a single test. A list of related procedures using adjusted probability are discussed in

chapter 2.

On the other hand, many statisticians have opposite point of view on whether us-

ing statistical adjustments (e.g. O’Neill and Wetherill (1971)[32], Petersen (1977)[34],

Carmer and Walker (1982)[9], O’Brien (1983)[31], Perry (1986)[33], and Rothman
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(1990)[35]). Under this school of thought, each test or statistical inference is handled

one by one and the probability adjustment is not necessary. The probability of falsely

rejecting the null hypothesis of one single test is known to be the comparisonwise error

rate. This probability applies to each individual hypothesis test, but not collectively

as the familywise error rate.

The last school of thought employs Bayesian approach to access multiple compar-

isons problems. A few representative works such as Duncan (1965)[11], Waller and

Duncan (1969)[41], Duncan and Dixon (1983)[12] use prior distributions for unknown

parameters, linear loss functions for an individual test, and an additive loss function

for the entire loss.

1.4 Overview of the thesis

A test procedure is preferable if the number of potentially the best treatments selected

by the test is small and if the procedure can keep all the most effective treatments at

the end of the test as well. The procedure should protect the best treatments from

being discarded and prevent concluding too many inferior options as superior ones.

The objectives can be achieved from the other side by removing as many inferior

treatments as possible.

The goal of this research is to develop methodologies which possesses greater power

in detecting strictly inferior treatments while controlling the probability of making

an incorrect decision. The main ideas are to modify the critical values and to use

observations as feedback to improve the general step-down procedure with constant

7



thresholds.

The thesis is organized as follows. Chapter 2 reviews multiple comparisons and

selection procedures for the response with Normal distribution. Chapter 3 performs

a preliminary study including the setting and the properties of the problem. Chapter

4 studies the critical values for the step-down procedure under a restricted parameter

space which is a subset of the configurations when the range of treatment means is

bounded by a given number. Chapter 5 presents a step-down procedure with feedback

which employs observations to maintain type I error for the whole parameter space.

Chapter 6 simulates several parameter settings which violate the assumptions of the

step-down procedures studies in the thesis.
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CHAPTER II

LITERATURE REVIEW ON MULTIPLE COMPARISONS

AND SELECTION PROCEDURES FOR NORMAL

RESPONSE EXPERIMENTS

Three widely accepted formulation have been developed to approach multiple compar-

isons, screening, and selection problems: subset selection approach, Indifference-zone

approach, and the simultaneous confidence intervals approach. Subset selection ap-

proach is a screening scheme which determines a subset of the treatments including at

least one of the best ones. The size of the subset created is arbitrary. This approach

facilitates the analysis of the experiment when there are a random number of choices.

Indifference-zone approach which chooses the best treatments is concerned more with

the design of an experiment. In addition to comparing treatments, this methodology

develops the scale of an experiment in order to meet the probability requirements in

advance. Finally, the simultaneous confidence intervals approach specifies the differ-

ences between treatment means. The confidence intervals quantify the magnitudes of

discrepancies and control the familywise error rate. The following two books provide

the details of these approaches. The first book written by Gibbons, Olkin, and Sobel

(1977)[16] describes the procedures clearly and provides a large number of useful ta-

bles for implementation. As for the second book written by Bechhofer, Santner, and
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Goldsman (1995)[7], it discusses sequential procedures and subset selection formu-

lations more extensively than the first book. If available, the second book provides

several options for the same problem and makes recommendations about different

alternatives. It assumes that readers are knowledgeable about standard experimental

designs. Below is the summary of the three approaches for multiple comparisons and

selection problems.

2.1 Subset selection approach

Subset selection is an approach that constructs a random size subset of interested

elements. The procedure screens multiple alternatives and selects the desirable op-

tions for each question. Gupta (1956)[17] who was a pioneer in this field proposed a

single-stage procedure which creates a subset containing the best treatment when it is

unique. If there are two or more the best treatments, Gupta’s procedure guarantees

that at least one of the best treatments are chosen. Denote k as total number of

treatments, n as sample size of each treatment, ν as degree of freedom, α as fami-

lywise error rate, x̄i as the sample mean from treatment i, and s2 as pooled sample

variance. Suppose that the treatment with a larger mean is considered to be a more

effective therapy, the procedure is to select treatment i into the subset if and only if

x̄i ≥ max{x̄j, 1 ≤ j ≤ k} − dk−1, ν, α
s√
2/n

.

dk−1, ν, α is a predetermined value which controls type I error rate at α. The idea of

the procedure is that if a treatment has a sample mean not too far away from the

maximum, the associated treatment is perhaps the best one and then is chosen into
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the subset.

Gupta’s method, however, does not assure that all of the best treatments are

selected when there exists several superior treatments. Consequently, removing the

treatments in the complement of the subset created may delete both the worse and

the best treatments. In contrast, the new methodologies proposed in this study have

the ability to construct a subset that contains inferior treatments only which cannot

be achieved by Gupta’s method.

Selection procedures can be separated into two categories depending on whether

the order of hypothesis testing influences the conclusion. First, the single-step proce-

dures are independent on test order. The decision for any hypothesis Hi does not rely

on any other hypothesis Hj, i 6= j. Each hypothesis testing can be carried out indi-

vidually without being affected by the other tests. On the contrary, the order of the

hypotheses is influential to the stepwise procedures. The decisions of the hypotheses

in the former steps may affect the decisions of those hypotheses tested later. The

order of the tests is ordinarily decided by the magnitude of test statistics or p-values.

2.1.1 The single-step procedures

Bonferroni procedure is a popular single-step procedure which controls the family-

wise error rate in the strong sense. The strong control (see Hochberg and Tamhane

(1987)[25]) means that the probability of making any type I error of all configurations

is controlled at α. Under all-pairwise comparisons, Bonferroni procedure performs
(

k
2

)

t tests at level α′ = α

(k
2)

for each test. Any individual hypothesis Hi is rejected if the
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corresponding p-value, pi, is less than α′. Let g be the total number of pairwise com-

parisons, g =
(

k
2

)
. The procedure becomes conservative as g increases which can be

seen in Bonferroni inequality.

P

(
g⋂

i=1

Ai

)
≥ 1−

g∑
i=1

P (Ac
i)

⇒
(

1− α

g

)g

≥ 1− α

Bonferroni procedure insures that the overall type I error is less than or equal to α if

an individual test has a significance level of α
g

when simultaneously testing g pairwise

comparisons.

Tukey method can also be considered as a single-step procedure in subset selec-

tion. The technique proposed by Tukey will be illustrated in detail later on in section

2.3, the simultaneous confidence intervals approach. These single-step procedures

equally treat every hypothesis without taking test order into account.

2.1.2 The stepwise procedures

Stepwise procedures can further be divided into the step-down procedures, the step-

up procedures, and the step-up-down procedures. The distinction is the order of the

test with which it starts. The step-down procedure first examines the most signifi-

cant hypothesis while the step-up procedure first tests the least significant one. The

properties and the related literature of these three types of procedures are addressed

in the following subsections.
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2.1.2.1 The step-down procedures

A step-down procedure begins with testing the most significant hypothesis with the

largest test statistics or the smallest p-value. The stopping rule is to continue until a

hypothesis is not rejected. All of the remaining hypotheses are then accepted without

further tests by implication. Typically, this type of procedures use a non-increasing

sequence of critical values for successive test steps.

The idea of the step-down procedure can be traced back to the book by Miller

(1966)[30]. The article, however, does not provide a proof nor mention the property

of controlling the familywise error rate in a strong way. A general method for con-

structing a step-down test procedure was proposed by Marcus, Peritz, and Gabriel

(1976)[29]. Their method is referred to as a closure method and can be used to form

an α-level multiple test procedure. The closure method is a technique that constructs

tests where the probability of making at least one incorrect assertion is under control.

And a procedure is said to be an α-level multiple test procedure if it can meet the

strong control condition regardless of how many hypotheses are true or false.

Holm (1979)[26] presented a p-value based step-down procedure which improves

the power of Bonferroni procedure. The p-values are first ordered as p(1) ≤ p(2) ≤

· · · ≤ p(g) with associated hypotheses H(1), H(2), · · · , H(g). The procedure begins with

testing the most significant hypothesis, H(1), and continues in order until an accep-

tance occurs. H(i) is rejected in the ith step if p(i) ≤ α
g−i+1

, 1 ≤ i < g. Otherwise, the

procedure is stopped and accept all of the H(j) where j ≥ i. The probability criteria

are no longer fixed numbers like those in Bonferroni procedure but are dependent on
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the sequence of the tests.

Broström (1981)[8] and Finner & Giani (1994)[14] proposed general step-down

procedures which choose a subset of the treatments with population means smaller

than the maximum by ε, ε > 0. When ε equals zero, Hayter (2007)[23] suggested

sharper critical values and provided confidence intervals for the differences in means.

2.1.2.2 The step-up procedures

The order of the step-up procedures is opposite to that of the step-down procedures. A

step-up procedure starts with testing the least significant hypothesis with the smallest

test statistics or the largest p-value. The termination rule is to stop the procedure

when a hypothesis is rejected. Then, the rest of the hypotheses are rejected by

implication without further tests. A hypothesis testing, Hm with a p-value of p(m),

is performed if and only if all of the hypotheses whose p-values are greater than or

equal to p(m) are all retained. The step-up procedure frequently uses a non-decreasing

sequence of critical values in the test procedure.

Welsch (1977)[42] mentioned a step-up procedure based on the studentized range

statistics for one-way layouts. His method achieve strong control over the familywise

error rate. Dunnett and Tamhane (1992)[13] proposed a step-up multiple test proce-

dure which compares test statistics with certain critical points. The procedure can

be applied to test a nonhierarchical family of hypotheses with two or more contrasts.

Hochberg (1988)[24] came up with a p-value based step-up procedure. The proce-

dure starts the sequential tests with the least significant hypothesis with the largest
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p-value and continues in order until a rejection happens. Similarly, the p-values

are first ordered as p(1) ≤ p(2) ≤ · · · ≤ p(g) with the corresponding hypotheses

H(1), H(2), · · · , H(g). In step 1, suppose that p(g) > α, the associated hypothesis

H(g) is accepted and proceed to testing H(g−1). In the ith step, H(g−i+1) is accepted

if p(g−i+1) > α
i
, 1 ≤ i < g. Otherwise, the procedure is stopped and reject all

of the H(j) where j ≤ g − i + 1. Although the algorithm of Hochberg’s step-up

procedure is inverse, the procedure uses the same critical values as those in Holm’s

procedure. Therefore, Hochberg’s step-up procedure always rejects any hypothesis

rejected by Holm’s step-down procedure. Hochberg’s procedure uniformly dominates

Holm’s procedure in terms of having greater power.

2.1.2.3 The step-up-down procedures

The step-up procedures which begin with testing the minimum statistics is called as a

MIN test in Laska and Meisner (1989)[28]. This type of approached concerns whether

all of the hypotheses can be rejected. If not, the step-up procedures offer advanced

information to identify the acceptable hypotheses. Based on the same concept, the

step-down procedures which begin with examining the maximum statistics can be

called as a MAX test. The main interest of the procedures is to check whether at

least one of the hypotheses can be rejected or not. If the answer is positive, the step-

down procedures continue a further study to recognize the rejectable hypotheses.

A more general issue than the topics discussed in the previous two procedures is

that “whether at least q hypotheses can be rejected” where q is a number between
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1 and the total number of hypotheses, g. This issue is addressed by Tamhane, Liu,

and Dunnett (1998)[39]. Denote the ordered test statistics as t(1) ≤ t(2) ≤ · · · ≤ t(g)

with associated hypotheses H(1), H(2), · · · , H(g). Let r = g + 1 − q. In the first

step, if t(r) ≤ cr, accept H(1), H(2), · · · , H(r) and continue with the step-up procedure;

otherwise, reject H(r), H(r+1), · · · , H(g) and continue with the step-down procedure.

It is apparent that the step-up procedure and the step-down procedure are special

cases of the step-up-down procedure when q = g and q = 1 respectively.

In general, a single-step procedure has advantages of easy to execute the test

procedure, easy to quantify the discrepancy between population means, and easy to

construct confidence intervals. However, the power of the test procedure is not very

satisfying. On the other hand, the stepwise procedures may make up for power via

carrying out more steps. But, it is cumbersome to calculate the critical values in each

step. This problem becomes less severe as the development of computers. Which test

procedure should a experimenter choose depends on the definition of an error decision

and the power of a test. If the power improvement can compensate the work for more

complicated procedures, it would be better to use the stepwise procedures.

2.2 Indifference-Zone approach

Indifference-zone approach can be applied to selection problems and can allow a more

practical purpose. Two treatments are said to be indifferent when the difference of

the associated means is below a certain threshold, δ∗. δ∗ is closely connected with the

sample size and the required probability of correct selection. Restricted by the issues
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such as budget considerations and accuracy rate, the threshold can be considered to

be the worthwhile level for detection. For example, drug safety is very important

to public health and is strictly regulated by the government. In addition to having

significant efficacy against the diseases or the conditions, toxicity level and the other

side effects of the drugs are required to be at a low level. A minor increase in toxicity

level may cause serious danger to patients. In this case, researchers may prefer setting

δ∗ small. Consequently, the experiment requires a larger amount of samples in order

to meet the predetermined probability requirement for correction selection.

Bechhofer (1954)[3] proposed a single-stage Indifference-zone procedure which se-

lects the treatment associated with the largest sample mean as the best one in a

completely randomized design. One disadvantage of his approach is that the proce-

dure can identify only one best treatment even though there may exist several equally

effective treatments. Besides, Bechohofer’s single-stage Indifference-zone approach is

found to be conservative. The procedure sometimes requests a large sample size

which is unaffordable for an experimenter under a certain δ∗ value and a probability

requirement.

The multi-stage or sequential procedures can compensate the problem of a large

sample size to construct an affordable design. The main idea is to use the data

obtained in the former stages to speculate the true setting of population means. One

simple approach is called a closed two-stage procedure with elimination introduce by

Cohen (1959)[10], Alam (1970)[2], and Tamhane and Bechhofer (1977, 1979)[37, 38].

A procedure is closed if there is a fixed upper bound on the number of observations

to be taken from each population before carrying out an experiment. Otherwise, it is
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open. The procedure is said to be eliminating if the data taken in the previous stages

can be used to exclude populations from further sampling and consideration.

There are many other literature related to Indifference-zone approach. For ex-

ample, a closed multi-stage procedure without elimination studied by Bechhofer and

Goldsman (1987, 1989)[5, 6]. As for the common but unknown variance case, see

Bechhofer, Dunnett and Sobel (1954)[4] for an open two-stage procedure without

elimination and Hartmann (1991)[19] for an open multi-stage procedure with elimina-

tion. Generally speaking, the multi-stage procedure is preferable over the single-stage

procedure in terms of having smaller expected total number of observations used by

the procedure.

2.3 The simultaneous confidence intervals approach

The multiple comparisons and the selection problems can also be addressed by formu-

lating a set of simultaneous confidence intervals for the differences between treatment

means. The simultaneous confidence intervals approach controls the overall error rate

where the confidence intervals jointly cover every comparison at a given level α. A

confidence interval is more informative than a hypothesis testing for it gives extra

message about the magnitude of the differences. Applying simultaneous confidence

intervals can lead to the same information as those from a hypothesis testing but not

vice versa. For example, containing number zero inside the confidence interval of the

discrepancy in population mean implies that the two treatment means are not sta-

tistically different. Meanwhile, the null hypothesis of H0 : µi = µj, i 6= j cannot be
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rejected either. Conversely, if such a null hypothesis is rejected, a hypothesis testing

does not quantify the difference of the two population means which is provided by

confidence intervals.

Tukey provided the studentized range critical point, qk, α, ν , for all-pairwise com-

parisons with k population means.

µi − µj ∈
[
x̄i − x̄j − qk, α, ν

s√
n

, x̄i − x̄j + qk, α, ν
s√
n

]
, 1 ≤ i, j ≤ k, i 6= j

If the common variance is known, the degree of freedom ν = ∞. If not, ν =

(total sample size − k) and the pooled sample variance s2 =
Pk

i=1

Pni
j=1(xij−x̄i)

2

ν
. In

a balance design where ni = n, 1 ≤ i ≤ k, qk, α, ν guarantees that the probability of

rejecting the null hypothesis of H0 : µ1 = µ2 = · · · = µk is exactly α when H0 is

true. The simultaneous confidence intervals control the familywise error rate at α.

The procedure is sometimes referred as the honestly significant difference (HSD)

in the literature. Gabriel (1969)[15] showed that Tukey’s method offers the tightest

intervals for all-pairwise comparisons among all of the procedures which give equal-

length intervals in a balanced one-way layout. As for an unbalanced design, Hayter

(1984)[21] proved that Tukey’s procedure is conservative. Type I error is less than or

equal to α.

Beside two-sided confidence intervals, one-sided confidence intervals are more use-

ful to special cases. Suppose that the underlying configuration has an ordered rela-

tionship of µ1 ≤ µ2 ≤ · · · ≤ µk. Then, it is more interesting to construct one-sided

confidence intervals with lower bounds on µi−µj for all i > j. For instance, it is well

known that toxicity level increases as the amount of a dose raises. One application
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of the one-sided simultaneous confidence intervals is to study the toxicity level at

different dose levels. Hayter (1990)[22] derived the simultaneous confidence intervals

with lower bounds and tabulated the critical values for k ≤ 9 cases. If µi’s have

indeed an ascending order as mentioned, the procedure using one-sided simultaneous

confidence intervals is more competent in detecting the difference between treatment

means than the procedure using two-sided simultaneous confidence intervals. When

comparing three ordered treatment means of µ1 ≤ µ2 ≤ µ3, Hayter, Miwa, and Liu

(2001)[20] gave sharper critical values and presented a more efficient procedure which

considers directional discrepancy while providing two-sided confidence intervals. A

more comprehensive discussion of multiple comparisons procedures can be found in

Hsu’s book (1996)[27].
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CHAPTER III

BACKGROUND INFORMATION OF THE PROBLEM

3.1 Introduction

Suppose there are k populations having independent normal distributions N(µi, σ2),

1 ≤ i ≤ k. The common variance, σ2, can be either known or unknown. And the

unknown parameter of interest is the location parameter, µ, which is preferred to be

large. The treatment possessing the maximum mean value among k treatments is

considered as the most effective therapy while the rest are regarded as inferior ones.

The best treatment may not be unique. The problem studied in this research is how

to set up an efficient procedure to discriminate the worse treatment from the best

ones in a balanced design. Specifically, the thesis concentrates on the modification of

the step-down procedures which eliminate one treatment at a time.

A step-down procedure categorizes populations into either the non-best subset

(NB) or the best subset (NBc) based on its own guideline. A test procedure is

efficient if it can narrow down the number of the treatments which possibly have high

efficacy when the performance of treatments is unknown. It is favorable to construct

a small NBc subset or say a large NB subset. However, if the NBc is too small,

the test procedure may exclude actually the best treatments. The problem caused by

eliminating possibly the best treatments is more serious than concluding a big group

of candidates in this study. So, the objective of the research is stated as:
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minimize |NBc| (or maximize |NB|)

subject to P (population j ∈ NB| population j is the best) ≤ α

This study improves the existing step-down procedure to be more efficient in de-

tecting and eliminating inferior treatments. The sharper critical values offered in

chapter 4 and a new step-down procedure with feedback introduced in chapter 5

make the general approach less conservative. The new methodologies not only con-

trol the familywise error rate but also eliminate more inferior treatments. The case

of comparing three treatments, k = 3, is focused in the whole study.

3.1.1 Notation

• Ti: ith population, 1 ≤ i ≤ 3

• µi: location parameter, population mean of Ti, 1 ≤ i ≤ 3

• µ(i): ordered population mean, µ(1) ≤ µ(2) ≤ µ(3)

• σ2: common population variance

• n: sample size from each population

• ν: degree of freedom

• Xij: jth observation of population i, Xij
indep∼ N(µi, σ2), 1 ≤ i ≤ 3

• X̄i: sample mean of population i, X̄i
indep∼ N(µi,

σ2

n
), 1 ≤ i ≤ 3

• X̄(i): ordered sample mean, X̄(1) ≤ X̄(2) ≤ X̄(3)

22



• Yi: random variable Yi = X̄i

σ/
√

n

indep∼ N( µi

σ/
√

n
, 1) = N(µ∗i , 1), 1 ≤ i ≤ 3

• Y(i): ordered random variable with µ∗(1) ≤ µ∗(2) ≤ µ∗(3)

• S2: pooled sample variance

• U : random variable U = S
σ
∼ g(u) = ν

ν
2

Γ( ν
2
)2

ν
2−1 u

ν−1exp(−νu2

2
), 0 < u < ∞

• d3 and d2: thresholds in the first and the second step of the step-down procedure

respectively, d2 < d3

• φ and Φ: pdf and cdf of a standard normal distribution

• B: a subset containing the true best treatments in the parameter space

• NB: a subset containing the inferior treatments in the decision space

3.1.2 Definitions

• Best treatment: The treatment with µi = max{µ1, µ2, µ3} = µ∗. There may

be more than one best treatments.

• Inferior treatment: The treatment with µi < µ∗. There may be more than one

inferior treatments.

• Error: An error decision is to select Ti into NB while µi = µ∗.

• Power: The power of the test is the ability of selecting Ti into NB while µi < µ∗.
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3.1.3 Parameter space

When k = 3, the relationship among three treatment means can be classified as

(1) µ(1) = µ(2) = µ(3) with |B| = 3, (2) µ(1) < µ(2) = µ(3) with |B| = 2, or (3) µ(1) ≤

µ(2) < µ(3) with |B| = 1 depending on the total number of best treatments. In case

(1), three treatments perform equally; in case (2), two treatments associated with

µ(2) and µ(3) are equally the best; in case (3), only the treatment corresponding to

µ(3) is the most effective one.

Assume that the common variance is 1 for simplicity. In order to present three

treatment means in a two dimensional graph, two contrasts µ2−µ1√
2

and
(
µ3 − µ1+µ2

2

) √
2
3

are used for x and y-axis respectively. The coordinates take the difference of treat-

ment means divided by the standard deviation of the contrasts. In this way, the

parameter space is symmetric shown in Figure 3.1. The center point (0, 0) indicates

case (1) with three equally the best treatments. Three solid lines represents case (2)

having two best treatments. And the rest of the area stands for case (3) when only

one maximum mean exists.

Every parameter setting can be matched to either of the three relationship types.

Under the aforementioned definition of error, the subsequent incorrect decision of each

relationship type should be handled individually. In case (1) when the configuration

maps to the origin point in the parameter space, an error decision is to claim any

treatment as inferior. If the true setting has a point locating on the solid line in the

parameter space like case (2), it is incorrect to eliminate the treatment or treatments

associated with µ(2), µ(3) or both. Last, when case (3): µ(1) ≤ µ(2) < µ(3) occurs,
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Figure 3.1: Parameter space.
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an error decision is to select the treatment with µ(3) into the NB subset. In conse-

quence, the probability of making an incorrect decision, P (error), has three different

formats depending on to which relation type a parameter configuration belongs. Since

the true structure of treatment means is unknown, the test procedures must control

P (error) for all µ settings in the whole parameter space.

3.2 Procedures

3.2.1 General step-down procedure

A step-down procedure is an approach which starts with testing the most significant

hypothesis and continues sequentially as long as a rejection occurs. The general way

to carry out a step-down procedure is to use a constant threshold, di, at each stage.

The values of di’s are predetermined so that the familywise error rate is controlled

at or below α. Suppose that there are k treatments. The testing hypotheses of step

i are H0(j)
: µj = µ∗, Tj is the best treatment vs. Ha(j)

: µj < µ∗, Tj is not the

best treatment where X̄j = X̄(i). Population j with X̄(j) is eliminated in step j if

X̄(k) − X̄(i) > dk−i+1, for all 1 ≤ i ≤ j < k. The threshold gets tighter from step to

step, dk > dk−1 > · · · > d2. When k = 3, it is a two-step step-down procedure. The

procedure takes up to two phases to separate all of the treatments into the NB and

the NBc subsets. The detailed general step-down procedure for the known variance

scenario is explained as follows.

26



[Step 1]

Compare the difference between the maximum and the minimum standardized

sample means with d3.

• If
X̄(3)−X̄(1)

σ/
√

n
≤ d3, NB = {φ}. Terminate the test procedure.

• If
X̄(3)−X̄(1)

σ/
√

n
> d3, remove Ti corresponding to X̄(1) into NB and continue

to Step 2.

[Step 2]

Compare the difference between the maximum and the median standardized

sample means with d2.

• If
X̄(3)−X̄(2)

σ/
√

n
≤ d2, NB = {Ti} where X̄i = X̄(1). Terminate the test proce-

dure.

• If
X̄(3)−X̄(2)

σ/
√

n
> d2, remove Tj corresponding to X̄(2) into NB. NB = {Ti, Tj}

where X̄i = X̄(1) and X̄j = X̄(2). Terminate the test procedure.

If variance is not given, σ is substituted with pooled sample standard deviation, S.

And the values for d2 and d3 when variance is known are different from those when

variance is unknown.

For example, suppose that σ√
n

= 1. If observing example (a) in Figure 3.2, the

range of the sample means is shorter than d3. So, stop the test procedure without

rejecting any treatment, NB = {φ}. Suppose that the relative location of the sample
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means is similar to example (b), treatment 1 is eliminated in the first step due to the

range of the sample means is greater than d3. However, the difference between X̄2

and X̄3 is not statistically large enough to discard treatment 2 in the second step of

the procedure. As a result, only treatment 1 is selected into the NB subset. As for

example (c), both X̄3− X̄1 and X̄3− X̄2 are greater than the thresholds in step 1 and

2 respectively. Therefore, treatment 1 is eliminated in the first step and treatment 2

is eliminated in the second step of the step-down procedure.

Figure 3.2: Examples of the general step-down procedure when k = 3.

3.2.2 Decision space under constant d2

There are seven possible outcomes after applying the general step-down procedure

introduced in the previous subsection when comparing three treatments. NB can be
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{φ}, {T1}, {T2}, {T3}, {T1, T2}, {T1, T3}, or {T2, T3} which represents for the

conclusion when no treatment is selected into NB, only treatment 1 is identified as

an inferior treatment, · · · , or both treatment 2 and 3 are claimed not to be the best

treatments. These outcomes divide the decision space into seven subspaces whose

shapes rely on the values of the two thresholds and the coordinates. For simplicity,

assume that σ√
n

is known to be 1. Figure 3.3 displays the decision space when the

thresholds are constant values with d2 < d3 and the coordinates are X̄2−X̄1√
2

and

(
X̄3 − X̄1+X̄2

2

) √
2
3
.

The range of the sample means is less than or equal to d3 in step 1 if the observed

sample means have a matching point inside the hexagon, area (i), of the decision

space. Then, the resulting decision is to select no treatment into NB subset. Sim-

ilarly, any point in the region (ii) of the decision space satisfies
{
X̄1 < X̄2 − d3 and

X̄2 − d2 ≤ X̄3 ≤ X̄2

}
or

{
X̄1 < X̄3 − d3 and X̄3 − d2 ≤ X̄2 ≤ X̄3

}
. The observations

lead to the conclusion of eliminating treatment 1 in the first step but removing no

element in the second step. If attaining a point lies within the area (iii) of the decision

space, it means that
{
X̄1 < X̄2 − d3 and X̄1 ≤ X̄3 < X̄2 − d2

}
or

{
X̄3 < X̄2 − d3 and

X̄3 ≤ X̄1 < X̄2 − d2

}
. Therefore, the conclusion is to put both treatment 1 and 3 into

NB by using the step-down procedure. The rest of the subspaces can be explained

by extending the same idea of relative locations of sample means.
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Figure 3.3: Decision space.
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3.3 Construction of error rate

How to decide the values for d2 and d3 then becomes an critical issue. The fact is that

these two thresholds cannot be arbitrary numbers due to the restriction on the error

decision rate. If the thresholds are overly short, the general step-down procedure will

end up with rejecting too many hypotheses than it should. Some of the most effective

treatments may be eliminated as well. The probably of rejecting a best treatment

gets out of control in such a case. Therefore, the condition of P (error) ≤ α confines

the lower bounds of d2 and d3. Next, several parameter settings are discussed indi-

vidually to study the reasonable values for these two thresholds. Again, the following

discussion assumes that σ√
n

= 1.

3.3.1 The setting with three equal means: µ1 = µ2 = µ3

First, the condition for the relationship type of three equal population means needs to

be satisfied. In order not to make an error decision under this type of configuration,

the range of the sample means should be less than or equal to d3 in step 1 of the test

procedure. Only in this situation that the procedure will stop without eliminating any

treatment. The case like Figure 3.4 which results in a wrong conclusion is undesirable.

Figure 3.4: One case which leads to an error decision if µ1 = µ2 = µ3.
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It infers that the size of the hexagon in the decision space cannot be too small.

Otherwise, the probability of getting NB = {φ} is less than 1−α which is the same as

having type I error greater than α. As a result, Pµ1=µ2=µ3(error) is a function of d3.

The critical value of d3 can be minimized and solved by setting Pµ1=µ2=µ3(error) = α.

The formulation is as below.

Pµ1=µ2=µ3(error)

= P (max {X̄1, X̄2, X̄3} −min {X̄1, X̄2, X̄3} > d3)

= 1− P (max {|Zi − Zj|, 1 ≤ i, j ≤ 3} ≤ d3)

= 1−
3∑

k=1

P (max {|Zi − Zj|, 1 ≤ i, j ≤ 3} ≤ d3|Zk = min {Z1, Z2, Z3})

= 1− 3 P (max {|Zi − Zj|, 1 ≤ i, j ≤ 3} ≤ d3|Z1 = min {Z1, Z2, Z3})

= 1− 3

∫ ∞

z1=−∞
φ(z1)P (z1 ≤ zi ≤ z1 + d3, 2 ≤ i ≤ 3) dz1

= 1− 3

∫ ∞

z=−∞
φ(z) [Φ(z + d3)− Φ(z)]2 dz

= α (3.1)

Tukey[40] proposed studentized range statistics, qk, α, ν back to 1953. When vari-

ance is known, q3, α, ∞ exactly solves the equation (3.1). Tukey’s method guarantees

that the familywise error rate of testing H0 : µi = µj vs. Ha : µi 6= µj for all

1 ≤ i ≤ k, 1 ≤ j ≤ k, i 6= j is exactly α in a balanced design, and is less than or

equal to α in an unbalanced design see Hayter (1984)[21]. Thus, using d3 = q3, α, ν

controls the probability of rejecting the null hypothesis of H0 : µ1 = µ2 = µ3 is at or
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below α when the statement is actually true.

3.3.2 The setting with two best means: µ1 < µ2 = µ3

Second, the condition needs to be assured when there exists two best treatments in

a k = 3 case. Suppose that µ1 < µ2 = µ3. A decision is incorrect to claim that

treatment 2, 3, or both are inferior treatments in stage 1, 2, or both. The foregoing

step-down procedure will make improper conclusion if observing the examples shown

in Figure 3.5.

Figure 3.5: Three cases which lead to error decisions if µ1 < µ2 = µ3.

The probabilities of concluding NB = {T2}, {T3}, {T1, T2}, {T1, T3}, and {T2, T3}

all contribute to P (error) under this type of parameter relationship. These five out-

comes reject either one or two treatments. Consequently, the thresholds used in both

steps of the test procedure are influential. Pµ1<µ2=µ3(error) is a function of d3 and
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d2. Appropriate d2 and d3 should be chose so that the probability of getting a point

inside region (iii) to (vii) of the decision space is at or below α.

Pµ1<µ2=µ3(error)

= P (X̄2, X̄3 < X̄1, min {X̄2, X̄3} < X̄1 − d3)

+ P (X̄1 < X̄2, X̄3 < X̄2 − d3)

+ P (X̄1 < X̄3, X̄2 < X̄3 − d3)

+ P (X̄1 < X̄2 − d3, X̄2 − d3 ≤ X̄3 < X̄2 − d2)

+ P (X̄1 < X̄3 − d3, X̄3 − d3 ≤ X̄2 < X̄3 − d2)

=

∫ ∞

x1=−∞
φ(x1 − µ1)×

{
Φ(x1 − µ2)

2

− [Φ(x1 − µ2)− Φ(x1 − d3 − µ2)]
2} dx1

+ 2

∫ ∞

x2=−∞
φ(x2 − µ2)Φ(x2 − µ1)Φ(x2 − d3 − µ3) dx2

+ 2

∫ ∞

x2=−∞
φ(x2 − µ2)Φ(x2 − d3 − µ1)

× [Φ(x2 − d2 − µ3)− Φ(x2 − d3 − µ3)] dx2

≤ α (3.2)

3.3.3 The setting with one best mean: µ1 ≤ µ2 < µ3

Similarly, both thresholds are influential in satisfying the probability constraint for

the parameter relationship with only one best treatment. Assume that µ1 ≤ µ2 < µ3,

it is an error to put treatment 3 into NB in either step 1 or 2 of the step-down
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procedure. The examples can be found in Figure 3.6.

Figure 3.6: Two cases which lead to error decisions if µ1 ≤ µ2 < µ3.

NB = {T3}, {T1, T3}, and {T2, T3} are all error decisions for this type of

parameter relationship. The chance of locating a point in region (iii) to (v) of the

decision space should be controlled at or below α. Therefore, Pµ1≤µ2<µ3(error) is a

function of d2 and d3, too.

35



Pµ1≤µ2<µ3(error)

= P (X̄3 < min {X̄1, X̄2}, X̄3 < max {X̄1, X̄2} − d3)

+ P (X̄1 < X̄2 − d3, X̄1 < X̄3 < X̄2 − d2)

+ P (X̄2 < X̄1 − d3, X̄2 < X̄3 < X̄1 − d2)

= P (X̄1 ≥ X̄3, X̄2 ≥ X̄3)− P (X̄3 ≤ X̄i ≤ X̄3 + d3, i = 1, 2)

+ P (X̄1 < X̄3 < X̄2 − d3) + P (X̄1 < X̄2 − d3, X̄2 − d3 ≤ X̄3 < X̄2 − d2)

+ P (X̄2 < X̄3 < X̄1 − d3) + P (X̄2 < X̄1 − d3, X̄1 − d3 ≤ X̄3 < X̄1 − d2)

=

∫ ∞

x3=−∞
φ(x3 − µ3){[1− Φ(x3 − µ1)][1− Φ(x3 − µ2)]

−[Φ(x3 + d3 − µ1)− Φ(x3 − µ1)][Φ(x3 + d3 − µ2)− Φ(x3 − µ2)]} dx3

+

∫ ∞

x3=−∞
φ(x3 − µ3)Φ(x3 − µ1)[1− Φ(x2 + d3 − µ2)] dx3

+

∫ ∞

x2=−∞
φ(x2 − µ2)Φ(x2 − d3 − µ1)[Φ(x2 − d2 − µ3)− Φ(x2 − d3 − µ3)] dx2

+

∫ ∞

x3=−∞
φ(x3 − µ3)Φ(x3 − µ2)[1− Φ(x3 + d3 − µ1)] dx3

+

∫ ∞

x1=−∞
φ(x1 − µ1)Φ(x1 − d3 − µ2)[Φ(x1 − d2 − µ3)− Φ(x1 − d3 − µ3)] dx1

≤ α (3.3)

Consider the following extreme scenario when µ1 ¿ µ2 = µ3. Since the population

mean of treatment 1 is far below the other two populations means, the observations

from treatment 1 tend to be much smaller than those from treatment 2 or 3. Conse-

quently, treatment 1 is almost surely rejected and detected as an inferior treatment

in the first step of the test procedure. The judgment of step 1 is correct without
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doubt and the test procedure can easily exclude treatment 1. The key issue then

becomes how to determine d2 such that neither treatment 2 nor 3 is eliminated in the

second stage of the step-down procedure. This question is the same as comparing two

population means which can be solved by z test or t test. The asymptotic value of d2

turns out to be zα/2 when variance is known and tα/2, ν when variance is unknown.

The value of d2 must converge to these two statistics to maintain the error rate at

or below α for such an extreme parameter setting in the whole parameter space, for

example, (µ1, µ2, µ3) = (10−6, 106, 106).

There are several ways to construct P (error) for each type of parameter set-

ting. The advantage of formulating the three P (error)’s as mentioned is to have

only one integral involved. The formulations of Pµ1=µ2=µ3(error), Pµ1<µ2=µ3(error),

and Pµ1≤µ2<µ3(error) are based on the relative location of sample means. Single

integration is actually enough to describe the circumstance of making an incorrect

decision. With less integration, the numerical calculation can be done faster and

more accurately. Figure 3.7 shows the numerical results of P (error) in one part of

the parameter space: µ1 ≤ µ2 ≤ µ3. The rest of the parameter space in other orders

can be extended by the symmetry property. The values for d3 and d2 used in the

graph are q3, 0.05, ∞ and d2 =
√

2zα/2 respectively. As it can be seen, the error rate is

at or below 5% for the whole parameter space.
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Figure 3.7: P (error) under d3 = q3, 0.05, ∞ and d2 =
√

2zα/2.
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3.4 Properties of error rate

The goal of this research is to retrieve a small subset of potentially the best treat-

ments by eliminating less effective ones. The treatments selected into NB are then

excluded from further study. As a result, it is crucial to discard any possibly the best

treatment during the step-down procedure. The appropriate way is to put only the

definitely worse treatments into the NB subset. That is, type I error which is the

probability of including any best treatment into NB should be protected. As men-

tioned in the previous section, the way to construct type I error depends on the size of

the subset B. Different relationships of treatment means are associated with different

forms of P (error): Pµ(1)=µ(2)=µ(3)
(error), Pµ(1)<µ(2)=µ(3)

(error), Pµ(1)≤µ(2)<µ(3)
(error).

This section discusses the properties of these P (error)’s when variance is known.

Same properties can be attained for the unknown variance case by taking the random

variable, S
σ
, into account. To simply notation, the ordered means of µ1 ≤ µ2 ≤ µ3 is

used. At the end of this section, an important conclusion about the most determinant

parameter configuration to the value of d2 will be made based on the three properties.

Chapter 4 and 5 intensively adopt the concepts presented in this section.

Property I.

Lemma 1. Pµ1≤µ2<µ3(error) is a decreasing function in δ where δ = µ3 − µ2 > 0.
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Figure 3.8: Property I of P (error)
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Proof.

Pµ1≤µ2<µ3(error)

= P (T3 ∈ NB)

= P (NB = {T3}, {T1, T3}, and {T2, T3})

= P (
X̄2 − X̄3

σ/
√

n
> d3, 0 <

X̄2 − X̄1

σ/
√

n
< d3)

+ P (
X̄1 − X̄3

σ/
√

n
> d3, 0 <

X̄1 − X̄2

σ/
√

n
< d3)

+ P (
X̄2 − X̄1

σ/
√

n
> d3,

X̄2 − X̄3

σ/
√

n
> d2)

+ P (
X̄1 − X̄2

σ/
√

n
> d3,

X̄1 − X̄3

σ/
√

n
> d2)

=

∫ ∞

y2=−∞
φ(y2 − µ∗2)Φ(y2 − d3 − µ∗2 −

δ

σ/
√

n
) [Φ(y2 − µ∗1)− Φ(y2 − d3 − µ∗1)] dy2

+

∫ ∞

y1=−∞
φ(y1 − µ∗1)Φ(y1 − d3 − µ∗2 −

δ

σ/
√

n
) [Φ(y1 − µ∗2)− Φ(y1 − d3 − µ∗2)] dy2

+

∫ ∞

y2=−∞
φ(y2 − µ∗2)Φ(y2 − d3 − µ∗1)Φ(y2 − d2 − µ∗2 −

δ

σ/
√

n
) dy2

+

∫ ∞

y1=−∞
φ(y1 − µ∗1)Φ(y1 − d3 − µ∗2)Φ(y1 − d2 − µ∗2 −

δ

σ/
√

n
) dy1

Since φ(·) and Φ(·) are both non-negative functions with Φ(a) ≥ Φ(b) for a ≥ b,

the last four terms in the proof are all non-negative. Since Φ(−δ) is a monotonic

decreasing function with respect to δ, Pµ1≤µ2<µ3(error) decreases in δ. When the

smallest two population means are fixed, the probability of selecting the most effec-

tive treatment into NB diminishes as µ(3) gets away from µ(1) and µ(2).
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Property II.

Lemma 2. Pµ1≤µ2=µ3(error) is bigger than limδ→0 Pµ1≤µ2<µ3(error) where δ = µ3 −

µ2.

Figure 3.9: Property II of P (error)
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Proof.

Pµ1<µ2=µ3(error)− lim
δ→0

Pµ1<µ2<µ3(error)

= P (treatment 2, 3, or both is selected into NB|δ = 0)

− lim
δ→0

P (treatment 3 is selected into NB|δ)

= P (NB = {T2}, {T3}, {T1, T2}, {T1, T3}, or {T2, T3}|δ = 0)

− lim
δ→0

P (NB = {T3}, {T1, T3}, or {T2, T3}|δ)

= P (NB = {T2} or {T1, T2}|δ = 0)

= P (X̄1 < X̄3 − d3
σ√
n

, X̄2 < X̄3 − d2
σ√
n
|δ = 0)

+P (X̄2 < X̄3 − d3
σ√
n

, X̄3 − d3
σ√
n
≤ X̄1 < X̄3|δ = 0)

+P (X̄2 < X̄1 − d3
σ√
n

, X̄1 − d2
σ√
n
≤ X̄3 < X̄1|δ = 0)

=

∫ ∞

y3=−∞
φ(y3 − µ∗3)Φ(y3 − d3 − µ∗1)Φ(y3 − d2 − µ∗2) dy2

+

∫ ∞

y3=−∞
φ(y3 − µ∗3)Φ(y3 − d3 − µ∗2)× [Φ(y3 − µ∗1)− Φ(y3 − d3 − µ∗1)] dy2

+

∫ ∞

y1=−∞
φ(y1 − µ∗1)Φ(y1 − d3 − µ∗2)× [Φ(y1 − µ∗3)− Φ(y1 − d2 − µ∗3)] dy1

> 0

Similarly,

Pµ1=µ2=µ3(error)− lim
δ→0

Pµ1=µ2<µ3(error)

= P (at least one of the treatments are selected into NB|δ = 0)

− lim
δ→0

P (treatment 3 is selected into NB|δ)

= P (NB = {T1} {T2} or {T1, T2}|δ = 0) > 0
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The equations of the error rates follow different forms when the parameter con-

figurations have distinct sizes of B. Based on the definition of an error decision, more

types of the conclusions account for P (error) when |B| is bigger. If the true pa-

rameter setting has a large amount of the best treatments, it is easy to select any

of the most effective treatments into NB. Therefore, Pµ1<µ2=µ3(error) with |B| = 2

dominates the limiting probability of Pµ1<µ2<µ3(error) with |B| = 1; Pµ1=µ2=µ3(error)

with |B| = 3 dominates the limiting probability of Pµ1=µ2<µ3(error) with |B| = 1.

Property III.

The computational result demonstrates that Pµ1<µ2=µ3(error) is less than or equal

to α when using d2 =
√

2zα/2 and d3 = q3, α, ∞ for the known variance case; d2 =

√
2tα/2, ν and d3 = q3, α, ν , for the unknown variance case. Specifically, Pµ1≤µ2=µ3(error)

curve converges to α as treatment range goes to infinity.

3.5 Summary

Considering property I, II, and III all together leads to an important conclusion that

the configuration of µ(1) < µ(2) = µ(3) is critical in determining the values of d2

when comparing three treatments. By setting d3 to q3, α, ν and d2 to a constant, the

scenario with two best treatments has higher decision error rate compared with the

rest of the configurations except for the parameter setting with three equal means.

Pµ1=µ2=µ3(error) is exactly α when d3 = q3, α, ν . Assume that µ2 = µ3 = µ1+ε, ε ≥ 0.

Property I and II suggest that if Pµ1≤µ2=µ3(error) ≤ α, then P (error) is maintained
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Figure 3.10: Property III of P (error)
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at or below α for all of the parameter settings where 0 ≤ µ2 − µ1 ≤ ε and µ3 > µ2

when d2 and d3 are fixed numbers.

When the two thresholds are constants, d3 cannot be shorter than q3, α, ∞ (q3, α, ν)

nor can d2 be smaller than
√

2zα/2 (
√

2tα/2, ν) for known (unknown) variance situation.

Otherwise, the error rate will go beyond α when µ1 = µ2 = µ3 and when µ(1) ¿ µ(2) =

µ(3) respectively. Figure 3.7 shows the response surface of P (error) for the ordered

parameter space under d3 = q3, α, ∞ and d2 =
√

2zα/2. Although type I error is

controlled over every setting, P (error) is very low and even close to 0 for most of the

configurations in the graphs. It shows that the procedure with constant thresholds

is conservative. Many refinements for d2 can be made to bring up the response

surface closer to the α level. It motivates the usage of nonconstant d2 to improve the

conservative problem.
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CHAPTER IV

THE RESTRICTED PARAMETER SPACE APPROACH

The efficacy of treatments in which the researchers are interested may not differ a lot

in clinical trials. For example, after screening out thousands of chemical compounds

and narrowing down total number of alternatives, the effective levels of those treat-

ments left are quite comparable. In reality, the range of the difference in treatment

means is bounded instead of infinite. It implies that only a restricted parameter space

is of concern. Accordingly, it is more meaningful to control the error rate and to im-

prove the efficiency of a test procedure in a certain parameter subspace rather than

the whole parameter space. In this chapter, a sharper value of d2 in the second step

of the step-down procedure is studied for a balanced design. The shorter threshold

enables the test procedure to detect more inferior treatments.

4.1 Motivation

As mentioned in section 3.3, d3 = q3, α, ∞ along with d2 =
√

2 zα/2 control P (error) ≤

α for every possible µ vector when comparing three treatments and variance is known.

Now, suppose that the upper limit of the difference in treatment mean is given,

µ(3)−µ(1)

σ/
√

n
≤ δ, δ > 0. Consider the following two scenarios with δbig and δsmall, δbig À

δsmall > 0. In the first case when δ is big or even goes to infinity, there is a wide

scope of the location of µ(2). The difference between µ(3) and µ(2) can also be large
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or even unbounded. Although knowing the relative locations of µ(1) and µ(3), there is

not much information about µ(2) in such a case. Therefore, it is suitable to use the

existing procedure with d2 =
√

2 zα/2 in order to satisfy Pµ(1)¿µ(2)=µ(3)
(error) ≤ α.

On the other hand, suppose that the range of three treatment means is known to be

small as δsmall, the largest two treatment means is surely even closer to each other

since
µ(3)−µ(2)

σ/
√

n
≤ µ(3)−µ(1)

σ/
√

n
≤ δsmall. Under this type of parameter setting when three

means cluster together, it is difficult to identify the less effective treatments by using

standard thresholds in the step-down procedure mentioned before. The conservative

problem can also be seen in the response surface of Figure 3.7. For instance, the value

of Pµ1<µ2=µ3(error) is below α when the difference between µ3 and µ1 is small. This

fact motivates the adoption of a smaller d2 value when the range of treatment means

is short or bounded.

This chapter applies a constant d3 and a sharper d2(δ) value in the step-down

procedure to solve the problem of identifying inferior treatments. The value of d2(δ)

depends on the range of treatment means. The goal is to study the minimum d2(δ)

available such that the constraint on type I error is achieved within the restricted

parameter space,
µ(3)−µ(1)

σ/
√

n
≤ δ. With the sharper critical values, the test procedure

can be more efficient to detect and select inferior treatments into the NB subset.
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4.2 Restricted parameter space and new decision space un-
der d2(δ, α, ν)

Same axes, µ2−µ1√
2

and
(
µ3 − µ1+µ2

2

) √
2
3
, are used for illustrating the restricted param-

eter space as before. Let σ√
n

= 1 and the upper limit of the range of treatment means

be δ, δ > 0. The parameter space of interest reduces from the whole area in Figure

3.1 to the hexagon in Figure 4.1. Every point inside the hexagon maps to a parameter

setting with µ(3) − µ(1) ≤ δ. For example, the three bold solid lines represents for

the configurations with two best treatments and 0 < µ(3) − µ(1) = µ(2) − µ(1) ≤ δ.

Similarly, the three rhombuses in light gray stand for the parameter settings having

only one best treatment and 0 ≤ µ(2) − µ(1) < µ(3) − µ(1) ≤ δ. The d2(δ) values

proposed in this chapter control familywise error rates over the restricted parameter

space inside the hexagon.

µ1 = µ2 = µ3 is a common setting having a matching point which lies within

the aforementioned restricted parameter space no matter what the positive value of

δ is. Therefore, Pµ1=µ2=µ3(error) must be less than or equal to α. This probability

constraint suggests that d3 cannot be smaller than q3, α, ν . Otherwise, the probability

of making an incorrect decision is beyond the tolerance if the true setting has three

equal means. In a balanced design, the studentized range q statistics guarantees

that the P (error) associated with the point µ1 = µ2 = µ3 = µ∗ in the restricted

parameter space is exactly α. As a result, the threshold in the first step of the

step-down procedure cannot be improved under any restricted parameter space.

As for the rest of the restricted parameter space other than the origin point,

however, the corresponding P (error) is below α when d2 is zα/2 (see Figure 3.7).

49



Figure 4.1: The restricted parameter where µ(3) − µ(1) ≤ δ.
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The improvement of power can be made for the area with |B| = 1 or 2. In those

parameter settings, d2 is one of the variables that determines Pµ1≤µ2<µ3(error) and

Pµ1<µ2=µ3(error). When d2 gets shorter, the chance of selecting any inferior treatment

into NB becomes greater.

Under the test procedure which adopts a two-step step-down procedure with d3

and d2(δ), the new decision space with a smaller d2 value is shown in Figure 4.2.

Under the constant d2, the original decision space is divided into seven subregions by

a hexagon and three pairs of parallel solid lines. When using a smaller critical value

for d2, each pair of the parallel solid lines move closer to each other to the dashed

lines. The area of selecting two treatments into the NB subset increases and the area

of eliminating one treatment decreases. As the layout of the decision space changes,

the new test procedure with d2(δ) has a higher probability to reject treatments than

the procedure with constant d2.

The new d2(δ) function needs to satisfy P (error) ≤ α within the complete re-

stricted parameter space in a similar way as how the standard d2 does. The proba-

bility of getting a point inside region (iii), (iv) , and (v) bounded by the dashed lines

in Figure 4.2 should be less than or equal to α when both µ1 and µ2 are less than

µ3. The total area from (iii) to (v) constructed by the dashed lines is larger than

that constructed by the solid lines. Since the area increases, it is easier to get a point

inside these specific regions. Thus, Pµ1≤ µ2<µ3(error) increases and so does the power

of the test procedure. Same idea is extended to the setting of µ1 < µ2 = µ3. The

total area from (iii) to (vii) bounded by the dashed lines is greater than that bounded

by the solid lines. Given the same familywise error rate, the new threshold of d2(δ)
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Figure 4.2: The new decision space by using d2(δ).
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leads to a smaller subset of possibly the best treatments which is useful for further

study.

4.3 Construction of d2(δ, α, ν)

Suppose that the prior information about the upper limit of the range in treatment

means is given. The value of d2 can be changed to a smaller constant, d2(δ), which

depends on the size of the restricted parameter subspace. Let d2(δ, α, ν) be the

minimum value of d2 such that P (error) is less than or equal to α for all of the

settings with
µ(3)−µ(1)

S/
√

n
≤ δ and the degree of freedom equals to ν. The value of

d2(δ, α, ν) is bounded from above by the standard value:
√

2zα/2 when variance is

known and by
√

2tα/2, ν when variance is unknown. How far away three treatment

means spread out determines the decrement in d2.

Based on Figure 3.7, the level of P (error) is higher on the boundary of the

restricted parameter space where µ(1) ≤ µ(2) = µ(3) when using constant thresh-

olds. Therefore, d2(δ, α, ν) can be calculated by tracing back the inequality of

Pµ(1)≤µ(2)=µ(3)
(error) ≤ α for all

µ(3)−µ(1)

S/
√

n
≤ δ. Since Pµ(1)=µ(2)=µ(3)

(error) = α can

be reached by setting d3 = q3, α, ν and is irrelevant to d2, only Pµ(1)<µ(2)=µ(3)
(error)

needs to be confirmed.

The idea can also be seen in the properties of P (error). The conclusion of the

three properties in section 3.4 states that controlling the P (error) at µ(2) = µ(3) =

µ(1) + δ S√
n
, δ ≥ 0 results in controlling the P (error) for all of the configurations with

µ(2) − µ(1) ≤ δ S√
n
. Therefore, in order to guarantee the error rate at each point of
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the restricted parameter space, d2(δ, α, ν) must satisfy Pµ(1)≤µ(2)=µ(3)
(error) ≤ α.

Using q statistics as the threshold in the first step of the test procedure insures that

Pµ1=µ2=µ3(error) is exactly α in a balanced design. Under this consideration, the same

d3 value is used with d2(δ, α, ν) to construct the probability of selecting any best

treatment into NB when the underlying parameter setting has two best treatments.

The following two subsections show how d2(δ, α, ν) is constructed for both known

and unknown variance scenarios if extra information about the range of treatment

mean is well-known.

4.3.1 Known variance

Suppose that independent sample Xij from treatment i follows N(µi, σ2), 1 ≤ i ≤

3, 1 ≤ j ≤ n. µi is the unknown parameter of interest and σ2 is given. Assume that

µ(3)−µ(1)

σ/
√

n
≤ δ is provided. The P (error) of the most critical case which decides the

value for the threshold in the second step of the step-down procedure is as follows.

Take the ordered means of µ1 = µ(1), µ2 = µ(2), µ3 = µ(3) to simply notation.
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Pµ1<µ2=µ3(error)

= P (X̄2, X̄3 < X̄1,
X̄1 − min {X̄2, X̄3}

σ/
√

n
> d3)

+ P (X̄1 < X̄2,
X̄2 − X̄3

σ/
√

n
> d3)

+ P (X̄1 < X̄3,
X̄3 − X̄2

σ/
√

n
> d3)

+ P (
X̄2 − X̄1

σ/
√

n
> d3, d2 <

X̄2 − X̄3

σ/
√

n
≤ d3)

+ P (
X̄3 − X̄1

σ/
√

n
> d3, d2 <

X̄3 − X̄2

σ/
√

n
≤ d3)

=

∫ ∞

y1=−∞
φ(y1 − µ∗1)×

{
Φ(y1 − µ∗2)

2

− [Φ(y1 − µ∗2)− Φ(y1 − d3 − µ∗2)]
2} dy1

+ 2

∫ ∞

y2=−∞
φ(y2 − µ∗2)Φ(y2 − µ∗1)Φ(y2 − d3 − µ∗3) dy2

+ 2

∫ ∞

y2=−∞
φ(y2 − µ∗2)Φ(y2 − d3 − µ∗1)

× [Φ(y2 − d2 − µ∗3)− Φ(y2 − d3 − µ∗3)] dy2

≤ α (4.1)

[ d3 = q3, α, ∞, d2 = d2(δ, α, ∞) ]

Given an error rate of α and a range of the treatment means which equals to

δ σ√
n
, the modified threshold, d2(δ, α, ∞), must satisfy the inequality above for all of

the parameter settings having µ3−µ1

σ/
√

n
≤ δ. The difficulty of obtaining the minimum d2

value for the restricted parameter space is that there is no closed form for d2(δ, α, ∞).

Therefore, the probability constraint should be checked at each τ ≤ δ where µ2 =

µ3 = µ1 + τ σ√
n
. It is a mass search but the search time is not overwhelming due to

the advantage of formulating P (error) with one dimensional integration. A numerical
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search using bisection algorithm is executed to explore the best value of the threshold

in the second step of the test procedure.

During the search, it is found that Pµ1<µ2=µ3(error) has a bigger error rate near one

end of the restricted parameter space where µ2 and µ3 are close to µ1+δ σ√
n
. The phe-

nomenon suggests first finding the smallest d2 value such that inequality (4.1) holds at

the parameter setting of µ2 = µ3 = µ1 + δ σ√
n
. After that, plug in the solution to con-

firm that every Pµ1<µ2=µ3(error) is at or below α for all µ2 = µ3 = µ1 + τ σ√
n
, τ ≤ δ.

In this way, it consumes less time to calculate d2(δ, α, ∞). Figure 4.3 presents the

results of d2(δ, α, ∞) at α equals to 5% and 1%.

Figure 4.3: d2(δ, α, ∞) values.
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4.3.2 Unknown variance

This subsection studies the d2(δ, α, ν) function when the maximum ratio of the

difference in treatment mean to σ√
n

has a upper limit of δ but the common population

variance is unknown. The goal is to separate the best treatments with the largest

mean from the inferior treatments with smaller means while controlling type I error.

Suppose that in a balanced design, independent observation Xij follows a N(µi, σ2)

distribution, 1 ≤ i ≤ 3, 1 ≤ j ≤ n. µi and σ2 are both unknown. Then, sample mean,

X̄i, follows N(µi, σ2/n) and pooled sample variances S2 follows σ2 χ2
ν

ν
, ν = 3n − 3.

These two sample statistics are point estimates for µi and σ2 respectively. Define a

random variable U as S
σ
. Then, U has a distribution of g(u) where

g(u) =
ν

ν
2

Γ(ν
2
)2

ν
2
−1

uν−1 exp (−νu2

2
), 0 < u < ∞.

The three properties of P (error) hold for the unknown variance case as well. Let

µ1 = µ(1), µ2 = µ(2), µ3 = µ(3). First, Pµ1≤µ2<µ3(error) also decreases as the largest

treatment mean increases when variance is unknown. The proof here is similar to the

that of property I for the known variance case. The modification is as follows.
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Proof.

Pµ1≤µ2<µ3(error)

= P (treatment 3 is selected into NB)

= P (NB = {T3}, {T1, T3}, and {T2, T3})

= P (
X̄2 − X̄3

S/
√

n
> d3, 0 <

X̄2 − X̄1

S/
√

n
< d3)

+ P (
X̄1 − X̄3

S/
√

n
> d3, 0 <

X̄1 − X̄2

S/
√

n
< d3)

+ P (
X̄2 − X̄1

S/
√

n
> d3,

X̄2 − X̄3

S/
√

n
> d2)

+ P (
X̄1 − X̄2

S/
√

n
> d3,

X̄1 − X̄3

S/
√

n
> d2)

= P (
X̄2 − X̄3

σ/
√

n
> Ud3, 0 <

X̄2 − X̄1

σ/
√

n
< Ud3)

+ P (
X̄1 − X̄3

σ/
√

n
> Ud3, 0 <

X̄1 − X̄2

σ/
√

n
< Ud3)

+ P (
X̄2 − X̄1

σ/
√

n
> Ud3,

X̄2 − X̄3

σ/
√

n
> Ud2)

+ P (
X̄1 − X̄2

σ/
√

n
> Ud3,

X̄1 − X̄3

σ/
√

n
> Ud2)

=

∫ ∞

u=0

∫ ∞

y2=−∞
φ(y2 − µ∗2)Φ(y2 − ud3 − µ∗2 −

δ

σ/
√

n
)

× [Φ(y2 − µ∗1)− Φ(y2 − ud3 − µ∗1)] dy2 du

+

∫ ∞

u=0

∫ ∞

y1=−∞
φ(y1 − µ∗1)Φ(y1 − ud3 − µ∗2 −

δ

σ/
√

n
)

× [Φ(y1 − µ∗2)− Φ(y1 − ud3 − µ∗2)] dy2 du

+

∫ ∞

u=0

∫ ∞

y2=−∞
φ(y2 − µ∗2)Φ(y2 − ud3 − µ∗1)Φ(y2 − ud2 − µ∗2 −

δ

σ/
√

n
) dy2 du

+

∫ ∞

u=0

∫ ∞

y1=−∞
φ(y1 − µ∗1)Φ(y1 − ud3 − µ∗2)Φ(y1 − ud2 − µ∗2 −

δ

σ/
√

n
) dy1 du
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Second, the error rate for µ1 ≤ µ2 = µ3 is bigger than the limiting error rate

for µ1 ≤ µ2 < µ3 as the difference between µ3 and µ2 goes to zero when variance

is unknown. Based on the definition of error in this research, concluding NB =

{T1}, {T2}, {T3}, {T1, T2}, {T1, T3}, or {T2, T3} results in a wrong decision if three

treatment means are all equal. Similarly, five decisions of {T2}, {T3}, {T1, T2}, {T1, T3},

and {T2, T3} are all error decisions when the setting is µ1 < µ2 = µ3. However,

only three decisions: NB = {T3}, {T1, T3}, and {T2, T3} are incorrect decisions

when the configurations is µ1 ≤ µ2 < µ3. The larger the size of the most effec-

tive treatments is, the more error decisions a parameter setting includes. Since the

probability of concluding each decision is nonnegative, Pµ1≤µ2=µ3(error) dominates

limδ→0 Pµ1≤µ2<µ3(error) when variance is unknown as well. Last, property III of

Pµ1<µ2=µ3(error) ≤ α for unknown variance case can also be confirmed by doing

numerical calculation.

In conclusion, the most critical issue for finding the smallest d2 value for the

unknown case is to satisfy Pµ(1)≤µ(2)=µ(3)
(error) ≤ α where

µ(3)−µ(1)

σ/
√

n
≤ δ. In this way,

the error rate of the entire restricted parameter space can be controlled. Since q3, α, ν

statistics makes type I error be exactly α when three treatment means are all equal,

it is enough to determine the value of d2(δ, α, ν) by examining Pµ(1)<µ(2)=µ(3)
(error)

in the restricted parameter space.

Suppose that independent sample Xij from treatment i follows N(µi, σ2), 1 ≤

i ≤ 3, 1 ≤ j ≤ n. Both µi and σ2 are unknown. But the prior information about the

standardized range
µ(3)−µ(1)

σ/
√

n
is given to be less than or equal to δ. Take ordered means

for simplicity. The formulation of the P (error) at the most critical setting with two
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best treatments is as follows.

Pµ1<µ2=µ3(error)

= P (X̄2, X̄3 < X̄1,
X̄1 − min {X̄2, X̄3}

S/
√

n
> d3)

+ 2 P (X̄1 < X̄2,
X̄2 − X̄3

S/
√

n
> d3)

+ 2 P (
X̄2 − X̄1

S/
√

n
> d3, d2 <

X̄2 − X̄3

S/
√

n
≤ d3)

= P (X̄2, X̄3 < X̄1,
X̄1 − min {X̄2, X̄3}

σ/
√

n
> Ud3)

+ 2 P (X̄1 < X̄2,
X̄2 − X̄3

σ/
√

n
> Ud3)

+ 2 P (
X̄2 − X̄1

σ/
√

n
> Ud3, Ud2 <

X̄2 − X̄3

σ/
√

n
≤ Ud3)

=

∫ ∞

u=0

∫ ∞

y1=−∞
φ(y1 − µ∗1)×

{
Φ(y1 − µ∗2)

2

− [Φ(y1 − µ∗2)− Φ(y1 − ud3 − µ∗2)]
2} g(u) dy1 du

+ 2

∫ ∞

u=0

∫ ∞

y2=−∞
φ(y2 − µ∗2)Φ(y2 − µ∗1)

×Φ(y2 − ud3 − µ∗3)g(u) dy2 du

+ 2

∫ ∞

u=0

∫ ∞

y2=−∞
φ(y2 − µ∗2)Φ(y2 − ud3 − µ∗1)

× [Φ(y2 − ud2 − µ∗3)− Φ(y2 − ud3 − µ∗3)] g(u) dy2 du

≤ α (4.2)

[ d3 = q3, α, ν , d2 = d2(δ, α, ν) ]

The way to search the minimum value for d2 is first set Pµ1<µ2=µ3(error) to α at

µ2 = µ3 = µ1 + τ σ√
n

where τ = δ. Then, verify that the deriving solution meet the

probability requirement for all 0 < τ < δ.
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4.4 Computational results and performance

4.4.1 Computational results for d2(δ, α, ν)

The results for both known and unknown variance cases at α equals to 10%, 5% and

1% are provided in Table 4.1 to 4.3. The d2(δ, α, ν) values in the tables insures that

P (error) ≤ α for the restricted parameter space satisfying
µ(3)−µ(1)

σ/
√

n
≤ δ. The upper

limit, δ, are tabulated from 1 to 5.

Table 4.1: d2(δ, 10%, ν) table: critical values of d2 at α = 0.1.

d2(δ) at α = 10%

ν d3 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5 δ = ∞
6 3.558 1.747 2.428 2.660 2.730 2.746 2.748

9 3.316 1.676 2.303 2.514 2.577 2.591 2.592

12 3.204 1.644 2.246 2.447 2.506 2.519 2.521

15 3.140 1.625 2.212 2.409 2.466 2.478 2.479

18 3.098 1.612 2.191 2.384 2.440 2.451 2.452

24 3.047 1.598 2.165 2.353 2.407 2.418 2.420

30 3.017 1.589 2.150 2.335 2.388 2.399 2.400

45 2.978 1.578 2.129 2.311 2.363 2.374 2.375

60 2.959 1.572 2.120 2.300 2.351 2.361 2.363

120 2.930 1.565 2.105 2.283 2.333 2.343 2.344

∞ 2.902 1.556 2.091 2.266 2.315 2.325 2.326
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Table 4.2: d2(δ, 5%, ν) table: critical values of d2 at α = 0.05.

d2(δ) at α = 5%

ν d3 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5 δ = ∞
6 4.339 2.257 3.068 3.349 3.437 3.457 3.460

9 3.948 2.124 2.852 3.102 3.179 3.198 3.199

12 3.773 2.067 2.756 2.991 3.063 3.080 3.081

15 3.673 2.034 2.702 2.927 2.997 3.013 3.014

18 3.609 2.014 2.666 2.887 2.954 2.970 2.971

24 3.532 1.987 2.637 2.838 2.903 2.917 2.919

30 3.486 1.972 2.598 2.809 2.873 2.887 2.888

45 3.428 1.953 2.565 2.770 2.833 2.847 2.848

60 3.399 1.945 2.547 2.753 2.815 2.827 2.829

120 3.356 1.930 2.527 2.726 2.786 2.799 2.800

∞ 3.314 1.914 2.502 2.698 2.757 2.770 2.772

Table 4.3: d2(δ, 1%, ν) table: critical values of d2 at α = 0.01.

d2(δ) at α = 1%

ν d3 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5 δ = ∞
6 6.331 3.564 4.670 5.079 5.202 5.243 5.243

9 5.428 3.160 4.111 4.452 4.560 4.596 4.596

12 5.046 3.004 3.881 4.193 4.294 4.320 4.320

15 4.836 2.930 3.752 4.045 4.143 4.167 4.167

18 4.703 2.862 3.673 3.951 4.047 4.071 4.071

24 4.546 2.797 3.569 3.840 3.932 3.955 3.955

30 4.455 2.765 3.517 3.775 3.866 3.889 3.889

45 4.339 2.719 3.443 3.700 3.781 3.804 3.804

60 4.282 2.689 3.410 3.659 3.740 3.762 3.762

120 4.200 2.661 3.355 3.600 3.680 3.702 3.702

∞ 4.120 2.618 3.300 3.540 3.620 3.640 3.643
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If the difference between treatment means is small, the threshold of d2(δ, α, ν)

can be shorter than the standard value. For example, d2 can be reduced by 35%

provided that
µ(3)−µ(1)

σ/
√

n
≤ 1 at six degree of freedom and α = 5%. The difference

between d2(δ, α, ν) and the standard d2 becomes minor as δ gets greater than 3.

The improvement of d2 is more significant when degree of freedom is larger, especially

when variance is known. When δ equals to ∞, d2(δ, α, ν) is exactly the standard

constant, tα/2, ν , which guarantees the error rate of the whole parameter space. More-

over, under same degree of freedom and δ, the ratio of d2(δ, α, ν) to the standard d2

value is lower when α is high.

4.4.2 Power of d2(δ, α, ν)

There are several ways to define the power of a test procedure depending on the

goal of a problem. In this study, the power of a test procedure is defined as the

ability to detect any less effective treatment with small µ. Two types of measurement

for power are discussed throughout the thesis: (1) the probability of identifying any

inferior treatment and (2) the expected size of inferior treatments selected into the

NB subset. Consequently, the way to formulate the power depends on the parameter

setting.

When comparing three treatments, there are seven decisions available: NB =

{φ}, {T1}, {T2}, {T3}, {T1, T2}, {T1, T3} and {T2, T3}. Denote P{φ}(µ), P{T1}(µ), · · · ,

and P{T2,T3}(µ) as the probabilities of selecting no treatment, the treatment with

µ1, · · · , and the treatments with µ2 and µ3 into NB respectively. Table 4.4 lists
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Table 4.4: Power calculation.

Power

µ setting (1) P (i ∈ NB|i /∈ B, 1 ≤ i ≤ 3) (2) E[i ∈ NB|i /∈ B, 1 ≤ i ≤ 3]

µ1 = µ2 = µ3 P{φ}(µ) 0

µ1 < µ2 = µ3 P{T1}(µ) + P{T1,T2}(µ) + P{T1,T3}(µ) P{T1}(µ) + P{T1,T2}(µ) + P{T1,T3}(µ)

µ1 ≤ µ2 < µ3

P{T1}(µ) + P{T2}(µ) + P{T1,T2}(µ)+ P{T1}(µ) + P{T2}(µ) + 2× P{T1,T2}(µ)+

+ P{T1,T3}(µ) + P{T2,T3}(µ) +P{T1,T3}(µ) + P{T2,T3}(µ)

the measurement of power for three types of configurations according to the size

of the best treatments. The test procedure which possesses higher quantity in the

measurement is said to be more efficient. Measurement (2) is computed as the

probability of identifying any inferior treatment multiplies the number of the in-

ferior treatments successfully selected into NB. For example, suppose that µ1 ≤

µ2 < µ3 with |B| = 1. Both treatment 1 and 2 are less effective than treat-

ment 3. Any decision which contains either T1, T2 or both has correct detection.

NB = {T1}, {T2}, {T1, T3} and {T2, T3} are the conclusions which correctly eliminate

one of the inferior treatments and thus the corresponding probabilities are multiplied

by one. Concluding NB = {T2, T3} precisely detect both inferior treatments, so the

associated probability is weighted by two.

The calculation of power is determined by the probability of getting each deci-

sion, P{φ}, P{T1}, · · · , and P{T2,T3}. Thus, it is necessary to study the probability of

deriving each decision first. Without loss of generality, assume that σ√
n

= 1. The

total probability of getting these seven combinations is 1. A more general case with

arbitrary sample size and known or unknown variance can be easily extended from
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these formulas below.

P{φ}(µ) = P (X̄(3) − X̄(1) ≤ d3)

= P (X̄1 < X̄2, X̄3 ≤ X̄1 + d3))

+P (X̄2 < X̄1, X̄3 ≤ X̄2 + d3))

+P (X̄3 < X̄1, X̄2 ≤ X̄3 + d3))

=

∫ ∞

x1=−∞
φ(x1 − µ1) [Φ(x1 + d3 − µ2)− Φ(x1 − µ2)]

× [Φ(x1 + d3 − µ3)− Φ(x1 − µ3)] dx1

+

∫ ∞

x2=−∞
φ(x2 − µ2) [Φ(x2 + d3 − µ1)− Φ(x2 − µ1)]

× [Φ(x2 + d3 − µ3)− Φ(x2 − µ3)] dx2

+

∫ ∞

x3=−∞
φ(x3 − µ3) [Φ(x3 + d3 − µ1)− Φ(x3 − µ1)]

× [Φ(x3 + d3 − µ2)− Φ(x3 − µ2)] dx3 (4.3)

P{T1}(µ) = P (X̄1 < X̄2 − d3, X̄2 − d2 ≤ X̄3 < X̄2)

+ P (X̄1 < X̄3 − d3, X̄3 − d2 ≤ X̄2 < X̄3)

=

∫ ∞

x2=−∞
φ(x2 − µ2)Φ(x2 − d3 − µ1)[Φ(x2 − µ3)− Φ(x2 − d2 − µ3)] dx2

+

∫ ∞

x3=−∞
φ(x3 − µ3)Φ(x3 − d3 − µ1)[Φ(x3 − µ2)− Φ(x3 − d2 − µ2)] dx3

(4.4)
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P{T2}(µ) = P (X̄2 < X̄1 − d3, X̄1 − d2 ≤ X̄3 < X̄1)

+ P (X̄2 < X̄3 − d3, X̄3 − d2 ≤ X̄1 < X̄3)

=

∫ ∞

x1=−∞
φ(x1 − µ1)Φ(x1 − d3 − µ2)[Φ(x1 − µ3)− Φ(x1 − d2 − µ3)] dx1

+

∫ ∞

x3=−∞
φ(x3 − µ3)Φ(x3 − d3 − µ2)[Φ(x3 − µ1)− Φ(x3 − d2 − µ1)] dx3

(4.5)

P{T3}(µ) = P (X̄3 < X̄1 − d3, X̄1 − d2 ≤ X̄2 < X̄1)

+ P (X̄3 < X̄2 − d3, X̄2 − d2 ≤ X̄1 < X̄2)

=

∫ ∞

x1=−∞
φ(x1 − µ1)Φ(x1 − d3 − µ3)[Φ(x1 − µ2)− Φ(x1 − d2 − µ2)] dx1

+

∫ ∞

x2=−∞
φ(x2 − µ2)Φ(x2 − d3 − µ3)[Φ(x2 − µ1)− Φ(x2 − d2 − µ1)] dx2

(4.6)

P{T1,T2}(µ) = P (X̄1, X̄2 < X̄3 − d3)

+P (X̄1 < X̄3 − d3, X̄3 − d3 ≤ X̄2 < X̄3 − d2)

+P (X̄2 < X̄3 − d3, X̄3 − d3 ≤ X̄1 < X̄3 − d2)

=

∫ ∞

x3=−∞
φ(x3 − µ3)Φ(x3 − d3 − µ1)Φ(x3 − d3 − µ2) dx3

+

∫ ∞

x3=−∞
φ(x3 − µ3)Φ(x3 − d3 − µ1)

×[Φ(x3 − d2 − µ2)− Φ(x3 − d3 − µ2)] dx3

+

∫ ∞

x3=−∞
φ(x3 − µ3)Φ(x3 − d3 − µ2)

×[Φ(x3 − d2 − µ1)− Φ(x3 − d3 − µ1)] dx3 (4.7)
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P{T1,T3}(µ) = P (X̄1, X̄3 < X̄2 − d3)

+P (X̄1 < X̄2 − d3, X̄2 − d3 ≤ X̄3 < X̄2 − d2)

+P (X̄3 < X̄2 − d3, X̄2 − d3 ≤ X̄1 < X̄2 − d2)

=

∫ ∞

x2=−∞
φ(x2 − µ2)Φ(x2 − d3 − µ1)Φ(x2 − d3 − µ3) dx2

+

∫ ∞

x2=−∞
φ(x2 − µ2)Φ(x2 − d3 − µ1)

×[Φ(x2 − d2 − µ3)− Φ(x2 − d3 − µ3)] dx2

+

∫ ∞

x2=−∞
φ(x2 − µ2)Φ(x2 − d3 − µ3)

×[Φ(x2 − d2 − µ1)− Φ(x2 − d3 − µ1)] dx2 (4.8)

P{T2,T3}(µ) = P (X̄2, X̄3 < X̄1 − d3)

+P (X̄2 < X̄1 − d3, X̄1 − d3 ≤ X̄3 < X̄1 − d2)

+P (X̄3 < X̄1 − d3, X̄1 − d3 ≤ X̄2 < X̄1 − d2)

=

∫ ∞

x1=−∞
φ(x1 − µ1)Φ(x1 − d3 − µ2)Φ(x1 − d3 − µ3) dx1

+

∫ ∞

x1=−∞
φ(x1 − µ1)Φ(x1 − d3 − µ2)

×[Φ(x1 − d2 − µ3)− Φ(x1 − d3 − µ3)] dx1

+

∫ ∞

x1=−∞
φ(x1 − µ1)Φ(x1 − d3 − µ3)

×[Φ(x1 − d2 − µ2)− Φ(x1 − d3 − µ2)] dx1 (4.9)
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The power of the new procedure can be calculated by substituting d2 with the tab-

ulated d2(δ, α, ν) value into the aforementioned equations. The computational results

demonstrate that the new test procedure is more powerful than the standard proce-

dure in terms of both measurements. Figure 4.4 to 4.8 present the power improvement

by using the new methodology. The graphs demonstrate the difference of the two ap-

proaches under three types of parameter setting: (1) µ(1) = µ(2) < µ(3) : (0, 0, δ) (2)

µ(1) < µ(2) = µ(3) : (0, δ, δ) (3) µ(1) < µ(2) < µ(3) : (0, δ
2
, δ). The graphs in the left

column illustrate the power improvement in terms of the probability of identifying

any inferior treatment while those in the right column are in terms of the expected

size of any inferior treatment selected into the NB subset.

If the range of three treatment means is known to be small, the d2(δ, α, ν) func-

tion provides sharper critical values that enable the test procedure to detect more

inferior treatments in the step-down procedure. When α and the degree of freedom

are fixed, the amount of the power improvement increases as the range of
µ(3)−µ(1)

σ/
√

n

decreases. As δ gets smaller, the area of the parameter subspace whose P (error)

needs to be controlled becomes tighter. Therefore, a smaller d2 value which results

in a larger decision error rate can still guarantee P (error) ≤ α for the restricted pa-

rameter space. Then the power raises along with type I error. When δ and degree of

freedom are fixed to given numbers, greater improvement in identifying less effective

treatments can be achieved if tolerance of familywise error rate is relaxed to a larger

value. Moreover, power in both measurements increase more under high degree of

freedom when δ and α remain constants.
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Figure 4.4: Power improvement by using d2(δ = 1) at α = 1% and known variance.
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Figure 4.5: Power improvement by using d2(δ = 1) at α = 5% and known variance.
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Figure 4.6: Power improvement by using d2(δ = 1) at α = 10% and known variance.
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Figure 4.7: Power improvement by using d2(δ = 2) at α = 5% and known variance.
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Figure 4.8: Power improvement by using d2(δ = 1) at α = 5% and ν = 60.
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4.5 Discussion and summary

The treatment with a smaller mean value is considered as less effective and should

be eliminated. Suppose that the prior information of
µ(3)−µ(1)

σ/
√

n
≤ δ, δ > 0 is provided

before testing the strictly inferior treatments. With the additional information about

the range of treatment means, the test procedure can be less conservative by moni-

toring the P (error) within a restricted parameter space. The goal of this chapter is

to design an efficient test procedure which can identify more inferior treatments when

the differences among µi’s are known to be bounded. The objective can be reached

by using sharper thresholds, d2(δ, α, ν), for the restricted parameter space.

d2(δ, α, ν) controls P (error) for every configuration with
µ(3)−µ(1)

σ/
√

n
≤ δ. The crit-

ical value is smaller than standard d2,
√

2tα/2,ν . The calculation time for d2(δ, α, ∞)

is not overwhelming due to the benefit of formulating the error rate with one integral.

The new threshold is computed by finding the minimum d2 value such that the error

rate of µ(1) < µ(2) = µ(3) is not greater than α when µ(3) − µ(1) ≤ δ σ√
n
. If σ√

n
is one,

the solution maintains familywise error rate inside the restricted parameter space of

the hexagon in Figure 4.1.

The new d2(δ, α, ν) value, in fact, can guarantee a subspace larger then the

hexagon. Property I and II of P (error) states that if Pµ(1)≤µ(2)=µ(3)
(error) is at or

below α for some τ = µ(3) − µ(1), then Pµ(1)≤µ(2)<µ(3)
(error) is also below α whenever

µ(2)− µ(1) < τ . Therefore, the tabulated d2(δ, α, ν) values actually control the error

rate for a restricted parameter space of
µ(2)−µ(1)

σ/
√

n
≤ δ as shown in Figure 4.9.

The advantage of applying d2(δ, α, ν) to the step-down procedure is that not
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only is the error rate controlled over the interested parameter subspace, but also does

the power of the test procedure increase. There is a higher chance to exclude the

inferior treatments among three. Meanwhile, the expected size of the less effective

treatments being rejected is bigger than that by applying standard d2.

Figure 4.9: The restricted parameter where
µ(2)−µ(1)

σ/
√

n
≤ δ.
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CHAPTER V

THE STEP-DOWN PROCEDURE WITH FEEDBACK

In a balance design with three populations, using the studentized range statistics,

q3, α, ν , as the threshold in step 1 of the step-down procedure makes P (error) exactly

α if the true parameter has three equal means. It implies that d3 cannot be smaller

than the q statistics; otherwise, the error rate is out of control for the configuration

of µ1 = µ2 = µ3. As for the rest of the parameter settings, the probability of

selecting any treatment with the largest mean into NB relies on the two thresholds

in both steps. Such a probability is a function of d2 and d3. When using standard

d2 = tα/2, ν and d3 = q3, α, ν , however, most configurations have error rates less than

α. The numerical calculations shows that the constant d2 value is not powerful in

eliminating less effective treatments when there are at least one inferior treatments.

This chapter proposes a new step-down procedure with feedback to adjust the value

of d2 for every individual experiment. Under this methodology, d2 is no longer a

constant but a function depending on range of sample means.

Similar to the previous chapter, the methodology presented here focuses on k = 3

case. The proposing d2(X̄(3) − X̄(1)) function along with q statistics control type I

error at or below α no matter what the true parameter setting is. The objective of

this approach emphasizes monitoring error rates and improving power for the whole
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parameter space instead of focusing on a restricted parameter subspace. Prior in-

formation about range of treatment means is not needed and nor does it change the

value of d2. Only relative location of sample means is used to modify d2.

5.1 Motivation

As a motivation for the new procedure, consider the two data configurations shown

in Figure 5.1. In either case treatment 1 will be put into NB, and if d2 is a constant

then the same decision will be made for treatment 2 in either case as well. The idea of

the new procedure is that different decisions can be made possible for treatment 2 for

the two cases by allowing the critical point d2 to depend upon the value of X̄(3)−X̄(1).

Thus, the decision at the second step incorporates feedback from the first step. This

chapter studies the formulation and the performance of applying the d2(X̄(3) − X̄(1))

function in the step-down procedure.

Figure 5.1: Motivation of using d2(X̄(3) − X̄(1)).
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5.2 Construction of the d2(X̄(3) − X̄(1)) function

When testing homogeneity of two population means, zα/2 statistics or tα/2, ν statistics

are used to control type I error at α level. Same concept applies to the step-down

procedure. Setting d2 to
√

2zα/2 or
√

2tα/2, ν leads to an asymptotic error rate of α

when the configuration is µ(1) ¿ µ(2) = µ(3). Figure 3.7 demonstrates the conservative

problem of applying constant d2. P (error) promptly drops to zero as µ(3)− µ(2) gets

large. For the area with low error rate, a smaller d2 can also meet the probability

constraint of P (error) ≤ α. Consequently, the upper bound of the d2(X̄(3) − X̄(1))

function are
√

2zα/2 and
√

2tα/2, ν for known and unknown variance respectively.

As the gap among the efficacy levels shrinks, the standard procedure becomes

less powerful. It is difficult to discriminate treatments when sample means cluster

together. In order to improve efficiency of the test procedure, d2 is formulated as

a function whose value changes with observations. The d2(X̄(3) − X̄(1)) function

converges to the standard d2 value as the range of sample means goes to infinity but

takes a smaller value than the standard d2 value when
X̄(3)−X̄(1)

S/
√

n
is not much wider

than d3. Hence, a concave function is proposed:

d2(X̄(3) − X̄(1)) =
√

2 · zα/2

[
1− e

a−b

�
X̄(3)−X̄(1)

σ/
√

n

�]
, for known variance

d2(X̄(3) − X̄(1)) =
√

2 · tα/2,ν

[
1− e

a−b

�
X̄(3)−X̄(1)

S/
√

n

�]
, for unknown variance
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5.2.1 New decision space under d2(X̄(3) − X̄(1))

The layout of decision space turns into Figure 5.2 when applying the exponential

functions proposed above. Since the cutting point in the first step of the test procedure

is still q statistics, the size of the hexagon remains the same. However, the decision

rule in step 2 is not a fixed number for every data set. Its value depends on the

difference between the maximum and the minimum sample means. Accordingly, the

borders between concluding one and two inferior treatments change from straight

lines to curves.

The step-down procedure with feedback is designed to control familywise error rate

for every possible parameter setting. The solutions for a and b in the d2(X̄(3) − X̄(1))

function are subject to P (error) ≤ α. When µ1 = µ2 = µ3, the probability of

observing a point outside the hexagon of the decision space is exact α by applying

d3 = q3, α, ν in a balance design. If µ1 < µ2 = µ3, the chance of matching sample

means to a point inside region (iii) to (vii) bounded by the dashed curves must less

than or equal to α. As it can be seen in Figure 5.2, the total area from (iii) to (vii)

bounded by the dashed curves is bigger than that bounded by the solid lines. Hence,

Pµ1<µ2=µ3(error) increases and so does the power of the test procedure applying the

d2(X̄(3) − X̄(1)) function. Similarly, the probability of getting a point inside region

(iii) to (v) bounded by the dashed curves is required to be at or below α when

µ1 ≤ µ2 < µ3. The total area is greater than that bounded by the solid lines by two

shaded areas.

P (error) is a function of d2 and d3 if one or more less effective treatments exist.
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Figure 5.2: The new decision space by using d2(X̄(3) − X̄(1)).
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When applying the standard procedure with a constant d2 value of
√

2zα/2, P (error)

can be constructed by one integral under known variance case. As for the restricted

parameter space approach proposed in chapter 4, it is also sufficient to describe the

error rate with one integral when variance is given. With regard to the step-down

procedure with feedback, however, the formulation of the d2(X̄(3) − X̄(1)) function is

more complicated due to the function depends on the relative location of the largest

and the smallest sample means. The expression for P (error) requires double integra-

tion to characterize X̄(1) and X̄(3) when variance is known and raises the complexity

of the problem and calculation.

It is necessary to reconfirm the three properties after constructing new equations

for P (error). The second property comments that Pµ1≤µ2=µ3(error) is bigger than

limδ→0 Pµ1≤µ2<µ3(error) where δ = µ3 − µ2. The statement is also true when d2 is a

function of X̄(3)− X̄(1). No matter d2 is a fixed number or a function, the probability

of concluding each decision is nonnegative. Based on the definition of error, more

types of conclusions are considered to be error decisions when µ1 ≤ µ2 = µ3 than

when µ1 ≤ µ2 < µ3. The error rate of the configuration with two best treatments is

higher than than the limiting error rate of the setting with one best treatment.

The proof of property I becomes complicated due to having two integrals involved.

The property can be checked by numerical calculation. When fixing µ1, µ2, a and b,

the numerical result shows that Pµ1≤µ2<µ3(error) decreases as µ3 increases. The plot

of the first derivative of Pµ1≤µ2<µ3(error) with respect to µ3 is negative and converges

to zero as µ3 increases. The phenomenon for property I and the proof of property II

together suggest that the configuration with two best treatments is potentially the
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most critical scenario in determining d2.

Therefore, the construction of the d2(X̄(3) − X̄(1)) function can be started with

searching for the solutions of a and b which satisfy Pµ1<µ2=µ3(error) ≤ α. Then, the

P (error) under such solutions needs to be examined for the whole parameter space.

The next two sections formulate Pµ(1)<µ(2)=µ(3)
(error) under the step-down procedure

with feedback which adjusts the value of d2 with observations.

5.2.2 Known variance

Let Xij be the jth independent observation from treatment i, 1 ≤ i ≤ 3, 1 ≤ j ≤ n.

Suppose that Xij ∼ N(µi, σ2), σ2 is given. Take ordered means, µ(i) = µi, 1 ≤ i ≤ 3,

to simplify notation. The formulation of type I error for the parameter setting of

µ1 < µ2 = µ3 is displayed as follows. Solutions for a and b must first satisfy inequality

(5.1) for all µ1 < µ2 = µ3.
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Pµ1<µ2=µ3(error) = P (T2, T3 ∈ NB)

= P (X̄1 < X̄3 − d3
σ√
n

, X̄1 < X̄2 < X̄3 − d2
σ√
n

)

+P (X̄1 < X̄2 − d3
σ√
n

, X̄1 < X̄3 < X̄2 − d2
σ√
n

)

+P (X̄2 < X̄1 < X̄3 and X̄2 < X̄3 − d3
σ√
n

)

+P (X̄2 < X̄3 < X̄1 and X̄2 < X̄1 − d3
σ√
n

)

+P (X̄3 < X̄1 < X̄2 and X̄3 < X̄2 − d3
σ√
n

)

+P (X̄3 < X̄2 < X̄1 and X̄3 < X̄1 − d3
σ√
n

)

= 2P (X̄1 < X̄3 − d3
σ√
n

, X̄1 < X̄2 < X̄3 − d2
σ√
n

)

+2

[
P (X̄2 < X̄1, X̄3)− P (X̄2 < X̄1 ≤ X̄2 + d3

σ√
n

, X̄2 < X̄3 ≤ X̄2 + d3
σ√
n

)

]

= 2

∫ ∞

y1=−∞

∫ ∞

y3=y1+d3

φ(y1 − µ∗1)φ(y3 − µ∗3)

×
[
Φ(y3 −

√
2zα/2(1− ea−b(y3−y1) − µ∗2)− Φ(y1 − µ∗2)

]
dy3 dy1

+2

∫ ∞

y2=−∞
φ(y2 − µ∗2) {[1− Φ(y2 − µ∗1)] [1− Φ(y2 − µ∗3)]

− [Φ(y2 + d3 − µ∗1)− Φ(y2 − µ∗1)] [Φ(y2 + d3 − µ∗3)− Φ(y2 − µ∗3)]} dy2

≤ α (5.1)

5.2.3 Unknown variance

The formulation of the error rate for unknown variance is an extension of inequality

(5.1). Sample standard deviation, S, is used to substitute unknown parameter σ.

One more integral is added to the equation to take sample standard deviation into
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consideration. Define a random variable U as S
σ
. U follows a g(u) distribution where

g(u) =
ν

ν
2

Γ(ν
2
)2

ν
2
−1

uν−1 exp (−νu2

2
), 0 < u < ∞, ν = 3n− 3

Following is the formula of Pµ1<µ2=µ3(error) based on the step-down procedure

with feedback when variance is not given. The goal is to solve a and b such that the

inequality below is guaranteed for all of the configurations with two best treatments.
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Pµ1<µ2=µ3(error)

= P (T2, T3, or both ∈ NB)

= P (X̄1 < X̄3 − d3
S√
n

, X̄1 < X̄2 < X̄3 − d2
S√
n

)

+P (X̄1 < X̄2 − d3
S√
n

, X̄1 < X̄3 < X̄2 − d2
S√
n

)

+P (X̄2 < X̄1 < X̄3 and X̄2 < X̄3 − d3
S√
n

)

+P (X̄2 < X̄3 < X̄1 and X̄2 < X̄1 − d3
S√
n

)

+P (X̄3 < X̄1 < X̄2 and X̄3 < X̄2 − d3
S√
n

)

+P (X̄3 < X̄2 < X̄1 and X̄3 < X̄1 − d3
S√
n

)

= 2P (X̄1 < X̄3 − d3
S√
n

, X̄1 < X̄2 < X̄3 − d2
S√
n

)

+2

[
P (X̄2 < X̄1, X̄3)− P (X̄2 < X̄1 ≤ X̄2 + d3

S√
n

, X̄2 < X̄3 ≤ X̄2 + d3
S√
n

)

]

= 2P

(
X̄1

σ/
√

n
<

X̄3

σ/
√

n
− d3

S

σ
,

X̄1

σ/
√

n
<

X̄2

σ/
√

n
<

X̄3

σ/
√

n
− d2

S

σ

)

+2

[
P

(
X̄2

σ/
√

n
<

X̄1

σ/
√

n
,

X̄3

σ/
√

n

)

−P

(
X̄2

σ/
√

n
<

X̄1

σ/
√

n
≤ X̄2

σ/
√

n
+ d3

S

σ
,

X̄2

σ/
√

n
<

X̄3

σ/
√

n
≤ X̄2

σ/
√

n
+ d3

S

σ

)]

= 2

∫ ∞

u=0

∫ ∞

y1=−∞

∫ ∞

y3=y1+ud3

g(u)φ(y1 − µ∗1)φ(y3 − µ∗3)

×
[
Φ(y3 − u ·

√
2tα/2,ν(1− ea− b

u
(y3−y1))− µ∗2)− Φ(y1 − µ∗2)

]
dy3 dy1 du

+2

∫ ∞

u=0

∫ ∞

y2=−∞
g(u)φ(y2 − µ∗2) {[1− Φ(y2 − µ∗1)][1− Φ(y2 − µ∗3)]

− [Φ(y2 + ud3 − µ∗1)− Φ(y2 − µ∗1)]× [Φ(y2 + ud3 − µ∗3)− Φ(y2 − µ∗3)]} dy2 du

≤ α (5.2)
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5.2.4 Optimal solution for the d2(X̄(3) − X̄(1)) function

Inequality (5.1) and (5.2) have multiple paired solutions for (a, b). The goal of the

step-down procedure with feedback is to propose a new methodology which increases

the power of the test procedure while maintaining familywise error rate at the same

time. Therefore, it is preferable to choose the d2(X̄(3)− X̄(1)) function which provides

the greatest improvement in power among all of the feasible solutions.

The decision spaces under the step-down procedures with constant d2, d2(δ), and

d2(X̄(3) − X̄(1)) are all symmetric. Treatment index does not influence decision. Fig-

ure 5.3 shows the difference between the decision spaces under standard d2 and the

d2(X̄(3) − X̄(1)) function. Suppose that X̄1 ≤ X̄2 ≤ X̄3, the new d2(X̄(3) − X̄(1))

function creates a larger area for concluding NB = {T1, T2} and then is more capa-

ble of eliminating one more treatment when comparing three treatments. If sample

means match to a point locating in the shaded area, only the treatment with the

smallest sample mean is eliminated under the standard method. On the other hand,

the treatments with the smallest two sample means are rejected under the step-down

procedure with feedback if observing such a point. The size of the shaded area can

then be measurement of power improvement. It represents the performance level of

the d2(X̄(3) − X̄(1)) function. Thus, the larger the area is, the more powerful the

d2(X̄(3) − X̄(1)) function is. The size of the shaded area is as follows.

shaded area =

∫ ∞

q3, α, ν

√
2tα/2

ν · ea−bx dx
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Figure 5.3: The improvement of the step-down procedure with feedback over the
standard step-down procedure.
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5.3 Computational results and performance

5.3.1 Computational results for the d2(X̄(3) − X̄(1)) function

The d2(X̄(3)− X̄(1)) function is
√

2 ·zα/2

[
1− e

a−b

�
X̄(3)−X̄(1)

σ/
√

n

�]
when variance is known

and is
√

2 · tα/2, ν

[
1− e

a−b

�
X̄(3)−X̄(1)

S/
√

n

�]
when variance is unknown. The results of the

optimal (a, b) at certain α levels and degree of freedoms are tabulated below. The

proposing (a, b) values create the largest shaded area among all feasible solutions.

In addition, using d3 = q3, α, ν and d2(X̄(3) − X̄(1)) with the optimal (a, b) controls

type I error rate at or below α for the whole parameter space by numerical calculation.

Table 5.1: Optimal (a, b) for the step-down procedure with feedback approach.

α ν a b

1% ∞ 16.4 4.8

5% ∞ 17.1 5.9

10% ∞ 20.5 7.8

5% 30 26.4 8.0

The way to apply the step-down procedure with feedback is to use q statistics for

d3 and calculate the value of d2 by plugging the optimal (a, b) into the d2(X̄(3)−X̄(1))

function. For example, X̄1 = 0, X̄2 = 0.3, X̄3 = 1.7, and the ratio of the variance to

the sample size in each treatment is known to be 1 to 4. At α = 5%, the d2(X̄(3)−X̄(1))
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function is
√

2 · z0.05/2

[
1− e

17.1−5.9

�
X̄(3)−X̄(1)

σ/
√

n

�]
. The test procedure is:

[Step 1]

X̄3−X̄1

σ/
√

n
= 1.7−0

0.5
= 3.4 > d3 = q3, 0.05, ∞ = 3.314.

Treatment 1 is selected into NB and continue to Step 2.

[Step 2]

d2 =
√

2 · z0.05/2 (1− e17.1−5.9×3.4) = 2.628

X̄3−X̄2

σ/
√

n
= 1.7−0.3

0.5
= 2.8 > d2 = 2.628.

Treatment 2 is selected into NB and stop.

The conclusion is NB = {T1, T3}.

5.3.2 Power of the d2(X̄(3) − X̄(1)) function

The definition of the power for a test procedure is the ability of identifying any inferior

treatment. The probability of eliminating any inferior treatment and the expected size

of the inferior treatments selected into NB are the measurement for power adopted

in this study. The test procedure having larger quantity for the measurement is more

efficient. Refer to Table 4.4, the calculation of power is determined by the total

number of the best treatments. In order to quantify the power of a test procedure, it

is necessary to compute the probabilities of getting seven different decisions. Without

loss of generality, assume that n = 1 and σ2 = 1. A more general case with arbitrary
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n, σ2, or even unknown σ2 can be easily extended from the equation below. Let d2(y)

be the abbreviation for
√

2 · zα/2

[
1− e(a−by)

]
.

P{φ}(µ) = P (X(3) −X(1) ≤ d3)

= P (X1 = min {X1, X2, X3}, X2, X3 ∈ (X1, X1 + d3))

+P (X2 = min {X1, X2, X3}, X1, X3 ∈ (X2, X2 + d3))

+P (X3 = min {X1, X2, X3}, X1, X2 ∈ (X3, X3 + d3))

=

∫ ∞

x1=−∞
φ(x1 − µ1) [Φ(x1 + d3 − µ2)− Φ(x1 − µ2)]

× [Φ(x1 + d3 − µ3)− Φ(x1 − µ3)] dx1

+

∫ ∞

x2=−∞
φ(x2 − µ2) [Φ(x2 + d3 − µ1)− Φ(x2 − µ1)]

× [Φ(x2 + d3 − µ3)− Φ(x2 − µ3)] dx2

+

∫ ∞

x3=−∞
φ(x3 − µ3) [Φ(x3 + d3 − µ1)− Φ(x3 − µ1)]

× [Φ(x3 + d3 − µ2)− Φ(x3 − µ2)] dx3 (5.3)

P{1}(µ) = P (X1 < X2 − d3, X2 − d2 ≤ X3 < X2)

+P (X1 < X3 − d3, X3 − d2 ≤ X2 < X3)

=

∫ ∞

x2=−∞

∫ x2−d3

x1=−∞
φ(x1 − µ1)φ(x2 − µ2)

×[Φ(x2 − µ3)− Φ(x2 − d2(x2 − x1)− µ3)] dx1 dx2

+

∫ ∞

x3=−∞

∫ x3−d3

x1=−∞
φ(x1 − µ1)φ(x3 − µ3)

×[Φ(x3 − µ2)− Φ(x3 − d2(x3 − x1)− µ2)] dx1 dx3 (5.4)
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P{2}(µ) = P (X2 < X1 − d3, X1 − d2 ≤ X3 < X1)

+P (X2 < X3 − d3, X3 − d2 ≤ X1 < X3)

=

∫ ∞

x1=−∞

∫ x1−d3

x2=−∞
φ(x2 − µ2)φ(x1 − µ1)

×[Φ(x1 − µ3)− Φ(x1 − d2(x1 − x2)− µ3)] dx2 dx1

+

∫ ∞

x3=−∞

∫ x3−d3

x2=−∞
φ(x2 − µ2)φ(x3 − µ3)

×[Φ(x3 − µ1)− Φ(x3 − d2(x3 − x2)− µ1)] dx2 dx3 (5.5)

P{3}(µ) = P (X3 < X1 − d3, X1 − d2 ≤ X2 < X1)

+P (X3 < X2 − d3, X2 − d2 ≤ X1 < X2)

=

∫ ∞

x1=−∞

∫ x1−d3

x3=−∞
φ(x3 − µ3)φ(x1 − µ1)

×[Φ(x1 − µ2)− Φ(x1 − d2(x1 − x3)− µ2)] dx3 dx1

+

∫ ∞

x2=−∞

∫ x2−d3

x3=−∞
φ(x3 − µ3)φ(x2 − µ2)

×[Φ(x2 − µ1)− Φ(x2 − d2(x2 − x3)− µ1)] dx3 dx2 (5.6)
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P{1,2}(µ) = P (X1, X2 < X3 − d3)

+P (X1 < X3 − d3, X3 − d3 ≤ X2 < X3 − d2)

+P (X2 < X3 − d3, X3 − d3 ≤ X1 < X3 − d2)

=

∫ ∞

x3=−∞
φ(x3 − µ3)Φ(x3 − d3 − µ1)Φ(x3 − d3 − µ2) dx3

+

∫ ∞

x3=−∞

∫ x3−d3

x1=−∞
φ(x1 − µ1)φ(x3 − µ3)

×[Φ(x3 − d2(x3 − x1)− µ2)− Φ(x3 − d3 − µ2)] dx1 dx3

+

∫ ∞

x3=−∞

∫ x3−d3

x2=−∞
φ(x2 − µ2)φ(x3 − µ3)

×[Φ(x3 − d2(x3 − x2)− µ1)− Φ(x3 − d3 − µ1)] dx2 dx3 (5.7)

P{1,3}(µ) = P (X1, X3 < X2 − d3)

+P (X1 < X2 − d3, X2 − d3 ≤ X3 < X2 − d2)

+P (X3 < X2 − d3, X2 − d3 ≤ X1 < X2 − d2)

=

∫ ∞

x2=−∞
φ(x2 − µ2)Φ(x2 − d3 − µ1)Φ(x2 − d3 − µ3) dx2

+

∫ ∞

x2=−∞

∫ x2−d3

x1=−∞
φ(x1 − µ1)φ(x2 − µ2)

×[Φ(x2 − d2(x2 − x1)− µ3)− Φ(x2 − d3 − µ3)] dx1 dx2

+

∫ ∞

x2=−∞

∫ x2−d3

x3=−∞
φ(x3 − µ3)φ(x2 − µ2)

×[Φ(x2 − d2(x2 − x3)− µ1)− Φ(x2 − d3 − µ1)] dx3 dx2 (5.8)
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P{2,3}(µ) = P (X2, X3 < X1 − d3)

+P (X2 < X1 − d3, X1 − d3 ≤ X3 < X1 − d2)

+P (X3 < X1 − d3, X1 − d3 ≤ X2 < X1 − d2)

=

∫ ∞

x1=−∞
φ(x1 − µ1)Φ(x1 − d3 − µ2)Φ(x1 − d3 − µ3) dx1

+

∫ ∞

x1=−∞

∫ x1−d3

x2=−∞
φ(x2 − µ2)φ(x1 − µ1)

×[Φ(x1 − d2(x1 − x2)− µ3)− Φ(x1 − d3 − µ3)] dx2 dx1

+

∫ ∞

x1=−∞

∫ x1−d3

x3=−∞
φ(x3 − µ3)φ(x1 − µ1)

×[Φ(x1 − d2(x1 − x3)− µ2)− Φ(x1 − d3 − µ2)] dx3 dx1 (5.9)

The power improvement of known variance cases at α = 1%, 5%, 10% are illus-

trated in Figure 5.4 to 5.6. The subplots in the left column illustrate the increase in the

probability of eliminating any inferior treatment by applying the d2(X̄(3)−X̄(1)) func-

tion with feedback. The graphs in the right column reveal the gain in the expected size

of the less efficient treatments being selected into NB. In each setting, three types of

the parameter configurations are studied individually: (1) µ(1) = µ(2) < µ(3) : (0, 0, δ)

with one best treatment, (2) µ(1) < µ(2) = µ(3)) : (0, δ, δ) with two best treatments,

and (3) µ(1) < µ(2) < µ(3) : (0, δ
2
, δ

2
) with one best treatment.

The levels of the improvement are different from setting to setting. In terms

of the first measurement of power, P (i ∈ NB|i /∈ B, 1 ≤ i ≤ 3), the parameter
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setting with two best treatment benefits more from the d2(X̄(3)− X̄(1)) function than

the setting with only one best treatment. For instance, in Figure 5.6 with α =

10%, the improvement for (0, 1
2
, 1

2
) is 7 × 10−4 while 2 × 10−4 for (0, 1

2
, 1). Based

on the properties of P (error), the configuration of µ(1) < µ(2) = µ(3) significantly

influences the value for the threshold in step 2 of the test procedure. Therefore, the

d2(X̄(3) − X̄(1)) function focuses on modifying the probability of the setting with two

best treatments. The graphs show that at a fixed degree of freedom, the magnitude

of the improvement is larger if a higher type I error rate is allowed.

When comparing to the step-down procedure with constant d2, the step-down pro-

cedure with feedback has minor improvement in power than the restricted parameter

space approach if δ is small. It is because that the procedure proposed in this chapter

controls P (error) ≤ α for the whole parameter, while the procedure studied in chap-

ter 4 maintains the probability restriction for only a narrower parameter subspace.

Since there are more constraints, less improvement can be made.

5.4 Summary

The step-down procedure is one approach to differentiate the most effective treatments

from the inferior ones. It is preferable to have a small number of potentially the best

treatments so that it is easier to target the best one. In other words, the procedure

is more efficient if it can detect and eliminate more inferior treatments. However, the

standard step-down procedure with constant thresholds is conservative. Although the

standard procedure controls familywise error rate for every possible setting, P (error)
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is far below α for most of the settings. It is difficult for the test procedure with

standard d2 to reject the treatments.

This chapter proposes a new methodology for comparing three treatment means.

The data conveys information about true parameter configuration and thus can be

used to alleviate the problem of conservativeness. The step-down procedure with

feedback uses the same threshold as the standard method in step one. But, the

approach utilizes the range of sample means to sharper the threshold in step two. d2

is no longer a constant but a concave function converging to the standard d2. The

value gets smaller as sample range gets shorter.

The d2(X̄(3)−X̄(1)) function controls P (error) ≤ α for the whole parameter space

as well as possesses higher power than the standard procedure. Moreover, it is easy

to apply the new approach. After solving the optimal solution for (a, b) in the

d2(X̄(3) − X̄(1)) function, it is simple to determine the value of d2.
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Figure 5.4: Power improvement for known variance case with d2(X̄(3) − X̄(1)) =
√

2 · z0.01/2

[
1− e

16.4−4.8
X̄(3)−X̄(1)

σ/
√

n

]
at α = 1%.
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Figure 5.5: Power improvement for known variance case with d2(X̄(3) − X̄(1)) =
√

2 · z0.05/2

[
1− e

17.1−5.9
X̄(3)−X̄(1)

σ/
√

n

]
at α = 5%.
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Figure 5.6: Power improvement for known variance case with d2(X̄(3) − X̄(1)) =
√

2 · z0.1/2

[
1− e

20.5−7.8
X̄(3)−X̄(1)

σ/
√

n

]
at α = 10%.
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CHAPTER VI

SENSITIVITY ANALYSIS

The restricted parameter space approach and the step-down procedure with feedback

are designed for comparing three treatment means in a balanced design. The method-

ologies are constructed under several assumptions including independency, normality,

and equal variances. The procedures assume that independent samples follow a Nor-

mal distribution with a mean µi, 1 ≤ i ≤ 3 and a common variance σ2. The following

chapter simulates different parameter settings to test the performance of the three

step-down procedures when the assumptions do not hold.

The simulation studies the known variance case at α = 5% for 100,000 times.

In each run, ten observations are generated from each group under a certain distri-

bution. Some of the assumptions are violated when generating data. For example,

one population follows a t distribution, observation are dependent, and the vari-

ances of three groups are not all the same. The ideal variance is set to 10 and

σ√
n

equals to 1. Also, the range of three treatment means is controlled at one

where δ =
µ(3)−µ(1)

σ/
√

n
= 1 after standardization. The first methodology uses standard

d2 =
√

2zα/2 = 2.772. The second methodology applies the restricted parameter space

approach with d2 = d2(δ = 1) = 1.914. The last one adopts the step-down procedure

with feedback which uses d2 =
√

2zα/2

[
1− e17.1−5.9(X̄(3)−X̄(1))

]
≤ 2.772. The values

of d3 are all q3, 0.05, ∞ = 3.314 for the three methods. The difference between sample
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means are then compared with the critical points to determine wether rejecting any

treatment based on the rules of each test procedure.

6.1 Simulation settings

Since each group is allotted a distribution with a certain mean value, it is well-

known that which treatments are the best ones. The best treatment refers to the

population with the largest µ among three treatments. Two numbers are recorded

during simulation: the frequency of rejecting any best treatment and eliminating any

inferior treatment. The ratios of the frequencies to the total number of runs are type

I error and power of test procedures. 95% confidence intervals are also provided.

Following are the eight settings with different types of relaxation. (1 ≤ j ≤ 10)

• Case I: Dependency within the group

Suppose that the assumption of independency is violated. The observations

from same treatment are dependent. The covariance matrix of ten samples

within one treatment is

Σ =




10 ρ

. . .

ρ 10




10×10

.

Setting 1:

X1j ∼ MV N(0, Σ), X2j ∼ MV N(0, Σ), X3j ∼ MV N(1, Σ), X1j, X2j, and X3j
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are independent between groups.

Setting 2:

X1j ∼ MV N(0, Σ), X2j ∼ MV N(1, Σ), X3j ∼ MV N(1, Σ), X1j, X2j, and X3j

are independent between groups.

• Case II: Unequal variances

Suppose that one or more populations have variances other than 10. The as-

sumption of equal variance does not hold.

Setting 3:

X1j ∼ N(0, 10), X2j ∼ N(0, 10), X3j ∼ N(1, var), Xij are all independent.

Setting 4:

X1j ∼ N(0, 10), X2j ∼ N(1, var), X3j ∼ N(1, var), Xij are all independent.

• Case III: Uniform distribution

The normality assumption is relaxed. Suppose that one population follows an

Uniform distribution with a mean equals to one and an unequal variance of 1
12

.

Setting 5:

X1j ∼ N(0, 10), X2j ∼ N(0, 10), X3j ∼ Unif(0, 2), Xij are all independent.

Setting 6:

X1j ∼ N(0, 10), X2j ∼ N(1, 10), X3j ∼ Unif(0, 2), Xij are all independent.

• Case IV: t distribution
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Suppose that one or two populations follow a
√

10tdf distribution with mean

equals to zero. For those groups do not meet the normality assumption, the

corresponding variances are not 10, either.

Setting 7:

X1j ∼ N(−1, 10), X2j ∼ N(−1, 10), X3j ∼
√

10 · tdf , Xij are all independent.

Setting 8:

X1j ∼ N(−1, 10), X2j ∼
√

10 · tdf , X3j ∼
√

10 · tdf , Xij are all independent.

6.2 Simulation results

The simulation results show that the restricted parameter space approach and the

step-down procedure with feedback have higher frequencies in both type I error and

power than the standard d2 method. The difference is due to applying a shorter

threshold in the second step of the step-down procedure. In general, the restricted

parameter space approach has greater power improvement than the step-down pro-

cedure with feedback in these eight settings. The reason is that the given range of

treatment means is relative tight so that d2(δ) is often shorter than d2(X̄(3) − X̄(1)).

If δ is greater than three, the restricted parameter space approach may not outper-

forms the step-down procedure with feedback. Although the step-down procedure

with feedback has less improvement in the simulation, the methodology can satisfy

P (error) ≤ α under more settings where the assumptions do not hold. The procedure

accommodates to stronger violation of the assumptions.
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The constraint of P (error) ≤ α holds for the settings with mild relaxation of the

assumptions. Especially, the configuration with uniquely the best treatment allows

a stronger magnitude of violation than the setting with two best treatments. The

phenomenon can be referred to the properties of P (error) that the error rate at

µ(1) ≤ µ(2) < µ(3) is lower than that at µ(1) < µ(2) = µ(3).

When the best treatment is unique, both new methods work if the correlation

between the samples within the group is less than or equal to one as shown in Table

6.1. If the most effective treatment has an unequal variance, follows an uniform dis-

tribution or t distribution in case 3, 5, and 7, the new approaches perform properly as

well. Familywise error rate are all smaller than 5% in Table 6.5, 6.9, and 6.13. On the

other hand, when the size of the best treatments is two, type I error rate is less than

8% if the existing correlation is less than 0.25 and 0.5 for d2(δ) and d2(X̄(3) − X̄(1))

procedures respectively. In case 4 when the variances of the best treatments are no

longer ten, the d2(δ) procedure can accept a variance less than 12 and a variance

smaller than 14 for the d2(X̄(3) − X̄(1)) procedure while having P (error) around 7%.

Case 8 relaxes the normality assumption and let the best treatments follow a
√

10 · tdf

distribution. When df is infinity,
√

10tdf is a N(0, 10) distribution. The d2(δ) pro-

cedure leads to an error rate around 6% when the degree of freedom shrinks to 18.

And the d2(X̄(3)− X̄(1)) procedure even gives an error rate smaller than 6% when the

degree of freedom diminishes to 9.
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6.3 Summary

In conclusion, the restricted parameter space approach and the step-down procedure

with feedback guarantees the error rate when the violation of the assumptions is

moderate. Especially, a more serious violation is acceptable when µ(1) ≤ µ(2) < µ(3)

which contains more parameter settings than µ(1) < µ(2) = µ(3). The new approaches

function appropriately for most of the configurations in the parameter space even

though the assumption do not exist. Moreover, the two procedures are more effective

in identifying and eliminating inferior treatments than the procedure with standard

d2.
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Table 6.1: Type I error with a 95% confidence interval for setting 1: X1j ∼
MV N(0, Σ), X2j ∼ MV N(0, Σ), X3j ∼ MV N(1, Σ).

standard d2 d2(δ) d2(X̄(3) − X̄(1))

ρ L center U L center U L center U

0 0.00270 0.00304 0.00338 0.00520 0.00567 0.00614 0.00276 0.00311 0.00346

0.25 0.00654 0.00706 0.00758 0.01132 0.01199 0.01266 0.00669 0.00721 0.00773

0.5 0.01289 0.01361 0.01433 0.02040 0.02129 0.02218 0.01311 0.01383 0.01455

1 0.02913 0.03019 0.03125 0.04200 0.04326 0.04452 0.02958 0.03065 0.03172

2 0.07164 0.07325 0.07486 0.09442 0.09625 0.09808 0.07228 0.07390 0.07552

Table 6.2: Power with a 95% confidence interval for setting 1: X1j ∼ MV N(0, Σ),
X2j ∼ MV N(0, Σ), X3j ∼ MV N(1, Σ).

standard d2 d2(δ) d2(X̄(3) − X̄(1))

ρ L center U L center U L center U

0 0.10002 0.10189 0.10376 0.10076 0.10264 0.10452 0.10007 0.10195 0.10383

0.25 0.14060 0.14277 0.14494 0.14190 0.14408 0.14626 0.14063 0.14280 0.14497

0.5 0.17660 0.17898 0.18136 0.17930 0.18169 0.18408 0.17669 0.17907 0.18145

1 0.24466 0.24733 0.25000 0.24990 0.25259 0.25528 0.24489 0.24757 0.25025

2 0.35051 0.35347 0.35643 0.36147 0.36445 0.36743 0.35082 0.35378 0.35674
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Table 6.3: Type I error with a 95% confidence interval for setting 2: X1j ∼
MV N(0, Σ), X2j ∼ MV N(1, Σ), X3j ∼ MV N(1, Σ).

standard d2 d2(δ) d2(X̄(3) − X̄(1))

ρ L center U L center U L center U

0 0.02714 0.02817 0.02920 0.04857 0.04992 0.05127 0.02793 0.02897 0.03001

0.25 0.04914 0.05050 0.05186 0.07649 0.07815 0.07981 0.05013 0.05150 0.05287

0.5 0.07444 0.07608 0.07772 0.10769 0.10963 0.11157 0.07553 0.07718 0.07883

1 0.12564 0.12771 0.12978 0.16637 0.16869 0.17101 0.12670 0.12878 0.13086

2 0.22352 0.22611 0.22870 0.27454 0.27731 0.28008 0.22468 0.22728 0.22988

Table 6.4: Power with a 95% confidence interval for setting 2: X1j ∼ MV N(0, Σ),
X2j ∼ MV N(1, Σ), X3j ∼ MV N(1, Σ).

standard d2 d2(δ) d2(X̄(3) − X̄(1))

ρ L center U L center U L center U

0 0.09062 0.09241 0.09420 0.09526 0.09710 0.09894 0.09089 0.09269 0.09449

0.25 0.12269 0.12474 0.12679 0.13017 0.13227 0.13437 0.12313 0.12518 0.12723

0.5 0.15300 0.15524 0.15748 0.16373 0.16604 0.16835 0.15362 0.15587 0.15812

1 0.20133 0.20383 0.20633 0.21803 0.22060 0.22317 0.20216 0.20466 0.20716

2 0.27657 0.27935 0.28213 0.30059 0.30344 0.30629 0.27753 0.28031 0.28309
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Table 6.5: Type I error with a 95% confidence interval for setting 3: X1j ∼
N(0, 10), X2j ∼ N(0, 10), X3j ∼ N(1, var).

standard d2 d2(δ) d2(X̄(3) − X̄(1))

var L center U L center U L center U

8 0.00163 0.00190 0.00217 0.00395 0.00436 0.00477 0.00173 0.00201 0.00229

9 0.00230 0.00262 0.00294 0.00482 0.00527 0.00572 0.00237 0.00269 0.00301

10 0.00270 0.00304 0.00338 0.00520 0.00567 0.00614 0.00276 0.00311 0.00346

11 0.00314 0.00351 0.00388 0.00565 0.00613 0.00661 0.00327 0.00364 0.00401

12 0.00382 0.00422 0.00462 0.00638 0.00689 0.00740 0.00392 0.00433 0.00474

14 0.00567 0.00615 0.00663 0.00809 0.00866 0.00923 0.00575 0.00624 0.00673

16 0.00757 0.00813 0.00869 0.01034 0.01099 0.01164 0.00770 0.00826 0.00882

18 0.00906 0.00967 0.01028 0.01168 0.01237 0.01306 0.00917 0.00978 0.01039

20 0.01176 0.01245 0.01314 0.01441 0.01517 0.01593 0.01186 0.01255 0.01324

Table 6.6: Power with a 95% confidence interval for setting 3: X1j ∼ N(0, 10),
X2j ∼ N(0, 10), X3j ∼ N(1, var).

standard d2 d2(δ) d2(X̄(3) − X̄(1))

var L center U L center U L center U

8 0.08688 0.08864 0.09040 0.08722 0.08898 0.09074 0.08691 0.08867 0.09043

9 0.09456 0.09639 0.09822 0.09497 0.09680 0.09863 0.09460 0.09643 0.09826

10 0.10002 0.10189 0.10376 0.10076 0.10264 0.10452 0.10007 0.10195 0.10383

11 0.10730 0.10923 0.11116 0.10806 0.11000 0.11194 0.10741 0.10934 0.11127

12 0.11142 0.11339 0.11536 0.11246 0.11443 0.11640 0.11151 0.11348 0.11545

14 0.12331 0.12536 0.12741 0.12465 0.12671 0.12877 0.12335 0.12540 0.12745

16 0.13456 0.13669 0.13882 0.13633 0.13847 0.14061 0.13462 0.13675 0.13888

18 0.14392 0.14611 0.14830 0.14640 0.14860 0.15080 0.14403 0.14622 0.14841

20 0.15158 0.15382 0.15606 0.15440 0.15665 0.15890 0.15169 0.15393 0.15617
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Table 6.7: Type I error with a 95% confidence interval for setting 4: X1j ∼
N(0, 10), X2j ∼ N(1, var), X3j ∼ N(1, var).

standard d2 d2(δ) d2(X̄(3) − X̄(1))

var L center U L center U L center U

8 0.01393 0.01468 0.01543 0.02989 0.03096 0.03203 0.01438 0.01514 0.01590

9 0.02077 0.02167 0.02257 0.03962 0.04085 0.04208 0.02159 0.02251 0.02343

10 0.02714 0.02817 0.02920 0.04857 0.04992 0.05127 0.02793 0.02897 0.03001

11 0.03626 0.03744 0.03862 0.05926 0.06074 0.06222 0.03706 0.03825 0.03944

12 0.04464 0.04594 0.04724 0.06954 0.07113 0.07272 0.04575 0.04706 0.04837

14 0.06310 0.06462 0.06614 0.09102 0.09282 0.09462 0.06413 0.06567 0.06721

16 0.08361 0.08534 0.08707 0.11595 0.11795 0.11995 0.08487 0.08661 0.08835

18 0.10277 0.10467 0.10657 0.13608 0.13822 0.14036 0.10384 0.10575 0.10766

20 0.11933 0.12135 0.12337 0.15494 0.15720 0.15946 0.12060 0.12263 0.12466

Table 6.8: Power with a 95% confidence interval for setting 4: X1j ∼ N(0, 10),
X2j ∼ N(1, var), X3j ∼ N(1, var).

standard d2 d2(δ) d2(X̄(3) − X̄(1))

var L center U L center U L center U

8 0.07303 0.07466 0.07629 0.07537 0.07702 0.07867 0.07326 0.07489 0.07652

9 0.08339 0.08512 0.08685 0.08678 0.08854 0.09030 0.08371 0.08544 0.08717

10 0.09062 0.09241 0.09420 0.09526 0.09710 0.09894 0.09089 0.09269 0.09449

11 0.09906 0.10093 0.10280 0.10516 0.10708 0.10900 0.09944 0.10131 0.10318

12 0.10786 0.10980 0.11174 0.11526 0.11725 0.11924 0.10842 0.11036 0.11230

14 0.12423 0.12629 0.12835 0.13498 0.13711 0.13924 0.12488 0.12694 0.12900

16 0.14260 0.14478 0.14696 0.15727 0.15954 0.16181 0.14338 0.14557 0.14776

18 0.15824 0.16052 0.16280 0.17548 0.17785 0.18022 0.15925 0.16153 0.16381

20 0.17196 0.17431 0.17666 0.19131 0.19376 0.19621 0.17293 0.17529 0.17765
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Table 6.9: Type I error with a 95% confidence interval for setting 5: X1j ∼
N(0, 10), X2j ∼ N(0, 10), X3j ∼ Unif(0, 2).

standard d2 d2(δ) d2(X̄(3) − X̄(1))

L center U L center U L center U

0.00004 0.00011 0.00018 0.00160 0.00187 0.00214 0.00005 0.00012 0.00019

Table 6.10: Power with a 95% confidence interval for setting 5: X1j ∼ N(0, 10),
X2j ∼ N(0, 10), X3j ∼ Unif(0, 2).

standard d2 d2(δ) d2(X̄(3) − X̄(1))

L center U L center U L center U

0.03525 0.03641 0.03757 0.03525 0.03641 0.03757 0.03525 0.03641 0.03757

Table 6.11: Type I error with a 95% confidence interval for setting 6: X1j ∼
N(0, 10), X2j ∼ N(1, 10), X3j ∼ Unif(0, 2).

standard d2 d2(δ) d2(X̄(3) − X̄(1))

L center U L center U L center U

0.00363 0.00402 0.00441 0.01543 0.01621 0.01699 0.00374 0.00414 0.00454

Table 6.12: Power with a 95% confidence interval for setting 6: X1j ∼ N(0, 10),
X2j ∼ N(1, 10), X3j ∼ Unif(0, 2).

standard d2 d2(δ) d2(X̄(3) − X̄(1))

L center U L center U L center U

0.05510 0.05653 0.05796 0.05521 0.05664 0.05807 0.05510 0.05653 0.05796
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Table 6.13: Type I error with a 95% confidence interval for setting 7: X1j ∼
N(−1, 10), X2j ∼ N(−1, 10), X3j ∼

√
10 · tdf .

standard d2 d2(δ) d2(X̄(3) − X̄(1))

df L center U L center U L center U

6 0.00673 0.00726 0.00779 0.00963 0.01025 0.01087 0.00682 0.00735 0.00788

9 0.00498 0.00544 0.00590 0.00771 0.00827 0.00883 0.00505 0.00551 0.00597

18 0.00333 0.00371 0.00409 0.00606 0.00656 0.00706 0.00344 0.00382 0.00420

27 0.00329 0.00366 0.00403 0.00613 0.00663 0.00713 0.00344 0.00382 0.00420

36 0.00311 0.00347 0.00383 0.00563 0.00611 0.00659 0.00321 0.00358 0.00395

45 0.00298 0.00334 0.00370 0.00535 0.00582 0.00629 0.00306 0.00342 0.00378

90 0.00285 0.00320 0.00355 0.00519 0.00565 0.00611 0.00289 0.00324 0.00359

180 0.00280 0.00315 0.00350 0.00553 0.00601 0.00649 0.00291 0.00326 0.00361

300 0.00262 0.00296 0.00330 0.00521 0.00568 0.00615 0.00270 0.00304 0.00338

Table 6.14: Power with a 95% confidence interval for setting 7: X1j ∼ N(−1, 10),
X2j ∼ N(−1, 10), X3j ∼

√
10 · tdf .

standard d2 d2(δ) d2(X̄(3) − X̄(1))

df L center U L center U L center U

6 0.12795 0.13003 0.13211 0.12965 0.13175 0.13385 0.12803 0.13012 0.13221

9 0.11869 0.12071 0.12273 0.11971 0.12174 0.12377 0.11874 0.12076 0.12278

18 0.10735 0.10928 0.11121 0.10808 0.11002 0.11196 0.10736 0.10929 0.11122

27 0.10470 0.10661 0.10852 0.10530 0.10722 0.10914 0.10474 0.10665 0.10856

36 0.10483 0.10674 0.10865 0.10553 0.10745 0.10937 0.10488 0.10679 0.10870

45 0.10157 0.10346 0.10535 0.10228 0.10417 0.10606 0.10164 0.10353 0.10542

90 0.10152 0.10341 0.10530 0.10225 0.10414 0.10603 0.10158 0.10347 0.10536

180 0.09951 0.10138 0.10325 0.10026 0.10214 0.10402 0.09956 0.10143 0.10330

300 0.10243 0.10432 0.10621 0.10312 0.10502 0.10692 0.10247 0.10436 0.10625
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Table 6.15: Type I error with a 95% confidence interval for setting 8: X1j ∼
N(−1, 10), X2j ∼

√
10 · tdf , X3j ∼

√
10 · tdf .

standard d2 d2(δ) d2(X̄(3) − X̄(1))

df L center U L center U L center U

6 0.07123 0.07284 0.07445 0.10078 0.10266 0.10454 0.07226 0.07388 0.07550

9 0.05287 0.05427 0.05567 0.07995 0.08165 0.08335 0.05387 0.05529 0.05671

18 0.03877 0.03998 0.04119 0.06258 0.06410 0.06562 0.03980 0.04103 0.04226

27 0.03487 0.03602 0.03717 0.05787 0.05933 0.06079 0.03576 0.03693 0.03810

36 0.03204 0.03315 0.03426 0.05426 0.05568 0.05710 0.03283 0.03395 0.03507

45 0.03114 0.03223 0.03332 0.05270 0.05410 0.05550 0.03187 0.03298 0.03409

90 0.02934 0.03040 0.03146 0.05004 0.05141 0.05278 0.03014 0.03122 0.03230

180 0.02797 0.02901 0.03005 0.04991 0.05128 0.05265 0.02885 0.02991 0.03097

300 0.02856 0.02961 0.03066 0.04935 0.05071 0.05207 0.02921 0.03027 0.03133

Table 6.16: Power with a 95% confidence interval for setting 8: X1j ∼ N(−1, 10),
X2j ∼

√
10 · tdf , X3j ∼

√
10 · tdf .

standard d2 d2(δ) d2(X̄(3) − X̄(1))

df L center U L center U L center U

6 0.13167 0.13378 0.13589 0.14359 0.14578 0.14797 0.13235 0.13446 0.13657

9 0.11627 0.11827 0.12027 0.12493 0.12699 0.12905 0.11677 0.11878 0.12079

18 0.10041 0.10229 0.10417 0.10660 0.10853 0.11046 0.10110 0.10298 0.10486

27 0.09805 0.09991 0.10177 0.10387 0.10578 0.10769 0.09852 0.10038 0.10224

36 0.09535 0.09719 0.09903 0.10065 0.10253 0.10441 0.09578 0.09762 0.09946

45 0.09463 0.09646 0.09829 0.10003 0.10191 0.10379 0.09513 0.09696 0.09879

90 0.09173 0.09353 0.09533 0.09666 0.09851 0.10036 0.09215 0.09396 0.09577

180 0.09174 0.09354 0.09534 0.09661 0.09846 0.10031 0.09204 0.09385 0.09566

300 0.09213 0.09394 0.09575 0.09685 0.09870 0.10055 0.09247 0.09428 0.09609
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CHAPTER VII

CONTRIBUTIONS AND FUTURE RESEARCH

DIRECTIONS

7.1 Contributions of the research

This research proposes two types of step-down procedures with inconstant thresholds

to solve the problem of discriminating three treatments. The new test procedures

employ sharper functions for d2 to enhance the chance of eliminating the less effective

treatments. The approaches can pick out a smaller subset of potentially the best

treatments than the procedure with constant thresholds.

The properties of P (error) are studied before introducing the new methodologies.

The proofs and the numerical results carried out in chapter 3 suggest that the setting

with two best treatments significantly determines the value of d2. Future study of

step-down procedure in the field of subset selection can concentrate on controlling

the error rate at the configuration of µ(1) ≤ µ(2) = µ(3).

There are several ways to formulate the probability of rejecting any best treatment.

The novelty of constructing P (error) in the manner presented in this thesis is that the

formulation uses as few integrals as possible. Especially, Pµ(1) ≤ µ(2) = µ(3)(error)

involves single integration in the restricted parameter space approach when the vari-

ance is known. The less integration is required, the faster the calculation is. The

equations formed in this research are sophisticated and easier to calculated.

112



7.2 Future research directions

This section outlines a number of potential areas which can be extended from the

research started in the thesis.

• Study k > 3 case.

• Apply different functions to d2(X̄(3) − X̄(1)) in the step-down procedure with

feedback.

• Define an error decision or the power of a test procedure in a different way.

• Study subset selection procedures for the other types of data.

• Combine two methods.

The formulation of the d2 functions in the thesis are designed for comparing three

treatment means. The concept of constructing shorter thresholds for the step-down

procedure, however, can expand to multiple treatments. In a case with a large group

number, the formulation of P (error) becomes significantly complicated. Since an

error decision involves more scenarios, it requires multiple integration to describe

the error rate. The procedures presented in the thesis may not improve the power by

much when k > 3. Researchers might need to access the problem with high dimension

from a different point of view.

The step-down procedure with feedback applies an exponential function to d2(X̄(3)−

X̄(1)). The features of the function include having smaller values as the range of ob-

servation means gets shorter and converging to the constant d2 as the range goes to
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infinity. There are numerous functions possessing the same characteristics. One fu-

ture direction is to search for other functions of d2(X̄(3)− X̄(1)) which provide greater

improvement in power.

Type I error and the power of a test procedure can be defined in various ways

based on goals or the fields of interest. For example, experimenters may focus on

controlling the probability of accepting any inferior treatment and maximizing the

probability of identifying all of the best treatments. Although it is also a subset

selection problem, the set up is completely different. The subset selection problems

with varied goals can share the same idea of modifying the constant thresholds in the

step-down procedure.

This research studies continuous data. The unknown parameter of interest is the

mean of treatment. In some applications, the response may be binary or categorical

data, i.e. the patients with cancer live or die. It is also an interesting topic to

investigate subset selection procedure in different domain.

Last, it is possible to combine the advantages of the restricted parameter space

approach with the step-down procedure with feedback. In such way, power of a test

can be improved more significantly by applying inconstant threshold under a bounded

parameter subspace.
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