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SUMMARY

In this work, I investigate the geometry of eigenfields of the curl operator

in relation to contact topology, in dimension three. The initial observation, which

has driven the rest of this study, was the fact that, under certain assumptions on

the Riemannian metric, dividing curves become the zero set of an eigenfunction of

the scalar Laplacian on a surface, i.e. the nodal set of an eigenfunction. In the

context of Giroux’s Theorem, which states how the dividing set controls the isotopy

class of a contact structure, I prove that any closed orientable Riemannian surface

admits a single contractible nodal curve. This result bears analogies to a conjecture

stated by Payne in the setting of the Dirichlet problem. Further, it naturally leads

to the proof of existence of an energy minimizing curl eigenfield which is orthogonal

to an overtwisted contact structure - a fact conjectured to be false by J. Etnyre and

R. Ghrist in their work on the hydrodynamics of contact structures. These results

pave a way for further development. Using techniques developed by K. Uhlenbeck,

J. Takahashi, and C. Anne, I prove that, for the first eigenfunction on a closed

surface, all configurations of curves which divide the surface are nodal curves with

respect to some Riemannian metric. Another question I address is whether we can

characterize properties of metrics arising from tight or overtwisted contact structures.

Extending the initial observation, I show a relation between characteristic surfaces of

contact structures and zero sets of solutions to certain subelliptic PDEs. This relation

makes it possible to derive, under a symmetry assumption, necessary and sufficient

conditions for tightness of contact structures arising from a certain class of invariant

curl eigenfields.

ix



CHAPTER I

INTRODUCTION

There is an interesting connection between curl eigenfields and contact topology in

dimension 3. This thesis is inspired by this connection and various unanswered ques-

tions which surround it. In the following paragraphs, I describe the connection and

sketch ideas presented in this work.

From the perspective of functional analysis one studies the following equation on

a Riemannian 3-manifold (M3, g):

∗ dα = µα, α ∈ Ω1(M), µ ∈ C∞(M), (1)

where α = g(u, · ) is a 1-form dual to a vector field u which may be thought of as a

velocity field of an inviscid, incompressible fluid on M , [5]. When µ = const we are

clearly looking at eigenfields of the ∗ d operator. Because the ∗ d operator generalizes

the classical curl operator ∇× on R3, its eigenfields are known as curl eigenfields.

When µ is not a constant function we refer to these solutions as Beltrami fields.

Beltrami fields constitute an important class of time-independent steady Euler

flows, i.e. inviscid, incompressible fluid flows u(t, · ) obeying the Euler equation:

ut +∇uu = −∇p, div(u) = 0, u(0, ·) = u0, p ∈ C∞(R×M). (2)

In fact one may argue that for a sufficiently complicated topology of the fluid domain

M , this class of solutions is the only class of steady Euler flows which exist on M .

There is a natural variational problem associated to the Euler equation (2), and

solutions to (1) are stationary points of the variational problem. Specifically, they
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extremize the kinetic energy of the fluid (i.e. the L2-energy),

E(α) =

∫
M

α ∧ ∗α, (3)

on Ψα = {β : β = ϕ∗(α), ϕ ∈ Diff0(M), ϕ∗(∗1) = ∗1}.

Energy relaxation and the topology of minimizers is of particular interest in ideal

magnetohydrodynamics (MHD). In MHD one encounters a variational problem for

plasmas and magnetic fields that is analogous to (3) (c.f. [5]). In this setting the

role of u, α = g(u, · ), is played by the magnetic field B, which is “frozen in” the

fluid of infinite conductivity filling a star M , i.e. is transported by the velocity field

of the plasma. The MHD equations indicate that during the evolution of the star,

the kinetic energy E(u) dissipates and the particle motion is ceased. Consequently,

the “frozen in” magnetic field reaches a terminal position, and its energy E(B) a

minimum (c.f. [5]).

Classical examples of minimizers in the realm of closed 3-manifolds are Hopf fields

on S3, and so called ABC-fields on the flat 3-torus T 3 ∼= S1 × S1 × S1, [5], defined

by the equations

ẋ = A sin(z) + C cos(x), (4)

ẏ = B sin(y) + A cos(z),

ż = C sin(x) +B cos(y).

Connection of curl eigenfields to the world of contact topology comes from the

following simple observation: if, in (1), the 1-form α = g(u, · ) is nonsingular, i.e.

α 6= 0 on M , one obtains

α ∧ dα = µ‖α‖2 ∗ 1 6= 0.

This equation implies that the subbundle ξ = kerα of the tangent bundle TM , i.e.

the orthogonal plane distribution to the velocity field u, is an anti-foliation. Con-

sequently, by definition, the subbundle ξ is a contact structure, i.e a nowhere
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integrable plane distribution on the manifold M . Contact structures have been an

object of intensive study for topologists in recent years, [25, 27, 32, 24]. More specif-

ically the question of the isotopy classification of these structures, in dimension 3,

has been subjected to intensive scrutiny. Bennequin and Eliashberg [11], [25], have

observed a dichotomy in the isotopy classes, namely two different classes of contact

structures: overtwisted and tight. Eliashberg showed that the isotopy classification of

overtwisted contact structures is equivalent to the classification by homotopy among

plane distributions. In the case of tight contact structures the classification remains

an unsolved problem.

The correspondence of nonsingular curl eigenfields to contact plane distributions

raises interesting questions concerning the interplay between fluid dynamical proper-

ties of curl eigenfields and topological properties of contact structures. Specifically,

one can investigate how the topological tight/overtwisted dichotomy relates to phys-

ical properties of a fluid such as helicity, energy minimization, periodic orbits, etc.

These kind of questions where were first posed and investigated by Etnyre and Ghrist

in series of papers: [29, 28, 37, 30]. Using the powerful tool of contact homology,

introduced by Eliashberg, Givental, Hofer (c.f. [24]), they proved various theorems

about existence of periodic orbits in the fluid flow defined by a nonsingular curl eigen-

field. Recently, the same technique led them to a proof of generic instability of curl

eigenfields [31].

Etnyre and Ghrist posed various questions and conjectures about the contact

topology of curl eigenfields. One of the conjectures concerns the topology of mini-

mizers for the variational principle (3). From [28], p. 17:

It is very challenging to prove theorems about which smooth fields min-

imize the energy functional. It follows from remarks in Arnold [5] that

the Reeb field1 associated to the standard tight contact form on S3, as

1i.e. the Hopf field on S3
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well as the ABC flows, each minimize energy. It thus follows that every

known example of a smooth energy-minimizing field is the Reeb field for a

tight contact structure. This leads to the conjecture that one can always

reduce the energy of a Beltrami field associated to an overtwisted con-

tact structure by a volume-preserving diffeomorphism: i.e., the minimal

energy representative can only be smooth in the case of a tight fluid.

In Chapter 4 of this thesis, I show that this conjecture is false in full generality.

I also identify sufficient conditions involving the topology of the manifold and the

Riemannian metric, and prove the conjecture in these circumstances. An essential

ingredient of the proof, the observation which motivated many of the ideas presented

in this thesis, is that dividing curves, which appear in the convex decomposition theory

of Honda, Kazez and Matić [48], become nodal sets of eigenfunctions of the Laplacian

in a suitable Riemannian metric. Extending the initial observation in Chapter 3, I

show a relation between characteristic surfaces of contact structures and zero sets of

solutions to certain subelliptic PDEs. These observations lead into several natural

questions, each of individual interest.

Problem 1.0.1. What is the topology of nodal sets of eigenfunctions of the Laplacian,

and how is it controlled by the geometry of the Riemannian metric? Similarly, what

can we conclude about nodal sets of solutions to certain elliptic and subelliptic PDEs?

Problem 1.0.2. What relation exists between the geometric properties of nonsingular

curl eigenfields and the geometry of underlying Riemannian metrics, and topological

features of tightness/overtwistedness?

Problem 1.0.3. Is there any relation between tightness / overtwistedness and the

variational principle (3)? Is there a special mechanism of energy relaxation for

tight / overtwisted curl eigenfields?
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In this thesis, I address each of the above problems, and present several answers in

specific situations. The approach presented in this thesis differs from that of Etnyre

and Ghrist since I focus primarily on the geometry of the underlying Riemannian

metric. I expect that further research on Riemannian geometric aspects of contact

structures will provide more general answers. Each subsequent chapter of this thesis

addresses one of the above problems. Parts of Chapter 2 and Chapter 4 resulted in

two publications: [52], [38].

Chapter 2 is devoted to Problem 1.0.1 in the setting of an eigen-equation for the

scalar Laplacian on a Riemannian surface. I show that one may prescribe arbitrary

configurations for nodal curves of the first eigenfunction. I also prove that certain

constraints on the scalar curvature and eigenvalues of the surface force nodal curves

to be homotopically essential. These results are related to questions asked by Schoen

and Yau in [63].

Chapter 3 is devoted to Problem 1.0.2. I investigate adapted metrics to contact

structures and their relation to the topology of contact structures. In Chapter 3

I show the relation between characteristic surfaces of contact structures and zero

sets of solutions to certain subelliptic PDEs, then I show necessary and sufficient

conditions which force tightness of a certain class of invariant curl eigenfields. The

only previously known result pertaining to Problem 1.0.2 is in the special case of

K-contact structures (c.f. [10]). In particular Belgun shows that all K-contact

structures are tight. The ideas presented in [10], as well as conclusions of Chapter 1,

are important ingredients in the main theorem of Chapter 3.

In Chapter 4 we present our construction of an overtwisted energy minimizer and,

therefore a negative answer to the question of Etnyre and Ghrist. I also indicate

examples of tight curl eigenfields minimizing the energy (3), which may be of some

importance for further investigation of Problem 1.0.3.
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CHAPTER II

ON THE TOPOLOGY OF NODAL SETS

If we think of a given Riemannian surface (Σ, gΣ) as a vibrating membrane with

u(x, t), x ∈ Σ, the displacement u of the membrane from the original position at time

t, u is a solution to the wave equation

∂ttu = ∆Σu. (5)

For a separable solution, i.e. u(t,x) = v(t)w(x), we obtain an equivalent system of

equations ∂ttv = λv and ∆Σw = λw, (λ ∈ R). Therefore, the “stagnation points” on

the membrane are exactly zeros of the eigenfunction w. This zero set, Ξ(w) := {x ∈

Σ : w(x) = 0}, is called the nodal set and forms interesting patterns, as originally

studied by E. Chladni in the 18th century.

The goal of this chapter is to prove a variety of results regarding topology and

geometry of nodal sets in dimension 2. We pursue questions in the spirit of an open

problem #45, stated by Schoen and Yau in [63], p. 384:

Melas ([55]), recently proved that the nodal line of any second eigenfunc-

tion cannot enclose a compact subregion of a bounded convex domain. Is

there a similar conclusion for higher dimensional euclidean space? To what

extend do these conclusions hold for compact manifolds with boundary?

What is the topology of nodal sets of higher eigenvalues? For example,

can one find an infinite sequence of eigenfunctions, which domains are

disjoint union of cells?

We focus mostly on the case of generic metric on 2-dimensional manifolds, where the

nodal set is a union of embedded circles. Our main technical result is the Gluing
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Theorem 2.3.1, which says that given a fixed surface with the “prescribed” nodal

curves one may form a connected sum by gluing a finite number of surfaces, and

produce a metric on it with a nodal set isotopic to the original one. As a consequence

of Gluing Theorem, we prove a version of Payne’s conjecture for closed orientable

surfaces, namely we prove that one may always construct a generic metric on any

orientable surface such that the nodal set of the λ1-eigenfunction is a circle bounding

a disc. We have an independent interest in this problem due to connections with

contact topological properties of eigenfields of curl eigenfields.

2.1 Outline and terminology

Here, all manifolds, unless stated otherwise, are equipped with a Riemannian met-

ric, and are compact smooth and orientable with or without boundary. Throughout

the article Cj(M) stands for the set of j-differentiable functions on M , with j = ∞

smooth. Spaces L2(M), Hj(M) are customary, square integrable real functions, and

the Sobolev space of real valued functions with at least j bounded weak deriva-

tives. The space Ωk(M) = C∞(ΛkM) is a set of smooth real valued k-differential

forms on M making Ω∗(M) =
⊕n

k=0 Ωk(M) a graded C∞(M) module over R, where

n = dim(M). Here we denote by L2(ΛkM) and Hj(ΛkM), respectively, the square

integrable, and the Sobolev spaces of k-differential forms, where the measure is in-

duced from the Riemannian metric. The Riemannian metric also induces an L2-

isometry: ∗ : Ωk(M) → Ωn−k(M), namely the Hodge star operator. Conse-

quently, we obtain de Rham graded complexes (Ω∗(M), d) and (Ω∗(M), δ), where

d ≡ dk : Ωk(M) → Ωk+1(M) is an exterior derivative (also called a differential),

and δ ≡ δk : Ωk+1(M) → Ωk(M) an adjoint of d (also called a co-differential)

given in terms of the Hodge star by δk = (−1)nk+1 ∗ dn−k∗ or equivalently as a formal

adjoint of d,

(dkω, η)L2(Λk+1M) = (ω, δkη)L2(ΛkM), ω ∈ Ωk(M), η ∈ Ωk+1(M).

7



Most of the time we skip the superscripts in the notation for differentials and co-

differentials and simply write d and δ. The Laplacian on k-forms is defined by ∆ =

δ d + d δ, which in the case of functions reduces to ∆ = δ d (for further reference

consult [61] or [7]). We also introduce the following notation for nodal sets. Let

Ξ(M, f) = {x ∈ M : f(x) = 0} stand for the zero set of the function f . In the case

f = fk, where fk is a kth-eigenfunction of ∆M , we write Ξ(M,k) := Ξ(M, fk). Here,

the term eigenfunction refers to an eigenfunction of the scalar Laplacian, unless

specified otherwise.

In the first section of this chapter we state several fundamental results concerning

eigenvalues and topology of nodal domains. Section 2.3 is devoted to our main tech-

nical theorem, which we call the Gluing Theorem. As a consequence of this theorem

we show, in Sections 2.4, 2.5, that all possible configurations of nodal curves for λ1-

eigenfunction may be archived on a surface of an arbitrary genus equipped with an

appropriate generic metric.

2.2 Eigenvalues and Nodal sets

The Laplace-Beltrami operator (or simply the Laplacian ∆M = δ d) is a positive

formally self-adjoint operator on any closed orientable Riemannian manifold (M, g).

By the standard spectral theory of formally self-adjoint operators, the L2-spectrum

of ∆M is real and countable,

0 = λ0(M) < λ1(M) ≤ λ2(M) ≤ · · · ≤ λk(M) ≤ · · · → ∞, (6)

and one can choose an orthonormal basis of eigenvectors {fi}i∈N∪{0}, ‖fk‖L2(M) = 1

in L2(M), smooth by regularity, c.f. [33], and satisfying (for λ = λj(M)) ∆Mu = λu,

u �∂M= 0 .
(7)

In case when the membrane M is a closed surface we drop the boundary condition

and refer to the problem (7) as the free membrane problem. For surfaces with
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a boundary, and Dirichlet boundary conditions in (7), we refer to the problem as the

fixed membrane problem (see [20]).

Given a nodal set Ξ(M,k) of a k-th eigenfunction, we refer to regions in M \

Ξ(M,k) as nodal domains. One of the fundamental results is the Courant’s nodal

domain theorem.

Theorem 2.2.1 (Courant’s nodal domain theorem). For the fixed membrane problem,

the number of nodal domains of the i-th eigenvalue λi is not greater then i. For the

free membrane problem the number of nodal domains of the i-th eigenvalue λi is not

greater then i+ 1.

Since
∫
fk = 0 we conclude that Ξ(M,k) is never empty and obtain the following:

Corollary 2.2.2. In case of the fixed membrane problem a λ2-eigenfunction has ex-

actly two nodal domains, for the free membrane problem, λ1-eigenfunction has exactly

two nodal domains.

First, we review Rayleigh’s variational principle for eigenvalues. Let B : H1(M)×

H1(M) → R be the bilinear form associated to the Laplacian ∆M1 . Recall that for

smooth functions u and w

B(u,w) = (∆Mu,w)L2(M) = (δ d u, w)L2(M) = (d u, dw)L2(Λ1M). (8)

The last equality extends the definition of B to H1(M).

Theorem 2.2.3 (Rayleigh’s Theorem). Let {fk} be a complete orhonormal basis of

L2(M) of eigenfunctions, then for u ∈ H1(M) satisfying

(u, f1)L2 = (u, f2)L2 = . . . = (u, fk−1)L2 = 0, (9)

i.e. u ∈ span(f1, . . . , fk−1)
⊥, u ∈ H1(M), we have the Rayleigh’s quotient:

λk(M) ≤ B(u, u)

‖u‖L2

, (10)

with equality iff u is a λk-eigenfunction.

9



Proof. For any u ∈ H1(M) let

αj = (u, fj)L2

By (9): α1 = . . . = αk−1 = 0, let r > k − 1, we obtain

0 ≤ B

[
u−

r∑
j=k

αj fj , u−
r∑

j=k

αj fj

]

= B[u, u]− 2
r∑

j=k

αj B[u, fj] +
r∑

j,l=k

αjαl B[fj, fl]

= B[u, u]− 2
r∑

j=k

αj(u,∆fj)L2 +
r∑

j, l=k

αjαl (fj,∆fl)L2

= B[u, u]−
r∑

j=k

λj α
2
j ,

Since the above equality holds for any r > 0, we obtain

B[u, u] ≥
∞∑

j=k

λj α
2
j ≥ λk

∞∑
j=k

α2
j = λk‖u‖L2

where the last inequality holds due to (6) and Parseval’s identity.

Theorem 2.2.4 (Max-Min Principle [19]). (1) Given φ1, . . . , φk−1 ∈ L2(M), let

µ = inf
u

B(u, u)

‖u‖L2

, u ∈ span(φ1, . . . , φk−1)
⊥, u ∈ H1(M).

Then for eigenvalues in (6), we have

µ ≤ λk(M),

and we have equality iff each φi is a λi-eigenfunction.

(2) Similarly if {φ1 . . . φk} span k-dimensional subspace and

µ = sup
u

B(u, u)

‖u‖L2

, u ∈ span(φ1, . . . , φk) ⊂ H1(M).

Then for eigenvalues in (6), we have

λk(M) ≤ µ

10



Proof. Notice that one may choose a function f in the form,

u =
k∑

j=1

αjfj (11)

i.e. a linear combination of λj-eigenfunctions fj, j = 1, . . . k − 1, which is orthogonal

to span(φ1, . . . , φk−1). Indeed it is equivalent to solving a system of k − 1 equations:

(u, φn)L2 =
∑k

j=1 αj(fj, φn) = 0 for k unknowns: αj. We obtain then,

µ‖u‖2 ≤ B[u, u] =
k∑

j=1

λjα
2
j ≤ λk‖u‖2,

which implies the claim. Analogously we show (2), simply one shows that there exist

u =
∑

i βiφi, which belongs to span(φ1, . . . , φk)⊥.

Proof of Courant’s Theorem 2.2.1. assume by contradiction that

Ω1, . . . ,Ωk,Ωk+1, . . . ,Ωr are nodal domains of a λk-eigenfunction fk. For each j =

1, . . . , k we define

φj =

 fk|Ωj
, on Ωj;

0, on M̄ \ Ωj.
(12)

By (1) in the Min-Max Theorem 2.2.4 there is a function u in the form given by (11),

orthogonal to span(φ1, . . . , φk−1), one verifies that u ∈ H1(M). Then by Theorem

2.2.3, and 2.2.4 we obtain

λk ≤
B(u, u)

‖u‖L2

≤ λk,

and therefore u is a λk-eigenfunction of ∆, vanishing identically on Ωk+1, which

contradicts the maximum principle [33].

As the corollary one derives

Theorem 2.2.5 (Domain of monotonicity of eigenvalues [19]). Let Ω1, . . . ,Ωm, be

pairwise disjoint regular domains in M whose boundaries intersect ∂M transversally.

11



We arrange all first eigenvalues (from (7)) of Ω1, . . . ,Ωm in the increasing order:

0 ≤ µ1 ≤ µ2 ≤ . . . µm

then for all k = 1, . . .m we have

λk ≤ µk.

For an arbitrary smooth Riemannian surface (Σ, gΣ) nodal sets have been charac-

terized, in [20], by S. Cheng, where it is proved that the nodal set is a collection of

C2-immersed closed curves in Σ.

Theorem 2.2.6 (Cheng [20], p. 49). Suppose Σ is a 2-dimensional manifold, then

for any solution of the equation (∆Σ + h)f = 0, h ∈ C∞(Σ), the following are true:

(1) The critical points in nodal curves are isolated.

(2) When the nodal curves meet, they form an equiangular system.

(3) The nodal curves consist of a number of C2-immersed one-dimensional closed

submanifolds. Therefore, when Σ is compact they are number of C2-immersed circles.

For a generic metric K. Uhlenbeck showed, in [66], that these curves are embedded

circles with no critical points. Let (M, g0) be a Riemannian manifold with a fixed

Ck-metric g0, and let Mk be a set of metrics which differ from g0 on some open subset

U ⊂M , namely

Mg0,k = {g ∈ Ck(M,TM ⊗ TM) : g is a metric tensor, (g0 − g) �M\U= 0}. (13)

We call Mg0,k the set of perturbations of g0.

Theorem 2.2.7 (Uhlenbeck [66], p. 1076). Let ∆g be the Laplace operator on (Mn, g)

for a metric g ∈ Mg0,k. Then for k > n+3, the subset of metrics for which ∆g satisfies

properties (1)-(3), stated below, for non-constant eigenfunctions is residual in Mk.

(1) ∆g has 1-dimensional eigenspaces.

12



(2) Zero is not a critical value of the eigenfunction restricted to the interior of the

domain of the operator.

(3) The eigenfunctions are Morse functions on the interior of the domain of the

operator.

In the following sections we apply the term generic metric to a metric which

belongs to the residual set of metrics satisfying properties (1) - (3). Recall that a

subset A ⊂ X is residual in X iff it is a countable intersection of open dense subsets

of X.

2.3 The Gluing Theorem

In this section I outline the proof of the following;

Theorem 2.3.1 (Gluing Theorem). Let (Σ0, g0) be a closed Riemannian surface and

g0 be a smooth generic metric. Let fk be λk(Σ)-eigenfunction on Σ0 with exactly

k+1 nodal domains. Choose m points: {x1, x2, . . . , xm} ⊂ Σ0 \Ξ(Σ, fk), and form an

arbitrary connected sum: Σ̃ = Σ0#Σ1# . . .#Σm, by attaching m-surfaces: Σ1, . . . ,Σm

called handles, along small geodesic discs Di ⊂ Σ0 around points {xi}.

There exists a generic metric g̃ on Σ̃ such that g �Σ\∪iDi
= g̃ �

eΣ\∪iDi
and for which

the nodal set Ξ(Σ̃, f̃k), of the k-th eigenfunction f̃k is isotopic to Ξ(Σ0, fk) in Σ0.

The technique of the proof is based on the work of J. Takahashi, [65], about

collapsing connected sums of surfaces, which is in turn based on work of C. Anné,

[4]. The main idea of the proof is to start with a nodal set of k’th eigenfunction on

the surface Σ0, and “implant” m, ε-small handles {Σi} of a given genus, forming a

connected sum Σ̃ = Σ0#Σ1# . . .#Σm. Letting ε → 0, i.e. collapsing the handles to

centers of attaching discs we show that the nodal set Ξ(Σ̃, k) converges to the nodal

set Ξ(Σ0, k).

First, observe the following elementary construction: If we choose an embedded

contractible 2-disc D2 in an orientable surface Σ0 and define Σ′
0
∼= Σ0 \ Int(D2),

13



M2(ε)ε

Ξ(M1)

Ξ(Mε)

M1(ε)

x0

Dx0(ε)

Figure 1: For small ε, nodal sets Ξ(Mε) and Ξ(M1) have to be “close” in Mε =
(M1(ε) ∪Φε M2(1), g̃ε).

then we repeat this procedure for another orientable surface Σ1 and define Σ′
1
∼=

Σ1 \ Int(D2). For an an orientation reversing diffeomorphism Φ : ∂Σ′
0 → ∂Σ′

1 of the

boundaries ∂Σ′
0, Σ′

1 we form a topological manifold ΣΦ = Σ′
0∪Φ Σ′

1, by gluing surfaces

Σ′
0, Σ′

1 along Φ (c.f. [35]). Since ΣΦ is homeomorphic to the connected sum Σ0#Σ1

we can make ΣΦ into a smooth manifold by pulling back the differential structure

from Σ0#Σ1 so that orientations of Σ′
0 and Σ′

1 induce the orientation of ΣΦ. All ΣΦ

obtained this way are diffeomorphic. If we equip Σ′
0 and Σ′

1 with smooth Riemannian

metrics g′0 and g′1 we can define a piecewise smooth metric g on ΣΦ as follows

g̃ =


g′0 on Σ′

0,

g′1 on Σ′
1.

Now, g̃ is continuous on ΣΦ if the gluing map Φ is an isometry of the boundaries ∂Σ′
0,

∂Σ′
1. In the case Φ admits an extension to the smooth isometry of tubular neigh-

borhoods of boundaries ∂Σ′
i, i = 0, 1, the metric g̃ is smooth as well. Clearly these

14



considerations extend to an arbitrary finite connected sum: Σ̃ = Σ0#Σ1# . . .#Σm.

Now, we indicate an explicit case of the above construction, suitable for the proof

of Theorem 2.3.1. For simplicity assume m = 1 (see Figure 1).

Let M1 = (Σ0, g0) be a an orientable surface equipped with a generic metric g0.

Consider a nodal set Ξ(M1, k) of a k-th eigenfunction fk on M1, and let x0 /∈ Ξ(M1, k).

Let D2
x0

(ε) ⊂ Ux0 be a geodesic disc around x0 of radius ε� d, smaller than a geodesic

distance d between x0 and Ξ(M1, k). We define M1(ε) = (M1 \ Int(D2
x0

(ε)), g0), which

is diffeomorphic to Σ′
0.

(For simplicity, one may assume without loss of generality, [3], that for sufficiently

small ε the metric g0 is Euclidean on D2
xi

(ε), see [65], [3].)

In order to obtain a metric on Σ′
1 we simply choose an arbitrary smooth metric

g1 on Σ1, flat around a given point x′1, and a geodesic disc D2
x1

(r) of radius r which

belongs to the flat neighborhood. Clearly, Σ1 \D2
x1

(r) is diffeomorphic to Σ′
1. A disc

D2
x1

(r) of radius r in g1 corresponds to a disc of radius 1: D2
x1

(1) in the rescaled

metric r2 g1. Define M2(1) = (Σ′
1, ε

2g1).

For any ε > 0, choose local coordinates (x, y) such that the geodesic disc D2
x1

(ε) is

an ε disc on (R2, d2s) and D2
x1

(1) is a unit disc on (R2, ε2d2s), where ds2 = dx2 + dy2.

Observe that the boundaries ∂M1(ε), ∂M2(1) can be glued via an isometry Φε of

(R2, d2s) and (R2, ε2d2s) restricted to a circle of radius ε in (R2, d2s). The isometry

Φε can be defined as

Φε : x→ −(1/ε)x. (14)

By the discussion in the first paragraph of this section we can form a smooth manifold

M = M1(ε)∪ΦεM2(1) with the orientation induced from M1(ε) and M2(1). We define

a piecewise smooth and continuous metric on M

g̃ε =


g0 on M1(ε),

ε2g2 on M2(1),

(15)
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see also [65]. Clearly, these considerations extend to an arbitrary finite connected sum

i.e. when m > 1. Simply define: M1(ε) = (M1 \
⋃m

i=1D
2
xi

(ε), g0), M2(1) =
⊔m

i=1(Σi \

D2
x′i

(1), ε2gi), and M = M1(ε) ∪Φε M2(1), where Φε is defined in flat coordinates by

(14) on each ∂D2
xi

(ε), and is gluing ∂M1(ε) to ∂M2(1). We summarize our notation

below,

(a) M = M1(ε) ∪Φε M2(1),

(b) M1 = (Σ0, g0), M1(ε) = (Σ0 \
⋃m

i=1D
2
xi

(ε), g0),

(c) M2(1) =
⊔m

i=1(Σi \D2
x′i

(1), ε2gi),

(d) Mε = (M, g̃ε).

If we must specify a different metric on a manifold, we write e.g. (M2(ε), ĝ).

Remark 2.3.2. In the above construction one obtains a piecewise smooth metric

g̃ε. However, we may produce a smooth metric by a simple modification. Namely,

cut out of the geodesic disc Dx1(ε) ⊂ M1, a smaller disc Dx1(ε/4), and attach Σ′
2 to

the annuli Aε = Dx1(ε) \Dx1(ε/4) along the boundary ∂Dx1(ε/4), by an orientation

reversing diffeomorphism Ψ : ∂Σ′
1 → ∂Dx1(ε/4). Now, extend smoothly the metric

from Aε to Σ′
1
∼= Aε ∪Ψ Σ′

1, which results in a metric g1 on Σ′
1 which may be glued

isometrically by the antipodal map.

2.3.1 Convergence of eigenvalues and eigenfunctions.

In [65], Takahashi shows the following convergence of eigenvalues for piecewise smooth

metrics defined in (15).

Theorem 2.3.3 ([65]). For all k = 0, 1, 2, . . . , we have

lim
ε→0

λk(Mε) = λk(M1). (16)
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Because we essentially use parts of the proof in our later considerations we state the

proof in the following paragraphs. Notice that one must define eigenvalues λk(Mε) in

a piecewise smooth metric g̃ε on M , we refer the reader to [65] for general definitions.

Here we avoid these technicalities by assuming that g̃ε is smooth, as explained in

Remark 2.3.2.

One proves Theorem 2.3.3 in several steps, beginning with technical lemmas.

Lemma 2.3.4 ([65]). For all k = 0, 1, 2, . . . , we have

lim sup
ε→0

λk(Mε) ≤ λk(M1). (17)

Proof. Let fi be the i’th eigenfunction onM1, with eigenvalue λk(M1), and {f1, . . . fk},

an orthonormal set. Define the cut off function χε : [0,∞) → [0, 1] as,

χε(r) =


0, (0 ≤ r ≤ ε),

− 2
log ε

log
(

r
ε

)
, (ε ≤ r ≤

√
ε),

1, (r ≥
√
ε),

(18)

(see [4]). We set χε(x) = χε(dg0(x1, x)), for x ∈M1, where dg0 is the distance induced

from g0. Let Eε = span{χε f1, . . . , χε fk} we consider Eε as a subspace of H1(Mε) by

extending each χε fj to M by zero. Applying (2), in Theorem 2.2.4, to Eε we obtain

λk(Mε) ≤ sup
u∈Eε

(
BMε [u, u]

‖u‖2
L2(Mε)

)
(19)

In dimM = 2 we have

‖dχε‖2
L2(D2(x1,

√
ε)) = (dχε, dχε)L2(D2(x1,

√
ε)) =

∫
D2(x1,

√
ε)

dχε ∧ ∗ dχε

=
4 Vol(S1)

(ln ε)2

∫ √
ε

ε

r−1dr → 0. (20)

as ε→ 0. Therefore

BMε [χε fi, χε fi] =

∫
Mε

〈d(χε fi), d(χε fi)〉 =

∫
Mε

〈fidχε + χεdfi, fjdχε + χεdfj)〉

=

∫
Mε

〈fidχε, fjdχε〉+

∫
Mε

χ2
ε〈dfi, dfj〉+

∫
Mε

fi〈dχε, dfj〉+

∫
Mε

fj〈dχε, dfi〉,

17



and we obtain∫
Mε

〈fidχε, fjdχε〉 ≤ ‖fifj‖L∞(M1)‖dχε‖2
L2(D2(x1,

√
ε)) → 0, as ε→ 0,∫

Mε

χ2
ε〈dfi, dfj〉 ≤ (dfi, dfj)L2(M1) = (∆M1fi, fj)L2(M1) = λi(M1)δ

i
j,∫

Mε

fi〈dχε, dfj〉 ≤ ‖fidfj‖L2(M1)‖dχε‖L2(M1) ≤ C‖dχε‖L2(D2(x1,
√

ε)) → 0, as ε→ 0.

By (19), we conclude

λk(Mε) ≤ λk(M1) + ηε, ηε → 0, as ε→ 0.

For the next step, in the proof of Theorem 2.3.3, we define

αk = lim inf
ε→0

λk(Mε). (21)

In order to finish the proof we must show: λk(M1, g1) ≤ αk. However, this requires

several technical results.

Lemma 2.3.5 (Extension Lemma). Let g be an arbitrary smooth metric on M1.

Given u ∈ C∞(M1(ε)) ∩ C0(M1(ε)), there exists a function ū ∈ H1(M1, g), which is

an extension of u, i.e. ū|M1(ε) = u such that

‖ū‖H1(M1,g) ≤ C‖u‖H1(M1(ε),g), (22)

and C is independent of ε. For l > 1, and u ∈ C∞(M1(ε/2)) ∩ C0(M1(ε/2)) we can

find an extension ū ∈ C∞(M1), such that ū|M1(ε) = u and

‖ū‖Hl(M1,g) ≤ C ′l,ε‖u‖Hl(Ml(ε/2),g), (23)

‖∆M1ū‖Hl−2(M1,g) ≤ C ′′l,ε
(
‖u‖Hl−2(Ml(ε/2),g) + ‖du‖Hl−2(Λ1Ml(ε/2),g) (24)

+ ‖∆M1u‖Hl−2(Ml(ε/2),g)

)
where constants C ′′l,ε, C

′
l,ε depend on l and ε.
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Proof. The proof for l = 1 and dim=2 is given in [60] p. 40, where the authors show

that for the unique harmonic extension the constant C is independent of ε. For the

proof in the case l > 1 we follow the standard extension argument see ([39]). We

define ū = uρ, where ρ ∈ C∞(M1) is a “bump” function such that ρ|M1(ε) = 1, and

supp(ρ) ⊂ M1(ε/2). Inequality (23) follows immediately, and (24) is a consequence

of the triangle inequality and the following product formula,

∆M1(ū) = ∆M1(uρ) = u∆M1ρ− 2g(∇u,∇ρ) + ρ∆M1u, (25)

which holds pointwise (see e.g. [61]).

For the given eigenfunction f ε
k on Mε we introduce the following notation:

f ε
k = (f 1,ε

k , f2,ε
k ), where f 1,ε

k = f ε
k |M1(ε), f

2,ε
k = f ε

k |M2(1). (26)

In the following lemma the argument is essentially the same as in [65], p. 206.

Lemma 2.3.6 (L2-convergence of eigenfunctions). For each k, one may choose a

sequence of eigenfunctions f ε
k ∈ C∞(Mε), ‖f ε

k‖L2(Mε) = 1, with the following limit in

L2(M1)

lim
ε→0

f 1,ε
k = f̂k, in L2(M1), (27)

where f̂k ∈ C∞(M1) is a αk-eigenfunction on M1.

Proof. We prove that there is a family of extensions {f̂ 1,ε
k }ε, f̂

1,ε
k |M1(ε) = f 1,ε

k , conver-

gent in L2(M1) to f̂k. Choosing f̂ 1,ε
k to be the H1-extensions of f 1,ε

k ∈ C∞(M1(ε))

given by Extension Lemma 2.3.5, we have the following;

‖f̂ 1,ε
k ‖H1(M1) ≤ C‖f 1,ε

k ‖H1(M(ε),g1) (28)

where C is independent of ε. From (28) we obtain

‖f̂ 1,ε
k ‖H1(M1) ≤ C‖f ε

k‖H1(M1(ε),g1)

(1)

≤ C
(
‖f ε

k‖L2(Mε) + ‖df ε
k‖L2(Λ1Mε)

)
= C

(
1 + (∆Mεf

ε
k , f

ε
k)

1
2

L2(Mε)

) (2)

≤ C(1 + λ
1
2
k (M1) + ηε), (29)
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where ηε → 0 as ε → 0. Inequality (1) follows from the definition of the H1-norm,

(15) and the fact that M1(ε) ⊂ Mε; the equality (2) is the consequence of Lemma

2.3.4. We conclude that the family: {f̂ 1,ε
k }ε is bounded in H1(M1), thus any sequence

in the family contains a weakly convergent subsequence in H1(M1). By Rellich’s

Theorem, the inclusion H1(M1) ↪→ L2(M1) is compact, thus any sequence in the

family {f̂ 1,ε
k }ε contains a strongly convergent subsequence {f̂ 1,εi

k }εi
in L2(M1). We

choose a subsequence in {f̂ 1,ε
k }ε, such that λk(Mε) → αk and denote a limit of the

subsequence by f̂k ∈ H1(M1). We wish to show that f̂k is a smooth classical solution

to ∆M1u = αk u. Recall B : H1(M1) × H1(M1) → R, the bilinear form associated

to the Laplacian ∆M1 defined in (8). Let v ∈ C∞c (M1 \ {x1}) be a test function, we

obtain

B[f̂k, v] =

∫
M1

〈df̂k, dv〉g0dg1
(1)
= lim

i→∞

∫
M1(εi)

〈df1,εi

k , dv〉g0dg0

= lim
i→∞

∫
M1(εi)

〈df1,εi

k , dv〉g0dg0 +

∫
M2(1)

〈df2,εi

k , 0〉
egεi
dg̃εi

(2)
= lim

i→∞
(∆Mε(f

1,εi

k , f2,εi

k ), (v, 0))L2(Mεi )

= lim
i→∞

λk(Mεi
)((f 1,εi

k , f2,εi

k ), (v, 0))L2(Mεi )

(3)
= αk lim

i→∞

∫
M1(εi)

f̂k v dg1 = αk(f̂k, v)L2(M1).

Equality (1) follows from the H1-weak convergence of extensions f̂ 1,ε
k and f̂ 1,ε

k |M1(ε) =

f 1,ε
k . In equation (2) we used (26), equation (3) follows from the Lemma 2.3.4. Since

C∞c (M1 \ {x1}) is dense in H1(M1), which holds in dimensions ≥ 2, (see [2], and

Remark 2.3.7) the equality B(f̂k, v) = αk(f̂k, v)L2(M1) is valid for any v ∈ H1(M1).

Consequently, f̂k is a weak solution to ∆M1u = αk u, and by the regularity of weak

solutions we conclude that f̂k is a smooth classical solution.

Remark 2.3.7. To show density C∞c (M1 \ {x1}) in H1(M1), one may use cut-off

functions defined in (18). Let f ∈ C∞(M1) we show that χε f ∈ C∞c (M1 \ {x1}) is
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arbitrarily close to f in H1-norm. Clearly, ‖f − χε f‖L2(M1) → 0 as ε → 0, and by

(20) we obtain

‖df − d(χε f)‖L2 = ‖df − χε df − f dχε‖L2 ≤ ‖df − χε df‖L2 + ‖f dχε‖L2

≤ ηε + ‖f‖L∞‖dχε‖L2 → 0, ε→ 0.

Since C∞(M1) is dense in H1(M1), we conclude that C∞c (M1 \ {x1}) is dense in

H1(M1).

Proof of Theorem 2.3.3. In order to finish the proof of Theorem 2.3.3 it suffices to

show the following inequality;

λk(M1) ≤ αk. (30)

From Lemma 2.3.6, we conclude that for each j = 0, 1, . . . , k, there exists an αj-

eigenfunction on M1: {f̂0, . . . , f̂k}. If for i 6= j, (f̂i, f̂j)L2(M1) = 0, i.e. f̂i are or-

thogonal, then αk is an l-eigenvalue for some l ≥ k. Hence, we have λk(M1) ≤ αk.

Therefore the only thing to show is the orthogonality of {f̂0, . . . , f̂k}.

Proof of orthogonality of {f̂0, . . . , f̂k}. In the following we use notation from (26), we

calculate

(f̂j, f̂l)L2(M1,g1) = lim
i→∞

{(f̂ 1,εi

j , f̂ 1,εi

l )L2(M1(εi),g1) + (f̂ 1,εi

j , f̂ 1,εi

l )L2(B(x1,εi),g1)}

= lim
i→∞

{(f 1,εi

j , f1,εi

l )L2(Mεi )
− (f 2,εi

j , f2,εi

l )L2(M2(1),ε2
i g2)}

= δj
l − lim

i→∞
(f 2,εi

j , f2,εi

l )L2(M2(1),ε2
i g2).

Hence, it suffices to prove the following;

lim
i→∞

(f 2,εi

j , f2,εi

l )L2(M2(1),ε2
i g2) = lim

i→∞
(εi f

2,εi

j , εi f
2,εi

l )L2(M2(1),g2) = 0. (31)

Define f̃ 2,εi

j = εi f
2,εi

j , we will show that f̃ 2,εi

j → 0, as i→∞ in L2(M2(1), g2). By the

second part of inequality (29) we conclude

‖ f̃ 2,εi

j ‖H1(M2(1),g2) = ‖ εi f
2,εi

j ‖H1(M2(1),g2) = ‖ f 2,εi

j ‖L2(M2(1),ε2
i g2) + εi‖df2,εi

j ‖H1(M2(1),g2)

≤
(
‖f εi

j ‖L2(Mεi )
+ εi‖df εi

j ‖L2(Λ1Mεi )

)
=
(
1 + εi(∆Mεi

f εi
j , f

εi
j )

1
2

L2(Mεi )

)
≤ (1 + εiλ

1
2
j (M1)),
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where the last inequality follows from Lemma 2.3.4. Thus, {f̃ 2,εi

j } is bounded an

therefore has a weakly convergent subsequence f̃ 2,εi

j → f̃ 2
j , i→∞, in H1(M2(1), g2).

This subsequence is strongly convergent in L2(M2(1), g2). It follows that

‖df̃ 2
j ‖2

L2(M2(1),g2) ≤ lim inf
i→∞

ε2
i (∆ε2

i g2
f 2,ε

j , f2,ε
j )L2(M2(1),ε2

i g2) ≤ lim inf
i→∞

ε2
iλj(Mεi

) = 0.

Consequently, f̃ 2
j ≡ const and we obtain

‖f̃ 2,εi

j − f̃ 2
j ‖2

H1(M2(1),g2) = ‖f̃ 2,εi

j − f̃ 2
j ‖2

L2(M2(1),g2) + ‖df̃ 2
j ‖2

L2(M2(1),g2) → 0. (32)

Next, we show that f̃ 2
j �∂M2(1)= 0. Notice the following;

‖f̃ 2,εi

j �∂M2(1) ‖L2(∂M2(1),∂g2) =
√
εi‖f 2,εi

j �∂M2(1) ‖L2(∂M2(1),ε2
i ∂g2)

=
√
εi‖f 1,εi

j �∂M1(εi) ‖L2(∂M1(εi),∂g1) ≤ Cεi

√
| ln εi| ‖f 1,εi

j ‖H1(M1(εi),g1), (33)

where the last inequality was derived by Anné in [3]. Since ‖f 1,εi

j ‖H1(M1(εi),g1) is

bounded we get ‖f̃ 2,εi

j �∂M2(1) ‖L2(∂M2(1),∂g2) → 0, as i → ∞. Hence, from the Trace

Theorem and (32), we obtain

‖f̃ 2
j �∂M2(1) ‖L2(∂M2(1),∂g2) ≤ ‖f̃ 2,εi

j �∂M2(1) ‖L2(∂M2(1),∂g2)

+‖f̃ 2
j �∂M2(1) −f̃ 2,εi

j �∂M2(1) ‖L2(∂M2(1),∂g2) ≤ ‖f̃ 2,εi

j �∂M2(1) ‖L2(∂M2(1),∂g2)

+ C ‖f̃ 2,εi

j − f̃ 2
j ‖H1(M2(1),g2) → 0,

as i → ∞. Since f̃ 2
j �∂M2(1)= 0, and f̃ 2

j is constant, we obtain f̃ 2
j = 0, which proves

(31).

2.3.2 Proof of Gluing Theorem.

For piecewise smooth metrics, eigenvalues of the Laplacian “vary” continuously with

respect to the C0-topology. It was derived in [8] as the following;

Theorem 2.3.8 ([8]). Let M, be a set of metrics on Mn, the function M � g →

λk(M) ∈ R, where λk is a k’th eigenvalue of ∆g, is continuous w.r.t. C0-topology on

M.
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Therefore, for a given ε > 0 we can perturb the metric g̃ε on M to a smooth

generic metric gε so that eigenvalues are arbitrarily “close”. By Theorem 2.2.7, we

may assume that the support of the perturbation is contained in the complement

M1(ε/2)c. Denote (M, gε) by Mε. Hence, we can define a family of metrics {gε}ε,

satisfying the following requirements:

(i) gε are smooth and converge to g̃ε in the C0-topology of M , as ε→ n0;

(ii) gε|M1(ε/2) = g1;

(iii) λk(Mε) are simple eigenvalues and nodal sets Ξ(Mε, k) are embedded circles;

(iv) limε→0 λk(Mε) = λk(M1).

We recall the notation (a) - (d) from page 16. We redefine: Mε = (M, gε). moreover,

for convenience, we replace ε with factor ε/4 in (a) - (d) on page 16.

Comparing nodal sets Ξ(Mε, k) and Ξ(M1, k) can be a little bit subtle. Notice that

for each ε > 0, Mε is diffeomorphic to Σ = Σ0#Σ1# . . .#Σm and {gε}ε is a family

of metrics on Σ. In the limit (i.e. for ε = 0) the metric gε degenerates on M2(1),

and M0 = (Σ, g0) is not homeomorphic to M1 = (Σ0, g0). Rather, it inherits topology

that is pulled back from M1 under the quotient map, π : Σ → Σ/M2(1). Thus we

really have no control over a part of the nodal set in the “shrinking” portion: M2(1)

of the manifold Mε. Technically, we cannot compare eigenfunctions: fk on M1 to the

eigenfunctions: f ε
k ∈ C∞(Mε) on Mε, we must restrict them to the common domain

M1(ε0) for a fixed ε0 > 0. In order to prove the isotopy of nodal sets: Ξ(M1, k), and

Ξ(Mε, k), for small ε, we must show C1-convergence of eigenfunctions f ε
k restricted to

M1(ε0). In this section we show a stronger result, namely, that any sequence {εj}j;

εj → 0, {f εj

k |M1(ε0)}εj
converges to fk|M1(ε0) ∈ C∞(M1(ε0)) in the C∞-topology.
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Lemma 2.3.9 (G̊arding’s inequality for differential forms, [61], p. 36). For each

s ≥ 0, there exists a positive constant C = Cs such that,

‖ω‖Hs(Λ∗M) ≤ C(‖ω‖Hs−1(Λ∗M) + ‖(d+ δ)ω‖Hs−1(Λ∗M)) (34)

where ω ∈ Ω∗(M).

Lemma 2.3.10 (Cj-convergence of eigenfunctions). For each k, and an arbitrary

j > 2, the following Cj-convergence of eigenfunctions f ε
k ∈ C∞(Mε), ‖f ε

k‖L2(Mε) = 1

holds:

lim
ε→0

f ε
k = fk on compact subsets of M1 \ {x1} (35)

where fk ∈ C∞(M1) is a k’th-∆M1-eigenfunction on M1.

Proof. Recall the notation in (2.3). Lemma 2.3.6, implies that limε→0 f
1,ε
k = f̂k in

L2(M1). Since all the eigenvalues λk(M1) are simple in g1 and, by Theorem 2.3.3,

αk = λk(M1) we have

1 = ‖fk‖L2(M1,g1) = lim
i→∞

‖fk‖L2(M1(εi),g1) = lim
i→∞

‖f̂ 1,εi

k ‖L2(M1(εi),g1) = ‖f̂k‖L2(M1,g1).

We conclude that f̂k = fk. In the next step, we argue Cj-convergence of f 1,εi

k on

compact subsets of M1 \ {x1}.

Choose ε0 such that M1(ε0) contains a given compact subset and let l > j+ m
2

+1 =

j+2, where m = 2 is the dimension of M1, (we assume j > 2 for convenience). Letting

ε ≤ ε0, we apply Lemma 2.3.5 and consider a family of H l-extensions f̄ 1,ε
k ∈ H l(M1)

for f 1,ε
k ∈ C∞(M1(ε0/2)). Lemma 2.3.9, with the constant Dl, implies the following;

‖f̄ 1,ε
k ‖Hl(M1) ≤ Dl

(
‖f̄ 1,ε

k ‖Hl−1(M1) + ‖(d+ δ)f̄ 1,ε
k ‖Hl−1(Λ∗M1)

)
= Kl−1

(
‖f̄ 1,ε

k ‖Hl−1(M1) + ‖df̄ 1,ε
k ‖Hl−1(Λ1M1)

)
(36)

(where Kl−1 = Dl). Here d + δ is the Dirac operator (i.e. (d + δ)2 = ∆) acting on

forms of mixed degree. Applying G̊arding’s inequality again to each term of (36) and
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setting Dl,l−1 = DlDl−1 results in

(rhs of (36)) ≤ Dl,l−1

(
‖f̄ 1,ε

k ‖Hl−2(M1) + 2‖df̄ 1,ε
k ‖Hl−2(Λ1M1) + ‖∆M1 f̄

1,ε
k ‖Hl−2(M1)

)
(1)

≤ Dl,l−1C
′′
l,ε0

(
‖f̄ 1,ε

k ‖Hl−2(M1) + 2‖df̄ 1,ε
k ‖Hl−2(Λ1M1) + ‖∆Mεf

ε
k‖Hl−2(M1(ε0/2),gε)

)
(2)

≤ 2Dl,l−1C
′′
l−2,ε0

(1 + λk(Mε))
(
‖f̄ 1,ε

k ‖Hl−2(M1) + ‖df̄ 1,ε
k ‖Hl−2(Λ1M1)

)
(3)

≤ Kl−2

(
‖f̄ 1,ε

k ‖Hl−2(M1) + ‖df̄ 1,ε
k ‖Hl−2(Λ1M1)

)
Inequality (1) is a consequence of (24), whereas (2) follows from the fact that f ε

k is

a k’th-eigenfunction of the Laplacian on Mε. In (3) we set Kl−2 > 2Dl,l−1C
′′
l−2,ε0

(1 +

λk(Mε)) due to the requirement (iv) on page 23. Repeating the above steps finitely

many times leads to

‖f̄ 1,ε
k ‖Hl(M1) ≤ K0

(
‖f̄ 1,ε

k ‖L2(M1) + ‖df̄ 1,ε
k ‖L2(Λ1M1)

)
= K0‖f̄ 1,ε

k ‖H1(M1)

≤ K0C
′
1,ε0

(
‖f 1,ε

k ‖L2(M1(ε0/2),g1) + ‖df1,ε
k ‖L2(Λ1M1(ε0/2),g1)

)
≤ K0C

′
1,ε0

(
1 + (∆Mεf

ε
k , f

ε
k)

1
2

L2(Mε)

)
≤ K0C

′
1,ε0

(1 + λ
1
2
k (M1) + η′ε),

where η′ε → 0 as ε → 0 and we applied Lemma 2.3.5 in the second inequality.

Consequently, the family {f̄ 1,ε
k }ε is bounded in H l(M1). By Rellich’s Theorem we

have a compact inclusion H l(M1) ↪→ H l−1(M1), and by Sobolev embedding theorem

a bounded inclusion H l−1(M1) ↪→ Cj(M1) (see [61]). Composition of these two gives

us a compact inclusion H l(M1) ↪→ Cj(M1). As a result, there exists a subsequence

{f̄ 1,εi

k }i of any sequence in {f̄ 1,ε
k }ε, convergent in the Cj topology of M1. Denote a

limit of this subsequence by f̄k ∈ Cj(M1).

Since f̂ 1,ε
k |M1(ε0) = f 1,ε

k |M1(ε0) = f̄ 1,ε
k |M1(ε0) for any ε < ε0, the L2-limits f̂k, f̄k have

to agree on M1(ε0). Equality (35) holds, since for any sequence {εi}i converging to

zero {f 1,εi

k |M1(ε0)} contains a convergent subsequence with a common limit.

Corollary 2.3.11. Convergence (35) holds on compact subsets of M1 \ {x1} in the

C∞-topology of M1.
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Proof of Gluing Theorem 2.3.1. We assume that the nodal set Ξ(M1) = Ξ(M1, k) is

at a geodesic distance d > ε0 from gluing discs: Dxi
(ε) ⊂ Dxi

(ε0). The nodal sets

Ξ(M1) and Ξ(Mε) can be compared only on the common subset M1(ε0). What we

really have to show is that for some ε > 0 the nodal set Ξ(Mε) = Ξ(Mε, k) belongs

entirely to the common domain M1(ε0). First of all note the following pointwise

convergence of nodal sets.

Lemma 2.3.12. Consider a sequence of points {xi}i such that for each i, xi ∈

Ξ(Mεi
) ∩M1(ε0). If the limit x of {xi}i exists, then x ∈ Ξ(M1).

Proof. Applying the convergence f εi
k |M1(ε0) → fk|M1(ε0) in C0(M1(ε0)) we obtain,

|fk(xi)| = |fk(xi)− f 1,εi

k (xi)| ≤ ‖fk − f 1,εi

k ‖C0(M1(ε0))
i→∞−→ 0.

By continuity, of fk and the assumption xi → x ∈M1(ε0), we have 0 = limi→∞ fk(xi) =

fk(x), and we conclude that x ∈ Ξ(M1).

The above Lemma implies that there exists an index n, such that for all i ≥ n,

Ξ(Mεi
) ∩ ∂M1(ε0) = ∅. Indeed, if Ξ(Mεi

) ∩ ∂M1(ε0) 6= ∅ for infinitely many i,

we could find a convergent sequence of xi ∈ Ξ(Mεi
) ⊂ ∂M1(ε0). Consequently, by

Lemma 2.3.12 a limit x̂ of {xi} would have to be in Ξ(M1), which contradicts the

assumption that Ξ(M1) is away from gluing discs {Dxi
(ε0)}.

In the following paragraphs we show that Ξ′(Mεi
) = M1(ε0) ∩ Ξ(Mεi

) is isotopic

to Ξ(M1) for sufficiently small εi. Define: H : I ×M1(ε0) → R, I = (−ε, 1 + ε), as

follows;

H(t, x) = t fk(x) �M1(ε0) +(1− t) f 1,εi

k (x). (37)

Since Ξ(M1) is a regular level set of fk we have the following bound:

sup
x∈Ξ(M1)

‖dfk(x)‖ ≥ A > 0. (38)
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By Lemma 2.3.10, we may choose εi small enough so that

‖ dfk �M1(ε0) −df1,εi

k ‖C0 = sup
x∈M1(ε0)

‖ dfk(x) �M1(ε0) −df1,εi

k (x)‖ < A/2 (39)

We claim that 0 is a regular value of H. Indeed, if dH(t0, x0) = 0, at some (t0, x0)

then

dH(t, x) = (fk(x) �M1(ε0) −f 1,εi

k (x)) dt+ t dfk(x) �M1(ε0) +(1− t) df1,εi

k (x),

which implies fk(x0) �M1(ε0) −f 1,εi

k (x0) = 0, and t0 dfk(x0) �M1(ε0) +(1−t0) df1,εi

k (x0) =

0. Consequently,

t0 dfk(x0) �M1(ε0)= (t0 − 1) df1,εi

k (x0). (40)

By (39),

A/2 > ‖ dfk �M1(ε0) −df1,εi

k ‖C0 ≥ ‖ dfk �M1(ε0) (x0)− df1,εi

k (x0)‖. (41)

Since 0 < t0 < 1, we obtain

A/2 ≥ (A/2)(1− t0) ≥ ‖(1− t0) dfk �M1(ε0) (x0)− (1− t0)df
1,εi

k (x0)‖

= ‖(1− t0) dfk �M1(ε0) (x0) + t0dfk �M1(ε0) (x0)‖ = ‖dfk �M1(ε0) (x0)‖ ≥ A. (42)

Therefore we arrived to the contradiction with dH(t0, x0) = 0.

Consequently, 0 is a regular value of H and, as the above reasoning shows, it is also

a regular value of ft = H(t, · ), ft ∈ C∞(M1(ε0)), for all t. This implies that f−1
t (0),

for each t, is a disjoint union of embedded circles. Consequently, the submanifold:

N = H−1(0) ⊂ I ×M1(ε0), satisfies, ∂N = Ξ(M1) t Ξ′(Mεi
) and defines an isotopy

between Ξ(M1) and Ξ′(Mεi
). Since a number of nodal domains of fk is k+1 Courant’s

Theorem 2.2.1 implies that Ξ(Mεi
) = Ξ′(Mεi

).

2.4 Payne’s conjecture for closed Riemannian sur-

faces.

In [59], L. E. Payne conjectured that in case of the fixed membrane problem, for

bounded domains in R2, the second eigenfunction of the Laplacian cannot possess a
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closed nodal curve.

Conjecture 2.4.1 (Payne(1967)). The second eigenfunction of the Laplacian on a

bounded region Ω in Euclidean R2 with the Dirichlet boundary conditions cannot have

a closed curve in its nodal set.

Since 1967, Payne’s conjecture has been proved to be true in the case of convex

domains (see [1] and [55]). Recently, it has been proved false by T. Hoffmann-Ostenhof

and co-authors (see [46]), in the case of a non-simply connected domain (disc with

slits on an inner circle removed). It is still not known, however, if Conjecture 2.4.1

is true for an arbitrary simply connected region in R2. In [34], P. Freitas has shown

that Conjecture fails in case of Ω = D2 for a non-Euclidean metric.

We consider a more global version of Payne’s conjecture:

Problem 2.4.2. Does the first ∆Σ-eigenfunction on a given closed surface Σ of

genus ≥ 1 admit a contractible nodal curve in Σ?

As a consequence of Gluing Theorem we derive the following;

Theorem 2.4.3 (Komendarczyk, [52]). For an arbitrary closed compact orientable

surface Σ, there always exists a smooth metric gΣ such that Ξ(Σ) is a single embedded

circle which bounds a disc in Σ.

Proof. First we observe that it is a straightforward corollary of Theorems 2.2.1, 2.2.7

in the case of Σ = S2. Namely, it is enough to choose a generic metric and refer to

Theorem 2.2.7 which states that Ξ(S2) has to be a one dimensional submanifold. By

Courant’s Theorem 2.2.1, Ξ(S2) splits S2 into two open domains, thereby implying

that Ξ(S2) must be a single embedded circle. If the surface Σ is of genus g(Σ) ≥ 1,

we produce a desired metric by gluing via boundary circles a “big” sphere M1
∼= S2

with an ε-disc removed, M1(ε) ∼= S2 \ Int(D2) ∼= D2, to an ε-“small” surface M2(1),

homeomorphic to Σ\ Int(D2). The resulting manifold Mε is homeomorphic to Σ and,
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as we have shown in Theorem 2.3.1, the nodal set Ξ(Mε) is isotopic to Ξ(M1) (see

Figure 1). Thus for sufficiently small ε, Ξ(Mε) has to be a closed embedded circle

that bounds a disc in Mε.

2.5 Nodal curves of λ1-eigenfunctions.

Below we generalize the proof of Theorem 2.4.3 and show that an arbitrary allowable

configuration of nodal curves of λ1-eigenfunction may be archived in a generic metric

on Σ.

Theorem 2.5.1. Let Σ be an orientable surface and S a collection of k disjoint circles

in Σ, which divides the surface into two domains. Then there exists a generic metric

on Σ such that S = Ξ(Σ, 1) up to isotopy.

Proof. Topologically: Σ \ S = Σ1 ∪ Σ2, where each Σi is a genus g(Σi) surface with

k-boundary components. First, we consider a case when each Σi is a 2-sphere with

k-disjoint discs removed, i.e. Σ is genus g(Σ) = k − 1 surface. Since Σ is a “double”

one may find an appropriate metric by embedding Σ1 in R3 so that ∂ Σ1 = S is a

collection of circles on xy-plane, and define g1 on Σ1 to be a metric induced from R3

(see Figure 2). We may also require that the “mirror image” Σ′
1 of Σ1 by reflection

through the xy-plane, smoothly “fits” Σ1. With such choices, we may define an

embedding: j : Σ ↪→ R3, such that j(Σ1) = Σ1, j(Σ2) = Σ′
1, and equip Σ with a

metric g induced from R3. Clearly, (Σ, g) admits a symmetry: namely a reflection

about an xy-plane. Solving a fixed membrane problem on one half: Σ1 results in

λ1-eigenfunction φ1, φ1 �∂Σ1= 0. Now, the function φ defined as

φ =

 φ1(x, y, z), on Σ1, {z ≥ 0},

−φ1(x, y,−z), on Σ2, {z ≥ 0}

is a λ1-eigenfunction of (Σ, g), with the nodal set φ−1(0) = S. Perturbing if necessary,

we obtain a desired metric g on Σ in the case: g(Σ1) = g(Σ2) = 0. When g(Σ1) > 0 or
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xy- plane

Figure 2: (Σ, g) is obtained by attaching higher genus surfaces on each side of
Ξ(Σ, k).

g(Σ2) > 0 we may easily produce the metric, specified in the theorem, by attaching a

genus g(Σi) surfaces to Σi, i = 1, 2 to the previously constructed model surface (Σ, g)

(see Figure 2). Now, the claim follows from Theorem 2.3.1.

Remark 2.5.2. One may certainly extend the proof of the Gluing Theorem to higher

dimensions. Consequently, for a given topology of a nodal set Ξ(Mn, k) one may

change the topology of M by attaching finitely many manifolds via the connected

sum. This may be helpful in addressing the following part of the question of Schoen

and Yau:

. . . “Is there a similar conclusion for higher dimensional euclidean space?

To what extend do these conclusions hold for compact manifolds with

boundary?” . . .

In this work we mostly considered the case of regular nodal sets on surfaces,

i.e. nodal sets without singularities. What about immersed curves, then? In [66],

Uhlenbeck proved that for a generic path of metrics gt, 0 ≤ t ≤ 1 on Σ, nodal sets

of g1 and g0 are cobordant. Consequently, prescribing known configurations of nodal
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sets at the endpoints g0, and g1 one may obtain new immersed curves for metrics gt,

0 < t < 1. Clearly, such a procedure holds in higher dimensions as well.

2.6 Homotopically essential nodal curves.

In this section we investigate sufficient conditions which force homotopically essential

nodal curves on a surface with a prescribed geometry. Our approach is guided by

results of S. T. Dong, [23], and A. Savo in [62]. Throughout this section we use more

classical notation stated in the following definitions.

Definition 2.6.1. The gradient vector field ∇f of f is defined through

df(X) = 〈∇f,X〉, for all X ∈ C∞(M,TM). (43)

Definition 2.6.2. The Hessian ∇2f of a function f ∈ C2(M) on the Riemannian

manifold (M, g) is a symmetric bilinear form defined as

∇2f(X, Y ) = (∇X df)(Y ) = (∇Y df)(X), X, Y ∈ C∞(M,TM). (44)

Let the covariant derivative along a vector field X on S be denoted by ∇S
X or by

∇X when S is known from the context.

Definition 2.6.3. The second fundamental form of a codimension 1 subman-

ifold Mm in Nm+1 is a symmetric bilinear form ` : TpM × TpM → T⊥p M defined

as

∇N
XY = ∇M

X Y + `(X, Y ). (45)

Choosing a unit normal vector ν ∈ T⊥p M we define `ν : TpM × TpM → R as follows;

`ν(X,Y ) = 〈`(X, Y ), ν〉 = −〈∇N
Xν, Y 〉 = −〈∇N

Y ν,X〉, X, Y ∈ TpM. (46)

Notice that choice of a normal vector ν affects the sign of `ν :

`ν(X, Y ) = −`−ν(X, Y ).

The following lemma shows that `ν(X, Y ) depends only on the value of ν at p.
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Lemma 2.6.4 ([49]). For any function f defined in a neighborhood of p we have

`fν(X,Y ) = f `ν(X,Y ). (47)

Proof. Indeed, (∇N
Xfν)>p = ((Xf)ν)>p + f(∇N

Xν)>p = f(∇N
Xν)>p . Consequently,

`fν(X,Y ) = −〈∇N
X(fν), Y 〉 = −〈(∇N

X(fν))>, Y 〉

= −〈f(∇N
Xν)>p , Y 〉 = f `ν(X, Y ).

For an orthonormal frame {ei} ∈ TpM the Gauss-Kronecker curvature of

M in a direction of a normal vector ν is given by

Kν = det(`ν(ei, ej)), (48)

and the mean curvature by

Hν =
1

m
tr(`ν(ei, ej)). (49)

Clearly, Kν , Hν are independent of the choice of the frame and

Kν = (−1)mK−ν , Hν = −H−ν . (50)

The next step is to derive a formula for the mean curvature of a regular level set of

a smooth function (c.f. [62]).

Proposition 2.6.5. Let u be a smooth function on a manifold (Nm, g), and let M =

u−1(c) be a c-regular level set of u. If ∇u(p) 6= 0, p ∈M , then

mHν =
∆Nu

‖∇u‖
+

1

‖∇u‖
〈∇‖∇u‖, ν〉 =

∆u

‖∇u‖
+

1

2
〈∇ ln‖∇u‖2, ν〉

where ν = ∇u/‖∇u‖ is pointing towards: {u > c}.
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Proof. From [49], p. 139 we have the following formula for the Hessian ∇2u:

∇2u(X, Y ) = 〈∇X∇u, Y 〉. (51)

For ν = ∇u/‖∇u‖ combining the above formula, Lemma 2.6.4, and the definition of

` yields

`ν(X, Y ) = −〈∇N
X

∇u
‖∇u‖

, Y 〉 = − 1

‖∇u‖
〈∇N

X∇u, Y 〉 = − 1

‖∇u‖
∇2u(X, Y ). (52)

Hence: ∇2u|TM = −‖∇u‖`. Fixing an orhonormal basis {ei, ν} of N at p we obtain

mHν = tr(`ν(ei, ej)) =
∑

i

`ν(ei, ei) +∇2u(ν, ν)−∇2u(ν, ν)

=
∆Nu

‖∇u‖
− ∇2u(ν, ν)

‖∇u‖
=

∆Nu

‖∇u‖
− 1

‖∇u‖3
〈∇∇u∇u,∇u〉

where the second equation comes from (52), and ∆Nu = −tr(∇2u). Using the for-

mula: X〈X,X〉 = 2〈∇XX,X〉 we obtain

〈∇∇u∇u,∇u〉
‖∇u‖2

=
〈∇‖∇u‖2,∇u〉

2‖∇u‖2
=
〈∇‖∇u‖2, ν〉

2‖∇u‖

=
〈2‖∇u‖(∇‖∇u‖), ν〉

2‖∇u‖
= 〈∇‖∇u‖, ν〉.

Consequently,

〈∇ ln(‖∇u‖2), ν〉 =
1

‖∇u‖2
〈∇(‖∇u‖2), ν〉 =

2〈∇‖∇u‖, ν〉
‖∇u‖

.

Combining the formulas leads to

mHν =
∆u

‖∇u‖
+

1

‖∇u‖
〈∇‖∇u‖, ν〉 =

∆u

‖∇u‖
+

1

2
〈∇ ln‖∇u‖2, ν〉.

Given a frame of vectors F = {e1, . . . , en} at p ∈ Mn, the linear isomorphism

F : Rn → TpM defines a coordinate system on TpM in natural manner. Consequently,

the diffeomorpism: exp ◦ F : Rn → Up given by the exponential map defines a
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local coordinate system on Up ⊂ M . This coordinate system is called the normal

coordinate system determined by the frame F . One of the crucial properties of

a normal coordinate system {x1, . . . , xn} is that a geodesic determined by the initial

condition (p,X), X = ai ei is parametrized by ([51] p. 148)

x(t) = (a1t, . . . , ant). (53)

It yields the following fundamental result.

Proposition 2.6.6. Let {x1, . . . , xn} be a normal coordinate system of M at p, and

let ∂i = ∂
∂xi

. At p we have

ωj
ik = 〈∇∂i

∂k, ∂j〉 = 0, for all i, j, k. (54)

(here ωj
ik are Christoffel symbols at p of {∂i}).

Recall, [49], the following formulas in an orthonormal frame {ei} at p, and {ηi}

the dual coframe. Components of ∇2f in {ei} can be calculated as follows;

∇2f(ei, ej) = 〈∇ei
∇f, ej〉 = 〈

∑
k

(∇ei
∇ek

f ek +∇ek
f ∇ei

ek), ej〉 (55)

= ∇i∇jf +
∑

k

∇k, f ω
j
i k

The Laplacian ∆M1 is given by

∆Mf = −
∑

i

∇ei
∇ei

f −∇∇eiei
f (56)

(see [49]). In normal coordinates at p determined by an orthonormal frame {ei},

ei = ∂i, these formulas simplify even further since ωj
i k = 0 and [ei, ej] = [∇i,∇j] = 0

at p. One derives

∇2f =
∑
i,j

(∇i jf) ηi · ηj, ∆Mf = −
∑

i

∇i if = −Tr(∇2f). (57)
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Proposition 2.6.7 ([63], p. 15). Let (M, g) be a Riemannian manifold and f ∈

C3(M). If {xi} is a normal coordinate system determined by {ei} at a point p ∈ M ,

then we have at p

∆‖∇f‖2 = 2
∑
i,j

(∇i∇jf)2 + 2
∑
i,j

Rij∇if ∇jf + 2
∑

i

∇if ∇i(∆f)

= 2‖∇2f‖2 + Ric(∇f,∇f) + 2〈∇f,∇∆f〉, (58)

where Rij are components of the Ricci tensor.

Results of this section are based on the following estimate proven by Dong in [23].

Lemma 2.6.8 (Dong’s Lemma [23], p. 500). Let Σ be a surface, and f be a solution

to (7) with λ = const. Then the following estimate holds,

∆ ln q ≤ λ− 2K−, K− = min(Ks, 0), (59)

where Ks is the scalar curvature of Σ and q = ‖∇f‖2 + λ
2
f 2.

Proof. The proof is a calculation in normal coordinates. We obtain

−∆ ln q =
1

q
− 1

q2
‖∇q‖2

=
1

q
(2 ‖∇2f‖2 + 2〈∇f,∇∆ f〉+ (2Ks + λ)‖∇f‖2 − λ2 f 2)

− 1

q2
‖2〈∇2f,∇f〉+ 2 f ∇f‖2

=
1

q
(2‖∇2 f‖2 − λ2 f 2 + (2Ks − λ)‖∇f‖2)

− 1

q2
‖2〈∇2f,∇f〉+ 2 f ∇f‖2,

where the second equality follows from the Bochner formula (58). For the remaining

part of the calculation we choose normal coordinates which diagonalize ∇2f at a point

p, (57) i.e. ∇2f =

 f11 0

0 f22

, where fij = ∂i∂jf . The equation ∆ f = λ f implies
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that f11 +f22 = −λ f , substituting in the above identity and denoting ∇ f =

 f1

f2


at p, we have

−∆ ln q =
1

q

(
2(f 2

11 + f 2
22)− (f11 + f22)

2 + (2Ks − λ)‖∇f‖2
)

− 1

q

(
(f11 − f22)

2u2
1 + (f11 − f22)

2u2
2)
)

=
1

q2

(
q(f11 − f22)

2 + q (2Ks − λ)‖∇f‖2 − (f11 − f22)
2‖∇f‖2

)
=

λ

2

(f11 − f22)
2

q2
− (2Ks − λ)

‖∇ f‖2

q
.

Notice that the first term is nonnegative and that ‖∇f‖2/q ≤ 1. Consequently,

−∆ ln q ≥ −λ+ 2 min(Ks, 0).

2.6.1 Contractible nodal domains.

Let γ(s) : I → Σ be the arclength parametrization of a smooth curve γ. We define

an adapted orthonormal frame {e1, ν}, by e1 = α′(s) and ν as a unique normal vector

to e1 making the frame into a positively oriented basis of Tα(s)Σ. Following [22], we

define the geodesic curvature of the curve γ as

κ(s) = 〈∇1e1, ν〉 = −〈∇1ν, e1〉.

Since γ is a 1-dimensional submanifold in Σ we immediately obtain (from (48), (49))

κν(s) = `ν(e1, e1)(γ(s)) = Kν(γ(s)) = Hν(γ(s)).

Clearly, κν changes the sign depending on a choice of ν: −κν = κ−ν . Recall that for

an orientable surface Σ the Euler characteristic of Σ, χ(Σ), can be calculated

as follows;

χ(Σ) = 2− 2 g(Σ)− k, (60)
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where g(Σ) is the genus of Σ and k is a number of boundary components. Furthermore,

we have the famous Gauss-Bonnet Theorem in our disposal.

Theorem 2.6.9 (Gauss-Bonnet Theorem). Let Σ be a Riemannian surface with or

without boundary

2πχ(Σ) =

∫
Σ

Ks +

∫
∂Σ

κ (61)

where Ks is the sectional curvature of TpΣ (equal to the scalar curvature of Σ at p)

and κ denotes the geodesic curvature of ∂Σ.

(Notice that the integral
∫

∂Σ
κ is independent on the choice of ν in κ = κν since

a different choice of ν changes the orientation of ∂ Σ).

Now we state the main theorem of this section which is inspired by Lemma 11 in

[62].

Theorem 2.6.10. Let Ω ⊂ Σ be a nodal domain of the solution u to (7) with λ =

const, and let K± be the positive (negative) part of the scalar curvature Ks of Σ. If

Ω is diffeomorphic to a 2-disc D2 with regular boundary then

4π − 2
∫

Ω
K+

Vol(Ω)
≤ λ. (62)

Proof. Based on facts from the beginning of this section, Equation (7) and Proposition

2.6.5, we have the following formula for the geodesic curvature of ∂Ω:

κν = Hν =
∆Σu

‖∇u‖
+

1

2
〈∇ ln‖∇u‖2, ν〉 =

1

2
〈∇ ln‖∇u‖2, ν〉, (63)

where ν = ∇u/‖∇u‖ points towards {u > 0}, and the last equality is a consequence

of (7). Assume that u > 0 on Ω so that −ν points outwards (it can be done without

loss of generality since both u, and −u satisfy (7)). Moreover the function q from

Dong’s Lemma 2.6.8 satisfies,

q �∂Ω= (‖∇u‖2 +
λ

2
u2) �∂Ω= ‖∇u‖2 ⇒ κν =

1

2
〈∇ ln q, ν〉.
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By Green’s formula (see e.g. [19], p. 7, noting that ∆ = −div◦∇, and the orientation

e1 of ∂Ω is chosen so that {−ν, e1}, agrees with the orientation of Ω, this is an opposite

convention to (61) which justifies the minus sign on the right hand side) we obtain

−1

2

∫
Ω

∆ ln q = −
∫

∂Ω

1

2
〈∇ ln q,−ν〉, ⇒

1

2

∫
Ω

∆ ln q =

∫
∂Ω

κν =

∫
∂Ω

κ ,

in the last integral the orientation the same as in (61). Applying estimate (59) and

Gauss-Bonnet Theorem we obtain ∫
∂Ω

κ ≤ λ

2
Vol(Ω)−

∫
Ω

K−

2πχ(Ω)− (

∫
Ω

K+ +

∫
Ω

K−) ≤ λ

2
Vol(Ω)−

∫
Ω

K−

2πχ(Ω)−
∫

Ω

K+ ≤ λ

2
Vol(Ω).

Now, the claim follows from (60), since χ(D2) = 1.

Corollary 2.6.11. If Σ is a nonpositively curved surface (i.e. Ks ≤ 0) of volume V

then a necessary condition for Ω ∼= D2 is

4π

V
≤ λ. (64)

Proposition 2.6.12 ([19], p. 251). For any compact surface Σ with diameter d(Σ),

the k-th eigenvalue λk(Σ) satisfies,

λk(Σ) ≤ 1

4
+
( 2πk

d(Σ)

)2

. (65)

Combining Proposition 2.6.12 with Theorem 2.6.10 leads to the following inequal-

ity for λ = λk,

4π − 2

∫
Ω

K+ ≤ Vol(Σ)
(1

4
+
( 2πk

d(Σ)

)2)
, ⇒

d(Σ)
(16π − Vol(Σ)− 8

∫
Ω
K+

16π2 Vol(Σ)

) 1
2 ≤ k. (66)

Therefore, for negatively curved surfaces one obtains
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Proposition 2.6.13. A necessary condition for the nodal domain of a k‘th-eigenfunction

to be a disc on a surface Σ of nonpositive curvature (Ks ≤ 0) is

d(Σ)
( 1

πVol(Σ)
− 1

16π2

) 1
2 ≤ k,

and if Vol(Σ) = 1, then d(Σ) ≤ 89

50
k. (67)

It would be desirable to extend the above results to the case when λ (in (7)) is not

constant, i.e. a smooth positive function (λ > 0, λ ∈ C∞(Σ)). This however requires

an appropriate extension of Dong’s Lemma which does not yet exist. At this point I

may only offer the following remark.

Remark 2.6.14. If we allow λ (in (7)) to be a positive function and assume that

‖∇u‖ = const along ∂Ω, then κ = 1
2
〈∇ ln‖∇u‖2, ν〉 = 0 (by (63)). Consequently ∂ Ω

is geodesic. The Gauss-Bonnet Theorem then tells us the necessary and sufficient

condition for Ω ∼= D2 to be a disc, namely,

2π =

∫
Ω

Ks. (68)

2.6.2 Examples of surfaces with homotopically essential nodal curves.

We conclude this section by indicating a family of surfaces of constant negative cur-

vature (Ks = −1) which have homotopically essential nodal curves for low (i.e. small

k) eigenvalues λk. These examples have been built by Buser (see [19], p. 248 for

an exposition), and they are intended to show existence of surfaces with arbitrarily

small eigenvalues. In the context of Corollary 2.6.11, this is exactly what one must

achieve to violate the necessary condition, in Theorem 2.6.10, for a contractible nodal

domain. Here we briefly review Buser’s construction and point out details that are

relevant for us.

If Σ is a complete Riemannian surface with Ks = −1, then its universal cover is

H2; and if Σ is compact, it must have genus g(Σ) ≤ 2. Recall that along a given
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Figure 3: Quadrilateral Q on the hyperbolic plane H2.

geodesic γ parameterized by the arc-length t, we may express the metric in local

coordinates via an exponential map (so called Fermi coordinates) as follows,

ds2 = dt2 + η2(r, t) dr2, dV = η(r, t)dt dr (69)

where r parameterizes orbits of a unit vector field orthogonal to the geodesic γ. Note

that when Ks = −1 we have η(r, t) = cosh t.

Surfaces constructed by Buser are built from so called Löbell pieces. Namely,

one considers the quadrilateral Q of Figure 3, in the hyperbolic plane H2, where

ϕ = π/3, and place six copies of Q centered at the vertex D, which results in a

hexagon H, see Figure 4. We label geodesic segments bounding H: α1, β1, α2, β2, α3,

β3 and denote their lengths by L(αi) = 2R, L(βj) = 2T . The next step is to form

the pair of pants ΩL (i.e. S2 with three discs removed), which is called the Löbell

Y -piece [19], by gluing H to its copy H̃ along geodesics βj and β̃j. Let γj be the

bounding geodesic obtained from αj and α̃j, j = 1, 2, 3. Clearly each γj has length

4R, and the area of Löbell Y -piece ΩL equals (by (61), and (60)) to

Vol(ΩL) = 2π. (70)

Also notice the formula relating R and T in in the hyperbolic metric, [19]:

1

2
= (sinhR)(sinhT ). (71)
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Therefore we may think about {ΩL} as a family of surfaces parametrized by R.

Lemma 2.6.15 ([19] p. 249). For a Löbell Y -piece ΩL satisfying R < arcsinh( 1
2 sinh 1

),

i.e. T > 1, the lowest Dirichlet eigenvalue λ(ΩL) of ΩL satisfies

λ(ΩL) ≤ 12R sinh 1

2π − 12R sinh 1
. (72)

Proof. Notice that the injectivity radius along γj is greater equal to T and T > 1.

Consequently the collars:

Dj = {x ∈ ΩL : dist(x, γj) < 1}, j = 1, 2, 3

are disjoint. Recalling the formula for the area element in the hyperbolic metric we

compute the area of Dj’s,

Vol(Dj) =

∫ 1

0

∫
γj

cosh t dt dr = L(γj)

∫ 1

0

cosh t dt = 4R sinh 1.

Now, consider the test function φ on ΩL:

φ(x) =

 dist(x, ∂ΩL), dist(x, ∂ΩL) ≤ 1;

1, otherwise.
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Since dist(r, t, ∂ΩL) =
∫ t

0
dτ = t, we obtain,∫

ΩL

‖∇φ‖2 dV =
3∑

j=1

Vol(Dj) = 12R sinh 1.

∫
ΩL

φ2 dV ≥ Vol(ΩL)−
3∑

j=1

Vol(Dj) = 2π − 12R sinh 1.

The estimate (72) follows from the Rayleigh’s quotient (10).

Using Löbell pieces one can built closed orientable surfaces Σ of an arbitrary

genus g(Σ). We take 2 g(Σ) − 2 copies of ΩL: Ω1, Ω2,. . . , Ω2g(Σ)−2, such that Ωk

has the boundary geodesic γk,j. Identify γk,2 with γ−1
k+1,3 (reversed orientation) for

all k = 1, 2, . . . , 2g(Σ) − 3, and γ2g(Σ)−2,2 with γ−1
1,3 , also identify γ2l−1,1 with γ−1

2l,1 for

all l = 1, . . . , g(Σ) − 1. The result is the Löbell surface Σ i.e. a compact orientable

surface of genus g(Σ) and Ks = −1. Since we used 2g(Σ)− 2 copies of ΩL to produce

Σ, the Domain of Monotonicity Theorem 2.2.5 combined with the above estimate

imply,

λ2g(Σ)−3(Σ) ≤ λ(ΩL) ≤ 12R sinh 1

2π − 12R sinh 1
. (73)

It is clear that the right hand side tends to zero as R→ 0, which implies the following

Theorem 2.6.16 (Buser [17]). Given any ε and any positive integer g ≥ 2, there

exists a compact orientable surface Σ of genus g(Σ) such that

λ2g(Σ)−3(Σ) < ε.

The important point for our purposes is that the area Vol(Σ) of the Löbell surface

Σ is independent of R, and given by (from (71)),

Vol(Σ) = 4(g(Σ)− 1)π. (74)

As a consequence of Theorem 2.6.10, (73), and (74), we obtain the main theorem of

this subsection.
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Theorem 2.6.17. Let Σ be a Löbell surface satisfying

R <
π

6 g(Σ) sinh 1
. (75)

Nodal domains of eigenfunctions on Σ corresponding to eigenvalues: λ1, . . . , λ2g(Σ)−3,

cannot be discs with smooth boundary.

Results of the previous sections tell us that perturbing the metric on the Löbell

surface satisfying (75) assures homotopically essential nodal curves.
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CHAPTER III

ON THE GEOMETRY OF CONTACT

STRUCTURES

A contact structure ξ is a non-integrable distribution of planes on a 3-manifold

(ie. ξ is a rank 2-subbundle of TM , which can be thought of as being as far from a

2-dimensional foliation as possible). One of the first results concerning contact struc-

tures comes from Martinet, [54], who shows that every orientable 3-manifold admits

a contact structure. Investigation of these structures in the setting of Riemannian

geometry was first probably first initiated by Chern and Hamilton, in [21], where

the authors investigate a version of the Yamable problem in this setting. Their main

theorem states that an arbitrary adapted metric can be conformally deformed to a

metric of a constant Webster curvature (see [21]).

Recently, the 3-dimensional topology of contact structures has received a lot of

attention from topologists, and has been a source of new invariants (e.g. contact

homology [24], knot invariants [32]). One of the major open problems in the field is

the classification of contact structures up to isotopy, which uncovered two different

classes of contact structures: overtwisted and tight, introduced by Bennequin and

Eliashberg ([11], [25]). In this chapter we relate tightness and overtwistedness to the

geometry of adapted metrics, which was formulated as Problem 1.0.2 in Chapter 1.

In Section 3.1 of this chapter we describe adapted metrics in detail and address

the problem of local compatibility of an arbitrary metric with a prescribed contact

structure. We devote Section 3.2 to the introduction and more detailed investigation

of the classes of tight and overtwisted contact structures, including the technique
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of dividing curves and characteristic surfaces. This technique provides, in certain

circumstances, sufficient means to distinguish these classes. In Section 3.3 we show

that characteristic surfaces are nodal sets of solutions to certain subelliptic PDEs.

Section 3.2.1 is devoted to the proof of Giroux’s Theorem, which classifies S1-invariant

contact structures on S1-principal bundles. Giroux’s Theorem is the main topological

ingredient in the proof of the main result of this chapter, proven in Section 3.4.

3.1 Contact structures and adapted metrics.

Throughout this section and the rest of the chapter we work with orientable con-

tact structures defined on 3-dimensional manifolds, a pair (M, ξ) is often called the

contact manifold.

Every orientable contact structure ξ is always defined by a kernel of a 1-form α,

which is also called the contact form. The nonintegrability of ξ may be expressed

in terms of α as follows;

α ∧ dα 6= 0, α ∈ Ω1(M3). (76)

Contact structures admit a local model, specifically we have the following;

Theorem 3.1.1 ([36]). Any contact form α locally is diffeomorphic to the standard

contact form: α0 = dz+x dy. Namely, for each neighborhood U of a point p ∈M ,

there exists a diffeomorphism φ of U ; φ : V → U , V ⊂M such that φ∗α = α0.

Notice that Equation (76) simply says that the line field defined by ker(dα) =

{X : dα(X, · ) ≡ 0} is transverse to ξ = kerα. This line field is spanned by a vector

field which is of special importance.

Definition 3.1.2. Given a contact form α, the Reeb field of α is the unique vector

field Xα satisfying

α(Xα) = 1, LXαα = 0. (77)
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Cartan’s formula yields

ι(Xα) dα = 0, so Xα ∈ ker(dα). (78)

(Here ι(X) contracts dα by X i.e. ι(X) dα = dα(X, · ). The operation ι(X) is well

defined for an arbitrary differential form.)

In Riemannian geometry, vector fields dual to contact forms are often called curl

eigenfields or more generally Beltrami fields. This justifies the following;

Definition 3.1.3. Let (M, g) be a Riemannian manifold. We call a 1-form α a

µ-Beltrami form, or simply a Beltrami form iff it satisfies

∗ dα = µα, µ 6= 0, µ ∈ C∞(M), (79)

where ∗ is the Hodge star operator and µ a nonzero smooth function. If µ ≡ const

then α is an eigenform of the curl operator ∗ d, i.e. the curl eigenform, and the

dual vector field is called the curl eigenfield.

The theory of elliptic operators, [7], tells us that Beltrami forms exist on an

arbitrary Riemannian manifold since the curl always has eigenforms. The relation of

Beltrami forms to contact structures comes from the following;

Proposition 3.1.4. A given Beltrami form α defines a contact structure on the

complement of the zero set α−1(0) of α.

Proof. We check the nonintegrability condition (76),

α ∧ dα = µα ∧ ∗α = µ ‖α‖2 ∗ 1.

Consequently, α ∧ dα 6= 0 iff α 6= 0.

In the rest of this chapter all Beltrami forms, unless stated otherwise, are assumed

to be nonsingular (i.e. everywhere nonvanishing).
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Definition 3.1.5. Given a contact form α, we say that a Riemannian metric is

adapted to α if Equation (79) holds. We also refer to such metrics as adapted

metrics.

In Chapter 4 we discuss the importance of Beltrami forms in fluid mechanics and

the physics of plasmas, but here we focus on their “contact geometric aspect”. In

the remaining part of this section we explore contact structures in the context of

metric adaptation. The following result provides a useful characterization of adapted

metrics;

Lemma 3.1.6. Locally, for a given contact form α, a choice of a metric g adapted

to α is equivalent to a choice of a local frame of vector-fields {e1, e2, e3} that satisfy:

(1) e1 = v Xα, where Xα is a Reeb field of α and v a positive function, and

(2) ξ = span{e2, e3}.

Remark 3.1.7. Moreover, one may define an almost complex structure J : ξ 7→ ξ on

ξ in terms of the frame {e2, e3} as follows;

(3) Je2 = −e3, Je3 = e2.

Proof. We show both implications:

“⇒”: Given an adapted metric g to a contact form α, we have the unique dual

vector field X such that α( · ) = g(X, · ). We define e1 = X/‖X‖ and choose arbitrary

frame on ξ satisfying (2). Let {ηi} be the dual co-frame to {ei}. Using Equation (79)

we show (1):

ι(X)dα = ι(X)µ ∗ α = ι(e1)µ ‖X‖ ∗ η1 = ι(e1)µ ‖X‖η2 ∧ η3 = 0, (80)

By (78), we conclude that e1 = v Xα for some v 6= 0.

“⇐”: Let {ei} be an adapted frame to α i.e. the frame satisfying (1) and (2),

and {ηi} the co-frame. We show that g =
∑

i η
2
i is adapted to α. By (2): e1 ⊥ ξ
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therefore α( · ) = g(X, · ) for X = h e1 = h v Xα and η1 = wα, for positive functions

v, h, w > 0. Notice the following relations among v, h, w;

e1 = v Xα, e1 =
Xα

‖Xα‖
⇒ v =

1

‖Xα‖
,

η1( · ) = g(e1, · ) = g(v Xα, · ) =
1

h
g(X, · ) =

1

h
α( · ) ⇒ w = h,

1 = α(Xα) = g(X,Xα) = h v ‖Xα‖2 ⇒ h =
1

‖Xα‖
.

Therefore v = w = h = 1/‖Xα‖. Since ι(e1)dα = vι(Xα)dα = 0, one obtains,

0 = ι(e1)dα = ι(e1) [aη1 ∧ η2 + bη1 ∧ η3 + cη2 ∧ η3] = aη2 + bη3 ⇒ a = b = 0

⇒ dα = c η2 ∧ η3 = c ∗ η1 = c v ∗ α.

We obtain (79) by defining µ = c v. Notice that µ 6= 0 since α ∧ dα 6= 0.

Lemma 3.1.8. Locally, let {e1, e2, e3} be the frame defined in Lemma 3.1.6 and

{η1, η2, η3} the co-frame. We have the following formula for the adapted metric g:

g(X, Y ) =
∑

i

η2
i (X, Y ) =

1

v2
α(X)α(Y ) +

2 v

µ
dα(X, JY ), (81)

where µ = v dα(e2, e3) = v α([e2, e3]) and v = ‖Xα‖.

Proof. Since η1 = 1
v
α and

dα( · , J · ) =
µ

v
η2 ∧ η3( · , J · ) =

µ

2 v
[η2( · )⊗ η3(J · )− η3( · )⊗ η2(J · )]

=
µ

2 v

(
η2

2( · , · ) + η2
3( · , · )

)
,

where the last equality follows from (3). We have,

g( · , · ) =
∑

i

η2
i ( · , · ) =

1

v2
α2( · , · ) + η2

2( · , · ) + η2
3( · , · )

=
1

v2
α2( · , · ) +

2 v

µ
dα( · , J · ).
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Now we may conclude the global existence of adapted metrics in the following,

Theorem 3.1.9. Given an arbitrary contact form α, one may always adapt the Rie-

mannian metric g to α, such that Equation (79) is satisfied on (M, g).

Proof. Indeed, by the formula (81) for g in Lemma 3.1.8, it is sufficient to choose

a global almost complex structure J : ξ 7→ ξ, ξ = kerα, and a vector e1 = v Xα,

where v is an arbitrary positive function. Then the metric defined by (81) will be an

adapted metric.

In order to define J globally, let gξ be an arbitrary metric on ξ (e.g. a metric

induced from a global metric on M) and let J be the rotation by π/2 in (ξ, gξ).

Remark 3.1.10. Formula (81) suggests that the moduli space of all metrics adapted

to α can be locally parametrized by v and J .

A special case of adapted metric occurs when Xα is the unit vector field in the

metric, this is the case introduced by Chern and Hamilton in [21]. We obtain their

result as a consequence of Theorem 3.1.9 in the following;

Theorem 3.1.11 ([21]). For every choice of a contact form α and an almost complex

structure J : ξ 7→ ξ, ξ = kerα. There exists a unique Riemanian metric adapted to α

such that

∗ dα = 2α, α ∧ ∗α = ∗1.

Adapted metrics with unit Reeb field Xα described by Chern and Hamilton in

[21] admit local obstructions. Guildfoyle, in [43] shows:

Theorem 3.1.12 ([43]). A hyperbolic metric cannot be the adapted metric for a

contact form with a unit length Reeb field. Every smooth contact form on R3 adapted

to a flat metric is contact isometric to R3 with the standard metric and adapted contact

1-form: β1 = sin(µ z)dx + cos(µ z)dy. Every smooth contact form on R3 adapted to

49



an elliptic metric is contact isometric to an open subset of S3 with the round metric

and standard adapted contact 1-form β2 = 1
λ
xdy− ydx+ zdw−wdz induced from R4.

Remark 3.1.13. When ‖Xα‖ 6= 1 one expects more flexibility in metrics adapted

to α. Indeed, following examples in [16] (Example 3.7, p. 93) one shows that in the

class of analytic metrics the equation

∗ dα = µα, µ = const,

may always be locally solved for a nonvanishing 1-form α, and an arbitrary choice of

the constant µ. Consequently, e.g., the hyperbolic metric can be an adapted metric

for some contact structure at least locally, which is not the case when ‖Xα‖ = 1.

3.1.1 Local compatibility of contact forms and Riemannian metrics

Lemma 3.1.6 tells us that a metric adapted to α is essentially determined by choosing

the normal vector to the contact planes to be proportional to the Reeb vector field Xα.

Multiplication by a positive function u does not change the contact plane distribution

determined by α, but the resulting 1-form α′ = uα has a different Reeb field Xα′ .

The following natural question arises:

Problem 3.1.14. Let ξ be a contact plane distribution defined on an open domain

(U, g), equipped with an arbitrary Riemannian metric g. Is it possible to find a contact

form α, ξ = kerα, such that α satisfies Equation (79) on a possibly smaller open

subset of (U, g)?

In the remainder of this section we address this problem and give a negative

answer. We also derive an obstruction or, in the language of [16], a compatibility

condition.

We begin by investigating how the Reeb field changes under rescaling a contact

form by a positive function. Let us choose a random contact form β such that ξ =

ker β. Let α be a different contact form which satisfies ξ = ker α. We assume that
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both α and β induce the same positive orientation on U , i.e. α∧ dα > 0, β ∧ dβ > 0.

Then for some positive smooth function v ∈ C∞(M), v > 0, the Reeb field Xα of α

satisfies the following unique decomposition,

Xα = v Xβ + Yξ, Yξ ∈ ξ,

where Xβ is the Reeb-field of β. We choose α = u β, u ∈ C∞(M), u > 0. Since

β(Yξ) = 0, β(Xβ) = 1 and dβ(Xβ, · ) = 0 we obtain

ι(Xα) dα = 0; dα = d u ∧ β + u dβ ⇒ du(Xα) β − β(Xα) du+ u dβ(Xα, ·) = 0 ⇒

du(v Xβ + Yξ) β − β(v Xβ + Yξ) du+ u dβ(v Xβ + Yξ, ·) = 0 ⇒

du(Xα) β( · )− v du( · ) + u dβ(Yξ, · ) = 0. (82)

Equation (82) must hold when restricted to ξ. Therefore

−v du( · ) + u dβ(Yξ, · ) = 0, ⇒

dβ(Yu, · ) �ξ= du( · ) �ξ, where Yu =
u

v
Yξ. (83)

Since dβ �ξ is a symplectic form on ξ, Equation (83) has a solution for any u in form

of a Hamiltonian vector field Yu. Then Yξ is determined uniquely in terms of Yu, as

in (83). Equation (83) also tells us

du(Yu) = 0 ⇒ du(Yξ) = LYξ
u = 0, (84)

that is, Yξ must be tangent to the level sets of u. The uniformization α(Xα) = 1 and

β(Xβ) = 1 also determines a relation between u and v:

1 = α(Xα) = uβ(v Xβ + Yξ) = u v, u =
1

v
. (85)

Based on these considerations we may now approach Problem 3.1.14. Lemma 3.1.6

implies that the metric is adapted to the contact form α iff:

(1) the orthogonal vector field to ξ is proportional to the Reeb field Xα;

(2) the metric on ξ is conformally equivalent to dα( · , J · ), for some choice of J .
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Given a contact structure ξ and an arbitrary Riemannian metric g, it is easy to find

a contact form β that satisfies the condition (2). Indeed, since dβ is a nondegenerate

symplectic 2-form on ξ the condition (2) follows since it is sufficient to choose J which

is a rotation by π/2 in terms of g restricted to ξ. However there is no reason for Xβ

to be orthogonal to ξ in g, i.e. the condition (1) does not need to hold.

Consequently, we seek a positive function u such that α = u β and Xα ⊥ ξ.

Choose a local orthonormal frame of vector fields adapted to ξ:

{e1, e2, e3}, and e1 ⊥ ξ.

Denote by {ηi} the dual co-frame. In order to obtain (1) we need to find an ap-

propriate u. Given the unique decomposition e1 = aXβ + eξ, we require e1 to be

proportional to Xα i.e.

Xα = w e1 = w aXβ + w eξ, for some w > 0.

By Equation (83), we must show that w eξ satisfies,

u

w a
dβ(w eξ, · ) �ξ= du( · ) �ξ ⇔ dβ(

eξ

a
, · ) �ξ= d(lnu)( · ) �ξ . (86)

Notice that the rescailing factor w is irrelevant for this equation. Equation (86) may

be expressed as follows;

γ + ψ α = d h where γ = dβ(eξ/a, · ), h = lnu. (87)

for some function ψ. By the Poincaré’s Lemma (see e.g. [14]) the 1-form γ + ψ α is

locally exact if and only if it is locally closed. Applying the exterior derivative to (87)

we obtain

d γ + dψ ∧ α + ψ dα = 0. (88)

Choosing a smaller neighborhood U , if necessary, we may define the local coordinate

system (x, y, z) on U such that β = dz + x dy (see Theorem 3.1.1). Expressing
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Equation (88) in coordinates (x, y, z) we obtain

(A+ x ∂xψ + ψ) dx ∧ dy + (B + ∂x ψ) dx ∧ dz + (C + ∂yψ − x ∂zψ)dy ∧ dz = 0,

where dγ = Adx∧ dy+B dx∧ dz +C dy ∧ dz. This leads to the system of equations

for ψ, 
A+ x ∂xψ + ψ = 0,

B + ∂x ψ = 0,

C + ∂yψ − x ∂zψ = 0.

(89)

Now, we investigate these equations using the convenient language of exterior differ-

ential systems (EDS), [16], on 1-jet space: J1(R3,R) ∼= R3 × R× R3. In coordinates:

(x, y, z, ψ, p, q, r) on J1(R3,R), the system (89) is equivalent to the following EDS:

{F (x, y, z, ψ, p, q, r) = 0} ≡


A+ x p+ ψ = 0,

B + p = 0,

C + q − x r = 0

ς = dψ − p dx− q dy − r dz = 0,

dς = −dp ∧ dx− dq ∧ dy − dr ∧ dz = 0,

{dF = 0} ≡


θ1 = dA+ p dx+ x dp+ dψ = 0,

θ2 = dB + dp = 0

θ3 = dC + dq − r dx− x dr = 0

(90)

By the Frobenius Theorem, [16], the solution to (90) exists iff the differential ideal

Idiff = 〈F, ς, dF, dς〉 in Ω∗(U) is generated algebraically by Ialg = 〈F, ς〉. In the

following, we uncover an obstruction to this condition.

Substitution in θ1 gives

dA+ x dB + 2B dx+ q dy + r dz = 0. (91)

Applying dx ∧ dy to both sides of Equation (91) we obtain

dA ∧ dx ∧ dy + x dB ∧ dx ∧ dy + r dx ∧ dy ∧ dz = 0 ⇒

−∂zA− x ∂zB = r. (92)
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Applying dx ∧ dz to both sides of Equation (91) leads to

dA ∧ dx ∧ dz + x dB ∧ dx ∧ dz − q dx ∧ dy ∧ dz = 0 ⇒

−∂yA− x ∂yB = q. (93)

Substitution of (92), (93) into d ς yields

dB ∧ dx+ d(∂yA+ x ∂yB) ∧ dy + d(∂zA+ x ∂zB) ∧ dz = 0.

This uncovers the following compatibility condition;
∂x∂yA+ ∂x∂yB = 0,

∂x∂zA+ ∂z∂xB = 0,

∂z∂yA+ x∂z∂yB − ∂y∂zA− x∂y∂zB = 0.

(94)

Remark 3.1.15. Clearly, one may expect other compatibility conditions, e.g. in-

volving the C component of dγ.

We summarize our considerations in the following;

Theorem 3.1.16. Given a contact structure ξ, in a local neighborhood (U, g) (where

g is a prescribed Riemannian metric), the condition defined in (94) is necessary to

existence of a contact form α, kerα = ξ, which satisfies Equation (79) in g.

Remark 3.1.17. [A counterexample for the standard contact form α0 = dz + x dy]

Choose a Riemannian metric g on R3 such that the vector field e1 = ∂z + x3 y ∂x is

unit normal to ξ0 = kerα0 in g. The following shows that g cannot be adapted to ξ0.

Clearly e1 is transverse to ξ0, since α0(e1) = 1 and

γ( · ) = dα0(e1, · ) = x3 y dy, and dγ = 3x2 y dx ∧ dy,

A = 3x2 y, B = C = 0.

This contradicts the first equation in (94), since ∂x∂yA+ ∂x∂yB = 6x 6= 0.
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3.2 Tight and overtwisted contact structures.

It has been known since the work of Bennequin and Eliashberg [11, 26] that there are

two fundamentally different classes of contact structures.

Definition 3.2.1. A contact structure ξ is overtwisted if and only if there exists

an embedded disc D2 ⊂M such that D is transverse to ξ near ∂D but ∂D is tangent

to ξ. Any contact structure which is not overtwisted is called tight. If all the covers

of a structure are tight then we call it universally tight.

These concepts arise in the context of the classification of contact structures up

to isotopy. We say that two contact structures ξ0 and ξ1 are isotopic iff there exists

a homotopy of plane fields ξt, 0 ≤ t ≤ 1, such that ξt is a contact plane distribution

for all t. Eliashberg, [25], showed the following fundamental theorem for the class of

overtwisted structures.

Theorem 3.2.2 (Eliashberg, [25]). Given a closed compact 3-manifold M , let π0(Λ
2(M))

be the set of homotopy classes of oriented plane fields on M , and let C0 be the set of

isotopy classes of oriented overtwisted contact structures on M . The natural inclusion

map C0 ↪→ π0(Λ
2(M)) is a homotopy equivalence.

An abundance of information concerning the isotopy classes of contact struc-

tures, comes from knots embedded in a contact manifold (M, ξ). One distinguishes

transversal knots (i.e. curves everywhere transverse to ξ) and Legendrian

knots (i.e. curves everywhere tangent to ξ). For a transversal null-homologous

curve γ we may define the self linking number l(γ) = lk(γ, γ′) as a linking number

between γ and a curve γ′ obtained by an ε-push off along a nonvanishing vector field

X on Seifert surface Σ of γ (i.e. ∂ Σ = γ), where X is everywhere tangent to ξ. It is

shown in [11] that l(γ) is independent of all choices, i.e. Σ and X.

One of the first techniques for detecting a class of contact structures involves

Bennequin’s Inequality.
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Theorem 3.2.3 (Bennequin’s Inequality, [11]). If γ is a transverse null-homologus

knot in a tight contact structure (M, ξ), then

l(γ) ≤ −χ(Σ), (95)

where Σ is a Seifert surface of γ.

It can be easily argued that if ξ is overtwisted than (95) is violated for some trans-

verse null-homologus knot. In [11], Bennequin proves that any knot in R3 transverse

to the standard contact structure ξ0 ≡ {dz + x dy = 0} satisfies (95) which implies

the following;

Theorem 3.2.4 (Bennequin, [11]). The standard contact structure (R3, ξ0) is tight.

For closed embedded surfaces one has a version of inequality (95) due to Eliasherg

Theorem 3.2.5 (Eliashberg, [26]). Let (M, ξ) be a tight contact manifold and Σ and

embedded surface in M . If e(ξ) denotes the Euler class of ξ, then

|e(ξ)[Σ]| = |
∫

Σ

e(ξ)| ≤

 −χ(Σ), if Σ 6= S2;

0, Σ = S2.
(96)

More recent local technique of detecting tightness/overtwistedness of a contact

structure involves the characteristic surfaces and dividing curves.

Definition 3.2.6. Given a contact manifold (M, ξ) a vector field X is called contact

iff the flow ϕt of X preserves ξ, i.e.

ϕt
∗ξ = ξ. (97)

In terms of a contact form α defining ξ, (97) implies

LXα = hα, h ∈ C∞(M), h̃ ≥ 0. (98)

In (98), when h = 0 the contact field X also preserves the contact form α. This special

case however implies restrictions on the topology of M , see Section 3.3. Obviously,
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the Reeb field Xα is an example of a contact field which is transverse to ξ. Contact

fields which are not everywhere transverse to ξ are of special importance.

Definition 3.2.7. Given a contact vector field on (M, ξ), the set of tangencies ΓX =

{p ∈M : Xp ∈ ξp} is called the characteristic hypersurface of X in ξ.

Given an embedded surface Σ in the contact manifold (M, ξ), and a transverse

contact vector field X t Σ, the intersection of ΓX with Σ is called the dividing set,

ΓΣ = ΓX ∩ Σ. The importance of this set comes from the following criteria due to

Giroux [41];

Theorem 3.2.8 (Giroux, [41]). Given an embedded orientable surface Σ in the con-

tact manifold (M, ξ) and a contact vector field X transverse to Σ, we have the fol-

lowing:

(i) ΓΣ is a set of smooth curves, independent (up to isotopy) of the choice of the

contact vector field X.

(ii) if Σ 6= S2, then ξ has a tight tubular neighborhood iff none of the components

in ΓΣ bounds a disc.

(iii) if Σ = S2, then ξ has a tight tubular neighborhood iff ΓΣ is connected.

In a contact manifold (M, ξ), an embedded surface Σ admitting a transverse con-

tact vector field is called convex surface. Convex surfaces exist in abundance, or

more precisely are generic, as the following result states.

Theorem 3.2.9 (Honda [47]). Given an arbitrary embedded surface Σ, which is either

closed or has a Legendrian boundary, there exists a smooth perturbation Σ′ of Σ which

is convex.

Theorem 3.2.10 (Honda [47]). Two contact structures ξ, ξ′ which have isotopic

dividing sets on a convex surface Σ are isotopic as contact structures in a tubular

neighborhood of Σ.
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Interpretation of the self-linking number l(γ) of a transverse curve γ in (95) (and

similarly of e(ξ)[Σ]) becomes more transparent in this setting. Specifically, given a

convex surface Σ with a dividing set ΓΣ we denote by Σ+, Σ− the components of

Σ \ Γ = Σ+ ∪ Σ−, where the orientation of Σ and ξ agree “+” and disagree “−”, i.e.

Σ+ = f−1([0,+∞)), Σ− = f−1((−∞, 0]), where f = α(X), ξ = kerα, and X is a

contact vector field. The following formula holds:

e(ξ)[Σ] = χ(Σ−)− χ(Σ+). (99)

Notice that components of ΓΣ are always transverse curves to ξ. Let γ ⊂ Σ be a closed

curve transverse to ΓΣ, and Σγ ⊂ Σ be a Seifert surface for γ. Let Σ+
γ = Σγ ∩ Σ+,

Σ−
γ = Σγ ∩ Σ−, we have the following

l(γ) = χ(Σ−
γ )− χ(Σ+

γ ). (100)

3.2.1 Contact structures on S1-fibered spaces.

In this subsection we state and prove the result by Giroux concerning the classification

of S1-invariant contact structures on circle bundles over orientable surfaces. Our goal

is to consider such structures in the Riemannian geometric setting later in this chapter.

In the case of a trivial fibration, Theorem 3.2.8 leads to the following;

Theorem 3.2.11 (Giroux, [42]). Let ξ be an S1-invariant contact structure on S1 ×

Σ, and let X be a contact vector field tangent to the S1-fibers. Denote by ΓS1 the

characteristic surface ΓX . Let Γ = π(ΓS1) be the projection of the characteristics

surface ΓS1 onto Σ then ξ is tight iff

(I) Σ 6= S2, none of the components of Σ \ Γ is a disc.

(II) Σ = S2, Γ is connected.

In the general case of circle bundles we have:
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Theorem 3.2.12 (Giroux, [42]). Let ξ be an S1-invariant contact structure on the

principal circle bundle π : P 7→ Σ. Let Γ = π(ΓS1) be a projection of the charac-

teristics surface ΓS1 onto Σ. Denote by e(P ) the Euler number of P . The following

holds.

(a) If ξ is tight and one of the connected components of Σ \ Γ bounds a disc, then Γ

has to be a single circle and e(P ) must satisfy e(P ) > 0, if Σ 6= S2

e(P ) ≥ 0, if Σ = S2.

(b) For ξ to be universally tight it is necessary and sufficient that one of the following

holds,

(b.1) Σ 6= S2 none of the connected components of Σ \ Γ is a disc.

(b.2) Σ = S2, e(P ) < 0 and Γ = Ø.

(b.3) Σ = S2, e(P ) ≥ 0 and Γ is connected.

Below we present Giroux’s proof of this theorem, which can be found in [42], p.

249 as Proposition 4.1.

Proof. The case of a trivial fibration (e(P ) = 0) is already covered in Theorem 3.2.11.

We prove (a) first. Assume that ξ is tight and the number of components in Σ \ Γ is

at least 3. Let H0 be a component of Σ \ Γ which is a disc, and H1 be a neighboring

component H1 ∈ Σ\Γ such that ∂H0 = ∂H1. We can form a surface with a boundary

E = H0 ∪H1 ⊂ Σ, (#Σ \Γ ≥ 3 ⇒ ∂E 6= ∅). Now, one chooses a section Ê of P over

E. Choosing an orientation of Ê in an appropriate way, one may satisfy:

(i) ∂Ê is positively transverse to ξ (i.e. the tangent vector to ∂Ê points in the

direction of the Reeb field Xα for α ∧ dα > 0, ξ = kerα);

(ii) H0 = Ê−, i.e. the orientations of ξ and TH0 disagree.
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Consequently, χ(Ê−) = 1 and l(∂Ê) = 1 − χ(Ê+), which contradicts the inequality

(95) which implies l(∂Ê) = 1 − χ(Ê+) ≤ −1 − χ(Ê+). Therefore, ξ is overtwisted

if #Γ ≥ 2 and one of the components in Σ \ Γ is a disc. Now, we establish the

inequality for the Euler number. Let e(P ) < 0 then there exist a sufficiently small

disc Q ⊂ Σ \ H0, and a section Ê over Σ \ Q such that Ê has properties (i), (ii),

which contradicts tightness.

Next, we show (b.1). Observe that if Σ 6= S2, the inverse image Γ̃ = π−1(Γ)

under a nontrivial finite cover π : Σ̃ → Σ has more then one component. Indeed,

Γ̃ is a projection of the characteristic surface of ξ̃ = π∗(ξ), (i.e. ξ̃ is obtained via a

pullback of ξ under the cover π : P̃ → P ). Consequently, if one of the components

of Γ bounds a disc the disc must lift to Σ̃. Therefore ξ̃ must be overtwisted and ξ

virtually overtwisted by similar reasoning to the proof in (a).

In the case Σ = S2, Lutz’s classification, [53], of universal covers (P̃ , ξ̃) of (P, ξ)

distinguishes, up to contactomorphism, two cases:

• if e(P ) = 0 then P̃ = S2×R = R3\{0}, and ξ̃ is defined via dz+x dy−y dx = 0

and is invariant under the flow: (x, y, z) → (etx, ety, e2tz).

• if e(P ) = ±1 then P̃ = S3 is a unit sphere in C2 and ξ̃ is defined through

z̄ dz + w̄ dw = 0, (z, w) ∈ C2, which is invariant under the flow of the vector

field (z, w) → (eιtz, e±ιtw).

In both of the cases Bennequin’s Inequality may be used to show tightness of ξ̃, as

proven in [11].

When Σ 6= S2 the universal cover of Σ is R2 and it suffices to show that the

structure ξ̃ on P̃ = R2×S1 is tight. Since all the components of Γ are essential in Σ,

the components of Γ̃ must be properly embedded lines in R2. Before the next step

we note the following lemma.
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Lemma 3.2.13. Let Σ be a compact orientable surface, R ⊂ Σ a compact subsurface

and v : Σ → R a function such that v, v � ∂S and v � ∂R have 0 as a regular value. Let

Γ = {v = 0}. If v 6= 0 on each component of Σ \ {R ∪ Γ}. Then any 1-form λ on R

satisfying

v dλ+ λ ∧ dv > 0 (101)

can be extended to Σ so that the above inequality is satisfied.

Proof. At a point of Γ, the inequality (101) implies that λ is transversal to dv. There-

fore we can easily extend λ to a tubular neighborhood U of Γ (we may think about a

vector field dual X to λ via a fixed volume form on Σ, transverse to Γ). On the other

hand at every point of Σ \ Γ we have v dλ + λ ∧ dv = v2 d(λ/v). By the assumption

each component D of Σ \ (R ∪ Γ) is such that ∂D contains at least one arc in Γ.

Shrinking the neighborhood U , if necessary, we can extend λ/v to a 1-form γ on D

in such a manner that dγ is positive (equivalently we may think of extending X to

the entire D so that divergence of X is positive).

Coming back to the main proof, the next step is to choose a sequence of discs

Dn, the boundaries of which meet Γ̃ transversally and exhaust R2 as n → ∞. We

will show that for every n: (Dn×S1, ξ̃) is tight by embedding domains Dn×S1, into

(S2×S1, ς), where ς is an S1-invariant contact structure with connected Γς (which is

tight by Theorem 3.2.11).

One may choose 1-forms defining ξ̃ and ς by β + u dt = 0 and λ + v dt = 0,

where t ∈ S1 and β, u (resp. λ, v) are a 1-form and a function on R2 (resp. S2).

Collections of curves Γ̃ and Γς are defined by u = 0 and v = 0. For each n ≥ 0, we

define an embedding φn : Dn → S2 which sends Γ̃ ∩Dn to Γς ∩ φn(Dn) and respects

orientations induced by u and v. Therefore, there exist functions hn : Dn → (0,+∞)

such that v ◦ φn = hn u and we define βn = hn β. By Lemma 3.2.13, we may extend

forms (φn)∗βn to the entire S2 by a 1-form λn satisfying v dλn + λn ∧ dv > 0. This is
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equivalent to the contact form v dt+λn defining a positive invariant contact structure

ςn on S2 × S1. By the construction

φn × id : (Dn × S1, ξ̃) → (S2 × S1, ςn),

defines a contactomorphic embedding. Since Γςn = {v = 0} = Γς , ςn is isotopic to ς

by Theorem 3.2.10. Consequently, ξ̃ is tight and ξ is universally tight.

3.3 Geometry of the characteristic surface.

Results of previous sections indicate that the topology of characteristic surfaces is an

indicator of tightness/overtwistedness for contact structures both on a local and a

global level. The goal of this section is to interpret the characteristic surface in the

Riemannian geometric setting of adapted metrics.

Since characteristic surfaces are defined via contact fields, we begin by providing

a useful characterization of contact vector fields (see also [41] and [13] p. 57).

Theorem 3.3.1. There is a one to one and onto linear correspondence Tα : Fξ →

C∞(M) between contact vector fields on (M, ξ):

Fξ = {X ∈ C∞(M,TM) : X is contact for ξ}

and the set of smooth functions C∞(M) on M . This correspondence is not canonical

and depends on a choice of a contact form α defining ξ. Moreover;

(i) Given contact forms α and α′ (ξ = ker(α) = ker(α′)). There exist a smooth

positive function f̃ such that Tα′ = f̃ Tα.

(ii) Fξ is a vector subspace of C∞(M,TM).

Proof. Given a contact form α, ξ = kerα, we define Tα as follows;

Fξ � X Tα−→ f = α(X) ∈ C∞(M).
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Notice that Tα is a bijection since any contact field X has a unique decomposition

X = f Xα + Yf , α(Yf ) = 0, f = α(X). (102)

where Xα is the Reeb field of α and Yf ∈ C∞(M, ξ). In order to show that Yf is

uniquely determined we apply Cartan’s formula for the Lie derivative and obtain

from Equations (77) and (78):

LXα = dα(X) + ι(X) dα = df + ι(Yf ) dα.

Therefore, by (98)

ι(Yf ) dα = h̃ α− df. (103)

Since the left-hand side of (103) is a 1-form and dα �ξ 6= 0, the vector field Yf is

uniquely determined.

Remark 3.3.2. Equation (103) also allows us to determine the relationship between

h̃ and f . Simply applying ι(Xα) to both sides of Equation (103) we obtain

h̃ = df(Xα). (104)

Concluding, a function f ∈ C∞(M) defines the unique contact field X = f Xα+Y .

Especially f ≡ 0 results in X ≡ 0.

For a different contact form α′ there always exists a positive function f̃ such that

α = f̃ α′. Let Xα and Xα′ be Reeb fields of α and α′. Since both are contact fields

we obtain

Xα = f̃ Xα′ + Yf̃ α′(Yf̃ ) = α(Yf̃ ) = 0. (105)

For any X ∈ Fξ we have

Tα(X) = Tα(f Xα + Yf ) = f = Tα(f f̃ Xα′ + (f Yf̃ + Yf )). (106)
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Since α(f Yf̃ + Yf ) = 0, we obtain Tα′(X) = f f̃ and

Tα′(X) = f̃ Tα(X). (107)

It follows from the linearity of the Lie derivative that Fξ is a vector subspace of

C∞(M,TM). The linearity of Tα is a direct consequence of Equation (103). Indeed,

given X1, X2 ∈ Fξ, and fi = Tα(Xi), i = 1, 2, we see that in the decomposition (102)

of aX1 +bX2 we have Ya f1+b f2 = a Yf1 +b Yf2 which follows from Equation (103).

Corollary 3.3.3. Any local contact field can be extended to a global contact field.

Corollary 3.3.4. If LXα = 0 for a contact field X then f = Tα(X) is an integral of

the Reeb field Xα (i.e. LXαf = 0). Consequently, Xα is tangent to the level sets of f

and M is foliated by T 2 ∼= S1 × S1 except possibly the singular level sets of f .

Proof. The statement is clear from Equation (104) and the fact that T 2 is the only

orientable surface admitting a nonvanishing vector field.

Now, we may better justify the statement of Definition 3.2.7. Clearly, given a

contact field X the characteristic surface ΓX equals to Tα(X)−1(0) = f−1(0). For a

generic X the function Tα(X) has 0 as a regular value. Therefore, ΓX is a codimension

one submanifold.

The next step in our investigation is to place ΓX in the setting of adapted metrics.

It is an essential part of our methodology and it allows us to approach Problem 1.0.2

specified in the introduction. The following result is a generalization of Lemma 2.7

from [52];

Theorem 3.3.5. Assume that X is a global contact vector field on the Riemannian

manifold (M, g) which preserves a Beltrami form α (i.e. LXα = 0). Let f = Tα(X) =

α(X). Denote by {e1 = X
‖X‖ , e2, e3} an adapted orthonormal frame and {η1, η2, η3}

the dual coframe.
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Then coefficients of α = ak ηk = f
v
η1 + a2η2 + a3η3 satisfy the following first order

system, 
∇1f = 0

∇2f = −µ v a3

∇3f = µ v a2

(108)

where v = ‖X‖ =
√
〈X,X〉.

Moreover, f satisfies the following subelliptic equation;

∆Ef − 〈∇ lnh,∇f〉+ µ(E − µ)f = 0 (109)

where E = (∗d η1)(e1), h = 1/µv, and ∆E is the Laplacian on the subbundle E =

ker η1. One may express Equation (109) in terms of the Laplacian ∆M as follows;

∆Mf +
1

v2
∇2f(X,X)− 〈∇ ln

( 1

µ‖X‖

)
,∇f〉+ µ(E − µ)f = 0. (110)

Corollary 3.3.6. If the contact field X is a unit field in the metric g (i.e. v = 1)

and µ ≡ const, (109) becomes

∆E f + µ(E − µ) f = 0. (111)

Proof of Theorem 3.3.5. The proof is a calculation in the adapted co-frame {ηi}i. We

denote ∇i ≡ ∇ei
. Using Cartan’s formula and Equation (79) we obtain

0 = LXα = ι(X)dα + d f = µ ι(X) ∗ α +∇if ηi ⇒

−∇if ηi = µ v ι(X1) ∗ α ⇒

−∇1f η1 −∇2f η2 −∇3f η3 = µ v(−a2 η3 + a3 η2), where v = ‖X‖.

The above expression leads to the following equations;
∇1f = 0,

∇2f = −µ v a3,

∇3f = µ v a2

(112)
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Recall the following definitions (see [49])

∇iej = ωk
ijek, ωk

i = ∇iηk = −ωk
ij ηj, ωk

ij = −ωj
ik, (113)

dα = ηi ∧∇iα, (114)

∇α = dak ⊗ ηk + ak∇ηk = dak ⊗ ηk − akω
k
j ⊗ ηj, (115)

∆0
M = −∇i∇i + ωj

i i∇j. (116)

We obtain the following;

dα =
∑
i<j

aijηi ∧ ηj = ηi ∧∇iα = ηi ∧ (∇iakηk − akω
k
ijηj) = ∇iakηi ∧ ηk − akω

k
ijηi ∧ ηj

(the summation is assumed over the repeating indices). Collecting terms in front of

∗η1 = η2 ∧ η3 we obtain

a23 = ∇2a3 −∇3a2 + ak(ωk
32 − ωk

23) = ∇2a3 −∇3a2 + a1(ω
1
32 − ω1

23)− a2ω
2
23 + a3ω

3
32

From Equation (79) and (112):

a23 =
µ

v
f = −∇2(

1

µ v
∇2f)−∇3(

1

µ v
∇3f) +

f

v
(ω1

32 − ω1
23)−

1

µ v
∇3fω

2
23 −

1

µ v
∇2fω

3
32.

Let h = 1/(µ v), distributing the terms we obtain

µ2h f = h(−∇2∇2 f −∇3∇3 f + ω3
22∇3 f + ω2

33∇2 f)

+µh f(ω1
32 − ω1

23)−∇2h∇2f −∇3h∇3f .

Dividing (h 6= 0) the above equation by h yields

(∆E + L+ ν)f = 0 where, (117)

∆E = −∇2∇2 −∇3∇3 + ω3
22∇3 + ω2

33∇2,

L = −1

h
(∇2h∇2 +∇3h∇3) = −〈∇ lnh,∇f〉

ν = µ(ω1
32 − ω1

23 − µ) = µ(E − µ),

E = ι(e1) ∗ dη1
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Recall Equations (55) and (56), applying ∇1f = 0, and ∇1e1 = ωk
11ek, we express

(117) in terms of the Laplacian ∆M below.

〈∇f,∇1e1〉+ 〈∇1∇f, e1〉 = ∇1〈∇f, e1〉 = 0, ⇒ ∇2f(e1, e1) = −〈∇f,∇1e1〉.

Consequently,

∆Ef = ∆Mf − 〈∇f,∇1e1〉 = ∆Mf +∇2f(e1, e1) = ∆Mf +
1

v2
∇2f(X,X)

It yields

∆Mf +
1

v2
∇2f(X,X)− 〈∇ ln

( 1

µ‖X‖

)
,∇f〉+ µ(E − µ)f = 0. (118)

Equation (111) follows.

The geometric interpretation of the characteristic surface ΓX may be now stated

as the following,

Theorem 3.3.7. The characteristic surface ΓX = f−1(0) is the zero set (i.e the the

nodal set) of the solution f to the subelliptic equation (110) and consists of a disjoint

union of smooth 2-tori: ΓX
∼=
⊔

i T
2
i , T 2

i
∼= S1 × S1.

Proof. Clearly, ΓX cannot contain a singular point p, since it would imply: α(p) = 0,

which contradicts the contact condition (76). Now the claim follows from Theorem

3.3.5 and Corollary 3.3.4.

Remark 3.3.8. Equation (109) may be modified to become an elliptic equation

by adding the term ∇1∇1f . A global structure of nodal sets of solutions to elliptic

equations has been studied e.g. in [9]. It follows from the methodology of [9] that given

any solution f to (109) or (111) a nodal set N = f−1(0) is a union N = Nsing∪Nreg of

the singular part Nsing of codimension at least 2 and the regular part Nreg which is a

codimension 1 submanifold. We remark that in general the nodal set of the solution

to an elliptic PDE can be very irregular. For example, it can be shown that any
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closed subset S in Rn can be realized as a nodal set of the solution to an elliptic PDE

defined on Rn+1 so that S ∈ Rn × {0}.

The following is a standard result from the theory of elliptic partial differential

equations (see e.g. [39], [33]).

Proposition 3.3.9. For µ > 0 the solution f to (110) is nontrivial if the contact

field X in Theorem 3.3.5 satisfies

E = ∗ d η1(X1) ≤ µ. (119)

Moreover, if the above inequality is strict then f cannot be a locally constant function.

Proof. Assume the setup of Theorem 3.3.5. In local coordinates (x1, x2, x3), ∂i = ∂
∂ xi

,

such that the vector field e1 = ∂1, where e1 = X/‖X‖, and X is the contact field, the

subelliptic equation (110) reads

−
∑
i, j

aij ∂i∂jf +
∑

i

bi ∂if + c f = 0, (120)

where c = µ(E − µ). Since ∂1f = 0 we may add the term −∂2
1f to the equation and

assume that L =
∑

i, j aij ∂i∂jf +
∑

i bi ∂i is an elliptic operator (Remark 3.3.8). By

contradiction to (119) let us assume that E > µ, and consequently: c > 0. By elliptic

regularity, [39, 33], f must be a C2-function and if f 6= const then there exists a

regular value y0 for f . Let D1 = f−1({y ≤ y0}), and D2 = f−1({y ≥ y0}). Clearly, f

is a solution to the following boundary value problems;

Lf + c f = 0, f �∂Dk
= y0, f ∈ C2(Dk), k = 1, 2. (121)

Recall the following corollary of the weak maximum principle ([33], p. 329):

If f is a solution to one of the boundary value problems in (121), then

max
Dk

|f | = max
∂Dk

|f |.
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Consequently, f �Dj
= y0 = const on Dj for either j = 1 or j = 2. Now, Equation

(121) implies that c f = 0 on Dj. Consequently, f �Dj
= 0, and y0 = 0. Applying the

maximum principle again we conclude that f = 0, which proves the first claim by

contradiction. For the second claim (c < 0), if f were locally constant it would imply

that it vanishes at some point to infinite order. But contradicts Aronszajn’s Unique

Continuation Principle (see [6], p. 235).

As a consequence of Proposition 3.3.9 and Corollary 3.3.4 we obtain.

Corollary 3.3.10. If E < µ then M is fillable almost everywhere by tori.

Proof. Since f is invariant under a nonsingular vector field X, regular level sets of f

must be 2-dimensional tori. Because f cannot be a locally constant function, regular

level sets are dense in M .

Remark 3.3.11. Corollary 3.3.10 raises natural questions about the topology of man-

ifolds “fillable almost everywhere by tori”. Since f is X-invariant the set of singular

points must be a set of disjoint circles in M . If we make additional assumptions on

f , e.g. that the singular set has a nondegenerate Hessian in the transverse direction,

one may define a nonsingular Morse-Smale vector field by Y = X + ε∇f (for small

ε). Results of Morgan, in [56], prove that manifolds admitting such a flow decompose

as unions of Seifert fibered manifolds (see Section 3.4).

Summarizing the results obtained so far; we have interpreted the characteristic

surface ΓX of a contact vector field X, preserving the contact form α, as a nodal

set of a solution to the subelliptic Equation (109). In Chapter 2 we saw, in the

case of an eigen-equation, how the nodal sets are “controlled” by the geometry of

an underlying manifold in dimension 2. On the other hand topological results of

Giroux, Honda and others, presented in Section 3.2, describe how the topology of ΓX

influences the tightness/overtwistedness of ξ = kerα. We conclude that the topology
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of nodal sets influences the tightness/overtwistedness of a contact structures in certain

specific situations. As we saw in Chapter 2, controlling the topology of nodal sets

even in dimension 2 may not be an easy task. Facing serious difficulties in dimension

3 we seek situations where we may essentially reduce the problem to the setting of a

surface, so that theorems of Chapter 2 would apply.

3.3.1 Geometry of the dividing set.

At the beginning we revisit some of techniques from Chapter 2 and draw conclusions

about nodal sets of solutions to Equation (109). We consider an embedded convex

surface Σ in (M, g), and assume that the contact vector field X is orthogonal to Σ.

In the following, we investigate Equation (109) restricted to such a surface.

Proposition 3.3.12. Let Σ be a surface embedded in M . If the contact field X is

orthogonal to Σ and µ = const, Equation (117) simplifies as follows;

∆Σ f +
〈∇ ‖X‖,∇f〉

‖X‖
− µ2 f = 0. (122)

Moreover, if ‖X‖ = const we obtain the eigen-equation:

∆Σ f = µ2 f. (123)

Proof. Assume the setup of Theorem 3.3.5. First we show that ∆E = ∆Σ in the frame

{e1 = X/‖X‖, e2, e3}, where {e2, e3} span TΣ. Recall from (117) (here E = TΣ)

∆E = −∇2∇2 −∇3∇3 + ω3
22∇3 + ω2

33∇2.

Since {e2, e3} are tangent to the surface the bracket [e2, e3] satisfies [e2, e3] ∈ TΣ.

The following is the general formula for Christoffel symbols in a frame ([49])

ωk
ij =

1

2
{〈[ei, ej], ek〉 − 〈[ej, ek], ei〉+ 〈[ek, ei], ej〉}. (124)

Consequently, the formula ∆Σ = −∇i∇i + ωj
i i∇j implies ∆E = ∆Σ on Σ. Moreover

〈[e2, e3], e1〉 = η1([e2, e3]) = 0 ⇒ dη1(e2, e3) = 0 ⇒ E = (∗dη1)(e1) = 0.
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Secondly, for h = 1/(µ‖X‖), we have

−〈∇ lnh,∇f〉 = −µ‖X‖∇〈
( 1

µ‖X‖

)
,∇f〉 =

‖X‖
‖X‖2

〈∇‖X‖,∇f〉 =
〈∇‖X‖,∇f〉

‖X‖
.

In Theorem 2.6.10 of Chapter 2, we have obtained a condition for homotopically

essential nodal curves ΓΣ = ΓX ∩Σ in the case of Equation (123) (‖X‖ = const). We

revisit our technique in the following;

Proposition 3.3.13. Let X be a contact vector field X ⊥ Σ, and α a contact form.

Let Ω be a nodal domain of the solution f to Equation (122). We have the following

2πχ(Ω) =

∫
Ω

Ks +

∫
Ω

∆Σln‖α‖ . (125)

Proof. We need to calculate the geodesic curvature κ of ∂Ω. Recall the formula from

Proposition 2.6.5,

κ = Hν =
∆Σf

‖∇f‖
+

1

2
〈∇ ln‖∇f‖2, ν〉.

Equation (122) yields

κ = −〈∇‖X‖,∇f〉
‖X‖‖∇f‖

+
µ2 f

‖∇f‖
+

1

‖∇f‖
〈∇‖∇f‖, ν〉. (126)

By Theorem 3.3.5 and α = aiηi, ∇1f = 0, v = ‖X‖ we obtain

‖α‖2 =
∑

i

a2
i =

(f
v

)2

+
(∇2f

µv

)2

+
(∇3f

µv

)2

⇒

(µ v‖α‖)2 = (µf)2 + ‖∇f‖2 ⇒ ‖X‖2 =
1

(µ‖α‖)2
(µ2f 2 + ‖∇f‖2).

Since f �∂Ω= 0, we derive

‖X‖ �∂Ω=
‖∇ f‖
µ ‖α‖

⇒

∇‖X‖ = − 1

µ ‖α‖2
(∇µ‖α‖)‖∇f‖+

1

µ‖α‖
∇‖∇f‖ ⇒

〈∇‖X‖,∇f〉
‖X‖‖∇f‖

=
〈∇ ‖X‖, ν〉
‖X‖

= − 1

µ‖α‖
〈∇(µ‖α‖), ν〉+

〈∇‖∇f‖, ν〉
‖∇f‖

.
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Consequently,

κ =
1

µ‖α‖
〈∇(µ‖α‖), ν〉 − 〈∇‖∇f‖, ν〉

‖∇f‖
+

µ2 f

‖∇f‖
+
〈∇‖∇f‖, ν〉
‖∇f‖

= 〈∇ ln(‖α‖), ν〉,

and the claim follows from the Gauss-Bonnet Theorem 2.6.9.

If, for a given convex surface Σ, one finds an orthogonal contact vector field X

(such that LXα = 0), Proposition 3.3.13 provides a condition for a tight tubular

neighborhood of Σ. For instance, under these assumptions, if Ks ≤ 0, the sufficient

condition for tight tubular neighborhood is:

max
p∈Σ

(
∆Σln‖α‖(p)

)
<

2π

Vol(Σ)
, (127)

(compare with Theorem 2.6.10 of Chapter 2). However, contrary to a method general

convex surfaces, convex surfaces which admit an orthogonal contact field are special

(as we indicate in Remark 3.3.15). Observe that, by definition, along the dividing set

ΓX we have X ∈ ξ. Orthogonality X ⊥ Σ implies that Xα is tangent to the surface Σ

since Xα ⊥ ξ. From Equations (108) we conclude that the Reeb field Xα is tangent

to the dividing curves ΓΣ. Consequently, curves in ΓΣ consist of periodic orbits of

Xα, and we have proved the following;

Proposition 3.3.14. For an embedded surface Σ in the contact manifold (M, ξ),

ξ = kerα, if there exist a contact vector field X such that LXα = 0, and X ⊥ Σ, then

the dividing set ΓX is a set of periodic orbits of the Reeb field Xα.

Remark 3.3.15. The following example, [36], demonstrates that the dynamics of

the Reeb field Xα may change drastically depending on a choice of a contact form α

defining ξ. Consider the following family of contact forms on S3 ⊂ R4:

αt = (x1 dy1 − y1 dx1) + (1 + t)(x2 dy2 − y2 dx2), t ≥ 0

Xαt = (x1 ∂y1 − y1 ∂x1) +
1

1 + t
(x2 ∂y2 − y2 ∂x2).
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If t = 0, Xα0 defines a Hopf fibration on S3, in particular all the orbits of Xα0 are

closed. For t ∈ R\Q+, Xαt defines an irrational flow on tori of the Hopf fibration and

has just two periodic orbits (at x1 = y1 = 0, and x2 = y2 = 0).

It demonstrates that in the irrational case any embedded surface away from the

periodic orbits cannot admit the contact vector required in Proposition 3.3.14. (It

also demonstrates that contact forms are not stable, i.e. in the above example there

exist no family of diffeomorphisms ψt such that ψt ∗αt = α0, as otherwise the flows of

Xαt would have to be conjugate).

3.4 Tight Beltrami forms with symmetry.

In this section we prove the main theorem of this chaper. The theorem offers insight

into Problem 3.1.14. Specifically, it describes conditions for an adapted metric which

imply tightness of a certain class of the invariant curl eigenforms. The theorem is

rather restrictive since we make strong assumptions of symmetry, both in the under-

lying Riemannian metric and in the curl eigenforms. These assumptions force M to a

be Seifert fibered manifold which is covered by a principal S1-bundle. Consequently

we work in the topological setting of Giroux’s Theorem 3.2.12, where tightness is

completely characterized by the topology of the characteristic surface, and the tech-

niques we developed for nodal sets can be applied. In the first part of this section

we provide auxiliary lemmas which are essential for the main proof and also state

necessary facts about Seifert fibered manifolds.

3.4.1 About Riemannian submersions.

In Proposition 3.3.12 we encountered situations where the operator ∆E, from Equa-

tion (117), becomes the Laplacian on a surface. We begin by proving that a similar

statement is true in the setting of a Riemannian submersion. One may consult [40]

for the general treatment of this question for the Hodge Laplacian on forms.
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Definition 3.4.1. Let (M, gM), and (N, gN) be Riemannian manifolds. A submersion

π : M → N is Riemannian iff π∗ : TpM ⊃ ker(π∗)⊥p → Tπ(p)N determines a linear

isometry. In other words, for V,W ∈ TM which are perpendicular to the kernel of

Dπ = π∗, we have gM(V,W ) = gN(π∗ V, π∗ V ).

The Riemannian submersion π determines an orthogonal decomposition TM =

V ⊕ H of the tangent bundle into the vertical subbundle V = Ker(π∗), and the

horizontal subbundle H = V ⊥ (where π∗ : TM → TN is a tangent map). The main

feature of π is the possibility of lifting orthogonal frames on N to horizontal vectors

on M which stay mutually orthogonal. Consequently, we may complete a lifted frame

to an orthogonal frame on M . We introduce the following notation; vectors on the

base N will be denoted with capital letters E,F and lifted vectors on M by small

letters e, f . The horizonal lift operation HL : Tπ(p)N → TpM has the following

natural properties, [40];

(a) Lifted fp = HL(Fπ(p)) is horizontal i.e. fp ∈ Hp.

(b) For any point p ∈M and a vector Fπ(p) ∈ Tπ(p)N , π∗H(Fπ(p)) = Fπ(p).

We have the following standard result;

Lemma 3.4.2 ([40]). Let π : M → N be a Riemannian submersion.

(1) Let fi = HL(Fi), then π∗([f1, f2]) = [F1, F2].

(2) Let ∇M
i ej = ωk

ijek, and ∇N
a Eb = Ωc

abEc. Christoffel symbols satisfy

ωc
ab = Ωc

ab ◦ π. (128)

Proof. Let ψi(t) and Ψi(t) define flows of vector fields fi and Fi respectively. By

property (b) of the horizontal lift we have

π ◦ ψi(t) = Ψi(t) ◦ π. (129)
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Using the flows we compute,

a(t) = ψ1(−
√
t)ψ2(−

√
t)ψ1(

√
t)ψ2(

√
t),

A(t) = π ◦ a(t) = Ψ1(−
√
t)Ψ2(−

√
t)Ψ1(

√
t)Ψ2(

√
t),

a′(0) = [f1, f2](p0), A′(0) = [F1, F2](π(p0)), p0 ∈M.

Hence (129) proves the claim (1) of the lemma since A′(0) = π∗ a′(0). Now, the claim

(2) follows directly from Equation (124);

ωc
ab =

1

2
{〈[ea, eb], ec〉M − 〈[eb, ec], ea〉M + 〈[ec, ea], eb〉M}

=
1

2
{〈π∗ [ea, eb], π

∗ ec〉N − 〈π∗ [eb, ec], π
∗ ea〉N + 〈π∗ [ec, ea], π∗ eb〉N}

=
1

2
{〈[Ea, Eb], Ec〉N − 〈[Eb, Ec], Ea〉N + 〈[Ec, Ea], Eb〉N}

= Ωc
ab

We focus on the special case of the Riemannian submersion π : M → N , namely

we assume that M = P is a total space of a principal S1-bundle over an orientable

surface Σ = N . We also consider Seifert fibered manifolds which may be defined as

quotients G\P where G is a discrete group acting properly and discontinuously on P

by isometries.

Lemma 3.4.3. Suppose π : P → Σ is a projection of an S1-bundle P , equipped with

a Riemannian metric gP which admits a vertical unit Killing vector field X.

Then π defines the Riemannian submersion with an appropriate choice of the

metric on Σ. Moreover, the following formulas hold, in a local orthogonal frame of

vector fields {e1, e2, e3} where e1 = X and {e2, e3} is the horizontal lift of a frame

{E2, E3} from Σ;

[e1, ek] = 0, k = 1, 2, 3, (130)

π ◦∆E = ∆Σ ◦ π, E = span{e2, e3}. (131)
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Proof. Since X is a unit Killing vector field, its flow: φt is a flow of isometries on P .

Therefore, in a local trivialization: (t,x) ∈ V ∼= S1 × U , x ∈ U ⊂ Σ of P , where

X = ∂t and the flow φt acts by translations in the t-direction. One may choose a

t-invariant frame {e1, e2, e3}, e1 = ∂t = X on V which satisfies

[e1, ek] = [∂t, ek] = 0. (132)

Clearly, any local vector-field Y on U lifts to Ỹ on V ∼= S1 × U . One may define a

metric gΣ on U ⊂ Σ by gΣ(Y, Y ′) = gP (Ỹ , Ỹ ′) which turns π into the Riemannian

submersion on V . Consequently, π is the global Riemannian submersion on P for the

metric gΣ extended globally. As a direct corollary of Lemma 3.4.2 we obtain (131).

Indeed, Christoffel symbols project under Riemannian submersions (Lemma 3.4.2).

For u ∈ C2(Σ), and a local frame {E2, E3} on Σ, we obtain

(∆Σu) ◦ π = (−∇E2∇E2u−∇E3∇E3u+ Ω3
22∇E3u+ Ω2

33∇E2u) ◦ π

= −∇e2∇e2(u ◦ π)−∇e3∇e3 + ω3
22∇e3(u ◦ π) + ω2

33∇e2(u ◦ π)

= ∆E(u ◦ π),

where {e2, e3} is the lift of {E2, E3}.

3.4.2 About Seifert fibered manifolds.

Next, we discuss the necessary facts concerning Seifert fibered manifolds. A Seifert

fibering, [64], of a 3-manifold M is a decomposition of M into disjoint circles, the

fibers, such that each fiber has a neighborhood diffeomorphic, preserving fibers, to a

neighborhood of a fiber in some model Seifert fibering of S1 × D2. A model Seifert

fibering of S1×D2 is a decomposition of S1×D2 into disjoint circles, constructed as

follows: Starting with [0, 1]×D2 decomposed into the segments [0, 1]× {x}, identify

the discs {0} × D2 and {1} × D2 via a 2πm/n rotation, for m/n ∈ Q with m and

n relatively prime. The segment [0 × 1] × {0} then becomes a fiber S1 × {0}, while

every other fiber in S1 ×D2 is made from n segments [0, 1]× {x}, we denote such a
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decomposition by T (m,n). A Seifert fibered manifold is one which possesses a

Seifert fibering. Each fiber C in a Seifert fibering of M has well-defined multiplicity,

i.e. the number of times a small disc transverse to C meets each nearby fiber (which

is equal to n in the model fibering T (m,n)). If a fiber has multiplicity > 1 it is called

multiple, if the multiplicity = 1 the fibre is called regular. Multiple fibers are

isolated and lie in the interior of M .

The quotient space Σ of M obtained by identifying each fiber to a point is an

example of an orientable 2-orbifold, i.e. a surface locally diffeomorphic to R2/Zn,

n = 1, 2, 3 . . ., where Zn is the cyclic group of order n acting by rotations. The local

structure is then a cone point with cone angle 2π/n. Clearly, the singular fibers of

M project to the cone points of Σ under the quotient projection π : M 7→ Σ.

The term orbifold refers to the differential structure (i.e. atlas) on Σ, and every

orientable orbifold is homeomorphic to an orientable surface. In the following we

consider only so called good orbifolds i.e. orbifolds which are quotients S/G of a

smooth surface S and a finite group G acting on it properly and discontinuously. It

can be shown, [64] that every orbifold homeomorphic to a surface of nonzero genus is

good.

Theorem 3.4.4 (Gauss-Bonnet (for orbifolds), see [57]). If Σ is a closed orbifold of

genus g and s cone points with cone angles: 2π/p1, 2π/p2,. . . , 2π/ps, equipped with

a smooth Riemannian metric everywhere except at the cone points. Then,∫
Σ

Ks = 2πχ(Σ), and χ(Σ) = 2− 2 g −
s∑

i=1

(
1− 1

pi

)
, (133)

where Ks is a scalar curvature of Σ.

Proof. Subdivide Σ into the geodesic triangles ∆i. Since
∫

∆i
Ks = αi + βi + γi − π,

the claim follows if we sum up over all ∆i.

The number χ(Σ) in (133) is called an Euler number of the orbifold Σ, and if Σ

has no cone points it is simply the Euler characteristic of the surface.
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Theorem 3.4.5 ([64] p. 425). Every good closed 2-orbifold Σ without boundary is

a quotient by a discrete group G of isometries of S2, R2 or H2, depending whether:

χ(Σ) > 0, χ(Σ) = 0, χ(Σ) < 0.

Theorem 3.4.6 ([64] p. 425). Every good closed 2-orbifold is a quotient of a closed

surface. Any orbifold Σ with χ(Σ) ≤ 0 is good.

The following lemma, see [15], p. 148 Lemma 2.4.22, is of importance for our

further considerations.

Lemma 3.4.7 ([15]). Every closed, compact Seifert fibered 3-manifold M with the

base good orbifold Σ is covered by a total space of a circle bundle P . We have the

following diagram;

P
p−−−→ MyΠ

yπ

Σ̃
r−−−→ Σ

(134)

where p is the covering map, r is the orbifold covering and π, Π are fibrations.

Proof. Let S be a model space for Σ, i.e. S = S2,R2, or H2. Let G be a discrete

subgroup of S such that Σ = S/G, we define Σ̃ = S/G′ and r : Σ̃ 7→ Σ to be a

quotient map (notice that r is in general not a cover in the usual sense, see [44]).

Theorem 3.4.6 is equivalent to asserting that any finitely generated discrete subgroup

G of isometries of S with compact quotient space has a torsion free subgroup G′ of

finite index (i.e. the fundamental group of the closed surface Σ̃).

Let h ∈ π1(M) represent a regular fiber of M , a subgroup 〈h〉 of π1(M) is infinite

cyclic and π1(M)/〈h〉 = π∗(π1(M)) = G. Denote by K the pre-image in π1(M) of a

torsion free subgroup G′ under the induced group homomorphism π∗. Denote by P

the covering space of M corresponding to K if h̃ in π1(P ) = K ⊂ π1(M) is represented

by a regular fiber then 〈h̃〉 = 〈h〉. Since K/〈h〉 = π1(P )/〈h〉 = G′ is torsion free P

has no singular fibers and consequently must be an S1-bundle over Σ̃. The diagram

134 follows accordingly.
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3.4.3 Proof of the Main Theorem.

At this point we turn to the proof of the main theorem of this chapter.

Theorem 3.4.8. Let (M, gM) be a Riemannian manifold equipped with a contact

structure ξ defined by a curl eigenform α (i.e. ∗ dα = µα, µ ≡ const). Assume that

α admits a contact vector field X, (i.e. LXα = 0) with circular orbits, which is also a

unit Killing vector field for gM . Let lmin be a lower bound for the lengths of the orbits

of X and denote by η = gM(X, · ) the 1-form dual to X.

The form α defines a universally tight contact structure on M if the following

conditions are satisfied:

(i) E = ∗ dη(X) < µ; (ii) the sectional curvature κE of planes E orthogonal to the

fibres satisfies: κE ≤ −3
4
E2;

(iii) E is constant and µ(µ − E) k
lmin

(Vol(M)) < 4π; for a natural number k, which

depends only on M .

If E is not a constant function we replace condition (iii) by the following;

(iv) k
lmin

∫
M
|∆E ln ‖α‖ | < 2π where, ∆E is defined in (117).

Proof. Since X has circular orbits, M is a Seifert fibered manifold and X induces an

S1-action by isometries on M . Consequently, we obtain an orbifold bundle: π : M 7→

M/S1 ' Σ. Let C = {x1, . . . , xk} be the cone points of Σ and S = π−1(C) the set

of singular fibres in M . Since M \ S ' S1 × Σ \ C, [45], by Lemma (3.4.3) we may

define a metric gΣ on Σ \ C so that π : M \ S 7→ Σ \ C is a Riemannian submersion.

The metric gΣ is smooth and extends continuously to Σ. In the first step of the proof

we show that the scalar curvature of (Σ \ C, gΣ) is nonpositive which, by Theorem

3.4.4, implies that χ(Σ) ≤ 0 and consequently Σ will be a good orbifold (see Theorem

3.4.6).

Let us fix a local frame of vector fields {e1 = X, e2, e3}, and the dual coframe

{η = η1, η2, η3}. Since X is the Killing vector field (i.e. LXgM = 0), for any pair of
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vector fields V , W we have

〈∇VX,W 〉 = −〈V,∇WX〉.

Consequently, we obtain the following identities for Christoffel symbols in the frame

{ei}:

ω2
1 1 = ω3

1 1 = ω2
2 1 = ω3

3 1 = 0, ωk
i j = −ωj

i k, (135)

−ω2
3 1 = ω3

2 1 =
E
2
. (136)

where ∇iej = ωk
i jek, and E = ι(X) ∗ dη is the parameter we have encountered in

Equation (109). Cartan’s structure equations imply that the 1-form η = gM(X, · )

satisfies

∗ d η = E η. (137)

Since 0 = d E ∗ η, we have d E(X) = X E = 0, and consequently E is S1-invariant.

Using (135), we may compute the sectional curvature κE as follows (see also [58]);

∇2∇3e3 = ∇2(ω
k
3 3 ek) = (∇2 ω

2
3 3)e2 + ω2

3 3∇2e2

= (∇2 ω
2
3 3)e2 + ω2

3 3ω
3
2 2e3,

∇3∇2e3 = ∇3(ω
k
2 3 ek) = (−∇3 λ) e1 − λ∇3e1 + (∇3 ω

2
2 3) e2 + ω2

2 3∇3e2

= −∇3 λ e1 + λ2e2 + (∇3 ω
2
2 3)e2 + λω3

2 2e1 + ω3
2 2ω

2
3 3e3,

[e2, e3] = ∇2e3 −∇3e2 = (ωk
2 3 − ωk

3 2) ek = −2λe1 + ω2
2 3e2 − ω3

3 2e3,

∇[e2, e3]e3 = −2λ∇1e3 + ω2
2 3∇2e3 − ω3

3 2∇3e3

= −2λ2ϕe2 + ω2
2 3λe1 +

(
(ω3

2 2)
2 + (ω2

3 3)
2
)
e2

κE = 〈R(e2, e3)e3, e2〉 (138)

= ∇2 ω
2
3 3 +∇3 ω

2
2 3 − λ2 + 2λϕ−

(
(ω3

2 2)
2 + (ω3

3 2)
2
)

= σ − λ2 + 2λϕ

where: σ = ∇2 ω
2
3 3 +∇3 ω

2
2 3 −

(
(ω3

2 2)
2 + (ω3

3 2)
2
)
, ϕ = ω2

1 3, λ =
E
2
.
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Notice that

∇1e2 = ω3
1 2 e3 = −ϕ e3, ∇1e3 = ω2

1 3 e2 = ϕ e2 .

Therefore ϕ measures a rotation of the frame in E, when parallel transported along

orbits of X. Moreover by Lemma 3.4.2 the Christoffel symbols project under the

Riemannian submersion: π : (M \ S, gM) 7→ (Σ \ C, gΣ) and the scalar curvature Ks

of Σ satisfies

Ks ◦ π(x) = σ(x), x ∈M, (139)

where σ is defined in (138). From Equation (130) we obtain

0 = [e2, e1] = ∇1e2 −∇2e1 ⇒ ϕ = −λ = −E
2
.

Since κE = σ − λ2 + 2λϕ = σ − 3
4
E2 by the assumption (ii) we conclude:

Ks ◦ π = κE +
3

4
E ≤ 0. (140)

Consequently, the Gauss-Bonnet Theorem 3.4.4 for orbifolds implies that χ(Σ) ≤ 0

and, by Theorem 3.4.5, Σ must be orbifold covered r : Σ̃ 7→ Σ by a closed surface Σ̃

of nonzero genus (i.e. Σ is a good orbifold). Subsequently by Lemma 3.4.7 we may

choose a principal bundle Π : P 7→ Σ̃ such that the total space P is a covering space

for M , the diagram (134) commutes and p : P 7→ M is a fiber preserving covering

map. We define a metric gP on P by pulling back the metric gM from M , by p. This

makes p : (P, gP ) 7→ (M, gM) into a local isometry, and Π : P 7→ Σ̃ into a Riemannian

submersion, by Lemma 3.4.3. Let X̃ be the unique lift of X. Since p respects the

fibers, which are orbits of the flow φX of X, we have

φX(t, ·) ◦ p = p ◦ φX̃(t, ·),

Consequently, the lift X̃ of X must also be a regular Killing vector field on P .
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At this point we turn to the proof of the statement (iii) (the case of constant

E). Notice that it suffices to prove the claim for an S1-invariant contact structure

ξ̃ lifted to P (i.e. ξ̃ = ker α̃, α̃ = p∗ α). Indeed, if ξ̃ is universally tight then so

must be ξ, otherwise we could lift an overtwisted disc by the fiber-preserving cover

p : P 7→ M to ξ. Theorem 3.2.12 states the necessary and sufficient condition for

universal tightness of (P, ξ̃) in terms of the characteristic surface ΓX̃ , since χ(Σ̃) ≤ 0

the condition reads: (∗) The projection ΓΣ̃ = π̃(ΓX̃) has to be either empty or a set

of homotopically essential curves on Σ̃.

Applying techniques developed in Chapter 2: X̃ satisfies LX̃ α̃ = 0 and ∗ d α̃ = µ α̃,

Theorem 3.3.5 and Theorem 3.3.7 imply that ΓX̃ = f−1(0) where f = α(X) ◦ p is an

S1- invariant function which satisfies the following subelliptic equation on P :

∆Ẽ f + µ(Ẽ − µ) f = 0, (‖X̃‖ = 1) (141)

where Ẽ = E ◦ p. By Proposition 3.3.9 f cannot be a locally constant function. As a

consequence of Lemma 3.4.3, Equation (141) projects onto the surface Σ̃ as follows:

∆Σ̃ f + µ(Ẽ − µ) f = 0, (142)

(we may treat functions f , Ẽ as functions on Σ̃). Since f must change the sign on Σ̃

the dividing set ΓΣ̃ = π̃(ΓX̃) 6= ∅ must be nonempty. We must show in (∗) that ΓX̃

is a set of homotopically essential curves on Σ̃. (Notice that Theorem 3.3.7 implies

that these curves cannot have self-intersections.) Assume by contradiction that one

of the domains Ω̃ ∈ Σ̃ \ ΓΣ̃ is a disc Ω̃ ∼= D2. By (140), Σ̃ has a nonpositive scalar

curvature. Since Equation (142) is an eigen-equation (E = Ẽ = const) by Theorem

2.6.10 of Chapter 2 we obtain

4π ≤ µ(µ− E)Vol(Ω̃) (143)

In the next step we bound the area: Vol(Ω̃). Since r : Σ̃ \ r−1(C) 7→ Σ \ C is a

k-sheeted cover, and Σ is a quotient of Σ̃ by a group of isometries (see [64]) we have
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the following,

Vol(Ω̃) ≤ Vol(Σ̃) = kVol(Σ). (144)

But since

Vol(M) =

∫
Σ

l(x) ≥ lmin Vol(Σ), lmin = min
x∈Σ

l(x) (145)

where l : Σ 7→ R is the length of the fibre function, we obtain

4π ≤ k

lmin

µ(µ− E)Vol(M), (146)

which contradicts the assumption (iii).

In the case E is a nonconstant function we apply the analogous reasoning. By

Lemma 3.4.3, Proposition 3.3.12 can be adapted to the setting of the Riemannian

submersion Π. The function ‖α̃‖, α̃ = p∗ α, is S1- invariant. From Proposition

3.3.12, and considerations for the area Vol(Ω̃) we derive

2π = 2πχ(Ω̃) =

∫
Ω̃

Ks +

∫
Ω̃

∆Σ̃ln‖α̃‖ ≤
∫

Ω̃

|∆Σ̃ln‖α̃‖| ⇒

2π ≤ k

∫
r(Ω̃)

|∆Σln‖α‖| ≤ k

lmin

∫
M

|∆Eln‖α‖|.

Consequently, we derive a contradiction to the assumption (iv).

Remark 3.4.9. It seems to be feasible, in Theorem 3.4.8, to drop the assumption

of regularity for the Killing field X (i.e. the assumption of circular orbits). By the

compactness, [50], of the group of isometries of (M, g), one easily shows that there

exists a regular Killing vector field Xε arbitrarily close to X. One may expect that

Equation (109) will hold for fε = α(Xε) with possibly an error term. Consequently,

one could imagine an approximation argument, with ε → 0, that would show that

the limit function f ; fε → f , is a solution to (109). Applying the reasoning presented

in the proof should yield a similar conclusion.
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Symmetry assumptions, namely the assumption of the Killing contact vector-field

for α in Theorem 3.4.8, imply rather severe restrictions on the topology of the domain

M . An ultimate goal of techniques presented in this chapter would be to prove a

result similar to Theorem 3.4.8 without these assumptions. A “glimpse” of hope is

offered by Proposition 3.3.13, if one could prove existence of convenient embedded

surfaces. A more obvious extension may be sought in dropping the global Killing field

assumption but keeping the property LXα = 0. Then, one may conveniently average

the metric over an S1-action and try to relate the parameters of the original metric to

the averaged parameters. This approach encounters one serious obstruction, though,

namely the equation ∗ dα = µα does not seem to survive the averaging process.

As another conclusion of Theorem 3.4.8 one may give examples of dichotomous

metrics, i.e. metrics which admit both tight and overtwisted Beltrami forms. For

instance, we may prescribe on the base Σ of a principal S1-bundle P the metric gΣ

constructed in Theorem 2.4.3 of Chapter 2. Then P would certainly admit both tight

and overtwisted Beltrami forms. Consequently, tightness/overtwistedness may not

be solely forced by assumptions on the geometry, but also on other parameters e.g.

associated with the dynamics of a contact vector field.
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CHAPTER IV

CURL EIGENFIELDS AND ENERGY

RELAXATION

This chapter is devoted to the following conjecture of Etnyre and Ghrist ([28], p. 17)

concerning the topology of smooth minimizers, for the variational principle (3).

Conjecture 4.0.10. A smooth nonvanishing curl eigenfield which minimizes the L2-

energy in (3) defines a tight contact structure.

We construct a counterexample by “building” a special S1-invariant curl eigenfield

on a product manifold M = (S1×Σ, 1⊕gΣ), where Σ is a closed orientable surface of

genus g(Σ) > 0. The crucial observation, subjected to scrutiny in Chapter 3, is that in

the product metric an S1-invariant curl eigenfield has the dividing set on Σ defined by

a nodal set of a ∆Σ-eigenfunction. Consequently, we may force these S1-invariant curl

eigenfields to be overtwisted by prescribing the metric on Σ constructed in Theorem

2.4.3. However, we must also assure that such curl eigenfields may minimize the L2-

energy (3) which may be achieved e.g. a choice of the principal eigenfields (i.e. the

fields which correspond to the first eigenvalue of ∗ d).

In the second part of this chapter, we demonstrate that under additional symmetry

conditions, analogous to those in Theorem 3.4.8, the energy-relaxation leads to a tight

curl-eigenfield which minimizes the energy.

4.1 Energy and eigenvalues

This section is devoted to the basic spectral analysis of the curl operator ∗ d on closed

compact 3-manifolds. We establish the relation between the curl operator ∗ d and the
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Laplace-Beltrami operator ∆ acting on 1-forms. As a consequence the formula which

relates eigenbasis of ∗ d to the the eigenbasis of ∆ is proven, which may be thought

of as an extension of the method by Chandrasekhar and Kendall presented in [18].

We start by proving, following Arnold (see e.g. [5]), that the principal curl-eigenfields

are always energy minimizing. In the later construction of the energy minimizing

overtwisted curl eigenfield we choose it to be a principal eigenfield to assure the

minimizing property.

Recall from Chapter 1 that any curl eigenform α extremizes the L2-energy defined

as,

E(α) = ‖α‖2
L2 =

∫
M

α ∧ ∗α, (147)

among all 1-forms obtained from α by pullbacks through volume preserving diffeo-

morphisms. The set of such forms is the coadjoint orbit of α, for the action of

the volume preserving diffeomorphisms group, defined as (c.f. [5]):

Ψα = {β : β = ϕ∗(α), ϕ ∈ Diff0(M), ϕ∗(∗1) = ∗1}. (148)

The question of energy minimization on the coadjoint orbit is closely related to

spectral data. The following result is one of the few general results available (see e.g.

[5]),

Proposition 4.1.1 ([5]). A curl eigenform α1, (i.e. an eigenform of the curl operator

∗ d : H → H, H = {α : δα = 0} = {“divergence free” 1-forms}) which corresponds to

the first eigenvalue µ1 6= 0 is a minimizer of the energy E on Ψα1.

Proof. The operator ∗ d is elliptic and consequently its analytic realization is un-

bounded on L2
H(M,Λ1T ∗M) (an L2-completion of H, closed and self-adjoint; it has a

compact inverse ∗ d−1 defined on the orthogonal complement of its kernel (see [67]).

We can also choose an orthonormal basis of eigenforms {αi} in (L2
H(M,Λ1T ∗M), (·, ·)L2)
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such that,

∗ d−1αi =
1

µi

αi, 0 < µ2
1 ≤ µ2

2 ≤ . . . ≤ µ2
i ≤ . . . (149)

For an arbitrary L2 1-form β ∈ Im(δ) we have

|(∗ d−1β, β)L2 | = |
∑

i

1

µi

(αi, β)2
L2| ≤

1

|µ1|
(β, β)L2 =

1

|µ1|
E(β). (150)

One obtains a lower bound for the energy E(β),

E(β) ≥ |µ1||(∗ d−1β, β)L2|.

The above inequality becomes the equality if and only if β is a µ1-eigenform of ∗ d.

The claim follows from the fact that the helicity, (∗ d−1β, β)L2 , is invariant under

volume preserving transformations see [5].

From now on we do not distinguish between operators defined on various spaces

of smooth differential forms and their analytic realizations defined on L2-completions

of those spaces.

The curl operator ∗ d : H → H is a self-adjoint first-order elliptic operator, and

the principal eigenvalue µ1 enjoys a variational characterization through the Rellich’s

quotient. By Lemma 4.1.2 we have,

µ1 = inf
α∈H⊥0

|(∗ dα, α)L2 |
‖α‖2

L2

⇔ µ2
1 = inf

α∈H⊥0

(∆1
Mα, α)L2

‖α‖2
L2

, (151)

H⊥
0 = Ker(∗ d)⊥ = {α ∈ Ω1(M) : α = δβ, for some β ∈ Ω2(M)},

Observe that the curl squared is equal to the Hodge Laplacian , (∗ d)2 = δ d, on

H. Therefore any curl eigenform α, (i.e. ∗ dα = ±µα) is automatically a co-closed

µ2-eigenform of the Hodge Laplacian ∆1
M = d δ + δ d, namely

∆1
Mα = δ d α = ∗ d ∗ dα = µ2 α. (152)
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The curl ∗ d commutes with ∆1
M , therefore both of these operators are simultaneously

diagonizable on H in a suitable orhonormal basis of curl eigenforms;

H =
∞⊕
i=1

E∆(µ2
i ), E∆(µ2

i ) ⊥ E∆(µ2
j), i 6= j 0 < µ2

1 ≤ µ2
2 ≤ . . . ≤ µ2

i ≤ . . .

where E∆(µ2
i ) stands for the µ2

i -eigenspace of ∆1
M , and

E∆(µ2
i ) = E∗ d(µi)⊕ E∗ d(−µi).

(We allow one of E∗ d(µi), E
∗ d(−µi) to be trivial). We may conclude further that

there exist two positive operators
√

∆+,
√

∆−, such that ∗ d =
√

∆+ −
√

∆−.

The following useful fact, which can be traced back to work in [18], tells us how

to effectively find a basis of curl eigenforms from a basis of co-closed ∆1
M -eigenforms.

Lemma 4.1.2. Any curl µ-eigenform is automatically a co-closed µ2-eigenform of

the Laplacian ∆1
M . Conversely, given a co-closed µ2-eigenform α ∈ Ω1(M) of ∆1

M

there exists a corresponding ±µ-curl eigenform β± ∈ Ω1(M) given by

β± = µα± ∗ dα (153)

Proof. The first claim follows from (152). The second claim we verify by a direct

calculation. Let β± be defined by (153), we will show: ∗d β± = ±µβ±. Since

∗d ∗ d = δ d = ∆1
M �H, and δα = 0 we obtain

∗ dβ± = µ ∗ dα±∆1
Mα .

Secondly, ∆1
Mα = µ2α, therefore

∗ dβ± = µ ∗ dα± µ2α = ±µβ±.

88



4.2 Overtwisted principal eigenfields

Based on Lemma 4.1.2 we may “produce” a curl eigenfield from a divergence free

eigenform of the Laplace-Beltrami operator. For that reason, in the first part of

this section, we fully characterize eigenvalues and eigenforms of the Laplace-Beltrami

operator on Ω1(S1 × Σ), where Σ is an orientable surface. In the construction of

an overtwisted minimizer we use Proposition 4.1.1, which implies that it is sufficient

to construct an overtwisted principal curl eigenfield. In the following paragraphs we

elaborate on the construction.

We start with a full characterization of eigenforms on M which we assume to be

a trivial bundle P = S1 × Σ and the metric g on P is a product metric g = 1 ⊕ gΣ

with constant length l fibres. Consequently, the space of smooth 1-forms Ω1(P )

decomposes with respect to the L2-inner product induced by the metric g as

Ω1(P ) = Ω1
N(P )⊕ Ω1

T (P ), (154)

where,

Ω1
N(P ) = {α ∈ Ω1(P ) : α = fη, f ∈ C∞(P )},

Ω1
T (P ) = {α ∈ Ω1(P ) : α(Xη) = 0},

Ω1
T (P ) = Ω1

N(P )⊥ ∩ Ω1(P ).

with η and Xη being the tangent 1-form and vector field (resp). to the S1-fibres of

unit magnitude (‖Xη‖g = 1). In this setting we prove the following;

Lemma 4.2.1. The Laplacian ∆1
P preserves Ω1

N(P ), Ω1
T (P ) and for α = fη + β,

fη ∈ Ω1
N(P ), β ∈ Ω1

T (P ) we have the following formula for the Laplacian at a point

(t, q) ∈ S1 × Σ,

∆1
Pα = (−L2

ηf + ∆0
Σft)η + (−L2

η β + ∆1
Σ βt), at (t, q), (155)

where ft = f �{t}×Σ∈ C∞(Σ) and ∆0
Σ is the scalar Laplacian on Σ. Similarly βt =

β �{t}×Σ and ∆1
Σ is the 1-form Laplacian on Σ.
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Proof. The first claim follows immediately from the formula (155). We justify (155)

by a direct calculation in the Xη-invariant frame {e1, e2, e3}, e1 = Xη, (denote the

co-frame by {ηi}, η1 = η) on P , where e2, e3 are tangent to the Σ fibers. Denote:

∇i = ∇ei
and recall the following formulas (see e.g. [49])

∇iej = ωk
ij ek, ∇iηk = −ωk

ij ηj, ωk
ij = −ωj

ik, (156)

∇2
i i = −∇i∇i + ωj

i i∇j, ∆0 = −∇2
i i. (157)

The well known Weitzenböck formula (see [49] p. 138) for the k-form Laplacian

∆k = d δ + δ d tells us (k = 1):

∆1α = −∇2
i iα− ηi ∧ (ι(ej) R(ei, ej)α), α ∈ Ω1(M), (158)

R(ei, ej)α = ∇i∇jα−∇j∇iα−∇[ei,ej ]α.

In the product metric we may choose locally an Xη-invariant frame {ei}, meaning:

[e1, ej] = −[ej, e1] = 0, [e2, e3] ∈ TΣ.

Consequently (by ωk
i j = 1

2
〈[ei, ej], ek〉 − 〈[ej, ek], ei〉+ 〈[ek, ei], ej〉):

ωk
i j = 0, if one of the indices i, j, k = 1, (159)

∇1ω
k
i j = 0, for all i, j, k (160)

R(ei, ej)ηr = 0, if one of the indices i, j, k, r = 1, (161)

where (161) is a consequence of the following;

ι(ek)R(ei, ej)ηr = ∇jω
r
i k −∇iω

r
j k + ωr

j n ω
n
i k − ωr

i nω
n
j k + (ωn

i j − ωn
j i)ω

r
n k.

In turn we obtain,

∇η1 = 0, ∇1ηk = 0, ∇2ηi = −ω2
i 3 η3, ∇3ηi = −ω3

i 2 η2 . (162)
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Let α = fη + β, then ∆1
Pα = ∆1

P (fη1) + ∆1
Pβ, we obtain from (158), (161),

∆1
P (fη1) = −∇2

i i(fη1) = −∇i∇i(fη1) + ωj
i i∇j(fη1)

(162) : = (−∇i∇if + ωj
i i∇jf)η1

(159) - (161) : = (−∇1∇1f −∇2∇2f + ω3
2 2∇3f −∇3∇3f + ω2

3 3∇2f)η1

Treating f = ft as a family of functions ft ∈ C∞(Σ) dependent on t ∈ S1, Equation

(157) implies

−∇2∇2ft + ω3
2 2∇3ft −∇3∇3ft + ω2

3 3∇2ft = ∆0
Σft, and

∆1
P (fη) = (−∇1∇1f + ∆0

Σft)η = (−L2
ηf + ∆0

Σft)η.

Similar reasoning can be applied to β = a2 η2 + a3 η3, by (162) and (161) we have

(−∇1∇1 + ωj
1 1∇j)β − η1 ∧ (ι(ej) R(e1, ej)β) = −∇1∇1(a2η2 + a3η3)

= −(∇1∇1a2)η2 − (∇1∇1a3)η3 = −L2
ηβ.

Treating β = βt as a family of 1-forms βt ∈ Ω1(Σ) and using (162), (161) and (158)

one shows

3∑
i=2

{−∇i∇iβ + ωj
i i∇j)β − ηi ∧ (ι(ej)R(ei, ej)β} = ∆1

Σβt .

Lemma 4.2.2. On the product manifold P = S1×Σ, g = 1⊕gΣ with constant length

l fibers. The first eigenvalue µ1 of the curl operator satisfies

µ2
1 = min

{
ν1,
(2π

l

)2
}
, where ν1 = inf

f∈L2(Σ), f 6=const

{
(∆0

Σf, f)L2

‖f‖2
L2

}
.

Proof. From the decomposition (154) and the fact that ∆1
P preserves Ω1

T (P ) and

Ω1
N(P ) (see Lemma 4.2.1) we have

µ2
1 = min

{
µ2

1,T , µ
2
1,N

}
; µ2

1,r = inf
α∈H⊥0 ∩Ω1

r(P )

{
(∆1

Pα, α)L2

‖α‖2
L2

}
r = T,N. (163)
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In order to calculate µ2
1,N , notice that for any α ∈ H ∩ Ω1

N(P ), α = f η, the function

f is constant on the fibers; hence f ∈ C∞(Σ). Indeed, δα = 0, and, since ∇η = 0 in

the adapted frame {e1, e2, e3} with e1 = Xη, we obtain

0 = δα = ι(ei)∇iα = ι(ei)(∇ifη + f∇iη) = ∇1f = Xηf.

From Equation (155), we conclude that for any α = f η ∈ H ∩ Ω1
N(P ) we have:

∆1
Σα = (∆0

Σf)η and consequently

(∆1
Pα, α)L2 = (∆0

Σfη, fη)L2 =

∫
S1×Σ

(f ∆0
Σf)η ∧ ∗η

=

∫
S1

∫
Σ

f ∆0
Σf = l

∫
Σ

f ∆0
Σf = l (∆0

Σf, f)L2 ,

and ‖α‖2
L2 = (α, α)L2 =

∫
S1×Σ

f 2η ∧ ∗η = l ‖f‖2
L2 where η ∧ ∗η = ∗1.

As a result, (151),

µ2
1,N = ν1, ν1 = inf

f∈L2(Σ), f 6=const

{
(∆0

Σf, f)L2

‖f‖2
L2

}
. (164)

In other words µ2
1,N is equal to the first eigenvalue of the scalar Laplacian ∆0

Σ on Σ.

In order to calculate µ2
1,T we first calculate the orthogonal basis of eigenforms on

H∩Ω1
T (P ). Let {βm} be an orthonormal basis of ∆1

Σ-eigenforms on Ker(∆1
Σ)⊕Im(δ) ⊂

L2(Λ1T ∗Σ), define for all m,n ∈ Z+:

h0 = g0 = 1, hn = cos
(2πnt

l

)
, gn = sin

(2πnt

l

)
, (165)

αg
n m = gn βm, and αh

n m = hn βm .

Clearly, {αg
n m, α

h
n m} is a set of 1-eigenforms of ∆1

P on H ∩ Ω1
T (P ). Indeed, from

Equation (155)

∆1
Pα

r
mn = γr

mnα
r
mn, γr

mn =
(2πn

l

)2

+ ν̃m ,

where ν̃m is the m-th eigenvalue of ∆1
Σ. One easily shows that {αg

n m, α
h
n m} is an

orthonormal basis of H ∩ Ω1
T (P ). Consequently, all eigenforms of ∆1

P on H ∩ Ω1
T (P )
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are listed in Equation (165), and we have

µ2
1,T = min

{(2π

l

)2

, ν̃1

}
. (166)

It remains to show that ν̃1 = ν1. By the Hodge decomposition theorem:

Ω1(Σ) = Ker(∆1
Σ)⊕ Im(dΣ)⊕ Im(δΣ).

Moreover, Ω0(Σ) ' Ω2(Σ) through the Hodge-star isometry, therefore Im(δΣ) =

{∗Σ d f ; f ∈ C∞(Σ)}. Since ∆1
Σ commutes with ∗Σ d, any νm-eigenfunction fm re-

sults in a νm-eigenform ∗Σ d fm. Therefore ν̃1 = ν1 and the lemma follows from (163),

(164), and (166).

Combining Theorem 2.4.3 of Chapter 2 with Lemma 4.2.2 results in the following;

Theorem 4.2.3. Let Σ 6= S2 be an orientable surface of an arbitrary nonzero genus.

One can prescribe a metric gΣ on Σ such that there exists an overtwisted curl eigenfield

v on the product manifold (S1 × Σ, 1⊕ gΣ) which minimizes the energy (147) on the

coadjoint orbit Ψα.

Proof. In the first step we choose a metric gΣ on Σ 6= S2 constructed in Theorem

2.4.3 and assume that the length of fibres in (S1 × Σ, 1 ⊕ gΣ) is equal to l. By

Lemma 4.2.2 we may choose l small, so that the first eigenvalue satisfies µ1 = ν1.

The proof of 4.2.2 implies that the corresponding eigenspace E∆(µ2
1) is spanned by

two independent co-closed µ2
1-eigenforms of ∆1

P :

α1 = f1 η, and α2 = ∗ dΣf1.

(E∆(µ2
1) is 2-dimensional since gΣ is a generic metric.)

By previous considerations E∆(µ2
1) = E∗ d(µ1)⊕E∗ d(−µ1) and E∆(µ2

1) is spanned

by two independent ±µ1-curl eigenforms. Choosing any linear combination of α1 and

α2 Lemma 4.1.2 leads to ±µ1-curl eigenforms given by,

β± = f1η ± ∗Σ d f1.
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These forms are nonvanishing since the set of zeros is clearly equal to the singular

part of the nodal set of f1 and by Theorem 2.2.7 the singular part is empty for a

generic choice of metric. Both forms β± are S1-invariant and overtwisted by Theorem

3.2.12. Indeed, the projection of the characteristic surface ΓS1 of α± onto Σ (i.e. the

dividing set π(ΓS1)) is equal to the nodal set of f1. By the choice of the metric gΣ,

π(ΓS1) bounds a disc. Now, the dual curl eigenfields β#
± minimize energy (147) on

Ψβ± due to Proposition 4.1.1.

Remark 4.2.4. By perturbing a product metric on P the eigenvalues ±µ1 “split

apart” giving only simple eigenvalues and only one minimal eigenvalue. If the per-

turbation is small then the resulting eigenform will be C0-close to β+( or β−), and

define an isotopic contact structure (by Grey’s Theorem, see e.g. [36]), which in turn

must be an overtwisted minimizer.

4.3 Tight energy minimizers

So far the only known examples of curl eigenfields minimizing the energy were ABC-

fields on the flat T 3 (see Equation (4) in Chapter 1) and Hopf fields on round S3,

[5]. Both of them are tight principal curl-eigenfields. In the following paragraphs we

indicate examples of tight principal curl eigenfields on S1-bundles. This may support

the claim that Conjecture 4.0.10 may be valid for certain classes of contact manifolds.

First, we review relevant facts from Section 3.4 in the current setting. Let (M, gM)

be a Riemannian 3-manifold which admits a unit Killing vector field X orthogonal

to a contact structure ξ = X⊥. Choosing a local frame of vector fields {e1, e2, e3},

e1 = X, the Cartan’s structure equations imply that the dual 1-form η = gM(X, · )

satisfies

∗ d η = 2λ η, λ ∈ C∞(P ). (167)
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In terms of Christoffel symbols (∇iej = ωk
i j ek) we obtain

−ω2
3 1 = ω3

2 1 = λ. (168)

(Notice that the parameter E = ι(X) ∗ dη1 = 2λ, appears in Chapter 3.)

In the case λ(x) = λ = const, η defines a curl eigenform on M . Now, we focus on

the special case of (M, η, gM), namely the case of a principal S1-bundle P , π : P 7→ Σ

over a closed orientable surface Σ equipped with the unit Killing vector field tangent

to the fiberes of P . By Theorem 3.2.12 η is necessarily a tight curl eigenform since the

contact plane distribution is S1-invariant and orthogonal to the fibers. In the following

proposition we denote by HS1 the subspace of S1-invariant 1-forms in H ⊂ Ω1(P ).

Proposition 4.3.1. Any curl eigenform η defined on (P, gP ) by (167) is always

energy-minimizing on HS1 ∩ Ψη. Let ν be the first nonzero eigenvalue of the scalar

Laplacian ∆0
Σ on Σ. If ν > 3λ2 then η is a principal curl eigenform on HS1.

Proof. We provide the proof of the first claim for λ > 0 (in the case of λ < 0 the

reasoning is analogous). The space HS1 decomposes as

HS1 = H+
S1 ⊕H−

S1 ,

where H±
S1 is a subspace spanned by positive/negative curl eigenforms. We need

to show that η is an energy minimizer on HS1 ∩ Ψη. Given a volume preserving

diffeomorphism ϕ : P → P we denote ηϕ = ϕ∗(η) ∈ Ψη. Under the assumptions on

the ϕ action, ηϕ ∈ HS1∩Ψη. We expand ηϕ in the eigenbasis of curl eigenforms (149),

ηϕ =
∑

i≥0 c
+
i α

+
i +

∑
i<0 c

−
i α

−
i , where {α±i } span HS1 . Since the helicity (∗d−1ηϕ, ηϕ)

is invariant under ϕ, as in (150), we obtain

0 <
E(η)

2λ
= (∗d−1η, η) = (∗d−1ηϕ, ηϕ) =

∑
i≥0

(c+)2

µ+
i

+
∑
i<0

(c−)2

µ−i

where µ±i , positive/negative eigenvalues of ∗d on HS1 . Since the second sum is neg-

ative we can estimate µ+
1 (∗d−1η, η) ≤ E(ηϕ). To finish the proof it suffices to show

that 2λ = µ+
1 . Then we obtain E(η) ≤ E(ηϕ) which proves the claim.
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Now we show the equality 2λ = µ+
1 , let α1 = aiη

i = fη + β be the curl eigenform

satisfying

∗dα1 = µ+
1 α1. (169)

Since, LXα1 = 0 and the fibres of π : P 7→ Σ are totally geodesic, Theorem 3.3.7 tells

us the following equation for f :

∆0
Pf = µ+

1 (µ+
1 − 2λ)f. (170)

Equations (108), in Chapter 3, imply that, for α1 to be nontrivial, f cannot be a

constant zero function. Since ∆0
P is a positive operator we conclude that µ+

1 ≥ 2λ;

consequently, µ+
1 = 2λ because µ+

1 is the first positive eigenvalue.

Theorem 3.3.5 guarantees that Equation (170) is valid for any S1-invariant µ-

eigenform. By Lemma 3.4.3, π : P 7→ Σ defines a Riemannian submersion: ∆0
P (h ◦

π) = π ◦ ∆0
Σh, h ∈ C∞(Σ), and the proof of the second statement follows from the

equation: ν = µ(µ− 2λ). Indeed, for γ2 = ν, γ > 0, we obtain

µ2 − 2λµ+ γ2 = 0, µ = λ+
√
λ2 + γ2, µ = λ−

√
λ2 + γ2, (171)

where µ, µ are the roots of the equation. Consequently,

µ−1 ∈ (−∞,−γ), if µ+
1 = λ > 0

µ+
1 ∈ (γ,+∞), if µ−1 = λ < 0,

and it suffices to assume ν = γ2 > 3λ2 for λ to be the principal eigenvalue of ∗ d on

HS1 .

We may think about λ 6= 0 as a “topological deviation” from the λ = 0 case. Recall

that Hopf fields are principal curl eigenfields of ∗ d on H and therefore, by Proposition

4.1.1, energy minimizers. Lemma 4.2.2 and 4.1.2, characterize the principal curl

eigenfields on products: S1 × Σ. The next theorem provides conditions for η to

become the principal curl eigenfield on (P, gP ).
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By Lemma 3.4.3 we may prescribe a metric gΣ on the base Σ such that a local

frame {e1 = X, e2, e3} on P satisfies

[e1, ei] = 0, i = 1, 2, 3. (172)

Consequently,

LXηi = 0, for ηi = gP (ei, · ). (173)

Theorem 4.3.2. The curl eigenform η defined by (167) on (P, gP ) such that (172),

(173) hold is a principal curl eigenform on H if

λ2 < min
(ν

3
,
4π2

l2
)
, (174)

where ν is the first nonzero eigenvalue of the scalar Laplacian ∆0
Σ on Σ, and l is the

length of the fibre.

Proof. Observe that on (P, gP ) the operator −L2
X commutes with ∆1

P = δ d + d δ.

We check that LX : Ω∗(P ) → Ω∗(P ) commutes with the Hodge star operator ∗ :

Ω∗(P ) → Ω∗(P ). Indeed since LX respects the wedge product:

LX(ω1 ∧ ω2) = LXω1 ∧ ω2 + ω1 ∧ LXω2, ω1 ∈ Ωj(P ), ω2 ∈ Ωk(P ),

Equation (173) implies that for any k-form α =
∑

I aIωI , where ωI = ηi1∧ηi2∧. . .∧ηik ,

I = (i1, . . . , ik), we have

LXα =
∑

I

(LXaI)ωI , since LXωI = 0.

Consequently, ∗LX = LX ∗ follows from the definition of the Hodge star operator,

namely

∗LXα =
∑

I

(LXaI) ∗ ωI (175)

= LX

∑
I

aI ∗ ωI = LX ∗ α, since LXωI = LX ∗ ωI = 0.
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Hence, we obtain LX∆1
P = ∆1

P LX because LX commutes with an exterior derivative

d and δ = ± ∗ d∗. Consequently,

(−L2
X)∆1

P = ∆1
P (−L2

X). (176)

Therefore, we may define the following decomposition;

∆1
P = −L2

X + ∆H
P , (177)

where ∆H
P = ∆1

P + L2
X and we call ∆H

P the horizontal Laplacian. Both −L2
X and

∆H
P are not elliptic, since take into account only derivatives in certain directions.

But −L2
X and ∆H

P have discrete spectra and commute by (176). Consequently, these

operators are simultaneously diagonalizable in a suitable L2-orthonormal basis of ∆1
P -

eigenforms (see also [12]). The decomposition in (177) and (176) implies that any

eigenvalue τ of ∆1
P is a sum τ = ψ + µ of an eigenvalue ψ of −L2

X , and µ of ∆H
P .

If −L2
Xα = ψ α, α = ai ηi, then

−L2
Xai = ψ ai.

Solving this equation in a local trivialization: (t, q) ∈ U ' S1× V ⊂ P , V ⊂ Σ, gives

us −L2
Xai = −∂2

t ai(t, q) = ψ ai(t, q). For a fixed q: ai(t, q) = Aq cos(ψ t)+Bq sin(ψ t),

therefore ψ =
(
2π n/l

)2
, n ∈ N. Now, the theorem is a consequence of HS1 =

Ker(−L2
X) ∩H, and Proposition 4.3.1.
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