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SUMMARY

Discrete-data based statistical methods for the calibration of financial models driven
by Lévy processes are presented. The procedures rely on minimum contrast estimators
for Poisson processes and on the short-time properties of Lévy processes. Therefore, the
estimation is suitable for high-frequency data and for the analysis of the microstructure of
stock prices.

Nonparametric estimation of the Lévy densgyf a Lévy process is studied. Con-
cretely, given a linear spac® of possible Lévy densities, an asymptotically unbiased es-
timator for the orthogonal projection afonto S is found. It is proved that the expected
standard error of the proposed estimator realizes the smallest possible distance between
the true Lévy density and the linear spatas the frequency of the data increases and as
the sampling time period gets longer. Also, we develop data-driven methods to select a
model among a collection of modelS ). The method is designed to approximately
realize the best tradeffidbetween the error of estimation within the model and the distance
between the model and the unknown Lévy density. As a result of this approach and of con-
centration inequalities for Poisson functionals, we pronaeles inequalitieshat guarantee
us to reach the best expected error (using projection estimators) up to a constant.

A numerical study of our methods is presented for the case of histogram estimators and
for Gamma Lévy processes as well as variance Gamma processes. To calibrate parametric
models, a nonparametric estimation method with least-square errors is studied. Comparison
with maximum likelihood estimation is provided.

On a separate problem, we review the theoretical properties of tempered stable pro-

cesses, a class of processes of potential great use in Mathematical Finance.

viii



CHAPTER |

INTRODUCTION

1.1 Opening thoughts

In its most primitive form, a thesisis a formal (in depth) treatment of a subject based on
original researchi. Researchtself can be defined as a “methodical investigation into a
subject in order taliscover factsto establish or revise #neory, or to develop glan of
actionsbased on the facts discovered”. In this chapter, we intend to describe the subject of
our dissertation and our main motivations, proceed to establish the novelty of our results
by briefly reviewing the existing theories on the subject, and finally present our findings.

Let us give a short preview. The subject of the thesithésestimation of (pure jump)

Lévy processesMore formally, the statistical estimation of the “parameter” that controls
the random evolution of the process (namely, the parameter in question is a measure, but for
the sake of simplicity think of it as a nonnegative function that we call the Lévy density of
the Lévy process). Our motivation comes from mathematical finance, and concretely, the
recent application of pure jump Lévy processes for asset price modeling (see for instance
[13], [11], [12], [4], [3], [14], [6], and references therein).

In our opinion, the existing theory and practice of estimation for pure jump Lévy pro-
cesses do not provide reliable results and concrete objective measures of estimation errors,
particularly when based on high frequency data where the microstructure of the market
plays a fundamental role (see [10] for a good review of market microstructure and more re-
cently [17]). Most of the existing works on the subject are informal and greatly intuitive in
what estimation concerns. Even in the case where the theory behind the methods is sound
and perfectly established, as maximum likelihood estimation and fast Fourier transforms

are, no formal quantitative appreciation of the goodness of fit of the model or sensitivity to



model mis-specifications has been discussed. These are real concerns that need to be dealt
with since in most cases the likelihood function is intractable or does not have a close form

at all, and thus, it is necessary to rely on numerical approximations and manipulation of
the data to meet the assumptions of the method. On this matter, it seems that no detailed
numerical analysis has been performed, and issues, like numerical stability and robustness
to errors in data anchode] have not been addressed (not even in numerical experiments).

The method that we use to deal with some of the previous issues relies precisely on the
“microstructure” of Lévy processes; that is to say, the distributional and path properties of
Lévy processes for small time spans. Locally, the dynamics of a Lévy process with non-
continuous paths is better described as a (possibly infinite) “superposition of (compensated)
jumps” plus a continuous Gaussian process with drift having independent and stationary
increments (a Brownian motion with drift in the real case). This representation, called the
Lévy-1t6 decomposition of sample paths, associates to every Lévy process a unique process
of jumps in time, mathematically described by a (marked) Poisson process or a Poisson
process in (0o) xRY. Such a one-to-one relationship between the pure-jump Lévy process
and the spatial Poisson process associated with the jump process, is the justification and
motivation for our methods: we plan to estimate the Lévy density (that ultimately describes
the jump nature of the process) using methods of estimation for Poisson processes.

The statistical inference for spatial Poisson processes has a long history (see for in-
stance [23] and [21]), but to say the truth, our main incentive for this approach come from
recent results on the nonparametric estimation of spatial Poisson processes and model se-
lection methods (see [33]). There are two appealing accomplishments obtained by this
theory: Oracle inequalities and competitive performance against minimax estimators. The
theory assumes that the real model is not one of the models that are postulated, and content
with selecting the model and a representative from it that approximately realizes the best
tradedt between the error of estimation within the model and the distance between the pro-

posed models and the actual unknown model. Oracle inequalities precisely materialized



this ideal. However, the methods presented in [33] seem to require finitely many jumps

almost surely, and that condition is too much to ask for the general type of processes that
one encounters in mathematical finance. We prove that this condition is actually super-
fluous, and properly modified the constructions in [33] to estimate nonparametrically the

Lévy density, preserving Oracle inequalities.

To the best of our knowledge, the estimation of Lévy processes using statistical methods
for point processes has not been formally considered so far. One can think of at least two
reasons for this absence. On one hand, the fact that the increments of Lévy processes (on
equally spaced time spans) constitute a random sample suggests to use standard statistical
methods based on i.i.d. random variables; for instance, maximum likelihood estimation.
The other reason is the apparent inaccessibility of the jumps of the process since we can
only aspire to observe the process at finitely many times. The fact that the jumps are defined
as limits of increments makes possible, at least theoretically, to approximate the jump at a
particular point. However, that would require high frequency data, which in the old days
was not a viable approach. Nowadays, we can access (almost in real time) financial data,
and moreover data bases of intraday quotes are widely available.

The present work successfully combines both approaches, the microstructure of Lévy
processes and the methods of estimation for Poisson processes in space, to estimate non-
parametrically the Lévy density of the Lévy process. We believe that this approach will
reduce the drawbacks of the standard methods. Being nonparametric, we do not rely on a
particular model and hope that data itself validates the best model. Furthermore, we expect
that the method will be more robust to departures from the assumptions of Lévy processes,
since the representation of the jJumps as a Poisson process is valid even if we do not have
stationary increments. This last assumption is particularly suspicious for high-frequency
financial returns due to intrinsic intraday seasonality. Moreover, hight-frequency returns
(sometimes even daily returns) presents discreterfesst®which contradicts the mathe-

matical behavior of Lévy processes. However, we believe that our methods will still be



informative to explain the probabilistic micro structure of the returns and to address the

goodness of fit of Lévy based models in general.

1.2 General framework and background

The goal in this part is to introduce the framework of our results. In particular, we introduce
the main object of study of this dissertation: Lévy processes. As a secondary objective,
we present some results that are fundamental to our work and set some terminology used
throughout all the thesis. Our review is by no means intended to be complete and we

present results without proof. An excellent review of the subject is found in [39].
1.2.1 Lévy processes

Throughout this section, we assume the existence of a probability sRage ), where
all the random variables and stochastic processes are defined. The expectation with respect
to the probability measure is denoted byE. The basic definitions and terminology of
probability theory will be introduced as needed.

We say thatfX(t)}., is stochastically continuous (in probability) if, for all> 0 and
>0,

Ihin?)P[|X(t + h) = X(t)| > £] = 0.
Here is our main object of study:

Definition 1.2.1 A stochastic procesgX(t)}=o0 on RY is a Lévy process if the following
conditions are satisfied.

(1) Foranyn>landrealsg§=0<t; <--- <t, the random variables

X(tl) - X(tO)’ s X(tn) - X(tl’l—l)

are mutually independent;
(2) X(0) = 0 almost surely (a.s.) ;
(3) The distribution ofX(t + h) — X(t) does not depend on t;



(4) It is stochastically continuous;

(5) a.s. it has right continuous with left limits paths;

As usualright continuous with left limitgs written cadlag When a process satisfies (1)
above, we say that the process has independent increments, while when (2) is satisfied
we say the process has stationary increments. A process is adlii#tieif the process
satisfies (1), (2), (4), and (5).

The theory of Lévy processes is closely related to the concept of infinitely divisible

distribution. Belowy stands for the characteristic function of the probability meagure

i = f ()

The notationu® stands for thelistinguished t- th poweonf the the complex valued function

i (see pp. 33 of [39]).

Definition 1.2.2 The distribution measurg on RY is infinitely divisible if, for any integer

n, there is a probability measuyg, such that

fi = fin.
A more probabilistic characterization can be stated as followg. i$fthe distribution of
a random variabl&X defined on a probability spac@ (¥, P), thenu is infinitely divisible

if on a possibly diferent probability space there exist independent identically distributed

(i.i.d.) random variableX, ..., X, such that
X = Xq+ -+ Xn,

where2 means that the random variables on the right and left hand sides of the equality
sign have the same distribution. We emphasize that having independent and stationary
increments, the proce$X(t)}»o is characterized by the distribution #f(1). That is, if

{Y (t)}=0 is another Lévy process, possibly defined on féedent probability space, such
thatX(1)2Y (1) then

XO}oo=Y O}



where the above notation means that their finite dimensional distributions are the same.
Moreover, the distribution aX(1) is infinitely divisible, and reciprocally, for any infinitely
divisible distributionu there exists a stochastic procéxst)},., defined on a probability
space such that ~ X(1) (here,~ means that is the distribution ofX(1)).

The following representation characterize the distribution of a Lévy process in terms of
a measure, a matrixz, and a vectob. This representation is called the Lévy-Khintchine

representation.

Theorem 1.2.3 (i) If {X(t)}»o iS @ Lévy process, then there exist a d matrixX, a vector

b € R? and a measure onRJ = R%\{0} such that
E [eiz'x(‘)] = exp(ty(2)), ze R
where

w(2) = —% z-37+iz- b+f{e‘” —1-iz-x (x|l < 1)} v(dx). (1.2.1)

d
RO

MoreoverX is nonnegative-definite symmetric andatisfies

f LD A 1yv(dx) < oo. (1.2.2)

(i) The representation given in (i) vid, v, andb is unique.
(iif) Conversely, ifZ is a symmetric nonnegative-definite matsixs a measure satisfying
1.2.2, andb € RY, then there exists a Lévy procg¥<t)},., on a probability space, possibly

different from(Q, ¥, P), whose characteristic function is as in (i).

Definition 1.2.4 We calledv the Lévy measure of the Lévy proc&ssT he triple(Z, v, b) is
called thegenerating tripleof the distribution ofX(1) or the generating triple of the Lévy
processgX(t)}-o- The functiony is sometimes called the Lévy exponent or the characteris-
tic exponent of the Lévy process. If in additiois absolutely continuous, we say that the

function s satisfying(dx) = s(x)dx is the Lévy density of the proceS§(t)}o.



It is illustrative to give a few snapshots of the proof of the above theorem that are relevant
to our work. Concretely, we are looking for short-time characterizations of the generating

triplet that are feasible for estimation based on high-frequency observatidhs of

Remark 1.2.5 (i) The unigueness of the matrixis a consequence of the following limit

for X(t):

%X(t)gY, t—0
whereY = (Y,...,Yy)is a Multivariate Gaussian vector with variance-covariance matrix
> (see pp. 40 in [39]). Above,i means limit in distribution, in this case as random
elements oRY.
(i) Another consequence of the proof for Theorem 1.2.3 is the following characterization
of the Lévy measune Namely, for any function f fro® to R that is continuous, bounded

and vanishes on a neighborhood of the origin:

lim %E[f X()] = fR g f()v(dX).

We will use this type of limits in Section 2.3 to estimate the integral of f with respect to the
random measure associated with the jumpgxt)}..o. In the same chapter we will also
state related results for more general functions (these results are obtained in [36]). For

now, let us state the next limit:

fim nE (X7 = [ Xy,

where p> 2 and where it is assumed thB{|X(1)|°] < oo andE[X(1)] = O (see [2] for a
proof).

(iii) Finally, let us introduce the concept of drift of a Lévy processﬁxvslllxllv(dx) < 00,

the vectolbg = b- Lxl\sl xv(dx), where the integration is component wise, is called the drift

of the Lévy process . ¥ = 0 and the drift exists,

1
P[l{m X = bo] -1



On the other hand, i | [IX|lv(dx) < oo, thenX(t) has finite mean for any t (this is a

IxlI>1

necessary condition too) and

E[X()] = t(f”;||>lxv(dX) + b).

Similarly, iff||

(o1 IX|I>v(dx) < oo, thenX(t) has finite second moment for any t (this is a

necessary condition too) and

E [(Xi(t) = X (1)) (X(t) = Xk()] = t(zi,k + f | XanV(dX)],

0

fori,k = 1,...,d. Here, X(t) and x refers to the'l' component of the vecto§(t) andx,

respectively.

The Lévy-Khintchine representation states that the law of any Lévy process is character-
ized by three components: A Gaussian component, a “drift” component, and a “pure jump
component”. The celebrated Lévy-1t6 decomposition extends this characterization to the
sample paths of the process. We present below the Lévy-I1td decomposition for processes
with independent increments. This version is taken from [20], Theorem 13.4. Throughout
this section, the integrals of vector-valued functions with respect to measures are defined

component wise.

Theorem 1.2.6 Let {X(t)}», be a cadlag process iR® with X(0) = 0. ThenX has inde-

pendent increments and no fixed jumipsind only if, a.s.

X(t) = b(t)+G(t)+‘f0 fnl X x(j—Ej)(dsoS()+‘f0 fnl . xJ(dsk), (1.2.3)

for every t> 0, for some continuous functidnwith b(0) = 0, some continuous centered
Gaussian proces& with independent increments a(0) = 0, and some independent

Poisson procesg on (0, o) x RY with

ff (X A DEF(dS &K) < oo, t> 0. (1.2.4)
0 JRY

We say the&X has a fixed jump at some-t0 if P[X(t) # X(t7)] > O.



In the special case whex is real and nondecreasing, (1.2.3) simplifies to

X(t) = a(t)+f0 fom x J(ds &), (1.2.5)

for some nondecreasing continuous funcionith a(0) = 0 and some Poisson process

on (0, o) x (0O, o0) with

f fw (Xl A DEF(ds k) < oo, t> 0. (1.2.6)
0 0

Both representations are almost surely unique, and all functiprssand processe§, J
with the stated properties may occur in (1.2.3) or (1.2.5) for a pro¢¥$8}.o defined on

some probability space.
As a corollary, we readily obtain the Lévy-1td decomposition for Lévy processes:

Theorem 1.2.7 A cadlag procesgX(t)}.o in RY is a Lévy process if and only a.s.

X(t) = bt+ZoB(t)+£ ﬁ” . X([f—Ej)(dsd()+f(; ﬁ” . xJdsk), (1.2.7)

for every t> 0, for some vectob € RY, some dx d matrixZ,, some independent Poisson
processy on (0, co0) X Rg with mean measure of the forB7(dtdx) = dty(dx), and a
standard Brownian MotioB in RY independent of the procegs. Moreover, the measure

y satisfies
f (IIXI? A L)v(dx) < co. (1.2.8)
RS

The representations is unique, and BJIZ,. andv with the stated properties may occur in

(1.2.7) for a proces$§X (1)} defined on some probability space.

The Poisson integrals in (1.2.3) and (1.2.7) are defined in the sense of “approximation in
probability” (see Definition 1.2.11 below). Now, let us give some other specifications of
the representation. The following remarks are useful in the application of the Lévy-Itd

representation (see Section 19 of [39]).



Remark 1.2.8 (i) In the equation (1.2.3), we can take

| ﬁ X -R)Es ) =i | £<|X||S1x(j—Ej)(dsm). (1.2.9)

where the limit exists almost surely. Furthermore, a.s., the convergence is uniform in t on
any bounded interval.
(i) As a consequence of representation (1.2.3), the random meggusealmost surely

determined by the sample paths¥{t)}.,. Concretely, a.s.
J(B) = #{t : (t, AX(t)) € B},

for every Borel set B dD, «0) x R3. Here,# denotes cardinality, andX(t) is the “jump”

of X at time t defined aaX(t) = X(t) — limg X(S). In view of this, we usually calf the
random measure associated with the jumpX afr simply the jump measure. One of the
statements of the Lévy-Itd representation is that the random measure associated with the
jumps of a Lévy process is a Poisson procesfo) x Rg. For a better understanding of

equation (1.2.3), note it can be written in terms of the jump process as follows:

X(t) = b(t) + G(t)

+ Iim {;ﬂAX(S)l(s <[lAX(s)l| £ 1) - f

e<|Ixll<1

X vt(dx)}

+ 3 AX(9LIAX (9 > 1),

S.s<t
wherew(B) = fothEj(ds dx). Here, 1(C) is the indicator function of C, that takes the
valuel if C is true and takes the valug otherwise. The first two terms are called the
continuous parbf the process, the last two terms are calld@ pure jump parof the
process. Sometimes, the second t&(h) is called theGaussian componeat the process,
the third term theeompensated Poisson partd the last term simply theompound Poisson
componentA pure-jump Lévy process a Lévy process that has no continuous part.

(iii) If in addition, we have

t
ff IX|| ET(ds k) < o, ¥t >0, (1.2.10)
0 Jixi<1

10



then a.s.
t
X(t) = b(t)+G(t)+ff X J(ds &), (2.2.11)
0 JRd
whereb andG are as in Theorem 1.2.6.
(iv) Another nontrivial consequence of the Lévy-1td decomposition is the fact that the

marginal distributions oX are infinitely divisible distributions and thus, admit the Lévy-

Khintchine representation of Theorem 1.2.3. Concretely, we have that
E [é Z'X“)] = exp(ty1(2)), zeRY
where

U(2) = —% z-Sz+iz-b(t)+ f{é“ —1—iz-x 1 (Xl < D)} w(dx), (1.2.12)
RS
where; is the variance-covariance matrix @(t), b(t) is as in (1.2.3), andy(dx) =

EJ(t, dx).
1.2.2 Poisson processes and Poisson integrals

There are excellent references about Poisson processes (see for instance [32] and [20]). In
this section we give the very basic results that are used in the present dissertation. Below,
Z., is the union of the set of all positive integers ansh. Also, as a convention, we say that

a random variabl& has Poisson distribution with mean OX¥f= 0 a.s. Similarly, we say

that a random variabl¥ has Poisson distribution with meanif X = « a.s.

Definition 1.2.9 Let (S, S, p) be ac-finite measure space. A collectionZf-valued ran-
dom variableg 7 (B) : B € S} is called a Poisson process (or Poisson random measure)
with mean measutg, if the following hold:

(1) for every B, 7(B) is a Poisson random variable with mea(B);

(2) if By, ..., B, are disjoint, then7(B,), ..., J(B1) are independent;

(3) for everyw, J(-; w) is a measure oi.

The proof of the following proposition can be found in [39]

11



Proposition 1.2.10 For any o-finite measure spad, S, p), there exists, on some prob-

ability space(Q°, 7°,P°), a Poisson procesg7(B) : B € S} on S with mean measure

p.

Note that for fixedv € Q the integral

(61 ) = fs o(0.7(d% w).

can be defined for all measurable functignsS — R, because of (3) in the definition of
Poisson processes. For general measurable funatiofs— R, the integral (¢; w) might

not exist in the sense of Lebesgue integration. This is not a problem if we assurpe that
is finite (see Proposition 19.5 of [39]). In this case, we actually havel {pais infinitely

divisible of the compound Poisson type with characteristic function:

E{exp(iz- 1(¢))} = exp{f(e‘z'*”(x) - 1)p(dX)} (1.2.13)
S
= exp{ ﬁ{ d(éz'X - 1)0090_1)(dx)}-

Below, we give conditions to define Poisson integrals w8as a locally compact metric
space with countable basiS,is the corresponding Boret-field, andp is a radon measure
(see Chapter 10 of [20] for a detailed exposition). For our purposes, we can assue that
is an open subset &, Notice thatfS ¢(X).7 (dX) exists a.s. ifp has compact support and

is bounded. The following definition introduces a weaker type of integration.

Definition 1.2.11 We say tha‘jS ¢(X).J (dx) exists (in the sense of approximation in prob-
ability) when, for any sequende,} of bounded functions with compact support such that
lonl < ¢l and g, — ¢, the random variablefS en(X).J (dX) converge in probability to the
same limit (which is denoted ggga(x)j(dx)).

The next theorem states conditions for the existence of Poisson integrals and compen-

sated Poisson integrals (see 10.2 and 10.15 of [20]).

12



Theorem 1.2.12Let 9 and g’ be independent Poisson processes on S with conarmon
finite radon mean measuge Fix any measurable functiop : S — R. The following

statements hold true:

1. Ifp:S >R, thenfS ¢(X).J (dx w) exists (in the sense of Lebesgue integration) for

almost everyv and

Eexpl— | o(X)T[@X)|} =expi— | (1-e¥M)p(dX)}. (1.2.14)
I I

2. Ifinsteady : S — R and [(l¢(X)| A 1)p(dX) < oo, then [ ¢(X).T (dX w) exists (in the

sense of Lebesgue integration) for almost evergnd

E{exp(i ch(x)j(dx))} = exp{fs(e‘“’(x) -~ l)p(dX)}. (1.2.15)

3. [Le(¥)(T - J")(dx) exists in the sense of approximation in probability if and only if
Sl A 1)p(dx) < co.

4. The compensated integrﬂ ¢(X)(J — p)(dX) exists in the sense of approximation in

probability if and only ifﬁs(lgo(x)l2 A lp(X))p(dX) < oo.
The next proposition is well known and easy to derive.
Proposition 1.2.131f [(le(X)lo(dX) < o, thenE | [} ¢(x).J(dx w)| < e, and
E [ eT(x o) = [ 0ap(es,
If 5 ©*(X)p(dX) < oo thenE [{ ¢*(X).J(dx w) < oo, and
Var( [[stag(ax o) = [ 209009,

1.3 Motivation for our research

Consider a real Lévy proce$X(t)}-o With unknown characteristic triplek(v, b). Statis-

tical inference for Lévy processes in principle should be a straightforward extensions of
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the standard statistical machinery for random samples. This appreciation is justified up to
certain point. The mere definition of Lévy processes as processes with independent and

stationary increment implies that we can readily construct the random sample
XM= X(t) - X(ti_y), i=1,...,n,

whenever 0= ty < t; < ... are equally spaced sampling times with given time dpan
In that case, by applying “standard” statistical methods to a finite saK{plg. .., X(t,),
statistical inferences for the distribution X¥th) seem to be doable.

There are two problems with this paradigm. First, it is well known that parsimonious
models in the “Fourier domain” do not corresponds to parsimonious models in the “space
domain”. Indeed, parsimonious parametric models for the Lévy measure can produce not
only intractable but sometimes not even expressible density functions (assuming such den-
sity exists). We can give numerous examples of this phenomenon, but the most obvious
and relevant one, in what statistical inference concerns, is a scaling of the Lévy mea-
sure. The density function, sdy, corresponding to the characteristic tripleE{hv, hb)
has no general relationship to the density functfoof (X, v,b). In particular, the den-
sity function fi(-) of X(t) can “greatly” change in shape (even for small changed) in
Consider the case of a Gamma Lévy procpsf)}..o with Lévy measure of the form
v(dX) = xtexpx)1(x > 0)dx (see Section 3.2.2 for a more comprehensive description
of this model). The density function of(1) is exponential. For anfy< 1, the density is
strictly decreasing with asymptoteat 0. However, for any > 1, the density oKX(t) is
unimodal and approaches to Oxas» 0. From the point of view of the paradigm outlined
above, this implies that the likelihood function is going to be “instable” as a functi¢én of
aroundh = 1. In other word, the likelihood function based on daily data will be completely
different from the likelihood function based on weekly data. Another easy change in the
Fourier space that leads to striking changes in the “space domain” is the superposition of
Lévy measures. This will not be pursued any longer since we think that we already made

our point here.
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The other problem with the procedure above is more delicate to describe and harder to
guantify. We pose the following question: what are tfie&s of small time increments
in the results of standard statistical methods over finite time horizons?. This problem is
relevant in applications involving high frequency data. The fact that the sample size of
the data increases does not necessarily mean an improved “reliability” or precision of our
results because the target distributi(X(h)) is changing as well.

Let us come back to the first situation where the Lévy process has simple Lévy density,
but “intractable” density function. Such settings are particularly common in recent appli-
cation of Lévy processes to asset price modeling. These financial models are driven by
Lévy processes in the same way as Samuelson’s geometric Brownian motion is driven by
the Brownian motion (see [38]). Namely, the model represents the $(irat timet of a
risky asset by

S(t) = S(0)e*V, (1.3.1)

where{X(t)}s, is a Lévy process. One of the first to propose this geometric Lévy process
was Mandelbrot [26]. He postulates that the prices of commaodities is given by (1.3.1) with
{X(t)}=o being a Symmetrier-stable Lévy motion withw < 2. Later, Press [30] proposed

a Brownian motion plus an independent compound Poisson process with normally dis-
tributed jumps. More recently, Madan and Seneta [24] introduced a model of this type that
has influenced many future works in this area. They propose a Lévy process with “infinite
activity of jumps” but bounded variation of paths, namely, the variance gamma model for
log prices (see Section 3.2.3 for more on this model). This model has been increasingly
specialized to better fit the empirically observed distributions and simultaneous fit the op-
tion prices (see [13], [11], [12]). The density function in most of these models do not have
closed form expressions, and techniques using the characteristic function are inevitable.
Another school of modeling considers the so called generalized hyperbolic distributions
(see for instance [4], [3], [14], [6], and the references therein). The density functions in

this class of models have closed form expressions, but in most case, they lead to intractable
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likelihood functions involving Bessel functions, exponentials, powers etc. Statistical
inference becomes numerically challenging and expensive.

In a technical report, Rosski [35] studies théempered stablmodel that encompasses
the variance Gamma model and the CGMY model of [11]. One important contribution of
this work is to recognize and stress the relationship of this type of models to the class of
stable processes. Two fundamental connections were pointed out. On one hand, the scaling
behavior of the process for both short time spans and long time spans are considered. It
is found that in the short term the increments of the process behave (in the limit) as the
increments of stable process, while in long spans the increments behave like the increments
of a Brownian motion (up to a scaling in space and a shift). We found this property quite
enlightening for financial applications. The second connection has to do with changes
in the probability measure. In short, statistically a tempered stable process looks like a
stable process under a suitable change in the probability measure. We study in detail this
class of processes in Chapter 4 providing our own proofs to his results (so far we have not
had the opportunity to see a complete version with proofs of this technical report). In its
most general form, tempered stable processes involves a completely monotone fgnction
(typical examples are™*, 1/(x + 1), etc). This fact was another incentive for looking into

nonparametric estimation methods for Lévy densities.

1.4 Brief overview of estimation methods for Lévy pro-
cesses

Let {X(t)};>o be areal-valued Lévy process. The following problem is tackled: Assume that
expressions for the characteristic functignor for the Lévy densitys, of X(h) are simple,

but that the corresponding (marginal) density functigrnas either one of the following

two shortcomings: it produces “intractable” likelihood functions, or it does not have a
“closed expression”. We mention below some methods found in the literature to deal with

this problem.
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The most wide spread approach.igelihood based method3 his approach relies on
an inversion formula for the characteristic function that evaluates the density furfgtion
at a pointx from the characteristic functiop,. The following fundamental result gives an

inversion formula for probability densities:

Proposition 1.4.1 Lety be the characteristic function of a probability measurand sup-
pose thatfR lo(2)|dz < o0. Thenu has a bounded continuous density f given by the Fourier

transform ofe:

f(x) = % Iw e 2p(2)dz (1.4.1)

Therefore, based on sampling observatirfs. . , X, of the incrementX(h), X(2h) — X(h),

..., X(Nh) = X((n — 1)h), the likelihood function ofp is implicitly given by

Lo, Xai @) = | | fux) = (zjlr)n [ f ez (1.4.2)
i=1 i=1 Y™™

As it is clear from the previous expression, any statistical inferencefdrased on the
likelihood function is highly computational expensive since it requires to compute a Fourier
transform for each data poin§, i = 1,...,n. For instance, say that the characteristic
function ¢, is determined by one parametee R that we wish to estimate. Let us write
Lh(@) = Ln(X1,...,Xn; ¢e). In order to find the maximum likelihood estimator éft is
necessary to repeatedly evaluate the likelihood fundtjgé) at diferent values of. Each
evaluation requires Fourier transforms. Therefore, the computational intensity of this
approach appears non-viable for applications.

The following method is outlined in [11]. Fast Fourier transforms are applied to eval-
uate the levels of the functiohat a regular latticgx,} of an interval Fb, b]. In their own
words, “fast Fourier transformfiectively renders the level of the probability density at
prespecified set of points”, say = kAX, for k = =N, ..., N andA = b/N. Certainly, this
statement deserves better justification or at least a reference. In any case, the next step is to

“bin” the data to get an approximate likelihood functibg(f). Concretely, they consider
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the following multinomial like likelihood function:
N

Lu@) = | ] o™,

k=—N
whereny is the number of points in the sample for which the closest grid poit iSinally,

“the parameter estimates that maximize the likelihood of this binned data are searched”. To
the best of our knowledge, there is no detailed numerical analysis of this method.

When explicit forms for the density functions are available, [6] considers a multinomial
log likelihood function. More precisely, if, ..., I, are disjoint intervals with union the
entire real line anah; is the number of observations In, j = 1,...,k, the multinomial
log-likelihood function is given by(6) = Z'j‘zl n; log p;, wherep; is the probability that the
increment takes a value In.

Another popular approach smulation based method3he very general idea behind
this approach is to select a model (probably described via a parameter) that best “matches”
the sampling observations and simulated observations using the model. To measure the
closeness between the observed data and the simulated data it is necessary to look for
concrete empirical characteristics like quantiles. So, the estimated model can be proposed
to be one that minimize the distance between some empirical quantiles computed from the
sample observations and the corresponding quantiles computed from simulated data using
the model (see for instance [19]).

The most meaningful approach for the subject of our workinps based methods
As far as we know, this approach has not been fully explored in the context of estimation
for Lévy densities before this dissertation. While the present thesis was in progressed, we
became aware of arelevant result of S. Raible [31]. He considers the estimation of the Lévy
density of Generalized Hyperbolic Lévy processes. It is proved there that some parameters
in that model are invariant under equivalent changes in the probability measure. He also
recognizes that this is a consequence of the fact that these parameters are “sample path
dependent” and not “distributional dependent”. In relation to that, the following general

result is obtained in [31].
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Proposition 1.4.2 Let X be a Lévy process with finite second moments such that the Lévy

measure has a densit{x$ with asymptotic behavior

S(X) = % +o(x‘2), as x| 0.

Fixed an arbitrary time T and consider the sequence of random variables

1 1
Sp= —#{s<T:AX(sS —.1 k> 1.
" Tn{_ ()E[k+1’ )} =
Then, a.s., $converges to the value a as# .

It can be said tha is a “path dependent” parameter that can be determined from properties
of a “typical path”. Using simulation, the convergence of the estimator as the number of
jumps in the sample path gets larger was numerically illustrated . However, the problem of

approximatingS,, if the jump process is not observed is not considered.

1.5 Outline of the thesis

In Chapter 2, it is discussed the nonparametric estimation of the Lévy dexsity real

Lévy processX = {X(t)}.o based on discrete observations of the process in a time period
[0, T]. We devise two methods to accomplish this. The first method constructs estimators,
say S(x), which can be written in terms of integrals of deterministic functions with respect
to the random measure associated with the jumps @oncretely, the first method consists

of two subparts:

(1) the selection of a good estimatefrom a linear modeS of possible estimators. Since
the proposed estimataris designed to be an unbiased estimator of the orthogonal
projection ofsontosS, Sis called theprojection estimatoof sonS. Itis proved that,
when the time horizoil increases, the distance between the proposed estigatdr ~
the Lévy densitys realizes the smallest distance betweeand any other estimator

inS;
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(2) the selection of a linear model among a given collection of linear models. The pro-
posed selection criteria is designed to approximately realize the bestffradeween
the error of estimation withinin the model and the distance between the model and
the unknown Lévy density. The resultant estimator is a typepgnalized projection
estimatorthat assesses the goodness of a projection estimator not only by its approx-
imation quality inside the model but also by its complexity and variance. These last

two characteristics are controlled by suitable penalty functions.

It is shown that the methodology of adaptive estimation, and model selection for non-
homogeneous Poisson processes by [33] can be modified to estimate Lévy densities, while
preserving desirable features likeacle type inequalitieand the convergence of the mean-
square error to 0 as the time horizon increases.

The second proposed method contemplates the problem that the Poisson jump mea-
sure cannot be retrieved from discrete observation and finds an approximation procedure
for Poisson integrals using time series of the fdix(t)}",. This approximation is based
on the “microstructure” of Lévy processes; that is to say, the distributional and path prop-
erties of Lévy processes for small time spans. It is proved the weak convergence of the
approximation to the actual integrals when the mesh of the partition approaches 0. Also, it
is proved that the mean-square error of the estimation based on the approximate integrals
converges to the mean square-error of the estimation based on the unattainable Poisson in-
tegrals. Other connections to the non-parametric estimation of density functions are also
considered.

In Chapter 3, we address the performance of penalized projection estimators and model
selection methods based on computer simulations. The considered estimators are histogram
projection estimators and their approximate versions based on increments. We analyze in
detail two classes of Lévy processes that are relevant in financial applications: Variance
Gamma processes and Gamma Lévy processes. A projection estimation method with least-

squares errors is considered to calibrate parametric or semiparametric models based on
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nonparametric estimation outputs. This methodology is applied to calibrate Gamma Lévy
processes and compare with standard methods of maximum likelihood estimation.

In Chapter 4, we study the classteinpered stable processesroduced by Rosiski
in [35]. We presente a survey of his results, providing our own proofs, and make some

additional remarks.

21



CHAPTER II

NONPARAMETRIC ESTIMATION OF LEVY

DENSITIES

We discuss the nonparametric estimation of the Lévy density a real Lévy process

X = {X(t)}=o based on discrete observations of the process. We develop two methods to
accomplish this. The first method construct estimafgsd Which can be written in terms

of integrals of deterministic functions with respect to the random measure associated with
the jumps ofX. Moreover, the first method consists of two parts: (1) the selection of a good
estimator from a linear space of proposed Lévy densities, and (2) a data-driven selection of
a linear model among a given collection of linear models. It is shown that the methodology
of adaptive estimation, and model selection for nonhomogeneous Poisson processes (see
[33]) can be modified to estimate Lévy densities, while preserving desirable features of
estimation like Oracle type inequalities. The second method contemplates the fact that
the Poisson jump measure is never observed and proposes an approximation procedure for
Poisson integrals using time series of the fg(t;)},. It is proved the weak convergence

of the approximation to the actual integrals when the mesh of the partition approaches 0.
Also, it is proved the convergence of the mean-square error of estimation based on the

approximations to the mean square-error of estimation based on the Poisson integrals.

2.1 The basic method of estimation

Consider a real Lévy process = {X(t)};-o with Lévy densityp. That is, X is a cadlag

process with independent and stationary increments such that its characteristic function is
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given by

-~ : u?o? : :
E [0 = exp]t|iub - 5 +f{e'“"—1—|UX1[|x|31]} p()dx||, (2.1.1)

Ro

whereRgy = R\{0} andp satisfies

f (1 A X2)p(X)dx < oo. (2.1.2)

Ro
Being a cadlag process, the set of jump tinftes 0 : X(t) — X(t) > 0} is countable and,

for Borel subset® of [0, «) X R,
J(B) =#{t>0:(t X(t) - X(t7)) € B}, (2.1.3)

is a well-defined random measure ondd x Ry. The Lévy-1t6 decomposition of sample
functions (see Theorem 19.2 of [39]) implies tijais a Poisson process on the Borel sets

of B(]0, ) x Ry) with mean measure given by
u(B) = ff p(x) dt dx (2.1.4)
B

We study the problem of estimating the Lévy dengityn a domairD € 8 (R,), where
p is bounded aan p?(X)dx < co. For instance, ifp is bounded outside of any neighbor-
hood of the origin, (2.1.2) implies that for amy> O:
p?(X)dX < oo. (2.1.5)
|X|>&
More generally, let us assume that the Lévy measg(d® = p(x)dxis absolutely continu-

ous with respect to a known measyren 8 (D) and that the Radon-Nikodym derivative
dv
—(X) = 9(X), xeD, (2.1.6)
dn

is positive, bounded, and satisfies

f F(X)n(dx) < co. (2.1.7)
D
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Definition 2.1.1 If (2.1.6) and (2.1.7) are verified, we say tlyas aregularization measure
for the Lévy density p. In that case, s is referred to ag#igeilarized Lévy densitgf p on

D (undern).

Our goal will be to estimate the regularized Lévy densityand using (2.1.6) to proceed
to retrievep on D from s. Notice that under the previous regularization assumption, the
measure7 of (2.1.3), when restricted tB([0, ) x D), is a Poisson process with mean

measure

u(B) = ff s(x) dtn(dx), B e B([0, ) x D). (2.1.8)
B
Example 2.1.2 The statistician could be interested in continuous densities p such that

1
p(x) = O(;(), as x — 0.

This type of densities admit the regularization measftx) = x2dx on domains of the
form D= {x: 0 < | < b}. Indeed, &) = x*p(x) will be bounded and fulfills (2.1.7). The

problem reduces to first estimate s and to subsequently estimate poy) x

The general methodology we use is motivated by the recent procedunesded se-
lectionandadaptive estimatioof the intensity function of non-homogeneous Poisson pro-
cesses (see [33]). In this paper, frejection estimatois proposed as a plausible candi-
date for the intensity among a set of functions that constitute a finite dimensional subspace,
whereaspenalized projection estimatiois devised as a data driven criterion for model
selection among a family of linear models. One of the advantages of this approach com-
pared to previous ones is to accompl@racle inequalitiesuinder quite general conditions
(see Section 2.2 for a brief explanation of this type of inequalities). However, there are
some drawbacks when facing domains of estimation with infinite measure as the domain
D = {x: |x] > &} is under the Lebesgue measurelbr= {x : 0 < |X < b} is under the
measure)(dx) = x2dx. Actually, the total measure of the domain plays a key role in the

definitions of projection estimators, contrast functions, and penalization. Our job in this
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section is to develop and heuristically justify a methodology that does not relies on the
finiteness of the domain.
Let us describe the main ingredients of our procedure. Consider the random functional
vo(f) = —% ff f(xX) 7(dt, dx) + f f2(X) n(dx), (2.1.9)
[0,T]1xD D
well defined for any functiorf € L?((D, 7)), whereD € B(Rg) andz is as in equations

(2.1.6)-(2.1.8). Following [33], we cajlp thecontrast function Throughout this section,
IfI? = f F2(x) n(dx),
D

forany f € L2((D,n)). LetS be a finite dimensional subspaceldf= L?((D,7)). The

projection estimatoof son S is defined by

d
5% = > B, (2.1.10)
i=1
wherefes, ..., ¢q} is any orthonormal basis & and
A 1
b=z ¢i(X)J(dt, dX). (2.1.11)
[0,T]xD

Let us give another characterization of the projection estimator.

Remark 2.1.3 The projection estimator is the unique minimizer of the contrast function

yo over S. Indeed, plug £ Y%, Bigi in (2.1.9) to get thayp(f) = X%, (—Z,BiBi +,8i2),

and thus,p(f) > - Zid:l,éiz, forall f € S. In particular, this characterization implies that

§ does not depend on the choice of the orthonormal basis, and suggests a mechanism to

numerically approximat& when we do not have an explicit orthonormal basisSor

The remark above helps to make sense @ an estimator of the regularized Lévy density
sbecause the minimizer & yp(f)] over allf € S is precisely the closest function to

s. Concretely, therthogonal projectiorof son the subspac§, namely

d
s = D[ [etstmtan)eco, (2112)
i=1
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is such that

~lIs‘lI? = E[yo(s")] <E[yo(f)], VfeS. (2.1.13)

Moreover, by Proposition 1.2.13, we can corroborate thiagt &n unbiased estimator of
the orthogonal projectios*. In order to assess the quality of estimation, we compute the

“square error” ofs?

2

d
[, L e CLIUTCLY B
i=1

T
[0,T]xD

Then, using Proposition 1.2.13, the mean square error takes the form
13
B =1 ), [ FRs (. (21.15)
i=1 D

The quantityE [XZ] is called thevariance termand the equation above shows that this term
will shrink to 0 when the time horizom goes to infinity. It is not hard to see that thsk

of § E|lls— §P|, can be decomposed into a nonrandom term plus the variance term:
E|lls- 8| = lls- s'IP + E[x?|. (2.1.16)

The first term, called thbias term accounts for the distance of the unknown functsdo
the modelS and does not depend on the estimation criteria we use within the model.

The next natural problem to tackle is to design a data-driven scheme for selecting a
“good” model from a collection of linear mode{s,,, m € M}. Namely, we wish to select
a model that approximately realizes the best trafiéetween the risk of estimation within
the model and the distance of the unknown Lévy density to the models,l&td s, be
respectively the projection estimator and the orthogonal projectiaoofS,,. For each

me M, lety?2 be as in (2.1.14). The following simplifications of the equation (2.1.16) will
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give us insight on a possible solution:

E(lis— &lP] = lis— shi? + E 3]
= I8P ~ lIspll* + E x| (2.1.17)
= IS - B[I5nl?] + 28 |2

= [ISI” + E[yo (8n) + pen)],

where pent) is defined in terms of an orthonormal ba§ism, . . . , ¢4,.m} for Sy, by the

equation:

dm
penfn) = % ff [Z goﬁm(x)]j(dt,dx). (2.1.18)

[OTjxp \i=l

Equation (2.1.17) shows that the risk f moves “parallel” to the expectation of tlod-
servable statisticyp (&) + penfn). This fact heuristically justifies to choose the model
that minimizes such a penalized contrast value. We will show in a subsequent section that
it is possible to take simpler penalty functions pem:— [0, ). In general, genalized

projection estimator (p.p.e.) is of the form

8= &, (2.1.19)

wheres,, is defined as in (2.1.10) for eaame M, and wheram’is chosen so thatp (§,) +
penfm) is minimal:

M = argming, (o (&) + penm)}.

Methods of estimation based on the minimization of penalty functions have a long history
in the literature of regression and density estimation (for instance, [1], [25], and [40]). The
general idea is to choose among a given collection of parametric models the model that
minimizes a loss function plus a penalty term that controls the complexity of the model.
Thenonparametric point of viewf penalized estimation has been promoted in the context
of density estimation by Birgé and Massart (see [7] and references herein). In fact, the work

on non-homogeneous Poisson processes by [33] is directly inspired by them. There are two
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main accomplishments obtained in these works both in the context of density estimation
and intensity estimation of nonhomogeneous Poisson processes: Oracles inequalities and
competitive performance against minimax estimators. The following section shows that the

method outlined here preserves Oracle inequalities.

2.2 Oracle inequalities

Consider the problem of model selection among a collection of linear m@dglsn € M},

for the regularized Lévy densityon D as outlined in Section 2.1. We showed through
(2.1.17) that a sensible criterion to decide for a projection estimator is to penalize its con-
trast value with a properly chosen penalty function peM:— [0, ). Of course, the
“best” model, namely

m = argmin,_,, E [lls— §m||2] , (2.2.1)

is not accessible, but we can aspire to achieve the smallest possible risk up to a constant. In

other words, it is desirable that our estimasamomply with an inequality of the form
2 : a2
E[ls-§F] <C inf ElIs- &, (2.2.2)

for a constanC “independent” of the linear models. The model that achieves the mini-
mal risk of projection estimation is called tl@@racle modeland inequalities of the type
(2.2.2) are calledDracle inequalities "Approximate" Oracle inequalities were proved

by Reynaud-Bouret [33] for the intensity function of a nonhomogeneous Poisson process
{Na}acy ON @ measurable space, (V). Concretely, she defines projection estimatgs ~
and penalized projection estimatarsatisfying

’

~ , R C
B[lls— 87| < € inf B[Is— 8’| + 7.

wheresis a bounded function andis finite measure oN such that

J(A) = E[Ng] = fA S(X)dZ(x).
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The finiteness of plays an important role in her definitions and results, and it is not neces-
sarily satisfied by the mean measure of the Poisson prgeepsf (2.1.3) onB([0, T] x D)

(for instance, ifD = {|x| > &} under(dx) = dxdtas in (2.1.4), orifD = {0 < |x| < b} and

Z(dx) = x?dxdtas in Example 2.1.2). In this section we show that, based on one sam-
ple of the Lévy procesX on [0, T], the projection estimator,}mep« and the penalized

projection estimatos described in Section 2.1 yield the approximate Oracle inequality

E[ls-§F] < C inf Els- &?| + =
for the Lévy measurs under suitable chosen penalization functions. The proof we present
essentially follows the same line of reasoning as [33]; however, to overcome the possible
lack of finiteness im and avoid unnecessary use of upper bounds, we include a new element
in the penalization functions which is also appealing: the dimension of the linear model.
We also address the problem of estimating the order of the con§tamdC’ appearing in
the Oracle inequality.

The following regularity condition was introduced by [33] to make a distinction be-

tween not too “large” families of linear models and wavelet-type linear models. We will

focus here on the simplest case.

Definition 2.2.1 A collection of model§S;,, m € M} is said to be polynomial if there exist

constantd” > 0 and R> 0 such that for every positive integer n
#{me M :dn=n} <I'n%,
where ¢, stands for the dimension of the mode}, vhile# denotes cardinality.

We assume below the setting of Section 2.1; that is toXay,{X(t)}. iS a Lévy process
with Lévy density p and regularizedLévy densitys on a domainD € B(Rg) under a

regularization measureg (see Definition 2.1.1). Define

D = sup{||f||§o  f e SmlIfl? = fD f2(X)n(dX) = 1}. (2.2.3)
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Remark 2.2.2 If {¢1m, ..., ¢q,m} IS @an orthonormal basis a$y, then Oy, = || Zidzml gofmlloo

(see Section 2.5 for a verification).
Here is the main result of this section:

Theorem 2.2.3 Let{Sn, me M} be a polynomial family of finite dimensional linear sub-
spaces of &((D, n)). Let T be large enough so that,Dx T, for all me M. If §,and s,
are respectively the projection estimator and the orthogonal projection of the regularized

Lévy density s o8, then, the penalized projection estimatof (2.1.19) is such that

C/
f— S 2 i — 2 —
Ells-§F] <C inf {Is- s> + E[penm)]} + — (2.2.4)
whenevepen : M — [0, o) takes one of the following forms for constants 4, ¢ > 0,
andc¢’ > 0:

(a) penfn) > CD;’éV +c’dT—m, whereN = J([0, T] x D) is the number of jumps prior to T with

sizes falling in D and where it is assumeet || S(X)n(dX) < co;

(b) penfm) > c%, whereVy, is defined in terms of an orthonormal ba§is m, . . -, ¢q, m} Of
Sm by the equation:
d
- 1 m
Vin= = f f [Z ¢fm(x)] J(dt,dx), (2.2.5)
[0,T]1xD

i=1

and where it is assumegl= inf . pq ﬂ;’fl > 0andg = inf ey 3—;“ > 0;

(c) penfr) > c¥e 4 ¢/2n 4 ¢,
Moreover, the constant C depends only on'@rw ¢/, while C varies with ¢, ¢ ¢”, T, R,

ISl lISlleo, p, B, @Nd .

The next corollary immediately follows from the first equality in (2.1.17), equation

(2.1.15), and part (b) above:

Corollary 2.2.4 In the setting of Theorem 2.2.3, if the penalty function is of the form

penf) = c%, for every me M, 8> 0, and¢ > 0, then

Els— 87| < C inf {B[lls— &7} + <

2
= 2.2.6
= (2.2.6)
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for a constant ¢ depending only on ¢, and a constarg @pending on d;, R, ||Sl], ||Slc,

B, andé.
We will break the proof of Theorem 2.2.3 into several preliminary results.

Lemma 2.2.5 For any penalty functiopen : M — [0, o) and any me M, the penalized

projection estimatoB satisfies

Is— 87 < lIs— ShI? + 23, + 2vp (S5, — Sb) + penfm) — pen(r), (2.2.7)

wherey?, = ||s — &4/1> and where the functionat : L2 ((D, 7)) — R is defined by

(2.2.8)

vof) = ff N(CIT:E) —Ts(x) dtn(dx)

[0,T]xD
The general idea to obtain (2.2.4) is to bound the unattainable &fasdyp (sr; — s;)
in the right hand side of (2.2.7) by observable statistics. Then, the form of) pet(be
determined by this observable statistics so that the right hand side in (2.2.7) does not involve
M. To carry out this plan, we use concentration inequalitiegfpand for the compensated
Poisson integralgp(f). The following result gives a concentration inequality for general

compensated Poisson integrals.

Theorem 2.2.6Let N be a Poisson process on a measurable sg&cé’) with mean
measureu and let f: V — R be an essentially bounded measurable function satisfying

0< [, f2(V)u(dv) and [, |f(Mu(dv) < co. Then, for any w0,

1
P f F(V)(N(@V) — (dV)) > [IfllLz V2U + §||f||oou] <e, (2.2.9)
\
Wherellfllﬁz(#) = fv f2(V)u(dv). In particular, if f : V — [0, o) then, for anye > 0 and

u> 0,

P >1-eY  (2.2.10)

(1+e) (j\; f(V)N(dv) + (%9 + g) ||f||oou) > j\; f(V)u(dv)
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The inequality (2.2.9) is proved in [18] (see also Proposition 7 of [33]). A verification of
(2.2.10) is provided in Section 2.5.
The next result allow us to bound the Poisson functigidal This results is essentially

Proposition 9 of [33].

Lemma 2.2.7 Let N be a Poisson process on a measurable sp€c@’) with mean mea-
sureu(dv) = p(v)n(dv) and intensity function g L?(V, V, ). LetS be a finite dimensional

subspace of 4V, V, ) with orthonormal basi$®,, . . ., 4}, and define

d

B(v) = le( fv szi(w)N(dw)) ) (2.2.11)
d

P = ) [ i new) 5 ) (22.12)
i=1 WV

Theny?(S) = |Ip - pL||fz(n) is such that for any » O ande > 0

P|y(S) > (1+ &) A/E[x%S)] + V2kMsu + k(s)Bsu] <e (2.2.13)

where we can take ¥ 6, k(e) = 1.25+ 32/¢, and where
Mg = sup{fv f2 V) pn(dv) : f € S, IIfllz, = 1}, (2.2.14)
Bs = sup{lIfll : f €S.1Ifllzgy = 1}. (2.2.15)

Following the same strategy as [33], the idea is to obtain first concentration inequality of

the form
P|lis— 8° < C(lIs— spll” + penfm) + h(#)| > 1- C'e,

for constantC andC’, and a functiorh(¢) (all independent ofm). This will prove to be

enough in view of the following result (see Section 2.5 for a proof).

Lemma2.2.8Let h: [0,0) — R, be an strictly increasing function with continuous

derivative and such thai(l) = 0 andlim,_,., e*h(¢) = 0. If Z is random variable satisfying
P[Z > h(¢)] < Ke™#,
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for everyé > 0, then

EZ <K f e "h(u)du.
0

We are now in position to prove the main result of this section. Throughout the proof, we
shall have to introduce various constants and inequalities that will hold with high probabil-
ity. In order to clarify the role that the constants play in these inequalities, we shall make
some conventions and give to the lettgry, f, a, b, &, K, ¢, andC, with various sub- or
superscripts, special meaning. The letters witire reserved to denote positive constants
that can be chosen arbitrarily. The letters wjtdenote arbitrary constants greater than
1. f, f, fo,... denote quadratic polynomials of a varialflevhose co#icients (denoted

by a's andb’s) are determined by the values of tRes andy’s. The inequalities will be

true with probabilities greater that-1%e*, whereX is determined by the values of the
x'sand they’s. Finally,c’'sandC’s are used for constants constrained by xteandy’s.

It is important to remember that the constants in a given inequality are only used in that
inequality The pair of equivalent inequalities below will be repeatedly used through the

proof:
(i) 2ab< xa& + Zb? and
(2.2.16)
(i) (a+b)?<(1+x)a+(1+1)b2 (for x> 0).
Proof of Theorem 2.2.3 We consider successive improvements of the inequality (2.2.7):
Inequality 1: For any positive constants, X, X3, and X, there is a positive numbek
and an increasing quadratic functior(d) (both independent of the family of linear models

and of T) such that, with probability larger than— Ke™,

Is= 38 <ls— sl + 25, + 2xalls, — sll?

%20 + X520 + x, T (2.2.17)
+ pen) — pengh) + &,

Verification: Let us find an upper bound fep (s,; - sﬁn) m’,m e M. Since the operator

vp defined by (2.2.8) is just a compensated integral with respect to a Poisson process with
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mean measurg(dtdX) = dtp(dx), we can apply Theorem 2.2.6 to obtain that, for any

x', > 0, and with probability larger than4 e
Sr#Y - San ’ “Sr#Y - SIJ’;I”OOX;TY
) \J2X + — 37 (2.2.18)

vo (s — ) < [ =
In that case, the probability that (2.2.18) holds for every € M is larger than 1-

Ymrem €% becauseP(AN B) > 1 - a - b, wheneverP(A) > 1 -aandP(B) > 1-h.

Clearly,

HS#Y—S%
T

o= [ (7= o
[o,T]wa‘

<8l ="

Using (2.2.16-i), the first term on the right hand side of (2.2.18) is then bounded as follows:

HS#Y—S%
T

, i, NSl X
Lz(ﬂ)\/ZXm'SXﬂl% Sl + T (2.2.19)

for anyx; > 0. Using (2.2.3) and (2.2.16-),

IS = Sllo Xy < (Il + 1Slleo) X
< (VDmlisill + VDulisHl) X

< VD lISIXy + vDmllSlIXyy

IsPx2 (1 1
< 3xD 3x3D —+—],
< 9XoDpy + 9XzPm + 12 X2+X3

for all X, > 0, x3 > 0. It follows that, for anyx; > 0, x, > 0, andxz > 0,

D D
vo (S — §5) < Xallsh, — SHII2 + XZ?m + x37m
v 212
N ISl X7y N IIsl] Xm’
2T % 36Tc

where we se% = X—12 + X—13 Next, take

- 1 1
M-““EH$MMJ+5
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Then, for any positivex;, X, X3, and Xy, there is ak and a functionf such that, with

probability greater than 2 Ke™,

vo (S = Sh) < xallsh — SHIP + X284+ x5

, (2.2.20)
+(1%‘C+2%)d7"f+@, vYm e M.
Concretely,
f(&) = fad” + B¢,
(2.2.21)

K =T Ty nRexp(— vixe (& A ).
Here, we use the assumption of polynomial models (Definition2.2.1) to come up with the
constantX. Pluging (2.2.20) in (2.2.7), and renaming the fto&ént of dy/T, we can
corroborate inequality 1.
Inequality 2: For any positive constants ¥ 1, X;, X, and %, there are positive constants
C1 < 1,C; > 1, andX, and a strictly increasing quadratic polynomial f (all independent

of the class of linear models and T) such that with probability larger tharKe™,

Cills—§° <Cjlis— sl +yuj,
+%20 + x5 Bm 4 x, % (2.2.22)
+ penfn) — penfm) + @
Moreover, ifl <y; < 2, thenC =3-y;and G =y, - 1. Ify; > 2, then G = 1+ 4x; and
C, = 1-4x,, where x is any positive constant related to f according to equation (2.2.21).

Verification: Let us combine the term on the left hand side of (2.2.17) with the first three

terms on the right hand side. Using the triangle inequality followed by (2.2.16-ii),

s — Sll® < 2lls— syl + 2lis, - Sl
Then, since?, = [Isk — &ll?, and||s;, — SlI? = lIs— &> — IIs;, — &ll%, it is found that

lIs— SHIZ + 2v2 + 2xqlIsk — sHlI? — lls— 31
< (1+4x0)lIs— sHlI? + (2 — 4xq) lIss, — &all?
+(4x — 1) Is- §I%,
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for everyx; > 0. Then, for anyy; > 1, there are positive consta@t C; > 1, andC; < 1

such that
lIs— sull® + 2 + 2ClIs;, — sill” = lIs— §?
< Cills— sull® + yixg, — Culls— 3.
Combining (2.2.17) and (2.2.23), we obtain (2.2.22).

(2.2.23)

Inequality 3: For any y > 1 and positive constants,xi = 2, 3,4, there exist positive
numbers G < 1, C, > 1, an increasing quadratic polynomial of the forg() = a2 + bé,
and a constanfk, > 0 (all independent of the family of linear models and of T) so that,
with probability greater tharl — K,e™¢,
Calls- 8> <Cjlis— syl
+y2 2 + %28 + x3% — pen(r) (2.2.24)

+ X 2 2 1 pengr) + f(f)

Verification: We boundy?, using Lemma 2.2.7 with \ R, x D andu(dx) = s(X)dtr(dx).
We regard the linear modé}, as a subspace f(R, x D, dtr(dx)) with orthonormal basis

{‘”T;’ o “"imﬁm} Recall that

d 2
2 Z J(dt,dx) — s(x)dtp(dx)
Am = \f:f;)T]xD #im(x) T

Then, with probability larger than 4 3y, €%,

VTxm < (14 %) Vi + +/2KkM iy X, + K(%0) By Xy » (2.2.25)

for everym’ e M, whereBy = VD /T,
A
Vo = f [Z¢ﬁm(x)) s(x)n(dx), and (2.2.26)
D\iz1

My = sup{f F2()s(X)n(dx) : f € S, lIfll = 1}.
D

Since [ f2(X)s(X)n(dX) < ||fllwllS], My is bounded above bys| vD.,. In that case, we
D

can use (2.2.16-i) to obtain

A 2kMy X < Xo /Dy + me,
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for anyx, > 0. On the other hand, by hypotheflg, < T, and (2.2.25) implies that

VTxmr < (L + %) VVir + X2 /Doy + (@ + k(xl)) X,

where the constantg, are chosen as
. X3 Vd
N kIISH + K(X1)

Then, for anyx; > 0, %, > 0, x3 > 0, and¢ > 0,

\/T)(m’ < (1+ X]_) \/V_m + Xz\/m + X3m+ fl(g)’ (2227)

with probability larger than + Kie7¢, whereX; is determined by the Polynomial property

and where

(kIISII

(6 = K 1))

Squaring (2.2.27) and using (2.2.16-ii) repeatedly, we conclude that, forary, x, > 0,
andxs > 0, there are both a constait > 0 and a quadratic function of the forfa(¢) =
a&? (independent off, v, and the family of linear models) such that, with probability

greater than + ke,

Vi D d f
)(m' < y— + XZ?M + X3?m, 2_1(_5),

v e M. (2.2.28)

Then, (2.2.24) immediately follows from (2.2.28) and (2.2.22).
Proof of (2.2.4) for case (c):
By the inequality (2.2.10), we can upper bouig by Vi on an event of large probability.

Namely, for everyx’, > 0 andx > 0, with probability greater than2 ., e %

1+x) (\7m + (%( + g) DTm xm) >V, YM e M, (2.2.29)

(recall thatDy, = || Z. \E 2 llw). Since by hypothesiBy < T, and choosing

Xy =Xy +& (X >0),
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it is seen that for anx > 0 andx, > 0, there are a positive constai} and a function
f(¢) = b¢ (independent off and of the linear models) such that with probability greater
than 1- 7Ge ¢

(1 + XV + XaOy + F(€) > Vi, VM € M. (2.2.30)

Here, we getX; from the Polynomial assumption on the class of models. Combining
(2.2.30) and (2.2.24), it is clear that for agy> 1, and positivex, i = 1,2,3, we can
choose a pair of positive constaiis < 1, C; > 1, an increasing quadratic polynomial of
the form f(¢) = a£? + bé, and a constari > 0 (all independent of the family of linear

models and oT) so that, with probability greater than-1Ke™*

Cills- 3 <Cllis- S#nll2
+y— + %28 + %% — penf) (2.2.31)
+x32n + pengn) + 1.

Next, we takey = ¢, x; = ¢/, andx, = ¢” to cancel-pen(ih) in (2.2.31). By Lemma 2.2.8,

it follows that

N

CiE[lls- 7] < Cills— shlP + (1+ =) 2 [penem)] + (2.2.32)

Sincemis arbitrary, we obtain the case (c) of (2.2.4).

Proof of (2.2.4) for case (a):

By Remark 2.2.2, we can bound,, as given in (2.2.26), bidyp (assuming thgb < o).
On the other hand, (2.2.10) implies that

(1 + %) (¥ + (2:; + g) g) > p, (2.2.33)

with probability greater than 4 e*¢. Using these bounds faf,, and the assumption that

Dy < T, (2.2.24) reduces to

Cils—- 3P <Cills— sl

+y2aX 4 x; % — pen() (2.2.34)
+%2 + penfm) + 12,
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which is valid with probability 1- Ke™*. In (2.2.34),y > 1, x; > 0 andx, > 0 are
arbitrary, whileC,, C;, the increasing quadratic polynomial of the foffi¢) = a¢? + b¢,
and a constank’ > 0 are determined by, x;, andx, independently of the family of linear
models and off . We point out that we divided and multiplied lpythe termsDg,/T and
Dn/T in (2.2.24), and then applied (2.2.33) to get (2.2.34). It is now clearytkat, and
x1 = ¢ will produce the desired cancelation.

Proof of (2.2.4) for case (b):

We first upper boun®;, by 8~1V;, anddys, by (B¢)~1Vy, in the inequality (2.2.24):

Cills— 8P < Cills—SH2+ (y+ x5 + x(69) ) %2
—penff) + x5~ + penm) + 2.

Then, usingly < (8¢) 1V in (2.2.30) and letting,(8¢)~* vary on (Q 1), we verify that for

(2.2.35)

anyx > 0, a positive constark; and a polynomiaf can be found so that with probability

greater than + K,e¢,
(1 + X)WV + (&) > Vi, VM € M. (2.2.36)

Putting together (2.2.36) and (2.2.35), it is clear that forynyl andx; > 0, we can find
a pair of positive constant; < 1,C; > 1, an increasing quadratic polynomial of the form
f(¢) = a£? + b¢, and a constark > 0 (all independent of the family of linear models and

of T) so that, with probability greater than-1Ke™¢,

Cills— 8P <Cllis— shP+y% — pengi)

+x %0 + penfm) + &

(2.2.37)

In particular, by taking = c, the term—pen(fh) cancels out. Lemma 2.2.8 implies that

24

G (2.2.38)
= 2.

CiE [lls— 8P| < Cills - sili° + (1 + x)) E [pengn)] +
Finally, (2.2.4) (b) follows sincenis arbitrary. ]

Remark 2.2.9 Let us analyze more carefully the values that the constants C adrC

take in the inequality (2.2.4). For instance, consider the penalty function of part (c). As
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we saw in (2.2.32), the constants C antdfe determined by ¢ C;, C/, and %. The
constant G was proved to bey- 1if y; < 2, while it can be made arbitrarily close to one
otherwise (see the comment immediately after (2.2.22)). On the other hatse/fycan be
made arbitrarily close to the c of (2.2.31) by taking x small enough in (2.2.29) and y close
to 1in (2.2.28). Then, when g 2, C; can be made arbitrarily close to one at the cost of
increasing @' in (2.2.32). Similarly, paying the same cost, we are able to seleasClose

to one as we wish andyarbitrarily small. Therefore, it is possible to find for amy> 0, a

constant C(¢) (increasing inc) so that

C'(e)
T

Ells- §F < (1+ &) inf {lIs— s + E[penm)]} + ——— (2.2.39)

A more thorough inspection shows that
Iirr(l) C'(e)e = K,

where K depends only ¢;,ac”, I', R, ||sl], and||9l.. The same reasoning apply to the
other two types of penalty functions when €. In particular, we point out that €can be
made arbitrarily close to 2 in the Oracle inequality (2.2.6) at the price of having a large

C, constant.

2.3 Calibration based on discrete time data: approxima-
tion of Poisson integrals

One drawback to the method outlined in Section 2.1 is that in general we do not observe
the jumps of a Lévy process = {X(t)}.o- In practice, we can aspire to sample the process
X(t) at discrete times, but we are neither able to measure the size of the pAX{ps=
X(t) — X(t7) nor the times of jump#t : AX(t) > 0}. Poisson integrals of the type
| (f) = f f(X) 7 (dt,dx) = Z f(AX(t1)), (2.3.1)
[0.T]xRo t=T
are simply not accessible. In this section, we discuss the approximation of the integral

(2.3.1) based on time series of the fof)t(tﬂ)}izo, wheret! = £,

n
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Let us motivate our approximation scheme. The natural way of interpolating the sam-
ple path of a Lévy process from the sampling observat{mg‘j)}izo is to take a cadlag
piecewise constant approximation of the form

n
XN(t) = Z X )1(te[th,,t), telo,T). (2.3.2)
k=1
Above, 1 denotes the indicator function of the corresponding set. It is quite simple to prove
that we have the convergence Xt to X at finitely many points with probability one (a
guality shared by any right-continuous proc&3gsFurthermore, the approximated process

X", having independent increments, convergexs to D[0, «), under the Skorohod metric

(see VI of [29] and in concrete Example VI.18). Hence, a first guess is that

n
h(F) = > FAX®) = > f (X&) - X(t)), (2.3.3)
t<T k=1
converges to (2.3.1) as —» o. We are able to prove the weak convergence of (2.3.3)
to (2.3.1) using well-know facts on the transition distributions<ah small time (see for

instance pp. 39 of [5], Corollary 8.9 of [39], or Corollary 3 of [36]).

Lemma 2.3.1 Let X = {X(t)};>o be a Lévy process with Lévy measurd hen:
1) For each a> 0,

1 .1
Itmg ¥P(X(t) > a) = v([a, «)), and tIlrg?TIP(X(t) < —a) = ¥((—o0, —a]). (2.3.4)
2) For any continuous bounded function h vanishing on a neighborhood of the origin,
.1
Itlrrg) YE [h(X()] = h(X)v(dX). (2.3.5)
— Ro

Remark 2.3.2 In particular, the two parts in the previous Lemma imply (2.3.5) when

h(x) = La (X) f(X), where(a, b] is an interval ofRo and f is a continuous function.

It is worth mentioning that [36] provides stronger conclusions on the distributiof(tpf

for small timet. The following theorem summarizes some of their results.
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Theorem 2.3.3Let X = {X(t)};so be a Lévy process with Lévy measureLet K be the
distribution function of Xt) and G thespectral functiorof v; i.e. G(x) = v([X, o0)) for
x> 0and Qx) = v((—, X]) for x < 0. The following properties hold:

(i) If F and G have densitiéd, and g, then for x£ 0

1 0
lim + %) = 2 &3 _, = 9. (2.3.6)

where we additionally assume thaf(K) is continuous in a neighborhood (if= 0, x) and
that moreoveld/at)Fi(x), (0/9X)F¢(X), and(d/0t)(d/0X)F¢(X) exist and are continuous in
(t=0,x).

(i) For a fixed N> 1, there exist’(N) > 0 and { > 0 such that, for alle € (0, ’(N)) and

t € (0,tp), and for x> n > O,

N-1 i
1-F(X) = Z it—lc;j;‘ (X) + O, ("), (2.3.7)
i=1 "
where G(x) = 1(|x| > €)G(X). Similarly, for x< —n < 0,
N-1 _j
F(9 = 3 G209+ 0., (2:3.8)

i=1
(iii) If his continuous and bounded andiify_o h(X)|x2 = 0, then
lim }E [h(X(1)] = h(x)v(dX).
t—»0 t Ro

Moreover, iffRO(|x| A1)v(dX) < oo, itis enough to postulate that{k)(|x| A 1)~* is continuous

and bounded.

Limiting results like (2.3.5) are useful to establish the convergence in distribution Of |

since

iul, 3 iU % n_ %n
B[] = (B[ X)) _(1+ n) :

wherea, = nE|h(X ()| with h(x) = €' — 1. So, if f is such that

jim 28 |eu® - 1] = f (€47 — 1) v(dX). (2.3.9)

t—0 t Ro

1The function g> 0 is said to be the density of the spectral function G i(Xp = g(x) for x < 0 and
G'(X) = —g(x) for x > 0.
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thena, convergesta=T fRo h(x)v(dx), and thus
n
lim (1+ %) = lim &"0s(+%) = &,
n—oo n n—oo
We thus have the following result (see Section 2.5 for verification):

Proposition 2.3.4 Let X = {X(t)}-o be a Lévy process with Lévy measurdhen,

: iuly(f) — juf(x) _
MQOE[Q | exp{T fRo(e 1)v(dx)},

if f satisfies either one of the following:
1) f(X) = Lo (X)h(X) for an interval(a, b] ¢ Ry and a continuous function h;

2) f(x) is continuous oy andlim o f(X)|x|~2 = 0.
In particular, I,(f) converges in distribution to(F) under any of the two previous condi-

tions.

Remark 2.3.5 Notice that ifS is a linear space of functions such that everg S fulfill
(2.3.9), then the stochastic procesds(f)}tes, With “time-space”S, converges in law to

{I (f)}tes. The convergence is in the sense of finite dimensional distributions; i.e.

Un(F2) sl (F)) = (1 (F) .. 1 (Fa))

as n— oo, forall fy,...,fy € 8. This results is a direct consequence of the fact that
the “random functionals” }(-) and I(:) are both linear. Proposition 2.3.4 describes two

possibilities for the spac8.

Example 2.3.6 Consider the case where f is the indicator function in an inte(aab] c

Ro so that |,(f) counts the number of incremerd(t}) — X(t; )}, that fall on that inter-

val. As we will see, this type of statistics is relevant for the estimation of the Lévy density
by histograms (piece-wise constant functions). The distributiop(6j Is Binomial with
parameters n and “success” probability,E P[X(T/n) € (a,b]] . In that case, Proposi-

tion 2.3.4 merely asserts the elementary “Poisson approximation to Binomial”, namely the
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distribution of |(f) converges to a Poisson distribution with mean
lim np, = Tv((a b]).
Nn—oo

Also, notice that

Var(In(f)) = npa(1 - pn) — Tv((a, b)) (2.3.10)
as n— oo. In general, if t9,.. ., f@ are indicator functions omutually exclusiveBorel
sets ofR,, the vector(ln(f(l)),--~ , In(f(d))) has a multinomial distribution with param-

eters n and “membership” probabilitiesip = E[f® (X (1)), fori = 1,....d. In that

case,

N—o0

lim nCov(In(f9),15(19)) = -T2 f fO(x)v(dx) f fOX(Ax), i # j.
Ro Ro

Moreover, the random variables(lf(l)) R (f(d)) happen to be asymptotically uncor-

related as seen from

mnp(ln(f@),ln(f(i))): -T (f f(i)(x)v(dx)f

Ro Ro

. 1/2
f(”(x)v(dx)) ,
valid fori # |.

Remark 2.3.7 Clearly, if f and £ satisfy (2.3.5), then the mean and variance,6f) obey

the asymptotics:

im E [In(f)] :Tf f()v(dx);

lim Var[l,(f)] =T | f2(X)v(dXx).

n—oco Ro
2.4 Estimation Method
Let us summarize the previous sections and outline the proposed algorithm of estimation:

Statistician’s parameters: The procedure is fed with a Boralindow of estimation O
Ro, a collection{Sy}mer Of finite dimensionalinear modelsof L2 ((D, 7)), and a

level of penalization ¢ 1.
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Model and data: It is assumed that a Lévy process (1)} is monitored at equally
spaced times; = k%, k = 1,...,n, during the time period [Or]. The data con-
sists of the time serie{é((tﬂ)}izl. The Lévy process admits a Lévy densjiyith
regularizations under the measurgon D (see Definition 2.1.1).

Estimators: Inside the linear mode$,,,, the estimator of is theapproximated projection

estimator
dm
8§00 = D Blapim(), (24.1)
i=1

where{e1m, - . ., ¢4,.m} IS an orthonormal basis f&#,, and
R 1<
Pim= T Z G (X () = X (1)), (2.4.2)

is the estimator of the inner produét, = ngoi,m(x)s(x)n(dx), fori = 1,...,dn.
Across the collection of linear mode{$,, : m e M}, the estimatos), which mini-
mizes—||§}* + ¢ perf(m), is selected, where
1 & (&
pert(m) = 53 ), | 2, i (X() - X)) .
Remark 2.4.1 It is worthwhile to point out the great similarity of the scheme above to
the methods of density estimation given by L. Birgé and P. Massart [7]. In this article,
the authors estimate the probability density function f of a random sample-XX, by
projection estimators of the type:
A d (1
f(x) = ; {r_1 kZ:; @i (Xk)} @i(X), (2.4.3)
where(yi)2, is an orthonormal basis of a linear modslof L((R, dX)). To solve the prob-

lem of model selection, they propose penalized projection estimators with penalty function:

n d
pen®) = —— > 312 (x0.

nin+ 1) i

Then, it is intuitive that when estimating the Lévy density p of (2.1.1), the method outlined

at the beginning of this section “works” as a byproduct of the small time qualities of Lévy
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processes and of the standard methods of nonparametric estimation of probability densities.

Concretely, consider the statistics
. n i
i
Bim=15 kZ; Gim(X (A1) = X (1))

Notice that n takes charge of the time length of the increments and j determines the num-
ber of increments. By the methods of Birgé and Massart, as j progresses the (penalized)
projection estimator ;
) = Zlﬁﬂ;:; #im(¥),
i=
will estimate 2 fr/y(X), where f stands for the probability density function oftX(if it
exists). By the small time properties{df(t)};~o as summarized by Theorem 2.3.3, this will

be enough to estimate the Lévy density p, if n is large enough. Notice that in general a.s.

n

j
im fim >0 (@) - X (@) = [ e09ney.
) k=1 Ro

N—oo |—o0 T

wheneverp satisfies (2.3.5). Our method essentially conjectures that we can do both op-
erations simultaneously and simply take=nj. Below, we prove that some asymptotically

nice properties are still preserved with such a simplification.

Let R(X) be the linear space of measurable functigrsich thatt [¢ (X(t))] < oo, for tin

some (Q¢), and

im TE e (XO) = [ w9y, (2.4.4)

Ro

wherev is the Lévy measure of the Lévy proces{t)}.o. Let S be a linear space of

functionsf such that

i 2[00 -] = [ (@10 - 1) (0w,

t—»0 t Ro

for everyu € R. The following holds (see Section 2.5 for a proof).

Proposition 2.4.2 Let g, be the orthogonal projection of s @#y,. If ¢ m and gofm belong

to R(X) for every me Mandi=1,...,dn, then the approximated projection estimagr
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of s onSy, (based on n discrete observations) satisfies:
lim E[118), - 0| = E 1180 — s3] (2.4.5)
Furthermore,
lim E 11§, - | = B[l1&n - s
2.5 Some additional proofs

Verification of Remark 2.2.2: Suppose thdD,, is finite, and thus each e S, with ||| = 1

is bounded. It follows using Lagrange multipliers that, for eaehD,

dm dm dm
D(¥) = sup{l PRI I 1} = > (Y.
|=l |=l |:1

SinceDy,, > D(x) for everyx € D, we obtainDy, > || 2™ ¢?ll.. On the other hand, for

everye > 0, there ardy,, ..., b, satisfyingzidzm1 bi2 =1 and anx € D such that

Om dm dm
D=2 <| > be(d <DM = D 6?3 < || > o]
i=1 i=1 i=1

Letting e — 0, it follows thatDp, = || £, 2| .. O

Proof of Lemma 2.2.5:Clearly,yp as defined by (2.1.9) can be written as
Eyo(f) = I - 2f - sp — 2vp(f) = [If — spll* - lIsoll* - 2vo(f).
By the very definition osas the penalized projection estimator and by Remark 2.1.3,
yo(8) + penf) < yp(&n) + penm) < ¥(sy) + penf),

for anym e M. Using the previous two equations:

18- soll” = yp(3) + lIsoll* + 2vp(3)
< ¥(sm) + lIsoll® + 2vp(3) + penn) — pen()
= |Ism — Soll” + 2vp(8 - s7) + penfm) — pen().
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Finally, notice thatp(8 - sk) = vo(8— st) + vo(St, — Sm) andvp(5n — S5) = x2. m|
Verification of inequality (2.2.10): Notice just that for any, b, & > 0:

1 a 1 5
a-— v2ab—§b2 1+8—(Z+6)b. (251)

Evaluating the integral in (2.2.9) forf, we can write

>1-¢e.

2| [ foon@R > [ fau - 11, V2 - St

Using thatj| f[|2 < |||l [ f(x)u(dX) and (2.5.1),

1 1 5 .
| [ foon@n > o [ 1o~ 5+ gty > 1- e

which is precisely inequality (2.2.10). ]
Proof of Lemma 2.2.8:

Let Z* be the positive part of. First,
E[Z] <E[Z] = f P[Z > xX]dx.
0

Sinceh is continuous and strictly increasingZ > X] < K exp(~h=(x)), whereh! is the
inverse ofh. Then, changing variables to= h=%(x),

fw P[Z > X]dx < K foo e Mdx = K foo el (u)du.

0 0 0

Finally, integration by parts yield§™ e'h'(u)du = [~ h(u)e™du, O
Proof of Proposition 2.3.4:
It suffices to prove (2.3.9). Clearly,andh(x) = €4'® — 1 both have the identical support
and set of continuity. For the first case, the limit follows from Lemma 2.3.1 applied to the

real and the imaginary parts bf(see also Remark 2.3.2). Next, if lino f(X)[x|=2 = 0,

he) _ lim e -1 — ju lim ® _ 0
X—0 X2 IX—0 X2 IX—0 X2 )

By part (iii) of Theorem 2.3.3, we get (2.3.9). The last statement in Proposition 2.3.4

follows from the characteristic function of a Poisson integral (Proposition 1.2.12). O
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Proof of Proposition 2.4.2:

From the orthonormality property,

o

E[Ig - sl = 3% [(ﬁﬂm —ﬁi,m)z]

[

:.?-n
N

{Var () + (B [Bn] - i) |-

=N

By remark 2.3.7,

m B (1] =T [ @(n(@ and mvarien] =T [ ¢n(xsnax.

Ro Ry
Then, (2.4.5) is true from (2.1.14) and (2.1.15). The second statement in the proof is

straightforward since

E|I18, - siP| = E| 118 - snll?] + s - s>
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CHAPTER Il

NUMERICAL TESTS OF THE METHOD

This part studies the performance of penalized projection estimators and model selection
methods based on computer simulations. The first section shows some procedures, due to
Roshski [34], to simulate pure jump Lévy processes. These procedures are basweat-on

noice processeand has the advantage of providing us with a set of jumps. Concretely,
the method generated the jumps of the Lévy process. The second section analyzes the
performance of projection estimators and approximated projection estimators to simulated
data. We consider two relevant classes of Lévy processes for our numerical experiments:
Gamma, and Variance Gamma models. A projection estimation method with least-squares

errors is used to calibrate parametric or semiparametric models.

3.1 Simulation of Lévy processes

3.1.1 Brief overview

Accurate path simulation of a pure jump Lévy processes{X (t)}o 1}, regardless of the
relatively simple statistical structure of their increments, present some challenging prob-
lems when dealing witlinfinite activity (namely, processes with infinite Lévy measure).
Just try to conceive that in this case the jump times are in fact dense &) (8ee Theo-
rem 21.3 of [39]).

One of the most popular simulation schemes is based on the generatiisciate
skeletons Namely, given a partitioty = 0 < t; < --- < t, — oo 0of [0, ), the discrete

skeleton ofX (based on this partition) is defined by

X(t) = ;‘ X (1) 1(t € [tes, &) = ;‘ ALt > 1),
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whereA, = X(tx) — X(tx_1). Moreover, if the partition is regular (that ig,= k/n for some
positive integen), then)~<(t) = Z[ki‘]l Ax, and the increment8\},., are i.i.d. with common
distribution £(X(1/n)). In that case, the discrete skeletons can readily be generated with
any accuracy if the marginal distribution ¥ft) can be simulated for arty This type of
approximation for the Lévy process was the motivation behind our approach to estimate
the integrals with respect to the jump measureXah Section 2.3. The main drawback
to the previous scheme is the fact that most often the marginal distributions are not easily
generated (at least for some popular financial models). The approximated pXotess
ing independent increments, convergeXtm D[0, o) under the Skorohod metric (see VI
of [29] and in concrete Example VI.18).

The second easiest scheme would be to approximate the Lévy process by finite activity

Lévy processes. That is, the Lévy-1t6 decomposition of sample paths establishes that a.s.

the process

X (t) = t(b - ﬁ ” XV(dX)) + D AX(9LUAX (I = &) (3.1.1)

s<t
converges uniformly on any bounded interval, and a.s. the limiting process coincides with
the paths oiX (above AX(t) = X(t) — X(t7)). The process . AX(S)L(|AX(9)]| > &) can
easily be simulated by @@empound Poisson procestthe form Z;Zl“) Y¢, whereJ°(t) is
a homogeneous Poisson process with intengjiy| > ¢) and where{Ylf}:’:l are i.i.d with
common distribution
v(dx)

ve(dX) = 1(IIXI| > &) ————.
v(lIXIl > &)
Clearly, such a scheme is unsatisfactory because all jumps smaller #iangnored. An
alternative method of simulation is based on time series representations of the form

X(t) = bt+ > [H ([, Vo) 1(U; <) - te],

i=1

which will be explained in the next section. We shall simulate the Lévy processes for our
numerical experiments using this method. We decide on this method because it generates

directly a sample of the process jumps, which are needed for the basic method of estimation
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described in 2.1. It is worth mentioning that the previous representation still exhibit some
difficulties regarding the small jumps of the process. Indeed, in practice the series need
to be truncated to finitely many terms, and sincergsponse functiol is decreasing in

the first variable, this operation has a tendency to remove small jump sizes. Asmussen and
Roshski [2] introduce a further improvement to the jump-based method above that relies

on a Brownian motion approximation for the small jumps of the process.
3.1.2 Simulations based on series representations

Throughout, let agaiX = {X(t)};o.1; b€ a Lévy process dr? with characteristic function
E [eiU-X(t)] = v,
wherey is characteristic exponent defined by
y(U) =iu-b+ f{é“'x — 1—iu-x (X < D} v(dx). (3.1.2)
R
We now introduce a methodology to simulate the pro¢ebased on series representations
for the Lévy procesX. The results below are presented in [34] and are given here for the
sake of completeness. A series representatioX foan be derived from a series represen-
tations for the random measure associated with the jump& dh general terms, if the
random measure
J(B) =#{t>0:(t, X(t) - X(t")) € B}, (3.1.3)
has the representation
T =D 600, (3.14)
i=1
for a sequence of i.i.d uniform random variab{els};., on [0, T] and a sequence of random

vectors{Ji}i~1, then a.sX has theshot-noise seriegepresentation
X(®) =bt+ Y [V <) -tc], 0<t<T, (3.1.5)
i=1

for suitable centers; that compensate the jumps. The random variablissgovern the

times of the jumps, while th&'s give the size of the jumps.
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Let us first describe the techniques used to obtain representations of the form (3.1.4).
Think of the jumpsJ’s as random responses to fictitious “shots” occurring in the past ac-
cording to a homogeneous Poisson process. The distribution of the jumps are dictated by
a probability measure(u; -) on B(RY) which might depend on the elapsed timbetween
the jump and the shot. Moreover Jifis the jump originating from a shd} time units ago,

assume that

P(3 eI,

21’{Jj}j¢i) =0 (I1,B), Be B[ (3.1.6)

It follows that, under the measurability of(-; B) for any B € B(RY), the jumpsly, Jo, ...

form a Poisson process & with mean measur@ f0°° o (u; B)du, whenever the elapsed
times among shots & I'; < I'; < ... form themselves a homogeneous Poisson process
on (Q o) with intesity T (see Proposition 3.8 of [32]). Consequently, the marked point

processy >, 6w ) (+) will have mean measure of the form

,u(dt,dx):f o (u; dx)dudt
0

Combining the previous arguments with the Lévy-It6 decomposition for Lévy processes,
we conclude that the measuyfeof (3.1.3) has the same law %2, 6, 3, () whenever the

Lévy measure has the representation

v(B) = fow o(u; B)du. (3.1.7)

Under the additional assumption that the probability sp&;&( P) whereJ is defined is
rich enough to be equipped with an independent uniform random variable, [34] shows that
the sequenced’}is1, {Ji}i-1, and{U;};51 can be defined int§, #,P) and the representation
(3.1.4) holds a.s.

There are other considerations we need to think about for the representation (3.1.5) to
hold. It has to do with the probabilistic structure of the junjjh$. Roughly speaking, to
avoid divergence problems and to guarantee the existence of compensating Geittisrs

necessary that the magnitude of the jumps decreases as the elapsed time between the jump
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and the shot increases (an appealing physical assumption as well). This is better explained

if we notice that (3.1.6) is equivalent to having
Ji=H(, Vi),

for a sequence of random elemefis};.; independent ofU;, Vi}i-1 (see Lemma 2.22 of
[20]). Then, we expect thalH(r, v)|| should decrease infor (3.1.5) to be true. Let us

summarize the conditions and the main theorem for the simulation of Lévy processes.

Condition 3.1.1 The jump measure of can be written as
O =) unmvin (), as (3.1.8)
i=1

for a measurable functiol : (0,c0) x S — RY, where S is an arbitrary measurable
space. Here{Ii};2; is a homogeneous Poisson processRanwith intensity T ,{U;};2;
is an independent random sample with uniform distribution(@T’), and {V;};2, is an

independent random samgM;};°, with common distribution F on the space S.
Condition 3.1.2 For any Poisson proceg$™}°, onR, with unit rate,
ATH -A(M) -0 as, (3.1.9)

where

S
A(S) sf fH(r,v)1(||H(r,V)|| < 1) F(dv)dr. (3.1.10)
0 S
The next lemma gives flicient conditions for (3.1.9) (see pp. 409 [34]):

Lemma 3.1.3 The limit in (3.1.9) holds true if either one of the following conditions is
satisfied:
i) a=limg,. A(S) exists inRY;

i) the mapping r— ||H(r, v)|| is nonincreasing for each& S .
The following result establishes the series representations for Lévy processes.
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Proposition 3.1.4 If the conditions 3.1.1 and 3.1.2 are satisfied then, a.s.

X(t) = bt + i[H(ri,vi)l(ui <t)-tg], (3.1.11)
i=1

forallt € [0, T], wherec; = A(i) — A(i — 1).

Proof: Notice that the Lévy-It6 representation (1.2.3) takes the form

X(t) = bt + f[oﬂ » X1(IIXIl < 1)(J - EJ)(du, dx) + f x1(|Ix|| > 1) (du, dx).

[0,t]xRY
Define

M() = Z 6(Ui,ri,Vi) ().
i=1

From Proposition 3.8. of [32]M is a (marked) Poisson processRr= [0, T] X R, X Rg

with mean measuréu dr F(dv). By a “change of variables”,
X(t) = bt + L H(r, v)1(H(r, v)|| < 1)(M(du, dr, dv) — dudrF(dv))
+ L H(r,v)1(IH(r, v)|| > 1)(M(du, dr, dv) — dudrF(dv)),
whereR, = [0,t] x R, x RJ. Define
Xs(t) = bt + ths H(r, v)1(JH(r, V)| < 1)(M(du, dr, dv) — dudrF(dv))
+ ths H(r,v)1(H(r, V)|l > 1)(M(du, dr, dv) — dudrF(dv)),

whereR?® = [0, 1] x [0, s] x RJ. Using that the Poisson procesis an independently scatter
measure (that igVI(Ay), ..., M(A,) are mutually independent for disjoint s&s ..., An),
we can verify in a standard way thét(t) has independent increments both with respect to
s€ [0, ) andt € [0, T]. Also, notice that
Xs(t) = bt+ > H(L, Vi)1(U; < 1) ~tA(9), (3.1.12)
iTi<s

implying thatX(t) enjoys cadlag paths in s for eachNe claim that almost surely,
lim X(t) = X(t),
S—o0
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forallt € [0, T]. Fix t € [0, T] and take a sequenag T . SinceX.(t) has cadlag paths,
it suffices to check that lim,., Xs,(t) = X(t) a.s. Furthermore, sinc& (t) = >, (Xs(t) —
Xs_,(t)) and sinceX.(t) has independent increment, it is enough to have convergence is in

distribution. The later can be deduced from arguments based on characteristic function.

Remark 3.1.5 We finally point out that if condition (3.1.9) is true, and the representation
(3.1.8) holds in distribution, then the representation (4.5.12) is valid in the sense of finite
dimensional distributions. In view of our opening arguments in the present Section, (3.1.8)

can be obtained in law if if and only if the Lévy measure has the decomposition
v(B) = f o(u; B)du, (3.1.13)
0
whereo(u; B) = P[H(u, V) € B].

The following remark considers the case of Lévy processes with pathsusided varia-

tion.

Remark 3.1.6 The series (4.5.12) simplifies further Whﬁ)ﬁ]lslllxllv(dx) < oo, namely,

whenX has paths of bounded variation a.s. (see Theorem 21.9 of [39]). Concretely, a.s.
X(t) = (b—a)t+ZJiI(Ui <t), (3.1.14)
i=1
wherea= >, ¢ = lim;,. A(i). Such a constant is finite and equals

a:fowaH(r,v)l(HH(r,v)lls1)F(dv)dr:ﬁ(ns1xV(dx).

The vectod = b — ais called thedrift of the Lévy process and, when it exists, is uniquely

determined by the following form of the characteristic functioiX of

E[é“'x(t)] _ exp{t(iu d+ ng fex - 1) v(dX))}

The previous methodology can be applied to generate series representation for a wide range
of Lévy processes. We illustrate this technique in the next Chapter, Section 4.2, to obtain
series for theeempered stable processtsbe introduced in Chapter 4. Besides its im-
portance as technique of simulations, Ra&i [34] suggests to use such representation in

obtaining path sample properties of the Lévy process.
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3.2 Numerical tests of projection estimators

This section addresses the performance of some projection estimators of Lévy densities
based on simulations of the Lévy processes. For this initial analysis, we essentially take
piece-wise constant estimation functions on regular partitions. Two relevant classes of Lévy
processes are considered for our numerical tests: Gamma, and variance Gamma processes.
For purposes of comparison, a method of least-squares errors is then used to generate the

parametric Lévy density that best fit our nonparametric results.
3.2.1 Specifications of the statistical methods

Let us describe in greater detail the projection estimators we consider. Below, we write
J (A) instead of the notatioy ([0, T] x A) of (2.1.3) when referring to the number of
jumps of sizes iMA € B(Rp) occurring prior toT, and we writeya(X) for the indicator
function onA. LetC :a= Xy < X; < -+ < Xy = b be a partition of the intervdD = [a, b]

(0 < a< b), and letS¢ be the span of the indicator functiofgg x,), - - - » X[xm1xn)- 1N Other
words, the linear mode&§. consists of “histogram functions” on the windd@with cutoff

points inC. We assume that the Lévy process has a Lévy desdiyunded outside of

any neighborhood of the origin. This assumption is very mild, and yet good enough for the
integral fD (x)dx to be finite. In that case, the orthogonal projectiorsainto S¢ exists
(under the standard inner productldgf(D, dx)), and thus the projection estimation Sp

is meaningful. In the terminology of Section 2.1, the regularization measure is strply

the regularized Lévy density coincides with the Lévy density, and the orthonormal basis

{¢1,...,pm} for Scis

1 .
0i(X) = ———xx)(®, 1=1....m

Following thebasic estimation methodutlined in Section 2.1, the projection estimator,

previously defined in (2.1.10), on the linear mod&glis given by

Z :f([m 1, m))

&(¥) = [Xi-1,Xi)(X)- (3.2.1)
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Remember that the projection estimator on a linear model is characterized by having min-
imal contrast value on that model (see Remark 2.1.3). Under the previous notation, the

contrast value of (3.2.1) takes the form:

oy 1 (I X))
(&) = TZ PR

Similarly, the statistid/ of (2.2.5), needed for the penalty function, is given by

X| Xi-1
In that case, following the heuristics of Section 2.1 and Theorem 2.2.3 part (b), an appealing

procedure to select a projection estimator of the form (3.2.1) is to look for the minimization

of the following penalized contrast value

m

T 2 s (O T ) - [T ). (323)

i=1

Here,c > 1 is a constant that controls the level of penalization. In fact, Theorem 2.2.3
and Corollary 2.2.6 ensure us that, for large enotigthe previous procedure will yield
competitive results against the best projection estimator. For that to happen it is necessary
to restrict ourselves to modelssatisfying thaD. < T, whereDc is defined as in (2.2.3).

In this case, the constab); is 1/ min.i<m{X — Xi_1} as seen from Remark 2.2.2. Notice

also that the mean square error (2.1.1530i5"

. 1 %
E [l — &) :?Z __X_lf s(X)dx
-1 1= Xi-1

which goes to infinity whem = X, | O.

The simplest case is to take regular partitigns= a + iAx},, whereAx = (b —a)/m

is the mesh of the partition. Then, the projection estimators of (3.2.1) becomes

8n(X) = T(b—”la) Zl] T 062 5)) Xixa) ), (3.2.4)

and penalized projection estimation will look to minimize

g |7 (et - Z(:f([m L X)? (3.2.5)
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over allm such thatD,, = m/(b — a) is smaller thanT. Observe that (3.2.4) is simply a
scaling of a histogram of the jumps ¥f There are three new ingredients though: the base
of the histograms is deliberately takeff the origin; the number of intervals in the partition

is restricted to be at modt(b — a); the use of penalized contrast values to choose an ap-
propriate partition. Let us emphasize this point: the three previous conditions are not only
perfectly objective, but also have very well-defined consequence: The Oracle inequality.
This is in contrast to common practitioner methods of histogram construction, where the
choice of the partition is made qualitatively and usually to try to match an assumption that
bias our results and “don’t let the data speak by itself”. It is still open the choice of the
estimation windowD and penalization parameterbut the arbitrariness of the method is
reduced.

For comparison against other procedures and to assess the goodness of fit to specific
parametric models, it is useful to find the parametric model of a given type that “best fits”
our non-parametric estimators; for instance, suppose the we want to assess whether or not
the nonparametric results supports the parametric Gamma model for the Lévy density. The
method of least square errors provides an easy solution to this problem. For instance, if
s(X) is the parametric form of the Lévy density, a plausible estimatera#n be defined
by

6 = argmin, d(s, 9),
wheresis the (penalized) projection estimator on a given family of linear modelsdasd
a function that accounts for thefférence betweesg, ands. For instance, for a fixed set of

points{x }, c D, d(-,-) can simply be defined for functiorfsandg as
k

d(f,0) = D [f(x) - g0x)]*.

i—1
If it is preferable to have a least-square method that is linear in the parameters to avoid

ill-posenessnumerical problems, we can look for a functiofaso thatT (s,) is linear in

1In numerical methods, the term ill-conditioned or ill-posed refers to problems were small changes in the
input data can cause “large” errors in the final solution
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6 and define

k
d(f,9) = ) [T(Hx) - T@X)].
i=1

Example 3.2.1To illustrate the previous least-square scheme, let us go ahead and con-

sider the case of Gamma Lévy densities

o
X:__X/ﬁ,
09 =2

for x > 0. Given a (penalized) projection estimat®rthe least-square estimatesecndp

based on the values m}!‘:l are the solutioriy and,é to the minimization problem:
[« X\ .\

min ' (Z exp(—E) - s(xi)) . (3.2.6)

However, the estimation would be very susceptible to points with spaedtill-conditioned

problems might arise. We could try instead a regression method that is linear in the param-

eters using a logarithmic transformation:
m 1 2
min ), (5% + log(e) - log(x&0) | 327)
7=l

The simulation method we use (described in Section 3.1.2) generates a sample of
jumps of the Lévy procedX(t) o) by truncating the series (3.1.5) or (4.5.12terms.
In our numerical experiments below, we will use this sample to approximate the integrals

with respect to the jump measufeas follows

n

f Tt dx) = > FAX®) ~ > f (). (3.2.8)

[0,T]xRo t<T i=1
whereJ; is thei" jump in the sample (see Proposition 3.1.4 for more detailed description).

In particular, the projection estimatoss 6f (3.2.1) ands,, of (3.2.4) will be approximated

by
o o L #i g e [%o1, %) _
S~ 3 E w0 (3.2.9)
m < .
§109 ~ T =g 2 #7  € DX X)) X () (3.2.10)
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If instead we apply discrete skeletons to simulate the path of the Lévy process or if we apply
the method developed in Section 2.4, the integrals with respgttsioall be approximated
using the increment@((t{‘) - X(t", }in:l. From an algorithmic point of view, this can be
achieved by takingl = X(t") — X(t" ,) in the previous expressions. Notice that in the
previous case, the approximation of the estimatpoissimply a scaling of a histogram of

the i.i.d random variable[é((ti”) - X(ti”_l)}inzl. In particular, we expect that such a histogram
will be similar to the density function ofZ(X(T/n)). This is not a contradiction since

whennis large, the density of X (%) converges to the Lévy density under some regularity

conditions (see Section 2.3 and Remark 2.4.1 for a discussion of this matter).

3.2.2 Estimation of Gamma Lévy densities.

3.2.2.1 The model

As a first example, we discuss the calibration of Gamma Lévy processes. These pro-
cesses are fundamental building blocks in the construction of other Lévy processes like
the variance Gamma model [13] and the generalized Gamma convolutions [8]. Moreover,
by Berstein’s theorem, any Lévy density of the foufx)/|x|, whereu is a completely
monotone function, is the limit of superpositions of Gamma Lévy densities.

The Gamma Lévy process = {X(t)}.o iSs determined by two positive parameters

andp so that the probability density function #{t) is

Xa/t—le—x/ﬁ
fi(x) = Tap’ (3.2.11)
for x > 0. In this case, the characteristic functionofs
E[e™0] = (1-ipt)t = exp[t (a f (€ -1) v(dx))],
0
where the Lévy measuseis
a X
v(dx) = ~ exp(—lg)dx, for x> 0; (3.2.12)

see [16] pp. 87 or Example 8.10. of [39]. From the point of view of the marginal densities,

[ is ascale parameteanda is ashape parametein terms of the jump activityy controls
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the overall activity of the jumps, whilg takes charge of the heaviness of the Lévy density
tail, and hence, of the frequency of big jumps. Notice that changes in the time units is
statistically equivalent to changes of the parameatawrhile changes in the units at which

the values oK are measured are statistically reflected on changes of the pargiméteat

is to say, the scaled procegx(ht)};.o is also a Gamma Lévy process with shape parameter
ahand scale parametgc. This property is consistent with the previous remarkdaking

charge of the jump activity and ghtaking charge of the frequency of large jumps.
3.2.2.2 The simulation procedure

Let us specialize the simulation procedure of Section 3.1.2 to Gamma Lévy processes.
That is to say, we need to find random elem¥rdn a measurable spa&and a function

H : (0, ) x S — Rg such that

v(B) = fomP[H(u,V) e Bl du.

It is not hard to check tha¥ can be made exponentially distributed with mean 1 and

H(u,v) = gve V2. Indeed, for alb > 0,

f P[H(u,V) > b]du:f f 1|pve s > b| e dvdu
0 0 0
* b .
= expl—=e- |du.
A p( B )
= f ge‘fdx,
b X
by changing variables ta = be"® in the last equality.H(u, v) being non-increasing i,

Remark 3.1.4 implies that the conditions of Proposition 4.5.12 are satisfied and thus, the

process
X(t) = ﬁZ V, exp(—E), (3.2.13)
i=1 @
is a Gamma Lévy process on [0] with shape parameterand scale parametgi(see also

Remark 3.1.6). Below, we shall truncate the seriesterms (corresponding tojumps in
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the proces¥X) to simulate a path oK and moreover, to simulate the jump procgsby
In() = Zn] 63(), (3.2.14)
i=1
whereJ; = oV, exp(—%).
3.2.2.3 The numerical results

We now present a few cases to illustrate the technique of projection estimation on his-
togram functions based on regular partitions (see Section 3.2.1 for the specifications of the
estimation method). Figure 3.1 shows the Gamma densitywithl andg = 1 and its
(approximate) penalized projection histogram on regular partitions of the form (3.2.10).
The estimation is based on 2000 jumps of the Gamma Lévy process3Bb[0and their
approximated Poisson integrals (3.2.8). The least-square method (3.2.7), takkig #se
the mid points of the partition intervals, yields the estimaters 0.932 and3 = 1.055.
The maximum likelihood estimators based on the increments of the sample path of time
length 1 are 1.015 far and 0.949 fop (we do not observe real improvement if the time
length of the increments is reduced).

In the next simulation, we consider a Gamma density with a lighterga# 0.5) and
more jump activity ¢ = 2). The opposite setting was also studied: a heavier tail determined
by ag = 2 and a lower jump activity given by am = 0.5 (see Figures 3.2 and 3.3). In
the first scenario, the least-square method estimators ard.907 ands = 0.472, while
the maximum likelihood estimators are924 and (627, respectively. For this second
Gamma density, the least-square method (3.2.6), taking;®has the midpoints of the
partition intervals, produce estimatars="0.5 and3 = 1.72, while the maximum likelihood
estimators are.85 and 199, respectively.

Approximate histogram estimation on regular partitions is less successful in case of
high activity levels. This problem is particularly evident when we have in addition heavy
tails in the Lévy density. For instance,df = 3 andg = 3, the method requires a large

sample size to satisfactorily retrieve the behavior around the origin (see Figures 3.4 and
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Penalized Estimation Projection
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Figure 3.1: Penalized projection estimation &.

Penalized Projection Estimation
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Best parttion = 37 intervals

Figure 3.2: Penalized projection estimation ébxp(—Zx).
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Penalized Projection Estimation

81\ ‘ ‘ — ‘Projection‘estimator‘ ‘ I
| _ . Real Gamma density: 0=0.5 and p =2
l\ — - Estimated Gamma density: 0=0.50353 and  =1.7261
T .
\
|
= Sample Path Information: 2000 jumps on [0,365] i
\
\ Gamma Process with 0=0.5 and p =2
5 |- 4
\ Method of Estimation:
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\\ Best partition = 18
3k \
2 |-
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Figure 3.3: Penalized projection estimation gjexp(—g).

3.5). For 2000 jumps, the least square estimatesrare1:87 and3 = 4.45, while the
estimates are = 2.8893 and3 = 2.9268 for twice as many jumps. The maximum likeli-
hood estimators based on the increments of time length .5 are 2.41340b64rfdr3.30971

for g when the approximate process is made out of 2000 jumps, while when the process
is approximated using the 4000 jumps, these estimates@&282and 31007 fora andp,
respectively. We also notice in our experiments that the estimates for the first simulation
improve considerably if the window of estimation is taken “far away” from the origin (for

example'= 3.20944 angB = 2.68775 on & b] = [1.5, 5]; see Figure 3.6).
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Figure 3.4: Penalized projection estimation §exp(—%) on the interval [05, 5]
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Figure 3.5: Penalized projection estimation §bxp(—§) on the interval J05, 5].
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Penalized Projection Estimation
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—— Projection estimator
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— - Estimated Gamma density: a=3.2094 and 3 =2.6878
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Estimation Window = [1.5,5]
Best partition = 9
1\ :
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Figure 3.6: Penalized projection estimation ébxp(—g) on the interval [15, 5].

3.2.2.4 Regularized projection estimation around the origin

We present another way to estimate the Gamma Lévy density even around the origin based
on the regularization technique described in Section 2.1. The key observation is the follow-

ing: the Gamma Lévy measure (3.2.12) can be written as
W(dX) = ax exp(—g) n(d), (3.2.15)

wheren(dx) = X—lzdx Then,s(x) = axexp(—;;,‘) is square integrable with respecttoopen-
ing the possibility to use the projection estimatiorsafn a linear spacs§ of L? ((0, ), ).
Once an estimatos for s has been obtained defined byp(x) = §X)/x? can work as
an estimator for the Lévy densify(X) = a exp x/B)/X. In the terminology introduced
in Section 2.1y is a regularization measure for the Gamma Lévy dengitgnds is the

respective regularized Lévy density (see Definition 2.1.1).
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Let us specify this method for the linear model

m
Sc = {f :[0,00) > R : f(X) = C1X)([XO’X1)(X) + Z G /\/[Xi,Xi+1)(X)’ forcy,...,Cnh € R} ,

i=2

whereC : 0 = Xy < X; < --+ < Xy = bis a partition of an chosen intervBl = [0, b]. The
projection estimatos."onto S, under the standard inner productiéf((0, ), 17), takes on

the value

&(X) = x— Z AXOI [AX() < x4 ,

t<T
if X < Xq, while if x_; < X< X;, forsomei € {2,..., m}, then

Xi-1X
T(X — %i-1)

We shall use the penalty function of Theorem 2.2.3 part (b) to perform model selection.

&(x) = I ([%i-1, %))-

That is, among dierent partition® that satisfy

1 XX -
Dc_max{ 2 MM1}§T,

X1 Xe =X Xm— Xm-1
we choose the projection estimatprthat minimize

1
Tz

W& + Ve = =5 > T (e T (%1 %)) — (T (%1 %))

i—2 X — Xi—1
2

+T - Z (AX(t))Z—— Z AX(1)

t<T: t<T:
AX(t)<xq AX(t)<xq

The previous formulas are found directly from the definitions and results given in Section
2.1 (see for instance formulas (2.1.9), (2.1.10), (2.2.3), and (2.2.5)).

Let us also point out that the risk of estimation inside the linear m§dés given by
o 1)1 Xi-1X fxi
E N I d d
|lsi6.55 — &li2] T{leo X°S(X) X+Z o) S(X)dx¢,
where]| - ||, stands for thé_2-norm with respect tq.

Remark 3.2.2 Observe that the previous procedure is appropriate to estimate the density

function £x) = exp(—g) around the origin as far as

@

™ Z AX@O)I[AX() < x4],

t<T
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is a good estimator ak. It is not hard to check that the bias aftend to zero asx O.
However, the variance @f converges tex, suggesting that the method works better when

T is “large” and « is “small”.

We apply the above method to the simulated Lévy process used in Figure 3.1; i.e. a
Gamma process with = 1 andg = 1. Figure 3.7 shows the estimatps(X) = §X)/x?
and the actual Lévy densify(x) = exp(x)/x for x € [0.02, 1] (we used regular partitions
on [0, 1]). From Figure 3.1, the improvement is notorious, and moreover, we accomplish a

good estimation around the origin pf(X) = 0.9/x, for x € [0, 0.2).

Penalized Estimation Projection

35F b

30 Sample Path Information: 1
Gamma Processwitha =1 and =1

2 (2000 jumpson [0, 365])

Method of Estimation:

Regular Histograms apply to Levy desity
with respect to p(dx):llx2 dx.

c=2

Estimation window = [0, 1.0]

Best partition = 5 intervals

Figure 3.7: Penalized projection estimation é} using%.

This procedure was also applied to the simulations of Gamma Lévy processwwith (
3,8 = 3) and with ¢ = 1/2,8 = 2) (see the results of projection estimation for these
two cases in Figures 3.3 and 3.5). The results are plotted in Figures 3.8 and 3.9 below.
We observe an improvement under both sample data. For instance,5$08 = 3, the

nonparametric estimata&X)/x?> combined with a method of least-squares errors estimate
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a by 27296 andB by 3.2439. Similarly, wheny

= .5 andpB = 2, least-square errors
estimatesy = .4825 ang3 = 2.1131.
(Deregularized) Penalized Projection Estimation
» :‘\ ‘ ‘ — Esti‘mator ‘ ‘
|

— . Real Gamma density: a=3 and 8 =3
— - Estimated Gamma density: 0=2.7296 and (3 =3.2439

20r ||

Sample Path Information: 4000 jumps on [0,365]
Ul

skl Gamma Process with =3 and =3
|

Method of Estimation:

s(x)

| Regular partitions with ¢ = 2
\

10 . Estimation Window = [0,5]
\

0 Best partition = 8

Figure 3.8: Regularized penalized projection estimatiorﬁceﬁ(p(—g).

3.2.2.5 Performance of projection estimation based on finitely many observation

In this part, we study the performance of the (approximate) projection estimators intro-

duced in Section 2.3, and formally stated in Section 2.4. Namely, the method obtained by
approximating the Poisson process of jurgpbsy

') =) ,8s0),
i=1

whereJ; is thei™ increment ofX from t, to t" andt”

iT/n. The time span between
increments is denoted it = T/n. Concretely, the estimators we consider are histogram

estimators as defined in Section 3.2.1 and applied in Section 3.2.2.3.

Table 3.1 compares (approximate) projection estimators with least-square errors (PPE-

LSE) to maximum likelihood estimators (MLE) for the Gamma Lévy process ity =
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(Deregularized) Penalized Projection Estimation
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T T T T T
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Figure 3.9: Regularized penalized projection estimation}péxp(—g).

1 using diferent time spanat. We also consider two simulation procedures: jump-based
and increment-based. The jump-based method uses series representatios:\8@500
jumps occurring during the time period, [865] (notice that if we think of 365 as days, the

number of jumps corresponds to an average of about 1 jump every minute). The increment-
based method isdiscrete skeleto(see Section 3.1.1) with mesh aDO1.

Jump-based Simulation| Increment-based Simulation
At PPE-LSE MLE PPE-LSE MLE

1 1.01|1.46| .997 | Q95| .73 | 1.78 | 1.09 | .99
bS5 1103|109 972 |.978| 9 | 1.49 | 1.01 | 1.06
A | .944| 995 1.179| .837| .923| 1.03 | .989 | 1.09
01 |.969|.924| 692 | .5 |.955|1.019|.9974| 1.083

Table 3.1: Estimation of a Lévy Gamma process with= 8 = 1. Two types of simu-

lation are considered: series-representation based and increments-based. The estimations
are based on equally spaced sampling observation at the time\tpResults for the ap-
proximate penalized projection estimators with least-squares errors, and for the maximum
likelihood estimators are given.
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Notice that maximum likelihood estimation does not perform well for small time spans
when the approximate sample path is based on jumps. Similarly, penalized projection
estimation does not provide good results for long time spans when the approximate sample

path is based on increments.
3.2.3 Estimation of variance Gamma processes.

Variance Gamma processes have been introduced in [13] as a substitute to Brownian Mo-
tion in the Black-Scholes model. There are two useful representations for this type of
processes. In short, a variance Gamma progess{X(t)}.o is a Brownian motion with

drift, time changed by a Gamma Lévy process. Concretely,
X(t) = 6S(t) + cW(S(1)), (3.2.16)

where{W(t)}o is a standard Brownian motiofc R, o > 0, andS = {S()};»¢ Is a Gamma
Lévy process with density at tintegiven by
ool )

Notice that HS(t)] = t and Vai{S(t)] = gt; therefore, the random tinf@ has a “mean rate”

F(x) = (3.2.17)

of one and a “variance rate” gf There is no loss of generality in restricting the mean rate

of the Gamma proces3to one since, as a matter of fact, any process of the form
01S1(t) + o1 W(Sa(1)),

whereS,(t) is an arbitrary Gamma Lévy process,c R, ando; > 0, has the same law as
(3.2.16) for suitably chosef) o, andg. This a consequence of teelf-similarity? property
of the Brownian motion and the fact thain (3.2.17) is a scale parameter.

The proces is itself a Lévy process since Gamma processesaerdinatorgsee

2namely,{W(ct)}i=o 2 {CY?W(t)}1s0, for anyc > 0.
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Theorem 30.1 of [39]). Moreover, it is not hard to check that “statisticallys the difer-

ence of two Gamma Lévy processes (see 2.1 of [11]):
(XOhso = X, (1) = X (D}z0, (3.2.18)

where{X, ()}=0 and{X_(t)}0 are Gamma Lévy processes with respective Lévy measures

X

ve(dX) = aexp( 3 )dx, for x> 0.

+

Here,a = 1/8 and

232 2
%Jrﬁi%_

Pem N3 T3

As a consequence of this decomposition, the Lévy densi¥/takes the form

o0 l%‘lexp(—%_') if x<0,
X) =

%exp(—ﬁ—f) if x>0,

wherea > 0,5_ > 0, andB, > 0 (of courses? + 52 > 0). As in the case of Gamma Lévy
processesy controls the overall jump activity, whilg, andp_ take respectively charge

of the intensity of large positive and negative jumps. In particular, tiferénce between
1/B8, and J/B_ determines the frequency of drops relative to rises, while their sum measures
the frequency of large moves relative to small ones.

The conclusion we want to draw in this part is that, from an algorithmic point of view,
the estimation of this model based on projection estimation or approximate projection es-
timate is not diferent from the estimation of the Gamma process. We can simply estimate
both tails of the variance Gamma process separately. However, from the point of view
of maximum likelihood estimation, the problem is numerically challenging. The density

function has closed form expression, but they involves Bessel functions (see [13]).
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CHAPTER IV

TEMPERED STABLE DISTRIBUTIONS

The class otempered stabldistributions and its associated Lévy processes were recently
studied by J. Rosiski [35] as a generalization of theuncated stablalistributions intro-

duced in the physics literature by [28], [27], and [22]. It is worthy to point out that Lévy
processes with truncated stable distributions has been rediscovered and applied to mathe-
matical finance by [11], [4], and others (see the references herein). In this part, we present a

survey of his results, provide proofs when not given, and make some additional remarks.

4.1 Basic properties

There are diferent ways to construct tempered stable distributions from stable distributions.
First, let us recall some features of the stable class (see e.g. Theorem 14.3 and 14.10 of

[37]). Bellow and throughout} - || is the Euclidean norm ii¢.

Theorem 4.1.1 Let n be a non-trivial infinitely divisible probability measure @&f with
generating triplet(,y,b) and letY = {Y(t)}4 be its associated Lévy process so that

n@2) =E [ei Z'Y(l)] = exp(y(2)), where

1 . i :
W2)=-52:32+iz b+ f{é - 1—iz-xI (X < 1)} y(dx). (4.1.1)
R§
For 0 < a < 2, the following statements are equivalent:
(i) nis @ — stable;

(i) = = 0 and there is a finite measuteon the unit sphere $* such that

y(B) = Ldl jo‘oo lg(ru)r*tdro-(du), (4.1.2)
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for every Be B(RY);
(iii) there exist a finite measure on S™*, a constant ¢ depending only on, and a vector

a € RY such that

n(z) = exp{—caf |z-ul® (1—i tan%sgnc- u))a(du) +ia- z}, (4.1.3)
Sd-1
fora # 1, and
n .2 _
n(z) = exp{—clf (|z “ul+i—(z-u)log|z- ul) o(du) +ia- z}, (4.1.4)
gd-1 T
fora = 1.

We proceed to introduce the tempered stable distribution.

Definition 4.1.2 An infinitely divisible probability measugeonRd is called tempered sta-
ble if it does not have a Gaussian component 0), and if its Lévy measureis of the

form
v(B) = f f Ig(sx)s* *e Sdso(dx), (4.1.5)
R4 JO
wherea € (0,2) andp is ac — finite Borel measure oRg = R%\{0} such that

Ld [IX]|*p(dX) < oo. (4.1.6)

The following remark will help us to better understand the relationship between the tem-
pered and the standard stable distributions. In particular, it will be clear tidave satis-

fies the integrability conditions of a Lévy measure.

Remark 4.1.3 Given a Lévy measuseas in (4.1.5) consider the measure

v(B) = f f ls(s)s " 'dgo(dx). B e B(R]). (4.1.7)
R4 JO
It is not hard to see thay above is indeed of the form (4.1.2) with spherical pamgiven
by
X
7@ = [ 1e( o ot (4.18)
rd \IXII
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foranyCe 8 (Sd‘l). Therefore, we can associate a stable distribution with each tempered
stable distribution, namely, an stable distribution with Lévy dengitin the next sections

we will explore the relationship between these two distributions from the point of view of
the corresponding Lévy processes. Notice also that sirce everywhere, the fact that

satisfieszd(llxll2 A 1)y(dx) < oo implies the same condition for

Example 4.1.4 For d = 1, the tempered stable distributignhas the Lévy density

xlgf(x)  if x>0,
s(X) =
X~ gm(x) if x<0,

where
a ) = f e 5sp(d9), andqr(x) = f & /4|57 (d9.
(0,00) (=00,0)

In particular, Bernstein’s representation tell us that gnd q are completely monotone
functions such thatqe) = 0 and ¢ (0") < o (see Xlll.4 in [15] for versions of the
Bernstein’s Theorem). In fact, any completely monotone function @,on) for which
g(c0) = 0 and 0") < c can be written as (x) = f(o’m) e X/sg%p(d9), for a suitable finite
measure on (0, ). The tempered stable distribution wpfds) = w6 ,-(ds) + W6 ,+(d9),
whered™ < 0 < A%, is an important case that has been studied in financial applications by

[11], [9], and [4]. Such distributions will be called truncated stable.

We establish now the analog of Theorem 4.1.1 (iii) for tempered stable distributions. Bel-
low, the branches of log] = log|v| + i arg{) andv® = |v|g*29 are chosen such that

argl) € (-, n], for any complex numbeyv.

Theorem 4.1.5 Let u be a tempered stable distribution with Lévy measure (4.1.5). Then,

its characteristic function is given by

a2 = exp{ka fRd_l Yo(Z-X)p(dx) +ia- z}, (4.1.9)
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where
1-(1-iw)", ifO<a<l1,

Yow) =1 1-iw)log(l-iw), ifa=1,
l-iw)'-1+iaw, ifl<a<?2,

and k, = I'(-a)|*, fora # 1, and k = 1.
The previous theorem allows us to study the “scaling properties” of tempered stable dis-
tributions. Let{X(t)}-0 be the Lévy process such that= £(X(1)). Suppose that we are
interested in the dynamics of the process when time is measured in small or large units.
That is, we want to studi(,(t) = X(ht) for small or largeh > 0. For instance, if originally
t is measured in yearX 3gs5(t) is simply the value oKX in t days. The following result of
[35] addresses the "microscalah’{ 0) and "macroscalarh(— ) behavior of tempered

stable distributions (referred by Raski [35] as the short and long time behavior):

Theorem 4.1.6 Letu be a tempered stable distributions with characteristic function as in

(4.1.9) witha = 0. Let{X(t)};=o be the Lévy process such that £(X(1)), and define
Xh(t) = X(ht), t > 0.

The limits below hold in the sense of convergence in law of the finite dimensional distribu-
tions:
() If @ # 1, then

1
{—hl/axh(t)} 5 {Y(Dhso ash— 0, (4.1.10)
t>0

where{Y ()} is a strictly stable process with characteristic function
E[é Z'Y“)] = exp{—tcaf |z x| (1—i tan%sgn(z - x))p(dx)}, (4.1.11)
R3-?
and ¢, is a constant depending only an
(i) If @ =1, then

{%Xh(t) - tah} S Y (®))o, as h— 0, (4.1.12)
t>0

1The function Gamma is defined for negative real numbegs x1, -2, ... by applying recursively the
propertyl'(x) = ['(x + 1)/x. For instancel'(—a) =T'(2 - @)/(a(a - 1))if 0 < @ < 2, @ # 1.
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wherea, = log(h) fRd xp(dx) and whergY (1)}, is a strictly stable process such that
0

Ble*Y0] = eXp{—tcl f (IZ X[+ 7%(2 -X)log|z- XI)p(dX)}- (4.1.13)
RIL
(i) If 1<a <2and
f IX|P0(dX) < oo, (4.1.14)
RS
then
{%Xh(t)} 5 (B(t)hso» @s h— oo, (4.1.15)
t>0

where{B(t)};-, IS @ Brownian motion with characteristic function

E[¢780] = exp{—%P(Z - a) fRd_l 1z Xlzp(dx)}- (4.1.16)

(iv) If 0 < @ < 1 and condition (4.1.14) is met, then
1 D
{th(t) - tah} — {B(Q)}z0, @s h— oo, (4.1.17)
t>0

whereB is as above and, = h'/2I'(1 - a) [, xp(dX).
0

4.2 Series Representations

It is clear from (4.1.5) and (4.1.7) tha(B) < y(B), for all B € B(Rg). We might wonder

on which regions oRY the Lévy measure is more alike to or more etierent from the

Lévy measurey. An answer to this is relevant in order to compare the jump dynamics

of the Lévy processes associated witandy. The subsequent result of [35] addresses
this question and establishes roughly speaking that the tempered stable Lévy process is
generated by truncating the jumps of the stable Lévy process. The truncation procedure
truncates the size of the jumps, while keeping the direction of the jumps. We assume
through this part, that the canonical tempered stable distributiminDefinition 4.1.2 has

characteristic function

a(2) = exp(iz- b+ f {e‘z‘x —1-iz-xI(x|| < 1)}v(dx)), (4.2.1)

d
0
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while n is a stable distribution with the same characteristic functiom last substitutingy

for v (see Remark 4.1.3 above).

Theorem 4.2.1 Let {X(t)}o.1; and {Y (t)}ic01) b LEvy processes such th8€X(1)) ~ u
and £(Y (1)) ~ n. On a common probability space, define independent sequences as fol-

lows:
e {Ui}is1, {Ti}is1 are i.i.d. uniform o0, 1] random variables;
o {Ei}i.1, (Wi}i»1 are i.i.d. exponential random variables with mehn

e {Vi}is; are i.i.d. random vectors iitJ with common distribution

1
m(p)

where nfp)* is the normalizing constarﬁ{d [IX[|*o(dX).
0

pa(dx) = [IXI1“p(dx), (4.2.2)

Then, ifa € (0, 1) or if p is symmetric, the following series representations hold

(o)

D “1/a Vi .
Y(t) = Zl: m(p) (aT;)~Y VAL (T, <t) + bat, (4.2.3)
while
X(® = ) {(mlo) i) ™") A (IVIIEUF)] ﬁl (Ti < 1) + bat, (4.2.4)
i=1 i

for suitable vectord,,b, € RY. Here, the sequendéi}is, is the Poisson proceds =
ZLZka. Moreover, the representations in (4.2.3) and (4.2.4) are in the sense of finite
dimensional distributions and the series on the right hand sides converge uniformly in

t € [0, 1], with probability 1.

In the next section we show another method to construct series representations for tempered
stable Lévy processes from Lévy stable processes. The procedure congistaiimgthe

“big” jumps of the stable process by a suitaldgctioncriterion (see Remark 4.3.3).
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4.3 Spectral Decomposition

The following result gives thepectral representatioof the tempered stable distributions.

If we view an infinitely divisible random variable as a superposition of infinitely many
jumps, a spectral representation of its distribution decomposes the content information of
the jumps into a spherical part and a radial part. Generally speaking the former controls
the direction of the jJumps, while the latter determines the size of the jumps, although some

compensation may be necessatry.

Theorem 4.3.1 The measure is the Lévy measure of a tempered stable distributioRn

if and only if for Be B(RY)

v(B) = del j:o lg(ru)rq(r, u)dro(du), (4.3.1)

whereo is a probability measure on%St and g: (0, ) x S4 — (0, ) is a Borel function

such that ¢, u) is completely monotone witt{e, u) = 0, for everyu € S, and such that
f g(0*, u)o(du) < co. (4.3.2)
Sd-1

Remark 4.3.2 Let us briefly digress on a possible probabilistic interpretation of the spec-
tral representation (4.3.1). Consider the more general setting wKeigean infinitely di-

visible random vector without Gaussian component and with Lévy measditbe form:

V(B):j;dlfo Ig(ru)z(u, dr)o(du), (4.3.3)

whereo is a finite measure on St and : S9! x B((0, ©)) — [0, 0] is a transition
kernel. In the special case wheteis a probability measure and is a probability kernel

(a probability measure for eaah), the probabilistic nature oX is given by
N
X 2 D RU;+b, (4.3.4)
i=1

where theU;’s, i > 1, are S*1-valued independent random elements with common distri-

bution o, and{R};>1 is a sequence of conditionally independent random variables given
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{Ui}i>1 such that
n(U;,dr) = Pr[R e dr|U;] = Pr[R € drl{U;}>1, {Rj} =] (4.3.5)

In (4.3.4), N is a Poisson random variable with meamdependent ofU};.; and {R};>1.
This fact follows from Propositions 3.7 and 3.8 of [32]xlfs not a probability kernel, but
m = fsd_l m(u,R{)o(du) < oo, we can normalizer by (Ui, Rf) in (4.3.5) so that (4.3.4)

holds with N~ Poissorim) and
1 +
U ~ EJT(U,RO)O'(dU).

In the most general scenario, the jumps of small size need to be compensated to generate
X as a limit in distribution of processes of the form

N(e,1) 1
X 2 n?g[z R,gui,g—f“f ru zr(u,dr)a(du)]
& Sd-1 Jge

i=1
N(1,00)

+ Z RiUi+b,

i=1

where

e N(a,b) ~ Poissotim(a, b)) ,with m@a,b) = [, , 7(u, (a b))o(du), for0 < a < b <

00"

e For eache > 0, theU;,, i > 1, are S 1-valued random elements with common

distribution =25 (u. (¢, 1))or(du).

e For eache > 0, {R.}i>1 are conditionally independent givéb .}i-; such that

1

PrR: € dri{U;}j>1. (R s}zl = 2(Urn @ 1))

7(Uig, drn(g,1)).

e Similar definitions fo{R;} and{U;} holds but substitutinge, 1) by (1, o).

e N(g,1), N(1, o), {Ui}i»1 and{U;}i>; are mutually independentR, .}i-1 is indepen-
dent of Ng, 1), N(1, o0), and{U;};. A similar statement holds f¢R }i-:.
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Remark 4.3.3 Notice that (4.3.1) can be written as

v(B) = de_l fom lg(ru)r1g(r, u)dré(du), (4.3.6)

whered(du) = g(0*, u)o(du) and

(. u) = o 60> 0 (4.3.7)
1 elsewhere
We can use (4.3.6) to obtain series representations of a Lévy tempered stable preeess
{X(t)}tefo.17, With Lévy measure. Let us consider for simplicity the case of symmetriar
0 < a < 1 (otherwise, compensating constants will be needed in the terms of the series).

The method, a straightforward application of thejection methodof [34], consists in

“thinning” the jumps of the stable Lévy proce¥s= {Y (t)}io,1) With Lévy measure

y(B) = del j:o lg(ru)r*~tdré(du). (4.3.8)

It was shown in Theorem 4.2.1 that for a random sanfpl§., of uniform[0, 1] random
variables, a homogeneous Poisson procg$s.: on R, with unit rate, and a constant

vectorb, the following representation holds:
Y(©) = ) RUI (T <t)+bt, (4.3.9)
i=1

where?® is in the sense of finite dimensional distributions. Here,

R = ( o )_W,

m(¢)
m(5) = 6(S% 1), and{U;}i»1 is an independent sequence of i.i.dSvalued vectors with

common distributiord-(du)/m(c-). Since

dv - X
—X) = Xll, =—1>
0 q(u ! ”X”)

andd(r, u) < 1, the rejection method implies that the random measy@dsociated with

the jumps orK has the same law as the Poisson process
Z 0T RUI[a(R.U)=W])>
i=1

82



where{W};» is a sequence of i.i.d. random variables uniformly distributedGi] and
independent of all the other sequences. Moreover, the tempered stable Lévy prasess

such that
X2 Y RUI @R, U) = W) 1 (T <) + bat, (4.3.10)
i=1

for a suitable vectob; (see the proof of Theorem 4.2.1 for more details). Notice that the
representation (4.3.10) is gierent from (4.2.4) even when both series are generated from
the same stable Lévy process. In some sense, the method above filters the jiwpeof

they are too big, while in (4.2.4) the jumps are truncated .

4.4 Absolutely continuity with respect to stable processes

From the point of view of the corresponding Lévy Processes, there is yet another relation-
ship between stable and tempered stable distributions. It is shown below that the distribu-
tion of a tempered stable Lévy process is (locally) absolutely continuous with respect to
the distribution of its associated Lévy stable process. This implies the existence of a new
probability measure, equivalent to the primary measure, such that under this measure the
tempered stable process has the same statistical behavior as the associated stable process.
Necessary and flicient conditions for (locally) absolutely continuity between Lévy pro-
cesses are well-known in the literature (see Section 33 of [39]), and we only need to apply
these results in the context of tempered stable and stable distributions. We assume below
thatu is a tempered stable distribution having generating triple, {f) with Lévy measure

v of the form (4.3.1), whiley is a stable distribution with generating triple {0c), wherey

is given in (4.3.8) (see Remark 4.3.3). Recall tbfd, T] stands for the space of functions

f : [0, T] — RY, that are right-continuous on,[0) and have left limits on (O] (cadlag).

Theorem 4.4.1 Let {X(t)};so be a Lévy process defined on a probability spé&ees, P)

such tha¥X (1) ~ x underP. Let{Y (t)};-o be another Lévy processes defined on a probability
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space(ﬁ, F, Q) such thaty (1) ~ n underQ. Let

(& (0", u))* 5(du) < oo, (4.4.1)
Sd—l

and let

c=b+ de ) u fol @ (r,u) — 1) r *dré(du), (4.4.2)
with g given by (4.3.7). Then, for each O, the distribution ofX(t)}o.t on D[0, T] is
absolutely continuous with respect to the distributior{oft)},..t. Moreover, let 4 be

given by
T
Ur = IglLrg] (fo an»} Ing(X) Iy (dt,dx) — T Inxnm (g(x) - 1) y(dx)), (4.4.3)
where

g(x) = q(nxn, i),

1]
and where7y is the random measure associated with the jump& dthen, for any A ¥+,

Pllwe Q: X(;w) e All =E%|e”l [{w e Q: Y (- w) € AY]]. (4.4.4)

whereX(-; w) (respectivelyyY (-; w)) is the function in [0, T] defined by the mapping+
X(t; w) (similarly definition forY(-; w)). Above,E® refers to the expectation with respect
to the probability measur® and ¥+ is theo-field on O, T] generated by the family of

marginal projectiongm e 11, Wheren(€) = £(t), for £ € D[O, T].

Remark 4.4.2 We are not assuming tha¢ and Y are defined on the same probability
space. Note as well that the expectation on the right hand side defines an equivalent proba-
bility measure such that the procg¥qt)}o...t under this probability measure has the same

distribution as the procegX(t)}o.7. Indeed, defining
Q[c] =E?[eT1[C]], (4.4.5)
forCeo(Y,:0<t<T), itimmediately follows that
PllweQ:X(iw) e Al = QflweQ: Y(iw) € A,

for any Ae 7.
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Remark 4.4.3 The conditions (4.4.1) and (4.4.2) areffeient for the (local) absolutely
continuity of the processes andY. As it is indicated in the proof of Theorem 4.4.1,

(4.4.2) combined with

o [/~ 2
f f (M) r = dréH(du) < oo, (4.4.6)
Sd—l 0 r

are both necessary andjgaient for the conclusion of Theorem 4.4.1. Now, supposeithat

has Bernstein’s representation

q(r,u):f e "*F(dsu),
[0,00)

where{F(ds u)},.s¢-1 is @ measurable family of probability measures[Bne). Then, by

the property (iii) of Section XIII.2 of [15], the condition (4.4.6) is equivalent to

fsdl fo fo @F([sﬂ,w);U)F([SQ,oo);u)dsldsz&(du)<oo. (4.4.7)

In particular, the above integral is finite if

(E[Ru])?(du) < oo,

gd-1
where R is a random variable with distribution ¢ u). The condition below is also §ii

cient for (4.4.7) to hold:
f B[R] (du) < oo.
gd-1

4.5 Proofs of the main results.

Proof of Theorem 4.1.5:The Lévy-Khintchine representation fartakes the form:

(2 = exp{i z-b +f
R

Using standard arguments of integration that goes from simple functions to integrable mea-

[é X _1—iz-x1 (x| < 1)] v(dx)}.

d
0

surable functions, the integral in the exponent above is equal to

f f ) €547 — 1—is(z- )1 (slx]| < 1)| s e~ *dp(dlx). (4.5.1)
RS JO
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SinceforO<a <1

c= f xfw | (slx]| < 1) s e °*dso(dX) < oo,
RY 0

the integral (4.5.1) can be broken up into the two tef]@%m [e‘s(z'x) —~ 1] s le~Sds(dx)—
0

iz-c. Then, (4.1.9) will be true witla = b — c since

fo ) €% - 1] s e ds= fd-a) [1-(1-iw)]. (4.5.2)

a

Indeed, we can write the left hand side of (4.5.2) as

if f e‘s"dvs‘"e‘sds:if f g - Vigegdgdy
0 0 0 0

- T(1- a)i fo "1 - iv)tdv.

Note that the second equality above follows from the form of the characteristic function of

the Gamma distributions. Ford « < 2, we take instead
= —f xf I (SIx|| > 1) s “e°dso(dx) < oo,
RS Jo

so that (4.5.1) can written g5, [ [és(z'x) —1-is(z- x)] s lesdgo(dx)—iz-c. It suffices

to show that

I'2-a)
ala—1)

f ) €% - 1-isw| s e ds= [(1-iw) - 1+iw], (4.5.3)
0

for any real numbew and any O< a < 2 (@ # 1) . Integrating by parts the left hand side

in (4.5.3) and applying (4.5.2):

-2 fom [ ~ 1~ isw]ed(s) = fom (- 1)(€* - 1) +isw|s7eds
= ZECZK__?) [(1-iw)"-1+iaw].

Now, if @ = 1, (4.5.1) can be written as
f f [e‘s(z‘x) —1-is(z-X)l (s< 1)] s2eSdso(dx) +ic-z
RS JO

86



wherec = [, x [ [I (s< 1) - I (Ix] < 1)] s*e"dg(dx) < . So, we need to evaluate
0

integrals of the form

fow €% - 1-iswl(s< 1)| s%e*ds (4.5.4)
Then, (4.5.4) can be written as
Y(1-iw)-P(1)- iwfol [e°-1]s!ds (4.5.5)
where
P(y) = j:o [e%Y-1+syl(s<1)]s?ds (4.5.6)

provided that¥ is well-defined. By Theorem 25.17 of [39¥,is definable for any foy € C

with Refy) > 0. For any positive reaj, we have that

1

P(y) = f [e%~ 1+ sy]s?ds+ f [e¥Y-1]s?ds+y | sids
0 1/y

1y

= cy+ylog(y),

wherec = fom [eV—1+vl(v<1)]v2dv. Sincethe functioff’(y) = cy+Yylog(y) is analytic
onD = {c € C: arg(c) € (-n,n)}, by analyticity inside and continuity to the boundary,
¥(y) = P(y) for anyy € C with Refy) > 0 (see for instance p. 51 of [37] and references

here in). Evaluatinf’ at 1- iw and—1, (4.5.4) is equal to

1
(1-iw)log(1l- iw)—iw(f [e°-1]stds+c|.
0

We can easily infer (4.1.9) for the case= 1. ]
Proof of Theorem 4.1.6:Since the processes involved in the limits are Lévy processes, we
only need to prove the weak convergence of the marginal distributidns &t Below, we

will need the following expansion valid for any real numiobeandn € N:
k n
Z L '“' : (4.5.7)

whered e C satisfiegd| < 1 and depends amandn (see Lemma 8.6 of [39]).

(i) By Theorem 4.1.5, the characteristic functionhot/“X(1) - ay, for a constant vector
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a to be determined, is

ool [

0

Lz (h(z- %)) p(dx) — i an z} . (4.5.8)

Notice that

h—(h" —iw), ifO<a<1,

iy = | " . )
(W —iw) -h-iwhYe ifl<a<2,

converges te-(—iw)® ash — 0. By (4.5.2) or (4.5.3), there exists a const@ptdepending

only ona such thaty,(w)| < C,|lw|* (indeed, make the change of variables sw, upper

bounde ¥« by 1, and apply (4.5.7)). Therefore,
[ (h%(z-X)| < Calz- X7 < CalzZIPIIXI”,

and thus the limit and the integral in (4.5.8) can be exchanged. Fagng 0, the limit
yields
exp{—kaf (iz-x)"p(dx)}, (4.5.9)
RY-1
which is equal to (4.1.11) witle, = k, cosfra/2) (remember that arg € (-, x] in
Ve = |vig @aed),

(i) If @ = 1 anday, is chosen to be lodj fRd xp(dx), (4.5.8) becomes
0

exp{fdl (h=iz-x)log(h—iz-x) - hlog(h))p(dx)}.

Ash — 0, the expression above converges to{e&pl (-iz-x)log(-iz- X)p(dX)} , which
is itself equal to (4.1.13) because legf - X) = log|z - X| — i(n/2)sgng - X).
(i) Let1 < @ < 2. By (4.5.3),

ale-1)

hya(h%0) = fo oy |

h [és”l/z“’ —1-ish¥ zw] s lesds

Then, (4.5.7) witm = 2 implies thathy, (h"2w)| < a(e — 1)w?/2, and from the bounded
convergence theorem,

im [ w2 o0 = “2 [z xeoo,

h—oo
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Above, we apply (4.5.7) witim = 3 to evaluate the limit. This proves (4.1.15) because

according to Theorem 4.1.5 the characteristic functionr&®X(1) is given by

exp{ka fR ) hy, (h—l/a(z . x)) p(dX)}.

wherek, =T'(2 - a)/(a(l - @)).

(iv) Take 0 < @ < 1 anda, = hY’I'(1 - a) fRd xp(dx). The characteristic function of
0

h2Xp(1) — a is

exp{r(la_ i f

Then, we can proceed as in the case (iii). O

h |1-(1-ih?z. x)" —iah™?z.x] p(dx)} .

0

Proof of Theorem 4.2.1:The series representation (4.2.3) is well known in the literature.

It has a long history from Gnedenko to LePage and beyond (see [34] and the references
therein). We present below another method of proof in the context &beNoise Method

of [34] because of its relevance for the case of tempered stables laws (for a review of this
method see Section 3.1.2). Consider the marked Poisson pfe¢gss >.:°; oq.v) (1) on

R, x RJ with mean measurg(dt, dx) = dtp;(dx) (see Proposition 3.8. of [32]), and take

the transformatiot : R, x RJ — RJ defined by

H(t,v) = (m(o) (at) ™) -

IvIl’
Then,NoH™()) = ¥°; 6nr, vy () is @ Poisson process &, with mean measuyeoH ().
A straightforward evaluation of (4.1.7) and pfo H=Y(-) for sets of the formd, «0)C =

{x e RY: x/IIxl| € C, [Ix|| > a} shows the equality between these two measures. Indeed,

poH (@ w)C) = f | (H(LX) € (@ )C)) dtox(dX)

R, xRY

L (m)\" (X )
_ fR F (T) |C(M) IXI%01(dX)

°° X
= r=drilc [ — | |1x||*o(dx
ngfa C(||x||)” I”p(dx)

= ¥((a, )C).
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Therefore, the marked Poisson procel9 = 3.2, 6t 1(rviy () has the same law as the
random measurgy associated with the jumps of the Lévy proc¥sd-rom the arguments

of [34] Section 5, if the function

A(s) = fo ng H(r, V)1 (IH(r, V)l < 1) pa(dv)dr, (4.5.10)
is such that, a.s.
lim (A(T) - A()) = 0, (4.5.11)
then the series
V(1) = i (H(TL V)1 (Ty < 1) —t(AG) — A - 1)), (4.5.12)

i=1

converges (uniformly it € [0, 1]) a.s. Moreover, the proce%f{(t)} is a pure jump

t€[0,1]
Lévy process with the same Lévy measure as the protedgnce, the two processes have
the same law up to a term of the foifmt. The relation (4.5.11) holds for any € (0, 2),

because for each € Rg, r — |[H(r,Vv)|| is non-decreasing (see p. 409 of [34]). When

0< a < 1, thenlim_. A(S) converges td, = ﬁxnsl xy(dx) and
Y(t) = byt + Z (H(T, V)l (T < 1)), (4.5.13)
i=1

in the sense of convergence of the finite dimensional distributions. Then, the representation
(4.2.3) follows by takingd; = b; + b, whereb is as in (4.2.1). A similar argument works
whenp is a symmetric measure sinég-) will be identically equal to zero.

To prove the representation (4.2.4), we follow the same technique starting now from the

Poisson proces¥I(-) = 32, dr,v,.5.u)(-) and applying the transformation

Ha(t.v. e u) = {(m(p) (o) ™7) A (IVilewt)} -

IIvII

The mean measure M is p;(dt, dx, ds du) = dtp;(dx)e"*dsduonR, x Rg x R, x[0,1],

and the transformed Poisson process, ou, v,.g.u)(-) has mean measure determined as
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follows:

p o Hi'((a =)C)

) 00 1
f f f f I (Hy(t, X, s,u) € (a, )C)) € *dud 4 (dx)dt
o JrdJo Jo
f ~a f ) f e (suinxn)due-Sdsh(i)uxn“p(dx)
o Jo Jo IXI]

00 a—af _ (S”XH)—(I s ( X ) .
= | o A S UV d X
ngfo (aco) (SIXII) - e °dsk i X1 0(dX)

- f f ) l o) () € Mg d s (i) [IX]|* 0 (dlx)
z¢ Jo [IX]

= ¥((a )C).

Sincer — ||[H4(r, Vv, e u)|| is nondecreasing, the series
Y(t) = Z (Ha(T5, Vi, B UE(T < 1) = t(AL() — Aq(i — 1)), (4.5.14)
i=1
converges to a pure jump Lévy process with Lévy measuhereA; is given by

S 00 1
Al(s)zfo ngfo j;Hl(r,x,s,u)l(||H1(r,x,S,U)||§1)due dso.(dx)dr. (4.5.15)

Clearly, Ay(s) is identically O if p is symmetric, while lin3,., Ai(s) = ﬁ xv(dx) if

X|<1

0 < @ < 1. In any case, the representation (4.2.4) follows. ]

Proof of Theorem 4.3.1:Consider aspectral decompositioof the measurp of the form

o(A) = del fow [a(ru)F(u, dr)o(du), (4.5.16)

whereo is a probability measure 8% and{F(u, -)},.s is @ measurable family of mea-
sures orB((0, o)) (or transition kernel frong%* to (0, c0)) such thatF(u, {0}) = 0. Such
a representation can be deduced from disintegration résikksTheorems 5.3 and 5.4. of

[20]. It is enough to prove (4.3.1) for sets of the form

BC = {x:|Ix|l € B,x/lIx|l € C},

2Concretely, we can take as%ng IXI1%1c (x/1IXI) p(dx), for a suitable normalizing constant, and

F(u,dr) = mr?x(u, dr), where{r(u, -)}ues is the regular version &#[R € -|U = u]. Here,P is a probability
measure o®2 = RY defined byP(A) = n%L [IX]|2p(dx), while R(w) = |lw|l andU = w/|lw|l, for w € Q.
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whereB andC are Borel subsets of (&) andS%?, respectively. Then, the measurés

of the form (4.1.5) if and only if

¥(BC) = L B j(; ) f; ) lgc(sru)s e SdsHu, dr)o(du)

_ fc fo ) fo T (sns - lesdsHu, dro(du)
_ fc fo ) fo (Ve v F (u, dror(du)

_ f f e (vuyv--lg(u, v)dvor(du),
se-1 Jo

where
q(u,v):f eV"r*F(u, dr). (4.5.17)
0

We thus proved thatis of the form (4.1.5) if and only if is of the form (4.3.1) withg(u, -)
given by (4.5.17) for each € S%*. By Bernstein’s Theorem and the change of variables
r — 1/r, q(u,-) is as in (4.5.17), folr(u, -) such thatF(u, {0}) = O, if and only if it is
completely monotone with(u, ) = 0. Further, by the monotone convergence theorem,

g(u,0*) = fom r*F(u, dr), and the condition

fR o (dx) = fs fo " o E (U, dno(du) < o,

is equivalent tof, , g(u, 0%)o(du) < co. O

Proof of Theorem 4.4.1:Clearly, for any measurable nonnegative functon

[ @ = [ [ nowyr- e

_ v o X
gw=@m—¢m&ﬂ

Then,

By Theorem 33.1 of [39], foX andY to be locally absolutely equivalent, it is necessary

and stfficient that (4.4.2) holds and the integration condition below holds

(VT - 1) rtdré(du) < oo, (4.5.18)
o d ¢

92



Since the G §(-, u) < 1, the above inequality is equivalent to

fs . f ( a(r.u) - 1) r-odré(du) < co.

Then, (4.5.18) will follow from (4.4.1), since@ a < 2 and

~ 2
(122 < @onur,

whend’(r,u) > 0. By Theorem 33.2 of [39], the equation (4.4.4) is satisfied when the
procesdJ is defined by

Ur = lim ( f[o ILECXICEREY [ @w-vre)

e=0 {IXII>e}

(see (33.7) and (33.9) in [39]). O
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