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SUMMARY

Orthogonal frequency division multiplexing (OFDM) has become a popular modu-

lation method in high-speed wireless communications. By partitioning a wideband fading

channel into flat narrowband channels, OFDM is able to mitigate the detrimental effects

of multipath fading using a simple one-tap equalizer. However, in the time domain OFDM

signals suffer from large envelope variations, which are often characterized by the peak-to-

average ratio (PAR). High PAR signals, like OFDM, require that transmission amplifiers

operate at very low power efficiencies to avoid clipping.

In this dissertation, we explore the problems associated with transmitted OFDM sig-

nals through peak limited channels. A large part of this work deals with analyzing different

distortion metrics and determining which metrics are most useful. We find that the signal-

to-noise-plus-distortion ratio (SNDR) is one of the most important metrics in assessing

distortion in nonlinear channels. As part of this analysis, we compare sample-based SNDR

and symbol-based SNDR and find that using the more comprehensive symbol-based metric

as the objective in SNDR maximization algorithms leads to only marginal SNDR improve-

ments.

The SNDR perspective is also applied to existing PAR-reduction techniques to compare

existing schemes and proposed new schemes. Part of this work involves deriving a SNDR

maximizing adaptation of the popular PAR-reduction scheme, selected mapping (SLM). We

also compare another popular PAR-reduction method, partial transmit sequence (PTS), to

SLM through a variety of metrics including SNDR and found that for any given amount of

complexity or side information SLM provided better performance.

The next major piece of work in this dissertation addresses synchronization and channel

estimation in peak-limited channels for OFDM. We build off of existing work that shows that

embedded synchronization energy is a more bandwidth efficient means of synchronization

than preamble-base methods. With this, we demonstrate a method for generating embedded

xiv



sequences that have low PAR, and thus minimize the PAR of the combination OFDM

symbol/embedded sequence among all embedded sequences. Next, we extend this work

to sequences called joint synchronization-pilot sequences (JSPSs) by deriving the symbol-

estimate mean squared error (MSE) pilot placements for the JSPSs and by showing how

the JSPSs can be used with SLM for blind detection.

Finally, the dissertation concludes with a derivation of the SNDR-optimal transmit-

ter/receiver pairs. Using functional analysis, we show that the SNDR-optimal receivers

for peak-limited transmitters are not linear. Instead they follow non-linear functions that

depend on the noise and signal distributions.

xv



CHAPTER I

OFDM, PEAK-LIMITED CHANNELS AND PAR REDUCTION

1.1 Introduction

High-speed wireless communications are becoming an integral part of our society. Once

exotic applications such as internet browsing and streaming video on mobile handsets are

becoming the standard. A plethora of signal processing and engineering breakthroughs

made this evolution possible including advanced error control coding techniques, fast micro

processors and long-lasting batteries.

Increasingly the modulation format of choice in next-generation wireless communications

systems is orthogonal frequency division multiplexing (OFDM). OFDM possesses several

main advantages over the alternatives. The most prominent advantage of OFDM is that it is

a block-based transmission scheme, which allows for a simple channel equalization structure.

Single carrier transmission systems that transmit a constant stream of data require very

complicated channel equalization structures to correct multipath channel effects. These

single carrier equalizers are essentially constantly updated infinite-impulse response filters,

which are relatively complex to implement. Conversely, because OFDM is transmitted

in self-contained blocks that are preceding by a guard-prefix, OFDM equalization can be

achieved with a simple multiplication operation for each subcarrier.

Said another way, OFDM transforms large-bandwidth multipath fading channels into

multiple orthogonal narrow-bandwidth flat fading channels. In addition to low-complexity

equalization, this channel separation also allows for frequency-domain bit loading and simple

orthogonal user allocation.

Despite these promising features, OFDM is not immune to synchronization issues that

can plague any communications system, namely carrier frequency offsets and timing offsets.

However, there is a rich body of research that describes schemes for resolving these issues.

In addition to these impediments, OFDM also presents an additional draw back that is not
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present in single-carrier communications system: a large time-domain signal dynamic range.

That is, OFDM symbols in the time domain possess large power fluctuations over each

symbol period. These symbol fluctuations are difficult for transmitting power amplifiers

(PAs) to accommodate. The result is that OFDM systems operate at very low power

efficiencies.

The power envelope fluctuations in OFDM signals are often quantified by the peak-to-

average power ratio (PAR). The PAR of the signal entering the PA is an important metric

because there is a one-to-one relationship between the moments of the PAR distribution

and the PA power efficiency. The precise relationship depends on the type of PA, but the

relationships are well-known and can be analytically derived. Also, most physical PAs do

not exhibit a soft-limiter characteristic. Instead, it is common for a PA to exhibit a gradual

compression characteristic even in the “linear” region where large inputs have less gain than

smaller inputs. The PAR is not a sufficient metric to quantify the distortion effect of the

this compression PA characteristic. However, if predistortion techniques, which have been

thoroughly studied in the literature, are applied, then it is possible to realize the ideal soft-

limiting characteristic in the concatenated predistortion/PA system. Thus, for the following

discussion it is assumed that predistortion is used and that the peak-limiting characteristic

is an ideal soft limiter. In this case, the PAR is sufficient to characterize all of the effects

of the concatenated predistortion/PA system.

Thus, it seems straightforward that the problem of transmitting OFDM over peak-

limited (e.g. PA) channels, is one of simply reducing the PAR. However, it is not possible

to reduce the PAR of a signal without sacrificing something else. The “something else”

can be a reduction in the data rate, an increase in constellation distortion, or a receiver

modification and almost always includes a significant increase in complexity. Thus, despite

its ubiquity and its straightforward relationship to the power efficiency, the PAR should not

be the only metric considered when examining system performance of an OFDM system

in peak-limited channels. However, PAR is one very important piece of the equation. In

the following, we refer to any scheme that attempts to mitigate the detrimental effects of

peak-limited channels as a PAR-reduction scheme.
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Other metrics by which a PAR-reduction scheme can be measured include the signal-

to-noise-plus-distortion ratio (SNDR), the capacity, the complexity, and the out-of-band

distortion. The SNDR takes into account any distortion that results from PAR reduction

and it also takes into account the PAR itself. Furthermore, when the SNDR is measured

in the in-band frequencies, there is a one-to-one relationship between the SNDR and the

BER that can be derived (or determined numerically) for any given coding scheme and

constellation type. The drawback is that the SNDR does not take in to account the rate

loss that may result from PAR reduction. On the other hand, the capacity, encompasses

the SNDR and the data rate, but may not be achievable.

The out-of-band distortion is not necessarily quantified by either the capacity or the

SNDR. When the SNDR is measured in the time domain the SNDR includes both in-band

and out-of-band distortion. However, this time-domain SNDR may not be an accurate

indicator of the BER. Also, many practical systems do not require that the out-of-band

distortion be minimized, only that it be held to a level that is below a defined threshold,

which is usually referred to as the spectral mask.

Complicating the matter of quantifying the usefulness of PAR-reduction schemes further,

is the fact that some PAR-reduction schemes synergistically incorporate existing parts of

the communications system for PAR-reduction purposes. For instance, there are several

methods that take advantage of coding that is already used in the system to decrease the

PAR. In this case, it would not be fair to penalize the PAR reduction method for all of

the redundancy required by the code, as this redundancy would exist even without the

PAR reduction. Extracting the overhead of just the PAR reduction part of the scheme to

make a meaningful comparison to other schemes can be challenging. Other methods may

take advantage of subcarriers that would not otherwise be used to transmit data. Still other

methods, including one presented in this proposal, modify part of the synchronization signal

to realize a PAR reduction.

In the following thesis, we will examine and compare existing PAR-reduction schemes

in light of these more all-encompassing metrics. Additionally, we will present novel PAR-

reduction techniques and modifications to existing techniques that have advantages in light
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of the more comprehensive metrics.

1.2 OFDM

OFDM was first introduced in the mid-1960s [26] and later patented in 1970 [27]. Early

on, OFDM’s main appeal was that high-complexity equalization was not necessary because

data was sent in parallel on different subcarriers. OFDM was also touted for its ability

to fully use the available bandwidth, combat impulsive noise and mitigate the effects of

multipath fading.

In 1971 Weinstein and Ebert introduced the idea of using the discrete Fourier transform

in the modulation/demodulation process [119]. Prior to this breakthrough, OFDM systems

were prohibitively complex because arrays of sinusoidal generators and coherent demodu-

lators were necessary in the implementation. With special-purpose fast Fourier transform

(FFT) chips, the entire OFDM system could be implemented digitally.

More recently, OFDM has been implemented in mobile wideband data transmission

(IEEE 802.11a, Hiperlan II), high-bit-rate digital subscriber lines (HDSL), asymmetric dig-

ital subscriber lines (ADSL), very high-speed digital subscriber lines (VHDSL), digital audio

broadcasting (DAB), digital television and high-definition television (HDTV) [129]. It is

also the implemented for the IEEE 802.16 WiMAX [1] standard and its predecessor multi-

carrier multipoint distribution service (MMDS).

1.2.1 System Definition

In an OFDM system, data is modulated in the frequency domain to N adjacent subcarriers.

These N subcarriers span a bandwidth of B Hz and are separated by a spacing of ∆f =

B/N . The continuous-time baseband representation of this is

y(t) =
1√
N

∑

k=I
Xk ej2π∆fkt/T , t ∈ [0, T ], (1.1)

where T = 1/∆f is the symbol period, {Xk}N−1
k=0 are the data symbols drawn from a finite

constellation and I are the data subcarrier indices. A shaping window or filter may also be

applied to the OFDM system in practical systems. After symbol creation, the symbol are

concatenated and transmitted serially in time.
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Because all modern communications systems are processed digitally and only made

continuous right before transmission it is often convenient to work with in the oversampled

discrete time OFDM symbol, defined by

yn/L =
1√
LN

∑

k=I
Xk e

j2πkn
NL n ∈ {0, 1, ..., NL − 1}, (1.2)

where L is the oversampling factor.

Another key component of OFDM systems is that, when properly designed, they are

immune to inter-symbol interference (ISI). The immunity comes from the cyclic prefix that

is appended to the beginning of each OFDM symbol,

y(cp)
n =





yn+N , n ∈ {−P,−P + 1, ...,−1}

yn, n ∈ {0, 1, ..., N − 1]},
(1.3)

where P is the length of the cyclic prefix and should be chosen such that P ≥ Nτ with Nτ

defined as the maximum delay spread of the discretized channel impulse response function

{hn}Nτ−1
n=0 . At the receiver the cyclic prefix is ignored and the resulting symbol is equalized

in the frequency domain.

It may be convenient to describe OFDM in terms of matrix equations. Define the

discrete Fourier transform matrix to be

[Q]k,n = (LN)−1/2 exp(−j2π(n − 1)(k − 1)/LN), 1 ≤ k, n ≤ LN, (1.4)

where [Q]i,k denotes entry in the ith row and the kth column of matrix Q and the cyclic

prefix matrix to be

C =




0PxLN−P | IP

ILN


 ∈ R

LN+P x LN. (1.5)

Finally, the vector version of xcp[n] can be written as

y =




y
(cp)
−P

y
(cp)
−P+1

...

y
(cp)
LN−1




= CQHx, (1.6)

where ·H is the Hermitian transpose of a matrix. A block diagram of the OFDM system is

presented in Fig. 1.1
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Figure 1.1: OFDM block diagram.

1.2.2 Challenges

Despite the widespread acceptance of OFDM, it has its drawbacks. One drawback is that

OFDM systems are not robust again carrier frequency estimation errors. Even small carrier

offsets destroy the orthogonality causing inter-carrier interference (ICI) between the sub-

carriers causing drastic error rate increases [87, 98, 5, 72]. Specifically, in [72] an bound on

the signal-to-noise ratio (SNR) after ICI was calculated to be

SNRICI =
σ2

x

(
sin(πǫ)

πǫ

)

0.5947σ2
x sin2(πǫ) + σ2

v

, (1.7)

where σ2
x is the signal power, σ2

v is the noise power and ǫ is the fraction of a subcarrier width

that frequency is offset by. A plot of the SNR versus ǫ for various starting SNR values (i.e.

σ2
x/σ2

v) is plotted in Fig. 1.2.

The other main drawback of OFDM systems is that the time-domain OFDM signals

exhibit large power fluctuations in very short periods of time. Such large fluctuations are

due the Complex Gaussian distribution of the time domain OFDM samples, which follows

from the Central Limit Theorem (CLT). That is, because the time-domain samples are a

linear combination of a large number (N) of independent complex random variables (the

values of Xk), the CLT states that they will follow a Complex Gaussian distribution. Thus,

envelope peaks require a system to accommodate an instantaneous signal power that is

larger than the signal average power, necessitating either low operating power efficiencies
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Figure 1.2: Plot of SNR versus ICI for various input SNRs (dB scale).

or power amplifier (PA) saturation. To illustrate, one realization of an OFDM symbol is

plotted in Fig. 1.3. It is clear that the peaks of the signal have much larger magnitudes that

the average signal power. Mitigating the detrimental effects of these envelope variations is

the main topic of this thesis.
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Figure 1.3: Power profile of one OFDM symbol realization.

1.3 Peak-Limited Channels

Peak-power-limited channels provide a more challenging design problem over classically

considered average-power-limited channels. Here we consider a simple time-invariant peak-

limited channel is defined with the function

g(x) =





Ax, |x| ≤ 1

Aej∠x, |x| > 1,
(1.8)

where A is the peak magnitude limit allowed. Several interesting information theoretic

analysis of this type of channel have been discussed in the literature. Notably, Shannon in

[104] first provided a lower bound on the peak-limited capacity

C(A) ≥ 1

2
log2

(
2A2

πe3σ2
v

)
. (1.9)

More recently, it has been shown that the capacity achieving distribution for peak-limited

channels is actually discrete for the real case in [105] and for the complex case in [103]. More

concise closed form bounds on the peak-limited capacity are provided in [69]. These interest-

ing information-theoretic results illustrate two important points, i) the capacity-achieving

symbol distribution is very nearly the Gaussian distribution truncated to a peak value of

A and ii) there is a non-negligible capacity loss by imposing a peak-limited constraint. In

the following we will examine the detrimental effects on OFDM symbols in peak-limited

channels.
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1.3.1 SER Degradation

Because the clipping non-linearity g(·) causes distortion, there will be an increase in the

number of bit errors in a peak-limited channel. Several formulations have been derived to

quantify this degradation. A simple approximation of the distortion noise based on the

assumption that xn is Gaussian distributed was derived in [71]. In that work, the distorted

signal was written as g(yn) = yn + dn. Thus, the variance in dn is

σ2
d =

2√
2πσ2

y

∫ ∞

A
(x − A)2e−x2/2σ2

ydx. (1.10)

Then, assuming that this distortion is uncorrelated with y and that it is Gaussian (both of

which do not hold), the symbol error rate (SER) can be calculated according to

SER = 1 −
[
1 − 2

(
1 − 1√

M

)
Q

(√
3σ2

x

(σ2
d + σ2

v)M − 1

)]2

, (1.11)

where M is the QAM constellation size [88] and σ2
v is the additive Gaussian channel noise.

A refined SER approximation is presented in [109]. There, the clipping noise is treated

as impulsive noise and the distortion noise is conditioned on the probability that a sample

experiences clipping according to

σ2
d = E[(x − g(x))2||y| > A] Pr(|y| > A)︸ ︷︷ ︸

2Q(
√

PSNR)

+ E[(x − g(x))2||y| < A]︸ ︷︷ ︸
0

Pr(|y| < A)︸ ︷︷ ︸
1−2Q(

√
PSNR)

(1.12)

where PSNR = A2/σ2
y and where

E[(x − g(x))2||y| > A] =
1

Q(
√

PSNR)
√

2πσ2
y

∫ ∞

A
(x − A)2e−x2/2σ2

ydx. (1.13)

Now the probability that k samples are clipped is

Pr(k) =

(
N

k

)(
1 − 2Q(

√
PSNR)

)k (
2Q(

√
PSNR)

)N−k
, (1.14)

thus,

SER = 1 −
N∑

k=0

Pr(k)


1 − 2

(
1 − 1√

M

)
Q



√√√√

3σ2
x(

k
N2Q(

√
PSNR)

σ2
d + σ2

v

)
M − 1







2

.

(1.15)

This approximation still assumes that d and y are uncorrelated, which is not strictly true.

However, the approximation is still very good as can be seen in Fig. 1.4.
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Figure 1.4: SER approximation for a Gaussian signal with various clipping ratios with
16QAM constellation.

1.3.2 Spectral Splatter

Another unfortunate side effect of peak-limiting a signal is that the spectrum expands. Such

spectral expansion, or splatter in OFDM can cause unwanted distortions on other users. If

we express the nonlinearity g(·) as a complex baseband polynomial

z = g(y) =
K∑

k=0

a2k+1|y|2ky, (1.16)

and the input y is Gaussian, then it is straightforward to show [91] that the spectrum of z

has the form

Szz(f) =
K∑

k=0

|a2k+1|2
(

k+1⊗

l=0

Syy(f)

)(
k⊗

l=0

Syy(−f)

)
, (1.17)

where
⊗

is the multiple convolution operator.
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For example, if y(t) is a symmetric band-limited Gaussian, process with low-pass band-

width B, then we can write

Szz(f) =
K∑

k=0

|a2k+1|2
(

k+1⊗

l=0

Syy(f)

)(
k⊗

l=0

Syy(−f)

)
(1.18)

=
K∑

k=0

|a2k+1|2
(

2k+1⊗

l=0

Syy(f)

)
(1.19)

=
K∑

k=0

|a2k+1|2FT

{(
sin(Bx/2)

Bx/2

)2k+1
}

(1.20)

where

U(x) =





0, x < 0

1, x ≥ 0
(1.21)

and the Fourier Transform w.r.t. w of the Nth order Sinc function is

FTw

{(
sin(ax)

ax

)N
}

=
1

(N − 1)!2N+1

N∑

n=0

(
N

n

)
((2n − N)a + w)N−1 U ((2n − N)a + w) .

(1.22)

Using this formulation, the spectral regrowth of a bandlimited Gaussian signal can easily

be calculated. One example is plotted in Fig. 1.5. The plot uses the same parameters that

were used in the SER plot in Fig. 1.4. Frequently, signals need to have 50dB of clearance

two bandwidths out. It is obvious from Fig. 1.5 that to achieve spectral suppression of 50dB

at two bandwidths more than 10dB of signal scaling would be necessary. From Fig. 1.4, it

is apparent that A2/σ2
y = 10dB does not have the best SER performance. Accordingly, it

is desirable to find a way to transmit this Gaussian signal through a peak limited channel

such that the spectral splatter constraints are met and without giving up too much in terms

of SER performance.
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Figure 1.5: Spectral splatter various clipping ratios. The nonlinearity is chosen to have
K = 6 coefficients with values {0.4111, 0.1133, 0.0524, 0.0285, 0.0170, 0.0107}. The PSD is
plotted so that the in band power is equal to one.

1.4 Envelope Variation Metrics

There are several different metrics that quantify the dynamic range of signals. While these

dynamic range metrics are important, they are only a proxy measurement of the truly

important system metrics like power efficiency, SER, spectral splatter and error vector

magnitude (EVM). However, a significant amount of research has related various dynamic

range metrics to these performance metrics.

1.4.1 Instantaneous-to-Average-Power Ratio

The instantaneous-to-average power ratio (IAR) is a straightforward quantification of the

signal power distribution and is defined by

IAR =
|yn|2
σ2

y

. (1.23)

The IAR is a random variable so it is often quantified through its complementary cumu-

lative distribution function (CCDF). In OFDM, when N is large, yn is Complex Gaussian
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Figure 1.6: The IAR CCDF in both linear and dB scale.

distributed, and IAR follows an Exponential distribution so that the IAR CCDF is

CCDFIAR(γ) = Pr(IAR > γ) = e−γ . (1.24)

Fig. 1.6 is a plot of the IAR CCDF. The plot demonstrates how the IAR varies as N

changes. Unlike the peak-to-average power ratio (PAR) that will be discussed in the next

section, the IAR is largely insensitive to the value of N. The variations only occur when N is

very small (i.e. N < 64) because the samples are not quite Complex Gaussian. However, for

practical values of N, the IAR CCDF does not change with N. The peak nature of OFDM

can also be observed from Figure 1.6. For instance at the 0.01% level, the IAR is nearly

9.5dB. That is one out of every ten thousand samples exceeds 9.5dB in power. In practical

systems, this 0.01% level is often employed to determine power backoff required by the PA.

The larger the 0.01% CCDF value, the more backoff is required, which lead to lower power

efficiencies.
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1.4.2 Peak-to-Average-Power Ratio

The most popular quantification metric of envelope variation is the peak-to-average ratio

(PAR)1. The use of PAR in communications signals is a result of the use of PAR in radar

applications. A radar system shares certain similarities with a communications system;

namely, they both have to transmit an amplified radio signal of a certain spectrum. For

radar, the spectrum shape is often the only signal constraint, which makes waveform shaping

that minimizes peaks a relatively straightforward problem. However, in an OFDM commu-

nication system there is the additional constraint that each subcarrier (Fourier coefficient of

the spectrum) is modulated with an information bearing complex number. This additional

degree of constraint significantly complicates the problem.

Define the PAR of an OFDM signal, x to be

PAR {x} =
max |x|2
E [|x|2] , (1.25)

where x and be any signal representation (critically sampled baseband, oversampled base-

band, continuous-time passband, etc.) defined over one symbol period. Because the de-

nominator of (1.25) is an expected value and, strictly speaking, not an “average,” it is true

that the term PAR is a bit of a misnomer. Despite this slight technical inaccuracy, PAR

is the most widely used term and we will keep with convention here. Also, note that the

ensemble average power and the expectation in the denominator of (1.25) only differs for

non-constant modulus constellations. Figure 1.7 is a plot of the PAR of x[n] for different

N . It is obvious that at all probability levels the PAR increases with N

In the discrete-time case, where only the Nyquist sampled analog signal is examined,

the cumulative distribution function (CDF) can be easily derived if certain assumptions

are made. First we assume that N , the number of subcarriers, is large enough so that the

discrete-time domain signal has an approximate complex Gaussian distribution [22]. It then

follows that the instantaneous power of the discrete-time domain samples is Chi-Squared

distributed. Therefore, for a given n = no, |xno |2 is χ2 distributed with two degrees of

1PAR is alternately referred to as the PAPR (peak-to-average power ratio) and PMEPR (peak to mean
envelope power ratio). PAR is also directly related to the crest factor (CF) of a signal where CF =

√
PAR.
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Figure 1.7: CCDF of the discrete-time PAR for various values of N .

freedom. So Pr[|xno |2 < γ] = 1 − e−σ2
xγ . Furthermore, according to Theorem 4.4.1 of [22],

after the IFFT each discrete time sample can be treated as independent of all other samples.

With these two approximations, the probability that the power of at least one x[n] out of

N samples is above a given level, γ, is

Pr

[
max

0≤n<N
|xn|2 < γ

]
= (1 − e−σ2

xγ)N . (1.26)

Finally, if E
[
|xn|2

]
is normalized to unity, then the CCDF of the PAR is

Pr [PAR{xn} > γ] = 1 − (1 − e−γ)N . (1.27)

Equation 1.27 is a very good approximation to the PAR distribution of xn, but differs

but as much as one dB from the PAR distribution of x(t). There have been several attempts

to determine the distribution of x(t). The first came from [114], where is was claimed that

Pr [PAR{x(t)} > γ] ≈ 1 − (1 − e−γ)2.8N , (1.28)

which is just a intuitive modification to the CCDF that resulted from the Gaussian approx-

imation in (1.27). Later in [35], a more theoretical analysis of the problem was done based
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on level crossing probabilities of x(t), where the ratio fc/B was taken into account as well

as the power distribution of Xk. They concluded that for fc >> B and a constant modulus

power distribution that

Pr [PAR{x(t)} > γ] ≤ N

√
π

3
γe−γ . (1.29)

In [81], the authors present the approximation

Pr [PAR{x(t)} > γ] ≈





(
1 −

√
γe−γ

√
r̄e−r̄

)N
√

π
3

r̄e−r̄

, γ > r̄;

0, γ ≤ r̄,

(1.30)

where r̄ =
√

π, based on the level crossing rates of x(t). The authors further refine (1.30)

for large γ to

Pr [PAR{x(t)} > γ] ≈ eN
√

π
3
γe−γ

. (1.31)

In order to test these approximations it is necessary to resort to digital signal theory

where it is known that as L → ∞, xn/L → x(t). It follows that the PAR of xn/L approaches

the PAR of x(t) for large L. Thus we should be able to approximate PAR{x(t)} by running

simulations on the oversampled signal xn/L.

Figure 1.8 is a plot of each approximation to the PAR of x(t) as well as the PAR of xn/L

for L ∈ {1, 2, 4, 8}. From the plot we can see that the oversampled PAR is only slightly

larger than the Nyquist-sampled PAR. Additionally, the PAR for L = 4 is very close to the

L = 8 case, which is indistinguishable from larger Ls (not plotted). The approximations to

the continuous-time PAR are fairly tight, but they all appear to be upper bounds.
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Figure 1.8: CCDF of the PAR for L ∈ {1, 2, 4, 8}, N = 64 and the approximations in (1.27),
(1.28), (1.29), (1.30) and (1.31).

1.5 Accommodating OFDM in Peak-Limited Channels

When designing a communications system it is important to consider the effects of nonlin-

earities contained in the system. Specifically, to maximize performance it may be necessary

to modify the signals prior to the nonlinearity. In the following section we provide an outline

of the three types of signal modifications: scaling, predistortion, and PAR reduction. At

the receiver, depending on the PAR-reduction method used, receiver cooperation may be

necessary too. An idealized system would implement all four of these modifications in an

optimal way to maximize performance. The block diagram of such a system is plot in Fig.

1.9.

1.5.1 Predistortion

Digital predistortion (DPD) is the process which corrects the power amplifier nonlinearity

digitally by applying a nonlinear function to the to-be-transmitted signal before it passed

through the PA nonlinearity. Ideally, the concatenation of the DPD nonlinearity and the

PA nonlinearity will result in a linear response function. In [92], the optimal DPD/PA
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Figure 1.9: Block of signal modifications used to mitigate peak limitations in an OFDM
system.

concatenation function was derived and shown to be soft limiting with gain. Thus, the

DPD function needs to be chosen to be the exact inverse of the PA response up to the

saturation point.

With the result from [92], the general idea of DPD is straightforward but implementa-

tion can be complicated in several ways. For instance, it is possible of the PA to have a

time-varying nonlinear characteristic, which necessitates that the DPD function include a

time dependency. In this case, a more general time-varying function is necessary to charac-

terize the PA such as a Volterra series [40]. A further complication is that inverting the PA

characteristic may involve a matrix inverse operation, which is computationally expensive

and highly sensitive to round off errors. Accordingly ,orthogonal polynomial PA models

[91] have been proposed to mitigate round off errors and look-up table inversion [74] im-

plementations have been proposed to alleviate some of the computational strain. Overall

the DPD research has indicated that DPD is capable of reducing spectral leakage, lowering

BERs and increasing power efficiency. All of these points present a strong argument for

inclusion of DPD into OFDM systems. Using this logic, most authors who consider PAR

reduction methods assume a soft limiter PA characteristic. As demonstrated in [92], any

other PA characteristic should be predistorted so that the overall system results in a soft

limiter (with gain) characteristic.
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1.5.2 Symbol Scaling

Scaling techniques adjust the amount of signal power by using a linear scaling factor. Be-

cause the scaling operation is linear scaling techniques do not affect the PAR of the signal.

However, the concatenation of the scaling technique and the PA does cause a PAR reduc-

tion. For the purposes of this thesis, such a concatenation will be view as a type of clipping

technique. The difference is that clipping techniques are performed digitally, prior to the

PA. Then the clipped signal is sent through the PA where it may experience additional

distortion. The following two sub-sections outline static scaling (or backoff) and piece-wise

backoff, respectively.

1.5.2.1 Static Backoff

In a static backoff system the input symbol is backoffed by a scaling factor β, which is

constant for all symbols. Thus, the resulting symbol is βxn. The power efficiency can be

calculated according to

ηsbo =

∫
D(|x|) p|x|(z)q(βz)2dz

PDC
. (1.32)

where q(·) is the nonlinear response of the PA. As a simple example, the Class A PA power

efficiency is plotted versus the backoff amount in Figure 1.10. While different classes of

PAs can achieve higher power efficiencies than the Class A curves plotted, the Figure still

accurately demonstrates how power efficiency is decreasing in the amount of power backoff.

1.5.2.2 Piecewise Linear Scaling

Piecewise linear scaling (PWLS) is a scaling method that takes advantage of the symbol

structure of OFDM [79]. In all practical implementations of OFDM, pilot tones are trans-

mitted along with the data tones so that the receiver can estimate and then compensate for

channel variations. With this structure in place, it is possible to scale every symbol with a

different factor. Then, the receiver can use the pilot tones to detect the scaling factor. In

PWLS, the transmitted signal βnxn, where the scaling factor is block dependent such that

βn =
A

maxn |xn|
. (1.33)
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Figure 1.10: Class A power efficiency versus power backoff.

Since the denominator is a function of the peak value of the symbol, it is intuitive that

there is a relationship between the PAR and the power efficiency in PWLS, which is

ηpwls = E

[
1

2PAR

]
(1.34)

for Class A PAs. This is in contrast to the static backoff case in 1.32 where there is no

relationship between the PAR and the power efficiency. The point is that the PAR is a

very important metric to measure the performance of PWLS systems, whereas the IAR is

more pertinent for static backoff systems. Figure 1.11 is a plot of the PWLS power efficiency

versus the number of subcarriers. The plot illustrates that the more subcarriers are present,

the lower the power efficiency will be.

1.5.3 PAR Reduction

The final component of an OFDM transceiver that needs to be considered is PAR reduction.

So far, we have discussed scaling techniques whereby a linear scaling factor is applied to the

incoming signal to mitigate distortion and DPD techniques which modify incoming signals

so that after they pass through the PA the will have been linearly amplified. PAR reduction

is fundamentally different from these first two components. Unlike scaling and DPD, PAR

reduction techniques attempt to reduce that peak power for the same average power. As

we have seen in Fig. 1.11, the power efficiency is closely related to the PAR, so lowering

the PAR by making it less common for OFDM symbols to posses a high PAR, will increase
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Figure 1.11: Plot of the PWLS power efficiency versus the number of subcarriers.

power efficiency. We have also seen that, under certain system configurations, the power

efficiency is related to a statistic of the IAR distribution. While reducing the PAR at all

probability levels does not necessarily lead to an IAR reduction at all probability levels, it

is safe to say that all practical PAR reduction algorithms will also produce a desired IAR

reduction.

PAR reduction methods can be broken into two main groups: distortion methods and

distortionless methods. Distortion methods allow some level of distortion to be incurred

during the PAR reduction operation. Distortion methods spread out the incurred distor-

tion in the frequency domain so that the constraints of the method are met. Conversely,

distortionless methods incur only reversible distortion to reduce the PAR. At the receiver,

a reverse operation is performed to recover the original signal. The tradeoff for distortion-

less methods is increased computational complexity and required receiver-side cooperation.

Receiver-side cooperation is particularly undesirable for open loop systems where different

manufactures produce the mobile and the base stations.

On the other hand, distortionless algorithms can achieve large PAR reductions without

any distortion, so it may behoove future standards to incorporate provisions for distortion-

less algorithms in order to maximize power efficiency. Distortion-based algorithms come

at the expense of another set of tradeoffs. The most obvious of which is distortion. Most

distortion algorithms control how the distortion is allocated so that the required constraints
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Figure 1.12: Illustration of the efficiency improvement that can be realized by PAR reduc-
tion.

can be met, but even controlled distortion may not be desirable in certain scenarios. The

other two main tradeoffs in distortion algorithms are computational complexity and latency.

Depending on how precise of a solution is required for each transmit symbol, extremely

complicated optimization algorithms may be called for. In that case, the complexity of a

distortion algorithm could be unacceptably high for most practical systems.

Fig. 1.12 illustrates the effect of PAR of the power efficiency. On the right is a PA

response for a signal with a high PAR (PAR1) and for a signal with a low PAR (PAR2).

Both responses produce the same average output power, but the lower PAR signal achieves

this output power with a lower saturation level and hence, a lower bias point. Assuming

the PAs are Class A, the power efficiency is plotted on the left. Based on the plot, it can be

demonstrated that the power efficiency goes from 5% to 11% in this hypothetical example.

Such power efficiency improvements can be realized with only a 3dB PAR reduction. In

economic terms, a double in power efficiency leads to a halving in the power costs, so such

improvements can be extremely lucrative if implemented.

1.6 Thesis Organization

In the following thesis the topics concerning the problem of transmitting OFDM signals

through peak-limited channels are analyzed. We start in Chapter 2 by examining the
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effect of using signal-to-noise-plus-distortion ratio (SNDR) as a metric for peak-limited

systems. As part of that chapter, we also provide a comprehensive analysis of the difference

possibilities for scaling signals prior to the peak limitation. In Chapter 3 we use the findings

in Chapter 2 and modify a popular PAR reduction algorithm known as selected mapping

(SLM) such that SNDR is maximized. In Chapter 4 SLM is compared to another popular

PAR reduction scheme known as partial transmit sequence (PTS). The findings show that

SLM is preferred over SLM under all metrics tested. As part of comparing SLM and PTS,

the computationally complexity of pruned FFTs had to be determined. In Chapter 5 we

provide a derivation of the pruned FFT complexity based on a Markov model analysis of

the FFT butterfly structure. In Chapter 6 magnitude SLM is introduced as a blind SLM

technique. In Chapter 7 a method for generating low-PAR joint pilot and synchronization

sequences (JSPSs) is developed. In Chapter 8 the JSPSs are exploited as part of an SLM-like

OFDM scheme to enable harsh channel synchronization and equalization while achieving

low PAR symbols. In Chapter 9 the design of JSPSs is extended further by optimizing

the pilot spacing so that the symbol estimation MSE is minimized. In Chapter 10, we

formulate the SNDR-optimal receivers for peak-limited transmitters. Finally, in Chapter

11 we provide a summary of the results presented throughout the thesis.
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CHAPTER II

A COMPARISON OF SNDR MAXIMIZATION TECHNIQUES FOR

OFDM

When an orthogonal frequency division multiplexing (OFDM) signal is transmitted through

a peak-power limited device, system designers must choose from several options to deal with

the large dynamic range problem of OFDM. In this chapter, we are interested in compar-

ing i) clipping with gain, ii) modified piece-wise linear scaling (MPWLS) and iii) piecewise

optimized clipping (PWOC) techniques in terms of the signal-to-noise-plus-distortion ra-

tio (SNDR) metric. Existing work has shown that on a per-sample basis, clipping with

a judiciously chosen gain and clipping ratio, dubbed uniform optimized clipping (UOC),

can maximize the SNDR. Here, we are interested in comparing the performance of UOC

with MPWLS and PWOC, two methods that allow for symbol-wise SNDR maximization.

Through comparison, we show that the symbol-wise methods provide a slightly higher SNDR

compared to UOC. However, this increase in performance comes at the expense of higher

complexity.

2.1 Introduction

Orthogonal frequency division multiplexing (OFDM) is an attractive multi-carrier trans-

mission method because of its simple equalizer structure1. It has been adopted by several

communications standards, such as digital audio broadcasting, digital video broadcasting,

wireless LAN and wireless MAN. However, one major problem associated with OFDM is its

high peak-to-average power ratio (PAR) or crest factor (CF). When a high-PAR signal, such

as OFDM, passes through a power amplifier (PA), the PA may be pushed to saturation,

causing both in-band and out-of-band distortion. Hence, it is desirable to reduce the PAR

1Part of this chapter was presented in R. J. Baxley and G. T. Zhou, “A comparison of SNDR maximization
techniques for OFDM,” Proc. IEEE Statistical Signal Processing Workshop, pp. 423-427, Madison, WI,
August 2007. Reference [19].
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of the input signal in order to maintain a reasonable level of power efficiency or to avoid

excessive nonlinear distortion.

In this chapter, three distortion-based PAR-reduction methods will be compared. Clip-

ping is a simple method and has been well studied in the literature. Three previous works

are particularly pertinent to the work in this chapter as they present analysis on optimizing

clipping in terms of the signal-to-noise-plus-distortion ratio (SNDR) [82, 92, 89]. In fact,

in [92] it was proven that the soft clipping transfer function with carefully chosen gain and

clipping ratio is SNDR-optimal among all peak-limited functions, when signals are operated

on one sample at a time. Throughout the remainder of the chapter we refer to this scheme

as uniform optimized clipping (UOC).

In this work we will propose two novel distortion-based PAR-reduction methods and

compare them with UOC. These methods have an additional degree of freedom compared

with UOC in that they operate on signals from block-transmission schemes (e.g. OFDM),

one block at a time. The first method presented is a generalization of piecewise linear

scaling (PWLS) [79] that allows the SNDR to be optimized for any peak-signal-to-noise

ratio (PSNR). The second method, dubbed piecewise optimized clipping (PWOC), preforms

block-wise optimization to determine the highest SNDR transmitted signal.

2.2 System Model

In OFDM, individual subcarriers in the frequency-domain are modulated with constellation

points, transformed to the time-domain and transmitted with a cyclic prefix. For PAR

analysis, the cyclic prefix can be ignored since it has no effect on the symbol PAR. Let

the frequency-domain vector of constellation points be x = [x1, x2, ..., xN−1, xN ]T , where

xk is drawn from a finite constellation. Using the inverse discrete Fourier transform, the

time-domain symbol is

y = Qx, (2.1)

where Q is the inverse discrete Fourier transform matrix. For Nyquist sampling, [Q]k,n =

N−1/2 exp(j2π(n − 1)(k − 1)/N). In general, this matrix model can be extended to the

25



oversampling case by properly choosing the columns of Q to represent the baseband over-

sampled frequencies. In fact, the analysis in this chapter can be extended to any block

transmission scheme by choosing the appropriate matrix Q (e.g. code division multiple

access (CDMA) can be analyzed by setting Q to the Hadamard matrix).

The PAR of the signal y is defined by

PAR(y) =
‖y‖2

∞
σ2

y

, (2.2)

where σ2
y is the power in each element of y (the elements of y are assumed to have the same

variance). For transmission through a peak-power limited device it is desirable to carry out

crest factor reduction for high PAR (or crest factor) signals.

The device in this chapter is assumed memoryless and peak-power limited to a maximum

power of A. The transfer function of the peak-limited device is

c(z) =





√
Az, |z| ≤ 1

√
A ej∠z, |z| > 1

, (2.3)

where z is the signal before the peak-limiting process, and ∠z is its angle. Thus, |c(z)|2 ≤ A.

In the linear region, the power gain of this device is A. By generalizing c(·) to a vector

function c(z) : C
N×1 → C

N×1, the overall channel becomes c(z) + w, where w is additive

white Gaussian noise (AWGN).

Three schemes for generating z = g(y) (g(y) : C
N×1 → C

N×1), where y is the time-

domain OFDM symbol given in (2.1), are compared in this chapter. The resulting z is

then passed through c(z) defined in (2.3). The metric used to quantify the performance

of each scheme is the signal-to-noise-plus- distortion ratio (SNDR). Notice that r = c(z)

can be written as the sum of a scaled version of y and an uncorrelated distortion term, i.e.

r = c ◦ g(y) = αy + d, where α is chosen so that E[yHd] = 0 [92]. Assuming that the

AWGN channel noise w is uncorrelated with y and d, i.e. E[yHw] = E[dHw] = 0, then the

SNDR is defined as

SNDR =
|α|2E[yHy]

E[dHd] + E[wHw]
. (2.4)

By inferring that α = E[yHr]/(Nσ2
y) and that E[dHd] = E[rHr] − |E[yHr]|2/(Nσ2

y), (2.4)
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can be rewritten as

SNDR =
|E[yHr]|2

E[rHr]Nσ2
y − |E[yHr]|2 + N2σ2

wσ2
y

, (2.5)

where σ2
w is the noise power. The objective is to design the function g(y) so that after the

peak-limiting device, the resulting process, c ◦ g(y) + w has a higher SNDR than c(y) + w.

2.3 Uniform Optimized Clipping (UOC)

In the UOC scheme

z = g(y) =
y

ησy
, (2.6)

where η is a scaling factor that is sample-independent (i.e. uniform for all samples). In [92],

the authors provided a proof that the composition c ◦ g(·), with c(·) from (2.3) and an η

properly chosen for the g(·) in (2.6), maximizes the SNDR among all memoryless nonlinear

mappings with a peak-power limit A. For Gaussian samples y, the SNDR-optimal η can be

calculated using η⋆ = T−1(A/σ2
w), where

T (η) =
2η√

πerfc(η)
. (2.7)

The above claim from [92] assumes that every sample of y is scaled by the same factor

1/(ησy). However, in block transmission schemes like OFDM, there is some flexibility w.r.t.

the scaling factor. Since each block is equalized separately and inter-symbol interference

is avoided with the use of a cyclic prefix, it is possible to use different scaling factors (or

clipping levels) for different blocks. The following two sections present two alternative block-

scaling methods that take advantage of this extra degree of freedom that block transmission

affords.

2.4 (Modified) Piecewise Linear Scaling ((M)PWLS)

PWLS was presented and analyzed in [79]. The idea behind PWLS, is to scale the signal

prior to transmission so that no part of the signal would be clipped. Thus, the signal is

scaled by a factor of 1/‖y‖∞ so that

z = g(y) =
y

‖y‖∞
. (2.8)
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Figure 2.1: Level curves of the SNDR differential between UOC and PWLS. To the top
left of the bold line, PWLS outperforms UOC, to the bottom right of the bold line, UOC
outperforms PWLS.

Here |z|2 ≤ 1 so z is scaled linearly without clipping when passing through the c(·) in (2.3).

Unlike UOC, the scaling factor in PWLS changes every block based on the peak amplitude

of y.

Fig. 2.1 is a plot of the level curves for ∆SNDR, which is the difference (in dB) between

the UOC SNDR and the PWLS SNDR. The plot demonstrates that, despite UOC being

SNDR-optimal on a per-sample basis, PWLS can outperform clipping for certain values of

N and PSNR, where PSNR = A/σ2
w. Specifically, when N is small or when the PSNR is

high, PWLS is preferable.

Despite better performance in some regions of the N -PSNR plane, PWLS is at a dis-

advantage to UOC in other regions of the plane. This is attributed to PWLS being too

“conservative” in trying to avoid any clipping and thus not delivering sufficient signal power.

In [89], it was pointed out that deliberately introduced non-linearity can lead to SNDR im-

provements. Based on this observation, as a modification to improve the performance of
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PWLS, we propose that the scaling factor be parameterized with a PSNR-dependent vari-

able λ so that

z = g(y) =
y√

λ‖y‖∞
. (2.9)

We call this modified PWLS (MPWLS). Notice that λ ∈ (0, 1]. For the special case when

λ = 1, MPLWS will be identical to PWLS. For λ ∈ (0, 1), z in (2.9) will necessarily

experience some clipping distortion when it is passed through c(·). However, some distortion

maybe a desirable tradeoff for the increase in signal power so the end result may be a

larger SNDR. Thus, it is necessary to optimize λ in terms of the PSNR and the number of

subcarriers N .

Through Monte Carlo simulations we are able to determine the SNDR optimizing values

for λ, λ⋆. Fig. 2.2 is a plot of λ⋆ versus the PSNR. Interestingly, the trend shows that for

high PSNR, larger values of λ are required so that less clipping is incurred. Conversely,

in the low-PSNR regime, λ is relatively smaller which results in relatively more clipping

distortion but also more transmitted signal power. A similar trend is reported in the clipping

scheme [92] for the optimal back-off values, η, from (2.6).

Fig. 2.3 is a plot of the level curves for ∆SNDR, which is the difference (in dB) between
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Figure 2.3: Level curves of the SNDR differential between UOC and MPWLS. Negative
values for ∆SNDR indicate that MPWLS outperforms UOC.

the UOC SNDR and the MPWLS SNDR. As expected, MPWLS always outperforms UOC.

However, in certain regions of the N -PSNR plane the performance gap is relatively small.

Comparing Fig. 2.3 and Fig. 2.1, we see that MPWLS is an improvement over PWLS.

2.5 Piecewise Optimized Clipping (PWOC)

In UOC, the scaling factor is block-independent and in MPWLS, the scaling factor is related

to the block PAR, which can outperform UOC. However, MPWLS is not SNDR-optimal

among all possible peak-limiting signal modifications that operate in a block-wise fashion.

Instead, the global SNDR-optimal solution can be found by maximizing the instantaneous

SNDR of each block defined by

SNDR(y, r) =
|yHr|2

‖y‖2
2‖r‖2

2 − |yHr|2 + N‖y‖2
2σ

2
w

. (2.10)

Notice that this definition is ambivalent to the sign of r, which means that SNDR(y, r) =

SNDR(y,−r). To alleviate this ambiguity and make the problem concave, the r chosen is

the one most in the direction of y. Thus, for each symbol an optimization problem needs to

be solved in order to maximize the SNDR. Define z = g(y) for PWOC to be the function
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that solves

maximize
z

SNDR(y,
√

Az)

subject to ‖z‖∞ ≤ 1,

ℜ(yHz) ≥ 0. (2.11)

Note that since ‖z‖∞ ≤ 1, r = c(z) =
√

Az. It is straightforward to show that this is a

concave problem that can be solved using interior point methods (see [21]). In fact, the

gradient of SNDR(y,
√

Az) is

∇zSNDR(y,
√

Az) = yHz
[
(‖z‖2

2 + Nσ2
w/A)y − (zHy)z

]
, (2.12)

which can be used in conjunction with the boundary constraint, ‖z‖∞ ≤ 1 to perform a

gradient ascent search [21] for the SNDR-optimizing vector z. The gradient ascent search

(descent search for convex problems), is basically an iterative search technique that finds

the optimizing vector by moving in the direction of the gradient in each successive iteration.

To simplify the problem, without loss of generality, assume that in the first iteration,

z is initialized with y. Even after applying the boundary constraints, which do not effect

the phase of ∇zSNDR, both yHz and, trivially, zHy are real numbers. Thus, the gradient

always searches in the direction of y subject to ‖z‖2
∞ ≤ 1. Based on this, the optimization

problem in (2.11) can be simplified from an N -variate problem to a single-variate problem.

Specifically, the optimization problem in (2.11) is equivalent to

maximize
ρ

SNDR(y, c(ρy))

subject to ρ > 0, (2.13)

where c(·) is the function defined in (2.3), c(ρ⋆y) =
√

Az, and ρ⋆ is the optimizing value

of ρ. Notice that the problem in (2.13) can be solved with a simple grid search, which has

convergence that is geometric in the iteration number, i.e. ‖c(ρ⋆y)−c(ρ(i)y)‖2
2 ∝ 10−i, where

ρ(i) is the value of ρ after i iterations [126]. Because PWOC maximizes the instantaneous

symbol SNDR, SNDR, it is obvious that the scheme also maximizes the SNDR, which is

E[SNDR]. Thus, the PWOC SNDR will be the upper-bound SNDR under the peak-limited

channel constraint for block-wise signaling schemes.
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2.6 Comparisons

To re-cap, we have considered two methods that will incur clipping distortion: UOC and

MPWLS. We emphasize that the clipping notion that we are referring to here differs from

the simple slipping technique in [80, 60, 55], where the clipped signal is

c̃(y) =





y, |y| ≤
√

A
√

A ej∠y, |y| >
√

A
. (2.14)

No gain is applied in (2.14), and (2.14) is not SNDR-optimal even on a per-sample basis. In

UOC and MPWLS, y is judiciously scaled to z via z = g(y) and the c(·) function in (2.3)

is then applied to z. The key to designing g(·) is to ensure that the average power increase

due to scaling dominates any increase in the clipping distortion power.

For the two other methods discussed in this chapter, namely PWLS and PWOC, the

g(·) functions are designed such that |z| < 1 and thus c(z) =
√

Az and no clipping distortion

is encountered. As we will see, PWLS is too “timid”, whereas PWOC performs the best

since it maximizes the instantaneous SNDR for each block.

In this section, we will evaluate the complexity and SNDR performance of each of the

discussed schemes: UOC, MPWLS and PWOC. First, in terms of complexity, UOC is the

simplest scheme to implement with a complexity of O(N) as only a multiplication with

1/η is necessary for each sample. Next, MPWLS requires determining the peak values of

each symbol and the multiplication of each sample by 1/
√

λ, which is more than twice as

complex. However, the complexity is still linear in N so MPWLS also has complexity O(N).

Finally, using the modified objective function in (2.13), each of the iterations of the grid

search has a complexity linear in N so for I iterations, the complexity is O(NI).

Fig. 2.4 is a plot of the SNDR for the three schemes versus the relevant parameters. The

plot demonstrates the importance of proper parameter selection in both UOC and MPWLS.

Notice that for λ = 1, MPWLS becomes PWLS. The plot shows that for the PSNRs plotted,

the λ = 1 case has a significant SNDR disadvantage compared to the optimal λ case. The

plot also demonstrates that MPWLS has an SNDR that is near the upper-bound PWOC

SNDR.
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Figure 2.4: Plot of the three methods versus η for UOC on the bottom x-axis and versus λ
for MPWLS corresponding to the top x-axis; N = 64. In the plot vertical arrows indicate
which axis each line is read to.

Fig. 2.5 is a plot of the difference between PSNR and SNDR, which confirms that the

SNDR performance of MPWLS is very close to the PWOC SNDR bound. In the plot, the

UOC and PWLS performances are also evaluated. UOC has an impressive performance

in the low-PSNR region compared to the other schemes considering that it has the lowest

complexity. Conversely, PWLS is meaningful only at high PSNR values. However, PWLS

is the only scheme that does not require any transmitter-side knowledge about the channel

noise level. Also, it should be noted that distortionless PAR-reduction techniques such

as those discussed in [8] may improve the performance of PWLS and narrow its SNDR

performance gap with the other schemes.

Fig. 2.6 demonstrates the SNDR gains that can be realized by using a PAR-reduction

technique. For the plot, selected mapping (SLM) [7] was used with 16 phase mappings,

which corresponds to 4 bits of side information. That is, the signal y that is modified by

the three schemes is the lowest-PAR signal among 16 alternative signal mappings (including

the original OFDM signal). The SNDR savings relative to UOC (compared with Fig. 2.5)

is evident across all the curves plotted.
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Figure 2.5: Plot of the difference SNDR − PSNR in dB scale.
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Figure 2.6: Plot of the difference SNDR−PSNR in dB scale, where 16 mappings are used
in the selected mapping (SLM) PAR-reduction technique.
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2.7 Conclusions

In this chapter we have presented a comparison of three SNDR optimization schemes: UOC,

MPWLS and PWOC. Both MPWLS and PWOC are new schemes proposed in this chap-

ter that are designed to operate upon block-wise communications signals such as OFDM.

Specifically, we demonstrated that PWOC will create signals that have the upper-bound

SNDR. Using this upper bound, we also demonstrated that the significantly less complex

technique, MPWLS, results in signals that have SNDR values very near the upper bound.

Additionally, we showed that the proposed techniques can be combined with distortionless

PAR-reduction algorithms such as SLM to increase the SNDR. Future research will focus

on determining the SNDR-optimal scaling factor in UOC and MPWLS for the case when

there is limited knowledge of the channel noise and the case where there is a spectral mask

constraint.
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CHAPTER III

SNDR CONSIDERATIONS FOR THE MINIMUM CLIPPING

POWER LOSS SCHEME

Orthogonal frequency division multiplexing (OFDM) is a robust wireless communications

scheme but has the disadvantage that the symbols have a large dynamic range. Many pro-

posals have been presented for suppressing the large peaks of an OFDM symbol so that higher

power efficiencies can be achieved. In this chapter, we will examine the recently proposed

partial-transmit-sequence-based minimum clipping power loss scheme (MCPLS) and show

how it can be generalized to apply to selected mapping (SLM) as well. Additionally, we

will relate the clipping power metric in MPCLS to the signal to noise plus distortion ratio

(SNDR) that is more commonly used to quantify clipping distortion. Finally, we will derive

the SNDR-maximizing parameters that should be used in the new SLM-MPCLS scheme.

3.1 Introduction

Orthogonal frequency division multiplexing (OFDM) is a popular physical layer modulation

format that is being widely adopted by a variety of wireless communications standards1.

OFDM has the advantage of a simple equalizer structure and due to the frequency division

nature of OFDM, it is also easy to allocate different channels to different users. However,

OFDM has the draw back that it does not perform well in peak-limited channels. Un-

like single carrier signals, OFDM signals have a large dynamic range which is difficult for

peak-limited devices like digital-to-analog converters and power amplifiers to accommodate.

Thus, it is desirable to find methods to reduce the dynamic range of OFDM signals so that

they can pass through peak limited devices without incurring too much unwanted distortion.

Typically, the nonlinear distortion manifests itself as a bit error rate (BER) degradation

1Part of this chapter was presented in R. J. Baxley and G. T. Zhou, “SNDR considerations for the
minimum clipping power loss scheme,” Proc. IEEE Military Communications Conference, Orlando, FL,
October 2007. Reference [20].
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and as out-of-band spectral distortion.

It is common in the literature to find the peak distribution of OFDM signals quanti-

fied through the peak-to-average power ratio (PAR). Accordingly, many researchers have

proposed PAR reduction methods, which effectively reduced the high peaks of an OFDM

signal. One popular method is known as selected mapping (SLM) [7]. In SLM, multi-

ple signal realizations are created and the lowest-PAR realization is transmitted. Another

method that can be viewed as a generalization of SLM is called partial transmit sequence

(PTS) [76] which was proposed as a low-complexity alternative to SLM. However, in [17],

it was demonstrated that SLM actually outperforms PTS in terms of PAR reduction (and

distortion reduction) per unit of complexity.

In addition to all of the promising PAR-reduction research, it has been argued that other

peak-distribution metrics, besides PAR, can be useful when considering OFDM transmission

through peak-limited channels. In [59], it was suggested that, by using PTS where the

minimum clipping distortion realization is selected for transmission instead of the minimum-

PAR realization, the BER can be improved. In [97] a similar argument was made showing

that the intermodulation distortion should be used instead of the PAR.

In this chapter, we will provide a theoretical analysis of the minimum clipping power

loss scheme (MCPLS) presented in [59]. Specifically, we will show how the clipping power

is related to the signal-to-noise-plus-distortion ratio (SNDR). Ideally, the SNDR should be

maximized in order to minimize the BER. With the link to SNDR established, we will

then extend the MCPLS method to the SLM. Finally, we will derive the SNDR-optimal

parameters that should be used with SLM-MCPLS.

3.2 OFDM and SLM-MCPLS

For the purposes of examining the OFDM in peak limited channels, we can adopt a baseband

OFDM model where the baseband OFDM symbol {xn/L}NL−1
n=0 is an oversampled IFFT

output of the data vector {Xk}N−1
k=0 , a sequence of (complex) numbers drawn from a finite
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constellation. That is,

xn/L =
1√
LN

(N/2−1∑

k=0

Xke
j2πkn

LN +
N−1∑

k=N/2

Xke
j2π(k−N)n

LN

)

= IFFT{Xk}, (3.1)

where L is the oversampling factor, N is the number of subcarriers, and IFFT{·} is NL-

point oversampled IFFT indexed by n/L, where n ∈ {0, 1, ..., LN − 1}. In [81] the authors

demonstrated that when L ≥ 4 the envelope of xn/L approximates the envelope of the

continuous-time signal.

In SLM, M alternative signal mappings are created by phasing the constellation points

with M N -length phase sequences, φ
(M)
k , where k ∈ {0, 1, ..., N − 1} and m ∈ {1, 2, ..., M}.

The resulting mappings

X
(m)
k = Xke

jφ
(m)
k , (3.2)

can be used to create the time-domain mappings

x
(m)
n/L = IFFT{X(m)

k }. (3.3)

In the original SLM [7], the transmitted signal is selected to be the lowest-PAR mapping.

Contrastingly, in SLM-MCPLS, it is assumed that the channel is peak-limited by a time-

invariant nonlinear function

g(x) =





Ax, |x| ≤ 1

Aej∠x, |x| > 1,
(3.4)

where A is the peak-limiting value2. Additionally, as system designers we have the oppor-

tunity to digitally scale the OFDM samples xn/L by a time-invariant factor 1/η, so that

xn/L/η is sent through the peak-limiting function g(·). In [92], it was proven that such

a scaling soft-limiter function is SNDR-optimal among all possible peak-limited functions.

Define the distortion noise at each sample to be

B
(m)
n/L =

∣∣∣∣∣∣

Ax
(m)
n/L

η
− g




x
(m)
n/L

η




∣∣∣∣∣∣

2

. (3.5)

2Digital predistortion can be applied to any monotonic peak-limiting nonlinear function to realize the
soft-limiting channel characteristic in (3.4)
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Then, the index of transmitted signal is chosen according to

m̃ = arg min
m∈{1,2,...,M}

NL−1∑

n=0

B
(m)
n/L, (3.6)

which means that x
(m̃)
n/L is transmitted. At the receiver, m̃ needs to be recovered so that the

transmitter-side phasing can be undone. Many proposals have been made for receiver-side

recovery of m̃ in traditional SLM [51, 15, 28]. Since the structure of SLM and SLM-MCPLS

are the same except for the selection metric, any phase sequence recovery method suggested

for SLM will also work for SLM-MCPLS.

In the subsequent sections we will define the SNDR and derive expressions that relate

the SNDR to η. Once the relationship is established, we will determine the optimizing η,

η̄, in terms of the number of mappings M , such that the SNDR is maximized.

3.3 Signal-to-Noise-Plus-Distortion Ratio

Using Bussgang’s Theorem, any memoryless nonlinearity can be decomposed into a sum of

two uncorrelated parts according to

g(x) =
A

η
(αx + d), (3.7)

where α is chosen so that E[x∗d] = E[d∗x] = 0 and the indices m and n/L have been

dropped from x for clarity.

In [92], it was demonstrated that, given σ2
x, E[x∗g(x)] and E[|g(x)|2], the SNDR, Ψ, can

be written

Ψ ,
α2σ2

x

σ2
d + η2

A2 σ2
w

(3.8)

=
|E[x∗g(x)]|2

σ2
xE [|g(x)|2] − |E[x∗g(x)]|2 + σ2

xσ2
w

, (3.9)

where σ2
w is the additive white Gaussian noise (AWGN) power. Alternatively, we can rewrite

(3.5) as

B
(m)
n/L =

A2

η2

∣∣∣q(m)
n/L

∣∣∣
2
, (3.10)

where q
(m)
n/L = (|x(m)

n/L| − η)I(x
(m)
n/L) and

I(x) =





0, |x| ≤ η

1, |x| > η.
(3.11)
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so that the expression

σ2
x

E

[∣∣∣q(em)
n/L

∣∣∣
2
]

+ η2

A2 σ2
w

=
σ2

x

(1 − α)2σ2
x + σ2

d + η2

A2 σ2
w

. (3.12)

can be used to approximate the SNDR. For clipping functions that are not too harsh, g(·)

is approximately linear over the range of x. In this case, α ≈ 1, so the term (1 − α)2 → 0.

Thus, as α ≈ 1, the SNDR of the m̃th mapping can be approximated by (3.12). The validity

of this approximation will be verified later in the simulations. With this approximation it

is possible to describe the SNDR in terms of the mean of
∣∣∣q(em)

n/L

∣∣∣
2
.

3.4 SNDR Optimization

In this section we will outline the procedure for determining η̄, for a given M , so that

SNDR is maximized. To do this, the SNDR approximation in (3.12) needs to be expressed

in terms of η, which involves determining an expression that relates E
[
|q(em)

n/L|2
]

to η. Once

the SNDR is expressed in terms of η, the SNDR-maximizing value η̄ can be found with

simple calculus.

When the system nonlinearity is of the soft-limiter form in (3.4), the pdf of
∣∣∣q(m)

n/L

∣∣∣
2

can

be expressed as

fq(x) =

√
x + η

σ2
x

√
x

exp

(−(
√

x + η)2

σ2
x

)
+ δ(x)

(
1 − exp

(−η2

σ2
x

))
, (3.13)

where x ∈ [0,∞). The form of this pdf makes finding a closed form for the pdf of q
( em)
n/L

difficult. Instead, define

C
(m)
L =

1

NL

NL−1∑

n=0

∣∣∣q(m)
n/L

∣∣∣
2
, (3.14)

which is a scaled version of the metric used in (3.6), to determine the transmitted mapping

index m̃. Since qn/L and qi/L are correlated when (i − n)/L /∈ Z, here, the Nyquist total

distortion C
(m)
1 is used to estimate the over-sampled total distortion C

(m)
L . Since C

(em)
1 is

an unbiased estimator of E
[
|q(em)

n/L|2
]
, its mean is the same as E

[
|q(em)

n/L|2
]
. Accordingly, we

will derive E[C
(em)
1 ] and substitute it in to (3.12) for E

[
|q(em)

n/L|2
]
.

Next, we will find the distribution of C
(m)
1 , which can be used to find the distribu-

tion of C
(em)
1 , the minimizing C

(m)
1 among M trials. As an alternative to using multiple
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convolutions of (3.13) to derive C
(m)
1 , the central limit theorem can be evoked such that

C
(m)
1 ∼ N (µC , σ2

C), where

µC = e−η2 − η
√

πerfc(η), (3.15)

σ2
C = 2e−η2

(1 + η2) − η
√

π(3 + 2η2)erfc(η) − µ2
C (3.16)

and erfc(x) , 2√
π

∫∞
x e−t2dt.

Next, the distribution of C
(em)
1 , which is the minimum C

(m)
1 among M trials, needs to

be determined. The CDF of C
(m)
1 is

FC(m)(z) =
1

2

(
2 − erfc

(
z − µC

σC

√
2

))
, (3.17)

where µC and σ2
C are defined in (3.15) and (3.16). From this, it can be shown that the CDF

of C
(em)
1 can be written as

FC( em)(z) = 1 − 1

2M

(
erfc

(
z − µC

σC

√
2

))M

. (3.18)

Thus, the distribution of C
(em)
1 , assuming that C

(m)
1 ∀ m is Gaussian, is

fC( em)(x) =
M21−M

σCπ
√

2
e
− (x−µC )2

2σ2
C

(
erfc

(
x − µC

σC

√
2

))M−1

(3.19)

Finally, the desired mean can be calculated numerically using

E[C
(em)
1 ] = E

[
|q(em)

n/L|
2
]

=

∫ ∞

0
xfC( em)(x)dx. (3.20)

As an alternative, we have found that for small values of M , it is possible to use the closed

form approximation

E
[
|q(em)

n/L|
2
]
≈ σC

√
2Nerfc−1

(
21−1/M

)
+ µC , (3.21)

which is the median of the C
(em)
1 distribution defined in (3.19). Finally, η̄ can be found by

solving

−1

2η

∂

∂η
E
[
|q(em)

n/L|
2
]

=
σ2

w

A2
(3.22)

for η, which can be done numerically.
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3.5 Simulations

In this section, we will verify the approximations made in deriving η̄ and show how η̄

varies with other system variables. Fig. 3.1 is a plot of the SNDR versus η when no noise

is present (i.e. the peak signal-to-noise power (PSNR), A2

σ2
w

→ ∞). In the plot, the curve

labelled ‘exact’ is the exact SNDR calculated using (3.9) with 105 Monte Carlo trials. There

are also two approximations in the plot, the first, ‘Approx 1’ was plotted using (3.20) to

calculate the E
[
|q(em)

n/L|2
]
, while ‘Approx 2’ was calculated using (3.21) to calculate the same

mean value. The plot shows that both approximations are very close to the exact SNDR

curve. Furthermore, the median approximation (‘Approx 2’) is a better estimate of the

SNDR than ‘Approx 1’, which is convenient since (3.21) is easier to calculate than (3.20).
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Figure 3.1: SNDR with A2

σ2
w
→ ∞, N = 128 and L = 4.

Fig. 3.2 is a plot of the SNDR with the same parameters as Fig. 3.1 except that

A2

σ2
w

= 25dB. Again, the plot shows that the approximations are very close to the exact

SNDR curve. Also, the plot shows that by incorrectly choosing η, a severe SNDR penalty

of more than several dBs may be incurred. Furthermore, even when the maximizing η is

used, the M = 4 mappings case can return a 1.5dB improvement over the non-SLM M = 1

case.
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Figure 3.2: SNDR with A2

σ2
w

= 25dB, N = 128 and L = 4.

Fig. 3.3 is a plot of the SNDR-maximizing η̄ versus A2

σ2
w

for M ∈ {1, 2, 4, 8}. The plot was

made using the exact SNDR equation in (3.9), but the curves for the two approximations

were indistinguishable from the exact curves. The plot can be used by system designers to

choose the appropriate η̄ so that the SNDR is maximized.

Finally, Fig. 3.4 is a plot of the bit error rate (BER) for the proposed SLM-MCPLS

for both QPSK and 16-QAM. For the plot, N = 128, L = 4 and perfect detection of m̃

is assumed. Also in the plot is the BER of the traditional SLM scheme [7], where the

minimum-PAR mapping is selected. For the simulation, the selected signal is scaled down

by its PAR so that no part of the signal is clipped [79]. By optimizing the SNDR, SLM-

MCPLS significantly outperforms traditional SLM for all scenarios plotted.
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3.6 Conclusions

In this chapter we have presented the SLM-MCPLS scheme, which is based on the MCPLS

scheme presented in [59]. Additionally, we provided a theoretical framework for determining

the SNDR in SLM-MCPLS. Using this framework, we demonstrated how the SLM-MCPLS

parameters should be chosen so that the SNDR will be maximized. Finally, we compared

SLM-MCPLS to traditional SLM in terms of BER and showed that SLM-MCPLS can

achieve several dBs of PSNR improvement.
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CHAPTER IV

COMPARING SELECTED MAPPING AND PARTIAL TRANSMIT

SEQUENCE FOR PAR REDUCTION

Selected mapping (SLM) and partial transmit sequence (PTS) are two existing distortionless

peak-to-average power ratio (PAR) reduction schemes that have been proposed for orthogonal

frequency division multiplexing (OFDM). Previously, it was argued that SLM and PTS have

comparable PAR reduction performance but that the latter has lower computational complex-

ity because it uses fewer IFFTs. In this chapter, we show that the overall computational

complexity of PTS is only lower than that of SLM in certain cases, and that SLM always

has better PAR reduction performance. We compare the two schemes using three different

performance metrics by assuming a given amount of computational complexity that can be

afforded. Using the metrics, we show that SLM outperforms PTS for a given amount of

complexity.

4.1 Introduction

OFDM is a popular modulation technique with many desirable qualities and has been

proposed for the IEEE 802.11a, IEEE 802.11g, IEEE 802.16, the European digital audio

broadcasting (DAB) and the European digital video broadcasting (DVB) standards1. The

desirable attributes of OFDM come at the expense of large envelope variations. Such

signal envelope or power variations can be difficult for practical power amplifiers (PAs) to

accommodate, resulting in either low power efficiency or distortion-inducing signal clips.

The dynamic range of a signal is usually quantified through the peak to average power ratio

(PAR) or the crest factor (CF) where PAR = CF 2.

There has been a significant amount of research devoted to the development of PAR

1Part of this chapter was presented in R. J. Baxley and G. T. Zhou, “Comparing selected mapping and
partial transmit sequence for PAR reduction,” IEEE Trans. on Broadcasting, vol. 53, no. 4, pp. 797-803,
Dec. 2007. Reference [18].
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reduction algorithms for OFDM. An overview of the different approaches can be found

in [109, 8, 44]. In this chapter, we are interested in comparing two distortionless PAR

reduction algorithms. The first is selected mapping (SLM), which was first presented in [7].

The second algorithm is partial transmit sequence (PTS), which was proposed in [76] and

can be viewed as a generalization of the SLM algorithm. Since the initial publication of the

algorithms, many proposals have been made to refine the algorithms, including complexity

reductions [115, 46, 43, 121, 62, 57], PTS phase optimization [53, 4, 30, 99, 47], techniques

to obviate the transmission of side information [51, 16], SLM/PTS combination approaches

[123], and extensions to MIMO-OFDM [6].

The objective of this chapter is to come up with some common ground metrics for

comparing SLM and PTS. Comparisons of SLM and PTS were made in [75]. In [75], it was

claimed that the computational complexity of PTS is lower than that of SLM, but that the

two have comparable PAR reduction performance, which we will show is not necessarily

true. Unlike [75], we will make quantifiable comparisons based on the PAR reduction per

unit of complexity of the two schemes.

For the purposes of comparing SLM and PTS, we can use a simple OFDM model where

the baseband OFDM symbol {xn/L}NL−1
n=0 is an oversampled IFFT output of the data vector

{Xk}N−1
k=0 , a sequence of (complex) numbers drawn from a finite constellation. That is,

xn/L =
1√
LN




N/2−1∑

k=0

Xke
j2πkn

LN +

N−1∑

k=N/2

Xke
j2π(k−N)n

LN




= IFFT{Xk}, (4.1)

where L is the oversampling factor, N is the number of subcarriers, and IFFT{·} is NL-

point oversampled IFFT indexed by n/L, where n ∈ {0, 1, ..., LN − 1}. The baseband PAR

is defined as

PAR
{
xn/L

}
=

max
0≤n≤LN−1

|xn/L|2

E[|xn/L|2]
, (4.2)

which is a random variable.

It is sufficient to examine only the baseband PAR as it is approximately one half of

the passband PAR [109]. Also, the cyclic prefix attached to OFDM symbols to combat
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inter-symbol interference can be ignored for the purposes of PAR analysis as the prefix will

not produce a peak that is not already present in xn/L. Finally, it has been shown in [81]

that when L ≥ 4 the envelope of xn/L approximates the continuous-time envelope.

In the next section, we will review SLM and PTS and investigate the relationship be-

tween the two schemes. Section III provides computational complexity analysis for both

schemes. Section IV introduces three PAR reduction metrics and uses them to compare

SLM and PTS. Finally our concluding remarks are provided in Section V.

4.2 Selected Mapping and Partial Transmit Sequence

Selected mapping (SLM): SLM was first described in [7] as a distortionless PAR reduction

method. In SLM, D equivalent data sequences are created each by rotating the phases of

the original sequence Xk by a distinct sequence φ
(d)
k ; i.e.,

X
(d)
k = Xke

jφ
(d)
k , (4.3)

which is used to create

x
(d)
n/L = IFFT{X(d)

k } (4.4)

where d ∈ {0, 1, ..., D − 1}. A total of D length-NL IFFTs are performed. From these D

candidates, the transmitter selects the lowest PAR sequence, x
(d̄)
n/L, for transmission where

d̄ = arg min
0≤d≤D−1

PAR
{

x
(d)
n/L

}
. (4.5)

It is assumed that the transmitter and the receiver have the table of D length-N phase

sequences φ
(d)
k . However, in order to recover the original data sequence Xk, the receiver must

determine d̄. To distinguish d̄ from the D possibilities, log2(D) bits are needed. Because

side information transmission decreases the information throughput, several authors have

proposed blind techniques for recovering d̄ based only on the received data and the known

phase table [51, 28, 15, 127, 83]. In the computational analyses in this chapter, we will

assume that the blind maximum-likelihood side information recovery technique is employed,

which implies that full complexity complex multiplications will be required to compute (4.3).
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Partial transmit sequence (PTS): In a PTS system, {Xk}N−1
k=0 is partitioned into V non-

overlapping sub-blocks {XVv}V −1
v=0 with indices in the sets {Vv}V −1

v=0 . That is

V −1⋃

v=0

Vv = {0, 1, ..., N − 1} (4.6)

and
V −1∑

v=0

XVv = Xk, ∀ k ∈ {0, 1, ..., N − 1}. (4.7)

To generate D PTS signal representations, each of the sub-blocks is scaled by a complex

constant ejθ
(d)
v and added together so that

x
(d)
n/L = IFFT

{
V −1∑

v=0

ejθ
(d)
v XVv

}

=
V −1∑

v=0

ejθ
(d)
v IFFT{XVv}︸ ︷︷ ︸

xn/L,v

, (4.8)

where d ∈ {0, 1, ..., D− 1}. Finally, the transmitted signal x
(d̄)
n/L is chosen according to (4.5)

similar to the SLM method.

The PTS method originally described in [76] is a special case of the technique we have

described here. In [76], it is assumed that the phase parameters take on values from a

finite set, P, so that θ
(d)
v ∈ P. Next, every possible set of phase combinations is tested to

find the combination that produces that lowest PAR sequence. Thus, for traditional PTS,

D = V |P|. The only modification we have made is to allow non-exhaustive searches over

the phase sequence space so that D ≤ V |P|. A similar development was used in [75] by the

authors of [75].

In (4.8), a total of V length-NL IFFTs are performed, regardless of the size of D. The

small number of IFFTs (V as opposed to D, assuming V < D) relative to SLM was one main

justification for proposing PTS [76]. However, as we will show in Section IV, the number of

IFFTs should not be the only complexity consideration since the length-NL multiplications

and additions necessary to create xd
n/L in (4.8) can contribute significantly to the overall

complexity of PTS.

From (4.8) it is apparent that SLM can be regarded as a special case of PTS where
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Figure 4.1: Plot of the CCDF of the PAR for SLM and PTS with L = 4.

each sub-block contains only one subcarrier (e.g. Vv = v|v∈[0,N−1]). In analyzing the PAR-

minimizing values of θ
(d)
v , it is convenient to view PTS as a special case of SLM where the

SLM phases are constant over each sub-block, i.e. φ
(d)
Vv

= θ
(d)
v . Recall from [128] that if φ

(d)
k

are realizations of an i.i.d. random variable Φ with E[ejΦ] = 0, then the corresponding PAR

CCDF curve will be minimized. In PTS, the i.i.d. condition is violated for V < N . So PTS

with V 6= N will not be able to achieve as much PAR reduction as SLM for a given D. In

order words, the result from [128] can be applied to PTS to prove that PTS will have worse

PAR reduction performance than SLM for a given amount of side information. A similar

conclusion, based on simulation results, was reached in [75] by the original authors of PTS.

Fig. 4.1 is a plot of the PAR CCDF for PTS and SLM when the oversampling factor

is L = 4. The plot illustrates the PAR reduction degradation that PTS suffers when V is

small. However, with V = 6, the PTS CCDF is quite close to its lower bound which is the

SLM CCDF, achievable when V = N .

In addition to reducing the number of IFFTs, the other main justification for PTS

is that it may be possible to find θ
(d̄)
v without having to search all D possibilities, thus

reducing the amount of computation [76]. Many optimization methods have been proposed
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[30, 99, 47]. However, some of them are misguided because they do not take into account

the large amount of side information required to convey the optimized parameters θ
(d̄)
v to

the receiver. That is, they perform a sub-optimal discrete optimization over a very large

set θ
(d)
v , from which they have to convey θ

(d̄)
v to the receiver.

In this chapter, we are interested in determining the PAR reduction capability per unit of

computational complexity of PTS and SLM under a side information constraint. In order for

the conclusions to not depend on a particular optimization method, we opt to analyze PTS

using a set of phase constants that are i.i.d. random, where the PAR-minimizing set of phase

constants is determined by exhaustive search. Performing an exhaustive search guarantees

that θ
(d̄)
v will be the PAR-minimizing sequence among the set θ

(d)
v , d ∈ {0, 1, ..., D − 1}.

Two issues in PTS need to be discussed before analyzing its complexity. The first is

whether it is possible to choose the values of θ
(d)
v such that the multiplication in (4.8) can

be implemented with simple sign changes. It was shown in [51] that in order to use a

blind maximum-likelihood receiver to detect d̄, full-complexity complex multiplications are

required. The other consideration is whether it is possible to choose the sets Vv so that

the IFFT in (4.8) can be performed at a reduced complexity. It has been shown that the

PAR minimizing choice for Vv is random equally-sized sub-blocks, which do not generally

allow for a complexity reducing structure [53]. On the other hand, If the IFFT is designed

especially for the specific set of PTS partitions, then it is possible to exploit the sparseness

of XVv to reduce the complexity of IFFTs [12].

4.3 Computational Complexity

This section will outline the computational complexity involved in SLM and PTS. We will

assume that θ
(0)
v = 0 and that φ

(0)
k = 0, i.e. the first of D signal mappings is just the

original OFDM symbol.

For SLM, as indicated in (4.3), N(D − 1) complex multiplications are required to cre-

ate X
(d)
k , d ∈ {0, 1, ..., D − 1}. Next, D length-NL IFFTs are needed to generate x

(d)
n/L,

d ∈ {0, 1, ..., D − 1}. Each oversampled IFFT requires NL/2 log N + NL/2 complex multi-

plications and NL log N complex additions (all logarithms are base 2, i.e. log N , log2 N)
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Table 4.1: Number of real operations for SLM and PTS

SLM additions DNL(3 log N + 2) + 2N(D − 1)
(ASLM )

SLM multiplications 2DNL(log N + 2) + 4N(D − 1)
(MSLM )

PTS additions 4(D − 1/2)NLV − DNL + V AIFFT

(APTS)

PTS multiplications 4(D − 1)NLV + 2DNL + V MIFFT

(MPTS)

[115]. Finally, |x(d)
n/L|2 must be calculated at each n to determine the PAR which comes at

the expense of 2DLN real multiplications and DLN real additions.

In (4.8), the generation of a PTS symbol requires V length-NL oversampled IFFTs to

create xv/L,v. To make the comparison fair, we assume that each IFFT is especially designed

to exploit the sparseness of XVv . With this assumption we can calculate the mean2 number

of multiplications and additions required for each IFFT in terms of the sparseness of XVv

[12]. In the context of PTS, the sparseness of XVv is the proportion of its entries that

are non-zero, which is 1/V . According to (4.8), V NL(D − 1) complex multiplications are

needed to create ejθ
(d)
v xv/L,v, d ∈ {0, 1, ..., D−1}, which are combined through (V −1)NLD

complex additions to generate x
(d)
n/L. Finally, just as in SLM, the cost of calculating the

PAR{x(d)
n/L}, d ∈ {0, 1, ..., D − 1}, is 2DLN real multiplications and DLN real additions.

In general, a complex multiplication takes four real multiplications and two real addi-

tions. On the other hand, a complex addition requires two real additions. In Table 4.1, we

have summarized the computational requirement of each scheme, where AIFFT and MIFFT

are the number of real additions and real multiplication required for each sparse PTS IFFT.

The complexity of PTS and SLM is quantified through a parameter f that is the number

of addition instructions required for each multiplication operation. So the overall complexity

2The mean complexity in [12] is averaged over all possible input vectors with the specified sparseness. As a
point of reference, a 256-point IFFT of a 25% non-zero vector requires 78% as many complex multiplications
and 70% as many complex additions as a full 256-point IFFT.
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Figure 4.2: Plot of CPTS/CSLM versus the number of PTS partitions V for L = 4.

is

CSLM = ASLM + fMSLM

CPTS = APTS + fMPTS ,

where ASLM , MSLM , APTS and MPTS are defined in Table 4.1.

Fig. 4.2 is a plot of the ratio CPTS/CSLM versus the number of PTS partitions V . The

plot contains lines for N = {64, 256, 1024} and D = {2, 4, 16} with L = 4 and f = 4. Note

that Fig. 4.2 shows that the ratio is monotonically increasing in V . The point of utmost

interest is where the lines cross CPTS/CSLM = 1. For CPTS/CSLM > 1, PTS is more

computationally complex, whereas, when CPTS/CSLM < 1 SLM is more complex. The plot

shows that when D = 2, PTS is always more complex. Even for a large value D = 16, SLM

is less complex than PTS when V > 5. These are surprising results considering that PTS

was designed to have a lower complexity than SLM.

4.4 SLM/PTS Comparison

From the PAR CCDF-minimizing criteria outlined in [128], we infer that SLM will result in

a lower PAR than PTS for a given number of mappings D; this is empirically demonstrated
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in Fig. 4.1. With Fig. 4.2, we can see that large values of V lead to increased computational

complexity for PTS. Together, these two observations imply that PTS will be inferior to SLM

in complexity and in PAR reduction capability for all values of V that cause CPTS/CSLM >

1.

The next question is: should SLM be used over PTS when V is so small that CPTS/CSLM ≤

1? To make this comparison, we must first find some metric that quantifies the performance

of each PAR reduction scheme. The most obvious candidate is the PAR at a predetermined

CCDF level. But such a metric is sensitive to the probability level chosen. Also, the PAR

at a certain probability level does not translate in any obvious way to a meaningful system

metric like bit error rate or PA power efficiency. Instead, we advocate three separate metrics

all of which have a more tangible meaning than the PAR at a certain probability level.

To simplify the analysis we assume a soft clipping operation or the so-called ideal linear

(or linearized) PA defined by

gclip(x) =





x, |x| ≤ A

Aej∠x, |x| > A.
(4.9)

A popular linearization technique for PAs is called predistortion [91]. With predistortion,

it is possible to realize an overall PA response that resembles (4.9).

4.4.1 Power Efficiency-Based Metric

The first metric we are going to introduce assumes a system where each OFDM symbol is

scaled digitally by a factor
√

α before being sent to the PA [79]. Such a scaling operation

appears as flat fading to the receiver and can be thought of as part of the multipath channel.

The scaling factor is chosen so that the peak power of the transmitted symbol x
(d̄)
n/L is exactly

equal to A2. With this definition,

α =
A2

max
0≤n≤NL−1

|x(d̄)
n/L|2

. (4.10)

The average symbol power can be shown to be proportional to E
[
1/PAR

{
x

(d̄)
n/L

}]
. Also,

from [33], we can express the mean power efficiency, η of a class A power amplifier using

η = E

[
1

2PAR

]
. (4.11)
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Accordingly, we will use this metric to quantify the performance of PTS and SLM when

the minimum PAR criterion is implemented.

Fig. 4.3 is a plot of the class A PA power efficiency, η, versus the complexity for PTS

with V = {2, 3, 4} and for SLM, where N = {64, 256}. As a point of reference, assuming

L = 4 and f = 4, conventional OFDM with N = 64 subcarriers or N = 256 subcarriers

has complexity C ≈ 2 · 104 and C ≈ 105, respectively. When D = 32, the SLM complexity

numbers are CSLM ≈ 7 · 105 and CSLM ≈ 3 · 106 respectively for 64-subcarrier and 256-

subcarrier SLM OFDM.

The plot shows that the performance of PTS is sensitive to the number of partitions

V . There is not a single choice of V that is optimal over the entire complexity range so V

should be chosen so that η is maximized for the complexity value of interest.

For both N = 64 and N = 256, there is no single value of V that is is better than

the other values of V across all of complexity values shown in Fig. 4.3. However, since we

have the freedom of choosing the number of partitions V in PTS, we can select the best

V for each allowed complexity value. For N = 64, if no more than 5 · 104 complexity is

allowed, then the best choice is V = 2 because it maximizes efficiency. Similarly, if no more

than 5 · 105 complexity is allowed when N = 256, then V = 2 is also the best choice. In

any case, even when V is optimized for maximum efficiency, SLM will outperform PTS.

However, the trends in Fig. 4.3 show that the higher the allowed complexity, the less the

difference is between η for PTS and SLM. For practical levels of complexity, SLM tends to

be a significantly better choice than PTS.

4.4.2 Clipping Power-Based Metric

In using η as the performance metric, we assumed that each symbol is scaled to maximally

utilize the linear range of the PA. For high PAR signals, this assumption may lead to

an unacceptably low SNR. One solution is to assume that some part of the signal will

be clipped by the predistorter/PA soft limiter. By anticipating the irreversible clipping

distortion that will be introduced, it is possible to reformulate the SLM and PTS selection

criterion to mitigate the effect of the distortion. The reformulation would mean that the
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Figure 4.3: Plot of η versus the complexity (CPTS or CSLM ). Each line in the plot contains
32 points corresponding to the set of D ∈ {1, ..., 32}.

signal that produces the lowest power distortion among the D alternatives {x(d)
n/L}

D−1
d=0 is

transmitted. This differs from conventional SLM and PTS where the signal with the lowest

PAR is selected for transmission. Stated precisely, the index of the transmitted signal x
(d̃)
n/L

is selected according to

d̃ = arg min
0≤d≤D−1

NL−1∑

n=0

∣∣∣x(d)
n/L − gclip(x

(d)
n/L)

∣∣∣
2
. (4.12)

Similar SLM metrics have been presented in [64, 59]. Note that the blind detection tech-

niques used to recover d̃ described in [51, 15] will still be applicable for d̃ recovery regardless

of the selection criterion. Therefore, no blind receiver modification would be necessary to

accommodate the selection criterion in (4.12).

There are two main reasons to select the transmitted signal based on minimum distortion

noise, the first is to limit the amount of inband distortion, which leads to bit errors. The

second is to limit the amount of spectral regrowth. We will show in the next section that a

better selection criteria exists for limiting the number of bit errors; however the minimum

distortion metric is excellent at reducing the amount of spectral regrowth.

The spectral regrowth can be quantified through a popular metric known as the adjacent
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channel leakage ratio (ACLR). Define the frequency domain of the clipped signal to be

X̄
(d)
k =

1√
LN

NL−1∑

n=0

gclip

(
x

(d)
n/L

)
e

−j2πkn
LN , (4.13)

where k ∈ {0, 1, ..., LN−1}. Define the set of adjacent channel subcarriers A = {N/2, N/2+

1, ..., N − 1, LN − N, LN − N, ..., LN − 1 − N/2} and the set of in-band subcarriers I =

{0, 1, ..., N/2 − 1, LN − N/2, LN − N/2 + 1, ...LN − 1}. Thus,

ACLR =
E
[∑

k∈A |X̄(d̃)
k |2

]

E
[∑

k∈I |X̄
(d̃)
k |2

] , (4.14)

which is a measure of how much distortion power from the inband signal “leaks” in to the

adjacent frequency bands.

Fig. 4.4 is a plot of the ACLR versus the complexity for PTS with V = {2, 3, 4} and

for SLM, where N = {64, 256}, and with 1 ≤ D ≤ 32. The complexity for PTS and SLM

using the section criterion in (4.12) are slightly different from the complexity calculations

formulated in Section IV. Namely, (2N −1)LD more real additions are necessary. To create

the plot, the clipping level was set so that A/σx = 4dB, where σ2
x is the variance of Xk. As

with the power efficiency metric in Section IV.A, the performance of PTS depends on the

choice of V . For the best performance, V should be selected so that the ACLR is minimized

at the complexity level of interest. The plot shows that SLM slightly outperforms PTS even

when the minimizing V is selected.

4.4.3 Intermodulation Distortion-Based Metric

In [95, 96, 97], a case was made for selecting the transmitted symbol based on the worst

case intermodulation distortion (IMD) power. For justification, those papers showed that

the BER induced by clipping is dominated by the subcarrier with the largest IMD. Here we

define the IMD Ek in the kth subcarrier as

E
(d)
k = X

(d)
k − X̄

(d)
k∈I , (4.15)

where X̄
(d)
k is defined in (4.13). With this, the index of the transmitted signal x

(d̆)
n/L is

selected according to

d̆ = arg min
0≤d≤D−1

(
max

0≤k≤N−1

∣∣∣E(d)
k

∣∣∣
)

, (4.16)
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Figure 4.4: Plot of the ACLR in decibel scale versus the complexity (CPTS or CSLM ). Each
line in the plot contains 32 points corresponding to the set of D ∈ {1, 2, ..., 32}.

which can be recovered blindly without any modification to the blind receivers described

in [51, 15]. As noted in [97], this selection criterion requires additional computational

complexity over the conventional minimum PAR selection criterion in (4.5). Specifically, the

additional computational complexity is D FFT operations and NLD complex additions. To

compare the performance of SLM and PTS when both schemes use an IMD-based selection

criteria, we suggest that BER be used.

Fig. 4.5 and Fig. 4.6 are plots of the BER versus the complexity for PTS with V =

{2, 3, 4} and for SLM, where N = {64, 256}, and with 1 ≤ D ≤ 32. The BER is calculated

assuming that Xk is drawn from a QPSK constellation. Also, a noiseless Rayleigh fading

channel, where the receiver has perfect channel state information, is assumed so that the

received signal is Hk(X
(d̆)
k + E

(d̆)
k ). Here, Hk has a complex Gaussian distribution with

zero mean and variance one (i.e. Hk ∼ CN (0, 1)). Finally, it is assumed that d̆ is detected

without error.

To create the plots two different clipping levels were used A/σx = 4dB and A/σx = 6dB,

where σ2
x is the variance of Xk. For the 4dB clipping level, the BER may be too low
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Figure 4.5: Plot of QPSK BER versus the complexity (CPTS or CSLM ), with a clipping level
of 4dB. Each line in the plot contains 32 points corresponding to the set of D ∈ {1, 2, ..., 32}.

for practical applications. However, the 6dB clipping does achieve an adequate BER for

practical systems.

The plot shows that it is beneficial to select V so that, at the complexity level of interest,

the BER is minimized. The figure also illustrates that, for all of the values plotted, SLM has

better BER performance than PTS regardless of the number of PTS partitions employed.

The difference is particularly pronounced for the N = 64, A/σx = 6dB case where SLM

significantly outperforms PTS.
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4.5 Conclusions

In this chapter we focused on two popular distortionless PAR reduction techniques, namely

PTS and SLM and analyzed their computational complexity and resulting PAR reduction

performance. It was already known that SLM can produce multiple time-domain signals

that are asymptotically independent, while the alternative signals generated by PTS are

interdependent. This interdependency necessarily implies that PTS will have some PAR

reduction capability degradation compared to SLM for a given number of mappings. How-

ever, it has been assumed in [75] that the computational complexity of PTS would be much

less than that of SLM so that the computational savings of PTS would outweigh the PAR

reduction advantages of SLM.

Surprisingly, we found that SLM is actually less computational complex than PTS when

more than a couple of PTS partitions are used. In order to compare PTS and SLM we used

three different selection criteria and, correspondingly, three different metrics. The results

showed, for a given amount of computational complexity, SLM performs better than PTS

in all three metrics. Even PTS with an optimized V does not beat the performance of
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SLM in any of the metrics across all complexities. In summary, SLM is preferred to PTS

because (i) SLM is conceptually simpler; (ii) SLM does not require any off-line complexity

optimization with respect to V as would be recommended for PTS; (iii) SLM performs

better than optimized PTS.
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CHAPTER V

COMPUTATIONAL COMPLEXITY ANALYSIS OF FFT PRUNING -

A MARKOV MODELING APPROACH

5.1 Abstract

The Fourier transform is instrumental in many signal processing applications such as digital

filtering, spectral analysis and communications. In 1965, Cooley and Tukey demonstrated

that the discrete Fourier transform (DFT) can be computed using the fast Fourier transform

(FFT) algorithm with reduced computational complexity. When the input vector to the FFT

contains mostly zeros (i.e., is sparse), it is possible to realize computational savings over a

full FFT by only performing the arithmetic operations on non-zero elements. That is, the

FFT is “pruned” so that only the useful computations are performed. In this chapter, we

derive the (non-stationary) Markov process that describes the number of occupied (i.e. non-

zero) paths at each stage of a pruned FFT. With the probability distribution of the number

of non-zero paths at each FFT stage, we then determine the probability distribution of the

number of multiplications and additions necessary to compute the FFT of an input vector

with a given sparsity distribution.

5.2 Introduction

The Fourier transform is instrumental in many signal processing applications such as digital

filtering, spectral analysis and communications1. In [32], Cooley and Tukey demonstrated

that the discrete Fourier transform (DFT) can be computed using the fast Fourier transform

(FFT) algorithm, which reduces the computational complexity of an N -point DFT from

O(N2) to O(N log N), where the base of the logarithm is the radix of the FFT. However,

there are some applications where the input vector to the FFT, {x[n]}N−1
n=0 , has a relatively

1Part of this chapter was presented in R. J. Baxley and G. T. Zhou, “Computational complexity analysis
of FFT pruning - A Markov modeling approach,” Proc. IEEE 12th Digital Signal Processing Workshop, pp.
535-539, Grand Teton National Park, WY, September 2006. Reference [12]
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small number of non-zero values. For example, signal interpolation can be performed using

an “oversampled” FFT, where the FFT of a vector padded with a block of M zeros is

encountered.

When the input vector to the FFT is sparse, it is possible to realize computational

savings over a full FFT by only performing the arithmetic operations on non-zero elements.

Equivalently, this can be thought of as “pruning” the zero paths in the FFT flow graph. FFT

pruning was first studied in [68] and several algorithms have been proposed to implement

pruned FFTs [68, 77, 106, 107, 94, 93]. However, most of these algorithms and analyses are

based on pruned FFTs where the zeros in the input vector are contiguous.

There are applications which require the FFT of unstructured sparse vectors. That is,

the input vector to the FFT will contain a large number of zeros that are not organized in

any systematic way. The FFT of a sparse vector is called an input-pruned FFT. Conversely,

the FFT of a full vector where only several output values need to be calculated is called

an output-pruned FFT [68]. Input- and output-pruned FFTs occur in diverse applications

including crest factor reduction in multicarrier communications [76], cognitive radio [45]

and genetic sequence alignment applications [49].

Fig. 5.1 is a flow graph of an example input-pruned FFT, where the input vector

contains only two non-zero values x[4] and x[13]. The bold paths in the flow graph indicate

the paths that need to be considered in the calculation of the FFT output. The paths with

a power of W = e−j2π/N , j =
√
−1, above them indicate that a complex multiplication

is required to compute the value of that path. Also, the bold paths that terminate in a

filled circle indicate that an addition is necessary to compute the value at the end of that

stage, whereas an empty bold circle indicates that the value at the end of that stage is

simply a copy or a sign-reversed copy of a value at the beginning of the stage. That is, the

bold circles indicate an addition is necessary and the empty bold circles indicate that no

arithmetic operation is necessary. With this, Fig. 5.1 shows that multiplications 2 are only

necessary at stages one and three, while additions are only necessary at stage three.

2Since a complex sign change can be implemented with a two bit flipping operations we do not take into
account sign changes in our complexity analysis.
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Figure 5.1: Signal flow graph for an input-pruned FFT (N = 16).

In [49] upper and lower bounds on the number of butterfly computations required to

compute the FFT of an arbitrarily sparse input vector were given, where one butterfly

operation requires the computation of one multiplication and two additions. Those com-

plexity bounds were derived assuming that the proportion of non-zero entries was known

(i.e. the input vector density), but that the positions of these non-zero input bins were ran-

dom. Specifically, in [49] the bounds were justified by counting the most and least possible

number of occupied butterflies for a given input vector density.

In this chapter, we are interested in finding a more precise characterization of the number

of multiplications and additions required to compute an input-pruned FFT. Instead of

bounding the number of occupied butterflies at each FFT stage, we derive the Markov

process that describes the number of occupied (i.e. non-zero) paths at each FFT stage for

a given input vector density.

In basing our complexity analysis on the number of occupied paths instead of the number

of occupied butterflies we are able to derive a more precise estimate of the number of

multiplications and additions required to compute the pruned FFT. By only examining

the number of occupied butterflies, the analysis in [49] is unable to distinguish between

butterflies that require full complexity (i.e. one multiplication and two additions) and

butterflies that require no computation (i.e. a half filled butterfly whose single non-zero
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element is not on the multiplied half of the butterfly). Thus, the butterfly-based complexity

analysis in [49] has slightly less resolution than our path-based analysis.

With the probability distribution of the number of non-zero paths at each FFT stage, we

can determine the probability distribution of the number of multiplications and additions

for an FFT with a given sparseness. From these distributions, we can gain valuable insights

into the computational complexity required to compute a pruned FFT.

In the next section we will explain our procedure for deriving the Markov model that

describes the number of paths in each stage. In Section III, we derive the conditional

distributions for the number of additions and multiplications required at each stage given

the number of paths occupied at the beginning of the stage. In Section IV, we show how the

stage-wise conditional distributions can be used to determine the pdf of the total number of

additions and multiplications required to compute a pruned FFT with a given input vector

sparseness. Finally, we verify our results in Section V by comparing them with Monte Carlo

simulations.

Notational summary:

Q(k) Number of occupied paths at stage k

A(k) Number of additions at stage k

M (k) Number of multiplications at stage k

x
(k)
i,s Entry in row i, column s of the matrix X(k)

5.3 Markov model for path propagation

Our approach to determining the complexity of a pruned FFT is based on modeling the

number of non-zero paths at each stage of the FFT. Then, using this model, we derive

the number of arithmetic operations (i.e. additions and multiplications) at each stage, and

finally by adding the results of each stage together we determine the distribution of the

number of operations for the entire pruned FFT. In this section we outline the procedure

for determining the Markov model that describes the number of non-zero paths at each

FFT stage. We will first show a few simple examples and then use inductive reasoning to

extrapolate to a more general case. For purposes of simplicity, we will consider the radix-2
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FFT in the remainder of the chapter.

At any stage k, the number of occupied paths at the beginning of that stage, Q(k), can

take on values from 1 to N . In order to construct the transition matrix from stage zero to

stage one let us look at some particular cases. If Q(0) = 1, then the only possibility for the

number of paths at stage k = 1, Q(1), is Q(1) = 2. To clarify, Q(k) describes the number of

occupied paths, but does not contain any information about where these are. Since there is

only one occupied path, knowing the butterfly structure of the FFT, we can easily conclude

that the second stage of the FFT will contain exactly two occupied paths.

If, on the other hand, Q(0) = 2, then there are two cases to consider. The first is when

both of the non-zero entries occupy the same butterfly, which can happen in
(
N/2
1

)
different

ways. In this case, the values from each of the two paths will be linearly combined to

produce exactly two occupied paths in the second stage, i.e. Q(1) = 2. If, however, both

non-zero entries are on different butterflies, then each will be paired with a zero path and

Q(1) = 4. There are
(
N
2

)
ways to choose two paths among the N possible paths,

(
N/2
2

)
way

to choose the two butterflies and 22 ways to arrange the non-zero paths amongst the two

chosen butterflies. Thus,

Pr(Q(1) = 2|Q(0) = 2) =

(
N/2
1

)
(
N
2

)

Pr(Q(1) = 4|Q(0) = 2) =

(
N/2
2

)
22

(
N
2

) .

Notice that these are the only two possibilities when Q(0) = 2. As a matter of fact, the

number of output paths will always be at least as large as the number of input paths.

Furthermore, the difference Q(k) − Q(k−1) will either be zero or will be divisible by 2k.

By combining these observations the probability transition matrix for the number of

non-zero paths from stage k − 1 to stage k is

p
(k)
i,s = Pr

(
Q(k) = 2ks

∣∣∣∣Q
(k−1) = 2k−1i

)

=





(
N21−k

i

)−1(N2−k

i−s

)(
N2−k−i+s

2s−i

)
22s−i, Ω

0, else,

, P (k), (5.1)
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where Ω = {1 ≤ s ≤ 2−kN, s ≤ i ≤ 2s, 1 ≤ k ≤ log2 N} is the set of non-zero entries in

the matrix P (k). Notice that P (k) ∈ R
N21−k×N2−k

is a tall stochastic matrix. The matrix

is tall because the possibilities for the number of occupied paths is halved from one stage

to the next.

5.4 Conditional number of Additions and multiplications

From the butterfly structure, we can see that half of the paths are multiplied by a power of

W = e−j2πk/N . (5.2)

But when k = 0 no multiplication is necessary. Therefore, we only consider the multiplica-

tions with {W k}N/2−1
k=1 in the following complexity analysis. Also, since we assume that the

positions of the non-zero input paths are uniformly distributed, then the blocks of non-zero

paths at each stage are also uniformly distributed.

In order to derive the distribution of the number of multiplications conditioned on the

number of input paths at the start of stage k−1, it is convenient to start by also conditioning

on the number of paths at the start of stage k. By doing this, we can see that the number of

multiplications with these conditions follows a binomial distribution. Specifically, we have

the probability of the number of multiplications in stage k − 1 conditioned on the number

of paths in stage k and stage k − 1 is

Pr

(
M (k−1) =

(
µ + i − s

)(
2k−1 − 1

) ∣∣∣∣Q
(k) = 2ks, Q(k−1) = 2k−1i

)

=





2i−2s
(
2s−i

µ

)
, 1 ≤ s ≤ 2−kN, s ≤ i ≤ 2s,

2 ≤ k ≤ log2 N, 0 ≤ µ ≤ 2s − i

0, else.

(5.3)
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Next we can use the law of total probabilities to get

c
(k−1)
i,µ = Pr

(
M (k−1) = (µ + i − s)

(
2k−1 − 1

) ∣∣∣∣Q
(k−1) = 2k−1i

)

=
N2−k∑

s=1

Pr

(
M (k−1) = (µ + i − s)

(
2k−1 − 1

) ∣∣∣∣Q
(k) = 2ks, Q(k−1) = 2k−1i

)
p
(k)
i,s

=
N2−k∑

s=1

(
N2−k

i−s

)(
N2−k−i+s

2s−i

)(
2s−i

µ

)
(
N21−k

i

)

, C(k−1). (5.4)

Now, let us proceed to find the distribution of the number of additions. To do this we first

derive the distribution of the number of additions in stage k− 1 conditioned on the number

of paths in stages k − 1 and k. Finding this conditional distribution is straightforward

because the number of additions is deterministic when the number of paths in stage k − 1

and k are specified. Once we derive the conditional distribution we can use (5.1) and the

law of total probabilities to find the number of additions in stage k− 1 conditioned only on

the number of paths in stage k− 1. The conditional probability distribution on the number

of additions in stage k, A(k), is

Pr

(
A(k) = 2kα

∣∣∣∣Q
(k) = 2ks, Q(k−1) = 2k−1i

)
=





1, Ω, α = i − s

0, else,
(5.5)

where Ω = {1 ≤ s ≤ 2−kN, s ≤ i ≤ 2s, 1 ≤ k ≤ log2 N}, as defined in (5.1). Now using

the law of total probabilities,

b
(k)
i,α = Pr

(
A(k) = 2kα

∣∣∣∣Q
(k−1) = 2k−1i

)

=
N2−k∑

s=1

Pr

(
A(k) = 2kα

∣∣∣∣Q
(k) = 2ks, Q(k−1) = 2k−1i

)
p
(k)
i,s

= p
(k)
i,(i−α)

, B(k), (5.6)

where 1 ≤ k ≤ log2 N, 0 ≤ α ≤ 2−kN, max(1, 2α) ≤ i ≤ N2−k. In other words, B(k) is

just a permuted version of P (k), in (5.1).
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5.5 Distribution of additions and multiplications for a pruned FFT

From Markov theory, the probability transition matrix for the number of non-zero paths in

stage k given Q(0) is

t
(k)
i,s = Pr

(
Q(k) = 2ks

∣∣∣∣Q
(0) = i

)

=
k∏

d=1

P (d). (5.7)

With the cumulative transition matrix T (k) from (5.8) and the law of total probabilities,

we can write the probability distribution for the number of multiplications conditioned on

the input vector sparseness (i.e. Q(0)) as

Pr

(
M (k) = (µ + i − s)

(
2k − 1

) ∣∣∣∣Q
(0) = i

)
= T (k)C(k),

for 1 ≤ k ≤ log2 N − 1. Finally, to find the total number of multiplications, we have to

find the distribution of
∑log2 N−1

k=1 M (k), which can be done through the row-wise multiple

convolution of T (k)M (k). Specifically we have

Pr




log2 N−1∑

k=1

M (k) = Ψs

∣∣∣∣Q
(0) = i


 =

log2 N−1⊗

k=1

T (k)C(k)

, yi,s, (5.8)

where
⊗

is the multiple row-wise convolution operator and Ψs is the sth entry of the set

containing all possible values of
∑log2 N−1

k=1 M (k).

Finding the distribution of the number of additions is more difficult because the distri-

bution of the number of additions is not Markovian. That is,

Pr

(
A(k) = s

∣∣∣∣A
(k−1) = i

)
6= Pr

(
A(k) = s

∣∣∣∣A
(k−1) = i, A(k−2) = d

)
.

Nevertheless, we propose that an approximation to the distribution of the total number of

additions can be made by assuming that the number of additions is Markovian. With this

assumption we can write

Pr




log2 N∑

k=1

A(k) = Θs

∣∣∣∣Q
(0) = i


 ≈

log2 N⊗

k=1

T (k)B(k)

, xi,s, (5.9)

where Θs is the sth entry of the set containing all possible values of
∑log2 N

k=1 A(k).
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Figure 5.2: Experimental and theoretical pdfs of the total number of multiplications.

5.6 Simulation verification

In this section we will corroborate our theoretical findings through Monte Carlo simulation

results. For our simulation we choose N = 128 and implemented a mock pruned FFT.

At each level of sparseness (or, correspondingly, each Q(0)) we ran 30,000 Monte Carlo

simulations to find the distribution of the total number of additions and multiplications.

We quantified the distributions through the first and second order centered moments.

Fig. 5.2 is a plot of the theoretical and simulated pdf of the number of multiplications

for N = 64. the plot shows excellent agreement between the derived theoretical result and

the simulated result.

Fig. 5.3 is a plot of the ratio of the mean number of additions for a given input vector

sparseness to the number of additions required for a full FFT. Also plotted are the lines

plus and minus one standard deviation from the mean. The plot verifies that our theoretical

results, even with the simplifying assumption, match very closely to the simulation results.

The mean seems to be exact (which is to be expected as Markovianess is not required) while

the theoretical standard deviation is slightly larger than the empirical standard deviation.
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Figure 5.3: Proportion of the number of additions required at a given sparseness to the
number of additions required for a full FFT.

Fig. 5.4 is similar to Fig. 5.3 except that it pertains to the number of multiplications

instead of the number of additions. The plot shows that the simulation results closely

match our theoretical results. By comparing the two plots we observe that the number of

additions grows much more slowly with the input vector sparseness than does the number

of multiplications. This implies that most of the computational savings realized by imple-

menting a custom pruned FFT is gained through reducing the number of additions and not

by reducing the number of multiplications.
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Figure 5.4: Proportion of the number of multiplications required at a given sparseness to
the number of multiplications required for a full FFT.

5.7 Conclusions

In this chapter we have presented a method for determining the complexity of a pruned

FFT. The proposed method is based on a Markov model of the number of occupied path at

each FFT stage. This Markov path model, in conjunction with the conditional distribution

of the number of multiplications and additions at each stage of the FFT, was then used

to theoretically determine the total number of additions and multiplications necessary to

compute a pruned FFT of a given sparseness. We verified our theoretical results through

Monte Carlo simulations and showed that, despite a simplifying assumption in the derivation

of the distribution of the number of additions, our results are very close to the simulated

values.
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CHAPTER VI

MAGNITUDE-SCALED SELECTED MAPPING: A CREST FACTOR

REDUCTION SCHEME FOR OFDM WITHOUT SIDE

INFORMATION

Selected mapping (SLM) is a popular distortionless crest factor reduction (CFR) method for

orthogonal frequency division multiplexing (OFDM). With SLM, it is possible to reduce the

peak-to-average power ratio (PAR) of an OFDM symbol by several decibels. In this chapter,

we propose a method for SLM phase sequence detection that does not require side information

transmission. The method, known as magnitude-scaled SLM, scales the frequency-domain

power profile of the OFDM symbol with an envelope function. Using the envelope of the re-

ceived symbol, the receiver can detect which phase sequence was transmitted. Also presented

in this chapter are the theoretical characterizations of the detection error rate (DER) and

symbol error rate (SER) in a magnitude-scaled SLM system. Compared with standard non-

CFR OFDM, magnitude-scaled SLM can achieve an order of magnitude SER improvement

in a peak-power-limited channel.

6.1 Introduction

Orthogonal frequency division multiplexing (OFDM) is an attractive multi-carrier transmis-

sion scheme due to its immunity to inter-symbol interference and robustness to multi-path

fading1. It has been adopted by several communications standards, such as digital audio

broadcasting (DAB), digital video broadcasting (DVB), wireless LAN and wireless MAN.

However, one major problem associated with OFDM is its high peak-to-average power ratio

(PAR) or crest factor (CF). When a high-PAR signal, such as OFDM, is passed through a

high-power amplifier (HPA), the HPA will be required to operate in its non-linear region,

1Part of this chapter was presented in R. J. Baxley, C. Zhao and G. T. Zhou, “Magnitude-scaled selected
mapping: A crest factor reduction scheme for OFDM without side-information transmission,” Proc. IEEE

Intl. Conference on Acoustics, Speech, and Signal Processing, pp. 373-376, Honolulu, Hawaii, April 2007.
Reference [13].
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which leads to both in-band and out-of-band distortions in the transmitted signal. Hence,

crest factor reduction (CFR) of the OFDM signal is called for to improve the transmission

quality.

Selected mapping (SLM), an effective and distortionless CFR method, selects the trans-

mit sequence with the minimum PAR from a set of phase-rotated time-domain symbol

vectors [7]. The index of the selected sequence should be correctly transmitted to the re-

ceiver as the side information to retrieve the corresponding phase vector for the de-rotation.

Explicit side-information transmission will undesirably reduce the data rate, so a blind SLM

(BSLM) scheme is preferred. Existing BSLM methods include maximum likelihood (ML)

detection of the data symbols [51], maximum a posteriori (MAP) detection of the phase

sequence [8], phase sequence detection based on pilot subcarriers [28], and phase sequence

detection based on constellation shifts [83].

The magnitude-scaled SLM scheme proposed in this chapter is an extension of the idea

presented in [127], which only worked for PSK constellations. The proposed scheme is appli-

cable regardless of the constellation type. Basically, mag-nitude-scaled SLM uses envelope

scaling functions, which depend on the index of the phase vector, to scale the OFDM sym-

bol. The receiver can then use a specially designed metric to recover the transmitted phase

vector.

Notations: Upper case and lower case bold face letters represent matrices and column

vectors respectively; superscript T and H stand for the transpose and the Hermitian trans-

pose, respectively; E[·] is the expectation operator; ‖x‖n is the ℓn-norm of x; |x| is a vector

that is the element-wise magnitude of x; |A| is the cardinality of set A; Dx is a diagonal

matrix with vector x on the diagonal; the N ×N discrete Fourier transform (DFT) matrix

is denoted by [Q]n,k = N−1/2 exp(j2π(n − 1)(k − 1)/N).

6.2 OFDM Model

In OFDM, individual subcarriers in the frequency-domain are modulated with constellation

points, transformed to the time-domain and transmitted with a cyclic prefix. For PAR

analysis, the cyclic prefix can be ignored since it has no effect of the symbol PAR. Let the
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frequency-domain vector of constellation points be

x = [x1, x2, ..., xN−1, xN ]T , (6.1)

where xk is drawn from a R-point QAM constellation and the power in x is normalized so

that E
[
‖x‖2

2

]
= N . Using the inverse discrete Fourier transform, the time-domain symbol

is

y =
√
EyQ

Hx, (6.2)

where Ey is the symbol energy of y. The PAR of the transmitted signal is defined by

PAR{y} =
‖y‖2

∞
Ey

. (6.3)

For transmission through a peak-power-limited channel it is desirable to make the PAR as

low as possible. The received baseband frequency-domain signal after synchronization is

z =
√
EyDhx + n, where Dh is a diagonal matrix with diagonal elements from the channel

frequency response vector h and n is white complex Gaussian noise with zero mean and

variance σ2
n. Finally, assuming perfect channel state information, the estimated transmitted

symbol is x̂ ,
D

−1
h√
Ey

z.

6.3 Magnitude-scaled SLM

In standard SLM, M complex-valued vectors s(m) are multiplied with x prior to transmis-

sion, where 1 ≤ m ≤ M to get x(m) , D
s(m)x. The candidate signal QHx(m) that produces

the lowest PAR among the M possible candidate signals is selected for transmission. Every

element in s(m) has unit magnitude, i.e., |s(m)| = 1N×1.

In contrast to SLM, magnitude-scaled SLM does not impose the constraint |s(m)| =

1N×1. Specifically, the complex-valued scaling vectors for magnitude-scaled SLM are of the

form

[s(m)]k , p
(m)
k ejφ

(m)
k , (6.4)

where 0 < p
(m)
k <

√
2. The distribution of the phase angles, φ

(m)
k are chosen so that

E[ejφ
(m)
k ] = 0 (e.g., φ

(m)
k ∼ U{0, π}), which is the condition required for SLM to achieve

maximum CFR [128]. Define
[
p(m)

]
k

, p
(m)
k , where p(m) is chosen to be a scaled and
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shifted column of a pseudo-random matrix that has elements of either 1 or −1. Denote

column i of the N × N pseudo-random matrix by w(i), and define the set of indices K(i)
1 =

{
k | [w(i)]k = 1

}
and the set of indices K(i)

−1 =
{
k | [w(i)]k = −1

}
. We require that |K(i)

1 | =

|K(i)
−1| so that the average power of x(m) is the same as the average power of x. One example

of w(i) is a column of the Hadamard matrix, which is called a Walsh sequence. With the

8-element Walsh sequence,

w(3) , [1, 1,−1,−1, 1, 1,−1,−1]T , (6.5)

we have K(3)
1 = {1, 2, 5, 6} and K(3)

−1 = {3, 4, 7, 8}. Walsh sequences have the nice property

that for 1 < i ≤ N , |K(i)
1 | = |K(i)

−1|. The magnitude sequence is chosen so that p
(m)
k =

√
β

when k ∈ K(m+1)
1 and p

(m)
k =

√
2 − β when k ∈ K(m+1)

−1 where 1 < β < 2.

Now the mth time-domain candidate signal is

y(m) =
√
EyQ

Hx(m) (6.6)

As long as p(m) is chosen according to the Walsh sequence, we can guarantee that E
[
‖y(m)‖2

2

]
=

NEy, ∀m. The index of the transmitted candidate signal y(m̄) is chosen so that

m̄ , arg min
1≤m≤M

∥∥∥y(m)
∥∥∥
∞

. (6.7)

The PAR reduction capability of BSLM is evaluated by the complementary cumulative

distribution function (CCDF) of the PAR values after amplitude scalings and phase ro-

tations. The results are compared to the theoretical and empirical CCDFs for SLM (the

theoretical ccdf can be found in [7]). Four cases are simulated with combinations of dif-

ferent N and M (see Fig. 6.1). The amplitude-scaling factor is set to β = 1.2, and the

phase rotation factor ejφ
(m)
k is i.i.d. ±1 with equal probability. 16QAM is selected as the

transmitting constellation. From Fig. 6.1, CCDFs for BSLM agree with theoretical and

empirical CCDFs for SLM very well for various N and M . Hence, magnitude-scaled SLM

is shown to provide same PAR reduction capability as standard SLM.

The received frequency-domain SLM symbol will be

z =
√

EyDhx
(m̄) + n. (6.8)
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Figure 6.1: BSLM vs. SLM CCDF curves for 16QAM modulation.

Assuming perfect channel state information, we can write

x̂(m̄) ,
D−1

h
z√

Ey

= x(m̄) +
D−1

h
n√

Ey

. (6.9)

Finally, in order to detect m̄ blindly, we can create M receive metrics: one for each possible

scaling sequence. The mth metric is

G(m) =
∑

k∈K(m+1)
1

∣∣∣[x̂(m̄)]k

∣∣∣
2
−

∑

k∈K(m+1)
−1

∣∣∣[x̂(m̄)]k

∣∣∣
2

(6.10)

It may also be convenient to express the detections metrics as a column vector




G(1)

G(2)

...

G(M)




=
[
w(2) w(3) . . . w(M+1)

]T ∣∣∣x̂(m̄)
∣∣∣
2
, (6.11)

where | · |2 is the element-wise magnitude square value of a vector. Notice that E[G(m̄)] =

NEy(β − 1) and E[G(m6=m̄)] = 0. Thus, we can estimate m̄ with

ˆ̄m , arg max
1≤m≤M

G(m). (6.12)
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With ˆ̄m, the estimated symbol becomes

x̂ = D−1
s(

ˆ̄m)
x̂(m̄). (6.13)

6.4 Linear Scaling Channel Performance

Magnitude-scaled SLM is designed to operate in peak-power-limited channels. Thus, in

order to provide a fair comparison of the proposed scheme to traditional OFDM in terms

of SER, we must assume a clipping channel. Accordingly, we adopt the linear block scaling

OFDM architecture proposed in [79]. In [79], it was demonstrated that by using a linear

block scaling architecture the transmitted signal power is actually 1/PAR{y}, thus the

SER of competing schemes is mostly aptly compared using the peak SNR (PSNR), where

PSNR , 1/PAR{y}σ2
n. Assuming perfect detection of m̄, a tight upper bound on the

SER when QAM is used in an AWGN channel is

ps|m̂=m̄ ≤ 2Erfc

[√
3rβPSNR

2(R − 1)

]
+ 2Erfc

[√
3r(2 − β)PSNR

2(R − 1)

]
(6.14)

where R is the constellation size and r , log2 R [88]. Furthermore, the detection error rate

(DER) in an AWGN channel can be approximated by

Pr
[
ˆ̄m 6= m̄

]
= 1 −

(
1 − 1

2
Erfc

[
(β − 1)

√
N

2σPAR{y}

])M−1

(6.15)

where σ2 = σ4
n+2σ2

n+E2
yσ2

|x|2 (see Appendix for details). The validity of this approximation

is verified in Fig. 6.2. The plot shows that the expression in (6.15), matches very closely

with the Monte Carlo simulated DER.

Finally, the SER of the proposed system can be quantified through SER = ps|m̂=m̄ +

DER(1 − 1/R − ps|m̂=m̄), where DER is defined in (6.15). In this case, SER depends on

the random variable PAR{y}. Obtaining the most precise estimate of the SER requires

integrating SER over the probability density function of PAR{y} [14]. However, it is

possible to use Jensen’s inequality in conjunction with E[PAR{y}] from [14] to provide a

tight closed form lower bound on the SER.

In order to realize the full potential of the proposed scheme, it is necessary to optimize β

and M , for a given signal power, Ey, channel noise, σ2
n and constellation size R to minimize

78



0 1 2 3 4 5 6 7 8 9 10
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR

D
E

R

β = 1.2

 

 

Theoretical, M=2

Theoretical, M=5

Simulated

N = 256

N = 128

Figure 6.2: Simulated and theoretical DER for QPSK, where SNR = Ey/σ2
n.

the SER. Because the minimization is difficult to do analytically, we instead perform the

optimization numerically. Fig. 6.3 is a plot of the optimal values of β versus log2 N . As

expected, larger values for N lead to decreases in β. Finally, in Fig. 6.4 the SER for

magnitude-scaled OFDM with optimized β is plotted along with standard OFDM. At 20dB

of PSNR, the proposed magnitude-scale SLM scheme (with M = 20) outperforms standard

OFDM by a factor of 10 in terms of SER.

6.5 Conclusions

In this chapter we proposed magnitude-scaled SLM as a CFR method that obviates the need

for SLM side-information transmission. The proposed scheme uses Walsh-sequence based

envelope function to shape the frequency-domain power profile of the OFDM symbol. At

the receiver, envelope detection is used in conjunction with a specially designed metric to

determine the transmitted SLM phase sequence. To verify the utility of magnitude-scaled

SLM, we derived a closed-form bound for the SER and compared it to the SER of standard

OFDM. In the linear block scaling channel corrupted by AWGN, the magnitude-scaled SLM

signals saw in excess of a 1dB PSNR improvement over the standard OFDM.
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6.6 Appendix

By applying the Central Limit Theorem, we can approximate G(m̄) and G(m6=m̄) with

Gaussian random variables so that G(m̄) ∼ N
(
NEy(β − 1)/PAR{y}, Nσ2

)
and G(m6=m̄) ∼

N
(
0, Nσ2

)
, where σ2 = σ4

n + 2σ2
n + E2

yσ2
|x|2 . Values of σ2

|x|2 are tabulated in Table 6.1.

When M = 2, we have

Pr
[
ˆ̄m 6= m̄

]
= Pr

[
G(m6=m̄) > G(m̄)

]
(6.16)

=
1

2
Erfc

[
Ey(β − 1)

√
N

2σPAR{y}

]
. (6.17)

For M > 2, assuming that G(m6=m̄) is independent for different m, we can obtain

Pr
[
ˆ̄m = m̄

]
=
∏

m6=m̄

{
1 − Pr

[
G(m) > G(m̄)

]}
. (6.18)

Combining (6.17) and (6.18) results (6.15).

Table 6.1: Power variances for various constellation sizes

R 4 16 64 256 ∞
σ2

|x|2 0 0.320 0.382 0.396 0.400
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CHAPTER VII

EMBEDDED SYNCHRONIZATION/PILOT SEQUENCE CREATION

USING POCS

In this chapter we build on the orthogonal frequency division multiplexing (OFDM) peak-to-

average power ratio (PAR) reduction work by Chen and Zhou. It has been demonstrated that

pilot sequences that are constant modulus in the time domain can lead to an ensemble PAR-

reduction across all data realizations. However, the problem of creating constant modulus

sequences from arbitrary frequency domain power profiles has never been addressed. Often,

it is desirable to have a some freedom of choice in how pilot and, possibly synchronization,

energy is allocated in the frequency domain. In this chapter we present a projection on to

convex sets (POCS) method for creating low-PAR synchronization/pilot (S/P) sequences

with arbitrary frequency-domain power profiles.

7.1 Introduction

Orthogonal frequency division multiplexing (OFDM) has become a popular modulation

method in high-speed wireless networks. By partitioning a wideband fading channel into

flat narrowband channels, OFDM is able to mitigate the detrimental effects of multipath

fading using a simple one-tap equalizer1. However, one drawback of OFDM is that OFDM

signals exhibit large peak-to-average power ratios (PARs). Additionally, OFDM signals are

very sensitive to timing offset (TO) and carrier frequency offset (CFO) [102].

One method for estimating the channel and combatting TO and CFO is to send a

preamble sequence, {spre[n]}N−1
n=0 prior to the information-bearing OFDM symbols. The

receiver can perform a conjugate correlation of the received preamble and the expected

pre-amble to extract an estimate for both the TO and the CFO with excellent probability

1Parts of this chapter were presented in R. J. Baxley and J. E. Kleider, “Embedded Synchronization/Pilot
Sequence Creation Using POCS,” Proc. IEEE Intl. Conference on Acoustics, Speech, and Signal Processing,
Tolouse, France, May 2006. Reference [9].
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of miss and false detection performance [112].

The received signal, after being corrupted by additive white Gaussian noise η[n], a

multipath channel h[n], a TO no and a CFO ε, can be written as

w[n] = spre[n − no]e
j2πnε/N ∗ h[n] + η[n]. (7.1)

Then the conjugate correlator output is

R[τ ] =




N/2−1∑

l=0

s∗pre[l]w[l − τ ]






N−1∑

l=N/2

s∗pre[l]w[l − τ ]




∗

(7.2)

and the TO and CFO estimates are given, respectively, as

τ̂ = maxτ |R[τ ]| and ε̂ = arg R[τ̂ ].

After TO and CFO correction, the channel can be estimated by dividing the frequency-

domain version of the received signal, W [k] by the frequency-domain version of the preamble,

Spre[k]. That is, Ĥ[k] = W [k]/Spre[k].

In [48] it was suggested that embedded pilots can improve channel tracking perfor-

mance in time-varying channels. This idea was furthered in [56] where it was shown that it

is possible to forego the preamble sequence completely in favor of an embedded synchroniza-

tion/pilot (S/P) sequence that is not completely orthogonal to the OFDM data. The authors

of [56] argued that by linearly combining the S/P subsequence with the information-bearing

OFDM sequence, a spectral efficiency improvement could be realized over the preamble syn-

chronization approach.

In that model, the OFDM baseband frequency-domain data sequence is labelled X[k],

which is linearly combined with the S/P sequence, S[k], so that the proportion of signal

power in S[k] is

ρ =

∑N−1
k=0 |S[k]|2

∑N−1
k=0 |S[k] + X[k]|2

. (7.3)

If S[k] and X[k] have equal power, then the combined signal, Y [k], is

Y [k] =
√

1 − ρX[k] +
√

ρS[k]. (7.4)

The discrete-time version of Y [k] is

y[n] =
1√
N

N−1∑

k=0

Y [k] ej 2πkn
N , 0 ≤ n ≤ N − 1. (7.5)

83



In a practical system, a cyclic prefix is appended to y[n], y[n] is windowed, filtered, converted

to an analog signal and up converted to the passband prior to transmission. In this chapter

we are interested in peak-to-average power ratio (PAR). Accordingly, we can ignore the

cyclic prefix as it does not contribute to the PAR. Also, the up conversion is known to

increase the PAR by a constant of 3dB [109], so it too can be ignored in PAR considerations.

Furthermore, the PAR of a signal before and after windowing, filtering and analog conversion

is highly correlated, which means the affect on PAR of these processes is minimal [109].

Despite being beyond the scope of this chapter, it may be of interest to extend this work

by taking windowing, filtering and analog conversion effects into account.

7.2 S/P Sequences

There are several considerations in designing S/P sequences. First, the authors of [65] were

able to prove that, in order to minimize BER, the pilot tones should be equally spaced in the

frequency domain and each assigned equal power. Second, for embedded synchronization

applications, the authors of [56] relying partially on the work from [112] pointed out that

synchronization sequences should have good conjugate correlation properties. As illustrated

in [112], statistically independent PN-preamble sequences have excellent conjugate correla-

tion properties. Third, in most OFDM applications, the S/P sequence will need to meet

a spectral mask that includes null edge subcarriers. Fourth, in multiuser or multi-antenna

systems it is desirable to have a large number of S/P sequences to choose from so that

different users or antennaes can be distinguished. Finally, as we will explain in the next

paragraph, the S/P sequences should have a low time-domain PAR.

Recall that y[n] is a linear combination of x[n] and s[n], where x[n] and s[n] are the

discrete time-domain representations of X[k] and S[k]. Note that according to the cen-

tral limit theorem, x[n] is approximately complex-Gaussian distributed. We would like to

create s[n] so that the ensemble PAR of y[n], across all realizations of x[n], is minimum.

The authors of [29] were able to experimentally show that a constant modulus s[n], when

linearly combined with x[n], creates a y[n] with a significantly lower PAR than when using
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Figure 7.1: CCDFs of ODFM with a constant modulus embedded S/P sequence for different
embedding factors and the CCDFs for a 9dB PAR embedded S/P sequence for different
embedding factors.

a time-domain impulse train s[n]. In Figure 7.1 the CCDF of the PAR for two different em-

bedding sequences with various embedding factors is plotted. The lower-PAR set of CCDF

curves correspond to a S/P sequence that is constant modulus, while the higher-PAR curves

correspond to a time-domain impulse train S/P sequence with a 9dB PAR. From the plot,

it is obvious that the constant-modulus curves produce a significant PAR reduction.

In [108], the authors showed that chirp time domain sequences of the form s[n] =

ejπ2vk2/N are equally-spaced (with spacing v), equally-power pilot sequences in the frequency

domain. Here we would like to extend that result to more arbitrary frequency-domain

sequences. Specifically, we are interested in being able to create S[k] sequences that have

null edge subcarriers, arbitrarily placed pilots, and, possibly, non-zero entries at the rest of

the subcarriers as illustrated in Figure 7.2. Additionally, the time-domain versions of S[k]

should be low PAR and have excellent conjugate correlation properties.
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Figure 7.2: One possible example of a frequency-domain power profile.

Stated mathematically, the problem is

minimize PAR{s[n]},

subject to |S[k]|2 = P [k],

where P [k] is the desired frequency-domain power profile. Notice that both s[n] and S[k]

are N -length sequences, but P [k] may contain zeros (at the null subcarriers).

The problem of finding the minimum-PAR sequence for a certain power profile can be

solved using quadratically constrained

quadratic programming (QCQP). However, using QCQP will only give one sequence per

power profile without any guarantee of good self-correlation characteristics, whereas we want

to be able to create many sequences with good self- and cross-correlation characteristics.

The QCQP problem can be solved suboptimally by using a me-thod known as projection

on to convex sets (POCS). POCS is an active field with many applications like filter design,

array signal processing, electron microscopy, speckle interferometry, topography, spectral

estimation and neural networks [31]. Because POCS is an iterative search method, it may

converge to a solution that is not the global minimum. However, it has the nice property

that independent initial conditions cause the POCS algorithm to converge to independent

solutions. We will exploit this property to allow for the creation of many independent

near-optimal sequences.

For the problem at hand, we have two convex sets. The first is the power profile in the

frequency domain and the second is the power profile in the time domain (i.e. low PAR).

The ‘projection’ between the sets can easily be performed with the Fourier and inverse

Fourier transforms. The procedure is listed below
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1. Initialize the algorithm with a random-phase constant-modulus sequence s̄[n] = ejθn ,

where θn ∼ U [0, 2π).

2. Generate Ŝ[k] = FFT{s̄[n]}.

3. Using the phase of Ŝ[k], generate S̄[k] =
√

P [k]ej∠Ŝ[k].

4. Generate ŝ[n] = IFFT{S̄[k]}.

5. If the maximum number of iterations has been reached, exit the loop; else, go to step

two.

After the algorithm finishes, there are two pairs of time/frequency sequences to choose

from, {s̄[n], Ŝ[k]} and {ŝ[n], S̄[k]}. For the first pair, {s̄[n], Ŝ[k]}, the time-domain sequence

has zero decibels of PAR, while the the frequency-domain sequence is not an exact match the

desired power-profile. Instead, only the approximation, |Ŝ[k]|2 ≈ P [k], holds. Conversely,

the pair {ŝ[n], S̄[k]} exactly meets the frequency-domain power-profile specification, but ŝ[n]

has a non-zero PAR. The question is, which pair should be used? Generally, it is desirable

to choose {ŝ[n], S̄[k]} so that the frequency-domain power profile is perfectly matched to

the desired profile. This choice ensures that the null subcarriers are actually nulls and that

the pilots all have the same power.

7.3 Convergence Properties

As was pointed out in the last section, the properties of a S/P sequence depend on the

initial conditions of the POCS algorithm. In practice, the S/P sequences are found offline

so the speed of convergence is not a limiting factor. We are interested in finding the number

of trials as well as the number of different initial conditions that must be used to find a

suitably low-PAR sequence.

Figure 7.3 is a scatter plot of the PAR and MSE after 600 POCS iterations for 150 dif-

ferent initial conditions. The plot parameters are N = 64, there are 7 pilots and the amount

of power in the non-pilot subcarriers is 20 percent of the power in the pilot subcarriers. In

this plot, the MSE refers to the mean squared difference between Ŝ[k] and
√

P [k] and the
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Figure 7.3: Plot of MSE versus PAR of 150 different initial conditions after 600 iterations.

PAR is the PAR of ŝ[n]. As was expected, the PAR and MSE are highly dependent on the

initial conditions of the POCS algorithm.

Figure 7.4 is a plot of the convergence characteristics of the PAR for the five lowest-PAR

sequences out of 150 different initial conditions. The plot parameters are N = 64, there

are 7 pilots, a total of 4 null edge subcarriers, and the amount of power in the non-pilot

subcarriers is 20 percent of the power in the pilot subcarriers. From the plot, we can see

that the PAR is well below 1 dB for almost any initial conditions after 300 iterations.

In Figure 7.1 we plotted the CCDF of the PAR when a constant modulus S/P sequence
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Figure 7.4: Plot of PAR for 5 low-PAR initial conditions through 300 iterations.
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Figure 7.5: CCDF of the PAR of an OFDM signal with lowest-PAR S/P sequence after 300
iterations and 150 initial conditions embedded at different embedding factors.

is embedded in to an OFDM signal. Now we would like to illustrate that even though

the S/P sequences created using the POCS procedure are not constant modulus, they do

have a low enough PAR to still realize a large OFDM PAR reduction. Figure 7.5 is a plot

of the CCDF of the the OFDM PAR when the lowest-PAR S/P sequence found after 300

iterations and 150 initial conditions is embedded in to an OFDM signal. In comparing the

two figures, it is possible to see that the PAR CCDFs of the constant modulus S/P sequence

embedding are virtually indistinguishable from the CCDFs of the 0.2 dB PAR S/P sequence

embedding.

7.4 Correlation Properties

The correlation properties of the S/P sequences are very important for both TO and CFO

estimation. In a multiuser system it may also be possible to use different S/P sequences

for different users or for different antennas in a multi-antenna system. For the multi S/P

sequence applications, it is be possible to distinguish users or antenna in addition to estima-

tion the TO and CFO. We are also exploring the possibility of using a selected mapping [7]
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approach with different S/P sequences to realize large PAR reductions. However, in order

for any this to be feasible, the S/P sequences must have good conjugate correlation prop-

erties. In the present context, ‘good’ means that the non-peak self conjugate correlation

values have to be small so that the TO can be correctly estimated. Additionally, for multi

S/P sequence application it is also desirable to have all conjugate cross correlation values

between different S/P sequences be small.

Figure 7.6 shows the CCDF of the non-peak maximum values of the conjugate correlation

output with N = 64, 8 edge null subcarriers and 7 pilot subcarriers. Here we define

β = P [ks]
P [kp] , where P [ks] is the power in the sync subcarriers that will be superimposed onto

the information-bearing OFDM subcarriers and P [kp] is the power in the pilot subcarriers.

This plot illustrates how sensitive the conjugate correlation operation is to β. As beta

increases, the maximum non-peak conjugate correlation decreases. We note that, however,

a larger β will increase the interference level that the S/P sequence contributes to the data-

bearing OFDM subcarriers. More precisely, the ratio of the data-conveying energy to the

noise energy is

SNRe =
(1 − ρ)σ2

Y

σ2
η + βKs

Kp+βKs
ρσ2

Y

, (7.6)

assuming that the S/P signal is Gausssian and independent of the data signal, where σ2
Y

is the power of the transmitted signal, σ2
η is the noise power, Ks is the number of sync

subcarriers and Kp is the number of pilot subcarriers.

In choosing β and ρ, several parameters come into consideration. Among others the

channel response, the maximum possible CFO, the amount of noise in the channel, and the

size of N all affect the choice of β and ρ. Determining β and ρ in terms of those parameters

is beyond the scope of this chapter. However, in Figure 7.7 we illustrate the effect of β

and ρ on the maximum non-peak conjugate correlation output. The plot is of the CCDF

of the maximum peak conjugate correlation output for different combinations of β and ρ

with N = 64, 8 edge null subcarriers and 7 pilot subcarriers. The value of interest is ζ = 1

as this is where the height of a non-peak output and a peak output are equal and thus

indistinguishable. The distinguishability of these two cases is necessary for signal detection,

so the probability level where ζ ≥ 1 is the probability that a S/P sequence for the given
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Figure 7.6: CCDF of the maximum non-peak conjugate correlation outputs for different
amounts of non-pilot energy.

parameters will fail on average. For example, from Figure 7.7, we can see that for β = 0.05

and ρ = 0.2 the CCDF curve crosses ζ = 1 with probability 0.005. So we can count on a

S/P sequence created by the POCS method with those parameters to not be dependable

for synchronization purposes five times in 1,000.

As was pointed out before, we are interested in searching through many different POCS

initial conditions to find a low-PAR S/P sequence or, possibility, a set of low-PAR S/P

sequences. But, in addition to finding low-PAR sequences, it is also necessary to find

sequences with low non-peak correlation outputs so that the S/P sequence can be used in

synchronization. Figure 7.8 is a plot of the normalized CCDF of the conjugate correlation

output for the five lowest-PAR S/P sequences found out of 150 initial conditions with

N = 64, 8 edge null subcarriers and 7 pilot subcarriers. To make the plot, 10,000 data

sequences were created and combined in proportion with ρ for each of the five S/P sequences

tested. The plot shows that there are not any drastic differences in conjugate correlation

performance from one S/P sequence to the next for β = 0.2. On the other hand, the for

β = 0.05, there are marked differences between the different S/P sequences. So depending

91



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

P
r(

P
e
a
k
>

ζ
)

ζ

ρ = 0.6

ρ = 0.4

ρ = 0.2

β = 0.05 

β = 0.2 

Figure 7.7: CCDF of the normalized maximum non-peak conjugate correlation outputs for
various combinations of β and ρ.

on β and the application, correlation performance may or may not be worth examining

when selecting S/P sequences.

Finally, Figure 7.9 is a plot of the probability of of a false detection (Pf ) versus the

probability of a miss detection (Pm) for two minimum-PAR S/P sequences generated from

300 iterations and 150 initial conditions, one with β = 1 and the other with β = 1/7 as well

as a complex m-sequence created using a feedback shift register. For all three sequences

N = 64, ρ = 1 and the SNR = −7dB.

7.5 Conclusions

In this chapter we have presented a novel method for creating low-PAR OFDM sychro-

nization/pilot sequences with arbitrary frequency-do-main power profiles. By examining

the convergence and correlation properties of the S/P sequences created by our scheme we

have shown that only several hundred initial conditions and POCS iterations are neces-

sary to find excellent S/P sequences. Through simulation, we were also able to show that

for reasonable embedding factors, POCS-created S/P sequences can be used for embedded
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Figure 7.8: CCDF of the normalized maximum non-peak conjugate correlation outputs for
the five lowest-PAR S/P sequences.

synchronization of OFDM signals that have Pm/Pf detection rates comparable to those of

m-sequences. In future work, we will show how POCS-created S/P sequences can be inte-

grated into a selected mapping PAR-reduction scheme to create even lower PAR embedded

synchronization OFDM signals.
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CHAPTER VIII

A METHOD FOR JOINT PEAK-TO-AVERAGE POWER RATIO

REDUCTION AND SYNCHRONIZATION IN OFDM

Peak-to-average power ratio (PAR) reduction is an effective way to increase the power effi-

ciency and decrease distortion noise in orthogonal frequency division multiplexing (OFDM)

systems. Many PAR reduction schemes have been proposed, but few incorporate symbol-wise

channel estimation and none accommodate per symbol synchronization. In this chapter we

present joint synchronization pilot sequence (JSPS) selected mapping (SLM), which is a

joint PAR reduction and synchronization scheme. In harsh peak-limited channels we show

that JSPS-SLM can achieve large bit error rate (BER) performance gains.

8.1 Introduction

Orthogonal frequency division multiplexing (OFDM) is an effective high speed communi-

cations technique that allows for simple multipath channel equalization1. However, OFDM

suffers from large peak-to-average power ratios (PARs) and sensitivity to carrier frequency

offset (CFO). High PAR can lead to distortion noise and low power efficiency in peak limited

channels, while CFO sensitivity can lead to inter-carrier interference (ICI).

In this chapter we develop a scheme that addresses both of these problems. The scheme is

called joint synchronization pilot sequence (JSPS) selected mapping (SLM). The goal of our

JSPS-SLM design is to simultaneously consider several channel impairments in a practical

OFDM system and generate an unified approach to correcting for all of the impairments.

The hope is that by simultaneously addressing the channel impairments along with the

PAR, bandwidth overhead devoted to channel impairment correction can also be used for

PAR reduction, which will lead to greater bandwidth efficiencies.

1Parts of this chapter were presented in R. J. Baxley, J. E. Kleider and G. T. Zhou, “A method for joint
peak-to-average power ratio reduction and synchronization in OFDM,” Proc. IEEE Military Communica-

tions Conference, Orlando, FL, October 2007. Reference [10].
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JSPS-SLM is designed as a combined PAR reduction and embedded synchronization

technique. Many PAR reduction schemes are designed without full consideration of the

overall OFDM system. Specifically, other PAR reduction schemes generally assume perfect

channel state information (CSI) and that the transmitter and receiver are perfectly syn-

chronized in frequency and time. These assumptions may be realistic for static channels

where a preamble-type synchronization sequence is used periodically. But for mobile com-

munications applications, the channel is rarely static. Furthermore, it was shown in [56]

that frequency-hopped ODFM is not bandwidth efficient when preamble synchronization is

used.

8.2 System Model

To make a realistic characterization of the channel model that exists in mobile communi-

cations many different channel effects have to be included. Obviously, multipath fading

and some sort of additive noise will be present. In addition to these two standard channel

model components, a realistic, unsynchronized channel will have carrier frequency offset

(CFO) and timing offset (TO) effects, which are often ignored in OFDM PAR analyses.

Furthermore, in a peak power-constrained system, it is necessary to include the clipping

characteristic of the power amplifier (PA) in the channel model. By including the PA in

the channel model, the signal dynamic range becomes a design consideration making PAR

reduction an attractive possibility.

In this chapter, the channel model is characterized by

z[n] = (fPA (y[n − n0]) ⋆ h[n]) e−j2πǫ/N + η[n]. (8.1)

where fPA(·) is the power amplifier input-to-output characteristic, which is assumed to be

time-invariant with respect to each OFDM symbol and ⋆ is the convolution operator. A

block diagram of the channel is displayed in Fig. 8.1.

The baseband data-bearing part of the transmitted signal prior to cyclic extension can

96



][ny ][nz

multipath noise

Channel Model

][
0

nny

TO

h[n]

PA

n
N

j

e

2

CFO

][n

Figure 8.1: Channel model of the proposed system.

be expressed as

x[n] =
1√
N

N−1∑

k=0

Xk ej2πkn/N (8.2)

= IDFT{Xk}. (8.3)

where {Xk}N−1
k=0 are drawn from a finite constellation and n ∈ {0, 1, ..., N − 1}.

8.3 PAR, Selected Mapping and Synchronization

PAR is one metric for assessing the dynamic range of a signal. Signals with a low PAR

are preferable because they allow the PA to operate at higher power efficiencies [109]. The

PAR is defined

PAR{y[n]} =
maxn |y[n]|2
E [|y[n]|2] . (8.4)

Selected mapping (SLM) is a popular PAR reduction tool that can reduce the PAR of

OFDM symbols by several dBs [7]. In SLM, D candidate OFDM signals are generated by

x(d)[n] = IDFT{Xke
jφ

(d)
k } (8.5)

where d ∈ {1, 2, ..., D}. The index of the candidate signal with the lowest PAR is

d̄ = min
d∈{1,2,...,D}

PAR{x(d)[n]}, (8.6)

thus the transmitted signal x(d̄)[n] has the lowest PAR among the candidates. In order for

the receiver to recover Xk, it must know φ
(d̄)
k . It is reasonable to assume that the table of

all values of φ
(d)
k is known at both the transmitter and receiver. With this assumption, the

receiver only needs knowledge of d̄ in order to recover Xk.
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There have been many proposals for d̄ recovery; some involve the transmission of side

information (SI) and others work blindly without SI. The SI-based methods are not desirable

because they reduce the bandwidth efficiency by utilizing bits that could otherwise be

used for information transmission. Several promising blind detection methods have been

proposed [83, 13, 51, 15, 28]. However, all of these methods assume that the receiver

is perfectly synchronized with the transmitter. This may be the case in static channels,

however, in mobile or frequency hopping environments it may be necessary to estimate the

channel every symbol.

The purpose of this chapter is to outline a blind phase sequence detection method that

does not require time or frequency synchronization or knowledge of the channel. We will

show that the resulting scheme is robust in these unsynchronized, multipath, peak-limited

channels.

8.4 JSPS-SLM OFDM

As we will explain, JSPS-SLM OFDM is a PAR reduction technique that is robust in harsh

channels. The basic idea is to combine the embedded synchronization technique from [56]

with SLM. However, the combination is not trivial as many design parameters need to

considered.

The transmitted signal is made up of two parts, the data part Xk and the JSPS part Sk,

that are combined through the parameter ρ. The resulting signal in the frequency domain

is

Yk =
√

ρSk +
√

1 − ρXk, (8.7)

where ρ is the embedding factor that dictates how much signal power is allocated to Sk.

Here Sk and, equivalently s[n] = IDFT{Sk}, is a sequence known to the transmitter and

the receiver that can be used for CFO estimation and TO estimation according to the

procedures in [112]. In [56], the authors extended the method in [112] so that embedded

sequences could be used for multipath channel estimation in addition to CFO and TO

estimation.

In the proposed JSPS-SLM method, D candidate signals {y(d)[n]}D
d=1 are generated
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Figure 8.2: JSPS-SLM block diagram.

according to

Y
(d)
k =

√
ρS

(d)
k +

√
1 − ρXke

jφ
(d)
k , (8.8)

where y(d)[n] = IDFT{Y (d)
k }. In Section 8.5, we will outline the design criteria for gen-

erating S
(d)
k . The candidate with the lowest PAR will be selected for transmission. Thus,

if

d̃ = min
d∈{1,2,...,D}

PAR{y(d)[n]}, (8.9)

then the transmitted signal is y(d̃)[n]. The goal is for the receiver to be able to recover Xk,

but the problem is that d̃ is unknown in the receiver. It is assumed that the receiver has

knowledge of S
(d)
k and φ

(d)
k . So, in order for the receiver to determine S

(d̃)
k and φ

(d̃)
k , d̃ must

be recovered. Fortunately, the conjugate correlation receiver can be used to do this. The

received signal can now be expressed as

z(d̃)[n] =
(
fPA

(
y(d̃)[n − n0]

)
⋆ h[n]

)
e−j2πǫ/N + η[n]. (8.10)
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Define the conjugate correlation (CC) between two length-N sequences to be

CC{a[n], b[n]} =




N/2−1∑

n=0

a∗[n]b[n − u]






N−1∑

n=N/2

a∗[n]b[n − u]




∗

, (8.11)

where (·)∗ is the conjugate operation. In the receiver, D conjugate correlation outputs are

generated using

r(d)[u] = CC{s(d)[n], z(d̃)[n − u]}. (8.12)

From r(d)[u], the SLM index, the TO and the CFO can be estimated by

ˆ̃
d = arg max

d
|r(d)[u]| (8.13)

n̂0 = arg max
u

|r(
ˆ̃
d)[u]| (8.14)

ǫ̂ = arg

(
r(

ˆ̃
d)[n̂0]

)
. (8.15)

Hence, JSPS-SLM uses a robust and completely novel blind phase sequence detection cri-

terion as defined in (8.13). As opposed to the other methods, the phase sequence index is

detected based on the conjugate correlation with the candidate synchronization sequences,

s(d)[n]. Designing these sequences to optimize performance is a difficult problem that we

will address in Section 8.5.

To illustrate how Xk can be recovered from z(d̃)[n] using the estimators in (8.13-8.15), let

us decompose the frequency-domain data signal into three non-overlapping parts: 1) data

subcarrier denoted by the set of indices Kd, 2) pilot subcarriers denoted by the set of indices

Kp, and 3) null subcarriers denoted by the set of indices Kn. In this system configuration,

Xk/∈Kd
= 0, so Xk only contains energy in the data subcarriers. The null subcarriers are

constrained to zero to limit the amount of out-of-band spectral energy that encroaches

on neighboring channels. The pilots will be defined as part of Sk. Just as with Xk, Sk

can also be decomposed using the same three set of subcarrier indices: 1) synchronization

subcarriers, Kd, 2) pilot subcarriers, Kp, and 3) null subcarriers, Kn. The contents of the

different sets is summarized in 8.1.

To recover Xk, first the receiver generates the quantity

W
(d̃)
k = IDFT

{
z(d̃)[n + n̂0]e

j2πnǫ̂/N
}

, (8.16)

100



Table 8.1: JSPS-SLM Signal Components

k ∈ Kd k ∈ Kp k ∈ Kn

Xk 6= 0 =0 =0
Sk 6= 0 6= 0 =0
Yk 6= 0 6= 0 =0

which gives W
(d̃)
k = Y

(d̃)
k Hk + ηk + δk + ιk, where δk is the frequency domain noise caused

by the power amplifier, ιk is the inter-carrier interference (ICI) and where Hk and ηk are

the IDFTs of h[n] and η[n], respectively. From W
(d̃)
k the channel in the pilot subcarriers

can be estimated using

Ĥk =
W

(d̃)
k

S
(
ˆ̃
d)

k

√
ρ

, k ∈ Kp. (8.17)

These pilot subcarrier channel estimates can be easily interpolated to the data-bearing

subcarriers, k ∈ Kd, using the techniques described in [25] so that Ĥk is defined for k ∈

Kd
⋃Kp. Finally, the data symbol can be estimated via

X̂k =
e−jφ

(
ˆ̃
d)

k√
1 − ρ


W

(d̃)
k

Ĥk

−√
ρS

(
ˆ̃
d)

k


 , k ∈ Kd (8.18)

It is obvious from (8.18) that the calculation of X̂k is highly sensitive to the estimated

parameter
ˆ̃
d. If

ˆ̃
d 6= d̃, then X̂k will be a phase scrambled version of Xk, making data

recovery impossible, thus it is imperative that d̃ is estimated correctly. The entire JSPS-

SLM system is shown as a block diagram in Fig. 8.2.

8.5 Synchronization Sequence Design

So far, we have introduced the transmitter and receiver structure for JSPS-SLM OFDM. In

this section, we consider the design issues involved in generating S
(d)
k . The JSPS-SLM sys-

tem can be broken into three major sections: i) PAR reduction in (8.9), ii) synchronization

in (8.13-8.15), and iii) channel estimation in (8.17). This Section will outline the various

design tradeoffs and considerations in each of these major parts.
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8.5.1 PAR Reduction

In JSPS-SLM, there are two main sources of PAR reduction. One source is the fact that

we are using D candidate signals and selecting the candidate with the lowest PAR. A more

subtle source of PAR reduction in JSPS-SLM is in the design of S
(d)
k .

It was shown in [29], that by cleverly designing S
(d)
k , large PAR reductions are possible.

Specifically, when IDFT{S(d)
k } = s(d)[n], has low PAR, the combined sequence, y(d)[n] =

√
ρs(d)[n] +

√
1 − ρx(d)[n], will, on average, have lower PAR than x(d)[n]. The extent of

the PAR reduction is largely dictated by the size of ρ. Larger values for ρ lead to larger

PAR reductions. Also, in [29], it was shown that by improperly choosing the embedding

sequences (e.g. high PAR sequences) will actually lead to a PAR increase. So it is vital

that the set of sequences {s(d)[n]}D
d=1 all have low PAR.

However, designing D sequences {s(d)[n]}D
d=1, that all have low PAR and that meet the

desired spectral constraints is not a trivial problem. In [9], we developed a flexible framework

for generating a set of low-PAR sequences with an arbitrary power spectral density (PSD)

that involved convex optimization techniques. Using this method it is possible to generate a

set of sequences that all have PAR < 0.5dB. Deploying the resulting sequences {s(d)[n]}D
d=1

in JSPS-SLM results in large PAR reductions as demonstrated in Fig. 8.3. For instance,

the PAR reduction at the 10−3 probability level is 4dB from the ρ = 0, D = 1 case to the

ρ = 0.3, D = 8.

8.5.2 Synchronization

In the context of JSPS-SLM, synchronization includes d̃ detection, n0 estimation and ǫ es-

timation. The first step in JSPS-SLM synchronization is determining which phase sequence

index was transmitted, via the criterion in (8.13). From (8.13) it is apparent that correct

detection of d̃ depends on the peaks of |r(d)[u]| for d 6= d̃. When these spurious peaks are

all less than the peak in |r(d̃)[u]|, d̃ will be correctly detected. Thus, the set of {s(d)[n]}D
d=1

should be designed so that spurious peaks are low.

Once, d̃ is detected, the next step is to determine the TO, n0 via (8.14). Equation (8.14),

shows that n0 is determined based on the maximum of the
ˆ̃
dth conjugate correlation output.
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Figure 8.3: PAR CCDF for JSPS-SLM for different embedding factors ρ.

Assuming that
ˆ̃
d = d̃, n0, will be detected correctly as long as |r(d̃)[n0]| > |r(d̃)[n]| for n 6= n0.

Various performance simulations using different design parameters were provided in [9].

The final step in synchronization, is the estimation of the CFO parameter ǫ. There is no

obvious relationship between the design of {s(d)[n]}D
d=1 and the estimation error E

[
|ǫ − ǫ|2

]
.

Thus, for the purposes of this chapter, it is assumed that if the other two synchronization

design criteria are met, that the resulting set of sequences {s(d)[n]}D
d=1, will also achieve

adequate performance.

8.5.3 Channel Estimation

The performance of the zero forcing channel estimator defined in (8.17) is sensitive to the

positions of the pilots and to the power allocated to the pilot subcarriers, Sk, k ∈ Kp.

There is a large amount of literature involving optimal pilot placement for OFDM. When

the subcarrier spacing is less than the number of null subcarriers (i.e. |Kn| ≤ N/|Kp| − 1),

placing constant power pilots evenly throughout the N subcarriers minimizes the channel

estimation MSE [78]. When this condition is not satisfied, other pilot positioning techniques

have been proposed [73, 11].
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The amount of power in the pilot subcarriers can be quantified through

β =

∑
k∈Kp

|Sk|2∑
k∈Kp

SKd
|Sk|2

, (8.19)

which is the ratio of pilot power to the total JSPS power. Without loss of generality,

set
∑

k∈Kp
S

Kd
|Sk|2 = 1 and E

[∑
k∈Kp

S
Kd

|Xk|2
]

= 1. Now, to get an approximate

relationship between the symbol estimation error and the parameters β, ρ, and the noise

variance, assume that all of the synchronization works perfectly (i.e.
ˆ̃
d = d̃, n̂0 = n0 and

ǫ̂ = ǫ) and that no distortion noise is introduced by the transmitter PA. Also, we assume that

the interpolated channel estimate in each data subcarrier has the same error variance as the

channel estimate in the pilot subcarriers (i.e. E[|Ĥk − Hk|2] =
|Kp|

βρ|Kd| ∀ k ∈ Kp
⋃Kd). This

assumption is valid when the zero-forcing channel estimator is used and |Kn| ≤ N/|Kp| − 1.

With these assumptions, we have W
(d̃)
k = Y

(d̃)
k Hk + ηk, where ηk is complex Gaussian

distributed (i.e., ηk ∼ CN (0, σ2
η)).

Using these assumptions, (8.18), and the first order approximation that E[|ηk|2|X̂k|2] ≈

σ2
η for k ∈ Kd, the symbol estimate MSE is

E
[
|X̂k − Xk|2

]
=

σ2
η

σ2
Hk

(
(1 − β)|Kp|
β(1 − ρ)|Kd|

+
|Kp|

βρ|Kd|
+

1

1 − ρ

)
(8.20)

for k ∈ Kd. Notice, that the MSE is dependent on the ratio of pilot to data subcarriers

|Kp|/|Kd|. Also, the minimizing β is β = 1 when perfect synchronization is assumed.

However, in order to achieve acceptable synchronization performance it will be necessary to

have β < 1. Some analysis on the effect of β is synchronization can be found in [9]. However,

once β is chosen such that the synchronization performance is adequate, ρ should be chosen

such that the symbol MSE in (8.20) is minimized. Fig. 8.4 is a plot of the minimizing ρ

value, ρopt, that should be used for a given β and pilot-to-data subcarrier ratio, |Kp|/|Kd|.

104



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.25

0.3

0.35

0.4

0.45

0.5

β

ρ
o

p
t

 

 
|K

p
|/|K

d
| = 0.15

|K
p
|/|K

d
| = 0.10

|K
p
|/|K

d
| = 0.05

Figure 8.4: Optimal ρ for a given β.

8.6 Simulations

The plot in Fig. 8.5 demonstrates the BER performance of JSPS-SLM. To generate the plot,

the convex optimization technique in [9] was used to generate the sequences {s(d)[n]}D
d=1

for the two JSPS-SLM designs. For the dot-dash non-JSPS-SLM curve, embedded syn-

chronization was used without any PAR reduction considerations (i.e. D = 1 and S
(1)
k was

generated with the prescribed power profile but random phases). The embedded synchro-

nization scheme was also plotted for the case when the CFO is not estimated to show how

poor the performance of a PAR-reduction scheme that does not use CFO estimation could

be.

For the plot, an ideal soft limiter channel was used with an input backoff (IBO) of 3dB.

The CFO was set to a constant ǫ = 0.2. The multipath channel, h[n] ∼ CN (0, Ae−n),

was set to length 16 with an exponential delay spread such that A
∑15

n=0 e−n = 1. Also,

N = 256, |Kp| = 16, |Kd| = 240 and |Kn| = 0. The pilot tones were evenly spaced with

equal power. The embedding factors were chosen to be β = 0.25 and ρ = 0.35.

The plot shows that JSPS-SLM outperforms the embedded synchronization schemes.

Also, at high SNRs the D = 8 JSPS-SLM case performs more than 5dB better than the
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D = 1 case.
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Figure 8.5: BER for JSPS-SLM and regular OFDM where ǫ = 0.2 and IBO = 3dB.

8.7 Conclusions

In this chapter we have outlined the JSPS-SLM technique for OFDM, which is a joint

PAR reduction synchronization channel estimation scheme. Also, we have outlined the

major design decisions that must be made for JSPS-SLM. In addition to a high bandwidth

efficiency, with proper design, we have shown that large PAR reductions are possible using

JSPS-SLM. Finally, we demonstrated that large BER improvements are also possible using

JSPS-SLM in harsh channel environments.
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CHAPTER IX

PILOT DESIGN FOR OFDM WITH NULL EDGE SUBCARRIERS

Pilot symbol assisted modulation (PSAM) orthogonal frequency division multiplexing (OFDM)

has proven to be a popular technique for high-speed communication through multipath fading

channels. In this chapter we examine PSAM pilot design optimization in OFDM systems

that employ edge null subcarriers for spectral shaping. Specifically, we show that the com-

monly used even pilot spacing design is suboptimal in terms of symbol estimate mean squared

error (MSE) performance when a sufficient number of null subcarriers are present. We pur-

sue a parametric design of the pilot spacings and use convex optimization techniques in order

to find a pilot design that results in near-optimal symbol estimate MSE performance. Fi-

nally, we present several example PSAM OFDM pilot designs including one example based

on the IEEE 802.16 standard to demonstrate performance improvements over the conven-

tional even-spacing pilot design when null edge subcarriers are present.

9.1 Introduction

Orthogonal frequency division multiplexing (OFDM) is a popular method in wireless high-

speed communications schemes [118]. Pilot symbol assisted modulation (PSAM) was pro-

posed as a low complexity technique to estimate multipath channels and to remove their

effects from the received OFDM symbol [25]. More recently, attention has been paid to

optimal pilot design for channel estimation performance in OFDM. In [78], it was demon-

strated that the mean squared error (MSE) minimizing pilot design consists of equi-spaced

equi-powered pilots. Other pilot design criteria have been considered as well: in [24] for bit

error rate (BER) minimization, in [73] for channel estimate MSE minimization, in [58] for

multiple-input multiple-output (MIMO) preamble pilot design, in [38] for channel tracking

performance, in [63] for Doppler spread mitigation, in [2] for channel capacity maximiza-

tion, in [37] for multiuser pilot design, in [23] for MIMO channel capacity maximization, in

[66] for MIMO channel estimate MSE minimization, and in [9, 10, 3] for peak-to-average
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power ratio (PAR) reduction. A thorough overview of PSAM can be found in [110]. In

this chapter, we will address optimal pilot designs in ODFM systems that have edge null

subcarriers.

In almost all wireless communications standards, a transmitted signal is required to

meet a spectral mask such that the power spectrum outside of the main user’s channel

is not too high, thus limiting the amount of distortion noise contributed to adjacent and

alternate channel users. Such interference results from spectral splattering caused by system

nonlinearities from the power amplifier, the mixer, the DAC, etc. Accordingly, many OFDM

standards (digital audio broadcasting (DAB), digital video broadcasting (DVB), wireless

LAN, wireless MAN, etc.) require that a certain number of subcarriers at each band edge

remain unmodulated. These unmodulated (or “null”) subcarriers make it easier for system

designers to meet the spectral mask constraints [101]. As we will show, when a segment of

the bandwidth is not available for pilot placement, as is the case in null-subcarrier OFDM

systems, the pilot design problem needs to be readdressed.

When the entire OFDM band is available (i.e., no null subcarriers are present), it was

proved in [78] that the optimal pilot design consists of evenly-spaced constant-power pilots.

In this work we are interested in determining the optimal pilot design when null edge

subcarriers are present. If the null subcarriers occupy a larger bandwidth than the spacing

required by the evenly-spaced pilot design, then evenly spacing the pilot subcarriers is no

longer feasible, and another solution needs to be found as acknowledged in [78] and [73].

Also, in [84], a proposal was made for selecting the pilot positions in OFDM preambles

when null subcarriers are present. However, the method of [84] does not work for certain

subcarrier/channel-length configurations; moreover, the optimization in [84] uses the ℓ2

norm of the subcarrier channel-estimate MSEs, which may not accurately encapsulate the

system performance.

Our proposed solution uses a cubic parameterization of the pilot subcarrriers in conjunc-

tion with a convex optimization algorithm to produce pilot designs that have near-optimal

symbol estimate MSE performance as defined by any convex norm of the subcarrier symbol-

estimate MSEs. In the example designs we show the effect of using different norm choices.
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Additionally, through a design example based on the IEEE 802.16 standard [1], we demon-

strate the performance improvement possible for null-subcarrier OFDM systems when the

proposed pilot design is used instead of the conventional evenly-spaced pilot design.

Notations: Upper case and lower case bold face letters represent matrices and column

vectors respectively; AT and AH stand for the transpose and the Hermitian transpose

of A, respectively; E[·] is the expectation operator; ‖x‖n is the ℓn norm of x; |x| (|A|)

is a vector (matrix) that is the element-wise magnitude of x (A); A+ = (AHA)−1AH

is the pseudoinverse of matrix A; |A| is the cardinality of set A; ((·))N is the modulo

N operation; int(·) rounds the argument to the nearest integer; Dx is a diagonal matrix

with vector x on the diagonal; [A]i,k denotes entry in the ith row and the kth column of

A; finally, the N × N discrete Fourier transform (DFT) matrix is denoted by [Q]k,n =

N−1/2 exp(−j2π(n − 1)(k − 1)/N), 1 ≤ k, n ≤ N .

OFDM model : A PSAM OFDM system with null edge subcarriers is assumed in this

chapter. The pilot, null and data subcarrier indices can be grouped into three disjoint sets,

Kp, Kn and Kd, respectively, that span all N baseband subcarriers indices. The frequency

domain symbol is

x = [x1, x2, ..., 0, 0, ..., 0, ..., xN−1, xN ]T , (9.1)

where xk is chosen to be a scaled version of an element from a finite constellation in the

complex domain, A = {a1, a2, ..., a|A|} such that E
[
‖x‖2

2

]
= Es, where Es is the total

transmitted symbol energy.

The received baseband frequency-domain signal after synchronization and cyclic prefix

(CP) removal is

y = Dhx + w, (9.2)

where w is additive white complex Gaussian noise with autocovariance matrix σ2
wIN and

h is the frequency response of the channel. Note that h = QLh(t), where h(t) is a length-L

vector of the channel impulse response and QL is the first L columns of the DFT matrix

Q.
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The received pilot subcarriers can now be expressed as

yp = Dhpxp + wp. (9.3)

Define xp as a vector containing elements from x with indices in Kp; vectors yp, wp and

hp are similarly defined. Denote the portion of the DFT matrix that translates h(t) to the

pilot subcarriers by

Qp , [Q]Kp, {1,2,...,L}, (9.4)

so that Qp ∈ C
|Kp|×L. Let hp = Qph

(t).

Denote the channel estimate over the data subcarriers as ĥd, which can be generated

using the matrix

Qd , [Q]Kd, {1,2,...,L}, (9.5)

so that Qd ∈ C
|Kd|×L. Let ĥd = Qdĥ

(t). The transmitted constellation points can be

estimated by

x̂d = arg min
a∈A|Kd|

∥∥∥ydD
−1/2
E[|xd|2]

− ĥda

∥∥∥
2
, (9.6)

where A|Kd| is a |Kd| dimensional vector space containing elements from the set A. Define

xd as a vector containing elements from x with indices in Kd; vectors yd and hd are similarly

defined. Implicit in (9.6) is that the accuracy of the channel estimate only matters in the

data subcarriers. In other words, the accuracy of [ĥ]k for k /∈ Kd is irrelevant as it does not

effect the data symbol estimation performance.

9.2 Channel Estimation

The procedure used to estimate the channel in a PSAM OFDM system varies depending on a

number of factors including computational resources and knowledge of the channel statistics.

In this chapter, we examine least-squares error (LSE) channel estimation, which requires no

knowledge of the channel statistics and treats the channel taps as unknown deterministic

variables. It was shown in [73] that LSE estimation achieves the Cramér-Rao bound. When

some knowledge of the channel statistics is available, it is possible to use more accurate

equalizer structures such as Bayesian channel estimation [54, p. 532], but this increased
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accuracy comes at the expense of higher complexity and increased overhead. Methods have

been proposed to reduce the complexity of Bayesian channel estimation [120, 39], but LSE

estimation is still desirable for cases when the channel auto-covariance matrix is unknown.

Also, other more complicated two-dimensional channel estimation techniques are possible

that incorporate the time variations in the channel, see [61, 100]. In this chapter, we focus

on the problem of channel estimation for null-subcarrier OFDM using pilots and an LSE

estimator and assume the channel is approximately constant over one OFDM symbol, but

can change from symbol to symbol.

If the channel statistics are unknown, then the channel impulse response can be treated

as an unknown length-L deterministic vector1. The goal of channel estimation is to estimate

this vector with as much accuracy as possible. By rewriting (9.3) as yp = DxpQph
(t) + wp

and using the definition of hd, we can show that the LSE of the channel response in the

data subcarriers is [54, p. 523],

ĥd = Qd

(
QH

p DH
xp

DxpQp

)−1
QH

p DH
xp︸ ︷︷ ︸

P

yp

= hd + Pwp. (9.7)

Following the lead from [78], in this chapter we require the number of pilots be at least

the length of the channel impulse response vector i.e. |Kp| ≥ L. In LSE estimation, if this

condition is not met, then the channel estimate in (9.7) will not be unique because the

system of equations will be under determined.

Notice that this estimate in (9.7) does not require xp to be drawn from any specific

constellation. Instead, the requirement is that the receiver know the pilots sent by the

transmitter so that Dxp and Qp can be generated from the complex values modulating

1Strictly speaking the channel impulse response is only an approximation of the time-domain channel
function. When the multipath impulses do not fall in the discrete sampling grid, the channel impulse response
function will be infinite length and can not be captured with an length-L vector [113]. A discrete cosine
transform-based method has been proposed to mitigate this problem in [122]. Also, in [70] a method was
presented to resample a multipath profile so that it contains a finite number of channel taps after resampling
while preserving the RMS delay spread of the channel. In this work, we assume that the tails of the impulse
response function are negligible beyond L samples, which is also the assumption made in OFDM to justify
that no ISI occurs.
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xp and the positions of the pilots Kp, respectively. Furthermore, the complexity of this

estimator is not dependent on the values of xp or Kp. All that is required is that the pilot

design, as specified completely by xp and Kp, be known to both the transmitter and receiver.

Define the channel estimation error, ζ , ĥd−hd = Pwp. It is straightforward to obtain

its autocovariance matrix as

Rζ = E
[
Pwpw

H
p PH]

= σ2
wQd

(
QH

p DH
xp

DxpQp

)−1
QH

d . (9.8)

Of interest are the diagonal elements of the autocovariance matrix, z , diag{Rζ}, as they

correspond to the variance of the channel estimate in each of the data subcarriers.

9.2.1 Data Subcarrier Estimation MSE

Using the criterion in (9.6), the metric that quantifies the data symbol estimation error is

ǫ , D
−1/2
E[|xd|2]

(yd − D
ĥd

xd). (9.9)

When the LSE channel estimates are used, ǫ conditioned on xp is complex Gaussian dis-

tributed with zero mean and autocovariance matrix

Rǫ = Dz + σ2
wD−1

E[|xd|2]
, . (9.10)

Define e , diag{Rǫ}.

The probability of bit error is a function of some norm of e that is dependent on the

channel statistics. In the following analysis we use an objective function that is the ℓ∞

norm of e, ‖e‖∞, but the optimization can easily be extended to any convex norm of e,

including the frequently-used ℓ2 norm, by simply redefining the objective function. Using

the ℓ∞ in the objective function has the advantage that the optimized pilot placement will

produce a constant channel estimate error across all data subcarriers. For the case where

there are no null subcarriers, the optimal equal-spaced pilot placement is MSE-optimal in

both the ℓ2 and ℓ∞ norms because it produces a constant channel estimate performance

across all subcarriers. A good comparison of various MSE objective function norm choices
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can be found in [86]. Later, in Section 9.4, we illustrate how the performance is affected by

the objective function norm choice.

Thus, the optimization problem that needs to be solved is

arg min
E[|x|2], Kp

‖e‖∞

subject to E
[
‖x‖2

2

]
= Es,

xn = 0|Kn|×1. (9.11)

In other words, the optimization variables are the distribution of power among the non-

zero subcarriers E[|x|2], the power allocated to the pilots2 and the positions of the pilot

subcarriers Kp, which along with Kn dictate the positions of the data subcarriers Kd. The

constraints are that the total symbol power be bounded by Es and that the null subcarriers

are set to zero. The objective function is discontinuous in the optimization variable Kp.

Therefore (9.11) is a non-convex optimization problem which is difficult to solve [21]. Next

we propose to parameterize the pilot spacings and employ convex optimization techniques

to produce a near optimal solution to (9.11).

9.3 LSE Pilot Design

In order to simplify the optimization problem in (9.11), we propose that it be split into two

independent optimization problems that can be solved successively to find a near-optimal

solution to (9.11): i) find a set of pilot subcarrier indices, Kp, that make practical sense; ii)

using this Kp as an additional constraint in (9.11), minimize the symbol estimate MSE, e.

9.3.1 Pilot Position Parametrization

For small values of |Kp| and N − |Kn|, it may be possible to exhaustively search all the

possibilities of Kp to find the one that solves (9.11). But when |Kp| and N − |Kn| be-

come moderately large, searching the
(N−|Kn|

|Kp|
)

possibilities of Kp becomes intractable. For

instance, with N − |Kn| = 192 and L = 16,
(
192
16

)
≈ 1023.

Our goal is to limit the search space for Kp to only a relatively small number of rea-

sonable possibilities. To do this, we propose to parameterize the pilot positions by a cubic

2It is assumed that the power in the pilot subcarriers is deterministic, so that E
�
|xp|2

�
= |xp|2.
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polynomial. Note that equal pilot spacing implies that the pilot positions are described by

a linear function, i.e., a first order polynomial. Thus, to allow unequal pilot spacing and to

ensure a certain degree of parsimony, it is reasonable to consider parametric modeling of the

pilot spacing using other low order polynomials. It is desirable to have the pilots symmetric

with respect to the center of the band - this requirement rules out the quadratic polyno-

mial design since a second order polynomial cannot be symmetric. A cubic polynomial

parameterization is therefore the next logical design.

First, we need to find a one-to-one mapping that relates the set of indices K to the set

of “subcarrier numbers” S, where S is a circularly shifted version of K with a domain in

the integers of [−N/2 + 1, N/2]. Specifically, S = f(K) where

f(K) , ((K − N + 1))N − N/2 + 1. (9.12)

If the domain of f is restricted to [1, N ], then f is a one-to-one mapping so that K = f−1(S).

With S, the data and pilot subcarrier numbers, Sd
⋃Sp, are continuous over the integers

(this is not the case with K because the null indices Kn occupy the middle segment of x).

The goal is to find a cubic function, g(·), that maps the integers in [0, |Kp| − 1] to a set

of possible pilot subcarrier numbers, Sp. Once Sp is found through g(·), we can use f−1(·)

to find Kp and finally, use Kp to solve the segmented optimization problem discussed at

the beginning of Section III. This process will be performed iteratively over all permissible

values of

Kp =
{
int
(
f−1 ◦ g(τ)

) ∣∣τ ∈ {0, 1, 2, ..., |Kp| − 1}
}

(9.13)

until the minimizing set is found. The cubic function that parameterizes the pilot subcarrier

positions has the form

g(τ) = a3τ
3 + a2τ

2 + a1τ + a0. (9.14)

The pilots have to be placed in a non-null subcarrier (i.e. an in-band subcarrier). We further

constrain g(τ) by assuming that the pilots are placed symmetrically about the center of the

in-band region. Moreover, we assume that the pilots are placed sequentially from left to

right, i.e., g(τ) has a positive slope. To further explain these constraints, let us define the

number of in-band subcarriers, Ni , |Sp
⋃Sd|. It is necessary to have int

(
f−1 ◦ g(τ)

)
/∈ Kn,
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which means g(τ) ∈ [−(Ni − 1)/2, (Ni + 1)/2]. The middle of the in-band region is at 1/2.

Mathematically, the constraint equations are

g

( |Kp| − 1

2

)
= 1/2 (9.15)

g(0) = −(Ni − 1)/2 + δ (9.16)

g(|Kp| − 1) = (Ni + 1)/2 − δ (9.17)

g′(τ) > 0, (9.18)

In the constraint equations, δ represents how far the edge pilots are from the in-band edges.

For example, δ ∈ (0, 1] would mean the edge pilots are placed at the in-band edge, while

δ ∈ (1, 2], would place the edge pilots one subcarrier from the in-band edge. Using the

constraint equations in (9.15)-(9.18) and the fact that the edge pilots should not be spaced

further from the in-band edge than the average pilot spacing, it is possible to eliminate

three of the five variables and define a domain of the remaining two variables so that

a0 = δ − (Ni − 1)

2
(9.19)

a1 =
a3(|Kp| − 1)3 + 2Ni − 4δ

2(|Kp| − 1)
(9.20)

a2 =
−3a3(|Kp| − 1)

2
(9.21)

−2(Ni − 2δ)

(|Kp| − 1)3
≤ a3 ≤ 4(Ni − 2δ)

(|Kp| − 1)3
(9.22)

0 < δ ≤ Ni

|Kp|
. (9.23)

From (9.21), when a3 = 0, a2 = 0 as well; which means that g(τ) in (9.14) becomes a first

order polynomial and the pilot spacing becomes even. From (9.14) and (9.21), we infer that

g′′(τ) = 6a3τ + 2a2 (9.24)

= 6a3

(
τ − |Kp| − 1

2

)
. (9.25)

Therefore, when a3 < 0, pilot spacing increases as τ goes from 0 to
(|Kp|−1)

2 , meaning that

the pilot spacing at the edges of the in-band region are more closely spaced than the pilots

in the middle of the in-band region. Conversely, when a3 > 0 the outer pilots have a

larger spacing than the pilots near the middle of the in-band region. Based on the results
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Figure 9.1: Plot of pilot subcarrier position for different values of a3.

from [73], it is expected that a3 < 0 will produce better pilot designs than a3 > 0, which

will be confirmed in Section 9.4 of this chapter. Fig. 9.1 is a plot of three example pilot

parameterizations. In the plot the function g(τ) is plotted for different scenarios of a3. The

dots on each line indicate where the pilots would be placed.

9.3.2 Pilot Power

Assume that a set of plausible pilot indices generated with the cubic parametrization pro-

cedure from the last subsection is Kp. If |Kp| = L, i.e. Qp as in (9.4) is square, then it is

possible to write

z = diag
{

σ2
wQdQ

−1
p D|xp|−2QH

p
−1

QH
d

}
. (9.26)

When |Kp| > L, (9.26) can be rewritten using pseudoinverses as

z = diag
{

σ2
wQdQ

+
p D|xp|−2QH

p
+
QH

d

}
(9.27)

as long as the power in the pilot subcarriers are constant (i.e. [|xp|]k = C ∀k). However,

since the pilot power in each subcarrier is not necessarily the same, it is necessary to use
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the approximation

z ≈ diag
{

σ2
wQdQ

+
p D|xp|−2QH

p
+
QH

d

}

= σ2
w

∣∣QdQ
+
p

∣∣2
︸ ︷︷ ︸

A

|xp|−2

︸ ︷︷ ︸
u

, (9.28)

where
∣∣QdQ

+
p

∣∣2 is the element-wise magnitude square of the matrix QdQ
+
p . From (9.28),

it is clear that the channel estimate MSE, z, is linear in |xp|−2 (which is the element-wise

exponentiation of the vector). This decomposition/expansion of the channel-estimate MSEs

is novel and it is what allows the optimization problem to be convex. For instance, in order

to find the pilot design that minimizes the maximum channel estimate MSE (or average

channel estimate MSE, using the ℓ2 norm), we need to assume that a plausible set of pilot

subcarriers K̂p is found using the procedures from Section 9.3.1. With K̂p, the pilot powers

can be found by solving

arg min
u

‖Au‖∞

subject to

|Kp|∑

k=1

1

[u]k
= Ep,

Kp = K̂p,

[u]k > 0 ∀ k, (9.29)

where Ep is the total power allocated to the pilots. Determining the channel estimate MSE

minimizing pilot design is useful, but there are two main drawbacks to considering the pilot

power design and the symbol power design separately: i) even with this channel estimate

MSE minimizing design, the channel estimate MSEs will not be constant over all of the data

subcarriers, which means the symbol estimate MSE will differ from subcarrier to subcarrier

causing a non-constant quality of service across subcarriers; ii) the pilot power embedding

ratio

β =
‖xp‖2

2

‖x‖2
2

(9.30)

is not known for this proposed pilot design. Neither of these drawbacks are an issue when

there are no null subcarriers present because the evenly-spaced equi-power design in that

case guarantees a constant channel estimate MSE across the band and because the MSE
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minimizing β has been derived in [85]. Thus, for the null subcarrier design we advocate

using the symbol estimate MSE as the objective function to be minimized.

The additional free variable in the symbol estimate MSE design is the power allocated

to the data subcarriers. As we will see in Section 9.4, by using the ℓ∞ norm of the symbol

estimate MSEs, we can produce an almost constant symbol estimate MSE over all of the

data subcarriers.

9.3.3 Subcarrier Power

To extend the pilot power design to the full design, the symbol estimate MSE can be

rewritten as

e = σ2
w

(∣∣QdQ
+
p

∣∣2|xp|−2 + (E
[
|xd|2

]
)−1
)
. (9.31)

by substituting (9.28) into (9.10). It is possible to further simplify (9.31) by defining a new

matrix B ∈ R
|Kd|×Ni and vector v ∈ R

Ni×1 such that

e = σ2
w

[ ∣∣QdQ
+
p

∣∣2 I|Kd|×|Kd|

]

︸ ︷︷ ︸
B




|xp|−2

(E
[
|xd|2

]
)−1




︸ ︷︷ ︸
v

= σ2
wBv. (9.32)

From (9.32), it is now obvious that the symbol estimate MSE e is linear in the vector v.

Once the optimizing v⋆ is found it is straight forward to find the optimizing subcarrier

powers E
[
|x|2

]
.

Assume that a plausible set of pilot subcarriers K̂p is found using the procedures from

Section 9.3.1. Using this pilot subcarrier set, we can simplify the optimization problem in

(9.11) to

arg min
u

‖Bv‖∞

subject to

|Kd|∑

k=1

1

[v]k
= Es,

Kp = K̂p,

[v]k > 0 ∀ k. (9.33)

This optimization problem is convex since the objective function is a convex norm of a
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linear function and the constraint space is convex, thus it can be solved numerically using

existing convex optimization software packages.

Now, the basic design procedure, which will be detailed in the next sub-section, is to

solve (9.33) for all ‘feasible’ pilot subcarrier sets, K̂p. The design chosen will be the one

that minimizes ‖e‖∞.

9.3.4 Pilot Design Procedure

The overall pilot design procedures can be viewed as a grid search over the domain of (δ, a3).

Recall that the domain of (δ, a3) is defined in (9.22) and (9.23). The pilot design procedure

is outlined as a psuedo-code algorithm below

1. Initialize i = 1.

2. Select δ(i) and a
(i)
3 in the domain defined by (9.22) and (9.23) and find K̂(i)

p according

to (9.13).

3. Use K̂(i)
p to construct B(i) via (9.32).

4. Solve (9.33) for ‖e(i)‖∞ = σ2
x‖B(i)u(i)‖∞.

5. If MSE > ‖e(i)‖∞ or i = 1, set MSE = ‖e(i)‖∞ and ī = i.

6. If i = imax, exit, else, set i = i + 1 and go to Step 2.

When the algorithm exits, the optimizing values are e⋆ = e(̄i), K⋆
p = K̂(̄i)

p and v⋆ = v(̄i).

With these values, it is straightforward to find K⋆
d using the definition of the subcarrier

sets and E
[
|x|2

]⋆
using the definition of v in (9.32). Notice that these ‘optimal’ values and

sets will only be optimal among all cubic parameterizations of the pilot subcarriers and

thus they may not be the globally optimal values. Nevertheless, the proposed solution is

guaranteed to perform at least as well as the equi-spaced pilot design.

9.4 Pilot Design Optimization Example

For an example pilot design using the proposed procedure consider an OFDM system with

N total subcarriers and N/8 null subcarriers on each band edge for a total of N/4 null
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subcarriers. Thus there are Ni = 3N/4 in-band non-null subcarriers. This null carrier

scenario is used for example purposes, but the scheme proposed in this chapter works for

any number of null subcarriers. Of these in-band subcarriers, the number of pilot carriers

and the number of data subcarriers will be varied in the following simulation examples.

For all simulations, convex optimization problems were solved using [42]. The running time

for all pilot optimizations was less than one hour running on a Windows PC with an Intel

1.6GHz processor and 1GB of RAM.

For the error rate simulations the channel is Rayleigh where each channel tap is i.i.d.

complex Gaussian with zero mean and diagonal autocovariance matrix [R
h(t) ]k,k = Ae−0.1k,

where k ∈ {1, 2, ..., L} and A is a constant selected so that trace{R
h(t)} = 1. Each error

rate plot was generated using 100,000 channel realizations. Also, the channel is assumed to

be independent from symbol to symbol. Recall that the proposed pilot design procedure is

ambivalent to the statistics of the channel because it is based on LSE channel estimation.

9.4.1 Pilot positions

For the first example we have provided a plot in Fig. 9.2 of the maximum MSE ‖e‖∞ over

a range of normalized a3 values, where the NMSE is the MSE is normalized by the perfect

channel state information (PCSI) MSE which results when the receiver has full knowledge

of the channel. That is

NMSE =
‖e‖∞

MSEPCSI
(9.34)

=
‖e‖∞|Kd|

σ2
wEs

. (9.35)

As the (9.34) indicates, MSEPCSI is the MSE when no pilot energy is used; instead all

energy is allocated to the data subcarriers. In this case, the NMSE can be thought of as

the penalty paid for channel estimation and by definition, the lower bound on NMSE will

be 0dB.

The normalization factor for a3 is

γ =
2(Ni − 2δ)

(|Kp| − 1)3
, (9.36)
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Figure 9.2: Plot of maximum symbol estimate NMSE versus a3/γ.

which is the magnitude of the lower bound defined in (9.23). In the plot, L = |Kp|. The

resolution of the search grid was 0.01 in the δ dimension and 0.001 in the a3 dimension. For

all cases plotted, |Kn| > N/|Kp|, thus, as expected for the cases plotted, δ⋆ = 0.01. The

lines plotted are precise and are not a result of simulation. The lack of smoothness in the

lines comes from the fact that the maximum MSEs are a non-differentiable function of a3.

In simulating Fig. 9.2, we compared the values of the MSE approximation in (9.28) and

the true MSE from (9.8) which was used in the plot. We found that the difference between

the two was always less than 0.1%, which indicates that for practical pilot scenarios, it is

reasonable to use (9.28) in the pilot optimization objective function.

Symbol Power Profile: The PSD of the proposed design is plotted in linear scale in Fig.

9.3 where N = 256, Ni = 192 and |Kp| = L = 18. With these parameters the proposed

design has values a3 = −0.0371 and δ = 0.01. For both cases Es = Ni. Notice that

for the proposed design the pilots near the band edges are spaced more closely together

than the pilots near the middle of the band. Also, note that the power profile of the data

subcarriers is not constant, but is instead chosen according to (9.33) so that the maximum
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Figure 9.3: Proposed design power spectrum density in linear scale.

symbol estimate MSE is minimized. A similar phenomenon occurs when |Kp| > L. In the

proposed scheme, the receiver would need to know how the data subcarrier power profile

varies so that E[|xd|2] can be determined and the data can be properly decoded. Because

all of the proposed design procedures are performed off line and are channel ambivalent, it

is straightforward to store the power values in memory. Finally, as was mentioned in the

introduction, PAR is often a concern in OFDM systems. In OFDM it is not desirable to have

samples in the time domain that have significantly higher power than the average sample,

as this will increase PAR. However, in the proposed scheme, the power profile is being

altered in the frequency domain. After these frequency domain pilots are mixed through

the IFFT operation, they should not adversely effect the PAR. There is a comprehensive

derivation of the PAR distribution based on the signal PSD in [124], which shows that the

PAR distribution is not sensitive to slight PSD deviations from the ideal flat band-limited

OFDM PSD. In fact, several papers have shown that, if the phases on these pilot carriers

is carefully selected, it may be possible to reduce the PAR [10, 9, 29].

Cubic Coefficient Optimization: Fig. 9.4 is a plot of the optimizing values of a3, a⋆
3,

122



0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24
−10

0

−10
−1

−10
−2

−10
−3

|K
p
|/N

i

a
3*

 

 

N = 256

N = 128

N = 64

Figure 9.4: Plot of MSE-optimizing values a⋆
3, L = |Kp| .

versus the ratio of pilot subcarriers to in-band subcarriers |Kp|/Ni, where |Kp| = L. The

plot shows that the pilot spacing becomes more and more linear (i.e. a3 approaches zero)

as the number of pilot carriers increases. However, for all the values plotted, a⋆
3 is still

negative which implies that the pilot carriers near the band edges should be more closely

spaced than the center-band pilots.

Pilot Power Ratio: Fig. 9.5 is a plot of the ratio of pilot power to total power β defined

in (9.30). Also plotted are the β values from [85],

β|Kn|=0 = 1 − 1

1 + (N/L − 1)−1/2
(9.37)

which are MSE optimal when no null subcarriers are present. The plot demonstrates that

for the null-subcarrier case, slightly more power should be allocated to the pilots than when

all subcarriers are available. Thus, for the null carrier design the closed form expression in

(9.37) should not be used.

Norm Choice & Channel Length Effect : So far, all of the simulations assume the channel

length L is equal to the number of pilots, |Kp|. This is the commonly used assumption when
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Figure 9.5: Plot of β for the proposed design, L = |Kp|.

there is no channel state information. However, in practice, there may be scenarios when

the channel length is known to be less than the number of pilots, that is, when L < |Kp|.

Ideally, the number of pilots should then be decreased to meet the channel length, but this

is often not possible as the number of pilots are usually fixed as part of the communication

standard. Despite this, it is possible to achieve some performance gains by using a value of

L that is less than |Kp| in estimating the channel when it is known that the channel length

does not exceed L.

The effect of this adjustment is plotted in Fig. 9.6 where the channel length L is varied

for different numbers of pilots L < |Kp| where N = 256, Ni = 192. The plot shows that

there will be some loss when more pilots are used than are needed. For example, the line

corresponding |Kp| = 16 has a lower (better) NMSE at L than either |Kp| = 28 or |Kp| = 40.

This result is consistent with the equi-spaced pilot case, where in [78] a proof was provided

showing that |Kp| = L minimizes the minimum ℓ2 MSE. The plot also shows that the gap

between the full-band equi-spaced pilot case where N = Ni = 256 is always less than 0.5dB.

This can be considered the lower bound on the channel estimation performance as proved
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Figure 9.6: NMSE for versus the channel length L for different numbers of pilots |Kp|. For
the equi-spaced lower bound, |Kn| = 0.

in [78].

Finally, the same plot also demonstrates the effect of using different norms in the ob-

jective function in (9.33). It is hard to distinguish the lines for the ℓ∞ and ℓ2 cases because

they are almost equivalent. In fact, the difference is never greater than 0.01dB for all cases

plotted. Such a narrow gap would imply that choosing one of these norms over the other is

an unimportant choice. However, given the close performance gap slightly in favor of the ℓ2

norm, the ℓ∞ norm has the advantage of a constant quality of service over all subcarriers.

The importance of having a constant MSE over all carriers varies with the application and

channel code. The difference is probably only important when |Kp| is large, which causes

the edge subcarriers to have much worse MSE than average when the ℓ2 norm objective

function is used. For comparison the NMSE across subcarriers is plotted in Fig. 9.7. For the

|Kp| = 40 case, the difference is about 2dB from the lowest NMSE carrier to the worst-case

NMSE carrier near the band edge.
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9.4.2 Comparisons

Typical Design: In order to assess the performance of the proposed pilot design, we chose

to compare it to a “typical” pilot design named the “reference” design. For the reference

design, a3 = 0, β = β|Kn|=0 according to [85], all the pilots have a constant power and all

of the data carriers have a constant power. Recall, that a3 = 0 means that the pilots are

evenly spacing in the in-band region. Also, for comparison, the pilot design proposed in

[84] was generated. In [84], only the channel estimate MSE was considered, so to make the

comparison fair, assume that all of the data carriers have constant power so that β = β|K|n=0,

which is MSE optimal for the full-band case.

The disadvantage of the design procedure in [84] is that it does not necessarily produce

a viable pilot design. To review, the pilot positions in [84] are chosen to be the |Kp| highest-

power subcarriers from the preamble design. In general, this procedure works well because

there are usually exactly |Kp| distinct high-power subcarriers in the preamble design. How-

ever, this characteristic of the preamble design is not guaranteed. As one example, when
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Figure 9.8: MSE profile where L = |Kp| = 10. δ = 5 for the reference design.

N = 256 and |Kp| = 10 (or when |Kp| = 12), the preamble design has spurious subcarriers

in the center-band region that have higher power than the edge subcarriers. As a result

the pilot design selected by the procedure in [84] has two adjacent pilots in the center-band

region and no pilots at the edges of the in-band region, which produces catastrophic channel

estimates. On the other hand, the design procedure proposed in this chapter will always

produce a reasonable pilot design.

This effect is illustrated in Fig. 9.8, which is a plot of the symbol estimate MSE versus

the subcarrier number, where N = 256 and |Kp| = L = 10. From the plot it is clear

that the design from [84], does not allow for effective symbol estimation. In fact, the MSE

performance is worse than that of the reference design. In comparison, the design proposed

in this chapter produces a flat MSE across all of the data subcarriers.

Fig. 9.9 is a plot of the MSE performance of the three designs when N = 256 and

|Kp| = L = 18. In this case, the design proposed in this chapter and the design proposed

in [84] have almost identical performance. On the other hand, the MSE for the reference

design is very poor near the band edges.
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Figure 9.9: MSE profile where L = |Kp| = 18. δ = 0.01 for the reference design.

SER results: In Fig. 9.10 the uncoded symbol error rate (SER) of QPSK OFDM is

plotted for the three pilot designs. For the plot, the Rayleigh fading channel described

at the beginning of this section was used with L = |Kp|. The SER performance of the

proposed design is approximately 1dB worse than the PCSI case3. The plot also shows that

the proposed design outperforms the reference design by about 1dB of SNR for the L = 10

case and more than 4dB of SNR for the L = 18 case. This performance gap is a result of

the reference design having very poor channel estimates for the edge subcarriers. Finally,

the design from [84] has almost identical performance as the proposed technique for the

L = 18 case but is unusable for the L = 10 case.

IEEE 802.16 Improvement : In this subsection we explore the performance gains that

could be realized if the pilots in IEEE 802.16 are rearranged according to the proposed

design. The IEEE 802.16 standard contains three possible physical layer modes: Single

carrier, OFDM, and orthogonal frequency division multiple access (OFDMA) [1]. Here, we

3In the PCSI case for this plot, β = β|Kn|=0 for the proposed pilot design. So despite PCSI, some energy
is still allocated to the pilots, in order to make the comparisons realistic.
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Figure 9.10: SER performance, L = |Kp|.

focus only on the OFDM mode, but similar results can be realized for the other modes.

For IEEE 802.16 in OFDM mode [1, p. 427], the transmission frame is segmented

into several parts. Of relevance here are the preamble and the data-carrying parts of the

frame. The preamble is used for synchronization purposes including channel estimation.

Additionally, each data-carrying symbol contains several pilots, which can be used for fine

synchronization and also for channel estimation. In a data-carrying symbol 200 subcarriers

of the 256 subcarrier window are used for data and pilots. Of the other 56 subcarriers,

28 are null in the lower-frequency guard band, 27 are nulled in the upper-frequency guard

band and one is the DC subcarrier which is nulled. Of the 200 used subcarriers, 8 are

allocated as pilots, while the remaining 192 are used for data transmission. The pilot

positions specified by the standard are Kp,OFDM = {−88,−63,−38,−13, 13, 38, 63, 88},

which all contain the same amount of power. Additionally, the pilot power ratio, β, is

βOFDM = 1/25 = 0.04. After solving the optimization problem in (9.33) using the 802.16

OFDM mode specifications, we find that K̂p = {−100,−72,−43, −15, 15, 43, 72, 100} for

L = 1, L = 4 and L = 8 and that β⋆
L=1 = 0.067, β⋆

L=4 = 0.124 and β⋆
L=8 = 0.167.
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Figure 9.11: NMSE performance of IEEE 802.16 versus the proposed design. |Kp| = 8 in
all cases.

Fig. 9.11 is a plot of the NMSE of the proposed design and the 802.16 design. The

plot shows that the standard pilot design does a poor job of estimating the symbols in the

subcarriers near the guard band for L > 1. Conversely, the proposed pilot design is capable

of a flat symbol estimate MSE across all data subcarriers.

Fig. 9.12, is a plot of the SER for the two pilot designs for different channel lengths using

ideal interleaving and a (255, 239) Reed Solomon code as dictated by the 802.16 standard

[1, p. 432]. The plot shows that, in an L-tap Rayleigh fading channel, the proposed pilot

design leads to 3dB SNR improvement when L = 8 and a 1dB SNR improvement when

L = 4.

All of the 802.16 results assume that the channel is estimated solely using the pilots in

each symbol. In practice it may be possible to utilize the preamble symbol to help estimate

the channel. However, in situations where the channel changes before the next preamble

symbol is received, it is necessary to rely to the pilot aided channel estimates. In this case,

as we have shown here, significant gains in 802.16 are possible with a simple reorganization
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of the pilots.

9.5 Conclusions

In this chapter we discussed the problem of channel estimation in null-subcarrier OFDM.

Specifically, we presented an optimization method for designing pilots in a PSAM null-

subcarrier OFDM system for the case when the channel statistics are unknown (LSE es-

timation). The proposed method utilizes a cubic polynomial to define the pilot spacing

and convex optimization techniques to obtain the pilot and data powers such that the

symbol-estimate MSE is minimized.

Through an example pilot design it was demonstrated that significant improvements

in the symbol-estimate MSE and SER are possible with the proposed pilot design over

the reference design. Also, when the proposed design procedure is applied to an IEEE

802.16 system operating in OFDM mode up to 3dB of coded BER improvement can be

realized. For systems with more null subcarriers, even larger improvements are possible.

In summary, for null-subcarrier OFDM systems where the channel statistics are unknown,
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large performance improvements can be realized by proper pilot design using the techniques

proposed in this chapter.

132



CHAPTER X

RECEIVER NONLINEARITY OPTIMIZATION IN CLIPPING

CHANNELS

In this chapter the effects of receiver nonlinearities are examined for clipping channels. The

objective of this work is to determine the optimal receiver functions for additive noise clip-

ping channels. In this case the optimal receiver function will be the one that maximizes

the signal-to-noise-plus-distortion ratio (SNDR) of the received variable. To solve the prob-

lem we utilize functional analysis to find the SNDR-maximizing receiver function among

all functions. The results are general and can be applied for any noise and signal distribu-

tion. Furthermore, the results show that for the examples given, the linear receiver is not

SNDR-optimal.

10.1 Introduction

While it is common for communications channels to be assumed linear, there is almost

always a nonlinear component to physical channels. The most obvious nonlinear character-

istic of physical channels is their peak-limited nature [67]. Because it is impossible to drive

a power amplifier (PA) with an infinite amount of power, there will be some limit to the

peak power allowed by the channel.

The obvious question is how a transmitter should be designed when a peak limitation

is imposed. This question is implicitly answered by the vast body of papers that discuss

the “pre-distortion” of PA nonlinearities [111, 36, 90]. Typically, the term “pre-distortion”

implies that an expanding nonlinear function is applied to signals before they reach the

PA. The goal of predistortion is to have the concatenation of the predistortion function

and the PA characteristic function be linear up to the saturation power of the PA; such a

peak-limited linear function is known as a soft limiter. Implicit in all of this work is that

the soft limiter is the most desirable transmit function. Note that in this paper we are only

considering memoryless channels.
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However, until [92] was published in 2005, it was not clear that the soft limiter was

optimal in any sense. Fortunately, in [92], it was demonstrated that the soft limiter with

gain is optimal in terms of the signal-to-noise-plus-distortion ratio (SNDR) when the gain

is chosen correctly. SNDR optimality is an important goal because SNDR has been shown

to be directed related to the bit error rate (BER) and capacity [34, 80, 82, 92, 90].

In this work we seek to determine the SNDR-optimal recevier -side functions in the

presence of peak-limited channels. To accomplish this, we must first find an expression

for the SNDR of additive noise channels with both transmitter and receiver memoryless

functions. Next, we follow some functional analysis methods [41] to maximize the SNDR

w.r.t to the receiver function.

Other work has considered channels where a receiver-side nonlinearity is used to com-

pensate for a transmitter nonlinearity. Frequently these schemes are found in PAR reduction

literature under the name of companding, which is a combination of the words compress

and expand [117, 116, 50, 52]. In these schemes the receiver-side function is typically chosen

to be the inverse of the transmitter function. The idea is that the signal will be compressed

at the transmitter so as to avoid PA distortion and then expanded at the receiver with

the inverse function to “undo” the compressing function. While this idea is intuitive, it

was shown in [125] that using an inverse function pair is necessarily sub-optimal in terms

of SNDR. In light of this, the obvious question is what are the SNDR-optimal receiver

functions, which is the question this chapter seeks to answer.

10.2 SNDR Formulation

In [92], the SNDR is derived for any transmitter non-linear memoryless function. In this

section we will extend the SNDR definition to system that have nonlinear function both

before and after noise is added. That is where functions exist on both the transmitter and

receiver side of the channel.

10.2.1 SNDR of Transmitter Functions

To start, we review the SNDR formulation for transmitter nonlinearities, which is the SNDR

between output y + v and input x in Fig. 10.1. Start by writing y in terms of x and a
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Figure 10.1: System diagram.

distortion term so that

y = g(x) = αx + d, (10.1)

where x is a random variable that is the input to the transmitter nonlinearity, g(·). In (10.1)

α is chosen so that E[dx∗] = 0, where d is the distortion term which is also random. It is

important to include α in the formulation so that the distortion term will be uncorrelated

with the useful signal, x. Thus, we can calculate as

α =
E[yx∗]

σ2
x

. (10.2)

Next, the variance of d is

E[|d|2] = E[|y|2] − |α|2σ2
x. (10.3)

Step by step we have

σ2
d = E[|d|2] = E[dd∗] (10.4)

= E[(y − αx)(y − αx)∗] (10.5)

= E[(y − αx)(y∗ − α∗x∗)] (10.6)

= E[yy∗ − αxy∗ − α∗yx∗ + αα∗xx∗] (10.7)

= E[|y|2] − αE[xy∗] − α∗E[yx∗] + |α|2σ2
x (10.8)

= E[|y|2] − |E[yx∗]|2
σ2

x

. (10.9)

Finally,

SNDRx,y+v =
|E[yx∗]|2

σ2
xE[|y|2] − |E[yx∗]|2 + σ2

xσ2
v

. (10.10)
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Which can be calculated by finding

E[yx∗] = E[g(x)x∗] =

∫ ∞

−∞
g(x)x∗fx(x)dx (10.11)

E[|y|2] = E[|g(x)|2] =

∫ ∞

−∞
|g(x)|2fx(x)dx. (10.12)

It may be necessary to calculated these integral numerically.

10.2.2 SNDR of Transmitter and Receiver Functions

The SNDR analysis in the previous subsection applies to all memoryless non-linear func-

tions. Specifically, it is possible to use the Bussgang decomposition even when the function

involves additive random variables. Thus, because the overall Tx-noise-Rx system can be

view as a memoryless non-linear function, we can use the same formulation as was used for

the Rx nonlinearity by simply replace all instances of y with z, so that

SNDRx,z =
|E[zx∗]|2

σ2
xE[|z|2] − |E[zx∗]|2 . (10.13)

Here, z = s (g(x) + v). We still need to calculate E[zx∗] and E[|z|2] to determine the SNDR.

However, since the non-linear function is in terms of the random variable v, we need to take

the expectations over both v and x. To do this, we only need the joint density fx,v(x, v).

If we can assume that x and v are independent then it will be possible to further simplify

the joint pdf to a product of the individual pdfs, fx,v(x, v) = fx(x)fv(v). This assumption

is made for all of the following analysis. Thus,

E[zx∗] =

∫ ∞

−∞

∫ ∞

−∞
s (g(x) + v)x∗fx(x)fv(v) dx dv (10.14)

E[|z|2] =

∫ ∞

−∞

∫ ∞

−∞
|s (g(x) + v) |2fx(x)fv(v) dx dv, (10.15)

which should be simple to calculate numerically for any pair of functions, g(·) and s(·)

and any pair of distributions, fx(x) and fv(v). In [92], it was possible to simply use the

magnitude pdf to calculate these expectations. Here, that may not be possible because v

and g(x) may not add in-phase.

For verification, set s(x) = x which results in

E[zx∗] = E[(g(x) + v)x∗] = E[g(x)x∗] (10.16)

E[|z|2] = E[|(g(x) + v)|2] = E[|g(x)|2] + σ2
v . (10.17)
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Plugging these into (10.13) and the original SNDR expression in (10.10) follows.

In summary, the problem is to find the functions g(·) and s(·) that maximize

SNDRx,z =
|E[zx∗]|2

σ2
xE[|z|2] − |E[zx∗]|2 , (10.18)

where E[zx∗] and E[|z|2] are defined in (10.14) and (10.15). Or, to be precise,

maximize
g(·), s(·)

SNDRx,z[g(·) , s(·)] (10.19)

When no constraints are placed on these functions the solution is straight forward:

g(x) = ax where a → ∞ and s(x) = x; i.e. both functions are linear. Furthermore, when

an average poser constraint is place on g(x), such as E[|g(x)|2] ≤ a, then again the solution

is two linear function, but with the gain of g(·) chosen so that the constraint is satisfied.

As we will show, the problem is more complicated when a peak power constraint is places

one or both of the functions., such as

maximize
g(·), s(·)

SNDRx,z[g(·), s(·)] (10.20)

subject to max
x

|g(x)|2 ≤ 1.

In addition to jointly optimizing both functions, two possible sub problems can also

be considered. One where the receiver function is known and the transmitter needs to be

derived and the other where the transmitter function is known and the receiver is derived.

10.3 Function Optimization

In this we discuss the mathematics necessary to solve optimization problems w.r.t. func-

tions. First, optimization w.r.t. variables is reviewed, then we review to analogous opti-

mization w.r.t. functions.

10.3.1 Optimization With Respect to Variables

For some perspective, optimization is traditionally done w.r.t. variables. A typical problem

may be

minimize
x

fo(x) (10.21)

subject to [fc1(x), fc2(x), ..., fcm(x)]T ≤ 0m,
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where x = [x1, x2, ..., xn]T are optimization variables, fo(·) is vector-valued objective func-

tion and [fc1(x), fc2(x), ..., fcm(x)]T is a vector of vector-valued constraint functions. Many

methods are available for solving these types of problems. For general functions that are

not convex, random search or genetic algorithm methods may need to be implemented

to find the solution. If the constraint space and the objective function are both convex,

then interior point methods can be used to find the solution to arbitrary precision at low

complexity.

The basic idea of the solution is to use an indicator function that has follows something

like

Ic(x) =





0,
{
x
∣∣[fc1(x), fc2(x), ..., fcm(x)]T ≤ 0m

}

∞, else
, (10.22)

to turn the constrained problem into and unconstrained problem:

minimize
x

fo(x) + Ic(x). (10.23)

Now, simple calculus can be employed and the solution is the x that satisfies

∂fo(x) + Ĩc(x)

∂x
= 0. (10.24)

where Ĩc(x) is an indicator function that is differentiable and approximates the ideal function

in (10.22). It may be possible to find a closed-form solution to (10.24), but if it is not,

Newton’s method, which is an iterative numerical root-finding algorithm can be employed

to solve the equation [21].

10.3.2 Optimization With Respect to Functions

A generalize functional optimization problem can be written as

maximize
g(·)

Fo(g(x)) (10.25)

subject to [Fc1(g(x)), Fc2(g(x)), ..., Fcm(g(x))]T ≤ 0m,

where g(·) is function to be optimized, Fo(·) is the objective functional, which is a function of

functions and [Fc1(g(x)), Fc2(g(x)), ..., Fcm(g(x))]T is a vector of constraint functionals. The
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solution exactly follows variable optimization. For simplicity, consider the unconstrained

problem

maximize
g(·)

Fo(g(x)). (10.26)

Following the variable optimization, we need to solve

∂F [g(x)]

∂g(x0)
= 0 (10.27)

for g(·). So the next step is to define the partial derivative of a functional. Again following

variable calculus,

∂F [g(x)]

∂g(x0)
= lim

ǫ→0

F [g(x) + ǫδ(x − x0)] − F [g(x)]

ǫ
. (10.28)

From (10.28), we can derive the following properties

∂g(x)

∂g(x0)
= δ(x − x0) (10.29)

∂(g(x))2

∂g(x0)
= 2g(x)δ(x − x0) (10.30)

∂s′(x)

∂g(x0)
=

∂δ(x − x0)

∂x
(10.31)

∂F [g(x)]

∂g(x0)
=

∂F [x]

∂x
δ(x − x0), (10.32)

where δ(·) is the Dirac Delta function with its nth derivative defined to be

δ(n)(x − x0) =
(−1)nn!δ(x − x0)

xn
. (10.33)

10.3.3 Example: Kinematic Equations

To illustrate the power of function optimization, consider a simple physics problem, where

a ball is dropped from a height s(0) = x0 with an initial velocity of s′(0) = v0. The question

is, what the is position of the ball at time t, or said another way, what is the function s(t)?

The problem is illustrated in Fig. 10.2.

We know from classical mechanics that the position equation is s(t) = x0 − v0t − 1
2gt2,

but is also possible to derive this equation by using the principal of least action which states
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s(0) = x0

v0

s(t) = ?

Figure 10.2: Illustration of the ball drop problem.

that the action

A =

∫ t2

t1

Ke(t) + Pe(t)dt (10.34)

=

∫ t2

t1

1

2
m(s′(τ))2 + m g s(τ)dτ, (10.35)

where Ke is the kinetic energy and Pe is the potential energy, over any period of time, t1

to t2, is minimized by nature.

Without loss of generality, assume t1 = 0. Thus the position equation can be solved by

the optimization problem

maximize
s(·)

∫ t

0

1

2
m(s′(τ))2 + m g s(τ)dτ (10.36)

where the optimal s(t) solves

∂

∂s(τ0)

[∫ t

0

1

2
m(s′(τ))2 + m g s(τ)dτ

]
= 0. (10.37)

Differentiating and redistributing, we have

−
∫ t

0
g δ(τ − τ0)dτ =

∫ t

0
(s′(τ))

δ′(τ − τ0)

τ
dτ

−g =
s′(τ0)

τ0

By applying the initial velocity constraint we have

−gτ0 − v0 = s′(τ0), (10.38)
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finally, by applying the initial position constraint, we have

s(t) = −gt2

2
− v0t + x0, (10.39)

which is exactly the solution we were seeking.

10.4 SNDR Optimization

To optimize the SDNR w.r.t. either s(·) or g(·), we need to solve

∂

∂g(x0)
SNDRx,z[g(·), s(·)] = 0 (10.40)

and

∂

∂s(x0)
SNDRx,z[g(·), s(·)] = 0 (10.41)

simultaneously. Computing the partial w.r.t. s(x0), we find

∂

∂s(x0)
SNDRx,z[g(·), s(·)] =

∂

∂s(x0)

|E[zx∗]|2
σ2

xE[|z|2] − |E[zx∗]|2

=

∂N
∂s(xo)D − ∂D

∂s(xo)N

(σ2
xE[|z|2] − |E[zx∗]|2)2

, (10.42)

where N and D are the numerator and denominator of the SNDR expression, respectively.

To solve (10.41), we need the numerator of (10.42) to be zero. Assuming real variables, and

simplifying, we have

∂N

∂s(xo)
D =

∂D

∂s(xo)
N

∂N

∂s(xo)
D =

(
σ2

x

∂E[z2]

∂s(xo)
− ∂N

∂s(xo)

)
N

∂N

∂s(xo)
(D − N) = σ2

x

∂E[z2]

∂s(xo)
N

2E[xz]
∂E[xz]

∂s(xo)

(
σ2

xE[z2]
)

= σ2
x

∂E[z2]

∂s(xo)
E[xz]2

2
∂E[xz]

∂s(xo)
E[z2] =

∂E[z2]

∂s(xo)
E[xz].

This same simplification holds for the partial w.r.t. g(xo).

Finally, it is necessary to solve for ∂E[xz]
∂s(xo) ,

∂E[xz]
∂g(xo) ,

∂E[z2]
∂s(xo) , and ∂E[z2]

∂s(xo) , which are

∂E[xz]

∂s(xo)
=

∫ ∞

−∞

∫ ∞

−∞
xδ(g(x) + v − xo)fx(x)fv(v)dx dv

=

∫

xo−Rg

g−1(xo − v)fx(g−1(xo − v))fv(v)dv, (10.43)
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where Rg is the set of values in the range of g(x) ∀ x ∈ R,

∂E[z2]

∂s(xo)
=

∫ ∞

−∞

∫ ∞

−∞
2s(g(x) + v)δ(g(x) + v − xo)fx(x)fv(v)dx dv

= 2s(xo)

∫

xo−Rg

fx(g−1(xo − v))fv(v)dv, (10.44)

∂E[xz]

∂g(xo)
=

∫ ∞

−∞

∫ ∞

−∞
s′(g(x) + v)δ(x − xo)fx(x)fv(v)dx dv

=

∫ ∞

−∞
s′(g(xo) + v)fx(xo)fv(v)dv, (10.45)

and

∂E[z2]

∂g(xo)
=

∫ ∞

−∞

∫ ∞

−∞
2s(g(x) + v)s′(g(x) + v)δ(x − xo)fx(x)fv(v)dx dv

= 2

∫ ∞

−∞
s(g(x) + v)s′(g(xo) + v)fx(xo)fv(v)dv. (10.46)

From here, it is difficult to further simplify the problem without using particular examples.

10.4.1 Example: Uniform Noise, Signal, Clipping Transmitter

As an example, let us assume that both the noise and the signal are uniformly distributed

and that the transmitter is a soft limiter with gain of one. That is

x ∼ U [−ux, ux] (10.47)

v ∼ U [−uv, uv] (10.48)

ux ≥ 1 (10.49)

g(x) =





−1, x < −1

x, |x| ≤ 1

1, x > 1

(10.50)

Now, we can compute

∂E[xz]

∂s(xo)
=

1

4uxuv

∫ uv

−uv

∫ ux

−ux

xδ(g(x) + v − xo)Ux(x)Uv(v)dx dv

=
1

4uxuv

∫ uv

−uv

g−1(xo − v)Ux(g−1(xo − v))Uv(v)dv (10.51)

where

Ux(x) =





1, x ∈ [−ux, ux]

0, else
(10.52)
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and Uv(v) is similarly defined. Next, calculate

qxz(xo) ,

∫ uv

−uv

g−1(xo − v)Ux(g−1(xo − v))Uv(v)dv (10.53)

=





∫ xo+1
−uv

xo − vdv = 1
2(−1 + u2

v + 2uvxo + x2
o),

xo ∈ [−uv − 1,−uv + 1)
⋃

uv ≥ 1 = S1

∫ xo+1
xo−1 xo − vdv = 0,

xo ∈ [−uv + 1, uv − 1)
⋃

uv ≥ 1 = S2

∫ uv

xo−1 xo − vdv = 1
2(1 − u2

v + 2uvxo + x2
o),

xo ∈ [uv − 1, uv + 1)
⋃

uv ≥ 1 = S3

∫ xo+1
−uv

xo − vdv = 1
2(−1 + u2

v + 2uvxo + x2
o),

xo ∈ [−uv − 1, uv − 1)
⋃

uv < 1 = S4

∫ uv
−uv xo − vdv = 2uvxo,

xo ∈ [uv − 1,−uv + 1)
⋃

uv < 1 = S5

∫ uv

xo−1 xo − vdv = 1
2(1 − u2

v + 2uvxo + x2
o),

xo ∈ [−uv + 1, uv + 1)
⋃

uv < 1 = S6.

(10.54)

The partial w.r.t. s(xo) is

∂E[z2]

∂s(xo)
=

1

4uxuv

∫ uv

−uv

∫ ux

−ux

2s(g(x) + v)δ(g(x) + v − xo)Ux(x)Uv(v)dx dv

=
2

4uxuv

∫ uv

−uv

s(xo)Ux(g−1(xo − v))Uv(v)dv

=
2s(xo)

4uxuv

∫ uv

−uv

Ux(g−1(xo − v))Uv(v)dv, (10.55)

where

qzz(xo) ,

∫ uv

−uv

Ux(g−1(xo − v))Uv(v)dv (10.56)

=





∫ xo+1
−uv

dv = xo + 1 + uv, (uv, xo) ∈ S1

∫ xo+1
xo−1 dv = 2, (uv, xo) ∈ S2

∫ uv

xo−1 dv = −xo + 1 + uv, (uv, xo) ∈ S3

∫ xo+1
−uv

dv = xo + 1 + uv, (uv, xo) ∈ S4

∫ uv
−uv dv = 2uv, (uv, xo) ∈ S5

∫ uv

xo−1 dv = −xo + 1 + uv, (uv, xo) ∈ S6.

(10.57)
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We need

2
∂E[xz]

∂s(xo)
E[z2] =

∂E[z2]

∂s(xo)
E[xz]. (10.58)

So

2
1

4uxuv
qxz(xo)E[z2] =

2s(xo)

4uxuv
qzz(xo)E[xz]

qxz(xo)

qzz(xo)

E[z2]

E[xz]
= s(xo). (10.59)

where

qxz(xo)

qzz(xo)
=





1
2(−1 + uv + xo), (uv, xo) ∈ S1

0, (uv, xo) ∈ S2

1
2(1 − uv + xo), (uv, xo) ∈ S3

1
2(−1 + uv + xo), (uv, xo) ∈ S4

xo, (uv, xo) ∈ S5

1
2(1 − uv + xo), (uv, xo) ∈ S6,

(10.60)

Now, it is necessary to find some way to make (10.59) hold. One way may be to introduce

variable multiplier so that

s(xo) = a
qxz(xo)

qzz(xo)
(10.61)

then find the a that satisfies (10.59). Fortunately, E[z2]
E[xz] is a constant w.r.t. xo and the

SNDR is scale invariant w.r.t. s(·), so it is not necessary to determine a. Thus, the SNDR-

maximizing s(·) among all possible functions for the constraints in (10.63)-(10.65) is simply

given (10.60). That is,

s(xo) =
qxz(xo)

qzz(xo)
. (10.62)

Interestingly, the optimal function has no dependence on ux. This is because one of the

constraints was that ux ≥ 1, which necessitates some clipping. For the case when ux < 1,

the transmitter appears linear and the optimal receiver is simply linear.

Optimal Functions Fig. 10.3 is a plot of the optimal functions s(x) for different values

of uv. The plot shows several interesting features. The first is that when the uv > 1 which

is the maximum output of g(x), the optimal receiver function actually zeros out part of the
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Figure 10.3: Optimal receiver functions for different noise distribution supports.

received signal. The second is that when uv < 1, the optimal receiver is a piecewise function

with different slopes in for different input values.

SNDR Results In Fig. 10.4 is a plot of the SNDR of the proposed s(·) in (10.62) and

the SNDR of a linear receiver. We can see that most of the difference occurs in the high

noise regime, which is intuitive as this is where the optimal receiver differs the most from

the linear receiver.
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Figure 10.4: SNDR of for a linear receiver and for the proposed SNDR-optimal receiver.

10.4.2 Example: Gaussian Noise, Signal, Clipping Transmitter

For the second example, assume that both the noise and the signal are Gaussian distributed

and that the transmitter is a soft limiter with gain of one. That is

x ∼ N [0, σ2
x] (10.63)

v ∼ N [0, σ2
v ] (10.64)

g(x) =





−1, x < −1

x, |x| ≤ 1

1, x > 1

(10.65)

After integration of (10.45), we find that

∂E[xz]

∂s(xo)
=

1

2 (σv
2 + σx

2)3/2
e
− 1

2σx2 − 1+xo+xo
2

σv2 σvσx
2

(
− 2e

1+xo
2

2σv2

(
−1 + e

2xo
σv2

)
σv

√
σv

2 + σx
2

+ e

σv
4+2σx

4(1+xo+xo
2)+σv

2σx
2(3+2xo+xo

2)
2σv2σx2(σv2+σx2)

√
2πσxxoErf

[
σv

2 − σx
2(−1 + xo)√

2σvσx

√
σv

2 + σx
2

]

+ e

σv
4+2σx

4(1+xo+xo
2)+σv

2σx
2(3+2xo+xo

2)
2σv2σx2(σv2+σx2)

√
2πσxxoErf

[
σv

2 + σx
2(1 + xo)√

2σvσx

√
σv

2 + σx
2

])
. (10.66)

Computing (10.46) for this example gives

∂E[z2]

∂s(xo)
=

e
− xo2

2(σv2+σx2)
√

π
2 σvσx√

σv
2 + σx

2

(
Erf

[
σv

2 − σx
2(−1 + xo)√

2σvσx

√
σv

2 + σx
2

]
+Erf

[
σv

2 + σx
2(1 + xo)√

2σvσx

√
σv

2 + σx
2

])
.

(10.67)
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Figure 10.5: Optimal receiver functions for different noise variances, where σx = 1.

Again, the term E[z2]
E[xz] in (10.59) is constant w.r.t. xo so it does not need to be calculated.

Thus,

s(xo) =
∂E[xz]

∂s(xo)

/
∂E[z2]

∂s(xo)
. (10.68)

Optimal Functions Fig. 10.5 is a plot of the optimal functions s(x) for different values

of σv. The plot shows that the optimal function for different noise powers has essentially

the same shape, just that the support is expanded. At the edges of the functions there are

some values that are not well defined. This is because s(xo) → 0/0 at the edges which leads

to numerical instability for finite precision programs. It is not clear what the values would

converge to in practice but they appear to be asymptotically approaching one.

SNDR Results In Fig. 10.6 is a plot of the SNDR of the proposed s(·) in (10.68) and

the SNDR of a linear receiver. Most of the difference occurs for PSNR values from 0dB to

15dB.
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Figure 10.6: SNDR of for a linear receiver and for the proposed SNDR-optimal receiver.

10.5 Conclusions

In this chapter we have outlined a method for determining the optimal transmitter and

receiver function pairs in additive noise channels. To verify the result, we used an example

where the transmitter function is a soft clipper and found the optimal receiver function when

both the noise and signal are uniformly distributed. In this example, we found that several

dBs of SNDR improvement are possible. In the future it will be of interest to expand this

work in three possible directions i) solve for other practical examples where the noise takes

on different distributions; ii) reformulate the result for complex functions and variables; iii)

jointly solve for both the Tx and Rx functions.
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CHAPTER XI

CONTRIBUTIONS

In this thesis we have given an overview of the problem of transmitting multicarrier signals

through peak-limited channels. As part of the overview we have identified and solved

several problems in peak-limited communications. The research results are summarized in

the following list:

• It was established that the sample-wise SNDR and the block-wise SNDR are similar

for the most common operating environments (moderate noise levels, N ≥ 128).

• It was demonstrated how SLM can be modified for SNDR maximization.

• The computational complexity of a pruned FFT for PTS was derived.

• With the pruned FFT complexity analysis, it was demonstrated that SLM outperforms

PTS per unit of complexity in virtually all operating environments.

• The low-complexity magnitude-SLM scheme was proposed and justified for certain

operating environments.

• A projection on to convex sets method for generating low-PAR JSPSs with desirable

correlation properties was demonstrated.

• A JSPS-SLM algorithm was derived that allows for synergistic synchronization, chan-

nel estimation, PAR reduction and phase sequence detection.

• The pilot placement for null subcarrier OFDM systems was determined. The proposed

placement algorithm achieve near optimal symbol-estimate MSE and allows for a

significant improvement over existing evenly-spaced pilot placement schemes.

• A formulation for the optimal transmitter-receiver function pair was presented.
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11.3 Patents
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Utility Patent Application, 2007.
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