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SUMMARY

State-of-the-art high-throughput sequencing (HTS) instruments decipher billions of
short genomic fragments per run. The output sequences are referred to as reads. The
objective of this thesis is to develop parallel algorithms for enabling fast and scalable anal-
ysis of large-scale HTS short read datasets. Specifically, the thesis tackles the following
problems.

Reads contain errors due to limitations of sequencing technology. Read error correc-
tion enhances the quality of results produced by applications in areas such as genomics,
metagenomics, and transcriptomics. Use of error corrected reads also improves the runtime
and the memory usage of such applications. Sequential error correction tools cannot cope
with the large number of short reads produced by modern day sequencing instruments. A
distributed-memory Parallel Spectrum-based Error Correction (PSbEC) algorithm was pro-
posed to overcome this drawback [1]. In the first part of this thesis, we propose techniques
to address three major shortcomings of the PSbEC algorithm. Our optimizations enhance
the scope and the speedup of the PSbEC algorithm, thereby enabling error correction of
big genomic datasets. More specifically, by combining our optimizations, we are able to
achieve a cumulative speedup of up to 11 X. Further, we demonstrate error correction of a
human dataset containing nearly 1.55 billion reads. This work is the first demonstration of
distributed-memory genomic read error correction for a dataset consisting of more than a
billion reads.

HTS short read datasets facilitate a wide variety of analyses with applications in areas
such as genomics, metagenomics, and transcriptomics. Owing to the large size of the read
datasets, such analyses are often compute and memory intensive. In the second part of this
thesis, we present a parallel algorithm for partitioning large-scale read datasets in order to
facilitate distributed-memory parallel analyses. During the process of partitioning the read

datasets, we construct and partition the associated de Bruijn graph in parallel. This allows

Xiil



applications that make use of a variant of the de Bruijn graph, such as de novo assembly,
to directly leverage the generated de Bruijn graph partitions. In addition, we propose a
mechanism for evaluating the quality of the generated partitions of reads and demonstrate
that our algorithm produces high quality partitions.

Transmission, storage, and archival of HTS short read datasets pose significant chal-
lenges due to the large size of such datasets. Constant improvements to HTS technology,
in the form of increasing throughput and decreasing cost, and its increasing adoption am-
plify the problem. General-purpose compression algorithms have been widely adopted for
representing read datasets in a compact form. However, they are unable to fully lever-
age the domain-specific properties of read datasets. In response, researchers proposed
special-purpose compression algorithms which improve upon the compression efficiency of
general-purpose compression algorithms. In the last part of this thesis, we present ParRef-
Com, a parallel reference-based algorithm for compressing HTS genomics read datasets.
In contrast to existing special-purpose compression algorithms, ParRefCom treats paired-
end reads as first-class citizens. HTS instruments are typically used to generate paired-end
reads as they hold significance for biological analysis. Owing to this treatment of our al-
gorithm for paired-end reads, it is able to significantly improve the compression efficiency
over state-of-the-art. More specifically, for a benchmark human dataset, the size of the
compressed output is 21% smaller than that produced by SPRING, the current best algo-
rithm. Further, ParRefCom is scalable and its compression and decompression speeds are

better than or on par with those of reference-free methods.
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CHAPTER 1
INTRODUCTION

Genome of an organism consists of one or more long DNA sequences called chromosomes,
each a sequence of bases which are denoted by the four character alphabet {A, C, G, T}.
Depending on the organism, the length of the genome can vary from several thousand bases
to several billion bases. Genome sequencing, which involves deciphering the sequence of
bases of the genome, is an important tool in genomics research. Sequencing instruments
widely deployed today can only read short DNA sequences. However, these instruments
can read up to several billion such sequences at a time, and are used to sequence a large
number of randomly generated short fragments from the genome. These fragments are a
few hundred bases long and are commonly referred to as reads. Each base in the genome is
typically spanned by multiple reads. This oversampling is required to facilitate subsequent
analysis of the reads. Coverage is defined as the average number of reads spanning a base
in the genome.

Since the advent of short read high-throughput sequencing (HTS) machines, the cost of
sequencing has been declining and the throughput has been increasing exponentially [2].
For instance, using the recent NovaSeq line of instruments from Illumina, the current mar-
ket leader, sequencing cost is expected to come down to $100 per human genome. As a
consequence of these revolutionary advances, HTS has found its use in a diverse range
of applications beyond whole-genome sequencing. These include, among many others,
genome resequencing, characterizing the transcriptome, cataloging of metagenomic sam-
ples, and providing personalized molecular diagnosis. See [3] and [2] for reviews of HTS
and its applications.

The objective of this thesis is to develop parallel algorithms for enabling fast and scal-

able analysis of large-scale HTS short read datasets. Specifically, the thesis addresses the



following three problems related to HT'S read datasets : (1) error correction, (2) partition-
ing, and (3) compression. In the remainder of this chapter, we briefly introduce each of
these problems. A more detailed introduction, our proposed solution, and obtained results
for these problems are described in Chapters 2, 3, and 4, respectively. Finally, our conclu-
sions are provided in Chapter 5.

The work covered in this dissertation is published in papers [4] and [5]. The solu-
tions presented in this dissertation are available as open-source software and can be ac-
cessed using the following links: alurulab.cc.gatech.edu/parallel-ec and

github.com/ParBLiSS/read_partitioning.

1.1 Error Correction

Owing to limitations of sequencing technology, reads contain errors whose type is instrumentation-
dependent. While the predominant error type in case of Illumina sequencing instruments is
substitutions, it is insertions/deletions in case of Ion Torrent/Proton and Roche 454/GS [6,

7]. As Illumina sequencers are widely used today, we focus on correcting substitution er-

rors. Read error correction is extremely important for two reasons. First, it improves the
quality of results produced by downstream applications in areas such as genomics, metage-
nomics, and transcriptomics. Second, error correction leads to reduction in runtime and
memory usage of such applications [8].

Illumina sequencers have low error rates, typically less than 1%. Combining this char-
acteristic with the observation that each base in the genome is oversampled, many methods
have been proposed to correct read errors. Spectrum-based Error Correction (SbEC) is a
popular paradigm to correct substitution errors and it comprises of two major phases. The
first phase is to construct a kmer-spectrum from the set of reads. In the second phase, read
errors are detected and corrected by querying the kmer-spectrum. Owing to the large size of
read datasets and the computationally intensive nature of error correction, there is an acute

need for parallel error correction algorithms. Shah et al. proposed a distributed-memory
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github.com/ParBLiSS/read_partitioning

parallel algorithm for SbEC [1].

While the parallel algorithm presented by Shah e al. serves as a good starting point, it
suffers from the following major drawbacks. First, a separate copy of the kmer-spectrum is
maintained per MPI process in order to accomplish error correction. This approach does not
scale to billion base long genomes (e.g. humans). Second, the work is statically allocated
to processes during the error-correction phase. Because of differences in the distribution of
errors among reads, this leads to significant load imbalance among processes. Third, error
correction phase involves repeated binary searches over the kmer-spectrum. Binary search
over a sorted layout is inefficient in terms of memory accesses given the organization of
memory hierarchy in modern computer systems.

In this work, we address all of the above shortcomings to enhance the scope and
the speedup of the parallel algorithm to accomplish read error correction of big genomic
datasets. More specifically, we make the following contributions in order to achieve distributed-
memory read error correction of a human dataset for the first time. First, we maintain only
one copy of the kmer-spectrum per physical node instead of a copy of the kmer-spectrum
per process. Second, we present a dynamic work allocation scheme to solve the load im-
balance problem. Third, we propose a cache-aware layout to represent the kmer-spectrum
to improve the memory-access efficiency. While the first optimization enables us to en-
hance the scope of error correction to big datasets, the second and the third allow us to
improve the runtime substantially. We also present a parallel algorithm for constructing the

cache-aware layout of the kmer-spectrum.

1.2 Read Partitioning

The large volumes of data generated from HTS experiments present significant compu-
tational challenges for downstream analysis pipelines. Analysis of such big datasets is
compute intensive and requires a huge memory footprint. These challenges are expected to

get more difficult, as more and more data becomes available in the future. Surveys note that



many laboratories spend significantly more time and resources on the computational anal-
ysis of HTS data than on generating the data itself [9, 10]. Many investigators attempt to
address the memory demands by resorting to shared-memory machines with a large mem-
ory capacity. However, the number of hardware threads available for computation in such
machines is limited. The challenges posed by ever growing sequencing throughput and the
limitations suffered by currently available sequence analysis methods provide the context
for our proposed solution.

In this work, we present an end-to-end distributed-memory parallel algorithm for par-
titioning HTS short read datasets. The goal of partitioning a large-scale HTS read dataset
is to enable fast analyses using distributed-memory parallel systems. Our algorithm com-
prises of the following steps: (1) Building a de Bruijn graph from the given set of input
reads, (2) Compacting the de Bruijn graph to reduce its size, (3) Partitioning the resulting
compacted graph using a graph partitioner, and (4) Generating a partition of the read dataset
from the partitioning of the de Bruijn graph. We also propose an algorithm to evaluate the
quality of the partitioned read datasets.

We demonstrate that our solution produces high quality de Bruijn graph partitions, and
as a consequence, high quality partitioning of read datasets, for an assortment of large-scale
datasets. Such high quality partitioning enables fast distributed-memory parallel analyses

of read datasets by keeping the communication necessary to execute the application low.

1.3 Read Compression

Transmission, storage, and archival of HTS short read datasets pose significant challenges
owing to the large size of such datasets. Constant improvements to sequencing technology,
in the form of increasing throughput and decreasing cost, and its growing adoption for a
wide variety of applications amplify the problem. In response to this problem, researchers
resorted to compression of read datasets.

General-purpose compression algorithms have been widely adopted for representing



HTS read datasets in a compact form. Read datatsets have several unique properties that
make it difficult for general-purpose compressors to fully exploit the redundancy present in
these datasets. Domain-specific properties of read datasets include reduced size of alpha-
bet, interleaved streams of data, fixed length for reads, occurrence of reads and their reverse
complements, paired representation of reads, scattered nature of redundancy, and availabil-
ity of reference sequences. Researchers proposed special-purpose compression algorithms,
that exploit one or more of these properties, to improve upon the compression efficiency
of general-purpose compressors. Based on whether or not a reference sequence is made
use of during compression, specialized compressors can be classified as reference-based or
reference-free, respectively.

In this work, we leverage all of the above mentioned domain-specific properties of read
datasets to develop ParRefCom, a parallel reference-based compressor for genomics read
datasets. Read datasets generated using HTS instruments widely deployed today typically
contain what are known as paired-end reads. A paired-end (PE) read is comprised of two
separate but related reads, and the pairing information can serve to be crucial during bio-
logical analysis.

At a high-level, our solution approach consists of the following steps: (1) Specialized-
alignment of PE reads to standard reference, (2) Categorizing PE reads based on the number
of ends aligned, and (3) Customizing compression strategies for reads in different cate-
gories. In this work, we develop fast and scalable parallel algorithms for accomplishing
each of these tasks. We demonstrate that ParRefCom achieves superior compression effi-
ciency compared to existing methods. Our compressor is asymmetric by design - decom-
pression speed is an order of magnitude faster than compression speed. This asymmetricity
in design goes well with the real world requirement of compressing a dataset once and

decompressing (using) it many times.



CHAPTER 2
PARALLEL READ ERROR CORRECTION FOR BIG GENOMICS DATASETS

2.1 Introduction

Genome of an organism consists of one or more long DNA sequences called chromosomes,
each a sequence of bases which are denoted by the four character alphabet {A, C, G, T}.
Depending on the organism, the length of the genome can vary from several thousand bases
to several billion bases. Genome sequencing, which involves deciphering the sequence of
bases of the genome, is an important tool in genomics research. Sequencing instruments
widely deployed today can only read short DNA sequences. However, these instruments
can read up to several billion such sequences at a time, and are used to sequence a large
number of randomly generated short fragments from the genome. These fragments are a
few hundred bases long and are commonly referred to as reads. Each base in the genome is
typically spanned by multiple reads. This oversampling is required to facilitate subsequent
analysis of the reads. Coverage is defined as the average number of reads spanning a base
in the genome.

Owing to limitations of sequencing technology, reads contain errors whose type is
instrumentation-dependent. While the predominant error type in case of Illumina sequenc-
ing instruments is substitutions, it is insertions/deletions in case of Ion Torrent/Proton and
Roche 454/GS [6, 7]. As Illumina sequencers are widely used today, we focus on correct-
ing substitution errors. Read error correction is extremely important for two reasons. First,
it improves the quality of results produced by downstream applications in areas such as
genomics, metagenomics, and transcriptomics. Second, error correction leads to reduction
in runtime and memory usage of such applications [8].

The concepts described in the previous two paragraphs are illustrated in Figure 2.1.



Illumina sequencers have low error rates, typically less than 1%. Combining this charac-
teristic with the observation that each base in the genome is oversampled, many methods
have been proposed to correct read errors. Spectrum-based Error Correction (SbEC) is a
popular paradigm to correct substitution errors and it comprises of two major phases. The
first phase is to construct a kmer-spectrum from the set of reads. In the second phase, read
errors are detected and corrected by querying the kmer-spectrum. Owing to the large size of
read datasets and the computationally intensive nature of error correction, there is an acute
need for parallel error correction algorithms. Shah ef al. proposed a distributed-memory

parallel algorithm for SbEC [1].
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Figure 2.1: An illustration depicting various concepts related to read error correction. The
long sequence represents the genome and the short sequences represent reads. Reads con-
tain errors (highlighted) due to limitations of sequencing technology. The bases of the
genome, and therefore read errors, are not known until after the reads are analyzed.

While the parallel algorithm presented by Shah ez al. serves as a good starting point, it
suffers from the following major drawbacks. First, a separate copy of the kmer-spectrum is
maintained per MPI process in order to accomplish error correction. This approach does not

scale to billion base long genomes (e.g. humans). Second, the work is statically allocated



to processes during the error-correction phase. Because of differences in the distribution of
errors among reads, this leads to significant load imbalance among processes. Third, error
correction phase involves repeated binary searches over the kmer-spectrum. Binary search
over a sorted layout is inefficient in terms of memory accesses given the organization of
memory hierarchy in modern computer systems.

In this work, we address all of the above shortcomings to enhance the scope and
the speedup of the parallel algorithm to accomplish read error correction of big genomic
datasets. More specifically, we make the following contributions in order to achieve distributed-
memory read error correction of a human dataset for the first time. First, we maintain only
one copy of the kmer-spectrum per physical node instead of a copy of the kmer-spectrum
per process. Second, we present a dynamic work allocation scheme to solve the load im-
balance problem. Third, we propose a cache-aware layout to represent the kmer-spectrum
to improve the memory-access efficiency. While the first optimization enables us to en-
hance the scope of error correction to big datasets, the second and the third allow us to
improve the runtime substantially. Finally, we present a parallel algorithm for constructing
the cache-aware layout of the kmer-spectrum.

The rest of the chapter is organized as follows. To set up the stage for our work, we
describe the working of the parallel SbEC algorithm proposed by Shah ef al. in Section
2.2. Experimental methodology is explained in Section 2.3. Our solution strategies for
addressing the three primary drawbacks of the parallel SbEC algorithm, along with the
corresponding results and analyses, are presented in Sections 2.4, 2.5, and 2.6 respectively.
Integrating the optimizations, we demonstrate error correction of a human dataset in Sec-

tion 2.7. We furnish a survey of related work in Section 2.8.



2.2 Background

2.2.1 Spectrum-based Error Correction

Spectrum-based Error Correction (SbEC) methods are targeted towards correcting substi-
tution errors in reads. Each read of length n is decomposed into (n — k + 1) sub-reads
called kmers, by reading substrings of length k starting at each position. Once the set of
kmers is generated, each kmer is classified as either valid or invalid. Valid kmers are those
that actually occur in the genome while invalid kmers are those that do not. The latter
originate because of sequencing errors. As it is not possible to distinguish between valid
and invalid kmers without knowledge of the genome, the following heuristic is used to cat-
egorize kmers. A kmer which occurs more frequently than a threshold value is labeled as
valid, and is labeled invalid otherwise. This threshold value is influenced by the coverage
to which the genome is sequenced. The objective of error correction is to convert invalid
kmers into valid kmers with a minimum number of substitution operations. The correc-
tion choices for invalid kmers are generated by examining their valid neighbors using the

Hamming distance metric.

2.2.2  Parallel Spectrum-based Error Correction

While the specific details of error correction vary among different spectrum-based algo-
rithms, all of them are comprised of two important phases. The first phase involves con-
structing the kmer-spectrum, which represents the set of valid kmers. In the second phase,
read errors are corrected by making use of the kmer-spectrum. Leveraging this observation,
Shah et al. [1] proposed a generic SbEC framework for implementation on distributed-
memory parallel computers. The parallel algorithm is composed of the following steps: (1)
reads are evenly distributed among the processes, (2) each process generates an unordered
multiset of kmers (represented as unsigned integers) based on the subset of reads allocated

to it, (3) each process sorts its local list of kmers to eliminate copies and obtain frequencies,



(4) the entire list of kmers across all processes is globally sorted using a parallel sample
sort, (5) a kmer-spectrum comprising of only valid kmers is built, (6) the kmer-spectrum is
copied on all processes, and (7) error correction is performed independently on each pro-
cess for the reads assigned to it. The implementation was demonstrated to scale with the
number of processes, thus enabling fast error correction of datasets. Steps (1) — (6) make
up the spectrum construction phase and step (7) corresponds to the error correction phase.
The former phase is already well optimized. Moreover, the latter phase is the most time
intensive step in the parallel algorithm and accounts for almost all the run time in case of
big data sets. Therefore, in this work, we focus on enhancing the error correction phase of

the algorithm.

2.2.3 Parallel Reptile

Shah et al. [1] used their parallel error correction framework to parallelize Reptile [11],
an SbEC algorithm. We also use Parallel Reptile (PReptile) to demonstrate the benefits
of our proposed optimizations. While the high level working of Reptile is similar to that
of other spectrum-based algorithms, we describe one detail which sets up the context for
interpreting the results of this work. Reptile constructs and makes use of two different
spectra — kmer-spectrum and tile-spectrum. A tile is formed by concatenating two kmers
and is of length 2k. The use of the tile-spectrum, in addition to the kmer-spectrum, allows
Reptile to better resolve ambiguities during error correction, thus enabling it to achieve
better quality results. The use of PReptile, as a representative of spectrum-based methods
for evaluation in this chapter, implies that searches are performed on two different spectra

during the error correction phase.

2.3 Methodology

We ran our experiments on a cluster with a 40 Gbit QDR InfiniBand interconnect. Each

node in the cluster has two 2.0 GHz 8-Core Intel Xeon E5 2650 processors, for a total of
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16 cores per node. The 8 cores in a Xeon E5 2650 processor share a 20 MB last level
cache and the 16 cores in a node share 128 GB of main memory. The cache line size on
the Xeon E5 2650 processor is 64 bytes across all cache levels. We used this information
while constructing cache-aware layouts for the kmer-spectrum and the tile-spectrum. The
operating system is RedHat Enterprise Linux. For our experiments, we used up to 80 nodes

in the cluster. Further, we used hybrid parallel programming with MPI and C++11 threads.

Table 2.1: Datasets used for experimental evaluation

Dataset Organism Read Count Read Length Coverage
(millions) (bases)

D1 H. sapiens 1,550 101 50.5

D2 E. coli 8.9 101 193

D3A D. Melanogaster 379 95 30

D3B Droso. M 41.5 45 12

D3C Droso. M 18.8 75 12

We used the same real datasets as Shah et al. [1] for evaluation, with the following
exception. We replaced the original dataset D1, owing to its small size, with a human
dataset. All the datasets are listed in Table 2.1 and are available from the NCBI Short Read
Archive. Datasets D3A (SRX023452), D3B (SRX001651) and D3C (SRX001652) are
combined into a single dataset D3, having 98.2 million reads. D2 (SRR034509_1) and D3
are used for our experiments in Sections 2.4 and 2.5. D1 (SRX027713 and SRX027583)
is used for our experiments in Section 2.7. We used the same parameters as Shah et al.
for correcting read errors and therefore, do not present results pertaining to quality of error

correction.

2.4 Multiple Copies versus One Copy of Spectrum per Node

2.4.1 Motivation

In the Parallel Spectrum-based Error Correction (PSbEC) algorithm [1], Shah ef al. main-
tain a copy of the spectrum per MPI process. For clusters which are prevalent in current

times, multiple cores in a single node share a main memory. Even though the total capacity
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of the main memory per node is fairy large, per core share of the main memory is typically
small. As an example, in case of the cluster we used for running our experiments, 16 cores
in a node share a 128 GB main memory. Therefore, the memory budget available per core
or MPI process is only 8 GB. With such a small memory budget available per MPI pro-
cess, it is not possible to perform error correction for big genomes and associated datasets.
This is because the expected size of the spectrum is of the same order as the length of the
genome. For the human dataset D1, the sizes of the kmer-spectrum and the tile-spectrum
are 1,754,649,194 and 3,453,678,518 respectively. The per core memory budget of 8 GB
is severely limited in comparison to the total amount of memory required to maintain both

the spectra.

2.4.2 One Copy of Spectrum per Node

Our insight for addressing the first shortcoming of the PSbEC algorithm is as follows.
Write operations are performed on the spectrum only during the spectrum construction
phase. During the error correction phase, the only operations performed on the spectrum
are reads. We can take advantage of this observation and maintain only one copy of the
spectrum per node. In order to realize this in practice, we use hybrid parallelism with MPI
and C++11 threads. More specifically, we launch an MPI job with as many processes as the
number of nodes. Within a node, the MPI process launches as many threads as the number
of cores. So, the total number of threads in our implementation is the same as the number of
MPI processes in the PSbEC algorithm. During the error correction phase, only one copy
of the spectrum is maintained per node or MPI process, and all the threads corresponding

to an MPI process share and read from the same spectrum.

2.4.3 Results and Analysis

The primary objective of sharing the spectrum among the threads of a node or an MPI pro-

cess is to enhance the scope of the PSbEC algorithm to accomplish error correction of big
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datasets. By incorporating this optimization, in addition to realizing the primary goal, we
are able to obtain performance improvement as a byproduct. The performance improve-
ment obtained by transitioning from saving multiple copies of the spectrum to saving only
one copy of the spectrum per node is shown in Tables 2.2 and 2.3 for datasets D2 and D3
respectively. Note that these results cannot be generated for the human dataset D1 as the
original PSbEC algorithm cannot support the memory required by the dataset D1.

Table 2.2: Performance improvement obtained by replacing multiple copies of spectrum
with one copy of spectrum per node for dataset D2 (Runtime is in seconds)

Multiple Copies One Copy of Spectrum
Processes Runtime | Threads Runtime | Improvement
128 2427 | 128 2273 6.77 %
256 1379 | 256 1347 2.38 %
512 708 | 512 713 -0.75 %
1024 365 | 1024 367 -0.47 %

Table 2.3: Performance improvement obtained by replacing multiple copies of spectrum
with one copy of spectrum per node for dataset D3 (Runtime is in seconds)

Multiple Copies One Copy of Spectrum
Processes Runtime | Threads Runtime | Improvement
128 8983 | 128 8676 3.54 %
256 4986 | 256 5131 -2.83 %
512 3000 | 512 2829 6.05 %
1024 1844 | 1024 1844 -0.01 %

The results presented in Tables 2.2 and 2.3 demonstrate that the performance improve-
ment obtained by storing only one copy of the spectrum per node can be as much as 7 %.
The source of this improvement is as follows. A core operation during the error correction
phase is to lookup an element in the spectrum to determine its presence/absence. As the
spectrum is represented as a sorted list of elements, the lookup operation comprises of per-
forming a binary search in a sorted list. If the number of elements in the spectrum is NV,
the number of memory accesses made while performing the binary search is O(logsN) in
the worst case. Owing to temporal locality, some of these memory accesses correspond to

cache hits. When we transition from storing multiple copies of the spectrum to storing only

13



one copy of the spectrum per node, more memory accesses are expected to correspond to
cache hits. This is because the capacity of the last level cache, which is shared by multiple
cores, is used towards storing elements of only one copy of the spectrum. In case of our
cluster, 8 cores share a 20 MB last level cache.

While the maximum performance improvement is as much as 7 %, the improvement is
not consistent as the total number of threads is increased from 128 to 1024. In some cases,
the performance actually degrades. This is because of the imbalance in work performed
across the threads. The same can be inferred from the runtime numbers in Tables 2.2 and
2.3, which do not scale with the number of processes/threads. Once the load imbalance
across the threads is addressed, we can expect the performance improvement to remain
consistent as we vary the number of threads. We tackle the second drawback of the PSbEC

algorithm, pertaining to load imbalance across threads, in the following section.

2.5 Static versus Dynamic Work Allocation

2.5.1 Motivation

In the case of Parallel Spectrum-based Error Correction (PSbEC) algorithm proposed by
Shah et al. [1], all the MPI processes are responsible for correcting the same number of
reads. We refer to this scheme, where the reads are block decomposed among the MPI
processes during the error correction phase, as the static work allocation mechanism. Con-
ceptually, we expect that the work performed by each MPI process is roughly the same
under the static allocation scheme. However, in practice, the static allocation scheme re-
sults in imbalance of work performed by various MPI processes. We ascertained that this
is actually the case by measuring the time consumed during the error correction phase on
individual MPI processes. This observed imbalance of work is due to the fact that the dis-
tribution of errors varies among reads. For a given number of reads, we further noticed that
the imbalance becomes more pronounced as we increase the number of MPI processes.

It must be noted that, in a parallel algorithm, the total runtime is determined by the time
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taken by the longest running process. In order to solve the load imbalance problem experi-
enced by the static work allocation scheme of the PSbEC algorithm, we propose a dynamic
work allocation scheme. The latter scheme is based on a master-worker paradigm and is

described next.

2.5.2 Dynamic Work Allocation Algorithm

As we specified in Sections 2.3 and 2.4, our overall solution uses hybrid parallel program-
ming with MPI and C++11 threads. We create one MPI process per node and within a
node, we create as many C++11 threads as there are cores. So, the total number of threads
we create is the same as the total number of cores across all nodes. Our dynamic work
allocation scheme uses a hierarchical master-worker paradigm and categorizes the threads

into three different groups: global-master thread, local-master threads, and worker threads.

Preliminaries

On every node, one of the threads is classified as the local-master thread and the remaining
as worker threads. So, there are as many local-master threads as there are nodes. Further,
one thread among the local-master threads is selected as a global-master. Our master-
worker model is set up hierarchically so that communication is carried out in the following
manner. Local-master threads communicate with the global-master and vice-versa. Further,
worker threads communicate only with the local-master corresponding to their node. In
essence, there is only one communication channel emanating out of a node. We refer to
a unit of work as a chunk and it comprises of a set of reads, whose size is parametrized.
Further, a chunk is actually represented using two unsigned integers: (1) starting read ID
and (2) chunk size. Each local-master maintains a work-queue of size 3 x M, where M
represents the core count (also thread count) per node. The work-queue can hold up to 3 x
M chunks at any given time. We define a work-item as the number of chunks a local-master

requests the global-master at a time. The size of the work-item in our implementation is
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2 x M. The tasks performed by various threads in our dynamic work allocation scheme are

outlined in Figure 2.2 and described below.

Requests a Work-item Requests a Chunk
Global Master Local Master Worker

Sends a Work-item of Size (2 x M) Chunks Sends a Chunk of Size S Reads

» Coordinates all the nodes » Coordinates workers in the node
» Corrects reads in S size chunks
» Manages reads in S size chunks » Manages a work-queue of size
» Terminates when the work-
» Also, local master for the node (3 x M) chunks
queue becomes empty
» Corrects reads when free » Corrects reads when free

Inter-node Communication via Network Intra-node Communication via Shared Memory

Figure 2.2: Roles played by global-master, local-master, and worker threads in a hierarchi-
cal master-worker paradigm for dynamic work distribution.

Global-master

The global-master thread is responsible for coordinating the entire dynamic work allocation
process. The global-master has knowledge of the total number of reads that need to be
corrected. It performs a logical partitioning of the entire read set into chunks of size S. A
starting read ID and the chunk size S characterize a chunk. The global-master performs
the following tasks. When a local master requests a work-item, it sends 2 x M chunks
to the local-master. A work-item represents a subset of reads that needs to be corrected
next. If there are no more reads to be corrected, the global-master communicates the same
information to a local-master when the latter requests a work-item. After communicating
the no — more — work message to all the local-masters, the global-master waits for all the
local-masters to complete the work previously requested by them. The global-master, in
addition to discharging the responsibilities just described, plays the role of a local-master

for the worker threads in the same node.
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Local-master

In our dynamic work allocation algorithm, we create one local-master thread per node.
The local-master acts as a conduit between the global-master and worker threads of the
same node. Each local-master is responsible for maintaining a work-queue of size 3 x M
chunks. Whenever the occupancy of the work-queue falls to M chunks, the corresponding
local-master requests the global-master for a work-item of size 2 x M chunks. Once the
local-master receives the requested work-item, it pushes 2 x M chunks into the work-
queue. The work-queue and the work-item sizes are designed such that the worker threads
never starve for work. We will elaborate more on this aspect below. The local-master
continues to request for work-items until it receives a no — more — work message form
the global-master. Once the local-master receives the no — more — work message from
the global-master, the former waits for the work corresponding to the chunks currently in
the work-queue to be completed. The local-master then sends a pending — work — done
message to the global-master and exits. The local-master, in addition to discharging the

responsibilities just described, corrects reads when it is free.

Worker

The role played by a worker thread is relatively straightforward. A worker-thread fetches
a chunk from the work-queue and performs error correction for the subset of reads corre-
sponding to the chunk. When the worker thread is done with a chunk of reads, it fetches an-
other chunk from the work-queue. This process is repeated until the work-queue becomes
empty and the local-master receives the no—more—work message from the global-master.
When the worker-thread reaches this point during execution, it informs the local-master and

exits.
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Chunk size

Given our choice of the sizes of the work-queue and the work-item, the only parameter
in the dynamic work allocation algorithm is chunk size. Now, we provide insight into
choosing the right value for this parameter. The chunk size must be big enough to hide
the round-trip latency between a local-master and the global-master. This is because there
are only M chunks in the work-queue, one chunk per worker thread on average, when
the local-master requests a work-item. Therefore, the time required to correct the subset
of reads making up a chunk must be long enough to cover the round-trip latency and any
delay at the global-master in servicing the request. On the other hand, the chunk size must
be small enough so that the time difference among nodes while draining out the queue after
receiving the no —more —work message from the global-master is insignificant. By taking
the network-latency of our cluster into account, a choice of 500 reads for the chunk size
achieves a good trade-off between the two conflicting requirements.

Note that in our implementation, the global-master and the local-masters request work
for themselves. This allows them to perform useful work when they are not discharging
their administrative responsibilities. All the worker threads exit before the corresponding
local-master exits and all the local-masters exit before the global-master exits. This ensures
smooth termination of the overall algorithm. When the error correction phase commences,
we initialize the queues corresponding to all local-masters using a block decomposition
of reads into chunks. This avoids the situation of all local-masters requesting the global-
master for work concurrently during initialization. The starting read ID on the global-
master is set after taking this initial allocation into consideration. Therefore, the global-

master can generate subsequent work-items correctly.

2.5.3 Results and Analysis

The speedup obtained by replacing the static work allocation scheme of the PSbEC algo-

rithm with our dynamic work allocation scheme is shown in Tables 2.4 and 2.5 for datasets
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D2 and D3 respectively. The results under the ‘Static Runtime’ and the ‘Dynamic Runtime’
columns correspond to the static and the dynamic work allocation schemes respectively. It
can be noticed that a maximum speedup of 6.53X is obtained in case of dataset D3. In
general, across both datasets D2 and D3, the speedup increases as the number of threads is
increased. This trend is in accordance with our observation in Section 2.4.3 that the load
imbalance increases with the number of threads. More importantly, the numbers under
the ‘Dynamic Runtime’ column scale in a near perfect manner as the number of threads is
increased. This trend corroborates the value of our dynamic work allocation scheme.

Table 2.4: Performance improvement obtained by replacing static work allocation with
dynamic work allocation for dataset D2 (Runtime is in seconds)

Threads | Static Runtime | Dynamic Runtime | Speedup
128 2273 1210 1.88
256 1347 618 2.18
512 713 320 2.23
1024 367 167 2.20

Table 2.5: Performance improvement obtained by replacing static work allocation with
dynamic work allocation for dataset D3 (Runtime is in seconds)

Threads | Static Runtime | Dynamic Runtime | Speedup
128 8676 2231 3.89
256 5131 1117 4.59
512 2829 561 5.05
1024 1844 282 6.53

In our experiments, we used as many as 80 nodes of the cluster. Even for the most
challenging configuration involving 80 nodes, the global-master in our hierarchical master-
worker scheme has spare cycles available after discharging the administrative responsibil-
ities assigned to it. Owing to this reason, the global-master is able to correct chunks of

reads.
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2.6 Memory-access Efficient Data Layout

2.6.1 Motivation

As mentioned in Section 2.2.2, the error correction phase is the most time consuming step
of the PSbEC algorithm and accounts for almost all the runtime in case of big datasets.
A core operation in this phase involves looking up elements in the spectrum. Since the
spectrum is stored as a sorted list, look up operations involve repeated binary searches over
the spectrum. The memory subsystem in modern computers is organized as a hierarchy,
with multiple levels of cache. Further, data is transferred across the hierarchy at cache line
size granularity. Binary search over a sorted list is inefficient in terms of memory accesses
given the memory organization of modern computer systems. This is because binary search
does not take advantage of the spatial locality property, which is a key factor in extracting
the maximum performance from the memory subsystem. In order to address this deficiency,

we propose to store the spectrum as a cache-aware layout.

2.6.2 Cache-aware Layout

We use the term ‘default layout’ to refer to the spectrum stored as a sorted list. The spec-
trum is stored as a default layout in case of the PSbEC algorithm, which serves as the
baseline. Further, we use N to represent the total number of elements in the spectrum and
B to represent the number of elements that can fit into one cache line. Binary search in the
default layout incurs O(log, V) lookups when the search is unsuccessful. This cost can be
reduced to O(log(p4+1)/V) lookups by arranging the elements using a cache-aware layout.
The cache-aware layout relies on the knowledge of the size of the cache line and hence the
name. Note that the cache-aware layout we use in this work is static in nature, in that it is
not updated once constructed.

The relationship between a cache-aware layout and its cache-aware search tree is anal-

ogous to that between a default layout and its binary search tree. A cache-aware tree is
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organized as a (B + 1)-ary tree, with each node in the tree having (B + 1) children in a
complete tree. An example cache-aware search tree and its binary counterpart are shown
in Figure 2.4 and 2.3 respectively for N=26 and B=2. The height of a cache-aware tree
is log(p+1)(N + 1). An unsuccessful search in such a tree incurs O(log(p11)/N) memory
accesses. This is a factor of O(logy(B + 1)) improvement when compared to an unsuc-
cessful search in the corresponding binary tree. A node in a cache-aware tree consists of
B elements, which among them define (B + 1) ranges. (B + 1) subtrees of this node are
arranged such that the elements in a subtree fall in the corresponding range. In Figure 2.4,

the node containing elements {9, 18} has three subtrees. The elements in these subtrees are

<9,>9 & < 18, and > 18, respectively.

Figure 2.3: Binary search tree for a sorted list of 26 elements with contents [1,2, ..., 26] in
case of default layout.

Construction

The cache-aware layout corresponding to a cache-aware tree is obtained by laying out the
nodes in level order from root level to leaf level. Within a level, the nodes are laid out

from left to right. Our algorithm for constructing the cache-aware layout is presented in
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Algorithm 1: Cache-aware Layout Construction

o 0 N B AW N =

—
| S I 1

13

14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Build — Cache — Aware — Layout(CAL, B, X,S,N)
Input : B, Elements per cache line (B > 3).

Input : X, Default layout (also sorted list).

Input : S, Start index for processing.

Input : N, No. of elements to process. // N mod B is 0.
Output : C'AL, Cache-aware layout of X.

L+ [logg,(N+1)] // Global variable.
Ailij=B(B+1),0<i<L// Global array.
Aoli] = Z;:o Ailj],0<i< L // Global array.

i< 0; CAL[S] < S; CAL[S + 1] «+~ L; CAL[S +2] + S+ N -1
Cidw < S Nigw < S // Current index and next index.

while 7 < N do

ST < Subtree — Size(d, 1)
z < x // Current node.
for j < Oto(B — 1) do

end
z<x// Subtree roots.
for j < Oto5 do

if ST'[j] > 0 then

end
end
i:i+B;CidmiCidx+B
end

Subtree — Size(ST,d, 1)

Input : d, Tree size; [, Tree levels.
Output : ST, B + 1 subtree sizes.
if d == B then

‘ return ST with (B + 1) zeros. // Last row :

end

// [z,y]: Range covered by current subtree.
T < CAL[CZ‘dx]; Y CAL[Cde + 2]

// l: No. of levels in current subtree.
Il CAL[Cigr +1]; d+y—z+1

|z 2+ ST[j); CAL[cig + j] < X[z]s 2 =2+ 1

Nide < Nigz + B; CAL[nq.) < 2; CAL[ng, +1] 1 — 1
242+ ST[jl; CAL[njge +2] <~ 2 — L2+ 2+ 1

All zeros.

dy « d— Ayll = 2]; g =d;/A1[l — 2]; r = dy mod Aq[l — 2]

STq] < Aq[l — 2]
for j < Oto(q — 1) do
| ST[j] « Aull — 2] + Asll — 2
end
for j < (¢ + 1)toB do
| ST[j] «r+ As[l — 2]
end
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Figure 2.4: Cache-aware search tree for a sorted list of 26 elements with contents
[1,2,...,26] in case of cache-aware layout.

Algorithm 1. While processing a node z, the algorithm computes the size of each of its
B + 1 subtrees, and thus determines the B elements of node x. The start and end indices
of each of the B + 1 subtrees are calculated and temporarily stored in the corresponding
children of z. The algorithm then proceeds to process the child nodes of z. The algorithm

works on all nodes at a particular level before proceeding to work on a level below it.

Lookup

The algorithm for looking up an element in the cache-aware layout is presented in Algo-
rithm 2. The search process commences at the root node of the tree and progresses down
the tree one level at a time. When the element being looked up is not found in the tree,
the search falls off of a leaf node of the tree. At a particular node, the algorithm parses up
to B elements of the node to determine the appropriate branch to pursue. If the element
being looked up is found in a node, the search process terminates and reports a success.
The maximum number of memory accesses required to look up an element corresponds to

the case when the element is not present in the cache-aware layout, and is O(log(p+1) V).
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Algorithm 2: Lookup Element in Cache-aware Layout

N S R W N -

e ®

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Search — In — Cache — Aware — Layout(B,CAL, E)
Input : B, Elements per cache line.

Input : C'AL, Cache-aware layout. N «+— |C' AL|.

Input : F, Element to be looked up in CAL.

Output : If F is found in C'AL, TRUE. Else, FALSE.

L < [logg,1(N+1)] // Global variable.
Aili]=B(B+1),0<i<L// Global array.
Ayli] = Zz‘:o Ai[j],0<i< L // Global array.
Cigz < 0 // Current index.

U< Jeurr < Jprev < 0 // Local variables.
for i «+ Oto(L — 1) do

for j...» < Oto(B — 1) do

if (CAL[¢igr + jewrr] == E) then
| return TRUE

end

if (CAL[¢igr + jeurr] > E) then
‘ last

end

end

Cida < A2 [Z] +jprev X Al[z} + jcurr x B
jprev «— jcurr

end

return FALSE

2.6.3 Parallel Construction and Lookup

Farallel Construction of Cache-aware Layout

The algorithms we presented in Section 2.6.2 are useful for construction of and lookup in
a cache-aware layout using a single thread. However, for clusters which are prevalent in
current times, multiple cores in a single node share the main memory. We can construct
the cache-aware layout in the fastest possible time if we can leverage the compute capabil-
ity of all the cores. Such an algorithm for constructing the cache-aware layout in parallel
is presented in Algorithm 3. We carefully designed this algorithm such that it builds on
top of Algorithm 1 and has negligible serial overhead. The sequential portion of the algo-

rithm just comprises of selecting 7' (number of cores or threads) elements, which form the
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starting elements for 7' equal-sized logical partitions. Each thread is then responsible for

constructing the cache-aware layout of a logical partition.

Algorithm 3: Parallel Cache-aware Layout Construction

Par — Build — Cache — Aware — Layout(CAL,SLP,T, B, X)
Input : 7', Number of threads.

Input : B, Elements per cache line (B > 3).

Input : X, Default layout (also sorted list). N <+ | X]|.

Output : C'AL, Cache-aware layout of X.

Output : SLP, Start elements of logical partitions.

// N mod (BxT) is 0.

// Partition X into T logical parts.

// Each thread will handle one logical partition.
7t4-0// Local variable.

8 fort < Oto(7' — 1) do

9 | SLP[] + X[&M)

A U1 AW N -

T

10 end

1 parallel for t < Oto(T — 1) do

12 q tXTN // Start index for processing.
13 T % // No. of elements to process.

// CAL—Thread function below is the same as
// Build — Cache — Aware — Layout function

// in Algorithm 1.

14 CAL — Thread(CAL, B, X, q,r)

15 end

16 return (CAL,SLP)

Lookup in Parallel Cache-aware Layout

Our algorithm for looking up an element in a cache-aware layout, which is constructed in
parallel, is presented in Algorithm 4. This algorithm is also designed such that it builds
on top of Algorithm 2. More specifically, the functionality of the block in lines 21-32 of
Algorithm 4 is the same as that of the block in lines 11-22 of Algorithm 2. However, owing
to minor differences in the construction of sequential and parallel cache-aware layouts, the
variables c;4, and L are initialized differently. The algorithm starts off by determining the
logical partition to which the element being looked up belongs to. After this, the search

process works as in Algorithm 2, on the identified logical partition, to report a success or a
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failure. The maximum number of memory accesses required to look up an element in case

of Algorithm 4 is also O(log(p+1)N).

Algorithm 4: Lookup in Parallel Cache-aware Layout

o X T AN R W N =

L v e v e e ey
o 0 N N N R WD = O

20
21
22
23
24
25
26
27
28
29
30
31
32
33

Search — In — Parallel — CAL(T, B,CAL,SLP, F)
Input : 7', Number of threads.
Input : B, Elements per cache line.
Input : C AL, Cache-aware layout. N < |C' AL|.
Input : SLP, Start elements of logical partitions.
Input : F, Element to be looked up in CAL.
Output : If F is found in C' AL, TRUE. Else, FALSE.
L <+ logg (5§ +1)] // Global variable.
Ailij=B(B+1),0<i<L// Global array.
Asli] = Z;:O Ailjl,0<i< L // Global array.
t <=t < Jeurr < Jprev < 0// Local variables.
for t < Oto(7'— 1) do
if (SLP[t] > E) then
‘ last
end
end
if (t == 0) then
| return FALSE
end
Cidx // Current index.
for i < Oto(L — 1) do
for j...r < Oto(B — 1) do

(t—1)x N
T

if (CAL[Cigx + jewrr) == E) then
| return TRUE

end

if (CAL[Cigz + jeurr] > F) then
‘ last

end

end

Cidx < AQ [Z] + .jprev X AI[Z} + jcurr X B
jprev — jcurr

end

return FALSE
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2.6.4 Results

The speedup obtained by substituting default layout with cache-aware layout is shown in
Tables 2.6 and 2.7 for datasets D2 and D3 respectively. In our implementation, kmers and
tiles are represented using 4 byte and 8 byte unsigned integers respectively. Further, the
cache line size is 64 bytes. Therefore, the branching factor of the cache-aware tree is 17
(+ % +1)and 9 (+ % + 1) for kmer and tile spectra respectively. For both datasets, the
maximum speedup is 1.7 X. Further, the speedup remains almost constant as the number
of threads is varied. This is because our dynamic work allocation algorithm is able to
distribute the load evenly across the threads, independent of the layout of the spectra.

The runtime under ‘Cache-aware Time’ column in Tables 2.6 and 2.7 includes the
cache-aware layout construction time. In order to correct invalid kmers/tiles of erroneous
reads, queries are placed in search of valid kmers/tiles by enumerating all possible kmers/tiles
at a hamming distance of up to 2 (h <— 2). We chose this value as it was previously shown
that using h < 2 leads to high quality error correction [1].

Table 2.6: Performance improvement by replacing default layout with cache-aware layout
for dataset D2 (Time is in seconds)

Threads | Default Time | Cache-aware Time | Speedup
128 1210 725 1.67
256 618 367 1.68
512 320 189 1.69
1024 167 98 1.70

Table 2.7: Performance improvement by replacing default layout with cache-aware layout
for dataset D3 (Time is in seconds)

Threads | Default Time | Cache-aware Time | Speedup
128 2231 1314 1.70
256 1117 659 1.70
512 561 332 1.69
1024 282 168 1.68
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2.6.5 Analysis

We also evaluated cache-oblivious layout [12, 13] in order to address the memory-access
inefficiency associated with the default layout. The relationship between a cache-oblivious
layout and its cache-oblivious search tree is analogous to that between a default layout
and its binary search tree. Cache-oblivious data structures and algorithms target optimum
number of memory transfers without the knowledge of organization and parameters of
the memory subsystem [12]. The algorithm for constructing a cache-oblivious tree from
a binary tree works as follows. The binary tree is partitioned at half of its height. This
process results in a top subtree and O(v/N) bottom subtrees, each of size O(v/N). The
partitioning process continues recursively on each subtree until we end up with subtrees
which can fit into one or two cache lines. It is common to layout subtrees in level order
starting from the topmost level, although this is not a requirement. The subtrees within
a level are laid out in left to right order. The algorithms for constructing and accessing
the cache-oblivious layout are described in detail by Ronn [13]. An unsuccessful search
in the cache-oblivious tree can incur up to 4 X loggN accesses in the worst case. The
speedup obtained by substituting default layout with cache-oblivious layout is shown in
Tables 2.8 and 2.9 for datasets D2 and D3 respectively. As the cache-aware layout is able
to leverage the knowledge of the cache line size, it performed consistently better than the
cache-oblivious layout in our evaluation.

Table 2.8: Performance improvement by replacing default layout with cache-oblivious lay-
out for dataset D2 (Time is in seconds)

Threads | Default Time | Cache-oblivious Time | Speedup
128 1210 877 1.38
256 618 441 1.40
512 320 230 1.39
1024 167 118 1.41

Now, we analyze the reasons for the discrepancy between the expected and the actual

performance of cache-aware and cache-oblivious layouts. Many of them are common be-
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Table 2.9: Performance improvement by replacing default layout with cache-oblivious lay-
out for dataset D3 (Time is in seconds)

Threads | Default Time | Cache-oblivious Time | Speedup
128 2231 1594 1.40
256 1117 798 1.40
512 561 406 1.38
1024 282 203 1.39

tween the two layouts and are as follows. First, cache-aware search tree exploits spatial
locality for performance. The key insight is to bring the elements, which are accessed
consecutively in a binary search tree, together in a spatial sense. However, as the topmost
levels of the binary search tree are accessed repeatedly, they benefit from temporal locality.
We expect that the elements in the top 20 levels of the binary tree experience cache hits due
to temporal locality. The space required by the top 20 levels of the binary tree for kmers
and tiles is 4 MB and 8 MB respectively. The total space requirement is 12 MB, whereas
the capacity of the last level cache is 20 MB. The second factor is related to the charac-
teristic that not all lookups will be unsuccessful, and those lookups that are successful can
hit at various levels in the tree. Finally, elements in the bottom [ogs B levels of the binary
tree benefit from spatial locality as well. The three factors outlined above account for the
difference between the expected and the actual performance of memory-access efficient
layouts.

In addition, cache-oblivious layout suffers from two disadvantages, which are unique
to it. First, some of the lowest level subtrees in cache-oblivious layout can suffer from bad
alignment resulting in them staggering across two cache lines. Second, the lack of knowl-
edge of the cache line size affects this layout. These two factors are primarily responsible
for the slower speed up of cache-oblivious layout when compared to cache-aware layout.
However, incomplete cache-oblivious search trees experience a slight advantage in our
implementation due to the manner in which we handle them. Specifically, we handle an in-
complete cache-oblivious search tree as a collection of multiple complete cache-oblivious

search trees of successively smaller sizes, to manage complexity.
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2.7 Supporting Big Datasets

In Sections 2.4, 2.5, and 2.6, we developed strategies to address three major shortcomings
of the Parallel Spectrum-based Error Correction (PSbEC) algorithm. As our first optimiza-
tion, we maintained only one copy of the spectrum per physical node instead of a copy
of the spectrum per process. Second, we designed a dynamic work allocation scheme to
solve the load imbalance problem. Third, we proposed to represent the spectrum using a
cache-aware layout in order to improve the memory-access efficiency. Combining these
three optimizations allows us to expand the scope of the PSbEC algorithm to accomplish
error correction of big genomic datasets. Such datasets arise in case of long and complex
genomes.

As a demonstration of the capability of our enhanced PSbEC algorithm, we performed
error correction of a human dataset (D1) consisting of nearly 1.55 billion reads. Other
details related to this dataset are available in Table 2.1. For the human dataset D1, the
sizes of the kmer-spectrum and the tile-spectrum are 1,754,649,194 and 3,453,678,518
respectively. For the original PSbEC algorithm, the per core memory budget of 8 GB on
our cluster is severely limited in comparison to the total amount of memory required to

maintain both the spectra. Using our enhanced PSbEC algorithm, we are able to complete

6 cores

error correction of dataset D1 in 8.7 hours using 1280 threads («— 80 nodes x 16 <222).

Dataset D1 cannot be corrected using the original PSbEC algorithm on our cluster as the
memory available is significantly less than the memory required. Further, the cumulative
speedup due to our proposed optimizations is 11 X for dataset D3, when 1024 threads
are used. Based on this information, we believe that error correction using the original
PSbEC algorithm would be much slower in comparison to our enhanced PSbEC algorithm
under the hypothetical condition that memory is not a constraint. These results corroborate
the importance of our enhanced PSbEC algorithm for performing error correction of big

datasets. Note that the maximum number of nodes we are able to use on the cluster is 80.
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2.8 Related Work

Genomic read error correction received a lot of attention over the years due to its promi-
nence. The error correction utilities can be mainly classified into three categories: (1)
Spectrum based, (2) Suffix array/tree based, and (3) Multiple Sequence Alignment (MSA)
based [14]. While the spectrum-based algorithms are meant for correcting substitution er-
rors, algorithms in the other two categories can also correct insertion/deletion errors. Due
to the predominant use of Illumina sequencers, which mainly make substitution errors,
spectrum-based algorithms received the most attention. As our work also falls into this
class, we only survey prior work in the spectrum-based algorithms category. For informa-
tion related to tools in other categories, we refer the reader to the survey by Yang et al.
[14].

There is a vast body of work in the spectrum-based algorithms category meant for
correcting substitution errors [15]. The Parallel Spectrum-based Error Correction (PSbEC)
algorithm proposed by Shah et al. [1], and therefore our Enhanced Parallel Spectrum-
based Error Correction (EPSbEC) algorithm, provides a generic framework to parallelize
any SbEC algorithm. Two characteristics are key to developing a parallel SbEC algorithm:
(1) a way to construct the spectrum in parallel, and (2) a means for supporting queries
to the spectrum in parallel. The PSbEC and EPSbEC algorithms support both of these
aspects. Reptile [11] is just used as a representative of the category of SbEC algorithms to
demonstrate the parallelization strategies. Given this context, we refrain from discussing
any SbEC algorithm specifically. Instead, we refer to the work by Molnar et al. [15] for an
extensive survey of various SbEC algorithms.

In recent related work, Molnar et al. [15] evaluated the performance (both biological
and computational) of various SbEC tools on a human dataset. While most of the tools
failed to handle the human dataset due to its size, three tools — Musket [16], RACER [17],

and SGA [18] — ran to completion. All three tools use shared-memory parallelism and
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were run on a shared-memory machine with 32 cores and 1024 GB of memory. RACER
and SGA, which produced results with the best biological quality, required a large amount
of memory and/or incurred a long runtime. As our EPSbEC algorithm is designed for
distributed-memory systems and scales almost perfectly with the number of nodes, it ad-
dresses the limitations of the algorithms designed for shared-memory in order to realize
significant performance benefits.

DecGPU [8] and PSbEC [1] are the only SbEC algorithms designed to run on distributed-
memory systems. DecGPU was demonstrated only for 32 cores and did not show good
parallel scalability. In this work, we enhanced the PSbEC algorithm to improve its scope
and speedup significantly.

The cache-aware layout described in Section 2.6 is similar in spirit to a B-tree [19].
However, in contrast to a B-tree, our cache-aware layout of the spectrum is static in nature
in that it is not updated once constructed. As our cache-aware layout does not need to
support insertion/deletion of elements, it is more efficient in comparison to a general B-

tree.
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CHAPTER 3
DISTRIBUTED MEMORY PARTITIONING OF HTS READ DATASETS

3.1 Introduction

Since the advent of short read high-throughput sequencing (HTS) machines, the cost of
sequencing has been declining and the throughput has been increasing exponentially [2].
For instance, using the recent NovaSeq line of instruments from Illumina, the current mar-
ket leader, sequencing cost is expected to come down to $100 per human genome. As a
consequence of these revolutionary advances, HTS has found its use in a diverse range
of applications beyond whole-genome sequencing. These include, among many others,
genome resequencing, characterizing the transcriptome, cataloging of metagenomic sam-
ples, and providing personalized molecular diagnosis. See [3] and [2] for reviews on HTS
and its applications.

Unfortunately, the large volumes of data generated from HTS experiments present sig-
nificant computational challenges for downstream analysis pipelines. Analysis of such big
datasets is compute intensive and requires a huge memory footprint. These challenges
are expected to get more difficult, as more and more data becomes available in the fu-
ture. Surveys note that many laboratories spend significantly more time and resources on
the computational analysis of HTS data than on generating the data itself [9, 10]. Many
investigators attempt to address the memory demands by resorting to shared-memory ma-
chines with a large memory capacity. However, the number of hardware threads available
for computation in such machines is limited. The challenges posed by ever growing se-
quencing throughput and the limitations suffered by currently available sequence analysis
methods provide the context for our proposed solution.

In this chapter, we present an end-to-end distributed-memory parallel algorithm for par-
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titioning HTS short read datasets. The goal of partitioning a large-scale HTS read dataset
is to enable fast analyses using distributed-memory parallel systems. Our algorithm com-
prises of the following steps: (1) Building a de Bruijn graph from the given set of input
reads, (2) Compacting the de Bruijn graph to reduce its size, (3) Partitioning the resulting
compacted graph using a graph partitioner, and (4) Generating a partition of the read dataset
from the partitioning of the de Bruijn graph. We also propose an algorithm to evaluate the
quality of the partitioned read datasets.

Excluding sequencing errors, the size of the de Bruijn graph is expected to track the
cumulative length of the source DNA molecules from which the read dataset is generated.
Every read traces a path in the de Bruijn graph and there are overlaps among paths traced
by multiple reads. Based on these properties, our insight is that if we can generate a good
partitioning of the de Bruijn graph associated with a set of reads, it can be translated into
a good partitioning of the read set itself. We demonstrate that our solution produces high
quality de Bruijn graph partitions, and as a consequence, high quality partitioning of read
datasets, for an assortment of large-scale datasets. Such high quality partitioning enables
fast distributed-memory parallel analyses of read datasets by keeping the communication
necessary to execute the application low.

Since our approach leverages de Bruijn graph as an intermediate data structure, we are
able to generate partitions of a set of reads without computing pairwise similarity among
reads, which is known to be challenging both in terms of computation and memory. Vari-
ants of de Bruijn graph gained significant adoption for analyses of HTS reads, a prominent
example being de novo genome assembly. State-of-the-art distributed-memory parallel as-
semblers use hashing to distribute the de Bruijn graph. This approach destroys data locality,
and hence increases communication costs during downstream analyses. In contrast, our ap-
proach for partitioning the de Bruijn graph respects locality. Therefore, the partitioned de
Bruijn graph we generate can be used by analyses that predominantly make use of some

variant of the graph.
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We present our proposed algorithms for de Bruijn graph and read set partitioning in
Sections 3.4 and 3.5 respectively. Using real datasets, the respective sections also discuss
the quality of the generated partitions and the corresponding runtime incurred. Information
about datasets and our methodology is provided in Section 3.3. Before we proceed to
describe the proposed algorithms, we review the notations and relevant data structures used

in this chapter in Section 3.2.

3.2 Background

3.2.1 Representation of Sequences

A DNA molecule is comprised of two strands. The forward strand of the molecule, de-
fined in the 5 to 3’ direction, is modeled as a sequence of characters from the alphabet
set ¥ = {A,C,G,T}. Given such a sequence of n characters, s = s1,...,s,, its reverse
complementary strand i.e., the sequence in the 3’ to 5 direction, is 5 = ¢(s,),...,c(s1),
where c¢(x), x € 3 is the mapping function : ¢(A) — T, ¢(C) — G, ¢(G) — C, and ¢(T) — A.
A DNA molecule can be represented by the pair (s,3) or only by the canonical sequence
§, which is the lexicographically smaller of the two strings s and S i.e., min(s,s). Unless
specified otherwise, we use the canonical representation by default.

A k-length DNA sequence is termed a k-mer. A k-molecule (e.g. (m,m)) and canoni-
cal k-mer (e.g. m) are similarly defined. Given a read set R, the set of all the k-mers of R is
represented by M*. M* denotes the set of canonical k-mers corresponding to M/*. In order
to obtain M* or M*, each read r € R of length [ is decomposed into (I — k + 1) k-mers,
by sliding a window of length k along the read. Coverage of a read set R is defined as the
average number of times a base in the source DNA molecule(s) appears in R. Most widely
deployed HTS instruments from Illumina are capable of generating paired-end reads. A
paired-end read consists of two reads which are sequenced from opposite ends of a longer

DNA fragment, referred to as insert.
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3.2.2 de Bruijn Graph

While many variants of de Bruijn graph have been proposed for analysis of short read
datasets, we use a definition that closely resembles the one in [20]. We define de Bruijn
graph as a graph with k-molecules (or equivalently the set of canonical k-mers MP*) as its
vertices. An edge is included between a pair of vertices v and v, if there is a (k — 1) length
suffix-prefix overlap between a strand of v and a strand of v. In other words, for any edge
between vertices u and v, the corresponding merged (k + 1)-mer exists in M**!. An edge
incident to a vertex u of the de Bruijn graph is called an in-edge (resp. out-edge) w.r.t. u
if the corresponding (k — 1) length overlap includes the prefix (resp. suffix) of u. Note
that a vertex u can have at most four in-edges and at most four out-edges incident to it, and
hence a maximum of eight neighbors. The key difference between the above definition of
de Bruijn graph and the one proposed in [20] is that an undirected edge representation is

sufficient for our purposes.

3.2.3 Graph Partitioning

Let G = (V, E,W,,W,) be an undirected graph. Here, V' is the set of vertices, E is the
set of edges, and functions W, : V' — R and W, : E — R define the vertex and the edge
weights respectively. In the representation of an undirected graph G, an edge between two
vertices u € V and v € V appears twice in F, as two ordered pairs (u,v) and (v, u). Let
Vi, ..., Vy, be a partition of G’s set of vertices such that V; N'V; = 0 (for i,j € {1,m},

1# j)and Vi U ... UV, = V. Then, the balance of the partition is defined as

maxlgigm C(‘/z)

21§i§m C(Vi)/m

where C'(V;) is the sum of the weights of all vertices v; € V;. The cut of the partition is
defined as the total sum of weights of edges between v € V; and v € Vj for every pair

(Vi, V), 1 <i < j <m.
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The graph partitioning problem is defined as follows: Given G, a positive integer m <
|V'|, and a parameter € > 0, find a partition V1, ..., V,, of the vertices of G that minimizes
the cut of the partition, while bounding the balance of the partition to at most (1 + ¢). We

extend the definitions of cut and balance to read dataset partitioning in Section 3.5.4.

3.3 Methodology

Table 3.1 lists key properties of the datasets used in evaluating this work. All the three
datasets, namely Fish, Bird, and Snake, were provided as part of the Assemblathon 2 com-
petition [21]. These datasets are publicly available and the instructions for obtaining them
are described in [21]. The sizes of the input read sets, for all the datasets, correspond to
over 50X coverage based on the estimated length of the respective genomes.

Table 3.1: Datasets used for experimental evaluation

Dataset Genome length  Dataset size Read length

(Giga base-pairs) (Giga bases) (Bases)
Fish 1.0 Gbp 52.7 Gb 101
Bird 1.2 Gbp 70.7 Gb 101
Snake 1.6 Gbp 84.1 Gb 121

We ran our experiments on a cluster with a 40 Gb QDR InfiniBand interconnect. Each
node in the cluster has two 2.0 GHz 8-core Intel Xeon E5-2650 processors, for a total of
16 cores per node. The 16 cores in a node share 128 GB of main memory. For our ex-
periments, we used up to 32 nodes in the cluster, for a total of 512 cores. Further, we
used distributed-memory parallel programming with OpenMPI 1.8.6. For reporting per-
formance results, each experiment was repeated three times. The maximum wall-times
from all processes were collected for each run, and the minimum times amongst the re-
peats of an experiment are reported as they closely represent the capabilities of the system.
Other details concerning experimental methodology are provided at appropriate places in

the chapter.
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3.4 de Bruijn Graph Partitioning

3.4.1 Motivation

Estimating pairwise similarity among reads, for the purpose of partitioning a large set of
reads, is known to be challenging both in terms of computation and memory. Therefore, we
use the de Bruijn graph, constructed from the read set, to accomplish our end goal of read
set partitioning. Excluding sequencing errors, the size of the de Bruijn graph is expected
to be proportional to the cumulative length of the source DNA molecules from which the
read set is generated. Therefore, the use of de Bruijn graph allows us to overcome both
compute and memory limitations. Since reads trace paths in a de Bruijn graph, a high
quality partitioning of the de Bruijn graph can be used to generate a high quality partitioning
of the read set itself. Furthermore, the abundance of applications that make use of de Bruijn
graph as a primary data structure, including de novo assembly, can directly leverage the
partitioned de Bruijn graph.

Owing to their significance, the problems of de Bruijn graph construction and com-
paction received attention from several researchers. Majority of the proposed solutions are
targeted at single-node machines, where multiple cores share the main memory. They
are not suitable in the context of our proposed solution approach, which is meant for
distributed-memory parallel systems. There are a few distributed-memory parallel solu-
tions for compacting the de Bruijn graph. However, they cannot be leveraged due to the
unique requirements of our solution approach. We need to explicitly keep track of the graph
vertices, edges, and their weights. In this section, we present the data structures and the

algorithms intended for constructing, compacting, and partitioning de Bruijn graphs.

3.4.2 Parallel Construction of de Bruijn Graph

We refer to a vertex u in the de Bruijn graph as a branch vertex if it has more than one

in-edge or more than one out-edge incident to it. Otherwise, w is a chain vertex. If a chain
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vertex u has only one neighbor or has a branch vertex as one of its neighbors, then wu is
a terminal vertex. In the de Bruijn graph, a chain or a unitig is a sequence of vertices
(c1,...,cq) that satisfies the following conditions: (a) ¢;41 is a neighbor of ¢;; (b) ¢;, 1 <
1 < d are chain vertices, and (c) c; and ¢4 are terminal vertices. The weight of a chain
is the sum of weights of the edges between the vertices in the chain. For example, in the
graph shown in Figure 3.1, vs, v3, v4, v7 and vg are chain vertices, whereas vy, v; and vg are

branch vertices. (v2, v3,v4) and (vr, vg) are chains with weights 8 and 6 respectively.

Figure 3.1: A fragment of the DBG. in-edges and out-edges are shown to the left and the
right of a vertex respectively.

To enable efficient manipulation of the de Bruijn graph, we represent the graph as a
list of tuples ((u,v),w), where (u,v) is an ordered pair representing the edge between
vertices u and v, and w is the edge weight i.e., the number of times the corresponding
merged (k + 1)-mer occurs in the read set. We classify an edge ((u,v), w) in the de Bruijn
graph into one of two types: An edge (u,v) is a chain edge if both u and v are chain
vertices. An edge (u,v) is a branch edge if either u or v is a branch vertex. Note that
the edge type definitions are complementary to each other so that every edge in the graph
belongs to exactly one of the two types. As an example, in the graph shown in Figure 3.1,
((v2,v3),3), ((v3,v2),3), ((v3,v4),5), ((v4,v3),5), ((v7,08),6), and ((vs, v7),6) are chain
edges, and the rest of the edges are branch edges.

Algorithm 5 constructs in parallel the de Bruijn graph for the input read set 12 by gen-
erating the two types of edges defined above. In Line 3, we make use of Kmerind [22]

to build a distributed index of k-molecules. The entries in the index are of the form:
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(u, [wy,...,ws]). Here, the first element u is the k-molecule in its canonical represen-
tation, and the second element is an array of integers which contains, corresponding to
each of u’s eight possible neighbors, the number of times the respective (k -+ 1)-mer occurs
in R. Line 6 ensures that the frequency of occurrence of every (k + 1)-mer in R is greater
than a threshold parameter. This check enables filtering of low-frequency k-mers, which

are produced due to sequencing errors. The value of this parameter is specified by the user.

Algorithm 5: Parallel construction of de Bruijn graph

Input: R, the set of reads
Output: Two distributed lists of edges: C, chain edges, and B, branch edges

1 parallel j = processor’s rank do

2 Initialize B, C, T to empty list of tuples.

3 7T < Construct distributed index of k-molecules for R using Kmerlnd [22].

4 | for (u,|wy,...,wg]) € Zdo

5 Let vy, ..., v4 be the k-molecules of the in-edge neighbors and vs, . . . , vg be
the corresponding out-edge neighbors (w.r.t the alphabet set X). Let w; be
the weight corresponding to edge (u, v;).

6 for 1 <i < 8do Setw; to 0 if w; < (k + 1)-mer threshold.

7 nbrs; < No. of non-zero elements in [wy, . . ., wy].

8 nbrs, < No. of non-zero elements in [ws, . . ., wg].

9 if ((nbrs; > 1) V (nbrs, > 1)) then

10 for 1 < i < 8do Append tuples ((u,v;), w;) and ((v;,u),0) to lists B

and 7T respectively, if w; > 0.

11 else if ((nbrs; + nbrs,) > 0) then

12 ‘ for 1 < i < 8do Append tuples ((u,v;), w;) to list C, if w; > 0.

13 end

14 end

15 Append T to C, and sort the distributed list C in parallel.

16 Remove from C those edges that appear more than once and add them to B.

17 end

Lines 7-13 in Algorithm 5 enable the segregation of edges into chain edges and branch
edges, which together constitute the undirected de Bruijn graph. By counting the number
of non-zero entries of the weight vector of an entry (u, [wy, ..., ws]) (in Lines 7 and 8), it
is possible to check if u is a chain or a branch vertex. Accordingly, the tuple ((u, v;), w;) is

added either to the list /3, if « is a branch vertex (in Line 10), or to the list C, if w is a chain
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vertex (in Line 12).

However, since the index is distributed, it is not possible, with only locally available
information, to verify if v; is a branch vertex or a chain vertex. This implies that after
adding all the tuples (i.e, at the end of the loop at Line 13), the branch edge list 3 does not
include edges ((u,v),w), where v is a branch vertex and u is a chain vertex, whereas the
chain edge list C includes edges ((u,v),w), where v is a branch vertex. In order to update
the lists C and B, a temporary list 7 containing edges ((u, v), w) such that v is a branch
vertex is created (line 10). In Lines 15— 16, by making use of 7 and parallel sorting, the
edges ((u, v), w) in C with v being a branch vertex are identified and moved from C to 5.

Categorization into branch and chain edges allows the algorithms described in the fol-
lowing subsections to label the chain vertices and subsequently compact the labeled chains
to generate a significantly smaller graph. Note that the distributed index of k-molecules
constructed by KmerInd recognizes in-edges and out-edges separately. However, as we
mentioned in Section 3.2.2, an undirected edge representation of the de Bruijn graph suf-
fices beyond this point for our purposes. Accordingly, the output lists of Algorithm 5 are

comprised of only undirected edges.

3.4.3 Parallel Compaction of de Bruijn Graph

The next step in our solution is to compact the de Bruijn graph. De Bruijn graphs con-
structed from read sets are known to contain several long chains. De Bruijn graph based
de novo assemblers make use of this observation to identify unambiguous segments in the
graph. We leverage this observation to reduce the size of the graph, thus reducing the
runtime and the memory requirements for subsequent steps.

The de Bruijn graph is compacted as follows: First, using the edge lists constructed
in the previous subsection, Algorithm 6 labels all the chains in the graph. Algorithm 7
then replaces vertices in every chain by their chain label. Back to the example shown in

Figure 3.1, the chains (vq, v3,v4) and (v;,vg) are compacted and the resulting compact
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graph is shown in Figure 3.2.

Figure 3.2: Compacted form of the de Bruijn graph fragment shown in Fig. 3.1. The chains
(v9, v3,v4) and (v7, vg) are replaced by labels [; and [, with weights 8 and 6 respectively.

Algorithm 6 describes the steps to label and compute weights of all the chains, where
the weight of a chain is defined as the sum of the weights of all the edges that constitute the
chain. Here, we make use of the fact that in the subgraph induced by only the chain edges,
each chain is a connected component. This implies that labeling the chains is equivalent
to labeling the connected components of the induced subgraph, which is accomplished as
follows. Given the distributed list of chain edges, we use the parallel connectivity algorithm
proposed in [23] (Line 3 in Algorithm 6) to identify the chain to which each chain vertex
belongs to. The connectivity algorithm takes [ogs L steps to complete this identification for
all the chains, where L is the number of vertices in the longest chain.

After labeling all the chain vertices, the chain weights are computed as follows. In
lines 4-11, a temporary distributed list of tuples 7 is created. Each tuple (u,v,l, w) in T
corresponds to a chain edge (u,v) and includes the edge weight and u’s chain label. T
is then sorted in parallel by its label, and the total weight of the chain is computed as the
sum of the weights of all tuples sharing the same label (lines 12—-16). The final output
from Algorithm 6 (prepared in lines 17-20) is V), a distributed list of tuples, where each
tuple corresponds to a chain vertex and contains the vertex ID (i.e., the canonical k-mer
representing the vertex), its chain label, and the chain weight.

Algorithm 7 uses outputs from both Algorithms 5 and 6 to complete the graph com-
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Algorithm 6: Labeling of de Bruijn graph chain vertices

Input: Distributed list of chain edges C output by Algorithm 5
Output: V, list of chain vertices. Each element in V is a tuple of three elements
(u,l,w), where u is a chain vertex, [ is the chain label, and w is the label

weight.
1 parallel j = processor’s rank do
2 Initialize V to an empty list of tuples.
// Attribute chain IDs (labels) to vertices
3 Use the connectivity algorithm proposed in [23] to assign chain IDs to vertices in

C. The output of this algorithm is £, a distributed list of tuples (u, ). Here, u is
a chain vertex and [ is the ID of the chain to which u belongs to.
// Compute chain weights

4 Initialize 7 to an empty list of tuples. 7 accommodates tuples of four elements
(u,v,l,w), where u and v are graph vertices, [ is a label, and w is the edge
weight.

5 for ((u,v),w) € C do Append tuple (u, v, null, w) to T.

6 for (u,l) € £ do Append tuple (u,u,,0) to 7.

7 Parallel sort 7 by the first element of the tuple.

8 foreach segment T' of T s.t. everyt € T has the same first element do

9 (ug, vy, Iy, wy) < tuple in T', whose label is not null.

10 Set [; as the label for all the tuples of T’
1 end

12 Parallel sort 7 by the label element of the tuple.

13 foreach segment T of T s.t. everyt € T has the same label do
14 wy <— sum of the weight values of all the tuples in 7'.

15 Set w, as the weight for all the tuples of 7.

16 end

// Generate output list

17 Parallel sort 7 by the first element of the tuple.

18 foreach segment T of T s.t. everyt € T has the same first element do
19 Let (uy, vy, Iy, wy) be the first element of 7.

20 Append (uy, l;, w;) to V.

21 end

22 end
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paction. It outputs, for each edge in the compact de Bruijn graph, a tuple (u, v, we, wu),
where v and v are the vertices in the compact graph, we is the edge weight and wu is the
vertex weight of u. To construct the compact de Bruijn graph, Algorithm 7 starts with the
distributed list of branch edges B from Algorithm 5. For each edge ((u,v),w) € B, a
tuple in the output format with zero vertex weight i.e., (u, v, w, 0), is added to £ (Line 3 in
Algorithm 7). Recall that in a branch edge (u, v), either u or v should be a branch vertex,
which in turn implies that either v or u can potentially be a chain vertex. Such entries in £
are identified and the chain vertex is replaced by its corresponding label.

Lines 4-11 replace the vertex w in the tuples by its label, if u is a chain vertex. The ver-
tex weights are updated with the corresponding label (chain) weights. Similarly, Lines 12—
18 replace the vertex v by its label, if v happens to be a chain vertex. In both cases, the
distributed list of vertex-label mapping ) constructed in Algorithm 6 is used to match the
vertex IDs. Finally, in Lines 19-23, the weights for edges and vertices of the compact

graph are assigned.

3.4.4 Partitioning of Compacted de Bruijn Graph

We treat the compact de Bruijn graph output by Algorithm 7 as a standard graph data struc-
ture (as defined in Section 3.2.3) and find a partition for this graph. Graph partitioning is an
important problem with applications in several domains and hence, has received significant
attention from researchers over the years [24]. While the details of the various solution
approaches proposed differ from one another, most of them adopt the multilevel graph par-
titioning paradigm first introduced in [25]. The key idea is to recursively coarsen the graph
to reduce its size, partition the coarsest graph, and recursively uncoarsen the graph to its
original size. Refinement is typically performed after every uncoarsening to improve the
cut, defined in Section 3.2.3. Graph partitioning algorithms differ in the exact techniques
they adopt for coarsening, partitioning, and uncoarsening.

We use a recently proposed distributed-memory graph partitioning algorithm called
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Algorithm 7: Parallel compaction of de Bruijn graph

Input: (a) B, list of branch edges, output from Algorithm 5, and (b) V, list of labeled
chain vertices, output from Algorithm 6. Both lists are distributed.

Output: Compact de Bruijn graph as a distributed list of edges, £. £ includes tuples
with four elements (u, v, we, wu), where u and v are the vertices of the
compact graph, we is the edge weight, and wu is the node weight of w.

parallel j = processor’s rank do

2 Initialize £ to an empty list of tuples.

3 for ((u,v),w) € Bdo Append (u,v,w,0) to E.

// Replace chains in the graph by their labels

o

4 for (u,l,w) € ¥V do Append (u, [, null,w) to £.

5 Parallel sort £ by the tuple’s first element.

6 foreach segment E of £ that share the same first element do

7 (ug, by, null, wuy) < tuple ¢ in E whose third element is null.
8 Set the first element of all the tuples in £ to [;.

9 Set the fourth element of all the tuples in £ to wu,.

10 Remove ¢ from €.

11 end

12 for (u,l,w) € Vdo Append (I, u,null,w) to &.

13 Parallel sort £ by the tuple’s second element.

14 foreach segment E of £ that share the same second element do
15 (l¢, ug, null, wvy) < tuple ¢ in E whose third element is null.
16 Set the second element of all the tuples in £ to [;.

17 Remove ¢ from €.

18 end

// Update weights
19 Parallel sort £ by the first element.

20 foreach segment F of & that share the same first element do
21 sw < sum of all the edge weights of ¢ € .

22 for ¢ € F do Add sw to wu of t.

23 end

24 end
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KaHIP [26] to partition the compacted de Bruijn graph output by Algorithm 7. KaHIP
makes use of size-constrained label propagation algorithm during coarsening and uncoars-
ening phases, and coarse-grained evolutionary algorithm for partitioning the coarsest graph.
In the context of the multilevel graph partitioning framework, the labeling of de Bruijn
graph chains proposed in Algorithm 6 enables rapid compaction and un-compaction of the
de Bruijn graph. As we will demonstrate in Section 3.4.5, this allows KaHIP to gener-
ate partitions significantly faster than if they were generated using the original de Bruijn
graph. Use of domain knowledge about sequencing read sets and de Bruijn graphs enables

realization of this efficient approach.

3.4.5 Results and Analysis

In this section, for the three datasets listed in Table 3.1, we present quality and runtime
results for the parallel algorithms to construct, compact, and partition a de Bruijn graph.

First, we evaluate the impact of compaction on reducing the size of the de Bruijn graph.
Table 3.2 shows the compaction ratio obtained for all three datasets. It is computed as a
ratio of the number of vertices in the de Bruijn graph before compaction to the number of
vertices in the compact de Bruijn graph. We obtain a mean compaction ratio of 47 across
the three datasets, implying that our proposed approach significantly reduces the size of the
de Bruijn graph. For constructing the initial de Bruijn graph, we used a value of 5 for the
threshold parameter. This implies that a k-molecule w is filtered out, if all edges incident
to v have a weight < 4. For the parameter k, we used a value of 31. We used KmerGenie
software [27] to estimate the optimal k-mer length. However, both of these parameters can
be specified by users. Note that the compact de Bruijn graph produced by our algorithm
can be used by de novo assemblers for rapid unitig (unambiguous segment) generation in
distributed-memory parallel settings.

Next, we present the cut and the balance values for the de Bruijn graph partitions gener-

ated by our algorithm. These measures, defined earlier in Section 3.2.3, serve as the quality
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Table 3.2: Reduction in the size of the de Bruijn graph due to compaction

Dataset Plain graph Compacted graph Compaction

(No. of vertices)  (No. of vertices) ratio
Fish 733,774,187 16,672,988 44
Bird 1,208,521,390 25,740,770 47
Snake 1,361,026,568 27,199,895 50

indicators of a graph partition. A good graph partition has low cut value and a balance value
close to 1. Table 3.3 shows the cut ratios computed for the partitions corresponding to the
de Bruijn graphs of the three datasets. The cuf ratio refers to the ratio of the sum of weights
of edges cut to the sum of weights of all edges in the graph. The low cut ratio obtained for
all the three datasets demonstrates that our solution produces high quality partitioning of
de Bruijn graphs. All the partitions have a balance value of 1.03.

Table 3.3: Quality of de Bruijn graph partitioning

Dataset || Sum of weights of all Sum of weights Cut

edges in the graph of edges cut ratio
Fish 13,593,910,042 19,252,245 1.42 x 1073
Bird 22,462,771,436 22,337,839 0.99 x 1073
Snake 29,754,489,857 47,197,297 1.59 x 1073

One of the input parameters for the graph partitioning algorithm is the number of de-
sired partitions. One way to choose this parameter is to set it to the number of available
compute nodes in the distributed system. However, if there are thousands of distributed
nodes available in a system, then the output graph partitions will be too fragmented, which
in turn increases the communication cost required to transfer neighboring regions of the
graph among the nodes. Therefore, this parameter needs to be carefully selected for a
given dataset.

We choose the number of partitions based on the available memory per node, as fol-
lows. Suppose, L is the approximate total length of the source DNA molecule(s), in Gbp,

corresponding to a read dataset, and memy bytes are required for analysis, per base of the
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genome. Then, to analyze the dataset, (Lg x mem;) GB of memory is required. However,
if mem,, is the size of memory available per node in the distributed system, expressed in
GB, at least n,, = {Lamxe—”;iln”’w number of nodes are required to run the analysis. We select
the number of desired partitions to be n, because n,, partitions are sufficient to run the anal-
ysis using n, nodes in the distributed system. This does not prevent the user from running
the analysis using more than n, compute nodes in the system. To run the analysis with
more than n, nodes, a partition is duplicated on multiple nodes and only a fraction of the
partition is analyzed in a node. For example, to run the analysis with 128 partitions using
1024 nodes, each partition is duplicated in 8 nodes and each node processes only 1/8-th
of the locally available partition. Such a duplication scheme incurs far less communication
cost compared to processing as many partitions as the number of available nodes. With
a conservative assumption of mem,, = 32 and mem; = 64, the number of partitions for
Fish, Bird, and Snake datasets are computed as 106, 142, and 168, respectively.

Finally, we present runtime and parallel scalability results of Algorithms 5, 6, and 7. Ta-
ble 3.4 lists the runtime in seconds incurred by each of the algorithms individually (columns
2-4) and also the total runtime (column 5), for the Bird dataset. We present results by vary-
ing the number of available cores from 64 to 512. Note that the number of MPI processes
used is the same as the number of cores. Our algorithms demonstrate good scalability
across the board. The discrepancy in runtime (most notable in case of 64 cores) is due to
interference from concurrently running jobs, while accessing the interconnection network
and the parallel file system. With 512 cores, our solution is able to compute the compacted
de Bruijn graph for a read set of size 71 Gbp in 2.7 minutes. We refer the reader to [26] for
a demonstration of the parallel scalability of KaHIP. In our experiments, KaHIP took 4.3
minutes to partition the compacted de Bruijn graph for the Bird dataset using 512 cores.
We also attempted to partition the initial (i.e., un-compacted) de Bruijn graph generated by
Algorithm 5 directly. KaHIP spent an order of magnitude more time to partition the ini-

tial de Bruijn graph, validating the merit behind our approach of compacting the de Bruijn
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graph prior to partitioning the graph.

Table 3.4: Runtime in seconds for the Bird dataset for de Bruijn graph construction (Algo-
rithm 5), chain labeling (Algorithm 6) and compaction (Algorithm 7).

No. of || Algorithm 5 Algorithm 6 Algorithm 7 Total
cores (s) (s) (s) (s)
64 391 790 33 1214
128 159 309 11 479
256 76 180 6 262
512 45 115 3 163

3.5 Read Dataset Partitioning

3.5.1 Motivation

Algorithms 5, 6, and 7 described in the previous section facilitate partitioning of the de
Bruijn graph corresponding to a read set R. Further, we demonstrated that the partitions
generated are of very high quality. Since reads trace paths in the de Bruijn graph, high
quality partitioning of the de Bruijn graph can be translated into a high quality partitioning
of R. In this section, we describe the algorithm we developed for this purpose. The intuition
behind our algorithm is to let the k-mers in a read vote for the partition to which the read
should be assigned. We also describe a parallel algorithm we developed for evaluating the

quality of read set partitioning and present corresponding results.

3.5.2 Parallel Partitioning of Reads

The parallel algorithm we designed for generating a partition for the read set based on the
de Bruijn graph partitioning takes as its input the following: (a) the read set R, (b) the
partition IDs assigned by the graph partitioner to vertices of the compact de Bruijn graph,
(c) the list of de Bruijn graph vertices, and (d) the vertex to chain label mapping determined
by Algorithm 6. The algorithm starts off by propagating the partition IDs assigned to the

label vertices of the compact graph to the canonical k-mers that make up the corresponding
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chains. Using the mapping from canonical k-mers to partition IDs, a distributed index D
is then constructed. Finally, the distributed index is used to compute the partition ID for a
read r as the most frequently assigned partition ID for the k-mers in read r. In case of a
paired-end read, our approach assigns the same partition ID to both reads. We accomplish
this by subjecting the first read to the read partitioning algorithm and assigning the resulting
partition ID to the second read as well.

Algorithm 8 describes our approach for generating a partition for the read set based
on the de Bruijn graph partitioning. In Algorithm 8, Lines 3—6 map the partition IDs to
the vertex IDs of the compact de Bruijn graph. This is accomplished by constructing /C,
a distributed list of tuples (v, pid), where v is a vertex of the compact de Bruijn graph
and pid is the partition ID computed by the partitioner. Recall that in Section 3.4.3, we
constructed the compact graph by replacing the chain vertices by the corresponding chain
labels. In Lines 7-14, partition IDs assigned to the label vertices of the compact graph are
propagated back to the canonical k-mers that make up the corresponding chains.

In Lines 15-25, we compute the partition IDs for all the reads, taking a batch of B reads
at a time. Batching helps overcome any memory size constraints and based on the available
memory capacity, the value of B can be specified by the user as an input parameter. Using
the mapping from canonical k-mer to partition ID, available as 7 at the end of Line 14, a
distributed index D is constructed in Line 15. A local lookup table of partition identifiers
for the current batch of canonical k-mers is constructed in Line 19 from the results of the
query to D (Line 18). This local lookup table is necessary because copies of elements in
a query submitted to the distributed index are collapsed prior to the result being returned.
The lookup table is then used in Lines 20-24 to compute the partition ID for a read r as the

most frequently assigned partition ID for the k-mers in read r.
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Algorithm 8: Parallel generation of partitioning of a read set

Input: (a) Read set R, (b) Partition of the compacted DBG, (c) Vertex list, and (d)
Vertex-chain (label) mapping.

Output: Partition identifier for every read in R.

parallel j = processor’s rank do

2 Initialize /C, T to empty list of tuples.

ot

3 ‘P < partition records of the compact de Bruijn graph corresponding to
processor j.

4 V « Vertex list corresponding to processor j.

5 Re-distribute both P and V s.t. each processor has approx. the same number of
records. Note that after re-distribution |P| = |V| in every processor.

for i < 1to |P|do Append (V[i], Pi]) to K.

L < Vertex-chain mapping pairs for proc. j.

for (u,pid) € K do Append (u, u, pid) to T.

for (u,l) € L do Append (I, u,null) to T.

10 Parallel sort 7 by the tuple’s first element.

11 foreach segment T of T having the same first element do

D-IE- RN B

12 (I, u, pid) < tuple in T" with non-null third element.
13 Set the third element to pid for all tuples in 7.
14 end

15 D < Construct a distributed index of (u, pid) from (I, u, pid) € T.
16 for each batch B of the read set R do

17 K < Set of canonical k-mers w.r.t. the reads in B5.
18 Query in D the partition identifiers for all £ € K.
19 D < local lookup table of pids for all £ € K.

20 forr € Bdo

21 M < pids queried from D for all k-mers in r.
22 rpid <— most frequently assigned pid in M.

23 r is assigned the partition identifier rpid.

24 end

25 end

26 end
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3.5.3 Partitioning Quality Evaluation

If the true sequence of the source DNA molecule and the starting position for each read
in the source DNA sequence are known, then it is possible to evaluate the quality of read
partitioning against the truth. A good partitioning of the reads would place the reads derived
from the same region in the source DNA within the same partition. However, even if the
true source sequence is available, it is not possible to identify, for every read r, the exact
position of r in the source sequence. Therefore, for the read sets given in Table 3.1, we use
the local alignment of the reads against the reference genome as an approximation of the
truth and evaluate the quality of the read partitioning against it.

We developed a parallel algorithm to evaluate the quality of a read partition using the
alignment information of the read set R. It takes as its input the partition IDs assigned to
reads by the proposed method and a SAM file, the standard file format to specify align-
ment data for a read set. We measure the partition quality using two measures called
intra-pairs and inter-pairs, corresponding to the number of overlapping read pairs
(as inferred from their alignment to the reference genome) that are assigned the same and
different partition IDs, respectively. We consider two reads to overlap if they share at least
one base in the reference. Note that this is a rather stringent requirement as no algorithm
using only read information can reliably detect short overlaps, let alone a single base over-
lap. For every overlapping read pair, we determine if both constituent reads are placed in
the same partition (intra-pairs) or in different partitions (inter-pairs).

In Algorithm 9, an alignment record (implemented as a C++ st ruct) has the follow-
ing fields: Read identifier (rid), Reference name (ref), Reference position (pos), Align-
ment score (score), Alignment flag (flag) and Partition identifier (pid). The parallel
algorithm reads the SAM records and partition IDs from separate files, in a distributed
manner. Some of the reads in R can map to multiple positions in the reference sequence(s).
Such reads have more than one record in the SAM file. Lines 5 and 6 in the algorithm aid

in identifying the records corresponding to such reads. For every such read, we replace
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the corresponding records with one record indicating an ambiguous mapping. Now, we are
left with exactly one SAM record and one partition ID for each read in the lists .4 and P,
respectively. Redistribution of both lists allows the corresponding records to be paired with
each other (Line 10). Since it is not possible to reliably know where reads with ambigu-
ous mapping belong to, we exclude them from evaluation process along with unmapped
reads (Line 11). Lines 12-28 help us identify pairs of reads that overlap with each other,
as deciphered from their alignment to the reference. We consider two reads to overlap if
they share at least one base in the reference. For every such pair, we determine if both are
placed in the same partition (intra-pairs) or different partitions (inter-pairs). Finally,

we compute cumulative statistics across all processors and report them (Line 29).

3.5.4 Results and Analysis

We present results pertaining to the partitioning of the read sets. In order to evaluate the
quality of read set partitioning, we make use of the local alignment of the reads to the refer-
ence sequence. For the three datasets used in our experiments, we used the submissions that
were ranked the best in the Assemblathon 2 competition as the reference sequence [21]. We
then mapped the read datasets to the corresponding reference sequence using BWA local
alignment software [28]. We allowed an error rate of 2% while mapping the reads.

In order to enable interpretation of read partitioning quality results, we extend the def-
initions of cut and balance, defined for graph partitioning in Section 3.2.3, to read parti-
tioning. We define balance of a read partitioning as the ratio of the size of the largest read
partition to the average size of the partitions. Cut is defined as the number of overlapping
pairs of reads that are assigned to different partitions (inter-pairs). Cut ratio is defined
as the ratio of cut to the total number of overlapping read pairs i.e., the sum of intra-pairs
and inter-pairs. A lower cut ratio implies that fewer overlapping read pairs are assigned
to different partitions, indicating a better quality partition.

Table 3.5 shows the total number of overlapping read pairs i.e., intra-pairs+inter-pairs
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Algorithm 9: Algorithm for evaluating read partitioning quality

Input: (a) Partition IDs for reads in set 12, (b) Alignment records for reads in set R
provided in SAM format, and (c) L, Read length.

Output: Evaluation statistics: intra-pairs and inter-pairs.

parallel ; = procesor’s rank do

// Load Alignment Records

2 Fg < Size of the input SAM file.

s | U e B trp e B8

p

4 A < Alignment records starting in the region [l f, r f] of the input SAM file; For

each alignment, rid, ref, pos, score and flag fields are populated.

5 Parallel sort A by rid.

6 Replace A records (count> 1) corresponding to the same rid with a single
record whose flag indicates ambiguity. Redistribute A.

// Load Partition Data

7 Fp «+ Size of the file with partition IDs for reads in R.

8 Ip L%J + 1;7rp < L—FP(?FI)J.

9 P « Partition records starting in the region [Ip, rp|. Redistribute P.
10 Copy pid from P to the corresponding A record’s pid field.
// Filter Bad Alignments
1 Eliminate ambiguous and unmapped alignments in 4 as indicated by the flag
field.
// Evaluation Loop
12 Sort A by ref, followed by pos.
13 L; + |A|.
14 A, + Snd/Rcv the last record in A to proc. ((5 + 1)p).
15 T, < Rcv/Snd from proc. ((7 + 1)p) those records in its A whose ref = A, .ref
and pos < (A,.pos) + L — 1.
16 Append 7, to A.

ot

17 intra-pairs < 0; inter-pairs < 0.

18 for: < 1to L; do

19 k<« (i+1).

20 while k& < | A| and Ali].ref = A[k|.ref and Alk|.pos < Ali].pos + L — 1
do

21 if A[k].pid = A[i].pid then

22 ‘ intra-pairs < intra-pairs + 1.

23 else

24 ‘ inter-pairs ¢- inter-pairs + 1.

25 end

26 k< (kE+1).

27 end

28 end

29 Add all intra-pairs and inter-pairs using a parallel reduction to processor 0

and report them.
30 end
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(column 2), inter-pairs (column 3), and cut ratio (column 4) for all the three datasets.
The cut ratio shown in the table corresponds to the reads that are error-free i.e., they map
to the reference sequence with no errors. Cut ratio corresponding to 2% error rate (i.e., all
reads that map with up to 2% error rate are considered) for Fish, Bird, and Snake datasets is
2.15x1072, 1.42x1072, and 5.11x 1072, respectively. The results demonstrate that a high
quality partitioning of the de Bruijn graph translates into a high quality partitioning of the
corresponding read set. Balance for the read partitioning of Fish, Bird, and Snake datasets
is 1.02, 1.03, and 1.10, respectively.

Table 3.5: Read partitioning quality evaluation for all datasets

Dataset | No. overlapping inter-pairs Cut

read pairs ratio
Fish 20,930,646,131 193,013,621 0.92x10~2
Bird 14,302,047,674 304,849,664 2.13x1072
Snake 6,728,041,314 263,882,542 3.92x1072

Finally, we present runtime and parallel scalability results for the algorithm used to
compute read partitioning from de Bruijn graph partitioning. The results shown in Table 3.6
for Bird dataset demonstrate that the algorithm scales almost perfectly and takes less than
3.8 minutes using 512 cores. The end-to-end runtime for the Bird dataset using 512 cores
is around 11 minutes. Therefore, our solution not only produces high quality partitions but

is also fast and scalable.

Table 3.6: Runtime in seconds for the Bird dataset for computing read partitioning from de
Bruijn graph partitioning.

No. of cores || 64 | 128 | 256 | 512
Runtime (s) | 2090 | 950 | 456 | 226
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3.6 Discussion

An alternative approach for partitioning a set of reads is to explicitly construct a read-
similarity graph, where each vertex is a read and an edge between a pair of vertices implies
similarity between the corresponding pair of reads. To evaluate the similarity between
a pair of reads, a wide variety of measures have been proposed ranging from pair-wise
alignments to alignment-free techniques [29], trading off accuracy for computational com-
plexity. While the approach of read-similarity graph appears to be intuitive, constructing
this graph using even the simplest of the available measures is computationally challeng-
ing. Partitioning the resulting graph is even more challenging owing to its size. In contrast,
our proposed solution does not suffer from these challenges. This is because the size of the
de Bruijn graph is expected to be a function of the length of the reference sequence rather
than the size of the read set. Chains in the de Bruijn graph are amenable for easy identi-
fication and rapid compaction. Furthermore, the size of the compacted graph enables fast
graph partitioning. The algorithm we proposed for evaluating the quality of read dataset
partitioning can be used to evaluate the efficacy of alternative approaches for generating
read set partitioning.

There are two prior works that discuss partitioning of read sets [30, 31], but with very
different objectives that are less applicable in our context. In these works, the goal is
not about partitioning the read sets into uniformly sized partitions. In [30], clusters of
reads that give rise to distinct connected components in the de Bruijn graph are referred
to as partitions. No restriction is imposed on the size of any single cluster. This poses a
significant limitation for parallel processing, as the size of the largest cluster dictates the
lower bound on the runtime. In [31], reads that potentially belong to a region of interest
in the reference sequence are identified from a HTS dataset and segregated for subsequent
targeted analysis, which the authors refer to as partitioning. Therefore, our work stands

as the first demonstration of partitioning large-scale HTS read datasets to facilitate parallel
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genomics analyses.

After developing the proposed framework, we made use of openly available, efficient
solutions for solving some subproblems in the framework, namely constructing a dis-
tributed index of k-molecules, computing the connectivity, and partitioning general graphs.
Researchers have spent significant effort over the years to develop and improve solutions
to these problems. By making use of the state-of-the-art methods available to solve these
problems as components of our approach, we are able to devise an effective overall solu-
tion. In addition, the individual components can be replaced with better methods as they

become available.
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CHAPTER 4
PARALLEL REFERENCE-BASED COMPRESSION OF HTS READ DATASETS

4.1 Introduction

Since the introduction of high-throughput sequencing (HTS) machines, the cost of sequenc-
ing has been declining and the throughput has been increasing exponentially [2]. For in-
stance, using the recent NovaSeq line of instruments from Illumina, the current market
leader, sequencing cost is expected to come down to $100 per human genome. Transmis-
sion, storage, and archival of HTS short read datasets pose significant challenges owing to
the large size of such datasets. Constant improvements to sequencing technology, in the
form of increasing throughput and decreasing cost, and its growing adoption for a wide va-
riety of applications amplify the problem. In response to this problem, researchers resorted
to compression of read datasets.

General-purpose compression algorithms have been widely adopted for representing
HTS read datasets in a compact form. Read datatsets have several unique properties that
make it difficult for general-purpose compressors to fully exploit the redundancy present in
these datasets. Domain-specific properties of read datasets include reduced size of alpha-
bet, interleaved streams of data, fixed length for reads, occurrence of reads and their reverse
complements, paired representation of reads, scattered nature of redundancy, and availabil-
ity of reference sequences. Researchers proposed special-purpose compression algorithms,
that exploit one or more of these properties, to improve upon the compression efficiency
of general-purpose compressors. Based on whether or not a reference sequence is made
use of during compression, specialized compressors can be classified as reference-based or
reference-free, respectively.

In this work, we leverage all of the above mentioned domain-specific properties of read
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datasets to develop ParRefCom, a parallel reference-based compressor for genomics read
datasets. Read datasets generated using HTS instruments widely deployed today typically
contain what are known as paired-end reads. A paired-end (PE) read is comprised of two
separate but related reads, and the pairing information can serve to be crucial during bio-
logical analysis. Our specialized compressor allows the following lossless transformations
of PE reads in the datasets : reordering of reads while keeping paired ends together and re-
ordering of individual reads within a PE read. By exploiting these insights, ParRefCom is
able to significantly improve upon the compression efficiency over state-of-the-art. More
specifically, for a benchmark human dataset, the size of the compressed output is 21%
smaller than that produced by SPRING [32], the current best algorithm.

At a high-level, our solution approach consists of the following steps: (1) Specialized-
alignment of PE reads to standard reference, (2) Categorizing PE reads based on the number
of ends aligned, and (3) Customizing compression strategies for reads in different cate-
gories. In this work, we develop fast and scalable parallel algorithms for accomplishing
each of these tasks. We demonstrate that ParRefCom achieves superior compression effi-
ciency compared to existing methods. Our compressor is asymmetric by design - decom-
pression speed is about an order of magnitude faster than compression speed. This asym-
metricity in design goes well with the real world requirement of compressing a dataset once
and decompressing (using) it many times.

Reference-based compression algorithms tend to achieve superior compression effi-
ciency as they are able to leverage external knowledge in the form of reference sequence.
On the other hand, reference-free compression algorithms tend to achieve superior com-
pression speed as they avoid the computationally expensive step of base-to-base alignment.
As ParRefCom makes use of a fast and scalable specialized alignment algorithm, it com-
bines the best of both worlds and offers high compression efficiency and speed as depicted

in Figure 4.1.
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Figure 4.1: ParRefCom provides the efficiency benefits of reference-based compression as
well as the speed benefits of reference-free compression

4.2 Background

4.2.1 Sequencing and Representation

A DNA molecule is comprised of two strands. The forward strand of the molecule, de-
fined in the 5 to 3’ direction, is modeled as a sequence of characters from the alphabet set
¥ = {A,C,G,T}. Given such a sequence of [ characters, s = s1,..., s, its reverse com-
plementary strand i.e., the sequence in the 3’ to 5’ direction, is 5 = ¢(s;), ..., c(s1), where
c(x),z € ¥ is the mapping function : ¢(A) — T,¢(C) — G,¢(G) — C, and ¢(T) — A.
High-throughput sequencing (HTS) instruments are used to sequence a large number of
randomly generated fragments from the genome. A few hundred bases are sequenced from
these fragments and are commonly referred to as reads.

Most widely deployed HTS instruments from [llumina are capable of generating paired-
end reads. A paired-end read consists of two reads which are sequenced from opposite
ends of a DNA fragment, referred to as insert. Further, it is typical to sequence one of

the reads from the forward strand and the other from the reverse complementary strand.
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Pairing information can serve to be crucial during biological analysis. HTS instruments,
owing to their limitations, fail to accurately decipher bases sometimes. When inference
is ambiguous or unsuccessful, an N character is recorded in the read. For this reason, the
DNA alphabet set is expanded to include N for read datasets and ¢(N) — N. Each base in
the genome is typically spanned by multiple reads. This oversampling or redundancy is
required to facilitate subsequent analysis of the reads. Coverage is defined as the average
number of reads spanning a base in the genome. A k-length DNA sequence is termed a

k-mer.

4.2.2 FASTQ File Format

Read datasets generated using HTS instruments are typically represented as FASTQ files [33].
A FASTQ file contains the following pieces of information for every single-end read :
Read identifier, Bases constituting the read, Comment line, and Quality score correspond-
ing to each base. Read identifiers are typically not made use of during analysis. Further,
due to their structure, it is relatively straightforward to represent the identifiers compactly.
Prior works explored such representations. Comments are either empty or exactly identi-
cal to identifier lines. Significant efforts were devoted to develop standalone compressors
for quality scores. A recent work explored use of a single bit to capture a quality score
value [34]. Further, the work demonstrated that such lossy compression of metadata does
not have any noticeable effect on biological analysis. Due to these reasons, in this work,

we focus on compactly representing the read data in FASTQ files in a lossless manner.

4.2.3 General-purpose Vs. Special-purpose Compression

General-purpose compression algorithms have been widely adopted for representing HT'S
read datasets in a compact form, with ZIP family of algorithms and their blocked variants
being the prominent examples [35]. Domain-specific properties of read datasets make it

difficult for general-purpose compressors to fully exploit the redundancy present in these
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datasets. Alphabet size of characters occurring in reads is small, typically 5. FASTQ files
contain several interleaved streams of data as described in Section 4.2.2. Reads generated
by HTS instruments mostly have fixed length. Reads and/or their reverse complements can
represent segments of DNA in datasets. Reads are represented as a related pair in case
of paired-end read datasets. Redundancy in sequencing, necessary to facilitate subsequent
analysis of reads, is scattered across the dataset. Differences between genomes of organ-
isms belonging to a species are typically very small. Therefore, genome of an organism
of a species can be made use of to compactly represent the read dataset of another organ-
ism belonging to the same species. Researchers proposed special-purpose compression
algorithms, that exploit one or more of the above properties, to improve upon the com-
pression efficiency of general-purpose compressors. Based on whether or not a reference
sequence is made use of during compression, specialized compressors can be classified
as reference-based or reference-free, respectively. In the following section, we furnish a

survey of special-purpose compression algorithms proposed for HTS short read datasets.

4.3 Related Work

A number of special-purpose compression tools have been proposed over the years for
compression of FASTQ datasets, both in reference-free and reference-based categories.
These include DSRC [36], Fqzcomp [37], Fastqz [37], FQC [38], SCALCE [39], LW-
FQZip [40], Quip [41], Leon [42], k-Path [43], and Mince [44]. A recent review ar-
ticle evaluated tools with publicly available implementations using a set of benchmark
datasets [45]. The review article also provides short descriptions of the tools mentioned
previously. Three special-purpose compression tools, which demonstrated better compres-
sion efficiency, have come out since the review article was published - FASTORE [34],
minicom [46], and SPRING [32].

FASTORE clusters reads, i.e. distributes them into bins, such that reads from neighbor-

ing positions are likely to belong to the same cluster. Within each bin, reads are matched
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to generate a reads similarity graph. After this, reads go through an optional step of re-
distribution and matching. Reads are then assembled into contigs using the final similarity
graph. Based on the outcome of the matching, reads are encoded with respect to contigs or
other reads. minicom also takes an approach similar to that of FASTORE. It additionally
attempts to merge contigs to build longer contigs. The current best specialized compressor,
in terms of compression efficiency, is SPRING. SPRING tool comprises of the following
steps : Reordering reads according to their position in the genome using hashed substring
indices, Encoding reordered reads to remove redundancy between consecutive reads, and
Compressing encoded reads using general purpose compression tools. In the following

section, we provide a high-level overview of our solution approach.

4.4 Overview of Solution Approach

In this work, we leverage all of the previously mentioned domain-specific properties of read
datasets to develop a reference-based compressor for genomics read datasets. The ordering
of paired-end (PE) reads in a dataset and the ordering of two reads of a PE read do not
carry any special significance. Therefore, our specialized compressor allows the following
lossless transformations of PE reads in datasets : reordering of reads while keeping paired-
ends together and reordering of individual reads within a PE read. By exploiting these
insights, ParRefCom is able to significantly improve upon the compression efficiency over
state-of-the-art.

We developed a solution approach that leverages all of the properties described in Sec-
tion 4.2.3 and the insights mentioned above. A high-level description of the overall ap-
proach is as follows. First, we perform a specialized alignment of PE reads in the dataset
using standard reference for the species. Next, we classify the PE reads based on the out-
come of the alignment. The categories are : Two-aligned PE read (when both ends of
the PE read align), One-aligned PE read (when one of the ends of the PE read aligns but

the other does not), and Non-aligned read (when both ends of the PE read do not align).
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Finally, we develop custom compression strategies for each of these categories. Through
evaluation using an assortment of read datasets, we demonstrate that PE reads in the first
category (Two-aligned) significantly outnumber those in the remaining two categories.

In the output of the specialized compressor, we capture One-aligned and Non-aligned
PE reads as they are. For Two-aligned PE reads, we capture the following pieces of infor-
mation in place of the reads themselves : (1) Starting location with respect to the reference
sequence, (2) Number of differences with respect to the reference sequence, (3) Positions
of differences within a read, (4) Bases corresponding to differences within a read and (5)
Locations of other ends for one of the ends. Collectively, these pieces of information are

sufficient to reconstruct the original PE reads as depicted in Figure 4.2.
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Figure 4.2: A fixed-length single-end read can be recovered by knowing the starting lo-
cation where the read aligns to the reference, the number of alignment differences, the
positions of these differences, and the differing bases. Further, a paired-end read can be
recovered from two single-end reads by knowing the location of the other end for one of
the ends

In the following sections, we develop fast and scalable parallel algorithms for accom-
plishing tasks that make up our solution approach. By utilizing these algorithms, we
demonstrate that ParRefCom achieves superior compression efficiency compared to exist-
ing methods. Our compressor is asymmetric by design - decompression speed is about an
order of magnitude faster than compression speed. This is because the decompression step
does not involve the computationally expensive specialized alignment phase. This asym-
metricity in design goes well with the real world requirement of compressing a dataset

once and decompressing (using) it many times. We describe our experimental methodol-
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ogy next.

4.5 Methodology

Table 4.1 lists key properties of datasets used for evaluating this work. The datasets cor-
respond to organisms from three different species with varying genome lengths. These
datasets are publicly available and were previously used to benchmark many special-purpose
compression tools. Column 2 depicts the approximate size of the standard reference genome
for each organism. Column 3 represents the number of fixed-length paired-end reads in
each dataset. The length of these reads is captured in Column 4 and sizes of the original

datasets in Column 5.

Table 4.1: Datasets used for experimental evaluation

Organism Genome length | Spots/Inserts | Read length | Original Reference

(Base-pairs) | (Thousands) (Bases) Size Sequence
C. elegans 100x10° 33,809 2 x 100 | 6.8GB | GCF_-000002985.6
G. gallus 1125x10° 173,698 2 x 100 | 34.7GB | GCF_000002315.4
H. sapiens(H1) 3300x10° 24,476 2 x 100 | 4.9 GB | GCF_000001405.38
H. sapiens(H2) 3300x 106 207,680 2 x 101 42 GB | GCF_000001405.38
H. sapiens(H3) 3300x 106 270,765 2 x146 | 79 GB | GCF_000001405.38

Accession numbers for C. elegans, H. sapiens (H1) and H. sapiens (H2) are SRR065390,
SRR062634, and ERR174310 respectively. The process for obtaining G. gallus dataset is
described in [34]. H. sapiens (H3) dataset was generated using Illumina NovaSeq and is
available from Illumina BaseSpace as NA12878-Rep-1_S1_L001. This dataset contains
variable length reads with length up to 151. We trimmed the reads down to 146 bases
to make them fixed-length while retaining the maximum number of reads. We use bsc
(http://1libbsc.com) to compress several streams of information generated in Sec-
tions 4.7 and 4.8.

We ran our experiments on a machine with two 14-core Intel Xeon processors, for a

total of 28 cores. The 28 cores in a node share 256 GB of main memory. Further, we
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used POSIX threads for shared-memory parallel programming. For reporting performance
results, each experiment was repeated three times. The wall-times were collected for each
run, and the minimum times amongst the repeats of an experiment are reported as they

closely represent the capabilities of the system.

4.6 Specialized Alignment

4.6.1 Motivation

The goal of reference-based special-purpose compression algorithms is to represent the
read dataset compactly by capturing differences in reads with respect to reference genome.
Our specialized compressor, ParRefCom, also employs a reference-based strategy. Align-
ing reads in a dataset, generated from sequencing a target genome, to standard reference is
a fundamental bioinformatics problem. The objective of read alignment is to glean biolog-
ical insights by computing and analyzing variations between target genome and reference
genome.

Some attributes of classical alignment are detrimental to compression efficiency when
the objective is to represent a read dataset compactly. When there are multiple equally
good alignments for a read, classical alignment tools may report more than one alignment
for such reads. For compression, one best alignment suffices. Generating alternative align-
ments for reads also involves a computational overhead. While aligning paired-end reads,
classical alignment tools perform analysis to estimate the insert size and discard abnormal
alignments [47]. For example, when aligning a paired-end (PE) read, the location of the
read whose reverse-complement aligns to the reference genome is expected to be after that
of the read that aligns as is. If this is not the case, the alignment may be discarded. As
we are not concerned about biological significance during compression, the compression
efficiency would improve if such an alignment were to be accepted. Finally, clipping of
reads performed by classical alignment tools may impede faithful recovery of such reads.

In this section, we propose a specialized alignment algorithm (SAA) that addresses the
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drawbacks of the classical alignment algorithms when the objective of the alignment is to
represent a read dataset compactly. The goal of our SAA is as follows. For a PE read, we
want to generate an alignment that minimizes the following expression : Dy + Do+ S19; Dy
: Differences between first read and reference genome, D : Differences between second
read and reference genome, and S5 : Separation between alignment locations of two reads.
We propose an SAA utilizing kmer-index that optimizes the stated objective function. Next,
we describe the kmer-index data structure and provide a parallel algorithm for constructing

it.

4.6.2 Index Data Structure

Our kmer-index data structure comprises of two levels, each an array, as depicted in Fig-
ure 4.3. Level 2 (L2) array consists of locations of all kmers in the reference genome. The
entries are sorted by kmer as primary key, and for a kmer by location as secondary key.
The size of level 1 (L1) array is 4* + 1. Each entry in this array, excluding the last one,
corresponds to a kmer and captures the starting position of the corresponding kmer in L2
array. If a kmer does not occur in the reference genome, it does not have any entries corre-
sponding to it in L2 array. For such kmers, the corresponding L1 array entry contains the
same value as that of the next kmer. To summarize, two consecutive entries in L1 array
help determine the number of occurrences of a kmer in the genome. Values recorded in L2
array in the range defined by the two entries provide the corresponding kmer locations.
Using a two-level index data structure has several advantages. The number of occur-
rences of a kmer in the reference genome can be determined by accessing two consecu-
tive entries in L1 array. This quick determination can aid in reducing the alignment time.
Further, the locations where the kmer occurs in the genome are present in a contiguous
segment of L2 array. Scanning these locations therefore benefits from spatial locality of
cache and/or memory accesses. Memory consumption of the two-level index data structure

is (4% +1) x 2k + (|G| — k + 1) x [log, |G|] bits, where |G| represents the length of the
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Figure 4.3: An illustration of two-level kmer-index data structure. kmerl, kmer3, and
kmer4 occur four, two, and two times respectively in the reference genome. kmer2 does
not occur in the reference genome

genome. For large genomes and small values of k (< 15), as used in this work, second
term dominates. The overhead due to L1 array is insignificant. Therefore, the two-level

index data structure enables fast kmer lookups while incurring a small memory overhead.

Next, we present a parallel algorithm for constructing the two-level index data structure.

Parallel Index Construction

Algorithm 10 demonstrates the parallel construction of the two-level index data structure.
Initially, reference genome is block decomposed among the available threads. Every thread
generates the list of (kmer, locn) tuples for the block owned by the thread. Next, the list
across all threads is sorted in parallel. locns from the resulting sorted list make up L2 array.
L1 array is obtained by performing a parallel prefix on the sorted list of tuples. Populating
L1 array entries corresponding to kmers not occurring in G is handled as described in

Section 4.6.2.
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Algorithm 10: Parallel construction of kmer-index
Input: G, reference genome. k, kmer size. t, thread count
Output: Two-level kmer-index: L1 and L2 arrays
// Size of L1 is 4F+1
// Size of L2 is |G|—k+1. |G|+ genome size
parallel j = thread’s id do
S¢ < Size of the reference genome G
Le <[]
It j X LG
Tt(—(j—f-l)XLg—l
if (S¢ —k+ 1) < rt then
‘ Tt%(SG—k—i—l)
end
Initialize 7 to an empty list of tuples
for i < [t tort do
| Append (kmer, locn) to T
end
Parallel sort 7 using kmer as primary key and [ocn as secondary key
for i < [t tort do
| L2[i] + Ti].locn
end
Use parallel prefix to populate L1 with start position of every kmer in 7

end
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4.6.3 Alignment Algorithm

The objective of our specialized alignment algorithm (SAA) is as follows. For a paired-
end (PE) read, we want to generate an alignment that minimizes the following expression :
D1+ Dy + S19; Dy : Differences between first read and reference genome, D> : Differences
between second read and reference genome, and S;- : Separation between alignment loca-
tions of two reads. In this section, we describe the design of such an SAA and its parallel
implementation. In case of a PE read, we assume that one of the ends is sequenced from the
forward strand and the other from the reverse-complementary strand. This assumption is
representative of the most common form of paired-end sequencing, called forward-reverse
sequencing.

Let e denote the number of differences we wish to tolerate between a read and the
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reference genome. According to pigeon-hole principle, if the read is decomposed into
(e + 1) non-overlapping subsequences, then there is at least one subsequence of the read
that matches exactly with an identical length subsequence from the reference genome. This
property can be extended as follows. If the read is decomposed into (e¢+2) non-overlapping
subsequences, then there are at least two subsequences of the read that match exactly with
identical length subsequences from the reference genome. The extended pigeon-hole prin-
ciple has the ability to filter out spurious matches more effectively. Note that the extension
does not have any impact on the alignment output but only serves to potentially reduce the
computational cost. Therefore, we adopt the extended pigeon-hole principle in our SAA.

A high-level overview of our SAA is as follows. First, we decompose a read into
non-overlapping kmers. We look up each kmer in L1 array to determine its frequency of
occurrence. We select a subset of (e + 2) kmers that occur with the lowest frequency.
For these (e + 2) kmers, we look up their corresponding locations in L2 array. Next, we
obtain a subset of locations which correspond to at least two kmers. We perform a banded-
alignment of the read at the locations in the subset using a vectorized Meyer’s bit-vector
algorithm. If the read aligns to the reference sequence with < e differences, we record the
start position of the alignment and the differences.

For a PE read, we perform the above steps for each individual read and its reverse-
complement. From this point on, for simplicity, we refer to a read that aligns as is to
the reference sequence as forward read and a read whose reverse-complement aligns to the
reference sequence as reverse read. We then select the best alignment as one that minimizes
the sum of (1) Differences between forward read and reference genome, (2) Differences
between reverse read and reference genome, and (3) Separation between alignment start
locations of the two reads. Further, we classify PE reads based on the outcome of the
alignment as : Two-aligned (when both ends of the PE read align), One-aligned (when
one of the ends of the PE read aligns but the other does not), and Non-aligned (when both

ends of the PE read do not align). We present our strategies for handling reads in each

70



of the three categories in subsequent sections. The parallel implementation of our SAA is
described in Algorithm 11.

SAA lends itself very well to parallelization. PE read dataset R is decomposed into
virtual blocks, each of size B reads. Each thread parses B reads, performs alignment for
them, and generates the corresponding output. The output blocks are appended to appropri-
ate lists as described in Algorithm 11. Threads only need to synchronize to determine the
blocks of reads to work on. Each thread seeks ownership of a new block of reads once it is
done working on the block it currently owns. The parameter B can be tuned appropriately
based on the number of threads to ensure none of the threads starves. Note that a straight-
forward block decomposition of reads among threads can lead to a load imbalance among
threads. This is because the computational effort necessary to align reads varies from one

read to another.

4.6.4 Results and Analysis

In this section, we present results obtained using our specialized alignment algorithm
(SAA). Before proceeding to discuss the results, we furnish the values used for various
parameters and the rationale behind selecting the specific values. For the number of hard-
ware threads typical among shared-memory machines, a value of 2000 for B, read block
size, ensures that threads spend almost all their time performing useful work, namely read
alignment.

A value of 14 for £ allows us to tolerate up to 5 differences per 100 bases (L%j)
between a read and the corresponding subsequence of the reference genome. Note that
SAA makes use of extended pigeon-hole principle. We choose a small value of 3 for
e initially, to reduce the computational overhead. However, our implementation of the
banded and vectorized Meyer’s bit-vector algorithm allows a band size of up to 7. We

utilize the full potential of the alignment algorithm to allow up to 7 differences. So, the

final value of e supported by SAA is 7. Finally, for every read, we explore up to 2000
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Algorithm 11: Parallel specialized alignment algorithm

Input: R, paired-end read dataset. k, kmer size. t, thread count
Input: B, read block size. e, number of differences

Output: LF7r,,: List of forward two-aligned reads

Output: LRr,,: List of reverse two-aligned reads

Output: Lo, : List of paired-end one-aligned reads

Output: Ly,, : List of paired-end non-aligned reads

// Reads in LFrp,, and LRp,, correspond one to one
parallel j = thread’s id do

while reads in R do

Parse B reads from R

for each rin B do

rl < first read in r

r2 < second read in r

Align r1 and 2 as described in Section 4.6.3

if 1 and r2 align then

rf < forward read. rr < reverse read

o X AN R W N =

W W W NN DN NN N NN NN e e e e e e e e ek
N = S O WY AN R W =S Y X NN R WN =D

end
end
end

Append (7 f,locn f,id) to LEpy,
Append (rr, locnr, id) to LRy,
else if 1 or r2 aligns then

if r1 aligns as forward read then

rf < rl. rr < reverse of r2
Append (7 f,rr,locnl) to Lone
else if r1 aligns as reverse read then
rf < r2. rr < reverse of 1
Append (7 f,rr,locnl) to Lope
Ise if 2 aligns as forward read then
rf < r2. rr < reverse of r1
Append (7 f,rr,locn2) to Lope

(o]

else

end

else
Determine r f, rr, and locn as described in Section 4.8

rf < rl. rr < reverse of r2
Append (r f,rr,locn2) to Lope

Append (7 f,rr,locn) to Ly,

end
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potential locations to select the best alignment. Note that the ability to align a read, on
average, tapers off as the number of explored locations increases. The chosen value helps
achieve a good trade off between the number of reads aligned and the computational cost
incurred.

Table 4.2 shows the percentage of paired-end (PE) reads falling into each of the three
categories : two-aligned, one-aligned, and non-aligned, for all datasets using SAA. It can
be observed that the percentage of two-aligned reads is the highest for all datasets, with the
value for human dataset reaching 90%. PE reads in this category offer the most potential
for compression. We present our strategy for compressing reads in two-aligned category
in Section 4.7. It should be noted that C. elegans and G. gallus datasets were generated
using older generation of sequencing instruments. Therefore, these datasets contain more
sequencing errors, which are partly responsible for the lower percentage of PE reads in
two-aligned category compared to human datasets. As we mentioned previously, these
results correspond to the case where we tolerate up to 7 differences per single-end read.
Our strategy for compressing the reads falling into one-aligned and non-aligned categories

is described in Section 4.8.

Table 4.2: Percentage of paired-end reads aligned using specialized alignment algorithm

Dataset | Two-aligned ~ One-aligned Non-aligned
C. elegans 85.12 8.17 6.71
G. gallus 84.14 5.87 9.99
H. sapiens(H1) 88.57 8.21 3.22
H. sapiens(H2) 90.04 7.94 2.02
H. sapiens(H3) 88.46 8.84 2.70

In Section 4.6.1, we described the rationale behind designing a specialized alignment
algorithm to complement classical alignment algorithms when the objective is to represent
the read dataset in a compact manner. Table 4.3 shows the percentage of PE reads falling
into various categories for all datasets using BWA, a flagship classical alignment tool. It

can be observed that the output of BWA comprises of two additional categories : clipped

73



and multi-aligned. For PE reads in the clipped category, we do not have complete alignment
for at least one of the ends. In case of multi-aligned category, we have multiple alignments
for at least one of the ends. Even thought the percentage of two-aligned PE reads is higher
for some datasets, the reads in clipped and multi-aligned categories pose challenges for
compression. BWA was run with default parameters and tolerates more differences per
single-end read than SAA, which is mostly responsible for the higher percentage of two-

aligned PE reads.
Table 4.3: Percentage of paired-end reads aligned using BWA

Dataset H Two-aligned One-aligned Non-aligned Clipped Multi-aligned
C. elegans 81.63 0.65 3.85 12.71 1.16
G. gallus 80.07 0.24 0.45 18.71 0.53
H. sapiens(H1) 89.88 0.23 0.16 9.27 0.46
H. sapiens(H2) 93.94 0.23 0.42 5.06 0.35
H. sapiens(H3) 94.26 0.09 0.31 4.58 0.76

Table 4.4 shows the time taken by SAA and BWA for alignment using identical number
of threads, 16 in this case. It can be noticed that SAA is nearly an order of magnitude faster
than BWA. This demonstrates the superior computational capability of SAA compared to
classical alignment tools for the purpose of representing read datasets compactly. Table 4.5
shows the runtime incurred by SAA for human dataset H1 as the number of threads is
increased from 2 to 16. It can be observed that SAA demonstrates good parallel scalability.
In the following section, we describe our algorithm and its parallel implementation for

handling PE reads in the two-aligned category.

Table 4.4: Alignment time in seconds using 16 threads for specialized alignment algorithm
and BWA

Dataset H SAA time (s) BWA time (s) SAA speedup
C. elegans 74 619 8.37
G. gallus 717 7898 11.02
H. sapiens(H1) 161 1383 8.59
H. sapiens(H2) 1379 12210 8.85
H. sapiens(H3) 2780 20387 7.33
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Table 4.5: Runtime in seconds for H. sapiens (H1) dataset using specialized alignment
algorithm

No. of threads H Time (s)

2 940
4 473
8 249
16 133

4.7 Handling Two-aligned Paired-end Reads

4.7.1 Overall Approach

For two-aligned paired-end (PE) reads, we capture the following pieces of information in
lieu of the reads themselves : (1) Alignment start location with respect to the reference
sequence, (2) Number of differences with respect to the reference sequence, (3) Positions
of differences within a read, (4) Bases corresponding to differences within a read and (5)
Locations of other ends for one of the ends. Collectively, these pieces of information are
sufficient to reconstruct two-aligned PE reads. In the following subsections, we provide a
detailed description for generating each of these pieces of information. Next, we present
our algorithm for generating the above pieces of information.

Algorithm 12 demonstrates parallel generation of data streams to be recorded for two-
aligned reads. Lists of forward and reverse two-aligned reads generated by Algorithm 11
are independently sorted in parallel based on the alignment locations of the reads. The
sorted lists are block decomposed among available threads and each thread is responsible
for generating data streams for reads in the block owned by it. Data stream (5) is an ex-
ception and we describe the process for generating it in Section 4.7.6. We elaborate on
the generation of data streams (1)-(4) in the following subsections. Note that data streams
(1)-(4) are generated for both forward and reverse reads and data stream (5) only for for-
ward reads. This is because it is sufficient to record pairing information only for one of the

ends, forward read in our case, of a PE read. The generated data streams are compressed
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in parallel using bsc, a general-purpose compressor.

Algorithm 12: Parallel generation of data streams for two-aligned reads

o 0 N T AR W N -

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Input: LF7p,,: List of forward two-aligned reads

Input: LRpy,: List of reverse two-aligned reads

Output: LFs; and LRgy: List of starting locations

Output: LFyp and LR yp: List of number of differences

Output: LFpp and LRpp: List of positions of differences

Output: LFzp and LRpp: List of bases corresponding to differences
Output: Lpg: List of locations of other ends

// LFr,, and LRr,, have the same size

// They are lists of tuples of type (read,locn,id)

parallel j = thread’s id do
Sa + Size of LFry,. Lg + [2¢]
lt<—jXLg. Tt%(]—i‘l) XLg—l
if (S¢ — 1) < rt then
‘ Tt — (SG — 1)
end
Parallel sort L Fr,,, using locn as key. Parallel sort L Ry, using locn as key
Initialize 7 F' to an empty list of tuples. Initialize 7 R to an empty list of tuples
for i < [t to rt do
Append (idf, locn f, posnf) to TF
Append (idr, locnr) to TR
Append starting location of L Frry,[i] to LFgy,
Append starting location of L Rr,[i] to LRgy,
Append number of differences of LFr,[i] to LFnp
Append number of differences of L Rr,[i| to LRyp
Append positions of differences of L Fry,i] to LFpp
Append positions of differences of LRry,[i] to LRpp
Append differing bases of LFry,[i] to LFgp
Append differing bases of L Rr,[i| to LRgp
end
Parallel sort 7 F' using id as key. Parallel sort 7 R using id as key
Initialize 7 P to an empty list of tuples
for i < [t to rt do
‘ Append (locn f, locnr, posnf) to T P
end
Parallel sort 7 P using locnr as key
for i < [t to rt do
‘ Append (locnr — lonen f, posnf) to Lpg
end
end

76



4.7.2 Generating List of Starting Locations

The first piece of information that needs to be recorded for every read, forward and reverse,
is the location in the reference genome where the read starts aligning with the genome.
There are two possible options for recording the alignment start location information : (1)
Combine forward and reverse reads into a single list or (2) Maintain them in separate lists.
In the former case, in addition to storing the start location, a bit is necessary to indicate
whether the read is a forward read or a reverse read. Further, there can be implication
for how the pairing information is maintained. Owing to these reasons, it is beneficial to
choose the second option. For a read, we store its relative start location, location delta from
previous read, instead of the absolute start location. This offers addition space savings.
For all datasets, and for both forward and reverse lists, the frequency of occurrence of
relative start location values falls off sharply as the values increase. Based on this obser-
vation, we use the following scheme to encode location deltas. We use one byte to encode
the location delta if the value is < 253. We use the remaining three values that can be rep-
resented using a byte - 253, 254, and 255 - to indicate that 2, 3, and 4 bytes are necessary to
capture the location delta value respectively. The value is stored using the corresponding

number of bytes.

4.7.3 Generating List of Number of Differences

The next piece of information that needs to be recorded for every read is the number of
bases different in the alignment between the read and the reference genome. We use one

byte to capture each difference count.

4.7.4 Generating List of Positions of Differences

In addition to storing the counts of differences, we need to record the positions of differing
bases for reads which have one or more differences. The number of bits necessary to store

each difference is logs L, where L denotes the length of the read. This cost can be brought
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down if we store relative difference positions. We use one byte to encode each relative

difference position.

4.7.5 Generating list of Bases Corresponding to Differences

In order to recreate individual reads exactly during decompression, we need to record the
bases corresponding to the differences along with the counts and the positions of the dif-
ferences. In our experiments, we observed that the count of substitutions significantly out-
number the counts of insertions and deletions. Further, the count of insertions and deletions
is approximately the same.

Taking these characteristics into account, we developed the following encoding scheme
to capture the base differences. We use 2 bits for capturing a substitution. Note that
A,C,G, T can be substituted with one of the other three bases. This leaves us with one
unused value, 11, which can be used to capture additional scenarios using 2 more bits. The
four values made available through the additional 2 bits are used to capture : substitution
to an N, deletion, insertion of an N, and insertion of a regular base. When the insertion

corresponds to a regular base, we use 2 additional bits to capture the inserted base.

4.7.6 Generating List of Locations of Other Ends

Collectively, data streams (1) - (4) described in preceding subsections contain sufficient
information to recover forward and reverse reads independently. We now describe the
information we capture so that reverse reads can be paired with their corresponding forward
reads. Among the approaches available to capture pairing information, the one that incurs
the least cost is the following. For every reverse read, we capture the relative location of
its forward read. There can be more than one forward read that aligns starting at a given
location. To account for such cases, we capture which of these forward reads pairs with the
reverse read under consideration.

We use one byte to encode each value of the second type. The former values follow a
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normal distribution. We map the distribution mean to zero and compute the corresponding
folded-normal distribution. We use the scheme described in Section 4.7.2 to encode the
resulting values. This concludes our discussion on capturing the data streams necessary for
encoding and decoding two-aligned PE reads. Next, we discuss our approach for handling

one-aligned and non-aligned PE reads.

4.8 Handling One- and Non- Aligned Paired-end Reads

In Section 4.6.4, we showed that there are a small fraction of paired-end (PE) reads for
which one or both ends do not align. We classified them under one-aligned and non-aligned
categories, respectively. Even though we do not have the desirable outcome for these PE
reads, our specialized alignment algorithm (SAA) generates sufficient information to orient
and order them. In order to orient PE reads, we need to know which read to capture as
forward read and which one to capture as reverse read. Relative placement of PE reads with
respect to one another helps in determining a good ordering to assist in better compression.
In case of one-aligned PE reads, we have an alignment for one of the ends of the PE read.
Based on whether the end is aligned as a forward read or as a reverse read, we have the
necessary information to determine the orientation. Further, location of the aligned end
assists in ordering the reads relative to one another.

The determination of orientation and ordering of non-aligned PE reads works as fol-
lows. Note that we don’t have an alignment for any of the ends in case of a non-aligned
read. When we attempt to align a PE read using SAA, we generate potential candidate
locations where the read may align. When such candidate locations are available for a non-
aligned PE read, we pick the best among available locations and use it to orient and order
reads. We label such PE reads under non-aligned-x category. Even when potential candi-
date locations are not available, we can have one or more successful kmer lookups. When
information from looking up kmers is available, we pick the best among such lookups and

use it to orient and order reads. We label such PE reads under non-aligned-y category. Fi-
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nally, when we have no information available to orient and order PE reads, we label such
reads under non-aligned-z category.

The orientation for PE reads in non-aligned-z category is determined based on the order
in which reads appear in the dataset, first read as forward read and second read as reverse
read. In terms of ordering PE reads in this category, we place them after PE reads belonging
to the remaining categories. In Section 4.10, we will show that the percentage of reads in
non-aligned-z category is zero or close to it for all datasets. Therefore, even when both
ends of a PE read do not align, we have sufficient evidence to orient and order reads.

For one- and non-aligned PE reads, orientation is determined while attempting to align
the reads using SAA. Further, they are ordered by performing a parallel sort. We use one
byte per base encoding to capture one- and non- aligned PE reads. Oriented and ordered
one- and non- aligned PE reads are compressed in parallel using bsc, a general purpose
compressor. We considered alternative encodings, including using two bits for four regular
bases and recording Ns separately, but one byte per base encoding yielded the best com-
pression efficiency. It must be noted that classical alignment algorithms do not provide any

information for orienting and ordering non-aligned reads.

4.9 Decompression Algorithm

Our special-purpose compressor, ParRefCom, is asymmetric by design - decompression is
about an order of magnitude faster than compression. This is because the decompression
step does not involve the expensive specialized alignment phase. This asymmetric design
of ParRefCom goes well with the real world requirement of compressing a dataset once and
decompressing (using) it many times. Our parallel algorithm for recovering the read dataset
using the compressed representations described in Sections 4.7 and 4.8 works as described
below. General-purpose compressor bsc is first used to perform parallel decompression.
Recovery of one- and non- aligned PE reads is complete after this step. Note that reverse-

complement of second end in every PE read is computed to undo the reverse-complement
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operation performed by the specialized alignment algorithm.

4.9.1 Recovering Two-aligned Reads

Our parallel algorithm for recovering two-aligned PE reads is described in Algorithm 13.
We first use the reference genome and the list of starting locations to recover difference-
free reads. Then, we use lists of counts of differences, positions of differences, and bases
corresponding to differences in order to update bases that are different between reads and
the reference genome. These steps are performed independently for lists corresponding
to forward and reverse reads. Finally, we perform a parallel sort of reverse reads using
information contained in data stream (5). This step accomplishes the task of pairing reverse

reads with forward reads appropriately.

4.10 Results and Analysis

In this section, we present and analyze results corresponding to compression and decom-
pression of all datasets. We use SPRING, the current best compression algorithm, as base-
line to compare our results. Table 4.6 shows the sizes of the compressed datasets, in mega
bytes, produced by SPRING and ParRefCom. It can be observed that ParRefCom performs
better than SPRING for all datasets but C. elegans. Excluding the C. elegans dataset, the
size of the compressed output produced by ParRefCom is at least 21% smaller compared to
that produced by SPRING. For human dataset H1, it is smaller by as much as 77%. These
results demonstrate the superior compression efficiency of ParRefCom, our special-purpose
compressor.

Tables 4.7 and 4.8 depict the time taken by SPRING and ParRefCom tools for com-
pression and decompression respectively. The results are provided for all datasets and cor-
respond to the case when 16 threads are used. For compression, ParRefCom is at least 1.5
times faster than SPRING across all datasets. In case of decompression, the performance

gain is even more prominent, and ParRefCom is at least 1.7 times faster than SPRING
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Algorithm 13: Parallel algorithm for recovering two-aligned reads
Input: G, reference genome. t, thread count
Input: C, number of two-aligned paired-end reads
Input: LFs; and LRgy: List of starting locations
Input: LFyp and LR yp: List of number of differences
Input: LFpp and LRpp: List of positions of differences
Input: LFzp and LRpp: List of bases corresponding to differences
Input: Lpg: List of locations of other ends
Output: LF7r,,: List of forward two-aligned reads
Output: LRr,,: List of reverse two-aligned reads
// Reads in LFrpr,, and LRr,, correspond one to one
1 parallel j = thread’s id do
2 Sqa < Size of LEry,
o | Lo+ [%]
4 It < j X Lg
5 Tt(—(j+l)XLg—l
6
7
8
9

if (S¢ — 1) < rt then

‘ Tt — (SG — 1)

end

for i < [t tort do
10 Populate L Frry,[i] using decoded LFgy[i] and G
11 Populate L Rr,[¢] using decoded LRgy[i] and G
12 Identify differing bases in LFr,,[i] using LFyplil,
13 and corresponding number of LF'pp entries
14 Identify differing bases in LRy, |i] using LRy pli],
15 and corresponding number of L Rpp entries
16 Update differing bases in LF7p,,[i] using LFyplil,
17 and corresponding number of decoded L Fzp entries
18 Update differing bases in L Rry,[i] using LRypli],
19 and corresponding number of decoded L R entries
20 Compute reverse-complement of L Ry, [i| read
21 end
22 Sort L Rry,, 1n parallel using L pg values as keys

// LFry.li] and LRry.li] correspond to two ends of a
paired-end read

23 end

across all datasets. Note that a dataset typically needs to be compressed only once but
needs to be decompressed multiple times. Therefore, decompression performance carries
more significance than compression performance.

Table 4.9 shows the percentage of reads corresponding to each difference value for all
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Table 4.6: Compression efficiency of SPRING and ParRefCom algorithms

Dataset | SPRING size (MB) ParRefCom size (MB) ~ParRefCom improvement
C. elegans 227 267 -17.62%
G. gallus 1,512 1,174 22.36%
H. sapiens(H1) 825 192 76.72%
H. sapiens(H2) 1,666 1,322 20.65%
H. sapiens(H3) 2,022 1,457 27.94%

Table 4.7: Compression time in seconds using 16 threads for SPRING and ParRefCom
algorithms

Dataset | SPRING time (s) ParRefCom time (s) ParRefCom speedup
C. elegans 398 122 3.26
G. gallus 2,343 1,041 2.25
H. sapiens(H1) 557 364 1.53
H. sapiens(H2) 2,817 1,789 1.58
H. sapiens(H3) 4,890 3,301 1.48

datasets. It can be observed that the percentage of reads with no differences is the highest
for all datasets and the percentage of reads with differences falls sharply as the difference
value increases. Further, the percentage of reads with no differences and the percentage of
reads with one difference together account for about 90% of total reads for all datasets.

Table 4.10 shows the distribution of various types of differences - namely substitutions,
insertions, and deletions - for all datasets. It can be observed that the percentage of sub-
stitutions significantly outnumber the percentages of insertions and deletions. Further, the
percentages of insertions and deletions are approximately the same, particularly for human
datasets.

Table 4.11 shows the breakdown for one- and non- aligned PE reads in each of the
categories described in Section 4.8 for all datasets. It can be observed that the percentage
of reads in non-aligned-z category is zero or close to it for all datasets. Therefore, even
when both ends of a paired-end read do not align, we have sufficient evidence to orient and
order reads. Note that classical alignment algorithms do not provide any information for

orienting and ordering non-aligned reads.
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Table 4.8: Decompression time in seconds using 16 threads for SPRING and ParRefCom

algorithms
Dataset H SPRING time (s) ParRefCom time (s) ParRefCom speedup
C. elegans 36 20 1.80
G. gallus 227 133 1.71
H. sapiens(H1) 69 32 2.16
H. sapiens(H2) 264 133 1.99
H. sapiens(H3) 415 203 2.04

Table 4.9: Counts of differences (percentage) for two-aligned paired-end reads using the

specialized alignment algorithm

Differences H C. elegans G. gallus H. sapiens(H1) H. sapiens(H2) H. sapiens(H3)

NN N R W= O

79.06
10.74
3.68
2.25
1.59
1.16
0.87
0.66

77.92
10.67
3.65
2.25
1.75
1.49
1.26
1.01

71.45
17.22
4.70
2.24
1.48
1.12
0.95
0.85

76.92
13.48
3.80
1.91
1.31
0.98
0.83
0.77

74.42
15.74
4.43
2.02
1.29
0.89
0.67
0.55

4.11 Discussion

4.11.1 Compression Metadata

In addition to the streams of data generated to represent two-aligned, one-aligned, and non-

aligned paired-end (PE) reads compactly, we need to capture the following metadata in or-

der to recover the read dataset : (1) Number of threads, (2) Identifier for reference genome,

(3) Read length, (4) Sizes of lists generated in Sections 4.7 and 4.8, and (5) Information

corresponding to the transformation performed before encoding described in Section 4.7.6.

The storage cost incurred by metadata is less than 1 KB, and is insignificant in comparison

to that incurred to represent the compressed output.
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Table 4.10: Types of differences (percentage) for two-aligned paired-end reads using the
specialized alignment algorithm

Difference type H C. elegans G. gallus H. sapiens(H1) H. sapiens(H2) H. sapiens(H3)

Substitution 94.49 90.11 94.13 93.80 91.55
Insertion 3.52 6.30 3.03 3.03 3.97
Deletion 1.99 3.59 2.84 3.17 4.48

Table 4.11: Percentage of one- and non- aligned PE reads using the specialized alignment
algorithm

Difference type H C. elegans G. gallus H. sapiens(H1) H. sapiens(H2) H. sapiens(H3)

One-aligned 8.17 5.87 8.21 7.94
Non-aligned-x 2.74 9.09 2.96 1.51
Non-aligned-y 3.95 0.98 0.26 0.51
Non-aligned-z 0.02 0.00 0.00 0.00

8.84
2.34
0.36
0.00

4.11.2  Verifying Decompressed Output

Recall that our specialized compressor, ParRefCom, allows the following lossless transfor-
mations of PE reads in the datasets : reordering of reads while keeping paired ends together
and reordering of individual reads within a PE read. Therefore, the decompressed output
has the same information content as, but is not exactly identical to the input read dataset.
We propose a parallel algorithm to verify that the decompressed output contains the same
information as the input, while allowing the two lossless transformations described previ-

ously. It is described in Algorithm 14.
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Algorithm 14: Parallel algorithm for verifying decompressed output

Input: R, input paired-end read dataset. t, thread count
Input: R’, paired-end read dataset recovered after decompression
Output: TRUE, if information content in R and R’ is same. Else, FALSE
parallel j = thread’s id do
if |R| ! = |R’| then
| return FLASE
end
SG < ’R’
La « []
It ] X La
Tt(—(j—f-l)XLg—l
if (S¢ — 1) < rt then
‘ Tt (SG — 1)
end
Initialize 7 to an empty list of tuples
Initialize 7" to an empty list of tuples
for i < lt tort do
Sort two ends of R[i] in lexicographic order and
append (71, 72) tuple to T
Sort two ends of R'[7] in lexicographic order and
append (r7, %) tuple to 7"
end
Parallel sort 7 in lexicographic order using r; as primary key
and ry as secondary key
Parallel sort 7" in lexicographic order using 7 as primary key
and r, as secondary key
for i < It tort do
if 7[¢].r1 ! = T'[i].r} then
| return FALSE
end
if 7[t].ro ! = T'[i].r}, then
‘ return FALSE
end
end
return TRUE
end
// Global output is computed as logical AND of local
outputs

o X N AR W N -

WO NN NN NN NN N e e e e e e e e
S O 0 NN AR WN =S Y XN N R WN =D

W W
R =

w
w
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CHAPTER §
CONCLUSIONS AND FUTURE WORK

In this chapter, we summarize the contributions of this thesis for solving the following
three problems related to high-throughput sequencing short read datasets : (1) error correc-
tion, (2) partitioning, and (3) compression. Further, we outline avenues for extending the

solutions described in this thesis.

5.1 Error Correction

Genomic read error correction improves the quality of results produced by applications in
areas such as genomics, metagenomics, and transcriptomics. Further, it leads to a reduction
in the runtime and the memory usage of such applications. Serial error correction methods
cannot handle the large number of reads sequenced by modern instruments. A distributed-
memory Parallel Spectrum-based Error Correction (PSbEC) algorithm was proposed to
address this shortcoming [1]. The PSbEC algorithm suffers from three major problems: (1)
A separate copy of the spectrum is maintained per process. This approach does not scale
to billion base long genomes, (2) Work is statically allocated to processes. Due to differ-
ences in distribution of errors among reads, this leads to significant load imbalance among
processes, and (3) Error correction involves repeated binary searches over the spectrum.
Binary search is inefficient in terms of memory accesses given the memory organization of
modern day computer systems.

In this work, we proposed the following techniques to address the above shortcomings
of the PSbEC algorithm: (1) Save only one copy of the spectrum per physical node instead
of a copy of the spectrum per process, (2) A dynamic work allocation scheme to solve the
load imbalance problem, and (3) A cache-aware layout to represent the spectrum in order

to improve the memory-access efficiency. Our proposed strategies enhance the scope and
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the speedup of the PSbEC algorithm to accomplish read error correction of big genomic
datasets. More specifically, by combining our optimizations, we achieved a cumulative
speedup of up to 11 X. In addition, we demonstrated distributed-memory error correction
of a dataset consisting of nearly 1.55 billion reads for the first time. We also presented a
parallel algorithm for constructing the cache-aware layout of the spectrum.

While developing parallel algorithms, significant emphasis is placed on reducing com-
munication as it is considered to be expensive. In a similar manner, importance needs to
be given to optimizing memory-accesses while developing algorithms. This is especially
important in case of modern systems in which a memory access is about a few hundred
times more expensive than the cost of computation. In this spirit, we adopted the cache-
aware layout to improve the performance of the PSbEC algorithm. We hope that our work
will spur a renewed interest in embracing such memory-access efficient data structures and
algorithms for various other problems.

During the course of our work, we realized that the spectrum can be represented more
compactly using a lossless compression scheme. Moreover, searches can be performed
more rapidly over the compacted spectrum representation. Representing the spectrum more
compactly will enable error correction of bigger datasets using a fixed amount of main
memory. Developing the compression scheme and analyzing the corresponding benefits
can serve as interesting opportunities for future research. In our approach, the cost of
querying an element in the spectrum is O(logN'), where N is the number of elements in
the spectrum. Alternatively, the spectrum can be stored in the form of a hash table. This
approach reduces the cost of querying an element in the spectrum but potentially increases
the memory footprint of the spectrum. A potential opportunity for future research is to
analyze the time-space trade off involved and select the approach that works better for a
given scenario. Hamming graph has applications in other problems associated with read
datasets and the algorithms proposed in this work can be adapted to develop solutions for

such problems.
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5.2 Read Partitioning

Analysis of large-scale datasets produced by modern day high-throughput sequencing in-
struments poses significant computational and memory challenges. The attempt to address
the memory aspect of the challenge using shared-memory machines has limited effective-
ness due to the limitations on available memory and number of hardware threads available.
To address these challenges, we proposed locality-sensitive partitioning of read sets that
can be applied for communication-efficient distributed memory parallel analysis for many
applications. Our solution facilitates scalable analysis of the partitioned read datasets in
distributed-memory settings, thereby addressing the dual challenges of computation and
memory.

As part of generating a partitioning of the read dataset, we construct and partition the
de Bruijn graph corresponding to the read set. Partitions of de Bruijn graph can be di-
rectly used by applications that predominantly use a variant of the de Bruijn graph. We
demonstrate that our proposed solution produces high quality de Bruijn graph and read set
partitions for large-scale datasets. The partitioning algorithm is fast, scalable, and effec-
tive. Although demonstrated in the context of genomics datasets, it can be extended to
applications in areas such as metagenomics and transcriptomics.

Potential opportunities for future research with respect to the read dataset partition-
ing problem are : Extension of the proposed solution approach to applications in metage-
nomics and transcriptomics areas. Evaluation of de Bruijn graph and read set partitioning
algorithms on additional large-scale datasets. Demonstration of the utility of the proposed
partitioning algorithms in the context of actual analyses, based on both de Bruijn graph and
read dataset. Utilization of auxiliary information such as reference sequence to improve

the quality of partitioning.
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5.3 Read Compression

Owing to the large size of the read datasets produced by high-throughput sequencing instru-
ments, transmission, storage, and archival of such datasets pose significant challenges. The
magnitude of the problem grows as the sequencing technology improves. Domain-specific
properties of read datasets make it difficult for general-purpose compressors to fully ex-
ploit the redundancy present in these datasets. Researchers proposed special-purpose com-
pression algorithms, that exploit one or more of the unique properties of read datasets, to
improve upon the compression efficiency of general-purpose compressors.

In this work, we developed a reference-based compressor for genomics read datasets
which exploits all of the domain-specific properties of read datasets. Our compressor per-
forms a specialized alignment of paired-end (PE) reads to standard reference sequence. It
categorizes PE reads based on the number of ends aligned. Finally, it uses custom com-
pression strategies for reads in different categories. Our special-purpose compressor allows
lossless transformations of PE reads in datasets. By leveraging all of these insights, it is
able to significantly improve upon the compression efficiency over state-of-the-art. In addi-
tion to enhancing compression efficiency, we furnished fast and scalable parallel algorithms
for compressing and decompressing read datasets.

Currently, our special-purpose compressor only handles data portion of read datasets.
Integrating it with compression algorithms specifically deigned to handle metadata portion
of read datasets, to create a unified compressor, is a potential opportunity for future re-
search. Improving the compression efficiency of PE reads, for which one or both ends do
not align, can also serve as an interesting avenue for future research.

In our approach, a piece of information that needs to be recorded for every two-aligned
PE read is the number of bases different in the alignment between the read and the reference
genome. A straightforward approach is to record the count of differing bases as they are.

However, there can be variations between the reference genome to which the read dataset
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is aligned and the target genome from which the read dataset is generated. These variations
manifest themselves in all reads aligning to corresponding locations. It would be redundant
to record a variation in every read separately. Note that the manner in which variations are
recorded has implication not only for storing the number of differences, but also for storing
the positions of differences and the bases corresponding to the differences.

A way to avoid storing a variation redundantly in multiple reads is as follows. As we
parse alignments of reads ordered by their alignment locations, we can dynamically update
the reference sequence based on differences observed in reads. Using this approach, base
at a location in the genome gets updated to the consensus of the reads aligning at that
location. So, when a variation appears in more than two reads at a location, the variation
is explicitly recorded only for the first two reads. The base gets updated to the variation
for the remaining reads, and they don’t need to account for the variation explicitly. The
process of updating the base is continuous and can be replicated while decompressing the
reads as well. The process of updating the base to the consensus makes use of forward and
reverse lists simultaneously. Furthermore, it can be implemented using a circular buffer of
size 3 X L, where L is the length of the read. Implementing this optimization can further

improve the compression efficiency for two-aligned PE reads.
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