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 SUMMARY 

 

 The absence of appropriate media to cultivate photons efficiently at the micro or 

nano scale has hindered taking the full advantage of processing information with light. 

The proposal of such a medium for light, known as photonic crystals (PCs)--multi-

dimensional artificially periodic dielectric media--brings the possibility of a revolution in 

communications and sensing much closer.  In such media, one can manipulate light at a 

scale on the order of the wavelength or even shorter.  

Applications of PCs other than in communication include bio-sensing because of 

the peculiar properties of PCs such as the capability of enhance field-matter interaction 

and control over the group velocity. As a result, PC waveguide (PCW) structures are of 

interest and it is expected that PC sensors offer the feasibility of multi-analyte and 

compact sensing schemes as well as the ability of the detection of small absolute analyte 

quantities (nanoliters) and low-concentration samples (picomoles), which may be 

advantages over conventional approaches such as fiber optic and slab waveguide sensors. 

Depending on the nature of the analyte, either dispersive (index sensor) or absorptive 

(absorption sensor) sensing schemes may be implemented. 

 Light propagation is controlled fully only with 3D PCs. One of the problems 

arising due to reducing the dimension to 2D is that PCs become strongly polarization 

sensitive. In many cases, one wants to implement polarization insensitive devices such 

that the PC provides a full band gap for all polarizations. To address this problem, a novel 

type of PC called annular PC (APC) is proposed and analyzed. The capability of tuning 

the TE and TM polarizations independently within the same structure provides great 



 xii

flexibility to produce polarization-independent or polarization-dependent devices as 

desired. 

 PCW bends are expected to be the essential building blocks of photonic integrated 

circuits. Sharp corners having small radii of curvature can be obtained. To enhance the 

low-loss and narrow-band transmission through these bends, PC heterostructures 

waveguide concept is introduced. We show that in PCWs formed by joining different 

types of PCs in a single structure, light can flow around extremely sharp bends in ways 

that are not possible using conventional PCWs based on a single type of PC. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Photonic crystals: Past, present and future 

The engineering of electromagnetic (EM) modes at optical frequencies in 

multidimensional artificially periodic structures was first proposed by Yablonovitch and 

by John in 1987 [1, 2]. Yablonovitch’s initial goal was to study the modification of 

spontaneous-emission rates—a major loss mechanism degrading the efficiency of 

semiconductor lasers, heterojunction bipolar transistors, and solar cells. Inspired by the 

one-dimensional periodic dielectric layer that gives rise to band gap for EM waves 

propagating perpendicular to the patterned layers, increasing the periodicity to three 

dimensions may provide band gap in omni-direction. The density of states (DOS) is zero 

within the band gap because the wave vector k  is evanescent. Since the spontaneous-

emission rates are proportional to the DOS, it may be possible to inhibit the spontaneous 

emission. Meanwhile, John argued that the localization of photons can be achieved with 

three-dimensional superlattices having certain disorder. As proven later both theoretically 

and experimentally, these periodic structures, called photonic crystals (PC), have the 

ability to control and manipulate the flow of light. The term photonic was selected 

because the initial aim was to study the interaction of photon with the periodic medium. 

Later, different but similar names have been adapted such as electromagnetic band-gap 

materials for the microwave region and phononic band gap structures for the acoustic 

waves. 
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A uniform, lossless and dispersion-free bulk medium slows down the speed of 

light proportional to the refractive index n  and the band diagram is continuous. The EM 

wave propagation through a PC is modified and this modification can be explained using 

an analogy of electron motion in the crystalline solids [3, 4]. An atomic lattice creates a 

periodic potential to an electron propagating through a semiconductor crystal; hence, the 

electron propagation is modulated by the crystalline structure of the atomic lattice as 

shown on Fig. 1.1. The gap between the conduction and the valance bands defines 

forbidden states for propagating electrons and is called electronic band gap (energy gap). 

Similarly, the lattice of dielectric media is analogous to a potential for the EM wave. In 

the dispersion diagram [ ( )kω vs. k ], there are frequency bands in which the EM waves 

are allowed to propagate freely through the structure; however, for some ranges of 

frequencies there may be no propagating modes, and such frequency ranges are called 

photonic band gap (PBG). Since the wave vector there is imaginary, it decays 

exponentially if the frequency lies within the PBG. The physical origin of the PBG can be 

explained as follows. For simplicity we can assume 1D periodic lattice situation stacked 

of high- and low-dielectric layers Hn and Ln , alternately. The electric field is in the form 

of plane wave ( )rjk ⋅exp  modulated by the periodic function of the lattice ( ) ( )axx += εε . 

The Bragg condition is satisfied at the edge of Brillouin zone, ak π±=  for this 

structure. The right and left traveling waves create a standing wave of the form ( )axπsin  

and ( )axπcos  as shown in Fig. 1.2. The energy is proportional to the magnitude square of 

the electric field. 
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The low order mode ( )1=n  tends to confine its energy in the high dielectric 

region while lowering the frequency. At the same time, high order mode ( )2=n  tends to 

confine its energy in the high dielectric region while increasing its frequency. The 

difference of energy confinement in the low and high refractive index causes the energy 

gap (band gap) as shown in Fig. 1.3. Inside the band gap k  is imaginary so the field is 

exponentially decaying and outside of the band gap k is real and field is propagating. The 

Bragg condition is a transition state where the field is a standing wave [5]. 

Figure 1.1: Energy diagrams (a) for a free electron, and (b) for an electron 
propagating through an atomic lattice [4]. 

(a) (b) 
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Lε Hε

a

( ) ( )axx += εε

Figure 1.2: One-dimensional periodic layers. Electric field forms and 
energy profiles for the modes 1=n and 2=n  are shown.  
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The one-dimensional counterpart of PCs was first studied by Lord Rayleigh in 

1887. It was shown that light propagation is angle dependent and prohibited for a range 

of frequencies. Many optoelectronic devices employ 1D PC as a frequency selective or 

highly reflective material. A stack of dielectric layers with thicknesses of 4λ forms a 

highly reflective multilayer film which is also known as distributed Bragg reflector 

(DBR).  The distributed feedback lasers (DFB), and vertical cavity surface emitting lasers 

(VCSELs) employ 1D PCs. In fact, a VCSEL structure can be assumed as a 1D PC with 

an introduction of spatial defect in the middle section. Even though the wide deployment 

of 1D PCs or DBRs, two- and three-dimensional PCs were proposed 100 years later. 

 The idea of increasing the periodicity to more than one dimension, as shown in 

Fig. 1.4 may seem straightforward, but the inherent difficulty at the beginning of research 

in this area was that it was not known yet what type of structures provide full band gaps 

even though it was relatively easy to have pseudo-gaps (partial-gaps).  Thus, it took three 

years to find correct geometries by trial and error. Later, computational methods played a 

large role in calculating the band diagrams and predicting if a given type of crystal has 

band gaps or not. 

 The driving force behind the PCs is the yields one may get because of the superior 

manipulation of light propagation. The obvious advantages of processing information 

with photonic devices are as follows. The bandwidth advantage of photonics over 

electronic circuits is tremendous, thus enabling data rates far in excess of what has been 

achieved with microelectronics. Moreover, while photons interact weakly (no charge), 

electrons interact strongly. Each electron produces heat, photons, on the other hand, 

hardly generate any heat in transparent media. 
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 The electronic world, due to the impact of semiconductor materials and the 

mature processing and fabrication technologies that have grown up around them, has 

progressed tremendously compared to the photonic world. The absence of an appropriate 

medium to cultivate photons efficiently at the micro or nanoscale has hindered the 

achievements of a similar revolution in photonics compared with that which has occurred 

in microelectronics. The proposal of such a medium for light, known as photonic crystals 

(PCs) may bring the possibility of a similar revolution in many areas including 

communications and sensing much closer. 

Figure 1.3: Band diagram of 1D multilayer film with lattice constant a . High dielectric 
( )12=ε  width is a2.0 and low dielectric is air. The imaginary part of the wavevector is 
depicted around the band gap. 

0 imagk

n=1 

n=2 

Photonic band gap 
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What makes PCs special is the appearance of PBGs and the possibility to 

intentionally create defects.  Similar to impurity levels obtained by doping in 

semiconductor materials, breaking the translational symmetry in PCs may give rise to 

EM defect states. The periodic arrangement of the dielectric materials may provide an  

 

effective potential for photons, i.e., photons acquire an effective mass. Constructive 

interference of reflected light from the dielectric material prohibits propagation when the 

Bragg condition is satisfied. In the dispersion diagram, there are two types of regions, 

called stop bands and pass bands. If the index contrast of non-absorbing dielectric 

materials is large enough and if scattering from a periodic structure interferes 

Figure 1.4: Schematic representations of one-, two- and three-dimensional 
photonic crystals. 
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constructively, then there are no allowed propagating modes irrespective of the 

propagation direction within some frequency range called the stop band or PBG. On the 

other hand, destructive interference will allow the light to propagate freely through the 

periodic material for a band of frequencies; this is called the pass band. The low-

frequency and high-frequency band edge of PBG are frequently called the dielectric and 

air bands, analogous to the valance and conduction bands in solids. Because of the 

scalability of the Maxwell equations, one can design PCs operating in the optical regime 

with micron sizes or in the microwave region with millimeter sizes, depending on the 

goal. This can be inferred from the Bragg condition [ ( )θλ sin2a=  where a is the lattice 

periodicity and θ  is the incidence angle]. Exploiting these features resulted in numerous 

proposals and studies of linear and nonlinear applications of PCs.  

The first successful PC was made in 1991 [6]. The diamond-like structure 

obtained by drilling holes in a bulk dielectric material exhibited PBG from 13 to 16 GHz. 

In addition, face centered cubic (fcc) [7], woodpile [8], and self-organized structures [9] 

such as artificial opals and colloidal systems have been suggested and shown to produce 

complete PBGs. The drawback of self assembly is the dearth of high index-contrast 

materials required to obtain PBG’s, and the means to incorporate controlled defects 

(point/line) in the structure is difficult. Photonic crystals face two different dilemmas 

toward the opposite sides of EM spectrum. In the low-frequency regime they are large 

(bulky) though easy to manufacture. On the other hand, the periodicity of the structure is 

of the order of micrometers in the high-frequency regions making their fabrication a 

challenging task. The most appealing prospect of the idea of PBG was in the field of 

optics. Even though complete control of light can be achieved in all directions for any 
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polarization with three-dimensional PCs, because of the fabrication difficulties of sub-

micron dimensions of the structures in the optical domain, more attention has been given 

to two-dimensional planar PCs which are periodic in two dimensions and uniform in the 

third dimension. 

Numerical methods to analyze and design these structures are employed because 

of the difficulty in analytical approaches. Therefore, various computational EM methods 

have been used for this purpose, including the planewave method (PWM) [10, 11], the 

transfer-matrix method (TMM) [12], the FDTD [13, 14] method, the Korringa-Kohn-

Rostoker method (multiple-scattering theory), and tight-binding formulation [15-17]. To 

calculate the band structure of PCs using PWM, one has to formulate an eigenvalue 

problem to solve for the eigenfrequencies. The analysis is carried out for all wavevectors 

within the irreducible Brillouin zone 

The transfer-matrix method is a layer-by-layer approach and consists of writing 

the Maxwell equations in k-space on a mesh. In FDTD, a unit cell is truncated by Bloch 

boundary conditions and an initial field excitation (that can be random or due to the 

dipole sources located in non-symmetric places within the computational domain) is 

propagated in time and space. Fourier transforming the temporal produces resonances in 

frequency corresponding to the modes of the system. 

 Undoped 2D PC’s have been implemented as photonic band-edge lasers, highly 

reflective mirrors, super-prisms, and lenses [18-21]. However, far more flexibility of PCs 

can be realized by breaking the symmetry of an ideal PC by introducing defects. Adding 

or removing dielectric material from a unit cell will create defect modes inside the PBG 

originating from the dielectric (lower) or air (upper) band as indicated in Fig. 1.5. Using 
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the solid-state analogy, these modes are called as acceptor and donor modes. The 

straightforward application of point defects is high-Q microcavities [22-25], since the 

perturbed site can act like a cavity (EM resonator) surrounded by reflecting walls. The 

perturbation can be made by increasing or decreasing the radius of the dielectric rods in a 

low-index background or air holes in a high-index background. That means the effective 

refractive index of the defect region will be increased or lowered. The lifetime and 

resonant frequency of the cavity modes can be controlled by the geometry (shape and 

size) and the refractive index contrast of the structure. High-Q values can be obtained by 

increasing the number of lattice layers surrounding the cavity. Cavities with small 

volume and high Q may enable low-threshold lasers and highly efficient light emitting 

diodes with good temporal and spatial coherence [26-32]. 

Introducing line defects (adding or removing dielectric material within a certain 

row or rows of unit cells in the PC) into a PC results in a PCW [33-38]. The wave 

confinement is achieved by Bragg reflection in transverse directions contrary to the total 

internal reflection (TIR) that is responsible for the confinement in fiber optics. Since the 

guiding mechanism in fiber optics and slab waveguides are based on TIR, light is lost 

around sharp bends. On the other hand, high transmittance for the guided modes through 

sharp bends in PCWs has been theoretically (Fig. 1.6) and experimentally reported [39,  
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Figure 1.5: Defect modes of a PC obtained by either (a) increasing or (b) reducing the 
effective index of the unit lattice. 

(a) (b) 
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40]. Figure 1.7 shows a T-junction and a splitter where input light is divided equally. 

Recent experiments demonstrate that propagation loss can be as low as 24 dB/cm [41]. 

Even though this value is quite high, reducing the loss to an acceptable level may be 

achieved. Second-harmonic generation [42, 43], all-optical switches [44], optical 

transistors, and logic gates [45] have been implemented and made the hope of all optical 

signal processing a possible.  

 

In the microwave domain, metallo-dielectric material was mostly used. Metallic 

lattices have a forbidden band from zero frequency to a plasmon-like frequency pf . 

PBGs have been used to improve the gain and far-field pattern of patch antennas in the 

microwave region [46]. Other applications in this region are high impedance surfaces,  

 

Figure 1.6: A 900 2D photonic crystal waveguide bend for square lattice dielectric 
rods ( )ar 2.0,12 ==ε  in air. Two rows of rods are removed to obtain the bend.  
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Figure 1.7: (a) T-junction and (b) splitter of 2D square lattice dielectric rods obtained 
by removal of rods in rows ( )ar 2.0,12 ==ε . 

(a) 

(b) 
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compact uniplanar slow-wave lines, and broad-band filters [47, 48]. They are robust and 

easy to fabricate in this domain. Similar periodic structures such as frequency selective  

surfaces (FSS) [49] have been demonstrated using PCs. However, fully three-dimensional 

periodicity and doping, which makes PCs attractive, were missing in FSS. 

Recently, PCs have attracted attention for chemical and biological sensing. The 

main attraction is the ability to tailor the material-EM interaction. It is possible to 

enhance light-matter interaction as a result of group-velocity engineering. The group 

velocity is defined as gg nc=ν  where gn is group index. Reduction of the group 

velocity means an increase in the light-matter interaction ( gvt 1= ). References [50-52] 

have recently proposed the use of PCs for chemical and fluid detection. References [50] 

and [51] used high-Q microcavities for chemical detection. The resonant frequency of the 

cavity is very sensitive to changes in the refractive index and geometry. Therefore, filling 

the defect hole with various samples alters the resonant frequencies. In [52], multi-

channel PCWs are designed such that the input is guided by a PC line defect and coupled 

to one of the channels if the fluid is inserted into the air holes of the same channel. 

There are still some concerns related to making PCs more functional and practical 

to deploy in real devices. Some of these issues are how to make PCs tunable, the effects 

of imperfections, and reducing losses (input-output coupling, scattering) to an acceptable 

level.  

The tunability of any optoelectronic device enhances the functionality, likewise 

for PC structures. Any material that is sensitive to external parameters such as electric 

field, temperature, or pressure by means of electro-optic or piezo-optic mechanisms can 

be utilized to tune the band structure of PCs [53]. Though lithographic tuning by 
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changing the geometry and dimensions of PC can modify the properties of PCs, it is not 

practical. Using semiconductor materials and controlling the temperature T and the 

impurity concentration N, PCs can be made tunable; however, intrinsic absorption losses 

resulting from the materials are a major drawback [54]. The temperature-dependent 

refractive index of an infiltrated liquid crystal is also a possible way of making PCs 

tunable. 

Disorder in the refractive index as well as thickness and position variations 

resulting from fabrication errors have been investigated [55-58]. Their effects on PC 

characteristics are different. However, when considered together, the refractive index and 

hole-radius variability have the foremost effect on the PBG. It may not be necessary to 

have a perfect crystal structure for some cases.  

Impedance matching is important to suppress the input coupling loss and hence to 

enhance the transmission [59]. Low transmission degrades the functionality of PCW-

based devices. Therefore, enhanced coupling and transmission through the system are 

important. 

Although PCs in 3D are in many instances difficult to fabricate, nature provides 

its own structures, such as in opals, iridescent wings of some butterflies and moths, and 

the dorsal arm plate of the brittlestar Ophiocoma wendti [60, 61].  

The principles of PCs and their peculiar properties have been described while 

addressing the foreseen applications. We mentioned some remaining technical 

challenges, especially for the optics regime. 
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1.2 Outline of the thesis 

 

The thesis is organized as follows. The historical progress of the PCs is introduced in the 

introductory section, Chapter I. In Chapter 2, the necessary numerical tools for the study 

of the PCs are presented along with the important parameters of the PCs that determine 

mainly the occurrence of the photonic band gap. The plane wave expansion method and 

the finite-difference time-domain technique (FDTD) are formulated in that chapter. The 

FDTD method is modified in a way that dispersive materials can be analyzed. The next 

two chapters, Chapter III and IV, deal with the application of PCs for bio-sensing. The 

former one studies PCWs and the latter one implements coupled-resonator optical 

waveguides (CROW) for the same purpose. The preliminary experimental data is 

provided in Chapter III. The focuses of these aforementioned chapters are the special 

application of PCs i.e., bio-sensing. To address some of the challenges in the field is the 

target of the coming sections. 

 A novel PC called annular PC is the topic of Chapter V for full photonic band gap 

control by tuning the TE and TM polarizations independently. The two-dimensional PC 

heterostructure waveguide concept is introduced for the purpose of enhancing poor 

transmission coefficient through the sharp bends and the conclusions and future research 

directions are the subjects of the last two sections of the thesis, Chapter VI and VII, 

respectively. The relevant references are listed thereafter. 
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CHAPTER II 

The study of photonic crystals 

In this chapter, two numerical techniques which provide insights and great flexibility for 

the design and analysis of PCs are presented. 

2.1 Introduction to the numerical methods 

The analysis of PCs has been performed by various numerical approaches. The plane-

wave method (PWM) and finite-difference time-domain (FDTD) method are widely used 

techniques for the investigation of PCs. Their strengths and weaknesses compared to each 

other are as follows.  

The full vector nature of the EM field has to be kept to accurately analyze the 

strongly modified dielectric materials as the scalar-wave approximation does not produce 

accurate results. The PWM, a frequency domain formulation, is superior in calculating 

the band diagrams and mode field patterns. However, the dielectric constant of the PC 

material should be frequency independent and loss-free. In the case where the pure 

periodicity of the crystal is broken, or there is a defect, the so called supercell approach 

has to be used, which is computationally heavy as the number of plane waves used in the 

expansion increases. On the other hand, FDTD provides EM field variations in space 

with respect to time.  The transmission and reflection spectrum of finite structures can be 

evaluated easily and the wave propagation trough the medium can be observed in time. 

As a result, this method maybe more favorable to direct comparison with experiments. In 

addition, frequency dependence and loss can be included in this method. However, band 

diagram calculations are tedious with the FDTD as the selection of the initial excitation 

field is important to excite all possible modes. Similarly, the detection points shouldn’t be 
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placed at a high symmetry point. Moreover, if the structure has very sharp edges then 

uniform meshing may not predict the characteristics well enough. It may be needed to use 

non-uniform meshing and as a result, the size of the computational domain increases. 

Hence, the complementary use of these two methods depending on the case is beneficial 

for the study of periodic dielectric structures. As a result, I performed the designs and 

analysis of PC structures employing these two methods. The following section highlights 

the basic formulation of the PWM and FDTD for one- two- and three-dimensional cases. 

 
2.2 The plane wave expansion method 

 
Before the formulation, I explain briefly some of the frequently used terminologies and 

basic background borrowed mostly from the solid-state physics. These analogies greatly 

help the elucidation of the concepts by well know field, solid state electronics. 

 

2.2.1 The theory of band structures 

Photonic band structure calculation by solving Maxwell’s equations has borrowed many 

terms from electronic band structure, which solves the Schrödinger’s equation. The aim is 

to determine the allowed frequencies for a given wave vector k as well as the mode 

functions. The equations can be used to solve the eigenvalue problem for all directions. 

The Brillouin zone (BZ) represents the full symmetry of the lattice in reciprocal space. 

The irreducible Brillouin zone (IBZ) is the smallest region within the BZ for which the 

dispersion characteristics of the lattice is not related by symmetry. The behavior of the 

entire crystal can be obtained by studying the unit lattice in the IBZ due to periodicity. 

One cannot obtain independent solutions if the analysis is carried out outside the IBZ 
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because of the connection that is satisfied by reciprocal lattice vector. 

( ) ( ) ( )Gkkk jji +== ωωω '  where G is the reciprocal lattice vector. 

 Bloch’s theorem states that the plane wave is modulated by a function with the 

periodicity of the medium. The periodic dielectric function is translation invariant by any 

lattice vector R , so ( ) ( )Rrr += εε . The primitive lattice vectors are the shortest distances 

to the nearest neighboring points on the lattice 1ar , 2ar , and 3ar multiplied by any integer 

number pairs ( )lnm ,,  constructing the three dimensional periodic dielectric structures in 

terms of basis vector 321 alanamR rrr
++= . The solution obtained by Fourier 

transforming ( )rε , and ( )Rr +ε  has to be equal (differs only by a multiplicative constant) 

since ( ) ( )Rrr += εε . That means the lattice is invariant from one lattice point to another. 

The phase factor RjGe ⋅ has to be equal to 1 basing the needed condition for the reciprocal 

lattice vectorsG  which is composed of linear combinations of the primitive lattice 

vectors, NRG π2=⋅ . Given the lattice vectors, the reciprocal lattice vectors can be 

calculated by
321

32
1 2

aaa
aa

b rrr

rrr

×⋅
×

= π ,
321

13
2 2

aaa
aa

b rrr

rrr

×⋅
×

= π , and 
321

21
3 2

aaa
aab rvr

rrr

×⋅
×

= π , satisfying 

the condition; ijji ba πδ2=⋅
rr . 

 The regular scattering shapes (circular, sphere) facilitate obtaining the Fourier 

transforms (FT) of dielectric function in analytical forms. Representing the FT pair of 

permittivity function as ( ) ( )Gr εε ↔ , and using the shifting property of FT’s in the 

following form ( ) ( )∑∑ ⋅⇔+
i

i

i r

rjG

r
i Gerr εε  help calculating the band diagrams.  
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2.2.2 The Formulation of PWM 

We start with Maxwell’s equations 

( ) ( )trB
t

trE ,,
∂
∂

−=×∇  

 

( ) ( )trD
t

trH ,,
∂
∂

=×∇  

 
( ) ρ=⋅∇ trD ,  

 
( ) 0, =⋅∇ trB , 

(2.1)

 

where E  is the electric field, H is the magnetic field, B is the magnetic induction, D  is 

the electric displacement and ρ  is the charge density. The assumptions for the 

formulation and analysis carried out for the PWM are non-magnetic materials ( 0µµ = ), 

source free medium ( 0=ρ ), linear optic regime where D  and E  (isotropic medium) are 

related by ( ) EEPED e εχεε =+=+= 100 , and neglecting the higher order terms 

where P is the electric polarization and eχ  is the electric susceptibility function. 

Moreover, the permittivity is taken as frequency independent, real valued (lossless 

medium) and position dependent. Harmonic time dependent forms tie ω− for the fields E  

and H with the above assumptions help to write equation (2.1) into as follows: 

 
( ) ( ) ( )rHrjrE ωµ−=×∇  

 
( ) ( ) ( )rErjrH ωε=×∇  

 
( ) 0=⋅∇ rE  
 

0)( =⋅∇ rH . 

(2.2)
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Eliminating E  and rearranging in terms of H yields 

 

 

( ) H
c

H
r 2

21 ω
ε

=⎥
⎦

⎤
⎢
⎣

⎡
×∇×∇ . 

 

(2.3)

This is the characteristic (eigenvalue) equation where 001 εµ=c is the speed of light. 

Similar derivation can be obtained by eliminating H in favor of E , however, then the 

equation will not be Hermitian. The Hermitian operators have real eigenvalues and 

orthogonal eigenfunctions. Expanding H in terms of plane waves by means of Bloch’s 

theorem we obtain 

 
( ) ( )∑∑

=

⋅+=
2,1

, ˆ
λ

λλ
rGkj

G
G

eeHrH , (2.4)

 

where 1̂e and 2ê are unit vectors chosen such that they are perpendicular to Gk + due to 

the transverse requirement (i.e. 0=⋅∇ H ).  Substituting equation (2.4) into equation (2.3) 

the following expressions is obtained after some algebra, 

 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅⋅−

⋅−⋅
−++∑ −

2

12

2
'

1
'

'
1

'
12

'
1

1
'

22
'

2
1 ''

G

G

G

G

G GGGG

GGGG

h

h
ch

h

eeee

eeee
GGGkGk ωε . (2.5

 

There are two ways to proceed; either expand ( )rε  or ( )rε
1 . I selected the first 

way, the Inverse Expansion Method, in which ( )rε  is Fourier transformed first and then 

inversion is taken. [ ( ) ( ) ( ) ( )'' 1 GGGGGr −→−→↔ −εεεε ]. Either way, however, has 

to give the same results as long as sufficient number of plane waves is used to truncate 
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the infinite sum. The periodic dielectric function can be expanded in a Fourier series of 

plane waves ( ) ( )∑ ⋅=
G

riGeGr εε , where G  is the reciprocal lattice vector representing the 

allowed values of the wave vectors. Similarly, the inverse FT is in the form 

of ( ) ( )∫ ⋅−=
A

rG drer
A

G εε 1 . The spatial and frequency domain lattices are formed by R  

and G  vectors respectively. 

 

2.2.3 Two-Dimensional PWM 
 
The structure is assumed to be infinitely long in the third dimension. The decomposition 

into TE ( )zyx HEE ,,  and TM ( )zyx EHH ,,  polarizations is possible for the two-

dimensional case if the structure is uniform along the z-direction. For each propagation 

direction the eigenvalues (frequencies) are solved and the corresponding eigenmodes are 

calculated. For the TE polarization ( )zyx HEE ,, : 

 
( ) ( ) ( )rH

c
j

y
rE

x
rE

z
xy ω

=
∂

∂
−

∂

∂
 

 
( ) ( ) ( )rEr

c
j

x
rH

y
z εω

=
∂

∂  

 
( ) ( ) ( )rEr

c
j

y
rH

x
z εω

−=
∂

∂
. 

(2.6)

 

After arranging the above equations by eliminating xE and yE in favor of zH  one can 

obtain 

( ) ( ) ( ) ( ) ( ) 011 2

=⎟
⎠
⎞

⎜
⎝
⎛+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂ rH

c
rH

yry
rH

xrx zzz
ω

εε
. (2.7)
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Expanding ( )yx,ε  and ( )yxH z ,  in the k-space and substituting them into equation (2.7) 

we obtain 

( )( ) ( )∑ =−++ −

'
2,2

2

2,'
1 ''

G
GG H

c
HGGGkGk ωε . (2.8)

 

For the TM polarization ( )zyx EHH ,,  case; 

 
( ) ( ) ( ) ( )rEr

c
j

y
rH

x
rH

z
xy εω

−=
∂

∂
−

∂

∂
 

 
( ) ( )rH

c
j

x
rE

y
z ω

−=
∂

∂  

 
( ) ( )rH

c
j

y
rE

x
z ω

=
∂

∂ . 

(2.9)

 

Similarly eliminating xH and yH in favor of zE  yields 

( ) ( ) ( ) 01 2

2

2

2

2
=⎟

⎠
⎞

⎜
⎝
⎛+⎥

⎦

⎤
⎢
⎣

⎡

∂
∂

+
∂
∂ rE

c
rE

yxr zz
ω

ε
, (2.10)

 

and finally 

( ) 1,2

2

1,'
1

'
'' GG

G
H

c
HGGGkGk ωε =−++ −∑ . (2.11)

 

It should be noted that if the ( )rε  is constant then the equations turn into the usual wave 

equations commonly employed in electromagnetic. 
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2.2.4 Two-dimensional photonic crystals 

The compact from of the permittivity function in k-space can be written as 

 

( ) ( )∫ ⋅−=
A

riG drer
A

G εε 1  => ( ) ( )
( ) ( )⎩
⎨
⎧

≠−
=−+

=
0
0

GGI
Gf

G
ba

bab

εε
εεε

ε    

                                  

(2.12)

 

 

 

 

 

 

 

 

 

 

where aε  and bε represent the dielectric constants of the inner and the background 

medium, respectively, f is the filling fraction and a geometric factor ( )GI  is defined as 

( ) ∫ −=
A

riG dre
A

GI .1 . One only needs to calculate the ( )GI  with a given lattice type and 

filling fraction. The geometric factor is in the form of ( ) ( )
GR
GRJfGI 12=  for square and 

triangular lattice where 1J is the first-order Bessel function of the first kind. Figure 2.1 

shows 2D (top view) square and triangular lattice PC and the basis vectors, 1ar  and 

xaa ˆ1 =
r

yaa ˆ2 =
r

xaa ˆ1 =
r

( )yxaa ˆ3ˆ
22 +=

r

Figure 2.1 Schematics of two-dimensional photonic crystal for (a) square 
and (b) triangular lattice. Unit lattice vectors 1ar  and 2ar are shown. 

(a) (b) 
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2ar .The primitive lattice vectors for the square lattice are then x
a

b ˆ2
1

π
=

r
, and y

a
b ˆ2

2
π

=
r

, 

and for the triangular lattice, they are ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= yx

a
b ˆ

2
1ˆ

2
3

3
4

1
πr

, and y
a

b ˆ
3

4
2

π
=

r
. The 

crystal structure, BZ and the band diagram are shown in Fig. 2.2 and 2.3 for the square 

and triangular lattices, respectively. As can be seen from the figures, the first one has band 

gap only for TM modes, whereas the second one provides band gap for the TE polarization.  

 

2.2.5 Three-dimensional photonic crystals 

The real-space primitive vectors for the fcc lattice are: ( )yxaa ˆˆ
21 +=

r , ( )zyaa ˆˆ
22 +=

r , and 

( )zxaa ˆˆ
23 +=

r . The reciprocal lattice vectors can be evaluated straightforwardly and they 

are: ( )zyx
a

b ˆˆˆ2
1 −+=

πr
, ( )zyx

a
b ˆˆˆ2

2 ++−=
πr

, and ( )zyx
a

b ˆˆˆ2
3 +−=

πr
. The geometric 

factor is ( )
( )

( ) ( )[ ]GRGRGR
GR

fGI cossin13 3 −= . 

 The diamond lattice has the same primitive lattice vectors as fcc lattice but there 

are two dielectric spheres within the unit cell and their positions are offset by 

( )zyxar ˆˆˆ
80 ++=

r and ( )zyxar ˆˆˆ
8

'
0 ++−=
r . If the dielectric spheres are identical then the 

geometric factor is ( )
( )

( ) ( )[ ] ( )03 coscossin13 rGGRGRGR
GR

fGI ⋅−= . The lattice 

structure, and the band structures of fcc lattice and diamond lattice of dielectric spheres 

are shown in Fig. 2.4 and 2.5, respectively. As can be seen, the previous one does not 

have a PBG but the latter one has complete PBG. 
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Figure 2.2: (a) Square lattice photonic crystal, rods in ir ar 25.0= , 13=ε . 
(b) Brillouin zone of square lattice and irreducible BZ is shaded. (c) Band 
diagram of the square lattice. 
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Figure 2.3: (a) Triangular lattice photonic crystal, air holes in dielectric 
background ar 40.0= , 13=ε . (b) Brillouin zone of the triangular lattice. 
(c) Dispersion diagram.  
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Figure 2.4: Schematics of (a) face-centered cubic lattice, and (b) 
diamond lattice. (c) Brillouin zone of a face-centered cubic lattice. 
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Figure 2.5: Band diagrams of (a) face-centered cubic lattice, and (b) 
diamond lattice with ar 20.0=  and 13=ε . 

(a) 

(b) 
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2.2.6 Photonic crystal parameters 

The symmetry and the topology of the lattice are the foremost important properties that 

determine the overall photonic band structure. The symmetry of the lattice can be square 

or triangle for the 2D case, and simple cubic, body centered cubic, or face centered cubic 

for the 3D case. The topology of the lattice can be either in a connected form or an 

isolated structure. There are strict requirements that a crystal should posses to provide full 

band gaps in addition to the aforementioned conditions. These are high index-contrast 

ratio, and the filling fraction. For example, there is band gap as long as 21 nn ≠ for a 1D 

PC; however, in other cases (2D and 3D) the ratio has to be very large for the pseudo 

gaps to overlap. Two dimensional PCs are typically quite polarization sensitive, so 

favorable conditions for PBG are different for different polarizations. Usually, high 

filling fraction is required for TE modes but low filling fraction is favored for the TM 

modes. 

The scalability of Maxwell’s equations imposes that there is no fundamental 

length scale for photonic crystal as opposed to the fundamental length scale of 

semiconductor crystals (Bohr radius). Moreover, as long as the ratio of high refractive 

index to the low one keeps the same, the frequency is scaled accordingly. Figure 2.7 

shows the variation of the lowest two bands that determine the band gap for TE modes in 

a triangular lattice PC. As can be seen, larger ar and 12 nn values are desirable for wide 

PBG. 
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Figure 2.6: Photonic band gap variations of the triangular lattice air holes in dielectric 
background ( )13=bε  for TE modes. The radius of the hole and the refractive index of 
the background are varied.  
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2=n
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2.3 Finite-Difference Time-Domain Method 
 
 
As the name implies, the FDTD method is the formulation of Maxwell’s equations in the 

time domain and this method was introduced by K. Yee in 1966 [62]. Maxwell’s curl 

equations are discretized in space and time by approximating with centered two-point 

finite differences. The flexibility and capability of studying complex structures, easy 

implementation, visualizing the time-varying fields with the volume of space, handling 

nonlinear, frequency dependent, and conducting materials, obtaining easily broad spectral 

information by a single run made FDTD a powerful and versatile numerical tool. The 

memory requirement is linearly proportional with the volume of the simulated structure. 

 

2.3.1 Formulation of FDTD Method 

Assume f (not filling factor) is a function of space and time ( )txff ,= . The space and 

time derivatives are approximated by centered two-point finite differences with second 

order accuracy 

 
( ) ( ) ( )200 ,2,2

0

xO
x

txxxftxxxf
x
f

xx
∆+

∆
∆−=−∆+=

=
∂
∂

=

 

 
( ) ( ) ( )200 2,2,

0

tO
t

tttxftttxf
t
f

tt
∆+

∆
∆−=−∆+=

=
∂
∂

=

. 

 

(2.13)

 

The adapted notation to represent the space and time variations of a function f  in 3D 

is ( ) ( )tnzkyjxifnkjif ∆∆∆∆= ,,,,,, . To introduce the basic background of the method 

1D FDTD is good point to start.  
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2.3.2 One-dimensional FDTD: TEM Mode 

Assume the propagation is in x direction and field is y -polarized, then Maxwell’s 

equations can be written as 

 

⎥⎦
⎤

⎢⎣
⎡ +
∂
∂

−=
∂

∂
y

zy E
x

H
t

E
σ

ε
1  

 

⎥
⎦

⎤
⎢
⎣

⎡
+

∂

∂
−=

∂
∂

z
yz H

x
E

t
H *1 σ

µ
. 

 

(2.14)

 

The space derivatives are updated at fixed time step, and time derivatives are updated at 

fixed positions. The material parameters should be assigned at spatial points where each 

field component is defined in each cell. Figure 2.7 indicates the fields 

yE and zH assignment with respect to time and space. From Fig. 2.7, 
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(2.15)

 

Arranging these expressions yields  
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(2.16)

   

While obtaining the above equations, the conductive loss term is approximated by a semi-

implicit form using time average 

 

  ( ) ( ) ( )
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1 iEiE
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+

=
+
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(2.17)

The two extreme cases worth in noting are 0=σ (lossless material) case and 1>>σ   

(implementation of the PEC boundary condition) case. To update yE at the boundary, the 

value of the zH field outside of the domain is needed which is not available. So the 

appropriate termination of the computational domain is required. I will explain later the 

periodic and absorbing boundary conditions.  
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Figure 2.7: Staggered spatial meshes and leapfrog time steps. 
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2.3.3 Two-dimensional FDTD Method 

The Maxwell’s equations can be written for TE polarizations as 
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(2.18)

 

and for TM polarization as 
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Figure 2.8 and 2.9 show the assignments of field variables through the computational 

domain. Similar to the 1D case, the final form of 2D case can be obtained in a similar 

way. 
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The formulation for the TM case is straightforward with only modification of placing the 

E-field on the grid point. 
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( )ji,

( )maxmax , ji
xE yE zH

Figure 2.8: Spatial arrangements of field variables in the FDTD for two dimensional 
TE case. 

( )ji,

( )maxmax , ji

Figure 2.9: Spatial arrangements of field variables in the FDTD for two dimensional 
TM case. 
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2.3.4 Three-dimensional FDTD Method 

In 3D case, all the six field components are coupled; 
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Referring to Fig. 2.10, the above differential equations can be formulated in terms of 

discrete forms as follows 
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One can study PC slabs by 3D FDTD method or the incorporation of the effective index 

method reduces the problem into two dimensions which save the time and memory 

requirements. 

  

 

 The performance (stability and the accuracy) of the finite-difference 

approximations to Maxwell’s differential equations depends on the careful selection of 

the mesh spacing x∆ and time stepping t∆ .  

( )kji ,,

( )maxmaxmax ,, kji

x

y

z

xE
yE

zE

xH yH zH

Figure 2.10: Spatial arrangements of field variables in the FDTD for three dimensional 
case. 
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222

1
−−− ∆+∆+∆

≤∆
zyxc

t .                                 (2.24)

 

The above condition is known as Courant stability condition and it ensures the causality. 

This stability criterion ensures the convergence of the numerical simulation. The cell size 

x∆ should sample adequate portion of the minimum wavelength component (worst 

scenario case) of the EM field. Usually 20minλ≤∆x  is safe for enough accuracy but 

depending on the situation one may increase or reduce the sampling rate. As the pulse 

propagates down the FDTD mesh, the pulse becomes distorted (broadening and ringing 

the tail of the pulse) due to the numerical dispersion. Well resolved grid resolution also 

enables solution which is independent of the angle of the propagation. 

 

2.4 Boundary Conditions 

To truncate the computational region boundary conditions are required. They should 

absorb the out-going EM field by suppressing the spurious back reflected energy 

regardless of the polarization, propagation direction, and frequency. Absorbing boundary 

condition (ABC), perfectly matched layer (PML), or periodic boundary condition (PBC) 

are usually implemented with FDTD. Below I outline briefly the PML and PBC. 

 

2.4.1 Perfectly matched layer (PML) (Split field) 

This technique was introduced by J. P. Berenger in 1994 [63]. The computational domain 

is surrounded by a lossy material that absorbs the unwanted reflections such that the field 

is decaying exponentially inside the PML region. This method is just a mathematical 

model with no physical medium. The wave impedance is matched at the boundary 
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between the computational domain and absorbing layer by splitting the field 

zyzxz HHH += for TE and zyzxz EEE += for TM and assuming 
µ
σ

ε
σ *
= where σ  and 

∗σ are the electric and magnetic conductivity, respectively. 

 In the PML layer, exponential differencing has to be used because the field decays 

quickly so linear differencing is not adequate. Usually PML is terminated by a PEC layer. 

There may be a small reflection from this layer but the reflected field travels the PML 

region towards the computational domain and it is attenuated second time. So if the PML 

layer thickness is large enough the back reflected field is usually very small in amplitude. 

The expressions for the boundary layers around the computational domain are 
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(2.25)

 

The formulation for TM case is similar to the TE one.  

 

2.4.2 PML loss parameters 

The conductivity profile is important to increase the absorption performance. One can use 

the polynomial grading in x direction, given by ( ) max,
max

x

m

x d
xx

x σσ
−

= , where m is the 
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degree of the polynomial, d  is the thickness of the PML, and max,xσ is the maximum 

conductivity next to the PEC. This way σ  is spatially scaled from small values near the 

PML-computational domain interface to large values near the PEC interface. The 

reflection coefficient of PML becomes 

  ( ) ( ) ( )]1cos2exp[]cos2exp[ max,
0

+−=−= ∫ mddxxR x

d

x θησσθηθ .    (2.26)

Adjusting the free parameters, ( )θR can be set to a desired value. Figure 2.11 shows the 

assignments of the conductivity values around the computational region. The out-going 

waves generated by the dipole source is absorbed by PML as indicated in Fig. 2.12. 

 

2.4.3 Periodic Boundary condition (PBC) 

The Bloch’s theorem requires that ( ) ( )rEeRrE Rjk ⋅=+ . The phase shift corresponds to 

delay in time domain;  

   
( ) ( )pypx nYmXtyxEtYyXxE υυ ++=++ ,,,, ,    

                              
(2.27)

where X andY are the unit cell dimensions, pxυ and pyυ are the phase velocities along 

the x and y axis, respectively and ( )nm, are any integers. The PBC implementation in time 

domain is not straightforward. However, there are ways to implement PBC in FDTD such 

as cossin method and split-field technique. The first one does not require field 

transformation which is direct field method but works for single frequencies. The second 

method is, on the other hand, requires field transformation. 
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Figure 2.11: Implementing PML ABC for two dimensional FDTD with TE 
polarization case. 

Figure 2.12: Point dipole source radiating in the center of the computational domain 
surrounded by PML. 

x

y
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2.5 FDTD with Recursive Convolution 
 
Modeling the propagation of EM waves in PCs is feasible by implementing a 

computational method such as FDTD. In this method, the Maxwell equations are 

discretized in space and time by central differences using Yee’s cell as formulated above. 

It enables the observation of the temporal and spatial variation of EM waves propagating 

through the medium. Typically, the medium is assumed to be nondispersive, so the 

permittivity and permeability are taken constant.  However, when there is a material 

having significant frequency dependence on the constitutive parameters, the usual FDTD 

method must be modified. One approach is called FDTD with RC [13, 14].  It is based on 

the recursive evaluation of the convolution between the D and E fields, which comes 

from the frequency-dependent dielectric function Fourier transformed to time. 

 The formulation shown here is mostly adapted from Ref. [14]. The time-

dependent Maxwell’s curl equations in a source-free medium are 
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(2.28)

 

assuming zero conductivity 0=σ , and constant permeability HB 0µ= . 

The spatial and time discretizations of Maxwell’s equations for the TE mode can be 

written as follows 
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The central-difference expressions for the space and time derivatives are 
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(2.30)

 

In general, the electric flux density is related to the electric field by ED rεε0= . For a 

linear dispersive medium ( ) ( )ωχεωε += ∞r  and then 

   
( ) ( ) ( ) ( )[ ] ( )ωωχεεωωεεω yyry EED +== ∞oo .    

                              
(2.31)

Since multiplication in the frequency domain corresponds to a convolution in the time 

domain: ( ) ( ) ( ) ( )∫ −+= ∞

t

yyy dtEtEtD
0

ττχτεεε oo where ( )tχ is the time domain electric 
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susceptibility function, 0ε is permittivity of free space, and ∞ε is the infinite frequency 

relative permittivity. 

 When we write the above equation in discrete form using Yee’s notation, we obtain  
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(2.32)

assuming all field quantities are constant over each time interval t∆ , then the integration 

can be written as follows 
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At the next time step 
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From equations (2.32) and (2.33) the central-difference expression for the time derivative 

is obtained as 
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(2.35)

where 
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To simplify the equation (2.34), one can also define  
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Then 
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When we solve the equation (2.35) for 1+n

yE  we find 
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(2.37)

 
In the above expression (2.36), the summation term is computationally heavy to 

implement directly. However, when ( )tχ has an exponential time behavior, the 

convolution summation can be replaced by a recursive form. In this study, we take 

second order Lorentz form to model the dispersion 
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(2.38)

where sε is the static permittivity, 0ω is the resonant frequency, and δ  is the damping 

coefficient. The following Fourier-Transform pair is useful to obtain the time domain 

susceptibility function for Lorentz form 
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where ( )tu  is the time step function, δα = , 22 δωβ −= , and
( )

β
ωεε

γ
2

∞−
= s . 

The goal is to express the time domain susceptibility function in an exponential form and 

then update the summation term recursively. Therefore, we need to define complex time 

domain susceptibility function 
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Let’s write the summation term in the following form 
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When we write the first two terms, we obtain for n = 1 
 

( ) ( ) ( )jijiEji yy ,,, 11 oχψ ∆= , 
 and for n = 2, 



 52

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ),,,),(

,,,),(

,,,),(,

102

0102

11022

jiejijiE

jiejiEjijiE

jijiEjijiEji

y
tj

y

tj
yy

yyy

ψχ

χχ

χχψ

βα

βα

∆+−

∆+−

+∆

=∆+∆

=∆+∆=

 

 
from which it follows that 
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The final forms are: 
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where 
( )[ ]tje
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[ ]00 ˆRe χχ ∆=∆ . 

 
These are the general expression and can be reduced to the usual FDTD equations when 

∞ε equals to sε . Following similar steps, one can formulate for the TM case easily too. 

To validate the above formulation of FDTD-RC, a test case is studied.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13: Numerical comparison of the transmission and reflection 
coefficient for an air-dispersive medium interface. 
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Transmission/reflection coefficients at air-dispersive medium interface and absorption 

parameter of the medium obtained by FDTD-RC are compared with the analytical results. 

They are shown in Figs. 2.13 and 14. The good agreement between the exact solution and 

the numerical method shows the validity of the above implementation. 

 

Figure 2.14: Numerical and analytical comparison of the absorption parameter of 
the second medium. 
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CHAPTER III 

Photonic crystals for biochemical sensing in the terahertz 
region* 

 

 

3.1 Introduction 

Photonic crystals (PCs) have numerous potential applications in optics to implement 

both active and passive devices as well as linear and nonlinear devices. Recently, PCs 

have attracted attention for chemical and biological sensing. The main attraction of 

such structures for this application is the ability to tailor the material-electromagnetic 

interaction. References 50 and 52 have recently proposed the use of PCs for 

chemical/fluid detection. In Ref. 52 multi-channel PCWs are designed such that the 

input is guided by a PC line defect and coupled to one of the channels if the fluid is 

inserted into the air holes of the same channel.  Reference 50 used high-quality 

microcavities for chemical detection. The resonant frequency of the cavity is very 

sensitive to changes in the refractive index and geometry. Therefore, filling the defect 

hole with various samples alters the resonant frequencies.  

In this Chapter, the frequency region of interest is the far-infrared in contrast 

to near-infrared or visible region in which most of the spectroscopic applications of 

PCs have been investigated. Due to the scalability of Maxwell’s equations, the 

analysis of PC in one frequency range can be shifted to another frequency region by   

 

*This chapter is based on: Hamza Kurt and D. S. Citrin, “Photonic crystals for 
biochemical sensing in the terahertz region,” Appl. Phys. Lett. 87, 41108 (1-3) (2005). 

 

 



 56

scaling the size of the PC. At near-infrared or visible wavelengths, however, it is 

difficult to manufacture PC structures; the richness of terahertz region in the 

spectroscopy of small and large molecules in gas and liquid phase together with the 

ease of fabrication for applications in this wavelength range make PCs attractive for 

biological and chemical sensing. 

  The use of terahertz region for biological and chemical sensing has largely 

been neglected due to the relative lack of sources and detectors even though large 

biomolecules may have fingerprints (vibrational and rotational modes) in this region 

of the spectrum. The frequency interval of the EM spectrum approximately from 0.1 

to 20 THz is called the THz or far-infrared (FIR) region of the EM spectrum. 

Historically, accessing the scientifically rich, but technologically limited, THz range 

was hindered by the difficulty of generating and detecting THz radiation; recent 

advances in THz sources and detectors have led to renewed interest in the interaction 

of THz energy with matter for unique spectroscopy and imaging applications. Solid-

state oscillators, quantum-cascade lasers, free-electron-based sources, and laser-driven 

THz emitters have recently been used for the production of FIR radiation, providing a 

means to close the so-called THz gap (Figure 3.1). 

THz time-domain spectroscopy (THz-TDS), based on the generation of 

broadband EM transients from biased photoconductors excited by ultrafast laser 

pulses, is a versatile tool to provide absorption spectra of biological molecules [65, 

66]. The dispersion and absorption of the sample material modifies the E-field of the 

THz signal as it propagates through a sample in the beam path. One can identify the 

presence or absence of specific materials including gases and biomolecules such as 

deoxyribonucleic acid (DNA) by inspecting the absorption signature. 
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THz-TDS is commonly used to investigate these modes of many biological 

materials and they have significant frequency dependence to their index of refraction 

in the terahertz regime [67-69]. It has been shown that an integrated terahertz 

microstrip line resonator sensitive to the loaded sample is capable of identifying and 

quantifying the hybridization state of the polynucleotides using the dependency of the 

binding state of the deoxyribonucleic acid (DNA) sequences to their refractive index 

[69]. Compared to the free-space measurements a detection sensitivity of femtomole 

levels was achieved reducing the required amount of DNA molecules by a factor of 

>10-3. 

 

 

3.2 Photonic crystal waveguide sensors 

A schematic diagram of the deployment of a PC-based sensor is shown in Fig. 3.2. A 

liquid or gaseous sample flows through the holes of a two-dimensional PC waveguide 

(PCW) while the propagation of a THz beam through a PCW is monitored for sample-

induced changes. Due to the nature of light propagation through a PCW, the EM field 

of the THz radiation is confined to selected rows of holes, thus ensuring maximum 

interaction of the THz beam with the small quantity of sample contained in those 

Figure 3.1: Electromagnetic spectrum. The terahertz gap is the regime between 
microwave and infrared region [64]. 
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holes. Below, we cite computed figures of merit (FOM), which indicate that the 

sensors we envisage may out perform bulk gas-cell sensors and fiber sensors. 

The dispersive effect of DNA molecules in PCs is investigated by using finite-

difference time-domain (FDTD) method with the recursive convolution (RC) 

approach [13, 14] considering the frequency dependence of the electromagnetic 

response of biological samples. The PC studied has a triangular array of holes in a 

GaAs dielectric background. We assume that the dielectric background is 

nonabsorbing, and has constant index of refraction 46.3=n . The radius of the air 

holes is ar 4.0= , where a is the lattice periodicity. Figure 3.3 shows the dispersion 

diagram of the PC obtained by plane-wave expansion method. This structure 

possesses a wide PBG for TE polarization (electric field parallel to the plane) at 

0.2452 < λa < 0.4022 as shown in Fig. 3.3. If we take the lattice constant 60=a µm, 

then a band gap opens between 2261.=Lf THz and 0112.=Hf THz. 

The transmission coefficient (spectrum) of the PCW is obtained from the 

FDTD-RC simulations as follows. First a Gaussian pulse with broad bandwidth is 

launched and the propagated field is recorded at the exit of the structure either at the 

presence of sample or absence of it in the waveguide region. Then, the same input is 

propagated through the dielectric medium without the structure and stored at the 

input. At the end these two recorded signals are Fourier transformed and the ratio of 

their squared moduli gives the transmission coefficient. The computational domain is 

terminated by perfectly matched layer boundary condition [63]. Each unit cell is 

divided into 30x30 grid points. 
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A simple way of making a PCW is to remove the air holes within a single row. 

However, in our case we need to keep the air holes in the waveguide to inject the 

analyte. Therefore, the PCW is obtained by increasing or reducing the radius of the air 

holes to a45.0 (PCW-A) and a3.0 (PCW-B), respectively, thereby permitting a 

propagating mode inside the PBG. The insets in Figs. 4(a) and 4(b) show the 

schematics of the waveguides. It is important to have a propagating mode in the PCW 

that has very high transmission and low group velocity. The spectroscopic change in 

the transmission spectrum with the sample inserted into the air holes in the line defect 

is monitored to ascertain the effect of the electromagnetic-matter interaction. The 

guided propagating signal interacts with the dispersion and absorption of the PC 

structure containing the biological material, which provides the sensing mechanism.  

 

sample 
reservoir 

Figure 3.2: Schematic representation of photonic crystal waveguide sensor with 
sample delivery mechanism. 
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The effective path length over which the terahertz pulse interacts with the 

biological material should be very long. This can be achieved if the terahertz wave 

has low group velocity. Moreover the field amplitude and profile is also important. It 

is desired that the electric field maxima are confined inside the holes where the 

biological materials is placed. PCs can provide all these features with judicious 

design. 

The recent study of Fischer shows that building blocks of DNA, adenine, 

guanine, cytosine, and thymine have absorption resonances in the terahertz region 

[66]. These resonances can be approximated by a Lorentz model. The complex 

dielectric permittivity of the dispersive DNA can be expressed in Lorentz form as  

Figure 3.3: The photonic band diagram for the TE modes ),,( zyx HEE  of a 
triangular array of air holes (columns) with 4.0/ =ar  in a dielectric 
background )12( =ε . There is a complete PBG (shaded region) between the first 
and the second band at 0.2452 < λa < 0.4022. 
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where rε and iε are the real and imaginary parts, respectively, ∞ε  is the high-

frequency permittivity, sε is the static permittivity, 0ω is the resonant frequency, and 

δ  is the damping coefficient. In our study, the analysis is carried out for a single 

Lorentz resonance, but it can be increased to many resonances as required.  As an 

example to show the applicability and the advantages of PCWs for biochemical 

sensing, we took the following values  from Ref. 58 for the dispersive behavior of the 

DNA: 45.2=∞ε , 544.2=sε , ( ) 9120 .=πω THz for PCW-A and ( ) 6120 .=πω THz 

for PCW-B, 006.0 ωδ = . However, the applicability of the PCW sensor studied here 

should not be restricted in application to this specific test case. Finally, we note that in 

general, in bulk systems the absorption coefficient [58] α (m-1) is related to the 

imaginary part of the refractive index in  as 
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3.3 Results and discussions 

A comparison of two transmission spectra shown in Figs. 3.4(a) and 4(b) with and 

without DNA within the air holes (line defect region) of the PCW-A and B shows that 

the signal is attenuated when it interacts with the DNA sample. Adding dielectric 

material by means of sample loading brings modes from air band down to band gap. 

Propagating modes pulled down from the air band provides the confinement of the 

field in low index medium enabling direct field-sample interaction. In PCW-B, two 

cases, reducing air hole radius and adding dielectric, have a parallel effect so there is 
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good propagation mode well inside the PBG away from the air band. However, 

increasing the size of the air holes and adding dielectric material have the opposite 

effect in PCW-A hence modes are shallow close to the air band. The decrease in the 

transmission at ~1.9 and 1.6 THz due to the presence of the absorbing molecules can 

be clearly seen. Even though similar changes in the transmission spectrum were 

observed with reduced air-hole PCW-B structure, PCW-A type of structures are 

desirable for practical reasons due to the larger air holes, and the consequent ease of 

loading the sample. Since the PCW is very sensitive to index changes, we considered 

the mean value of the Lorentz index profile of the analyte. As the sample is loaded, 

the mean index of the filled air holes has to be taken into account to calculate the 

transmission spectrum. We assumed uniform loading of sample throughout the air 

holes of the waveguide channel. Sample handling in the terahertz region is of special 

importance due to the strong absorption lines of water. In practice, an aqueous 

solution of the analyte can be delivered by injection, by free-fluid flow, or by 

integrated microfluidic channels onto the holes, and evaporation and desiccation 

carried out subsequently to exclude terahertz absorption due to water. However, one 

notes that quite rapid evaporation may be possible due to the extremely small analyte 

amount delivered to the 36 to 54 µm diameter holes depending on the depth of the 

sensor structure.  Depending on the analyte, one may employ a gaseous carrier or a 

liquid carrier or solvent that is not strongly absorbing in the frequency window of 

interest. 
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(a) 

(b) 

PCW-A

PCW-B

Figure 3.4: Transmission spectrum of the photonic crystal in the ΓK direction for 
TE polarization; (a) Photonic crystal waveguide (PCW-A) with (solid line) and 
without (dashed line) absorption at 1.9 THz. The inset is the schematic diagram of 
the waveguide. The defect radius is a45.0 . (b) Photonic crystal waveguide (PCW-
B) with (solid line) and without (dashed line) absorption at 1.6 THz. The inset is 
the schematic diagram of the waveguide. The defect radius is a3.0 . 
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In order to explore the intrinsic enhancement of PCW sensor performance 

compared with bulk gas cells, we carefully eliminate the effects of the PCW ends, 

including in- and out-coupling. This is important since, while various in- and out-

coupling strategies may be envisaged, the intrinsic attenuation provides a fundamental 

limit to performance. By carrying out simulations for sets of sufficiently long 

structures, one verifies numerically that the guided signal is exponentially attenuated 

by the sample, and thus the attenuation can be attributed exclusively to the absorption 

in the waveguide region. Figure 5(a) shows the single-frequency variation (1.9 THz) 

through the line-defect PCW-A. When there is no sample in the air holes, the signal 

while confining in the low index medium propagates through the PCW-A without 

loss; the inserted sample material attenuates the signal and the attenuation is 

exponential. Due to the less absorptive material and low value of absorption 

coefficient of PCW-B at 1.6 THz, attenuation is not as much as PCW-A case as is 

shown in Fig. 5(b).  

To benchmark the PCW, say versus a bulk gas cell, for sensor applications, it 

is necessary to define the appropriate figure of merit. The propagation of the electric 

field in bulk Ebulk and the PCW EPC can be formulated as 

   

bulkout,bulkin,
bulk EeE 1z =α− ,   

                            

(3.3)

 

PCout,PCin,
PC EeE 2z =α− ,     

                              

(3.4)

 

where 1z and 2z  measure the propagation distance within the gas cell or PCW. Note,  

for the PCW sensor, we define the locations of the input and output sufficiently far 
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from the waveguide ends to ensure that the attenuation measured is exponential and 

independent of the in- or out-coupling. We defined the enhancement factor M as a 

measure of the change of attenuation induced by the PCW compared with bulk: 

   
( )bulkPC M αΓα = ,     
                              

(3.5)

 

where Γ is the optical confinement factor measuring the degree of the concentration 

of the energy in sensing areas (i.e. holes). The final form of M is 

  

Figure 3.5: Two types of photonic crystal waveguides (a) PCW-A (b) PCW-B with 
and without analyte in the guiding region. (a) Steady-state resonant frequency, 

( ) 9120 .=πω THz, transmission in the PCW-A structure with and without analyte. 
(b) Steady-state resonant frequency, ( ) 6120 .=πω THz, transmission in the PCW-B 
structure with and without analyte. 
 

with analyte with analyte 

(b) 
without analyte without analyte 

(a) 
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For M = 1, the two systems have the same performance, while M > 1 means the PCWs 

have better performance. We need to make it clear that even for M = 1 for which the 

two systems have same performance, the PCW still has the obvious advantage of 

compactness. 

In order to ascertain the degree to which the effects presented above might be 

useful for sensing applications, we compared our structures PCW-A and PCW-B with 

a bulk DNA system of the same concentrations in two different cases. In one case, all 

have the same length; in other, the comparison is made by the required amount of 

dispersive material (i.e., DNA).  M value is obtained for PCW-A with 11 holes and 

0ω is changed from 2.0 THz to 1.8 THz. Similarly, PCW-B has 13 holes and 0ω is 

changed from 1.75 THz to 1.45 THz. For both cases, corresponding bulk lengths of 

x∆330 and x∆210 , where 6102 −×=∆x µm are taken. It is important to specify that the 

M calculation is independent of the length as long as the sensor is in the linear region. 

As shown in Fig. 3.6, M increases greatly near the PBG at which the group velocity is 

low and the interaction time is longer. This performance correlates with the electric-

field enhancement in the air holes in the vicinity of the air band. This enhancement 

increases the sensitivity of the proposed sensor. The amount of material is reduced by 

more than five orders of magnitude assuming that a free space approach uses 

1cmx1cm size cuvette and PCW-B has 7 sensing holes which are enough to carry the 

measurement. As a result additional sensitivity is achieved. 
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3.4 Photonic crystal waveguide sensors in the microwave regime 

The working principles of PCW sensors explained above can be tested in any section 

of the EM spectrum. The selection of the microwave region is mainly due to the fact 

that it is relatively easy to fabricate PCs and perform the experiments at these 

frequencies as the unit lattice is around a few millimeters. In this regard, we 

collaborate with Prof. Martin Koch at the Technical University of Braunschweig to 

perform the experiment. Figure 3.7 shows the image of a prototype triangular lattice 

PC perforated on a high-density polyethylene (HDPE) which provides band gap at 

around 100 GHz with 57.1=n and ar 26.0= . The initial stages of experiment include 

the investigation of transmission spectrum of different organic solvents loaded to 

Figure 3.6: The enhancement factor M near the photonic band gap (PBG) for 
PCW-A and PCW-B for the same length case. PCW-A and B have 11 and 13 
holes respectively corresponding to the lengths of x∆330 and x∆210  for bulk 
structure, where 6102 −×=∆x µm. 
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PCW. These liquids are refractive indices of 422.1=n  (cyclohexane), 51.1=n  

(CCl4), and 507.1=n (benzene). 

 

The experimental results are obtained by the set up shown in Fig. 3.8. The TE 

polarized light is incident to PC and the transmitted field is detected by the receiver.  

 

 

Figure 3.7: The pictures of fabricated PC and PCW. The hole radius is 
ar 26.0= and the defect radius is ar 19.0= . The background has refractive index 

of 57.1=n . 

(a) (b) 

Figure 3.8: The experimental set up used for the study of PC sensors in the 
microwave region. 
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The experimental results are indicated in Fig. 3.9 along with the smoothed data 

obtained by extracting the Fabry-Perot oscillations. They are compared with the 

theoretical results as plotted in Fig. 3.10. Figure 3.10 shows the transmission plots of 

three cases: PC, PCW and PCW filled with cyclohexane ( 422.1=n ).  The 

unperturbed structure provides band gap around 100 GHz. The PCW is obtained by 

reducing the radius of holes to ar 18.0=  which means increasing the effective index 

of the waveguide region. The transmission spectrum of the PCW indicates that the air 

band moves to lower frequencies while the dielectric band stays relatively unchanged. 

Infiltrating the holes in the waveguide region with cyclohexane increases the effective 

index further; hence, similar variation for the air band is observed. In addition, one 

can see that, the minimum peaks of the transmission spectra experience red shift as 

the waveguide is created and loaded with sample (cyclohexane).  

 

3.5 Conclusions 

Based on our detailed simulations in addition to the preliminary experimental results, 

PCWs for bio-sensing applications are found to be promising. Low group velocity and 

localization of light in these structures result in enhanced terahertz absorption by 

DNA molecules (the specific example treated in this study) within the low refractive 

index medium. Compared with the free space (bulk) approach, device size can be 

reduced dramatically, less sample material is needed, and an integrated system can be 

made with PCs; hence, different molecules could be analyzed simultaneously. Sensors 

based on terahertz PCWs can sample small absolute quantities of materials that can 

nevertheless flow through the sensor in real time, and thus such sensors may be 

integrated into industrial processes. 
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Figure 3.9: The transmission spectra of (a) PC and (b) PCW. The waveguide 
section is also infiltrated by cyclohexane. 

(b) 

(a) 
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Moreover, in the terahertz regime, it is relatively easy to manufacture these structures. 

One notes, however, that due to the scalability of Maxwell’s equations, the designed 

structure can be used in any frequency region. The relatively small scale of the device 

with low sample volumes in addition to the integration of such sensors into arrays 

may enable microfluidic devices, also called “lab-on-a-chip,” that are promising 

analytical tools for analyzing liquids and biomolecules. 

 

Figure 3.10: Transmission spectra of PC, PCW and PCW filled with 
cyclohexane. 
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CHAPTER IV 

 
Coupled-resonator optical waveguides for biochemical sensing 

of nanoliter volumes of analyte in the terahertz region* 

 

 

 
 

4.1 Introduction 
 
Depending on the targeted area from environmental monitoring to biomedical 

applications the constraints on a biochemical sensor will be different. However, 

sensitivity, efficiency, miniaturizability, low latency, manufacturability, and cost-

effectiveness are usually commonly desired features. There are varieties of recently 

proposed biochemical sensors utilizing different configurations. For example, photonic 

crystal (PC) fiber (holey fibers) sensors based on the use of evanescent wave are the 

subject of considerable current research [70, 71]. The electric field in such structures is 

confined in the core region that is enclosed by air holes in which the sample is inserted. 

The field-matter interaction occurs in the air holes. In general, the sensitivity of the 

evanescent-field sensor is very low because exponentially decaying electromagnetic field 

penetrating to the sensing region is low. To increase the sensitivity one can use longer PC 

fibers, but then different issues have to be addressed such as increased sample quantities, 

greater latency, and the uniformly diffusion of the sample through the air holes. Another 

example is called hollow-core antiresonant reflecting optical waveguides (ARROW) [72].  

 

*This chapter is based on: Hamza Kurt, D. S. Citrin, “Coupled-resonator optical 
waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz 
region,” Appl. Phys. Lett. 87, 241119 (1-3) (2005). 
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The hollow core is surrounded by high reflective Fabry-Perot mirrors and can be filled 

with liquids both to confine light and sense the analyte. Since light interacts only once as 

it propagates down the core, the sensitivity of this design is also low.   

A number of these difficulties are potentially addressed by sensors based on PC 

cavities [50, 51] and PC waveguides (PCW) [73]. In Chapter III, PCW structures were 

proposed for biochemical sensing in the terahertz region. The spectroscopic change in the 

transmission spectrum with the sample inserted into the air holes in the line defect is 

monitored to ascertain the effect of the direct electromagnetic-matter interaction rather 

than the evanescent field-matter interaction as in holey fibers. The guided propagating 

signal interacts with the dispersion and absorption of the PC containing the biological 

material, which provides the sensing mechanism. The long effective pathlength over 

which the terahertz pulse interacts with the biological material was ensured without 

increasing the actual structure size by making sure that the propagating mode in the band 

gap has low group velocity. Moreover the field was confined largely within the holes 

where the biological material is placed. 

 

4.2 Coupled-resonator optical waveguide sensors 

Recently, a new type of PCW called coupled-resonator optical-waveguide (CROW) has 

been introduced [74]. The waveguiding is based on tightly confining electromagnetic 

waves in each cavity and weakly coupling the cavities to their neighbors by the 

evanescent field of the resonator modes outside the cavity. Using the tight-binding (TB) 

approximation, it was shown that the phase and group velocity strongly depend on the 

coupling parameter 1κ which is controlled by cavity properties and intercavity distance 
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[75]. Similar to the PCW, the group velocity of the propagating mode can be very low in 

CROW. On the other hand, CROW’s have very sharp resonant propagating modes, which 

lead to enhanced field confinement compared with PCW’s in which the modes are close 

to the band edge and confinement is poor. In this Letter, we present the potential 

applications of CROW devices as biochemical sensor due to aforementioned properties.  

We can briefly summarize our biochemical sensor design goals as follows. The 

first is to provide the interaction of the field with the target where the field is near its 

maximum, instead of via the evanescent part of the wave. In other words, the electric-

field maxima should be confined inside the holes where the biological material is loaded.  

This enhances the sensitivity. Second, we aim to increase the effective interaction length 

without making the structure larger.  The advantages are twofold. Miniaturization is vital 

especially for integrated structures, and the ability to sense small quantities of analyte is 

of paramount importance for many biomedical applications. Finally, it is important to 

note that the selection of terahertz region of the electromagnetic spectrum brings the 

richness of the spectral features of many molecules with the ease of fabrication of PC 

based devices as well as the potential for realtime flow of fluids through the sensor for 

low-latency operation. 

 

4.3 Results and discussions 

Below, the dispersive effect of the DNA molecules in CROW’s is investigated by using 

finite-difference time-domain (FDTD) method with the recursive convolution approach 

[13, 14]. The computational domain is terminated by a perfectly matched layer (PML) 

[63]. Each unit cell )(axa  is divided into 30 x 30 grid points. CROW’s are formed in 
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two-dimensional photonic crystal dielectric slabs with a triangular array of air holes in a 

GaAs dielectric background. We assume that this dielectric background is nonabsorbing 

within the frequency range of interest, and has constant index of refraction 46.3=n . The 

radius of the holes is, ar 4.0=  where a is the lattice periodicity and the schematic 

diagram is shown as an inset in Fig. 4.1(c). We use N and K to describe the number of air 

holes between each cavity and the number of cavities respectively. For example in Figs. 

4.1(a) and 4.1(b) N = 2 and K = 5. Cavities are created either increasing or reducing the 

radius of the air holes to ar 45.0=  and ar 3.0= , respectively, and they are represented 

by CROW-A and B. The defect free photonic crystal contains a band gap at 0.3504 < a/λ 

< 0.4176 as shown in Fig. 4.1(c). To model the dispersive medium (analyte) within the 

sites comprising the defect waveguide, we used the same parameters as in Chapter III and 

uniform sample distribution is assumed. A common method of sample preparation is to 

mix DNA with water and evaporate the solution ending with DNA films. Due to the 

strong water absorption in the far infrared region, one needs to eliminate its influence to 

be able to extract the absorption characteristics of analyte in an optimal fashion. In 

general, the sensor response should ideally be independent of the sample preparation. An 

aqueous solution of DNA sample may be delivered by injection, by free-fluid flow, or by 

integrated microfluidic channels onto the holes, and evaporation and desiccation carried 

out subsequently to exclude terahertz absorption due to water. However, this may end up 

with a nonuniform sample distribution. 
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(a)

ΚΓ

(b)

(c) 

M
KΓ

Figure 4.1: (a) Schematic diagram of the coupled-resonator optical waveguide 
(CROW) with increased air holes ardef 45.0=  (CROW-A). There are 5 defect cavities 
(K=5) and the number of holes between each cavity is 2 (N=2). (b) Schematic diagram 
of the coupled-resonator optical waveguide with the reduced air holes ardef 3.0=  
(CROW-B). N and K are the same as in (a). A supercell is highlighted. (c) Dispersion 
diagram of the unperturbed triangular array photonic crystal for TE polarization.  
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One can study the non-uniform sample loading effect on the sensor response, but 

another way is to enable a loading process such that the sample distribution is uniform. 

For example, the filler can be obtained by mixing DNA with non-polar liquids which are 

transparent and not strongly absorbing in the terahertz region. This way the uniform 

sample distribution can be achieved. Another way of sample loading that may enable 

uniform distribution is the immobilization of the biomolecule on the surfaces of the 

microchannels by covalently biding of the antibodies [76]. The DNA example was a case 

study so any biomolecules that have frequency dependent refractive index within the 

frequency region of interest can also be studied. 

Table 4.1 shows the different configurations studied here. In fact, N = 0 means 

successive cavities occupy consecutive periods of the PC structure, resulting in the 

standard PCW. The resonant modes of CROW’s are well inside the gap; hence, it is 

anticipated that the confinement of the electric field will be strong [77]. The CROW 

structure can be interpreted as a chain of moderate Q  cavities, the number of holes 

between each cavity determining the quality factor. The electric field enhancement is 

proportional to Q. In effect, for a λ-cavity, Q gives the number of times the electric field 

bounces around within the cavity before escaping. It can be seen; moreover, from Fig. 4.2 

that electric field has large amplitude in defect sites with matching field maxima within 

the cavity where analyte is loaded. 
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TABLE 4.1: Design parameters of the coupled-resonator optical-waveguide operating in 
the terahertz region. The lattice periodicity is denoted by a and 60=a  µm. Two types of 
defect radius were used ardef 3.0=  and ardef 45.0= . N and K describe the number of air 
holes between each cavity and the number of cavities respectively. 
 

 

 

It is important to note that as N increases group velocity defined as 

k∂ω∂ decreases. N has important effect to the overall transmission amplitude and also 

coupling of input light to the CROW. Increasing N reduces the transmitted light and also 

makes the coupling to the waveguide difficult; however, larger N means weak coupling 

between each cavity hence lower group velocity. On the other hand, reducing N can 

increase the coupling factor and group velocity. Thus, the judicious selection of N is 

important to ensure simultaneous low group velocity and high transmission. Also, as N 

increases the resonant mode is confined inside the band gap and separated well from the 

band gap edge. 

In order to compare the operation of the CROW sensor with either free-space 

cells or PCW’s, it is essential to define the appropriate figure of merit. We defined the 

enhancement factor M (the details can be in previous chapter) as a measure of the change 

of attenuation induced by the CROW compared with bulk: 
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where Γ is the optical confinement factor measuring the degree of the concentration of 

the energy in sensing areas (i.e. holes), 1z and 2z  measure the propagation distance within 

the gas cell or CROW. In short, when M = 1, the two systems have the same 

performance, while M > 1 means the CROW’s have better performance. Figure 4.3 shows 

how M changes as N is increased. There is large improvement in the enhancement when 

N increases from 1 to 2, and even though the improvement in sensitivity continues to 

increase from N = 2 to 3, the increase is not substantial. Therefore N = 2 can be selected 

considering a compact sensor structure. Also increasing N > 3 may reduce the group 

velocity and increase the sensitivity of the sensor but transmission amplitude at the output 

of the sensor will be small due to the difficulty in input coupling so that the detection will 

be difficult. Another observation from Fig. 4.3 is that although CROW-A and B exhibit 

similar trends in their enhancement parameter, CROW-B has better performance than A 

because of the superior confinement of the field modes; however, structures of the type of 

CROW-A may be desirable for practical reasons due to the larger air holes, and the 

consequent relative ease of loading the sample. 

The other crucial parameter is the number K of cavities that comprise the CROW. 

The transmitted field shows exponential dependence on the length of the CROW. Longer 

waveguides, however, may increase the response time which may not be desired 

especially for real-time sensing. Also, sensor size is of paramount importance for 

integrated devices. Another issue in some applications is the ability to sense small 

quantities of material.  Therefore selection an optimum value of K is important. 
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(a) 

(b) 

Figure 4.2: (a) Steady-state electric field variation for CROW-A and (b) similarly for 
CROW-B with N (number of air holes between each cavity) equals to 1. 
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 Figures 4.4(a) and 4.4(b) show the variation of resonant frequency when 

refractive index of the analyte changes from 414.1=n  to 581.1=n . The spectral peak 

experiences red-shift for both CROW-A and B as the refractive index increases. The shift 

in CROW-A, however, is more than two times larger than in B, as can be seen in Fig. 

4.4(c). One sees a linear relation between the frequency and the refractive index. As the 

refractive index increases the propagating mode moves away from the air band. A 

refractive index change of 033.0=∆n corresponds to a wavelength shift of 17.1=λ∆ µm. 

It is also interesting to note that since both CROW-A and B have propagating mode 

pulled down from air band they show similar variation to the refractive index change. 

Depending on the way the cavity is obtained the defect modes can be created either from 

air band (adding dielectric) or from dielectric band (removing dielectric).  

The absorptive medium greatly changes the spectral shape of the resonant mode 

both in amplitude and width for on and off-resonance cases. Amplitude and width 

increase as the center frequency of the Lorentz medium moves away from that of the 

resonant mode. As a result the quality factor of the resonant mode is modified. As the 

absorption peak of the analyte and the resonant mode of the waveguide overlap the 

change in the transmission spectrum is large compared to the off-resonant case. As a 

result this is a more sensitive detection regime.  
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4.4 Conclusions 

In conclusion, after carrying out detailed simulations we have shown that very high 

sensitive biochemical sensors can be designed by selecting appropriately the CROW 

parameters (defect radius, number of cavities, and inter-cavity distance) in the terahertz 

region. If the sample has weak absorbance then CROW-B type of structure is favorable 

due to high M factor. On the other hand CROW-A is more sensitive simply because of 

more material used. The sensor is extremely sensitive to the changes in the absorption of 

the nanoliter volume samples. We have shown that the enhancement, M, of CROW-based  

sensors may be much higher than bulk structure and PCWs. We have demonstrated that 

the propagating mode of the CROW is very sensitive to the concentration of the sample  
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Figure 4.3: The intercavity distance N versus enhancement parameter M for CROW-
A (circle) and B (plus). 
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Figure 4.4: (a)  Resonant frequency shift of CROW-A for six different cases. (n=1.414 
to n =1.581) (b) similarly for CROW-B. (c) Normalized frequency variation for the 
same refractive indexes. 
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(DNA) and resonant shift is linearly dependent on the concentration of the bio-molecule. 

A 2% change in concentration gives rise to approximately 2.4% change in the 

transmission spectrum. We have attributed the better enhancement and sensitivity of the 

proposed sensor to the low group velocity hence longer field-matter interaction, and the 

strong confinement of the field maxima in the low index medium where the analyte is 

loaded. Even though the selected sample was DNA molecule in our study one should 

note that this sensing mechanism can potentially be used to other bio-molecules and 

detection of gases as well as liquids are additional possible applications for CROW-based 

sensor. Integration of such sensors with microfluidics may enable high-throughput, real-

time terahertz sensors. The idea proposed in this work can be applied directly to the mid-

IR too. 



 85

CHAPTER V 
 

Annular photonic crystals* 

 

 

5.1 Introduction 

Since the first proposal of multidimensional artificially periodic dielectric structures 

known as photonic crystals [1, 2] (PC), tremendous progress has been made towards the 

realization of the main property of PCs, viz. the photonic band gap (PBG), which has 

enabled applications throughout the electromagnetic spectrum [3, 78]. The PBG is a 

range of frequencies where the modes are evanescent and thus not allowed to propagate 

irrespective of the propagation direction and polarization type. Even though one can 

obtain the full benefit of the PC in three-dimensional structures, the challenge of 

manufacturing submicron-scale three-dimensional PCs at visible to near-infrared 

wavelengths has directed research efforts towards more easily fabricated two-

dimensional PCs. The implementations of PCs include photonic band-edge lasers, highly 

reflective mirrors, superprisms, high-Q microcavities, low-threshold lasers, all-optical 

switches, optical transistors, and optical logic gates [15-32, 38-45, 79]. PBGs have been 

used to improve the gain and the far-field patterns of patch antennae in the microwave 

region [46, 47]. Other applications in this region include high-impedance surfaces, 

compact uniplanar slow-wave lines, and broad-band filters [48, 49, 80, 81].  

 

 

 

*This chapter is based on: Hamza Kurt and D. S. Citrin, “Annular photonic crystals,” Opt. 
Express, 13, 10316-10326, (2005).  
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 There are some concerns related to making PC’s more functional and practical for 

deployment in real devices, even for the two-dimensional case. In particular, there are 

serious difficulties obtaining a wide PBG, for all polarizations, using simple, though 

widely used, geometries. For example, for many applications, one requires polarization-

insensitive devices. We directly addresses this problem by exploring a relatively simple 

geometry that is surprisingly effective in enabling the independent control of the PC 

properties associated with different polarizations. Namely, we consider a PC structure 

that combines desirable properties of two widely exploited slightly simpler geometries to 

attain this control. We also show that in some cases, the PBG can exceed the PBG’s 

expected from the two PC geometries that motivate our design. 

 Specifically, square and triangular arrays of circular air holes in a dielectric 

background and that of circular dielectric rods in an air background are the most 

commonly found PCs in the literature. The former (air holes) provides an absolute PBG 

near close-packed conditions. The latter (rods) usually does not provide a complete PBG, 

but there are ways as mentioned below to obtain a PBG even in this case. To have a PBG 

and to increase its size for all polarizations, to obtain polarization independent PBGs, or 

to engineer only TE or TM band gaps are all important aims. Employing an anisotropic 

material, reducing the structure symmetry, inclusion of metallic components, structural 

deformation, and composite structures are among the approaches to engineer the PBG 

that have been explored, and in these cases the PBG can be enhanced [82-87]. Each of 

these approaches, however, faces different problems. For example, metals are very lossy 

especially in the optical region. Therefore, very small metallic inclusions have been 

proposed. Structural deformation raises manufacturing concerns as the pattern of the 
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lattice becomes complex. It is difficult to find strongly anisotropic materials. We are 

aware of no simple rules that can be drawn upon, such as which symmetry breaking 

structure gives larger PBG by lifting the degeneracies at the high symmetry points. The 

reduction of the symmetry typically also enlarges the high-order PBGs while reducing the 

lowest-order PBG. Finally, if a larger PBG is achieved at very close-packed conditions, 

then fabrication of the PC will be challenging due to the resulting very thin veins. 

 

5.2 The structure 

It is well known that a PC of isolated high-dielectric regions tends to support TM band 

gaps, whereas a connected lattice typically provides TE band gaps. One can illustrate this 

by referring to gap map for the specific type of PCs (square- and triangular-lattice 

dielectric rods in air and square- and triangular-lattice holes in dielectric background) [3]. 

The idea is to have a lattice that leverages off the strengths of both isolated and connected 

regions. As a result, there may be complete PBG. 

 The structure we consider was motivated by the desire to control independently, 

to the maximum extent possible, the size and the location of the TE and the TM band 

gaps. The convention for the TE and TM polarization is taken as the electric field is 

parallel to plane for the previous one and the magnetic field is parallel to plane for the 

latter one. The PBGs for both polarizations can be matched in frequency by selecting the 

proper structural parameters such as the radii of the rods and holes, and the refractive 

index of the various components of the structure. 

 The schematic diagrams of the structures are shown in Figs. 5.1(a) and (b). The 

dielectric rods of radius 2r  and permittivity
2rε are inserted in the middle of the holes with 
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radius 1r and permittivity 
1rε  ( 21 rr > ). The new structure can be thought of as the 

combination of the dielectric rods in the low refractive index background and the holes in 

the high dielectric background. In general, 
1rε and

2rε  can be taken different; however, we 

assume here rrr εεε ==
21

. The region where 12 rrr <<  is denoted air ( 0ε ) while other 

regions are denoted dielectric ( rε ); a  is the PC lattice constant. 

 From the PBG maps of square- and triangular-lattice rods in an air and square- 

and triangular-lattice holes in a dielectric background, we can see that the rods of 

relatively small radius tend to support substantial TM gaps while the holes of relatively 

large radius tend to support substantial TE gaps. The aim is to merge these two desirable 

regions of the disparate PBG maps by varying the radii of the rods and holes. As the rod 

radius increases, the band gap moves to lower frequencies for the TM polarization. On 

the other hand, the band-gap frequencies move to higher values as the radius of the holes 

increases. Thus, to have substantial overlap of both the TE and the TM gaps, one needs to 

increase (reduce) the radii of the dielectric rods while that of holes are decreased 

(increased). 

 

5.3 Results and discussion 

The photonic band diagrams are calculated by the two-dimensional frequency-domain 

eigenmode solver [88, 89]. The computational error was estimated to be less than 2 % for 

the frequencies around the PBG.  We first investigated the PBG variation as both the 

dielectric-rod radius 2r  and the air-hole radius 1r  are varied for the high-dielectric case 

13=ε (GaAs). It is obvious that when 2r  equals zero, the usual square and triangular 

lattice air-hole PCs are attained. One would expect that the PBG decreases with the 
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addition of more dielectric material inside the holes by increasing 2r  starting from zero. 

It can be seen from Figs. 5.2(a) and (b) that the PBG closes completely at first as 

expected. However, another PBG appears in the dispersion diagram if 2r  continues to 

increase. For the square-lattice PC, as 1r  decreases the first PBG also decreases 

monotonically with smaller 2r  values. The second PBG is larger than the first one and the 

2r  values corresponding to the peaks of the second PBG move to the higher values. On 

the other hand, the first PBG of the triangular lattice first increases and then begins to 

decrease as 1r decreases and 2r  increases. The first PBG closes and a second one appears. 

As 1r decreases, the second PBG first increases, reaches a maximum, and then decreases 

while 2r  values corresponding to the peaks of the second PBG move to higher values 

monotonically again. These observations based on Fig. 5.2 confirm our aim to overlap the 

PBG of TE and TM polarizations via increasing (reducing) the radii of dielectric rods 

while decreasing (increasing) that of holes. 

 Figures 5.3(a) and (b) show the dispersion diagrams of a triangular lattice of the 

circular holes with ar 0.471 = and the dielectric rods in the middle with two values of 

ar 0.022 = and ar 0.142 = . The two 2r  values were selected to show the effect of the first 

PBG reduction in size and to indicate the opening of the second PBG. The insets are the 

first Brillouin zone of the triangular lattice. The dotted lines represent the TE modes and 

the solid lines represent the TM modes. The PBG is indicated as the shaded region that 

appears between the first TE and the first TM band gaps. The small inclusion of the 

dielectric rods reduces the width of the PBG as expected, at first up to a threshold value 

of around ( )ar 09.02 = , because the upper TM band (dielectric band) shifts downward. 
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Meanwhile, the bands below the PBG remain similar compared to the bands above the 

PBG that moves towards the lower frequencies. However, increasing 2r  beyond the 

threshold value brings another PBG. The air band becomes the dielectric band for the 

second PBG in the dispersion diagram. Its size is comparable to the first PBG where gap 

width to mid-gap ratios are as follows for the two cases %15.400max =∆ ωω , ar 47.01 = , 

and ar 02.02 = ; %.00100max =∆ ωω , ar 47.01 = , and ar 14.02 = . The PBG of the TE 

modes is reduced in size but that of the TM modes is increased in size. One astonishing 

result is that the upper edge of the TM band becomes flat even though other bands stay 

similar. 

 Similarly, Figs. 5.4(a) and (b) show the dispersion diagrams of a square lattice 

circular holes with ar 49.01 = and the dielectric rods in the middle with 

ar 02.02 = and ar 11.02 = . The reason for the selection of the 2r  values is the same as 

above and the insets show the first Brillouin zone of the square lattice. The dotted lines 

represent TE modes and the solid lines represent TM modes. The PBG is indicated as the 

shaded region that appears between the first TE and the second TM band gaps. The PBG 

behaves similarly to the previous case. The upper band edge of the second TM mode 

moves to lower frequencies swapping positions with the original PBG. It closes the PBG 

around a threshold value of around ar 08.02 =  and becomes the dielectric band for the 

second PBG. The second PBG is 
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Figure 5.1: Band gap map of square and triangular lattice PC for air holes in dielectric 
background and rods in air. 

(a) 

(b) 
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Figure 5.2: Schematic diagram of the PC lattice. (a) Square lattice with 
cylindrical dielectric rods of radius 2r  and permittivity 

2rε are inserted in the 
middle of the holes with radius 1r  in dielectric background 

1rε  and 21 rr > . The 
unit cell is a combination of the dielectric rod in the air and hole in dielectric 
background. (b) Triangular lattice with cylindrical dielectric rods of radius 2r  and 
permittivity 

2rε are inserted in the middle of the holes with radius 1r  in dielectric 
background 

1rε  and 21 rr > . The unit cell is a combination of the dielectric rod 
in the air and hole in dielectric background. 
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Figure 5.3: Complete PBG variation, 0ωω∆ with respect to the changes of inner 
dielectric rod radius. (a) Square lattice with 1r  from a49.0  to a47.0 and 2r  from zero 
to a20.0 . (b) Triangular lattice with 1r  from a49.0  to a43.0 and 2r  from zero 
to a20.0 . After the closure of the first PBG, the second one appears as 2r  increases. 

(a) 

(b) 
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Figure 5.4: Dispersion diagram of triangular-array PBG lattice: (a) 
02.047.021 =rr and 13=rε  (b) 14.047.021 =rr and 13=rε . Solid lines 

represent TM modes and dashed lines represent TE modes. The shaded 
frequency region corresponds to the PBG. 

 

 

 

 

 

 

 

 

 

Figure 5.5: Dispersion diagram of square-array photonic-crystal lattice: (a) 
02.049.021 =rr and 13=rε  (b) 11.049.021 =rr and 13=rε . Solid lines 

represent TM modes and dashed lines represent TE modes. The shaded 
frequency region corresponds to the PBG. 
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wider than the first PBG for the square lattice: for the first case, %39.40max =∆ ωω , 

ar 49.01 = , and ar 02.02 = ; for the second case %89.60max =∆ ωω , ar 49.01 = , and 

ar 11.02 = . It is worth noting that the same lattice structure, either square or triangular, 

shows two PBGs in the same frequency region; one remains open only for small values 

of 2r  and the other one appears as 2r  increases beyond a critical value. 

 Inclusion of the dielectric rods within the structure shifts one of the TM band 

down. Changes to the inner structure (radius 2r , permittivity
2rε ) affect the TM modes to a 

greater degree. On the other hand, variation of the matrix parameters such as 1r  and 
1rε  

have more effect for TE polarizations. Since the air band is sensitive to the dielectric 

material added, it swaps the PBG region, first closing it and then becomes the dielectric 

band for the second PBG. In Fig. 5.6 images represent the electric field at M point (band 

number = 4) for low and high dielectric inclusions. The nature of the 4th band changes 

from air band to dielectric band. In Fig. 5.6(a), the field is mostly distributed through the 

veins and since the inner rod radius is small there is small field confined in the middle of 

the holes (higher frequency). However, for Fig. 5.6(b), the field is very well confined 

within the rods and reduces the frequency of the 4th band (lower frequency). One 

important conclusion that can be drawn from Fig. 5.6 is that the tunability of the TM 

modes (n=4 for square lattice and n=3 for triangular lattice) is quite large compared to the 

TE modes, which stay relatively unchanged. The movie shows the same electric field 

variations as the inner radius changes between a06.0 and a12.0 . From these plots and 

movie, one can conclude the above mentioned statement such that as the amount of 

inserted dielectric material increases field stays confined and its frequency decreases. As 

a result, the air band of TM modes becomes the dielectric band of the same modes. 
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Figure 5.6: Electric field of TM modes for square array of annular photonic 
crystal. The inner rod radius is a02.0 (left) and a12.0  (right). 

 

 

 We also looked at the case where the dielectric constant is 16=ε , as in 

germanium (Ge). An important feature is obtained. Though both the first PBG 

where 02 =r and the second PBG where 2r  is greater than the critical value are enhanced 

with the high permittivity, the enhancement of the second PBG is almost doubled for the 

square and triangular lattice compared to the case of 13=ε  and the first PBG only 

increases slightly in size (Square lattice: the first PBG, %83.40max =∆ ωω  to 6.50%, 

ar 49.01 = , 02 =r  and the second PBG, %89.60max =∆ ωω  to 9.69%, ar 49.01 = , 

ar 11.02 = . Triangular lattice: the first PBG, %90.150max =∆ ωω to 18.21%, ar 47.01 = , 

02 =r and the second PBG, %00.100max =∆ ωω to 18.34%, ar 47.01 = , ar 14.02 = ). 

Table 5.1 and 2 list the values of different cases. The first PBG is determined by the TM 

modes and the second PBG is determined from below by the TM mode and from above 

by the TE mode for the triangular lattice.  

(a) (b) 
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ar 49.01 = ar 49.01 =
ar 11.02 =

13=ε

16=ε

89.60max =∆ ωω

69.90max =∆ ωω

83.40max =∆ ωω

50.60max =∆ ωω

ar 47.01 =
ar 47.01 =
ar 14.02 =

13=ε

16=ε

00.100max =∆ ωω

34.180max =∆ ωω

90.150max =∆ ωω

21.180max =∆ ωω

TABLE 5.1. The comparison of the usual and annular PC square lattice. 

TABLE 5.2. The comparison of the usual and annular PC triangular lattice. 
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Therefore, increasing the refractive index brings the first PBG to lower frequencies 

shifting the TM band pairs. However, for the second PBG, since the upper edge is TE and 

lower edge is TM, the TM mode shifts more than the TE toward the lower frequencies. 

Therefore, the increment of the second PBG as a result of the refractive-index change is 

larger. For the square lattice, the first PBG is determined by the TE mode from below and 

the TM mode from above. The second PBG, on the other hand, is bounded by TE mode. 

Both PBGs move to lower frequencies and due to differences between TE and TM modes 

response to the refractive index increment wider PBG was obtained. 

 There are two conditions that are important to achieve a PBG for all polarizations. 

One is to confine strongly the lowest order mode (dielectric band) in the dielectric region 

hence to lower the frequency and push the higher order modes in the air region hence 

increase the frequency. The other condition is related to either the radii of the dielectric 

rods or the amount of the dielectric background. The dielectric medium should have 

enough area to support primarily the lowest band and to be small enough not to be able to 

support higher order modes. The electromagnetic boundary conditions help elucidate why 

the TM modes are favored by the isolated dielectric rods and the TE modes are in the 

connected regions. Due to the boundary condition on the normal component of the 

electric flux density in the absence of charge density, the electric field is mostly in the air 

region for the dielectric rods surrounded by air. Thus the first condition is not satisfied for 

TE case. Consequently, there is no band gap. For the TM mode since the tangential 

component of the electric field must be continuous at the boundary, the field can be 

confined in the dielectric medium more strongly than in the TE case. The second 

condition can be achieved by having rod radius 2r  around a2.0  such that the higher order 
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modes have nodes in the dielectric medium. For the holes in the dielectric background the 

scenario is different. Since one needs to have less dielectric material therefore radius of 

the hole should be fairly large. As a result, the connectivity helps TE modes to have a 

PBG. At some air-hole radius 1r  the lattice also looks like dielectric rods in air giving rise 

to a band gap for the TM polarization. Since the new structure (annular PC) has dielectric 

rods inside the air holes the rods are sensitive to TM polarization more than the dielectric 

background which plays similar role for TE polarization. 

 Since the symmetry of the lattice is preserved by the inclusion of the dielectric 

rods, the degeneracies at the symmetry points (Γ , M, and K) are unchanged. The 

structure is simple and the PBG is obtained at well less than close-packed conditions. In 

addition, the PBG appears at low frequencies, making it less susceptible to the disorder. 

 With the usual lattice geometry one can have only the radius of air holes and the 

background of the dielectric material to change the dispersion properties of the PC. On 

the other hand, annular PC’s provides extra two more variables due to inner rod (radius 

and refractive index) that can be utilized to alter the properties of the crystal such as to 

implement the tunability. This is another advantage of the annular PC. It may find other 

advantages especially when implemented in applications such as super-prism or self-

collimations, switches, and splitters. 

 To show that the inclusion of dielectric rods (annular PC) is not the same as 

simply increasing the filling factor inside the holes, we have made several comparisons. 

Consider a unit triangular lattice annular PC ( ar 15.01 = , a.r 4502 = , 13=ε ) in the four 

configurations (Fig. 5.7): (i) dielectric rod ( 13,15.01 == εar ) in the low index 

medium )468.4( =ε , (ii) the high index background ( 13=ε ) filled with low index 



 100

material ( 333.2,4502 == εa.r ), (iii) air holes in the high index medium 

)13,424.0( 3 == εar , and finally (iv) high index dielectric rods in 

air )13,309.0( 4 == εar . When we consider the dispersion diagrams of these 

configurations, there is no complete PBG for cases (i), (ii) and (iv), while there is PBG 

only for case (iii), which is almost half of the gap of the annular lattice structure as 

indicated in Fig. 5.8. Thus, the approach presented in this work (annular PC) is clearly 

different than simply increasing the filling factor within the unit cell. 

 The story is different when the dielectric contrast is low because it is difficult to 

achieve a complete PBG at low refractive-index values. At low dielectric values ( 4=rε ) 

the air hole square lattice has TE and TM gaps at close-packed conditions. Besides, the 

TE gap is very small. However, the new structure has a fairly high TE band gap as shown 

in Fig. 5.9(a) for the values of 2r  and 1r  that are likely to ease fabrication. For the air-

hole triangular lattice, the TE band gap is available for very low dielectric values with 

large filling ratio. However, there is no TM gap for the low dielectric contrast case well 

away from the close-packed condition. On the other hand, the new structure has a very 

large TM band gap for a large range of 2r  and 1r  as shown in Fig. 5.9(b). 

 It has been shown that a larger PBG can be obtained as the lattice symmetry and 

the scatterer shape (e.g., circular or square) are the same i.e., square rods or holes in a 

square lattice and circular rods or holes in a triangular lattice [90]. It may thus be possible 

to enhance the PBG of the square lattice even more with the square rods inserted inside of 

square holes instead of circular rods inserted inside of circular holes. 
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Figure 5.7: Annular photonic crystal unit cell )45.0,15.0,13( 21 arar ===ε (a) and its 
decomposition in to four types of lattices: (b) high dielectric rod )13( =ε in low refractive index 

)389.3( =ε  background (c) holes filled with low refractive index )064.2( =ε  material and the 
high refractive index background )13( =ε (d) air holes in high refractive index background 

)13,424.0( 3 == εar  and (e) dielectric rods in air )13,309.0( 4 == εar . 
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 Figure 5.8: Dispersion diagrams of the lattices in Fig. 5.6. 

(b) (c) 

(d) (e) 
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Figure 5.9: (a) PBG to midgap ratio, 0ωω∆ , for square lattice with low 
dielectric value ( 4=rε ) for the TE modes with respect to the rod radius 2r  and 
hole radius 1r . (b) PBG to midgap ratio, 0ωω∆ , of triangular lattice with low 
dielectric value ( 4=rε ) for the TM modes with respect to the rod radius 2r and 
hole radius 1r . 
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 The analysis is carried out for the ideal 2D case assuming infinite thickness in the 

z direction. We also presented the work with unperturbed annular PC. However, annular 

PC should have finite thicknesses for device applications. Since the confinement in the 

vertical direction relies on index guiding in this case, out-of-plane scattering losses 

become critical [91, 92]. 

 One may envision our annular PC structure either as a very thin slab supported by 

a low index substrate, such as silicon-on-insulator and operating below the light-line with 

excited Bloch modes, or as a photonic heterostructure, where the core is sandwiched 

between cladding layers on both sides (three-layer structure). In the latter case, the 

scattering loss is roughly proportional to the index contrast between the layers. Therefore, 

the index contrast should be low with deeply etched holes to reduce the scattering losses. 

In fact, increasing the depth of the cladding layers with small index contrast differences is 

an approximation to the ideal 2D PC. The origin of the out-of plane scattering losses is 

due to the air holes where there is no local guiding in the vertical direction. The radiation 

losses increase as the air fraction increases. Since the inner dielectric rods in the center of 

the each air hole reduce the distance that the light travels in air we think that annular PC 

will reduce that loss. Other losses due to manufacturing imperfections or structural 

disorders may degrade the performance of the annular PC compared to usual PC as the 

former has one more sidewall within each unit cell. However, strengthen the arguments 

above, further work is needed. For example, analysis including the out-of plane losses 

(adding an effective imaginary ε  within the air holes) and the finite thickness of the 

structure by the effective index method may be needed to provide better answers to the 

above questions. 
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5.4 Conclusion 

In conclusion, we have analyzed the proposed structure, a two-dimensional annular 

photonic-crystal composed of a dielectric-rod and a circular-air-hole array in a square or 

triangular lattice such that the dielectric rod is centered within each air hole, in two 

different cases where the dielectric contrast is very high and very low. The inner 

dielectric rod reduces the PBG width and closes completely as expected. On the other 

hand, increasing the radius of the rod after the closure of the PBG gives rise to a second 

PBG. In some cases, this second PBG is larger than the PBG that one can get from the 

original PC lattice (circular and square lattice air hole array in dielectric background). 

Partial PBGs were obtained for certain polarizations for the low-contrast dielectric case. 

The ability to control TE and TM band gap with some degree of independence may 

vastly broaden the interest in two-dimensional PC structures.  
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CHAPTER VI 
 

Photonic-crystal heterostructure waveguides 
 
 
 
 

6.1 Introduction 

Two-dimensional (2D) periodic dielectric structures, or photonic crystals (PC), can 

provide a light guiding via two main mechanisms depending on PC waveguide 

(PCW) design: utilizing either the band-gap effect for frequencies within the gap or a 

dispersive effect known as self-collimation for frequencies around but outside the gap 

[93, 94]. In the former case, the full 2D periodicity of the lattice is broken, while the 

underlying structure is unperturbed in the latter case. Ultimately, PCW bends are 

expected to be essential building blocks of photonic integrated circuits no matter what 

the guiding principle may be. While bending the light through large angles with high 

index-contrast materials is possible using conventional dielectric waveguides, the 

corner radii of such bends cannot typically be reduced to the regime of the 

electromagnetic wavelength—a limitation that may be a bottleneck for making 

extremely compact devices. Two-dimensional PCs, however, bring entirely new 

possibilities to control the flow of light. Sharp corners having small radii of curvature 

yet high transmission can be obtained because the guiding mechanism in the plane of 

the periodicity is due to distributed Bragg reflection, while total internal reflection 

confines the light in the vertical direction [33, 34]. PCW bends may thus play a major 

role to route optical signals efficiently through the optical circuitry. Early theoretical 

and experimental work proposed various types of PCW bends. Here we focus on 

PCWs obtained by introducing line defects in otherwise period 2D PCs with the aims 
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of enhancing the typical poor and low-bandwidth transmission through sharp PCW 

bends. 

Due to the large TE (electric field is in the 2D periodic plane) band gap, PCs 

with a triangular lattice of holes in a high dielectric background (e.g. 12=ε  for Si) 

are a common selection. We therefore chose this structure as our starting point. One 

can form a PCW by filling in a row of holes (a line defect) with the background 

dielectric in special directions, such as ΓΚ  in these crystals. The six-fold lattice 

symmetry easily enables a bending angle of 60o by coupling two line defects along 

ΓΚ  direction. Limiting design to bends through this angle is a strong constraint on 

photonic integrated-circuit design; clearly the availability of bends with other angles 

is highly desired. 

 There have been several approaches to improve the efficiency of light 

transmission through PCW bends. One is to modify the lattice in the vicinity of the 

bend by shifting the hole centers. As a result, the corners are effectively smoothed and 

the width of the corner region is reduced to suppress the high-order modes that may 

be present while passing the bend. Other methods include the introduction of a low-Q  

or high-Q  cavity, topology optimization, and using polycrystalline structures [95-99]. 

Some of the drawbacks of the above methods are as follows. Introducing a 

defect may increase out-of plane radiation losses, and in some cases the small radii 

defects introduce additional fabrication difficulties. Moreover, such an approach 

typically provides transmission enhancement within a relatively narrow frequency 

band. High-Q  resonators incorporated in the corners may also provide high 

transmission only for a narrow band of high transmission. Low-Q  resonators, 

however, are good for broadband transmission, but that transmission is usually not 

high. Corner regions modified by topology optimization are usually complex in shape 
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so that manufacturing problems may arise. Other device applications such as Y-

splitters may not be feasible with polycrystalline structures due to the irregularities at 

the junctions. Once again, nearly 100 % transmission is obtained only for a small 

range of frequencies. For broad bandwidth transmission, the overall efficiency is 

typically low even though there is significant improvement compared to the basic 

PCW bend structure. Most of the aforementioned approaches have preserved the 

underlying triangular lattice PC geometry and have only optimized the part of the 

structure around the corners or sides of the bend region. 

A physical understanding of the origins of the bend losses is important to 

guide the devising of effective solutions. We first note that the propagating mode 

experiences a rotation of its phase fronts at each corner. Thus, if this rotation cannot 

be provided smoothly, then significant radiation loss may occur. The wave fronts 

must be slowed down and/or accelerated above and below the PCW center, 

respectively, to suppress the modal mismatches and reduce the back reflections. Back 

reflections may be reduced with small angle bends. Since the lattice geometry already 

fixes a natural bend angle (either 900 for square PCs or 600 for triangular PCs) there 

are few obvious alternatives for other angles.  

 

6.2 Design of photonic-crystal heterostructure waveguides 

PC heterostructures are formed by sequentially connecting PCs with different lattice 

constants or underlying crystal symmetry. Such structures have been proposed for 

nanocavity and line drop filters. It has been shown that they can provide far superior 

performance compared with more common PC structures [100, 101]. The purpose of 

employing PC heterostructures we propose here is entirely different from those 

hitherto studied. Our aim is to lift the angle constraints imposed by a single lattice 
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type—in particular to increase light throughput by reducing the bending angle while 

maintaining a small radius of curvature. We examine the properties of a 

heterostructure between a triangular-lattice-based PCW and a novel deformed 

triangular-lattice-based PCW. Specifically, we consider a PC heterostructure 

composed of regions of PCW-bearing triangular PCs and regions of suitably designed 

deformed PCs in the bend region obtained by suitably squeezing the triangular PC in 

the ΓM direction, but retaining the structure intact in other directions, as shown in 

Fig. 6.1; Figure 6.2 shows the schematic layouts of the two PCs and their Brillouin 

zones (BZ) with the irreducible BZ corners labeled. As can be seen, the BZ of the 

deformed PC is a rotated and enlarged version of that of usual PC. In this way we 

obtain a lattice type which can provide any angle θ  between lattice vectors 1ar  and 2ar  

where xaa ˆ1 =
r , ( )yxaa ˆtanˆ

22 θ+=
r  and a  is the lattice constant. The usual triangular 

lattice PC has 060=θ and for this work we take 030=θ for the bend angle, as we 

explain later. The deformation is represented by ( )ya ˆtan3
2

θδ −= m
r

. 

The great flexibility of this approach is that using this deformed lattice, one 

can also obtain a 900 degree bend with the triangular lattice PC (in two bending steps, 

300 and 600) and further build up also Y-type splitters and other structures. Denser PC 

structures are also possible as the length of the lattice in ΓM direction is reduced by 

one third. 

The dispersion diagram of the deformed PC is calculated in the entire first BZ 

to ensure that the PC has a complete band gap. The band diagram, shown in Fig. 6.3,  
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θ

1a

2a

δ
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Figure 6.1: Schematic layout of the photonic crystal hetero structure waveguide bend 
and the unit cell configuration. (a) Two different photonic crystal waveguides is 
combined to provide 300 bend. (b) The diagram illustrates how to obtain the proposed 
lattice photonic crystal from the original lattice triangular array PC by deforming 
inΓΜ  direction only. The perturbed unit cell is shown as the dashed line. Basic lattice 
vectors 1a  and 2a  are also shown. The perturbation is represented byδ . 
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Figure 6.2: The usual triangular lattice photonic crystal and the perturbed photonic 
crystal.  (a) Schematic diagrams of triangular array PC and its deformed one in 
ΓΜ  direction. Both have the same length in ΓΚ direction but the length in ΓΜ  
direction is reduced by one third. (b) Brillouin zones (BZ) of each photonic crystal 
and the irreducible BZ corners (high-symmetry points) are labeled. 
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exhibits a band gap at relatively high frequencies ( 7957.04757.0 << λa ) 

for ar 25.0=  and 12=ε , parameters representative of semiconductor-based 

structures. One characteristic of the deformed lattice can be understood on the basis of 

the scalability of the Maxwell’s equations: band-gap frequencies calculated by the 

planewave expansion method experience an upward shift proportional to the 

perturbation amount ( )%67~  defined as the percentage ratio of the deformation 

induced to the maximum deformation 000 0max600 : 100
=<< θθ δδ  , as plotted in Fig. 6.4. 

A natural question that may arise is how to choose an appropriate value ofθ . 

The selection of θ  is constrained as follows. On the one hand, if θ  is too small, as a 

result of the large deformation that results, one cannot employ large-radius holes. On 

Figure 6.3: Dispersion diagram. The diagram is for the deformed photonic crystal 
with hole radius ar 25.0=  where a  is the lattice constant and relative permittivity 
of the dielectric background 12=ε . 
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the other hand, small-radius holes may cause fabrication difficulties. In addition, the 

band-gap frequencies in the deformed PC move to fairly high values and thus there 

may not be sufficient overlap in the band gaps of the deformed and usual PC, which is 

an essential requirement (as we discuss below) to ensure high, broadband 

transmission. Moreover, small-angle bends mean longer lengths of deformed-lattice 

PCWs are required to direct the light to its destination, and this contradicts the idea of 

employing PC structures for compact photonic integrated circuitry. Above all, 

symmetry and connectivity of the PCs are crucial for the deformed PC to possess a 

significant band gap. For example, for 045=θ the structure resembles a rotated 

square lattice and its performance for the TE modes is quite poor, i.e., the band-gap 

width is narrow. Therefore, applications utilizing the photonic band-gap effect restrict 

the selection ofθ . One notes that if one depends on index guiding, then most of the 

aforementioned problems are no longer relevant and θ  can be chosen from a larger 

range of values. The general idea here is to halve the bend angle of a triangular lattice 

while keeping the lattice symmetry almost the same. As can be seen from the 

schematic diagrams shown in Fig. 6.2, the two PC structures have same lattice 

constant a  in one direction but the deformed PC is denser in the other direction.  

Figure 6.5 shows the path-length difference L  of the propagating wave fronts 

due to the bend and it is equal to )tan(θbWAABBL =′−′=  where bW is the width 

of the waveguide bend and θ  is the bend angle. Comparison of the L values of 600 

and 300 PCW bends reveal that it is reduced by approximately 3.5 times with the 

latter case.  
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From this simple argument, one may easily see the advantage of reducing the 

bend angle to improve the transmission around the corners as a result of small path-

length difference. This also explains why most of the aforementioned approaches 

modified the BB ′ section to accelerate the wave fronts in this part of the junction by 

increasing the volume of the low index material. Similarly, the AA ′ section is used to 

030=θ

060=θ

arbr

Figure 6.4: Band gap map. The usual and the deformed triangular lattice photonic 
crystal provide photonic band gap for TE modes. The overlap of the band gap 
frequencies is shaded for the hole radius of usual lattice ara 45.0=  and hole radius 
of the deformed lattice arb 20.0= .  
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decelerate thewave fronts by increasing the effective index in this region of the bend. 

Either increasing the effective index in AA ′  or reducing it in BB ′may work as well 

instead of changingθ . The modifications made in this region, however, may degrade 

the performance of the PC. Increased out-of-plane scattering losses may result due to 

adding small holes in addition to manufacturing difficulties. Next we explain the 

methods and the design steps. 

 

 

 

 

 

 

 

 

aW

aW

bW

A
A′

B

B′

θ

Figure 6.5: Illustration of photonic crystal heterostructure waveguide bend 
parameters. The waveguide widths are represented by aW  and bW , the width of 
triangular lattice photonic crystal waveguide and the width of the deformed lattice 
photonic crystal waveguide respectively. They made equal to the lattice constant 
( aWW ba == ). 
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6.3 Calculating the bending efficiency 

Naturally, the aim is to improve the transmission of this structure with respect to a 

standard 60o PCW bend. The input and output sections of PCWs are retained 

undeformed. One must engineer them ultimately for input and output coupling to 

further devices, but such questions are beyond the scope of this article. Figure 6.6 

represents the structure layouts for two different cases.  

To suppress overlap and thus interference of fields localized near the bends, 

the length of the bend region must be sufficiently long. All studied structures have the 

same input and output coupling PCW to extract the effect of the bends themselves. 

The efficiency analysis is carried out by the 2D finite-difference time-domain (FDTD) 

method assuming perfectly matched layer boundary conditions surrounding the entire 

structure [52, 53]. To obtain correctly the power transmission coefficient ( )ωη of the 

PCW incorporating bends, special care has to be taken. The input and output detection 

points should be placed inside the PCW properly to suppress end effects and 

reflections. As long as the structure is large enough and the input pulse is a 

sufficiently narrow-band modulated Gaussian, the input and output pulses can be 

separated temporally from the reflected pulse, as will be shown later. The time-

averaged Poynting vector [ ]*Re
2
1 HES ×=  is integrated over a cross section through 

the PCW to obtain the input and the output power where E is the electric field 

and *H is the complex conjugate of the magnetic field. Since the field associated with 

a confined PCW mode decays exponentially in transverse directions, enough field 

points are taken for the calculation of S . The ratio of the output power to the input 

gives the waveguide bend transmission ( )ωη . To obtain the reflection coefficient the 

reflected power is divided by the input power. We also check to ensure that the center 
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PCW region is sufficiently long so that the results are independent of its length. 

Below we outline design steps for a case study.  

Design Steps (for guiding by PBG effect): We assume perforated holes in a dielectric 

background with high-refractive index ( 12=ε , representative of a range of 

commonly employed semiconductors, such as Si or GaAs). The width of the PCW is 

important to transmit and bend the signal properly. PCWs obtained by removing more 

than one row of holes can propagate signals better, but due to the multimode nature in 

the bend region, the transmission may be poor. Since the aim here is to enhance the 

transmission through the bends, we adjusted the widths of the two PCWs accordingly.  

One row of holes is removed in the 300 bending region, and, consequently, the width 

of the straight parts must be adjusted as a result. 

The design steps are thus as follows: (i) Start with the band-gap maps of both 

PC structures and select the radii of air holes that provide the best overlap of the two 

band gaps. According to Fig. 6.4, if we select ara 45.0= and arb 20.0= , then the two 

band gaps overlap at 489.0379.0 << λa . (ii) Obtain a PCW using triangular-lattice 

PC in ΓΚdirection by removing a single row of holes (width: aW ). (iii) Obtain again 

another PCW with the deformed triangular lattice in ΓΜ  direction by removing a 

single row of holes (width: bW ). Simply removing one row of holes from each type of 

PC ends up with a different PCW width. Combining them may produce unacceptable 

back reflection at junctions due to PCW-width mismatch. (iv) Next fix the width of 

bend region made of the deformed PC by removing one row of holes (to suppress 

multimode wave propagation) and equate it to the width of the usual PCW such as 

removing one row of holes and reducing further aW  so that aWW ab == (Fig. 6.5). 

(v) Choose the propagating frequencies of each PCW separately and the intersection  
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Figure 6.6: Photonic crystal waveguide bends. (a) Configuration of photonic 
crystal waveguide for 600 bend. (b) 300 waveguide bend obtained by photonic 
crystal heterostructure. The two lines transverse to the waveguide axis represent 
the planes where time-averaged Poynting vector is calculated. 
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of the frequency ranges corresponding to the propagating modes of the PCW, which 

is subject to the bend loss. (vi) Select a center frequency corresponding to high 

transmission for a modulated Gaussian (narrow band) pulse to send through the PCW. 

More than one pulse with different center frequency must be sent to map the 

transmission throughout the entire band. (vii) Integrate the time-averaged Poynting 

vector across the PCWs on both sides of the bend to obtain the power transmission 

coefficient ( )ωη . (viii) The steady-state field variations are checked for consistency. 

The results obtained by applying these steps will be discussed next. 

 

6.4 Results and discussions of the 300 PCW bend 

Normalization of the modes is carried out carefully to make sure not to include other 

loss mechanisms, such as in and out coupling associated with the initial excitation of 

the PCW, end effects, and propagating losses except that specifically resulting from 

the bend. We have also checked to ensure that there is no loss associated with 

possible excitation of surface modes between the various PCs comprising the PC 

heterostructure. The observation points placed as shown in Fig. 6.6 stored time-

varying fields (for the input: yE , zH and for the output: xE , yE and zH ). The 

Gaussian pulse propagation through the bend is indicated in Fig. 6.7. The field is 

mainly confined around the center of the waveguide and the input as well as the 

transmitted and reflected fields can be extracted easily as indicated in Fig. 6.8. We 

plotted zH  at the center of the detection plane with respect to time in Fig. 6.9 for 

clarity purposes. Using these data, time-averaged Poynting vectors are calculated to 

obtain the power transmission and reflection coefficients. As can be seen from Fig. 

6.10, high transmission ( %90>η ) is obtained. 
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Figure 6.7: PCHS waveguide 30 degree bend field profile Hz, with phase information. 
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(a) 

(b) 

Figure 6.8: The narrow band modulated Gaussian pulse propagation ( zH ) in time 
at the detection points. (a)  The observation plane stores the input as well as the reflected 
pulse. (b) Only the transmitted pulse after the bend is stored.  
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reflected 
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(a) 
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Figure 6.9: Field amplitudes stored in time at the input and output detection 
points. (a) The input and the reflected pulse is shown. (b) The transmitted pulse is 
shown. 
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The power transmission through the bend is peaked ( %95>η ) around 

λω a414.0=  and if a  is taken to be 642 nm, the wavelength is µλ 55.1= m. This 

observation is further corroborated by plotting the steady-state field variations in Fig. 

6.11. The center wavelength µλ 55.1= m of the narrow-band modulated Gaussian is 

selected as the wavelength at which there is high transmission. The transmission is 

uniform and no strong cavity effect is seen around the corners. This is an obvious 

advantage to have small path-length difference of the PCW with 030=θ for phase-

front compensation. Since there is no modification in the PCW corner region, such as 

inserting hole defects, the proposed approach in principle should be broadband  

and should not suffer from enhanced out-of plane radiation losses. 

It is important to note that the performance of the new structure is not 

restricted to the case study outlined above. For example, one may select arb 15.0=  

and ara 40.0=  or some other range of parameters. It may not be necessary to depend 

solely on PBG guiding in some cases. Due to high index-contrast, the index-guiding 

mechanism can also be employed. It may be worth looking at the transmission 

through such PCW bends keeping in mind that the performance of routing the field 

will definitely be lower than the PBG guiding case. It may appear disadvantageous 

not to have a large frequency overlap for the two PCW structures. We can, however, 

increase the overlap of the band gaps by scaling down the lattice constant a  of the 

usual PC, hence shifting the frequencies to higher values. As a result, almost 100 % 

overlap in the transmission region might become possible. Potential applications of 

the deformed PC should not be restricted only to PCW bend designs. Other bend 

angles, such as 90o and U-type bends, are also possible. In fact, Fig. 6.12 shows a 900 

bend design. All the parameters are kept the same including the input pulse and only 

the bend configuration is modified. The high transmission through four bends can be 
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seen from the figure. Engineering the middle section may help to implement different 

devices, e.g., Mach-Zehnder interferometers and directional couplers as well. 

 

 

 

 

 

Figure 6.10: The bending efficiency ( )ωη  of the photonic crystal heterostructure 
waveguide. The ratio of transmitted power to the input power gives the 
transmission coefficient and the reflection coefficient is obtained by taking the 
ratio of the reflected power to the input power. 
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Figure 6.11: Steady-state field variation of 300 PCW bend for a modulated 
Gaussian pulse. The center frequency of the pulse is centered at λω a414.0=  
where a  is the lattice constant andλ  is the wavelength of light. 

Figure 6.12: Photonic crystal heterostructure for 900 bend. The input pulse and the 
parameters are the same as in Fig. 6.10. 
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The inclusion of another type of lattice may give rise difficulty in the 

fabrication as compared to the single type of lattice case. Especially, the interfaces of 

different PC waveguide section have to be terminated properly not to cause spurious 

reflections from these parts. On the other hand, the approach is free from 

implementing cavity-type effects at the bend so that one does not need to engineer 

single lattice sites in the vicinity of the bend, a procedure that makes the fabrication 

difficult yet more sensitive to the disorder. Moreover, the second type of lattice is the 

squeezed and rotated version of the original lattice, triangular lattice of circular air 

holes. Therefore, similar fabrication procedures can be followed for the whole 

structure except changing the mask. Features sizes of 114 nm and 64 nm would be 

required to fabricate such a PC heterostructures operating at telecom wavelengths. 

Even though such structures can be manufactured with the current fabrication 

techniques such as electron beam lithography or deep ultraviolet lithography [106, 

108], availability of selecting another pairs of pore radii e.g., ara 40.0= and arb 15.0=  

may ease the fabrication difficulties. 

 

6.5 Conclusions 

In conclusion, we have introduced a deformed triangular-lattice PC obtained by 

perturbing the lattice in ΓΜ direction and carried out analysis for PCW bends based 

on PC heterostructures aiming towards low-loss and high-bandwidth light 

propagation. The enhancement of power transmission ( %90>η ) across significant 

bandwidths, even without optimizing the corners, is achieved with 300 PCW bends. 

Further improvements may be realized by modifying the corner region using some of 

the techniques cited above. The physical interpretation of bend loss mechanisms was 

explained. To deploy PC devices for high-bandwidth/high-speed integrated optics, 
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high bend loss and low-transmission bandwidths are not tolerable. The improvement 

predicted here is a large step and it may make more flexible design for photonic-

integrated circuits. 
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CHAPTER VII 

 
Conclusions and future research directions 

 
 
 

In the final chapter of the thesis, the contributions along with the possible future research 

directions that may be followed are outlined. 

 

7.1 Conclusions 

There are two main categories that this thesis made contributions. The first one is the bio-

sensing applications of PC-based devices and the second one is concerning with the 

improvement of the performance of current PCs and waveguide bends by introducing of 

two new concepts; annular PC and PC heterostructure waveguides. The key achievements 

of this research can be summarized as: 

• The propagation of terahertz waves in 2D PCWs was studied computationally to 

investigate the effects of introducing small quantities of molecules, such as 

deoxyribonucleic acid, into the selected air holes for sensor applications. The 

finite-difference time-domain method with recursive convolution technique as 

formulated in Chapter II was used for the numerical analyses. Low group velocity 

around the photonic band edge and electric-field enhancements in the low-index 

medium enabled significantly enhanced interaction of guided light with the 

molecular sample in addition to reducing the required amount of sample 

considerably. Comparison with bulk systems showed that PCWs are promising 

for biochemical sensing. 
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• The improvement of the sensor performance has been achieved with a cavity type 

of waveguide structure, called coupled-resonator optical-waveguide (CROW). 

The prospects of this structure are the nature of the moderately supporting high-Q 

and low group velocity. 

• A detailed study of CROW-based sensors for biochemical sensing and of design 

issues affecting the sensitivity was presented. The terahertz interaction with the 

analyte was modeled as a Lorentz medium. The sensitivity dependence on the 

CROW structure parameters, such as intercavity distance and cavity type 

(donor/acceptor), was investigated for the effects in the terahertz region of the 

electromagnetic spectrum of introducing small quantities of molecules, such as 

DNA, in the air holes. The proposed device was predicted to exhibit sensitivity 

enhancement over bulk systems and PCW structures. The CROW-based device 

required a small analyte volume of nanoliters (< 910− L) and a refractive index 

change of 033.0=∆n  corresponded to a wavelength shift of 17.1=λ∆ µm. 

Introducing the absorptive material into the low-index medium greatly affected 

the shape of the propagating modes of the CROW and the transmitted electric 

field. The shift of the resonant frequency also depended linearly on the refractive 

index changes for off-resonant case (dispersive effect). 

• PC-based sensors hold promises. Both small absolute analyte quantities 

(nanoliters) and low-concentration samples (picomoles) should be detectible. The 

uniquenesses of the approach here are as follows. PC provides enhanced 

interaction between the EM field and the analyte mainly due to the two effects: 

enhancing the E-field proportional to the Q of the cavity and lowering the group 
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velocity hence increasing the interaction time. Because the sample is contained 

within the PC, the sensor can be integrated with light sources and detectors. 

Moreover, multi-analyte and compact-sensing schemes are feasible with PC 

structures as one can easily obtain array of multi-channel PC waveguides. Finally, 

because the field can be confined in the low-index medium (air in this case) 

within the PC, there is direct field-sample interaction rather than evanescent-wave 

sensing as some of the common sensing methods such as fiber-optic and slab 

waveguides that employ such means. In general, the sensitivity of the evanescent-

field sensor is very low because exponentially decaying EM field penetrating to 

the sensing region is low. 

• The initial stages of experiment performed in the group of our collaborator Prof. 

Martin Koch of the Technical University of Braunschweig included the 

investigation of transmission spectrum of different liquids loaded to PCW. The 

implementation of the approach provided an opportunity to test the initial 

theoretical work carried out and feedback obtained from this work will be 

valuable for further research directions as outlined below. 

• Engineering the PCs for the PBG enhancement has resulted in a novel type of PC 

called annular PC composed of a dielectric-rod and a circular-air-hole array in a 

square or triangular lattice such that a dielectric rod is centered within each air 

hole is studied. The dielectric rods within the air holes greatly modified the 

dispersion diagram of the photonic crystal despite the fact that the percentage of 

volume occupied by the dielectric rods may be small (<12%). Increasing the 

radius of the inner-dielectric rod, starting from zero to a critical value, reduced the 
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band gap and closed it completely as expected, because of the addition of more 

dielectric material inside the unit cell. Continuing to increase the radius of the rod 

above the critical value surprisingly created another photonic band gap. 

Comparison of the dispersion diagrams of the new structure and the original 

lattice (circular air hole square/triangular array in dielectric background) revealed 

that the photonic band gap is considerably enhanced in size for both square and 

triangular lattice with the new structure. This approach preserved the symmetry of 

the structure and provided a complete photonic band gap away from the close-

packed condition and at low normalized frequencies. 

• The typically low and/or narrow band transmission efficiency of PCW bends has 

been improved incorporating the idea of perturbing the unit cell lattice in some 

special directions, e.g., ΓΜ ; hence, obtaining PC hetero-structures. The high 

transmission for a bending angle of 300 is achieved with triangular lattice PC. We 

showed how PCW bends occurring at heterojunctions between different PCs may 

enable unprecedented flexibility in meeting these aims. 

 

7.2 Future Research Directions 

The aforementioned completed works bring new horizons (visions) for the future 

research directions. 

The preliminary explorations have only covered a small area of parameter space. 

One may study PCWs obtained from double rows of holes to enhance the overlap of the 

guided field with the analyte. As for CROW waveguides, there are many further degrees 

of freedom that may enable stronger interaction between the guided EM field and the 
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analyte. It has been found that by slightly displacing the holes immediately proximate to 

a PC cavity, strong enhancement of the Q  can be obtained [29]. For the CROW-based 

sensors, this should translate into stronger EM-analyte interaction, and thus improved 

sensitivity. Alternative PCW configurations may be attractive, aiming to obtain superior 

enhancement over the ones studied. Therefore, one part of the future work will be to 

carry out a similar analysis for different configurations while given the emphasis to the 

role of the waveguide parameters, such as width (W), length (L), and the positions and the 

number of holes in waveguide section, on the sensor performance. The aim of studying 

all these parameters should be to search for the configurations that possess longer field-

matter interaction, enabling smaller amounts of analyte. For example, assuming two 

PCWs having same gυ , the one with fewer holes should be preferable.  

The main reason to implement PCW sensors are their simplicity. The same 

waveguide section can be used for propagation and sensing purposes. More advanced 

structures to increase the sensitivity further, such as Mach-Zehnder interferometers, could 

be studied. Such devices will employ sensing criteria other than attenuation, e.g., phase 

sensing. 

 The beauty of the APC compared to the usual lattice PC is that one may interpret 

APC as having an air defect in each unit cell or two interfaces for the scattering. Both 

interpretations will pave the way for novel device implementations. Regarding the out-of 

plane scattering losses, APCs are expected to perform better than simple rod or air-hole 

arrays since the inner dielectric rods in the center of the each air hole reduce the distance 

that the light travels within air; this will suppress the out-of-plane losses as these losses 

increase with increasing air fraction. Since the unit cell of annular PC contains two 
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interfaces for scattering of light so it is expected to function superior in applications 

requiring dispersive elements such as super-prisms as well. 

 The idea of deforming unit lattice crystal in some special directions may arise all 

the new device implementations of PCs such as couplers, interferometers, and add-drop 

filters by breaking the angle constraints of PC lattice while improving the transmission 

efficiency through the bends significantly. The performance of the previously proposed 

structures may be improved with the incorporation of the heterostructure PC together 

with the conventional PC. 

 

 



 134

REFERENCES 

 

[1]   E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and 
        electronics,” Phys. Rev. Lett., vol. 58, pp. 2059-2062, May 1987. 
 
[2]   S. John, “Strong localization of photons in certain disordered dielectric 
        superlattices,” Phys. Rev. Lett., vol. 58, pp. 2486-2489, June 1987. 
 
[3]   J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals, Molding the 
       Flow of Light, Princeton, New Jersey: Princeton University Press, 1995. 
 
[4]   C. Kittel, Introduction to Solid State Physics, John Wiley & Sons, Inc. 1996. 
 
[5]   A. Yariv, and P. Yeh, Optical Waves in Crystals, John Wiley & Sons, Inc. 1984. 
 
[6]   E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. 
        D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. 
        Rev. Lett., vol. 67, pp. 3380–3383, Dec. 1991. 
 
[7]   E. Yablonovitch and T. J. Gmitter, “Photonic band structure: The face-centered- 
        cubic case,” Phys. Rev. Lett., vol. 63, pp. 1950–1953, Oct. 1989. 
 
[8]   E. Özbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. 
        Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap 
        in a crystal structure made of dielectric rods,” Phys. Rev. B, vol. 50, pp. 1945–1948,  
        July 1994. 
 
[9]   K. Busch and S. John, “Photonic band gap formation in certain self-organizing 
        syetems,” Phys. Rev. E, vol. 58, pp. 3896-3908, Sept. 1998. 
 
[10]  M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional 
          systems: The triangular lattice,” Phys. Rev. B, vol. 44, pp. 8565-8571, Oct. 1991. 
 
[11]  K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in  
         periodic dielectric structures,” Phys. Rev. Lett., vol. 65, pp. 3152-3155, Dec. 1990. 
 
[12]  J. B. Pendry and A. MacKinnon , “Calculation of photon dispersion relations,”  
         Phys.  Rev. Lett., vol. 69, pp. 2772–2775, Nov. 1992. 
 
[13]  A. Taflove, Computational Electrodynamics - The Finite-Difference Time-Domain 
         Method, Norwood, Massachusetts: Artech House, 2000. 
 
[14]  K. S. Kunz, The Finite Difference Time Domain Method for Electromagnetics, Boca 
         Raton: CRC Press, 1993. 



 135

[15]  N. Stefanou, V. Karathanos, and A. Modinos, “Scattering of electromagnetic-waves  
         by periodic structures,” J. Phys.-Condes. Matter, vol. 4, pp. 7389-7400, Sept. 1992. 
 
[16]  X. D. Wang, X. G. Zhang, Q. L. Yu, and B. N. Harmon, “Multiple-scattering theory  
         for electromagnetic waves,” Phys. Rev. B vol. 47, pp. 4161-4167, Feb. 1993. 
 
[17]  E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, “Tight-Binding  
         Parametrization for Photonic Band Gap Materials,” Phys. Rev. Lett. vol. 81, pp.  
         1405–1408, Aug. 1998. 
 
[18]  G. P. Nordin, S. Kim, J. Cai, and J. Jiang, “Hybrid integration of conventional  
         waveguide and photonic crystal structures,” Opt. Exp., vol. 10, pp. 1334-1341, Nov. 
         2002. 
 
[19]  H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. 
         Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B, vol. 58, 
         pp. R10096–R10099, Oct. 1998. 
 
[20]  H. Y. Ryu, M. Notomi, and Y. H. Lee, “Finite-difference time-domain investigation 
         of band-edge resonant modes in finite-size two-dimensional photonic crystal slab,” 
         Phys. Rev. B, vol. 68, pp. 045209 (8 pages), July 2003. 
 
[21]  S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization 
         mode control of two-dimensional photonic crystal laser by unit cell structure 
         design,” Science,  vol. 293, pp. 1123-1125, Aug. 2001. 

[22]  P.R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Microcavities in photonic  
         crystals: Mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B, vol.  
         54, pp. 7837-7842, Sept, 1996. 
 
[23]  P. Rigby and T. F. Krauss, “The Vs and Qs of optical microcavities,” Nature, vol. 
        390, p. 125, Nov. 1997. 
 
[24]  O. Painter, J. Vučković, and A. Scherer, “Defect modes of a two-dimensional 
         photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B, vol. 16, pp.  
         275-285, Feb. 1999. 
 
[25]  O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. 
         Kim, “Two-Dimensional photonic band-gap defect mode laser,” Science, vol. 284, 
         pp. 1819-1821, June 1999. 
 
[26]  T. Yoshie, J. Vuckovic, A, Scherer, H. Chen, and D. Deppe, “High quality two- 
         dimensional photonic crystal slab cavities,” Appl. Phys. Lett. vol. 79, pp. 4289-  
         4291, Dec. 2001. 
 
 



 136

[27]  Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a  
         two-dimensional photonic crystal,” Nature, vol. 425, pp. 944-947, Oct. 2003.  
 
[28]  K. Srinivasan, P. E. Barclay, and O. Painter, “Fabrication-tolerant high quality  
         factor photonic crystal microcavities,” Opt. Express, vol. 12, pp. 1458-1463, April 
         2004.  
 
[29]  B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double- 
         heterostructure nanocavity,” Nature Materials, vol. 4, pp. 207-210, Feb. 2005. 
 
[30]  T. F. Krauss, B. Vogele, C. R. Stanley, R. M. De La Rue, R.M, “Waveguide 
         microcavity based on photonic microstructures,” IEEE Photon. Technol. Lett., vol. 
         9, pp. 176-178, Feb. 1997. 
 
[31]  J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. 
        Joannopoulos, L.C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap 
        microcavities in optical waveguides,” Nature, vol. 390, pp. 143-145, Nov. 1997. 
 
[32]  M. Notomi, H. Suzuki, and T. Tamamura, “Directional lasing oscillation of two- 
         dimensional organic photonic crystal lasers at several photonic band gaps,” Appl.  
         Phys. Lett., vol. 78, pp. 1325-1327, March 2001. 
 
[33]  S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear 
         waveguides in photonic-crystal slabs,” Phys. Rev. B, vol. 62, pp. 8212–8222, Sept. 
         2000. 
 
[34]  M. Lončar, T. Doll, J. Vučković, and A. Scherer, “Design and fabrication of silicon 
         photonic crystal optical waveguides,” J. Lightwave Tech., vol. 18, pp. 1402-1411,  
         Oct. 2000. 
 
[35]  M. Lončar, J. Vučković, and A. Scherer, “Methods for controlling positions of 
         guided modes of photonic-crystal waveguides,” J. Opt. Soc. Am. B, vol. 18, pp. 
         1362-1368, March 2001. 
 
[36]  S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, 
         “Guided modes in photonic crystal slabs,” Phys. Rev. B, vol. 60, pp. 5751–5758, 
          Aug. 1999. 
 
[37]  A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, “Properties of the slab modes 
         in photonic crystal optical waveguides,” J. Lightwave Tech., vol. 18, pp. 1554-1564, 
         Nov. 2000. 
 
[38]  A. Scherer, O. Painter, J. Vučković, M. Loncar, and T. Yoshie, “Photonic crystals 
         for confining, guiding, and emitting light,” IEEE Trans. Nanotechnology, vol. 1, pp. 
         4-11, March 2002. 
 



 137

[39]  A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, 
         “High transmission through sharp bends in photonic crystal waveguides,” Phys. 
          Rev. Lett., vol. 77, pp. 3787–3790, Oct. 1996. 
 
[40]  A. Chutinan, M. Okano, and S. Noda, “Wider bandwidth with high transmission  
         through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. 
         Lett., vol. 80, pp. 1698-1700, March 2002.  
 
[41]  M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, 
         “Extremely large group-velocity dispersion of line-defect waveguides in photonic 
         crystal slabs,” Phys. Rev. Lett., vol. 87, pp. art. no. 253902, Dec. 2001. 
 
[42]  V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett., vol. 81, pp. 4136–4139, 
         Nov. 1998. 
 
[43]  L. –H. Peng, C. –C. Hsu, and Y. –C. Shih, “Second-harmonic green generation from 
         two-dimensional 2χ  nonlinear photonic crystal with orthorhombic lattice 
         structure,” Appl. Phys. Lett., vol. 83, pp. 3447-3449, Oct. 2003. 
 
[44]  F. Cuesta-Soto, A. Martínez, J. García, F. Ramos, P. Sanchis, J. Blasco, and J. 
         Martí, “All-optical switching structure based on a photonic crystal directional 
         coupler,” Opt. Exp., vol. 12, pp. 161-167, Jan. 2004. 
 
[45]  M. F. Yanik, S. Fan, and M. Soljačić, “High-contrast all-optical bistable switching 
         in photonic crystal microcavities,” Appl. Phys. Lett., vol. 83, pp. 2739-2741, Oct. 
         2003. 
 
[46]  R. Gonzalo, P. De Maagt, and M. Sorolla, “Enhanced patch-antenna performance 
         by suppressing surface waves using photonic-bandgap substrates,” IEEE Trans. 
         Microwave Theory Tech., vol. 47, pp. 2131-2138, Nov. 1999. 
 
[47]  E. R. Brown, C. D. Parker, and E. Yablonovitch, “Radiation properties of a planar 
         antenna on a photonic-crystal substrate,” J. Opt. Soc. Am. B, vol. 10, pp. 404-407, 
         Feb. 1993. 
 
[48]  Y. Fei-Ran, M. Kuang-Ping, Q. Yongxi, and T. Itoh, “A uniplanar compact 
         photonic-bandgap (UC-PBG) structure and its applications for microwave circuit,” 
         IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1509-1514, Aug. 1999. 
 
[49]  B A. Munk, Frequency Selective Surfaces: Theory and Design, New York: Wiley, 
         2000. 
 
[50]  M. Loncar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical 
         detection,” Appl. Phys. Lett., vol. 82, pp. 4648-4650, June 2003. 
 



 138

[51]  E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact  
         biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. 
        Lett., vol. 29, pp. 1093-1095, May 2004. 
 
[52]  J. Topol’ancik, P. Bhattacharya, J. Sabarinathan, and P. –C. Yu, “Fluid detection 
        with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett., vol. 82, 
        pp. 1143-1145, Feb. 2003. 
 
[53]  D. M. Pustai, A. Sharkawy, S. Shi, and D. W. Prather, “Tunable photonic crystal 
         microcavities,” Appl. Opt., vol. 41, pp. 5574-5579,  Sept. 2002. 
 
[54]  P. Halevi and F. Ramos-Mendieta, “Tunable photonic crystals with semiconducting 
         constituents,” Phys. Rev. Lett., vol. 85, pp. 1875–1878, Aug. 2000. 
 
[55]  S. S. M. Cheng, Lie-Ming Li, C. T. Chan, and Z. Q. Zhang, “Defect and           
         transmission properties of two-dimensional quasiperiodic photonic band-gap 
         systems,” Phys. Rev. B, vol. 59, pp. 4091–4099, Feb.1999. 
 
[56]  M. A. Kaliteevski, J. Manzanares, D. Cassagne, J. P. Albert, S. Brand, and R. A. 
         Abram, “Appearance of photonic minibands in disordered photonic crystals,” J. 
         Pys.: Condens. Matter, vol. 15, pp 785-790, Feb. 2003. 
 
[57]  K-C. Kwan, X. Zhang, Z-Q. Zhang, and C. T. Chan, “Effects due to disorder on 
         photonic crystal-based waveguides,” Appl. Phys. Lett., vol 82, pp. 4414-4416, June 
         2003. 
 
[58]  S. Fan, P. R. Vileneuve, and J. D. Joannopoulos, “Theoretical investigation of 
         fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys., 
         vol. 78, pp. 1415-1418, Aug. 1995. 
 
[59]  S. Boscolo, C. Conti, M. Midrio, and C. G. Someda, “Numerical analysis of 
         propagation and impedance matching in 2D photonic crystal waveguides with finite 
         length,” J. Lightwave Tech., vol. 20, pp. 304–310, Feb 2002. 
 
[60]  G. Tayeb, B. Gralak, and S. Enoch, “Structural colors in nature and butterfly-wing  
         modeling,” Opt. Photon. News, vol. 14, pp. 38-43, Feb. 2003. 
 
[61]  P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature, vol. 424, 
         pp. 852-855, Aug 2003. 
 
[62]  K. S. Yee, “Numerical solution of initial boundary value problems involving 
         Maxwell’s equations in isotropic media,” IEEE Trans. Antennas and Propagation, 
         vol. 14, pp. 302-307, Jan. 1966. 
 
[63]  J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic 
         waves,” J. Comput. Phys., vol. 114, pp. 185-200, July 1994. 



 139

 
[64]  C. Sirtori, “Bridge for the terahertz gap,” Nature, vol. 417, pp. 132-133, May 2002. 
 
[65]  P. H. Bolivar, M. Brucherseifer, M. Nagel, H. Kurz, A. Bosserhoff, and R. Büttner, 
         “Label-free probing of genes by time-domain terahertz sensing,” Phys. Med. Biol., 
         vol. 47, pp. 3815-3821, Oct. 2002. 
 
[66]  B. M. Fischer, M. Walther, and P. Uhd Jepsen, “Far-infrared vibrational modes of 
         DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. 
         Biol., vol. 47, pp. 3807-3814, Oct. 2002. 
 
[67]  M. Nagel, P. H. Bolivar, M. Bruscherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, 
         “Integrated planar terahertz resonators for femtomolar sensitivity label-free 
         detection of DNA hybridization,” Appl. Opt., vol. 41, pp. 2074-2078, April 2002. 
 
[68]  A. Wittlin, L. Genzel, F. Kremer, S. Häseler, A. Poglitsch, and A. Rupprecht, “Far- 
         infrared spectroscopy on oriented films of dry and hydrated DNA,” Phys. Rev. A,  
         vol. 34, pp. 493-500, July 1986. 
 
[69]  M. Nagel, P. H. Bolivar, M. Bruscherseifer, H. Kurz, A. Bosserhoff, and R. Büttner,  
        “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett.,  
        vol. 80, pp. 154-156, Jan. 2002. 
 
[70]  J. B. Jensen, L H. Pedersen, P. E. Hoiby, L. B. Nielsen, T.P. Hansen, J. R.  
         Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlse, and A. Bjarklev, 
         “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules 
           in aqueous solutions,” Opt. Lett., vol. 29, pp. 1974-1976,  Sep. 2004. 
 
[71]  Y. L. Hoo, W. Jin, C. Shi, H. L. Dong, N. Wang, and S. C. Ruan, “Design and 
         modeling of a photonic crystal fiber gas sensor,” Appl. Opt., vol. 42, pp. 3509- 
         3515, June 2003. 
 
[72]  D. Yin, Holger Schmidt, J. P. Barber, and A. R. Hawkins, “Integrated ARROW 
         waveguides with hollow cores,” Opt. Exp., vol. 12, pp. 2710-2715, June 2004. 
 
[73]  H. Kurt and D. S. Citrin, “Photonic crystals for biochemical sensing in the  
         terahertz region,” Appl. Phys. Lett., vol. 87, pp. 41108 (3 pages), July 2005. 
 
[74]  A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide:  
         a proposal and analysis,” Opt. Lett., vol. 24, pp. 711-713, June 1999. 
 
[75]  M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the  
         coupled defect modes in three-dimensional photonic crystals,” Phys. Rev. Lett., vol.  
         84, pp. 2140-2143, March 2000. 
 
 



 140

[76]  Z. L. Zhang, C. Crozaiter, M. Le Berre, and Y. Chen, “In situ bio-functionalization 
         and cell adhesion in microfluidic devices,” Microelectronic Eng., vol. 78-79, pp. 
         556-562, March 2005. 
 

[77]  Y. Xu, R. K. Lee, and A. Yariv, “Propagation and second-harmonic generation of 
          electromagnetic waves in a coupled-resonator optical waveguide,”  J. Opt. Soc. 
          Am. B, vol. 17, pp. 387-400, March 2000. 
 
[78]   C. M. Soukoulis (Ed.) Photonic Crystals and Light Localization in the 21st Century  
          (Kluwer Academic Publishers, The Netherlands, 2001). 
 
[79]  S. John and M. Florescu, “Photonic bandgap materials: towards an all-optical  
        micro-transistor,” J. Opt. A: Pure Appl. Opt., vol. 3, pp. S103-S120, Sep. 2001. 
 
[80]  H. Y. D. Yang, N. G. Alexopoulos, and E. Yablonovitch, “Photonic band-gap  
         materials for high-gain printed circuit antennas,” IEEE Trans. Antennas Propag., 
         vol. 45, pp. 185-187,  Jan. 1997. 
 
[81]  R. Coccioli, W. R. Deal, and T. Itoh, “Radiation characteristics of a patch antenna  
         on a thin PBGsubstrate,” IEEE Antennas and Propag. Society International  
         Symposium, vol. 2, pp. 656-659, June 1998. 
 
[82]  Z-Y. Li, B-Y Gu, and G-Z Yang, “Large Absolute Band Gap in 2D Anisotropic  
         Photonic Crystals,” Phys. Rev. Lett. vol. 81, pp. 2574-2577, Sep. 1998. 
 
[83]  C. M. Anderson and K. P. Giapis, “Larger Two-Dimensional Photonic Band Gaps,”  
         Phys. Rev. Lett., vol. 77, pp. 2949-2952, May 1996. 
 
[84]  X. Zhang and Z-Q Zhang, “Creating a gap without symmetry breaking in two- 
         dimensional photonic crystals,” Phys. Rev. B, vol. 61, pp. 9847-9850, April 2000. 
 
[85]  N. Susa, “Large absolute and polarization-independent photonic band gaps for  
         various lattice structures and rod shapes,” J. Appl. Phys. Lett., vol. 91, pp. 3501- 
         3510, March 2002.  
 
[86]  M. Agio and L. C. Andreani, “Complete photonic band gap in a two-dimensional  
         chessboard lattice,” Phys. Rev. B, vol. 61, pp. 15519-15522, June 2000.  
 
[87]  S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, “Experimental  
        demonstration of complete photonic band gap in two-dimensional photonic crystal  
        slabs,” Appl. Phys. Lett., vol. 87, pp. 061107 (3 pages), Aug. 2005. 
 
[88]  S. Guo and S. Albin, “Simple plane wave implementation for photonic crystal  
         calculations,” Opt. Express, vol. 11, pp. 167-175, Jan. 2003. 
 
 



 141

[89]  R. Zoli, M. Gnan, D. Castaldini, G. Bellanca, P. Bassi, “Reformulation of the plane  
         wave method to model photonic crystals,” Opt. Express, vol. 11, pp. 2905-2910,  
         Nov. 2003. 
 
[90]  R. Wang, X-H. Wang, B-Y. Gu, and G-Z. Yang, “Effects of shapes and orientations  
         of scatterers and lattice symmetries on the photonic band gap in two-dimensional  
         photonic crystals,” J. Appl. Phys., Vol. 90, pp. 4307-4313, Nov. 2001. 
 
[91]  H. Benistry, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne,  
         A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional  
         photonic crystals: Positive role of the substrate,” Appl. Phys. Lett., vol. 76, pp. 532- 
         536, Jan. 2000. 
 
[92]  W. Bogaerts, P. Bienstman, D. Taillaert, R. Baets, and D. D. Zutter, “Out-of-plane  
         scattering in Photonic Crystal Slabs,” IEEE Photon. Technol. Lett., vol. 13, pp. 565- 
         567, June 2001. 
 
[93]  J. D. Joannoupoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a  
         new twist on light,” Nature, vol. 386, pp. 143-149, March 1997. 
 
[94]  H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S.  
         Kawakami, “ Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett.    
         Vol. 74, pp. 1212-1214, March 1999. 
 
[95]  E. Chow, S. Y. Lin, J. R. Wendt, S. G. Johnson, and J. D. Joannoupoulos, 
          “Quantitative analysis of bending efficiency in photonic-crystal waveguide bends  
          at m55.1 µλ = wavelengths,” Opt. Lett., vol. 26, pp. 286-288, March 2001. 
 
[96]  L. H. Fransen, A. Harpøth, P. Borel, M. Kristensen, J. Jensen, and O. Sigmund,  
          “Broadband photonic crystal waveguide 600 bend obtained utilizing topology  
          optimization,” Opt. Express, vol. 12, pp. 5916-5921, April 2004. 
 
 [97]  S. Oliver, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M.  
         Smith, R. Houdré, and U. Oesterle, “Resonant and nonresonant transmission  
         through waveguide bends  in a planar photonic crystal,” Appl. Phys. Lett., vol. 79,  
         pp. 2514-2516, Oct. 2001. 
 
[98]  I. Ntakis, P. Pottier, and R. M. De La Rue, “Optimization of two-dimensional 
         photonic crystal channel waveguide bends through local lattice deformation,” J. 
         Appl. Phys., vol.  96, pp. 12-18, July 2004. 
 
[99]  A. Sharkawy, D. Pustai, S. Shi, and D. W. Prather, “High transmission through 
         waveguide bends by use of polycrystalline photonic-crystal structures,” Opt. Lett., 
         vol. 28, pp. 1197-1199, July 2003. 
  
 



 142

[100]  B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero 
          photonic crystals,” Science, vol. 300, pp. 1537, June 2003. 
 
[101] M. V. Kotlyar, L. O’Faolain, R. Wilson, and T. F. Krauss, “High-aspect-ratio 
         chemically assisted ion beam etching for photonic crystals using a high beam 
         voltage-current ratio,” J. Vac. Sci. Technol. B, vol. 22, pp. 1788-1791, July 2004. 
 


