
PROGRAMMING MODELS FOR SPECULATIVE AND
OPTIMISTIC PARALLELISM

BASED ON ALGORITHMIC PROPERTIES

A Thesis
Presented to

The Academic Faculty

by

Romain Cledat

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology
December 2011

Copyright c© 2011 by Romain Cledat

PROGRAMMING MODELS FOR SPECULATIVE AND
OPTIMISTIC PARALLELISM

BASED ON ALGORITHMIC PROPERTIES

Approved by:

Professor Santosh Pande,
Committee Chair
School of Computer Science
Georgia Institute of Technology

Professor Umakishore Ramachandran
School of Computer Science
Georgia Institute of Technology

Professor Santosh Pande, Advisor
School of Computer Science
Georgia Institute of Technology

Professor Karsten Schwan
School of Computer Science
Georgia Institute of Technology

Professor Hyesoon Kim
School of Computer Science
Georgia Institute of Technology

Professor Sudhakar Yalamanchili
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: 22 August 2011

In memoriam my father, Bertrand Cledat,

For my family, in particular for my Mom who has given me so much,

For my new companion in life, Vishakha

iii

ACKNOWLEDGEMENTS

I first arrived at Georgia Tech in August of 2004, for a Masters in ECE. Coming from

France, I was completely lost: the size of the Georgia Tech campus was daunting,

the number of administrative steps required to simply sign up for classes overwhelm-

ing. . . Today, it is amusing to see myself in the lost students that show up mid-August.

Seven years separate me from those new students trying to find their way. Looking

back, I realize how much I have changed, hopefully in a positive way. I owe this

change, in large part, to the people who supported me over the years. Naming all of

you would be impossible but you know who you are; just know that I would not have

made it through some of the most trying times of my life without you.

Before I get into the detailed acknowledgment of those people, I must express my

most heartfelt thanks to my family. As a kid, I had the immense opportunity to live

in another country: having lived my first eight years in France, my Dad, due to his

experience as a Masters student in the US, asked for his transfer to the US where

we stayed for five years. Upon my return to France, I knew that I wanted to return.

I thank my parents for giving me this taste for the US as well as for piquing my

curiosity about other cultures and other ways of life. I would also like to thank my

parents in particular, and my brothers, for supporting me throughout my education:

I was always afforded the best opportunities and allowed to pursue my dreams. This

PhD is particularly dedicated to my Dad. Although he will not see me walk, I realize

today how similar I am to him. I owe a lot of my inquisitiveness, my pursuit for

perfection and my voracious curiosity for pretty much anything to him. Thank you

Dad.

Several people contributed to my success during my years at Georgia Tech. I owe

iv

particular thanks to my wife Vishakha Gupta. Even though I met her only in 2006,

she has celebrated with me my successes and most importantly, has stood by me and

helped me overcome my doubts, frustrations, sadness and failures. Through all these

ups and downs, she has been a constant beacon of stability and temperance. Her

constant care and love have kept me afloat on more than one occasion.

I also owe particular thank to many of my initial friends and colleagues who “ini-

tiated” me to the life of a PhD student (and yes, PhD Comics is uncannily accurate).

Many thanks to Lakshmi Chakrapani, who, like Mike Slackenerny, first introduced me

to all the delicacies of PhD life. He was aided by Yogesh Chobe, Jaswanth Sreeram,

Rick Copeland and Tushar Kumar who also contributed in gently easing me into the

PhD program. Thank you for your friendship and for providing laughs and useful

advice. I would also like to thank Pinar Korkmaz who was part of our research group.

I would also like to thank my current friends and colleagues, Jaswanth Sreeram,

Kaushik Ravichandran, Sangho Lee, Changhee Jung and in particular Tushar Kumar.

While Tushar provided me with invaluable insights and help on my work, I am most

grateful for his advice and support on a variety of topics which helped me see things

more clearly on multiple occasions.

Over the years, I have also been blessed with a supportive circle of friends: Ce-

line Lascar, Vincent Combes, Gerrit Becker, Pei Yoong Koh, Adit Ranadive, Smita

Vaidya, Mukil Kesavan, Raghav Vijaywargiya, Rakshita Agrawal, Dulloor Rao, Ruchi

Anand, Nawaf Almoosa, Karishma Babu, Jui Deshpande, Ashwin Kolhe, Gregory Di-

amos, Sudnya Padalikar, Amit Tambe, Danesh Irani, Bhuvan Bamba, Vivek Sharma,

Sanjay Kumar, Madhumitha Ravichandran, everyone previously cited and many oth-

ers. I would also like to particularly thank my roommates and “pseudo-roommates”:

Gerrit Becker, Yogesh Chobe, Matthew Konopa, Jaswanth Sreeram, Vijay Balasub-

ramanian, Madhavi Wagh, Sucharita Otta and Priyanka Tembey. Thank you for

bearing with all my idiosyncrasies and sharing your life with me.

v

I would like to express my heartfelt gratitude to my advisor, Professor Santosh

Pande. His guidance and prodding made this thesis what it is today. His advice made

me the research I am today, feeling prepared to tackle new and complex problems

and contribute in a significant way to the greater research community. My internship

mentors, Arch Robison, Lee Baugh and Robert Knight also contributed in making

me discover the research world in industry, a direction I ended up choosing for my

current career. I would also like to thank my committee Hyesoon Kim, Karsten

Schwan, Umakishore Ramachandran and Sudhakar Yalamanchili for their help and

feedback with greatly improved this thesis.

Finally, I would also like to thank all the support staff at Georgia Tech who worked

hard to simplify the complex administrative apparatus of Georgia Tech. In particular

I would like to thank Susie McClain, Deborah Mitchell and Della Phinisee.

vi

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

SUMMARY . xvi

I INTRODUCTION . 1

1.1 A brief history of multi-cores . 2

1.2 Road-blocks to parallelization . 2

1.2.1 ‘May’ dependencies . 3

1.2.2 The bottleneck of ‘must’ dependencies (sequential code) . . . 4

1.2.3 Importance of dealing with hard to parallelize codes 5

1.3 Current solutions . 6

1.3.1 Frequency scaling . 6

1.3.2 Speculative and optimistic execution 8

1.3.3 Discovering dynamic parallelism 9

1.3.4 Limitations . 9

1.3.5 Approach: novel programming models 10

1.4 Exploiting algorithmic properties . 10

1.4.1 The N-way model: exploiting algorithmic diversity 11

1.4.2 Determining semantic data footprints 12

1.4.3 Quality driven computing: exploiting variable semantics . . . 13

1.5 Thesis statement . 14

1.5.1 Contributions . 14

II EXPLOITING ALGORITHMIC DIVERSITY THROUGH THE
N-WAY MODEL . 16

2.1 Introduction . 16

vii

2.1.1 An alternative to ‘break-up’ parallelism 16

2.1.2 Example . 18

2.1.3 Problem: a potentially wasteful model 19

2.1.4 Terminology . 20

2.2 Diversity . 20

2.2.1 Algorithmic diversity . 21

2.2.2 Other sources of diversity . 22

2.2.3 Diversity is common . 22

2.3 N-way model . 23

2.3.1 Base model . 23

2.3.2 Efficient N-way model . 25

2.3.3 Support for Quality-of-Result 33

2.4 Efficiency through culling . 33

2.4.1 Notion of progress . 34

2.4.2 Culling mechanism . 34

2.4.3 Compatibility with learning 36

2.5 Implementation . 36

2.5.1 API . 37

2.5.2 Progress monitors . 40

2.5.3 Providing isolation . 40

2.5.4 Thread-based implementation 42

2.5.5 Debuggability . 43

2.5.6 Automated compiler transformation of a program for N-way . 44

2.6 Experimental results . 45

2.6.1 Benchmarks . 45

2.6.2 Speedup through randomness 47

2.6.3 Speedup through heuristics 51

2.6.4 QoR through randomness . 52

2.6.5 QoR through heuristics . 53

viii

2.6.6 Runtime overhead and scalability 54

2.7 Related work . 55

2.7.1 Competitive parallel execution 55

2.7.2 Auto-tuners . 56

2.7.3 Isolation mechanism . 56

2.8 Conclusion and future work . 57

2.8.1 Future work . 57

2.8.2 Thesis discussion . 58

III LEVERAGING DATA-STRUCTURE SEMANTICS FOR OPTI-
MISTIC PARALLELISM . 60

3.1 Data disjointedness . 60

3.1.1 Disjointedness property . 61

3.2 Opportunity in semantic information 61

3.2.1 Proposed approach: a semantic data footprint 64

3.3 Data-structure semantics . 67

3.3.1 Disjointedness predicate . 67

3.3.2 Determine-next predicate . 68

3.3.3 Specification . 69

3.4 Runtime implementation . 72

3.4.1 Programmer specifications 72

3.4.2 Low-overhead runtime . 74

3.4.3 Runtime usage . 76

3.5 Experimental evaluation . 77

3.5.1 Greedy graph coloring . 77

3.5.2 STAMP benchmarks . 80

3.5.3 Scaling . 83

3.5.4 Impact of limited check time 83

3.6 Related work . 84

3.6.1 Static extraction of parallelism 85

ix

3.6.2 Dynamic extraction of parallelism 86

3.7 Conclusion . 87

3.7.1 Thesis discussion . 87

IV DISCOVERING OPTIMISTIC DATA-STRUCTURE ORIENTED
PARALLELISM . 89

4.1 Address dataspace versus symbolic dataspace 90

4.1.1 Stability in the symbolic dataspace 91

4.2 Symbolic dataspace memory analysis 94

4.2.1 A profiling approach . 95

4.2.2 Components of the profiler 95

4.2.3 Terminology . 96

4.2.4 Operating principle . 97

4.2.5 Naming conventions . 100

4.2.6 Relationship between symbolic dataspace and address dataspace104

4.3 Implementation . 105

4.3.1 C++ API . 106

4.3.2 Profiling pass . 107

4.3.3 Analyzer . 108

4.4 Experimental validation . 109

4.4.1 Experimental setup . 109

4.4.2 Note on overheads . 110

4.4.3 Results . 111

4.5 Conclusion . 112

4.5.1 Thesis discussion . 113

V QUALITY DRIVEN COMPUTING THROUGH VARIABLE SE-
MANTICS . 115

5.1 Shifting application characteristics 115

5.1.1 Parallel programming in games 116

5.2 A quality based approach . 117

x

5.2.1 Notion of quality . 118

5.2.2 Program flow . 120

5.2.3 Summary . 123

5.3 Use scenarios and API . 123

5.3.1 Extensible program semantics 123

5.3.2 API . 125

5.3.3 Runtime implementation . 128

5.4 Experimental results . 134

5.4.1 Quake 3 description . 134

5.4.2 Experimental setup . 135

5.4.3 Results . 136

5.5 Related work . 139

5.5.1 Adaptive QoS . 140

5.5.2 Parallel Programming Models and Languages 141

5.5.3 Soft Real-time Systems . 142

5.6 Conclusion . 142

5.6.1 Thesis discussion . 143

VI RELATED WORK . 144

6.1 Addressing the sequential bottleneck 144

6.1.1 Programming models to improve sequential execution 145

6.2 Expressing parallelism in irregular algorithms 145

6.2.1 The Galois programming model 145

6.2.2 Concurrent Collections . 146

6.2.3 Analysis based approaches 146

VII CONCLUSION . 147

7.1 Future work . 148

7.1.1 N-way framework . 148

7.1.2 Profiling in the symbolic dataspace 149

xi

7.1.3 Final thoughts . 151

REFERENCES . 152

VITA . 159

xii

LIST OF TABLES

1 Maximal N-way speedup and parallel efficiency for WalkSAT 49

2 N-way results for a fixed set of 50 randomly generated TSPs. 52

3 N-way QoR improvements for the TSP benchmark 53

4 N-way QoR improvements for ListSched 54

5 N-way runtime overheads . 55

6 Results for the quality-driven runtime on Quake 136

7 Breakdown of the quality-driven runtime’s decisions 137

xiii

LIST OF FIGURES

1 Motivating trends . 6

2 Evolution of CPU speeds . 7

3 Sequential flow versus N-way flow . 18

4 Illustration of N-way execution times on heuristics 31

5 N-way pseudo-code for a path-finding problem. 38

6 A non-local variable Foo in the isolation system 41

7 N-way speedup results for the WalkSAT benchmark 47

8 N-way results for the MSL benchmark 48

9 N-way speedup versus core utilization 50

10 Motivating example: Greedy graph coloring 62

11 Motivating example: Greedy graph coloring with abstractions 63

12 The Greedy Graph Coloring Benchmark 79

13 STAMP Benchmarks . 82

14 Labyrinth Benchmark . 83

15 Example of access patterns for a dense array 91

16 Example of access patterns for tree-like structures 92

17 Illustrative example for the use of virtual children 102

18 Sample code segment . 104

19 Memory map constructed for the sample code segment 105

20 Greedy graph coloring with the C++ API 110

21 Results for the greedy graph coloring example 111

22 Results for the greedy graph coloring example (2) 112

23 Extending a program’s semantics . 123

24 Definition of a Quality Transformer 125

25 Definition of DataWithQuality . 127

26 Principle API calls for the quality-driven runtime 128

27 Adding a computation to a program 130

xiv

28 Quality-driven MPEG encoding algorithm 131

29 Refinement of a quality computation 132

30 Program morphing . 133

31 Evolution of the frame rate in Quake 138

xv

SUMMARY

Whereas earlier generations of computers were resource-scarce, modern multi-

core and many-core machines are resource-rich. Historically, software optimizations

were geared towards “fitting” the computation inside scarce resources whereas modern

multi-core machines face the dual problem of idling resources on the one hand and

sequential bottlenecks on the other. The opportunistic computing paradigm, on which

this thesis rests, is the idea that the computation (sequential or otherwise) should

dynamically scale to occupy idling resources to enhance its speed or quality thereby

solving both problems.

This thesis focuses specifically on hard to parallelize computations which cannot

easily scale to occupy more and more resources. We have observed that traditional

data and task parallelism do not allow these types of computations to scale as this type

of parallelism is either hard to express (for algorithms that have unstructured memory

access patterns for example) or does not exist (for purely sequential computations).

We instead propose to exploit the algorithmic properties of a computation to develop

programming models that utilizes parallel resources to improve performance or quality

for hard to parallelize computations. Specifically, this thesis looks at three distinct

algorithmic properties: i) algorithmic diversity, ii) the semantic content of data-

structures, and iii) the variable nature of results in certain computations.

Our first contribution is the N-way programming model which exploits algorithmic

diversity to opportunistically speed-up or improve the quality of a computation. The

N-way model is specifically tailored for sequential computations, providing speedup

for such computations and thereby providing a solution to the bottleneck expressed in

Amdahl’s law. The N-way model relies on the fact that for many problems, multiple

xvi

ways exist to solve them, each potentially differing in their expected completion time,

resource requirement or quality of result.

An intuitive example of algorithmic diversity is a randomized algorithm: each

launch of the algorithm on a given input will behave differently. The N-way model

launches multiple competing ways performing the same computation and picking the

best one (fastest or best quality) just in time. The more diversity exists in a problem,

the greater the speedup or QoR improvement potential is. It is important to note that

the amount of diversity in a problem is not dependent on the sequential or parallel

nature of the algorithm used to solve the problem; in other words, N-way parallelism

is equally applicable to parallel and sequential codes.

This thesis also develops ways to minimize the number of ways launched (n) while

maximizing the probability of improvement. Indeed, the N-way model can be very

wasteful as only one of the ways ends up successfully “committing” its result. The

N-way system attempts to solve this problem by developing i) a statistical learning

approach which estimates the benefit of different amounts of speculation and ii) a

mechanism to reclaim unproductive ways to further reduce n during execution of the

competing ways. Both these techniques allow N-way to maximize the benefit ob-

tained while minimizing the amount of resources required. Through the use of N-way

model, we show very high (super-linear) speedups on hard to parallelize combinatorial

problems such as SAT solving.

Our second contribution is an extension of the N-way model allowing for additive

semantics instead of purely competing semantics: optional additional ways can be

used to improve the quality of result in a main thread when they are joined back

into it. Indeed, for many applications, particularly in the gaming and multimedia

domain, multiple results are “correct” although some are better than others in terms

of quality. Additional, quality enhancing ways, can therefore be launched and, if time

and resource permits it, their results can be merged back into a main thread.

xvii

Finally, we present a framework to improve optimistic parallelism by leveraging

the semantics of data-structures and algorithmic properties to dynamically predict

conflicts and reduce the overhead of optimistic parallelism such as Software Transac-

tional Memories (STMs). Indeed, while optimistic parallelism techniques have been

shown to be beneficial in writing parallel versions of hard to parallelize algorithms

(such as algorithms relying on sparse and irregular data-structures with hard to dis-

cern patterns), the overhead of wrong predictions can be very high. The technique

we present allows the programmer to specify semantics information concerning the

data-structures with the help of predicates that can guide an optimistic runtime in

making the correct decisions to minimize wrong predictions. We further develop a

profiling-based approach to automatically determine the symbolic data footprint of a

transaction which permits the automatic generation of conflict prediction functions.

xviii

CHAPTER I

INTRODUCTION

Today, Moore’s law, which states that the number of transistors in a chip doubles

approximately every two years, is causing an over abundance in computing resources

due to the fact that transistors are now being used to create more and more cores. In

desktops and laptops, multi-cores have been present for years: the Westmere family

of processors comes with 6 cores and the Haswell [37] family of processors is rumored

to come with 8 cores standard. Intel has also introduced the SCC (“Rock Creek”)

architecture which provides 24 dual cores on a single chip [38]. Mobile devices have

also recently gained multi-core processors like the ARM Cortex-A9 [4]. As the number

of cores increases, applications must learn to harness this new found power in non-

traditional ways.

Prior to multi-cores, applications could freely benefit from the sequential execu-

tion improvements that came with frequency scaling. This is no longer the case and

although parallel hardware confers, in theory, vastly greater computing power to end-

user applications, it is now up to the application to effectively occupy the hardware.

Certain applications, such as those used in the high-performance computing (HPC)

domain, are embarrassingly parallel and have no trouble scaling with the increasing

number of cores. Although the effective and efficient exploitation of massive parallel

resources poses certain problems (for example, code and data locality issues), fun-

damentally, the applications can scale to more and more cores. Other applications,

however, cannot readily occupy parallel hardware.

1

1.1 A brief history of multi-cores

Although parallel resources have been available for a long time, the phenomenon of

multi-cores is fairly recent. Sun introduced a 64 bit dual-core processor (the Ultra-

SPARC IV) in 2003 and Intel waited until 2006 to introduce the dual-core Core Duo.

Since then, the number of cores on a die has gone up exponentially. Intel introduced

its first quad-core (Kentsfield) at the end of 2006 and a six-core in 2008 (Dunning-

ton). In 2006, Sun also introduced the UltraSPARC T1, an 8-core processor. The

latest generation of Intel chips, the Sandybridge Core i7 are slated to be released in

a 6-core version. Intel also recently presented Rock Creek [38] which is dubbed a

‘datacenter on chip’ and sports 48 cores. The trend is thus clearly towards more and

more parallel resources: multi-cores are here to stay.

When dual-cores first came out, operating systems could occupy both cores rela-

tively easily. However, as the number of cores increase, fully occupying these cores is

becoming more and more of a challenge: not only are workloads hard to parallelize

but desktop users frequently do not actively run multiple applications at once thereby

restricting the number of parallel processes that need to run. Furthermore, workloads

and tasks that are easily parallelizable are being offloaded it to accelerators such as

GPUs further leaving the CPU cores unused.

1.2 Road-blocks to parallelization

While embarrassingly parallel applications are efficiently parallelizable, other types

of applications have more difficulty in exploiting parallel resources:

Applications with ‘may’ dependencies Certain applications contain natural par-

allelism but this parallelism is difficult to express due a dynamic structure of

data dependencies. This is particularly true for applications which utilize trees

or other pointer-based structures as their underlying data-structure. For these

2

applications, there may exist a data dependency that makes parallelization im-

possible but not always. Determining the cases when parallelization is possible

is a difficult problem and therefore, expressing and exploiting parallelism in

such applications is not an easy task.

Applications with ‘must’ dependencies (sequential) Other applications simply

do not contain “break-up” semantics on which data and task parallelism rely:

a dependency prevents breaking-up of the computation. For these applications,

data and task parallelization techniques are not applicable.

In this section, both types of applications are analyzed.

1.2.1 ‘May’ dependencies

Irregular algorithms are defined as those that rely heavily on pointer-based data

structures such as graphs or trees (the STAMP benchmarks for example [13]). An

important characteristic of these algorithms is that the exact elements, and therefore

memory location, they access are heavily data-dependent and cannot be known until

runtime. This cripples potential static analysis such as those used to efficiently par-

allelize dense matrix computations in the HPC domain. However, these algorithms

can still benefit from parallelization [58]. They are also increasingly present in emerg-

ing domains [63] such as machine learning, social network analysis an event-driven

simulations.

1.2.1.1 Differences with regular parallelism

For the purpose of this section, a computation is defined as being composed of an

operation and a data footprint. This view was also taken by Mendez-Lojo et al. in

[55] where they stress the importance of a data-centric view of the computation. For

an operation O, its data footprint will be noted Df (O).

3

In a typical HPC application, the operations execute on a dense matrix. Comput-

ing Df (O) is therefore made easy by the fact that a matrix is completely indexable.

In many cases, a compiler can reason about the indices involved for each operation

and statically compute Df (O).

In an irregular application, however, Df (O) can only be computed with knowl-

edge of the runtime values of variables which are not as easily bound as indices.

Furthermore, the use of pointers complicates analysis even further as the variable

from which to derive a value may be only indirectly accessible through the runtime

value of another variable.

1.2.2 The bottleneck of ‘must’ dependencies (sequential code)

In both previous cases (regular and irregular parallelism), current parallelization ap-

proaches (data/task parallelism) rely on breaking-up a computation into pieces which

can be processed in parallel. This process, however, has its limits as noted by Patter-

son in [62]. In the extreme case (for algorithms that have a very sequential execution),

this limit will be one and the code cannot be broken up into individual pieces that

can be processed in parallel.

1.2.2.1 Inherently sequential codes

Furthermore, certain problems are known to be “inherently sequential” which means

that traditional parallelization cannot effectively speed them up. Indeed, in complex-

ity theory, two classes in particular are key to determining problems which cannot be

solved efficiently on a parallel machine:

The NC complexity class The NC complexity class1 is the class of problems that

can be solved in polylogarithmic time on a parallel computer with a polynomial

number of processors. In other words, there exists constants a and b such that

1NC stands for “Nick’s Class” after Nick Pippenger who did extensive research on the subject.

4

any problem P in NC can be solved in O (log (n)a) on O
(
nb
)

processors.

The P-complete complexity class The P-complete complexity class is the class

of problems in P2 such that every other problem in P can be reduced to it.

Trivially NC ⊆ P as parallel computers can be simulated on a sequential machine.

However, it is not known but widely suspected that NC 6= P. If this supposition is

indeed true, it means that any problem in P-complete is not in NC (if one considers

NC reductions) and are therefore not effectively parallelizable.

Therefore, for P-complete problems, a list of which can be found in [29], tradi-

tional parallelism is only of limited use [30]. Alternative approaches to effectively

parallelizing these and other applications are thus required. Some example problems

(taken from [29] include:

• Graph search algorithms such as breadth-first search (determining if a node v

is visited before a node u in such a search).

• Graph theory algorithms such as the nearest neighbor traveling salesman heuris-

tic.

• Combinatorial optimizations such as linear programming.

One can see that these problems are fundamental in emerging areas such as search,

social networking, etc. It is thus crucial to address the fundamental issue that these

algorithms cannot be effectively parallelized.

1.2.3 Importance of dealing with hard to parallelize codes

Dealing with sequential code is crucial if one wants applications to keep scaling in

performance as illustrated by Figures 1. Figure 1(a) shows the maximum achievable

speedup as a function of the amount of parallelism in an application (Amdahl’s law)

2Class of problems that can be solved in polynomial time.

5

and Figure 1(b) shows the maximum achievable core occupation as a function of

the number of cores (assuming that the parallel sections of code are embarrassingly

so). Both figures show that sequential, or even hard to parallelize, components in

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

M
a
x
im

u
m

 s
p
e
e
d
u
p

Parallelizable component (%)

(a) Amdahl’s law

 0

 20

 40

 60

 80

 100

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

U
ti
liz

a
ti
o

n
 (

in
 %

)

Number of cores

Percent parallelizable
10%
50%

80%
95%

(b) Achievable core occupation: U (N) = 1
P+N(1−P)

Figure 1: Motivating trends

applications not only limit speedup but also cause more cores to idle thereby wasting

precious resources. In [35], Hill studied Amdahl’s law and came to similar conclusions.

1.3 Current solutions

Currently, three automated families of techniques exist to improve the performance

of hard to parallelize algorithms.

1.3.1 Frequency scaling

Frequency scaling relies on the intrinsic improvement of the speed of the underlying

hardware. Until the advent of multi-core processors, this was the main driving force

in the huge performance improvements between the early 1970s and the mid 2000s.

6

In Figure 2, it is clearly evident that the increase in processor frequency slows dra-

Figure 2: Evolution of CPU speeds from the 1970s to today (taken from [73])

matically in 2005 and has mostly stagnated since then. For desktops and laptops

computers, the benefits of this solution will therefore be marginal. Mobile devices

may benefit from it as processors found in mobile devices such as phones are still

running much slower than their desktop counterparts mostly due to power and heat

issues.

7

1.3.2 Speculative and optimistic execution

Speculative execution can be broadly defined as doing work that may or may not

be needed. This has been exploited at the hardware level for a long time. For

example, the result of branches are typically predicted and the most likely branch is

speculatively executed until a definite answer on the branch condition is evaluated. If

the prediction turned out to be accurate, the execution continues as usual; if not, the

execution is canceled and restarted at the beginning of the other branch. Speculative

execution proved useful in hardware and the idea migrated to software. Uses of

speculative execution include “helper” threads [72, 85]. Helper threads are used to

assist the main threads, for example to prefetch certain memory locations. The

locations prefetched are not accurately known but the helper threads speculate in

order to potentially speed up the execution time of the main thread. Another example

is thread-level speculation [61] which is used to execute multiple paths of execution

simultaneously.

Optimistic execution is slightly different and consists of executing a needed compu-

tation in parallel with other computations without knowing if the parallelism is legal.

If the execution turns out to be legal, parallel forward progress has been made. The

most popular use of optimistic execution is transactional memories (hardware based,

also known as HTMs or software based, known as STMs). TMs systems allow the

programmer to define sections of code which are to be executed “atomically”. Such

a section of code, also called a transaction, is deemed to have executed atomically

if no ‘write’ operation occurred on any of the data it touched during its execution.

A runtime system ensures the atomicity property of transactions by speculatively

executing the transactions and only committing their results if the atomic property

was satisfied. If it was not, the transaction is canceled (rolled back) and re-executed.

TMs do not help in the case of sequential codes but make the expression of parallelism

in irregular algorithms much simpler as the programmer does not have to explicitly

8

worry about overlapping data footprints.

Note that in this thesis we do exploit the ideas of speculative and optimistic

execution but in ways that are different from current ones.

1.3.3 Discovering dynamic parallelism

Programming models have also been developed which help a runtime dynamically dis-

cover parallelism instead of a relying on a static expression of data or task parallelism.

One such model is the Concurrent Collections (CnC) model [44, 11] developed by In-

tel (based on TStreams originally developed by Kath Knobe). In CnC, programmers

specify the inputs and outputs for each computational step and a runtime dynamically

launches the computational steps when possible. Therefore, the programmer does not

explicitly specify any specific form of parallelism and it dynamically appears. Note

that CnC is part of a larger family of very similar programming models. CnC finds its

origins in TStreams which has its origins in Stampede [60, 64]. Later, Mandviwala, in

[54] developed Capsules which also addresses the issue of discovering dynamic paral-

lelism but seeks to dynamically, and at runtime, adapt the level of granularity of the

parallel computation thereby trying to improve the efficiency of the parallelization.

1.3.4 Limitations

The above techniques have several limitations:

• The fundamental problem behind sequential algorithms is not addressed. In-

deed, prefetching helper threads, while useful, will not scale to an increasing

number of cores. TMs and the dynamic discovery of parallelism is not applica-

ble to sequential algorithms.

• Speculative or optimistic execution has two major pitfalls. Firstly, errors in

speculation can be very expensive as they usually involve the canceling of past

execution and a rollback to a previous “safe” state. Secondly, it becomes harder

9

and harder to accurately and correctly speculate. In the case of optimistic

execution, the greater the number of concurrent transactions, the greater the

chance of a conflict.

This thesis seeks to address these limitations by exploiting algorithmic properties

and provide scalable programming models that allow both sequential and irregularly

parallel applications to efficiently exploit multiple cores.

1.3.5 Approach: novel programming models

In this thesis, novel programming models are proposed to exploit idling parallel re-

sources and improve computations irrespective of their sequential or parallel nature.

The goal is to i) better occupy the plethora of resources that are available and ii)

provide speedup or quality improvements to computations.

This thesis builds on the ideas of opportunistic computing expressed in [16]. Op-

portunistic computing is the idea that programs should dynamically take advantage

of the opportunities offered to them, either in terms of increased resource availability

or increased time to produce a result. This thesis specifically focuses on effectively uti-

lizing idling and wasting parallel resources to improve the performance of sequential

codes as well as irregular parallel codes.

1.4 Exploiting algorithmic properties

Current parallelism approaches all rely on a breaking up of the computation, either

through the expression of data parallelism or task parallelism. As discussed earlier,

this approach is incompatible with purely sequential algorithms. This thesis proposes

to exploit algorithmic properties to open up new avenues of parallelism or to improve

existing ones.

An algorithm involves the execution of a computation on an underlying data-

structure to produce a result. Each of these elements has algorithmic properties that

can be exploited:

10

Property of the computation Algorithmic diversity which is defined as the exis-

tence of multiple “ways” to solve a given computation can be exploited. For

many important problems, different ways to solve them may exist and exhibit

varying execution times even on the same input. A runtime can, if resources

are available, launch multiple such ways in parallel and pick the fastest in a

just-in-time fashion. This will lead, on average, to a speedup.

Property of the data-structure Data-structures typically have a lot of semantic

information associated with them: the programmer assigns a meaning to each

of the elements in a data-structure that is specific to the way the data-structure

is being used in the computation. These meanings are however lost to the

compiler but precious information about the data footprint of operations can

be gained from this semantic knowledge. Allowing the programmer to provide a

runtime system with the opportunity to exploit this information can improve the

performance of optimistic parallelism by reducing the probability of rollbacks.

Property of the result Many emerging applications, such as those in the gaming

or multimedia area, are amenable to variable semantics : for a given compu-

tation, there can be multiple correct solutions, some potentially better than

others. This property can be leveraged by opportunistically launching, in paral-

lel, quality improving computations. This allows an application to dynamically

adapt to the dynamic resource envelope.

Each aspect is described in more detail in the following sections.

1.4.1 The N-way model: exploiting algorithmic diversity

The N-way model exploits an algorithmic property, diversity, which is orthogonal

to the properties exploited in the traditional ‘breaking-up’ parallelism. N-way thus

enables speedups on hitherto sequential computations as the traditional distinction

11

between ‘sequential’ and ‘parallel’ computations no longer applies in N-way: the

distinction is now between computations which exhibit diversity and those that do

not irrespective of whether or not the computation can be broken up into independent

tasks and/or data chunks.

Diversity is naturally present in many complex problems: NP-hard problems are

computationally intractable to solve exactly and therefore have a plethora of approx-

imations and trade-off based algorithms which are used to solve them, thereby con-

tributing to making such problems diverse. Randomized algorithms, which execute

differently on the same input, also lead to diversity within a problem.

The N-way model seeks to exploit this diversity by launching, in parallel and in

isolation, the diverse ways that can be used to solve a problem. A runtime can then

pick, just-in-time, the best execution way (for example the fastest) and discard the

others. Note that the same framework can also be used to obtain quality of result

(QoR) improvements by picking the way with the best QoR instead of the fastest

one. While this approach will, in theory, provide an expected speedup, in practice,

the extra resources consumed by the competing ways may diminish the potential

theoretical speedup. Therefore, this thesis develops a N-way model that incorporates

a mechanism to try to predict the optimal set of ways to launch to maximize speedup

with respect to the number of resources used.

This thesis presents a full framework capable of expressing and exploiting algorith-

mic diversity. The proposed framework is capable of extracting speedups in hitherto

sequential computations.

1.4.2 Determining semantic data footprints

As previously discussed, an important consideration when parallelizing operations

is the correct determination of their data footprints (Df (O)). Irregular algorithms

lack apparent static dependence structures which makes this determination difficult

12

if not impossible. However, these algorithms frequently exhibit semantic structure

where the programmer can frequently estimate Df (O) based on very limited knowl-

edge (the input to the operation for example). Through the estimate of Df (O), a

runtime system can then make judicial decisions regarding the optimistic scheduling

of transactions by ensuring that the probability of conflict between two concurrently

running transactions is low.

This thesis presents:

• A profiling-based tool to automatically understand and construct the semantic

data footprints of operations.

• A framework capable of exploiting the semantic knowledge of data footprints

to throttle transactions in an optimistic system.

1.4.3 Quality driven computing: exploiting variable semantics

The N-way model presented in Section 1.4.1 launches multiple competing ways to

gain speedup QoR improvements. However, for applications amenable to variable

semantics, it is also possible to launch collaborating ways instead of competing ones.

In games, for example, the artificial intelligence (AI) entities that operate certain

elements of the game can be of varying quality. More realistic effects can be added to

make the game appear closer to reality. As an illustration, a more precise modeling

of the human body can be used to calculate how a character moves down stairs (in

most games, the feet “hang” in the air, more precise calculation can make this effect

go away). In video coding, the way in which one encodes an image is variable; for

example, the MPEG format has three types of frames (I, P, or B) [27]. The percentage

of use of each of these types of frames can result in variations with respect to the

encoded size and decoding time. Given more resources, higher quality and more

interesting processing can be done as a part of these applications’ semantics.

13

This extension to the N-way programming model seeks to exploit this variabil-

ity in semantics by launching in parallel optional quality-enhancing computations

that, if given sufficient resources and time, can enhance the final result of the main

application.

1.5 Thesis statement

The time when computations had to be fitted to the hardware is long gone and

programmers now face the dual problem of occupying multiple parallel resources and

dealing with the bottleneck of hard to parallelize or sequential applications. For these

computations, traditional parallelization techniques such as data and task parallelism

are not applicable or inefficient. This thesis proposes that algorithmic properties can

be exploited to provide new avenues to simultaneously solve the problem of efficiently

occupying cores and improving sequential or hard to parallelize computations. This

thesis will show that significant improvements in the execution time or quality of result

of computations can be achieved though a better understanding and exploitation

of these properties. Specifically, this thesis explores three algorithmic properties:

algorithmic diversity, data-structure semantics and variable result semantics.

1.5.1 Contributions

This thesis makes the following contributions:

• Recognizing that algorithmic properties are under utilized in today’s program-

ming models and proposing to exploit three specific algorithmic properties: di-

versity in computations, semantics of data structure and variable semantics of

results.

• A programming model called N-way parallelism which enables a non-traditional

speculative parallelization of sequential problems through the exploitation of

14

diversity in computations. This thesis further details a runtime that automati-

cally manages the parallel efficiency of the N-way model.

• A framework enabling the expression of the semantics of data-structures. This

thesis further describes a runtime capable of exploiting such information and

improving the performance of optimistic parallel codes. Finally, this thesis also

explores the possibility of automatically extracting the semantics of the data-

footprint through a profiling approach.

• A quality-driven programming model enabling the programmer to design an

application exhibiting variable semantics so that the application dynamically

adapts to fully occupy the available resources while still meeting quality con-

straints.

15

CHAPTER II

EXPLOITING ALGORITHMIC DIVERSITY THROUGH

THE N-WAY MODEL

The N-way model is designed to address the bottleneck of sequential codes as de-

scribed in Section 1.2.2: it aims to exploit parallel hardware and provide speedup to

hitherto sequential code. The N-way model therefore is a solution to the limitations

imposed by Amdahl’s law.

2.1 Introduction

The N-way model relies on the observation that for many important computations,

there is a multitude of ways to solve them which can lead to varying execution times

even on the same input. This diversity can come from the use of heuristics or ran-

domness in algorithms. Therefore running multiple ways in parallel and picking the

fastest will provide an expected speedup. Complex problems such as NP-hard prob-

lems are computationally intractable to solve exactly and therefore have a plethora

of approximations and trade-off based algorithms that can be used to solve them.

Randomized algorithms, which execute differently for the same input also lead to

diversity which can be exploited. Section 2.2 elaborates on the presence of diversity

in many important problems.

2.1.1 An alternative to ‘break-up’ parallelism

The attractiveness of the N-way model resides in the fact that it exploits an algo-

rithmic property, diversity, which is orthogonal to the properties exploited in the

traditional ‘breaking-up’ parallelism. N-way thus enables speedups on hitherto se-

quential computations as the traditional distinction between ‘sequential’ and ‘parallel’

16

computations no longer applies in N-way: the distinction is now between computa-

tions which exhibit diversity and those that do not irrespective of whether or not the

computation can be broken up into independent tasks and/or data chunks.

Therefore, the speedup provided by N-way does not come from parallelism over

multiple cores. The speedup provided comes from improving the expected completion

time of a computation over n cores as opposed to the expected completion time over

a single core. The potential speedup for N-way is therefore directly related to the

amount of diversity present in the ways to solve the computation. In particular, if the

various ways to solve the computation C exhibit very little diversity in their execution

time, N-way will not be able to provide speedup irrespective of the number of parallel

resources committed. Conversely, if a large spread of execution time exists, N-way

will provide a speedup which may be super-linear.

Note that the expected completion time of a computation is considered as the

N-way approach is a probabilistic one. Consider for example a computation C imple-

mented as a randomized algorithm R which is run on an input I. Since the execution

time of R (I) may vary from run to run (due to its random nature), an expected

completion time for C on input I must be computed: it corresponds to the average

execution time of R (I) over multiple runs. Similarly, suppose that C is now imple-

mented using various heuristics H1 to Hh. Since each heuristic executes differently,

the expected completion time for C is again the average of the completion times of

H1 to Hh on input I.

2.1.1.1 A simpler model

Contrary to other parallel models, the N-way model is free from complex and error-

prone parallel programming constructs such as threads, locks and barriers. As far

as the programmer is concerned, each way is a separate sequential program that

can be written using sequential techniques. Figure 3 illustrates this: B is a step in

17

the problem that can be solved with multiple ways. The N-way model guarantees

semantic equivalence between 3(a) and 3(b).

(a) (b)

Figure 3: Sequential flow versus N-way flow

2.1.2 Example

A very simple example of a N-way computation is the problem of finding a path be-

tween two nodes in a graph. Certain algorithms will perform an exhaustive expanding

search (such as Lee’s algorithm), others will perform a random search of the graph

and yet others use heuristics to approximate the best next point (the A∗ algorithm for

example). Therefore for a single computation (finding a path), multiple ways exist

to solve it, each giving a valid solution in potentially varying amounts of time for

the same input. Ideally, for each input to the problem, an oracle could determine

the best (fastest) algorithm to run for the given platform. However, such an oracle

would most likely be as computationally intensive as the algorithms themselves. The

N-way model solves this problem by removing the obligation to choose a-priori the

way which will execute the fastest, preferring instead a just-in-time solution where

the fastest way is picked when it completes. The execution time of the problem is

thus determined only by that of the fastest way, all other ways being discarded.

18

2.1.3 Problem: a potentially wasteful model

The N-way model is potentially wasteful of resources. Indeed, if n ways are launched

on n cores, n−1 cores will perform work that will eventually be discarded. Increased

waste can lead to an increase in memory and bandwidth contention therefore limiting

or negatively impacting the speedup obtained. For N-way to be practical in a wide

range of scenarios, it is thus crucial to answer the following question: how many and

which ways to launch in order to best balance speedup and resource usage? In other

words, it is important to determine how the expected speedup scales with resources.

Note that the notion of scaling is the opposite of what is traditionally considered : one

wants to determine the minimum n that best balances expected speedup and resources

used. The optimal n will be directly related to the amount of expressible diversity:

in an extreme case, if all ways solve the problem in exactly the same execution time

and quality, n should be 1 as no benefit will be gained from launching multiple ways.

Answering the previous question is difficult for the programmer because of i) the

dependence of kernel execution time on input data and ii) the lack of models linking

execution time of the various ways together.

This thesis develops a runtime system capable of learning the execution time char-

acteristics of the N-way computation (C) based on prior invocations thereby enabling

the runtime to estimate the benefits of launching various sets of ways in subsequent

invocations of C. If C is not invoked multiple times, N-way is still applicable but not

the learning model.

Even if the optimal set of ways is picked, some ways will make progress towards

C’s solution much slower than others making them highly unlikely to complete first.

Additional resource savings can therefore be had by killing these unproductive ways

early. For many applications, it is straightforward for the programmer to define

progress monitors which can be monitored by the N-way runtime in deciding which

ways to kill. This technique, which is called culling, allows significant additional

19

resource savings when the programmer can define the progress metrics.

Therefore, the learning of n and culling are two independent techniques which can

be applied individually or together for even more saving of resources.

2.1.4 Terminology

Throughout this chapter, the following terms are used:

• N-way computation or ‘computation’ refers to an algorithmic step to which

the N-way technique can be applied. In other words, a N-way computation can

be executed in a variety of “ways” for a given input and each way will produce

a solution to the computation.

• N-way kernel or ‘kernel’ refers to a specific implementation used to solve a N-

way computation. For example, if multiple heuristics are used to solve a N-way

computation, each heuristic will be called a N-way kernel.

• Expected speedup refers to the speedup that N-way will provide. It will be

noted Sn for n cores.

• Effective utilization or ‘utilization’ refers to the effective number of cores

utilized by a N-way computation. This is noted neff . neff ≤ n where n is the

number of cores allocated to the N-way computation. neff can be smaller than

n in the presence of culling for example when some cores are freed before the

completion of the computation.

2.2 Diversity

The N-way model relies on the existence of diversity in common computations. This

section motivates the presence of such diversity in many applications.

Consider a N-way computation C. By definition, C is a diverse computation that

can be solved using a multitude of ways. The different ways may solve C differently,

20

some operating faster than others or with a higher quality of result (QoR). Note that

the granularity of C is irrelevant in the definition. C could be an entire application

or a small basic building-block kernel such as a “sort” problem. Finding diversity at

the granularity of a kernel will allow larger problems that depend on the kernel to

also benefit from the diversity present in the kernel.

2.2.1 Algorithmic diversity

Three types of algorithmic diversity in a computation C can be identified: i) across

distinct algorithms, ii) within an algorithm if it can be parametrized and iii) within

an algorithm if it utilizes randomness.

Diversity across algorithms For many real-world problems, such as NP-hard

problems, finding an exact solution in a reasonable amount of time is impossible.

Even for problems in P, the large size of the problem may make exactly solving it

problematic. For such problems an acceptable solution rather than an optimal one is

sought. For example, when finding a path between two nodes in a graph, any path

is an acceptable solution although some may be preferred over others (shorter paths

for example). Acceptance of a wider set of solutions enables the use of a variety

of algorithms to solve the same problem. Approximation algorithms [81] have been

utilized for such a purpose: they give a solution of provable quality within provable

runtime bounds1. Similar to approximation algorithms, heuristics based algorithms

provide the same notion of diversity without provable quality and/or runtime bounds.

Diversity in parametrized algorithms Apart from distinct algorithms, even if

only a single algorithm exists to solve C, diversity may still be present if the algorithm

can be parametrized. For example, the CPLEX solver [75] offers over 100 parameters

1Note that the bounds are worse-case bounds and not precise enough to determine which algo-
rithm will perform better on a specific input.

21

to tune its algorithm. Each pair (A,Param) can be considered a distinct algorithm

with differing execution characteristics as in the previous case.

Diversity due to randomness Randomized algorithms [57, 56] utilize a degree

of randomness as part of their logic. A randomized algorithm seeks to achieve good

performance on average. Due to its random nature however, its running time, its

output, or both are probabilistically characterized random variables.

Randomized algorithms are therefore parametrized implicitly by the random seed

used. The difference with parametrized algorithms is that the parameter space is

innumerable (for all practical purposes). Note also that randomized algorithms are

particularly interesting for diversity as a single algorithm will provide diversity as

opposed to different algorithms in the other cases.

2.2.2 Other sources of diversity

While this work focuses on the exploitation of algorithmic diversity, diversity also

occurs at the hardware level (due to architectural heterogeneity for example) and at

the compiler level (different optimization options). This latter aspect was explored in

more detail in [78]. These sources of diversity only enhance the current ones identified

and described.

2.2.3 Diversity is common

This section has shown that different types of algorithms commonly used to solve

difficult problems contain diversity which can be exploited. Asanovic et al. describe

13 dwarfs [5] as forming the cornerstone of tomorrow’s computation. Diversity is

present in many of them:

• Linear algebra (dense or sparse) Parametrized algorithms are frequently

used. Certain randomized algorithms are also used [79].

22

• Combinatorial logic Given their high computational complexity, such prob-

lems are frequently approximated [81]. Randomized algorithms are frequently

used and this chapter presents results with WalkSAT [71] a randomized SAT

solver.

• Graph traversal Randomness is frequently utilized to solve large-scale graph

problems given their good average case complexity. In particular, many AI

algorithms utilize graph traversals to evaluate possible “moves”. This chapter

presents results for a randomized Hamiltonian cycle builder.

• Graphical models Searching for relationships in Bayesian networks is a NP-

hard problem and many different search algorithms can be applied. Non-

exhaustive searches frequently make use of heuristic and random exploration

as part of their algorithm. Simulated annealing and genetic algorithms are

examples of that.

• Backtrack / branch-and-bound The Traveling Salesman Problem (TSP) is

a classical example of a branch-and-bound algorithm. Quickly exploring the

huge space of possibilities requires the use of heuristics and/or randomness.

This chapter presents results for heuristical TSP solvers.

2.3 N-way model

The N-way model seeks to exploit the diversity described in Section 2.2 to provide

both expected speedup and QoR improvements; for clarity, this section focuses on

expected speedup and briefly describes how QoR can be provided in Section 2.3.3.

2.3.1 Base model

As shown in Figure 3, the N-way model exploits the diversity in B to transform the

sequential execution flow shown in Figure 3(a) to the parallel one shown in 3(b) in

a way that makes both flows semantically equivalent. If we assume that each way

23

returns a valid solution, semantic equivalence is ensured by the enforcement of the

following two rules:

• Parallel ways execute in isolation from one another in a side-effect free manner

• One and only one of the parallel ways makes its computation visible to the rest

of the program. In Figure 3(b), C will only be affected by one and only one of

B1 to B3

Apart from ensuring semantic equivalence, isolation (described in Section 2.5) also

enables the programmer to program each way as if it were sequential code. While

B1, B2 and B3 all execute in parallel, C will only be affected by the execution of one

and only one.

While the idea behind N-way parallelism is simple and previous work [16, 78, 77]

has shown that naively launching as many ways as possible maximizes expressed di-

versity and therefore expected speedup potential, the real difficulty lies in determining

the best balance between resources used and expected speedup potential to make N-

way efficient, practical and scalable. Launching too few ways will reduce speedup

potential while launching too many will waste resources and energy as well as pos-

sibly degrade the performance of the ways thereby leading to sub-optimal speedups.

Determining which and how many ways to launch is dependent on i) the inputs be-

cause of the data-dependent behavior of many algorithms, and ii) the characteristics

of the algorithms themselves, for example the execution time distribution of the ran-

domized algorithms or the applicability of a particular heuristic to a given input.

The information required is thus not easily available to the programmer making it

difficult for him to a-priori make an informed decision. In this section, a statistical

learning model that can effectively determine the best combination of ways to launch

is described.

24

2.3.2 Efficient N-way model

In traditional parallelism, the number of parallel resources that can be effectively

utilized is bounded by the amount of divisibility (work or data) in the algorithm.

N-way exploits diversity instead of divisibility and therefore the number of parallel

resources that can be effectively utilized is limited by the amount of diversity present

in the computation. Intuitively, for a given input, if the spread of completion times of

the different ways is wide (large diversity), many resources can be effectively used to

“explore” this spread whereas if the completion times fall in a narrow band, allocating

more and more resources will only provide a marginal benefit. As an extreme example,

a computation which can only be solved using a deterministic algorithm exhibits no

diversity (a spread of 0) and utilizing more than one resource to solve it is wasteful.

While models exist to a-priori determine the potential speedup that can be ob-

tained through the division of work, the amount of diversity in algorithms is difficult

to characterize statically as it is heavily data-dependent in a non predictable manner.

An exact determination of the number of resources needed to optimally express diver-

sity in a problem is therefore not possible and we instead propose a statistical model

which allows a runtime to compute the expected speedup associated with a particular

choice of ways. The expected parallel efficiency defined as PEff (n) = Sn/n, where Sn

is the expected speedup on n resources, can be computed and maximized. Note that

the expected parallel efficiency is computed as a function of n. Culling may reduce

the utilization of cores from n to neff .

2.3.2.1 Assumptions

N-way does not rely on the programmer to provide information about the computation

C’s execution-time distribution. Instead, the following assumptions about how the

application invokes C are made:

25

• Repetition: The N-way computation C is invoked repeatedly within an appli-

cation.

• Stability: The underlying (unknown) execution-time distribution for C only

changes slowly over consecutive invocations of C.

These assumptions allow the construction of a statistical learning scheme that can re-

liably estimate C’s execution time distribution based on previously observed behavior

over past inputs.

Stability assumption Note that the stability condition does not require that con-

secutive inputs be similar to one another but rather that the behaviors of the various

ways observed over previous inputs remain stable. For example, consider a random-

ized algorithm being fed two different types of inputs, one large where the randomized

algorithm takes a fairly long time to return a result and one small where the algorithm

returns quickly. Even if individually the large and small inputs are very different, if

future inputs are similar to either the large or the small ones, the execution time

distribution of the randomized algorithm will not change: it will be the superposition

of the execution time distribution of the small input and that of the large input.

Similarly, consider for example that the execution time distribution is originally

a Gaussian distribution N (m, s). If N samples (execution times) are drawn from

this distribution, they are most definitely not equal or even similar. Collectively,

however, they form N (m, s). If the distribution now changes to N (m1, s1) and M

samples are drawn, the M samples will collectively indicate the N (m1, s1) distribu-

tion. Moreover, a mix of samples (from the first N and from the last M) will indicate

another distribution but if the change from m to m1 and s to s1 is small, the mix

will closely approximate N (m1, s1). The learning scheme will therefore still be able

to infer useful information.

While the stability condition is therefore not overly constraining, if it does not

26

hold, the execution time for the next invocation of C within the application may not

be sampled from the distribution observed over the prior few invocations of C. In

that case, the choice of n will be less optimal with regards to maximizing expected

speedup and minimizing resource waste.

There is often good reason why the stability assumption holds for a variety of ap-

plications. The characteristics of the input data significantly determine the execution-

time of C. For example, in TSP, the size of the graph and the degree of nodes signif-

icantly determine the execution time. A given invocation of the application is likely

to invoke C using data whose characteristics fall within a relatively narrow range.

Therefore, the behavior of C on the next input will be drawn from the distribution

of behaviors on previous inputs which will validate the stability condition.

For example, an application planning routes for delivery trucks would repeatedly

invoke TSP over the same graph, but with perhaps different constraints for each truck.

In all of our sample applications, the stability condition held.

2.3.2.2 Formal problem

The general problem is, given a set S of algorithms to solve a N-way computation C,

which combination of ways taken from S has the best parallel efficiency. Note that

there are two separate components to this: i) which algorithms to pick and ii) for

algorithms that have inherent diversity (such as randomized algorithms) how many

instances of that algorithm to run. In the following sections, two orthogonal special

cases are studied: i) C is solved by a randomized algorithm R and ii) C is solved by

a set of non randomized heuristics (or parametrized algorithms) H1 to Hq.

2.3.2.3 Randomized algorithms

In a randomized algorithmR, a random seed determines the behavior of the algorithm,

and in particular its execution time. For a given input I, the execution times of the

algorithm will be distributed according to a probability distribution function (PDF)

27

and while the exact execution time of a run on I is unknown, an expected completion

time can be computed from the PDF.

For a specific input I, a PDF can be learned by repeatedly invoking the algorithm

on I but it will not be the same across inputs. However, under the stability assump-

tion, the characteristics of the inputs vary slowly; in other words, it can be assumed

that:

PDF (Ij+1) ≈ PDF (I1 . . . Ij)

Therefore, R’s PDF for previous inputs is assumed to apply to the next input.

The goal is to pick n that maximizes PEff (n) = Sn/n. To do this, for each

n = 1, 2, . . ., the runtime estimates Sn using the estimated PDF. Let F1 (n) denote

the cumulative distribution function (CDF) corresponding to the estimated PDF:

F1 (t) = Prob {Execution time of P < t}

However, the CDF for the fastest completing way when n independent ways are

launched in parallel is what matters:

Fn (t) = Prob{Execution time of fastest way < t,

when n independent ways are launched}

It can be shown that:

Fn (t) = 1− (1− F1 (t))n

This is because the probability for each independent way to not complete within

time t is 1 − F1 (t), and therefore the time for none of the n ways to complete in

time t is (1− F1 (t))n. The expected completion time En is then the mean over Fn:

Fn (En) = 0.5. Now, Sn = E1/En.

In practice In practice, the CDFs are maintained as step functions. Suppose a

single instance of R is repeatedly launched and times t1, t2 and t3 with t1 < t2 < t3 are

28

observed, the approximation of F1 will be updated with those three points and F1 will

be such that ∀t < t1, F1 (t) = 0, ∀t ∈ [t1, t2) , F1 (t) = 1/3, ∀t ∈ [t2, t3) , F1 (t) = 2/3

and ∀t ≥ t3, F1 (t) = 1. Although crude, this allows a quick approximation of the

CDF. When n instances of R are launched, Fn is updated instead of F1 and since all

CDFs can be derived from one another, they can all be simultaneously updated.

To adapt to the slow variations in input characteristics, each input point has a

weight, decreasing the importance of older points.

With the CDFs, En can be computed for each n from which Sn can be deduced.

Selecting the optimal number of ways To select the numbers of ways to launch,

S1, S2, etc. are computed and the runtime determines if the improvement in speedup

is worth the extra resource cost. The specific criteria can be set by the programmer.

This approach is greedy in the sense that if Si does not meet the criteria Si+1 does

not either and there is no need to compute it.

2.3.2.4 Distinct algorithms

In the case of distinct heuristics, randomness is no longer a source of uncertainty.

However, uncertainty about the exact input that will be passed to the computation

C remains. Since the inputs passed to C vary, it may not be possible to predict

which heuristic will do better on the next input. However, the assumption that past

input characteristics are representative of upcoming inputs (stability assumption) still

allows the runtime to learn statistically meaningful information.

Mathematical model Given q heuristics H1 to Hq, suppose each heuristic is run

to completion on each input Il to Im. For each input point, the completion time of

each heuristic is recorded:

eij = Hi (Ij)

29

The average completion time E [Hi] of Hi is given by:

E [Hi] = 1/m
m∑
j=1

eij

Given the stability assumption on inputs, it can be assumed that the expected com-

pletion time of a given heuristic on the next input is the average time over past

inputs:

Hi (Im+1) ≈ E [Hi]

This allows the estimation of the expected completion time of each individual heuristic

for the next input Im+1. If only one heuristic has to be picked to run (i.e., n = 1), the

best choice is to pick the Hi with the smallest E [Hi]. However, the runtime needs to

determine whether running multiple heuristics provides significantly greater speedup.

For this, an optimal n and the set of n heuristics to launch in parallel need to be

determined.

Consider a naive approach based on sorting by smallest E [Hi] as follows: {Hi1 , Hi2 , Hi3 , . . .}

where for n = K Hi1 , . . . , HiK get launched. However, as Figure 4 shows, this ap-

proach is suboptimal. The figure shows execution times for heuristics on inputs Il to

Im, with the sorted heuristics {H2, H3, H1}. For n = 2, launching {H2, H3} as per the

naive approach performs worse than launching {H2, H1}, based on fastest completion

times. Even though E [H3] < E [H1], H3 is always slower than either H1 or H2, hence

selecting it is not useful (even for n = 3).

The above illustrated a need for a general case test (for n > 1) that takes input-

dependent orderings of heuristics into account. Therefore, in selecting the best Hik

in addition to Hi1 , the following expected completion time needs to be minimized:

E [Hi1 , Hik] = 1/m
m∑
j=1

min (ei1j, eikj)

Further, n = 1 versus n = 2 can be decided based on:

E [Hi1 , Hik] /2 < E [Hi1] /1

30

 1
 2
 3
 4
 5
 6
 7
 8
 9

Il Il+1 Im-1 Im

E
x
e
c
u
ti
o
n
 t
im

e

Inputs

H1
H2
H3

Figure 4: Execution times for heuristics H1, H2, H3 on inputs Il to Im

where the best Hik is picked. This inductively generalizes to answering n = 3, 4, . . .

and picking the best Hi to add at each step. For n = 3 for example, pick the best

Hiq minimizing:

E
[
Hi1 , Hik , Hiq

]
= 1/m

m∑
j=1

min
(
ei1j, eikj, eiqj

)
and also ensure that:

E
[
Hi1 , Hik , Hiq

]
/3 < E [Hi1 , Hik] /2

Note that the above strategy is not optimal since it greedily add only one ad-

ditional heuristic at each step. Ideally it should test every possible subset of size 2

against Hi1 , and then every possible subset of size 3 against the best subset of size 2,

and so on. Such an approach has an exponential complexity, making it unsuitable in

practice.

In practice The theoretical model assumed measurement of the completion time

for each heuristic on each input. In practice, this is obviously not wanted as it negates

the benefits of N-way by forcing the runtime to wait for all heuristics to complete.

Therefore, the runtime will only wait for the first heuristic to complete and record its

completion time T . For all other heuristics, the runtime approximate their completion

time on the input in the following way:

31

• The completion time of heuristics that were run but did not complete is cT

where c > 1 is a parameter defined in the runtime. Indeed, the completion time

of these heuristics is greater than T and the programmer controlled c parameter

indicates how strongly winning heuristics should be favored.

• The completion time of heuristics that were not run (for example, if they were

not picked) is dA where A is the average completion time for that heuristic over

past inputs and d < 1 is a programmer controlled parameter controlling how

often untried or cast-away heuristics should be given a chance. This allows the

learning algorithm to adapt to changing conditions by ensuring that ways that

were previously discarded are periodically evaluated.

The two heuristics above allow the runtime to estimate the completion time for all

heuristics on all inputs and can then apply the mathematical model described in the

previous section. Similar to the randomized case, the learning model also “forget”

older points to allow adaptation, restricting to a window Il to Im of prior invocations

of the computation C.

2.3.2.5 Generalized algorithm

The models described are efficient learning models for the special cases of randomized

and heuristics-driven C. A more generalized model combining both for the same C

is possible (TSP can combine randomization and heuristics), but such a model is the

subject of future work given its high computational complexity in its current form.

2.3.2.6 Resilience of the learning models

The N-way model was designed to make use of the idle cores and therefore assumes

that each N-way thread is given exclusive access to a core. However, even if transient

loads occur that may perturb this assumption, the learning models described are

resilient. This is due to the fact that the effects of even a relatively large perturbation

32

will only impact a few samples and be mitigated by the other samples. A sufficiently

large and persistent perturbation however will clearly compromise these models but

only for a short duration after it goes away as the models use only recent samples

(using a sliding window).

Furthermore, even if perturbations do affect the estimations of expected comple-

tion times, the decision process of the N-way model will not always be compromised.

Consider the choice between n ways versus n + 1 ways. Even if the estimations of

En and En+1 are perturbed, the N-way model will make the same decision as long as

the ordering of PEff (n) and PEff (n+ 1) does not change. Therefore, the model can

tolerate significant errors in the estimations of the expected completion times as long

as the resulting parallel efficiencies compare the same way.

2.3.3 Support for Quality-of-Result

The above models have been described in the context of providing speedup. In that

case the measurable quantity is execution time and is lower bounded by 0 which

represents the best possible case (ie: an algorithm that takes no time to execute

is the best case). The only assumption that the learning algorithm makes is that

“smaller is better”. It can therefore be extended to provide QoR improvements if

the programmer can provide a measure for quality at the end of the way and a

“distance” that quantitatively compares two qualities. The runtime can then learn

the distribution of qualities instead of execution times.

2.4 Efficiency through culling

The learning framework proposed in Section 2.3.2 tries to a-priori pick n to maximize

the parallel efficiency Peff . However, as the various ways execute, more information

may be gained about their progress which can enable the dynamic culling of ways

which are almost certainly not going to “win”. This will reduce the overall utilization

of processor cores (to neff) while having very little impact on the expected speedup

33

(as only ways that will “lose” will be preemptively culled). This section proposes a

culling framework. The motivation is to i) relieve system pressure on shared resources

in particular and ii) improve energy efficiency.

2.4.1 Notion of progress

To determine the ways to cull, the runtime relies on a programmer-supplied notion of

algorithmic progress ; in other words, how far has the algorithm come in solving the

computation. This notion is not always easy to characterize and is very computation

specific but is relevant in a number of cases:

• Computations that are solved using greedy constructive algorithms have a

natural notion of progress as both the amount of work done and to-do are readily

available.

• Other computations, such as optimization problems, are solved by finding par-

tial solutions which are subsets of the final solution: dynamic programming,

incremental algorithms (Dijkstra’s single source/destination), etc. The ‘size’ of

the partial solution is a good measure for progress.

To indicate progress, the programmer must define a normalized metric M that

takes values between 0 and 1 where 1 indicates completion2.

2.4.2 Culling mechanism

While the progress metric M provided and updated by the programmer gives absolute

progress for each way, progress per resource is actually what the runtime wants to

compute because it wants to eliminate the ways making the least progress but con-

suming the most resources. However, the N-way system only currently considers the

CPU as a resource and M s will therefore denote the measure of progress per CPU-

time As part of future work, we are looking at measuring other resources consumed

2Note that M may be derived from auxiliary metrics if this is easier to express for the programmer

34

by each way (such as L2 footprint, bus activity, etc.) through the use of performance

counters.

Assumptions Metric monitoring provides the runtime with information about past

progress. The runtime therefore assumes linearity in progress to extrapolate future

progress. This simplifying assumption is constraining but the programmer can update

M to best approximate this assumption and the culling system can tolerate this

approximation.

Culling relies on answers to two questions: i) when to look for ways to cull and

ii) what ways to cull.

When to cull? Ideally, the runtime would like to cull inefficient ways as early

as possible but it does not want to constantly monitor progress to limit overheads.

Therefore, it attempts to check only when it is likely that ways can be culled.

In the current mechanism, each way W reports its progress MW to the runtime

which then decides whether or not to attempt culling. It will be attempted if either i)

a way has made significant progress, ii) sufficient time has elapsed, or iii) a sufficient

number of progress reports have occurred since the last culling attempt. The runtime

has access to the last reported progress information from each way.

What to cull? Given the linearity assumption, progress metrics M s
W can be di-

rectly compared. The goal of the culling algorithm is to quickly determine all under-

performing ways that have little chance of “catching-up” with the best performing

ways.

To do so, the algorithm clusters all ways based on their M s. The idea is to group

together ways that are making a similar amount of progress. The number of clusters

is not fixed a-priori instead relying on a hierarchical bottom-up clustering approach

which stops when the mean squared error (MSE) of the merged cluster D of A and

35

B is greater than the weighted sum of the MSEs of A and B where:

MSE (D) =
∑
Wi∈D

(
M s

Wi
−M s (D)

)2
/ |D|

We will cull the worst cluster Dworst if

α (1−M s (Dworst)) > 1−M s (Dbest)

where α is smaller than 1 (currently 10%) and M s of a cluster is the mean metric of

ways in that cluster. This ensures that culling is less aggressive when the best ways

have made little progress (and it is still unclear who will “win”) and more aggressive

when the best ways are closer to finishing. This also allows the linearity assumption

to be relaxed and progress need only be mostly linear.

2.4.3 Compatibility with learning

Culling is fully compatible with the learning N-way model under the assumption that

culling only culls ways that would not have “won”. This is a reasonable assumption as

the culling algorithm kills off ways that are making little progress and are therefore

highly unlikely to “win”. Under this assumption, culling has no impact on learning

as it does not modify the information used by the learning algorithm, namely the

completion time of the winning way.

Culling is optional and does not directly provide additional speedup. However, a

speedup can be achieved indirectly by reducing contention for shared resources. Even

if the programmer cannot provide progress monitors, the learning approach is still

fully applicable.

2.5 Implementation

The N-way model is supported by a runtime to enable dynamic monitoring and adapt

the selection of ways as the characteristics of the inputs changes. The runtime has

the following key roles: i) determine the Types of algorithm to launch and how many

36

of each Type (in the case of a randomized algorithm), ii) optionally monitor progress

and cull any under-performing way and iii) provide isolation among the ways and

keep them side-effect free.

2.5.1 API

All code examples provided here are in pseudo C-like code. The actual implementation

makes heavy use of C++’s templating abilities to provide stronger type-checking

guarantees.

The N-way model requires very little from the programmer who needs to identify:

• A diverse computation C and the different N-way kernels available to solve it.

• An optimization objective: speedup or QoR improvements. In the case of QoR

improvements, a quality metric must be provided.

• To support culling, an optional specification of progress for the ways is required.

The code example in Figure 5 will be used to illustrate the API.

Specifying a N-way computation Specifying a N-way computation is simply a

matter of specifying the various algorithms (N-way kernels) that are possible. This

is shown on Lines 10 to 12 where three different function pointers are attached to

the same N-way computation findAPath. Heuristics, parametrized algorithms and

randomized algorithms which can be launched multiple times can all be added. The

programmer is responsible for identifying the functions that “belong” to the same

N-way computation.

Specifying an optimization-objective The programmer must specify whether

he wishes to obtain speedup or QoR through an optimization objective as shown

on Lines 15 and 21. Note that in the common case of speedup, the programmer

37

1 struct i n p u t t {
Node s ta r t , end ;

} myInput ;

struct f indAPath t {
6 int pathLength ; bool pathFound ;
} findAPath ;

/∗ heur1 f , param f and rand f are func t i on po in t e r s ∗/
findAPath . addAlgo (heu r1 f) ;

11 findAPath . addAlgo (param f , parameterSpace) ;
findAPath . addAlgo (rand f , nonEnumerable) ;

/∗ Two example sw i t ch e s ∗/
struct c h o o s e F a s t e s t t {

16 StopWhen = (0 , 0) ;
MinimumRequired(f indAPath t f)
{ return f . pathFound ; }

} chooseFas te s t ;

21 struct c h o o s e S h o r t e s t t {
StopWhen = (undef , 1) ;
MinimumRequired(f indAPath t f) { return f . pathFound ; }
Comparator(f indAPath t f1 , f indAPath t f 2)
{ return f 1 . pathLength − f 2 . pathLength ; }

26 } chooseShor t e s t ;

findAPath . run (myInput , chooseFas te s t) ;
findAPath . run (myInput , chooseShor te s t) ;

Figure 5: N-way pseudo-code for a path-finding problem.

has nothing to specify as a default ‘speedup objective’ is provided. The optimiza-

tion objective becomes relevant when QoR is traded off with execution time. The

optimization-objective determines when and how the runtime chooses the winning

way.

We provide the following APIs:

• StopWhen is a tuple (pt, pc) where pt ≥ 0 and 0 ≤ pc ≤ 1. The idea behind both

numbers is to allow a trade-off between the time that the runtime waits and the

number of ways it waits for. Indeed, to obtain maximum QoR, the programmer

38

would ideally like to wait for all ways to complete to pick the absolute best but

in practice, he might want to cap the runtime of the N-way problem thereby

trading off quality with execution time. If t1 is the completion time of the first

way, and nc (t) is the number of ways that have completed by time t, td the

time the runtime will make a decision is defined as the minimum t such that

either td ≥ (1 + pt) ∗ t1 or nc(td)
n
≥ pc is true. Two such specifications are shown

in Lines 16 (maximum speedup) and 22 (maximum quality).

• Comparator qualitatively compares two ways to determine which provides the

best QoR. The computation is based on the metrics defined for the N-way com-

putation (Line 6) which the programmer must update before the way completes.

• MinimumRequired is also a comparator that determines if a way completed with

a valid result. Indeed, it is frequent for heuristics to return an answer of the type

“I have not found a solution”. While semantically valid, the programmer may

wish to return a solution if at all possible. The programmer can specify what

condition a “good” solution must meet. Solutions not meeting this requirement

are considered to still be computing (and therefore take infinite time). Note

that if no “good” way is found, the first way to return will “win”.

Again, these functions are only required in the case of QoR objectives and allow great

flexibility in specifying a meaningful quality objective.

Launching a N-way computation Lines 28 and 29 both show an invocation of

a N-way computation: the first one will run the N-way computation and pick the

first way to finish while the second will pick the one returning the shortest path. The

programmer would replace the execution of the N-way computation B (in Figure 3(a))

by one of these two calls to obtain its N-way execution. During N-way execution, one

and only one way executes on each selected core. In other words, if the runtime

39

determines that only one core should be used, only one way (picked by the runtime)

will be launched. For n cores, n ways will be launched, one per core.

2.5.2 Progress monitors

The optional culling relies on ways reporting on their progress. In this implementa-

tion, each way is passed an individual copy of a set of Metrics as shown on Line 6 (the

Metrics are, in this case, the two variables ‘‘pathLength’ and ‘pathFound’. Each

way maintains a copy of these computation-specific values that the N-way runtime

can read from each of the ways’ states whenever required. Note that for efficiency

reasons, the Metrics are implemented as a double buffered data structure which en-

ables the runtime to read a consistent Metrics state while not blocking or otherwise

impacting any of the ways. The programmer must also provides a function that takes

as input the Metrics and returns a single progress value (M s
W).

2.5.3 Providing isolation

A very important aspect of the API and runtime is to enforce isolation between ways.

The goal is to encapsulate each way so that when destroyed, no trace of its activity

remains.

Since each individual way is implemented as a thread rather than as a separate

process the wrapping of non-local memory accesses to provide isolation among the

threads is required. The choice of threads versus other mechanisms such as “fork” on

Linux is justified in Section 2.5.4.1.

Currently, the implementation does not handle certain system calls (such as writes

to a file or device) but these can be wrapped (or intercepted using ‘ptrace’ for example

on Linux) as well if required. The current framework handles two aspects of isolation:

• Garbage collection of all heap-allocated memory in discarded ways.

• Wrapping of non-local state which is defined as anything visible outside the

40

scope of a way (globals or heap variables are accessible from outside the scope

of the way).

Garbage collection is implemented in a distributed manner: each thread is responsible

for its own “garbage” which it clears before being terminated.

2.5.3.1 Wrapping non-local state: a lightweight versioning system

The runtime relies on a lightweight versioning of data where each non-local variable is

implemented as a vector of pointers, one for each of the executing ways plus a default

pointer representing the latest “official” value. Each way-pointer points to a lazily

created private copy of the variable. Figure 6 shows a variable Foo in a situation

where 4 ways are running (on threads T1 through T4). Ways that do not have a

private copy will use the default copy in read-only mode (labeled D in Figure 6).

Three operations on the variables are defined:

Figure 6: A non-local variable Foo in the isolation system

• Read: The private value for the thread, or default value if none exists, is

returned. The value returned cannot be modified (const in C++). This is an

O(1) operation.

• Write: A write will trigger an automatic copy-on-write if this is the first write

access. Subsequent writes will modify the private value. The COW approach

minimizes memory overhead as well as copy overhead. This is an O(1) operation

as well (minus the copy itself).

41

• Commit: This operation serves to make public a way’s private copies and is

implemented as a simple pointer change (no copy). The private copies of the

other ways as well as the old default value are destroyed. Destruction is O(n) in

the number of ways for each variable and can be distributed across the unpicked

ways.

Figure 6 shows the state of Foo after T2 and T3 have performed read access to and

and T1 and T4 have either only read it (and would therefore read the value in V1) or

not accessed it at all.

To minimally modify the program, C++’s templating capabilities is used through

a type, NVShared<T>, which behaves exactly like T except that accesses go through

the isolation system. For example, in Figure 6, Foo would be declared as NVShared<T>

Foo where T is the C++ type of Foo. Access to Foo from thread T2 would be equivalent

to accessing V2 while access from T1 would equate accessing V1 if read-only or a

newly created copy of V1 otherwise. The API also defines a NVPtrToShared<T> to

wrap addresses to NVShared<T>. For example, NVPtrToShared<T> AddrOfFoo would

return the address of V2 if accessed from T2. The only requirement of the system is

that T provide a deep-copy mechanism to be able to correctly duplicate objects when

needed.

2.5.4 Thread-based implementation

The ways are run using a pool of worker threads. At the start of a N-way program,

the runtime launches a fixed number of worker threads which will wait until a specific

way is assigned to them. A modified pool based on Boost threads is used but with

added support to cancel a running way without also canceling the underlying worker

thread. This allows the quick reuse of the worker threads without the need to respawn

them.

42

2.5.4.1 Comparison with a fork mechanism

On UNIX based systems, the “fork” mechanism could also be used as it would nat-

urally provide an OS supported isolated address space and also be efficient given

its copy-on-write implementation [6]. The main advantage of the fork mechanism is

that the original code could run unmodified although the Clang pass mitigates this.

However, the fork mechanism also has downsides:

• The cost of a fork is much higher than that of assigning a way to a thread in a

pool (mechanism presented here).

• The fork mechanism is not implemented in every OS. Windows for example

does not have an equivalent mechanism. The presented framework only relies

on the ability to create threads which makes it much more OS independent.

• The isolation mechanism used provides a natural way for the runtime to monitor

the different ways. This aspect of the runtime was detailed in Section 2.4.

• The isolation mechanism provided also allows a much more fine-grained control

of the data that will be copied. Indeed, the fork mechanism’s COW will only

function at the granularity of a page, which may not be optimal if the data

written by each of the ways is very small or very scattered. The mechanism

provided here minimizes the amount of data that has to be copied.

Both mechanisms therefore have their advantages. The validity of the N-way model

is independent of the mechanism used to provide isolation and a different implemen-

tation would provide similar benefits.

2.5.5 Debuggability

The fact that the programmer does not know a-priori which of the ways will commit

may seem like a debugging nightmare. However, since the ways are well encap-

sulated, debuggability will not be much harder than for sequential programs and

43

definitely simpler than for traditional parallel programs. If each way is a sequential

kernel, debugging each one of them individually in the context of the entire program

without N-way parallelism is sufficient to ensure that the resulting N-way program

is debugged. None of the hard to debug parallel bugs like deadlock, live-locks and

races are introduced. Repeatability of execution can also be obtained by recording

the choices made at each commit point.

2.5.6 Automated compiler transformation of a program for N-way

To lessen the burden on the programmer, a compiler based approach relying on the

C++ frontend Clang [15] was developed which allows source-level analysis to identify

non-local variables. A source-to-source translation from the original code to a N-way

code where non-local variable definitions get wrapped with NV Shared can therefore

be performed. The programmer only needs to identify the functions to be converted

to N-way problems.

The transformation of a regular sequential program to one that supports N-way

consists of:

• The programmer identifies the various functions that “belong” to the same N-

way problem.

• Optionally the programmer identifies Metrics for the N-way problem to support

culling and/or a QoR objective. He modifies appropriate functions to updated

these Metrics.

• Running the source code through the Clang based translator.

• Compiling the program normally. The runtime is implemented as a shared

library which should be linked against the program.

The burden on the programmer rests principally in identifying and expressing di-

versity in parts of the program. The Clang translator takes care of the source-level

44

transformations needed to correctly wrap non-local variables and the runtime takes

care of the complex process of determining the exact ways to run to maximally ben-

efit from the N-way model. If no benefit can be extracted, the N-way system will

approximate a sequential execution.

2.6 Experimental results

The experiments seek to validate the following:

• Brute-force N-way parallelism provides speedup and QoR improvement.

• The learning approach allows the N-way model to provide significant speedup

while requiring significantly fewer resources. In other words, the effective uti-

lization of the machine neff is substantially reduced by the learning model.

• Culling further reduces neff with little impact on the expected speedup obtained

via the N-way model.

The experiments also demonstrate the low-overhead and scalability of the runtime.

All tests were run on a 64bit Linux Ubuntu System running a dual quad-core

Xeon E5540 at 2.53 GHz with 12GB or RAM. GCC 4.4.3 was used to compile the

roughly 10000 lines of runtime code with “-O3”.

2.6.1 Benchmarks

N-way was applied to the following benchmarks to demonstrate the above points.

• WalkSAT is a randomized SAT solver that has shown good performance in

SAT competitions. At each step, the solver picks a random unsatisfied clause

and uses a heuristic to select the variable in the clause to “flip” to satisfy the

clause. The SAT inputs are representative inputs taken from DIMACS [24]. To

keep running times reasonable, the program was terminated after 5 minutes if

no solution was found. This randomized benchmark will show that N-way can

45

extract speedup from a purely sequential algorithm. Note that we do not seek

to demonstrate the fastest SAT solver available but simply that n-way has a

potential in combinatorial problems like SAT solvers.

• The MSL library is a motion planning library that uses rapidly-exploring ran-

dom trees (RRTs) [45] which are designed to efficiently search a high-dimensional

non-convex space. The library was used in a hand crafted simulation to demon-

strate the limits of the N-way learning model as well as the impressive super-

linear speedups that can be obtained.

• TSP-solve is a TSP solver implemented by Chat Hurwitz which contains a

variety of heuristics.

• GALib [82] is a library providing support for genetic algorithms (GAs) which

was used to again solve the TSP. Genetic algorithms rely on randomness to

create successive “generations” of solutions. This benchmark demonstrates how

N-way can be used to improve the quality of the final generation.

• ListSched: A simple greedy list-scheduler using three different heuristics to

pick the node that gets scheduled next (if more than one is available). This

benchmark, although modest in size, demonstrates the usefulness of culling as

well as QoR improvements with a very small amount of diversity.

For some of these benchmarks, specialized traditional parallel implementations exist;

however, the aim is to show the potential of an orthogonal parallelization strategy that

relies on diversity. The fact that an orthogonal form of parallelism is also possible does

not detract from the value of diversity-based parallelism (N-way). The applicability

of both approaches will depend on the characteristics of the application: sometimes a

traditional approach will be more natural (when divisibility of task/data is naturally

present) and sometimes a N-way approach will be simpler (for irregular algorithms

for example when it is difficult to determine dynamic dependencies).

46

The baseline for all speedup results is the unmodified sequential code (without

any N-way modification)

2.6.2 Speedup through randomness

In the graphs, speedup is relative to the original unmodified C++ code in which only

a single instance of the randomize algorithm is run. The slowdown shown for the ‘1-

thread’ case therefore represents the overhead of the system. Speedup is shown for a

‘brute force’ approach where the N-way system is forced to use a fixed number of ways

as well as for the learning and the learning+culling approach (when appropriate). In

those cases, the number of threads corresponds to the maximum number allowed to

the runtime. All results are averaged over multiple runs.

2.6.2.1 WalkSAT

Figure 7 gives WalkSAT results. For very small inputs (f400) a slowdown occurs due

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

f400
f3200

g125
ii32b3

ii32d3

ssa7552-159

S
p
e
e
d
u
p

Benchmarks

Number of threads

orig
1
2
4
8

16
8 (learn)

16 (learn)
8 (learn+cull)

16 (learn+cull)

Figure 7: N-way speedup results for the WalkSAT benchmark

to the overheads of the N-way system but overheads are negligible for larger inputs.

For larger inputs, the benefit of N-way becomes clear as significant speedups obtained

47

in particular for many threads.

Speedup a function of diversity The speedup obtained depends on the variation

in execution time of the original program for a given input. In general, a broad

correlation exists between the speedup obtained through N-way and the Coefficient

of Variance 3 (CoV) which is representative of the amount of diversity present: the

larger the CoV, the more speedup potential there is. For example, the CoV for

ssa7552-158 is 0.73 compared to 0.82 for f3200.

2.6.2.2 MSL motion planning

 0

 5

 10

 15

 20

 25

 30

 35

C
ar (f. 1)

C
ar (f. 10)

C
ar (s. 4)

C
ar (s. 10)

C
ar (s. 20)

S
p
e
e
d
u
p

Benchmarks

Number of threads

orig
1
2
4
8

16
8 (learning)

16 (learning)

Figure 8: N-way results for the MSL benchmark. The benchmark names represent
either a fixed opening size (s.) or a periodic increment in the opening’s size (f.).

Results for the hand-crafted Car benchmark are shown in Figure 8. The bench-

mark simulates a car that has to find its way through a narrow opening and showcases

the strengths of the N-way framework as the benchmark is similar to “finding a nee-

dle in a haystack”. The random algorithm may find it very quickly (short execution

3defined as the ratio of the standard deviation by the mean

48

time) or may take a very long time. The CoV is thus very high (1.33 for an opening

of size 4) and super-linear speedups are therefore possible. The benefits tapper down

with larger openings as the probability of quickly finding the opening increases.

2.6.2.3 Effects of learning and culling

In Figure 7, bars 7 and 8 show the speedup obtained when using the learning approach

that tries to launch “just enough ways” to obtain a good speedup for each input. The

runtime is given a maximum number of cores to utilize (8 for bar 7 and 16 for bar

8) and may choose to launch anywhere from 1 to that maximum number of ways

(at most one per core). Therefore, across all inputs, the effective utilization of cores,

neff , is lower (the runtime will not always choose to launch 8 or 16 ways).

The last two bars (9 and 10) show when the learning approach is compounded

with the culling approach. In this case neff is further lowered as certain ways will be

culled before the N-way computation completes. In both cases, the parallel efficiency

is defined as PEff = S
neff

.

Table 1: Maximal N-way speedup S obtained and the corresponding parallel effi-
ciency for the fixed case for WalkSAT. The fixed n this was achieved for is shown in
parentheses. The same quantities are shown when learning and learning+culling is
applied for 8 threads

Dataset
Fixed Learning Learning and Culling
S E S E S E

f3200.cnf 2.88 (8) .37 2.53 .34 2.59 .57
g125.17.cnf 4.28 (8) .56 5.58 .79 6.26 .89
ii32b3.cnf 2.30 (8) .31 2.95 .42 2.79 .39
ii32d3.cnf 2.16 (8) .29 2.31 .32 2.07 .28

ssa7552-159.cnf 1.74 (8) .24 1.71 .24 3.41 .47

WalkSAT benchmark Figure 9 illustrates the utility of learning. One can see

that the speedup obtained with N-way by increasing the number of cores tappers off

after 8 cores. This means that the additional cores are not being effectively used by

N-way (the diversity present in the algorithm is sufficiently expressed with fewer than

49

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

Core utilization

Learning
Culling

Fixed

Figure 9: N-way speedup versus core utilization for the ii32b3 input to WalkSAT.
The line shows the evolution of the speedup if a fixed number of cores is used (without
learning or culling) and the points.

8 cores). One can see that the runtime correctly chooses the run the benchmark with

neff = 6.97 obtaining a good speedup while not committing unnecessary cores. For

the other benchmarks, Table 1 summarizes results for all WalkSAT inputs.

It is important to note that the learning scheme is designed to optimize for parallel

efficiency (PEff) and not for maximal speedup. If the learning scheme was designed

for maximal speedup, it would always choose to launch as many ways as possible.

The scheme, however, does not try to maximize speedup and therefore the speedups

obtained by the learning scheme can be lower than those obtained for the basic N-

way scheme that does not integrate learning and culling: the speedup may be higher

utilizing more ways but the efficiency is worse as shown in Table 1.

In most cases, efficiency increases when learning is used and increases even more

when culling is also used. This indicates that, on average, fewer cores were used to

obtain a similar speedup. For f3200, learning actually lowers efficiency; this is due

to the fact that f3200 is still relatively small and uses few iterations which limits

50

the possibility to learn. As expected, the addition of culling increases efficiency while

providing very little speedup gains. Any gains are most likely due to the freeing up of

shared resources (such as the L2 cache) by the culled ways. This is particularly visible

in the large ssa7552-159 dataset. Note that although it is hard to provide a good

progress measure for a SAT solver, the addition of culling does not negatively impact

performance and actually performs rather well even in these difficult conditions.

MSL For the MSL benchmark, the case of the Car benchmark with the size of

the opening changing is interesting. One can see in Figure 8 that while the learning

algorithm performs well for Car (f. 1) where the size of the opening increases

slowly (by 1 every iteration), it performs very badly when it increases by 10 every

time. This is caused by the underlying distribution of execution times changing too

rapidly (since the inputs can rapidly go from a small opening size where diversity is

useful to a large opening size where diversity is not). Therefore, the assumption that

the inputs will be similar to one another or evolve slowly is broken. In this case, one

can see that the learning model cannot perform as optimally as it could have but

does not incur a slowdown.

Culling is not applicable to MSL as the notion of progress is hard to define.

2.6.3 Speedup through heuristics

Diversity through heuristics can also be used to obtain speedup: tsp solve, a pro-

gram containing different TSP heuristics, shows this. Note that no randomness was

used in the heuristics.

In this experiment 50 randomly generated TSP problems were solved and the

total execution time for all 50 problems was measured as well as the average tour

length. The results are summarized in Table 2. When running a fixed number of

threads, the heuristics are chosen at random while with learning, the runtime picks

the best heuristic(s). Learning does not significantly lower speedup and reduces

51

Table 2: N-way results for a fixed set of 50 randomly generated TSPs.
Threads Time (s) Speedup Avg. Tour Length

1 1191 1.0 8497
2 828 1.44 8463
4 335 3.56 8452
8 298 4.0 8445
16 295 4.04 8443

16 (learning) 300 3.97 8444

resource use: the learning approach effectively uses about 3 cores as opposed to the

16 used in the brute-force approach. Closely studying the results confirm that only

two or three heuristics (out of a total of 13) frequently “win” with the others providing

only marginal benefits. The runtime is able to correctly select those. Note that all

heuristics are useful as, for each heuristic, there are inputs on which it performs better

than the other heuristics. The input data set favored a few but, as a programmer,

it is impossible to know a-priori if this is always the case. The N-way model can

dynamically determine the useful heuristics for the programmer.

2.6.4 QoR through randomness

In GAs, the “fitness” of a population is a natural quality measurement. In the TSP

example, a “fitter” individual is one representing a shorter path. Furthermore, the

randomness in GAs has very little effect on the time each generation takes to be

created but significantly impacts the fitness of the population. Therefore, GALib is

a good candidate to demonstrate QoR improvements with N-way.

To evaluate the QoR impact of N-way, the algorithm was run for 2500 generations

and compared the “fitness” of the best individual at the end of the 2500 generations.

At each intermediate generation, the fittest generation was picked as the “winner” and

it was fed to the next step. Results for various inputs from TSPLIB [68] are shown in

Table 3. For learning and culling, effective resource utilization (in number of cores) is

shown in parenthesis. N-way clearly improves the final population’s fitness, thereby

52

Table 3: “Fitness” of the population after 2500 generations (smaller is better) as well
as resource utilization for learning (marked ‘l’) and learning+culling (marked ‘l+c’).

Threads kroB150 a280 lin318 rat575
Original 44.7 7.8 139 31.5

1 44.8 7.8 139 31.5
2 44.8 7 134.3 29.3
4 41.6 6.8 128.2 28.7
8 39.1 6.5 122.3 27.7
16 38.4 6.3 113.8 26.7

8 (l) 42.4 (4.9) 7.1 (4.6) 126.9 (4.5) 28.7 (4.1)
8 (l+c) 45.1 (3.5) 7.1 (3.5) 132.5 (3.9) 29.1 (3.8)
16 (l) 40.1 (8.3) 7 (7.0) 128.9 (7.3) 28.9 (6.6)

16 (l+c) 43.7 (8.1) 7.2 (7.0) 132.3 (7.2) 29.3 (6.6)

finding a shorter, or better path. More importantly, one also notes the benefits of

both the learning and culling algorithms. For example, the difference in “fitness”

between the case with 8 threads and 8 threads with learning is always less than 8%,

thereby still giving the full benefits of the N-way model, yet the learning algorithm

reduces neff by over 40% (average utilization of 4.5 for learning). Culling further

slightly reduces quality but reduces resource usage by an extra 20%.

2.6.5 QoR through heuristics

Various heuristics to pick the next ready node to schedule were implemented in

ListSched: pick the one with the longest critical path, biggest fan-out, etc. This

benchmark is very small and runtime overheads dwarf possible speedups but N-way

allows for QoR improvements. A set of directed acyclic graphs (DAG) to schedule

was generated and each of the three original heuristics was run. N-way, which runs

all three heuristics in parallel, was then run. In this scenario, since quality is the

objective, N-way waits for at least 2 of them to complete. The best schedule is then

selected. Waiting for only two limits the total execution time while still providing the

benefit of quality improvement. The sum of the schedules found is listed in Table 4.

Although the improvements are modest, they come for a low cost to the programmer.

53

Table 4: Sum of the schedules’ lengths found over a set of DAGs for various heuristics
Heuristic or N-way Sum

FanoutFirst 3129986
LongestDelayFirst 3133401
CriticalPathFirst 3131065
N-way (3 ways) 3115375

No single solution works as well as the N-way solution showing that a static choice is

sub-optimal across all inputs. A domain expert could potentially add more heuristics

and extract even better performance.

2.6.6 Runtime overhead and scalability

The speedup results in Figures 7 and 8 show that the absolute overhead of the system

is low. Indeed, the basic overhead of the N-way system can be viewed as the difference

between the first bar (the unmodified program) and the second bar (n = 1 N-way

program) as the difference between those bars corresponds to the overhead of the

N-way runtime and isolation system.

This overhead is further analyzed to pinpoint the “hotspots” in the runtime as

well as its scalability. A home-grown high-precision profiler which outputs informa-

tion identical to that of gprof except that it does so in an exact manner (no sampling)

and only profiles marked functions was used. The results for a run of the WalkSAT

benchmark on the f1600 benchmark with 1, 8, and 16 threads are presented in Ta-

ble 5. Non-shown runtime functions each represented less than 1% overhead. Other

benchmarks present similar overhead characteristics. Not surprisingly, the vast ma-

jority of the overhead comes from dealing with access to non-local data. Close to 75%

of the overhead is spent in accessing data and although the overhead of each call is

relatively low, it does add up. While this overhead is non-negligible, it allows for the

benefits described previously in Section 2.5.4.1.

The scalability of the runtime is also very good up to 8 threads: the fact that

the time per-call stay mostly identical demonstrates this. However, the time per-call

54

Table 5: N-way runtime overheads for 1, 8 and 16 threads. “Access (RO)” corre-
sponds to a RO access to a NVShared, “thread info” to a call to determine a running
thread’s characteristics and “thread private” to a TLS fetch.

Function % total overhead Call time (ns)
1 8 16 1 8 16

Access (RO) 53.78 48.49 49.72 12 13 26
Access (RW) 24.72 31.69 24.11 9 13 21
Thread info 14.95 13.92 18.53 2 2 5

Thread private 5.85 4.45 6.15 24 24 57

doubles when moving to 16 threads and this is most likely due to the dual-socket

architecture of the machine. In the implementation, threads are bound to cores in

increasing order and would therefore go off-chip for anything more than 8. This incurs

additional overhead as the runtime must now communicate with threads located on

two separate sockets.

2.7 Related work

There is strong algorithmic evidence of diversity in algorithms [53, 56, 39] and launch-

ing multiple instances of the same algorithm to speed up a computation has been used

in some very specific instances: ManySAT [31, 84] for example uses a notion of “port-

folios” that is very similar to the N-way approach. Other work in the security area

[20, 70] seeks to exploit diversity to improve the security guarantees of a system.

These works demonstrate the wide scope of diversity in algorithms (although they

exploit it for a different purpose).

2.7.1 Competitive parallel execution

Trachsel et al. [77, 78, 76] introduced the notion of “brute force” N-way/CPE. The

N-way model is very similar to this but introduces a statistical learning model and a

culling approach that dramatically reduces resource consumption while preserving the

speedup benefits. In addition to speedup, the N-way model also address maximizing

QoR within the same framework. Both models were developed concurrently and

55

independently.

The N-way model allows the programmer to focus solely on expressing algorith-

mic diversity without having to worry about how to achieve speedup and at what

cost: the runtime will dynamically ensure that speedup is maximized while resource

usage is minimized. Coupled with the simple API, the N-way model presents a prac-

tical framework to exploit diversified computations to obtain speedup for difficult to

parallelize codes.

2.7.2 Auto-tuners

The N-way approach is orthogonal to the one taken with auto-tuners. Auto-tuners

usually rely on the presence of many tunable parameters for a given algorithm and

will try to pick the best set of values for these parameters across a wide range of input

data for a specific machine. Once the parameters are set, they do not change and

that “version” is considered optimal for that machine. N-way exploits diversity when

it is not clear a-priori which version will be better (ie: no fixed set of parameters

is optimal). Auto-tuning could be used in conjunction with the N-way runtime to

come up with a reduced set of good parameters which the runtime could take as

inputs to configure the different ways. Note also that recent work on PetaBricks [3]

similarly tries to trade-off execution time and quality of results but takes a more

tuning approach as opposed to a competitive execution approach.

2.7.3 Isolation mechanism

The isolation guarantees provided by N-way are similar to those provided by STMs

[32] but the mechanism to provide them is much more lightweight. No logging is

required and N-way does not care about the interleaving of interactions. Versioned

boxes [12] also use versioning to keep track of the different values of a variable but their

approach seeks to solve a different problem than N-way. As such, their implementation

is much more complex and slower than N-way’s. Furthermore [12] provides isolation

56

in the context of STMs and not in the N-way context. Both approaches use some

form of type wrapping to function.

2.8 Conclusion and future work

This chapter presented the N-way programming model as an alternative way to exploit

parallel resources: instead of relying on a break-up of the computation, it exploits

algorithmic diversity to obtain speedup or QoR improvements. In this model, a set of

ways are run in parallel to solve a problem and the best one, for example the fastest,

is picked just-in-time. This approach is justified by the demonstrated presence of di-

versity in algorithms (heuristics, parametrized algorithms and randomized algorithms

in particular).

This thesis makes the following important contributions to the N-way model: i) a

statistical learning model to estimate the expected benefit of sets of ways and therefore

allow an efficient and practical use of N-way; ii) a culling framework based on the

measure of progress in ways to further reclaim unproductive resources and iii) an API

for N-way that simplifies state encapsulation and iv) a compiler flow for automated

conversion of a C++ program to N-way incorporating state isolation.

2.8.1 Future work

Several extensions of the N-way work are possible. Firstly, the N-way model could

be used to launch more ways than the available hardware parallelism. This would

enable the runtime to have access to a wider array of possibilities for each way:

instead of leaving it alive or killing it, the runtime could throttle its priority based on

its performance.

Secondly, the N-way could be used in conjunction with traditional parallelism in

which case N-way would act as a multiplier effect on traditional parallelism. Note

also that different parallelization approaches could also provide another source of

diversity.

57

Thirdly, the current N-way model throws away the n− 1 ways that are not com-

mitted. However, if these ways have also executed for some time, they may have

acquired useful information about the problem and/or the input. This information

could possibly be incorporated into the main result thereby improving its quality.

More generally, ways could collaborate during their execution, sharing tidbits of in-

formation about the problem being solved. This would violate the sandbox around

the ways but if done in a controlled manner, this could prove beneficial.

Finally, since the N-way model relies on diversity to operate, it would be inter-

esting to study how diversity could be directly measured. This would enable, for

example, an alternate culling algorithm where the objective would be to cull ways

that are similar thereby keeping the breadth of diversity intact while reducing the

number of resources required to express it. Characterizing diversity between algo-

rithms could also be used to further guide the runtime algorithm in picking which

heuristics should be launched together and which should not: heuristics that are too

similar should not be launched together whereas very different heuristics should as

this helps maximize the diversity expressed.

2.8.2 Thesis discussion

The results for the N-way model demonstrate that an algorithmic property, algorith-

mic diversity can be usefully exploited to occupy idling cores and provide benefits both

in terms of speedups and quality of results. Note that N-way makes no assumption

on the parallel nature of the computation: it applies equally to hard to parallelize,

sequential or embarrassingly parallel computations. The only requirement on the

computation is that sufficient diversity exist.

The N-way model is therefore a non-traditional use of parallel codes to specula-

tively execute competing ways and pick the best one just in time. The N-way model

also introduces culling to improve parallel efficiency. This culling works well when

58

a clear notion of algorithmic progress can be established. This notion of progress is

again an algorithmic property that, if correctly expressed, can lead to better resource

utilization. In practice, for greedy constructive algorithms, it is easy to define a no-

tion of progress. Other types of algorithms which build sub-solutions that are later

combined into a more complete solution are also good candidates.

Finally, note that the N-way model relies heavily on the notion of diverse ways.

Measuring the amount of diversity is an open question. This thesis approaches it in

part through the use of memory profiling as detailed in Chapter 4.

59

CHAPTER III

LEVERAGING DATA-STRUCTURE SEMANTICS FOR

OPTIMISTIC PARALLELISM

As motivated in Section 1.2.1, irregular algorithms are difficult to parallelize. Cur-

rent techniques, which include optimistic methods such as STMs, incur significant

overhead due to the fact that they make mostly uninformed decisions about the

data-footprints of the operations. This chapter proposes to leverage the semantic

knowledge the programmer has about data-structures to help a smart runtime make

better parallelization decisions. This work therefore is mostly concerned with improv-

ing the parallelization of irregular algorithms and not so much with the parallelization

of hitherto sequential codes. It can however, in certain cases which are detailed in

this chapter, help with traditional parallelization (data parallelism).

3.1 Data disjointedness

The key to parallelizing any computation is understanding the disjointedness between

their data footprints: two computations with disjoint data footprints can be run

in parallel. In this chapter, a computation is defined as being composed of i) an

operation and ii) a data-extent or footprint. Mendez-Lojo et al. understood the

importance of this view in [55] where they stress the importance of a data-centric view

of a computation. They contend that instead of thinking about dependencies between

operations, one must take a view that encompasses the actions of the operations on

the data. As a reminder, Df (O) denotes the data footprint of an operation O and it

conceptually contains information about all memory accesses of O.

In dense-matrix operations, Df (O) is easy to compute as dense-matrix operations

60

rely on indexing. A compiler can reason about the indices’ ranges and statically

determine whether or not parallelism is possible. This powerful reasoning ability

has led to tremendous productivity improvements in the HPC domain. In irregular

applications, Df (O) depends, more often than not, on the runtime value of variables

which are not as easily bound as indices. Furthermore, the use of pointers complicates

analysis as the variable from which to derive a value may be indirectly accessible

through the runtime value of another variable.

This thesis hypothesizes that Df (O) can be viewed as a semantic representation

of the data footprint of O and show that, given suitable programmer defined predi-

cates, a runtime can dynamically reason about the disjointedness of data footprints

of operations in irregular applications.

3.1.1 Disjointedness property

Disjointedness is really a property linked to both the operation and the data and the

way they interact at runtime. For example, consider nodes and edges in a graph. No

information can be inferred about the disjointedness of two operations O1 and O2

on distinct nodes n1 and n2 of the graph without knowledge of the semantics of the

operations themselves. The fact that an ‘edge’ exists in the graph between n1 and

n2 does not mean that O1’s and O2’s data footprints overlap. They will be disjoint

if, for example, the operations do not refer to the neighbors of the nodes they are

dealing with. The presence of a “link” in the data is therefore not an indication of a

“link” between the data footprints. The association of the state of the data with the

semantics of the operation is what determines the disjointedness property between

two operations.

3.2 Opportunity in semantic information

Despite their lack of apparent static dependence structure, irregular algorithms often

exhibit semantic structure. In other words, a programmer can frequently estimate

61

Df (O) based on very limited knowledge (the input to the operation for example).

Consider the simple motivating example given in Figure 10. From the code, it is

1 Graph g ;
L i s t v e r t i c e s ;
int l a s t C o l o r = MAX COLOR;
while (! v e r t i c e s . empty ()) {

Set ne ighborColors ;
6 Node curNode = v e r t i c e s . pop head () ;

Vector ne ighbors = curNode . getNeighbors () ;
for (int i =0; i<ne ighbors . s i z e () ; ++i) {

i f (ne ighbors [i] . i sCo lo r ed ()) {
ne ighborColors . push back (

11 ne ighbors [i] . getColor ()) ;
}

}
i f (ne ighborColor s . s i z e () >= l a s t C o l o r) {

p r i n t f (” Fa i l ed to c o l o r \n”) ;
16 } else {

for (int i =0; i<l a s t C o l o r ; i++) {
i f (ne ighborColor s . f i n d (i))

continue ;
curNode . s e tCo lo r (i) ;

21 }
}

}

Figure 10: Motivating example: a greedy graph coloring shown without any of the
proposed abstractions

clear that the data footprint of an iteration of the loop on Line 4 is composed of the

node curNode on Line 6, its neighbors in the graph and lastColor This information is

easily obtainable given only curNode which is known at the beginning of the iteration.

If the operation O is defined as one iteration in the main loop, a programmer who

has knowledge of O’s semantics can determine, at the start of the loop, O’s footprint.

While easy for the programmer to determine at runtime, this information is not

statically known at compile time because the exact “neighbors” of a node are data

dependent and depend on the runtime values of an adjacency matrix for example.

The combination of the semantics of the operation (“coloring”) and the values of

62

1 struct s t a t u s C o l o r t {
/∗ a r b i t r a r y s t a t u s in format ion ∗/

} ;

DEFINE VALUETAG(NODE T, Node) ;
6 DEFINE OPERATORROLE(COLOR F, s t a t u s C o l o r t) ;

Graph g ;
L i s t v e r t i c e s ;
int l a s t C o l o r = MAX COLOR;
while (! v e r t i c e s . empty ()) {

11 Set ne ighborColors ;
Node curNode<NODE T> = v e r t i c e s . pop head () ;
OPERATION(COLOR F, curNode) {

Vector ne ighbors = curNode . getNeighbors () ;
/∗ Orig ina l code i s unchanged here ∗/

16 }
}

DISJOINT(NODE T v1 , COLOR F,
NODE T v2 , COLOR F) {

21 i f (g . hasEdge (v1 , v2)) {
return 1 . 0 ;

}
return 0 . 0 ;

}
26

/∗ No DETERMINENEXT(COLOR F) requ i r ed ∗/

Figure 11: Motivating example: a greedy graph coloring shown with the proposed
abstractions (details in Section 3.4

63

an underlying data-structure (the adjacency matrix) form the basis for the decisions

on data disjointedness. A different operation with different semantics but on the

same data-structure would produce different disjointedness properties. For example,

one could imagine a modified graph coloring algorithm that assigns a color not used

by any neighbors and their neighbors. Although the data-structure would be the

same, the semantics of the operation would change the disjointedness predicate. In

both cases, the programmer’s knowledge of the semantics of the operation is key to

determining its data footprint.

3.2.1 Proposed approach: a semantic data footprint

This thesis proposes simple abstractions that allow the programmer to describe the se-

mantics of data access of algorithms thereby enabling a runtime to determine whether

two operations are disjoint and can therefore be run in parallel.

Traditionally, Df (O) contains memory locations touched by the operation O.

However, this thesis argues that a semantic representation of Df (O) is more valu-

able. Consider for example, an operation that explores a planar space by picking

a point at random and exploring a circle around it (a local search algorithm). A

traditional data footprint of this algorithm would consist of all the memory locations

of all the points touched in the search area. However, semantically, the program-

mer can represent this area with a tuple containing the center point of the circle as

well as its radius. This representation is natural to the programmer as it flows from

the semantics of the algorithm rather than the exact representation in terms of data

structures. Representing the data footprint semantically has two main advantages.

Firstly, it incorporates the semantics of the data structure. Instead of representing

the footprint as an unstructured list of memory locations, it is represented in a se-

mantically meaningful manner that the programmer can describe and reason about.

Secondly, the representation is much more compact. In the example, representing the

64

footprint as a tuple is more efficient than representing it as a list of memory locations.

This new type of data footprint is called an abstract data-space.

3.2.1.1 Reasoning on the semantic data footprint

While convenient for the programmer, this high level representation of Df (O) makes

it impossible for an application-agnostic runtime to reason about. In the traditional

view of a data footprint, a runtime can always continuously construct the footprint

(by tracking memory locations) and determine whether two footprints are disjoint (by

computing the overlap between the memory locations). With abstract data-spaces,

this is not possible and the programmer must therefore provide alternatives to both

i) constructing the data-space and ii) determining disjointedness.

To address the first point and track the data-space’s evolution, the programmer

defines a determineNext predicate which computes an updated data-space based on

the progress of the operation. This predicate is supported by methods provided by our

API for the programmer to track this progress and make it available to the runtime

in a non intrusive manner. determineNext also enables another interesting aspect of

the system which is that the data-spaces need not be accurate but rather estimates

that can be refined over time as more and more information about the computation

becomes available. Consider for example an algorithm which searches a tree for a

particular element and modifies it. Initially, the programmer only knows that the

algorithm is potentially going to touch the entire tree but as it progresses, the area

possibly touched by the algorithm diminishes. The more precise the estimation of the

data-space, the more accurately the runtime can determine disjointedness.

To determine disjointedness, the programmer defines a isDisjoint predicate

which the runtime calls to determine whether or not two data-spaces are disjoint.

Note that both predicates are specific to the operation O and can only be provided

by the programmer.

65

3.2.1.2 Use-cases for the semantic data footprint

The semantic information provided by Df (O) can be used in two distinct contexts:

i) dynamically extracting parallelism and ii) improving the performance of opti-

mistic parallelism through a concurrency scaling mechanism. In the first case, the

programmer writes a sequential application and parallelism is dynamically extracted

where possible. In the second case, the original application is already parallelized

using optimistic techniques (such as software transactional memories (STMs) [33])

and performance is improved.

Parallelization In many parallel models, a foreach construct exists where each

loop iteration can execute in parallel. This construct is very similar to the DOALL con-

struct in FORTRAN except that the iterations can be statically checked for overlaps

[8].

The proposed approach uses the dynamic semantic knowledge of Df (O) to deter-

mine whether an iteration O is disjoint from all other concurrent iterations and can

therefore be launched or if it should be launched at a later point. When launched in

parallel, no locks are used as the framework guarantees that the operations will not

conflict. Note that in this case, the Df (O) for every operation O needs to be a sound

over-approximation of the actual data-space of O.

This use-case therefore allows the parallelization of sequential code although the

type of parallelism exposed is the traditional data-parallelism.

Throttling concurrency STMs are a natural fit for irregular applications as they

eliminate the need for a programmer to ascertain the disjointedness of two opera-

tions. Instead, the programmer simply has to specify transactions that must execute

atomically and let the STM runtime ensure that all transactions are indeed atomic.

While greatly simplifying the programming of irregular algorithms, STMs suffer from

66

severe overheads particularly in the case of frequent rollbacks. Df (O) can be used to

throttle the start of transactions to ensure that they have a low probability of con-

flict. This leads to fewer rollbacks, which results show can be reduced by up to 80 %,

and lead to significant performance improvements in the STAMP benchmarks. The

determineNext predicate is important in allowing running transactions to update

their Df (O) and therefore allow a more accurate detection of overlap particularly for

long running transactions which is particularly interesting as long running transac-

tions are usually avoided in STM systems due to their high cost in case of failure.

3.3 Data-structure semantics

Given an operation O1 operating on an input I1 in an irregular application, this work

seeks to

• reason on Df (O1) to determine its disjointedness with other operations

• reason about its evolution over time as O1 progresses.

The isDisjoint predicate addresses the former concern while the determineNext

predicate addresses the latter. An example of the proposed constructs is shown

in Figure 11. Changes from the original code (Figure 10) are minimal and mostly

involve defining tags and operations (Lines 5 and 6) as well as providing a isDisjoint

predicate (Line 20). This section introduces the predicates and constructs and detail

their use in the example in Section 3.4.

For both predicates, the programmer only reasons about semantic objects (as

opposed to memory locations) which makes it practical for him to write them.

3.3.1 Disjointedness predicate

This predicate is used to express the programmer’s semantic knowledge of how objects

in the data-space relate to the operations operating on them.

67

In the example of the local search in a plane, the disjointedness predicate would

express the fact that tuple (C1, R1) and tuple (C2, R2) are disjoint if and only if

dist (C1, C2) > R1+R2. In the graph coloring example in Figure 10, the disjointedness

predicate would simply determine if there is an edge between the two nodes given

as input to the iterations. In both cases, the condition is only derivable from the

semantic knowledge of how the operation acts on the underlying data.

The disjointedness predicate is defined for pairs of elements as follows.

Definition Let O1 and O2 be two distinct operations, for any element ai in Df (O1)

and any element bj in Df (O1), the pair-wise disjointedness of (O1, ai) and (O2, bj)

is defined as a function that returns the likelihood of whether the two elements will

result in overlapping memory accesses.

Df (O1) and Df (O2) overlap if and only if some ai overlaps with some bi. Df (O1)

and Df (O2) are said to be fully disjoint if every pair is disjoint. This predicate is

referred to as PredD (O1, ai, O2, bj).

3.3.2 Determine-next predicate

The determine-next predicate serves to refine the data-space of an operation O1.

While initially, Df (O1) is based only on the knowledge of its input I1, as O1 pro-

gresses, more and more information about O1 is available and its data-space can be

made more accurate. This is an optional predicate that can be used to improve the

accuracy but is not required to determine disjointedness.

For example, in Figure 10 there is no need for the determineNext predicate as

the footprint can be accurately described using just the input to the operation.

The determine-next predicate takes as input a structure tracking the state of O1

as defined by the programmer and returns a new data-space for O1. In other words,

at the start of a transaction, Df (O1) is determined solely based on its input I1 but,

as O1 progresses, a new semantic Df (O1) can be computed based on the state of O1.

68

The state of the operation O1 is entirely defined by the programmer and can be used

to track key values that determine future memory accesses. This predicate is referred

to as PredDN (O1).

Note that since PredDN can generate a whole new Df (O1), the specific PredD that

will be used to determine disjointedness between O1 and other concurrent operations

can change during the execution of O1 based on the value of its state. The solution

proposed is therefore very flexible and can be applied to arbitrarily complex operations

that can have multiple “stages” (captured in their state).

3.3.3 Specification

This section defines the concepts needed to allow the programmer to utilize the two

predicates introduced above: OperationRole and ValueTag. With these concepts,

the programmer can identify the semantic types of functions as well as their associated

status (OperationRole) and data (ValueTag). This is crucial as the disjointedness

predicate links both of these concepts in ways that are specific to each OperationRole

and ValueTag.

3.3.3.1 OperationRole: Encapsulating operation semantics

An OperationRole is an identifier given to a set of operation semantics such as

“traverse depth-first”, or “traverse breadth-first” or even simply “traverse”. An

OperationRole can be viewed as a tag that identifies the function to the runtime

system. Different functions may have the same OperationRole if they have the same

semantic role. The programmer can associate an OperationStatus data structure

which will serve as input to PredDN predicates. The OperationStatus will be made

available by the runtime to the function and can be updated throughout its execution

to report on its status.

69

3.3.3.2 ValueTag: A semantic tagging system

Similarly to the OperationRole, values also play a “role” in the predicates: an op-

eration may act differently on the initial node and its children node. The C/C++

type system is not concerned with distinctions based on the role of a value in the

program and is therefore inadequate in capturing the semantic meaning of a value.

Furthermore, dynamically, the role of the same value may change and a static type

system cannot capture this. The ValueTag dynamic tagging abstraction solves this.

Consider again the example in Figure 10. The original node used as input and the

neighbor nodes used inside the computation play different parts in the determination

of the predicates. Indeed, only the original node is used to determine disjointedness

with other operations whereas PredD is not called for any of the children nodes. As far

as C/C++ is concerned, they are all pointers but they have a semantic meaning asso-

ciated with the computation. This semantic meaning can change as time progresses

and a tag instead of a type addresses this issues. Therefore, for a single C/C++ type,

multiple “roles” may exist and this is captured by the ValueTag. Conversely, a single

ValueTag may also encompass different C/C++ types.

3.3.3.3 Formal definition of the predicates

With these two concepts in hand, the definition of PredD and PredDN can be formal-

ized.

Definition SO is defined as the space of OperationRole and SV as the space of

ValueTag. The set SS is the space of OperationStatus and is bijective to SO. In

practice, they are finite sets of elements.

Definition of PredD PredD follows the prototype given in Equation 1.

(SO,SV)2 −→ [0; 1] (1)

It respects the following properties:

70

• PredD = 0 if and only if the input ValueTags used in their respective OperationRoles

will not result in accesses that will conflict (no write and read or write and write

to the same location).

• Conversely, PredD = 1 if and only if there will be a conflict.

• In all other cases, the result is a value between 0 and 1 which represents the

likelihood of conflict.

• PredD is symmetric and PredD (O1, a1, O1, a1) = 1

Definition of PredDN PredDN follows the prototype given in Equation 2. It returns

the new footprint for the operation (containing n elements).

(SS) −→ Vn (2)

The programmer can thus specify a series of such predicates. At runtime, when the

ValueTypes and OperationRoles are known, the selection of the applicable predi-

cates will use the following rules in order:

• If an exact match on the ValueTypes and OperationRoles is available, that

predicate applies

• Otherwise, a lexicographical traversal of the hierarchy of the OperationRole

ValueType pair is used. By lexicographical, we mean: “dc” → “db” → “da”

→ “cc” → “cb” . . .

• If no match is found, the predicate is deemed not to exist and will therefore

default to not returning anything for PredDN and returning 0 for PredD.

The effect is to pick the most specialized predicate in the hierarchy. The hierarchy

gives the flexibility to the programmer to define predicates that are true for a wide

array of very specialized OperationRoles or ValueTypes.

71

3.4 Runtime implementation

Section 3.3 formally defined PredD and PredDN. This section describes how these

concepts translate into C++ code and how the runtime makes use of them. The

described framework is implemented in C++ due to the wide availability of accepted

benchmarks in C and the power of template meta-programming in C++ (crucial to

an efficient implementation of the runtime). Most of the visible API is defined as

macros that hide the actual complexity of template meta-programming.

This section also describes the role of the runtime in efficiently making use of the

predicate information. Finally, it presents how the runtime improves both paralleliza-

tion and successfully throttles transactions to lower their abort rate and improve their

execution time.

3.4.1 Programmer specifications

The code given in Figure 11 is used as an example; it is very close to the actual

implementation which shows that the burden on the programmer is light.

3.4.1.1 Specifying the roles and value tags

The programmer is responsible for enumerating the semantic types he is interested in

tracking. This task is relatively simple and follows from the design of the algorithm

itself. Each operation can be statically annotated by its OperationRole and each

variable can be dynamically tagged (as in, the tag may depend on the control flow)

by its ValueTag. Note that OperationRoles are considered to be scoped with the

most deeply nested one being the active one. In Figure 11 the OperationRole is

defined on Line 6. In this simple example there is only one OperationRole but

there is no fundamental reason why this should always be the case. The programmer

also associates an arbitrary data structure to each OperationRole which serves as

the OperationStatus associated with that OperationRole. In this case, there is no

need for a status variable and therefore the statusColor t structure is empty.

72

The ValueTag is identified on Line 5. Note that a ValueTag is associated with a

single C/C++ type. The reverse is not required though as the same variable may be

tagged with different ValueTags at different times in the program. The restriction

to a single C/C++ type for a ValueTag is due to an implementation detail but does

not harm functionality in practice.

The curNode variable is tagged with the NODE T ValueTag on Line 12. Although

tagging seems static, the framework allows the dynamic tagging of variables: the exact

tag may depend on the control flow of the program. This indicates to the runtime

that curNode has a value type of NODE T which will determine which predicates that

be applied to it.

3.4.1.2 Specifying the predicates

Now that the user has defined SO and SV , the predicate functions are functions

that are distinguished based on their input OperatorRoles and ValueTags. The

programmer only needs to define those that make sense to him. A default function

(indicating that no overlap exists) is provided for all combinations of SO and SV that

is not defined. In the example, this is defined on Line 20: the programmer defines

PredD which determines whether or not an edge exists between the two NODE T (called

v1 and v2 in the code).

3.4.1.3 Specifying the operation

The programmer needs to identify the operations, which, in STM semantics, can be

viewed as the atomic sections. This is shown on Line 13. The OperationRole is

defined as well as its initial input. This specification will bind the predicates that are

applicable to the OperationRole of the operation (here COLOR F) and the ValueTag

of the input variable (here NODE T). The extent of the operation is also indicated with

the curly braces and the code within the operation does not need to change as it will

either be launched with no concurrency overhead or sequentially in case a conflict is

73

detected.

3.4.1.4 Summary

To review, the programmer is required to define i) the space of the OperationRoles

and the ValueTags, ii) the predicates, iii) the ValueTag for variables that are used

as input to operations and iv) the operations themselves.

Provided the programmer understands the semantics of his program, these re-

quirements are easily met. As showed in the experiments, for many benchmarks, the

specification of these requirements is simple and straightforward. The flexibility of

the framework allows it to be applicable to a wide range of programs.

3.4.2 Low-overhead runtime

The runtime is implemented in C++ and makes heavy use of templating mechanisms

to allow compile-time selection of the appropriate predicate function for all combi-

nations of values from SO and SV . This significantly improves the runtime binding

operations for these predicate functions. Note that while the runtime is in C++,

any code written in C or C++ can make use of it. In the experiments, the STAMP

benchmarks which were written in C were used.

The main role of the runtime is to apply the appropriate predicates when an oper-

ation is being launched and to determine whether or not it can concurrently execute

with the other currently executing operations. The runtime will follow Algorithm 1

to best determine the likelihood of a conflict between an operation that is launching

and those that are already running. The overlapLikelihood is a number between 0

and 1 where 1 means that an overlap is certain.

3.4.2.1 Degree of approximation

The runtime will also estimate how much time it should spend checking for over-

laps. This is particularly important if there are many concurrent operations as a new

74

Input: initialElement the initial element passed to the operation
Input: currentOperation the operation that is starting
Output: overlapLikelihood whether or not the operation will conflict (to the

best of the runtime’s knowledge
overlapLikelihood ← 0 ;
foreach ConcurrentOperation concOp do

concurrentDataspace ← DetermineNext (concOp) ;
foreach elt in concurrentDataspace do

res ← IsDisjoint (currentOperation, initialElement, concOp, elt) ;
overlapLikelihood ← overlapLikelihood + res ;

end

end
return overlapLikelihood;

Algorithm 1: Simplified runtime algorithm to determine the likelihood of con-
flict between the operation to launch currentOperation and existing opera-
tions.

incoming operation has to be tested against all existing operations. The intuition

behind measuring runtime overhead is that the time required to check for disjointed-

ness should not be significantly more than the time wasted by not running in parallel

or by running in parallel and having to abort (in a STM system). Therefore, the

runtime maintains statistics about the execution of the operations and uses them to

determine how much time it can use up to check for disjointedness. It will then bail

out of Algorithm 1 whenever it has spent at least that much time performing checks.

Monitoring for the parallelization approach In the simplest case, the runtime

has the choice between running an operation in parallel with no concurrency checks

or running sequentially (in case of a conflict). Here, the time that the runtime keeps

track of is the average time required for an operation. Indeed, that is the “cost” of

not running it in parallel (as it will have to be serialized). The runtime will then

perform checks for a small user-defined fraction F of that time. If within that time

it successfully completes Algorithm 1 and determines that the overlapLikelihood

is 0, it will launch the operation in parallel; otherwise, it will serialize it.

75

Monitoring for the throttling approach In this case, the “cost” of making a bad

decision is a rollback. The cost of the rollback includes the cost to partially execute the

transaction (an operation here) and the overhead of the actual rollback mechanism.

However, a rollback does not always occur so on average, the cost incurred is TA

CC+CA

1

where TA is the total amount of time that the transaction spent aborting, CC is the

commit count and CA is the abort count. This quantity captures both the likelihood

of a rollback and the average cost of that rollback. If no rollback has ever occurred,

the runtime will not perform any checks and just let the transaction run as it is highly

likely that there will not be any conflict (given past history). Again, the runtime will

perform checks for a fraction F of this quantity.

3.4.3 Runtime usage

The goal for this work is to i) improve parallelization and ii) improve the performance

of transactional systems through the throttling of their transactions. This section

explains how the runtime is used to implement these goals.

3.4.3.1 Improving parallelization

In this context, the runtime has to be positive that disjointedness is maintained

since the goal is to launch the operations in parallel with no runtime checks (such

as STMs). For two operations O1 and O2, given that Df (O1) and Df (O2) are

over-approximations of the actual data-spaces, if the programmer provides the ap-

propriate PredD predicates, the runtime will only launch O1 and O2 in parallel if

overlapLikelihood is exactly 0. This condition is constraining and may not be pos-

sible to check in a small amount of time but, as Section 3.5 demonstrates, for the

graph coloring example, this condition can be easily checked.

If the runtime check cannot conclusively determine disjointedness, the safe option

1Here, it is assumed that other transactions could have run had the transaction that rolls back
not run.

76

is chosen and the operation will be serialized. Note that since the time of the runtime

check is limited to a small user-defined fraction F of the average sequential time of

the operation, in the worse case where no parallelism can be safely found, a slowdown

is incurred over the sequential execution that is completely determined by F .

3.4.3.2 Throttling transactions

In this case the level of certainty about the disjointedness of two operations does not

need to be as high as the STM system provides a “safety net”; only a reduction in the

number of aborts is sought. The runtime computes the sum of overlapLikelihood

between Df (O1) and the data-spaces of all other concurrently running transactions.

If this sum is higher than a certain threshold, O1 will be paused until the transaction

with which it has the highest overlapLikelihood completes. The programmer can

therefore modify both the fraction of time to check (F) and the probability threshold.

In the previous scenario, that threshold was 0 (ie: everything had to be fully disjoint).

A higher threshold increases the potential amount of parallelism but can also lead to

more conflicts.

3.5 Experimental evaluation

This section demonstrates the benefits of this work through a simple greedy graph

coloring algorithm as well as through several STAMP benchmarks to illustrate its

wide applicability.

All experiments were performed on a dual quad-core Intel Xeon E5540 (2.53GHz)

with up to 8 concurrent threads. The number of threads was not increased past this

limit to remove the issues related to kernel level thread scheduling

3.5.1 Greedy graph coloring

The greedy graph coloring algorithm was introduced in Section 3.2. Section 3.3

explained the applicability of the two predicates PredD and PredDN. It also discussed

77

how it is extremely simple for the programmer to specify a PredD predicate which

determines if Df (O1) and Df (O2) are disjoint. All the predicate needs to do is

determine if there is an edge between two inputs I1 and I2.

Two versions of the algorithm (Figures 10 and 11) were implemented in C++.

The first was a traditional parallel version of the algorithm. The processing of

each node was assigned to a different task. A STM (tinySTM [26]) was used to wrap

the critical section using atomics. The parallel for construct in TBB [67] was used

to launch all the tasks in parallel. TBB also managed the mappings of tasks to the

underlying threads. This is the baseline case.

The second was a parallel version which applied the proposed approach. This

version created a number of TBB tasks and scheduled them based on the execution of

the PredD predicate. Instead of blindly selecting the next task from the run queue, the

scheduler postponed the execution of any task which was not disjoint with the other

tasks that were currently running (through the evaluation of the PredD predicate).

Indeed, the implementation could have waited until the conflicting task could be

scheduled again and spun in a tight loop until that time. However, by postponing the

execution and choosing another disjoint task makes much better use of the available

parallelism. In this version, the use of any locks or STMs around the data structures

was avoided, it is guaranteed that the execution of any two concurrent tasks would

not have an overlapping data footprint.

The input dataset to the two versions consisted of a randomly generated graph

containing 2000 nodes with an average out-degree of 80.

Note that the proposed approach is particularly beneficial for long running trans-

actions. To study the behavior of the system in the presence of long running trans-

actions, transactions of different durations were simulated and results show that as

the duration of the transaction increased the speedup achieved increases. This is ex-

pected, since as the duration of a transaction increases, its associated cost of rollback

78

(in the case of a conflict) correspondingly increases. Hence, assurance of no conflicts

before launching a transaction dramatically increases performance. Figure 12 shows

 0

 1

 2

 3

 4

 2 3 4 5 6 7 8
 0

 100

 200

 300

 400
S

pe
ed

up

N
um

be
r o

f A
bo

rts
/N

um
be

r o
f C

on
fli

ct
s

Transaction Duration (ms)

Speedup
Aborts

Conflicts Detected

Figure 12: The Greedy Graph Coloring Benchmark

the performance of the system with transactions of varying durations. The duration

of transactions was varied by introducing appropriate sleep calls in the transaction.

The speedup line indicates the ratio of time it takes to execute a traditional parallel

implementation to an implementation which uses the proposed approach (in other

words, this is not the speedup relative to a sequential implementation but rather

expresses the benefit of the proposed method over a traditional parallel implementa-

tion). The “Number of aborts” is the number of aborts that the STM system had to

perform (in the case of the traditional parallel version). The “Number of conflicts”

is the number of times the proposed scheduler detected a conflict in the data-spaces

through the execution of the PredD predicate and decided to postpone the execution

of the task (in the case of the enhanced parallel version).

79

With a transaction duration of 8ms, the system was able to provide a speedup

of over 200% over a traditional parallel implementation. The “Number of conflicts”

increases with the duration of the transaction since there is more potential for conflict.

The “Number of aborts” increases as the number of threads increases as expected.

This is because the amount of contention increases and the STM system needs to

rollback more frequently. Note, that the total cost of aborting is proportional to the

number of aborts and the duration of a transaction.

3.5.2 STAMP benchmarks

Several STAMP benchmarks were also modified to take advantage of the proposed

approach by adding simple predicates. In particular, the KMeans (K-means cluster-

ing), the Yada (Delaunay mesh refinement; Ruppert’s algorithm) and the Labyrinth

(maze routing) benchmarks were modified. The benchmarks chosen had long trans-

action lengths and large read/write sets. Such benchmarks are most amenable to

the proposed approach since the runtime can provide significant performance im-

provements. All experiments were performed on a 8-core machine with 8 concurrent

threads. Other STAMP benchmarks would not benefit as much from the proposed

approach as their transactions are much shorter.

3.5.2.1 K-Means

Transactions in the K-Means benchmark write to a shared array. Conflicts arose

due to the fact that several transactions could potentially be writing into the same

parts of the array at the same time. A STM system rolls back transactions in the

case of such a conflict. An extremely simple PredD predicate, which determines if

two transactions will be accessing disjoint parts of the array or not, was added. The

predicate is simply an equality comparison of the indices that each of the transactions

will be accessing. It is important to emphasize how simple it is to write this PredD

predicate (here just one line of code). In this case, 0 is returned if there is no overlap

80

and 1 if there is.

3.5.2.2 Yada

Transactions in the Yada benchmark (based on the Delaunay thread refinement al-

gorithm) try to “refine” elements by working in a cavity (a neighborhood) around

themselves. Each refinement reads and writes to that cavity and if two elements be-

ing processed concurrently are too close to each other a rollback will occur. A simple

PredD predicate which compares the distance from the center point of the elements to

the sum of their radius was added. If the distance between the two elements is larger

than a small multiple of the sum of their radius, the transactions are considered to

be disjoint and allowed to proceed. In the other case, one transaction is halted to

give the other time to finish and avoid an expensive rollback. 0 is returned in case of

no conflict and 1 in case of a potential conflict.

3.5.2.3 Labyrinth

In the labyrinth benchmark, the transactions use Lee’s routing algorithm to find

the shortest path between a pair of nodes on a 3D grid. Once the shortest path is

found, the transactions write back the path to the grid thereby causing a conflict

if a concurrent transaction wants to write to the same cell in the grid. To reduce

the number of aborts and improve the execution time, a very conservative PredD

predicate that compared the spanning cube of the source and destination points of

the transactions was implemented. If the cubes overlapped, the transactions are

considered to have a potential to overlap, otherwise they are not and are allowed to

proceed. Note that here a fractional overlapLikelihood based on the overlap volume

compared to the total volume of the cubes is returned. This benchmark also uses the

PredDN predicate to periodically update the size of the spanning cube during the

execution of the transaction. Once the shortest path is found, and the transaction

is writing back the path, the size of the spanning cube is reduced periodically, to

81

encompass only the region which will be written to in the future. Note that though

this approach is extremely conservative and could potentially lead to long waits if the

cubes are too big, for more numerous and smaller paths, the approach worked very

well especially due to the ability of the runtime to refine approximations through the

PredDN predicate.

3.5.2.4 Results

Figure 13 reports the speedups achieved in the experiments as well as the reduc-

tion in the number of aborts. Speedups are relative to a sequential execution of the

benchmarks. Note that in all cases the number of aborts drops significantly and the

 0

 1

 2

 3

 4

 5

 6

 7

 8

yada kmeans labyrinth ggc

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

Benchmarks

Legend
Sequential

STM

With DS Support

(a) Speedups obtained in different benchmarks

 0

 20

 40

 60

 80

 100

 120

 140

yada kmeans labyrinth

N
o
rm

a
liz

e
d
 A

b
o
rt

s

Benchmarks

Legend
STM

With DS Support

(b) Normalized number of aborts in different
benchmarks

Figure 13: STAMP Benchmarks

performance improves significantly given the low-effort requirements for the program-

mer. This technique therefore has a very low cost to benefit ratio providing very good

results at a very low cost for the programmer. Note that the fact that aborts still

exists is because of the approximate nature of the runtime. Indeed, it does not always

fully check the predicates if it considers that it is not worthwhile to do so (based on

the cost of previous rollbacks). The fact that the number of aborts goes down so

dramatically makes the system particularly well suited for long running transactions

where the cost of an abort is high (in particular for transactional systems that use

82

commit time locking).

3.5.3 Scaling

A more detailed analysis of the Labyrinth benchmark was performed and the bench-

mark was run with 2 to 16 threads. The results show both a drop in the number

of aborts and an increase in performance, the magnitude of which increased as the

number of threads was increased.

Therefore, as the number of threads increases the system provides excellent scal-

ability as compared to traditional approaches and such an approach is essential in

the presence of a larger number of concurrent threads. Figure 14 reports the results

obtained my running the Labyrinth benchmark with a varying number of threads.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

2 4 8 16

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

Number of Threads

Legend
STM

With DS Support

(a) Normalized Speedups obtained in the
Labyrinth benchmark

 0

 20

 40

 60

 80

 100

 120

 140

2 4 8 16

N
o
rm

a
liz

e
d
 A

b
o
rt

s

Number of Threads

Legend
STM

With DS Support

(b) Normalized number of aborts in the
Labyrinth benchmark

Figure 14: Labyrinth Benchmark

3.5.4 Impact of limited check time

An important characteristic of the runtime is that the amount of time spent checking

for overlaps is capped. Whether this impacted performance was investigated by vary-

ing the user-defined fraction F defined in Section 3.4.2.1 which controls the amount

of time the runtime will spend checking: for 16 threads for the Labyrinth benchmark,

83

all checks occurred with F ≥ 0.2 and for K-Means, all checks occurred with F ≥ 0.8.

In both cases, F can be smaller than 1 which means that the system will be able

to extract a performance benefit. The higher required value for K-Means can be ex-

plained by the fact that a K-Means transaction is shorter than a Labyrinth one and

since the time allowed to check is F times a quantity related to the abort cost, F

needs to be high enough to give the runtime sufficient time.

For F smaller than those values, the runtime did not cause a performance degra-

dation and was not always able to improve performance. This was due to it not being

to catch as many possible conflicts and therefore letting transactions proceed that

would ultimately abort.

3.6 Related work

The Galois programming model [46, 55] also takes a data-centric semantic approach

to detecting conflicts. In the Galois model, the programmer defines whether or not

two operations can commute: if they can, the two operations can operate in parallel

and if they cannot, the two operations must be serialized. Although the premise for

both works, utilizing semantics information to improve parallel execution, is similar,

the work described in this chapter differs from the Galois model in several ways.

First, the Galois model focuses on semantic information at a much lower granular-

ity: at the level of the individual operation on a specific data structure rather than an

entire algorithm. Indeed, they demonstrate how defining commutativity properties

for functions such as “add”, “delete” on a list can allow them to detect conflicts. Al-

though one could imagine applying the Galois model to whole algorithms, this does

not seem to be the primary intent of the model. As such, the Galois model lacks

concepts similar to determineNext and OperationStatus which track the evolution

of data footprints during the execution of the algorithm.

Secondly, the execution model for the Galois model is to use semantic information

84

to detect conflicts but not to prevent them. The described model seeks to predict

the likelihood of a conflict and prevent it from happening altogether by preventing

conflicting transactions from executing concurrently. The Galois model, on the other

hand, detects conflicts during the execution of a transaction and therefore has no

choice but to trigger a rollback. The rollback triggered is slightly different from regular

STM rollbacks as the model allows for a semantic rollback instead of a purely memory-

based rollback but this still incurs significant costs. To alleviate this problem, [55] does

describe the “one-shot” optimization which seeks to over-approximate the footprint

of an operation and grab locks on all objects in the footprint before the operation’s

execution. However, unlike the described model, the one-shot optimization is only

applicable to algorithms where it is possible to accurately approximate the footprint

at the start. The use of the determineNext predicate allows for better approximations

of the footprint as the algorithm progresses. This also makes for a less conservative

as no locks are held; a large over-approximation with the one-shot optimization can

potentially prevent many other threads from advancing even if there is no conflict.

Apart from the Galois approach, two major directions have been looked at to

extract parallelism from amorphous code: a static approach and a dynamic approach.

3.6.1 Static extraction of parallelism

Dynamic Parallel Java (DPJ) [8] is a language that provides a type and effect system

that is verifiable at compile time allowing the compiler to make strong assertions about

the effects of a particular operation on the data. The strong guarantees that DPJ

makes about a program allow it to make some very interesting static optimizations

like eliminating some of the concurrent overhead of locks or transactions when it can

be statically certain that no conflict is possible. The work described in this chapter is

orthogonal to DPJ as it relaxes the guarantees that are made to the programmer but

enables the detection of more potential parallelism (where, for example, parallelism is

85

dependent on the value of a variable as opposed to its extended type in DPJ). It would

also be interesting to combine both frameworks to provide some static assertions and

allow the knowledge gain at compile time to aid in the dynamic runtime predicate

evaluation. Work by Reid et al. [66] is similar work which also extends the type

system by using a notion of static ownership of data. Each data object is owned by a

logical owner (a parent class, a global owner known as “world” for global objects or

any other object in the scope) and an effect system is also introduced for functions.

Static reasoning similar to DPJ can then be used to perform automatic parallelization.

3.6.2 Dynamic extraction of parallelism

Another approach that has been explored is the dynamic detection of parallelism such

as Rinard’s Jade [69]. This work is closely related as it also dynamically annotates

data structures and dynamically evaluates conditions to determine the potential over-

lap of operations. However, whereas Jade focuses on identifying conflicts at a byte

level, this work utilizes semantic information and the programmer’s knowledge about

an operation to determine whether or not two operations overlap. The footprint of

an operation is also allowed to be refined over time as more and more information

about the operation becomes available. The determineNext predicate is also unique

in its tracking of the evolution of an operation. Work on serializer sets by Allen et al.

[2] also seeks to dynamically extract parallelism by having the user specify serializers

which correspond to operations that conflict with one another and therefore must be

executed sequentially. This work is interesting because it also brings in some semantic

knowledge about the operation to build the serializers however the approach taken is

very different from the one described here.

A lot of work has gone into STMs, in particular to reduce the overheads of the STM

runtime. Some recent work [80] attempts to reduce the overhead of STMs by replacing

atomic sections by locked sections when appropriate. Many other techniques have also

86

been developed (see [48] for a recent list). However, this work does not specifically

target STMs as such but rather STMs can benefit from the analysis led here.

3.7 Conclusion

This chapter motivated the fact that the disjointedness of two operations is really

an intricate dynamic relationship between the operation and the runtime values of

the data. Therefore, static approaches will not always be able to capture all the

expressible parallelism in a program. Static approaches do provide the comfort of

being certain that the execution is correct but are necessarily overly conservative

about potential parallelism. The described approach allows the programmer to define

some very simple semantic predicates that will get executed at runtime to determine

the disjointedness of two operations. The determineNext predicate is particularly

novel in allowing the programmer to express the progress of a computation and how

this impacts its data-space (footprint).

Communicating this very simple knowledge that the programmer has about his

algorithm shows promising results. Results show that the framework can be used

to parallelize certain sequential algorithms in an efficient manner without incurring

the overheads of a transactional system. Furthermore, for algorithms already utiliz-

ing a transactional system, results show that their performance can be improved by

accurately predicting whether or not a transaction will abort. The reduction in the

number of aborts translates to a reduction in execution time.

3.7.1 Thesis discussion

This chapter shows that the performance of optimistic parallelism to parallelize hard

to parallelize irregular algorithms can can improved through the expression of data-

structure semantics. The framework presented in this chapter therefore does not

increase the utilization of cores but rather increases the efficient utilization of those

87

same cores: limiting the number of rollbacks contributes to less time spent on com-

putation that will be ultimately be thrown away and re-executed. Indeed, optimism

is a means to increase parallelism however, while aggressive optimism increases the

amount of parallelism and core utilization it can also be be detrimental as it can lead

to a large number of rollbacks. On the other hand, a guided form of concurrency such

as the one proposed in this chapter can ensure that optimism is useful. This chapter

shows how potential conflicts can be determined via the algorithmic properties on

memory footprints. Such properties are then quantified via a probability measure

that is used in scheduling the concurrent optimistic operations in parallel.

More generally, however, a better understanding of the data footprint of an oper-

ation can lead to better parallelization opportunities.

This chapter demonstrated that leveraging additional semantic knowledge of the

application, known to the programmer but hidden or obfuscated in the program and to

the compiler provides significant benefit. This furthers the claim made by this thesis

that algorithmic properties can be effectively exploited to improve parallelization of

hard to parallelize codes. In particular, this chapter shows that even for codes that are

considered “parallel” (through the use of optimistic parallelism) further improvements

are possible.

Chapter 4 further explores automatic ways to extract the semantic relationships in

data-structures. Although not all semantic relationships can be deduced, Chapter 4

shows that the use of a profiler in the semantic memory space of a program can

extract certain semantic relationships thereby enabling the automatic discovery of

the neighborhood of an operation.

88

CHAPTER IV

DISCOVERING OPTIMISTIC DATA-STRUCTURE

ORIENTED PARALLELISM

As described in Chapter 3, the semantics of data-structures can lead to performance

improvements for optimistic parallelism. This improvement comes from the fact that

the semantics associated with data-structures allows a runtime to make statistical

predictions about future data accesses.

The previous chapter assumed that the programmer has a certain knowledge of

his application and is therefore capable of writing accurate predicates. However, in

some cases, the programmer may not completely understand the application and may

therefore not be in a position to determine what the determineNext and isDisjoint

predicates should be. While it is not possible, in general, to fully replace a pro-

grammer’s knowledge about an application, this chapter presents a profiling based

technique capable of extracting certain data-structure semantics information from a

program thereby enabling the automatic generation of isDisjoint functions.

Note that the utility of the work presented in this chapter is not limited to being

applied to the work in Chapter 3. In particular, in [63], Pingali talks about the

importance of “determin[ing] the neighborhoods” of operations. This is very similar,

in concept, to the isDisjoint function. Also, this work is more widely applicable in

understanding access patterns at a higher level of abstraction than the low memory

address level.

89

4.1 Address dataspace versus symbolic dataspace

The approach presented here is an automated solution to determine isDisjoint

functions. It is based on a profiling approach: the framework seeks to determine the

extent of an operation by profiling its loads and stores. Ultimately, it is interested

in determining the extent of an operation before the operation starts to be able to

determine whether or not it can run in parallel with other operations. Unfortunately,

in a pointer-based algorithm, this type of profiling will produce a profile that is only

exploitable for that run of the application (in other words, it has no predictive power

for other runs). This is because pointers obfuscate memory patterns and offsets

between memory locations (the only “relationships” that can be deduced from such

a profiler) are unstable between runs and do not provide any meaningful information

(except maybe on the inner workings of the memory allocation algorithm).

Therefore, this work proposes to profile in the symbolic dataspace of the pro-

gram. Briefly, the symbolic dataspace is a dataspace where program variables are

associated with programmer given names. For example, if variable n is located at

address 0xdeadbeef, a load to n would be profiled as Load 0xdeadbeef in a memory

dataspace profiler but would be profiled as Load "n" in a symbolic dataspace profiler.

One way to effectively parallelize code is to understand its data access patterns:

this allows a compiler or runtime to predict future accesses and therefore determine

whether or not two sections of code will access the same memory location and there-

fore prevent parallelization. In dense array computations, data access patterns can

frequently be understood statically at compile time by analyzing both the indices and

the boundary conditions (loop bounds) used to access data. In the simplistic example

loop shown in Figure 15, a compiler can predict the exact memory locations that will

be accessed at the start of each loop iteration. These locations are solely determined

by: i) the address of dataArray, ii) the address of copyArray and iii) the value

of i; the values of which can be determined at the start of each loop iteration. In

90

this example, the memory locations will be &dataArray + i and ©Array + i.

Furthermore, with the runtime knowledge of end, all accesses during the loop can be

predicted. Therefore, for dense array computations, predictions can be made directly

for (int i =0, e=end ; i < e ; ++i) {
dataArray [i] = copyArray [i +10] ;

3 }

Figure 15: Example of a simple loop for a dense array where memory access patterns
are fully predictable at the start of the loop

in the address dataspace which corresponds to the mapping of variables to memory

addresses.

In irregular programs, this type of analysis is rendered impossible by the heavy

use of pointers: the actual memory locations pointed to by a given pointer in a

program may dynamically change from one run to the other for example. Pointers

also obfuscate memory access patterns.

4.1.1 Stability in the symbolic dataspace

Pointers, however, do not obfuscate patterns in the symbolic dataspace which is

defined as follows:

Definition The symbolic dataspace of a program is a mapping between variables

and a set of textual names representing these variables. In its simplest form, the

program name of a variable can be used as its textual representation in the symbolic

dataspace of the program.

In the symbolic dataspace, variables are thus associated with a programmer specified

textual representation whereas in the address dataspace, those same variables are

associated with an arbitrary runtime value. Furthermore, in the symbolic dataspace,

the association between variable and name does not change during the execution of

the program whereas this is not the case in the address dataspace (pointers can be

remapped for example).

91

The key intuition in this work is that while pointers obfuscate patterns in the

address dataspace, access patterns in the symbolic dataspace are not affected.

4.1.1.1 Motivating example

Consider the sample code in Figure 16. The presence of the pointers left and right

struct Node {
2 int data ;

Node ∗ l e f t , ∗ r i g h t ;
} ;
vector<Node∗> nodes ;
/∗ nodes i s i n i t i a l i z e d to conta in some Nodes ∗/

7 for (int i =0, e=nodes . s i z e () , i<e ; ++i) {
Node ∗n = nodes [i] ;
i f (n−> l e f t && n−>r i g h t)
n−>data = n−>l e f t −>data + n−>r i ght−>data ;

else
12 n−>data = 0 ;
}

Figure 16: Example of a simple loop for a tree-like structure where memory access
patterns are not obvious at the beginning of each iteration

makes the exact locations n->left->data and n->right->data difficult to predict.

For example, the memory offset between n->data and n->left->data is not fixed

between loop iterations and therefore meaningless in determining a memory access

pattern.

However, in the symbolic dataspace, the access patterns are predictable and consis-

tent: each iteration will access n::data, n::left::data and n::right::data where

the “::” is used to indicate a parent-child relationship. While this knowledge does

not allow for static extraction of memory access patterns, it does allow the generation

of functions that can, at runtime, convert the symbolic dataspace patterns to address

dataspace patterns and therefore determine, just in time, the memory access patterns

of the loop.

92

4.1.1.2 Symbolic dataspace patterns

The stability of names in the program’s symbolic dataspace makes it worthwhile to

reason about access patterns in terms of names instead of memory locations. There-

fore, instead of saying that a section of code accesses memory location 0xdeadbeef,

one could say that it accesses the abstract location node::data+4 which would mean

an offset of 4 within the field data of the variable node. The exact conventions used

in naming variables are explained in Section 4.2.5.

Reachability Apart from the stability advantages, the symbolic dataspace notation

also makes explicit a reachability property. Reachability from data element A to B

is defined as follows:

Definition B is said to be reachable from A if knowledge of the address of A gives

knowledge of the address of B at runtime.

In Figure 15, the address of any element dataArray[i] can be known from the address

of dataArray with the addition of a fixed offset.

The symbolic dataspace notation brings this reachability property to pointers. For

example, in Figure 16, the element n->left->data is reachable with knowledge of

n provided the n->left pointer does not change. The notation node::left::data

makes explicit the fact that the physical address of data is reachable from node,

node::left and node::left::data. In other words, knowledge of, for example, the

address of node, allows for the automatic computation of the address of node::left::data

provided that the offsets of the various fields are known1.

Here, the reachability is due to pointer “hopping” as opposed to offset hopping.

The symbolic dataspace notation proposed supports both types of hopping.

1Offsets are known at compile time and therefore are easy to obtain.

93

Reachability is key to predictability: if data elements read or written by a section

of code are all reachable from another common element N , then knowledge of N

enables knowledge of all memory locations accessed. In Figure 16, n is such a common

element and the memory addresses of all accessed elements can be deduced from

knowledge of n’s address. This situation is very similar to the one shown in Figure 15

in the case of dense matrices.

Therefore, moving pattern analysis to a program’s symbolic dataspace gives irreg-

ular pointer-based programs the same analyzability as dense matrix ones.

4.2 Symbolic dataspace memory analysis

Section 4.1 described the usefulness of describing access patterns in the symbolic

dataspace. This section details a framework capable of profiling memory accesses in

the symbolic dataspace. The proposed profiler is very similar to a traditional memory

profiler that would indicate which memory locations are touched when except that

the symbolic dataspace profiler further extracts symbolic patterns due to reachability:

the profiler will therefore give all the names of each memory location accessed. Note

that a location may have multiple names due to pointer aliasing; the proposed profiler

tracks aliases and will report all possible names for a location.

The profiling runtime therefore has the following goals:

• Describe memory accesses in the symbolic dataspace.

• Construct, at the start of each section of code that is of interest to the pro-

grammer (for example transactions in STM), a function that can quickly and

with good accuracy determine the memory locations that will be accessed by

the section of code using reachability information. This function, equivalent

to the isDisjoint function described in Chapter 3, can help in determining

whether or not a transaction is likely to conflict with other currently running

transactions.

94

• Provide other feedback to the programmer about access patterns in the symbolic

dataspace of the program.

4.2.1 A profiling approach

The proposed framework takes a profiling approach because it only seeks to provide

a function that captures the neighborhood of an operation with high probability.

Obtaining a precise and accurate representation of the neighborhood is not always

feasible and a statistically significant representation of the neighborhood is usually

enough to determine whether or not two operations will conflict. In particular, dy-

namic remapping of pointers causes the mapping between names in the symbolic

dataspace and program variables to change over time making determining a precise

neighborhood very difficult. A static analysis, as opposed to a profiling approach,

would risk getting confused by the pointer aliasing and not be able to extract any

meaningful patterns.

4.2.2 Components of the profiler

The framework is divided into three parts:

C++ template wrappers C++ wrappers are provided to the programmer to as-

sociate a name with variables that he wants to track. Note that although

this requires programmer intervention, an automated process could be devised

where all variables would be wrapped and given names based on their program

names. This would, however, increase the overhead of profiling as more infor-

mation would have to be collected. The wrappers identify to the profiler which

variables are of interest. Typically, these are the variables that are potentially

accessed in transactions (using STM terminology). The C++ API also provides

mechanisms to identify sections of code that are of interest to the programmer,

typically the transactions themselves.

95

A profiler The profiler is responsible for compiling the application’s source code

and adding profiling annotations. When running, the application will dump a

profiler file which is analyzed by the analyzer.

An analyzer The analyzer takes as input the information dumped during the appli-

cation’s execution and is capable of synthesizing isDisjoint functions among

other things. The analyzer is distinct from the profiler as this limits the over-

head of the profiler. The analyzer must also be capable of summarizing dif-

ferent executions of the same section of code (for example code that occurs in

a loop). The current analyzer also provides an interactive environment where

the programmer may gain additional insights on the symbolic dataspace access

patterns.

4.2.3 Terminology

Throughout this chapter, the following terms will be used:

Focus area A focus area is a section of code that the programmer wishes to analyze

in terms of access patterns. Typically, a focus area will be a transaction. One of

the goals of the framework is to be able to determine a neighborhood function

that takes as input the variables that are available at the start of the focus

area and produces a list of memory locations that will be accessed during the

execution of the focus area.

Location name A location name is a programmer-defined name associated with

a physical memory location. Note that the same memory location may have

multiple location names associated with it (due to aliasing). Furthermore, a

given location name may refer to different memory locations at different times

in the program (due to pointer remapping). The syntax of location names is

defined in Section 4.2.5.

96

Semantic memory map The semantic memory map is the mapping between the

semantic dataspace and the physical memory space. This mapping changes dy-

namically as the program executes: during memory allocation and deallocation

as well as during pointer remapping. It will be denoted SM (i) where i is an

instruction count.

4.2.4 Operating principle

To accurately profile memory accesses in the symbolic dataspace, it is crucial to cor-

rectly build and update the mapping SM (i). If this mapping is correctly maintained,

the analyzer will be able to map the memory locations accessed by an instruction at

instruction count i to its symbolic name.

Crucially, the names associated with each memory location are dynamically con-

structed to express the reachability property. For example, suppose a variable of type

Node has two pointers left and right. At runtime, the Node will have a particular

name which may not be known at compile time, suppose the name n1. The memory

location being pointed to by left will be associated with the name n1::left. The

:: symbol represents a parent-child relationship and symbolizes that one can deduce

the memory location of n::left by “hopping” through left from n1.

Operations modifying SM (i) are:

• Malloc/New operations create a mapping between a physical location and a

name.

• Free/Delete operations remove such a mapping.

• Pointer arithmetic operations modify a mapping by associating a name with a

different physical location

• Other memory operations such as memmove or memcpy also alter the mapping.

97

These operations are therefore monitored by the profiler and allow the building of

SM (i) at every instruction. The profiler also monitors loads and stores and, for a

load or store at instruction count i, it can determine the name corresponding to the

memory location of the load or store by using SM (i).

Note that to minimize the profiling overhead, information is only collected on

operations on the variables wrapped with the C++ API. In particular, only those

loads and stores that may be relevant to the wrapped variables are profiled.

4.2.4.1 Information collected

This section describes the information that is collected for each of the operations

described above. Note that for all operations, the file and line number of the operation

are also collected.

Allocation The profiler cares about two types of allocations: i) the allocation of

a pointer and ii) the allocation of any other data element that is not a pointer. It

is important to distinguish the two because the mapping of the name to the memory

location is different in each case.

In the case of the pointer, the name will be associated to the memory location

that is pointed-to by the pointer as opposed to the memory location of the pointer

itself. In all other cases, the name is associated with the memory location of the

object that is allocated. Note that it is of course possible to combine both types of

allocation and associate a name to the memory location of the pointer and associate

a different name to the memory location being pointed to.

On allocation of a pointer, the profiler therefore collects:

• The location of the pointer as well as its size

• The memory location being pointed to as well as its size (if known)

• The name the programmer wishes to associate with this allocation

98

The first piece of information will be used in linking the pointer to its ‘parent’ element

to be able to construct reachability relationships. Here, the memory location pointed-

to by the pointer will be reachable from the parent containing the location of the

pointer through pointer hopping. The memory location being pointed to is obviously

important as this is what the name is associated with.

On allocation of any other regular object, the profiler does not collect the first

piece of information as it can use the second piece of information both to determine

the parent and to associate the name with the correct memory range.

Deallocation On deallocation, the profiler only needs to record the address being

deallocated as this is sufficient to find which corresponding block of memory was

allocated at that address and to remove the name associated with it.

Pointer arithmetic On a pointer arithmetic operation (such as adding or sub-

tracting a constant or assigning a new value to the pointer), the name previously

associated with the originally pointed-to location becomes associated with the new

location being pointed to. Therefore, on a pointer arithmetic operation, the profiler

collects:

• The address of the pointer

• The original address being pointed to

• The new address being pointed to

The first two items allow the positive identification of the name that is being changed

and the last item allows the correct remapping of the pointer.

Loads and stores The address and size of the load or store are collected by the

profiler. The semantic memory map constructed by the monitoring of the previously

99

covered operations allows the address of the load or store to be associated with the

names for that location thus enabling memory profiling at a semantic level.

4.2.5 Naming conventions

Section 4.2.4.1 described the information that is collected by the profiler. The names

collected in this process are only partial names and do not reflect the parent-child

relationships that are crucial in establishing reachability. It is the job of the analyzer

to reconstruct the full name of each memory location by determining the parent of

each memory location. The parent of a memory location is a named enclosing memory

location: this is the traditional “offset” child of dense matrix operations. However,

to support pointer hopping, the parent of a memory location being pointed-to is the

parent of the pointer.

The notation used uses the ‘::’ symbol to separate two names, the latter being a

child reachable from the former (the parent) using a single hop (pointer or offset). For

example the name n::data indicates that data is a direct child of n. The name does

not reflect whether or not data is an element pointed to through a pointer contained

in n or a member element of n as it is irrelevant from the point of view of reachability.

The analyzer does however maintain this information as it is relevant in constructing

a function to determine the memory location of n::data from that of n.

While the naming convention expresses in a straightforward and composable way

the reachability property required to analyze pointer-based programs, specific issues

need to be addressed:

• The name of the parent may not be known at compile time. To solve this, the

name of the parent can be dynamically discovered at runtime. This technique

also enables greater composability. For example, in a classic binary tree, each

node’s name will reflect the exact path followed within the tree from the root

node.

100

• The number of children may be dynamic and therefore make the static naming of

children impossible. To solve this, the name of children may be auto-generated

by the analyzer.

• The utilization of library code which the programmer cannot or does not want

to annotate means that the name of a data element may be incomplete.

• Multiple names may point to the same memory location due to pointer aliasing.

The following sections address these problems.

4.2.5.1 Dynamic determination of parent-child relationship

Consider for example the Node data-structure in Figure 16. The full names of the left

and right pointers should be of the form <parent>::left and <parent>::right.

However, statically, the name of the parent is not known. It can, however, be de-

termined at runtime by determining the name of the region of memory in which the

allocation occurs.

Allocation of an “offset” child An “offset” child is an element related to its

parent because a fixed offset relationship exists between its address and that of its

parent. This is typically a member field in C++ or an element in a struct or vector

in C. This type of child is the typical relationship that is tracked for dense-matrix

operations. Determining the parent for such a child is simply a matter of determining

the name associated with the memory region in which the child is allocated.

Allocation of a “pointer” child A “pointer” child is an element related to its

parent because a pointer links the parent to the child. In this case, note that the

physical memory location of the child is not related to that of the parent in any dis-

cernible way (in fact, depending on the allocation mechanism, it may change between

runs). However, determining the parent is still straightforward as the profiler records,

101

for a pointer, both the address of the pointer as well as the address of the object being

pointed-to. The pointer itself is an “offset” child of the parent and this relationship

makes it easy to link “pointer” children to their parents.

Figure 19 illustrates the concepts of “offset” child as well as “pointer” child.

4.2.5.2 Dynamic determination of a child’s name

Consider for example the sample code in Figure 17 where the macro TRACKED(object,

name) represents the wrapping API required to associate name with object and

TRACKED PTR(ptr, name) represents the same API for pointers. In this example, the

struct Node {
2 vector<TRACKED PTR(Node∗ , ‘ ‘ : : ”)> ne ighbors ;
} ;
TRACKED(Node n , ‘ ‘ n”) ;

Figure 17: Illustrative example for the use of virtual children. TRACKED PTR in-
dicates that neighbors contains pointers to Node objects that are tracked by the
framework. The ‘::’ name indicates that the name will be auto-generated by the
analyzer. TRACKED indicates that the creation of Node n creates a mapping between
the memory space occupied by n and the name “n”.

elements of neighbors are children of n2. However, their number is unknown and

may be dynamically changed at runtime. Their names cannot therefore be statically

determined and must be generated at runtime. The analyzer does this by simply

assigning a sequential number to each allocated child. In this particular case, the

first child would be named n::1, the second n::2 and so on. Note that the assigned

number may or may not correspond to valid indices in neighbors.

4.2.5.3 Virtual children

The determination of a parent-child relationship as described in Section 4.2.5.1 relies

on the fact that a relationship between the physical memory of the parent and the

child (or the pointer to the child) exists. However, in certain cases, although such a

2Technically, they are virtual children, see Section 4.2.5.3.

102

relationship may exist, it may be not be accessible to the programmer. Consider again

the example in Figure 17. The elements of neighbors are logically children of their

parent Node but do not have either a fixed offset or pointer relationship that is known

to the programmer. In this specific case, the C++ vector is actually implemented

with the use of a pointer that points to the elements contained in neighbors but this

is not accessible to the programmer.

The framework therefore allows the programmer to identify such containing data-

structures (vectors, lists, sets among others) which will cause any children of these

data-structures to be associated in a parent-child relationship with the parent of the

containers. This is referred to as a virtual parent-child relationship.

4.2.5.4 Namespace aliasing

Due to pointer aliasing, it is possible for the same physical memory location to be

identified by multiple names. This is denoted using the symbol ‘—’. For example,

(n2|n::left)::data indicates that n::left and n2 alias each other. The complete

expansion of the names gives all possible semantic ‘paths’ to a specific memory loca-

tion. The term depth will refer to the number of ‘::’ in the path and corresponds

to the number of ‘hops’ required to reach the address of the named element from the

address of the top-most parent.

4.2.5.5 Naming grammar

To summarize, the grammar for a name is as follows (EBNF grammar):

〈full name〉 ::= [〈parent name〉, ‘::’], 〈terminal name〉;

〈parent name〉 ::= ([〈parent name〉, ‘::’], 〈atom name〉) | (‘(’, 〈full name〉, ‘|’,

〈full name〉, ‘)’);

〈atom name〉 ::= ‘ ’ | 〈terminal name〉;

〈terminal name〉 ::= (〈alpha chars〉 , 〈all chars〉) | (〈digit chars〉 ,

103

〈digit chars〉);

〈all chars〉 ::= 〈digit chars〉 | 〈alpha chars〉 ;

〈digit chars〉 ::= ? 0 to 9 ? ;

〈alpha chars〉 ::= ? A to Z and a to z ? ;

4.2.6 Relationship between symbolic dataspace and address dataspace

Consider the code segment in Figure 18. This code segment, representative of data

1 struct Node {
TRACKED(int data , ‘ ‘ : : data ’ ’) ;
TRACKED PTR(Node ∗ l e f t , ‘ ‘ : : l e f t ’ ’) ;
TRACKED PTR(Node ∗ r i ght , ‘ ‘ : : r i g h t ’ ’) ;
} ;

6

TRACKED(Node n , ‘ ‘ n ’ ’) ;
TRACKED(Node n2 , ‘ ‘ n2 ’ ’) ;
n−> l e f t = &n2 ;

Figure 18: Sample code segment illustrating the used of “offset” children and
“pointer” children as well as aliasing.

structures used in tree-based algorithms, illustrates the use of “offset” children (data)

as well as “pointer” children (left and right). It also illustrates the use of aliasing

between n::left and n2.

The semantic memory map constructed by the analyzer at the end of this code

segment is shown in Figure 19. The association of the name n with the memory

region [0x10; 0x24] is caused by Line 7 and the association of n2 with [0xA0, 0xB4]

by Line 8 3. Line 9 creates the relationship between n::left and n2. One can

see that all the information required to build such a memory map is captured by the

profiler (see Section 4.2.4.1) and that the memory map built fully captures reachability

information.

3Memory addresses were chosen arbitrarily.

104

0x10 0x24 0xA0 0xB4

data *left *right

{ { n2n

data *left *right

Figure 19: Memory map constructed by the analyzer at Line 9 of the code segment
shown in Figure 18

4.3 Implementation

This section describes the implementation details of the framework detailing each of

the three parts separately: the C++ API, the profiler and the analyzer.

A C++ API The API is used by the programmer to annotate the variables in the

program that he cares about. The same annotation also allows the programmer

to associate a name to the variable. Finally, the API allows the programmer to

define the focus areas (see Section 4.2.3).

A compiler and profiler The compiler takes the annotated source code and pro-

duces an instrumented version of the application that, when run, will profile

itself and dump a profiler file (referred to as profiler.dump) which contains

information concerning allocation, deallocation, pointer remapping as well as

the loads and stores of the variables that were annotated by the programmer.

An analyzer The analyzer takes the raw profiler.dump and transforms it into

a human-readable one. In particular, it outputs all loads and stores in the

name space of the program (as opposed to its address space) and ranks the

variables at the start of each focus area in terms of their predictability power

(in other words, the ability to reach the other loads and stores that can reach

(predict) the maximum number of loads and stores). The analyzer also provides

an interactive command line interface that allows the programmer to further

analyze the access patterns in name space.

105

4.3.1 C++ API

The main role of the C++ API is two-fold: i) provide a means to identify focus

areas and associate a name with them, and ii) provide a mapping between program

variables (address dataspace) and variable names (symbolic dataspace) However, the

API also fulfills a secondary role of allowing the profiler to selectively profile the loads

and stores to reduce the profiling overhead as well as the size of profiler.dump which

is the file that the profiler will write to during the execution of the program.

4.3.1.1 Identifying focus areas

A focus area is any scoped block of code. It can be a function or the code inside

a for loop. To identify a block of code as a focus area, the programmer uses the

macro IDENTIFY BLOCK(<name>). This macro will cause two lines to appear in the

profiler.dump file, one recording the instruction count at the start of the block and

one recording the instruction count at the end of the block.

Note that if a block of code is repeatedly entered, a unique name for each instance

is created by appending an integer to <name>.

4.3.1.2 Identifying variables

Variables of interest are those that are read or written to during the execution of a

transaction; in other words, they are those on which access conflicts may arise. To

profile in the symbolic dataspace, these variables need to be given a name.

C++ templates are utilized to associate names with variables. The templates

wrap the original variable in such a way that they behave similarly to the original

variable but monitor access to the variable. When the wrapped variables are accessed,

a flag is set indicating to the profiler that loads and stores should be tracked. The

loads and stores tracked will be a superset of those to the wrapped variables. The

wrappers also allow for controlled allocation and deallocation of the variables thereby

ensuring the the names are associated with the correct memory regions.

106

To differentiate between pointer variables and non-pointer variables, the frame-

work offers two wrappers Tagged<T> wraps “offset” variables while PtrToTagged<T>

wraps “pointer” variables. Note that taking the address of a Tagged<T> object will

produce a PtrToTagged<T> object thereby maintaining any named association with

the memory location referenced by the Tagged<T> variable.

The framework also provides a TaggedContainer<T> wrapper which provides sup-

port for the virtual parent-child relationship. When a TaggedContainer<T> object

is accessed, the address of its parent is pushed on a runtime stack and future tracked

allocations will be tagged as virtual. The analyzer will use the information pushed

on the stack to recreate the correct parent-child relationship.

Automatic variable tagging While the current framework requires the program-

mer to identify and name the variables that are of interest, in most cases, it is possible

to identify these variables automatically using a source to source translation layer.

The variables of interest are the ones that are accessed within the focus areas

identified by the programmer. A source to source translator could identify the names

of the variables accessed in this region and automatically change their types using

the API previously discussed.

4.3.2 Profiling pass

The profiling pass is implemented as a LLVM [52] pass which annotates the original

source code. In particular, it adds the following annotations:

• Updates a global dynamic instruction counter. The instruction count is used

instead of time to indicate the ‘when’ of a load/store event. Since the frame-

work is only interested in determining patterns and not execution times, using

the dynamic instruction count as a measure of execution progress is not prob-

lematic and will provide more stable and accurate results because it ignores any

107

architectural effects such as cache misses which would be visible in an approach

that measured absolute time.

• Every load and store is annotated. However, to reduce overhead, the annotation

consists of an initial check for a flag. If set, the actual instrumentation is called,

otherwise, the program continues. This greatly reduces overheads and allows

the output file to be considerably shorter than it would have been if all loads

and stores were profiled.

• Certain memory operations and intrinsic are also annotated. In particular,

memmove and memcpy are annotated as they potentially change the memory

map.

Note that malloc and free are not annotated by the profiler, instead, the C++

wrappers directly print out in the profiler.dump file on allocation and deallocation

of wrapped variables. The same is also true for any pointer arithmetic on named

variables.

4.3.3 Analyzer

The analyzer is a Python script that takes as input the profiler.dump file and i)

builds SM (i), ii) converts the memory locations accessed by loads and stores to names

and iii) determines for each focus area the variable that best predicts future accesses.

An interactive mode is also available which allows the programmer to determine the

LocationName from which the memory loads and stores can be predicted. In other

words, the analyzer gives the isDisjoint function: at the start of each focus area, the

analyzer will print out the LocationNames which allow the prediction of the memory

accesses within the focus area.

108

4.4 Experimental validation

The C++ API and LLVM pass are release quality products, however the analyzer,

although it is functionally complete, does not yet scale to large applications. This is

mainly due to the fact that for applications that have many pointers (for example a

dense graph), a single node has possibly hundreds of names as the number of paths

terminating in that node can be very large. For this reason, the current analyzer can

only deal with smaller input sizes. This does not detract from its usefulness as the

patterns extracted for smaller input sets are likely to also be present in larger input

sets.

4.4.1 Experimental setup

The graph coloring example, previously presented in Section 3.2, was used to demon-

strate the applicability of the framework. Note that this benchmark is trivial and

nothing new will be learned about its access patterns. However, this enables the

validation of the tool: the output of the tool will match what is expected, namely

that each invocation of processNode, the function that colors each node, reads the

neighbors of the input node and writes to the color field.

The actual code of processNode is given in Figure 20 Several points are worth

mentioning. Line 15 defines the name input node and associates it with the current

node that will be processed. Note that the exact aliasing will change over time (each

time a new node is processed). However, having a single name for the input allows

the programmer to make a lot more sense of the summarized access patterns across

multiple instances of processNode. Line 17 shows the API to identify a section of

code the programmer is interested in. One can easily see that the main compu-

tation looks at all the neighbors of the input node and writes a suitable color to

input node::color.

109

1 void processNode (r e c : : PtrToTagged<Node∗>& node ,
r e c : : PtrToTagged<Graph∗>& graph) {

vector<bool> used (graph−>nodes−>s i z e () , f a l s e) ;
for (unsigned int j = 0 ; j < node−>ad jacent to−>s i z e () ; ++j) {

int c o l o r = ∗(node−>ad j a c en t t o [j]−> c o l o r) ;
i f (c o l o r != −1)

6 used [c o l o r] = true ;
}
unsigned int s m a l l e s t c o l o r = 0 ;
while (s m a l l e s t c o l o r < graph−>nodes−>s i z e () &&

used [s m a l l e s t c o l o r] == true)
++s m a l l e s t c o l o r ;

11 node−>c o l o r = s m a l l e s t c o l o r ;
}

void processNode (int node number , r e c : : PtrToTagged<Graph∗>&
graph) {
r e c : : PtrToTagged<Node∗> node (getNode (node number , graph) ,

” input node ” , f a l s e) ;

16 {
IDENTIFY BLOCK(” processNode ”)
processNode (node , graph) ;

}
}

Figure 20: Algorithm used in the experimental setup: Greedy graph coloring. The
code shown is the actual code using the C++ API provided. The APIs are in the
rec namespace.

4.4.2 Note on overheads

The overheads of the framework described are very low as far as the profiler is con-

cerned. In particular, the profiler does not do any complex analysis of the namespace,

restricting itself to simply printing out the memory addresses loaded from and stored

to. The profiler also tracks certain allocations and deallocations. These operations

are relatively rare and therefore cause little overhead. For the loads and stores, the

profiler smartly only considers the loads and stores that may be of interest (in other

words, that may refer to a named memory location) and ignores the rest (mostly).

This greatly reduces the size of the profiler.dump file and also the overhead of

110

profiling.

The analyzer on the other hand is an extremely compute intensive piece of code

and is currently very memory hungry. However, this analysis is offline and will most

likely only be done once.

4.4.3 Results

After running the instrumented code on an input with 10 nodes and 2 edges on

average for each node, a profiler.dump file was produced which details the loads

and stores in terms of memory addresses. The analyzer then interpreted the file and

translated it into the symbolic dataspace and entered an interactive session. The

analysis of the processNode yielded the summarized information shown in Figure 21.

The first part of the output displays the association between an internal analyzer ID

−−−− ID to LocationName correspondance −−−−
0 −> main graph
1 −> main graph : : nodes
13696 −> input node

5

−−−− Formula W = Sum(1) (count = 24.60 (stdDev = 9 . 2 0) , t o t a l W
= 24.60 (stdDev = 9 . 2 0)) −−−−

Group ([0]) −> 24 .60 stdDev= 9.20 (100 .00 %)
Group ([1]) −> 24 .60 stdDev= 9.20 (100 .00 %)
Group ([1 3 6 9 6]) −> 19 .00 stdDev= 8.58 (77 . 24 %)

Figure 21: Results showing the summarized information over ten invocations of
processNode.

and the programmer assigned name. The ID is used in the second part which shows

the number of accesses that can be accessed from the name. One can note that all

accesses are reachable from both main graph and main graph::nodes which makes

sense because everything is contained in those elements. Furthermore, input node

predicts on average 77.24% of all accesses. This is because it does not predict accesses

such as those on Line 2 in Figure 20. This is consistent with what would be expected.

The analyzer further knows the exact paths to determine the memory locations of

111

each of those accessed elements and can therefore aid the programmer in determining

that he should look at input node’s neighbors and color field.

4.4.3.1 Playing with event weights

In the previous results, each memory event (either a load or a store) was attributed

the same weight (1). Basically, the analyzer was just counting the number of events.

However, more complicated and interesting ways of counting events are possible.

For example, Figure 22 shows the results if only write events are counted and the

weight for each write event is divided by the number of hops required to reach the

actual location being written to and the LocationName from which it is reachable.

In other words, the weight will only be 1 for a particular event if and only if it is a

write event to that specific LocationName (depth of 1). The results show that only

1 −−−− ID to LocationName correspondance −−−−
14422 −> input node : : c o l o r
15383 −>

main graph : : nodes : : : : 1 6 : : ne ighbors : : : : 3 : : ne ighbors : : : : 1 0 : : ne ighbors : : : : 1 3 : : c o l o r

−−−− Formula W = Sum(w/(d+1)) (count = 1.00 (stdDev = 0 . 0 0) ,
t o t a l W = 24.60 (stdDev = 9 . 2 0)) −−−−

6 Group ([1 4 4 2 2]) −> 1 .00 stdDev= 0.00 (4 . 0 7 %)
Group ([1 5 3 8 3]) −> 0 .10 stdDev= 0.30 (0 . 4 1 %)

Figure 22: Results showing the summarized information over ten invocations of
processNode with only write events being counted and weighted inversely by the
number of hops required to reach the data element of the event.

input node::color has a consistent weight of 1 and no other LocationName which

is consistent with what is expected.

4.5 Conclusion

This chapter demonstrated the possibility of analyzing memory access patterns in the

symbolic dataspace of a program. This chapter demonstrated that the extraction of

these patterns could be used in determining the memory footprint of an operation

112

thereby enabling a runtime such as the one described in Chapter 3 to intelligently

schedule concurrently running transactions.

The work described in this chapter lays the groundwork for a more ambitious

framework that is future work which will be able to predict footprints in a context

sensitive manner and also tackle larger and more complex applications than the one

we presented in Section 4.4.

4.5.1 Thesis discussion

Chapter 3 demonstrated that semantic knowledge from the programmer could usefully

be exploited to improve parallelization. This chapter goes further and shows how

semantic information is sometimes already present in a program but is not currently

being exploited because it is obfuscated. This chapter detailed how changing the

level of abstraction, from the address dataspace to the symbolic dataspace, can reveal

additional information that can be put to use in a framework such as the one described

in Chapter 3. This furthers the thesis statement that algorithmic properties can be

used to improve parallelization. Indeed, the change from the address dataspace to

the symbolic dataspace exposes certain properties of the algorithm; the profiling tool

automatically extracts these properties.

Profiling in the symbolic dataspace also has other uses that further the thesis state-

ment. In particular, although this chapter details the use of the symbolic dataspace

to determine the data-footprint of a computation, the access patterns extracted in

the symbolic dataspace can also be used to generate an application signature. In par-

ticular, this could be useful in the N-Way framework to evaluate the diversity present

among the ways: ways that have similar access patterns could be considered simi-

lar and therefore exhibiting low diversity. Working in the symbolic dataspace again

exposes the algorithmic properties of each of the ways: although the exact memory

locations touched by each way may be different, the application (or way) signature

113

would be comparing access patterns in the symbolic dataspace which means that “in-

puts” can be mapped (given the same name) for example. This information could be

used in informing the learning and culling algorithms:

• The learning algorithm could bias its selection towards the more diverse ways.

• The culling algorithm could, instead of culling ways making little progress, cull

ways that are very similar to each other as the benefits of N-Way are directly

related to the amount of diversity expressed.

To integrate with N-Way, a realtime framework would be preferable and is the ob-

ject of future work. The current analysis performed by the analyzer is too intense

to execute at runtime but it could be made more efficient by making simplifying as-

sumptions on the access pattern or trying only to detect broad differences between

ways instead of constructing an accurate signature.

114

CHAPTER V

QUALITY DRIVEN COMPUTING THROUGH

VARIABLE SEMANTICS

The N-way model presented in Chapter 2 proposes a solution to the sequential bot-

tleneck problem described in Section 1.2.2 by launching multiple competing ways to

gain speedup and QoR improvements. N-way exploits algorithmic diversity in certain

problems to do this. This chapter exploits another characteristic of certain problems,

variable semantics, to launch collaborating ways to improve the quality of result.

5.1 Shifting application characteristics

As motivated in Chapter 1, hardware is becoming more and more parallel. However,

concurrently to this shift, applications are also undergoing an evolution from tradi-

tional HPC applications to more consumer-driven ones. Computers have moved from

being used solely for office work to hosting games and multimedia applications. More

specifically they now support what are called “immersive environments” which seek

to provide a more engrossing experience to the user. Games are a prime example

of this as they seek to immerse the user in a virtual world. Desktop environments

and browsers are also trying to be more immersive to offer a seamless and intuitive

experience to the user.

The immersion present in these newer applications exposes two important char-

acteristics that most classical applications did not have: i) variable semantics and ii)

a responsiveness requirement.

Variable semantics is defined as the fact that for a given problem, there can be

multiple correct solutions, some potentially better than others but all solving the

115

same problem. Examples of this were given in Section 1.4.3

The other characteristic strongly displayed by immersive applications is respon-

siveness which is defined as a quick response to user input and providing him/her

with a smooth experience. In the gaming domain for example, this means that the

screen must be refreshed at a speed of more than 30 frames per second (so that the

human eye does not perceive the refresh rate) and that user inputs (such as com-

mands to the game hero) must be addressed quickly (ie: if the user wants to turn,

the turn should happen instantaneously).

This thesis focuses on games as an example of applications that exhibit these

characteristics.

5.1.1 Parallel programming in games

Currently, parallel programming in games relies on the traditional techniques of break-

ing up the computation and/or data into distinct parts that can be processed in

parallel. These approaches are complex and only lead to somewhat incremental im-

provements [74, 22, 19]. Moreover, since games are often written in C/C++, they

involve the use of data structures that rely heavily on pointers which complicates

parallelization due to difficult to analyze data-sharing patterns. Finally, these ap-

proaches do not take advantage of the specific characteristics identified in games:

variable semantics and a responsiveness constraint.

This thesis proposes an alternate approach where the programmer does not ex-

plicitly need to focus on parallelizing the game itself but rather indicates to a runtime

how it can utilize the parallel cores available to opportunistically launch quality im-

provement tasks. This approach therefore takes advantage of the flexibility allowed by

the variable semantics This quality-driven approach attempts to answer the following

goals:

116

• Maximize the quality of game computation by leveraging as many parallel pro-

cessing cores as possible.

• Respect the responsiveness constraint by always providing an acceptable answer

within the time frame available.

• Free the programmer from the difficult task of explicitly parallelizing game code.

• Allow the programmer to design once for a wide range of platforms. Indeed,

since the program will dynamically morph depending on resource availability,

it will be able to adapt to a wider range of platforms. Currently, games need

to be redesigned for newer platforms.

5.2 A quality based approach

In a regular single-threaded program, program flow is very well defined and the pro-

grammer can easily see and trace what the program is going to execute next. In

a multi-threaded application, many such threads exist and execute in parallel in a

manner known to the programmer. In the quality-driven approach, the actual pro-

gram executed will be dynamically determined and changed by a runtime depending

on i) the quality requirements expressed by the programmer and ii) the available

processing resources and time to compute a result.

It is important to note that this does not mean that the application will be un-

predictable. The quality framework allows the programmer to define what quality

is acceptable and as such, certain minimum requirements will always be met. If re-

sources permit, however, the quality produced will be much higher than the minimum

required.

This section describes the notion of quality as well as details the execution model

briefly described above.

117

5.2.1 Notion of quality

Key to the quality-driven approach is the notion of quality of a computed result.

This notion stems directly from the variable semantics characteristic in applications.

As established earlier, multiple results are acceptable in games; therefore, a way to

distinguish these results and rank them needs to be established: the quality of the

result.

The notion of quality is difficult to define in general as it is largely program

dependent. As far as the approach is concerned, quality only needs to be an attribute

than can be used to determine which result is better than another: it is thus domain

agnostic

Quality parameters Quality is defined differently for different objects in a game.

For example, for a bot (a simulated player controlled by AI), quality will be defined

as the level of intelligence it exhibits, for a rendered scene by the level of detail in it

and for a physics simulation by the accuracy of the simulation. All of these aspects of

quality define quality parameters which can be viewed as different dimensions of qual-

ity. Quality parameters must be defined at the start of a program and their number

must remain constant throughout the execution of the program. It is supposed that

there are Nq quality parameters in the program. Identifiers for quality parameters

range from 1 to Nq.

Quality value A quality value is defined as a tuple, of size Nq. Each element of the

tuple is either an integer or the special value ‘NaN’. Element i of the tuple corresponds

to the value for the quality parameter i. The value ‘NaN’ indicates that the quality

parameter does not apply to the object. For example, suppose there are three quality

parameters indicating the level of AI intelligence, the level of rendering detail and

the accuracy in physics simulation. A bot object would have a quality value of the

118

form (x,NaN,NaN) while a graphical object to be rendered would have a value of

the form (NaN, y,NaN).

The operations on quality values are:

• Change a parameter value: each integer parameter value can be incremented or

decremented.

• Compare quality values: quality values that consider the same quality parame-

ters (in other words, that have ‘NaN’ in the same positions) can be compared.

To compare two quality values, a weighted element by element difference of the

non-NaN elements is computed. For example, to compare V1 =
(
a1, . . . , aNq

)
and V2 =

(
b1, . . . , bNq

)
, R =

∑Nq

i=1 (wi (ai − bi)) would be computed where the

wis are programmer defined weights (which default to 1/Nq) meeting the con-

straint
∑Nq

i=1wi = 1. A positive R would indicate V1 ≥ V2.

Use of quality As an example, consider a particle simulation system where the next

position of a particle is determined by the position of its neighbors and a force field

(wind, gravity, etc.). In such a system, two quality parameters could be introduced:

• The distance of the furthest neighbor taken into account to calculate the posi-

tion;

• A boolean indicating if the force field was taken into account.

A particle position object would be associated with a quality value of the form (x, b)

where x would indicate the distance and b whether or not the force field was taken

into account. A quality value of (10, true) would be better than one of (5, false) for

example as the simulation would be more accurate.

Conceptual definition of quality Conceptually, the quality attribute of an object

represents the types of modifications that are being tracked on the object. If the

119

object is modified, its attached quality attribute should reflect that change. Quality

parameters define the types of modifications and some examples are:

• Accuracy level For example, if a program is calculating the Taylor series

expansion, a quality parameter could track the number of terms that were used

to calculate the expansion;

• Precision level Current languages provide float and double to allow com-

putations at various levels of precision. The precision of a value could also be

a quality parameter and used to estimate the error on a result for example;

• Algorithm Alternative A quality parameter could indicate which of a set

of possible computation has been applied to a data element. In a game for

example, such a parameter could be used to track which decision method was

used in an AI algorithm.

5.2.2 Program flow

To explain the concepts of a quality-driven program flow, consider a single-threaded

application. Note that this approach will effectively make the application multi-

threaded but the programmer only needs to write a single-threaded application.

A quality-driven execution is a regular single-threaded execution annotated with

extra quality requirements on certain data objects. The key idea is that the pro-

grammer sets quality requirements on data elements and the runtime then applies,

in parallel, transformations to the data to obtain at least the required quality. Note

that the requirements are minimum requirements but the runtime will seek to produce

the best quality result depending on the resources available. This type of execution

requires two types of information from the programmer:

• The specification of quality requirements.

120

• The specification of Transformers that take data from a certain quality and

modify it in a way that enhances its quality. Transformers can be viewed as

pure functions which improve the quality of their inputs. Transformers are dy-

namically and automatically combined by the runtime to meet the requirements

specified by the programmer.

Unique approach The approach proposed is novel in the sense that the program-

mer does not focus on how a result is obtained but rather on what result is desired.

The runtime will dynamically compose different Transformers in parallel to obtain

such a result. Note that the possibility of combining various Transformers directly

stems from the variable semantics characteristic of games. The main thread of exe-

cution (written by the programmer) is only responsible for specifying quality require-

ments and the computation required to compute the “non-variable” values (those

to which variable semantics do not apply). The main thread therefore ensures that

the program meets the minimum standard required of it. While the main thread

is single-threaded, the running of Transformers in parallel will effectively make the

application multi-threaded.

5.2.2.1 Specifying quality requirements

Quality requirements can be specified using the following types of calls:

• Quality requirement The programmer can require a specific data element

to be of a requested quality at a specific point in the program. Note that

given that multiple results may be acceptable, this requirement can involve i) a

minimum acceptable requirement, ii) a preferred requirement or iii) a trade-off

requirement where the programmer is willing to wait for some time for a better

result. To maximize the possibilities of getting a better result, it is best to make

this requirement known to the runtime before it is actually needed (in a way

121

similar to futures [43] where a computation for a value is non blocking until it

is actually used).

• Queries The programmer can query the runtime as to the current state of

computations, the availability of results for data elements, etc. This information

can be used by the programmer to check how the runtime is handling the work

and debug any issues that arise.

The specific API for these calls will be given in Section 5.3.

5.2.2.2 Specifying Transformers

Transformers are simply procedures that operate on data elements with a quality

attribute and transform them to produce the same data element but with a different

level of quality. One can view Transformers as offloaded pure functions. Indeed, in

the quality framework, the runtime will copy any input required by the Transformer

similar to when data is copied to a GPU for processing. Note that since the computa-

tion occurs in parallel to the main program, the inputs may be changed by the main

program while the Transformer is processing. In this case, the computation of the

Transformer is invalidated and it starts over in a way similar to the rollbacks used in

STM systems. However, since Transformers live in an isolated environment, the cost

of a rollback is simply the cost of the computation that has already occurred.

5.2.2.3 Hierarchical threads

In the quality model, a “main thread” instructs the runtime of certain quality require-

ments. The computations launched by the runtime as a result of these instructions

operate in a closed environment where all data is copied over to them (there is no

sharing of data to prevent synchronization issues). Thus, each Transformer thread

can also be viewed as a “main thread” operating in a new environment. The model

can thus be extended to have hierarchical Transformer launches.

122

5.2.3 Summary

To summarize, the quality model introduces a new program flow based on quality

requirements. A main thread instructs the runtime as to what it requires in terms of

quality of data elements and the runtime will dynamically launch the best possible

computation threads to satisfy these requirements. Each new computational thread

can also make additional quality requirements.

5.3 Use scenarios and API

This section presents use scenarios for the approach as well as the API to support

them. It also describes the innards of the runtime.

5.3.1 Extensible program semantics

The key concept behind the quality approach is extensible program semantics. The

runtime’s role is to provide the programmer with the possibility of adding, improving

or morphing computations that are taking place. The exact nature of the trans-

formations that occur are controlled by the programmer supplied quality attributes.

Main Program
Addition

Must execute May execute

(a) Addition of a computation
to the main program

Must execute

Vers. 1

Vers. 3

Vers. 2
VQR

Comp.

Main

Program

Choose

VQR: Variable Quality of Result

(b) Specification of multiple ex-
ecution paths for a given func-
tion

Main Program

Main

Program’

Main

Program’’

Main

Program

(c) Morphing of the program
into an extended one

Figure 23: Extending a program’s semantics

5.3.1.1 Addition

Addition is the most straightforward concept. The programmer defines an optional

computation that is not absolutely required (for example, adding shadows or complex

123

lighting effects in a game). While these effects are visually impressive, they are not

required and may unacceptably degrade performance. The use (or not) of these effects

would be tracked by a quality parameter; they will only be run if sufficient resources

and time are available. This is illustrated in Figure 23(a).

5.3.1.2 Revision and refinement of a result

The framework centers around the notion of quality where each data object can be

associated with a quality attribute. Transformers change an object of one quality to

the same object but of better quality by using certain inputs. However, when inputs

change, it is possible to “revise” a calculation in progress instead of purely canceling

it. An example of this is given in Section 5.3.3.2.

Refinement means that a Transformer can use a previously calculated result by

another Transformer and bypass some of its computations. For example, in a program

calculating Taylor expansion terms, if Transformer A has calculated the first 10 terms

of the expansion, if Transformer B wants to calculate 20 terms of the expansion, it

should not have to recalculate the first 10 terms.

In both cases, a previously computed result (or partial result) is reused to compute

the new result thereby eliminating redundant computation. The runtime provides

support for this.

5.3.1.3 Morphing

Previous concepts added small pieces of computation locally without significantly

changing the overall flow of the program. In the scenario of program morphing how-

ever, a program is allowed to morph into a more resource intensive program perform-

ing a similar task. Figure 23(c) illustrates this idea.

In the MPEG encoding algorithm, for example, a task that started out coding an

I frame could morph into coding a P or B frame provided enough time and resources

are available. The morphing will require more resources for a longer period of time

124

and thus, mispredicting a program morphing can be expensive. However, it does

allow interesting programming possibilities especially in soft real-time systems since

deadlines are not hard.

5.3.2 API

For a program to use the quality infrastructure, two steps are required. In a first

phase, the programmer must inform the runtime of all the Transformers (ie: the

possibilities available to it to improve quality for a given class of objects). The

programmer must also define the quality parameters that will be relevant to him and

inform the runtime of them. This is the registration phase. In a second phase, the

programmer will make use of the runtime by informing it of his quality requests as

described in Section 5.2.2.

5.3.2.1 Registration phase

During the registration phase, the programmer must specify Transformer objects

and register them with DataWithQuality objects. DataWithQuality objects are also

registered with the runtime to enable the runtime to uniquely identify them.

Transformer objects A Transformer is defined in Figure 24. Note that all code

snippets are simplified to make them more legible. A Transformer is a combination

class Transformer {
/∗ . . . ∗/

3 Transformer (void (func) (BaseType ∗ curValue , Qual i tyVector
∗ curQual ity , const UserInput<BaseType , InputType>
∗ input)) ;

Qual i tyVector ge tQua l i tyMod i f i c a t i on (Qual i tyVector
∗ curQual i ty) ;

t ime t getTimeEstimate () ;
8 } ;

Figure 24: Definition of a Quality Transformer

125

of three functions:

• A work function as defined above as the func argument to the constructor.

The work function will take the current value for an object, its current quality

and other input data and produce the same object at a different quality level.

• A quality modification function which estimates how the Transformer is

going to modify a data object in terms of its quality.

• A cost estimator function which estimates the time cost of executing the

Transformer.

All three functions have to be defined by the programmer. This may seem difficult

for the latter two functions but they are merely used as approximate indicators by

the runtime which uses them to determine the best Transformer to use to meet the

quality requirements while still meeting soft deadlines (responsiveness).

DataWithQuality objects A DataWithQuality object wraps around an arbitrary

user-defined object and adds a notion of quality to it. A DataWithQuality instance

will contain multiple values for the wrapped object, all with different levels of quality.

Figure 25 shows the important aspect of this object. A DataWithQuality object thus

contains the different Transformer objects that apply to it to indicate the operations

that can be executed on it. It also contains a set of values (contained in values)

which contains all the different values, at varying degrees of quality, that have been

calculated for the wrapped object.

Note that DataWithQuality objects are globals that the runtime uses to keep track

of all the quality-tagged objects. The Transformer threads operate on DataWithQual-

ityVariable objects which are thread-safe instances of DataWithQuality objects.

126

class DataWithQuality {
2 DataWithQuality (BaseType ∗toWrap) ;

stat ic TransformerId setTrans former (Transformer<BaseType ,
InputType>∗ t rans fo rmer) ;

stat ic void addQualityType (QualityType type) ;
7 protected :

s td : : vector<DataQualityPair<BaseType> > va lue s ;
DataWithQualityId in s t a nc e Id ;

BaseType∗ getResu l tForQual i ty (Qual i tyVector ∗ q u a l i t y) ;
12

BaseType∗ getBestResu l tForQual i ty (Qual i tyVector
∗ q u a l i t y) ;

BaseType∗ ge tBe s tPo s s i b l e (Qual i tyVector ∗ q u a l i t y) ;
} ;

Figure 25: Definition of DataWithQuality

5.3.2.2 Runtime API

The runtime API has been kept very simple and only the smallest number of directives

that would allow the greatest expressiveness are allowed. This section only describes

the methods related to specifying quality requirements, and not the query methods

which have largely a debugging role. The important functions are described in Fig-

ure 26. The calls closely match the different quality requirements that a programmer

can make as described in Section 5.2.2.1. Each call takes a DataWithQualityVariable

object that will be modified (except in the case of a future quality request) to con-

tain the new value as computed by the Transformer objects associated with the type

passed. All calls (except the future quality request) are blocking although some may

block for longer than others. The requireQuality call will block until a result of

sufficient quality has been calculated. Other calls will block for much less time (the

preferQuality call will block for a very short time as it only returns values that are

currently available).

127

class Runtime {
void r equ i r eQua l i t y (DataWithQualityVariable<BaseType ,

InputType> ∗ var i ab l e , Qual i tyVector ∗ reqQual i ty) ;

4 void p r e f e r Q u a l i t y (DataWithQualityVariable<BaseType ,
InputType> ∗ var i ab l e , Qual i tyVector ∗ pre fQua l i ty) ;

void t r a d e o f f Q u a l i t y (DataWithQualityVariable<BaseType ,
InputType> ∗ var i ab l e , Qual i tyVector ∗ reqQual i ty , unsigned
int waitTime) ;

void f u tu r eQua l i ty (const DataWithQualityVariable<BaseType ,
InputType> ∗ var i ab l e , Qual i tyVector reqQual i ty , unsigned
int avai lTime=0) ;

9 } ;

Figure 26: Principle API calls for the quality-driven runtime

5.3.3 Runtime implementation

This section describes some of the mechanisms used by the runtime to implement the

programming styles described in Section 5.3.1.

5.3.3.1 Quality aware runtime

When the runtime receives a quality request from a thread in the program it will try

to satisfy it as quickly as possible. The basic algorithm is given in Algorithm 2. The

algorithm changes slightly depending on the type of request the runtime receives:

• For a strict quality requirement, the full algorithm will be used.

• For a prefer quality requirement, only results currently available will be used.

• For a trade-off quality requirement, the runtime will use the full algorithm but

abort it if it goes over the time given to it by the programmer.

• For a future quality requirement, the full algorithm will be used but nothing

will be returned to the call-point of the future in the program. At the future’s

wait-point (say tradeoffQuality), the result and quality will be returned.

128

Input: DataWithQualityVariable data
Input: QualityVector reqQuality
Output: DataWithQualityVariable resultData
Output: QualityVector retQuality
if ∃value st. Quality (value) > reqQuality then

return value and Quality (value)
else

if ∃ running Transformer p st. Quality (Result (p)) > reqQuality then
Wait for p;
return Result (p) and Quality (Result (p))

else
foreach Transformer p applicable to data do

if QualityResultEstimate (p) > reqQuality then
if CostEstimate (p) < availResource then

foundTransformer = p;
break

end

end

end
if foundTransformer then

Launch foundTransformer;
Wait for foundTransformer;
return Result (foundTransformer) and
Quality (Result (foundTransformer))

else
FindBestMatch;

end

end

end

Algorithm 2: Basic quality response algorithm for the quality-driven runtime

5.3.3.2 Implementation of extensible semantics

Section 5.3.1 defined a few use cases of the quality approach; this section shows here

how the proposed implementation allows these cases to be implemented.

Addition Addition of an additional computation is very easily done with the run-

time and is used extensively in the result section for Quake 3. The code for adding

a computation is given in Figure 27. The code snippet considers one quality param-

eter which can take either a value of 0 or 1 depending on whether the additional

129

1 Qual i tyVector qv = (1) ; /∗ Corresponds to a d d i t i o n a l t a s k be ing
done ∗/

globalRuntime−>f u tu r eQua l i ty (data , &qv , time) ;
/∗ Do some work f o r time ∗/
globalRuntime−>t r a d e o f f Q u a l i t y (data , &qv , waitTime) ;

Figure 27: Adding a computation to a program

computation has been performed. The programmer starts by informing the runtime

that he will want the additional task run on the data (by specifying that the quality

should be 1). Some parallel main task is then performed. The tradeoffQuality call

asks the runtime to return the result of the computation. If the additional task has

completed, the result will be returned immediately. Otherwise, the runtime has the

option of waiting for waitTime. If after that time, the result is still not available,

data will be returned unmodified (with a quality of (0)).

Revision Revision is probably the hardest concept for the programmer to imple-

ment but can be very powerful. An example based on the MPEG algorithm is given in

Figure 28. In the MPEG algorithm, pictures (or frames) can be encoded as I-frames,

P-frames or B-frames. The I-frame takes the least time to encode but also produces

the least compression. P and B-frames allow temporal compression (by comparing

the frame to past and possibly future frames) but require additional work to find the

‘motion vector’ which identifies how the image has changed. Calculating the motion

vector is an expensive process and exhibits a great variation in execution time (the

algorithm might find the motion vector right away or it might have to search the

entire space). The example shows the encoding of a P-frame with some filtering. In

the example one can see that the input given at the time the call to futureQuality

is made changes. The Transformer that was launched to meet the futureQuality

request is thus operating on older data which may not produce the highest quality

result. The runtime therefore makes the change available to the Transformer which

130

1 Qual i tyVector qv = (1) ; /∗ Corresponds to f ind mot ion be ing done
∗/

globalRuntime−>s e t Input (data , user Input) ;
globalRuntime−>f u tu r eQua l i ty (data , &qv , time) ;
c a l c u l a t e f i l t e r (userInput−>getInput−>block1) ;
globalRuntime−>updateInput (data , user Input) ;

6 c a l c u l a t e f i l t e r (userInput−>getInput−>block2) ;
globalRuntime−>updateInput (data , user Input) ;
globalRuntime−>t r a d e o f f Q u a l i t y (data , &qv , waitTime) ;

Figure 28: Quality-driven MPEG encoding algorithm

is then responsible for checking whether new inputs are available. While this does

put the burden on the programmer, it also allows great generality and flexibility. The

Transformer can ignore any input change or partially take them into consideration.

Refinement Refinement is a concept completely implemented by the runtime. Con-

sider the example of calculating Taylor expansion terms again. If a programmer-

defined thread A requires an object foo to be of quality 10 (with 10 terms used)

and a programmer-defined thread B requires the same object to be of quality 20.

Originally, both threads have foo of quality 0. When thread A makes a call to the

runtime, a Transformer to calculate the first 10 terms is launched. When thread B

makes a call to the runtime, the runtime will notice that the first 10 terms are being

calculated by another Transformer. It will then look for a Transformer capable of

bringing the quality from 10 to 20 and compare it with a Transformer capable of

bringing the quality from 0 to 20. In this case, it will most likely determine that it

is better to wait for the result from the Transformer already running and pipe it to

another Transformer to meet B’s request. Figure 29 shows this.

The strength of the runtime thus lies in the fact that it is capable of sharing re-

sults from other computations, possibly launched in other threads to accelerate the

computation of future tasks. This does require some support from the Transformer

131

Figure 29: Refinement of a computation. Thread A requests the result first. The
octagons represent transformers. In this example, the runtime will ask Transformer 1
to produce Value 1 which will then be used to compute the result (Value 2) for thread
B. Transformer 3 is not used as a result of quality 10 is already available to use.

objects and they have to be written to be extensible. In Figure 29, the three Trans-

formers may actually be one and the same with intelligent quality estimator and cost

estimator functions. The runtime will present all the possible values that it has access

to (current and in progress) as base input to the estimator functions of all the Trans-

formers. This allows the Transformers to determine the estimated produced quality

and cost based on the quality of the value that it will be passed in.

Morphing Morphing is intrinsically supported by the runtime as it chooses a Trans-

former to improve quality based on quality requirements but also resource constraints.

The computations launched by the runtime to meet the quality requirements can thus

132

be radically different depending on resource availability. Figure 30 illustrates this

with the coding of a MPEG frame. Supposing the programmer defines 3 Transformer

Qual i tyVector qv = (1) ; /∗ S i g n i f i e s produce at l e a s t an I−Frame
∗/

2

globalRuntime−>t r a d e o f f Q u a l i t y (frameData , &qv , avai lTime) ;

Figure 30: Program morphing

objects, one calculating an I-frame, another a B-frame and a third a P-frame, the

runtime can dynamically choose which one to run based on the resource availabilities

and the time constraint given by the programmer. Here one sees that the main pro-

gram, which will be blocked until one of the Transformers finishes calculating, will

take on one of three possibilities.

5.3.3.3 Runtime strengths

To summarize, the strengths of the runtime are the following:

• Avoid redundant calculations by re-using results produced by similar computa-

tions.

• Construct pipes of execution by allowing the result of one computation to be

used as the input to another computation.

• Allow computations to iteratively refine their results if new inputs become avail-

able.

• Abstract away from the programmer the issues related to data sharing. The

runtime takes care of passing arguments by copy semantics and synchronizing

the copies at appropriate places (when a quality requirement is made).

133

5.4 Experimental results

5.4.1 Quake 3 description

To demonstrate the quality approach, the popular First Person Shooter (FPS) game

Quake 3 was modified.

Quake 3 is a multi-player FPS game (totaling about 285000 lines of C code) in

which the player’s character moves in a virtual world called a map, interacting with

objects in it (such as picking up weapons, power-ups etc.). The goal of the player

is to score points by “killing” a virtual enemy (either computer controlled bots or

characters controlled by other human players). The Quake 3 game is built upon

the Quake 3 game engine which consists of the core of the game play and other

functionality. In the general sense, a game engine consist of many different modules

[50, 51, 7]. The most complete game engines, like the one used in Quake 3, include

rendering—to draw the scene onto the screen—, a physics engine—to describe the

physical interactions—, an AI engine—to control the bots—, sound support and other

lower level components to support scripting and networking for example.

The possibilities of extending Quake 3’s semantics are numerous in the physics

engine (to reduce “physical impossibilities” for example) and AI engine (to add more

“thinking” like collaboration, path planning, etc.) in particular.

Quake 3 was selected as a demonstration vehicle as a version of the code is freely

available [83] which allowed easy integration with the quality framework. Quake 3 is

also a full fledged game engine which made the experiments realistic.

Note that in [86], Zyulkyarov et al. seek to add parallelism to Quake through

STMs thereby allowing Quake to run on multi-core platforms. This work is different

in the sense that, while it uses the same demonstration vehicle, it exploits variable

semantics in game engines to extract parallelism.

134

5.4.2 Experimental setup

In the experiments, ‘quality’ represents whether or not certain additional effects were

run. In this sense, the experiments mostly used the ‘addition’ programming con-

struct to opportunistically improve the game. The measured frame rate was used to

determine the available time for computations.

Since Quake is written in C, a modified version of the quality framework was

implemented to be compatible with it. Newer games are written in C++ and the

framework would fit more easily in those. However, the source code for those games

is not publicly available.

The modified version of Quake was run on an Intel quad-core Xeon. Note that

given the implemented effects, at most one extra core was utilized. For each run,

Quake was played for two minutes in full-screen mode with other bots. When the

quality framework was used, the runtime aimed to maintain 65 FPS 1.

Four different effects that modified the behavior of rocket and grenade projectiles

to improve their quality were implemented. The words ‘effect’ and ‘quality improve-

ment’ are interchangeably used through this section.

In the original version of Quake 3, rocket projectiles are not affected by gravity,

they always explode on impact, and do not employ any homing logic. Three effects

to improve this default behavior were implemented: i) rockets are subject to gravity,

ii) rockets can “bounce” off of walls and iii) rockets can dynamically identify and

home in on adversaries. The fourth effect has to do with grenades which can now be

“attracted” to nearby opponents.

Note that these effects are for illustration purposes only. A game programmer,

with his more intimate knowledge of the game, may have chosen other effects.

1Note that since Quake is an old game, rendering details were maximized so that the baseline
case (without any effects and without the quality framework) ran at 70-75 FPS.

135

5.4.3 Results

Table 6: Mean and standard deviation of the FPS (frame-per-second) for different
quality improving effects. UP means that the baseline version of Quake only had one
thread and SMP means that the rendering thread was separate.

(a) One Quake thread (UP)

Effects
Inline Quality Driven

UP UP
Mean StdDev Mean StdDev

None 72.4 9.62 N/A N/A
Gravity 70.4 10.47 72.8 7.39
Bounce 59.7 11.25 72.6 9.46

Gravity + Bounce 56.9 12.93 73.5 8.44
Gravity + Bounce + Homing 56.5 11.52 66.6 9.57

Gravity + Bounce + Homing + Vortex 56.1 12.58 68.3 9.39

(b) Two Quake threads (SMP)

Effects
Inline Quality Driven
SMP SMP

Mean StdDev Mean StdDev
None 70.6 12.04 N/A N/A

Gravity 69.3 9.98 68.2 9.6
Bounce 64.6 12.50 67.3 9.68

Gravity + Bounce 54.6 12.21 68.7 7.82
Gravity + Bounce + Homing 54.2 11.87 70.7 7.63

Gravity + Bounce + Homing + Vortex 53.7 11.7 70.3 8.48

The quality framework’s goal is to improve the quality of the computations without

compromising performance. The results will also show that the framework allows for

better resource usage by occupying more of the available resources when possible.

Videos showing the effects are available at http://www.cc.gatech.edu/~romain/

IPDPS_Q3.

5.4.3.1 Performance is maintained

Results concerning performance are presented in Table 6. The tests were run with

the various effects turned on for both the uni-processor version (where there is no

separate rendering thread) and the SMP version of Quake (where rendering is done

136

http://www.cc.gatech.edu/~romain/IPDPS_Q3
http://www.cc.gatech.edu/~romain/IPDPS_Q3

in a separate thread). The “inline” columns show results when the effects were always

‘on’: quality is therefore maximized at the expense of performance. The ‘qual. driven’

columns show results using the quality framework when the effects are dynamically

activated depending on resource and time availability.

Several conclusions can be drawn from these results. First, inlining all special

effects severely impacts user experience as the frame rate drops significantly (by

around 23% for both the UP and SMP versions). Opportunistically running the

special effects with the quality framework does not cause such a drastic degradation

in frame rate. With all effects opportunistically activated, the degradation in FPS

was less than 1% in the SMP case, and about 5% in the UP case.

5.4.3.2 Quality is improved

In the quality-driven approach, the frame rate is maintained in part because the

runtime decides if and when to launch a quality improving computation based on

the amount of resource and time available. Table 7 shows the proportion of effects

asked for by Quake that were actually launched for the SMP version of Quake with

all effects enabled.

Note that in Table 7 the total number of canceled effects is much higher than the

sum of individual canceled effects due to an implementation artifact where the type

of canceled effects is not always known. In other words, the total number of canceled

effect is accurate but the exact distribution is unknown. The results show that around

Table 7: Breakdown of effects that were ‘unlaunched’, ‘executed’ and ‘canceled’ for
the SMP version of Quake. No effects were culled after they started executing.

Effects Total Unlaunched Executed Canceled
Gravity 228 160 68 0
Bounce 744 420 160 164
Homing 2003 1233 766 4
Vortex 2273 1037 1235 1

All 6572 2850 2229 1493

137

34% of all effects were executed. 43% were not launched due to a lack of time and

23% were canceled due to the game play no longer needing them (misprediction).

It is also interesting to note that some of the more expensive effects (such as

bouncing2) are executed much more infrequently (only 21% of the times) than effects

that require fewer resources such as gravity (29% of the times) or even the grenade

effect (54% of the times). Since equal weights were given to each of the effects, this is

consistent with the runtime’s goal to maximally improve performance without degrad-

ing performance. Effects that are ‘cheaper’ and give the same quality improvements

as more ‘expensive’ ones will be favored.

5.4.3.3 FPS evolution

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 20 40 60 80 100 120

F
P

S

Time (s)

No effects
Inline effects
Opportunistic

Figure 31: Evolution of the frame rate in Quake

2Rocket bouncing is expensive as it increases the ‘life’ of the missile and the game therefore has
to track more objects.

138

Figure 31 shows the evolution of the frame rate for the execution of the SMP ver-

sion of quake with i) no effects, ii) all effects inlined and iii) effects opportunistically

added using the quality framework. This corresponds to the data summarized in the

first and last rows of Table 6.

The results show that in the opportunistic case, the frame rate is slightly lower but

smoother than with no effects at all. This shows that the runtime is taking advantage

of the opportunities presented by a higher frame rate by running quality improving

computations. Note that when all effects are inlined, the frame rate is consistently

lower than the other two cases.

5.4.3.4 Framework overhead

The memory impact of the modifications to Quake was measured, specifically the

non-swapped physical memory usage (size of text-resident and data-resident sets).

The baseline Quake program (UP version) used 81 MB of RAM. Inlining all effects

required 82 MB of RAM. With the quality approach, running those effects caused an

increase of 6.2% to 87 MB. This increase is mostly due to the bookkeeping overhead

(in the runtime), the copy semantics and the thread states that have to be kept for

context switching.

Finally, the time the main thread waits for results from the Transformers was also

measured. Out of a total runtime of 2 minutes, the main thread waits for a result

for less than 93 milliseconds which shows that the runtime does not significantly slow

down the main thread and correctly determines when to opportunistically launch an

effect and when not to.

5.5 Related work

This section will first describe the state of the art in dynamic and adaptive Quality of

Service systems. It will then summarize related work in parallel programming models

as applicable to our system. It will also briefly describe related work in real-time

139

systems.

5.5.1 Adaptive QoS

There is a significant body of literature on application, middle-ware and operating

system level frameworks for supporting dynamic Quality of Service [25, 18, 40], espe-

cially in soft real-time environments. The Rialto Operating System [42, 41] provides

programming abstractions that allow multiple real-time and non real-time programs

to execute concurrently and share resources. In [59], the authors propose a system

based on a Fair Share scheduling algorithm in which programs are allotted resources

(specifically the CPU) depending on the availability of those resources and the “im-

portance” of that program relative to all other programs currently running. In yet

another work [10], the authors propose an execution model where a program has mul-

tiple execution levels and can switch between them depending on the resources that

have been allocated to it by the soft real-time scheduler.

This work differs from the ones above in several aspects. Firstly, the presented

system is based on “variable semantics” - the program can, depending on resource

availability, adjust its own functionality. The “execution repertoire” described in [42]

is the closest to this notion, although not as dynamic. Work by Kumar et al. also

exploits variable semantics [47] but presents an controller-based system to dynami-

cally tweak the application to meet soft real-time deadlines. Kumar does not focus

on exploiting parallel resources.

Secondly, the emphasis in these works is on orchestrating all concurrently execut-

ing programs such that their real-time constraints (if they have any) are satisfied.

In the presented system however, the emphasis is on dynamically exploiting resource

availability.

Finally, all the above works on dynamic QoS have been proposed in the context

of multiple, largely independent programs executing concurrently in a system. In

140

contrast, the presented system has been developed in the context of a single program

with multiple cooperating threads, where all of the threads share a significant amount

of data. This distinction results in the objectives and mechanisms of the runtime

system being drastically different than in the other works, especially in the way a

result used and produced by a Transformer (a thread) affects the future launching of

other Transformers.

5.5.2 Parallel Programming Models and Languages

Extensive work has been carried out (and is also underway) in the parallel computing

community on programming models that support the parallelization of applications.

Such programming models include sequential languages augmented with threading li-

braries (C with Pthreads [49] or MPI [34]), programming language extensions that add

parallel semantics to sequential languages (C with OpenMP [21]), and programming

languages with inherently parallel semantics (X10 [14]). While parallel programming

models have had significant success in the scientific computing community, a lot of

the desktop/home computing domains like multimedia and gaming are extremely

compute-intensive but are not able to make use of the multiple cores. The paral-

lelism inherent in these applications is often either too unstructured to express using

OpenMP or too complex to express using a threading library like Pthreads or through

message passing between threads/processes as in MPI which force the programmer

to handle all the low level synchronization issues between threads.

The proposed approach relies instead on the imprecise nature of the computation

performed by such applications in order to utilize the additional processor cores. The

imprecision can be in terms of i) the numeric accuracy of results, ii) the sophistication

of models employed, and iii) whether parts of the computation can be skipped from

time-to-time. Imprecision is captured in the notion of quality in the model.

141

5.5.3 Soft Real-time Systems

The real-time systems work [9, 59, 28] differs from the proposed approach because the

emphasis there is on orchestrating the real-time tasks in a manner that gets all the

tasks executed by their deadlines, and not on exploiting parallelism or the dynamic

availability of compute resources. This often leads to poor resource utilization in

real-time applications. The real-time model is suited for mission and safety critical

applications whereas our approach is well-suited for scaling the user experience as

more compute resources (multicores) become available. Some work has been done in

the real-time community on specifying optional parts of a task and on scheduling the

mandatory and optional parts to meet their deadlines [23]. However, this work only

deals with tasks as abstract entities and mainly focuses on their scheduling aspects

and does not deal with programming abstractions, such as the notion of quality. In

particular, the proposed framework allows the definition of a larger class of imprecise

semantics using concepts such as refinement to iteratively improve the accuracy of

results, extension to extend the computation to a larger size of data and revision to

update results using more up-to-date versions of data.

5.6 Conclusion

This chapter demonstrated a new approach to enhancing 3D video games through

the exploitation of parallel resources. This new approach allows the specification of

scalable semantics in applications that can be enriched and thus adapt to the amount

of available resources at runtime. This chapter proposes a C++ API allowing the

programmer to define how quality is associated with data. It provides mechanisms for

the programmer to dynamically modify his program through quality requirements.

Interesting domain specific optimization possibilities are offered by the API and its

implementation. This infrastructure is shown to be useful to enrich a well known

game called Quake 3 on an Intel quad-core Xeon. The results show that it is possible

142

to add many effects extending the semantics when a second core is available without

degrading the frame rate which measures the user experience.

5.6.1 Thesis discussion

The results presented in this chapter show that, for applications that have variable

semantics, it is possible to utilize idling resources to speculatively launch quality-

enhancing additional ways thereby improving the overall computation if there is suf-

ficient time. The quality driven framework presented in this chapter exploits variable

semantics which is an algorithmic property present in many emerging application

domains (games and multimedia). The framework allows a variable semantic appli-

cation to utilize all available parallel resources to provide the best possible quality to

the end-user. This therefore proves the thesis statement since the property of variable

semantics is used to occupy idling cores to improve the quality of the result.

143

CHAPTER VI

RELATED WORK

The related works specific to the N-way model, the data-structure driven framework

as well as the quality driven framework were discussed in each of those individual

chapters. This chapter covers common related work. In particular, this chapter covers

the related work in the area of parallel programming models and the solutions that

have been explored to address the problem of the sequential portions of applications

and the parallelization of irregular algorithms.

6.1 Addressing the sequential bottleneck

Computer architects have, over the years, greatly improved the sequential perfor-

mance of chips by (among other things):

• Increasing the operating frequency;

• Removing “false” dependencies (‘write after write’ and ‘write after read’) through

the use of a reorder buffer;

• Improving branch prediction which allows a processor to speculate past a branch

and therefore increases the number of instructions executed per second. Ar-

chitects have also used predictive techniques to predict memory dependencies

between memory operations further improving performance;

• Improving code and data pretetching thereby allowing processors to not be held

back by the relatively slower memory subsystems.

However, these improvements have been restricted to making a single core faster; the

issue of utilizing multiple cores to improve the performance of sequential codes has

144

not been addressed. Furthermore, very few programming models address this issue.

6.1.1 Programming models to improve sequential execution

Work by Trachsel et al. [77, 78] did address this in a way similar to the presented

N-way work. However, the model they introduce, called CPE (Competing Parallel

Execution) is akin to the “brute force” N-way model and does not address the issue

of resource waste. The N-way model introduces a mathematically sound learning

model to best estimate the benefits that can be derived from concurrently launching

multiple instances of the same computation.

6.2 Expressing parallelism in irregular algorithms

Much more work has gone into making the expression of parallelism in irregular

algorithms simpler and more intuitive for the programmer.

6.2.1 The Galois programming model

The Galois programming model [46, 55] also exploits algorithmic properties to im-

prove the parallelization of irregular algorithms. The Galois model was the first to

directly tackle the problems associated with irregular algorithms.

The algorithmic property exploited by the Galois model is commutativity : the

programmer defines whether or not two operations commute semantically. If two

operations commute, they can happen in parallel, and if not, they must be serialized.

The Galois model therefore raises the level of abstraction as far as conflict detection

is concerned: instead of relying on conflict detection at the memory level (either

at a byte or object level), the Galois model detects conflict at the operations level.

The differences between the Galois model and the data-structure driven framework

developed in this thesis were described in Section 3.6.

145

6.2.2 Concurrent Collections

The Concurrent Collections model (or CnC) [44] , developed by Intel, allows program-

mers to adopt a more stream-oriented view of a computation. In CnC, programmers

define ‘steps’ that need to be executed as well as data elements that are consumed

and produced by each of these steps. The execution of a step generates more steps

and data elements which will, in turn, lead to more step executions.

The CnC model therefore allows programmers to think solely about dependencies

between steps in a way that is much more akin to the natural diagram flow of a

program. A runtime system manages the actual discovered parallelism freeing the

programmer from having to explicitly specify the presence or absence of parallelism.

6.2.3 Analysis based approaches

Other approaches such as DPJ and Jade (both described in Section 3.6) seek to

determine the amount of parallelism either statically or dynamically through program

analysis. These approaches are similar to the ones developed in this thesis but do not

seek to exploit algorithmic properties relying instead of program analysis and shifting

the weight away from the programmer to a more fixed approach. While it is frequently

advantageous to free the programmer from certain tasks, this thesis motivates that

allowing the expression of knowledge that the programmer already has is beneficial

and can be usefully exploited.

146

CHAPTER VII

CONCLUSION

As increasing parallel resources become more and more common in the end-user

arena, programmers will have to adapt to this new programming landscape and devise

techniques to continuously offer more or better features to the user. Programmers

can no longer enjoy the free ride given to them by computer architects: frequency

scaling is no longer possible and applications can no longer piggy-back on increases

in frequency.

To take advantage of the increase in parallel resources, programmers have to solve

the dual problem of usefully utilizing idling resources and addressing the bottleneck

of hard to parallelize or sequential codes. This thesis demonstrates that traditional

parallel programming techniques that rely on the “breaking-up” of computations

(such as data and task parallelism) are not sufficient to address these problems for

a large class of applications. Instead, this thesis shows how algorithmic properties

can be exploited to devise novel programming models that solve both problems. In

particular, the N-Way programming model exploits algorithmic diversity to specu-

latively launch competing ways to perform the same computation picking the best

one just in time. The quality driven computing model exploits variable semantics

to speculatively launch additional quality improving ways that are, time permitting,

merged back into the main computation thereby providing maximal quality within

the constraints of the platform. Finally, data-structure semantics can be expressed

and exploited to improve the performance of optimistic parallelism. This last model

applies specifically to computations that are hard to parallelize (a ‘may’ dependency).

All three models presented enable applications to opportunistically scale with the

147

increasing platform resources; the application will adapt to the amount of parallelism

that it can exploit and perform better on more parallel platforms irrespective of

whether it is embarrassingly parallel or hard to parallelize. Going forward, similarly

novel techniques will have to be developed for other classes of applications; this thesis

deals only with computations that exhibit one of the algorithmic properties discussed

(diversity, variable semantics and data-structure semantics).

7.1 Future work

This thesis opens up multiple areas of interesting research. This section describes

some of the possible future work. Refer to the specific ‘Future work’ sections of

each chapter for more detail. This section summarizes the main points and provides

overarching future work.

7.1.1 N-way framework

Different paths of research are opened by the N-way framework.

7.1.1.1 Parallelism versus N-way

The N-way model is currently designed to exploit parallel resources only through the

expression of diversity. However, it would be interesting to study the implications of

having both traditional parallelism (task/data) and N-way parallelism in the same

application. Several challenges exist in trying to determine the optimum “mix” of

traditional parallelism versus N-way parallelism. Furthermore, one could also consider

the implications of having multiple parallel implementations of the same computation:

each parallel implementation could constitute a way. Indeed, given the complexity of

parallel programming and the unpredictable interleavings which may occur, there is

a large diversity due to the parallel implementations. This added diversity could be

exploited by N-way with the caveat that each way now uses many more resources and

the model is therefore potentially more wasteful. More aggressive culling and more

148

precise and accurate learning schemes would be required to compensate for this.

7.1.1.2 Power implications and thread collaboration

The power implications of N-way could also be explored. Intel recently implemented

in its Atom chips, the principle of ‘race to idle’ where the chip tries to execute as

quickly as possible (using the most energy) so that it finishes its work as soon as

possible thereby enabling it to sleep. The N-way model is ideal for the ‘race to idle’

as it uses all available resources for a shorter period of time. We have already done

some initial exploration of the power implications of the N-way model in [17] but

this could be pushed much further. In particular, the N-way model could be given

a power envelope to respect and have to work within those constraints. One could

also imagine that the results of the ways that are thrown away could be somehow

reintegrated in the committed results thereby reducing the waste of the work that

was done. We have collaborated on some initial work on thread collaboration [65]

which could be used to utilize the results of the thrown-away ways.

7.1.1.3 Improving the learning model with static information

Currently, the N-way model only relies on the information it learns at runtime about

the execution time distribution to determine the set of ways to launch. This could be

complemented by static analysis trying to predict the execution time of a particular

way. Some relevant work includes [1, 36]. Such a prediction could be used to guide the

learning algorithm in making better choices by providing it with more information.

7.1.2 Profiling in the symbolic dataspace

This thesis utilized the information gained from the patterns extracted in the sym-

bolic dataspace to determine the potential overlaps between the data footprints of

operations. This work could be extended to better classify patterns, for example by

adding context sensitivity thereby allowing for the access patterns to be more precise.

149

However, understanding access patterns in the symbolic dataspace has implications

that go beyond the application presented in this thesis.

7.1.2.1 Application signature

The fact that the access patterns are based on programmer attributed names means

that if the programmer assigns the same names to different sets of variables in dif-

ferent applications where the variables of the same name play a similar role in the

applications (for example, the “input” or the “output”) the access patterns of these

applications can be compared and a signature for the applications can be created.

This signature could be used to:

• Determine the amount of diversity among the applications: applications with

the same access pattern would be similar and therefore may not exhibit great

diversity.

• Classify applications: if an application with a certain signature behaves in a

particular way on a given system, it could be expected that other applications

with similar signatures would also behave in a similar way. This could be useful

in determining whether an application will run well on a particular system.

7.1.2.2 Bug detection

A common software engineering technique to find bugs consists in taking known

good runs of an application and known bad runs of the same application and finding

differences between traces of the runs. One could compare the memory maps of the

good runs with that of the bad runs at each point in the execution. This would

show which variables or which aliasing pointers are different and therefore potential

candidates for bug causes.

150

7.1.2.3 Re-locating memory

In large systems, the cost of data movement in terms of energy is non negligible.

It is therefore important to try to minimize such movement. Being able to extract

patterns could enable a runtime to move memory around in such a way that the

memory that will be touched is close by. This could be used in GPUs for example

where memory accesses that are not well structures are a huge problem. Indeed, GPUs

work very well for blocked memory accesses but if the memory accesses diverge (due

to pointer based structure for example), the memory bandwidth of GPUs goes down

dramatically. With the described tool, the memory space could be reorganized such

that block accesses are again possible.

7.1.3 Final thoughts

For many of the future works described above, collaboration with other areas would

be key. In particular, for the dataspace profiling future work, collaboration with

OS researchers and architecture researchers would be crucial in determining how the

hardware and OS could both contribute to better understanding the access patterns

(through information from the page tables for example or from the memory subsys-

tem). We believe that the dataspace profiling work has a great deal of potential

applications as it allows the programmer to understand his program in a very dif-

ferent way, bringing back structure to what was a very unstructured memory access

patterns.

We hope that this thesis will serve as a starting point to future research into

gaining a better understanding of applications through their algorithmic properties.

151

REFERENCES

[1] Aleen, F., Sharif, M., and Pande, S., “Input-driven dynamic execution
prediction of streaming applications,” in Proceedings of the 15th ACM SIGPLAN
symposium on Principles and practice of parallel programming, PPoPP ’10, (New
York, NY, USA), pp. 315–324, ACM, 2010.

[2] Allen, M. D., Sridharan, S., and Sohi, G. S., “Serialization sets: a dynamic
dependence-based parallel execution model,” in PPoPP ’09, (New York, NY,
USA), pp. 85–96, ACM, 2009.

[3] Ansel, J., Wong, Y. L., Chan, C., Olszewski, M., Edelman, A., and
Amarasinghe, S., “Language and compiler support for auto-tuning variable-
accuracy algorithms,” in CGO ’11, IEEE Computer Society, 2011.

[4] ARM, “Cortex-a9 processor.” http://www.arm.com/products/processors/

cortex-a/cortex-a9.php.

[5] Asanovic, K. and others, “The landscape of parallel computing research:
A view from berkeley,” Tech. Rep. UCB/EECS-2006-183, EECS Department,
University of California, Berkeley, Dec 2006.

[6] Berger, E. D., Yang, T., Liu, T., and Novark, G., “Grace: safe multi-
threaded programming for C/C++,” in OOPSLA ’09, (New York, NY, USA),
pp. 81–96, ACM, 2009.

[7] Bishop, L., Eberly, D., Whitted, T., Finch, M., and Shantz, M., “De-
signing a pc game engine,” IEEE Computer Graphics and Applications, vol. 18,
pp. 46–53, January 1998.

[8] Bocchino, Jr., R. L., Adve, V. S., Dig, D., Adve, S. V., Heumann, S.,
Komuravelli, R., Overbey, J., Simmons, P., Sung, H., and Vakilian,
M., “A type and effect system for deterministic parallel java,” in OOPSLA ’09,
(New York, NY, USA), pp. 97–116, ACM, 2009.

[9] Bollella, G. and Jeffay, K., “Support for real-time computing within gen-
eral purpose operating systems-supporting co-resident operating systems,” in
Proceedings of the Real-Time Technology and Applications Symposium, RTAS
’95, (Washington, DC, USA), pp. 4–, IEEE Computer Society, 1995.

[10] Brandt, S., Nutt, G., Berk, T., and Humphrey, M., “Soft real-time ap-
plication execution with dynamic quality of service assurance,” in Sixth Interna-
tional Workshop on Quality of Service (IWQoS 98), pp. 154–163, 1998.

152

http://www.arm.com/products/processors/cortex-a/cortex-a9.php
http://www.arm.com/products/processors/cortex-a/cortex-a9.php

[11] Budimlic, Z., Burke, M., Cavé, V., Knobe, K., Lowney, G., Newton,
R., Palsberg, J., Peixotto, D. M., Sarkar, V., Schlimbach, F., and
Tasirlar, S., “Concurrent collections,” Scientific Programming, vol. 18, no. 3-
4, pp. 203–217, 2010.

[12] Cachopo, J. and Rito-Silva, A., “Versioned boxes as the basis for memory
transactions,” Sci. Comput. Program., vol. 63, no. 2, pp. 172–185, 2006.

[13] Cao Minh, C., Chung, J., Kozyrakis, C., and Olukotun, K., “STAMP:
Stanford transactional applications for multi-processing,” in IISWC ’08, Septem-
ber 2008.

[14] Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A.,
Ebcioglu, K., von Praun, C., and Sarkar, V., “X10: an object-oriented
approach to non-uniform cluster computing,” in OOPSLA ’05, (New York, NY,
USA), pp. 519–538, ACM Press, 2005.

[15] “CLANG: A C family frontend for LLVM.” http://clang.llvm.org/, 2010.

[16] Cledat, R., Kumar, T., Sreeram, J., and Pande, S., “Opportunistic com-
puting: A new paradigm for scalable realism on many cores,” in HotPar 2009:
1st USENIX Workshop on Hot Topics in Parallelism, USENIX, 2009.

[17] Cledat, R. and Pande, S., “Energy efficiency via the n-way model,” in PE-
SPMA 2010, in conjunction with ISCA, ACM, 2010.

[18] Compton, C. L. and Tennenhouse, D. L., “Collaborative load shedding for
media-based applications,” in International Conference on Multimedia Comput-
ing and Systems, pp. 496–501, 1994.

[19] Costa, S., “Game engineering for a multiprocessor architecture,” Master’s the-
sis, John Moores University, Liverpool, 2004.

[20] Cox, B., Evans, D., Filipi, A., Rowanhill, J., Hu, W., Davidson, J.,
Knight, J., Nguyen-tuong, A., and Hiser, J., “N-variant systems: A se-
cretless framework for security through diversity,” in In Proceedings of the 15th
USENIX Security Symposium, pp. 105–120, 2006.

[21] Dagum, L. and Menon, R., “Openmp: an industry standard api for shared-
memory programming,” Computational Science and Engineering, IEEE, vol. 5,
no. 1, pp. 46 – 55, 1998.

[22] de Gelas, J., “The quest for more processing power: Multi-core and multi-
threaded gaming.” http://www.anandtech.com/cpuchipsets/showdoc.aspx?

i=2377&p=3, March 2005.

[23] de Oliveira, R. S., da Silva Fraga, J., and Farines, J.-M., “Scheduling
imprecise tasks in real-time distributed systems,” in ISORC ’01, pp. 319–326,
IEEE Computer Society, 2001.

153

http://clang.llvm.org/
http://www.anandtech.com/cpuchipsets/showdoc.aspx?i=2377&p=3
http://www.anandtech.com/cpuchipsets/showdoc.aspx?i=2377&p=3

[24] “Dimacs benchmarks.” http://tinyurl.com/myj2m7, 2009.

[25] Fan, C., “Realizing a soft real-time framework for supporting distributed mul-
timedia applications,” in Proceedings of the 5th IEEE Workshop on Future
Trends of Distributed Computing Systems, FTDCS ’95, (Washington, DC, USA),
pp. 128–, IEEE Computer Society, 1995.

[26] Felber, P., Fetzer, C., and Riegel, T., “Dynamic performance tuning of
word-based software transactional memory,” in PPoPP ’08, (New York, NY,
USA), pp. 237–246, ACM, 2008.

[27] Gall, D. L., “Mpeg: a video compression standard for multimedia applica-
tions,” Commun. ACM, vol. 34, no. 4, pp. 46–58, 1991.

[28] Gopalakrishnan, R. and Parulkar, G. M., “Bringing real-time scheduling
theory and practice closer for multimedia computing,” in Proceedings of the 1996
ACM SIGMETRICS international conference on Measurement and modeling of
computer systems, SIGMETRICS ’96, (New York, NY, USA), pp. 1–12, ACM,
1996.

[29] Greenlaw, R., Hoover, H. J., and Ruzzo, W. L., “A compendium of
problems complete for p,” 1991.

[30] Greenlaw, R., Hoover, H. J., and Ruzzo, W. L., Limits to parallel compu-
tation : P-completeness theory. New York, NY, USA: Oxford University Press,
1995.

[31] Hamadi, Y., Jabbour, S., and Sais, L., “Manysat: Solver description,” Tech.
Rep. MSR-TR-2008-83, Microsoft Research, May 2008.

[32] Harris, T. and Fraser, K., “Language support for lightweight transactions,”
in OOPSLA ’03: Proceedings of the 18th annual ACM SIGPLAN conference on
Object-oriented programing, systems, languages, and applications, (New York,
NY, USA), pp. 388–402, ACM Press, 2003.

[33] Harris, T. and Fraser, K., “Language support for lightweight transactions,”
in OOPSLA ’03, (New York, NY, USA), pp. 388–402, ACM, 2003.

[34] Hempel, R., “The mpi standard for message passing,” in HPCN Europe 1994:
Proceedings of the nternational Conference and Exhibition on High-Performance
Computing and Networking Volume II, (London, UK), pp. 247–252, Springer-
Verlag, 1994.

[35] Hill, M. D. and Marty, M. R., “Amdahl’s law in the multicore era,” IEEE
COMPUTER, 2008.

[36] Huang, L., Jia, J., Yu, B., Chun, B.-G., Maniatis, P., and Naik, M.,
“Predicting execution time of computer programs using sparse polynomial re-
gression,” in Advances in Neural Information Processing Systems 23 (Lafferty,

154

http://tinyurl.com/myj2m7

J., Williams, C. K. I., Shawe-Taylor, J., Zemel, R., and Culotta, A.,
eds.), pp. 883–891, 2010.

[37] “Intel haswell.” http://tinyurl.com/28dxp67, 2010.

[38] “Intel shows 48-core ’datacentre on a chip’.” http://tinyurl.com/2fyhejo,
2010.

[39] Iyer, S. K., Jain, J., Prasad, M. R., Sahoo, D., and Sidle, T., “Error
detection using BMC in a parallel environment,” in CHARME, pp. 354–358,
2005.

[40] Jensen, E., Locke, C., and Tokuda, H., “A time driven scheduling model
for real-time operating systems,” 1985.

[41] Jones, M. B., Leach, P. J., Draves, R. P., and Barrera, III, J. S.,
“Modular real-time resource management in the rialto operating system,” in
Proceedings of the Fifth Workshop on Hot Topics in Operating Systems (HotOS-
V), (Washington, DC, USA), pp. 12–, IEEE Computer Society, 1995.

[42] Jones, M. B., McCulley, D. L., Forin, A., Leach, P. J., Roşu, D.,
and Roberts, D. L., “An overview of the rialto real-time architecture,” in
Proceedings of the 7th workshop on ACM SIGOPS European workshop: Systems
support for worldwide applications, EW 7, (New York, NY, USA), pp. 249–256,
ACM, 1996.

[43] Kecher, R., “Futures: Asynchronous invocation.” http://cplusplus.co.il/

2010/05/31/futures-asynchronous-invocation/.

[44] Knobe, K., “Ease of use with concurrent collections (CnC),” in HotPar 2009:
1st USENIX Workshop on Hot Topics in Parallelism, USENIX, 2009.

[45] Kuffner Jr., J. J. and Lavalle, S. M., “RRT-connect: An efficient approach
to single-query path planning,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
pp. 995–1001, 2000.

[46] Kulkarni, M., Pingali, K., Walter, B., Ramanarayanan, G., Bala,
K., and Chew, L. P., “Optimistic parallelism requires abstractions,” in PLDI
’07, pp. 211–222, 2007.

[47] Kumar, T., Cledat, R. E., and Pande, S., “Dynamic tuning of feature
set in highly variant interactive applications,” in Proceedings of the tenth ACM
international conference on Embedded software, EMSOFT ’10, (New York, NY,
USA), pp. 289–298, ACM, 2010.

[48] Larus, J. R. and Rajwar, R., Transactional Memory. Morgan and Claypool,
2006.

155

http://tinyurl.com/28dxp67
http://tinyurl.com/2fyhejo
http://cplusplus.co.il/2010/05/31/futures-asynchronous-invocation/
http://cplusplus.co.il/2010/05/31/futures-asynchronous-invocation/

[49] Lewis, B. and Berg, D. J., Multithreaded programming with Pthreads. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1998.

[50] Lewis, M., “The new cards,” Commun. ACM, vol. 45, no. 1, pp. 30–31, 2002.

[51] Lewis, M. and Jacobson, J., “Introduction,” Commun. ACM, vol. 45, no. 1,
pp. 27–31, 2002.

[52] “LLVM: A low-level virtual machine.” http://llvm.org, 2011.

[53] Luby, M. and Ertel, W., “Optimal parallelization of las vegas algorithms,”
in STACS ’94, pp. 463–474, Springer, 1994.

[54] Mandviwala, H. A., Ramachandran, U., and Knobe, K., “Languages and
compilers for parallel computing,” ch. Capsules: Expressing Composable Com-
putations in a Parallel Programming Model, pp. 276–291, Berlin, Heidelberg:
Springer-Verlag, 2008.

[55] Mendez-Lojo, M., Nguyen, D., Prountzos, D., Sui, X., Hassan, M. A.,
Kulkarni, M., Burtscher, M., and Pingali, K., “Structure-driven opti-
mization for amorphous data-parallel programs,” in PPoPP ’10, (New York,
NY, USA), ACM, 2010.

[56] Mitzenmacher, M. and Upfal, E., Probability and Computing. Cambridge
University Press, 2005.

[57] Motwani, R. and Raghavan, P., Randomized Algorithms. Cambridge Uni-
versity Press, 1995.

[58] Mukherjee, S. S., Sharma, S. D., Hill, M. D., Larus, J. R., Rogers,
A., and Saltz, J., “Efficient support for irregular applications on distributed-
memory machines,” in PPOPP ’95, (New York, NY, USA), pp. 68–79, ACM,
1995.

[59] Nieh, J. and Lam, M. S., “A smart scheduler for multimedia applications,”
ACM Trans. Comput. Syst., vol. 21, pp. 117–163, May 2003.

[60] Nikhil, R. S., Ramachandran, U., Rehg, J. M., Halstead, Jr., R. H.,
Joerg, C. F., and Kontothanassis, L. I., “Stampede: A programming
system for emerging scalable interactive multimedia applications,” in Proceedings
of the 11th International Workshop on Languages and Compilers for Parallel
Computing, LCPC ’98, (London, UK), pp. 83–99, Springer-Verlag, 1999.

[61] nones, C. G. Q., Madriles, C., Sánchez, J., Marcuello, P., González,
A., and Tullsen, D. M., “Mitosis compiler: an infrastructure for speculative
threading based on pre-computation slices,” in PLDI ’05: Proceedings of the
2005 ACM SIGPLAN conference on Programming language design and imple-
mentation, (New York, NY, USA), pp. 269–279, ACM Press, 2005.

156

http://llvm.org

[62] Patterson, D., “The trouble with multicore.” http://spectrum.ieee.org/

computing/software/the-trouble-with-multicore/, July 2010.

[63] Pingali, K., Nguyen, D., Kulkarni, M., Burtscher, M., Hassaan,
M. A., Kaleem, R., Lee, T.-H., Lenharth, A., Manevich, R., Méndez-
Lojo, M., Prountzos, D., and Sui, X., “The tao of parallelism in algo-
rithms,” in Proceedings of the 32nd ACM SIGPLAN conference on Program-
ming language design and implementation, PLDI ’11, (New York, NY, USA),
pp. 12–25, ACM, 2011.

[64] Ramachandran, U., Nikhil, R. S., Rehg, J. M., Angelov, Y., Paul, A.,
Adhikari, S., Mackenzie, K. M., Harel, N., and Knobe, K., “Stampede:
A cluster programming middleware for interactive stream-oriented applications,”
IEEE Transactions on Parallel and Distributed Systems, vol. 14, pp. 1140–1154,
2003.

[65] Ravichandran, K., Cledat, R., and Pande, S., “Collaborative threads:
Exposing and leveraging dynamic thread state for efficient computation,” in
HotPar 2010: 2nd USENIX Workshop on Hot Topics in Parallelism, USENIX,
2010.

[66] Reid, W., Kelly, W., and Craik, A., “Reasoning about inherent parallelism
in modern object-oriented languages,” in ACSC ’08, (Darlinghurst, Australia,
Australia), pp. 27–36, Australian Computer Society, Inc., 2008.

[67] Reinders, J., Intel threading building blocks. Sebastopol, CA, USA: O’Reilly &
Associates, Inc., 2007.

[68] Reinelt, G., “TSPLIB - a traveling salesman problem library,” in ORSA Jour-
nal on Computing, vol. 3, pp. 376–384, 1991.

[69] Rinard, M. C. and Lam, M. S., “The design, implementation, and evaluation
of jade,” ACM Trans. Program. Lang. Syst., vol. 20, no. 3, pp. 483–545, 1998.

[70] Salamat, B., Jackson, T., Gal, A., and Franz, M., “Orchestra: intrusion
detection using parallel execution and monitoring of program variants in user-
space,” in EuroSys ’09: Proceedings of the 4th ACM European conference on
Computer systems, (New York, NY, USA), pp. 33–46, ACM, 2009.

[71] Selman, B., Kautz, H., and Cohen, B., “Local search strategies for satis-
fiability testing,” in DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, pp. 521–532, 1995.

[72] Song, Y., Kalogeropulos, S., and Tirumalai, P., “Design and implemen-
tation of a compiler framework for helper threading on multi-core processors,”
in PACT ’05: Proceedings of the 14th International Conference on Parallel Ar-
chitectures and Compilation Techniques, (Washington, DC, USA), pp. 99–109,
IEEE Computer Society, 2005.

157

http://spectrum.ieee.org/computing/software/the-trouble-with-multicore/
http://spectrum.ieee.org/computing/software/the-trouble-with-multicore/

[73] Sutter, H., “The free lunch is over.” http://www.gotw.ca/publications/

concurrency-ddj.htm, 2005.

[74] Sweeney, T., “The next mainstream programming language: a game de-
veloper’s perspective,” in POPL ’06: Conference record of the 33rd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, (New
York, NY, USA), pp. 269–269, ACM Press, 2006.

[75] TomLab, “CPLEX parameters interface.” http://tomopt.com/docs/

cplexug/tomlab_cplex014.php, March 2010.

[76] Trachsel, O., Application-level Multi-variant Speculation with Competitive
Parallel Execution. PhD thesis, ETH Zurich, November 2010.

[77] Trachsel, O. and Gross, T., “A platform for competitive execution,” in
PESPMA 2008, in conjunction with ISCA, ACM, 2008.

[78] Trachsel, O. and Gross, T. R., “Variant-based competitive parallel execu-
tion of sequential programs,” in CF ’10: Proceedings of the 7th ACM interna-
tional conference on Computing frontiers, (New York, NY, USA), pp. 197–206,
ACM, 2010.

[79] Tygert, M., “A fast algorithm for computing minimal-norm solutions to un-
derdetermined systems of linear equations,” May 2009.

[80] Usui, T., Behrends, R., Evans, J., and Smaragdakis, Y., “Adaptive locks:
Combining transactions and locks for efficient concurrency,” in PACT ’09, pp. 3
–14, sept. 2009.

[81] Vazirani, V., Approximation Algorithms. Springer, 2001.

[82] Wall, M., “GAlib.” http://lancet.mit.edu/ga/, 2009.

[83] “Ioquake.” http://www.icculus.org/quake3/, 2006.

[84] Wintersteiger, C. M., Hamadi, Y., and Moura, L., “A concurrent port-
folio approach to smt solving,” in CAV ’09, (Berlin, Heidelberg), pp. 715–720,
Springer-Verlag, 2009.

[85] Zhuang, X., Eichenberger, A. E., Luo, Y., O’Brien, K., and O’Brien,
K., “Exploiting parallelism with dependence-aware scheduling,” in PACT ’09,
(Washington, DC, USA), pp. 193–202, IEEE Computer Society, 2009.

[86] Zyulkyarov, F., Gajinov, V., Unsal, O. S., Cristal, A., Ayguadé, E.,
Harris, T., and Valero, M., “Atomic quake: using transactional memory in
an interactive multiplayer game server,” in Proceedings of the 14th ACM SIG-
PLAN symposium on Principles and practice of parallel programming, PPoPP
’09, (New York, NY, USA), pp. 25–34, ACM, 2009.

158

http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://tomopt.com/docs/cplexug/tomlab_cplex014.php
http://tomopt.com/docs/cplexug/tomlab_cplex014.php
http://lancet.mit.edu/ga/
http://www.icculus.org/quake3/

VITA

Romain E. Cledat was born in Pau, France in 1982 to Isabelle and Bertrand, the first

of three boys.

Romain spent his childhood both in France and in the United States: he moved

to the United States at age 8 and remained there for 5 years living first in Saint Louis

and then in New Orleans.

Upon his return to France, Romain finished high-school in a bilingual school in

Lyon which allowed him to retain his English fluency and his urge to return to the

United States.

Upon graduating from the ‘S’ series for the Baccalaureate, Romain joined the

Lycée du Parc where he completed two years of Classes Prèparatoires before being

admitted to the Ecole Centrale de Lyon for an engineering diploma. Upon completing

two years, Romain was admitted to Georgia Tech where he earned his Masters in ECE

in 2005 and his PhD in Computer Science in 2011.

Romain lives with his wife in Portland Oregon where he works as a Research

Scientist for Intel Labs.

159

	Titlepage
	Signatures
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Summary
	Chapter 1 — Introduction
	A brief history of multi-cores
	Road-blocks to parallelization
	`May' dependencies
	The bottleneck of `must' dependencies (sequential code)
	Importance of dealing with hard to parallelize codes

	Current solutions
	Frequency scaling
	Speculative and optimistic execution
	Discovering dynamic parallelism
	Limitations
	Approach: novel programming models

	Exploiting algorithmic properties
	The N-way model: exploiting algorithmic diversity
	Determining semantic data footprints
	Quality driven computing: exploiting variable semantics

	Thesis statement
	Contributions

	Chapter 2 — Exploiting algorithmic diversity through the N-way model
	Introduction
	An alternative to `break-up' parallelism
	Example
	Problem: a potentially wasteful model
	Terminology

	Diversity
	Algorithmic diversity
	Other sources of diversity
	Diversity is common

	N-way model
	Base model
	Efficient N-way model
	Support for Quality-of-Result

	Efficiency through culling
	Notion of progress
	Culling mechanism
	Compatibility with learning

	Implementation
	API
	Progress monitors
	Providing isolation
	Thread-based implementation
	Debuggability
	Automated compiler transformation of a program for N-way

	Experimental results
	Benchmarks
	Speedup through randomness
	Speedup through heuristics
	QoR through randomness
	QoR through heuristics
	Runtime overhead and scalability

	Related work
	Competitive parallel execution
	Auto-tuners
	Isolation mechanism

	Conclusion and future work
	Future work
	Thesis discussion

	Chapter 3 — Leveraging data-structure semantics for optimistic parallelism
	Data disjointedness
	Disjointedness property

	Opportunity in semantic information
	Proposed approach: a semantic data footprint

	Data-structure semantics
	Disjointedness predicate
	Determine-next predicate
	Specification

	Runtime implementation
	Programmer specifications
	Low-overhead runtime
	Runtime usage

	Experimental evaluation
	Greedy graph coloring
	STAMP benchmarks
	Scaling
	Impact of limited check time

	Related work
	Static extraction of parallelism
	Dynamic extraction of parallelism

	Conclusion
	Thesis discussion

	Chapter 4 — Discovering optimistic data-structure oriented parallelism
	Address dataspace versus symbolic dataspace
	Stability in the symbolic dataspace

	Symbolic dataspace memory analysis
	A profiling approach
	Components of the profiler
	Terminology
	Operating principle
	Naming conventions
	Relationship between symbolic dataspace and address dataspace

	Implementation
	C++ API
	Profiling pass
	Analyzer

	Experimental validation
	Experimental setup
	Note on overheads
	Results

	Conclusion
	Thesis discussion

	Chapter 5 — Quality driven computing through variable semantics
	Shifting application characteristics
	Parallel programming in games

	A quality based approach
	Notion of quality
	Program flow
	Summary

	Use scenarios and API
	Extensible program semantics
	API
	Runtime implementation

	Experimental results
	Quake 3 description
	Experimental setup
	Results

	Related work
	Adaptive QoS
	Parallel Programming Models and Languages
	Soft Real-time Systems

	Conclusion
	Thesis discussion

	Chapter 6 — Related work
	Addressing the sequential bottleneck
	Programming models to improve sequential execution

	Expressing parallelism in irregular algorithms
	The Galois programming model
	Concurrent Collections
	Analysis based approaches

	Chapter 7 — Conclusion
	Future work
	N-way framework
	Profiling in the symbolic dataspace
	Final thoughts

	References
	Vita

