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SUMMARY

Multimedia services and applications became the driving force in the development

and widespread deployment of wireless broadband access technologies and high speed

local area networks. Mobile phone service providers are offering wide range of mul-

timedia applications over high speed wireless data networks. People can watch live

TV, stream on-demand video clips and place videotelephony calls using multimedia

capable mobile devices. Mobile devices will soon support capturing and displaying

high definition video. Similar evolution is also occurring in the local area domain.

The video receiver or storage devices were conventionally connected to display de-

vices using cables. By using wireless local area networking (WLAN) technologies,

convenient and cable-free connectivity can be achieved. Media over wireless home

networks prevents the cable mess and provides mobility to portable TVs.

However, there still exit challenges for improving the quality-of-service (QoS) of

multimedia applications. Conventional service architectures, network structures and

protocols lack to provide a robust distribution medium since most of them are not

designed considering the high data rate and real-time transmission requirements of

digital video.

In this thesis the challenges of wireless video streaming will be addressed in two

main categories. Streaming protocol level issues constitute the first category. We will

refer to the collection of network protocols that enable transmitting digital compressed

video from a source to a receiver as the streaming protocol. The objective of streaming

protocol solutions is the high quality video transfer between two networked devices.

xii



Novel application-layer video bit-rate adaptation methods are designed for han-

dling short- and long-term bandwidth variations of the wireless local area network

(WLAN) links. Both transrating and scalable video coding techniques are used to

generate video bit-rate flexibility. Another contribution of this thesis study is an er-

ror control method that dynamically adjusts the forward error correction (FEC) rate

based on channel bit-error rate (BER) estimation and video coding structure.

The second category is the streaming service level issues, which generally surface

in large scale systems. Service system solutions target to achieve system scalability

and provide low cost / high quality service to consumers. Peer-to-peer assisted video

streaming technologies are developed to reduce the load of video servers. Novel video

file segment caching strategies are proposed for more efficient peer-to-peer collabora-

tion.
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CHAPTER I

INTRODUCTION

Multimedia services and applications became the driving force in the development

and widespread deployment of wireless broadband access technologies and high speed

local area networks. Mobile phone service providers are now offering a wide range of

multimedia applications over high speed wireless data networks. People can watch live

TV, stream on-demand video clips and place videotelephony calls using multimedia

capable mobile devices. The variety and quality of these applications are increasing

every day. Mobile devices will soon support capturing and displaying high definition

video. Similar evolution is also occurring in the local area domain. The video receiver

or storage devices were conventionally connected to display devices using cables. By

using wireless local area networking (WLAN) technologies, convenient and cable-free

connectivity can be achieved. Media over wireless home networks prevents the cable

mess and provides mobility to portable TVs.

However, there still exits challenges for improving the quality-of-service (QoS) of

multimedia applications. Conventional service architectures, network structures and

protocols lack to provide a robust distribution medium since most of them are not

designed considering the high data rate and real-time transmission requirements of

digital video.

1.1 Problems in Wireless Video Streaming and Relation to

the State-of-the-Art

Concurrent transmission and display of audio-visual (AV) content is often referred

to as streaming. Streaming eliminates the initial waiting time before video playback

starts and the requirement for storing the entire video file as opposed to download
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and play schemes. The size of streaming systems can range from single sender single

receiver setup to a video-on-demand (VoD) service with thousands or millions of users

streaming video concurrently.

We will classify wireless video streaming problems and solutions in two main

categories. Streaming protocol level issues constitute the first category. We will refer

the collection of network protocols that enable transmitting digital compressed video

from a source to a receiver as the streaming protocol. The objective of streaming

protocol solutions is the high quality transfer between two networked devices.

The second category is the streaming service level issues, which generally surface

in large scale systems. Service system solutions target to achieve system scalability

and provide low cost / high quality service to consumers.

1.1.1 Video Streaming Protocol Level Problems

The fast viewing advantage of streaming comes with the price of sensitivity to net-

work transmission errors and throughput fluctuations. These network impairments

may cause distortion in AV presentation in the form of frame freezes or defects, un-

less they are handled. Wireless links are more susceptible to quality inconsistencies

in contrast to wired connections. User mobility, environmental changes, and interfer-

ence from other electromagnetic signal sources cause channel capacity variation. The

shared nature of the communication medium among multiple applications and users

is another challenge for streaming protocols over both wired and wireless networks.

Two points of view are provided to streaming protocol level problems. First,

video streaming problem is approached from a purely application layer perspective.

This methodology fits to the scenarios where error control mechanisms are already

deployed on the network, and the application does not have control over them. In

such cases, tackling fluctuating application throughput becomes more important than

recovering errors. We refer to this problem as application layer video transmission
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rate control, and demonstrate its use in wireless local area networks in Section 1.1.1.1

Secondly, we look from a lower network layer perspective, and try to create a

better transmission channel for video streaming. In this cross-layer optimization

effort we developed error-control methods tailored for video streaming over wireless

wide area networks. The developed forward error correction (FEC) scheme considers

the coding structure and real-time requirements of the media stream for efficient error

recovery. In Section 1.1.1.2, we provide a detailed analysis and a literature survey for

this problem.

1.1.1.1 Application Layer Video Transmission Rate Control Problem

Widely used IEEE 802.11 wireless local area networking (WLAN) technologies provide

cost-effective and convenient solutions for interconnecting home video sources and

display devices. In addition to offering free mobility for portable displays, wireless

media streaming eliminates the need for excessive audio-video (AV) cabling. High-

quality live and stored video content from cable/satelite receivers, personal video

recorders (PVR), DVD players and PCs can be distributed digitally to all wireless

capable displays.

The maximum physical data rate of the 802.11b technology (11 Mbps) is able to

support MPEG-2 encoded standard-definition (SD) video transmission. 802.11a/g

(54 Mbps) networks can be used to disseminate high-definition (HD) video content.

Although the 802.11 standards provide high speeds, they cannot always maintain the

channel consistency demanded by delay sensitive video streaming applications. For

instance, some devices and technologies operating in the same unlicensed frequency

band, such as cordless phones, neighboring WLANs and Bluetooth, may cause in-

terference. Furthermore, mobility and environmental changes increase the physical

(PHY) layer packet loss rate. Most PHY layer losses are recovered by medium access
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control (MAC) layer retransmission based error-control methods. Multiple transmis-

sion retries at the MAC cause drops in application throughput. In addition, most

WLAN base stations and adapters employ automatic PHY transmission rate selec-

tion schemes to cope with reduced signal-to-noise ratio, which again translates into

bandwidth fluctuation. Other traffic flows sharing the same network resources may

also cause throughput degradation if the MAC does not support quality-of-service

(QoS) mechanisms. Although the new 802.11e MAC enhancements for QoS [3] are

able to provide dedicated bandwidth for media traffic, it has not been widely deployed

in current systems.

Most prior studies on the area of networked multimedia focus on tailoring error

control methods for transmission over error-prone channels. Delay-constrained auto-

matic repeat request (ARQ) based error recovery methods primarily intend to bound

retransmissions considering the real-time requirements of the multimedia [8], [47], [29], [16], [45].

In [39] Li and van der Schaar studied a similar problem and proposed MAC retry limit

adaptation and queuing methods for scalable video transmission over WLANs. This

cross-layer technique results in good video streaming quality. However, it involves

application layer interaction with the network and MAC layers. Therefore its use

with standard of-the-counter WLAN equipment is limited.

Much research has been reported recently on rate-distortion optimized packet

scheduling [11], [10], [43], [44]. The objective of these methods is to detect losses

using stochastic models and determine the transmission/retransmission order of the

packets to minimize the expected distortion. Due to the fact that the MAC and PHY

layers recover most errors, WLAN applications experience almost lossless but varying

bandwidth, channels. Moreover, these methods use per-packet feedback messages,

which are not preferred in WLANs, since the forward and backward flows should

share the same resources. As a result, rate-distortion optimized scheduling cannot be

applied as-is to our target system.
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When the available wireless bandwidth drops below the video bitrate, packets tend

to backlog at the serving station. New video packets handed to lower network layers

by the server application are queued behind the backlogged packets, and therefore

are subject to varying delay (equivalently varying bandwidth). Playout buffering

is a commonly used technique for compensating for the delay jitter. However, the

playout buffering duration is limited to small values (100 ms - 1 sec) since the initial

waiting time reduces user satisfaction. If the bandwidth degradation persists, the

playout buffer underruns and causes video frame freezes. In [57], Stockhammer et.

al. provided an analysis to determine the minimum initial delay for a given video

stream and a deterministic variable bit-rate (VBR) channel. The performance of

application layer error resilience [66], [53] and concealment methods [49], [63] are

very limited in bursty error events caused by buffer underflows.

An application layer method to prevent buffer under-runs is to reduce the AV bit-

rate adaptively by estimating the future bandwidth. The source rate can be adjusted

easily by dropping layers if the video is scalably coded. For instance, in a recent

study [36], Kim and Ammar presented a scalable Internet video streaming strategy

to cope with the throughput variations of the transport control protocol (TCP). Most

of the popular video applications (e.g., DVD, PVR) do not employ scalable content.

For these scenarios rate adaptation should rely on transrating. A real-time transrating

operation is achieved by partially decoding the video bitstream and re-quantizing the

transform coefficients.

In a related study [9], Cabrera et al presented a stochastic dynamic programming

based rate-control method for wireless video transmission. Rate-control policies are

pre-calculated for every channel and video source state in this method. A similar

approach for burst-error channels was proposed by Hsu et al in [25].

The method we developed in this thesis work considers the delay requirements

of the stream by estimating the playout buffer fullness. Frame freezes are prevented
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and video quality is maximized with rate adaptation. Stricter separation between

network layers, use of less frequent feedback messages and efficient management of

real-time constraints differentiates our method from previous works.

1.1.1.2 Cross-Layer Optimized Error Control Problem

Mobile video is an important application class for wide area wireless systems. Wire-

less clients are able to stream video clips from servers located on the Internet or

communicate via video capable portable devices. However, the heterogeneity of the

physical environments and network architectures in the communication path degrade

the performance [7, 67]. In this context, a multimedia gateway located at the in-

terface between the wired and wireless domains may allow us to develop optimized

cross-layer protocols for the wireless portion of the connection [20, 23].

The time-varying and noisy nature of the wireless channels give rise to bit errors

and packet erasures [64, 21, 69]. Multimedia applications can tolerate only small data

loss rates due to the compressed structure of the media. The distortion caused by the

errors may propagate because of the predictive coding often used in the contemporary

media encoding standards. Furthermore, each packetized media unit has a presenta-

tion deadline at the client, which is determined by the interactivity requirements and

buffer limitations. The deadline constraint imposes restrictions on the transmission

delay of video packets. Failing to deliver the unit by the deadline causes audio-visual

quality degradation in the multimedia application. These requirements point out a

need for the intelligent use of error control schemes in real-time media communication

protocols in order to guarantee a certain quality-of-service.

Automatic Repeat Request (ARQ) and Forward Error Correction (FEC) are two

commonly used techniques for error recovery. In ARQ schemes, the sender transmits

a packet and waits for an acknowledgement from the receiver. The packet is retrans-

mitted if a negative acknowledgement is received or no acknowledgement is received
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until a pre-determined time. In FEC schemes, the sender incorporates parity and

redundancy into the packets so that receivers can detect and repair corruptions and

losses. Modern wireless systems such as 2.5G/3G often use hybrid combinations of

these two methods. Our initial study focuses on FEC based methods.

The error correction capability of an FEC code increases with the amount of

redundancy incorporated. Using a fixed redundancy rate results in under-utilization

of the capacity since the radio channel bit-error-rate (BER) fluctuates over time.

An FEC code with a fixed rate would not only be unable to correct errors at high

BERs, but also may incorporate unnecessary redundancy if the channel is clear. This

observation leads to the design of channel-adaptive coding schemes, in which the

sender chooses the proper coding rate based on BER estimation.

The FEC code rate selection problem is generally independent of the source char-

acteristics for classical data applications. However, error recovery may take the un-

equal packet importance and real-time requirements of the media into account for

the multimedia streaming applications. Due to the limited bandwidth and the delay

requirements, the amount of channel resources (e.g., FEC redundancy, number of

retransmissions, quality of the media content) spent for transmitting a packet affects

the residual resources for subsequent packets. Preserving network resources for the

more important subsequent video packets and for those packets that may face noisier

channel conditions can be a better strategy. This strategy cannot be achieved by a

channel allocation that does not take possible future events into account. Motivated

by these observations, we argue that video quality can be increased by jointly optimiz-

ing FEC rate decisions for the current and subsequent video packets. The designed

cross-protocol optimized error control solution can be deployed at the gateway, which

is located at the wireless edge.
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Our work differs from the previous studies in the literature mainly by the consid-

eration of residual network resources for subsequent packets and proposed joint opti-

mization. The most closely related work in terms of modeling the time-varying wire-

less channel and FEC rate adaptation is proposed by Elaoud and Parameswaran [19].

In this study, transmission decisions are made depending on the deadline and air-

interface status. However, they do not incorporate the packet dependencies and the

effect of future transmissions in their models. In the work by Kang and Zakhor [35],

scheduling of video packets are done by adjusting deadline thresholds based on the

importance determined by the position of frames inside the group of pictures and

motion-texture content.

Chou and Miao [11] formulated and solved the problem of streaming packetized

media over lossy packet networks in a rate-distortion optimized way. In [11] they

proposed an algorithm called Iterative Sensitivity Adjustment (ISA) that is based on

markov decision process to optimize the transmission/retransmission order and sched-

ule by meeting rate constraints. Another closely related work is done by Chakareski

and Chou [10]. They considered the problem of streaming packetized media over a

lossy packet network through a base station to a wireless client. They proposed a

streaming system based on a hybrid-II ARQ error control scheme also known as in-

cremental redundancy (IR) transmission. Optimal use of the IR transmission scheme

is determined by ISA algorithm.

Liu and Zarki [41] proposed a concatenated hybrid ARQ scheme that combines

the advantages of both type-I and type-II hybrid ARQ schemes for low-bitrate video

transmission over wireless channels. Wireless channels are modelled with multi-state

Markov chains to model errors in the packet level. Kumwilaisak [37] explored a dy-

namic programming solution in coordinating the concatenated FEC code consisting

of the Reed-Solomon (RS) code and the rate-compatible punctured convolutional

(RCPC) code considering priority of each source packet and estimated instantaneous
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channel condition. Qiao and Shin [51] presented a hybrid ARQ scheme for transmit-

ting H.263 video sequences based on channel condition and delivery deadline con-

straints. They use an algorithm that adaptively selects the FEC code rate from a

pre-determined code table in order to satisfy some quality constraints. None of the

aforementioned methods jointly optimize the FEC code rate of current and future

packets.

1.1.2 Video Streaming Service Level Problems

Video streaming is one of the most challenging services to offer because of the high and

consistent bandwidth requirements of the digital video bitstreams. Furthermore, in

large scale systems thousands or millions of users concurrently stream video. Service

providers generally use a farm of video servers and lease very high speed data lines to

accommodate large number of users that demand high quality video. Furthermore,

the demand for video content shows time varying behavior. Users may rush the

system at particular days of the week, for instance when a movie is newly released, or

at particular hours of the day. The system should be designed to work robustly at the

worst case scenarios. As the server and network costs increase the price of the video

streaming applications becomes more expensive. It is crucial for service providers to

develop system level cost reduction techniques to reach broader consumer base.

In conventional client-server based data services, a separate connection is opened

for each client and data is unicasted to each of them. The number of simultane-

ous clients served by the system is limited by the server’s storage disk performance

and upstream bandwidth. Multicasting [52], [12] architecture offers a solution for

this problem by enabling the replication of data at intermediate nodes of the net-

work path. Therefore, the server does not have to send multiple copies of the same

data destined to different nodes. Live video content such as TV programming can

be distributed to many viewers over multicast trees without increasing the cost of
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video server [40], [58]. However, multicasting capable network routers are not widely

deployed over the Internet and wireless cellular data networks.

In video on-demand (VoD) services users start viewing the video at different time

instants, therefore stream different parts of the video content. It is hard to take ad-

vantage of multicasting based schemes in VoD because of this fact. Near on-demand

solutions are proposed in the literature to reduce the load of the VoD servers [26], [14].

Skyscraper broadcasting [27], harmonic broadcasting [33] and pyramid broadcast-

ing [62] can be listed as the popular techniques adopting this approach. Most of

these schemes involve periodic start times or user grouping to utilize multicasting.

Therefore, users should wait for an initial time before starting to view the video.

The waiting time is a negative factor that deteriorates the quality of the service per-

ceived by the users hence it should be avoided as much as possible. Moreover, near

on-demand solutions can not provide full fast-forward or rewinding functionality.

End-system or peer-to-peer multicasting is an application layer alternative to IP

layer multicasting [28]. Users in such a system act similar to the multicast routers

and forward the data they have received to the other peers, which are also viewing the

same video. Asymmetry of downstream and upstream bandwidths in most wireless

access technologies, such as 3G, limit the maximum throughput that can be achieved

by end-system multicasting. Furthermore, the users participating in an end-system

multicasting system may leave the system any time they want, which creates time-

varying reliability for the streaming service.

In the thesis work we focus on a hybrid architecture where end-systems assist

central servers in video distribution. Peer-to-peer (P2P) network refers to an overlay

structure where hosts are able to exchange information among themselves without

the need of a central server [5]. It is an alternative to the client-server paradigm

commonly used in most web services. File sharing service over the P2P networks

became one of the most dominating components of the Internet traffic. Even though
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the P2P has a bad reputation of facilitating illegal file downloading, it also has

a potential for assisting legitimate content distribution to reduce the cost. P2P

collaboration can be useful in these applications by utilizing the unused upload

bandwidth of the end users. In fact, popular Bittorrent [1] P2P file sharing ap-

plication is commonly used to distribute the new Linux operating system releases.

Use of P2P data distribution techniques for streaming live and on-demand video

[38], [59], [34], [15], [68], [71], [18], [30],[42], [55], [32] became popular with the avail-

ability of high-speed network access technologies.

1.2 Organization and Contributions of the Thesis

The thesis is organized as a series of chapters. Separate research problems are dis-

cussed in each chapter. Motivation of the problem and related work are provided in

the introduction sections. Proposed techniques are discussed and experimental results

are presented in the body of chapters. Conclusion section of chapters summarize the

findings.

The outline of the thesis and contributions are as follows:

Chapter 2 explores an application layer streaming protocol improvement that

enhances high quality video streaming over wireless home networks. Video rate is

dynamically adjusted via transrating to adapt to time-varying wireless bandwidth. A

novel technique called “Delay-constrained and R-D optimized transrating” is devel-

oped. Experimental results are provided to demonstrate the achieved video streaming

quality improvement.

Chapter 3 studies the use of scalable coded video for rate-adaptive video streaming

over wireless local area networks. New features of the emerging H.264/SVC video

coding standard are utilized to develop innovative streaming methods. Results from

realistic simulations are presented.

Chapter 4 investigates cross-network layer collaboration techniques for improving
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real-time multimedia streaming over wireless wide area networks. Forward error cor-

rection (FEC) based error protection methods are optimized using video bitstream

structure and end-to-end latency constraints. A technique named as “Finite-Horizon

FEC-Rate Adaptation” is developed.

Chapter 5 explores streaming service level solutions to reduce the cost of building

large scale video-on-demand platforms. Peer-to-peer assisted video streaming tech-

nologies are developed to reduce the load of video servers. Novel video file segment

caching strategies are proposed for more efficient peer collaboration. Computer sim-

ulation models are constructed to test techniques at diverse set of scenarios.
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CHAPTER II

DELAY-CONSTRAINED AND R-D OPTIMIZED

TRANSRATING FOR HIGH-DEFINITION VIDEO

STREAMING OVER WLANS

2.1 Introduction

This study targets maximizing the quality of video transmission over wireless home

networks. Source rate-adaption methods based on video transcoding are proposed to

cope with variable channel bandwidth.

In our target platform, real-time bandwidth estimation is performed using video

packet inter-arrival time measurements at the receiver. Therefore, no extra probing

traffic is introduced. Periodic feedback messages are sent to the server after every

measurement.

A video rate-adaptation method that solely relies on estimating average band-

width is useful for tracking the long term variations. However, wireless channels also

pose short term fluctuations which cannot be foreseen. Because of these unforeseen

variations, this method may fail to deliver video packets on-time, especially if the

initial playout buffering duration is small. To address this shortcoming, we propose

new methods that consider the delay requirements of the stream by estimating the

playout buffer fullness. Results of an initial version of this method were presented

in [61] and [60]. This delay-constrained rate adaptation algorithm chooses the max-

imum possible rate for a picture frame while making sure it is fully received by its

decoding deadline. This approach significantly reduces the number of playout buffer

under-run events, compared to bandwidth-adaptive non-delay constrained methods.
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We further generalized and improved the previously mentioned method by extend-

ing the delay-constraint concept to multiple picture frames, instead of one. Multi-

frame constraints enable us to select various time scales for rate adjustments. We

aim to keep the playout buffer fullness over a minimum level on the selected time

scale. This novel feature of our method avoids unnecessary rate reductions and pro-

vides flexibility for assigning rates to frames depending on their coding types, hence

reduces the transrating distortion.

The rest of this chapter is structured as follows: In Section 2.2 we will describe

the used WLAN AV streaming system and summarize network monitoring and feed-

back mechanisms. The delay constrained rate adaptation method is explained in

Section 2.3. This section also includes the transrater efficiency optimization and an

automated time-scale selection technique. Experimental setup and comparison of

different rate-adaptation methods are presented in Section 2.4.

2.2 Audio-Video (AV) Transmission System

The WLAN media streaming system envisioned is depicted in Figure 1. AV sources

connected to the media-server/transrater and the WLAN access point, form the

sender side of the system. The media-server acts as a gateway that adjusts the

bitrate of the input bitstream and sends the packetized media over the access point.

In this study, we concentrated on MPEG-2 video, since it is the widely used standard

in digital TV and DVDs. We particularly tested the transmission of high-definition

(HD) quality video, which poses the most challenging scenario because of its high

bitrate (∼16.9 Mbps).

A simple and fast open loop transrating technique that partially decodes the

bitstream onto the quantization stage and performs re-quantization is utilized. The

increased level of quantization results in higher compression rates at the expense

of reduced image detail. The main drawback of the open loop transrating is the

14



INTERNET

MEDIA SERVER
/ TRANSRATER

))((
))((

WIRELESS
ACCESS POINT

. .  

))((

. . .

PC

Set-Top Box:
Cable / Satellite / DVD Player / PVR

Flat Panel TV

Portable Display

802.11a/b/g

Network

Monitor

Network

Monitor

Figure 1: WLAN audio-video (AV) transmission system

drift error problem caused by uncorrected inter-frame prediction residuals after re-

quantization. Closed loop transraters solve this problem by introducing error feedback

mechanisms. However, additional processing power demanded by real-time closed

loop transraters makes their deployment uneconomical for the home video streaming

systems.

Display devices equipped with WLAN interfaces and video decoders form the

client side of the system shown in Figure 1. Another role of the client is to monitor

the network statistics and send feedback messages.

User datagram protocol (UDP) is used at the transport layer on top of the

802.11a/b/g WLAN technologies. The retransmission mechanism of TCP is not re-

quired, since the MAC and PHY layers recover most of the errors. In addition, the

throughput variation due to congestion control is prevented by avoiding TCP. Note

that the transmission medium is not shared with other data flows.
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2.2.1 Wireless Local Area Network (WLAN) Link Monitoring

The effectiveness of rate adaptation depends on accurate and timely inference of the

network state. To update the AV server, we employed feedback messages and a net-

work monitoring module at the client side of the system. Our bandwidth estimation

method is based on measuring the inter-interval times of sequentially (bursty) trans-

mitted packets, as illustrated in Figure 2. AV bitstream packets are used for this

purpose without inserting extra probing traffic. In the literature, similar techniques,

also called packet train dispersion methods, are used to probe end-to-end Internet

bandwidth [50], [31], [48].

The media server of the proposed system packetizes each video frame into fixed

size packets and forwards them to the UDP layer as a burst. We selected the packet

size as 1500 bytes (IP packet size) in order to minimize the overheads due to WLAN

headers. Since the bitrate of the HD video considered in this study is high, about

16.9 Mbps, video frames are fragmented into multiple packets. As a result, packet

trains (burst of video packets) are periodically transmitted at every frame interval.

Inter-arrival times of the packets in the train may vary because of the MAC layer

loss recoveries and PHY layer transmission rate adjustments. Figure 2 presents an

example illustration of this phenomenon in ideal and erroneous channel conditions.

In ideal channel conditions, packets are received with equal intervals, which also

represents the maximum achievable bandwidth. Error-prone wireless channels cause

MAC layer losses, marked with stars in Figure 2, and retransmissions. Time slots

with longer durations indicate packets transmitted at a lower PHY transmit rate.

Inter-arrival times observed at the application layer increases as the channel qual-

ity deteriorates. Moreover, frames are subject to queuing delay if the packets are

backlogged at the MAC.

We calculate the throughput observed during the transmission of a video frame

using the time difference between the last and first packet receive events (∆t). Since
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Figure 2: Video packet inter-arrival time measurements

the channel never stays idle during this interval, throughput is actually equal to the

link bandwidth.

H =
P × (M − 1)

∆t
(1)

In this equation, H represents the measured bandwidth, P is the fixed packet size,

and M is the number of packets forming the packet train (video frame).

Bandwidth measurements are subject to errors that may be considered as noise.

For example, the limited resolution of the clock used to measure packet arrival times

may cause such errors. To compute a final estimate of the bandwidth Ĥk at frame

k’s receive time, our current implementation employs simple first-order IIR filtering,

as follows:

Ĥk = (1 − w) × Ĥk−1 + w × Hk, (2)

where w is a smoothing parameter between 0 and 1. Since the measurements become

more reliable as the packet train gets longer, w is adjusted to be proportional to the

size of the burst (M) or duration (∆t). The final estimate of the bandwidth for a

frame k, Ĥk, is transmitted back to the sender immediately after receiving the last

packet of the video frame.

The feedback messages also contain the sequence number of the last received

packet/frame. When the video server receives this information, it may estimate the
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total size of the backlogged packets at the MAC layer buffer (B̂) using the sequence

number differences. The backlog size at frame i’s transmission time is estimated as:

B̂i =
i−1
∑

j=m

vj − 0.5.Ĥ.tc (3)

In this calculation, m is the sequence number of the oldest unacknowledged picture

frame and vj is the size of frame j. The sum of unacknowledged frame sizes provides

an initial estimate of the backlog. This initial estimate is further improved considering

the fact that a portion of unacknowledged frame m may have been already received.

tc is the time elapsed after the actual transmission of frame m has started. Actual

transmission starts immediately after the frame is forwarded to the lower layers if

the channel is idle. The frame should wait for prior packets when the backlog size is

greater than zero. tc is multiplied with half of the bandwidth estimate to predict the

received portion of frame m. A 0.5 factor is used to prevent under estimation of the

backlog. Backlog size or duration is actually the dual of the playout buffer fullness.

Playout buffer becomes smaller as the backlog size increases.

2.3 Problem Formalization and Solution Approach

The end-to-end transmission delay experienced by the video packets constantly grows

if the link bandwidth drops below the video bitrate over a certain time interval. The

undesirable results of this problem are long video frame freezes and jumps. The best

solution for a continuous video viewing experience is source rate adaptation.

2.3.1 Bandwidth-Adaptive Non-Delay Constrained Rate Adaptation

A video rate-adaptation method can solely rely on bandwidth estimations. Such a

method can track long term variations of the bandwidth and prevent backlog growth

that causes network card buffer overflows. However, wireless channels also pose short

term fluctuations which cannot be foreseen, as shown in Figure 3. In this two second
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example, the actual bandwidth is sampled over 1/60 second intervals and the esti-

mation using the method explained in Section 2.2.1 is plotted. Since the tolerable

packet delivery delay is limited by the initial playout buffering duration, short term

bandwidth variations create problems for this method.
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Figure 3: Fluctuating WLAN bandwidth and estimation

We implemented a bandwidth-adaptive non-delay constrained method that ad-

justs the rate of each video frame using the following formula:

x = min

[

1, 0.9 ×
Ĥ

V

]

(4)

The transrating ratio, which is the fraction of a frame’s transmission size to its initial

size, is represented with x. Ĥ is the bandwidth estimate and V is the original bitrate

of the video stream. The multiplier, 0.9, is used as a correction margin for bandwidth

over-estimation errors.

We performed a 30 second long streaming simulation and plotted the cumulative

delay histogram of the video frames in Figure 4. The delays of periodically transmitted

video frames are measured as the time difference between their sending time and

19



receipt of their last packet. A detailed explanation of the test setup can be found in

the experimental results section. In this experiment bandwidth is constantly below

the video bitrate. Delay therefore constantly grows if the source rate is not adjusted.

The first plot in Figure 4 demonstrates that the maximum observed delay is 0.4

seconds when the bandwidth-adaptive non-delay constrained rate adaptation method

is used. On the other hand, if the initial buffer was 200 ms, only 65% of video frames

could be delivered on time.

2.3.2 Single-Frame Delay-Constrained Rate Adaptation

A long initial buffering time prior to the start of the video presentation may seriously

hurt user satisfaction. Hence, the bound on the delay should be reduced even further.

We propose a delay-constrained rate adaptation method that takes the initial buffer

duration into account and utilizes the backlog estimates. Backlog estimates help us

in handling short term bandwidth variations. The first version of this method chooses

the maximum possible rate for a picture frame while making sure it is fully received

by its decoding deadline. The initial playout buffer duration is denoted by ∆TE, and

xi and vi represent the transrating ratio and original size of the current frame i. The

single-frame delay constraint for the delivery of the frame i is expressed as follows:

xi.vi + B̂i

Ĥ
≤ Ω.∆TE (5)

Maximum possible value of the transrating ratio is 1. The left term in this inequality

is the delay estimate of frame i’s last packet. We again use a safety factor, 0 <

Ω ≤ 1, against bandwidth and backlog estimation errors. This method is effective in

preventing playout buffer underflows. The cumulative delay histogram (right plot of

Figure 4) for a streaming experiment using 200ms initial buffer duration, shows that

almost zero percent late packet rate is achieved.

In the next section, we first describe the reasoning behind extending the delay

constraint from a single frame to multiple frames. Subsequently, the implementation
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details of this novel method are discussed.
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Figure 4: Cumulative histogram of frame transmission delays for bandwidth adap-
tive non-delay constrained (on the left) and single-frame delay-constrained (on the
right) methods.

2.3.3 Multi-Frame Delay-Constraint Concept

While the primary objective of rate adaptation is to prevent playout buffer underflows,

it is also desired to maintain a good video presentation quality level. The key for

increasing the stream quality is to minimize the distortion caused by the transrating

process. A few observations on the operation of the single-frame delay constrained

rate adaptation lead us to a new method that achieves this goal.

Our first observation is that rate is not reduced in response to bandwidth drops

as long as the current frame is delivered by its deadline, if the delay is constrained for

a single frame. This behavior causes the playout buffer to vanish quickly, which in

turn results in aggressive transrating when the backlog duration increases. Aggressive

transrating, which corresponds to large degradation in frame quality, can be avoided

especially when the initial buffering duration is long enough. We intend to solve

this problem by increasing the rate adaptation time scale from a single frame to

multiple frames. This extension lets us proactively manage the playout buffer size by

gradually starting the bit-rate adjustment at an earlier stage. In Figures 5 and 6, we

set the initial buffer as 500 ms, and plot a sample evolution of the playout buffer over
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time, in the case of single- and multi-frame delay constraints. As demonstrated in

Figure 5, the number of packets in the buffer fluctuates within a small range, which is

an indicator of aggressive transrating. When the time scale is increased to 30 frames

instead of one, initial buffering time is more efficiently managed as shown in Figure 6.
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Figure 5: Playout buffer fullness - Single-frame delay-constrained rate adaptation

Varying sizes and different encoding types of the picture frames inside a com-

pressed AV stream should be taken into account for minimizing the distortion. When

the rate is constrained for a single frame, the transmission bit budget of large and

more important I and P frames are computed the same way as it is done for the

smaller and less important B frames. When the end-to-end bandwidth drops, the

rate of I and P frames are reduced more than B frames because they are larger in

byte size. By constraining the delay of multiple frames, we gain the power of dis-

tributing the cumulative rate freely over the frames in the projected time scale. The

rate-distortion characteristics of frames are utilized in this rate allocation procedure.
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Figure 6: Playout buffer fullness - Time-scale and R-D optimized transrating

As a result, more rate is assigned to I and P frames as depicted in Figure 7.

In the following section, we describe how the transmission bit budget is computed

over different time-scales.

2.3.4 Time-Scale Based Transmission Bit-Budget Computation

The rate adaptation method, located at the server, is responsible for determining

whether, or how much, the current frame’s size will be reduced. Figure 8 depicts

how the rate adaptation method and the transrater are located in the overall WLAN

streaming system. The first step of this new method is to calculate the total trans-

mission bit-budget, RG, for a group of multiple video frames in the projected time

scale. Let us assume that the group consists of the current frame and h future frames,

i.e. G = {i, i + 1, . . . , i + h}. The time span of the frame group is equal to h.∆T (∆T

is the inter-frame interval). Time scale gets larger as the number of frames in the
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Figure 7: Average transrating ratios at specific GOP positions

group increases.

The total transmission bit-budget for the frame group is computed such that

the last frame of the group is delivered to the client before a specified delivery time:

ti +h.∆T +Ω.∆TE. Similar to the single-frame delay-constrained method, i represent

the sequence number of the current frame and ti is the current time instant. In the

new method, Ω (≤ 1) is a constant multiplier for expressing the maximum backlog

time target in terms of ∆TE (see Figure 8). Backlog target parameter also determines

the minimum playout buffer fullness-ratio objective (1 − Ω).

The Ĥ. (h.∆T + Ω.∆TE) expression represents the estimated transmission capac-

ity for the interval until the target deadline of the group’s last frame. The total

bit-budget for the new frames (in the group) is computed by subtracting the size of

the packets that are already waiting (at the sender) from the capacity (defined above)

:

RG = Ĥ. (h.∆T + Ω.∆TE) − B̂ (6)

If the calculated total transmission bit-budget, RG, is smaller than the total size of
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the picture frames in the group, the rate of the video should be reduced in the time

scale that corresponds to the frame group. In the next section we propose a technique

that aims to allocate the total bit-budget efficiently among the frames of the group.

The values of group size, h + 1, and the delay target parameter, Ω, that result in

best streaming quality, depend on channel conditions, video bitrate, and initial buffer

size. We provide an analysis and develop an automated parameter selection method

in Section 2.3.6.
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2.3.5 Rate-Distortion Optimized Transrating

Objective of preventing buffer underflows by rate adaptation is attained by bounding

the transmission bit-budget over a given time scale, using multiple frame delay con-

straints. The second goal is to minimize the quality loss due to transrating. We now

propose a rate-distortion (R-D) optimized provisioning of the transmission budget

considering the video frame types.

When the size of a picture frame is reduced via transrating, the quality of that

frame and the frames that use that frame as prediction reference are degraded. It

can be observed that the rate-distortion characteristics of these frames differ strongly

based on their coding type (I, P or B), and position inside a GOP (Group of Pictures).

For example, since all frames in the GOP depend on the I frame, reducing an I frame’s

rate causes distortion in all frames of the GOP. Bit rate reduction of a B frame affects
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only one frame, the frame itself, because B frames are not used as reference for coding

other frames. Furthermore, P frames near the beginning of a GOP may have a greater

impact on the overall quality compared to P frames near the end of a GOP. In the

next section, simple models are sought in order to differentiate frames.

2.3.5.1 Transrater R-D Model Extraction

We aim to express the overall distortion of the frame group as a function of the

rate reduction ratios (xj) of the individual frames. Determining such a function is a

difficult task in general, as the dimensionality of the problem grows with the number

of frames in the group. Furthermore, subsequent optimization of the distortion over

a high-dimensional search space given by the allowable values of the rate reduction

ratios can be computationally very complex and time consuming. We propose an

approach that approximates the overall distortion value by considering the effect on

the overall distortion caused by rate reduction of single frames at a time. Breaking

down the problem allows the distortion-optimized solution to be computed with low

computational complexity.

We performed experiments using a sample set of MPEG-2 high definition video se-

quences (HARBOUR, CREW, RAVEN), each encoded at 16.9 Mbps with 15-frame

IBBP GOP structure, and tried to fit models. In these experiments we transrated

only a single frame within each GOP. Figure 9 shows how the average luminance

(Y) peak signal-to-noise ratio (PSNR) of the whole sequence changes as a function of

overall rate decrease. By looking at the plots, we conclude that first order functions

are accurate enough to characterize the PSNR reduction at high bitrates.

The following expression formulates the average GOP PSNR decrease by tran-

srating a frame at a specific GOP position:

∆Dj(xj) = ap(j).xj + bp(j), if xmin < xj < 1 (7)

In Equation 7, p(j) is a function that maps the frame sequence number, j, to
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Figure 9: PSNR reduction due to transrating and linear model fitting (Sequence:
HARBOUR)

the position in the GOP. a and b parameters are extracted by least-square fit to

the data. Note that PSNR reduction is zero if the frame is not transrated, i.e.

∆Dj(1) = 0, as an exception to the linear model. There is also a limit on the minimum

transrating ratio, xmin, that can be achieved by re-quantization based transrating.

Content independent, average rate-distortion model estimates can be produced by

averaging the model parameters (a’s and b’s) over a large set of sequences. Table 1

shows the calculated parameters for three HD test sequences and their statistical

average. The parameters are almost the same for the B frames throughout the GOP.

As expected I frames have the biggest impact on the distortion.

2.3.5.2 Distortion Optimized Allocation of the Transmission Bit-Budget

Extracted rate-distortion models can be used for efficiently allocating the total trans-

mission bit-budget. Quality degradation over time is balanced by minimizing the

maximum of PSNR reductions among the frames in the group (Equation 8). This

optimization target is achieved when the values of the distortion changes ∆Dj are
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Table 1: Linear PSNR reduction model parameters

HARBOUR CREW RAVEN AVERAGE

a b a b a b a b

I -3.22 3.65 -0.94 1.19 -1.88 2.18 -2.01 2.34
B1 -0.13 0.13 -0.18 0.18 -0.13 0.13 -0.15 0.15
B2 -0.13 0.13 -0.19 0.19 -0.13 0.13 -0.15 0.15
P1 -1.57 1.74 -0.80 0.95 -1.32 1.48 -1.23 1.39
B3 -0.13 0.13 -0.18 0.18 -0.13 0.13 -0.14 0.15
B4 -0.13 0.13 -0.19 0.19 -0.13 0.13 -0.15 0.15
P2 -1.21 1.35 -0.69 0.83 -1.06 1.19 -0.99 1.12
B5 -0.13 0.13 -0.19 0.20 -0.13 0.13 -0.15 0.15
B6 -0.13 0.13 -0.17 0.17 -0.13 0.13 -0.14 0.14
P3 -0.82 0.92 -0.44 0.55 -0.74 0.83 -0.67 0.77
B7 -0.13 0.13 -0.17 0.18 -0.13 0.13 -0.14 0.15
B8 -0.12 0.12 -0.16 0.17 -0.13 0.13 -0.14 0.14
P4 -0.39 0.44 -0.20 0.27 -0.39 0.44 -0.33 0.38
B9 -0.13 0.13 -0.17 0.17 -0.13 0.13 -0.14 0.14
B10 -0.12 0.12 -0.16 0.16 -0.12 0.13 -0.13 0.14

equal. In addition, timely delivery is ensured with the transmission bit-budget con-

straint (Equation 9). The optimization problem is expressed as follows:

minimize max
j∈G

∆Dj(xj) (8)

s.t.
∑

j∈G

rj =
∑

j∈G

xj.vj ≤ RG (9)

xmin ≤ xj ≤ 1.0 for j ∈ G. (10)

This problem can be solved, with very little computational power, using the linear

models in Equation 7 in an iterative fashion to satisfy the lower (xmin: transrater

limit) and upper bounds on the rate (Equation 10). The iterative algorithm is ex-

plained in Algorithm 1.

If the computed transmission size of the current frame (i) is less than the original

size, it is transrated by the computed factor (xi) and then transmitted over the

wireless channel. Note that although the algorithm is capable of computing allocated

bit rates (or rate reduction ratios xj) for frames in the group following the current

frame, the system does not actually need to utilize these computed bit rates. Instead,
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Algorithm 1: Iterative Distortion-Optimized Transrater Rate Allocation

Data: Frame-group transmission bit-budget (RG), estimated frame sizes (vj),
transrater R-D model parameters (ap(j), bp(j))

Result: Transrating ratio of the current frame (xi)

1. Initialize G = {i, i + 1, . . . , i + h} as the set of frames in the group.

2. Compute xj for all j ∈ G, such that:

ap(j).xj + bp(j) = ap(i).xi + bp(i), for all j ∈ G\{i}

and,
∑

j∈G xj .vj ≤ RG

3. If xj ≥ 1 for all j ∈ G

3.1. Return xi = 1 and exit.

4. If minG(xj) ≥ xmin

4.1. If maxG(xj) ≤ 1

4.1.1. Return xi and exit.

4.2. Else go to step 6.

5. Else if minG(xj) ≤ xmin

5.1. Find the k such that xk ≤ xl for all k, l ∈ G

5.2. If k = i

5.2.1. Return xi = xmin and exit

5.3. Else if k 6= i

5.3.1. Set G = G − {k}, RG = RG − xmin.vk and go to step 2.

6. If maxG(xj) ≥ 1

6.1. If xj ≥ 1 for all j ∈ G

6.1.1. Return xi = 1 and exit

6.2. Find the k such xk ≥ xl that for all l ∈ G

6.3. If k = i

6.3.1. Return xi = 1 and exit

6.4. Else if k 6= i

6.4.1. Set G = G − {k}, RG = RG − vk, and go to step 2.
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the algorithm will be run again at the time of transcoding the next frame (frame

i+1), and the system will be able to take into account new information (for example

updated bandwidth and backlog size information), etc.

The original size of the future picture frames (vj) may not be known exactly if

the AV content is not stored at the server. In such a case, the values vj for each GOP

position may be estimated based on the averages of the previous frames that were at

the same GOP position.

2.3.6 Rate-Adaptation Time-Scale Optimization

In the previous sections we explained how the rate adaptation works for a selected

time-scale. The time-scale that results in best streaming quality may change de-

pending on the initial buffering duration and channel conditions. We first provide an

analysis and then propose an automated rate-adaptation parameter selection method

to achieve the performance of the optimally set ones.

2.3.6.1 Analysis on Rate-Adaptation Time-Scale and Buffer Fullness Target

The rate-adaptation time-scale parameter, h, and playout buffer fullness target pa-

rameter, Ω, are the two variables of our method. We performed experiments to figure

out the effect of h and Ω on the streaming quality. In order to test the channel con-

dition dependency, we used four different WLAN traces. These traces are labeled as

‘good’,‘deteriorated’,‘bad’ and a combination ‘hybrid’. The details of the test setup

are described in the results section. Expected transrater PSNR loss and late packet

delivery percentage for sample experiments are plotted in Figure 10 and Figure 11.

In order to plot these curves we changed one parameter while keeping the other fixed.

Using longer time scales, i.e. larger h, improves the transrater efficiency. However, it

may cause buffer underflows if the initial buffering duration is small or the channel

has high bandwidth variation. This effect can be seen in the left plots of Figure 10

and Figure 11, where the late packet delivery percentage may increase quickly if h is
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increased beyond a threshold. This threshold increases when a smaller Ω is selected.

Intuitively, we can argue that smaller h values should be preferred when the channel

quality deteriorates or a short initial buffering duration is set. Ω acts as a safety

parameter against bandwidth and backlog estimation errors. Timely frame delivery

can be guaranteed by choosing small Ω, but this also increases the PSNR loss (see the

right plots in Figure 10 and Figure 11). Note that these results indicate that h and

Ω are coupled in such a way that a longer time scale requires smaller buffer fullness

target parameter (Ω). The optimal parameter pair (indicated with stars in Figures

10 and 11) is selected such that the late packet delivery percentage is zero and PSNR

loss is minimum. Table 2 presents the optimal parameter values of the RAVEN

sequence at different channel conditions and delay tolerances. These parameter pairs

also result in close to optimal performance for other video test sequences. The most

aggressive parameters are observed for the ‘hybrid’ trace, since it shows the largest

bandwidth variation.

It is not feasible to manually set h and Ω in real time streaming scenarios, hence

we developed automated techniques in the next section based on this analysis.
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Figure 10: Effect of time-scale (left) and buffer fullness target (right) parameters
on the streaming quality (Test sequence: RAVEN, Channel trace: ‘Deteriorated’,
Initial playout buffer: 100 ms)
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Figure 11: Effect of time-scale (left) and buffer fullness target (right) parameters
on the streaming quality (Test sequence: RAVEN, Channel trace: ‘Deteriorated’,
Initial playout buffer: 500 ms)

Table 2: Optimal rate adaptation parameters, Test sequence: RAVEN

Initial Playout Buffer 

100 ms 200ms 500 ms 
Optimal 

Parameters 
h Ω h Ω h Ω 

Good 29 0.9 29 0.9 29 0.9 

Deteriorated 8 0.3 29 0.5 29 0.6 

Bad 2 0.1 20 0.1 29 0.3 

C
h

a
n

n
e

l 
C

o
n

d
it

io
n

s
 

Hybrid 2 0.1 2 0.1 20 0.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.6.2 Automated On-line Parameter Selection Method

The objective of this method is to choose the frame group size h + 1 and the sender

backlog target multiplier Ω parameters in real-time, on a per frame basis. We expect

the on-line parameter selection method to result in a streaming quality which is in

most conditions close to the quality achieved by optimally selected static parameters.

We iteratively select the h parameter from a finite set of candidate integers, Φ =

{h1, h2, . . . , hn}. Smaller h values are useful to check short-term delay constraints; on

the other hand, we use a larger h to investigate long-term delay constraints.
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The elements of Φ can be selected as equally spaced integers between a mini-

mum, hmin, and a maximum hmax value. In the sample implementations the mini-

mum value is chosen as 0, which is equivalent to a single frame, and the maximum

value is related to the video’s GOP size, (2 × GOPSize − 1). The spacing be-

tween candidate values is selected equal to the period of the P frames. Therefore,

Φ = {0, 2, 5, 8, 11, 14, 17, 20, 23, 26, 29} is used in the simulations.

This algorithm runs before the transmission of each frame. In Equation 11, the

frame group transmission bit budget is computed for every candidate h value using

the specifically calculated Ωh. We will elaborate on the Ωh calculation at the end of

this section.

Rh
G = Ĥ. (h.∆T + Ωh.∆TE) − B̂ (11)

Subsequently, the rate reduction ratio xh
i for the current frame, i, is computed

using the transmission bit budget. The h value that results in minimum rate reduction

ratio is selected to determine the time scale. The purpose of such an approach is to

satisfy both short term and long term delay constraints. Larger time scales are

preferred when the playout buffer is full. On the other hand, our method aggressively

responds to diminishing buffer, due to sharp bandwidth fluctuations, by reducing

time-scale. The effective rate reduction ratio for the current frame is computed as:

xi = min
h∈Φ

xh
i (12)

The optimum value of Ω is coupled with the h parameter. Based on the performed

analysis, we came up with an expression that maps the Ω to the initial buffering

duration and h. The expression in Equation 13 captures the characteristics of Ω since

it gets smaller as the buffer duration and time scale increase.

Ωh =
∆TE

2 (∆TE + h.∆T )
(13)

We compare the performance of this automated technique with the optimally

selected parameters in the next section.
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2.4 Experimentation and Results

2.4.1 Experimental Setup

We considered an experimental setup where the sender and receiver stations are con-

nected over an ad-hoc wireless link. Background data traffic was not allowed during

the video streaming session. The AV streaming system depicted in Figure 8 is im-

plemented in a simulation environment using MATLAB. In order to emulate realistic

WLAN channel conditions, we collected packet traces using two laptop computers

equipped with D-Link DWL-AG660 (802.11a/b/g) network interface cards. Default

settings of this card’s windows operating system driver were used. Application layer

traces were collected by continuously transmitting 1500 byte IP packets from the

server to the client; thus the channel never stayed idle. Using packet traces allowed

us to compare different streaming methods fairly at identical conditions. Three chan-

nel traces characterizing ‘good’ (average bandwidth is 20.26 Mbps), ‘deteriorated’

(14.07 Mbps), and ‘bad’ (7.78 Mbps) network conditions were collected. The dura-

tion of each trace was 30 seconds. A fourth trace, ‘hybrid’, was artificially generated

by combining 10 second fragments from each of the previous three traces (Average

bandwidth is 13.74 Mbps). As a result, the ‘hybrid’ trace included bandwidth varia-

tions over both short and long time-scales.

Our simulator was also provided with video frame traces. The MPEG-2 encoded

HARBOUR (Y-PSNR: 35.27 dB), CREW (39.37 dB), and RAVEN (42.33 dB) test

sequences at 1280x720 pixels (720p) resolution, 16.9 Mbps bitrate, and 60 Hz frame

rate were used throughout the experiments. These 10 second sequences were looped

three times to get more reliable results. The initial playout buffer duration (∆TE)

was adjusted between 100 ms and 500 ms.

Our system utilizes a software MPEG-2 bit rate reducing transrater, with open-

loop requantizing architecture. Late and lost packets were applied to the transrated

video at the MPEG slice level, i.e., an entire slice is removed if it overlaps with a
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late/lost packet. The quality of the final decoded output video was evaluated in

terms of the PSNR and by visual comparison.

2.4.2 Comparison of the Rate-Adaptation Methods

We compared four different video rate adaptation methods at various WLAN chan-

nel conditions. The first method, which is labeled as “bandwidth-adaptive non-delay

constrained”, is the rate adaptation algorithm based on on-line bandwidth measure-

ments, but it does not consider the delivery deadlines. The operation of this method

is explained in Section 2.3.1 . Transrating ratio is selected using Equation 4.

The second method is the “single-frame delay-constrained” rate adaptation tech-

nique. The third method “static time-scale and R-D optimized” transrating uses the

optimally selected h and Ω parameters. This method is included as a benchmark for

the “automated time-scale and R-D optimized” technique.

A summary of the simulation results at four different channel conditions is pre-

sented in Tables 3- 6. The advantage of the delay-constrained (single-frame) rate

adaptation over the bandwidth-adaptive non-delay constrained method becomes visi-

ble when channel conditions deteriorate. Short-term bandwidth variations variations

are efficiently addressed by this method. The static time-scale and R-D optimized

technique clearly outperform the bandwidth-adaptive non-delay constrained method

and improves the quality up to 8.12 dB PSNR for the CREW sequence at bad channel

conditions. The improvement achieved by generalizing the rate adaptation time-scale

gets more significant as the initial playout buffer size increases. Time-scale and R-D

optimized rate adaptation provides up to 4.42 dB gain compared to the single-frame

delay constraint for the RAVEN sequence at the bad channel condition and 500 ms

buffering.

The performance of the automatic parameter selection technique is close to the

optimally selected static parameters. The automated method performs significantly
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better for the ‘hybrid’ channel trace. This proves that the proposed method efficiently

adapts to highly dynamic network conditions.

Table 3: Good channel - Comparison of video rate adaptation methods

Channel Trace: Good 
Y-PSNR (dB) 

HARBOUR CREW RAVEN 

Playout Buffer → 0.1 s 0.2 s 0.5 s 0.1 s 0.2 s 0.5 s 0.1 s 0.2 s 0.5 s 

Bandwidth-Adaptive    
Non-Delay Constrained 

35.16 35.16 35.16 39.28 39.28 39.28 42.23 42.23 42.23 

Single-Frame             
Delay-Constrained 

35.20 35.27 35.27 39.34 39.37 39.37 42.30 42.33 42.33 

Static Time-Scale and 
R-D Optimized 

35.26 35.27 35.27 39.36 39.37 39.37 42.32 42.33 42.33 

M
e
th

o
d

 

Automated Time-Scale and 
R-D Optimized 

35.00 35.25 35.27 39.32 39.36 39.37 42.16 42.31 42.33 

 

Table 4: Deteriorated channel - Comparison of video rate adaptation methods
 

Channel Trace: Deteriorated 
Y-PSNR (dB) 

HARBOUR CREW RAVEN 

Playout Buffer → 0.1 s 0.2 s 0.5 s 0.1 s 0.2 s 0.5 s 0.1 s 0.2 s 0.5 s 

Bandwidth-Adaptive    
Non-Delay Constrained 

32.80 32.81 32.81 37.81 37.81 37.81 40.33 40.33 40.33 

Single-Frame             
Delay-Constrained 

31.03 31.70 32.16 37.35 37.61 37.44 39.52 39.89 39.94 

Static Time-Scale and 
R-D Optimized 

34.23 34.56 34.48 38.45 38.61 38.55 41.33 41.63 41.58 

M
e
th

o
d

 

Automated Time-Scale and 
R-D Optimized 

32.75 34.46 34.62 38.20 38.57 38.62 40.55 41.53 41.66 

 

Figures 13, 14 and 15 plot the 10 second (600 frames) sample run of the streamed

video quality in terms of PSNR when the initial playout buffer duration is set 100ms

and 500 ms. The bandwidth variation during this sample experiment is plotted in

Figure 12. The proposed technique prevents the large PSNR drops that can be

caused by late packets when the playout buffer is limited to small values, e.g., 100

ms. It also consistently outperforms the bandwidth-adaptive non-delay constrained
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Table 5: Bad channel - Comparison of video rate adaptation methods
 

Channel Trace: Bad 
Y-PSNR (dB) 

HARBOUR CREW RAVEN 

Playout Buffer → 0.1 s 0.2 s 0.5 s 0.1 s 0.2 s 0.5 s 0.1 s 0.2 s 0.5 s 

Bandwidth-Adaptive    
Non-Delay Constrained 

23.01 28.78 29.37 27.41 32.34 35.28 31.33 35.79 37.98 

Single-Frame             
Delay-Constrained 

28.47 27.31 28.45 34.03 33.88 34.13 35.58 35.52 35.60 

Static Time-Scale and 
R-D Optimized 

28.98 30.60 31.37 35.53 36.41 36.56 36.81 38.64 39.02 

M
e
th

o
d

 

Automated Time-Scale and 
R-D Optimized 

28.97 30.42 31.49 35.55 36.38 36.66 37.40 38.44 38.92 

 

Table 6: Hybrid channel trace - Comparison of video rate adaptation methods
 

Channel Trace: Hybrid 
Y-PSNR (dB) 

HARBOUR CREW RAVEN 

Playout Buffer → 0.1 s 0.2 s 0.5 s 0.1 s 0.2 s 0.5 s 0.1 s 0.2 s 0.5 s 

Bandwidth-Adaptive    
Non-Delay Constrained 

25.15 28.32 30.03 29.41 31.94 33.90 30.48 34.58 37.40 

Single-Frame             
Delay-Constrained 

30.50 31.26 31.89 36.60 36.54 37.42 38.45 38.76 39.53 

Static Time-Scale and 
R-D Optimized 

31.21 31.49 33.79 36.95 37.31 38.55 38.98 39.42 40.99 

M
e
th

o
d

 

Automated Time-Scale and 
R-D Optimized 

31.98 33.40 33.79 37.45 38.02 37.94 39.71 40.73 40.88 

rate adaptation method even if the initial buffer is large, e.g. 500 ms. The achieved

quality is close to the PSNR of the input video stream when the buffering duration

is 500 ms as shown in Figure 15. This demonstrates that our algorithm is able to

sustain the quality expected from the high definition video even during the tough

network conditions.

2.5 Conclusions

In this chapter of the thesis, we proposed and tested an application layer video rate

adaptation method for improving the WLAN streaming quality. Video frame freezes
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Figure 12: WLAN bandwidth - ‘Bad’ channel trace 10 second sample

and glitches caused by wireless bandwidth impairments are prevented by proactively

adjusting the bitrate over various time scales. Our method also improves the tran-

srater efficiency by a joint rate-distortion (R-D) optimization among a group of fu-

ture frames. Up to 8.12 dB average PSNR improvement is achieved compared to

a bandwidth-adaptive non-delay constrained rate adaptation method. We demon-

strated that the proposed method enables the transmission of high definition video

content over 802.11a/g WLANs.
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Figure 13: Comparison of video rate adaptation methods (Test sequence: CREW,
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CHAPTER III

RATE-ADAPTIVE WIRELESS TRANSMISSION OF

VIDEO IN SCALABLE VIDEO CODING (SVC) FORMAT

3.1 Introduction

In Chapter 2 we explained our work on a rate-adaptive WLAN video streaming

method, which used the MPEG-2 video coding standard. Streaming rate-adaptation

for wireless transmission required transrating the MPEG-2 bitstream in real-time.

The transrating requirement increases the cost of a home media gateway device since

extra hardware and processing power is needed. This cost increases even more when

more complicated closed-loop transrating methods are incorporated instead of simple

open-loop techniques.

The requirement for transrating hardware/software can be eliminated if the video

to be streamed is compressed in a scalable format. The scalability of the video refers

to the flexibility in removing parts of the compressed video bitstream to provide

compatibility with various devices/systems and adaptability to different network ar-

chitectures. This flexibility most importantly enables playing the video on a large

spectrum of devices ranging from mobile phones to wide screen TVs. In addition,

scalability fits well into the heterogenous structure of today’s wireless networks and

Internet access technologies. For instance, video content servers can store a single

version of each video, instead of separate copies coded at different bitrates, and offer

service for broadband, dial-up or wireless clients.

Even tough MPEG-2 is widely used in DVDs and digital cable TV broadcasting,

newly standardized H.264/AVC provides better compression efficiency and is replac-

ing MPEG-2 in a variety of applications. The scalable video coding (SVC) standard
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is developed as an annex of H.264/AVC. Although scalable video coding is not a new

idea, which was previously used in the MPEG-2 and MPEG-4 standards, new coding

methods used in SVC reduce the quality penalty that comes with scalability. Like its

predecessors, SVC supports spatial, temporal and quality, i.e. SNR (signal-to-noise

ratio), scalability dimensions.

The video delivery system targeted in this part of the thesis work is identical to

the setup described in Chapter 2. The objective is to distribute high quality digital

video content to display devices in a home environment over WLAN. Furthermore,

we employ the wireless link quality probing tools previously developed. In Chapter 2

we described how the client devices measure the varying wireless bandwidth and

provide real-time feedback to a media gateway device. The gateway device computes

a transmission bitrate budget depending on the wireless bandwidth estimation. The

differentiation of this work starts at this point. We will exploit the features of SVC

to develop a more efficient and diverse set of robust WLAN streaming protocol level

solutions.

The first novelty of this thesis work is on rate-distortion optimized allocation of

the transmission bitrate budget. In chapter 2, we developed rate-distortion models

for characterizing the importance of picture frames. These models were determined

based on experiments that established the dependency on the resolution, bitrate and

video sequence characteristics. The concept of quality layer (QL) identifiers has been

introduced in the SVC standard to provide additional information that can be used for

quality optimized extraction of low bitrate bitstreams. We will utilize QL information

instead of R-D models for bit budget allocation.

The second differentiation is achieved by using temporal scalability. In Chapter 2

the frame rate of the video is retained regardless of the wireless bandwidth. When

the link quality deteriorates significantly, reducing the quality without decreasing the

frame rate may not be sufficient to sustain glitch-free video. The temporal scalability
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feature of SVC coded video allows us to reduce the video rate even further to provide

visually pleasing quality in adverse wireless conditions.

Another drawback of transrating-based rate adaptation is its multi-stage rate de-

cision process. When the size of a video frame is decreased with transrating, it is

not possible to revisit and refine this decision. The third major innovation of this

work involves using the incremental data structure of SVC. Rate adaptation may

aggressively reduce the bitrate to ensure that the client playout buffer never under-

flows when fast fluctuating bandwidth conditions are observed. These conservative

decisions cannot be overturned. If transrating is used, however, SVC allows send-

ing incremental refinement data, when the actual channel conditions are better than

initially estimated. We proposed packet scheduling methods to exploit this feature.

In Section 3.2 we will explain the bitstream structure of the SVC coding stan-

dard. The developed rate adaptation and scheduling methods will be presented in

Section 3.3. The performance of various streaming approaches will be compared in

the experimental results section.

3.2 SVC Bitstream Structure

The bitrate of a full quality SVC video can be reduced in three dimensions. The first

dimension is spatial scalability, where a video with lower resolution picture frames

can be extracted. The temporal resolution, i.e. frame rate, of a scalable video may

be reduced by simply discarding certain frames. The SVC standard enables tempo-

ral scalability by hierarchical B (bi-directionally predicted) and P (uni-directionally

predicted) pictures. The third dimension is the quality or SNR scalability where the

frame rate and resolution is preserved, however, the bitrate is controlled by adjusting

the transform coefficient quantization levels. SVC provides both fine grain (FGS)

and coarse grain (CGS) SNR scalability modes. FGS is achieved by encoding suc-

cessive refinements of the transform coefficients, starting with the minimum quality
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provided by H.264/AVC compatible intra / residual coding. The advantage of FGS

over CGS is its ability to truncate progressive refinement (enhancement) layers at any

particular rate point. Figure 16 illustrates the prediction, group of pictures (GOP)

and layering structure of a sample bitstream with a GOP size equal to 4 and 2 SNR

refinement layers. The first frame of the GOP (in encoding/decoding order) is a key

picture. The key pictures are either intra-coded or inter-coded using previous (key)

pictures as reference for motion compensated prediction. The remaining pictures of

a GOP are hierarchically predicted B frames as illustrated in Figure 16. The number

of temporal layers is determined by the size of the GOP. For the example depicted in

Figure 16, there are three temporal layers. The lowest frame rate is achieved by only

transmitting key frames.

 

  

SNR Base 

 Layer  

Enhancement 

 Layer 1 

Enhancement 

 Layer 2 

 

Frame Type: 

 

Decoding Order: 

 

Display Order: 

 

Temporal Level: 

I0/P0 

 
0 
 

0 
 

0 

B2 

 
3 
 

1 
 

2 

B1 

 
2 
 

2 
 

1 

B2 

 
4 
 

3 
 

2 

I0/P0 

 
1 
 

4 
 

0 

B2 

 
7 
 

5 
 

2 

B1 

 
6 
 

6 
 

1 

B2 

 
8 
 

7 
 

2 

I0/P0 

 
5 
 

8 
 

0 

GOP GOP 

 

 

 

 

Figure 16: SVC bitstream structure
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The SVC bitstream is composed of network abstraction layer (NAL) units similar

to H.264/AVC. In H.264/AVC NAL units contain slice structures, which are inde-

pendently decodable data units. Slices can be equivalent to or smaller than a coded

picture. In SVC, the base layer data of a video frame is encapsulated into a NAL unit,

and each quality enhancement layer of a video frame is encapsulated into different

NAL units.

The concept of quality layer (QL) identifiers has been introduced in SVC in order

to provide additional information that can be used for optimized adaptation of a

scalable bit stream containing progressive refinement NAL units. The value of a QL

identifier corresponds to the relative importance of a NAL unit in terms of the impact

on the overall video distortion, if the NAL unit is not available for decoding, as well as

the additional bitrate increase it creates. QL identifiers can be computed at the time

of encoding by determining and ranking the rate-distortion slope (ratio of distortion

and size) of the NAL units over the entire bitstream. The value of a QL identifier

gets higher as the relative importance of the NAL unit increases.

According to the SVC standard draft and reference model, “Joint Scalable Video

Model” [2], quality enhancement layer identifier values can be selected between 0

and 63 (inclusive). We denote the SNR enhancement layers of frame i by ik, k =

1, ..., L−1. In this notation the total number of SNR layers, including the base layer,

is represented with L. For the NAL unit i0, i.e. SNR base layer of frame i, QL(i0)

can take a value larger than 63. We set the QL identifier for every base layer NAL

unit to QLmax value, which is 64. Figure 17 illustrates an example of QL identifiers

for a video sequence consisting of a SNR base layer and two enhancement layers, i.e.

L = 3.

Figure 18 demonstrates an example bitstream size distribution for three SNR

layers. In Figure 18, v(ik) represents the initial size of the NAL unit ik (in bits)

before bit rate adaptation. The initial size of a picture frame can be computed
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Figure 17: Quality layer (QL) identifiers of NAL units in a group of frames.

by summing the size of all frame i’s SNR base and enhancement layer NAL units:

v(i) =
∑

k v(ik). The initial average bitrate (bits/sec) of the video is denoted by V .

τ(i) represents the temporal level of frame i. The temporal level of key frames are 0,

as can be seen from Figure 16.

3.3 Rate-Adaptive SVC Streaming

In this thesis work we will develop real-time SVC stream bitrate adaptation techniques

utilizing the SNR and temporal scalability features. SNR enhancement layers for each

frame may be dropped (not transmitted) or may be truncated (partially transmitted)

in order to reduce the bitrate. Furthermore, the temporal resolution of the video may

be reduced up to a minimum level where only key frames are transmitted, by dropping

non-key frames. The proposed rate adaptation methods are based on estimates of the
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Figure 18: Example SVC bitstream NAL units and their bit sizes

channel bandwidth, Ĥ, and channel backlog, B̂. The channel bandwidth represents

the maximum throughput and can be expressed in bits or bytes per second. The

channel backlog represents the amount of data, expressed in bits or bytes, that is

buffered somewhere in the channel, i.e. sent into the channel by the server, but not

yet received by the client. For example, when streaming over a wireless LAN link,

packets that are sent at the application or transport layer may still be held in a

transmission buffer/queue at the sender MAC/PHY. The system may consider this

data as yet to be transmitted. The channel bandwidth and channel backlog estimation

techniques explained in Chapter 2 will be used in this study. The client sends feedback

messages after receiving a burst of video packets. A burst is defined as a set of video

packets that are sent at nearly the same time from the server application.

Real-time rate-adaptation is performed by considering the delay constraints of

the video frames. Our objective is to deliver frames to the client prior to their

decoding deadline, while minimizing the distortion due to rate adaptation. To this
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end, we propose to utilize bitrate adjustment techniques based on multi-frame delay-

constraints. In this approach, the current frame as well as multiple future frames in

the transmission order are considered jointly for changing the streaming rate, using

a pre-selected time scale. The first stage of this method involves the computation of

a delay-constrained transmission bit-budget for these multiple frames. At the second

stage, a transmission bit rate decision for the current frame is made. Quality layer

(QL) information can be utilized for improved rate allocation. In the following, we

first explain how the proposed SVC rate adaptation methods utilize SNR scalability

and temporal scalability. Subsequently, an extension called “Delayed enhancement

layer transmission” is described. This method improves the channel utilization in

scenarios with a short initial playout buffer duration.

3.3.1 SVC Rate Adaptation based on Quality (SNR) Scalability

We first compute the delay-constrained bit-budget of the current, i, and h− 1 future

frames in the transmission order. These h frames are called a group and denoted as

G = {i, i + 1, ..., i + h − 1}. The bit-budget for this group can be expressed as:

RG = Ĥ. [(h − 1)∆T + F.∆TE] − B̂ (14)

In this expression RG is the group bit-budget, ∆T is the inter frame interval, and

∆TE is the initial playout buffering duration (delay tolerance). F is a parameter

that determines the target size of the channel backlog at the end of transmitting

the group of frames. The F parameter also determines the target fullness of the

playout buffer at the client. Optimal values of the h and F parameters, which result

in optimal quality, depend on delay tolerance, channel conditions and video source

characteristics. For example, in a low delay scenario, the number of frames in a group

h may be kept relatively low. These parameters can be extracted from look-up tables

or automatically determined during the streaming session. The number of frames
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in a group may be static (fixed) throughout a streaming session. Alternatively, the

number of frames in a group may be varied dynamically, depending on channel and

system conditions.

Next, we will investigate three possible cases. Cases will be determined by com-

paring the transmission bitrate budget to the size of the frame group size.

The first case occurs if the group bit budget is equal to or larger than the total

size of all frames in the group, i.e. if RG ≥
∑

j∈G v(j). In this case all SNR layers of

the current frame can be fully transmitted. Therefore, the rate of the current frame

is not reduced, i.e.: r(ik) = v(ik) for all k < L. r(ik) denotes the transmission size

(in bits) of the NAL unit ik after rate adaptation. r(i) =
∑

k r(ik) is the transmission

size (in bits) of frame i after rate adaptation.

The second case occurs if the group bit budget is smaller than or equal to the

total size of the SNR base layers of the frames in the group, i.e. if RG ≤
∑

j∈G v(j0).

The system will transmit only the base layer NAL unit of the current frame and

discard all enhancement layer NAL units. Therefore: r(i0) = v(i0) and r(ik) = 0 for

all 0 < k < L .

The third case is when the group bit-budget is less than the total size of the

frames in the group, but more than the total size of the SNR base layer data, i.e. if

∑

j∈G v(j0) < RG <
∑

j∈G v(j). The system will transmit the base layer NAL unit of

the current frame, and may transmit part of the enhancement layer data, and discard

the remaining part. The bit rate of the stream should be reduced in the projected

time scale that corresponds to the h frames in the group.

In this case, the transmission size of the current frame, r(i), will be determined

using the quality layer (QL) information, thereby distinguishing different video frames

in terms of their effect on the overall video quality. The objective of this method is to

minimize the distortion (i.e. maximize quality) by transmitting the most important

NAL units in the group. Note again that more important NAL units have higher QL

49



identifier values.

For the third case, the transmission rate decisions for each enhancement layer

NAL unit ik (0 < k < L) of the current frame i are determined as follows:

We define N as the set of NAL units in the group that are more important than

the current NAL unit ik. The elements of N satisfy the following condition:

js ∈ N if QL(js) > QL(ik), j ∈ G and 0 ≤ s < L (15)

The current NAL unit ik is discarded entirely if the bit-budget is too small for the

NAL units more important than ik:

r(ik) = 0, if RG <
∑

js∈N

v(js) (16)

Otherwise, the transmission rate for the current NAL unit ik is determined as

follows:

Let us define P as the set of NAL units in the group G that have the same

importance as the current NAL unit ik. Thus:

js ∈ P if QL(js) = QL(ik), j ∈ G and 0 < s < L (17)

The current NAL unit ik is transmitted entirely if the bit-budget is large enough

for all the NAL units belonging to the union of set N and set P .

r(ik) = v(ik), if RG ≥
∑

js∈(N
⋃

P )

v(js) (18)

Otherwise the transmission rate assigned to the current NAL unit ik can be cal-

culated using any one of the following algorithm variants:

Approach 1: This approach treats all the NAL units in the set P equally and

thus all the NAL units in P are truncated by the same ratio:

r(ik) = v(ik)
RG −

∑

js∈N v(js)
∑

ns∈P v(ns)
(19)
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Approach 2: This approach uses the remaining bits greedily by treating the

current NAL unit ik favorably compared to other NAL units belonging to the set P :

r(ik) = min(RG −
∑

js∈N

v(js), v(ik)) (20)

Note that truncation of this NAL unit is only allowed if the layer is coded in

fine-grained scalable (FGS) manner. Otherwise, this NAL unit is discarded entirely.

3.3.2 SVC Rate Adaptation based on SNR and Temporal Scalability

If the rate reduction achieved by SNR scalability is not sufficient to prevent playout

buffer underflows, futher rate adaptation can be performed by reducing the temporal

resolution of the video. Temporal scalability is effectively achieved by discarding the

SNR base layer data of non-key video frames. The proposed rate adaptation method

based on temporal scalability again uses the time-scale concept. The goal of this

method is to maximize the number of correctly decoded frames in the group while

maintaining delay constraints.

The system decides whether the current frame is transmitted or dropped based

on the importance of the frame in terms of its temporal level τ(i). Note that frames

with a lower temporal level are more important than frames with a higher temporal

level, since frames with a lower temporal level are used as references for prediction

of frames with a higher temporal level. Figure 19 is an illustration of the temporal

levels for 12 consecutive frames and GOP size of 8.

If the group bit-budget computed for SNR scalability is smaller than the total (bit)

size of the SNR base layer NAL units of the frames in the group, i.e., RG <
∑

j∈G v(j0),

the temporal scalability feature is invoked. Temporal scalability may decide to discard

the base layer data of certain frames, in addition to the enhancement layer data

already discarded in the above condition.

In this method, the bit-budget is considered for a group of frames Gt, where the
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Figure 19: Temporal levels of base layer NAL units in the group of frames Gt

size of this group may be different than the size of the group G defined for SNR

scalability. It is advantageous to use a larger group for the purpose of temporal

scalability. Our experiments showed that choosing longer time scales for temporal

scalability results in better performance. The new frame group is defined as: Gt =

{i, i + 1, ..., i + ht − 1}.

The transmission bit-budget is computed as follows:

Rt
G = Ĥ.

[

(ht − 1)∆T + F t.∆TE

]

− B̂ (21)

The base layer of the current frame (NAL unit i0) is fully transmitted, if the bit-

budget is large enough for this NAL unit as well as other NAL units in the group

that are more important in terms of temporal level:

r(i0) = v(i0), if Rt
G ≥ v(i0) +

∑

τ(j)<τ(i)

v(j0) for j ∈ Gt (22)

Otherwise, NAL unit i0 is discarded, effectively dropping frame i entirely:

r(io) = 0, if Rt
G < v(i0) +

∑

τ(j)<τ(i)

v(j0) for j ∈ Gt (23)
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3.3.3 Delayed Enhancement Layer Transmission

An additional method, named delayed enhancement layer transmission, is proposed

as an extension of the previous two scalability methods. In the methods explained

previously, NAL units have only one transmission opportunity at their generation

time. These methods perform well when the initial buffering duration is relatively long

by fully utilizing the channel when necessary. At short delay tolerances, the streaming

system may not utilize the full channel bandwidth efficiently due to relatively large

rate reductions. Large rate adjustments may occur when the h and F parameters

are set to small values, to prevent buffer under-runs that may occur at fluctuating

wireless bandwidth conditions.

The objective of this extension is to detect idle channel intervals (instances when

the channel is not fully utilized), and subsequently transmit previously dropped or

truncated NAL units whose decoding deadlines have not yet expired. Hence, better

channel utilization is achieved by the delayed transmission of enhancement NAL units,

i.e., at later transmission opportunities. This method also utilizes quality layer (QL)

information for selecting the most important previously dropped or truncated NAL

unit with a non-expired decoding deadline.

Idle channel intervals may be detected using feedback messages of the client, which

are sent after a burst is received. The wireless channel will stay idle after the most

recent burst transmission is acknowledged (i.e. the channel backlog is zero), and if

there is still time left until the transmission time of the next frame.

First, the bit-budget for the idle interval is determined as follows:

RI = Ĥ.(ti+1 − cfb) (24)

In this expression ti+1 is the scheduled transmission time of the next frame (i+1),

and cfb is the receive time of the latest feedback indicating that the channel backlog

is empty. Delayed transmission can be disabled in cases where the idle interval is
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shorter than a threshold (λ), i.e. (ti+1 − cfb) < λ.

Next, the most important, not-expired and previously discarded/truncated NAL

unit is determined. Note that SNR base layers are always more important than the

enhancement layers. We define the set of NAL units eligible for delayed transmission,

E, as:

jk ∈ E, if tj + β · ∆TE ≤ ti+1 and r(jk) < v(jk) (25)

In this definition tj is the initial transmission time of frame j. β is a constant

safety factor, with 0 ≤ β ≤ 1, that can be used to disable the delayed transmission

of NAL units whose deadline is too close.

We then determine the most important NAL unit in E as the NAL unit with

maximum QL identifier:

ab = arg max
jk∈E

[QL(jk)] (26)

If multiple NAL units in E share the same maximum quality layer, the one with

the minimum frame sequence number is selected. Next, the size of NAL unit ab when

performing delay transmission, d(ab), is calculated as follows. If abis an SNR base

layer, i.e. b = 0, it will be transmitted entirely, since base layers cannot be truncated:

d(ab) = v(ab), if b = 0 (27)

If ab is an SNR enhancement layer, i.e. b > 0, the remaining bits/bytes of the

NAL unit may be transmitted up to the calculated bit-budget:

d(ab) = min [RI , v(ab) − r(ab)] , if b > 0 (28)

Note that truncation of this NAL unit is only allowed if the layer is coded in

fine-grained scalable (FGS) manner.
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The total transmission size of NAL unit ab is updated after the delayed transmis-

sion:

r(ab) = r(ab) + d(ab) (29)

Finally, the client station may send a feedback message after receiving the de-

layed NAL unit packet burst. The above process may be repeated for the next most

important NAL unit in E after updating the bit budget as follows:

RI = RI − d(ab), if RI > 0 (30)

3.4 Experimental Results

The experimental environment considered in this study is very similar to the setup in

Chapter 2. Sender and receiver stations are connected over an ad-hoc wireless link.

Background data traffic was not allowed during the video streaming session. The AV

streaming system is implemented in a simulation environment using MATLAB. In

order to emulate realistic WLAN channel conditions, we collected packet traces using

two laptop computers equipped with D-Link DWL-AG660 (802.11a/b/g) network

interface cards. Application layer traces were collected by continuously transmitting

1500 byte IP packets from the server to the client, thus the channel never stayed

idle. Using packet traces allowed us to compare different streaming methods fairly

at identical conditions. The average bandwidth of the 802.11g channel trace used in

the experiments is 4.27 Mbits/sec. For some experiments the usable portion of the

channel bandwidth by the streaming application is artificially reduced by scaling the

bandwidth.

Our simulator was also provided with video frame traces. HARBOUR and CREW

test sequences at 704x576 pixels (4CIF) resolution, 3 Mbits/sec bitrate, and 60 Hz

frame rate were used throughout the experiments. The number of SNR layers and

the GOP size were set to 3 and 8, respectively. SVC reference software (JSVM 5.5)

was used for encoding and decoding sequences. The bitrate composition of SNR and
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temporal layers are summarized in Tables 7 and 8. The initial playout buffer duration

was adjusted between 100 ms and 500 ms.

Table 7: Layer composition of HARBOUR test sequence (704x576 @ 60fps )
 

SNR Layer Temporal Layer Bitrate (Kbits/sec) 

0 0 264 

0 1 423 

0 2 604 

0 3 812 

1 3 1708 

2 3 3072 

 

Table 8: Layer composition of CREW test sequence (704x576 @ 60fps )
 

SNR Layer Temporal Layer Bitrate (Kbits/sec) 

0 0 248 

0 1 430 

0 2 658 

0 3 1016 

1 3 1723 

2 3 3072 

 

The WLAN streaming quality of five different methods, all using SVC, is com-

pared. In the first method we find the maximum fixed rate that results in zero late

frame percentage, by trial. The bitstream is extracted using quality layer informa-

tion. This method cannot be used in a real streaming scenario; therefore it denotes an

upper bound on the quality if the rate was fixed. It supports both SNR and temporal

scalability. Streaming bitrates selected by this method are shown in Table 9.

The second method is called rate scaling. This method selects the rate on a per-

frame basis using the bandwidth measurements. Only SNR scalability is supported

(SNR base layers are always fully transmitted). The transmission size of the current

frame is calculated as follows:
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Table 9: Maximum fixed rate method - Video streaming rates
 

Average WLAN Bandwidth (Mbits/sec) 
Video Bitrate (bits/sec) 

4.27 3.20 2.13 1.06 

100ms 1600000 1300000 658000 248000 

300 ms 3000000 2500000 1400000 658000 
CREW 

500 ms 3072000 2600000 1500000 658000 

100ms 1600000 1100000 604000 265000 

300 ms 3072000 2500000 1600000 604000 
HARBOUR 

500 ms 3072000 2500000 1700000 604000 

 

r(i) = min

[

1, F
Ĥ

V
v(i)

]

(31)

Ĥ is the bandwidth estimate, V is the initial video bitrate, and F is a constant

safety parameter which is 0.5 (fixed in all experiments).

The third method is the SNR scalability method explained in Section 3.3.1. The

time scale and maximum backlog target parameters shown in Table 10 are used in

the experiments.

Table 10: h and F parameters for SNR scalability based rate adaptation
 

Initial Playout 
Buffering Duration 

h F 

100 ms 2 0.1 

300 ms 16 0.1 

500 ms 24 0 

 

The combined SNR and temporal scalability based method, explained in Sec-

tion 3.3.2, uses the parameters in Table 11 when it switches to the temporal scalability

mode.

The delayed enhancement layer transmission extension is the last method. λ =

5ms, and β = 0.9 are used in the simulations.

Figures 20, 21, 22, 23 show the performance comparison of the different methods

at different WLAN banwidths. The delayed enhancement layer extension significantly
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Table 11: ht and F t parameters for SNR + temporal scalability based rate adapta-
tion

 

Initial Playout 
Buffering Duration 

h
t
 F

t
 

100 ms 8 0 

300 ms 24 0 

500 ms 48 0 

 

improves the quality when the initial buffer duration is 100 ms. Up to 1.3 dB PSNR

improvement is achieved compared to the rate scaling method. It also performs better

than the maximum quality achieved by fixed rate selection in those conditions. The

performance of all methods get close when the initial playout buffer is increased to

500 ms.

Temporal scalability is frequently used if the channel bandwidth is 1.06 Mbits/sec.

Note that the quality of the methods that does not support temporal scalability is

significantly reduced in low average channel bandwidth scenarios.

In Figures 24 and 25 we plot how the quality of the video streaming varies over

time. We compare performance of the maximum fixed rate and delayed enhancement

transmission methods. The average wireless bandwidth is selected as 3.2 Mbits/sec

for these simulations. When the initial playout buffer is 100 ms, the maximum fixed

rate streaming methods selects 1.1 Mbits/sec bitrate to ensure all SNR base layers

are delivered on time. The video quality resulting from using this method is 28.32

dB, which is 2.69 dB lower than the performance of the proposed bandwidth adaptive

SVC with delayed enhancement layer transmission. The improvement is 0.4 dB if 300

ms initial buffering is used.

3.5 Conclusions

In this chapter of thesis, we developed rate-adaptive WLAN video transmission tech-

niques using the scalable video coding (SVC) extension of the H.264/AVC standard.
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Fine-grain and temporal scalability dimensions of SVC are utilized in novel rate-

adaptation methods. The proposed methods measure the channel bandwidth and

delay statistics in real-time and adjust the transmission rate at selected time scales,

considering the delay-constraints of the video. SVC quality layer (QL) identifiers

are used for determining the importance of progressive refinement layers in terms

of streaming distortion. Use of QL identifiers and flexibility in rate adaptation time

scale selection maximizes the video quality while preventing playout buffer underflows.

Rate adaptation is further improved with a delayed packet transmission scheme that

solves the channel under utilization problem caused by bandwidth and delay estima-

tion errors. Up to 1.3 dB average PSNR improvement is achieved compared to a

non-delay constrained rate adaptation method, which also utilizes bandwidth mea-

surements.
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Figure 20: Comparison of SVC video rate adaptation methods - Test sequence:
HARBOUR ( 3 Mbits/sec, 704x576 @ 60fps ), Initial playout buffer: 100 ms
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Figure 21: Comparison of SVC video rate adaptation methods - Test sequence:
HARBOUR ( 3 Mbits/sec, 704x576 @ 60fps ), Initial playout buffer: 500 ms
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Figure 22: Comparison of SVC video rate adaptation methods - Test sequence:
CREW ( 3 Mbits/sec, 704x576 @ 60fps ), Initial playout buffer: 100 ms
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Figure 23: Comparison of SVC video rate adaptation methods - Test sequence:
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CHAPTER IV

FINITE-HORIZON FEC-RATE ADAPTATION FOR

REALTIME WIRELESS MULTIMEDIA

4.1 Introduction

Transmission errors and packet losses are common problems of both wired and wire-

less networks. Protocols at various layers of the network protocol stack allow error

detection and recovery. For instance, transmission errors can be corrected at the

link layer on each hop of a network. Forward error correction (FEC) and automatic

repeat request (ARQ) are most common schemes used at the link layer. End-to-

end error control is performed at the transport layer. TCP employs retransmission

techniques for the packets that the lower layers failed to deliver. Most of the widely

used protocols do not differentiate among data and media packets. However, the

concurrent transmission and display of media in real-time demands a fast error recov-

ery. For example, the retransmission time-out duration in TCP is not acceptable for

video-telephony and video-on-demand applications. Similarly, the code rate of the

channel adaptive FEC may violate the timeliness requirements of the AV stream if it

is excessively used.

Predictive coding in video prioritizes some data units over others. The importance

level of a packetized media unit is determined by the amount of distortion caused in

the multimedia presentation due to absence of that particular packet. For instance,

in an MPEG video, the loss of a packet carrying slices of a reference frame, which is

used to predict others, not only distorts that frame but also causes visual errors in

its descendants. This behavior is called error propagation. Intuitively, using a higher

FEC code rate for more important packets should provide a better video quality.
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The FEC code rate selection for a packet effects the residual channel resources

for subsequent packets because of the real-time constraints. If the sender chooses a

high FEC rate for a packet, the transmission time of that packet increases, therefore,

less time remains until the presentation deadline of subsequent packets. This may

force the sender to use lower FEC rates than required (for these subsequent packets)

to guarantee on-time delivery. These observations motivated us to develop an error-

control method that jointly optimizes the FEC-code rates of current and subsequent

packets considering their importance and deadlines. We will refer to the group of

jointly optimized future packets as the optimization horizon. With the proper choice

of the optimization horizon, we expect that the FEC performance does not deviate

much from the optimality and processing requirement will be limited. The intra-

coded synchronization frames and GOP structures in most video codecs bound the

propagation range of the errors, hence motivate the limited optimization horizon.

A brief description of the wireless channel model and error rate estimation strate-

gies are presented in Section 4.2. In Section 4.3, the optimization problem is formu-

lated and an iterative solution algorithm is explained. Simulation results are presented

in Section 4.4.

4.2 Wireless Channel Model

In this study, we assume a dedicated channel, which is the traffic mode for the real-

time applications in the next generation cellular networks [4], [56]. The raw capacity

of the channel before channel coding (number of assigned time slots) is fixed. In

wireless mobile networks, packets are generally dropped or corrupted due to propaga-

tion errors. Mobility and fading cause the quality of a wireless channel to vary with

time. The bit error rate (BER) at a given time is correlated to the previous chan-

nel conditions. Finite-State Markov Channel (FSMC) models are often used for the

characterization of this kind of behavior [22]. In this study, we used FSMC models
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to estimate the BER at a future time.

FSMC models can be constructed by partitioning the received signal SNR value

into a finite set of ranges. Each range is mapped into a channel state. Several

methodologies can be used for partitioning the SNR (e.g., [65], [70]) and calculating

the state transition probabilities. Each channel state corresponds to an average BER

value. The client measures the signal SNR, determines the current state, and sends the

state information to the sender periodically via the channel-state feedback messages.

A channel BER estimation algorithm can be found in [17].

Let S = {s0, s1, . . . , sM−1} be the set of M channel states and qj,k be the time

independent state transition probability from state j to k, 0 ≤ j, k ≤ M − 1, given

by

qj,k = P{Sn+1 = sk|Sn = sj}, (32)

where Sn denotes the constant Markov process for time index n = 0, 1, 2, . . .. The

step time intervals (T) are determined in the SNR partitioning process. The channel

noise characteristics and number of states are the factors that affect the length of the

step interval. Q denotes the M -by-M transition matrix with its elements qj,k.

pn(k) = P{Sn = sk} (33)

is the kth element of the vector pn. pn(k) is the probability of the channel being at

the state sk at the time index n. ek is the BER associated with the state sk.

In order to estimate the channel-state at a given time in the future, the latest

channel state feedback message is used, assuming the Markovian property. If si is the

channel state at time t0 (time of the last feedback), then the state probability vector

(p0) for the reference time t0 is set to:

p0(i) =











0, i 6= j

1, i = j for 0 ≤ i, j ≤ M − 1
(34)
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The realization probability for each of the M states at a future time instant tn, (pn)

can be calculated as follows:

n = ⌊(tn − t0)/T ⌋

pn = p0 × Qn

(35)

The BER at n-steps in the future (ǫn) can be estimated as the state that has the

largest realization probability.

ǫn = ek, s.t. k = arg maxpn(k) (36)

Note that we also assume that channel BER does not vary significantly during the

transmission of a packet.

4.3 Problem Formalization and Solution Approach

The FEC rate decisions for the current and subsequent N packets in the transmission

order will be jointly considered in the optimization process. This rate-adaptation will

be re-executed periodically before the transmission of each packet. The output of the

optimization algorithm will be the FEC redundancy rate for the current packet in

the transmission order.

A packet’s transmission time is determined by the selected FEC code-rate (rl) for

that packet. The transmission time increases with the amount of imposed redundancy

as well as with the error-correction capability of the channel code. Figure 26 illustrates

the scheduled transmission times of the current packet (packet i) and the subsequent

packets for a possible code-rate decision vector r = (ri, ri+1, . . . ri+N). Packets are

transmitted continuously for the most efficient use of the dedicated channel. Next we

will formulate a distortion function for each possible FEC decision, then we propose

an algorithm for its optimization.

The gateway can choose from a finite set of channel code-rates rl ∈ C, C =

{co, c1, . . . , ck−1} for each packet. These code-rates can be generated easily by code
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Figure 26: Current and subsequent N packets in the optimization range and their
scheduled transmission times.

puncturing [13],[24]. The gateway also keeps track of the channel BER using the

periodic channel quality indicators sent by the receiver. Utilizing a finite-state Markov

channel (FSMC) model that characterizes the slow fading behavior [65], [21], [70], it

then estimates the expected channel quality at a future time instant.

Let Prec(l) = f(ǫl, rl, Bl) denote the probability of recovering packet l from er-

rors given the channel BER estimate (ǫl), selected code-rate (rl) and the packet size

(Bl). This probability lookup table can be determined by simulations or analytical

computations. A packet should arrive before the presentation deadline to be useful.

Increasing packet forward-trip times (FTT) may cause packets to be late. Therefore,

by multiplying the probabilities of recovery and on-time conditions, we get the on-time

successful delivery probability of a packet. That is, Psucc(l) = Prec(l)×P{tl+1+FTT <

tDTS,l}, where tl+1 is the time instant that the transmission of packet l is completed,

and tDTS,l is the decoding deadline for packet l. We model the error propagation

phenomena and introduce a simple distortion measure for determining the effect of

the packet losses on the video quality. A new probability, Pdec, is defined as the de-

codability probability of a frame that is encapsulated in packet l. We will use Psucc

and dependency information in order to approximate Pdec as follows:

Pdec(l) = Psucc(l) ×
∏

l′∈A(l)

Psucc(l
′) (37)

The product term in Pdec states that all of l’s ancestors (reference frames, denoted

by A(l)) should be recovered successfully in order to be able to decode packet l.
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The decodability probability of an intra-coded picture frame is equal to its on-time

successful delivery probability since it does not depend on any other frame. We

formulate our objective function (to be optimized) as:

min
r

[

D0 −

i+N
∑

l=i

∆dl × Pdec(l)

]

, (38)

where D0 stands for the total distortion of the current and N subsequent frames

(when they are lost), and ∆dl is the decrease in the distortion if packet l is displayed

error free. The objective function computes the expected distortion of N + 1 frames

when the corresponding FEC code-rates are r. Since the solution space size grows

exponentially with N , we propose an iterative solution algorithm, which optimizes

one variable (rl) at a time until the objective function converges. After solving the

optimization problem, the gateway forwards the current packet and the code-rate

decision for it (ri) to the base station. The optimization process is repeated before

sending each packet, because of the variation in the channel state and content of the

packets in the optimization range.

4.4 Simulations and Results

The efficacy of the proposed technique is evaluated through simulations with differ-

ent channel characteristics and video bitrates. We compared performance of various

other error-control strategies under the same conditions. In the simulations, a trace

of the H.263+ encoded QCIF reference video sequence, Foreman, is used. To get

more reliable results, the same sequence is concatenated back-to-back and a longer

video (ten mins) is produced. The frame rate is set to 10 fps and the GOP size is

selected as 10 frames. Each GOP consists of an I-frame and nine P-frames. The video

frames are divided into 250 byte packets. Various video bitrates ranging from 40kbps

to 90kbps are used in the simulations. The channel capacity is selected as 100kbps,

which is a reasonable assumption when next generation systems are considered. The

channel is modelled with a 11 state FSMC. The BERs corresponding to states and
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state transition probabilities are taken from [70]. The BER varies in the range of

7.5 × 10−1 to 1 × 10−11 over time. RS codes are used for generating the redundancy.

The number of possible FEC code rates (k) is 19 and the set is:

C = {defer, 1, 0.98, 0.96, 0.94, 0.92, 0.90, 0.86, 0.82, 0.77, 0.71, 0.67, 0.62, 0.59, 0.55, 0.52,

0.5, 0.33, 0.25}.

Performance of the developed optimized FEC rate adaptation technique is com-

pared with three different alternative methods. In the first method, the FEC code

rate is fixed for each packet and is set to the ratio of the video bitrate to the chan-

nel capacity. In the second method, the FEC rate varies according to the channel

conditions. The code rate that reduces the packet corruption probability below a pre-

defined threshold is selected. For instance, if the estimated BER is 10−3, we select the

code with the minimum redundancy level that delivers the packet successfully with

a probability larger than 0.99. The third method considers the packet importance

in addition to the channel conditions. The successful delivery probability threshold

used in the previous method is adjusted according to packet importance. Stronger

FEC protection is used for more important packets as a result of this modification.

Figure 27 depicts the comparison of these four methods at various bitrates. The

qualities of the output videos are measured with the peak signal-to-noise ratio (PSNR)

of the luminance (Y) channel. In these simulations, the playout delay is set to 0.5

seconds and the optimization horizon for the proposed algorithm is selected as 10.

For 40kbps video, all four methods perform (almost) equally well. At this rate

60% of the total bandwidth is used for channel coding, which corresponds to a high

FEC code rate. The FEC code at this rate corrects almost all of the bit errors. As

the video bitrate increases, the quality difference among the methods becomes more

obvious. At 70kbps, the proposed method performs 0.7dB better than the source-

channel adaptive method. The gain over fixed FEC method is around 1.95dB. From

the plots, it can be seen that selecting a video rate that matches the channel capacity

69



Quality-Bitrate

(QCIF Foreman)

26

26.5

27

27.5

28

28.5

29

30 40 50 60 70 80 90

Video bitrate (kbps)

P
S

N
R

 (
d

B
)

Fixed FEC

Chan. Adap.

Src/Chan. Adap.

Proposed

Figure 27: Quality comparison at various bitrates

is also another critical problem. The presentation quality suffers if a high bitrate

video is streamed. Quality at 80kbps is less than 60kbps at the receiver, although

80kbps video was originally better.

If the error patterns in the previous simulations are examined, the channel adap-

tive and source-channel adaptive methods mainly suffer from the late packets. Delay

tolerance is the main parameter that effects the percentage of late packets. We

observed that if our technique is used, this percentage decreases. In the following

simulations, our goal is to see the effect of the delay tolerance on the quality for all

four methods. Results are presented in Figure 28.

Results show that the proposed technique achieves a higher gain at lower playout

delays. The gain is about 1.8dB for 0.1 second playout delay over the source-channel

adaptive method. As the delay tolerance increases beyond two seconds, the second,
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Figure 28: Quality comparison at various playout delays

third and proposed method perform approximately the same. At higher playout de-

lays, the channel adaptive and source-channel adaptive methods do not suffer from

late packets anymore. Based on the results in Figure 28, we conclude that our tech-

nique is particularly effective for interactive multimedia applications.

4.5 Conclusions

In chapter of the thesis, we proposed an optimization technique for FEC code rate

adaption that improves the quality of multimedia streaming over wireless channels.

We showed that the performance of channel adaptive FEC schemes can be improved

when the media characteristics are considered. We proposed an optimization method

that allocates the channel resources for packets, taking into account the BER estimate,

packet importance, packets deadlines, and how this allocation would affect the quality

in the future. In our method, the sender jointly optimizes the FEC code rates for the
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current packet and future packets. It chooses the code rate for the current packet that

maximizes the overall quality. A low complexity algorithm is presented for solving

the formulated optimization problem. This algorithm makes the implementation of

our technique feasible in real wireless communication systems. Simulations show that

our technique increases the media quality significantly over non-optimized schemes

for interactive and live applications.
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CHAPTER V

PEER-ASSISTED VIDEO STREAMING WITH

SUPPLY-DEMAND BASED CACHE OPTIMIZATION

5.1 Introduction

A peer-to-peer (P2P) network refers to an overlay structure where end users are

able to exchange information among themselves without needing a central server.

It is an alternative to the client-server paradigm commonly used in most web ser-

vices. File sharing services over P2P networks have become one of the most domi-

nating components of Internet traffic. Even though P2P has the bad reputation of

facilitating illegal file downloading, it also has a potential for reducing the distribu-

tion cost of legitimate content. For instance, the file servers distributing software

updates have to be over-provisioned in order to manage the flash crowds that oc-

cur following the time frame of the new releases. Over-provisioning significantly

increases the hardware and bandwidth cost of content distribution systems. P2P

collaboration can be useful in such scenarios by utilizing the unused upload band-

width of the end users. In fact, the popular Bittorrent [1] P2P file sharing appli-

cation is commonly used to distribute new Linux operating system releases. The

use of P2P data distribution techniques for streaming live and on-demand video

[38], [59], [34], [15], [68], [71], [18], [30],[42], [55], [32]. has become popular with the

availability of high-speed network access technologies.

Video streaming is one of the most challenging services to offer because of the high

and consistent bandwidth requirements of the digital video bitstreams. In a client-

server based video service, a separate connection is opened for each client and data

is unicasted to each of them. The number of simultaneous clients that can be served

73



by the system is limited by the server’s disk performance and network bandwidth.

Multicasting architectures offers a solution to this problem by enabling the replication

of data at intermediate nodes of the network path. Therefore, the server does not have

to send multiple copies of the same data to different users. Live video content such

as TV programming can be distributed to many viewers over multicast trees without

deploying high cost servers. However, multicasting-capable network routers are not

widely deployed over the Internet and wireless cellular data networks. End-system

multicasting is an application layer alternative to IP layer multicasting. Users in such

a system act similar to the multicast routers and forward the data they have received

to their peers, who are also viewing the same video. The asymmetry of downstream

and upstream bandwidths in most wireless access technologies, such as 3G wireless,

limits the maximum throughput that can be achieved by end-system multicasting.

Furthermore, the users in a P2P application may leave the system any time they want,

which reduces the reliability of the system. Therefore, pure peer-to-peer solutions are

not very suitable for high quality video services. In this work, we focused on a hybrid

architecture where end users assist central servers in video distribution.

Bittorrent [1] is currently the most popular peer-to-peer file sharing application.

It also uses a hybrid structure, since a central tracker that keeps the record of users

and their download status is adopted. A mesh network topology, where users lo-

cate and pull data from their peers, is formed. Bittorrent introduced new ideas such

as segmentation of the file, downloading from random positions, rarest-segment first

downloading and a tit-for-tat fairness mechanism. These ideas increased the avail-

ability of the files and total throughput by forcing users to share the data they are

downloading and preventing free loading. These ideas on the other hand cannot be

applied directly to video streaming. Video streaming requires segments of the video

files to be downloaded in order. Furthermore, storing the whole video file may not be

feasible due to storage and copyright concerns.
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In this study we concentrate on on-demand video streaming services rather than

live streams. In video on-demand (VoD) services, users start viewing the video at

different time instants, and therefore, stream different segments of the file. It is

hard to take advantage of multicasting based schemes in VoD because of this fact.

Near on-demand solutions are proposed in the literature to reduce the load of the

VoD servers. Most of these schemes involve periodic start times or user batching

to utilize multicasting. Therefore, users wait for an initial time before starting to

view the video. The waiting time is a negative factor that deteriorates the quality of

the service perceived by the users, hence, it should be avoided as much as possible.

Moreover, near on-demand solutions cannot provide full fast-forward or rewinding

functionality.

5.2 System Model

The video-on-demand (VoD) service envisioned in this thesis study consists of control

and video servers located in the wired part of the data network and wireless video

clients (Figure 29). Clients are multimedia capable cellular phone and mobile device

users subscribed to data services. In addition to being the receiver of the video,

clients may also transmit video data from their caches to other peers. The control

server is responsible for directing clients to video sources and coordinating the caching

strategy of the clients. The video server(s) is the originator and main serving source

of the video content. Video content may range from short clips like movie trailers,

music videos, sport clips or advertisements to long clips like movies or TV shows.

Each video clip is divided into equal size (in bytes) logical segments. The logical

segmentation is a good way of quantizing the signaling time instants between client

peers and servers.

When a client requests to view a clip, it sends a request message to the control

server. The control server responds with a list of sources for the first segment of
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the video file. This message exchange is depicted for the mobile client labeled as

Peer 1 in Figure 29. This list may contain the network addresses of video servers

or other peers. If no peer is caching the requested segment or all caching peers are

busy, the list only contains the address of the video server. The client probes the

hosts in the list for resource availability. Based on the collected responses the client

may decide to get the video file segment from one or multiple sources. For instance,

Peer 1 streams the first segment(S1) from Peer 2. However, no peer is able to

serve the fourth segment (S4), therefore, Peer 4 gets this segment directly from the

video server. The main bottleneck resource of a wireless video client is the upstream

bandwidth because of the access technology asymmetry. If the video bitrate is higher

than the available upstream bandwidth of a peer, that peer only serves a portion of

the segment. In Figure 29, Peer 3 streams S3 partially from Peer 4 and the remaining

bitrate is compensated by a video server. The signal exchange for locating the source

is repeated before streaming each segment.

The VoD clients, i.e. peers, dedicate a limited portion of their memory or disk

space for caching particular segment(s) of the video. Clients assist the main video

servers in the content delivery process by uploading the cached file segments to other

peers. As the efficiency of this peer collaboration improves, the load of the video

servers will reduce, therefore more VoD clients can simultaneously stream video.

Peer-to-peer collaboration is said to be maximized if the peers can fully use their

upstream bandwidth during the time frame they are actively streaming video. The

main objective this study is to design optimized caching strategies. The caching

strategy decides which segment(s) of the file a peer caches and how long it caches.
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Figure 29: Peer-to-peer assisted VoD system architecture

5.3 Optimized Video Segment Caching for Peer-to-Peer VoD

5.3.1 Estimating Demand and Supply of File Segments

In a typical video-on-demand application scenario, users start viewing the clip from

the beginning and progress through the end. After the clip has finished the user may

leave the system or watch another video. However, this deterministic progress can be

broken with random inputs from the user. Users may leave the system or switch to

another clip before the video in progress has ended. Certain parts of the file can also

be skipped. These stochastic actions are very hard or almost impossible to foresee.

Therefore, in this study, for the sake of video progress estimation, we ignore random

user inputs. However, there is still randomness in terms of stream start times (arrival

times) of users. Figure 30 is an example illustration of the streaming start times

of users and progress over the segments. A user continues to download the next file

77



segment immediately finishing one. The total download rate, or equally the streaming

rate, is equal to the average bitrate of the video clip. This property is required to

prevent over- or under-flowing of the client playout buffer. In Figure 30, the demand

for each file segment is measured at time instant T . At time T , segments 1,2 and 3

are demanded by one user each. No user is streaming S4, therefore D(S4, T ) is equal

to 0. The control server is able to measure the demands for segments of video clips

at a given time since each user sends a request to it for each segment. The random

nature of the user requests may result in an unbalanced demand for file segments.

Figure 31 is an example snapshot demonstrating how many users are streaming a

segment of the video clip at a given time instant.

The efficient planning of the caching strategies require the control server to esti-

mate the demand for segments at a future time. Estimates are based on the latest

measurements and streaming structure. We used discrete time-steps (epochs) to sim-

plify the estimation process. The duration of one epoch is selected equal to the time

it takes to fully download a file segment.

The measured demand for segment j at the current epoch, t0 is denoted as

D(sj, t0). The control server targets to estimate D(sj, t) at the future epoch t. D(sj, t)

can be decoupled into non-stochastic, Dns(sj, t), and stochastic, Ds(sj, t), portions,

i.e., D(sj, t) = Dns(sj, t) + Ds(sj, t).

The deterministic portion is predicted assuming client streams the file to the end

without any interruptions. Therefore, if a client is streaming segment sj−1 at epoch

t − 1 it will stream the subsequent segment, sj in the next epoch, t. We express

Dns(sj, t) in recursive fashion based on this observation.

Dns(sj, t) = Dns(sj−1, t − 1) ; ∀j ∈ {2, 3, . . . ,M}, t > t0 (39)

The measured demand at time t0 is denoted as:

Dns(sj, t0) = δj ; ∀j ∈ {2, 3, . . . ,M} (40)
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In those expressions, M is the number of file segments. The stochastic portion,

Ds(sj, t) includes the clients joining the video stream after the current time, early

terminated sessions and other user operations.
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Figure 30: Evolution of the demand for the video file segments over time. Users
arrive at random times and stream the video equal to the video bitrate. The overall
demand estimate at time T is calculated

The other statistical parameter that will be defined in this chapter is the supply

of a file segment. S(sj, t0) denotes the measured total supply of segment sj at current

time t0. Supply is equal to the sum of the available upload bandwidths of the peers

caching segment sj.

S(sj, t) =
∑

k∈πsj
(t)

Rk
u (41)

In Equation 41, πsj
(t0) refers to the set of peers caching segment sj and Rk

u is the

available upstream bandwidth of a peer in that set. In this definition, we assumed

a peer caches only one file segment at a time for the sake of simplicity. However,

remember that the size of the cached segment can be adjusted by changing the number

of segments in a video file. The supply also varies over time since new peers may join,

79



0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

8

9

10

Segment Number

N
u

m
b

e
r 

O
f 

C
lie

n
ts

Figure 31: An example snapshot of demand for a segment of the file. Video length
is 60 seconds, segment duration is 1 second and users are assumed to arrive with
Poisson process of rate 5 users a second.

existing peers may leave or a peer may change the file segment it caches. We assume

a client that finishes watching a video no longer serves other peers. It is not fair to

utilize the resources of a client that is not receiving service. We also assumed that a

client cannot start serving a file segment until the segment is fully downloaded.

Supply can be managed by the control server as opposed to the demand which

is shaped by the clients. Therefore, efficient planning of the supply at future epochs

S(sj, t) becomes the main tool of the optimized caching strategies. Maximum utiliza-

tion of the user upstream bandwidth can be achieved if the supply can be adjusted

to match the varying demand. In the following sections of this chapter we will define

utility functions that quantify the degree of supply and demand alignment.

5.3.2 P2P Video Segment Caching Techniques

Caching techniques will be investigated in three categories. Proactive Caching con-

stitutes the first category. Video segments that will be served to other peers are

pre-fetched by the client within a data flow that is separate from the actual video
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streaming traffic. In second category, which is named as Reactive Caching, users serve

previously streamed file segments to their peers. Hybrid Caching is the third category

that combines proactive and reactive caching approaches.

5.3.2.1 Proactive Caching

In this technique the VoD client downloads a video file segment from the video server

or other peers for the sole purpose of serving it to other peers. Therefore, the caching

data flow is independent of the actual video streaming traffic. Technically, the seg-

ments cached at a client can be updated regularly with this approach. However,

if the pre-fetching traffic becomes dominant, less bandwidth will be available for the

streaming hence the streaming quality will degrade. We will consider a scenario where

a client only pre-fetches the segments to be cached when it initially joins the system.

Furthermore, we assume pre-fetching takes place before the actual video streaming

starts and that the download rate will be same as the streaming rate. Therefore,

pre-fetching will not require extra bandwidth with the expense of an extra start-up

delay that is equal to download time of cached segments. In this analysis we assume

each client caches only one segment for the sake of simplicity. With this assumption

the extra start-up delay becomes equal to the duration of a single file segment.

The control server has the responsibility of deciding which segment will be cached

at which client. In the proactive caching strategy when the user demands a video file,

the control server replies the sequence number of the video segment that the client

should cache. Several methods on segment caching assignments can be employed at

the control server. An intuitive and simple method is to assign segments in round-

robin fashion. When a user is assigned to cache segment sj, the next user that

joins the streaming session will be told to cache segment smod(j+1,M), and so on,

given that M is the number of file segments in the video. This strategy targets the

uniform distribution of the cached segments in the system. In another simple caching
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strategy the VoD client may randomly pick the segments they will pre-fetch. An even

distribution of cached segments can be achieved with this method in the steady state.

This method also does not require the coordination of the control server.

Although the demand for file segments is expected to be uniformly distributed

in the steady state, the snapshot of the demand may be unbalanced, as shown in

Figure 31. Random streaming start times of the clients is the main reason for this

behavior. Since the control server keeps track of the instantaneous segment demand

snapshot, more intelligent caching assignment can be performed to handle the tem-

poral demand variation. The objective of the proposed optimization is to shape the

supply to match the demand. We define utility functions to measure the match level

and determine which segments have a demand-supply mismatch.

For client k, who makes the initial streaming request before epoch t0, the segment

to be cached will be pre-fetched in the next epoch, t0. Starting from epoch t1 client

k will start serving other peers. The utilization of client k’s upstream bandwidth, if

it serves segment sj for the duration of h epochs, is computed as follows:

U(sj, h) =
h

∑

i=1

min

{

[

D̃(sj, ti) − S̃(sj, ti)
]+

, Rk
u

}

(42)

In Equation 42, D̃ and S̃ denote the estimated supply and demand for a segment

over a given epoch. Rk
u is the available upstream bandwidth of k. [x]+ is an operator

that returns x if the value of x is larger than zero and returns 0, otherwise.

When the supply of sj is higher than the demand for it, k will not be able to

contribute to the peer collaboration, therefore the utilization will be 0. The maximum

video uploading rate to other peers is limited by the supply deficit and the available

upstream bandwidth of user k.

The control server’s objective is to minimize the load of the central video servers

by maximizing the usage of VoD client upstream bandwidths. Based on this goal,

the newly joining user k will be told to cache the video file segment that results in
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maximum utilization:

arg max
l∈1,...,M

U(sl, h) (43)

The h parameter in the utility function (Equation 42) is the called the time hori-

zon. For instance, if h is equal to the video length, i.e. M epochs, the utility is

calculated for the entire time client k is streaming the video. On the other hand,

only the next epoch is taken into consideration if h is set to one. Even though using

a larger time horizon seems logical, it should be noted that future demand (D̃) and

supply (S̃) estimates get less accurate as the time gap increases. We will analyze the

effect of h parameter on the system performance in the results section.

The supply and demand estimates include deterministic and stochastic compo-

nents as explained in Section 5.3.1. Demand estimation techniques that ignore

the stochastic component will be referred as blind estimation. Stochastic demand,

Ds(sj, t), involves newly joining clients, clients leaving early or forwarding /back-

warding of the video by the users. Since the control server is able to measure the

arrival rate of clients, it may use it to estimate future arrivals. Assuming that the

contribution of early leaves and non-linear video play progress is minor compared to

new arrivals, the expected value of the stochastic demand is computed as:

Ds(sj, ti) = λ ; ∀j ≤ i

i ∈ 1, . . . , h

j ∈ 1, . . . ,M

(44)

In Equation 44, λ is the average number of arrivals per epoch. In this stage we

do not assume any specific arrival process.

Estimating the stochastic part of the supply is more challenging, since one should

predict how the caching mechanism proceeds for all users in the future. However,

when the new arrivals are totally ignored for supply estimation, a bias between de-

mand and supply occurs. For the sake of unbiased utility function computation we
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assume a client will continue to serve its cached segment even when it finishes stream-

ing. This is equivalent to assuming a newly joining client will take over the cached

segment of a departing client.

5.3.2.2 Reactive Caching

The reactive caching mechanism uses previously streamed file segments, hence does

not involve pre-fetching. No extra delay or bandwidth is required by reactive caching

in contrast to proactive caching.

At the beginning of the streaming session a newly joining client k starts streaming

the first segment. Therefore, k does not cache and serve any file segments during the

first epoch. After the first segment is fully downloaded, the client can serve it to

other peers. When the second segment is downloaded, k should decide whether to

store segment 2 or continue caching segment 1 (we assume each client caches only one

segment). Therefore, after each epoch a client has two choices, keeping the already

cached segment (s∗) or replacing it with the newly streamed segment (si). A possible

caching decision tree is shown in Figure 32. Similar to the proactive caching method,

the control server performs the centralized caching decisions for all VoD clients. The

control server computes and signals the caching decisions to peers at each epoch.

In the reactive caching technique clients cannot cache the segments that they

have not streamed yet, which is its main disadvantage compared to the proactive

mechanism. Furthermore, if the clients choose not to cache a streamed segment, that

data is lost and cannot be retrieved in the future.

We use a utility maximization approach to optimize the reactive caching decisions

at each epoch for each user. The concept of time horizon is used to jointly optimize

the current and future caching decisions.

Figure 32 illustrates possible caching patterns over the time horizon. Each pattern

can be associated with a utility. Equation 45 represents the utility function of the
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Figure 32: Caching decisions in reactive caching

caching decision sequence cJ = {ci+1, . . . , ci+h} of client k for the h future epochs.

U(cJ , h) =
i+h
∑

j=i+1

min{
[

D̃(cj, tj) − S̃(cj, tj)
]+

, Rk
u} (45)

Note that in Equation 45, cj values may assume only two values. Referring to the

example in Figure 32, ci+1 can be either s∗ or si. The total number of different caching

patterns over the time horizon h is 2h. The set of caching patterns is represented by

Ph. The control server computes the optimal caching path using:

c∗J = arg max
cJ∈Ph

U(cJ , h) (46)

Based on the result of this optimization, the optimal decision for the next epoch c∗i+1

is signalled to client k. The optimization is repeated for each epoch with the updated

supply and demand estimates. Therefore future decisions, {c∗i+2, . . . , c
∗
i+h}, are not

executed.

Solving Equation 46 becomes expensive since the solution space size grows expo-

nentially with h. Furthermore, the computation should be repeated for each user at
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each epoch. We will utilize dynamic programming (DP) to solve this optimization

problem using the fact that that the utility function is additive. The DP formulation

is presented in Equation 47.

max
xh∈Xh

[

q(xh)
]

for X h = {s∗, si, si+1, . . . , si+h−1}

q(xl) =















max
yl−1∈Y(xl)

[

q(yl−1)
]

+ min

{

[

D̃(xl, tl) − S̃(xl, tl)
]+

, Rk
u

}

, if l > 1

min

{

[

D̃(xl, tl) − S̃(xl, tl)
]+

, Rk
u

}

, if l = 1

Y(xl) =























{s∗, si, si+1, . . . , si+l−2}, if xl = si+l−1 and l > 1

{xl}, if xl 6= si+l−1 and l > 1

{s∗}, if l = 1

(47)

q(xl) is the recursively defined utility function of caching state xl at the lth future

epoch. States are shown with black circles in Figure 32. In Figure 32, directional

arrows between two states symbolize possible transitions for two consecutive epochs.

The set of previous caching states of xl are denoted with Y(xl). The solution of the

dynamic program returns the optimal caching decision for the next epoch, which is

either s∗ or si.

The recursion defined in Equation 47 computes q(.) for each possible state (nodes

in the tree). Therefore, the complexity of the DP based algorithm is O(h2) and it can

be computed as:
h

∑

i=0

i + 1 = (h + 1) ∗ (h + 2)/2 ⇒ O(h2) (48)

The computational complexity of reactive caching can be reduced further at the

cost of lower efficiency. The size of the solution space can be reduced to 2 by assum-

ing that the segment that will be cached in the next epoch will be served over the

entire time horizon. Therefore, the solution set cJ = {ci+1, . . . , ci+h} can either be
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{s∗, . . . , s∗} or {si, . . . , si}. This method will be called static optimal (SO).

5.3.2.3 Hybrid Caching

Hybrid caching combines proactive and reactive caching techniques. The control

server decides which segment will be pre-fetched when a user starts streaming. This

segment can be any segment of the video. Reactive caching decisions are performed

at succeeding epochs.

5.4 Performance Analysis

The goal of peer-assisted video streaming is to cut the cost of deploying central video

servers so that consumers can enjoy high quality media at a low price. To quantify

this goal, we define our performance metric as the total upstream data rate of the

central video servers.

We will compare the performance of proposed supply-demand optimized tech-

niques to the simple techniques that are widely used in the literature. For this purpose

we developed a video streaming simulation environment. The previously described

peer-assisted video streaming system architecture is tested with simulating random

video streaming requests.

The methods compared in the performance analysis are listed as follows:

• NC + RR: Selecting segments to be pre-fetched in round-robin fashion is a

widely used method. We will label this method as no change / round-robin

(NC +RR) since users do not change the pre-fetched segment until the stream-

ing session ends.

• NC + SO: The supply-demand utility function optimized proactive caching

technique will be labeled as no change / static optimal (NC + SO).

• LP: Caching the last playbacked (LP ) file segment is a widely used reactive

caching technique [18], [30]. This technique targets an even distribution of
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cached segments in the system.

• SO: Proposed reactive caching technique with static optimal solution.

• DP: Proposed reactive caching technique with dynamic programming solution.

• SO + RR: Hybrid combination of static optimal reactive caching with round-

robin pre-fetching.

• SO + SO: Hybrid combination of static optimal reactive caching with utility

function optimized pre-fetching.

Other techniques used in the literature include caching rarest [6], most popu-

lar [46] or random [54] segments.

We will compare the performance of the listed caching approaches at various

settings using the developed simulation environment. Several assumptions will be

made to reduce the dimensionality of the simulations. We first assume that the users

arrive, i.e. request to play a video, at random times that can be modeled as a Poisson

process. The arrival rate per unit time (epoch) will be denoted by λ. We will assume

all users have the same amount of cache size and upstream bandwidth resources.

Users will cache only one file segment at a time. For the first set of experiments, each

user’s available upstream bandwidth allocated for P2P streaming collaboration is set

equal to the video bitrate. Therefore, each user is able to serve a single other peer

at the full video bitrate. For this first set of experiments we also assume users only

leave the system when they complete streaming the whole video.

The video size is set to M = 60 segments. It takes a unit time for users to

stream a single segment of the video. The normalized video server load depending

on the arrival rate of the users is plotted in Figure 33. The normalized average video

server load represents the ratio of total streaming traffic in the system that originates

from the central server. The system performance improves as the average server
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load decreases. The total streaming traffic in the system scales linearly with the

number of users concurrently downloading the same video file. The average number

of concurrent users can be calculated as λ × M .

As shown in Figure 33, the normalized average server load reduces as users ar-

rive more frequently, regardless of the caching method used. More frequent arrivals

translate to more users concurrently viewing the same video file. When the number

of concurrent users is small, the demand and supply of a file segment is less likely

to match. Therefore, most of the peers are served by the central server rather than

other peers.

The reactive caching mechanism in which users always cache and serve the last

playbacked (LP) file segment performs significantly worse than other methods. The

main drawback of this method is that the content of the cache is changed at each

epoch. The proposed dynamic programming (DP) solution for supply-demand utility

optimized reactive caching outperforms other techniques. For instance, when the

arrival rate is 4 users per epoch (on average 4 × 60 = 240 users are simultaneously

streaming) the central video server only supplies 10% of the total traffic, when DP

is used. At the same arrival rate operating point, techniques other than LP, are

clustered around 20% load. The proposed proactive caching technique (NC + SO)

performs slightly better than the round-robin assignment of pre-fetching assignment

(NC + RR). Hybrid proactive/reactive caching strategies (SO + RR and SO + SO)

perform better than proactive only (NC + RR and NC + SO) and reactive only

methods (SO and LP ).

In this experiment, the optimization time horizon is selected as 4 epochs for the

methods that use SO reactive caching. The dynamic programming solution used a

time horizon that is equal to the number of epochs until the user completes video

streaming.

In the next experiment we try to characterize the sensitivity of these methods to
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Figure 33: Normalized video server load depending on the user arrival rate (λ)

the selected optimization time horizon. We fix the user arrival rate at λ = 1. At this

operating point, the variation of normalized average server load dependence on the

time horizon is plotted in Figure 34. The SO technique achieves its best performance

when the time horizon is set to h = 4. Note that the difference between this best

performance and the highest server load point is only about 3%. When the time

horizon is small, the utility function optimization based techniques try to fill near

term supply-demand gaps. This approach may result in better performance since the

predictability of future events decreases. For instance, the future supply for a video

file segment is hard to estimate since it involves predicting the caching decisions of

other peers in the system. The server load resulting from the DP decreases until
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the optimization time horizon is 8. The performance variation after that point is

marginal. Since the complexity of the DP based solution is O(h2) for each user, it is

logical to select a smaller time horizon.

We also studied the effect of including stochastic demand terms, Ds, in addition

to the estimated deterministic demand, Dns. Stochastic terms were used to model

demand due to future user arrivals. Blind estimation, i.e. not using stochastic terms,

makes a very marginal difference in performance. The main reason for this behavior

originates from the dynamics of reactive caching methods. Cached segments are fre-

quently updated in reactive caching. Therefore, the demand for a candidate segment

is almost deterministic for the relatively short time frame that the segment will be

cached.
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Figure 34: Effect of time horizon on normalized video server load
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In the following experiment we relax the assumption that the available upload rate

of peers is equivalent to the video streaming bitrate. The upstream rate to bitrate

ratio will be changed in the 0-10 interval. The variation of average server load is

investigated at a fixed user arrival rate (λ = 1). As expected, the performance of all

methods improve as the upload rate gets larger (or video bitrate reduces). A user

can concurrently serve 2 other peers when the upload rate is two times the streaming

rate. Therefore, the central server has to serve fewer peers. More than one source

should serve a client when the upload rate is less than the video streaming rate. The

normalized server load reaches 1 for all techniques when the upload rate gets close to

0.

LP reactive caching again results in a higher server load compared to other tech-

niques. The DP solution based reactive caching results in the lowest server load until

the upload rate to streaming rate factor reaches 2, as demonstrated in Figure 35.

After that point most of the methods perform almost equivalently. It is worth men-

tioning that round-robin (RR) pre-fetching becomes the best and static optimal (SO)

reactive only caching performs about 8% less than that method. It can be concluded

that proactive caching methods get more efficient than reactive only methods at high

upload rates. This observation can be explained by the dynamics of caching methods.

When the upload rate to streaming rate factor is high, the supply of a segment is gen-

erally larger than the demand for it. Therefore, the users do not have to update their

caches frequently. Another advantage of proactive caching techniques is the flexibility

in out-of-order pre-fetching of segments. Reactive caching methods can only cache

previously played segments. In reactive mechanisms, the segments that are close to

the end of the file are only cached by the peers that are about to leave the system.

The last segment of the file cannot be served by peers in reactive only techniques

because the users that played that segments immediately leave the system. Because

of these limitations, reactive methods cannot create an evenly distributed segment
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supply in contrast to round-robin (RR) based proactive caching.
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Figure 35: Effect of mobile client upload bandwidth on normalized server load

For the previous experiments we assumed the average arrival rate of the users over

time is constant. However, in real video streaming systems it is common to observe

flash crowds. Flash crowds occur when a large number of users request to play the

same video file at nearby time instants. These irregularities may occur when the link

for the video is shared in a mailing list or on a social networking site. We will try to

model flash crowds as a superposition of two Poisson processes. The first component

is the regular λ average arrival rate process used in previous experiments. The second

component is an on-off modulated Poisson arrival process. Where a flash crowd occurs

every T time units and lasts Tb time units. During the Tb interval users arrive with a
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high rate, λfc, Poisson process. For the results demonstrated in Figure 36, T and Tb

are set to 100 and 4, respectively.

Reactive caching methods show very good resiliency to flash crowds as shown in

Figure 36. The average server load resulting from LP , DP , SO, SO + RR, and

SO + SO techniques decreases as the flash crowd rate increases. Please note that

as the flash crowd rate increases, the overall arrival rate also increases. The reactive

caching technique that caches the last playbacked LP segment greatly benefits from

the flash crowds. It even outperforms the proactive only NC + RR and NC + SO

methods after a point. When users arrive in flashes, they all stream the same or

temporally close file segments. Therefore, the demand for a small subset of segments

is large at a given time instant. The LP technique is good at capturing this behavior

since the supply of this segment subset follows the demand with a single time unit lag.

This demand variation behavior reduces the performance of pre-fetching techniques,

as the flash crowds become more significant. For instance, the round-robin technique

targets an evenly distributed segment supply, however, the flash crowds cause an

uneven demand distribution.

NC + SO proactive caching relies on estimating future segment demands. With

the presence of flash crowds, the estimates get less accurate and NC + SO gives the

worst performance. The DP solution does a good job of adjusting the segment supply

in the system and results in smallest server load.

In our final experiment we investigate how premature streaming session termi-

nations affect the performance of various caching techniques. Early departures are

modeled using a Poisson process. Figure 37 shows that the premature terminations

increase the normalized server load for all methods. The user arrival rate (λ) is set

to 1 and the upload to streaming rate ratio is selected as 1 for this experiment. The

performance of NC +SO proactive caching method exceeds NC +RR when the rate

of early departures reaches 0.3. This indicates that the supply-demand distribution
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Figure 36: Effect of flash crowds on normalized server load

irregularities caused by early terminations are better handled with the utility function

optimization based segment pre-fetching.

Dynamic programming based reactive cache scheduling using a supply-demand

utility function is demonstrated to perform significantly better than other alterna-

tives. DP achieves the lowest server load at the expense of increased computational

complexity.

One aspect that is not considered in the simulations is the signaling overhead

associated with the peer locating and caching mechanisms. Each user queries the

download sources of a file segment at each epoch. This extra traffic overhead exists

for all caching techniques. The size and frequency of signaling messages are small
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Figure 37: Effect of random early stream termination on normalized server load

compared to the video traffic. Signaling associated with caching decisions occur only

once at the beginning of the streaming session for proactive only techniques. The

signal exchange periodically occurs for every segment if reactive caching is managed

by the control server. However, it is possible to combine caching decision messages

with peer queries. Therefore, the extra signaling overhead of reactive methods can

be kept similar to proactive methods.

We also overlooked packet losses and transmission delay jitter in our simulations

since our focus is on system level performance rather than the end-to-end video qual-

ity. Another important factor in peer-to-peer system optimization is the topology of
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the created overlay network. System performance can be improved if the users con-

nect to the peers that are geographically close to them. In this thesis study we did

not included topology information in the formulation. As a future work, we are plan-

ning to improve the efficiency of developed caching methods by taking the network

topology into account.

5.5 Conclusions

In this chapter of the thesis we focused on enhancing the scalability of video-on-

demand applications to provide low cost streaming service to large number of mobile

users. A hybrid architecture where end-systems assist central servers in video distri-

bution is adopted. Users of the service cache segments of the video file and to serve it

to their peers who stream the same video. We developed video file segment caching

strategies coordinated by a control server. Proposed techniques rely on estimating

the future demand and supply of file segments. We defined utility functions to opti-

mize the distribution and schedule of the segments cached by users and targeted to

minimize the load of central video servers. Caching methodologies are classified in

to two categories. In proactive caching methods, a video segment is pre-fetched by

a user when it joins the streaming session. Users only cache and serve file segments

that are downloaded in the video streaming process when reactive methods are used.

We demonstrated that proposed reactive caching outperforms simple caching tech-

niques that are widely used in the literature. Our reactive caching methods decides

the segments to be cached using the dynamic programming solution of the supply-

demand utility maximization formulation. Developed methods are tested in scenarios

involving flash crowds and premature streaming session termination.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

6.1 Contributions

In this thesis the challenges of wireless video streaming are addressed in two main

categories. Streaming protocol level issues constituted the first category.

We developed an application layer streaming protocol improvement that enhances

high quality video streaming over wireless home networks. Video rate is dynamically

adjusted via transrating to adapt to time-varying wireless bandwidth. A novel tech-

nique called “Delay-constrained and R-D optimized transrating” is developed. Ex-

perimental results are provided to demonstrate the achieved video streaming quality

improvement.

We studied the use of scalable coded video for rate-adaptive video streaming over

wireless local area networks. New features of the emerging H.264/SVC video coding

standard are utilized to develop innovative streaming methods. Results from realistic

simulations are presented.

We investigated cross-network layer collaboration techniques for improving real-

time multimedia streaming over wireless wide area networks. Forward error correction

(FEC) based error protection methods are optimized using video bitstream structure

and end-to-end latency constraints. A technique named as “Finite-Horizon FEC-Rate

Adaptation” is developed.

Finally, we explored streaming service level solutions to reduce the cost of build-

ing large scale video-on-demand platforms. Peer-to-peer assisted video streaming

technologies are developed to reduce the load of video servers. Novel video file seg-

ment caching strategies are proposed for more efficient peer collaboration. Computer
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simulation models are constructed to test techniques at diverse set of scenarios.

6.2 Future Research Directions

Our studies on WLAN video streaming focused on tackling the bandwidth inconsis-

tencies of the link via source rate adaptation. The effectiveness of these approaches

can be inadequate when the bandwidth degradation last for a long time frame. A

solution to this problem is to use multiple transmission links when possible. Fortu-

nately, most of today’s WLAN adapters and access points can operate at multiple

frequency bands and support different technologies. For instance, dual band inter-

face cards employ both 802.11a (2.4 GHz) and 802.11g (5 GHz) technologies. One

of the largest causes of long lasting bandwidth degradations is the signal interference

originated from cordless phones or Bluetooth devices. When one of these interfering

devices are in use over a frequency band, the quality of the wireless AV stream may

be maintained by switching the video sender-client connection to a clearer band or

concurrently using multiple bands.

Developed rate-adaptive video streaming methods are optimized for a single-

sender single-receiver scenario. Further improvements can be done for scenarios where

multiple wireless capable displays are actively streaming video from video gateways.

In the P2P assisted VoD study, the topology of the created overlay network was

not optimized. System performance can be improved if the users connect to the peers

that are geographically close to them. Proposed caching methods can be modified to

take the topology information into account.
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