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SUMMARY

Enterprise networks present very high value targets in the eyes of malicious

actors who seek to exfiltrate sensitive proprietary data, disrupt the operations of a

particular organization, or leverage considerable computational and network resources

to further their own illicit goals. For this reason, enterprise networks typically attract

the most determined of attackers. These attackers are prone to using the most novel

and difficult-to-detect approaches so that they may have a high probability of success

and continue operating undetected. Many existing network security approaches that

fall under the category of intrusion detection systems (IDS) and intrusion prevention

systems (IPS) are able to detect classes of attacks that are well-known. While these

approaches are effective for filtering out routine attacks in automated fashion, they

are ill-suited for detecting the types of novel tactics and zero-day exploits that are

increasingly used against the enterprise.

In this thesis, a solution is presented that augments existing security measures

to provide enhanced coverage of novel attacks in conjunction with what is already

provided by traditional IDS and IPS. The approach enables honeypots, a class of tech-

nique that observes novel attacks by luring an attacker to perform malicious activity

on a system having no production value, to be deployed in a turn-key fashion and

at large scale on enterprise networks. In spite of the honeypot’s efficacy against tar-

geted attacks, organizations can seldom afford to devote capital and IT manpower to

integrating them into their security posture. Furthermore, misconfigured honeypots

can actually weaken an organization’s security posture by giving the attacker a stag-

ing ground on which to perform further attacks. A turn-key approach is needed for

organizations to use honeypots to trap, observe, and mitigate novel targeted attacks.
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CHAPTER I

INTRODUCTION

Enterprise networks exist in many diverse forms. They can belong to private sector

companies, non-profit entities such as universities, government, military installations,

and healthcare organizations. They can be entirely localized to one office, be con-

nected globally across campuses by virtual private network (VPN) tunnels, employ

cloud hosting, or some mix of the preceding. What is consistent among all enterprise

networks, however, is that they host a set of data and infrastructure that is of high

value to the organization to which it pertains, and critical to the execution of that or-

ganization’s missions. Gaining access to this data and infrastructure is of potentially

high value to malicious actors who would seek to exploit it for their own gain.

1.1 Summary of Automated and Targeted Attacks

Attacks on a computer network can be differentiated along the lines of automated

vs. targeted. Typically, automated attacks are carried out by malicious computer

software, such as a virus, worm, or bot, that propagates itself to vulnerable hosts and

receives commands either by way of a centralized command-and-control infrastructure

or peer-to-peer network. These automated attacks seek to infect as many machines

as possible and typically do not have a set list of victims in mind. Once successful,

the attacks typically cause such generic actions as delivering spam messages, carrying

out distributed denial-of-service attacks, offering proxies through which to transact

illegal/protected content, etc. Typically, automated attacks are carried out with

crude, well-known attack patterns, and prey on systems that are poorly maintained,

such as those machines that are not kept up-to-date with software security patches.

In many cases, automated attacks can be thwarted by traditional signature-based
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means of intrusion detection, but are typically successful due to the sheer number of

machines that remain vulnerable due to inadequate patch level or misconfiguration.

Targeted attacks (sometimes referred to as advanced persistent threats), on the

other hand, have a very specific victim or set of victims in mind, and likewise, carry

out a very specific set of actions that may be unique to the target being exploited.

A famous example of a targeted attack includes Stuxnet [31], which only activated

when it was propagated to a very specific set of SCADA systems, used a highly specific

means of propagation (USB flash drives, per the standard operating procedures of the

intended target), and carried out malicious activities specific to the nuclear facilities

that those systems were controlling. Targeted attacks by their very nature tend to

utilize much stealthier approaches that often involve polymorphism to evade signa-

tures, novel attack vectors, and zero-day exploits that are not detected by existing

approaches typically offered by organizational IDS and IPS solutions.

1.2 Deception techniques and barriers to entry in enter-
prise network security

While enterprise networks certainly face a large number of threats due to automated

attacks, the coverage for these by existing IDS/IPS approaches is typically adequate

provided everything is configured properly. Targeted attacks, on the other hand, are

a class unto their own, and traditional approaches prove inadequate for the task of

detecting them. As demonstrated in the Operation Aurora [25][59] attack campaign,

lapses in security policy, effective social engineering techniques, or software miscon-

figurations can allow for even the most simplistic targeted attack to go undetected.

Furthermore, enterprise networks, due to the sensitive information and mission criti-

cal assets they host, are first in line for the types of novel, targeted attacks that can

exfiltrate data, disrupt business operations, or give attackers access to computing re-

sources (for which they have not paid nor for which they are liable) to perform illicit

activities. The stealth with which these attackers can perform the targeted attacks,
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furthermore, allows their activities to remain undetected possibly for months or years.

A technique that does lend itself well to trapping and observing novel attacks is

deception, that is, masquerading a host or piece of content that in reality has no pro-

duction value as something that is of interest to an attacker. This decoy host/content

is better known as a honeypot [81]. By successfully deceiving the attacker to perform

hostile actions against a monitored honeypot, the attack methods can be seen in isola-

tion from the considerable volume of production traffic. Thus, even novel attacks can

be observed by way of the state changes the attacker causes in the monitored decoy,

and remediation measures can be inferred for true production assets. In spite of the

efficacy of this technique against targeted attacks, organizations can seldom afford

to devote capital and IT manpower to creating and maintaining a fully customized

decoy strategy that covers their unique and dynamic threat landscape. Furthermore,

misconfigured decoy assets can actually weaken an organization’s security posture by

giving the attacker a staging ground on which to perform further attacks. A turn-

key approach to deception is therefore needed so that organizations will adapt the

strategy of using a network of honeypots, or honeynet, to trap, observe, and mitigate

novel targeted attacks.

1.3 Turn-key Honeynet Framework

To address the aforementioned issues in enterprise network security, we provide a scal-

able framework for turn-key honeynet deployment, which abstracts away the specifics

of honeynet deployment from the specific organization. This framework must be

adaptable to the form factors in which enterprise networks typically exist, namely

privately maintained local networks and cloud-hosted virtual hosts. It must also

stage content in a manner consistent with the production assets with which it seeks

to blend decoys, and be as transparent as possible to a potential attacker. If these
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requirements are met by the deceptive content, attackers will interact with a hon-

eypot just as they would a production host of interest and reveal their tactics. The

described framework consists of the HoneyCluster, a scalable cloud environment that

hosts the honeypots, a traffic forwarding appliance that presents the honeypots as

logically belonging to the enterprise subnet, attack data aggregation and analysis,

and threat reporting.

1.4 Thesis Outline

The goal of this thesis is to mitigate concerns in enterprise networks as relates to

a class of targeted attacks not being adequately addressed by existing security mea-

sures typically deployed in the enterprise. We present the background of this problem

starting with a brief history of the origins of computer crime and its progression into

the recent targeted attack campaigns that succeeded against enterprise networks for

a prolonged time, usually by exploiting zero-day exploits that could not have possi-

bly been detected by existing best practices1. After the discussion of those attacks

that succeeded, we present a discussion of honeynet techniques that have succeeded

in the past in detecting novel attacks in research domains, but that have not been

deployed in enterprise environment due to onerous integration and liability concerns.

Namely, these concerns include the inability to devote effort to deploy and maintain

honeynet infrastructure, and the liability that would result from scatter attacks due

to a misconfigured honeypot being used by an attacker to attack a third party and

attribute the attack to the organization. We describe a framework that overcomes

these concerns and enables seamless integration of honeynets with existing production

assets to provide a layer of deception used to trap and mitigate novel targeted attacks.

We present the results of the honeynet framework’s deception and attack detection

ability on a live network located at Georgia Tech. The contributions shown by our

1Indeed, these attacks were only discovered in the long run by deep manual analysis or worse
still, some catastrophic event carrying with it major economic consequences
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results include the effective detection of malicious remote hosts based upon behaviors

encountered on our test network by dynamically allocated honeypot decoys, as well as

a significant improvement in transparency of the traffic forwarding tunnel that places

these honeypots logically within the enterprise subnet to be protected. Specifically,

we demonstrate that our approach diverts 97.5% of traffic originating from malicious

hosts away from production assets, while still allowing the malicious host to commu-

nicate with decoys under our control and serve as a source of threat intelligence. We

show a significant reduction in two detectable network characteristics due to tunnel-

ing, namely packet loss (reduced from 91% to 1% at peak) and peak packet delay

variation (reduced by approximately 87%). Lastly, we present conclusions and future

work.
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CHAPTER II

ORIGIN AND HISTORY OF THE PROBLEM

2.1 Evolution of Attack Methods

The practice of exploiting vulnerable telecommunication systems dates back at least

as far as the late 1950s when Joe Engressia (later known as Joybubbles) discovered he

could make free long distance telephone calls simply by whistling a 2600 Hz tone into

the receiver. At the time, the AT&T switching fabric used in-band switching, which

allowed end users such as Engressia to take control of the switches and place toll calls

at no charge. As word spread of his exploit of the telephone switching system, the

practice became known as “phreaking.” Years later, an entrepreneur by the name

of Al Gilbertson developed and sold a device known as the “blue box,” which made

Engressia’s technique accessible to those who did not possess the natural ability to

whistle at the perfect pitch needed to perform the exploit. In a 1971 interview with

Esquire Magazine about the device, Gilbertson noted, “you’ve got anonymity...they

don’t know where you are, or where you’re coming from, they don’t know how you

slipped into their lines...They don’t even know anything illegal is going on” [76].

Forty years after the “blue box” interview, network infrastructures have grown

in complexity and the modalities used to exploit them have changed significantly.

However, the overarching story remains the same. Adversaries can profit greatly by

gaining unauthorized control over information systems owned by others and they can

remain undetected while doing so. Indeed, nowadays the rewards are quite a bit

greater than having the ability to make free long distance telephone calls (although

malware that performs attacks against SIP-based PBX systems can still boast of

this capability). The malware industry has long been established as a cash cow for
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cyber thieves, allowing them to delegate distributed denial of service attacks, mass

spam distribution, network reconnaissance, and identity theft, to name a few [50].

Militarized worms coordinated via Internet Relay Chat began appearing as early as

1999 [78]. Analogous to the “blue box” that came four decades prior, the advent

of sophisticated extensible bot platforms such as SDBot, GT Bot, and AgoBot by

2002 brought botnets into the mainstream [7]. In the hands of even moderately

skilled adversaries, these tools paved the way for deployment and customization of

extremely powerful botnets that could reap significant financial benefits. Circa 2008,

the spam distribution capabilities of the Storm botnet were estimated to have brought

in daily revenues between $7,000 and $9,500 to the bot masters [50]. Meanwhile, the

nature of the botnet allowed the bot masters to avoid accountability for what they had

done, as the spam messages themselves were sent by unsuspecting victims’ computers

that were drafted into the botnet [6][50]. It is worth emphasizing that because of

this mechanism, the substantial cost of actually delivering the spam messages (an

estimated $25,000 daily) was not incurred by the authors of the Storm botnet, but

rather, collectively by the rightful owners and service providers of the compromised

systems that acted as agents of the botnet.

2.2 Emergence of the Advanced Persistent Threat

Over the past several years, the most skilled adversaries in the cyber domain have

begun to move away from widespread, catch-all tactics, such as huge self-propagating

botnets that pump out millions of spam messages, in favor of focused attacks targeted

at a specific government, industry sector, corporate entity, or individual. Attacks of

this sort are more formally dubbed advanced persistent threats (APT) [24] and owe

their rapid emergence to several key factors, including the following:

1. Significant will on the part of cash-rich entities and nation states to perform acts

of espionage or destruction of critical data by way of the Internet [1][39][51][66].
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2. Pervasiveness and sophistication of reconnaissance tools, vulnerability scanners,

and customized exploit creation techniques [10].

3. Increasing reliance on information systems has caused a higher volume of sen-

sitive information to be transacted via the Internet and stored in large data

warehouses. Targeting the custodians of this information has become very lu-

crative for adversaries [1][14][59].

This trend has already become apparent with the emergence of a worm named

Stuxnet, aimed specifically at infecting Windows computers en route to manipulating

Seimens programmable logic controllers [31]. In contrast to the widely publicized

worms that preceded it, Stuxnet seeks to infect very specific targets under very specific

circumstances. Stuxnet is viewed by many as the most sophisticated piece of malware

to be used in a targeted attack, and it is being referred to as “the first real cyber

weapon” [20]. If the history of adversarial behavior serves as any indicator, Stuxnet’s

techniques will be mimicked and improved upon by others before long.

Another widely publicized targeted attack, dubbed “Operation Aurora” by McAfee,

involved the use of a zero-day vulnerability in Internet Explorer to steal proprietary

data and user account credentials from Google China and at least 20 other organiza-

tions [59] (including such information security firms as Symantec). In 2010, Damballa

performed extensive analysis of the Aurora botnet and published its findings in a com-

prehensive report [25]. While Operation Aurora has been widely viewed by the public

as a veritable APT, Damballa’s findings indicate otherwise. In particular, the Aurora

botnet “uses DDNS and ‘old school’ coordination techniques not used by sophisticated

botmasters” [25]. Furthermore, the primary attack vector used to infect victims’ ma-

chines was the presentation of so-called “scareware” alerts on compromised websites.

This method of malware delivery is a simplistic social engineering approach and is

described as follows: “The botnet controllers preyed on the fear of users that their

system is infected with malware. This method saves the botnet controllers from the
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technical complexity of bypassing Windows’ user account control (UAC) by using the

weakest link in host security” which is the user. The misled user typically clicks OK

to everything, bypassing UAC and giving the malware dropper explicit permission to

execute. [25]

The “simplicity and obsolescence” of the techniques used in Operation Aurora is

indicative of amateur bot masters. Nevertheless, despite a lack of technical sophis-

tication, the Aurora botnet succeeded in infiltrating the networks of several major

corporations. In addition to placing Google at odds with the Chinese government

[19], Aurora has reportedly resulted in the compromise of Gmail account credentials

and potential spurious modifications to or theft of Google proprietary source code

[42]. If Google and other prominent technology innovators are being infiltrated suc-

cessfully with such coarsely devised attacks, one might expect their security postures

to fare even less favorably against more determined, organized, and sophisticated

adversaries. Furthermore, since Operation Aurora, other highly publicized targeted

attacks have included the Wikileaks exfiltration of highly sensitive government and

industrial secrets [90], large scale compromise of personally identifiable information

held by Epsilon [73], and the chain of information security breaches at Sony, among

others. The Advanced Persistent Threat is clearly a widespread problem with impli-

cations ranging from invasion of privacy all the way up to breach of national security

and compromise of public safety.

2.3 State-of-the-Art Corporate Information Security Mea-
sures

Many organizations have invested a great deal of time and money on information

security practices that are intended to keep their critical data safe from potential

threats. These practices fall under the broad term Defense-in-Depth, which refers to

the deployment of security measures at several points in the information chain so as

to prevent full compromise due to a single point of failure [65]. A familiar example of
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Defense-in-Depth is multi-factor authentication, which requires that the user supply

multiple independent credentials, usually verified against where the user is, what the

user knows, something the user has, or some biometric characteristic(s) of the user

[53][60]. The password + secure token scheme, commonly used to authenticate users

to corporate virtual private networks (VPN) and other secured services, is an example

of two-factor authentication involving something the user knows and something the

user has. In the event that the authorized user’s secure token is stolen, the token itself

is insufficient for the adversary to gain access, as the user’s memorized password is

also needed. Of course, having multi-factor authentication is effective for ensuring

that a perfectly functioning authenticator will not grant access to unauthorized users.

However, as the authentication scheme may also have vulnerabilities (including the

authorized user’s password keeping habits), Defense-in-Depth dictates that intrusion

detection systems (IDS) should also be deployed within the organization.

Intrusion detection systems are grouped into two major categories, host-based

(HIDS) [88] and network-based (NIDS) [75]. Organizations rely heavily on HIDS

such as virus scanners and, in some cases, file integrity checkers on select systems

with seldom-changing configurations. To complement the HIDS, organizations also

employ NIDS techniques, usually via applications such as Snort [75]. Both of these

IDS types function by comparing all observed files or network packets against sig-

natures of known attacks and generate alerts when a match is found. The more

sophisticated HIDS and NIDS are also capable of performing more in-depth heuristic

analysis. In the case of HIDS, heuristic analysis is usually done by tracking anomalous

activity, such as disk and memory access patterns, and comparing it to the learned

behavior of prior known-malicious samples to determine whether an attack may be

occurring [35][88]. In the case of NIDS, heuristic analysis is done in a variety of

ways, ranging from analysis of protocol anomalies [89] to correlating NetFlow activ-

ity with that of previously observed attacks [55]. While heuristic analysis can be

10



more effective than direct comparison against signatures, a tradeoff exists between

how computationally intensive the intrusion detection can be without creating an

undue load and thus compromising the availability of the production system it is in-

tended to protect. Heuristic analysis is also more prone to generating false positives,

and must still be trained on the behavior of known-malicious samples. Completely

new attack vectors that share few characteristics with previously observed ones are

unlikely to be detected even by heuristic analysis. While having HIDS and NIDS

deployed concurrently can strengthen a corporation’s defense posture, these systems

tend to work separately from one another. Unfortunately, one of malware’s main

characteristics of late has been its ability to evade host-based detection mechanisms,

running counter to a heavy reliance on HIDS. According to the Damballa report on

Operation Aurora, “[w]hile APT malware can remain stealthy at the host level, the

network activity associated with remote control is more easily identified. As such,

APTs are most effectively identified, contained and disrupted at the network level”

[25]. Even so, malware authors are employing increasingly sophisticated techniques

on the network level as well, including fast flux networks, encrypted communication

sessions, and covert channels to obfuscate or conceal what data are being transacted

through the course of an attack [33][36]. Intrusion detection systems that operate

solely on the host level or network level are able to observe only part of the attack,

and malware that obfuscates its intent does a good job of keeping these pieces of

the puzzle seemingly disjoint from one another. Compound this with the immense

volume of legitimate activity that passes through an IDS, and finding attacks amid

the sea of business-related transactions becomes even more improbable.

2.4 Honeynets in the Research Community

The research community that focuses on analyzing information security attacks in

isolation works under a different set of constraints than the information technology
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departments of everyday businesses. While these researchers may be stewards of their

own production networks, expected to facilitate some useful business task therewith,

they are also responsible for maintaining computer systems that are purely for re-

search purposes. Some of the primary goals of this community include finding emerg-

ing threats, analyzing them, reporting on their severity, and providing expert advice

on how to remediate the applicable vulnerabilities to minimize any further harm

caused by said threats. An indispensable tool of individuals in this research com-

munity has been the honeypot. In cyber-security parlance, a honeypot is a resource

that has no production value, but rather exists for the sole purpose of being discov-

ered and exploited by adversaries [67]. Similarly, when multiple honeypot systems

are networked together, the resulting network is known as a honeynet. Because the

services offered by a honeypot are not demanded by any legitimate user, all attempts

to access the honeypot are deemed malicious.

The two main modes of operation for a honeypot are referred to as traditional

and client. Traditional honeypots are typically deployed on a publicly routable net-

work address and offer some seemingly vulnerable service that awaits an attacker’s

connection attempts. In contrast, a client honeypot mimics the behavior of a user

agent, such as a web browser, and actively seeks out malicious payloads hosted on

the Internet. Both types of honeypots are further divided into two categories, low-

interaction and high-interaction, based on how fully they represent a real system.

Low-interaction honeypots, sometimes also referred to as medium-interaction, rely on

emulated versions of the services or user agents they are exposing to attacks. These

emulated versions behave as closely as possible to the real software off of which they

are based, but are typically re-implemented from scratch so as to intentionally expose

known vulnerabilities in the service or user agent being emulated. In this way, the low-

interaction honeypot is able to participate in a dialog with the attacker in such a way

as to make the attack appear to have been successful. The longer attackers believe
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the honeypot to be a real service, the more they will attempt to use it to further their

goals, and the more tactical information they will reveal to the honeypot’s maintain-

ers. As such, a well devised low-interaction honeypot is a very powerful monitoring

tool for known threats, as well as an effective way to collect malicious payloads that

are distributed through known vulnerabilities. While the intent of a low-interaction

honeypot is to appear as authentic as possible, only so much can reasonably be done in

an emulated environment to ensure authenticity. A high-interaction honeypot, on the

other hand, is a system that runs shipped versions of an operating system and other

vulnerable software. Therefore, what is being exposed to attacks is a fully authentic

instance of software having vulnerabilities, some of which are potentially unknown,

running on a real operating system that may have vulnerabilities of its own. The

high-interaction honeypot is capable of participating in and detecting attacks that

leverage zero-day vulnerabilities or vulnerabilities that are not fully understood. The

research focus of high-interaction honeypots, therefore, is in the effective monitoring

of everything that occurs within the honeypot (which, as was stated before, is all

assumed to be malicious). The advent of virtual machine introspection by way of the

Intel VT and AMD-V extensions has furthered the monitoring capabilities, allowing

for very fine-grained tracing of virtualized high-interaction honeypots [34]. Further-

more, containment of the attack within a high-interaction honeypot is of paramount

importance. As the compromised high interaction honeypot naturally behaves just

as a real infected host would, the honeypot would be just as likely to propagate the

attack to other vulnerable machines if not kept under control.

Over the past decade, honeynets have been instrumental to researchers looking

to gather information about botnets [6][38][57][63][86]. By being able to infiltrate

multiple participants into the botnet, researchers gain the ability to monitor even the

activity of botnets that have highly decentralized command-and-control mechanisms.

However, in spite of their efficacy, honeynets require a substantial level of effort and
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expertise to deploy, monitor, and maintain effectively. For those unfamiliar with op-

erating a honeynet, the sheer volume of attack data can become unmanageable, and

risks of infection, attack propagation, and potential legal liabilities arising from at-

tack propagation or unauthorized distribution of electronic materials are considerable

barriers to entry. The level of effort and risk involved is one of the main reasons why

honeypots tend to be relegated to academic institutions and independent security-

focused research groups such as the Honeynet Project [82]. Businesses are typically

inclined to shy away from honeypots altogether or implement the most shallow, risk-

averse honeypot deployment strategies imaginable. Some commercial off-the-shelf

(COTS) products, such as KFSensor [52] and SPECTER [79] are marketed toward

enterprise networks for their ease of deployment. These products tend to be deployed

as standalone honeypots, of which monitoring and maintenance are the sole respon-

sibility of the customer. Not surprisingly, many organizations do not opt to incur

these responsibilities, and honeypots have thus often been cast aside with the stigma

of being ineffective or simply too risky to be leveraged in a corporate setting. How-

ever, given the rise in the prevalence of targeted attacks against the enterprise, the

superior attack detection capabilities of an expertly administered honeynet present a

great potential addition to enterprise security strategies.

2.5 Honeynet Technologies

This section presents a synopsis of several key existing honeynet technologies that

have proven to be successful in capturing novel attacks.

2.5.1 Honeywall Roo

The Honeynet Project and Research Alliance (commonly referred to simply as The

Honeynet Project), “a leading international security research organization,” has been

a driving force in honeynet research over the 12 years since its inception [45]. The
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Figure 1: GenI Honeynet Architecture (originally in [85])

Honeynet Project has prescribed standards for honeynets in terms of three genera-

tions, roughly correlated to the honeynets efficacy and ease of deployment.

A first-generation, or GenI, honeynet is a collection of high-interaction honeypots,

protected via the use of a hardened layer 2 bridging gateway known as a Honeywall

[85]. The Honeywall is a device that performs data control, data capture, data anal-

ysis, and data collection. A diagram of the GenI honeynet architecture appears in

Figure 1. The honeypot machines are isolated physically from all systems having

production value by way of the Honeywall.

However, these honeypots are logically on the same network as the production

systems. Second-generation, or GenII honeynets are functionally equivalent to their

GenI counterparts, but the updated Honeywall implementation improves upon the

mechanisms governing data control, data capture, and alerting of the administrator

[83]. The current state-of-the-art honeynet is considered to be GenIII, which, in

addition to all the GenII capabilities, enables a honeynet operator to administer the

honeynet and view its collected data through a graphical user interface. The GenIII

honeynet is facilitated by version 1.4 of the Honeywall distribution, codenamed Roo
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[84]. While the current iteration of the Honeywall distribution greatly streamlines

the process of setting up a honeynet, it has the following deficiencies:

1. According to the time stamps within the Trac source revision control repository,

Honeywalls source code has not been modified in over two years.

2. Following from the staleness of the code base, the Linux distribution on which

Honeywall Roo is based is also very outdated. The kernel version shipped with

CentOS 5, and therefore Honeywall Roo, is 2.6.18, whereas the latest stable

kernel version as of this writing is 3.13.2. A hardened Linux machine on the

network perimeter, such as the Honeywall, should be running recent revisions

of its critical software to minimize the number of known vulnerabilities that can

be used to exploit it.

3. The Yum repository for Honeywall-specific packages is no longer available,

thereby limiting the ability of the Honeywall Roo appliance to keep itself up to

date (which is one of its advertised features).

4. The existing Honeywall configuration mechanisms lend themselves well to the

small- to mid-sized deployments for which Honeywall Roo was originally en-

visioned. However, maintaining a cluster of logically independent honeynets

beyond the order of 10 becomes a very difficult task with the existing Honey-

wall tool set.

5. All honeypots behind a single Honeywall Roo installation are intended to be on

the same logical subnet, which exacerbates the aforementioned issue of scala-

bility when an organization seeks to have honeypots that reside on many inde-

pendent subnets.

6. While the menu-driven configuration tool simplifies the most common hon-

eynet deployment scenarios, it does not cover all reasonable use cases. The
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Figure 2: Collapsar honeyfarm architecture (originally in [47])

most prominent such scenario is DHCP auto-configuration of honeypots, which

requires configuration above and beyond what is enabled by the bundled con-

figuration tool.

Therefore, Honeywall Roo has room for improvement, particularly in terms of

scalability to large numbers of honeynets. While many of these hurdles can be worked

around with the software in its current form, doing so adds to the complexity of

implementing and maintaining a honeynet, which is one of the conditions Honeywall

Roo was designed to alleviate. A modern, comprehensive framework for deploying

honeypots is greatly needed to pick up where Honeywall Roo left off and ease the

current complexity of honeynet deployment.

2.5.2 HoneyMole

A novel honeynet concept in the 2006-2007 timeframe was that of the consolidated

honeynet, or honeyfarm [26][47]. This practice is facilitated through use of a layer 2

network tunnel that originates at the point at which the honeynet is to be situated

logically and terminates at the honeynet’s physical point of presence.
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In this way, a honeynet can appear to have nodes situated in every region of

the globe while having all computational resources that host the honeynet in one

centralized location. A diagram of a honeyfarm architecture is shown in Figure 2.

HoneyMole was developed by the Portuguese chapter of the Honeynet Project to

enable the creation of such a tunnel in a secure fashion [44]. However, this software

has not been updated since February 2008. It is not straightforward to set up, nor

was it suitable for long-term deployment. In addition, recent versions of OpenVPN

and the Linux kernel do away with many of the conditions that originally motivated

development of HoneyMole. Furthermore, the fact that OpenVPN’s code base is

mature, actively maintained, and used by many clients worldwide makes it a far more

attractive candidate than HoneyMole.

2.5.3 Nepenthes/Dionaea

Another indispensable tool in the arsenal of the honeynet researcher has been Ne-

penthes [64], a modular low-interaction honeypot toolkit that enables detailed capture

and analysis of known attacks by emulating vulnerable network services. Nepenthes’

power lies not only in the modules included with the toolkit, but also in the fact

that researchers can tailor their own modules to their specific needs. However, as

Nepenthes modules are to be written in C++, many researchers who are not pro-

ficient in the language found difficulty in developing their own extensions. For this

reason, Dionaea [17], a successor to Nepenthes, was developed in the summer of 2009.

Dionaea allows for its extension modules to be written in Python, a language with

a shallower learning curve than that of C++. Dionaea also has support for IPv6, as

well as detection of malicious shell code by way of libemu [58]. Dionaea addresses

the aggregation of data from multiple sensors by offering a back-end XMPP data

reporting channel. As of this writing, Dionaea remains in active development under

the auspices of carnivore.it [16]. As Dionaea is itself a framework for low interaction
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honeypots, it can be extended to include virtually any service or protocol a security

researcher can imagine (and that has a reference for implementation).

2.5.4 Kippo

Kippo is a “medium interaction SSH honeypot designed to log brute force attacks

and, most importantly, the entire shell interaction performed by the attacker” [54].

It binds itself on port 2222/tcp, rather than the standard port 22/tcp, so that it does

not need to run with root privilege. A Kippo instance will log all activity performed

against it, namely username/password combinations and, if successfully breached, all

commands run upon it by an attacker. It performs an additional level of deception

in that when the attacker logs out or issues an EOF character, the shell prompt

switches to give the appearance of a root shell on localhost. In this way, the Kippo

honeypot can collect information about what an intruder might be trying on his own

system, while running the higher risk of being detected by the intruder. Kippo’s main

shortcomings lie in the emulation techniques it uses that increase an attacker’s ability

to identify it as a honeypot. An article entitled Attacking Kippo was posted to the

Alert Security blog [13] that outlines some of the methods that can be used to identify

Kippo. These techniques include passing a command on the original SSH command-

line ala “ssh user@host command” which gives rise to a NotImplementedException.

Kippo’s lack of persistence of certain things such as newly added users can also be used

to determine it is a honeypot and not a real system. In other words, adversaries can

use the shortcomings in Kippo’s partial emulation of an SSH daemon to determine it

is performing such emulation. These specific issues can be addressed simply enough,

but the fact remains that in any low-interaction honeypot, the farce will ultimately

show itself and transitioning the attacker to a high-interaction approach is required

to make the honeypot continue to appear genuine.
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Figure 3: Flowchart of how an attack gets handled by Glastopf (originally in [71])
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2.5.5 Glastopf

Glastopf is a low-interaction “honeypot which emulates thousands of vulnerabilities

to gather data from attacks targeting web applications” [37]. It accomplishes this

by masquerading as hosting a list of notoriously vulnerable script paths (referred to

also as dorks). It publishes the availability of these paths to search engine crawlers,

which then index and include them in search results that attackers collect as they

search for these vulnerable paths. Once an attacker reaches the Glastopf honeypot,

he will attempt the published paths and likely some that were not listed in the search

engine index. When these new paths are detected, they are added to the corpus

of vulnerable paths that get advertised, thereby attracting a new wave of attackers

looking specifically for the new paths. Therefore, the longer a Glastopf honeypot has

been running, the larger the attack surface it advertises and the wider the range of

attacks it will attract. A flow-chart showing Glastopf’s attack handling is shown in

Figure 3.

2.6 Enterprise Cloud Computing Trends and Security Im-
plications

In 2006, Amazon started the mainstream shift of information technology (IT) assets

toward cloud computing when it introduced the Elastic Compute Cloud [30]. Ac-

cording to a study by Gartner, approximately 38% of all enterprises use some form of

public cloud infrastructure, and that number is set to increase to 80% by 2015 [72].

Enterprises have incorporated cloud computing into their infrastructures largely be-

cause it allows them to acquire massive levels of computing resources without having

to devote dedicated space, purchase and maintain computer hardware, and acquire

adequate on-site network bandwidth as they would have when running their own

data centers in house. Furthermore, the virtualization techniques employed by cloud

infrastructures allow infrastructure to be provisioned to large scale, elastically, and
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without rigid constraints upon network topology, allowing for more flexibility than

the static constraints imposed by hosting everything their own iron. Cloud services

succeed at commoditizing computational availability, and abstracting many of the

hard problems of IT management away from the enterprise.

The flexibility of the cloud also makes it a highly advantageous place to employ

the strategy of deception. The scalability and elasticity of typical cloud services

provides computational head room for ephemeral, non-production assets (e.g. decoy

hosts) that can be provisioned when production demand on the platform is below

saturation, and de-provisioned so as to free resources as production demand requires.

Furthermore, given the dynamism and interchangeability of individual hosts within

the cloud, intruders will be able to infer far less from the way the network is struc-

tured (aside from domain name service records), and their task of reconnaissance is

thus made more difficult, necessitating more aggressive techniques. The fact that

the allocation of hosts on the network can and does change in very short intervals

further implies that the relevance of the attacker’s aggressive reconnaissance is more

short-lived than in traditional network deployments. For these reasons, targeted at-

tacks against cloud-hosted assets can be made considerably more difficult to perform

without inside knowledge of the network asset allocation and provisioning strategies,

and an attacker is very likely to encounter a decoy in his search for production assets.

In addition to the considerable difficulty of targeted attacks against a cloud com-

puting environment, the threat of automated attacks (e.g. botnets) also remains a

very real one [21]. While an intruder may not have knowledge of the specific allo-

cations of hosts on a cloud’s public subnet, it can reasonably infer that the subnet

has targets of high value. Depending upon the cloud provider’s policies, the hosted

services likely have heterogeneous security measures, meaning the adversary may find

a weak link that gains them access to considerable computing, storage, and network

resources. For this reason, the subnets of cloud providers are highly attractive to
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automated attacks [21].

In the cases of Intrastructure-as-a-service (IaaS) [3] and Platform-as-a-service

(PaaS) [12] cloud models, the security of the hosted assets is typically the responsi-

bility of the customer. That is, the enterprise must implement its own security policy

on any cloud assets thus hosted. Several of the leading public cloud providers pro-

vide or offer the option of enabling built-in security measures such as traffic filtering,

traditional IDS, client browser integrity checking, and visitor reputation whitelist-

ing/blacklisting [2][9][23][48][61][68][77]. It is worth noting that each provider of-

fers slightly different sets of security features, meaning that the customer must self-

implement those required measures that are not offered on their particular hosting

provider. Many organizations even prefer to have the control over their own security,

rather than rely on the hosting provider to implement security measures for them [18].

However, this strategy results in a heterogeneous set of security implementations in

a particular cloud deployment, which can be difficult to audit effectively.

A recent proposal to cloud security best practice is known as the software defined

perimeter (SDP) [11], which “aims to give application owners the ability to deploy

perimeter functionality where needed.” The main objective of the SDP is, similar to

the traditional fixed perimeter model, to hide internal assets and disallow external

users from accessing them. In contrast to the fixed perimeter, SDP allows for finer

grained control of the logical perimeter, allowing it to exclude untrusted devices that

move into the physical enterprise (e.g. bring-your-own-device) as well as include

trusted assets that reside outside (e.g. cloud-hosted services).

2.7 Clustering of Connection and Activity Features for Ma-
licious Network Traffic Detection

A framework known as BotMiner [41] has been presented that very effectively iden-

tifies the behaviors of malicious bots by passively monitoring network traffic at the

perimeter of an existing subnet. BotMiner collects connection information in the
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form of network flows to determine who is talking to whom on TCP and UDP proto-

cols. This network flow data is referred to as the C-plane and contains the following

features:

• time

• duration

• source IP

• source port

• destination port

• number of packets

• number of bytes

In addition to the C-plane features, BotMiner also collects information about activity,

or who is doing what. This activity information is dubbed the A-plane and consists

of a variety of features, including

• Snort alerts

• Scanning behavior (as detected by SCADE framework)

– Abnormally-high scan rate

– Weighted failed connection rate

• Anomalous amounts of DNS MX queries and initiated SMTP traffic (indicative

of SPAM)

• Portable Executable (PE) binary downloading
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From these passive operations of C-plane and A-plane, BotMiner determines which

hosts on the subnet are likely compromised, and to which botnet they may have been

enlisted. BotMiner performs X-means clustering on the C-plane and A-plane, and by

performing cross-plane correlation between these two, the creators of BotMiner were

able to achieve 100% detection of six of the eight botnets that had infiltrated hosts on

the network under test, with detection rates of 99.6% and 75% on the other two. This

approach is very effective for botnet detection, but the authors acknowledge several

areas of their work that could use improvement, namely that their “A-plane clustering

implementation utilizes relatively weak cluster features” and that the observed A-

plane activities were not exclusive to botnets, thus the possibility of generating “a lot

of false positives.” Therefore, the creators of the BotMiner framework hypothesize

that its efficacy would be improved significantly by a richer source of A-plane features

and a way to filter out the majority of benign traffic. These are two objectives in

which honeypots excel.

Our proposed solution to novel, targeted attack detection operates on this hy-

pothesis. By using honeypots to provide active feature detection and thus augment

the A-plane significantly, the approach used by BotMiner can be adapted to deter-

mining which remote hosts are performing malicious activity toward the subnet being

monitored. Furthermore, the determination of malice can be arrived at with more

confidence, as the only remote hosts that will actually be generating features are

those who are accessing decoys for which there is obviously no legitimate production

use. In arriving at this determination, a potentially vast amount of attack data are

attributed to the remote host being deemed malicious, giving not only a classification,

but a thorough insight into the attacker’s behavior pattern. Therefore, much more

comprehensive remediation measures can be devised in response to the threat.
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2.8 Related Cloud-based Honeynet Work

A small amount of prior work exists involving honeynets within cloud computing

architecture. One of these works leverages the detection capabilities of honeypots

to characterize attack patterns on Amazon EC2, Microsoft Azure, IBM SmartCloud,

and ElasticHosts public cloud infrastructures [15]. The work focuses mainly on where

attacks originate, the kinds of attacks that are made, and what differences exist across

cloud providers.

Another publication models honeypots as an anomaly detection system for inte-

gration with cloud based IDS/IPS systems. It presents “the performance analysis

of attack detection on the number of 800 malicious packets” [5] of honeypots vs.

traditional IDS/IPS and shows a 1% improvement.

Lastly, an approach for fast dynamic extracted honeypots in cloud computing

is presented [8]. Within, a framework is described that dynamically clones high-

interaction honeypots from a running cloud VM instance when an attack is detected.

The method relies upon metrics (effectively, signatures) derived from a static capture

of attacks against a dark net. If a connection matches one of the signatures, the

production host is cloned within 3-7 seconds and the malicious connection is handed

off to the cloned VM for deeper inspection of the attacker’s behavior. The tech-

nique presented is effective at quickly cloning the production machine, but has a few

drawbacks.

• Relies upon the Xen hypervisor, reducing portability to other virtual machine

architectures.

• Uses static rules gathered in past to identify attackers → effectively signature

based.

• Monitoring begins after attack against a production host is underway, meaning

that the attack must be observed effectively amid production traffic.
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• Handoff of established connection to a new VM introduces possible identifiable

characteristics.
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CHAPTER III

SCALABLE FRAMEWORK FOR TURN-KEY

HONEYNET DEPLOYMENT

The turn-key honeynet framework consists of four main architectural components.

These are the HoneyCluster framework, which is responsible for provisioning the

honeypot assets, the remote sensor appliance that injects the honeypots resident on

the HoneyCluster into the logical subnet of the enterprise, attack data aggregation

and presentation, which serves as the attack data storage and analysis engine of

the framework, and data reporting and visualization, which presents the threat in-

telligence in a manner to be consumed by security practitioners and organizational

decision-makers.

Detailed explanations of these components are presented in Section 3.1 and a

detailed discussion of the methodologies used to test them in Section 3.2.

3.1 System Architecture

This section presents an overview of the implementation details that comprise the

turn-key honeynet framework.

3.1.1 HoneyCluster Framework

Our implementation of the HoneyCluster framework is based upon Canonical’s Juju

[49] service orchestration framework. Juju was chosen for its ability to interface

with nearly all existing cloud APIs as well as for its extensibility via service modules

known as charms. We have implemented our own custom charms that enable reliable

deployment of decoy assets within this environment. For the purposes of our proof-of-

concept prototype, our custom charms enable dynamic deployment of the following
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Figure 4: Enterprise honeynet architecture including traffic forwarder appliance

low-interaction (a.k.a. medium-interaction) honeypots:

• Glastopf [37]

• Dionaea [17]

• Kippo [54]

In addition to these honeypots, we have the ability to shadow virtually any production

service with a decoy either by using the existing library of Juju charms or writing our

own.

For security reasons, a wall of separation must exist between production and

honeypot assets. Effectively, communications between the two types of assets are

disallowed so that honeypots compromised by an attacker cannot be used to stage

further attacks against production hosts.

While it is possible to pre-define statically what is deployed within the decoy

environment, the novelty of our strategy comes in its ability to blend in with the

enterprise network, whether it is deployed on-site or dynamically in the cloud. For

the scope of this work, an automatic deployment strategy was implemented that

surveys the N most frequently accessed decoy-eligible (e.g., unused) public subnet
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Figure 5: Flow Diagram of Incoming Traffic Handling

endpoints and responds by automatically provisioning an applicable decoy at this

network endpoint. For instance, if our enterprise network is assigned to the subnet

3.4.5.0/24 and we observe a comparatively large volume of SYN/RST interactions

with 3.4.5.158 on tcp/22, we are well served to deploy a Kippo (SSH) honeypot on

this endpoint to gather more intelligence on the nature of these connection attempts.

The value of N is configurable and based upon the size of the subnet in question, as

well as the extent to which resources in the HoneyCluster need to be economized.

In our implementation, we devoted 20% of the unused endpoints1 toward decoys by

default.

Once deployed within the HoneyCluster via Juju, honeynet assets are made avail-

able on the public network via a configurable firewall based upon iptables. A high level

synopsis of the logic by which incoming connections are routed either to production

or the decoy infrastructure is shown in Figure 5. The firewall control functionality is

orchestrated by a Python library named iptc, but for familiarity of syntax, the fol-

lowing description presents the equivalent commands as though they were passed to

1The total address space was an IPv4 /25 subnet
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iptables on the command line. For the implementation of this logic at the perimeter,

firewall rules are modified automatically to expose provisioned decoy assets as though

they existed on the production net. In the majority of low interaction deployments,

Juju is directed via its deploy or add-unit functionality to provision a container that

automatically initializes and starts an instance of the low-interaction decoy of choice.

Once the provisioning process completes and the decoy is active, iptables commands

equivalent to

1 i p t a b l e s −t nat −A PREROUTING −d [ ExternalIP ]/32 −p tcp \

2 −m tcp −−dport [ Exte rna lSe rv i c ePor t ] −j DNAT \

3 −−to−d e s t i n a t i o n [ I n t e r n a l I p ] : [ I n t e r n a l S e r v i c e P o r t ]

4 i p t a b l e s −t nat −A POSTROUTING −s [ In t e rna l IP ]/32 \

5 −o [ Ne t In t e r f a c e ] −j SNAT −−to−source [ ExternalIP ]

are used to expose the honeypot to the public subnet. Kippo honeypots are a special

case in that they bind internally to port 2222 to avoid needing root privileges on

the container, so in the above ruleset, ExternalServicePort=22 and InternalService-

Port=2222.

In addition, production assets themselves can optionally be shadowed by a decoy,

to which traffic identified as originating from malicious hosts to the production asset is

redirected. In similar fashion to the low-interaction case, containers are provisioned

via Juju deploy or add-unit, ideally according to the same configuration used to

deploy the production host, but without sensitive data such as private keys or other

proprietary information. The idea is to make the shadow decoy as convincing a

replica as possible without putting any real organizational asset at risk of compromise.

Once the high interaction replica decoy is provisioned, the resulting iptables rules can

vary. In general, filtering rules that match those of the real production asset should

be duplicated, but in many cases, these will be captured as part of the in-guest

configuration and outside the scope of our control. The part that our framework
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is directly responsible for is redirecting malicious hosts away from the production

assets and onto the high-interaction shadow decoy. This redirection is accomplished

by establishing the following set of iptables rules:

1 i p t a b l e s −t f i l t e r −A FORWARD −d [ Inte rna lProduct ionIP ] \

2 −j ACCEPT

3 i p t a b l e s −t f i l t e r −A FORWARD −d [ PrivateDecoyIP ] −j ACCEPT

4 i p t a b l e s −t f i l t e r −A FORWARD −s [ ExternalIP ] −j ACCEPT

5 i p t a b l e s −t nat −A PREROUTING −d [ ExternalIP ] \

6 − i [ Ne t In t e r f a c e ] −j DNAT \

7 −−to−d e s t i n a t i o n [ Inte rna lProduct ionIP ]

8 i p t a b l e s −t nat −A HOSTILE −d [ ExternalIP ] − i [ Ne t In t e r f a c e ] \

9 −j DNAT −−to−d e s t i n a t i o n [ InternalDecoyIP ]

10 i p t a b l e s −t nat −A POSTROUTING −s [ Inte rna lProduct ionIP ] \

11 −o [ Ne t In t e r f a c e ] −j SNAT −−to−source [ ExternalIP ]

12 i p t a b l e s −t nat −A POSTROUTING −s [ InternalDecoyIP ] \

13 −o [ Ne t In t e r f a c e ] −j SNAT −−to−source [ ExternalIP ]

In the preceding ruleset, lines 1-4 allow forwarding of all traffic bound for the

internal production and decoy IPs and from the external IP. The rule found on lines

5-7 specifies an inbound 1:1 dynamic network address translation rule to allow traffic

to reach the production host. The rule on lines 8-9 specifies a 1:1 NAT translation

from incoming traffic matching the HOSTILE chain (to be elaborated upon in the

subsequent paragraph) to the high-interaction shadow decoy. Lines 10-11 allow out-

going traffic from the production asset to be routed outward with src=ExternalIP.

Lines 12-13 allow packets originating from the high-interaction decoy to be routed

outward with src=ExternalIP.

The HOSTILE chain is used to mark hosts that have been determined by their

activity to be malicious. Entries are added to this chain automatically when their

threat index exceeds the threshold by inserting the following iptables rule:

1 i p t a b l e s −t nat −A PREROUTING −s [ Hos t i l e IP ] −j HOSTILE
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Suppose we encounter a remote host that has performed enough suspicious ac-

tivities on our decoys to amass a sufficiently high threat index. Upon passing the

threshold, the system automatically blacklists the offending host by inserting a rule

like the above for the host in question. Packets originating from that host would

then be picked up by the above PREROUTING rule and placed on the HOSTILE

chain. Rather than having the packets forwarded to the real production asset, they

will be sent to the decoy and the production host will thus be protected from further

malicious activity.

The intrinsic benefit to this technique of redirecting malicious traffic to decoy

honeypots in the way described above is that the decoy assets carry out no production

goal whatsoever, so any compromise that may occur does not endanger assets of real

value. Furthermore, rather than simply denying the traffic from passing the firewall,

and therefore gaining no further knowledge from it, these attack interactions are

allowed to proceed against value-less assets that gather behavioral information. For

more information on how the interactions are used to determine suspicion level of a

particular host, please see section 3.1.3 “Attack Data Aggregation and Presentation.”

3.1.2 Remote Sensor Appliance

Complementing the HoneyCluster is the remote sensor appliance that is to be de-

ployed on each remote subnet participating in the honeynet. This component per-

forms the logical injection of honeynets onto private, on-site enterprise networks by

forwarding traffic from the HoneyCluster to the site at which the honeypots are to

appear on the logical network. This component is required to have transparency and

reliability.

To make deployment of new tunnels as simple as possible, we devised an automated

installation mechanism for the remote tunnel endpoint. We settled on Arch Linux as

the distribution of choice because it has a very flexible installation framework, AIF,

33



which allows for rapid creation of customized installation procedures. Its software

packages are also updated very frequently, which is of paramount importance when

creating a hardened network appliance that will be deployed on the network perimeter.

Another advantage of AIF is that it allows for its installation scripts to be referred

to by uniform resource identifiers (URI), meaning the installation procedures and

configuration data can be retrieved from a centralized source and customized on a

per-sensor basis.

We developed an ISO image that leverages AIF to perform installation and con-

figuration of a remote tunnel endpoint with minimal input. The user performing the

installation need only specify the network interface configuration and a secure pass-

word. We then deployed one of these turn-key forwarders in a virtual machine (VM)

situated on a publicly routable subnet and established a tunnel between it and a VPN

endpoint at Georgia Tech Research Institute (GTRI), approximately one mile away.

Once the tunnel was established, we bridged a Windows XP SP2 VM on a machine

physically located at GTRI to the remote network. It acquired a DHCP lease and

took on an IP address as if it were connected directly to the network at the remote

location. This tunnel was operational between October 2010 until February 2012,

with very low (<1%) downtime. The slight downtime that was observed is attributed

to planned network maintenance of the hosting assets and sporadic power outages

rather than fundamental malfunctioning of the VPN tunnel itself.

In addition to the reliability of the tunnel, its performance characteristics are also

of great significance. Namely, the impact of the tunnel on packet round trip times

and throughput must be acceptable. To draw conclusions about the viability of the

tunneled connection, we measured the throughput and packet delay variation (PDV,

also known less formally as packet jitter) as a function of stream bandwidth, both on

a native inter-site link as well as over an OpenVPN tunnel encapsulated on the same

link. In addition, we quantified the average round trip time over the link in both
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native and tunneled modes of operation. Having adequate connection throughput

is of paramount importance. However, the observed packet jitter and round trip

times are also of subtle importance. The existence of an easily measurable systematic

anomaly in these properties of the connection may well give an attacker a means to

fingerprint the overall honeynet setup as out-of-sorts with the rest of the network.

This, in turn, would likely cause illicit activity to be diverted from the honeynet.

Network interfaces in Linux are configured by default with the pfifo fast classless

queueing discipline and impose no rate limitation upon the interface, instead, relying

upon transport protocols at Layer 4 to govern themselves via flow control. However,

due to well known challenges of tunneling TCP over TCP [43], this is not a viable

approach for VPNs, and the use of UDP therefore is highly preferable. The result of

this lack of rate limitation, as will be demonstrated in the results chapter, is a very

significant degradation in throughput and a large spike in packet delay variation.

An alternative queueing discipline in Linux that allows for traffic shaping, whereby

a maximum transfer rate can be specified, is the token bucket filter (TBF) [56]. The

kernel assigns a token bucket whose size depends upon the target transfer rate, and

tokens are replenished periodically. As long as the bucket has available tokens, a byte

can be scheduled for transmission, and once the tokens are depleted, subsequent byte

transmissions are deferred until such time as the tokens have been replenished. The

deferment behavior of the TBF queue discipline is effective at limiting bandwidth of

the flows, but can have adverse effects upon packet delay variation and round trip

time.

A classful extension to TBF is hierarchical token bucket (HTB) filter [56], which

allows more flexibility in defining base and ceiling rates. Our shaping policy for the

traffic sent over the VPN is thus based upon HTB, and applied to the tap interfaces

of both the VPN endpoints, in order to prevent the CPU saturation that gives rise

to the undesirable networking characteristics.

35



3.1.3 Attack Data Aggregation and Presentation

In a live setting, Honeynets generate large volumes of data that cannot be compre-

hended without imposing some sort of structure to aid automated processing. Our

framework collects data from a wide range of sources, including many different low-

interaction honeypot sensors, system logs, network captures, and external intelligence

sources such as GeoIP and malware analysis tools, to name a few. Therefore, we are

required to maintain a coherent view of all these different data while allowing exten-

sibility to new sources of data. To achieve this, we opted to use a document storage

database for its flexibility and ease of migration in the event of schema changes. Mon-

goDB [62] has been used to good effect in many large-scale instances while maintaining

acceptable performance. It also has a very familiar JSON-like API and client bind-

ings for nearly every compiled and interpreted language in existence, which enables

integration with existing technologies.

Each of the deployed honeypot sensors reports behavioral information about at-

tacking hosts on an event-by-event basis, by inserting it into its respective document

storage collection in MongoDB. This behavioral information is then used to build a

set of attack features for each host,

[f1..fN ]

(see Appendix A for schemas and examples of how sensor data is translated to fea-

tures). Hosts are then placed in groups based upon the features generated on their

behalf. Their relation to other hosts are determined by the Jaccard similarity coeffi-

cient [69] between their feature sets, defined as

|A
⋂

B|
|A

⋃
B|

whereA ≡ [fa1..faM ] andB ≡ [fb1..fbN ]

Two hosts having a Jaccard index of similarity 1.0 are thus placed in the same

group, and two hosts with Jaccard index of 0.0 share no features in common (e.g.
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Decoy Type Feature Type Threat Index
dionaea accept (httpd) 0.1

accept (ftpd, mssqld, mysqld) 0.5
accept (smbd, epmapper) 1.0
profile 1.0
mysql command 1.0
dcerpcrequest 2.5
dcerpcbind 2.5
offer 2.5
reject 0.1
login 2.5
mssql fingerprint 1.0
mssql command 1.0
downloads 2.5
service 2.5
listen 2.5
connect 1.0
sip command (cmd) 2.5
sip command (addr, via) 0.5

glastopf request raw 0.1
request 0.1

kippo login succeeded 5.0
terminal size 0.5
lost connection 0.5
client version 0.5
login failed 1.0

Table 1: Threat Index Contributions of Common Attack Features

the intersection of their feature sets is the empty set). From these groupings and

similarity metrics, we form associations among hosts by the nature of the attack(s)

performed.

In addition to the similarity metrics, we compute a composite threat index for

each feature set by computing a weighted sum of the threat indices corresponding to

a host’s observed attack behavior as follows:

ThreatIndex =
N∑
i=1

Tfi ∗ fi (Tfi derived according to Table 1)
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The threat index calculated from a given feature set is imputed to all the ad-

versary hosts that are members of the group defined by that feature set. The at-

tack behavior features that our framework prototype gathers are provided mainly

by the low-interaction honeypots, Dionaea, Kippo, and Glastopf. Among these low-

interaction honeypot sensor features, Dionaea provides the most diverse features as

it emulates a multitude of vulnerable services against which an attacker can launch

exploits. Dionaea “reject” events are generated by a remote host’s attempt to estab-

lish a connection on a port Dionaea is not monitoring (e.g. connections on Microsoft

RDP, port 3389/tcp). These reject events are usually indicative of scanning behavior

by a remote host and are individually assigned a comparatively low suspicion score.

The reasoning behind this low contribution is that individually probing a closed port

is not in itself a high-risk action, and that aggressive scans (a truly suspect activity)

will amass a sufficiently large number of reject events to have a significant impact

on the overall threat score. Dionaea “accept” events represent, as one would expect,

a successful connection to one of the services emulated by Dionaea. These cast a

varying degree of suspicion on the connecting host, as httpd accepts may be gener-

ated due to an innocuous web crawler, whereas spurious connections to a MS SQL

or Samba server are considerably less likely to be the result of something legitimate

or benign. A moderate level of suspicion is ascribed to post-connection events such

as mssql command, mssql fingerprint, mysql command, as we are running decoy in-

stances of these services on which requests are being serviced, thus there is no content

to be requested by a legitimate user. “Profile” events are generated by the detection

of shellcode within a payload provided by a particular host, and these events are

scored as highly suspect given there is no legitimate reason for this activity. Dionaea

includes emulation of the Distributed Computing Environment/Remote Procedure

Call (dcerpc) protocol used by Microsoft Windows for remote administration and has

been a very successful attack vector in the past. Therefore, any attempts to bind to
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or make requests against this service are viewed as highly suspect.

The threat indices corresponding to each feature are summarized in Table 1. Once

this threat index reaches a sufficiently high value (in our case, 50.0 is the threshold),

subsequent traffic from that host is automatically diverted away from production as-

sets and toward shadow decoys. The effectiveness of this traffic redirection is discussed

in detail in the results chapter.

3.1.4 Data Reporting and Visualization

For reporting and visualization, we implemented a RESTful JSON API that interfaces

with a rudimentary web page implemented in Ember.js [29]. We relied on a package

known as Ember Charts [28] to interface with the RESTful API and perform the

actual charting of data.

3.2 Experimental Testbed Setup

This section details the testing methodologies used to evaluate the performance of

key architectural features of the framework.

3.2.1 Attack Detection Performance

We implemented prototypes of our HoneyCluster and Data Aggregation components

in Python and deployed them within a local Linux containers (LXC) environment

managed by the Juju framework. We also hosted example production assets on an

unfiltered /25 public IPv4 subnet on the Georgia Tech ECE network. In this way, the

production assets were subjected to live traffic, and therefore typical threats faced by

internet-facing services on real networks. To represent legitimate network traffic, we

carried out requests to each of the production assets according to the expected use

cases of the content being hosted. To verify basic functionality of the system, as well

as provide a ground truth of its detection capabilities, we subjected the system to a red

teaming exercise, generating malicious traffic by using the nmap and metasploit tools
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Service Honeypot type Decoys Allocated
smbd Dionaea 32
mssqld Dionaea 32
mysqld Dionaea 32
dcerpc Dionaea 32
sip Dionaea 32
ftpd Dionaea 32
sshd Kippo 12
httpd Glastopf 17

Table 2: Decoys Automatically Provisioned in Response to Live Attack Traffic

in the BackTrack5 R3 penetration testing suite. This probing and reconnaissance

behavior was detected by the system, triggering automatic honeypot provisioning

and malicious feature detection in line with the actions performed in the red teaming

exercise.

For the purposes of the experiments, our automatic decoy provisioning policy was

to select the N most accessed address/port combinations on the unused portions of

the subnet. In our IPv4 /25 public address block (128 total IPs), we allocated 10 test

machines that served as production assets. For simplicity and because we had such a

large proportion of unused IPs in the subnet, we opted to reserve the entire port space

of a production host as unavailable for honeypot provisioning. Therefore, subtracting

these hosts as well as the network, router and broadcast addresses from the total

allocation left us with 115 fully unused addresses that were available for honeypot

deployment2. To fit in the envelope of computing hardware that was available for

decoys, we opted for a target of 20% utilization of the IP space, giving us room

for about 23 decoys per service. After approximately 30 days in live operation, the

framework had automatically allocated decoys as shown in Table 2.

2In a true production scenario, we would expect to have many more production hosts, but we
would also have the option to allocate the unused ports on the production assets toward honeypots.
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3.2.2 Transparency of Remote Sensor Appliance

We deployed two OpenVPN endpoints approximately one mile apart. One of the

nodes was on a residential connection, while the other was deployed at Georgia Tech

Research Institute. These two nodes were separated by eleven network hops. We

instantiated each VPN endpoint on Arch Linux within a VMWare virtual machine3,

which we gave 512 MB of memory, 8 GB of thin-provisioned disk space and two net-

work interfaces. Each physical host had a four-core Intel Core 2 CPU. As was optimal

for our hardware and network configuration, we configured each VPN endpoint to use

Blowfish encryption, communicate over UDP, and encapsulate Layer 2 bridged traffic.

In this way we established a channel for honeypot sensors physically located at GTRI

to be joined to, and appear as belonging to, the residential subnet a mile away.

To measure baseline throughput and packet delay variation, we used a pair of iperf

[46] instances to transact bidirectional constant bit rate UDP streams of bandwidths

ranging from 1 to 65 megabits per second. We ran the iperf instances in Windows XP

SP2 virtual machines, separate from the VPN endpoints so as to minimize contention

for memory and CPU resources. For measurements involving the tunneled links, we

connected the iperf instances to one another through the VPN by bridging their VMs’

network interfaces to those of the VPN endpoints. For measurements involving the

native links, we assigned public IPs to the measurement VMs on their respective

subnets and allowed them to communicate openly via the Internet. With these two

configurations, we were able to compare the performance of the inter-site VPN tunnel

with that of the native link, which is representative of the connectivity of assets on

the real enterprise network.

Once we recorded the baseline measurements for throughput, PDV, and RTT,

3A virtual machine environment was used due to our implementation requirements to host mul-
tiple endpoints on one physical host, but these results can be replicated in either a virtualized or
bare metal environment.
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we applied our classful HTB queueing discipline, with rate and ceiling parameters of

10 megabits/second, to the network tap interfaces of each VPN endpoint4. We then

repeated the steps described above to measure throughput and PDV characteristics

of the VPN tunnel under the HTB queueing discipline.

4We chose 10 megabits as a conservative value, but any maximum bandwidth that does not
saturate the CPU will have the desired effect.
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CHAPTER IV

RESULTS

This chapter presents the results derived from the testing methodologies presented

in Section 3.2. In Section 4.1, the framework’s ability to detect attacks is detailed

and in Section 4.2, the metrics in which the transparency of the traffic forwarding

appliance are presented.

4.1 Attack Detection Performance

After allowing the active deception system to remain exposed to active threats on

our public subnet for approximately 1 month (Dec 2013), our decoy infrastructure

encountered connections from 6,739 unique remote hosts, of which 6,569 had available

IP Geolocation data. The majority of these attacking hosts were located in the top 5

countries, namely China (1,930 hosts or 29.3%), United States (803 hosts or 12.2%),

Russian Federation (428 hosts or 6.5%), Brazil (301 hosts or 4.6%), and India (222

hosts or 3.4%). A chart of countries that represented greater than 1% of the total

malicious host set is shown in Figure 6.

The overall set of observed attack behaviors fell into 537 distinct groupings. These

groupings ranged from having 1 feature to having over 800. Among the 193 one-

feature (singleton) groups, all the behavior features involved an accepted or rejected

connection attempt on a particular port, indicating a single-port probe. Due to this

characteristic, the singleton group class is representative of the intelligence gathered

by logging disallowed connections at the perimeter. The single-port scanners repre-

sented 5,703 of the encountered hosts (84.6% of the total). Of the single port scanners,

4,882 hosts (or 85.6%) amassed a very low threat index under 1.0. This low threat

index indicates a non-determined attacker that has not presented enough of a threat
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Figure 6: Overall Distribution of IP Geolocation Countries for Attacking Hosts

to warrant blacklisting. Given that this subset of hosts represents such a large portion

of the overall sample, it is not surprising that the statistics on country of origin did

not differ much from the overall1. Nevertheless, an interesting characteristic emerged

from these low-threat entities, which is that the two most commonly accessed ports

by this class of attacker were 3389/tcp (52.2%) and 4899/tcp (29.3%). In other words,

over 80% of hosts responsible for our most benign traffic patterns may have proven

not to be so benign if our attack surface included the Microsoft and Radmin screen-

sharing protocols that operate on these ports. This result underscores the fact that

our technique gains considerably more intelligence by expanding the attack surface

vs. merely rejecting packets at the perimeter. Even within the class of singleton fea-

tures, several hosts amassed very high threat scores (some as high as 8178.0) through

massively repeated probing of low-interaction decoy services such as SIP and smbd.

We observed 1,255 hosts with threat indices in the range [1.0, 50.0). Among

this set of sub-threshold hosts, we observed 52,858 attack events having the feature

1Top 5 countries were China with 1,706 hosts (32.1%), United States with 631 hosts (11.9%),
Russian Federation with 353 hosts (5.1%), and Thailand with 205 hosts (3.9%).

44



dionaea_reject	
  

dionaea_accept	
  

dionaea_dcerpcrequest	
  

dionaea_dcerpcbind	
  

glastopf	
  

other	
  

Figure 7: Attack Features for Hosts with ThreatIndex ∈ [1.0, 50.0)

breakdown observed in Figure 7. The vast majority of the detected behaviors were

connection rejects (73%) and connection acceptances (21%), still indicative of probing

behavior. Hosts in this threat range representing this probing behavior totaled 1,141

(91%). The remaining features in this threat index range began to implicate hosts

exhibiting low volumes of decidedly malicious behavior against the decoy hosts (e.g.

dcerpcrequests and dcerpcbinds).

Our system assigned 533 hosts a threat index of greater than or equal to 50,

meaning that these hosts were classified as decidedly malicious and that production

assets should be protected from their network traffic. The top five country origins2

of this highly malicious group included China (123 hosts, 23.7%), United States (103

hosts, 19.8%), Taiwan and India (tied with 29 hosts, 5.6%), and Brazil (23 hosts,

4.4%). What is particularly notable in this breakdown is that the proportion of threats

from within the United States in this category rose appreciably to rival that of China,

which consistently had the next country beaten by a factor of 2-3 in other threat

classes. This sheds light on the fact that many of the most determined attackers at

2IP geolocation data were available for 520 of the 533 hosts with threat index greater than or
equal to 50.
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Figure 8: Attack features for hosts with ThreatIndex ∈ [50.0, +∞)
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very least have succeeded in compromising US assets that they then leverage against

other targets residing in the United States.

Collectively, hosts exceeding a threat index of 50 generated a set of 810,336 fea-

tures consisting of the feature classes shown in Figure 8. In contrast to the sub-50

threat index feature set, the rejections (25%) and connections (15%) comprised much

smaller shares of the total. This relative reduction is caused by the fact that hosts in

this subset are recorded performing malicious activities in much greater quantities.

In particular, the dcerpcrequest/dcerpcbind events, commands executed against the

mysql decoy service, and login attempts now each represent 5% to 13% of the total

feature set. This drastically different set breakdown that occurs at or above a threat

index of 50.0 led to its choice as a reasonable threshold for blacklisting.

Our technique succeeded in redirecting traffic from these 533 hosts away from

production hosts once they surpassed the threat index threshold of 50.0. The attack

campaigns of these 533 hosts lasted, on average, 2 days, 19 hours. On these cam-

paigns, our technique’s overall time until detection averaged approximately 12 hours,

and on average, after the offending host carried out 31.43% of its attack events against

our decoy sensors. Given that after detection, the host that exceeds threat index of

50.0 is diverted from production hosts, these detection characteristics resulted in redi-

rection of 1241.39 MiB of 1273.17 MiB bound from these malicious hosts, representing

an overall reduction of attack traffic by 97.5%.

In the approximately 1 month time of performance, our framework ingested 1,023

md5-unique malicious executable files from attackers. These files were uploaded to

the decoys via attackers’ exploitation of their vulnerable services (mainly by offering

a file for download by the vulnerable windows RPC service). “VirusTotal is a free

service that analyzes suspicious files and URLs and facilitates the quick detection of

viruses, worms, trojans and all kinds of malware” [87]. It does so by scanning each

sample with a wide array of approximately 50 virus detection engines. The majority of

47



Figure 9: Detection rate of ingested malware samples by scan engine

Detection String #j of Occurrences
Downloader 11
Trojan.Spy.XXP 11
Win32.Sality.3 11
Trojan.Win32.Generic!BT 12
Email-Worm.Win32.Atak 12
Troj/DLoad-IK 13
Worm.Generic.281334 15
Trojan.Generic.5188720 17
Gen:Variant.Graftor.54235 15
UnclassifiedMalware 22
W32/HLL-SysDlrSharer!Eldorado 30

Table 3: Most Common Virus Scanner Result Strings of Files Ingested by Framework
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the samples ingested by our framework (978/1023 or 95.6%) had not been previously

scanned by VirusTotal. Among the remaining 45 samples (4.4%), the percentage

of virus scanners that found each sample to be malicious ranged from 0% to 95.7%

and the cumulative detection percentage across all samples was 59.7%. On a per-

engine basis, the detection rates ranged from 2% to 91%. The engines that had a

greater than 50% detection rate are shown in Figure 9. The majority of detected files

were determined to be trojan horses and malware downloaders/droppers. The most

prevalent virus scanner result strings3 from files in our sample set are listed in Table

3.

4.2 Remote Sensor Appliance

The set of throughput results without the HTB queue discipline, presented in Figure

10, show a large discrepancy between the VPN tunneled link and the native link

(communication via the Internet). Specifically, the performance of the VPN tunnel

degrades severely when stream bitrate exceeds the capabilities of the CPU, and as the

stream bandwidth increases, the throughput of the tunneled connection tends to zero.

At the highest tested stream bandwidth of 65 Mbps, the tunneled connection is able

to transfer only 3.63 Mbps, down from its peak of 44.6 Mbps (-91.8%). By contrast,

at the same 65 Mbps stream bandwidth, the native link throughput degrades to 46.0

Mbps from its saturation peak of 47.1 Mbps (-2.3%). An attacker who gains control

of a honeypot can arbitrarily generate a high bandwidth stream, observe the ten-fold

reduction in throughput, and infer that the network route involves a VPN tunnel.

From there, the attacker can continue a denial of service upon the VPN, or choose to

discontinue interactions with what he suspects to be a honeypot.

A similarly dramatic degradation is observed in the PDV characteristics of the

tunneled connection (Figure 11) without the use of HTB queueing. Whereas the

3The total number of result strings exceeds the total number of detected files because multiple
scanners that detect the same file may attribute different strings to it.
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Figure 10: Detectable Throughput Chraracteristics of VPN Tunnel Under pfifo fast
Queueing Discipline
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Figure 11: Detectable Packet Delay Characteristics of VPN Tunnel Under pfifo fast
Queueing Discipline
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Figure 12: Improved Throughput Characteristics of VPN Tunnel Under HTB Queue-
ing Discipline
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Figure 13: Improved Packet Delay Characteristics of VPN Tunnel Under HTB Queue-
ing Discipline

Native Link Inter-site VPN Tunnel
Minimum 1.465 1.903
Maximum 102.392 13.977
Mean 1.766 2.391
Std. Dev. 0.133 0.324

Table 4: ICMP Round Trip Times

native connection’s PDV never exceeds 280 μs, the tunneled connection’s PDV reaches

as high as 3.0 ms, representing an increase of approximately 1070%. An attacker can

very easily identify the link as a VPN by observing this significantly higher packet

delay variation on high bandwidth streams.

When the HTB queueing discipline is applied, the throughput curve (Figure 12)

of the tunneled link no longer exhibits the extreme degradation in throughput for

high-bandwidth streams, but rather a negligible (-1.0%) degradation that is in line

with that of the native link. The peak throughput of our tunneled link is limited to

10 megabits/second according to the ceiling value we selected for our HTB queueing

discipline. While this value differs from the native link’s theoretical maximum, the

important behavioral characteristic from a fingerprintability standpoint is that the

throughput of the tunneled link no longer degrades sharply from its maximum as a

function of increased stream bandwidth. Therefore, the attacker is no longer able
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to uncover the fact that the underlying connection is a VPN by saturating the link

with traffic. Furthermore, the VPN hardware and HTB rate ceiling could be chosen

in such a way as to enable a peak throughput in line with the capabilities of the

native link, but for our honeypot application, we intentionally limited the amount to

10 megabits/second to reduce the resources an attacker could consume.

Similarly, Figure 13 shows the extreme spike in PDV is eliminated through use of

the HTB queueing discipline. While the VPN tunnel was exhibiting up to a 3.0 ms

packet delay variation prior to implementing the HTB queueing discipline (Figure 11),

afterward the tunneled link’s PDV remains under 380 μs. This represents a reduction

of 87% relative to the peak PDV of the tunneled link without HTB.
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CHAPTER V

CONCLUSION

The turn-key honeynet framework demonstrably provides significant improvements to

the logistical challenges of transparency and large-scale integration by way of its cloud-

based architecture. It was also shown to have performed very effectively by providing

a layer of deception that facilitates its roles as a threat intelligence gathering platform

and intrusion prevention solution.

5.1 Efficacy of Turn-key Honeynet Framework

The results show that our technique is successful at using deceptive infrastructure not

only to lure attackers, but to monitor their behavior and use it to classify them as ma-

licious. Our proof-of-concept prototype, which we implemented in Python, deployed

in LXC with Juju, and exposed to live internet traffic for the month of December

2013, achieved a 97.5% reduction of malicious traffic bound for production hosts by

detecting and redirecting attack campaigns well before they concluded. Furthermore,

our sensors maintains enhanced network-level transparency when deployed to an en-

terprise subnet over VPN tunneling. Specifically, the large degradation in throughput

and rise in peak PDV are all but eliminated, making the attacker’s task of finger-

printing the honeypots based on their network characteristic far less probable. More

importantly, the automation around the framework demonstrates it is able to adapt

to live threats in near-real-time and bolster the security of the network on which it is

deployed without incurring additional maintenance requirements on the part of the

enterprise. In its versatility to being deployed either remotely over Layer 2 VPN tun-

nel or within the cloud, the enterprise also need not devote significant computational

resources toward this defense strategy.
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5.2 Future Work

The contribution presented in this research is a framework whose efficacy is success-

fully demonstrated via a prototype in an academic environment. Therefore, many

opportunities exist for building upon it in the future. The framework’s ability to

integrate with physical enterprise deployments via the traffic forwarder and public

cloud deployments make it highly adaptable to real production use. However, the

turn-key honeynet framework will need to be improved in the following ways:

1. Assure production readiness by load testing and making improvements to visu-

alization/reporting

2. Expansion of the decoy services it provides as lure for attackers

3. Enhancements to the way threat indices are arrived at

4. Enhancements to the feature correlation techniques used to group attacking

hosts by similarity.

5.2.1 Evolution from Prototype to Production-Ready System

While the framework served as an effective proof-of-concept for using the automated

deployment of honeynets as response to novel attack patterns, the scale at which

services are able to be hosted is limited by the amount of hardware available, and it

was not tested against the very high loads that would be expected if used by many

different organizations. Before the framework is to be deployed on real enterprise

networks, it will need to be deployed to a large cluster of servers and undergo rigorous

load testing to ensure it will respond to the considerable load under which it will be

placed in production. To ease this process, deploying to one or two real enterprise

partners will initiate the transition from prototype to production readiness.

In addition to the technical aspects of production readiness, the usability aspects

will also need to be considered. The existing web front-end is adequate for visualizing
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data from a research perspective. However, visualizations and reporting functionality

will need to be tailored to the end users of the systems, who will most likely be

executives of the organizations consuming data the framework generates.

5.2.2 Expansion of Decoy Types

We relegated our prototype’s low-interaction honeypot library to Kippo (SSH), Glastopf

(Web) and Dionaea (numerous protocols), again to serve as proof of concept. As

shown in Appendix A by the extensible schema and simplicity with which new decoy

types are integrated, our framework was designed with extensibility to new sensor

types as one of the primary goals. In the future, the framework’s library will include

an extended set of decoy services for many additional protocols, thus increasing the

attack surface available for use in deceiving attackers and entrapping them. In par-

ticular, we noted a large number of connection attempts against the Microsoft RDP

and Radmin screensharing protocols, which indicates that these protocols are likely

to be ripe vectors for enhanced feature detection.

We also encountered several probing attempts on port 44818/tcp, indicating active

reconnaissance against the industrial automation protocol known as EtherNet/IP

[74], or more specifically, the adaptation of the Common Industrial Protocol (CIP) to

ethernet and TCP/IP. While we are not aware of an existing low-interaction honeypot

that emulates this industrial automation protocol, the protocol specification is made

public [22] so implementing one is technically feasible. The presence of these seemingly

targeted attacks even on our academic network indicates this also would provide a

high-value set of threat intelligence vs. our current vantage point of simply rejecting

the packets and wondering what the attacker may have been trying to target. In our

view, developing an EtherNet/IP honeypot to shed light on this activity is a high

priority on the to-do list.
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5.2.3 Enhanced Calculation of Threat Indices

We calculated our composite threat index for a given host based upon the sum of

individual attack features that (mostly) had threat indices based upon the class of

feature involved. For example, our sensors attributed the same threat index contribu-

tion of 0.1 to an http request for “/” as an http request for “//phpmyadmin/script-

s/setup.php”. The latter should contribute a higher value to the overall threat index,

and in future works, we will adjust the threat index contribution based on the content

as well as the class of feature.

5.2.4 Enhancements to Attack Feature Correlation

In future iterations that have both a higher traffic volume and a significantly larger

corpus of attack features, we anticipate much higher computational complexity in-

volved with fully searching the attack features as we have done in this work. We plan

to make enhancements to our correlation approach and rely on it to make probabilis-

tic decisions that fit in a real-time computational envelope, while buffering the higher

fidelity calculations for completion in the background. We will also work to remove

data dependencies wherever possible to make the computations more parallelizable

and dispatchable to a large-scale HPC environment, such as Georgia Tech’s PACE

cluster [40].
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APPENDIX A

AGGREGATION SCHEMA/SOURCE CODE

This section provides the schema used for attack aggregation, as well as listings of

source code that integrates the API to existing honeypot technologies.

A.1 Schema

Listing A.1: Feature Schema

1 {

2 ” t i t l e ” : ” Feature Schema” ,

3 ” type ” : ” ob j e c t ” ,

4 ” r equ i r ed ” : [

5 ” i d ” , ” t h r e a t i n d e x ” , ” s en so r type ” , ” f e a t u r e t y p e ” ,

6 ] ,

7 ” p r o p e r t i e s ” : {

8 ” i d ” : { ” type ” : ”BinData” } ,

9 ” t h r e a t i n d e x ” : { ” type ” : ” f l o a t ” } ,

10 ” s en so r type ” : {

11 ” type ” : ” s t r i n g ” ,

12 ”oneOf” : [

13 ” dionaea ” , ” g l a s t o p f ” , ” kippo ”

14 ] ,

15 } ,

16 ” f e a t u r e t y p e ” : {

17 ” type ” : ” s t r i n g ” ,

18 ”oneOf” : [

19 // g l a s t o p f f e a t u r e s

20 ” request raw ” , ” r eque s t ” ,

21
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22 // dionaea f e a t u r e s

23 ” accept ” , ” r e j e c t ” , ” connect ” , ” s e r v i c e ” , ” l i s t e n ” ,

24 ” p r o f i l e ” , ” o f f e r ” , ” l o g i n ” , ”downloads” ,

25 ” dce rpc reques t ” , ” dcerpcbind ” , ”mysql command” ,

26 ” m s s q l f i n g e r p r i n t ” , ”mssql command” ,

27 ”sip command : : cmd” , ”sip command : : addr” ,

28 ”sip command : : v ia ”

29

30 // kippo f e a t u r e s

31 ” c l i e n t v e r s i o n ” , ” l o g i n f a i l e d ” , ” l o g i n s u c c e e d e d ” ,

32 ” t e r m i n a l s i z e ” , ” l o s t c o n n e c t i o n ”

33 ] ,

34 } ,

35 ” f e a t u r e d a t a ” : {

36 ” type ” : ” ob j e c t ” ,

37 ”oneOf” : [

38 { ” $ r e f ” : ”#/d e f i n i t i o n s / requestRawFeature ” } ,

39 { ” $ r e f ” : ”#/d e f i n i t i o n s / reques tFeature ” } ,

40 { ” $ r e f ” : ”#/d e f i n i t i o n s / netProtoco lFeature ” } ,

41 { ” $ r e f ” : ”#/d e f i n i t i o n s / ur lFeature ” } ,

42 { ” $ r e f ” : ”#/d e f i n i t i o n s / p r o f i l e F e a t u r e ” } ,

43 { ” $ r e f ” : ”#/d e f i n i t i o n s / l og inFeature ” } ,

44 { ” $ r e f ” : ”#/d e f i n i t i o n s / downloadFeature ” } ,

45 { ” $ r e f ” : ”#/d e f i n i t i o n s / dcerpcreques tFeature ” } ,

46 { ” $ r e f ” : ”#/d e f i n i t i o n s / dcerpcbindFeature ” } ,

47 { ” $ r e f ” : ”#/d e f i n i t i o n s /mysqlCommandFeature” } ,

48 { ” $ r e f ” : ”#/d e f i n i t i o n s / mssq lF ingerpr intFeature ” } ,

49 { ” $ r e f ” : ”#/d e f i n i t i o n s /mssqlCommandFeature” } ,

50 { ” $ r e f ” : ”#/d e f i n i t i o n s /sipCmdFeature” } ,

51 { ” $ r e f ” : ”#/d e f i n i t i o n s / sipAddrFeature ” } ,

52 { ” $ r e f ” : ”#/d e f i n i t i o n s / s ipViaFeature ” } ,

53 { ” $ r e f ” : ”#/d e f i n i t i o n s / c l i e n t V e r s i o n F e a t u r e ” } ,
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54 { ” $ r e f ” : ”#/d e f i n i t i o n s / t e rmina lS i z eFeature ” } ,

55 { ” $ r e f ” : ”#/d e f i n i t i o n s / los tConnect ionFeature ” } ,

56 ] ,

57 } ,

58 } ,

59 ” d e f i n i t i o n s ” : {

60 ” requestRawFeature ” : {

61 ” request raw ” : { ” type ” : ” s t r i n g ” } ,

62 } ,

63 ” reques tFeature ” : {

64 ” pattern ” : { ” type ” : ” s t r i n g ” } ,

65 ” r e q u e s t u r l ” : { ” type ” : ” s t r i n g ” } ,

66 } ,

67 ” netProtoco lFeature ” : {

68 ” port ” : { ” type ” : ” i n t e g e r ” } ,

69 ” t ranspo r t ” : { ” type ” : ” s t r i n g ” } ,

70 ” p ro to co l ” : { ” type ” : ” s t r i n g ” } ,

71 } ,

72 ” ur lFeature ” : {

73 ” u r l ” : { ” type ” : ” s t r i n g ” } ,

74 } ,

75 ” p r o f i l e F e a t u r e ” : {

76 ” p r o f i l e j s o n ” : { ” type ” : ” s t r i n g ” } ,

77 } ,

78 ” log inFeature ” : {

79 ”username” : { ” type ” : ” s t r i n g ” } ,

80 ”password” : { ” type ” : ” s t r i n g ” } ,

81 } ,

82 ” downloadFeature ” : {

83 ”md5” : { ” type ” : ” s t r i n g ” } ,

84 ” u r l ” : { ” type ” : ” s t r i n g ” } ,

85 } ,
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86 ” dcerpcreques tFeature ” : {

87 ”name” : { ” type ” : ” s t r i n g ” } ,

88 ”opname” : { ” type ” : ” s t r i n g ” } ,

89 ”opnum” : { ” type ” : ” i n t e g e r ” } ,

90 ” opvuln ” : { ” type ” : ” s t r i n g ” } ,

91 ” uuid ” : { ” type ” : ” uuid ” } ,

92 } ,

93 ” dcerpcbindFeature ” : {

94 ”name” : { ” type ” : ” s t r i n g ” } ,

95 ” t r a n s f e r s y n t a x ” : { ” type ” : ” uuid ” } ,

96 ” uuid ” : { ” type ” : ” uuid ” } ,

97 } ,

98 ”mysqlCommandFeature” : {

99 ” args ” : [

100 { ”mysql command arg data” : { ” type ” : ” s t r i n g ” } , } ,

101 ] ,

102 ”cmd” : { ” type ” : ” s t r i n g ” } ,

103 ”op name” : { ” type ” : ” s t r i n g ” } ,

104 } ,

105 ” mssq lF ingerpr intFeature ” : {

106 ”appname” : { ” type ” : ” s t r i n g ” } ,

107 ” c l t intname ” : { ” type ” : ” s t r i n g ” } ,

108 ”hostname” : { ” type ” : ” s t r i n g ” } ,

109 } ,

110 ”mssqlCommandFeature” : {

111 ”cmd” : { ” type ” : ” s t r i n g ” } ,

112 ” s t a t u s ” : { ” type ” : ” s t r i n g ” } ,

113 } ,

114 ”sipCmdFeature” : {

115 ” a l low ” : { ” type ” : ” i n t e g e r ” } ,

116 ” c a l l i d ” : { ” type ” : ” s t r i n g ” } ,

117 ”method” : { ” type ” : ” s t r i n g ” } ,
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118 ” use r agent ” : { ” type ” : ” s t r i n g ” } ,

119 } ,

120 ” sipAddrFeature ” : {

121 ” display name ” : { ” type ” : ” s t r i n g ” } ,

122 ” type ” : { ” type ” : ” s t r i n g ” } ,

123 ” u r i h o s t ” : { ” type ” : ” s t r i n g ” } ,

124 ” u r i p o r t ” : { ” type ” : ” i n t e g e r ” } ,

125 ” ur i scheme ” : { ” type ” : ” s t r i n g ” } ,

126 ” u r i u s e r ” : { ” type ” : ” s t r i n g ” } ,

127 } ,

128 ” s ipViaFeature ” : {

129 ” address ” : { ” type ” : ” s t r i n g ” } ,

130 ” port ” : { ” type ” : ” i n t e g e r ” } ,

131 ” p ro to co l ” : { ” type ” : ” s t r i n g ” } ,

132 } ,

133 ” c l i e n t V e r s i o n F e a t u r e ” : {

134 ” ve r s i o n ” : { ” type ” : ” s t r i n g ” } ,

135 } ,

136 ” te rmina lS i z eFeature ” : {

137 ” he ight ” : { ” type ” : ” i n t e g e r ” } ,

138 ”width” : { ” type ” : ” i n t e g e r ” } ,

139 } ,

140 ” connect ionLostFeature ” : {

141 ” t t y l o g ” : { ” type ” : ”BinData” } ,

142 } ,

143 } ,

144 }

A.2 Kippo Integration Source

Integration with Kippo required writing a binding to allow it to use MongoDB as its

backing event storage (Listing A.2). In addition, logic was written (Listing A.3) to
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extract the events into features that conform to the feature schema in Listing A.1.

Listing A.2: MongoDB Integration

1 from kippo . core import dblog

2 from tw i s t ed . e n t e r p r i s e import adbapi

3 from tw i s t ed . i n t e r n e t import d e f e r

4 from tw i s t ed . python import l og

5

6 import bson

7 import pymongo

8

9 import datet ime

10 import uuid

11

12 class DBLogger ( dblog . DBLogger ) :

13 def s t a r t ( s e l f , c f g ) :

14 host = c f g . get ( ’ database mongodb ’ , ’ host ’ )

15 port = c f g . g e t i n t ( ’ database mongodb ’ , ’ port ’ )

16 c l i e n t = pymongo . connect ion . Connection ( host , port )

17 dbname = c fg . get (

18 ’ database mongodb ’ , ’dbname ’ , ’ kippo ’ )

19 s e l f . db = c l i e n t [ dbname ]

20

21 def wr i t e ( s e l f , s e s s i o n i d , event ) :

22 event [ ’ timestamp ’ ] = datet ime . datet ime . utcnow ( )

23 i d = bson . ObjectId ( s e s s i o n i d )

24 s e s s i o n = s e l f . db . s e s s i o n . f i nd on e ({ ’ i d ’ : i d })

25

26 i f s e s s i o n i s None :

27 log ( ’Found no s e s s i o n with i d ={} ’ . format (

28 s e s s i o n i d ) )

29 return

30
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31 s e s s i o n [ ’ events ’ ] . append ( event )

32 s e l f . db . s e s s i o n . save ( s e s s i o n )

33

34 def c r e a t e S e s s i o n (

35 s e l f , peerIP , peerPort , hostIP , hostPort ) :

36 sensorname = s e l f . getSensor ( ) or hostIP

37 s i d = s e l f . db . s e s s i o n . i n s e r t (

38 {

39 ’ sensor name ’ : sensorname ,

40 ’ p e e r i p ’ : peerIP ,

41 ’ p e e r po r t ’ : peerPort ,

42 ’ events ’ : [ ]

43 }

44 )

45 return s t r ( s i d )

46

47 def handleConnect ionLost ( s e l f , s e s s i on , args ) :

48 s e l f . wr i t e ( s e s s i on , {

49 ’ type ’ : ’ l o s t c o n n e c t i o n ’ ,

50 ’ t t y l o g ’ : bson . b inary . Binary (

51 s e l f . t t y l o g ( s e s s i o n ) )

52 })

53

54 def handleLog inFai l ed ( s e l f , s e s s i on , args ) :

55 s e l f . wr i t e ( s e s s i on , {

56 ’ type ’ : ’ l o g i n f a i l e d ’ ,

57 ’ username ’ : a rgs [ ’ username ’ ] ,

58 ’ password ’ : a rgs [ ’ password ’ ]

59 })

60

61 def handleLoginSucceeded ( s e l f , s e s s i on , args ) :

62 s e l f . wr i t e ( s e s s i on , {

63



63 ’ type ’ : ’ l o g i n s u c c e e d e d ’ ,

64 ’ username ’ : a rgs [ ’ username ’ ] ,

65 ’ password ’ : a rgs [ ’ password ’ ]

66 })

67

68 def handleCommand( s e l f , s e s s i on , args ) :

69 s e l f . wr i t e ( s e s s i on , {

70 ’ type ’ : ’command ’ ,

71 ’ input ’ : a rgs [ ’ input ’ ] ,

72 ’ s u c c e s s ’ : True ,

73 })

74

75 def handleUnknownCommand( s e l f , s e s s i on , args ) :

76 s e l f . wr i t e ( s e s s i on , {

77 ’ type ’ : ’command ’ ,

78 ’ input ’ : a rgs [ ’ input ’ ] ,

79 ’ s u c c e s s ’ : False ,

80 })

81

82 def handleInput ( s e l f , s e s s i on , args ) :

83 s e l f . wr i t e ( s e s s i on , {

84 ’ type ’ : ’ input ’ ,

85 ’ input ’ : a rgs [ ’ input ’ ] ,

86 ’ realm ’ : args [ ’ realm ’ ] ,

87 })

88

89 def handleTerminalS ize ( s e l f , s e s s i on , args ) :

90 s e l f . wr i t e ( s e s s i on , {

91 ’ type ’ : ’ t e r m i n a l s i z e ’ ,

92 ’ width ’ : a rgs [ ’ width ’ ] ,

93 ’ he ight ’ : a rgs [ ’ he ight ’ ] ,

94 })
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95

96 def hand leCl i entVers ion ( s e l f , s e s s i on , args ) :

97 s e l f . wr i t e ( s e s s i on , {

98 ’ type ’ : ’ c l i e n t v e r s i o n ’ ,

99 ’ v e r s i on ’ : a rgs [ ’ v e r s i on ’ ] ,

100 })

101

102 def handleFileDownload ( s e l f , s e s s i on , args ) :

103 s e l f . wr i t e ( s e s s i on , {

104 ’ type ’ : ’ f i l e d o w n l o a d ’ ,

105 ’ u r l ’ : a rgs [ ’ u r l ’ ] ,

106 ’ o u t f i l e ’ : a rgs [ ’ o u t f i l e ’ ] ,

107 })

108

109 # vim : s e t sw=4 e t :

Listing A.3: Kippo Feature Extraction

1 import hash l i b

2

3 import bson

4 import bson . j s o n u t i l

5 import pymongo

6

7 conn = pymongo . connect ion . Connection ( ’ 1 0 . 0 . 3 . 6 ’ )

8

9 kippo db = conn [ ’ kippo ’ ]

10 c o r r e l a t i o n d b = conn [ ’ c o r r e l a t i o n ’ ]

11

12 def r e c o r d f e a t u r e ( remote host , ts , f e a t u r e ) :

13 f e a t u r e i d = bson . Binary ( ha sh l i b . sha256 (

14 bson . j s o n u t i l . dumps( f e a t u r e ) ) . d i g e s t ( ) )

15 f e a t u r e [ ’ i d ’ ] = f e a t u r e i d
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16

17 c o r r e l a t i o n d b . f e a t u r e s . update (

18 { ’ i d ’ : f e a t u r e i d } ,

19 f ea ture ,

20 upser t=True ,

21 )

22

23 c o r r e l a t i o n d b . h o s t f e a t u r e s . update (

24 { ’ i d ’ : remote host } ,

25 { ’ $push ’ : { ’ f e a t u r e s ’ : {

26 ’ id ’ : f e a t u r e i d , ’ t s ’ : t s }}

27 } ,

28 upser t=True ,

29 )

30

31 t r a n s f o r m f u n c t i o n s = {

32 ’ c l i e n t v e r s i o n ’ : lambda event : {

33 ’ v e r s i on ’ : event [ ’ v e r s i on ’ ] ,

34 } ,

35 ’ l o g i n f a i l e d ’ : lambda event : {

36 ’ username ’ : event [ ’ username ’ ] ,

37 ’ password ’ : event [ ’ password ’ ] ,

38 } ,

39 }

40

41 def c o n v e r t k i p p o e v e n t t o f e a t u r e ( remote host , event ) :

42 timestamp = event . pop ( ’ timestamp ’ )

43 f e a t u r e t y p e = event . pop ( ’ type ’ )

44 e v e n t f e a t u r e = {

45 ’ s en so r type ’ : ’ kippo ’ ,

46 ’ f e a t u r e t y p e ’ : f e a tu r e type ,

47 ’ f e a t u r e d a t a ’ : event ,
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48 }

49 r e c o r d f e a t u r e ( remote host , timestamp , e v e n t f e a t u r e )

50

51 def f e a t u r e e x t r a c t i o n c o r e ( query=None ) :

52 matches = kippo db . s e s s i o n . f i n d ( query )

53

54 for match in matches :

55 i d = match . pop ( ’ i d ’ )

56 remote host = match . pop ( ’ p e e r i p ’ )

57

58 for event in match [ ’ events ’ ] :

59 c o n v e r t k i p p o e v e n t t o f e a t u r e ( remote host , event )

60

61 i f name == ’ ma in ’ :

62 # Perform batch f e a t u r e e x t r a c t i on i f run from commandline

63 f e a t u r e e x t r a c t i o n c o r e ( )

A.3 Glastopf Integration Source

Glastopf already includes a binding that allows it to store data in MongoDB, so no

additional code was needed to implement this functionality. Extraction of Glastopf

events into features that conform to the schema is shown in Listing A.4.

Listing A.4: Glastopf Feature Extraction

1 import datet ime

2 import hash l i b

3 import j s on

4

5 import bson

6 import pymongo

7

8 conn = pymongo . connect ion . Connection ( ’ 1 0 . 0 . 3 . 6 ’ )

9
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10 g l a s t o p f d b = conn [ ’ g l a s t o p f ’ ]

11 c o r r e l a t i o n d b = conn [ ’ c o r r e l a t i o n ’ ]

12

13 def r e c o r d f e a t u r e ( remote host , ts , f e a t u r e ) :

14 f e a t u r e i d = bson . Binary (

15 hash l i b . sha256 ( j son . dumps( f e a t u r e ) ) . d i g e s t ( ) )

16 f e a t u r e [ ’ i d ’ ] = f e a t u r e i d

17

18 c o r r e l a t i o n d b . f e a t u r e s . update (

19 { ’ i d ’ : f e a t u r e i d } ,

20 f ea ture ,

21 upser t=True ,

22 )

23

24 c o r r e l a t i o n d b . h o s t f e a t u r e s . update (

25 { ’ i d ’ : remote host } ,

26 { ’ $push ’ : { ’ f e a t u r e s ’ : {

27 ’ id ’ : f e a t u r e i d , ’ t s ’ : t s }}

28 } ,

29 upser t=True ,

30 )

31

32 def f e a t u r e e x t r a c t i o n c o r e ( query=None ) :

33 matches = g l a s t o p f d b . events . f i n d ( query )

34

35 for match in matches :

36 i d = match . pop ( ’ i d ’ )

37 timestamp = datet ime . datet ime . s t rpt ime (

38 match . pop ( ’ time ’ ) , ’%Y−%m−%d %H:%M:%S ’ )

39 remote host = match . pop ( ’ source ’ ) [ 0 ]

40

41 r e c o r d f e a t u r e ( remote host , timestamp , {
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42 ’ s en so r type ’ : ’ g l a s t o p f ’ ,

43 ’ f e a t u r e t y p e ’ : ’ r eque s t ’ ,

44 ’ f e a t u r e d a t a ’ : {

45 ’ pattern ’ : match [ ’ pattern ’ ] ,

46 ’ r e q u e s t u r l ’ : match [ ’ r e q u e s t u r l ’ ] ,

47 } ,

48 })

49

50 r e c o r d f e a t u r e ( remote host , timestamp , {

51 ’ s en so r type ’ : ’ g l a s t o p f ’ ,

52 ’ f e a t u r e t y p e ’ : ’ r eques t raw ’ ,

53 ’ f e a t u r e d a t a ’ : {

54 ’ request raw ’ : match [ ’ r equest raw ’ ] ,

55 } ,

56 })

57

58 f e a t u r e e x t r a c t i o n c o r e ( )

A.4 Dionaea Integration Source

As Dionaea uses a complex mix of files and persistence to a sqlite database to store

its events, the migration of this functionality to MongoDB was not performed at this

time. Rather, the extraction of Dionaea features from the sqlite database is done in

batch fashion on a periodic schedule by the code shown in Listing A.5.

Listing A.5: Dionaea Feature Extraction

1 import hash l i b

2 import j s on

3

4 import bson

5 import pymongo

6
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7 conn = pymongo . connect ion . Connection ( ’ 1 0 . 0 . 3 . 6 ’ )

8

9 dionaea db = conn [ ’ dionaea ’ ]

10 c o r r e l a t i o n d b = conn [ ’ c o r r e l a t i o n ’ ]

11

12 def r e c o r d f e a t u r e ( remote host , ts , f e a t u r e ) :

13 f e a t u r e i d = bson . Binary ( ha sh l i b . sha256 (

14 j son . dumps( f e a t u r e ) ) . d i g e s t ( ) )

15 f e a t u r e [ ’ i d ’ ] = f e a t u r e i d

16

17 c o r r e l a t i o n d b . f e a t u r e s . update (

18 { ’ i d ’ : f e a t u r e i d } ,

19 f ea ture ,

20 upser t=True ,

21 )

22

23 c o r r e l a t i o n d b . h o s t f e a t u r e s . update (

24 { ’ i d ’ : remote host } ,

25 { ’ $push ’ : { ’ f e a t u r e s ’ : {

26 ’ id ’ : f e a t u r e i d , ’ t s ’ : t s }}

27 } ,

28 upser t=True ,

29 )

30

31 def t rans fo rm connec t i on ( connect ion ) :

32 f e a t u r e = {

33 ’ s en so r type ’ : ’ d ionaea ’ ,

34 ’ port ’ : connect ion [ ’ l o c a l p o r t ’ ] ,

35 }

36

37 i f ( connect ion [ ’ connect i on type ’ ] == ’ r e j e c t ’ ) :

38 f e a t u r e [ ’ f e a t u r e t y p e ’ ] = ’ r e j e c t ’
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39 f e a t u r e [ ’ t r an spo r t ’ ] = connect ion [

40 ’ c o nne c t i on t r an spo r t ’ ] . s t r i p ( )

41 e l i f ( connect ion [ ’ connect i on type ’ ] == ’ accept ’ ) :

42 f e a t u r e [ ’ f e a t u r e t y p e ’ ] = ’ accept ’

43 f e a t u r e [ ’ p r o to co l ’ ] = connect ion [

44 ’ c o n n e c t i o n p r o t o c o l ’ ]

45 e l i f ( connect ion [ ’ connect i on type ’ ] == ’ l i s t e n ’ ) :

46 f e a t u r e [ ’ f e a t u r e t y p e ’ ] = ’ l i s t e n ’

47 f e a t u r e [ ’ p r o to co l ’ ] = connect ion [

48 ’ c o n n e c t i o n p r o t o c o l ’ ]

49 e l i f ( connect ion [ ’ connect i on type ’ ] == ’ connect ’ ) :

50 f e a t u r e [ ’ f e a t u r e t y p e ’ ] = ’ connect ’

51 f e a t u r e [ ’ p r o to co l ’ ] = connect ion [

52 ’ c o n n e c t i o n p r o t o c o l ’ ]

53

54 return f e a t u r e

55

56 t r a n s f o r m f u n c t i o n s = {

57 ’ l o g i n s ’ : lambda l o g i n : {

58 ’ s en so r type ’ : ’ d ionaea ’ ,

59 ’ f e a t u r e t y p e ’ : ’ l o g i n ’ ,

60 ’ f e a t u r e d a t a ’ : {

61 ’ username ’ : l o g i n [ ’ l og in username ’ ] ,

62 ’ password ’ : l o g i n [ ’ l og in pas sword ’ ] ,

63 } ,

64 } ,

65 ’ m s s q l f i n g e r p r i n t s ’ : lambda m s s q l f i n g e r p r i n t : {

66 ’ s en so r type ’ : ’ d ionaea ’ ,

67 ’ f e a t u r e t y p e ’ : ’ m s s q l f i n g e r p r i n t ’ ,

68 ’ f e a t u r e d a t a ’ : {

69 ’ c l t intname ’ : m s s q l f i n g e r p r i n t [

70 ’ m s s q l f i n g e r p r i n t c l t i n t n a m e ’ ] ,
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71 ’ hostname ’ : m s s q l f i n g e r p r i n t [

72 ’ ms sq l f i nge rp r in t ho s tname ’ ] ,

73 ’ appname ’ : m s s q l f i n g e r p r i n t [

74 ’ mssq l f ingerpr int appname ’ ] ,

75 } ,

76 } ,

77 ’ mssql commands ’ : lambda mssql command : {

78 ’ s en so r type ’ : ’ d ionaea ’ ,

79 ’ f e a t u r e t y p e ’ : ’ mssql command ’ ,

80 ’ f e a t u r e d a t a ’ : {

81 ’cmd ’ : mssql command [ ’ mssql command cmd ’ ] ,

82 ’ s t a t u s ’ : mssql command [ ’ mssql command status ’ ] ,

83 } ,

84 } ,

85 ’ mysql commands ’ : lambda mysql command : {

86 ’ s en so r type ’ : ’ d ionaea ’ ,

87 ’ f e a t u r e t y p e ’ : ’ mysql command ’ ,

88 ’ f e a t u r e d a t a ’ : {

89 ’cmd ’ : mysql command [ ’cmd ’ ] [ ’ mysql command cmd ’ ] ,

90 ’ op name ’ : mysql command [ ’cmd ’ ] [

91 ’ mysql command op name ’ ] ,

92 ’ args ’ : mysql command [ ’ args ’ ] ,

93 } ,

94 } ,

95 ’ dc e rpc r eque s t s ’ : lambda dcerpc reques t : {

96 ’ s en so r type ’ : ’ d ionaea ’ ,

97 ’ f e a t u r e t y p e ’ : ’ dce rpc reques t ’ ,

98 ’ f e a t u r e d a t a ’ : {

99 ’ uuid ’ : dce rpc reques t [ ’ d ce rpc r eque s t uu id ’ ] ,

100 ’opnum ’ : dce rpc reques t [ ’ dcerpcrequest opnum ’ ] ,

101 ’name ’ : dce rpc reques t [ ’ dcerpcserv i ce name ’ ] ,

102 ’ opname ’ : dce rpc reques t [ ’ dcerpcserv iceop name ’ ] ,
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103 ’ opvuln ’ : dce rpc reques t [ ’ d c e r pc s e rv i c e op vu ln ’ ] ,

104 } ,

105 } ,

106 ’ dcerpcbinds ’ : lambda dcerpcbind : {

107 ’ s en so r type ’ : ’ d ionaea ’ ,

108 ’ f e a t u r e t y p e ’ : ’ dcerpcbind ’ ,

109 ’ f e a t u r e d a t a ’ : {

110 ’name ’ : dcerpcbind [ ’ dcerpcserv i ce name ’ ] ,

111 ’ uuid ’ : dcerpcbind [ ’ dcerpcb ind uuid ’ ] ,

112 ’ t r a n s f e r s y n t a x ’ : dcerpcbind [

113 ’ d c e rpc b ind t ra n s f e r s yn tax ’ ] ,

114 } ,

115 } ,

116 ’ downloads ’ : lambda download : {

117 ’ s en so r type ’ : ’ d ionaea ’ ,

118 ’ f e a t u r e t y p e ’ : ’ downloads ’ ,

119 ’ f e a t u r e d a t a ’ : {

120 ’md5 ’ : download [ ’ download ’ ] [ ’ download md5 hash ’ ] ,

121 ’ u r l ’ : download [ ’ download ’ ] [ ’ download ur l ’ ] ,

122 } ,

123 } ,

124 ’ p r o f i l e s ’ : lambda p r o f i l e : {

125 ’ s en so r type ’ : ’ d ionaea ’ ,

126 ’ f e a t u r e t y p e ’ : ’ p r o f i l e ’ ,

127 ’ f e a t u r e d a t a ’ : {

128 ’ p r o f i l e j s o n ’ : j s on . dumps( j son . l oads (

129 p r o f i l e [ ’ e m u p r o f i l e j s o n ’ ] ) ) ,

130 } ,

131 } ,

132 ’ o f f e r s ’ : lambda o f f e r : {

133 ’ s en so r type ’ : ’ d ionaea ’ ,

134 ’ f e a t u r e t y p e ’ : ’ o f f e r ’ ,
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135 ’ f e a t u r e d a t a ’ : {

136 ’ u r l ’ : o f f e r [ ’ o f f e r u r l ’ ] ,

137 } ,

138 } ,

139 ’ s e r v i c e s ’ : lambda s e r v i c e : {

140 ’ s en so r type ’ : ’ d ionaea ’ ,

141 ’ f e a t u r e t y p e ’ : ’ s e r v i c e ’ ,

142 ’ f e a t u r e d a t a ’ : {

143 ’ u r l ’ : s e r v i c e [ ’ e m u s e r v i c e u r l ’ ] ,

144 } ,

145 } ,

146 ’ sip commands : : cmd ’ : lambda cmd : {

147 ’ s en so r type ’ : ’ d ionaea ’ ,

148 ’ f e a t u r e t y p e ’ : ’ sip command : : cmd ’ ,

149 ’ f e a t u r e d a t a ’ : {

150 ’ method ’ : cmd [ ’ sip command method ’ ] ,

151 ’ u s e r agent ’ : cmd [ ’ s ip command user agent ’ ] ,

152 ’ c a l l i d ’ : cmd [ ’ s ip command ca l l id ’ ] ,

153 ’ a l low ’ : cmd [ ’ sip command allow ’ ] ,

154 } ,

155 } ,

156 ’ sip commands : : addrs ’ : lambda addr : {

157 ’ s en so r type ’ : ’ d ionaea ’ ,

158 ’ f e a t u r e t y p e ’ : ’ sip command : : addr ’ ,

159 ’ f e a t u r e d a t a ’ : {

160 ’ type ’ : addr [ ’ s i p addr type ’ ] ,

161 ’ ur i scheme ’ : addr [ ’ s i p addr u r i s cheme ’ ] ,

162 ’ u r i p o r t ’ : addr [ ’ s i p a d d r u r i p o r t ’ ] ,

163 ’ u r i u s e r ’ : addr [ ’ s i p a d d r u r i u s e r ’ ] ,

164 ’ display name ’ : addr [ ’ s ip addr d i sp lay name ’ ] ,

165 ’ u r i h o s t ’ : addr [ ’ s i p a d d r u r i h o s t ’ ] ,

166 } ,
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167 } ,

168 ’ sip commands : : v i a s ’ : lambda v ia : {

169 ’ s en so r type ’ : ’ d ionaea ’ ,

170 ’ f e a t u r e t y p e ’ : ’ sip command : : v ia ’ ,

171 ’ f e a t u r e d a t a ’ : {

172 ’ p ro to co l ’ : v ia [ ’ s i p v i a p r o t o c o l ’ ] ,

173 ’ port ’ : v ia [ ’ s i p v i a p o r t ’ ] ,

174 ’ address ’ : v ia [ ’ s i p v i a a d d r e s s ’ ] ,

175 } ,

176 } ,

177 ’ c h i l d r e n ’ : lambda c h i l d : t rans fo rm connec t i on (

178 c h i l d [ ’ connect ion ’ ] ) ,

179 }

180

181 def record sip commands ( remote host , timestamp , sip commands ) :

182 for command in sip commands :

183 r e c o r d f e a t u r e (

184 remote host ,

185 timestamp ,

186 t r a n s f o r m f u n c t i o n s [ ’ sip commands : : cmd ’ ] (

187 command . pop ( ’cmd ’ ) )

188 )

189

190 for f i e l d , va lue in command . i t e r i t e m s ( ) :

191 for f e a t u r e in value :

192 f e a t u r e t y p e = ’ sip commands : : { } ’ . format (

193 f i e l d )

194 r e c o r d f e a t u r e (

195 remote host ,

196 timestamp ,

197 t r a n s f o r m f u n c t i o n s [ f e a t u r e t y p e ] ( f e a t u r e )

198 )
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199

200 def f e a t u r e e x t r a c t i o n c o r e ( query ) :

201 matches = dionaea db . connect i ons . f i n d ( query )

202

203 for match in matches :

204 i d = match . pop ( ’ i d ’ )

205 timestamp = match . pop ( ’ timestamp ’ )

206 connect ion = match [ ’ connect ion ’ ]

207 remote host = connect ion [ ’ remote host ’ ]

208

209 r e c o r d f e a t u r e (

210 remote host ,

211 timestamp ,

212 t rans fo rm connec t i on ( match . pop ( ’ connect ion ’ ) ) ,

213 )

214

215 record sip commands (

216 remote host , timestamp ,

217 match . pop ( ’ sip commands ’ , [ ] ) )

218

219 for f i e l d , va lue in match . i t e r i t e m s ( ) :

220 for f e a t u r e in value :

221 r e c o r d f e a t u r e (

222 remote host ,

223 timestamp ,

224 t r a n s f o r m f u n c t i o n s [ f i e l d ] ( f e a t u r e )

225 )

226

227 dionaea db . connect i ons . remove ({ ’ i d ’ : i d })

228

229 def e x t r a c t r e j e c t s ( ) :

230 query = {
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231 ’ connect ion . connec t i on type ’ : ’ r e j e c t ’ ,

232 }

233 f e a t u r e e x t r a c t i o n c o r e ( query )

234

235 def e x t r a c t h t t p d a c c e p t ( ) :

236 query = {

237 ’ connect ion . connec t i on type ’ : ’ accept ’ ,

238 ’ connect ion . c o n n e c t i o n p r o t o c o l ’ : ’ httpd ’ ,

239 }

240

241 f e a t u r e e x t r a c t i o n c o r e ( query )

242

243 def ex t ra c t ms sq ld ac c ep t ( ) :

244 query = {

245 ’ connect ion . connec t i on type ’ : ’ accept ’ ,

246 ’ connect ion . c o n n e c t i o n p r o t o c o l ’ : ’ mssqld ’ ,

247 }

248

249 f e a t u r e e x t r a c t i o n c o r e ( query )

250

251 def ex t rac t mysq ld accept ( ) :

252 query = {

253 ’ connect ion . connec t i on type ’ : ’ accept ’ ,

254 ’ connect ion . c o n n e c t i o n p r o t o c o l ’ : ’ mysqld ’ ,

255 }

256

257 f e a t u r e e x t r a c t i o n c o r e ( query )

258

259 def extract smbd accept ( ) :

260 query = {

261 ’ connect ion . connec t i on type ’ : ’ accept ’ ,

262 ’ connect ion . c o n n e c t i o n p r o t o c o l ’ : ’ smbd ’ ,
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263 }

264

265 f e a t u r e e x t r a c t i o n c o r e ( query )

266

267 def e x t r a c t f t p d a c c e p t ( ) :

268 query = {

269 ’ connect ion . connec t i on type ’ : ’ accept ’ ,

270 ’ connect ion . c o n n e c t i o n p r o t o c o l ’ : ’ f tpd ’ ,

271 }

272

273 f e a t u r e e x t r a c t i o n c o r e ( query )

274

275 def extract epmapper accept ( ) :

276 query = {

277 ’ connect ion . connec t i on type ’ : ’ accept ’ ,

278 ’ connect ion . c o n n e c t i o n p r o t o c o l ’ : ’ epmapper ’ ,

279 }

280

281 f e a t u r e e x t r a c t i o n c o r e ( query )

282

283 def e x t r a c t S i p S e s s i o n a c c e p t ( ) :

284 query = {

285 ’ connect ion . connec t i on type ’ : ’ connect ’ ,

286 ’ connect ion . c o n n e c t i o n p r o t o c o l ’ : ’ S i pSe s s i on ’ ,

287 }

288

289 f e a t u r e e x t r a c t i o n c o r e ( query )

290

291

292 e x t r a c t r e j e c t s ( )

293 e x t r a c t h t t p d a c c e p t ( )

294 ex t ra c t ms sq ld ac c ep t ( )
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295 extract smbd accept ( )

296 ext rac t mysq ld accept ( )

297 e x t r a c t f t p d a c c e p t ( )

298 extract epmapper accept ( )

299 e x t r a c t S i p S e s s i o n a c c e p t ( )

79



APPENDIX B

SYSTEM APIS

This appendix provides a high level overview of the enabling methods for the Honey-

Cluster, datasource, and automated firewall components of the framework.

B.1 HoneyCluster

The interface to the HoneyCluster, which manages the lifecycle of honeypot assets,

is provided by the following methods:

• provision

– arguments: service name, ip address, net interface

– returns: host report data

– description: Creates a new honeypot instance according to a template

described by service name. Once created, automatically invokes the nec-

essary firewall methods to expose the honeypot instance as ip address, via

net interface.

• deprovision

– arguments: decoy name

– returns: command success

– description: Destroys the honeypot instance associated with decoy name

and automatically invokes the necessary firewall methods to remove it from

the network.
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B.2 DataSource

The interface to the threat intelligence data is enabled by the following methods:

• get geoip

– arguments: host ip

– returns: geoip data

– description: Retrieves and returns IP Geolocation Data for host ip from

freegeoip.net [32].

• get whois

– arguments: host ip

– returns: geoip data

– description: Retrieves and returns IP WHOIS Data for host ip from whois.arin.net

[4].

• get host report

– arguments: host ip

– returns: host report data

– description: Returns document containing all attack features observed as

originating from host ip.

• get known hosts

– arguments: None

– returns: known hosts list

– description: Returns list containing IP addresses of all hosts that have

interacted with the framework.
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• get decoy list

– arguments: None

– returns: List containing all active decoys within the system.

• get decoy report

– arguments: decoy name

– returns: decoy report.

– description: If decoy named decoy name exists, returns document with

vital information including the service(s) hosted, uptime, and all observed

attack features.

• get threat trends

– arguments: period of interest

– returns: threat report

– description: Returns document with aggregated attack statistics for the

period specified in period of interest.

B.3 Automated Firewall

The interface to control the firewall in automated fashion is enabled by methods that

fall into the following categories:

• System State Listings

– list rules

∗ arguments: None

∗ returns: List containing all exigent iptables rules

– list ip aliases
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∗ arguments: None

∗ returns: List containing all exigent IP aliases on all interfaces

• Direct Rule Manipulation

– insert rule

∗ arguments: rule to insert

∗ returns: command success

∗ description: Inserts rule described by rule to insert if it does not exist.

Does nothing otherwise.

– remove rule

∗ arguments: rule to remove

∗ returns: command success

∗ description: Removes rule matching rule to remove if one exists. Does

nothing otherwise.

• High-Level Rule Manipulation

– expose port

∗ arguments: net interface, external ip address, internal ip address, ex-

ternal port, internal port, transport protocol

∗ returns: command success

∗ description: Exposes service at internal ip address :internal port as ex-

ternal ip address :internal port via net interface.

– setup one to one nat

∗ arguments: net interface, external ip address, internal ip address

∗ returns: command success
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∗ description: Exposes internal host at internal ip address on exter-

nal ip address via net interface.

– blacklist

∗ arguments: ip address

∗ returns: command success

∗ description: Adds rule to place packets bound from remote host at

ip address onto HOSTILE chain.

– deblacklist

∗ arguments: ip address

∗ returns: command success

∗ description: Removes rule (if exists) that places packets bound from

remote host at ip address onto HOSTILE chain.

• IP Alias Manipulation

– establish ip alias

∗ arguments: net interface, ip address, netmask

∗ returns: command success

∗ description: Adds a new ip alias for ip address/netmask on net interface

if one does not exist. Does nothing otherwise.

– remove ip alias

∗ arguments: ip address

∗ returns: command success

∗ description: Removes the ip alias for ip address if it exists. Does

nothing otherwise.
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