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SUMMARY

The insecurity of modern-day software systems has created the need for security

monitoring applications, such as anti-virus tools. These applications conduct passive

monitoring of the system’s state and active monitoring of the system’s events. Two

serious deficiencies are commonly found in such applications. First, their lack of

isolation from the system being monitored allows malicious software to tamper with

or disable them. Second, the lack of secure and reliable monitoring primitives in the

operating system compromises their visibility, making them easy to be evaded.

A technique known as Virtual Machine Introspection attempts to solve these prob-

lems by leveraging the strong isolation and mediation properties of full-system virtual-

ization. It isolates the monitoring application in a separate, security virtual machine,

from where it can securely monitor a guest virtual machine by leveraging the hy-

pervisor’s view of resources. This separation creates, however, a problem known as

semantic gap, which can be defined by the loss of a high-level view of the guest’s state

and events from the part of the monitoring application. It occurs as a result of the

low-level separation enforced by the hypervisor between the guest and the security

virtual machine.

This thesis proposes and investigates novel techniques to overcome the seman-

tic gap, advancing the state-of-the-art on the syntactic and semantic guest view

re-creation for security applications that conduct passive and active monitoring of

virtual machines.

In the space of passive monitoring, we propose a new technique for reconstructing

a syntactic view of the guest OS kernel’s heap state. By applying a combination of

xiii



static code and dynamic memory analysis techniques, we are able to reconstruct a

map of the guest OS’s dynamic kernel objects. Our key contribution over previous

work is the accuracy and completeness of our analysis, which translates into stronger

monitoring capabilities for security applications.

Although sufficient for certain types of integrity checking applications, a syntactic

view of the guest state is not enough for others that require access to information at

a higher level. With this in mind, we propose a technique that combines the security

of out-of-VM monitoring with the semantic awareness of in-VM monitoring. By

allowing out-of-VM applications to invoke and securely execute API functions inside

the monitored guest’s kernel, we eliminate the need for the application to know details

of the guest’s internal data structures. Our key contribution over previous work is

the ability to overcome the semantic gap between the monitoring application and the

guest OS in a robust and secure manner, by relying on the guest’s own code.

A security monitoring solution cannot be complete without an active monitoring

component that intercepts and evaluates guest events as they happen. In this space,

we propose a new virtualization-based event monitoring technique based on the inter-

ception of kernel data modifications as opposed to code execution trapping. Our key

contribution over previous work is the ability to monitor high-level operating system

events without the need for in-guest components and without the same circumven-

tion problems of code execution hooks, and the ability to automatically re-create the

syntactic context of guest kernel memory accesses.

xiv



CHAPTER I

INTRODUCTION

1.1 Insecurity of Modern Systems

Computer systems have become a central ingredient of the technological mix that

supports modern life. In fifty years, they have evolved from no more than a handful

of isolated, room-sized behemoths into a wide variety of interconnected devices that

number in the billions [34]. Unfortunately, in recent years, this rapid expansion

has been matched by the growing number of security problems that threaten the

confidentiality, integrity and availability of digital information.

Malicious computer activity has now long been dissociated from the notion of the

idealistic hacker who breaks into computer systems to satisfy his curiosity. Presently,

the industry of malicious software, or malware, moves an estimated US$100 bil-

lion/year worldwide and has strong ties with criminal organizations [27]. Malware

spreads through the Internet, and its goals include identity theft, industrial theft, espi-

onage, cyber-warfare, bank and credit card fraud, and SPAM, among others, causing

significant losses to governments, businesses and individuals. In 2011, McAfee re-

ported having received over 75 million unique malware samples [61], and the trend

has been increasing for the past several years. It is estimated that 35.5% of the nodes

connected to the Internet are infected with some type of malware [72].

Clearly, a serious security problem exists and its causes are several. First, security

is not always considered an important requirement in the system development pro-

cess. Second, even when it is, limitations with current programming languages and

verification techniques make it difficult to provide hard security guarantees. Third,

security is dependent not only on the system itself but also on the education and
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awareness of the end user.

This reality has created the consensus in industry and academia that designing

and implementing systems that behave 100% securely is an unreachable goal. As a

result, a large part of the current security effort is reactive in nature, starting from

the assumption that software is vulnerable and will be exploited eventually, and thus

needs to be monitored for such.

1.2 Host-based Security Monitoring

Security monitoring applications are commonly found today both at the network

and host level. Host-based security monitors reside inside the monitored system and

perform passive analysis of state and/or active analysis of events that may indicate a

security compromise. Common examples include anti-virus applications, host-based

firewalls and memory/disk integrity checkers. We argue that the effectiveness of such

monitors can be determined as a measure of the following two requirements. They

are based on the original requirements from the reference monitor definition given in

the Trusted Computer System Evaluation Criteria (TCSEC) [28].

1. Visibility: The monitor must have complete and continuous access to the sys-

tem’s state and events, without any risk of circumvention or evasion by a mali-

cious entity;

2. Isolation: The monitor must be protected from the monitored system. Its

confidentiality, integrity and availability cannot be compromised by a malicious

entity that has gained administrative control of the monitored system.

The first requirement ensures that the monitoring application has access to all

sources of information necessary for its decision-making, while the second requirement

ensures that the application itself is protected. We do not include the Correctness

reference monitor requirement in this list due to is being a property of the monitoring

application itself, and not of the monitoring infrastructure that supports it.
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Today’s security monitors fall considerably short of complying with such require-

ments. This stems from the fact that they are designed and implemented as common

user-space processes or kernel drivers that reside inside the operating system that is

being monitored. Therefore, the monitor’s view of the system relies on basic facilities

provided by the OS, such as memory mapping, filesystem access and event redirec-

tion. Consequently, if the OS kernel is compromised, this view can be tampered with,

resulting in an inaccurate/incomplete view. Isolation is also a problem, since mal-

ware that has administrative system privileges or access to the OS kernel can easily

tamper with or disable the monitoring application. Modern operating systems simply

do not provide the visibility and isolation guarantees necessary for the trustworthy

deployment of security monitoring applications.

1.3 The Role of Virtualization

Full-system virtualization has been used mainly for workload consolidation and com-

patibility purposes. It presents, however, interesting possibilities in the area of sys-

tems security, and specifically for host-based security monitoring. This direction

was pioneered by a technique known as Virtual Machine Introspection (VMI), first

proposed by Garfinkel et al. [38]. This approach is also referred to as out-of-VM mon-

itoring or external monitoring. It improves the Isolation and Visibility requirements

of security monitoring when compared to traditional host-based security monitors.

First, VMI leverages the inter-domain separation enforced by the hypervisor to

provide a significantly stronger level of isolation when compared to the process-level

isolation implemented by modern OSes. Specifically, it separates the monitoring

application from the monitored guest OS by placing each in a distinct VM: a trusted

security VM (SVM) and an untrusted guest VM (GVM). This relies on the assumption

that the hypervisor cannot be compromised, and its low-level inter-VM isolation

cannot be overcome.
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Second, VMI taps into the hypervisor’s view of the GVM, allowing the monitor-

ing application to passively (i.e., conduct scans) or actively (i.e., trap specific events)

monitor the GVM. This level of visibility is greater than the one provided by tradi-

tional host-based monitors, since the hypervisor’s low-level view of state and events

covers the entire guest OS and cannot be circumvented from inside the GVM.

1.4 Challenges

Despite its security benefits, several challenges are associated with introspection. The

most significant one concerns the level of visibility of the GVM state provided by the

hypervisor to the monitoring application, a phenomenon known as semantic gap. As

a low-level resource manager, the hypervisor knows nothing of the internal semantics

of the GVM. From a passive monitoring perspective, all it sees are memory pages,

CPU registers, disk blocks, and other low-level state. From an active monitoring

perspective, the events it sees are interrupts, memory exceptions and instruction

traps. This data is at a level too low to be useful to most security applications, which

are commonly interested in monitoring the system at a higher abstraction level.

Previous work has addressed this problem in different ways. The most straight-

forward of them is to manually study, extract and encode the syntax and semantics of

the GVM state into the monitoring application. The encoded information can then

be used to infer higher-level information from the low-level data. This approach is

not desirable for several reasons. First, it is time-consuming, as it needs to be done

manually. It also lacks robustness, given that even small changes made to the syntax

or the semantics of the GVM (i.e., patches) can render the application non-functional

until the manual extraction effort is repeated. Other approaches attempt to bridge

the semantic gap in a more automated fashion but are prone to a variety of com-

pleteness, robustness, and security problems. A detailed discussion of these appears

in Chapter 2.

4



The second major challenge associated with external monitoring is performance.

Performance degradation is expected when compared to traditional, non-virtualized

host-based monitoring, due to the additional CPU and memory resources consumed

by virtualization. Introspection itself also adds to that cost as a result of additional

world switches between the virtual machines and the hypervisor involved for most

passive and active monitoring operations. It is important, however, that the overhead

stays within acceptable limits. This must be considered as a primary requirement

when conceptualizing and implementing solutions.

1.5 Dissertation Overview

Given the challenges discussed above, this thesis proposes and investigates novel tech-

niques to overcome the semantic gap, advancing the state-of-the-art on the syntactic

and semantic guest view re-creation for security applications that conduct passive and

active out-of-VM monitoring of guest operating systems.

In this dissertation, we first provide background information and discuss related

work in Chapter 2. In Chapter 3 we present our first contribution. We propose an

out-of-VM memory analysis technique for automatically reconstructing a syntactic

view of the guest OS kernel’s heap state [16]. This view includes information re-

garding the location of objects in memory, their types and contents. By applying a

combination of static code analysis of the kernel’s source code and dynamic memory

analysis on its memory image, our KOP system is able to reconstruct a map of the

guest OS’s dynamic kernel objects with near-complete coverage and accuracy. We

demonstrate how this map can be used by security applications based on passive

monitoring to detect the presence of malware. Our key contribution over previous

work is the accuracy and completeness of our syntactic analysis, which translates into

stronger monitoring capabilities for certain types of security applications.

In Chapter 4 we present our second contribution. Although a syntactic view is
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enough for certain types of systematic integrity checking applications, others often

require a higher semantic-level view. With this in mind, we present a passive monitor-

ing technique that combines the security of out-of-VM monitoring with the semantic

view of in-VM monitoring [15]. Our infrastructure, SYRINGE, leverages the guest

OS’s own code to overcome the semantic gap and collect meaningful guest state infor-

mation. SYRINGE creates a secure end-to-end guest code execution chain whereby a

guest OS function can be securely invoked from the monitoring application, securely

executed and have its results securely reported back to the application. Our key con-

tribution over previous work is the ability to overcome the semantic gap between the

monitoring application and the guest OS in a secure and robust manner by relying on

the guest’s own code.

In Chapter 5, we present our third contribution. While the two previous contri-

butions focus on passive monitoring, our third contribution is in the context of active

monitoring. Solutions for active monitoring of guest OSes to-date face the challenge

of having to rely on in-guest components that monitor code execution, creating the

possibility of tampering and circumvention. To address this issue, we propose a new

virtualization-based event interception primitive for active monitoring based on the

interception of data modifications. By intercepting events at the data access level

instead of the code execution level, our solution eliminates the need for in-guest com-

ponents and their shortcomings, significantly reducing the risk of circumvention. Our

key contribution over previous work is the ability to monitor high-level operating sys-

tem events without any in-guest components and a reduced risk of circumvention, and

the ability to automatically re-create the syntactic context of guest kernel memory

accesses.

Finally, Chapter 6 concludes this thesis by summarizing the work done, discussing

open problems and future research opportunities in this area and presenting our

closing remarks.
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CHAPTER II

BACKGROUND AND RELATED WORK

2.1 Isolation

Isolation is a critical requirement for systems security, being one of the defining char-

acteristics of a Trusted Computing Base (TCB). It is necessary to prevent elements

of the untrusted portion of the system from corrupting the trusted portion, and thus

undermining all security assumptions. Isolation can be achieved through hardware

or software techniques, or a combination of both.

Early secure system designs already try to leverage the isolation strength of small,

low-level software monitors, such as micro-kernels and virtual machine monitors. In

the 1980s, KVM/370 [39, 86] retrofitted security into the existing VM/370 system by

using a VMM as the TCB for strong isolation. Other works during that time period

proposed new, security-driven OS designs. The security kernel was proposed as a

small, verifiable OS subsystem that implements the reference monitor concept [94].

The separation kernel was proposed as a specialized security kernel that put more

emphasis on isolation [84]. Micro-kernels perform a complete modularization of the

operating system, re-architecting its subsystems as isolated modules running in user-

space and have a very small kernel running in supervisor mode to handle elementary

privileged operations, such as thread scheduling and memory mapping [2, 44, 56]. This

design has the potential to increase reliability and security, but does not perform as

efficiently as a monolithic kernel due to the frequency of address space transitions.

Despite this early work on secure systems design, modern commodity OSes, such

as Windows and Linux, adopt a straightforward, performance-oriented, monolithic

design that does not prioritize isolation between processes and between user and
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Figure 1: Virtual Machine Introspection, where the monitoring application is placed
on a security VM and relies on the hypervisor to monitor a guest VM.

kernel-space. As a result, security monitoring tools and the operating system itself

cannot be adequately protected. This problem is one of the main motivations of this

thesis and a variety of other works, whose goal it to create a foundation for isolation

while still running unaltered, commodity OSes.

The CoPilot system adopts a hardware-based approach by deploying a security

monitor inside a PCI card installed on the monitored system. This monitor scans the

integrity of a Linux system through DMA while minimizing the risk of tampering [76].

This approach is known as coprocessor-based isolation, as has also been used to

protect filesystem integrity checkers [69] and intrusion detection systems [111].

The requirement for special-purpose hardware limits the adoption of coprocessor-

based techniques. As a software-based alternative, the seminal work by Garfinkel et

al. [38] first introduced the concept of virtual machine introspection (VMI), in which

a hypervisor is used to isolate the security application from the monitored system

(Figure 1). This is done by placing the application inside its own, trusted security

VM running a commodity OS, and having it externally monitor the guest VM with
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aid from the hypervisor. The hypervisor’s small size and the low-level nature of

its management improves significantly upon the isolation provided by modern OSes.

This principle is shared with the micro-kernel design, although several differences

exist between the two approaches [40, 43]. Various VMI frameworks, such as Xe-

nAccess [73], VMwatcher [50], and VMware’s VMsafe [104] have since been proposed

for different hypervisors, such as Xen [12] and VMware ESX Server [103]. Similarly,

a large number of security applications relying on introspection-based isolation have

been proposed [74, 50, 78, 15, 97].

In the case where support for multiple guest VMs is not needed, the use of tiny

security-oriented hypervisors have been proposed by several works [17, 87, 87]. Tiny

hypervisors are about one order of magnitude smaller than full-featured hypervisors.

SecVisor addresses the problem of kernel code integrity for Linux systems, by using

hypervisor memory protections [87]. BitVisor focuses instead on I/O security, such

as storage encryption [91].

Several recent works have tried to use virtualization to retrofit isolation into com-

modity operating systems, allowing security agents to stay in-guest and thus improve

performance. Lares adopts a simplistic approach by placing in-guest a stateless ker-

nel agent and write-protecting its code [74]. SIM goes a step further and allows

the protection of stateful kernel-level agents by creating a new address space inside

the guest [90]. Overshadow uses virtualization to protect an in-guest application’s

confidentiality and integrity in the presence of a compromised guest OS, but does

not protect the execution of guest OS code and does not address agent availability

concerns [22]. Finally, substantial research effort has been devoted to the problem of

driver isolation in commodity OSes, as these tend to be the main source of reliability

problems [60, 19, 105, 33, 100, 108]. These works adopt a combination of address

space relocation, static analysis and instrumentation and inline reference monitoring.
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2.2 Passive External Monitoring

The major challenge faced by passive out-of-VM security monitors is overcoming the

semantic gap as extracting useful information from the guest’s raw memory state.

First efforts solved this problem by manually encoding the syntax and semantics of

the guest memory state inside the monitoring application. Systems like CoPilot [76]

and Livewire [38] monitor the static code and data sections of the guest for signs of

attacks. Petroni et al. later extended CoPilot to map and analyze dynamic kernel

data structures for semantic integrity constraints [77].

Other works have attempted to address the semantic gap problem in a more

systematic fashion. VMwatcher [50] and SBCFI [78] discuss automatic ways of re-

constructing the guest’s kernel memory state to perform security checks. SBCFI in

particular shows how the mapping of kernel objects can be used to check for malicious

function pointer values. Gibraltar uses a similar technique to derive and enforce ker-

nel data structure invariants [11]. All these systems, however, can only leverage static

type information and therefore require a substantial amount of guest code annotation,

resulting in unsatisfactory coverage.

Since the source code and/or symbol information may not always be available,

more recent work has approached this problem without assuming access to the source

code. Laika [25] uses Bayesian unsupervised learning to automatically infer the loca-

tion and overall structure of the data objects used by user-level applications. Despite

its flexibility, this approach is prone to false positives. Dolan-Gavitt et al. [31] use

memory fuzzing to derive robust signatures for kernel objects, which can then be

used by a memory analyzer to locate kernel objects in a memory image. Rewards [58]

tracks a program’s calls to known API functions (with known parameter types) and

dynamically propagates this knowledge throughout the program to construct a map

of data structures. Howard [92] builds upon Rewards by also being able to identify

data structures internal to a program. SigGraph [57] attempts to identify kernel data
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structures by brute-force scanning the memory and using graph-based signatures.

Unlike KOP, however, it has limited coverage.

A promising approach to solving the semantic gap relies on securely leveraging

the guest code itself to extract wanted information. This relieves the monitoring

application from having to know details (derived automatically or otherwise) about

the guest memory semantics, instead simply using the guest code as a tool to handle

it. This idea was first proposed by Joshi et al. [52] as an auxiliary mechanism to their

record-and-replay system, and further developed by SADE [23]. SADE stealthily

injects a small driver agent into the guest and uses it to call guest OS functions. Its

injected agent and the guest code itself are, however, unprotected and thus vulnerable

to attack. Virtuoso [30] shares the same insight. It relies on pre-extracted execution

traces of guest monitoring functions to automatically generate introspection programs

that can be executed in the security VM. These traces must be extracted before

any monitoring can be performed, and must be re-extracted whenever the guest OS

is updated. Virtuoso also suffers from the fundamental incompleteness of dynamic

analysis, which can create significant runtime hazards for the generated introspection

programs. VMTS expands on Virtuoso by not relying on execution traces and thus

not being vulnerable to code path coverage problems [35]. Its techniques, however,

are very dependent on the Linux guest operating system, and it is not clear how well

they could be adapted to other OSes, like Windows.

2.3 Active External Monitoring

Active monitoring of applications and operating system events has always played

a prominent role with security monitoring solutions. Recent research has leveraged

virtualization to isolate and protect the monitoring application, while still maintaining

access to a VM’s low-level events through the hypervisor.

This idea has been demonstrated by XenAccess to infer high-level filesystem events

11



from low-level disk block write operations [73]. VMwall uses a similar approach to

monitor network events initiated by the guest and correlate them with in-guest state

as a means to detect unauthorized activity [97]. Antfarm extended this idea beyond

the realm of I/O, by correlating low-level address space switches captured by the

hypervisor to high-level creation, destruction and scheduling of processes [51]. VM-

Scope uses an emulator to intercept and analyze all system call-triggering instructions

executed in a honeypot environment [49]. Patagonix monitors code execution inside

the guest VM by relying on the hypervisor’s memory virtualization [59]. It inter-

cept code execution events and verifies the memory pages containing the code by

comparing them with a whitelist.

Active techniques that operate completely outside the guest have, in most cases,

the disadvantage of having to deal with the semantic gap. The exception is with

low-level events that happen to exactly match high-level ones, as is the case with

Antfarm (process scheduling) and VMScope (system call invocation). This does not,

however, generalize to all types of event. As a result, protected in-guest event hooking

infrastructures have been proposed, which allow an event to be captured at a higher

level, inside the guest. Lares places hooks in the system call table and protects them

by marking the corresponding pages read-only from inside the hypervisor [74]. These

hooks trigger a hypervisor exit that gets forwarded to the monitoring application

running in the security VM. SIM goes a step further by allowing the monitoring

application to stay in-guest and protecting it through the use of additional hypervisor-

enforced guest address spaces [90].

One of the more radical ideas have recently been proposed by Srinivasan et al.,

in which not only the monitoring application is removed from the guest VM, but

also the monitored application [95]. System calls from the monitored application are

forwarded to the guest OS, allowing it to remain isolated from the security VM while

reaping the benefits of having it executing in the same environments as the monitoring
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application, and thus effectively reducing the semantic gap problem. This technique

is not, however, applicable system-wide, but only to a select few applications.

2.4 Secure Code Execution

The simplest way to enforce secure code execution is to enforce its static integrity:

the code must not be modified in runtime. Numerous works have attempted to reach

this goal through a variety of techniques, one of which is virtualization. SecVisor

uses virtualization to write-protect kernel code pages in the guest’s memory and only

allows the loading of modules that have been pre-included in a whitelist [87]. NICKLE

enforces the same property using a different technique that relies on maintaining

multiple versions of code pages [81].

Trusted computing and its attestation capabilities provide another way of achiev-

ing this goal. Sailer et al. demonstrate a TPM-based technique for attesting the

integrity of Linux kernel modules [85]. Terra does the same thing to a VMM. There

have been works that do not rely on special hardware support, while still perform-

ing a type of attestation. Arbaugh et al. pioneered the ideas of secure and trusted

boot by proposing a new verifiable boot architecture [8]. Pioneer allows a verifier to

attest that the execution of a certain piece of code on an untrusted environment has

occurred without any form of tampering [88]. More recent work in this area, such

as Flicker, leverages dynamic TPM secure launch capabilities to provide secure code

execution capabilities while relying on a minimal TCB [63].

Static code integrity, however, is not enough in most cases. A lot can go wrong

with an application or a kernel driver after it is loaded, even if its code is kept intact.

The software’s control flow, for instance, can be maliciously diverted, as with stack

overflow vulnerabilities, or even its non-control data tampered with [21]. As a result,

several alternatives that either complement or replace static code integrity have been

proposed.
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Kiriansky et al. proposed the program shepherding technique to protect systems

against application vulnerabilities [55]. It uses an emulator-based trap-and-emulate

approach to dynamically monitor the execution of control transfer instructions in a

program to ensure that it does not deviate from a certain execution policy. The same

effect can be achieved through a technique known as Inline Reference Monitoring

(IRM), which relies on static or dynamic code instrumentation to monitor the execu-

tion of certain types of instructions [32]. This technique has been applied in numerous

works in the area of secure code execution. Abadi et al. uses IRM to enforce a code

execution property known as control-flow integrity [1], which relies on monitoring and

analyzing the target of indirect control-flow instructions, as well as ensuring that the

code itself is not modified. IRM can therefore also be used for intra-address space

isolation.

2.5 Virtualization

The idea behind operating systems virtualization is not new, dating to the 1960s.

It was first implemented in the VM/370 system to enable time-sharing in IBM Sys-

tem/370 mainframes. It the last fifteen years, however, OS virtualization has experi-

enced a great surge of popularity in the enterprise environment due to its abstraction,

compatibility, flexibility and isolation capabilities. These have enabled companies to

save money by consolidating workloads and thus maximizing resource usage. They

have also enabled a variety of other applications related to testing, security, and the

new service-oriented computing paradigm known as cloud computing.

The basic requirements and mechanics of virtualization were first proposed and

formalized by Popek and Goldberg in their seminal article [79]. They proposed ef-

ficiency, resource control and equivalence as the fundamental properties of a virtual

machine monitor (VMM). The first refers to the native execution of innocuous in-

structions; the second refers to a VMM’s full control and mediation of basic system
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resources; and the third refers to the compatibility property of full virtualization.

Popek and Goldberg also discuss what it means for a computer architecture to be

virtualizable, stating that this holds if the set of CPU instructions that modify ba-

sic system resources (called sensitive instructions) is a subset of those instruction

that generate a trap if executed in non-privileged mode (called privileged instruc-

tions). This makes sense intuitively, as without this ability a VMM would not be

able to maintain the illusion of virtualization for the virtual machines it supports and

would enable a VM to tamper with other VMs and with the VMM itself. Architec-

tures designed to specifically support virtualization, such as the IBM System/370,

are virtualizable. This is not, however, the case with other more recent and popular

architectures, such as the Intel x86. The challenges raised by the task of doing full

virtualization on top of traditionally non-virtualizable architectures have spawned a

variety of techniques whose understanding will be crucial in the following chapters.

2.5.1 CPU Virtualization

Virtualizing an ISA that does not follow the requirements discussed above is a chal-

lenging endeavor. VMware was the first to demonstrate transparent full-system vir-

tualization of the x86 architecture through a technique known as binary transla-

tion [4, 3]. This technique circumvents the problem of x86 not trapping on all of

its sensitive CPU instruction by translating them in memory, on-the-fly, into small

segments of code that virtualize its behavior. This allows non-sensitive instructions

to execute natively on the CPU, whereas the sensitive ones are replaced with its

translated equivalents by the VMM. This approach results in excellent performance

guest performance.

A different technique, called para-virtualization, relies instead on modifying the

guest operating system to include explicit hypervisor calls, or hypercalls, to the VMM

at those points where sensitive operations must be performed. This approach was
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implemented by the first versions of Xen [12], but never gained wide adoptions due

to its requirement that the guest OS be modified.

In 2006, Intel and AMD decided to tackle the original problem that made solutions

like binary translation and para-virtualization a necessity. They extended the x86 ar-

chitecture to enable hardware-supported virtualization by including new instructions

and a set of new trapping controls [71]. These controls allow the VMM to trap on all

sensitive CPU instructions, in addition to other optional ones. Hardware virtualiza-

tion eliminates a lot of the VMM software complexity required by binary translation

and provides similar performance [3]. As a result, it has been adopted by all major

players in the industry and is the virtualization technique on which our work is based.

2.5.2 Memory Virtualization

Memory is one of the main resources that a VMM needs to virtualize in order to

provide guests with a transparent and protected view of it. This involves introducing

a new layer of addressing in the memory translation chain to control the guest’s view

of physical memory, guest physical addresses (GPA), in addition to the hardware-

supported virtual and machine physical addresses (MPA). By controlling the mapping

between GPAs and MPAs for each guest, a VMM is able to isolate and manage the

memory resources of each guest, while at the same time providing the illusion that

each guest has the entire physical address space to itself.

In practice, adding this new addressing layer requires a new level of address trans-

lating structures, or page tables, to be created inside the hypervisor. There are

several different techniques for determining how these page tables operate and are

maintained. The first and most straightforward technique, known as shadow paging,

creates a collection of shadow page tables (SPTs) inside the hypervisor that mirror

their equivalents inside the guest (GPTs) [48]. While GPTs map GVAs to GPAs,

their corresponding SPTs map the same GVAs to MPAs. Thus, GPTs are not used
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in the actual translation process, the SPTs serving this role. This level of indirection

gives the hypervisor total control over guest memory mappings, without breaking the

virtualization illusion. Shadow paging works by trapping all address space switches

and all modifications made to GPTs by the guest, so that they can be propagated to

their corresponding SPT. The number of hypervisor exits generated by classic shadow

paging makes it quite performance-intensive, which has prompted the creation of more

optimized versions of it, such as the virtual TLB.

More recently, CPU vendors have added explicit hardware support for memory

virtualization through a technique known as nested paging [48, 13]. Through this

technique, the hypervisor no longer has to monitor the GPTs to keep them synchro-

nized with SPTs. Nested paging introduces a new type of addressing structure, the

nested page table, that translates GPAs into MPAs. Thus, the hypervisor needs no

knowledge of guest virtual addresses and the complete address translation chain, from

GVA to MPA, is performed by the hardware by walking both the guest page tables

and the nested page tables.

This method has the advantage of not requiring any hypervisor exits to maintain

the shadow pages, and therefore greatly improves the performance of virtualized sys-

tems. It does complicate, however, the design and implementation of virtualization-

based memory protection techniques that operate at the guest virtual level. Since the

hypervisor no longer has control over a guest’s virtual address space, it becomes very

easy to evade such techniques by simply remapping entries in the guest page tables.

Part of the work presented in Chapter 5 presents a solution to this problem.
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CHAPTER III

MAPPING KERNEL OBJECTS FOR SYSTEMATIC

INTEGRITY CHECKING

3.1 Motivation

Kernel-mode malware represents a significant threat because of its ability to compro-

mise the security of the kernel and, hence, the entire software stack. Such malware

tampers with kernel code and data to hide itself and collect useful information. At-

tempts have been made to solve this problem by proposing a variety of passive kernel

integrity checking applications [38, 76, 77, 78, 11]. The basic idea is to locate, map

and analyze the contents of the kernel code and data sections against a security policy

to determine whether the kernel has been compromised or not.

Virtual machine introspection allows the integrity checker to be isolated from the

monitored system, but presents the semantic gap challenges associated with out-of-

VM monitoring. For certain types of systematic integrity checks, such as the ones

based on scanning of code sections and analysis of object fields (e.g. function point-

ers), it is desirable to re-create a mid-level syntactic view consisting of the locations

and types of kernel code and data objects.

It is relatively easy for an out-of-VM security monitor to re-create a syntactic view

of the kernel code and the static portion of the kernel data due their static memory

locations. It is, however, much harder to do that for dynamic data objects due to

their unpredictable memory locations and volatile nature. Not surprisingly, dynamic

data has become one of the most attractive targets for kernel-mode malware [46, 83]

and is therefore the focus of our work.

The usual manner of locating a dynamic object is to find a reference to it, such as
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a pointer. This pointer could, however, be located in another dynamic object, turning

this into a recursive problem. Mapping all the dynamic objects involves performing

a complete traversal of memory, starting from a set of statically-defined objects and

following each pointer reference to the next object, until all have been covered. This

process is complicated by challenges related to traversing generic pointers, whose

target may vary at run-time, unions and dynamic arrays.

Previous out-of-VM kernel integrity checking solutions either limit themselves to

kernel code and static data (e.g., system call tables) [38, 76], or can reach only a

fraction of the dynamic kernel data [77, 78, 11], resulting in limited coverage and

security. It is straightforward for an attacker, for instance, to implement new kernel-

mode malware that tampers only with function pointers in objects that cannot be

reached by these systems.

In this chapter, we describe a technique that achieves close to 100% coverage and

accuracy in the syntactic view re-creation of the OS kernel’s heap state. We demon-

strate this technique through a passive kernel monitoring infrastructure, the Kernel

Object Pinpointer (KOP). Unlike previous systems, KOP addresses the challenges in

pointer-based memory traversal, such as generic pointers, unions and dynamic arrays.

KOP first performs static analysis on the source code to construct an extended type

graph. This extended type graph has not only type definitions and global variables

but also all candidate target types for generic pointers. Given a memory snapshot,

KOP then performs a memory analysis based on the extended type graph. KOP

traverses the kernel memory, resolving type ambiguities caused by unions or generic

pointers with information derived from the static analysis. The output is an object

graph that contains all the identified kernel objects and their pointers to other objects.

Kernel systematic integrity checking applications can rely on the syntactic view

provided by KOP’s object graph to perform their tasks. To concretely demonstrate

KOP’s power, we present such an application that can be used to identify function
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pointers manipulated by kernel-mode malware in dynamic kernel objects.

3.2 Previous Approaches

Kernel integrity has been the target of intense security research, given the increasing

threat posed by kernel rootkits and other malware. Systems like CoPilot [76] and

Livewire [38] passively check the static portion of the kernel memory for integrity

violations. More elaborate types of checks were also shown by Petroni et al. [77]

to verify the semantic consistency of dynamic kernel structures based on manually

created rules.

State-based Control Flow Integrity [78] is similar to KOP as it also traverses the

dynamic kernel object graph. By using a simple type graph and manual annota-

tions, it verifies the value of function pointers at each object it finds against some

policy (e.g., pointing to a known module). Gibraltar [11] and PoKeR [82] also rely on

static type information and manual annotations to traverse the kernel object graph.

These systems suffer from three major limitations. First, they cannot follow generic

pointers (e.g., void*) because they only leverage type definitions and thus do not

know the target types of generic pointers. Second, they cannot follow pointers de-

fined inside unions since they cannot tell which union subtype should be considered.

Third, they cannot recognize dynamic arrays and thus the objects inside them. Our

study shows that these systems may miss up to 72% of the dynamic kernel data.

Furthermore, these systems require all linked list constructs to be annotated so that

the corresponding objects can be correctly identified by the traversal.

Another line of research has approached the problem of locating data structures

without assuming access to the source code. Laika [25] uses Bayesian unsupervised

learning to automatically infer the location and overall structure of the data objects

used by user-level applications. Despite its flexibility, this approach is prone to false

positives. Dolan-Gavitt et al. [31] use memory fuzzing to derive robust signatures

20



Source Code

Memory 
Snapshot

Memory 
Analyzer

Static 
Analyzer

Extended Type 
Graph

Object Graph

Monitoring 
Application

Figure 2: The KOP system architecture

for kernel objects, which can then be used by a memory analyzer to locate kernel

objects in a memory image. Rewards [58] tracks a program’s calls to know API

functions (with known parameter types) and dynamically propagates this knowledge

throughout the program to construct a map of data structures. Howard [92] builds

upon Rewards by also being able to identify data structures internal to a program.

SigGraph [57] attempts to identify kernel data structures by brute-force scanning the

memory and using graph-based signatures. Unlike KOP, however, these systems have

limited coverage.

Recent work has shifted the problem of monitoring the operating system kernel

to that of monitoring the actual hypervisor, which in these works is not considered

part of the trusted computing base. HyperSentry [10] and HyperCheck [106] leverage

the System Management Mode (SMM) to isolate their integrity checkers.

3.3 The KOP Kernel Object Mapping Infrastructure

3.3.1 Overview

The goal of KOP is to completely and accurately map all kernel objects in a memory

snapshot in order to enable systematic kernel integrity checking. In KOP, we refer to

a live instance of a data type (or, a data structure) as an object. KOP has two main

components: the static analysis component and the memory analysis component. Its
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high-level architecture is shown in Figure 2.

KOP first performs static analysis on the kernel source code. It starts with an

inter-procedural, inclusion-based points-to analysis [7] to derive a points-to graph.

This is a directed graph whose nodes are pointers in the program and edges represent

inclusion relationships. In other words, an edge from pointer x to pointer y means that

any object pointers that can be derived from y are also derivable from x. Additionally,

the points-to graph is maintained as a pre-transitive graph, i.e., the graph is not

transitively closed [42].

Based on the pre-transitive points-to graph, KOP then infers candidate target

types for generic pointers. Generic pointers are those whose target types cannot be

extracted from their definitions. The term includes void* pointers as well as pointers

defined inside linked list-related structures that are nested inside objects. The final

output of KOP’s static analysis component is an extended type graph. This is a

directed graph where each node is either a data type or a global variable, and each

edge connects two nodes with a label of (m,n). This means that the pointer field at

offset m in the source node points to the target node at offset n. Note that we call

this an extended type graph because it has edges corresponding to generic pointer

fields which do not exist in the type graph derived from only type definitions.

Given a memory snapshot, KOP performs memory analysis by using the extended

type graph to traverse the kernel memory. The output of the memory analysis compo-

nent is an object graph whose nodes are instances of objects in the memory snapshot

and edges are the pointers connecting these objects. Kernel data integrity checks can

then be performed based on this object graph.

To help explain KOP’s static and dynamic analysis, we will use the source code

in Figure 3 as a running example. The code snippet shows the data structures and

functions for inserting a TXT DATA object or a BIN DATA object into a singly-linked

list (WrapDataListHead). The list stores a group of WRAP DATA objects.
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1: SLIST_ENTRY WrapDataListHead;

2: typedef struct _WRAP_DATA {

3: SLIST_ENTRY List;

4: int32 Type;

5: void* PData;

6: } WRAP_DATA;

7: typedef struct _BIN_DATA {

8: int32 BinLength;

9: char* BinData;

10: } BIN_DATA;

11: typedef struct _TXT_DATA {

12: char* TxtData;

13: } TXT_DATA;

14: void InsertSList

15: (SLIST_ENTRY *Head,

SLIST_ENTRY *Entry)

16: {

17: Entry->Flink = Head->Flink;

18: Head->Flink = Entry;

19: }

20: void InsertWrapList (int32 type,

void *data)

21: {

22: WRAP_DATA *WrapData =

AllocateWrapData();

23: WrapData->Type = type;

24: WrapData->PData = data;

25: InsertSList(&WrapDataListHead,

&WrapData->List);

26: }

27: void InsertTxtData(

TXT_DATA *txt_data)

28: {

29: InsertWrapList(0, txt_data);

30: }

31: void InsertBinData(

BIN_DATA *bin_data)

32: {

33: InsertWrapList(1, bin_data);

34: }

Figure 3: The source code for the running example.

3.3.2 Assumptions

In designing KOP, we make two assumptions. First, we assume the kernel memory

snapshot is given. There are several ways to obtain a memory snapshot of a running

kernel such as taking a full kernel memory dump [67], using a PCI card (Copilot [76]),

or taking a snapshot of a virtual machine. This may require parsing a page file. Sec-

ond, like previous systems [78, 11], we assume the source code of the operating system

kernel and kernel-mode drivers loaded in the kernel memory snapshot is available.

3.3.3 Static Kernel Source Code Analysis

KOP’s static analysis component takes the kernel’s source code as input, and outputs

its extended type graph. This graph contains three sets of information: (1) object

type definitions, (2) declared types and relative addresses of global variables, and (3)

candidate target types for generic pointers. Since it is straightforward to retrieve the
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_InsertWrapList: #21

_type, _data = ENTERFUNCTION #21

t282, {*CallTag} = CALL* &_AllocateWrapData #22

_WrapData = ASSIGN t282 #22

t283 = ADD _WrapData, 4 #23

[t283]* = ASSIGN _type #23

t284 = ADD _WrapData, 8 #24

[t284]* = ASSIGN _data #24

t285 = ADD _WrapData, 0 #25

t286 = CONVERT t285 #25

CALL* &_InsertSList, &_WrapDataListHead, t286 #25

EXITFUNCTION #26

Figure 4: InsertWrapList in medium-level intermediate representation (MIR).

first two sets of information from a compiler, we will focus on how the candidate

target types for generic pointers are determined. We first describe how we perform

an inter-procedural points-to analysis [7] to construct a points-to graph. We then

describe how we derive target types for generic pointers based on the points-to graph

and type definitions of local and global variables. Our static analysis is based on

the medium-level intermediate representation (MIR) used by the Phoenix compiler

framework [68]. This allows us to extend KOP to different target architectures. In

Figure 4, we show the MIR for the function InsertWrapList of our running example.

3.3.3.1 Points-To Analysis

Our inter-procedural flow-insensitive (i.e., ignoring the control flow within a proce-

dure) points-to analysis is due to Andersen [7]. It computes the set of logical objects

that each pointer may point to (referred to as the points-to set for that pointer).

The logical objects include local and global variables as well as dynamically allocated

objects. Since our goal is to find candidate target types for generic pointers, our

points-to analysis must be field-sensitive (i.e., distinguishing the fields inside an ob-

ject). Furthermore, to achieve a good precision, we chose to perform context-sensitive
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Table 1: Deduction rules used by the original algorithm[7] and KOP.

Rule Original KOP
Assign x = y =⇒ 〈x, y〉 (x = y + n, op) =⇒ 〈x, y, n, op〉

Trans 〈x, y〉, 〈y, z〉 =⇒ 〈x, z〉 〈x, y, n1, ops1〉, 〈y, z, n2, ops2〉 =⇒ 〈x, z, n1 + n2, ops2 + ops1〉
where ops1 + ops2 is a valid call path.

Star-1 〈x,&z〉, ∗x = y =⇒ 〈z, y〉 〈x,&z, n, ops〉, (∗x = y, op) =⇒ 〈z.n, y, 0, op + rev(ops)〉
where op + rev(ops) is a valid call path.

Star-2 〈y,&z〉, x = ∗y =⇒ 〈x, z〉 〈y,&z, n, ops〉, (x = ∗y, op) =⇒ 〈x, z.n, 0, ops + op〉
where ops + op is a valid call path.

analysis (i.e., distinguishing the calling contexts). The reason is that generic func-

tions such as InsertSList from our running example are widely used in OS kernels,

and without context-sensitivity, the analysis of such functions would result in very

general points-to sets for their arguments. Basically, all list heads and entries that

are ever passed to such a generic function would point to each other. Finally, our

points-to analysis must scale to a large codebase such as an OS kernel.

Points-to analysis for C programs has been widely studied in the programming

languages field [42, 109, 9, 41, 99, 26, 75]. Unfortunately, none of the previous algo-

rithms can meet our requirements without modifications. This is mainly because all

the previous solutions chose to sacrifice precision for performance since the points-to

analysis used inside compilers is expected to finish within minutes. When designing

KOP, we decided to revise the algorithm proposed by Heintze and Tardieu in [42] to

achieve field-sensitivity and context-sensitivity. Note that the original algorithm is

context-insensitive and field-based. In field-based analysis, all instances of a field are

treated as one variable, whereas in field-sensitive analysis, each instance is treated

separately. Consequently, field-sensitive analysis is more precise.

Next we describe in detail how we achieve field-sensitivity and context-sensitivity

in our points-to analysis. We will focus on the changes introduced to the original
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Heintze and Tardieu’s algorithm. Readers are referred to their chapter [42] for details

of their original algorithm.

By using temporary variables, Heintze and Tardieu transform pointer assignments

into four canonical forms: x = y, x = &y, ∗x = y, and x = ∗y. To handle pointer

offsets, We generalize the first two assignment forms to x = y + n and x = &y +

n where n is the pointer offset. To enforce context-sensitivity, we associate each

assignment with a variable op that specifies the call or return operation involved

in the assignment. Note that op is null when the assignment occurs inside a single

function.

In [42], given the four canonical assignment forms, an edge in the points-to graph

is a pair 〈src, dst〉, and four deduction rules are used to compute the points-to graph

(shown in the left portion of Table 1). To consider pointer offsets and calling context

changes, we enhance the semantics of edges to be a four-tuple 〈src, dst, n, ops〉. For

example, given the pointer assignment Entry = t286 due to the function call at line

26 of Figure 4, the corresponding edge will be 〈 Entry, t286, 0, call@file : 25〉.

Given the enhanced semantics of edges, we change the deduction rules accordingly

(shown in the right portion of Table 1). The changes related to field-sensitivity are

straightforward. In the Assign rule, the pointer offset is simply put in the edge’s

four-tuple. In the Trans rule, the pointer offsets are added up. In the Star rules,

we create a new node z.n to represent an instance of the pointer field at offset n

in logical object z to achieve field-sensitivity. In our deduction rules, whenever we

create a new edge, we also check if the sequence of call/return operations involved is

valid under context-sensitivity. A sequence is valid if it can be instantiated from a

valid call path (i.e., a control flow). We assume there are no recursive functions (we

have not observed any in the Windows source code we analyzed). So a valid call path

has at most a single call at each call site. Additionally, we do not need to apply any

special rules to global variables since we create a single node for each global variable
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disregarding the function contexts. This allows information to flow through global

variables between different functions.

To avoid the cost of computing the full transitive closure, Heintze and Tardieu

propose a new algorithm to maintain a pre-transitive graph and compute the points-

to set on-demand. We cannot use their algorithm directly because the edge semantics

are different. Compared with the original algorithm, the key differences are two-fold.

First, we enforce context-sensitivity by checking if a sequence of call/return operations

is valid. Second, whenever a cycle is found, the algorithm in [42] merges all the nodes

in the cycle, but instead we opted to terminate the path traversal in this case. This

is because our edges have more semantics than just pointer inclusions, which ends

up affecting the performance of our algorithm. However, since our static analysis

runs in an offline manner and only needs to be run once for each OS kernel, we can

tolerate the performance degradation. The cycle detection in our pre-transitive graph

algorithm and the no-recursive-call policy in enforcing context-sensitivity ensure that

our points-to analysis terminates eventually.

Given that it is difficult to define a language that can accurately reflect the use

of the C language in real-world programs, a common practice in the programming

language field is to empirically evaluate the correctness of a points-to algorithm and

its implementation. In KOP, we take the same approach and rely on our evaluation

to empirically demonstrate the correctness of our points-to analysis.

3.3.3.2 Inferring Types for Generic Pointers

The output of our points-to analysis is a pre-transitive points-to graph from which we

can derive the candidate target types for generic pointers. The key idea is to leverage

the type definitions of local and global variables. Before describing our algorithm in

detail, we will first use an example to explain the intuition behind it.

The basic idea of our algorithm is illustrated in Figure 5. In the points-to graph
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List

Type

PData

WRAP_DATA

_WrapData

t284
_data

_bin_data

_txt_data

BinLength

TxtData

BinData

BIN_DATA

TXT_DATA

8 0

0

Figure 5: An example for inferring candidate target types of generic pointers. In
this example, we derive the types for WRAP DATA.PData from the assignment *t284

= data (see the MIR code in Figure 4). This graph is a mix of the points-to graph
and the extended type graph. It illustrates how we derive edges in the extended
type graph based on the points-to graph. Ellipse nodes and solid arrows are part of
the points-to graph. Rectangular nodes and bold-solid arrows are part of the final
extended type graph. The dashed arrows are derived from the type definitions of
variables.

of our running example, we have edges from t284 to WrapData (with pointer offset

8) and from data to bin data and txt data (with pointer offset 0). In addi-

tion, based on the type definitions, we know that WrapData points to WRAP DATA,

bin data points to BIN DATA and txt data points to TXT DATA. Then, given the as-

signment *t284 = data, we can infer that WRAP DATA+8, which is WRAP DATA.PData,

may point to either BIN DATA or TXT DATA. The key difference here from classic points-

to analysis is that, although a pointer like WrapData may not point to any logical

object, we leverage its type definition to derive the target types for WRAP DATA.PData.

Moreover, with the pointer offsets in the points-to graph, we naturally identify that

WRAP DATA.List does not just point to an SLIST ENTRY object but actually a WRAP DATA

object. With this, KOP avoids the need for manual annotations in the code for types

such as SLIST ENTRY. The extended type graph for our running example is shown in

Figure 6. Note that WrapDataListHead is a global variable and other nodes are data

types.

More specifically, for each assignment in the form ∗x = y, we first search for all the

reachable nodes in the pre-transitive graph for x and y, separately. We refer to them
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Figure 6: The extended type graph for the running example.

as TargetSet(x) and TargetSet(y). Then for each node a in TargetSet(x) and each

node b in TargetSet(y), we check if there is a valid call path from a to b. If there is one,

we derive a candidate target type for a pointer field in the data type of a. Similarly,

we derive candidate types from assignments of the form x = ∗y. The intuition is that,

when y is a generic pointer such as void*, it will be cast back to its actual type before

the program accesses the data pointed to by it. Specifically, for each assignment, we

first search for the nodes that can reach x, referred to as SourceSet(x). Then for

each node a in SourceSet(x) and each node b in TargetSet(y), we check if there is a

valid call path from a to b. If so, we derive a candidate type for a pointer field in the

data type of a.

An inherent problem of flow-insensitive points-to analysis is the imprecision. To

mitigate this problem, we introduce a constraint when deriving candidate types for

generic pointers in linked list constructs. For example, a pointer field in SLIST ENTRY

must point to an SLIST ENTRY structure. This kind of constraint reduces the number

of incorrect candidate target types and thus reduces the possibility of errors in the

memory analysis. Such constraints do not decreases KOP’s coverage because all valid

candidate target types are expected to meet this constraint.

3.3.4 Dynamic Memory Snapshot Analysis

KOP’s memory analysis component maps kernel data objects and derives the object

graph in a given memory snapshot. It does so by using the extended type graph
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derived earlier to traverse the kernel memory. We use our running example to explain

the basic idea behind our memory traversal algorithm and the challenges we faced.

Starting at global variable WrapDataListHead, KOP first reaches an object of type

WRAP DATA referenced by it. KOP then follows each pointer field defined inside this

object. By following the field WRAP DATA.List (a linked list structure), KOP reaches

another object of type WRAP DATA, and continues by following each pointer field inside

it.

A challenge arises when trying to follow the pointer field WRAP DATA.PData. This

field is a generic pointer which, according to the extended type graph, can either point

to a BIN DATA object or a TXT DATA object. KOP must determine the type of the ob-

ject referenced by WRAP DATA.PData in memory. Additionally, the BIN DATA.BinData

and TXT DATA.TxtData could be pointers to dynamic arrays. Finally, KOP needs to

tolerate identification errors to a certain degree.

In summary, to correctly identify kernel objects, KOP faces three challenges: re-

solving type ambiguities, recognizing dynamic arrays, and controlling identification

errors. In the rest of this section, we describe in detail how we address these chal-

lenges. We draw examples from Windows operating systems but our techniques are

applicable to other operating systems (e.g., Linux) since they rely on common imple-

mentation paradigms used in modern operating systems.

3.3.4.1 Resolving Type Ambiguities

Type ambiguities come from two sources: unions and generic pointers that have

multiple candidate target types. We will refer to the range of possible choices in both

cases as candidate types or candidates. KOP is the first system that can resolve type

ambiguities in memory traversal.

KOP considers two constraints when determining the correct candidate type. The

first is a size constraint. Specifically, operating system kernels (e.g., Windows) store
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dynamic kernel data in a set of memory allocation units called pool blocks. Each pool

block is created by a call to a memory allocation function (e.g., ExAllocatePool in

Windows). Each kernel object must lie completely within a single pool block. We

consider this as a hard constraint. When resolving type ambiguities, KOP rejects any

candidate that violates the size constraint.

The second constraint is based on the observation that the data stored by certain

data types must have specific properties. Currently, we only apply this constraint to

pointer fields. With certain exceptions, pointer fields in kernel objects are either null

or assume values in the kernel virtual address range (e.g., [0x80000000, 0xffffffff ]

for 32-bit Windows). Drivers that directly access user mode memory, for instance, do

not meet this condition. Thus, we treat this condition as a soft constraint. We accept

candidates that violate this constraint as long as the number of violating pointers is

sufficiently small. More precisely, given several candidate types, we compute for each

candidate the fraction of pointer fields that violate the constraint and choose the one

with the lowest fraction. We discard the candidate if the fraction of invalid pointer

values for it is too high (e.g., > 10%).

The two constraints above provide the basis for resolving type ambiguities in

our memory traversal. Whenever the traversal reaches an object field with several

candidate types, which can be a generic pointer or a union, it tests the constraints

for each candidate and selects the one with the best result. The constraints are not

only evaluated on the candidates but also, recursively, for their “child” objects (i.e.,

the objects pointed by the candidates) up to some depth level (e.g., three). By doing

so, we improve the accuracy of type ambiguity resolution since we have more data to

rely upon when making the decision.
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3.3.4.2 Recognizing Dynamic Arrays

Dynamic arrays are widely used in OS kernels and drivers. KOP is the first system

with the capability to automatically recognize dynamic arrays in memory traversal.

The key idea is to leverage the kernel memory pool boundaries, i.e., a dynamic array

must fit into a pool block. Moreover, we note that a dynamic array is usually allocated

in two possible ways: it may take up a whole pool block, or it may extend an object

whose last field is defined as an array of size 0 or 1. Based on these two observations,

KOP checks each allocated pool block to recognize dynamic arrays after the object

traversal (without dynamic arrays) is completed.

If a single object is identified at the start of a pool block, KOP analyzes it further

to determine if it contains a dynamic array of the first kind. The intuition is that

arrays are typically accessed via a pointer to their first element. KOP then tests if

the array candidate meets a new size constraint: the size of a pool block must be a

multiple of the size of the first object plus some number between 0 and A− 1, where

A is the pool block alignment. This is a hard constraint. Finally, KOP checks the

pointer value constraint for each array element. KOP accepts the candidate dynamic

array if a sufficiently large fraction of array elements (e.g., 80%) have a low fraction

of invalid pointer values.

KOP checks a pool block for a dynamic array of the second kind if there is an

empty space (i.e., no objects were found) trailing an object and the object’s last

element is an array of size 0 or 1. For such objects, KOP checks the size and pointer

value constraints as above.

After identifying dynamic arrays, KOP uses them as roots and reruns the traversal

algorithm. This process is repeated until no more dynamic arrays are found.
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3.3.4.3 Controlling Object Identification Errors

During the memory traversal, KOP may incorrectly identify an object for three main

reasons: (1) choosing the wrong candidate when resolving type ambiguities, (2) mis-

taking a dynamic array, and (3) program bugs (e.g., dangling pointers). Given the

recursive nature of KOP’s memory traversal, an incorrect object affects all subsequent

traversals following it. Therefore, it is critical to reduce identification errors and pre-

vent them from propagating. To do so, we employ the following two techniques.

First, instead of performing a single complete traversal, KOP traverses the kernel

memory in multiple rounds. The key idea is to identify kernel objects who are more

likely to be correct first and use them to preempt those identified later when there is

a conflict. Specifically, KOP performs the memory traversal in three distinct rounds.

In the first round, KOP identifies all the global objects and those objects referenced

by global pointers. These are the roots used in the traversal and are likely to be

correct. In the second round, starting from the objects found in the first round,

KOP traverses the kernel memory but only follows pointer fields that do not have

type ambiguities. We do not infer dynamic arrays in this round either. This way we

avoid the identification errors that may be caused by either resolving type ambiguities

or inferring dynamic arrays. In the third round, starting from the objects found in

the previous rounds, KOP traverses the kernel memory and resolve type ambiguities

when necessary. KOP also identifies and traverses dynamic arrays in this round (after

the traversal without dynamic arrays is finished). Note that, if two objects identified

in the same round conflict with each other, we keep both of them. Currently, we

perform a depth-first traversal in each round.

Second, to limit the damage caused by a previous identification error, KOP uses

a safe-guard mechanism. Whenever following a typed pointer during the traversal,

KOP first checks if the object implied by the pointer type meets the constraints used

for resolving type ambiguities (see Section 3.3.4.1). This can be treated as a special
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case in which only a single candidate is considered. If the object violates either

constraint, KOP discards it and stops that branch of traversal.

3.4 Security Application

Function pointers are commonly used throughout the kernel to perform indirect calls.

A popular technique used by malware is to change their values to point to malicious

code, an action also known as hooking. By doing so, malware can hijack the OS’s

control flow whenever an indirect call of these function pointers occurs. This allows

it to intercept and control certain types of system activity.

A common task in detecting unknown or analyzing known kernel-mode malware

is to identify all the function pointers manipulated by the malware. The ideal way

to do this is to inspect the values of all function pointers in the kernel and determine

if they point to legitimate targets. There are several difficulties with this. First,

many function pointers reside in dynamic kernel objects, and therefore do not have

a fixed location in memory. As demonstrated in Sections 3.3.3 and 3.3.4, locating

all these objects in a memory snapshot is not trivial. Second, inside a single object,

not all function pointers can be unequivocally identified. This can happen in the

following two scenarios: (1) a field is declared with a primitive type (e.g., unsigned

int) but effectively used as a function pointer, and (2) a function pointer is defined

inside a union. We refer to these as implicit function pointers and all the others as

explicit function pointers. Thus, the task of complete and accurate function pointer

identification is a challenge in modern OSes.

To address these problems we built SFPD, the Subverted Function Pointer De-

tector. SFPD relies on KOP to perform a systematic analysis of function pointers in

a kernel memory snapshot. Particularly, it leverages KOP’s nearly complete mem-

ory traversal to identify kernel objects. Due to KOP’s greater coverage of the kernel

memory, SFPD is able to verify the function pointers of a much larger set of objects
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than previous approaches such as SBCFI [78]. SFPD also leverages KOP’s points-to

analysis to recognize implicit function pointers. SFPD is the first system that can

identify malicious implicit function pointers in kernel memory.

SFPD assumes the knowledge of which benign modules are currently loaded, in-

cluding their binary images. Given a memory snapshot, SFPD first checks if the

code of the benign modules was modified. If so, any modified parts of the code are

marked as untrusted. The rest of the code is treated as trusted. SFPD then checks

every function pointer in the kernel objects found by KOP based on the following

policy: An explicit function pointer must point to trusted code; an implicit function

pointer must point to either trusted code or a data object found by KOP; otherwise,

the function pointer is marked as malicious.

This policy is simple but powerful. With it, SFPD can detect malicious implicit

function pointers which target malicious code placed in unused blocks of memory.

At the same time, by leveraging KOP’s high coverage, it effectively avoids the false

alarms that would otherwise be caused in two cases. (1) Our flow-insensitive points-to

analysis can mistakenly identify data pointers as implicit function pointers, due to

imprecision; and (2) data pointers may share the same offset as a function pointer in

a union. We are aware that this policy will not be able to identify function pointers

manipulated by malware using return-to-libc attacks, which are rare in practice.

Additionally, we leverage the traversal information available in KOP to retrieve

the traversal path to objects whose function pointers were found to be malicious. Such

information is important because this path often reveals the purpose of the function

pointer. For instance, simply knowing a function pointer in a EX CALLBACK ROUTINE BLOCK

object does not tell what it is for. We will, however, know it is used for intercepting

process creation events when SFPD shows that it is referenced from a global pointer

array in PspCreateProcessNotifyRoutine.
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3.5 Implementation and Evaluation

We developed a prototype of KOP on Windows. The static analysis component was

built using the Phoenix compiler framework [68], and the runtime component is a

standalone program. Both components were implemented in C# with a total of

16,000 lines of code. KOP operates in an offline manner on a snapshot of the kernel

memory, captured in Windows as a complete memory dump [67]. KOP relies on the

Windows Debugger API [66] to resolve symbols, access virtual addresses, and extract

information about the pool blocks allocated in the snapshot.

We used the Windows Vista SP1 operating system as our analysis subject. Its

kernel and drivers are mostly written in C, with parts in C++ and assembly. Our

experiments were performed using a Windows Vista SP1 system loaded with 63 kernel

drivers shipped with the OS. We ran this system in a VMware virtual machine with

1GB RAM. In our prototype, we used the following parameters for the memory

analysis: tolerance of at most 10% for invalid pointer values in an object, requirement

of at least 80% of the dynamic array elements to meet the pointer constraint, and

the use of three levels of child objects when evaluating the pointer constraint for a

candidate.

Several implementation techniques in the Vista kernel and drivers presented dif-

ficulties for KOP. We were able to identify the following cases: (1) the lower bits in

some pointers are used to store the reference count, assuming that the target is 8-byte

aligned, (2) the relative layout of independent objects is used in cross-object pointer

arithmetic (e.g., when independent objects are stored in a single pool block), and

(3) implicit type polymorphism in C (e.g., a single object can belong to more than

one type). In developing our prototype, we manually adjusted our implementation to

handle these cases.

We also implemented a prototype system for SFPD with a total of 1,000 lines

of C# code. The relatively small size of our SFPD prototype shows that, given the
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infrastructure provided by KOP, it requires only a small amount of extra effort to

implement an integrity checking application. In the rest of this section, we present

the evaluations of KOP and SFPD.

3.5.1 KOP

KOP’s main goal is to completely and accurately map the kernel objects in a memory

snapshot. Since we trivially identified all static kernel objects by mapping global

variables, we will only evaluate KOP’s coverage of dynamic kernel objects. We also

evaluated KOP’s performance to demonstrate that it can perform its offline memory

analysis in a reasonable amount of time. Before presenting our experimental results

on coverage and performance, we will first summarize the results of our static analysis.

3.5.1.1 Static Analysis

We applied KOP’s static analysis to the source code of the Vista SP1 kernel and the

63 drivers, with a total of 5 million lines of code. This codebase contains 24423 data

types and 9629 global variable definitions. KOP derived the candidate target types

for 3228 void * pointers, 1560 doubly linked lists, 118 singly linked lists, and 8 triply

linked lists (i.e., balanced trees). KOP also identified 3412 implicit function pointers.

In our experiments, KOP needed less than 48 hours to complete its static analysis

on a 2.2GHz Quad-Core AMD Opteron machine with 32GB RAM. Since KOP only

needs to run its static analysis once for an OS kernel and its drivers, this running

time is acceptable.

3.5.1.2 Coverage

We measure KOP’s coverage by the fraction of the total allocated dynamic kernel

memory for which KOP is able to identify the correct object type. Ideally, we would

use a ground truth that specifies the exact object layout in kernel memory. However,

obtaining such a ground truth is extremely difficult and time-consuming. For instance,
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the value of a certain field in an object may determine the existence and layout of other

objects in the same pool block. Thus, we would need to understand the semantics of

each object field to obtain the exact object layout.

Instead, we obtained a ground truth with a slightly coarser granularity. Specifi-

cally, we instrumented the kernel to log every pool allocation and deallocation during

runtime, along with the call stack, address and size.

We manually inspected the source code for each location on the call stack. This

allowed us to identify a call stack location at which the types of the allocated objects

could be readily identified in the source code. This was often not the stack location at

which the generic allocation function (ExAllocatePool) was called, but some location

higher in the call stack. We manually analyzed 367 allocation sites and identified the

object types that can be allocated at each site. This corresponds to 95% of the

allocated pool blocks (94% of the allocated bytes). We were not able to do this for

100% of the pool blocks simply because of the very large number of different allocation

sites for the remaining 5%.

Since our ground truth does not specify the exact object layout, we do not know

the exact number of objects that exist in the pool blocks. Therefore, we cannot

measure KOP’s coverage based on the fraction of correctly identified objects. Instead,

we measured the coverage based on bytes, since we know the total number of bytes

in allocated pool blocks.

For a byte b inside a pool block that is part of our ground truth, we say b is

correctly mapped if KOP identified a single object which contains b’s location and the

object type is associated with the pool block. If b is mapped to an object of incorrect

type or more than one type, we say it was incorrectly mapped by KOP. Finally, if it

was not mapped at all, we say it was missed under ground-truth. Let CM, IM and

MG be the sets of bytes that are classified as correctly mapped, incorrectly mapped

and missed under ground-truth, respectively. We define verified coverage as
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|CM |
|CM |+ |IM |+ |MG|

where | · | denotes the set size. We chose the allocation sites for which we computed

the ground truth only based on the number of pool blocks they cover and not based

on any properties of KOP. Therefore, we believe that the verified coverage has the

character of a statistical sample and that it is representative for the overall coverage

of KOP.

To gain further confidence, we compute a second measure of coverage. Consider

any byte b in a pool block that is not in our ground truth. We say that b is an

unverified mapping if KOP identified some object at its location and missed outside

of ground-truth otherwise. Let UM and MOG denote the respective sets. We define

gross coverage as

|CM |+ |UM |
|CM |+ |IM |+ |MG|+ |UM |+ |MOG|

In our coverage experiments, we compared KOP with a basic traversal algorithm.

Like previous approaches [78, 11], the basic traversal only follows typed pointers

and doubly linked lists without resolving type ambiguities and recognizing dynamic

arrays. The only difference is that our basic traversal algorithm uses the target

types of linked lists automatically derived from KOP’s static analysis, while previous

approaches relied on manual efforts. To demonstrate KOP’s robustness with different

workloads, we tested it on two different memory snapshots. One was collected right

after the system was booted up, and the other was collected after running a large

number of system and user processes on the system for 15 minutes. We refer to these

two memory snapshots as the clean-boot and stress-test snapshot.

The experimental results for the coverage of KOP and the basic traversal algorithm
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Table 2: Coverage results for the basic traversal and KOP when applied to the clean-
boot and stress-test memory snapshots. CM = Correctly Mapped, IM = Incorrectly
Mapped, UM = Unverified Map, MG = Missed in Ground-truth, MOG = Missed
Outside Ground-truth, VC = Verified Coverage and GC = Gross Coverage. The
numbers in the table are percentages of the total number of bytes.

Clean-Boot (%) – Total bytes: 42775648
Type CM IM MG UM MOG VC GC
Basic 25.4 0.0 68.9 1.4 4.3 26.9 26.8
KOP 93.7 0.0 0.6 5.3 0.4 99.3 98.9

Stress-Test (%) – Total bytes: 50588704
Type CM IM MG UM MOG VC GC
Basic 26.6 0.0 68.0 1.4 4.0 28.1 28.0
KOP 93.8 0.0 0.8 5.0 0.4 99.2 98.8

are shown in Table 2. The dynamic kernel data has 42.7MB in the clean-boot memory

snapshot and 50.6MB in the stress-test snapshot. In both snapshots, KOP’s verified

coverage and gross coverage are 99%, whereas the basic traversal has only 28%. Since

our ground truth covers 94% of the dynamic kernel data, the gross coverage is very

close to the verified coverage, as shown in Table 2. We manually investigated some

of the cases where KOP either identified the objects incorrectly or missed them com-

pletely. We found that they were due to three reasons: KOP incorrectly resolving

type ambiguities or recognizing dynamic arrays, dangling pointers and unorthodox

Windows kernel implementation techniques that we were not able to identify. In

Section 3.6, we will discuss future research directions that can help mitigate these

errors.

3.5.1.3 Performance

We measured the running time of KOP when analyzing twelve distinct memory snap-

shots used in our experiments (including those used on SFPD’s evaluation). We used

a 4GHz Intel Xeon Duo Core machine with 3GB RAM. The median running time

was 8 minutes, including the overhead of reading the memory snapshot stored on the
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disk. This running time is acceptable for offline analysis.

3.5.2 SFPD

The goal of SFPD is to identify all malicious function pointers in the kernel memory.

To evaluate it, we used it to analyze the memory snapshots of systems infected with

kernel-mode malware. Specifically, given a malware sample, we executed it in the

Windows Vista SP1 virtual machine used in KOP’s evaluations, and then generated

a memory snapshot after waiting for a few seconds.

For each memory snapshot, we manually built the ground truth of all malicious

function pointers. More precisely, we first manually identified the code regions oc-

cupied by the malware based on our instrumentation logs. We then conducted an

exhaustive memory search for memory locations pointing to the regions containing

the malware’s code. We then manually verified each of them to check if they were

malicious function pointers.

In our experiments, we tested SFPD with eight real-world kernel malware samples

collected from a public database. Running on a 4GHz Intel Xeon Duo Core machine

of 3GB RAM, SFPD finishes a scan of a memory snapshot in less than two minutes,

excluding time KOP takes to map kernel objects in the snapshot.

Our experimental results for SFPD are shown in Table 3. We do not report re-

sults on System Service Dispatch Tables (SSDTs) and the Interrupt Dispatch Table

(IDT) because they are static data and therefore are not our focus. We compared

SFPD with a baseline algorithm which is similar to previous approaches [78, 11].

This baseline algorithm inspects explicit function pointers based on the kernel ob-

jects identified in the basic traversal. SFPD identified all the malicious function

pointers for all eight malware samples with zero false alarms. However, the baseline

algorithm missed malicious explicit function pointers placed by seven of the eight

malware samples, as well as all the implicit function pointers. This was caused by
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Table 3: Results from applying SFPD to nine memory snapshots infected with dif-
ferent real-world malware samples. Function pointers are classified as either explicit
(E) or implicit (I) based on their kind. A/B means that a scheme detects A out of B
malicious function pointers.

Malware Malicious function pointer Type Baseline SFPD

Farfli.G

DRIVER OBJECT.DriverInit E 0/2 2/2
DRIVER OBJECT.MajorFunction[] E 0/30 30/30

EX CALLBACK ROUTINE BLOCK.Function E 0/1 1/1
ETHREAD.StartAddress I 0/2 2/2

ETHREAD.Win32StartAddress I 0/2 2/2

Syspro.A
DRIVER OBJECT.DriverInit E 1/1 1/1

DRIVER OBJECT.MajorFunction[] E 28/28 28/28
FAST IO DISPATCH.* E 21/21 21/21

FS FILTER CALLBACKS.* E 12/12 12/12
NOTIFICATION PACKET.NotificationRoutine E 1/1 1/1

Cutwail.K

DRIVER OBJECT.DriverInit E 0/1 1/1
DRIVER OBJECT.MajorFunction[] E 2/6 6/6

EX CALLBACK ROUTINE BLOCK.Function E 0/1 1/1
ETHREAD.StartAddress I 0/1 1/1

ETHREAD.Win32StartAddress I 0/1 1/1

Odsrootkit.C
DRIVER OBJECT.DriverInit E 0/1 1/1

DRIVER OBJECT.DriverUnload E 0/1 1/1

Syzor.A

DRIVER OBJECT.MajorFunction[] E 4/4 4/4
ETHREAD.StartAddress I 0/1 1/1

ETHREAD.Win32StartAddress I 0/1 1/1

Agent.fwz

DRIVER OBJECT.DriverInit E 0/1 1/1
DRIVER OBJECT.MajorFunction[] E 1/1 1/1

EX CALLBACK ROUTINE BLOCK.Function E 0/1 1/1
ETHREAD.StartAddress I 0/1 1/1

ETHREAD.Win32StartAddress I 0/1 1/1

DriverByPass
DRIVER OBJECT.DriverInit E 0/1 1/1

DRIVER OBJECT.DriverUnload E 0/1 1/1
DRIVER OBJECT.MajorFunction[] E 4/4 4/4

EX CALLBACK ROUTINE BLOCK.Function E 0/1 1/1
KAPC.KernelRoutine E 6/6 6/6

Haxdoor
DRIVER OBJECT.DriverInit E 0/1 1/1

DRIVER OBJECT.MajorFunction[] E 0/2 2/2

the low memory coverage of the basic traversal, as well as its lack of knowledge

of implicit function pointers. For instance, the basic traversal fails to identify the

EX CALLBACK ROUTINE BLOCK object added by the malware because it is referenced

by the global variable PspCreateProcessNotifyRoutine via a generic pointer.

The baseline algorithm is able to detect the existence of all the eight real-world

malware samples we tested since it is enough to identify one malicious function
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pointer (including entries in SSDTs or IDT not shown in Table 3) to determine

that a system is infected. However, it is straightforward to create a new rootkit

that only tampers with function pointers missed by the baseline algorithm. For in-

stance, a rootkit can simply hook an EX CALLBACK ROUTINE BLOCK object pointed

by PspCreateProcessNotifyRoutine so that its code can be executed whenever a

process is created.

SFPD relies on KOP to identify all the implicit function pointers. In Table 3, we

can see that SFPD successfully identified all the malicious implicit function pointers.

The ETHREAD.StartAddress and ETHREAD.Win32StartAddress pointer fields refer

to the initial function for starting a thread. By identifying these function pointers,

SFPD was able to reveal that the malware created kernel threads to run itself.

3.6 Discussion

KOP’s static analysis could be improved to solve the kernel implementation corner

cases discussed in Section 3.5 in a more general way. For example, tracking the arith-

metic and logical operations associated with pointer values could provide a general

means to identify bit manipulations in pointers. Likewise, identifying the use of casts

in assignments could help automatically determine type polymorphism cases. These

improvements could make the task of porting KOP to a different OS easier.

The techniques used in KOP’s memory analysis are also not perfect. Currently

KOP relies on its knowledge of pointer fields to select a candidate from the range of

possibilities. There are cases where this knowledge may not be sufficient to make the

correct choice. It is very hard, for instance, to tell apart small objects with very few

or no pointers at all, which may lead to inaccuracies in the traversal.

One possibility to mitigate these problems is to increase the scope of our static

analysis to determine domain constraints for other types of fields in addition to point-

ers. For example, a unicode string should always be terminated by two consecutive
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null bytes, and enumerated (enum in C) types can only assume a statically-defined

set of values. Such information would be very useful for increasing the precision of

resolving type ambiguities.

One must also consider the possibility of an attacker trying to disrupt KOP’s

traversal by polluting the kernel memory. He could, for instance, intentionally break

the internal structure of key kernel objects by tampering with the values stored at

pointer fields. As a result, our traversal may incorrectly identify these objects due

to pointer field mismatches. This attack is not as simple as it sounds, however, since

the attacker has to carry it out in a way that the modifications do not destabilize

the whole kernel and crash the system. Our current system can tolerate this kind of

attack up to a certain point, since it checks the pointer-value constraints in a flexible

way. However, it will not be able to do so if a very large number of pointers inside an

object is manipulated. A more robust improvement could come from pre-determining

which fields can be tampered with without crashing the system and ignoring them

when matching pointer fields.

3.7 Summary

Dynamic kernel data have become a common target for malware looking to evade

traditional code and static data-based integrity monitors. Previous out-of-VM solu-

tions for inspecting dynamic kernel data can reach only a fraction of it, leaving holes

for well-engineered malware to evade. Thus, it is imperative that integrity protection

systems be able to accurately and completely map kernel objects in the memory.

In this chapter we presented this dissertation’s first contribution: a set of tech-

niques capable of re-creating a syntactic view of the guest kernel’s heap state with

very high coverage and accuracy. We demonstrated these techniques by implementing

KOP, a passive monitoring infrastructure that can be used by systematic integrity

checking applications. KOP uses a combination of static source code and dynamic
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memory analysis techniques to achieve its goals. Our evaluation of KOP showed

substantial coverage gains over previous approaches. We also implemented an in-

tegrity checking application based on KOP to detect malicious function pointers.

Our evaluation of this application involving real-world and artificial malware samples

demonstrated that KOP’s high coverage and accuracy translate into the ability to

detect kernel integrity violations missed by previous approaches.
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CHAPTER IV

OVERCOMING THE SEMANTIC GAP THROUGH

GUEST-ASSISTED INTROSPECTION

4.1 Motivation

Out-of-VM monitoring provides good security by placing the monitoring application

in an isolated security VM (SVM), from where it can securely monitor a guest VM

using virtual machine introspection [38, 73, 50, 77, 78]. It does not usually rely on

internal guest components to perform its monitoring, as these components can be

maliciously tampered with. VMI lacks robustness, however, due to the semantic gap

problem. Any changes made to the syntax (i.e., internal disposition and location of

fields) or semantics (i.e., the meaning of the data stored in each field) of monitored

GVM data structures across different software releases can break introspection-based

tools, which rely on pre-determined and, in many cases, reverse engineered knowl-

edge. This is especially true for undocumented data structures, which are extremely

common in closed-source operating systems and applications. This problem does not

exist with in-guest monitoring, since it allows monitoring applications to directly call

functions provided by the guest OS API to get the information it needs (e.g., the

list of active processes on the system) [23]. This method naturally accommodates

changes made to data structure syntax and semantics across releases, as it uses the

guest’s own code, which is changed accordingly by the software vendor and has a

public, documented API. This approach lacks the security of the out-of-guest ap-

proach, however, since the application and the guest OS can be easily tampered with

by malware to report fake monitoring results, or be simply disabled. To fully protect

an in-guest monitoring application is a very hard problem, and has only been shown
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for small agents operating under limiting constraints [74, 90] or without ensuring the

application’s availability [22].

In this chapter we present SYRINGE, an infrastructure for monitoring VMs that

combines the advantages of out-of-guest and in-guest approaches, allowing the seman-

tic gap to be overcome with security and robustness. SYRINGE satisfies these two

requirements by placing the monitoring application in an isolated SVM, as done by

the out-of-guest approach, but still leveraging the GVM’s own code for monitoring, as

done by the in-guest monitoring. For this to work, (1) the SVM-resident monitoring

application must be able to call GVM functions and (2) the security of the GVM’s

code execution must be verifiable. These problems are respectively addressed by two

techniques: function call injection and localized shepherding.

Function call injection allows a monitoring application to be placed in the SVM

and still be able to invoke functions in the GVM, by carefully interrupting the GVM’s

execution and manipulating the contents of its virtual CPU and memory through

introspection. Localized shepherding monitors the execution of the invoked guest

code against attacks by using a combination of on-the-fly static code checking and

inline reference monitoring through dynamic instrumentation. This allows it to detect

attacks such as hooking [46] and return-oriented programming [47, 89]. It also enforces

atomic code execution to prevent unauthorized tampering with temporary execution

state.

SYRINGE combines function call injection and localized shepherding to create

a robust VM monitoring infrastructure with strong security properties. It avoids

the semantic gap inherent to introspection by using guest OS API code instead of

directly parsing and reading data structures in memory. As such, changes in the

syntax and semantics of guest data structures commonly performed by patches and

new software releases do not affect SYRINGE, as long as the public exported API

remains unaltered. SYRINGE’s design is OS-independent, enabling the creation of a
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wide range of monitoring applications.

4.2 Previous Approaches

Secure monitoring of virtual machines has received much attention in the past 10

years from academia and industry. The seminal work by Garfinkel et al. first in-

troduced the concept of virtual machine introspection (VMI), whereby the state of

a GVM is passively analyzed by a scanner placed in a separate VM [38]. Various

VMI frameworks, such as XenAccess [73], VMwatcher [50], and VMsafe [104], have

since been proposed for different hypervisors. Multiple VMI-based solutions have

also been proposed to address specific problems such as tracking the execution of

guest processes [51], identifying covertly executing binaries [59], verifying semantic

integrity constraints [77], detecting persistent control-flow integrity violations [78],

and detecting past vulnerability exploitations through record and replay [52]. These

solutions, although satisfying their security goals, are vulnerable to the semantic gap

problem inherent to introspection. Others, such as Laika, assume no such previous

knowledge and apply machine learning to the problem—an approach that is prone to

false positives despite its flexibility [25].

The protection of in-guest monitors has also been explored. Lares [74] and SIM [90]

protect a small agent inside the guest using hypervisor memory protection and addi-

tional address spaces. To ensure security, however, the agent is subject to significant

limitations that would not allow such schemes to be used with sophisticated mon-

itoring tools, such as AV scanners. SYRINGE uses a hybrid in-guest/out-of-guest

approach for its monitoring infrastructure. SADE dynamically injects a small agent

into the guest that can call internal guest functions, but does not protect the agent

or the execution of guest code [23]. Overshadow uses virtualization to protect an

in-guest application’s confidentiality and integrity in the presence of a compromised

guest OS, but does not protect the execution of guest OS code and does not address

48



agent availability concerns [22].

The Virtuoso project shares SYRINGE’s basic insight of leveraging the guest’s

code to minimize the semantic gap [30]. It does so, however, using techniques very

different from ours. Basically, it relies on pre-extracted execution traces of guest

monitoring functions to automatically generate introspection programs that can be

executed in the SVM. These traces must be extracted before any monitoring can be

performed, and must be re-extracted whenever the guest OS is updated. Virtuoso also

suffers from the fundamental incompleteness of dynamic analysis, which can create

significant runtime hazards for the generated introspection programs. SYRINGE

shepherds the guest’s own internal execution, thus avoiding the hazards of execution

trace replaying and the need for a recurrent learning phase.

A brief discussion of the technique underlying function call injection was first pre-

sented by Joshi et al. [52], and a more basic variant was later proposed by SADE [23].

Thus, despite our more in-depth investigation and explanation, we do not claim FCI as

a contribution. Program shepherding was first proposed by Kiriansky et al. to protect

systems against application vulnerabilities [55]. It dynamically monitors the execu-

tion of control transfer instructions in the program to ensure that it does not deviate

from a certain control-flow integrity policy. We do not, however, require every control

transfer instruction to be checked, just indirect ones. Direct ones are already implic-

itly verified by our code integrity checker. Furthermore, our approach also ensures

atomic execution by handling the relevant instructions. Finally, SYRINGE’s shep-

herding is not done system or application-wide, but is localized to monitoring thread

resulting from the injected function call and is activated/deactivated on-demand,

minimizing the performance impact. Abadi et al. use static binary instrumentation

to enforce control-flow integrity (CFI) [1]. CFI has greatly impacted subsequent work

on software security, including SYRINGE’s localized shepherding.

Secure code execution has received substantial attention from the community in
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Figure 7: High-level view of SYRINGE. Straight arrows represent function call in-
jection and dashed arrows represent the monitoring thread. The gray background
surrounding it represents the localized shepherding of the monitoring thread.

the context of attestation. Pioneer, for instance, allows a verifier to attest that

the execution of a certain piece of code on an untrusted environment has occurred

without any form of tampering [88]. Some of the techniques that it uses, such as

interrupt disabling, are also used by SYRINGE. More recent work in this area, such

as Flicker [63], leverages new hardware support for trusted computing and Intel’s

Trusted Execution Technology.

4.3 The SYRINGE VM Monitoring Infrastructure

4.3.1 Overview

SYRINGE was designed as an infrastructure to be used by applications to securely

and robustly monitor a GVM (Figure 7). Its design process started from a basic

in-guest monitoring architecture, which, as discussed previously, already incorporates

the desired robustness. We then focused on determining what additions and modi-

fications should be done to it so as to make it secure. In more concrete terms, this

meant securing the two high-level entities involved in in-guest monitoring: (1) the

monitoring application and (2) the execution of guest OS functions invoked by the
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application.

Protecting the monitoring application. In this work we assume that the

monitoring application is a user-space program. This assumption is based on the fact

that most real-world monitoring applications such as AV scanners, intrusion detec-

tion systems and system diagnostic tools are implemented in user-space application.

Fully protecting a user-space application (monitoring or otherwise) running inside an

untrusted guest OS is a hard problem. As demonstrated by Chen et al., it is possible

to use virtualization to protect the confidentiality and integrity of its code/data [22].

However, the control that the guest OS has over the application’s resources (CPU

time, memory, etc) means that it is extremely difficult to ensure the application’s

availability on an untrusted guest OS. In other words, it would be easy for an at-

tacker who has compromised the guest OS to disable the application, or deny it

essential computing resources controlled by the OS. For these reasons, in SYRINGE

we opted to remove the monitoring application from the GVM, placing it in an iso-

lated, trusted SVM. This move allowed us to secure the application, but disrupted

its ability to invoke guest OS functions. We solved this problem with the function

call injection technique. Function call injection enables the monitoring application

to be moved out of the GVM, but still retain the ability to invoke guest functions

by injecting function calls into the GVM. This technique works by interrupting the

GVM’s execution at a pre-determined point and manipulating the contents of its

virtual CPU and memory using introspection, setting it to the desired target func-

tion with the desired parameters. In its current form, SYRINGE only supports the

injection of function calls to kernel functions.

Protecting the execution of the invoked guest OS functions. We refer

to the execution thread triggered inside the guest as a result of the function call in-

jection as the monitoring thread. To protect the execution of the monitoring thread

51



we introduce a novel technique: localized shepherding. This technique basically per-

forms on-demand monitoring of the control-flow integrity of the monitoring thread

by using on-the-fly instrumentation, in accordance to a policy that we defined to

address the most common attacks that rely on control-flow manipulation. Together

with function call injection, localized shepherding also ensures the atomic execution

of the monitoring thread. This property is necessary to prevent malicious threads

from tampering with the monitoring thread’s local state when their executions are

interleaved. Atomic execution is implemented by disabling interrupts at the start of

the monitoring thread and shepherding interrupt-related instructions to prevent them

from being re-enabled.

SYRINGE was not designed as a general security system. Its goal is not to defend

the guest against attacks in general. SYRINGE focuses on the task of determining

whether the data returned by the monitoring thread to the monitoring application

results from an untampered execution. If SYRINGE detects any form of tampering

with the monitoring thread, such as a control-flow violation, it will not attempt to

repair it. For safety, it will allow the monitoring thread to continue executing un-

shepherded, but will notify the monitoring application in the SVM that the results

returned by the function should not be trusted. An attacker can exploit this fact

to disrupt SYRINGE’s monitoring, effectively causing a DoS. The monitoring ap-

plication, however, will know at this point that the system has been compromised,

at which point the best course of action may be to restore the GVM to a previous

snapshot or employ another type of remediation procedure.

The atomic execution property enforced by SYRINGE creates some functional

limitations. First, SYRINGE cannot shepherd guest code that relies on asynchronous

code execution, such as I/O or Deferred Procedure Calls (DPCs). This prevents

certain types of exceptions, such as page faults, from being handled properly. We do

a detailed discussion of these limitations in Section 4.7.
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4.3.2 Assumptions

In this work, we assume an underlying x86 architecture running a hypervisor with

two virtual machines: a monitored guest virtual machine (GVM); and a secure virtual

machine (SVM) in which SYRINGE will be deployed. This assumption does not

mean that our work cannot be generalized to environments executing a larger number

of VMs, as is common in cloud computing. Our whitelisting-based code integrity

approach also assumes previous access to legitimate copies of the binaries composing

the guest OS’s kernel. On Windows, this includes the kernel executive (NTOS) and

other kernel-level modules. It does not include 3rd-party modules. We believe this to

be a reasonable assumption, given that this set of binaries is manageable in size and

relatively homogeneous for each particular OS version. A database of such binaries

can be easily created and automatically updated, for instance, when patches are issued

by the OS vendor. We also assume access to the public Windows kernel API, which

includes the function prototype and parameter type definitions. This API is easily

accessible online and we do not consider it as part of the semantic gap.

Knowledge of the base address in guest memory for each loaded whitelisted binary

is also assumed. This information can be obtained through a variety of methods and

heuristics that are orthogonal to this work, and are thus not detailed here. We

further assume in our threat model that the GVM can be fully compromised by an

attacker, including its kernel. The system hardware, hypervisor, and SVM constitute

our trusted computing base.

4.3.3 Function Call Injection

Function call injection (FCI) secures the monitoring application by placing it in an

isolated SVM, while still keeping its ability to invoke GVM functions. This is the first

piece of our solution to the problem of creating a secure and robust VM monitoring

infrastructure. FCI essentially provides the ability for code running in one VM to call
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1. Save guest VM Context
2. Set EIP = ADDR(F)
3. Copy arguments to stack
4. Set return address in stack
5. Update ESP
6. Resume Guest VM

1. Read result from guest VM
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3. Resume guest VM
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Figure 8: Injecting a call to guest function F. (1) The GVM executes normally until it
reaches an injection context; (2) a breakpoint placed at the injection address transfers
execution to the SVM and suspends the GVM; (3) The SVM saves the guest VCPU
context and sets its EIP to point to F’s start address and copies F’s arguments to the
stack, also updating its ESP; (4) the guest VCPU is resumed and function F starts
execution, as if it had just been called by guest code; (5) F is executed; (6) control
is returned to the SVM through another breakpoint placed at F’s return address; (7)
the guest VCPU’s context is set by the SVM to the saved context (8 and 9) when
resumed and it continues running from the point where it was originally interrupted.

a function in another VM and retrieve its results. FCI uses simple VM introspection

techniques. It can be viewed as a type of inter-VM Remote Procedure Call (RPC),

but without the need for an RPC server running on the destination.

SYRINGE currently assumes that the GVM only has one virtual CPU (VCPU) in

order to ensure atomicity for the monitoring thread. Multiple VCPU support would

require the virtualization infrastructure to be able to suspend individual VCPUs

during the guest’s execution. This is not the case, however, with ESX/VMsafe.

Although this assumption may be limiting for certain types of VMs, we believe it

to be a consequence of a platform limitation, rather than a fundamental flaw in our

approach.
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The operation of FCI is shown in Figure 8. The first step in FCI is to interrupt the

execution of the guest so that a function call can be injected. Pre-selected injection

contexts designate the execution contexts under which the guest must be interrupted

so that a function call injection may occur. An injection context is a tuple (PS, AI),

where PS represents a surrogate process and AI is an injection address. FCI can only

happen when process PS is currently active in a guest virtual CPU (VCPU) and the

instruction at AI is about to be executed by that same VCPU. A surrogate process

is identified by the physical address of its page directory table (stored in the CR3

register). Each surrogate process can have its own injection addresses, or they can be

shared between multiple surrogates. Injection addresses can be selected in the guest’s

kernel-space, for injecting calls to kernel functions, or in user-space for injecting calls

to user-level API functions. Multiple distinct injection contexts can be used. To

minimize injection delay, it is important to choose injection contexts that are reached

frequently enough in the GVM’s normal execution. They must also not be easily

circumvented by a malicious entity in control of the guest OS. Details concerning our

choice of injection context and how these requirements were met are given in Section

4.4.

SYRINGE interrupts the GVM by using VMsafe page-table level breakpoints

placed at the injection addresses. We call these injection breakpoints. This type

of breakpoint cannot be detected or tampered with by the guest OS because it is

implemented at the hypervisor level, and is therefore transparent to the guest. It

works by marking the memory page where the injection address is located as non-

executable. This way, whenever the instruction corresponding to the injection address

is executed, a trap is triggered, the GVM is suspended, and control transferred to

the hypervisor, and then to SYRINGE in the SVM. SYRINGE then checks if the

current CR3 value of the guest’s VCPU corresponds to that of a surrogate process

associated with the injection address where the execution was interrupted. In case
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it does, SYRINGE determines that an injection context has been reached. Injection

contexts are only made active (i.e., the hypervisor-level breakpoints are activated)

when SYRINGE has requests queued for function call injections, otherwise the system

runs normally without any performance penalty. In its current form, SYRINGE allows

only one monitoring thread to be running in the GVM. In other words, function call

injections cannot overlap each other.

Let us assume a function call F (A0, ..., An), i.e., a call to the guest kernel function

F with arguments Ai. Let us also assume a stdcall or cdecl calling convention,

so that arguments are placed on the stack, in reverse order. When the injection

breakpoint is triggered, SYRINGE first saves the guest VCPU’s context so that it

can be restored later and then sets the VCPU’s EIP register to F’s starting address.

F’s offset in its corresponding binary can be extracted from the binary’s export table.

Knowledge of the binary’s base address in memory is listed as part of our assumptions

and is obtained when SYRINGE is initialized.

Next, the stack needs to be appropriately set with arguments Ai and a return

address. This is done by using ordinary memory introspection to map the guest

memory region corresponding to the value of the VCPU’s ESP register and making

the necessary changes. Arguments are handled according to their evaluation seman-

tics. Call-by-value arguments are copied directly onto the stack. Call-by-reference

arguments require a more careful treatment. The data buffer referenced by the argu-

ment must be copied to the guest and the reference itself must be placed on the stack

as an argument. SYRINGE provides two ways of doing this. The simplest way is to

place the data structure at the bottom of the current stack frame and push a reference

to it. Another possibility is to allocate a special memory buffer inside the guest (for

example, by injecting another function call to a memory allocation function) and use

it to store the referenced data structure. This is useful in the case where the structure
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is too large to be placed on the stack. The return address is set to a special mem-

ory location inside the guest containing another VMsafe execution breakpoint—the

return breakpoint—placed by SYRINGE. This can be any memory location whose

page does not contain valid code, so as to avoid unnecessary VM switches caused by

execution of code.

Once the stack is set, the value of ESP is updated to accommodate the arguments

and return address. To ensure atomicity, the guest’s VCPU state is modified so

that regular guest interrupts, hardware breakpoints, instruction tracing exceptions

and performance monitoring interrupts (PMIs) are disabled when the monitoring

thread starts executing. This is done by clearing the IF (Interrupt Flag) bit in the

guest VCPU’s EFLAGS register, bits 1 and 8 in IA32 DEBUGCTL; bits 0, 1, 32–34 in

IA32 PERF GLOBAL CTR; and bits 0–9, 13 in DR7.

Finally, at this point, the guest VCPU is resumed. F then begins to execute

as if it had been called with arguments Ai from inside the surrogate process, at

the injection address. This is our monitoring thread. At this point, the localized

shepherding component (described in Section 4.3.4) takes over and shepherds the

monitoring thread. When the final RET instruction is reached, the return breakpoint

is triggered, suspending the VCPU and passing control back to SYRINGE in the

SVM. At this point, the result of F’s execution is read from the eax register and

returned to the monitoring application. If any memory buffers have been passed by

reference on the stack or heap to receive results from the function, it is the monitoring

application’s responsibility to retrieve their contents. Finally, SYRINGE restores the

original VCPU context that was saved when the guest OS was first interrupted and

resumes the GVM, which continues its original execution thread from the point where

it was interrupted.
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Figure 9: Localized shepherding of function F. (1) Page Verifier pre-builds a whitelist
database of the OS kernel binaries. (2) Upon injection, the Page Verifier verifies the
code regions of the target page against the whitelist database, (3) the Disassembler
recursively disassembles the target function, recording the locations of critical in-
structions and (4) passing them to the Instrumenter. (5) The Instrumenter patches
all critical instructions with int3 breakpoints and (6) updates the in-guest opcode
table. (7) When triggered, a critical instruction breakpoint transfers control to SY-
RINGE’s in-guest Dynamic Checker. (8) It consults the in-guest tables to determine
whether it can evaluate the instruction by itself. (9) If not, it passes control to the
out-of-guest dynamic checker, which (10) updates the in-guest call origin and target
tables and, if necessary, (11) re-invokes the Disassembler to analyze new code and
the Page Verifier, if the control-flow has transitioned into a new page. This process
is conducted recursively for all subsequent function calls.

4.3.4 Localized Shepherding

Localized shepherding is the second piece of our solution to the problem of creating

a secure and robust VM monitoring infrastructure. Localized shepherding monitors
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the control-flow integrity and ensures the atomic execution of the monitoring thread.

Figure 9 illustrates this process and the role played by each component.

Control-flow integrity is monitored by: (1) checking that all guest code executed

by the monitoring thread matches the pre-compiled whitelist database of OS API bi-

naries and (2) dynamically evaluating indirect control-flow transferring instructions

in accordance to a pre-specified policy. Action (1) guarantees the integrity of direct

branches while action (2) monitors the integrity of indirect branches. Thus, together,

they cover all control-flow transfers. Action (1) further ensures that non-control-flow

related instructions are not modified by an attacker. If a control-flow integrity viola-

tion is detected, SYRINGE allows the execution of the monitoring thread to proceed

but sends an alert to the monitoring application in the SVM. This alert indicates

that malicious tampering has been detected during the execution and therefore the

results returned by the monitoring thread cannot be trusted.

Code integrity checking (action (1)) is performed by the Page Verifier component

through binary whitelisting. As stated in our assumptions, we assume previous access

to legitimate copies of the binaries composing the OS API (both user-space libraries

and kernel modules). These binaries are analyzed in an offline manner by the Page

Verifier. Based on the metadata and content of each binary’s PE sections, the Page

Verifier constructs a database containing the location, size, and SHA1 hash corre-

sponding to each code (executable) section in each binary. This information is used

at runtime to check the integrity of the code being executed in the guest. Immediately

before a function call to F is injected, SYRINGE activates the Page Verifier to check

the integrity of all the code present in the page where F’s starting address is located. If

the page contains a mixture of code and data, each code region in the page is checked

individually. A SHA1 hash is calculated for each code region and is compared against

its corresponding whitelisted hash. Any discrepancies indicate that the code has been

modified. This allows SYRINGE to detect code patching attacks, where an attacker
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Table 4: SYRINGE’s shepherding policy and handler types for critical instructions.
The top part shows those instructions related to control-flow integrity monitoring.
The bottom part shows those related to atomic execution enforcement.

Instruction Description Policy/Action Handler

Control-flow integrity

CALL r/m32 Indirect function calling
Target must be in trusted code
regions. Update in-guest call-
origin table

In-guest
and Out-of-
guest

JMP r/m32 Indirect jumping
Target must be in current mod-
ule

In-guest
and Out-of-
guest

RET Function returning
Target must be present in
pseudo-shadow stack

In-guest

Atomic execution

STI/CLI
Interrupt enabling/disa
bling

Skip instruction In-guest

POPF EFLAGS popping
Emulate, clearing the IF and
TF bits in the EFLAGS

In-guest

WRMSR

Writing to MSR
IA32 DEBUGCTL or
IA32 PERF GLOBAL
CTR

Emulate, clearing bits 1 and
8 in the IA32 DEBUGCTL
MSR and bits 0, 1, 33–34 in
IA32 PERF GLOBAL CTR

In-guest

MOV DR7, *
Writing to DR7 debug
register

Emulate, clearing bits 0–9 and
13 in the DR7 register

In-guest

maliciously modifies the guest code, and notify the monitoring application. This pro-

cess is repeated whenever the control flow of the monitoring thread transitions into a

new page. After being checked and before execution is allowed to begin, code pages

are marked as write-protected again by using VMsafe. This marking avoids the need

for future checks and prevents time-of-check-time-of-use (TOCTOU) race conditions.

Indirect branch integrity monitoring (action (2)) is performed together by the

Disassembler, Instrumenter, and Dynamic Checker components. These components

employ a combination of dynamic recursive disassembly, code instrumentation and
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reference monitoring. The Disassembler performs a recursive disassembly of the func-

tion, stopping at indirect control transfer instructions and direct function calls. Dur-

ing this disassembly, it records the location of all instructions whose execution needs

to be trapped and evaluated at runtime to ensure control-flow integrity. We refer to

these instructions as critical instructions and they are shown in the top part of Table 4.

When the Disassembler is done analyzing the function, the Instrumenter instruments

all critical instructions so that they can be evaluated by SYRINGE before being exe-

cuted. This instrumentation consists of an int3 instruction that overwrites the first

byte of the critical instruction. The overwritten byte is recorded by SYRINGE in a

write-protected in-guest opcode table. The entry #3 of the guest Interrupt Descriptor

Table (IDT) is set to point to the in-guest component of the Dynamic Checker. The

guest’s IDT is write-protected by SYRINGE. The Disassembler is invoked only for

those cases where the target in question has not been analyzed previously; otherwise,

cached results are used by the Instrumenter for performance.

The Dynamic Checker is responsible for evaluating critical instructions according

to our control-flow integrity policy. It has an in-guest component, which implements

handlers for those critical instruction invocations that do not need to be handled

in the SVM. In-guest handling of critical instructions greatly favors performance in

comparison to out-of-guest handling, as it does not require VM switches. The in-

guest handlers are injected into the guest by SYRINGE and are write-protected with

support from the hypervisor. This protection is effective because in-guest handlers

do not require any persistent state to be maintained and are present only when a

monitoring thread is being executed. Thus, code write-protection suffices to ensure

their good behavior. The in-guest component is invoked by all critical instructions.

It determines the type of instruction by consulting the opcode table and whether the

instruction can be handled in-guest or not. If not, it generates a trap so that the

Dynamic Checker’s out-of-guest component can handle it.
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Direct CALL instructions do not need to be dynamically evaluated, but are instru-

mented nevertheless so that their targets can be properly scanned and instrumented

before execution is allowed to continue. This instrumentation is only needed until

the instruction’s first execution, however, and is then removed. They are handled

out-of-guest. The target of indirect CALLs must be evaluated dynamically, every ex-

ecution. The in-guest handler first determines if the computed target of the indirect

CALL has been analyzed before, by consulting an in-guest target table, maintained by

SYRINGE. This table is write-protected inside the guest. If so, then the target is

legitimate and execution is allowed to proceed. If not, the in-guest handler gener-

ates a trap and passes control to the out-of-guest handler. The later then applies

the following policy: the target must be located inside the authorized memory ranges

containing the whitelisted system code, as determined previously by the Page Verifier.

If this policy is satisfied, the target is added to the target table. The handling of all

CALL instructions (both direct and indirect) also includes adding the address of the

CALL to an in-guest call origin table. This table is also write-protected and is used

for the evaluation of RET instructions, explained later. Indirect JMP instructions are

handled exactly as described for indirect CALLs with the one following policy differ-

ence: their targets must be located inside the current module. The policies used for

indirect CALLs and JMPs can detect a large portion of attacks that rely on hooking [46]

function and code pointers to hijack control-flow.

All RET instructions are handled in-guest, except for the last one. The handler

evaluates the RET by comparing its target against all the addresses contained in the

call origin table. The RET is considered legitimate if a match is found. This model

differs from a shadow stack in that, for a particular RET, the address of its originating

CALL is not necessarily at the top of the stack. As a result, our model allows a

RET to return to the origin point of any CALLs that were executed previously by the

monitoring thread. A complete shadow stack implementation would require the RET
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in-guest handler to have write access to the call-origin table, and thus open way to

attacks. Thus, we decided against it. Despite not being ideal, the number of allowed

return targets is significantly constrained so we believe that this policy is powerful

enough to detect most return address manipulation attacks such as return-oriented

programming [47, 89].

Localized shepherding must also ensure that the monitoring thread is executed

atomically. As described in Section 4.3.3, FCI clears the IF flag in the VCPU’s

EFLAGS register, thereby ensuring that the monitoring thread will start executing

with interrupts disabled. Localized shepherding must ensure that they remain dis-

abled throughout its entire execution. The Instrumenter patches another set of critical

instructions that can affect atomic execution, and are shown in the bottom part of

Table 4. Instructions CLI and STI are commonly used in OSes to execute critical

code sections atomically by temporarily disabling interrupts. SYRINGE’s policy is

to simply skip these instructions. Thus, they are simply overwritten with a NOP by

the Instrumenter for the duration of the monitoring thread’s execution. All other

critical instructions are patched with INT3, and are handled in-guest by the Dynamic

Checker. The handler for POPF pops the stack into the guest’s EFLAGS and clears the

IF and TF flags. SYRINGE ensures that hardware debugging and instruction trac-

ing facilities remain disabled by handling instructions WRMSR, when the destination

is MSRs IA32 DEBUGCTL or IA32 PERF GLOBAL CTR; and MOV, when the destination is

the CPU debugging control register DR7. Bits 1 and 8 are cleared in IA32 DEBUGCTL;

bits 0, 1, 32–34 in IA32 PERF GLOBAL CTR; and bits 0–9, 13 in DR7.

With regard to multiprocessing, our assumption that the GVM has just one VCPU

guarantees that simultaneous code execution in other CPUs is not an issue.

When the monitoring thread finishes executing (i.e., executes the final RET instruc-

tion) and SYRINGE reassumes control, the guest is restored to its original state. At

this point, all patched critical instructions are un-patched and the IDT is restored
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to its original content. Likewise, if external interrupts were enabled when the GVM

was interrupted by the FCI component, they will again be enabled when the guest

is resumed. This localized, on-demand variant of shepherding satisfies our secure

monitoring properties while at the same time does not affect the guest’s normal per-

formance when monitoring operations are not being conducted.

Software exceptions present a challenge for localized shepherding. SYRINGE is

capable of shepherding exceptions that happen during the execution of the monitoring

thread, as long as these exceptions are handled synchronously. This shepherding is

done by installing a read-breakpoint in the memory page containing the IDT, so

that any attempts to access a descriptor (as should happen during an exception) are

trapped and transfer control to SYRINGE. From this point on, the process is the

same as the one described above for regular function call invocations.

Exceptions requiring asynchronous activity, such as I/O, cannot be shepherded

by SYRINGE. This is a fundamental limitation of SYRINGE. The page fault excep-

tion is an especially important case, given their common occurrence in modern OSes.

These are often triggered because the code to be executed has not yet been brought

to memory (on-demand paging) or has been paged out to disk previously. One op-

tion to deal with this problem is to call the guest OS function twice: first without

shepherding, to page-in the missing pages; and then with shepherding, to collect the

results. Another option is to use a function like nt!MmProbeAndLockPages in Win-

dows during SYRINGE’s initialization to ensure that sections of the virtual address

space (e.g., Windows’s NTOS) are entirely in RAM. Non-maskable interrupts (NMIs)

are not handled, since they usually indicate a fatal hardware error that would require

the GVM to be rebooted or restored to a previous snapshot.
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4.4 Implementation Details

SYRINGE was implemented as a Linux library using approximately 3,500 lines of

C and Python code. The function call injection component makes up one third of

the code, while the localized shepherding code is the rest. VMware’s ESX Server

4.1 was used as the hypervisor and VMware’s VMsafe was used as our introspec-

tion infrastructure [104]. VMsafe natively provides the introspection and breakpoint

functionality used by SYRINGE. Despite page-level breakpoints not being provided

by other open-source introspection infrastructures and hypervisors (such as XenAc-

cess [73]), we would like to emphasize that the mechanics of this technique are simple

and well understood and could therefore be incorporated into them.

When selecting injection contexts, we kept the following requirements in mind:

(1) the injection point cannot be maliciously tampered with or disabled, (2) it must

be placed in a location safe for calling OS API functions, (3) it must be triggered

frequently enough to minimize the injection delay and (4) it must not be easily circum-

vented. In our prototype, we chose the OS’s system call dispatcher as the injection

address for kernel functions, and we allow all processes running in the system to act

as surrogates. This choice satisfies the above requirements as follows: (1) it uses a

hypervisor-level guest-transparent breakpoint, which prevents its disabling by an at-

tacker. Requirements (2) and (3) are satisfied because the system call dispatcher has

natural role in the OS as a kernel entry-point, high-level routine dispatcher and is ex-

ecuted at every system call. Requirement (4) is satisfied by ensuring that the system

call dispatcher is executed whenever a system call is executed. This is possible, since

the address of the dispatcher is architecturally bound to the MSR SYSENTER EIP

register, which can be monitored for changes in runtime.

We selected as our return breakpoint address location the start of the .data

section of the kernel executive module (NTOS).
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4.5 Evaluation

We conducted a performance and security evaluation of SYRINGE. Our host machine

was an Intel Core i7 870 2.93GHz with 4 CPU cores, 8GB of RAM, running VMware

ESX Server 4.1. The GVM was configured with 1 VCPU, 1GB of RAM, running

Windows XP SP2. The SVM was configured with 1 VCPU, 1 GB of RAM, running

Linux CentOS 5.5.

4.5.1 Security

We now analyze and evaluate SYRINGE’s security properties. Again, SYRINGE’s

goal is not to to act as a general attack prevention system. Its goal is to be able to

tell, based on the localized shepherding of the monitoring thread, whether the results

returned by the invoked guest function can be trusted or not and notify the monitoring

application. So it is possible for an attacker to cause a monitoring DoS by repeatedly

attacking the monitoring thread, but not without SYRINGE knowing about it. At

this point, remediation rather than monitoring becomes the main concern.

SYRINGE applies a mixture of prevention and detection techniques against at-

tacks directed at itself and the monitoring thread.

4.5.1.1 Attacks against SYRINGE’s components

Attacks against the monitoring application and SYRINGE’s out-of-guest components

are prevented by the isolation between the GVM and SVM. In-guest components are

protected as follows. For FCI, the injection and return breakpoints cannot be tam-

pered with or disabled, since they operate at the hypervisor level. Our choice of injec-

tion context (the system call dispatcher), combined with the continuous monitoring

of the MSR SYSENTER EIP register, ensure that it cannot be easily circumvented.

For localized shepherding, several components are involved. The INT3 instru-

mentation used to trap on critical instructions is protected by the write-protection
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of guest code, which prevents the guest from modifying pages containing code be-

ing shepherded. This INT3 relies on the guest’s IDT to pass control to the dynamic

checker’s in-guest component. The IDT is write-protected from inside the hypervisor,

preventing any modifications from inside the guest. The dynamic checker’s in-guest

component consists of a code segment and three tables: the call origin table, the

opcode table and the target table. All three tables are write-protected, and can only

updated by SYRINGE’s out-of-guest components in the SVM. Since the code does

not rely on any data maintained by the guest OS (only the three tables) and does

not itself maintain any persistent data across dynamic checker invocations, write-

protecting its code is enough to protect it against attacks. It is conceivable that an

attacker could attempt to modify guest page table mappings so that invocations to

the in-guest dynamic checker could fail. While this attack is possible, the memory

pages containing the dynamic checker and the three tables are locked in memory and

its corresponding mappings are constantly monitored by SYRINGE. Any changes to

these mappings, being unexpected, are interpreted as an attack and the monitoring

application is notified.

4.5.1.2 Attacks against the monitoring thread

SYRINGE’s localized shepherding guards the monitoring thread against attacks using

a combination of prevention and detection techniques.

Attacks attempting to patch the guest code cannot succeed given that, before

being executed, all code is checked by the Page Verifier against the binary whitelist

database and then write-protected. This step occurs atomically to eliminate the

possibility of a time-of-check-time-of-use race condition, where the code could be

modified after being checked and before being write-protected.
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Table 5: Security evaluation results. SYRINGE was able to detect all the attacks
and notify the monitoring application.

Attack Target Result

Code Patching nt!ZwQueryInformationProcess Detected by Page Verifier

Hooking KeServiceDescriptorTable[] Detected by Dynamic Checker

Return-into-libc Return address on stack Detected by Dynamic Checker

Indirect control-flow instructions are patched by the Instrumenter and are evalu-

ated dynamically. Attacks directed at these instructions have their power severely re-

stricted by SYRINGE’s control-flow integrity policy. Function pointers cannot point

anywhere outside whitelisted code, indirect jumps cannot point anywhere outside

their own module and function returns must target the instruction following a CALL

executed previously in the monitoring thread . This policy greatly restricts the effec-

tiveness of function pointer hooking, which in most cases rely on injected code; and

jump-oriented [14, 20] and return-oriented programming [47, 89], which need access

to a large code base to extract a good variety of gadgets. More fine-grained policies

can be integrated into SYRINGE by using techniques such as alias analysis.

To empirically validate our claims above, we simulated one code patching, one

hooking and one return-into-libc attack. Results are show in Table 5. A function

call to ZwQueryInformationProcess was injected and then shepherded. The first at-

tack patched function ZwQueryInformationProcess’s code, and was detected by SY-

RINGE’s Page Verifier, which is responsible for checking the integrity of code sections

before they are executed. Hooking was performed on the system service descriptor

table, on the entry corresponding to the NtQueryInformationProcess system call.

Since the hooked address is used by an indirect function call instruction inside the

system call dispatcher, it was trapped and evaluated by the Dynamic Checker, which

detected the attack, since the address pointed to injected code. Return-into-libc was

also detected by the Dynamic Checker, when it could not find the function’s return
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destination in the call origin table, indicating that it had been modified.

The atomicity property enforced by SYRINGE makes it difficult for attacks to

tamper with the monitoring thread’s temporary state in the stack or heap. This

state is only valid during the time when the monitoring thread is executing, and we

can be sure that no other (potentially malicious) thread will be running during that

time, and thus cannot directly tamper with it. The only way to do so would be to

exploit a software vulnerability, such as a stack or heap overflow, in the shepherded

code, so that the monitoring thread itself does the tampering. This could be difficult

however, given that the arguments passed to the top-level function in the monitoring

thread are controlled by SYRINGE. The attack would have to rely on modified global

OS data that the target code relies on, and be careful so as to not affect control-flow.

4.5.2 Performance

In this section, we investigate the performance of the two building blocks of SY-

RINGE: function call injection and localized shepherding. In all cases, the reported

results are wall-clock times, derived from the division of the host CPU timestamp

counter (TSC, accessed by the rdtsc instruction) by the clock frequency. Care was

taken to ensure that the accessed TSC was not virtualized, that its frequency did not

vary, and that its value was synchronized across CPU cores. In all experiments, five

samples were taken for each measurement and the average was used.

Function call injection was evaluated by injecting a function call to a Windows

kernel function and measuring the time between when the injection starts and the

target guest function starts running (steps 2–4 in Figure 8). For this experiment, no

parameters were passed to the function. The entire operation, consisting of elemen-

tary CPU and memory introspection operations, followed by a VM switch into the

guest, consumed an average of 0.7ms, with a very low variance. We also measured

the triggering delay for our selected injection context, the OS system call dispatcher.
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Figure 10: Shepherding execution time breakdown for the Windows executive’s
ZwQuerySystemInformation function, when used for a common monitoring task:
obtain the list of active modules in the guest. In the scanning phase represented
above, 3163 bytes of code were disassembled by the Disassembler and 12 4KB code
pages were verified and write-protected by the Page Verifier. In the instrumenting
phase, 53 critical instructions and 23 direct calls were patched/unpatched by the In-
strumenter. Finally, in the dynamic checking phase, 17 critical instruction executions
and 9 direct calls were handled by the out-of-guest Dynamic Checker and 316 critical
instructions executions were handled by the in-guest Dynamic Checker.

This delay indicates the amount of time that a monitoring application has to wait

between its request for a function call to be injected and the moment when it is ac-

tually injected. As expected, results varied widely, ranging from a minimum of 18ms

to a maximum of 51ms, averaging at 33ms out 10 samples taken. We consider this

number to be acceptable for most monitoring applications, indicating that the system

call dispatcher satisfies the execution frequency requirement for an injection context.

This frequency is expected to vary, however, depending on the nature and intensity

of the workload being run inside the GVM.

Localized shepherding was evaluated by injecting a function call to a guest OS

function and measuring the execution time consumed by each shepherding compo-

nent. Performance measurements corresponding to the run with the median execu-

tion time and other shepherding statistics are shown in Figure 10. For this exper-

iment, we selected a function from the Windows kernel executive commonly used
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for monitoring: ZwQuerySystemInformation. This function is a wrapper for the

NtQuerySystemInformation system call, which itself is a function that, in Windows

XP, may call any of over 60 other functions that process and return a wide variety of

system information and statistics. This makes ZwQuerySystemInformation an ideal

candidate for evaluating SYRINGE’s performance.

The scanning and instrumenting phases were consumed by inter-VM page copy-

ing operations that VMsafe uses for memory introspection. Performance could be

improved by using sharing-based introspection such as used by XenAccess. The dy-

namic checking phase used about 50% of the total execution time, as shown in Fig-

ure 10, totaling 28.5ms. This time is almost entirely consumed by context switches

between the SVM and the GVM for critical instructions that need to be handled

out-of-guest, and first-time execution of direct calls, which are also handled out-of-

guest. Considering that these 28.5ms correspond to just 17 critical instructions and 9

direct calls being handled out-of-guest (out of 325), averaging 0.91ms per instruction,

the importance of in-guest handling cannot be overemphasized. If we were to han-

dle all critical instructions out-of-guest, the execution overhead created would make

SYRINGE impractical for use in any virtualized environment. Of the 17 instructions

handled out-of-guest, 1 was an indirect call executed by the system call dispatcher

and 16 were indirect jumps triggered by two different instructions. These 17 execu-

tions were handled out-of-guest because the in-guest Dynamic Checker, by consulting

the in-guest target table, determined that their targets were being reached for the

first time and so needed to be analyzed and instrumented by SYRINGE. These were

included in the target table to indicate that all future indirect CALLs and JMPs in-

structions targeted at those addresses could be handled in-guest. This allowed the

following 88 executions of these instructions to be analyzed in-guest. Direct and indi-

rect CALL instructions, in their first execution (which has to be handled out-of-guest),
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also have the in-guest call origin table updated, so that RET instructions can be eval-

uated in-guest. In our example, 211 RET instructions were executed and handled

in-guest. The execution of the actual guest code consumes an insignificant amount

of time when compared to shepherding, and is therefore not shown in Figure 10.

4.6 Monitoring Application

After measuring the performance of its individual components and its security proper-

ties, we evaluated SYRINGE in the context of a rudimentary monitoring application.

This application, named SYRMod, uses SYRINGE to periodically obtain a list of the

user and kernel modules loaded in the current process’ address space. The calling in-

terval can be defined by the applications’s user. This module list is obtained by inject-

ing a call to and shepherding guest OS kernel function ZwQuerySystemInformation.

This is a generic wrapper function that can be used to extract information from a

Windows system.

Despite the simplicity of this application, it serves to illustrate the interface ex-

posed by SYRINGE to higher-level applications. It also helps us to gain better insight

into how SYRINGE impacts the guest OS’s overall performance. The code excerpt

below shows how SYRMod uses SYRINGE to invoke ZwQuerySystemInformation in

the guest.

1: res = VmCallGuestFunction(ntos_base + 0x26ff8,

2: "nt!ZwQuerySystemInformation",

3: _callback_app_generic, TRUE, 4,

4: 4, VAL, 0xb,

5: 4, VAL, &appbuf,

6: 4, VAL, 0x8000,

7: 4, STACKREF, &size);

Line 1 specifies the function address as an offset from NTOS’s base address, line

2 specifies the function name, line 3 specifies the callback to be used, a boolean
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indicating that the function should be shepherded, and the number of arguments.

Lines 4–7 specify the arguments, with each line specifying the argument’s size, its

evaluation semantics and the argument itself. Callback activation and function result

fetching are transparently handled by SYRINGE.

After ZwQuerySystemInformation returns, SYRMod is notified by SYRINGE.

SYRMod then uses regular introspection to retrieve the results from the guest OS’s

memory, parsing and printing the list of modules to the SVM’s standard output. A

sample of this output is shown below. For space reasons, we show only its first few

lines. The complete list’s correctness was verified.

Calling nt!ZwQuerySystemInformation

...

Callback invoked for nt!ZwQuerySystemInformation

Return value: 0

Number of modules: 102

\WINDOWS\system32\ntkrnlpa.exe

Base address: 804d7000

Size: 001f6280

\WINDOWS\system32\hal.dll

Base address: 806ce000

Size: 00020380

...

No security alerts were raised during the shepherding phase, indicating that no

integrity violations were detected with the code’s execution, and that the results (the

module listing, in this case) can be trusted. This example illustrates how SYRINGE

can be used to monitor parts of the GVM’s state with security and robustness, as

required.
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Figure 11: Normalized execution time for the decompression of the Linux ker-
nel source code tree in the GVM. The interval between successive calls to
ZwQuerySystemInformation is varied.

We next evaluated SYRMod’s performance impact on the guest. We varied the

time interval between successive callings of ZwQuerySystemInformation and mea-

sured the time taken inside the guest to decompress the 2.6.33.7 Linux kernel source

tree, a 64MB .tar.bz2 file. The performance penalty comes from the suspension

of all guest activity when the monitoring thread is running. Results show that, for

a calling period of 1 second, the measured overhead is 8% (Figure 11). This period

is obviously dependent on the nature of the monitoring application and the type of

information being retrieved, so it is difficult to generalize these results. We believe,

however, that for many monitoring applications, a 1 second period is considered low

enough so that our results indicate an acceptable performance penalty.

4.7 Discussion

The techniques used by SYRINGE have limitations. Perhaps the most noticeable one

is SYRINGE’s intrinsic inability to shepherd the complete execution of certain op-

erations. Specifically, operations involving any type of asynchronous code execution,

such as reading a file from disk, cannot be shepherded by SYRINGE. This limitation
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is inherent to the shepherding technique. We do not see it as a deal-breaker, though,

since I/O and asynchronous primitives (e.g., deferred procedure calls) are not com-

monly used by information querying functions, such as ZwQuerySystemInformation.

In the near future, we plan to expand our evaluation to demonstrate how SYRINGE

can be used to build a full-fledged VM monitoring application, calling guest functions

other than ZwQuerySystemInformation.

The handling of page fault exceptions, which are very common in Windows and

triggered by on-demand paging, is also affected by this problem. In this case, our

current solution relies on first performing a non-shepherded call injection to the target

guest function so that all necessary pages can be swapped in, and then following

it with a shepherded call injection. Attacks targeting the non-shepherded call, for

instance, by modifying the code read from disk, would later be detected during the

shepherded call.

The effect of guest OS internal synchronization mechanisms can also be problem-

atic for SYRINGE. Due to the disabling of interrupts, it is possible for the shepherded

code to be blocked indefinitely by a spinlock or a semaphore taken by another thread,

creating a deadlock situation. In our tests we only rarely came across such a situa-

tion, but a more careful investigation on how to prevent and detect such occurrences is

needed. One possible solution would be to embed specific knowledge of guest OS syn-

chronization primitives into the shepherding algorithm with the goal of determining

whether the execution is stalled or not. If affirmative, shepherding can be disabled,

the execution allowed to continue, and the monitoring application can be notified of

the problem and choose to re-invoke the function at a later time.

We did not discuss function call injection and shepherding for user-space functions

due to the difficulty of finding user-space injection contexts that cannot be easily

circumvented or disabled by an attacker (for instance, by terminating the surrogate

process). Aside from this obstacle, however, user-space code can be invoked through
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function call injection and shepherded using the same techniques that we described

for kernel code. One necessary addition would be to shepherd the mode-switching

instructions that system call invocations rely on: SYSENTER and SYSEXIT on Intel

x86 CPUs for the most recent OSes. We plan to investigate methods that cannot be

easily circumvented for reliably injecting calls to guest user-space functions.

Due to SYRINGE’s reliance on guest OS’s functions, it could be argued that its

monitoring capabilities are not as powerful as those of regular memory introspection.

The first is restricted to the results returned by a finite set of guest OS functions,

while the second can in principle retrieve any information from the guest’s memory.

This argument assumes that SYRINGE aims to completely replace regular introspec-

tion, which is not true. We envision SYRINGE as an information extraction tool

that, due to its resilience to the semantic gap, can be used to aid many uses of reg-

ular introspection. For example, given a process base image file name, a monitoring

application can use SYRINGE to determine the process’ base address in memory by

using guest kernel functions PsGetCurrentProcessImageFileName, to identify the

correct process control block; PsGetCurrentProcess, to get the control block’s ad-

dress and PsGetProcessSectionBaseAddress to extract the process’ base address

from it. Using the result, the monitoring application can then use regular memory

introspection to inspect the process’s code.

Finally, the control-flow integrity policy used by SYRINGE’s shepherding for indi-

rect control flow transfers is generous. For instance, it will allow indirect calls to any

target situated anywhere inside the whitelisted code. Still, this policy is sufficient to

block kernel injected-code attacks, which is the most common type. A more precise

policy could be constructed by using techniques such as points-to analysis to derive

a smaller set of possible destinations for indirect control flow transfers and include

that knowledge in the dynamic checker’s policy [16].

76



4.8 Summary

In this chapter we proposed a secure and robust infrastructure for passive monitoring

of virtual machines. SYRINGE leverages the guest’s own code, thus overcoming the

semantic gap inherent to introspection and achieving good robustness. Security is

achieved by removing the monitoring application from the guest through function call

injection and verifying the execution of the guest code using localized shepherding. We

have implemented SYRINGE using the VMsafe introspection API to monitor a guest

OS running Windows XP. We evaluated the performance and security of SYRINGE,

showing that all simulated attacks were detected. Finally, we built and demonstrated

a prototype application, SYRMod, which uses SYRINGE to periodically obtain the

list of loaded guest modules. SYRMod showed that for a calling interval of 1 second,

the performance overhead imposed by our system is 8%.
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CHAPTER V

SECURE DATA-DRIVEN ACTIVE MONITORING OF

GUEST OPERATING SYSTEMS

5.1 Motivation

Although passive security monitoring is effective at detecting certain classes of at-

tacks, it cannot by itself be considered a complete security solution. First, it is

mostly limited to detecting attacks which have already happened and not prevent-

ing them. Second, it is incapable of detecting attacks that are transient in nature

if the scanning period is higher than the attack’s lifetime. For these reasons, active

monitoring of events is considered an important part of security applications, such as

anti-virus tools.

Active security monitoring works by intercepting certain types of events as they

happen, for instance, by diverting code execution flow, and analyzing their execution

context. This information can then be used to decide on a response action, for

instance, allowing the event to proceed, blocking it, or raising a security alert. One

common example is file creation: anti-virus tools commonly hook the OS filesystem

code so that they can be notified when a file is being created, and analyze the contents

of that file for known malware signatures.

Traditional active monitoring is done by placing code execution hooks at strate-

gic points inside the operating system and having them redirect control-flow into a

monitoring agent that resides inside the monitored system. These hooks can be im-

plemented through a variety of techniques, such as dynamically patching in-memory

code or modifying control-related data, such as function pointers. The agent can be

deployed as a kernel driver, a user-space process or a combination of both.
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This architecture presents two major problems. First, as discussed previously,

the monitoring agent can be tampered with or disabled. Second, the technique of

relying on code execution traps to intercept events is vulnerable to circumvention by

malware. Even if the hooks themselves can be protected in memory [74], malware

can circumvent them by simply copying the hooked code, removing the hook and

execution the code, or directly invoking the non-hooked lower-level functions [98]. In

the extreme case, sophisticated malware can choose to simply not invoke any code

and directly modify the kernel data objects to mimic the execution of the intended

event. In this case, no amount of code execution hooks would prevent circumvention.

We identify these as being the two major security problems with modern secure active

monitoring.

In this chapter we present the Data Access Reporting Platform (DARP) as a

solution to these problems. DARP solves the first problem by leveraging the basic

introspection technique of removing the monitoring application from inside the mon-

itored OS, and placing it in a separate, trusted virtual machine. Second, and most

importantly, DARP makes use of a novel virtualization-based data-oriented event in-

terception primitive: data access hooks. This primitive works by intercepting low-level

write operations to monitored regions of guest memory. DARP translates these op-

erations into syntactic-level kernel object events, thus partially bridging the semantic

gap. It presents this syntactic view to active monitoring applications, who can use it

to infer higher-level events.

The benefit of this data-oriented approach relies on the insight that a very large

number of code execution paths (or even none) can be used to process an event,

and the difficulty of insuring that all of these paths will be hooked explains how

code hooks can be easily circumvented. All these execution paths, however, produce

the same end-result: a specific pattern of data object modifications. Therefore, by

monitoring data modifications instead of code execution to infer events, and taking
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certain additional precautions, we argue that it is possible for a security application

to greatly reduce the risk of active monitoring being circumvented by malware. The

obvious downside to this approach when compared to code execution hooks is the

substantial increase in the number of trapped operations. DARP makes uses of several

optimizations to amortize the volume and cost of data write interceptions.

This chapter also presents a monitoring application that uses DARP to monitor a

very common type of OS event: file opening. Our application uses DARP to monitor

the creation of certain kernel object and translates these into high-level file open

events.

5.2 Previous Approaches

Active monitoring of application and operating system events has always played a

prominent role with security monitoring solutions. All of the top anti-virus products

perform system-wide active monitoring to prevent or detect malware infections [101,

62, 53, 65]. Host-based intrusion detection systems (IDS) have also traditionally

relied on active monitoring to implement techniques such as online/offline analysis of

system call execution patterns [45, 36, 37, 93, 80].

These systems suffer from serious security limitations by first, not taking any

measures to protect the monitoring application; and second, relying on code execution

hooks to intercept events. The first allows malware to tamper with or disable the

monitoring application while the second allows it to evade the active monitoring.

Recent research has tried to address the first issue by leveraging virtualization to

isolate and protect the monitoring application. Lares places the monitoring applica-

tion in a trusted security VM, from which the untrusted guest VM is monitored [74].

Events are captured through in-guest memory-protected code hooks and forwarded

by the hypervisor to the security VM. SIM goes a step further by allowing the se-

curity application to stay in-guest and protecting it through the use of additional
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hypervisor-enforced guest address spaces [90]. Despite its advances, both of these

systems rely on code execution hooks and therefore can be circumvented.

Other works adopt an architectural approach to monitoring certain types of guest

events. Antfarm, for instance, does not rely on any in-guest components, instead

monitoring low-level architectural events from inside the hypervisor [51]. One of these

events, the address space switch (load CR3), can be used to monitor the creation,

destruction and scheduling of processes in the guest VM. VMScope records all system

calls executed in a honeypot environment by using an emulator to intercept CPU

instructions associated with their invocation [49]. Patagonix monitors code execution

inside the guest VM [59] by relying on the hypervisor’s memory virtualization. It

intercepts code execution events and verifies the memory pages containing the code

by comparing them with a whitelist. This type of monitoring is sometimes referred to

as architectural introspection and presents a relatively low risk of circumvention, given

the level at which the monitoring is performed. Its disadvantage is that it cannot be

generalized to other types of high-level events: only those that have a corresponding

low-level architectural equivalent.

More recently, Srinivasan et al. proposed a scheme for relocating suspect processes

from the guest VM to the security VM, while still having it interact with the guest’s

kernel [95]. This approach is limited to the monitoring of a single process and does not

support system-wide monitoring, as is commonly required by security applications.

Finally, a significant body of research has been produced on areas related to

fine-grained active monitoring of systems and applications for tasks such as dynamic

malware analysis [110, 70, 29] and inline reference monitoring [105, 1, 5, 33, 18, 24,

19, 6]. These works, despite also performing a certain type of active monitoring, have

assumptions, constraints and goals that are different from ours.
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Figure 12: A conceptual view of our solution’s architecture, with DARP’s high-level
components highlighted in grey.

5.3 The DARP Active Monitoring Infrastructure

5.3.1 Overview

The Data Access Reporting Platform (DARP) is a virtualization-based infrastructure

for general and secure active monitoring of virtual machines. DARP is used by active

monitoring applications running on a security VM to monitor events happening inside

an untrusted guest VM. Our infrastructure implements the idea of data access hooks,

which are basically a trapping mechanism that is triggered whenever data is modified

at certain regions of guest memory. DARP leverages this idea to monitor changes

made to parts of the guest kernel’s object graph, and reports those object events to

the monitoring application, which can then use them to infer high-level system events.

DARP is composed of two high-level modules (Figure 12): a memory access in-

terceptor, responsible for intercepting memory writes targeting objects belonging to

monitored types; and an object tracker, responsible for converting memory access

events into object events, and sending them to the monitoring application.

Object accesses occurring inside the guest VM are trapped by the memory access

interceptor running inside the hypervisor. This component leverages the hypervisor’s

control over a VM’s memory to write-protect the guest pages containing monitored

objects. We refer to monitored regions of guest memory as watches. Watch cre-

ation/removal requests are sent by the object tracker component as changes are made

to the monitored object graph. At each memory write interception, DARP collects

information such as the target address and the contents of the write, and builds a
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memory access tuple containing this information. This tuple is then sent to the object

tracker.

The object tracker translates memory access tuples into syntactic-level kernel

object events. These represent the creation, deletion or modification of a kernel object

of a given type. This inference requires the tracker to maintain a shadow object graph

that mirrors the location, type and disposition of all guest objects currently being

monitored. Incoming tuples are processed against this shadow graph and changes

corresponding to the memory access are made. This processing often requires the

use of introspection to traverse new object hierarchies in the guest and may result in

multiple object events, as well as multiple watch creations and destructions. Once

the tracker finishes processing the access, it generates a list of all the object events

generated as a result and sends them to the monitoring application.

DARP provides applications with a general, data-driven, syntactic view of the

activity happening inside a VM. Given its focus on monitoring data rather than code

execution, DARP-based active monitoring is immune to most types of code hook

circumvention techniques. With additional security measures in place, as discussed

in Section 5.6, we argue that DARP can withstand even the most advanced hook

circumvention techniques.

5.3.2 Assumptions

In DARP we make the same basic assumptions as other introspection works. Specifi-

cally, we assume that the hypervisor and the security VM are trusted and constitute

our system’s TCB. The guest VM is untrusted and may be under full control of

malware. We also assume access to the guest OS’s source code and detailed symbol

information. This data is used by DARP to obtain the structure of object types

and compute the target types for generic pointers, in a manner similar to the one

described in Chapter 3. We also assume the ability to perform a small number of
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Figure 13: DARP’s hypervisor-based memory interceptor monitoring a kernel object.
The nested page table (NPT) entries corresponding to the guest physical page and all
guest page tables (GPTs) used in the translation are marked as read-only. Changes
to any of these, including the guest CR3, trigger the memory interceptor.

changes to the guest OS kernel. Finally, we assume that DARP runs on a system that

supports Intel/AMD latest virtualization extensions, including hardware-supported

memory virtualization.

5.3.3 Memory Write Interception

The interception of memory writes constitutes the low-level foundation of our active

monitoring infrastructure. The component responsible for it is called memory in-

terception component. It interacts with higher-level components in two ways. First,

it receives tuples consisting of a guest virtual address and a size specified in bytes.

This tuple represent a guest virtual address range that DARP wants to monitor for
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changes, which we will refer to as a memory watch. Second, whenever a write op-

eration is intercepted, it sends to higher-level components an memory write tuple

representing the operation. It consists of a guest virtual address, a buffer containing

the data that was written and the size of the data. This interface is illustrated in

Figure 13.

The mechanics of memory write interception rely on the memory virtualization

performed by the hypervisor to isolate different VMs and virtualize their view of

memory. To achieve this, the hypervisor introduces an additional layer of indirection

in the address translation process, which we leverage to implement our interception

capabilities. A description of the most common memory virtualization techniques

used by hypervisors is given in Chapter 2. Given the increasing popularity of hard-

ware memory virtualization support and its advantages in terms of performance and

software complexity reduction, we have chosen to implement DARP’s memory inter-

ception on top of hardware-supported nested paging.

When using nested paging, guest memory management inside the hypervisor must

be done at the guest physical level. This contrasts with shadow paging, in which

hypervisor-based shadow page tables translate guest virtual addresses (GVA) directly

into machine physical addresses (MPA). Nested page tables translate guest physical

addresses (GPA) into machine physical addresses, and therefore have no knowledge of

a guest’s virtual address space and how it is mapped. Therefore, in order to protect a

guest virtual address range, the first step is to perform a guest page table walk in order

to determine the base GPA of the page containing the watch range. For simplicity, we

will assume that the range is contained inside a single 4KB page. This walk procedure

can be done using the hypervisor’s memory mapping capabilities. After the target

GPA is determined, the corresponding entry in the nested page table is marked as

read-only by clearing the entry’s write bit. This will effectively cause a hypervisor

exit every time the guest operating system writes anywhere in that physical page.
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This is not ideal, since not only the writes targeting the watch range (which may

be very small) but the entire page will cause a hypervisor exit. Unfortunately, the

current Intel x86 CPU architecture limits the memory protection granularity to a

single-page, or 4KB.

When a DARP-caused hypervisor exit happens, DARP first emulates the trapped

instruction from inside the hypervisor. This is necessary so that the guest’s virtual

processor can be resumed at the next instruction. Then, DARP reads the faulting

GPA from the structure containing information regarding the hypervisor exit and

determines whether the address range affected by the write operation intersects with

any region of virtual memory that is currently being watched. In such case, it con-

structs a memory access tuple containing the GVA of the accessed memory watch,

the new data that was written, and invokes DARP’s object tracking component to

process it. Finally, the interrupted virtual processor is resumed.

The procedure described above assumes that the kernel guest virtual to physical

mapping is fixed for all virtual address spaces active inside the guest. This is clearly

not true, since the same virtual page may be mapped to different physical pages in

different address spaces and even in a single address space, the virtual to physical

mapping may change across time due to memory swapping. Malware could also sim-

ulate a page swap to evade DARP’s monitoring. It is interesting to observe that these

difficulties are present with nested paging, but not with shadow paging. As a result,

in order to effectively monitor all accesses targeting a certain guest virtual memory

region, all the guest page table entries involved in translating the region’s virtual

addresses in all the guest’s currently active address spaces need to be monitored. The

mechanics through which this is done resembles a lightweight version of the shadow

paging algorithm. First, we trap all address space switches, which in the Intel x86

architecture is done by writing to the CR3 register. Second, for each active address

space, we perform a guest page table walk to determine the GPAs of all page table

86



entries involved in translating the virtual address range, as well as the data page

itself. We install special watches in all these page table entries, so that DARP can be

notified whenever these entries are modified. When this happens, DARP recomputes

the target of the PTE and adjust all PTE and data memory protections accordingly

to reflect the change.

A legitimate concern is whether the performance benefits of nested paging are

nullified by the lightweight shadow paging performed by DARP. This is not the case,

since DARP only traps write operations targeting PTEs related to active memory

watches, whereas shadow paging does it for all PTEs in all page tables. Its per-

formance overhead is thus only a fraction of that present with traditional shadow

paging.

5.3.4 Kernel Object Tracking

The DARP infrastructure, at its highest level, tracks the creation, deletion and modi-

fication of kernel objects. Below, it interacts with the memory interception component

by sending down sequences of memory watches that it wants to monitor, and receiving

memory write tuples. The object tracking component is responsible for translating

these low-level write operation into mid-level object events that it can then send to

the monitoring application. The monitoring application can then use these events to

infer high-level system events, such as process creation or file opening.

To track kernel objects, it is necessary for DARP to understand which object types

it has to monitor, the precise layout of these types, and how they can be located in

the kernel heap. The first information is provided by the application as a list of types,

and the second one as a list of object edges. Symbol files are located by DARP every

time a guest VM boots or a kernel module is loaded. On these events, a notification

is sent to the object tracker containing several key attributes of the loaded binary,

such as its size, checksum and timestamp. DARP can then use this information to
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locate the correct symbol file associated with the loaded binary.

Information regarding the location of objects in memory is given to DARP as a

sequence of edge tuples composed of a source field and a destination field. Each of

these fields refers to an actual kernel object field, the tuple thus representing an edge

in the kernel object graph. They encode the information required to locate a dynamic

object in the guest’s memory, starting from a static root, i.e., a global variable.

DARP’s object tracker uses this information to maintain a shadow object graph,

which represents a subgraph of the entire guest kernel object graph. This subgraph

contains not only the objects that the application wants to monitor, but also those

whose monitoring is required in the manner specified by the edge tuples. The ob-

ject tracker translates memory event notifications into shadow graph object events.

These operations may include the creation and/or destruction of objects. When this

happens, the monitoring application needs to be notified and the shadow graph be

updated. These updates are then reflected down to the memory interception com-

ponent as a sequence of memory watch creation and removal operations, depending

on which objects were created and which were removed from the shadow graph. As

an aid to our object tracker, we modified the guest OS’s kernel to notify DARP of

all pool allocations and de-allocations related to the object types being monitored.

This allows the object tracking algorithm to be simplified with regard to knowing

when certain objects are not being used anymore and can be removed from the ob-

ject graph. In a typical scenario, a monitored edge field is written to and the write

notification is translated by the object tracker into a write to field F of object O.

The object tracker knows that this field is being monitored, and is a pointer to an

object of type T , which is also being monitored. If the new contents of the field are

different from the old contents, a change to the graph is being made. In this case,

object T at location A is being replaced by another object of type T at location B.

One object-level operation can be inferred: the creation of TB. The removal of TA is
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Figure 14: Two DARP design alternatives were implemented, varying the location
of the object tracker.

inferred if/when a notification of removal of the kernel pool block containing TA is

received from the guest. Object events are sent to the monitoring application, and

memory watches are adjusted to reflect the addition/removal of objects.

In more complicated cases, the procedure described above can involve the traversal

of long chains of objects, including arrays and linked lists. DARP has special logic to

handle these structures.

5.4 Implementation Details

Our infrastructure was implemented in a Windows virtualized environment. The

DARP memory interception component was implemented inside Microsofts Hyper-

V, and directly leverages some its functionality, like page protection and instruction

emulation. The DARP application was implemented as a C++ program running in

the root partition, which runs Windows Server 2008 R2. The guest partition ran

Window 7 SP1.
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Two design alternatives were explored when implementing the object tracker. In

design 1 (Figure 14(a)), the object tracker was implemented as a DLL library, linked

to the application, running in the root’s user-space. In design 2 (Figure 14(b)),

the object tracker was implemented inside Hyper-V, co-located with the memory

interceptor. The reason for us choosing to implement these two versions was related

to the trade-offs involved in each. For instance, it is expected that design 1 should

be less efficient than design 2, given that messages will have to be sent from the

hypervisor all the way to user-space. On the other hand, design 1 should be more

reliable and secure than design 2, given that it does not add new (and potentially

vulnerable) code into the hypervisor. We discuss these trade-offs more extensively in

Section 5.7.

Communication between root user-space and the hypervisor is handled by a kernel

driver installed on the root partition. To send information down, our DARP driver

invokes a special DARP hypercall and passes arguments through a shared memory

buffer. Communication in the opposite direction is performed asynchronously. The

driver registers an IRQ on the root partition and communicates it to the hypervisor.

To send information, the hypervisor injects an interrupt into the root VM, whose

handler is implemented by the DARP driver. The handler copies the data from a

different shared memory buffer and passes it to user-space. Communication between

the driver and user-space is done through IOCTL calls.

The guest pool allocation/deallocation notifications were implemented by modify-

ing the Windows kernel’s main heap allocation functions: ExAllocatePoolWithTag

and ExFreePoolWithTag. A VMCALL instruction is executed by these functions in case

the tag associated with the pool block being allocated/freed matches any of certain

pre-determined tags. Malicious manipulation of pool blocks, pool tags or the VMCALL

invocation inside the guest will be detected by DARP, since it can detect if an object

does not fall inside a pool block or if its tag is not the expected one for that particular
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Figure 15: Abstract view of the NTFS object hierarchy being monitored for file open
events. The creation of CCB objects is interpreted as a file opening event. Additional
information about the file can be extracted from the corresponding FILE OBJECT.

object type. In such cases, the monitoring application can be alerted.

As a performance optimization, we further modified the kernel heap allocator so

that objects belonging to monitored types are allocated separately from all other

object in the kernel. A monitored object will not share the same page as a non-

monitored object. The goal here is to prevent unnecessary hypervisor exits, since

memory protection is enforced at the 4KB-page level on the x86 architecture. The

performance benefit of this optimization will be measured and discussed in Section 5.7.

5.5 Monitoring Application

We implemented a simple monitoring application to illustrate DARP’s active mon-

itoring capabilities, as well as to evaluate its high-level performance impact on the

monitored system. We derived the object edge and event tuples required to monitor

the creation and opening of files on a Windows 7 system. This choice was made due

to the importance of file access monitoring in modern anti-virus tools.

The first step towards building this application involved deriving which kernel

91



data structures are directly used by the guest OS to create/open files. Our study led

us to the OS’s filesystem driver, Ntfs.sys, and its internal data object hierarchy. The

NTFS driver implements the filesystem operations and is directly used by the kernel’s

executive (NTOS) to perform disk I/O. This driver creates a series of dynamic data

objects responsible for storing various types of metadata about opened files. One

of these objects, the NTFS Current Control Block (CCB), is created whenever a

file is opened. This may be a result from a file being created, or a pre-existing file

being opened. A CCB object contains a pointer to an object of type FILE OBJECT.

This object aggregates the file’s metadata and cached data, and can be used by an

application to derive additional information about the file. An abstracted version of

this object hierarchy is shown in Figure 15.

The set of rules is encoded within the application itself and passed down to

DARP’s object tracker, along with necessary symbol information that is automati-

cally extracted from symbol files. These rules focus on the monitoring of CCB objects,

along with all intermediary objects up to one or more static global variables. The

actual rules could not be listed here due to NDA restrictions regarding the Windows

source code.

Whenever DARP’s object tracker identifies the creation of a new CCB object

inside the NTFS module, it sends a message to the monitoring application consisting

of the name of the file and a pointer to its corresponding FILE OBJECT, both stored

as fields of the CCB. The FILE OBJECT pointer can be used by the application

to perform memory introspection on the guest and derive additional information

regarding the file. At this point, the application simply prints out the name of the

file being opened.

92



Data Object

1

2

3

4

CR3

Kernel code page Kernel data page

Guest page table1 1

System call
entry point

Interrupt
entry point

2

4

DARP memory
interception

Figure 16: Security analysis of DARP’s active monitoring, illustrating all major
OS components involved in an object write operation, along with possible points of
circumvention.

5.6 Security Analysis

A security analysis of DARP’s active monitoring techniques first requires identifying

all major guest OS components involved in an object write operation. These consist

of the address translation structures, kernel entry points, the kernel code and the

data objects themselves (Figure 16). Let us now assume that kernel event E involves

the modification of kernel data objects D(E). D(E) is encoded by the set of edge

and event rules passed down from the application to DARP. We define property P

as follows: if E occurs, all changes made to D(E) will be intercepted. DARP’s goal

is to implement P . In other words, there can be no possibility of circumvention by

an attacker who wants to trigger E without notifying the application. Enforcing this

property requires looking carefully at the guest kernel components shown in Figure

16.

At the level of address translation structures, it is possible for an attacker to

achieve circumvention be remapping code and/or data pages to his own code and
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data, which is not monitored. This can be done by directly modifying the existing

page tables or creating new ones and modifying the CR3 value (Figure 16-(1)). DARP

prevents this attack by monitoring guest page tables and CR3 switches in the manner

described in Section 5.3.3. Whenever an address space switch happens or changes are

made to guest page tables that affect DARP’s guest physical monitoring, memory

protections are automatically transferred from the old physical pages to the new

ones. The same level of protection can be achieved with kernel code by deploying any

of well-known code integrity techniques [87, 59, 81].

The kernel’s control-flow integrity could also be corrupted by an attacker so as

to divert the execution flow into his own malicious code, which in turn accesses non-

monitored data objects (Figure 16-(2)). For this reason, kernel CFI is a necessary

condition to prevent circumvention. We realize, however, that complete kernel CFI

is currently an unsolved research problem, and that a weaker form of code integrity

might suffice to thwart the vast majority of attacks. We propose that static code

integrity might suffice for DARP. This would still leave out control-flow data as an

attack target, but in order to successfully circumvent DARP’s monitoring without

compromising the stability of the operating system, an attacker would have to find

attack points that mediate all possible code execution paths that access the objects in

question. We think that the likelihood of this happening is low. Write-protecting the

kernel code also prevents attacks against static data references targeting global data,

which serves as a root to locate dynamic objects in the heap (Figure 16-(3)). Finally,

the CFI of kernel entry points (Figure 16-(4)) must also be considered, given that

a sophisticated attacker could simply replace the entire kernel executive, or specific

kernel drivers, with his own malicious versions. These entry points consist mainly of

the kernel system call dispatcher and the Interrupt Descriptor Table (IDT).

In summary, achieving property P requires (1) integrity of addressing structures,

(2) kernel control-flow integrity, (3) kernel static data access integrity and (4) kernel
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entry-point integrity. One might ask, if all these measures are in places, whether the

motivation still exists for DARP’s data access hooks and whether old-fashioned code

execution hooks would not do the job just as well, with significantly less performance

overhead. The answer is that measures (1 - 4) are a necessary, but not sufficient

condition for P and this can be shown through a counter-example. Assuming (1 - 4)

are in place, an attacker could still load a malicious driver and directly modify data

objects associated with a certain type of events without relying on any kernel code.

This would circumvent code execution hooks even if (1 - 4) are in place. Thus, DARP

is still required.

It should also be emphasized that in its role as a monitoring infrastructure, it

is not DARP’s responsibility to determine exactly which objects D(E) correspond

to event E. This is the task of the application, which will transmit this knowledge

to DARP in the form of the edge tuples. DARP will then ensure that all changes

performed to D(E) are intercepted and reported to the monitoring application. The

application developer must therefore ensure that it selects objects that are intrinsic to

the handling of E, and not simply objects used by the OS for bookkeeping purposes.

5.7 Evaluation

We performed a series of experiments to evaluate DARP’s performance and security

when being used by the monitoring application described in Section 5.5. Our physical

environment consisted of a PC based on an Intel Core i7 2.93 GHz CPU with 4 cores

and 8 GB of RAM, running Windows Server 2008 R2 and the Hyper-V hypervisor. We

tested a single guest VM running Windows 7 SP1 with 1GB of RAM. A description

of our experiments and results follows.

5.7.1 Performance

To evaluate the performance of DARP when being used by the security application,

we used the guest VM boot time as a macro-benchmark. Booting an operating system
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Figure 17: Time measurements for the guest VM boot process under five different
experimental configurations. With the baseline, no DARP is being used. With the
other four configurations, DARP is being used by our file monitoring application,
varying the design and whether object relocations are being used.

and starting its processes is a file-I/O intensive procedure, being a suitable candidate

to test the efficiency of our file monitoring application. We define boot time as the

elapsed amount of time from the moment when the VM is turned on to that when

the Windows 7 login prompt is shown.

In order to evaluate the relative efficiency of our two distinct design options, along

with the effects of our implemented guest-based object relocation, we conducted tests

with five different configurations. The first consists of the guest VM boot time without

any DARP kernel modifications or DARP monitoring being performed. We refer to

this configuration as our baseline. Two other configurations include DARP’s user-

space design, where the object tracker is implemented as a DLL in the root partition

(design 1), and the other two include DARP’s hypervisor-based design, where the

object tracker is inside the hypervisor (design 2). We tested each design with and
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Figure 18: Performance breakdown for the overhead introduced by DARP’s different
components when monitoring files opened during the guest VM boot assuming that
the object tracker is deployed inside the hypervisor.

without the object relocation optimization. Three measurements were performed for

each configuration and the median result was used.

Our results are shown in Figure 17. As expected, the performance advantages

of placing the object tracker inside the hypervisor, as opposed to root user-space,

are quite substantial. This design approach eliminates the need for DARP’s memory

interceptor to send a message to root user-space (an expensive operation) every time

that a monitored object field is modified, as occurs with design (1). Instead, with

design (2), a local function call is made. As a result, according to our measurements,

overhead reduces from 232% to 105% if relocations are not being used; or from 140%

to 48% if they are.

Relocating monitored guest objects to dedicated memory pages has also shown sig-

nificant contributions to performance. Doing so reduces the number of non-monitored

memory interceptions that happen when a non-monitored object resides in the same

memory page as a monitored one. For design (1), this optimization improves the

overhead from 232% to 140%; and for design (2), from 105% to 48%. The nature of

the performance gain obtained by using relocations is illustrated in Figure 18, which
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Figure 19: Measuring the performance effects of system-wide DARP-based file mon-
itoring on SPEC2006 benchmarks. We compare time measurements obtained from
running the benchmarks on our baseline configuration with our most efficient DARP
configuration—design (2) with relocations enabled.

shows the overhead breakdown for all the different DARP components involved in the

monitoring process for design (2). The overhead is clearly dominated by the handling

of non-watched memory writes when relocations are not being used. These 22.39 sec-

onds correspond to 5230569 occurrences, each consuming an average of 12542 CPU

cycles. In comparison, only 24543 watched memory write occurrences were recorded:

a mere 0.4% of the total. The use of relocations reduced the number of non-watched

memory writes to 1220179: a reduction of 77%. It should be observed that even in this

case, non-watched writes still dominate over watched writes with regard to frequency:

the later ones remain only 2% of the total. However, given the cost of each watched

write—846979 cycles in average—these dominate non-watched ones with respect to

time.

When combining object relocation with the use of an in-hypervisor object tracker,
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the total overhead imposed by DARP for monitoring file opening operations is reduced

from 232% to 48%: an improvement of 79%. This data emphasized the importance

of optimizations such as these for DARP’s performance and its applicability in the

real world.

In addition to using the guest OS boot time as a macro-benchmark, we also

measured how the system-wide DARP-based file monitoring implemented by our ap-

plication affects a set of standardized benchmarking applications. For this purpose,

we ran a subset of SPEC2006 on a guest system running nothing but default system

processes on the background. Our results are shown in Figure 19. They indicate a

much smaller overhead when compared to our previous VM boot experiment. This

can be expected, since SPEC2006 is primarily CPU-bound whereas VM boot is disk-

bound. We did, however, measure a slight increase when comparing baseline runs

with DARP runs of SPEC. The overhead can be attributed to a combination of file

activity being carried out by system processes as well as the processing of VM exits

caused by CR3 changes and handling of guest pool allocation/removal.

5.7.2 Security

We performed a security evaluation of DARP and our implemented file monitoring

application by testing its resilience to several circumvention techniques commonly

employed by malware. We selected three common hook evasion techniques: code

execution hook removal, system call interface bypass and high-level function bypass.

The first one simply overwrites the hook in memory (e.g., in the system call table),

effectively removing it [102]. The second relies on a kernel driver to received IOCTL

commands from a malicious process and directly invoke the system call handler, thus

bypassing any hooks that might have been place in the system call interface [98]. The

third applies the same technique, but one layer below, bypassing any hooks placed in

the system call handler or, for instance, on an Exported Addresses Table (EAT) of a
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Table 6: Results testing DARP’s resilience to several common hook circumvention
techniques used by malware, when monitoring file open operations.

Type of Circumvention Example Attacks Intercepted

Code execution hook removal Peligroso, DeepDoor [102] Yes
System call interface bypass Illusion [98] Yes
High-level function bypass Rustock [54] Yes

kernel driver [54].

For each case, we constructed an artificial attack for our Windows 7 VM based

on the published descriptions of each malware. These attacks do not implement the

full functionality of the malware, but the basic circumvention technique, according

to the descriptions. Each attack applies its corresponding evasion technique to the

task of doing an NTFS file open. For each case, we determined whether DARP was

able to intercept the file opening operation despite the attempt at circumvention.

The results are shown in Table 6. In all cases, DARP was able to intercept the file

opening operation.

5.8 Discussion

As shown by our evaluation results, DARP’s performance overhead is significant.

Despite very large improvements achieved through the use of relocation-based op-

timizations and a new design, the measured overhead is 48%. Nevertheless, our

performance analysis suggests several venues for further improving this number, pro-

vided that more aggressive changes are made to the guest operating system and the

underlying architecture.

A substantial part of the overhead comes from the handling of non-watched writes.

Our results show that, in the best scenario, 98% of all intercepted writes are non-

watched, and the time taken to handle each of those is dominated by the instruction
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emulator. One venue towards optimization is the reduction or elimination of non-

watched interceptions. These are a result of the way kernel objects are structured

combined with the effects of page-level granularity of memory access control on mod-

ern CPU architectures. Superfluous interceptions could be eliminated through one

of two possible ways: (1) CPU manufacturers including support for byte-granularity

memory access control; or (2) OS vendors partitioning kernel objects so that their

monitored fields are kept separate from non-monitored fields. There has been research

exploring the benefits of the second approach and its results are promising [96, 107].

Further performance improvements could likely be achieved by redesigning parts

of the OS data structure hierarchy to reduce the number of intermediary objects

between a global variable and a monitored object. In our experiments, for instance, a

considerable number of intermediary NTFS data structures in addition to CCB need

to be monitored due to the way in which the object hierarchy is structured. Reducing

the number of intermediary levels between the global variables and the CCB objects

would results in a reduced number of both watched and non-watched memory write

interceptions.

Surprisingly to us, the cost of hypervisor exits and entries is almost negligible when

compared to the cost of DARP’s internal components. The instruction emulator used

by DARP, for instance, averaged 11607 cycles per emulated instruction, 92.5% of the

total non-watched memory handling cost. On the other hand, the cost of a single

hypervisor exit entry in modern CPUs is on the order of hundreds of cycles [64].

DARP’s role as an infrastructure is to re-create the syntactic context of guest

kernel memory write operations, translating them into object events that can then

be used by a monitoring application to infer high-level events. This puts the burden

of bridging the gap between syntax and semantics on the application, and requires

access to the operating system’s source code: something that in many cases is simply

not available. One way of addressing this issue would be for OS vendors to provide
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and intermediary layer that sits between the application and DARP. This layer’s

responsibility would be to encode the rules for the most common types of events

monitored by certain classes of monitoring applications (such as AV tools), along

with context information associated with that event, and perform the syntactic-to-

semantic translation for the application. The application’s only responsibility would

then be interpreting and processing the high-level events that it receives.

5.9 Summary

In this chapter we proposed, evaluated and discussed a novel technique for secure

active monitoring of virtual machines. This technique is based on monitoring kernel

data modifications as opposed to hooking code execution, with the goal of reducing

the risk of circumvention. We proposed DARP, an active monitoring infrastructure

based on this technique. DARP monitors modifications to certain kernel object types

requested by a monitoring application and is able to automatically reconstruct the

syntactic context of each write operation without the need for in-guest monitoring

components. This information is sent to the application who can use it to infer

high-level guest OS events associated with those objects.

We implemented DARP using Hyper-V and Windows Server 2008 R2, running a

Windows 7 guest OS. We also implemented a prototype application for monitoring

file open events inside the guest. Our performance evaluation shows a 48% overhead

when measuring the guest VM boot time. Our mediation evaluation confirmed that

DARP was able to intercept all the file openings that happened during the VM’s boot

process.
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CHAPTER VI

CONCLUSIONS

6.1 Summary

Traditional security monitoring applications, such as anti-virus tools, suffer from iso-

lation and mediation problems. The first may result in the application or its trusted

computing base being compromised by malware. The second may impact the ap-

plication’s visibility of the monitored system’s state and compromise its ability to

identify security violations. As a result, the application’s effectiveness and therefore

the security of the monitored system may be endangered.

Full-system virtualization technology has been proposed as a solution to these

problems through a technique known as Virtual Machine Introspection. VMI lever-

ages the isolation and mediation capabilities of virtualization by relocating the secu-

rity application to a separate VM and using the hypervisor’s low-level view of guest

VM state and events. This low-level view creates, however, a challenging semantic gap

problem, forcing the application to make use of semantic view re-creation techniques

to reconstruct a meaningful, high-level view of the monitored system.

This dissertation has proposed a number of novel semantic view re-creation tech-

niques for passive and active monitoring, which can be used by introspection-based

monitoring applications. These techniques address several limitations of existing tech-

niques. Our contributions are summarized as follows.

First, we proposed a novel technique for syntactically re-creating a view of the

guest VM’s kernel heap state that can be used to perform certain types of integrity

checks. It applies a combination of static code analysis of the kernel’s source code and

dynamic memory analysis on its memory image, and is able to reconstruct a map of
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the guest OS’s dynamic kernel objects with near complete coverage and accuracy. We

created an infrastructure, called KOP, that implements this technique. KOP achieves

a level of coverage and accuracy of kernel object that far surpasses those of previous

solutions. Our key contribution over previous work is the accuracy and completeness

of our syntactic analysis, which translates into stronger monitoring capabilities for

integrity checking applications.

Second, we proposed a novel technique for secure and robust extraction of seman-

tically meaningful information from a guest OS by directly leveraging its kernel code.

Using a combination of virtual CPU introspection and dynamic code shepherding,

our implemented infrastructure, SYRINGE, enables monitoring applications residing

out-of-guest to invoke and shepherd in-guest functions. This technique relieves the

application from having to know details about the guest’s internal semantics, instead

relying on the guest’s own API functions to retrieve the information. Our key con-

tribution over previous work is the ability to overcome the semantic gap between the

monitoring application and the guest OS by relying on the guest’s own code, resulting

in better robustness for out-of-VM passive monitoring applications.

Third and last, we proposed a novel technique for bridging the semantic gap in

active monitoring of VMs in a manner that is completely out-of-VM and cannot be

easily circumvented. Our implemented infrastructure, DARP, leverages virtualiza-

tion’s control of guest memory to intercept kernel object modifications rather than

code execution. By doing so, DARP eliminates the need for in-guest components and

their shortcomings, significantly reducing the risk of circumvention. DARP presents a

view of object events at the syntactic level to monitoring applications, which can use

them to infer high-level events. Our key contribution over previous work is the ability

to monitor high-level operating system events without having to rely on any in-guest

components and with strong guarantees against the circumvention of our hooks.
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6.2 Opportunities for Future Work

There remains significant room for improvement on the techniques proposed in this

thesis. More importantly, the emergence of new computing paradigms such as cloud

and mobile computing introduces new requirements and constraints that create en-

tirely new challenges within the scope of our work.

6.2.1 Monitor-aware Operating Systems

Despite several modern OSes being virtualization-aware, for instance, through the

use of para-virtualization and enlightenments, none of them were designed or imple-

mented with the expectation that they would be inspected by an out-of-VM moni-

toring application. This fact is the underlying cause of many of the functionality and

performance obstacles faced in our work. A very promising direction would involve

creating or retrofitting modern OSes with the awareness of external monitoring, mak-

ing the necessary design and implementation adjustments to reach this goal. In our

DARP work, we did this partially by modifying the OS allocator to place all moni-

tored object types in special memory pages, and achieving a substantial performance

boost as a result. Further changes, however, can bring even more benefits.

6.2.2 Scalable Monitoring

Scalability has not played a significant role in our work, which has focused on VM

monitoring in a dual-VM setting. With the advent of cloud computing, however,

scalability becomes a primary concern. Modern clouds deploy tens or hundreds of

thousands of VMs spread along server farms with thousands of physical machines,

and all in principle need to be monitored. The techniques discussed in this disserta-

tion cannot be applied unaltered to each individual VM in such an environment, or

otherwise the bottlenecks created would create chaos. Research exploring the adap-

tation of our techniques to achieve scalability by leveraging distinct aspects of the

cloud, such as redundancy, elasticity and distribution, could be very promising.
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6.2.3 Cloud Security

Cloud computing introduces new trust relationships that create new challenges with

regard to the confidentiality, integrity and availability of computation. The mutu-

ally distrustful relationship between the cloud provider and its clients, and between

distinct clients, adds a new dimension to virtualization security, especially VM moni-

toring. For example, a cloud provider cannot be allowed to snoop into a client’s data

inside a VM. At the same time, however, we do want a monitoring infrastructure to

be in place so that the client himself, or a third-party authorized by him, can monitor

the security of his VMs. Changes may need to be made to classic introspection tech-

niques to take this scenario into account. Also interesting is the related area of VM

integrity and resource attestation, i.e., allowing costumers to verify in a trustworthy

manner that a certain software stack is being used, and being given the agreed-upon

amount of resources by the cloud provider.

6.2.4 Lightweight Isolation

Full-system virtualization has been widely adopted by data centers and clouds due

to its resource consolidation, throughput and compatibility benefits. In the realm

of smartphones, tablets and desktops, however, these requirements come second to

others such as usability, responsiveness and resource consumption. In this case, a

full-fledged hypervisor may not be the ideal choice as an isolation mechanism. An

interesting research direction involves adapting the work presented here to frameworks

that provide more lightweight types of isolation, such as sandboxing, software fault

isolation and tiny hypervisors.

Tiny hypervisors support only a single VM (i.e., the host system itself) and treat

most events (such as I/O) as pass-through, resulting in a very small performance

impact. Security applications of such hypervisors include the protection of certain
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security-sensitive OS data, and the creation of a trusted path that a user can lever-

age to input secure sensitive information, like passwords, in face of a compromised

OS [112]. The transparent, low-impact nature of such tiny hypervisors, combined

with their potential security benefits, would make them an interesting addition to

desktop and mobile operating systems.

6.3 Closing Remarks

This thesis addressed important research problems in the area of systems security

monitoring. Specifically, first we proposed, implemented and evaluated novel in-

frastructural techniques that improve the current state-of-the-art on semantic view

re-creation for passive and active monitoring of virtual machines. We dramatically

improved the coverage and accuracy of syntactic kernel heap state reconstruction,

improving the effectiveness of integrity checking applications. Second, we enabled se-

curity applications to extract semantically meaningful information from a monitored

OS in a secure and robust manner, by leveraging the OS’s own code. Third, we pro-

posed a novel, general technique for semantic view re-creation in active monitoring

of guest OSes that does not make monitoring applications prone to the same evasion

problems as with previous systems. These three contributions, together, constitute

an advance in the area of systems security monitoring. Open problems in the area

involve re-structuring modern OSes to better support external monitoring, as well

as the scalability, security and performance challenges presented by new computing

paradigms, such as cloud and mobile computing.
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