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SUMMARY 

 

 Systems in which there are strong specific interactions between the polymer and 

CO2 are of interest in a number of applications including polymer foaming, coating and 

impregnation. Unfortunately, experimental data on the phase behavior of such systems 

are relatively scarce, as are models that explicitly consider specific interactions in such 

systems. The overall goal of this work was therefore to develop a method for the 

measurement of specific interactions in polymer + CO2 systems and to apply such 

measurements to the development of a thermodynamic model for polymer solutions. 

 This work demonstrates that in situ ATR-FTIR spectroscopy may be used to 

quantify specific interactions in CO2 + polymer- systems that incorporate carbonyl, ether, 

siloxane and sulfone groups.  However, carbonyl stretching frequencies cannot be used to 

quantify such interactions between CO2 and carbonyl polymers, contrary to what has 

been suggested in the literature. This is because blue shifts in the carbonyl stretching 

frequencies were observed in the ATR-FTIR spectra of CO2 + PVAc, CO2 + PMMA, 

CO2 + PLA, and CO2 + PLGA85 systems. These CO2 induced blue shifts can be 

attributed to dielectric effects, and therefore cannot be used to quantify specific 

interactions in these systems. We propose the use of the temperature dependence of the 

CO2 bending mode to quantify specific interactions in CO2 + carbonyl polymers. With 

this method, the enthalpies of association for C=O…CO2 specific interactions were found 

to be between -7 and -10 kJ/mol in the order: CO2 + PVAc > CO2 + PCL ≈ CO2 + PLA 

> CO2 + PLGA85 > CO2 + PMMA. The method was also extended to other CO2 philic 



xxi 

 

polymers, leading to enthalpies of association in the order CO2 + PEG > CO2 + PVAc > 

CO2 + PSF > CO2 + PMSSQ >> CO2 + PVDF & PS. 

 Specific interactions in polymer + CO2systems were also investigated via NVT 

molecular dynamics simulations Such interactions were found to decrease in the order: 

2 2 2CO ...C-O-C  > CO ... O-C=O  > CO ...Si-O-Si . In addition, the association distance 

was identified to be 3.2 Å. Finally, CO2 accessibility was found to decrease in the order 

PVAc > PVMK > PLA > PMA. It was also confirmed that 96 % of associated CO2 

molecules interact with one carbonyl group in these systems. 

 A ternary extension of the Compressible Lattice Model (CLM) was developed 

and the enthalpy of specific interactions obtained from ATR-FTIR spectra was 

incorporated into the model to correlate and predict phase behavior in polymer + CO2 + 

cosolvent systems. This work shows that model parameters obtained from binary data can 

be used to predict ternary system behavior with average absolute deviations between 

calculated and experimental values (AAD) less than 10 %.   

 The Sanchez-Lacombe lattice-fluid partition function was extended to associated 

systems by incorporating an association factor obtained from the Compressible Lattice 

Model. The resulting Associated Lattice Fluid (ALF) EOS has the same form as the SL 

EOS, but includes the effects of specific interaction in the calculation of lattice energies, 

and chemical potentials. We demonstrate that ALF model parameters obtained from 

correlation of sorption equilibria can be used to predict swelling of polymers with AAD 

less than 10 %.   

.   
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 In summary, specific interactions between CO2 and C=O and other CO2-philic 

groups have been quantified using in situ ATR-FTIR spectroscopy. The results have been 

directly incorporated into a lattice model that is able to correlate cloud points, and 

sorption equilibria, using a single parameter. The model is therefore likely to be 

beneficial in many applications involving polymer + CO2 or polymer + CO2 + cosolvent 

systems including polymer impregnation, coating, foaming, and polymer membranes for 

CO2 capture. An EOS formulation for the model has been derived for the calculation of 

swelling in these systems. 
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CHAPTER 1 

INTRODUCTION 

 

 CO2 is attracting considerable attention as a promising alternative to noxious 

organic solvents and chlorofluorocarbons in the processing of polymers. Due to its 

relatively low critical parameters (Tc = 31.1 ºC and Pc = 73.8 bar) and because it is non-

toxic, non-flammable, chemically inert, and inexpensive, supercritical CO2 has also 

shown considerable promise as a reaction medium for processing and modifying 

polymers [1-3]. The ability of CO2 to swell biocompatible polymers and lower their glass 

transition temperatures, thereby facilitating the diffusion of small drug molecules into 

such polymers, has also led to much interest in the use of CO2 in drug delivery 

applications [4-5]. In addition, the precipitation of polymer particles from supercritical 

CO2, and the coating of surfaces with fluoropolymer films deposited from supercritical 

CO2 solutions, have also proved to be of considerable practical interest [6-8]. An area of 

emerging interest is the use of polymeric membranes for CO2 separation from natural gas 

or flue gases [9]. In these applications,  the process path through single and two-phase 

regions of the polymer + CO2 phase diagram often determines the  morphological and 

physical-chemical characteristics of the product [10]. Ternary polymer + CO2 +cosolvent 

mixtures are of interest in processes in which an organic solvent is used to tune the 

solvating power of carbon dioxide. For example, Byun et al [11] reported that the cloud 

point pressure of polyε-caprolactone in CO2 could be lowered by about 1000 bar by 

adding the about the 15 wt% dimethylether (DME) as a cosolvent. Teranry polymer + 

CO2 + modifier mixtures are also of interest in determining  polymer plasticization by 
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CO2, which leads to low selectivity and short life span of polymer membranes. One 

strategy to overcome membrane plasticization is by the addition of modifiers or 

antiplasiticizers. Therefore, a systemic study of phase equilibrium and solubility in 

polymer + CO2 and polymer + CO2 + modifier (cosolvent or antiplasiticizer) is required 

for designing and understanding these polymer  processes. 

 The development of a model requires phase equilibrium data on the system of 

interest. Although some experimental data are available for polymer-CO2 systems [12], 

more data are needed for polymer processing applications. Compared with the cost of 

experiments, the development of thermodynamic models can be an inexpensive way to 

describe and predict phase equilibrium and solubility. Thermodynamic models include 

equations of state, such as the Sanchez-Lacombe (SL) and Statistical Association Fluid 

Theory (SAFT) equation, as well as activity coefficient models, such as the Flory-

Huggins equation. Obviously, model parameters should be related to solvent and polymer 

molecular structure and inter/intra-molecular interactions. A desirable model will contain 

a minimum number of fitted parameters obtained from direct information on molecular 

interactions in these systems. 

 Recent studies have shown that specific interactions between CO2 or CO2 + 

cosolvent and the polymer lead to electron donor-acceptor (EDA) complexes in systems 

containing Lewis acid groups (e.g. CO2) and Lewis base groups (e.g. carbonyl, C=O). 

These interactions have a dramatic effect on the phase behavior of mixtures [13]. 

Although CO2 + carbonyl polymers have been studied extensively, less is known about 

specific interactions between CO2 and polymers with other functional groups (e.g. ether 
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and fluorine), and between CO2 and cosolvents.  In addition, we need a general method to 

quantify these interactions, and to relate them to parameters of a model. 

 A thermodynamic model for associating polymer solutions based on lattice theory 

was recently proposed by Ozkan and Teja [13], and modified by Kasturirangan and Teja 

[14]. Their model accounts for specific solute-solvent complex formation in polymer-

CO2 solutions as well as the compressibility of the lattice. The model was used to 

calculate cloud point curves in polyacrylate + CO2 systems using two adjustable 

parameters. Agreement with experiment was within 2 % average absolute deviation [13] 

which is comparable to the performance of the SAFT EOS commonly used to represent 

such phase behavior. Kasturirangan and Teja [14] showed that the modified model is able 

to correlate experimental data both at high pressure range (cloud point) and low pressure 

range (sorption) well in CO2 + biopolymer systems. An additional advantage of their 

methodology is that one of their model parameters can be obtained from infrared 

spectroscopic (IR) measurements and quantifies the strength of specific interactions 

found in such systems. Therefore, only one fitting parameter is used in their model. 

However, the applicability of the above model to polymer + CO2 + cosolvent systems has 

not been established.  

 The overall goal of this work therefore is to develop a thermodynamics model 

with physical meaningful parameters that are quantitatively related to molecular 

interactions. In the present study, specific interactions between polymer and CO2 were 

studied experimentally (Chapter 3) and via molecular modeling (Chapter 4). A 

compressible lattice model for ternary system was developed, and used to correlate and 

predict cloud points curves for polymer + CO2 + cosolvent systems (Chapter 5). 
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Furthermore, the compressible lattice model was extended to an equation of state form, 

and used to correlate and predict of sorption and swelling (Chapter 6).  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

2.1.1 Polymer processing with supercritical fluids 

 Supercritical fluids (SCFs) have shown promise for a variety of processes and 

technologies [2, 15], because they exhibit properties of both gas and liquid phases. In 

particular, supercritical CO2 (scCO2)  is being considered for polymer processes, such as 

surface cleaning, foaming, polymer impregnation, particle formation and polymerization, 

(see Figure 2.1) [16-17]. Tomasko et al [2], Lora and Kikic [18], Nalawade et al [19] give 

an overview on the use of SCFs in polymer processing. As pointed out by Tomasko et al 

[2], thermodynamic phase equilibrium in polymer and SCF systems is one of key 

fundamentals to help us design and optimize these processes. However, the development 

of polymer processes with SCFs currently is hindered by the limitation that the available 

thermodynamic models are still not good enough to describe the unique characteristics of 

polymer in SCF solutions [12]. The challenge remains for developing a thermodynamic 

model to describe the polymer + SCF phase behaviors over a large range of temperature 

and pressure. 

2.1.2 Phase behavior of polymer + SCF systems 

 Polymers commonly show only limited solubility in SCF such as scCO2. Also, the 

solubility is a function of temperature, pressure, concentration and molecular weight and 

polydispersity of the polymer. The solubility of polymer + SCF systems is commonly  
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Figure 2.1 Interaction of SCFs with polymers 

Polymers/SCF 

Weak interactions Strong Interactions 

Precision cleaning 

Surface modification 

SCF in polymer Polymer in SCF 

Foaming 

Extraction 

Impregnation 

Coatings/paint 

Fractionation of polymer 

Removal of oligomers  

Plasticisation 

Crystallisation 

Swelling 



7 

 

represented as a p-T phase diagram. Although there are five basic types of binary phase 

diagrams as summarized by McHugh and Krukonis [20], polymer + SCF phase behavior 

can be commonly described by either Type-III or Type-IV diagram (see Figure 2.2). 

Figure 2.2 shows a typical p,T projection of a polymer + solvent or SCF phase diagram, 

also called cloud point graph, where the solid lines denote the transitions from a 

homogeneous solution (L) to a demixed system (LL) and to a vapor-liquid system (VL), 

respectively [21]. Many literature studies present such phase diagram for a fixed polymer 

concentration of 5 wt%. As shown in Figure 2.2, the UCST (Upper Critical Solution 

Temperature) curve has a (mostly) negative slope and depends only slightly on pressure; 

the LCST (Lower Critical Solution Temperature) curve is much more pressure dependent. 

With increasing differences in chemical nature and size of polymer and solvent, the 

homogeneous region L becomes smaller and is shifted to higher pressures [20-21]. 

Finally, the UCST and LCST curves merge to give the so-called U-LCST behavior, 

which is  typical for polymer + supercritical solvent mixtures.  

 Figure 2.3 summarizes the qualitative impacts of various polymer properties on 

the solubility in scCO2. Whereas an increase in molecular weight always causes a 

decrease in solubility and thereby leads to a shrinking of the homogeneous region (L), 

increasing branching and polydispersity of the polymer have a converse effect. Increasing 

polarity of the polymer mostly leads to improved solubility in CO2. Finally, in polymer + 

CO2 system, the solubility can be significantly improved with the aid of a cosolvent [21]. 

For example, the solvating power of scCO2 may be tuned by cosolvents such as dimethyl 

ether, Freons®, ethanol or alkanes. The basic strategy in the selection of a co-solvent to 

improve miscibility of a given polymer is the introduction of polarity with polar solvents  
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Figure 2.2  Phase behavior of polymer + SCFs systems as a function of temperature 

and pressure [21]. 



9 

 

 

Figure 2.3  Qualitative impact of various system properties on polymer solubility in 

carbon dioxide [21]. 
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like ethanol, methanol, acetone, or non-polar attributes with alkanes like propane, butane, 

pentane, and hexane. In the last decade, several research groups have measured the phase 

behavior of polymer + CO2 + cosolvent systems [11, 22-24]. 

2.1.3 Impact of specific interactions on phase behavior in polymer + CO2 systems 

 There are a number of previous studies that show CO2 can be used as a solvent for 

some polymers and copolymers at high pressures and temperatures [20, 25]. However, 

we know little about the impact of specific interactions (e.g. electron donor acceptor, 

charge transfer complex, and Lewis acid-base interaction, etc [26]) on the phase behavior 

of polymer + CO2 systems. A typical example is given in Figure 2.4 where the cloud 

point curves of poly (vinyl acetate) (PVAc) and poly (methacrylate) (PMA) in CO2 have 

been plotted [27]. 

 PMA and PVAc are isomers with very similar chemical structures, except for n 

the position of the carbonyl group. However, as shown in Figure 2.4, the cloud points 

curves are quite different. At 30 °C the PMA cloud-point curve is more than 1500 bar 

higher than the PVAc curve even though the molecular weight of PVAc is 4 times higher 

than that of PMA. As suggested by Kazarian et al [28], CO2 can more easily access the 

carbonyl group in PVAc than in PMA, and forms electron donor-acceptor complexes 

with PVAc. Similarly, other functional groups may lower the cloud pressure dramatically, 

such as siloxane and fluorine group [29] (See Figure 2.5). We may therefore conclude 

that specific interactions between CO2 and polymer have a significant effect on phase 

behavior and properties. However, quantitative measurements of such specific 

interactions are lacking. Also, the addition of a small amount of cosolvent may have an  
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Figure 2.4  Cloud point curves of poly (vinyl acetate) (PVAc) and poly (methacrylate) 

(PMA) in CO2 [30]. 
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Figure 2.5  Cloud-point pressures at 298 K for binary mixtures of CO2 with 

poly(methyl acrylate) (PMA), poly(lactide) (PLA), poly(vinyl acetate) (PVAc), 

poly(dimethyl siloxane) (PDMS), and poly(fluoroalkyl acrylate) (PFA) as a function of 

number of repeat units based on Mw [29]. 
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effect on specific interactions. Therefore, a method to quantify these interactions and 

incorporate them into a thermodynamic model is of theoretical as well as practical 

interest.  

 In the following, we will briefly review molecular interactions in polymer 

solutions, the methods to quantify specific interactions, and some basic background of 

infra red spectroscopy. Finally, thermodynamic models for polymer solutions will be 

discussed.   

2.2 Molecular Interactions in Polymer Solutions 

 Thermodynamic properties and phase behaviorof polymer solutions are 

determined by intermolecular interactions between solvent molecules (solvent-solvent), 

between polymer segments (segment-segment), and between solvent molecules and 

polymer segments (solvent-segment). These intermolecular interactions can be 

approximately expressed in term of the interchange energy (ω ), given by  

( )1( , ) ( , ) ( , )
2ij ii jjz r T r T r Tω ⎡ ⎤= Γ − Γ + Γ⎢ ⎥⎣ ⎦

                                   (2.1) 

where ),( TrijΓ is the intermolecular pair-potential energy.  

 An approximate form of the attractive part of the intermolecular potential energy 

),( TrijΓ  for small molecule mixtures is 

2 2 2 2 2 2 2 2

1 2 3 4 56 6 8 8 10( , ) i j i j i j j i i j
ij

p p Q Q Q Q
r T C C C C C Specific Interaction

r r kT r kT r kT r kT
μ μ μ μ⎡ ⎤

Γ ≈ − + + + + +⎢ ⎥
⎢ ⎥⎣ ⎦          

  (2.2) 
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where p is the polarizability, μ is the dipole moment, Q is the quadrupole moment, and 

C1-C5 are constants.  

 The leading terms in the expansion for the potential energy are dipole and 

quadrupole interactions which are inversely proportional to temperature. At elevated 

temperatures, thermal energy disrupts the configurational alignment of the polar moments 

of the molecules so that they behave as if they were non polar. Specific interactions such 

as complex formation or hydrogen bonding can also contribute to the intermolecular pair 

potential energy. The strength of these "directional" interactions, which are also very 

temperature sensitive [12], can be of the same order of magnitude as the other interaction 

in Equation (2.2). Therefore specific interactions if present may have a significant impact 

on the phase equilibra in polymer + CO2 + cosolvent systems. 

2.2.1 Non-specific interactions in polymer + SCFs systems 

 The simplest method to quantify non-polar intermolecular interaction in a liquid is 

the solubility parameter approach of Hildebrand and Scott [31-32]. The solubility 

parameter is defined as the square root of the cohesive energy density,   

V
EVΔ

=δ                                                                                                                       (2.3) 

where E is the intermolecular energy of attraction, VEΔ  is the molar energy of 

vaporization, and V is the  liquid molar volume. 

 According the Regular Solution Theory (RST), the molar energy change of 

mixing can be expressed as  

( ) ( )2
1 1 2 2 1 2 1 2mixU x V x V φ φ δ δΔ = + −                                                    (2.4) 
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where Vi is the molar volume, iφ is the volume fraction of component i, and xi is the molar 

fraction of component i. Although RST was developed for small molecular systems, it 

can be also applied to polymer solutions to estimate the enthalpy change of mixing. It 

should be noted that the enthalpy change of mixing estimated by Equation (2.4) is always 

positive, which means that energy must be added into the system to obtain a positive 

interchange energy (ω ).  

 In the original Hildebrand solubility parameter approach, the existence of polar 

interactions and of specific interactions such as hydrogen bonding, were neglected. 

Hansen proposed a 3-parameter model by separating the total cohesive energy into three 

parts, nonpolar (dispersion) interaction (Ed), polar (dipole-dipole and dipole-induced 

dipole) interactions (Ep), and hydrogen bonding or other specific association interactions 

(including Lewis acid-base interactions) (Eh) [33]. Thus: 

d p hE E E E= + +                                                                                                           (2.5) 

so that, 

2 2 2 2
T d p hδ δ δ δ= + +                                                                                                           (2.6) 

 The Hansen solubility parameters in Equation (2.6) are determined empirically 

based on multiple experimental solubility observations. Hansen’s total solubility 

parameter, δT, should equal the Hildebrand solubility parameter. If we only consider non-

specific interaction, only the first two terms in Equation (2.6) are needed. Equation (2.5) 

is more generally applicable than Equation (2.4) or (2.6) as suggested by Hildebrand et al 

[31]. 
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 In the supercritical state, the density of the fluid changes significantly with respect 

to temperature and pressure. The solubility parameter will therefore be a function of 

pressure and temperature. Giddings proposed a method based on a corresponding states 

approach to obtain [34].   

0.5

( )

1.25 r
c

r liquid

P ρδ
ρ

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
                                                                                                 (2.7) 

where δ is in (cal/cm3)0.5, Pc is the critical pressure (atm), rρ is reduced density of fluid, 

and ( )r liquidρ is  the reduced density of the liquid phase at its normal boiling point. 

 Recently, Williams et al [35] calculated the solubility parameter of CO2 as a 

function of   temperature and pressure using an EOS. They used the following equations 

to estimate the solubility parameter. 

2

V

E E PT P
V V T

δ Δ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ≈ = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
                                                                             (2.8) 

 According to their calculation (see Figure 2.6) the solubility parameter of 

supercritical CO2 varies from 5 to 15 MPa0.5. Therefore, in polymer + SCF systems, we 

may need to take account of the temperature and pressure (volume) effect on the 

solubility parameter (see Table 2.1). 

2.2.2 Specific interactions in polymer + SCFs (CO2) systems 

 The most familiar specific interaction is hydrogen bonding, which is the attractive 

force between the hydrogen attached to an electronegative atom (e.g. O, F, N) of one 

molecule and an electronegative atom of a different molecule. Hydrogen bonds can vary  
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Figure 2.6 Solubility parameter of pure CO2 [35] 
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Table 2.1  Temperature, pressure or volume dependence of Hansen solubility 

parameters  [35]. 
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in strength from very weak (1-2 kJ/mol) to extremely strong (140 kJ/mol), which is 

somewhere between a covalent bond and an electrostatic intermolecular attraction.   

 It has been suggested that CO2 might serve as an electron donor [36] or as an 

electron acceptor [28]. Thus, electron donor-acceptor (EDA) complexes can be formed in 

polymer + CO2 systems, when there are chemical groups with basic or acidic properties 

in the polymer chain. This kind of Lewis acid-base interaction between CO2 and the 

polymer can be regarded as a type of specific interaction, and IR spectroscopic evidence 

has been obtained by Kazarian [28]. Possible interactions of CO2 with different chemical 

groups, such as carbonyl (C=O) and ether (C-O-C) are shown in Figure 2.7. 

 Because of such specific interactions, immiscible polymers can be made soluble 

in CO2 by incorporating carbonyl groups in the polymer [37]. In addition, the solubility 

of CO2 in polymers such as poly (methyl methacrylate) (PMMA) with carbonyl groups is 

greater than the solubility of CO2 in polymers without carbonyl groups, such as 

polystyrene (PS) or poly (vinyl chloride) (PVC). These observations suggest that EDA 

complex formation between the carbon atom in CO2 and carbonyl oxygen atoms can 

strongly affect the phase behavior [28]. Using  FTIR spectra, Kazarian et al [28] have 

shown that CO2…C=O interactions are of the order of 4 kJ/mol, and therefore only 

slightly stronger than dispersion forces. Ab initio calculations have also confirmed these 

observations [38-39]. 

 However, a value of the enthalpy of specific interaction of -4 kJ/mol reported by 

Kazarian et al [28] is quite a bit lower the value of -15 kJ/mol from the quantum 

calculations [40]. Therefore, it is necessary to resolve the discrepancy in order to properly 

model polymer + CO2 mixtures. There are two methods to achieve this: FTIR  
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       a) ether+ CO2    b) carbonyl+CO2 

Figure 2.7 Specific interactions of CO2 with different chemical groups (blue-carbon, 

red-oxygen) 
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measurements, and molecular dynamics simulations or quantum calculations. A brief 

review of these methods is presented below. 

 

Frequency Shift Method 

 Vibration frequencies of certain bonds in a molecule will generally change if the 

molecule associates with another molecule. These vibration frequency changes or shifts 

in the peaks of vibration frequency bands can be detected by IR spectroscopy. As shown 

by Purcell and Drago [41-43], it is reasonable to assume that there is a linear relationship 

between the OH stretching frequency peak shift and hydrogen-bonding enthalpy. A 

frequency shift-enthalpy correlation was proposed by Drago [41] and Purcell [42-43] for 

hydrogen-bonding acids mixed with various bases. The correlation was obtained from 

data on a number of acids such as phenols, t-butanol, hexafluoroisopropanol, and has the 

general form 

ab a OH aH m nυ−Δ = Δ +                                                                                                     (2.9) 

where abHΔ is the enthalpy of the acid-base interaction, OHυΔ is the stretching frequency 

shift for OH absorption, and ma and na are two correlation constants for the given acid. 

For a given base b mixed with various hydrogen-bonding acids  

a
ab b OHH k υ−Δ = Δ                                                                                                           (2.10) 

 A similar correlation was obtained for ethyl acetate mixtures with various acids 

using the stretching frequency of the carbonyl group (C=O) [44],  The correlation 

equation is given by 

0.236 ab
ab CO-1

kcalH
mol cm

υΔ = Δ                                                                                        (2.11) 



22 

 

 Fowkes et al [44] also found that the frequency shift is dependent on the surface 

tension of  the solvent, and they estimated the enthalpy of acid-base interaction between 

PMMA and several chlorinated hydrocarbons on the basis of Equation (2.11) (See Table 

2.2). 

 Many studies of polymer systems have examined these  frequency shifts [28]. For 

example, using small acid molecules as probes, Cangelosi et al [45] qualitatively ordered 

the strength of specific interaction  between polymers and cyclohexanol as follows: 

PVME >  PCL > PA > PB > PPL. Also, Kwei et al [46] reported a method to quantify the 

acidity or basicity of polymers using the same correlation constants obtained from small 

molecule analogs. Nevertheless, the frequency shift method has not been studied 

extensively for polymer + CO2 systems. 

 

Equilibrium Constant Method 

 In the equilibrium constant method, specific interactions between CO2 and a 

polymer are treated in terms of a reversible reaction. Therefore, if the concentration of 

associated CO2 and free CO2 in the system are measured via FTIR or NMR, then the 

equilibrium constant can be obtained and  the enthalpy of specific interaction  calculated 

via the van’t Hoff relation. Meredith et al [47] used the method to study specific 

interactions between CO2 and tributyl phosphate. Recently, Dharmalingam has measured 

the equilibrium constant for alcohol and ethyl methacrylate by means of FTIR [48-49]. 

Utilizing Nash’s method [50], the equilibrium constant (K) for the 1:1 EDA complex was 

determined by plotting a graph of Y = [C]−1 and X = (1−(A/A0))−1, where A and A0 are the 

absorbances of the carbonyl band of ethyl methacrylate in the presence and absence of 
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alcohol, respectively. However, the method has not been applied to polymer + CO2 

system as yet. 

 

Molecular Simulation 

 In principle, molecular modeling can be used to compute specific interactions in 

polymer + CO2 + cosolvent systems through statistical mechanical simulations. However, 

due to the large system sizes and weak interactions among molecules, only several 

segments of polymer and some small molecules can be simulated in a limited size 

periodic box. Moreover, intermolecular potential models are not accurate enough to allow 

high precision calculation of specific interactions, and only qualitative results can be 

obtained  [14]. 

 Another alternative is to bypass the use of potential models and directly use ab 

initio methods to calculate the interaction energy between polymer segments or some 

specific functional groups and CO2 or a cosolvent. Diep et al [51] have investigated the 

interactions of CO2 with small hydrocarbons and fluorocarbons (CH4, C2H6, CF4, and 

C2F6) using the Hartree-Fock and Møller-Plesset second-order perturbation theory (MP2). 

They reported binding energies of CO2 + hydrocarbon clusters ranging from 0.79 to 1.17 

kcal/mol. Recently, Kim and Kim [52] reported that the binding energy of CO2 + methyl 

acrylate was approximately 3.1 kcal/mol at the MCCM-CO-CCSD(T) level, and the 

binding energies for CO2 + acetaldehyde and CO2 + dimethylether complexes including 

cooperative weak hydrogen bonding with α-protons were 2.5 and 3.8 kcal/mol 

respectively. Kilic et al [40] reported two binding geometries for the C=O…CO2 complex 

identified from ab initio calculations (see Figure 2.8). These structures differ mainly in  
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Table 2.2  Relative acidities of chlorinated hydrocarbons determined from ab
COυΔ  of 

PMMA [44]. 

Solvent 1( )CO cmυ −

 ( / )dyn cmγ  
1( )d

CO cmυ −

 
1( )ab

CO cmυ −Δ  ( / )abH kcal molΔ  

1,2-Dichloroethane 1718 31.9 1735 -17 -4.0 

1,1,2-Trichloroethane 1726 22.0 1742 -16 -3.8 

Chloroform 1728 26.6 1738 -10 -2.4 

1,1,1-Trichloroethane 1732 25.1 1739 -7 -1.7 

1,1,2,2-

Tetrachloroethane 
1725 35.6 1732 -7 -1.7 

1,1,1,2-

Tetrachloroethane 
1728 35.6 1732 -4 -1.0 

Note: d
COυ  is the expected carbonyl frequency if these solvents were not acidic  
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Figure 2.8 Binding geometries for C=O…CO2 [40]  
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the orientation of CO2 with respect to the different R groups of the C=O containing 

molecule, but can lead to quite different solubilities in the polymer. Kilic et al [40] also 

report the interaction energies between CO2 and polymer monomers. They found that 

some ether group has similar interaction strength as the ester group (Table 2.3). It should 

be noted that these results are about three times greater than experimental values by 

Kazarian et al [28].  

 In summary, both non-specific and specific interactions can be quantified without 

phase equilibrium data using molecular simulations. Temperature and pressure effects 

can be taken into account for non-specific interactions by using the RST method. The 

strength of specific interactions between polymers with carbonyl groups (C=O) and CO2 

can be estimated by both experiment and ab initio calculation. However, large 

discrepancies exit between these two methods. Finally, the strength of specific 

interactions between CO2 and other functional groups not been measured. Thus, it is 

necessary to develop a general method to quantify specific interactions between CO2 and 

functional groups in order to properly model polymer + CO2 systems.  

 

2.3 Infrared Spectroscopy 

 Infrared radiation is defined as light with wavenumbers (reciprocal of wavelength) 

between 400 cm−1 and 4000 cm−1. Infrared spectroscopy is based on the interaction of 

electromagnetic radiation with molecular bonds. The easiest way to consider molecular 

vibrations is to treat the atoms in a molecule as balls, and the chemical bonds connecting  
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Table 2.3  Interaction energies with CO2 [40]. 

Molecules 
Interaction energies (kJ/mol) 

Ether oxygen/CO2 Carbonyl oxygen/CO2 (A) Carbonyl oxygen/CO2 (B)

IPA -14.8 -14.2 -15.9 

MIE -18.0 N/A N/A 

EIE -18.6 N/A N/A 

IBA -15.1 -14.1 -14.3 

MIK N/A -13.6 -16.0 

Note:   A, B are two conformations as shown in Figure 2.8; 

  IPA, isopropyl acetate; MIE, methyl isopropyl ether; EIE, ethyl isopropyl 

ether; IBA, isobutyl acetate; MIK, methyl isobutyl ketone 
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them as springs. The vibration frequency, υ  (in wavenumber, cm-1) of the harmonic in 

terms of classical mechanics is given by 

1
2

k
c m

υ
π

=            (2.12) 

where c is the velocity of light in a vacuum ( 2.997925×1010 cm/s ), k is the force 

constant of the spring, and m is the harmonic average mass: 

1 2

1 2

m mm
m m

=
+

           (2.13) 

 In Equation (2.13), m1 and m2 are the masses of the two atoms involved in the 

bond. From Equation (2.12 and 2.13), molecular properties, the force constant of the 

chemical bond and the reduced mass of the atoms, determine the frequency (wavenumber 

in IR spectroscopy) at which a bond will absorb infrared radiation. As a result, the IR 

radiation absorption for a molecular bond is very selective. Each individual functional 

group absorbs IR radiation at a unique wavenumber. This consistent behavior of chemical 

bonds is what IR spectroscopy exploits in order to reveal the molecular structure of a 

chemical compound. It should also be noted that in order to be IR active, the vibrations or 

rotations within a molecule must cause a net change in the dipole moment of the 

molecule [53].  

2.3.1 Attenuated total reflection infrared spectroscopy (ATR-IR) 

 Attenuated total reflection is the phenomenon that the incident light will be totally 

reflected back into the dense medium at the interface. Attenuated total reflection is also 

known as total internal reflection [53].  
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 Two conditions must be satisfied in order to observe total internal reflection, (1) 

the angle of incidence of the infrared radiation must be larger than the critical angle, 

1 1

2

sinc
n
n

θ − ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, where n1 and n2 are the refractive indices of samples and internal 

reflection material (e.g ZnSe), respectively and (2) 2 1n n> .  

 When internal reflection occurs, an evanescent wave penetrates into the sample at 

the interface (Figure 2.9). The formation of the wave is due to the electromagnetic field 

produced by the superposition of incident and reflective radiation in the internal 

reflection material. The extent of penetration of the radiation into the sampley depends on 

the wavelength ( λ ) and on the optical properties refractive indices and angle of incidence 

of IR beam in the system. The radiation penetrated short distance (dp) can be calculated 

by Equation (1.30) [54]. For example, it will be about 1 μm at 1700 cm-1 for a liquid or 

polymer sample (n1 = 1.5) in contact with ZnSe (n2 = 2.4) at 45o angle of incidence.  

( ) ( )2 2
2 1 22 sin /

pd
n n n

λ

π θ
=

−
        (2.14) 

 ATR-IR spectroscopy has been used in various studies of polymers because of the 

shorter penetration distance than common transmission IR which is limited by the 

thickness of the polymer sample. This type of spectroscopy can be used for characterizing 

polymer chain orientation, functional group analysis, curing rate, oxidation studies, as 

well as characterization of unsaturation and crystallinity [54-56].  
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Figure 2.9 Schematic diagram of a multi-reflection ATR-IR system 
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2.3.2 Quantitative analysis 

 IR spectroscopy can provide quantitative information, such as the concentration 

(or relative concentration) of molecules and the relationship between absorbance and 

concentration (via the Beer-Lambert law): 

[ ]A L Cε=              (2.15) 

where ε  is the molar absorptivity, L is the path length, [C] is the concentration, and A is 

the absorbance, measured directly, and defined as  

0log( / )A I I= −             (2.16) 

where I is the intensity of the radiation absorbed by a particular molecular groups and I0 

is for the background. In practice, when large absorption values are measured, dilution is 

required to achieve accurate results. Measurements of absorption in the range of A = 0 to 

1 are less affected by the Shadow Effect [53]. 

2.4 Thermodynamic Models 

 Many thermodynamic models have been developed for polymer + solvent 

systems. These can be broadly divided into: equation of state (EOS) models and activity 

coefficient models. Representative examples are described in the following sections and 

their advantages and disadvantages are outlined. 

2.4.1 Equations of state 

 An advantage of the equation of state method is its applicability over wide ranges 

of temperature and pressure to mixtures of diverse components, from the light gases, 

heavy liquids, to supercritical phases. The most familiar EOS is van der waals type EOS 

such as vdW, Peng-Robinson, Patel-Teja, and Soave-Redlich-Kwong and so on [26, 57]. 
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However, However,   other EOS have been developed for polymer solutions based on cell 

models (Prigogine,  Flory-Orwoll-Vrij), lattice-fluid models (Sanchez-Lacombe, Costas 

and Sanctuary,  Panayiotuou-Vera), hole models (Simha-Somcynsky), and hard sphere 

chain models (Pertubed-Hard-Sphere-Chain, and Statistical Associated-Fluid Theory 

(SAFT)) [58]. In associated systems, representative models include Associated Perturbed 

Anisotropic Chain Theory (APACT) [59], Lattice Fluid Hydrogen Bonding (LFHB) [60-

62], Cubic Plus Association (CPA) EOS [63-64], and SAFT variations [61, 65].  

 The main disadvantage of the EOS approach is that characteristic parameters for 

polymers must be obtained by fitting experimental data and the physical meaning of these 

parameters may be lost to some extent. Furthermore, mixing rules are required that 

introduce more adjustable parameters. Therefore, only a few EOS models are used for  

polymer solutions. These will be discussed in the following section. 

 

Sanchez-Lacombe (SL) EOS 

 The Sanchez-Lacombe equation of state is based on a lattice-fluid model that 

accounts for the compressibility of the lattice, or the “free volume”, by introducing holes 

into the lattice [66-69]. In reduced form, it has the form: 

( ) 0~11~1ln~~~ 2 =⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+−++ ρρρ

r
TP                                   (2.16) 

where T~ , P~ and ρ~  are the reduced temperature, pressure and density, respectively. The 

reduced parameters are given by 
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where T*, P*, ρ* and υ* are the characteristic temperature, pressure, density, and closed 

packed molar volume, respectively, ε* is the interaction energy per mer, R is the gas 

constant and M is the molecular weight. 

For mixtures,  mixing rules are defined as follows:  

*
* mix

mixT
R

ε
=                                                                    (2.18) 

* *
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i j ij ij

mix
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v
v
φ φ ε

ε = ∑∑                                (2.19) 

* *
mix i j ijv vφ φ= ∑∑                                        (2.20) 

where iφ is the volume fraction of component i, and the cross terms can be expressed as 
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ε ε ε
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                                        (2.21)         

the binary interaction parameters, kij and ηij, are obtained by fitting experiment data. 

 The SL EOS has been used to model polymer + SCF solvent and polymer + SCF 

solvent + cosolvent phase behavior with varying degrees of success [20]. Usually it is 

necessary to allow both binary interactions parameters to be functions of temperature to 

obtain a good representation of the phase behavior even if the polymer and SCF solvent 

are both non polar [67]. In an alternative approach, Kiran and co-workers [70-71] 

advocate allowing kij to vary with the molecular weight of the polymer. Of course, if kij is 
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allowed to vary, additional fitted parameters are introduced. However, it is not apparent 

how to extrapolate the values of these parameters from one system to another, since there 

is no fundamental basis for choosing a particular functional form for the temperature or 

molecular weight dependence. Another difficulty with predicting phase behavior is that 

the calculated cloud-point curves are very sensitive to the value used for kij which is 

usually determined after fitting at least a small amount of binary data [14].. 

 However, there are no generalizations regarding the relationship between the 

parameter and system variables such as temperature and pressure. Thus the parameters 

are quite different across polymer molecular weight and pressure (fits to low pressure 

sorption isotherms and high pressure cloud point data yield very different parameter 

values). And, there is no theoretical basis for obtaining these binary interaction 

parameters, the SL EOS cannot be used for predictive purposes [14]. 

 

Statistical Associating Fluid Theory (SAFT) 

 The Statistical Associating Fluid Theory (SAFT) EOS [72-75] is based on 

Wertheim's cluster expansion theory [76-77], which gives a relation between the residual 

Helmholtz energy due to association and the monomer density. Hard sphere, chain and 

association effects are incorporated using a reference fluid. Additional intermolecular 

forces are included through a mean field perturbation term (dispersion term). 

 With this approach, the residual Helmholtz free energy relative to an ideal gas 

reference state is  

res hs chain assoc dispA A A A A= + + +              (2.22) 
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where hsA  for segment-segment, hard-sphere repulsion, chainA  for connectivity of the 

segments, assocA  for site-site specific interaction such as hydrogen bonding based on 

Wertheim’s associating fluid theory [77], and dispA  for the mean-field dispersion are 

given in detail in the literature [72]. 

 A large number of SAFT pure-component parameters for small molecules have 

been reported in the literature [78]. Regression of polymer PVT data, however, yields 

parameters that lead to poor phase equilibrium predictions [79-80]. As pointed by 

Lambert et al [58], SAFT EOS usually has poor performance at low pressure and high 

temperatures, or at high pressures and low temperature. Moreover, like in SL EOS, a 

nonzero value of kij is introduced to reasonably correlate the phase behavior of polymer 

solutions. 

 As can be seen from Figure 2.10, SL EOS fails to represent the PBMA-CO2 cloud 

point data even when two temperature dependent binary interaction parameters are used. 

SAFT representation is in good agreement with experimental data. However, SAFT 

calculations are very sensitive to parameter values and polymer molecular weight [13]. 

 

Perturbed-Chain SAFT 

 While most SAFT versions use the hard sphere reference fluid, the PC-SAFT 

EOS uses a more realistic term to account for dispersive interactions between chains. It 

does this by applying perturbation theory using a hard chain fluid as the reference system, 

instead of a hard sphere reference considered in the earlier SAFT models [81-82]. The 

chain and association terms are both given by Wertheim's theories [77] as in the original  
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Figure 2.10 Experimental and calculated cloud point curves in PBMA + CO2 for 

molecular weights of 100,000 and 320,000. Experimental data is from Ref. 

[30]. The polymer solubility is approximately 5 wt%. The solid lines 

represent SL EOS calculations and dashed lines are SAFT calculations 

[13]. 
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SAFT version. The radial distribution function and hard-sphere Helmholtz energy 

function of simplified PC-SAFT are as follows [82]: 

3)1(
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 In comparison with the original SAFT version, calculations with the Perturbed-

Chain SAFT model are more accurate using a temperature-independent binary parameter 

as seen in Figure 2.11 for CO2 solubility in HDPE [83]. In general, the simplified PC-

SAFT EOS is successful in modeling LLE, successfully predicting the correct behavior in 

many systems exhibiting upper, lower and both critical solution temperatures. Where 

predictions are not accurate, a small value of the binary interaction parameter is required 

to correlate experimental data. A limitation of PC-SAFT is the lack of a systematic 

method for estimating polymer parameters without the use of mixture data, particularly 

for associating polymer solutions. If possible such a general method should be based on 

data which are readily available for polymers e.g. solubility parameters. 

2.4.2 Activity coefficient models 

 Activity coefficient models or excess Gibbs energy models provide the activity 

coefficient or activity from the following thermodynamic relationships, 
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Figure 2.11 Solubility of CO2 in HDPE at P = 90 bar ( Mn = 87 kg/mol), soild line  is 

for Perturbed-Chain SAFT (kij=0.181) and dashed line is for SAFT 

(kij=0.242) results [83]. 
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 Although the activity coefficient may also be calculated with an EOS model via 

Equation (2.27), the mixing rules used by an EOS are commonly not good enough to 

describe non-ideal behavior in solutions [84]. Therefore, in vapor-liquid equilibrium 

calculations we have to use the so called “gamma–phi” approach, where the vapor phase 

is described via an EOS (e.g. SRK, PR or PT) and the liquid phase is described via an 

activity coefficient model (e.g. RST) specifically suitable for liquid solutions. 

ˆ
ln ln i

i
i

ϕγ
ϕ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
          (2.27) 

where iϕ  and ˆiϕ are fugacity coefficient of pure component i  and fugacity coefficient of 

i in mixture, respectively. 

 We may divide activity coefficient models in to two categories: (1) random-

mixing model (e.g. Margules or van Laar equations); and (2) local composition models 

(e.g. Wilson, NRTL, or UNIFAC). For polymer solutions, the Flory-Huggins model, and 

UNIFAC model are widely used. We will discuss them and their variations in the 

following section. 

 

Flory-Huggins Model 

 The most widely-used theory for calculating the Gibbs energy of mixing of 

polymer solutions is the Flory-Huggins (FH) theory [85-86] in which the polymer is 

assumed to consist of connected segments, each of which occupies one site of a lattice. 

Each solvent molecule also occupies a lattice site. Assuming that the segments are 
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randomly distributed, the free energy of mixing per mole of lattice sites for a mixture is 

given by 

ln lnmix B
A A B FH A B

G
NRT r

φφ φ φ χ φ φΔ
= + +                                (2.28  

where R is the gas constant, N is the total number of lattice sites, r is the segment number 

of polymer molecule, φ is the volume fraction and χ is the Flory-Huggins interaction 

parameter. The first two terms on the right hand side of the above equation represent the 

combinatorial contribution to the entropy of mixing, which is derived by calculating all 

the different ways that chains can randomly pack on a lattice. Once the Flory Huggins χ 

parameter (which, in classical FH theory, includes only the enthalpy contribution to the 

free energy of mixing) is known, the entire phase behavior of the system can be 

calculated. With the adjustable χ parameter, FH model has been used for explaining the 

phase behavior, such as UCST, and osmotic pressure in dilute polymer solutions [87].    

 In the original theory, the entropy of mixing was assumed to be purely 

combinatorial, but it has been known for many years that non-combinatorial contributions 

are also important in polymer systems [88]. These are variously known as free volume 

effects, equation of state effects, and packing effects.  

 Limitations of FH theory include: 

1. Segments are arranged on the lattice via a random walk. Thus, configurations 

where two polymer segments can occupy the same lattice cell are not excluded in 

a proper fashion. 

2. Strong polar interactions or specific interactions like hydrogen bonding, which 

affect the enthalpy of mixing but can also significantly influence the entropy of 
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mixing, are not accounted for in the theory. These interactions can bias the 

orientation of certain types of molecules and lead to a decrease in the entropy of 

mixing. 

3. Polymer molecules are constructed from freely jointed chains, and thus 

conformational characteristics are not affected by solution concentration. 

4. The volume change upon mixing is assumed to be zero, which is a poor 

assumption when there are large differences in free volume between the polymer 

and the solvent [86]. 

 

Coleman Model 

 Coleman and Painter [89-90] combined an association model with the Flory-

Huggins theory to develop a theory describing miscibility behavior of polymer blends 

with hydrogen bonding. Such a methodology can also be followed in describing solvent + 

polymer systems with specific interactions and hence is discussed here. The theory is 

based on the assumption that the Gibbs energy of mixing ΔGmix consists of “weak” or 

“physical” interactions and “strong” or “chemical” interactions. Thus,  

ln lnmix A B H
A B A B

A B

G G
RT M M RT

φ φφ φ χφ φΔ Δ
= + + +                               (2.29)  

 The first two terms represent the combinational entropy of mixing. Since these 

entropy terms are usually small in polymer blends (in polymer-small molecule systems, 

the combinational entropy will also be affected by association), ΔGmix is dominated by 

the balance between the third and fourth terms. The third term represent physical forces 

that are unfavorable for mixing and is controlled by the Flory parameter χ, which may be 
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estimated from solubility parameters for a set of carefully chosen groups which are free 

from association. The fourth term represents the favorable specific interaction for mixing 

due to hydrogen bonding. Its magnitude depends on two major factors. One is the relative 

strength of self-association to inter-association. If the strength of inter-association 

between  two dissimilar polymers is greater than that of self-association of either of them, 

miscibility is favored. The other is the density of specific interacting sites in the blend. It 

is expected that otherwise immiscible blends will be made miscible if this density is 

increased by incorporating interacting groups. Hydrogen bonds are continually breaking 

and reforming by thermal agitation and, according to the association model, there exist 

instantaneous distributions of “free” monomers (B1), dimers (B2) and multimers (Bm), 

according to the association reaction scheme: 

( )

2
1 1 2

1 1 1B

K

K
m m

B B B

B B B m+

+ ←⎯→

+ ←⎯→ >
 

 In the methodology of Coleman et al [89], K2 and KB for polymers containing 

hydroxyl groups are assumed to have the same values as those calculated from FTIR data 

on appropriate model compounds (e.g. 2-propanol or hexafluoro-2-phenyl-2-propanol). 

In general, KA can be derived directly from IR studies of the single-phase blends.  

AK
m mB A B A+ ←⎯→  

 With the values of K2, KB and KA known in this way, ΔGH can in principle be 

calculated and then the phase behavior of the blend becomes predictable. The book by 

Coleman et al. [89, 91] illustrates a wide range of hydrogen-bond-containing blends 

whose calculated phase diagrams agree with observed results. However, comparison of 

the calculated phase diagrams of a number of poly (4-vinylphenol), (PVPh) blends with 
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various polyacrylates, polyacetates, and polylactones (polymers of interest in this study) 

yield results that are poor when compared with experiments [89]. The inconsistency in 

prediction results may be attributed to discrepancies in spectroscopic measurements of 

equilibrium constants. Moreover, the Coleman model does not account for the 

compressibility of the lattice and free volume effects, therefore it cannot be used for 

Polymer-SCF systems without modification in the calculations of segment number, such 

as the free volume ratio can be used to calculate the segment number which is the idea in 

the modified g-ARTL [92]. 

 

UNIFAC-FV (Universal Functional Activity Coefficient-Free Volume) Model 

 The UNIFAC model is based on a two-liquid theory of liquid mixtures and does 

not explicitly take into account changes in free volume caused by mixing. To apply 

UNIFAC to polymer solvent mixtures Oishi and Prausnitz [93] modified the approach by 

replacing the volume fraction by the free volume fraction as follows 

ln ln lnFV RES
i i iγ γ γ= +                                                                               (2.30) 

ln ln 1
FV FV

FV i i
i

i ix x
φ φγ = + −                                                                                     (2.31) 
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φ =
∑

                                                                                                  (2.32) 

 The residual contribution ln RES
iγ is the contribution from interaction energies 

between each functional group, and calculated by the same method as the original 

UNIFAC [93-94]. The major limitation of UNIFAC-FV is that the method is commonly 
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useful only for low pressure systems over a narrow temperature range [84]. Therefore, 

the method may not be suitable for  polymer + SCF systems. 

 

g-ARTL (generalized Associative Reformulation of Thermodynamic Lattice) Model 

 The g-ARTL model was proposed by Sukhadia [95] and Variankaval [96] as a 

simple reformulation of the Flory–Huggins model to account for specific interactions 

between polymer segments and solvent molecules. In CO2 + polymer systems with 

specific interactions, Electron-Donor-Acceptor (EDA) complexes can be formed between 

a polymer segment P and μ molecules of solvent S according to the following reaction: 

μμP+ S PS  

 The polymer + solvent mixture is thus assumed to consist of polymer-solvent 

complexes, unassociated solvent molecules and unassociated polymer molecules. The 

formation of complexes restricts a certain number of solvent molecules to specific 

positions on the lattice, with the remaining solvent molecules being distributed randomly. 

The expression for the Gibbs energy of mixing ΔGmix is given by [13-14] 
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where z is the lattice coordination number (generally assumed to be 10 in liquids), N is 

the total number of lattice sites, R is the gas constant, T is the temperature, 1φ  and 2φ are 

the volume fractions of solvent (CO2) and solute (polymer). The above expression 

includes an enthalpy of mixing term based on two types of contacts due to association 
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and dispersion, respectively. There are five characteristic quantities in this expression: the 

solvent–solute binding ratio μ; the association ratio α; the number of segments ξ; the 

interaction parameter for association χa; and the interaction parameter for dispersion χu. 

Several of these parameters take on constant values in specific systems, as discussed 

below. The specific interaction parameter for association α is related to the enthalpy of 

association ΔHa via: 

a
a

H
RT

χ Δ
=

                       (2.34) 

 Using the van’t Hoff relationship, we may express the equilibrium constant K for 

the association reaction as follows: 
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where K0 is the equilibrium constant for association at a reference temperature T0 (say, 

298 K). In the above expression, ΔHa has been assumed to be independent of T over the 

range of temperatures of interest. The equilibrium constant K is related to the association 

ratio α, the fraction of associated segments per polymer molecule, as follows: 
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                               (2.36) 

where φ1 and φ2 are volume fractions of the polymer and solvent, respectively. χa is 

therefore effectively replaced by ΔHa and K0 in the model. 

 The dispersion parameter χu is estimated from the solubility parameters δ1 and δ2 

of CO2 and the non-polar analog (homomorph) of the polymer as follows: 
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where the functional group in the polymer molecule which interacts with CO2 is 

substituted with a non-polar group to obtain the homomorph. In Equation (2.37), V1 is the 

molar volume of CO2 [95]. 

 

Modified g-ARTL 

 The segment number (ξ ) obtained by Sukhadia [95] from the ratio of the molar 

volumes of the solvent and the solute was obtained at ambient conditions (T= 298 K, P=1 

bar). This works well for liquids, since liquid volumes are not significantly affected by 

pressure. However, it is quite inadequate at supercritical CO2 conditions, because the 

molar volume of CO2 changes dramatically with pressure above its critical point. Ozkan 

et al. [13] demonstrated the effect of pressure on segment number and suggested making 

the specific volume a function of pressure and temperature. The modified g-ARTL model 

(henceforth termed the Compressible Lattice Model) of Ozkan and Teja [97] uses the 

ratio of the molar volume of polymer and scCO2 to calculate the segment number (ξ ). 

Their model also needs two parameters to correlate phase equilibria in such systems, but 

the parameters do not depend on temperature or molecular weight. In addition, Ozkan 

and Teja have shown that it is possible to obtain one of the parameters from independent 

measurements (such as FTIR spectra) [13].  

 In more recent work, Kasturirangan and Teja [92] have shown that a better 

definition of ξ  uses free volume difference as follows 
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where vp is the specific volume of the polymer, vCO2 is the volume of CO2, and vvdW are 

van der Waals volumes. 

 The Compressible Lattice Model (CLM) model has been recently extended to 

predict both high pressure (cloud points) and low pressure (CO2 sorption) equilibria 

within experimental error (lower than 5 %) using a single set of parameters [14]. In 

addition, Kasturirangan and Teja have combined the compressilbe lattice model with the 

Gibbs-DiMarzio criterion [98] to predict the depression in glass transition temperature in 

CO2 + polymer systems.  

2.5 Summary 

 In summary, the Sanchez-Lacombe and the SAFT or PC SAFT equation of state 

require two temperature and/or molecular weight dependent parameters to correlate 

experiment data over a range of temperatures, pressures, and molecular weights of the 

polymer [27, 79, 99]. The CLM model, which accounts for the compressibility appears to 

be a promising model for calculating phase equilibria and glass transition temperatures in  

polymer-SCFs systems. Both specific and non-specific interaction parameters in this 

model can be obtained by spectroscopy and simulation methods, so that a priori 

predictions of phase behavior can be accomplished. However, the model has not been 

evaluated for ternary systems such as polymer + CO2 + cosolvent and polymer blends 

+CO2. Also, a general method to obtain model parameters by experiment or simulation 

has not been established for this model. 
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CHAPTER 3 

SPECIFIC INTERACTIONS IN POLYMER + CO2 SYSTEMS FROM 

ATR-FTIR MEASUREMENTS 

  

 This chapter describes the measurement of specific interactions between carbonyl 

polymers and CO2 by in situ ATR-FTIR spectroscopy and the extension of the 

methodology for other types of CO2-philic functional groups. 

3.1 Introduction 

 CO2 is attracting much interest as a solvent for processing of polymers because it 

is non-toxic, non-flammable, chemically inert, and an inexpensive alternative to noxious 

organic solvents and chlorofluorocarbons [2, 36]. Kazarian et al [28] have shown that 

CO2 and polymers such as poly(methyl methacrylate) (PMMA) exhibit evidence of 

Lewis acid-base interactions between the  “electron poor”  carbon atom of CO2 and the 

“electron rich ”oxygen atom of carbonyl group in the polymer. It has been suggested that 

such interactions give rise to many of the attractive properties of CO2 – philic polymers 

such as PMMA [28]. Unfortunately, quantitative estimates of the strength of specific 

interactions have only been obtained in a small number of cases [19, 100-101]. In 

addition, ab initio estimates of these strengths [38, 40, 52] often differ significantly from 

the values obtained experimentally [102-104]. For example, quantum calculations 

indicate the existence of specific interactions between the fluorine atom and CO2, 

although no such interactions have been detected between fluoromethanes and CO2 in 

NMR studies [104].  It is therefore important to resolve these discrepancies in order to 
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develop or design CO2 – philic polymers, and to exploit the properties of CO2 - soluble 

surfactants [105-106] and physisorbents [107-108]. This work therefore attempts to 

establish a general experimental method to quantify specific interactions between CO2 

and CO2 – philic functional groups in polymers.  

 Lewis acid-base interactions can often be estimated from the Drago correlation 

[109] 

 -ΔHa = CACB + EAEB             (3.1) 

where CA and EA are measures of the acidity, and CB and EB are measures of the basicity. 

However, acid strength constants (CA and EA) are not available for carbon dioxide and 

therefore the Drago correlation cannot be used to estimate CO2 + polymer interactions.  

An alternative is to measure the shift in the carbonyl (C=O) stretching frequency that 

occurs when a molecule containing the carbonyl group is exposed to a Lewis acid. This 

stretching frequency shift is often correlated to the Lewis acid-base interaction energy -

ΔHa [41-42]. Fowkes and Tischler [44] have shown that the carbonyl stretching 

frequency shifts to lower values in the presence of Lewis acid-base interactions. They 

derived a linear relationship between this frequency shift and ΔHa. Kazarian et al [28] 

used this relationship to estimate the strength of specific interactions between CO2 and 

C=O groups in PMMA. However, the Fowkes and Tischler relationship was obtained for 

interactions in the liquid phase containing small molecules, and its validity for CO2 + 

polymer systems has yet to be confirmed. Furthermore, there is a large difference 

between the ΔHa of -4 kJ mol-1 for CO2 …C=O interactions reported by Kazarian et al 

[28] using the C=O stretching frequency shift and the value of  -15 kJ mol-1 reported by 

Kilic et al [37, 102] using quantum calculations.  
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 Quantitative estimates of interactions between CO2 and small molecule Lewis 

bases have been provided by Meredith et al [47] via a van’t Hoff plot of the equilibrium 

constant for the association reaction. This method is unambiguous and is extended to CO2 

+ polymer systems in the present work. We have used ATR-FTIR (Attenuated Total 

Reflection Fourier Transform Infrared Spectroscopy) measurements to study peak shifts 

in the carbonyl stretching band and the CO2 bending mode in carbonyl polymer + CO2 

systems, and related these frequency shifts to the equilibrium constant for the association 

reaction.  We have then used the van’t Hoff relation to obtain a quantitative estimate of 

the strength of the association interaction.  

3.2 Experiment 

3.2.1 Materials  

 Poly(vinyl acetate) (PVAc),  poly(lactide) (PLA), poly(lactide-co-glycolide 

85:15) (PLGA85), Poly(ε-caprolactone) (PCL) and Poly(ethylene gylcol) (PEG) were 

purchased from Aldrich Chemical Co. (St. Louis, MO); poly(methyl methacrylate) 

(PMMA) was purchased from Polysciences, Inc (Warrington, PA); Poly(vinylidene 

floride) (PVDF) was supplied by Du Pont (Wilmington, DE); Poly(methylsilsesquioxane) 

(PMSSQ) was purchased from Gelest, Inc (Morrisville, PA); Poly(sulfone) (PSF) was 

supplied by Solvay Advanced Polymers, L.L.C. (Alpharetta, GA); Polystyrene (PS) was 

purchased from 3M (Minneapolis, MN) and all other reagents were purchased from 

Aldrich (St. Louis, MO). High purity CO2 gas (99.99 %) was purchased from Airgas Inc. 

(Radnor, PA) and used as received.  
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3.2.2 Experimental setup and procedure 

 ATR-FTIR spectra were measured at a resolution of 1 cm-1 using a Nicolet 550 

Fourier transform spectrometer with a DTGS detector. Spectra were recorded using 64 

scans in the 4000–500 cm−1 wavenumber range. The 2 mL cylindrical high pressure ATR 

Cell used to hold a sample was made by Axiom Analytical, Inc (Irvine, CA, USA) and 

incorporated a ZnSe crystal held by a Teflon O-ring. The incident angle of the IR beam 

was 45o, giving 10 specimen-sensing reflections at the top face of the crystal. The cell 

was heated to a temperature of 353 K by circulating water, which also allowed the 

temperature in the cell to be controlled within ± 0.2 K using an Omega CN9000A 

controller. A CO2 syringe pump connected to a pressure gauge (Heise, Model 710A) was 

used to keep the pressure in the cell constant within ± 0.1 bar.  

 ATR-FTIR spectra of polymer films coated on the ZnSe crystal were obtained as 

follows. A known volume (2.0 mL) of a solution containing 1-5 wt % polymer in toluene 

was injected into the cell and, after 1 h at room temperature, the solvent was evaporated 

by introducing a flow of nitrogen into the cell.  A coating of polymer film on the ZnSe 

crystal surface was obtained upon volatilization of most of the solvent. The remaining 

solvent was removed by heating the film under vacuum until the temperature reached 353 

K. The cell was kept at this temperature for 12 h to eliminate any residual solvent.  

 ATR-FTIR spectra of the polymer film under vacuum were collected at a set 

value of the temperature.  Thereafter, CO2 was slowly introduced into the cell until the 

pressure reached a predetermined value. The polymer was kept at this temperature and 

pressure for 2-24 h to ensure the attainment of equilibrium conditions. Spectra were 

collected during this time until no changes could be observed in the absorbance bands of 
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CO2 or the polymer. Spectral results were displayed in terms of absorbance, defined as 

−log (I/I0), where I and I0 represent IR beam intensities in the sample and reference 

states, respectively. The reference spectrum was collected at vacuum conditions. 

3.3 Results & Discussion 

 Figure 3.1 shows typical ATR-IR spectra of PMMA (under vacuum) and PMMA 

in the presence of CO2 (at 40 bar) and 298 K.  Note that IR bands of PMMA are clearly 

distinguishable from those of CO2. Also, characteristic absorption bands of CO2 of 

interest in this work can be found at 660 and 2338 cm-1, corresponding to CO2 bending 

and asymmetric stretching, respectively. The carbonyl stretching band of PMMA can be 

found at 1728 cm-1. Although other characteristic bands were also measured during the 

scans, this work focuses on the carbonyl stretching and CO2 bending modes only. 

 3.3.1 Carbonyl stretching  

 Figure 3.2 and Table 3.1 present FTIR measurements of carbonyl stretching 

vibrations in polymers exposed to different CO2 pressures. To more clearly compare 

various spectra, the absorbance was normalized by the maximum absorbance in Figure 

3.2. In the absence of CO2, the peak of the PLGA85 carbonyl group stretching appears at 

a wavenumber of 1752 cm-1. This peak shifts to higher wavenumbers in the presence of 

CO2. At 40 bar CO2, the peak can be found at 1754.6 cm-1,  corresponding to a higher 

frequency (blue-shift) of about 2.6 cm-1. Similar results were obtained for other carbonyl 

polymers (see Table 3.1) in agreement with the experimental results of Nalawade et al 

[110].  
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Figure 3.1   ATR-IR spectra of PMMA at 298 K before (red solid line) and after (blue 

dashed line) exposure to CO2 at 40 bar. 
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Figure 3.2   Normalized carbonyl stretching band in PLGA before and after exposure 

to CO2. 
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Table 3.1  Wavenumbers of C=O stretching peaks in polymers. 

C=O 

Stretching 

Polymer 

in toluene 
Solid polymer Polymer + 10 bar CO

2
 Polymer + 40 bar CO

2

PLGA85 1762.6 1752.3 1752.6 1754.6 

PLA 1762.4 1754.9 - 1755.1 

PVAc - 1734.5 1735.0 1735.5 

PMMA 1734.5 1728.2 1728.3 1729.6 

Note: The C=O stretching peak of PMMA in 40 bar Ethane is at 1728.75 cm-1 
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 In contrast to the results reported above, both experiments [44] and quantum 

calculations [38] involving systems of small molecules show that the carbonyl stretching 

band shifts to lower frequency (red-shift) when there are Lewis acid-base interactions in 

solution. In order to explain the blue-shift obtained in our work, therefore, we explore 

solvent-induced stretching vibration frequency shifts [111-113] using the Kirkwood–

Bauer–Magat (KBM) equation. This equation relates the stretching frequency shift ν0− νS 

to the dielectric constant (ε) of the solvent as follows 

( )
12
1

0

0

+
−

=
−

ε
εC

v
vv S

             (3.2) 

where ν0 is the vibration frequency of the solute in the gas phase, νs is the frequency of 

the solute in the solvent, and C is a constant that depends on the properties of the solute. 

The dielectric constant of CO2 in the liquid state is 1.5 [114], and is lower than that of 

carbonyl polymers such as PLA (= 3.6) [115]. According to Equation (3.2), therefore, 

CO2 sorption in a carbonyl polymer should lead to a blue shift if dielectric effects are 

dominant. In order to account for solute-solvent interactions such as hydrogen bonding 

and association, a term that is proportional to the Gutmann acceptor number AN of the 

solvent is generally added to the KBM equation as follows [111-113]: 

( )0

0

1
2 1

S Cv v k AN
v

ε
ε

−−
= +

+
            (3.3) 

where k is a constant. If the second term is greater than the dielectric term in Equation 

(3.3), then stretching frequencies would shift to lower values and a red-shift would be 

observed in experiments.    
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 We did not detect any red-shifts in the carbonyl stretching frequency in our 

experiments (see Figure 3.2, and Table 3.1), which suggests that specific interactions 

were not large enough to overcome dielectric effects. To validate this hypothesis, we 

measured the ATR-FTIR spectrum of PMMA under 40 bar ethane pressure and found the 

carbonyl stretching peak at 1728.75 cm-1. Therefore, we conclude that carbonyl stretching 

peak shifts are due mainly to dielectric effects and cannot be used to quantify specific 

interactions between CO2 and the carbonyl group in polymers. It should be noted that 

Kazarian et al. [28] used the carbonyl stretching band of PMMA in toluene as a reference 

to estimate specific interactions via the carbonyl stretching frequency shift. FTIR spectra 

of CO2 + PMMA in toluene were therefore measured at 298 K and different CO2 

pressures. The dielectric constant of toluene (= 2.4) is close to that of liquid CO2, so that 

dielectric effects in the mixed solvent (CO2 + toluene) would be about the same as in pure 

CO2. We would expect to see a slight red shift in the carbonyl stretching band in these 

experiments if Lewis acid-base interactions between CO2 and carbonyl group were 

significant. As shown in Figure 3.3, the maximum absorbance of carbonyl stretching of 

PMMA is at 1734 cm-1 in the absence of CO2, with two smaller peaks are at 1739 and 

1730 cm-1. Increasing CO2 pressure has an insignificant effect on the positions of these 

peaks. This means that shifts in the carbonyl stretching frequencies cannot be used to 

quantify specific interactions between CO2 and carbonyl polymers contrary to what has 

been suggested in the literature [28]. 
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Figure 3.3   Normalized carbonyl stretching band in PMMA + toluene before and after 

exposure to CO2. For clarity, the curves have been shifted upwards by 0.1 

unit. 
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3.3.2 CO2 bending 

 Changes in the CO2 bending mode (v2) when CO2 is contacted with some liquids 

or polymers have been reported by Dobrowolski and Jamroz [116] and Kazarian et al 

[28]. As CO2 is a weak Lewis acid, it can interact with Lewis bases such as the carbonyl 

group with its lone electron pair oxygen, forming an electron donor-acceptor (EDA) 

complex.  Kazarian et al [28] pointed out that the v2 bending mode of CO2 can act as a 

sensitive probe of complex formation between CO2 and polymers. However, they did not 

report any quantitative relationship between the strength of such interactions and the v2 

mode.   

 Figure 3.4 shows the IR spectrum for CO2 + PMMA in the region of the CO2 

bending mode. Three peaks can be found in this region corresponding to the v2 vibration 

of gas phase CO2 at 667 cm-1, the v2 vibration of CO2 absorbed in the polymer at 654 cm-

1, and another peak at 662 cm-1 that corresponds to free CO2 trapped in the polymer 

matrix [116]. Dobrowolski and Jamroz [116] suggest that the peak with the lowest 

wavenumber corresponds to the EDA complex.  

 We assume that the EDA (CO2…C=O) complex is formed according to the 

following reversible chemical reaction 

22 ..CO.PCOP ⇔+               (3.4) 

The equilibrium constant for this reaction is given by 

[ ]
][P][CO

P...CO

2

2=CK
             (3.5) 
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Figure 3.4   Bending mode of CO2 in the IR spectrum of CO2 + PMMA.  Circles 

correspond to experimental data, the solid line represents the curve fit 

spectrum, and the dashed lines represent deconvoluted peaks.  CO2 gas 

phase peak at 667 cm-1, absorbed CO2 peaks at 662 cm-1 and 654 cm-1. 



61 

 

0.37 0.38 0.39 0.4 0.41 0.42
-0.1

-0.05

0

0.05

0.1

0.15
ln

 (K
c)

1000 / RT 
 

 

Figure 3.5   van’t Hoff plot for the CO2 - PMMA interaction at 10 bar CO2 pressure 

and  temperature range from 298 K to 318 K (R2=0.9797). 
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where [P…CO2] represents the concentration of the complex, and [CO2] and [P] 

represent the concentrations of  free CO2 and polymer unit with C=O respectively.  The 

enthalpy of complex formation aHΔ  can be obtained from the temperature dependence of 

ln ( )CK  via to the van’t Hoff relation. 

 We use the IR spectra to obtain the concentrations of free and associated CO2 in 

order to calculate equilibrium constants in Equation (3.5). From the Beer-Lambert law, 

the concentration is given by LAC ε/][ = , where A  and ε  are the absorbance and 

extinction coefficients,  and L  is the path length. For the CO2…P (carbonyl polymer) 

system, Equation (3.5) can be expressed as  
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    (3.6) 

where A2 ][CO and  F2 ][CO  are the concentrations of associated CO2 and free CO2 

respectively,  [P]0 is the overall concentration of the polymer unit with C=O. Because the 

solubility of CO2 in the polymer is low in our experiments (less than 5 wt %), the third 

term in Equation (3.6) can be approximated with a constant. Furthermore, we can assume 

that the second term in Equation (3.6) does not change with temperature or concentration 

of CO2 in the polymer. In our calculation, the average absorbance of CO2 bending mode 

at 662 ± 2 cm-1 was used for [ ]F2COA and at 654 ± 2 cm-1 for [ ]A2COA according to previous 

spectrum analysis (see Figure 3.4). 

 Figure 3.5 shows the van’t Hoff plot for the specific interaction CO2 and PMMA, 

where KC values were calculated form Equation (3.6) using only the first term. The slope 
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of the van’t Hoff plot yields an enthalpy of the association interaction - aHΔ with an 

uncertainty of ± 3%. The strength of specific interactions and the half-width of CO2 

bending band for other carbonyl polymer + CO2 systems are reported in Table 3.2. We 

infer from our results that the strongest interaction between CO2 and the C=O group is 

exhibited in poly (vinyl acetate) because the half-width of the CO2 bending band is 

largest in this polymer. This is in agreement with observations of Kazarian et al [28]. 

3.3.3 Comparison with quantum calculations 

 Several researchers [37-38, 102] have employed quantum calculations to quantify 

interactions between CO2 and carbonyl polymers (using a single repeat unit in the ground 

state T = 0 K) and their results are listed in Table 3.3. Thus,  Nelson and Borkman have 

reported  CO2 and methyl acetate binding energies are -16.6 kJ mol-1 and -17.3 kJ mol-1 

for CO2 attacking the carbonyl oxygen from the ester side and methyl side configurations, 

respectively [38]. Similarly, Kilic et al. have reported CO2 and isopropyl acetate  

interaction energies of -15.9 and -14.2 kJ mol-1 for CO2 attacking the carbonyl oxygen 

from the ester side and methyl side configurations, respectively [37, 40]. Based on these 

values, we may estimate the average interaction energy between CO2 and the carbonyl 

group to be about -13 kJ mol-1 at room temperature (assuming a thermal energy kT of ~ 

2.5 kJ mol-1 at 300 K). This is reasonably close to our measured value of -8.5 kJ mol-1. 

 3.3.4 Specific interactions in polymers with other functional groups 

We also studied other polymers with different functional groups. The typical CO2 

bending mode of CO2 in the IR spectra of CO2 + PEG, CO2 + PMSSQ and CO2 + PSF 

are shown in Figure 3.6. We can clearly see the associated CO2 peak at 649 and 652 cm-1  
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Table 3.2  Quantified specific interactions and half-width of the bending band of CO2 

in carbonyl polymers. 

Polymer ΔHa  kJ mol-1 Δv1/2 cm-1 

PLGA85 -8.5 15 

PLA -8.8 15 

PCL -8.8 14 

PVAc -9.3 16 

PMMA -8.0 15 
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Table 3.3 Binding energies between CO2 and carbonyl group from quantum 

calculations. 

 ΔHa kJ mol-1

 A 

ΔHa kJ mol-1  

B 

Reference 

Methyl acetate -16.6 -17.3 [38] 

Isopropyl acetate -15.9 -14.2 [40] 

Isobutyl acetate -14.3 -14.1 [40] 

Note: (A) CO2 attacking carbonyl oxygen from ester side 

          (B) CO2 attacking carbonyl oxygen from methyl side  
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Figure 3.6   Bending mode of CO2 in the IR spectrum of 10 bar CO2 + PEG, 20 bar 

CO2 + PMSSQ, and 20 bar CO2 + PSF at 298K.     
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Table 3.4  Quantified specific interactions and half-width of the bending band of CO2 

in other polymers with different functional groups. 

Polymer  Functional group ΔHa  kJ mol-1 Δv1/2 cm-1 

PEG   C-O-C -11.5 22 

PSF  O=S=O -8.5 13.5 

PMSSQ  Si-O-Si -6.8 13 

PVDF -F - 8 

PS Benzene ring - 11 

 



68 

 

for PEG, and 652 cm-1 for PSF, respectively. The associated CO2 peak for PMSSQ is not 

very obvious, but around 655 cm-1 which can be determined at a higher temperature 

condition. The free CO2 peak at 662 cm-1 can be assigned. The quantified specific 

interactions and half-width of CO2 bending band are shown in Table 3.4. In our 

experiments, we did not see strong associated peak for CO2 + PVDF, and CO2 + PS. 

Therefore, only half-width the bending band are listed for PVDF and PS. According to 

the Table 3.4, as the increase of the strength specific interactions (-ΔHa), the half-width is 

also increased. This is in agreement with observations of Kazarian et al [28]. On the basis 

of both quantified specific interaction and half-width, we may conclude the the specific 

interaction in CO2 + PVDF and CO2 + PS are much weaker than that in CO2 + PEG, 

CO2+PVAc,  CO2+ PSF, and CO2 + PMSSQ. 

3.4 Conclusions 

 We have measured FTIR spectra of carbonyl polymers under CO2 pressure using 

a high pressure ATR cell. Blue shifts in the carbonyl stretching frequencies were 

observed in CO2 + PVAc, PMMA, PLA, or PLGA85 systems.  These CO2 induced blue 

shifts can be attributed to dielectric effects, which are much greater than specific 

interactions between CO2 and carbonyl groups. As a result, CO2 induced carbonyl 

stretching frequency shifts cannot be used to quantify specific interactions in these 

systems. However, we also show that an equilibrium constant method based on the CO2 

bending mode can be used to quantify specific interactions between CO2 and carbonyl 

polymers. This method shows that the strength of these interactions is in the order: CO2 + 

PVAc > CO2 + PCL ≈ CO2 + PLA > CO2 + PLGA85 > CO2 + PMMA. This method can 
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also be extended to other CO2 philic polymers, leading to CO2 + PEG > CO2 + PVAc > 

CO2 + PSF > CO2 + PMSSQ >> CO2 + PVDF & PS. 

 

 

Yuan, Yanhui and Teja, Amyn S., Quantification of specific interactions between CO2 

and the carbonyl group in polymers via ATR-FTIR measurements, Journal of 

Supercritical Fluids, to be submitted.  
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CHAPTER 4 

SPECIFIC INTERACTIONS IN POLYMERS + CO2 FROM 

MOLECULAR DYNAMICS CALCULATIONS 

4.1 Introduction 

 As mentioned in Chapter 2, specific interactions between CO2 and several 

polymer repeat units have been studied using quantum mechanical calculations [37, 40, 

52, 103, 117-118]. One of the major limitations of the quantum approach is that only a 

few polymer oligomers can be investigated. Recently, molecular dynamics simulations 

have been used to investigate specific interactions between CO2 and solutes ranging from 

ionic liquids [119] to polymers [120-122]. However, there appears to be room for 

additional studies of specific interactions in CO2 and polymer systems using molecular 

dynamics simulation [123-125]. This Chapter therefore deals with molecular dynamics 

(MD) simulations to investigate: (1) CO2 accessibility in isomers such as PVAc and 

PMA; (2) the value of the binding ratio; (3) specific interactions between CO2 and 

various functional groups.   

4.2 Simulation Method 

4.2.1 Molecular dynamics 

 Molecular dynamics essentially samples conformations by integrating Newton’s 

equations of motion over time. In this work, MD simulations were carried out using the 

commercial software package MOE (Molecular Operating Environment) [126]. The 

OPLS (Optimized Potentials for Liquid Simulations) force field was selected to describe 
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the force between atoms, and combined NVT ensemble was used for CO2 and polymer 

systems with Nose-Hoover thermostats to keep temperature constant [127]. 

 A model was constructed for polymer chains consisting of 50 - 100 repeat units, 

and the polymer chains were folded into a 30 Å box with periodic boundaries. Then, 50 - 

100 molecules of CO2 were added into the box (shown in Figure 4.1). In each simulation, 

a minimized energy conformation at T = 0 K was used as the initial conformation. 

 The NVT MD simulations were run from 273 to 373 K. The time step was 0.002 

ps, and the simulation was sampled every 0.5 ps. The simulations were run for 10000 ps 

to reach equilibrium, the potential energy levels off (shown in Figure 4.2), and the final 

1000 samples (500 ps) were used in the data analysis. The custom SVL MD code 

(MD2006.SVL provided by Dr. Ludovice) was used for these simulations [127], and a 

pair distribution function code (pdf.SVL, in Appendix C) was used to analyze the results. 

4.2.2 Quantify the specific interaction energy 

 As proposed by Variankaval [96], the equilibrium constant for association (K) can 

be determined from estimates of the relative amounts of associated and unassociated 

species present in a solution at different temperatures. For a binary solution containing 

2Nξ  polymer segments and N1 solvent molecules, of which ( )ij cn r are associated, the 

equilibrium constant is given by 

1 2

2 1

1 2 1 2

( )
( )

( ) ( )
( ) ( )

ij c

ij c

ij c ij c

ij c ij c

n r
N N n r
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N n r N n r
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⎡ ⎤
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                                                   (4.1) 
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Figure 4.1 Representative structures for CO2 + polymer system in a box with periodic 

boundaries.  
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Figure 4.2 Potential energies in an equilibrated 10ns simulation of PVAc and CO2 

system. 
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In this equation, ξ  is the number of repeat unit in a polymer chain, and ( )ij cn r  

indicates the number of associated pairs within a sphere of radius cr . This distance ( cr ) 

can be assumed to be the first minimum in the pair distribution function, which can then 

be integrated to obtain ( )ij cn r . The pair correlation function and the number of associated 

pairs are expressed as 

( ) /
( )

/
ij

ij
ij

dn r dV
g r

N V
=                                    (4.2) 

and 

2

0

( ) ( )4
cr

ij
ij c ij

N
n r g r r dr

V
π= ∫                                     (4.3) 

 NVT MD simulations were carried out at different temperatures to obtain the 

specific interaction energy ΔHa from the slope of ln K versus 1/T plot. 

4.3 Results and Discussion 

4.3.1 Pair distribution function 

 Figure 4.3 shows the pair distribution functions (PDF) of carbonyl oxygen in 

PVAc and carbon in CO2. In the MD simulations, the total number of PVAc repeat units 

(mer) is 60, and the number of CO2 molecules is 60. The CO2 density is 0.30 g/cm3, 

comparable to the density of gas phase CO2 at 300 K and 70 bar. As we can see from the 

graph, the position of first peak in the PDF is at 3.2 Å, which means that the most favored 

distance between O (C=O) and C (CO2) is 3.2 Å. This value is reasonably close to the 

value (2.8~2.9 Å) of the minimized energy state from quantum calculation [40]. Because 

these MD simulations are run at 300 K, specific interactions between CO2 and the 
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carbonyl group because of the effect of the kinetic energy. The first minimum of the PDF 

is at 4.5 Å. This can be treated as the maximum distance for specific interactions, or rc in 

Equation (4.1) and the number of associated pairs nij(rc)  obtained from Equation (4.3). 

 Figure 4.3 also shows the simulation results for a different number of repeat units. 

We can see that position of the first peak in PDF almost is still ~3.2 Å. Thus, the number 

of mers in a polymer chain will have little effect on the position of the peak for a polymer 

chain with more than 10 mers.  

 Figure 4.4 shows the simulation results for temperatures between 300 K and 380 

K. We can see that the position of the first peak in the PDF is almost unchanged at ~ 3.2 

Å. However, the intensity of the fist peak in PDF decreases as the temperature increases. 

This implies that the number of associated CO2 molecules decreases but the most favored 

distance between O (C=O) and C (CO2) remains the same in this temperature range.   

 Figure 4.5 shows the pair distribution functions (PDF) of carbonyl carbon in 

PVAc and oxygen in CO2, ether oxygen in PVAc and carbon in CO2. The first peak 

positions of these two PDFs are 4.6 Å and 5.5 Å respectively. These values are larger 

than the value 3.2 Å from the pair distribution functions (PDF) of carbonyl oxygen in 

PVAc and carbon in CO2.  Therefore, we may infer that the specific interaction between 

carbonyl oxygen in polyesters (such as PVAc, PMA) and carbon in CO2 is dominated. 

4.3.2 Accessibility 

 Accesibility of the carbonyl group to CO2 will lead to differences in specific 

interactions between CO2 and C=O in isomers (e.g. PVAc and PMA). Figure 4.6 shows 

the PDFs of PVAc and PMA at the same conditions. We can clearly see that the intensity  
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Figure 4.3 Pair distribution function of carbonyl oxygen O…C (CO2) in PVAc + 

CO2. 
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Figure 4.4  Pair distribution function of carbonyl oxygen O…C (CO2) in PVAc + 

CO2at different temperatures. 
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Figure 4.5 Pair distribution function of carbonyl carbon C…O (CO2) and ether 

oxygen O…C (CO2) in PVAc + CO2 at 300 K. 
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of the first peak in CO2 + PVAc is higher than that in CO2 + PMA. This implies that the 

number of CO2 molecules associated with PVAc is higher than the number associated 

with PMA, and that the carbonyl group in PVAc is quite accessible to CO2. Similarly, the 

PDFs in Figure 4.7 for PVAc, PLA, and PVMK show that the carbonyl group 

accessibilities are in the order, PVAc > PVMK > PLA > PMA. 

4.3.3 Binding ratio 

 In all previous studies of polymer + CO2 systems, the binding ratio µ was 

assumed to be 1 [13-14]. It is necessary to validate this assumption using MD 

simulations. Figure 4.8 shows the single association (µ = 1) rate for 1000 conformations 

in the CO2 + PVAc system. Each data point represents a conformation, and ra is the 

association distance.  As the association distance increases, the single binding rate should 

decrease as shown in Figure 4.9. We can see that the single association rates is 96 % with 

ra =3.2 Å, and 85 % with ra = 4.0 Å. We can see that the single association rates is  96 % 

with ra =3.2 Å, and 85 % with ra = 4.0 Å. This means that only about 10 % of the 

associated CO2 molecules are associated with two or more carbonyl groups at the same 

time, or 10 % of the associated carbonyl groups are associated with two or more CO2 at 

the same time. Thus, binding ratio equals 1 is a reasonable assumption for polymer + CO2 

systems. 

4.3.4 Specific interaction energy 

 The specific interaction energy between CO2 and a functional group can be 

calculated from Equation 4.1. Results from MD simulations for CO2 + polymer systems 

are shown in Table 4.1. The strength of interaction increases in following order:  
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Figure 4.6  Carbonyl oxygen O…C (CO2) pair distribution function of in PVAc and 

PMA. 
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Figure 4.7 Pair distribution function of carbonyl oxygen O…C (CO2) in PVAc + 

CO2, PLA + CO2, and PVMK + CO2.  



82 

 

65

70

75

80

85

90

95

100

105

0 200 400 600 800 1000

Si
ng

le
 A

ss
oc

ia
tio

n 
%

Samples
 

Figure 4.8 Single association rate in 1000 conformations for CO2 and PVAc system, 

with the association distance, ra = 3.2 Å.  
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Table 4.1 Specific interaction energies from MD simulations. 

Functional group Model Polymer - ΔHa, kJ/mol 

O-C=O PVAc 10.64 

Si-O-Si PDMS 5.4 

C-O-C PEG 13.5 
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C-O-C  >  O-C=O  > Si-O-Si . The estimates obtained are in agreement with 

experimental results. Note that MD simulations provide relative values of the interaction 

energy, since different values are obtained using different force fields. However, the 

trends do not depend on the force field chosen. 

4.4 Conclusions 

 We have used NVT MD simulations to study specific interactions between 

carbonyl polymers and CO2. Using pair distribution function analysis, we have identified 

the association distance to be 3.2 Å. CO2 accessibility can be evaluated by the intensity of 

the first peak in the pair distribution function, and was found to decrease in the order 

PVAc > PVMK > PLA > PMA. The binding ratio was also calculated and it was 

concluded that 96 % of associated CO2 molecules interact with only one carbonyl group. 

The strength of these interactions is in the order: C-O-C  > O-C=O > Si-O-Si . 
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CHAPTER 5 

EXTENSION OF THE COMPRESSILBE LATTICE MODEL TO 

POLYMER + CO2 + COSOLVENT SYSTEMS 

  

 In Chapter 3 and 4, specific interactions between CO2 and polymers were 

quantified using experiments and MD simulations.  In this Chapter, the Compressible 

Lattice Model is extended to ternary systems and the quantified specific interactions are 

used to predict phase behavior in polymer + CO2 + cosolvent systems.. 

5.1 Introduction 

 Supercritical CO2 has been used as a green solvent in many polymer processes, 

including processes for precipitating polymer nanoparticles and for depositing polymer 

thin films [128-130]. The fluid-solid and liquid-liquid phase boundaries in these systems 

play an important role in determining the morphology of polymer particles that are 

obtained or films that are deposited. As a result, phase equilibrium calculations in CO2 + 

polymer systems have received increasing attention in the literature [19, 21].  

 There is experimental evidence to suggest that CO2 forms weak complexes with 

basic functional groups (such as the carbonyl group) in polymers [28]. Indeed, weak 

Lewis acid-base interactions between CO2 and the carbonyl oxygen in the backbone of 

poly(vinyl acetate) (PVAc) and poly(methyl methacrylate) (PMMA) have been reported 

by Kazarian et al. [28] using Fourier transform infrared (FTIR) measurements. Such 

interactions play a significant role in the phase behavior of CO2 + PMMA systems, as can 

be inferred from the measurements of Wissinger and Paulitis [131]. It is therefore 
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important to consider these interactions in thermodynamic models for CO2 + polymer 

systems. Unfortunately, weak acid-base complexes are seldom accounted for explicitly in 

Flory-Huggins or Sanchez-Lacombe type models. Models for associated systems such as 

the Statistical Associating Fluid Theory (SAFT) [72], [81-82], as well as a recently 

proposed compressible lattice model [92, 97, 132] are able to account explicitly for these 

interactions. However, these models generally require two or more adjustable parameters 

in the calculations. For example, the SAFT equation uses two temperature-dependent 

parameters to correlate cloud point behavior in CO2 + polymer systems [80, 99]. The 

compressible lattice model also uses two parameters for this purpose. However, we have 

shown that the parameters are not dependent on pressure, temperature or molecular 

weight [92, 97, 132]. Furthermore, one of the parameters can be obtained from 

independent measurements such as FTIR spectra [92, 132]. 

 In the present study, we extend the compressible lattice model to CO2 + cosolvent 

+ polymer systems. Polar cosolvents are often added to CO2 to increase the solubility of 

polymers such as poly(ε-caprolactone) (PCL), poly(isopropyl acrylate) (PIPA), and 

poly(isodecyl acrylate ) (PIDA) [11, 133-134]. These polymers are not very soluble in 

CO2 even though they contain carbonyl repeat groups that are capable of forming weak 

complexes with CO2. There is interest in processing PCL with CO2 because it is 

biodegradable and has shown promise in drug delivery applications. This interest also 

extends to polyacrylates such as PMMA, PIPA and PIDA which are widely used in 

photopolymer printing, adhesives and coatings [135-136]. The ability to identify 

cosolvents via the phase behavior of CO2 + cosolvent + polymer systems is therefore of 

practical interest in processing these polymers with CO2.  
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 In this work, we use the ternary extension of the compressible lattice model to 

predict cloud points in CO2 + dimethyl ether (DME) + PCL, CO2 + DME + PIPA, and 

CO2 + DME + PIDA systems. Physical properties of CO2 and DME are listed in Table 

5.1.  

5.2 Compressible Lattice Model 

 In the compressible lattice model, the solution of polymer P and solvent S is 

assumed to consist of associated and unassociated polymer segments, as well as 

associated and unassociated CO2 molecules. Each polymer segment occupies a lattice site, 

with adjacent segments occupying adjacent lattice sites. Specific interactions between a 

CO2 molecule and a functional group in a polymer segment restrict a certain number of 

these molecules to specific lattice sites, whereas the remaining unassociated CO2 

molecules are distributed randomly on the lattice. The entropy of mixing can be 

calculated from the total number of configurations of these molecules and segments. This 

is combined with an enthalpy of mixing (based on contacts resulting from association and 

dispersion) to obtain the following expression for the Gibbs energy of mixing ΔGmix  

( ){ }[ ]

{ }

( ) ( )

1 1 2
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ln 1 ln 1 ln

mix
a uPS

PS P PS P P PS PS PS
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G z
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α φ χ φ φ α α χ

φ α φφ φ φ α φ
ξ α φ α φ

α φα φ φ α α α φ α
φ α φ

Δ
= + − + − −

⎛ ⎞− +
+ + − + −⎜ ⎟+ −⎝ ⎠

+ + − − +
−

                           

           (5.1) 

 In Equation (5.1), z is the lattice coordination number (=10 in this work), R is the 

gas constant, T the temperature, φS and φP are the volume fractions of the solvent (CO2)  
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Table 5.1 Physical properties of CO2 and DME  

Solvent 
Chemical 

formula 
Mw 

Tc 

(K) 

Pc 

(bar) 

VvdW

(cm3/mol) 

ω Dipole 

moment(D) 

Carbon dioxide CO2 44.01 304.1 73.8 20.8 0.225 0.0 

Dimethyl ether CH3OCH3 46.06 400.0 52.4 36.5 0.192 1.3 
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and polymer, and N is the total number of lattice sites. Equation (5.1) contains four 

characteristic quantities for the binary system (P + S): the association ratio αPS, the 

number of segments ξPS, the interaction parameter for association a
PSχ , and the interaction 

parameter for dispersion u
PSχ .   

 The association ratio αPS is the fraction of associated segments per polymer 

molecule, and can be related to the equilibrium constant KPS of the association reaction (P 

+ S = P…S complex) as follows: 

2(1 ) (1 ) 4 (1 )
2 (1 )

PS PS P S PS PS
PS

P PS

K K K K
K

φ φ
α

φ
+ − + − +

=
+

      (5.2)  

 Furthermore, the temperature dependence of KPS can be expressed as: 

' '

1 1ln
a

PS PS

PS

K H
K R T T

Δ ⎛ ⎞= − −⎜ ⎟
⎝ ⎠

         (5.3) 

where K’PS is the equilibrium constant for association at a reference temperature T ’ (say, 

300 K) and a
PSHΔ is the enthalpy of association (assumed to be independent of T over the 

range of temperatures of interest). In turn, a
PSHΔ  can be expressed in terms of  a

PSχ  as:  

a
a P S
P S

H
R T

χ Δ
=          (5.4) 

 The segment number ξPS can be calculated from the ratio of the free volume of the 

polymer to that of the solvent as suggested by Kasturiangan et al [92, 132]. It is given by: 

[ ]
[ ]

vdW
P P

PS vdW
S S

V T,P 1.2V
ξ

V T,P V
−

=
−

        (5.5) 

where VP is the molar volume of the polymer, and VS  that of CO2 at the temperature and 

pressure of the system. The superscript vdW denotes the van der Waals volume. 
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 Finally, the interaction parameter for dispersion u
PSχ   is calculated from the 

solubility parameter δP of the polymer and δS  of the solvent (CO2) using regular solution 

theory. Thus 

( )2ˆ
( 2 )

u S
PS P S

PS

V
z RT

χ δ δ
α

= −
− −

       (5.6) 

 Note that the interaction parameter for dispersion can be calculated from 

properties of the pure components at a given temperature. Also, KPS and αPS can be 

calculated at any temperature if a
PSHΔ  and K'PS are known. In the absence of independent 

measurements of association, a
PSHΔ  and K'PS can be treated as adjustable parameters.  

 It should be added here that we may also write Equation (5.1-5.4) for the 

cosolvent (C) + polymer (P) system with parameters a
PCHΔ  and K'PC and for the solvent 

(S) + cosolvent system (C) with parameters a
SCHΔ  and K'SC  

 To extend the lattice model to ternary systems, we may express the Gibbs energy 

of mixing as the sum of three binary terms to give [86, 137-138]: 

mix mix mix mix
PSC PS PC SCG G G G

NRT NRT NRT NRT
Δ Δ Δ Δ

= + +                      (5.7) 

 To simplify the resulting expression, we assume that there are no specific 

interactions between the solvent and cosolvent (ie. a
SCHΔ  and K'SC are both zero) and that 

ξPS = ξPC. In the systems we have studies (CO2 + DME + polymer). There is no evidence 

to suggest that CO2 and DME form complexes so that a
SCHΔ  and K'SC are probably zero. 

Also, the number of segments “seen” by either CO2 or DME molecules should be large 

and therefore any differences should not have a significant effect on the Gibbs energy of 
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the solution. This leads to the following expression for the Gibbs energy of mixing of the 

ternary system (detailed derivations were shown in Appendix B): 
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                      (5.8)   

 This expression contains the binary quantities αPS, ξPS, a
PSχ , and u

PSχ  for the 

solvent + polymer system, as well as  αPC, ξPC, a
PCχ , and u

PCχ  for the cosolvent + polymer 

system. As described above, these quantities can be calculated if a
PSHΔ  and K'PS as well 

as a
PCHΔ  and K'PC are known. 

5.3 Cloud Point Calculations 

 At a cloud point, phase equilibrium between a polymer-rich phase (h) and a 

polymer-lean phase (l) can be described by 

l l h h
i i i ix xγ γ=                      (5.9) 

where component i can be the polymer, solvent, or cosolvent, and the activity coefficients 

iγ  depend on temperature, pressure, and composition. We have chosen the standard 

states of each component to be the same in the polymer-lean and polymer-rich phases. 
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Therefore, both phases are treated using the same model, in the spirit of van der Waals. 

There are four unknowns T, P, l
Sx  and h

Sx  in the two equations obtained when Equation 

(5.9) is applied to the two components (polymer and solvent) in a binary system. 

Similarly, there are six unknowns T, P, l
Sx , l

Px , h
Sx  and h

Px  in the three equations obtained 

when Equation (5.9) is applied to the three components (polymer, solvent, and cosolvent) 

in a ternary system. Therefore, if the composition of one of the phases is known, then the 

pressure and composition of the other phase can be calculated at a given temperature for 

both binary or ternary systems. Activity coefficients can be obtained by differentiation of 

Equation (5.8) in the case of ternary systems, or Equation (5.1) in the case of binary 

systems. 

5.4 Results and Discussion 

 Cloud points of the six binary systems CO2 + PCL, CO2 + PIPA, CO2 + PIDA, 

DME + PCL, DME + PIPA, and DME + PIDA, as well as three ternary systems CO2 + 

DME + PCL, CO2 + DME + PIPA, and CO2 + DME + PIDA were calculated using the 

model. The volume of each polymer VP was calculated using the Tait equation [139] or 

the group contribution modified cell model (GCMCM) of Sato et al [140].  Solvent (and 

cosolvent) volumes Vs were obtained using the Patel-Teja equation of state [141].  

Solubility parameters of the non-polar analog (or homomorph) of each polymer required 

to obtain u
PSχ  using Equation (5.6) were estimated using the group additivity approach of 

van Krevelen [142] or Fedors [143].  
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5.4.1 Cloud point behavior of CO2 + polymer binary systems 

 Cloud points in the CO2 + PCL, CO2 + PIPA and CO2 + PIDA systems were 

correlated using one adjustable parameter K'PS for each binary system. a
PSHΔ  values were 

obtained from FTIR measurements in the case of CO2 + PCL, and assumed to be the 

same as that for CO2 + PMMA in the case of CO2 + PIPA and CO2 + PIDA systems. This 

assumes that the strength of the association interaction was the same in the three 

polyacrylate systems. A detail of FTIR measurements was presented in Chapter 3. Figure 

5.1 shows calculated cloud point curves for the three systems. The results are in good 

agreement with experiment with average deviations of less than 5 %. Effects of 

polydispersity were ignored in these calculations. The correlated K’PS value (0.093) was 

slightly larger for CO2 + PIPA than for CO2 + PIDA (0.091) (see Table 5.2). This 

suggests that there are more CO2 - PIPA complexes formed than CO2- PIDA complexes. 

It is possible that the shorter side chain in PIPA offers less steric hindrance for CO2 to 

access the carbonyl group. Also, the concentration of carbonyl group in PIPA is higher 

than that in PIDA leading to more complexes being formed. 

5.4.2 Cloud point behavior of DME + polymer binary systems 

 Cloud points in the DME + PCL, DME + PIPA and DME + PIDA systems were 

correlated using one adjustable parameter K'PC for each binary system (see Table 5.3). 

a
PCHΔ  values were assumed to be the same as for the corresponding CO2 system. 

Calculated cloud point curves are plotted in Figure 5.2 and show good agreement with 

experiment (average deviations < 5 %). Effects of polydispersity were ignored in these  



95 

 

1000

1500

2000

2500

3000

80 120 160 200 240

Pr
es

su
re

 / 
B

ar

Temperature / oC
 

 

Figure 5.1  Cloud point curves in CO2+ PCL, CO2 + PIPA, and CO2 + PIDA binary 
systems. Points represent experimental data for CO2 + PCL (MW = 
170,000) (Δ); CO2 + PIPA (MW = 120,000) (O); and CO2 + PIDA (MW = 
60,000) (�) from Reference [11, 133-134]. Lines represent calculated 
curves for polymer concentrations of ~5.0 wt %. 

 



96 

 

Table 5.2 Results of cloud point calculations for CO2 + PCL, CO2 + PIPA, CO2 + 

PIDA 

Polymer 
Mw 

(×1000) 

Tg 

(K) 

Temperature 

range (K) 

Pressure 

range (bar)

a
PSHΔ  

(kJ/mol) 

'
PSK  AADa % 

PCL 170 213 458-502 2522-2832 -8.8c 0.135 4.2 

PIPA 120 270 406-486 1352-2685 -8.0b 0.093 3.6 

PIDA 60 213 418-475 1175-1922 -8.0b 0.091 2.7 

a , Model , Experiment

1 , Experiment

1 % 100%
N

i i

i i

P P
AAD

N P=

−
= ×∑

 
b  from FTIR spectra for PMMA + CO2  

c  from FTIR spectra for PCL + CO2 
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Figure 5.2 Cloud point curves in DME + PCL, DME + PIPA, and DME + PIDA 
binary systems. Points represent experimental data for DME + PCL (MW = 
170,000) (Δ); DME + PIPA (MW = 120,000) (O); and DME + PIDA (MW = 
60,000) (�) Reference [11, 133-134].  Lines represent calculated curves 
for polymer concentrations of ~5.0 wt %. 
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Table 5.3 Results of cloud point calculations for DME + PCL, DME + PIPA, DME 

+ PIDA 

Polymer 
Mw 

(×1000) 

ˆ
Pδ  

(MPa)0.5 

Temperature 

range (K) 

Pressure 

range (bar) 

a
PCHΔ  

(kJ/mol) 
K'PC AAD % 

PCL 170 17.9 329-472 261-497 -8.8 0.166 3.5 

PIPA 120 17.0 373-453 41-181 -8.0 0.171 3.8 

PIDA 60 17.3 375-454 36-178 -8.0 0.160 2.3 
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calculations. K’PC values for DME systems were found to be larger than those for the 

corresponding CO2 systems implying more complexes being formed between DME and 

the polymers than between CO2 and the same polymer. The carbon atom can act as a 

Lewis acid in both CO2 and DME and is able to interact with the oxygen atom in the 

carbonyl group which acts as a Lewis base. Our results suggest that Lewis acid - base 

interactions probably exist in DME + polymer and CO2 + polymer systems. The results 

also confirm that DME is a good cosolvent for CO2 + PCL, CO2 + PIPA and CO2 + PIDA.  

5.4.3 Cloud point predictions in CO2 + DME+ polymer ternary systems 

 Figure 5.3-5.5 present results of our calculations of cloud point curves in CO2 + 

DME + PCL, CO2 + DME + PIPA and CO2 + DME + PIDA systems. No adjustable 

parameters were used in these calculations. It is obvious that cloud points in ternary 

systems can be predicted with AAD less than 10 % using our model.  It should also be 

noted that both UCST behavior (negative slopes of cloud point curves) and LCST 

behavior (positive slopes) can be predicted equally well by our model. Finally, the 

assumption of no association between CO2 and DME appears to be validated by our 

calculations.  

5.4 Conclusions 

 We have extended the compressible lattice model to ternary systems and shown 

that model parameters obtained from binary data can be used to predict ternary system 

behavior with AAD less than 10 %.  Both UCST and LCST behavior can be predicted by 

the model. Our results also suggest that DME - polymer complexes may also formed in 
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these systems, which is one reason why DME is a good solvent for processing acrylate 

polymers using CO2. 

 

 

Yuan, Yanhui and Teja, Amyn S., Extension of a compressible lattice model to CO2 + 

cosolvent + polymer systems, Journal of Supercritical Fluids, accepted. 
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Figure 5.3 Cloud point behavior in CO2 + DME + PCL ternary systems. Points 
represent experimental data for systems containing 0 wt % DME (●); 4.5 
wt % DME (O); 14.5 wt % DME (Δ); 40 wt % DME (�); 100 wt % DME 
(■) from Reference [11, 133-134]. Lines represent calculated values for 
polymer concentrations of ~5.0 wt %. 
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Figure 5.4  Cloud point behavior in CO2 + DME + PIPA ternary systems. Points 
represent experimental data for systems containing 0 wt % DME (●); 9.0 
wt % DME (O); 14.7 wt % DME (Δ); 47.5 wt % DME (�); 100 wt % 
DME (■) from Reference [11, 133-134]. Lines represent calculated values 
for polymer concentrations of ~5.0 wt %. 
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Figure 5.5 Cloud point behavior in CO2 + DME + PIDA ternary systems. Points 
represent experimental data for systems containing 0 wt % DME (●); 8.4 
wt % DME (O); 21.1 wt % DME (Δ); 41.7 wt % DME (�); 100 wt % 
DME (■) from [11, 133-134]. Lines represent calculated values for 
polymer concentrations of ~5.0 wt %. 
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CHAPTER 6 

AN ASSOCIATED LATTICE-FLUID EQUATION OF STATE BASED 

ON THE COMPRESSILBE LATTICE MODEL 

6.1 Introduction 

 As discussed in Chapter 5, the compressible lattice model is an activity coefficient 

model and is not therefore directly applicable to the calculation of volumetric property 

changes, such as swelling, caused by the addition of CO2 to polymers. However, we may 

follow the approach of  Sanchez-Lacombe, Panayiotou-Vera and Flory-Orwoll-Vrij [58] 

to reformulate the compressible lattice activity coefficient model to an EOS. An 

advantage of an EOS is that PVT properties as well as phase behavior can be modeled 

using an EOS.  

  In this chapter, an Associated Lattice-Fluid Equation of State (ALF EOS) is 

derived using the combinatorial term from the Compressible Lattice Model in the 

Sanchez-Lacombe lattice-fluid partition function. Applications of the ALF EOS to the 

calculation of CO2 sorption and swelling are also described. 

6.2 Model Development 

6.2.1 Partition functions 

 The Sanchez and Lacombe lattice-fluid partition function Q is given by 

expc
EQ

RT
⎛ ⎞= Ω −⎜ ⎟
⎝ ⎠

                        (6.1) 
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where cΩ represents the total number of ways of arranging polymer, solvent and holes 

into a lattice, and E is the total lattice energy of the system. 

 For a system of N0 holes, r2N2 polymer segments and r1N1 solvent molecules, the  

number of  occupied lattice sites (N) is given by  

1 1 2 2
ˆˆN rN r N r N= = +                         (6.2) 

where the average segment number in the system ˆ 1r . To calculate cΩ , we write it in 

terms of a  free volume factor 0Ω  and an association factor complexΩ . Thus 

0c complexΩ = Ω Ω                         (6.3) 

According to previous works by Sukhadia and Variankaval [94, 95], 
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       (6.4) 

where z is the lattice coordination number(~10),  α  is the association ratio. Here we have 

assumed that the polymer and solvent associate to form a chemical complex with a 

binding ratio of 1:1, which means that one solvent molecule is associated with one 

polymer segment as follows  

μμP  +  S  P...S                          (6.5) 

where μ  =1. For simplicity, we set r1=1 so that r2 will now be the relative segment 

number.  
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 To estimate the free volume factor, we place ˆr̂N  quasi-polymer segments and N0 

holes on the lattice and obtain [26],   

( )ˆ ˆ( 1)
0

0
0 0

ˆˆ !1
ˆ ˆˆ ! !

N r N rNzQ
N rN N N

− +⎛ ⎞−
= ⎜ ⎟

+⎝ ⎠
   (6.6) 

 Combining Equations (6.1-6.5) and noting that the Gibbs energy is given by 

( )lnG RT= − Ψ                  (6.7) 

where 

exp( )PVQ
RT

Ψ = −              (6.8) 

we obtain 
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⎝ ⎠

           (6.9) 

where 0f  is the fraction of holes (empty sites) defined as 

0
0

0
ˆˆ

Nf
N rN

=
+

              (6.10) 

 We use the so- called “Flory approximation”  [144], to eliminate the last term in 

Equation 6.9 and express the total lattice energy E as 

*E
NRT RT

ρε
− =                 (6.11) 
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where ρ  is the reduced density. 

0
0

0 0

ˆˆ
1 1ˆ ˆˆ ˆ

NrN f
N rN N rN

ρ = = − = −
+ +

             (6.12) 

and *ε  is the average interaction energy per segment 

 * * *
1 1 2 2 exε φ ε φ ε ε= + + Δ                   (6.13) 

and 

( )( )* *
2 2 1 2 2ex mix

a u
H z a

RT NRT
ε αφ χ φ φ αφ χΔ Δ

− = = + − − −                  (6.14) 

In the above expression, α is the association ratio defined previously (Equation 5.2). If we 

set α = 0, only dispersion interaction energy is considered in this development, and 

Equation 6.13 reduces to the lattice energy in SL EOS model. 

( )* * * *
1 1 2 2 1 2 2uRT zε φ ε φ ε φ φ χ= + − −                    (6.15) 

 The dispersion interaction energy can be expressed in terms of solubility 

parameters as follows:   

( )
( )

2* * *
1 2*

2u

v
z RT
δ δ

χ
−

=
−

                                            (6.16) 

Or, in general form as  

( )( )
( )

( )
( )

2
* * * * * * * *
1 2 12 1 2 1 2 12 1 2*

2 1 2

2 2u

k k

z RT z RT

ε ε ε ε ε ε ε ε
χ

+ − − − +
= =

− −
               (6.17) 

where 12k  is accounts for  the non-Regular Solution behavior excluding association. To 

simplify our calculations, we may set 12k  as zero.   
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 The association interaction energy parameter can expressed in terms of an 

enthalpy of association as follows: 

* a a
a

E H
RT RT

χ Δ Δ
= =                                                        (6.18) 

6.2.2 Equation of state 

 We can rewrite Equation 6.9 in terms of the following reduced parameters. 

* *

* * *

* * *
0

ˆ
                          

1 1                             ˆ1 ˆ

rv P PvP
M P

T TR VT v
T f rNv

ρ ρρ
ρ ε

ε ρ

= = = =

= = = = =
−

                            (6.18) 

and then, 

* * 0
0 0

0

2 1 2 1
2 1 2 1

2 1 2

2
2 2 2

1 2

1ˆˆ ln ln(1 )
ˆ1

α     ln ln( α) ln
1 α α

α               αφ ln  (1 α)ln(1 α) α lnα
α

fG rN Pvv RT f f
f r

RT
r

ρε

φ φ φ φφ φ φ φ
φ φ

φ φ φ
φ φ

⎧ ⎡ ⎤⎛ ⎞⎪= − + + + −⎨ ⎢ ⎥⎜ ⎟−⎝ ⎠⎪ ⎣ ⎦⎩
⎡ −⎛ ⎞+ + − − +⎢ ⎜ ⎟+ −⎝ ⎠⎣

⎫⎤⎪+ − − + ⎬⎥− ⎪⎦⎭

              (6.19) 

 The equation of state can be obtained from the partition function in Equation (6.1) 

or Gibbs free energy in Equation (6.19) using 

,

ln

iT N

P Q
RT V

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
                                               (6.20) 

or,  

0 , ,

0
iT P N

G
f

⎛ ⎞∂
=⎜ ⎟∂⎝ ⎠

                                               (6.21) 

Here, we use Equations (6.18, 6.19 and 6.21), and obtain 
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( )

*
*

02 2
0 0 0 0, , 0

1 1 1 1 1ln 0ˆ ˆ(1 ) 1 1ˆ 1
iT P N

G Pv RT f
f f f r frN f

ε
⎡ ⎤⎛ ⎞ ⎛ ⎞∂

= + + + − =⎢ ⎥⎜ ⎟ ⎜ ⎟∂ − − −−⎝ ⎠ ⎝ ⎠⎣ ⎦
   (6.22) 

After rearrangement of Equation (6.21), we can obtain the equation of state in the 

following form: 

( )2 1ln 1 1 0
ˆ

P T
r

ρ ρ ρ⎡ ⎤⎛ ⎞+ + − + − =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
                                            (6.23)

 

Note that Equation (6.21) is of the same form as the SL EOS, although the average lattice 

energy per segment is not the same as the SL EOS (Equation (6.13) and (6.14)).    

 To use the model to calculate thermodynamic properties, we need know * * ˆ, ,v rε  

for the mixtures. As discussed above, *ε  can be calculated using Equation (6.13) and 

(6.14). On the other hand, * ˆ,v r  are obtained using the mixing rules: 

1 1

1 2

11
ˆ (1 )r r r

φ φ
α

−
= +

+
                                                                          (6.24)

 

* *
* * *1 2

1 2 1 1 2 2* *
1 2

v v v
P P
ε εφ φ φ φ= + = +                                                          (6.25)

 

6.2.3 Configurational entropy and chemical potential  

 The configurational entropy of the system can be obtained from Equation (6.3) by 

using 

ln c
S
R

= Ω                                                             (6.26) 

So that 
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⎡ −⎛ ⎞+ + − − +⎢ ⎜ ⎟+ −⎝ ⎠⎣
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                (6.27) 

 The chemical potential of the system can be obtained from Equation (6.9) by 

following relation 

, , j i

i
i T P N

G
N

μ
≠

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

                                                           (6.28) 

0 0 0
1 ln(1 ) ln

ˆ
ARTLi i

i i
i i

rE P V r f f f A
RT RT N RT N r
μ ⎛ ⎞ ⎛ ⎞∂ ∂

= + − + − + +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
    (6.29)
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= − − + +⎢ ⎥⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦

( ) ( )* *1       1
ARTL
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i i i
i

H
r r

RT N
ρ ρ ε ε ρ

⎡ ⎤⎛ ⎞∂ Δ
⎢ ⎥⎜ ⎟= − − + −

⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦
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i i i

i
i

N rN v N rN v vP V P P
RT N RT N RT N

r P f v v
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φ φ

ρ
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 Finally, ln ARTL
iA  is the entropy part in the activity of component i in the 

compressible lattice model (CLM), and can be expressed as  

1ln
ARTL

ARTL mix
i

i

SA
R N

⎛ ⎞∂Δ
= − ⎜ ⎟∂⎝ ⎠

         (6.32) 

 With Equations (6.29 to 6.32), we can calculate the chemical potentials for both 

solvent and polymer.  

6.2.4 Model parameters 

 In order to use the ALF EOS, we need know * *, ,i i iv rε for the pure components, as 

well as K0 and ΔHa to determine specific interactions in mixtures. * *, ,i i iv rε as those in SL 

EOS can be found in the literatures for various polymers and solvents [144], or can be 

estimated from group contributions [145-146]. The specific interaction energy (ΔHa) can 

be obtained from FTIR measurements or molecular modeling calculations; and K0 is the 

only adjustable parameter in the model. If we do not know the specific interaction energy, 

then, two adjustable parameters (K0 and ΔHa) can be used to correlate experiment data. 

Pure component parameters are listed in Table 6.1. 

6.3 Sorption Calculations 

 In the case of CO2 (1) sorption in a polymer (2) at low pressures, it is appropriate 

to assume that the polymer does not dissolve in the CO2 phase. Therefore, only CO2 

partitions between the two phases and the equality of fugacity or chemical potential can 

be written for CO2 only. Since the fluid phase may be assumed to be pure CO2, we may 

write: 
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Table 6.1 SL EOS parameters for pure component [149-151] 

 ε* (J/mol) v*( cm3/mol lattice) r *δ a (MPa)0.5 

CO2 2565.7 4.47 6.54 23.96 

PMMA 5786.5 11.5 6.85×104 b 22.42 

PBS 5967.8 11.4 7.11×104 b 22.88 

EVA40 5096.5 10.3 9.53×104 b 22.26 

PS 6110.8 8.07 11.2×104 27.51 

Note:  (a) 
*

*
*v

εδ =  

 (b) Mw = 106 g/mol for all polymers. 
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,
1 1
G pure Lμ μ=            (6.33) 

or 

0
1 1 1 1 1f̂ ( , , ) ( , ) fG LT P y P T P xϕ γ= =         (6.34) 

 If we use Equation 6.33, with the following Equations (6.35 to 6.37), the chemical 

potentials will be calculated by Equation 6.29. 

( )2 1
1 1 22

2

1 2 1 2 1 1 2
1

1 2 1 2 1 2

2 1 1 2
1 2 2 1 2

1 2 1 2

1ln ln
1 (1 )

1 1         1 ln 1
1

1         ln ln
1

A
r
φ β φ αφ

α α

φ αφ β φ φ β φφ
α φ αφ φ αφ φ αφ

αφ β β φ αβ φ αφ β φ
φ αφ α φ αφ α

⎛ ⎞
= − + − −⎜ ⎟+ +⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − −⎛ ⎞+ − − − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟+ − − −⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞− ⎛ ⎞+ + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − −⎝ ⎠⎝ ⎠ ⎝ ⎠

      (6.35) 

Where,  

( )
( )( )1

1 2

1
2 1 1

K K
N K

ααβ
αφ

+ −⎛ ⎞∂
= =⎜ ⎟∂ − +⎝ ⎠

         (6.36) 

( ) ( ) ( )1 2 2 1 2 2 1 1 2
1 (1 ) 3

ARTL
mix

a u
i

H z
RT N

β φ χ φ β φ φ α β φ αφ χ
⎛ ⎞∂Δ

= + − + + − − −⎡ ⎤⎜ ⎟ ⎣ ⎦∂⎝ ⎠
             (6.37) 

 We can also use Equation (6.34), the expression for the activity can be calculated 

from CLM model, by 

1
1 1

1 1ln
ATRL ATRL
mix mixH Sa

RT N R N
⎛ ⎞ ⎛ ⎞∂Δ ∂Δ

= −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
                 (6.38) 

And, the fugacity coefficient of pure gas phase can be calculated by 

1

1
1

1( , ) ln
v

PvRTT P P dV
RT V RT

ϕ
∞ ⎛ ⎞⎛ ⎞= − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠∫                  (6.39) 
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 An equation of state such as the Patel-Teja Equation [141] can now be used to 

obtain the fugacity coefficient. The fugacity of CO2 in the polymer phase can be 

determined using the hypothetical liquid phase fugacity of CO2, with 0L
1f calculated using 

the Prausnitz and Shair [147] and Barton and Hsu [148] correlations, for 

0.6 / 2.5cT T≤ ≤ . 

2 30
1fln 0.4223 4.7243ln 3.5571 ln 1.2465 ln

L

c c c c

T T T
P T T T

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + − +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
            (6.40) 

6.4 Swelling Calculations 

 The gas absorbed in a polymer can make the polymer matrix swell , which is  

important not only in the processing of polymers by CO2 [21], but also in CO2 separation 

by polymer membranes because CO2 plasticization can dramatically affect the 

performance of the membrane. 

 The swelling of a polymer by absorbed gas can be calculated using the new model 

(ALF EOS) (Equation (6.23)) provided model parameters (K0) are obtained by fitting 

sorption data. The swelling ratio can be defined as 

0

100%w
VS
V

= ×                               (6.41) 

where V0 is the volume of the dry polymer (in cm3/g polymer), and V is the volume after 

exposure to CO2 (in cm3/g polymer). For convenience, we can also use 

( )2

0

CO

100%
1w

m

S
w
ρ

ρ
= ×

−
                             (6.42) 
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where 
2COw is the weight fraction of CO2, and 0ρ and mρ are the density of  the pure 

polymer and mixture (polymer + CO2), respectively. 

 

6.5 Results and Discussion 

6.5.1 Entropy calculations   

 Figure 6.1 and 6.2 show the calculated entropy of a mixture in which some of the 

N1 solvent molecules are associated with some of the r2N2 polymer segments. Equation 

(6.27) was used to calculate the entropy. When both f0 and α are set equal to zero, 

Equation 6.27 reduces to the combinational entropy term in the Flory-Huggins model 

(FH). When only f0 is set equal to zero, Equation (6.27) becomes the combinational 

entropy term in the CLM model.  Equation (6.27) therefore represents the combinatorial 

entropy in the ALF EOS model. Figure 6.1shows that the free volume has a strong effect 

on entropy, which is  expected since the number of configurations in the system will 

increase with increasing free volume, and therefore entropy will also increase 

( lnS k= Ω ).  By contrast, the effect of association on entropy appears to be small, which 

is also reasonable for a polymer solution.  Because r2 is large, an increase to (r2+ar2) in 

an associated polymer solution does not have a significant effect on entropy. This can be 

clearly seen in Figure 6.2, which shows that the entropy per lattice becomes almost 

independent of the segment number when r2 is larger than 50.  
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Figure 6.1 The effect of free volume (f0) and association ratio (α) on the entropy of a 

mixture (N0 + N1 + r2N2). 
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Figure 6.2  The effect of free volume (f0) and association ratio (α) on th entropy of the 

system (α =0.01, f0=0.01). 
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6.5.2 Model CO2 sorption and swelling in polymers   

 Figures 6.3 to 6.6 illustrate the results of our correlation of sorption equilibria in 

CO2 +polymer systems using chemical potentials from Equation (6.33).  One adjustable 

parameter (K0) was used in the calculation of sorption equilibria (Table 6.2) and other 

model parameters were listed in Table 6.1 [149-151].  Specific interaction energies (−ΔHa) 

were obtained from FTIR measurements. The specific interaction energy for PVAc + 

CO2 was assumed to be the same as that for EVA40 + CO2, and that for polyethylene + 

CO2 was assumed to be zero. Also, the specific interaction energy for PCL + CO2 was 

assumed to be the same as that for PBS + CO2 system, because PCL and PBS have very 

similar chemical structures. For CO2 + PS, no specific interactions were detected from 

FTIR spectra. Therefore, a specific interaction energy of −4.0 kJ/mol was assumed in the 

calculations. Good fits of the data were obtained with AAD between calculated and 

experimental values less than 7 %. In contrast, temperature-dependent binary interaction 

parameters (kij) were required for modeling these systems with the SL EOS.  

 Using the parameters obtained by fitting sorption equlibria, we were able to 

predict the swelling of polymers. Figures 6.7 to 6.9 show these predictions for PS + CO2, 

PMMA + CO2 and EVA40 + CO2 systems. No additional parameters were used in these 

calculations. It is obvious that swelling of polymers can be predicted with less than 10 % 

average error using our model.    
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Table 6.2  Adjustable parameters for CO2 sorption in polymers 

System 
SL EOS ALF EOS −ΔHa 

(kJ/mol) kij K0 AADc% 

PMMA + CO2 30.9 10 0.0406T−− × −  [152] 0.0145 5.9 8.0 

PBS + CO2 31.043 10 0.310T−− × + [150] 0.024 3.6 8.8a 

EVA40 + CO2 0.00823−  [151] 0.035 4.8 9.3 

PS + CO2 31.070 10 0.330T−− × +  [153] (0.083)b (6.7)b (4.0)b 

Notes: 

(a) FTIR measurement from PCL and CO2;  

(b) The values in parentheses are obtained by using ΔHa = −4.0 (kJ/mol) in PS + CO2.  

(c) , ,exp

,exp

1% 100%i cal i

i i

w w
AAD

N w
−

= ×∑  
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Figure 6.3  Correlations of sorption in CO2 + PS. The circles, squares, and diamonds, 

represent experimental data from Ref. [154] at 308.15 K, 324.15 K, and 

354.15 K respectively. Lines are calculated values from the model. 
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Figure 6.4  Correlation of sorption in CO2 + PMMA. The circles, squares, and 

diamonds, represent experimental data from Ref. [154] at 308.15 K, 

324.15 K, and 354.15 K respectively. Lines are calculated values from the 

model. 
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Figure 6.5  Correlation of sorption in CO2 + PBS. The circles, squares, and diamonds, 

represent experimental data from Ref. [150] at 323.15 K, 353.15 K, and 

393.15 K respectively. Lines are calculated values from the model. 
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Figure 6.6  Correlation of sorption in CO2 + EVA40. The circles, squares, and 

diamonds, represent experimental data from Ref. [151] at 323 K, and 348 

K respectively. Lines are calculated from the model. 
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Figure 6.7  Swelling predictions for CO2 + PS. The squares and diamonds represent 

experimental sorption data from Ref. [154] at 324.15 K, and 373.15 K 

respectively. The lines are calculated from the model. 
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Figure 6.8  Swelling predictions for CO2 + PMMA. The squares, and diamonds, 

represent experimental sorption data from Ref. [154] at 324.15 K, and 

354.15 K respectively. The lines are calculated from the model. 
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Figure 6.9  Swelling predictions for CO2 + EVA40. The squares and diamonds, 

represent experimental sorption data from Ref. [151] at 323 K, and 348 K 

respectively. The lines are calculated from the model. 
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6.6 Conclusions 

 The compressible lattice model was reformulated in terms of an EOS (ALF EOS). 

The resulting EOS is similar to the SL EOS, but accounts for specific interactions via 

lattice energies, and chemical potentials. Model parameters obtained by fitting sorption 

equilibria can be used to predict swelling in polymers with average error less than 10 %.   
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

 

7.1 Conclusions 

 Specific interactions between CO2 and polymers with carbonyl, ether, siloxane 

and sulfone groups were investigated using in situ ATR-FTIR spectroscopy. Blue shifts 

in the carbonyl stretching frequencies were observed in CO2 + PVAc, + PMMA, + PLA, 

and+ PLGA85 systems, and these CO2 induced blue shifts were attributed to dielectric 

effects. This suggests that CO2 induced carbonyl stretching frequency shifts cannot be 

used to quantify complex formation in these systems. Therefore, temperature dependent 

shifts in the CO2 bending mode were used to quantify complex formation in CO2 + 

carbonyl polymers. Enthalpies of C=O…CO2 association were found to lie between -7 

kJ/mol and -10 kJ/mol in the order: CO2 + PVAc > CO2 + PCL ≈ CO2 + PLA > CO2 + 

PLGA85 > CO2 + PMMA. It was demonstrated that temperature dependent shifts in the 

CO2 bending mode can also be used to quantify association in other CO2-philic polymers, 

leading to enthalpies of association in the order CO2 + PEG > CO2 + PVAc > CO2 + PSF 

> CO2 + PMSSQ >> CO2 + PVDF & PS. 

 Specific interactions in polymers + CO2 systems were also investigated via NVT 

MD simulations. An analysis of pair distribution functions in these systems identified the 

association distance to be 3.2 Å. In addition, the accessibility of the CO group to CO2 

was also investigated via the intensity of the first peak in the pair distribution function. 

Accessibility was found to decrease in the order PVAc > PVMK > PLA > PMA. It was 
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determined that 96 % of associated CO2 molecules involved in complex formation  with 

one carbonyl group only and that the enthalpy of association increased in the order : 

2 2 2CO ...C-O-C  > CO ... O-C=O  > CO ...Si-O-Si . 

 The enthalpies of association obtained via FTIR spectra or MD simulation were 

incorporated directly into a compressible lattice model for phase behavior in polymer + 

CO2 systems. The model was extended to ternary systems and it was shown that model 

parameters obtained from binary data can be used to predict ternary system behavior with 

AAD less than 10 %.  Both UCST and LCST behavior could be predicted by the model. 

The results also suggest that DME - polymer complexes may be formed in associated 

polymer + DME systems, which is one reason why DME is a good solvent for processing 

acrylate polymers using CO2. 

 The compressible lattice model was also reformulated in terms of a lattice-fluid 

EOS model. The new ALF EOS is similar to the SL EOS, but accounts for specific 

interaction effects via lattice energies, and chemical potentials. ALF EOS parameters 

obtained by fitting sorption equilibria can be used to predict swelling of polymers with 

average error less than 10 %.     

7.2 Future Work 

 In Chapter 3, a general method to quantify specific interactions between CO2 and 

polymers was proposed. The method can also be used to study interactions between CO2 

and ions in ionic liquids, poly (ionic liquids), and Metal Organic Framework (MOF) 

materials.   In spite of the fact that some MD simulations  have shown that the anion in 

ionic liquids will affect the  CO2 bending mode [155]. It is necessary to verify these 
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simulation results using in situ ATR-FTIR measurements so that novel ionic liquids for 

CO2 capture may be designed that take advantage of specific interactions. 

  MD simulation should be extended to mixed gases + polymer systems, which are 

important in the use of polymer membranes for CO2 separation [156-157]. MD 

simulations of these systems should provide understanding of CO2 accessibility and 

specific interactions. Furthermore, they may help in the rational design of highly selective 

and permeable polymer membranes. 

 In Chapter 5, it was found that DME may also interact with the carbonyl group in 

polymers to form EDA complexes. This should be investigated using ATR-FTIR 

measurements. The key issue will be to identify the vibration frequency of associated 

DME molecules. Alternatively, quantum calculations and MD simulations should be used 

to study complex formation in DME + polymers.. 

 In Chapter 6, the compressible lattice model was reformulated as an EOS model. 

The resulting EOS was of the same form as the SL EOS. It can be expected that the use of 

different free volume terms will lead to different types of EOS as suggested by the work of  

Sandler [158], Prigogine [159], and Nitta et al [160]. The free volume terms for various 

EOS have been reviewed by Lambert et al [58]. It may also be possible to obtain 

characteristic parameters from the properties of the pure components (such as density, 

cohesive energy) at a reference state that is close to the state of interest, so that the 

properties or phase behavior of mixtures can be extrapolated. This may be valuable for 

short range predictions.  

 The use of fugacity coefficients to calculate  phase equilibria should be 

investigated., Recently, Neau [161] suggested that the chemical potentials in SL EOS 
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cannot be used for thermodynamically consistent phase equilibrium calculations. To 

overcome this problem, Neau [161] proposed consistent fugacity coefficients φi derived 

from P(V,T,n) of the SL EOS by 

, ,

( , , )ln ln
j

res

i
i VT V n

A T V n RT dVZ P n
n V V

ϕ
∞⎛ ⎞∂ ⎛ ⎞= − + = −⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠⎝ ⎠
∫         (7.1) 

where Z is the compressibility factor and Ares is the residual Helmholtz energy. 

 The models developed in this work should also be applied to other systems 

including ionic liquids and polymer blends in which there is association, or reversible 

chemical reaction. Even in small molecule systems, Veytsman statistics [162] can be used 

for the associating contribution in the partition function [163-164].  
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APPENDIX A 

CHEMICAL ABSORPTION OF CO2 IN [BMIM][ACETATE] FOR 

CO2 CAPTURE 

A.1 Introduction 

 There is considerable interest in using ionic liquids and poly (ionic liquids) for 

selectively removing CO2 and other acid gases (H2S and SO2) from natural gas as well as 

power plant flue gas streams [165-168]. In particular, imidazolium-based room 

temperature ionic liquids (ILs) have been shown to be especially promising for CO2 

capture from flue gas streams because of the enhanced solubility of CO2 in these liquids 

[168-169]. 

  Imidazolium-based ILs also have the potential to overcome many of the 

disadvantages associated with current amine-based CO2 capture technologies which are 

energy intensive, release volatile organic compounds, and suffer from amine loss and 

degradation [155, 170]. Enhanced CO2 solubility and absorption in ILs can be due to 

physical as well as chemical mechanisms. Physical absorption is the dominant 

mechanism in ILs such as 1-hexyl-3-methyl-imidazolium bis(trifluoro-methyl-sulfonyl) 

imide [Hmim][Tf2N], whereas chemical absorption dominates in ILs containing amine 

groups [171]. In general, chemical absorption offers higher molar uptake of CO2 per mole 

of IL compared with physical absorption [172].  Thus, CO2 solubility in 1-butyl-3-

methylimidazolium ([Bmim]+) based ILs increases in the order [NO3] - < [BF4] - < [PF6] - 

< [Tf2N] - due to physical sorption [166]; however, CO2 solubility in [Bmim][Ac] at 0.1 

atm CO2 partial pressure is about 30 times greater than in either [Bmim][TFA] or in 
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[Bmim][Tf2N] [173].  Yokozeki et al concluded that both physical and chemical sorption 

of CO2 must occur in [Bmim] [Ac] (CH3COO-) but only physical sorption occurs in 

[Bmim][TFA] (CF3COO-) and [Bmim][Tf2N] (bis-(trifluoromethyl)sulfonylimide) [173].    

 CO2 is thought to form weak complexes with the IL. These complexes have a 

high carrying capacity, but require very little energy for the reverse reaction. This leads to 

high capacity for CO2 while keeping the energy requirements to regenerate the IL low. 

Chemical complex formation between CO2 and [Bmim][Ac] has been noted by Maginn 

[174], Shiflett et al [175], and Barrossee-Antle and Compton [176]. However, the 

mechanism for their formation remains unknown.  This hinders the design of novel acid 

gas absorbents such as poly ILs [177], zeolitic imidazolate frameworks [178], and 

supramolecular ionic networks [179] for low partial pressure (less than 10 bar) CO2 

capture.  

 In the present work, we have used in-situ ATR-FTIR (Attenuated Total 

Reflection- Fourier Transform Infrared Spectroscopy) to study interactions between CO2 

and [Bmim][Ac], as well as the sorption / desorption behavior of CO2 in this IL. We have 

used IR and NMR analysis to infer the reversibility of the chemical complex and a 

mechanism for complex formation. 

A.2 Experimental Section 

 [Bmim][Ac] (HPLC grade  ≥ 96.0 %, C10H18N2O2) , [Bmim][TFA] (HPLC grade  

≥ 96.5 %, C10H15F3N2O2), and solvents were purchased from Aldrich (St. Louis, MO). 

High purity N2 and CO2 gas (99.99%) were purchased from Airgas Inc. (Radnor, PA) and 

used as received. All ILs were dried overnight in a vacuum oven at 323 K before use. 
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ATR-FTIR measurements were made using a Nicolet 550 Fourier transform spectrometer 

with a DTGS detector at a resolution of 1 cm-1. Spectra were obtained using 64 scans in 

the 4000-500 cm−1 wavenumber range. The high pressure ATR Cell was made by Axiom 

Analytical, Inc (Irvine, CA, USA) and consisted of a ZnSe crystal attached to a 

cylindrical flow cell (volume 2 mL) by a Teflon O-ring. The incident angle of the IR 

beam was 45 o, giving 10 specimen-sensing reflections at the top face of the crystal. The 

cell was heated to a temperature of 353 K by circulating water. A temperature controller 

(Omega CN9000A) maintained the temperature of the cell within ± 0.2 K.  CO2 from a 

syringe pump, connected to a pressure gauge (Heise, Model 710A), maintained the 

pressure in the cell within ± 0.1 bar.  

 In situ ATR-FTIR measurements of the IL-CO2 system were performed as 

follows. Background spectra were recorded under vacuum in the absence of a sample. 

The IL sample (2.0 mL) was then injected into the cell and the cell was purged by a slow 

flow of nitrogen. After a film of IL had formed on the ZnSe crystal, the cell was 

evacuated, heated to a temperature of 353 K, and kept at this temperature for 12 h to 

eliminate any volatile impurities. 

 The temperature was then increased to the experimental value and the IR 

spectrum was collected under vacuum.  Thereafter, CO2 was slowly introduced into the 

cell until the pressure reached the experimental value. Spectra were collected during this 

time until no changes could be observed in the absorbance bands of CO2 or the IL. The 

spectra are displayed in terms of absorbance, defined as −log (I/I0), where I and I0 

represent IR beam l intensities of the sample and reference states, respectively.  
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  1H NMR spectra were measured on a Varian Mercury 400 MHz spectrometer 

using deuterated chloroform as the lock solvent. 

 

A.3 Results and Discussion 

A.3.1 ATR-FTIR analysis  

 Figure A.1 shows the imidazolium cation and anion of [Bmim][Ac] with the 

position of the protons labeled. IR spectra of pure [Bmim][Ac]  and [Bmim][Ac] exposed 

to 10 bar CO2 at 298 K are shown in Figure A.2. New peaks can be clearly seen at (790, 

945, 1250, 1321, 1506, 1665, and 2338) cm-1 in the CO2 + [Bmim][Ac] spectrum. The 

peak at 2338 cm-1can be assigned to the asymmetrical stretching of CO2, whereas the 

other peaks must belong to a new compound that is formed when CO2 is absorbed in 

[Bmim][Ac]. The peaks at 1665, 1250 and 945 cm-1 are characteristic peaks of the 

carboxylic acid group [180] and suggest that the new compound is a carboxylic acid. 

Small peaks are also apparent at 1702 cm-1 and 3088 cm-1. The peaks at 3088 cm-1 and 

1665 cm-1 can be assigned to the stretching of OH and C=O bonds in the carboxylic acid 

group (-COOH) of the chemical complex CO2…[Bmim][Ac]. By comparison, similar 

spectra for [Bmim][TFA] do not have any new peaks except for CO2 peaks at 2338 cm-1 

and 670 cm-1. Therefore, we may conclude that there is no complex formation in the CO2 

+ [Bmim][TFA] system. It should be added that there is a broad peak at 660 cm-1 in both 

[Bmim][Ac] and [Bmim][TFA] systems that overlaps with the CO2 bending mode. 

However, it is not clear if splitting of the CO2 bending mode occurs in these systems.  
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Figure A.1  Chemical structure and proton numbering on the imidazolium cation and 

anion of [Bmim][Ac]. 
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Figure A.2  ATR-FTIR spectra of [Bmim][Ac] and CO2 + [Bmim][Ac] at 298 K. 
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 Figure A.3 shows the carbonyl stretching bands in the spectra of CO2 + ethyl 

acetate, CO2 + acetic acid, CO2 + [Bmim][Ac], and CO2 + [Bmim][TFA] with the 

positions of the peaks listed in Table 1.  Figure 3 and Table 1 confirm that new peaks are 

present in the spectra of [Bmim][Ac] exposed to CO2, and also that there are no 

significant changes in the IR spectra when [Bmim][TFA], ethyl acetate, or acetic acid are 

exposed to CO2. This also suggests that any Lewis acid-base interactions between CO2 

and C=O groups in [Bmim][TFA], ethyl acetate, or acetic acid, are weak and do not lead 

to significant frequency shifts in the IR spectra. By contrast, a new carbonyl stretching 

peak can be found at 1665 cm-1 in CO2 + [Bmim][Ac] compared with the carbonyl 

stretching peak at 1570 cm-1in [Bmim][Ac].  Both Maginn [174] and Shiflett et al [175] 

suggested that acetic acid could be a product of the reaction between CO2 and 

[Bmim][Ac]. Clearly, the new peak at 1665 cm-1 is not from acetic acid, because the C=O 

stretching peaks of acetic acid occur at 1755 and 1710 cm-1.   

 A.3.2 Dynamic absorption and desorption behavior   

 The ATR-FTIR analysis presented in the previous section confirms that a 

chemical complex is formed between CO2 and [Bmim][Ac], which is promising for the 

use of [Bmim][Ac] for CO2 capture. We have therefore investigated the dynamics of CO2 

sorption and desorption in [Bmim][Ac]. Figure A.4 shows the evolution of ATR-FTIR 

spectra for CO2 absorption in [Bmim][Ac] at 298 k and 10 bar CO2 pressure. The most 

interesting bands in these spectra are the carbonyl stretching bands at 1500 to 1700 cm-1. 

At t = 0, only pure [Bmim][Ac] is in the system and the carbonyl stretching band can be 

found at 1570 cm-1.  The intensity of this peak gradually decreases with time and the  
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Figure A.3 ATR-FTIR spectra of CO2 + ethyl acetate, CO2 + acetic acid, CO2 + 

[Bmim][Ac], and CO2 + [Bmim][TFA], at 298 K and 10 bar CO2 pressure. 
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Table A.1 Carbonyl stretching bands (cm-1) in FTIR spectra of compounds groups. 

Chemical compound 

 

Without CO2 With 10 Bar CO2 

[Bmim][Ac] 

 

1570 1665, 1570 

[Bmim][TFA] 

 

1683, 1570 * 

Ethyl Acetate 

 

1740 * 

Acetic Acid 1755, 1710 * 

* No significant change without/with CO2 
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Figure A.4 ATR-FTIR spectra for CO2 absorption in [Bmim][Ac] at 298 K and 10 bar 

CO2 pressure. 
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intensity of the new peak at 1665 cm-1 increases. After 3 h, when the system has attained 

equilibrium, the intensity of the new peak surpasses that of the old peak. By integrating 

the area under the 1570 cm-1 peak and assuming that the molar absorbtivity does not 

depend on composition, we estimate that about 60 % of [Bmim][Ac] had reacted with 

CO2 in 3 h. The apparent absorption reaction rate is therefore quite small. However, 

absorption could be mass transfer limited because the diffusion coefficients of CO2 in ILs 

are about 10-100 times smaller than those of common liquids [181].  

 Figure A.5 shows the dynamics of CO2 desorption in [Bmim][Ac] when the 

system is quickly depressurized to 0.01 bar from an initial equilibrium CO2 pressure of 

12.5 bar at 353 K. We can clearly see that the C=O band at 1570 cm-1 was recovered 

within 5 min. The intensity of the C=O band at 1665 cm-1 also decreased quickly for 5 

min, but decreased very slowly after that. It should be noted that Shiflett et al [11] did not 

observe any new bands in the case of CO2 desorption at 323 K. However, the new C=O 

peak could still be found at 353 K in our experiments, implying that [Bmim][Ac] was not 

fully recovered at this temperature. This could have important implications for the 

regeneration of [Bmim][Ac] during CO2 capture.  

A.3.3 NMR Analysis   

 1H NMR spectra before and after CO2 absorption are shown in Figure A.6. In the 

absence of CO2, the ratio of the areas under the H [8] and H [1] peaks was about 1/3. 

After 24 h under 12.5 bar CO2 pressure at 298 K, the H[8] peak at 7.29 ppm disappeared 

whereas a new peak could be found at 11.4 ppm. The latter peak is characteristic of a 

proton shift in the carboxylic acid group (COOH). However, the peak for the COOH  
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Figure A.5 ATR-FTIR spectra for CO2 desorption in [Bmim][Ac] at 353 K starting 

from an initial CO2 pressure of 12.5 bar and depressurizing to 0.01 bar. 
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Figure A.6 1H NMR spectra for [Bmim][Ac] before (a-b) and after (c-d) exposure to 

12.5 bar CO2 pressure for 24 h at 298 K.  
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Figure A.7 Proposed chemical reaction between CO2 and [Bmim][Ac]. 
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proton shift in acetic acid occurs at 12.4 ppm, and not at 11.4 ppm. Therefore, the COOH 

peak found in the spectra for CO2 + [Bmim][Ac] is not from acetic acid. The ratio of 

areas under the H [11.4ppm] and H[1] peaks was found to be about 0.92/3. These data 

imply ~ 90 % conversion for the chemical reaction between CO2 and [Bmim][Ac].  

A.3.4 Reaction between CO2 and [Bmim][Ac]    

 Based on the above results, we propose that chemisorption of CO2 in [Bmim][Ac] 

occurs as shown in Figure A.7, and that the molar uptake of CO2/[Bmim][Ac] equals 1. 

The amount of chemisorbed CO2 can now be estimated and found to be 47 mol % for ~ 

90 % conversion of [Bmim][Ac]. This value is close to the value of 40.6 mol % at 13 bar 

and 298 K estimated from gravimetric sorption measurements [175]. Therefore, the 

abnormal high solubility of CO2 in [Bmim][Ac] at low pressures must be the result of the 

chemical reaction between CO2 and [Bmim][Ac]. This may also be true for other 

imidazolium acetate based ILs such as [Bmim][ISB] (isobutyrate), [Bmim][IAAc] 

(iminoacetic acid acetate), and [Bmim][TMA] (trimethylacetate), as suggested by 

Yokozeki et al [173]. 

A.4 Conclusions 

 The absorption of CO2 in [Bmim][Ac] was studied via in-situ ATR-FTIR and 

NMR experiments and found to be enhanced by a reversible chemical reaction between 

CO2 and [Bmim][Ac]. NMR analysis was used to identify a new carboxylic acid (rather 

than acetic acid) as the chemical reaction product of CO2 and [Bmin][Ac]. In dynamic 

studies, ATR-FTIR spectra could not be fully recovered after CO2 desorption at 353 K, 

suggesting that the reaction is not completely reversible at this temperature. This has 
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important implications for CO2 capture at low temperatures using [Bmim][Ac] and 

perhaps other imidazolium acetate based ILs.  
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APPENDIX B 

DERIVATION OF THE ACTIVITY OF COMPONENT i FOR THE 

TERNARY COMPRESSILLBE LATTICE MODEL 

 

 Let us consider a system contain polymer (P), solvent (S), and cosolvent (C). We 

will use binary system model to describe P + S, P + C, and S + C, respectively, and then, 

a ternary system model was proposed based on piece-wise addition of excess free energy. 

Binary systems: 

For Polymer + CO2 system 
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To simplify Equation (B.1) 
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Based on Equation (B.2), for Polymer + Cosolvent system 
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For CO2 + Cosolvent system 

Assumption 1.:  No association interaction between CO2 + Cosolvent,  

Assumption 2.:  Segment number is same for CO2 and Cosolvent (Reason: both are small 

molecules; Easy to count association sites with polymer)  

Based on Flory-Huggins Equation,  
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Ternary system: 

Based on Equation (B.2 to B.4) 
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To use the model, we need following parameters: 
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Activity of component i 
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In a binary system with polymer (P) + solvent (S) 
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In a ternary system, the activity of component i can be obtained as following:  
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APPENDIX C 

PAIR DISTRIBUTION FUNCTION CODE 

 

#svl 
 
global function pdf[file,t1,t2] 
/* The function vacf takes an MDB style database file as an input (MOE output result 
file) and calculates the radial pair distribution function averaged over time from t1 to t2 
for r=0 to r=15= edge/2 in increments of 0.1 angstroms. */ 
 
//open the database file 
local fkey = db_Open tok_cat[file,'.mdb']; 
 
//define entrykeys, database fields and number of entries 
local EntryKeys = db_Entries fkey; 
local [fieldnames,fieldtypes]=db_Fields fkey; 
local nentries=length EntryKeys; 
 
//Setup and initialize the g(r) and r vectors 
local r,g,i,Nr; 
Nr = 15/0.1 + 1; 
 
for i=1,Nr loop 
 
   r(i)= (i-1)*0.1; 
   g(i)=0; 
 
endloop 
 
 
//Read in the time values from the database  
local tvalues=db_ReadColumn [fkey,'t']; 
local row1=indexof [t1,tvalues]; 
 
 
if row1 == 0 then 
   pr "WARNING start time t1 does not exist"; 
endif 
local row2=indexof [t2,tvalues]; 
if row2 == 0 then 
   pr "WARNING end time t2 does not exist"; 
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endif 
 
 
//Calculate the cube edge for use in determining the minimum 
//image position of the atoms 
//Note the MOE databases store the edge length vector in 
//the database field "box" not in the molecule field 
local size,edge; 
size = cat db_ReadFields [fkey,EntryKeys(1),'box']; 
pr size; 
if not ((size(1)==size(2)) and (size(1)==size(3))) then 
   pr "WARNING periodic cell is not a cube"; 
endif 
edge=size(1); 
//pr edge; 
 
 
//Initilize the database 
local dbentry=row1; 
local entrycount=0; 
local myavgcount=0; 
local filenum = fopenw '1.txt'; 
 
//Loop over all the database entry rows (time values) in the averaging 
while dbentry <= row2 loop 
 
     local dbmol = cat db_ReadFields[fkey,EntryKeys(dbentry),'mol']; 
     local dbvalue = cat mol_aPos dbmol; 
//     local dbname = cat mol_aName dbmol; 
     local    dbname=dbmol(4)(MOL_ATOM_NAME); 
//     local chain_keys = mol_Create dbmol; 
// pr dbmol(4)(MOL_ATOM_NAME); 
// fwrite [filenum, '{c:}\n',[dbname]]; 
 
//pr length dbname; 
//   local dbvalue = cat db_ReadFields[fkey,EntryKeys(dbentry),'pos']; 
 
 
//break atoms coordinates into x,y and z components 
   local natoms=length dbvalue/3; 
   local xpos= keep[dbvalue,natoms]; 
   local ypos= keep [keep[dbvalue,2*natoms],-natoms]; 
   local zpos= keep[dbvalue,-natoms]; 
 
//Declare variables used in nested loops below 



158 

 

   local rdiff,rindex,j,aux; 
   local ncount=0; 
   local nullcount=0; 
   local mycount=0; 
   local myatoms=0; 
    
//pr natoms; 
//Count atom pairs and place resulting histogram in g(r) 
   for i=1,natoms loop 
 
      for j=i+1,natoms loop 
 if dbname(i)=='C9' and dbname(j)=='O2' then 
//Calculate a vector containing the interatomic distance components 
         rdiff= [xpos(i)-xpos(j),ypos(i)-ypos(j),zpos(i)-zpos(j)]; 
 
//Convert the interatomic distance components to their minimum 
//image versions by shifting the coordinates by the edge length 
//of the periodic cell if the interatomic distance is more than 
//half the cell length 
         rdiff=rdiff-(edge*round(rdiff/edge)); 
//pr rdiff; 
 
//Calculate the the interatomic distance based on the edge 
//length above 
         rdiff=sqrt(add sqr rdiff); 
         myatoms=myatoms+1; 
//pr rdiff; 
 
//pr rdiff; 
if rdiff < 4.5 then 
mycount=mycount+1; 
fwrite [filenum, '{n:12.6f\n}',[rdiff,i,j,dbname(i),dbname(j),mycount,entrycount]]; 
 
endif 
 
//Calculate the index in the g and r vectors for the rdiff 
         aux=rdiff*10; 
         aux=ceil aux; 
         rindex=aux+1; 
//         pr rindex; 
//         rindex= indexof[((ceil(rdiff*10))/10),r]; 
//         pr rindex; 
 
//If the index is not zero then the rdiff is withing the 0-10 range 
//If so increment the g(r) and count variable ncount 
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         if (rindex >= 0) and (rindex <= Nr) then 
              g(rindex)=g(rindex)+1; 
              ncount=ncount+1; 
         else 
              nullcount=nullcount+1; 
//            pr rdiff; 
//            pr rindex; 
         endif 
 else 
rdiff =0; 
 endif 
      endloop 
 
   endloop 
   myavgcount= myavgcount+ mycount; 
   entrycount=entrycount+1; 
   dbentry=dbentry+1; 
 
endloop 
 
myavgcount = myavgcount/entrycount; 
 
//Normalize g(r) 
local cnorm=2*cube(edge)/(entrycount*natoms*(natoms-1)); 
local gn = g; 
local gm =g; 
for i=2,Nr loop 
g(i)=g(i)/((4*PI/3)*(cube(r(i))-cube(r(i-1)))); 
g(i)=g(i)*cnorm; 
gm(i)= g(i) /cnorm *(2*cube(edge)/(entrycount*2*myatoms)); 
fwrite [filenum, '{n:12.6f} 
\n',[r(i),g(i),gn(i),gm(i),myatoms,natoms, myavgcount,entrycount,cube(edge)]]; 
//pr cnorm; 
endloop 
 
//pr ncount; 
//pr nullcount; 
 
fclose filenum; 
pr 'success'; 
 
local outputvect=[r,g]; 
return outputvect; 
 
endfunction 
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APPENDIX D 

CO2 BENDING MODE IN ATR-FTIR SPECTRA OF CO2 + SMALL 

MOLECULE SOLVENTS 

 

 

Figure D.1  Bending mode of CO2 in the IR spectrum of CO2 + heptane, CO2 + 

acetone and CO2 + ethanol, at 10 bar CO2 and 298 K. 
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Figure D.2  Bending mode of CO2 in the IR spectrum of CO2 + heptane, CO2 + ethyl 

acetate and CO2 + methyl acetate, at 10 bar CO2 and 298 K. 
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Figure D.3  Bending mode of CO2 in the IR spectrum of CO2 + tributyl phosphate, at 

10 bar CO2 and 298 K. 
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Figure D.4  Bending mode of CO2 in the IR spectrum of CO2 + tetramethyl Urea, at 10 

bar CO2 and 298 K. 
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