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PREFACE

Many machine learning tasks can be modeled as problems of estimating high-dimensional

low rank matrices, such as building recommender systems and predicting links in so-

cial networks. The estimation of low rank density matrices plays the essential role in

quantum state tomography. One problem studied in this dissertation is the low rank

density matrix estimation based on noisy observations of linear measurements of the

unknown density matrix. The minimax lower bounds are established for several sta-

tistically relevant distances. Then several estimators are studied, showing that these

minimax lower bounds are attained up to logarithmic terms. The main theoretic

results have been published in the articles [58] and [101].

While most of the thesis is dedicated to the density matrix estimation, another

problem is studied in this dissertation which is related to the spectral perturbation

bounds of matrices under Gaussian noise. The eigenvectors and singular vectors of

matrices have been widely applied in spectral algorithms for many machine learning

problems, such as community detection in social networks and the sub-matrix local-

ization. Sharp upper bounds on the perturbation of linear forms of singular vectors

under Gaussian noise are developed. This result has been published in the article

[59].
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SUMMARY

This dissertation studies two problems related to the statistical inference for

large matrices. The first problem is on the estimation of a low rank density matrix

based on noisy observations of linear measurements of the unknown density matrix

with application in quantum state tomography. The density matrices are positively

semi-definite Hermitian matrices of unit trace that describe the state of a quantum

system. Most quantum states of physical interest can be accurately described by low

rank density matrices. It is therefore important to study the statistical limitations

of low rank density matrix estimation based on noisy measurements and to propose

computationally friendly estimators achieving the optimal convergence rates. The

first goal is to develop minimax lower bounds on the error rates of estimating low

rank density matrices in trace regression models used in quantum state tomography

(in particular, in the case of Pauli measurements) with explicit dependence of the

bounds on the rank and other complexity parameters, such as the dimension and

sample size. Such bounds are established for several statistically relevant distances,

including quantum versions of Kullback-Leibler divergence (relative entropy distance)

and of Hellinger distance (also called Bures distance), and Schatten p-norm distances

for all 1 ≤ p ≤ +∞. These bounds are proved in both the trace regression model with

bounded response and the trace regression model with Gaussian noise. The second

goal is to study several well-known estimators and prove that the optimal convergence

rates (with additional logarithmic terms) are attained for these estimators in different

distances. These estimators include the least squares estimator (which may be penal-

ized by von Neumann entropy), the simple projection estimator and the Dantzig type

estimator, which are popular estimators in problems of low rank matrix estimation.
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The second problem studied in this dissertation is on the analysis of the per-

turbation of linear forms of singular vectors of matrices under Gaussian noise. Let

A ∈ Rm×n be a matrix of rank r with singular value decomposition (SVD) A =∑r
k=1 σk(uk ⊗ vk), where {σk, k = 1, . . . , r} are singular values of A (arranged in a

non-increasing order) and uk ∈ Rm, vk ∈ Rn, k = 1, . . . , r are the corresponding left

and right orthonormal singular vectors. Let Ã = A+X be a noisy observation of A,

where X ∈ Rm×n is a random matrix with i.i.d. Gaussian entries, Xij ∼ N (0, τ 2),

and consider its SVD Ã =
∑m∧n

k=1 σ̃k(ũk⊗ṽk) with singular values σ̃1 ≥ . . . ≥ σ̃m∧n and

singular vectors ũk, ṽk, k = 1, . . . ,m ∧ n. The goal is to develop sharp concentration

bounds for linear forms 〈ũk, x〉, x ∈ Rm and 〈ṽk, y〉, y ∈ Rn of the perturbed (empiri-

cal) singular vectors in the case when the singular values of A are distinct and, more

generally, concentration bounds for bilinear forms of projection operators associated

with SVD. In particular, the results imply upper bounds of the order O

(√
log(m+n)
m∨n

)
(holding with a high probability) on

max
1≤i≤m

∣∣〈ũk −√1 + bkuk, e
m
i

〉∣∣ and max
1≤j≤n

∣∣〈ṽk −√1 + bkvk, e
n
j

〉∣∣,
where bk are properly chosen constants characterizing the bias of empirical singular

vectors ũk, ṽk and {emi , i = 1, . . . ,m}, {enj , j = 1, . . . , n} are the canonical bases of

Rm,Rn, respectively.
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CHAPTER I

INTRODUCTION TO LOW RANK DENSITY MATRIX

ESTIMATION

1.1 Notations and basic definitions

Let R denote the set of real numbers and R+ denote the set of nonnegative numbers.

We denote the set of complex numbers by C. Then the linear space of m-dimensional

vectors is denoted by Rm when the entries are real numbers. Correspondingly, when

the entries are complex numbers, we denote it by Cm. All the vectors in this thesis

are column vectors. For a ∈ R, let |a| denote its absolute value . If a ∈ C, we denote

its modulus by |a|. In other words, if a = x+ yi for x, y ∈ R, then

|a| =
√
x2 + y2.

For a vector v ∈ Cm, denote its transpose by v′ and define its lp norm by

‖v‖p :=
( m∑
i=1

|vi|p
)1/p

, 1 ≤ p ≤ +∞,

Then, if p = +∞, we have ‖v‖∞ = max1≤i≤m |vi|. For a matrix A ∈ Cm1×m2 , denote

its transpose by A′ and define its Schatten p-norm by

‖A‖p :=
(m1∧m2∑

i=1

σpi (A)
)1/p

, 1 ≤ p ≤ +∞,

where σ1(A) ≥ σ2(A) ≥ . . . ≥ σm1∧m2(A) ≥ 0 are the singular values of A. Note that

m1 ∧m2 := min(m1,m2) and m1 ∨m2 := max(m1,m2). The rank of A is defined as

r := rank(A) := max{1 ≤ i ≤ (m1 ∧m2) : σi(A) > 0}. When p = 1, ‖A‖1 is usually

called the nuclear norm or trace norm. Similarly, ‖A‖2 is called the Frobenius norm

and ‖A‖∞ is called the operator norm or spectral norm. Note that ‖A‖∞ = σ1(A),
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the largest singular value of A. Moreover, denote the singular value decomposition

(SVD) of A ∈ Cm1×m2 with rank r by

A :=
r∑
i=1

σi(A)ui ⊗ vi,

where {u1, . . . , ur} ⊂ Cm1 and {v1, . . . , vr} ⊂ Cm2 are two sets of orthonormal vectors.

The notation ⊗ stands for the tensor product which means u ⊗ v = uv′ ∈ Cm1×m2

for u ∈ Cm1 and v ∈ Cm2 . Moreover, if A,B ∈ Cm1×m2 , we use A⊗ B to denote the

tensor product or kronecker product. For example, if

A =

 a11 a12

a21 a22

 ∈ C2×2 and B =

 b11 b12

b21 b22

 ∈ C2×2

then,

A⊗B =

 a11B a12B

a21B a22B

 ∈ C4×4.

The set of m × m Hermitian matrices is denoted by Hm : Hm = {A ∈ Cm×m :

A = A∗} with A∗ denoting the adjoint matrix of A. For A ∈ Hm, let tr(A) de-

note the trace of A and let A < 0 mean that A is positively semi-definite. Let

Sm := {S ∈ Hm : S < 0, tr(S) = 1} be the set of all positively semi-definite Hermi-

tian matrices of unit trace called density matrices. The von Neumann entropy of a

density matrix ρ ∈ Sm is defined as

V (ρ) := tr(ρ log ρ),

which is equivalent to V (ρ) =
∑m

i=1 λi log(λi) for {λi}mi=1 being the eigenvalues of

ρ. The von Neumann entropy can be viewed as a quantum version of the classical

Shannon entropy.

For a Hermitian matrix S ∈ Hm, its spectral decomposition is given by the fol-

lowing representation,

S :=
m′∑
k≥1

µkPk

2



with µk being the distinct eigenvalues of S and Pk being the corresponding spectral

projectors for 1 ≤ k ≤ m′. Clearly, mk := rank(Pk) ≤ m is the multiplicity of the

eigenvalue µk. Then the projector Pk represents the orthogonal projection onto the

eigenspace corresponding to the eigenvalue µk. For an eigenvalue with multiplicity

greater than 1, the eigenvectors are not uniquely defined. However, the corresponding

spectral projector is unique. The definition of Pk indicates that PkPk′ = 0 for any

k 6= k′ with 0 representing the m×m zero matrix.

C,C1, C
′, c, c′, etc will denote constants (that do not depend on parameters of in-

terest such as the dimension m and the sample size n) whose values could change from

line to line (or, even, within the same line) without further notice. For nonnegative A

and B, A . B (equivalently, B & A) means that A ≤ CB for some absolute constant

C > 0, and A � B means that A . B and B . A. Sometimes, symbols .,& and

� could be provided with subscripts (say, A .γ B) to indicate that constant C may

depend on a parameter (say, γ).

1.2 Quantum state tomography

1.2.1 Quantum systems, quantum states and density matrices

Quantum systems are the fundamental objects in the study of quantum mechanics.

We take the simplest quantum systems, namely the two-state systems, as a basic

introduction. A two-state system is a system which can exist in any quantum super-

position of two physically distinguishable quantum states (see [75] and [35] for more

details). The most famous example of a two-state system is the spin of spin-1
2

parti-

cles, such as electrons and neutrons, etc. The two distinguishable quantum states of

a two-state system can be viewed as quantum analogue of the basic characters 0 and

1 in modern computers, leading to their wide application in quantum computation.

As a result, such a two-state quantum system is usually called a qubit, akin to the

concept of bit in computer theories. The fundamental difference between a quantum

3



system and a classical system is that a bit in the classical system has to be in one

state or the other, while a qubit is allowed to be in a superposition of both states at

the same time. This is also why scientists need quantum mechanics to describe the

states of quantum systems.

To determine and characterize a quantum system, we need to know its state, which

is called quantum state. The quantum states are usually described by state vectors

in a Hilbert space over complex numbers. For a two-state quantum system, the two

basis states are denoted, following the conventional notations, by
∣∣0〉 and

∣∣1〉 known

as the basis (state) vectors. Then a pure qubit state is a linear superposition of the

basis states, meaning that the pure qubit state can be represented as

∣∣ψ〉 = α
∣∣0〉+ β

∣∣1〉,
where the complex number α and β are the probability amplitudes. In other words,

if we measure this qubit
∣∣ψ〉 in the standard basis, then with probability |α|2 the

outcome is
∣∣0〉 and with probability |β|2 the outcome is

∣∣1〉. Therefore, the following

constraint is obvious:

|α|2 + |β|2 = 1.

A pure state can be represented by a single state vector
∣∣ψ〉 and

∣∣ψ〉 is usually

normalized such that it has unit norm in the Hilbert space. Given a set of pure states{∣∣ψs〉}∞s=1
, a non-degenerate statistical ensemble of them is called a mixed state.

It is usually more convenient to characterize the quantum states by a positively

semi-definite Hermitian matrix which is called density matrix. The density matrix of

a mixed state is defined as

ρ :=
∑
s

ps
∣∣ψs〉〈ψs∣∣ (1.2.1)

with ps representing the fraction of each pure states in the statistical ensemble, im-

plying that ps ≥ 0,∀s ≥ 1 and
∑

s ps = 1. The notation
∣∣ψs〉〈ψs∣∣ can be viewed as

4



the outer product of the basis vectors
∣∣ψs〉. By the definition of ρ, it is easy to verify

that ρ < 0, ρ = ρ? and Tr(ρ) = 1.

1.2.2 Multi-qubit systems and Observables

As discussed in Section 1.2.1, it is easy to see that by taking
∣∣0〉 and

∣∣1〉 as the

basis state vectors for a one-qubit system, any pure state vector
∣∣ψs〉 can be uniquely

determined by a 2-dimensional vector (α, β)′. As a result, the corresponding density

matrix ρ defined as (1.2.1) is equivalent to a 2×2 density matrix which belongs to S2.

The measurement of a quantum system is conducted on the so-called Observables,

which can be mathematically represented by certain Hermitian operators. In quantum

mechanics, these Observables usually correspond to certain physical properties of the

system states, for instance, the superposition of the joint states of spin-1
2

particles.

For a one-qubit system whose density matrix ρ ∈ S2, the corresponding Observables

can be viewed as Hermitian matrices in H2. An important class of Observables for

one-qubit systems is called the Pauli matrices. They are defined as the follows:

σ0 :=

 1 0

0 1

 , σ1 :=

 0 1

1 0

 , σ2 :=

 0 i

−i 0

 , σ3 :=

 1 0

0 −1

 ,

where the matrices σ1, σ2, σ3 are often denoted as σx, σy, σz, corresponding to the

interaction of the spin of a particle with an external electromagnetic field. They

can also be viewed as the spin along the coordinate axes in the three-dimensional

Euclidean space R3.

It is natural to extend the definition of state vectors and density matrices to the

multi-qubit systems. For a set of b qubits, any pure state vector can be represented

as a linear combination of basis vectors
{∣∣i1i2 . . . ib〉 : i1, . . . , ib ∈ {0, 1}

}
, resulting in

a complex vector with dimension m = 2b. In a similar fashion, we can check that for

a b-qubit system, its density matrix ρ ∈ Sm, implying that the dimension of a density

matrix grows exponentially with the number of qubits. As a consequence, a large

5



dimensional density matrix is often needed to characterize the states of many-qubit

systems. The Observables (namely, Hermitian operators) can be defined accordingly.

For example, the Pauli matrices for a b-qubit system consist of the following m2 = 4b

matrices:

σi1 ⊗ . . .⊗ σib , (i1, . . . , ib) ∈ {0, 1, 2, 3}b.

Another fundamental difference between quantum systems and classical systems is

that higher correlation is allowed in a set of qubits which is usually called entangle-

ment. For example, consider a set of two qubits. It is obvious that the basis vectors

for this system can be expressed as

∣∣00
〉
,
∣∣01
〉
,
∣∣10
〉

and
∣∣11
〉
.

The famous Bell state of two entangled qubits has the following state vector

∣∣ψ〉 =
1√
2

∣∣00
〉

+
1√
2

∣∣11
〉
,

which is usually called the maximally entangled quantum state. The entanglement

of multiple particles (qubits) is usually caused by the ways in which the group of

particles are generated or interacted such that the quantum state of each qubit can

not be described independently. Due to the entanglement of multiple qubits, we have

to treat them as a whole system.

1.2.3 Quantum state tomography

An important task in quantum computation and quantum information is to deter-

mine the state of given quantum systems, which is equivalent to determine its un-

derlying density matrix. The goal of quantum state tomography is to estimate the

density matrix for a system prepared in an unknown state based on specially de-

signed measurements. Let X ∈ Hm be a Hermitian matrix (an observable) with

spectral representation X =
∑m′

j=1 λjPj, where m′ ≤ m, λj ∈ R, j = 1, . . . ,m′ being

6



the distinct eigenvalues of X and Pj, j = 1, . . . ,m′ being the corresponding eigenpro-

jections. For a system prepared in state ρ ∈ Sm, possible outcomes of a measurement

of observable X are the eigenvalues λj, j = 1, . . . ,m′ and they occur with probabilities

pj := tr(ρPj), j = 1, . . . ,m′. If Y is a random variable representing such an outcome,

then

EρY = tr(ρX) = 〈ρ,X〉.

In a simple model of quantum state tomography considered here, an observable X is

sampled at random from some probability distribution Π in Hm, Eρ(Y |X) = 〈ρ,X〉

and Y = 〈ρ,X〉 + ξ with noise ξ such that Eρ(ξ|X) = 0. Given a sample X1, . . . , Xn

of n i.i.d. copies of X, n measurements of observables X1, . . . , Xn are performed for

a system identically prepared n times in the same unknown state ρ ∈ Sm resulting in

outcomes Y1, . . . , Yn. This leads to the following trace regression model

Yj = 〈ρ,Xj〉+ ξj, j = 1, . . . , n (1.2.2)

with design variables Xj, j = 1, . . . , n, response variables Yj, j = 1, . . . , n and noise

ξj, j = 1, . . . , n satisfying the assumption Eρ(ξj|Xj) = 0, j = 1, . . . , n and Eρ(Yj|Xj) =

〈ρ,Xj〉. The goal is to estimate the target density matrix ρ based on the data

(X1, Y1), . . . , (Xn, Yn), with the estimation error being measured by one of the statis-

tically meaningful distances between density matrices such as the Schatten p-norm

distances for p ∈ [1,∞] or quantum versions of Hellinger and Kullback-Leibler dis-

tances. Remember that the difficulties in estimating density matrices lie in the fact

that the dimension m of the underlying density matrix ρ is usually very large. For

instance, for a quantum system with only 10 qubits, the dimension m = 210 which

results into a density matrix with m2 = 220 entries.

Let’s see what is happening when the measurement X are chosen uniformly

from Pauli matrices for b-qubit systems with m = 2b. Note that if we define the

matrices Wi = 1√
2
σi, i = 0, 1, 2, 3 (see Section 1.2.2), it is easy to check that

7



{W0,W1,W2,W3} forms an orthonormal basis (the Pauli basis) of the space H2. For

a system consisting of b qubits, the corresponding observables are m×m Hermitian

matrices with m = 2b. The Pauli basis of Hm is then defined (as introduced in Sec-

tion 1.2.2) by tensorizing the Pauli basis of H2 : it consists of m2 = 4b tensor products

Wi1⊗ . . .⊗Wib , (i1, . . . , ib) ∈ {0, 1, 2, 3}
b . Let E1 = W0⊗ . . .⊗W0 and let E2, . . . , Em2

be the rest of the matrices of the Pauli basis of Hm. Define E := {E1, . . . , Em2}.

It is easy to verify that E is an orthonormal basis of Hm. It is straightforward

to check that E1 = 1√
m
Im, where Im denotes m × m identity matrix (thus, 1√

m
is

the only eigenvalue of E1). Matrices E2, . . . , Em2 have eigenvalues ± 1√
m
. Therefore,

‖Ej‖∞ = m−1/2, for all 1 ≤ j ≤ m2. Matrices Ej have the following spectral rep-

resentations: Ej = 1√
m
P+
j − 1√

m
P−j with eigenprojections P+

j , P
−
j , j = 1, . . . ,m2 (for

E1, P
−
1 = 0). A measurement of Ej for a b qubit system prepared in state ρ results in

a random outcome τj with two possible values ± 1√
m

taken with probabilities
〈
ρ, P±j

〉
.

For random variable τj, Eρτj = 〈ρ, Ej〉. The density matrix ρ admits the following

representation in the Pauli basis:

ρ =
m2∑
j=1

αj√
m
Ej

with α1 = 1 and with some αj ∈ R, j = 2, . . . ,m2. This implies that Eρτj =
αj√
m
,

Pρ
{
τj = ± 1√

m

}
=

1± αj
2

and Varρ(τj) =
1−α2

j

m
. Note that, for j = 1, α1 = 1, Pρ

{
τ1 = 1√

m

}
= 1 and Varρ(τ1) =

0. For j = 2, . . . ,m2, |αj| < 1 and Varρ(τj) > 0.

Let ν be picked at random from the set {1, . . . ,m2} (with the uniform distribution)

and let X = Eν , Y = τν (which corresponds to random sampling from the Pauli basis

with a subsequent measurement of observable X resulting in the outcome Y ). Then

Eρ(Y |X) = 〈ρ,X〉 and Varρ(Y |X) = 1−α2
ν

m
. Moreover, we have

P
{

Varρ(Y |X) ≤ 1

2m

}
= P

{
α2
ν ≥

1

2

}
≤ 2Eα2

ν =
2

m

m2∑
j=1

α2
j

m
=

2‖ρ‖2
2

m
.

8



Since, for ρ ∈ Sm, ‖ρ‖2 ≤ 1, this means that, for m > 2 with probability at least

1 − 2
m
, Varρ(Y |X) > 1

2m
. In other words, the number of j = 1, . . . ,m2 such that

Varρ(τj) >
1

2m
is at least m2 − 2m implying that, for the most of the values of j,

Varρ(τj) � 1
m
.

The variance could be further reduced by repeating the measurement of the ob-

servable X K times (for a system identically prepared in state ρ) and averaging

the outcomes of the resulting K measurements. In this case, the response variable

becomes Y = 〈ρ,X〉+ ξ, where Eρ(ξ|X) = 0 and Eρ(ξ2|X) = Varρ(Y |X) = 1−α2
ν

Km
.

1.3 Low rank (density) matrix estimation

1.3.1 The trace regression model of low rank matrix estimation

Low rank matrix estimation has been studied for several years in the literature, such

as [20], [57], [55] and [49] with references therein. In the general settings, we have

independent pairs of measurements and outputs, (X1, Y1), . . . , (Xn, Yn) ∈ (Rm1×m2 ,R)

which are related to an unknown matrix A0 ∈ Rm1×m2 . The dimensions m1 and m2

are often very large such that n� m1m2. It is usually assumed that A0 has low rank,

i.e., r = rank(A0) � (m1 ∧m2) such that the estimation complexity is significantly

reduced. The observations (Xj, Yj), j = 1, . . . , n satisfy the trace regression model

(also introduced in Section 1.2.3 for quantum state tomography):

Yj = 〈A0, Xj〉+ ξj, j = 1, . . . , n (1.3.1)

where ξj, j = 1, . . . , n are i.i.d. random noises with E(ξ|X) = 0 and E(ξ2|X) ≤ σ2
ξ <

+∞. Note that when σξ = 0, it corresponds to the problem of the exact recovery of

low rank matrices.

We begin with the clarification of some notations. Let 〈A,B〉 denote Tr(ATB) for

any A,B ∈ Rm1×m2 . The measurement X is usually assumed to be sampled randomly

from some set (of measurements) X ⊂ Rm1×m2 . We use Π to denote the distribution
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of X. The distribution based dot product and L2-norm are defined as

〈A,B〉L2(Π) := E 〈A,X〉 〈B,X〉

and

||A||2L2(Π) := E 〈A,X〉2 .

Given the data X1, . . . , Xn ∈ Rm1×m2 , let Πn denote the empirical distribution con-

structed from X1, . . . , Xn. In a similar fashion, we can define the L2(Πn) norm and

inner product as

‖A‖2
L2(Πn) :=

1

n

n∑
i=1

〈
A,Xi

〉2

and 〈
A,B

〉
L2(Πn)

:=
1

n

n∑
i=1

〈
A,Xi

〉〈
B,Xi

〉
.

There are several popular measurements X and distributions Π considered in the

literature. There is an incomplete list of these examples given as follows.

Example 1. Matrix Completion In this situation, the distribution Π denotes some

distribution on the set

X = {ej(m1)⊗ ek(m2), j = 1, . . . ,m1, k = 1, . . . ,m2} ⊂ Rm1×m2

where ej(m) denotes the j-th canonical basis vector in Rm. It is usually assumed

that Π is a (nearly) uniform distribution on the set X , see [53], [57], [80], [66] and

[49]. In other words, the task of matrix completion is to estimate A0 from randomly

observed entries of A0 which are corrupted with noises. [80] also considered sam-

pling without replacement from X , i.e. X1, . . . , Xn must be different from each other.

When Π denotes the uniform distribution on X , we have ||A||2L2(Π) = 1
m1m2

||A||22 and

〈A,B〉L2(Π) = 1
m1m2

〈A,B〉.

Example 2. Sub-Gaussian Design In this situation, Xj, j = 1, . . . , n are i.i.d. ran-

dom matrices. The entries of every Xj are all i.i.d. sub-Gaussian random variables.

10



A real-valued random variable x is said to be sub-Gaussian with parameter b > 0

if it has the property that for every t ∈ R one has: Eetx ≤ eb
2t2/2. Two important

examples of such random variables are Gaussian random variables and Rademacher

random variables. A random variable z ∼ N (0, σ2) is a Gaussian random variable

with Ez = 0, Ez2 = σ2 and a probability density function fz(z) = 1√
2πσ

e−
z2

2σ2 . A ran-

dom variable ε is called a Rademacher random variable if P(z = ±1) = 1
2
. Note that

in the case of Gaussian design and Rademacher design, we have ||A||L2(Π) = ||A||2

and 〈A,B〉L2(Π) = 〈A,B〉. It is also studied in [53] the estimation of density matrices

in quantum state tomography under sub-Gaussian design. The Gaussian measure-

ments are widely studied in low rank estimation problem for the reason that, with

high probability, Gaussian random sampling operator satisfies the Restricted Isometry

Property (see [18], [20], [15] and [17] ) and restricted strong convexity (see [71], [72]).

Example 3. Rank One Projection As described in [16], both Example 1 and

Example 2 have disadvantages. Under the matrix completion model, in order to get

a robust estimation of matrix A0, as pointed out by [21], [22], [19], [78], [86] and

[36], additional structral assumptions are needed. To be more exact, such structural

assumptions are called the incoherent conditions. Actually, it is impossible to recover

spiked matrices under matrix completion model. On the other hand, by using the sub-

Gaussian measurements, every measurement Xj, j = 1, . . . , n requires O(m1m2) bytes

of space for storage, which is huge when m1 and m2 are large. Therefore, [16] proposed

the rank one projection, Xj = αTj βj, where αj ∈ Rm1 and βj ∈ Rm2 are i.i.d. sub-

Gaussian vectors for j = 1, . . . , n. They proved that under rank one projection, there

exists robust procedures to construct a stable estimator without addition structural

assumptions. In addition, only O(m1 + m2) bytes of space are needed for storage of

every Xj, j = 1, . . . , n.

It worths to point out that by using the Pauli basis X = E := {E1, . . . , Em2} (see

Section 1.2.3) and by using the uniform distribution over E as the design of Π, we
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have ‖A‖2
L2(Π) = 1

m2‖A‖2
2 for all A ∈ Hm. This model has been studied in [53], [54],

[98] and [36]. It will be the standard setting of design in this thesis.

1.3.2 Nuclear norm penalization and computationally feasible approaches

As discussed in Section 1.3.1, the objective of low rank matrix estimation is to recover

the underlying matrix A0 ∈ Rm1×m2 from the data {(X1, Y1), . . . , (Xn, Yn)} satisfying

the trace regression model (1.3.1) in the case that the dimensions m1 and m2 are large

such that n� m1m2. Typically, the assumption that r := rank(A0)� (m1 ∧m2) is

imposed to make it possible to obtain a robust estimation of A0 when n = O(m1∨m2)r

which can be much smaller than m1m2. First, consider the situation that it is known

that rank(A0) ≤ r, then an obvious estimator of A0 is the following one:

Å := arg min
A∈Rm1×m2 ,rank(A)≤r

1

n

n∑
i=1

(
Yi −

〈
A,Xi

〉)2
. (1.3.2)

The estimator (1.3.2) involves a non-convex optimization procedure which is usually

computationally infeasible. However, we can write A = UV ′ such that U ∈ Rm1×r

and V ∈ Rm2×r when r is known. Then the optimization problem in (1.3.2) can be

solved efficiently by the alternating minimization approaches, see [46], [45] and [41].

In the case that the rank of A0 is unknown, the rank penalized least squares estimator

has also studied:

Ăε := arg min
A∈Rm1×m2

1

n

n∑
i=1

(
Yi −

〈
A,Xi

〉)2
+ ε · rank(A) (1.3.3)

with some regularization parameter ε > 0, see [48] and [2]. The estimator (1.3.3)

aims at searching for a solution with a balance between the sum of squares (loss) and

its rank. Note that in general, the optimization problem in (1.3.3) is difficult to solve,

making it computationally infeasible.

The numerical difficulty of the rank penalized approaches for estimating low rank

matrices originates from the non-smoothness and non-convexity of the rank function

on Rm1×m2 . Note that low rank matrix estimation problem has similarities to sparse
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vector estimation problems which is usually called compressed sensing (CS), where

the l1 norm is used as a convex surrogate of the non-smooth and non-convex l0 norm,

see [89], [104], [103], [10], [18] and a large body of references therein. In view of

the similarity between low rank matrix estimation problems and CS, it has been

conjectured that the nuclear norm should be a good surrogate for the rank function.

This is confirmed in the pioneer work [22], [21] and further developed in a lot of

following work, including [79], [45], [57], [6], [88], etc. By considering the nuclear

norm as a penalization for the standard least squares estimator, the following so-

called matrix LASSO estimator is studied,

Âε := arg min
A∈A

1

n

n∑
i=1

(
Yi −

〈
A,Xi

〉)2
+ ε · ‖A‖1 (1.3.4)

for some regularization parameter ε > 0. The convex set A can be Rm1×m2 in many

situations, while in some cases, A := {A ∈ Rm1×m2 : maxi,j |Aij| ≤ a} meaning that

there is a uniform upper bound on the entries of A. This estimator has been well

studied in [57], [55], [49], [26], [67] and references therein.

Note that we can rewrite the sum of squares as

1

n

n∑
i=1

(
Yi −

〈
A,Xi

〉)2
=

1

n

n∑
i=1

〈
A,Xi

〉2 − 2

n

n∑
i=1

Yi
〈
A,Xi

〉
+

1

n

n∑
i=1

Y 2
i .

As a result, it is equivalent to write the matrix LASSO estimator as

Âε := arg min
A∈A

‖A‖2
L2(Πn) −

2

n

n∑
i=1

Yi
〈
A,Xi

〉
+ ε · ‖A‖1.

Remember that Πn denotes the empirical version of Π, which is usually known in

many problems. After replacing ‖A‖L2(Πn) by ‖A‖L2(Π), we get the modified matrix

LASSO estimator:

Ǎε := arg min
A∈A

‖A‖2
L2(Π) −

2

n

n∑
i=1

Yi
〈
A,Xi

〉
+ ε · ‖A‖1, (1.3.5)

which was introduced and studied in [57], see also [54], [49]. Remember that in many

situations (for example, uniform distribution over an orthonormal basis, see Sec-

tion 1.3.1), ‖A‖L2(Π) = 1√
m1m2

‖A‖2. In these cases, the estimator (1.3.5) is equivalent
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to

Ǎε := arg min
A∈A

∥∥∥A− m1m2

n

n∑
i=1

YiXi

∥∥∥2

2
+m1m2ε · ‖A‖1.

Moreover, if A = Rm1×m2 , then the above estimator can be solved by a simple singular

value thresholding algorithm applied on the matrix m1m2

n

∑n
i=1 YiXi, see [50], [14], [23],

which is usually computationally efficient.

Both the matrix LASSO estimator (1.3.4) and the modified matrix LASSO esti-

mator (1.3.5) are based on (modified) penalized least squares estimator. Another type

estimator is called the Dantzig estimator which was first introduced in compressed

sensing, see [18], [10], [42], [51] and [102]. The matrix Dantzig estimator is defined as

follows

Áε := arg min
{
‖A‖1 :

∥∥∥ 1

n

n∑
i=1

(
Yi −

〈
A,Xi

〉)
Xi

∥∥∥
∞
≤ ε, A ∈ A

}
. (1.3.6)

Note that the estimator (1.3.6) also involves a convex optimization problem which

can be solved efficiently. The Dantzig estimator Áε aims at searching for a solution

A with a minimal nuclear norm over the feasible set containing all the oracles having

good fitness in the data. The matrix Dantzig estimator Áε after setting ε = 0 is the

most popular method for exact low rank matrix completion when there is no noise,

see [21] and [78].

1.3.3 Low rank density matrix estimation and von Neumann entropy

Remember that in quantum state tomography, the objective is to recover an un-

known density matrix ρ ∈ Sm from a set of pairs of measurements and outcomes,{
(X1, Y1), . . . , (Xn, Yn)

}
such that

Yi =
〈
ρ,Xi

〉
+ ξi, i = 1, . . . , n.

As introduced in Section 1.2.3, the dimension m is usually large and the sample size

n � m2. However, many important and interesting quantum states have density

matrices which are low rank or nearly low rank. Therefore, it is natural to adopt the
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framework of low rank matrices estimation to the settings of quantum state tomogra-

phy, see [64], [52], [54] and [30]. Note that the definition of density matrices indicates

that ‖S‖1 = 1 for all S ∈ Sm. As a result, the matrix LASSO estimator (1.3.4) in

Section 1.3.2 for estimating density matrices is equivalent to

ρ̂ε := arg min
S∈Sm

1

n

n∑
i=1

(
Yi −

〈
S,Xi

〉)2

for any ε > 0, which is actually the standard least squares estimator. Similarly, the

modified matrix LASSO estimator (1.3.5) is equivalent to

ρ̌ε := arg min
S∈Sm

∥∥∥S − m2

n

n∑
i=1

YiXi

∥∥∥2

2
(1.3.7)

for any ε > 0. It is easy to see that the estimator (1.3.7) is equivalent to projecting

the matrix m2

n

∑n
i=1 YiXi onto the set of density matrices, meaning that ρ̌ε is the

closest point to m2

n

∑n
i=1 YiXi in the Frobenius norm or the Hilbert Schmidt norm.

Recall the definition of von Neumann entropy: V (S) = −tr(S logS) for any S ∈

Sm, which plays an important role in quantum information theory. It is often an

important task to produce certain quantum systems with maximum von Neumann

entropy, see [13]. In order to obtain an estimation of ρ with maximum entropy, the

following estimator was introduced in [53]:

ρ̃ε := arg min
S∈Sm

1

n

n∑
i=1

(
Yi −

〈
S,Xi

〉)2

+ ε · tr(S logS) (1.3.8)

with certain penalization parameter ε > 0. As introduced in [53], one advantage of

applying the the von Neumann entropy as a penalization for least squares estimator is

that the bounds on Kullback-Leibler divergence of ρ̃ε can be attained. The Kullback-

Leibler divergence of two density matrices is defined as

K(S1‖S2) := tr
(
S1(logS1 − logS2)

)
, S1, S2 ∈ Sm, (1.3.9)

which is the quantum version of the canonical Kullback-Leibler divergence between

probability measures. It is easy to check that K(S1‖S2) ≥ 0 for any S1, S2 ∈ Sm.
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In the case that K(S1‖S2) is undefined (for instance, S2 is not of full rank), we set

K(S1‖S2) = +∞. Then, the symmetric Kullback-Leibler divergence is defined as

K(S1, S2) = K(S1‖S2) +K(S1‖S1).

A version of the (squared) Hellinger distance that will be studied is defined as

H2(S1, S2) := 2− 2tr

√
S

1
2
1 S2S

1
2
1

for S1, S2 ∈ Sm (see also [75]). Clearly, 0 ≤ H2(S1, S2) ≤ 2. It is usually called

Bures distance, but it worth to point out that it does not coincide with tr(
√
S1 −

√
S2)2 (which is another possible non-commutative extension of the classical Hellinger

distance). In fact, H2(S1, S2) ≤ tr(
√
S1 −

√
S2)2, S1, S2 ∈ Sm, but the opposite

inequality does not necessarily hold. The quantity tr

√
S

1
2
1 S2S

1
2
1 in the right hand side

of the definition of H2 is a quantum version of Hellinger affinity.

The following very useful inequality is a noncommutative extension of similar

classical inequalities for total variation, Hellinger and Kullback-Leibler distances. It

follows from representing the “noncommutative distances” involved in the inequal-

ity as suprema of the corresponding classical distances between the distributions of

outcomes of measurements for two states S1, S2 over all possible measurements rep-

resented by positive operator valued measures (see, [75], [47], [53], Section 3 and

references therein).

Lemma 1. For all S1, S2 ∈ Sm, the following inequalities hold:

1

4
‖S1 − S2‖2

1 ≤ H2(S1, S2) ≤
(
K(S1‖S2) ∧ ‖S1 − S2‖1

)
. (1.3.10)

1.4 The upper bounds of empirical processes

The upper bounds for the supremum of empirical process and Rademacher process

are powerful tools in characterizing the excess risk of empirical risk minimization in

statistical learning theory. They will be frequently used in proving the low rank oracle

inequalities.
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1.4.1 Concentration bounds of the supremum of empirical processes

Let (S,A, P ) be a probability space with σ-algebra A. Let X,X1, . . . , Xn be i.i.d.

random variables in the measurable space (S,A) with a common distribution P . Then

denote the empirical distribution by Pn. Let F be a class of measurable functions

defined on the space (S,A). The empirical process indexed by the function class F

is a stochastic process defined as

Zn(f) := Pnf − Pf, f ∈ F .

The supremum of this empirical process is denoted by ‖Pn − P‖F := supf∈F |Pnf −

Pf |, where certain measurability assumptions are required to guarantee the measur-

ability of ‖Pn − P‖F , see [52], [28] and [92]. Without further notification, we assume

in what follows that ‖Pn − P‖F is a properly measurable random variable on (S,A).

There are several types of concentration inequalities of ‖Pn − P‖F , see [52] for a

list of these inequalities. We introduce some most useful ones which are easiest to

apply in many situations. The first concentration inequality is usually referred as the

Bousquet’s version of Talagrand’s concentration inequality, which assumes that

sup
f∈F ,x∈S

|f(x)| ≤ U,

namely, the class F is uniformly upper bounded by a constant U > 0.

Theorem 1. [11] Let the function class F be uniformly upper bounded by U > 0.

Then, the following bound holds with probability at least 1− e−t for all t > 0,

‖Pn − P‖F ≤ E‖Pn − P‖F +

√
2
t

n

(
σ2
p(F) + 2E‖Pn − P‖F

)
+

3tU

n

with σ2
p(F) = sup

f∈F
Var(f) = sup

f∈F

(
Pf 2 − (Pf)2

)
.

When the random variable f(x) is unbounded but has an exponential tail for each

f ∈ F , it is also possible to derive a version of Talagrand’s concentration inequality,

see [1]. This kind of bound is further developed in [60] when the envelop of F has only
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q-th moment for q > 2. In order to characterize the tail type of random variables,

we introduce the Orlicz norms, see [92] and [52]. For a convex increasing function ψ

with ψ(0) = 0, define

‖f‖ψ := inf
{
C ≥ 0 :

∫
S

ψ
( |f |
C

)
dP ≤ 1

}
.

Note that if ψ(x) = xp, x ≥ 0 for some p ≥ 1, then the norm ‖ · ‖ψ is just the Lp norm

for p ≥ 1. Another type of choices are functions ψα(x) = ex
α − 1, x ≥ 0, α ≥ 1. If

‖X‖ψ1 < +∞, it indicates that X has a sub-exponential tail. Moreover, if ‖X‖ψ2 <

+∞, then X has a sub-Gaussian tail in which case X is usually called a sub-Gaussian

random variable, see Example 2 in Section 1.3.1.

Theorem 2. Let F (x), x ∈ S be an envelop function of F such that F (x) ≥ sup
f∈F
|f(x)|

for all x ∈ S. Then, the following bound holds with probability at least 1− e−t for all

t > 0,

‖Pn − P‖F ≤ K
[
E‖Pn − P‖F + σp(F)

√
t

n
+
∥∥∥ max

1≤i≤n
F (Xi)

∥∥∥
ψ1

t

n

]
for some universal constant K > 0.

1.4.2 Upper bounds of the expectation of supremum of empirical pro-
cesses

In order to obtain the upper bounds of the supremum of empirical processes, it

is further needed to prove the upper bound of E‖Pn − P‖F , see Theorem 1 and

Theorem 2. It is very helpful to control E‖Pn − P‖F by using the expectation of

the supremum of the so-called Rademacher process, which is actually a sub-Gaussian

process. The Dudley’s entropy bound and Talagrand’s generic chaining bound are

powerful tools to control the expectation of the supremum of sub-Gaussian processes,

see [87], [52], [92] and [32].

The Rademacher process indexed by a class F is defined as

Rn(f) :=
1

n

n∑
i=1

εif(Xi), f ∈ F ,
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with εi, i = 1, . . . , n being i.i.d. Rademacher random variables independent of Xi, i =

1, . . . , n. The following symmetrization inequality is a useful tool to control E‖Pn −

P‖F , whose proof can be found, for instance, [92] and [52]. Note that the expectation

E‖Rn‖F is respect both to X1, . . . , Xn and ε1, . . . , εn.

Lemma 2. For any class F of P -integral functions and for any convex function

φ : R+ 7→ R+,

Eφ
(1

2
‖Rn‖Fc

)
≤ Eφ

(
‖Pn − P‖F

)
≤ Eφ

(
2‖Rn‖F

)
,

where Fc := {f − Pf, f ∈ F}. In particular,

1

2
E‖Rn‖Fc ≤ E‖Pn − P‖F ≤ 2E‖Rn‖F .

If X1, . . . , Xn are fixed, then Rn(f) is a sub-Gaussian random variable. Moreover,

Esup
f∈F

Rn(f) = EXEεsup
f∈F

Rn(f).

It turns out that the expectation of the supremum of Rademacher process Eεsup
f∈F

Rn(f)

plays an essential role in the upper bound of E‖Pn − P‖F . For any subset T ⊂ Rn

and i.i.d. Rademacher variables ε1, . . . , εn, we are interested in the quantity

Rn(T ) := E sup
t∈T

∣∣Rn(t)
∣∣ = E sup

t∈T

∣∣∣ n∑
i=1

εiti

∣∣∣.
The following inequality is called the contraction inequality for Rademacher processes

and was first proved by Talagrand.

Lemma 3. Let T ⊂ Rn and let ϕi : R 7→ R be functions such that ϕi(0) = 0 and

|ϕi(u)− ϕi(v)| ≤ |u− v|, u, v ∈ R

for all i = 1, . . . , n. Then,

E sup
t∈T

∣∣∣ n∑
i=1

ϕi(ti)εi

∣∣∣ ≤ E sup
t∈T

∣∣∣ n∑
i=1

tiεi

∣∣∣.
19



Let (T, d) be a pseudo-metric space such that T ⊂ Rn is equipped with a pseudo

distance d. The diameter of (T, d) is defined as

D(T ) := sup
t1,t2∈T

d(t1, t2).

A subset Tε ⊂ T is called an ε-covering of T if for any t ∈ T , there exists t′ ∈ Tε such

that d(t, t′) ≤ ε. Then let N(T, ε, d) denote the ε-covering number of (T, d), namely,

the smallest cardinality over all possible ε-coverings of T . Also, denote M(T, ε, d) the

ε-packing number of (T, d), namely, the largest number of points in T separated from

each other by a distance at least ε. By the definitions, it is easy to check

N(T, ε, d) ≤M(T, ε, d) ≤ N(T, ε/2, d).

Then, the ε-entropy number is defined as

H(T, ε, d) = logN(T, ε, d).

Theorem 3 (Dudley’s entropy bound). Let T ⊂ Rd such that (T, d) is a pseudo-

metric space and ε1, . . . , εn be i.i.d. Rademacher variables. Then

E sup
t∈T

Rn(t) ≤ C

∫ D(T )

0

H1/2(T, ε, d)dε

for some numerical constant C > 0. Moreover, for all t0 ∈ T ,

E sup
t∈T
|Rn(t)−Rn(t0)| ≤ C

∫ D(T )

0

H1/2(T, ε, d)dε

The Dudley’s entropy bound holds for all sub-Gaussian processes where the Rademacher

process is a special case.
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CHAPTER II

OPTIMAL ESTIMATION OF LOW RANK DENSITY

MATRICES

In this chapter, we introduce the main results of low rank density matrix estimation.

Both the trace regression model with bounded response and the trace regression

model with Gaussian noise will be considered. We first prove the minimax lower

bounds and these bounds are established in several statistical important distances,

including the Schatten p-norms for 1 ≤ p ≤ +∞, the Kullback-Leibler divergence and

the Hellinger distance.. Then several estimators (introduced as in Section 1.3.2) are

studied, including the least squares estimator (1.3.4), the projection estimator (1.3.5)

and the Dantzig-type estimator (1.3.6), showing that these estimators are able to

achieve the optimal convergence rates which match the minimax lower bounds except

some logarithmic factors.

In general, the trace regression model involves a random couple (X, Y ) satisfying

the model

E(Y |X) =
〈
ρ,X

〉
for some density matrix ρ ∈ Sm with low rank, i.e., r = rank(ρ)� m. The measure-

ment (Observable) X ∈ Hm is usually assumed to be sampled randomly from some

distribution which is called the design distribution. Suppose that

Dn := {(X1, Y1), . . . , (Xn, Yn)}

contains i.i.d. samples from the trace regression model. Then, the task is to develop

computationally efficient methods to estimate the unknown density matrix ρ from

Dn. We are also interested in the informational theoretic bound of the estimation of
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ρ, which is also the so-called minimax lower bound.

2.1 The trace regression model and assumptions

A common choice of design distribution in low rank matrix estimation problems is

so called uniform sampling from an orthonormal basis described in the following

assumptions.

Assumption 1. Let E = {E1, . . . , Em2} ⊂ Hm be an orthonormal basis of Hm with

respect to the Hilbert–Schmidt inner product: 〈A,B〉 = tr(AB). Moreover, suppose

that, for some U > 0,

‖Ej‖∞ ≤ U, j = 1, . . . , n,

where ‖ · ‖∞ denotes the operator norm (the spectral norm).

Since ‖Ej‖2 = 1, where ‖ · ‖2 denotes the Hilbert–Schmidt (or Frobenius) norm,

we can assume that U ≤ 1. Moreover, U ≥ m−1/2 since 1 = ‖Ej‖2 ≤ m1/2‖Ej‖∞ ≤

m1/2U. As introduced in Section 1.2.3, when E is the Pauli basis, the corresponding

U = 1√
m

. The fact that the matrices of this basis have the smallest possible operator

norms has been used in quantum compressed sensing (see [37], [36], [64]).

Assumption 2. Let Π be the uniform distribution in the finite set E (see Assumption

1), let X be a random variable sampled from Π and let X1, . . . , Xn be i.i.d. copies of

X.

It will be assumed in this Chapter that assumptions 1 and 2 hold (unless it is stated

otherwise). Under these assumptions, Y1, . . . , Yn could be viewed as noisy observations

of a random sample of Fourier coefficients 〈ρ,X1〉, . . . , 〈ρ,Xn〉 of the target density

matrix ρ in the basis E . The above model (in which X1, . . . , Xn are uniformly sampled

from an orthonormal basis and Y1, . . . , Yn are the outcomes of measurements of the

observables X1, . . . , Xn for the system being identically prepared n times in the same
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state ρ) will be called in what follows the standard QST (quantum state tomography)

model. It is a special case of trace regression model with bounded response:

Assumption 3 (Trace regression with bounded response). Suppose that Assumption

1 holds and let (X, Y ) be a random couple such that X is sampled from the uni-

form distribution Π in an orthonormal basis E ⊂ Hm. Suppose also that, for some

ρ ∈ Sm, E(Y |X) = 〈ρ,X〉 a.s. and, for some Ū > 0, |Y | ≤ Ū a.s.. The data

(X1, Y1), . . . (Xn, Yn) consists of n i.i.d. copies of (X, Y ).

We are also interested in the trace regression model with Gaussian noise:

Assumption 4 (Trace regression with Gaussian noise). Suppose Assumption 1 holds

and let (X, Y ) be a random couple such that X is sampled from the uniform distri-

bution Π in an orthonormal basis E ⊂ Hm and, for some ρ ∈ Sm, Y = 〈ρ,X〉 + ξ,

where ξ is a normal random variable with mean 0 and variance σ2
ξ , ξ and X being

independent. The data (X1, Y1), . . . (Xn, Yn) consists of n i.i.d. copies of (X, Y ).

Note that this model is not directly applicable to the “standard QST problem”

described above, where the response variable Y is discrete. However, if the measure-

ments are repeated multiple times for each observable Xj and the resulting outcomes

are averaged to reduce the variance, the noise of such averaged measurements becomes

approximately Gaussian and it is of interest to characterize the estimation error in

terms of the variance of the noise, see more details in Section 1.2.3.

2.2 Minimax lower bounds

In this section, we provide main results on the minimax lower bounds on the risk

of estimation of density matrices with respect to Schatten p-norm for 1 ≤ p ≤ +∞

distances, as well as Hellinger-Bures distance and Kullback-Leibler divergence.

Minimax lower bounds will be derived for the class Sr,m := {S ∈ Sm : rank(S) ≤

r} consisting of all density matrices of rank at most r (the low rank case). We will
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start with the case of trace regression with Gaussian noise. Given that the sample

(X1, Y1), . . . , (Xn, Yn) satisfies Assumption 4 with the target density matrix ρ ∈ Sm

and noise variance σ2
ξ , let Pρ denote the corresponding probability distribution of the

sample.

Note that [68] developed a method of deriving minimax lower bounds for distances

based on unitary invariant norms, including Schatten p-norms in matrix problems,

and obtained such lower bounds, in particular, in matrix completion problem. The

approach used here is somewhat different and the aim is to develop such bounds under

an additional constraint that the target matrix is a density matrix. The resulting

bounds are also somewhat different, they involve an additional term that does not

depend on the rank, but does depend on p. Essentially, it means that the “complexity”

of the problem is controlled by a “truncated rank” r∧ 1
τ
, where τ =

σξm
3/2

√
n

rather than

by the actual rank r. The upper bounds (for instance, see Section 2.3.4) of several

estimators studied in the following sections show that such a structure of the bound

is, indeed, necessary. It should be also mentioned that minimax lower bounds on the

nuclear norm error of estimation of density matrices have been obtained earlier in

[30] (see Remark 1 below).

Theorem 4. For all p ∈ [1,+∞], there exist constants c, c′ > 0 such that, the follow-

ing bounds hold:

inf
ρ̂

sup
ρ∈Sr,m

Pρ
{
‖ρ̂− ρ‖p ≥ c

(
σξm

3
2 r1/p

√
n

∧(σξm3/2

√
n

)1− 1
p ∧

1

)}
≥ c′, (2.2.1)

inf
ρ̂

sup
ρ∈Sr,m

Pρ
{
H2(ρ̂, ρ) ≥ c

(
σξm

3
2 r√
n

∧
1

)}
≥ c′, (2.2.2)

and

inf
ρ̂

sup
ρ∈Sr,m

Pρ
{
K(ρ‖ρ̂) ≥ c

(
σξm

3
2 r√
n

∧
1

)}
≥ c′, (2.2.3)

where inf ρ̂ denotes the infimum over all estimators ρ̂ in Sm based on the data (X1, Y1), . . . , (Xn, Yn)

satisfying the trace regression model with noise variance σ2
ξ .
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Proof. A couple of preliminary facts will be needed in the proof. We start with

bounds on the packing numbers of Grassmann manifold Gk,l, which is the set of all k-

dimensional subspaces L of the l-dimensional space Rl. Given such a subspace L ⊂ Rl

with dim(L) = k, let PL be the orthogonal projection onto L and let Pk,l := {PL :

L ∈ Gk,l}. The set of all k-dimensional projectors Pk,l will be equipped with Schatten

p-norm distances for all p ∈ [1,+∞] (which also could be viewed as distances on

the Grassmannian itself): dp(Q1, Q2) := ‖Q1 − Q2‖p, Q1, Q2 ∈ Pk,l. Recall that the

ε-packing number of a metric space (T, d) is defined as

D(T, d, ε) = max
{
n : there are t1, . . . , tn ∈ T, such that min

i 6=j
d(ti, tj) > ε

}
.

The following lemma (see [77, Proposition 8]) will be used to control the packing

numbers of Pk,l with respect to Schatten distances dq.

Lemma 4. For all integer 1 ≤ k ≤ l such that k ≤ l − k, and all 1 ≤ p ≤ ∞, the

following bounds hold(c
ε

)d
≤ D(Pk,l, dp, εk

1/p) ≤
(
C

ε

)d
, ε > 0 (2.2.4)

with d = k(l − k) and universal positive constants c, C.

In addition to this, we need the following well known information-theoretic bound

frequently used in derivation of minimax lower bounds (see [91, Theorem 2.5]). Let

Θ = {θ0, θ1, . . . , θM} be a finite parameter space equipped with a metric d and let

P := {Pθ : θ ∈ Θ} be a family of probability distributions in some sample space.

Given P,Q ∈ P , let K(P‖Q) := EP log dP
dQ be the Kullback-Leibler divergence between

P and Q.

Proposition 1. Suppose that the following conditions hold:

(i) for some s > 0, d(θj, θk) ≥ 2s > 0, 0 ≤ j < k ≤M ;

(ii) for some 0 < α < 1/8, 1
M

M∑
j=1

K(Pθj‖Pθ0) ≤ α logM
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Then, for a positive constant cα,

inf
θ̂

sup
θ∈Θ

Pθ{d(θ̂, θ) ≥ s} ≥ cα,

where the infimum is taken over all estimators θ̂ ∈ Θ based on an observation sampled

from Pθ.

We now turn to the actual proof of Theorem 4. Under Assumption 4, the following

computation is well known: for ρ1, ρ2 ∈ Sr,m,

K(Pρ1‖Pρ2) = EPρ1 log
Pρ1

Pρ2

(
X1, Y1, . . . , Xn, Yn

)
= EPρ1

n∑
j=1

[
− (Yj − 〈ρ1, Xj〉)2

2σ2
ξ

+
(Yj − 〈ρ2, Xj〉)2

2σ2
ξ

]
= E

n∑
j=1

〈ρ1 − ρ2, Xj〉2

2σ2
ξ

=
n

2σ2
ξ

‖ρ1 − ρ2‖2
L2(Π).

(2.2.5)

It is enough to prove the bounds for 2 ≤ r ≤ m/2. The proof in the case r = 1 is

simpler and the case r > m/2 easily reduces to the case r ≤ m/2. We will use Lemma

4 to construct a well separated (with respect to dp) subset of density matrices in Sr,m.

To this end, first choose a subset Dp ⊂ Pr−1,m−1 such that card(Dp) ≥ 2(r−1)(m−r)

and, for some constant c′, ‖Q1 − Q2‖p ≥ c′(r − 1)1/p, Q1, Q2 ∈ Pr−1,m−1, Q1 6= Q2.

Such a choice is possible due to the lower bound on the packing numbers of Lemma

4. For Q ∈ Dp (note that Q can be viewed as an (m− 1)× (m− 1) matrix with real

entries) and κ ∈ (0, 1), consider the following m×m matrix

S = SQ =

 1− κ 0′

0 κ Q
r−1

 . (2.2.6)

Note that S is symmetric positively-semidefinite real matrix of unit trace. It is

straightforward to check that it defines a Hermitian positively-semidefinite opera-

tor in Cm of unit trace, and it can be identified with a density matrix S ∈ Sm.

Clearly, S is of rank r, so, S ∈ Sr,m.
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We will take κ := c1
σξm

3/2(r−1)√
n

with a small enough absolute constant c1 > 0 and

first assume that κ < 1 (as it is needed in definition Equation 2.2.6).

Let S ′p := {SQ : Q ∈ Dq} and consider a family of M + 1 = card(Dp) ≥ 2(r−1)(m−r)

distributions {PS : S ∈ S ′p}. It is immediate that for S1 = SQ1 , S2 = SQ2 , Q1, Q2 ∈

Dp, Q1 6= Q2, we have

‖S1 − S2‖p =
κ

r − 1
‖Q1 −Q2‖p ≥ c′κ(r − 1)1/p−1

≥ c′c1
σξm

3/2(r − 1)1/p

√
n

≥ c
σξm

3/2r1/p

√
n

(2.2.7)

with some constant c > 0, implying condition (i) of Proposition 1 with s = c
2

σξm
3/2r1/p

√
n

.

We will now check its condition (ii) . In view of (2.2.5), we have, for all S1 =

SQ1 , S2 = SQ2 ∈ S ′p,

K(PS1‖PS2) =
n

2σ2
ξ

‖S1 − S2‖2
L2(Π) =

n

2σ2
ξm

2
‖S1 − S2‖2

2

=
nκ2

2σ2
ξm

2(r − 1)2
‖Q1 −Q2‖2

2 ≤
4n(r − 1)κ2

2σ2
ξm

2(r − 1)2
= 2c2

1m(r − 1)

≤ αm(r − 1)/ log(2)/4 ≤ α

2
(r − 1)(m− r) log(2) ≤ α logM,

(2.2.8)

provided that constant c1 is small enough, so, condition (ii) of Proposition 1 is also

satisfied. Proposition 1 implies that, under the assumption κ = c1
σξm

3/2(r−1)√
n

< 1, the

following minimax lower bound holds for some c, c′ > 0 :

inf
ρ̂

sup
ρ∈Sr,m

Pρ
{
‖ρ̂− ρ‖p ≥ c

σξm
3
2 r1/p

√
n

}
≥ c′. (2.2.9)

In the case when

c1
σξm

3/2

√
n

< 1 ≤ c1
σξm

3/2(r − 1)√
n

,

one can choose 2 ≤ r′ < r − 1 such that, for some constant c2 > 0,

c2 < c1
σξm

3/2(r′ − 1)√
n

< 1.

For such a choice of r′, it follows from (2.2.9) that

inf
ρ̂

sup
ρ∈Sr′,m

Pρ
{
‖ρ̂− ρ‖p ≥ c

σξm
3
2 (r′)1/p

√
n

}
≥ c′. (2.2.10)
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The definition of r′ implies that

r′ � r′ − 1 �
(
σξm

3/2

√
n

)−1

.

Therefore,

σξm
3
2 (r′)1/p

√
n

�
(
σξm

3/2

√
n

)1−1/p

,

and, since Sr′,m ⊂ Sr,m, bound (2.2.10) yields

inf
ρ̂

sup
ρ∈Sr,m

Pρ
{
‖ρ̂−ρ‖p ≥ c

(
σξm

3/2

√
n

)1−1/p}
≥ inf

ρ̂
sup

ρ∈Sr′,m
Pρ
{
‖ρ̂−ρ‖p ≥ c

(
σξm

3/2

√
n

)1−1/p}
≥ c′

(2.2.11)

for some constants c, c′ > 0. This allows us to recover the second term in the minimum

in bound (2.2.1). Finally, in the case when c1
σξm

3/2

√
n

> 1, the minimax lower bound

becomes a constant (and the proof is based on a simplified version of the above

argument that could be done for r = 1). This completes the proof of bound (2.2.1)

for Schatten p-norms.

The proof of bound (2.2.2) for the Hellinger distance is similar. In the case r ≥ 2,

we will use a “well separated” set of density matrices S ′p ⊂ Sr,m for p = 1 constructed

above. We still use κ := c1
σξm

3/2(r−1)√
n

assuming first that κ ∈ (0, 1). For SQ1 , SQ2 ∈ S ′p

with Q1 6= Q2, it follows by a simple computation and using bound (1.3.10) that, for

some c′′ > 0,

H2(SQ1 , SQ2) = κH2
( Q1

r − 1
,
Q2

r − 1

)
≥ 1

4

κ

(r − 1)2
‖Q1 −Q2‖2

1 ≥
(c′)2

4
κ ≥ c′′

σξm
3/2(r − 1)√
n

.

Repeating the argument based on Proposition 1 yields bound (2.2.2) in the case when

κ = c1
σξm

3/2(r−1)√
n

< 1, and in the opposite case it is easy to see that the lower bound

is a constant.

Finally, bound (2.2.3) for the Kullback–Leibler divergence follows from (2.2.2) and

the inequality K(ρ‖ρ̂) ≥ H2(ρ̂, ρ) (see inequality 1.3.10).
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Next we state similar results in the case of trace regression model with bounded

response (see Assumption 3). Denote by Pr,m(Ū) the class of all distributions P of

(X, Y ) such that Assumption 3 holds for some Ū and E(Y |X) = 〈ρP , X〉 for some

ρP ∈ Sr,m. Given P, PP denotes the corresponding probability measure (such that

(X1, Y1), . . . , (Xn, Yn) are i.i.d. copies of (X, Y ) sampled from P ).

Theorem 5. Suppose Ū ≥ 2U. For all p ∈ [1,+∞], there exist absolute constants

c, c′ > 0 such that the following bounds hold:

inf
ρ̂

sup
P∈Pr,m(Ū)

PP
{
‖ρ̂− ρP‖p ≥ c

(
Ūm

3
2 r1/p

√
n

∧( Ūm3/2

√
n

)1− 1
p ∧

1

)}
≥ c′, (2.2.12)

inf
ρ̂

sup
P∈Pr,m(Ū)

PP
{
H2(ρ̂, ρP ) ≥ c

(
Ūm

3
2 r√
n

∧
1

)}
≥ c′, (2.2.13)

and

inf
ρ̂

sup
P∈Pr,m(Ū)

PP
{
K(ρP‖ρ̂) ≥ c

(
Ūm

3
2 r√
n

∧
1

)}
≥ c′, (2.2.14)

where inf ρ̂ denotes the infimum over all estimators ρ̂ in Sm based on the data (X1, Y1), . . . , (Xn, Yn).

Proof. The proof relies on an idea already used in a context of matrix completion by

[57] (see their Theorem 7). We need the same family S ′p ⊂ Sr,m of “well separated”

density matrices of rank r as in the proof of Theorem 4. For a density matrix ρ, let

(X, Y ) be a random couple such that X is sampled from the uniform distribution Π

in E and, conditionally on X, Y takes value +Ū with probability pρ(X) := 1
2

+ 〈ρ,X〉
2Ū

and value −Ū with probability qρ(X) := 1
2
− 〈ρ,X〉

2Ū
. Since Ū ≥ 2U and |〈ρ,X〉| ≤

‖ρ‖1‖X‖∞ ≤ U, we have pρ(X), qρ(X) ∈ [1/4, 3/4] (so, they are bounded away from

0 and from 1). Clearly, Eρ(Y |X) = 〈ρ,X〉. Let Pρ denote the distribution of such a

couple and Pρ denote the corresponding distribution of the data (X1, Y1), . . . , (Xn, Yn).

Then, for all ρ ∈ Sr,m, Pρ ∈ Pr,m(Ū). The only difference with the proof of Theorem

4 is in the bound on Kullback-Leibler divergence K(Pρ1‖Pρ2) (see Equation 2.2.5). It

is easy to see that

K(Pρ1‖Pρ2) = nE
(
pρ1(X) log

pρ1(X)

pρ2(X)
+ qρ1(X) log

qρ1(X)

qρ2(X)

)
. (2.2.15)
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The following simple inequality will be used: for all a, b ∈ [1/4, 3/4],

a log
a

b
+ (1− a) log

1− a
1− b

≤ 12(a− b)2.

It implies that

K(Pρ1‖Pρ2) ≤ 3nE
〈ρ1 − ρ2, X〉2

Ū2
≤ 3n

Ū2
‖ρ1 − ρ2‖2

L2(Π).

This bound is used instead of identity (2.2.5) from the proof of Theorem 4. The rest

of the proof is the same.

Note that the proof requires the possible range [−Ū , Ū ] of response variable Y to

be larger than the possible range [−U,U ] of Fourier coefficients 〈ρ, Ej〉, j = 1, . . . ,m2.

This is not the case for standard QST model described in the introduction (see also

the example of Pauli measurements) and it is of interest to prove a version of minimax

lower bounds without this constraint, including the case when Ū = U. The following

theorem is a result in this direction.

Theorem 6. Suppose Assumption 1 is satisfied and, moreover, for some constant

γ ∈ (0, 1), ∣∣∣tr(Ek)∣∣∣ ≤ (1− γ)Um, k = 1, . . . ,m2. (2.2.16)

Then, for all p ∈ [1,+∞], there exist constants cγ, c
′
γ > 0 such that the following

bounds hold:

inf
ρ̂

sup
P∈Pr,m(U)

PP
{
‖ρ̂− ρP‖p ≥ cγ

(
Um

3
2 r1/p

√
n

∧(Um3/2

√
n

)1− 1
p ∧

1

)}
≥ c′γ, (2.2.17)

inf
ρ̂

sup
P∈Pr,m(U)

PP
{
H2(ρ̂, ρP ) ≥ cγ

(
Um

3
2 r√
n

∧
1

)}
≥ c′γ, (2.2.18)

and

inf
ρ̂

sup
P∈Pr,m(U)

PP
{
K(ρP‖ρ̂) ≥ cγ

(
Um

3
2 r√
n

∧
1

)}
≥ c′γ, (2.2.19)

where inf ρ̂ denotes the infimum over all estimators ρ̂ in Sm based on the data (X1, Y1), . . . , (Xn, Yn).
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Proof. The proof is based on the following lemma:

Lemma 5. Suppose assumption (2.2.16) holds. Let K be a sufficiently large absolute

constant (to be chosen later) and let m satisfy the condition K logm√
m
≤ γ

2
(which means

that m ≥ Aγ for some constant Aγ). Then there exists v ∈ Cm with ‖v‖ = 1 such

that ∣∣∣〈Ekv, v〉∣∣∣ ≤ (1− γ/2)U, k = 1, . . . ,m2. (2.2.20)

Proof. We will prove this fact by a probabilistic argument. Namely, set

v := m−1/2(ε1, . . . , εm),

where εj = ±1. We will show that there is a random choice of “signs” εj such that

(2.2.20) holds. Assume that εj, j = 1, . . . ,m are i.i.d. and take values ±1 with prob-

ability 1/2 each. Let Ek := (a
(k)
ij )i,j=1,...,m. For simplicity, assume that (a

(k)
ij )i,j=1,...,m

is a symmetric real matrix (in the complex case, the proof can be easily modified).

We have

〈Ekv, v〉 =
1

m

m∑
i=1

a
(k)
ii ε

2
i +

1

m

∑
i 6=j

a
(k)
ij εiεj =

tr(Ek)

m
+

1

m

∑
i 6=j

a
(k)
ij εiεj.

It is well known that

Var

(∑
i 6=j

a
(k)
ij εiεj

)
= E

(∑
i 6=j

a
(k)
ij εiεj

)2

= 2
∑
i 6=j

(
a

(k)
ij

)2

≤ 2
∑
i,j

(
a

(k)
ij

)2

= 2‖Ek‖2
2 = 2.

Moreover, it follows from exponential inequalities for Rademacher chaos (see, e.g.,

Corollary 3.2.6 in [27]) that for some absolute constant K > 0 and for all t > 0, with

probability at least 1− e−t∣∣∣∣〈Ekv, v〉 − tr(Ek)

m

∣∣∣∣ =

∣∣∣∣ 1

m

∑
i 6=j

a
(k)
ij εiεj

∣∣∣∣ ≤ Kt

m
.

Taking t = 2 logm and using the union bound, we conclude that with probability at

least 1−me−2 logm = 1− 1
m
> 0,

max
1≤k≤m2

∣∣∣∣〈Ekv, v〉 − tr(Ek)

m

∣∣∣∣ ≤ K logm

m
≤ K logm√

m
U ≤ γ

2
U,
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where we also used the fact that U ≥ m−1/2. Thus, there exists a choice of signs εj

such that

max
1≤k≤m2

∣∣∣〈Ekv, v〉∣∣∣ ≤ max
1≤k≤m

∣∣∣∣tr(Ek)m

∣∣∣∣+
γ

2
U,

which, under condition (2.2.16), implies (2.2.20).

We set e1 := v (where v is the unit vector introduced in Lemma 5) and construct

an orthonormal basis e1, . . . , em. Assume that matrices SQ defined by (2.2.6) represent

linear transformations in basis e1, . . . , em. Then we have

〈SQ, Ek〉 = (1− κ)〈Ekv, v〉+
κ

r − 1
〈Q,Ek〉.

Therefore,∣∣∣〈SQ, Ek〉∣∣∣ ≤ (1−κ)
∣∣∣〈Ekv, v〉∣∣∣+ κ

r − 1
‖Ek‖∞‖Q‖1 ≤ (1−κ)(1−γ/2)U+κU = (1−(1−κ)(γ/2))U.

Assuming that κ ≤ 1/2, we get∣∣∣〈SQ, Ek〉∣∣∣ ≤ (1− γ/4)U, k = 1, . . . ,m2. (2.2.21)

The rest of the proof becomes similar to the proof of Theorem 5 (with Ū = U).

Namely, bound (2.2.21) implies that, for ρ = SQ and X being sampled from the

orthonormal basis {E1, . . . , Em2}, probabilities pρ(X) and qρ(X) are bounded away

from 0 and from 1 : pρ(X), qρ(X) ∈ [γ/8, 1 − γ/8]. This allows us to complete the

argument of the proof of Theorem 5.

Theorem 6 does not apply directly to the Pauli basis since condition (2.2.16) fails

in this case. Indeed, by the definition of Pauli basis, U = m−1/2 and tr(E1) =
√
m =

Um > (1 − γ)Um. Note also that tr(Ej) = 0, j = 2, . . . ,m2. Thus, for Pauli basis,

E1 is the only matrix for which condition (2.2.16) fails. However, for this matrix

〈ρ, E1〉 = m−1/2tr(ρ) = m−1/2 = U for all density matrices ρ ∈ Sm. This immediately

implies that pρ(E1) = 1 and qρ(E1) = 0 for all ρ ∈ Sm and, as a result, the value

X = E1 does not have an impact on the computation of Kullback-Leibler divergence
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in (2.2.15). For the rest of the matrices in the Pauli basis, condition (2.2.16) holds

implying also bound (2.2.20). Therefore, if X 6= E1, we still have that, for ρ = SQ,

pρ(X), qρ(X) ∈ [γ/8, 1 − γ/8], and the proof of Theorem 5 can be completed in this

case, too. Note also that, given X sampled from the Pauli basis, the binary random

variable Y taking values ±U = ± 1√
m

with probabilities pρ(X) and qρ(X), respectively

(this is exactly the random variable used in the construction of the proof of Theorem

5) coincides with an outcome of a Pauli measurement for the system prepared in

state ρ. These considerations yield the following minimax lower bounds for Pauli

measurements.

Theorem 7. Let {E1, . . . , Em2} be the Pauli basis in the space Hm of m×m Hermi-

tian matrices and let X1, . . . , Xn be i.i.d. random variables sampled from the uniform

distribution in {E1, . . . , Em2}. Let Y1, . . . , Yn be outcomes of measurements of observ-

ables X1, . . . , Xn for the system being identically prepared n times in state ρ. The

corresponding distribution of the data (X1, Y1), . . . , (Xn, Yn) will be denoted by Pρ.

Then, for all p ∈ [1,+∞], there exist constants c, c′ > 0 such that the following

bounds hold:

inf
ρ̂

sup
ρ∈Sr,m

Pρ
{
‖ρ̂− ρ‖p ≥ c

(
mr1/p

√
n

∧( m√
n

)1− 1
p ∧

1

)}
≥ c′, (2.2.22)

inf
ρ̂

sup
ρ∈Sr,m

Pρ
{
H2(ρ̂, ρ) ≥ c

(
mr√
n

∧
1

)}
≥ c′, (2.2.23)

and

inf
ρ̂

sup
ρ∈Sr,m

Pρ
{
K(ρ‖ρ̂) ≥ c

(
mr√
n

∧
1

)}
≥ c′, (2.2.24)

where inf ρ̂ denotes the infimum over all estimators ρ̂ in Sm based on the data (X1, Y1), . . . , (Xn, Yn).

Remark 1. Minimax lower bounds on nuclear norm error of density matrix esti-

mation close to bound (2.4.7) for p = 1 (but for a somewhat different “estimation

protocol” and stated in a different form) were obtained earlier in [30]. This paper also

contains upper bounds on the errors of matrix LASSO and Dantzig selector estimators

in the nuclear norm matching the lower bounds up to log-factors.
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Remark 2. It is easy to see that, if constant γ ∈ (0, 1) is small enough (namely,

γ < 1− 1√
2
), then, in an arbitrary orthonormal basis {E1, . . . , Em2}, there is at most

one matrix Ej such that |tr(Ej)| > (1 − γ)Um. Indeed, note that tr(Ej) = 〈Ej, Im〉.

Since
m2∑
j=1

〈Ej, Im〉2 = ‖Im‖2
2 = m

and U2m ≥ 1, we have

card
({
j : |〈Ej, Im〉| > (1− γ)Um

})
≤ 1

(1− γ)2U2m2

m2∑
j=1

〈Ej, Im〉2

≤ m

(1− γ)2U2m2
=

1

(1− γ)2U2m
≤ 1

(1− γ)2
< 2,

provided that γ < 1− 1√
2
.

Remark 3. It will be shown in Section 2.3.4 that the minimax rates of theorems 4, 5,

6 and 7 are attained up to logarithmic factors for the von Neumann entropy penalized

least squares estimator.

Remark 4. Similar minimax lower bounds could be proved in certain classes of

“nearly low rank” density matrices. Consider, for instance, the following class

Bq(d;m) :=

{
S ∈ Sm :

m∑
j=1

|λj(S)|q ≤ d

}
(2.2.25)

for some d > 0 and q ∈ [0, 1], where λ1(S) ≥ · · · ≥ λm(S) denote the eigenvalues

of S. This set consists of density matrices with the eigenvalues decaying at a certain

rate (nearly low rank case) and, for q = 0, d = r it coincides with Sr,m. It turns out

that minimax lower bounds of theorems 4 and 5 hold for the class Bq(d;m) (instead

of Sr,m) with r replaced by

r̄ := r̄(τ, d,m, q) = dτ−q ∧m,

where τ :=
σξm

3/2

√
n

in the case of trace regression with Gaussian noise and τ := Ūm3/2
√
n

in

the case of trace regression with bounded response. These minimax bounds are attained
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up to logarithmic factors for a slightly modified von Neumann entropy penalized least

squares estimator.

Note that, for ρ ∈ Bq(d,m) with eigenvalues λ1(ρ) ≥ · · · ≥ λm(ρ), we have λj(ρ) ≤
d1/q

j1/q
, j = 1, . . . ,m. Therefore, for j ≥ r̄, λj(ρ) ≤ τ. Note also that τ characterizes the

minimax rate of estimation of ρ ∈ Sr,m in the operator norm for any value of the rank

r (see bound (2.2.1) for p = +∞; the corresponding upper bound also holds for the

least squares estimator up to a logarithmic factor, see [101]). Roughly speaking, τ is

a threshold below which the estimation of eigenvalues λj(ρ) becomes impossible and r̄

can be viewed as an “effective rank” of nearly low rank density matrices in the class

Bq(d,m).

2.3 Least squares estimator: low rank oracle inequalities
and its optimality

Recall that the the least squares estimator penalized by the so called von Neumann

entropy is defined as

ρ̃ε := arg min
S∈Sm

[ 1

n

n∑
j=1

(
Yj −

〈
S,Xj

〉)2
+ εtr

(
S logS

)]
. (2.3.1)

Note that when ε = 0, it reduces to the standard least squares estimator.

The goal of this section is to study optimality properties of von Neumann entropy

penalized least squares estimator ρ̃ε defined by (2.3.1). In particular, we establish

oracle inequalities for such estimators in the cases of trace regression with bounded

response (Subsection 2.3.2) and trace regression with Gaussian noise (Subsection

2.3.3), and prove upper bounds on their estimation errors measured by Schatten p-

norm distances for p ∈ [1, 2] and also by Hellinger and Kullback-Leibler distances

(Subsection 2.3.4).
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2.3.1 Preliminaries and matrix Bernstein inequalities

The following well known interpolation inequality for Schatten p-norms will be used

to extend the bounds proved for some values of p to the whole range of its values. It

easily follows from similar bounds for `p-spaces.

Lemma 6 (Interpolation inequality). For 1 ≤ p < q < r ≤ ∞, and let µ ∈ [0, 1] be

such that

µ

p
+

1− µ
r

=
1

q
.

Then, for all A ∈ Hm,

‖A‖q ≤ ‖A‖µp‖A‖1−µ
r .

Given A ∈ Hm, define a function fA : Hm 7→ R : fA(x) := 〈A, x〉, x ∈ Hm. For a

given random variable X in Hm with a distribution Π, we have ‖fA‖2
L2(Π) = Ef 2

A(X) =

E〈A,X〉2. Sometimes, with a minor abuse of notation (see also Section 1.3.1), we

might write ‖A‖2
L2(Π) =

∫
Hm〈A, x〉

2Π(dx) = ‖fA‖2
L2(Π). Remember that Π is typically

the uniform distribution in an orthonormal basis E = {E1, . . . , Em2} ⊂ Hm, implying

that

‖fA‖2
L2(Π) = ‖A‖2

L2(Π) = m−2‖A‖2
2,

so, the L2(Π)-norm is just a rescaled Hilbert–Schmidt norm.

Consider A ∈ Hm with spectral representation A =
∑m′

j=1 λjPj, m
′ ≤ m with dis-

tinct non-zero eigenvalues λj. Denote by sign(A) :=
∑m′

j=1 sign(λj)Pj and by supp(A)

the linear span of the images of projectors Pj, j = 1, . . . ,m′ (the subspace supp(A) ⊂

Cm will be called the support of A).

Given a subspace L ⊂ Cm, L⊥ denotes the orthogonal complement of L and

PL denotes the orthogonal projection onto L. Let PL,P⊥L be orthogonal projection

operators in the space Hm (equipped with the Hilbert–Schmidt inner product), defined

as follows:

P⊥L (A) = PL⊥APL⊥ , PL(A) = A− PL⊥APL⊥ .
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These two operators split any Hermitian matrix A into two orthogonal parts, PL(A)

and P⊥L (A), the first one being of rank at most 2dim(L).

For a convex function f : Hm 7→ R, ∂f(A) denotes the subdifferential of f at the

point A ∈ Hm. It is well known that

∂‖A‖1 =
{

sign(A) + P⊥L (M) : M ∈ Hm, ‖M‖∞ ≤ 1
}
, (2.3.2)

where L = supp(A) (see [52], p. 240, [99] and references therein).

Non-commutative (matrix) versions of Bernstein inequality will be used frequently

in this Chapter. The most common version is stated (in a convenient form for our

applications) in the following lemma.

Lemma 7. Let X,X1, . . . , Xn ∈ Hm be i.i.d. random matrices with EX = 0, σ2
X :=

‖EX2‖∞ and ‖X‖∞ ≤ U a.s. for some U > 0. Then, for all t ≥ 0 with probability at

least 1− e−t, ∥∥∥∥ 1

n

n∑
j=1

Xj

∥∥∥∥
∞
≤ 2

[
σX

√
t+ log(2m)

n

∨
U
t+ log(2m)

n

]
.

The proof of such bounds could be found, e.g., in [90].A simple consequence of

the inequality of Lemma 7 is the following expectation bound:

E
∥∥∥∥ 1

n

n∑
j=1

Xj

∥∥∥∥
∞

.

[
σX

√
log(2m)

n

∨
U

log(2m)

n

]
.

It follows from the exponential bound by integrating the tail probabilities.

Other versions on matrix Bernstein type inequalities for not necessarily bounded

random matrices will be also used in what follows and they could be found in [52],

[54] and [53].

Lemma 8. Let X,X1, . . . , Xn be i.i.d. random matrices in Hm with EX = 0. Suppose

that, for some α ≥ 1, U (α) := 2
∥∥‖X‖∞∥∥ψα < +∞. 1 Let σ2

X := ‖EX2‖∞. Then, for

all t > 0 with probability at least 1− e−t,∥∥∥∥X1 + · · ·+Xn

n

∥∥∥∥
∞
≤ C

[
σX

√
t+ log(2m)

n

∨
U (α) log1/α

(
U (α)

σ

)
t+ log(2m)

n

]
.

1Remember that ‖ · ‖ψα
denotes the ψα Orlicz norm in the space of random variables defined as
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2.3.2 Oracle inequalities for trace regression with bounded response

In this subsection, we prove a sharp low rank oracle inequality for estimator ρ̃ε defined

by (2.3.1). It is done in the case of trace regression model with bounded response (that

is, under Assumption 3 in Section 2.1). The results of this type show some form of

optimality of the estimation method, namely, that the estimator provides an optimal

trade-off between the “approximation error” of the target density matrix by a low rank

“oracle” and the “estimation error” of the “oracle” that is proportional to its rank.

Sharp oracle inequalities (in which the leading constant in front of the “approximation

error” is equal to 1, so that the bound mimics precisely the approximation by the

oracle) are usually harder to prove. In the case of low rank matrix completion, the

first result of this type was proved by [57] for a modified least squares estimator with

nuclear norm penalty. A version of such inequality for empirical risk minimization

with nuclear norm penalty (that includes matrix LASSO) was first proved by [55].

Low rank oracle inequalities for von Neumann entropy penalized least squares method

with the leading constant larger than 1 were proved by [53], see also [31]. The

main result of this section refines these previous bounds by proving a sharp oracle

inequality, improving the logarithmic factors and removing superfluous assumptions,

but also by establishing the inequality in the whole range of values of regularization

parameter ε ≥ 0 (including the value ε = 0, for which ρ̃ε coincides with the least

squares estimator ρ̂, see Section 1.3.3). In addition to this, for a special choice of

regularization parameter ε, the theorem below also provides an upper bound on the

Kullback-Leibler error K(ρ‖ρ̃ε) of ρ̃ε that matches the minimax lower bound (2.2.14)

up to log-factors (and “second order terms”). It turns out that, for this choice of ε, the

follows (see Section 1.4):

‖η‖ψα
:= inf

{
c > 0 : E exp

{ |η|α
cα

}
≤ 2

}
.
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estimator satisfies exactly the same low rank oracle inequality as the best inequalities

known for LASSO estimator and minimax optimal error rates are attained for ρ̃ε also

with respect to Hellinger distance and Schatten p-norm distances for all p ∈ [1, 2] (see

Section 2.3.4). For simplicity, it will be assumed that constants U in Assumption 1

and Ū in Assumption 3 coincide (in the upper bounds, one can always replace U and

Ū by U ∨ Ū).

Theorem 8. Suppose Assumption 3 holds with constant Ū = U and let ε ∈ [0, 1].

Then, there exists a constant C > 0 such that for all t ≥ 1 with probability at least

1− e−t

‖fρ̃ε − fρ‖2
L2(Π) ≤ infS∈Sm

[
‖fS − fρ‖2

L2(Π) + C

(
rank(S)m2ε2 log2(mn)

+U2 rank(S)m log(2m)
n

+ U2 t+log log2(2n)
n

)]
. (2.3.3)

In particular, this implies that

‖fρ̃ε − fρ‖2
L2(Π) ≤ C

[
rank(ρ)m2ε2 log2(mn)

+U2 rank(ρ)m log(2m)
n

+ U2 t+log log2(2n)
n

]
. (2.3.4)

Moreover, if

ε :=
1

log(mn)

[
U

√
log(2m)

nm

∨
U2 log(2m)

n

]
,

then, with some constant C and with probability at least 1− e−t

‖fρ̃ε − fρ‖2
L2(Π) ≤ C

[
U2 rank(ρ)m log(2m)

n

(
1
∨
U2m log(2m)

n

)
+U2 t+log log2(2n)

n

]
(2.3.5)

and

K(ρ‖ρ̃ε) ≤ CU

[
rank(ρ)m3/2

√
log(2m) log(mn)
√
n

(
1
∨
U
√

m log(2m)
n

)
+
√

m
n

(t+log log2(2n)) log(mn)√
log(2m)

]
. (2.3.6)

39



Proof. The following notations will be used in the proof. Let `(y, u) := (u−y)2, y, u ∈

R be the quadratic loss function. For f : Hm 7→ R, denote

(` • f)(x, y) = (f(x)− y)2, (`′ • f)(x, y) = 2(f(x)− y)

and

P (` • f) = E(Y − f(X))2, Pn(` • f) = n−1

n∑
j=1

(Yj − f(Xj))
2.

For A ∈ Hm, let fA(x) = 〈A, x〉, x ∈ Hm. Since for density matrices S ∈ Sm, ‖S‖1 =

tr(S) = 1, the estimator ρ̃ = ρ̃ε can be equivalently defined by the following convex

optimization problem:

ρ̃ = argminS∈SmLn(S), Ln(S) :=
[
Pn(` • fS) + εtr(S logS) + ε̄‖S‖1

]
,

for an arbitrary ε̄ > 0.

The following lemma will be crucial in the proofs of Theorem 8 as well Theorem

9 in the following subsection. Note that it does not rely on Assumption 3, only

Assumptions 1 and 2 are needed.

Lemma 9. Suppose Assumptions 1 and 2 hold. Let δ ∈ (0, 1) and S := (1−δ)S ′+δ Im
m
,

where S ′ ∈ Sm, rank(S ′) = r and Im is the m×m identity matrix. Then the following

bound holds:

‖fρ̃ − fρ‖2
L2(Π) + 1

2
‖fρ̃ − fS‖2

L2(Π) + εK(ρ̃;S) + ε̄
∥∥∥P⊥L (ρ̃)

∥∥∥
1

≤ ‖fS − fρ‖2
L2(Π) + rm2ε2 log2(m/δ) + rm2ε̄2 (2.3.7)

+4ε̄δ + (P − Pn)(`′ • fρ̃)(fρ̃ − fS).

Lemma 9 will be often used together with the following simple bound:

‖fS − fρ‖2
L2(Π) = 1

m2‖S − ρ‖2
2 ≤

1
m2‖S ′ − ρ‖2

2 + 2
m2‖S ′ − ρ‖2‖S ′ − S‖2 + 1

m2‖S ′ − S‖2
2 (2.3.8)

≤ ‖fS′ − fρ‖2
L2(Π) + 8δ

m2 + 4δ2

m2 ≤ ‖fS′ − fρ‖2
L2(Π) + 12δ

m2 .
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Together, they imply that

‖fρ̃ − fρ‖2
L2(Π) + 1

2
‖fρ̃ − fS‖2

L2(Π) + εK(ρ̃;S) + ε̄
∥∥∥P⊥L (ρ̃)

∥∥∥
1

≤ ‖fS′ − fρ‖2
L2(Π) + rm2ε2 log2(m/δ) + rm2ε̄2 (2.3.9)

+4ε̄δ + 12δ
m2 + (P − Pn)(`′ • fρ̃)(fρ̃ − fS).

We will now give the proof of Lemma 9.

Proof. By standard necessary conditions of extremum in convex problems, we get

that, for all S ∈ Sm and for some Ṽ ∈ ∂‖ρ̃‖1,

Pn(`′ • fρ̃)(fρ̃ − fS) + ε〈log ρ̃, ρ̃− S〉+ ε̄〈Ṽ , ρ̃− S〉 ≤ 0

(see, e.g., [3], Chapter 2, Corollary 6; see also [52], pp. 198–199; for the computation

of derivative of the function tr(S logS), see Lemma 1 in [53]). Replacing in the left

hand side P by Pn, we get

P (`′ • fρ̃)(fρ̃ − fS) + ε〈log ρ̃, ρ̃− S〉+ ε̄〈Ṽ , ρ̃− S〉 ≤ (P − Pn)(`′ • fρ̃)(fρ̃ − fS).

It is easy to check that for the quadratic loss

P (`′ • fρ̃)(fρ̃ − fS) = P (` • fρ̃)− P (` • fS) + ‖fρ̃ − fS‖2
L2(Π),

implying that

P (` • fρ̃)− P (` • fS) + ‖fρ̃ − fS‖2
L2(Π) + ε〈log ρ̃, ρ̃− S〉+ ε̄〈Ṽ , ρ̃− S〉

≤ (P − Pn)(`′ • fρ̃)(fρ̃ − fS).

Also, for the quadratic loss,

P (` • f)− P (` • fρ) = ‖f − fρ‖2
L2(Π).

Therefore,

‖fρ̃ − fρ‖2
L2(Π) + ‖fρ̃ − fS‖2

L2(Π) + ε〈log ρ̃, ρ̃− S〉+ ε̄〈Ṽ , ρ̃− S〉

41



≤ ‖fS − fρ‖2
L2(Π) + (P − Pn)(`′ • fρ̃)(fρ̃ − fS).

Recall that we have set S = (1− δ)S ′ + δ Im
m
, where S ′ ∈ Sm, rank(S ′) = r, δ ∈ (0, 1).

Clearly, ∣∣∣〈Ṽ , S − S ′〉∣∣∣ ≤ ‖Ṽ ‖∞‖S − S ′‖1 ≤ ‖S − S ′‖1 = δ

∥∥∥∥S ′ − Im
m

∥∥∥∥
1

≤ 2δ,

where we used the fact that ‖Ṽ ‖∞ ≤ 1 for Ṽ ∈ ∂‖ρ̃‖1. This implies

‖fρ̃ − fρ‖2
L2(Π) + ‖fρ̃ − fS‖2

L2(Π) + ε〈log ρ̃, ρ̃− S〉+ ε̄〈Ṽ , ρ̃− S ′〉 (2.3.10)

≤ ‖fS − fρ‖2
L2(Π) + 2ε̄δ + (P − Pn)(`′ • fρ̃)(fρ̃ − fS).

Recall formula (2.3.2) for the subdifferential of nuclear norm. Let L = supp(S ′).

By the duality between the operator and nuclear norms, there exists M ∈ Hm with

‖M‖∞ ≤ 1 such that

〈P⊥L (M), ρ̃− S ′〉 = 〈M,P⊥L (ρ̃− S ′)〉 =
∥∥∥P⊥L (ρ̃− S ′)

∥∥∥
1

=
∥∥∥P⊥L (ρ̃)

∥∥∥
1
.

With V = sign(S ′) + P⊥L (M) ∈ ∂‖S ′‖1, by monotonicity of subdifferential, we get

that

〈sign(S ′), ρ̃− S ′〉+
∥∥∥P⊥L (ρ̃)

∥∥∥
1

= 〈V, ρ̃− S ′〉 ≤ 〈Ṽ , ρ̃− S ′〉. (2.3.11)

In addition to this, we have

〈log ρ̃, ρ̃−S〉 = 〈log ρ̃−logS, ρ̃−S〉+〈logS, ρ̃−S〉 = K(ρ̃;S)+〈logS, ρ̃−S〉. (2.3.12)

Substituting (2.3.11) and (2.3.12) into (2.3.10), we get

‖fρ̃ − fρ‖2
L2(Π) + ‖fρ̃ − fS‖2

L2(Π) + εK(ρ̃;S) + ε̄
∥∥∥P⊥L (ρ̃)

∥∥∥
1

≤ ‖fS − fρ‖2
L2(Π) + ε〈logS, S − ρ̃〉+ ε̄〈sign(S ′), S ′ − ρ̃〉 (2.3.13)

+2ε̄δ + (P − Pn)(`′ • fρ̃)(fρ̃ − fS).

The following bound on ε̄〈sign(S ′), S ′ − ρ̃〉 is straightforward:

ε̄〈sign(S ′), S ′ − ρ̃〉 ≤ ε̄〈sign(S ′), S − ρ̃〉+ ε̄‖sign(S ′)‖∞‖S − S ′‖1

≤ ε̄‖sign(S ′)‖2‖S − ρ̃‖2 + 2ε̄δ ≤ ε̄
√
rm‖fS − fρ̃‖L2(Π) + 2ε̄δ (2.3.14)

≤ rm2ε̄2 + 1
4
‖fS − fρ̃‖2

L2(Π) + 2ε̄δ.
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A similar bound on ε〈logS, S − ρ̃〉 is only slightly more complicated. Suppose S ′

has the following spectral representation: S ′ =
∑r

k=1 λkPk with eigenvalues λk ∈ (0, 1]

(repeated with their multiplicities) and one-dimensional orthogonal eigenprojectors

Pk. We will extend Pj, j = 1, . . . , r to the complete orthogonal resolution of the

identity Pj, j = 1, . . . ,m. Then

logS = log

(
(1− δ)S ′ + δ

Im
m

)
=

r∑
j=1

log
(

(1− δ)λj + δ/m
)
Pj +

m∑
j=r+1

log(δ/m)Pj

=
r∑
j=1

log
(

1 + (1− δ)mλj/δ
)
Pj + log(δ/m)Im

and

〈logS, S − ρ̃〉 =

〈 r∑
j=1

log
(

1 + (1− δ)mλj/δ
)
Pj, S − ρ̃

〉
+ log(δ/m)〈Im, S − ρ̃〉

=

〈 r∑
j=1

log
(

1 + (1− δ)mλj/δ
)
Pj, S − ρ̃

〉
where we used the fact that 〈Im, S − ρ̃〉 = tr(S)− tr(ρ̃) = 0. Therefore,

ε〈logS, S − ρ̃〉 ≤ ε

∥∥∥∥∑r
j=1 log

(
1 + (1− δ)mλj/δ

)
Pj

∥∥∥∥
2

‖S − ρ̃‖2 (2.3.15)

= εm

(∑r
j=1 log2

(
1 + (1− δ)mλj/δ

))1/2

‖fS − fρ̃‖L2(Π)

≤ ε
√
rm log(m/δ)‖fS − fρ̃‖L2(Π) ≤ rm2ε2 log2(m/δ) + 1

4
‖fS − fρ̃‖2

L2(Π),

where it was used that for λj ∈ [0, 1]

log
(

1 + (1− δ)mλj/δ
)
≤ log

(δ + (1− δ)m
δ

)
≤ log(m/δ).

Substituting bounds (2.3.14) and (2.3.15) in (2.3.13) we easily get bound (2.3.7), as

claimed in the lemma.

We will also need the following simple lemma that provides a bound on K(S ′‖ρ̃)

in terms of K(S‖ρ̃).
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Let

h(δ) := δ log
1

δ
+ (1− δ) log

1

1− δ
.

Observe that

h(δ) = δ log
1

δ
+ (1− δ) log

(
1 +

δ

1− δ

)
≤ δ log

1

δ
+ (1− δ) δ

1− δ
≤ δ log

e

δ

(this bound will be used in what follows).

Lemma 10. Let δ ∈ (0, 1), S ′ ∈ Sm with rank(S ′) = r and S = (1 − δ)S ′ + δ Im
m
.

Then, for any U ∈ Sm,

K(S ′‖U) ≤ K(S‖U) + h(δ)

1− δ
.

Proof. The following identities are straightforward:

K(S‖U) = tr(S(logS − logU))

= (1− δ)tr(S ′(logS − logU)) + δtr((Im/m)(logS − logU))

= (1− δ)tr(S ′(logS ′ − logU)) + (1− δ)tr(S ′(logS − logS ′))

+δtr((Im/m)(logS − log(Im/m))) + δtr((Im/m)(log(Im/m)− logU))

= (1− δ)K(S ′‖U)− (1− δ)K(S ′‖S) + δK(Im/m‖U)− δK(Im/m‖S).

Since K(Im/m‖U) ≥ 0, it follows that

K(S ′‖U) ≤ K(S‖U)

1− δ
+K(S ′‖S) +

δ

1− δ
K(Im/m‖S). (2.3.16)

Assuming that S ′ has spectral representation S ′ =
∑r

j=1 λjPj with eigenvalues λj > 0

and one-dimensional projectors Pj, we get

−K(S ′‖S) =
r∑
j=1

λj log
(1− δ)λj + δ/m

λj

=
r∑
j=1

λj log

(
1− δ +

δ

mλj

)
≥ log(1− δ)

r∑
j=1

λj = log(1− δ),
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implying that K(S ′‖S) ≤ log 1
1−δ . On the other hand,

K(Im/m‖S) =
1

m

m∑
j=1

log
1/m

(1− δ)λj + δ/m
≤ 1

m

m∑
j=1

log
1

δ
= log

1

δ
.

Substituting these bounds in (2.3.16) yields the result.

To complete the proof of Theorem 8, we need to control the empirical process

(P − Pn)(`′ • fρ̃)(fρ̃ − fS) in the right hand side of bound (2.3.7). Our approach

is based on the following empirical processes bound that is a slight modification of

Lemma 1 in [55]. As before, we assume that S = (1 − δ)S ′ + δ Im
m

with S ′ ∈ Sm,

rank(S ′) = r. We will set δ := 1
m2n2 .

Let Ξε := n−1
∑n

j=1 εjXj, where εj are i.i.d. Rademacher random variables (that

is, εj takes values +1 and −1 with probability 1/2 each) and {εj}, {Xj} are indepen-

dent.

Lemma 11. Given δ1, δ2 > 0, denote

αn(δ1, δ2) := sup

{∣∣∣(Pn−P )(`′•fA)(fA−fS)
∣∣∣ : A ∈ Sm, ‖fA−fS‖L2(Π) ≤ δ1, ‖P⊥LA‖1 ≤ δ2

}
.

Let 0 < δ−1 < δ+
1 , 0 < δ−2 < δ+

2 . For t ≥ 1, denote

t̄ := t+ log
(

[log2(δ+
1 /δ

−
1 )] + 2

)
+ log

(
[log2(δ+

2 /δ
−
2 )] + 2

)
+ log 3.

Then, with probability at least 1− e−t, for all δ1 ∈ [δ−1 , δ
+
1 ], δ2 ∈ [δ−2 , δ

+
2 ],

αn(δ1, δ2) ≤ C1UE‖Ξε‖∞
(√

rmδ1 + δ2 + δ
)

+ C2Uδ1

√
t̄

n
+ C3U

2 t̄

n
,

where C1, C2, C3 > 0 are constants.

We will use this lemma to control the term (P − Pn)(`′ • fρ̃)(fρ̃ − fS) in bound

(2.3.7). Let δ1 := ‖fρ̃ − fS‖L2(Π) and δ2 := ‖P⊥L ρ̃‖1. Define also

δ+
1 :=

2

m
, δ+

2 := 1, δ−1 = δ−2 :=
1

mn
,
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so that t̄ ≤ t+2 log(log2(mn)+3)+log 3. It is easy to see that δ1 ≤ δ+
1 and δ2 ≤ δ+

2 . If,

in addition, δ1 ≥ δ−1 , δ2 ≥ δ−2 , the bound of Lemma 11 implies that with probability

at least 1− e−t,

(P − Pn)(`′ • fρ̃)(fρ̃ − fS) ≤ αn(δ1, δ2)

≤ C1UE‖Ξε‖∞
(√

rmδ1 + δ2 + δ
)

+ C2Uδ1

√
t̄

n
+ C3U

2 t̄

n
.

If ε̄ ≥ C1UE‖Ξε‖∞, the last bound implies that

(P − Pn)(`′ • fρ̃)(fρ̃ − fS)

≤ 1
4
‖fρ̃ − fS‖2

L2(Π) + rm2ε̄2 + ε̄‖P⊥L ρ̃‖1 + ε̄δ (2.3.17)

+1
4
‖fρ̃ − fS‖2

L2(Π) + (C2
2 + C3)U2 t̄

n
.

Substituting this bound in the right hand side of (2.3.9), we get

‖fρ̃ − fρ‖2
L2(Π) + εK(ρ̃;S)

≤ ‖fS′ − fρ‖2
L2(Π) + rm2ε2 log2(m/δ) + 2rm2ε̄2 (2.3.18)

+5ε̄δ + CU2 t̄
n

+ 12δ
m2 ,

where C := C2
2 + C3.

In the case when δ1 = ‖fρ̃ − fS‖L2(Π) ≤ δ−1 = 1
mn

or δ2 = ‖P⊥L ρ̃‖1 ≤ δ−2 = 1
mn
, we

can replace the terms 1
4
‖fρ̃−fS‖2

L2(Π) or ‖P⊥L ρ̃‖1 in bound (2.3.17) by their respective

upper bounds (1
4
(δ−1 )2 = 1

4m2n2 , or δ−2 = 1
mn

), which would be smaller than CU2 t̄
n

for large enough C > 0, so bound (2.3.18) still holds (recall that U ≥ m−1/2). Note

also that 12δ
m2 = 12 1

m4n2 ≤ 12U2 t̄
n
. Thus, increasing the value of constant C, one can

rewrite (2.3.18) in a simpler form as

‖fρ̃ − fρ‖2
L2(Π) + εK(ρ̃;S)

≤ ‖fS′ − fρ‖2
L2(Π) + rm2ε2 log2(m/δ) + 2rm2ε̄2 (2.3.19)

+5ε̄δ + CU2 t̄
n
.
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The following expectation bound is a consequence of a matrix version of Bernstein

inequality for ‖Ξε‖∞ in Lemma 7 in Section 2.3.1 (it follows by integrating out its

exponential tails):

E‖Ξε‖∞ ≤ 4

[√
log(2m)

nm

∨
U

log(2m)

n

]
(it is also used in this computation that, in the case of uniform sampling from an

orthonormal basis, σ2
εX = ‖EX2‖∞ = 1

m
, a simple fact often used in the literature;

see, e.g., [53], Section 5). Let

ε̄ := D′U

√
log(2m)

nm

for some constant D′. If D′ is sufficiently large and

U
log(2m)

n
≤
√

log(2m)

nm
, (2.3.20)

then the condition ε̄ ≥ C1UE‖Ξε‖∞ is satisfied and bound (2.3.19) holds with prob-

ability at least 1 − e−t. Moreover, ε̄δ .D′ δ .D′ U
2 t̄
n
, implying that the term 5ε̄δ in

(2.3.19) can be dropped at a price of further increasing the value of constant C.

If (2.3.20) does not hold, we still have that

‖fρ̃ − fρ‖2
L2(Π) =

‖ρ̃− ρ‖2
2

m2
≤ 2

m2
≤ CU2 t̄

n
.

Recalling that t̄ ≤ t+ 2 log(log2(mn) + 3) and log(m/δ) . log(mn), we deduce from

(2.3.19) that with some constant C and with probability at least 1− e−t

‖fρ̃ − fρ‖2
L2(Π) ≤ ‖fS′ − fρ‖2

L2(Π) + C

[
rm2ε2 log2(mn)

+U2 rm log(2m)
n

+ U2 t+log(log2(mn)+3)
n

]
. (2.3.21)

Note that, for n ≥ 2,

log(log2(mn)+3) = log
(

log2(4m)+log2(2n)
)
≤ log log2(4m)+log log2(2n), (2.3.22)

since log2(4m) + log2(2n) ≤ log2(4m) log2(2n). Since also, for r ≥ 1,

U2 t+ log log2(4m)

n
. U2 rm log(2m)

n
, (2.3.23)
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we can replace in bound (2.3.21) the term U2 t+log(log2(mn)+3)
n

with the term U2 t+log log2(2n)
n

(increasing the value of the constant C accordingly). This yields bound (2.3.3) of

the theorem. For S ′ = ρ, it yields bound (2.3.4), and, moreover, for S ′ = ρ and

S = (1− δ)ρ+ δ Im
m

with δ = 1
m2n2 , bound (2.3.19) also implies that

εK(ρ̃;S) ≤ rank(ρ)m2ε2 log2(m/δ) + 2rank(ρ)m2ε̄2 (2.3.24)

+5ε̄δ + CU2 t̄
n
.

We will now take

ε̄ := D′
[
U

√
log(2m)

nm

∨
U2 log(2m)

n

]
for a large enough constant D′ so that ε̄ ≥ C1UE‖Ξε‖∞. Assume that

ε :=
1

log(mn)

[
U

√
log(2m)

nm

∨
U2 log(2m)

n

]
.

As before, the term ε̄δ in bound (2.3.24) will be absorbed by the term CU2 t̄
n

with a

larger value of C and also

rank(ρ)m2ε2 log2(m/δ) �D′ rank(ρ)m2ε̄2 �D′ U2 rank(ρ)m log(2m)

n

(
1
∨

U2m log(2m)

n

)
.

As a result, taking into account (2.3.22), (2.3.23), bound (2.3.24) can be rewritten as

follows:

εK(ρ̃;S) ≤ CU2

[
rank(ρ)m log(2m)

n

(
1
∨
U2m log(2m)

n

)
(2.3.25)

+ t+log log2(2n)
n

]
.

Using the bound of Lemma 10 along with the bound

h(δ) ≤ δ log(e/δ) =
1

m2n2
log(em2n2) . U

√
m

n

(t+ log log2(2n)) log(mn)√
log(2m)

,

we easily get that (2.3.6) holds.
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2.3.3 Oracle inequalities for trace regression with Gaussian noise

In this subsection, we establish oracle inequalities for the von Neumann entropy pe-

nalized least squares estimator ρ̃ε in the case of trace regression model with Gaussian

noise (Assumption 4). Unlike in the case of Theorem 8 of the previous section, our

aim is not to obtain sharp oracle inequality, but rather to get a clean main term of

the random error bound part of the inequality, namely, the term σ2
ξ

rank(S)m(t+log(2m))
n

in inequality (2.3.27) below. Note that this term depends only on the variance of the

noise σ2
ξ , but not on the constant U from Assumption 1 (the constant U is involved

only in the higher order O(n−2) terms of the bound). Note also that there are no

constraints on the variance σ2
ξ that could be arbitrarily small, or even equal to 0 (in

which case only higher order terms are present in the bound). This improvement

comes at a price of having the leading constant 2 in the oracle inequality and also

of imposing assumption (2.3.26) that requires the regularization parameter ε to be

bounded away from 0 (again, unlike Theorem 8, where it could be arbitrarily small).

As in the previous section, we also obtain a bound on Kullback–Leibler divergence

K(ρ‖ρ̃ε).

Theorem 9. Let t ≥ 1. Suppose

ε ∈
[
DU2 t+ log3m log2 n

n
,
D1σξ

log(mn)

√
t+ log(2m)

nm

∨
DU2 t+ log3m log2 n

n

]
(2.3.26)

with large enough constants D,D1 > 0. There exists a constant C > 0 such that with

probability at least 1− e−t

‖fρ̃ε − fρ‖2
L2(Π) ≤ inf

S∈Sm

[
2‖fS − fρ‖2

L2(Π) + C

(
σ2
ξ

rank(S)m(t+ log(2m))

n

+ σ2
ξU

2 rank(S)m2(t+ log(2m))2 log(2m)

n2
+ U4 rank(S)m2(t+ log3m log2 n)2 log2(mn)

n2

)]
.

(2.3.27)
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In particular,

‖fρ̃ε − fρ‖2
L2(Π) ≤ C

[
σ2
ξ

rank(ρ)m(t+log(2m))
n

(2.3.28)

+σ2
ξU

2 rank(ρ)m2(t+log(2m))2 log(2m)
n2 + U4 rank(ρ)m2(t+log3 m log2 n)2 log2(mn)

n2

]
.

Moreover, if

ε :=
D1σξ

log(mn)

√
t+ log(2m)

nm

∨
DU2 t+ log3m log2 n

n

for large enough constants D,D1, then with some constant C and with the same

probability both (2.3.28) and the following bound hold:

K(ρ‖ρ̃ε) ≤ C

[
σξ

rank(ρ)m3/2(t+log(2m))1/2 log(mn)√
n

(2.3.29)

+σ2
ξ

rank(ρ)m2(t+log(2m)) log(2m)
n

+ U2 rank(ρ)m2(t+log3m log2 n) log2(mn)
n

]
.

Proof. As in in the proof of Theorem 8, we rely on Lemma 9, but we use a different

approach to bounding the empirical process (P − Pn)(`′ • fρ̃)(fρ̃− fS). The following

identity follows from the definition of quadratic loss `

(`′ • f)(x, y)(f(x)− fS(x)) = 2(f(x)− fS(x))2 + 2(fS(x)− y)(f(x)− fS(x))

and it implies that

(P − Pn)(`′ • fρ̃)(fρ̃ − fS) = −2(Pn − P )(fρ̃ − fS)2 − 2〈Ξ, ρ̃− S〉 (2.3.30)

where

Ξ := n−1

n∑
j=1

(fS(Xj)− Yj)Xj − E(fS(X)− Y )X.

We will bound (Pn − P )(fρ̃ − fS)2 in representation (2.3.30) as follows:∣∣∣(Pn − P )(fρ̃ − fS)2
∣∣∣ ≤ ‖ρ̃− S‖2

1βn

(
‖fρ̃ − fS‖L2(Π)

‖ρ̃− S‖1

)
, (2.3.31)

where

βn(∆) := sup

{∣∣∣(Pn − P )(f 2
A)
∣∣∣ : A ∈ Hm, ‖A‖1 ≤ 1, ‖fA‖L2(Π) ≤ ∆

}
.
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The next lemma provides a bound on βn(∆). Its proof is somewhat involved and

it will be given in Section 2.5. It is based on Rudelson’s L∞(Pn) generic chaining

bound for empirical processes indexed by squares of functions and on the ideas of the

paper by [38] combined with Talagrand’s concentration inequality (see also [4], [64]

and Theorem 3.16, Lemma 9.8 and Proposition 9.2 in [52] for similar arguments).

Lemma 12. Given 0 < δ− < δ+ and t ≥ 1, let

t̄ := t+ log
(

log2(δ+/δ−) + 3
)
.

Then, with some constant C and with probability at least 1− e−t, the following bound

holds for all ∆ ∈ [δ−, δ+] :

βn(∆) ≤ C

[
∆U

log3/2m log n√
n

+ U2 log3m log2 n

n
+ ∆U

√
t̄

n
+ U2 t̄

n

]
. (2.3.32)

We will use Lemma 12 to control βn(∆) for ∆ :=
‖fρ̃−fS‖L2(Π)

‖ρ̃−S‖1 . Let δ+ := 1
m

and

δ− := 1
mn
. With this choice, t̄ ≤ t + log(log2 n + 3). Note that for A = ρ̃−S

‖ρ̃−S‖1 ,

‖fA‖L2(Π) = ‖A‖2
m
≤ ‖A‖1

m
= m−1 = δ+. If also ‖fA‖L2(Π) ≥ δ−, then we can substitute

bound (2.3.32) on βn(∆) into (2.3.31) that yields:∣∣∣(Pn − P )(fρ̃ − fS)2
∣∣∣ ≤ C

[
‖fρ̃ − fS‖L2(Π)‖ρ̃− S‖1U

log3/2 m logn√
n

+‖ρ̃− S‖2
1U

2 log3 m log2 n
n

+ ‖fρ̃ − fS‖L2(Π)‖ρ̃− S‖1U
√

t̄
n

+‖ρ̃− S‖2
1U

2 t̄
n

]
≤ 1

32
‖fρ̃ − fS‖2

L2(Π) + 8(C2 + C/8)U2 log3m log2 n
n

‖ρ̃− S‖2
1 (2.3.33)

+ 1
32
‖fρ̃ − fS‖2

L2(Π) + 8(C2 + C/8)U2 t̄
n
‖ρ̃− S‖2

1

≤ 1
16
‖fρ̃ − fS‖2

L2(Π) + C ′U2 log3 m log2 n+t̄
n

‖ρ̃− S‖2
1,

where C ′ := 8(C2 + C/8). If, on the other hand, ‖fA‖L2(Π) ≤ δ− = 1
mn
, then ‖fρ̃ −

fS‖L2(Π) in the above bound can be replaced by 1
mn
‖ρ̃−S‖1 and the proof that follows

only simplifies since

1

16
‖fρ̃ − fS‖2

L2(Π) ≤
1

16

1

m2n2
‖ρ̃− S‖2

1 ≤
1

16
U2 log3m log2 n+ t̄

n
‖ρ̃− S‖2

1.
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Another term in the right hand side of representation (2.3.30) to be controlled is

〈Ξ, ρ̃− S〉. Note that Ξ = Ξ1 + Ξ2, where

Ξ1 := −n−1

n∑
j=1

ξjXj

and

Ξ2 := n−1

n∑
j=1

(fS(Xj)− fρ(Xj))Xj − E(fS(X)− fρ(X))X.

Recall that S = (1 − δ)S ′ + δ Im
m

with S ′ ∈ Sm, rank(S ′) = r, supp(S ′) = L and

δ = 1
m2n2 .

The term with Ξ1 is controlled as follows:∣∣∣〈Ξ1, ρ̃− S〉
∣∣∣

≤
∣∣∣〈PL(Ξ1), ρ̃− S ′〉

∣∣∣+
∣∣∣〈Ξ1,P⊥L (ρ̃− S ′)〉

∣∣∣+
∣∣∣〈P⊥L (Ξ1), S ′ − S〉

∣∣∣
≤ ‖PL(Ξ1)‖2‖ρ̃− S ′‖2 + ‖Ξ1‖∞‖P⊥L (ρ̃)‖1 +

∥∥∥P⊥L (Ξ1)
∥∥∥
∞
‖S ′ − S‖1

≤ 2
√

2rm‖Ξ1‖∞‖fρ̃ − fS‖L2(Π) + ‖Ξ1‖∞‖P⊥L (ρ̃)‖1 + 4δ‖Ξ1‖∞ (2.3.34)

≤ 32rm2‖Ξ1‖2
∞ + 1

16
‖fρ̃ − fS‖2

L2(Π)

+‖Ξ1‖∞‖P⊥L (ρ̃)‖1 + 4δ‖Ξ1‖∞.

We also have∣∣∣〈Ξ2, ρ̃− S〉
∣∣∣ ≤ ‖Ξ2‖∞‖ρ̃− S‖1 ≤ ‖Ξ2‖∞‖ρ̃− S ′‖1 + ‖Ξ2‖∞‖S ′ − S‖1

≤ ‖Ξ2‖∞‖ρ̃− S ′‖1 + 2δ‖Ξ2‖∞. (2.3.35)

Thus, ∣∣∣〈Ξ, ρ̃− S〉∣∣∣ ≤ 32rm2‖Ξ1‖2
∞ + 1

16
‖fρ̃ − fS‖2

L2(Π)

+‖Ξ1‖∞‖P⊥L (ρ̃)‖1 + 4δ‖Ξ1‖∞ + ‖Ξ2‖∞‖ρ̃− S ′‖1 + 2δ‖Ξ2‖∞. (2.3.36)
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It follows from (2.3.30), (2.3.33) and (2.3.36) that with some constant C ′

(P − Pn)(`′ • fρ̃)(fρ̃ − fS) ≤

1
4
‖fρ̃ − fS‖2

L2(Π) + C ′U2 log3 m log2 n+t̄
n

‖ρ̃− S‖2
1 (2.3.37)

+64rm2‖Ξ1‖2
∞ + 2‖Ξ1‖∞‖P⊥L (ρ̃)‖1 + 8δ‖Ξ1‖∞

+2‖Ξ2‖∞‖ρ̃− S ′‖1 + 4δ‖Ξ2‖∞.

This bound will be substituted in (2.3.7). Note that, if assumption (2.3.26) on ε holds

with a sufficiently large constant D, then we have

ε ≥ 8C ′U2 log3m log2 n+ t̄

n

(this follows from the fact that t̄ ≤ t + log(log2 n + 3) ≤ t + c log3m log2 n for some

constant c > 0). Assume also that ε̄ ≥ 4‖Ξ1‖∞ and recall that K(ρ̃;S) ≥ 1
4
‖ρ̃− S‖2

1

(see inequality 1.3.10). Taking all this into account, (2.3.7) implies that

‖fρ̃ − fρ‖2
L2(Π) + 1

4
‖fρ̃ − fS‖2

L2(Π) + ε
2
K(ρ̃;S) + ε̄

2
‖P⊥L ρ̃‖1

≤ ‖fS − fρ‖2
L2(Π) + rm2ε2 log2(m/δ) + 5rm2ε̄2 + 6ε̄δ (2.3.38)

+2‖Ξ2‖∞‖ρ̃− S ′‖1 + 4‖Ξ2‖∞δ.

It remains to control ‖Ξ1‖∞ and ‖Ξ2‖∞. To this end, we use matrix versions of

Bernstein inequality. To bound ‖Ξ2‖∞, we use its standard version as in Lemma 7

which yields that with probability at least 1− e−t

‖Ξ2‖∞ ≤ 2

[∥∥∥E(fS(X)− fρ(X))2X2
∥∥∥1/2

∞

√
t+log(2m)

n∨∥∥∥(fS(X)− fρ(X))‖X‖∞
∥∥∥
L∞

t+log(2m)
n

]
,

where ‖ · ‖L∞ denotes the essential supremum norm in the space of random variables.

Since ∥∥∥E(fS(X)− fρ(X))2X2
∥∥∥
∞
≤ U2‖fS − fρ‖2

L2(Π)
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and ∥∥∥(fS(X)− fρ(X))‖X‖∞
∥∥∥
L∞
≤ 2U2,

we get

‖Ξ2‖∞ ≤ 4

[
‖fS − fρ‖L2(Π)U

√
t+log(2m)

n
+ U2 t+log(2m)

n

]
. (2.3.39)

This implies that

2‖Ξ2‖∞‖ρ̃− S ′‖1 ≤ ‖fS − fρ‖2
L2(Π) + 16U2 t+log(2m)

n
‖ρ̃− S ′‖2

1 (2.3.40)

+8U2 t+log(2m)
n
‖ρ̃− S ′‖1.

Note that

16U2 t+log(2m)
n
‖ρ̃− S ′‖2

1

≤ 16U2 t+log(2m)
n
‖ρ̃− S‖2

1 + 16U2 t+log(2m)
n

(4δ + δ2) (2.3.41)

and

8U2 t+log(2m)
n
‖ρ̃− S ′‖1

≤ 8U2 t+log(2m)
n
‖P⊥L ρ̃‖1 + 8U2 t+log(2m)

n
‖PL(ρ̃− S ′)‖1 (2.3.42)

≤ 8U2 t+log(2m)
n
‖P⊥L ρ̃‖1 + 8U2 t+log(2m)

n
‖PL(ρ̃− S)‖1 + 16U2 t+log(2m)

n
δ.

Since, for some constant C ′′ > 0,

8U2 t+log(2m)
n
‖PL(ρ̃− S)‖1 ≤ 8

√
2U2 t+log(2m)

n

√
r‖PL(ρ̃− S)‖2

≤ 8
√

2U2 t+log(2m)
n

√
rm‖fρ̃ − fS‖L2(Π) ≤ 1

4
‖fρ̃ − fS‖2

L2(Π) + C ′′U4 rm
2(t+log(2m))2

n2 ,

it follows from (2.3.40), (2.3.41) and (2.3.42) that

2‖Ξ2‖∞‖ρ̃− S ′‖1 ≤ ‖fS − fρ‖2
L2(Π) +

+16U2 t+log(2m)
n
‖ρ̃− S‖2

1 + 16U2 t+log(2m)
n

(4δ + δ2) (2.3.43)

+8U2 t+log(2m)
n
‖P⊥L ρ̃‖1 + 16U2 t+log(2m)

n
δ

+1
4
‖fρ̃ − fS‖2

L2(Π) + C ′′U4 rm
2(t+log(2m))2

n2 .
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Note that (2.3.39) also implies that

‖Ξ2‖∞ ≤ 4

[
2U
m

√
t+log(2m)

n
+ U2 t+log(2m)

n

]
(2.3.44)

(since ‖fS−fρ‖L2(Π) ≤ m−1‖S−ρ‖2 ≤ 2m−1). Let us substitute (2.3.43) and (2.3.44)

in the last line of (2.3.38). Assume that

ε̄ ≥ 16U2 t+ log(2m)

n

and that constant D in assumption (2.3.26) is large enough so that

16U2 t+ log(2m)

n
‖ρ̃− S‖2

1 ≤
ε

4
K(ρ̃, S)

(recall inequality 1.3.10). It easily follows that with some constants C1, C2,

‖fρ̃ − fρ‖2
L2(Π) + ε

4
K(ρ̃;S)

≤ 2‖fS − fρ‖2
L2(Π) + C1rm

2ε2 log2(m/δ) + 5rm2ε̄2 (2.3.45)

+C2ε̄δ + 32U
m

√
t+log(2m)

n
δ

(note that the term C ′′U4 rm
2(t+log(2m))2

n2 of bound (2.3.43) is “absorbed” by the term

C1rm
2ε2 log2(m/δ) of bound (2.3.45) provided that constant C1 is large enough).

Since

δ =
1

m2n2
≤ U2 t+ log(2m)

n
≤ ε̄

(recall that U2 ≥ m−1), we have ε̄δ ≤ ε̄2. Also, since U ≥ m−1/2,

U

m

√
t+ log(2m)

n
δ = U

√
t+ log(2m)

n

1

m3n2
≤ U4

(
t+ log(2m)

n

)2

≤ ε̄2.

Therefore, (2.3.45) implies that with some constant C

‖fρ̃ − fρ‖2
L2(Π) + ε

4
K(ρ̃;S)

≤ 2‖fS − fρ‖2
L2(Π) + C

(
rm2ε2 log2(m/δ) + rm2ε̄2

)
. (2.3.46)
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To bound ‖Ξ1‖∞, we use a version of matrix Bernstein type inequality as in

Lemma 8 in Section 2.3.1. Its version for α = 2 (with U (α) � Uσξ) implies that for

some constant K > 0 with probability at least 1− e−t

‖Ξ1‖∞ ≤ K

[
σξ

√
t+ log(2m)

nm

∨
σξU

(t+ log(2m)) log1/2(2Um1/2)

n

]
. (2.3.47)

We choose

ε̄ := D2

[
σξ

√
t+ log(2m)

nm

∨
(σξ ∨ U)U

(t+ log(2m)) log1/2(2m)

n

]
with a sufficiently large constant D2 to satisfy the condition ‖Ξ1‖∞ ≤ 4ε̄ with prob-

ability at least 1 − e−t (the rest of the assumptions we made on ε̄ are also satisfied

with this choice).

Bound (2.3.46) then implies that with some constant C and with probability at

least 1− 3e−t the following inequality holds:

‖fρ̃ε − fρ‖2
L2(Π) ≤ 2‖fS − fρ‖2

L2(Π)

+ C

[
σ2
ξ

rm(t+ log(2m))

n
+ σ2

ξU
2 rm

2(t+ log(2m))2 log(2m)

n2

+ U4 rm
2(t+ log3m log2 n)2 log2(mn)

n2

]
.

(2.3.48)

Using bound (2.3.8) to replace S in ‖fS − fρ‖2
L2(Π) with S ′ and adjusting the value

of constant C to rewrite the probability bound as 1− e−t, it is easy to complete the

proof of (2.3.27). If S ′ = ρ, this also yields bound (2.3.28). Moreover, with a larger

value of regularization parameter

ε :=
D1σξ

log(mn)

√
t+ log(2m)

nm

∨
DU2 t+ log3m log2 n

n
,

bound (2.3.46) and Lemma 10 easily imply bound (2.3.29).

2.3.4 Optimality of von Neumann entropy penalized estimator

We start with upper bounds on the error of estimator ρ̃ε (von Neumann entropy

penalized least squares estimator defined by (2.3.1)) in Hellinger, Kullback-Leibler
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and Schatten p-norm distances for p ∈ [1, 2] for the trace regression model with

Gaussian noise (Assumption 4). To avoid the impact of “second order terms” on the

upper bounds, we will make the following simplifying assumptions:

U

√
m

n
logm . 1 and U2

√
m

n
log5/2m log2 n log(mn) . σξ. (2.3.49)

Recall that, for the Pauli basis, U = m−1/2, so, the above assumptions hold if

n & log2m and σξ is larger than 1√
mn

(times a logarithmic factor). We will choose

regularization parameter ε as follows:

ε :=
D1σξ

log(mn)

√
log(2m)

nm
(2.3.50)

with a sufficiently large constant D1 > 0. The next result shows that minimax rates

of Theorem 4 are attained up to logarithmic factors for the estimator ρ̃ε.

Theorem 10. There exists a constant C > 0 such that the following bounds hold

for all r = 1, . . . ,m, for all ρ ∈ Sr,m and for all p ∈ [1, 2] with probability at least

1−m−2 :

‖ρ̃ε − ρ‖p ≤ C

(
σξm

3
2 r1/p

√
n

√
logm log(2−p)/p(mn)

∧(σξm3/2

√
n

)1− 1
p

(logm)
1
2
− 1

2p

)∧
2,

(2.3.51)

H2(ρ̃ε, ρ) ≤ C
σξm

3
2 r√
n

√
logm log(mn)

∧
2 (2.3.52)

and

K(ρ‖ρ̃ε) ≤ C
σξm

3
2 r√
n

√
logm log(mn). (2.3.53)

Proof. We will need the following simple lemma.

Lemma 13. For all ρ ∈ Sm and all l = 1, . . . ,m, there exists ρ′ ∈ Sl,m such that

‖ρ− ρ′‖2
2 ≤

1

l
.

Proof. Suppose that ρ =
∑m

j=1 λjPj, where λj are the eigenvalues of ρ repeated

with their multiplicities and Pj are orthogonal one-dimensional projectors. Note that
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{λj : j = 1, . . . ,m} is a probability distribution on the set {1, . . . ,m}. Let ν be a

random variable sampled from this distribution and ν1, . . . , νl be its i.i.d. copies.

Then EPν = ρ and

E
∥∥∥∥l−1

l∑
j=1

Pνj − ρ
∥∥∥∥2

2

=
E‖Pν − ρ‖2

2

l
=

E‖Pν‖2
2 − ‖ρ‖2

2

l
=

1− ‖ρ‖2
2

l
≤ 1

l
.

Therefore, there exists a realization ν1 = k1, . . . , νl = kl of r.v. ν1, . . . , νl such that∥∥∥∥l−1

l∑
j=1

Pkj − ρ
∥∥∥∥2

2

≤ 1

l
.

Denote ρ′ := l−1
∑l

j=1 Pkj . Then, ρ′ ∈ Sl,m and ‖ρ− ρ′‖2
2 ≤ 1

l
.

First, we will prove bound (2.3.51) for p = 2. To this end, we use oracle inequality

(2.3.27) with t = 2 logm+log 2 and with oracle S = ρ′ ∈ Sl,m such that ‖ρ−ρ′‖2
2 ≤ 1

l
.

Under simplifying assumptions (2.3.49) it yields that with probability at least 1−1
2
m−2

‖ρ̃ε − ρ‖2
2 = m2‖fρ̃ε − fρ‖2

L2(Π) .

[
1

l
+ τ 2l logm

]
,

where τ :=
σξm

3/2

√
n
. On the other hand, using the same inequality with S = ρ ∈ Sr,m

yields the bound

‖ρ̃ε − ρ‖2
2 . τ 2r logm

that also holds with probability at least 1− 1
2
m−2. Therefore, with probability at least

1−m−2

‖ρ̃ε − ρ‖2
2 .

(1

l
+ τ 2l logm

)∧
τ 2r logm. (2.3.54)

Let l̄ = 1
τ
√

logm
. If l̄ ∈ [1,m], set l := [l̄]. Otherwise, if l̄ > m, set l := m and, if l̄ < 1,

set l := 1. An easy computation shows that with such a choice of l bound (2.3.54)

implies (2.3.51) for p = 2.

Next we use bound (2.3.29) that, for t = 2 logm, implies under assumptions

(2.3.49) that with some constant C and with probability at least 1−m−2

K(ρ‖ρ̃ε) ≤ Cσξ
rm3/2

√
logm log(mn)√

n
, (2.3.55)
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which is bound (2.3.53). Bound (2.3.52) also holds in view of inequality (1.3.10).

Now, we prove bound (2.3.51) for p = 1 (the bound for p ∈ [1, 2] will then follow

by interpolation). To this end, we will use the following lemma (see Proposition 1 in

[53]) that shows that if two density matrices are close in Hellinger distance and one of

them is “concentrated around a subspace” L, then another one is also “concentrated

around” L.

Lemma 14. For any L ⊂ Cm and all S1, S2 ∈ Sm,

‖P⊥L S1‖1 ≤ 2‖P⊥L S2‖1 + 2H2(S1, S2).

We apply this lemma to S1 = ρ̃ε, S2 = ρ and L = supp(ρ) so that P⊥L ρ = 0. It

yields that

‖P⊥L ρ̃ε‖1 ≤ 2H2(ρ̃ε, ρ).

Therefore,

‖ρ̃ε−ρ‖1 ≤ ‖PL(ρ̃ε−ρ)‖1+‖P⊥L (ρ̃ε−ρ)‖1 ≤
√

2r‖ρ̃ε−ρ‖2+‖P⊥L ρ̃ε‖1 ≤
√

2r‖ρ̃ε−ρ‖2+2H2(ρ̃ε, ρ).

(2.3.56)

Using bounds (2.3.51) for p = 2 and (2.3.52), we get from (2.3.56) that

‖ρ̃ε − ρ‖1 ≤ C
σξm

3
2 r√
n

√
logm log(mn)

∧
2, (2.3.57)

which is equivalent to (2.3.51) for p = 1. Note that by choosing t = 2 logm+ log 2 + 2

(which might have an impact only on the constant), we could make probability bounds

in (2.3.51) for p = 2 and (2.3.52) to be at least 1− 1
2
m−2 implying that (2.3.57) holds

with probability at least 1−m−2, as it is claimed in the theorem.

To complete the proof, it is enough to use the interpolation inequality of Lemma

6. It follows that, for p ∈ (1, 2),

‖ρ̃ε − ρ‖p ≤ ‖ρ̃ε − ρ‖
2
p
−1

1 ‖ρ̃ε − ρ‖
2− 2

p

2 .

Substituting bound (2.3.51) for p = 1 and p = 2 into the last inequality yields the

result for an arbitrary p ∈ (1, 2).
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Similarly, in the case of trace regression with bounded response (see Assumption

3), minimax rates of Theorem 5 are also attained for the estimator ρ̃ε (up to log

factors). In this case, assume that Assumption 3 holds with Ū = U and, in addition,

let us make the following simplifying assumptions:

U

√
m logm

n
. 1 and log log2 n . m logm. (2.3.58)

For the Pauli basis (U = m−1/2), the first assumption holds if n & logm. The second

assumption does hold unless n is extremely large (n ∼ 2exp{m logm}). Under these

assumptions, we will use the following value of regularization parameter ε :

ε :=
U

log(mn)

√
log(2m)

nm
.

The following version of Theorem 10 holds in the bounded regression case (with a

similar proof).

Theorem 11. There exists a constant C > 0 such that the following bounds hold

for all r = 1, . . . ,m, for all ρ ∈ Sr,m and for all p ∈ [1, 2] with probability at least

1−m−2 :

‖ρ̃ε − ρ‖p ≤ C

(
Um

3
2 r1/p

√
n

√
logm log(2−p)/p(mn)

∧(Um3/2

√
n

)1− 1
p

(logm)
1
2
− 1

2p

)∧
2,

(2.3.59)

H2(ρ̃ε, ρ) ≤ C
Um

3
2 r√
n

√
logm log(mn)

∧
2 (2.3.60)

and

K(ρ‖ρ̃ε) ≤ C
Um

3
2 r√
n

√
logm log(mn). (2.3.61)

Remark 5. In the case of Pauli basis, the minimax optimal rates (up to constants

and logarithmic factors) are: mr1/p
√
n
∧ ( m√

n
)1− 1

p ∧ 2 for Schatten p-norm distances for

p ∈ [1, 2]; mr√
n

for nuclear norm, squared Hellinger and Kullback-Leibler distances

(provided the mr .
√
n).
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2.4 The projection estimator and Schatten p-norm conver-
gence rates

Our main goal in this section is to study a minimal distance estimator ρ̌ of ρ (initially

proposed in [54]) defined as the projection of a simple unbiased estimator

Ẑ =
m2

n

n∑
j=1

YjXj

onto the convex set of density matrices Sm, see also (1.3.7) in Section 1.3.3. We show

that the minimax error rates established in Section 2.2 for the classes of low rank

density matrices are attained for this estimator up to logarithmic factors in the whole

range of Schatten p-norm distances for p ∈ [1,∞] as well as for Bures and relative

entropy distance. The proof of these results relies on simple properties of projections

of Hermitian matrices onto the convex set Sm of density matrices (see theorems 15

and 16) that might be of independent interest.

For the model of uniform sampling from an orthonormal basis E = {E1, . . . , Em2},

the following simple estimator of unknown state ρ ∈ Sm is unbiased:

Ẑ :=
m2

n

n∑
j=1

YjXj.

Indeed,

EρẐ = m2Eρ(Y X) = m2E(Eρ(Y |X)X) = m2Etr(ρX)X

= m2E〈ρ,X〉X = m2 1

m2

m2∑
j=1

〈ρ, Ej〉Ej = ρ.

Clearly, Ẑ is not necessarily a density matrix.

2.4.1 Schatten p-norm convergence rates of the projection estimator

We will now define the minimal distance estimator ρ̌ as the projection of Ẑ onto the

convex set Sm of all density matrices. More precisely, for an arbitrary Z ∈ Hm, define

πSm(Z) := argminS∈Sm‖Z − S‖
2
2. (2.4.1)
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Clearly, πSm(Z) is the closest density matrix to Z with respect to the Hilbert–Schmidt

norm distance (that is, the projection of Z onto Sm; such a closest density matrix

exists in view of compactness of Sm and it is unique in view of strict convexity of

S 7→ ‖Z − S‖2
2). Let

ρ̌ := πSm(Ẑ), (2.4.2)

which is actually the modified least square estimator ρ̌ε (1.3.7) for any ε > 0 intro-

duced in Section 1.3.3.

We will show that the upper bounds on the error rates in Schatten p-norm dis-

tances for p ∈ [1,∞] and in Bures distance that match the minimax lower bounds of

Theorems 4, 5 and 7 in Section 2.2 up to logarithmic factors hold for the estimator ρ̌.

We will then introduce a simple modification of this estimator for which a matching

upper bound holds also for Kullback-Leibler distance.

First, we consider the case of Gaussian trace regression model (Assumption 4).

We need an additional assumption that σξ ≥ U
m1/2 (the variance of the noise is not

too small).

Theorem 12. Suppose Assumption 4 holds and σξ ≥ U
m1/2 . For all p ∈ [1,+∞], there

exists a constant C > 0 such that, for all A ≥ 1 the following bounds hold:

sup
ρ∈Sr,m

Pρ
{
‖ρ̌−ρ‖p ≥ C

(
r1/pσξm

3
2

√
A log(2m)√
n

∧(σξm3/2
√
A log(2m)√
n

)1− 1
p ∧

1

)}
≤ (2m)−A

(2.4.3)

and

sup
ρ∈Sr,m

Pρ
{
H2(ρ̌, ρ) ≥ C

(
r
σξm

3
2

√
A log(2m)√
n

∧
1

)}
≤ (2m)−A. (2.4.4)

If σξ <
U

m1/2 , the bounds still hold with σξ replaced by U
m1/2 .

Similarly, in the case of trace regression with a bounded response, the following

result holds.
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Theorem 13. Suppose Assumption 3 is satisfied. Then, for all p ∈ [1,+∞], there

exists a constant C > 0 such that, for all A ≥ 1, the following bounds hold:

sup
P∈Pr,m(U)

PP
{
‖ρ̌−ρP‖p ≥ C

(
r1/pUm

3
2

√
A log(2m)√
n

∧(Um3/2
√
A log(2m)√
n

)1− 1
p ∧

1

)}
≤ (2m)−A

(2.4.5)

and

sup
P∈Pr,m(U)

PP
{
H2(ρ̌, ρP ) ≥ C

(
r
Um

3
2

√
A log(2m)√
n

∧
1

)}
≤ (2m)−A. (2.4.6)

For completeness, we state also the upper bounds in the case of Pauli measure-

ments (that immediately follow from Theorem 13).

Theorem 14. Suppose the assumptions of Theorem 7 hold. Then, for all p ∈ [1,+∞],

there exists a constant C such that, for all A ≥ 1, the following bounds hold:

sup
ρ∈Sr,m

Pρ
{
‖ρ̌−ρ‖p ≥ C

(
r1/pm

√
A log(2m)√

n

∧(m√A log(2m)√
n

)1− 1
p ∧

1

)}
≤ (2m)−A

(2.4.7)

and

sup
ρ∈Sr,m

Pρ
{
H2(ρ̌, ρ) ≥ C

(
r
m√
n

∧
1

)}
≤ (2m)−A. (2.4.8)

The proof of these results relies on the following fact that might be of independent

interest and that essentially shows that πSm(Z) is the closest density matrix to Z not

only in the Hilbert–Schmidt norm distance, but also in the operator norm distance.

Lemma 15. For all Z ∈ Hm,

‖Z − πSm(Z)‖∞ = inf
S∈Sm

‖Z − S‖∞.

The proof of this lemma will be given in Section 2.4.2. Here we use it to establish

the next result that is the main ingredient of the proofs of theorems 12, 13 and 14.

Lemma 16. Let p ∈ [1,+∞]. For all Z ∈ Hm and all S ∈ Sr,m,

‖πSm(Z)− S‖p ≤ min
(

23/p+1r1/p‖Z − S‖∞, 2‖Z − S‖1−1/p
∞

)
.
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The proof relies on Lemma 15 and on a simple lemma stated below.

Lemma 17. Let S, S ′ ∈ Sm and rank(S) = r. Then, for all p ∈ [1,∞],

‖S ′ − S‖p ≤ min
(

(8r)1/p‖S ′ − S‖∞, 21/p‖S ′ − S‖1−1/p
∞

)
.

Proof. Let S =
∑r

j=1 λj(φj⊗φj) be the spectral decomposition of S with eigenvalues

λj and eigenvectors φj. Let L := supp(S) be the linear span of vectors φ1, . . . , φr ∈

Cm. Denote by PL, PL⊥ the orthogonal projection operators onto subspace L and

its orthogonal complement L⊥, respectively. We will need the following projection

operators PL,P⊥L : Hm 7→ Hm :

P⊥L (A) = PL⊥APL⊥ , PL(A) = A− PL⊥APL⊥ , A ∈ Hm.

The following bounds are obvious:

‖S‖1 = 1 = ‖S ′‖1 = ‖S ′ − S + S‖1 = ‖PL(S ′ − S) + P⊥L (S ′ − S) + S‖1

≥ ‖P⊥L (S ′ − S) + S‖1 − ‖PL(S ′ − S)‖1.

Since S = PLSPL, we can use the pinching inequality for unitary invariant norm ‖ ·‖1

(see [9], p. 97) to get:

‖P⊥L (S ′ − S) + S‖1 = ‖PLSPL + PL⊥(S ′ − S)PL⊥‖1

= ‖PLSPL‖1 + ‖PL⊥(S ′ − S)PL⊥‖1 = ‖S‖1 + ‖P⊥L (S ′ − S)‖1.

Therefore,

‖S‖1 ≥ ‖S‖1 + ‖P⊥L (S ′ − S)‖1 − ‖PL(S ′ − S)‖1,

implying that

‖P⊥L (S ′ − S)‖1 ≤ ‖PL(S ′ − S)‖1.

It follows from the last bound that

‖S ′ − S‖1 = ‖PL(S ′ − S) + P⊥L (S ′ − S)‖1 ≤ 2‖PL(S ′ − S)‖1.
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Since dim(L) = r, the matrix PL(S ′ − S) is of rank at most 2r. This implies that

‖PL(S ′ − S)‖1 ≤ 2r‖PL(S ′ − S)‖∞

≤ 2r(‖(S ′ − S)PL‖∞ + ‖PL(S ′ − S)PL⊥‖∞) ≤ 4r‖S ′ − S‖∞.

Therefore, ‖S ′ − S‖1 ≤ 8r‖S ′ − S‖∞, and since also ‖S ′ − S‖1 ≤ 2, S, S ′ ∈ Sm, we

conclude that

‖S ′ − S‖1 ≤ min(8r‖S ′ − S‖∞, 2).

Together with interpolation inequality this yields that for all p ∈ [1,∞]

‖S ′ − S‖p ≤ ‖S ′ − S‖1/p
1 ‖S ′ − S‖1−1/p

∞ ≤ min
(

(8r)1/p‖S ′ − S‖∞, 21/p‖S ′ − S‖1−1/p
∞

)
.

Proof. We now prove Lemma 16. It immediately follows from Lemma 15 that, for all

S ∈ Sm,

‖πSm(Z)− S‖∞ ≤ ‖πSm(Z)− Z‖∞ + ‖Z − S‖∞ ≤ 2‖Z − S‖∞.

If S ∈ Sm is a density matrix of rank r, the last bound could be combined with the

bound of Lemma 17 to get that for all p ∈ [1,+∞]

‖πSm(Z)− S‖p ≤ min
(

23/p+1r1/p‖Z − S‖∞, 2‖Z − S‖1−1/p
∞

)
.

Proof. We now turn to the proof of theorems 12, 13 and 14. To this end, we use the

bound of Lemma 16 with Z = Ẑ and S = ρ ∈ Sr,m that yields:

‖ρ̌− ρ‖p ≤ min
(

23/p+1r1/p‖Ẑ − ρ‖∞, 2‖Ẑ − ρ‖1−1/p
∞

)
. (2.4.9)

The control of

‖Ẑ − ρ‖∞ =

∥∥∥∥m2

n

n∑
j=1

YjXj − ρ
∥∥∥∥
∞
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is based on a standard application of matrix Bernstein type inequalities. We give a

detailed argument for completeness. Note that ‖ρ̌−ρ‖p in the left-hand side of bound

(2.4.9) is upper bounded by 2, so, if Bernstein bound on ‖Ẑ − ρ‖∞ is larger than 1

(or even & 1), it could be replaced by the trivial bound equal to 1. In the case of

Theorem 13, we use the version of Bernstein inequality for i.i.d. bounded random

matrices, see Lemma 7 in Section 2.3.1.

For V = Y X − E(Y X), we get, under Assumption 3, that

σ2 = ‖EV 2‖∞ ≤ ‖E(Y 2X2)‖∞ ≤ U2‖EX2‖∞.

It is also well known that, under the same assumption, ‖EX2‖∞ = m−1. [Indeed, if

{ej, j = 1, . . . ,m} is an orthonormal basis of Cm, then

‖EX2‖∞ = sup
v∈Cm,|v|≤1

E〈X2v, v〉 = sup
v∈Cm,|v|≤1

E|Xv|2 = sup
v∈Cm,|v|≤1

E
m∑
j=1

|〈Xv, ej〉|2

= sup
v∈Cm,|v|≤1

E
m∑
j=1

|〈X, v⊗ej〉|2 = sup
v∈Cm,|v|≤1

m∑
j=1

m−2

m2∑
k=1

|〈Ek, v⊗ej〉|2 = sup
v∈Cm,|v|≤1

m−2

m∑
j=1

‖v⊗ej‖2
2 =

sup
v∈Cm,|v|≤1

m−2

m∑
j=1

|v|2|ej|2 = m−1].

We use the bound of Lemma 7 with t = A log(2m), A ≥ 1 to get that with probability

at least 1− (2m)−A,∥∥∥∥m2

n

n∑
j=1

YjXj − ρ
∥∥∥∥
∞
≤ C

[
Um3/2

√
A log(2m)

n

∨ U2m2A log(2m)

n

]
with some absolute constant C ≥ 1. If

U2m2A log(2m)

n
≥ Um3/2

√
A log(2m)

n
,

then Um1/2

√
A log(2m)

n
≥ 1 implying that Um3/2

√
A log(2m)

n
≥ 1. Thus, when the bound

on ‖Ẑ − ρ‖∞ is substituted in bound (2.4.9), it is enough to keep only the first term

Um3/2

√
A log(2m)

n
, the second term could be dropped. This implies that with some

constant C ′ > 0 (that does not depend on ρ ∈ Sr,m) the inequality

‖ρ̌− ρ‖p ≤ C ′
(
r1/pUm

3
2

√
A log(2m)√
n

∧(Um3/2
√
A log(2m)√
n

)1− 1
p ∧

1

)
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holds with probability at least 1− (2m)−A, implying the first bound of Theorem 13.

The second bound immediately follows from the inequality H2(ρ̌, ρ) ≤ ‖ρ̌− ρ‖1 (see

Lemma 1). Theorem 14 is an immediate consequence of Theorem 13.

The proof of Theorem 12 is very similar. In this case, Assumption 4 holds and it

is natural to split Ẑ − ρ into two parts

Ẑ − ρ =
m2

n

n∑
j=1

〈ρ,Xj〉Xj − ρ+
m2

n

n∑
j=1

ξjXj. (2.4.10)

and to bound ‖Ẑ − ρ‖∞ by triangle inequality. For the first part, an application of

matrix Bernstein inequality of Lemma 7 yields the bound∥∥∥∥m2

n

n∑
j=1

〈ρ,Xj〉Xj − ρ
∥∥∥∥
∞
≤ C

[
Um

√
A log(2m)

n

∨ U2m2A log(2m)

n

]
(2.4.11)

that holds for some absolute constant C ≥ 1 with probability at least 1 − (2m)−A.

Indeed, in this case V = 〈ρ,X〉X − E〈ρ,X〉X and

σ2 ≤ ‖E〈ρ,X〉2X2‖∞ ≤ U2E〈ρ,X〉2 =
U2‖ρ‖2

2

m2
≤ U2

m2
,

‖〈ρ,X〉X‖∞ ≤ ‖ρ‖1‖X‖2
∞ ≤ ‖X‖2

∞ ≤ U2,

and Lemma 7 implies (2.4.11). As before, if U2m2A log(2m)
n

≥ Um
√

A log(2m)
n

, then

Um
√

A log(2m)
n

≥ 1. Thus, the second term U2m2A log(2m)
n

could be dropped when the

bound on ‖Ẑ−ρ‖∞ (for which the right hand side of (2.4.11) is a part) is substituted

in (2.4.9).

As to the second part of representation (2.4.10) that involves normal random

variables ξj, it is bounded using another version of matrix Bernstein inequality for

not necessarily bounded random variables (see [53], [52], [55]).

We apply the bound of Lemma 8 in the case when V := ξX, α = 2 and t =

A log(2m) for A ≥ 1. By an easy computation,

σ2 = σ2
ξ‖EX2‖∞ =

σ2
ξ

m
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and

U (2) = 2
∥∥ξ‖X‖∞∥∥ψ2

≤ 2U‖ξ‖ψ2 ≤ 4σξU.

This yields the following bound∥∥∥∥m2

n

n∑
j=1

ξjXj

∥∥∥∥
∞
≤ C

[
σξm

3/2

√
A log(2m)

n

∨
σξU

m2A log(2m) log1/2(4U
√
m)

n

]
(2.4.12)

that holds with probability at least 1− (2m)−A and with some absolute constant C ≥

1. If the second term in the maximum in the right hand side of (2.4.12) is dominant,

then Um1/2

√
A log(2m)

n
log1/2(4U

√
m) ≥ 1. Under the condition that σξ ≥ Um−1/2, this

implies that also σξm
3/2

√
A log(2m)

n
& 1. Thus, when the bound in the right hand side

of (2.4.12) (used to control ‖Ẑ − ρ‖∞) is substituted in (2.4.9), it is enough to keep

only the first term in the maximum. Finally, under the assumption σξ ≥ Um−1/2, the

first term of bound (2.4.12) dominates the first term of (2.4.11), so, only this term is

needed to control ‖Ẑ − ρ‖∞ in bound (2.4.9). These considerations imply the bound

‖ρ̌− ρ‖p ≤ C ′
(
r1/pσξm

3
2

√
A log(2m)√
n

∧(σξm3/2
√
A log(2m)√
n

)1− 1
p ∧

1

)
that holds with some constant C ′ > 0 (that does not depend on ρ ∈ Sr,m) and with

probability at least 1 − (2m)−A. The first bound of Theorem 12 now follows for all

p ∈ [1,∞] (which also implies the second bound in view of Lemma 1.

It turns out that for a slightly modified version of estimator ρ̌, minimax lower

bounds are also attained (up to logarithmic factors) in the case of Kullback-Leibler

distance. For S ∈ Sm and δ ∈ [0, 1], define Sδ = (1− δ)S+ δ Im
m
. Clearly, Sδ ∈ Sm. Let

Sm,δ := {Sδ : S ∈ Sm}. Define πSm,δ(Z) the projection of Z ∈ Hm onto the convex set

Sm,δ :

πSm,δ(Z) := argminS∈Sm,δ‖Z − S‖
2
2.

Let

ρ̌δ := πSm,δ(Ẑ)
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with ρ̌0 = ρ̌. We will prove the following versions of theorems 12, 13 and 14 for the

estimator ρ̌δ.

Theorem 15. Suppose Assumption 4 holds, σξ ≥ U
m1/2 and

δ ≤
σξm

3
2

√
log(2m)√
n

∧
1.

Then bounds (2.4.3) and (2.4.4) hold for estimator ρ̌δ. Moreover, for A ≥ 1, define

λ :=
rσξm

5/2

√
A log(2m)

n

∧
m

δ
.

Then, for some constant c > 0,

sup
ρ∈Sr,m

Pρ
{
K(ρ‖ρ̌δ) ≥ c

(
r
σξm

3
2

√
A log(2m)√
n

∧
1

)
log(1 + cλ)

}
≤ (2m)−A. (2.4.13)

If σξ <
U

m1/2 , the bounds still hold with σξ replaced by U
m1/2 .

Theorem 16. Suppose Assumption 3 is satisfied and

δ ≤
Um

3
2

√
log(2m)√
n

∧
1.

Then (2.4.5) and (2.4.6) hold for estimator ρ̌δ. Moreover, for A ≥ 1, define

λ :=
rUm5/2

√
A log(2m)

n

∧
m

δ
.

Then, for some constant c > 0,

sup
ρ∈Sr,m

Pρ
{
K(ρ‖ρ̌δ) ≥ c

(
r
Um

3
2

√
A log(2m)√
n

∧
1

)
log(1 + cλ)

}
≤ (2m)−A. (2.4.14)

Theorem 17. Suppose the assumptions of Theorem 7 hold and

δ ≤
m
√

log(2m)√
n

∧
1.

Then (2.4.7) and (2.4.8) hold for estimator ρ̌δ. Moreover, for A ≥ 1, define

λ :=
rm2

√
A log(2m)

n

∧
m

δ
.

Then, for some constant c > 0,

sup
ρ∈Sr,m

Pρ
{
K(ρ‖ρ̌δ) ≥ c

(
r
m
√
A log(2m)√

n

∧
1

)
log(1 + cλ)

}
≤ (2m)−A. (2.4.15)
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Remark 6. If, under the assumptions of Theorem 16, we choose

δ =
Um

3
2

√
log(2m)√
n

∧
1,

then the logarithmic factor in bound (2.4.14) satisfies the inequality

log(1 + cλ) ≤ log(1 + crm
√
A),

so it is of the order logm. Under the assumptions of Theorem 15, this would require

the choice of δ

δ =
σξm

3
2

√
log(2m)√
n

∧
1,

so δ would depend on an unknown parameter σξ. Replacing σξ in the definition

of δ by the lower bound Um−1/2 would result in a logarithmic factor . log

(
1 +

crm
√
A

σξ
Um−1/2

)
.

Proof. We start with the following modification of Theorem 16.

Lemma 18. Let p ∈ [1,∞]. For all Z ∈ Hm and all S ∈ Sr,m, the following bound

holds:

‖πSm,δ(Z)−S‖p ≤ min

(
23/p+1r1/p

(
‖Z−S‖∞+2δ

)
, 2(1−δ)1/p

(
‖Z−S‖∞+2δ

)1−1/p
)

+2δ.

Proof. The following formula is straightforward: for δ ∈ [0, 1),

πSm,δ(Z) = (1− δ)πSm
(

Z

1− δ
− δ

1− δ
Im
m

)
+ δ

Im
m
.

Indeed, πSm,δ(Z) coincides with (1− δ)S ′ + δ Im
m
, where

S ′ := argminS∈Sm

∥∥∥∥Z − (1− δ)S − δ Im
m

∥∥∥∥2

2

= argminS∈Sm

∥∥∥∥ Z

1− δ
− δ

1− δ
Im
m
− S

∥∥∥∥2

2

= πSm

(
Z

1− δ
− δ

1− δ
Im
m

)
,

implying the claim.
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Let S ∈ Sr,m. Then, for p ∈ [1,∞],

‖πSm,δ(Z)− S‖p ≤ ‖πSm,δ(Z)− Sδ‖p + ‖Sδ − S‖p (2.4.16)

≤ (1− δ)
∥∥∥∥πSm( Z

1−δ −
δ

1−δ
Im
m

)
− S

∥∥∥∥
p

+ 2δ.

To control the first term in the right hand side, we use the bound of Theorem 16,

which requires bounding
∥∥∥ Z

1−δ −
δ

1−δ
Im
m
− S

∥∥∥
∞
. We have∥∥∥∥ Z

1−δ −
δ

1−δ
Im
m
− S

∥∥∥∥
∞

= 1
1−δ‖Z − Sδ‖∞ (2.4.17)

≤ 1
1−δ‖Z − S‖∞ + 1

1−δ‖S − Sδ‖∞ ≤
1

1−δ‖Z − S‖∞ + 2δ
1−δ .

Using bounds (2.4.16), (2.4.17) along with the bound of Theorem 16, we get the

bound of the lemma.

We will use the bound of Lemma 18 to control ‖ρ̌δ − ρ‖p for ρ ∈ Sr,m. To this

end, we need to bound ‖Ẑ−ρ‖∞ using matrix Bernstein inequalities exactly as it was

done in the proof of theorems 12, 13 and 14 (under assumptions of these theorems).

Denote by ∆̄ such an upper bound on ‖Ẑ − ρ‖∞ that holds with probability a least

1 − (2m)−A. Recall that ∆̄ � σξm
3/2

√
A log(2m)

n
under the conditions of Theorem 12

and ∆̄ � Um3/2

√
A log(2m)

n
under the conditions of Theorem 13 (it is the same under

the conditions of Theorem 14 with U = m−1/2). Setting ∆ = ∆̄ ∧ 1, we get from the

bound of Lemma 18 that

‖ρ̌δ − ρ‖p ≤ min

(
23/p+1r1/p

(
∆ + 2δ

)
, 2(1− δ)1/p

(
∆ + 2δ

)1−1/p
)

+ 2δ

that holds with the same probability at least 1−(2m)−A. Recall that we replace ∆̄ by

∆ since the left hand side ‖ρ̌δ−ρ‖p ≤ 2; for the same reason, we can and do drop the

“exponential parts” of matrix Bernstein bounds leaving in the definition of ∆ only

the “Gaussian parts”. For δ . ∆, we get

‖ρ̌δ − ρ‖p . min(r1/p∆,∆1−1/p).

71



Exactly as in the proof of theorems 12, 13 and 14, this implies that bounds (2.4.3),

(2.4.4), (2.4.5), (2.4.6), (2.4.7) and (2.4.8) hold for estimator ρ̌δ.

The bound on the Kullback-Leibler divergence K(ρ‖ρ̌δ) is an immediate conse-

quence of the bound on ‖ρ̌δ − ρ‖1 and the next lemma that follows from Corollary 1

in [5].

Lemma 19. Let S1, S2 ∈ Sm be density matrices and let β := λmin(S2) be the smallest

eigenvalue of S2. Suppose that β > 0. Then

K(S1‖S2) ≤ ‖S1 − S2‖1 log

(
1 +
‖S1 − S2‖1

2β

)
.

We apply Lemma 19 to S1 = ρ, S2 = ρ̌δ, observing that ρ̌δ ∈ Sm,δ and λmin(ρ̌δ) ≥

δ/m. We then use the bound on ‖ρ̌δ − ρ‖1 to complete the proof of the bound on

K(ρ‖ρ̌δ).

We conclude this section with a simple result concerning the least squares estima-

tor ρ̂ defined as

ρ̂ := arg min
S∈Sm

1

n

n∑
i=1

(
Yi −

〈
S,Xi

〉)2
, (2.4.18)

see also (2.3.1) in Section 2.3 when ε = 0. It shows that the estimators ρ̂ and ρ̌ are

close in the Hilbert-Schmidt norm. As a result, the bounds of the previous theorems

could be applied to estimator ρ̂ as well (at least, under some additional assumptions).

Theorem 18. Under the assumption that i.i.d. design variables X1, . . . , Xn are sam-

pled from the uniform distribution Π in an orthonormal basis E = {E1, . . . , Em2}, the

following bound holds with some constant C > 0 for all A ≥ 1 with probability at least

1− (2m2)−A :

‖ρ̌− ρ̂‖2 ≤ Cm

√
A log(2m)

n
.

Proof. Note that the gradient (and subgradient) of convex function S 7→ ‖S − Z‖2
2

is equal to 2(S − Z). By a necessary condition of minimum in convex minimization
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problem (2.4.1), for ρ̌ = πSm(Ẑ), Ẑ − ρ̌ should belong to the normal cone NSm(ρ̌) of

the convex set Sm at point ρ̌ (see [3], Proposition 5, Chapter 4, Section 1). Since

both ρ̌, ρ̂ ∈ Sm, this implies that

〈ρ̌− Z, ρ̌− ρ̂〉 ≤ 0. (2.4.19)

Similar analysis of convex optimization problem (2.4.18) shows that〈
m2

n

n∑
j=1

(〈ρ̂, Xj〉 − Yj)Xj, ρ̌− ρ̂
〉
≥ 0,

which could be rewritten as follows:〈
m2

n

n∑
j=1

〈ρ̂, Xj〉Xj − Z, ρ̌− ρ̂
〉
≥ 0. (2.4.20)

Subtracting (2.4.20) from (2.4.19) yields〈
ρ̌− m2

n

n∑
j=1

〈ρ̂, Xj〉Xj, ρ̌− ρ̂
〉
≤ 0,

implying that

‖ρ̌− ρ̂‖2
2 = 〈ρ̌− ρ̂, ρ̌− ρ̂〉 ≤

〈
m2

n

n∑
j=1

〈ρ̂, Xj〉Xj − ρ̂, ρ̌− ρ̂
〉
. (2.4.21)

We will now write 2

m2

n

n∑
j=1

〈ρ̂, Xj〉Xj − ρ̂ =
m2

n

n∑
j=1

(
〈ρ̂, Xj〉Xj − E〈ρ̂, X〉X

)

= m2

[
1

n

n∑
j=1

(Xj ⊗Xj − E(X ⊗X)〉
]
ρ̂.

It follows from (2.4.21) that

‖ρ̌− ρ̂‖2
2 ≤ m2

∥∥∥∥ 1

n

n∑
j=1

Xj ⊗Xj − E(X ⊗X)

∥∥∥∥
op

‖ρ̂‖2‖ρ̌− ρ̂‖2.

2Here we view the tensor product A ⊗ B of operators A,B ∈ Mm as an operator acting from
the space Mm of m ×m matrices equipped with Hilbert-Schmidt inner product 〈·, ·〉 into itself as
follows: (A ⊗ B)C = A〈C,B〉. Let ‖ · ‖op denote the operator norm of linear operators from Mm

into itself, which corresponds to the ‖ · ‖∞ in the case of m×m matrices.
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Since ‖ρ̂‖2 ≤ 1, we get

‖ρ̌− ρ̂‖2 ≤ m2

∥∥∥∥ 1

n

n∑
j=1

Xj ⊗Xj − E(X ⊗X)

∥∥∥∥
op

. (2.4.22)

It remains to control the operator norm in the right hand side for which we can again

use matrix Bernstein inequality of Lemma 7 applying it to V = X ⊗X −E(X ⊗X).

In this case,

σ2 = ‖EV 2‖op ≤ ‖E(X⊗X)2‖op = sup
‖U‖2≤1

E〈(X⊗X)2U,U〉 = sup
‖U‖2≤1

E〈(X⊗X)U, (X⊗X)U〉

= sup
‖U‖2≤1

E|〈U,X〉|2‖X‖2
2 ≤ sup

‖U‖2≤1

E|〈U,X〉|2 = sup
‖U‖2≤1

‖U‖2
2

m2
=

1

m2

and

‖V ‖op ≤ ‖X ⊗X‖op + E‖X ⊗X‖op = ‖X‖2
2 + E‖X‖2

2 ≤ 2.

Bound (2.4.22) along with the bound of Lemma 7 with t = A log(2m2), A ≥ 1 yield

the following inequality

‖ρ̌− ρ̂‖2 . m

√
A log(2m)

n

∨
m2A log(2m)

n

that holds with probability at least 1− (2m2)−A. Since ‖ρ̌− ρ̂‖2 ≤ 2, the second term

m2A log(2m)
n

in the right hand side could be dropped (if this term is dominant, the

bound is & 1). This completes the proof of the theorem.

Since ‖ρ̌ − ρ̂‖∞ ≤ ‖ρ̌ − ρ̂‖2, the bound of Theorem 18 also holds for ‖ρ̌ − ρ̂‖∞.

Combining this with the bound of Theorem 13 for p =∞, it is easy to conclude that

under conditions of this theorem

‖ρ̂− ρ‖∞ . Um3/2

√
A log(2m)

n

and that the last bound holds (with a proper choice of constant in relationship .) with

probability at least 1− (2m)−A. In view of Lemma 17, this immediately implies that

all the bounds of Theorem 13 also hold for the least squares estimator ρ̂. In a special

74



case of Pauli measurements, this means that Theorem 14 holds for the estimator ρ̂.

Concerning Theorem 15, the same conclusion is true under the additional assumption

that σξ ≥ m−1/2. Moreover, if ρ̂δ is the following modification of estimator ρ̂

ρ̂δ := argminS∈Sm,δ

[
n−1

n∑
j=1

(Yj − 〈S,Xj〉)2

]
, (2.4.23)

then the statements of theorems 15, 16 and 17 hold for the estimator ρ̂δ (in the case

of Theorem 15, under the additional assumption that σξ ≥ m−1/2).

2.4.2 The minimal distance in spectral norm of the projection estimator

Recall that

πSm(Z) := argminS∈Sm‖Z − S‖
2
2, Z ∈ Hm

defines the projection of Z onto Sm. The mapping Hm 3 Z 7→ πSm(Z) ∈ Sm possesses

a couple of simple properties stated in the next proposition. Denote by Sdm the set of

all diagonal density matrices.

Proposition 2. 1. For all m×m unitary matrices U,

πSm(U−1ZU) = U−1πSm(Z)U,Z ∈ Hm.

2. If D ∈ Hm is a diagonal matrix, then πSm(D) ∈ Sdm.

Proof. To prove the first claim, note that, by the unitary invariance of the Hilbert–

Schmidt norm,

‖U−1ZU − S‖2
2 = ‖U−1(Z − USU−1)U‖2

2 = ‖Z − USU−1‖2
2.

In addition, the mapping S 7→ USU−1 is a bijection from the set Sm onto itself. This

immediately implies that

πSm(U−1ZU) = argminS∈Sm‖Z − USU
−1‖2

2 = U−1πSm(Z)U.
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For an m × m matrix A = (aij)
m
i,j=1 ∈ Hm, let Ad be the diagonal matrix with

diagonal entries aii, i = 1, . . . ,m. It is easy to see that if A is a density matrix, then

Ad is also a density matrix. Moreover, it is also obvious that, for a diagonal matrix

D,

‖D − Ad‖2
2 ≤ ‖D − A‖2

2, A ∈ Sm,

with a strict inequality if A is not diagonal. These observations immediately imply

the second claim.

We will now state and prove a vector version of Theorem 15 in which the role of

the set of density matrices Sm is played by the simplex

∆m :=
{
u = (u1, . . . , um) ∈ Rm : uj ≥ 0,

m∑
j=1

uj = 1
}

in Rm (this is equivalent to considering the set of diagonal density matrices). We will

then show that the matrix version of the problem reduces to the vector case.

Define

π∆m(z) := argminu∈∆m
‖z − u‖2

`m2
, z ∈ Rm.

Since the function u 7→ ‖z − u‖2
`m2

is strictly convex and ∆m is a compact convex

set, such a minimizer exists and is unique. In other words, π∆m(z) is the projection

of the point z ∈ Rm onto simplex ∆m (the closest point to z in the set ∆m with

respect to the Euclidean `m2 -distance). The next lemma shows that the same point

also minimizes the `m∞-distance from z to the simplex ∆m.

Lemma 20. For all z ∈ Rm,

‖z − π∆m(z)‖`m∞ = min
v∈∆m

‖z − v‖`m∞ .

Proof. Without loss of generality, assume that z = (z1, . . . , zm) ∈ Rm is a point with

z1 ≥ · · · ≥ zm. Denote

z̄j :=
z1 + · · ·+ zj

j
, j = 1, . . . ,m.
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Clearly, z̄1 = z1 and z̄j ≥ zj, j = 1, . . . ,m. Let

k := max

{
j ≤ m : z̄j ≤ zj +

1

j

}
.

Note that if k > 1, then, for all j < k, z̄j ≤ zj + 1
j
. Indeed,

z̄j =
kz̄k −

∑k
i=j+1 zi

j
≤ kzk + 1− (k − j)zk

j
=
jzk + 1

j
= zk +

1

j
≤ zj +

1

j
.

On the other hand, if k < m, then z̄k > zk+1 + 1
k
. Indeed, if z̄k ≤ zk+1 + 1

k
, then

z̄k+1 =
kz̄k + zk+1

k + 1
≤ kzk+1 + 1 + zk+1

k + 1
= zk+1 +

1

k + 1
,

which would contradict the definition of k.

Let λ = (λ1, . . . , λm), where λj = zj − z̄k + 1
k

for j = 1, . . . , k and λj = 0 for

j = k+1, . . . ,m. Since z̄k ≤ zk+ 1
k
≤ zj+ 1

k
for all j ≤ k, we have λj ≥ 0, j = 1, . . . ,m

and
m∑
j=1

λj =
k∑
j=1

(
zj − z̄k +

1

k

)
=

k∑
j=1

zj − kz̄k + 1 = 1.

Thus, λ ∈ ∆m. It turns out that π∆m(z) = λ. 3 To prove this it is enough to show

that z − λ ∈ N∆m(λ), where

N∆m(λ) := {u ∈ Rm : 〈u, v − λ〉 ≤ 0, v ∈ ∆m}

is the normal cone of the convex set ∆m at point λ (see, e.g., [3], Proposition 5,

Chapter 4, Section 1). Let t := z̄k − 1
k
. Clearly, we have zk+1 < t ≤ zk if k < m and

t ≤ zm if k = m. For k = m, z − λ = (t, . . . , t) and

〈z − λ, v − λ〉 =
m∑
i=1

t(vi − λi) = t

( m∑
i=1

vi −
m∑
i=1

λi

)
= 0

since v, λ ∈ ∆m. For k < m, note that

z − λ = (t, . . . t, zk+1, . . . , zm)

3The computation of the projection onto a simplex occurs in many applications and has been
studied before: see, e.g. [83] and [70]. See also [25], where an explicit expression for the projection
was derived. For completeness, we provide our version of the proof below.
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and, for v ∈ ∆m,

〈z − λ, v − λ〉 =
k∑
i=1

t(vi − λi) +
m∑

i=k+1

zivi.

Using the facts that
∑m

i=1 vi = 1 and
∑k

i=1 λi = 1, we get

〈z − λ, v − λ〉 = t

( k∑
i=1

vi −
k∑
i=1

λi

)
+

m∑
i=k+1

zivi

= −t
m∑

i=k+1

vi +
m∑

i=k+1

zivi =
m∑

i=k+1

(zi − t)vi ≤ 0,

where we also used that, for all i = k + 1, . . . ,m, zi − t ≤ zk+1 − t ≤ 0 and vi ≥ 0.

Thus, z − λ ∈ N∆m(λ) and, by the uniqueness of the minimum, λ = π∆m(z).

Note that

‖z − λ‖`m∞ = max(|t|, |zk+1|, . . . , |zm|).

For any v ∈ ∆m,

t = z̄k −
1

k
=

1

k

k∑
i=1

zi −
1

k

m∑
i=1

vi ≤
1

k

k∑
i=1

zi −
1

k

k∑
i=1

vi =
1

k

k∑
i=1

(zi − vi) ≤ ‖z − v‖`m∞ .

On the other hand,

zm ≥ zm − vm ≥ −‖z − v‖`m∞ .

Since

t = z̄k −
1

k
≥ zk+1 ≥ · · · ≥ zm,

we conclude that, for all v ∈ ∆m,

‖z − λ‖`m∞ ≤ ‖z − v‖`m∞ .

We now turn to the proof of Lemma 15.

Proof. Any matrix Z ∈ Hm admits spectral representation Z = U−1DU, where D is

the diagonal matrix with real entries d1, . . . , dm on the diagonal and U is a unitary
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m × m matrix. Let d = (d1, . . . , dm) ∈ Rm. Given v = (v1, . . . , vm) ∈ ∆m, the

diagonal matrix V with entries v1, . . . , vm is a density matrix. This defines a bijection

∆m 3 v 7→ V = J(v) between the simplex ∆m and the set Sdm of all diagonal m×m

density matrices. Moreover, J is an isometry of ∆m and Sdm : ‖J(v) − J(u)‖2
2 =

‖u− v‖2
`m2
, u, v ∈ ∆m.

We will now prove the following lemma.

Lemma 21. Let Z = U−1DU with a unitary m ×m matrix U and diagonal matrix

D with d = (d1, . . . , dm) ∈ Rm being the vector of its diagonal entries. Then

πSm(Z) = U−1J(π∆m(d))U.

Proof. This is an immediate consequence of Proposition 2 and the following simple

fact:

argminA∈Sdm‖D − A‖
2
2 = J

(
argminv∈∆m

‖J(d)− J(v)‖2
2

)
J

(
argminv∈∆m

‖d− v‖2
`m2

)
= J(π∆m(d)).

To complete the proof of Lemma 15, observe that, In view of lemmas 20, 21,

‖Z − πSm(Z)‖∞ = ‖U−1(J(d)− J(π∆m(d)))U‖∞

= ‖J(d)− J(π∆m(d))‖∞ = ‖d− π∆m(d)‖`m∞ = inf
v∈∆m

‖d− v‖`m∞ .

Without loss of generality, assume that d1 ≥ · · · ≥ dm. Let S ∈ Sm be a density

matrix with eigenvalues v1 ≥ · · · ≥ vm. Clearly, v = (v1, . . . , vm) ∈ ∆m. Therefore,

‖Z − πSm(Z)‖∞ ≤ ‖d− v‖∞ ≤ ‖Z − S‖∞,

where to get the last bound we used Weyl’s perturbation inequality (see [9], Corollary

III.2.6).
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2.5 The optimality of Dantzig-type estimator

We define the matrix Dantzig estimator (or selector) ρ́D as the solution of the following

convex optimization problem:

min ‖S‖1 subject to S ∈ Λ(ε), (2.5.1)

where

Λ(ε) :=
{
S ∈ Sm,

∥∥∥ 1

n

n∑
i=1

(
Yj −

〈
S,Xj

〉)
Xj

∥∥∥
∞
≤ ε
}

for some constant ε ≥ 0. When ε = 0, it corresponds to the noiseless case(i.e., σξ = 0)

where the exact recovery of ρ is the main interest, see also Section 1.3.2. The original

Dantzig estimator was introduced in [20] for low rank matrix estimation and was

applied in quantum state tomography for estimating low rank density matrices, see

[64], [36] and [30]. Our definition adds another constraint that the solution should be

a valid density matrix. They also proved sharp convergence rates in Schatten 1-norm

and Schatten 2-norm distances by applying some techniques based on the restricted

isometry property(RIP) which requires n & mr log6m Pauli measurements. Note that

RIP is a strong assumption, but there is yet no results related to the convergence rates

of ρ́D in other Schatten p-norms. It is commonly known that proving the convergence

rate in spectral norm (i.e. p =∞) is difficult.

When S ∈ Sm, the objective function in (2.5.1) is always 1 and has no effect on

the optimization problem. Instead, we will study the following estimator:

ρ́ε := arg min
{

tr(S logS) : S ∈ Λ(ε)
}
, (2.5.2)

where we replaced the nuclear norm in (2.5.1) with the negative von Neumann entropy.

Remember that the von Neumann entropy of a density matrix ρ is defined as

V (ρ) := −tr(ρ log ρ), ∀ρ ∈ Sm,

which is a concave function on Sm and then (2.5.2) is actually a convex optimization

problem. In this section, we prove the sharp convergence rates of ρ́ε in all the Schatten
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p-norms with p ∈ [1,+∞]. These rates also hold for the standard matrix Dantzig

estimator ρ́D as the solution in (2.5.1). Moreover, we obtain sharp convergence rate of

ρ́ε in Kullback-Leibler divergence. In Section 2.4.1, we proved similar upper bounds

of Schatten p-norms for the (modified) least squares estimator, based on a minimal

distance projection onto the simplex. It will be shown in Section 2.5.1 that the

condition needed for ρ́ε is improved than the projection estimator ρ̂ in (2.4.2).

2.5.1 Oracle inequality and the Schatten p-norm convergence rates

Theorem 19 displays the performance of ρ́ε by a low rank oracle inequality. The

low rank oracle inequality has been well studied for (matrix) LASSO estimator, see

Section 2.3, also [52] and [55]. When studying Dantzig estimator in compressed

sensing, the sparsity oracle inequality is considered over all oracles in the feasible set,

namely Λ(ε) in (2.5.1), see for example [51]. It is generally impossible to compare the

performance of the estimator with sparse oracles (or low rank oracles in the matrix

case) when they are not in the feasible set. Surprisingly, we can obtain the following

low rank oracle inequality for ρ́ε which actually hold for all the oracles in Sm, even

when the oracle is infeasible for the optimization problem (2.5.1) and (2.5.2).

Define for any S ∈ Sm and t > 0,

ϕ1(n, S, t) := ϕ1(n, S, U, σξ, t) :=
mσ2

ξ rank(S)
(
t+ log(2m)

)
n

+
σ2
ξm

2U2rank(S)
(
t+ log(2m)

)2

n2

and

ϕ2(n, S, t) := ϕ2(n, S, U, t) :=
m2U4rank(S)

(
log3m log3 n+ t

)2

n2
.

These are the main terms in our low rank oracle inequality characterizing the conver-

gence rates of ρ́ε(and ρ́D). The first term is directly connected to the noise level σξ.

The second term is related with the randomization error and involves the constant

U in the higher order term O(n−2). These are also the main terms in the oracle

inequality for the least squares estimator proved in Section 2.3.3. For the sake of
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brevity, let denote ϕ1(n) := ϕ1(n, ρ, log(2m)) and ϕ2(n) := ϕ2(n, ρ, log(2m)). It is

possible to improve the exponents of the logarithmic terms which is beyond our main

interest and will not be pursued here.

Theorem 19. Suppose Assumptions 1 and 4 hold and ρ ∈ Sr,m. Let ρ́ε be as defined

in (2.5.2) and any ε ≥ C1

(
σξ

√
t+log(2m)

nm
+σξU

t+log(2m)
n

)
for any t ≥ 1 and some large

enough constant C1 > 0. There exists a constant C > 0 such that with probability at

least 1− e−t,

‖ρ́ε − ρ‖2
L2(Π) ≤ inf

S∈Sm

{
2‖S − ρ‖2

L2(Π)

+ C
(
m2ε2rank(S) + ϕ1(n, S, t) + ϕ2(n, S, t)

)}
.

(2.5.3)

Moreover, if ε = C1

(
σξ

√
log(2m)
nm

+
σξU log(2m)

n

)
, then with probability at least 1− 1

m
,

‖ρ́ε−ρ‖2
L2(Π) ≤ C

(
ϕ1(n) + ϕ2(n)

)
(2.5.4)

and

K(ρ‖ρ́ε) ≤ Cm
√(

ϕ1(n) + ϕ2(n)
)
rank(ρ) log

mn

σξ

+
σξ
n

√
rank(ρ) log

mn

σξ
.

(2.5.5)

Remark 7. The objective function in optimization problem (2.5.2) is not involved in

the proof of (2.5.3). Therefore, the bound (2.5.3) also hold for the standard Dantzig

estimator ρ́D. Moreover, instead of (2.5.3), we actually prove a sharper bound:

‖ρ́ε−ρ‖2
L2(Π) ≤ 2‖S − ρ‖2

L2(Π)

+C
(
m2ε2rank(S) + ϕ1(n, S, t) + ϕ2(n, S, t)

(
‖ρ́ε − S‖2

1 + ‖S − ρ‖2
1

))
,

for any S ∈ Sm. It indicates that if Pauli measurements are used(U = 1√
m

) and

n ≥ C ′mr log6m log6 n for large enough constant C ′ > 0 such that (due to Lemma 17

in Section 2.4.1 with p = 1) ϕ2(n)‖ρ́ε− ρ‖2
1 ≤ 8ϕ2(n)r‖ρ́ε− ρ‖2

2 ≤ 1
2
‖ρ́ε− ρ‖2

L2(Π), we
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get ‖ρ́ε−ρ‖2
L2(Π) ≤ 2C

(
m2ε2rank(ρ)+ϕ1(n)

)
, which reduces to the canonical result by

applying the restricted isometry property(see [64],[20]). This bound depends linearly

on σξ (which can be arbitrarily small, even 0), see also Remark 8 after Theorem 20.

Generally, if we assume that (remember that σξ ≤ U)

U2

√
m

n
log5/2m log3 n ≤ σξ, (2.5.6)

the choice of ε can be simplified to

ε = C1σξ

√
log(2m)

mn

and (2.5.3) and (2.5.4) in Theorem 19 can be simplified into

‖ρ́ε − ρ‖2 . σξ

√
rank(ρ)m3/2 log1/2(2m)√

n
(2.5.7)

and (due to Lemma 17 with p = 1)

‖ρ́ε − ρ‖1 . σξ
rank(ρ)m3/2 log1/2(2m)√

n
(2.5.8)

and

K(ρ‖ρ́ε) . σξ
rank(ρ)m3/2 log1/2(2m) log(mn/σξ)√

n
.

According to the minimax lower bounds established in Section 2.2, these bounds

are optimal except the logarithmic terms. Note that by applying the interpolation

inequality in Lemma 6 with (2.5.7) and (2.5.8), we can also get the upper bound of

‖ρ́ε−ρ‖p for all 1 ≤ p ≤ 2. In the case of Pauli basis where U = 1√
m

, the assumptions

(2.5.6) hold if σξ is larger than 1√
mn

(times an additional logarithmic factor), which

is also the condition needed for the optimality of the least squares estimator (see

Section 2.3.4).

The main technical tool for our proof is the following lemma which gives a prob-

abilistic upper bound of the product empirical processes. For any ∆ ∈ [0, 1], define

the set and quantity

A(∆) :=
{
A ∈ Hm, ‖A‖1 ≤ 1, ‖A‖L2(Π) ≤ ∆

}
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and

αn(∆1,∆2) := sup
A1∈A(∆1)

sup
A2∈A(∆2)

∣∣∣ 1
n

n∑
i=1

〈
A1, Xi

〉〈
A2, Xi

〉
− E

〈
A1, X

〉〈
A2, X

〉∣∣∣.
Lemma 22. Given 0 < δ− < δ+ and t ≥ 1, let

t̄ := t+ log(log2(δ+/δ−) + 3).

Then, with some constant C and probability at least 1−e−t, the following bound holds

for all ∆1+∆2

2
∈ [δ−, δ+]:

αn(∆1,∆2) ≤ C
[
(∆1 + ∆2)U

log3/2m log3/2 n+
√
t̄√

n
+ U2 log3m log3 n+ t̄

n

]
.

Generally, tight upper bounds (generic chaining bounds) of product empirical

processes are not easy to derive due to the nontrivial geometric structure of the

indexing classes of the product empirical processes, see [69] and references therein.

Even though we suspect that the bound in Lemma 22 might not be sharp, it is

sufficient for us to prove the results we need in this section. Lemma 22 will be used to

prove the oracle inequality (2.5.3) and the spectral norm (i.e., p = +∞) convergence

rate of ρ́ε in (2.5.15). The proof of Lemma 22 is given in Section 2.5.2.

Proof of Theorem 19. Denote Ξ1 = 1
n

∑n
i=1 ξiXi. By Lemma 8 in Section 2.3.1 with

α = 2, we know that with probability at least 1− e−t,

∥∥Ξ1

∥∥
∞ ≤ C

(
σξ

√
t+ log(2m)

nm
+ σξU

t+ log(2m)

n

)
(2.5.9)

for some constant C > 0. Note that we used the facts ‖Eξ2X2‖1/2
∞ ≤ σξ

1√
nm

and∥∥‖ξX‖∞∥∥ψ2
≤ ‖ξ‖ψ2U ≤ 2σξU a.s.. The choice of ε in Theorem 19 guarantees the

existence of the solution ρ́ε since Λ(ε) is nonempty and ρ ∈ Λ(ε).

The fact ρ́ε ∈ Λ(ε) indicates that, for any S ∈ Sm,

1

n

n∑
j=1

(〈
ρ́ε, Xj

〉
− Yj

)〈
ρ́ε − S,Xj

〉
≤ ε‖ρ́ε − S‖1.
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Then, by arranging the terms accordingly,

〈
ρ́ε − ρ,ρ́ε − S

〉
L2(Π)

≤ ε‖ρ́ε − S‖1 +
〈
Ξ1, ρ́ε − S

〉
+
∣∣∣ 1
n

n∑
i=1

〈
ρ́ε − ρ,Xi

〉〈
ρ́ε − S,Xi

〉
− E

〈
ρ́ε − ρ,X

〉〈
ρ́ε − S,X

〉∣∣∣.
Observe that

2
〈
ρ́ε − ρ, ρ́ε − S

〉
L2(Π)

= ‖ρ́ε − ρ‖2
L2(Π) − ‖S − ρ‖2

L2(Π) + ‖ρ́ε − S‖2
L2(Π).

Therefore, we get

‖ρ́ε − ρ‖2
L2(Π)+‖ρ́ε − S‖2

L2(Π) ≤ ‖S − ρ‖2
L2(Π) + 2(ε+ ‖Ξ1‖∞)‖ρ́ε − S‖1

+2
∣∣∣ 1
n

n∑
i=1

〈
ρ́ε − ρ,Xi

〉〈
ρ́ε − S,Xi

〉
− E

〈
ρ́ε − ρ,X

〉〈
ρ́ε − S,X

〉∣∣∣.
(2.5.10)

By definition of αn(∆1,∆2), we can control the last term in above inequality as follows:∣∣∣ 1
n

n∑
i=1

〈
ρ́ε − ρ,Xi

〉〈
ρ́ε − S,Xi

〉
− E

〈
ρ́ε − ρ,X

〉〈
ρ́ε − S,X

〉∣∣∣
≤‖ρ́ε − ρ‖1‖ρ́ε − S‖1αn

(‖ρ́ε − ρ‖L2(Π)

‖ρ́ε − ρ‖1

,
‖ρ́ε − S‖L2(Π)

‖ρ́ε − S‖1

)
.

We apply Lemma 22 with δ− = 1
mn

and δ+ = 1
m

. Clearly, if
‖ρ́ε−ρ‖L2(Π)

‖ρ́ε−ρ‖1 +
‖ρ́ε−S‖L2(Π)

‖ρ́ε−S‖1 ≥

δ−, Lemma 22 yields that, with probability at least 1− e−t,∣∣∣ 1
n

∑n
i=1

〈
ρ́ε − ρ,Xi

〉〈
ρ́ε − S,Xi

〉
− E

〈
ρ́ε − ρ,X

〉〈
ρ́ε − S,X

〉∣∣∣
≤ ‖ρ́ε − ρ‖1‖ρ́ε − S‖1

(
‖ρ́ε−ρ‖L2(Π)

‖ρ́ε−ρ‖1 +
‖ρ́ε−S‖L2(Π)

‖ρ́ε−S‖1

)
CU log3/2 m log3/2 n+

√
t̄√

n

+‖ρ́ε − ρ‖1‖ρ́ε − S‖1CU
2 log3 m log3 n+t̄

n

= ‖ρ́ε − S‖1‖ρ́ε − ρ‖L2(Π)CU
log3/2m log3/2 n+

√
t̄√

n

+‖ρ́ε − ρ‖1‖ρ́ε − S‖L2(Π)CU
log3/2 m log3/2 n+

√
t̄√

n

+‖ρ́ε − ρ‖1‖ρ́ε − S‖1CU
2 log3 m log3 n+t̄

n
,

where t̄ = t + log(log2 n + 3). Recall from the proof of Lemma 17 in Section 2.4.1
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that ‖ρ́ε − S‖1 ≤ 2
√

2rank(S)‖ρ́ε − S‖2,

‖ρ́ε − S‖1‖ρ́ε − ρ‖L2(Π)CU
log3/2m log3/2 n+

√
t̄√

n

≤1

4
‖ρ́ε − ρ‖2

L2(Π) + 2C2‖ρ́ε − S‖2
1U

2 log3m log3 n+ t

n

≤1

4
‖ρ́ε − ρ‖2

L2(Π) +
1

4
‖ρ́ε − S‖2

L2(Π) + c1ϕ2(n, S, t)‖ρ́ε − S‖2
1,

for some constant c1 > 0, where we applied the inequality ab ≤ a2

4
+b2 multiple times.

Moreover, since ‖ρ́ε − ρ‖1 ≤ ‖ρ́ε − S‖1 + ‖S − ρ‖1,

‖ρ́ε − ρ‖1‖ρ́ε − S‖L2(Π)CU
log3/2m log3/2 n+

√
t̄√

n

≤1

8
‖ρ́ε − S‖2

L2(Π) + 4C2‖ρ́ε − ρ‖2
1U

2 log3m log3 n+ t

n

≤1

8
‖ρ́ε − S‖2

L2(Π) + 8C2‖ρ́ε − S‖2
1U

2 log3m log3 n+ t

n

+ 8C2‖S − ρ‖2
1U

2 log3m log3 n+ t

n

≤1

4
‖ρ́ε − S‖2

L2(Π) +
1

4
‖S − ρ‖2

L2(Π) + c1ϕ2(n, S, t)
(
‖ρ́ε − S‖2

1 + ‖S − ρ‖2
1

)
.

Similarly, we can get

‖ρ́ε − ρ‖1‖ρ́ε − S‖1CU
2 log3m log3 n+ t̄

n
≤1

4
‖ρ́ε − S‖2

L2(Π)

+ c1ϕ2(n, S, t)
(
‖ρ́ε − S‖2

1 + ‖S − ρ‖2
1

)
.

Therefore, we conclude that if
‖ρ́ε−ρ‖L2(Π)

‖ρ́ε−ρ‖1 +
‖ρ́ε−S‖L2(Π)

‖ρ́ε−S‖1 ≥ δ−, with probability at least

1− e−t,∣∣∣ 1
n

n∑
i=1

〈
ρ́ε−ρ,Xi

〉〈
ρ́ε − S,Xi

〉
− E

〈
ρ́ε − ρ,X

〉〈
ρ́ε − S,X

〉∣∣∣
≤3

4
‖ρ́ε − S‖2

L2(Π) +
1

4
‖ρ́ε − ρ‖2

L2(Π) +
1

4
‖S − ρ‖2

L2(Π)

+ c1ϕ2(n, S, t)
(
‖ρ́ε − S‖2

1 + ‖S − ρ‖2
1

)
.

(2.5.11)

If, on the other hand,
‖ρ́ε−ρ‖L2(Π)

‖ρ́ε−ρ‖1 +
‖ρ́ε−S‖L2(Π)

‖ρ́ε−S‖1 ≤ δ− = 1
mn

, then the proof of (2.5.3)

only simplifies since

‖ρ́ε − ρ‖2
L2(Π) ≤

1

n2m2
‖ρ́ε − ρ‖2

1 ≤U4m2 log3m log3 n+ t

n2

(
‖ρ́ε − S‖2

1 + ‖S − ρ‖2
1

)
≤ϕ2(n, S, t)

(
‖ρ́ε − S‖2

1 + ‖S − ρ‖2
1

)
.
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Plugging (2.5.11) into (2.5.10), we get that with probability at least 1− e−t,

3

4
‖ρ́ε − ρ‖2

L2(Π) +
1

4
‖ρ́ε − S‖2

L2(Π) ≤
5

4
‖S − ρ‖2

L2(Π) + 2(ε+ ‖Ξ1‖∞)‖ρ́ε − S‖1

+ c1ϕ2(n, S, t)
(
‖ρ́ε − S‖2

1 + ‖S − ρ‖2
1

)
.

(2.5.12)

By the bound (2.5.9) and the choice of ε, we have

2(ε+ ‖Ξ1‖∞)‖ρ́ε − S‖1 ≤
1

4
‖ρ́ε − S‖2

L2(Π) + 4m2rank(S)(ε+ ‖Ξ1‖∞)2

≤1

4
‖ρ́ε − S‖2

L2(Π) + C
(
m2ε2rank(S) + ϕ1(n, S, t)

)
.

(2.5.13)

By putting the bound (2.5.13) into (2.5.12) and adjusting some constants, we get the

bound (2.5.3). Then (2.5.4) is an immediate result from (2.5.3) by setting S = ρ.

We are ready to prove (2.5.5). Consider ρ′ = (1 − δ)ρ + δ Im
m

with δ =
σξ
n
≤ U

n
, a

technique already used in the proof of (2.3.29) in Section 2.3.3. It is easy to check

that ρ′ ∈ Λ(ε) as long as the constant C1 in ε is large enough. By definition of ρ́ε

(the subdifferential of function tr(S logS) at ρ́ε is log(ρ́ε) + Im, see [53]), we get

〈
log ρ́ε, ρ́ε − ρ′

〉
≤ 0,

since
〈
Im, ρ́ε − ρ′

〉
= 0. Meanwhile, suppose r = rank(ρ) and ρ =

∑r
i=1 λjPj with

eigenvalues λj ∈ [0, 1](repeated with their multiplicities) and one dimensional or-

thogonal eigenprojectors Pj. We extend Pj, j = 1, . . . , r to the complete orthogonal

resolution of the identity Pj, j = 1, . . . ,m. Then

log ρ′ = log
((

1− δ
)
ρ+ δ

Im
m

)
=

r∑
i=1

log
(

(1− δ)λj + δ/m
)

+
m∑

j=r+1

log(δ/m)Pj

=
r∑
j=1

log
(

1 + (1− δ)mλj/δ
)
Pj + log(δ/m)Im.

Therefore,

K(ρ́ε, ρ
′) ≤−

〈
log ρ′, ρ́ε − ρ′

〉
=
〈 r∑
j=1

log
(

1 + (1− δ)mλj/δ
)
Pj, ρ́ε − ρ′

〉
≤
∥∥∥ r∑
j=1

log
(

1 + (1− δ)mλj/δ
)
Pj

∥∥∥
2
‖ρ́ε − ρ′‖2
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Note that ‖ρ́ε − ρ′‖2 ≤ ‖ρ́ε − ρ‖2 + δ‖ρ− Im/m‖2 ≤ ‖ρ́ε − ρ‖2 + 2δ and∥∥∥ r∑
j=1

log
(

1+(1− δ)mλj/δ
)
Pj

∥∥∥
2

=
( r∑
j=1

log2
(
1 + (1− δ)mλj/δ

))1/2

≤
√
r log(m/δ).

Then, together with (2.5.4), we get

K(ρ́ε, ρ
′) ≤
√
r(‖ρ́ε − ρ‖2 + 2δ) log

mn

σξ

≤Cm
√(

ϕ1(n) + ϕ2(n)
)
r log

mn

σξ
+ 2

σξ
n

√
r log

mn

σξ

(2.5.14)

Recall that K(ρ′‖ρ́ε) ≤ K(ρ́ε, ρ
′) and Lemma 10 in Section 2.3.2, we get K(ρ‖ρ́ε) ≤

2K(ρ′‖ρ́ε) + 2
σξ
n

log en
σξ

. Replacing K(ρ′‖ρ́ε) with the right hand side of (2.5.14), we

obtain (2.5.5).

Theorem 20. Suppose Assumption 1 and 4 hold with rank(ρ) ≤ r. Under the

conditions (2.5.6) and the choice of ε = C1σξ

√
log(2m)
nm

for some large enough constant

C1 > 0, there exists a constant C > 0 such that with probability at least 1− 1
m

,

‖ρ́ε − ρ‖p ≤ C

(
σ̄m

3
2 r1/p

√
n

log3m log3 n
∧( σ̄m3/2

√
n

)1− 1
p (

log3m log3 n
)1− 1

p

)∧
2,

(2.5.15)

for all 1 ≤ p ≤ +∞ and σ̄ :=
(
σξ ∨ U√

m

)
.

Remark 8. In the case of Pauli measurements, we consider that σξ � U√
m

, i.e. every

Yi is taken as the average of m outcomes from independent measurements (this is

also the experimental scheme proposed in [30, section II.A]). Note that the condition

σξ ≥ U√
m

is also needed in the proof of the Schatten p-norm convergence rates of

the projection estimator, see Section 2.4.1 The bound (2.5.15) is equivalent(up to

logarithmic terms) to

‖ρ́ε − ρ‖p .
√
m

n
r1/p

∧(√m

n

)1− 1
p
∧

1, (2.5.16)

for all 1 ≤ p ≤ +∞. It matches the minimax lower bounds shown in Theorem 4 in

Section 2.2 by setting σξ = 1
m

there. Essentially, it means that the “complexity” of
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the problem is controlled by a “truncated rank” r ∧
√

n
m

. Basically, bound (2.5.16)

indicates that whenever σξ ≥ 1
m

, estimator ρ́ε can achieve optimal convergence rates

(up to logarithmic factors) in all the Schatten p-norms for p ∈ [1,+∞]. Note that

even though our proof does not require n & mr(with logarithmic terms), the bound

(2.5.16) is nontrivial only when n & m for 1 ≤ p ≤ +∞.

Moreover, it worths to point out that actually

σ̄ =
(
σξ ∨

U√
m
‖ρ́ε − ρ‖1 ∨ U2

√
m

n
‖ρ́ε − ρ‖1

)
in (2.5.15). Then, by the bound (2.5.8) and U = 1√

m
, we get from (2.5.15) that (up

to logarithmic factors)

‖ρ́ε − ρ‖p .
(σξm3/2r1/p

√
n

∨ σξm
2r1+ 1

p

n

)∧(σξm3/2

√
n
∨ σξm

2r

n

)1− 1
p
∧

1

for all 1 ≤ p ≤ +∞. This bound is important because of its linear dependence on the

noise level σξ(see also [86]), which can be significantly small in certain situations. If

n & mr2(with logarithmic terms), we get a cleaner bound(recall also Remark 7),

‖ρ́ε − ρ‖p .
(σξm3/2r1/p

√
n

)∧
1, 1 ≤ p ≤ +∞, (2.5.17)

which holds even when σξ is significantly smal (it even holds when σξ = 0). It is in-

teresting to notice that the condition n & mr2(with logarithmic factors) is also needed

in proving the optimal convergence rates in Schatten p-norms of Dantzig estimator

for estimating general low rank matrices with Gaussian measurements, see [100]. It

is still an open problem that whether this condition is necessary.

Proof of Theorem 20. We begin with the proof of the spectral norm ‖ρ́ε− ρ‖∞. Note

that

‖ρ́ε − ρ‖∞
m2

≤
∥∥∥ 1

n

n∑
i=1

〈
ρ́ε − ρ,Xi

〉
Xi

∥∥∥
∞

+
∥∥∥ 1

n

n∑
i=1

〈
ρ́ε − ρ,Xi

〉
Xi − E

〈
ρ́ε − ρ,X

〉
X
∥∥∥
∞
.
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The first term is upper bounded by 2ε = C1σξ

√
log(2m)
nm

with probability at least

1− 1
2m

, since ρ́ε ∈ Λ(ε) and,∥∥∥ 1

n

n∑
i=1

〈
ρ́ε − ρ,Xi

〉
Xi

∥∥∥
∞
≤ ε+ ‖Ξ1‖∞.

By the definition of spectral norm, the second term can be written as follows (recall

the definition of A(∆) in Lemma 22):∥∥∥ 1

n

n∑
i=1

〈
ρ́ε−ρ,Xi

〉
Xi − E

〈
ρ́ε − ρ,X

〉
X
∥∥∥
∞

= sup
V ∈A( 1

m
)

∣∣∣ 1
n

n∑
i=1

〈
ρ́ε − ρ,Xi

〉〈
V,Xi

〉
− E

〈
ρ́ε − ρ,X

〉〈
V,X

〉∣∣∣
≤‖ρ́ε − ρ‖1αn

(‖ρ́ε − ρ‖L2(Π)

‖ρ́ε − ρ‖1

,
1

m

)
.

(2.5.18)

To this end, we can apply Lemma 22 with δ− = 1
2m

and δ+ = 1
m

and get

αn

(‖ρ́ε − ρ‖L2(Π)

‖ρ́ε − ρ‖1

,
1

m

)
≤ C

( U√
m

log3/2m log3/2 n√
nm

+ U2 log3m log3 n

n

)
,

which holds with probability at least 1 − 1
2m

. We can simply replace ‖ρ́ε − ρ‖1 with

2 in (2.5.18) and get that, with probability at least 1− 1
m

,

‖ρ́ε − ρ‖∞
m2

≤C
((
σξ ∨

U√
m

) log3/2m log3/2 n√
nm

+ U2 log3m log3 n

n

)
≤ C

(
σξ ∨

U√
m
∨ U2

√
m

n

) log3m log3 n√
nm

.

Observe that if U2
√

m
n
≥ U√

m
, then U m√

n
≥ 1. Since ‖ρ́ε − ρ‖p has a trivial upper

bound 2, we conclude that the term σξ ∨ U√
m

will be sufficient in the above bounds.

Therefore,

‖ρ́ε − ρ‖∞ ≤ Cσ̄

√
m3

n
log3m log3 n

∧
2.

By the proof of Lemma 17 with p = 1, we get that with the same probability,

‖ρ́ε − ρ‖1 ≤ 2‖PL(ρ́ε − ρ)‖1 ≤ 2r‖ρ́ε − ρ‖∞ ≤ Cσ̄r

√
m3

n
log3m log3 n

∧
2,

where L denotes the support of ρ. Applying the interpolation inequality from Lemma 6,

‖ρ́ε − ρ‖p ≤ ‖ρ́ε − ρ‖1/p
1 ‖ρ́ε − ρ‖1−1/p

∞

for all 1 ≤ p ≤ +∞, we will get bound (2.5.15).
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2.5.2 Upper bounds of the product empirical processes

Proof of Lemma 22. For any ∆ ∈ [0, 1], define the following quantity

βn(∆) := sup
A∈A(∆)

∣∣∣ 1
n

n∑
i=1

〈
A,Xi

〉2 − E
〈
A,X

〉2
∣∣∣.

For all A1 ∈ A(∆1) and A2 ∈ A(∆2), the following fact is clear,∣∣∣ 1
n

n∑
i=1

〈
A1, Xi

〉〈
A2, Xi

〉
− E

〈
A1, X

〉〈
A2, X

〉∣∣∣
≤1

4

∣∣∣ 1
n

n∑
i=1

〈
A1 + A2, Xi

〉2 − E
〈
A1 + A2, X

〉2
∣∣∣

+
1

4

∣∣∣ 1
n

n∑
i=1

〈
A1 − A2, Xi

〉2 − E
〈
A1 − A2, X

〉2
∣∣∣

≤βn
(
‖A1 + A2‖L2(Π)/2

)
+ βn

(
‖A1 − A2‖L2(Π)/2

)
,

where the last inequality holds because A1±A2

2
∈ A

(
‖A1 ±A2‖L2(Π)/2

)
. Observe that

‖A1±A2‖L2(Π)

2
≤ ∆1+∆2

2
for all A1 ∈ A(∆1) and A2 ∈ A(∆2). Therefore,

αn(∆1,∆2) ≤ 2βn

(∆1 + ∆2

2

)
.

It suffices to prove an upper bound for βn(∆) for ∆ ∈ [δ−, δ+]. Remember that the

upper bound for βn(∆) has been claimed in Section 2.3.3 without proof. We give the

proof based on Dudley’s entropy bound and the L∞(Πn) complexity of unit ball in

Hm equipped with Schatten 1-norm.

Assume that ∆ ∈ [δ−, δ+], the main strategy is that we derive the upper bound

of βn(∆) for ∆ ∈ [δj, δj+1] with δj = 2jδ− for j = 0, 1, 2, . . . , blog2
δ+

δ−
c. Then, we take

the bounds uniformly over the whole range [δ−, δ+], which is a standard argument.

For a fixed j such that ∆ ∈ [δj, δj+1], we apply Bousquet’s version (see [52, Chap-

ter 2]) of Talagrand’s inequality for empirical processes and get that with probability

at least 1− e−t,

βn(∆) ≤ 2Eβn(∆) + 2U∆

√
t

n
+ 2U2 t

n
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for any t ≥ 1. We used the facts

sup
A∈A(∆)

E
〈
A,X

〉4 ≤ U2 sup
A∈A(∆)

E
〈
A,X

〉2 ≤ U2∆2

and
〈
A,X

〉2 ≤ U2. To control Eβn(∆), by the symmetrization inequality, we get

Eβn(∆) ≤ 2EXEε sup
A∈A(∆)

∣∣∣ 1
n

n∑
i=1

εi
〈
A,Xi

〉2
∣∣∣

where ε1, . . . , εn are i.i.d. Rademacher random variables.

Now, we fix X1, X2, . . . , Xn and consider the sub-Gaussian process indexed by

A ∈ A(∆) defined as

GA :=
1√
n

n∑
i=1

εi
〈
A,Xi

〉2
.

This is a sub-Gaussian process with respect to the pseudo-distance

d(A1, A2) := E1/2(GA1 −GA2)2 =
( 1

n

n∑
i=1

〈
A1 − A2, Xi

〉2〈
A1 + A2, Xi

〉2
)1/2

≤2σn‖A1 − A2‖L∞(Πn),

where σ2
n := sup

A∈A(∆)

1
n

∑n
i=1

〈
A,Xi

〉2
. According to Dudley’s entropy bound (see The-

orem 3 in Section 1.4),

Eε sup
A∈A(∆)

|GA| .
∫ 4Uσn

0

H1/2(A(∆), d, u)du,

where the entropy number H(A(∆), d, u) = logN(A(∆), d, u), the logarithmic of

u-covering number of A(∆) with respect to the pseudo-metric d.

Since d(A1, A2) ≤ 2σn‖A1 − A2‖L∞(Πn), we have

H1/2(A(∆), d, u) ≤ H1/2(A(∆), L∞(Πn),
u

2σn
).

As a consequence,

Eε sup
A∈A(∆)

GA .
∫ 4Uσn

0

H1/2(A(∆), L∞(Πn),
u

2σn
)du

≤ 2σn

∫ 2U

0

H1/2(A(∆), L∞(Πn), u)du.
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The L∞(Πn)-complexity of unit balls in Hm equipped with nuclear norm distance

has been thoroughly studied. WhenX1, . . . , Xn are fixed, the vector
(〈
A,X1

〉
, . . . ,

〈
A,Xn

〉)′
belongs to the cube [−U,U ]n. The l∞-covering number is upper bounded by

N(A(∆), L∞(Πn), u) ≤
(

1 +
2U

u

)n
.

This bound will be used when u is small. When u is large, we apply the following

bound, see [64, (21)], [38],[4, Lemma A5],

N(A(∆), L∞(Πn), u) ≤ exp
{
C
U2 log3m log n

u2

}
for some constant C > 0. Then, by setting K = U√

n
,

Eε sup
A∈A(∆)

GA .σn

∫ K

0

√
n log

1
2

(
1 +

2U

u

)
du+ σn

∫ 2U

K

U log3/2m log1/2 n

u
du

.σn
√
nK log(1 +

2U

K
) + Uσn log3/2m log1/2 n log

U

K

.Uσn log3/2m log3/2 n.

Therefore, we conclude that

Eβn(∆) =
1√
n
EXEε sup

A∈A(∆)

GA .
1√
n
EXUσn log3/2m log3/2 n.

Note that

EXσn = EX

√√√√ sup
A∈A(∆)

1

n

n∑
i=1

〈
A,Xi

〉2 ≤

√√√√EX sup
A∈A(∆)

1

n

n∑
i=1

〈
A,Xi

〉2

≤
√

Eβn(∆) + ∆2.

Therefore, we get

Eβn(∆) .
√

Eβn(∆) + ∆2
U log3/2m log3/2 n√

n
,

which can be simplified into

Eβn(∆) . ∆U
log3/2m log3/2 n√

n
+
U2 log3m log3 n

n
.

93



Therefore, for ∆ ∈ [δj, δj+1], with probability at least 1− e−t,

βn(∆) ≤ C∆U
log3/2m log3/2 n√

n
+ CU2 log3m log3 n

n
+ 2U∆

√
t

n
+ 2U2 t

n
.

for some C > 0. By making it uniform over all j = 0, 1, . . . , blog2
δ+

δ−
c and adjusting t

to t+ log(log2
δ+

δ−
+ 2), we get the uniform upper bound of βn(∆) for ∆ ∈ [δ−, δ+].
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CHAPTER III

SIMULATION RESULTS OF LOW RANK DENSITY

MATRICES ESTIMATION

The main purpose of this chapter is to discuss the numerical algorithms for solving

the estimators studied in Chapter 2, including the least squares estimator, the projec-

tion estimator and the Dantzig-type estimator. There are many algorithms available

for solving the optimization problems involved in these estimators. For instance, the

proximal gradient method is a popular class of algorithms for solving the constrained

convex optimization problems, see [65] and [74], etc. In principle, the proximal gradi-

ent method is equivalent to the projected gradient descent method. In this chapter,

we focus on the alternating minimization method for the least squares estimator. The

Dantzig-type estimator is usually formulated as a semi-definite programming.

3.1 Algorithms

3.1.1 The ADMM algorithm for the least squares estimator

The alternating direction method of multipliers (ADMM) is a popular algorithm in

convex optimization problems, see a comprehensive introduction in [12], the applica-

tion of ADMM in matrix estimation problems in [63], [24] and refernces therein. The

ADMM algorithm has shown great success in many problems, which (empirically)

converges much faster than many famous algorithms, such as Nesterov’s accelerated

gradient algorithms, see [73].

Recall that the least squares estimator with penalization is defined as

ρ̃ε := arg min
S∈Sm

Lε(S), (3.1.1)

where Lε(S) := 1
n

∑n
j=1

(
Yj −

〈
S,Xj

〉)2
+ ε · tr

(
S logS

)
. The optimization problem
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in (3.1.1) belongs to the standard form of optimization problems considered in the

ADMM algorithms, see [12]. It usually involves the sum of two functions of the

underlying parameter, i.e., a loss function and a penalization function. Then ADMM

algorithm solves the optimization problem by introducing a new variable such that

the following function is considered in stead of Lε(S):

Lε(S1, S2) :=
1

n

n∑
j=1

(
Yj −

〈
S1, Xj

〉)2
+ ε · tr

(
S2 logS2

)
.

Then, it is easy to check that we can define ρ̃ε equivalently as

(ρ̃ε, ρ̃ε) := arg min
S1∈Sm,S1=S2

Lε(S1, S2).

The augmented Lagrangian multipliers of function Lε(S1, S2) is defined as

Lε(S1, S2, Z, λ) := Lε(S1, S2) +
〈
S1 − S2, Z

〉
+
λ

2
‖S1 − S2‖2

2,

for some λ ≥ 0 and Z ∈ Hm. The parameter λ can be fixed and can also be pre-

determined a sequence of sizes {λk}k≥1. Then ADMM algorithm updates S1 and S2

aternatively and the multiplier Z is updated by the difference between S1 and S2.

The algorithm is listed as in Algorithm 1, with tolerance εtol > 0 being the stopping

criterion and max Iteration being the maximum number of iterations.

In order to update S2, we need to solve the following optimization problem:

S
(k+1)
2 := arg min

S∈Sm

λ

2

∥∥S(k+1)
1 − S +

Z(k)

λ

∥∥2

2
+ εtr

(
S logS

)
.

In the case ε = 0, S
(k+1)
2 is equivalent to the projection of the matrix S

(k+1)
1 + Z(k)

λ

onto the compact and convex set Sm whose explicit solution is given as in Lemma 20

in Section 2.4.1. It is clear that when ε > 0, there is no explicit solution for S
(k+1)
2 ,

in which cases, it is usually solved by iterative algorithms such as [8], which is often

referred as the projected gradient descent algorithm.
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Algorithm 1 ADMM Algorithm

Set up value of max Iteration and tolerance εtol > 0
Initiate S

(0)
1 ∈ Hm, S

(0)
2 ∈ Sm and Z(0) = 0 ∈ Hm, k=0

3: while k<max Iteration do

S
(k+1)
1 = arg min

S∈Hm

1
n

n∑
j=1

(Yj − Tr(SXj))
2 +

〈
S − S(k)

2 , Z(k)
〉

+ λ
2
||S − S(k)

2 ||22

S
(k+1)
2 = arg min

S∈Sm
ε · Tr(S log(S)) +

〈
S

(k+1)
1 − S,Z(k)

〉
+ λ

2
||S(k+1)

1 − S||22

6: . S
(k+1)
2 is also the minimizer of λ

2
||S(k+1)

1 − S + Z(k)/λ||22 + ε · Tr(S log(S))

Z(k+1) = Z(k) + λ(S
(k+1)
1 − S(k+1)

2 )

if ||S(k+1)
2 − S(k)

2 ||22 ≤ εtol or ||Z(k+1) − Z(k)||22 ≤ εtolλ
2 then

9: Reaching the tolerance. Return S
(k+1)
2 .

end if
k=k+1

12: end while
Return S

(k+1)
2 .

3.1.2 The computational advantages of the projection estimator

An advantage of the minimal distance estimator ρ̌ = πSm(Ẑ) is the simplicity of its

computational implementation. The computation of the matrix Ẑ = m2

n

∑n
i=1 YiXi

requires O(nm2) operations. It is followed by an eigen-decomposition of Z that re-

quires O(m3) operations(see [33]); there exist efficient software packages designed for

this kind of tasks, for instance, LINPACK and PROPACK, etc.). As it is shown in

the previous section, the problem of computing πSm(Ẑ) then reduces to projecting of

the vector of eigenvalues of Z arranged in a non-increasing order onto the simplex

∆m. The last problem has been studied in the literature (see [70], [83], [25]) and it

has an explicit solution of computational complexity proportional to m (see the proof

of Lemma 20). Thus, the computational implementation of the minimal distance

estimator ρ̌ requires O((n+m)m2) operations.

Recall that the matrix LASSO estimator for estimating density matrices is defined

as

ρ̂ := arg min
S∈Sm

1

n

n∑
i=1

(
Yi −

〈
S,Xi

〉)2

(3.1.2)

which is actually the least squares estimator. Clearly, there is no explicit solution for
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this optimization problem and it is usually solved by iterative algorithms, such as the

ADMM algorithm introduced in Section 3.1.1. In addition to the ADMM algorithm

explained in Section 3.1.1, a well know iterative singular value thresholding (SVT)

algorithm was proposed in [14], and was also implemented in quantum compressed

sensing in [30]. The main idea is that (3.1.2) is equivalent to the following optimization

problem: for any τ > 0,

ρ̂ := arg min
S∈Sm,Z∈Hm,S=Z

m2

n

n∑
i=1

(
Yi −

〈
Z,Xi

〉)2

+ τ‖S − Z‖2
2.

The proposed algorithm updates Z and S alternatively, with the only constraint for

S being that S ∈ Sm. Therefore, the main ingredient of SVT is the following iterative

updating rule (with initial Z0 = 0): for k = 1, 2, . . .,
Sk = πSm(Zk−1)

Zk = Sk + δk
(
Ẑ − m2

n

∑n
i=1

〈
Sk, Xi

〉
Xi

) (3.1.3)

with certain pre-determined step sizes δk > 0. The algorithm terminates at some step

k = N and outputs SN ∈ Sm when ‖SN − SN−1‖2 ≤ ε for some numerical threshold

ε > 0. It is clear that the minimal distance estimator ρ̌ can be produced by the

above algorithm with one iteration and the initialization Z0 = Ẑ, δ1 = 0. When the

number of qubits k is not small (for instance, about 20) and the dimension m is very

large, the iterative algorithm (3.1.3) is much more computationally expensive than

the algorithm for the minimal distance estimator (since every iteration requires the

eigen-decomposition of a high dimensional matrix).

3.1.3 A semidefinite program for the Dantzig-type estimator

Given the data Dn := {(X1, Y1), . . . , (Xn, Yn)}, define a linear map as follows:

T : Hm 7→ Cn. T (S) :=
(〈
S,X1

〉
, . . . ,

〈
S,Xn

〉)′ ∈ Cn.

Its adjoint operator is easily defined as

T ? : Cn 7→ Hm. T ?(r) :=
n∑
i=1

riXi ∈ Hm.
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Then, the Dantzig-type estimator can be equivalently written as (by written Y =

(Y1, . . . , Yn) ∈ Rn)

ρ́Dε := arg min
{
‖S‖1,

∥∥T ?(Y − T (S)
)∥∥
∞ ≤ ε, S ∈ Sm

}
. (3.1.4)

It is also possible to replace the nuclear norm ‖S‖1 with the negative von Neumann

entropy −V (S) = tr(S logS). Note that the feasible set in (3.1.4) involves an upper

bound on the spectral norm of T ?
(
Y − T (S)

)
∈ Hm which can be written as εIm T ?

(
Y − T (S)

)
T ?
(
Y − T (S)

)
εIm

 < 0.

As a result, we can write the Dantzig-type estimator ρ́Dε as the following semidefinite

program:

minimize ‖S‖1 ≡ 1 or tr(S logS)

subject to


S 0 0

0 εIm T ?
(
Y − T (S)

)
0 T ?

(
Y − T (S)

)
εIm

 < 0

S? = S, tr(S) = 1.

(3.1.5)

There are many efficient algorithms (for instance, interior point algorithm, see [39]

and [93]) and softwares available for solving semidefinite programs, see [85] and [34].

3.2 Numerical results

In this section, we display the numerical simulation results of several estimators.

The data is generated according to the trace regression model with Gaussian noise.

The bounded response model is not considered here since it usually requires a larger

sample size, and its result can be reproduced by the Gaussian noise model with large

noise variance. The numerical results of Dantzig estimator will not be presented since

they are pretty close to the least squares estimator.

99



Table 1: The Schatten p-norms for n = 600 and different ranks

Rank p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8 p=9 p=10
2 0.733 0.297 0.240 0.222 0.213 0.208 0.205 0.203 0.201 0.200
7 1.068 0.261 0.183 0.161 0.154 0.151 0.150 0.150 0.149 0.149
12 1.057 0.233 0.168 0.154 0.150 0.149 0.148 0.148 0.148 0.148
17 1.057 0.233 0.177 0.166 0.163 0.162 0.162 0.162 0.162 0.162
22 0.954 0.196 0.146 0.136 0.134 0.133 0.133 0.132 0.132 0.132

3.2.1 Low rank estimation with small noise level

The example considered in this section is related to the trace regression model with

small noise. The density matrix ρ is considered with 6-qubits such that m = 26 = 64.

The Pauli measurements are sampled uniformly with n being the sample size. The

data is generated with Gaussian noise such that σξ = 0.1
m

which we call small noise

level. If σξ >
1
m

, we refer it to large noise level. The least squares estimator is

considered here and the singular value thresholding algorithm is applied as introduced

in Section 3.1. We also considered different cases such that ρ has an increasing rank.

Note that we are interested in the Schatten p-norm convergence rates for different

values of p, which decreases as p increases. We consider that p = 1, 2, 3, . . . , 10.

Actually when p ≥ 5, the Schatten p-norms are nearly equal to the operator norm in

many cases.

The low rank density matrix ρ ∈ Sm with m = 64 is constructed as follows.

The eigenvectors are generated randomly from a Gaussian random matrix and the

eigenvalues have the following form: if rank(ρ) = 1, then we set λ1(ρ) = 1; if

rank(ρ) > 1, then we set λ1(ρ) = 1
2

and λ2(ρ) = . . . = λr = 1
2r

. The reason

that we set λ1(ρ) = Ω(1) is that we don’t want ‖ρ‖∞ to decrease as the rank in-

creases in order to emphasize the convergence rates in spectral norm. The ranks

considered in this example are r = 2, 7, 12, 17, 22. The sample sizes considered are

n = 200, 300, 400, 500, 600, 700, 800, 900, 1000.
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Table 2: The Schatten p-norms for n = 1000 and different ranks

Rank p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8 p=9 p=10
2 0.331 0.133 0.108 0.100 0.097 0.095 0.093 0.092 0.092 0.091
7 0.873 0.215 0.147 0.127 0.119 0.115 0.113 0.113 0.112 0.112
12 0.876 0.181 0.117 0.099 0.092 0.089 0.087 0.086 0.086 0.086
17 0.896 0.175 0.117 0.103 0.098 0.096 0.096 0.095 0.095 0.095
22 0.835 0.153 0.101 0.089 0.085 0.083 0.082 0.082 0.082 0.082

Table 1 and Table 2 show the average values of ‖ρ̂ − ρ‖p for p = 1, . . . , 10 and

rank(ρ) = 2, 7, 12, 17, 22 when n = 600 and n = 1000. For every r and n, the

experiments are repeated for 5 times and the average values of ‖ρ̂− ρ‖p are shown in

these tables. It is interesting to notice that there is a big gap between the trace norm

distance and the Frobenius norm distance. Moreover, when the rank r increases,

there is no clear increase in the Schatten p-norm distances. This might be due to the

special structure of ρ we constructed.

In Figure 1, we showed the convergence rates of Schatten norms when the rank

is 3 and the sample size n is increasing. The Schatten 1-norm, 2-norm and 5-norm

are considered when the noise level σξ = 0.1
m

. It is clear that when the sample size n

increases, the Schatten norm distances decrease which is within our expectation.

Next, we are also interested in the dependence of the Schatten norms on the noise

level, namely σξ. In the following, we consider an example with n = 1000,m = 64, r =

3 and different levels of noise mσξ = 0.01, 0.05, 0.1, 0.15, 0.20. The result is shown in

Table 3. It is clear that the error rates have a positive relation with the noise level σξ.

However, it seems that the error rate is not increasing proportionally with respect to

the noise variance.

101



Figure 1: The convergence rates of Schatten p-norm distances
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Table 3: The Schatten p-norms for n = 1000,m = 64, r = 3 and different noise levels

mσξ p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 p = 10
0.01 0.377 0.126 0.095 0.085 0.081 0.078 0.076 0.075 0.074 0.074
0.05 0.406 0.136 0.103 0.092 0.086 0.083 0.081 0.080 0.079 0.078
0.10 0.428 0.145 0.109 0.098 0.092 0.089 0.088 0.086 0.086 0.085
0.15 0.533 0.182 0.137 0.123 0.116 0.112 0.110 0.109 0.108 0.107
0.20 0.675 0.230 0.173 0.154 0.145 0.140 0.137 0.135 0.134 0.133
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Table 4: The Schatten p-norms, KL-divergence and Hellinger distance for n =
1000,m = 64, r = 3 and different choices of regularization parameter ε

ε p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 K(ρ‖ρ̃ε) H(ρ, ρ̃ε)
10−4 0.621 0.207 0.157 0.141 0.133 0.129 0.126 0.125 0.675 0.527

2× 10−4 0.599 0.197 0.151 0.136 0.129 0.125 0.123 0.121 0.623 0.515
5× 10−4 0.698 0.220 0.173 0.158 0.150 0.146 0.143 0.142 0.529 0.590

10−3 1.079 0.335 0.271 0.251 0.241 0.236 0.233 0.231 0.917 0.788
1.5× 10−3 1.274 0.394 0.323 0.300 0.290 0.285 0.282 0.281 1.168 0.884

3.2.2 Estimation with von Neumann entropy penalization and small noise
level

In this section, we considered the least squares estimator with von Neumann entropy

as the penalization. The optimization problem can be solved by the ADMM algorithm

introduced in Section 3.1 and also the singular value thresholding algorithm. Actually,

both two algorithms produce similar results. In addition to the Schatten p-norms

considered as in previous section, we will also include the Kullback-Leibler divergence

and Hellinger distance. It worths to point out that due to the unboundedness of the

derivative of the entropy function, both the singular value thresholding algorithm

and the ADMM algorithm converge slowly, especially when ε > 0 is larger than the

optimal choice based on theoretic analysis (see Section 2.3).

In Table 4, we provide the Schatten p-norm distances, Kullback-Leibler divergence

and the Hellinger distance of the estimator ρ̃ε according to different choices of ε. In

this example, we set m = 6, r = 3, n = 1000 and noise level σξ = 0.1
m

. For every choice

of ε = 10−4, 5× 10−4, 10× 10−4 and 15× 10−4, the experiment is repeated for 5 times

and the average errors are taken.

There are several important observations from Table 4. Even though we know

that when ε > 0, the estimator ρ̃ε has full rank. The simulation result indicates

that when ε is small
(
for instance, O(10−4)

)
, ρ̃ε has actually nearly low rank, many
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Figure 2: The convergence rates of von Neumann entropy penalized least squares
estimator with noise level σξ = 0.1

m
and ε = 10−4.
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of its eigenvalues are extremely close to 0. In this cases, the von Neumann entropy

penalized estimator ρ̃ε is close to the standard least squares estimator ρ̂. Moreover,

when ε > 0 is small, the Kullback-Leibler divergence K(ρ‖ρ̃ε) is larger than the

Schatten 1-norm distance ‖ρ̃ε − ρ‖1. When ε slightly increases, the KL divergence

K(ρ‖ρ̃ε) decreases and ‖ρ̃ε − ρ‖1 increases such that K(ρ‖ρ̃ε) is becoming smaller

than ‖ρ̃ε − ρ‖1. If ε becomes even larger, then the KL-divergence K(ρ‖ρ̃ε) is also

increasing and is still smaller than ‖ρ̃ε − ρ‖1. Note that by the theoretical analysis,

we know that the optimal choice of ε is of the order O
(
σξ

√
logm
mn

)
which should be

O(10−5) in this example.

Next, we are also interested in the dependence of the convergence rates of ρ̃ε on

the sample size n. We still focus on the same example, namely, m = 64, r = 3 and

σξ = 0.1
m

. Moreover, the regularization parameter ε is set to be ε = 10−4. The result

is shown as in Figure 2.
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It shows that when ε = 10−4, the Kullback-Leibler divergence is always larger than

the trace distance and the Hellinger distance is always between the KL-divergence

and trace distance.

3.2.3 The projection estimator when noise level is large

In this section, we consider that the noise level σξ is large such that σξ ≥ 1
m

. As

proved in Section 2.4.1, the simple projection estimator is able to achieve the optimal

convergence rates in all the Schatten p-norms for 1 ≤ p ≤ +∞ when σξ ≥ 1
m

. The

goal of this section is to numerically verify this claim. The example considered in this

example is m = 26, r = 10 and the density matrix ρ is constructed as in Section 3.2.1.

The noise variance is chosen as σξ = 1
m

.

Both the standard least squares estimator and the projection estimator are imple-

mented for this example under the same settings to verify that the simple projection

estimator is able to achieve the optimal convergence rates. Moreover, the projection

estimator is much more computationally friendly. The results are shown in Figure 3.

The least squares estimator is slightly better than the projection estimator in trace

norm distance. There is no clear difference in other Schatten norm convergence rates.
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Figure 3: Comparison of the convergence rates between the least squares estimator(ρ̂)
and the projection estimator (ρ̌) when σξ = 1
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CHAPTER IV

PERTURBATION OF LINEAR FORMS OF SINGULAR

VECTORS UNDER GAUSSIAN NOISE

4.1 Introduction and notations

Analysis of perturbations of singular vectors of matrices under a random noise is of

importance in a variety of areas including, for instance, digital signal processing, nu-

merical linear algebra and spectral based methods of community detection in large

networks (see [44], [84], [29], [62], [81], [61], [43], [40] and references therein). Re-

cently, random perturbations of singular vectors have been studied in [95], [97], [76],

[7]. However, up to our best knowledge, our work proposes first sharp results con-

cerning concentration of the components of singular vectors of randomly perturbed

matrices. At the same time, there has been interest in the recent literature in so

called “delocalization” properties of eigenvectors of random matrices, see [82], [96]

and references therein. In this case, the “information matrix” A is equal to zero,

Ã = X and, under certain regularity conditions, it is proved that the magnitudes of

the components for the eigenvectors of X (in the case of symmetric square matrix)

are of the order O
( log(n)√

n

)
with a high probability. This is somewhat similar to the

results on “componentwise concentration” of singular vectors of Ã = A + X proved

in this chapter, but the analysis in the case when A 6= 0 is quite different (it relies on

perturbation theory and on the condition that the gaps between the singular values

are sufficiently large).

Later in this section, we provide a formal description of the problem studied in

this chapter. Before this, we introduce the notations that will be used (some of them

have been introduced in Section 1.1). In what follows, 〈·, ·〉 denotes the inner product
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of finite-dimensional Euclidean spaces. For N ≥ 1, eNj , j = 1, . . . , N denotes the

canonical basis of the space RN . If P is the orthogonal projector onto a subspace

L ⊂ RN , then P⊥ denotes the projector onto the orthogonal complement L⊥. The

Schatten p-norms of matrices and the lp norms of vectors will be denoted, following

the notations used in Section 1.1, by ‖ · ‖p for 1 ≤ p ≤ +∞. With a minor abuse of

notation, ‖ · ‖ denotes both the l2-norm of vectors in finite-dimensional spaces and

the operator norm of matrices (i.e., their largest singular value). In other words, for

any matrix A ∈ Rm×n, ‖A‖ is equivalent to ‖A‖∞.

In what follows, A′ ∈ Rn×m denotes the transpose of a matrix A ∈ Rm×n. The

following mapping Λ : Rm×n 7→ R(m+n)×(m+n) will be frequently used:

Λ(A) :=
( 0 A

A′ 0

)
, A ∈ Rm×n.

Note that the image Λ(A) is a symmetric (m+ n)× (m+ n) matrix.

Vectors u ∈ Rm, v ∈ Rn, etc. will be viewed as column vectors (or m × 1, n × 1,

etc matrices). For u ∈ Rm, v ∈ Rn, denote by u⊗ v the matrix uv′ ∈ Rm×n. In other

words, u ⊗ v can be viewed as a linear transformation from Rn into Rm defined as

follows: (u⊗ v)x = u〈v, x〉, x ∈ Rn.

Let A ∈ Rm×n be an m× n matrix and let

A =
m∧n∑
i=1

σi(ui ⊗ vi)

be its singular value decomposition (SVD) with singular values σ1 ≥ . . . ≥ σm∧n ≥ 0,

orthonormal left singular vectors u1, . . . , um∧n ∈ Rm and orthonormal right singular

vectors v1, . . . , vm∧n ∈ Rn. If A is of rank rank(A) = r ≤ m ∧ n, then σi = 0, i > r

and the SVD can be written as A =
∑r

i=1 σi(ui ⊗ vi). Note that in the case when

there are repeated singular values σi, the singular vectors are not unique. In this

case, let µ1 > . . . µd > 0 with d ≤ r be distinct singular values of A arranged in

decreasing order and denote ∆k := {i : σi = µk}, k = 1, . . . , d. Let νk := card(∆k) be

108



the multiplicity of µk, k = 1, . . . , d. Denote

P uv
k :=

∑
i∈∆k

(ui ⊗ vi), P vu
k :=

∑
i∈∆k

(vi ⊗ ui),

P uu
k :=

∑
i∈∆k

(ui ⊗ ui), P vv
k :=

∑
i∈∆k

(vi ⊗ vi).

It is straightforward to check that the following relationships hold:

(P uu
k )′ = P uu

k , (P uu
k )2 = P uu

k , P vu
k = (P uv

k )′, P uv
k P vu

k = P uu
k . (4.1.1)

This implies, in particular, that the operators P uu
k , P vv

k are orthogonal projectors (in

the spaces Rm,Rn, respectively). It is also easy to check that

P uu
k P uu

k′ = 0, P vv
k P vv

k′ = 0, P vu
k P uv

k′ = 0, P uv
k P vu

k′ = 0, k 6= k′. (4.1.2)

The SVD of matrix A can be rewritten as A =
∑d

k=1 µkP
uv
k and it can be shown

that the operators P uv
k , k = 1, . . . , d are uniquely defined. Let

B = Λ(A) =
( 0 A

A′ 0

)
=

d∑
k=1

µk

( 0 P uv
k

P vu
k 0

)
.

For k = 1, . . . , d, denote

Pk :=
1

2

( P uu
k P uv

k

P vu
k P vv

k

)
, P−k :=

1

2

( P uu
k −P uv

k

−P vu
k P vv

k

)
,

and also

µ−k := −µk.

Using relationships (4.1.1), (4.1.2), it is easy to show that PkPk′ = Pk′Pk = 1(k =

k′)Pk for all k, k′, 1 ≤ |k| ≤ d, 1 ≤ |k′| ≤ d. Since the operators Pk : Rm+n 7→

Rm+n, 1 ≤ |k| ≤ d are also symmetric, they are orthogonal projectors onto mutually

orthogonal subspaces of Rm+n. Note that, by a simple algebra, B =
∑

1≤|k|≤d µkPk,

implying that µk are distinct eigenvalues of B and Pk are the corresponding eigen-

projectors. Note also that if 2
∑d

k=1 νk < m + n, then zero is also an eigenvalue

109



of B (that will be denoted by µ0) of multiplicity ν0 := n + m − 2
∑d

k=1 νk. Rep-

resentation A 7→ B = Λ(A) =
( 0 A

A′ 0

)
will play a crucial role in what follows

since it allows to reduce the analysis of SVD for matrix A to the spectral represen-

tation B =
∑

1≤|k|≤d µkPk. In particular, the operators P uv
k involved in the SVD

A =
∑d

k=1 µkP
uv
k can be recovered from the eigenprojectors Pk of matrix B (hence,

they are uniquely defined). Define also θi := 1√
2

( ui

vi

)
and θ−i := 1√

2

( ui

−vi

)
for

i = 1, . . . , r and let ∆−k := {−i : i ∈ ∆k}, k = 1, . . . , d. Then, θi, 1 ≤ |i| ≤ r are

orthonormal eigenvectors of B (not necessarily uniquely defined) corresponding to its

non-zero eigenvalues σ1 ≥ · · · ≥ σr > 0 > σ−r ≥ · · · ≥ σ−1 with σ−i = −σi and

Pk =
∑
i∈∆k

(θi ⊗ θi), 1 ≤ |k| ≤ d.

It will be assumed in what follows that A is perturbed by a random matrix X ∈

Rm×n with i.i.d. entries Xij ∼ N (0, τ 2) for some τ > 0. Given the SVD of the

perturbed matrix

Ã = A+X =
m∧n∑
j=1

σ̃i(ũi ⊗ ṽi),

our main interest lies in estimating singular vectors ui and vi of the matrix A in the

case when its singular values σi are distinct, or, more generally, in estimating the

operators P uu
k , P uv

k , P vu
k , P vv

k . To this end, we will use the estimators

P̃ uu
k :=

∑
i∈∆k

(ũi ⊗ ũi), P̃ uv
k :=

∑
i∈∆k

(ũi ⊗ ṽi),

P̃ vu
k :=

∑
i∈∆k

(ṽi ⊗ ũi), P̃ vv
k :=

∑
i∈∆k

(ṽi ⊗ ṽi),

and our main goal will be to study the fluctuations of the bilinear forms of these

random operators around the bilinear forms of operators P uu
k , P uv

k , P vu
k , P vv

k . In the

case when the singular values of A are distinct, this would allow us to study the

fluctuations of linear forms of singular vectors ũi, ṽi around the corresponding linear

forms of ui, vi which would provide a way to control the fluctuations of components of
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“empirical” singular vectors in a given basis around their true counterparts. Clearly,

the problem can be and will be reduced to the analysis of spectral representation of

a symmetric random matrix

B̃ = Λ(Ã) =
( 0 Ã

Ã′ 0

)
= B + Γ, where Γ = Λ(X) =

( 0 X

X ′ 0

)
, (4.1.3)

that can be viewed as a random perturbation of the symmetric matrix B. The spectral

representation of this matrix can be written in the form

B̃ =
∑

1≤|i|≤(m∧n)

σ̃i(θ̃i ⊗ θ̃i),

where

σ̃−i = −σ̃i, θ̃i :=
1√
2

( ũi

ṽi

)
, θ̃−i :=

1√
2

( ũi

−ṽi

)
, i = 1, . . . , (m ∧ n).

If the operator norm ‖Γ‖ of the “noise” matrix Γ is small enough comparing with

the “spectral gap” of the k-th eigenvalue µk of B (for some k = 1, . . . , d), then it

is easy to see that P̃k :=
∑

i∈∆k
(θ̃i ⊗ θ̃i) is the orthogonal projector on the direct

sum of eigenspaces of B̃ corresponding to the “cluster” {σ̃i : i ∈ ∆k} of its eigenval-

ues localized in a neighborhood of µk. Moreover, P̃k = 1
2

( P̃ uu
k P̃ uv

k

P̃ vu
k P̃ vv

k

)
. Thus, it is

enough to study the fluctuations of bilinear forms of random orthogonal projectors P̃k

around the corresponding bilinear form of the spectral projectors Pk to derive similar

properties of operators P̃ uu
k , P̃ uv

k , P̃ vu
k , P̃ vv

k .

We will be interested in bounding the bilinear forms of operators P̃k − Pk for k =

1, . . . , d. To this end, we will provide separate bounds on the random error P̃k −EP̃k

and on the bias EP̃k−Pk. For k = 1, . . . , d, ḡk denotes the distance from the eigenvalue

µk to the rest of the spectrum of A (the eigengap of µk). More specifically, for

2 ≤ k ≤ d−1, ḡk = min(µk−µk+1, µk−1−µk), ḡ1 = µ1−µ2 and ḡd = min(µd−1−µd, µd).

The main assumption in the results that follow is that E‖X‖ < ḡk
2

(more precisely,

E‖X‖ ≤ (1 − γ) ḡk
2

for a positive γ). In view of the concentration inequality of
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Lemma 23 in the next section, this essentially means that the operator norm of

the random perturbation matrix ‖Γ‖ = ‖X‖ is strictly smaller than one half of the

spectral gap ḡk of singular value µk. Since, again by Lemma 23, E‖X‖ � τ
√
m ∨ n,

this assumption also means that ḡk & τ
√
m ∨ n (so, the spectral gap ḡk is sufficiently

large). Our goal is to prove that, under this assumption, the values of bilinear form

〈P̃kx, y〉 of random spectral projector P̃k have tight concentration around their means

(with the magnitude of deviations of the order
√

1
m∨n). We will also show that the

bias EP̃k−Pk of the spectral projector P̃k is “aligned” with the spectral projector Pk

(up to an error of the order
√

1
m∨n in the operator norm).

4.2 Preliminary lemmas

The proofs follow the approach of [56] who did a similar analysis in the problem of

estimation of spectral projectors of sample covariance. We start with discussing sev-

eral preliminary facts used in what follows. Lemma 23 and Lemma 24 below provide

moment bounds and a concentration inequality for ‖Γ‖ = ‖X‖. The bound on E‖X‖

of Lemma 23 is available in many references (see, e.g., [94]). The concentration bound

for ‖X‖ is a straightforward consequence of the Gaussian concentration inequality.

The moment bounds of Lemma 24 can be easily proved by integrating out the tails of

the exponential bound that follows from the concentration inequality of Lemma 23.

Lemma 23. There exist absolute constants c0, c1, c2 > 0 such that

c0τ
√
m ∨ n ≤ E‖X‖ ≤ c1τ

√
m ∨ n

and for all t > 0,

P
{∣∣‖X‖ − E‖X‖

∣∣ ≥ c2τ
√
t
}
≤ e−t.

Lemma 24. For all p ≥ 1, it holds that

E1/p‖X‖p � τ
√
m ∨ n
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According to a well-known result that goes back to Weyl, for symmetric (or Her-

mitian) N ×N matrices C,D

max
1≤j≤N

∣∣∣λ↓j(C)− λ↓j(D)
∣∣∣ ≤ ‖C −D‖,

where λ↓(C), λ↓(D) denote the vectors consisting of the eigenvalues of matrices C,D,

respectively, arranged in a non-increasing order. This immediately implies that, for

all k = 1, . . . , d,

max
j∈∆k

|σ̃j − µk| ≤ ‖Γ‖

and

min
j∈∪k′ 6=k∆k′

|σ̃j − µk| ≥ ḡk − ‖Γ‖.

Assuming that ‖Γ‖ < ḡk
2
, we get that {σ̃j : j ∈ ∆k} ⊂ (µk − ḡk/2, µk + ḡk/2) and

the rest of the eigenvalues of B̃ are outside of this interval. Moreover, if ‖Γ‖ < ḡk
4
,

then the cluster of eigenvalues {σ̃j : j ∈ ∆k} is localized inside a shorter interval

(µk − ḡk/4, µk + ḡk/4) of radius ḡk/4 and its distance from the rest of the spectrum

of B̃ is > 3
4
ḡk. These simple considerations allow us to view the projection operator

P̃k =
∑

j∈∆k
(θ̃j⊗θ̃j) as a projector on the direct sum of eigenspaces of B̃ corresponding

to its eigenvalues located in a “small” neighborhood of the eigenvalue µk of B, which

makes P̃k a natural estimator of Pk.

Define operators Ck as follows:

Ck =
∑
s 6=k

1

µs − µk
Ps.

In the case when 2
∑d

k=1 νk < m+ n and, hence, µ0 = 0 is also an eigenvalue of B, it

will be assumed that the above sum includes s = 0 with P0 being the corresponding

spectral projector.

The next simple lemma can be found, for instance, in [56]. Its proof is based on

a standard perturbation analysis utilizing Riesz formula for spectral projectors.
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Lemma 25. The following bound holds:

‖P̃k − Pk‖ ≤ 4
‖Γ‖
ḡk

.

Moreover,

P̃k − Pk = Lk(Γ) + Sk(Γ),

where Lk(Γ) := CkΓPk + PkΓCk and

‖Sk(Γ)‖ ≤ 14

(
‖Γ‖
ḡk

)2

.

4.3 Main results and proofs

Theorem 21. Suppose that for some γ ∈ (0, 1), E‖X‖ ≤ (1 − γ) ḡk
2
. There exists

a constant Cγ > 0 such that, for all x, y ∈ Rm+n and for all t ≥ 1, the following

inequality holds with probability at least 1− e−t :

∣∣〈(P̃k − EP̃k)x, y
〉∣∣ ≤ Cγ

τ
√
t

ḡk

(τ√m ∨ n+ τ
√
t

ḡk
+ 1
)
‖x‖‖y‖. (4.3.1)

Assuming that t . m ∨ n and taking into account that τ
√
m ∨ n � E‖X‖ ≤ ḡk,

we easily get from the bound of Theorem 21 that

∣∣〈(P̃k − EP̃k)x, y
〉∣∣ .γ

τ
√
t

ḡk
‖x‖‖y‖ .γ

√
t

m ∨ n
‖x‖‖y‖,

so, the fluctuations of 〈P̃kx, y〉 around its expectation are indeed of the order
√

1
m∨n .

Proof of Theorem 21. Since ELk(Γ) = 0, it is easy to check that

P̃k − EP̃k = Lk(Γ) + Sk(Γ)− ESk(Γ) =: Lk(Γ) +Rk(Γ). (4.3.2)

We will first provide a bound on the bilinear form of the remainder
〈
Rk(Γ)x, y

〉
. Note

that

〈Rk(Γ)x, y〉 = 〈Sk(Γ)x, y〉 − 〈ESk(Γ)x, y〉
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is a function of the random matrix X ∈ Rm×n since Γ = Λ(X) (see (4.1.3)). When we

need to emphasize this dependence, we will write ΓX instead of Γ. With some abuse

of notation, we will view X as a point in Rm×n rather than a random variable.

Let 0 < γ < 1 and define a function hx,y,δ(·) : Rm×n → R as follows:

hx,y,δ(X) := 〈Sk(ΓX)x, y〉φ
(
‖ΓX‖
δ

)
,

where φ is a Lipschitz function with constant 1
γ

on R+ and 0 ≤ φ(s) ≤ 1. More

precisely, assume that φ(s) = 1, s ≤ 1, φ(s) = 0, s ≥ (1+γ) and φ is linear in between.

We will prove that the function X 7→ hx,y,δ(X) satisfy the Lipschitz condition. Note

that

|〈(Sk(ΓX1)− Sk(ΓX2))x, y〉| ≤ ‖Sk(ΓX1)− Sk(ΓX2)‖‖x‖‖y‖.

To control the norm ‖Sk(ΓX1) − Sk(ΓX2)‖, we need to apply Lemma 4 from [56]. It

is stated below without the proof.

Lemma 26. Let γ ∈ (0, 1) and suppose that δ ≤ 1−γ
1+γ

ḡk
2
. There exists a constant

Cγ > 0 such that, for all symmetric Γ1,Γ2 ∈ R(m+n)×(m+n) satisfying the conditions

‖Γ1‖ ≤ (1 + γ)δ and ‖Γ2‖ ≤ (1 + γ)δ,

‖Sk(Γ1)− Sk(Γ2)‖ ≤ Cγ
δ

ḡ2
k

‖Γ1 − Γ2‖.

We now derive the Lipschitz condition for the function X 7→ hx,y,δ(X).

Lemma 27. Under the assumption that δ ≤ 1−γ
1+γ

ḡk
2

, there exists a constant Cγ > 0,

|hx,y,δ(X1)− hx,y,δ(X2)| ≤ Cγ
δ‖X1 −X2‖2

ḡ2
k

‖x‖‖y‖. (4.3.3)
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Proof. Suppose first that max(‖ΓX1‖, ‖ΓX2‖) ≤ (1 + γ)δ. Using Lemma 26 and Lips-

chitz properties of function φ, we get

|hx,y,δ(X1)−hx,y,δ(X2)| =
∣∣∣∣〈Sk(ΓX1)x, y

〉
φ

(
‖ΓX1‖
δ

)
−
〈
Sk(ΓX2)x, y

〉
φ

(
‖ΓX2‖
δ

)∣∣∣∣
≤‖Sk(ΓX1)− Sk(ΓX2)‖‖x‖‖y‖φ

(
‖ΓX1‖
δ

)
+‖Sk(ΓX2)‖

∣∣∣∣φ(‖ΓX1‖
δ

)
− φ
(
‖ΓX2‖
δ

)∣∣∣∣ ‖x‖‖y‖
≤Cγ

δ‖ΓX1 − ΓX2‖
ḡ2
k

‖x‖‖y‖+
14(1 + γ)2δ2

ḡ2
k

‖ΓX1 − ΓX2‖
γδ

‖x‖‖y‖

.γ
δ‖ΓX1 − ΓX2‖

ḡ2
k

‖x‖‖y‖ .γ
δ‖X1 −X2‖2

ḡ2
k

‖x‖‖y‖.

In the case when min(‖ΓX1‖, ‖ΓX2‖) ≥ (1 + γ)δ, we have hx,y,δ(X1) = hx,y,δ(X2) = 0,

and (4.3.3) trivially holds. Finally, in the case when ‖ΓX1‖ ≤ (1 + γ)δ ≤ ‖ΓX2‖, we

have

|hx,y,δ(X1)−hx,y,δ(X2)| =
∣∣∣∣〈Sk(ΓX1)x, y

〉
φ

(
‖ΓX1‖
δ

)∣∣∣∣
=

∣∣∣∣〈Sk(ΓX1)x, y
〉
φ

(
‖ΓX1‖
δ

)
−
〈
Sk(ΓX1)x, y

〉
φ

(
‖ΓX2‖
δ

)∣∣∣∣
≤‖Sk(ΓX1)‖

∣∣∣∣φ(‖ΓX1‖
δ

)
− φ
(
‖ΓX2‖
δ

)∣∣∣∣ ‖x‖‖y‖
≤14

(
(1 + γ)δ

ḡk

)2 ‖ΓX1 − ΓX2‖
γδ

‖x‖‖y‖

.γ
δ‖X1 −X2‖2

ḡ2
k

‖x‖‖y‖.

The case ‖ΓX2‖ ≤ (1 + γ)δ ≤ ‖ΓX1‖ is similar.

Our next step is to apply the following concentration bound that easily follows

from the Gaussian isoperimetric inequality.

Lemma 28. Let f : Rm×n 7→ R be a function satisfying the following Lipschitz

condition with some constant L > 0 :

|f(A1)− f(A2)| ≤ L‖A1 − A2‖2, A1, A2 ∈ Rm×n
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Suppose X is a random m× n matrix with i.i.d. entries Xij ∼ N (0, τ 2). Let M be a

real number such that

P
{
f(X) ≥M

}
≥ 1

4
and P

{
f(X) ≤M

}
≥ 1

4
.

Then there exists some constant D1 > 0 such that for all t ≥ 1,

P
{∣∣f(X)−M

∣∣ ≥ D1Lτ
√
t
}
≤ e−t.

The next lemma is the main ingredient in the proof of Theorem 21. It provides

a Bernstein type bound on the bilinear form 〈Rk(Γ)x, y〉 of the remainder Rk in the

representation (4.3.2).

Lemma 29. Suppose that, for some γ ∈ (0, 1), E‖Γ‖ ≤ (1− γ) ḡk
2
. Then, there exists

a constant Cγ > 0 such that for all x, y ∈ Rm+n and all t ≥ log(4), the following

inequality holds with probability at least 1− e−t

|〈Rk(Γ)x, y〉| ≤ Cγ
τ
√
t

ḡk

(
τ
√
m ∨ n+ τ

√
t

ḡk

)
‖x‖‖y‖.

Proof. Define δn,m(t) := E‖Γ‖ + c2τ
√
t. By the second bound of Lemma 23, with a

proper choice of constant c2 > 0, P{‖Γ‖ ≥ δn,m(t)} ≤ e−t. We first consider the case

when c2τ
√
t ≤ γ

2
ḡk
2
, which implies that

δn,m(t) ≤ (1− γ/2)
ḡk
2

=
1− γ′

1 + γ′
ḡk
2

for some γ′ ∈ (0, 1) depending only on γ. Therefore, it enables us to use Lemma 27

with δ := δn,m(t). Recall that hx,y,δ(X) =
〈
Sk(Γ)x, y

〉
φ

(
‖Γ‖
δ

)
and letM := Med

(〈
Sk(Γ)x, y

〉)
.

Observe that, for t ≥ log(4),

P{hx,y,δ(X) ≥M} ≥ P{hx,y,δ(X) ≥M, ‖Γ‖ ≤ δn,m(t)}

≥P{
〈
Sk(Γ)x, y

〉
≥M

}
− P{‖Γ‖ > δn,m(t)} ≥ 1

2
− e−t ≥ 1

4

and, similarly. P(hx,y,δ(X) ≤ M) ≥ 1
4
. Therefore, by applying lemmas 27,28, we

conclude that with probability at least 1− e−t,∣∣hx,y,δ(X)−M
∣∣ .γ

δn,m(t)τ
√
t

ḡ2
k

‖x‖‖y‖
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Since, by the first bound of Lemma 23, δn,m(t) . τ(
√
m ∨ n+

√
t), we get that with

the same probability

∣∣hx,y,δ(X)−M
∣∣ .γ

τ
√
t

ḡk

τ
√
m ∨ n+ τ

√
t

ḡk
‖x‖‖y‖.

Moreover, on the event {‖Γ‖ ≤ δn,m(t)} that holds with probability at least 1− e−t,

hx,y,δ(X) =
〈
Sk(Γ)x, y

〉
. Therefore, the following inequality holds with probability at

least 1− 2e−t :

∣∣〈Sk(Γ)x, y
〉
−M

∣∣ .γ
τ
√
t

ḡk

τ
√
m ∨ n+ τ

√
t

ḡk
‖x‖‖y‖. (4.3.4)

We still need to prove a similar inequality in the case c2τ
√
t ≥ γ

2
ḡk
2
. In this case,

E‖Γ‖ ≤ (1− γ)
ḡk
2
≤ 2c2(1− γ)

γ
τ
√
t,

implying that δn,m(t) .γ τ
√
t. It follows from Lemma 25 that

∣∣〈Sk(Γ)x, y
〉∣∣ ≤ ‖Sk(Γ)‖‖x‖‖y‖ . ‖Γ‖

2

ḡ2
k

‖x‖‖y‖

This implies that with probability at least 1− e−t,

∣∣〈Sk(Γ)x, y
〉∣∣ . δ2

n,m(t)

ḡ2
k

‖x‖‖y‖ .γ
τ 2t

ḡ2
k

‖x‖‖y‖.

Since t ≥ log(4) and e−t ≤ 1/4, we can bound the median M of
〈
Sk(Γ)x, y

〉
as follows:

M .γ
τ 2t

ḡ2
k

‖x‖‖y‖,

which immediately implies that bound (4.3.4) holds under assumption c2τ
√
t ≥ γ

2
ḡk
2

as well. By integrating out the tails of exponential bound (4.3.4), we obtain that

∣∣E〈Sk(Γ)x, y
〉
−M

∣∣ ≤ E
∣∣〈Sk(Γ)x, y

〉
−M

∣∣ .γ
τ 2
√
m ∨ n
ḡ2
k

‖x‖‖y‖,

which allows us to replace the median by the mean in concentration inequality (4.3.4).

To complete the proof, it remains to rewrite the probability bound 1−2e−t as 1− e−t

by adjusting the value of the constant Cγ.
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Recalling that P̃k − EP̃k = Lk(Γ) + Rk(Γ), it remains to study the concentration

of
〈
Lk(Γ)x, y

〉
.

Lemma 30. For all x, y ∈ Rm+n and t > 0,

P
(∣∣〈Lk(Γ)x, y

〉∣∣ ≥ 4
τ‖x‖‖y‖

√
t

ḡk

)
≤ e−t.

Proof. Recall that Lk(Γ) = PkΓCk + CkΓPk implying that

〈Lk(Γ)x, y〉 = 〈ΓPkx,Cky〉+ 〈ΓCkx, Pky〉.

If x =
( x1

x2

)
, y =

( y1

y2

)
, where x1, y1 ∈ Rm, x2, y2 ∈ Rn, then it is easy to check

that

〈Γx, y〉 = 〈Xx2, y1〉+ 〈Xy2, x1〉.

Clearly, the random variable 〈Γx, y〉 is normal with mean zero and variance

E〈Γx, y〉2 ≤ 2
[
E〈Xx2, y1〉2 + E〈Xy2, x1〉2

]
.

Since X is an m× n matrix with i.i.d. N (0, τ 2) entries, we easily get that

E〈Xx2, y1〉2 = E〈X, y1 ⊗ x2〉2 = τ 2‖y1 ⊗ x2‖2
2 = τ 2‖x2‖2‖y1‖2

and, similarly,

E〈Xy2, x1〉2 = τ 2‖x1‖2‖y2‖2.

Therefore,

E〈Γx, y〉2 ≤2τ 2
[
‖x2‖2‖y1‖2 + ‖x1‖2‖y2‖2

]
≤2τ 2

[
(‖x1‖2 + ‖x2‖2)(‖y1‖2 + ‖y2‖2)

]
= 2τ 2‖x‖2‖y‖2.

As a consequence, the random variable 〈Lk(Γ)x, y〉 is also normal with mean zero and

its variance is bounded from above as follows:

E〈Lk(Γ)x, y〉2 ≤2
[
E〈ΓPkx,Cky〉2 + E〈ΓCkx, Pky〉2

]
≤4τ 2

[
‖Pkx‖2‖Cky‖2 + ‖Ckx‖2‖Pky‖2

]
.

119



Since ‖Pk‖ ≤ 1 and ‖Ck‖ ≤ 1
ḡk
, we get that

E〈Lk(Γ)x, y〉2 ≤ 8τ 2

ḡ2
k

‖x‖2‖y‖2.

The bound of the lemma easily follows from standard tail bounds for normal random

variables.

The upper bound on |
〈
(P̃k − EP̃k)x, y

〉
| claimed in Theorem 21 follows by com-

bining Lemma 29 and Lemma 30.

The next result shows that the bias EP̃k − Pk of P̃k can be represented as a sum

of a “low rank part” Pk(EP̃k − Pk)Pk and a small remainder.

Theorem 22. The following bound holds with some constant C > 0 :∥∥∥EP̃k − Pk∥∥∥ ≤ C
τ 2(m ∨ n)

ḡ2
k

. (4.3.5)

Moreover, suppose that for some γ ∈ (0, 1), E‖X‖ ≤ (1 − γ) ḡk
2
. Then, there exists a

constant Cγ > 0 such that

∥∥EP̃k − Pk − Pk(EP̃k − Pk)Pk∥∥ ≤ Cγ
νkτ

2
√
m ∨ n
ḡ2
k

. (4.3.6)

Since, under the assumption E‖X‖ ≤ (1 − γ) ḡk
2
, we have ḡk & τ

√
m ∨ n, bound

(4.3.6) implies that the following representation holds

EP̃k − Pk = Pk(EP̃k − Pk)Pk + Tk

with the remainder Tk satisfying the bound

‖Tk‖ .γ
τ 2
√
m ∨ n
ḡ2
k

.γ
νk√
m ∨ n

.

Proof of Theorem 22. Note that, since P̃k −Pk = Lk(Γ) +Sk(Γ) and ELk(Γ) = 0,

we have

EP̃k − Pk = ESk(Γ).
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It follows from the bound on ‖Sk(Γ)‖ of Lemma 25 that∥∥∥EP̃k − Pk∥∥∥ ≤ E‖Sk(Γ)‖ ≤ 14
E‖Γ‖2

ḡ2
k

(4.3.7)

and the bound of Lemma 24 implies that∥∥∥EP̃k − Pk∥∥∥ .
τ 2(m ∨ n)

ḡ2
k

,

which proves (4.3.5).

Let

δn,m := E‖Γ‖+ c2τ
√

log(m+ n).

It follows from Lemma 23 that, with a proper choice of constant c2 > 0,

P (‖Γ‖ ≥ δn,m) ≤ 1

m+ n
.

In the case when c2τ
√

log(m+ n) > γ
2
ḡk
2
, the proof of bound (4.3.6) is trivial. Indeed,

in this case∥∥∥EP̃k − Pk∥∥∥ ≤ E‖P̃k‖+ ‖Pk‖ ≤ 2 .γ
τ 2 log(m+ n)

ḡ2
k

.
νkτ

2
√
m ∨ n
ḡ2
k

.

Since
∥∥∥Pk(EP̃k − Pk)Pk∥∥∥ ≤ ∥∥∥EP̃k − Pk∥∥∥, bound (4.3.6) of the theorem follows when

c2τ
√

log(m+ n) > γ
2
ḡk
2
.

In the rest of the proof, it will be assumed that c2τ
√

log(m+ n) ≤ γ
2
ḡk
2

which,

together with the condition E‖Γ‖ = E‖X‖ ≤ (1 − γ) ḡk
2
, implies that δn,m ≤ (1 −

γ/2) ḡk
2
. On the other hand, δn,m . τ

√
m ∨ n. The following decomposition of the bias

EP̃k − Pk is obvious:

EP̃k − Pk = ESk(Γ) = EPkSk(Γ)Pk

+E
(
P⊥k Sk(Γ)Pk + PkSk(Γ)P⊥k + P⊥k Sk(Γ)P⊥k

)
1(‖Γ‖ ≤ δn,m)

+E
(
P⊥k Sk(Γ)Pk + PkSk(Γ)P⊥k + P⊥k Sk(Γ)P⊥k

)
1(‖Γ‖ > δn,m)

(4.3.8)

We start with bounding the part of the expectation in the right hand side of (4.3.8)

that corresponds to the event {‖Γ‖ ≤ δn,m} on which we also have ‖Γ‖ < ḡk
2
. Under
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this assumption, the eigenvalues µk of B and σj(B̃), j ∈ ∆k of B̃ are inside the circle

γk in C with center µk and radius ḡk
2
. The rest of the eigenvalues of B, B̃ are outside

of γk. According to the Riesz formula for spectral projectors,

P̃k = − 1

2πi

∮
γk

RB̃(η)dη,

where RT (η) = (T − ηI)−1, η ∈ C \ σ(T ) denotes the resolvent of operator T (σ(T )

being its spectrum). It is also assumed that the contour γk has a counterclockwise

orientation. Note that the resolvents will be viewed as operators from Cm+n into

itself. The following power series expansion is standard:

RB̃(η) =RB+Γ(η) = (B + Γ− ηI)−1

=[(B − ηI)(I + (B − ηI)−1Γ)]−1

=(I +RB(η)Γ)−1RB(η) =
∑
r≥0

(−1)r[RB(η)Γ]rRB(η),

where the series in the last line converges because ‖RB(η)Γ‖ ≤ ‖RB(η)‖‖Γ‖ < 2
ḡk

ḡk
2

=

1. The inequality ‖RB(η)‖ ≤ 2
ḡk

holds for all η ∈ γk. One can easily verify that

Pk =− 1

2πi

∮
γk

RB(η)dη,

Lk(Γ) =
1

2πi

∮
γk

RB(η)ΓRB(η)dη,

Sk(Γ) =− 1

2πi

∮
γk

∑
r≥2

(−1)r[RB(η)Γ]rRB(η)dη.

The following spectral representation of the resolvent will be used

RB(η) =
∑
s

1

µs − η
Ps,

where the sum in the right hand side includes s = 0 in the case when µ0 = 0 is an

eigenvalue of B (equivalently, in the case when 2
∑d

k=1 νk < m+ n). Define

R̃B(η) := RB(η)− 1

µk − η
Pk =

∑
s 6=k

1

µs − η
Ps.
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Then, for r ≥ 2,

P⊥k [RB(η)Γ]rRB(η)Pk =
1

µk − η
P⊥k [RB(η)Γ]rPk

=
1

(µk − η)2

r∑
s=2

(R̃B(η)Γ)s−1PkΓ(RB(η)Γ)r−sPk +
1

µk − η
(R̃B(η)Γ)rPk.

The above representation easily follows from the following simple observation: let

a := Pk
µk−η

Γ and b := R̃B(η)Γ. Then

(a+ b)r =a(a+ b)r−1 + b(a+ b)r−1

=a(a+ b)r−1 + ba(a+ b)r−2 + b2(a+ b)r−2

=a(a+ b)r−1 + ba(a+ b)r−2 + b2a(a+ b)r−3 + b3(a+ b)r−3

= . . . =
r∑
s=1

bs−1a(a+ b)r−s + br.

As a result,

P⊥k Sk(Γ)Pk = −
∑
r≥2

(−1)r
1

2πi

∮
γk

[
1

(µk − η)2

r∑
s=2

(R̃B(η)Γ)s−1PkΓ(RB(η)Γ)r−sPk

+
1

µk − η
(R̃B(η)Γ)rPk

]
dη

(4.3.9)

Let Pk =
∑
l∈∆k

θl ⊗ θl, where {θl, l ∈ ∆k} are orthonormal eigenvectors corresponding

to the eigenvalue µk. Therefore, for any y ∈ Rm+n,

(R̃B(η)Γ)s−1PkΓ(RB(η)Γ)r−sPky =
∑
l∈∆k

(R̃B(η)Γ)s−1θl ⊗ θlΓ(RB(η)Γ)r−sPky

=
∑
l∈∆k

〈
Γ(RB(η)Γ)r−sPky, θl

〉
(R̃B(η)Γ)s−2R̃B(η)Γθl

(4.3.10)

Since | 〈Γ(RB(η)Γ)r−sPky, θl〉 | ≤ ‖Γ‖r−s+1‖RB(η)‖r−s‖y‖, we get

E|
〈
Γ(RB(η)Γ)r−sPky, θl

〉
|21(‖Γ‖ ≤ δn,m) ≤ δ2(r−s+1)

n,m

(
2

ḡk

)2(r−s)

‖y‖2.
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Also, for any x ∈ Rm+n, we have to bound

E
∣∣∣〈(R̃B(η)Γ)s−2R̃B(η)Γθl, x

〉∣∣∣2 1(‖Γ‖ ≤ δn,m). (4.3.11)

In what follows, we need some additional notations. Let Xc
1, . . . , X

c
n ∼ N (0, τ 2Im)

be the i.i.d. columns of X and (Xr
1)′, . . . , (Xr

n)′ ∼ N (0, τ 2In) be its i.i.d. rows (here

Im and In are m×m and n×n identity matrices). For j = 1, . . . , n, define the vector

X̌c
j = ((Xc

j )
′, 0)′ ∈ Rm+n, representing the (m + j)-th column of matrix Γ. Similarly,

for i = 1, . . . ,m, X̌r
i = (0, (Xr

i )′)′ ∈ Rm+n represents the i-th row of Γ. With these

notations, the following representations of Γ holds

Γ =
n∑
j=1

em+n
m+j ⊗ X̌c

j +
n∑
j=1

X̌c
j ⊗ em+n

m+j ,

Γ =
m∑
i=1

X̌r
i ⊗ em+n

i +
m∑
i=1

em+n
i ⊗ X̌r

i ,

and, moreover,

n∑
j=1

em+n
m+j ⊗ X̌c

j =
m∑
i=1

X̌r
i ⊗ em+n

i ,
n∑
j=1

X̌c
j ⊗ em+n

m+j =
m∑
i=1

em+n
i ⊗ X̌r

i .

Therefore,〈
(R̃B(η)Γ)s−2R̃B(η)Γθl, x

〉
=

n∑
j=1

〈
X̌c
j , θl
〉 〈

(R̃B(η)Γ)s−2R̃B(η)em+n
m+j , x

〉
+

n∑
j=1

〈
em+n
m+j , θl

〉 〈
(R̃B(η)Γ)s−2R̃B(η)X̌c

j , x
〉

=: I1(x) + I2(x),

and we get

E
∣∣∣〈(R̃B(η)Γ)s−2R̃B(η)Γθl, x

〉∣∣∣21(‖Γ‖ ≤ δn,m)

≤2E(|I1(x)|2 + |I2(x)|2)1(‖Γ‖ ≤ δn,m).

(4.3.12)

Observe that the random variable (R̃B(η)Γ)s−2R̃B(η) is a function of {PtX̌c
j , t 6=

k, j = 1, . . . , n}. Indeed, since R̃B(η) is a linear combination of operators Pt, t 6= k, it

is easy to see that (R̃B(η)Γ)s−2R̃B(η) can be represented as a linear combination of

operators

(Pt1ΓPt2)(Pt2ΓPt3) . . . (Pts−2ΓPts−1)
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with tj 6= k and with non-random complex coefficients. On the other hand,

PtkΓPtk+1
=

n∑
j=1

Ptke
m+n
m+j ⊗ Ptk+1

X̌c
j +

n∑
j=1

PtkX̌
c
j ⊗ Ptk+1

em+n
m+j .

These two facts imply that (R̃B(η)Γ)s−2R̃B(η) is a function of {PtX̌c
j , t 6= k, j =

1, . . . , n}. Similarly, it is also a function of {PtX̌r
i , t 6= k, i = 1, . . . ,m}.

It is easy to see that random variables {PkX̌c
j , j = 1, . . . , n} and {PtX̌c

j , j =

1, . . . , n, t 6= k} are independent. Since they are mean zero normal random variables

and X̌c
j , j = 1, . . . , n are independent, it is enough to check that, for all j = 1, . . . , n,

t 6= k, PkX̌
c
j and PtX̌

c
j are uncorrelated. To this end, observe that

E(PkX̌
c
j ⊗ PtX̌c

j ) =PkE(X̌c
j ⊗ X̌c

j )Pt

=
1

4

( P uu
k P uv

k

P vu
k P vv

k

)( Im 0

0 0

)( P uu
t P uv

t

P vu
t P vv

t

)

=
1

4

( P uu
k P uu

t P uu
k P uv

t

P vu
k P uu

t P vu
k P uv

t

)
=
( 0 0

0 0

)
,

where we used orthogonality relationships (4.1.2). Quite similarly, one can prove

independence of {PkX̌r
i , i = 1, . . . ,m} and {PtX̌r

i , i = 1, . . . ,m, t 6= k}.

We will now provide an upper bound on E|I1(x)|21(‖Γ‖ ≤ δn,m). To this end,

define

ωj(x) =
〈

(R̃B(η)Γ)s−2R̃B(η)em+n
m+j , x

〉
, j = 1, . . . , n

=ω
(1)
j (x) + iω

(2)
j (x) ∈ C.

Let I1(x) = κ(1)(x)+iκ(2)(x) ∈ C. Then, conditionally on {PtX̌c
j : t 6= k, j = 1, . . . , n},

the random vector (κ(1)(x), κ(2)(x)) has the same distribution as mean zero Gaussian

random vector in R2 with covariance,(
n∑
j=1

τ 2

2
ωk1
j (x)ωk2

j (x)

)
, k1, k2 = 1, 2
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(to check the last claim, it is enough to compute conditional covariance of (κ(1)(x), κ(2)(x))

given {PtX̌c
j : t 6= k, j = 1, . . . , n} using the fact that (R̃B(η)Γ)s−2R̃B(η) is a function

of {PtX̌c
j , t 6= k, j = 1, . . . , n}). Therefore,

E
(
|I1(x)|2

∣∣∣PtX̌c
j : t 6= k, j = 1, . . . , n

)
=E

(
(κ(1)(x))2 + (κ(2)(x))2

∣∣∣PtX̌c
j : t 6= k, j = 1, . . . , n

)
=
τ 2

2

n∑
j=1

(
(ω

(1)
j (x))2 + (ω

(2)
j (x))2

)
=
τ 2

2

n∑
j=1

|ωj(x)|2.

Furthermore,

n∑
j=1

τ 2|ωj(x)|2 = τ 2

n∑
j=1

|ωj(x)|2

=τ 2

n∑
j=1

∣∣∣〈R̃B(η)(ΓR̃B(η))s−2x, em+n
m+j

〉∣∣∣2
=τ 2

〈
R̃B(η)(ΓR̃B(η))s−2x, R̃B(η)(ΓR̃B(η)Γ)s−2x

〉
≤τ 2‖R̃B(η)‖2(s−1)‖Γ‖2(s−2)‖x‖2.

Under the assumption δn,m < ḡk
2

, the following inclusion holds:

{‖Γ‖ ≤ δn,m} ⊂

{
n∑
j=1

τ 2|ωj(x)|2 ≤ τ 2

(
2

ḡk

)2(s−1)

δ2(s−2)
n,m ‖x‖2

}
=: G

Therefore,

E|I1(x)|21(‖Γ‖ ≤ δn,m) ≤ E|I1(x)|21G = EE
(
|I1(x)|2

∣∣∣∣PtX̌c
j , t 6= k, j = 1, . . . , n

)
1G

=EE
( n∑

j=1

τ 2|ωj(x)|2
∣∣∣∣PtX̌c

j , t 6= k, j = 1, . . . , n

)
1G ≤ τ 2

(
2

ḡk

)2(s−1)

δ2(s−2)
n,m ‖x‖2.

(4.3.13)

A similar bound holds also for E|I2(x)|21(‖Γ‖ ≤ δn,m) :

E|I2(x)|21(‖Γ‖ ≤ δn,m) ≤ τ 2

(
2

ḡk

)2(s−1)

δ2(s−2)
n,m ‖x‖2. (4.3.14)
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For the proof, it is enough to observe that

I2(x) =
n∑
j=1

〈
em+n
m+j , θl

〉 〈
(R̃B(η)Γ)s−2R̃B(η)X̌c

j , x
〉

=

〈
(R̃B(η)Γ)s−2R̃B(η)

(∑n
j=1 X̌

c
j ⊗ em+n

m+j

)
θl, x

〉
=

〈
(R̃B(η)Γ)s−2R̃B(η)

(∑m
i=1 e

m+n
i ⊗ X̌r

i

)
θl, x

〉
=

m∑
i=1

〈
X̌r
i , θl

〉 〈
(R̃B(η)Γ)s−2R̃B(η)em+n

i , x
〉

and to repeat the previous conditioning argument (this time, given {PtX̌r
i : t 6= k, i =

1, . . . ,m}).

Combining bounds (4.3.13), (4.3.14) and (4.3.12), we get

E
∣∣∣〈(R̃B(η)Γ)s−2R̃B(η)Γθl, x

〉∣∣∣2 1(‖Γ‖ ≤ δn,m) ≤ 2τ 2

(
2

ḡk

)2(s−1)

δ2(s−2)
n,m ‖x‖2.

Then, it follows that∣∣∣E 〈Γ(RB(η)Γ)r−sPky, θl
〉 〈

(R̃B(η)Γ)s−2R̃B(η)Γθl, x
〉
1(‖Γ‖ ≤ δn,m)

∣∣∣
≤
(
E
∣∣〈Γ(RB(η)Γ)r−sPky, θl

〉∣∣2 1(‖Γ‖ ≤ δn,m)
)1/2

×
(
E
∣∣∣〈(R̃B(η)Γ)s−2R̃B(η)Γθl, x

〉∣∣∣2 1(‖Γ‖ ≤ δn,m)

)1/2

≤
√

2τ

(
2δn,m
ḡk

)r−1

‖x‖‖y‖,

which, taking into account (4.3.10), implies that∣∣∣E〈(R̃B(η)Γ)s−1PkΓ(RB(η)Γ)r−sPky, x
〉
1(‖Γ‖ ≤ δn,m)

∣∣∣
≤
√

2νkτ

(
2δn,m
ḡk

)r−1

‖x‖‖y‖

Since (R̃B(η)Γ)rPk = (R̃B(η)Γ)r−1R̃B(η)ΓPk, it can be proved by a similar argument

that ∣∣∣E〈(R̃B(η)Γ)rPky, x
〉
1(‖Γ‖ ≤ δn,m)

∣∣∣ ≤ √2νkτ
2

ḡk

(
2δn,m
ḡk

)r−1

‖x‖‖y‖.
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Therefore, substituting the above bounds in (4.3.9) and taking into account that

|µk − η| = ḡk
2
, η ∈ γk and that the length of the contour of integration γk is equal to

2π ḡk
2
, we get∣∣∣E 〈P⊥k Sk(Γ)Pky, x

〉
1(‖Γ‖ ≤ δn,m)

∣∣∣ ≤∑
r≥2

rḡk
2

(
2

ḡk

)2√
2νkτ

(
2δn,m
ḡk

)r−1

‖x‖‖y‖

=
2

ḡk

√
2νkτ

∑
r≥2

r

(
2δn,m
ḡk

)r−1

‖x‖‖y‖ .γ νkτ
δn,m
ḡ2
k

‖x‖‖y‖,

where we also used the condition δn,m ≤ (1− γ/2) ḡk
2

implying that 2δn,m
ḡk
≤ 1− γ/2.

Clearly, this implies that∥∥∥EP⊥k Sk(Γ)Pk

∥∥∥1(‖Γ‖ ≤ δn,m) .γ νkτ
δn,m
ḡ2
k

.γ
νkτ
√
m ∨ n
ḡ2
k

.

Furthermore, the same bound, obviously, holds for∥∥E〈PkSk(Γ)P⊥k y, x
〉
1(‖Γ‖ ≤ δn,m)

∥∥ =
∥∥E〈P⊥k Sk(Γ)Pkx, y

〉
1(‖Γ‖ ≤ δn,m)

∥∥
and, by similar arguments, it can be demonstrated that it also holds for∥∥∥EP⊥k Sk(Γ)P⊥k

∥∥∥1(‖Γ‖ ≤ δn,m)

(the only different term in this case is (R̃B(η)Γ)rR̃B(η), but, since {µt, t 6= k} are

outside of the circle γk, it simply leads to
∮
γk

(R̃B(η)Γ)rR̃B(η)dη = 0).

It remains to observe that∥∥∥E (P⊥k Sk(Γ)Pk + PkSk(Γ)P⊥k + P⊥k Sk(Γ)P⊥k
)
1(‖Γ‖ > δn,m)

∥∥∥
≤E
∥∥∥P⊥k Sk(Γ)Pk + PkSk(Γ)P⊥k + P⊥k Sk(Γ)P⊥k

∥∥∥1(‖Γ‖ > δn,m)

≤E‖Sk(Γ)‖1(‖Γ‖ > δn,m)

≤(E‖Sk(Γ)‖2)1/2P1/2(‖Γ‖ > δn,m)

.E1/2

(
‖Γ‖
ḡk

)4

P1/2(‖Γ‖ > δn,m) .
1√
m ∨ n

τ 2(m ∨ n)

ḡ2
k

.
τ 2
√
m ∨ n
ḡ2
k

and to substitute the above bounds to identity (4.3.8) to get that∥∥∥EP̃k − Pk − PkESk(Γ)Pk

∥∥∥ .γ
νkτ

2
√
m ∨ n
ḡ2
k

,

which implies the claim of the theorem.
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We will now consider a special case when µk has multiplicity 1 (νk = 1). In

this case, ∆k = {ik} for some ik ∈ {1, . . . , (m ∧ n)} and Pk = θik ⊗ θik . Let P̃k :=

θ̃ik ⊗ θ̃ik . Note that on the event ‖Γ‖ = ‖X‖ < ḡk
2

that is assumed to hold with a

high probability, the multiplicity of σ̃ik is also 1 (see the discussion in the next section

after Lemma 24). Note also that the unit eigenvectors θik , θ̃ik are defined only up to

their signs. Due to this, we will assume without loss of generality that 〈θ̃ik , θik〉 ≥ 0.

Since Pk = θik ⊗ θik is an operator of rank 1, we have

Pk(EP̃k − Pk)Pk = bkPk,

where

bk :=
〈

(EP̃k − Pk)θik , θik
〉

= E〈θ̃ik , θik〉2 − 1.

Therefore,

EP̃k = (1 + bk)Pk + Tk

and bk turns out to be the main parameter characterizing the bias of P̃k. Clearly,

bk ∈ [−1, 0] (note that bk = 0 is equivalent to θ̃ik = θik a.s. and bk = −1 is equivalent

to θ̃ik ⊥ θik a.s.). On the other hand, by bound (4.3.5) of Theorem 22,

|bk| ≤
∥∥∥EP̃k − Pk∥∥∥ .

τ 2(m ∨ n)

ḡ2
k

. (4.3.15)

In the next theorem, it will be assumed that the bias is not too large in the sense

that bk is bounded away by a constant γ > 0 from −1.

Theorem 23. Suppose that, for some γ ∈ (0, 1), E‖X‖ ≤ (1− γ) ḡk
2

and 1 + bk ≥ γ.

Then, for all x ∈ Rm+n and for all t ≥ 1 with probability at least 1− e−t,∣∣〈θ̃ik −√1 + bkθik , x
〉∣∣ .γ

τ
√
t

ḡk

(τ√m ∨ n+ τ
√
t

ḡk
+ 1
)
‖x‖.

Assuming that t . m ∨ n, the bound of Theorem 23 implies that∣∣〈θ̃ik −√1 + bkθik , x
〉∣∣ .γ

τ
√
t

ḡk
‖x‖ .γ

√
t

m ∨ n
‖x‖.

Therefore, the fluctuations of 〈θ̃ik , x〉 around
√

1 + bk〈θik , x〉 are of the order
√

1
m∨n .
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Proof of Theorem 23. By a simple computation (see Lemma 8 and the derivation

of (6.6) in [56]), the following identity holds

〈
θ̃ik −

√
1 + bkθik , x

〉
=

ρk(x)√
1 + bk + ρk(x)

−
√

1 + bk√
1 + bk + ρk(x)

(√
1 + bk + ρk(x) +

√
1 + bk

)ρk(θik) 〈θik , x〉 , (4.3.16)

where ρk(x) :=
〈
(P̃k − (1 + bk)Pk)θik , x

〉
, x ∈ Rm+n. In what follows, assume that

‖x‖ = 1. By the bounds of theorems 21 and 22, with probability at least 1− e−t :

|ρk(x)| ≤ Dγ
τ
√
t

ḡk

(τ√m ∨ n+ τ
√
t

ḡk
+ 1
)
.

The assumption E‖X‖ ≤ (1 − γ) ḡk
2

implies that τ
√
m ∨ n . ḡk. Therefore, if t

satisfies the assumption τ
√
t

ḡk
≤ cγ for a sufficiently small constant cγ > 0, then we have

|ρk(x)| ≤ γ/2. By the assumption that 1+bk ≥ γ, this implies that 1+bk+ρk(x) ≥ γ/2.

Thus, it easily follows from identity (4.3.16) that with probability at least 1− 2e−t∣∣∣∣〈θ̃ik −√1 + bkθik , x
〉∣∣∣∣ .γ

τ
√
t

ḡk

(τ√m ∨ n+ τ
√
t

ḡk
+ 1
)
.

It remains to show that the same bound holds when τ
√
t

ḡk
> cγ. In this case, we

simply have that∣∣∣∣〈θ̃ik −√1 + bkθik , x
〉∣∣∣∣ ≤ ‖θ̃ik‖+ (1 + bk)‖θik‖ ≤ 2 .γ

τ 2t

ḡ2
k

,

which implies the bound of the theorem.

Recall that θik := 1√
2

( uik

vik

)
, where uik , vik are left and right singular vectors of

A corresponding to its singular value µk. Theorem 23 easily implies the following

corollary.

Corollary 1. Under the conditions of Theorem 23, with probability at least 1− 1
m+n

,

max
{∥∥ũik −√1 + bkuik

∥∥
∞,
∥∥ṽik −√1 + bkvik

∥∥
∞

}
.

√
log(m+ n)

m ∨ n
.

130



For the proof, it is enough to take t = 2 log(m+ n), x = em+n
i , i = 1, . . . , (m+ n)

and to use the bound of Theorem 23 along with the union bound. Then recalling

that θik = 1√
2
(u′ik , v

′
ik

)′, Theorem 23 easily implies the claim.

Theorem 23 shows that the “naive estimator” 〈θ̃ik , x〉 of linear form 〈θik , x〉 could

be improved by reducing its bias that, in principle, could be done by its simple

rescaling 〈θ̃ik , x〉 7→ 〈(1 + bk)
−1/2θ̃ik , x〉. Of course, the difficulty with this approach

is related to the fact that the bias parameter bk is unknown. We will outline below

a simple approach based on repeated observations of matrix A. More specifically, let

Ã1 = A + X1 and Ã2 = A + X2 be two independent copies of Ã and denote B̃1 =

Λ(Ã1), B̃2 = Λ(Ã2). Let θ̃1
ik

and θ̃2
ik

be the eigenvectors of B̃1 and B̃2 corresponding

to their eigenvalues σ̃1
ik
, σ̃2

ik
. The signs of θ̃1

ik
and θ̃2

ik
are chosen so that

〈
θ̃1
ik
, θ̃2
ik

〉
≥ 0.

Let

b̃k :=
〈
θ̃1
ik
, θ̃2
ik

〉
− 1. (4.3.17)

Given γ > 0, define

θ̂
(γ)
ik

:=
θ̃1
ik√

1 + b̃k ∨
√
γ

2

.

Corollary 2. Under the assumptions of Theorem 23, there exists a constant Cγ > 0

such that for all x ∈ Rm+n and all t ≥ 1 with probability at least 1− e−t,

|b̂k − bk| ≤ Cγ
τ
√
t

ḡk

[τ√m ∨ n+ τ
√
t

ḡk
+ 1
]

(4.3.18)

and

|
〈
θ̂

(γ)
ik
− θik , x

〉
| ≤ Cγ

τ
√
t

ḡk

[τ√m ∨ n+ τ
√
t

ḡk
+ 1
]
‖x‖. (4.3.19)

Note that θ̂
(γ)
ik

is not necessarily a unit vector. However, its linear form provides

a better approximation of the linear forms of θik than in the case of vector θ̃1
ik

that

is properly normalized. Clearly, the result implies similar bounds for the singular

vectors û
(γ)
ik

and v̂
(γ)
ik

.
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Proof of Corollary 2. By a simple algebra,

|b̃k − bk| =
∣∣∣〈θ̃1

ik
, θ̃2
ik

〉
− (1 + bk)

∣∣∣ ≤ ∣∣∣√1 + bk
〈
θ̃1
ik
−
√

1 + bkθik , θik
〉∣∣∣

+
∣∣∣√1 + bk

〈
θ̃2
ik
−
√

1 + bkθik , θik
〉∣∣∣+

∣∣∣〈θ̃1
ik
−
√

1 + bkθik , θ̃
2
ik
−
√

1 + bkθik
〉∣∣∣.

Corollary 2 implies that with probability at least 1− e−t∣∣∣√1 + bk
〈
θ̃1
ik
−
√

1 + bkθik , θik
〉∣∣∣ .γ

τ
√
t

ḡk

[τ√m ∨ n+ τ
√
t

ḡk
+ 1
]
,

where we also used the fact that 1 + bk ∈ [0, 1]. A similar bound holds with the same

probability for ∣∣∣√1 + bk
〈
θ̃2
ik
−
√

1 + bkθik , θik
〉∣∣∣.

To control the remaining term∣∣∣〈θ̃1
ik
−
√

1 + bkθik , θ̃
2
ik
−
√

1 + bkθik
〉∣∣∣,

note that θ̃1
ik

and θ̃2
ik

are independent. Thus, applying the bound of Theorem 23

conditionally on θ̃2
ik
, we get that with probability at least 1− e−t∣∣∣〈θ̃1

ik
−
√

1 + bkθik , θ̃
2
ik
−
√

1 + bkθik
〉∣∣∣ .γ

τ
√
t

ḡk

[τ√m ∨ n+ τ
√
t

ḡk
+1
]
‖θ̃2

ik
−
√

1 + bkθik‖.

It remains to observe that

‖θ̃2
ik
−
√

1 + bkθik‖ ≤ 2

to complete the proof of bound (4.3.18).

Assume that ‖x‖ ≤ 1. Recall that under the assumptions of the corollary, τ
√
m ∨ n .γ

ḡk and, if τ
√
t

ḡk
≤ cγ for a sufficiently small constant cγ, then bound (4.3.18) implies

that |b̃k− bk| ≤ γ/4 (on the event of probability at least 1− e−t). Since 1 + bk ≥ γ/2,

on the same event we also have 1 + b̃k ≥ γ/4 implying that θ̂
(γ)
ik

=
θ̃1
ik√

1+b̃k
. Therefore,∣∣∣〈θ̂(γ)

ik
− θik , x

〉∣∣∣ = 1√
1+b̃k

∣∣∣〈θ̃1
ik
−
√

1 + b̃kθik , x
〉∣∣∣ (4.3.20)

.γ

∣∣∣〈θ̃1
ik
−
√

1 + bkθik , x
〉∣∣∣+

∣∣∣√1 + bk −
√

1 + b̃k

∣∣∣.
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The first term in the right hand side can be bounded using Theorem 23 and, for the

second term, ∣∣∣√1 + bk −
√

1 + b̃k

∣∣∣ =
|b̃k − bk|

√
1 + bk +

√
1 + b̃k

.γ |b̃k − bk|,

so bound (4.3.18) can be used. Substituting these bounds in (4.3.20), we derive

(4.3.19) in the case when τ
√
t

ḡk
≤ cγ.

In the opposite case, when τ
√
t

ḡk
> cγ, we have∣∣∣〈θ̂(γ)

ik
− θik , x

〉∣∣∣ ≤ ‖θ̂(γ)
ik
‖+ ‖θik‖ ≤

1√
1 + b̃k ∨

√
γ

2

+ 1 ≤ 2
√
γ

+ 1.

Therefore, ∣∣∣〈θ̂(γ)
ik
− θik , x

〉∣∣∣ .γ
τ
√
t

ḡk
,

which implies (4.3.19) in this case.
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