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SUMMARY

The primary objective of this thesis is to make a quantitative study of complex

biological networks. Our fundamental motivation is to obtain the statistical depen-

dency between modules by injecting external noise. To accomplish this, a deep study

of stochastic dynamical systems would be essential. The first chapter is about the

stochastic dynamical system theory. The classical estimation of invariant measures

of Fokker-Planck equations is improved by the level set method. Further, we develop

a discrete Fokker-Planck-type equation to study the discrete stochastic dynamical

systems. In the second part, we quantify systematic measures including degeneracy,

complexity and robustness. We also provide a series of results on their properties and

the connection between them. Then we apply our theory to the JAK-STAT signaling

pathway network.
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CHAPTER I

INTRODUCTION

In this dissertation, we shall study the stochastic dynamical systems and investigate

their applications to the complex biological networks. Stochastic dynamical systems

are dynamical systems subjected to the effects of noise. Non-trivial effects of stochas-

tic perturbation in dynamical systems have been of interest for decades. Besides

theoretical problems in stochastic dynamical systems, we are particularly interested

in activating complex biology networks by external fluctuations and quantifying their

systematic measures. Problems in system biology are often challenging due to the

complexity of biological networks. By depicting an overall view of complex biolog-

ical networks, systematic measures describe the macroscale behaviors of biological

networks. We will establish a mathematical framework of systematic measures of

complex biological network including degeneracy, complexity and robustness based

on our study in stochastic dynamical systems.

This dissertation consists of three chapters. Chapter I serves as the introduction.

The main objects of study in chapter II are the stochastic dynamical system the-

ory. Problems in both ODE systems and discrete dynamical systems are extensively

studied. Chapter III is dedicated to the systematic measures of complex biological

networks. We rigorously characterize the definitions of some systematic measures

and prove some theoretical issues like the connection between distinct systematic

measures.

1.1 Stochastic Dynamical Systems

A dynamical system consists of a state space and a rule for time evolution on this state

space. For more than a century, problems in dynamical systems have emerged from
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numerous scientific areas from classical mechanics to cell biology. In the real world,

dynamical systems often undergo fluctuations, which leads to the study of stochastic

dynamical systems. The stochastic dynamical system theory, or the stochastic pertur-

bation of dynamical systems, has been extensively investigated for decades. We refer

the readers to [26, 4, 40] for the stochastic perturbation problems in ODE systems. It

has been known for a long time that the time evolution of probability density function

in stochastic perturbation problems can be described by Fokker-Planck equation [56].

The Fokker-Planck equation often admits a unique invariant measure [7]. However,

most existing results are made by assuming that one or more equilibrium points are

fixed. In constrast, when the dynamics of underlying ODE systems become more

complex, only limited results concerning the invariant measures of Fokker-Planck

equations exist.

Discrete stochastic dynamical system also gains popularity because of its rich

mathematical properties and strong relevance in applications. For the stochastic

problems on the discrete setting, Markov chains have been studied for more than

a century. However, to the best of our knowledge, the Fokker-Planck equation on

a graph has not been established. The lack of a proper Fokker-Planck equation on

a graph leads to two problems. First, Fokker-Planck equation has rich geometric

features; see [37, 52, 70, 71]. Without a discrete Fokker-Planck-type formalism, all

these fundamental connections between Fokker-Planck equation, entropy and optimal

transport can not be generalized to discrete spaces. Second, if we apply spatial

discretization schemes to Fokker-Planck equation to obtain their counterparts for

discrete state spaces, many problems will arise. For instance, commonly used linear

discretization schemes often lead to steady states that are different from Gibbs density,

which contradicts the observations in statistical mechanics.

A variety of problems mentioned above are studied in Chapter II.
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1.1.1 Invariant Measures of Stochastic ODE systems

In Chapter II we first consider an ODE system

x′ = f(x) (1.1.1)

for a continuous vector field f(x) on RN . Let σ(x) be a N × N matrix, dWt be

the N -dimensional white noise, ϵ be a positive constant. Under additive white noise

perturbations σdWt, we obtain a stochastic differential equation (SDE).

dX = f(X) + ϵσ(x)dWt , (1.1.2)

which is also called stochastic ODE system in some literatures.

The time evolution of the probability density function associated with the SDE

(1.1.2) satisfies the following Fokker-Planck equation (FPE).

ρt =
1

2
ϵ2

n∑
i,j=1

∂ij(aijρ) −
n∑

i=1

∂i(fρ) := Lϵρ (1.1.3)

where {aij(x)}N
i,j=1 := A(x) := σ(x)σT (x) is a N×N symmetric positive semi-definite

matrix. The operator Lϵ is called Fokker-Planck operator. Conventionally, scalar

functions and vector fields are denoted by lower case letters f , while random variables

are written in upper case letters. We also denote the i-th component of x by xi and

the i-th partial derivative of f by ∂if .

Remark 1.1.1. The so-called white noise is the generalized mean-square derivative of

the Brownian motion. A Brownian motion Wt is an independent increment stochastic

process with

W0 = 0

Wt − Ws ∼ N(0, t − s)

where N(µ, σ2) is the normal distribution with mean µ and variance σ.

3



Equation (1.1.2) is a conventional expression of the stochastic process Xt. The

formal integral equation of Xt is

Xt+s − Xt =

∫ t+s

t

f(Xu)du +

∫ t+s

t

ϵσ(x)dWt

where the integral notion with dWt means the following Ito stochastic integral:∫ t

0

HtdWt = lim
||πn||→0

∑
[ti−1,ti]∈πn

Hti−1
(Wti − Wti−1

)

in which πn = {0 = t0 ≤ t1 ≤ · · · ≤ tn = T} is a partition of [0, T ]. ||πn|| means the

length of maximal interval in the partition:

||πn|| = max
i

(ti − ti−1)

For the rigorous definition of Brownian motion, see [38].

Under certain conditions, Fokker-Planck equation (1.1.3) admits a unique invari-

ant measure µϵ for each ϵ > 0. The existence, uniqueness and regularity of such

invariant measure are overviewed in 2.1.1.

Properties of invariant measures µϵ has been extensively studied. The primary

approach introduced by the classical theory, or Freidlin-Wentzell theory, is called

quasi-potential method. Quasi-potential method proves that for any set P ⊂ RN

that does not intersect with any attractor of (1.1.1), a constant V > 0 exists such

that

lim
ϵ→0

ϵ2 log µϵ(P ) = V

[26]. Other results, such as the first exit time, can also be obtained by quasi-potential

methods [16].

In this dissertation, we improve the study to invariant measures of Fokker-Planck

equations by investigating level sets of Lyapunov functions. This method is inspired

by [33]. The main results of stochastic ODE problems are outlined as follow.
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1. Theorem 2.1.18 proves that invariant measure µϵ concentrates at ϵ-small neigh-

borhood of the global attractor. i.e. For any δ > 0 there exists constant M

such that

µϵ({x|dist(x,K) ≤ Mϵ}) ≥ 1 − δ .

2. In average sense, the mean square displacement is bounded from both below

and above. Note that the mean square displacement of µϵ is

V (ϵ) =

∫
RN

dist2(x,K)uϵ(x)dx . (1.1.4)

In Theorem 2.1.23 we proved that under certain conditions there exists V1, V2 >

0 such that

V1ϵ
2 ≤ V (ϵ) ≤ V2ϵ

2

3. Lastly, the concentration of invariant measure reveals interesting connections

between the differential entropy and dimension of attractors. In Theorem 2.1.26

we prove

lim
ϵ→0

Ent(uϵ(x))

− log ϵ
≥ N − d (1.1.5)

for regular attractors, where d is the Minkowski dimension of the global attrac-

tor. This entropy-dimension relation will be used in our biological application

extensively.

1.1.2 Discrete Fokker-Planck-Type Equations

The rest part of Chapter II is dedicated to the discrete stochastic systems. Consider

a finite graph G = (V, E) associated with a potential function Ψ. Assume that V is

a finite vertices set V = {a1, · · · , aN}. Potential function Ψ generates a “gradient
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like” Markov chain Xt naturally with the following transition rate.

Pr(Xt+h = aj|Xt = ai) (1.1.6)

=



(Ψi(t) − Ψj(t))h + o(h), if j ∈ N(i), Ψj(t) < Ψi(t),

1 −
∑

k∈N(i),Ψk(t)<Ψi(t)

(Ψi(t) − Ψk(t))h + o(h) if j = i,

0, otherwise,

(1.1.7)

where N(i) := {aj|{ai, aj} ∈ E}.

How to inject external noise into this “gradient flows” on graphs is an interesting

problem. Unlike an ODE system, there is no well recognized “white noise” in the

discrete settings. The linear discretization of a continuous Fokker-Planck equation

could lead to undesired results, such as the inconsistency of invariant measure proved

in 2.2.1.

We solve this problem by discretizing Otto’s calculus, which establish the geo-

metric structure about Fokker-Planck equations and free energy functional. Fokker-

Planck equation is the gradient flow of free energy functional on 2-Wasserstein metric

space [52]. A Fokker-Planck-type equation is proposed on finite graph by taking

upwind discretization of Otto’s procedure. Let ρ = {ρi}N
i=1 be the probability distri-

bution on the graph G. We obtain the following Fokker-Planck type equation.

dρi

dt
=

∑
j∈N(i),Ψj>Ψi

((Ψj + β log ρj) − (Ψi + β log ρi))ρj

+
∑

j∈N(i),Ψj<Ψi

((Ψj + β log ρj) − (Ψi + β log ρi))ρi

+
∑

j∈N(i),Ψj=Ψi

β(ρj − ρi)

(1.1.8)

for i = 1, 2 · · · , N , where β is the magnitude of noise. We prove the following prop-

erties of equation (2.2.7).

1. Equation (2.2.7) admits a unique solution ρ(t). As t → ∞, ρ(t) converges to

the Gibbs distribution.
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2. The convergence rate to Gibbs distribution is exponential.

3. Equation (2.2.7) is the gradient flow of F (ρ) on certain Riemannian manifolds,

where F (ρ) :=
∑N

i=1 ρiΨi + βρi log ρi is the discrete free energy defined on the

graph G.

1.2 Systematic Measures of Biological Networks

Chapter III is dedicated to the quantitative study of systematic features of complex bi-

ological networks. The concept of modular biology has been proposed and extensively

investigated in the past decades. Functional modules in cells are created by inter-

acting molecules that function in a semi-autonomous fashion. In complex biological

networks, modules are functionally correlated. To better understand the interactions

between modules of complex biological networks, it is necessary to quantitatively

study systemic properties such as evolvability, robustness, complexity, degeneracy

and redundancy.

The notation of degeneracy was first introduced in [65], and the robustness was

studied in [42]. Essentially, the structural complexity measures the magnitude of

functional integration and local segregation of sub-systems; the degeneracy measures

the capacity of elements that are structurally different to perform the same func-

tion, while the robustness measures the capacity of performing similar function under

perturbation. Furthermore, these systematic measures are not independent. It has

already been observed via numerical simulations for neural networks that high de-

generacy not only yields high robustness, but also it is accompanied by an increase

in structural complexity [66].

As increasingly biological phenomena are being observed, a rigorous study of sys-

tematic measures in biological networks is imperative. Although some features like

regulation and robustness of biochemical networks of signal transduction have been

studied quantitatively [42, 57], the features of interest here, such as degeneracy and
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complexity, have not been formalized mathematically in the general context. Thus,

an important theoretical problem is to explore and analyze the role degeneracy plays

in general biological networks modeled by differential equations. A mathematical

challenge is to generalize the notion of degeneracy and study its connection with

robustness and structural complexity of the networks.

The quantifications and further studies of systematic features of biological net-

work rely on our theoretical work in stochastic dynamical systems. Our method of

measuring this interconnection is partially inspired by [66]. By injecting external fluc-

tuation into the networks, the connections are activated and the mutual information

among modules are able to be measured. The mutual information shared between

two modules indicates the level of mutual dependence of them. In ODE based mod-

els, such mutual informations are taken between margins of the invariant measure of

corresponding stochastic ODEs. Although the invariant measure of ODE systems can

be singular, while in most scenarios, the invariant measures of stochastic ODEs are

smooth and unique. Take stochastic ODE (1.1.2) for an example. Let µ1, µ2 be the

margins of µϵ on two subspaces X1 and X2. Then the mutual information MI(X1; X2)

between µ1 and µ2 indicates the codependency between modules corresponding to X1

and X2.

Such mutual informations are used to quantify degeneracy and complexity. Ac-

cording to [66], the degeneracy is high if the average mutual information between

input and output components is greater than what would be expected from a linear

change due to subset size; the complexity is high if different input components can

behave coherently. The degeneracy and complexity are characterized as combinations

of mutual informations between different modules in a following way.

Let {I,O} be an input-output decomposition of the variable set. Then D(k)

indicates the degeneracy with respect to a k-decomposition of I: I = Ik ∪ Ic
k, where
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0 ≤ k ≤ |I|.

D(k) = MI(I; Ik;O) = MI(Ik;O) + MI(Ic
k;O) − MI(I;O). (1.2.1)

The degeneracy with respect to decomposition {I,O} is

D(O) = ⟨MI(I; Ik,O)⟩ =
∑
Ik

1

2Cn
k

max{MI(I; Ik;O), 0} . (1.2.2)

In addition, C(O) means the complexity with respect to decomposition {I,O}.

C(O) = ⟨MI(Ik; I
c
k)⟩ =

∑
Ik

1

2Cn
k

MI(Ik; I
c
k). (1.2.3)

Another systematic feature is the robustness, which is measured by the strength

of its attractor, either in a uniform way or in an average way. Further, as suggested

by [42], the robustness is not always equivalent to the stability. If the performance

function of a system is known, then we can define the functional robustness. The

detailed definitions of robustness are made in Section 3.2.2.

The properties of degeneracy, complexity and robustness are also extensively stud-

ied in this dissertation. It is believed that degeneracy, complexity and robustness are

not isolated concepts. Many simulations and experiments suggest certain internal

connections among them (see [19, 63]). We will show that these relationships, al-

ready observed in biological experiments, can be verified in our mathematical frame-

work of degeneracy, complexity and robustness. By applying the results in stochastic

dynamical systems and information theory, we prove the following main results

1. We prove equation (3.4.1), which says that the complexity is larger than the

degeneracy. Hence high degeneracy always yields high complexity.

2. In Theorem 3.4.2 we prove that a robust system with twisted attractor has

positive degeneracy.

3. A robust system with stable equilibrium has position degeneracy under certain

conditions (Theorem 3.4.7). The conditions are given in Equation (3.4.5).

9



Another interesting problem is to estimate the systematic measures from the net-

work structure and the reaction parameters. We illustrate by some examples that it

is possible to conclude some of its systematic features just from the structure of the

network and the rate of the reactions.

We apply our theory in two examples. The first example is a limit cycle in a

Lotka-Volterra equation, as an example of twisted attractor. The second example

is a JAK-STAT crosstalk network. The JAK-STAT pathway is an intracellular sig-

naling pathway in which a member of the JAK family of kinases is activated by

phosphorylation following ligation of the receptor with extra cellular cytokine. In the

second example, we find that interacting input sets lead to high degeneracy, while

independent or redundant input sets lead to low degeneracy.

In the end, we give some discussions on how to extend our theory to discrete

dynamical systems, including space-discretized and time-discretized systems. By in-

troducing external noise, we can eliminate the singularity and non-uniqueness of the

invariant measure so that the definition of systematic measures could be extent nat-

urally.

Chapter III is organized in the following way: Section 3.1 outlines the classical

theory and recent progress of the biochemical reaction networks. In section 3.2, we

introduce the definition of systematic measures, including degeneracy, complexity

and robustness. The robustness is particularly discussed in section 3.3. Section 3.4

is dedicated to the connections between degeneracy, complexity and robustness. As

a real-world example, the JAK-STAT crosstalk network is studied in section 3.5 and

extended discussions are given in section 3.6. In the end, section 3.7 presents a discrete

model of biological network.
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CHAPTER II

STOCHASTIC PERTURBATION THEORY

This chapter focuses on the theoretical results of stochastic dynamical systems. A

stochastic dynamical system is a dynamical system subjected to random perturba-

tions. It can be studied either pathwisely or in an average sense. We will primar-

ily study the Fokker-Planck equations and their invariant measures (i.e. in average

sense). Both continuous and discrete cases will be covered.
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2.1 Stochastic perturbation to ODE systems and Fokker-
Planck equations

2.1.1 Background : existence, uniqueness and regularity of invariant mea-
sure

As mentioned in the introduction, we consider the following stochastic ODE systems

(1.1.2).

dX = f(X) + ϵσ(x)dWt , (2.1.1)

where f(x) is a vector field on RN , σ(x) is a N ×N matrix, ϵ is a positive parameter

and dWt is a N -dimensional white noise.

Fokker-Planck equation (FPE) (1.1.3) describes the time evolution of the proba-

bility density function.

ρt =
1

2
ϵ2

n∑
i,j=1

∂ij(aijρ) −
n∑

i=1

∂i(fρ) := Lϵρ (2.1.2)

where {aij(x)}N
i,j=1 := A(x) := σ(x)σT (x).

We first study the existence, uniqueness and regularity of invariant measures of

the Fokker-Planck equation (1.1.3).

It is known that the stochastic differential equation (1.1.2) admits a stationary

density function ρϵ, where ϵ is a positive parameter representing the magnitude of

perturbations. ρϵ satisfies the following stationary Fokker-Planck equation.

Lϵρϵ = 0 ,

∫
ρϵdx = 1 , u ≥ 0 . (2.1.3)

The Fokker-Planck operator Lϵ has an adjoint operator L∗
ϵ :

L∗
ϵ(v) =

1

2
ϵ2

N∑
i,j=1

aij∂ijv +
N∑

i=1

fi∂iv . (2.1.4)

If µϵ is a probability measure solve the Fokker-Planck equation in the weak sense.

i.e. µϵ satisfies ∫
L∗

ϵh(x)dµ = 0 , ∀h(x) ∈ C∞
0 (RN) ,
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then µϵ is called a measure solution, or ϵ-invariant measure .

The existence, uniqueness and regularity of the invariant measure of the Fokker-

Planck operator in compact set can be obtained by the classical elliptic partial dif-

ferential equation theory. For the similar results in Rn, things are more complicated.

The existence, uniqueness and regularity of the stationary Fokker-Planck equation

in Rn are extensively studied in several publications including [9, 33]. Recall the

following Theorem from [33]:

Theorem 2.1.1. Assume the following conditions

1. fi(x) ∈ Lp
loc(RN), aij(x) ∈ W 1,p

loc (RN) for all i, j, where p > N is an integer

2. There exists Lyapunov function U(x) and Lyapunov constant γ > 0 such that

L∗
ϵU(x) ≤ −γ

for all x with sufficient large norm |x|.

3. U(x) → ∞ as |x| → ∞.

Then (2.1.3) admits a unique weak solution with density function uϵ(x) ∈ W 1,p
loc (RN).

In this dissertation, we make the following stronger hypotheses about the vector

field f and the perturbation coefficient matrix A because we need to study a family

of steady-state Fokker-Planck equations with different parameters ϵ.

Assumption (H1). • f(x) and σ(x) is smooth on Rn; and

•

f(x) · x

|x|
≤ −γ

for some constant γ > 0 and for all x with |x| sufficiently large.

• aij(x) is uniformly bounded.

13



Then we can conclude the existence, uniqueness and regularity easily:

Theorem 2.1.2. Assume that (H1) holds on equation (1.1.3), then for any ϵ > 0,

(2.1.3) admits a unique measure solution µϵ whose density function uϵ(x) is also

smooth.

Proof. Let U(x) = |x|2. Then we find that

L∗
ϵU(x) ≤ 1

2
ϵ2TrA(x) − 2γ|x|

Since aij(x) is uniformly bounded, we can always find sufficient large R such that

L∗
ϵU(x) < 0 for all |x| > R. It follows from Theorem 2.1.1 that there exists a unique

measure solution with density function uϵ(x) ∈ W 1,p
loc (RN).

Further, it follows from the well-known higher interior regularity theorem (such

as Theorem 8.14 in [29]) that uϵ(x) ∈ C2(Ω) for every compact set Ω with smooth

boundary.

Remark that while the ODE (1.1.1) may have many complicated invariant mea-

sures without even having density functions, the steady-state of the SDE (1.1.2) is

nevertheless unique and smooth.

2.1.2 Classical results: Freidlin-Wentzell theory

This subsection serves as a review of classical theory of random perturbations of

dynamical systems, or Freidlin-Wentzell theory. This classical theory was introduced

in the 1970s and 1980s (see [26]), in which the fundamental notion is the quasi-

potential function.

As a function associated with stochastic differential equation (1.1.2), quasi-potential

function is defined in three steps. First we characterize the Lagrangian and Hamil-

tonian with respect to the equation (1.1.2). Then we integrate the Lagrangian to

obtain the action functional. Lastly, the quasi-potential is the minimum of action

functional.
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We consider the following Lagrangian

L(x, v) =
1

2
(f(x) − v)T A−1(f(x) − v) (2.1.5)

and the corresponding Hamiltonian

H(x, p) =
1

2
pT Ap + pT f(x) . (2.1.6)

The vector field f(x) above comes from equation (1.1.1) or (1.1.2). Matrix A =

A(x) = {aij(x)}N
i,j=1 = σσT is the same matrix as in the Fokker-Planck equation. x

means the position. p and v are associated variables that will be explained later.

The action functional is the integral of the above Lagrangian. Let ϕ(t) be an

absolutely continuous function with ϕ(T1) = x, ϕ(T2) = y. Then the action functional

ST1T2(ϕ(x)) is defined by

ST1T2(ϕ) =

∫ T2

T1

L(ϕ(t), ϕ′(t))dt , (2.1.7)

where L(x, v) is the Lagrangian from (2.1.5). Action functional plays a fundamental

role in the Freidlin-Wentzell theory.

The quasi-potential function is defined as the minimum of action functional.

V (x, y) = inf{ST1T2(ϕ)|ϕ(T1) = x, ϕ(T2) = y, T > 0} . (2.1.8)

If the ODE systems (1.1.1) admits a unique stable equilibrium position x0, the

following function V (x) is conventionally used as the quasi-potential function.

V (x) = inf{ST1T2(ϕ)|ϕ(T1) = x0, ϕ(T2) = x, T > 0} . (2.1.9)

The following two lemmas describe basic properties of the quasi-potential function.

The first one comes from Lemma 2.1 of [26], Ch.3, which gives the existence of

minimal path. In this lemma we consider paths in compact set Ω ⊂ Rn and denote

the space of continuous function C([a, b], Ω̄) by C[a, b] for simplicity.
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Lemma 2.1.3. For −∞ < a < b < ∞, denote

Ib
a = Ib

a(ϕ) =

∫ b

a

L(ϕ(t), ϕ′(t))dt .

Then Ib
a is lower semicontinuous on C[a, b]. Moreover, if K is a compact subset of

Ω, then the set

{ϕ(t) ∈ C[a, b]| ϕ(a) ∈ K, Ib
a(ϕ) ≤ s, s > 0}

is compact in C[a, b].

The second lemma characterizes the regularity of quasi-potential function.

Lemma 2.1.4. In any compact area Ω̄, the quasi-potential function is Lipschitz con-

tinuous.

Proof. It is sufficient to show there exists a number L > 0, such that

V (x, z) − V (y, z) ≤ L|x − y| .

Without loss of generality, we assume V (x, z) ≤ V (y, z). Let ϕ(t) be a minimal path

connecting z and x such that ϕ(T1) = 0; ϕ(T2) = x (The existence of the minimal

path is guaranteed by Lemma 2.1.3 ). Then we can extend the path from x to y with

linear interpolation:

ϕ(T + t) = x + t
y − x

|x − y|
; 0 ≤ t ≤ |y − x| .

Suppose ∥A∥ ≤ M , |F (x)| ≤ N for x ∈ Ω, then clearly∫ T+t

T

L(ϕ(τ), ϕ′(τ))dτ ≤ M(N + 1)2|x − y|

It follows that

V (y, z) ≤
∫ T+t

0

L(ϕ(τ), ϕ′(τ))dτ ≤ V (x) + M(N + 1)2|x − y|

This implies L = M(N + 1)2. Hence V (x, y) is Lipschitz continuous.
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Now we introduce some important results of the Freidlin-Wentzell theory. First

we assume the existence of a stable equilibrium.

Assumption (H2). 1. The assumption (H1) is satisfied;

2. The system (1.1.1) has a unique stable equilibrium point x0.

According to [26], the following Theorem (Theorem 4.3, Chapter 3) holds.

Theorem 2.1.5. Assume (H2) holds. Then

lim
ϵ→0

ϵ2 ln µϵ(D) = − inf
x∈D

V (x)

for every compact set D.

Theorem 2.1.5 can be extended to more general scenarios. Consider an ODE

system (1.1.1) and its stochastic perturbation (1.1.2) that satisfy the following relaxed

assumptions.

Assumption (H3). • The system (1.1.1) is defined on an compact manifold D;

• The system (1.1.1) has k stable invariant sets K1, · · · , Kk;

• ∀x ∈ Ki, y /∈ Ki, the quasi-potential function VD(x, y) ̸= 0 for any compact set

D, where

VD(x, y) = inf{ST1T2(ϕ)|ϕ(T1) = x, ϕ(T2) = y, ϕ ⊂ D, T > 0} ,

where S0T (ϕ) is the action functional;

• ∀x ∈ Ki, y ∈ Ki, VD(x, y);

• Every ω-limit set of the system (1.1.1) lies entirely in one of the Ki.

In addition, for general stochastic dynamical systems, we introduce the following

new notations . Let D be a compact set in Rn, then for x, y ∈ D

VD(x, y) = inf{S0T (ϕ)|ϕ(0) = x, ϕ(T ) = y, T > 0, ϕ ⊂ D}
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and

VD(Ki, Kj) = VD(x, y)|x∈Ki,y∈K(j)

VD(x, Ki) = VD(x, y)|y∈K(i)

VD(Ki, y) = VD(x, y)|x∈K(i)

Definition 2.1.1. Assume L is a finite set and let W be a subset of L, then the

following directed graph is called a W -graph if the following conditions hold:

• It consists of arrows m → n,m ∈ L \ W,n ∈ W ;

• Every point m ∈ L/W is the initial point of exactly one arrow on the graph.

We denote by G(W ) the set of W -graphs. It follows from the definition that there

are no closed cycles in the graph.

The invariant sets Ki are labeled by the following function derived from the W-

graph.

W (Ki) = min
g∈G({i})

∑
(m→n)∈g

VD(Km, Kn)

There exists at least one i such that W (Ki) is minimal. Without loss of generality,

assume

W (Kj1) = · · · = W (Kjk
) = min{W (K1), · · · ,W (Kn)}

be the sets of minimal attractors. Let K̄ = {Kj1 , · · · , Kjk
} denote the union of the

minimal attractors.

The following theorem in [26] extends Theorem 2.1.5.

Theorem 2.1.6. Denote

W (x) = min
i
{W (Ki) + VD(Ki, x)} .

Let µϵ be the invariant measure of the Fokker-Planck equation (1.1.3) and let γ be

any positive number. then for any open set A ⊂ D with A∩K̄ = ∅, there exists ϵ0 > 0
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such that for all ϵ ≤ ϵ0, we have

exp{−ϵ−1(W (A) − M + γ)} ≤ µϵ(A) ≤ exp{−ϵ−1(W (A) − M − γ)}

where W (A) = inf{W (x)|x ∈ A} and M = mini W (Ki).

Note that the original Freidlin-Wentzell theory is established for stochastic dy-

namical systems on a compact manifold D. But it is trivial to generalize these results

to stochastic dynamical systems on RN . This generalization is guaranteed by the

following lemma.

Lemma 2.1.7. If a system satisfies the general assumption (H1), then for any com-

pact set D, we can always find a compact set D1, such that D ⊂ D1 and

VD1(x, y) = inf{ST1T2(ϕ) |x, y ∈ D,ϕ(T1) = x, ϕ(T2) = y, T > 0}

Proof. Suppose such compact set does not exist, then we can find a sequence of

smooth curves ϕn(t), such that ϕn(−T ) = x, ϕn(0) = y for each n, and S−T,0(ϕn+1(t)) ≤

S0T (ϕn(t)) for all n, and there exist a sequence αn, such that ϕn(αn) /∈ B(0, n).

However, from the assmuption (H1), there exists R > 0 and σ < 0, such that

f(x) · x
|x| ≤ σ < 0 for all |x| > R. Let τn be the first arrival time of ϕn to the circle

||x|| = R, or

τn = inf
t<0

{||ϕn(t)|| = R}

Denote the “increasing set”

Tn = {t| − T < t < 0, f(ϕn(t)) · ϕn(t) ≥ 0} .
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for each n > R. Then

S−T,0(ϕn) =

∫ 0

−T

1

2
||f(ϕn(t)) − ϕ′

n(t)||2dt

≥
∫ αn

τn

1

2
||f(ϕn(t)) − ϕ′

n(t)||2dt

≥
∫

[τn,αn]∩Tn

1

2
||f(ϕn(t)) − ϕ′

n(t)||2dt

≥
∫

[τn,αn]∩Tn

1

2
||f(ϕn(t))||2dt

≥
∫ n

R

1

2
x2dx =

1

6
(n3 − R3) .

It follows from above that VD(x, y) can be arbitrarily large. On the other hand,

f(x) is Lipschitz continuous in D, so VD(x, y) ≤ Lr(D), where r(D) = maxx,y∈D ||x−

y||. This makes a contradiction. Therefore we can always find bounded set D1 such

that

VD1(x, y) = inf{S−T,0(ϕ)|x, y ∈ D, ϕ(−T ) = x, ϕ(0) = y, T > 0}

Hence it is safe to generalize Theorem 2.1.6 from compact domains to Rn.

Theorem 2.1.8. If stochastic dynamical system (1.1.2) defined on RN admits an

invariant measure, then Theorem 2.1.6 still holds.

Proof. To show this, we define a family of compact sets Ωk such that

D1 ⊂ Ω1 ⊂ · · ·Ωk ⊂ · · ·

and

lim
k→∞

Ωk = RN

Let uk(x) be the density of invariant measure µk of (1.1.2) on Ωk for each k. Then

it is sufficient to show that µk(K) → µ(K) for any open set K ⊂ K̄ ⊂ D1, where µ
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is the invariant measure of (1.1.1) on RN and K̄ is another open set. This is obvious

because firstly we have Harnack inequality:

max
x∈K

uk(x) ≤ C min
x∈K

uk(x)

for every k, where C only depends on the operator L and the set K. Then minx∈K uk(x)

is bounded by (λ(K))−1 where λ is the Lebesgue measure. Hence uk is uniformly

bounded.

Secondly, from Holder estimation (e.g. Theorem 8.24 in [29]), we have

||uk||Cα(K) ≤ C1(||uk||L2(K̄) + m) ,

where C1 and m are independent of k. So uk are also equicontinuous. From Arzela-

Ascoli Theorem, {uk(x)}∞k=1 have a uniformly convergence subsequence. Since there

exists a unique solution u in RN , we may assume without loss of generality that

uk → u up to a subsequence, from which the theorem follows.

Both Theorem 2.1.5 and Theorem 2.1.6 concern the limit case when ϵ → 0. These

results can be used to estimate some rare events such as first passage time. However,

they can not provide enough information for more subtle analysis, especially in the

small neighborhood of the attractor. The classical theory (Freidlin-Wentzell theory)

only gives limited approaches to calculate or approximate the density of invariant

measure. Some of them are reviewed below.

Theorem 2.1.9. If the quasi-potential function has second order derivatives in the

neighborhood of the unique attractor K, then there exists a continuous function z(x)

with z(0) = 1, such that

uϵ(x) =
1

K
z(x)e−V (x)/ϵ2 + O(ϵ2) ,

where V (x) = V (K, x) is the quasi-potential function.
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Theorem 2.1.9 requires the regularity of quasi-potential function. The regularity

issue is partially solved by the next theorem in [15]. If the Hamiltonian system refered

in the next theorem has stable manifold of class Cn, then it follows from [15] that the

quasi-potential function is of class Cn+1.

Theorem 2.1.10. Suppose x0 ∈ Ω and ϕ(t) is a minimizing path such that ϕ(−T ) ∈

M and ϕ(0) = x0, and

V (x0) =

∫ 0

−T

L(ϕ(t), ϕ′(t))dt .

If ϕ(t) ∈ Ω for all t ∈ [t1, t2], then on the interval [t1, t2], the functions

x(t) = ϕ(t), p(t) = Lv(ϕ(t), ϕ′(t))

are of Cn+1 and satisfy the Hamiltonian system

dx

dt
= Hp(x, p) (2.1.10)

dp

dt
= −Hx(x, p) (2.1.11)

H(x, p) ≡ 0 .

Theorem 2.1.9 can be derived by Theorem 2.1.10 in a following way.

Proof. Let uϵ(x) = 1
K

z(x)e−V (x)/ϵ2 . Then L∗uϵ(x) becomes

L∗uϵ(x) =
1

ϵ
e−V (x)/ϵ2z(x)(

1

2

N∑
i,j=1

aij∂iV ∂jV +
N∑

i=1

fi∂iV )

−e−V (x)/ϵ2((
N∑

i=1

(
N∑

j=1

aij∂iV + fi)∂iz) + z(x)(
N∑

i,j=1

∂i(aij)∂jV

+
1

2

N∑
i,j=1

aij∂ijV +
N∑

i=1

∂i(fi)))

+O(ϵ2e−V (x)/ϵ2) .

Since L∗
ϵuϵ(x) = 0, we obtain two equations. One being

1

2

N∑
i,j=1

aij∂ijV +
N∑

i=1

fi∂iV = 0 ,
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which is equivalent to

H(x,∇V ) := H(x, p) = 0

by the definition of Hamiltonian. The other equation is

(
N∑

i=1

(
N∑

j=1

aij∂jV +fi)∂iz)+z(x)(
N∑

i,j=1

∂iaij∂jV +
1

2

N∑
i,j=1

aij∂ijV +
N∑

i=1

∂ifi) = 0 . (2.1.12)

Note that V (x) is the quasi-potential function. Hence H(x, p) = 0 is always satisfied

because of Theorem 2.1.10. Further, z(x) in equation (2.1.12) can be solved locally

using the ray method provided in [48] as long as the second order derivatives of V (x)

is well defined. That completes the proof.

For the multi-attractor case, results in Theorem 2.1.6 and Theorem 2.1.9 can be

combined.

Proposition 2.1.11. If the quasi-potential function has continuous second order

derivatives, then the density function ρϵ(x) of invariant measure µϵ has the form

ρϵ(x) =
1

K
z(x)e−ϕ(x)/ϵ2 + O(ϵ2) ,

where ϕ(x) = W (x) − M and z(x) is a continuous function with z(0) = 1.

Only limited knowledge about the regularity of quasi-potential function exists.

For example, One known result comes from [15, 14].

Theorem 2.1.12. If K is a fixed point or a limit cycle and if f(x), A(x) are of Cn

continuous, then there exists a compact neighborhood N such that V (K, x) is of Cn+1

in N .

We want to mention that it is difficult to extend the above classical results even

to the case of systems with smooth invariant manifolds because it requires too much

information about the dynamics of the original dynamical system (1.1.1). Basically,

the regularity of quasi-potential function depends on the existence of stable manifold
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of the Hamiltonian system (2.1.10). However, such existence requires so much detail

about the system (1.1.1), which makes it difficult to conclude any useful results from

this approach. That’s why we need a series of new theorems by using the level set

method inspired by [33] in the next subsection.

2.1.3 More refined analysis: estimation in the vicinity of attractors

In this subsection we introduce a variety of improved results concerning the concen-

tration of invariant measures of Fokker-Planck equation (1.1.3). As mentioned in the

last subsection, the classical theory of stochastic dynamical system has certain lim-

itations. Although limit behaviors of invariant measures have been studied, limited

information about the invariant measures in the vicinity of attractors can be obtained.

To overcome this problem, we adopt the level set method introduced in [33]. Instead

of using Ito integrals, level set method studies Fokker-Planck equation on the level

sets of a Lyapunov function. New estimations of the invariant measure in the vicinity

of attractors will be introduced below.

Consider the ODE system (1.1.1) with an associated Lyapunov function defined

as follows.

Definition 2.1.2. A function U(x) is called Lyapunov function if

1. U(x) is C1 continuous, U(x) ≥ 0;

2. For any ρ > 0, there exists a τ > 0, such that

∇U(x) · f(x) ≤ −2τ

for every x ∈ RN such U(x) > ρ;

3. U(x) have finite first and second order derivatives in compact sets. i.e. there

exists a constant Γ that depends on K such that

|∇U(x)| < Γ , |Uij(x)| < Γ
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for every x ∈ K where K is a compact set.

Note that we still assume that condition (H1) holds. Hence the ball B(0, R) is

invariant with respect to the vector field f(x) in equation (1.1.1). In other words, all

ω-limit sets must lay in the ball B(0, R).

To conduct local analysis using level method, we assume the local condition (H4)

about the attractor of system (1.1.1) as follows.

Assumption (H4). 1. Equation (1.1.1) has a unique strong attractor K;

2. There exists a Lyapunov function as defined in Definition 2.1.2;

3. K is the ω-limit set;

4. There exist an open set O ⊃ K, such that in O;

5. U(x) is of class C2 continuous in O and there exists a positive constant L1 such

that

U(x) ≥ L1dist2(x,K) .

6. ∃γ, κ > 0 such that

−κ|∇U(x)|2 ≤ ∇U(x) · f(x) ≤ −2γ|∇U(x)|2 .

Remark 2.1.13. Note that U(x) takes value 0 at the global attractor and has second

order derivatives. From Taylor expansion, we can derive the following properties

about U(x) when x ∈ O.

1.

max
x∈O

Uxixj
(x) = D < ∞ ;

2. ∃γ, κ > 0 such that

−κ|∇U(x)|2 ≤ ∇U(x) · f(x) ≤ −2γ|∇U(x)|2 ;
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3. ∃L1, L2 > 0 such that

L1dist2(x,K) ≤ U(x) ≤ L2dist2(x,K) ;

4. ∃K1, K2 > 0 such that

K1dist(x,K) ≤ |∇U | ≤ K2dist(x,K) .

2.1.3.1 Concentration of Measure

The concentration of the ϵ-invariant measures will be proved here. First the estimation

in [26] is re-derived by a different approach. Then we prove a more accurate estimation

that most probability density concentrates in a ϵ-small neighborhood of the strong

attractor. Our approach is the level set method introduced in [33].

The first lemma is borrowed from [33] Lemma 2.3:

Lemma 2.1.14. Assume u is a weak solution of (1.1.3), then for any Lipschitz

domain Ω and a function F ∈ C2(Ω) having a constant value on each boundary

component of Ω,∫
Ω

(
N∑

i,j=1

1

2
ϵ2aij∂

2
ijF +

N∑
i=1

fi∂iF )udx =

∫
∂Ω

(
N∑

i=1

N∑
j=1

1

2
ϵ2aij∂iFνj)uds (2.1.13)

where {νj}N
j=1 denotes the unit outward normal vectors.

Rough estimations of ϵ-invariant measures will be given first. The basic strategy is

to first use the level sets of U(x) to estimate the invariant measure inside of B(0, 2R),

then use |x| as another Lyapunov function to estimate the invariant measure in the

complement of B(0, 2R). In some sense, this theorem reproduces the result in [26] by

a different approach.

Theorem 2.1.15. Under the condition (H1) and (H4), for any open neighborhood

N of K, there exists a positive number β > 0 and a ϵ0 > 0, such that

1 − µϵ(N) ≤ e−β/ϵ2

for all 0 < ϵ < ϵ0.
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Proof. Let Uρ = {x |U(x) ≤ ρ, and Γρ = {x |U(x) = ρ} be the level sets. We can

choose positive M such that U2ρM
⊂ O and UρM

⊂ N . Then it is sufficient to prove

1 − µϵ(UρM
) ≤ e−β/ϵ2

For any 0 < ρ0 < 2ρM , let ∆ρ be a small number such that ∆ρ ≤ ρ0. consider a

cut-off function

ϕ(ρ) =


0 ρ < ρ0

1
2∆ρ

(ρ − ρ0)
2 ρ0 < ρ < ρ0 + ∆ρ

ρ − ρ0 − 1
2
∆ρ ρ > ρ0 + ∆ρ

From Lemma 2.1.13, we have∫
U2ρM

ϕ′(U)(
N∑

i,j=1

1

2
ϵ2aij∂

2
ijU (2.1.14)

+
N∑

i=1

fi∂iU)udx +

∫
U2ρM

ϕ′(U)(
N∑

i,j=1

1

2
ϵ2aij∂iU∂jU)udx

=

∫
Γ2ρM

(
N∑

i=1

N∑
j=1

1

2
ϵ2aij∂iUνj)udx ≥ 0 .

By the definition of ϕ(ρ), it follows that∫
U2ρM

ϕ′(U)(
N∑

i,j=1

1

2
ϵ2aij∂

2
ijU +

N∑
i=1

fi∂iU)udx

=

∫
U2ρM

\Uρ0

ϕ′(U)(
N∑

i,j=1

1

2
ϵ2aij∂

2
ijU +

N∑
i=1

fi∂iU)udx

Note that 1
2
ϵ2{aij}N

i,j=1 has a small coefficient ϵ. Let

σ̄ = max
ij

{Aij}

and M1 = Dσ̄/γK2
1 , Then M1 > 0 and

N∑
i,j=1

1

2
ϵ2aij∂

2
ijU ≤ γ|∇U |2

for all x with dist(x,K) >
√

M1ϵ provided B(K,
√

M1ϵ) ⊂ O. Note that we can

always find ϵ1 > 0 such that B(K,
√

M1ϵ) ⊂ O for all 0 < ϵ < ϵ1, which means the

previous estimation is valid for all sufficient small ϵ.

27



Since U(x) is a Lyapunov function, we have

N∑
i,j=1

1

2
ϵ2aij∂

2
ijU +

N∑
i=1

fi∂iU ≤ −γ|∇U |2

It follows that ∫
U2ρM

\Uρ0

ϕ′(U)(
N∑

i,j=1

1

2
ϵ2aij∂

2
ijU +

N∑
i=1

fi∂iU)udx

≤ −γ

∫
U2ρM

\Uρ0

ϕ′(U)|∇U |2udx

≤ −γ

∫
U2ρM

\Uρ+∆ρ

u|∇U |2dx

≤ −γC1 max{|∇U(x)|2|x ∈ Uρ0+∆ρ\Uρ0}
∫

UρM
\Uρ0+∆ρ

udx ,

where C1 is a constant that satisfies

min |∇U(x)|2 ≥ C1 max |∇U(x)|2 ; x ∈ Uρ0+∆ρ\Uρ0 .

From the properties of U(x) it is easy to see that

C1 =
K2

1L1

K2
2L2

satisfies the requirement.

We now have ∫
U2ρM

\Uρ0+∆ρ

ϕ′(U)(
N∑

i,j=1

1

2
ϵ2aij∂

2
ijU +

N∑
i=1

fi∂iU)udx

≤ −γC1 max{|∇U(x)|2|x ∈ Uρ0+∆ρ\Uρ0}µϵ(U2ρM
\Uρ0)

On the other had, the boundedness of matrix A follows that∫
U2ρM

ϕ′′(U)
N∑

i,j=1

1

2
ϵ2aij∂iU∂jUudx =

∫
Uρ+∆ρ\Uρ

ϕ′′(U)
N∑

i,j=1

1

2
ϵ2aij∂iU∂jUudx

≤ 1

2∆ρ
ϵ2Ā max{|∇U(x)|2|x ∈ Uρ+∆ρ\Uρ}

∫
Uρ+∆ρ\Uρ

udx ,

where Ā is the upper bound of largest eigenvalue of matrix A(x).
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Combine previous two inequalities and equation (2.1.14), we obtain

−γC1µ(2UρM
\Uρ0+∆ρ) +

1

2∆ρ
ϵ2Aµ(Uρ0+∆ρ\Uρ) ≥ 0

Let F (ρ) = µ(U2ρM
\Uρ) and ρ = ρ0, the above becomes

−γC1F (ρ + ∆ρ) +
1

2∆ρ
ϵ2Ā(F (ρ) − F (ρ + ∆ρ)) ≥ 0 .

By taking limit ∆ρ → 0 in the above inequality, we now have

−γC1F (ρ) +
1

2
ϵ2Ā(−F ′(ρ)) ≥ 0

For any ρ1 with B(K,
√

M1ϵ) ⊂ Uρ1 , the Gronwall’s inequality yields

F (ρ) ≤ F (ρ1)e
− 2γC1

ϵ2Ā
(ρ−ρ1)

Let ρ1 = L2M1ϵ
2, from Remark 2.1.13, we have B(K,

√
M1ϵ) ⊂ Uρ1 and

F (ρM) ≤ F (ρ1)e
− 2γC1

ϵ2Ā
(ρM−ρ1) ≤ e−

2γC1
ϵ2Ā

(ρM−ρ1) .

There exists a small ϵ2 ≤ ρM/2L1M1 such that

F (ρM) ≤ e−
γC1ρM

ϵ2Ā .

Note that F (ρM) ≤ µϵ(U2ρM
\N), we obtain

µϵ(U2ρM
\N) ≤ e−

γC1ρM
ϵ2Ā . (2.1.15)

Let us estimate the probability measure µϵ(B(0, 2R)\U2ρM
). Since B(0, 2R) is not

a level set of U(x), we consider UM instead. The constant M is a large number such

that B(0, 2R) ⊂ UM . We denote the upper bound norm of first and second order

derivatives of U in UM as Γ. By repeating the cut-off function approach for ρ0 > ρM ,

it follows that

∫
UM

ϕ′(U)(
N∑

i,j=1

aij∂
2
ijU +

N∑
i=1

fi∂iU)udx +

∫
UM

ϕ′′(U)(
N∑

i,j=1

aij∂iU∂jU)udx ≥ 0 .

(2.1.16)
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i.e., ∫
UM

ϕ′(U)(
N∑

i,j=1

1

2
ϵ2aij∂

2
ijU +

N∑
i=1

fi∂iU)udx

=

∫
UM\Uρ0

ϕ′(U)(
N∑

i,j=1

1

2
ϵ2aij∂

2
ijU +

N∑
i=1

fi∂iU)udx

Since ρ0 > ρM , from Remark 2.1.13 there exists a fixed positive number τ such that

f · ∇U ≤ −2τ . Note that 1
2
ϵ2{aij}N

i,j=1 is a small matrix. Clearly there always exists

an ϵ3 > 0 such that for sufficiently small 0 < ϵ < ϵ3,

N∑
i,j=1

aij∂
2
ijU +

N∑
i=1

fi∂iU ≤ −τ

is satisfied. Then we obtain the estimation∫
UM\Uρ0

ϕ′(U)(
N∑

i,j=1

aij∂
2
ijU +

N∑
i=1

fi∂iU)udx ≤ −τ

∫
UM\Uρ0

ϕ′(U)udx

≤ −τ

∫
UM\Uρ+∆ρ

udx

≤ −τ

∫
UM\Uρ0

udx

= −τµϵ(UM\Uρ0) .

Meanwhile, the second integral in equation (2.1.16) satisfies∫
UM

ϕ′′(U)
N∑

i,j=1

aij∂iU∂jUudx =

∫
Uρ+∆ρ\Uρ

ϕ′′(U)
N∑

i,j=1

aij∂iU∂jUudx

≤ 1

2∆ρ
ϵ2A max{|∇U(x)|2|x ∈ Uρ+∆ρ\Uρ}

∫
Uρ+∆ρ\Uρ

udx

≤ 1

2∆ρ
ϵ2ĀΓ

∫
Uρ+∆ρ\Uρ

udx .

Combine previous two inequalities derived from (2.1.16), it is easy to see that

−τµ(UM\Uρ0+∆ρ) +
1

2∆ρ
ϵ2ĀΓµ(Uρ0+∆ρ\Uρ) ≥ 0 .

Denote H(ρ) = µ(RN\Uρ) and let ρ = ρ0, the above becomes

−τH(ρ + ∆ρ) +
1

2∆ρ
ϵ2ĀΓ(H(ρ) − H(ρ + ∆ρ)) ≥ 0 .
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By taking the limit ∆ρ → 0, we obtain

−τH(ρ) +
1

2
ϵ2ĀΓ(−H ′(ρ)) ≥ 0

It follows from the Gronwall’s inequality that

H(ρ) ≤ H(ρM)e−
2τ

ϵ2ĀΓ
(ρ−ρM )

which means

µϵ(B(0, 2R)\U2ρM
) ≤ µϵ(UM\U2ρM

) = H(2ρM) ≤ e−
2τρM
ϵ2AΓ . (2.1.17)

In the remaining part we will estimate µϵ(RN\B(0, 2R)). Let W (x) = |x| be the

new Lyapunov function, define the cut-off function ϕ(x) in the same way for each

|x| > R. Note that the absolute value of the second derivatives of W (x) are less than

1
|x| . By a similar approach one can derive that

∫
RN\Wx

ϕ′(W )(
N∑

i,j=1

1

2
ϵ2aij∂

2
ijW +

N∑
i=1

fi∂iW )udx ≤ −α

2

∫
RN\Wx

udx

for all 0 < ϵ < ϵ4, where

ϵ4 =

√
αR

2σ̄N2
.

The boundedness of A implies that∫
Wx+∆x\Wx

ϕ′′(W )
N∑

i,j=1

aij∂iW∂jWudx ≤ 1

2∆x
ϵ2A

∫
Wx+∆x\Wx

udx .

Let I(x) = µϵ(RN\Wx). By taking the limit as ∆x → 0, we obtain

I ′(x) ≤ − 2α

ϵ2A
I(x) .

It follows from the Gronwall inequality that

I(x) ≤ I(R)e−
2α

ϵ2A
(x−R) , (2.1.18)

which means

µϵ(RN\B(0, 2R)) ≤ e−
2αR
ϵ2A . (2.1.19)
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Combine equations (2.1.15), (2.1.17) and (2.1.19) all together, now we have

1 − µϵ(N) ≤ e−
τρM
ϵ2AΓ + e−

γC1ρM

ϵ2A + e−
2αR
ϵ2A

for all 0 < ϵ < min{ϵ1, ϵ2, ϵ3}. Since C1, ρM , A, γ, τ, R and Γ are all independent with

ϵ, let

β =
1

2
min{ τρM

ϵ2AΓ
,
γC1C2

ϵ2A
,
2αR

A
}

and

ϵ0 ≤ min{ϵ1, ϵ2, ϵ3, ϵ4

√
β

log 4
} .

Therefore,

1 − µϵ(N) ≤ e−β/ϵ2

Remark 2.1.16. Theorem 2.1.15 is similar but not same as the classical results. As

mentioned above, this theorem provides a rough estimation of the ϵ-invariant measure

in a fixed area when taking the limit ϵ → 0. The difference between Freidlin-Wentzell

quasi-potential method is that this theorem does not require the attractor laying in

any equivalent class of the quasi-potential function. This means the attractor can

have more complex structure. In fact, the conditions here are all about the existence

and regularity of Lyapunov function instead of the conditions of the attractor itself.

For large constant ρM , further estimations can be obtained as in the following

Corollary.

Corollary 2.1.17. For every positive number K, there exists constants β > 0 and

ϵ0 > 0 such that when ρ > K and Uρ ⊂ B(0, 2R),

1 − µϵ(Uρ) ≤ e−βρ/ϵ2

for all 0 < ϵ < ϵ0.
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Proof. First we choose a ρM such that U2ρM
⊂ O. Recall the proof in theorem 2.1.15.

When ρ1 < ρ < 2ρM , we have

1 − µϵ(Uρ) ≤ e−
2τC1
ϵ2Ā

(ρ−ρ1) + e−
τρM
ϵ2ĀΓ + e−

2αR
ϵ2Ā , (2.1.20)

where ρ1 = L2M1ϵ
2 is a constant depends on ϵ.

Note that ρ > K, one can choose small ϵ such that ρ1 < K. Then ρ > ρ1. Some

calculation implies that

e−
2τC1
ϵ2Ā

(ρ−ρ1) + e−
τρM
ϵ2ĀΓ + e−

2αR
ϵ2Ā < e−

γC1
ϵ2Ā

ρ + e−
τρM

ϵ2ĀΓK
ρ + e−

2αR
ϵ2ĀK

ρ .

Denote

β1 =
1

2
min{γC1

Ā
,

τρM

ĀΓK
,
2αR

ĀK
}

and

ϵ1 < min{
√

K

L2M1

,

√
β

log 3
} .

It is easy to see that 1 − µϵ(Uρ) < e−β1/ϵ2 for all ϵ < ϵ1.

Similarly, when 2ρM < ρ < M where B(0, 2R) ⊂ UM , the invariant measure is

bounded by

1 − µϵ(Uρ) < e−
2τ

ϵ2AΓ
(ρ−ρM ) + e−

2αR
ϵ2A < e−

τ
ϵ2AΓ

ρ + e
− αR

ϵ2ρM A
ρ
.

Denote

β2 =
1

2
min{ τ

AΓ
,

αR

ρMAK
}

and

ϵ2 <

√
β

log 2
,

then 1 − µϵ(Uρ) < e−β2/ϵ2 for all ϵ < ϵ2.

Let β = min{β1, β2} and ϵ0 = min{ϵ1, ϵ2}. The Corollary follows.

The next theorem gives more accurate estimations.
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Theorem 2.1.18. For any 0 < δ < 1, there exists constants ϵ0 > 0 and M > 0, such

that the measure of Mϵ-neighborhood of K is at least 1 − δ. i.e.

µϵ({x|dist(x,K) ≤ Mϵ}) ≥ 1 − δ

Proof. According to Theorem 2.1.15, there exists a positive number ρM such that

UρM
⊂ O. Then one can find constants β > 0 and ϵ1 > 0, such that

1 − µϵ(UρM
) < e−β/ϵ2

for all 0 < ϵ < ϵ1.

By repeating the approach as in the proof of theorem 2.1.15, we obtain the in-

equality

F (ρ) ≤ F (ρ1)e
− 2γC1

ϵ2A
(ρ−ρ1)

for any ρ1 with B(K,
√

M1ϵ) ⊂ Uρ1 , where F (ρ) = µϵ(UρM
) − µϵ(Uρ).

Let ρ1 = L2M1ϵ
2 and denote a constant

M2 = L2M1 −
A

2γC1

log
δ

2
.

After some calculation, it follows that

F (ρ) = µϵ(UρM
) − µϵ(Uρ) ≤

δ

2

for ρ > M2ϵ
2.

Note that

1 − µϵ(UρM
) < e−β/ϵ2 .

Let

ϵ2 =
β

− log δ
2

.

Clearly we have

µϵ(UM2ϵ2) ≥ 1 − δ .
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According to the property of U(x) in Remark 2.1.13, by denoting M =
√

M2

L1
, we can

obtain

UM2ϵ2 ⊂ {x|dist(x,K) ≤ Mϵ} .

Let ϵ0 = min{ϵ1, ϵ2}. Now we have

µϵ({x|dist(x,K) ≤ Mϵ}) ≥ µϵ(UM2ϵ2) ≥ 1 − δ

for any 0 < ϵ < ϵ0. The theorem now follows.

Remark 2.1.19. One intuitive motivation is that, if the vector field (1.1.1) is stable

linear equation, then the ϵ-invariant measure can be explicitly given. Further, the

ϵ-invariant measure can be approximated by a multivariate normal distribution when

the strength of noise ϵ is sufficiently small. It follows from the “three-sigma rule” of

normal distribution that the ϵ-invariant measure must concentrate in a small neigh-

borhood whose scale is of the order of ϵ. In more complicated situations, the existing

knowledge is usually not enough to approximate the ϵ-invariant measure in such an

explicit way. But we can still show that the ϵ-invariant measure concentrates in a

ϵ-small neighborhood of strong attractors, as described in Theorem 2.1.18.

Remark 2.1.20. From the proof of theorem 2.1.18, one can find that in fact the con-

stant M grows very slow as δ decreases. For small ϵ there exist some constant C such

that

lim sup
δ→0

M√
− log δ

≤ C .

Clearly M has an extremely slow growth rate.

In addition to the estimation in Theorem 2.1.18, we can also measure the average

effect of stochastic perturbation by the mean square displacement. The mean square

displacement of the ϵ-invariant measure µϵ is denoted as follows:

V (ϵ) =

∫
RN

dist2(x,K)uϵ(x)dx . (2.1.21)

35



From its definition, V (ϵ) measures the L2 average of square of displacement of per-

turbed system. Both upper bound and lower bound of the mean square displacement

can be estimated by our level set method. This implies that under random per-

turbation, the average displacement of sample path solution of system (1.1.2) near

the strong attractor can be neither too large nor too small. We remark that as far

as we know, there is no existing lower bound estimation of stochastic perturbation

problems.

To estimate V (ϵ), further local conditions about the Lyapunov function U(x) is

required.

Assumption (H5). There exist some ρ∗ with Uρ∗ ⊂ O such that∫
Uρ∗

N∑
i,j=1

1

2
aijUij(x)udx ≥ D

for some D.

Assumption (H5) could be implied by some conditions that can be verified in an

easier way. We give the following two propositions as examples.

Proposition 2.1.21. If U(x) is convex in O, then (H5) holds for all 0 < ϵ < ϵ0 and

ρ∗ with Uρ∗ ⊂ O.

Proof. Choose a ρ∗ such that Uρ∗ ⊂ O. It follows from Theorem 2.1.15 that there

exists a constant ϵ0 such that µϵ(Uρ∗) > 1/2 for all 0 < ϵ < ϵ0.

Since U(x) is convex, we know that the Hessian matrix J = {Uij}N
i,j=1 is a sym-

metric positive definite matrix. Note that A = {aij}N
i,j=1 is also a symmetric positive

definite matrix. It is known that the Hadamard product of two symmetric positive

definite matrix is also symmetric positive definite. Let e⃗ = {1, ·, 1}, we have

N∑
i,j=1

aij∂
2
ijU = e⃗T AJe⃗ > 2D > 0
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for some positive number D. Integrating the above expression within Uρ∗ yields that∫
Uρ∗

N∑
i,j=1

aijUij(x)udx ≥ Dϵ2 .

Proposition 2.1.22. If σ(x) is constant in O, then (H5) holds for all 0 < ϵ < ϵ0

and ρ∗ with Uρ∗ ⊂ O.

Proof. This follows directly from integration by parts. For any ρ∗ > 0 we have∫
Uρ∗

N∑
i,j=1

aijUij(x)udx =

∫
Γρ∗

(A∇U(x)) · νds .

Note that A is positive definite and ν = ∇U(x)
U(x)

is parallel to ∇U , we are done.

The following theorem estimates the mean square displacement.

Theorem 2.1.23. If (H5) holds, then there exists positive constants V1, V2 and ϵ0,

such that the mean square displacement is bounded from below and above

V1ϵ
2 ≤ V (ϵ) ≤ V2ϵ

2

for all 0 < ϵ < ϵ0.

Proof. According to Remark 2.1.13, in the neighborhood O of the strong attractor,

we always have

K1dist(x,K) ≤ |∇U | ≤ K2dist(x,K) .

Choose a constant ρM such that UρM
⊂ O. Denote G(ρ) for 0 < ρ < ρM by:

G(ρ) =

∫
UρM

\Uρ

|∇U(x)|2udx .

Then clearly we have lower bound

V (ϵ) ≥
∫

UρM

dist2(x,K)udx ≥ 1

K2
2

G(0)
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and upper bound

V (ϵ) =

∫
UρM

dist2(x,K)udx +

∫
RN\UρM

dist2(x,K)udx

≤ 1

K2
1

G(0) +

∫
RN\UρM

dist2(x,K)udx .

It’s more convenient to estimate G(0) instead of the mean square displacement.

We can apply Theorem 2.1.18 to estimate the upper bound. Let σ = 1/2. From

Theorem 2.1.18, there exists constants M4, ρ4 and ϵ1 such that µ(Uρ4) ≥ 1/2 and

dist(Γρ4 ,A) ≤
√

M4ϵ when 0 < ϵ < ϵ1. That implies∫
Uρ4

|∇U |2udx ≤ M2ϵ
2

for every 0 < ϵ < ϵ1.

For ρ > ρ4, we have∫
UρM

\Uρ4

|∇U |2udx ≤ −
∫ ρM

ρ4

K2
2

L1

ρF ′(ρ)dρ

= −K2
2

L1

ρF (ρ)

∣∣∣∣ρM

ρ4

+
K2

2

L1

∫ ρM

ρ4

F (ρ)dρ

where F (ρ) = 1 − µϵ(Uρ).

In addition, from the proof of Theorem 2.1.15, there exists ϵ2 such that

F (ρ) ≤ F (ρ4)e
− 2γC1

ϵ2Ā
(ρ−ρ4) ≤ e−

2γC1
ϵ2Ā

(ρ−ρ4)

if 0 < ρ < ρM and 0 < ϵ < ϵ2.

Let M5 = 2γC1L2M4

Ā
, it follows that

F (ρ) ≤ eM5e−
2γC1
ϵ2Ā

ρ .
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From above estimations, one can find a constant C6 > 0 such that∫
UρM

\Uρ4

|∇U |2udx ≤ −K2
2

L1

ρF (ρ)

∣∣∣∣ρM

ρ4

+
K2

2

L1

∫ ρM

ρ4

F (ρ)dρ

≤ K2
2

L1

ρ4F (ρ4) +
K2

2

L1

∫ ∞

ρ4

eM5e−
2γC1
ϵ2Ā

ρdρ

≤ K2
2L2

L1

M4ϵ2 + eM5

∫ ∞

ρ4

e−
2γC1
ϵ2Ā

ρdρ

≤ K2
2L2

L1

M4ϵ
2 + eM5C6ϵ

2 .

Let

E2 =
L2K

2
2

L1

M4 + eM5C6 + M4

be a constant. Then it follows that

G(0) =

∫
RN

|∇U |2udx ≤ E2ϵ
2

For the complement set of UρM
, we have∫

RN\UρM

dist2(x,K)udx

=

∫
RN\B(0,2R)

dist2(x,K)udx +

∫
B(0,2R)\UρM

dist2(x,K)udx .

Since K ⊂ B(0, R), from Corollary 2.1.17, there exists ϵ3 > 0 such that∫
RN\B(0,2R)

dist2(x,K)udx ≤ e−β/ϵ29R2

for 0 < ϵ < ϵ3.

From the proof of Theorem 2.1.15, we have equation (2.1.18):

I(x) ≤ I(R)e−
α

ϵ2Ā
(x−R)

when 0 < ϵ < ϵ4 for some ϵ4 > 0.

or equivalently,

I(x) =

∫
RN\B(0,x)

udx ≤ e−
αx

2ϵ2Ā
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for all x > 2R.

Since dist(x,K) < 2|x| when |x| > 2R, we have∫
B(0,2R)\UρM

dist2(x,K)udx ≤
∫

B(0,2R)\UρM

4|x|2udx

= 4

∫ ∞

2R

V ol(∂B(0, x))x2I ′(x)dx

= 4C(N)

∫ ∞

2R

xN+1I ′(x)dx = 4C(N)P (R, ϵ)e−
αR
ϵ2Ā ,

where C(N) is the volume of the unit N -dimension sphere in RN , P (R, ϵ) is a poly-

nomial of R and ϵ with highest degree N .

Note that e1/ϵ2 converges to 0 faster than ϵ2. Clearly there exists some ϵ5 > 0

such that

4C(N)P (R, ϵ)e−
αR
ϵ2Ā + 9R2e−β/ϵ2 < ϵ2

for any 0 < ϵ < ϵ5.

Let ϵ∗1 = min{ϵ1, ϵ2, ϵ3, ϵ4, ϵ5}, it follows that

V (ϵ) ≤ (1 +
E2

K2
1

)ϵ2 := V2ϵ
2

for all 0 < ϵ < ϵ∗1. We remark that the constant V2 is independent with ϵ.

The lower bound can be proved in a similar approach. Let ϕ(ρ) be the same cut-off

function

ϕ(ρ) =


0 ρ < ρ0

1
2∆ρ

(ρ − ρ0)
2 ρ0 < ρ < ρ0 + ∆ρ

ρ − ρ0 − 1
2
∆ρ ρ > ρ0 + ∆ρ

We modify U(x) to Ū(x) such that

Ū(x) =


U(x) x ∈ UρM

a smooth function x ∈ B(0, 2R)\UρM

|x| |x| > 2R

The smoothness of Ū yields∫
Γ̄2R+t

(
N∑

i,j=1

1

2
ϵ2aij∂iŪνj)uϵds ≥ −Āϵ2

∫
Γ̄2R+t

uds .
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Theorem 2.1.15 implies

1 − µϵ(B(0, 2R)) < e
−2αR

ϵ2Ā . (2.1.22)

So there always exists 0 < t0 < 1 such that∫
Γ̄2R+t0

uds < e
−2αR

ϵ2Ā ,

otherwise (2.1.22) can not be true.

Then equation (2.1.13) yields∫
B(0,2R+t0)

ϕ′(Ū)(
N∑

i,j=1

1

2
ϵ2aij∂

2
ijŪ +

N∑
i=1

fi∂iŪ)u + ϕ′′(Ū)(
N∑

i,j=1

1

2
ϵ2aij∂iŪ∂jŪ)udx

≤ Āϵ2e
−2αR
ϵ2A .

Further, when ρ0 + ∆ρ < ρM , we have∫
B(0,2R+t0)

ϕ′(Ū)(
N∑

i,j=1

1

2
ϵ2aij∂

2
ijU +

N∑
i=1

fi∂iŪ)u + ϕ′′(Ū)(
N∑

i,j=1

1

2
ϵ2aij∂iŪ∂jŪ)udx

=

∫
B(0,2R+t0)\UρM

(
N∑

i,j=1

1

2
ϵ2aij∂

2
ijŪ +

N∑
i=1

fi∂iŪ)udx

+

∫
UρM

ϕ′(U)(
N∑

i,j=1

1

2
ϵ2aij∂

2
ijU +

N∑
i=1

fi∂iU)u + ϕ′′(U)(
N∑

i,j=1

1

2
ϵ2aij∂iU∂jU)udx

:= I1 + I2 .

Recall the definition of Ū(x), let

M̄ = max
x∈B(0,2R+t0)\UρM

|
N∑

i,j=1

1

2
ϵ2aij∂

2
ijŪ +

N∑
i=1

fi∂iŪ |

and V = Vol(B(0, 2R + t0)).

According to Theorem 2.1.15, there exists E > 0 and ϵ6 > 0 such that

1 − µϵ(UρM
) < e−E/ϵ2

for every 0 < ϵ < ϵ5.

Hence

I1 ≥ −M̄V e−E/ϵ2 .
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Further, since assumption (H5) holds, for I2 we have

∫
UρM

ϕ′(U)(
N∑

i,j=1

1

2
ϵ2aij∂

2
ijU +

N∑
i=1

fi∂iU)udx

=

∫
UρM

\Uρ0

ϕ′(U)(
N∑

i,j=1

1

2
ϵ2aij∂

2
ijU +

N∑
i=1

fi∂iU)udx

≥ −κ

∫
UρM

\Uρ0

ϕ′(U)|∇U |2udx

≥ −κ

∫
UρM

\Uρ0

|∇U |2udx ≥ −κG(ρ0) ,

where

G(ρ) =

∫
UρM

\Uρ

|∇U |2udx .

On the other hand,∫
UρM

ϕ′′(U)(
N∑

i,j=1

1

2
ϵ2aij∂iU∂jU)udx =

∫
Uρ+∆ρ\Uρ

ϕ′(U)(
N∑

i,j=1

1

2
ϵ2aij∂iU∂jU)udx

≥ 1

∆ρ
ϵ2α

∫
Uρ+∆ρ\Uρ

|∇U |2udx

= ϵ2α
G(ρ0) − G(ρ0 + ∆ρ)

∆ρ
,

where α = 1/2λmin. λmin is the smallest eighevalue of A.

Recall that

I1 + I2 ≤ e
−2αR
ϵ2Ā .

Taking the limit ∆ρ → 0 yields

G′(ρ0) ≥ − κ

αϵ2
G(ρ0) − M̄V e−E/ϵ2 − Aϵ2e−

2αR
ϵ2A .

Denote a new cut-off function ϕ1(ρ) as follows

ϕ1(ρ) =


ρ ρ < ρ0

ρ0 + 1
2
∆ρ − 1

2∆ρ
(ρ − ρ0 − ∆ρ)2 ρ0 < ρ < ρ0 + ∆ρ

ρ0 + 1
2
∆ρ ρ > ρ0 + ∆ρ
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A similar calculation implies that∫
Rn

ϕ′′
1(U)(

N∑
i,j=1

1

2
ϵ2aij∂

2
ijU +

N∑
i=1

Ui∂iU)udx +

∫
Rn

ϕ′
1(U)(

N∑
i,j=1

1

2
ϵ2aij∂iU∂jU)udx

=

∫
Γρ0+∆ρ

1

2
ϵ2aijϕ

′
1(ρ0 + ∆ρ)∂Uiνjuds = 0 .

For simplicity, let ρN = ρ0 + ∆ρ be some fixed number such that ρN = 1
2
ρM for the

ρM mentioned above. The convexity of U(x) implies∫
UρN

ϕ′(U)(
N∑

i,j=1

1

2
ϵ2aij∂

2
ijU +

N∑
i=1

fi∂iU)udx ≥ Dϵ2 − κ

∫
UρN

|∇U |2vdx

and ∫
ρN

ϕ′′(U)(
N∑

i,j=1

1

2
ϵ2aij∂iU∂jU)vdx ≥ − 1

2∆ρ
ϵ2Ā

∫
Uρ+∆ρ\Uρ

|∇U |2vdx .

Let ∆ρ → 0, similarly, we have

0 ≥ Dϵ2 − κ(G(0) − G(ρN)) +
1

2
ϵ2ĀG′(ρN)

≥ Dϵ2 − κG(0) + κG(ρN) +
1

2
ϵ2Ā(− κ

αϵ2
G(ρN) − M̄V e−E/ϵ2 − Āϵ2e−

2αR
ϵ2Ā )

Recall that

G(ρN) =

∫
UρM

\UρN

|∇U |2udx .

According to Remark 2.1.13, there exists some β > 0 and ϵ7 > 0 such that

G(ρN) ≤ K2
2

L1

e−β/ϵ2

for 0 < ϵ < ϵ7.

Then one can find ϵ8 > 0 such that for any 0 < ϵ < ϵ8

|κ(1 − A

2α
)G(ρN) − M̄V e−E/ϵ2 − Aϵ2e−

2αR
ϵ2A | ≤ D

2
ϵ2 .

Let ϵ∗2 = min{ϵ6, ϵ7, ϵ8}.It follows that for every 0 < ϵ < ϵ∗2, inequality

G(0) ≥ D

2κ
ϵ2

holds.

By letting V1 = D
2κ

and ϵ0 = min{ϵ∗1, ϵ∗2}, we arrive at the desired estimation.
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Remark 2.1.24. The above theorems concerns the global attractors, which may not be

connected. However, for most dynamical system subject to white noise perturbation,

there would be only one “valid” connected component in general. It follows from

the classical theory of stochastic dynamical system that if there are finite many con-

nected attractors {K1, · · · ,Kn}, then one can usually find attractor Ki with minimal

potential, such that for all j ̸= i, there exists Wj > 0, with

µϵ(Kj) ≤ e−Wj/ϵ2

for all 0 < ϵ < ϵ0. This means that as ϵ → 0, the probability measure of Kj may be

neglected under the weak noise. We call the attractor Ki a principal attractor. The

rigorous analysis about principal attractor will be done at the end of this subsection.

Moreover, it is known recently that if Ki is a connected component of the strong

attractor, then we can always “set” a perturbation coefficient function σi(x), such

that Ki becomes the principal attractor. (see [33])

2.1.3.2 The Entropy-Dimension Relationship

The emphasis of the rest part of this section is paid on the entropy-dimension rela-

tionship. We will prove that the concentration of ϵ-invariant measure can reveal some

information of the attractor of ODE system (1.1.1).

Let Ent(uϵ(x) be the differential entropy of uϵ(x):

Ent(uϵ(x)) =

∫
RN

uϵ(x) log uϵ(x)dx (2.1.23)

Further, we say a set A ⊂ Rn is regular if the volume of its neighborhood is related

to its dimension.

Definition 2.1.3. A ⊂ Rn is a regular set if

lim sup
r→0

log(V ol(B(A, r)))

− log r
= lim inf

r→0

log(V ol(B(A, r)))

− log r
= N − d
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for some d ≥ 0. The set B(A, r) means the r-neighborhood of A:

B(A, r) = {x | dist(x,A) ≤ r}

Remark 2.1.25. We remark that not all sets are regular. But all smooth manifolds,

Cantor-like sets and many fractal structures are regular.

The concentration of invariant measure implies the following inequality.

Theorem 2.1.26. Assume (H1) and (H5) holds. We have

lim
ϵ→0

Ent(uϵ(x))

− log ϵ
≥ N − d (2.1.24)

if the attractor is a regular set.

Proof. Theorem 2.1.18 says that for any fixed 0 < σ < 1, one can always find constant

C2 > 0 such that

µϵ(N(A, C2ϵ)) := µ({x|dist(x,A) ≤ C2ϵ}) ≥ 1 − σ .

The entropy functional attain minimum when the measure is uniformly distributed.

This implies ∫
N(A,C2ϵ)

u log udx ≥
∫

N(A,C2ϵ)

ua log uadx

= (1 − σ) log
1 − σ

Vol(N(A, C2ϵ))
,

where ua is the average of u in N(A, C2ϵ). The regularity of the attractor implies

lim
r→0

log λ(B(A, r))

log r
= N − d .

Some calculation shows that

lim
ϵ→0

Ent(uϵ)

− log ϵ
≥ lim

ϵ→0

(1 − σ)(log(1 − σ) − log(Vol(N(A, C2ϵ))))

− log ϵ

= (1 − σ) lim
ϵ→0

log Vol(N(A, C2ϵ))

log ϵ

= (1 − σ) lim
ϵ→0

log Vol(N(A, C2ϵ))

log C2ϵ

= (1 − σ)(N − d) .
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The above argument is true for any σ > 0. This implies

lim
ϵ→0

Ent(uϵ)

− log ϵ
≥ N − d

The other side of entropy-dimension inequality is difficult to prove by the level set

method. The reason is that, by the level set method, we can estimate the density of

invariant measure on every level sets of the Lyapunov function. However, the prob-

ability distributions of µϵ on each level set remain unclear. The entropy-dimension

inequality is derived from that fact that the ϵ-invariant measure can not be perturbed

too much. On the other side, the fact that the ϵ-invariant measure can not concentrate

too much does not imply the inequality directly.

Although general entropy-dimension equality remains open, conclusions can still

be made in many situations. The following theorem gives the entropy-dimension

equality for gradient flows.

Theorem 2.1.27. If (1.1.1) is a gradient flow

dx

dt
= −∇U(x) (2.1.25)

with U ≥ 0 and the set U0 = {x|U(x) = 0} is a smooth manifold, then

lim
ϵ→0

Ent(uϵ(x))

− log ϵ
= N − d , (2.1.26)

where d is the dimension of the invariant manifold.

Proof. Note that for gradient flow

x′ = −∇U(x) ,

the density function of the ϵ-invariant measure v(x), or the Gibbs density function

has an explicit expression

v(x) =
1

K
e−U(x)/2ϵ2 .
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Let us calculate the value of K.

Since the global attractor K = U0 is a smooth manifold, for any r, one can find a

continuous function Φ(r) which is bounded from upper and below. The volume of the

level set {x|dist(x,K)) = r} can be denoted by Φ(r)rN−d−1 because K is a smooth

manifold.

For any vector v, we have∫
Φ(r)rN−d−1e−L1r2/ϵ2dr ≥ K ≥

∫
Φ(r)rN−d−1e−L2r2/ϵ2dr .

After some calculation, one can find some H1, H2 such that

H1ϵ
N−d ≥ K ≥ H2ϵ

N−d .

Taking the entropy implies

Ent(vϵ) =

∫
RN

v(x) log v(x)dx

≤
∫

RN

v(x) log max
x

v(x)dx = max
x

v(x) = − log K

≤ −(N − d) log ϵ − log H1 .

This implies

lim
ϵ→0

Ent(vϵ)

− log ϵ
≤ N − d

The identity (2.1.26) can be obtained by combining the above inequality and

inequality 2.1.24. This completes the proof.

In fact, the Entropy-dimension equality can be extended to all system with regular

invariant measure.

Definition 2.1.4. The invariant probability density function ρϵ is said to be regular

for the global attractor K if there exists some function C(K) > 0 that is independent

with ϵ, such that

min(ρϵ(x)) ≥ C max(ρϵ(x)) ; ∀x with dist(x,K) ≤ Kϵ
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and ρ(x) is bounded by ϵ−α for some α whenever dist(x,K) ≥ Kϵ for all 0 < ϵ < ϵ0

and K > K0 > 0.

The definition of regular invariant measure implies the next theorem.

Theorem 2.1.28. Assume (H5) holds and system (1.1.1) has regular invariant mea-

sure, then

lim
ϵ→0

Ent(uϵ(x))

− log ϵ
= N − d . (2.1.27)

Proof. The proof is trivial. According to Theorem 2.1.18, for any δ > 0 one can

find K > 0 such that 1 − ρϵ(B(K, Kϵ)) < δ. From the boundedness of µϵ outside of

B(K, Kϵ), we have ∫
RN\B(K,Kϵ)

ρϵ(x) log ρϵ(x)dx < αδ(− log ϵ)

Further, the condition

min(ρϵ(x)) ≥ C max(ρϵ(x)) ; ∀x with dist(x,K) ≤ Kϵ

means that ρϵ(x) is less than C
V ol(B(K,Kϵ))

. So we have

lim
ϵ→0

Ent(uϵ(x))

− log ϵ
< N − d + δα

for any δ > 0, which means

lim
ϵ→0

Ent(uϵ(x))

− log ϵ
≤ N − d

This completes the proof.

We note that actually making use of the result in Proposition 2.1.9 to make the

following proposition:

Proposition 2.1.29. If the quasi-potential function has second order derivative, them

the entropy-dimension identity holds.

Remark 2.1.30. The entropy-dimension inequality and entropy-dimension equality

would be used in the afterward sections when we discuss the properties of degeneracy

and complexity.
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2.1.3.3 Some Global Analysis

In this section we consider general stochastic dynamical systems with multiple at-

tractors. Recall that condition (H5) says that the Lyapunov function U(x) take zero

value at the global attractor K. Using level set method, the concentration of invari-

ant measure at attractor K can be proved. However, if K is not connected, some

information may be lost in the level set analysis.

One illustrative example is the following the gradient system

dx

dt
= −∇Ψ(x) , (2.1.28)

where Ψ(x) has a global minimum at x0 and a local minimum at x1 with Ψ(x0) <

Ψ(x1). It is known that x = x1 is a local attractor that could be ignored in sufficient

weak noise. If Ψ(x) is chosen as then Lyapunov function, the standard condition

(H5) of Lyapunov function could not be satisfied at x = x1. On the other hand, if

some other function ϕ(x) is selected as the Lyapunov function such that ϕ(x) attains

its minimum at both x = x0 and x = x1, then Theorem 2.1.15 and 2.1.18 implies

concentration of invariant measure at the set {x0, x1} instead of {x0}.

This problem is solved in this subsection. Improved results are given by combining

Freidlin-Wentzell quasi-potential function method and level-set method. Recall the

definition of quasi-potential function VD(x, y) and the W -graph that we reviewed

in the last section. Theorem 2.1.8 says that one doesn’t need to worry about the

restriction of set D as long as the system (1.1.1) has a Lyapunov function at infinity.

This implies that the results in Theorem 2.1.6 holds for dynamical system in Rn under

the standard assumption (H1). Hence the quasi-potential function can be used to

exclude some local attractors with high potential.

In the context of global analysis, we consider the local quasi-potential function

with respect to the local attractors.

Definition 2.1.5. The function V (x,K) is called the quasi-potential about attractor
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K. It takes the value V (x,K) = V (x, y) for any y ∈ K.

Remark 2.1.31. Recall that V (x, y) is the quasi-potential function. The previous

definition makes sense if V (x, y) = V (y, x) = 0 for all pairs x, y ∈ K. In particular, if

ODE system (1.1.1) is ergodic on K then V (x,K) must be well-defined.

The local quasi-potential function has certain lower bound.

Lemma 2.1.32. Assume system (1.1.1) has a connected strong attractor K. Let O

be an open set with K ⊂ O. Assume (1.1.1) is ergodic on K. Moreover, assume there

exists a Lyapunov function defined in O satisfies the assumption (H4). Then there

exists a positive number β

V (x,K) ≥ δd(x)2 (2.1.29)

where d(x) = dist(x,K)

Proof. Consider the level set Γϵ = Γ√
ρ. Let ρM be a constant such that the level set

UρM
⊂ O. Then the from assumption (H4), it is easy to verify that the following

properties are ture.

1. Γϵ is a Lipschitz family of continuous hypersurface for all 0 < ϵ <
√

ρM such

that K is the ω-limit set of each Γϵ. We denote the Lipschitz constant as L, so

L = L2

2
√

K1
is finite;

2. The distance between the boundary ∂Γϵ and K is less than or equal to βϵ for

β =
√

L−1
1 :

dist(∂Γϵ,K) ≤ βϵ ;

3. F (x) · n⃗(x) ≤ −αϵ for all 0 < ϵ < ϵ0, where

α =
2γK1√

L2

.
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Choose x such that dist(x,K) <
√

ρM . Denote dist(x,A) by d and

d0 = min{dist(x,K)|x ∈ Γϵ0} .

Then there exists a constant ϵ̄ > 0 such that x ∈ Γϵ̄.

The definition of quasi-potential function says that

V (x,K) = inf
T>0

1

2

∫ 0

−T

|ϕ̇(t) − f(ϕ(t))|2dt .

Since the set {x|V (x,K) ≤ c} is always compact, an absolute continuous curve ρ(t)

could be found such that

V (x,K) =
1

2

∫ 0

−T

|ρ̇(t) − f(ρ(t))|2dt ,

where ρ(−T ) ∈ A, ρ(0) = x.

Let γ(t) = {ϵ|ρ(t) ∈ Γϵ}. Since ρ(t) is absolutely continuous and family Γϵ are

Lipschitz continuous, it is easy to see that γ(t) is also absolutely continuous.

Let S be a subset of [−T, 0] that contains countable many closed interval

{[a1, b1], · · · , [an, bn], · · · }

such that ˙γ(t) ≥ 0 for almost every t ∈ [ak, bk] for each k. Moreover, γ(bk) = γ(ak+1).

Then ∫ 0

−T

|ρ̇(t) − f(ρ(t))|2dt ≥
∫

S

|ρ̇(t) − f(ρ(t))|2dt

Let ϵ = γ(t). For almost every t ∈ S we have n⃗ · ρ̇(t) ≥ 0 since γ̇(t) ≥ 0. It follows

from the definition of Γϵ family that f(ρ(t)) · n⃗ ≤ αϵ.

Hence

|ρ̇(t) − f(ρ(t))| ≥ ( ˙ρ(t) − f(ρ(t))) · n⃗ .

Since Γϵ is a smooth manifold, there exist a small constant dt > 0 such that

d(ρ(t + dt), ρ(t)) = ρ̇(t) · n⃗dt + o(dt2) .
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Let Γ1
ϵ = Γϵ + αdtn⃗. Since the family Γϵ are Lipschitz continuous, if Γϵ1 ∩ Γ1

ϵ ̸=,

we can obtain ϵ1 − ϵ ≤ Lα.

This means

γ(t + dt) − γ(t) ≤ L(ρ̇(t) · n⃗dt) .

Hence

|ρ̇(t) − f(ρ(t))| ≥ ( ˙ρ(t) − f(ρ(t))) · n⃗ ≥ 1

L
γ̇(t) + αγ(t) .

Integrating about t implies∫ 0

−T

|ρ̇(t) − f(ρ(t))|2dt ≥
∫

S

1

L2
|γ̇(t) + Lαγ(t)|2dt (2.1.30)

≥ 1

L2
inf

y(−T1)∈K;y(0)=ϵ̄

∫ 0

−T1

|ẏ(t) + Lαy(t)|2dt .

Note that infy(−T1)∈K;y(0)=ϵ̄

∫ 0

−T1
|ẏ(t)+Lαy(t)|2dt gives the quasi-potential function

of system

dx

dt
= −Lαx .

The quasi-potential function of above equation can be found explicitly, which is

Lαx2/2.

This implies

V (x,K) ≥ α

L
ϵ̄2 ≥ α

L
d(x)2

for x ∈ O. Let δ = α
L
. This completes the proof.

With the help of local quasi-potential function, some global results can be proved

as follow.

Proposition 2.1.33. For any open neighborhood N with K̄ ⊂ N , there exists a

positive number β > 0, such that

1 − µϵ(N) ≤ e−β/ϵ2

for all 0 < ϵ < ϵ0.
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Proof. We can extend N to compact set N̄ such that K ⊂ N̄ . Then the Theorem

2.1.15 implies that there exists constants β1 > 0, ϵ1 > 0, such that

1 − µϵ(N̄) < e−β1/ϵ2

for all ϵ < ϵ1.

Let {Oji
} denote the open neighborhood of Kji

as described in Lemma 2.1.32,

where Kji
are connected components of K̄. Let O =

∪
i Oi. Let N1 = N ∩ O. It

follows from Lemma 2.1.32 that the set ∂N1 has positive quasipotential with respect

to every Kji
. We denote constant δ by

δ = min
x∈∂N1,1≤i≤k

V (x,Kji
) .

Clearly we have δ > 0.

According to Theorem 2.1.6, for each x /∈ N1, one can find

W (x) − M = min
i
{W (Ki) + V (Ki, x)} ≥ min{ min

Ki⊂(K\K̄)
W (Ki), δ} := β2 > 0 .

Further, theorem 2.1.6 says that

1 − µϵ(N̄\N1) < e−β2/2ϵ2

for ϵ < ϵ2.

Hence

1 − µϵ(N) < e−β1/ϵ2 + e−β2/2ϵ2 .

Denote

β =
1

2
min{β1,

1

2
β2} ;

and

ϵ0 = min{ϵ1.ϵ2,

√
β

log 2
} .

By letting

1 − µϵ(N) < e−ϵ/ϵ2 ,

we complete the proof.
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Other estimations can also be improved in a similar way.

Proposition 2.1.34. For any 0 < δ < 1, there exists a ϵ0 > 0 and a M > 0, such

that the measure of Mϵ-neighborhood of K is at least 1 − δ. i.e.

µϵ({x|dist(x, K̄) ≤ Mϵ}) ≥ 1 − δ

Proposition 2.1.35. Define generalized mean square displacement function as

V̄ (ϵ) =

∫
RN

dist2(x, K̄)uϵ(x)dx (2.1.31)

Then there exist positive constant V1 and V2, such that for sufficient small ϵ, the

mean square displacement satisfies

V1ϵ
2 ≤ V̄ (ϵ) ≤ V2ϵ

2

Proposition 2.1.36. Assume conditions (H1) and (L1) holds for K̄, then

lim
ϵ→0

Ent(uϵ(x))

− log ϵ
≥ N − d (2.1.32)

where N − d is the dimension of K̄.

2.2 Extension 1 : Fokker-Planck equations on finite graph

In this section, we will study the stochastic dynamical system theory on finite graph.

More precisely, our theory is about the stochastic perturbation of flows on discrete

spaces. The work has been published on ARMA [11]. This section is not a copy-past

of our published article. Comparing with [11], more focus is paid on the stochasticity

on graphs.

Both classical and new developed stochastic perturbation theory of ODE systems

have been covered in the last section. However, as mentioned in the introduction,

in practice not all systems are modeled by differential equations. Some systems are

so complex that the differential equation models are impractical, while some systems

are discrete in natural. For example, the biochemical reaction networks in the cell
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are often modeled by Markov chain networks instead of ODE systems because the

number of reacting molecules is not large enough. In this sense, it is also important

to study the stochastic dynamical system and random perturbation theory in discrete

state spaces.

It is well known that Fokker-Planck equations play an important role in the study

of stochastic differential equations. Recently it is also known that Fokker-Planck

equations have very rich geometric features. Despite remarkable development in the

theory related to Fokker-Planck equation in continuous state spaces, much less is

known when the state space is discrete and finite. Although the Markov chain (1.1.6)

can play the role of gradient flows on graphs, the notion of “white noise” is not clear

for Markov processes defined on graphs. It is interesting to investigate the counterpart

of white noise perturbation in the discrete setting.

We establish discrete Fokker-Planck-type equations in this section. Our study are

motivated by the connection among free energy functional, Fokker-Planck equation

and stochastic process. Consider a stochastic perturbation of a gradient flow,

dx = −∇Ψ(x)dt +
√

2βdWt, x ∈ RN , (2.2.1)

where Ψ(x) is a potential function, dWt is the white noise. Then it is known that

the following Fokker-Planck equation describes the time evolution of the probability

density function ρ(x, t) of the trajectories of the SDE (2.2.1).

∂ρ(x, t)

∂t
= ∇ · (∇Ψ(x)ρ(x, t)) + β∆ρ(x, t), (2.2.2)

Free energy means the maximal amount of work that can be extracted from a system

([49, 62, 72] and references therein). Mathematically, a free energy functional is a

scalar-valued function defined on the space of probability distributions and expressed

as

F (ρ) = U(ρ) − βS(ρ) =

∫
X

Ψρ + βρ log ρdx (2.2.3)
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where β > 0 is a constant, called temperature, and ρ is a probability density function

defined on a state space X.

It is well known that the global minimizer of the free energy F is a probability

distribution, called Gibbs distribution,

ρ∗(x) =
1

K
e−Ψ(x)/β, where K =

∫
RN

e−Ψ(x)/β dx. (2.2.4)

Although historical developments of the free energy and Fokker-Planck equation

are not directly related, there are many studies that reveal some connection between

them. The following two results about the relationship between them are well known

[20, 22, 27, 37, 36, 52, 56]:

1. The free energy (2.2.3) is a Lyapunov functional for the Fokker-Planck equa-

tion (2.2.2), i.e., if the probability density ρ(t, x) is a solution of (2.2.2), then

F (ρ(t, x)) is a decreasing function of time.

2. The Gibbs distribution (2.2.4) is the global minimizer of the free energy (2.2.3)

and is the unique stationary solution of the Fokker-Planck equation (2.2.2).

We consider similar matters on a discrete state space which is a finite graph. The

following standard condition is assumed in this section.

Assumption (H1). • G = (V, E) is a finite simple graph, with vertex set V =

{a1, a2, · · · , aN} and edge set E

• Ψ = (Ψi)
N
i=1 is a potential function on vertex set V

• the neighborhood set of a vertex ai is defined as

N(i) = {j ∈ {1, 2, · · · , N}|{ai, aj} ∈ E},

On the previous discrete setting, the free energy functional has the following ex-

pression:

F (ρ) =
N∑

i=1

Ψiρi + β

N∑
i=1

ρi log ρi, (2.2.5)
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The discrete free energy functional has a global minimizer, the Gibbs density,

given by

ρ∗
i =

1

K
e−Ψi/β, where K =

N∑
i=1

e−Ψi/β. (2.2.6)

Based on recent results in continuous state spaces, it is natural to apply spa-

tial discretization schemes, such as the central difference scheme, to Fokker-Planck

equation (2.2.2) to obtain their counterparts for discrete state spaces. The resulting

equation for a discrete state space is a system of ordinary differential equations. How-

ever, many problems arise with this approach. Commonly used linear discretization

schemes are consistent with Fokker-Planck equation (2.2.2), but they often lead to

steady states that are different from Gibbs density (2.2.6), which is the global min-

imizer of the free energy. Conversely, although Gibbs distribution is the invariant

measure of some Markov kernels such as metropolis kernel, the ODE generated by

metropolis kernel is not consistent with equation (2.2.2) in short time.

In fact, we prove rigorously that no linear discretization scheme can achieve the

Gibbs distribution at its steady state for general potentials in Theorem 2.2.1. This

suggests that the stochastic perturbations on graphs are not as trivial as it looks like.

Linear discretizations of equation (2.2.2) can not be consistent both in short time and

in long time.

We provide the following Fokker-Planck equation as a counterpart of equation

(2.2.2) on graph G = (V,E) satisfies (H1)

dρi

dt
=

∑
j∈N(i),Ψj>Ψi

((Ψj + β log ρj) − (Ψi + β log ρi))ρj

+
∑

j∈N(i),Ψj<Ψi

((Ψj + β log ρj) − (Ψi + β log ρi))ρi

+
∑

j∈N(i),Ψj=Ψi

β(ρj − ρi)

(2.2.7)

for i = 1, 2 · · · , N . It is clear that both equation (2.2.7) and its stationary distribution

are consistent with (2.2.2) and its stationary distribution respectively.
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Intuitively, with additive noise, we get a diffusion term to against the flows on the

state space. On Rn, in the viewpoint of probability measure, the diffusion is expressed

by a Laplacian. On a graph, From equation (2.2.7), we can find that the diffusion is

expressed by a log-formed Laplacian. To “against” the flow, we need a nonlinear term

to play the role as the diffusion. In practice, we can follow this motivation to introduce

additive stochastic perturbation. In Rn, artificially added noise removes singularity,

while on graphs, injected noise can guarantee the uniqueness of the invariant measure.

In both cases, external noise provides the possibility of next step analysis.

In the following subsections, we will address three theoretical parts of discrete

Fokker-Planck equations: The inconsistency problem of linear equations; the geomet-

rical aspects and the exponential convergence rate of discrete Fokker-Planck equation.

In the end, I will explain the effect of injected random perturbation by an example.

2.2.1 Why linear discretizations fail

Comparing the Fokker-Planck equation (2.2.2) in the continuous state space with

our Fokker-Planck equations (2.2.7) on graphs, one immediately notices that our

equations are nonlinear while (2.2.2) is linear. It is natural to question the nonlinearity

in both equations. For example, can one just apply common discretization schemes,

such as the well known central difference, to (2.2.2) and obtain linear Fokker-Planck

equations in the discrete case? However, in our numerical studies, we encountered

many problems. For instance, steady state solutions of linear equations derived from

discretization are not the Gibbs distributions. Furthermore, the free energy does

not decay along the solutions. On the other hand, if we choose some linear Markov

kernels (such as Metropolis kernel) whose steady state is the Gibbs distribution, then

we can find that these Markov kernels are even not consistent with the Fokker-Planck

equation (2.2.2)

In this section, we prove that these problems occur for all linear systems obtained
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from discretizing the continuous Fokker-Planck equation (2.2.2) using consistent linear

schemes. Which means we can never get a “good” linear scheme that is consistent

both in short time and long time. We want to mention that this is a long-observed

phenomenon by many researchers.

To be more precise, any given linear discretization of (2.2.2) can be written as

dρi

dt
=
∑

j

((
∑

k

ei
jkΨk) + ci

j)ρj, for i = 1, 2, · · · , N, (2.2.8)

where Ψ is the given potential and {ei
jk}N×N and {ci

j}N are some constants that are

not all zero. Assume that the Gibbs distribution (2.2.6) is the steady state solution

of (2.2.8), then we must have

∑
j

((
∑

k

ei
jkΨk) + ci

j)e
−

Ψj
β = 0, for i = 1, 2, · · · , N. (2.2.9)

Let us denote A as the collection of potentials Ψ satisfying (2.2.9), i.e.

A = {(Ψ1, · · · , ΨN) ∈ RN :
∑

j

((
∑

k

ei
jkΨk) + ci

j)e
−

Ψj
β = 0, for 1 ≤ i ≤ N}. (2.2.10)

Theorem 2.2.1. The set A has zero measure in RN , i.e.

κ(A) = 0,

where κ(·) is the Lebesgue measure on RN .

To prove this theorem, we need the following lemma.

Lemma 2.2.2. Let g(x) be a function in C1(RN). Denote B = {x ∈ RN : g(x) = 0},

and Bj = {x ∈ B : gxj
(x) = 0} for j = 1, · · · , N . Then

κ(Bj) = κ(B). (2.2.11)

Proof. This lemma is a special case of a well known fact about functions in Sobolev

spaces, see for example, Lemma 7.7 in [29].
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Now, we are ready to prove Theorem 2.2.1.

Proof. For the convenience of notations, let us denote Ψ = (Ψ1, · · · , ΨN) and

fi(Ψ) =
∑

j

((
∑

k

ei
jkΨk) + ci

j)e
−

Ψj
β .

Clearly, we have fi ∈ C∞(RN). Then, we can consider the sets, Aϑ, which collect all

potentials Ψ ∈ A with vanishing ϑ-th derivatives of fi for all i = 1, · · · , N , that is

Aϑ = {Ψ ∈ A : Dϑfi(Ψ) = 0, for 1 ≤ i ≤ N},

where ϑ = (ϑ1, · · · , ϑN) is a multiple non-negative integer index, and Dϑ is the partial

derivative operator. Obviously, A and Aϑ are closed subsets.

Using Lemma 2.2.2 recursively, we have

κ(A) = κ(Aϑ), (2.2.12)

for arbitrary multi-index ϑ. Next, we show κ(A) = 0 by contradiction.

Assume that κ(A) > 0, so we have κ(Aϑ) = κ(A) > 0 for arbitrary multi-index

ϑ. This implies that there must exist a potential Ψ0 ∈ A such that

fi(Ψ
0) = 0 and Dϑfi(Ψ

0) = 0,

for arbitrary ϑ.

For any r ∈ {1, · · · , N} and s ∈ {1, · · · , N} with r ̸= s, we have

∂3fi

∂Ψ2
r∂Ψs

(Ψ) =
ei

rs

β2
e−

Ψr
β .

Therefore,

∂3fi

∂Ψ2
r∂Ψs

(Ψ0) = 0

implies ei
rs = 0 for r ̸= s. Thus, we must have

fi(Ψ) =
∑

j

(ei
jjΨj + cj)e

−
Ψj
β .
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It is easy to compute that for any j ∈ {1, · · · , N},

∂lfi

∂Ψl
j

=

(
lei

jj

(−β)l−1
+

(ei
jjΨj + ci

j)

(−β)l

)
e−

Ψj
β ,

for arbitrary l ∈ N. Using the fact that

∂lfi

∂Ψl
j

(Ψ0) = 0,

which is

−βlei
jj + (ei

jjΨ
0
j + ci

j) = 0, for all l ≥ 1.

This implies ei
jj = 0 and ci

j = 0, and it contradicts to the fact that not all of ei
jk and

ci
j are zero. So we must have κ(A) = 0.

Theorem 2.2.1 indicates that one can not expect a linear system obtained by a

consistent discretization of the continuous Fokker-Planck equation (2.2.2) to achieve

the Gibbs distribution at its steady state for general potentials. It suggests that a

Fokker-Planck equation on a graph needs to be nonlinear in general. However, this

does not imply that general linear systems can not achieve the Gibbs distribution at

their steady states. In fact, it can be verified that for any given probability vector ρ∗,

including the Gibbs distribution, there exists a “reaction matrix” A, such that the

solution of the ODE system

ρ′(t) = ρA

tends to ρ∗ as time t → ∞. Furthermore, the choice of A is not unique. One may

choose any A with the property of eAt → P , where P = [ρ∗, ρ∗, · · · , ρ∗] is a rank one

matrix. For example, taking A = P −I will work in this situation. But such a matrix

A can not be obtained by linearly discretizing the continuous Fokker-Planck equation

in a consistent way as we explained in Theorem 2.2.1.

2.2.2 The properties of discrete Fokker-Planck equation

This section is about the properties of discrete Fokker-Planck equation (2.2.7). We

will show that equation (2.2.7) is well-defined and has a unique invariant measure
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which is Gibbs distribution. In fact, we have the following Theorem:

Theorem 2.2.3. Given a graph G = (V, E) satisfies (G), we have

1. For all β > 0, Gibbs distribution ρ∗ = (ρ∗
i )

N
i=1 given by

ρ∗
i =

1

K
e−Ψi/β with K =

N∑
i=1

e−Ψi/β

is the unique stationary distribution of equation (2.2.7) in M. Furthermore,

the free energy F attains its global minimum at Gibbs distribution.

2. For all β > 0, there exists a unique solution

ρ(t) : [0,∞) → M

of equation (2.2.7) with initial value ρ0 ∈ M, and ρ(t) satisfies:

(a) the free energy F (ρ(t)) decreases as time t increases,

(b) ρ(t) → ρ∗ under the Euclidean metric of RN as t → +∞.

Proof. (1). It is well known that F attains its minimum at Gibbs density. By a direct

computation, we have that Gibbs distribution is a stationary solution. Let ρ = (ρi)
N
i=1

be a stationary solution of equation (2.2.7) in M. For σ = (σi)
N
i=1 ∈ TρM, we let

σ ≃ [(pi)
N
i=1] for some (pi)

N
i=1 ∈ RN . Since ρ is the stationary solution, it implies that

N∑
i=1

(Ψi + β(1 + log ρi))σi

=
N∑

i=1

{ ∑
j∈N(i),Ψj>Ψi

((Ψi − Ψj)ρj + β(log ρi − log ρj)ρj)

+
∑

j∈N(i),Ψj<Ψi

((Ψi − Ψj)ρi + β(log ρi − log ρj)ρi)

+
∑

j∈N(i),Ψj=Ψi

β(ρi − ρj)

}
pi

= 0.
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We note that for any (σi)
N−1
i=1 ∈ RN−1, if we take

σN = −
N−1∑
i=1

σi

then (σi)
N
i=1 ∈ TρM. Thus one has

N−1∑
i=1

{(Ψi + β(1 + log ρi)) − (ΨN + β(1 + log ρN))}σi = 0

for any (σi)
N−1
i=1 ∈ RN−1. This implies

(Ψi + β log ρi) − (ΨN + β log ρN) = 0,

which is

ρi = e
ΨN−Ψi

β ρN

for i = 1, 2, · · · , N − 1.

Combining this fact with
∑N

i=1 ρi = 1, we have ρi = 1
K

e−Ψi/β = ρ∗
i for i =

1, 2, · · · , N , where K =
∑N

i=1 e−
Ψi
β . This completes the proof of (2).

(2). Let a continuous function

ρ(t) : [0, c) → M

for some 0 < c ≤ +∞ be a solution of equation (2.2.7) with initial value ρ0 ∈ M. For

any ρ0 ∈ M, there exists a maximal interval of existence [0, c(ρ0)) and 0 < c(ρ0)) ≤

+∞. We will show that for any ρ0, c(ρ0) = +∞. In fact, this follows from the

following claim,

Claim: Given ρ0 ∈ M, there exists a compact subset B of M with respect to the

Euclidean metric such that ρ0 ∈ int(B), where int(B) is the interior of B in M. If

ρ(t) : [0, c(ρ0)) → M

is the solution of equation (2.2.7) with initial value ρ0 on its maximal interval of

existence, then c(ρ0) = +∞ and ρ(t) ∈ int(B) for t > 0.
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Proof of Claim. Let ρ0 = (ρ0
i )

N
i=1 ∈ M be fixed and ρ(t) : [0, c(ρ)) → M be the

solution to equation (2.2.7) with initial value ρ0 on its maximal interval of existence.

First, we construct a compact subset B of M with respect to the Euclidean metric

such that ρ0 ∈ int(B). Then we show that c(ρ0) = +∞ and ρ(t) ∈ int(B) for all

t > 0.

Let us denote

M = max{e2|Ψi| : i = 1, 2, · · · , N},

ϵ0 = 1,

and

ϵ1 =
1

2
min

{
ϵ0

(1 + (2M)
1
β )

, min{ρ0
i : i = 1, · · · , N}

}
.

For ℓ = 2, 3, · · · , N − 1, we let

ϵℓ =
ϵℓ−1

1 + (2M)
1
β

.

We define

B =

{
ρ = (ρi)

N
i=1 ∈ M :

ℓ∑
r=1

ρir ≤ 1 − ϵℓ where ℓ ∈ {1, · · · , N − 1},

1 ≤ i1 < · · · < iℓ ≤ N

}
.

Then B is a compact subset of M with respect to Euclidean metric,

int(B) =

{
ρ = (ρi)

N
i=1 ∈ M :

ℓ∑
r=1

ρir < 1 − ϵℓ, where ℓ ∈ {1, · · · , N − 1},

1 ≤ i1 < · · · < iℓ ≤ N

}
,

and ρ0 ∈ int(B).

Let t0 ∈ [0, c(ρ0)) with ρ(t0) ∈ int(B). Then for any ℓ ∈ {1, 2, · · · , N − 1} and

1 ≤ i1 < i2 < · · · iℓ ≤ N , one has

ℓ∑
r=1

ρir(t0) < 1 − ϵℓ.
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Moreover
ℓ∑

r=1

ρir(t) < 1 − ϵℓ

for small enough t > t0 by continuity. Thus ρ(t) ∈ int(B) for small enough t > t0.

With the above discussion and the compactness of B, we are ready to prove that

c(ρ0) = +∞. To show this, it is sufficient to prove that ρ(t) ∈ int(B) for all t > 0.

Let us assume this is not true, which means the solution ρ(t) hits the boundary. In

this case, there exists t1 > 0 such that ρ(t1) ∈ ∂B and ρ(t) ∈ int(B) for all t ∈ [0, t1).

Since ρ(t1) ∈ ∂B, we can find 1 ≤ i1 < · · · < il ≤ N such that 1 ≤ l ≤ N − 1 and

l∑
r=1

ρir(t1) = 1 − ϵl. (2.2.13)

Let A = {i1, i2, · · · , iℓ} and Ac = {1, 2, · · · , N} \ A. Then for any j ∈ Ac,

ρj(t1) ≤ 1 −

(
ℓ∑

r=1

ρir(t1)

)
= ϵℓ. (2.2.14)

Since ρ(t1) ∈ B, we have
ℓ−1∑
j=1

ρsj
(t1) ≤ 1 − ϵℓ−1,

for any 1 ≤ s1 < s2 < · · · < sℓ−1 ≤ N . Hence for each i ∈ A,

ρi(t1) ≥ 1 − ϵℓ − (1 − ϵℓ−1) = ϵℓ−1 − ϵℓ. (2.2.15)

Combining equations (2.2.14), (2.2.15) and the fact

ϵℓ ≤
ϵℓ−1

1 + (2M)
1
β

,

one has, for any i ∈ A, j ∈ Ac,

Ψj −Ψi + β(log ρj − log ρi) ≤ Ψj −Ψi + β(log ϵℓ − log(ϵℓ−1 − ϵℓ)) ≤ − log 2. (2.2.16)

Since the graph G is connected, there exists i∗ ∈ A, j∗ ∈ Ac such that {ai∗ , aj∗} ∈ E.

Thus ∑
i∈A,j∈Ac,{ai,aj}∈E

ΓΨ
ij (ρ(t1)) ≥ ΓΨ

i∗j∗(ρ(t1)) > 0. (2.2.17)
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Now by (2.2.16) and (2.2.17), one has

d

dt

ℓ∑
r=1

ρir(t) |t=t1 =
∑
i∈A

∑
j∈N(i)

ΓΨ
ij (ρ(t1)) (Ψj − Ψi + β(log ρj(t1) − log ρi(t1)))

=
∑
i∈A

{
∑

j∈A∩N(i)

ΓΨ
ij (ρ(t1)) (Ψj − Ψi + β(log ρj(t1) − log ρi(t1)))

+
∑

j∈Ac∩N(i)

ΓΨ
ij (ρ(t1)) (Ψj − Ψi + β(log ρj(t1) − log ρi(t1)))}

=
∑
i∈A

∑
j∈Ac∩N(i)

ΓΨ
ij (ρ(t1)) (Ψj − Ψi + β(log ρj(t1) − log ρi(t1)))

≤ − log 2
∑
i∈A

∑
j∈Ac∩N(i)

ΓΨ
ij (ρ(t1))

= − log 2
∑

i∈A,j∈Ac,{ai,aj}∈E

ΓΨ
ij (ρ(t1))

≤ − log 2ΓΨ
i∗j∗(ρ(t1)) < 0.

Combining this with (2.2.13), it is clear that

l∑
i=1

ρir(t1 − δ) > 1 − ϵl

for sufficiently small δ > 0. This implies ρ(t1 − δ) /∈ B , and it contradicts the fact

that ρ(t) ∈ int(B) for t ∈ [0, t1). This completes the proof of the Claim.

As a direct consequence, we have the following result.

Corollary 2.2.4. Given the graph G = (V, E) satisfies condition (G), we have

1. If the noise level β = 0, then Fokker-Planck equation I (2.2.7) for the discrete

state space is

dρi

dt
=

∑
j∈N(i),Ψj>Ψi

(Ψj − Ψi)ρj +
∑

j∈N(i),Ψj<Ψi

(Ψj − Ψi)ρi (2.2.18)

for i = 1, 2, · · · , N .
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2. In a special case when the potential is a constant at each vertices, this equation

is the master equation:

dρi

dt
=
∑

j∈N(i)

β(ρj − ρi) (2.2.19)

for i = 1, 2, · · · , N .

Remark 2.2.5. Equation (2.2.18) describes the time evolution of probability distri-

bution due to the potential energy and is also the probability distribution of a time

homogeneous Markov process on the graph G. The master equation is a first order

differential equation that describes the time evolution of the probability distribution

at every vertex in the discrete state space. Its entropy increases along with the master

equation. In this sense, Fokker-Planck equation I (2.2.7) is a generalization of master

equation. We refer to [68] for more details on the master equation.

The diffusion term in (2.2.7) is a nonlinear discretization of Laplacian. It describes

a nonlinear diffusion of probability distribution between adjacent vertices. So it is

not proper to treat Ψi − Ψj + β(log ρi − log ρj) as the “transit rate” from ai to aj.

The approximated transition rate can be obtained by linearization. The readers may

find that linearized discrete Fokker-Planck equation is exactly the metropolis kernel.

(see [17])

2.2.3 The geometric features of discrete Fokker-Planck equation

This subsection is dedicated to the geometric properties of discrete Fokker-Planck-

type equation (2.2.7). It is already known that the Fokker-Planck equation (2.2.2)

is a gradient flow of free energy in the 2-Wasserstein space [52]. Like its continuous

counterpart, we will show that equation (2.2.7) is also a gradient flow of free energy

in some metric space, which is obtained by discretizing Otto’s calculus. Note that

Otto’s calculus describes the Riemannian geometric structure on 2-Wasserstein metric

space.

Remark 2.2.6. 2-Wasserstein distance is defined on the space of probability measures.
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Definition 2.2.1. on Rn, the 2-Wasserstein distance between probability measures µ1

and µ2 is defined by

W2(µ1, µ2)
2 = inf

λ∈M(µ1,µ2)

∫
Rn×Rn

d(x, y)2dλ(x, y), (2.2.20)

where M(µ1, µ2) is the collection of Borel probability measures on Rn × Rn with

marginal measures µ1 and µ2 respectively.

For more introductions of 2-Wasserstein space, see [71, 70].

We discretize Otto’s calculus in a following way to construct a family of Rieman-

nian metrics: Given a graph G = (V, E) with V = {a1, a2, · · · , aN}, we consider all

positive probability distributions on V :

M =

{
ρ = (ρi)

N
i=1 ∈ RN |

N∑
i=1

ρi = 1 and ρi > 0 for i ∈ {1, 2, · · · , N}

}
,

and its closure,

M =

{
ρ = (ρi)

N
i=1 ∈ RN |

N∑
i=1

ρi = 1 and ρi ≥ 0 for i ∈ {1, 2, · · · , N}

}
.

Let ∂M be the boundary of M, i.e.

∂M =

{
ρ = {ρi}N

i=1 ∈ RN |
N∑

i=1

ρi = 1, ρi ≥ 0 and
N∏

i=1

ρi = 0

}
.

The tangent space TρM at ρ ∈ M is defined by

TρM =

{
σ = (σi)

N
i=1 ∈ RN |

N∑
i=1

σi = 0

}
.

It is clear that the standard Euclidean metric on RN , d, is also a Riemannian metric

on M.

Let

Φ : (M, d) → (RN , d) (2.2.21)

be an arbitrary smooth map given by:

Φ(ρ) = (Φi(ρ))N
i=1, ρ ∈ M
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In the following, we will endow M with a metric dΦ, which depends on Φ and the

structure of G.

For technical reasons, we first consider the function

r1 − r2

log r1 − log r2

where r1 > 0, r2 > 0 and r1 ̸= r2. We want to extend it to the closure of the first

quadrant in the plane. In fact, this can be easily achieved by the following function:

e(r1, r2) =



r1−r2

log r1−log r2
if r1 ̸= r2 and r1r2 > 0

0 if r1r2 = 0

r1 if r1 = r2

.

It is easy to check that e(r1, r2) is a continuous function on

{(r1, r2) ∈ R2 : r1 ≥ 0, r2 ≥ 0}

and satisfies

min{r1, r2} ≤ e(r1, r2) ≤ max{r1, r2}.

For simplicity, we will use its original form instead of the function e(r1, r2) in this

paper.

Next, we introduce the following equivalence relation “∼ ” in RN :

p ∼ q if and only if p1 − q1 = p2 − q2 = · · · = pN − qN ,

and let W be the quotient space RN/ ∼. In other words, for p ∈ RN we consider its

equivalent class

[p] = {(p1 + c, p2 + c, · · · , pN + c) : c ∈ R},

and all such equivalent classes form the vector space W .

For a given Φ, and [p] = [(pi)
N
i=1] ∈ W , we define an identification τΦ([p]) = (σi)

N
i=1

from W to TρM by,

σi =
∑

j∈N(i)

ΓΦ
ij(ρ)(pi − pj), (2.2.22)
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where

ΓΦ
ij(ρ) =


ρi if Φi > Φj, j ∈ N(i)

ρj if Φj > Φi, j ∈ N(i)

ρi−ρj

log ρi−log ρj
if Φi = Φj, j ∈ N(i)

(2.2.23)

for i = 1, 2, · · · , N . With this identification, we can express σ ∈ TρM by [p] :=

τ−1
Φ (σ) ∈ W , and denoted it by

σ ≃ [(pi)
N
i=1].

We note that this identification depends on Φ, the probability distribution ρ and the

structure of the graph G. In the following lemma, we show that this identification

(2.2.22) is well defined.

Lemma 2.2.7. If each σi satisfies (2.2.22), then the map τΦ : [(pi)
N
i=1] ∈ W 7→ σ =

(σi)
N
i=1 ∈ TρM is a linear isomorphism.

Proof. It is clear that

τΦ : [(pi)
N
i=1] ∈ W 7→ τΦ([(pi)

N
i=1]) = (σi)

N
i=1 ∈ TρM

is a well-defined linear map. Furthermore, both W and TρM are (N −1)-dimensional

real linear spaces. Thus, in order to prove the map τΦ is an isomorphism, it is

sufficient to show that the map τΦ is injective, which is equivalent to the fact that if

p = {pi}N
i=1 ∈ RN satisfies

σi =
∑

j∈N(i)

ΓΦ
ij(pi − pj) = 0,⇐⇒ pi =

 ∑
j∈N(i)

ΓΦ
ijpj

 /

 ∑
j∈N(i)

ΓΦ
ij


for i = 1, 2, · · · , N , then p1 = p2 = · · · = pN .

Assume this is not true, and let c = max{pi : i = 1, 2, · · · , N}. Then, there must

exists {aℓ, ak} ∈ E such that pℓ = c and pk < c, because the graph G is connected.

This gives

c = pℓ =

∑
j∈N(ℓ) ΓΦ

ℓjpj∑
j∈N(ℓ) ΓΦ

ℓj

= c +

∑
j∈N(ℓ) ΓΦ

ℓj(pj − c)∑
j∈N(ℓ) ΓΦ

ℓj

≤ c − ΓΦ
ℓk(c − pk)∑
j∈N(ℓ) ΓΦ

ℓj

< c,

which is a contradiction. The proof is complete.
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Definition 2.2.2. By the above identification (2.2.22), we define an inner product

on TρM by:

gΦ
ρ (σ1, σ2) =

N∑
i=1

p1
i σ

2
i =

N∑
i=1

p2
i σ

1
i .

It is easy to check that this definition is equivalent to

gΦ
ρ (σ1,σ2) =

∑
{ai,aj}∈E

ΛΦ
ij(p

1
i − p1

j)(p
2
i − p2

j), (2.2.24)

where

ΛΦ
ij(ρ) =

 ρj if {ai, aj} ∈ E, Φi < Φj,

ρi−ρj

log ρi−log ρj
if {ai, aj} ∈ E, Φi = Φj,

(2.2.25)

for σ1 = (σ1
i )

N
i=1,σ

2 = (σ2
i )

N
i=1 ∈ TρM, and [(p1

i )
N
i=1], [(p

2
i )

N
i=1] ∈ W satisfying

σ1 ≃ [(p1
i )

N
i=1] and σ2 ≃ [(p2

i )
N
i=1].

In particular,

gΦ
ρ (σ, σ) =

∑
{ai,aj}∈E

ΛΦ
ij(ρ)(pi − pj)

2 (2.2.26)

for σ ∈ TρM, where σ ≃ [(pi)
N
i=1]. For any fixed Ψ and ρ, the inner product gΨ is a

well-defined inner product according to the following lemma.

Lemma 2.2.8. For any smooth map Φ : (M, d) → (RN , d) and ρ ∈ M,

gΦ
ρ (σ,σ) > 0

for any tangent vector σ ̸= 0.

Proof. Let Φ : (M, d) → (RN , d) be a smooth map. Given ρ ∈ M, the identification

(2.2.22) can be expressed by

σT = ApT

where σ = (σi)
N
i=1 ∈ TρM and p = (pi)

N
i=1 ∈ RN . Since

∑N
i=1 σi = 0 for (σi)

N
i=1 ∈

TρM, by deleting the last row and last column of the matrix A we obtain a symmetric
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diagonally dominant (N − 1) × (N − 1)-matrix B. Thus, the identification (2.2.22)

becomes

σT
∗ = BpT

∗

where σ∗ = (σi)
N−1
i=1 and p∗ = (pi − pN)N−1

i=1 .

The inner products are given as

gΦ
ρ (σ,σ) = σpT = σ∗p

T
∗ = σ∗B

−1σT
∗

for σ ∈ TρM. Clearly, gΦ
ρ (σ, σ) for every σ ̸= 0.

Since ρ ∈ M 7→ gΦ
ρ is measurable, using the inner product gΦ

ρ , we can define the

distance between two points ρ1 and ρ2 in M by

dΦ(ρ1,ρ2) = inf
γ

L(γ(t)) (2.2.27)

where γ : [0, 1] → M ranges over all continuously differentiable curve with γ(0) = ρ1,

γ(1) = ρ2. The arc length of γ is given by

L(γ(t)) =

∫ 1

0

√
gΦ

γ(t)(γ̇(t), γ̇(t))dt.

Although gΦ
ρ may or may not be a smooth inner product with respect to ρ, the length

of any smooth curve is still well defined because ρ ∈ M 7→ gΦ
ρ is measurable. It is

shown by Lemma 2.2.8 that dΦ is a metric on M. Thus we have a metric space

(M, dΦ). In particular, if Φ is a constant map, then the metric dΦ is a Riemannian

metric on M since the map ρ ∈ M 7→ gΦ
ρ is smooth. Hence, (M, dΦ) is a Riemannian

manifold.

Remark 2.2.9. The identification (2.2.22) is motivated by a similar identification in-

troduced by F. Otto in [52] for the case of a continuous state space. We replace the

differential operator in [52] by a combination of finite differences because our state

space V is discrete.
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For the discrete Fokker-Planck equation (2.2.7), we let

Φ(ρ) ≡ Ψ,

where ρ ∈ M. The identification (2.2.22)

σ ≃ [(pi)
N
i=1]

is given by

σi =
∑

j∈N(i)

(pi − pj)Γ
Ψ
ij (ρ) (2.2.28)

and the corresponding norm (2.2.26) is

gΨ
ρ (σ,σ) =

∑
{ai,aj}∈E

ΛΨ
ij (ρ)(pi − pj)

2, (2.2.29)

for σ ∈ TρM with σ ≃ [(pi)
N
i=1]. Note that the map ρ ∈ M 7→ gΨ

ρ is smooth and the

inner product gΨ generates a Riemannian metric space (M, dΨ), where dΨ comes from

(2.2.27). Similar to the theory developed in [52], we will show that Fokker-Planck

equation I (2.2.7) is the gradient flow of free energy on the Riemannian manifold

(M, dΨ).

Theorem 2.2.10. Given a graph G = (V, E) satisfies condition (G), we have

1. The gradient flow of free energy F ,

F (ρ) =
N∑

i=1

Ψiρi + β
N∑

i=1

ρi log ρi

on the Riemannian manifold (M, dΨ) of probability densities ρ on V is

dρi

dt
=

∑
j∈N(i),Ψj>Ψi

((Ψj + β log ρj) − (Ψi + β log ρi)) ρj

+
∑

j∈N(i),Ψj<Ψi

((Ψj + β log ρj) − (Ψi + β log ρi)) ρi

+
∑

j∈N(i),Ψj=Ψi

β(ρj − ρi)

for i = 1, 2, · · · , N , which is Fokker-Planck equation I (2.2.7).
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Proof. Let β ≥ 0 be fixed and the free energy functional F be defined on the space

M:

F (ρ) =
N∑

i=1

Ψiρi + β

N∑
i=1

ρi log ρi (2.2.30)

where ρ = {ρi}N
i=1 ∈ M. Thus, we have the gradient flow of F on (M, gΨ) given by,

dρ

dt
= −gradF (ρ), (2.2.31)

where gradF (ρ) is in the tangent space TρM.

If the differential of F , which is in the cotangent space, is denoted by diffF , then

(2.2.31) can be expressed as

gΨ
ρ

(
dρ

dt
,σ

)
= −diffF (ρ) · σ ∀σ ∈ TρM. (2.2.32)

It is clear that

diffF ((ρi)
N
i=1) = (Φi + β(1 + log ρi))

N
i=1 (2.2.33)

for (ρi)
N
i=1 ∈ M. By (2.2.32) and the identification (2.2.28), we are able to obtain the

explicit expression of the vector field on M.

We know that the gradient flow of free energy F on (M, dΨ) is given by equation

(2.2.32),

gΨ
ρ (

dρ

dt
,σ) = −diffF (ρ) · σ ∀σ ∈ TρM.

The left hand side of equation (2.2.32) is

gΨ
ρ (

dρ

dt
,σ) =

N∑
i=1

dρi

dt
pi (2.2.34)

where σ = (σi)
N
i=1 ≃ [(pi)

N
i=1]. By (2.2.33), the right hand side of equation (2.2.32) is

−diffF (ρ) · σ = −
N∑

i=1

(Ψi + β(1 + log ρi))σi. (2.2.35)
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Using the identification (2.2.28), we have

N∑
i=1

(Ψi + β(1 + log ρi))σi =
N∑

i=1

(Ψi + β log ρi)σi

=
N∑

i=1

(Ψi + β log ρi)(
∑

j∈N(i)

ΓΨ
ij (ρ)(pi − pj))

=
∑

{ai,aj}∈E,Ψi<Ψj

{(Ψi − Ψj) + β(log ρi − log ρj)}ρj(pi − pj)

+β
∑

{ai,aj}∈E,Ψi=Ψj

(ρi − ρj)(pi − pj)

=
N∑

i=1

{ ∑
j∈N(i),Ψj>Ψi

((Ψi − Ψj)ρj + β(log ρi − log ρj)ρj)

+
∑

j∈N(i),Ψj<Ψi

((Ψi − Ψj)ρi + β(log ρi − log ρj)ρi)

+β
∑

j∈N(i),Ψj=Ψi

(ρi − ρj)

}
pi

Combining this equation with equations (2.2.32), (2.2.34) and (2.2.35), we have

N∑
i=1

dρi

dt
pi =

N∑
i=1

{ ∑
j∈N(i),Ψj>Ψi

((Ψj − Ψi)ρj + β(log ρj − log ρi)ρj)

+
∑

j∈N(i),Ψj<Ψi

((Ψj − Ψi)ρi + β(log ρj − log ρi)ρi)

+β
∑

j∈N(i),Ψj=Ψi

(ρj − ρi)

}
pi.

Since the above equality stands for any (pi)
N
i=1 ∈ RN , we obtain Fokker-Flanck

equation (2.2.7) (2.2.7). This completes the proof.

In the end of this subsection, we will introduce one proposition about the geodesic

equation on the Riemannian space (M, dΨ), which is exactly a discretization of

geodesic equation given in [45].
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Proposition 2.2.11. The geodesic of metrix dΨ is given by the following equation

dpi

dt
= −1

2

∑
j∈N(i),Ψi>Ψj

(pi − pj)
2 (2.2.36)

dρi

dt
=

∑
j∈N(i),Ψi>Ψj

(pi − pj)ρi +
∑

j∈N(i),Ψi<Ψj

(pi − pj)ρj (2.2.37)

Proof It is well known that geodesic is the minimum of distance as well as the

minimum of the energy functional

E(γ) =
1

2

∫
g(γ̇, γ̇)dt

This is obvious because geodesic has constant speed, the Holder inequality becomes

an equality.

So geodesic is the minimal integral curve of the following Lagrangian

L(ρ⃗, σ⃗) = σ⃗T L(G, ρ⃗)σ⃗

After Legendre transformation, we can obtain the Hamiltonian equation (2.2.36).

2

Remark 2.2.12. In [45], J.Lott gave the geodesic equation on 2-Wasserstein space over

Rn:

dϕ

dt
= −1

2
|∇ϕ|2 (2.2.38)

dρ

dt
= −∇ · (ρ∇ϕ)

Clearly equation (2.2.36) is exact a discretization of the previous equation (2.2.38).

That’s another reason why we claim that our metric dΨ has certain similarities as the

2-Wasserstein distance on the space of probability measures on Rn.

2.2.4 The exponential convergence of discrete Fokker-Planck equation

We will introduce the results on the exponential convergence of equation (2.2.7) in

this subsection. Let G = (V, E) be a graph that satisfies condition (G), and µ a
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measure supported on V . For any map f : V → R, recall the L2(µ)-norm of f with

respect to µ, denoted by ||f ||2,µ, and given by:

||f ||22,µ :=
∑
i∈V

(f(i))2µi .

Let ν be a measure on V , then we measure the distance between (the density of)

ν and µ as usual using:

||ν
µ
− 1||22,µ =

N∑
i=1

(
νi

µi

− 1)2µi .

The following is our first main result of this subsection.

Theorem 2.2.13. Let G = (V, E) be a graph that satisfies condition (G). If ρ(t) =

(ρi(t))
N
i=1 : [0,∞) → M is the solution of the Fokker-Planck equation I (2.2.7), with

the initial value ρo = (ρo
i )

N
i=1 ∈ M, then there exists a constant C = C(ρo; G, Ψ, β) >

0 such that

||ρ(t)

ρ∗ − 1||22,ρ∗ = ||ρ
o

ρ∗ − 1||22,ρ∗e
−Ct , (2.2.39)

where ρ∗ = (ρ∗
i )

N
i=1 is the Gibbs distribution given by (2.2.6). In particular, ρ(t)

exponentially converges to global equilibrium: the Gibbs distribution ρ∗ under the

Euclidean metric of RN as t → ∞.

Proof. Given initial value ρo = (ρo
i )

N
i=1 ∈ M. Let ρ(t) = (ρi(t))

N
i=1 : [0,∞) → M be

the solution of Fokker-Planck equation I (2.2.7) with initial value ρo ∈ M. For t ≥ 0,

we define

L(t) = ||ρ(t)

ρ∗ − 1||22,ρ∗ =
N∑

i=1

(ρi(t) − ρ∗
i )

2

ρ∗
i

,

where ρ∗ = (ρ∗
i )

N
i=1 is the Gibbs distribution given by (2.2.6). Now for t > 0 by (2.2.7)
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we have

dL(t)

dt
=

N∑
i=1

2(ρi(t) − ρ∗
i )

ρ∗
i

dρi(t)

dt

=
N∑

i=1

2(ρi(t) − ρ∗
i )

ρ∗
i

(
∑

j∈N(i),Ψj>Ψi

((Ψj + β log ρj(t)) − (Ψi + β log ρi(t)))ρj(t)

+
∑

j∈N(i),Ψj<Ψi

((Ψj + β log ρj(t)) − (Ψi + β log ρi(t)))ρi(t)

+
∑

j∈N(i),Ψj=Ψi

β(ρj(t) − ρi(t))).

Note that Ψj − Ψi = −β log ρ∗
j + β log ρ∗

i for i, j ∈ {1, 2, · · · , N} and ρ∗
j = ρ∗

i when

Ψj = Ψi. Combing this with the above equality, we have

dL(t)

dt

=
N∑

i=1

2(ρi(t) − ρ∗
i )

ρ∗
i

(
∑

j∈N(i),Ψj>Ψi

((−β log ρ∗
j + β log ρj(t)) − ((−β log ρ∗

i + β log ρi(t)))ρj(t)

+
∑

j∈N(i),Ψj<Ψi

((−β log ρ∗
j + β log ρj(t)) − ((−β log ρ∗

i + β log ρi(t)))ρi(t)

+
∑

j∈N(i),Ψj=Ψi

β(
ρj(t)

ρ∗
j

− ρi(t)

ρ∗
i

)
ρ∗

i + ρ∗
j

2
)

=
N∑

i=1

2(ρi(t) − ρ∗
i )

ρ∗
i

(
∑

j∈N(i),Ψj>Ψi

β(log
ρj(t)

ρ∗
j

− log
ρi(t)

ρ∗
i

)ρj(t)

+
∑

j∈N(i),Ψj<Ψi

β(log
ρj(t)

ρ∗
j

− log
ρi(t)

ρ∗
i

)ρi(t) +
∑

j∈N(i),Ψj=Ψi

β(
ρj(t)

ρ∗
j

− ρi(t)

ρ∗
i

)
ρ∗

i + ρ∗
j

2
)

We denote ηi(t) as
ρi(t)−ρ∗i

ρ∗i
for t ≥ 0. Then the above equation can be written as

dL(t)

dt
=

N∑
i=1

2ηi(t)(
∑

j∈N(i),Ψj>Ψi

β(log(1 + ηj(t)) − log(1 + ηi(t)))ρj(t)

+
∑

j∈N(i),Ψj<Ψi

β(log(1 + ηj(t)) − log(1 + ηi(t)))ρi(t)

+
∑

j∈N(i),Ψj=Ψi

β(ηj(t) − ηi(t))
ρ∗

i + ρ∗
j

2
).

78



For edge {ai, aj} ∈ E with Ψj > Ψi, 2ηiβ(log(1 + ηj) − log(1 + ηi))ρj will be in the

above sum at vertex ai; 2ηjβ(log(1 + ηi)− log(1 + ηj))ρj will be in the above sum at

vertex aj. So we can write the above equality as

dL(t)

dt
= −

∑
{ai,aj}∈E,Ψj>Ψi

2β(log(1 + ηj(t)) − log(1 + ηi(t)))(ηj(t) − ηi(t))ρj(t)

−
∑

{ai,aj}∈E,Ψj=Ψi

2β(ηj(t) − ηi(t))
2
ρ∗

i + ρ∗
j

2
. (2.2.40)

Using (2.2.40) and the following inequality

min{1

a
,
1

b
} ≤ log a − log b

a − b
≤ max{1

a
,
1

b
}

for a > 0, b > 0 with a ̸= b, we have

dL(t)

dt
≤−

∑
{ai,aj}∈E,Ψj>Ψi

2β(ηj(t) − ηi(t))
2 min{ 1

1 + ηi(t)
,

1

1 + ηj(t)
}ρj(t)

−
∑

{ai,aj}∈E,Ψj=Ψi

2β(ηj(t) − ηi(t))
2
ρ∗

i + ρ∗
j

2

= −
∑

{ai,aj}∈E,Ψj>Ψi

2β(ηj(t) − ηi(t))
2 min{ ρ∗

i

ρi(t)
,

ρ∗
j

ρj(t)
}ρj(t)

−
∑

{ai,aj}∈E,Ψj=Ψi

2β(ηj(t) − ηi(t))
2
ρ∗

i + ρ∗
j

2
. (2.2.41)

For b = (bi)
N
i=1 ∈ RN , we let

m(b) = min{bi : 1 ≤ i ≤ N} and M(b) = max{bi : 1 ≤ i ≤ N}.

Put A(t) = 2β m(ρ(t))
M(ρ(t))

m(ρ∗) for t ≥ 0. Then A(t) > 0 and by (2.2.41) we have

dL(t)

dt
≤ −A(t)(

∑
{ai,aj}∈E

(ηj(t) − ηi(t))
2). (2.2.42)

Next we prove the following claim, relating the above right hand side to the spectral

gap of the Laplacian matrix L(G) of graph G:

L(G) := D − A ,
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where D is a diagonal matrix with dii = deg(ai) (number of edges at ai), and A is

the adjacency matrix (Aij = 1 if and only if ai, aj ∈ E). It is well known that L(G)

has one 0 eigenvalue and N − 1 positive eigenvalues if G is a connected simple graph.

Claim 1: ∑
{ai,aj}∈E

(ηj(t) − ηi(t))
2 ≥ λ2

M(ρ∗)
L(t) ,

where M(ρ∗) is the maximal entry of ρ∗ which is at most 1, and λ2 is the second

smallest eigenvalue of the Laplacian matrix of G, or the spectral gap of G.

Proof of Claim 1. Indeed we have∑
{ai,aj}∈E

(ηj(t) − ηi(t))
2 = ηTL(G)η ≥ λ2||η||2

and

L(t) =
N∑

i=1

ρ∗
i η

2
i (t) ≤ M(ρ∗)||η||2 .

Hence ∑
{ai,aj}∈E

(ηj(t) − ηi(t))
2 ≥ λ2

M(ρ∗)
L(t) .

Remark 2.2.14. In the literature, there are various standard ways to bound the spec-

tral gap of a graph; for example, see [5], for the bound,

λ2 ≥ dmax −
√

d2
max − d2

min ,

where dmax and dmin are the maximum and minimum degrees of vertices in G; simi-

larly see [46], for

λ2 ≥
2N

2 + N(N − 1)d − 2Md
,

where N is the number of vertices, M is the number of edges, and d is the diameter

of G; or [67] for the bound,
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λ2 ≥ 2(1 − cos(
π

N
)) .

We define

B = {q = (qi)
N
i=1 ∈ M :

ℓ∑
r=1

qir ≤ 1 − ϵℓ where ℓ ∈ {1, · · · , N − 1},

1 ≤ i1 < · · · < iℓ ≤ N}.

Then B is a compact subset of M with respect to the Euclidean metric,

int(B) = {q = (qi)
N
i=1 ∈ M :

ℓ∑
r=1

qir < 1 − ϵℓ, where ℓ ∈ {1, · · · , N − 1},

1 ≤ i1 < · · · < iℓ ≤ N}.

and ρ0 ∈ int(B). We have

Claim 2: ρ(t) ∈ B for all t ≥ 0.

Proof of Claim 2. That is the same claim as in Theorem 2.2.3.

Using Claim 1 and (2.2.42), we have

dL(t)

dt
≤ − λ2

M(ρ∗)
A(t) L(t). (2.2.43)

We define C = 2βλ2
m(ρ∗)
M(ρ∗)

1−ϵL−1

ϵ1
; clearly C > 0 is dependent on ρo as well as on

G, Ψ, β, that is C = C(ρo; G, Ψ, β). By the definition of B and Claim 2, we have

A(t) = 2β
m(ρ(t))

M(ρ(t))
m(ρ∗) ≥ 2βm(ρ∗) min{m(q)

M(q)
: q ∈ B}

≥ 2βm(ρ∗)
1 − ϵL−1

ϵ1

=
M(ρ∗)

λ2

C

for t ≥ 0. Combing this with (2.2.43), we get dL(t)
dt

≤ −CL(t) for t > 0. This implies

that L(t) ≤ L(0)e−Ct for t ≥ 0. Since L(0) = ||ρ(0)
ρ∗ −1||2, we have (2.2.39), completing

the proof of the theorem.
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Remark 2.2.15. Given a graph G = (V, E) that satisfies condition (G) and a constant

β > 0, the positive constant C = C(ρo; G, Ψ, β) appearing in Theorem 2.2.13 is

dependent on the initial value ρo ∈ M. In fact C(ρo; G, Ψ, β) → 0, when the initial

distribution ρo converges to the boundary of M.

2.2.5 Example: Effect of injected noise

An illustrative example will be demonstrated in this subsection. Recall that small

injected noises in an ODE system can remove the singularity and non-uniqueness of

the invariant measure. We want to do the same thing for networks in discrete setting.

The discrete Fokker-Planck equation provides us an approach to inject noise into

Markov chain network, which can remove this non-uniqueness of invariant measure.

If the Markov network is reducible, then the irreducible sets form a partially ordered

set. One can find that the invariant measure of (2.2.7) concentrates on the bottom

of partial ordered set. This phenomenon can be seen as a mimic of classical large

deviation theory.

Recall the knowledge of continuous-time Markov chain. For a Markov chain net-

work on X = {a1, · · · , an}, let ωij be the transition rate from i to j. Then the

Kolmogorov equation is:

dρi

dt
= −

∑
j,ωij ̸=0

ωijρi +
∑

j,ωji ̸=0

ωjiρj (2.2.44)

where {ρi(t)}n
i=1 is the probability distribution on X at time t. Follow the idea of

discrete Fokker-Planck equation, we add log-diffusion term to equation (2.2.44):

dρi

dt
= −

∑
j,ωij ̸=0

(ωij + ϵ log ρj − ϵ log ρi)ρi +
∑

j,ωji ̸=0

(ωji + ϵ log ρj − ϵ log ρi)ρj (2.2.45)

Then we consider the following Markov chain in figure 1 as one example. The

numbers on edges demonstrates the transition rate. This markov chain is reducible

so there exists infinite many invariant measures. Further, there are two irreducible

components, A = {a, b, c} and B = {f, g, h}. If we add some random perturbation
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Figure 1: Markov Chain

with strength β to this system, and consider equation (2.2.45) as the time evolution of

the probability distributions, then this Markov chain becomes irreducible, while the

invariant measure is unique. We can compute the invariant measure µϵ numerically,

and numerically experiment suggests that

lim
ϵ→0

ϵ log
µϵ(B)

µϵ(A)
= −1

Figure 2: The y-axis is the value of −ϵ log µϵ(B)
µϵ(A)

, the x-axis is the value of ϵ

2.3 Extension 2 : Fokker-Planck equations of iterative map-
ping

In this section, the attention will be paid to the time-discrete dynamical system.

83



Time-discrete dynamical system is an very important and very active research

field. Some biological networks are also modeled by time-discrete dynamical systems.

The stochastic perturbation theory of time-discrete dynamical systems has already

been well-known (See [41] for more detailed reference). Roughly speaking, for stochas-

tic perturbations in the form of Markovian kernel, there has been a large deviation

theory that is similar as the stochastic ODE systems.

Although the choices of Markovian kernel can be infinite, one realization of the

Markovian kernel is particularly interesting. The Fokker-Planck-type equation of

this Markovian kernel can be given explicitly. In addition, this Markovian kernel

behaves like Brownian motion perturbation in the vicinity of attractors. This realiza-

tion of stochastic perturbation of time-discrete dynamical systems was proposed by

E.C.Zeeman in article [75]. He use this Markovian kernel to characterize the stability

of dynamical system.

We outline his approach as follows. Let X be a smooth compact manifold, F :

X → X be the diffeomorphism, and ϵ be the magnitude of the noise. A smooth

Markovian kernel Kϵ(x, y) is introduced in [75] to ”polish” the probability density

function after each iterations of the mapping F . Let

Kϵ(x, y) = k(y)e−d(x,y)/2ϵ ,

where d(x, y) is the distance between x and y. The constant k(y) plays the role of a

normalizer, such that for each y ∈ X∫
Kϵ(x, y)dx = 1 .

In [75], dynamical systems on smooth compact manifolds were considered. A self

mapping can be defined on the space of continuous functions over X (denoted by

C(X).

We denote

S : C(X)∗ → C(X)
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by

S ◦ µ(x) = µ(Kϵ(x, ·)) =

∫
Kϵ(x, y)µ(dy) .

Zeeman’s approach can be understood easily by recalling the heat equation. Sup-

pose initially we have probability density function P n(x) after the n-th iteration. Let

the diffeomorphism F act on P n(x) to obtain the push-forward function P n+1/2(x):

P n+1/2(x) = F−1
x (F−1(x))P n(F−1(x)) .

Then push P n+1/2(x) forward by mapping S. Note that map S is nothing but a

heat kernel. This is equivalent to the solution at t = 1 of the following heat equation:

∂Q

∂t
=

ϵ

2
∆Q

Q(0, x) = P n+1/2(x) .

Denote P n+1(x) by

P n+1(x) = Q(1, x) . (2.3.1)

We obtain the probability density function at the n + 1-th iteration.

Essentially, this approach introduces a white noise perturbation after each step.

Equivalently, this random perturbation can be written as

F̄ = F ◦ S ,

where S is a noisy map obtained by

S(x) = x + ϵW1 .

The random W1 above is a standard Brownian motion function at time 1. In the

other word it is a random variable with standard normal distribution. It is proved

in [75] that the map F̄ admits a unique invariant probability measure, which is also

globally stable.

Similar to the ODE system, the invariant measure of F can be both singular and

not unique, while the invariant measure of F̄ is nevertheless unique and smooth. Our
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definitions of systematic measures rely on the regularity of the invariant measure.

Again, the injected noise helps our next step analysis.

The following illustrative example reveals some evidence that the previous men-

tioned realization of random perturbation behaves similar as the white noise pertur-

bation.

Example 2.3.1. Consider a contraction mapping with constant rate

Xn+1 = aXn (2.3.2)

for some a < 0. The orbit of (2.3.2) has exponential decay rate to the origin. It

behaves like the linear equation

X ′ = −µX (2.3.3)

for µ > 0.

It is well known that the white noise perturbation of equation (2.3.3) is the Ornstein

Uhlenbeck process whose invariant measure is a normal distribution. It can also be

seen as the gradient flow of potential function U = µx2/2. Using the same approach,

the invariant measure of equation (2.3.2) can be found. It is also normally distributed:

√
1 − a2

2πϵ2
e

(a2−1)x2

2ϵ2 .

Therefore, in the sense of invariant measure, the constant contraction mapping with

Zeeman’s random perturbation behaves similar as the gradient flow with white noise

perturbation.
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CHAPTER III

QUANTIFYING SYSTEMATIC MEASURES OF

BIOLOGICAL NETWORKS

The emphasis in this chapter will be paid on the quantification of systematic measures

of biological networks. This quantification relies on our work in stochastic dynamical

systems. We measure the systematic measure of complex biological networks by

activating the connections with external noises. Some sections in this chapter come

from the published paper [44].
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3.1 Review of biochemical reaction network theory

We give an overview of biochemical reaction networks theory in this section as the

start of the second part of this dissertation. The modern mathematical theory of

biochemical reaction networks was originally developed by Martin Feinberg several

decades ago [23]. Implied by his theory, many basic properties of biochemical reaction

network can be obtained without solving the reaction equation explicitly, or even

without knowing the exact reaction rates. The classical theory introduced in [24, 25]

and some modern development in [3, 60] will be covered in three steps. First we

characterize biochemical reaction networks in a mathematical way. Then we introduce

some notations such as stoichiometric subspace, linkage class and deficiency. Lastly

we review the deficiency zero theorem and deficiency one theorem.

A biochemical reaction network is a directed graph G = (V, E) := (C,R) associated

with species set S. The set C = {c1, · · · , cn} indicates the complex and R represents

the reaction relation. A biochemical reaction network is also called a reaction diagram.

In this section, we denote the species by upper case letters X1, X2, · · · , Xm and the

concentration of each species by lower case letters x1, x2, · · · , xm. Further, we always

assume S is a finite set. Let m be the number of species. It is easy to see that each

vector of concentration can be written as a vector in the set Rm
≥0 := {(x1, · · · , xm)|xi ≥

0, 1 ≤ i ≤ m}.

The graph G = (C,R) represents the topological structure of the biochemical

reaction network. The vertices set of G represents the set of complex C. A complex

in C is a linear combination of species in S with positive integer coefficients. For

example, let S = {X1, X2, X3}. Then 3X1, X1 + 2X2, X2, X1 + X2 + X3 are all

complexes. The reaction relation R is the set of directed edges in G which consists of

ordered pairs of complexes {ci, cj}. Each edge represents a reaction in the biochemical
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reaction network G, such as

3X1 + X2
k−→ X1 + X2 + X3 .

Every reaction in R is associated with a reaction rate function, which is both the

consuming rate of the left complex and the producing rate of the right complex.

In most cases, we assume the biochemical network is a mass-action system. Mass-

action system means that the reaction rates are in proportion to the product of

concentrations of reactant species on the left hand of the arrows. For example, the

reaction rate of the above reaction is ka3b, where k is some positive constant called

rate constant.

Reactions in a biochemical reaction network can be written explicitly. A bio-

chemical reaction network G = (C,R) with species set S includes the following set of

chemical reactions:

α1
1X1 + · · · + α1

mXm
k1−→ β1

1X1 + · · · + β1
mXm (3.1.1)

· · · · · ·

αR
1 X1 + · · · + αR

mXm
kR−→ βR

1 X1 + · · · + βR
mXm .

The above coefficients {αr
k}and {βr

k}, r = 1, · · · , R k = 1, · · · ,m are non-negative

integers that represents the coefficient of species Xk in the reactant complexes of the

r-th equation. As mentioned before, we only consider the mass-action system in this

thesis. This means that the corresponding differential equations of network (3.1.1)

can be written as

dXi

dt
=

R∑
r=1

kr(β
r
i − αr

i )X
αr

1
1 · · ·Xαr

M
m , (3.1.2)

for each 1 ≤ i ≤ m. We want to remark that although the dynamics of ODE system

can be complicated, system (3.1.2) usually has simple and nice dynamics. The modern

chemical reaction network theory focuses on the properties of mass-action equation

(3.1.2) when the rate constant {kr} are not given explicitly. In another word, it is the
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topology of chemical reaction network that determines some properties of mass-action

system (3.1.2).

Some more notations are required before reviewing the main results. Note that

the concentractions of a biochemical reaction network with species size m are vectors

in Rm
≥0. Let {e1, · · · , em} be the standard basis of Rm, in which

ei = [0, · · · , 0,
ith

1 , 0, · · · , 0] .

Let c = α1X1 + · · · + αmXm be a complex. We denote vector α1e1 + · · · + em as the

complex vector of c.

Complex vectors span certain subspaces. Let {ci, cj} be an edge in R, vi and vj

be the complex vectors of ci and cj respectively. The vector rij = vj − vi is called the

reaction vector of reaction rij. Denote the spanning set by

S = span{rij|{ci, cj} ∈ R} .

This subspace S is called stoichiometric subspace. It is trivial to show that the solution

of every mass-action equation lies on the set S +a for some vector a ∈ Rm. Formally,

the set S + a is called stoichiometric compatibility class.

The deficiency can be defined by combining the concepts above. Denote the

underlying undirected graph of G by G′. The connection components of G′ is called

linkage class. Let c be the size of complex set, l be the number of linkage classes

and r be the rank of stoichiometric subspace S. It is showed in [24] that c − l − r is

nonnegative. The number c− l− r is called the deficiency of the biochemical reaction

network.

Take the following chemical reaction network for an example. In this example, the

species set S = {A,B, C,D, E, F}, complex set C = {3A + B,D,C + E, A + C,E +

B, B+C, E+F}. There are two linkage classes {3A+B, D, C +E, A+C, E+B} and

{B +C, E +F}. Further, it is easy to verify that the rank of stoichiometric subspace

is 5. This means the deficiency is 7 − 2 − 5 = 0.
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Figure 3: Example of Chemical Reaction Network

Let a, b, c, d, e, f be the concentration of species A, B, C, D, E and F . The mass-

action equation can also be written explicity:

da

dt
= (2k3 − k−4 − k5)ac − 3k1a

3b + 3k−1d + k4eb + k−5ce

db

dt
= (k−1 + k2)d − k1a

3b + k2d + k−4ac − k4eb + k−6ef − k6bc

dc

dt
= (−k3 − k−4 − k5)ac + k−5ce + k4eb + k−6ef − k6bc

dd

dt
= −(k−1 + k2)d + k1a

3b

de

dt
= −k4eb − k−5ce + (k5 + k−4)ac + k2d − k−6ef + k6bc

df

dt
= −k−6ef + k6bc .

The classical theory says that some fundamental properties of mass-action systems

do not rely on the parameters too much. This makes lots of sense in practice because

the parameters of biochemical biochemical network may be hard to measure. Before

reviewing the main theorem of biochemical reaction network, there are several more

notations that are necessary to mention.

The first thing is the reversibility of the networks. Without reversibility, if there

exists a sink in the biochemical reaction network, then after a sufficient long time,

almost all the other complexes will be converted to the complexes in the sink. This

will give some degenerated steady-state (steady-state with zero concentration of some

91



complexes). To avoid this degenerate phenomenon, we need some reversibility of the

network. A directed graph is strongly reversible if every reaction has its reverse.

Strongly reversibility is too strong in practice. We can relax the requirement to

define the weak reversibility. A directed graph is weakly reversible if for every pair

of complexes which are connected by directed path, there exists a backward directed

path on the opposite direction. For example, in Figure 3, C +E and D are connected

by the forward path C + E → A + C → 3A + C → D and the backward path

D → E + B → A + C → C + E. This is also true for all the complex pairs. So the

network given in Figure 3 is weakly reversible. However, it is not strongly reversible.

Besides the linkage class, the terminal linkage class, which plays the role of sink,

is also defined. Formally, a terminal linkage class is a strong connected component

with no edge points outside. For example, the two linkage classes in Figure 3 are all

terminal linkage classes.

Lastly we are ready to review the famous Deficiency Zero Theorem and Deficiency

One Theorem from [24, 25].

Theorem 3.1.1. (Deficiency Zero Theorem)

For any weakly reversible reaction network with deficiency zero, there exists a unique

positive steady-state on each stoichiometric compatibility class P , which is also global

attractor in P ∩ Rm
>0.

Theorem 3.1.2. (Deficiency One Theorem)

For a weakly-reversible biochemical reaction network whose linkage classes are L1, · · · , Lk.

Let δ be the deficiency of the whole network, δ1, · · · , δk be the deficiency of k linkage

classes respectively. If

• Each linkage class contains precisely one terminal linkage class.

• δi ≤ 1 for all 1 ≤ i ≤ k
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•
k∑

i=1

δi = δ

Then there exists a unique positive steady-state on each stoichiometric compatibility

class P , which is also global attractor in P ∩ Rm
>0.

Remark 3.1.3. The previous statements are all for closed systems. If a system is open

(with material exchange from and to the external environment), then an artificial

complex 0 which represents the environment can be added into the network. The

concentration of 0 is assumed to be fixed. The difference between open system and

closed system is that there is only one stoichiometric compatibility class because the

concentration of 0 is already fixed. This means the steady-state is the global steady-

state regardless the initial condition.

3.2 Concepts and definitions of degeneracy, complexity and
robustness

In this section, we will give rigorous quantitative characterization of systematic mea-

sures of biological networks. As we introduced in the Introduction, degeneracy, com-

plexity and robustness are three important systematic features of complex biological

network. According to Section 3.1, every biochemical reaction network is associated

with an ODE equation called the mass-action kinetic equation. Besides chemical

reaction networks, many gene regulation networks, ecological networks can be also

modeled by ODE systems. Hence we establish our theoretical framework of ODE

systems at first, then extend to more general dynamical systems.

Although mass-action kinetic equations have special structure, to make our char-

acterization universal, from now on we consider the general case of ODE systems.

dx

dt
= f(x) (3.2.1)
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and its random perturbation

dXt = f(x)dt + ϵσ(x)dWt , (3.2.2)

where f(x) is a continuous vector field in RN , σ(x) is a N × N matrix function and

Wt is the standard n-dimensional white noise. The theory of stochastic differential

equations has been covered in the first chapter.

3.2.1 Degeneracy and complexity

Inspired by, but differing from [66], our definition of degeneracy is divided into several

steps. In the first step, we define projected density, entropy and mutual information

associated with any subspace. Then we fix a subspace as the ”output” set and define

its associated degeneracy by considering the complementary subspace as the ”input”

set. Lastly, we define the degeneracy of the entire system by varying the output

sets and taking the maximum among all degeneracies of these sets. Our definition

are based on the ODE modeled systems, but can be generalized to time-discrete or

space-discrete systems naturally.

Let X denote the variable set of ODE system (3.2.1), let V be the variable subset

of X, biologically V means the set of elements or species of the network.

For simplicity, in this subsection we denote the density function uϵ(x) of the

invariant measure of (3.2.2) by ρ when ϵ can be treated as a fixed constant. From

the Theorem 2.1.2, we know that ρ is a smooth solution of (2.1.3) for the fixed

parameters ϵ, σ. For any subspace I of Rn coordinated by u ∈ I, we define the

marginal distribution with respect to I by

ρI(u) =

∫
J

ρ(u, v)dv,

where J is the complementary subspace of I coordinated by v ∈ J .

Usually, the coordinates of I is V , which is a subset of the whole variable set

X. Biologically I means the subspace spaned by variables in a subset of the whole

network.
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For instance, in R3 = {(x1, x2, x3)} if I = {(0, u, 0)} and J = {(v1, 0, v2)}, then

u = x2 and

ρI(u) =

∫
J

ρ(x1, x2, x3)dx1dx3.

The projected entropy associated with the projected density above is defined by

H(ρI) = −
∫

I

ρI(u) log ρI(u)du.

Entropy is an information theoretical value which measures the uncertainty (amount

of information) associated with a random variable. If the probability measure µ is

an atomic measure then the entropy could be infinity, which does not make sense for

our research. So we must be careful of the regularity of the invariant measure of the

system. That is the main reason of the discussion in the first chapter.

For any two subspaces I1, I2, the direct sum I = I1 ⊕ I2 is also a subspace. We

then define their joint entropy H(I1, I2) simply by the projected entropy H(I1 ⊕ I2)

associated with the direct sum, i.e.,

H(I1, I2) = H(I1 ⊕ I2) = −
∫

I1⊕I2

ρI1,I2(u, v) log ρI1,I2(u, v)dudv,

where

ρI1,I2(u, v) =

∫
J

ρ(u, v, w)dw

with J being the complementary subspace of I1 ⊕ I2.

The mutual information among subspaces I1, I2 is defined by

M(I1; I2) = H(I1) + H(I2) − H(I1, I2).

It is easy to see that

MI(I1; I2) =

∫
I1⊕I2

ρI1,I2(u, v) log
ρI1,I2(u, v)

ρI1(u)ρI2(v)
dudv (3.2.3)

Mutual information is an important information theoretical measure. Originally

people use mutual information to measure the efficiency of information channel [13].
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Statistically, the mutual information (3.2.3) measures the correlation between marginal

distributions with respect to subspaces I1 and I2. In a biological network, (3.2.3)

measures functional connectivity between two components. If two components could

behave coherently, then they share a high mutual information. On the other hand, if

two modules are functional independent, then the mutual information between them

is fairly low.

We want to mention that mutual information is a better index to measure the

connectivity of modules of network than the topological structure of the network it

self. The network topology doesn’t provide enough information about the functional

relationship among elements and components. It is possible that two components are

connected by some reactions but still shares low mutual information.

Then we define the degeneracy. Let O be a fixed subspace of Rn, viewed as an

output set. We denote I as the complementary subspace to O, viewed as the input

set. In other words, the set O is a fixed set of ”observables” when the system (1.1.2)

is excited by noise. To measure the noise impacts on all possible components of the

input set, we consider any subspace Ik of I and denote its complementary set in I by

Ic
k. The multivariate mutual information, or the interacting information among Ik,

Ic
k and O is defined by

D(k) = MI(I; Ik;O) = MI(Ik;O) + MI(Ic
k;O) − MI(I;O). (3.2.4)

The interacting information measures how much more correlation the inputs A

and B share with output C than expected. Biologically, degeneracy measures how

much I1 and I2 are structurally different but performs same function at the output

set O. In another word, the deficiency between MI(I;O) and the summation of

MI(Ik;O) and MI(Ic
k;O) comes from the structural difference between Ik and Ic

k.

We note that unlike the mutual information between two subspaces, the inter-

acting information among three subspaces can take negative values. One example
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of negative mutual information is as follows: Let X and Y be independent if Z is

unknown, but not independent when conditioning with Z, then MI(X; Y ; Z) is nega-

tive. Article [64] provides a rigorous proof. Similar to the case of neural networks, we

define the degeneracy associated with O by averaging all the interacting information

among all possible subspaces of I, i.e.,

D(O) = ⟨MI(I; Ik,O)⟩ =
∑
Ik

1

2Cn
k

max{MI(I; Ik;O), 0} (3.2.5)

Similiar to degeneracy, complexity C(O) associated with O can be obtained by

averaging all the mutual information between Ik and Ic
k, i.e.,

C(O) = ⟨MI(Ik; I
c
k)⟩ =

∑
Ik

1

2Cn
k

MI(Ik; I
c
k). (3.2.6)

As we discussed, the mutual information between Ik and Ic
k measures how much the

input modules behaves coherently. This complexity of the whole system measures

how much the codependency in a network appears among different modules rather

than different elements.

Now, for fixed diffusion matrix σ and ϵ > 0, we defined the degeneracy Dϵ,σ and

structural complexity Cϵ,σ of the system (3.2.1) as

Dϵ,σ = Max
O

D(O),

Cϵ,σ = Max
O

C(O).

We call a differential system (3.2.1) degenerate (resp. complex) with respect

to a diffusion matrix σ if there exists ϵ0, such that Dϵ,σ > 0 (resp. Cϵ,σ > 0) for

all 0 < ϵ < ϵ0. We can only determine whether a system is degenerate when the

degeneracy is positive for all small ϵ. That’s because the random perturbation is only

used to test the interconnection of the network.

We would like to make the following remarks
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• In many applications, one can often choose σ(x) as the identity matrix, so that

the noise perturbation becomes purely white. But a variable diffusion matrix

σ(x), associated with a colored noise perturbation, should play an important

role in detecting the key output set mainly responsible for the degeneracy.

• For a particular biological system, one often has a natural choice of ”observ-

able” variables to be used as the output set O. If one can select a special

subspace Ik0 of the complementary subspace I so that the interacting informa-

tion MI(I; Ik0 ;O) among the three is positive with respect to a fixed diffusion

matrix, then it follows from the definition that the whole system has a certain

level of degeneracy. Since the interacting information could be negative, we take

the average of max{MI(I; Ik;O), 0} to measure the degeneracy of the system.

3.2.2 Uniform robustness, 2-Wasserstein robustness and functional ro-
bustness

The robustness (uniform robustness) is defined in a way that reflects the uniform

strength of attraction of the global attractor of system (3.2.1). A stronger attractor

has better ability to keep stable under stochastic perturbations. Recall that the

system (3.2.1) was assumed to be dissipative so that a global attractor already exists.

We denote the global attractor by A. Of course robustness should be a broader

concept than the stability, the functional robustness reflects such difference between

robustness and stability.

To define the robustness, we require in this paper that A is a strong attractor in

the following sense. The attractor A is said to be a strong attractor with nonnegative

index α if there exists a compact neighborhood N with C1 smooth boundary and a

Lyapunov function V (x) such that

∇V (x)

|∇V (x)|
� f(x) ≤ −αdist(x,A), for all x ∈ N .
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For a strong attractor A, the uniform robustness of A is the following quantity

R = inf{ 1

α
: α is an index of A}.

The system is said to be robust if A is a strong attractor and R is finite.

The definition of robustness is given in a uniform sense. If a system is robustness,

then we can find a family of manifolds, which is the level set of the Lyapunov function,

such that the vector field points inward on any point of the level set.

The uniform robustness is defined in a straightforward way, which only depends

on the strength of the attractor. To provide more information of dynamical system

itself or the underlying biological systems, we will discuss the other two variants of

robustness. The 2-Wasserstein robustness addresses the stability under stochastic

perturbations; while the functional robustness indicates the stability of performance

of given biological system.

3.2.2.1 2-Wasserstein Robustness

The average strength againsting the stochastic perturbation can also be used to char-

acterize the robustness. Let P(X) denote the space of probability measures over the

state space. Suppose P(X) is equipped with 2-Wasserstein metric dw. The distance

between the unperturbed measure and the invariant measure under perturbation can

be a good index of the robustness, which is called 2-Wasserstein robustness.

2-Wasserstein metric is derived from the study of optimal transportation prob-

lems. In the past decades, geometric features of 2-Wasserstein metric are extensively

studied. The definition of 2-Wasserstein metric space is reviewed below.

Definition 3.2.1. Let X be a Polish space, P(X) be the set of probability measure

on X. Let µ, ν be two probability measures on X, then the 2-Wasserstein distance

W(µ, ν) is

W(µ, ν)2 = inf
r∈P(µ,ν)

∫
X×X

d(x, y)2dr
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where P(µ, ν) is the set of all probability measures on the space X×X with marginal

µ and ν, and d(·, ·) is the distance on X.

r is called the optimal measure if r ∈ P(µ, ν) and∫
X×X

d(x, y)2dr = W(µ, ν) .

The set of optimal measures is denoted by P0(µ, ν).

The variational problem in the definition of 2-Wasserstein metric is called the

Kantorovich problem, which is relaxed from the following Monge problem.

W2(µ, ν) = inf
T♯µ−ν

∫
|x − T (x)|2dx .

The following two theorems cited from [2] describe some fundamental properties

of 2-Wasserstein metric space.

Theorem 3.2.1. If µ, ν ∈ P(Rd), µ is a regular measure (not dirac measure), and

µ({x ∈ Rd :

∫
|x − y|2dν < ∞}) > 0

ν({x ∈ Rd :

∫
|x − y|2dµ < ∞}) > 0

then the Kantorovich problem has a unique solution Γ and this solution is induced by

an optimal transport. i.e.

Γ = (i × r)♯µ

for some transport map r, i is the identity map.

Theorem 3.2.2. For a given sequence {µn} ⊂ P(X), limn→∞W(µn, µ) = 0 if and

only if {µn} converge to µ in the weak* topology and {µn} has uniformly finite second

moment.

Remark 3.2.3. Theorem 3.2.1 implies that under certain conditions, Monge problem

and Kantorovich problem are equivalent. 2-Wasserstein distance is an effective index
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to measure the stability of invariant measures of ODE systems because convergence

in 2-Wasserstein metric space is equivalent to the weak* convergence under certain

conditions.

The 2-Wasserstein robustness is defined as the reciprocal of metric derivative.

Definition 3.2.2. The 2-Wasserstein robustness R is the following limit

R = lim inf
ϵ→0

ϵ

dw(µϵ, µ)

where µϵ is the ϵ-invariant measure of stochastic dynamical system

dXt = f(Xt)dt + ϵdWt .

A system is said to be robust in the 2-Wasserstein sense if and only if R ̸= 0. More

properties about the 2-Wasserstein robustness will be discussed in the next section.

Remark 3.2.4. 2-Wasserstein robustness is similar as but contains more information

than the mean square displacement. That is to say, the attactor must be both strong

and stable. To make a system be robust in the 2-Wasserstein sense, the attractor

must be a strong attractor. That can be observed easily from the fact that

W2(µϵ, µ) = inf
T♯µ−ν

∫
|x − T (x)|2dx ≥

∫
dist2(x,A)dx .

Note that the right term above is the mean square distance between µϵ and µ. Hence

bounded 2-Wasserstein robustness implies bounded mean square displacement.

Moreover, the attractor must be stochastically stable. This stochastic stability

is not equivalent to the strength of attractor. Intuitively speaking, being stochastic

stable means the shapes of ϵ-invariant measures have no significant change when ϵ

changes. One counter example is that, as ϵ → 0, if the family of measure µϵ has two

weak limits µ01 and µ02, then this attractor is not stable under stochastic perturbation.

From the definition, it is not robust in the 2-Wasserstein sense. For more introduction

of stochastic stability, see [34].
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3.2.2.2 Functional Robustness

The robustness of a biological system could not be completely equivalent to the sta-

bility against random perturbation. That’s because the performance of a complex

biological system could be very complicate. When a complex system deviates from

its steady-state due to external perturbation or disfunctions of some components, it

is still possible that it could perform normally. According to [42], we can evaluate

the performance of a system by the performance function. The performance function

is defined on the state space and take maximal value at the steady-state. A system

could be robust functionally if the performance has high value even if far away from

the steady-state. In this sense, we can describe the robustness of the performance

function by the functional robustness.

First we define the performance function:

Definition 3.2.3. The performance function p(x) of the system is a continuous func-

tion satisfies following assumptions:

1. p(x) = 1 ∀x ∈ A

2. 0 < p(x) < 1 if x /∈ A

where A means the global attractor.

Following Kitano [42], one can define functional robustness Rf (ϵ) as

Rf (ϵ) =

∫
ρϵ(x)p(x)dx.

where ρϵ(x) is the density function of the ϵ-invariant measure.

Using this notation, the system has the best performance when the perturbation

vanishes and robustness is interpreted as the ability to preserve phenotype rather

maintaining a fixed steady state. We remark that if a system is robust, and some

property of performance function is also known, then some estimate on the functional

robustness can be made. The more detailed discussion is provided in Section 3.3.
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3.2.3 Algorithms

We will consider the issues of algorithms in this subsection. A good quantitative

definition must be practical to compute. Hence some theory about the calculation

and estimation of the degeneracy and complexity will be introduced in Section 3.4.

However, it is still necessary to study the numerical calculation of these systematic

measures. One reason is that some systems may not have fixed point and may be so

complex that people don’t know the attractor exactly. The other reason is that in

the real world one can not expect every system to be well-posed ODE system with

known parameters. Some systems behave like black boxes. Hence some knowledge of

numerical method is necessary.

It follows from previous discussion that the robustness and 2-Wasserstein robust-

ness requires detailed informations of the dynamics of ODE systems. On the other

hand, the functional robustness is more practical to compute. The bottlenecks of

computing degeneracy, complexity and functional robustness are the estimation of

the probability density function. With the probability density function, all these

three measures can be computed by numerical integrations. The probability density

function can be obtained by solving Fokker-Planck equation. However, solving high

dimensional parabolic equation numerically is very expensive. Especially when the

second derivative terms are of O(ϵ2) small and the density function looks sharp at

the attractors.

An alternative way is the Monte Carlo simulation. One can generate a large

sample set by either solving stochastic differential equation or experiment. With a

large sample set, the reconstruction of the probability density function can be done

by making a histogram. Monte Carlo simulation has lower accuracy, but this can be

compensated by large sample set. Moreover, parallel implementation of Monte Carlo

simulation is easy and straightforward, which is another advantage of Monte Carlo

algorithm.
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Of course, the histogram can be computed by the naive equidistant binning esti-

mator, in which the domain is divided into finite number of bins. However, the “curse

of dimension” would be inevitable. Even if we only want 100 bins for each variable,

about 8TB memory are need to simulate a “small” system with six variables. Even

if we do it on distributive computer systems, the amount of message passing in the

naive binning estimator is also huge. A much better algorithm is called the k-nearest

neighborhood (kNN) method. By using a special data structure called kd-tree, the

“curse of dimension” problem can be eased significantly. We only need to store the

sample set instead of the high dimension grids. This is especially important when

the probability density function concentrates in the vicinity of some low dimension

attractors, as we discussed in the previous chapter. For the comparison of mutual

information estimators, see [53] for further reference.

3.3 On the properties of robustness

We will consider the properties of robustness in this section, not only in the context

of complex biological networks, but also in its mathematical aspect. The properties

and calculations of robustness, the issue of ϵ-expansions of ϵ-invariant measures and

the connections between robustness in different definitions will be covered.

3.3.1 Discussion of 2-Wasserstein Robustness

We first consider the qualitative and quantitative properties of 2-Wasserstein ro-

bustness. The connection between 2-Wasserstein robustness and the ϵ-expansion of

invariant measure is particularly addressed. The 2-Wasserstein robustness measures

the transportation distance between ϵ-invariant measure and its limit. It measures

the robustness in average sense. Further, 2-Wasserstein robustness gives the first or-

der expansion of ϵ-invariant measure in terms of ϵ in the 2-Wasserstein metric spaces.

2-Wasserstein space is the state space of Fokker-Planck equation while the invariant

measure plays the role of fixed point, the expansion in term of ϵ is mathematically
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nature. Some explicit calculation of 2-Wasserstein robustness will then be presented.

The following theorem shows the finiteness of 2-Wasserstein distance between ϵ

invariant measure and its limit. In another word, no matter how strong an attractor

is, as long as the vector field is smooth, the effect of stochastic perturbation can not

be arbitrarily small. This means the first order term in the ϵ expansion always exists.

Theorem 3.3.1. The robustness of stochastic dynamical system (3.2.2) that satsifies

conditions (H1) and (H5) is finite.

Proof. It is known from [33] that the limit invariant measure is always supported by

the attractor. Hence the ϵ-invariant measure µϵ and the limit invariant measure µ0

satisfy Theorem 3.2.1. So the 2-Wasserstein distance solves the Monge problem

W2(µϵ, µ0) = inf
T♯µϵ−µ0

∫
|x − T (x)|2dx .

Since µ0 is supported by the attractor K, we have

|x − T (x)|2 ≥ dist2(x,K)

for any map T : Rn → K. This means the 2-Wasserstein distance is larger than the

mean square displacement

W2(µϵ, µ0) ≥
∫

dist2(x,K)µϵ(dx) .

Implied by Theorem 2.1.21, the mean square displacement is bounded from below by

V1ϵ
2. Hence the 2-Wasserstein robustness is finite by its definition.

Remark 3.3.2. As the proof indicates, the mean square displacement is always less

than the 2-Wasserstein distance between µϵ and µ0. However, the 2-Wasserstein

distance between ϵ-invariant measure and its limit is much more complex than the

mean square displacement. Detailed knowledge of the invariant measure is necessary

to evaluate this 2-Wasserstein distance. The 2-Wasserstein robustness of general
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ODE systems is difficult to calculate. In another word, Theorem 3.3.1 does not mean

that uniform robustness implies 2-Wasserstein robustness. If a system does not have

unique weak noise limit as ϵ goes to 0, then it is not robust in the 2-Wasserstein sense.

Whether this system can be robust in the uniform sense remains open. Further study

of 2-Wasserstein robustness and the expansion of ϵ-invariant measure will be included

in our future work.

Next we give some quantitative results about 2-Wasserstein robustness for certain

ODE systems. Consider an ODE system with a unique stable fixed point x0.

dx

dt
= f(x) (3.3.1)

f(x0) = 0 .

Without loss of generality, assume x0 = 0. According to Section 2.1.2, there exists

a quasi-potential function U(x) and a C2-continuous function w(x) with w(0) = 1

such that the density function uϵ(x) of the invariant measure has the form

uϵ(x) =
1

K
e−U(x)/ϵ2w(x) + o(ϵ2) ,

where the notation o(ϵ2) means higher order terms that satisfy

lim
ϵ→0

o(ϵ2)

ϵ2
= 0 .

Hence the 2-Wasserstein robustness of ODE systems like (3.3.1) can be calculated.

Theorem 3.3.3. If equation (3.3.1) satisfies assumption (H1) and the eigenvalues

of Jacobian matrix at x(0) = 0 only have negative real parts, then the 2-Wasserstein

robustness R of (3.3.1) is

R =

√
2√

Tr(S−1)

where S solves the Lyapunov equation

SBT + BST = Id

B is the Jacobi matrix of (3.3.1) at the fixed point.
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Proof. For the system with unique fixed point, the 2-Wasserstein distance between

ϵ-invariant measure and the invariant measure is equal to the square root of the mean

square displacement

d2
w(uϵ(x), δ(0)) =

∫
RN

x2uϵ(x)dx

note that δ(0) is the limit invariant measure.

The proof only contains some elementary calculus. We will sketch the basic pro-

cedures of the proof. First we are going to show the situation of gradient flows. Let

U(x) be a potential function of class C2. To be consistent with the condition (H1),

we assume there exists constant a,R > 0 such that U(x) > a|x| for |x| > R.

In the neighborhood of the fixed point, U(x) has the Taylor expansion

U(x) =
1

2
xT Sx + r(x)

where r(x) is the reminder that satisfies |r(x)| ≤ b|x|3 for some b > 0, 1
2
S is the

Hessian matrix of U(x). We write the Hessian as 1
2
S for simplicity of the further

calculation. S is a positive definite symmetric matrix.

It is well known that the invariant measure of

dx = −∇U(x)dx + ϵdWt

is the Gibbs density function

uϵ =
1

K
e−U(x)/ϵ2 ,

where K is a normalizer.

Firstly let us estimate K. Denote σ = ϵ0.9 to have

K =

∫
e−U(x)/ϵ2dx (3.3.2)

=

∫
|x|>R

e−U(x)/ϵ2dx +

∫
σ<|x|<R

e−U(x)/ϵ2dx +

∫
|x|<σ

e−U(x)/ϵ2dx (3.3.3)

:= I1 + I2 + I3 . (3.3.4)
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In the above equation

I1 ≤
∫
|x|>R

e−a|x|/ϵ2dx

=

∫ ∞

R

Bn(ρ)e−aρ/ϵ2dρ

= P (R, ϵ)e−aR/ϵ2 ,

where Bn(ρ) means the volume of n-sphere with radius ρ, which equals a constant

number times ρn−1. P (R, ϵ) is a rational function in term of R and ϵ.

For I2, we can choose small ϵ to make the minimum of U(x) in {x|σ < |x| < R}

be attained on {x||x| = σ}. From the Taylor expansion, there exists β such that

U(x) > β|x|2 for small |x|. Hence

I2 ≤ Ce−βϵ−0.2

for some constant C.

Then by evaluating I3, we obtain

I3 =

∫
|x|<σ

e−xT Ax/2ϵ2er(x)/ϵ2dx .

|x| < σ = ϵ0.9 implies |r(x)/ϵ2| < ϵ0.7. Taking the limit ϵ → 0 we have

I3 = (2π)n/2ϵn|A−1|(1 + O(ϵ0.7)) := K0ϵ
n + O(ϵn)

for some constant K0. Further, when ϵ → 0, I1 and I2 are all smaller than O(ϵn) for

all n. This implies

K = K0ϵ
n + O(ϵn) .

Then by the same approach, one can divide Rn into |x| > R, σ < |x| < R and

|x| < σ. Let U(x) = 1
2
xT Sx + r(x). Some calculation implies that the integral∫

1

K
x2e−U(x)/ϵ2dx

converges to ∫
1

K0ϵn
e−xT Sx/2ϵ2dx ,
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which is a multivariate normal distribution. Then it follows from the properties of

multi-variate normal distribution that∫
1

K0ϵn
e−xT Sx/2ϵ2dx = Tr(S−1)ϵ2 + O(ϵ2) .

This implies

dw(uϵ(x), δ(0)) =
√

Tr(S−1)ϵ .

The above calculation gives the 2-Wasserstein robustness R

R =
1√

Tr(S−1)
,

where S is 2 times the Hessian matrix of U(x).

We will calculate the 2-Wasserstein robustness of ODE systems with a stable

fixed point in a same way. Let U(x) be the quasi-potential function of system (3.3.1).

Then it follows from Section 2.1.2 that there exists a small neighborhood of x0 = 0 in

which U(x) is smooth. Moreover, the Hessian matrix S of U(x) satisfies the Lyapunov

equation

SBT + BST = Id ,

where B is the Jacobi matrix of (3.3.1) at x = 0. From [30] it is known that S is a

symmetric positive definite matrix.

Since the density function of the ϵ-invariant measure has the form

uϵ(x) =
1

K
e−U(x)/ϵ2w(x) + O(ϵ2) ,

we can evaluate K by dividing Rn into |x| > R, σ < |x| < R and |x| < σ as what

we did above. When |x| > R one can apply the result in Theorem 2.1.17. Let

σ = ϵ0.9. Note that w(x) = 1 + O(σ) when |x| < σ. After some calculation we can

get K = K0ϵ
n + O(ϵn).

The integral ∫
x2uϵ(x)dx
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can be evaluated in the same way as what we did above by deviding Rn into |x| > R,

σ < |x| < R and |x| < σ. After some calculation we obtain∫
x2uϵ(x)dx =

1

2
Tr(S−1)ϵ2 + O(ϵ2) .

Hence the 2-Wasserstein robustness is

R =

√
2√

Tr(S−1)
.

This completes the proof.

Remark 3.3.4. Note that the ϵ-invariant measure of system (3.3.1) has the following

expansion under 2-Wasserstein metrics.

W(µ, µϵ) =
1

R
ϵ + o(ϵ2) .

Since R has been calculated, the expansion of ϵ-invariant measure now can be explic-

itly given.

If the system has more than one attractor or the attractor is not a fixed point,

then similar approaches are still valid as long as the ϵ-invariant measure has the form

uϵ(x) =
1

K
e−U(x)/ϵ2w(x) + o(ϵ2) (3.3.5)

where w(x) is of C1 continuous with∫
K

w(x)dx = 1

on the global attractor K.

The proof contains just the elementary calculus and is very tedious, so we will not

show the detail here. General results of 2-Wasserstein robustness are expected to be

done in our future work.
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3.3.2 Uniform robustness and 2-Wasserstein robustness imply functional
robustness

The connection between robustness in different senses will be studied in this subsec-

tion. As in the above section, uniform robustness indicates the strength of attractor in

a uniform way, while 2-Wasserstein robustness addresses the ϵ-expansion of ϵ-invariant

measures. We will show that both uniform robustness and 2-Wasserstein robustness

imply functional robustness.

Proposition 3.3.5. Assume the performance function p(x) has continuous second

derivatives. Then for any system (3.2.1) which is robust in the uniform sense or

2-Wasserstein sense, there exists positive constant C, such that∫
uϵ(x)p(x)dx ≥ 1 − Cϵ2

Proof. Theorem 2.1.21 implies that a robust system has bounded mean square dis-

placement:

V1ϵ
2 ≤

∫
uϵdist2(x,K)dx ≤ V2ϵ

2 .

Note that 2-Wasserstein robustness also implies the boundedness of the mean

square distance. From the proof of Theorem 3.3.3, the 2-Wasserstein distance can be

written as

W2(µϵ, µ0) = inf
T♯µϵ−µ0

∫
|x − T (x)|2dx .

Since µ0 is supported by the attractor K, we have

|x − T (x)|2 ≥ dist2(x,K) ,

for any map T . This means the 2-Wasserstein distance is larger than the mean square

displacement.

W2(µϵ, µ0) ≥
∫

dist2(x,K)µϵ(dx) .

The limit

lim inf
ϵ→0

ϵ

dw(µϵ, ϵ0)
= R > 0
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implies

d2
w(µϵ, ϵ1) <

2ϵ2

R2

for all 0 < ϵ < ϵ1 for some small ϵ1 > 0. So we obtain∫
dist2(x,K)µϵ(dx) ≤ 2ϵ2

R2
:= V2ϵ

2

Then it is sufficient to show the statement is true when the mean square distance

is bounded by V2ϵ
2. Since p(x) has second order derivative, there exists a fixed

neighborhood N of K such that p(x) ≥ 1 − Mdist2(x,K) for all x ∈ N . Hence∫
uϵ(x)p(x)dx =

∫
N

uϵ(x)p(x)dx +

∫
RN\N

uϵ(x)p(x)dx := I1 + I2

where I2 ≥ 0 and there exists β > 0 such that

I1 = µϵ(N) − M

∫
N

uϵ(x)dist2(x,K)dx

≥ 1 − M

∫
uϵ(x)dist2(x,K)dx − µϵ(RN\N)

≥ 1 − V2Mϵ2 − e−β/ϵ2 .

According to Theorem 2.1.15, there exists ϵ2 > 0 such that

e−β/ϵ2 < ϵ2

for all 0 < ϵ < ϵ2. Let ϵ0 = min{ϵ1, ϵ2} and C = V2M + 1. Then the proposition

follows.

Remark 3.3.6. Conversely the previous result does not hold. It is known that some-

times an stochastic dynamical system can keep its performance even if it is deviated

away from the steady-state. (That’s way a performance functions are needed) A func-

tion robust system does not have to be robust in either uniform sense of 2-Wasserstein

sense.
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3.4 Connections between degeneracy, complexity and ro-
bustness

As suggested by simulations and experiments, the systematic measures including de-

generacy, complexity and robustness are not independent. In this section we develop

a variety of results concerning connections among degeneracy, complexity and ro-

bustness. Some basic properties of these systematic measure are also covered. In the

end, an illustrative example is demonstrated to explain the connection between the

topology of networks and their systematic measures.

3.4.1 degeneracy and complexity

It has been observed in neural networks that a degenerate system must have a complex

structure [66]. In fact, we can prove that system with high degeneracy always has

high complexity. This property is universally valid, no matter in neuron complex

network or in complex network described by differential equations.

Theorem 3.4.1. We have the following inequality

MI(I; Ik;O) ≤ min{MI(I; Ik),MI(Ic
k;O),MI(I;O)}. (3.4.1)

Proof. We can prove equation (3.4.1) in the following way:

MI(X; Y ; Z) = H(X) + H(Y ) + H(Z) − H(X,Y ) − H(Y, Z)

−H(X,Z) + H(X, Y, Z)

= H(X) + H(Y ) − H(X, Y )

−(H(X,Z) + H(Y, Z) − H(Z) − H(X, Y, Z))

= MI(X; Y ) − MI(X; Y |Z)

Since the l mutual information is nonnegative: MI(X; Y |Z) ≥ 0, we have MI(X; Y ; Z) ≤

MI(X; Y ).
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The nonnegativity of conditional mutual information is a direct corollary of Kull-

back’s inequality. For the complete of this proof, we borrow the proof from [74]: let

P (x, y, z) be the density function, then

MI(X; Y |Z) =

∫
P (x, y, z) log

P (x, y|z)

P (x|z)P (y|z)
dxdydz

=

∫
P (z){

∫
p(x, y|z) log

P (x, y|z)

P (x|z)P (y|z)
dxdy}dz .

From Kullback’s inequality,∫
p(x, y|z) log

P (x, y|z)

P (x|z)P (y|z)
dxdy ≥ 0 .

Similarly we can prove MI(X; Y ; Z) ≤ MI(X; Z) and MI(X; Y ; Z) ≤ MI(Y ; Z),

from which (3.4.1) follows. 2

If we compare equations (3.2.5) and (3.2.6), by taking the average among all

possible subsets Ik, we obtain

C(O) ≥ D(O).

because MI(I; Ic
k;O) ≤ MI(I; Ic

k). In other words, with respect to a fixed diffusion

matrix, degeneracy implies complexity.

This explains the observation in [19] that biological systems selected for high

degeneracy are accompanied by high complexity. Since complexity is always higher

than degeneracy, it is sufficient to determine when will a system have high degeneracy.

In the next two subsections, we will discuss the system with positive degeneracy.

3.4.2 twisted attractor

We would like to examine the connections between degeneracy and robustness for an

ODE system (1.1.1). Robustness alone does not necessarily imply degeneracy of the

system; this is because one can certainly have a system with zero complexity which is

however robust. By (3.4.1), such a system must be non-degenerate. One example is
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the linear system x′
i = −aixi with 1 ≤ i ≤ N with σ(x) = Id, in which ai are positive

real numbers.

Therefore, for a robust system to be degenerate, the system must be complex and

such structural complexity often gives rise to some kind of embedding complexity

of the global attractor into the phase space. Roughly speaking, the components

of a complex system interact strongly with one another and as a result, the global

attractor is twisted in the phase space such that it does not lay in any hyperplane.

To characterize the twist property of the global attractor, it is natural to consider its

projections on certain hyperplanes and measure the dimensions of the corresponding

projections. We note that the attractor as well as its projections may only be fractal

sets, hence they should be measured with respect to the Minkowski dimension, also

called box counting dimension [54].

For a subspace V of Rn, we denote by dV the co-dimension of A in V , i.e., the

dimension of V subtracts the Minkowski dimension of the projection of A to V .

The twisted attractor is defined as follows.

Definition 3.4.1. The global attractor A is said to be twisted if there is a linear

decomposition Rn = I ⊕ J ⊕O such that

dI + dJ + dO + dRn < dI⊕J + dI⊕O + dJ⊕O.

We have the following Theorem for regular attractors.

Theorem 3.4.2. If the system (1.1.1) is robust with a twisted global attractor, and if

the ϵ-invariant density function ρϵ is regular for A, then there exists an ϵ0 > 0, such

that Dϵ,σ > 0 for all 0 < ϵ < ϵ0

Proof. This Theorem is just a corollary of the Entropy-Dimension identity proved in

previous chapter. Under the given conditions, we have

lim
ϵ→0

H(ρϵ(x))

− log ϵ
= N − d (3.4.2)
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where H(ρ) means the entropy of ρ. Then using the definitions of degeneracy and a

twisted attractor, we can prove the positivity of the degeneracy Dϵ,σ.

Remark 3.4.3. We note that ρϵ is always regular if there exists a quasi-potential

function W (x) of A, such that for every 0 < ϵ < ϵ∗, we have

ρϵ(x) =
1

K
e−W (x)/ϵ2 + o(ϵ)

where

K =

∫
RN

e−W (x)/ϵ2dx

and o(ϵ) means high order terms of ϵ.

As reviewed in previous sections, from [48, 15], we can find the desired function

W (x) whenever the Freidlin-Wentzell quasi-potential function W (x) has second order

derivatives. From [15, 14], we know that the Freidlin-Wentzell quasi-potential function

W (x) has high regularity in the neighborhood of stable nodes and limit cycles. So we

have the following corollary:

Corollary 3.4.4. Assume system (3.2.1) has a limit cycle that doesn’t lie on any

subspace spanned by the variable subset, then the limit cycle is a twisted attractor and

the system has positive degeneracy for small ϵ.

Proof. The proof is straight forward. Let the dimension of subspace I, J and O be

i, j and k, then

dI + dJ + dO + dI⊕J⊕O − dI⊕J + dI⊕O + dJ⊕O = −1 < 0

Remark 3.4.5. It follows from the results in section 2.1.3 that the density function

concentrates in a small neighborhood of the attractor. Hence the structure and po-

sition of the attractor determines the mutual informations between different variable
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sets. This means the concentration of noise only depends on the strength of noise. In

another word, the degeneracy of system with twisted attractor does not depend on

the coefficient matrix σ(x) of the white noise. This is different from the degeneracy

of systems with stable fixed point.

We provide a three dimensional example to demonstrate the twisted attractor.

Example 3.4.6. Consider the following competitive Lotka-Volterra system

ẋ1 = x1(3 − x1 − x2 − x3)

ẋ2 = x2(4 − x1 − x2 − 2x3)

ẋ3 = x3(7.221 − 2.61x1 − 1.611x2 − 3x3).

This system represents a simple three-species competitive population model. The sys-

tem has a limit cycle as described previously (Fig. 4) [73]. Using the theory of quasi-

potential functions, one can rewrite the vector field as −∇Ψ(x1, x2, x3)+ l(x1, x2, x3),

where Ψ is called a quasi-potential function and l is a small perturbation in a definite

sense with ∇Ψ · l = 0. It is well known that for such a system admitting a limit cycle,

Ψ is a Lyapunov function which is as regular as the vector field. It then follows from

definition that the system is robust. Furthermore, the condition in Theorem 3.4.2 is

also satisfied due to the regularity of the quasi-potential function.

Numerical simulations above show that the limit cycle is not parallel to any coor-

dinate axis. In fact, it follows that dx = dy = dz = 0, dxyz = 2, dxy = dxz = dyz = 1.

Hence the attractor is also twisted. Now applying the theorem on twisted attractors,

we conclude that the system is degenerate.

3.4.3 degeneracy at equilibrium

Degenerate behavior could occur not only at the twisted attractor, but also at certain

equilibria, or what a biologist may regard as homeostasis. Here, we introduce another
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Figure 4: Limit cycle of the Lotka-Volterra system showing a twisted attractor.

theorem on the connection between robustness and degeneracy. If an ODE system

has a unique equilibrium point and in the neighborhood of this equilibrium point the

reactions to random perturbations have certain level of diversity, then we claim that

it is a degenerate system. More precisely, if different directions demonstrate different

sensitivities under random perturbation, then it is a degenerate system.

We want to mention that it is known that a large number of chemical reaction

networks have unique stable equilibrium points, the degeneracy near equilibrium may

be more applicable for biological reaction networks. For more detailed result, see

[24, 23, 3].

Assume that system (1.1.1)

x′ = f(x)

satisfies condition (H1) and has a unique stable fixed point, say x0. Let B denote the

Jacobian matrix of f(x) at x0. Since we have assumed the robustness already, it is

obvious that the eigenvalues of B only have negative real parts. From Section 2.1.2,

one can find the solution to the stationary Fokker-Planck equation (2.1.3):

ρϵ =
1

K
e−V (x)/ϵ2 + O(ϵ2)

where V (x) is the quasi-potential function. Moreover, the Hessian matrix of the
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quasi-potential function can be solved by equation (2.1.10). So we get estimation

ρ =
1

K
e−zT S−1z/2ϵ + O(|z|2) + O(ϵ2) (3.4.3)

where z = x − x0. The symmetric positive definite matrix S solves the Lyapunov

equation uniquely:

SBT + BS + A = 0 (3.4.4)

where A = σ(x0)σ
T (x0). Then we claim that for weak noise, the matrix S determines

the degeneracy. The rigorous proof will be done later.

With the stationary solution ρ, we can find the margins on target subspaces.

It is known that the marginal distribution of a normal distribution is also normal,

whose covariance matrix is the corresponding sub-matrix of S. More precisely, if

X = span{xa1 , · · · , xak
} is a subspace, then the sub-matrix S(a1, · · · , ak; a1, · · · , ak)

is the covariance matrix of the projection of ρϵ on subspace X. For simplicity, we

denote S(a1, · · · , ak; a1, · · · , ak) as S(X).

Then we can compute the degeneracy with split X = I1 ⊕ I2 ⊕O. Since equation

(3.4.3) approximates a multivariate normal distribution, calculation of degeneracy

yields the following Theorem:

Theorem 3.4.7. if

Γ := log
|S(I1)||S(I2)||S(O)||S(X)|
|S(I1, I2)||S(I1, O)||S(I2, O)|

> 0 . (3.4.5)

then the system is degenerate.

Proof. Since xT Sx is the quadratic approximation of V (x), the difference between

them is o(ϵ3) small. It is sufficient to show that third order difference of the quasi-

potential does not generate significant difference of the entropy. To avoid possible

confusion, in the proof below, we denote the density function of probability measure

µ by dµ
dx

.
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It is known that the quasi-potential function V (x) is smooth in a small neighbor-

hood of x0, say B(x0). Hence in B(x0) there exists

dµϵ

dx
=

1

K
e−V (x)/ϵ .

Let νϵ be another measure with density

dνϵ

dx
=

1

L
e−xT Sx/ϵ .

Then it is sufficient to show that

lim
ϵ→0

|Ent(µϵ) − Ent(νϵ)| = 0 , (3.4.6)

where Ent(µ) is the entropy of µ.

That is because the degeneracy is a linear combination of finite many entropies

of marginal probability measures. Note that the degeneracy of νϵ is independent

with the value of ϵ. Equality (3.4.6) can implies the same argument of the marginal

probability measures. Then the theorem follows.

We will prove equality (3.4.6) in three steps.

Claim 1 We first claim that outside of big ball B(0, 2R), the following two inte-

grals are small:

−
∫
|x|>2R

µϵ log
dµϵ

dx
dx

and

−
∫
|x|>2R

νϵ log
dνϵ

dx
dx

It follows from Section 2.1.2 that there exists σ > 0 such that the quasi-potential

is strictly larger than σ(|x| − R) for |x| > R. Hence the density function of µϵ is less

than e−σ(|x|−R)/ϵ for all ϵ < ϵ1 for some ϵ1 > 0. Note that x log x decreases for small
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x. We have

−
∫
|x|>2R

µϵ log
dµϵ

dx
dx <

∫
|x|>2R

σ(|x| − R)e−σ(|x|−R)/ϵdx

=

∫ ∞

2R

C(d)ρn−1σ(ρ − R)e−σ(ρ−R)/ϵdρ

< e−σR/2ϵ

∫ ∞

2R

C(d)ρn−1(ρ − R)e−σ(ρ−R)/2ϵdρ

= Ce−σR/2ϵ

for some finite C. So the limit of the first integral is 0.

For the second integral, since the quasi-potential function now is replaced by xT Sx

and S is positive definite, there exists some α > 0 such that xT Sx > α(|x| − R) for

all |x| > 2R. Then by the same reason the limit of the second integral is 0.

Claim 2 Then, we claim that the limit of the entropy intergals of µϵ and νϵ are

all 0 in the following area Γϵ.

Γϵ = {x||x| ∈ B(x0), d(x, x0) ≥ ϵ2/5 .

Let d = dist(∂B(x0, x0) and ϵ2 = d5/2. For any ϵ < ϵ2, the “hole” lies in the set

B(x0) in which V (x) is smooth. Hence xT Sx is an second order approximation of

V (x). This means there exists a constant β > 0 such that V (x) > βϵ4/5 for all x ∈ Γϵ

and all 0 < ϵ < ϵ2.

It follows from [26] that

lim
ϵ→0

ϵ log(
dµϵ(x)

dx
) ≤ −V (x) .

For sufficient small ϵ, we have

dµϵ

dx
≤ e−β/2ϵ−1/5

for all x ∈ Γϵ. Combine with the fact that x log x decreases with small x > 0, we have

−
∫

Γϵ

µϵ log
dµϵ

dx
≤
∫

Γϵ

β

2ϵ
e−β/2ϵ−1/5 ≤ C2e

−β/2ϵ−1/5

.
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By replacing V (x) by xT Sx, the same argument holds of νϵ. This proves the

second claim.

Claim 3 Let ∆ϵ = {x|∥x − x0∥ ≤ ϵ2/5}. We claim that the following difference

converges to 0 as ϵ → 0. ∫
∆ϵ

µϵ log
dµϵ

dx
−
∫

∆ϵ

νϵ log
dνϵ

dx
.

In the area ∆ϵ V (x) is smooth. From Taylor expansion we have

|V (x) − xT Sx| := r(x) ≤ C3|x|3

for some C3 > 0.

Then we will calculate normalizer K and L where

K =

∫
e−V (x)/ϵdx ; L =

∫
e−xT Sx/ϵdx .

Let

δ(ϵ) =

∫
x/∈∆ϵ

e−V (x)/ϵdx +

∫
x/∈∆ϵ

e−xT Sx/ϵdx .

Then from the same argument of Claim 1 and 2, it follows that δ(ϵ) is of e−ϵ−1/5
small.

Note that e−ϵ−1/5
is smaller than O(ϵn) for any n. This implies

|K − L| ≤
∫

∆ϵ

exT SxC3|x|3/ϵdx + δ(ϵ) (3.4.7)

≤ C4ϵ
(N+1)/2 (3.4.8)

for some C4 > 0, where N is the dimension. Note that the order of K and L are of

ϵN/2. Hence

−
∫

∆ϵ

1

K
e−V (x)/ϵ(−V (x)

ϵ
− log K)dx +

∫
∆ϵ

1

K
e−xT Sx/ϵ(−xT Sx

ϵ
− log K)dx

=

∫
∆ϵ

1

K

V (x)

ϵ
e−V (x)/ϵdx −

∫
∆ϵ

1

L

xT Sx

ϵ
e−xT Sx/ϵdx + (log K − log L) ,

where

| log K − log L| ≤ |log(1 + C4ϵ
1/2)| ≤ C5ϵ

1/2

122



for some C5 > 0.

We also have∫
∆ϵ

1

K

V (x)

ϵ
e−V (x)/ϵdx −

∫
∆ϵ

1

L

xT Sx

ϵ
e−xT Sx/ϵdx

=

∫
∆ϵ

1

K
(
V (x)

ϵ
e−V (x)/ϵ − xT Sx

ϵ
e−xT Sx/ϵ)dx +

∫
∆ϵ

(
1

K
− 1

L
)
xT Sx

ϵ
e−xT Sx/ϵdx

:= I1 + I2 .

The second term satisfies

I2 ≤ C4ϵ
(1−d)/2

∫
∆ϵ

xT Sx

ϵ
e−xT Sx/ϵdx ≤ C5ϵ

1/2

for some C5 > 0. That is obvious after letting u = ϵ−1/2x.

The first term I1 satisfies

|I1| ≤
∫

∆ϵ

1

K

xT Sx

ϵ
(1 + C3|x|/ϵ)e−xT Sx/ϵer(x) − xT Sx

ϵ
e−xT Sx/ϵdx

≤
∫

∆ϵ

1

K
(
xT Sx

ϵ
e−xT Sx/ϵ(1 − e−C3|x|3/ϵ) +

xT Sx

ϵ
e−xT Sx/ϵ C3|x|3

ϵ
eC3|x|3/ϵdx

≤ C5ϵ
1/2

for some C5. This completes Claim 3.

Finally it follows from above calculations that

Ent(µϵ) − Ent(νϵ) =

∫
1

K
e−V (x)/ϵdx −

∫
1

L
e−xT Sx/ϵdx

≤ 2Ce−σR/2ϵ + 2C2e
−βϵ−1/5

+ C5ϵ
1/2 .

By taking the limit ϵ → 0, we arrive at the desired result

lim
ϵ→0

|Ent(µϵ) − Ent(νϵ)| = 0 .

In fact, it can be shown that as ϵ → 0, the degeneracy of ρϵ with respect to

decomposition I1, I2, O converges to Γ.
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We also claim that the degeneracy is persistent with small perturbation of vector

fields. Assuming we have two vector fields from two ODEs system

dX

dt
= f(x)

and

dX

dt
= f̄(x)

where f̄ is the small perturbation of f . Since the first system has a stable equilibrium

x0, its dynamics is persistent with small perturbation. Without loss of generality, we

denote the Jacobin matrix of the original system at fixed point by B, the Jacobin

matrix of the perturbed system at fixed point by B̄. And we assume E := B − B̄ be

a small matrix. Such persistence is proved by the following theorem.

Theorem 3.4.8. Assume the system with noise is given by

dX = f(X)dt + ϵσ(X)dWt

Then for any ϵ > 0, we can find some δ > 0, such that |D − D̄| < ϵ whenever

∥E∥1 < δ. Where D is the degeneracy of the original system with respect to any split,

and D̄ is the degeneracy of the perturbed system with the same split.

Proof. That’s just elementary linear algebra calculation. It is well known that the

Lyapunov equation can be rewritten as follows:

(I − Kron(BT , BT ))vec(X) = −vec(A) , (3.4.9)

where Kron(BT , BT ) is the Kronecker product. In the above equation vec(A) is

obtained by stacking the columns of A. The matrix B is the Jacobi matrix of f(x)

whose eigenvalues have negative real parts, and A = σT (x0)σ(x0). For detail of

Kronecker product, see [30].

The linearity of Kronecker product implies

∥I − Kron(BT , BT ) − (I − Kron(B̄T , B̄T ))∥∞ = ∥Kron(B̄T , B̄T ) − Kron(BT , BT )∥∞ .
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Note that the (i, j)-th n×n block of Kron(B̄T , B̄T )−Kron(BT , BT is ajiE
T +ejiA

T +

ejiE
T . Let

Kron(B̄T , B̄T ) − Kron(BT , BT ) = C1 + C2 + C3 ,

where C1 = Kron(BT , ET ), C2 = Kron(ET , BT ), C3 = Kron(ET , ET ). Then

∥C1∥∞ = max
i,k

(
n∑

j=1

|bji|
n∑

l=1

ekl) = max
i

n∑
j=1

|bji|∥E∥1 = ∥B∥1∥E∥1 .

Similarly we obtain

∥C2∥∞ = ∥B∥1∥E∥1

and

∥C3∥∞ = ∥E∥2
1 .

When ∥E∥1 < δ, the above implies

∥Kron(B̄T , B̄T ) − Kron(BT , BT )∥∞ ≤ 3∥B∥1∥E∥1 := α .

Let K be the condition number of matrix I − Kron(BT , BT ). It is known that

K < ∞.

Then it follows from the classical result in matrix analysis [32] that

∥vec(X̄) − vec(X)∥∞ ≤ αK∥vec(X)∥∞
∥B∥∞(1 − K α

∥B∥1
)

:= β .

This means

max
ij

|(X̄ − X)ij| ≤ β .

Let X(I) be any submatrix of X with respect to some index set I. Then clearly

max
ij

|X(I)ij| ≤ max
ij

|(X̄ − X)ij| ≤ β .

Note that ∥A∥2 ≤ n∥A∥max. The following estimation can be obtained from [32]:

|det(X̄(I)) − det(X(I))| ≤ |det(X(I))|∥X̄ − X∥2
n∥X−1∥2

1 − n∥X−1∥2∥X̄ − X∥2

≤ n2∥X−1∥2β

1 − n∥X−1∥2β
:= γ .
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Since |log(x + y) − log(x)| ≤ 2|y|/|x|, we have

|D̄ − D| ≤ 7

m
γ

for small γ, where

m = min{|X|, |X(I1)|, |X(I2)|, |X(O)|, |X(I1, O)|, |X(I2, O)|, |X(I1, I2)|}

.

The above calculations implies that when

δ < min{ 2

3K
,

1

12Kn∥X−1∥2

,
ϵm

84n2∥X−1∥2

} ,

the following holds:

|D̄ − D| < ϵ .

Since X, B,K,m are all perdetermined by the unperturbed system, the theorem fol-

lows.

Remark 3.4.9. Different from the twisted attractor, the degeneracy of system with

stable fixed point could be changed by changing the coefficient matrix σ(x). In

another word, if one perturb the differential equation by some correlated random

variables, then the correlations in the perturbation term can affect the measured

interconnection between components of networks.

The distribution of perturbed system is approximated by the solution of Lyapunov

equation (3.4.4). Let

LBX = −BT X − XBT

be the Lyapunov operator. Then it follows from [6] that LB is an invertible operator

in the space of symmetric positive definite matrices as long as matrix B is stable

(all eigenvalues of B has negative real parts). This means for any system, we can

find some coefficient matrix σ(x) such that the system has positive degeneracy in the

sense of Dϵ,δ.
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Hence the correlation in the added noise perturbation can disturb the measure of

degeneracy of the biological network. In practice, uncorrelated noise is suggested to

be used to detect the interconnection of the network. In another word, we usually let

σ(x) = Id.

3.4.4 Continuous Dependency

In this subsection we consider the continuous dependency of degeneracy, complexity

and robustness with respect to the vector field. The continuous dependency of ro-

bustness is obvious according to its definition, while the continuous dependence of

degeneracy and complexity comes from the continuous dependence of invariant mea-

sure. Since the projecting and the expression of entropy are all continuous operators,

it is sufficient to show that the invariant measure is continuous dependent with the

vector field.

This can be easily done if we recall the materials in Section 2.1.2. We can define

a family of compact sets Ωk such that

Ω1 ⊂ · · ·Ωk ⊂ · · ·

and

lim
k→∞

Ωk = RN

Let uk(x) be the density of invariant measure µk of (3.2.2) on Ωk. Then it is

known that µk(K) → µ(K) for any compact set K. Further, the invariant measure

µk of (3.2.2) satisfies L∗uk(x) = 0 x ∈ Ωk∑N
i,j=1 ∂i(aij(x)uk(x))νj −

∑N
i=1 fiνiuk(x) := Buk = 0 x ∈ ∂Ωk

and uk(x) is the eigenfunction of the principal eigenvalue of the linear operator L∗ on

the space {f ∈ W 2,p(Ωk)|Bf = 0} (see [1, 35]). Since L∗ is a linear operator and L∗

has continuous dependence on the vector field f(x), we are done.
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3.4.5 Systematic Measure and Network Topology

Last but not least, we will discuss the connection between the topological structure

of network and the systematic measures by an illustrative example. The complete

theory of systematic measure and network topology will be put in a separate paper.

In practice, we can not always expect all the parameters (reaction rate, for example)

of networks are perfectly measured. That is why it is interesting if some conclusion

of the systematic measures can be made without detailed information of the reaction

rates.

Example 3.4.10. Consider the following strong reversible network that has material

change with the external environment. Let A, B, C be three species, M , a, b, k1, k2

and 1 be the reaction rate. Note that without loss of generality, we set the output rate

be 1. Then we have the following chemical reaction network and the chemical reaction

Figure 5: A Network Example

equation

dXA

dt
= −(M + a)XA + MXB + aXc + k1 (3.4.10)

dXB

dt
= −(M + b)XB + MXA + bXc + k2 (3.4.11)

dXc

dt
= −(a + b + 1)Xc + aXA + bXb (3.4.12)
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Clearly equation (3.4.10) has a unique equilibrium with Jacobian matrix B

B =


−(M + a) M a

M −(M + b) b

a b −(a + b + 1)


Let σ(x) = Id, then the solution of Lyapunov equation is S = 1

2
B−1. After some linear

algebra calculation, we can find that as M → 0, the expression (3.4.5) in Theorem

3.4.7 converges to log(1 + a
2

+ b
2
):

lim
M→0

log
|S(XA)||S(XB)||S(XC)||S(X)|

|S(XA, XB)||S(XB, XC)||S(XA, XC)|
= log(1 +

a + b

2
)

Since a, b are all positive numbers, above calculation implies that for sufficiently

large M , the above system has positive degeneracy. This is just a simple example.

While numberical stimulations can verify that it is a common phenomenon that strong

connection among input variables implies positive degeneracy.

3.5 Application to JAK-STAT crosstalk network

The purpose of this section is to apply our theory on the JAK-STAT crosstalk network

model shown in Figure 6. Using a simplified model of crosstalk in protein signal

transduction, we illustrate the calculation of degeneracy using equation (3.4.7) (Note

that the model in Figure 6 has deficiency zero hence the fixed point exists). We

also demonstrate how certain biological features of the signaling network affect the

numerical value of degeneracy.

For illustrative purposes we have chosen the JAK-STAT signaling pathway since

it is a relatively simple signaling system. Based on evidence from the literature, this

system presents features that are useful for illustrating the concept of degeneracy.

The JAK-STAT pathway is a two-step intracellular signaling pathway in which a

member of the JAK family of kinases, typically bound to a transmembrane receptor,

is activated by phosphorylation following ligation of the receptor with extracellular
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D = 0.4267
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STAT6 STAT6*
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D = 0.1350
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D = 0.0016

Figure 6: Illustration using IL-4R and EpoR crosstalk model. A) The core JAK-
STAT modules of IL-4R and EpoR pathways with crosstalk. Both modules are
regulated by PTP1B, both generate ROS which oxidatively inactivates PTP1B. B)
Crosstalk enhances degeneracy. The links connecting the two modules were abolished
resulting in independent IL-4R and EpoR signaling modules. C) Redundancy vs de-
generacy. The edges in panel A were modified to construct a hypothetical signaling
system with completely redundant modules with crosstalk. * indicates phosphory-
lated protein; ox, oxidized; red, reduced; arrows pointing at other edges, catalyzed
reactions; dashed arrows entering into species, constant production; dashed arrows
exiting species, first order decay; species highlighted in black, inputs; species high-
lighted in blue, outputs.
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cytokine. The activated JAK molecule phosphorylates STAT which can then dimer-

ize and act as a transcription factor. The signaling pathway is regulated by several

mediators including phosphatases that dephosphorylate JAK and STAT molecules,

thereby inhibiting their catalytic activity [61]. It has been shown previously that

cytokine receptor activation can be accompanied by production of reactive oxygen

species (ROS) in response to multiple kinds of cytokines [59]. The generated ROS

reacts with some phosphatases to oxidize them reversibly, resulting in temporary

inactivation of the phosphatases. Phosphatase inactivity results in amplification of

STAT phosphorylation. Sharma et al. demonstrated that different cytokines, sig-

naling through their respective receptors, can crosstalk in an ROS-mediated manner

to amplify signals coming through other cytokines [59]. This is a result of oxidative

inactivation of phosphatases regulating the different JAK-STAT pathways.

Based on this information we have constructed a simplified model of crosstalk

between IL-4 and Epo signaling. IL-4 signals through the IL-4 receptor and activates

the JAK3/STAT6 pathway [39]. Epo signals through the Epo receptor and activates

the JAK2/STAT5 signaling pathway [12]. Multiple phosphatases can regulate these

pathways. To illustrate the crosstalk between the pathways we have chosen one

phosphatase, PTP1B, which is important in both signaling pathways. In the IL-4

pathway it directly dephosphorylates STAT6 whereas the substrate of PTP1B in the

Epo pathway is JAK2 [47, 50]. PTP1B is also susceptible to ROS-mediated oxidative

inactivation [59]. This information was compiled to get the IL-4/Epo crosstalk model

shown in Fig. 6A. For the sake of parsimony we have treated phosphorylated STAT

as the output and ignored phospho-STAT dimerization.

The model we constructed was used to empirically study relationships between

the signaling pathway and the computed degeneracy. We chose the receptors (IL-4R

and EpoR) as a pair of inputs to the system and activated STAT molecules (STAT5*

and STAT6* in Fig. 6A) as the output. By solving the Lyapunov equation, the model
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in Fig. 6A was found to be degenerate with a value of D equal to 0.4267. Since our

theoretical results relate increased complexity with increased degeneracy, we sought

to verify if this was reflected in our model of JAK-STAT crosstalk. The cross-talk

between the two linear JAK-STAT pathways is the source of increased complexity of

the system. To reduce the complexity of the system, we abrogated all cross-talk by

switching off ROS production and regulation by the common phosphatase PTP1B

to get the independent signaling systems shown in Fig. 6B. The calculated value of

degeneracy decreased by more than 99% for this system as compared to the pathway

in Fig. 6A and the value of D was calculated to be 0.0016. This demonstrates that

cross-talk between signaling pathways results in increased complexity which could

result in increased degeneracy.

Redundancy in signaling systems can also lead to complexity in the pathway, in

the sense that there can be significant amount of cross-talk between parallel pathways.

However, a redundant system is by definition not degenerate because the redundant

modules perform identical functions under any given condition. To test how a re-

dundant system compares with a degenerate system, we modified the pathway in

Fig. 6A to that shown in Fig. 6C by inserting some hypothetical connections. This

was done to ensure that the two modules were structurally identical and affected the

output (STAT5* and STAT6*) identically. The rate parameters were also identical

for the two modules resulting in a completely redundant system where EpoR and

IL-4R affect STAT5 and STAT6 identically. The redundant system was found to still

have a positive D but the magnitude was reduced by more than 68% as compared to

the value calculated for the system in Fig. 6A. This agrees with the understanding

that redundancy does not lead to degeneracy and our calculation of D successfully

reflects this.
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3.6 Discussions of Systematic Measures in a Biological Con-
text

As defined in Section 3.2, degeneracy and complexity can be seen as linear combi-

nations of mutual information. To take an example, in the network in Fig. 7, A

and B serve as inputs while C is an output. Generally, we expect high degeneracy

among the three components if i) both A and B share high mutual information with

the output C and ii) the summation of these two mutual information is higher than

that between the union of A with B and the output C. The first condition means A

and B could perform the same function, while the second condition essentially means

that the two modules represented by A and B have different structures. The value

MI(A; C)+MI(B; C)−MI({A,B}; C), thus measures the degeneracy, or how much

more correlation the inputs A and B share with the output C than expected. We

can also expect high complexity if the co-dependency in the network appears among

different modules rather than the basic elements making up the system. For example,

in the context of crosstalk between the IL-4 and Epo pathways, the IL-4 and Epo

pathways separately can be thought of as modules while the individual molecules con-

stitute the basic elements of the system. High co-dependency between these modules

instead of that between the individual molecules would lead to greater complexity.

The co-dependency between modules means that the network is functionally segre-

gated in that the functional modules retain their importance and also functionally

integrated because of the co-dependence of the modules.

As is evidenced by the examples above, degeneracy can be generally understood

as the ability of structurally distinct components of a system to behave similarly un-

der certain conditions, while the behavior may be different under other conditions.

Increasingly large numbers of instances of degeneracy are being found in biological

systems at all scales ranging from molecular to animal population levels [19]. Par-

ticularly, in the context of cellular signaling networks, there are multiple examples of
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A B

C

Figure 7: An Example of Modular Biological Network

degenerate behavior. Different members of the interleukin (IL) family can activate

the same transcription factor. For instance, IL-2, IL-7 and IL-21 can all activate

STAT1 [58]. Growth factors can bind to multiple types of receptors in the EGF re-

ceptor family [10]. MAPK signaling induced by growth factors and stress exhibits

promiscuous interaction between MEKK and MAPK proteins where multiple types

of MEKKs can activate the same MAPK and a single MEKK can activate multiple

MAPKs [51]. Recently, experimental studies have indicated that a significant role for

genetic buffering by non-homologous genes (i.e. functional redundancy or degeneracy)

[69] exists and may confer a selective advantage over paralogs for regulation.

In a more general sense, no signaling pathway operates in isolation because of

cross-talk between multiple pathways. Chen et al. showed that the behavior of a

signaling pathway in isolation is different from the behavior it exhibits when put

in the context of a more complex intracellular environment [10]. Systems biologists

are aware that cellular signaling pathways which are classically seen as isolated, and

often linear, chains of biochemical modifications rarely operate in this simple fashion.

The connections between signaling pathways give rise to networks with much greater

complexity. These resulting systems can exhibit degenerate behavior in the sense

that one signaling pathway influences another resulting in similar or different outputs

depending on conditions. This is important from the point of view of drug targeting.

For instance, despite major efforts, very few drugs specifically targeting the PI3K

134



signaling pathway, which exhibits strong crosstalk with a number of other pathways,

make it to the clinical trial stage [31]. The complexity arising from cross-talk is

thought to be one reason for the failure of specific inhibitors to work successfully in

cells. Determining what points should be targeted in a complex signaling network

is a critical question for drug design. It is therefore desirable that the extent of

compensation between connected pathways be defined quantitatively. A quantitative

measure of degeneracy in the network can be exploited to identify candidate points

in the network most suitable for drug intervention. Quantification of degeneracy can

also have applications in synthetic biology for designing system modules that are

structurally distinct but can be made to perform similar functions when needed.

Despite the existence of multiple instances of degenerate cellular signaling systems

and possible applications of estimation of degeneracy, a framework for quantifying de-

generacy in such systems has been so far lacking. We have presented in this thesis a

theoretical method for calculating the degeneracy of dynamical systems, which include

cellular signaling and metabolic networks. Using a model of cross-talk in interleukin

signaling we have demonstrated the biological significance of this numerical measure

of degeneracy. We found that the IL-4R and EpoR signaling pathways, by virtue of

phosphatase and ROS mediated crosstalk, give rise to a degenerate system when the

receptors are treated as input and STAT activation as output. By computationally

manipulating the signaling pathway we have empirically shown the relationships be-

tween degeneracy and some network features. As first shown by Tononi et al. for

neural networks, we found that independent signaling modules exhibit very low de-

generacy [66]. Reduced connectivity also means that the modules have a reduced

ability to influence each other via crosstalk, which our definition of degeneracy is able

to reflect. Simply increasing the complexity of the network may not be sufficient

to guarantee a degenerate system. For instance, fully redundant signaling modules
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with a high degree of crosstalk result in a structurally complex system. In our com-

putational analysis, when the modules were made fully redundant by making them

identical in the structure of the network and in the strengths of the internal connec-

tions, the calculated degeneracy dropped despite an increase in network edges. This

agrees with the notion that redundancy and degeneracy are functionally distinct, and

demonstrates that our definition of degeneracy is able to distinguish between a truly

degenerate system against one with high complexity but low degeneracy.

We also present a definition of robustness in the context of differential equation

models of biological systems. The stability of a differential system can be measured

by its robustness under random perturbation. A robust system strongly resists change

under fixed random perturbation. Moreover, as suggested by [42], if we know the

performance function of a system, we don’t have to require that the system offer

this resistance everywhere – the system only needs to be stable at places where the

performance function decreases dramatically. Biologically, this means that a robust

system is not necessarily one that is able to maintain a fixed steady state; instead it

is a system that is able to maintain its phenotype in the face of perturbations [42].

We have provided a definition of functional robustness that takes this into account.

While these illustrations with simplistic biological models provide some insight

into the significance of our theoretical framework for defining degeneracy, several as-

pects remain to be explored. For instance, does the calculated degeneracy provide an

estimate of the ability of cross-talking pathways to compensate for each other under

perturbation? System dynamics are of great importance in understanding cellular

signaling networks. Our method for calculating degeneracy takes into account only

the fixed points of the differential system. In thinking about the meaning of calculated

degeneracy in the context of cell signaling, it is important to keep system dynamics

in mind. The outcome of a signaling event is not always dictated by the steady state

value, instead instantaneous rates of changes or integrated values of signals may be
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of relevance in a given system. For this reason it is important to explore the relation-

ships between system dynamics and degeneracy. Given the ”no free lunch” concept

in control systems in which operating performance of one control function comes at

the cost of fragility elsewhere [43, 18], the consequences of degenerate network prop-

erties over redundant components can be explored further. These concepts may be

exploited in the design of synthetic biological circuits to ensure a desired functional

outcome under a variety of biological contexts. Although several issues remain to be

addressed, the methods presented in this thesis are significant in providing a theoret-

ical framework to the concept of degeneracy and functional robustness for the class

of systems represented by differential equations.

3.7 Systematic Measures in Discrete Models

This section is dedicated to the systematic measures in discrete settings. The configu-

rations of systematic measures of ODE-modeled complex biological system have been

studied in the above sections in detail. In addition, our theoretical frameworks can

be extend to the discrete settings. This extension is important because sometimes

discrete models make more sense than the ODE-models. For example, in the cell, the

number of reacting molecules could be small. In this case, the mass-action model is

not suitable any longer. Instead, people model these biochemical reactions by Markov

chain networks.

In the discrete setting, same framework can be followed to characterize systematic

measures. (1) inject artificial noise, (2) find invariant measure, (3) find the mutual

information between components, (4) Calculate degeneracy and complexity. Below,

we will particularly study the discrete models of biochemical reaction networks. An

illustrative example will also be given.

Consider a biochemical reaction network with N species. Different with the mass-

action system, the state space of this network is a graph with vertices set V =
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X1 × X2 × · · · × XN , where Xi = {0, 1, · · · , Ki}, Ki means the maximal possible

number of molecules of species i. Then the chemical reaction network can be modeled

as a Markov chain on set V . For example, reaction

A → B

is represented by edges

[mA, (n − 1)B]
mP(mA,(n−1)B)−→ [(m − 1)A, nB]

for different m and n. where P(A) indicates the probability of state (mA, (n− 1)B).

For detailed explanation, see the reference [55].

Note that this Markovian network is random in nature. In general we do not

have to inject external noise to remove the singularity of invariant measure. In case

of irreducible Markov chain, injecting artificial noise may be helpful (See subsection

2.2.5). Then we can calculate the marginal distribution of invariant measure by

discrete projection. The entropy, mutual information, degeneracy and complexity

can be defined in a similiar way as what we did in Section 3.2.

Figure 8: Example of open system

Example 3.7.1. Consider an open chemical reaction system with material exchange

as described in Figure 8. There are three species and 7 reactions in this system. O
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means the external environment. ki and Ii are reaction rate constants. Assume the

numbers of molecules of three species A, B and C are all ranged between 0 to 10, then

this system can be modeled by Markov chain over a 3-d lattice with 1331 vertices. Let

P (i, j, k, t) be the probability of state A = i, B = j, C = k at time t. We obtain the

following forward Kolmogorov equation:

dP (i, j, k, t)

dt
= I1(P (i − 1, j, k, t) − P (i, j, k, t)) + I2(P (i, j − 1, k, t) − P (i, j, k, t))

+ I3(P (i, j, k + 1, t) − P (i, j, k, t))

+ k1((i + 1)P (i + 1, j − 1, k, t) − iP (i, j, k, t))

+ k2((j + 1)P (i − 1, j + 1, k, t) − jP (i, j, k, t))

+ k3((i + 1)P (i + 1, j, k − 1, t) − iP (i, j, k, t))

+ k4((j + 1)P (i, j + 1, k − 1, t) − jP (i, j, k, t))

Note that for the points on the boundary of lattices, the previous equation must be

modified with boundary conditions. In this example, we set reaction rates as k1 = 50,

k2 = 50, k3 = 5, k4 = 4, I1 = 6, I2 = 12, I3 = 2.

With the restriction ∑
i

∑
j

∑
j

P (i, j, k, t) = 1

The steady-state shown in figure 9 can be found numerically. The marginal dis-

tributions of steady-state follows from the steady-state. Hence one calculate the de-

generacy D = MI(A,B, C) = 0.0558 and the complexity C = MI(A; B) = 4.4461.

This discrete system has positive degeneracy with respect to the decomposition I∞ =

{A}, I2 = {B},O = {C}.
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Figure 9: Stationary Probability Distribution. Reder-Larger circle means higher
probability
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CHAPTER IV

CONCLUSION AND FUTURE WORK

In this thesis, we studied stochastic perturbation of dynamical systems and its ap-

plication to complex biological network. In the first part, we improved the classical

theory of stochastic perturbations of ODE systems. With the help of level set method,

more accurate estimation can be given. We also studied stochastic perturbation prob-

lem of discrete dynamical systems. The study is motivated by the inconsistency of

continuous system and its discretization. A nonlinear scheme is introduced to solve

this problem. Further, some geometric properties and exponential convergence rate

are proved. Using the stochastic perturbation theory, we studied the systematic mea-

sure of complex biological network in the second part of this thesis. Some quantitative

characterization of systematic features are given. The robustness of attractors under

the stochastic perturbation are particularly discussed. Then we showed that the sys-

tematic measures like degeneracy, complexity and robustness have some fundamental

connection. Our theory is verified by JAK-STAT crosstalk network.

We would like to say this is the start of our exploration. In this thesis two areas are

covered: the stochastic perturbation theory and the application in complex biological

network. Some progresses are made; while some problems remain open. In our future

study, a more clear landscape of stochastic dynamical systems and its application in

complex biological network will be provided.

On one hand, for the stochastic perturbation of dynamical system, the classical

large deviation theory provides limit knowledge of perturbed system. People convert

problems in stochastic perturbation to problems in Hamilton-Jacob equation, which

does not reduce the complexity of problems in general. The level set method in [33]
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can provide better estimation. And we believe more results can be carried out by

adopting level set method in future. However level set method has its own limitation.

The probability distributions on each level set are not studied. Further investigation

of stochastic perturbation problems requires a deeper understanding of Fokker-Planck

equation as well as the dynamics of unperturbed systems.

On the other hand, the application to complex biological network is even more in-

teresting. In this thesis we introduced some quantitative definitions and proved some

of their properties. But the systematic measures are aimed at describing large-scale

highly-complex networks, whose parameter may be not explicitly known. An inter-

esting question is: what is the relationship between systematic measures and network

structures? This problem will be answered in our future publication. Further, there

is the other systematic measure called evolvability. Evidence shows the connection

between evolvability and degeneracy. It is also interesting to study complex network

under evolutionary pressure in future.

Last but not the least, the systematic measures of complex biological network

originally come from the study of neuroscience. Hence it makes a lot of sense to study

problems arising in mathematical neuroscience specifically. It would be reasonable to

hope a deep study of systematic measures of biological networks can make valuable

contributions to the mathematical neuroscience.
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