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Summary

The present research investigates the interface crack/delamination branch-

ing behavior in dissimilar anisotropic bimaterial media including thermal ef-

fects. This was accomplished by using the theory of Stroh’s dislocation formal-

ism, extended to thermo-elasticity in matrix notation. The thermoelastic inter-

face delamination problem of dissimilar anisotropic bimedia was re-examined

and one compact solution form was derived for general thermo-mechanical

loading based on the complex variable method and the analytical continua-

tion principle. A set of Green’s functions was proposed for the thermal disloca-

tions(conventional dislocation and heat vortex) in anisotropic bimedia. Using

the contour integral method, a closed form solution to the interaction between

the dislocations and the interface delamination was obtained. Within the scope

of linear elastic fracture mechanics, the thermoelastic problem of interface de-

lamination branching was then solved by modeling the branched portion as

a continuous distribution of dislocations. The interface delamination branch-

ing growth behavior was examined for three categories: 1) the effects from

the variation of the degree of anisotropy(defined by the material compliance

constants ratio s11/s22); 2) the influence from thermal loading, hence thermal

properties of the materials; 3) the combined effects of thermal properties and

the degree of anisotropy.
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After the derivation, the study of this thermo-elastic interface crack or

interface delamination branching problem was formulated into finding the so-

lution to a set of coupled singular integral equations. Extensive numerical sim-

ulation of various cases suggests some possible criteria for predicting the inter-

face delamination branching propagation: I) for general dissimilar anisotropic

bimaterial media, there usually exists a significant interaction energy between

the thermal loading and mechanical loading for a structure with defects. This

may explain why a catastrophic failure could easily happen when an imper-

fect bimaterial structure is exposed to thermal loading; II) the conventional

crack growth criteria based on (1) maximum KI , (2) zero KII , (3) maximum

G, which give identical predictions in the isotropic case for pure mechanical

loading, cease to be consistent for anisotropic media, particular for general

anisotropy (i.e. the bimaterial constant ε 6= 0); III) the G-based criterion

may give more reasonable predictions than a K-based criterion for interface

delamination branching angles in dissimilar anisotropic bimedia; IV ) for some

anisotropic bimaterial media, negative KI (overlapping of the delamination

faces around the crack tip) is possible under certain loading conditions due

to the thermal effects; V ) there exists an optimal orientation angle difference

between the two constituents of a bimaterial media. This optimal difference

minimizes the value of the maximum energy release rate. Therefore, the re-

sults from this research could provide useful guidelines for practical structures

xv



or material optimal design.

The procedure and some essential formulas can be extended in many ap-

plications. The first such extension is to use a contact model, eliminating

the interpenetration, which may be inappropriate in physical sense, of the

two faces around the tips of an interface delamination for general dissimilar

anisotropic bimaterials. Some new discovery is found on the conditions in

which this contact model would work well. Some clues for how to extend the

current research results to investigate the three dimensional thermo-elastic

interface delamination branching problem are also suggested in this work.

In this research, the C++ source codes have been implemented to manage

the complicated complex operations in the numerical simulation for solving

the singular integral equations in a complex matrix form. As a reference for

future readers’ usage, some relevant specification for this implementation is

also presented as appendices.

xvi



Chapter I

Introduction

1.1 Background

Interface crack/delamination/debonding along the interface of dissimilar

elastic media is a common phenomenon due to possible defects on the bond-

ing surface or impact loading on the structure. Since the pioneering work

of Williams (1959)[1] by using the eigenfunction expansion method to obtain

the characteristic oscillating stress singularity of the form r−
1
2
±iε, this phe-

nomenon for isotropic bimedia has been extensively investigated. Many results

have been obtained for isotropic bimaterials by many authors such as Erdo-

gan (1963)[2], England (1965)[3], Rice and Sih (1965)[4], Suo and Hutchin-

sion (1990)[5], etc. These works were mostly based on the Muskhelishvili

(1953)[6] formulism for isotropic elastic solids. As to the interface crack of

anisotropic elastic bimedia, the investigation started with Clements (1971)[7]

using Stroh’s sextic formalism [8] then by Willis (1971)[9] using the Fourier

transform method. Later on, Ting (1986)[10] studied the asymptotic property

of the interface crack of dissimilar anisotropic media by assuming a form of

stress function; Qu etal (1991)[11] addressed this problem by applying a con-

tinuous interface dislocation distribution technique with real matrix notation.
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From the early sixties of the last century, the problems of thermo-elastic

interface cracks attracted may researchers’ attention. Shih [12] in 1962,

Barber and Comninou [13-14], Matin-Moran et al [15] studied this problem

for dissimilar isotropic bimaterials. As to the dissimilar anisotropic

bimedia, the thermoelastic interface crack problem was first addressed by

Clements et al[16] in 1983 for a structure consisting of two infinite half space

materials. In 1992, Hwu [17] reconsidered the similar interface crack thermoe-

lastic problem in some detail by employing the identities developed by Ting

[18]. Choi and Thangjitham [19] studied the interlaminar crack in laminated

anisotropic composites with Fourier integral transforms. In 2001, Herrmann

and Loboda [20] extended the Comninou [21] contact model which studied the

interface crack in dissimilar anisotropic bimedia.

Crack/delamination may easily branch due to severe stress concentration

around the crack tip, especially due to thermal stress concentrations when

the body is exposed to heat flow with/without mechanical loading. The crack

branching/kinking within a cracked material or along the interface of dissimilar

materials can often then be observed as shown on Fig.1.1 to Fig.1.3.
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Fig.1.1 Delamination branching in laminated composites

The study of the branching/kinking behavior of a crack is of significant

practical importance due to the increasing and wide application of laminated

and sandwich composites and thin film structure. After an extensive liter-

ature search, it was found that most study on the delamination branching

behavior focused on the monolithic isotropic monolithic material [22-24]

and isotropic bimaterials [25]. The crack branching behavior for either

monolithic anisotropic materials or for dissimilar anisotropic bimate-

rial media has received less attention.
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Fig.1.2 Delamination branching in a Glass/Epoxy specimen

One can find some work on the crack kinking of monolithic anisotropic media,

such as Obata etal, 1989[26] by Lekhnistkii formulation and Gao et al, 1992

[27] by perturbation approach. Gao’s paper [27] addresses only a monolithic

anisotropic medium and Miller et al, 1989 [28] attempted to study a dissimilar

anisotropic interface crack branching phenomenon by Lekhnistkii formulas, but

their analysis and results are incomplete [27]. Thus some of their conclusion on

this phenomenon may be inadequate, based on studying a number of limited

cases.
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Mixed-Mode Bending tests)


Fig.1.3 Crack/delamination branching in Mixed-Mode Bending tests

In the meanwhile, in contrast to the thermo-elastic self-similar crack

propagation or self-similar interface crack problems, very few analyses are

available for the thermo-elastic crack branching or kinking problems due

to the complicated coupling or interaction between thermal effects and me-

chanical loading. Only two papers tried to deal with this problem, one by Norio

et al [29, 1986] using rational mapping to the curved crack in isotropic infinite

plates and the other one by Chao et al [30,1993] using the extended Muskhe-

lishvili’s [31] techniques to the curved interface crack of dissimilar isotropic

media. But one can easily see that these two papers dealt only with isotropic

media and may be hard to be extended to anisotropic media because of the

difficulty of finding rational mapping functions for anisotropic dissimilar media

5



to those in [29] and also because the work in [30] lacks the identities (7) used

in this thesis.

Therefore, the delamination branching phenomenon both for monolithic

anisotropic and dissimilar anisotropic bimaterial media needs to be further

investigated with or without including the thermal effects.

1.2 Research Objectives

The overall purpose of this research is to investigate the interface delam-

ination branching behavior in dissimilar anisotropic bimaterial media. The

particular objectives are:

• Develop a general solution to the interface delamination of dissimi-

lar bimaterial media for arbitrary loading (i.e. three cases: pure mechanical

applied loading, pure thermal-loading, and a combination of mechanical and

thermal loading).

• Formulate the equations for the interface delamination branching of

dissimilar bimaterial media and find the solutions to this system of equations

• Examine the influence of thermal properties and degree of anisotropy of

the bimaterial media on the delamination branching behavior, thus providing

some useful guidelines for practical composite structural design.

6



1.3 Thesis Outline

The current research is organized as follows:

Chapter 2 presents the derivation of a general solution to the thermo-elastic

interface delamination problem under arbitrary loading. This derivation is

based on the principle of analytical continuation [31] of complex analysis and

an approach similar to the one in Li and Kardomateas in [32]. Although there

are some solution forms given in the literature for the thermoelastic interface

crack problems, the solution obtained in this chapter can be easily used to

obtain the interaction between the thermal dislocations and the interface crack

as shown in chapter 4.

Chapter 3 gives the Green’s function for thermal dislocation (this term

means the combination of heat vortex and conventional/mechanical disloca-

tion). In [32], we studied the thermoelastic crack branching for monolithic

anisotropic medium based on extended Stroh’s dislocation theory [33] in ma-

trix form. But those thermal-dislocation functions in [32] can not be directly

extended to the anisotropic bimedia because of the mismatch of thermal prop-

erties along the interface of the dissimilar bimaterials, i.e. these functions

cannot satisfy the continuity boundary conditions along the interface. Hence,

a different set of thermal dislocation functions is needed and proposed in this

paper. In these functions, a mixed term combining heat vortex and conven-

7



tional dislocation effects is introduced to ensure the continuity condition along

the interface of the dissimilar bimaterial media.

Chapter 4 formulates a solution to the interaction between the thermal

dislocation and the interface delamination. The introduction of a dislocation

into a bimaterial media usually causes the redistribution of the stress and

strain fields due to the interaction between the dislocation and the interface

delamination. By using the contour integration method, a closed-form solution

is found for these interaction functions.

Chapter 5 deals with how to formulate and solve the set of singular inte-

gral equations for interface delamination branching problems. Modeling the

branched portion of the interface delamination as a continuous distribution

of thermal dislocation density and using the superposition principle, one can

obtain a system of singular integral equations. But for some simple cases, a

closed-form solution may be found by using the Hilbert transformation. In

this chapter, a numerical scheme is provided for the general case.

Chapter 6 examines the effects of thermal properties and the degree of

anisotropy on the onset of the interface delamination branching behavior by

extensive case study. Some important observations can be made regarding

interface delamination branching.

Chapter 7 by using a procedure and techniques similar to those in Chapter

8



2, a contact model is developed to eliminate the interface surfaces interpen-

etration, a physically implausible phenomenon. It is shown that this model

can work well for most practical engineering bimaterials such as laminated

composites. The conditions in which the model would be valid for general

anisotropic bimedia is also addressed.

Chapter 8 suggests some important conclusions on predicting interface de-

lamination branching. Some clues are presented for potential future applica-

tions of the method developed in this research.
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Chapter II

A Solution to the Interface Delamination in Dissimilar

Anisotropic Bimaterial Media

This chapter will show how to employ the complex variables method and

the analytic continuation principle to formulate a general solution to an inter-

face delamination problem. The thermal loading is also taken into account.

Some essential fracture quantities such as stresses ahead of the interface de-

lamination and crack open displacements (COD) are to be discussed. For the

specific case of constant applied loading, a closed form solution will be given.

2.1 Some Basic Thermo-elasticity Formulas for Anisotropic Materi-

als

Thermo-elasticity of anisotropic material in Stroh’s formulas can be readily

found in the literature. It is briefly summarized in this section. In a fixed

Cartesian coordinate system (x1, x2, x3), let us consider an anisotropic elastic

medium, in which the displacement ui, stresses σij and temperature fields are

independent of x3. The heat flux can be expressed as

hi = −kij
∂T

∂xj

, (i, j = 1, 2, 3) (1)

10



where, kij = kji are the coefficients of heat conduction.

The stress-strain law in the presence of thermal fields can be expressed in

the following form:

σij = cijkl
∂uk

∂xl

− βijT, (i, j, k, l = 1, 2, 3), (2)

where cijkl is the elastic moduli tensor with the properties that

cijkl = cjikl = cijlk = cklij, (3)

and βij are the stress-temperature coefficients; the repeated indices imply sum-

mation. Equilibrium and conservation of energy lead to

σij,j = 0,

i.e. cijkl
∂2uk

∂xl∂xj

− βij
∂T

∂xj

= 0 (4)

and

∂hi

∂xi

= 0,

i.e. kij
∂2T

∂xi∂xj

= 0 (5)

For a plane system, the non-trivial displacement u = [u1, u2, u3]
T , with

corresponding stress functions ϕ = [ϕ1, ϕ2, ϕ3]
T , and temperature distribution

T(x1, x2) (with corresponding heat flux hi, i = 1, 2) which satisfy equations of

11



equilibrium (4) and heat conduction (5) be written as

u = A φ(zα) + A φ(zα) + C χ(zτ ) + C χ(zτ ),

ϕ = B φ(zα) + B φ(zα) + D χ(zτ ) + D χ(zτ ),

T(x1, x2) = χ
′
(zτ ) + χ′(zτ ),

hi = −(ki1 + τki2)χ
′′
(zτ )− (ki1 + τki2)χ

′′(zτ ) (6)

where, A = [a1, a2, a3] and B = [b1,b2,b3] are 3 × 3 matrices which satisfy

the identity ∣∣∣∣∣∣
BT AT

B̄T ĀT

∣∣∣∣∣∣
×

∣∣∣∣∣∣
A Ā

B B̄

∣∣∣∣∣∣
=

∣∣∣∣∣∣
I 0

0 I

∣∣∣∣∣∣
(7)

C and D are 3× 1 vectors; φ(zα) is a function vector and χ(zτ ) is a scalar

function; zα = x1+pαx2 (α = 1, 2, 3) and zτ = x1+τx2; the overbar ( ) denotes

the conjugate of a complex variable, the prime ′ denotes differentiation with

respect to zα or zτ ; the constant τ is the root with positive imaginary part of

the equation

k22τ
2 + 2 k12τ + k11 = 0 (8)

the pα, a, b, c and d are constants which satisfy the following equations

N

∣∣∣∣∣∣
a

b

∣∣∣∣∣∣
= p

∣∣∣∣∣∣
a

b

∣∣∣∣∣∣
, N =

∣∣∣∣∣∣
N1 N2

N3 NT
1

∣∣∣∣∣∣
(9)

N

∣∣∣∣∣∣
c

d

∣∣∣∣∣∣
= τ

∣∣∣∣∣∣
c

d

∣∣∣∣∣∣
−

∣∣∣∣∣∣
0 N2

I NT
1

∣∣∣∣∣∣

∣∣∣∣∣∣
β1

β2

∣∣∣∣∣∣
, (β1)i = βi1, (β2)i = βi2 (10)
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in which, N1 = −T−1 RT, N2 = T−1, N3 = R T−1 RT −Q; the superscript

‘T’ stands for the transpose of a matrix and

Qik = ci1k1, Rik = ci1k2, Tik = ci2k2, i, k = 1, 2, 3 (11)

The function vector φ(zα) takes the form

φ(zα) =¿ f(zα) À q;

¿ f(zα) À= diag[f(z1), f(z2), f(z3)] (12)

where, f(zα) and q are, respectively, unknown functions and constants ;

the ¿ À stands for a diagonal matrix.The determination of the unknowns

f(zα) and q usually depends on the specifics of problem.

The stresses can be written in term of stress functions as

σi1 = −∂ϕi

∂x2

= −ϕi,2, i = 1, 2, 3 (13)

σi2 =
∂ϕi

∂x1

= ϕi,1 = ϕ
′
i, i = 1, 2, 3 (14)

The relationship

∂ϕi

∂x1

=
dϕi

dz
= ϕ

′
i (15)

is used in (14).
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If we let k = k22(τ − τ)/2i, then

k =
√

k11k22 − k2
12 (16)

and

h1 = ikτχ
′′
(zτ )− ikτχ′′(zτ ) (17)

h2 = −ikχ
′′
(zτ ) + ikχ′′(zτ ) (18)

Here, three useful matrices are defined as

H = 2 i AAT , L = −2 i BBT , S = i (2ABT − I) (19)

where I = diag[1, 1, 1] is a unit matrix. It can be shown that H and

L are symmetric and positive definite and that SH, LS, H−1S, S, SL−1 are

anti-symmetric [46], and the following relations can be easily verified

M = −iBA−1 = H−1(I + iS) = (I − iST )H−1,

M−1 = iAB−1 = L−1(I + iST ) = (I − iS)L−1 (20)
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2.2 A Solution to the Interface Delamination of Anisotropic Bime-

dia under Thermo-mechanical Loading

Let the medium ‘I’ occupy the upper half space (denoted by L) and let

medium ‘II’ be in the lower half space (denoted by R) (Fig.2.1). Then from

equation (6) and (18) one can have the following expressions for this bimaterial

media,

uI = AI φI(zα) + AI φI(zα) + CI χI(zτ ) + CI χI(zτ ),

ϕI = BI φI(zα) + BI φI(zα) + DI χI(zτ ) + DI χI(zτ );

T I = χ
′
I(zτ ) + χ′I(zτ ); hI

2 = −ikI χ
′′
I (zτ ) + ikI χ′′I (zτ ) (21)

for zα ∈ L, and

uII = AII φII(zα) + AII φII(zα) + CIIχII(zτ ) + CII χII(zτ ),

ϕII = BII φII(zα) + BII φII(zα) + DII χII(zτ ) + DII χII(zτ );

T II = χ
′
II(zτ ) + χ′II(zτ ); hII

2 = −ikII χ
′′
II(zτ ) + ikII χ′′II(zτ ) (22)

for zα ∈ R.

For the convenience of writing, the symbols ‘I’ and ‘II’, denoting the

quantities to medium ‘ L’ and ‘ R’, respectively, may be put as supscripts or

subscripts. The interface delamination is assumed to be located in the region

a < x1 < b, ∞ < x3 < ∞ of the plane x2 = 0. A heat flux h0 and σ∞i2 = pi is

applied at infinity (Fig.2.1).
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X1

‘a’ ‘b’

X2

0
q

0
q

I/L

II/R

Fig.2.1 A thermo-elastic interface delamination

in a dissimilar anisotropic bimedium

In the scope of linear fracture mechanics, by the superposition principle

and making use of equation (14), the boundary conditions for this problem

can be written as

hI
2+(x1) = −h0(x1),

hII
2−(x1) = −h0(x1),

ϕ
′I
+(x1) = ϕ

′II
− (x1) = −p(x1) (23)

for the interface crack region (a < x1 < b, x2 = 0) ;

16



and

uI
+(x1) = uII

− (x1),

ϕ
′I
+(x1) = ϕ

′II
− (x1),

T I
+(x1) = T II

− (x1),

hI
2+(x1) = hII

2−(x1) (24)

for the interface outside the crack (x1 < a and b < x1, x2 = 0);

at infinity

hI
2 = hII

2 = 0, σI
ij = σII

ij = 0 (25)

It should be mentioned that the convention φ(x1, x2) = φ±(x1) as x2 → 0±

for any function φ(x1, x2) was used and will be employed in the coming sections.

The temperature continuity condition (24)3 along the bonded interface

gives us the following equation

χ
′
I+(x1) + χ

′
I−(x1) = χ

′
II−(x1) + χ

′
II+(x1) (26)

After some rearrangement, it becomes

χ
′
I+(x1)− χ

′
II+(x1) = χ

′
II−(x1)− χ

′
I−(x1) (27)

17



One can define a function as

θ(z) =





χ
′
I(z)− χ′II(z̄), z ∈ L

χ
′
II(z)− χ′I(z̄), z ∈ R

(28)

which is analytical in the whole plane except at the cut along the a < x1 <

b, then equation (27) automatically satisfied.

The heat flux continuity condition (24)4 along the bonded interface leads

to:

kI[χ
′′
I+(x1)− χ

′′
I−(x1)] = kII[χ

′′
II−(x1)− χ

′′
II+(x1)], (29)

or

kIχ
′′
I+(x1) + kIIχ

′′
II+(x1) = kIIχ

′′
II−(x1) + kIχ

′′
I−(x1) (30)

Then a function can be defined as

Θ(z) =





kIχ
′′
I (z) + kIIχ

′′
II(z̄), z ∈ L

kIIχ
′′
II(z) + kIχ

′′
I (z̄), z ∈ R

(31)

which is analytical in the whole plane except at the cut along the a < x1 <

b, then equation (30) is automatically satisfied.

Solving equations (28) and (31), one can obtain

kIχ
′′
I (z) = [kIΘ(z) + kI kIIθ

′
(z)]/[kI + kII], (32)
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and

kIIχ
′′
II(z̄) = Θ(z)− [kIΘ(z) + kI kIIθ

′
(z)]/[kI + kII] (33)

for the medium occupying the upper space, i.e. z ∈ L;

kIIχ
′′
II(z) = [kIIΘ(z) + kI kIIθ

′
(z)]/[kI + kII], (34)

and

kIχ
′′
I (z̄) = Θ(z)− [kIIΘ(z) + kI kIIθ

′
(z)]/[kI + kII] (35)

for the medium occupying the lower space, i.e. z ∈ R.

Substituting equation (33) and (35) in condition (23)1,2, the following equa-

tions can be obtained

1

kI + kII

[kIΘ+(x1) + kIkIIθ
′
+(x1)]−Θ−(x1)

+
1

kII + kII

[kIΘ−(x1) + kIkIIθ
′
−(x1)] = −ih0(x1) (36)

and

1

kI + kII

[kIIΘ−(x1) + kIkIIθ
′
−(x1)]−Θ+(x1)

+
1

kI + kII

[kIIΘ+(x1) + kIkIIθ
′
+(x1)] = −ih0(x1) (37)
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Subtraction of equation (36) from equation (37) yields

Θ+(x1)−Θ−(x1) = 0, a < x1 < b (38)

The equation (38) implies that the function Θ(z) is also continuous along

the region a < x1 < b. Since the function Θ(z) was defined analytical in the

whole plane except the cut a < x1 < b, this function is continuous along the

whole interface.

By the statement of the analytical continuation principle [34], the function

Θ(z) shall be analytical on the whole plane. But Liouville’s theorem [34] tells

that this Θ(z) must be a constant function in the whole domain. However,

the condition in equation (25)1 says this function should be vanish at infinity.

Therefore, this constant function must be identically zero in the whole plane,

i.e.

Θ(z) = 0, for all z (39)

Hence, the following equations can be obtained from (31)

χ′′II(z̄) = − kI

kII

χ
′′
I (z) (40)

for the upper medium, i.e. z ∈ L; and

χ′′I (z̄) = −kII

kI

χ
′′
II(z) (41)
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for the lower medium, i.e. z ∈ R.

Since the temperature field induced by the heat flux at the interface crack

tends to zero at infinity, the integration of equations (40) and (41), respectively,

gives

χ′II(z̄) = − kI

kII

χ
′
I(z) (42)

for the upper medium, i.e. z ∈ L; and

χ′I(z̄) = −kII

kI

χ
′
II(z) (43)

for the lower medium, i.e. z ∈ R.

Further integration of equations (42) and (43) leads to:

χII(z̄) = − kI

kII

χI(z) (44)

for z ∈ L; and

χI(z̄) = −kII

kI

χII(z) (45)

for z ∈ R, where the constants contributing to rigid body motion were

dropped.

Making use of equations (42) and (43), one can turn equation (28) into the
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following form,

θ(z) =





[1 + kI

kII
]χ

′
I(z), z ∈ L

[1 + kII

kI
]χ

′
II(z), z ∈ R

(46)

Then either equation (36) or (37) becomes

θ
′
+(x1) + θ

′
−(x1) = −kI + kII

kIkII

ih0(x1), a < x1 < b (47)

So far, only the thermal boundary conditions were used. Next, we shall

make use of the stress and displacement boundary conditions along the inter-

face.

First, the displacement continuity (24)1 along the bonded interface gives

AI φI+(x1) + AI φI−(x1) + CI χI+(x1) + C I χI−(x1)

= AII φII−(x1) + AII φI+(x1) + CII χII−(x1) + C II χII+(x1)

(48)

regrouping the ‘+’ and ‘–’ terms, one can have

AI φI+(x1)− AII φII+(x1) + CI χI+(x1)− C II χII+(x1)

= AII φII−(x1)− AI φI−(x1) + CII χII−(x1)− C I χI−(x1)

(49)

Using similar argument to definition of (31), one may define a function,

which is analytical in the whole plane except at the cut along the a < x1 < b,
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as :

Φ(z) =





AI φI(z)− AII φII(z̄) + CI χI(z)− C II χII(z̄), z ∈ L

AII φII(z)− AI φI(z̄) + CII χII(z)− C I χI(z̄), z ∈ R

(50)

then equation (48) is automatically satisfied. By using equation (43), the

above equation (50) can be recast as follows:

Φ(z) =





AI φI(z)− AII φII(z̄) + [kIICI + kIC II] χI(z)/kII, z ∈ L

AII φII(z)− AI φI(z̄) + [kICII + kIIC I] χII(z)/kI, z ∈ R

(51)

Differentiation of equation (51) and making use of (46) yields

Φ′(z) =





AI φ
′
I(z)− AII φ′II(z̄) + e1 θ(z), z ∈ L

AII φ
′
II(z)− AI φ′I(z̄) + e1 θ(z), z ∈ R

(52)

where, e1 = [kIICI + kIC II]/[kI + kII] is a constant vector.

Secondly, let us consider the stress continuity condition along the bonded

interface of this dissimilar bimaterial media. This condition of equation (24)2

leads to:

BI φ
′
I+(x1) + BI φ

′

I−(x1) + DI χ
′
I+(x1) + DI χ

′
I−(x1)

= BII φ
′
II−(x1) + BII φ

′

II+(x1) + DII χ
′
II−(x1) + DII χ

′
II+(x1)

(53)
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rearrangement of both sides of equation (53) reads,

BI φ
′
I+(x1)−BII φ

′

II+(x1) + DI χ
′
I+(x1)−DII χ

′
II+(x1)

= BII φ
′
II−(x1)−BI φ

′

I−(x1) + DII χ
′
II−(x1)−DI χ

′
I−(x1)

(54)

A function which automatically satisfies the condition (54) could be defined

as follows:

ω(z) =





BI φ
′
I(z)−BII φ′II(z̄) + e2 θ(z), z ∈ L

BII φ
′
II(z)−BI φ′I(z̄) + e2 θ(z), z ∈ R

(55)

which is analytic on the whole plane except at the cut a < x1 < b along

the interface.

In equation (55),

e2 = [kIIDI + kIDII]/[kI + kII] (56)

is a constant vector and the relationship between χ′(z) and θ(z) was used.

From equation (51) and (55), one can obtain

BI φ
′
I(z) = i N [Φ

′
(z)− e1θ(z)] + N M

−1

II [ω(z)− e2 θ(z)] (57)

and

BII φ′II(z̄) = BI φ
′
I(z)− ω(z) + e2θ(z) (58)
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for the upper medium occupying the space z ∈ L;

BII φ
′
II(z) = i N [Φ

′
(z)− e1θ(z)] + N M

−1

I [ω(z)− e2 θ(z)] (59)

and

BI φ′I(z̄) = BII φ
′
II(z)− ω(z) + e2θ(z) (60)

for the lower medium occupying the space z ∈ R.

Substituting of equation (58) and (60) into the condition (23)3,4, respec-

tively, gives

BI φ
′
I+(x1) + BII φ

′
II−(x1)− ω−(x1) + e2θ−(x1)

+
kII

kI + kII

[DIθ+(x1)−DIθ−(x1)] = −p(x1) (61)

and

BII φ
′
II−(x1) + BI φ

′
I+(x1)− ω+(x1) + e2θ+(x1)

+
kI

kI + kII

[DIIθ−(x1)−DIIθ+(x1)] = −p(x1) (62)

where, equations (43) and (46) are used.
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Subtraction of equation (61) from (62) yields the following equation

ω+(x1)− ω−(x1) = 0 (63)

which tells that the ω(z) is continuous on the whole interface. By a similar

argument to the on in obtaining equation (39), one may has

ω(z) = 0, for all z (64)

Either equation (61) or (62) leads to:

Φ
′
+(x1) + N−1NΦ

′
−(x1) = iN−1[p(x1) + %1 θ+(x1) + %2 θ−(x1)], a < x1 < b

(65)

where

%1 =
kII

kI + kII

DI −N [i e1 + M
−1

II e2],

%2 =
kI

kI + kII

DII −N [i e1 + M
−1

I e2];

N−1 = M−1
I + M

−1

II (66)

The general solutions to equations (47) and (65) can be obtained by em-

ploying the procedure in [32]. These solutions read, respectively as (Appendix

A)

θ
′
(z) = − kI + kII

2π kI kII

x(z)[

∫ b

a

x−1
+ (x1)h0(x1)

x1 − z
dx1 + P (z)] (67)
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Φ
′
(z) =

1

2π
X(z)[

∫ b

a

X−1
+ (x1)

x1 − z
N−1[p(x1) + %1 θ+(x1) + %2 θ−(x1)]dx1 + Q(z)]

(68)

where, P (z) and Q(z) are constants to be determined by the boundary

conditions,

x(z) =
1√

(z − a)(z − b)
, X(z) = v x(z) ∆(z; ε),

∆(z; ε) = dia[(
z − b

z − a
)iε, (

z − b

z − a
)−iε, 1] (69)

and

v = [v1, v2, v3], (70)

in which, vj(j = 1, 2, 3) are the eigenvectors of the equation

(N + e2πiδ N) v = 0. (71)

The matrix N can be expressed in terms of a symmetric matrix D and an

anti-symmetric matrix W [19]

N−1 = D − iW, D = L−1
1 + L−1

2 , W = S1L
−1
1 − S2L

−1
2 . (72)

The explicit expressions to eigenvalues of equation (71) are:

δ1 =
1

2
+ iε, δ2 =

1

2
− iε, δ3 =

1

2
,

ε =
1

2π
log[

1 + β

1− β
], β = [−1

2
tr(D−1W )2]

1
2 . (73)

27



It can be seen that equations () and (68) are singular integral equations.

Usaully, the contour integral approach is applied to this type of integrations.

The method employed in the current paper could be viewed as the generaliza-

tion of the technique in [6, §110, §70] which is for a single equation.

Once the applied loading h0(x1) and p(x1) is given, the solution to the

functions θ(z) and Φ(z), hence fields functions χj(z) and φj(z) (j = ‘I’ and

‘II’), can be found. Therefore, a general solution to the thermoelastic interface

crack problem of dissimilar bimedia is obtained.

The traction σi2 = ϕ
′
ahead of the interface crack reads

[σ12, σ22, σ32]
T = ϕ

′
= N∗Φ

′
(x1)− e∗θ(x1), x1 < a or b < x1 (74)

where,

N∗ = i(N + N), e3 =
kIIDI + kIDII

kI + kI

e∗ = i (Ne1 + N e1)− (NM−1
I e2 −NM

−1

I e2) + e2 + e3. (75)

and the crack open displacements (COD) can be derived after some ma-

nipulation

∆u = uI
+(x1)− uII

− (x1) = Φ+(x1)− Φ−(x1), a < x1 < b (76)
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2.3 Solution for the Constant Applied Loading

For constant applied loading, a contour integral can give a closed form to

the general solution. Let us assume the general applied loading p is constant

in the following equation,

Φ
′
(z) =

X(z)

2π

∫

ab

[X+(x1)]
−1 N−1

x1 − z
dx1 p (77)

Where, X(z) is defined in (69).

X2

X1
a b

Fig.2.2 Contour integral path

Let γ be a contour which includes the arc ab, and let this contour shrink
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into the arc ab(Fig.2.2), then

∫

γ

[X(ξ)]−1N−1

ξ − z
dξ =

∫

ab

[X+(t)]−1N−1

t− z
dt +

∫

ba

[X−(t)]−1N−1

t− z
dt

=

∫

ab

[X+(t)]−1N−1

t− z
dt−

∫

ab

[X−(t)]−1N−1

t− z
dt (78)

From equation (65), one can have

X−(t) = −N̄−1NX+(t), a < t < b (79)

Substituting equation (79) into (78) leads to:

∫

γ

[X(ξ)]−1N−1

ξ − z
dξ =

∫

ab

[X+(t)]−1N−1[I + N̄N−1]

t− z
dt (80)

Then,

∫

ab

[X+(t)]−1N−1

t− z
dt =

∫

γ

[X(ξ)]−1N−1[I + N̄N−1]−1

ξ − z
dξ

=

∫

γ

[X(ξ)]−1[N + N̄ ]−1

ξ − z
dξ (81)

Hence, the line singular integral becomes a contour integral.

Specifically in our problems, the constant loading are h0(x1) = h0 and

p(x1) = p0. Then contour integration of equation () leads to:

θ
′
(z) = −i

(kI + kII)h0

2 kI kII

[1− z − (a + b)/2√
(z − a)(z − b)

] (82)
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Integration of equation (82) gives

θ(z) = −i
(kI + kII)h0

2 kI kII

[z −
√

(z − a)(z − b)] (83)

where the integral constant is dropped.

The stress function can be found from (68) and it reads (Appendix A)

Φ
′
(z) = v [φ1(z) v−1(N + N)−1(ip0) + φ2(z)v−1(N + N)−1(ip∗1)

+ φ3(z)v−1(N + N)−1(ip∗2)] (84)

where,

φ1(z) = I− x(z)∆(z; ε)[Ξ(z) + Π1] (85)

φ2(z) = Ξ(z)− x(z)∆(z; ε)[Ξ(z2) + Π1Ξ(z)− Π2] + x(z)Π5 (86)

φ3(z) = x−1(z)− x(z)∆(z; ε)[Ξ(z2)− Π3Ξ(z) + Π4 + x(z)Π6 (87)

and Πk (k = 1 to 6) are defined in Appendix A.

If the constant which only contributes to rigid body motion is omitted,

integration of the above function gives (Appendix A),

Φ(z) = v [Ξ(z)− x−1(z)∆(z; ε)] v−1(N + N)−1(ip0) + v[Ξ(z2)−

x−1∆(z; ε)Ξ(z)− Y1(z; ε)− Y2(z; ε)Π2] v−1(N + N)−1(ip∗1) + v[Y3(z)

− x−1∆(z; ε)(Ξ(z)− Π̃1)− Y1(z; ε)− Y2(z; ε)Π̃2] v−1(N + N)−1(ip∗2)

(88)

31



where,

Π̃1 = diag[
a + b

2
+ (b− a)iε,

a + b

2
− (b− a)iε,

a + b

2
] (89)

Π̃2 = diag[
b2 − a2

2
iε− (1 + 4ε2)

(b− a)2

2
,

− b2 − a2

2
iε− (1 + 4ε2)

(b− a)2

2
,−(b− a)2

2
] (90)

Ξ(z), Y1(z; ε), Y2(z; ε) and Y3(z) are matrix functions defined in Appendix

A.

Once the temperature potential functions and stress functions are found,

the heat flux and stress fields for this bimedia with the presence of the interface

may readily be obtained. Here given are the heat flux for the upper medium

of this bimaterial

hc
1(x1, x2) = −Re[(1− z − a+b

2√
(z − a)(z − b)

)τ ]h0 (91)

hc
2(x1, x2) = Re[1− z − a+b

2√
(z − a)(z − b)

]h0 (92)

and the stress fields for the upper medium read as

[σ11, σ21, σ31]
T
1c = −2Re[iNv ¿ pα À v−1Φ

′
(z)− iDc τ θ(z)] (93)

[σ11, σ21, σ31]
T
2c = 2Re[iNΦ

′
(z)− iDcθ(z)] (94)
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where,

Dc = iNe1 + NM
−1

II e2 −DI
kII

kI + kII

(95)

The COD for this case can then be expressed as

∆u(x1) = 4
√

(x1 − a)(b− x1)cosch(επ){u1(x1, ε)[p0 + x1(p
∗
1 + p∗2)− Π̃1p

∗
2]

+
a + b− 2x1

8
(N + N)−1p∗2} (96)

where,

u1(x1, ε) = vdiag[(
b− x1

x1 − a
)iε, (

b− x1

x1 − a
)−iε, cosch−1(επ)]v−1(N + N)−1 (97)

The traction ahead of the crack tip may then read

t(x1) = [σ12, σ22, σ32]
T = N∗Φ

′
(x1)− e∗θ(x1) =

N∗
√

(x1 − a)(x1 − b)
v

× {[
√

(x1 − a)(x1 − b)I−∆(x1; ε)(Ξ(x1) + Π1)]v
−1(N + N)−1(ip0)

+ [x1

√
(x1 − a)(x1 − b)I−∆(x1; ε)(Ξ(x2

1) + x1Π1 − Π2) + Π5]×

v−1(N + N)−1(ip∗1) + [(x1 − a)(x1 − b)I−∆(x1; ε)(Ξ(x2
1)− x1Π3 + Π4)

+ Π6]v
−1(N + N)−1(ip∗2)} − e∗[x1 −

√
(x1 − a)(x1 − b)]h∗0 (98)

the notation I = diag[1, 1, 1].

The conventional Stress Intensity Factors (SIFs) ahead of the crack tip
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such as for x1 = b may be expressed as

[KII,KI,KIII]
T = lim

x1→ b

√
2π(x1 − b)[σ12, σ22, σ32]

T

=
√

2π(b− a)N∗v lim
x1→ b

∆(x1; ε)[k1v
−1(N + N)−1(ip0)

+ k2v
−1(N + N)−1(ip∗1) + k3v

−1(N + N)−1(ip∗2)] (99)

where,

k1 = −diag[
1

2
+ iε,

1

2
− iε,

1

2
] (100)

k2 = (b− a)diag[ε2 − b + a

4(b− a)
− biε, ε2 − b + a

4(b− a)
+ biε,− b + a

4(b− a)
+

1

8
]

(101)

k3 = (b− a)diag[0.375 + ε2 + 2iε, 0.375 + ε2 − 2iε,−0.25] (102)

Now the energy release rate G0 can also be calculated for this interface

crack propagation. Assuming the crack tip grows from ′b′ to ′b + δb′, then

from equations (76), (88) and (98), G0 reads as:

G0 = lim
δb→0

1

2 δb

∫ ∆b

0

δuT (x1 − δb) t(x1)dx1 (103)

For the simple case where two media which are identical, an explicit ex-

pression for the energy release rate can be obtained as

G0 =
π(b− a)

2
[pT

0 L−1p0 + (b− a)pT
0 L−1p̃∗1 + pT

0 L−1e∗1h
∗
0 + bp∗T1 L−1p0

+ bp∗T1 L−1p̂∗1/4] (104)
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where

p∗T1 = p∗1[1, 1, 1]; p̃1 = p∗1[1, 1,
3

2
]T , p̂∗1 = p∗1[b + a, b + a,

b + 3a

2
]T

(105)

If there is no mechanically applied loading, i.e p0 = [0, 0, 0]T , then equa-

tion (104) can be expressed as

G0 =
πb(b− a)

8
p∗T1 L−1p̂∗1 (106)

In this section, a solution as well as the method leading to the solution

for the crack of a thermo-mechanically loaded anisotropic medium was pre-

sented in detail. And one can see that the general solution given here lays the

foundation for the study of the branched delamination phenomena.
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Chapter III

Green’s Functions for Dislocations in Bimaterials

Due to the introduction of a dislocation into either one of the elastic bima-

terial media under thermal loading, a temperature discontinuity (also called

heat vortex[13]) may be induced across the cut plane by which a conventional

(or mechanical) dislocation is formulated (Fig.3.1).

X1

X2

0
q

0
q

r b
I/L

II/R
‘a’ ‘b’

Fig.3.1 A thermo-elastic dislocation in a dissimilar anisotropic bimedium

This concept of heat vortex first appeared in the literature several decades

ago and has been studied by many authors. But most of the functions of

displacement and stress fields due to the heat vortex can hardly be directly

extended to the dissimilar anisotropic media. To offset this difficulty, mixed

terms are introduced in the expressions for displacement and stress functions.
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For the dissimilar anisotropic bimaterial media, the functions of the heat

vortex may be assumed as

T d
I = 2 Re[q0τ log(zτ − zτ0) + q1τ log(zτ − zτ0)] (107)

for the medium in the upper space, i.e. z ∈ L;

T d
II = 2 Re[q2τ log(zτ − zτ0)] (108)

for the medium in the lower space, i.e. z ∈ R.

The corresponding heat flux h2 can then be expressed as

hd
2I = 2 kIIm[

q0τ

zτ − zτ0

+
q1τ

zτ − zτ0

], z ∈ L (109)

hd
2II = 2 kIIIm[

q2τ

zτ − zτ0

], z ∈ R (110)

where,

q0τ =
T

4πi
(111)

q1τ and q2τ are constants to be determined by the conditions along the

interface.
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The displacement and stress functions may then take the form:

ud
I = 2Re[AI ¿ log(zα − zd0) À qd0] +

3∑

k=1

AI ¿ log(zα − zd0k) À q1k]

+ 2Re[AI ¿ ( log(zα − zτ0)− 1)(zα − zτ0) À q1dτ ]

+ 2 Re[CI(q0τ (log(zτ − zτ0)− 1)(zτ − zτ0)

+ q1τ (log(zτ − zτ0)− 1)(zτ − zτ0))] (112)

φd
I = 2Re[BI ¿ log(zα − zd0) À qd0] + 2Re[

3∑

k=1

BI ¿ log(zα − zd0k) À q1k]

+ 2Re[BI ¿ ( log(zα − zτ0)− 1)(zα − zτ0) À q1dτ ]

+ 2 Re[DI(q0τ (log(zτ − zτ0)− 1)(zτ − zτ0)

+ q1τ (log(zτ − zτ0)− 1)(zτ − zτ0)] (113)

for the upper half-space(x2 > 0), and

ud
II = 2Re[

3∑

k=1

AII ¿ log(zα − zd0k) À q2k]

+ 2Re[AII ¿ ( log(zα − z̄τ0)− 1)(zα − z̄τ0) À q2dτ ]

+ 2 Re[CII(log(zτ − zτ0)− 1)(zτ − zτ0)q2τ ] (114)

φd
II = 2Re[

3∑

k=1

BII ¿ log(zα − zd0k) À q2k]

+ 2Re[BII ¿ ( log(zα − z̄τ0)− 1)(zα − z̄τ0) À q2dτ ]

+ 2 Re[DII(log(zτ − zτ0)− 1)(zτ − zτ0)q2τ ] (115)

for the lower half-space (x2 < 0). Where [33]

qd0 =
1

2πi
BT

I b (116)
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We may need to point out that in the term¿ ( log(zα−zτ0)−1)(zα−zτ0) À

and ¿ ( log(zα − z̄τ0) − 1)(zα − z̄τ0) À, the variable zα and zτ0 interacts.

These mixed terms were introduced to reflect the interaction between the heat

vortex (represented by zτ0) and the conventional dislocation (represented by

zα) due to the mismatch of the properties of the upper and lower medium.

This consideration plays a very important role to ensure the continuity of the

displacements and tractions along the interface of the dissimilar bimaterials.

Substituting equations (108), (110), (113), and (115) into the boundary

conditions along the interface,

T d
I (x1, x2 = 0+) = T d

II(x1, x2 = 0−),

hd
2I(x1, x2 = 0+) = hd

2II(x1, x2 = 0−),

ud
I (x1, x2 = 0+) = ud

II(x1, x2 = 0−),

φ
′d
I (x1, x2 = 0+) = φ

′d
II (x1, x2 = 0−) (117)
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one can obtain (Appendix C)

q1τ =
kI − kII

kI + kII

q0τ ,

q2τ =
2kI

kI + kII

q0τ

BIq1k = N(−N−1 + 2L−1
I )BIIkqd0,

BIIq2k = 2 NL−1
I BIIkqd0,

BIq1dτ = N [M
−1

II D + iC]q0τ ,

BIIq2dτ = −N [M
−1

I D + iC]q0τ (118)

The heat flux and stress fields can then be readily calculated. Here recorded

are the quantities for the medium in the upper space,

htd
1I = −2 kIIm[

q0τ

zτ − zτ0

τ +
q1τ

zτ − zτ0

τ ],

htd
2I = 2 kIIm[

q0τ

zτ − zτ0

+
q1τ

zτ − zτ0

] (119)

and

[σ11, σ21, σ31]
tdT
I1 = −2Re

3∑

k=1

[BI ¿ pα

zα − zd0k

À Ikq0 + BI ¿ pα

zα − zd0k

À q1k]

+ 2Re[BI ¿ pαlog(zα − zτ0) À q1dτ

+ DI(τ log(zτ − zτ0)q0τ + τ log(zτ − zτ0)q1τ )] (120)
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[σ12, σ22, σ32]
tdT
I2 = 2Re

3∑

k=1

[BI ¿ 1

zα − zd0k

À Ikq0 + BI ¿ 1

zα − zd0k

À q1k]

+ 2Re[BI ¿ log(zα − zτ0) À q1dτ

+ DI(log(zτ − zτ0)q0τ + log(zτ − zτ0)q1τ )] (121)

The heat flux and traction along the interface are, respectively,

hd
2(x1) =

4kIkII

kI + kII

Im[
q0τ

x1 − zτ0

] (122)

and

tdτ = [σ12, σ22, σ32]
T

dτ

= 2Re{
3∑

k=1

[
2

x1 − zd0k

NL−1
I BIIkqd0]− [log(x1 − zτ0)N(M

−1

I D + iC)

− log(x1 − zτ0)
2kI

kI + kII

DII]q0τ} (123)

tdτ = 2Re{
3∑

k=1

[
2

x1 − zd0k

NL−1
I BIIkqd0]

+ log(x1 − zτ0)[N(M−1
I D − iC) +

2kI

kI + kII

DII]q0τ} (124)

where the relationships Re[1/(x1 − zd0k)] = Re[1/(x1 − zd0k)] and Re[log(x1−

zτ0] = Re[log(x1 − zτ0] were used.
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Chapter IV

Thermo-elastic Interaction between the Interface

Delamination and the Dislocations

Replacing the h0(x1) of equation () with −hd
2(x1) of equation (122), one

can obtain a closed form solution to the interaction temperature potential

function, and it reads

θ
′
int(z) =

T

4π
[ y(z, zτ0) + y(z, z̄τ0)] (125)

where,

y(z, zτ0) =
1

z − zτ0

[1− x(z) x−1(zτ0)]− x(z) (126)

Integrating equation (125) and dropping some constants yields

θint(z) =
T

4π
[ ỹ(z, zτ0) + ỹ(z, z̄τ0)] (127)

with

ỹ(z, zτ0) = log[
x−1(z) + x−1(zτ0) + (zτ0 − a+b

2
)(z − zτ0)x(zτ0)

z − a+b
2

+
√

(z − a)(z − b)
] (128)

It can be seen that the interaction thermal potential function is not singular

at the point z = zτ 0. Comparing with the contribution from the term 1
z−zτ0

for
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simulating the onset of the interface delamination branching, the influence of

the function θint(z) on the interaction stress functions, which can be obtained

by replacing p(x1) of equation (68) with - tdτ of equation (124), can be ignored

.

Therefore, the interaction stress functions can be expressed as

Φ
′
int(z) =

3∑

k=1

[vYk(z, zd0k; ε) v−1(N + N)−1Ak − vYk(z, z̄d0k; ε)

v−1(N + N)−1Ak ]b (129)

where

Yk(z, zd0k; ε) =¿ 1

z − zd0k

À [I

−
√

(zd0k − a)(zd0k − b)

(z − a)(z − b)
∆(z; ε)∆−1(zd0k; ε)]− ∆(z; ε)√

(z − a)(z − b)
,

Ak = NL−1
I BIIkB

T
I /π, (130)

and the following notation is employed

∆(z; ε)√
(z − a)(z − b)

= diag[(z1 − b)−
1
2
+iε(z1 − a)−

1
2
−iε,

(z2 − b)−
1
2
−iε(z2 − a)−

1
2
+iε, (z3 − b)−

1
2 (z3 − a)−

1
2 ] (131)

By employing L′Hôpital’s rule, one can easily show that the y(z, zτ0) and

Yk(z, zd0k; ε) are not singular when z → zτ and z → zd0k, respectively.

The heat flux and stress fields induced by the interaction for the upper
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medium can then be written, respectively as

hint
1 = −2

kIkII

kI + kII

Re[τθ
′
int(z)]

hint
2 = 2

kIkII

kI + kII

Re[θ
′
int(z)] (132)

and

[σ11, σ21, σ31]
intT
I = −2Re[iNv ¿ pα À v−1Φ

′
int(z)− iDintτθint(z)],

[σ12, σ22, σ32]
intT
I = 2Re[iNΦ

′
int(z)− iDintθint(z)] (133)

where, the constant vector Dint = Dc.
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Chapter V

Interface Delamination Branching of Dissimilar

Anisotropic Bimaterial Media

Let the main delamination be located at the a < x1 < b, x2 = 0 of a

coordinate system (x1, x2, x3). This delamination is assumed to branch into

x2 > 0 (or x2 < 0) at an angle θ = ω shown in Fig. 5.1.

X1

X2

0
q

0
q

I/L

II/R
‘a’ ‘b’

Fig.5.1 A branched thermo-elastic interface delamination in

a dissimilar anisotropic bimaterial medium

In Fig. 5.1, a new coordinate system (ξ, η, x3) was introduced for the sake

of convenient derivation. Similarly to the conditions for the main crack, the
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boundary conditions for this branched portion may be written in this new

coordinate system as

h2(ξ, 0
+) = −h(ξ),

h2(ξ, 0
−) = −h(ξ),

[σξη(ξ, 0
+), σηη(ξ, 0

+), σ3η(ξ, 0
+)]T = −p(ξ),

[σξη(ξ, 0
−), σηη(ξ, 0

−), σ3η(ξ, 0
−)]T = −p(ξ) (134)

If the applied thermomechanical loading at infinity is constant, then one

has the following conditions along the cut η = 0

h(ξ) = h0cos(ω),

p(ξ) =

∣∣∣∣∣∣∣∣∣

cos(2ω), 1
2
sin(2ω) 0

−sin(2ω), cos2(ω) 0

0, 0 cos(ω)

∣∣∣∣∣∣∣∣∣
p0 (135)

where the vector p0 = [σ12, σ22, σ32]
T is the constant applied traction at

infinity.

Now let us consider the total heat flux and traction at any point on the

plane η = 0, i.e. θ = ω in the cylindrical coordinate system (r, θ, x3), the
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superposition leads to:

htot
2 (ξ, 0) = hc

θ(r, ω) + hint
θ (r, ω) + htd

θ (r, ω)

ttot(ξ, 0) = tc
θ(r, ω) + tint

θ (r, ω) + ttd
θ (r, ω) (136)

where the superscript ‘c’ and ‘td’ denote the corresponding fields induced

by the main delamination and the thermal-mechanical dislocations, respec-

tively; ‘int’ denotes the fields induced by the interaction between the delami-

nation and the dislocation; ‘tot’ is the summation from all contributions.

It would be more convenient for calculation if the terms on the right side

of the equations (136) expressed in the coordinate system (x1, x2, x3) could

be transformed into the corresponding quantities in the coordinate system

(r, θ, x3) or the system (ξ, η, x3). Following is the transformation relationship

h = h2cos(ω)− h1sin(ω)

t = Ω2(ω)[σ12, σ22, σ32]
T − Ω1(ω)[σ11, σ21, σ31]

T (137)

where

Ω2(θ) =

∣∣∣∣∣∣∣∣∣

cos2(θ) 1
2
sin(2θ) 0

−1
2
sin(2θ) cos2(θ) 0

0 0 cos(θ)

∣∣∣∣∣∣∣∣∣
(138)

Ω1(θ) =

∣∣∣∣∣∣∣∣∣

1
2
sin(2θ) sin2(θ) 0

−sin2(θ) 1
2
sin(2θ) 0

0 0 sin(θ)

∣∣∣∣∣∣∣∣∣
(139)
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The σi1 and σi2 in equation (137) are stresses which are measured in the

system (x1, x2, x3) and defined by equations (13) and (14); h1 and h2 are heat

fluxes measured in the system (x1, x2, x3) and defined by equations (17) and

(18).

Using the above transformation, each term of the right hand side of equa-

tion (136) can be easily expressed in terms of the temperature potential func-

tions and stress functions obtained in the previous sections.

Denoting

µ = cos(ω) + τsin(ω) (140)

and

ζ = cos(ω) + pαsin(ω), (141)

then

zτ = rµ, zτ0 = r0µ, zα = rζ, zα0 = r0ζ. (142)

One can relate the heat flux and tractions in the cylindrical coordinate

system (r, θ, x3) to the those in the Cartesian coordinate system (x1, x2, x3).
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The heat fluxes read as

hc
θ(r, ω) = hc

2(rµ)cos(ω)− hc
1(rµ)sin(ω),

hint
θ (r, ω) = hint

2 (rµ)cos(ω)− hint
1 (rµ)sin(ω),

htd
θ (r, ω) = htd

2 (rµ)cos(ω)− htd
1 (rµ)sin(ω) (143)

and the tractions are

tc
θ(r, ω) = Ω2(ω)[σ12, σ22, σ32]

T
c − Ω1(ω)[σ11, σ21, σ31]

T
c ,

tint
θ (r, ω) = Ω2(ω)[σ12, σ22, σ32]

T
int − Ω1(ω)[σ11, σ21, σ31]

T
int

ttd
θ (r, ω) = Ω2(ω)[σ12, σ22, σ32]

T
td − Ω1(ω)[σ11, σ21, σ31]

T
td (144)

Without loss of generality, it can be assumed that the interface delamina-

tion branches into the upper medium. The branched portion of the delam-

ination may be viewed as a continuous distribution of the heat vortex and

conventional dislocations. If the densities of these dislocations are defined as

T0(r0) = −dT0(r0)/dr0,

b(r0) = −db(r0)/dr0 (145)

then the boundary condition(134) and equation (136) lead to a system of

singular integral equations as

kI

2π

∫ c

b

T0

r− r0

dr0 +
kI

2π

∫ c

b

Kt(r, r0)T0 dr0 = h0cos(ω) + hc
θ(r, ω), (146)

49



where,

Kt(r, r0) = −kI − kII

k + kII

Re[
µ

rµ− r0µ
] +

kII

kI + kII

Re[
1

r− r0

(1−
√

(r0µ− a)(r0µ− b)

(rµ− a)(rµ− b)
) +

µ

rµ− r0µ
(1−

√
(r0µ− a)(r0µ− b)

(rµ− a)(rµ− b)
)

− 2µ√
(rµ− a)(rµ− b)

] (147)

hc
θ(r, ω) = h0Re[µ(1− rµ− (a + b)/2√

(rµ− a)(rµ− b)
)] (148)

and

1

π

∫ c

b

Ab(ω)

r− r0

b dr0 +
1

π

∫ c

b

Kb(r, r0)b dr0 +
1

2π

∫ c

b

Kbt(r, r0)T0 dr0

= Ω2p0 + tc
θ(r, ω) (149)

in which,

Ab(ω) = Im[Ω2BI ¿ 1

ζ
À B−1

I + Ω1BI ¿ pα

ζ
À B−1

I ] (150)
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Kb(r, r0) =
3∑

k=1

Im[Ω2 BI ¿ 1

rζ − r0ζ0

À B−1
I (I− 2NL−1

I )BIIkB
T

I

+ Ω1 BI ¿ pα

rζ − r0ζ0

À B−1
I (I− 2NL−1

I )BIIkB
T

I

− 2

π
Ω2N(vYk(rζ, r0ζk; ε)v

−1(N + N)−1Ak

− vYk(rζ, r0ζk; ε)v
−1(N + N)−1Ak)

− 2

π
Ω1N(v ¿ pα À Yk(rζ, r0ζk; ε)v

−1(N + N)−1Ak

− v ¿ pα À Yk(rζ, r0ζk; ε)v
−1(N + N)−1Ak), (151)

Kbt(r, r0) = Ω2Im[BI ¿ log(rζ − r0µ À B−1
I N(M IID + iC)

+ DI(log(rµ− r0µ)− kI − kII

kI + kII

log(rµ− r0µ))

+ Dint(ỹ(rµ, r0µ) + ỹ(rµ, r0µ))]

+ Ω1Im[BI ¿ pαlog(rζ − r0µ À B−1
I N(M IID + iC)

+ DI(log(rµ− r0µ)− kI − kII

kI + kII

log(rµ− r0µ))τ

+ Dint(ỹ(rµ, r0µ) + ỹ(rµ, r0µ))τ ] (152)

In the above equations,

Ĩ1 = diag[0, 1, 1],

Ĩ2 = diag[1, 0, 1],

Ĩ3 = diag[1, 1, 0] (153)

were introduced.

51



Next, let

r =
(1 + x)l

2
, r0 =

(1 + t)l

2
, l = c− b (154)

where, |x| < 1 and |t| < 1. Then equation (146) and (149) can be rewritten

as

kI

2π

∫ 1

−1

T0

x− t
dt +

kI

2π

∫ 1

−1

K̃t(x, t)T0 dt = h0cos(ω) + hc
θ(x, ω) (155)

1

π

∫ 1

−1

Ab(ω)

x− t
b dt +

1

π

∫ 1

−1

K̃b(x, t)b dt +
1

2π

∫ 1

−1

K̃bt(x, t)T0 dt

= Ω2p0 + tc
θ(x, ω) (156)

Where, K̃t(x, t), K̃b(x, t) and K̃bt(x, t) are obtained by substituting (154) in

Kt(r, r0), Kb(r, r0) and Kbt(r, r0), respectively.

It can be easily seen that this system of singular equations (155) and (156)

involves two unknowns, namely T0 and b, which are coupled through the term

K̃bt in (156). This coupling comes from the interaction between the heat vortex

and the conventional mechanical dislocation.

One can let [36,37]

T0 = w1(t)T (t), w1(t) = (1 + t)−s1(1− t)
1
2

b(t) = w2(t)b(t), w2(t) = (1 + t)−s2/(1− t)
1
2 (157)
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Since the heat vortex density at both ends of branched potion of the crack

usually is assumed to be bounded and the singularity at the intersection point

of the main delamination and the branched portion is to be of order less then

1
2
, then one can have s1 = −1/2 and s2 = 1/2 [32]. Therefore, (156)1 can be

solved by using the Gauss-Chebvshev integration. Once the solution for T0

is obtained, substitution into (156)2 and using the Gauss-Jacobi integration

formulas leads to the whole system of equations.

By a similar token as in [32], the numerical schemes for solving equations

(155) and (156) can be, respectively, written as:

n∑
i=1

1− t2i
n + 1

T (ti)[
1

ti − xk

− K̃t(ti, xk)] =
2

kI

[h0cos(ω) + hc
θ(xk, ω)],

ti = cos(
iπ

n + 1
, ) (i = 1....n); xk = cos(

π

2

2k − 1

n + 1
), (k = 1....n + 1)

(158)

and

n∑
i=1

1

n
[
Ab(ω)

ti − xk

− K̃b(ti, xk)]b(ti) = −Ω2p0 − tc
θ(xk, ω) +

1

2π

∫ 1

−1

K̃bt(xk, t)T0 dt,

n∑
i

π

n
b(ti) = ∆u,

ti = cos(π
2i− 1

2n
), (i = 1....n); xk = cos(

πk

n
), (k = 1....n− 1) (159)

where the second equation, i.e. (159)2, comes from the condition
∫ 1

−1
b(t) dt =

∆u, which satisfies the continuity condition of displacement at the intersec-

tion point between the main delamination and the branched portion. For
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an approximation, one may take
∫ 1

−1
b(t) dt ≈ 0. But for a more accurate

computation , one would use equation (76) to evaluate the ∆u by letting

a = −(L + lcos(ω))/2, b = (L + lcos(ω))/2, and x1 = L/2, where ‘l’ denotes

the length of the branched portion of the crack and ‘L’ the length of the main

crack.

The integration of the third term on the right hand side of (159)1 was

performed by using Simpson’s rule. Since the nodes used in (158) and (159)

are different, the polynomial interpolations were also used in order to get the

values of K̃bt(x, t) and T0(t) from the nodes in (158) for those values needed

for the nodes in (159)1.

The conventional stress intensity factors (SIF)s at the branched crack tip

may be defined as

K = [KII,KI,KIII]
T = lim

r→l+

√
2π(r− l)ttot(r, ω) (160)

Using the technique given by Muskhelishvili (1953), the SIFs can be eval-

uated as

K = lim
r→l+

√
2π(r− l)[

1

π

∫ 1

−1

Ab(ω)

x− t
w2(t)b(t)dt +

1

2π

∫ 1

−1

K̃bt(x, t)w1(t)T (t)dt]

=

√
πl

2
A(ω)Ω0(ω)b(1) (161)

where an elementary relationship lim
x→1+

√
(x− 1)log(x−1) → 0 is employed
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and

Ω0(ω) =

∣∣∣∣∣∣∣∣∣

cos(ω) sin(ω) 0

−sin(ω) cos(ω) 0

0 0 1

∣∣∣∣∣∣∣∣∣
(162)

Once the onset of the branching of an interface delamination happens,

this delamination usually propagates in one of the medium of the bimaterials.

Therefore, the energy release rate can be approximated as stated in [38] by

G(ω) =
1

2
KT L̃−1 K,

L̃ = ΩT
0 (ω) L Ω0(ω) (163)

where, ‘L’ is the bi-material property matrix.

From expressions (161) and (163), it is not difficult to figure out that the

stress intensity factors and the energy release rate of a branched interface

delamination usually are functions of the branching angle ω. It could also be

seen that the stress intensity factors and the energy release rate may often

be non-linear functions of the branching angle ω. Therefore, there probably

exist angles which could maximize the stress intensity factors and the energy

release rate for a given bimaterial structure. These angles may or may not be

identical as will be shown in the next chapter.
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Chapter VI

Numerical Simulation

In this chapter, the results of the numerical simulation from the preceding

theory of interface delamination branching will be presented. As discussed

in the introduction, the issue of anisotropic crack branching behavior has not

been adequately addressed in literature, especially with thermal loading. Here

we first consider the cases of delamination branching behavior without thermal

loading. Sections 6.1 and 6.2 are devoted to this case. To do this, only the

(156) needs to be solved and set to zero all those terms which are related to

the vortex dislocation in (156). Secondly, we will study the cases in which

thermal loading is applied. This study will be discussed in detail in sections

6.3 and 6.4.

6.1 Delamination Branching in Monolithic Anisotropic Solids

As the first application of the formulas developed in the current work,

we re-investigate the crack branching in monoclinic anisotropic media. This

problem has been studied in the literature, but incompletely as mentioned

in Chapter I. Here in our study of this problem as a special application of

our powerful method, i.e. to solve this problem one only needs to assume a
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fictitious interface between the upper and lower half plane of the media with

identical materials (monolithic anisotropic), one has (72)

L1 = L2 = L,

S1 = S2 = S (164)

which implies

D = 2 L1 = 2 L2 = 2 L, W = 0,

β = 0 ε = 0 (165)

The constant matrix in (70) would then be taken as an identity matrix and

the singular equation (156) can be solved.

This monolithic case was first studied in [26] and later on in [27]. The

results in [27] look more detailed than those in [26]. For the sake of easy of

comparison, we choose the orthotropic material as the authors of [26] and [27],

i.e. let the elastic constants be

ν12 = −s12/s11 = 0.25, s66 = 2 (s11 − s12) (166)

and the degree of anisotropy be defined as s11/s22 or s22/s11. Here, ν12 is the

Poisson’s ratio and sij (i, j = 1, 2, 3) are the martial compliance coefficients.

An infinitesimal crack branch is considered with the ratio l/L = 0.001, where

‘l’ is the length of the branched portion of the crack and ‘L’ is the half length
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of the main crack. For this case, the main crack is assumed lying along the x1

axis, which is the weaker material axis (s11/s22 > 1). As used in literature like

[23, 26, 27, etc.], the degree of anisotropy ranging from 1 to 10 is physically

acceptable.
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Fig.6.1 Dislocation Density at the branched crack tip

with the main crack lying along the weaker material axis

Plotted in Fig. 6.1 is the normalized dislocation density b22 at the branched

crack tip in the x2 direction of the (x1, x2, x3) coordinate system. Figs. 6.2 -
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6.3 show the mode I and mode II stress intensity factors versus various degrees

of anisotropy. It can be easily seen that the curves in the Fig. 6.1 are strikingly

similar to those in Fig. 2 of [26] and close to those in Fig. 6 of [27]. Though

the variation of the KI and KII with respect to the branching angles in our

Fig.6.2 and Fig. 6.3 follows the same pattern as those in [26] and [27], the

values differ from those in [26] and [27], especially at large branching angles.

In Fig. 6.2, one can see that KI is negative when the branching angle ω is

bigger than 80o. The negative value of KI means that the crack surfaces are

not separated, but contacted. In this thesis, the contribution from negative

KI to the energy release rate, G, is excluded.
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Fig.6.2 Mode I Stress Intensity Factor at the branched crack tip

with the main crack lying along the weaker material axis
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Fig.6.3 Mode II Stress Intensity Factor at the branched crack tip

with the main crack lying along the weaker material axis

The energy release rate, G, for the branched crack tip was calculated by

using (163). For monolithic anisotropic media, the energy release rate can also

be computed by the following formula, which was first derived in [39]

G = −s11

2
Im[K2

I (p1 + p2)p̄1p̄2 + 2KIKII p̄1p̄2 −K2
II(p1 + p2)] (167)

where, the pi(i = 1, 2) are the eigenvalues of equation (10) and all the

quantities are referred to the (ξ, η, x3 )coordinate system associated with the

branched crack tip. The results by the formulas (163) and (167) are the same

for this case, and the normalized results are plotted on Fig. 6.4. Here, some

differences also can be seen between these results and those in [26] and [27].
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Fig.6.4 Energy release rate for the branched crack tip

with the main crack lying along the weaker material axis

The differences between our results and those in [26] may arise because the

authors of [26] seem to have evaluated their results in the (x1, x2, x3) coor-

dinate system which actually should be transformed into the crack branching

coordinate system (ξ, η , x3) system, as was also pointed by the authors of

[27] for the compliance coefficients. Quantitatively, the normalized dislocation

density in Fig. 6.1 is equal to the stress intensity factor of mode I if measured

in the (x1, x2, x3) coordinate system. Therefore, the similarity between the

curves of b11 and those of KI in Fig. 2 of [26] directly supports the above

explanation on the differences between these two sets of results. In the mean

while, a close examination can be seen that the differences between present

results and those in [27] come from two facts: 1). First, the equation (76) in

[27] used by those authors to calculate energy release rate for branched crack
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tip is incorrect ( Appendix D ), i.e. the sign of the second term of that for-

mula in [27] should be ′−′, not ′+′. This error happened because the authors

of [27] seem to have mixed up the imaginary part of a complex variable with

that of its conjugate. Therefore, it would not be surprising that all their re-

sults with regard to the energy release rate in [27] may lead to some incorrect

conclusions; 2). Secondly, the perturbation method employed in [27] could

fail in nonlinear problems like the one considered, or just could only capture

some linear features of the problem. The second fact can be more clear if

we make a comparison with regard to the results of the energy release rate.

The results of energy release rate for the branched crack tip in Fig. 6.4 of

this paper and those in Fig. 4 of [26] both show the high non-linearity on

the curves, although some errors were made on the values in [26] due to the

lack of coordinate system transformation. However, in the derivation of their

formulas in [27], the fundamental assumption sin(ω) ∼= ω and cos(ω) ∼= 1 used

by those authors may be applied only when the ω is very small. But the ω

they considered was ranged from 0o ∼ 1500 for which this assumption would

not be valid. The results in Figure 8 of [27] show that he deviation of energy

release rate for anisotropic media with respect to the isotropic medium is rel-

atively small as the degree of anisotropy increases. This may tell us that their

perturbation method might only capture the linear (or some slight non-linear)

deviation portion of the total energy release rate for the branched crack tip
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of anisotropic, as a perturbation usually does. Therefore, their perturbation

method may be inadequate for the cases considered in [27]. Perhaps, in or-

der to achieve high accurate results by their perturbation, more than second

higher order approximation should be used.

Nevertheless, for the symmetric case there is a remarkable agreement among

the present paper and [26] and [27] in that the well-known independence of

the stress intensity factors on the material properties behavior at zero de-

grees (Sih, Paris, and Irwin, 1965) has been shown by the results in all these

three work. Furthermore, our results in Fig. 6.4 also show that the branching

angle at which the energy release rate reaches its maximum value increases

as the degree of anisotropy increases. This tells us that the orientation of

crack branching tends to the direction of the stiffer material axis. This along

with the results shown in Fig. 6.7 of the next case may well explain the of-

ten observed phenomenon that in fiber-reinforced composites, cracks usually

propagate parallel to the fibers, i.e. the stiffer material axis.
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Fig.6.5 Mode I Stress Intensity Factor at the tip of

a branched asymmetric crack.
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Fig.6.6 Mode II Stress Intensity Factor

at the tip of a branched asymmetric crack.

Figs. 6.5-6.7 give the results of the asymmetric case at which the norm

of the main crack makes a 30o angle with respect to the material stiffer axis

and the loading is the same as previous case. There are also some differences
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among the results in this paper and those in [26] and [27] due to the same

reasons explained in the discussion of the previous case. It can be seen that

the variation of the KI and KII versus the variation of branching angle and

the degree of anisotropy in Fig. 6.5 and Fig. 6.6 follow a similar pattern as

those in [26] and [27].
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Fig.6.7 Energy release rate at the branched tip for the asymmetric case

Both Fig. 6.7 of the current result and Fig. 7 of [26] show again the high

non-linearity of the energy release rate for the branched crack tip while Fig. 11

in [27] captures the linear/slight non-linear portion of the total energy release

rate.

In these two cases, one may find that the changes of mode I and mode II

stress intensity factors are relatively small at small branching angles as the
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degree of anisotropy increases. However the changes in the maximum values

of the energy release rate for the branched crack tip are dramatically increased

as the degree of anisotropy increases, and these branching angles also increases

as the degree of anisotropy increases. We can also see that, for each of these

two cases, the angle which maximizes the KI but makes KII zero is not equal

to the angle at which the maximum energy release rate is reached for a given

degree of anisotropy. The results of the energy release rate for the asymmetric

case more clearly show that the tendency of crack branching is in favor to

the stiffer material axis as shown Figure 6.7, in which when the degree of

anisotropy s11/s22 = 10.0, the branching angle at which the maximum energy

release rate occurs is - 42.15o that tends to the direction of −600, the stiffer

material axis orientation.
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Fig. 6.8 Mode I Stress Intensity Factors at the branched crack tip

for the main crack lying along the stiffer material axis
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Fig. 6.9 Mode II Stress Intensity Factors at the branched crack tip

for the main crack lying along the stiffer material axis

Another application of the present method to the crack/delamination branch-

ing problem is to consider the case of a main crack located along the stiffer

material axis, i.e. s11/s22 < 1, which was studied in [27] but not in [26]. The

stress intensity factors and energy release rate for this case are plotted in Figs.

6.8-6.10.
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Fig.6.10 Energy release rate at the branched crack tip

for the main crack lying along the stiffer material axis
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For the reason pointed above, some differences can also be seen between the

present results and those in Figs. 12-14 of [27], especially for the energy release

rate. It can be seen that, as the degree of anisotropy increases, the mode I

stress intensity factor becomes a local maximum with regard to the branching

angles. The transition angle happens when the s22/s11
∼= 1.65. There are

some very interesting features on the energy release rate results of Fig. 6.10,

i.e. there are two local maximum values G1c and G2c appearing on the energy

release rate curves if the material is not isotropic. The relationship between

G1c and G2c reverses as the degree of anisotropy increase: G1c ≥ G2c when

s22/s11 < 4.15; G1c < G2c when s22/s11 ≥ 4.15. Both G1c and G2c increase as

the degree of anisotropy increases, so do the corresponding branching angles

ω1c and ω2c (see Table 3).

The values of the branching angle ω1c are relatively small, 0o ∼ 10o, i.e.

almost parrel to the direction of the main crack; while these ω2c are very large,

75o ∼ 90o, i.e. almost perpendicular to the orientation of the original crack.

This observation may give a rough but reasonable explanation for two often

observed fracture phenomena:

(1) the first one is the secondary delamination observed in some exper-

iments for delaminated laminated composites. The secondary delamination

is usually parrel to the direction along which the original delamination lies.

This phenomenon may happen for some composites such that the degree of
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anisotropy is under the transition value and G1c ≥ Gc (where Gc is the critical

value of energy release rate of the material), the branching occurs at the ω1c.

Since the branching angle in this case is not too large, therefore, it is easily

to force the branched crack back in the direction of the stiffer material axis,

which is the orientation of the original delamination.

(2) the second is the matrix cracks in the fiber reinforced composites which

are mostly observed perpendicular to the fibers. For this kind of composites,

the value of the degree of anisotropy easily exceeds the transition value and

a delamination often originates between the reinforcing fibers and the matrix

media, i.e. the original delamination lying along the orientation of the stiffer

material axis. If G2c ≥ Gc, the branching happens and grow along the angle of

ω2c, i.e. almost perpendicular to the fibers.

The results obtained in this research so far are in a agreement with some

often observed fracture phenomena. This agreement and the results in the

following section can provide some justification of the validity of the method

developed in this paper. Next, we shall use this method to further study some

complicated practical applications of crack/delamination branching problems.
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6.2 Interface Crack Branching of Anisotropic Bimaterial Media

The authors of [28] attempted a study of interface crack branching in dis-

similar anisotropic bimaterials by using the Lekhnistkii formulization. But the

cases studied were actually for a very special material, not for general bimate-

rial media, since the bimaterial characteristic parameter ε is equal to 0.0 in the

cases considered in [28]. Therefore, the conclusion drawn from the results of

the cases analyzed may not be accurate, as will be pointed out later on in this

section. Here, the case for which ε = 0.0 is defined as the quasi-bimaterial case

and the corresponding materials are called quasi-bimaterials. In this section,

the raw or original material constants are chosen as

E11 = 9.79GPa, E22 = E33 = 0.407GPa,

G21 = 0.979GPa, ν21 = ν23 = ν31 = 0.01 (168)

where Eij(i, j = 1, 2, 3) are the Young’s moduli. The materials produced

by the method in [28], i.e. by simply rotating the principal material axis of

the upper or lower side of the body at different angles with respect to the

coordinates x1 and x2, can be proved to be quasi-bimaterials (Appendix E).

This is a very interesting construction. It looks like a bimaterial media, but

there is no oscillatory character on the stress and displacement fields ahead of

the interface crack tip [1].
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Fig.6.11 Variation of Stress Intensity Factors at the branched crack tip

v.s. variation of l/L for ω = 15o.
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Fig.6.12 Variation of Stress Intensity Factors v.s.

variation of branching angles with l/L = 0.001.

Fig. 6.11 shows the results of the variation of the mode I and mode II

stress intensity factors at the branched crack tip with respect to the change

of the ratio l/L under the assumed branching angle ω = 15o. Fig. 6.12 is the
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variation of the mode I and mode II stress intensity factors at the branched

crack tip versus the variation of branching angles. The materials for these two

cases satisfy

E22 = E11/1.01, E33 = E22 (169)

which is very close to an isotropic material.

On these two figures, the results by Lo (1978)[22] for an isotropic material

under the same geometric and loading conditions were also plotted. These two

sets of results are remarkably close to each other, especially for the infinitesimal

branched crack tip. This closeness provides a validation and also further proves

that the method in our current research, though derived from the anisotropic

theory, can be properly applied to crack branching problems in isotropic media.

In Figs. 6.13-6.14 are the mode I and mode II stress intensity factors and

energy release rate versus the branching angles for the case l/L = 0.001 of a

quasi-bimaterial media.
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a quasi-bimaterial medium , l/L = 0.001
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a quasi-bimaterial medium, l/L = 0.001

In this case, the upper medium or medium ‘I’ is the raw material as above,

the lower medium or medium ‘II’ is also made from the above raw material

but with the principal material axis being rotated −30o with respect to the
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(x1 , x2, x3) coordinate system. The results for the stress intensity factors

from our calculations and those on Fig. 8 of [28] both agree that the branching

angles at which the maximum values of KI attains are those angles where KII

approaches zero, and there is a discontinuity on the stress intensity factors

across the ω = 0o. But the results in [28] can not clearly predict in which

direction the crack branching would happen. From the plotting of Fig.8 in

[28] and based on their KI prediction criterion, it looks that the crack would

prefer to branch into the upper medium since the maximum KI is slightly

larger than that for the lower material. This prediction obviously contradicts

to the observed phenomenon that crack branching usually tends to occur parrel

to the orientation of fibers (which is 0o for the upper medium or −30o for

the lower medium in the present case) in fiber-reinforced composite media.

However, from our results on Fig. 6.14, it can be seen that the maximum

energy release rate occurs around the branching angle ω = −22.5o, and the

maximum KI zero KII happens in the same medium with branching angle

ω = −10.50.
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quasi-bimaterial medium, l/L = 0.01
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Fig.6.16 Energy release rate for the branched crack in

a quasi-bimaterial medium, l/L = 0.01
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A similar observation can also be made from Figs. 6.15-6.16 which shows

the results of stress intensity factors and energy release rate for the same

material properties and loading condition as the above case, but with the

ratio l/L = 0.01. Here, it should be mentioned that the similarity between

Figs. 6.13-6.14 and Figs. 6.15-6.16 comes from the convergence of KI and KII

when L/l > 50 as shown on Fig.6.11. Therefore, the more accurate predicated

behavior for this kind of quasi-bimaterial media may be: the interface crack

would propagate into the lower medium, which is more compliant than the

upper medium in the (x1 x2 x3) coordinates system, and try to follow the

stiffer material axis of the lower/compliant medium.

Now let’s study a more general anisotropic bimaterial medium case. The

material constants for the upper medium are same as those of the raw material

given above, while these constants for the lower medium are

E11 = 2.312GPa, E22 = E33 = 0.517GPa,

G21 = 0.0174GPa, ν21 = ν23 = ν31 = 0.1 (170)

A angle of −30o rotation was imposed on the principal material axis of the

lower medium with respect to the x1. From the given elastic constants, it can

be seen that the lower medium is much weaker than the upper medium. The

value of the bimaterial parameter for this solid is ε = 0.00917367.
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Presented in Figs. 6.17-6.18 are the mode I and mode II stress intensity

factors and energy release rate for the case of an interface crack branching for

this general anisotropic bimaterial.

-90 -60 -30 0 30 60 90

-1.0

-0.5

0.0

0.5

1.0

1.5

IKl/L = 0.001

X1

X2

22
/LK

IIK

Fig.6.17 Variation of Stress Intensity Factors at the branched crack tip

for a general anisotropic bimaterial

The results in Fig.6.17 show that the maximum value of KI for the upper

medium is much higher than that for the lower medium. If K-based criteria

would be used to predict branching angles as suggested by the authors of

[28], it would be in conflict with the observed fact that cracks usually branch

into the weaker (more compliant) medium, as seen in experiments on debond

branching in sandwich, i.e. debonding often branches into the core, seldom

into the face sheet. But from our results in Fig. 6.18, it can be easily seen

that the energy release rate reaches its maximum value at the branching angle
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ω = −25.5o, which is very close to the orientation of the stiffer material axis

of the weaker or more compliant medium. This again tells us that if crack

branching happens, it will not only branch into the weaker (lower) medium,

but also follow the orientation of the stiffer material axis of this medium.
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Fig.6.18 Variation of the Energy release rate for the branched crack tip

in a general anisotropic bimaterial

These remarkable results significantly illustrate the validity and power of

our method in the present research. The observation on the above case and

other cases studied in section 5.1 and 5.2 may give sufficient evidence to reach

the conclusion that the usual crack growth criteria based on (i) maximum

KI ; (ii) zero KII ; (iii) maximum G, which give identical predictions in the

isotropic case, cease to be consistent for monoclinic anisotropic media and

dissimilar anisotropic bimedia. This conclusion was also partially claimed by

some authors [26,27,28] based on their partially correct results for the ho-
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mogenous anisotropic solids. But our results based on extensive cases studies,

which agree well with often observed fracture phenomena, provide adequate

validation to this claim.
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6.3 Thermo-elastic Crack Branching in Monolithic Anisotropic Solids

From this section, our attention moves toward the study of crack/delamination

behavior under thermal loading. Without loss of generality, let us check the

temperature change in the upper medium under unit applied heat flux. From

equations (21)3, (32) and (83), the variation of temperature in the medium ‘

I’ can be written as

T =
h0

kI

Im[z −
√

(z − a)(z − b)] =
1

kI

Im[z −
√

(z − a)(z − b)] (171)

One can see that the T → 0 as z approach infinity, i.e. the temperature

variation is bounded. One can further find that when |z| ' 50(b − a), T <=

0.20C, a small value.
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Fig.6.19 Stress Intensity Factors v.s. branching angles for

a nearly isotropic material

Therefore, in the following computation, the material property constants

can be assumed not varied with the temperature change under unit applied
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heat flux. Fig. 6.19 and Fig. 6.20 show, respectively, the stress intensity

factors and energy release rate for a nearly isotropic material, i.e. S22 = 1.01

S11. In Fig. 6.21 and Fig. 6.22 are the stress intensity factors and energy

release rate for mechanically anisotropic material, the degree of anisotropy

is S22 = 2.50 S11. In these cases the ratios k22/k11 of the heat conduction

coefficients are assumed to be 0.01.
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Fig.6.20 Energy Release Rate v.s. branching angles for a

nearly isotropic material

From the results in Fig. 6.19 and Fig. 6.20, it can be seen that the

branching angle at which the KI attains its maximum value (KII reaching

its minimum value) coincide with the angle which makes the energy release

rate attain its maximum value; while those angles in Fig. 6.21 and Fig. 6.22

are different. This observation shows that K-based criteria are still valid for

thermoelastic problem of mechanically isotropic materials. But for the ther-

moelastic problem of a mechanically anisotropic solid, the G-based criteria

should be more accurate.
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an anisotropic material

The KIII does not disappear in Fig. 6.19 and Fig. 6.21 although the ma-

terial is orthotropic and the only applied load is σ22; also a negative KI can

be observed when the branching angles are very small. These two interest-

ing phenomena are due to the thermal loading effects. The influence of the

degree of anisotropy is also illustrated in these cases, say when S22 = 1.01

S11, the Gmax/G0 is 1.875 with corresponding branching angle ωmax = 22.50

(see Fig.6.20); while S22 = 2.5 S11, the Gmax/G0 = 2.925 with corresponding

branching angle ωmax = 27.250(see Fig.6.22). Here, G0 is the value without

branching.

Presented in Fig. 6.23 is the combined influence of the thermal conduction

properties and the degree of anisotropy on the branching angles. From this

picture, one can observe that the branching angles increase as the degree of
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anisotropy (S22/S11) increases when 0.01 < k22/k11 < 0.275; while these results

are reversed at 0.275 < k22/k11 < 0.425. When 0.425 < k22/k11 < 0.5, the

tendency is mixed. The plotting can provide a guideline for selecting the

thermal properties of anisotropic materials.
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6.4 Thermo-elastic Interface Delamination Branching Behavior in

Dissimilar Anisotropic Bimaterials

In this section, the influence of thermal loading on the delamination branch-

ing in composite bimaterials will be demonstrated. Some typical composites

were used as ‘ raw’ or ‘ basic’ material in the numerical simulation.

The first raw material called material-I is selected with thermo-elastic prop-

erties as following:

EI

11 = 5.69GPa, EI

22 = EI

33 = 0.407GPa,

GI

21 = 0.979GPa, νI

21 = νI

23 = νI

31 = 0.01,

kI

11 = 42.1W/m/K, kI

22 = kI

33 = 0.47W/m/K,

αI

11 = 0.025× 10−6m/m/K, αI

22 = αI

33 = 32.4× 10−6m/m/K (172)

Where Eij(i, j = 1, 2, 3) are Young’s moduli, νij are the Poisson ratios, kij

and αij are, respectively, the coefficients of heat conductivity and coefficients

of thermal expansion.
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Thermo-elastic properties of the second raw material (material-II) read as:

EII

11 = 2.312×GPa, EII

22 = EII

33 = 0.517×GPa,

GII

21 = 0.0174×GPa, νII

21 = νII

23 = νII

31 = 0.1,

kII

11 = 53.7W/m/K, kII

22 = kII

33 = 0.73W/m/K,

αII

11 = 0.034× 10−6m/m/K, αII

22 = αII

33 = 34.2× 10−6m/m/K (173)

The angles θI and θII define the angles between the material principal

axis and the x1 axis for the medium occupying the upper and lower space,

respectively. The unit axial tension σ22 and the unit heat flux q0 in the x2

direction are considered to be the applied loading (Fig.3.1).

Fig. 6.24 and Fig. 6.25 are the convergent illustrations of the numerical

scheme employed in chapter V. The bimaterial medium used here in consists

of material-I as the upper medium and material-II as the lower medium and

its bimaterial parameter ε, defined in equation (73), equals 0.0662693.
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Fig.6.24 Variations of the Stress Intensity Factors v.s

the relative length(l/L) of the branched crack

Depicted in Fig. 6.24 are the Mode I (KI) and Mode II (KII) stress inten-

sity factors around the branched crack tip as functions of L/l . The partition

points in (158) and (159) are n = 120. Results of two cases were plotted, one

for the assumed branching angle ω = π/3 and the other for ω = π/4. It can

be seen that when l/L > 0.1, both values of KI and KII converge very well.

When l/L > 0.00125, these values almost do not vary with the change of l/L.

Therefore, the behavior of a branched crack with l/L = 0.001 can be consid-

ered as the behavior at the onset of an interface crack branching. Usually, the

onset of a crack branching is of great interest in the study of interface crack

problems.
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the number of partition points N

Fig. 6.25 gives the variation of KI and KII versus the number of partition

points n. The value l/L = 0.001 was used here. To obtain these results , ∆n

was set to be 10 and ∆K is defined as the difference of the K evaluated at n

= i + 10 and n = i (i >= 20), respectively. It can be seen that ∆K → 0 as

n → ∞. This means that KI and KII converge with the increase of n. The

plot shows that one could get a good approximation by using n = 60 in the

computation if one’s computer memory is not big enough, and the choice of

partition points n = 120 in this paper shall be very reasonable. Of course, if

the computer memory permits, one can set n to be a big number. Thus, the

infinitesimal crack branch was assumed to be l/L = 0.001 and the n was taken

to be 120 in the thesis.
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Thermo-elastic interface delamination branching for a general bimaterial

As described in the above convergence study, the raw material properties

(thermal and mechanical ones) of the upper and lower medium for this gen-

eral bi-material structure are completely different. This type of bimaterial

medium can often be found to have applications in many areas such as elec-

tronic packaging, bio-materials, aircraft structure, etc. The components of a

structure in these applications often have different thermal and mechanical

properties and operate under severe temperature gradients. Therefore, the

study of thermo-elastic interface delamination branching behavior is not only

of theoretical importance but also of practical significance.

Fig. 6.26 and Fig. 6.27 are the results of mode I and mode II stress intensity

factors and energy release rates versus the variation of branching angle under

different applied loading conditions. The orientation for the components of

this bimaterial medium is θI = π/6 and θII = −2π/3. Three sets of results are

plotted for three loading conditions: solid line for combined loading of unit σ22

and q0; dash-dot line for only unit σ22 applied; dash line for only unit q0 applied.

Several interesting observations can be made from the results in these two

figures. In Fig. 6.26, the branching angle at which the KI attains its maximum

under combined loading is different from the corresponding angle under pure

mechanical loading or thermal loading. When ω = 51.44o, KImax = 3.3394

for combined loading, while ω = 43.45o, KImax = 1.5507 for pure mechanical

loading and ω = 57.4665o, KImax = 1.8198 for pure thermal loading. If the bi-

material media were originally under pure mechanical loading, then the KImax

would increase by 115.3% due to the additional thermal loading;
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(θI = 30o, θII = −1200)

or on the other hand, if the bi-material medium were originally under pure

thermal loading, then the KImax would increase by 83.5% after an additional
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mechanical loading applied. The result for the energy release rate G, plotted in

Fig. 6.27 shares a similar tendency as these for KI in Fig.6.26. The angles at

which the Gs reach their maximum values are also different: when ω = 40.94o,

Gmax = 9.7478 for combined loading, ω = 34.78o, Gmax = 2.3294 for pure me-

chanical loading and ω = 45.23o, Gmax = 2.7123 for pure thermal loading. If

the assumed original loading is purely mechanical, as in many engineering ap-

plications, then Gmax would increase by 318.5% (7.4284) due to the additional

thermal loading. One can see that though the energy release rate is a scalar

quantity, its value under combined loading is not the summation of the values

from the purely applied mechanical loading and purely thermal loading. It is

much bigger than the summation. The difference of these two values reflects

the fact that a huge interaction energy would be produced once a heat flux

is added onto a mechanically loaded structure which includes defects. This

observation will have significance in practical structural design. According to

the K-based criterion, a structure, usually operating in a constant temper-

ature environment, could still survive from a sudden fire since the increased

value of K may still fall into the design tolerance. However, there would be

a strong interaction energy induced by the heat flux according to the energy

release rate criterion, hence cracks in this structure may actually grow very

quickly. Therefore, for the safety of the structure, the designer should pay

more attention to the G-based criterion.
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There are also some other interesting observations. In Fig. 6.26, one can

see that when KI reaches its maximum, the KII does not equal to zero for each

loading condition. This observation differs from that in monolithic isotropic

medium or dissimilar quasi-bimaterial medium (which will be studied in detail

the in next section) under pure mechanical loading in which KI is maximum

while KII = 0 simultaneously as to be discussed in the next example. Two

aspects may contribute to this difference: (1). the bimaterial parameter ε 6= 0

and/or; (2). the thermal loading effects. The above observations suggest that

the G-based criteria may be more suitable than the usual K-based criteria

to predict thermoelastic interface crack branching propagation for dissimilar

anisotropic bimaterial media.
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Thermo-elastic interface delamination branching for quasi-bimedia

Since quasi-bimaterial structures are the most commonly used composites

in engineering applications, hence, we devote a section specifically to study

the interface delamination branching behavior of this type of media.

For general dissimilar anisotropic bimaterial media, the bimaterial param-

eter ε is not zero. However, we often use a set of bimaterial media whose

constituents can be dissimilar but its bimaterial parameter ε = 0. As defined

in section 6.2, this type of bimaterial media is referred to as ‘quasi-bimaterial

media’. Many engineering composite materials belong to this category. One

way to produce such composites is to use one raw material and rotate the ma-

terial axis with respect to the structure axis by different angles for the upper

and lower components. It can be easily proven that ε = 0 for this type of

dissimilar bi-material medium (Appendix E). Because of its special character

ε = 0, the quasi-bimaterial medium is found to have some interesting behavior

during the interface delamination branching growth.

The ‘basic’ material elastic constants are similar to those in [29], i.e.

E11 = 4.89GPa, E22 = E33 = 0.407GPa,

G21 = 0.731GPa, ν21 = ν23 = ν31 = 0.02 (174)

This raw material used as the upper medium rotates at θI with respect
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to the (x1, x2, x3) coordinate system; the lower medium was also made from

this raw material but with the principal material axis being rotated θII with

respect to the (x1, x2, x3) coordinate system. The bimaterial parameter ε

equals zero as shown in Appendix E.

It might not be difficult to know that the overall thermo-elastic properties

of a bimaterial medium may vary with the changes of θI and θII , so do the

mismatches between the constituents of this bimaterial.
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Fig.6.30 Energy release rate for the branched delamination vs.

branching angle for a quasi-bimaterial

Fig. 6.29 and Fig. 6.30 are, respectively, the results of Mode I and Mode
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II stress intensity factors and energy release rate versus the branching angles

for three different bi-material media, which are formulated by letting θI = 0.0

while θII = −π/6, θII = −π/4 and θII = −π/3. Besides some observations

similar to those in Fig. 6.26-Fig. 6.27, some other observations are also pre-

sented in Fig. 6.29 - Fig. 6.30. One may see there is a discontinuity in the

stress intensity factors and energy release rate when the branching angle ω ap-

proaches 0∓, respectively. This discontinuity for KI and KII was also shown

on Fig. 6.13 and in the results of [28]. But for pure mechanical loading there

is no such discontinuity for the energy release rate as plotted in Fig. 6.28.

This discontinuity on energy release rate on Fig. 6.30 is another effect of the

thermal loading.

Negative KI (contact of the crack faces around the crack tip) [32] ap-

pears for the bi-material of θI = 0.0, θII = −π/4 when the branching angle

ω > 13.75o or −21.25o < ω < 0o ( the ‘−’ sign means the interface delamina-

tion possibly branches into the lower medium), an observation being consistent

with the one in [22]. Some other interesting results can also be observed in

the plotting of the energy release rate. It can be seen from Fig. 6.30 that the

interface tends to branch into the lower medium, a result being consist with

the observation in Fig. 6.27. But the corresponding maximum energy release

rate, which is Gmax = 21.03 for the bimaterial media with θII = −π/6, Gmax

= 13.12 for the bimaterial media with θII = −π/4, Gmax = 138.15 for the
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bimaterial media with θII = −π/6, does not simply increase as the orientation

angle βII increases. The Gmax reaches its minimum value when θII = −π/4.

This observation may indicate that θII = −π/4 could be the optimal orien-

tation angle between the upper and lower medium for this bimaterial media.

Therefore, the results may be useful for structure optimal design.
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Chapter VII

A Contact Model for Interface Delamination

of Dissimilar Bi-materials

It can be seen in Chapter II that the stress and displacement fields around

the tip of the interface delamination of dissimilar bimaterial media have the

oscillatory property. In 1965, England pointed out in his work [3] that there

exists a physical inadequate overlapping and interpenetration between the two

surfaces of the dissimilar bimedia in the oscillatory solution of [1]. This im-

plausible physical interpenetration character attracted the attention of many

authors such as Hutchinson et al (1987) [41], Rice (1988) [42] and Suo et al

(1988)[43], etc., who have extensively addressed the influence of the bimaterial

parameter ε on the fracture quantities such as stress intensity factors, crack

open displacements and energy release rate, and the conditions under which

the ε effect could be neglected.

The two faces interpenetration may not be acceptable or at least not that

perfect in strictly physical sense though the overlapping fields may only be

confined in very small zone around the interface delamination tips. The os-

cillatory property would naturally disappear so does the interpenetration if

the bimaterial matrix W would be null. This result was well proven by Qu
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and Bassani in [44,1989] and further discussed in [45, 1993] and by other au-

thors like Ting[46], etc in literature. Probably inspired by the results of [1]

and [47], Comninou (1977) [21] looked at this phenomenon in other direction

and assumed that the interface crack may not be fully opened, but partially

contacted near the ends of the interface crack. Based on this assumption,

Comniuou obtained a reasonable non-oscillating solution for general isotropic

dissimilar bimedia. This assumption was then referred as the Comninou con-

tact model by some scholars afterwards. In 1980’s, the contact model began

its extensions to anisotropic dissimilar media. By Lekhnitskii’s formulism,

Wang and Choi (1983a, b) [48,49] used the contact model to find an non-

oscillatory solution to the case in which the roots pα of the characteristic

equation are purely imaginary for the interface crack between the particular

high-modulus, graphite-expoy fiber-reinforced laminated composites. Wu and

Hwang (1990) [50] obtained the non-oscillatory solution to the problem for

materials with [SL−1]13 = L12 = L23 = 0 by using method and formulas de-

veloped by Willis (1971) [9] and Clements (1971) [7] in dealing with Griffith

type interface anisotropic dissimilar bimedia. All the above studies were for

some kind of special dissimilar bimaterials. In this chapter, the limitation

and conditions in which the Comniuou contact model is valid for the interface

crack problems will be investigated for general anisotropic dissimilar bimedia

by extending the approaches developed in Chapter II.
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7.1 Formulas for an Interface Delamination of General Dissimilar

Bimaterials of Comninou Contact Model

The procedure in this section is similar to the one in chapter II, but not

exactly the same because of the consideration of the contact zone.

As in Chapter II, let the upper half-plane be occupied by medium ‘I’, while

the lower half-plane occupied by medium ‘II’ as shown in Fig.7.1.

X2

X3

I

II

a b

X1

Fig. 7.1 An interface delamination with contact zone

for dissimilar anisotropic bimedia

Then the displacement and stress functions for the bimaterials can be ex-

pressed as

uI = AIψ(zα) + AI ψ(zα), tI = BIψ′(zα) + BI ψ′(zα). (175)
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for zα in medium ′I ′; and

uII = AIIω(zα) + AII ω(zα), tII = BIIω′(zα) + BII ω′(zα). (176)

for zα in medium ′II ′. The delamination of length 2L lying on the interface of

two dissimilar elastic solids as shown in Fig. 7.1 opens at the interval (a, b)

under applied loading at infinity. The frictionless contact zones are assumed

in the intervals (-L, a) and (b, L) so that the boundary conditions for this

interface crack problem can be written as

uI
2(x2 = 0+) = uII

2 (x2 = 0−), x1 < a and b < x1

uI
β(x2 = 0+) = uII

β (x2 = 0−), β = 1, 3 |x1| ≥ L (177)

σI
22(x2 = 0+) = σII

22(x2 = 0−), x1 < a and b < x1

σI
β2(x2 = 0+) = σII

β2(x2 = 0−), β = 1, 3 |x1| ≥ L (178)

and

σI
22(x2 = 0+) = −σ∞22, σII

22(x2 = 0−) = −σ∞22, a < x1 < b

σI
β2(x2 = 0+) = −σ∞β2, σII

β2(x2 = 0−) = −σ∞β2, β = 1, 3 |x1| < L

(179)

then substitution of the equations of (175)1 and (176)1 into the equation (177)
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yields the displacement continuous conditions along the bonded interface as,

aI
2αψα+(x1) + aI

2αψα−(x1) = aII
2αωα−(x1) + aII

2αωα+(x1),

x1 < a and b < x1

aI
βαψα+(x1) + aI

βαψα−(x1) = aII
βαωα−(x1) + aII

βαωα+(x1), β = 1, 3

|x1| ≥ L (180)

or

aI
2αψα+(x1)− aII

2αωα+(x1) = aII
2αωα−(x1)− aI

2αψα−(x1),

x1 < a and b < x1

aI
βαψα+(x1)− aII

βαωα+(x1) = aII
βαωα−(x1)− aI

βαψα−(x1),

β = 1, 3 |x1| ≥ L (181)

If we define a function vector

Φ(z) =





AIψ(z)− AII ω(z̄), z ∈ ′I ′

AIIω(z)− AI ψ(z̄), z ∈ ′II ′
(182)

which is analytic in the whole plane with Φ2(z) cutting along a < x1 < b; and

Φβ(z){β = 1, 3} cutting along |x1| < L , then the equation (180) or (181) is

identically satisfied.

Similarly from the stress continuity along the bonded interface and closed
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portion of the interface crack, we can get

bI
2αψ′α+(x1)− bII

2αω′α+(x1) = bII
2αω′α−(x1)− bI

2αψ′α−(x1),

x1 < a and b < x1

bI
βαψ′α+(x1)− bII

βαω′α+(x1) = bII
βαω′α−(x1)− bI

βαψ′α−(x1),

β = 1, 3 |x1| ≥ L (183)

and, define a function vector

Θ(z) =





BIψ′(z)−BII ω′(z̄), z ∈ ′I ′

BIIω′(z)−BI ψ′(z̄), z ∈ ′II ′
(184)

which is analytical in the whole plane with Θ2(z) cutting along a < x1 < b;

and Θβ(z){β = 1, 3} cutting along |x1| < L , then the equation (183) is

identically satisfied.

Differentiating (182)1 with respect to z gives

AIψ′(z)− AII ω′(z̄) = Φ′(z), z ∈ ′I ′ (185)

A re-arrangement of equation (185) can lead to

AIBI−1
BIψ′(z)− AIIBII−1 BII ω′(z̄) = Φ′(z), z ∈ ′I ′ (186)

Solving equations (184)1 and (186) for B1ψ
′(z) yields,

(AIBI−1 − AIIBII
−1

)BIψ′(z) = Φ′(z)− AIIBII
−1

Θ(z), z ∈ ′I ′ (187)
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or

(i AIBI−1
+ i AIIBII−1)BIψ′(z) = i Φ′(z) + i AIIBII−1Θ(z), z ∈ ′I ′

(188)

As it was defined in Chapter II,

M−1 = iAB−1, and N−1 = M−1
1 + M2

−1
(189)

then,

BIψ′(z) = N [iΦ′(z) + M̄−1
2 Θ(z)], z ∈ ′I ′ (190)

Next, substitution of (190) into (184)1 leads

B̄II ω′(z̄) = N [iΦ′(z) + M̄−1
2 Θ(z)]−Θ(z), z ∈ ′I ′ (191)

By similar procedure, we can find following equations for z ∈ ′II ′,

B̄Iψ′(z̄) = N̄ [iΦ′(z)−M−1
2 Θ(z)],

BIIω′(z) = N̄ [iΦ′(z)−M−1
2 Θ(z)] + Θ(z), z ∈ ′II ′ (192)

Making use of equations (190), (191), and (192), the boundary condition on

the crack face (179)2 can be rewritten as

Nβ[iΦ′
+(x1) + M̄−1

2 Θ+(x1)] + N̄β[iΦ′
−(x1)−M−1

2 Θ−(x1)] = −σ∞β2(x1) (193)

N̄β[iΦ′
−(x1)−M−1

2 Θ−(x1)] + Θ−(x1)

+ Nβ[iΦ′
+(x1) + M̄−1

2 Θ+(x1)]−Θ+(x1) = −σ∞β2(x1) (194)
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where |x1| < L and β = 1, 3 and Nβ is the βth row of matrix N ; a significant

remark should be made here that, since domain on which Φ2(x1) and Θ2(x1)

are analytical includes the domain of Φβ(x1) and Θβ(x1), the equations (194)

and (193) naturally make sense.

By subtraction of (193) from (194), we obtain

Θβ−(x1)−Θβ+(x1) = 0, |x1| < L, β = 1, 3. (195)

Equation (195) shows that Θβ(z){β = 1, 3} is continuous on the whole inter-

face plane(x2 = 0). Based on an argument similar to the one in Chapter II on

using the analytic continuation principle, (195) also implies that the functions

Θβ(z){β = 1, 3} are analytical in the whole media including the whole plane

x2 = 0. However, since the stress and rotation of the elastic body must be

vanished at infinity when the media only subjected to loading on the crack sur-

face. Therefore these functions must identically be zero in the whole domain,

i.e.

Θβ(z) = 0, for all z β = 1, 3. (196)

Similarly, from the condition (179)1 the following equations can be obtained

N2[iΦ
′
+(x1) + M̄−1

2 Θ+(x1)] + N̄2[iΦ
′
−(x1)−M−1

2 Θ−(x1)] = −σ∞22(x1) (197)

N̄2[iΦ
′
−(x1)−M−1

2 Θ−(x1)] + Θ−(x1)

+ N2[iΦ
′
+(x1) + M̄−1

2 Θ+(x1)]−Θ2+(x1) = −σ∞22(x1) (198)
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where, N2 is the 2nd row of matrix N and a < x1 < b. Here, it may also be

necessary to point out though the domain on which Φβ(x1) and Θβ(x1) are

analytical is smaller than that of Φ2(x1) and Θ2(x1), all these functions are

continuous on the x2 axis according to their definitions. Thus, equations (197)

and (198) are valid, and then yield

Θ2−(x1)−Θ2+(x1) = 0, a < x1 < b . (199)

which imply

Θ2(z) = 0, for all z. (200)

Therefore, we have

Θ(z) = 0, for all z (201)

Consequently, from equations (197) or (198) and (193) or (194), a typical

Hilbert equation can be formulated as

N2Φ
′
+(x1) + N2Φ

′
−(x1) = i σ∞22(x1), a < x1 < b

NβΦ′
+(x1) + NβΦ′

−(x1) = i σ∞β2(x1), |x1| < L, β = 1, 3. (202)

As shown in Appendix F that N = D̃ + iW̃ with D̃ is symmetry and W̃ is

skew-symmetry. Hence, equation (202) can be rewritten as

[d̃12 − iw̃3, d̃23 + iw̃1]

∣∣∣∣∣∣
Φ′

1+(x1)

Φ′
3+(x1)

∣∣∣∣∣∣
+ [d̃12 + iw̃3, d̃23 − iw̃1]

∣∣∣∣∣∣
Φ′

1−(x1)

Φ′
3−(x1)

∣∣∣∣∣∣
+

d̃22[Φ
′
2+(x1) + Φ′

2−(x1)] = i σ∞22(x1), a < x1 < b (203)
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and

∣∣∣∣∣∣
d̃11 d̃13 − iw̃2

d̃13 + iw̃2 d̃33

∣∣∣∣∣∣

∣∣∣∣∣∣
Φ′

1+(x1)

Φ′
3+(x1)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
d̃11 d̃13 + iw̃2

d̃13 − iw̃2 d̃33

∣∣∣∣∣∣

∣∣∣∣∣∣
Φ′

1−(x1)

Φ′
3−(x1)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
d̃12

d̃23

∣∣∣∣∣∣
[Φ′

2+(x1) + Φ′
2−(x1)] +

∣∣∣∣∣∣
iw̃3

−iw̃1

∣∣∣∣∣∣
[Φ′

2+(x1)− Φ′
2−(x1)]

=

∣∣∣∣∣∣
i σ∞12(x1)

i σ∞32(x1)

∣∣∣∣∣∣
, |x1| < L (204)

Let φ(s) = Φ′
2+(s) − Φ′

2−(s), and making use of the following Plemelj

formulae [36, pp.43]

Φ′
2+(x1) + Φ′

2−(x1) =
1

πi

∫ L

−L

φ(s)

s− x1

ds, =
1

πi

∫ b

a

φ(s)

s− x1

ds (205)

where in (205), the following relationship related crack open displacement is

employed

φ(x1) = Φ′
2+(x1)− Φ′

2−(x1) = 0 for −L < x1 < a and b < x1 < L

(206)

Therefore, equations (204) then can further be written as

N̂

∣∣∣∣∣∣
Φ′

1+(x1)

Φ′
3+(x1)

∣∣∣∣∣∣
+ N̂

∣∣∣∣∣∣
Φ′

1−(x1)

Φ′
3−(x1)

∣∣∣∣∣∣
= i

∣∣∣∣∣∣
σ∞12(x1)

σ∞32(x1)

∣∣∣∣∣∣
+ i

∣∣∣∣∣∣
−w̃3

w̃1

∣∣∣∣∣∣
φ(x1)

+
i

π

∣∣∣∣∣∣
d̃12

d̃23

∣∣∣∣∣∣

∫ b

a

φ(s)

s− x1

ds (207)

where

N̂ =

∣∣∣∣∣∣
d̃11 d̃13 − iw̃2

d̃13 + iw̃2 d̃33

∣∣∣∣∣∣
(208)
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is a positive definite Hermitian matrix, since it is the major submatrix of N .

The non-homogenous Hilbert equation (207) can be solved, and it may be

of the following form:

∣∣∣∣∣∣
Φ′

1(z)

Φ′
3(z)

∣∣∣∣∣∣
=

X(z)

2π

∫ L

−L

[X+(s)]−1

s− z
N̂−1

∣∣∣∣∣∣
σ∞12(s)

σ∞32(s)

∣∣∣∣∣∣
ds

+
X(z)

2π

∫ b

a

[X+(s)]−1 φ(s)

s− z
N̂−1ds

∣∣∣∣∣∣
−w̃3

w̃1

∣∣∣∣∣∣

+
X(z)

2π

∫ L

−L

[X+(x1)]
−1

π(x1 − z)
[

∫ b

a

φ(s)

(s− x1)
ds]N̂−1dx1

∣∣∣∣∣∣
d̃12

d̃23

∣∣∣∣∣∣
(209)

where,

X(z) =
V ∆(z; ε)√

z2 − L2
; ∆(z; ε) = diag[(

z − L

z + L
)iε, (

z − L

z + L
)−iε] (210)

In equation (210), V = [v1,v2] is 2 × 2, the constants matrix which can be

normalized as V̄ T N̂V = I, and(Appendix G)

ε =
1

2π
log[

1 + β̃

1− β̃
], β̃ =

w̃2√
d̃11d̃33 − d̃2

13

(211)

where β̃ is real since D̃ is positive definite. Here in equation (211) the bima-

terial parameter β̃ depends only on w̃2, i.e. the oscillatory character on the

shear stress and displacement fields will disappear if the w̃2 is zero. This in-

teresting result is in agreement with the one in [51] by using an other method,

but more compact in form than those in [51]. The current study is also much

more complete and general than those in literature.
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By using the contour integral technique, the equation (207) can be further

calculated as (Appendix G):

∣∣∣∣∣∣
Φ′

1(z)

Φ′
3(z)

∣∣∣∣∣∣
=

X(z)

2π

∫ L

−L

[X+(s)]−1

s− z
N̂−1

∣∣∣∣∣∣
σ∞12(s)

σ∞32(s)

∣∣∣∣∣∣
ds

+
X(z)

2π

∫ b

a

[X+(s)]−1 φ(s)

s− z
N̂−1ds

∣∣∣∣∣∣
−w̃3

w̃1

∣∣∣∣∣∣

+ [
X(z)

2π

∫ b

a

Ξ(s)φ(s)

s− z
N̂−1ds − Λ(z; ε)

π

∫ b

a

φ(s)

s− z
ds]

∣∣∣∣∣∣
d̃12

d̃23

∣∣∣∣∣∣
(212)

where,

Ξ(s) =
1

π

∫ L

−L

[X+(t)]−1

t− s
dt (213)

and Λ(z; ε) is defined in (279) which can be rewritten here as

Λ(z; ε) = iV [I − ∆(z; ε)√
z2 − L2

diag[z + i2Lε, z − i2Lε]]V −1[N̂ + N̂ ]−1 (214)

It is worth mentioning that as x2 → 0

1

s− (x1 ± pαx2)
=

1

s− x1

± iπδ(s− x1), and

∫ L

−L

F (s)

s− (x1 ± pαx2)
ds =

∫ L

−L

F (s)

s− x1

ds± iπF (x1), (215)

for Im[pα] > 0 and arbitrary function F (s). Then, substitution of equations

(212) and (205) into (203) yields

A φ(s) +
B
π

∫ b

a

φ(s)

s− x1

ds +
1

2π

∫ b

a

%(s, x1)φ(s)

s− x1

ds = σ∞22(x1) + τ(x1),

a < x1 < b (216)
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where

A =
1

2
[d̃12 − iw̃3, d̃23 + iw̃1][N̂

−1

∣∣∣∣∣∣
−w̃3

w̃1

∣∣∣∣∣∣
+ (X+(x1)Ξ(x1)N̂

−1

− Λ+(x1; ε))

∣∣∣∣∣∣
d̃12

d̃23

∣∣∣∣∣∣
]

+
1

2
[d̃12 + iw̃3, d̃23 − iw̃1][ g(ε)N̂−1

∣∣∣∣∣∣
−w̃3

w̃1

∣∣∣∣∣∣

− (X−(x1)Ξ(x1)N̂
−1 − Λ−(x1; ε))

∣∣∣∣∣∣
d̃12

d̃23

∣∣∣∣∣∣
] (217)

B = −d̃22 + i[d̃12 − iw̃3, d̃23 + iw̃1]Λ+(x1; ε)

∣∣∣∣∣∣
d̃12

d̃23

∣∣∣∣∣∣

+ i[d̃12 + iw̃3, d̃23 − iw̃1]Λ−(x1; ε)

∣∣∣∣∣∣
d̃12

d̃23

∣∣∣∣∣∣
(218)

%(s, x1) = −i[d̃12 − iw̃3, d̃23 + iw̃1]X+(x1)h(s)

− i[d̃12 + iw̃3, d̃23 − iw̃1]X−(x1)h(s) (219)

h(s) = X−1
+ (s)N̂−1

∣∣∣∣∣∣
−w̃3

w̃1

∣∣∣∣∣∣
+ Ξ(s)N̂−1

∣∣∣∣∣∣
d̃12

d̃23

∣∣∣∣∣∣
(220)
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and

τ(x1) =

[d̃12 − iw̃3, d̃23 + iw̃1][i
X+(x1)

2π

∫ L

−L

[X+(s)]−1

s− x1

N̂−1

∣∣∣∣∣∣
σ∞12(s)

σ∞32(s)

∣∣∣∣∣∣
ds

− 1

2
N̂−1

∣∣∣∣∣∣
σ∞12(x1)

σ∞32(x1)

∣∣∣∣∣∣
]

+ [d̃12 + iw̃3, d̃23 − iw̃1][i
X−(x1)

2π

∫ L

−L

[X+(s)]−1

s− x1

N̂−1

∣∣∣∣∣∣
σ∞12(s)

σ∞32(s)

∣∣∣∣∣∣
ds

− g(ε)

2
N̂−1

∣∣∣∣∣∣
σ∞12(x1)

σ∞32(x1)

∣∣∣∣∣∣
] (221)

g(ε) = V diag[eε2π, e−ε2π]V −1 (222)

for arbitrary applied loading, or

τ(x1) = {[d̃12 − iw̃3, d̃23 + iw̃1][i Λ+(x1; ε)]+

[d̃12 + iw̃3, d̃23 − iw̃1][i Λ−(x1; ε)]}
∣∣∣∣∣∣

σ∞12

σ∞32

∣∣∣∣∣∣
(223)

for uniformly applied loading.

From equation (217), it is easy to see that for general anisotropic bime-

dia the coefficient A usually is not zero since it is possible that none of the

d̃ij and w̃j (i, j = 1, 2, 3) might be zero. This may imply that the solution of

φ(s) (|s| < 1) to equations (216) has the oscillatory property [37, pp.398]. This

observation is different from the case of isotropic dissimilar bimedia, in which

no such oscillatory property exists under Comninou’s assumption. Therefore,
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one important conclusion may be drawn here is that the Comninou model may

not be able to completely eliminate the oscillatory, hence interpenetration or

overlapping phenomenon in the solution to the interface crack problem for

arbitrary anisotropic bimaterial media.

Mathematically, in order to solve equations (216), one needs some addi-

tional conditions such as single valuedness of displacement

∫ b

a

φ(s)ds = 0 (224)

and positive crack opening displacements and negative contact zone traction

Φ2+(x1)− Φ2−(x1) ≥ 0, a < x1 < b;

σ22(x1) < 0, −L < x1 < a and b < x1 < L (225)
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7.2 Solution by Contact Model to Some Dissimilar Anisotropic Bi-

material Composites

In previous section, it was shown that even using the Comninou model,

one may not be able to eliminate the physically inadmissible interpenetration

property in the solution to the interface crack problem of general anisotropic

bimedia. But fortunately, for most engineering materials such as laminated

composites which often have one symmetric plane, the w̃2 usually equals to

zero. Hence, from equations (211), β̃ = 0 implies ε = 0. Therefore, the

oscillation in the shear stress and displacement fields disappears. Furthermore,

one may readily show that the d̃12 = 0 and d̃23 = 0 for such type of materials.

Then, a simple calculation can show that the coefficient A = 0, which means

the oscillatory character in the solution of φ(s) (|s| < 1) also disappears.

Consequently, the equation (216) becomes

d̃22

π

∫ b

a

φ(s)

s− x1

ds− 1

2π

∫ b

a

%̃(s, x1)φ(s)

s− x1

ds = −σ∞22(x1)− τ̃(x1), a < x1 < b

(226)

where

%̃(s, x1) = 2(w̃2
3/d̃11 + w̃2

1/d̃33)

√
L2 − s2

√
L2 − x2

1

(227)

and

τ̃(x1) = 2[w̃3,−w̃1]
1

2π
√

L2 − x2
1

∫ L

−L

√
L2 − s2

s− x1

N̂−1

∣∣∣∣∣∣
σ∞12(s)

σ∞32(s)

∣∣∣∣∣∣
ds (228)
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for arbitrary loading or

τ̃(x1) =
x1√

L2 − x2
1

[
w̃1σ

∞
32

d̃33

− w̃3σ
∞
12

d̃11

] (229)

for uniformly applied loading.

Let us consider a particular case, the isotropic bimedia case in which (Ap-

pendix F).

d̃11 = d̃22 = 1/[η(1− β2)], w̃3 = β/[η(1− β2)] and, w̃2 = 0 (230)

If let

σ∞12(x1, 0) = σ∞32(x1, 0) = 0, σ∞22(x1, 0) = T and,

γa = |a/L|, γb = |b/L|. (231)

then equation (226) can be reduced to

d̃22

∫ γb

γa

φ(s)

s− x1

ds− w̃2
3

d̃11

∫ γb

γa

√
1− s2

√
1− x2

1

φ(s)

s− x1

ds = πT, γa < x1 < γb

(232)

which is exactly the same as the equation (21) of [21]. This striking agreement

justifies the validity of the method and deduction procedure in this paper.

Similarly to the isotropic case, the stress intensity factors may be defined for

practical engineering bimedia as

K = [K2, K1, K3]
T =

∣∣∣∣∣∣∣∣∣∣

lim
x1→±L+

√
2|x1 ∓ L|σ12(x1, 0)

lim
x1→±L−

√
2|x1 ∓ L|σ22(x1, 0)

lim
x1→±L+

√
2|x1 ∓ L|σ32(x1, 0)

∣∣∣∣∣∣∣∣∣∣

(233)
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From equations (207), (212) and (226), the stress intensity factors can be

obtained as

K/
√

L = [K2, K1, K3]
T /
√

L

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[
∫ 1

−1

√
(1 + s)/(1− s)σ∞12(s)ds

+w̃3

∫ γb

γa

√
(1 + s)/(1− s)φ(s)ds]/π,

[w̃1σ
∞
32/d̃33 − w̃3σ

∞
12/d̃11]

+[w̃2
3/d̃11 + w̃2

1/d̃33]
∫ γb

γa

√
(1 + s)/(1− s)φ(s)ds/π

[
∫ 1

−1

√
(1 + s)/(1− s)σ∞32(s)ds− w̃1

∫ γb

γa

√
(1 + s)/(1− s)φ(s)ds]/π

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(234)

for arbitrary applied loading,or

K/
√

L = [K2, K1, K3]
T /
√

L

=

∣∣∣∣∣∣∣∣∣∣∣∣

σ∞12 + [w̃3

∫ γb

γa

√
(1 + s)/(1− s)φ(s)ds]/π,

[w̃1σ
∞
13/d̃33 − w̃3σ

∞
12/d̃11]

+[w̃2
3/d̃11 + w̃2

1/d̃33]
∫ γb

γa

√
(1 + s)/(1− s)φ(s)ds/π,

σ∞32 − [w̃1

∫ γb

γa

√
(1 + s)/(1− s)φ(s)ds]/π

∣∣∣∣∣∣∣∣∣∣∣∣

(235)

for uniformly applied loading.

Therefore, the energy release rate for which the interface crack tip extends

from ’a’ to ′a + δa′ and ’L’ to ′L + δL′ can be calculated as

G0 = lim
δa→0

1

2

∫ a+δa

a

σ11(x1, 0; L)∆u2(x1, 0; L)dx1

+ lim
δL→0

1

2

∫ L+δL

L

σ12(x1, 0; L)∆u1(x1, 0; L)dx1

+ lim
δL→0

1

2

∫ L+δL

L

σ32(x1, 0; L)∆u3(x1, 0; L)dx1 (236)

The first term has no contribution since ∆u1(x1) = 0 for a < x1 < L. Asymp-
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totically,

σ12(x1, 0; L) ∼ K2/
√

2(x1 − L), σ32(x1, 0; L) ∼ K3/
√

2(x1 − L) (237)

and

∣∣∣∣∣∣
∆u1(x1, 0; L)

∆u3(x1, 0; L)

∣∣∣∣∣∣
∼ N̂−1

∣∣∣∣∣∣
K2

K3

∣∣∣∣∣∣
√

2(L + δL− x1) (238)

Substitution of equations (237) and (238) into (236) leads to

G0 =
π

4
[K2, K3]N̂

−1

∣∣∣∣∣∣
K2

K3

∣∣∣∣∣∣
(239)

For isotropic bimedia, equation (239) can be reduced to

G0 =
π

4
[K2

2/d̃11 + K2
3/d̃33] (240)

which is exactly the same as the equation (34) by Comninou in [21] if K3 is

not considered.
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7.3 Some Examples for the Contact Zone Model

In this section, some numerical examples are given to illustrate the appli-

cation of the theory and formulas for contact zone model to some practical

engineering materials.

Making the change of variables with non-dimensional |t| < 1 and |t0| < 1

such that

s =
b + a

2
+

b− a

2
t, x1 =

b + a

2
+

b− a

2
t0. (241)

then the equation (226) can be rewritten as

1

π

∫ 1

−1

B̃ φ(t)

t− t0
dt +

∫ 1

−1

k(t, t0)φ(t)dt = p(t0), -1 < t0 < 1 (242)

where

B̃(t0) = −d̃22 + %̃(t0, t0)/2, k(t, t0) =
1

2π

%̃(t, t0)− %̃(t0, t0)

t− t0
,

p(t0) = σ∞22(t0) + τ̃(t0) (243)

where

%̃(t, t0) = 2(w̃2
3/d̃11 + w̃2

1/d̃33)

√
1− [(γa + γb)/2 + (γa − γb)t/2]2√
1− [(γa + γb)/2 + (γa − γb)t0/2]2

(244)

and

τ̃(t0) =
(γa + γb)/2 + (γa − γb)r0/2√

1− [(γa + γb)/2 + (γa − γb)r0/2]2
[w̃1σ

∞
32/d̃33 − w̃3σ

∞
12/d̃11] (245)
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Since the contact zone is assumed to be smooth, there should be no singularity

at t0 = ±1. One can therefore let

φ(t) = w(t)
√

1− t2 (246)

where w(t) is continuous, bounded function on the interval t ∈ [−1, 1]. And

also one can have

σ22 = 0, at t0 = ±1 (247)

The equation (242) then can be discretized with Chebyshev polynomials of

the second kind [18] and it reads as

n∑
j=1

1− t2j
n + 1

[
B(t0k)

tj − t0k

+ πk(t0k, tj)]w(tj) = p(t0k) (248)

where

tj = cos[
jπ

n + 1
], j = 1, 2, ...n (249)

tk0 = cos[
(2k − 1)π

2(n + 1)
], k = 1, 2, ...n+1 (250)

Equation (248) provides n+1 equations to determine the n-values φ(tj) and

γa = |a/L| and γb = |b/L|. It may need to be mentioned that n should be

chosen to be an even number, and the equation (n/2) + 1 then can to be

singled out. It is easily seen that equation (248) is a system of nonlinear

equations due to the presence of the unknown ratios |a/L| and |b/L|. In

practical computation, the ratios γa and γb are assumed first, then equations

(248) are solved with n unknown w(tj). By repeating this process, a plot of
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σ22 at t0 = −1 and t0 = 1 versus |a/L| and |b/L|, respectively can be obtained.

The corresponding values of ‘a’ and ‘b’ at which the σ22 = 0 are determined

as the root of these curves.

Without loss of generality and simplifying the calculation, it can be further

assumed that a = −b, then γa = γb = γ, and the equations (244) and (245)

become as

%̃(t, t0) = 2(w̃2
3/d̃11 + w̃2

1/d̃33)

√
1− [γt]2√
1− [γt0]2

(251)

and

τ̃(t0) =
γt0√

1− [γt0]2
[w̃1σ

∞
32/d̃33 − w̃3σ

∞
12/d̃11] (252)

The stress intensity factors of equation (235) can be expressed in a discretized

form as

K/
√

L = [K2, K1, K3]
T /
√

L

=

∣∣∣∣∣∣∣∣∣

σ∞12 − w̃3γ
∑n

j w(tj)(1− t2j)
√

1− γ2t2j/(n + 1)/(γtj − 1)

[w̃1σ
∞
32/d̃33 − w̃3σ

∞
12/d̃11]− [w̃2

3/d̃11+w̃2
1/d̃33]

(n+1)(γtj−1)
γ

∑n
j w(tj)(1− t2j)

√
1− γ2t2j

σ∞32 + w̃1γ
∑n

j w(tj)(1− t2j)
√

1− γ2t2j/(n + 1)/(γtj − 1)

∣∣∣∣∣∣∣∣∣

(253)
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Let’s first consider the fiber-reinforced composites [±θo] with the following

elastic constants

ET = EZ = 2.1E, EL = 20E; GLT = GLZ = GTZ = 0.85E

E = 0.6895GPa, νLT = νLZ = νTZ = 0.21. (254)

where, subscripts L, T, and z refer to longitudinal,. transverse, and through-

thickness directions, respectively.
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Fig.7.2 Stress Intensity Factors for an interface crack in [θo/− θo]

composites under pure tension σ∞22 = T

In this case, the upper half space is occupied by material ′I ′, which is

located at orientation angle θo with respect to x3, and the lower half space

is occupied by material ′II ′ oriented at -θo with respect to x3. Due to the

symmetry, it is easy to see that d̃12 = d̃23 = 0, and w̃2 = w̃3 = 0. The

equations (253) and (240) show that we need only to consider KI(L) and
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KIII(L) and GIII . Plotted in Fig. 7.2 are the mode I and mode III stress

intensity factors under pure tension. Fig. 7.3 is the corresponding energy

release rate.
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Fig. 7.3 Energy Release Rate(E = 106)for an interface delamination

in [θo/− θo] composites under pure tension σ∞22 = T

The negative KI(L
−) in Fig. 7.2 means that the interaction between the

two interfaces of the bimedia within the contact zone is pressure, not tension.

This verifies the correctness of the Comninou assumption and theory or formu-

las developed in this chapter. The KIII(L) and GIII in our calculation are in

good agreement with the KIII in Fig. 4 and GIII in Fig. 5 of [48]. The KIII(L)

in Fig. 3 of [50] looks similar to ours except its opposite sign. But the energy

release rate GIII in Fig. 4 of [50] is different from those in [48] and ours. The

difference may come from the fact that the formulas in [50] were simply the

extension of these corresponding formulas for isotropic bimedia. The study in
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previous sections of this chapter shows that the phenomena of interface crack

of anisotropic bimedia and isotropic bimaterials are quite different. Therefore,

the results of isotropic cases may not be extend directly to anisotropic cases.

For example, the discontinuity in KIII at θ = 00 and θ = 900 in Fig. 3 and

Fig. 5 in [50], which corresponds to the homogeneous anisotropic media, may

not be in agreement with the result of equation (29) and (31) by Sih and Paris

[39].
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Fig .7.4 Stress Intensity Factors for an interface delamination

in [θo/− θo] composites under applied loading σ∞22 = σ∞32 = T

Fig. 7.4 and Fig. 7.5, respectively are the stress intensity factors and

energy release rate for this material system under a combined tensile and anti-

plane shear loading. An interesting result in these plots is that the minimum

KIII and G occurs around θ = ±37.5o and θ = ±30o, respectively. This

observation could tell that this study would present the optimum angles for the

fibers orientation which could be useful for manufacturing the fiber-reinforced

composites.
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Fig .7.5 Energy Release Rate(E = 104) for an interface delamination

in [θo/− θo] composites under applied loading σ∞22 = σ∞32 = T

Next, we consider a laminated composites system of [30o/θo], in which

d̃12 = d̃23 = 0 and w̃2 = 0 since the system is symmetric with respect to

x2 = 0. The stress intensity factors KII and KIII for the composites under

pure tension change their sign across θ = 300 as shown on Fig. 7.6. KII

reaches its maximum value at θ = 0o while KIII at θ = 60o. This tendency

can also be seen on Fig. 7.8, which shows the results of KII and KIII under

combined tensive and anti-plane shear loading. The energy release rate G for

pure tension and combined loading cases are presented on Fig. 7.7 and Fig.

7.9, respectively.
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Fig .7.6 Stress Intensity Factors for an interface delamination in [30o/θo]

composites under pure tension σ∞22 = T

The minimum value Gmin of G for combined loading happens when θ =

90o (Fig. 7.9), at which the G attains its maximum value Gmax under pure

tension(Fig. 7.7). But the magnitude of Gmin of the combined loading case

is much larger than that of Gmax under pure tension. This result together

with the result for KII and KIII on Fig. 7.6 and Fig. 7.8 may imply that the

optimum orientation angle value between these two media is 600 in order to

minimize the possibility of the interface crack growth.
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Fig. 7.7 Energy Release Rate(E = 106) for an interface delamination in [30o/θo]

composites under pure tension σ∞22 = T
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Fig. 7.8 Stress Intensity Factors for an interface delamination in [30o/θo]

composites under applied loading σ∞12 = σ∞22 = σ∞32 = T
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Fig. 7.9 Energy Release Rate(E = 104) for an interface delamination in [30o/θo]

composites under applied loading σ∞12 = σ∞22 = σ∞32 = T
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Chapter VIII

Conclusions and Recommendation

In this chapter, some conclusions will be drawn based on the results of the

current research. Besides these results, the method developed in the present

work may also have further applications in some more complicated problems

such as three dimensional (3-D) thermal-elastic interface delamination branch-

ing behavior for dissimilar anisotropic bimaterials. Some insight on how to

expand the two dimensional method to 3-D problem will also offered in this

chapter.

8.1 Conclusions and Discussions

In the present research, the study of the thermo-elastic interface delamina-

tion branching behavior has been carried out for anisotropic bimaterial media.

In this study, Stroh’s dislocation formulas, extended to thermo-elasticity were

used. The analytic continuation principle of complex analysis was incorpo-

rated into this research. A compact form of a general solution was presented

in solving the problem of thermo-elastic interface delamination of dissimilar

anisotropic bimaterial media. A closed form solution was also formulated
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here for the interaction between the dislocations (heat vortex and conven-

tional dislocation) and the interface delamination in terms of matrix notation.

The thermo-elastic interface delamination branching phenomenon for dissimi-

lar anisotropic bimaterial media was subsequently investigated in detail. The

influence of thermal loading on the onset of interface delamination branching

was addressed. The results in this study also justify that the method and

formulas in the present work could be applied to isotropic bimaterial media

and homogeneous anisotropic/isotropic delamination branching problems.

From the general solution in this paper, we can observe that the delam-

ination tip ( point ‘a’ in Fig. 5.1 ) stress fields and the displacement fields

along the interface usually have the convectional oscillatory character depend-

ing on the bimaterial property ε. These results are in agreement with those

in literature [1]. We also found that the fields around ‘b’ have no singular but

oscillatory character which depends not only on the bimaterial property but

also on the branching angle. This observation can be explained well from the

physical point of view. Before the delamination branched, the point ‘b’ had

singular fields. Once the crack branched, a large amount of strain energy was

released, therefore the singularity of those fields around point ‘b’ relaxed, or

disappeared.

Here, we may also need to mention that some results regarding crack

branching without thermal effects in the literature, especially for those con-
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cerned with energy release rate, obviously contradicts the secondary delamina-

tion phenomenon in laminated composites and matrix cracks phenomenon in

reinforced composites. But all the results in the current research are consistent

with the observed fracture phenomena in composites and sandwich coupons

with delaminations. The simulation results from extensive cases analysis in

this paper suggest the following important conclusions:

(1). K-based criteria and G-based criteria are consistent in isotropic cases.

But for anisotropic monolithic and bimaterial media cases, the predications

based on K criteria contradict the observed fracture phenomena while the G-

criteria gives a very reasonable predications. For example, the maximum values

of KI occurs when the crack branches into the stiffer material of the bimedia,

which is rarely observed; while the G attains its maximum values when the

interface crack extends into the weaker (more compliant) medium and tries

to follow the stronger principal material axis of this weaker medium, which

remarkably agrees with the well-known observed facts in fracture phenomena.

(2). The degree of anisotropy has a great influence on the crack branching

modes, e.g. for a crack located along the stiffer material axis of the monolithic

anisotropic solid, when s22/s11 below is 4.15, the crack branch may not happen

in some material or a secondary delamination which is close and parrel to

the original delamination may be created in laminated composites; but when

s22/s11 is above 4.15, the delamination between the reinforcing fibers and the
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matrix branches into the matrix in a direction nearly perpendicular to the

fibers which often happens in some materials like fiber strongly reinforced

composites.

(3). For general dissimilar anisotropic bimaterial media, there usually ex-

ists a huge interaction energy between the thermal loading and the mechanical

loading for a structure with defects. This may explain why a catastrophic fail-

ure could easily happen when an imperfect bimaterial structure being exposed

to a sudden fire.

(4). For some anisotropic bimaterial media, negative KI (overlapping of

the delamination faces around the crack tip) is possible under certain loading

conditions due to the thermal effects.

(5). There exists an optimal orientation angle difference between the two

constituents of a bimaterial media. This optimal difference could minimize the

value of maximum energy release rate.

Therefore, the maximum energy release rate criterion may be an ade-

quate criterion for the prediction of monolithic anisotropic crack branching

phenomenon and interface delamination branching phenomenon in dissimilar

anisotropic bimaterial media. The results in the current research would pro-

vide some useful guidelines for practical engineering design.

131



Furthermore, one may see that the oscillatory property vanishes if the ma-

trix W = 0 of (72). But even for no-null W 6= 0, the introduction of the contact

zone model works well for most practical materials. Theoretical solution from

rigorous mathematical deduction and numerical results of the contact model on

eliminating the interface interpenetration presents the following suggestions:

(1). For arbitrary anisotropic bimaterial, the usage of the Comninou model

may not be able to eliminate the oscillatory property in the solution for the

interface crack. This observation is different from the isotropic bimaterial case

for which Comninou assumption was originally proposed.

(2). Under Comninou Assumption, the oscillatory character in shear stress

and displacement fields depends only on the parameter w̃2 of the bimaterial

matrix W̃ . If the two other elements d̃12 and d̃23 of the bimaterial matrix D̃

are also zero, then the overlapping or interpenetration phenomenon will disap-

pear. Therefore, Comninou model may be generally valid for such dissimilar

anisotropic bimaterial media that the three parameters d̃12 = 0, d̃23 = 0 and

w̃2 = 0.

(3). Fortunately, for most practical engineering anisotropic materials such

as laminated composites with one symmetric plane, these three elements (d̃12,

d̃23 and w̃2) usually equal to zeros. This implies that the Comninou contact

model would work well for engineering practice on eliminating the oscillatory
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property in the solution of dissimilar anisotropic bimedia interface crack prob-

lem.

(4). Observations from the numerical results here may provide some good

criteria on manufacturing fiber reinforced composites. For a symmetric ma-

terial system, the optimum orientation between two lamina may be around

θ = ±300 with respect to the coordinate x3. If one of the two lamina is al-

ready located at an angle of 300 with respect to x3, then the optimum angle

for the other lamina is 600 with respect to the first lamina. These observations

may be helpful on the design of fiber reinforced composites.
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8.2 Recommendation for Future Work

It is well known that three dimensional (3-D) interface branching problems

often happen in reality. Due to the complexity introduced, the 3-D interface

branching problems become very hard to deal with, and no single work on this

subject is available so far. Fortunately, the approach of the current research

on two dimension issues can be extended to 3-D problems. Some insight will

be offered on how to extend the current method to the 3-D problems the sake

of future work.
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X1

II

I

Fig.8.1 An interface delamination in a 3D dissimilar anisotropic bimedium
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The procedure to solve the 3-D problem of thermo-elastic interface delam-

ination branching can be as follows:

(1). by employing the Radon transform [41] combined with method of com-

plex analysis and the analytic continuation principle to the extended Stroh’s

dislocation formulas in matrix notation, the 3-D problem can become a two

dimensional (2-D) problem in the Radon transformation space;

(2). in the transformed space, the 2-D problem would be solved by a similar

approach as in the current research;

(3). by using the inverse Radon transform to turn the solution back to

the original 3-D physical space, the study of the 3-D thermo-elastic interface

delamination branching could be completed.

135



Extension of 2D Stroh’s Formulation to 3-D Anisotropic Elasticity

To use the above procedure to solve the 3-D thermo-elastic delamination

branching problem, one may need first to extend the 2D Stroh’s Formulation

to 3D anisotropic elasticity. This section serves this purpose.

As described in Chapter II, the linear relationship, in a fixed Cartesian

coordinate system (x1, x2, x3), of the stresses σij(x1, x2, x3), the displacements

uk(x1, x2, x3), and the heat flux hi(x1, x2, x3) and temperature Θ(x1, x2, x3) in

an anisotropic elastic medium could be rewritten as follows,

hi = −kijΘ,j, (255)

σij = Cijkl uk,l − βijΘ. (256)

where i, j, k, l range in (1, 2, 3) and the repeated indices imply summation,

the comma stands for differentiation with respect to the corresponding coor-

dinate variables, Cijkl is the elastic moduli tensor with properties of

Cijkl = Cjikl = Cijlk = Cklij (257)

kij are coefficients of heat conduction and βij are the stress-temperature

coefficients. The conservation of energy and equilibrium equations in terms of
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displacements in the absence of body force can be rewritten as:

hi,i = 0, i.e. kij
∂2Θ

∂xl∂xj

= 0, (258)

σij,j = 0, i.e. Cijkl
∂2uk(x1, x2, x3)

∂xl∂xj

− βij
∂Θ

∂xj

= 0. (259)

The traction and in-plane stress are denoted , respectively, as

t = (σ13, σ23, σ33)

= (C13kluk,l − β13Θ, C23kluk,l − β23Θ, C33kluk,l − β33Θ), (260)

s = (σ11, σ12, σ22)

= (C11kluk,l − β11Θ, C12kluk,l − β12Θ, C22kluk,l − β23Θ) (261)

The Radon transforms for the space R2 are defined as [52]

R{Θ} = Θ̂(ρ, θ, x3) =

∫∫

R2

Θ(x1, x2, x3)δ(ρ− n · x)dx,

R{Θ,lj} = nlnj
∂2Θ̂

∂ρ2
(262)

R{uk} = ûk(ρ, θ, x3) =

∫∫

R2

uk(x1, x2, x3)δ(ρ− n · x)dx,

R{uk,lj} = nlnj
∂2ûk

∂ρ2
(263)
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and the inverse Radon transforms[52] are

Θ(x1, x2, x3) =

∮

|n|=1

dn

∫ ∞

−∞

Θ̂,ρ(ρ, n, x3)

ρ− n · x dρ,

uk(x1, x2, x3) =

∮

|n|=1

dn

∫ ∞

−∞

ûk,ρ(ρ, n, x3)

ρ− n · x dρ (264)

where

x = (x1, x2), n = [n1, n2, n3]
T = [cosθ, sinθ, 0]T (265)

and a superscript ‘T’ stands for the transpose of a matrix.

Applying the Radon transforms to the equation (259) leads to

Cijksnjns
∂2ûk

∂ρ2
+ (Cijks + Ciskj)njms

∂2ûk

∂ρ∂x3

+ Cijksmjms
∂2ûk

∂x2
3

− (βijnj
∂Θ̂

∂ρ
+ βisms

∂Θ̂

∂x3

) = 0 (266)

where, m = [m1,m2,m3]
T = [0, 0, 1]T .

Without loss of generality, one non-trivial solution to (266) takes the fol-

lowing form

ûk = akjφ(ζj) + ākjφ̄(ζ̄j) + ckχ(ζτ ) + c̄kχ̄(ζ̄τ ), (267)

Θ̂ = χ
′
(ζτ ) + χ̄

′
(ζ̄τ ), ζj = ρ + pjx3, ζτ = ρ + τx3 (268)

if ak = [ak1, ak2, ak3]
T and p satisfy the eigenequations

[Cijksnjns + (Cijks + Ciskj)njms p + Cijksmjms p2]ak = 0, (269)
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and, c = [c1, c2, c3]
T and τ are solutions of the following equations

kjsnjns + (kjs + ksj)njmsτ + kjsmjmsτ
2 = 0, (270)

[Cijksnjns + (Cijks + Ciskj)njms τ + Cijksmjms τ 2]ck = (βijnj + βismsτ)

(271)

In equation (268), ζ̄ denotes the conjugate of an complex ζ, pj is the jth

eigenvalue , ak is the kth eigenvector (269) and φ(ζj) is an eigenfunction vector

of equation(269), χ is the temperature potential.

The stress functions corresponding to equation (268) can be written as

ϕ̂k = bkjφ(ζj) + b̄kjφ̄(ζ̄j) + dkχ(ζτ ) + d̄kχ̄(ζ̄τ ), (272)

If three material property matrices Q,R, T are defined as

Qik = Cijksnjns, Rik = Cijksnjms, Tik = Cijksmjms (273)

then one can easily show the following relations by making use of σij = σji,

bk = (RT + p T )ak = −1

p
(Q + pR)ak,

d = (RT + τ T )c− β2 = −1

τ
(Q + τR)β1

where

β1 = [β1jnj, β2jnj, β3jnj]
T ,

β2 = [β1sms, β2sms, β3sms]
T
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By denoting A = [a1, a2, a3], B = [b1,b2,b3], equation ()2 could be

recast in the following matrix form,

N

∣∣∣∣∣∣
a

b

∣∣∣∣∣∣
= p

∣∣∣∣∣∣
a

b

∣∣∣∣∣∣
, N

∣∣∣∣∣∣
c

d

∣∣∣∣∣∣
= τ

∣∣∣∣∣∣
c

d

∣∣∣∣∣∣
−

∣∣∣∣∣∣
0 N2

I NT
1

∣∣∣∣∣∣

∣∣∣∣∣∣
β1

β2

∣∣∣∣∣∣

where,

N1 = −T−1 RT, N2 = T−1, N3 = R T−1 RT −Q, N4 = NT
1

The displacement functions, stresses functions and traction can be rewrit-

ten in the transformed space in the matrix form

û(ρ, θ, x3) = A φ(ζj) + Ā φ̄(ζ̄j) + c χ(ζτ ) + c̄ χ̄(ζ̄τ ),

ϕ̂(ρ, θ, x3) = B φ(ζj) + B̄ φ̄(ζ̄j) + d χ(ζτ ) + d̄ χ̄(ζ̄τ ),

t̂(ρ, θ, x3) = B φ
′
(ζj) + B̄ φ̄′(ζ̄j) + d χ

′
(ζτ ) + d̄ χ̄

′
(ζ̄τ ),

ŝ(ρ, θ, x3) = B φ
′
(ζj) + B̄ φ̄′(ζ̄j) + S χ

′
(ζτ ) + S χ̄

′
(ζ̄τ ),

ζj = ρ + pj x3, ζτ = ρ + τ x3.

where

B = (ns + p ms)

∣∣∣∣∣∣∣∣∣

C111s C112s C113s

C211s C212s C213s

C221s C222s C223s

∣∣∣∣∣∣∣∣∣
A,

S = (ns + τ ms)

∣∣∣∣∣∣∣∣∣

C111s C112s C113s

C211s C212s C213s

C221s C222s C223s

∣∣∣∣∣∣∣∣∣
c−

∣∣∣∣∣∣∣∣∣

β11

β12

β22

∣∣∣∣∣∣∣∣∣
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As pointed in Chapter II, with the positive definite property of the strain

energy density for an elastic system in stable equilibrium, pj are complex

values. The roots pj will be assumed all distinct, and equal roots are viewed

as the limiting case of the distinct roots and if pj is an eigenvalue of equation

() then p̄j is also an eigenvalue of equation () since Cijkl are real numbers.

By the same token, the 3-D boundary conditions would also be turned into

2-D boundary conditions in the transformed space.

Having obtained the above formulas, one then may investigate the 3-D

thermo-elastic interface delamination branching behavior in dissimilar anisotropic

bimaterial media.
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Appendix A

Contour Integral for the Interaction Function

From equations (68) and (83), the interaction stress functions read as

Φ′(z) =
1

2π
X(z)[

∫ b

a

X−1
+ (x1)

x1 − z
N−1[p0 + p∗1x1 + p∗2 i

√
(x1 − a)(b− x1)] dx1 + Q1(z)]

where,

p∗1 = (ρ1 + ρ2)h
∗
0, p∗2 = (ρ2 − ρ1)h

∗
0, h∗0 = −i

kI + kII

2kI kII

h0

By using contour integral one can get

J1 ≡ X(z)

2π

∫ b

a

X−1
+ (x1)

x1 − z
N−1p0 dx1 = v {I− x(z)∆(z; ε)[Ξ(z)

+ Π1]} v−1(N + N)−1(ip0)

J2 ≡ X(z)

2π

∫ b

a

x1 X−1
+ (x1)

x1 − z
N−1p∗1 dx1

= v{Ξ(z)− x(z)∆(z; ε)[Ξ(z2) + Π1Ξ(z)− Π2]}v−1(N + N)−1(ip∗1);

J3 ≡ X(z)

2π

∫ b

a

i
√

(x1 − a)(b− x1) X−1
+ (x1)

x1 − z
N−1p∗2 dx1

= v{x−1(z)− x(z)∆(z; ε)[Ξ(z2)− Π3Ξ(z) + Π4}v−1(N + N)−1(ip∗2)
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J4 ≡ X(z)

2π
Q1(z)

= vdiag[0, 0 ,−(a− b)2

8

1√
(z − a)(z − b)

]v−1(N + N)−1i(p∗1 + p∗2)

+ vdiag[0, 0,
1√

(z − a)(z − b)
][Π2v

−1(N + N)−1(ip∗1)

+ (Π1
2 + Π1Π3 + Π4)v

−1(N + N)−1(ip∗2)]

+ v[
(a− b)2

8
√

(z1 − a)(z1 − b)
,

(a− b)2

8
√

(z2 − a)(z2 − b)
,

(a− b)2

8
√

(z3 − a)(z3 − b)
]v−1(N + N)−1(ip∗2)

= vdiag[0, 0,
(b− a)2

8
√

(z − a)(z − b)
]v−1(N + N)−1ip∗1

+ vdiag[
(b− a)2

8
√

(z1 − a)(z1 − b)
,

(b− a)2

8
√

(z2 − a)(z2 − b)
,

−(b− a)2

2
√

(z3 − a)(z3 − b)
]v−1(N + N)−1ip∗2

= v x(z)Π5v
−1(N + N)−1(ip∗1) + v x(z)Π6v

−1(N + N)−1(ip∗2)

where,

Ξ(z) = diag[z1, z2, z3]

Π1 = diag[(b− a)iε− a + b

2
, (b− a)(-iε)− a + b

2
,−a + b

2

Π2 = diag[(
b− a

2
)2(1 + 4ε2), (

b− a

2
)2(1 + 4ε2), (

b− a

2
)2]

Π3 = diag[(a + b) + (b− a)iε, (a + b) + (b− a)(-iε), (a + b)],

Π4 = diag[ab +
b2 − a2

2
iε− (1 + 4ε2)(

b− a

2
)2,

ab +
b2 − a2

2
(-iε)− (1 + 4ε2)(

b− a

2
)2, ab− (

b− a

2
)2]
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Π5 = diag[0, 0,
(b− a)2

8
]

Π6 = diag[1/8, 1/8, −1/2]

then

Φ′(z) = J1 + J2 + J3 + J4

Integration of equation () yields

Φ(z) = v [Ξ(z)− x−1(z)∆(z; ε)] v−1(N + N)−1(ip0)

+ v[Ξ(z2)− x−1∆(z; ε)Ξ(z)] v−1(N + N)−1(ip∗1)

− v[x−1∆(z; ε)(Ξ(z)− Π1 − Π3] v−1(N + N)−1(ip∗2)

− vY1(z; ε) v−1(N + N)−1i(p∗1 + p∗2)

− vY2(z; ε)[Π2 v−1(N + N)−1(ip∗1)

+ (Π2
1 + Π1Π3 + Π4) v−1(N + N)−1(ip∗2)]

+ vY3(z)v−1(N + N)−1(ip∗2)

where,

Y1(z; ε) = diag[
(a− b)0.5+iε

1.5− iε
(z − a)1.5−iε

2F1(1.5− iε,−0.5− iε, 2.5− iε,
z − a

b− a
),

(a− b)0.5−iε

−1.5− iε
(z − a)1.5+iε

2F1(1.5 + iε,−0.5 + iε, 2.5 + iε,
z − a

b− a
),

√
(z − a)(z − b)(z − a + z − b)/4]
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Y2(z; ε) = diag[
(a− b)−0.5+iε

0.5− iε
(z − a)0.5−iε

2F1(0.5− iε, 0.5− iε, 1.5− iε,
z − a

b− a
),

(a− b)−0.5−iε

−0.5− iε
(z − a)0.5+iε

2F1(0.5 + iε, 0.5 + iε, 1.5 + iε,
z − a

b− a
), 0]

Y3(zα) = diag[
√

(z1 − a)(z1 − b)
(z1 − a + z1 − b)

4
,

√
(z2 − a)(z2 − b)

(z2 − a + z2 − b)

4
,

√
(z3 − a)(z3 − b)

(z3 − a + z3 − b)

4
]
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Appendix B

A Green’s Function for Heat Vortex

The thermal dislocation is also referred as heat vortex in literature. A

temperature distribution which vanishes at infinity may reasonably be assumed

as:

T = q0τ
1

zτ

+ q̄0τ
1

z̄τ

; zτ = x1 + τx2, with Im[τ ] > 0

Let the temperature discontinuity along the cut (x1 < 0, x2 = 0) be T0 for

an infinite anisotropic medium, then from the condition

T (x1, x2 = 0+)− T (x1, x2 = 0−) = T0,

one can obtain a solution as

q0τ =
T0

4πi

where, the relationship

1

x1 + τx2

=
1

x1

∓ iπ as x2 → 0±

is used. If the heat vortex is located at z0 in this infinite anisotropic medium,

one may write the temperature distribution as

T = q0τ
1

zτ − z0

+ q̄0τ
1

z̄τ − z̄0

.
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Appendix C

Solution to the Thermal-dislocation of Bimedia

From the boundary condition (117)1,2 along the interface, one can obtain

Re[
q0τ

x1 − zτ0

+
q1τ

x1 − zτ0

] = Re[
q2τ

x1 − zτ0

]

kI Im[
q0τ

(x1 − zτ0)2
+

q1τ

(x1 − zτ0)2
] = kII Im[

q2τ

(x1 − zτ0)2
] (243)

Differentiation of (243)1 with respect to x1 gives

Re[
q0τ

(x1 − zτ0)2
+

q1τ

(x1 − zτ0)2
] = Re[

q2τ

(x1 − zτ0)2
] (244)

Solving equations (243)2 and (244) leads to:

q1τ =
kI − kII

kI + kII

q0τ , q2τ =
2 kI

kI + kII

q0τ (245)
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The boundary condition (117)3,4 along the interface yields

3∑
1

{[AIlog(x1 − zd0k)Ikqd0 + AIlog(x1 − zd0k)Ikqd0]

+ [AIlog(x1 − zd0k)q1k + AIlog(x1 − zd0k)q1k]}

+ [AIlog(x1 − zτ0)q1dτ + AIlog(x1 − zτ0)q1dτ ]

+ [CIlog(x1 − zτ0)q0τ + C Ilog(x1 − zτ0)q0τ ]

+ [CIlog(x1 − zτ0)q1τ + C Ilog(x1 − zτ0)q1τ ]

=
3∑
1

[AIIlog(x1 − zd0k)q2k + AIIlog(x1 − zd0k)q2k]

+ [AIIlog(x1 − zτ0)q2dτ + AIIlog(x1 − zτ0)q2dτ ]

+ [CIIlog(x1 − zτ0)q2τ + C IIlog(x1 − zτ0)q2τ ];

(246)

3∑
1

{[BIlog(x1 − zd0k)Ikqd0 + BIlog(x1 − zd0k)Ikqd0]

+ [BIlog(x1 − zd0k)q1k + BIlog(x1 − zd0k)q1k]}

+ [BIlog(x1 − zτ0)q1dτ + BIlog(x1 − zτ0)q1dτ ]

+ [DIlog(x1 − zτ0)q0τ + DIlog(x1 − zτ0)q0τ ]

+ [DIlog(x1 − zτ0)q1τ + DIlog(x1 − zτ0)q1τ ]

=
3∑
1

[BIIlog(x1 − zd0k)q2k + BIIlog(x1 − zd0k)q2k]

+ [BIIlog(x1 − zτ0)q2dτ + BIIlog(x1 − zτ0)q2dτ ]

+ [DIIlog(x1 − zτ0)q2τ + DIIlog(x1 − zτ0)q2τ ] (247)

The following two sets of equations can be derived by grouping the coefficients
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of terms log(x1 − zd0k), and log(x1 − zτ0) in the above equation:

− AIq1k + AIIq2k = AIIkqd0

−BIq1k + BIIq2k = BIIkqd0 (248)

and

AIq1dτ − AIIq2dτ = CIIq2τ − C Iq1τ − CIq0τ

BIq1dτ −BIIq2dτ = DIIq2τ −DIq1τ −DIq0τ (249)

Equations (248) and (248), respectively, give

BIq1k = N [−N−1 + 2L−1
1 ]BIIkqd0

BIIq2k = 2NL−1
1 BIIkqd0 (250)

and

BIq1dτ = N [M
−1

II D + iC]q0τ (251)

BIIq2dτ = −N [M
−1

I D + iC]q0τ (252)

where,

C =
2kI

kI + kII

CII − kI − kII

kI + kII

CI − CI,

D =
2kI

kI + kII

DII − kI − kII

kI + kII

DI −DI (253)
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Appendix D

Proof of the Equation (167)

From equation (26a) in [39], for the x3-plane of symmetry and two modes

present,

G1 = −KI

2
s22Im[

KI(p1 + p2) + KII

p1p2

],

G2 =
KII

2
s11Im[KII(p1 + p2) + KIp1p2] (254)

then

G = G1 + G2 (255)

=
s11

2
Im[K2

II(p1 + p2) + KIIKI p1p2 −K2
I (p1 + p2)

s22

s11

1

p1p2

−KIKII
s22

s11

1

p1p2

]

where, the pi and p̄i(i = 1, 2) satisfy the characteristic equation (Lekhnitskii,

1963) [25],

s11 p4 − 2 s16p
3 + (2 s12 + s66) p2 − 2s26 p + s22 = 0 (256)

and from the equation (256), the following relationship can be obtained,

s22/s11 = p1p2p̄1p̄2 (257)

Substitution of (257) into (255) leads to:

G =
s11

2
Im[K2

II(p1 + p2) + KIIKI p1p2 −K2
I (p1 + p2)p̄1p̄2 −KIKII p̄1p̄2]

(258)
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which is

G =
s11

2
Im[K2

II(p1 + p2)− 2 KIIKI p̄1p̄2 −K2
I (p1 + p2)p̄1p̄2]
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Appendix E

Proof of the Existence of Quasi-bimaterials

It is easy to show that SL−1 is antisymmetric. Actually, from the definition

of matrices S, L and using equation (262)

SL−1 = i (2 ABT − I)(−2 iBBT )−1

=
B−T B−1

2
− AB−1 =

B−T B−1

2
− L−1(ST − iI) = −L−1ST = −[SL−1]T

(259)

It follows that W = S1L1 − S2L2 is antisymmetric.

If x3 is an axis of material symmetry, then the third components of the

first and second vector in the matrices A and B are zero, so are the first and

second component of the third vector. Therefore, the matrix SL−1 can only

has the following form

SL−1 =

∣∣∣∣∣∣∣∣∣

0 b 0

−b 0 0

0 0 d

∣∣∣∣∣∣∣∣∣
(260)

Hence,

S2L
−1
2 = ΩT S1Ω[ΩT L−1

1 Ω]−1 = ΩT S1L
−1
1 Ω

=

∣∣∣∣∣∣∣∣∣

0 b[cos2(ω) + sin2(ω)] 0

−b[cos2(ω) + sin2(ω)] 0 0

0 0 d

∣∣∣∣∣∣∣∣∣
= S1L

−1
1 (261)
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This shows that W is a null matrix, then it follows that the bimaterial

parameter ε = 0.0 by equation (73).

153



Appendix F

Properties of Some Bimaterial Matrices

As defined in Chapter II, we have three matrices:

H = 2 i AAT , L = −2 i BBT , S = i (2ABT − I), (262)

where, A and B are the coefficient matrices in equation (21). It is easily[10]

to show that H, L are real positive definite and S is real. The related bima-

terial property matrices D = L−1
1 + L−1

2 are symmetric, positive definite and

W = S1L
−1
1 − S2L

−1
2 antisymmetric [10]. From equation (262), the following

relationship can be obtained

iAB−1 = 2ABT B−T B−1

−2i
= (

S

i
+ I)(−2iBBT )−1 = (I − iS)L−1 (263)

Next we shall prove the matrix N defined in equation (189) is equivalent

to N = (D − iW )−1. From equations (189), (262)2 and (262)3

N−1 = iA1 B−1
1 + iA2 B−1

2 = iA1B
T
1 (B1B

T
1 )−1 + iA2BT

2 (B2BT
2 )−1

=
(S1 + iI)

2
(

L1

−2i
)−1 +

(S2 + iI)

2
(

L2

−2i
)−1

= L−1
1 − iS1L

−1
1 + L−1

2 + iS2L
−1
2 = D − iW (264)

The positive definite D in (264) imply that N is nonsingular. In fact, N is

also Hermitian since

N−1
T

= D − iW
T

= DT + iW T = D + i(−W ) = D − iW = N−1 (265)

i.e. N−1 is Hermitian and N = D̃ + iW̃ , where

D̃ = (D −WD−1W )−1 =

∣∣∣∣∣∣∣∣∣

d̃11 d̃12 d̃13

d̃12 d̃22 d̃23

d̃13 d̃23 d̃33

∣∣∣∣∣∣∣∣∣
(266)
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W̃ = D−1WD̃ =

∣∣∣∣∣∣∣∣∣

0 w̃3 −w̃2

−w̃3 0 w̃1

w̃2 −w̃1 0

∣∣∣∣∣∣∣∣∣
(267)

For isotropic bimedia[3],

Lα =
4µα

kα + 1
diag[1, 1, (kα + 1)/4], α = 1, 2 (268)

Sα =
1

kα + 1

∣∣∣∣∣∣∣∣∣

0 −(kα − 1) 0

kα − 1 0 0

0 0

∣∣∣∣∣∣∣∣∣
, α = 1, 2 (269)

Where, kα = 3 − 4να for plane strain and kα = (3 − να)/(1 + να) for plane

stress; ν is Poisson’s ratio and µ is shear modulus. Then by equation (81) of

[3], the following can be found

D̃ = diag[
1

η(1− β2)
,

1

η(1− β2)
,

1

1/µ1 + 1/µ2

] (270)

W̃ =
β

η(1− β2)

∣∣∣∣∣∣∣∣∣

0 1 0

−1 0 0

0 0 0

∣∣∣∣∣∣∣∣∣
(271)

where, η = (k1 + 1)/4µ1 + (k2 + 1)/4µ2, β = [Γ(k1− 1)− (k2− 1)/[Γ(k1 + 1) +

(k2 + 1)] and Γ = µ2/µ1.
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Appendix G

Solution to Hilbert Equation to (207)

The homogenous equation corresponding to the equation(207) is

Ñ

∣∣∣∣∣∣
Φ′

1+(x1)

Φ′
3+(x1)

∣∣∣∣∣∣
+ Ñ

∣∣∣∣∣∣
Φ′

1−(x1)

Φ′
3−(x1)

∣∣∣∣∣∣
= 0, |x1| < L (272)

Let us try a solution of the form

χ(z) = c(z + L)−µ(z − L)1−µ (273)

Substitution of (273) into (272) leads

[N̂ei2πµ + N̂ ]c = [(D̂ + iŴ )ei2πµ + (D̂ − iŴ )]c = 0 (274)

where,

D̂ =

∣∣∣∣∣∣
d̃11 d̃13

d̃13 d̃33

∣∣∣∣∣∣
and Ŵ =

∣∣∣∣∣∣
0 −w̃2

w̃2 0

∣∣∣∣∣∣
(275)

For non-trivial constant vector c, one has

|(I − iŴ D̂−1)ei2πµ − (I + iŴ D̂−1)| = |(1 + ei2πµ)I + i(1− ei2πµ)Ŵ D̂−1| = 0

(276)

where |A| denotes the determinant of the matrix A. Let λ = (1 + ei2πµ)/(1−
ei2πµ), then

|Ŵ D̂−1 + iλ| = { w̃2

d̃11d̃33 − d̃2
13

∣∣∣∣∣∣
d̃13 −d̃11

d̃33 −d̃13

∣∣∣∣∣∣
+ iλI} = 0 (277)

It can be easily seen, if w̃2 = 0, λ = 0. Otherwise

λ = ±β̃, β̃ =
w̃2√

d̃11d̃33 − d̃2
13

(278)
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Appendix H

A Contour Integral for Stress Functions

Λ(z; ε) =
X(z)

2π

∫ L

−L

[X+(x1)]
−1

(x1 − z)
dx1

= iV [I − ∆(z; ε)√
z2 − L2

diag[z + i2Lε, z − i2Lε]]V −1[N̂ + N̂ ]−1 (279)

where ∆(z; ε) is defined by equation (210)2.

The integral in equation (209) can be rewritten into two parties.

j2 =
X(z)

2π

∫ L

−L

∫ b

a

[X+(x1)]
−1φ(t)

π (x1 − z)(t− x1)
dtdx1

=

∫ b

a

{ φ(t)

π(t− z)

X(z)

2π

∫ L

−L

(
1

x1 − z
− 1

x1 − t
)[X+(x1)]

−1 dx1}dt

=

∫ b

a

g(t, z)
φ(t)

π(t− z)
dt (280)

where

g(t, z) = iV [
∆(t; ε)√
t2 − L2

diag[t + i2Lε, t− i2Lε]

− ∆(z; ε)√
z2 − L2

diag[z + i2Lε, z − i2Lε]]V −1[I + N̂−1N̂ ]−1 (281)
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Appendix I

Header File “vector matrix operator.h”

Since the C++ code is an important part of this research, by taking the

advantage of C++ programming language features, such as operator over-

loading and data hiding, we have developed a system of operators to make the

complex matrix, real matrix and complex number manipulation much more

flexible. Using this code-system, the complex matrix operation works like or-

dinary ‘+’(plus or addition), ‘-’(substraction), ‘*’(multiplication), ‘/’(divided

by) on real numbers. Thus it makes the complicated numerical simulations

relatively easy. This code system may find other applications which involve

complex number or complex matrix manipulation. Therefore, we list some of

the important contents in Appendix-I to Appendix-K as a reference for the

readers.

Following file is the declaration of the five classes, namely: class num-

ber complex, class vector, class vector complex, class matrix, class

matrix complex.

File “vector matrix operator.h”

#ifndef VECTOR MATRIX H

#define VECTOR MATRIX H

#include <iostream.h>

#include <math.h>

//—constant—//

#define EPSLON 1.0e-25

#define OPEN FAILURE 1

#define PI 3.14159265358979

// forward declaration//
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class vector;

class vector complex;

class number complex {
private:

double x, y;

double r, theta;

void mod 0(void);

void argument 0(void);

public:

friend class vector complex;

friend class matrix;

number complex(void);

number complex(double ar, double ai);//constructor

number complex(number complex &a);

∼number complex();

double mod(number complex &n c);

double argument(number complex &n c);

//square root of a complex number//

number complex sqrt c(number complex &n c);

number complex number complex::log c(number complex &nc);

// power of a complex to a complex number//

number complex pow c(const number complex &a,

const number complex &n c);

number complex conjugate(const number complex &n c);

double re(const number complex &n c);//real part of a number

double im(const number complex &n c);//imaginary part of a number

number complex & operator=(const number complex &n c);
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number complex operator +(number complex &n c) const;

number complex operator +(double n) const;//substraction

number complex operator -(number complex &n c) const;

number complex operator -(double nx) const;

number complex operator -() const;//minus

number complex operator *(number complex &n c) const;

number complex operator *(double n r); //scale multiplication

number complex operator /(number complex &n c) const;

number complex operator /(double n r);// divided by a real number

//friends//

friend ostream & operator<<(ostream& os , const number complex n c);

};
//——–real vector operator class——-//

class vector {
private:

int m; // dimension of a vector.

double *v; // vector to be used as real part .

public:

friend class vector complex;

vector(void);

vector(double *vr, int);//constructor

vector(const vector & a);

∼ vector(void);//destructor

int dim m(void);//report the m

double mod(const vector & a);

//operator overloading//

vector operator +(const vector & b) const;//vector addition
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vector operator +(const double* b) const;

vector operator -(const vector & b) const;//vector addition

vector operator -(const double* b) const;

double operator *(const vector &b) const;//scale product

double operator*(const double *a) const;

vector operator *(double x);//scale product

vector operator -() const; //minus sign to a vector

double operator [](int i) const ;

vector & operator =(vector &b);//vector assignment

vector & operator =(double *b);//vector assignment

void vector::eq(int i, double x);//element assignment

//friend class matrix//

friend ostream& operator<<(ostream& os, vector v);

};
//——–complex vector operator class——-//

class vector complex//: public vector {
private:

int m;

double *vr;

double *vi;

public:

friend class matrix;

vector complex(void);

vector complex(const vector complex &v);

vector complex(double *vr, double *vi, int n);//constructor

∼vector complex(void);//destructor

int dim m(void);//report the m
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double mod(const vector complex &a);

vector rev( vector complex &v c);//real part of a number

vector imv( vector complex &v c);//imaginary part of a number

vector complex conjugate(const vector complex &b)const;

//operator overloading

vector complex operator +(const vector complex &b) const;//vector addition

vector complex operator -(const vector complex &b) const;//vector addition

vector complex operator *(double x)const ;

vector complex vector complex::operator *(number complex nc)const;

vector complex operator -()const; //minus sign to a vector

vector complex & operator =(const vector complex &b);

number complex operator *(const vector complex &b)const;//scale product

number complex operator *(const vector &b) const;

number complex operator [](int i)const;

void vector complex::eq(int i, number complex & n c);

// friends//

friend ostream& operator<<(ostream& os , const vector complex v c);

};
//——–real matrix operator class——-//

class matrix{
private:

int m, n; // dimension of a matrix.

double **ar; // matrix to be used as real part.

public:

friend class matrix complex;

matrix(void);

matrix(const matrix &a);
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matrix(double **ar, int m, int n);//constructor

∼matrix(void);//destructor

int dim m(void);//report the m

int dim n(void);//report the n

matrix transpose(matrix &b);//inverse of a matrix

matrix inverse(matrix &b);//inverse of a matrix

matrix unitk(int p, int q, int k);

matrix unit(int p, int q);

void dec(double **a, int n, double *aux, int *p);

void inv(double **a, int n, int *p);

void dupcolvec(int l, int u, int j, double** a, double*b);

double mattam(int l, int u, int i, int j, double **a, double **b);

void ichrow(int l, int u, int i, int j, double **a);

void ichcol(int l, int u, int i, int j, double **a);

double matmat(int l, int u, int i, int j, double **a, double **b);

void matrix::eq(int i, int j, double x );

//operator overloading

double operator ()(int i, int j) const;

double & operator=(double x);

matrix & operator=(const matrix & b);//assignment operator

matrix & operator=( double **a);//assignment operator

matrix operator +(const matrix & b) const ;// matrix addition

matrix operator +(double ** b) const ;// matrix addition

matrix operator -(const matrix & b) const ;// matrix addition

matrix operator -(double ** b) const ;// matrix addition

matrix operator *(const matrix & b) const ;// matrix multipilcation

matrix operator *(double ** b) const ;// matrix multipilcation
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vector operator *(vector & v) ;

vector complex operator *(vector complex &v);

matrix operator *(double x);// scale multipilcation

matrix operator -() ; //minus sign to a matrix

friend ostream& operator<<(ostream& os , const matrix a);

};
// complex matrix operator class

class matrix complex : public matrix {
private:

int m, n;

double **ar,**ai; // imaginary part of a matrix

public:

matrix complex(void);//default constructor

matrix complex(double **ar, double **ai, int m, int n);// set data to ar

+ i ai

matrix complex(matrix &br, matrix &bi);

matrix complex(const matrix complex & b);// copy constructor

∼matrix complex(); //destructor

matrix complex transpose(matrix complex &b);

int dim m(void);

int dim n(void);

void eqilbr(double **a, int n, double *em, double *d, int *inter);

void tfmreahes(double **a, int n, double em[], int *index);

int comvalqri(double **a, int n, double *em, double *re, double *im);

void comveches(double **a, int n, double lambda, double mu,

double *em, double *u, double *v);

void reaveches(double **a, int n, double lambda, double *em, double *v);
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void bakreahes2(double **a, int n, int n1, int n2, int *index,double **vec);

void baklbr(int n, int n1, int n2, double *d, int *inter, double **vec);

void comscl(double **a, int n, int n1, int n2, double *im);

double vecvec(int l, int u, int shift, double *a, double *b);

double tamvec(int l, int u, int i, double **a, double *b);

double matvec(int l, int u, int i, double **a, double *b);

double tammat(int l, int u, int i, int j, double **a, double **b);

matrix complex diag(number complex &a, number complex &b,

number complex &c);

matrix complex conjugate(matrix complex & b);//conjugate of a matrix

matrix complex inverse(matrix complex &b);//inverse of a matrix

matrix re(matrix complex &b);//real part of the complex matrix

matrix im(matrix complex &b);//imaginary party

// assignment

void eq(int, int, number complex & n c);

//operator overloading

matrix complex operator +(const matrix complex & b) const ;

matrix complex operator -(const matrix complex & b) const ;

matrix complex operator *(const matrix complex & b) const ;//

matrix complex operator *( matrix & b) const ;

vector complex operator *( vector &) const ;

vector complex operator *( vector complex &a) const;

matrix complex operator *(double x);

matrix complex matrix complex::operator *(number complex x);

matrix complex operator *(double **a) const;

matrix complex & operator=(const matrix complex & b);//assignment
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operator

matrix complex operator -() const; //minus sign to a matrix

number complex operator ()(int i, int j) const;//get element a[i][j];

//eigen values and eigen vectors of a real matrix//

int matrix eigvalue eigvector(matrix b, vector complex &eval,

matrix complex &evec);

matrix complex matrix complex::matrix norm eigvector(matrix complex

&ab,

matrix complex &a,matrix complex &b);//normalized

friend matrix complex operator *(const matrix &a, const matrix complex

&b) ;

friend vector complex operator*(const vector complex &ta,

const matrix complex &b);

friend vector complex operator*(const vector &ta, const matrix complex

& b);

friend ostream& operator<<(ostream& os , const matrix complex a);

};
#endif
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Appendix J

Header File “sie solving.h”

#ifndef SIE SOLVING

#define SIE SOLVING

/*———-constants———–*/

#define epslon pow(10,-12)

class sie{

private:

int m, n;

char *str;

//material property constant//

double E1, E2, E3, G12, G21, G31, G13, G23, G32;

double nu12, nu21, nu13, nu31, nu23,nu32;

double alpha, delt, si,cs ;

double **k,**c;

public:

sie(void);

sie(double *theta, char* st);

∼sie();

void set material constants(char*str);

void set material const matrix 0(void);
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void set transformation matrix(void);

void set material const matrix(void);

double get alpha(void);

char* get str(void);

matrix material characteristic matrix();

void point t x T(vector &t, vector &x, int *mt);//points of x and t;

void point t x b(vector & t, vector &x, int *n);

matrix matrix a T(vector& t, vector& x, int *m, double *l, double *K,

double *ratio a, double *ratio b, double *oega,

number complex lambda omega, vector &fb);

matrix matrix a b(vector& tb, vector &xb, int *n, double *ratio al,

double *ratio bl, double *l, double *k , vector complex& ps,

matrix complex &b1, vector complex &d1, matrix &L1,

double *omega, number complex &lambda omega, vector &fn);

/*—- for thermal bi-media—-*/

matrix matrix a T bimedia(vector& t, vector& x, int *m, double *l,

double *K1, double *K2, double *ratio a, double *ratio b, double

*oega,

number complex tau, vector &fb , double * );

matrix matrix a b bimedia(vector& tb, vector &xb, int *m, double beta,

double *ratio al, double *ratio bl, double *l, double *k, number complex
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&tau, vector complex & ps, matrix complex &b1, vector complex

&d1,

vector complex &c1, vector complex &d2, vector complex &c2, ma-

trix &L1,

matrix complex &mn, vector complex &p1, vector complex &p2,

vector complex &dc, matrix complex& nc, double *Omeg, vector&

t,

matrix complex &M, vector complex &v1, vector complex &v2,

double k1, double k2,vector &fn, double *);

double L interpolation(vector& fnT, vector& pt, double* t);

vector Kbt(double * x, vector &t, vector &g);

/*——- No Thermal Loading ——-*/

void point t x(vector & t, vector &x, int *n);

matrix matrix a(vector& t, vector &x, int *n, double y, double*coe,

vector complex &ps, matrix complex &b1, matrix &l2, matrix complex

&mn,

matrix complex&c, vector &v,matrix &tp, double *omega);

number complex hg 2F1(number complex &z, double epson);

double gamma(double epson);

matrix matrix a comnin model(vector& t, vector& x, int *m,

matrix &d, matrix &w, double *gamma, vector &fb, vector &load,
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vector &ca, double *cp);

vector known function f(vector &x, int *m, double beta, double*ce,

vector complex& ps, matrix complex &mn, matrix complex&c);

void gauss elim partial pivoting(matrix &a, vector &b);

void forward substitutation(double**L, vector &b);

void backward substitutation(double**U, vector &fb);

// assign overloading//

sie & operator =( sie & b);//object assignment

};

#endif

SIE SOLVING
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Appendix K

C++ Source Code List for Simulating the Singular Integral Equations

Here are some important source codes for the numerical simulation in this

research. As we know, the C++ have some very good features such as operator

overloading which could make computing more convenient illustrated in the

following codes. Since some techniques incorporated into this codes is very

original, it would be a good reference for those who intend to use C++ to

develop their own codes in computational mechanics.

K.1 the main.cpp– this program is used to obtain sif and energy release rate

#include “vector matrix operator.h”

#include “sie solving.h”

#include <fstream.h>

#include <stdlib.h>

int main(void)

{

//—————————————————————-//

int i,j, m = 6, n = 3, km , count = 1, countk = 1, stop = 0;

int N = 60; // the points

double h0 = 1.0, k1, k2, k12;

double theta = 0.0, beta = 0.0; //theta is the material axis orientation

double ratio al = -1, ratio bl = 0.0, l = 0.001;// = l/L
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double omega0 =PI/(40*18.*2), omega, // omega is branching angle

deltomega = PI/2/18.0, degree =180.0/PI;

//——————————————-//

h0 = 1.0;

//—-for upper medium—-//

double kI11 = 42.1, kI12 = 0.0, kI22 = 0.466;

double alphaI11 = 0.025*pow(10,-6), alphaI22 = 32.4*pow(10,-6),

alphaI12 = 0.0, alphaI33 = alphaI22, coea11 =1.0, coea12 = 1.0;

//—-for lower medium—-//

double kII11= 53.7, kII12 = 0.0, kII22 = 0.73, coek1 = 1.0, coek2 = 1.0;

double alphaII11 = 0.034*pow(10,-6), alphaII22 = 34.2*pow(10,-6),

alphaII12 = 0.0, alphaII33 = alphaII22, coea21 =1.0, coea22 = 1.0;

//——————————————-//

double K1 = 0.0, K2 = 0.0, G = 1.0, G0 =1.0;

double coefk = 0.01, coefkmax = 0.0, omegamax = 0.0, Gmax = 0.0,

cof = 2, y = 1.0, coef = 1.0;

double **Ari, *fnbeta, *cdr,*cdi, **U, **L, *g, *K, **Omega, *t0;

double **tpNtau, **tpNbeta, *Beta;

double *T0 ;

char *ch1 = ”medium I”, *ch2 = ”medium II”;

char *ch = ”laminates”;
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int openmode;

/*—————– thermal property ——————*/

number complex nc, z1, z2(2,3), i1 = number complex(0,1),//(i1)2 = -1;

u1 = number complex(1,0), hstar, G0t;

vector t, x, tb, xb, fn, ft, fb, vtp ;

vector complex ps, ps1, ps2, c1, c2, d1, d2;

vector complex rho1, rho2, e1, e2, e3, estr, dc, p1, p2, dtilde, ctilde;

/*————– linear eq: a X = fn;—————-*/

matrix a, atb, c, H1, L1, S1, H2, L2, S2, d, w, M, // c is the material matrix;

tm, I = I.unit(n,n), Itau = Itau.unit(m,m), Itp = I-I,

I1 = I1.unitk(3,3,1),I2 = I2.unitk(3,3,2),I3 = I3.unitk(3,3,3);

matrix complex ab, tp, b, a1, b1, a2, b2, M 1, M 2,

mn, cc, Ic = matrix complex(I, Itp);

omega0 = -omega0;

//theta = PI/6; // (1)

//theta = PI/4; //(2)

//theta = PI/3; //(3)

sie slu, upper(&theta, ch2);

// theta = 0.0;

theta = -PI/(6.*4.);

//theta = -PI/6; // (1)
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//theta = -PI/4.001; //(2)

theta = -PI/3; //(3)

sie lower(&theta,ch2);

kII11 = kI11; kII12 = kI12; kII22 = kI22;

alphaII11 = alphaI11; alphaII22 = alphaI22;

alphaII12 = alphaI12; alphaII33 = alphaI33;

//———————————————————————-//

Dyanmic Memory Allocation and Initialization of arrays

//———————————————————————//

cout << “begin: running........”<<”\ n”;

//========== upper medium ==========//

c = upper.material characteristic matrix();

// cout << ”c upper:” << c << ”\ n”;

//————————————–//

omega = upper.get alpha();

coea11 = alphaI11*cos(omega)*cos(omega) + alphaI12*sin(2.*omega) +

alphaI22*sin(omega)*sin(omega);

coea12 = (alphaI22-alphaI11)*sin(2.*omega)/2.0 + alphaI12*

(cos(omega)*cos(omega) - sin(omega)*sin(omega));

coea22 = alphaI11*sin(omega)*sin(omega) - alphaI12*sin(2.*omega) +

alphaI22*cos(omega)*cos(omega);
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alphaI11 = coea11; alphaI12 = coea12; alphaI22 = coea22;

//—————————————//

coea11 = kI11*cos(omega)*cos(omega) + kI12*sin(2.*omega) +

kI22*sin(omega)*sin(omega);

coea12 = (kI22-kI11)*sin(2.*omega)/2.0 + kI12*

(cos(omega)*cos(omega) - sin(omega)*sin(omega));

coea22 = kI11*sin(omega)*sin(omega) - kI12*sin(2.*omega) +

kI22*cos(omega)*cos(omega);

kI11 = coea11; kI12 = coea12; kI22 = coea22;

coea11 = 1.0; coea12 = 1.0; coea22 = 1.0;

//—————————————-//

Beta[1] = c(1,1)*alphaI11 + c(1,2)*alphaI22 + c(1,3)*alphaI33;//beta11;

Beta[2] = 0.0; //beta21;

Beta[3] = 0.0;//beta31;

Beta[4] = Beta[2]; //beta12;

Beta[5] = c(1,2)*alphaI11 + c(2,2)*alphaI22 + c(2,3)*alphaI33;

Beta[6] = 0.0;//beta32; km = tp.matrix eigvalue eigvector(c, ps1, ab);

ab = tp.matrix norm eigvector(ab, a1, b1);//eigen vector A & B of eq(11-1)

tp = a1*a1.transpose(a1)*cof; H1 = -tp.im(tp);//H = 2i A At;

tp = -b1*b1.transpose(b1)*cof; L1 = -tp.im(tp);//L = - 2i B Bt

tp = a1*b1.transpose(b1)*cof-Ic; S1 = -tp.im(tp);//S = i(2ABt -I)
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//—————————//

k1 = sqrt(kI11*kI22 - kI12*kI12);

number complex tau1(-kI12/kI22, k1/kI22);

for( i = 1; i ¡= 6; i++){

for( j = 1; j ¡= 6; j++)

tpNtau[i][j] = c(i,j);

tpNtau[i][i] = tpNtau[i][i] - tau1.re(tau1);

tpNbeta[i][i] = -tau1.im(tau1);

}

matrix complex Ntau(tpNtau, tpNbeta, 6, 6);

tpNbeta[4][1] = -1.0; tpNbeta[5][2] = -1.0; tpNbeta[6][3] = -1.0;

for(i = 1; i <= 6; i++)

for(j = 4; j <= 6; j++)

tpNbeta[i][j] = -c(i,j);

matrix Nbeta(tpNbeta, 6, 6);

vector Vbeta(Beta,6),

fNbeta = Nbeta*Vbeta ; // RHS 2 of eq (11-2)

for(i = 1; i<= 6; i++) {

for( j = 1; j <= 6; j++){

Ari[i][j] = Ntau.re(Ntau)(i,j); Ari[i+6][j+6] = Ari[i][j];

Ari[i+6][j] = Ntau.im(Ntau)(i,j); Ari[i][j+6] = - Ari[i+6][j];
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}

fnbeta[i] = fNbeta[i];

}

a = matrix(Ari,12,12);

vector fbeta(fnbeta,12);

slu.gauss elim partial pivoting(a,fbeta);

//———————————————————————-//

Dynamic Memory Allocation and Initialization for U and L

//———————————————————————-//

fbeta = fbeta;

slu.forward substitutation(L, fbeta);

slu.backward substitutation(U, fbeta);

/*normalization of C and D vector*/

for(i = 1; i <= 3; i++){

cdr[i] = fbeta[i];

cdi[i] = fbeta[6+i];

}

c1 = vector complex(cdr, cdi,3);

c1 = c1*(1/c1.mod(c1));

for(i = 1; i ¡= 3; i++){

cdr[i] = fbeta[3+i];
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cdi[i] = fbeta[6+3+i];

}

d1 = vector complex(cdr,cdi,3);

d1 = d1*(1/d1.mod(d1));

//——– Lower Medium——–//

c = lower.material characteristic matrix();

//——————————//

omega = lower.get alpha();

coea11 = alphaII11*cos(omega)*cos(omega) + alphaII12*sin(2.*omega) +

alphaII22*sin(omega)*sin(omega);

coea12 = (alphaII22-alphaII11)*sin(2.*omega)/2.0 + alphaII12*

(cos(omega)*cos(omega) - sin(omega)*sin(omega));

coea22 = alphaII11*sin(omega)*sin(omega) - alphaII12*sin(2.*omega) +

alphaII22*cos(omega)*cos(omega);

alphaII11 = coea11; alphaII12 = coea12; alphaII22 = coea22;

//———————————————————//

coea11 = kII11*cos(omega)*cos(omega) + kII12*sin(2.*omega) +

kII22*sin(omega)*sin(omega);

coea12 = (kII22-kII11)*sin(2.*omega)/2.0 + kII12*

(cos(omega)*cos(omega) - sin(omega)*sin(omega));

coea22 = kII11*sin(omega)*sin(omega) - kII12*sin(2.*omega) +
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kII22*cos(omega)*cos(omega);

kII11 = coea11; kII12 = coea12; kII22 = coea22;

coea11 = 1.0; coea12 = 1.0; coea22 = 1.0;

//—————————————//

Beta[1] = c(1,1)*alphaII11 + c(1,2)*alphaII22 + c(1,3)*alphaII33;//beta11;

Beta[2] = 0.0; //beta21;

Beta[3] = 0.0;//beta31;

Beta[4] = Beta[2]; //beta12;

Beta[5] = c(1,2)*alphaII11 + c(2,2)*alphaII22 + c(2,3)*alphaII33;

Beta[6] = 0.0;//beta32;

km = tp.matrix eigvalue eigvector(c, ps2, ab);

ab = tp.matrix norm eigvector(ab, a2, b2);//eigen vector A & B of eq(11-1)

tp = a2*a2.transpose(a2)*cof; H2 = -tp.im(tp);//H = 2i A At;

tp = -b2*b2.transpose(b2)*cof; L2 = -tp.im(tp);//L = - 2i B Bt

tp = a2*b2.transpose(b2)*cof-Ic; S2 = -tp.im(tp);//S = i(2ABt -I)

//—————————//

k2 = sqrt(kII11*kII22 - kII12*kII12);

number complex tau2(-kII12/kII22, k2/kII22);

for( i = 1; i <= 6; i++){

for( j = 1; j<=6; j++)

tpNtau[i][j] = c(i,j);
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tpNtau[i][i] = tpNtau[i][i] - tau2.re(tau2);

tpNbeta[i][i] = -tau2.im(tau2);

}

Ntau = matrix complex(tpNtau, tpNbeta, 6, 6);

tpNbeta[4][1] = -1.0; tpNbeta[5][2] = -1.0; tpNbeta[6][3] = -1.0;

for(i = 1; i <= 6; i++)

for(j = 4; j <= 6; j++)

tpNbeta[i][j] = -c(i,j);

Nbeta = matrix(tpNbeta, 6, 6);

Vbeta = vector(Beta,6);

fNbeta = Nbeta*Vbeta ; // RHS 2 of eq (11-2)

for(i = 1; i <= 6; i++) {

for( j = 1; j <= 6; j++){

Ari[i][j] = Ntau.re(Ntau)(i,j); Ari[i+6][j+6] = Ari[i][j];

Ari[i+6][j] = Ntau.im(Ntau)(i,j); Ari[i][j+6] = - Ari[i+6][j];

}

fnbeta[i] = fNbeta[i];

}

a = matrix(Ari,12,12);

fbeta = vector(fnbeta,12);

slu.gauss elim partial pivoting(a,fbeta);
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for(i =1; i <= 12; i++){

for(j = 1 ; j <=12; j++){

U[i][j] =0.0; L[i][j] = 0.0;

}

}

for(i = 1; i <= 12; i++) {

for(j=i; j <= 12; j++) U[i][j] = a(i,j);

for(j =i; j >= 1; j–) L[i][j] = a(i,j);

L[i][i] = 1.0;

}

fbeta = fbeta ;

slu.forward substitutation(L, fbeta);

slu.backward substitutation(U, fbeta);

/*normalization of C and D vector*/

for(i = 1; i <= 3; i++) {

cdr[i] = fbeta[i]; cdi[i] = fbeta[6+i];

}

c2 = vector complex(cdr, cdi,3); c2 = c2*(1/c2.mod(c2));

for(i = 1; i <= 3; i++){

cdr[i] = fbeta[3+i]; cdi[i] = fbeta[6+3+i];

}
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d2 = vector complex(cdr,cdi,3); d2 = d2*(1/d2.mod(d2));

//———————————————————————-//

Free Memory used by U and L

//———————————————————————-//

//=======—–bimaterial property matrix—-=====//

d = L1.inverse(L1) + L2.inverse(L2);

w = S1*L1.inverse(L1) - S2*L2.inverse(L2);

matrix wtp = - w;

tp = matrix complex(d, wtp);

mn = tp.inverse(tp);//mn = (d - i w)−1//

c = d.inverse(d)*w*d.inverse(d)*w;//cc - is the constant matrix

y = -.5*(c(1,1) + c(2,2) + c(3,3));

if(fabs(y) ¡ EPSLON) y = 0.0;

beta = sqrt(y);

if(ch1 ! = “medium isotropic”){

c = w*d.inverse(d);

km = tp.matrix eigvalue eigvector(c, ps, ab);

cc = ab; //cc - the constant matrix v

ch1 = upper.get str();

ch1 = lower.get str();

}
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else cc = Ic;

/*—— Defined Bi-material Constants ——*/

M = S1*L1.inverse(L1) ;

M 1 = matrix complex(L1.inverse(L1), -M);//M inverse

M = S2*L2.inverse(L2) ;

M 2 = matrix complex(L2.inverse(L2), -M);

// matrix complex Nstr = (mn + mn.conjugate(mn))*i1;

//———+++++++++++——–//

/*—— Defined Thermail Constants ——*/

e1 = (c1*k2 + c2.conjugate(c2)*k1)*(u1/(k1+k2));

e2 = (d1*k2 + d2.conjugate(d2)*k1)*(u1/(k1+k2));

e3 = (d1*k2 + d2*k1)*(u1/(k1+k2));

estr = (mn*e1 + mn.conjugate(mn)*e1.conjugate(e1))*i1;

estr = estr - (mn*M 1*e2 - mn.conjugate(mn)*M 1.conjugate(M 1)

*e2.conjugate(e2)) + e2 + e3;

dc = mn*e1*i1 + mn*M 2.conjugate(M 2)*e2 - d1*(k2/(k1+k2));

//——————————————//

rho1 = d1*k2*(u1/(k1+k2)) - mn*(e1*i1 + M 2.conjugate(M 2)*e2) ;

rho2 = d2*k1*(u1/(k1+k2))

- mn.conjugate(mn)*(e1.conjugate(e1)*i1

+ M 1.conjugate(M 1)*e2.conjugate(e2));
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ctilde = c2*k1*(2/(k1+k2)) - c1.conjugate(c1)*((k1-k2)/(k1+k2)) - c1;

dtilde = d2*(2*k1/(k1+k2)) - d1.conjugate(d1)*((k1-k2)/(k1+k2)) - d1;

//——————//

omega = omega0;

if(omega < 0.0){

e1 = (c2*k1 + c1.conjugate(c1)*k2)*(u1/(k1+k2));

e2 = (d2*k1 + d1.conjugate(d1)*k2)*(u1/(k1+k2));

e3 = (d2*k1 + d1*k2)*(u1/(k1+k2));

estr = (mn*e1 + mn.conjugate(mn)*e1.conjugate(e1))*i1;

estr = estr - (mn*M 2*e2 - mn.conjugate(mn)*M 2.conjugate(M 2)

*e2.conjugate(e2)) + e2 + e3;

dc = mn*e1*i1 + mn*M 1.conjugate(M 1)*e2 - d2*(k1/(k1+k2));

//——————————————//

rho1 = d2*k1*(u1/(k1+k2)) - mn*(e1*i1 + M 1.conjugate(M 1)*e2) ;

rho2 = d1*k2*(u1/(k1+k2))

- mn.conjugate(mn)*(e1.conjugate(e1)*i1

+ M 2.conjugate(M 2)*e2.conjugate(e2));

ctilde = c1*k2*(2/(k1+k2)) - c2.conjugate(c2)*((k1-k2)/(k1+k2)) - c2;

dtilde = d1*(2*k2/(k1+k2)) - d2.conjugate(d2)*((k1-k2)/(k1+k2)) - d2;

}

/*———- equivalent loading ———-*/
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number complex h 0s(0, -(k1+k2)/(k1*k2)/2) ; h 0s = h 0s*h0;

p1 = (rho1 + rho2)*h 0s; p2 = (rho2 - rho1)*h 0s;

vector complex p 0(t0, g,3);

t0[1] = p1.rev(p1)[1]; t0[2] = p1.rev(p1)[2]; t0[3] = p1.rev(p1)[3];

g[1] = p1.imv(p1)[1]; g[2] = p1.imv(p1)[2]; g[1] = p1.imv(p1)[3];

vector complex p 1t(t0, g,3);

t0[1] = p1.rev(p1)[1]; t0[2] = p1.rev(p1)[2]; t0[3] = p1.rev(p1)[3];

t0[3] = t0[3]*1.5;

g[1] = p1.imv(p1)[1]; g[2] = p1.imv(p1)[2]; g[3] = p1.imv(p1)[3];

g[3] = 1.5*g[3];

vector complex p tild(t0,g,3);

t0[1] = p1.rev(p1)[1]; t0[1] = t0[1]*(ratio bl+ratio al);

t0[2] = p1.rev(p1)[2]; t0[2] = t0[2]*(ratio bl+ratio al);

t0[3] = p1.rev(p1)[3]; t0[3] = t0[3]*(ratio bl+3*ratio al)/2.0;

g[1] = p1.imv(p1)[1]; g[1] = g[1]*(ratio bl+ratio al);

g[2] = p1.imv(p1)[2]; g[2] = g[2]*(ratio bl+ratio al);

g[3] = p1.imv(p1)[3]; g[3] = g[3]*(ratio bl+3*ratio al)/2.0;

vector complex p 1h(t0,g,3);

//————-for K0————-//

matrix complex kk1, kk2, kk3;

kk1 = kk1.diag(i1*beta + 0.5, -i1*beta +0.5, i1*0+0.5);
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kk1 = - kk1; kk2 = kk2.diag(-i1*(beta*ratio bl)

+ beta*beta-(ratio bl+ratio al)/(ratio bl-ratio al)/4,

i1*(beta*ratio bl) + beta*beta - (ratio bl+ratio al)/(ratio bl-ratio al)/4,

i1*0-(ratio bl+ratio al)/(ratio bl-ratio al)/4 + 1/8);

kk2 = kk2 *(ratio bl-ratio al);

kk3 = kk3.diag(i1*2.*beta + beta*beta + 0.375, -i1*2.*beta

+ beta*beta + 0.375, i1*0 - 0.25);

kk3 = kk3 *(ratio bl-ratio al);

vector complex KK0;

KK0 = kk1*p 0 + kk2*p1 + kk3*p2;

KK0 = -KK0*sqrt(2*PI*(ratio bl-ratio al));

vector K0 = KK0.rev(KK0);

//———-for G0—————–//

G0t = ((L1.inverse(L1) + L2.inverse(L2))*p 0)*p 0/2.;

G0t = G0t + (((L1.inverse(L1) + L2.inverse(L2))*p tild)*p 0)

*(ratio bl+ratio al)/2.;

G0t = G0t + (((L1.inverse(L1)+ L2.inverse(L2))*estr)*p 0)*h 0s/2.;

G0t = G0t + (((L1.inverse(L1)+ L2.inverse(L2))*p 0)*p 1t)*ratio bl/2.;

G0t = G0t + ((((L1.inverse(L1)+ L2.inverse(L2))*p 1h)*p 1t)*ratio bl)/4./2.;

G0 = G0t.re(G0t);

G0 = G0*PI*(ratio bl-ratio al)/2.0;
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omega = omega0;

if(omega < 0.0) {

k12 = k1; k1 = k2; k2 = k12;

ps = ps1; ps1 = ps2; ps2 = ps;

number complex tau12 = tau1; tau1 = tau2; tau2 = tau12;

matrix complex b12 = b1; b1 = b2; b2 = b12;

vector complex c12 = c1, d12 = d1; c1 = c2; c2 = c12; d1 = d2; d2 = d12;

mmatrix complex M 12 = M 1; M 1 = M 2; M 2 = M 12;

matrix L12 = L1; L1 = L2; L2 = L12;

}

//—–for convergence—–//

count = 1;

N = 120;

/*————————–*/ do {

n = N; // n = 120 points of discretization!!!

T0 = new double [N+1]; T0 = T0-1;

for( i = 1; i ¡= N+1; i++) T0[i] = 0.0;

ps = ps1;

/*–calculation of thermal dislocation density–*/

slu.point t x T(t, x, &n);//create points t[n], x[n+1]

a = slu.matrix a T bimedia(t,x, &n, &ratio al, &ratio bl, &l, &k1, &k2,
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&omega, tau1, ft, &h0);

slu.gauss elim partial pivoting(a,ft);

//———————————————————————-//

Dynamic Memory Allocation and Initialization for U and L

//———————————————————————//

for(i = 1; i <= n; i++){

for(j=i; j <= n; j++) U[i][j] = a(i,j);

for(j =i; j >= 1; j–) L[i][j] = a(i,j); L[i][i] = 1.0;

}

slu.forward substitutation(L, ft);

slu.backward substitutation(U, ft);

for(i = 1+1; i <= n+1; i++)

T0[i] = ft[i-1]*sqrt((1+t[i-1])*(1-t[i-1]));

ft = vector(T0, n+1);

//———————————————————————//

Free Memory used by U and L

//———————————————————————-//

/*– end of the calcultion for thermal-dislocation density –*/

/*—solving singular integration equation for displ.-dislocation—*/

n = N;

fb = ft;
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slu.point t x b(tb, xb, &n);//create points t[n], x[n]

atb = slu.matrix a b bimedia(tb, xb, &n, beta, &ratio al, &ratio bl, &l,

tau1, ps, b1, d1, c1, d2, c2, L1, mn, p1, p2, dc, cc, &omega, t,

M 2, ctilde, dtilde, k1, k2, fb, &h0);

//LU-decomposite a with partial poviting//

slu.gauss elim partial pivoting(atb,fb);

//———————————————————————//

Dynamic Memory Allocation and Initialization for U and L

//———————————————————————//

for(i = 1; i <= 3*n; i++){

for(j=i; j <= 3*n; j++) U[i][j] = atb(i,j);

for(j =i; j >= 1; j–) L[i][j] = atb(i,j); L[i][i] = 1.0;

}

slu.forward substitutation(L, fb);

slu.backward substitutation(U, fb);

//———————————————————————//

Free Memory used by U and L

//———————————————————————//

Omega[1][1] = cos(omega); Omega[1][2] = sin(omega);

Omega[2][1] = -sin(omega); Omega[2][2] = cos(omega); Omega[3][3] = 1.0;

matrix Omega0 = matrix(Omega, 3,3);
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number complex zt1 = ps[1]*sin(omega) + cos(omega),

zt2 = ps[2]*sin(omega) + cos(omega),

zt3 = ps[3]*sin(omega) + cos(omega);

Omega[1][1] = sin(2*omega)/2; Omega[1][2] = sin(omega)*sin(omega);

Omega[2][1] = -Omega[1][2]; Omega[2][2] = Omega[1][1];

Omega[3][3] = sin(omega);

matrix Omegatp(Omega, 3,3);

matrix complex Omega1(Omegatp, Omegatp-Omegatp);

Omega[1][1] = cos(omega)*cos(omega); Omega[1][2] = sin(2*omega)/2;

Omega[2][1] = -Omega[1][2]; Omega[2][2] = Omega[1][1];

Omega[3][3] = cos(omega); Omegatp = matrix(Omega,3,3);

matrix complex Omega2(Omegatp, Omegatp-Omegatp);

matrix complex zta = zta.diag(u1/zt1, u1/zt2, u1/zt3),

palpha = palpha.diag(ps[1], ps[2], ps[3]);

matrix complex kkb = Omega2*b1*zta*b1.transpose(b1)

+ Omega1*b1*zta*palpha*b1.transpose(b1);

matrix tpkb = kkb.im(kkb);

for(i= 1; i ¡= 3; i++){

g[i] = 0.0;

for(j = 1; j ¡= 3; j++)

g[i] = g[i] + tpkb(i,j)*fb[3*(n-1)+j]*(sqrt(l/2.0)/PI);
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}

K[1] = -g[1]; K[2] = -g[2]; K[3] = -g[3];

//transformation matrix//

ofstream fout;

const char *file = ”stress intensitfy factor.dat”;

if((fabs(omega) == PI/(40*18.*2))——(fabs(omega) == PI))

openmode = ios::out;

else openmode = ios::app;

fout.open(file, openmode);

if(!fout.good()){

cerr << “can’t open ” << file << “file for output. \ n”; exit(1);

}

if(openmode == ios::out){

fout <<“==branching/main crack v.s. stress intensity factor===” << “\n”;

fout << “descritization point number ” << “\ n”;

fout << “n = ” << n << “: ” << “\ n”;

fout << “\ n”;

}

fout << “omega = ” << omega*degree << “: ”;

fout << K[2] ; fout << “” << K[1];

fout << “” << K[3] << “\ n”;
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fout.close();

ofstream fout1;

file = ”stress intensitfy factor plotting KI.dat”;

fout1.open(file, openmode);

if(!fout1.good()){

cerr << “can’t open ” << file << “file for output. n”; exit(1);

}

fout1 << omega*degree << “”;

fout1 << K[2] << “\n”;

fout1.close();

ofstream fout2;

file = ”stress intensitfy factor plotting KII.dat”;

fout2.open(file, openmode);

if(!fout2.good()){

cerr << “can’t open ” << file << “file for output.\n”; exit(1);

}

fout2 << omega*degree << “”;

fout2 << K[1] << “\n”;

fout2.close();

ofstream fout3;

file = “stress intensitfy factor plotting KIII.dat”;
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fout3.open(file, openmode);

if(!fout2.good()){

cerr << “can’t open ” << file << “file for output.\n”; exit(1);

}

fout3 << omega*degree << “”;

fout3<< K[3] << “\n”;

fout3.close();

vector t0t = vector(t0,3), t0tp;

matrix dtp = L1.inverse(L1)*2;

t0tp = dtp*t0t;

matrix L 1;

L 1 = Omega0.transpose(Omega0)*L1*Omega0;

L 1 = L 1.inverse(L 1);

if(K[2] ¡= 0) K[2] = 0.0; // contact of crack surfaces

y = K[1]; K[1] = K[2]; K[2] = y;

vector Kt = vector(K,3); //vector(K,3);

G = Kt*(L 1*Kt)*0.5; //energy release rate

ofstream fout4;

file = ”energy release rate.dat”;

fout4.open(file, openmode);

if(!fout4.good()){
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cerr << “can’t open ” << file << “file for output. n”; exit(1);

}

fout4 << omega*degree << “”;

fout4 << G << “\ n”;

fout4.close();

if(omega0 >0){

omega = omega + deltomega; //for upper half plane

}

else if (omega0 < 0) {

omega = omega - deltomega;//for lower half plane

}

if(fabs(omega)>= PI/2) stop = 1;

} while(stop !=1);

stop = 0;

cout << “ n” << “——-end” << “\ n”;

//———————————————————————//

Free Memory used by all arrays

//———————————————————————//

return 0;

}
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K.2 the sie solving thermoelastic bimedia thmatrix du.cpp

– these codes are used to calculate the terms in the

sigular integral equations

#include “vector matrix operator.h”

#include “sie solving.h”

/*——–for thermal dislocation———-*/

void sie::point t x T(vector &t, vector &x, int *mt)//points of x and t;

{

int i, n;

double *tp;

n = *mt;

tp = new double [n+1]; tp = tp -1;

for(i = 1; i <= n; i++) tp[i] = cos(PI*i/(n + 1));

t = vector(tp,n);

for(i = 1; i <= n+1; i++) tp[i] = cos(0.5*PI*(2*i-1)/(n + 1));

x = vector(tp, n+1);

delete [] (char*) (tp+1);

}

//coefficients matrix of SIE for voertix============//

195



matrix sie::matrix a T bimedia(vector& t, vector& x, int *mt, double *ratio a,

double *ratio b, double *L, double *K1, double*K2, double *omega,

number complex tau, vector &fb, double* h)

{

int i, j, m;

double **kkt, *load, k1 = *K1, k2 = *K2, omegatp = *omega;

double r, r0, l = *L, a = *ratio a, b = *ratio b, h0 = *h;

matrix tp;

number complex u1 = number complex(1,0);

number complex ktp, ktd, ktp1, ktp2, ktp3;

number complex mu = u1*cos(omegatp) + tau*sin(omegatp);

m = *mt;

kkt = new double *[m]; kkt = kkt - 1;

for(i = 1; i ¡= m; i++){

kkt[i] = new double [m]; kkt[i] = kkt[i] - 1;

}

for(i =1 ; i ¡= m; i++){

for(j =1; j <= m; j++){

kkt[i][j] = 0.0;

}

}
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load = new double [m]; load = load -1;

for(i =1; i <=m; i++) load[i] = 0.0;

for(i = 1+1; i <= m+1; i ++){

r = (1.0 + x[i])*l/2.0;

for( j = 1; j ¡= m; j++){

r0 = (1.0 + t[j])*l/2.0;

ktp1 = mu*(u1/(mu*r - mu.conjugate(mu)*r0));

ktp1 = - ktp1*(k1-k2)/(k1+k2);

ktp2 = (mu*r0 -a)*(mu*r0-b)/(mu*r -a)*(mu*r-b);

ktp2 = ktp2.sqrt c(ktp2);

ktp2 = - ktp2 + 1.0;

ktp2 = ktp2*(k2/(k1+k2)/(r-r0));

ktp3 = (mu.conjugate(mu)*r0 -a)*(mu.conjugate(mu)*r0-b)

/(mu*r -a)*(mu*r-b);

ktp3 = ktp3.sqrt c(ktp3);

ktp3 = - ktp3 + 1.0;

ktp3 = ktp3*mu/(mu*r-mu.conjugate(mu)*r0);

ktp3 = ktp3 - mu*2/ktp3.sqrt c((mu*r-a)*(mu*r-b));

ktp3 = ktp3*(k2/(k1+k2));

ktp = ktp1 + ktp2 + ktp3;

ktp = ktp*l/2.0;
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ktp = -ktp + 1.0/(t[j] - x[i]);

ktp = ktp*(1-t[j]*t[j])/(m + 1);

kkt[i-1][j] = ktp.re(ktp);

}

ktd = mu*r - (a+b)/2;

ktd = ktd/ktd.sqrt c((mu*r-a)*(mu*r-b));

ktd = (-ktd + 1.0)*(tau*sin(omegatp) + cos(omegatp));

load[i-1] = 2*(cos(omegatp) + ktd.re(ktd))*h0/k1;

}

fb = vector(load, m);

tp = matrix(kkt,m,m);

delete [] (char*) (load+1);

for(i = 1; i ¡= m; i ++)

delete [] (char*) (kkt[i] +1);

delete [] (char*) (kkt+1);

return tp;

}
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