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SUMMARY

Large-scale data management systems rely more and more on cloud storage, where
the need for efficient search capabilities clashes with the need for data confidentiality.
Encryption and efficient accessibility are naturally at odds, as for instance strong en-
cryption necessitates that ciphertexts reveal nothing about underlying data. Search-
able encryption is an active field in cryptography studying encryption schemes that
provide varying levels of efficiency, functionality, and security, and efficient searchable
encryption focuses on schemes enabling sub-linear (in the size of the database) search
time. I present the first cryptographic study of efficient searchable symmetric encryp-
tion schemes supporting two types of search queries, range queries and error-tolerant
queries.

The natural solution to accommodate efficient range queries on ciphertexts is
to use order-preserving encryption (OPE). I propose a security definition for OPE
schemes, construct the first OPE scheme with provable security, and further analyze
security by characterizing one-wayness of the scheme. Efficient error-tolerant queries
are enabled by efficient fuzzy-searchable encryption (EFSE). For EFSE, I introduce
relevant primitives, an optimal security definition and a (somewhat space-inefficient,
but in a sense efficient as possible) scheme achieving it, and more efficient schemes
that achieve a weaker, but practical, security notion.

In all cases, I introduce new appropriate security definitions, construct novel
schemes, and prove those schemes secure under standard assumptions. The goal

of this line of research is to provide constructions and provable security analysis that
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should help practitioners decide whether OPE or FSE provides a suitable efficiency-

security-functionality tradeoff for a given application.



CHAPTER 1

INTRODUCTION

In this chapter, I introduce, motivate, and contextualize the cryptographic study of
general Efficient Searchable Encryption as well as my focal topics, Order-Preserving
Encryption (OPE) and Efficient Fuzzy-Searchable Encryption (EFSE). In Section 1.5,
I briefly introduce the new results and contributions of the thesis. To avoid exces-
sive discussion in the Introduction, I relegate further introductory material to the

Overview sections that begin Chapters 3, 4, and 5.

1.1 The Setting

Today’s broadband, mobile, data-driven world has seen explosive growth in cloud
storage, i.e., remote storage accessed over a network. Cloud storage frees clients from
the burdens of data management while guaranteeing efficient access to data, and has
many advantages including lower costs, more flexibility, decentralization of resources,
and division of labor. The major downside of cloud storage, though, is lack of security.
Providing efficient access to huge quantities of data rules out the possibility of using
strong encryption (which, by design, hides all information about data), so virtually
all cloud storage solutions currently store and access data in the clear. As a result,
apprehension lingers over the widespread use of cloud storage, especially as concerns
over cybersecurity skyrocket—to quote a top White House official', “our nation’s
security and economic prosperity depend on the security, stability, and integrity of
communications and information infrastructure that are largely privately-owned and

globally-operated.” We are left with a critical challenge: can cloud storage solutions

1John Brennan, Assistant to the President for Homeland Security and Counterterrorism, quote
from Congressional Bill S.773 — Cybersecurity Act of 2009



provide security against untrusted parties without compromising functionality and
efficiency?

Let us conceptualize our view of this problem. Consider the so-called Database-
as-a-Service (DBaaS) model, where a client (user) submits queries to access and
manipulate data held on a remote server (outsourced database). The server and the
communication channel are assumed to be untrusted, so data stored on the server,
as well as data used in query communication, should be encrypted. On the other
hand, queries from the client must be efficiently answered by the server, and several
canonical types of queries should be accepted.

From this standpoint, one way to achieve security in cloud storage is to develop
encryption schemes that enable efficient search on encrypted data, that is, on the
ciphertexts themselves. The study of such schemes is called efficient searchable en-
cryption (ESE) and has been the focus of much recent research in the database and

security communities.

1.2 Efficient Searchable Encryption for Cloud Storage

The goals of ESE are threefold: efficiency (of search on encrypted data), functionality
(flexibility of search and data management), and security. Clearly, these goals are
at odds with one another. For example, consider encrypting data with a secure
encryption scheme that hides all information and is always randomized (i.e., same
messages yield completely different ciphertexts.) Then it can be shown [44] that
some queries must require looking at every entry of the database, because if not then
(intuitively) the encrypted data leaks information, namely, that the ignored database
entries cannot satisfy conditions of the query. And of course, looking through every
entry of a database can be very inefficient. Because of such interference between goals,
research in ESE focuses on providing various schemes admitting different efficiency-

functionality-security tradeoffs so that practitioners can choose the scheme that best



suits their application’s needs.

For cloud storage, as emphasized by ESE efforts in the database community [53, 2,
36, 24, 38, 41, 49, 37, 20, 64], the importance of efficiency and functionality outweighs
that of security. In particular, as cloud databases are huge, to be “efficient” a query
must run in time sub-linear in the size of the database. (Throughout this thesis,
“efficient” in this context means satisfying this sub-linear condition.) Additionally,
the client should not be expected to know all the data nor index it prior to outsourcing
and should be able to add data to the storage on-the-fly—forcing certain conditions
on functionality. Security comes only after these considerations. Thus, the basic
approach of cloud-storage ESE is to provide security to the maximum extent possible
subject to supporting efficient queries (of various types) on a dynamic database with
minimal client-side computation.

This approach has received attention in the database community, with mixed
results. While many database-community solutions meet efficiency and functionality
goals, they usually fall short on the security side, as they tend to provide only ad-
hoc, “intuitive” security analysis. From a cryptographic standpoint, the only way to
provide security guarantees for a ESE scheme is to use techniques of provable security:
first select or define an appropriate notion of security; then, provide a formal proof
reducing security of a scheme to acceptable assumptions on fundamental primitives.

Thankfully, the cryptography community has recently made much progress in
applying the provable-security framework to the study of schemes allowing search
on encrypted data. In general, these efforts have focused on achieving ESE in a
particular scenario, in order to fine-tune the balance between efficiency, functionality,
and security. Scenarios include ESE in the symmetric and asymmetric settings, as
well as ESE for specific query types, which I clarify before discussing relevant past

results at length in Section 1.3.

SYMMETRIC AND ASYMMETRIC SETTINGS. ESE can be applied in the symmetric



(private-key) and asymmetric (public-key) settings. The asymmetric setting allows
various parties to contribute to a database, but assures that only the designated user
may successfully query the encrypted data using the secret key. In the symmetric
setting, the same key is used to encrypt, query, and decrypt the data. Thus, the
symmetric setting fits the DBaaS model, where only one party (the client) encrypts,
queries, and decrypts information. I will thus concentrate on the symmetric setting,

which has been less studied.

QUERY TYPES. Almost all ESE schemes focus on supporting a limited number of
query types. The most basic type of query is the exact-match query, also known as
keyword search, in which the client queries a single item (or keyword) and the output
is a list of records corresponding to each instance of the item. We are particularly

interested in two other types of queries, defined intuitively as follows.

e In a range query, the client specifies two items and the output should be records

of all items “between” (e.g., lexicographically) the two query items.

e In an error-tolerant or fuzzy query, the client specifies an item and the output
should be records of all items “close to” (e.g., defined by a metric and threshold)

the query item.

In all cases, the access pattern of a search query is the set of records containing “hits,”
that is, the records testing positive for the item/s. The search pattern of a client is,
essentially, the symmetric 0-1 matrix indicating which search queries were performed

for the same item.

1.3 Past Results

We now consider a progression of past results in searchable symmetric encryption
(SSE), that is, search on symmetrically-encrypted data, moving toward schemes that

enable more efficient search and thus qualify as ESE. A summary table is given in



Table 1, evaluating the security-efficiency-functionality tradeoff of each approach and

indicating limitations on which we would like to improve.

’ Approach Security Efficiency Functionality ‘
Oblivious RAM [33] Nothing leaked ~ Impractical All query types
Fully homomorphic Nothing leaked Impractical  All query types
encryption [55, 29
Exact-match SSE Search/access Linear+ Exact-match
(61, 30, 34, 21] patterns leaked
Exact-match ESE via Search/access Sub-linear  Exact-match
static indexes [23, 58, 46] patterns leaked Limited updates
Efficiently-searchable Equality leaked ~ Sub-linear  Exact-match
authenticated enc. [3]

Prefix-preserving Vulnerable Sub-linear  Range; Specialized
encryption [49, 8, 65] implementation
Order-preserving Undefined/ Sub-linear ~ Range; Transparent
encryption (OPE) [2] unknown implementation
Fuzzy ESE via static Similarity /access Sub-linear — Error-tolerant
indexes [47] patterns leaked Limited updates
Efficient fuzzy-searchable Undefined/ Sub-linear  Error-tolerant
encryption [48] unknown

Table 1: Summary of relevant past results in searchable encryption, with evaluation
of security, efficiency, and functionality for each. [talics indicate limitations where
improvement is needed according to our goals for ESE. Under Security, evaluations
indicate the “only” information that is leaked. Notice that leaking equality of mes-
sages is strictly weaker security than leaking search and/or access patterns.

The first few results, oblivious RAM and fully homomorphic encryption, provide
the basis for studying ESE. These results provide SSE with excellent functionality

and security, but poor efficiency.

OBLIviIOUs RAM. A powerful result by Goldreich and Ostrovsky [33] showed that
any form of searchable encryption can be achieved in its full functionality. According
to [33], all the functionality of a hypothetical server-side RAM can be encoded into
directions for a (server-side) “oblivious RAM” whose behavior and running time on

any query is consistent, so that same-type queries look identical from the perspective



of the potentially malicious server. The cost of this transformation is only poly-
logarithmic overhead in all parameters, but the hidden constants are huge and it
also requires a logarithmic number of rounds of interaction for each read and write.
A newer paper by Pinkas and Reinman [54] improves the performance, but still,

Oblivious RAM is much too inefficient for use in large-scale cloud storage.

FuLLY HOMOMORPHIC ENCRYPTION. Another exciting direction is the long-desired
technique of fully homomorphic encryption [55], which allows for any computation
that can be written as a circuit to be performed in the encrypted domain, thus
allowing for a wide array of possible functionality on encrypted data. Gentry [29]
recently constructed the first fully homomorphic encryption scheme, based on a lattice
construction. However, the construction is impractical for many applications, as
ciphertext size and computation time increase sharply as one increases the security
level. Some small improvements have been made, including a conceptually simpler
integer-based solution [62] and schemes with improved parameter size [60, 19], but
current results still fall short of something practically useful.

These theoretical results are impressive, but impractical—it is clear that efficient
solutions are needed. Thus, continuing research into searchable encryption has fo-
cused on finding more efficient solutions by weakening the privacy guarantees, such
as revealing the access pattern and/or search pattern but nothing else. Also, to
achieve improved efficiency, most research has focused on addressing particular types

of queries, starting with the most basic query type, exact-match queries.

SEARCHABLE ENCRYPTION FOR EXACT-MATCH QUERIES. Exact-match query sup-
port in symmetric encryption has been an active topic in the cryptography commu-
nity. Several works [61, 30, 34, 21] provide strong security guarantees for symmetric
schemes supporting faster exact-match queries, at the expense of revealing the ac-

cess and/or search pattern. However, these schemes do not achieve our standard of



efficiency, as they require that the server scan the entire database for each query. Sev-
eral works [23, 58, 46] do achieve sub-linear-time search on static databases with good
security—usually leaking access and search pattern—by building “secure indexes” for
data. However, these solutions incur significant memory cost, as they require an entry
in the index for each keyword; and moreover, they require the database to be fully
known in advance, allowing only limited updates.

Finally, schemes supporting sub-linear-time exact-match queries were developed
by [3] in the symmetric-key setting (and [9, 10, 17] in the public-key setting) at the
necessary cost of slightly weakened security. In particular, the schemes improve effi-
ciency and functionality by leaking equality of underlying messages (i.e., anyone can
recognize when two ciphertexts are encryptions of the same message). This solution
fits the efficiency and functionality conditions for cloud storage, and still provides
quite strong security. However, exact-match queries can be somewhat restrictive, and
practitioners would like to be able to support more flexible queries, particularly range

and error-tolerant queries.

SEARCHABLE ENCRYPTION FOR RANGE QUERIES. Range queries have been less
studied in the ESE context but have inspired some recent activity. [18, 59] studied
range queries on encrypted data in the public-key setting—but while their schemes
provably provide strong security, they are also not efficient according to our sub-
linear-time standard. The work of [49] suggested enabling efficient range queries on
encrypted data by using prefiz-preserving encryption (PPE) [8, 65]. Unfortunately,
as discussed in [49, 3], PPE schemes are subject to certain attacks in this context;
particular queries can completely reveal some of the underlying plaintexts in the
database. Moreover, PPE demands use of specialized data structures and query
formats, which practitioners would prefer to avoid.

More useful, from the standpoint of the database community, would be a scheme

that supports range queries naturally, as easily as if the data were unencrypted, even if



this means much weaker security. This point is implied in the 2004 paper by Agrawal
et al. [2] in which they propose supporting range queries on ESE in the symmetric

setting using so-called order-preserving encryption (OPE)2.

ORDER-PRESERVING ENCRYPTION. OPE is deterministic encryption in which for any
key K, the encryption function Enc(K,-) is order preserving, that is, Enc(K, mg) <
Enc(K,my) if and only if my < my. If a database is encrypted by an OPE scheme, and
kept sorted in ciphertext order, then range queries are naturally supported: a range
query simply specifies the two encrypted ends of the desired range, and the server
returns all ciphertexts between these values. Note that public-key OPE schemes give
virtually no security because access to encryption allows an adversary to find the
preimage of any ciphertext via a binary search over encryptions of chosen plaintexts.
Thus, we only talk about OPE in the private-key model.

One of the most enticing qualities of OPE is the transparency of its implementa-
tion: that is, data management and query protocol/processing (for range or exact-
match search) are no different for an OPE-encrypted database than for the corre-
sponding unencrypted database. Thus, practitioners can directly implement OPE
into systems that currently use no encryption, with little to no effort, and with no
special expertise. Moreover, in for example the DBaaS setting, the server need not
even be aware that data is encrypted via OPE, as the server’s view and actions are
equivalent to the that of the unencrypted scenario.

After [2] noticed the natural ability of OPE to support efficient range queries,
OPE received much interest in the database community, being suggested for use in
in-network aggregation on encrypted data in sensor networks [1] and as a tool for ap-

plying signal processing techniques to multimedia content protection [25]. Obviously,

2While [2] initiated the modern study of OPE, interestingly, OPE in fact has a long history in
the form of one-part codes. These are lists of plaintexts and the corresponding ciphertexts, both
arranged in alphabetical or numerical order so only a single copy is required for efficient encryption
and decryption. One-part codes were used, for example, during World War T [4].



OPE would also be an extremely functional and efficient method for supporting range
queries on encrypted data in the cloud storage setting.

However, while the seminal work [2] does provide an OPE construction, it is rather
ad-hoc and the encryption algorithm relies on knowing all plaintexts in advance;
furthermore, the authors do not provide a definition of security nor any formal security
analysis. Though OPE was proposed in spite of its naturally low level of security,
without a notion of security to start with we have no way of formally evaluating the
“security” of an OPE scheme. The only option in this case is to intuitively speculate
as to the advantage of using an OPE scheme over, say, nothing at all. Intuition can be
useful, but is often dangerously misleading, and leaves one vulnerable to unforeseen
attacks. Crucially, to understand its security with any confidence, we must formally

analyze OPE from a provable security (cryptographic) standpoint.

ESE FOR ERROR-TOLERANT QUERIES. Finally, we consider one other query type.
(Efficient) fuzzy-searchable encryption or (E)FSE refers to encryption schemes al-
lowing (efficient/sub-linear) error-tolerant query search on encrypted data. Obvious
applications of FSE include any setting where data inherently contains errors (e.g.,
with biometric data) or queries are allowed to be approximate in value (e.g., mis-
spellings or different formats of keywords allowed). EFSE, in which queries must be
handled in sub-linear time, comes into play in large encrypted database settings. For
example, EFSE could be used to efficiently query a large secure criminal database
with biometric data (fingerprint measurements, etc.) from a crime scene.

The EFSE primitive has been relatively unstudied, with the exception of two
recent works [48, 47]. Very recently, [47] developed a construction for sub-linear error-
tolerant search on encrypted data using static indexes. Unfortunately, like [23, 58, 46]
for exact-match queries, this technique requires that the database be fixed in advance
in order to build a specialized index with entries for each keyword. Thus, their scheme

does not allow efficient data updates. Finally, like [2] for OPE, [48] constructs an



EFSE scheme but does not formally analyze its security (or propose an appropriate
security notion)—and as we shall see, our research shows flaws in the scheme’s security
and space-efficiency. Thus, no provably secure EFSE scheme supporting efficient data

updates exists.

1.4 Goal

The goal of this work is to provide provably secure solutions for supporting effi-
cient range and error-tolerant search on (updatable) encrypted data, specifically
through the natural primitives of order-preserving encryption (OPE) and efficient
fuzzy-searchable encryption (EFSE). At the least, it aims to provide the framework
for the study of these topics, by defining new security notions capturing appropriate

levels of security, and constructing the first provably secure schemes.

1.5 Contributions

I now introduce the contributions made in this thesis, which is joint work (coauthors
listed below) also appearing in published [15, 16] and submitted [14] literature. For
each subject, I provide an abridged introduction here; more detailed overviews begin

each respective chapter.
1.5.1 First cryptographic study of order-preserving encryption

This topic reflects results published at EUROCRYPT 2009 [15] with co-authors
Alexandra Boldyreva, Adam O’Neill, and Younho Lee. For the detailed introduc-
tion, see Section 3.1.

This work initiates the cryptographic study of order-preserving encryption. We
demonstrate that OPE schemes cannot possibly achieve the usual security stan-
dard for symmetric encryption, IND-CPA, and in order to derive any meaningful

security statement for OPE, a new security definition is needed. We opt for an
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“indistinguishability-based” security definition, in which an OPE scheme is consid-
ered secure if its behavior is computationally indistinguishable from that of an “ideal
object,” namely a random order-preserving function (OPF) on the same domain and
range. We then construct a scheme that achieves this level of security, uncovering in
the process a fundamental relationship between the set of OPFs on a given domain
and range, and the hypergeometric distribution.

A major point left unanswered here is that the underlying “ideal object” (a random
OPF) itself has not been studied cryptographically. From a practical standpoint, the
proof that our construction is indistinguishable from a random OPF only guarantees
that our scheme’s security is on a level with a random OPF. Indeed, we showed
that conventional notions of security (e.g. IND-CPA security) are necessarily broken
by OPE; thus, there is an inherent “information leakage” associated with our OPE

scheme that must be characterized.
1.5.2 One-wayness security analysis of the OPE ideal object

This topic reflects results published at CRYPTO 2011 [16] with co-authors Alexandra
Boldyreva and Adam O’Neill. For the detailed introduction, see Section 4.1.

In this chapter, we investigate the security properties of the ideal object in the
above security notion for OPE [15]. In particular, we analyze the “information leak-
age” of the ideal object, a random OPF, through various one-wayness definitions,
which capture the ability of an adversary to invert encryptions of random plaintexts,
or to find the distance between random plaintexts given their encryptions.

With some qualifications on plaintext and ciphertext space sizes, we find that a
random OPF is secure under these notions when the adversary is allowed a constant-
sized “guessing window,” while it is insecure when the adversary is allowed a guessing
window of size proportional to the square root of the message space size. These results

together show that a random OPF can be good at hiding the precise location of a

11



plaintext (or distance between two plaintexts) but poor at hiding the approximate
location of a plaintext (or distance between two plaintexts).

In addition, we show that our original OPE scheme can be generalized slightly
to achieve improved security in a limited sense. Furthermore, we show how our one-
wayness analysis can be applied when there are known plaintext-ciphertext pairs,

namely by splitting the space into subspaces and applying the analysis to each.
1.5.3 First cryptographic study of efficient error-tolerant encryption

This topic represents results co-authored with Alexandra Boldyreva and currently
under review [14]. For the detailed introduction, see Section 5.1.

This work initiates the formal cryptographic study of EFSE. We develop a theory
of FSE, defining primitives closeness domain (a domain along with a concept of
“closeness” on it), FSE on a closeness domain, and EFSE. We propose an appropriate
security definition for EFSE, show that the [48] scheme is insecure under the definition,
and unveil the first provably secure EFSE scheme. This scheme, like that of [48], is
space-inefficient, but we show information-theoretically that the space-(in)efficiency
is nevertheless optimal for FSE schemes on arbitrary closeness domains. We then
seek more space-efficient schemes for specific domains. Unfortunately, the optimal
security seems unattainable and thus we propose a practical level of security, called
macrostructure security, that ensures (at an intuitive level) only “local” information
is leaked about plaintexts. Finally, we discuss schemes achieving this security for

several useful closeness domains.
1.5.4 Impact

Our results represent a significant step forward in the lineage of efficiently searchable
encryption as discussed in Section 1.3. From a theoretical standpoint, our work repre-
sents the first cryptographic study of OPE and EFSE, which are the most efficient and

straightforward symmetric schemes allowing (respectively) range and error-tolerant
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search on encrypted data. Also, the novel primitives, security notions, and techniques
we establish provide a basis on which these (and related) topics can proceed in the
future. In the real world, practitioners who want to support range or error-tolerant
search for, say, cloud storage on untrusted servers, can study our security analysis
and determine whether the security vs. efficiency vs. functionality balance of OPE
or EFSE constructions are acceptable for their applications.

In fact, our groundbreaking OPE results as published in [15, 16] have received
significant attention from both the cryptography community and the database com-
munity as well as companies such as JP Morgan, Symantec, and SalesForce. Also,
our OPE scheme was successfully implemented and test-driven by the large CryptDB
project at MIT (http://css.csail.mit.edu/cryptdb/), and is freely available as
part of the CryptDB package. We anticipate similar interest in our EFSE results
once they are published, as error-tolerant search seems even more practicable (e.g.,

for searching biometric data) than range query search.
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CHAPTER 11

PRELIMINARIES

Topic-specific preliminaries will appear in each chapter, but here I cover primitives,
definitions, and conventions common to all topics. For the most part, this chapter

consists of ideas standard in mathematical or cryptographic literature.

NOTATION AND CONVENTIONS. For sets X and Y, if f: X — Y is a function, then
we call X the domain, Y the range, and the set {f(z) | x € X} the image of the
function. We refer to members of {0, 1}* as strings. If x is a string then |z| denotes
its length in bits and if x, y are strings then z||y denotes an encoding from which z,y
are uniquely recoverable. For £ € N we denote by 1¢ the string of ¢ “1” bits.

If M is a positive integer, then [M] denotes the set {1,..., M}. For simplicity, in
many cases we will assume a domain /plaintext space [M] and range/ciphertext space
[N], for N > M € N. In general, results for arbitrary spaces D, R can be derived
from those of [|D|], [|R|]—though (particularly for constructions) there may be some
technical challenges in this translation that are beyond the scope of my research.

For set S and n < |5, let Cmb; denote the set of n-element subsets of S. If S is
a finite set then z <> S denotes that z is selected uniformly at random from S. For
convenience, for any k¥ € N we write 1, 7o, ..., 2, < S as shorthand for the series of
assignments x; <> 5,25 <~ S,..., 1, < S. If A is a randomized algorithm and Coins
is the set from where it draws its coins, then we write a <~ A(z,y,...) as shorthand
for R < Coins; a < A(x,y,...; R), where the latter denotes that variable a obtains
the result of running A on inputs z,vy, ... and coins R.

In some of the algorithm descriptions, for ease and clarity of analysis, we use ab-

stract set notation. In a practical implementation, the sets can be implemented
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by some specialized data structure, or by vectors/lists with a common predeter-
mined order (e.g., numerical order.) If Enc is an encryption function with key
K, x = (x1,...,m) is a vector, and X = {xy,...,2,} is a set, then Enc(K,x) =
(Enc(K,z1),...,Enc(K,xp)) and Enc(K, X) = {Enc(K,x1),...,Enc(K,x4)}. The
same holds for decryption Dec.

We denote the probability of event A by Pr[ A]. If A depends on a random variable
X, we write P$r [ A(X)] for the probability of A when X sampled randomly from
distribution l))(.HI?B is another event, Pr[ A | B ] denotes the conditional probability
of A given B, and Psr [A(X) | B | denotes the conditional probability of A(X) given
B, for random vari;gls X sampled from distribution D. Often, the distribution being
used is clear and we omit it, as in I}r [A(X)] (where X <> D is implied).

Let E[X] denote the expected value of X. Again, we use the notation I% [ X(Y)]
or IE[X (Y)] to indicate that the expected value is taken over the rai{(_io[;nness in
selecting related random variable Y from distribution D.

An adversary is an algorithm. By convention, the running time of an adversary
includes that of its overlying experiment. All algorithms are assumed to be efficient,
and all functions are assumed to be efficiently computable.

For security notions, we often require that any efficient adversary’s advantage
will be “small.” This condition is intentionally left informal as in symmetric key
cryptography, we usually use blockciphers, which have fixed parameters; thus, we
cannot bound advantage in terms of a security parameter. Judging what constitutes

“small” advantage depends on the application and security needs, and is left to the

reader.

SYMMETRIC ENCRYPTION. A symmetric encryption scheme SE = (K,Enc, Dec)

with associated plaintext space D and ciphertext space R consists of three algorithms.

e The randomized key generation algorithm K returns a secret key K.
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e The (possibly randomized) encryption algorithm Enc takes a secret key K and

a plaintext m to return a ciphertext c.

e The deterministic decryption algorithm Dec takes a secret key K and a ci-
phertext ¢ to return a plaintext m or a special symbol L indicating that the

ciphertext was invalid.

We require the usual correctness condition, Dec(K, (Enc(K, m)) = m for all K output

by K and all m € D. Finally, we say that S€ is deterministic if Enc is deterministic.

INDISTINGUISHABILITY UNDER CHOSEN-PLAINTEXT ATTACK. Let LR(-,-,b) denote
the left-or-right selector function that on inputs mg, m; returns my. For a symmetric
encryption scheme SE = (K, Enc, Dec), adversary A, and b € {0, 1}, consider the
IND-CPA experiment in Figure 1, where it is required that each query (mq, m;) that

A makes to its oracle satisfies |mg| = |my].

ind-cpa-b

Experiment Expl, (A)
K&K
b/&ASnC(K,ER(-,~,b))
Return o' .

Figure 1: The IND-CPA experiment.
For an adversary A, define its IND-CPA advantage against SE as
ind-cpa . ind-cpa-1 . ind-cpa-0 _
Advge P(A) = Pr|Expge (A) = 1] —Pr [Expss (A)=1].

We say that S€ is indistinguishable under chosen-plaintext attack (IND-CPA-secure)

if the IND-CPA advantage of any adversary against S€ is small.

PSEUDORANDOM FUNCTIONS (PRFS). We say that F = (K, F) is a function family
on domain D and range R if K outputs random keys and for each key K < K the
map F(K,-) is a function from D to R. We refer to F(K,-) as an instance of F.

Let Funcpr denote the set of all functions from D to R. For any adversary A, the
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prf-advantage against function family F = (I, F) is defined as
Advi(A) = Pr [AFEI)=1]- Pr [AO=1]
K&K f < Funcp »

We say that F is a pseudorandom function (PRF) if for any efficient adversary A,
AdvY(A) is small.

BLOCKCIPHERS. A blockcipher is a function family Enc : {0,1}* x {0,1}* — {0,1}"
where key length k and input/output length n are parameters, and it is required that
for every K € {0,1}*, Enc(K, ) is a permutation (bijection) from {0, 1}" to itself. In
this document, when we refer to a “blockcipher” we mean one that is (assumed to
be) psuedorandom permutation secure under chosen-ciphertext attack (PRP-CCA),

such as Advanced Encryption Standard (AES).

METRIC SPACES. (D,d) is a metric space if D is a set and d (the metric) is a real-

valued function on D x D such that for all x,y,z € D,

d(xz,y) >0 dlz,y)=0iff x =y

d(z,y) = d(y, ) d(z,z) < d(z,y) + d(y, 2).
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CHAPTER II1

ORDER-PRESERVING ENCRYPTION AND
PSEUDORANDOM ORDER-PRESERVING FUNCTIONS

As introduced in Section 1.3, order-preserving symmetric encryption (OPE) is a de-
terministic encryption scheme (a.k.a. cipher) whose encryption function preserves
numerical ordering of the plaintexts. Modern study of OPE was initiated by [2], who
suggested it for use in supporting efficient (sub-linear-time) handling of range queries
on encrypted data.

One might wonder whether order-preserving encryption is necessary to allow effi-
cient range search on encrypted data. It is not—for example, the work of [49] shows
that prefix-preserving encryption (where messages with equal prefixes are encrypted
to ciphertexts with equal prefixes) also allows efficient range search, and other solu-
tions may be possible. However, assuming a server accurately supports range queries,
note that range query responses inherently leak relative ordering of underlying plain-
texts. And if we must leak this information at least query-by-query, why not leak it
directly—that is, allow order to be efficiently computable from ciphertexts? Then,
the database server can index data according to this leaked information, enabling
much faster search. This is precisely what order-preserving encryption gives us.

Indeed, OPE not only allows efficient range queries, but allows indexing and query
processing to be done exactly and as efficiently as for unencrypted data, since a query
consists of just the encryptions of a and b and the server can locate the desired cipher-
texts in logarithmic-time via standard tree-based data structures. Such transparency
is appealing to practitioners, who can effortlessly implement OPE in applications that

previously ran in the cleartext—changing nothing on the database server side, which
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may be oblivious to whether OPE is used or not.

The seminal work [2] suggests the OPE primitive and provides a construction.
However, the construction is rather ad-hoc and has certain limitations, particularly
that its encryption algorithm must take as input all the plaintexts in the database. It
is not always practical to assume that users know all these plaintexts in advance, so a
stateless scheme whose encryption algorithm can process single plaintexts on the fly
is preferable. Moreover, [2] does not define security nor provide any formal security
analysis. Thus, our following research [15] represents the first cryptographic study of

OPE in the provable-security tradition. We first give an overview of the results.
3.1 Overview

DEFINING SECURITY OF OPE. Our first goal is to devise a rigorous definition of
security that OPE schemes should satisfy. Of course, such schemes cannot satisfy
standard notions of security, such as indistinguishability against chosen-plaintext at-
tack (IND-CPA), as they are not only deterministic, but also leak the order-relations
among the plaintexts. (In particular, an adversary against an OPE scheme that
queries two pairs with opposite order can trivially break IND-CPA, as the ciphertexts
have the same order as their plaintexts.) So, although we cannot target a notion on
the level of IND-CPA, we want to define the best possible security subject to this
order-preserving constraint. (Such an approach was taken previously in the case of
deterministic public-key encryption [9, 17, 10], on-line ciphers [8], and deterministic

authenticated encryption [56].)

WEAKENING IND-CPA. One approach is to try to weaken the IND-CPA defini-
tion appropriately. Indeed, in the case of deterministic symmetric encryption this
was done by [11], which formalizes a notion called indistinguishability under distinct
chosen-plaintext attack or IND-DCPA. (The notion was subsequently applied to mes-

sage authentication codes in [7].) Since deterministic encryption leaks equality of
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plaintexts, IND-DCPA restricts the adversary in the IND-CPA experiment to make
queries to its oracle that avoid the obvious attack exploiting equality-preservation. We
generalize this to a notion we call indistinguishability under ordered chosen-plaintext
attack or IND-OCPA, asking these sequences instead to satisfy the same order rela-
tions. (See Section 3.2.2.) Surprisingly, we go on to show that this plausible-looking
definition is not useful for us, because it cannot be achieved by an OPE scheme unless

the size of its ciphertext space is prohibitively large.

AN ALTERNATIVE APPROACH. Instead of trying to further restrict the adversary
in the IND-OCPA definition, we turn to an approach along the lines of pseudo-
random functions (PRFs) or permutations (PRPs), requiring that no adversary can
distinguish between oracle access to the encryption algorithm of the scheme, and a
corresponding “ideal” object. In our case the latter is a (uniformly) random order-
preserving function on the same domain and range. Since order-preserving functions
are injective, it also makes sense to aim for a stronger security notion that addi-
tionally gives the adversary oracle access to the decryption algorithm or the inverse
function, respectively. We call the resulting notion POPF-CCA for pseudorandom

order-preserving function under chosen-ciphertext attack.

TOWARDS A CONSTRUCTION. After having settled on the POPF-CCA notion, we
would naturally like to construct an OPE scheme meeting it. Essentially, the encryp-
tion algorithm of such a scheme should behave similarly to an algorithm that samples
a random order-preserving function from a specified domain and range on-the-fly
(dynamically as new queries are made). (Here we note a connection to implementing
huge random objects [32] and lazy-sampling [13].) But it is not immediately clear
how this can be done; blockciphers, our usual tool in the symmetric-key setting, do
not seem helpful in preserving plaintext order. Our construction takes a different
route, borrowing some tools from probability theory. We first uncover a relation be-

tween a random order-preserving function and the hypergeometric (HG) and negative
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hypergeometric (NHG) probability distributions.

THE CONNECTION TO NHG. To gain some intuition, first observe that any order-
preserving function f from {1,..., M} to {1,..., N} can be uniquely represented by
a combination of M out of N ordered items (see Proposition 3.3.1). Now let us recall
a probability distribution that deals with selections of such combinations. Imagine
we have NN balls in a bin, out of which M are black and N — M are white. At each
step, we draw a ball at random without replacement. Consider the random variable Y
describing the total number of balls removed after we collect the z-th black ball. This
random variable follows the so-called negative hypergeometric (NHG) distribution.
Using our representation of an order-preserving function, it is not hard to show that
f(z) for a given point x € {1,..., M} has a NHG distribution over a random choice of
f. Assuming an efficient sampling algorithm for the NHG distribution, this suggests

a rough idea for a scheme, but there are still many subtleties to take care of.

HANDLING MULTIPLE POINTS. First, assigning multiple plaintexts to ciphertexts
independently according to the NHG distribution cannot work, because the resulting
encryption function is unlikely to even be order-preserving. One could try to fix this
by keeping track of all previously encrypted plaintexts and their ciphertexts (in both
the encryption and decryption algorithms) and adjusting the parameters of the NHG
sampling algorithm appropriately for each new plaintext. But we want a stateless

scheme, so it cannot keep track of such previous assignments.

ELIMINATING THE STATE. As a first step towards eliminating the state, we show
that by assigning ciphertexts to plaintexts in a more organized fashion, the state
can actually consist of a static but exponentially long random tape. The idea is
that, to encrypt plaintext z, the encryption algorithm performs a binary search down
to x. That is, it first assigns Enc(K, M/2), then Enc(K, M/4) if © < M/2 and

Enc(K,3M/4) otherwise, and so on, until Enc(K,x) is assigned. Crucially, each

21



ciphertext assignment is made according to the output of the NHG sampling algorithm
run on appropriate parameters and coins from an associated portion of the random
tape indexed by those parameters. (The decryption algorithm can be defined similarly.)
Now, it may not be clear that the resulting scheme induces a random order-preserving
function from the plaintext to ciphertext space (does its distribution get skewed by
the binary search?), but we prove (by induction on the size of the plaintext space)
that this is indeed the case.

Of course, instead of making the long random tape the secret key K for our scheme,
we can make it the key for a PRF and generate portions of the tape dynamically as
needed. However, coming up with a practical PRF construction to use here requires
some care. For efficiency it should be blockcipher-based. Since the size of parameters
to the NHG sampling algorithm as well as the number of random coins it needs varies
during the binary search, and also because such a construction seems useful in general,
it should be both variable input-length (VIL) and variable output-length. Such a
construction we call a length-flexible (LF)-PRF. We propose a generic construction of
an LF-PRF from a VIL-PRF and a (keyless) VOL-PRG (pseudorandom generator).
Efficient blockcipher-based VIL-PRFs are known, and we suggest a highly efficient
blockcipher-based VOL-PRG that is apparently folklore. POPF-CCA-security of the
resulting OPE scheme can then be easily proved assuming only standard security

(pseudorandomness) of the underlying blockcipher.

SWITCHING FROM NHG TO HG. Finally, our scheme needs an efficient sampling
algorithm for the NHG distribution. Unfortunately, the existence of such an algorithm
seems open. It is known that NHG can be approximated by the negative binomial
distribution [51], which in turn can be sampled efficiently [28, 26], and that the
approximation improves as M and N grow. However, quantifying the quality of

approximation for fixed parameters seems difficult.
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Instead, we turn to a related probability distribution, namely the hypergeomet-
ric (HG) distribution, for which a very efficient exact (not approximated) sampling
algorithm is known [42, 43]. In our balls-and-bin model with M black and N — M
white balls, the random variable X specifying the number of black balls in our sam-
ple as soon as y balls are picked follows the HG distribution. The scheme based on
this distribution, which is the one described in the body of the chapter, is rather
more involved, but nearly as efficient: instead of O(log M) - Tyagp running time it is
O(log N)-Tucp (where Tnngp, Tuep are the running times of the sampling algorithms
for the respective distributions), but we show that it is O(log M) - Tagp on average.

We note that the hypergeometric distribution was also used in [35] for sampling
pseudorandom permutations and constructing blockciphers for short inputs. The
authors of [35] were unaware of the efficient sampling algorithms for HG [42, 43] and

provided their own realizations based on general sampling methods.

FURTHER SECURITY. It is important to realize that the “ideal” object in our POPF-
CCA definition (a random order-preserving function), and consequently our OPE
construction meeting it, inherently leak some information about the underlying plain-
texts. Characterizing this leakage is an important next step in the study of OPE and
is covered in Chapter 4.

For now, the POPF-CCA definition captures in some sense a “best-possible” se-
curity notion for OPE. Note that it is usually the case that a security notion for a
cryptographic object is met by a “random” one (which is sometimes built directly
into the definition, as in the case of PRFs and PRPs). So it is natural to demand
that an OPE scheme satisfy POPF-CCA.

Nevertheless, we caution that the further security analysis in Chapter 4, and pos-
sibly more analysis not yet performed, may be important for practitioners to evaluate

how our POPF-CCA-secure OPE fits the security needs of an application.

ON A MORE GENERAL PRIMITIVE. To allow efficient range queries on encrypted data,
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it is sufficient to have an order-preserving hash function family H (not necessarily
invertible). The overall OPE scheme would then have secret key (Kgpe, Kpr) where
Kene is a key for a normal (randomized) encryption scheme and Ky is a key for H,
and the encryption of x would be Enc(Kepe, z)||H(Kp,x) (cf. efficiently searchable
encryption (ESE) in [9]). Our security notion (in the CPA case) can also be applied to
such H. In fact, there has been some work on hash functions that are order-preserving
or have some related properties [50, 27, 39]. But none of these works are concerned
with security in any sense. Since our OPE scheme is efficient and already invertible,

we have not tried to build any secure order-preserving hash separately.

ON THE PUBLIC-KEY SETTING. Finally, it is interesting to note that in a public-
key setting one cannot expect OPE to provide any privacy at all. Indeed, given a
ciphertext ¢ computed under public key pk, anyone can decrypt ¢ via a simple binary-
search. In the symmetric-key setting a real-life adversary cannot encrypt messages

itself, so such an attack is unlikely to be feasible.

3.2 Order-Preserving Encryption and Its Security

We begin by defining a primitive for deterministic encryption schemes that preserve

order on their plaintext space.
3.2.1 Order-Preserving Encryption

For A,B C N with |A| < |B|, a function f: A — B is order-preserving (a.k.a.
monotonically increasing) if for all 4,5 € A, f(i) > f(j) iff i > j. We say that
deterministic encryption scheme SE = (K, Enc, Dec) with plaintext and ciphertext
spaces D, R is an order-preserving encryption (OPE) scheme if Enc(K, ) is an order-
preserving function from D to R for all K output by K (with elements of D, R
interpreted as numbers, encoded as strings).

We now address the goal of establishing an appropriate notion of security for

objects of this primitive.
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3.2.2 Seeking an OPE security notion by weakening IND-CPA

OPE obviously cannot be IND-CPA-secure (see Chapter 2), as it leaks order of plain-
texts. To see this, consider an adversary that submits two “crossing” left /right-queries
(mg, m1), (my, m}), where (say) mo < m{, and m; > m/. Then corresponding OPE-
encrypted ciphertexts ¢, ¢ will satisfy ¢ < ¢ in ind-cpa-0 and ¢ > ¢ in ind-cpa-1,
so the adversary can easily achieve IND-CPA advantage 1. Thus, a natural question
arises: can we weaken the IND-CPA-notion just enough so that it is achievable by an
OPE scheme, but is still as strong as possible?

Past, related efforts have succeeded in this approach. Security of deterministic
symmetric encryption was introduced in [11], as a notion they call security under
distinct chosen-plaintext attack (IND-DCPA). (It will not be important to consider
chosen-ciphertext attacks now.) The idea is that because deterministic encryption
leaks plaintext equality, the adversary A in the IND-CPA experiment is restricted to
make only distinct queries on either side of its oracle (as otherwise there is a trivial
attack). That is, supposing A makes queries (mj,mi),...,(md, m?), they require
that mj,...m{ are all distinct for b € {0,1}. One could equivalently require that left
queries and right queries have the same equality pattern, i.e., mj) = mé if and only if
mi = m] for all indices i, j.

Noting that any OPE scheme analogously leaks order relations of plaintexts, con-

sider extending the above approach to take this into account. In particular, let us

require the above queries made by A to have the same “order pattern.”

IND-OCPA. Formally, let LR(-,-,b) denote the function that on inputs mg, m; re-
turns my,. For a symmetric order-preserving encryption scheme OPE = (K, Enc, Dec),

adversary A, and b € {0, 1}, consider the following experiment:
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ind-ocpa-b

Experiment Exp gy (A)
K&K
d <& ASnc(K,ER(-,-,b))

Return d

We require that each query (mg, m;) that A makes to its oracle satisfies |mg| = |m4],
and also that the left/right-queries have the same order pattern, i.e. m} < mg iff
mé < m{ for all 1 <14,j < g. For an adversary A, define its indistinguishability under

ordered chosen-plaintest attack (IND-OCPA) advantage against OPE as

AdvEEST(A) = Pr| Expgee™™ (4) = 1] - Pr | Explfe ™ (4) = 1

IND-OCPA 18 NOT USEFUL. IND-OCPA security seems like a promising way to
analyze security for OPE. Surprisingly, it turns out to be not useful for us. Below,
we show that IND-OCPA is unachievable by a practical order-preserving encryption
scheme, in that an OPE scheme cannot be IND-OCPA assuming its ciphertext space
size can be bounded by an exponential function in the message space size. (This

extends a result from our published paper [15].)

Theorem 3.2.1. Let OPE = (K, Enc, Dec) be an order-preserving encryption scheme
on plaintext-space [M] and ciphertext-space [N], where N < tIM/4 for some integer

t > 1. There exists an IND-OCPA adversary A against OPE such that

AdvisE™(A) > T

Furthermore, A runs in time O(log N') and makes at most 3 oracle queries.
The proof of this result is in Appendix A.1. Notice then that if /V is exponential in
M, there exists an adversary with constant, nonzero IND-OCPA advantage. To have

N super-exponential in M would be inconceivable, so for all intents and purposes,

Theorem 3.2.1 shows IND-OCPA is unachievable for all practical OPE schemes.
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In addition, the attack (like the weaker “big-jump attack” of our published paper
[15]) implies that an OPE scheme inherently leaks more information about the plain-
texts than just their order, namely some information about their relative distances.

We return to this point in Chapter 4.
3.2.3 OPE security through pseudorandom order-preserving functions

Since OPE inherently leaks distance information about plaintexts, further weakening
of IND-CPA does not seem very fruitful, as long as attacks can still sample far-
apart versus close-together plaintexts. We instead assume a new starting point in the
search for an OPE security notion: namely, security of pseudorandom permutations
(PRPs) [31] or on-line PRPs [8], in which oracle access to the function in question
should be indistinguishable from access to the corresponding “ideal” random object,
e.g., a random permutation or a random on-line permutation. As order-preserving
functions are injective, we consider the “strong” version of such a definition where an
inverse oracle is also given.

Fix an order-preserving encryption scheme SE = (K, Enc, Dec) with plaintext
space D and ciphertext space R, |D| < |R|. For an adversary A against S&, define
its pseudorandom order-preserving function advantage under chosen-ciphertext attack
(POPF-CCA-advantage) against SE as

Advgogpf—cca<A) — Pr [Aé'nc(K,-),'Dec(K,-) _ 1] . Pr A9 = 1] ’
K&K g & OPFp =
where OPFp » denotes the set of all order-preserving functions from D to R. We say a
scheme is POPF-CCA-secure if the POPF-CCA-advantage of any efficient adversary

against the scheme is small.

LAzy SAMPLING. To build a scheme that achieves POPF-CCA-security, we cannot
simply select a random order-preserving function and sample it, because it is inef-

ficient to even describe such an object. Rather, we seek a way to “lazy-sample” (a
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term from [13]) a random order-preserving function and its inverse—that is, generate
points of the function on-the-fly, as needed.t

As shown in [13], lazy-sampling of “exotic” functions with many constraints can be
tricky. In the case of a random order-preserving function, it turns out that straight-
forward procedures—which assign a random point in the range to a queried domain
point, subject to the obvious remaining constraints—do not work (that is, the result-
ing function is not uniformly distributed over the set of all such functions). So how

can we lazy-sample such a function, if it is possible at all? We address this issue next.

3.3 Lazy-Sampling a Random Order-Preserving Function

In this section, we show how to lazy-sample a random order-preserving function and
its inverse. This result may also be of independent interest, since the more general
question of what functions can be lazy-sampled is interesting in its own right, and
it may find other applications as well, e.g. to [57]. We first uncover a connection
between a random order-preserving function and the hypergeometric (HG) probability

distribution.
3.3.1 The hypergeometric connection

To gain some intuition we start with the following claim.

Proposition 3.3.1. There is bijection between the set OPFp » containing all order-
preserving functions from a domain D of size M to a range R of size N > M and

the set of all possible combinations of M out of N ordered items.

Proof. Without loss of generality, it is enough to prove the result for domain [M]

and range [N]. Imagine a graph with its xz-axis marked with integers from 1 to

'For example, in the case of a random function from the set of all functions one can simply
assign a random point from the range to each new point queried from the domain. In the case of a
random permutation, the former can be chosen from the set of all previously unassigned points in
the range, and lazy-sampling of its inverse can be done similarly. A lazy-sampling procedure for a
random on-line PRP and its inverse via a tree-based characterization was given in [8].
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M and its y = f(z)-axis marked with integers from 1 to N. Given a set S of M
distinct integers from [N], construct an order-preserving function from [M] to [N]
by mapping each i € [M] to the ith smallest element in S. So, an M-out-of-N
combination corresponds to a unique order-preserving function. On the other hand,
consider an order-preserving function f from [M] to [IN]. The image of f defines a set
of M distinct objects in [N], so an order-preserving function corresponds to a unique

M-out-of-N combination. O

Using the above combination-based characterization it is straightforward to justify
the following equality, defined for M, N € N and any = € [M — 1],y € [N}

Pr [f(x)éy<f(1’+1)]=w- (1)
f < OPF ) (M)

Now let us recall a particular distribution dealing with an experiment of selecting

from combinations of items.

HYPERGEOMETRIC DISTRIBUTION. Consider the following balls-and-bins model. As-
sume we have N balls in a bin out of which M balls are black and N — M balls are
white. At each step we draw a ball at random, without replacement. Consider a
random variable X that describes the number of black balls chosen after a sample
size of y balls are picked. This random variable has a hypergeometric distribution,
and the probability that X = x for the parameters N, M,y is
() - (i)
)

Intuitively, Equations 1 and 2 imply that we can construct a random order-preserving

PHGD(:E;N7M7y): (2)

function f from [M] to [N] as an experiment involving N balls, M of which are black.
Choosing balls randomly without replacement, if the y-th ball we pick is black then
the least unmapped point in the domain is mapped to y under f. Of course, this
experiment is too inefficient to be performed directly when any of the parameters

are large. But we will use the hypergeometric distribution to design procedures that
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efficiently and recursively lazy-sample a random order-preserving function and its

inverse.
3.3.2 The LazySample algorithms

Here we give our algorithms LazySample, LazySamplelnv that lazy-sample a ran-
dom order-preserving function from domain D to range R, |D| < |R/|, and its inverse,
respectively. The algorithms share and maintain joint state. We assume that both D

and R are sets of consecutive integers.

TwO SUBROUTINES. Our algorithms make use of two subroutines. The first, denoted
HGD, takes inputs M, N, and y € {0,1,..., N} to return = € {0,1,..., M} such
that for each z* € {0,1,..., M} we have x = z* with probability Pygp(z; N, M,y)
over the coins of HGD. (Efficient algorithms for this exist, and we discuss them in
Section 3.3.5.) The second, denoted GetCoins, takes inputs 1¢, D, R, and b|z, where
b€ {0,1} and 2 € R if b = 0 and z € D otherwise, to return cc € {0,1}*. The
purpose of GetCoins is to provide a consistent random coin for a particular call to
a sampling algorithm such as HGD, where the parameters input to GetCoins match

the parameters to be sent to the sampling algorithm.

THE ALGORITHMS. To define our algorithms, let us denote by w <= S that w is
assigned a value sampled uniformly at random from set S using coins cc of length
(s, where {5 denotes the number of coins needed to do so. Let ¢ = ¢(M, N,y — )
denote the number of coins needed by HGD on inputs M, N,y — r. Our algorithms
are given in Figure 2. Note that the arrays F' and [, initially empty, are global and
shared between the algorithms; also, for now, think of GetCoins as returning fresh
random coins. We later implement it by using a PRF on the same parameters to

eliminate the joint state.

OVERVIEW. To determine the image of input m, LazySample employs a strategy

of mapping “range gaps” to “domain gaps” in a recursive, binary search manner. By
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LazySample(D, R, m) LazySamplelnv(D, R, c)

01 M <« |D| ;N « |R| 20 M < |D| ; N < |R]

02 d < min(D) -1 ;r+ min(R) —1 21 d<« min(D)—1 ;7 + min(R) —1

03 y <1+ [N/2] 22 y <1+ [N/2]

04 If |D| =1 then 23 If |D| = 1 then m < min(D)

05 If F[D,R,m] is undefined then 24  If F[D,R,m] is undefined then

06 ce < GetCoins(1*, D, R, 1||jm) 25 cc < GetCoins(1*, D, R, 1||m)

07 F[D,R,m] <R 2% F[D,R,m] <R

08  Return F[D,R,m)| 27 If F[D, R, m| = c then return m
28 Else return L

09 If I[D,R,y] is undefined then 29 If I[D,R,y| is undefined then

10 cc<= GetCoins(14,D, R, 0]y) 30 cc<= GetCoins(1%,D, R, 0||y)
11 ID,R,y] < HGD(M,N,y —r;cc) 31 I[D,R,y] <~ HGD(M, N,y —r;cc)

12 < d+I[D, R,y 32 x<d+1[D,R,y]

13 If m < z then 33 If ¢ <y then

14 D<«{d+1,...,z} 3 D+ {d+1,... x}

15 R« {r+1,....y} 3 R+ {r+1,...,y}

16 Else 36 Else

17 D«{z+1,...,d+ M} 39 D{zx+1,...,d+ M}

18 R<+—{y+1,...,r+ N} 33 R+ {y+1,...,r+ N}

19 Return LazySample(D, R, m) 39 Return LazySamplelnv(D, R, ¢)

Figure 2: Algorithms LazySample and LazySamplelnv for lazy-sampling a pseu-
dorandom order-preserving function and its inverse by sampling the hypergeometric
distribution.

“range gap” or “domain gap,” we mean an imaginary barrier between two consecutive
points in the range or domain, respectively. When run, the algorithm first maps the
middle range gap y (the gap between the middle two range points) to a domain
gap. To determine the mapping, on line 11 it sets, according to the hypergeometric
distribution, how many points in D are mapped up to range point y and stores this
value in array I. (In the future the array is referenced instead of choosing this value
anew.) Thus we have that f(z) <y < f(z+1) (cf. (1)), where x = d + I[D,R,y] as
computed on line 12. So, we can view the range gap between y and y + 1 as having
been mapped to the domain gap between z and x + 1.

If the input domain point m is below (resp. above) the domain gap, the algo-

rithm recurses on line 19 on the lower (resp. upper) half of the range and the lower
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(resp. upper) part of the domain, mapping further “middle” range gaps to domain
gaps. This process continues until the gaps on either side of m have been mapped
to by some range gaps. Finally, on line 07, the algorithm samples a range point
uniformly at random from the “window” defined by the range gaps corresponding to
m’s neighboring domain gaps. This result is assigned to array F' as the image of m

under the lazy-sampled function.
3.3.3 Correctness

When GetCoins returns truly random coins, it should be clear that LazySample
and LazySamplelnv are consistent and sample an order-preserving function and
its inverse respectively. But we need a stronger claim; namely, that our algorithms
sample a (uniformly) random order-preserving function and its inverse. We show this
by arguing that any (even computationally unbounded) adversary has no advantage
in distinguishing oracle access to a random order-preserving function and its inverse
from that to the algorithms LazySample, LazySampleIlnv. The following theorem

states this claim.

Theorem 3.3.2. Suppose GetCoins returns truly random coins on each new input.
Then for any (even computationally unbounded) algorithm A we have
Pr [Ag(),g*l(-) _ 1:| — Pr |:ALazySample(’D,’R,~),LazySampleInv(D,R,~) — 1} 7
g & OPFD’R

where g~' denotes the inverse of OPF g.

We clarify that in the theorem, A’s oracles for LazySample, LazySamplelnv in
the right-hand-side experiment share and update joint state. It is straightforward to
check, via simple probability calculations, that the theorem holds for an adversary A
that makes one query. The case of multiple queries is harder. The reason is that the
distribution of the responses given to subsequent queries depends on which queries

A has already made, and this distribution is difficult to compute directly. Instead
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our proof uses strong induction in a way that parallels the recursive nature of our

algorithms. The proof is located in Appendix A.2.
3.3.4 Efficiency

We characterize efficiency of our algorithms in terms of the number of recursive calls
made by LazySample or LazySamplelnv before termination. (The proposition
below is just stated in terms of LazySample for simplicity; the analogous result

holds for LazySamplelnv.)

Proposition 3.3.3. The number of recursive calls made by LazySample is at most

log N + 1 in the worst-case and at most 5log M + 12 on average.

The proof is located in Appendix A.3 and relies on some bounds by Chvétal on
the tail of the hypergeometric distribution. However, we must note that one of the
results of Proposition 3.3.3 was recently improved by Yum and Lee [66] through more
in-depth analysis. They showed that our scheme in fact recurs less than log M + 3
times on average. We will thus use this bound.

Note that the algorithms make one call to HGD on each recursion, so an upper-
bound on their running times is then at most (log N +1) - Tagp in the worst-case and
at most (log M 4 3) - Tugp on average, where Tygp denotes the running time of HGD
on inputs of size at most log N. However, this does not take into account the fact
that the size of these inputs decrease on each recursion. Thus, better bounds may be

obtained by analyzing the running time of a specific realization of HGD.
3.3.5 Realizing HGD

Kachitvichyanukul and Schmeiser [42] designed an efficient implementation of a sam-
pling algorithm HGD for the hypergeometric distribution. Their algorithm is exact;
it is not an approximation by a related distribution. It is implemented in Wolfram

Mathematica and other libraries, and is fast even for large parameters. However, on
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small parameters the algorithms of [63] perform better. Since the parameter size to
HGD in our LazySample algorithms shrinks across the recursive calls from large to
small, it could be advantageous to switch algorithms at some threshold. We refer the
reader to [63, 42, 43, 26] for more details.

We comment that the algorithms of [42] are technically only “exact” when the un-
derlying floating-point operations can be performed to infinite precision. In practice,
one has to be careful of truncation error. For simplicity, Theorem 3.3.2 does not take
this into account, as in theory the error can be made arbitrarily small by increasing
the precision of floating-point operations (independently of M, N). But we make this

point explicit in Theorem 3.4.3 where we analyze security of our actual scheme.

3.4 Our OPE Scheme and its Analysis

Algorithms LazySample, LazySamplelnv cannot be directly converted into en-
cryption and decryption procedures because they share and update a joint state,
namely arrays F' and I, which store the outputs of the randomized algorithm HGD.
For our actual scheme, we can eliminate this shared state by implementing the sub-
routine GetCoins (which produces coins for HGD) as a PRF, and re-constructing
entries of F' and I on-the-fly as needed. However, coming up with a practical yet
provably secure construction requires some care. Below we give the details of our

PRF implementation, which we call TapeGen.

3.4.1 The TapeGen PRF

LENGTH-FLEXIBLE PRFS. In practice, it is desirable that TapeGen be both variable
input-length (VIL)- and variable output-length (VOL)-PRF,? a primitive we call a
length-flexible (LF)-PRF. (In particular, the number of coins used by HGD can be

beyond one block of an underlying blockcipher in length, ruling out the use of most

2That is, a VIL-PRF takes inputs of varying lengths. A VOL-PRF produces outputs of varying
lengths specified by an additional input parameter.
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practical pseudorandom VIL-MACs.) That is, LF-PRF TapeGen with key-space Keys
takes as input a key K € Keys, an output length 1¢, and # € {0,1}* to return
y € {0,1}%. Define the following oracle R taking inputs 1° and x € {0,1}* to return
y € {0,1}¢, which maintains as state an array D (initially empty; i.e., D[x] is the

empty string for all x):

Oracle R(1% )
If |D[z]| < ¢ then
r e {0, 1108
Dixz] < Dl[z]||r
Return D[z]; ... D|x],
Above and in what follows, m; denotes the i-th bit of a string m, and we require
everywhere that ¢ < (., for an associated maximum output length ¢,... For an
adversary A, define its length-flexible pseudorandom function (LF-PRF) advantage

against TapeGen as

AdvEet

TapeGen

(A) = Pr[ATepesen(he) — 1] _ pp[ARC) = 1]

where the left probability is over the random choice of K € Keys. Most practical
VIL-MACs (message authentication codes) are PRFs and are therefore VIL-PRFs,
but the VOL-PRF requirement does not seem to have been addressed previously. To
achieve it we suggest using a VOL-PRG (pseudorandom generator) as well. Let us

define the latter.

VARIABLE-OUTPUT-LENGTH PRGS. Let G be an algorithm that on input a seed
s € {0,1}* and an output length 1° returns y € {0, 1}¢. Let Og be the oracle that on
input 1¢ chooses a random seed s € {0, 1}* and returns G(s, £), and let S be the oracle
that on input 1° returns a random string r € {0,1}*. For an adversary A, define its

variable-output-length pseudorandom function (VOL-PRG) advantage against G as
Adv)PE(A) = Pr[A%0 =1] —pr[4%0 =1] .
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As mentioned above, we require above that ¢ < /.., for an associated maximum
output length .. Call G consistent if Pr[G(s,¢') = G(s,€);...G(s,0)p] = 1 for
all ¢/ < ¢, with the probability over the choice of a random seed s € {0,1}*. Many

PRGs are consistent due to their “iterated” structure.

OurR LF-PRF CONSTRUCTION. We propose a general construction of an LF-PRF
that composes a VIL-PRF with a consistent VOL-PRG by using the output of the
former as the seed for the latter. Formally, let F' be a VIL-PRF and G be a con-
sistent VOL-PRG, and define the associated pseudorandom tape generation function
TapeGen which on inputs K, 1°, x returns G(1¢, F(K, z)).

The following, proved in Appendix A.4, says that TapeGen is indeed an LF-PRF
if F'is a VIL-PRF and G is a VOL-PRG.

Proposition 3.4.1. Let A be an adversary against TapeGen that makes at most q
queries to its oracle of total input length (i, and total output length low. Then there

exists an adversary By against F' and an adversary Bs against G such that

AdvPe

TapeGen

(A) < AdvRY(By) + Advy' ™8(By) .

Adversaries By, B, make at most q queries of total input length (i, and total output

length Coy to their respective oracles and run in the time of A.

Concretely, we suggest the following blockcipher-based consistent VOL-PRG for
G. Let E: {0,1}* x {0,1}™ — {0,1}" be a blockcipher. Define the associated VOL-
PRG GIE] with seed-length k£ and maximum output length n - 2", where G[E] on
input s € {0,1}* and 1¢ outputs the first ¢ bits of E(s, (1))||E(s, (2))|--- (Here (i)
denotes the n-bit binary encoding of i € N.) The following, proved in Appendix A.5,
says that G[E] is a consistent VOL-PRG if E is a PRF.

Proposition 3.4.2. Let E: {0,1}F x {0,1}" — {0,1}" be a blockcipher, and let A

be an adversary against G[E| making at most q oracle queries whose responses total
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at most p-n bits. Then there is an adversary B against E such that
AdvyPe(A) < g - Advy(B) .

Adversary B makes at most p queries to its oracle and runs in the time of A. Fur-

thermore, G|E| is consistent.

Now, to instantiate the VIL-PRF F' in the TapeGen construction, we suggest
OMAC (a.k.a. CMAC) [40], which is also blockcipher-based and introduces no addi-
tional assumption. Then the secret key for TapeGen consists only of that for OMAC,

which in turn consists of just one key for the underlying blockcipher (e.g. AES).

3.4.2 OPE scheme and analysis

THE SCHEME. Let TapeGen be as above, with key-space Keys. Our associated
order-preserving encryption scheme OPERCP[TapeGen| = (KHCP, EnctGP DeclGD)
is defined as follows. The plaintext and ciphertext spaces are sets of consecutive in-
tegers D, R, respectively. Algorithm KHGP returns a random K € Keys. Algorithms
EnclGP DeclCP are the same as LazySample, LazySamplelnv, respectively, ex-
cept that HGD is implemented by the algorithm of [42] and GetCoins by TapeGen
(so there is no need to store the elements of F' and I). See Figure 3 for the formal
descriptions of Enc'®P and Dect'®P | where as before £, = ((M, N,y — r) is the num-
ber of coins needed by HGD on inputs M, N,y — r, and {z is the number of coins
needed to select an element of R uniformly at random. (The length parameters to
TapeGen are just for convenience; one can always generate more output bits on-the-fly
by invoking TapeGen again on a longer such parameter. In fact, our implementation

of TapeGen can simply pick up where it left off instead of starting over.)

SECURITY. The following theorem, proved in Appendix A.6, characterizes security
of our OPE scheme, saying that it is POPF-CCA-secure if TapeGen is a LF-PRF.

Applying Proposition 3.4.2, this is reduced to pseudorandomness of an underlying
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EnctiP (D, R, m) DeclP(D, R, c)

01 M« |D| ; N « |R| 17 M < |D| ; N < |R]|

02 d< min(D) -1 ;r« min(R) —1 18 d<+ min(D) -1 ;r < min(R) — 1
03 y <1+ [N/2] 19 y <+ r+[N/2]

04 If |D| =1 then 20 If |D| = 1 then m < min(D)

05 cc<- TapeGen(K,1* (D, R,1||m)) 21  cc < TapeGen(K, 1* (D, R, 1||m))
06 c<R 22 w<<R

07 Return c 23 If w = c then return m

24  Else return L
08 cc < TapeGen(K, 14, (D,R,0|ly)) 25 cc<- TapeGen(K, 1, (D, R,0]y))

09 < d+HGD(M,N,y—r;cc) 26 x < d+HGD(M, N,y — r;cc)
10 If m < z then 27 If ¢ <y then

11 D+« {d+1,...,x} 28 D+ {d+1,...,2}

12 R+ {r+1,...,y} 29 R<+{r+1,....y}

13 Else 30 Else

4 D{z+1,....d+ M} 3. D+ {z+1,...,d+ M}
15 R+{y+1,...,r+N} 32 R+{y+1,....,r+N}
16 Return Encli“P (D, R, m) 33 Return DecllP(D, R, c)

HGD HGD

Figure 3: Encryption Enc and decryption Dec algorithms for our hypergeo-
metric distribution-based OPE scheme, OPE"“P[TapeGen).

blockcipher.

Theorem 3.4.3. Let OPE"“P[TapeGen] be the above OPE scheme with plaintext

ENCD[TapeGen]

space size M, ciphertext space size N. For adversary A against OP
making at most q queries to its oracles combined, there is an adversary B against

TapeGen such that

AdvPertee (A) < AdvRE . (B) + X.

(’)'PEHGD [TapeGen] TapeGen

Adversary B makes at most q = q - (log N + 1) queries of size at most 5log N + 1
to its oracle, whose responses total ¢, - X' bits on average, and its running time is
that of A. Above, X\, X' are constants depending only on HGD and the precision of the

underlying floating-point computations (not on M, N ).
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EFFICIENCY. The efficiency of our scheme follows from our previous analyses. Using
the suggested implementation of TapeGen in Subsection 3.4.1, encryption and decryp-
tion require the time for at most log N + 1 invocations of HGD on inputs of size at
most log N plus at most (log M + 3) - (5log N + X + 1)/128 invocations of AES on

average for \ in the theorem.
3.4.3 On choosing N

Practitioners interested in implementing our scheme might naturally wonder how
large we recommend making the ciphertext space size N. In fact, different choices of
N have no bearing on our scheme’s POPF-CCA-security. Rather, different choices of
N will affect how the ideal object, a random OPF, behaves. Thus, in order to say
something meaningful about the choice of N, we first need a security definition and

analysis for the ideal object, which is the subject of Chapter 4.

3.5 On Using the Negative Hypergeometric Distribution

In the balls-and-bins model described in Section 3.3.1 with M black and N — M white
balls in the bin, consider the random variable Y describing the total number of balls
in our sample after we pick the x-th black ball. This random variable follows the
negative hypergeometric (NHG) distribution. Formally,
(220) - (i)

(ar)

M

As we discussed in Section 3.1, use of the NHG distribution instead of the HG per-

Pyuep(y; N, M, z) =

mits slightly simpler and more efficient lazy-sampling algorithms and corresponding
OPE scheme. The problem is that we require an efficient NHG sampling algorithm,
and the existence of such an algorithm is apparently open. What is known is that the
NHG distribution can be approximated by the negative binomial distribution [51], the
latter can be sampled efficiently [28, 26], and the approximation improves as M and

N grow. However, quantifying the quality of the approximation for fixed parameters
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seems difficult. If future work either develops an efficient exact sampling algorithm
for the NHG distribution or shows that the approximation by the negative binomial
distribution is sufficiently close, then our NHG-based OPE scheme could be a good

alternative to the HG-based one. Here are the details.
3.5.1 Construction of the NHGD-based OPE scheme

Assume there exists an efficient algorithm NHGD that efficiently samples according
to the NHG distribution, possibly using an approximation to a related distribution
as we discussed. NHGD takes inputs M, N, and x € {0,1,..., M} and returns y €
{0,1,..., N} such that for each y* € {0,1,..., N} we have y = y* with probability
Pnuep(y*; N, M, z) over the coins of NHGD. Let ¢ = ¢(M,N,y — r) denote the
number of coins needed by NHGD on inputs M, N,y — r.

Definte OPENP TapeGen] = (K, EncMEP DecMEP) - our NHGD-based order-
preserving encryption scheme, as follows. Let TapeGen be the PRF described in
Section 3.4, with key-space Keys. The plaintext and ciphertext spaces are sets of
consecutive integers D, R, respectively. Algorithm I returns a random K € Keys.

NHGD NHGD
, Dec

Algorithms Enc are described in Figure 4.

3.5.2 Correctness

We prove correctness of the NHGD scheme in the same manner as the HGD scheme.
First, see in Figure 5 the revised versions LazySample*, LazySampleInv* of the
stateful algorithms from before. The algorithms re-use the subroutine GetCoins,
which takes inputs 1¢,D,R, and b||z, where b € {0,1} and z € Rif b= 0 and z € D
otherwise, to return cc € {0,1}¢. Also, recall that the array I, initially empty, is
global and shared between the algorithms.

With these revised versions of LazySample*, LazySampleInv*, we supply a

revised version of Theorem 3.3.2 for the NHGD case. It is proved in Appendix A.7.
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EnciHED (D R, m) DectHSP(D, R, ¢)
16 If |D| = 0 then return L

01 M <« |D| ;N « |R| 17 M« |D| ; N « |R|
02 d < min(D) — 1 18 d <+ min(D) —1
03 7 <+ min(R) — 1 19 r <+ min(R) —1
04 x < d+ [M/2] 20 x <+ d+ [M/2]

05 cc<- TapeGen(K,14,(D,R,z)) 21 cc<- TapeGen(K, 1, (D, R,x))
06 y < r+NHGD(N,M,x —d;cc) 22 y<« r+ NHGD(N, M,z — d;cc)

07 If m = x then 23 If ¢ = y then

08  Return y 24  Return z

09 If m < x then 25 If ¢ <y then

10 D+ {d+1,...,2 -1} 26 D« {d+1,....,2—-1}
11 R+{r+1,...,y—1} 21 R+ {r+1,...,y—1}
12 Else 28 Else

13 D«{z+1,...,d+ M} 29 D« {z+1,...,d+ M}
4 R<+{y+1,....,7+ N} 20 R« {y+1,....,7+ N}
15 Return EncSP (D, R, m) 31 Return Deci“P (DR, ¢)

NHGD NHGD

Figure 4: Encryption Enc and decryption Dec
hypergeometric distribution-based OPE scheme, OP

algorithms for our negative
ENHEDITapeGen).

Theorem 3.5.1. Suppose GetCoins returns truly random coins on each new input.

Then for any (even computationally unbounded) algorithm A we have

Pr [Ag(~),g*1(~) — 1] — Pr [ALazySample*(D,R,-),LazySampleInv*(’D,’R,~) _ 1}

)

where g,g~" denote an order-preserving function picked at random from OPFp and

its inverse, respectively.

Now, it is straightforward to prove the formal statement of correctness as before.

Theorem 3.5.2. Let OPENMCP[TapeGen| be the OPE scheme defined above with
plaintext-space of size M and ciphertext space of size N. Then for any adversary A
against OPENICP [TapeGen| making at most q queries to its oracles combined, there

1s an adversary B against TapeGen such that

AdvPeriec (A) < AdvEE . (B) + \.

OPENHGD [TapeGen] TapeGen

Adversary B makes at most ¢ = q - (log N 4+ 1) queries of size at most 5log N +1 to

its oracle, whose responses total q; - N bits on average, and its running time is that
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LazySample*(D, R, m) LazySampleInv*(D, R, c)
17 If |D| = 0 then return L

01 M« |D|; N < |R] 18 M <« |D|; N «+ |R|
02 d«min(D) —1;r+ min(R)—1 19 d< min(D)—1; r <+ min(R) — 1
03 x < d+ [M/2] 20 x<—d+ [M/2]
04 If I[D, R, x] is undefined then 21 If I[D, R, x] is undefined then
05  cc< GetCoins(1,D, R, 1||) 22 cc <= GetCoins(14,D, R, 1||)
06 I[D,R,a] < 23 I[D,R,x] &

NHGD(M, N,z — d; cc) NHGD(M, N,z — d; cc)
07 y<«r+I[D, R,z 24 y<«r+I1[D,R,z]
08 If m = x then 25 If ¢ = y then
09  Return y 26  Return z
10 If m < x then 27 If ¢ < y then
11 D« {d+1,....,z2—1} 28 D« {d+1,...,2 -1}
12 R+<{r+1,...,y—1} 29 Re{r+1,...,y—1}
13 Else 30 Else
4 D{z+1,....d+ M} 31. D«{z+1,...,d+ M}
15 R+{y+1,....,r+N} 32 R+{y+1,...,r+N}
16 Return LazySample*(D, R, m) 33 Return LazySampleInv*(D, R, ¢)

Figure 5: Algorithms LazySample® and LazySamplelnv* for lazy-sampling a
pseudorandom order-preserving function and its inverse by sampling the negative
hypergeometric distribution.

of A. Above, A\, N are constants depending only on NHGD and the precision of the

underlying floating-point computations (not on M, N ).

Proof. The proof of this theorem is identical to that of Theorem 3.4.3, except that it

uses Theorem 3.5.1 as a lemma rather than Theorem 3.3.2. O
3.5.3 Efficiency of the NHGD scheme

Efficiency-wise, it is not hard to see that to encrypt a single plaintext, each algorithm
performs log M + 1 recursions in the worst-case (as opposed to log N + 1 for the HG-
based algorithms), as the algorithm finds the desired plaintext via a binary search
over the plaintext space, at each recursion calling NHGD to determine the encryption

of the midpoint (defined as the last plaintext in the first half of the current plaintext
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domain). The expected number of recursions is easily deduced as
1 log M
17 | (g M +1) + > 25
k=1
A simple inductive proof shows that this value is between log M — 1 and log M. This
falls in line with what we expect from a binary-search strategy, where the expected
number of iterations is typically only about 1 fewer than the worst-case number of
iterations.
The algorithms of the corresponding OPE scheme can be obtained following
the same idea of eliminating state by using a length-flexible PRF as described in
Section 3.4.2. The security statement is the same as that of Theorem 3.4.3, where

the last term now corresponds to the error probability of the NHGD algorithm.
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CHAPTER IV

ONE-WAYNESS OF PSEUDORANDOM
ORDER-PRESERVING FUNCTIONS

Chapter 3 laid out the first formal cryptographic treatment of OPE, as published in
[15]. In it, we proposed a security requirement for OPE and demonstrated an efficient
blockcipher-based scheme provably meeting the security definition. However, we also
noted that the POPF-CCA security notion demands further security analysis. To see
why, we revisit the definition.

The POPF-CCA notion (hereafter shortened to POPF) calls an OPE scheme
secure if oracle access to its encryption algorithm is indistinguishable from oracle
access to a random order-preserving function (ROPF) on the same domain and range.
An ROPF is thus the “ideal object” in the POPF definition, analogous to the way that
a random function is the ideal object in the classical security notion of pseudorandom
function (PRF). However, the ideal objects here, an ROPF and a random function,
have fundamentally different security properties. A random function’s behavior is
well understood: on a new input the output is a uniformly random point in the
range, independent of other outputs. Hence, an adversary seeing a function value
learns absolutely no information about the pre-image, unless the former happens to
coincide with one it has previously seen. But the situation with a random OPF is
much harder to describe. It is clear that a random OPF cannot provide such strong
security, but what exactly is leaked about the data and what is protected? The
distribution of ciphertexts is known and it is not immediately clear if encryption is
even one-way.

In this chapter, which contains material published in [16], we make a step towards
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addressing these questions. We revisit the security of the ideal object, an ROPF,
and provide results that help characterize what it leaks and what it protects about
the underlying data. In addition, we observe that it may be possible to achieve
stronger security notions than POPF using schemes that fall outside the OPE class
but nevertheless allow efficient range queries on encrypted data, and propose two such

schemes. We now discuss our contributions in more detail.

4.1 Overview

NEW DEFINITIONS FOR STUDYING ROPF SECURITY. As just explained, a random
order-preserving function—the ideal object in the POPF definition from Chapter 3—
itself (perhaps surprisingly) requires a cryptographic treatment.

In order to better understand the strengths and limitations of encryption with an
ROPF we first propose several security notions. One captures a basic one-wayness
security and measures the probability that an adversary, given a set of ciphertexts of
random messages, decrypts one of them. (The fact that messages are chosen uniformly
at random we call the “uniformity assumption,” and it will be discussed later.) We
give the adversary multiple challenge ciphertexts because this corresponds to practical
settings and because the ciphertexts are not independent from each other: learning
more points of the OPE function may give the adversary additional information. We
actually consider a more general security notion that asks the adversary, given a set
of ciphertexts of random messages, to guess an interval (window) within which the
underlying challenge plaintext lies. This definition helps us get a better sense of how
accurately the adversary can identify the location of a data point. The size of the
window and the number of challenge ciphertexts are parameters of the definition.
When the window size is one, the notion collapses to the case of simple one-wayness.

Our subsequent definitions address leakage of information not about the location

of the data points but rather the distances between them, which seems crucial in other
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applications (e.g., a database of salaries). Indeed, Theorem 3.2.1 of Chapter 3 showed
that on a practically-sized ciphertext space, an ROPF, like any OPE, must leak some
information relating to distances between plaintexts. We attempt to clarify this
intuition. We consider a definition measuring the adversary’s success in (precisely)
guessing the distance! between the plaintexts corresponding to any two out of the set
of ciphertexts of random messages given to the adversary. Again, we also consider a
more general definition where the adversary is allowed to specify a window in which
the distance falls.

We analyze security of an ROPF under these definitions as we believe this helps to
understand secure pseudorandom OPE schemes’ security guarantees and limitations,
and also to evaluate the risk of their usage in various applications. (Indeed, we believe
they capture the information about data, namely location and relative distances, that
real-world practitioners are most likely to care about.) However, especially in light of
the uniformity assumption (which is unlikely to be satisfied in practice), we view our
results as providing important steps in the direction of this understanding (as even
under this assumption our results are challenging to prove). Still, we advise against
practical use of OPE unless a practitioner is fully aware, and accepting, of what has

and has not been provably shown about its security.

ANALYSIS OF AN ROPF. We first give an upper bound on the one-wayness advantage
of any adversary attacking an ROPF. The proof is quite involved (and is explained in
detail in the Appendix), but the result is a very concise, understandable bound that,
under reasonable assumptions, does not even depend on the size of the ciphertext
space. (Intuitively, an ROPF’s one-wayness comes from the function’s probability of
deviating from points on the linear OPF m +— (N/M)m. Increasing the ciphertext

space size beyond a certain amount has little to no effect on these deviations.) We

!Technically, for purposes that will become clear in the paper, “distance” actually refers to
“directed modular distance,” i.e. the distance from one point “up” to the other point, possibly
wrapping around the space. As such, distance in this context is non-commutative.
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evaluate the bound for several parameters to get an idea of its quality. Our eval-
uation demonstrates that on practical parameters ROPF and POPF-secure OPEs
significantly resist one-wayness attacks, i.e. the maximum one-wayness advantage of
any adversary is quite low.

On the other hand, our ROPF analysis under the window one-wayness definition
shows that a very efficient adversary can successfully break window one-wayness if
the size of the window is not very small. In particular, for message space size M
and arbitrary constant b, if the window size is approximately byv/M, there exists an
adversary A whose window one-wayness advantage is at least 1 — 2¢7*/2. Thus,
for b large enough (say, b > 8), there exists an adversary with window one-wayness
advantage very close to one.

We then extend our analysis of an ROPF to the distance one-wayness and window
distance one-wayness definitions. Using similar techniques we show entirely analogous
results, namely that the former is very small but the latter becomes large when the
adversary is allowed to specify a window of size approximately byv/M.

We conclude our ROPF analysis with several important supplemental remarks re-
garding the effect of known-plaintext attacks in the schemes, choosing an appropriate
ciphertext space size, and the need to satisfy the uniformity assumption in practical

implementations.

ACHIEVING STRONGER SECURITY. We next consider the question of whether differ-
ent types of schemes that support efficient range queries can achieve stronger security
than POPF. To capture such schemes we introduce a general notion of efficiently or-
derable encryption (EOE), that covers all schemes supporting standard range queries
by requiring a publicly computable function that determines order of the underlying
plaintexts given any two ciphertexts. Since EOE leaks order of ciphertexts, the indis-
tinguishability under ordered chosen-plaintext attack (IND-OCPA) definition, which

Chapter 3 introduced and showed OPE cannot achieve, is an ideal level of security
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for EOE schemes.

AN OPTIMALLY SECURE COMMITTED EOE ScHEME. We focus on a scenario where
we can show something like IND-OCPA security is possible. We define “committed”
versions of EOE and IND-OCPA, called CEOE and IND-CCPA, corresponding to a
setting where the database is static and completely known to the user in advance
of encryption. Such a scenario is apparently important as it was considered in the
first paper to propose an order-preserving scheme [2], and was also studied in several
works including [23] for the case of exact-match queries. We observe that the more
restrictive functionality in this setting allows one to achieve IND-CCPA. We propose
a new scheme that uses a monotone minimal perfect hash function (MMPHF) directly
as an “order preserving tagging algorithm” for the given message set, together with a
secure encryption. The construction allows for easy implementation of range queries
while also achieving the strongest security. Moreover, while MMPHFs are known
to require long keys [5], recent constructions [5] are close to being space-optimal.
Thus, this application of MMPHFs for tagging seems to be a novel, nearly efficient-
as-possible way to support range queries, leaking nothing but the order of ciphertexts,

when the database is fixed in advance.

A NEw MoODULAR OPE SCHEME AND ITS ANALYSIS. Finally, we propose a tech-
nique that improves on the security of any OPE scheme without sacrificing efficiency.
Recall that our ROPF analysis reveals that OPE leaks information about the [lo-
cations of the data points in addition to the distances between them. We suggest
a modification to (that can be viewed as a generalization of) an OPE scheme that
overcomes this. The resulting scheme is not order-preserving per se, but still permits
range queries—in this case, modular range queries. (When the left end of the queried
range is greater than the right end, a modular range query returns the “wrap-around
range,” i.e. everything greater than the left end or less than the right end.) The

modification to the scheme is simple and generic: the encryption algorithm just adds
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(modulo the size of the message space) a secret offset to the message before encryp-
tion. (The secret offset is the same for all messages.) We call a scheme obtained
this way a modular OPE scheme, and generalize the security notion: the ideal object
is now a random modular OPF (RMOPF), i.e. a random OPF applied to messages
with a randomly picked offset. It is easy to see that any secure OPE scheme yields a
secure modular OPE scheme using the above transformation.

We show that a random modular OPF, unlike a random OPF, completely hides
the locations of the data points (but has the same leakage with respect to distance and
window-distance one-wayness). On the other hand, if the adversary is able to recover
a single known plaintext-ciphertext pair, security falls back to that of a random OPF.

We also note that the technique with a secret offset can be applied to the CEOE
scheme to enhance its security even beyond IND-CCPA when support for modular

range queries is sufficient.

4.2 Primatives and Definitions

TyPES OF RANGE QUERIES. For fixed plaintext and ciphertext spaces [M] and [N],
a range query target is a pair of plaintexts (my, mg) that comes in two varieties:
standard if myp < mg, or wrap-around if my, > mg. If (mp,mg) is a target, its
associated range is [mp, mg| in the standard case and [my, M]U[1,mg] in the wrap-
around case.

To model the intended application, suppose a server has a database encrypted un-
der a scheme (K, Enc, Dec) with key K <~ K. In a standard range query, the user sub-
mits two unordered ciphertexts {c1, co} to the server. Let (mq, my) = Dec(K, (¢1,¢3)).
Then the target is (min{m;j, ms}, max{my, ms}), and the server must return the set
of ciphertexts in the database whose decryptions fall into the associated range. Notice
that these targets are always standard.

In a modular range query, the user submits two ordered ciphertexts (cr, cg). Let
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(mp,mgr) = Dec(K, (cr,cr)). Then the range query target is (mpg, mg), and the
server must return the set of ciphertexts in the database whose decryptions fall into

the associated range. Notice that these targets can be standard or wrap-around.

WEAK POPF NOTION. We now define the weak (chosen-plaintext-only) version
of the POPF security definition from Section 3.2. (For simplicity, we do not discuss
chosen-ciphertext attacks in detail. Note that symmetric schemes such as these can be
made resistant to chosen-ciphertext attacks by using Encrypt-then-MAC [6] generic
constructions that prevent adversaries from constructing valid ciphertexts.)

Fix an order-preserving encryption scheme S€ = (K, Enc, Dec) with plaintext
space D and ciphertext space R, |D| < |R|. For an adversary A against S&, recall
its pseudorandom order-preserving function (POPF) advantage against SE:

AdvEPI(A) = Pr [AEI=1] - pr  [A0=1].
K&K g <& OPFp
Informally, an OPE scheme is POPF-secure if this quantity is small, i.e., if oracle
access to its encryption function is indistinguishable from oracle access to the “ideal
object,” a random order-preserving function (ROPF) on the same domain and range.
Accordingly, we focus in this chapter on analyzing the ideal object, an ROPF. The
analysis will then apply also to POPF-secure OPE schemes such as the blockcipher-

based scheme OPENEP from Section 3.4.

AN “IDEAL” SCHEME ROPF. We define the “ideal” ROPF scheme as follows.
Let OPFp r denote the set of all order-preserving functions from D to R. Define
ROPFpr = (K,,Enc,, Dec,) as the following deterministic order-preserving encryp-

tion scheme:
o C, returns a random element g of OPFp .
e Enc, takes the key and a plaintext m to return g(m).

e Dec, takes the key and a ciphertext ¢ to return g—!(c).
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Of course the above scheme is not computationally efficient, but our goal is its
security analysis for the purpose of clarifying security of all POPF-secure construc-

tions.

MosT LIKELY PLAINTEXT. Let S€pr = (K, Enc, Dec) be a symmetric encryption
scheme on domain D, range R. For given ¢ € R, if m. € D is a message such that
Pr [Enc(K,m) = c] achieves a maximum at m = m,, then we call m,. a (if unique,

K&K
“the”) most likely plaintext for c.

MosST LIKELY PLAINTEXT DISTANCE. Let SEu, v = (K, Enc, Dec) be a symmet-

ric encryption scheme on domain [M], range [N]. For given c¢i,c0 € R, if d, ., €

{0,..., M — 1} such that Pr [me—m; mod M =d | (m1,ma) = Dec(K, (c1,¢2)) |
K&K

achieves a maximum at d = d., .,, then we call d., ., a (if unique, “the”) most likely

plaintext distance from ¢q to cs.

4.3 One-wayness Security Definitions

As explained in the introduction, the “ideal” ROPF scheme defined in Section 4.2
itself requires a cryptographic treatment. Toward this end, we propose several gen-
eralized security definitions that help us understand its security.

Let SEpu, v = (K, Enc, Dec) be a deterministic symmetric encryption scheme.

WINDOW ONE-WAYNESS. The most basic question left unanswered by [15] is whether
a POPF-secure scheme is even one-way. Towards this end we start with the one-
wayness definition. Our definition is a stronger and more general version of the
standard notion of one-wayness. For 1 < r < M and z > 1, the adversary is given
a set of z ciphertexts of (uniformly) random messages and is asked to come up with
an interval of size r within which one of the underlying plaintexts lies. We call our
notion r, z-window one-wayness (or r, z-WOW). Note that when r = 1, the definition
collapses to the standard one-wayness definition (for multiple ciphertexts), and we

will call it one-wayness for simplicity.
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The r, z-window one-wayness (r,z-WOW) advantage of an adversary A against
SE[M],[N] is
Advi(4) = Pr[Bxpi (4)=1],

where the experiment Expdz VAZ‘])V[V ](A) above is defined in Figure 6.

Experiment Expgg[j\fv{v ]( )

K&K MECmbM s €« Ene(K, M)

(mL,mR) %A(C)

Return 1 if (mr —myg) mod M + 1 < r and there exists m € M so that
either m € [mp, mg] or (mg > mg and m € [my, MU [1,mg])

Return 0 otherwise

Figure 6: The window one-wayness experiment.

Notice that the latter success condition in the experiment allows the adversary to
specify a window that “wraps around” the message space. Granting this extra power

to the adversary will be useful in analyzing the MOPE scheme of Section 4.5.2.

WINDOW DISTANCE ONE-WAYNESS. To identify the extent to which an OPE scheme
leaks distance between plaintexts, we also provide a definition in which the adversary
attempts to guess the interval of size r in which the distance between any two out of
z random plaintexts lies, for 1 < r < M and z > 2. We call the notion r, z-window
distance one-wayness (r,z-WDOW). When r = 1, the adversary has to guess the
exact distance between any two of z ciphertexts.

The r, z-window distance one-way (r, z-WDOW ) advantage of adversary A against

scheme S& |y () is
r,z-wdow r,z-wdow
AV (A) = Pr [EXp&g[M v (A)=1],

where the experiment Expdz ;‘;?TW] (A) above is defined in Figure 7.

4.4 One-Wayness of a Random OPF

This section is devoted to analyzing the “ideal” scheme ROPF /) ;v under the security

definitions given in the previous section. The first result shows an upper bound
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r,z-wdow
SEy, [N (4)

K&K: MECmbM: C « Enc(K, M)

(dy,dy) <~ A(C)

Return 1 if dy — dy +1 < r and there exist distinct m;, m; € M
with m; —m; mod M € [d,, dy]

Return 0 otherwise

Experiment Exp

Figure 7: The distance window one-wayness experiment.

on 1,2-WOW advantage against the scheme. This demonstrates that on practical
parameters, ROPF and POPF-secure OPEs significantly resist (size-1-window) one-
wayness attacks. In contrast, the second result shows the ideal ROPF scheme is
susceptible to an efficient large-window (a constant times VM ) one-wayness attack,
by constructing an adversary and lower-bounding its r, 2-WOW advantage.

The analysis then proceeds similarly for window distance one-wayness definitions:
we will show analogous contrasting results for small- versus large-window experiments.

We now turn to the details of the analysis.

4.4.1 Upper and lower bounds on window one-wayness

AN UPPER BOUND ON THE 1, 2-WOW ADVANTAGE. The following theorem states

an upper bound on the 1, >-WOW advantage of any adversary against ROPF{7 .

Theorem 4.4.1. For any challenge set of size z and adversary A, if N > 2M and

M > 15+ z then
4z

\/M—z—i-l'

The formal proof is quite involved and is in Appendix B.1. The idea is to first

1,z-wow
Advy A) <
ROPF[MHN]( )

bound 1, 2-WOW security in terms of 1, 1-WOW security; because ciphertexts are
correlated, a simple hybrid argument does not work and our reduction instead uses
a combinatorial approach, demonstrating a bijection between objects in relevant def-
initions. Then, to bound 1, 1-WOW security, we again take a combinatorial strategy,

as follows. We consider a ciphertext’s most likely plaintext (m.l.p.) and recall the
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negative hypergeometric distribution (NHGD). We first relate the middle ciphertext’s
m.l.p.’s NHGD probability for a given plaintext/ciphertext space to that of a space
twice the size; iterating this result produces a formula for the middle ciphertext’s
m.l.p.’s NHGD probability in a large space given the analogous value in a small
space. We then relate any ciphertext’s m.l.p.’s NHGD probability to that of the
middle ciphertext in the space. Finally, we approximate the sum of m.l.p. NHGD
probabilities over the ciphertext space in terms of that of the middle ciphertext, and
hence to that of the middle ciphertext in a smaller space. Plugging in a value for the

m.l.p. NHGD probability on the small space and simplifying yields the bound.

EvALuATING THE BOUND. The bound of Theorem 4.4.1 is quite succinct—it does
not even rely on N (as long as N > 2M). The result in essence shows that as long as
the challenge set size z is small compared to M, the bound is a small constant times
z/v/M. This in turn is small as long as z is small compared to /M.

Table 2 shows some sample evaluations of the bound for several message space

and challenge set sizes.

M z Clean bound | M z Clean bound
224 1 2710 280 1 2738

240 1 2718 280 220 2718

280 1 2—38 280 238 1

2120 1 2—58

Table 2: Sample evaluation of Theorem 4.4.1’s clean bound for various plaintext
space sizes M and challenge set sizes z. All require ciphertext space size N > 2M.

We see that ROPF(;) (] has very good one-wayness security for reasonably-sized
parameters. Given the results of [15] our bound for ROPF can be easily adjusted for
their POPF construction, by taking into account pseudorandomness of an underlying
blockcipher. But as we discussed in the introduction, standard one-wayness may not
be sufficient in all applications and we have to also analyze the schemes under other

security notions. Thus, we turn to the next result.
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A LOWER BOUND ON LARGE WINDOW ONE-WAYNESS. Here we show that there
exists a very efficient adversary attacking the window one-wayness of an ROPF for a
sufficiently large window size. A more intuitive explanation of the result follows the

theorem.
Theorem 4.4.2. For any window size r and challenge set size z, there exists an
efficient adversary A such that

(=12 (M-1)

T,2-WOW r,1-wow
AdVROPF[]MMN] (A) Z AdvROPF[}\l],[N] (A) 2 1—2e 2 M2

The proof is in Appendix B.3. There, we construct a straightforward adversary
and demonstrate that it has the above probability of success, using some bounds by
Chvatal on the tail probabilities of the hypergeometric distribution.

Intuitively, Theorem 4.4.2 implies that for r ~ bv/M, where b is a large enough
constant (say b > 8), there exists an adversary A whose r-window one-wayness is very
close to 1. More precisely, let r = b\/% + 1, and the theorem implies there exists
an A such that

Advigeen (A) =127

4.4.2 Upper and lower bounds on distance window one-wayness

AN UprPER BOUND ON THE 1, 2-WDOW ADVANTAGE. The following theorem, with
the proof in Appendix B.4, states an upper bound on the 1, z-distance one-wayness

of a random OPF that is very similar to the bound in Theorem 4.4.1.

Theorem 4.4.3. For any challenge set size z and adversary A, if N > 2M and
M > 16 + z then

) 4z(z —1)
1,z-wdow
AdVROPF[MMN] (4) <

VM -—z+1
Naturally, as this result looks very much like that of Theorem 4.4.1, the proof

follows the same strategy and achieves similar results. The only differences are that
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the initial reduction relates r, 2-WDOW security to r, 2-WDOW security, incurring a
factor z(z — 1) advantage increase as opposed to just z, and the initial (tight) bound
formula replaces parameters N, M with N — 1, M — 1. See Appendix B.4 for proof
details.

Thus, the 1, z-window distance one-wayness of a random OPF is upper-bounded
in a similar fashion as the 1, z-window one-wayness, and we conclude that random
OPFs have good 1, z-WDOW security. Again, though, that is not the whole story, as

we see next.

A Lower BouND oN WINDOW DISTANCE ONE-WAYNESS OF ROPF. Here, we
derive a result similar to that of Theorem 4.4.2, but for the window distance one-

wayness of a random OPF.

Theorem 4.4.4. For any window size r and challenge set size z, there exists an

efficient adversary A such that

Ad r,z-wdow A > Ad r,1-wdow A > 1 9 7(r721)2 ((]\1/\14:12))2
VRoOPF (A4) > VROPF;), ]( ) > 1—2e )

The proof appears in Appendix B.5. Intuitively, Theorem 4.4.4 implies that for
r ~ bV M, where b is a large enough constant (say, b > 8), there exists an efficient
adversary A whose r-window distance one-wayness advantage is very close to 1. More

precisely, let r = b\%/[—’i_l2 + 1, and the theorem implies there exists an A such that

AdVEES™  (A) > 1—2e7772

[M],[N] -

4.4.3 Further security considerations for ROPFs

In this section, we explore several important questions regarding our ROPF security

analysis.

EFFECT OF KNOWN-PLAINTEXT ATTACKS. It is a natural question to ask what

happens to the security of an ROPF scheme when the adversary knows a certain
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number of plaintext-ciphertext pairs. In general, we can answer this question for
each definition of one-wayness using a simple extension of the arguments above.

In the scheme ROPFp %, known plaintext-ciphertext pairs split the plaintext and
ciphertext spaces into subspaces. On each subspace, the analysis under each one-
wayness definition reduces to that of an ROPF on the domain and range of the
subspace. For instance, if (mq, ¢1) and (mag, ¢3) are known for m; < msy, and no other
known plaintext-ciphertext pairs occur between these two, then for D' = {m € D |
my < m < mg}and R' = {c € R | ca < c¢ < c}, we analyze the behavior of the
function on this subspace by considering the one-wayness bounds on ROPFp %/

This brings up an important issue. For much of our analysis to apply to a scheme,
it must be the case that the ciphertext space is at least twice the size of the message
space. Therefore, in order to make sure that our analysis will still apply to most
subspaces once several plaintext-ciphertext pairs are discovered by the adversary, we
would like to choose the initial parameters in such a way that subspaces are unlikely

to violate this condition.

CHOOSING THE CIPHERTEXT SPACE SIZE. This brings us to the question posed in
Section 3.4.2: given a plaintext space of size M, what should be the size N of the
ciphertext space? Now that we have ways of characterizing the security of an ROPF
using our one-wayness definitions, we can more justifiably discuss the question of
what to choose for N.

For g € OPFjpg vy, if my < mgy € [M] exist such that g(ma) —g(m1) < 2(me—my),
then we say that ¢ is shallow on the ciphertext interval [g(m1), g(ms2)]. The bounds
found in the previous sections assume that N > 2M. Thus, any non-shallow interval
can be analyzed through our theorems about one-wayness, and as a result we would
like to choose N to avoid shallow intervals, both in the original space and in potential
subspaces.

In particular, consider the following result, which bounds the probability that an
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interval between encryptions of two random plaintexts is shallow.

Proposition 4.4.5. Lett = (N —1)/(M — 1), and assume t > 7. Let m; < [M],
my < [M]\ {m1}, K < K;, Enc:(K, (m1,my)) = (c1,¢2), w = ¢ — ¢y mod M, and
d =my —m; mod M. Then

1
Pr [2d>w]<§ :
K,m1,mao t \/(M — 1)/11’1M

The proof can be found in Appendix B.6. Besides using Lemma B.3.1, the proof

is mostly algebraic fiddling.

This bound gives us an idea of good values for ¢t &~ N/M. In particular, it seems
that choosing a constant for ¢ > 7, that is, taking N to be a constant multiple of M,
is sufficient in order to make the above probability negligible. Whether the constant

should be large or small depends on one’s tolerance for random intervals to be shallow.

ON IMPLEMENTING A SCHEME TO SUPPORT RANGE QUERIES USING POPF. We
stress that most of our analysis relies on the uniformity assumption, namely that
challenge messages come from a uniform distribution. Thus, practitioners relying on
our one-wayness analysis should take steps to satisfy the uniformity assumption. In
particular, underlying messages that are encrypted in a database, as well as queries,
should “look” uniform in terms of their location in the message space. These unifor-
mity restrictions could possibly be met by a scheme that performs “dummy” queries,
in addition to legitimate queries, in order to make queries look uniformly random.
It is an open problem to extend our analysis to other input distributions other than
uniform. However, it seems unlikely that anything positive can be said about OPE
schemes’ one-wayness for arbitrary distributions or for models where the adversary

can choose challenge messages or distributions.

4.5 Achieving Stronger Security

We study new ways to achieve better security than the OPE scheme of [15] while still

allowing for efficient range queries on encrypted data. But first, we define a general
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primitive, Efficiently Orderable Encryption (EOE), that includes all schemes that
support efficient standard range queries, including OPE. We show that IND-OCPA,
defined and shown to be unachievable by OPE in [15], is the ideal security definition
for such schemes.

We define “committed” analogues of EOE and IND-OCPA, namely CEOE and
IND-CCPA, that apply to the practical scenario where the database to encrypt is pre-
determined and static. Such a setting has been studied in several works on searchable
encryption, including the first paper to propose an order-preserving scheme [2, 23].
We then propose a new CEOE scheme that is CCPA-secure.

Finally, we develop a generic modification of an OPE that supports modular
range queries (but not standard range queries) and overcomes some of the security
weaknesses of any OPE that we studied in Section 4.4. The scheme is not EOE

because it does not leak order; rather, it leaks only “modular” order.

EFFICIENTLY ORDERABLE ENCRYPTION. We say that EOE = (K, Ene, Dec, W) is
an efficiently-orderable encryption (EOE) scheme if K, Enc, Dec are the algorithms of
a symmetric encryption scheme, W is an efficient algorithm that takes two ciphertexts
as input, and defining Cx = {Enc(K, m) | m € M} as the set of valid ciphertexts for
key K,

1 if Dec(K, ) < Dec(K, cq)

Wico,c1) =90  if Dec(K, ) = Dec(K, cy)

\—1 if Dec(K,cy) > Dec(K, )
for any key K and all ¢, c; € Ck. It is easy to see that such a scheme permits efficient
standard range queries, as the server can keep the encrypted database sorted using
Ww.

It is also clear that any OPE scheme (K, Enc, Dec) corresponds to an EOE scheme

with the same key generation, encryption, and decryption algorithms, and W (¢, ¢;)

outputting 1, 0, or —1 if the relation between ¢y and ¢; is <, =, or >, respectively.
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But in general an EOE scheme does not have to be deterministic.

4.5.1 Committed Efficiently-Orderable Encryption

RANGE QUERIES ON A PREDETERMINED STATIC DATABASE. Now we consider
schemes for the settings when it is possible for the user to preprocess the whole data
before encrypting and sending it to the server. For that we allow the key generation

of an EOE scheme to take the message set as input, which we rename a committed

EOE scheme.

COMMITTED EFFICIENTLY-ORDERABLE ENCRYPTION. A committed efficiently-order-
able encryption (CEOE) scheme on domain D is a tuple (K, Enc, Dec, W) satisfying

the following.

e The randomized key generation algorithm C takes a message space M C D

(called the committed message space) as input and outputs a secret key K.

e For any committed message space M C D, (K(M),Enc,Dec, W) is an EOE

scheme on M.

We will show that a CEOE scheme can achieve very strong security. In particular,
it can achieve the “committed” adaptation of the IND-OCPA notion from [15], where
the adversary outputs two vectors of plaintexts with the same order and equality
pattern and is asked to guess whether it is given encryptions of the first or second
vector. We define indistinguishability under committed chosen plaintext attack (IND-
CCPA). The definition mimics IND-OCPA except that the adversary chooses the
challenge vectors (now viewed as message spaces) before key generation, and the

scheme’s key generation algorithm takes the appropriate message space as input.

IND-CCPA. Let CEOE = (K, Enc, Dec, W) be a CEOE scheme on message space

M. For an adversary A = (Ay, Ay), define its indistinguishability under committed
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chosen plaintext attack (IND-CCPA) advantage against SE as
ind-com-cpa o ind-com-cpa-1 _ ind-com-cpa-0 _
Adveeoe (A) = Pr [EXPCS(’)E (A)= 1} —Pr [EXPC,’E(’)S (A) = 1] 5

where for b € {0,1} the experiments Exppsps™ "(A) are defined in Figure 8. Note

Experiment Expiiy™ " (4)

(Mo, Ml, O') (i A1

If |[My| # | M| then output L

Let I = [Mo] = M,

Let m) < m} < ... < m] be the elements of M;, for j =0,1
If there exist 1 <7 <[ so that |m?| # |m}| then output L

K < K(Msy)

¢; %Enc(K,mg) forj=1,...,1
d < As(o,cy,c1,...,0)

Return d

Figure 8: The IND-CommittedCPA experiment.

that o denotes a state the adversary can preserve. We say that CEOE is IND-CCPA-

secure if the IND-CCPA advantage of any adversary against CEOE is small.

Our CEOE CONSTRUCTION AND ITS SECURITY. We now propose a CEOE scheme
that will achieve IND-CCPA security. A ciphertext in our scheme consists of a
semantically-secure ciphertext of the message concatenated with the tag, which indi-
cates the order of the message in the ordered message list. As a building block for
our scheme we use monotone minimal perfect hash functions, defined as follows.

Let M be a set with a total (lexicographical) order. h is a monotone minimal
perfect hash function [5] (MMPHF) on M if h sends the ith largest element of M
to ¢, for © = 0,1,...,|M]| — 1. Notice that the MMPHF on any given domain M
is unique. So that we can use MMPHF's in the upcoming construction, let an index
tagging scheme (K, T) be a pair of algorithms such that K takes a domain M and
outputs a secret key K so that 7(K ) is the (unique) MMPHF for M, while
7(K,m) =1 for any m ¢ M.
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Our CEOE construction is based on two building blocks: MMPHF tagging and
any symmetric encryption scheme.

Let (K, 7) be an index tagging scheme. Let SE€ = (K',End, Dec’) be any sym-
metric encryption scheme on a fixed universe D. We construct a CEOE scheme

CEOE = (K, Enc, Dec, W) as follows.

e I takes M C D as input, runs K; < K;(M) and K, < K', and returns

K = K| K..

e Enc takes key K = K;|| K. and message m as input, and computes i = 7(K;, m).

If i =1 then Enc returns L, otherwise it returns i||End (K., m).

e Dec takes key K = Ki||K. and ciphertext ¢ = i||¢’ as input, and returns
Ded (K, ).

o W takes ciphertexts ¢y = ig||c; and ¢; = 4y ||¢} as input, and returns 1 if iy < iy,

0 if 19 = 11, and —1 if 19 > 17.

We note that unlike the scheme with pre-processing for exact-match queries [23],
when using the above scheme the server does indexing and query processing as for
unencrypted data, which is a practical advantage. Also, as the following result shows,

the scheme is secure under IND-CCPA. The proof is in Appendix B.7.

Theorem 4.5.1. The CEOE scheme CEOE is IND-CCPA-secure provided the un-

derlying symmetric encryption scheme is IND-CPA secure.

Note that our secure CEOE construction relies on an efficient MMHPF imple-
mentation. Luckily, MMHPFs were studied recently by [5]. They showed that for a
universe of size 2% and for n > log w, the shortest possible description of an MMPHF
function (and thus, best possible key length for a tagging scheme) on n elements is
unfortunately quite large at Q(n) bits. This is somewhat disheartening, as a naive

solution, in which the MMPHF key consists of an n-entry array whose ¢th entry is
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the ith largest element in the domain, has a key length of O(nw). Nevertheless, the
authors of [5] were able to generate MMPHEF descriptions that are closer to the op-
timal bound: one construction uses O(nloglogw) bits and has query time O(logw),
and the other uses O(nlogw) bits and has constant query time. This is still large,

but may be practical depending on the parameters involved.

4.5.2 Modular OPE and analysis of an ideal MOPE scheme

MobpuLAR OPE. We propose a modification to (that can be viewed as a gener-
alization of) an OPE scheme that improves the security performance of any OPE.
The resulting scheme is no longer strictly order-preserving, but it still permits range
queries. However, now the queries must be modular range queries. Standard range
queries are not supported, as only “modular order” rather than order is leaked. The
modification from OPE is simple, generic, and basically free computation-wise.

Let (IC,Enc, Dec) be an order-preserving encryption scheme. Define a modular
order-preserving encryption scheme (MOPE) SEp v = (K, Encm, Decy,) as fol-

lows.
e K, runs K to get K, picks j <= [M] and returns (K, j).
e Ency, on input (K, j) and m returns Enc(K, m — j mod M).
e Decy, on inputs (K, j) and ¢ returns Dec(K, ¢) + j mod M.

Notice that a MOPE is suitable for modular range query support as follows. To re-
quest the ciphertexts of the messages in the range [my, mo| (if my < my), or [my, M|U
[1,mg] (if my > my), the user computes ¢; < Ency, (K, my), co <+ Ency (K, my) and
submits ciphertexts (ci,c2) as the query. The server returns the ciphertexts in the

interval [y, co] (if ¢1 < ¢3) or [e, NJU[1, ¢o] (if ¢1 > ¢3).

MOPE SeEcuriTY AND RANDOM MOPF. In order to define the security of an

MOPE scheme, we introduce a generalization of OPFs. For j € [M], let ¢; : [M] —
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[M] be the cyclic transformation ¢;(z) = (z — j — 1) mod M + 1. We define the set

of modular order preserving functions from [M] to [N] as
MOPF s v = {f o ¢; | f € OPFun vy, 5 € [M]} .

Note that all OPFs are MOPF's; on the other hand, most MOPF's are not OPFs.
However, a MOPF g is “modular order-preserving” in that the function g — ¢(0) mod
N is order-preserving.

Now, define RMOPF s v = (Kim, Encim, Decy), the random modular order-

preserving function scheme, as the following (inefficient) encryption scheme:
® K. returns a random instance g of MOPF 3.
e &ncyy, takes the key g and a plaintext m to return g(m).
e Dec,y, takes the key g and a ciphertext ¢ to return g=1(c).

Note that an MOPF could alternatively be defined with a random ciphertext shift
following the OPF rather than a random plaintext shift preceding it. The advantage
of the above definition is that the map from (OPF, ciphertext offset) pairs to MOPFs
is bijective whereas in the alternative it is not one-to-one.

We now are ready to define MOPE security. Fix an MOPE scheme SE v =
(K, Encm, Decy,). Let RMOPF 18] = (Kim, Encim, Decim ) be as defined above. For
an adversary A, define its pseudorandom modular order-preserving function (PMOPF)
advantage against S& as

Advgr;opf(A> _ lir [Aé'ncm(K,~) _ 1} - Pr [Ag(') — 1} .
K& Km 9<% RMOPF 3] (]

It is straightforward to show that the MOPE scheme obtained from any POPF-
secure OPE scheme via the transformation defined in the beginning of Section 4.5.2 is
PMOPF-secure, under the same assumption as the base scheme. We omit the details.

We now analyze the ideal object, RMOPF, under the one-wayness definitions.
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WiNDOW ONE-WAYNESS OF RMOPF. The following proposition establishes that
RMOPF is optimally 7, z-window one-way (and hence optimally one-way, taking r =
1) in the sense that an adversary cannot do better than an adversary that outputs
a random window independent of the challenge set. (Reminder: “window” includes

windows that wrap around the edge of the space.)

Proposition 4.5.2. Fiz any window size r and challenge set size z. Let Ayana(r) be
an r,z-WOW adversary that, on any input, outputs a random r-window from [M].
Then for any adversary A,

Adviger (A) < Advige:

Avana(r)) <rz/M .

[ML[N]< [M],[N](

The proof is in Appendix B.8.
As one might surmise, the above “optimal” characterization of the one-wayness
of a random MOPF fails to show a complete picture of the information a random

MOPF leaks. To investigate further, we turn to distance one-wayness.

WDOW ADVANTAGE BOUNDS FOR RMOPEF. We claim that the distance one-
wayness analysis for RMOPF is exactly the same as for ROPF. To see this, consider

the following proposition.
Proposition 4.5.3. Let ¢y, ¢y € [N]. Then for any d € {0,..., M — 1},

Pr [Dec,(K,c3) — Dec,(K,c1) =d] = Pr  [Decin(K, ) — Deeyn (K, 1) = d].
K&K, K& Kem

Proof. Let w = ¢5 — ¢y mod N. Note that among the (AA;:QQ) OPFs f with ¢q,cy €
F(IM]), there are (“~1) (Y 7%~1) such that f~*(c2)—f (1) mod M = d. On the other

hand, among the (ﬁ:é) -M MOPFs g with ¢y, co € g([M]), there are (1;’:11) (]J‘\Z__lgj) M

such that g7'(¢cy) — g7 (1) mod M = d. The result follows. O

Therefore, the 1, 2-WDOW advantage upper bound of Theorem 4.4.3 and the 7, z-
WDOW advantage lower bound of Theorem 4.4.4 against ROPF schemes also apply

to RMOPF schemes on the same parameters.
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So, while an RMOPF has similar security to that of an ROPF for distance and
window distance one-wayness, it is better in terms of one-wayness and window one-
wayness. The analysis easily transfers to any secure MOPE scheme. We now discuss

a few supplemental security considerations for RMOPF schemes.

EFFECT OF A KNOWN-PLAINTEXT ATTACK ON RMOPF. In the RMOPF [/ n
scheme, if the adversary learns a single plaintext-ciphertext pair, then the one-wayness
analysis reduces to that of ROPFy;_yjny—1. To see this, note that if g is a random
function in MOPF v}, and it is revealed that g(mg) = co, then f(m) = g(m +

mo mod M) — co mod N is a random function in OPFy_qj,n—1].

ON IMPLEMENTING A SCHEME TO SUPPORT RANGE QUERIES USING PMOPF.
We note that when a pseudorandom MOPF scheme is used to implement a range-
query-supporting database, even wrap-around target range queries must be made,
for otherwise an adversary may infer the secret offset of the MOPF scheme after

observing many non-wrap-around target queries.

REMARK. We finally note that the tagging scheme CEOE defined in Section 4.5.1
could be similarly modified so that its tag receives a secret offset. The resulting
scheme would support modular range queries in the predetermined static database

scenario, and satisfy a stronger version of IND-CCPA, leaking only “modular” order.
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CHAPTER V

EFFICIENT FUZZY-SEARCHABLE ENCRYPTION

We now consider the problem of efficient (sub-linear) search on updatable encrypted
data that supports error-tolerant search queries, that is, efficient fuzzy-searchable
encryption (EFSE). As explained in Section 1.5.3, this is a highly practical but rel-
atively unexplored topic in ESE that we are the first to study in a cryptographic

context, using provable security. We first give an overview of the results.

5.1 Overview

DEFINING CLOSENESS. To even define our problem, we first need to establish what
“close” means for messages; and specifically, define the “closeness” that we would like
ciphertexts to reveal. At its core, closeness is a function assigning a value (say, “close”
or “far”) to any pair of messages from a space. Thus, we introduce the concept of a

closeness domain which consists of a domain along with a closeness function.

EFFICIENTLY FUZZY-SEARCHABLE ENCRYPTION AND ITS SECURITY. Next we define
the central primitive, efficiently fuzzy-searchable encryption (EFSE), defined on a
closeness domain. In addition to the standard functions of a symmetric encryption
scheme, an EFSE scheme should provide a public function Clz on pairs of ciphertexts
that reveals whether those ciphertexts correspond to equal, close or far messages. For
EFSE, there should also exist an associated data structure supporting sub-linear

search. We then discuss the details of how a user and the server perform search using

'One might compare the closeness domain primitive to that of a metric space. Neither is a
generalization of the other: unlike a metric, a closeness function may only take on a few values;
while a metric must satisfy the triangle inequality, which is not necessary for closeness functions.
However, the two primitives are related, and as we explain later, a closeness domain can be defined
in terms of a metric space along with numerical thresholds.
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an EFSE. We note that an EFSE scheme leaks equality and “closeness” of messages
in order to provide efficient exact-match and fuzzy search.

Next we define a security notion for FSE that we call indistinguishability under
same-closeness-pattern chosen-plaintext attack or IND-CLS-CPA. The definition is a
natural relaxation of the standard IND-CPA security definition that prohibits queries

leading to trivial attacks.

TEMPLATE EFSE CONSTRUCTION. We present all EFSE constructions via a general
template consisting of several components, the most important of which we call a
closeness-preserving bucketing function (CPBF). A CPBF maps domain elements to
“buckets” (arbitrary objects) so that close messages map to overlapping buckets,
and far messages do not. Besides this, the construction makes use of an efficient
searchable encryption (ESE) [3] scheme, which is essentially an encryption scheme
leaking equality; and a collision-free batch-tagging family, each instance of which is a
deterministic function from the domain to the range. We define a notion of security
for a batch-tagging family which together with IND-DCPA-security [11] of the ESE
scheme is sufficient to prove security of our template construction in the case that the
CPBF is consistent, a quality we define. We also show how to create a secure collision-
free batch-tagging family out of a blockcipher, and reference [3] for blockcipher-based
ESE constructions that are IND-DCPA-secure. So the missing component we need

for a secure scheme is a consistent CPBF.

NEW OPTIMALLY-SECURE CONSTRUCTION. We propose a new general EFSE scheme.
It relies on the notion of a closeness graph, whose vertices are the unique elements of
the message space, and edges indicate closeness between elements. Our construction
defines a bucketing function that essentially sends a message to its incident edges in
the closeness graph. This is a consistent CPBF and thus the associated EFSE scheme
is, optimally, IND-CLS-CPA-secure.
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One might worry that our construction is rather inefficient in terms of the cipher-
text length, which is linear in the maximum degree of the closeness graph. However we
show that in fact closeness on a rigid (i.e., every message pair is close or far) domain
may be defined so that any EFSE scheme requires ciphertext length linear in the max-
imum degree of the closeness graph. The argument is information theoretic and relies
on the functionality, rather than security, of the primitive. Thus, in achieving EFSE
on arbitrarily-defined closeness domains the new IND-CLS-CPA-secure construction

is (asymptotically) space-optimal, and moreover optimally secure.

ANALYSIS OF SCHEME FROM [48]. We also analyze security of the scheme from [48].
The scheme can be roughly translated into a scheme fitting our template construction,
where the bucketing function sends a message to itself and all of its neighbors in
the closeness graph. Unfortunately, this CPBF is not consistent, and we show that
this is enough to guarantee IND-CLS-CPA-insecurity of the scheme. Intuitively, the
attack exploits a simple observation that some close messages may have more common
neighbors than others, and this is revealed in ciphertexts. Leaking such information
is not required for the functionality of EFSE and hence is a security breach according
to our definition. We also note that the scheme from [48] is not only insecure but is
as space-inefficient as our optimally-secure edge-tagging scheme, so our construction

is clearly an improvement.

CONSTRUCTIONS WITH IMPROVED EFFICIENCY. In many (even most?) practical
applications, vertices of the closeness graph have massive degrees. (Degrees can even
be infinite, e.g. on continuous spaces.) This can happen particularly for multi-
dimensional spaces, as the number of “close neighbors” increases exponentially with
dimension for closeness defined on a metric. In such situations our optimally-secure
scheme, as well as the insecure scheme from [48], are unacceptably inefficient.

The aforementioned lower bound result shows that we cannot expect to do better

for arbitrary rigid domains. We seek the right balance between the desired efficiency
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and security of EFSE, and look at non-rigid domains. We argue that IND-CLS-CPA-
security is too strong to be useful in characterizing EFSEs on non-rigid closeness
domains (where near messages could be encrypted to either close or far ciphertexts),
and so to do this we introduce a new security definition. The new definition requires
schemes to hide all information about plaintexts except nearness and a certain aspect
of “local structure”—which can be intuitively understood as the least significant bits
of messages corresponding to nearness clusters of known ciphertexts. Importantly,
this implies that no major relative information is leaked about a pair of “disconnected
messages,” that is, messages that cannot be connected through a chain of near known
corresponding ciphertext pairs.

Our definition and constructions focus on a practical choice of domains with as-
sociated metric along with “close” and “far” distance thresholds, that we call metric
closeness domains. In particular we focus on the Euclidean metric on arbitrary-
dimension real domains. For that, we fix a regular multi-dimensional lattice, whose
short basis is assumed to be public. Before getting to specific schemes, we introduce
the concept of an “anchor radius” for a metric closeness domain and a lattice, and
use it to construct a bucketing function to build a EFSE via our general bucketing
template. We show that a valid anchor radius then implies an EFSE construction
that is secure according to our weaker notion.

Next, we pose a general problem of trying to improve space-efficiency and flexi-
bility of such EFSE schemes by choosing lattices and anchor radii wisely. We then
introduce several specific schemes on particular closeness domains. Finally, we ex-
plain how to build an EFSE scheme on a joint closeness domain (a product of small-
dimension closeness domains, with closeness defined conjunctively) as might be useful
in biometric-data-matching applications.

We leave it as an open problem to extend our results to the public-key setting or

show that this is not possible.
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5.2 Closeness Primaitives

In order to study schemes preserving closeness, our first task is to develop a primitive
establishing the concept of “closeness” on a message space. To this end, we define
a “closeness function” Cl on 2-element subsets of the domain (we will say “pairs,”
meaning unordered pairs). Conceptually, the output of Cl, describing the closeness

of a pair, could be defined in two disparate ways, as follows.
e Qualitative closeness: Cl({-,-}) takes only a few values, e.g. “close” vs. “far”.

e Quantitative closeness: Cl({-,}) takes on a numerical value in some (discrete

or continuous) range.

Notice that quantitative closeness may be somewhat ill-suited for use with EFSE—if
a scheme must leak quantitative information about closeness, that leaves very little
interesting information left for encryption to protect! Thus, we focus on qualitative

closeness, hereafter called just “closeness.” This leads to the following primitives.

CLOSENESS DOMAIN. We refer to the pair A = (D, Cl) as a closeness domain if
1. D is a (finite or infinite) set, called the domain or message space;

2. Cl is the closeness function that takes 2-element subsets of D and outputs a

member of {close,near, far}.

We abuse notation: for m # m’ € D, we write Cl(m, m’) or Cl(m/, m) as shorthand for
Cl({m,m'}). For m,m’ € D, if Cl(m,m’) = close | near | far then we say m and m/
are close | near | far, respectively. For convenience, we say A is rigid if Cl(m,m’) €
{close, far} for all m # m’ € D, and flexible if Cl(m,m’) € {close,near} for all
m # m' € D—we will see the importance of this distinction in the next section.

Let d be a metric on domain D,and let 6¥ > 6° > 0. The metric closeness

domain (D,MZC’6F> on domain D with respect to metric d, far threshold 6%, and
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close threshold 6¢ is defined as
(

close if d(mq, ms) € (0,6

MG =< near it d(my,msy) € (6%, 6F]

far if d(mq, mg) > OF

\

- 1,2 : . . .
For instance, ({0, 1380, MH’am), where Ham is hamming distance, is a closeness do-

main of all length-80 strings where strings differing in 1 bit are close, differing in 2

bits are near, and differing in more than 2 bits are far.

CLOSENESS AND NEARNESS GRAPH. Let A = (D,Cl) be a closeness domain. Let
VA =D and
ES = {{u,v} | u+#v eV, and Cl(u,v) = close};

EN = {{u,v} | u+#v €V, and Cl(u,v) € {close,near}}.
Then G§ = (D, &) is the closeness graph and GY = (D, EY) the nearness graph of A.

INDUCED SUBGRAPH. In general, for graph G = (V,€) and H C V let G(H) =

(H,E(H)) be the subgraph induced by H where E(H) = {{u,v} € £ |u,v € H}.
5.3 Efficiently Fuzzy-Searchable Symmetric Encryption

We now define our main primitive and show how can it be used for efficient search.

Following that, we formulate the ideal level of security for EFSE schemes.
5.3.1 Defining Efficiently Fuzzy-Searchable Encryption

FSE = (K, Enc, Dec, Clr, makeDS, fuzzyQ) is a structured fuzzy-searchable symmetric

encryption (StructF'SE) scheme on closeness domain Ap = (D, Clp) if
e (K,Enc, Dec) is a symmetric encryption scheme on D;

e Cly is a function that takes two inputs and returns close, far, or eq. We
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require that for any key K generated by IC and my,my € D,

;

close if Clp(my, my) = close

Clg(Enc(K,my), Enc(K, my)) = ¢ far if Clp(my, my) = far

eq if m; = mo
\

e makeDS takes a set of ciphertexts C (the database) and outputs a data structure

DSc:

o fuzzyQ, given database C and data structure DSc, takes query ciphertext c,

and outputs the target of cin C, Tgt(c) = {¢ € C | Clg(c, ) € {close,eq}}.

Notice that Cli reveals whether ciphertexts correspond to close messages or far mes-
sages, but it may have either behavior on encryptions of near messages. Near message
pairs can thus be thought of as “false positive candidates” in a fuzzy search query—
as an encryption of a near message can be (but does not have to be) in the target
of a fuzzy query. In this sense, FSE on a rigid closeness domain cannot have any
false positives, and FSE on a flexible closeness domain can have any number of false
positives.

Now, we say StructFSE scheme FSE = (K, Enc, Dec, Clg,makeDS, fuzzyQ) is an
efficient fuzzy searchable symmetric encryption (EFSE) scheme if for any (sufficiently
large) database C, data structure DS¢, key K generated by K, and query ciphertext
c with |[Tgtg(c)| sub-linear in the size of C, the running time of fuzzyQg ps(c) is

sub-linear in the size of C.

USING AN EFSE SCHEME. Let FSE = (K, Enc, Dec, Clg, makeDS, fuzzyQ) be an
EFSE scheme and K a valid key. In the DBaaS application (see Section 1.1), let C
be the set of ciphertexts currently in the encrypted database, encrypted under K.
The server runs makeDS(C) to create a data structure DSg, and upon a new query

¢ = Enck(m), runs fuzzyQ(C,DSc, ¢) and returns the result, Tgt(c), to the user.
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By correctness of the scheme, this response will contain all ciphertexts in C whose
messages are close to m and no ciphertexts whose messages are far from m. Since the
scheme is efficient, such a query will take time sub-linear in the size of the database
C (assuming the appropriate response itself is also sub-linear in the size of C.) Also
note that leaked equality permits efficient exact-match search.

As a side note, in a practical implementation, additional functions (add, remove,
edit, etc.) would be useful to efficiently update the data structure as the database
changes. In our analysis, we are less focused on efficiency of the data structure
maintenance, so for simplicity we just let the (possibly inefficient) function makeDS
construct the data structure from the entire database.

Finally, observe that the “difficult” part of building an EFSE scheme is ensur-
ing that fuzzyQ is efficient. Thus, constructions of Enc and Cli might as well be
designed with the efficiency of fuzzyQ in mind. In our constructions, as detailed in
Section 5.4, ciphertexts outputted by £nc will contain “tags” such that ciphertexts
of close messages share a common tag. Thus, indexing ciphertexts by tags in an
efficiently searchable data structure, like a binary search tree, leads to an efficient

construction of fuzzyQ.
5.3.2 Ideal security for EFSE schemes

We construct the following indistinguishability-based security definition, called IND-
CLS-CPA, for analyzing the security of EFSE schemes. Intuitively, this notion is
identical to IND-CPA with the additional condition that left-right queries have the
same closeness pattern (in the second requirement below.) Notice that we do not
study chosen-ciphertext security here as it can be achieved using the encrypt-then-
MAC method [6].

Let FSE be an EFSE scheme on closeness domain A = (D, Clp). For b € {0,1} and

adversary A, let Expiss @™ (4) bhe the IND-CPA experiment Exprar ®*°(A) in
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Figure 1 but with the following restrictions: if (mg,m7),. .., (md, m?) are the queries

A makes to its LR encryption oracle Enc(K, LR(-,+,b)),
1. |mj| = |m¢| for all i € [q];

Clp(mj, m)) = Clp(mi,m]), or
2. for all i, 5 € [q], either
mb = m? and m? = m].
For an adversary A, define its IND-CLS-CPA advantage against FSE as
AdviEE™T P (4) = Pr | Bxplar ™ (4) = 1| - Pr | Bxppd T 0(4) = 1] .

We say that FSE is indistinguishable under same-closeness-pattern chosen-plaintext at-
tack (IND-CLS-CPA-secure) if the IND-CLS-CPA advantage of any adversary against
FSE is small.

It should be apparent that IND-CLS-CPA-security is optimal for EFSE schemes:
revealing equality and closeness patterns of left /right queries is unavoidable as the
(public) Clk function leaks closeness and equality. Thus, to avoid the naive attack,

we must outlaw queries that exploit this leakage.

5.4 Template Bucket-Tagging Construction for EFSE

In this somewhat technical section, we build up to a general construction of an EFSE
scheme given a valid “bucketing function” on the desired closeness domain. In ad-
dition, we show that under certain conditions, the scheme is IND-CLS-CPA-secure.
First, though, we define several primitives, along with relevant security notions, that
will be components of the construction. The primitives are: efficient searchable en-
cryption (ESE) schemes [3], privacy-preserving batch-tagging families, and closeness-

preserving bucketing functions.

5.4.1 Efficient searchable encryption and security

The ESE scheme primitive, which was not formalized earlier, is formally defined

in Appendix C.1. Intuitively, an ESE is like a standard encryption scheme except
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that it “leaks equality,” that is, there is a (public) way to tell if two ciphertexts
are encryptions of the same message. The appropriate security notion for ESE was
defined by [11] and is called indistinguishability under distinct chosen plaintext attack
(IND-DCPA)—it is also recalled in Appendix C.1. The notion is identical to IND-
CPA except that left/right-queries must have the same “equality pattern” (and so
avoiding the obvious attack, as ESE leaks equality.) For blockcipher-based IND-

DCPA-secure constructions of ESE schemes, see [3].
5.4.2 Privacy-preserving batch-tagging

We say that Frag = (K7, T) is a tagging family on domain D and range R if Kr
outputs random keys and T takes a key and an element of D and outputs an element
of R such that T (K7,-) is a (deterministic) function from D to R. We further say
that Ferag = (K7, T, B) is a batch-tagging family if (K7, T) is a tagging family and
B takes a key K7 and a set of elements M C D and outputs {7 (K7, m) | m € M}.

Given a tagging family (K%, 7") it is easy to construct a batch-tagging family
(K7,T,B): let K7 =K’ and T =T, and define B(K7,-) to take a set of messages,
run 7 (K7, -) on each, and return the set of results.

We say that a tagging family (C7,T) or a batch-tagging family (K, T,B) is
collision-free if for any key K7, T (K7,-) is one-to-one on D.

Now, we introduce a security definition for batch-tagging families. Called privacy-
preserving under chosen batch-tag attack, it is essentially the privacy-preserving notion
from [11] generalized to objects of the batch-tagging primitive.

Let Fgrag = (KC7, T, B) be a batch-tagging family on domain D and range R. For
an adversary A and b € {0,1} consider the experiment defined in Figure 9, where
it is required that, if (Mg, M}),..., (M, M}) are the queries that A makes to its
LR-batch-tagging oracle (note: each M; is a set of elements of D), for all I C [q] we

have ‘ﬂieIM(ﬂ = ‘anIM”
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Experiment Exp?"(4)

-FBTag
K7 < Kr
by & ABKT.LR(b))
Return b,

Figure 9: The PP-CBT experiment.

For an adversary A, define its PP-CBT advantage against Fgrag as

AdvE(A) = Pr| Expi " (4) = 1] - Pr| Expi " 0(4) = 1] .

]:BTag ]:BTag ]:BTag

We say that Fyrag is privacy-preserving under chosen batch-tag attack (PP-CBT-
secure) if the PP-CBT advantage of any adversary against Fgrag is small.

Notice that the requirement rules out an obvious attack: suppose to the contrary
that, without loss of generality, the adversary could query (Mg, M), ..., (M¢{, M})
with ’miem Mg] > ’ﬂidq] M Nieg BT, Mé)‘ =
N (T m) [ m € M| = Mgy M Mie BUT, M)

the oracle responses the adversary can identify b.

. If T(K7,-) is collision-free,

from

, SO0 by computing

INSTANTIATING A SECURE, COLLISION-FREE BATCH-TAGGING SCHEME. Naturally,
we will want a PP-CBT-secure scheme for our constructions in this paper, so how can
we construct one? In fact, a PP-CBT-secure batch-tagging scheme can be created
straightforwardly out of a pseudorandom permutation (PRF). We explain the batch-
tagging PRF-based construction in Appendix C.2.

However, as will soon become clear, what we actually need is a PP-CBT-secure
collision-free batch-tagging scheme. Note that if we instantiate the above PRF-
based batch-tagging scheme with a pseudorandom permutation (PRP) it will be both
collision-free and PP-CBT-secure. Any blockcipher then will work to instantiate the
PRP, possibly by augmenting the blockcipher into a variable-input-length blockci-

pher [12] as described in [52]. The details are left to the reader.

7



5.4.3 Closeness-preserving bucketing functions

Fix a closeness domain A = (D,Cl). Let B be a (finite or infinite) set and let
Bkts : D — 28 be a function assigning a subset of B to every domain element. We
call Bkts a closeness-preserving bucketing function (CPBF) from A into B if for every
z,y € D with Cl(x,y) = close, there exists b € B such that b € Bkts(z) N Bkts(y);
and for every z,y € D with Cl(z,y) = far, Bkts(z) N Bkts(y) = .

Further, a CPBF Bkts is consistent with respect to closeness domain A if for any
message sets {mg,...,ml} and {ml, ..., m!} having the same closeness pattern?,

we have |(,c, Bkts(mg)

= ‘ﬂie[q] Bkts(m!)|. Consistency can be understood in-
tuitively as follows: whenever a set of messages has the same closeness pattern as
another set of messages, each set should be found all together in the same number of
buckets.

Examples of CPBF's are integral to our constructions and are several are intro-

duced in the remainder of this paper.
5.4.4 Template bucket-tagging EFSE construction

We now provide a general “template” construction for an EFSE scheme given a
closeness-preserving bucketing function Bkts, batch-tagging family Fgr.e, and ESE
scheme ESE. We remark that this template is a generalization of the technique used
in [48], though we have expanded, formalized, and refined it significantly. All forth-
coming EFSE constructions in this paper use this general construction as a template.

Let A = (D,Clp) be a closeness domain, Bkts a function from A into a set B,
Ferag = (K7, T, B) a batch-tagging family on domain Dy = B and range R, and
ESE = (Kgsg, Encesg, Decgsg, F, G) an ESE scheme on D. Then we define a general

bucket-tagging StructF'SE scheme FSEgyirag[BRtS, Frrag, ESE] in Figure 10.

CORRECTNESS. The following result establishes that the template construction is a

2That is, either Clp(m, m?) = Clp(mi, m)) or (mi = mj and mi = mj) for all i, j € [g].
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FSEpktrag[BKtS, Farag, ESE| = (K, Enc, Dec, Clg, makeDS, fuzzyQ) where

K runs K7 <~ K7 and Kgg < Kgsg, and returns K| Kgge.

Enc(Kr||Kgsg,m) runs By, < Bkts(m); tags < B(Kr,Bn); cr <
Encgsg(Kesg, m), and returns ¢ + tags||cg.

Dec(Kr| Kgsg, ¢) parses ¢ as tags||cg and returns Decgsg(Kesk, Cr)-

Clg(e,d) parses ¢ = tags|lcg and ¢ = tags'|cy, and returns eq if
G(cr) = G(dy); (otherwise) close if tags Ntags’ # 0); otherwise far.

makeDS(C) initializes an efficient self-balancing search tree T representing
an associative array from elements of R+ to ciphertexts. For each cipher-
text ¢ € C parsed as ¢ = tags||cg, and for each t € tags, add the node
(t +— ¢) to T. Output DS¢ < T.

fuzzyQe ps,, () parses c as tags||cr and interprets DSc as search tree T
Let @ = (). For each t € tags, search T for elements indexed by ¢; for
any (t — ¢) that exist, add ¢ to Q. Return nbsQg + Q.

Figure 10: General bucket-tagging construction of a StructF'SE scheme given Bkts,
ESE.

FBTagu

valid StructFSE scheme as long as bucketing function Bkts is closeness-preserving

and batch-tagging function Fgra, is collision-free.

Proposition 5.4.1. If Fgrag 15 collision-free and Bkts is closeness-preserving, then

FSEgkttag[BKtS, Forag, ESE| is a StructFSE scheme on A.

Proof.

e m = m’ implies G(cg) = G(Enc(Kegsg,m)) = F(Kgsg,m) = F(Kgsg,m') =

We first show Cly is correct: for any m,m’ € D and key K| Kgsg = K < K,

G(Enc(Kese,m')) = G(cR), so Clg(Enc(K,m), Enc(K,m’)) returns eq.

e Clp(m,m’) = close implies tagsNtags’ # () since Bkts is a CPBF and B(Kr, )

is deterministic, so Clg (Enc(K, m), Enc(K, m')) returns close.

e Clp(m,m') = far implies tags Ntags’ = () since Bkts is a CPBF and B(K7,-)

is collision-free, so Clg (Enc(K,m), Enc(K,m’)) returns far.
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Now we can show fuzzyQ is correct: it returns all ciphertexts in C whose set of B-
bucket values intersect with that of the query ¢, which is precisely the set of ciphertexts

¢ in C for which either Clg(c, ) = close. O

Now, given that the scheme satisfies the conditions of Proposition 5.4.1, it should
be clear that FSEgxirag[BKtS, Farag, ESE| is an EFSE as long as ¢ = max,, |Bkts(m)|
is small. To see this, suppose database C contains k ciphertexts, and assume k > pu.
Then tree T" will have at most ku nodes, and a single search for a tag in the tree takes
O(log(kw)) € O(log(k)) time. fuzzyQ performs O(u) searches on 7', so the running

time of fuzzyQ is O(ulog(k)), which is sublinear in k.

5.4.5 Conditions for optimal security of the scheme

Now that we have established that the template construction is a valid EFSE scheme
given an appropriate CPBF with small © = max,, |Bkts(m)| and collision-free batch-
tagging function, we state conditions under which the construction is IND-CLS-CPA-
secure.

In the remainder of this section, fix a closeness domain A = (D, Clp), and let Bkts
be a CPBF from A into a set B, Fgrag a collision-free batch-tagging family on B, and
ESE an ESE scheme on D, so that FSEpgirag[Bkts, Fprag, ESE| is a valid StructFSE
scheme by Proposition 5.4.1.

The following theorem, proved in Appendix C.3, shows that if Bkts is consistent
and {1 = maX,ep |[Bkts(m)| is small, then IND-CLS-CPA-security of the template

scheme depends on PP-CBT-security of Fgrag and IND-DCPA-security of ESE.

Theorem 5.4.2. [If Bkts s consistent with respect to A, then for any adversary A

there exist adversaries E4 and F5 such that

Advind-cls-cpa (A) _ Advgls%_dea<EA) + Adep_Cbt(FA).

FSEgktTag [BKtS,FBrag,ESE] FBTag

Further, let p = maxp,ep |Bkts(m)|, and suppose A submits q length-20 queries to its

oracle. Then
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o I,y submits q queries to ils oracle, each of length < 4ul; q queries to Encesg,

each of length ¢; and 2 queries to Bkts, each of length ¢;

o [y submits q queries to its oracle, each of length 2¢; q queries to B, each of

length < 2ul; and 1 query to Bkts, of length (.

Otherwise, A, Ea, and F4 have the same running time.
5.4.6 A condition for insecurity of the scheme

Finally, we establish that consistency of Bkts is necessary to guarantee IND-CLS-
CPA-security of the template bucket-tagging scheme. The theorem is proved in

Appendix C.4.

Theorem 5.4.3. Let FSEpxirag[BRtS, Forag, ESE] be @ valid EFSE defined in the model
of Figure 10 on closeness domain A. Suppose that CPBF Bkts is not consistent on
closeness domain A. Then there exists an adversary submitting q queries to its oracle

whose IND-CLS-CPA-advantage against FSEpgirag[BRS, Forag, ESE] is 1.

Summing up, if CPBF Bkts is consistent, batch-tagging oracle Fgrag is PP-CBT-
secure and collision-free, and ESE scheme ESE is IND-DCPA-secure, then we may
conclude FSEgkitag [Bkts,fBTag,ESE] is a valid StructFSE scheme. Furthermore, it is

an (optimally) IND-CLS-CPA-secure EFSE if 4 = max,, [Bkts(m)| is small.

5.5 Toward an Ideally Secure Scheme

We seek an EFSE scheme achieving the ideal level of security, IND-CLS-CPA, as de-
fined in Section 5.3.2. First, we show that the only previously existing candidate is,
in general, not IND-CLS-CPA-secure due to Theorem 5.4.3. Then, we construct the
first IND-CLS-CPA-secure EFSE scheme using the template from Section 5.4. Fi-
nally, we show that in a sense, the space-inefficiency of the secure scheme is necessary

to accommodate general closeness domains.
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5.5.1 Analysis of an EFSE scheme similar to [48]

The only previously existing EFSE-type scheme is presented in [48]. As noted, the ba-
sic structure of our template batch-tagging scheme is a generalization of their method,
so it is natural to define a batch-tagging scheme in our model that captures the essence
of (and perhaps improves) the [48] scheme. Here we show that this scheme has poor
space-efficiency (length of ciphertext linear in the number of close neighbors of a mes-
sage) and yet fails to achieve IND-CLS-CPA-security. In contrast, the schemes we
develop in later sections either achieve IND-CLS-CPA-security, or have much better
space-efficiency.

In [48], the authors construct several variants of a fuzzy-searchable scheme; here we
present a variant/generalization®. Let A = (D, Clp) be a closeness domain. We define
the neighbor set of an element m to be Nb,, = {m’ € D | m’ # m, Clp(m,m’) = 1}.

Let Gy = (Va, Er) be the closeness graph of A. Define BktNbs : D — V), as
BktNbs(m) = Nb,,, U {m}.

Note that if Clp(m,m’) = close then BktNbs(m) N BktNbs(m’) 2 {m,m’'} # 0, so
BktNbs is a CPBF on A. Let Fgrag be a collision-free batch-tagging family on V4 and
ESE an ESE scheme on D, and define FSEtagNbs to be FSEgyrag[BktNDS, Fprag, ESE]
according to Figure 10. If A is defined so that n = max |Nb,,,| is small, FSEtagNbs is
an EFSE. However, we see that the ciphertext size is linear in n.

We claim that FSEtagNbs is IND-CLS-CPA-insecure for the closeness domains
considered by [48], as well as most other conceivably useful domains. Suppose, for

example, that the closeness domain has two pairs of close messages with different

3 There are minor differences—mnotably, FSEtagNbs uses an IND-DCPA-secure ESE rather than
a (stronger) IND-CPA-secure scheme, but this is not an issue as [48] leaks equality already through
its tagging strategy. Moreover, we could instantiate FSEtagNbs with an IND-CPA-secure scheme in
place of ESE and the attack described would still work, since the attack exploits the Fgrag-tagged
neighbors, not ESE. Other differences in [48] are inconsequential to the analysis.
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numbers of common close neighbors: i.e.,
Clp(mg, my) = Clp(mq, my) = close; INb,y M Nby, | # [Nbp, N NDy, | (3)

Then the condition of Theorem 5.4.3 is satisfied for ¢ = 2, so that FSEtaglNbs is
IND-CLS-CPA-insecure for any domain having mg, my, ms satisfying (3).

The schemes of [48] are, essentially, instantiations of FSEtagNbs on closeness do-
mains defined in terms of keywords and edit distance. If ¢ is the threshold edit
distance, take mo to be any message of length at least 20. Let mgy be my but with
the first 0 + 1 letters changed. Let m; be mgy but with the last 6 — 1 letters changed.

Then mg, my, ms satisfy (3) and hence FSEtagNbs is IND-CLS-CPA-insecure here.

5.5.2 Construction of the first secure EFSE scheme

We now improve on the scheme of Section 5.5.1 and construct an EFSE scheme that
is IND-CLS-CPA-secure even on rigid closeness domains. Let A = (D,Clp) be a
closeness domain with D finite and fixed message length ¢. (That is, assume every
m € D can be uniquely described as a string of length ¢.) Let Gy = (Va,Ex) be the
closeness graph of A. For m € D, let E,, = {{m,m'} € Ey | m" € V,} be the set of
incident edges to m in Gy, and A,, = |E,,|. Let A = max,,ep Ay-

Construct a new graph Gaun = (Vaun, Eaun) Where Vg = Vi U {wy, ..., wa}, and
Eaun consists of all edges in £y, plus for any m € V,, if A — A,, > 0 then let Egquy
also contain edges {m,ws},...,{m,wa_n,,}. We call these additional edges dummy
edges and wy, ..., wa dummy vertices. Gauy is thus a graph in which every element of
VA C Vau has degree A.

Define BktEdges : D — Equn as
BktEdges(m) = {e € Equm | m € €}.

Then if Clp(m, m') = close then BktEdges(m) N BktEdges(m') 2 {{m,m'}} # 0;
and if Clp(m, m’) = far then BktEdges(m) N BktEdges(m') = (). So BktEdges is a

CPBF.
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Let Fgrag be a collision-free batch-tagging family on domain &y and some range
R, and let ESE be an ESE scheme on D. Define the StructF'SE scheme FSEtagEdges
as FSEpkcrag[BRktEdges, Ferag, ESE] according to Figure 10. Notice that for all m € D,
|BktEdges(m)| < A. So, if A is defined so that A is small, FSEtagEdges is efficient.

Now we provide the security guarantee of FSEtagEdges.

Theorem 5.5.1. Let A be a closeness domain with fized message length ¢, and

FSEtagEdges the scheme defined above. For any adversary A there exist adversaries

E4 and Fy such that
Advind—cls—cpa (A) _ Advind—dcpa(E ) + Advpp—cbt(F )
FSEtagEdges ESE A Frtag A)-
Further, suppose A submits q length-2¢ queries to its oracle. Then

o E,4 submits q queries to its oracle, each of length < 4Al; q queries to Encegg,

each of length {; and 2 queries to Bkts, each of length ¢;

o [y submits q queries to its oracle, each of length 2¢; q queries to B, each of

length < 2Al; and 1 query to Bkts, of length £.
Otherwise, A, Ea, and F4 have the same running time.

The proof is in Appendix C.5, and simply shows the condition of Theorem 5.4.2 (i.e.,
consistency of BktEdges) is satisfied in this case.

If Encgsg and B are implemented efficiently, then the efficiency of F4 and F, are
each bounded by essentially a factor A times the efficiency of A. Thus, if A is small,
and if ESE is IND-DCPA-secure and Fgrag is PP-CBT-secure, then FSEtagEdges is
IND-CLS-CPA-secure. Recall that certain blockcipher-based constructions (discussed
earlier) satisfy the necessary efficiency, security, and functionality conditions for ESE
and Fprag. Finally, the last missing piece to achieve our IND-CLS-CPA-secure scheme

is that BktEdges should be efficiently constructible, which holds if A is defined so that
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E,, for any message m € D is predetermined or easily calculated on-the-fly. Thus, if

we assume two conditions on the closeness domain A:
e A =maxep |Ep| is small;

e F,, is predetermined or easily calculated on-the-fly;

then FSEtagEdges is an IND-CLS-CPA-secure EFSE scheme on A.

So, we have successfully created a IND-CLS-CPA-secure scheme, but at what cost?
It is apparent that the ciphertexts in FSEtagEdges can be quite long, namely, their
length is linear in A, the maximum number of close neighbors of a message in A (not
to mention the fact that a large A weakens the security reduction in Theorem 5.5.1).
A could certainly be quite large—for example, on a metric closeness domain, even a
relatively small threshold causes each message to have many close neighbors, and A
increases exponentially with dimension of a metric closeness domain.

However, in the next section we show that if we desire a general FSE construction

to work on arbitrary closeness domains, such long ciphertexts are necessary.

5.5.3 Lower bound on ciphertext length of an arbitrary-domain FSE
scheme

The following result demonstrates the existence of closeness domains A on which any
FSE scheme must have ciphertext length linear in the maximum degree of G,. (This
matches the space-efficiency of FSEtagEdges from the previous section, demonstrating
that FSEtagEdges is “best-possible” for FSE on certain closeness domains.) As we will
see, this is an informational theoretic requirement, and relies only on functionality,
rather than security, of the scheme. The proof of the following theorem is in Appendix

C.6.

Theorem 5.5.2. For any A > 0, there exists a rigid closeness domain A where Gy
has mazimum degree A such that (for correctness) any FSE scheme built on A must

have ciphertezt length Q(A).
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5.6 Space-Efficient Schemes

The result of Theorem 5.5.2 indicates that it is costly to afford IND-CLS-CPA-security
on general rigid closeness domains. A natural question is whether we can do better for
non-rigid closeness domains, where we have an extra freedom: namely, near message
pairs may be sent to either (i) far ciphertext pairs or (ii) close ciphertext pairs.
However, note that if an adversary has any probabilistic edge in guessing which near
message pairs are sent to category (i) and which to category (ii), he can easily break
IND-CLS-CPA-security. The only way to avoid this attack would be for all near
message pairs to have uniform probability to end up in category (i) vs. category (ii).
And this negates the flexibility of having near messages—we expect an EFSE scheme
satisfying this uniformity condition on near pairs would be just as inefficient as the
FSEtagEdges scheme. Thus, it appears that IND-CLS-CPA-security is too strong for
more efficient EFSEs to achieve, even on non-rigid closeness domains. So for more
efficient schemes, we need a new, weaker notion of security.

Intuitively, what information do we hope an EFSE scheme on a non-rigid closeness
domain A will protect, given that some number of ciphertexts are known? Let H be
the set of messages corresponding to known ciphertexts. For two messages in the
same component of the induced nearness subgraph GX(H) (we say they are in the
same nearness component) an EFSE is designed so that anyone might discover this
fact by looking at their ciphertexts. So, by using EFSE we automatically give up a
large amount of information about messages in the same nearness component (namely,
their link through a chain of near pairs.) It is a natural step to consider allowing
more information leakage for messages within the same nearness component, while
protecting as much as possible about messages in different nearness components—a
kind of “inter-nearness-component security.”

With this goal in mind, we introduce a security notion that requires schemes to

hide all information about plaintexts in different nearness components except for an
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aspect of “local structure”—which can be intuitively understood as the least signifi-
cant bits of messages. As we will see, this local structure will be characterized by a
message’s relationship to a pre-chosen fixed regular lattice £ (that we call the anchor
lattice) on the message space. The important implication is that nothing major (i.e.,
only “local structure”) is revealed about the relationship between a pair of discon-
nected messages (i.e., messages that cannot be connected through a chain of near
known corresponding ciphertext pairs). Hence, it is a sort of “macrostructure secu-
rity” across disconnected nearness components. Also, since it is difficult to formalize
these concepts on general closeness domains, we confine our view to metric closeness
domains, and specifically, Euclidean distance on arbitrary-dimension real domains.

Such closeness domains have many applications, as we shall see.
5.6.1 Macrostructure security on metric domains

Before defining the new notion of security, we first introduce the concept of an anchor
lattice, which plays a role both in the security notion and in constructions. Intuitively,
a short basis for the anchor lattice distinguishes the “local” scale (say, on the order
of small-constant combinations of the short basis vectors) as opposed to the “macro”

scale in the domain.

ANCHOR LATTICE. Let £ be a regular lattice in R’, that is, a set of vectors
characterized as all integer combinations of some linearly independent basis vectors
Bi,...,8, € RY. We call £ an anchor lattice, and assume that a short basis for it is
public. For x,y € R?, we say that x and y are in the same (translation-invariant)
L-class if there exists w € £ with x +w = y; in this case, we say w is the L-witness

from x to y.

C SF .
MACROSTRUCTURE SECURITY. Let A = (R‘,Mg o ) be the metric closeness do-

main on R’ the Euclidean metric d, close threshold 6 > 0, and far threshold 6% > €.

40ur use of lattices should not be confused with the techniques of lattice-based cryptography.
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Let £ be an anchor lattice on RY. We introduce a notion of security called indis-
tinguishability under same-nearness-component-and-L-class chosen-plaintext attack,
which for simplicity we rename macrostructure security with respect to anchor lattice
L as “same nearness component and L class” places no restrictions on the (discon-
nected) macro-scale structure of adversarial queries.

Let FSE = (I, Enc, Dec, Clg) be an EFSE scheme on A. For an adversary A and
b € {0,1}, let experiment Expg;%_nrﬁ_q’ a_b(A) be identical to IND-CPA experiment
Exppss P(A) in Figure 1 but with the restriction: for left /right-queries (mj, m?),
i € [¢] made by the adversary, letting Hy = {m{,...,ml} and H; = {m},... ,mi},

require
L. |mf| = |mi| for all i € [q];

2. Vi € [q], m{ and m{ are in the same L-class; furthermore, the £-witness from
m{ to m} is also the L-witness from mj to mJ whenever m{ and mj} are in the

same connected component of G\ (Hy).
For an adversary A, define its IND-NRL-CPA advantage against FSE as
AdvEE™ P (A) = Pr| Exppg ™ P (A) = 1| - Pr | Expl ™t r0(4) = 1]

We say FSE is indistinguishable under same-nearness-component-and-L-class chosen-
plaintext attack (IND-NRL-CPA-secure), or alternatively macrostructure-secure with
respect to anchor lattice £ (MacroStruct-L-secure) if the IND-NRL-CPA advantage
of any adversary against FSE is small.

The second left/right-query requirement asks that a left-query component of
G)(Hyp) is a L-translation (translation by a vector in £) of the corresponding right-
query component of G\ (Hy). This implies that left and right queries have the same

equality /closeness pattern:

e if m) = mj then these messages are in the same nearness component (as they

are the same vertex) so 3 € £ with mi{ = m} 4+ 1 = mi + 1 = m];
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o if Cl(mé,m%) € {close,near} then these messages are in the same nearness
component so 3 € £ with m} = m + 1, m} = mj + 1, implying d(m}, m}) =

d(m? 4+ 1,m] +1) = d(mj, mj)), so Cl(mi, m}]) = Cl(mi,m?).

Thus, MacroStruct-L-security is clearly weaker than IND-CLS-CPA-security.
Returning to the big picture, an MacroStruct-L-secure scheme may leak how all
messages in a nearness component lie with respect to nearby points in the anchor
lattice. However, since the lattice itself is regular, no information is leaked about
where those nearby lattice points actually are. Thus, for messages in different nearness
components, an adversary learns nothing about the distance between them, or their
approximate locations in the space, besides some quite-insignificant bits, as well as

that the distance is above 6F (which is by design.)

OUTLINE OF REMAINDER OF SECTION. Unless otherwise noted, let A = (Re, Mflc’5F>
be the metric closeness domain on R’ the Euclidean metric d, close threshold 6¢ > 0,
and far threshold ¥ > §°. We aim to construct space-efficient EFSE schemes on
A that meet our new notion of MacroStruct-L-security for anchor lattices £ C R
Before getting to specific schemes, we introduce the concept of an “anchor radius” on
A and £, and show that a valid anchor radius p implies an EFSE construction (based
on the bucketing template of Section 5.4) on A that is MacroStruct-L-secure. Next, we
introduce a general problem of trying to improve space-efficiency and accommodate
as-small-as-possible near thresholds of such EFSE schemes by choosing lattices £
and anchor radii p wisely. We then introduce several specific schemes on particular
closeness domains. Finally, we explain how to build an EFSE scheme on a joint
closeness domain (a product of small-dimension closeness domains, with closeness

defined conjunctively) as might be useful in biometric-data-matching applications.
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5.6.2 Anchor radii and general macrostructure-secure construction

Fix anchor lattice £ in R?. For p > 0, we say that p is an anchor radius on closeness

domain A and anchor lattice £ if

1. for any m,m’ € D with d(m, m’) < §°, there exists v € L such that d(v,m) < p

and d(v,m’) < p;
2. p<oF/2.
If p is an anchor radius on A and £, then BktsAnc) : R® — £ defined as
BktsAnc(m) = {v € L | d(m,v) < p}

is a CPBF on A, as condition (1) implies that whenever d(m, m’) < 6¢, there exists
v € L such that BktsAnc?(m) N BktsAncf(m’) D {v}; and condition (2) implies
BktsAnc(m) N BktsAncf(m’) = () whenever d(m, m’) > ¢*. Thus, if p is an anchor
radius on A and L, Fgrag = (K7, 7T, B) is a collision-free batch-tagging family on
domain Dy = £, and ESE is an ESE scheme on D, then the scheme FSEtagAnc/ =
FSEgktTag[BRtSANC,, Fyrag, ESE] is an EFSE by Section 5.4.

The following result, proved in Appendix C.7, shows that any EFSE scheme
FSEtagAnc’. defined in the above manner is MacroStruct-L-secure provided ESE is

IND-DCPA-secure and Fgrag is PP-CBT-secure.

Theorem 5.6.1. Let closeness domain A, anchor lattice L, anchor radius p, and
EFSE scheme FSEtagAnc!. be defined as above. For any adversary A there exist

adversaries E4 and F4 such that

Advind-nrﬁ-cpa(A) _ Advfﬂrls%—dcpa(EA) + Adep_Cbt(FA).

FSEtagAnc’, FiTag

Further, let j = max H{v € L|d(m,v) < p}|, and if A submits q queries to its oracle,
me

of total query length 2, then

90



o 4 submits q queries to its oracle, of total query length 27, and also submits q

queries to B, of total query length at most 2u(y + qlog, p);

o 'y submits q queries to ils oracle, of total query length at most 4u(y + log, p),

and also submits q queries to Encgse, of total query length .

Thus, if we can find an anchor radius p on closeness domain A and anchor lattice

L then FSEtagAnc’. as constructed above is an MacroStruct-L-secure EFSE scheme

on A.
5.6.3 On attaining space-efficiency and small nearness threshold

Suppose that we are given a close threshold §¢ > 0 and are asked to provide an EFSE
scheme on A = (RE, Mj"’”) where 6F can be chosen as needed, with two objectives:
first, minimize 6% (to accommodate stricter closeness domains), and second, minimize
ciphertext length, which depends on the distribution of |BktsAnc’.(m)| for m € D.
Intuitively, once an anchor lattice £ is fixed, this means choosing minimal p so that
BktsAnc’.(m)NBktsAnc?(m’) # () whenever d(m, m’) < 6°, and then setting 6° = 2p
so that p is an anchor radius. A smaller p with respect to £ will mean both a smaller
ciphertext length and a smaller §F.

Faced with the challenge, though, it is unclear what anchor lattice £ to start with.
In fact, the best solution may depend on our relative valuation of minimizing 6% versus
minimizing ciphertext length. A denser lattice would seem to increase ciphertext
length while allowing for smaller anchor radius p = %51’; a sparser lattice would have
the opposite effect. This is an interesting question and we pose the following open

problem.

Problem 5.6.2. Given a space RY and close threshold 6¢ > 0, minimize a function of
maxyepre [{V | d(m,v) < p| and p by selecting an appropriate anchor lattice L C R*
and setting p to be the minimal constant such that every pair of close points (i.e.,

distance at most 5¢) in R® are each within p of the same point in L.
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A straightforward possibility is to pick an anchor lattice £ so that balls of some
radius w around each lattice point cover the entire space, and to set p = §°+w. Then,
a point m is distance w from some v € £, and d(m, m’) < 6¢ implies d(m’, v) < p by
the triangle inequality. But how to choose the anchor lattice and w? And it is likely
we can do better. In any case, addressing Problem 5.6.2 is beyond the scope of this
work. Instead, in the next subsection we propose what seem to be “good” practical

choices of £ and p for various spaces.
5.6.4 Specific anchor-based schemes for various dimensions

We now introduce several specific constructions of tag-anchor EFSE schemes, each
defined by selecting an appropriate anchor lattice and anchor radius. For simplicity,
in each of these examples we assume close threshold §° = 1. (Other close thresholds
are possible by scaling.) See Table 3 for a summary of the constructions.

Table 3: Summary of space-efficiency and minimum near threshold values for specific
anchor-based EFSE schemes on real spaces with close threshold 1.

name domain | anchor rad. p | |BktsAnc’.(+)| range | Minimum ¢F
Integer lattice R! 1 {2,3} 2
Triangular lattice R? V/5/2 {3,4,5,6,7} V5 R 2.24
Rectangular grid | R, ¢ >1 3/2 see Table 4 3

INTEGER LATTICE FOR R!. Let A = (R, M"*"). Set £ = Z, and set p = 1. Then p
is a valid anchor radius: if d(m,m’) < 1, then there exists an integer z in between m
and m’ such that d(m,z) <1 and d(m’,2) < 1.

Minimum near threshold: 2.

Space efficiency: |BktsAnc?(m)| € {2,3} for all m € D.

TRIANGULAR LATTICE FOR R2%. Let A = (R%, M), Set £ to be the regular
triangular lattice generated by the vectors (1,0) and (%, ‘/7§>, and set p = v/5/2.

Then p is a valid anchor radius, by the following argument. Let m € R?, and let

v1, Vs, vy € L be the vertices of (one of) the triangular region(s) 7' containing m.
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The union of three balls, each of radius \/75 and centered at the three points vy, vo, vs,
cover all of T as well as every point within distance 1 of a point of 7. (A point on the
border of this region that is closest to 7' is one at the intersection of two of these balls,
which is distance (‘/75>2 — (%)2 = 1 from a midpoint of one of T’s edges.) Thus,
for any m’ € R with d(m, m’) < 1, we have d(m’,v;) < ‘/75 for some i € {1, 2, 3}.
Minimum near threshold: /5.
Space efficiency: |BktsAnc’.(m)| € {3,4,5,6,7} for all m € D. (See Figure 13

in Appendix C.8.)

RECTANGULAR GRID FOR ARBITRARY DIMENSION. Fix a dimension ¢ > 1, and let

A= (RZ,M;“). Set

ZZ
E:ﬁ:{(%7’2—2) |Zl7"'7ZZ€Z}‘

Set p = 3/2, and p is a valid anchor radius by the following argument. Let m, m’ € R
with d(m, m’) < 1. First, note that the points in R’ furthest from elements of £ are
the half-grid points, e.g. (ﬁ, e ﬁ), which are distance 1/2 from a grid point.
So let z € £ be a grid point that is within distance 1/2 of m. Then d(m’,z) <
d(m’,;m) + d(m,z) <1+ 1/2. Hence d(m, z) and d(m’, z) are both at most 3/2.

Minimum near threshold: 3

Space efficiency: depends on /. See Appendix C.8 for analysis: we argue that
finding an easy formula for |BktsAnc’(m)| is difficult or impossible, we derive a
theoretical upper bound on |BktsAnc’.(m)| in terms of ¢, and we report values from

empirical tests. Table 4 (expanded in the Appendix) displays some results.
5.6.5 Conjunctive closeness for multiple attributes

In many fuzzy search applications, we may desire fuzziness to cover many attributes
in a conjunctive (AND) manner. As a motivating example, consider a database of
people’s identities, indexed by biometrics such as height, weight, fingerprint data,

and iris scan data. Such attributes are generally each 1- or 2-dimensional, but taken
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Table 4: Analysis of the distribution of |BktsAnc’.(m)| for m € £ and various
dimensions /: a loose upper bound, empirically-computed value at a grid point, and
empirical maxima and minima among 10000 random points.

l Loose  Value at Empirical Empirical

upper bound grid point lower bound upper bound
1 5) 3 3 4
2 39 13 12 16
3 340 81 68 81
4 3084 425 425 1023

together a person’s set of biometric data defines a point in a high-dimensional space.
A query may be a set of biometric measurements to search for a patient’s health
records, which are inaccurate by nature. In such an application, we desire closeness
on each individual biometric measurement independently, that is, “heights should be
close AND weights should be close AND ....” to achieve a match.

Let Aqi,..., A, be closeness domains, where A; = (Rzi,/\/lz?éF) for all i € [r].
For ¢ € [r], let £; be a regular lattice on D; and p; a valid anchor radius on A;, £;.
Define conjunctive closeness domain A = (D,Cl) where D = R x --- x R* and

Cl: D — {close,near, far} is defined as

(
close if d;(m;, m}) <6 for all i € [r];

Cl(m, m’) = ¢ far if d;(m;, m}) > oF for any i € [r].

near otherwise.

\

Let £ =Ly X --- x L,, and define BktsAnc?""" : D — L as
BktsAnc? " (m) = {(I1,..., 1) | di(m, l;) < p;Vi € [r]}.
Then BktsAnc?" " is a CPBF on A:

e if Cl(m,m’) = close then Cl;(m;,m}) = close for all i € [r], so for each
i € [r] there exists l; € L; such that d;(m;, ;) < p; and d;(m}, ;) < p; and thus

(l1,...,1,) € BktsAnc/" """ (m) N BktsAncl " (m');
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e if Cl(m, m’) = far then Cl;(m;,m}) = far for some i € [r], so l; € L£; with

di(mi, ;) < pi, di(m}, ;) < p;, so BktsAnc/ 7" (m) N BktsAncl " (m') = (.

A similar argument to that of Theorem 5.6.1 then shows that the EFSE scheme
FSEtagAnc?" """ = FSEpktrag[BktSAnC) ", Fyrag, ESE| is MacroStruct-L-secure pro-
vided ESE is an IND-DCPA-secure ESE scheme on D and Fgrag is a PP-CBT-secure

collision-free batch-tagging family on L.
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CHAPTER VI

CONCLUSION

[ studied the cryptographic properties of order-preserving encryption (OPE) and ef-
ficient fuzzy-searchable encryption (EFSE). These are primitives that enable efficient
(respectively) range query and error-tolerant query support on encrypted data, which
is motivated by the desire to encrypt information on untrusted cloud storage servers
without sacrificing efficient and flexible query support on the data.

Our cryptographic studies of OPE and EFSE represent the first provable-security
study of each. For both, we defined appropriate primitives and optimal security
notions, then developed provably-secure constructions. The OPE case demanded
extra security analysis in the form of one-wayness bounds on our construction. For
EFSE, the optimally-secure scheme was somewhat space-inefficient, so we proposed
space-efficient schemes that are secure under a weaker, but practical, security notion.

Our analyses of OPE and EFSE are not comprehensive—they should be viewed as
first steps, perhaps natural first steps, toward characterizing security of the primitives.
For future work, it is possible that alternative security notions for OPE and space-
efficient EFSE schemes may be useful, based on an application’s needs, and new
constructions should be built accordingly.

OPE and EFSE schemes existed before our research, but there was no compelling
reason to use them as they had no guarantees of security. Now, armed with our
provable-security guarantees, practitioners can implement our schemes with a greater
knowledge of the risks avoided, and a greater awareness of what risks may not be
avoided. Thus, our research allows practitioners to conscientiously implement efficient

range or error-tolerant queries on encrypted data in a cloud storage setting.
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APPENDIX A

OPE AND POPFS PROOFS

A.1 Proof of Theorem 3.2.1

Proof of Theorem 3.2.1. Let M’ = |M/2]. Consider the following IND-OCPA ad-
versary A against OPE:
Adversary An(GLR()

mg <= [M'], my < M —mg + 1

¢ < Enc(K, LR(mg, my,b))

c, <0 ;cr+— N+1

If mg > 1:
mp < mg— 1, mgp my+1
cp < Enc(K, LR(mg,mp,b))
cr < Enc(K, LR(mg, mg,b))

c—cy,
CrR—CL

Return 1 with probability

Else return 0

The IND-OCPA correctness and efficiency claims of A should be clear from the
construction.

Fix a key K, so that Enc(K, ) is a well-defined order-preserving function from
[M] to [N]. Form € [M'], let X,,, = Enc(K, M —m+1)—Enc(K,m) and Xy = N+1.
Let S be the set of messages m in [M'] such that % < 1 Then if |S] > M'/2 we

have

XO Xm—l M’ /2 M/4
X me[M’] Xom

97



a contradiction to N < tM/4 Thus, |S| < M’/2 and so

X 1 1
m—1

In the following, for given mq € [M’] let my, mp, mg, ¢y, c1,cr, cg be determined

from mg as in A. Using Markov’s inequality,

AdVEET(A) = Pr | Bxpge ™ (4) = 1| = Pr | Bxpipe™(4) = 1|

— Pr [ASM(KLR(-,A)) — 1] _ Pr [AEnC(K,ER(-,~,O)) _ 1]
_ E {01—%]_ E |:Co—CL:|
'rn()(i[M’] Cr — CL m()(i[M’] Cr — Cf,

_ E [01—00]
mo <& [M] LER — CL

>1 Pr {61_0021]
tmo & LC€rR—cr —
1 X 1
tmo & [M'] Xm,1 t
- 1
2t
This completes the proof. O

A.2 Proof of Theorem 3.3.2

Proof of Theorem 3.3.2. Since we consider unbounded adversaries, we can ignore the
inverse oracle in our analysis, since such an adversary can always query all points in
the domain to learn all points in the image. Let M = |D|, N = |R|, d = min(D) — 1,
and r = min(R) — 1. We will say that two functions g,h : D — R are equivalent if
g(m) = h(m) for all m € D. (Note that if D = (), any two functions g,h : D — R are
vacuously equivalent.) Let f be any function in OPFp z. To prove the theorem, it is
enough to show that the function defined by LazySample(D, R, ) is equivalent to
f with probability 1/|OPFpz|. We prove this using strong induction on M and N.
Consider the base case where M =1, i.e., D = {m} for some m, and N > M.

When it is first called, LazySample(D, R, m) will determine an element ¢ uniformly
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at random from R and enter it into F[D,R,m]|, whereupon any future calls of
LazySample(D, R, m) will always output F[D,R,m] = c¢. Thus, the output of
LazySample(D, R, m) is always ¢, so LazySample(D, R, -) is equivalent to f if and
only if ¢ = f(m). Since ¢ is chosen randomly from R, ¢ = f(m) with probability
1/IR|. Thus, LazySample(D, R, ) is equivalent to f in this case with probability
1/[R| = 1/|0PFpe].

Now suppose M > 1, and N > M. As an induction hypothesis, assume that for
all domains D’ of size M’ and ranges R’ of size N’ > M’, where either M’ < M or
(M'= M and N’ < N), and for any function f’ in OPFp g/, LazySample(D’,R’, )
is equivalent to f’ with probability 1/|OPFp z/|.

When it is first called, LazySample(D,R,-) sets I[D,R,y| to be the value of
HGD(M, N,y — r;cc), where y = r+[N/2], r = min(R) — 1. Henceforth, on this and
future calls of LazySample(D, R, m), the algorithm sets x = d + I[D, R,y — r] and
runs LazySample(D;, Ry, m) if m < z, or runs LazySample(D,, Ry, m) if m > =,
where Dy = {1,...,2}, Ri ={1,...,y}, Do ={z+1,... M}, Ro={y+1,...,N}.
Let f; be f restricted to the domain Dy, and let f5 be f restricted to the domain D,.
Let xy be the unique integer in DU {d} such that f(z) <y for all z € D with z < z,
and f(z) > y for all z € D with z > zo. Note then that LazySample(D, R, ") is

equivalent to f if and only if all three of the following events occur:

Ey: f restricted to range R; stays within domain D;, and f restricted to range Ro

stays within domain Dy—that is, x is chosen to be x.
Ey: LazySample(D;, R4, -) is equivalent to fi.

E3: LazySample(Ds, Rs, ) is equivalent to fo.
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By the law of conditional probability, and since Fy and E3 are independent,

PI‘[ElmEgﬂEg]:PI'[El]PI'[EQ N E3 |E1]

:PI"[El]Pl"[EQ |E1]PI'[E3 |E1]

Pr [ E; | is the hypergeometric probability that HGD (M, N, y—r) will return z9—d,

SO
(fN/ﬂ) ( N—[N/2] )

Pr [El] = PHGD(mO — d; N7 M, [N/Q‘I) _ zo—d (]]\\,4)(96060
M

Assuming for the moment that neither D; nor Dy are empty, notice that both |R;| and

|Rs| are strictly less than |R|, and |D;| and |Dy| are less than or equal to |D|, so the
induction hypothesis holds for each. That is, LazySample(D;, R, -) is equivalent to

f1 with probability 1/|OPFp, z,| = 1/(‘R1|), and LazySample(D,, R, -) is equivalent

D1
to f, with probability 1/|OPFp, z,| = 1/([5Z). Thus, we have that
1 1
PI'[E2|E1]:W and PI‘[E3|E1]:W
(a:()—d) (d-i—M—xo)

Also, note that if Dy = (), then Pr[FEy |Ey | =1 = ﬁ since x¢y = d. Likewise, if

(ﬂc()*d)
Dy = (), then Pr[ E5 | By | will be the same as above. We conclude that

) [ B 1 1
_ %o~ —&o— . . —
JE R Y R (3 G ) R )
M xo—d d+M—xq M
. . . . 1 1

Thus, LazySample(D,R,-) is equivalent to f with probability — = :
(ar) [OPFpr|
Since f was an arbitrary element of OPFp %, the result follows. m

A.3 Proof of Proposition 3.3.3

Proof of Proposition 3.3.3. For the average case bound, we use a result of Chvétal [22]

that the tail of the hypergeometric distribution can be bounded so that

M
Z PHG’D(Z; N7 M7 C) S 672t2M7
i=k+1
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where ¢ is a fraction such that 0 <t < 1 —¢/N, and k = (¢/N + t)M. Taking
¢ = N/2, this implies an upper bound on the probability of the hypergeometric
distribution assigning our middle domain gap to an “outlying” domain gap:

> Puepliy N, M, N/2) < 2¢72°M (4)

i¢s
where S is the subdomain [(1/2 — )M, (1/2 + t)M].

For M < 12, after at most 12 calls to LazySample we will reach a domain
of size 1, and terminate. So suppose that M > 12. Taking ¢t = 1/4 in (4) implies
that LazySample assigns the middle ciphertext gap to a plaintext gap in the “middle
subdomain” [M /4, 3M /4] with probability at least 1 —2e201/9*M > 1 _9¢73/2 > 1/2,
When a domain gap in S is chosen it shrinks the current domain by a fraction of
at least 3/4. So, picking in the middle subdomain logys M = % < 2.5log M
times will shrink it to size less than 12. Since the probability to pick in the middle
subdomain is greater than 1/2 on each recursive call of LazySample, we expect at

most 5log M recursive calls to reach domain size M < 12. Therefore, in total at most

5log M + 12 recursive calls are needed on average to map an input domain point. [J
A.4 Proof of Proposition 3.4.1

Proof of Proposition 3.4.1. We use a standard hybrid argument, changing the exper-
iment where A has oracle TapeGen(K, -, ) into one with oracle Og(-,-) in two steps.
First change the former oracle to on input ¢,z output not G(¢, F(K,x)) but G(¢, s)
for a independent random s € {0,1}*. The change in A’s advantage is bounded by
Adv?"(By), where B is the PRF adversary against F' that runs A, responding to a
query ¢, x by querying its own oracle with x to receive response y, and then returning
G(l,y) to A. Next change A’s oracle to on input ¢, x return Og(¢, z). This time the
change in A’s advantage is bounded by Advyy ™#(By), where B, is the VOL-PRG
adversary against GG that runs A, responding to a query ¢,z with the response it

receives to query ¢ to its own oracle, and the proposition follows. O]
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A.5 Proof of Proposition 3.4.2

Proof of Proposition 3.4.2. Consider the following adversary.

Adversary BO(+)
i< [q] ;ctr«0
Define P as the oracle taking query 1¢ and running
ctr <~ ctr+1
If ctr < i: s<={0,1}* ; Return first ¢ bits of E(s, (1))||E(s, (2))] -
If ctr = i: s <= {0,1}* ; Return first £ bits of O(s, (1))||O(s, 2))]| - - -
If ctr > i: 7<= {0,1}* ; Return r
b= AP0
Return b
In the PRF experiment, B’s oracle O can be either the blockcipher E or a random
function R : {0,1}*x{0,1}™ — {0,1}". Note that B with oracle F and i = 0 emulates
A with oracle G[E]; while B with oracle R and i = ¢ emulates A with oracle S, where

S is the oracle that on input 1 returns a random string in {0, 1}¢. Hence,

Pr[A%=0) =1] =Pr[BF) =1 |i=1]

Pr[A%0 =1] =Pr [BR) =1 [i=k] (5)

Also, notice that for all j € {2,...,¢ — 1}, B with oracle F and i = j has identical

behavior to B with oracle R and ¢ = j — 1. Thus,

Pr(B¥)=11i=j]=Pr[B*) |i=j—-1] forallje{2,....,q}. (6)

102



=Pr[BP0) =1i=1]-Pr[BM*) =1]i=k] [by (5)]
:ZPr[BE<>:1|z:j}—Pr[BR(>:1|z:g] [by (6)]

The efficiency claims should be clear from the definition of B. It is also clear that
G[E] is consistent: for ¢ < £, note that the first ¢ bits of G[F](s, 1) and G[E](s,1%)

are the same, as they are just the first ¢’ bits of E(s, (1))||E(s, (2))| - . O

A.6 Proof of Theorem 3.4.3

Proof of Theorem 3.4.3. Define adversary B as follows. Given an oracle for either
TapeGen or a random function with corresponding inputs and output lengths, B runs
A and replies to its oracle queries by simulating Enct“P and Decl®P algorithms using
its oracle. B then outputs what A outputs. Note that only the procedure TapeGen

used by these algorithms uses the secret key. B simulates it using its own oracle. We
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have

Advpopf—cca (A)

OPERGD [TapeGen]

— Pr [AgncHGD(KJDwHGD(&) _ 1] —Pr [Ag(')’g’lﬂ) 1

— Pr [Aé’ncHGD(K,-),DecHGD(K,~) 1] — Pr [ALazySample(D,R,~),LazySampleInv(D,R,-) — 1]

< AdvRE . (B) 4+ A

TapeGen

The first equation is by definition. The second equation is due to Theorem 3.3.2. The
last inequality is justified by the construction of B, as it simulates EncfP and DecteP
when given an oracle for TapeGen and simulates LazySample and LazySamplelnv
when given an oracle for a random function. Above, A represents an “error term” due
to the fact that the “exact” hypergeometric sampling algorithm of [42] technically
requires infinite floating-point precision, which is not possible in the real world. One
way to bound A\ would be to bound the probability that an adversary can distinguish
the used HGD sampling algorithm from the ideal (infinite precision) one. B’s run-
ning time and resources are justified by observing the algorithms and their efficiency

analysis. n

A.7 Proof of Theorem 3.5.1

Proof of Theorem 3.5.1. Fix f € OPFpx. As in the proof of Theorem 3.3.2, it is
enough to show that the function defined by LazySample*(D, R, ) is equivalent to
f with probability 1/|OPFpz|. We prove this using strong induction on M and N.
Consider the base case where M = 1, i.e., D = {m} for some m, and N > M.
When it is first called, LazySample* (D, R, m) will determine random coins cc, then
enter the result of NHGD (M, N, m—d; cc) into I|D, R, m|, whereupon this any future
calls of LazySample*(D, R, m) will always output F[D, R, m] = c¢. Note that by

definition, NHGD(M, N, m — d; cc) returns f(m) with probability

f(m)—r—1 . N—(f(m)-r) 1 1
Pynuep(f(m) —r;N,1,1) = (™ )(N() 0 ) :N:W.

1
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Thus, the output of LazySample*(D, R, m) will always be f(m) with probability
1/|R|, implying that LazySample*(D, R, -) is equivalent to f in this case with prob-
ability 1/|R| = 1/|OPFp x|.

Now suppose M > 1, and N > M. As an induction hypothesis assume that for
all domains D’ of size M’ and ranges R’ of size N’ > M’, where either M’ < M or
(M'= M and N’ < N), and for any function f’ in OPFp %/, LazySample* (D', R’, )
is equivalent to f’ with probability 1/|OPFp z/|.

The first time it is called, LazySample*(D, R, -) first computes [[D, R, z| from
NHGD(M, N,z — d; cc), where x = d + [M/2]. Henceforth, on this and future calls
of LazySample*(D, R, -), the algorithm sets y < r + I[D, R, x|, and follows one of
three routes: if x = m, the algorithm terminates and returns y, if m < x it will
return the output of LazySample*(D;, R, m), and if if m > z it will return the
output of LazySample*(Dy, Ry, m), where Dy = {1,...,2—1}, Ry ={1,...,y—1},
Dy={x+1,...,.M}, Ro={y+1,...,N}. Let f; be f restricted to the domain Dy,
and let fy be f restricted to the domain D,. Note then that LazySample*(D, R, -)

is equivalent to f if and only if all three of the following events occur:
E4: The invocation of NHGD(M, N,z — d; cc) returns the value f(z) — r.
E5: LazySample*(D;, Ry, ) is equivalent to fi.
E3: LazySample*(Dy, R, -) is equivalent to fs.
As in the proof of Theorem 3.3.2,
Pr[E N E,NEy] =Pr[E ] Pr[E, | E | Pr[Es | E].

Pr[ E; ] is the negative hypergeometric probability that NHGD(M, N,z — d) will
return f(x) — r, which is

(50210) G fian)

()

Pr[Ey| = Pyuep(f(z) —r; N, M, [M/2]) =
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If £y holds, then f; is an element of OPFp, z, and f; is an element of OPFp, %, .
By definition, |R4|,|R2| < |R|, and |Dy|,|Ds| < |D|, so the induction hypothesis

holds for each, and we have that

1 1 1 1
PI'[E2|E1]: : = PR ) PI'[E3|E1]: N = TR
(5 (i) (&) G
Thus,
(=) Grcfinap) 1 1 1
PriEyNE; N Es] = (N) (f(:r)frfl) (fo(x)w) - (N)
M rvy21-1) \m—[My2) M

Therefore, LazySample*(D, R, -) is equivalent to f with probability ﬁ = m.
N ,

Since f was an arbitrary element of OPFp %, the result follows. O
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APPENDIX B

ONE-WAYNESS OF POPFS PROOFS

B.1 Proving Theorem 4.4.1

Before proceeding, we recall certain probabilities relating to the hypergeometric dis-
tribution and their connection to random OPFSs, as explained in Section 3.3 and
Section 3.5. These probabilities will show up at several points in the analysis.

Let N> M, 0 <y < N,0< 2z < M. Recall hypergeometric and negative

hypergeometric probabilities

(2) (=)
()

(=) (v

PHG’D(N7May7'I) =

PNHGD(N>M7y7w): N ($7y7é0)
(i)
For convenience, define a third, related probability:
() (rs)
P.(N,M,y,z) = 2=t Ma/ (z,y #0) .

N-1
(1)
As explained in Section 3.5, random OPF's are naturally linked to negative hyper-

geometric probabilities. We will use the fact that for (KC;, Enc,, Dec,) = ROPF 51, v]

and m € [M], ¢ € [N],

Pr [Enc(K,m)=c|= Pygap(N,M,c,m) .

K+K;
Now, we turn to the proof. The proof relies on two lemmas and a corollary to a

third lemma, as follows.

Lemma B.1.1. For window size r, challenge set size z, and any adversary A, there

exists a OW-adversary A" such that

T,2-WOW r,1-wow /
k] < ’
AdVRoPE ) (4) < ZAdVROPF[M,ZHHN,ZH]( )-
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The proof is in Appendix B.1.1.

Lemma B.1.2. For any adversary A,

N
1
1,1-wow

c=1

where m. = L\%Fﬂ for any ¢ € [N].

The proof is in Appendix B.1.2.

Lemma B.1.3. Let Ny > 2M, be (positive) multiples of 2 and let M = 27M, and

N = 2¢N, for integer ¢ > 1. Define g = P(No, My, No/2,mn,/2). Then

1
NZP*(N’M’C’mC) < M—FQOW .

N 2 mel/Mo
c=

1

The proof is in Appendix B.1.3.

Corollary B.1.4. If N > 2M > 32 and m. = L\%ﬂ for any ¢ € [N], then

1 & 4
— P.(N,M,c,m,.) < — .
N; ( )< o=

Proof. Let My = 16. Then Ny > 32, and we have

ag = P.(No, My, No/2, My/2)

= P.(Ny, 16, Ny/2,8)

(7 CY)

(")
(No/2 = 1) -+ (No/2 = T)(No/2) -+ (No/2 = T)15!
(No —1)---(Ng — 15)7!8!
No(No — 2)%(Ng — 4)% - - (No /2 — 14)%15!
(Ng —1)---(Ny — 15)215718!
~ No(No—2)(Ng —4) -+ (No/2 — 14)15!
~ (No—1)(Ng —3) -+ (N — 15)2157!8!

=(1+ 1 )(1+ 1 )_“<1+ 1 )15!
Ny — 1 Ny —3 Ny — 15 ) 255718]
<<1+i)<1+i)...<1+i)1_5!
= 31 29 17 ) 215718

< 0.278.
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Since M = 29M, = 29+*, we have 29/2 = @. Thus,
2 . Tagel/Mo _ 1/4/16 N 47(0.278)e!/16
M 24/2 VM VM
_
VM’
3.

The result then follows from Lemma B.1

Now, we are ready to prove the main, general result.

Proof of Theorem 4.4.1. Let M' =M — 241, NN =N — z+ 1.

1,z-wow 1,1-wow
AdVRGPE L ) (A) < ZAdVROPF[M,],[N/] (A) (Lemma B.1.1)
1 &
< N Z P.(N', M’ c,m.) (Lemma B.1.2)
c=1
4

<z

. Corollary B.1.4
Navg ( y B.14)

In the final step, N > 2M and M > 15+ zimply N —2+1>2(M —z+1) > 32. O
B.1.1 Proving Lemma B.1.1

We first introduce a concept related to r, z-WOW security called specified r, z-WOW
security. The proof then proceeds in two steps. First, we construct an adversary
A" whose specified r, z-WOW advantage is at least a factor 1/z of the r, 2-WOW
advantage of A (which, in fact, works for general schemes). In the second step, we
exhibit a bijection between OPF's on the space [M], [IN] that hit a fixed set C C [N] of
size z—1, and OPF's on the space [M —z+1], [N —z+1]. This allows us to construct an
efficient r, I-WOW adversary against ROPF|y/_. 1) ny—.41) using an efficient specified
r,z-WOW adversary against ROPFy ], with the same advantage. Putting these

constructions together yields the result.

AN INTERMEDIATE SECURITY DEFINITION. The specified r, z-window-one-wayness

advantage of adversary A with respect to scheme SE€p r = (K, Enc, Dec) is
AdVEEA™(A) = Pr|Expglin™(4)=1]
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where the security experiment is as follows.
Experiment Expge. """ (A)

K& K: M & CmbM

mo <~ M; C < Enc(K,M) ;cq + Enc(K,myg)

(mp,mg) < A(C, cp)

Return 1 if (mr —myg + 1 mod M) <r and either

mo € [my, mg] or (mg, > mpg and mg € [my, M| U [1,mg));

Return 0 otherwise.

The only difference between this experiment and the standard r, 2-WOW one is that

here, the experiment demands that the adversary return an r-window containing the

pre-image of the specified ciphertext ¢y € C (rather than any ciphertext from C.)

REDUCING 7, 2-WOW SECURITY TO SPECIFIED 7, 2-WOW SECURITY FOR ANY
SCHEME. As our first step, we show that for any efficient r, 2-WOW adversary against
a general scheme S&, there exists an efficient specified r, 2-WOW adversary A’ whose

success probability is at least a factor of 1/z of that of A.

Lemma B.1.5. For any scheme SEpr and r, z, and any r,z-WOW adversary A,

there exists an equally efficient specified v, z-WOW adversary A’ such that
AvaéX;W(A) < zAdvg_g;;:VOW(A’ ).

Proof. Given A, let A’ on input (C,c) run (my,mg) <~ A(C) and return (mz, mg).

Whenever A outputs (mpg, mg) such that Im € M with m € [mg, mg] or (my > mpg

and m € [mp, M| U [1,mg]), then A" wins if m = myg. Since my is random from

M, independent of the rest of the experiment, we conclude that A" wins the specified

experiment at least 1/z of the times that A wins the standard experiment. The result

follows. L

REDUCING ROPF SPECIFIED r,2-WOW SECURITY TO r,1-WOW SECURITY.

Now, fix scheme ROPF v = (Ky, Ency, Dec,) = and r, z. It is left to reduce the
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success probability of a specified 7, z-adversary A against this scheme to that of an
r,1-WOW adversary against ROPFp/_ .4 1) (n—z41)-

We first introduce a number of notations that will be useful in the proof. Let
2z = z — 1. For orderable sets D, R, and H C R, let OPFpx(H) denote {f €
OPFpr | H C f(D)}, i.e., the set of OPFs from D to R with all elements of H in
their range. Similarly, for a set U, n < |U|, and H C U with |H| < n, let CmbY[H]
denote the set of n-element subsets of U that contain H. For set S with elements

x1<x2<...x|5‘,andx65,HgS,iE HSH,[QHSH,IG‘S

Idx? = j such that = = z; , ldxsy, = {j | z; € H} ,

EltY = z; Elts; = {x; |i € I} .
Finally, for equal-sized orderable sets Si, Sy, let UqOPF (S}, S2) be the unique OPF
from Sy to Ss.

The next lemma demonstrates the connection between OPF's in space [M], [N] that

hit a certain z’-element subset of [N], and general OPFs in space [M — 2], [N — Z/].

Lemma B.1.6. Fiz C C [M] with |C| = 2. There is a chain of natural bijections

between the following sets.

B B B n B
OPFiuyw(C) = Cmbliy[c] = codfS 2 cmbll?) = OPFus—oyv-u

Proof. The bijective functions and their inverses can be defined as follows:

B f f(M]); B! S+ UqOPF([M], )
By:S— S\ C; ByliS = SUC

B3 S IdxsV e Byt I ElgsME

Ba: S = UqOPF([M — 2], 5) ; Bt fe f(IM =2

Since all functions are well-defined, the bijections are clear. See Figure 11 for a visual

depiction of elements associated through the bijections. O
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30 = 30 = —
o7 8 27| iy
25 = 25 = ’ . .
24 * ; ;
22 - 22 R .......:....
19 = ;
15 = 15 » 14 o 14 |-
8 e 8w 7 e 7
S S S S S N 2. 2. 2w R
12 3 4567 8 N N 12 3 45

8 8 8 8
UqOPF([8],X) = X = X\C = Ids?\C = UqOPF([5, 1dxsP?\)

Figure 11: Example of associated elements in the chain of bijections from
Lemma B.1.6. In the example, N =32, M =8, C = {6, 19,24}, and we are looking
at the particular OPF f € OPFg 35(C) with range X = {2,6,8,15,19,24,25,30}.

Before we show the final reduction, we state and prove a small lemma.

Lemma B.1.7. Let ROPF 5 vy = (K;, Enc,, Dec,), and z > 1. Then for any set

C € Cmb™,
N
Pr [C:{Sncr(K,mHmEM}]:l/( )
K&K, z

M & CmbM!

Proof. The probability that some C C [N] is chosen as the encryptions of the elements
of M is equal to the probability that Enc, (K, -) sends some z plaintexts M’ C [M] to
C, times the probability that the appropriate M was picked from [M]. The former

probability is equal to the likelihood that C is a subset of a random M -element subset

of N, or (A]\Zi ) / (]\]\;) The latter probability is 1/ (]\j ) Hence, the desired probability

112



18

(W) 1 (N = 2)!MIN = M)L(M — 2)!
() () (M — 2)!(N — M)IN'M!
(N —2)l2!

N1

Now, here is the second reduction.

Lemma B.1.8. Fix r, z, M, and N. Let 2/ = z — 1. For any efficient specified
r,z-WOW adversary A to scheme ROPF Ny, there exists an efficient v, 1-WOW

adversary A’ to scheme ROPFy;_.q nv—.1 such that

§-T,2-WOW r,1-wow !
AdVRropF (4) < AdVROPF[M—z’L[N—z/J (4)

S=T,2-WOW

Proof. Let A be an adversary in experiment EprOPF[M] . (A). We construct a simi-

r,1-wow

larly efficient adversary A’ to experiment EprOPF[M_ o~ /](A’ ) using A as follows.

Adversary A'({¢'})
C < Cmb})!; ¢« B0 € ¢ U {e}
(mp,mg) < A(C,c)
2 —HyeCly<cl
my <—myp—2z_ mh < mp— 2.
Return (m/,mf).

Assume that ¢’ is a random ciphertext in [V — 2/] (as it is in EXPQSE’V;[VL, - (A,
by Lemma B.1.7). Then we must show that the input (C,¢) to A accurately mimics
the experiment Exp?z_g’;;;vj\j?,vm](A). That is, it must be that C looks random from
Cmb[ZN] (recalling Lemma B.1.7 applied to the experiment’s challenge sets), and ¢
looks random from C. Note that ¢ looks uniformly random among [N]\ C’ because ¢

is a random index in [N — 2] and ¢ is chosen as the (¢/)th largest element of [N]\ C.

Hence, A" accurately simulates the experiment Expgior. o (A)

ROPF a3
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Let (i,...,0s be as defined in Lemma B.1.6. For any OPF f from [M] to [N]

with C in its range, let
5f = (54 of30 30 51)(f)

be the associated (unique) OPF from [M — 2] to [N — 2/]. For fixed C and ¢, let
2 =|{cd € C | < c}|. Then note that for any m € [M], if f(m) = ¢ ¢ C then
Br(m —2.) = c— 2 and vice versa.

Thus, if A correctly guesses a window my, mp that succeeds in Expé_g’}f;m’vm (A)
when f is chosen as the random OPF, then the output m/},m/, of A’ succeeds in
Expgé';’,VE[WMﬁI]V[Nﬂ/] (A’) when B is chosen as the random OPF; and the converse is
also true. Hence, A and A’ have the same advantage in their respective experiments.

We also note that A’ is efficient if A is efficient, as the extra steps of sampling an

]

element of CmbLJ,V and re-indexing ¢, m7, and m’, are all efficient operations. O

We are now ready to prove the main lemma of this section.

Proof of Lemma B.1.1. For any r, z, and any efficient r, 2-WOW adversary A, there

exist efficient algorithms A”, A’ such that

T,2-WOW
AdVROPF[MHN] (A)

IN

zAdVSR_(;’F;Z;V[V " ](A”) (Lemma B.1.5)

(e}
M],[N

r,1-wow
< ZAdVROP;[Msz],[Nsz]<A/) (Lemma B.1.8)

The result follows. O
B.1.2 Proving Lemma B.1.2

The proof uses two supporting lemmas. One has already been proved, as Lemma B.1.7
in the special case z = 1 establishes that the uniform choice of plaintext in the
experiment ensures a uniformly distributed challenge ciphertext. The second lemma,

stated next, allows us to calculate the most likely plaintext for a given ciphertext.
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Lemma B.1.9. For fited N,M,c € N, Pyyap(N, M, ¢, -) achieves its mazimum over

[M] at some
Mc  Mec
N+1'N+1

mg €

In particular, if N = tM for some positive integer t, then Pxyap(N, M, c,-) achieves

its maximum over [M| at the unique point
mo = [Mc/N| = [c/t].

Proof. Suppose that Pygap(N, M, ¢, ) achieves its maximum over [M] at mg. Then

the function must have a local maximum there; that is,

Pnuap(N,M,c,mo— 1) < Pyuap(N, M, c,my) ,

Pyuep(N, M, c,mg) > Pvaap(N, M, c,mg+1) .

Notice that for m > 2,

PNHG’D(N7 Ma C, m) _ (1761111) (]\]}7:;1)
Pypap(N, M, ¢,;m —1) ((mc:li—l) (M—J\E;zc—n)

_ (M —(m—-1))(c—(m—1))
(m—1)(N—-M—c+m)
_ T%CI—M—Cqu—l

N—-M-—c+m

Me _ 1> N,orm < -3¢ 4 1; it is at most 1 if and only if

is at least 1 if and only if =5 Nt

W]y_cl —1<N,orm-—12> ]\%Cl. The former implies mg < 1\%:1 + 1; the latter implies

Mc
N+1"

my >
So, the maximum value of Pypgp(N, M, c,m) occurs at either a unique point,

or two adjacent points in [M]. Thus, these local maxima are global maxima, and

the necessary condition Jﬁcl <my < J%cl + 1 is also sufficient for mg to be a global
maximum.

To see the second property, note that N = ¢tM implies
Mc | |c N e c B [c“
N+1| |t \N+1/)| |t t(N+1)| [tl”’
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where the last step is implied by the following: note that the fractional part of ¢/t is
either 0 or at least 1/¢. In either case, subtracting ¢/(¢(N+1)) < 1/t from ¢/t will not
change the value of its ceiling. Also note that in this case, Mc/(N+1) = Mc/(tM+1)

is not an integer and thus my is unique. O]

Corollary B.1.10. Fiz encryption scheme (K.,Enc,, Dec,) = ROPFup vy, and let

¢ € [N]. Then m, is a most likely plaintext for c if and only if

Mec < < Mec 4
—<m, < — .
N+17— N+1

In particular, if N = tM for some positive integer t, then m. is unique for each ¢ and
me = [Mc/N| = [c/t] .

Proof. For any m,c, the probability that Enc.(K,m) = ¢ over random K € K, is

Pxrap(N, M, c,m). Thus, the result follows directly from Lemma B.1.9. ]
We are now ready to prove the lemma.

Proof of Lemma B.1.2. In the one-wayness experiment, notice that an adversary A
is not allowed any oracle access, and in fact the only information A receives is the
ciphertext c. Thus, given ¢, the adversary’s best recourse is to output the most likely
plaintext for ¢. By Lemma B.1.7, the ¢ given to A is uniform from [N], so the OW
advantage of A is bounded above by the average probability (over all ¢ € [N]) that
c is the image of its most likely plaintext m. under random f € OPF v}, knowing
that ¢ is the image of some plaintext under f.

Fix ¢ € [N]. Given that ¢ € {f(m) | m € [M]}, the probability that f(m.) = c is
equal to the number of OPFs going through (m,c), over the number of OPFs that
have a point (z,¢) for some x € [M], or

() (r2)
(1)

= P.(N,M,c,m.) .
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Thus, in the one-wayness experiment, the probability that the (randomly determined)
challenge ciphertext is the image of its most likely plaintext is the average of the above

quantity for each value of c. O]

B.1.3 Proving Lemma B.1.3
The proof proceeds in several steps. Here is an outline:

e Lemma B.1.11 relates the middle ciphertext’s most likely plaintext’s NHGD
probability for a given plaintext/ciphertext space to that of a space twice the

size, using an algebraic argument.

e Corollary B.1.12 iterates this result, producing a formula for the middle ci-
phertext’s most likely plaintext’s NHGD probability in a large space given the

analogous value g in a small space.

e Lemma B.1.13 and Lemma B.1.14 together relate any ciphertext’s most likely
plaintext’s NHGD probability to that of the middle ciphertext in the space,

using Stirling’s approximation and certain bounds on the gamma function.

e Finally, the proof of Lemma B.1.3 ties these results together, approximating
the sum of most likely plaintext NHGD probabilities over the ciphertext space
in terms of that of the middle ciphertext, and hence to that of the middle

ciphertext in a smaller space.

For readability, we introduce the following notation. For a,b,t positive integers

such that a > b and t < a/b, let

(@)p = ala=1)(a=2)---(a=(b=1));

(a)pg = ala —t)(a—=2t)---(a— (b—1)t).

APPROXIMATING MOST LIKELY NHGD PROBABILITIES FOR THE MIDDLE CIPHER-

TEXT. Set a domain size M and range size N, larger domain size M* = 2M and
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range size N* = 2N, and consider “middle ciphertexts” ¢ = N/2 and ¢* = N*/2 = N.
We show that if M and N — M are large, then the relative most likely NHGD prob-
abilities for ¢ and ¢* (knowing that the ciphertexts are hit) in their respective spaces

is approximately equal to the constant 1/ V2.

Lemma B.1.11. Let N, M be multiples of 2 such that N > 2M, let M* = 2M and

N*=2N, and let ¢ = N/2 and ¢* = N*/2 = N. For any ¢ € [N], let m¢ = |51,

If M is large, then
P.(N*, M*,c*,me-) 1
P*(N7M7cvmc) - \/§ ‘

In particular,
LS P.(N*, M*,¢*,me) L.el/@M).
V2~  PJN,M,c,m,) V2

Proof. Set M' = N — M. Observe that

_1\2
P*(N*>M*7C*am6*) _ (Z\]\/;fll) (]\]\;)
PN Mye;me) (387 (o) ()
3
()

() G7R)°
 NBRM)I(2M)(M)2)2(M[2)12
T MBM)BRN)(N/2)2
N2 ONT (M/2)2 (2M)! (M'/2)12 (2M)!
(N2)2 2N) ME ML (M) (M)
_ ((M)vz)® M)y (M)
CN)vy - (M)aay2)* (M)ary2))?

_ 2V ((N)vy2)? (M) (2M") ey
CN)vy 2M (M) aayz)? 2M (M) (aar j2))?
(2N)vj22)®  (2M)pagg (2M")

CN)v (CM)ary22)? (M) (a1 /2:21)*
_ Nz (M = Doy M — Do
2N = Do M) 2M)arj22)
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Define the above quantity to be a. Also, let

(2N — 1)ny2s2) (2M — 2)(ar/2,2) (M — 2) (017 j2:2)

(2N = 2)vy22) (2M = D) aay2i2) (M = 1)ar 22

N+ Divzg CM)pajez) (M) 2
(2N)inj22r (M + D) gy M+ 1) g j2i2)

8=

g =

and notice that for large M and N,

BSas
On the other hand,
52N M (N - M) , 2N+41 M+1 (N—M+1)
WCENamweN—2m) P T Nf12M+12N-—2M +1
112 1 1/2
—1/2 <2(= R
/2 <2+2M+4)(2+2N—2M+1>
<1 1+ ! 1+ !
2 oM 2(N — M)
< L@ /ew-an)
2
ol/M
<
2
Hence,
Vaiz Jap— ! Vai < ap < 120 .
a=Va* Z\ab=—; a=VvVao* S Vvaf <
~ V2 ~ V2

Now, we can easily approximate most likely NHGD probabilities for middle ci-

phertexts in large spaces, in the following manner.

Corollary B.1.12. Let Ny > 2My be multiples of 2, let M = 29My and N = 29Nj,
a= P,(N,M,c,m,.);

and let ¢ = N/2 and co = Ny/2. Define Then
Qo = P*(N07 MO7 Co, mco) .

(7)) «
Q0 <\ Q0
2a/2 = 24/2
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Proof. The left side of the statement directly follows from repeated application of

Lemma B.1.11. Similarly, by the lemma,

q

o 1/(2i Mo)
o< o He

_ Q0 My T, 2
2q/2

X0 1/Mp ) n

< 543°

RELATING GENERAL MOST LIKELY NHGD PROBABILITIES TO THAT OF THE MID-
DLE CIPHERTEXT. In this section we show how to approximate most likely NHGD
probabilities for any ciphertext in a large space using the probability corresponding
to the middle ciphertext.

Recall the definition of the gamma function: for z a real number,

I'(z) :/ e dr.
0

The gamma function satisfies the following properties, for = real.
['(z+1)=2xI(2); ra=1.

For notational convenience, we will let I'(x) = I'(x + 1). The above properties imply
that I'(z) is an extension of the factorial function to real numbers. In particular, for
positive integer n,

I'(n) =D(n+1) =n!

Also, Stirling’s approximation applies to I': for real z > 0,

A

D(z) =T(x+1) = Vora(z/e)*e |

where
1

1
—<)\x<—
122 + 1

12z

We first prove a short lemma that will be used in the next proof.
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Lemma B.1.13. Let M, N be multiples of 2 and N > 2M. Let k € (0,1), and
E'=1—k. Let M' =N — M . Then

~ ~

PENTENTE)DE) ) 1
T (kM)T (kM)T (WM)T (WM)T (8T (Y) ~ 2vEE

Proof. Using Stirling’s approximation,

T (kN)T (KN)T (%) T (%)

i : )T () ()

L (kM)T (kM) (M) (WM)T (3) T (5)
_RMF TENDENT ()T () ()

ENS T (kM) T (kM) T (WM)T (M) T2 (Y)
o | ANEN (TR NN ()™ ()"

RMBM MK M (5)7 (kM )Y (5MYM (R DM (a7 ()27
e L
Y
where

A=Ay + Ay + 2)\M/2 + 2)‘M’/2 — MM — AkM — AWM — A M — 2)\]\[/2

Jl(i, 122 NGRS SR SR B
T12\kN T KN T M2 T M2) 12\kM kM KM KM NJ2

RSN R AV
12\ M N koK

since the maximum value of kk’ = k(1 — k) for k € (0,1) is 1/4. O

Now, we provide a bound on the ratio between the most likely plaintext probability

of a ciphertext ¢, with 1/M < ¢ < (M — 1)/M, versus that of the middle ciphertext.

Lemma B.1.14. Let M, N be multiples of 2 and N > 2M. Let k be a multiple of
1/N such that 1/ M <k <M —1/M. Then

PN M EN, ) 1
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Proof. Let ¥ =1 —k and M’ = N — M. We use the following bounds of D. Ker-

shaw [45]: for x >0 and 0 < s < 1,

(v +

I'(z+1)
I'(x +s)

S

1-s
_> <

2

<<x

-
2

1-—s
. 1 1/2
S —
4

Rewriting the bounds, for y > 1 and 0 < ¢ < 1, we have

I'(y)
['(y—9)

Lemma B.1.13,

<<y

Let € = [kM] — kM. By Lemma B.1.10, myny = [kM]| = kM + €.

2"\

1/2\ °
5) );

P(NM,2,

(earen) g

(DG

I (kN)T (K'N)T

x)

HLE)T

I'(y—90)
I (y)

> (%)

o 1

_>6 |

2

2

<(v

Then using

S T(kM+e) T (kM — T

1 (kM)

(
T (K'M — )T
(k'

T (kM) M)

(WM + )T (1)

P

2)

I (k'M)

“oVkk' T (kM +¢e)T
(e =t

(kM’ -l

) (kv

I
[ (k'M — 6)

[ (KM + €)

5

€
i)

kk'

1 (’f—

1
2M’

(kM+ 1) (kM +

e+1)

T (e 119\

kk'

1 M

(k+

o)

5 1 1—e
( z—€—§)+m

€

NI

1 M

k+ St

(2\/;—1>—|—1—e
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— |1+
2VERK
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2 _e—c ‘ v/ 2—e ‘ .
where g(e, k, M) = <1 + 221\/1/??) <1 + ;M(f_k)> . Notice that the bounds on k

imply Mk >1and M(1—-k) > 1, so

2 %—6—6 2 %—6

k, M =14+ — 1+ —
ek M) < f(0) = [ 1+ = f

which, for € € [0, 1], is bounded by 2, as can be seen in Figure 12.

ZOj
LS:
LG:
14:

12

1.0

T S T O B S
0.0 0.2 0.4 0.6 0.8 1.0

Figure 12: Graph of f(e) = (1 + 2—”?‘_6_6) (1 +2 i_€> for € € [0, 1].

1+e€

Therefore,
fﬁ(]V}]V[,k]V}Tn%JJ> 1
~ < . O

As a side note, the maximum value of f(¢) for € € [0,1] in the above proof is
slightly lower than 2. Mathematica finds a bound of approximately 1.927:

In[83]:= f[x]=(1+(2(1.25-x)"0.5 -x)/(1+x))"x (1+(2(1.25-x)"0.5)/2) x;
Maximize [{f [x],0<=x<=1},x]

Out [84]= {1.92692,{x->0.664124}}

Also, one could try to bound the value of g(e, k, M) in the proof (which is more
difficult to do computationally) to achieve a tighter bound; empirical evidence shows
it can be made very close to 1. Mathematica can handle this if we place some lower
bound on M. For instance, forcing M > 1000000:

In[85]:= glx,k,M]=(1.0+(2(1.25-x)7(0.5)-x)/(2 k M+x-1))"x (1.0+(2(1.25-x)7(0.5))/(2(1-k) M)) x;
FindMaximum[{g[x,k,M],{0<= x<= 1,M>1000000,1.0<= M k<= M-1}},{x,{k,0.5},M}]

Out[86]= {1.,{x->0.420798,k->0.500004,M->1.03175%10"6}}
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We are content, however, to proceed with the looser upper bound of 2.

The preceding results can now be put together to prove the main lemma statement.

Proof of Lemma B.1.3. By Lemma B.1.14 and Corollary B.1.12,

| N 9 N—-N/M
~ ; PN, M c;me) < o+ C%:M P.(N, M, c,m.)
2 PN MN/2, myg) N‘szM 1
M N v VI T =¢/N)

2 ! 1

< 2 4 P.N,M,N/2,m -/—da;
M ( / N/Q) 0 \/m
2

= 7+ Pu(N, M, N/2,mipo) aresin(2z — 1),

2
= i —|—P*(N,M,N/2,mN/2) T
2 e

< M+a0—2q/2 .

1/Mo

B.2 Comparing tight and simple bounds

In Table 5, we compare the tight bound of Lemma B.1.2 and the simple bound of
Lemma B.1.3 for several values of M and N and see that the results are close. We
have separated the constant factor 2 in each simple bound to illustrate how close the
bounds would be if the factor 2 were improved to 1 (as described after the proof of
Lemma B.1.14.)

Table 5: Sample evaluation of tight vs. simple bounds. For the simple bounds,
M, = 25.

M N Tight Simple
28 216°0.077 0.087-2
29 217 0.055 0.060 -2
210 218 0.039 0.042-2
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B.3 Proving Theorem 4.4.2

The first half of the result,

(A) > Advggery, o (A),

T,2-WOW
AdvROPF[M [M],[N]

1[V]

is obvious, as giving the adversary more challenge ciphertexts can only help it win.
. r,1-wow
It is left to prove the bound on AdvROPF[M]’[N] (A).
We use the following notation for the tail probabilities of the hypergeometric
distribution.

M
H+(C7 N, Mamo) = Z PHGD(N7 M, e, m)7

m=mg

mo
H_(c,N,M,mg) = > Puap(N,M,c,m).

m=0

The proof of the theorem appears after a lemma.

Lemma B.3.1. Let M, N, ¢ € [N], and r € [M] be given. Let § = =1, and let

myp = max{m. — |[0M |, 1},
mp,mr € [M] be defined as " t LM, 1) where m, = []\J/\{rﬂ-
mp = min{m. + [0M |, M},

Then
mp—1 M
Z P.(N,M,c,m) < o202 (M=1) o Z P.(N, M, c,m) < o2 (M-1).
m=1 m=mp-+1

Proof. We will use a bound by Chvétal [22] on the upper tail of the hypergeometric

distribution:

H, (c, N, M, (% + d) M) < e 2PM
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Chvatal’s upper tail bound implies a similar lower tail bound:

(¢/N—d)M

H (c N, M, (N — d) M) - Z Pucn(N, M, c,i)

(¢/N—=d)M

Z Puep(N, M, N — ¢, M — i)

1=0
M

- Z PHGD(N7M7N_C7J

j=M—(¢c/N—d)M

N —c
=H, (N—-—c¢c NM M
+( C, ) 7< N > )

_ 92
< e 2°M

Notice that mp > 2L +6M > (£ +6) (M —1). So

- N = \v=1
M . o
> PN Mem)= Y %
memet m=mp+1 M-1

w— ()65
=0

=H,(c—1,N—-1,M —1,mpg)

1
§H+(c—1,N—1,M—1,<c +5) (M —

N -1

< 6—252(1\4—1)‘

Similarly, my, —2 < &L —6M — 1 < (&L —§) (M —1). So

N-1

i PN, M,c,m) = i o) i)

m=1 m=1 (J\A/Eill)
mryp—2 c 1 ( N-—c )
_ Z Am /J\M—-1-m/

O

=H (c—1,N—1,M—1,m —2)

<H._ (0—1,N—1,M—1,(C_1 —5) (M —

N -1

< 6—262(M—1)
We now prove the theorem.
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Proof of Theorem 4.4.2. As already mentioned, the first inequality of the theorem is
trivially true. It is left to prove the second inequality.

Consider the following r, 1-WOW adversary A.

Adversary A({c})

me < |

N |
6« =1
my, < max{m. — [0M ], 1}
mp < min{m. + [0M |, M}
Return (my, mg)
(mp,mg) is a legal response in the 7, -WOW experiment since the associated window

has size mgp — mp + 1 < 20M + 1 < r. The probability that the adversary succeeds

is the probability that ¢ € [mr, mg]|, or

i (r=1)2 (M—1)

Z P.(N,M,c,m)>1—2e" 2 wmZ |
m=mry,

where the inequality follows from Lemma B.3.1. Since A only performs efficient op-

erations, the result follows. O

B.4 Proving Theorem 4.4.3

The proof of the theorem parallels that of Theorem 4.4.1. As such, it requires several

intermediate results that we now state.

Lemma B.4.1. For window size r, challenge set size z, and any adversary A, there

exists a OW-adversary A’ such that

»2-wd ,2-wd
Advgé;};ﬁym (4) < z2(z - 1)AdVEO;VF[iXZH],[N,ZH]( ).

The proof is in Appendix B.4.1.
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Lemma B.4.2. For any adversary A,

N-1
> P(N-1,M-1Lwd,),

w=1

1
1,2-wdow
AdVROPF[M],[N] (4) < —

N -1

where d,, = [WW

The proof is in Appendix B.5.1.

Notice that the bound in Lemma B.4.2 is precisely the bound in Lemma B.1.2,
only with parameters M — 1, N — 1 instead of M, N. Thus, we will be able to use
the simple bound from Corollary B.1.4.

The proof of the theorem now easily follows.

Proof of Theorem 4.4.3. Let M' =M — z4+2, N'=N — z+ 2.

,Z-WOW 1,2-wow
Adv%{OPF[MHN] (A) < z(z — 1)AdVROPF[M,MN,] (A) (Lemma B.4.1)
=
O > P(N'—1,M'—1,w.d,) (LemmaB.42)
c=1
<2z — 1) (Corollary B.1.4)
2z —1)——— orollary B.1.
M -1 Y
OO —
=z2(z—1)—m—.
vVM—2z+1
In the third step, N > 2M and M > 15+ z imply N' — 1 >2(M’' — 1) > 32. O

B.4.1 Proving Lemma B.4.1

Define specified r, z-window-distance-one-wayness advantage of adversary A with re-

spect to scheme SEp r = (K, Enc, Dec) as

s-r,z-wdow s-r,z-wdow

where the security experiment is as follows.
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Experiment Expge” " (A)
K& K3 M & CmbM
mo <=M ;mq <=M\ {mg}
C «+— Enc(K,M) ;(cg,c1) < Enc(K, (mg,my))
(dp,dgr) < A(C, ¢, 1)
Return 1 if dy —dy + 1 < r and my; — mo mod M € [dy, ds);
Return 0 otherwise.
Lemma B.4.3. For any scheme SEpr and r, z, and any r, z-WDOW adversary A,

there exists an equally efficient specified v, z-WDOW adversary A" such that
r,z-wdow s-r,z-wdow
Advge (A) < z2(z — 1)Ade€D’R (A).

Proof. Given A, let A’ on input (C,cy,c1) simply run (dg,dg) <~ A(C) and return
(dr,dr). Whenever A outputs legal (dr,dg) such that Img, m| € [M] with m} —
my mod M € [dy,ds], then A" wins if mg = m{, and m; = m/. Since my is random
in [M] and m; is random in [M]\ {mg}, independent of the rest of the experiment,
we conclude that A’ wins the specified experiment at least ﬁ of the times that A

wins the standard experiment. The lemma follows. O

Lemma B.4.4. Fix r, z, M, and N. Let 2/ = z — 2. For any efficient specified
r, z-WDOW adversary A to scheme ROPF v, there exists an efficient r,2-WDOW

adversary A’ to scheme ROPFy_.n v—2q such that

s-r,z-wdow r,2-wdow /
AdVRoPE ) (4) < AdVROPF[M_Z/HN_Z/] (A).

. - z-wd
Proof. Let A be an adversary to experiment ExpsRélfFv[VMi‘['jv] (A). We construct an

/ . r,2-wdow / .
adversary A’ to experiment EXpROPF[M,Zq,[N,z/] (A") using A as follows.
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Adversary A'({c),c,})
C’ < Cmb!Y!

[N\C’

/
G

C+Cu {00,01}

c; <+ Elt fort=0,1
(dp,dg) < A(C, ¢y, 1)
Zy — Hy € Cle <y <ajl
dy «—dp — 2z, dp<+dp— 2,
Return (d7, d%).

Assume that ¢, ¢} are random (distinct) ciphertexts in [NV — 2’| (as they are in the
experiment Expg’ggg[ j;v_zl],m_z,] (A’), by Lemma B.1.7). Then we must show that the
input (C, o, ¢1) to A accurately mimics the experiment EXpSR_g’,f;ﬁim] (A). That is,
it must be that C looks random from Cmb[ZN } (recalling Lemma B.1.7 applied to the
experiment’s challenge sets), and {co, ¢; } looks random from CmbS. Note that co, ¢;
are uniformly random distinct elements of [N]\ C because ¢, ¢ are random distinct
indices in [N — 2'] and ¢; is chosen as the (¢})th largest element of [N]\ C for i = 0, 1.
Hence, C looks random from Cmb!™ and {¢, ¢;} looks random from CmbS. Thus,
A" accurately simulates the experiment Exp%’é%ﬁi‘&’v] (A).

Let Bi,..., 04 be as defined in Lemma B.1.6. For any OPF f from [M] to [N]

with C in its range, let
5f = (54 o300 /31)(f)

be the associated (unique) OPF from [M — 2/] to [N — 2/]. Let z, = |{¢ € C |
co < ¢ < ¢1}|. Then note that for any mg,m; € [M], if f(mg) = ¢ ¢ C and
f(mq) =c1 ¢ C then my —mgy = fy(mq1) — Br(mo) + 21, and vice versa.

Thus, if A correctly guesses a window dr,dr that succeeds in Expé_g’}f,}ﬁim] (A)

when f is chosen as the random OPF, then the output d},dy of A’ succeeds in

r,2-wdow

Ex
pROPF[Mﬁ/]Y[Nfz/]

(A’) when B is chosen as the random OPF; and the converse is

also true. Hence, A and A’ have the same advantage in their respective experiments.
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We also note that A’ is efficient if A is efficient, as the extra steps of sampling an

]

element of Cmbgy and re-indexing co, ¢1, d, and dl, are all efficient operations. [

We are now ready to prove the main lemma of this section.

Proof of Lemma B.4.1. For any r, z, and any efficient r, z-WDOW adversary A, there

exist efficient algorithms A”, A’ such that

r,z-wdow
AdVROPF[MHN] (A)

IN

ZAdVSR_SgEV[ZS],[N] (A") (Lemma B.4.3)
< zAdVQ(l)'FV,VE[VXJ_HIL[N_ZH](A’) (Lemma B.4.4)

The result follows. O]

B.5 Proof of Theorem 4.4.4

Proof of Theorem /.4.4. As in Theorem 4.4.2, the first inequality is trivially true. It
is left to prove the second inequality, which we do by constructing an r,2-WDOW

adversary A as follows.

Adversary A({c1,c2})

w 4 ¢cg — ¢y mod N

M—1)w
dy [—( N) W

§ 2(]“\4;_11)
dp < max{d, — [6(M —1)],1}
dg < min{d,, + [0(M —1)|,M — 1}
Return (dr, dg).
(dr,dg) is a legal response in the r,2-WDOW experiment since the associated
window has size dg —dp +1 < 20(M —1)+1 <.
Note that d,, = PM%W—‘ is the most likely plaintext distance between ¢; and ¢
by Corollary B.5.2. The probability that the adversary succeeds in the r,2-WDOW

experiment is the probability that my —m; mod M =d € [dy, dR], or

EdR: (=12 (M-2)
P*(N_l,M—17w7d) Z 1_26 2 (]\/[_1)2’
d=dy,
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by Lemma B.3.1. Since A only performs efficient operations, the result follows. [

B.5.1 Proving Lemma B.4.2

A FORMULA FOR THE MOST LIKELY PLAINTEXT DISTANCE. In Corollary B.5.2
below, we derive a formula for the most likely plaintext distance between two given
ciphertexts. But first, the following lemma determines the probability that a given
ciphertext pair corresponds to a given plaintext distance, which is used to prove the

corollary.

Lemma B.5.1. For ¢y, ¢y € [N], let OPFjn" = {f € OPFpy v - 1,2 € F([M])}.
Then for any d € [M — 1],

Pr [f M (e2) = f (@) mod M =d] = P.(N—-1,M —1,w,d),

£ < OPF ()"
where w = ¢y — ¢; mod N.
Proof. Let c¢1,co € [N]. If ¢; = ¢y, the result easily follows, so suppose ¢; # 3. ¢

and ¢y partition the rest of the ciphertext space into two sets S and S’:

Cl+1,61+2,...,62—1 01§CQ
S —

aa+lc+2,....,N,1,2,...;co—1 c¢1>c
S'=[M]\ (SU{ci,e0})

Let w = ¢ — ¢y mod N. Then 1 < w < N — 1, and note that |S| = w — 1 and
S| =N —w— 1.

The probability, over random f € OPFpu %, that f~'(c2) — f7'(¢1) mod M =d
is equal to the number of OPF's g on [M], [N] such that {c1, c2 € g([M]), |g([M])NS]| =
d—1, and |g([M]) N S'| = M — d — 1}, over the number of OPFs g such that

1,09 € g([M]), or
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In particular, for fixed ¢y, o, d, letting w = ¢o — ¢; mod N the lemma says that

Pr [Dec,(K,cy) — Decy(K,c1) mod M =d | ¢y,¢0 € Enc, (K, [M]) ]

K&K,

=P(N—-1,M—1,w,d).
Now, we can locate the most likely plaintext distance for ¢y, cs.

Corollary B.5.2. Let ¢1,¢5 € [N] with ¢; < ¢a, and w = ¢y — ¢y mod N. Then in

ROPF ), N]» dey e, 18 @ most likely plaintext distance from ¢, to cy if and only if

(M — 1w (M — 1w

N > Ueyyeq S N + 1.

Proof. By Lemma B.1.9, for N, M, w fixed, Pygap(N—1, M —1,w, -) has a maximum

at dy € [M — 1] where

Therefore, P,(N —1, M —1,w, -) also has a maximum at dy, so the result follows from

Lemma B.5.1. N

Note in particular that d., ., depends only on the difference w = ¢y — ¢; mod N.
Thus, for w € [N — 1], we define d,, to be the most likely plaintext distance for w and

dy = d;, ¢, for all ¢, co € [N] with w = ¢2 — ¢; mod N.

THE PLAINTEXT DISTANCE IS UNIFORMLY RANDOM. Here we establish that no
plaintext distance (from 1 to M — 1) is more or less likely than any other, if the

challenge plaintexts are uniformly random and distinct.
Lemma B.5.3. For any w € [N — 1], over K <= K, and {my, ma} < Cmb[QM],

Kmfl)lljm [Ene(K,mg) — Enc, (K, my) mod N =w]| = T
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Proof. In the following, we consider addition and subtraction of ciphertexts to be

taken mod N.

Pr [&Enc(K,my) — Enc(K,my) = w]

K,mi,mo

= KPr [Enc(K,my) =c¢ N Enc,(K,my) = c+ w)
,T101,712
cE[N]

= li(r[c,cﬁLwEEnCr(K»[M])]'
cE[N]

Pr [Enc(K,mi) =c N Enc,(K,me) =c+w |c,c+w € Enc, (K, [M]) |

mi,ma
s (yo) 1 1
cE[N] (]\]\/[1) MM-1
1
T N1 .

We are now ready to prove the lemma.

Proof of Lemma B.4.2. In the DOW experiment, since the adversary A is given only
the challenge ciphertexts cy, o, the adversary will have highest probability to win the
game if it outputs the most likely plaintext distance for ¢;, co. By Lemma B.5.3, w =
¢o —c1 mod N is uniform from [N — 1], so the DOW advantage of A is bounded above
by the average probability (over all w € [N —1]) that d,, = Dec, (K, c2) — Dec, (K, o),
where K is a random key output by I, such that c¢;,co € Enc, (K, [M]). Thus, the

result follows from Lemma B.5.1. ]
B.6 Proof of Proposition 4.4.5

Proof of Proposition 4.4.5. Lett = (N —1)/(M —1). Let b be a fixed value (less than
VM — 1) to be determined later. Define § = tht— Vﬁ‘g’l

By Lemma B.5.3, w is uniformly random in [N — 1], so

B+1
P 1] < .
K,mlr,mz[w</6+ ]_N—l
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Recall from Corollary B.5.2 that d,, = [(M]_Vl)ﬂ is the most likely plaintext distance

of w. Let § = \/ﬁ, and define

dr = min{d,, + [6(M —1)|, M — 1}.
Then note that whenever w > 8+ 1,

dp < dy+ [06(M —1)|

< T H148(M-1)

:%+1+b\/M—1
20/ M — 1
gt—2+va—1+1 (since w > f3)
WM —1(2+1t—2)
= +1
t—2
tbov M — 1
S S|
t—2
=5/2+1
<w/2 (since w > B+ 1.)
Hence,
Pr [2d>w |w>F+1]< Pr [d>dr|w>[+1]
K,m1,m2 K,mi,ma
M-1
= Y P(N-1,M-1uw,d)
d=dr+1

< e 2*M=2) (by Lemma B.3.1)

2 M—2
= e_2b M—1

<e (8)
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Now, putting equations (7) and (8) together,

Pr [2d>w]< Pr [2d>w|w>p+1]+ Pr [w<f+1]

K,m1,ma2 K,mi,m2 K,mi,m2
e B+l
<e + m
e 2thv/M — 1 N 1
(t—2)(N—-1 N-1
e 2b N 1
(t—2)yM -1 N-1

We may now select a value for b, say b = v/In M. Then this bound becomes

2¢/log M

P 2d > <1/M + +1/(N —1
K,mlr,mz[ w]<1/ (t—2)vVM -1 /( )
1
<2/M +
/ 75—2\/(M—1)/1nM
3 1
<7 )
t\/(]\/[—l)/lnM
assuming t > 7. OJ

B.7 Proof of Theorem 4.5.1

Proof of Theorem 4.5.1. Let D be the domain, and suppose A = (A;, As) is an adver-
sary with nontrivial IND-CCPA advantage against CEOE. We construct an IND-CPA
adversary B against S€. B has access to O, a left-right encryption oracle for S€ under
a random secret, key.

B runs A; to receive My, My, 0. Let [ be the lengths of | M|, |[M;]. After sorting
(separately) the elements of My and M, B assigns label m; to the ith smallest
element of My, for ¢ = 1,...,l and b = 0,1. B queries its left-right S€-encryption
oracle with matched pairs of these messages: c; «<— O(mj, m}) for i = 1,...,l. Note
that each pair consists of messages of equal length. Then, B prepends indices ¢; = i||c}
fori =1,...,0. Finally, it runs Ay(o, ¢y, ..., q) to receive d, and outputs d.

It is clear that B’s communication with A perfectly mimics the IND-OCPA exper-
iment, and thus the IND-CPA advantage of B is equal to the IND-CCPA advantage

of A. Clearly, B is efficient, since it only needs to sort the elements of | M|, |My|. O
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B.8 Proof of Proposition 4.5.2

Proof of Proposition 4.5.2. Let Vi, be the set of r-windows in [M] that contain an
element of m. Notice that |Vi,| < 7z, as each element of the challenge set is contained
in at most r windows. Also, the total number of r-windows in [M] is M. An adversary
wins if it outputs an element in Vy,. Since A,.nq outputs a random r-window, it is

clear that Advgyopr (Arana) <rz/M.

(M],[N]

Fix a function f € OPFpy v and challenge set c. Let f~!(c) = {z € [M] | f(z) €
c}. Let S be the set of modular intervals I’ C [M] such that I’ N f~*(c) # 0, and
let n = |S|. For offset j, an adversary wins if it picks I = (mp, mg) such that the
interval I4+j = (my+j mod M,mgr+j mod M) isin S. For each I, note that there
are precisely n values for j € [M] for which I+ j € S, and precisely M — n for which
I+ j ¢ S. Thus, over the choice of j, each interval I has the same probability of
winning (namely, n/M.) Hence, a random choice of interval has the same probability

of success as any other choice of interval. This is true for any function f and challenge

set ¢, so the result follows. O
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APPENDIX C

EFSE PRIMITIVES AND PROOFS

C.1 Efficiently searchable encryption formal definition and
security notion

As defined in [3], we say that ESE = (K, Enc, Dec, F,G) is an efficient searchable
encryption (ESE) scheme on domain D if (K, Enc, Dec) is a symmetric encryption

scheme on D and F', G are deterministic functions such that for every m € D and

efficient randomized algorithm A that outputs distinct messages mg, m; € D,

Pr [F(K,m)=G(Enc(K,m))] =1, and

K&K
Pr  [F(K,mo) = G(Enc(K,my))] is sufficiently small.
K&K
(mo,m1) & A
Notice that an ESE scheme leaks equality, as if ¢1, co are both encryptions of m under
key K, then G(c;) = F(K,m) = G(c2), and this happens with low probability if ¢
and ¢y are encryptions of distinct messages.

Since ESE schemes leak equality, the following notion called indistinguishability
under distinct chosen-plaintext attacks [11] is appropriate to evaluate their security.
For b € {0,1}, ESE scheme ESE, and adversary A, let Expist ®**(A) be identical to
IND-CPA experiment Expia®*(A) (see Chapter 2) but with the restriction that
left /right-queries have the same equality pattern. That is, for left /right-query pairs

(mo, my) and (mg, m}), we have my = my if and only if m; = m/. For an adversary

A, define its IND-DCPA advantage against FSE as
Adv;‘;%'dCPa(A) = Pr Exp;%%_dea_l(A) = 1} —Pr [Exp;%%_dea_o(A) = 1] )

We say that ESE is indistinguishable under distinct chosen-plaintext attacks (IND-

DCPA-secure) if the IND-DCPA advantage of any adversary against ESE is small.
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C.2 Construction of a batch-tagging family on D given a
PRF on D

Let PRF = (Kpgr, Fpar) be a function family on domain D to some range R. Let

Ferag = (K7, T,B) where K7 = Kprp, T = Fopr, and B is defined in the standard

way using 7 as described above. We claim that if PRF is a PRF, then Fgrag is PP-

CBT-secure.

Proposition C.2.1. For Fgrag constructed as above out of function family PRF, and

any adversary A, there exist PRF adversaries Fy and Fy such that
AV (4) = AdvB(Fy) + AdVEL(F).

Further, if A submits queries of total length v to its oracle, then F| and Fy each

submit queries of total length ~y to their oracles as well.

Proof. Let A be a PP-CBT adversary against Fgrag. For a € {0, 1}, construct PRF
adversary F,, against PRF as follows.
Adversary FS(')
Let P, be the oracle that on input (My, M), runs:
Let M, = {m},... . mi}
c; < O(m)) for i € [q]
Return C' = {c1, ..., ¢}
B e APa)
Return ¢/

The query-length claims on F; and F3 should be clear from the construction.
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Now, we claim that

Adep_Cbt(A) = Pr [Eprp_Cbt_1<A) - 1} —Pr [Eprp_Cbt_O (A) - 1}

Fi BTag Fi BTag ‘FBTag
— Pr [Expgg;;"bt‘l(A) _ 1} ~ Pr [Ff"”(K") _ 1} 1]
* K&K
+ Pr [FfPRF(K") _ 1} R [ FO = 1} 1]
K&K f < Funep
+  Pr [Flf('):l} ~ P [Fg’<-> :1] [111]
f & Funcp » f! & Funcp
+ P [Fof(" - 1} ~ Pr [F{"”(K") - 1} V]
f < Funep K&K
+ Pr [ Frme ) 1} _Pr [Expg,};;Cbt‘O(A) - 1} V]
K&K *
rf
— 2AdVEI(A)

Note that [II] and [IV] evaluate to AdvEL(Fy) and AdvEiL(F,), respectively. It is
left to show that [I], [III], and [V] evaluate to zero.
1] is zero: By construction of Fgrag, the oracle P, (-) constructed by FfE e (K2) himics the

pp-cbt-1

oracle in the experiment EXmeg

(A) on Fgrag. So A is given equivalent

FIJTPRF (K,")

oracles in both cases, and outputs the result that A outputs.

[ITI] is zero: We show there is a bijection f <> f’ between functions in Funcp % such that Py
in adversary Flf ) is equivalent to Py in adversary Fg 0, Then, since A is given
equivalent oracles in either case, and either adversary outputs the output of A,

the result follows.

Suppose (Mg, M}), ..., (M, M{) are the queries A makes to its oracle in the
PP-CBT experiment. Then by the PP-CBT restriction, for all I C [q] we

have ‘ﬂ Mg’ = ‘ﬂle s M{‘ . Intuitively, this means that if we draw two Venn

iel
diagrams, one of the sets M for i € [¢] and the other of the sets M for i € [q],
the number of elements in corresponding (same-index) regions is identical in

both diagrams. This implies that there exists a bijection ¢ : ;g M —
Uie[q} M} such that m € M{ if and only if ¢(m) € M7, for all i € [q].
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Given f € Funcp g fixed, let f” be the function that is the same as f, except
that for any m € ;¢ Mg corresponding to ¢(m) € Uy M, f' sends m —
f(é(m)) and ¢(m) — f(m). This indicates a bijection between functions f
and f’' in Funcp where {f(m) | m € M} = {f'(m) | m € M}}. Hence, for
corresponding f, f" indicated by the bijection, P; in adversary F’ 1f O is equivalent

to Py in adversary Fg/(').

[V] is zero: Analogous reasoning to [I]. O

C.3 Proof of Theorem 5.4.2

Proof of Theorem 5.4.2. Let FSE = FSEpytrag|BktS, Fprag, ESE|]. Let A be an efficient
IND-CLS-CPA adversary to FSE. We construct a PP-CBT adversary E4 against
Frrag and an IND-DCPA adversary F4 against ESE, as follows.

(KTvﬁn("'vb))

Adversary E Adversary 5o (Kem ER(-0)

Kese < Kese Kr< Kr

Define oracle P(mg, m;): Define oracle Q(mg,m;):
By < Bkts(myg) By < Bkts(my)
By < Bkts(m,)
tags < B(K7r, LR(By, Bi1,b)) tags < B(Kr, By)
cr < Encgse(Kgse, mo) cr < Encgsg(Kgsg, LR(mo, my, b))
Return tags||cr Return tags||cg

b & AP p & A90)

Return &' Return ¢’

First, the efficiency claims about E4 and F4 should be clear from the definitions
of oracles P and Q and the fact that each adversary runs A once while simulating

A’s oracle efficiently.
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Now, we show that

AdvIEE (4)

=Pr [Exp;%%_ds_Cpa_l(A) = 1] — Pr [Exp;%%_CIS_Cpa_O(A) = 1]

=Pr|

Expiit 7" (4) = 1] — Pr | Explay ™ () = 1]

+ Pr | Explsy “P7 (Fa) = 1| = Pr | Exppg0(F) = 1] 1]
+ Pr | Expisg “P0(Fa) = 1| = Pr | Explt ! (By) = 1] [I11]
+ Pr | Exp (B 1] Pr | Expl " 0(By) = 1] V]
+Pr | Bxpl ™ (Ex) = 1] - Pr | Explg ™ (4) = 1] V]

= Adviddea gy 4 AdvgggTCbt(E ).

Note that [II] evaluates to Adviss “P*(F,) and [IV] evaluates to Advr}‘;;:;t(E 4). Tt

is left to show that [I], [III], and [V] evaluate to zero.

ind-cls-cpa-1

[1] is zero: Knowing A is a valid adversary to experiment Exprgr , we claim Fjy is a

valid adversary to Expass P! Within Fy, suppose (m}, m!),..., (md, m?) are
the queries A makes to Q(-, ). Then for any 4, j € [q], |m§| = |mi|, and m}, = mj

7 ind-cls-cpa-1

if and only if m} = m?, since A satisfies the restrictions of EXpgg . Thus,

, I ind-dcpa-1
F5 satisfies the restriction of Expgge — © .

In experiment Exppss “P*" the oracle Q(-,-) constructed by F simulates A’s

oracle in the experiment Expiss “P*1(A) and F, outputs the result that A

outputs.

pp-cbt-1

[I1I} is zero: The oracle P(-,-) constructed by E4 in experiment Exp>” and the oracle

Q constructed by F4 in Exppss a0

are functionally equivalent: after keys
K7 & Ky and Kggg <& Kgsg are selected, both oracles take input (mg, my) and
output

B(K% Bl)HgncESE(KESE: mo)-
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So A is given equivalent oracles in the two cases, and each adversary outputs

A’s output.
. . . . . . ind-cls-cpa-0 : :
[V] is zero: Knowing A is a valid adversary to experiment Expggz , we claim F4 is a
. ~cbt-0 .
valid adversary to EXPI}I;T; . Suppose (m},mi),. .., (md ml) are the queries

A makes to P(-,-). Then for any i,j € [¢], either Clp(mi, m?) = Clp(mi,m?)

or mj = mj and m! = m!. Fix I C [q]. Then since Bkts is consistent,

ﬂ Bkts(m!)

el

ﬂBkts(mé)

iel

pp-cbt-0
FBTag ’

pp-cbt-0

Foreg In experiment Exp

Thus E, satisfies the restriction of Exp
the oracle P(-,-) constructed by E, simulates A’s oracle in the experiment
Expit a0 4y “and E4 outputs the result that A outputs, and the result

follows. O]

C.4 Proof of Theorem 5.4.3

Proof of Theorem 5.4.3. Suppose Bkts is not consistent. Thus, there exist ¢ > 1 and
message sets {m},...,ml} and {m1,..., m?} having the same closeness pattern such

that ‘ﬂie[q] Bkts(mg)’ # ‘ﬂie[q] Bkts(m})

We construct an adversary A against the IND-CLS-CPA security of the scheme

FSEpksrag|Bkts, PRTag, ESE| as follows. For i € [¢], A submits queries (mf,m}) to
its oracle, receiving ciphertexts ¢; = tags,|c; = Enc(K,m}). A then compares

. If they are equal, A outputs 1, and otherwise 0.

ﬂie[q] tags;

The attack is valid, as the corresponding messages have the same closeness pattern.

Also, it is clear that A makes ¢ oracle queries. Further, note that ‘ﬂie[q} tags,

)ﬂie[q] Bktsb‘ + ‘ﬂie[q] Bktsl,b‘ since T (K7, -) is deterministic and collision-free for

a given Fgrag-key K. So A always succeeds, and the result follows. n
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C.5 Proof of Theorem 5.5.1

Proof of Theorem 5.5.1. The result will follow easily if we simply show that Bkts
satisfies the condition of Theorem 5.4.2.

Let {m{,...,md} and {m1,...,m?} be sets of messages having the same closeness
pattern. That is, either Clp(mj), m}) = Clp(mi, m?) or (mj = m} and mi = mj) for
all 4,7 € [q].

For i € [q], o € {0,1}, let B! = {e € Equn | M, € €}. Let I = [q]. Three cases

arise:

1. Suppose {m} | i € I} contains at least three messages, say mg # mjy # myg for

a # [ # . Then by the equality condition, m¢, mf ,m] are all distinct. Three

(or more) distinct vertices cannot all share the same edge, so we conclude in

this case that |,c; Eo| =0 = |N;c; Bi]-

2. Suppose {mi | i € I'} contains exactly two distinct messages, say mg and mp.
Let I, = {i € I | m) =m&} and Iy = {i € I | m{ = m{}; then I, and I5 are
nonempty. Let n = Clp(mg, mi) € {close,near, far}.

(a) Fori,j € I, (ori,j € I), mi = mj, so mi = mi;
(b) For i € I, j € Ig, Clp(mi, m]) = Clp(mj, m)) =n.

Hence, if n = close, {m} | i € I} contains exactly two distinct close messages

and {m} | i € I} contains exactly two distinct close messages, so |;c; Ef| =
L= |Mier £ -
On the other hand, if n = far, {m{ | ¢ € I} contains exactly two distinct

far messages and {m! | i € I} contains exactly two distinct far messages, so
mief Ejl = 0= |Mie, Ei| -

3. Finally, suppose {m{ | ¢ € I} contains only one distinct message, say mg. Then

by the equality condition, {m! | ¢ € I'} also contains only one distinct message.
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So [Mier Bb| = A = |Nies Ei|.
Thus, Bkts satisfies the restriction of Theorem 5.4.2. O

C.6 Proof of Theorem 5.5.2

Proof of Theorem 5.5.2. Let A > 2 be fixed. Define A = (D, Clp) as the rigid close-
ness domain with closeness graph G, as follows.

Let Ka be the complete graph on A vertices, with vertices labeled vy, ..., va. Let
o =22A-D/2 andlet Gy, ..., G, be the distinct subgraphs of K with the same order
of labeled vertices for each: vi,... v for i € [0]. Now, define G5 to be the union of
Gi,...,G, (with no edges between any of the subgraphs). It should be clear that A
is indeed the maximum degree of this graph.

Let FSE = (K, Enc, Dec, Clg ) be a perfect FSE encryption scheme on A. We may
assume that the ciphertext space of FSE is R = {0, 1}", and suppose to the contrary
that r < (A —1)/2. Fix a key K <~ K, and let ¢! = Enc(K,v]) for i € [A], j € [o].

Further, let ¢/ = (c},...,c4) for j € 0.

247 possible values for ¢/,

Notice that each ¢/ consists of Ar bits, so there are
for each j € [o]. However, ¢ = 28(3=1/2 > 257 50 by the pigeonhole principle we
have ¢’ = ¢’ for some i # j € [o]. Since G' and G’ are different subgraphs of K,

is in G* but v/v7 is not in G/. Thus,

without loss of generality suppose edge v’ Y z Uy

Clp(vy,v;) = close and Clp(v},v]) = far, so close = Clg(c},c}) = Clg(c], ¢}) =

far, a contradiction.

We conclude that 7 > (A — 1)/2 and thus r € Q(A). O

C.7 Proof of Theorem 5.6.1

Proof of Theorem 5.6.1. Let A be an IND-NRL-CPA adversary to FSEtagAncf. We
construct a PP-CBT adversary F4 against Fgrag and an IND-DCPA adversary Fy4

against ESE, as follows.
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Encese (Kese,LR(-,,b))

Adversary E Adversary F5HETERE0)
Kr & Kr Kesg <~ Kese
Define oracle Q(mg, m;): Define oracle P(my, m;):
Ancy <+ {v e L]|d(my,v) < p} Ancy — {v € L | d(my, V) < p}

Ancy +— {ve L ]d(my,v)<p}

tags < B(K7T,Anc) tags < B(K7, LR(Ancy, Ancy, b))
cr < Encese(Kese, LR(mg, my, b)) cr < Encese(Kesg, my)
Return tags||cg Return tags||cg

V& A V& AP

Return &' Return ¢’

First, since we have a short basis for £, it is easy to find Anc; for message m;, for
j € {0,1}. Notice that if m; is described with ~; bits, the messages in Anc; can be
described with at most «y; +1log, p bits. Then, the efficiency claims on E4 and F)4 are
clear from the definitions of oracles P and Q and the fact that each adversary runs
A once while simulating A’s oracle efficiently.

Now, we show that

Advyg " (4)

= Pr [Exp?s%_nrﬁ_(:pa_l(A) = 1} —Pr [Exp;%%_nrﬁ_Cpa_o(A) = 1]

— Pr | Explat ™" (4) = 1| — Pr | Expid ™ (B4) = 1| 1
+ Pr | Expid " (By) = 1| — Pr | Expl () =1 1]
4 Pr :Exp;g%'dcpa'o(EA) - 1] —Pr [Exppfi;:gbt_l(FA) - 1} 1]
4 Pr :Exp?};;:gbt_l(FA) — 1] ~Pr [Expggg;:gbt'o(FA) - 1} V]
+ Pr | Expi " 0(Fa) = 1| — Pr | Exppig ™0 (4) = 1| V]

= Advist “P(E4) + AdvEZY(Ey).

Fi BTag

Note that [II] evaluates to Adviss “P*(E,) and [IV] evaluates to Adv?_-‘}:;:gbt(F ). Tt
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is left to show that [I], [III], and [V] evaluate to zero.

[1] is zero:

[I1I] is zero:

[V] is zero:

ind-nrL-cpa-1

Knowing A is a valid adversary to experiment Expgeg , we claim F4 is
a valid adversary to Exppss “**!. Within E4, suppose (m}, m!), ... (m?, m?)
are the queries A makes to Q(+,-). Then for any 4, j € [q], |m{| = |mi|, and m}, =

. o . ‘ o o
m} if and only if m! = m7, since A satisfies the restrictions of Expggg =~ o .

Thus, E, satisfies the restriction of Exppas 9P#™!,
In experiment Expie 4! the oracle Q(-,-) constructed by E4 simulates A’s
oracle in the experiment Explia ™ P> (4), and E4 outputs the result that A

outputs.

The oracle P(-,-) constructed by F4 in experiment Exp’? ;:ng and the oracle

Q constructed by E4 in Expist 0 are functionally equivalent: after keys
K7 <~ K7 and Kggg < Kgge are selected, both oracles take input (my, m; ) and
output

B(K’T, AnC1)||(€nCESE(KESE, mo).

So A is given equivalent oracles in the two cases, and each adversary outputs

A’s output.

. . . . ind-nrL-cpa-0 . .
Knowing A is a valid adversary to experiment Expggz 0, we claim Fj4 is a

—C

: pp 1
valid adversary to Expz__

bt-0 1 q q .
.- Suppose (my, m;), ..., (mg, mj) are the queries
A makes to P(-,-). Then for any 4,j € [¢], either Clp(m{, m?}) = Clp(m?, m?)
or m}, = m) and m’ = m].

For i € [q], a € {0,1}, let Anc!, = {v € £ | d(m},v) < p}. Fix I C [¢g]. Two

cases arise:

1. Suppose i # j € I such that d(mé,mf)) > ¢F. Since A is a valid IND-

NRL-CPA adversary, its left /right-queries have the same equality /closeness
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pattern, so this means d(m}, m}) > ¥ as well. Then by the construction

of BktsAnc’., Anc} N Anc) = () = Anc} N Anc) and thus

ﬂ Ancé ﬂ Anc!

icl i€l

:O:

2. Suppose d(mj, m)) < 6F for all i # j € I. Then messages {m}, | i € I} are
all in the same nearness component of G} (Hy) where Hy = {mj}, ..., mi}.
Since A is a valid IND-NRL-CPA adversary, {m’ | i € I} are all in the
same nearness component of G (H;) where H; = {m}, ..., m{}, and there
exists some v € £ such that m{ + v =m¢ for all € I. Note that since £
is regular, this means Anc{ +v = {w + v | w € Anc}} = Anc! for all i € I.

Thus, for w € R,

W E ﬂAncé@w € Anc), for all i € I
i€l

&S w+vEhc, +vforalliel

& w+vEAnc foralliel

(:)w+v€ﬂAnc’i
el

Hence, there is a bijection w > w + v between ,; Anc) and (,; Anc},

m Ancf) ﬂ Anc!

iel iel

el

implying

Therefore, 4 satisfies the restriction of Exp%;;:gbt_o

pp-cbt-0
Fi BTag

In experiment Exp , the oracle P(-,) constructed by Fa simulates A’s

oracle in the experiment Expiat ™ P0(4) and F, outputs the result that A

outputs, and the result follows. O

C.8 Space-efficiency analysis of efficient EFSE construc-
tions

Here, we briefly analyze the space-efficiency of the schemes of Section 5.6.
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SPACE-EFFICIENCY FOR THE TRIANGULAR LATTICE SCHEME. Notice that every
triangular region of the lattice has the same pattern of |BktsAnc?(m)| values. For
instance, a point in the middle of a triangular region is always within p of only three
lattice points, while a point in the corner of a triangular region is always within p of
seven lattice points. Figure 13 indicates these numbers for points in various sectors

of a triangular region, and this pattern holds for all such regions. We conclude that

|BktsAnc/.(m)| € {3,4,5,6,7} for all m € R%

1 V3
272

(0,0) (1,0)

Figure 13: |BktsAnc’ (m)| values according to m location in a region of the triangular
lattice

SPACE-EFFICIENCY FOR THE RECTANGULAR GRID SCHEME.

Notice that [BktsAnc’.(m)| equals the number of points in % whose distance from
m is at most 3/2. Equivalently, this is the number of integer-valued points whose
distance from m+/? is at most 3v///2.

We informally conjecture that, in general, it is difficult to describe the distribution
of this number. In fact, in R* if there were a general formula for the number of
integer points in the ball of radius > 0 centered at 0 = (0,0,0,0), then we could
efficiently factor integers of the form n = pq with p, ¢ prime: Appendix C.9 explains
this fact. Though this is a different scenario (as factoring is difficult only for p, ¢
large) it contributes evidence against the existence of a general function describing

the number of integer points within an /-dimensional ball centered at some point.
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Thus, to describe space efficiency of the rectangular grid scheme, we resort to
empirical findings and the following loose theoretical bound. Let B(x,r) denote the
(-dimensional ball of radius r centered at x. For each integer-valued point x, let Hy
be the hypercube x+[0,1]¢, and let H = {H, | x € B(m+/¢,3v/¢/2)}. Since each such
hypercube has volume 1, |BktsAnc’.(m)| equals the total volume of the hypercubes
in H. Now, we claim that (Jy.,, H C B(x,5V/¢/2). This follows from noting that
any point in a hypercube Hy is at most /¢ from a point in B(x,3v/¢/2), and using
the triangle inequality. Hence, we have the loose upper bound |BktsAnc/ (m)| <
Vol(B(x,5v/1/2)).

Table 6 in contains information about |BktsAnc’.(m)| for small dimensions ¢. The
first column evaluates the loose upper bound. The second column is the empirically-
computed value of |BktsAnc? (m)| at a grid point. The third and fourth columns give
empirical lower and upper bounds on the value of |BktsAnc?.(m)| among 10000 points

randomly selected in the space.

Table 6: An analysis of [BktsAnc/(m)| values for m € £, for various dimensions
¢. The first column evaluates the loose upper bound. The second column is the
empirically-computed value of |BktsAnc’.(m)| at a grid point. The third and fourth
columns give empirical maxima and minima of |BktsAnc’.(m)| among 10000 points
randomly selected in the space.

Loose Value at Empirical Empirical
¢ | upper bound  grid point lower bound upper bound
115 3 3 4
2139 13 12 16
3 1340 81 68 81
4 | 3084 425 425 1023
5 | 28736 2463
6 | 272516 12277
7 12616999 69779
8 | 25366951 469457
9 | 247667506 2634777

10 | 2432025947 14763893
11 | 23994113427 81598773
12 | 237648085570 578480129
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C.9 Connection between the number of integer points in a
4-ball to factoring

Suppose we have a formula f(x), valid for z > 0, for the number of integer points
in R* contained in the ball B(0,z) of radius z centered at 0 = (0,0,0,0). Then for
integer n, f(n) — f(v/n? — 1) gives the number of integer points on the boundary of
B(0,n), as for any four integers 1, ..., x4, if i, 22 < n? then either 3.7, 22 = n?
or o0 x? <n?—1.

Suppose that n = pq for p,q odd primes. By Jacobi’s four-square theorem, the
number of ways to represent n as the sum of four squares is eight times the sum of

the divisors of n, or 8(1 +p + ¢+ n).

Thus, the number of ways n can be written as a sum of four squares Z?:l z? is
81+p+qg+n)=f(n)— f(vVn2-1).

So, knowing n = pq, we can easily determine p and gq.
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Large-scale data management systems rely more and more on cloud storage, where
the need for efficient search capabilities clashes with the need for data confidentiality.
Encryption and efficient accessibility are naturally at odds, as for instance strong en-
cryption necessitates that ciphertexts reveal nothing about underlying data. Search-
able encryption is an active field in cryptography studying encryption schemes that
provide varying levels of efficiency, functionality, and security, and efficient searchable
encryption focuses on schemes enabling sub-linear (in the size of the database) search
time. I present the first cryptographic study of efficient searchable symmetric encryp-
tion schemes supporting two types of search queries, range queries and error-tolerant
queries.

The natural solution to accommodate efficient range queries on ciphertexts is
to use order-preserving encryption (OPE). I propose a security definition for OPE
schemes, construct the first OPE scheme with provable security, and further analyze
security by characterizing one-wayness of the scheme. Efficient error-tolerant queries
are enabled by efficient fuzzy-searchable encryption (EFSE). For EFSE, I introduce
relevant primitives, an optimal security definition and a (somewhat space-inefficient,
but in a sense efficient as possible) scheme achieving it, and more efficient schemes
that achieve a weaker, but practical, security notion.

In all cases, I introduce new appropriate security definitions, construct novel

schemes, and prove those schemes secure under standard assumptions. The goal



of this line of research is to provide constructions and provable security analysis that
should help practitioners decide whether OPE or FSE provides a suitable efficiency-

security-functionality tradeoff for a given application.
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