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SUMMARY

Assistive mobile manipulators could enable people with disabilities to perform tasks for

themselves which would otherwise be difficult or impossible. The robot’s assistance has the

potential to increase independence and quality of life. Through this dissertation we have

explored methods to realize that assistance.

Although many groups have looked at how a robot could execute some specific tasks,

few have considered where to place the robot to better provide assistance. We have observed

that this problem arises frequently in real-world settings and solving the problem can be

challenging, even for an expert user. We first present an answer to the question, “How

should a robot choose a configuration of its base to be better able to provide assistance?”

In answering this question we expand the problem to better match common scenarios in

assistive robotics, where the task may be complicated and may take place in a bed or

wheelchair. We present task-centric optimization of robot configurations (TOC), a method

for addressing this question. We demonstrate how TOC can select one or more robot

configurations for many assistive tasks that involve the robot moving a tool around a persons

body. We additionally provide evidence that TOC outperforms baseline methods from

literature. We present an assistive robotic system consisting of a robotic bed and a mobile

manipulator that uses TOC to allow the two robots to autonomously collaborate to better

provide assistance. We tested this system with a person with severe quadriplegia in his

home, providing evidence of the feasibility of TOC and the robotic system for providing

assistance to real people.

Through our work on assistive robotics, we recognized that an important activity of daily

living (ADL), dressing, contains special challenges not fully addressed by TOC. We present

task optimization of robot assisted dressing (TOORAD), a method for selecting actions

for both the robot and the person that will result in successful dressing. We demonstrate

the efficacy of TOORAD in a study with participants with disabilities receiving dressing

xix



assistance from a mobile manipulator. In that study, we also administered surveys on

habits, needs, capabilities, and views on robot-assisted dressing that we expect will provide

guidance for future research.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Overview

Societal challenges, such as aging populations, high health care costs, and shortages of health

care workers found in the United States and other countries, suggest a need for innovative

methods of care [1, 2]. Activities of daily living (ADLs) are important for independent living

and quality of life [3, 4, 5]. Dressing is a prominent ADL, along with feeding, toileting,

transferring, and hygiene [3]. Studies suggest that more older adults receive assistance

from human caregivers with dressing than other ADLs besides bathing/showering, and

over 80% of people in skilled nursing facilities require dressing assistance [6]. A number

of specially designed assistive devices exist to help people maintain their independence.

However, current assistive devices, such as those for dressing (e.g., reachers, dressing sticks,

long-handled shoehorns, and sock aids), provide limited support and rely on the user having

substantial cognitive, perceptual, and motor capabilities [7, 8]. Robots could potentially

serve as more versatile assistive devices.

Specialized robots, such as desktop feeding devices, have been successful for a narrow

range of assistive tasks when placed in fixed and designated positions with respect to the

user [9, 10]. Others have used fixed-base general-purpose manipulators (a robot arm in

a fixed location) [11, 12, 13, 14], again in designated positions. General-purpose mobile

manipulators have the advantage of mobility, which may allow them to provide assistance

across a wider range of tasks, users, and environments, and provide this assistance indepen-

dent of any fixed-location [15]. However, this mobility introduces additional complexity

and challenges.
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1.2 Problem Description

Through this dissertation we work towards mobile manipulators that can provide effective

assistance to people with disabilities, allowing the user to perform tasks which would

otherwise be difficult or impossible. We present methods to inform a mobile manipulator

on how it can assist a user with tasks, such as ADLs. We are guided by past work and

observations on areas of assistive robotics that are more or less explored. Many groups have

looked at how a robot could execute specific tasks, such as ADLs [16, 17, 18, 19, 20] or

instrumental activities of daily living (IADLs) [21, 22]. However, in most of these works,

the location of the robot’s base is selected manually or with a simple inverse-kinematics (IK)

solver. The choice of where to place such robots is important, as it can impact the robot’s

ability to provide effective assistance. For a mobile manipulator to provide assistance to a

person, it may first need to get close enough to reach task-relevant locations. Furthermore,

the problem of selecting the robot’s base pose may arise repeatedly for mobile manipulators,

as they move around performing tasks. In this dissertation, we often use the more general

term, configuration, which includes the robot’s base pose as well as other configurable

parameters of the robot (e.g., the height of the robot’s spine).

The question addressed in Chapters 2 and 3 is, “How should a robot choose a config-

uration of its base to be better able to provide assistance?” In answering this question we

expanded the problem to better fit the scenario of assistive robotics, where tasks can be

complicated, involve a person, and that person may be in an environment that can be lever-

aged to better provide assistance. Chapter 3 follows as a practical demonstration, showing a

proof-of-concent assistive robotic system that makes use of the method presented in Chapter

2. The system consists of a mobile manipulator working in collaboration with a robotic bed.

In continued exploration towards mobile manipulators that can provide assistance with tasks,

we discuss in Chapter 4 our work on robot-assisted dressing, which modifies our previous

methods to address the specific challenges of dressing.
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1.3 Contributions

The contributions of this dissertation include the development of two methods: task-centric

optimization of robot configurations (TOC) and task optimization of robot-assisted dressing

(TOORAD). An additional contribution is a proof-of-concept assistive robotic system with

a robotic bed and a mobile manipulator that uses TOC to improve assistance.

1.3.1 Task-centric Optimization of Robot Configurations (TOC)

We present task-centric optimization of robot configurations (TOC), which is an algorithm

that finds configurations from which the robot can better reach task-relevant locations and

handle task variation. TOC is suitable for quickly selecting one or more robot configurations

for many assistive tasks, including some ADLs, that involve the robot moving a tool around

a person’s body. Notably, TOC can return more than one configuration that when used

sequentially enable an assistive robot to reach more task-relevant locations. TOC performs

substantial computation offline to generate a function that can be applied rapidly online

to select robot configurations based on current observations. TOC explicitly models the

task, environment, and user, and implicitly handles error using two representations of

robot dexterity that we have developed. Key features of TOC are its selection of multiple

configurations for a task, its task-centric approach, its explicit modeling of many task-

specific parameters that are important to assistive tasks (possible because of the task-centric

approach), its representations of robot dexterity, and its framework splitting offline and

online computation. We evaluated TOC in simulation with a PR2 assisting a user with 9

assistive tasks in both a wheelchair and a robotic bed. TOC had an overall average success

rate of 90.6% compared to 43.5%, 50.4%, and 58.9% for three baseline methods from

literature. We additionally demonstrate how TOC can find configurations for more than one

robot and can be used to assist in designing or optimizing environments. Details on TOC

are presented in Chapter 2.
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1.3.2 Application: A System for Bedside Assistance that Integrates a Robotic Bed and a

Mobile Manipulator

As a platform for testing TOC in the real world with a person with disabilities, we present

a proof-of-concept robotic system for bedside assistance that integrates a robotic bed and

a mobile Manipulator (a PR2 robot made by Willow Garage), that work together to better

provide assistance to a user with tasks around the user’s body. Many assistive tasks depend

on movements with respect to the person’s body, and the complementary physical and

perceptual capabilities of the robots help with respect to this general goal. To manage the

system’s complexity for common assistive tasks, our system provides autonomous functions

with a coarse-to-fine approach. The system autonomously completes the “coarse” parts of

the task, such as moving the mobile robot’s base to the appropriate place and configuring

the robotic bed, and then gives control back to the user for “fine” execution, the detailed

performance of the task. This “coarse” setup can be challenging for a user, and we can reduce

the user’s overall workload by having it performed autonomously. The detailed performance

of the task can be challenging to perform autonomously; for example, in a scratching task,

the precise location of an itch can be difficult for the robot to find autonomously. The system

makes use of the user’s cognitive capabilities in providing fine control.

With this system, we introduce and investigate the potential for a robotic bed to col-

laborate with a mobile manipulator in order to provide more effective assistance to people

in bed. We demonstrate that a robotic bed and a mobile manipulator have complementary

physical and perceptual capabilities. The robotic bed can move the human body using a

small number of degrees of freedom into positions that are more reachable or relevant to the

task, such as sitting the person up to eat food. It can also help the mobile manipulator reach

the human body by raising itself above the ground so that the mobile manipulator’s base can

go under it or give the manipulator better access to the person. Our mobile manipulator can

dexterously manipulate a lightweight payload using a large number of degrees of freedom.

The robotic bed can also perceive the human body via a pressure sensing mat, while the
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mobile manipulator would typically perceive the person using on-board line-of-sight sensors

that can be obstructed by bedding and other objects around a bed, such as an overbed table

or IV lines.

In an evaluation using a medical mannequin, we found that the robotic bed’s motion

and perception each improved the assistive robotic system’s performance. The system

achieved 100% success over 9 trials involving 3 tasks, but disabling bed movement or

body pose estimation resulted in success in only 33% or 78% of the trials, respectively.

We also evaluated our system with Henry Evans, a person with severe quadriplegia, in his

home. In a formal test, Henry successfully used our system to perform 3 different tasks, 5

times each, without any failures. Henry’s feedback on the system was positive regarding

usefulness and ease of use, and he noted benefits of using our system over fully manual

teleoperation. Overall, our results suggest that a robotic bed and a mobile manipulator can

work collaboratively to provide effective personal assistance and the combination of the two

robots is beneficial. Details on this assistive robotic system are presented in Chapter 3.

1.3.3 Task Optimization of Robot-Assisted Dressing (TOORAD)

We present task optimization of robot-assisted dressing (TOORAD), a method for selecting

actions for both the robot and the person that will result in successful completion of a

dressing task. TOORAD makes use of geometric, kinematic, and physics simulations

of the person, robot, and garment in its optimization. It uses customized models for the

person to model their geometries and physical capabilities. These models consider what

the person is capable of doing, instead of what he or she typically does. With this approach,

TOORAD is able to explore a wide range of actions for dressing in simulation, some of

which might be challenging to test in the real world. Using a general-purpose mobile

manipulator can mitigate some of the challenges in dressing by allowing the robot to move

around to access different areas around the body, as explored by [23]. We consider the

robot an important part of TOORAD’s optimization, so TOORAD optimizes the robot’s
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base pose to improve the robot’s ability to adapt to unexpected changes. Additionally, our

method provides computer-generated instructions for the user receiving assistance from

the robot. We have used TOORAD to optimize the actions of a person and a PR2 robot (a

mobile manipulator made by Willow Garage) to collaborate in pulling the two sleeves of a

hospital gown onto the person’s body. These features are notable differences from previous

work on robot-assisted dressing We conducted a study with six participants with physical

disabilities who have difficulty with dressing. In the first session of the study, we surveyed

participants’ needs, capabilities, and views on robot-assisted dressing to gain insight for

future robot-assisted dressing research through better understanding of the target populations.

For the second session of the study, four of the participants successfully received assistance

from a robot-assisted dressing system in putting on both sleeves of a hospital gown. Two

of the four participants dressed one sleeve independently and received assistance from the

robot with only the second sleeve, and two participants received assistance with both sleeves.

From participant feedback and survey responses we note paths forward for advancing robot-

assisted dressing towards providing practical assistance to people with disabilities. Our

results provide evidence that TOORAD can be used to select actions that will result in a

robot and person with disabilities collaborating successfully to complete a dressing task.

Details on TOORAD are presented in Chapter 4.

1.4 Organization of Dissertation

We organize the remainder of this dissertation as follows. Each of Chapters 2, 3, and 4

present their own comparisons to related works from literature. Chapter 2 presents TOC and

Chapter 3 presents our work on a proof-of-concept assistive robotic system that uses TOC

to inform the robotic system. Chapter 4 presents TOORAD, our work on robot-assisted

dressing, and a study both on the the needs and capabilities, with respect to dressing, of

people with disabilities, and on a system implementing TOORAD to coordinate the actions

of a robot assisting people with disabilities with a dressing task. Chapter 5 discusses lessons
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learned, opportunities for future research extending our work, and finally summarizes the

overall work and potential impact. In Appendix ??, we provide the complete responses to

the questionnaires administered in our study on robot-assisted dressing with participants

with disabilities.
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CHAPTER 2

TASK-CENTRIC OPTIMIZATION OF CONFIGURATIONS FOR ASSISTIVE

ROBOTS

2.1 Introduction

Robotic assistance with activities of daily living (ADLs) [3] could potentially enable people

to be more independent. This may improve quality of life [5, 4] and help address societal

challenges, such as aging populations, high health care costs, and shortages of health care

workers found in the United States and other countries [1, 2].

Many specialized assistive devices can help people with motor impairments perform

ADLs on their own [7, 8]. Specialized robots, such as desktop feeding devices, have been

successful for a narrow range of assistive tasks when placed in fixed and designated positions

with respect to the user [9, 10]. The choice of where to place such robots is important, as

it can impact the robot’s ability to provide effective assistance. General-purpose mobile

manipulators have the advantage of mobility, which may allow them to provide assistance

across a wide range of tasks, users, and environments [15]. However, this mobility introduces

additional complexity. For a mobile manipulator to provide assistance to a person, it may

first need to get close and be able to reach task-relevant locations. For mobile manipulators,

the problem of selecting the robot’s base pose may arise repeatedly as it moves around

performing tasks. In this chapter we use the more general term, configuration, which includes

the robot’s base pose as well as other configurable parameters selected for the task (e.g., the

height of the robot’s spine). Choosing the robot’s configuration can be challenging because

of robot complexity, task complexity, geometric constraints, and kinematic constraints.

Additionally, more than one configuration of the robot may be necessary to complete some

tasks or more than one robot may be involved. For example, [16] used two positions of a
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Figure 2.1: TOC can select a configuration for the PR2 and the robotic bed so the PR2 can
better reach task-relevant locations. This figure shows the configuration for the task of a
PR2 cleaning the legs of a person in a robotic bed.

PR2 (a mobile manipulator made by Willow Garage) to reach and shave the entirety of a

user’s face (both sides) for a user in a wheelchair.

Our approach to providing assistance to a user with a robot is to first find a good

configuration for the robot from which it can perform the task. In this chapter, we focus

exclusively on the problem of selecting the robot configuration, leaving task performance out

of scope. Performance of assistive tasks is addressed in many other works (see Section 2.2.4).

The questions we ask are: how can the the robot select a good configuration, and what makes

a configuration good? We address these questions in Section 2.3. With a good configuration,

the robot is more likely to be able to complete the task successfully.

We present a task-centric, optimization-based method to select one or more configura-

tions for assistive robots, that we call task-centric optimization of robot configurations (TOC).

TOC extends two previous works from [24, 25], with changes to framework, formulation of

terms used within the methods, and modeling of the user and environment. Additionally, we

have improved the optimization search and performed additional evaluations of our method
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Figure 2.2: TOC can select a single configuration for the PR2 to shave a person in a
wheelchair, shown here. TOC takes advantage of the person’s physical capabilities, such
being able to rotate his or her neck.

with thorough comparisons to other methods from the literature. TOC is suitable for quickly

selecting one or more robot configurations for assistive tasks, including some activities of

daily living (ADLs), that involve the robot moving a tool around a person’s body. A task-

centric approach is particularly applicable to assistive tasks where there may be important

or common tasks that take place in environments that are known apriori. Key features of

TOC are its selection of multiple configurations for a task, its task-centric approach, its

explicit modeling of many task-specific parameters that are important to assistive tasks

(possible because of the task-centric approach), its representations of robot dexterity, and its

framework splitting offline and online computation.

TOC performs substantial offline computation to generate a function that can be applied

rapidly online to select robot configurations based on current observations. These offline

computations use explicit models of the task, environment, and user. Because offline

modeling may be vulnerable to problems with error and mismatch between models and

reality, TOC uses two representations of robot dexterity that we developed, task-centric
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Figure 2.3: TOC differentiates between robot configurations that have collision-free IK
solutions to all goal poses. This differentiation allows TOC to better select good robot
configurations. The figure visualizes two scoring methods, showing the score for discretized
PR2 base poses. Z-rotation is sampled every 45◦ from 0◦ to 360◦, and the best score is
shown (left) using the percentage of goals with collision-free IK solutions and (right) TOC,
for the mouth wiping task in the robotic bed environment, with the bed raised 20 cm and at
45◦. The color represents the best score for that 2D position of the PR2. 0 means no goals
and ≥ 1 means all goals have collision-free IK solutions.

reachability (TC-reachability) and task-centric manipulability (TC-manipulability), in its

objective function to help it select robot configurations that are implicitly robust to error.

TOC searches the robot configuration space to maximize its objective function, a linear

combination of TC-reachability and TC-manipulability, using a simulation-based, derivative-

free optimization from literature, covariance matrix adaptation evolution strategy (CMA-ES).

Figures 2.1 and 2.2 show the configurations selected for the cleaning legs task for a user in

bed and the shaving task for a user in a wheelchair, respectively.

We evaluated TOC in simulation with a PR2 assisting a user with 9 assistive tasks in

both a wheelchair and a robotic bed. For our evaluations we implemented three baseline

algorithms from literature. The first used an inverse-kinematics (IK) solver to select a

configuration with a collision-free IK solution to all task-relevant goal poses. The second
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and third baselines used a capability map from [26] to select a configuration with high

capability score to the goal poses. The third baseline also checked that a collision-free IK

solution existed for each goal pose. We ran Monte-Carlo simulations of pose estimation

error and found that TOC’s average success rate was higher than or comparable to baseline

algorithms for each task. TOC had an overall average success rate of 90.6% compared

to 50.4% for the IK solver, 43.5% for capability map, and 58.9% for capability map with

collision checking. Additionally, we provide evidence that TOC’s objective function is

positively correlate with robustness to error, and we demonstrate how TOC can be used to

assist in designing environments to improve robotic assistance.

2.2 Related Work

2.2.1 Representations of Robot Dexterity

Many metrics have been developed to quantify the kinematic dexterity of robot manipulators.

These metrics can be broadly divided into those that use the manipulator’s Jacobian, J(q)

[27] and those that do not. These metrics can also be divided into those that find global

measures (a metric for the robot irrespective of joint configuration) and those that find local,

configuration-dependent measures of dexterity. Global dexterity metrics are often used for

robot design [28, 29]. As we are focused on dexterity measures to assist in positioning

existing robots, we will focus on discussing local metrics. [30] proposed the local Jacobian-

based metric called measure of manipulability (or just, manipulability), w(q), shown in

Equation 2.1.

w(q) =
√

det(J(q)J(q)T ) (2.1)

Geometrically, manipulability is proportional to the volume of the manipulability ellipsoid of

the manipulator, which is the volume of Cartesian space moved by the end effector for a unit

ball of movement by the arm’s joints. This metric can be useful when assessing kinematic

dexterity between different configurations of the same robot. However, its scale and order

12



dependencies make comparison between different robot morphologies challenging.

Other dexterity measures were developed that address some of the issues of using

manipulability [31]. [32] proposed another local Jacobian-based metric that we refer to in

this chapter as kinematic isotropy, ∆(q), shown in Equation 2.2.

∆(q) =
a
√

det(J(q)J(q)T )

( trace(J(q)J(q)T )
a

)
(2.2)

Kinematic isotropy uses the manipulability term (shown in Equation 2.1) with an al-

teration to remove order dependency and divided by a term to remove scale dependency.

Order is the size of the Cartesian space of interest. For a planar robot, the order would be

three if translations are all in 2D in-plane and in-plane rotations are considered. For the case

of tasks in 6D space (position and orientation), the order is six. Unlike manipulability, the

values of kinematic isotropy always range from 0 to 1 they can be directly compared across

robot platforms. In our work we modified kinematic isotropy, adding a weighting term to

create what we call joint-limit-weighted kinematic isotropy (JLWKI). We use JLWKI in our

task-centric manipulability (TC-manipulability) defined in Section 2.3.7. TC-manipulability

represents the kinematic dexterity of the robot for a task (a set of goal poses) from a set of

one or more positions of the robot.

An important limitation to some Jacobian-based measures of dexterity is their ignorance

of many relevant features of the workspace, such as joint limits and collisions. The manipu-

lability ellipsoid calculated from the Jacobian suggests that the end effector can move in

ways that may be constrained by joint limits. Many researchers have proposed various ways

to include these features (joint limits: [33, 34]; velocity limits: [35]; torque limits: [36])

into weighting terms. [37] created what they called an extended manipulability measure by

modifying the Jacobian to include weights on joint limits, on proximity to self-collision,

and on proximity to collision with the environment. Many of these methods apply their

weighting terms directly to manipulability or indirectly by modifying the Jacobian, which

is used in manipulability. JLWKI differs from other measures of dexterity, using a distinct
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weighting function on joint limits and applying it to kinematic isotropy. JLWKI, does

not include costs on proximity to collision because we found that calculating these costs

increases the computation time of TOC excessively.

[26] introduced a method for representing manipulator dexterity without using Jacobians,

which they use to score the workspace of a robot, creating what they call a capability map.

To create the capability map they discretize space around the robot into 3D points and

discretize the range of possible orientations around each 3D point. The capability score

(also known as reachability score) is the number of orientations for which the robot has a

valid IK solution. A way to interpret the meaning of this score is, if a goal pose is located at

the 3D location, the capability score is similar to the probability that the manipulator can

achieve the pose.

2.2.2 Selecting Robot Configurations for Mobile Manipulation

Prior research has investigated how to select configurations for a mobile robot. A common

method is to address the problem using IK solvers [38, 39, 40, 41]. The entire kinematic

chain from end effector to the robot’s base location may be solved using IK [42, 43].

Alternatively, sampling-based methods may be used to find robot base poses that have valid

IK solutions, often as part of motion planning [44, 45, 46, 47, 48].

By relying solely on IK to ensure that the robot can reach the goals, these methods are

dependent on accurate models. Many of these methods are fast, but may fail if there is

modeling or state estimation error. Like these methods, TOC uses a sampling-based search

to find a robot configuration with valid IK solutions. However, there are many such robot

configurations, and they cannot be distinguished using only IK, as shown in Figure 2.3(left).

All locations in green have collision-free IK solutions to all goals, but some may result in

higher success rates than others. TOC uses task-centric manipulability to differentiate those

configurations, as shown in Figure 2.3(right). We show in Section 2.4.4 that higher TOC

score is correlated with improved performance for configurations that have collision-free IK
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solutions to all goals. Additionally, TOC can find more than one robot configuration for a

task. We implemented a standard IK sampling-based method as a baseline for comparison,

as described in Section 2.4.2.

A body of work is based on the capability map from [26]. Capability-map-based methods

are robot-centric and task-agnostic; they are generated offline for the robot’s manipulator

and applied to tasks online. They typically select the robot base position by overlapping the

capability map with end effector goal poses and maximizing the average capability score

[49, 50, 51].

[52] altered the capability map by creating an orientation-based capability map and

extending the map for tools on the robot’s end effector. In contrast with our method, existing

capability-map-based methods do not consider collisions with the environment in their

offline computations because they do not model the environment. Collisions are only

considered at runtime to eliminate robot base locations in collision or that lack collision-free

IK solutions. Simply selecting the robot base location with highest capability map score is

fast, but searching for a collision-free location can take more time. Capability-map-based

methods also only find a single location for a robot for a task, but our method can find

multiple robot configurations. We implemented two capability-map-based methods as

baselines for comparison, based on [49], as described in Section 2.4.2.

Another body of work extends the capability map by inverting it, creating an inverse-

reachability map. While a capability map scores end effector poses with respect to a robot

base pose, the inverse-reachability map scores robot base poses with respect to an end

effector pose. As with the capability map, the inverse-reachability map is generated offline

for the robot’s manipulator and can be used quickly online. For an end effector 3D position,

discretized robot base poses are scored based on the capability map score to that 3D position.

The inverse-reachability map is used to rapidly sample a robot base position that can reach a

set of goal end effector poses [53, 54]. [55] used an alternative representation of the robot’s

dexterity from their previous work [37] that uses 6D poses in the workspace. They invert
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that workspace representation to create what they call an Oriented Reachability Map (ORM).

ORM, like the inverse-reachability map, scores robot base poses based on the extended

manipulability measure of each 6D pose in the manipulator’s discretized workspace. When

searching for a robot base pose for a task, they sample in series from the ORM using the

map’s score as a sampling weight. If the sampled robot base pose has collision-free IK

solutions to the goal end effector poses, they use that base pose; if not they re-sample. They

propose methods to incorporate task-specific information in their extended manipulability

measure (and thus into the ORM), and to calculate the ORM map online through what they

call lazy-ORM. Inverse-reachability-based methods and ORM differ from our work in a

few ways. These methods are typically used in task-agnostic and robot-specific ways to

facilitate applications of the robot to new tasks. Notably, these methods only find a single

location for a robot for a given task, rather than multiple robot configurations. TOC also

explicitly models features and parameters of the environment and user that may be important

to assistive tasks. Details on this modeling is found in Sections 2.3.5 and 2.3.6.

Most previous task-centric methods use simulation of the task, with explicit error

modeling, to evaluate robot base poses. [56] presented a task-specific method for selecting a

place for an industrial robot manipulator to perform a series of tasks amidst clutter. They

used randomized path planners to generate collision-free paths for the arm and they randomly

perturb the robot position to find positions from which the tasks can be performed quickly.

[57] present a task-centric method for finding areas in which to place a mobile manipulator

where it can successfully perform a grasping task. They use Monte-Carlo simulation of

error in the location of the object to be grasped to find base positions with high success rates.

They simulate performance of the entire task including, navigation, motion planning and

motion execution. For real-time base position selection, they convolve uncertainty in robot

location with base position scores to provide an area of high-success probability. They used

their method to select a 2D position of the robot base for a grasping task. These task-centric

methods that explicitly model error and fully simulate task performance have only been used
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to select a few degrees of freedom in static environments, and can only select a single robot

configuration for a task. In contrast, TOC uses faster, simpler simulation and implicitly

handles error. TOC selects more degrees of freedom in configurable environments, and,

again, can select multiple robot configurations for a task.

2.2.3 Human-robot Proxemics

Several bodies of work have examined the proxemics of human-robot interactions [58, 59,

60, 61, 62].

Proxemics is the study of the spatial requirements of humans (e.g., the amount of space

that people feel it necessary to set between themselves and others). These works look at

acceptable interpersonal distances between humans and robots in social settings. Various

works have used the concepts of human-robot proxemics to inform a robot when performing

tasks. These works couple task performance concepts with scoring methods based on

proxemics to select base positions and paths for the robot and item handover locations [63,

64, 65, 66]. Proxemics might suggest that placing the robot in front of the person at some

minimum distance is preferred over other locations.

[67] present a thorough survey of human-aware robot navigation. In contrast, TOC does

not consider proxemics or social factors; it instead focuses on kinematic aspects of the task.

However, inclusion of additional terms in TOC’s objective function to include user comfort

and proxemics is possible. While proxemics is often used to consider navigation problems,

TOC focuses exclusively on selecting the configuration for the task, which may be the goal

pose for navigation.

2.2.4 Assistive Robots

Researchers have investigated the use of mobile manipulators as assistive devices [68, 69,

70, 71, 72, 16].

We seek to further empower assistive mobile manipulators by autonomously selecting
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Figure 2.4: The Framework used in TOC. The offline portion of TOC takes as input task-
relevant models and samples of the uncontrollable parameters and outputs optimized robot
configurations. It then approximates a function that is used online to estimate the optimal
robot configurations given the current, observed uncontrollable parameters.

configurations from which they can better provide assistance. This autonomy can improve

task performance and decrease cognitive workload for teleoperated assistive systems, as

from [73]. In this work, we have used a model of a robotic bed that matches Autobed,

a robotic modified hospital bed from [74]. We have shown how TOC can optimize the

configuration of the bed, allowing improved assistance from a mobile manipulator as part

of a collaborative assistive system, as from [75]. This capability is demonstrated in our

evaluations in the robotic bed environment in Section 2.4.2.
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2.3 Task-centric Optimization of Robot Configurations (TOC)

As mentioned in Section 2.1, key features of task-centric optimization of robot configurations

(TOC) are its task-centric approach, representations of robot dexterity, selection of multiple

configurations for a task, and framework that splits offline and online computation. TOC is

suitable for situations when tasks and environment layouts are known beforehand and we

would like to configure the robot for these tasks such that the robot is successful despite

variations between models and reality. By taking a task-centric approach, TOC is able to

use task-specific knowledge, such as explicit modeling of task-relevant parameters, to better

select configurations. We will first explain the goal of TOC. Afterwards we describe the

nomenclature used in the remainder the chapter. We then explain the framework of TOC,

details of its features, and specifics of our implementation.

2.3.1 TOC Goal: Selecting Good Configurations

The goal of TOC is to select a good set of one or more configurations for a robot to perform

a task without additional adjustments. But what constitutes a good robot configuration? In

this chapter we use the term robot configuration as a more general term for the pose of the

robot’s base, so it can include additional relevant parameters. For example, for a PR2, the

robot configuration might be the position and orientation of the robot’s mobile base as well

as the z-axis spine height of the robot. If the PR2 were operating in a room with a robotic

bed, the degrees of freedom (e.g., the height of the bed) of the bed could be included in

the robot configuration. We consider robot configurations in sets that can be of cardinality

1 or greater; the robot can complete the entire task by adopting all configurations in the

set in any order. With a good set of configurations, the robot is more likely to be able to

complete the task successfully. We judge the robot’s ability to perform the task from a set

of robot configurations with one measure: if it can reach all goal poses collision-free with

its end effector. Various forms of error, such as modeling error or state estimation error,
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may cause the robot to be unable to perform the task. Because the robot does not know

how the modeling and state estimation error will manifest apriori, from a good set of robot

configurations, the robot should be able to perform the task despite such error.

2.3.2 Nomenclature

c: A task identifier

Nc: The number of goal poses for task c

q: A joint configuration of the robot arm. q ∈ Rn, where n is the number of DoF of

the arm

qi: The value for joint i in joint configuration q, q ∈ q

q−, q+: A list of the minimum and maximum values, respectively, for the joints of a

robot’s arm.

q−i , q
+
i : The minimum and maximum values, respectively, for joint i of a robot’s arm.

r: A set of robot configurations of cardinality ≥ 1, r = {r1, r2, ..., rn}, where

n is the number of robot configurations in set r. We used n ∈ {1, 2} in our

implementation of TOC used in our ev.

r̂∗: The estimated optimal robot configurations given current observations, the output

of the online portion of TOC.

h: The set of uncontrollable parameters, discretized into {h1, h2, h3, ...}

ĥ: The uncontrollable parameters observed and estimated at run-time, the input to

the online portion of TOC.

b: The set of free parameters, discretized into {b1, b2, b3, ...}

x: Set of position and orientation end effector goal poses x ∈ R6. x depends on c,

h, and b, but we omit those for simplicity in writing. x = {x1, x2, ..., xNc}.

sr,x: Set of IK joint configuration solutions to goal x from robot configuration r,

sr,x = {q1, q2, ..., qn}, where n is the number of IK solutions
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a: The order of the robot arm. In our case, 6.

J(q) The Jacobian of the arm in joint configuration q

∆(q): The kinematic isotropy for the arm in joint configuration q

f : A function that takes ĥ as input and outputs r̂∗. TOC generates f offline and

applies it online.

2.3.3 Framework

Figure 2.4 shows the framework of TOC for our implementation described in Section 2.4

for a person on a robotic bed. TOC performs most of its computation offline to approximate

a function that can be used online to select robot configurations for a task. The optimization

takes as input task-relevant models (e.g., task, robot, user, and environment models) and

a sample of the uncontrollable parameters (e.g., the position of the person on the bed),

h. It outputs an optimized robot configuration, r, for that h. The inputs and outputs of

the optimization are used to approximate the function, f that takes as input at run-time

the observed estimated uncontrollable parameters, ĥ and outputs the estimated optimal

configurations, r̂∗.

2.3.4 Task Modeling

Our aim with task modeling is to create a representation that allows TOC to efficiently

evaluate a robot’s ability to perform a task. There are many tasks that consist of manipulation

of small objects or tools around a person’s body, that we expect can be well modeled by a

set of goal poses (Cartesian positions and quaternion orientations) with respect to relevant

reference frames. We manually model each task as a sparse set of poses for the robot’s end

effector. For example, Figure 2.5 shows the eight goal poses with respect to the person’s

head that make up our model of a shaving task. We assume that if the robot can reach

all goal poses, it is likely to be able to perform the task. However, we expect there to be

differences between the models and the real tasks. We consider these discrepancies to be a
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Figure 2.5: The manually selected goal poses for the shaving task. Each arrow represents a
position and orientation, 6-DoF end effector goal pose, with respect to the head. This shows
views from the front and side.

form of modeling error that TOC accounts for when selecting robot configurations.

2.3.5 Environment Modeling

Using its environment model, TOC finds robot configurations that avoid collision and

unwanted interaction with obstacles, such as a bedside table or walls. TOC can use different

resolutions for its environment model depending on the needs of the task. A room could be

be represented simply as a wall behind the bed, as shown in Figure 2.1, or it could contain

models of furniture and other potential obstacles. The resolution of each object model

could range from a block to a detailed mesh. TOC uses three types of objects to model the

environment:

• Fixed objects

• Controllable movable/configurable objects

• Uncontrollable movable/configurable objects

TOC treats fixed objects as static obstacles in the world, to be avoided by the robot. We

add the configuration of the controllable objects to the robot configuration space that TOC
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optimizes. An example of a controllable object is a adjustable bed. For uncontrollable

objects, TOC selects a robot configuration for a sample of the possible configurations of the

objects. For each sample of its configuration, the object is considered static. An example

of an uncontrollable object is a nightstand that is not movable by the robot, but could be

moved somewhere by a person prior to the robot starting the task. Using controllable and

uncontrollable movable objects, TOC can suggest alterations to the environment that may

improve task performance. Uncontrollable movable objects can also be used to generate

robot configurations for possible states of the environment. This may be beneficial for

environments, such as hospitals, where there are a few possible room layouts, but the robot

may not know which layout will be relevant until it reaches the room.

Because TOC does not include a cost in proximity to collision between the robot and

the environment in its objective function, we include a margin of safety in the environment

model by expanding the environment model (we used∼3 cm in our evaluations). This safety

margin reduces the risk of collision in the case of model or state estimation error, without

having to explicitly include closeness to collision in the objective function.

2.3.6 User Modeling

TOC’s user model can be customized for a user to better locate relevant parts of the body,

and to allow more accurate collision-checking. In our evaluation of TOC we used a mesh

model of a human designed around a 50 percentile male from [76], shown in Figure 2.1.

TOC uses three types of parameters for the person’s configuration:

• Environment-driven parameters

• Uncontrollable parameters

• Free parameters

Environment-driven parameters are set according to the state of the environment. For a chair,

the user’s body would be in a seated configuration. For a flat bed, the user’s body would be

23



in a supine configuration. For a bed with an adjustable back rest, the user’s configuration

would depend on the angle of the back rest. Uncontrollable parameters are treated similar

to uncontrollable movable objects. TOC selects a robot configuration for a sample of the

uncontrollable parameter. An example of an uncontrollable parameter is the position of

the user on the bed, if the robot is unable to shift the body on the bed. Free parameters are

used by TOC freely without including it in the robot configuration. An example of a free

parameter used is the user’s neck rotation. Figure 2.2 shows a configuration of the PR2

that takes advantage of the user’s neck rotation to reach all goals for the shaving task in a

wheelchair.

Just as with the environment model, we include a margin of safety in the human model

by expanding the model.

Additional User Customization

TOC can consider additional customizations for the user’s needs or preferences. For example,

a user may prefer certain angles of the bed’s head rest for feeding tasks. This preference can

be represented as limitations or costs on the robot’s configuration space.

2.3.7 Configuration Scoring

Implicitly handling variation and error is a key aspect of TOC, because its heavy computation

is performed offline for models that may differ from reality. TOC uses two metrics that we

have developed to estimate how well the robot will be able to perform the task from a set of

configurations: task-centric reachability (TC-reachability) and task-centric manipulability

(TC-manipulability).

Task-centric Reachability

Task-centric Reachability (TC-reachability), PR, is the percentage of goal poses to which

the robot can find a collision-free IK solution from robot configurations, r, for a task c and
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uncontrollable parameters h, as shown in Equation (2.3).

PR(r, c, h) = (
1

Nc

)
Nc∑
k=1

max
r∈r,b∈b

W (r, xk), (2.3)

where
W (r, xk) = 1 ∀sr,xk 6= ∅,

and

W (r, xk) = 0 ∀sr,xk = ∅.

(2.4)

Recall that x depends on c, h, and b, but we omit those for simplicity in writing and Nc is

the number of goal poses for task c. Note that sr,xk 6= ∅ means that the IK solver can find a

collision-free solution to the goal pose xk from robot configuration, r.

TC-Reachability is related to using an IK solver with collision checking, but with the

additional functionality of evaluating sets of robot configurations.

Task-centric Manipulability

Task-centric Manipulability (TC-manipulability), PM , is related to the average kinematic

dexterity of the arm when reaching the goal poses. It is defined here differently from our

previous works, such as from [24].

TC-manipulability score is based on kinematic isotropy [32], shown in Equation (2.2).

Kinematic isotropy only considers the Jacobian of the arm in a configuration, ignoring

potentially relevant properties of the robot arm, such as joint limits. When at a joint limit,

the arm cannot move in one direction, effectively halving the movement of that joint.

[36] used torque-weighted global isotropy index and torque-weighted kinematic isotropy to

estimate the dexterity of a robotic arm given joint torques and torque limits. [37] investigated

configuration-based weighting functions to create what they call an augmented Jacobian

that they use in manipulability. We have similarly modified kinematic isotropy to consider

joint limits by scaling the manipulator’s Jacobian by an nxn diagonal joint-limit-weighting
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matrix T , defined in Equation 2.5, where n is the number of joints of the manipulator.

T (q, q−, q+) =


t1 0 0

0
. . . 0

0 0 tn

 (2.5)

ti in T is defined as

ti = 1− ηκ

where

κ =
qri − |qri − qi + q−i |

ζqri
+ 1

and

qri =
1

2
(q+i − q−i ).

(2.6)

We set ti = 1 for infinite roll joints. The variable η is a scalar value that determines the

maximum penalty incurred when joint qi approaches q+i or q−i and ζ determines the shape

of the penalty function. We used a value of 0.5 for η and 1
20

for ζ . This weighting function

and the values for η and ζ were selected to halve the value of the kinematic isotropy at joint

limits, have little effect in the center of the joint range, to begin exponentially penalizing

joint values beyond 75% of the range, and to operate as a function of the percentage of the

joint range. Fig. 2.6 shows the value of ti as a function of the joint value as a percentage of

its joint range.

We then define joint-limited-weighted kinematic isotropy (JLWKI) as

JLWKI(q) =
a
√

det(J(q)T (q, q−, q+)J(q)T )

( 1
a
)trace(J(q)T (q, q−, q+)J(q)T )

. (2.7)

We use a function, F , to find the maximum value of JLWKI(q) for robot configuration
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Figure 2.6: A plot of the joint-limit weighting function ranging from maximum joint value
to the minimum joint value.

r and goal pose xk, where

F (r, xk) = max
q∈sr,xk

JLWKI(q) ∀sr,xk 6= ∅,

and

F (r, xk) = 0 ∀sr,xk = ∅.

(2.8)

We finally define TC-manipulability, PM , as

PM(r, c, h) = (
1

Nc

)
Nc∑
k=1

max
r∈r,b∈b

F (r, xk). (2.9)

2.3.8 Optimization

TOC’s optimization takes as input task-relevant models for task, c, and a sample of the un-

controllable parameters, h. It outputs an optimized set of robot configurations, r. TOC runs

this optimization for samples of the uncontrollable parameters for each task. TOC searches

the robot configuration space to maximize its objective function, a linear combination of

TC-Reachability and TC-Manipulability, shown in Equation 2.10.

arg max
ri

αPR(ri, hi, c) + βPM(ri, hi, c) (2.10)
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Both TC-reachability and TC-manipulability range from 0 to 1, allowing them to be

directly compared in the optimization. We selected a value of 1 for α. We chose to define β

as

β(r) = (0.1)(0.95)n−1 (2.11)

where n is the cardinality of r. In our implementation of TOC the cardinality of r was 1

or 2. These definitions of α and β emphasize the importance of reaching goals over being

able to reach around goals, and includes a small penalty in the objective function’s value

for using more configurations. There are often many configurations that can reach all goals.

TC-manipulability is used to differentiate between these configurations. As an example,

we compare TOC to a standard method from literature: using an IK solver with a collision

checker to find a robot configuration that can reach all goals. Figure 2.3 shows the difference

in scoring between using the existence of IK solutions for scoring and using TOC for scoring

for a task for a user in bed. Figure 2.3 (left) shows that many poses of the robot’s base have

the same score, each having collision-free IK solutions to all goals. Figure 2.3 (right) shows

scoring using TOC, where TC-manipulability allows additional differentiation between

robot base poses that can reach all goals. Higher TC-manipulability is correlated with mean

accuracy (percentage of goals that are reachable), as we show in Section 2.4.4.

Search Method

The space of the objective function can be highly nonlinear and challenging to search.

There are several derivative-free, simulation-based optimization methods that could be

applied to this problem. A simple method would be to uniformly sample the space and

select the configuration with highest objective function value. However, we found that

uniform sampling had difficulty finding good configurations for tasks where the solution

space was small. [77] used Covariance Matrix Adaptation Evolution Strategy (CMA-ES) to

design a controller for articulated bodies moving in a hydrodynamic environment, which

inspired our use of CMA-ES (from https://pypi.python.org/pypi/cma) for
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our optimization. We used a heuristic when both PR and PM are zero that pushes the search

toward configurations that may have non-zero PR and PM . All values of the heuristic are

less than 0.

2.3.9 Approximate Function

Offline, TOC approximates a function that takes as input an estimation of the uncontrollable

parameters, ĥ, such as the location of the person on the bed, and outputs the estimated

optimal robot configurations, r̂∗. At run-time, TOC applies this function to the observed,

estimated uncontrollable parameters. We used K-nearest neighbor (K-NN) with K = 1

(hence, 1-NN) as the function, f . We trained the 1-NN algorithm with a set of (h, r) pairs

and it returns as r̂∗ the r for the h that is closest to ĥ. In our implementations of TOC we

trained the 1-NN on fewer than 20 (h, r) pairs for each task and found that the 1-NN would

return r̂∗ in less than 1 second.

2.4 Evaluation

2.4.1 Implementation

We manually created models for 9 assistive tasks: shaving, feeding, wiping the mouth,

cleaning both arms, cleaning both legs, and scratching the left/right upper arm, and left/right

knee (each scratching task was considered separately). Previous work has noted that these

types of tasks may be useful for those with severe motor impairments [15]. As described in

Section 2.3.4, task models consisted of a set of goal poses, each of which was a position and

orientation goal for the robot’s end effector. We defined each goal pose with respect to a

relevant reference frame (e.g., the head for shaving, or the shoulder for scratching the upper

arm), so they move appropriately as the model parameters change (e.g., the height of the

bed). We chose these tasks as representative of various activities for which a robot like the

PR2 may be able to provide assistance to a user with motor impairments.

For example, Figure 2.5 shows the eight goal poses with respect to the person’s head that
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Figure 2.7: Visualization of the robot configurations selected by TOC for each task. Two
images are used when TOC selected two configurations for a task task. The images show
for the robotic bed environment: (a) cleaning arms config #1 (b) cleaning arms config #2
(c) scratching left upper arm (d) scratching right upper arm (e) cleaning legs (f) wiping
mouth (g) shaving config #1 (h) shaving config #2 (i) scratching left knee (j) scratching
right knee (k) feeding. The images show for the wheelchair environment: (l) arm cleaning
config #1 (m) arm bed config #2 (n) scratching left upper arm (o) scratching right upper arm
(p) wiping mouth (q) shaving (r) scratching left knee (s) scratching right knee (t) feeding.

we selected to model the shaving task. For simplicity, we limited tasks to one-handed tasks

and used only the robot’s left arm in our evaluations. In our implementation we allowed

TOC to search for sets of robot configurations of cardinality 1 or 2. When exploring multiple

robot configurations for a task, we assume the robot can move from one configuration to

another.
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We ran all simulations in OpenRAVE (http://www.openrave.org/ from [53]),

for which we created environment models with a PR2 robot and a model of an average male

human placed either in a wheelchair or in a robotic bed. The human model dimensions come

from [76]. The PR2 is a mobile manipulator made by Willow Garage with two 7-DoF arms.

The models we created for the robotic bed and the wheelchair match Autobed, a modified

Invacare 5401IVC full electric hospital bed [74] and a Sunrise Medical Quickie 2 wheelchair

with overlap table, respectively. The casters on the bed and wheelchair are represented by

swept volumes. For the wheelchair, we removed the part of the casters’ swept volumes that

extends to the sides of the chair to increase free space around the chair. We assume that the

user would ensure that the casters are not pointing out from the chair.

Figure 2.7 shows the configurations selected by our implementation of TOC for each

task, given the observation, ĥ, that the person was positioned in the center of the bed or

wheelchair.

The robotic bed environment has the bed in front of a wall, to emulate how beds are often

positioned in rooms. The robotic bed can raise up to 25 cm and can increase the angle of its

head rest up to 75◦. For the wheelchair environment we gave the human the ability to rotate

its neck up to 45◦ in either direction about the Z-axis. Figure 2.2 shows the neck rotated 45◦.

These two environments (robotic bed and wheelchair) were selected to demonstrate many

of the functionalities of the TOC framework. The robotic bed environment demonstrates

how TOC can select configurations for multiple robots in the environment, how TOC can

handle controllable and uncontrollable parameters of the environment, and how it handles

uncontrollable and environment-driven parameters of the user. TOC treats additional robots

the same as controllable objects, adding their parameters to the robot configuration, as it

does with the robotic bed’s parameters. TOC considers the position of the person on the

bed as an uncontrollable parameter and considers the other parameters of the user (the

configuration of the person’s joints) as environment-driven parameters. The wheelchair

environment demonstrates how TOC can make use of free parameters in the user model.
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Figure 2.8: Comparison of performance between TOC and three baseline methods averaged
over 200 Monte-Carlo simulations of state estimation error for tasks in the robotic bed
environment. Bold numbers have statistically significant (p < 0.01) difference from the
TOC result in a Wilcoxon Rank-Sum test. Error bars show one standard deviation. TOC
chose to use a single configuration for all tasks other than the shaving and cleaning arms
tasks in this environment. Baseline methods could only select a single configuration.

TOC considers the rotation of the person’s neck as a free parameter.

2.4.2 Evaluation Against Baselines

We compared the performance of TOC against three baseline methods in Monte Carlo

simulations of Gaussian error introduced in the person’s position (e.g., translating around on

the bed while the bed remains stationary) and in the robot’s base pose (e.g., translating and

rotating the robot from the selected robot configuration). Each method estimated an optimal

set of robot configurations, r̂∗, given the observation, ĥ, that the person was positioned

in the center of the bed or wheelchair. Because the goals are sparse and represent a more

complicated task, we considered a trial successful if, from the robot configurations selected

by the method, the PR2 could reach all goal poses despite the error introduced in the Monte

Carlo simulation. Otherwise, the trial was a failure. We performed this evaluation for all

9 modeled tasks in both environments except the cleaning legs tasks for the wheelchair
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Figure 2.9: Comparison of performance between TOC and three baseline methods averaged
over 200 Monte-Carlo simulations of state estimation error for tasks in the wheelchair
environment. Bold numbers have statistically significant (p < 0.01) difference from the
TOC result in a Wilcoxon Rank-Sum test. Error bars show one standard deviation. TOC
chose to use a single configuration for all tasks other than the cleaning arms task in this
environment. Baseline methods could only select a single configuration.

environment because the overlap table blocks access to the thighs, preventing successful

performance of the task.

All introduced error was normally distributed around 0. For the robotic bed environment,

the standard deviation for the human’s pose was 2.5 cm translation in the global X direction

and 5.0 cm translation in the global Y direction. Rotations of the human in bed were not

considered because small rotations about the head results in large movements of the legs.

For the wheelchair environment, the standard deviation for the human’s pose was 2.5 cm

translation in the global X direction, 5.0 cm translation in the global Y direction, and 5◦

rotation about the human head’s Z axis. The standard deviation for the PR2’s position was

1.0 cm in the global X and Y directions and 5◦ rotation about the robot’s Z axis. We selected

these error distributions from typical error in human pose estimation and PR2 servoing in

our previous work [75]. As described in Sections 2.3.5 and 2.3.6, models used for selecting
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configurations had a small safety margin of ∼3 cm. Models used for testing had no safety

margin.

For fair comparison, all methods in this evaluation were given matching seeds for

their optimization via CMA-ES as well as for their error in Monte-Carlo simulation. For

the CMA-ES optimization, all methods were given a population size of 40, a maximum

number of iterations of 1000, and the opportunity to restart with double the population if the

optimization ran out of iterations before converging within some tolerance. All methods

also had the same heuristics for driving the search towards configurations that may have

collision-free IK solutions. We assigned appropriate bounds on parameters based on the

environment (e.g., slightly beyond reach of the bed). We initialized the parameters to aid

coverage in the search, giving two initial locations, one position on one side of the bed or

wheelchair and one on the other side. Baseline methods were allowed two searches, one for

each initialization, and selected the single best configuration. TOC jointly optimized its two

configurations from their respective initialization locations. Thus, all methods were given

the comparable initializations and bounds.

Baselines

We implemented three baselines from literature to compare against TOC, one based on IK

and two based on the robot capability map. An overview of these and other related methods

from literature can be found in Section 2.2. These methods selected a single configuration

for both the PR2 and the robotic bed and made use of the human’s free parameter (neck

rotation) in the wheelchair environment.

Inverse-Kinematics (IK) Solver-based Baseline IK solver-based methods to select a

robot base pose for a task are common in literature. The method we implemented uses

CMA-ES to search for a robot configuration where the robot has a collision-free IK solution

to all goal end effector poses. We used the ikfast module within the OpenRAVE simulation

34



Figure 2.10: Visualization of the robustness of TOC’s selected configurations for the shaving
task in the robotic bed. (Top) Percentage of goals reached from the first, second, and both
configurations for error in 1cm increments in the x-y position of the person. (bottom) The
first and second configurations of the PR2, and the two configurations combined on the right.
Color is necessary to interpret this figure. The blue region represents when all goals can be
reached.

environment to determine if a collision-free IK solution existed for each robot configuration.

Capability Map-based Baselines Various methods from literature use the capability map

[26]. We implemented two baseline methods roughly based on [49]. For these methods we

first created a capability map using OpenRAVE’s kinematic reachability module. To create

the capability map, the module discretized 3D space around the robot’s arm into 3D points

and discretized the range of possible orientations around each 3D point. The capability

score (also known as reachability score) for each point is the percentage of orientations

for which the robot has a valid IK solution. These scores are calculated offline and saved.

These two methods use CMA-ES to search for a robot configuration that maximizes the

average capability score for all goal poses. The score of a goal pose is the score of the
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Figure 2.11: Visualization of the robustness of TOC’s selected configurations for the arm
cleaning task in the robotic bed. (Top) Percentage of goals reached from the first, second, and
both configurations for error in 1cm increments in the x-y position of the person. (bottom)
The first and second configurations of the PR2, and the two configurations combined on the
right. Color is necessary to interpret this figure. The blue region represents when all goals
can be reached.

closest 3D point from the capability map. The first capability map-based baseline considered

capability scores without regard to the environment. The second gave goal poses a 0 score if

a collision-free IK solution could not be found to that pose in the environment.

Results

The results for each task for the robotic bed and wheelchair are shown in Figures 2.8 and 2.9,

respectively. TOC’s average success rate was higher than or comparable to baseline methods

in all tasks. Statistically significant difference from the TOC result (p < 0.01 in a Wilcoxon

Rank-Sum test) is indicated in the figures with bold numbers.

TOC had an overall average success rate of 90.6%, compared to 50.4% for IK, 43.5%

for capability map, and 58.9% for capability map with collision checking. The overall
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Figure 2.12: Visualization of the robustness of TOC’s selected configurations for the arm
cleaning task in the wheelchair. (Top) Percentage of goals reached from the first, second, and
both configurations for error in 1cm increments in the x-y position of the person. (bottom)
The first and second configurations of the PR2, and the two configurations combined on the
right. Color is necessary to interpret this figure. The blue region represents when all goals
can be reached.

differences between baseline results and TOC are statistically significant (p < 0.01) in a

Wilcoxon Rank-Sum test. TOC chose to use a single configuration for all tasks other than

the shaving and cleaning arms tasks in this environment in the bed environment and it used

a single configuration for all but the cleaning arms task in the wheelchair environment.

TOC achieved higher average success rates both for tasks for which it used one and two

configurations. This result suggests that benefit from TOC comes from more than just from

using 2 configurations over one. For tasks that require more than one robot configuration,

baseline methods failed; they could only select a single configuration. TOC jointly optimizes

2 configurations, allowing it to succeed in these challenging tasks.

37



2.4.3 Quantifying Robustness

In Figures 2.10, 2.11 and 2.12 We visualize the robustness of robot configurations selected

by TOC for the shaving and cleaning arms tasks in the two environments. These figures

show the percentage of goal poses that have collision-free IK solutions (indicated by the

color) for varying error in the person’s position on the bed or wheelchair (the X-Y axes).

Notable in these figures is the success region in blue, where all goals are reachable, as

well as how the two configurations combine to reach all goals. For pose estimation error

in the success region, the PR2 would still be able to successfully perform the task. TOC

opted to use two configurations for each of the tasks shown. The success region is large and

surrounds the origin for shaving and cleaning arms in bed, which is why 100% of the trials

were successful for these tasks in Figure 2.8. The success region is less centered around the

origin for the cleaning arms task in the wheelchair, hence its lower percentage of successful

trials in Figure 2.9. The Monte Carlo simulations randomly sampled in these, as well as

other, degrees of freedom and sampling outside the success region results in a failed trial.

These figures suggests that the task may be easier for the robot to perform for a person in

bed. Closer observation of the task shows that, because the wheelchair is tall, the goals

poses for the cleaning arms task are vertically higher in the PR2’s workspace and the arm

have relatively low JLWKI when reaching those goals.

2.4.4 Evaluation of TOC Objective Function

TOC searches for a set of robot configurations that maximizes its objective function, which

we will call its score for simplicity. The assumption therein is that higher values of the

score are correlated with better robot configurations, that are more robust to error. To test

this assumption, we evaluated the relationship between the TOC score and the accuracy

(the percentage of goals that are reachable) for robot configurations in the same evaluation

described in Section 2.4.2. Note that we chose to compare against accuracy in this evaluation

because it can convey more information than success, which is binary. A similar correlation
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Figure 2.13: Increasing TOC score is correlated to accuracy and inversely correlated to
variance in accuracy. TOC score above 1.0 means a collision-free IK solution exists to all
goals. The amount above 1.0 is the weighted TC-manipulability score for the configuration.

can be seen for success. For the wiping mouth task in the robotic bed, we sampled robot

configurations with TC-reachability of 1 (i.e., all goal poses have collision-free IK solutions)

and compared their mean and variance in accuracy over 200 Monte Carlo simulations

with their TOC score. Figure 2.13 shows the results of the analysis. Higher TOC score is

correlated with accuracy and inversely correlated with variance in accuracy.

2.5 Discussion

We have shown results with a single type and source of error. However, we expect TOC

to be able to deal with many types and sources of error. If we knew all sources of error

apriori, we could explicitly model them, to improve selection of robot configurations. Such a

method would be similar to those from [56] and [57], described in Section 2.2.2. It should be

noted, however, that movement of the person (e.g., pose estimation error) does not directly

translate into motion of the robot’s base, so directly using these evaluations as part of a

method to select the robot’s configuration can be difficult. Our results provide evidence that

TOC can often select robot configurations that are more robust to error in the person’s pose
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than baseline methods. This is seen in many of the tasks and environments we examined,

but is most pronounced in more challenging tasks that may need more than a single robot

configuration to complete.

We observed that baseline methods work well for many tasks and they selected config-

urations, on average, faster than TOC. For its offline computations, TOC took on average

70 minutes for each task running in a single thread on a a 64-bit, 14.04 Ubuntu operating

system with 8 GB of RAM and a 3.40 GHz Intel Core i7-3770 CPU. The IK solver baseline

we implemented runs faster, on average 6 minutes and often less than 1 minute for each task.

These results suggest that this baseline may work well for many tasks that only require a

single robot configuration and where there is little error between model and reality. The

capability map with collision detection also performed well on many tasks and took on

average 34 minutes to select a configuration. Note that this is the time to run these algorithms

either offline within our framework or online. As in assistive robotics, in many robotics

applications the speed of online selection is important and 6 minutes, 34 minutes, and 70

minutes are all too long for a user to wait for a robot to decide where to move. Additionally,

there may be specifically important or common tasks that take place in environments that

are known beforehand. In this case, it can be valuable to take additional time offline to find

solutions, using our framework, to take advantage of prior knowledge and speed up the

responsiveness of the online process.

We sought to handle fairly the comparison between TOC and baseline methods by using

the same sampling for each. However, because of the nature of the search problem, using

other search methods, additional heuristics, or other meta-parameters for the search (e.g.,

different population size) may find better configurations than those found in our evaluations.

We observed a trade-off when selecting robot configurations. In general, moving the

PR2 closer tends to improve the arm’s dexterity, but tends to make collisions more likely.

An assumption in this work is that contact is bad and should be avoided. However, [78]

found that contact can be both beneficial and acceptable during robotic assistance. Allowing
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contact can increase the space of reachable poses, and there are methods for controlling

contact safely [79].

2.5.1 Design Application

TOC may also be used to assist in the design of environments. For example, in our

evaluations with the robotic bed, TOC selected a configuration for the bed by including the

bed’s DoF in the robot configuration. TOC could similarly optimize many other continuous

controllable parameters of the environment. Comparison of TOC scores between a robotic

bed and a standard, static bed may demonstrate the value added by a robotic bed. By

recognizing that for some tasks a lower bed height improves performance and for other tasks

a higher bed height improves performance, we may recognize that an adjustable bed may be

preferable to allow the bed to reconfigure to the desired height for each task. As detailed

in Section 2.3.5, TOC can be used to assist in design for parameters with discrete choices

by including it as an uncontrollable parameter in the optimization. In this way, you might

decide to put the bed against the wall, 0.5 m away from the wall, or 1 m away from the wall.

For example, we have found that for the shaving task, if there is sufficient space behind

the bed, the PR2 can perform the task from a single configuration instead of requiring two

configurations. Figure 2.14 shows the configuration found by TOC for shaving in the robotic

bed without a wall and visualizes the robustness to error in the pose of the person.

2.5.2 Limitations

There are some limitations to our work with TOC and our evaluation. Although the

framework of TOC allows it to search for sets of robot configurations of cardinality larger

than 2, we limited it to two in our evaluation. We made this choice because we found that

more than two robot configurations were not needed for any of the tasks examined.

We hand designed the task models for our evaluation in simulation, but have not inves-

tigated how well the task models actually represent the tasks. In addition, all tasks in this
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Figure 2.14: The PR2 can perform the shaving task on the person in bed from a single
location if there is no wall behind the bed. (Left) the configuration TOC selected (right) a
visualization of the robustness to error in the person’s pose on the bed for this configuration.

work were defined with full 6-DoF goal poses, although some tasks, such as sponge baths,

have position requirements and few orientation requirements. We also did not address tasks

with complex motions in which the trajectory between goals poses is important, such as

dressing, or tasks with high strength requirements, such as lifting or ambulating.

Joint-limit-weighted kinematic isotropy, the foundation of our TC-manipulabilty score,

does not account for environmental constraints. There may be value in preferring joint

configurations away from obstacles. We have mitigated the risk of collisions using a safety

margin on the environment and user models at the cost of decreasing the valid search

space and eliminating valid solutions. Explicitly penalizing proximity to collisions in

the objective function, as was done by [37], may be another way to mitigate this issue

at the cost of additional computation time. TOC also does not determine if there are

valid paths to reach collision-free IK solutions, which may be problematic when there are

environmental constraints. A motion planner could be used to check for valid paths at the

cost of computation time. Although computation time is often a less critical concern for

offline processes, it must remain reasonable. We elected to ignore proximity to collisions

and the question of the existence of valid paths to achieve lower computation time.
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2.6 Conclusion

In this chapter, we have presented task-centric optimization of robot configurations (TOC), a

method to select one or more configurations for robots to assist with tasks around a person’s

body. TOC uses TC-reachability and TC-manipulability, metrics that we have developed, to

represent the robot’s dexterity, and implicitly handle error. TOC is particularly suitable for

assistive tasks, where there are a set of desired tasks known apriori that can be modeled as a

set of end effector poses with respect to relevant reference frames. We have shown that TOC

can determine a set of one or two robot configurations from which the robot can perform

a task well. TOC performs the bulk of its computation offline using models of the task,

robot, environment, and person to generate a function that rapidly (≤ 1 second) estimates

the optimal set of robot configurations for a task given observations at runtime. We provide

evidence that configurations selected by TOC are robust to state estimation errors between

the models used offline and observations at runtime. We created 9 models of assistive tasks

to test our system in simulation and showed that for each task TOC’s average success rate

was higher than or comparable to three baseline algorithms from literature. TOC had an

overall average success rate of 90.6% compared to 50.4%, 43.5%, and 58.9% for baseline

methods.
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CHAPTER 3

A SYSTEM FOR BEDSIDE ASSISTANCE THAT INTEGRATES A ROBOTIC

BED AND A MOBILE MANIPULATOR

3.1 Introduction

Illnesses, injuries, long-term disabilities, and other situations can result in people receiving

physical assistance while in bed. For example, patients in hospitals and people with severe

disabilities living at home may spend substantial time in bed. Some robotic systems exist,

often using fixed-base manipulators (a robot arm in a fixed location) that can provide

assistance to a user in bed [11], but this setting comes with challenges. The width of the bed

can make it difficult for a manipulator (a robotic arm) to reach task-relevant locations around

the human body. Moreover, people who spend substantial time in bed often use overbed

tables and other nearby furniture that can interfere with perception and manipulation. A

mobile manipulator (a robot with at least one manipulator arm and a mobile base) can

mitigate some difficulties by allowing the robot to move around to access different areas

around the body, but it increases complexity. In our previous work, using a teleoperated

system with a mobile manipulator without autonomous functions, Grice et al. [73] observed

that a significant amount of the time spent on each task was dedicated to moving the mobile

robot into an appropriate position and moving the robot’s gripper near the task area. A

robotic bed could collaborate to help the mobile manipulator with providing assistance, but

it further increases the degrees of freedom of the combined system. Finding a good pose for

the base of the mobile robot and a configuration for the robotic bed can be challenging due

to complex geometry of the bed and robot, a large number of degrees of freedom (DoF),

task complexity and other factors, as discussed in our previous work [23].

In this chapter, we present a robotic system to provide physical assistance to a person
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in bed, which extends our prior work [75, 25, 73]. The system consists of a robotic bed

and a mobile manipulator, specifically a PR2 robot, that collaborate to assist with tasks

around the user’s body. To manage the system’s complexity for common assistive tasks,

our system provides autonomous functions with a coarse-to-fine approach. The system

autonomously completes the “coarse” parts of the task, such as moving the mobile robot’s

base to the appropriate place and configuring the robotic bed, and then gives control back to

the user for “fine” execution, the detailed performance of the task. In our previous work,

using a teleoperated system without autonomous functions, Grice et al. [73] observed that a

significant amount of the time spent on each task was dedicated to moving the mobile robot

into an appropriate position and moving the robot’s gripper near the task area. This “coarse”

setup can be challenging for a user, and we can reduce the user’s overall workload by having

it performed autonomously. The detailed performance of the task can be challenging to

perform autonomously; for example, in a scratching task, the precise location of an itch can

be difficult for the robot to find autonomously. The system makes use of the user’s cognitive

capabilities in providing fine control.

When a user commands the system to assist with a task, the system creates and executes

a plan. The plan typically begins with the mobile robot finding the relative location of

the bed. Then the robotic bed estimates the position of the user’s body using a pressure

sensing mat and reconfigures itself to position the person’s body for the task. The mobile

manipulator moves to a position with respect to the person’s body from which it can reach

task-relevant areas. Then, the manipulator reaches out autonomously to the task area if it

can do so easily and safely. At this point the autonomous function ends and the user takes

control of the robot via a web-based interface.

With this system, we introduce and investigate the potential for a robotic bed to col-

laborate with a mobile manipulator in order to provide more effective assistance to people

in bed. Dental hygienists, barbers, and other professionals who perform tasks around the

human body sometimes position peoples’ bodies using adjustable furniture. By doing so,
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Figure 3.1: The system in use in a person’s home. Henry Evans, a person with severe
quadriplegia, used our system in his own home to wipe yogurt from his mouth, visible as
white dots on his face.

the professional can improve ergonomics and the quality of the services they perform. The

two robots in our system coordinate in an analogous manner. We demonstrate that a robotic

bed and a mobile manipulator have complementary physical and perceptual capabilities.

The robotic bed can move the human body using a small number of degrees of freedom

into positions that are more reachable or relevant to the task, such as sitting the person

up to eat food. It can also help the mobile manipulator reach the human body by raising

itself above the ground so that the mobile manipulator’s base can go under it or give the

manipulator better access to the person. Our mobile manipulator can dexterously manipulate

a lightweight payload using a large number of degrees of freedom. The robotic bed can also

perceive the human body via a pressure sensing mat, while the mobile manipulator would

typically perceive the person using on-board line-of-sight sensors that can be obstructed by
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bedding and other objects around a bed, such as an overbed table or IV lines.

We performed three evaluations of our system. We conducted this research with approval

from the Georgia Institute of Technology Institutional Review Board (IRB), and obtained

written informed consent from all participants. First, we conducted a study with 8 able-

bodied participants to evaluate the ability of our robotic bed to estimate the position of the

human body on the bed. We observed in our second and third evaluations that the position

estimation error in the direction of the width of the bed, 5.00 cm ± 2.54 cm (mean ± std), is

sufficiently small for our system to still succeed in tasks without the user moving the mobile

manipulator’s base or the bed’s configuration from that attained autonomously. In our second

evaluation, we used a medical mannequin to evaluate the extent to which the collaboration

between the robotic bed and the mobile manipulator improved performance. We found that

the each of the complementary capabilities of the robotic bed improve the system’s ability

to successfully reach task-relevant poses. In our third evaluation, we tested the system

with Henry Evans, a person with severe quadriplegia, in his home in California, USA (see

Fig 3.1). We personalized the system for him by creating models of his bedroom, his body,

and the accessible user interface he uses with his laptop computer. Henry successfully

performed 3 tasks 5 times each in a formal evaluation. Henry’s feedback on the system was

positive, including the statement “It works well and is very easy.”

3.2 Related Work

3.2.1 Assistive Mobile Manipulation

Researchers have long explored the idea of assistive robots, especially for people with

motor impairments [80, 81, 82, 83]. Some researchers have investigated the use of mobile

manipulators as assistive devices, such as in [68, 69, 71, 72, 16]. Recently, several studies

have introduced general-purpose mobile manipulators for various assistive robotic tasks,

including shaving, picking-and-placing, and guiding tasks [15, 16, 84, 70, 85, 86]. However,

we are unaware of other research that has investigated the potential for a mobile manipulator
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to collaborate with a robotic bed while providing assistance.

3.2.2 Selecting Robot Configurations for Mobile Manipulation

Much prior research has investigated how to find good configurations for a mobile robot. A

common method is to address the problem using inverse-kinematics (IK) solvers [38, 39,

40, 41]. IK solvers typically use kinematics equations and analytical or numerical methods

to find a set of joint angles for a robot arm that result in the robot’s end effector being

in a desired pose. Often, sampling-based methods are used to find robot base poses that

have valid IK solutions, often as part of motion planning [44, 45, 46, 48]. Much work is

based on the capability map presented by Zacharias et al.[26]. To create the capability map

they discretize space around the robot into 3D points and discretize the range of possible

orientations around each 3D point. The capability map is the scoring of discretized 3D

points using the percentage of discretized orientations around each point for which the

robot has a valid IK solution. If a goal pose is located at the 3D location, the capability

score is similar to the probability that the robot can achieve the pose. Capability maps are

task generic and robot specific, facilitating applications of the robot to new tasks. Methods

using capability maps typically select the robot base position by overlapping the capability

map with end effector goal poses and maximizing the average capability score [49, 50, 51].

In this work, we use task-centric optimization of robot configurations (TOC), a method

from [25] to select one or two robot configurations for the mobile manipulator and bed

to perform each task. A robot configuration is the position and orientation of the robot’s

mobile base, the z-axis spine height of the mobile robot, and the degrees of freedom of the

bed. TOC, unlike capability maps, is task specific, robot specific, and user specific. These

properties allow our system to be customized to a specific user and environment. Other

methods to select configurations for robots include using data-driven simulation [56, 57]

and inverse-reachability maps [53, 54, 55]. These data-driven simulation-based methods

explicitly model error and fully simulate task performance, but they have only been used
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to select a few degrees of freedom in static environments and can only select a single

robot configuration for a task. Inverse-reachability-based methods are typically used in

task-agnostic and robot-specific ways to facilitate applications of the robot to new tasks.

Notably, these methods only find a single base pose for a robot for a given task. In contrast,

TOC is designed specifically for assistive robotics. TOC explicitly models features and

parameters of the environment, user, and task, that may be important to task performance.

TOC implicitly handles error and can be used to select more one or two configurations

consisting of more degrees of freedom.

3.2.3 Collaborative Robots

Many investigations have explored multi-robot, collaborative systems [87, 88], including

heterogeneous multi-robot systems [89, 90]. Some surgical robots feature collaboration

between heterogeneous robots, such as robotic surgical arms and a robotic surgical table [91,

92]. Our approach is similar, applying the idea of heterogeneous multi-robot collaboration

to the field of assistive robotics.

3.2.4 Robotic Beds for Physical Assistance

Several groups have developed robotic beds that assist with or prompt a user to roll over

using rollers or actuators parallel to the longitudinal axes of the body [93, 94]. Others have

constructed novel robotic beds with greater control of the position of the body [95, 96]. In

this work, we have used Autobed [74], a modified hospital bed, as an agent in a collaborative

heterogeneous multi-robot system.

3.2.5 Body Pose Estimation from Bed Sensors

A challenge in providing assistance with ADLs for a person in bed lies in perceiving

the position and orientation of various body parts, which are often occluded by bedding.

Researchers have fit 3D models to the output of pressure-sensing arrays to estimate the
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pose of a person lying on a mattress [97, 98]. Liu et al. used pictorial structures to identify

the locations of body parts of a person lying on a pressure-sensing array [99]. The current

version of our system uses a simplified body model in a fixed orientation, a fixed distance

from the back of the bed, and a manually selected posture. It positions the model across the

width of the bed using the center of mass of the pressure image.

3.2.6 Our Previous Work

We previously described elements of our system in two workshop papers [75, 73]. Our

current system differs substantially and incorporates improvements to the web-based inter-

face designed for operators with motor impairments, a planning domain definition language

(PDDL) framework for assistive-task planning, modeling of the user’s physical capabilities,

a new body position estimation method, and user customization (including modeling the

user’s body size and his or her human-computer interface). We also conducted completely

new evaluations based on [75], and for the first time have evaluated our system with a person

with disabilities.

3.3 System Description

As illustrated in Fig 3.2, our system integrates a number of components. It uses the

collaboration between two robots, a PR2 and Autobed, and a human user, leveraging

the strengths of each. We focus particularly on the cognitive, physical, and perceptual

collaboration between the three.

With respect to cognitive collaboration, the system leverages the user’s cognitive ca-

pabilities to provide high-level direction and oversight during the autonomous setup for

the task. The PR2 generates and executes a sound high-level task plan, and identifies a

good configuration of the PR2 and bed (and therefore user) for completing the task. The

user also provides control input for the fine control to perform the task, which may be

difficult to complete autonomously. Although the entire task could be performed through
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Figure 3.2: System architecture. Shows contributions of each component.

teleoperation, some aspects may be challenging. For example, Hawkins et al. observed

that some assistive tasks require that a mobile manipulator use multiple base positions, and

that manually choosing positions for some tasks can be difficult [16]. Grice et al. observed

that a significant amount of the time spent on each task was spent moving the mobile robot

into an appropriate position and moving the robot’s gripper near the task area [73] . These

autonomous functions allow the user to offload parts of the task, only requiring the user

to oversee correct operation, thus reducing cognitive load. The goal of the autonomous

functions are to configure the robots such that the task can performed with manually moving

Autobed or the PR2 base.

With regard to physical collaboration, Autobed has few degrees of freedom and an

immobile base, but it has a high payload capacity, allowing it to position itself and the body

of the user. The PR2 has a mobile base, high dexterity, and many degrees of freedom, but

a low payload capacity. This allows the PR2 to bring lightweight, task-appropriate tools

to the necessary locations around the user. Although the human user’s motor impairments
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Figure 3.3: The web-based user interface. This interface enables low-level teleoperation
by the user as well as the selection of autonomous planned tasks, with optional parameters,
selected from a drop-down menu.

may limit certain motions, they may have high dexterity within those limits, allowing them

to perform the subtle motions necessary for task performance once the bed and PR2 have

appropriately positioned a tool.

With respect to perceptual collaboration, Autobed’s joint encoders and pressure-sensing

mat estimate the position and configuration of the bed and the human on the bed. The PR2’s

head-mounted Kinect v2 RGB-D camera visually locates Autobed via an AR Tag. The

user supplements their own senses with views provided by the PR2’s Kinect through the

web-based interface shown in Fig 3.3 and described in [73], which allows for low-level

teleoperation or directing autonomous execution of planned tasks.

3.3.1 Autobed

Based on a commercial actuated hospital bed (Invacare Full-Electric Homecare Bed, product

ID: 5410IVC), we have developed the robotic bed, Autobed, extending from previous work

[74]. The bed has 3 degrees of freedom: it can adjust its height, the angle of its head est, and

the angle of the leg rest. In our autonomous functions we did not consider the leg rest for

52



simplicity. By adding additional hardware between the remote control and the bed’s motor

drivers, we are able to send commands directly to the bed using a Robot Operating System

(ROS) interface. We use a Raspberry Pi single-board computer to interface with the bed

actuators and we run the other Autobed functions on an adjacent computer.

Autobed Control

Autobed uses accelerometers to measure the angle of the bed’s head rest with respect to

gravity. We mounted a Hokuyo laser scanner to the underside of Autobed, pointing towards

the floor to measure the height of the bed. Autobed fits a line to the scanner’s measurements

using RANSAC to produce a height estimate height robust to some obstructions (e.g., a

foot). Autobed’s actuators are capable of changing the height of the bed, the angle of the

head rest, and the angle of the leg rest when a human is lying on the mattress. Autobed runs

a simple on-off controller with a deadband to reach commanded configurations.

Human Pose Estimation

We have equipped Autobed with a pressure-sensing mat, manufactured by Boditrak (http:

//www.boditrak.com/ Model # BT3510), to measure the pressure distribution of the

person lying on the bed. We placed the pressure-sensing mat on the top side of the mattress

and below a fitted sheet. The pressure-sensing mat returns a pressure value for each of its

1728 tactile pixels (taxels) at 5Hz. Autobed sums the pressure values to estimate the total

weight on the pressure-sensing mat. When this estimate exceeds a threshold (we used ∼20

kg), it reports that the bed is occupied.

Autobed uses a center of mass estimator from scikit-image (http://scikit-image.

org/) to estimate the position of the body on the pressure-sensing mat. The center of mass

is used to position a human model on the bed in the direction of the width of the bed (Y-axis)

and assumes the head’s position near the top of the bed. The system assumes the human

is lying on the bed parallel to the long edge of the bed (X-axis), with arms at its sides. We
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Figure 3.4: The customized model of Henry’s bedroom used by the system. This is the
simulation environment used by TOC, our system’s configuration selection method. As an
example of the customization, Henry’s vision requirement for use of his laptop is modeled
as rays from the laptop screen to the eyes of the human model.

constructed this rough model of a human from geometric primitives in the Unified Robot

Description Format (URDF) file format, which allows the system to be easily customizable

by scaling the model from a 50 percentile male to users using Xacro. Xacro stands for XML

Macros, a language with which URDF files can be generated from macro’ed properties.

Fig 3.4 shows the simulation environment with an example bed and human configuration.

Coordinate frames associated with the model’s body parts (e.g., knees, feet) are included in

the model, although those parts are not visibly distinguishable.

This method differs from that used previously in [75], because we found that at higher

angles of the bed’s head rest, the head is not easily visible on the pressure-sensing mat. At

high angles, the weight of the head is mostly downward, with relatively little weight on the

back rest. On average, the human pose estimation algorithm takes < 1 milliseconds to run

on an external machine (Intel Core i7-3770, 3.40GHz). Fig 3.5 shows the estimated head

position for a person lying on Autobed.
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Figure 3.5: Autobed and the estimated pose of a person in bed. Left: View of a participant
wearing various infrared reflective markers lying on Autobed. Right: Visualization of the
pressure-sensing mat measurements from the participant with the estimated head position
marked by a star inside a circle. The position in the Y direction is estimated from the
pressure map. The position in the X direction is assumed to be ∼ 25 cm from the top of the
mat.

3.3.2 PR2

Our system uses a PR2 robot, a general-purpose mobile manipulator from Willow Garage.

The PR2 has a mobile base, two 7-degree-of-freedom (DoF) arms with grippers, a pan-tilt

head, and a head-mounted Kinect v2. The arms have high dexterity, but a low payload

capacity of 1.8 kg.

PR2 Base Servoing

The system uses the AR Tag servoing from [16] to move the PR2 base directly from its

current position to a goal position and orientation defined with respect to Autobed’s AR Tag.

This is accomplished via straight-line path and assumes that there are no obstacles to block

PR2 movement. Our system uses the code package ar track alvar (http://wiki.ros.

org/ar_track_alvar) to track an AR Tag mounted on the back-board of Autobed,

and thereby to locate Autobed. Fig 3.1 shows the AR Tag as mounted on the bed. The PR2
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moves its head to keep the AR Tag in the center of its head-mounted Kinect’s view.

Haptic MPC Control of PR2 Arm

Our system uses a newer version of the model predictive controller (MPC) described in [78],

with low stiffness, in both manual control mode and autonomous functions, to move the

PR2’s arm to end effector poses (position and orientation) or joint configurations (when

resetting the arm configuration between trials). Note that our current system does not use

the fabric-based skin or tactile sensing from that work.

3.3.3 Task-centric Optimization of Robot Configurations (TOC)

Hawkins et al. observed that some assistive tasks require that a mobile manipulator use

multiple base positions, and that manually choosing those positions can be difficult [16].

In order for the system to autonomously move to an appropriate configuration for a task,

we first select the configuration of the PR2 and Autobed using Task-centric Optimization

of robot Configurations (TOC). TOC is based on that from [24] and [25], with additions to

the algorithm customized to the user. For example, we incorporate a model of the person’s

physical capabilities.

TOC performs substantial offline computation to generate a function that can be applied

rapidly online to select robot configurations based on the current user’s body size and

observations of the user’s position on the bed. Offline, for each task, TOC jointly optimizes

one or two 6-DoF system configurations, each of which consists of a 4-DoF configuration for

the PR2 (X-Y base position, base orientation, and Z-axis height) and a 2-DoF configuration

for Autobed (Z-axis height and head-rest angle). TOC models each task as a sparse set

of 6-DoF end-effector goal poses. TOC runs the optimization for samples of the person’s

position on the bed and sizes of the person’s body, given robot, person, and environment

models, and then it interprets the optimization results to see if a single configuration of the

two robots is sufficient for the task, or if there is value in using two configurations. Online,
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TOC applies the generated function for the desired task and current observations to inform

the system what configurations to use for the task.

Fig 3.4 shows the simulation environment used by TOC, demonstrating a configuration

for the blanket adjustment task.

User Customization

We customize the task models used by TOC based on user preference and needs. TOC

models the user’s physical capabilities (e.g., can rotate head up to 60 degrees), the user’s

human-computer interface (e.g., a laptop, a head-tracker, and the visibility lines needed to

use them), and important features of the user’s environment (e.g., a nightstand by the bed).

TOC also uses a human model of similar size to the user and models the user’s environment.

These customizations allow TOC to better select robot configurations.

3.3.4 Task Planning

The system uses the task-level planning system from [73], based on the PDDL [100]. When

possible, the planner produces a correct, minimal sequence of actions to complete the task.

This sequence is then used to produce and execute a Hierarchal Finite State Machine (HFSM),

implemented using the ROS SMACH framework (http://wiki.ros.org/smach).

In our two studies, all 6 tasks followed the same plan, but may have had differences in

their internal states (e.g., reaching the PR2’s to the head or knee) depending on the task. As

the system moves through the plan, it may require assistance from the user to advance to

the next state (e.g. using teleoperation commands to locate AR Tag above the bed, which is

then tracked autonomously).

Fig 3.6 shows a typical task plan from start to completion of task. In the state in the

plan, CHECK BED OCCUPANCY, the system checks if a person is in the bed. In FIND

AR TAG, the interface switches into a Looking Mode so the user can move the robot’s

head until the Autobed AR Tag is in view. In FIND HUMAN POSE, the system checks
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Figure 3.6: The system use process. From manual mode, the user can either teleoperate the
robot or select a task. The task planner generates and then executes a task plan. Each state in
the plan either succeeds and continues to the next state, or causes the planner to replan. The
plan ends by returning the system to manual control mode. ∗Indicates a subtask requiring
user input

Autobed’s pose estimate for the user. In FOLLOW AR TAG, the PR2 begins following

the AR Tag with its head. In SELECT ROBOT CONFIGS, the system uses TOC to select

a configuration for the robots for the task based on the user’s current pose on the bed. In

CONFIGURE ROBOTS, Autobed moves to the desired configuration and the PR2 moves to

the desired height and moves its arms to an initial configuration. In MOVE PR2 BASE, the

PR2 uses AR Tag servoing to the desired configuration for its base relative to the Autobed.

In STOP FOLLOWING AR TAG, the PR2’s head stops tracking the AR Tag, returning

control to the user. In REACH TO TASK AREA, the PR2 moves its gripper to the task

area. In PERFORM TASK, the system switches to the manual Arm Control Mode of the

user interface for the user to provide the fine control to complete the task. Each state either

succeeds and proceeds to the next state, or fails and causes the system to re-plan.
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3.4 Evaluation of Head Position Estimation

We conducted a study with 8 able-bodied participants to evaluate the performance of our

method of human position estimation.

Participants’ weights ranged from 52 to 95 kg and heights from 1.60 to 1.87 m. For the

experiment, we placed Autobed in a motion capture room. We asked the participants to

lie on Autobed in a supine configuration comfortable to them, keeping their heads looking

straight, while wearing infrared reflective marker arrays on their bodies and heads (see

Fig 3.5 Left). The bed was in a flat configuration for this evaluation. We designated the

projection of the center of the forehead marker array onto the plane of the bed as the ground

truth head position.

We selected 50 pressure distribution images from each participant while they were lying

on the bed looking straight to form our test dataset of (400 total pressure distribution images).

The images for each participant spanned on average 28 seconds. We estimated the head as

aligned with the center of mass at an assumed position in the X direction (see Fig 3.5 Right).

We compared the estimated head position with ground truth, but only consider error along the

Y-axis, which the system uses to place the human body model. The error in the Y direction

was 5.00 cm ± 2.54 cm (mean ± std). Previous work has demonstrated in simulation that

this amount of error is manageable by using TOC to select robot configurations [25]. We

further show evidence in our other evaluations that, despite error in pose estimation, the

system was able to successfully reach task-relevant poses and perform desired tasks.

3.5 Evaluation of Robot Collaboration

We investigated the effectiveness of our system at configuring the PR2 and Autobed such

that the PR2 could reach task-relevant poses. Additionally, we investigated the value of

the physical and perceptual collaboration between the two robots. For each task and for a

mannequin in different locations on the bed, we examined the percentage of goal poses the
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PR2 could reach on the mannequin.

3.5.1 Implementation Details

In these experiments we used a weighted medical mannequin (∼48 kg). We included into

TOC’s environment model a wall behind the bed, which matches our test environment. We

roughly modeled the geometries of the bed and expanded the bed model by 4 centimeters to

provide a safety margin. TOC searched for up to two configurations for each task on any

side of the bed. TOC uses covariance matrix adaptation evolution strategy [101](CMA-ES

from https://pypi.python.org/pypi/cma), to perform its optimization search,

and we used a population size of 3000 with 10 iterations as the meta-parameters for the

optimization for all tasks. When running the optimization to find configurations for no

physical collaboration, we decreased the number of parameters to exclude the bed’s degrees

of freedom. For one of the tasks, the feeding task, we required that the back rest be ≥ 55

from horizontal to emulate typical eating posture in humans.

Throughout our experiments, the PR2 used its left arm to perform the task and kept

its right arm to its side. For some difficult to reach task areas, the TOC chose to use

two configurations for the task. In these cases, the experimenters ran the system for each

configuration separately, starting the PR2 on the appropriate side of Autobed.

3.5.2 Experimental Protocol

An able-bodied experimenter sitting at a nearby desk used the web-based interface to

simulate performing three tasks on the mannequin lying on Autobed. The tasks were feeding,

bathing the lower legs, and dressing with a hospital gown. These tasks are representative of

classical ADLs (feeding, hygiene, and dressing).

For each trial, we started the PR2 on the same side of the bed as the goal position, ∼1 m

away and facing Autobed, and looking at the AR Tag mounted on Autobed. Using the

web-based interface, the experimenter commanded the system to begin the task. The system
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Figure 3.7: The system after execution of the autonomous functions for the arm hygiene task.
The PR2 and Autobed have configured themselves for the task and the PR2 has reached its
arm to the task area on the mannequin.

then autonomously generates and executes a plan, configuring the PR2 and Autobed for the

task, and moving the left end effector to the task area. Fig 3.7 shows a configuration reached

using the system for the mouth wiping task with the mannequin on the left side of the bed.

At this point in the experiment, the experimenter deactivated the PR2’s motors and

manually moved its left end effector to several task-specific goal poses around the task

area (8 for bathing legs, 6 for arm hygiene, 1 for feeding). We affixed a hollow tube to

the mannequin at each goal location. The PR2 held a small cylindrical tool in its left end

effector. If the experimenter could reach the base of the tube with the PR2’s held cylinder

without touching the walls of the tube, we considered the PR2 as being able to reach that

goal (see Fig 3.8). The tubes for bathing legs and arm hygiene were 3 cm long. The tube for

feeding was 15 cm long. Note that the PR2 has infinite-roll wrists making the goal poses

5-DoF.
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Figure 3.8: The evaluation of the system with a mannequin. Top: Mannequin with the
physical 5-DoF goals highlighted for the feeding task and the right arm of the arm hygiene
task (left) and for the leg bathing task (right). The left and right side had symmetric goals.
Bottom: (Left) Example of the PR2 successfully reaching the goal pose for the feeding
task, inserting a 20 cm long cylindrical tool into the 15 cm tube on the mannequin’s mouth.
(Right) Example of failing to reach a goal pose. The tool could not reach the bottom of the
tube without touching the walls of the tube.

For the bathing legs task, the 8 goals poses were along the tops of the legs, ranging from

10 cm above the knee to the ankles. For the arm hygiene task, the 6 goal poses were along

the front or top of the arms, ranging from the wrist to the shoulder. For the feeding task, the

single goal pose was a attached to the center of the mouth. The goal locations are shown

in Fig 3.8. If the PR2 could reach all goals for a task from the one or two configurations

selected by TOC, without the user having to move Autobed or the PR2 base the system

was considered to have succeeded. Otherwise, the system was considered to have failed.

Because the goals are sparse and represent a more complicated task, we deemed reaching
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Table 3.1: Overall performance, percentage of successful tasks by the system with and
without bed movement or human position estimation

Condition Overall Performance

Full System 100% (9/9)
No Bed Movement 33% (3/9)

No Position Estimation 78% (7/9)

all goals necessary for success. For feeding task, the pose of the person’s body matters; it is

typically comfortable to eat while seated upright. We required that the back rest be ≥ 55

and that the goal be reached for the feeding task to be judged successful.

To evaluate the physical collaboration between the two robots, we ran the experiment

with Autobed fixed in its lowest, flattest configuration. TOC was given this un-actuated

model of the bed, so the system could plan for this change. To evaluate the perceptual

collaboration, we ran the experiment and informed the system that the mannequin was in

the center of the bed.

3.5.3 Results

Table 3.1 shows overall performance and Table 3.2 shows the task outcome and number

of reached goal poses for each task as we translated the mannequin from the center of the

bed in the Y direction by -15, 0, and 15 cm. Using all parts of the system, the PR2 was

successful in 100% of the tasks, reaching all goals.

Physical Collaboration Results

The two robots collaborated physically to allow the PR2 to better perform the task, by

adjusting the Autobed configuration to give the PR2 better physical access around the

mannequin and to adjust the mannequin’s configuration. For example, Figure 3.9 shows a

solution frequently used by the system, which was to raise the bed and to move the PR2’s

base under it. Without physical collaboration between the two robots, the system succeeded

in 33% (3/9) of the tasks. In the feeding task, physically moving was a necessity to achieve
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Table 3.2: System performance with and without physical or perceptual collaboration. Task
is successful if all goals reached.

Full System No Bed Movement No Position Estimation

Task
Body

Outcome
Poses

Outcome
Poses

Outcome
Poses

Shift Reached Reached Reached

Feeding
-15 cm success 100% (1/1) failure N/A success 100% (1/1)
0 cm success 100% (1/1) failure N/A success 100% (1/1)

15 cm success 100% (1/1) failure N/A success 100% (1/1)

Arm Skin Care
-15 cm success 100% (6/6) failure 83% (5/6) success 100% (6/6)
0 cm success 100% (6/6) failure 50% (3/6) success 100% (6/6)

15 cm success 100% (6/6) failure 83% (5/6) failure 83% (5/6)

Bathing Legs
-15 cm success 100% (8/8) success 100% (8/8) failure 88% (7/8)
0 cm success 100% (8/8) success 100% (8/8) success 100% (8/8)

15 cm success 100% (8/8) success 100% (8/8) success 100% (8/8)

the task goal of having the person sitting upright (≥ 55 degrees from horizontal). When the

system could not move the bed, it could not succeed at this task.

Figure 3.9: Physical collaboration between the two robots. A solution frequently used by
the system was to raise the bed and to move the PR2’s base under it, so the PR2 could better
reach task areas.
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Perceptual Collaboration Results

The robots collaborated perceptually to estimate the mannequin’s position and configuration,

allowing better initial configuration selection for the task, and also to inform the PR2 when

autonomously moving its end effector to the task area. Without perceptual collaboration

between the robots, the PR2 succeeded in 78% of the tasks, since it was sometimes too far

from the mannequin to reach the goal poses.

3.6 Evaluation in the Home of a Person with Severe Quadriplegia

We tested if a real user with severe motor impairments could use our system to perform real

tasks in a non-controlled setting. We had a person with motor impairments, Henry Evans,

who is also a frequent collaborator with us, use the system in his home to repeatedly perform

three assistive tasks around his body. Henry has severe quadriplegia and is mute as the result

of a brain-stem stroke, and has only limited movement in his head and left arm and hand,

although he has full sensation. Henry regularly uses a computer via a head-tracking mouse

from Madentec.

3.6.1 Implementation Details

We brought a PR2 to Henry Evans’ home and converted his standard electronic bed from

Invacare into Autobed. During late night trials we introduced an additional light in the

room to aid in visual perception of the AR Tag, but otherwise we did not alter his bedroom.

Figures 3.1 shows the room.

Henry’s particular form of human-computer interface (HCI) requires that he keep sight

of his laptop screen and the head-tracking device attached to it. We gave TOC a coarse

model of Henry’s bedroom, his laptop, and the necessary cone of vision in the form of rays

from the human model’s eyes to all parts of the screen (see Fig 3.4). TOC used a human

model that included Henry’s ability to move his head and that was adjusted to roughly his
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height. As in the mannequin experiments, we expanded the bed model by 4 centimeters to

provide a safety margin and the PR2 used its left arm to perform the tasks, keeping its right

arm at its side.

Because only one side of Henry’s bed is accessible, we allowed TOC to optimize only

a single configuration for each task, limited its search space to the accessible side of the

bed, and required the left arm’s workspace to at least partially overlap the bed. We also

limited the optimization of the head rest angle to stay within the range in which Henry could

comfortably operate the laptop, 40 to 55 degrees. Because of the tight space around the

head, the system did not autonomously reach to the task area for tasks around Henry’s head.

The PR2 left its arms in their initialization pose when it initiating the manual control part of

the task plan.

3.6.2 Experimental Protocol

For each trial, we started the PR2 ∼1 meter away from the bed, roughly midway down the

bed, with its base facing the bed, its arms to its sides, and its head pointing at the AR Tag

mounted on Autobed. Autobed started in its lowest setting with its back rest at 45 degrees

and leg rest down. Henry started each trial lying on the bed; we did not alter his position

from where his caretaker lay him. Henry controlled the system using a laptop on an overbed

tray.

For each task, Henry was required to use the system’s autonomous function associated

with that task and then only use the interface’s left arm control to perform the task. The

system used TOC to select one configuration for the PR2 and Autobed for the task, based on

the estimated position of Henry’s body. Henry made use of his own physical capabilities to

assist in task performance. For example, for the tasks around his head, Henry would move

the towel held in the PR2’s gripper to an appropriate location and then wipe his face on the

towel.

The tasks performed were:

66



(a) Pulling a blanket down from knees to feet

(b) Wiping yogurt from mouth

(c) Wiping lotion from forehead

Previous work has noted that these three tasks may be useful for those with severe motor

impairments [15] and Henry has indicated that these tasks would be useful.

For each task, Henry was given instructions on how to use the interface and was given

practice with the system until he felt comfortable. He then performed the task 5 times in

a row. An experimenter set up each task’s trials by a) covering the feet and knees with a

blanket; b) applying yogurt to both sides of Henry’s mouth; or c) applying dabs of lotion to

the center of Henry’s forehead. For the wiping tasks, a fresh, rolled towel was placed in the

PR2’s left gripper before each performance of the mouth wiping task. The goal of each task

was explained to Henry, and he decided if a task was completed successfully. He used his

laptop’s camera to inspect his face to check for yogurt and lotion and used the PR2’s camera

to inspect the state of the blanket. Trials were considered failed if any interruptions in the

system’s performance, such as an experimenter intervention, occurred, or if Henry deemed

that manual movement of the PR2 base or of Autobed was necessary to complete the task.

For each trial, the success (or failure) and time to completion was recorded and free-form

feedback was solicited.

Fig 3.10 shows sequences of images of the performance of the three tasks by the system.

Table 3.3 shows the percentage of successful trials. It took 3 minutes and 33 seconds on

average to complete each trial across all tasks. During the blanket adjustment task, Henry

said “It works well and is very easy” and “Almost no mental effort. That’s how I like it. This

would be great for a first time user.” After the fourth trial of the forehead wiping task, Henry

said “It required a lot of mental effort at first, but now it’s easy.’ After the last mouth wiping

task, Henry said “Most complicated task yet.” Wiping the yogurt from the mouth seemed

particularly challenging because wipes tended to smear yogurt around the face. During the
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Figure 3.10: Image sequences from the three tasks performed by Henry. Using this system,
Henry Evans was able to (A) wipe yogurt from his mouth, (B) wipe lotion from his forehead,
and (C) pull a blanket down from his knees to his feet.

Table 3.3: Performance of our system used by a person with severe quadriplegia in his own
home to perform three real tasks. Movement of the PR2 base and of Autobed was performed
only by the autonomous portion of the system.

Task % Trials Successful

Wipe mouth 100% (5/5)
Wipe forehead 100% (5/5)
Adjust blanket 100% (5/5)

autonomous portion of each task, Henry exerted little effort, simply watching the task plan

execute. He seemed to particularly like the autonomous reaching to the task area in the

blanket task.

3.7 Discussion and Limitations

We sought to handle fairly the comparison between the full system and the system without

allowed bed movement by using the same parameters (e.g., search time) for the optimization.

However, because of the nature of the problem, a non-convex optimization in a large

search space, searching longer may have found better configurations than we used in our
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experiments.

We found that our system was capable of reaching many or all goal poses even with 15

cm of error in human position estimation. This was particularly noticeable in the feeding

task, where the system without position estimation succeeded in all tasks. Because Autobed

is narrow, we could not feasibly position the mannequin more than 15 cm from the center of

Autobed. Estimation of the person’s pose might be more important on wider beds where

position error could be larger.

The repeated successful use of the system by Henry Evans provides evidence that

a person with severe motor impairments can use our system to perform assistive tasks

around their body. The system was customized for Henry, and we expect that similar

customization could be implemented for other users. However the question of whether the

system can be equally successfully applied to other users in other environments remains

open. Henry’s feedback was particularly promising, suggesting that beyond the system’s

ability to successfully perform tasks, he found its assistance valuable. Henry seemed to find

that the autonomous functions made the tasks easier and require less mental effort. These

positive responses address two main block in the technology acceptance model (TAM) [102],

perceived usefulness and perceived ease of use, and suggest the possibility of adoption of

this sort of assistive technology by people with severe motor impairments.

3.8 Conclusion

We have presented a robotic system designed to provide physical assistance to people who

are in bed, and potentially increase user independence and reduce caregiver burden. The

system consists of a robotic bed and a mobile manipulator that collaborate to assist with

tasks around the user’s body. For a task, the robotic bed configures itself and the mobile

manipulator moves to a position, so that the mobile manipulator can reach task-relevant

locations with high manipulability. Then, the mobile manipulator can either reach out

autonomously to these locations or the user can take control of the robot via a web-based
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interface. We showed evidence that the physical and perceptual collaboration between the

robots each improves the system’s performance. We further evaluated our system with

a person with severe quadriplegia, in his home. We personalized the system with coarse

models of his bedroom, body, and user interface. Henry successfully used our system to

perform 3 different tasks, 5 times each, without failure and provided positive feedback about

the system’s usefulness and ease of use.
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CHAPTER 4

TASK OPTIMIZATION OF ROBOT-ASSISTED DRESSING

4.1 Introduction

Robotic assistance with activities of daily living (ADLs) [3] could increase independence

for people with disabilities. This may improve quality of life and help address societal

challenges, such as aging populations, high healthcare costs, and shortages of healthcare

workers found in the United States and other countries [1, 2]. A number of specially designed

assistive devices exist to help people maintain their independence. However, many current

assistive devices, such as those for dressing (e.g., reachers, dressing sticks, long-handled

shoehorns, and sock aids), provide limited support and rely on the user having substantial

cognitive, perceptual, and motor capabilities [7, 8]. Robots could potentially serve as more

versatile assistive devices.

Specialized robots are commercially available for a variety of ADLs [9, 10], such as

desktop feeding devices for feeding tasks, but robotic assistance for dressing remains in

early stages of research. Studies suggest a need for robot-assisted dressing, with more older

adults receiving assistance with dressing and bathing/showering than other ADLs, and over

80% of people in skilled nursing facilities requiring dressing assistance [6]. Dressing tasks

are complicated, involving complex physical interactions between garments and the person’s

body. Robot-assisted dressing tasks differ from robotic assistance with many other ADLs

because dressing involves more complex physics, more complex cooperation between the

person and robot, and can involve a wide variety of clothing. Determining how the robot

and person can collaborate to complete the task is challenging, especially for people with

disabilities. Disabilities can make dressing more difficult both for the participant to dress

themselves and for the robot to provide assistance. For example, disabilities may limit
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the actions that the person can take in collaboration with the robot. Additionally, other

assistive tools the person may use, such as a wheelchair, may impede the robot’s workspace.

Customization for individuals can be important as disabilities can vary greatly.

We present task optimization of robot-assisted dressing (TOORAD), a method for finding

actions for a person and robot that will likely result in successful dressing. TOORAD makes

use of geometric, kinematic, and physics simulations of the person, robot, and garment in

its optimization. It uses customized models for the person to model their geometries and

physical capabilities. These models consider what the person is capable of doing, instead of

what he or she typically does. With this approach, TOORAD is able to explore a wide range

of actions for dressing in simulation, some of which might be challenging to test in the real

world. Using a general-purpose mobile manipulator can mitigate some of the challenges in

dressing by allowing the robot to move around to access different areas around the body,

as explored by [23]. We consider the robot an important part of TOORAD’s optimization,

so TOORAD optimizes the robot’s base pose to improve the robot’s ability to adapt to

unexpected changes. Additionally, our method provides computer-generated instructions

for the user receiving assistance from the robot. We have used TOORAD to optimize the

actions of a person and a PR2 robot (a mobile manipulator made by Willow Garage) to

collaborate in pulling the two sleeves of a hospital gown onto the person’s body. These

features are notable differences from previous work on robot-assisted dressing, as described

in Section 4.2.1.

We conducted a study with six people with disabilities who require assistance with

dressing to learn more about the habits, needs, and capabilities of some members of this

population, as well as their views on robot-assisted dressing. Their responses are summarized

in Section 4.4.4 and discussed in Section 4.5. The results from this study may help guide

future research in robot-assisted dressing. Additionally, we evaluated TOORAD on a

dressing system with a PR2 robot, which we tested with four human participants with

disabilities whose capabilities were matched to the assistance our system was able to
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Figure 4.1: Through our system implementation of TOORAD, four participants with
disabilities were able to dress themselves with assistance from the robot. (left-to-right) Prior
to dressing the left arm; end of dressing the left arm; prior to dressing the right arm; end of
dressing the right arm. After successful dressing, both of the participant’s arms are in the
hospital gown.

provide. The system was able to successfully assist all four participants in pulling on both

sleeves of a hospital gown. Two of the four participants dressed one sleeve independently

and received assistance from the robot with only the second sleeve, and two participants

received assistance with both sleeves. Figure 4.1 shows one of the participants receiving

dressing assistance from the robot. Our results provide evidence that TOORAD can be

used to select actions that will result in a robot and person with disabilities collaborating

successfully to complete a dressing task.
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4.2 Related Work

4.2.1 Robot-assisted Dressing

Many researchers who have previously investigated robot-assisted dressing have focused on

using kinematics and vision. [12] presented work on user modeling during robot-assisted

dressing. They identify the pose of the user, model the movement space of the upper

body joints, and select where to place the openings of a sleeveless jacket. More recently,

[103] introduced a stochastic path optimization method to optimize a dressing trajectory

for the robot using the estimated human pose and haptic data from the sensor attached at

the robot’s end effector. Their method updates the dressing trajectory over several attempts

of the task. [104] proposed a method using reinforcement learning for a robot to learn

trajectories to dress a mannequin in a t-shirt, focusing on topological relationships between

the mannequin and shirt. Their experiments were initiated with the mannequin’s arms in

the shirt sleeves. [105] have also presented methods for learning dressing motions using

Bayesian nonparametric latent space learning. [106] present a method for determining

the trajectory to pull a knit hat on a mannequin head using a head-centric policy-space .

[107] presented a system for putting on a slipper-style shoe onto a person’s foot using

voice commands and gestures from the user to pick up, maneuver, and put on the shoe.

[108] introduced an approach for a robot manipulator to coordinate with a human during

assistive dressing and to learn the person’s physical limitations using a vision module. They

demonstrated the approach by having a Baxter robot place a hat on two human participants.

They represented dressing tasks as a sequence of goal poses with respect to the user. The

robot requested that the user reposition themselves if the robot determined the goal as

infeasible. The robot modeled the user’s constraints to determine where to reposition the

user. [109] use learning from demonstration by a person to teach a robot how to pull the

sleeve of a jacket onto a person’s arm. [110] presented a method to determine dressing

errors and clothing types when dressing a human participant in various poses. [111] present
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methods that uses a dataset of the tracked poses of a person’s body to develop a model of a

person’s movement capabilities in addition to force-feedback during dressing to customize

dressing trajectories for a person’s movement capabilities and in realtime for movement

during task execution.

We note three main differences between our work and other work from the literature.

First, many other methods have focused on solely geometric and kinematic simulation,

and have optimized trajectories using real-world trials. We instead make use of geometric,

kinematic, and physics simulation of the person, robot, and garment to optimize the robot

and person actions in simulated environments. This allows TOORAD to optimize through

more iterations than are feasible with real-world training. Additionally, TOORAD is able to

explore actions in simulation that might be challenging to test in the real world. Second, we

consider the robot an important part of our optimization. While most other works focus on

a fixed robot pose, we use a mobile manipulator and optimize the robot’s configuration to

improve the robot’s ability to adapt to unexpected variations between simulation and the real

world. Third, we evaluate our method in a study with six participants with disabilities, while

previous works have focused on able-bodied participants or mannequins. We customize

the models in simulation so they match the person’s geometries and physical capabilities.

Through our study we provide evidence that our method can select actions for the robot and

person that result in successful dressing of people with disabilities. Additionally we present

insights from our target population to guide future research.

4.2.2 Physics Simulation in Robotics

Physics simulation has been used to test algorithms before use with real robots [112, 113,

114]. In addition, a few works have used physics simulation as part of learning or control

algorithms. [115] presented an interactive game of cooking pancakes using rigid-body and

fluid simulation. They collected data from a human performing the cooking task and trained

classifiers on the data to predict failure outcomes. In a more recent work by [116], they
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demonstrated predicting failure cases for the same task on a real robot, in which they learned

a classifier by constructing envelopes for the data collected from the interactive game. We

use the PhysX simulator for human-cloth physics simulation in a way similar to our previous

work in which we trained classifiers on force measurements in simulation to predict the task

outcomes for robot-assisted dressing on a real robot [117].

4.2.3 Selecting Robot Configurations for Mobile Manipulation

Much prior research has investigated how to select configurations for a mobile robot. By the

term robot configuration, we mean the more general term for robot base pose, which may

include other degrees of freedom such as the robot’s spine height. A common method is

to address the problem using inverse-kinematics (IK) solvers [38, 39, 40, 41]. IK solvers

typically seek a single joint configuration of the robot, although often many solutions exist or

no solutions exist. The entire kinematic chain from end effector to the robot’s base location

can be solved using IK [42, 43]. Alternatively, sampling-based methods can be used to find

robot base poses that have valid IK solutions, often as part of motion planning [44, 45, 46,

47, 48].

By relying solely on the existence of IK solutions to ensure that the robot can reach the

goals, these methods are dependent on accurate models. Many of these methods are fast, but

task execution may fail if there is modeling or state estimation error. Like these methods,

TOORAD uses a sampling-based search in its optimization of the robot’s configuration.

However, there are often many robot configurations with valid IK solutions to all goals, and

they cannot be distinguished using only IK. TOORAD uses measures of the robot’s dexterity

based on task-centric manipulability from [23] to differentiate between those configurations.

In that work, we show that higher task-centric manipulability is correlated with improved

performance for configurations that have collision-free IK solutions to all goals in a task.

In this chapter, we are looking at dressing tasks, which contain more structure than the

generic assistive tasks addressed by [23]. The structure in dressing, for example, requires
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that the robot reach goal poses in a specific order. Section ?? describes the details of the

robot configuration optimization used in this chapter.

4.3 Task Optimization of Robot-Assisted Dressing (TOORAD)

With our method, task optimization of robot-assisted dressing (TOORAD), we seek to find

a sequence of actions for both the assistive mobile manipulator and the person receiving

assistance that are likely to result in successful dressing. Key features of TOORAD are

its simulation of cloth-human physics, its simulation of human and robot kinematics, its

representations of robot dexterity, its selection of multiple actions for a task, and its selection

of actions for both the robot and person using an optimization-based approach. TOORAD

is an offline process and it is suitable for situations when the garment and person can

be modeled beforehand, when we would like to customize the actions for the person’s

capabilities, and when we would like to configure the robot such that the task is successful

despite variations between models and reality. We first define the problem addressed by

TOORAD and important assumptions it makes, followed by the details of the optimization.

We provide examples from our implementation of TOORAD used in our evaluation, which

is for the task of pulling the two sleeves of a hospital gown onto a person’s arms.

4.3.1 Problem Definition

TOORAD aims to find, within the space of the sequence of all actions that the person being

assisted and the assistive robot can perform, U , “What is a sequence of actions that will

result in successful dressing?”. Notably, TOORAD considers what humans are capable

of doing, rather than what humans typically do. This choice follows from the notion that

humans are currently more adaptable than robots.

With this approach, we avoid the challenges in modeling actions a person might take in

given circumstances. Instead, we model the person’s physical and kinematic capabilities.

By taking this approach, we can take advantage of the robot’s strengths and capabilities
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that may differ from a human assistant. For example, we can equip the robot with sensors,

such as a capacitive distance sensor, that can estimate the distance to the person’s arm

in a way a human caregiver may find difficult. Additionally, instead of basing the robot

actions on those from human caregivers, TOORAD explores strategies for dressing in a

simulated environment that might be specific to robotic assistance. Some solutions can be

difficult for caregivers or robotics experts to identify without computer assistance to due

the high number of degrees of freedom, solutions that may be distinct from human practice,

and the complexity of human disabilities that can vary greatly between individuals. The

non-anthropomorphic kinematics of the robot presents challenges for approaches based on

learning from demonstration or other forms of user control.

We can formulate the problem as optimizing the sequence of actions for the human and

robot,Ah,r, such that

arg max
Ah,r∈U

Rd(Ah,r) (4.1)

where U is the domain of feasible robot and human actions and Rd is an objective function

for dressing that we define in Eq 4.3.

A challenge to solving this problem is that the space of all possible human and robot

actions is large. To achieve tractability, we apply constraints on the action space that

structures how interaction between the person and robot will take place. We constrain this

space by limiting the robot’s end effector to linear trajectories and alternating between the

actions of the person and robot. Additionally, the person and robot base hold still as the robot

moves the garment onto the person’s body. This constrained search space, U c, simplifies the

actions of the robot and the person. It also allows TOORAD to consider only the person’s

static physical capabilities, instead of his/her dynamic capabilities. These simplified actions

are also easier to convey to people who are receiving assistance from the robot.

We limit the sequence of actions to this constrained space, such that Ah,r ∈ U c, and

modify the optimization as shown in Eq 4.2. Ah,r can then be defined as a sequence of
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arg max
Ah,r∈U c

Rd(Ah,r) (4.2)

Rd(Ah, r) =− ψCn(N) (4.3)

+
1

N

N∑
i=1

(
− ζCt(ch,i)− ηCs(ch,i, tr,i)

+ γ
(
αRreach(ch,i, cr,i, tr,i) + βRmanip(ch,i, cr,i, tr,i)

))
Subject to:

• Collision constraints

• Garment stretching constraints

• Range-of-motion constraints of the person

Where:

• Ah,r =
{
{ch,1, cr,1, tr,1}, ..., {ch,N , cr,N , tr,N}

}
• N is the number of subtasks, N = length(Ah,r).

• Cn is a cost on the number of subtasks.

• Ct is a cost on torque experienced at the person’s shoulder.

• Cs is a cost on stretching the garment.

• Rreach is a reward for how much of the trajectory the robot can reach.

• Rmanip is a reward for the dexterity of the robot arm along the trajectory.

• ψ, ζ, η, γ, α, β are weights for the terms in the objective function.

paired actions by the human and robot,

Ah,r =
{
{ah,1,ar,1}, ..., {ah,N ,ar,N}

}
, (4.4)

where ah,i and ar,i are actions for the robot and human, respectively, for subtask i. Each

pair of actions is performed in sequence. We call each pair of actions a subtask. N is the

length of the sequence of actions, the number of subtasks for the dressing task. The actions
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of the person and robot are taken in that order, first the person, then the robot.

TOORAD does not automatically segment the task into subtasks. Instead, we provide

a small set of candidate subtask sequences to the optimization. For example, a candidate

sequence we used in our evaluation in Section 4.4.4 was to first dress the entire left arm

and then dress the entire right arm. Other candidate sequences used included splitting each

arm into two subtasks, first dressing the forearm and then dressing the upper arm. These

subtasks define a trajectory policy for the robot end effector. The policy gives a trajectory

along which the robot should move the garment to complete the subtask. Therefore, we

provide TOORAD with a small set of candidate sequences of trajectory policies.

We narrow our definitions of the human and robot actions, based on our limited action

space. The assumptions we use to define these actions are described in Section 4.3.2. We

model the human’s actions as only the pose he or she holds and we ignore the movement of

that pose. Therefore, we define the human’s actions ah,i as

ah,i = ch,i, (4.5)

where ch,i is a configuration of the human body that the person holds while the robot

performs its action for the subtask, i. For the task used in our evaluation of pulling sleeves

onto a person’s arms, we used ch,i ∈ R4 (3 DoF at the shoulder, 1 DoF at the elbow). We

model the robot’s actions for subtask i as the pose of the robot’s base, cr,i, and the trajectory

of the robot’s end effector, tr,i. We ignore the movement of the robot to achieve the base

pose. Therefore, we define the robot’s actions, ar,i, as

ar,i = {cr,i, tr,i}. (4.6)

We hence refer to cr,i as the robot configuration, which is a more general term for robot

base pose as it may include other degrees of freedom such as the robot’s spine height. In

our evaluation we used ch,i ∈ R4 (3 DoF for the robot base pose, 1 DoF for the robot spine
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height). The robot action is taken in sequence: first attaining the robot configuration and

then executing the end effector trajectory.

We can substitute these definitions of the human and robot actions into Eq 4.4, to obtain

Ah,r =
{
{ch,1, cr,1, tr,1}, ..., {ch,N , cr,N , tr,N}

}
. (4.7)

As before, the actions within each subtask occur in order: first the person then robot attains

their configurations, then the robot executes the end effector trajectory.

The goal of TOORAD is to find Ah,r, as defined in Eq 4.7, that maximizes the value

of the dressing objective function, Rd, as defined in Eq 4.3. We discuss how we formulate

the optimization architecture to maximize Rd, in Section 4.3.3. We define and discuss the

details of the Rd, in Sections 4.3.6, 4.3.7, and 4.3.8.

4.3.2 Assumptions

We make five simplifying assumptions in addressing the problem described above. First, we

do not explore dexterous manipulation and grasping of cloth by the robot, as this problem

has its own challenges and is being addressed by others [118, 119, 120, 121, 122, 123].

We instead assume that the robot is able to grasp and re-grasp the cloth, which we achieve

during experiments through human intervention and special tools. Second, we assume that

the participant receiving assistance is collaborative. That is, the participant will move his/her

body to the extent of his/her ability in support of the task. Third, we assume the robot can

estimate the pose of the participant’s body prior to dressing. Fourth, we assume that the

person and robot can achieve the desired configurations with negligible effect on the task.

Fifth, we assume that human is able to hold the pose for the entire duration of the subtask.
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arg max
π

−ψCn(N) +
1

N

N∑
i=1

(
F (πi)

)
Top-level optimization (4.8)

to select subtasks

Where:

F (πi) = max
ch,i

(
− ζCt(ch,i)− ηCs(ch,i, πi(ch,i)) Mid-level optimization (4.9)

+ γRr(ch,i, πi(ch,i))
)

of human configuration

Rr(ch,i, πi(ch,i)) = max
cr,i

(
αRreach(ch,i, cr,i, πi(ch,i)) Lower-level optimization

(4.10)+ βRmanip(ch,i, cr,i, πi(ch,i))
)

of robot configuration

And where:

• π = {π1, ..., πN}

• tr,i = πi(ch,i)

• N = length(π)

All subject to:

• Collision constraints

• Garment stretching constraints

• Range-of-motion constraints of the person

• Cn is a cost on the number of subtasks.

• Ct is a cost on torque experienced at the person’s shoulder.

• Cs is a cost on stretching the garment.

• ch,i ∈ H

• π ∈ Π

Figure 4.2: The optimization performed by TOORAD is split into three levels.
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4.3.3 Optimization Architecture

In order to increase the efficiency of TOORAD, we chose an optimization architecture that

takes advantage of dependencies between the human configuration, robot configuration,

and trajectory that we intend to optimize. The robot configuration and the trajectory of

the robot’s end effector depend on the configuration of the human. Both human and robot

configurations and the robot trajectory depend on the subtask being optimized.

We organize the optimization into three levels, shown in Figure 4.2. We uses layers

of optimization instead of joint optimization to reduce computational cost. The top-level

optimization is used to select the optimal sequence of subtasks. The mid-level optimization

is used to select the optimal human configuration. The lower-level optimization is used to

select the optimal robot configuration.

An implication of this structure is that the nested optimizations heavily influence the

computational requirements. Instead of optimizing the trajectory of the robot end effector in

a low-level optimization, we use previously selected trajectory policies for each subtask. The

policy returns a trajectory of the robot end effector given the human configuration. Trajectory

optimization for dressing is complicated, as it involves complex physical interaction between

the garment and the person’s body, which can be computationally expensive to simulate.

We trade accuracy in exchange for a policy that can rapidly be applied to many human

configurations; the trajectory policy only gives a coarse approximation of the optimal

trajectory.

Optimization Algorithms

We provide TOORAD a small set of candidate subtask sequences to optimize, and we use

brute-force optimization to consider all options with the set. The space of the human and

robot optimization objective functions can be highly nonlinear and challenging to search,

and the parameters space is large. These objective functions do not have an analytical

gradient and estimating their gradients can be computationally expensive. We perform the
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Figure 4.3: The axes used in defining the trajectory policy overlaid on a diagram of an arm.

optimizations of the human and robot configurations for each subtask using covariance matrix

adaptation evolution strategy (CMA-ES) [124, 125], which works well for derivative-free,

simulation-based, local optimization. We have observed that CMA-ES often performs better

for local optimization than global optimization, and that starting with a good initialization

often improves its performance.

4.3.4 Selecting Candidate Trajectory Policies

We chose to use a simple, manually defined trajectory policies for each dressing subtask. A

rectangular tool holding the sleeve pulls the sleeve first along the forearm, then along the

upper arm, and finally moves to the top of the shoulder. Each linear trajectory is defined

with respect to a coordinate frame at the base of the link being dressed, with its X-axis

along the axis of the link and the Y-axis parallel to the ground plane. Figure 4.3 shows

these axes overlaid on a diagram of the arm. The trajectories waypoints written as (x, y, z)

in meters, were (0.1, 0.0, 0.1), (−0.03, 0.0, 0.1), (−0.05, 0.0, 0.1), and (0.0, 0.0, 0.1), with

respect to the hand, forearm, upper arm, and shoulder, respectively. The policy is fixed for

each subtask. Policies for different subtasks are created using these waypoints. For example,

dressing the whole arm would consist of moving through all four waypoints and dressing

the forearm would consist of moving through the hand and forearm waypoints.

Using a simulator of cloth-person physics, we verified that our chosen policy succeeds

in simulation for many configurations of the arm. In simulation we also estimate the space,
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Hi, of human configurations, ch,i, where the policy succeeds. For example, Figure 4.4

shows the results in simulation of attempting different trajectories for pulling a sleeve onto a

person’s forearm for different angles of the forearm. The figure also shows what a successful

outcome looks like in the simulator as well as what it looks like when the sleeve catches on

the arm. The center of mass of the successful trials for angles between 30 and −30 degrees

is consistently near 10 cm above the axis of the forearm. This result supports our selected

policy. At higher angles of the forearm (from horizontal) the sleeve’s opening deforms

unpredictably.

The policy πi gives a trajectory of the robot end effector, tr,i, for pulling the sleeve onto

the person’s body, for subtask i, for any human configurations that lie withinHi, as

tr,i = πi(ch,i) ∀ch,i ∈ Hi. (4.11)

TOORAD uses a fixed-radius neighbors model1 to quickly estimate if a human configu-

ration, ch,i lies withinHi.

Determining the Human Configuration Space of the Policy

To determine the human configuration space,Hi, where the trajectory policy will succeed

for a given configuration of the human body, ch,i, TOORAD uses both geometric and physics

simulations. We verify that the following criteria hold true:

• The person’s body is not in self-collision.

• The robot’s tool does not collide with the person.

• The trajectory is successful in the cloth-person physics simulator.

If all criteria are satisfied, then we consider ch,i ∈ Hi. Otherwise, ch,i /∈ Hi. The

simulations used to determine the human configuration space where the policy is successful

1from http://scikit-learn.org
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Figure 4.4: (Top) Plots showing the outcomes when pulling the sleeve onto a forearm for
different poses of the arm. The sleeve is pulled by a tool along the axis of the forearm with
varying start position with respect to the arm. Green represents the forearm successfully
going into the sleeve, yellow represents the arm getting caught on the sleeve, and red
represents the arm missing the opening of the sleeve. The circle represents the centroid of
the green area. For Z of ≤ 0.05 m, the tool holding the gown collides with the person’s
arm. (Middle) A sequence of images showing the sleeve successfully being pulled onto the
forearm with the arm at 0◦ from horizontal and the tool moving 10 cm above the axis of the
arm. The tool holding the sleeve is colored green. (Bottom-left) A diagram showing the
forearm at 30 degrees and the axes of the trajectory. X is along the axis of the forearm, Y
is out of the plane, and Z is orthogonal. (Bottom-right) A view in simulation of the sleeve
caught on the fist with the arm at 30◦ from horizontal with the tool moving at 18 cm in the Z
direction and 0 cm in the Y direction.

are shown in Figure 4.5. The space Hi estimated once for each subtask using a generic

human model based on a 50 percentile male from [76] and a generic cylindrical sleeve of

similar dimension to a hospital gown sleeve, and it is referenced for all human users.
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Figure 4.5: Simulation is used to verify that our selected policy for the trajectory of the
garment is reasonable and to find the space of human configurations,H, where the policy
succeeds. The simulators we used are described in Section 4.4.1. (Left) The DART simulator
is used to verify collision constraints. Here we visualize the human model (without legs)
in the configuration being evaluated. (Right) The PhysX simulator used to simulate cloth
physics when pulling the sleeve onto an arm in isolation in the same configuration (from a
different perspective). The upper arm length is extended. The tool holding the sleeve is in
green.

4.3.5 Constraints

The optimization of the human and robot configurations uses customized models of the

person, wheelchair (when applicable), and garment. Using a geometric and kinematics

simulator and a cloth-person physics simulator along with these models, TOORAD enforces

six constraints in its optimization. These constraints are:

• Stretching limits of the garment.

• The person’s range of motion.

• The person’s body is not in self-collision.

• The robot does not collide with the person, wheelchair or garment.

• The garment does not experience interference from the wheelchair.

• ch,i ∈ H

As the dressing task proceeds and subtasks are completed, TOORAD adds stretching

constraints as necessary. These constraints are based on measurements of the real garment.
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For example, the maximum stretch between the two shoulders of the hospital gown we

used in our evaluation was 0.5 m. Once the person’s left arm is in the sleeve of the gown,

we assumed the left sleeve would remain in place. Therefore, for the subsequence subtask

of pulling on the right sleeve, the right sleeve can move at most 0.5 m from the top of

the person’s left shoulder. These stretching constraints allow some dependency between

subtasks without having to optimize them jointly.

We modeled the person’s range of motion as limits to the range of joint angles on a

joint-by-joint basis with a 3-axis Euler-angle-joint at the shoulder and a single axis joint

at the elbow. We also applied range of motion constraints on the pose of body parts. For

example, a range of motion constraint on the pose might be that the upper arm cannot be

raised above parallel to the ground.

4.3.6 Subtask Optimization

For the candidate sequences of subtasks we provide, TOORAD performs the optimization

in Eq 4.8. The optimization is given a set Π of sequences of trajectory policies π =

{π1, ..., πN}. The top-level optimization uses an exhaustive search to select the best sequence

of trajectory policies. We define Cn as a cost for each additional subtask,

Cn(N) = N. (4.12)

The function F is the objective function for the mid-level optimization of the human

configuration shown in Eq 4.9. We manually selected ψ = 0.1 to be small, ∼ 100× smaller,

compared to values of F for for human configurations that result in successful dressing.

4.3.7 Human Optimization

Our formulation of F allows TOORAD to simultaneously consider the comfort of the

person, the capabilities of the person, the kinematics of the robot, and the physics involved
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in manipulating garments onto a persons’ body. We formulate F in Eq 4.9 as

Ct is the cost on torque due to gravity experienced at the person’s shoulder in the

configuration ch,i, Cs is the cost on exceeding a soft constraint on stretching the garment,

and Rr is the score of how well the robot can execute the trajectory (see Section 4.3.8).

Ct is normalized to 0 − 1. Cs has units of distance we allowed it at most a value of 0.04

(meters). Rr is unit-less and ranges from 0− 11. With these ranges, we manually selected

0.5, 5.0, and 1.0 for ζ, η, and γ, respectively. These gains emphasize functionality of the

configuration, with more emphasis placed on the value of Rr while also considering the

other costs.

Cost on Torque

To encourage human arm configurations that are more comfortable for the person, we have

included a cost on the torque at the person’s shoulder due to gravity. This cost ignores

torques due to external forces, such as from the garment, robot, or wheelchair. We divide the

torque at the current configuration by the maximum possible torque, to create a normalized

torque cost. The maximum torque is when the arm is straight, parallel to the ground. This

torque cost is independent of the weight and scale of the person’s arm. We use the body

mass values for an average male2. The cost on torque follows as

Ct(ch,i) =
torque(ch,i)

maximum possible torque
(4.13)

Cost on Stretching the Garment

In addition to the hard constraint on stretching the garment described in Section 4.3.5,

we added a soft boundary cost to encourage human configurations where the garment is

stretched slightly less. This cost is focused on stretching caused by following the trajectory.

We avoid stretching the garment due to the garment become caught by using the trajectory

2from https://msis.jsc.nasa.gov/sections/section03.htm
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policy. For some small distance before the hard constraint, the objective function receives a

penalty defined as

Cs(ch,i, πi(ch,i)) = dexceeded, (4.14)

where dexceeded is the maximum amount by which the soft boundary has been exceeded for

all points along the trajectory. This value comes from the kinematics simulator based on

the human configuration and the trajectory of the garment (from the trajectory policy). For

our hospital gown, based on its physical limits, we set a hard constraint on the maximum

distance between the two shoulders of the gown to 0.5 m. We set a soft constraint of 0.46 m,

resulting in a maximum value for Cs of 0.04.

4.3.8 Robot Optimization

The reward function Rr estimates how well the robot can execute the trajectory for the given

human configuration. TOORAD calculates it using the lower-level optimization of the robot

configuration, cr,i, shown in Eq 4.10. This optimization is based on [23] with modifications

that are relevant to dressing tasks. This objective function uses two measures that we have

developed to estimate how well the robot will be able to perform the dressing task: Rreach,

which is based on TC-reachability, and Rmanip, which is based on TC-manipulability (from

[23]). These two terms are related to task-centric (TC) robot dexterity.

Robot Dexterity Measures

TC-reachability and TC-manipulability are measures that consider the average values of

reachability and manipulability across all goals in a task without order. Because dressing

has a specific order that the robot should move to goals in its trajectory, we have added a

graph-based search to the calculation of these terms to approximate this order and structure.

Goal poses for the robot are determined from sampling the trajectory of the robot end

effector. For each goal pose, TOORAD uses OpenRAVE’s ikfast [126], to find a sample

of collision-free IK solutions. These IK solutions are found for the PR2’s 7-DoF arms by
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creating an analytical IK solver for discretized values of one of its joints. We used the

robot’s forearm roll joint discretized at 0.1 radian intervals. An IK sample is obtained for

each discretized value of the forearm roll joint.

From these IK solutions for each goal pose, TOORAD creates a layered directed acyclic

graph where a layer is created for each goal pose and each node is a joint configuration of

the robot arm. Nodes in a layer are connected to nodes in the next layer if the maximum

difference between each robot joint is less than a threshold (we used 40 degrees). This

threshold is used to predict that a path exists between the two joint configurations without

the time cost of running a motion planner. To facilitate use of a standard graph search

algorithm, we add a start node connected to each node in the first layer (IK solutions for the

first goal pose in the trajectory) an end node connected to each node in the last layer. Once

it creates the graph, TOORAD performs a uniform cost search [dijkstra1959note] through

the graph to find a path from start where the cost to each node is the joint-limit-weighted

kinematic isotropy (JLWKI) for that node’s joint configuration.

Joint-limit-weighted Kinematic Isotropy (JLWKI)

JLWKI is presented in [23] and is based on kinematic isotropy, ∆(q), from [32], shown

in Equation 4.15.

∆(q) =
a
√

det(J(q)J(q)T )

( trace(J(q)J(q)T )
a

)
(4.15)

Geometrically, kinematic isotropy is proportional to the volume of the manipulability

ellipsoid of the manipulator, which is the volume of Cartesian space moved by the end

effector for a unit ball of movement by the arm’s joints. It is based on manipulability from

[30], with a modification to remove order dependency and scale dependency. This metric

can be useful when assessing kinematic dexterity between different configurations of the

same robot. The values of kinematic isotropy are always in the range of 0 to 1 so they can

be more directly compared across robot platforms.
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JLWKI modifies kinematic isotropy to consider joint limits by scaling the manipulator’s

Jacobian by an n × n diagonal joint-limit-weighting matrix T , defined in Equation 4.16,

where n is the number of joints of the manipulator.

T (q) =


t1 0 0

0
. . . 0

0 0 tn

 (4.16)

ti in T is defined as

ti = 1− φκ (4.17)

where

κ =
qri − |qri − qi + q−i |

λqri
+ 1 (4.18)

and

qri =
1

2
(q+i − q−i ). (4.19)

We set ti = 1 for infinite roll joints. The variable φ is a scalar that determines the maximum

penalty incurred when joint qi approaches its maximum and minimum joint limits, q+i or q−i ,

and λ determines the shape of the penalty function. We used a value of 0.5 for φ and 0.05

for λ. This weighting function and the values for φ and λ were selected to halve the value

of the kinematic isotropy at joint limits, have little effect in the center of the joint range, to

begin exponentially penalizing joint values beyond 75% of the range, and to operate as a

function of the percentage of the joint range. JLWKI is then defined as

JLWKI(q) =
a
√

det(J(q)T (q)J(q)T )

( 1
a
)trace(J(q)T (q)J(q)T )

. (4.20)

Scoring Metrics

The graph-based search returns either a path from start to end or the longest path

achievable towards end. The metric, Rreach, is related to the percentage of goal poses

92



along the trajectory to which the robot can find a collision-free IK solution from robot

configuration, cr,i. Rreach is defined as

Rreach(ch,i, cr,i, πi(ch,i)) = (
Np

Ntotal
), (4.21)

where Np is the number of nodes in the path and Ntotal is the total number of goal poses.

Rmanip is then defined as

Rmanip(ch,i, cr,i, πi(ch,i)) = (
1

Ntotal
)

Np∑
i=1

JLWKI(pi), (4.22)

where pi is the IK solution for the ith goal pose.

4.4 TOORAD Implementation Details

4.4.1 Simulators

TOORAD uses two simulators, one for simulation of human-cloth physics, and a second

for simulation of human-wheelchair-robot-garment geometries and robot kinematics. We

customized the human and wheelchair models for each participant, and we customized the

simulated garments based on the hospital gown dimensions.

We chose to use the cloth simulator in Nvidia’s PhysX [127] to simulate human-cloth

physics due to its efficiency and robustness at handling large contact forces (e.g., when

the sleeve opening is caught on the hand). PhysX is based on position-based dynamics

(PBD), which directly calculates position changes instead of through force integration. By

avoiding solving and integrating forces and instead modifying position directly, PBD can

be more stable, controllable, and efficient than alternative methods. We modified PhysX to

add additional functionality and improved accuracy of friction handling, as in the work by

[117]. We manually selected the parameters of the simulator so the modeled fabric would

behave similarly to the real-world hospital gown used in this work. We modeled the person
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in PhysX using capsules, or pairs of spheres connected by a conical frustum, for simplicity:

these are primitives in both PhysX and DART. We modeled the robot’s tool holding the

garment as a parallel jaw gripper that holds the shoulder region of the gown. We did not

model any other part of the robot. This setup corresponds to the tool we used with the

real-world PR2. Figure 4.5 (right) shows the PhysX simulation environment with a sleeve

being pulled onto an arm.

TOORAD simulates the human-wheelchair-robot-garment geometries in the DART

[128] simulation environment. In this environment, TOORAD performs collision detection

using Bullet [129] and uses OpenRAVE’s ikfast [126] to get inverse-kinematics for the

robot. We set up this second simulation environment because DART has native support for

robot and human models. DART uses the same human model as in PhysX, and we also

add a customized model of the person’s wheelchair within DART, and a coarse geometric

representation of the garment. Figure 4.6 shows this simulation environment (the garment

model is not shown).

4.4.2 Practical Additions to the Optimization

In our implementation of TOORAD, we used several methods to speed up computation and to

improve results. As mentioned in Section 4.3.3, we observed that the optimization algorithm

we used, CMA-ES, works better when given good initialization. We used grid-search with a

resolution of 2.5◦ for of the 4 DoF of the human arm to quickly and coarsely find candidate

human configurations to initialize the optimization of the human configuration (which used

CMA-ES). This search found human configurations that are “feasible”: where ch,i ∈ H and

where constraints described in Section 4.3.4 were satisfied. We used a K-means clustering

algorithm to choose the candidate human configurations from the feasible configurations. We

selected K = 3 manually based on the number of regions of feasible human configuration

we often observed. We used L2 distance on the 4 DoF configuration space of the human’s

arm as the distance metric for the K-means algorithm. We used a population size of 20
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Figure 4.6: The initial robot and human configurations selected by TOORAD for the four
participants who interacted with the robot. The models have been customized for the
participants. The visualization comes from the DART simulator. The solutions found by
TOORAD was shown to participants to provide instruction on their expected arm poses.
The configurations are grouped by participant. (b) and (d) show the configurations for the
participants who received assistance with only one sleeve.

and 50 iterations for the CMA-ES optimization of the human configuration. We manually

selected five candidate robot configurations around the person to initialize the optimization

of the robot configuration (which used CMA-ES). These candidate robot configurations

were to the front and sides of the person, with the robot’s arm facing the person.

In TOORAD, the robot configuration optimization takes place in a lower level. To

decrease computation cost of this lower-level optimization, we limited the number of

iterations used by CMA-ES to 20 iterations with a population of 20. To compensate, we

added a step after the main optimization that, in which TOORAD more finely optimizes the

robot configuration. This step used a fixed human configuration from the main optimization,

and used the optimized robot configuration from the main optimization as an initialization.
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This final step used smaller step-sizes and more iterations (80) for CMA-ES, but otherwise

used the same framework.

The grid search took ∼ 30 minutes on 18-cores of a 64-bit, 14.04 Ubuntu operating

system with 60 GB of RAM and a 2.9 GHz Intel Xeon E5-2666 v3. The main optimization

took ∼ 10 hours on the same machine. The fine-tuning of the robot configuration took ∼ 10

minutes on a single core of the same machine.

4.4.3 System Implementation

We implemented a system to test TOORAD, with sensing and control schemes for the PR2

to allow it to execute actions in collaboration with the participants. In this evaluation we

limited the PR2 to using only its right arm. TOORAD found, for each subtask of the dressing

task, a configuration for the participant’s arm, a pose of the PR2’s base, a height of the PR2’s

spine, a trajectory for the PR2’s end effector, and joint configurations for the PR2’s arm

sampled along the trajectory. In this case, ch,i ∈ R4 (3 DoF at the shoulder, 1 DoF at the

elbow), and cr,i ∈ R4 (3 DoF in the robot base pose, 1 DoF in the robot spine height). We

evaluated if, using our system, a participant and the PR2 could collaborate to successfully

complete the dressing task.

A challenge when moving from simulation to the real world is that there are often

discrepancies from simulation, and sometimes even small differences can result in errors

and task failure. We made use of several sensing and control schemes to allow the robot to

both recognize and adjust to differences from simulation.

Grasping

When manipulating the hospital gown, the PR2 grasped a tool in its right gripper that held

the top of the sleeve of the hospital gown. The tool was instrumented with a capacitive

distance sensor and a force-torque sensor. The experimenters attached the tool to the gown

before the start of each subtask.
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Sensing

We used various sensors on the PR2 and the tool to estimate the pose of the person and track

arm motion in real time. Using the PR2’s head-mounted Kinect, the system perceives an

AR Tag mounted in a known position with respect to the person’s wheelchair. The model

customized for the wheelchair and the participant was then used to coarsely estimate the

pose of the person with respect to the robot and help position the robot appropriately.

As we have noted in previous work [130], visual perception of the person’s body during

dressing can be challenging as the body becomes occluded by the garment, so we use force

sensing and capacitive sensing to make inferences about the state of the dressing task and

to more finely estimate the pose of the person’s arm. The PR2 used the capacitive sensor

on the tool to measure the distance between the tool and the person’s arm during dressing

and to track along the arm (maintaining a desired distance), as presented by [131]. This

sensor’s range is roughly from 0 to 10 cm, which works well for this purpose. With the

capacitive sensor, the PR2 was able to move the garment along the arm with little contact

despite movement in the arm pose or arm poses that did not match the expected pose. Our

system also used force sensing for safety and anomaly detection. We additionally used

a force-torque sensor in the tool holding the garment for safety and anomaly detection,

stopping the PR2’s movement if the magnitude of forces reached 15 Newtons.

Control

We implemented a proportional-derivative (PD) Cartesian controller running at 20 Hz on

the PR2, to move the tool and gown along the person’s arm at a distance of 5 cm. We used

TracIK [39] to feed joint-space input to the PR2’s low-level PID controllers. The X axis

points in the direction of tool (the direction of the sleeve’s opening) and the Z axis orthogonal

to the capacitive sensor, pointing away from the person’s arm. These axes translated and

rotated with the tool. The robot obtained waypoints for the movement of the end effector

from the end points of the linear trajectory generated by TOORAD with its trajectory policy
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Figure 4.7: The axes used by the controller are shown in red. The axes translate and rotate
with the tool. The trajectory for moving along the forearm, upper arm, and shoulder are
illustrated in light blue.

for each subtask. For example, for the subtask of dressing the entire left arm, the robot would

obtain four waypoints: at the hand, at the elbow, at the proximal end of the upper arm, and

at the top of the shoulder. Figure 4.7 shows the axes and the trajectory for dressing the entire

left arm for one of the participants. The controller calculated error in the X and Y directions

using the waypoints, and calculated error in the Z direction using the measured distance

between the tool and the person’s arm (desired distance was 5 cm). The desired end effector

orientation was to have the X axis pointing along the trajectory and the Y axis parallel to the

ground; orientation error was calculated as difference from the desired orientation.

4.4.4 Study with Participants with Disabilities

All studies with participants were conducted with approval from the Georgia Institute of

Technology Institutional Review Board (IRB), and we obtained informed written consent

from all participants. We conducted a study with six participants with disabilities. The

inclusion/exclusion criteria were: all participants must have difficulty putting both arms

through the sleeves of a jacket without assistance, be able to raise at least one arm against

gravity, have no cognitive impairments, and be ≥ 18 years old. Three of the participants
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were female and three were male. The age range was 23 - 69. In the first session of

the study, we administered questionnaires on the participant’s current habits, needs, and

physical capabilities as related to dressing and their views on the potential for robots to

assist with dressing. We additionally took measurements of their bodies (e.g., arm length)

and wheelchair (we provided them a wheelchair if they did not use one), and we measured

the comfortable range of motion of their arms.

We invited all participants whose physical capabilities were matched to the capabilities

of our system back for a second session of the study in which the participant and the robot

collaborated to pull the two sleeves of the hospital gown onto the participant’s body. Two

of the six participants did not match this criteria because they could not comfortably hold

their arms up against gravity. Four of the six participants took part in the second session.

For these tests, TOORAD was run on a model customized for the participant in advance of

their arrival.

Participant Details

Because the responses, needs, capabilities, and views of participants varied greatly depending

on their disabilities, we describe the disabilities of each participant as is relevant to dressing.

These descriptions come from the administered questionnaire in the first session of the study.

Participant 1 Participant 1 has cerebral palsy that causes involuntary movements and

makes precise movements challenging. He/she uses a wheelchair, which we modeled as

shown in Figure 4.6(a). He/she has a full range of motion of both arms and can attain and

hold most poses with both arms, but the trajectories taken to reach poses can vary and are

not fully voluntary. The participant said it can be hard to get his/her hands in to the right

spot, holes, etc, and said that the hardest part of dressing is jackets, buttons, zippers, shoes,

and tasks requiring fine motor control. This participant received assistance from the robot

with dressing both arms. The configurations selected by TOORAD for this participant are
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shown in Figure 4.6(a).

Participant 2 Participant 2 is an older adult who is post-polio. He/she has weakness in

his/her arms and legs and has no feeling in hands. He/she has limited range of motion with

pain near the edges of the range, and cannot raise his/her arms to parallel with the ground

and cannot move his/her right arm in front of his/her body. He/she is quickly tired and

pained by raising arms and holding arms raised. This participant did not take part in the

experiment with the robot because he/she could not comfortably raise his/her arm.

Participant 3 Participant 3 has partial paralysis of the right arm due to a C3-C8 spinal

cord injury. Paralysis is of the arm distal from the elbow and of the bicep. He/she has no

other impairments or limitations. This participant used his/her unimpaired arm to dress

his/her impaired arm. The participant then received assistance from the robot in dressing

his/her unimpaired arm. The configurations selected by TOORAD for this participant are

shown in Figure 4.6(b).

Participant 4 Participant 4 has ALS that has caused muscle weakness in the shoulders,

arms, hands, and legs. He/she can briefly raise arms against gravity, but cannot hold them

up. He/she has weakness in his/her wrists and hands that make grasping and pulling on

garments, especially pants, difficult. This participant did not take part in the experiment

with the robot because he/she she could not comfortably hold up his/her arm.

Participant 5 Participant 5 has an amputation of the dominant right hand, located in the

right forearm, near the wrist, and has a torn right rotator cuff. He/she experiences tensing of

the left shoulder from overwork that is uncomfortable and that can sometimes involuntarily

pull his/her head, neck, and left shoulder together. He/she experiences discomfort reaching

the left arm across the body. He/she has a prosthetic but does not consider it a helpful tool

for dressing because it cannot grip sufficiently dexterously or strongly to be helpful. This
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participant received assistance from the robot with dressing both arms. The configurations

selected by TOORAD for this participant are shown in Figure 4.6(c).

Participant 6 Participant 6 has cerebral palsy whose symptoms include motor impair-

ments, fatigue and balance issues. Impairments are primarily of the right side of the body.

Lacks certain motor control in the right arm, specifically of the right elbow and wrist. His/her

right shoulder has limited range of motion and decreased control. His/her flexion of the

right elbow is not directly controlled and is dependent on the pose of the right shoulder.

His/her right wrist is always flexed. He/she sometimes experiences involuntary spasms, most

typically of the right arm. His/her left arm has some minor and limits in range of motion and

he/she experiences balance issues when seated when reaching across body from left side to

right side. This participant used his/her less impaired arm to dress his/her impaired arm and

received assistance from the robot with dressing his/her unimpaired arm. We found that our

method of modeling range of motion was not well matched to the motion constraints of the

participant’s right arm. The configurations selected by TOORAD for this participant are

shown in Figure 4.6(d).

Questionnaire on Habits, Needs, Capabilities, and Thoughts on Robot-Assisted Dressing

The purpose of this survey was to gain insight for future robot-assisted dressing research

through a better understanding of target populations. In this section, we describe the types

of questions asked in the questionnaire. A discussion of take-aways from the questionnaire

responses is in Section 4.5.

We asked a series of questions regarding typical dressing habits, such as typical dressing

scenarios, number and types of dressing tasks, and time-to-complete, to learn how a robot

might fit into a daily routine. We further inquired about which dressing tasks and articles

of clothing are most challenging and how participants might prefer a robot to help meet

their dressing needs. We included questions to survey participants’ physical capabilities, as
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Table 4.1: Responses to seven-point Likert type questionnaire items from participants with
disabilities. Pre-experiment questions were administered in the first session of the study.
Post-experiment questions were administered after interaction with the robot in the second
session of hte study. The second column provides the average and standard deviation of
scores with 1=strongly disagree, 2=disagree, 3= slightly agree, 4=neither, 5=slightly agree,
6=agree, and 7=strongly agree.

Pre-experiment Questions (N = 6) Score: mean (std)
When I select clothing, the ease of don and doff is important. 6.3 (0.74)
If a robot could assist me with dressing to the same effectiveness as my
current methods, I would allow the robot to assist me with dressing.

6.3 (0.74)

Post-experiment Questions (N = 4) Score: mean (std)
The system successfully accomplished tasks 7.0 (0.0)
I felt comfortable using the robot-assisted dressing system. 6.3 (1.15)
I would prefer receiving dressing assistance from a robot than another
human

4.7 (1.53)

I would like to receive this form of dressing assistance from a robot in the
future

5.3 (1.53)

related to dressing, including range-of-motion, involuntary movements, and fatigue. These

responses might help with the design of methods or systems for specific target populations

in the future. We discussion the responses to the questionnaire in Section 4.5.

Table 4.1 summarizes the participants answers to two Likert type questionnaire items

asked during this questionnaire. Participants were generally positive towards receiving

assistance from a robot with dressing.

Experimental Protocol

Before the start of the dressing task, each participant was given verbal instructions by the

experimenter and shown a visualization of the DART simulator with the poses expected by

the robot and the trajectory the robot would move along. The experimenter provided each

participant multiple view points of the poses in the simulator. Figure 4.6 shows snapshots

from that visualization for each of the participants.

Each participant started the experiment seated in a wheelchair. Participants who did not
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Figure 4.8: (top) A sequence of images from a participant receiving dressing assistance
with the right arm of the hospital gown. The robot successfully pulled the sleeve up the arm
as the participant’s arm moved involuntarily. (Bottom) Views from the DART simulator
showing the initial configurations of the person and robot for dressing the right arm.

bring their own, were provided a wheelchair by the experimenter. TOORAD used a model

of the wheelchair in its simulations.

The goal of participants was to dress themselves, pulling on the two sleeves of the

hospital gown, with assistance from the robot. Depending on the participant’s level of

impairment and the assistance they desired, participants either received assistance from

the robot with one or both sleeves. Two of the participants had one impaired arm and one

unimpaired arm. These participants pulled the gown unaided onto their impaired arm and
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then received assistance from the robot with dressing their unimpaired arm. Two of the

participants received assistance with pulling on both sleeves. TOORAD was used to select

the actions of the participant and the robot for coordinating the assistance. For each sleeve

with which the participant received assistance, the participant held his/her arm in a pose

as the robot moved the sleeve along the arm. Figure 4.8 shows a sequence of images from

dressing the right arm of a participant as well as the expected pose of the person and robot in

simulation. For all four participants, TOORAD’s optimized sequences of actions consisted

of a single subtask for dressing each arm. The human and robot configurations selected by

TOORAD for each of the four participants is shown in simulation in Figure 4.6.

The PR2 began the experiment by approaching the participant. An experimenter then

attached the PR2’s tool to the gown. For participants receiving assistance with both sleeves,

the PR2 started with the gown held in its tool. For participants receiving assistance with

only a single sleeve, the experiment started with the gown being handed to the participant

to independently dress his/her impaired arm. For all participants, once the robot was in

position, the participant started the task by moving his/her hand within 5 cm of the capacitive

sensor on the tool.

Once the participant started the task, the PR2 moved the sleeve slowly up the participant’s

arm until the robot completed its trajectory or the 15 Newton threshold was reached. At

that point the experimenter judged if the subtask was successful by examining if the arm

was in the sleeve, the sleeve was pulled up the participant’s shoulder and the sleeve was not

caught on anything. If successful, the robot would move on to the next dressing subtask.

If the subtask was unsuccessful, the entire dressing trial was deemed a failure and the

experimenters would set up the next trial. Between subtasks, the experimenter would detach

and reattach the PR2’s tool from the gown so the robot could drive its base around freely

without affecting the gown or the participant.

All movement of the robot’s base was controlled via teleoperation by the experimenter.

The experimenter moved the robot to the base pose selected by TOORAD.
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We gave the opportunity to participants to practice receiving assistance from the robot

with putting on the sleeves of the hospital gown up to five times prior to the official test.

During practice, the experimenter provided feedback to the participant on how to improve

coordination with the robot. For example, if the participant was not attaining the correct arm

pose, the experimenter demonstrated the arm pose selected by TOORAD. The experimenter

also responded to questions from the participant. After the practice trials, the participants

attempted to dress themselves four times with the robot’s assistance. During the official

test, the experimenters responded to questions, but otherwise did not provide feedback.

At the end of the experiment, we administered a questionnaire with 7-point Likert type

questionnaire items as well as three open-ended questions.

Results: Robot-Assisted Dressing System

All four participants successfully dressed both of their arms using assistance from the robot

four times consecutively. Success criteria was: both arms were in the sleeves, the sleeves

were pulled up to the shoulders, and the gown did not get caught on the person or wheelchair.

Figure 4.9 shows a sequence of images from a participant successfully collaborating with

the robot to dress her right arm.

One participant experienced a failed trial in addition to the four successful trials due

to the experimenter moving the robot to the wrong base position. Another participant

experienced a failed trial in addition to the four successful trials due to an erroneous IK

solution that asked the robot to spin one of the roll joints of its arm 360◦ during the task.

The two failed trials were retried and subsequently were successful.

Table 4.1 summarizes a few of the participants’ answers to Likert type questionnaire

items asked after interaction with the robot-assisted dressing system. Participants strongly

agreed that the system successfully accomplished tasks, but were more mixed on comfort

and future assistance from robots. In open-ended questions, participants were positive about

the robot’s ability to move along their arm, tracking their arm as it moved up or down.
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Figure 4.9: A sequence of images (going left-to-right, top-to-bottom) showing a participant
successfully putting on the sleeves of the hospital gown with assistance from the robot. This
participant independently put on the right sleeve of the gown onto his/her more impaired arm
and received assistance with putting on the left sleeve onto his/her less impaired arm. The
expected configurations of the participant’s body is shown in Figure 4.6(d). The participant’s
arm pose differed from the expected configuration.

This tracking was particularly important for one participant who experiences involuntary

movement of his/her arms. Figures 4.8 and 4.9 show sequences of images from two

participants receiving dressing assistance from the robot, in which the participants moved

their arms during the execution of the task.

Some of the feedback from participants was positive, including the following quotes:

”This is pretty kick-ass”, ”You are not following the robot, the robot is following you”, and
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Figure 4.10: The gown successfully pulled onto the right arm of a model of one of the
participants using the robot end effector trajectory and human configuration selected by
TOORAD. This test was run in the PhysX simulator. The dimensions of the torso, legs, and
feet were not customized to the participant. (Left) View from the side. (Right) View from
the top.

”It was pretty intuitive”. One participant expressed discomfort with the start position of

the robot’s arm: ”I was uncomfortable with how close it was to my face”. One participant

suggested that ”Other garments would be great”, in addition to hospital gowns.

Results: Confirmation in Simulation

We also confirmed that the results of the optimization could be used for successful dressing

assistance in simulation. This could potentially be used to check solutions prior to testing

with people or as part of a process to further improve the solutions. We executed the

trajectories of the robot end effector holding a simulated gown in the PhysX simulator using

the customized models for each participant, pulling each of the two sleeves onto the arms

independently. In all cases, the sleeve of the gown was successfully pulled onto the human

model’s arm. Success was judged through manual visual inspection in the PhysX simulator.

Figure 4.10 shows an example of having successfully pulled the right sleeve of the gown
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onto the right arm of a model of one of the participants.

4.5 Discussion

Although we only tested TOORAD on with a PR2 providing dressing assistance for the

sleeves of a hospital gown, we expect aspects of the approach may generalize to other

problems. We expect that the overall method, the equations, the modeling tools, and the

instructional visualization, and parts of the system would generalize to other garments,

tasks, robot end effectors, and robots. Other robot models can be swapped in for the PR2

in DART and ikfast, requiring few other changes. Other robot end effectors would require

new tool models in PhysX and DART, and might require modifications of the trajectory

policies for the end effector. Other garments and dressing tasks would require new garment

models in PhysX and the selection of new trajectory policies for subtasks. Many garments

share properties with the hospital gown: many require that a tube of cloth be pulled over an

appendage and can have the dressing task split into subtasks. These garments would likely

use some subtasks and trajectory policies similar to the ones used for dressing the sleeves of

the hospital gown.

The TOORAD’s distinctive features from robot-assisted dressing literature is its optimiza-

tion of the robot configuration and its use of geometric and physics simulation to perform

its optimization offline with many iterations. It’s objective functions allows TOORAD to

select configurations in which the robot can adapt to changes in the trajectory. TOORAD

could potentially be used in conjunction with methods from literature. Many robot-assisted

dressing methods from literature use learning from real-world trials to perform trajectory

optimization and improve dressing performance. These methods could be used to refine the

trajectories selected by TOORAD after interaction with users.
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4.5.1 Limitations

There are some limitations to our work with TOORAD and our evaluations. Although the

problem formulation starts with exploring the whole space of possible actions by the robot

and person, we constrain that space to achieve tractability as described in Section 4.3.1.

However, actions that we removed from our actions space may be valuable for dressing.

Feedback from participants suggests that our constrained action space may be preferred by

for some people, but that different actions may be preferred by others.

We implemented a robot-assisted dressing system with the purpose of testing TOORAD

in the real world with participants with disabilities. Many avenues exist to improve that

system. Use of the system required experimenter intervention to attach and reattach the

robot’s tool to the gown, move the robot’s base, and configure the robot’s arm prior to

starting tasks. Previous work has addressed many of these actions [75, 23], and could be

added to the system.

Although this method of modeling range-of-motion constraints worked sufficiently

well for many of our participants, it may not work for all people. For example, one of

our participants experiences dependencies between joints where the range of motion of

one joint depends on the configuration of another joint. This type of range of motion

limitation can be difficult to capture using our method for modeling range of motion. We

applied range-of-motion limitations to the optimization as a binary function: if the person’s

configuration is out of range, the configuration is discarded. Other binary functions for

checking range-of-motion, such as that by [akhter2015pose] and [jiang2017data], could

replace the range of motion modeling currently used in TOORAD.

4.5.2 Participant Survey Highlights and Lessons Learned

We expect that the responses to the survey of needs, habits, physical capability, and thoughts

on robot-assisted dressing of the six participants with disabilities can guide future research.

Here we present some key take-aways and lessons learned from conducting the study with
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participants with disabilities.

Dressing assistance needs varied

The need for assistance for each type of garment varied by participant, with one exception.

All participants indicated that they would like assistance with buttons (and many also with

zippers), because they require fine motor control of both hands. Otherwise, participants

wanted assistance with different garments and wanted different forms of assistance. All

participants suggested that the robot should be able to help with many garments and dressing

tasks.

Participants indicated consideration of the difficulty of dressing is important when

selecting the garments they choose to wear. Several also suggested that if specialized

garments would allow them to receive dressing assistance from a robot instead of from a

human caregiver, they might be open to wearing such garments.

A robust task-execution system is helpful

We observed that having a system that could adapt the robot’s movements to a dynamic

environment using some sort of feedback mechanism was important for successful execution

of the dressing tasks. For example, as noted in Section 4.4.4, one participant experienced

large involuntary arm movements. Using a capacitive sensor as input in a feedback controller,

the robot was able to follow the participant’s arm as it moved, and successfully completed

the task. Other forms of feedback and control to improve the robustness of task-execution

may be valuable. We note that aspects of TOORAD increases the robustness of the solution

configurations and trajectories of the person and robot. In particular, the representations of

robot dexterity used in the robot configuration optimization helps select a robot configuration

where the robot is likely to be able to reach poses near the selected trajectory. Feedback

control without a good configurations of the person and robot might not work as well.

Keep users physically involved in the task
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Feedback from all participants suggests that it is important for users to make use of

their capabilities and to feel more involved. Some participants suggested that a high level

of involvement would make them feel empowered and more like they are independently

dressing themselves with aid from a robot. They presented this feeling in contrast to feeling

dependent on dressing assistance from a human caregiver. Participants with fine control

of the larger movements of their arms and body preferred that the robot hold a sleeve out

for them to put their arm through, over pulling the sleeve onto their arm. Participants with

decreased control of the gross movements of their arms preferred that the robot pull a sleeve

onto their arm as they hold up their arm, over having the robot manipulate their body.

Customization is important

In our study with six participants we observed large variation in the needs and capabilities

of participants. We found that our robot-assisted dressing system was only well matched

to the capabilities of four of the six participants. The other two participants were unable

to comfortably hold their arms raised, and the system could not manipulate the person’s

body to achieve a pose of the arm. Participants also differed on their preferred level of

involvement in the task, and suggested that they might want a different level of involvement

depending on the day, their fatigue, and the task. It may be valuable to have different modes

of assistance that both depend on the needs of the particular user, and also on the current

preference of the user. It may also be valuable to select a target population and design

robot-assisted dressing systems and methods for that population.

Participants were interested in general-purpose mobile robots

A frequent question from participants was if the robot used to assist with dressing might

be able to assist with other tasks around the house. Participants motivated this question

both with a practical perspective (they desired assistance with many other tasks), as well

as an economic perspective (if they were to spend money on a robot, they would want it

to do many things). This view supports our approach of using a general-purpose mobile
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manipulator for robot-assisted dressing, which is more likely to be able to do other tasks

than a fixed-base robot or a robot that has been customized solely for dressing.

Robot capabilities may limit possible assistance

Our system successfully provided dressing assistance to four of the participants by

pulling one or two two sleeves of a hospital gown onto the participants’ bodies. However,

our dressing system and our initial action policy constraints were not well suited to some

participants. We suggest a few changes that may improve the ability for a dressing system

to assist more participants. Our system used a PR2 robot that has weak arms with a max

payload of ∼ 1 kg. With this limit, it is challenging for the robot to manipulate a user’s

body. A stronger robot might allow other forms of assistance. The PR2 also has a relatively

limited workspace. We found that workspace sometimes causes the robot to require multiple

base locations to perform a task or to be unable to perform a task. A larger workspace may

be beneficial.

Consideration of the entire dressing task is hard but may be valuable

TOORAD breaks up dressing tasks into mostly independent subtasks for computational

efficiency. It additionally limits the action space of the person to holding still as the robot

pulls on the garment. We observed that these two choices can limit the feasibility of some

tasks. For example, stretching constraints for dressing the second arm after one is dressed

may not be satisfiable for some garments or some people with limited range of motion.

Dressing both arms simultaneously or alternating dressing parts of each arm (e.g., dress

left forearm, then right forearm, then left upper arm, etc), might make dressing possible for

more garments and people. We observed that simultaneously dressing both arms may be

challenging for a robot with a limited workspace, like the PR2. Alternating dressing parts of

each arm may require joint optimization of the two arms, which may present computational

challenges.
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Additional subtasks are sometimes necessary

For all participants with which we tested our system, TOORAD found that the optimal

sequence of subtasks was a single subtask for pulling the sleeve onto each arm. However,

we found that for some human models, such as those with longer arms, more subtasks were

necessary. In part, this is because it can be difficult to fit the trajectories for dressing an

entire arm into the robot’s workspace at a single base location.

4.6 Conclusion

In this chapter, we have presented task optimization of robot-assisted dressing (TOORAD),

a method to use optimization and simulation to select actions for a robot and a person to

collaborate in a dressing task. TOORAD makes use of geometric, kinematic, and physics

simulation of the person, robot, and garment in its optimization. It uses customized models

for the person to match their geometries and physical capabilities and selects configurations

of the robot to allow the task to be successful despite errors between simulation and the real

world. These models consider what the person is capable of doing, instead of what he or

she typically does. With this approach, TOORAD is able to explore a wide range of actions

for dressing in simulation, some of which might be challenging to test in the real world, or

might differ from what human caregivers do. We used TOORAD to optimize the actions

of a person and a PR2 robot to collaborate in pulling the two sleeves of a hospital gown

onto the person’s body. We performed a study with six participants with disabilities who

require assistance with dressing tasks to survey their needs, capabilities, habits, and views

on robot-assisted dressing to guide current and future research in robot-assisted dressing.

We implemented a robot-assisted dressing system using a PR2 robot and tested the actions

selected by TOORAD by dressing four of the six participants in a hospital gown. The

system used capacitive sensing to allow it to modify the trajectory selected by TOORAD

to match unexpected error in the person’s pose or movement of the person’s arm, and

TOORAD’s optimization selected a robot configuration that allowed the robot to reach these
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end effector poses in the modified trajectory. From our study and the participants’ responses

to questionnaires we provided suggestions for future on robot-assisted dressing for people

with disabilities.
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CHAPTER 5

CONCLUSION

In this chapter we discuss level lessons learned, present recommendations for researchers in

this, and highlight opportunities for future research to extend these results. Additionally, we

review the results and the potential impact of this work as a whole.

5.1 Lessons Learned

We learned various lessons along the process of performing this work, not described previ-

ously. These include design recommendations for the development of future systems.

5.1.1 Assistive Mobile Manipulation

Good placement of the robot is important

As described in Chapter 2.2, much work has explored ways to choose the placement of a

robot’s base for a task. The placement of the robot is important to the performance of the

task. Nevertheless, this problem is sometimes trivialized and is most frequently addressed

using a simple IK solver. In our work in Chapter 2, we compare our method, TOC, to

baseline algorithms, including a simple IK solver. Simple IK solvers are often used because

they are fast, online, simple to use (off-the-shelf tools exist), simple to set up (many standard

robot platforms come off-the-shelf), and are task-generic. As an example for comparison,

TOC is task-specific, and requires computation offline for each task.

In our tests both in simulation (Chapter 2) and in the real world (Chapter 3), we observed

that good placement of the robot is both difficult and important. State estimation is often

noisy, so it is important that the robot be able to perform the task despite noise. This

is particularly important when following the common robotic-manipulation paradigm of
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performing manipulation from a static base pose. It is potentially even more important when

choosing where to place a fixed-base manipulator whose base position cannot easily be

altered. We observed that base poses chosen using simple IK solvers are brittle: they only

say that if the real world exactly matches the IK solver’s model, the robot will be able to

reach the goal poses. They might be able to reach nearby poses, but have no relevant metric.

Mobile manipulation is challenging but powerful

In our interactions with participants, we frequently received feedback in favor of generic

mobile manipulators over fixed-base and task-specific robots. Although the technology is

not yet there, participants expressed hope that a robot that helps them with any one task

will also be able to provide assistance with many other tasks around their body and around

the home. We found that creating assistive robotic systems with a mobile manipulator, or

specifically, making use of the mobile base of the mobile manipulator, introduces many

problems that might otherwise be ignored. In much work from literature, the base pose of the

robot is ignored, selected using a simple IK solver, or manually selected by the researcher or

experimenter. Making mobility a feature of assistive robotic systems is exciting for the user

and can allow the robot to assist with many more tasks in more places. However, it creates

new questions that must be solved: “To where should the robot move?”

Accuracy, errors, and small details can make or break a system

When deploying robots in the real world, ensuring high accuracy and accounting for small

details is critical for success. When reaching to wipe a user’s nose, a centimeter of pose

estimation error can result in collision with the nose. In early development of a robot-assisted

dressing system, we observed that when executing a trajectory open-loop to pull a sleeve

onto a person’s arm, very small deviations of the person’s arm from the expected pose could

result in failure. We later used a capacitive sensor to track the person’s arm. Use of accurate,

local sensors and feedback controllers to compensate for errors can help to make a system
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robust to inevitable discrepancies between simulation/expectation and reality.

5.1.2 Optimization

Optimizations optimize whatever is in their objective function

This statement seems both obvious and a classic source of challenge in using optimizations.

The objective function is optimized, no matter the intention or the desired results of the

programmer. Sometimes the results are interesting, finding solutions the programmer

may not have expected. Other times, the optimization exploit some undesired loophole

in the objective function. In our work on TOC, the optimization found some unexpected

configurations that we found intriguing. We expected that the shaving task would require

two configurations of the robot, one of each side of the person. However, for a person in

bed without a wall behind the bed, the optimization found the robot could shave the person

from a single configuration if placed behind the bed. Early in our work on TOORAD, the

optimization found actions for the person and the robot where the robot snaked its arm

around the person’s arm. Those actions would not be feasible in practice, because the robot’s

arm would interfere with the garment. We later modified the models and objective function

to ensure that the optimization would discard such actions.

Understand your optimization algorithm

When using an optimization algorithm from literature, it is important to understand the

strengths and weaknesses of your chosen optimization algorithm. For example, some

algorithms work better for global search than local search and some work better with

simpler objective-function-landscapes. In our work, we primarily used CMA-ES. We found

that CMA-ES works well for local optimization of highly non-linear and derivative-free

objective functions, but we found it to be less well suited for global optimization. To improve

performance of TOC and TOORAD, we took steps to give the CMA-ES optimizations good

initializations. We found that grid-search (or brute-force optimization) can work well for
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searching the entire configuration space to find initializations for CMA-ES.

5.1.3 Design Recommendations

Provide reasonable defaults and allow customization

Designing systems for human users is challenging, as preferences and capabilities can span a

wide range. Additionally, these preferences and capabilities can change over time. We have

found, especially for novice users and those who fall in some “typical” category, default

behaviors and models can work well. For example, in preliminary informal testing of our

robot-assisted dressing system, we observed that we could provide assistance to a wide

range of sizes of able-bodied participants when trained on a 50-percentile male model.

Customization becomes more important as either the participant diverges from the default

model or preferences arise in the user. We found with our work with Henry Evans, an

expert user of the PR2 for assistive tasks, that allowing customization for preference can be

important for user satisfaction. Customization to the capabilities of the user is particularly

important for people with disabilities, where it may be valuable to take an individualized

approach to design.

Allow users access to low-level control

In Chapters 2 and 3 we investigated methods to provide some level of autonomy to an

assistive robotic system. The autonomy can reduce the complexity for the user of using the

system, improving performance and usability. However, we recommend giving access to

low-level control of all aspects of the robot in some way. Once deployed, there are countless

ways that an autonomous system can fail or that a user can attempt to leverage the autonomy

in ways the designer does not expect. Providing the user with methods to customize the

autonomy, to override behavior, and to wrest control of the robotic system is important to

allow the system to handle all cases to the user’s satisfaction. These capabilities can mitigate

user frustration when an autonomous action does not match the user’s desires.
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We made use of this feature in our assistive robotics system in Chapter 3, where we gave

the user low level control to perform the task after autonomy moved the robots into place for

the task. Low level control could allow the user to use an autonomous function for wiping

the mouth and then instead use the robot to wipe the nose, scratch the chest, etc.

5.1.4 Design Process Recommendations

Engage with varied users of the target population early and often.

Our work on TOC and the assistive robotic system implementing TOC received feedback

primarily from Henry and Jane Evans’ and we tailored our approach and the systems we

developed to meet his needs and capabilities. Although they often pushed us toward systems

and features that could apply to other people with disabilities, their experience is limited to

that of two people. In the later study on robot-assisted dressing with people with disabilities,

we caught a hint of how varied disabilities can be and how innovative people can be in

managing disabilities. Each participant in that study had different capabilities, needs, habits,

and views on how they would want a robot to provide assistance with dressing.

We did not conduct that study with people with disabilities until 3 years into our work

on robot-assisted dressing. When it became time to test TOORAD with a target population,

we first had difficulty identifying a target population whose capabilities and needs were well

matched to TOORAD’s approach. In retrospect, earlier consideration of the target population

may have aided in the research process and making our work more easily applicable and

testable. Earlier engagement with varied users of the target population may have benefits of

allowing a user-centered design process, iterative improvement of systems, and ultimately

more practically useful outputs.
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Receiving Feedback

Receiving feedback: Sometimes users are right and sometimes they are less right

Feedback from a variety of sources, especially users of the target population, tends to

significantly improve the resultant system. However, incorporation of feedback into a

system design can be challenging as no single design will satisfy all users. Additionally,

The system designer may possess expertise or a vision of the system that users do not share.

We found that user feedback may disagree with the thoughts of the designer.

It is necessary, to carefully consider all feedback, no matter how absurd it may seem.

Consider the content of the feedback, context of the feedback, rationale for the feedback. Ask

for further explanation to better understand the feedback. In cases where user satisfaction is

most important, it may be necessary to cater to the whims of the user despite doubts on the

part of the designer. In many cases, the user identifies important and relevant issues that the

designer may not have considered or may have assigned less significance. Other times, the

user’s feedback may be based on experiences or preferences that are not applicable, or they

may be based on a lack of expertise.

We received much feedback from Henry Evans during our development of the assistive

robotic system. All of it was extremely beneficial and helped improve the system. From

that feedback, I will give one example where the user was “less right”, but the feedback

was still valuable. During initial development of the assistive robotic system, Henry would

sometimes demonstrate how he would teleoperate the PR2 to perform an assistive task

around his body. He would often completely straighten one of the PR2’s arms, point it at his

own body, and begin driving the robot’s base towards himself. Similarly, when teleoperating

manipulation around his body, he would often keep the PR2’s arm straight and use the base

movements to position the arm’s end effector. When the firsts tests of our system failed

spectacularly, he suggested making the assistive system copy the actions and configurations

he demonstrated. However, his demonstrations contradict both the configurations selected
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by TOC and “common knowledge” of robot safety that a fully straightened robot on a

mobile base is not a great idea, as it can directly transfer force from the movement of the

robot’s base. With a straight arm, manipulability is low, and we aimed to minimize base

movement, not use it as a replacement for arm movement. In this case, the rationale for

Henry’s actions was that base movements were much faster than arm movements on our

system for teleoperation of the PR2. This feedback led us to include in our autonomous

functions movement of the arms to the task area to simplify and speed up the task for the

user.

5.1.5 Robot Deployment Recommendations

Success rates and robustness are important for building user trust

In the years spent developing the assistive robotic system presented in Chapter 3, we

experimented with many different modules and methods for providing the user experience

we were ultimately able to provide. Some of the modules of the system worked most of

the time, say with a 90% success rate. When testing that module alone it seemed like a

manageable success rate. However, when combined in a system with 5 other modules each

with a 90% success rate, we had a system that often failed. Along that process we learned

that the success rate for individual modules in a complex system must be very high.

When testing these early systems with Henry Evans we learned the importance of

system robustness in maintaining the trust of users. Users often want the system to “just

work.” A few system failures can quickly erode that trust and lead to a negative view of the

system. When deploying a robot, the user should be considered an important stakeholder

and management of their trust should be a priority.

Test in the real world for real-world systems

When preparing a system for use in an environment, it is important to test in that same

environment. We discovered on many occasions that parts of our system that had been

121



extensively tested in our lab failed to work when deployed in Henry Evans’ home in

California. Lighting, floors, walls, room dimensions, environmental obstacles, etc, can all

cause systems to fail. For example, the tests of the assistive robotic system took place in

Henry Evans’ bedroom. In early tests of the system, our method for autonomously driving

the PR2 to a location would collide the robot’s arm with the wall, because of the limited

space in the room.

5.2 Future Work

The work we have presented in this dissertation suggests numerous opportunities for further

research and development. We explore and provide recommendations for future work.

5.2.1 General Assistive Robotics

In continuing research on general assistive robotics (in contrast to robot-assisted dressing),

we recommend some areas for future investigation.

Continued Development of TOC

In our work on TOC we identified potential future avenues of research. In its current state,

TOC does not use a distance metric in its objective function to avoid configurations where

the robot is very close to collision with the person or environment. In selecting the base

pose of a robot, we observed there is a trade-off between how close the robot gets to the

person receiving assistance. In general, the closer the robot is placed, the higher the TC-

manipulability score. However, the closer the robot is placed, the higher the likelihood that

the robot will collide with the person or environment when reaching poses around the person.

We noted in our discussion of related work that others have used the minimum distance

between the robot and obstacles as an additional term for evaluating robot dexterity. To

improve the speed of TOC’s computation, we instead used expanded models of the person

and environment. Inclusion of a distance-to-collision term in TOC’s objective function
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might improve its performance.

Continued Development of Assistive Robotic System

There remain many potential improvements to the assistive robotic system. We recommend

user-centered design with iterative improvement and frequent feedback from users as an

approach to this area. Much of the user experience remains overly complicated, with few

autonomous functions to simply task execution. Additional autonomous functions, including

some utility functions would be valuable. Two possible utility functions would be picking

up or swapping tools and driving away to an out-of-the-way location to recharge the robot’s

battery.

Assistive Robotic Devices

The robotic bed, Autobed, could be improved in many ways. In its form used in the assistive

robotic system, it used a Hokuyo scanning laser rangefinder to measure the height of the bed,

and an accelerometer to measure the angle of the head rest. Both sensors were attached to the

bed using velcro. Design of the bed’s sensing capabilities could be improved to be cheaper,

better mounted, and more accurate. Additionally, the method we used for estimating the

pose of the person in bed was very simple, using the center-of-mass in the pressure image

to fit a 3D human model. The level of accuracy of our pose estimation limited the ability

for the PR2 to autonomously perform tasks. With sufficiently accurate pose estimation,

autonomous task execution may be feasible.

The benefits we found from using a robotic bed in collaboration with a mobile manip-

ulator suggest the potential for developing additional assistive robotic devices. A robotic

wheelchair could provide similar capabilities to a robotic bed, but for users in wheelchairs.

A robotic lamp might provide illumination for improved perception in poorly lit areas. A

robotic nightstand might be able to move to provide better access for a mobile manipula-

tor. A second mobile or fixed manipulator could also provide valuable capabilities to a
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collaborative robotic system.

Application to Other Robots

The design of TOC and the robotic system for bedside assistance are such that other robots,

other robotic beds, and other environment can be used in place of those we investigated.

The requirements to make such changes are that the models used be swapped. For example,

if a different robot model were loaded into OPENRave in place of the PR2, TOC could be

used to select configurations for that new robot.

5.2.2 Robot-Assisted Dressing

The field of robot-assisted dressing remains largely open, but we can recommend a few

notable areas for future investigation based on our work.

Extensions from TOORAD

TOORAD limits the space of actions of the person and the robot to achieve tractability. We

take the approach of having the person move to and hold a configuration of their arm for

each subtask of the dressing task as the robot moves the garment onto the person’s body.

We additionally constrained the garment’s trajectories to linear paths, one for each major

limb segment (e.g. forearm, upper arm). TOORAD could easily be extended by altering the

space of possible actions. Some participants expressed that they would prefer the robot hold

the sleeve of the gown by their arms so they could put their arms through.

Participants also highlighted several other garments and dressing tasks with which they

would particularly like assistance. Those include T-shirts, jackets, and closing buttons.

Application of TOORAD to other garments might be a valuable extension of the work.
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Integration of Methods

TOORAD is an offline process for helping select actions for the robot and person. Other

researchers have presented methods for improving trajectories over several attempts by the

robot. Such methods could be integrated with TOORAD to improve the trajectories over

time.

Execution-side Methods

We observed that small discrepancies between simulation/expectation and reality could result

in failure of the dressing task. This can be due to human error (it can be very challenging

for a person to hold a pose with high precision), involuntary movements from a disability, or

other reasons. We used capacitive sensing to allow the robot to adapt to differences in the

pose of the person’s arm along one axis. We had previously attempted force-based feedback

control and found that using only force, the sleeve would often get caught on the arm. We

recommend additional investigations into control and sensing methods for allowing the

robot to adapt better to the unexpected during dressing.

Continued System Development

There are many areas of potential improvement with the robot-assisted dressing system

we presented to test TOORAD. The system required experimenter intervention between

each subtask. A new tool that allows the robot to grasp the garment without experimenter

intervention would be an important step towards a system that can be used independently.

Additionally, the system would benefit from methods for accurately perceiving the user and

the environment and from a method for autonomously moving the robot into position for

each subtask.
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5.2.3 Commercial Product Development

There are no current commercially available mobile manipulators of a reasonable price for an

average person. We hope that the work presented in this dissertation suggests potential uses

and markets for such devices. We have shown the feasibility of using mobile manipulators

for providing assistance to users with disabilities with assistive tasks that involve moving

a tool around the user’s body as well as with dressing tasks. There is great potential for

development of commercial products that perform a similar function.

5.3 Final Thoughts

Assistive mobile manipulators have the potential to increase independence and quality of life

for people with disabilities. The robot’s assistance could enable users to perform tasks which

would otherwise be difficult or impossible. Through this dissertation we have explored

methods to realize that assistance.

Although many groups have looked at how a robot could execute some specific tasks,

few have considered where to place the robot to better provide assistance. We have observed

that this problem arises frequently in real-world settings and solving the problem can be

challenging, even for an expert user. We sought to answer the question “How should a robot

choose a configuration of its base to be better able to provide assistance?” In answering

this question we expanded the problem to better fit common scenarios in assistive robotics,

where tasks are complicated, involve a person with disabilities, and the person is in an

real-world environment that must be considered. We presented task-centric optimization

of robot configurations (TOC), a method for addressing this question. We demonstrated

how TOC can select one or more robot configurations for many assistive tasks that involve

the robot moving a tool around a person’s body. We additionally provided evidence that

TOC outperforms baseline methods from literature. We demonstrated an assistive robotic

system with a robotic bed and a mobile manipulator that used TOC to allow the two robot to
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autonomously collaborate to better provide assistance. We tested this system with a person

with severe quadriplegia in his home, providing evidence of the feasibility of TOC and the

robotic system for providing real assistance to real people. Our results also suggest that: (1)

a robotic bed and mobile manipulator can work collaboratively to provide effective personal

assistance, and (2) the combination of the two robots is beneficial.

Through our work on assistive robotics, we recognized that an important ADL, dressing,

both was under-explored and contains special challenges not fully addressed by our previous

methods. We presented task optimization of robot assisted dressing (TOORAD), a method

for selecting actions for both the robot and a person that will result in successful dressing. We

demonstrated the efficacy of TOORAD in a study with participants with disabilities receiving

dressing assistance from a mobile manipulator. In that study, we also administered surveys

on habits, needs, capabilities, and views on robot-assisted dressing that we expect will

provide guidance to future research. Although much work remains to develop robot-assisted

dressing methods and systems to the same level effectiveness as my human caregivers,

TOORAD represents an important step along that path.

Together, the contents of this dissertation constitute a step towards our longer-term goal

for assistive robots. We would like to enable robots to provide effective assistance with any

task to people with a wide range of needs and capabilities.
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APPENDIX A

CODE, VIDEO, AND DATA RELEASE

A.1 Code

The code for the TOC, the robotic system for bedside assistance, and TOORAD has been

made available through following public repositories:

• TOC:

– https://github.com/gt-ros-pkg/hrl-assistive/tree/ari_

dart_devel/hrl_base_selection

• Robotic System for Bedside Assistance:

– https://github.com/gt-ros-pkg/hrl-assistive/tree/integrated_

system_evaluation/hrl_base_selection

– https://github.com/gt-ros-pkg/hrl-assistive/tree/integrated_

system_evaluation/assistive_teleop

– https://github.com/gt-ros-pkg/hrl-assistive/tree/integrated_

system_evaluation/hrl_task_planning

• TOORAD:

– https://github.com/gt-ros-pkg/hrl-assistive/tree/ari_

dart_devel/hrl_dressing

– Code that runs PhysX is currently held privately, but will be released on request.

A.2 Video

Videos for the execution monitoring and the robot-assisted feeding are available at:
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• A System for Bedside Assistance that Integrates a Robotic Bed and a Mobile Manipu-

lator: https://youtu.be/9yg-NpY1HRE

• TOORAD: Robot-Assisted Dressing: https://youtu.be/BJSPlucGwmE

A.3 Data

The training and testing data for estimating the pose of a person using a pressure mat has

been also made available through following file server, ftp://ftp-hrl.bme.gatech.

edu.
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