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SUMMARY

Enabling multi-hop wireless mesh networks with multi-input multi-output

(MIMO) functionality boosts network throughput by transmitting over multiple or-

thogonal spatial channels (spatial multiplexing) and by performing interference can-

cellation, to allow links within interference range to be concurrently active. Fur-

thermore, if the channel is in a deep fade, then multiple antenna elements at the

transmitter and/or receiver can be used to transmit a single stream, thereby improv-

ing signal quality (diversity gain).

However, there is a fundamental trade-off between boosting individual link perfor-

mance and reducing interference, which must be modeled in the process of optimizing

network throughput. This is called the diversity-multiplexing-interference suppression

trade-off. Optimizing network throughput therefore, requires optimizing the trade-off

between the amounts of diversity employed on each link, the number of streams mul-

tiplexed on each link and the number of interfering links allowed to be simultaneously

active in the network.

We present a set of efficient heuristics for one-shot link scheduling and stream

allocation that approximately solve the problem of optimizing network throughput

in a single time slot. We identify the fundamental problem of verifying the feasibility

of a given stream allocation. The problems of general link scheduling and stream

allocation are very closely related to the problem of verifying feasibility.

We present a set of efficient heuristic feasibility tests which can be easily incor-

porated into practical scheduling schemes. We show for some special MIMO network

scenarios that feasibility is of polynomial complexity. However, we conjecture that in

general, this problem, which is a variation of Boolean Satisfiablility, is NP-Complete.

xii



CHAPTER I

INTRODUCTION

The fundamental limit to the capacity of a wireless channel is shown by Shannon’s

capacity equation, to be imposed by the signal-to-noise ratio (SNR) of the channel

and the bandwidth of the channel [4]. Achieving capacities that approach Shannon’s

theoretical limit is the main challenge that wireless communication technologies face.

The capacity of a single-input single-output channel corrupted by an additive

white Gaussian noise (AWGN), at a level of SNR denoted by ρ, having a bandwidth

B and a normalized, random channel gain h can be written as

C = B log2(1 + ρ|h2|) Bits/Sec

Telecommunication systems are continually striving to improve performance and

spectral efficiency. Efforts in this direction include OFDM, CDMA, space-time cod-

ing, opportunistic communication and MIMO (multi-input multi-output), to name a

few. The most promising of these is MIMO, where transmitters and/or receivers are

equipped with multiple antenna elements.

The traditional way to achieve higher data rates is by increasing the signal band-

width. Unfortunately, increasing signal bandwidth of a communications channel by

increasing the symbol rate of a modulated carrier increases its susceptibility to mul-

tipath fading. Solutions like OFDM partially remedy this problem.

On the other hand, the underlying concept of MIMO communication is that the ef-

fective SNR of the system can be increased by transmitting independent data streams

simultaneously on orthogonal spatial dimensions over the same physical channel (fre-

quency spectrum). This is called spatial multiplexing. A rich scattering environment

provides independent transmission paths from each transmit antenna to each receive

1



antenna. A MIMO link with kt transmit antennas, kr receive antennas and with a

kr × kt channel normalized matrix H and unit bandwidth has a capacity equal to

C = log2

[
det
(
Ikr×kt +

ρ

N
HH∗

)]
Bits/Sec

where ρ, is the average SNR at any receiving antenna. For a large number kt = kr = K

of antennas and a channel with rich multipath, the average value Cav of this capacity

increases linearly with M .

Cav ≈ K log2(1 + ρ|h2|) Bits/Sec (1)

Therefore in theory, with an ideal full rank channel matrix, arbitrarily large capacities

can be realized if a large number of antenna elements can be employed.

1.1 MIMO Enabled Networks

Current telecommunication standards such as WiMax, Wifi, HSPA, 4G and wireless

mesh networks (WMNs) are increasingly adopting MIMO functionality. 1 In partic-

ular, wireless mesh networks are emerging as a revolutionary technology that enables

seamless connectivity across large areas, entire cities even.

Wireless mesh networks are a subclass of ad hoc networks with the distinguishing

feature being that the routing nodes are stationary, unlike in wireless ad hoc net-

works (MANET’s). WMNs lend themselves to self-configuration, self-healing, self-

management and self-optimization with the added benefit of not having to deal with

rapidly changing channel conditions owing to the stationariness of the routers (see

Figure 1).

In the discussion above, the spatial multiplexing (SM) capability of MIMO was

seen to deliver enormous capacity gains. It involves exploiting the spatial dimensions

1Interestingly, even wired technologies such as ITU-T G.9963 are adopting MIMO capabilities.
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Mesh clients
(mobile)

Mesh router
(stationary)

 gateway

internet

Figure 1: An Infrasturucture/Backbone Wireless Mesh Network.

of the communication link by using channel information at the receiver (and transmit-

ter) to recover independent data streams sent on the MIMO channel. A major issue

to be dealt with in wireless networks is the capacity reduction due to interference

between concurrently transmitting links within interference range of one another [6].

In addition to spatial multiplexing, another primary advantage of MIMO communi-

cation is the ability to cancel interference between simultaneously active interfering

links. With adequate channel state information, signal processing at the transmitter

and/or receiver of a MIMO link can be used to decode each of the transmitted streams

on the given link while canceling interference from surrounding interfering links.

Therefore, equipping routers in a wireless mesh network with multiple antennas

greatly boosts network throughput through 1) increasing the rates on individual links

by allowing multiple parallel data streams to be multiplexed over orthogonal spatial

channels and through 2) allowing links within interference range to be simultaneously

active by performing interference cancellation (IC).

3



The past two decades have seen an extensive amount of research activity in the ar-

eas of MIMO channel capacity characterizations, MIMO channel interference handling

techniques, cross-layer optimizations in interference limited wireless mesh networks

with MIMO links, MIMO-aware MAC layer link scheduling.

1.2 MIMO Network Throughput Optimization

Applying spatial multiplexing on individual MIMO links increases the rates on the

links by approximately a multiplicative factor equal to the number of antenna ele-

ments used. Furthermore, a MIMO array can be used to improve the bit error rate

(BER) by using multiple antenna elements to transmit a single data stream. This

is called spatial-diversity gain and is advantageous when the channels are subject to

fades. Network-wide optimization of MIMO resources improves the throughput by a

greater amount as compared to applying link-by-link optimization ([54], [49], [89], [8]).

A relatively small amount of work has been done on network-wide optimization of

MIMO systems. In this thesis, we consider the problem of maximizing throughput

in an arbitrary multi-hop MIMO network in a single time slot. One of the key fac-

tors that distinguishes the MIMO network optimization problem from optimization

of traditional single-antenna systems is the capability of MIMO links to perform IC.

Eliminating interference allows greater spatial reuse, which increases the overall ca-

pacity of a wireless network. However, the use of MIMO resources for interference

suppression by a link reduces the resources available to maximize the link’s individual

capacity through spatial multiplexing and/or its BER through spatial diversity [45].

Thus, there is a fundamental trade-off between boosting individual link performance

and reducing interference, which must be modeled in the process of optimizing net-

work throughput. This is called the diversity-multiplexing-interference suppression

trade-off on which very little work has been done [65, 68]. In this thesis, it is precisely

this three-way trade-off that we model and characterize. We do this while accounting

4



for variable-rate streams on individual MIMO links, as well as across different links

(see section 1.3).

1.3 Physical Layer and Network Layer Models

A relatively small amount of work has been done on network-wide optimization of

MIMO systems. Characterizing a complete MIMO communication system with sim-

ple, yet accurate, abstractions for the complex behaviors of MIMO links is necessary

for the tractability of a network level optimization. The majority of MIMO networks

research has used a “degrees of freedom” (DOF) model [23], which accounts for only

two capabilities of a MIMO link: spatial multiplexing and interference suppression [5].

Antenna elements provide DOFs that can be divided arbitrarily between spatial mul-

tiplexing and interference cancellation (see Chapter 3 for detailed discussion). This

model does not account for data rates that vary with SINR, i.e. the data rate is

assumed to be fixed and there is a single SINR threshold above which, the fixed data

rate is achieved on the link and, below which, no communication is possible. This

is called the uniform rate model. Therefore, for MIMO networks research to blos-

som, new models are necessary that can more completely capture the complex and

multi-faceted operation of MIMO.

In this work, we have remedied this shortcoming by employing a model ([45,

61]) that accounts for the fact that when a MIMO link (with channel matrix H),

multiplexes a number s of streams such that s < min(kt, kr), then the transmitter can

allocate power to the s strongest channel modes. The receiver correspondingly sets

its weight vector so that the s streams each benefit from a gain equal to the s largest

eigen-values of HH∗, where H∗ is the complex conjugate of H (see Chapter 7 in [5]).

These operations require both the transmitter and the receiver to have complete

knowledge of the channel. These eigen-values or equivalently, stream gains, are not

equal and, for moderate-to-low SNR, they can have quite large disparities, even in the

5



presence of interference [67]. Therefore the incremental aggregate capacity of a MIMO

link becomes progressively smaller as the number of spatially multiplexed streams

is increased. This is called the variable rate model [54, 50]. The Figure 2 shows

how employing the variable-rate model enables us to achieve a higher throughput as

compared to when the uniform-rate model is used.

The channel is modeled as an idealized rich scattering static environment, which

corresponds to a quasi-static flat Rayleigh fading channel model. Therefore, the

channel has i.i.d. complex, zero mean, unit variance elements as described by [58].

The gain of each channel matrix is calculated using Friis transmission equation and

the log-distance path-loss model with a path-loss exponent of 3 ([59, 70, 71, 2]). We

assume channel state information is available to the transmitters and therefore include

optimal power allocation in our rate calculations. The data rate is calculated from

Shannon’s capacity formula using the optimal power allocation [60, 5].

As discussed above, the data rate on a MIMO link is a function of the channel

between the transmitter t and the receiver r, the number of streams s multiplexed

on the link, the number of DOFs, ADOFt, available at t for multiplexing s streams

and the number of DOFs, ADOFr, available at r for multiplexing s streams. This

data rate is modeled as a rate function R(t, r, ADOFt, ADOFr, s). No assumption is

made on the rate function, that is, it can be any arbitrary function.

For the purpose of simulation however, we chose to approximate the data rate as

follows. We first perform antenna selection and then find the optimal data rate as

described above. Suppose the transmitter uses t antenna elements for transmission

of s streams and that the receiver uses r antenna elements for reception. We perform

best eigen-value selection by picking the t transmit elements and the r receive elements

that maximize the data rate of the link. We then calculate the rates for the case of

1 ≤ s ≤ min(t, r) streams by allocating power through the best s eigen-modes of the

t× r channel.
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The variable-rate model is the basis for our analytical and experimental results

throughout this thesis. We tackle the MIMO network throughput optimization prob-

lem by 1) modeling the spatial multiplexing-interference suppression trade-off based

on the degrees-of-freedom2 approach and by 2) modeling the spatial-diversity gain

based on the variable rate concept. The problem to be solved in this thesis is defined

in the next section.
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Figure 2: Field with N = 2 − 18 nodes uniformly distributed. variable-rate model,
best antenna(red); uniform-rate model, best antenna(pink); variable-rate model, ran-
dom antenna(blue); uniform-rate model, random antenna(cyan)

1.4 Problem Statement

The problem at large, is to determine which links of a MIMO network, when sched-

uled together concurrently, will maximize the aggregate throughput. This is a version

of network scheduling in a MIMO setting where the goal is to maximize the through-

put delivered in a single scheduling slot. We identify three inter-related problems

discussed below [54].

2The DOF model was briefly discussed above and is described in detail in Section 2.3.
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1.4.1 Feasibility

The problem of feasibility is to determine if a set of links can be concurrently active

such that all individual transmissions are successful, under a given interference model.

In the case of non-MIMO systems, this problem reduces to determining whether

there exists a pair of links in the given set that interfere with one another. Since the

number of link pairs is polynomial, checking feasibility in non-MIMO systems is a

polynomial time operation.

On the other hand, the interference suppression capability of MIMO links makes

the problem of checking feasibility highly complex. For transmitters and receivers

to both have interference handling capability, channel information must be known

at both ends. This is the assumption we make in this thesis. Thus, the problem of

determining whether all interference in an arbitrary MIMO network can be eliminated,

is an important one3.

1.4.2 Stream Allocation

In this thesis, we assume that each MIMO node is equipped with a single radio.

This means that a node can participate in only one transmission at a time, either

as transmitter or as receiver. A set of communication links is said to be primary-

interference-free if a node that is assigned to be a transmitter is not also assigned to be

a receiver in the same time slot and vice-versa. Links that are primary-interference-

free have the potential to be scheduled concurrently. The stream allocation problem is

to find an optimal stream vector over a given set of primary-interference-free links. An

optimal stream vector is defined as a feasible stream vector with maximum aggregate

transmission rate.

3However, in the case that channel information is available only at the receivers, the problem of
feasibility in the MIMO network reduces to a polynomial time operation. We prove this result in
Section 5.3.
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1.4.3 One Shot Link/Stream Scheduling

In the stream allocation problem, a set of primary-interference-free links is given.

However, in classical one-shot link scheduling, the problem is to determine which

links, when scheduled together concurrently, will maximize the aggregate rate. In

other words, this is a version of the general link scheduling problem in which the goal

is to maximize the data throughput in a single scheduling slot.

1.5 Contributions

The primary contributions of this thesis are

1. A mathematical model that enables an elegant analysis of the MIMO feasibility

problem is developed. Feasibility checking is shown to be a variation of the

Boolean satisfiability problem.

2. An analytical expression for the optimal total number of streams of a MIMO

single collision domain (network where all active links mutually interfere) is de-

rived. This optimal is achieved by optimizing the spatial multiplexing-interference

suppression trade-off.

3. Several special cases of the MIMO network scenarios are identified, for which

verifying feasibility can be done in polynomial time. These are for arbitrary

multi-hop networks a) when interference suppression is done only on the receiver

side but not on the transmitter side and b) when the maximum array size of all

nodes is at most equal to two.

4. A necessary and sufficient condition for feasibility is derived for the specific case

of arbitrary symmetric multi-hop networks for which the maximum array size

of all nodes is equal to three and all links carry one stream.
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5. We find that the problem of verifying feasibility is a variation of Boolean satis-

fiability and is very likely to be NP-complete. Since most link scheduling algo-

rithms require the repeated testing for feasibility of stream allocation vectors,

and since feasibility is such a complex problem in the MIMO setting, efficient

heuristic tests for feasibility are needed. We have designed three efficient heuris-

tic feasibility tests which can be incorporated within practical MIMO scheduling

algorithms.

6. Four heuristics for the optimal stream allocation problem are developed and

their performance is compared against the absolute optimal (obtained by brute

force calculations). These heuristics are an important contribution because of

the following. In general, existing stream allocation and link scheduling algo-

rithms are iterative procedures which perform a feasibility test in each iteration.

While this is computationally tractable for single-antenna systems, in the case

of MIMO systems, the approach becomes impractical owing to the complexity

of checking feasibility. Our stream allocation heuristics provide a practical so-

lution to this. They are designed so as to employ the efficient feasibility test(s)

that we developed, as a sub-routine in each iteration. The stream allocation

heuristics are flexible in that they can be used with any feasibility test in general.

These procedures are accurate and computationally efficient approximations to

solving stream allocation problem for throughput maximization. Although we

have not studied the general link scheduling problem in this thesis (only one-

shot link scheduling was studied), our stream allocation heuristics can be used

as a starting point in developing a link schedule.

7. From the study of the stream allocation algorithms, we made the important

observation that their performance is very sensitive to the accuracy of the feasi-

bility tests that they employ. This is a direct motivation for developing accurate
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MIMO-network feasibility tests - a subject that has not received adequate at-

tention from the research community.

1.6 Thesis Organization

The remainder of this thesis is organized as follows.

• Chapter 2 provides some necessary background material on the basic principles

of MIMO communication. The underlying system and network models are

developed and the set of modeling assumptions made are listed and justified.

• Chapter 3 discusses important prior work related to MIMO communication the-

ory; techniques for interference suppression; approaches towards solving the net-

work throughput optimization problem such as stream allocation, link schedul-

ing, routing, stream control and cross-layer optimizations.

• Chapter 4 develops a detailed mathematical formulation of the problems to be

solved, namely, the problems of verifying feasibility, optimal stream allocation

and one-shot link scheduling for throughput optimization.

• Chapter 5 presents a mathematical framework for casting the problem of fea-

sibility as well as analytical results on feasibility for both the MIMO single

collision domain and for arbitrary multi-hop MIMO networks. These results in-

clude analytical expressions for optimal throughput/optimal stream allocation

ad complexity analyses of verifying feasibility in various network scenarios.

• Chapter 6 develops heuristic methods of verifying feasibility, presents experi-

mental results and performance evaluation of different feasibility tests.

• Chapter 7 develops various approximate methods of optimizing one-shot net-

work throughput by stream allocation and link scheduling. Performance of
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these methods in terms of accuracy and computational cost is studied through

experimental results.

• Chapter 8 addresses work that was done during the course of writing this thesis,

that delivered promising results but which still has to be refined before being

reliably applied. Specific challenges that must be overcome in this respect are

discussed. Interesting open problems that resulted from our investigations dur-

ing the course of this thesis and recommendations for future work are discussed.

• Chapter 9 A summary of the conclusions drawn from this research work is

discussed.
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CHAPTER II

BACKGROUND AND SYSTEM MODEL

A wireless network wherein the deployed nodes are equipped with multiple antenna

elements is called a MIMO network. MIMO capabilities, provided by the antenna

elements present at each end of a MIMO link, include delivering array gain, diversity

gain, spatial multiplexing, and performing interference cancellation. The goal of this

research is to use the MIMO resources available on individual links to optimize overall

network performance, rather than to separately optimize link-by-link performance,

which can lead to sub-optimal network performance. This chapter describes the

principles of MIMO communication and establishes the system model employed in

this research work.

2.1 Basic MIMO Principles

MIMO links are equipped with digital adaptive array antennas at both ends. A MIMO

communication link consists of kt transmit antennas and kr receive antennas. The

components of a MIMO system are 1) a transmitter with a space-time modulator

that maps bits to space-time codewords, 2) a matrix propagation channel H that

is a function of the wireless environment, and 3) a space-time receiver that uses

an estimate of the propagation channel to decide on the transmitted bit stream. A

practical assumption that is made in the literature is that the transmission bandwidth

is much smaller than the coherence bandwidth of the channel and that the block

length is much smaller than the coherence time. In this case the propagation channel

H from the transmitter to the receiver can be described as a kr x kt matrix whose

kth column describes the complex scalar coefficients from the kth transmit antenna

to each receive antenna. In ideal, rich scattering environments, H is of full rank i.e.
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the channel between any given transmit antenna and receive antenna is independent

from the channel between all other transmit-receive antenna pairs. In this case, the

transmitter and receiver antenna arrays can be adaptively used to boost the link

rate by spatial multiplexing independent data streams. In addition to the spatial

multiplexing gain, MIMO links can also be used to deliver array gain and diversity

gain in the wireless channel and to eliminate interference in the surrounding region [1].

Array gain occurs in an array receiver when the desired signal parts of each an-

tenna element add coherently while noise adds incoherently. Thus, the signal strength

is roughly multiplied by the number of antenna elements kr, while the noise strength

is not substantially increased. This results in a factor of kr increase in signal-to-noise

ratio (SNR) after signal combination, compared to the average SNR at an individual

antenna element.

Spatial multiplexing gain results when a transmitter transmits multiple streams at

the same time using its multiple antenna elements. In the simplest case, the transmit-

ter sends a different stream on each antenna element (up to kt streams). In this case,

each element at the receiver will receive a superposition of the transmitted streams.

However, if the receiver has estimated the channel conditions through reception of a

training sequence, it knows how the signals from different transmit antenna elements

are affected by the channel and it can reconstruct the original streams. In this man-

ner, up to min(kt, kr) streams can be spatially multiplexed on a single MIMO link

(see Equation 1). This is illustrated in Figure 3.

In contrast to spatial multiplexing where the aim is to boost throughput, the aim of

spatial-diversity gain is to enhance reliability by minimizing the channel fluctuations

due to small scale fading. The core idea behind diversity gain is to send and/or

receive multiple copies of a single data stream ([1, 3]). When fading is uncorrelated

between all pairs of antenna elements, the probability that the channel between every

transmit-receive antenna pair is in a deep fade is very small. In the ideal case, when
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all channels between antenna elements are completely independent, a diversity gain

of ktkr can be achieved provided the channel is known at both the transmitter and

the receiver1.
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Figure 3: Spatial Multiplexing on a MIMO Link

If the channel is perfectly known at the receiver, then receive diversity can be

employed to improve reliability by an order of as much as kr. By this we mean that

the bit error rate (BER) reduces exponentially with the kthr power of the SNR. The

optimal method of achieving this diversity order is through maximal ratio combining.

If there is one transmit element and kr receive elements, the resulting capacity is

given by

C = log2

(
1 +

E

σ2

kr∑
m=1

|hm|2
)

(2)

where E is the average transmit power, hm is unit gain channel between the trans-

mitter and the mth receive antenna element and σ2 is the AWGN variance of the

channel.

1However, even when all channels are completely independent, arbitrarily increasing the array
sizes will produce a diminishing marginal return due to the law of large numbers.
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In the case that the channel is perfectly known at the transmitter, then transmit

diversity can be employed to improve reliability by an order of as much as kt. If the

receiver has one antenna element, the resulting capacity is given by

C = log2

(
1 +

E

σ2

kt∑
n=1

|hn|2
)

(3)

where hn is unit gain channel between the nth transmit antenna element and the

receiver. The optimal method of obtaining a diversity order of kt is through water-

filling.

Finally, when the channel is perfectly known at both the transmitter (of size kt)

and the receiver (of size kr), the capacity is given by

C = log2

(
1 +

E

σ2

kt∑
n=1

kr∑
m=1

|hmn|2
)

(4)

Each of the gains discussed above leads to increased throughput on an individual

MIMO link. Array gain and diversity gain increase SNR on the link, which in turn

leads to a higher achievable data rate. This is illustrated by Shannon’s classic formula

in Equation 2.1 and is achieved in practice by link-layer space-time coding techniques.

Spatial multiplexing gain allows multiple data streams to be transmitted concurrently

on a link, which can potentially multiply the data rate by the number of concurrent

streams (see Equation 1). While optimization of performance on a single link has been

extensively investigated, only a relatively few papers have yet considered how to make

use of these various capabilities to optimize overall MIMO network performance.

2.2 Channel State Information and Interference Suppres-
sion

With a MIMO link, interference cancellation (IC) between concurrently transmitting

links can be done by the transmitter or by the receiver or both. In the former case, we

say that the transmitter nulls interference at receivers, while in the latter case, we say
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that the receiver suppresses interference from transmitters. To completely eliminate

interference requires channel state information (CSI). Receivers can measure channels

during transmission of probe sequences in order to collect CSI necessary both for

interference suppression and for performance optimization of the channel. In many

cases, the receiver feeds back the channel state information (CSI) to the transmitter,

and the transmitter and receiver jointly perform the appropriate transformation by

using the singular value decomposition of the channel matrix. When the receiver feeds

back CSI to the transmitter, this is referred to as closed-loop MIMO, and when only

the receiver has CSI, this is referred to as open-loop MIMO. In general, closed-loop

MIMO performs better but has an overhead associated with the exchange of CSI.

Suppose there are two concurrently transmitting links l1 = (t1, r1) and l2 = (t2, r2).

Consider the interference generated by l1 on l2. One approach is for the interference

suppression to be done by the receiver r2. Suppose t1 has kt1 DOFs and its link carries

s1 streams and r2 has kr2 DOFs and its link carries s2 streams. If kr2− s2 ≥ s1, i.e. if

the total number of streams being transmitted on the two links does not exceed the

number of antenna elements at r2, then r2 can separately decode all of the streams

from both t1 and t2, and simply discard the streams from t1. This effectively eliminates

interference from l1. However, in order to do this, it is very important to note that

r2 must possess CSI for both link l2 and the unused link l3 = (t1, r2). This implies

that r2 successfully received a training sequence from t1 in order to perform a channel

measurement on link l3. Thus, in general a receiver can cancel interference from

transmitters for which it is inside the transmission range. This is called “receiver-

side suppression”, where r2 suppresses the transmission from t1 without t1 needing

to modify the way it transmits to its intended receiver. Typically, it is assumed

that there is a range, referred to as the interference range, which is greater than

the transmission range up to which transmitting nodes can interfere. A common

assumption is that the interference range is twice the transmission range. Thus, in
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most cases, a receiver is only capable of canceling interference from some transmitters

(the ones for which it is inside the transmission range) but not for others (the ones

for which it is outside the transmission range but within the interference range).

Another approach is for the interference suppression to be done on the transmitter

side. In the above example, it might be possible for t1 to null its signals at r2, so that

its transmission has no effect on that receiver. However, in order for t1 to do this, it

must know the CSI for the non-existent link l4 = (t1, r2). In general, t1 can null its

signals at r2 if it has the appropriate CSI and if kt1− s1 ≥ s2, i.e. if the total number

of streams being transmitted on the two links does not exceed the number of antenna

elements at t1. This is called “transmitter-side nulling” and it allows r2 to use all of

its antenna elements for processing its desired signal without any consideration of the

transmission coming from t1. Since there is no natural feed-back mechanism to get

the CSI of l4 to t1, even if r2 is able to measure l4, the potential use of this type of

interference cancellation is much more limited than receiver-side suppression.

An example of MIMO interference cancellation is done by the zero forcing (ZF)

beam-former, which is a linear technique. The ZF beamformer [1] is given by the

kr × kt matrix C = (H∗H)−1H∗, where kt is the number of antenna elements at

transmitter, kr is the number of antenna elements at receiver, H is the kr×kt channel

matrix, and H∗ is its conjugate transpose. Matrix C is used to either pre-process the

transmit signal at the transmitter end, or to post-process the receive signal at the

receiver end. The former is a case of the transmitter nulling interference it generates

at receivers, while in the latter case, it is a case of the receiver suppressing interference

from transmitters.

Consider the following three key benefits to using transmit and receive arrays in

a communication link:

1. The ability to mitigate interference.

2. The ability to spatially multiplex several data streams onto the MIMO channel.
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3. The ability to mitigate small scale fading (a.k.a. spatial diversity).

These benefits cannot be fully realized simultaneously through linear processing.

An antenna array (either transmitter or receiver array) with linear processing that

mitigates interference has a diminished capacity in the number of spatially multi-

plexed streams that it can decode and in its ability to combat fading, and vice-versa.

For a transmit or receive array, this trade-off is summarized by the conservation

theorem, which states (see pg.548, [1])

diversity order = M −NS −NI + 1 ≥ 1

Here, M is the number of antenna elements in the array (either transmitter or receiver

array), NS is the number of spatially multiplexed streams supported by the MIMO

link, and NI is the number of interferers (interfering transmit antenna elements) that

must be suppressed by the array if it is a receiver or the number of interfering receive

antenna elements at which its signal must be nulled if it is a transmitter. Note that

the number of antenna elements that must be used to handle interference is dependent

on the number of streams being transmitted on the interfering (or interfered-with)

link, rather than the number of streams being transmitted on the array’s own MIMO

link.

Since the diversity order should be at least one, we have

M ≥ NS +NI

The size of an antenna array therefore must be at least equal to the sum of the

number of data streams that it supports and the number of interfering streams that

it mitigates. This corresponds to the so-called degrees of freedom (DOF) model [8, 52],

wherein antenna elements provide DOFs that can be divided arbitrarily between spatial

multiplexing and interference cancellation. Note that in the DOF model, the term

“degree of freedom” is used to refer to an antenna element on either the transmitter
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or receiver, which can be used to support multiplexing of a stream on the link or

cancellation of interference with another link. This usage of the term is different from

some other work, e.g. [25, 38], in which the number of DOFs refers to the number of

independent streams that can be supported.

There is thus an evident symmetry between transmitters and receivers in terms of

the usage of available degrees of freedom in supporting spatially multiplexed streams

and in mitigating interference(assuming that perfect CSI of communication and inter-

fering links is available at all transmitters and receivers.). This is seen by considering

two interfering MIMO links each carrying s1 and s2 data streams respectively. Sup-

pose that the transmitter of link 1, T1, nulls itself at the receiver of link 2, R2. In order

to avoid putting any energy from T1 at the interfering s2 elements of R2, T1 requires

s2 degrees of freedom to project its transmit vector into the space that is orthogonal

to the space spanned by the MRC weights of each of the s2 selected antennas at R2.

The constraint on the size of T1 is therefore kt1 ≥ s1+s2. On the other hand, suppose

that R2 suppresses the s1 data streams from T1. This would impose s1 constraints

on the receive vector. The constraint on the size of R2 is therefore kr2 ≥ s1 + s2.

Hence, irrespective of whether interference suppression is done by a transmitter or a

receiver, the same constraint on the array size is felt. The DOF model is formalized

in the following section.

2.3 MIMO Degrees of Freedom Model

The use of MIMO antenna elements is typically modeled with degrees of freedom

(DOFs). The DOFs available on a link characterize the number of independent

streams that can be spatially multiplexed on the link, the amount of interference

that can be suppressed by the link, and a trade-off between these two capabilities. A

node with k antenna elements has up to k DOFs, which it can use for multiplexing

and/or interference suppression. In the absence of interference, a link with kt DOFs
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at the transmitter and kr DOFs at the receiver can support up to min(kt, kr) spatially

multiplexed streams. If DOFs are used for interference suppression, then the number

of streams that can be supported on a link is reduced.

The full degrees-of-freedom model, used for example in [56, 49, 54], allows both

transmitters and receivers to use antenna elements arbitrarily to perform spatial mul-

tiplexing and interference cancellation in a manner that accounts for the trade-off be-

tween these two functionalities. The trade-off rule requires that an antenna element

of equivalently, a degree-of-freedom that is used for spatial multiplexing is no longer

available to perform interference cancellation. Simply stated, MIMO resources can

be divided according to the number of DOFs allocated to multiplex data streams and

the number of DOFs used to perform interference cancellation. So, a transmitter t

with kt antenna elements can spatially multiplex s0 streams on its link and create

nulls at a set of interfering receivers, as long as s0 +
∑

j is a receiver ajsj ≤ kt, where sj is

the number of streams being received by the jth receiver and aj = 1 if the transmitter

creates sj nulls at that receiver and aj = 0 otherwise. Similarly, a receiver r with kr

antenna elements can receive up to s0 streams and cancel sj streams coming from an

interfering transmitter j, so long as s0 +
∑

j is a transmitter ajsj ≤ kr, where aj = 1 if the

receiver cancels interference from transmitter j and aj = 0 otherwise.

In general, a node i with k DOFs, spatially multiplexes si streams on its link and

suppresses interference with other nodes j1 . . . jn carrying sjl streams respectively, if

and only if the following inequality is satisfied.

si +
n∑
l=1

sjl ≤ k

Note from the earlier discussion that the full degrees-of-freedom model assumes

that every transmitter and receiver has CSI about its own link and any links it can

interfere with (for a transmitter) or be interfered by (for a receiver). The receiver
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degrees-of-freedom model, used for example in [9, 44], is similar to the full degrees-

of-freedom model except that it assumes that only receivers can do interference can-

cellation. Thus, in the receiver degrees-of-freedom model only the receivers need to

collect CSI, although they need to have CSI both for their own links and for every

possible interfering link that could be used concurrently with their own. Finally, the

DOF models implicitly assume a binary interference model, where one link either

completely interferes with another (in which case interference suppression is neces-

sary for the two links to be used concurrently) or there is zero interference between

the links.

2.4 Network Model

A heterogeneous network is assumed where the antenna arrays of different nodes can

be different sizes. A distinguishing characteristic of our work is that we account for

variable stream rates, both on different links and on the same link. We model this

with a rate function, which maps links to achievable rates based on their available

MIMO resources. This will be discussed later in this section.

2.4.1 Interference Model

We consider multi-hop networks consisting of a set of links L = {l1, l2, ..., lm}, where

each li is a transmitter-receiver pair (ti, ri). Any wireless propagation model can be

used to compute the set of links, given a set of node positions, or the set of links can

simply be given as input. We assume that all links use the same wireless channel.

The primary limitation on concurrent wireless transmissions in the same channel is

interference.

Primary interference is a basic constraint on concurrency of transmissions, which
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dictates that each node can participate in one transmission at a time, either as trans-

mitter or as receiver2. A set of links is said to be primary-interference-free if and

only if every node in the network appears at most once in the set, that is to say, a

node that is designated to be a transmitter for one link in a given time slot cannot

also be designated to be the receiver on another link in the same time slot. Wireless

interference models are distinguished by their assumptions on secondary interference,

which specify how two different wireless links made up of four distinct nodes interfere

with each other. For secondary interference, we adopt a simple binary interference

model wherein two links either interfere completely or not at all. Thus, we define

a directed conflict graph CG = (L,E), where the vertex set L is the set of links

to be scheduled, and directed edge (li, lj) ∈ E if transmitter ti causes interference

at receiver rj. Again, we do not assume any specific underlying interference model,

e.g. interference is not necessarily specified by a simple interference range nor do

the conflicts have to be symmetric. We simply assume that the conflicts between

links are known. The conflict graph can be computed from the set of links and the

node positions by specifying an underlying (binary) interference model or the conflict

graph can simply be given as input.

Admittedly, modeling interference as a binary phenomenon is a simplification

of reality, and using more complex SINR-based interference models as is done in

some non-MIMO wireless scheduling (e.g., [12]) would be preferable. Etkin and Tse

introduced the concept of generalized degrees of freedom in [56], which accounts for

relative signal strengths, unlike the conventional DOF model which assumes all signals

to be of equal strength. Huang, Cadambe and Jafar employed the GDOF model in [29]

to study the sum capacity of the symmetric X-channel under different interference

levels. Karmakar and Varanasi extended this model to a MIMO setting in [35] where

they characterize the capacity of a Gaussian interference MIMO channel. Again, while

2Here, we assume each node is equipped with only a single radio.
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such an approach is tractable for centralized and symmetric networks, applying SINR

considerations to arbitrary interference networks is very complex and remains and

open problem. Novel PHY layer MIMO models would have to be developed to address

this problem. For this reason, modeling interference as a binary phenomenon is a

common assumption made by researchers in MIMO networking and communication

([9, 8]) and we adopt the same assumption in this thesis.

2.4.2 Rates and Streams

The data rate on an individual MIMO link is determined by the characteristics of

the channel in between the transmitter and receiver, the numbers of DOFs used at

the transmitter and the receiver for multiplexing, and the number of multiplexed

streams. We model this with a rate function R(ti, ri, ADOFti, ADOFri, si), which

gives the rate on the link (ti, ri) when ADOFti DOFs are available at ti DOFs and

ADOFri are available at ri and si independent streams are spatially multiplexed on

the link. Note that this rate is computed in absence of interference, since in our

approach interference is always completely removed by allocating MIMO resources

and performing interference suppression. We do not make any assumption on the

rate function, i.e. it can be an arbitrary function. Note that, if the channel between

ti and ri is random (as is the case with Rayleigh fading channels, for example), the

rate on the link is also a random variable. In this case, we interpret R as the expected

data rate, which can also be thought of as the long-term rate on the link if its channel

characteristics change dynamically and at random.

Note that the rate functions as specified above are approximations to the ac-

tual rates, which depend on the instantaneous channel characteristics and the MIMO

weights that are chosen by the transmitter and receiver. While we believe those

rates to be reasonable approximations, which capture the essence of the diversity-

multiplexing-suppression trade-off, if more accurate techniques for approximating
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data rates are developed, they could easily be plugged into our problem formula-

tion.

Table 1 shows representative rates for one link used in our later evaluations. The

amount of interference generated by a link l is dependent on the number of streams

that are spatially multiplexed on l (every other link that wishes to suppress interfer-

ence on or from l must allocate one DOF for every stream on l). Therefore, while

allocating more streams on a link l increases the aggregate rate on that specific link,

more radio resources (DOFs) need to be used in the network to cancel the interference

generated by the transmitter of link l . However, while interference increases linearly

with the number of streams, there is a law-of-diminishing-returns effect on data rate

as the number of streams increases. Note in the table that going from 1 to 4 streams

increases the link data rate by at most a factor of 119.25
56.31

≈ 2.12. Thus, even if a link

has extra DOFs available, the overall network performance might benefit if the link

uses those DOFs for array and diversity gains, rather than for increasing the num-

ber of streams it transmits. For example, a link with the characteristics in Table 1

that has 3 DOFs available at both transmitter and receiver could use those DOFs to

transmit 2 streams, thereby achieving almost as high a rate as with 3 streams but

generating less interference in the network. Clearly, it is critical to know the shape

of the rate function when trying to optimize network performance.

Table 1: Link rates of a sample link (in Mb/sec) for different numbers of DOFs and
streams (kti = kri = 4)

(t, r)
s (1,1) (2,2) (3,3) (4,4)

1 56.31 76.64 85.01 87.71

2 – 82.25 104.96 116.26

3 – – 105.06 119.25

4 – – – 119.25
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2.5 Summary of Modeling Assumptions

Assumptions used in this thesis are as follows:

1. Perfect CSI of communication and interfering links is available at all transmit-

ters and receivers.

2. Transmitters and receivers are both capable of interference cancellation.

3. Interference cancellation is coordinated such that, for any link l1 interfering with

another link l2, either the transmitter of l1 nulls its signal at receiver elements

of l2 or the receiver of l2 suppresses the signal from the transmitter of l1, but

not both.
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CHAPTER III

RELATED WORK

3.1 MIMO Communication Theory

Using multiple antennas at both ends of wireless links (MIMO) is known as a unique

solution to achieve a variety of performance gains. For power and bandwidth limited

wireless systems, this opens up another dimension - space that can be exploited in

a similar way as time and frequency. This allows both transmitters and receivers to

use antenna elements arbitrarily to achieve an increase in the overall throughput by

spatial multiplexing and/or interference cancellation, up to the limits imposed by the

numbers of antenna elements they possess.

Interference management is one of the main challenges in wireless networks in

which multiple transmissions occur concurrently over a common medium. Extensive

experimental and theoretical research has been ongoing over the past decade on han-

dling interference in MIMO networks. Researchers have been studying the MIMO

Gaussian interference channels from an information theoretic perspective. The ca-

pacity region of the two user Gaussian interference channel with multiple antenna

nodes is studied in [16][18]. The achievable rate region of multiple input single out-

put (MISO) interference channel is studied in [37] where the authors treat it as strong

interference and in [36] where the authors treat interference as noise. The capacity

region of the single-input multiple-output (SIMO) is studied in [39].

While capacity characterizations have been found for centralized networks (Gaus-

sian MIMO multiple access and broadcast networks [84, 90]), similar capacity charac-

terizations for most distributed communication scenarios (e.g. interference networks)
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remain long standing open problems. In the absence of precise capacity characteriza-

tions, researchers have pursued asymptotic and/or approximate capacity characteri-

zations. A promising approach in this direction is the degrees of freedom characteri-

zation of wireless networks. The degrees of freedom (also referred to as multiplexing

gain [2] or capacity prelog) of a network approximates the capacity of a network as

C(SNR) = d log(SNR) + o(log(SNR))

Here, d is the number of degrees of freedom of the network. The degrees of freedom

(DoF) of a wireless interference network represents the number of interference-free

signaling- dimensions in the network. C(SNR) represents the capacity of a network

as a function of the signal to noise ratio (SNR).

The following subsections detail related prior work done on MIMO interference

handling, capacity characterizations of MIMO systems through information theoretic

approaches and as well as through the degrees-of-freedom approach.

3.1.1 Interference handling

At a high level, the different interference management approaches used in practice

and their information theoretic basis may be summarized as follows.

• Decoding: If the interference is strong, then the interfering signal can be de-

coded along with the desired signal. There is a price to be paid in doing this

because, although decoding the interference improves the rate of the desired

signal, ensuring the decodability of the interfering signals limits the other users’

rates. Although it is theoretically somewhat supported by the capacity results

on strong-interference-scenarios in the context of the two-user interference chan-

nel [37], the extension of these results to more than two users is not straight-

forward in general.

• Treating interference as noise: In this scheme, users adjust their transmission

power and treat the interference produced by every other user as noise. From an
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engineering stand point, it is natural and makes sense to treat weak interference

as noise and simply apply single user encoding/decoding.

• Interference avoidance or interference cancellation (IC): Users coordinate their

transmissions by orthogonalizing their signals in time or in frequency or in space.

In this thesis, all desired and interfering signals are assumed to be of comparable

strength and interference is handled through interference avoidance. The primary is-

sue of IC is balancing the need for high received signal power for each user against the

interference produced by the signal at other receivers. Several different IC algorithms

exist. While the basic idea behind these is the same, namely the use of channel

state information (CSI) to predict and then counteract the interference produced

at each node in the network, they achieve different performance objectives. Typical

performance criteria include zero-interference transmission, minimum transmit power

subject to a minimum signal-to-interference plus noise ratio at each receiver, or max-

imum throughput subject to a given transmit power constraint. Two commonly

implemented linear processing techniques used as part of IC schemes are the

• Minimum mean squared error (MMSE) beam-former - MMSE does not null

those interferers which are below the noise floor, it merely ignores them [43].

• Zero forcing (ZF) beam-former - ZF instead completely nulls all interferers

irrespective of their strengths.

These techniques can be applied at the transmitter or receiver array, provided CSI is

available.

For the greater part, existing literature assumes CSI to be available only at the

receivers. Transmitters possess no CSI. In other cases, CSI is assumed at the receivers,

with transmitters possessing CSI only of the specific communication link(s) they are

associated with. This is a suitable model for cellular networks where fast channel

29



dynamics and node mobility make it impractical for channel information to be fed

back at the desired rate. Our model however, deviates from this trend by assuming

perfect CSI of all communication links as well as of all interfering links at every

receiver and transmitter. This is a reasonable assumption, e.g., for the backbone of a

wireless mesh network, where nodes are fixed and channel conditions do not change

rapidly. Periodic measurement and sharing of channel states by receiver nodes and

feedback to every transmitter node is thus a feasible system design. In this thesis,

it is assumed that neither the transmitters nor the receivers cooperate in signaling.

In other words, each transmitter is unaware of the data of the other transmitter.

Similarly, each receiver is unaware of the signal received by the other receiver. The

main objective of such non-cooperative signaling schemes is the design of the filters

at the transmitter and receiver arrays so as to exploit the structure of the channel

matrices to maximize the system’s available DOFs. A generic method of achieving

this is by interference alignment.

As defined in [33], “Interference alignment refers to the consolidation of multi-

ple interfering signals into a small subspace at each receiver so that the number of

interference-free dimensions remaining for the desired signal can be maximized.”

The potential for overlapping interference spaces was first pointed out by Maddah-

Ali et al in [28]. They can be considered to be the pioneers of the spatial-interference-

alignment technique. Their method was improved by Jafar in [30]. Within the class of

signal vector space interference alignment schemes - alignment in frequency or space

or time - alignment in the spatial dimension through multiple antennas (MIMO) is

found to be more robust to practical limitations such as frequency offsets, compared to

other types of alignment [34]. There are a number of schemes that realize interference

alignment, each of which have certain merits and demerits but are all instances of the

same conceptualization.
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Figure 4: Interference Alignment

One such solution is to combine interference-alignment-precoding with zero forc-

ing. This is illustrated in Figure 4 and is briefly described here. The description is

borrowed from the the work of Yetis et al [33]. Consider a K−user MIMO system

where the size of the transmitter array of the kth user is M [k] and the size of its receiver

array is N [k]. The received signal at the kth receiver is Y [k] =
∑k

l=1H
[kl]X [l] + Z [k]

where Y [k] and Z [k] are the N [k] × 1 received signal vector and the zero mean unit

variance circularly symmetric additive white Gaussian noise vector (AWGN) at the

kth receiver respectively. X [l] is the M [l] × 1 signal vector transmitted from the lth

transmitter and H [kl] is the N [k] × M [l] matrix of channel coefficients between the

lth transmitter and and the kth receiver. In interference alignment precoding, the

transmitted signal from the kth user is X [k] = V [k]X̃ [k] where X̃ [k] is a d[k] × 1 vector

that denotes d[k] independently encoded streams transmitted from the kth user. The

M [k]× d[k] precoding (beamforming) filters V [k] are designed to maximize the overlap

of interference signal subspaces at each receiver while ensuring that the desired signal

vectors at each receiver are linearly independent of the interference subspace. There-

fore, each receiver can zero-force all the interference signals without zero-forcing any

of the desired signals. The zero-forcing filters at the receiver are denoted by U [k].
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The transmit and receive filters are designed such that the following conditions are

simultaneously satisfied.

U [k]†H [kj]V [j] = 0 j 6= k and

rank(U [k]†H [kk]V [j]) = d[k] ∀k ∈ {1...K}

Another solution is to perform beamforming at the transmitter of the kth user,

(∀k = {1...K}) such that a null is steered towards a subset {Rk} of the interfering

receivers. The remaining receivers which still experience interference from the kth

transmitter perform MMSE or zero-forcing or successive-interference-cancellation to

suppress this interference, and thereby decode the desired signals. This is illustrated

in Figure 5. Both interference alignment and beamforming-suppression achieve the

same performance goals in theory and differ in their implementation.
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Figure 5: Beamforming and Suppression

Yet another approach that is being investigated currently in our lab is to perform

a network-wide optimization by an iterative MMSE-based algorithm which produces

weight assignments at all transmitters and receivers such that the ratio of the received

(desired) signal strength to the interference is maximized at every receiver. The weight
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vector of every transmitter (receiver) is dependent on the weight vectors of all other

transmitters and receivers [94].

3.1.2 Information theoretic analysis and upper bounds

There is a rich collection of work on the information theoretic capacity characteriza-

tion of Gaussian interference channels [37, 55, 16, 17, 18, 22, 47, 74]. These efforts

have produced an extensive set of interesting results that successfully address various

aspects of the problem. The capacity region of the two user Gaussian interference

channel with MIMO capability is studied by Jafar and Chen in [16][18]. A special

case of the Han-Kobayashi scheme [55] is shown by Etkin and Tse in [56] to achieve

the capacity of the two-user interference channel within one bit. Furthermore, Etkin

and Tse [56] provide a generalized degrees of freedom (GDOF) characterization that

identifies different operational regimes for the two-user interference channel.

While a vast body of literature has been devoted to the investigation of MIMO

channel capacity in typical, centralized configurations such as one-to-one, one-to-all,

all-to-one, etc., the issue of characterizing capacity of MIMO-equipped networks has

been approached only recently. We on the other hand, are interested in network-wide

optimization. The difficulty in achieving such characterizations is that usage of MIMO

links introduces additional optimization parameters into an already very complex

optimization problem involving routing, transmit power control, and scheduling in

the most general formulation.

Given the complexity of this problem, researchers have been pursuing approxi-

mate capacity characterizations by adopting the degrees-of-freedom approach. The

following section adresses the study of MIMO Gaussian interference channels from a

degrees of freedom perspective.
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3.1.3 Degrees-of-Freedom (DOF) approach

The degrees of freedom (DoF) of wireless interference networks represent the number

of interference-free signaling- dimensions in the network.

The degrees of freedom of the two user MIMO gaussian interference channel with

M1,M2 antennas at the transmitters and N1, N2 antennas at their respective receivers

was shown to be min{M1 + M2, N1 + N2,max(M1, N2),max(M2, N1)} by Jafar and

Fakhereddin in [23]. For optimal wireless network design, the natural question is

whether the insights from the two-user interference channel generalize to interfer-

ence channel scenarios with more than two users. Unfortunately, for more than two

users, even degrees of freedom characterizations are not known. In [26], Cadambe

and Jafar show that the sum capacity for the K user interference channel with

M ≥ 1 antennas at each node scales linearly with the number of users when the

technique of interference alignment is used. They characterize the capacity as as

C(SNR) = KM
2
log(SNR) + o(log(SNR)). Thus, this channel has KM

2
degrees of

freedom i.e. it loses half its DOFs due to performing interference cancellation. This

result was generalized by Gou et. al. in [24] to a K user MIMO Gaussian interfer-

ence channel with M antennas at each transmitter and N antennas at each receiver.

They assume that the ratio max(M,N)
min(M,N)

= R is equal to an integer which includes MISO

and SIMO interference channels as special cases. They provide both the innerbound

(achievability) and outerbound (converse) of the total number of degrees of freedom

for this channel and show that the total number of degrees of freedom is equal to

min(M,N)K if K ≤ R and min(M,N) R
R+1

K if K > R. Their achievable scheme is

based on interference alignment. Since each user can achieve min(M,N) degrees of

freedom without interference, their result implies that there is no loss of DOFs when

K ≤ R and only a fraction 1
R+1

of DOFs are lost due to interference cancellation when

K > R. However, these results require full cooperation between all transmitters and

full cooperation between all receivers. In fact, the authors state that for this K user
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system, when the number of interferers in the system is above a threshold, which

depends on the number of transmit and receive antennas, cooperation provides no

benefit from the DOF point of view for almost all channel realizations.In this thesis

(and all our related publications) only the non-cooperative MIMO case is considered.

3.2 MIMO network wide throughput optimization

Improving the capacity of ad-hoc wireless networks to approach the Shannon limit is

one of the most important problems of network information theory. Although cen-

tralized networks such as Gaussian MIMO multiple access (many-to-one) and broad-

cast networks (one-to-many) lend themselves to tractable capacity analysis, most

arbitrary, distributed communication scenarios such as MIMO interference networks

largely remain as open problems. For these reasons, researchers have typically intro-

duced some simplification in the models and/or problem formulation in an attempt

to enable them to characterize the degrees of freedom of various distributed wireless

networks.

Approaches to this problem heretofore include bounding network throughput;

characterizing the benefits of cross-layer optimizations in interference-limited MIMO-

equipped wireless mesh networks; and characterizing optimal throughput performance

for highly restricted network scenarios.

The problem that this thesis is centered on is that of MIMO network-wide through-

put optimization. We do not consider cooperative MIMO ([89]) using antenna arrays

distributed across multiple nodes (Cooperative MIMO requires tight synchroniza-

tion [87] between transmissions on different nodes, which provides extreme challenges

for high data rate communications.). We consider the use of co-ordinated interference

suppression (either the transmitter nulls itself at an interfering receiver or the receiver

suppresses interference from that transmitter, but not both) which involves multiple

links MIMO but does not require synchronization of communications [15].
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3.2.1 Stream Allocation/Scheduling

The work [8] of Hamadoui, Shin and Jiang is closely related to ours. Here, the au-

thors study the throughput of a multi-hop wireless MIMO network. Similarly to our

work, they assume that perfect CSI is available at both receivers and transmitters.

However, although they include constraints that account for both transmitter-side

and receiver-side suppression, these are based on necessary but not sufficient feasi-

bility conditions. They cast the problem of optimal throughput determination as an

integer linear programming (ILP) formulation, whose solution is upper bounded by

the corresponding linear programming (LP) formulation. This upper bound is used to

numerically characterize throughput performance under different MIMO usages (spa-

tial reuse, spatial multiplexing, and their combination), subject to fairness constraints

on allocation of scarce wireless capacity among mobile clients. In section 4.3 we show

that our analytical results qualitatively confirm the main findings of the numerical

evaluation reported in [8] in terms of the relative throughput gains when spatial reuse

is combined with spatial multiplexing for the case of a single collision domain. Differ-

ently from the results reported here, our experimental results are exact rather than

upper bounds. Also, a considerable part of our work on the subject is very analytical

and we were even able to provide a simple closed-form expression for the optimal

throughput in the restricted case of a single collision domain. Hamdaoui, Shin, and

Maiya extend the problem formulation to include multiple frequency bands [40].

Perhaps the most closely related work to ours is the important work of Liu, Shi,

and Hou [41]. To our knowledge, their paper presented the first complete solution

to a MIMO network optimization problem. By complete solution, we mean that the

result of the optimization corresponds to a set of zero forcing equations for every node

that is guaranteed to be solvable and suppresses all interference between links. Their

approach, where links are successively scheduled such that each link is responsible

for suppressing interference with all links scheduled before it. This procedure results
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in a feasible link schedule that ensures all interference can be removed. However in

doing so, the approach precludes some feasible link schedules and is, therefore, sub-

optimal, in general.2 We instead model interference suppression based on the degrees

of freedom (DOF) model. The 3-link network in Figure 6 with every link carrying

two streams is an example of a situation where the DOF model provides a solution

ensuring that all interference is suppressed, while the OBIC approach of [41] will

not find a solution. In the solution shown, the dashed lines represent interference

suppression, every node uses two DOFs for suppression, and this is the only way to

suppress all interference. Since, in the approach of [41], the first node chosen will

never use any DOFs for suppression, that approach will not find a solution for this

case. Whether a zero forcing solution always exists for any interference suppression

assignment given by the DOF model is an open problem. However, we have iteratively

solved the zero forcing equations of the Figure 6 example for large numbers of random

link combinations and never failed to find a solution.

Tx(l) Rx(l)

Tx(m) Rx(m)

Tx(n)
Rx(n)

4 antennas

4 antennas

4 antennas

4 antennas

4 antennas

4 antennas

Zl = 2 streams

Zm = 2 streams

Zn = 2 streams

Figure 6: Three link example where every node must use some DOFs for interference
suppression.

A few other papers have attempted at characterizing the optimal throughput
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achieved in quite restricted network scenarios [64, 82]. For instance in [82], the author

considers a single-hop network and addresses the maximum throughput characteri-

zation by casting it as a joint scheduling and MIMO stream allocation problem, and

characterizing the optimal solution for the case of two interfering links.

Another important difference between our work and most prior work is the follow-

ing. Prior work in this area makes the simplifying assumption that link rates increase

linearly with the number of streams on a link1. In contrast to this, we use rate func-

tions on a link, which specifically consider the dependence of channel capacity on the

numbers of DOFs used for transmitting and receiving. This allows array and diversity

gains to be factored into MIMO resource allocation decisions. It models the “law of

diminishing returns” of spatial multiplexing, wherein performance increases become

smaller and smaller as the number of spatially multiplexed streams is increased on

a given link. Therefore, our variable rate model accounts for sub-linear increase of

aggregate rate with the number of streams on a link. This is necessary to fully exploit

the diversity-multiplexing-suppression trade-off.

A few papers have considered non-linear aggregate rates when attempting to char-

acterize throughput of MIMO-equipped networks, by including so-called variable rate

stream control in the problem formulation. Variable-rate stream control for CSMA-

based MAC layer has been discussed in [44, 88]. Our results, and other optimization-

based approaches, target TDMA-based MACs. The approaches of [47] and [48] con-

sider variable rate stream control but only provide upper bounds complemented with

feasible heuristic approaches [47], or simply heuristic solutions [48]. Thus, to the best

of our knowledge, our work in this thesis and in [49] and [50], represented the first at-

tempt to solve a multi-hop MIMO network throughput optimization problem in terms

1Traditional DOF models do not account for data rates that vary with SINR, i.e. the data rate
is assumed to be fixed and there is a single SINR threshold where, above this threshold, the fixed
data rate is achieved on the link and, below this threshold, no communication is possible; this means
that the beneficial impacts of array gain and diversity gain are ignored by these models.
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of the diversity-multiplexing-interference suppression trade-off while accounting for a

variable rate stream control model.

3.2.2 Cross Layer Optimization of MIMO WMNs,MIMO-aware Routing
and MAC-based Approaches

The vast amount of work on integrating MIMO with the networking stack has focused

on the MAC layer. Some of this work, e.g. [44, 62], has considered MAC layer

techniques to allocate streams to links that optimize performance in a local sense. [44]

does not consider network-wide resource allocation to optimize performance.

An interesting work in this area is [9] (see also [10]) where the authors characterize

the benefits of cross-layer optimizations in interference limited wireless mesh networks

with MIMO links. They formulate a framework where data routing at the protocol

layer, link scheduling at the MAC layer and stream control at the physical layer can

be jointly optimized for throughput maximization in the presence of interference, and

then develop an efficient algorithm to solve the resulting throughput optimization

problem subject to fairness constraints. This approach provides only a bound to the

achievable network throughput.

In [7], Chu and Wang address some of the same problems that we do. Their work

aims to improve the network wide throughput and transmission quality in MIMO-

based ad hoc networks by proposing an integrated scheduling by jointly considering

traffic demands, service requirements, network load, multiuser diversity, and channel

conditions. While this work accounts for variable rate streams, it models interference-

suppression only at the receiver side, i.e. transmitters do not perform any interference

suppression. Moreover, exact optimal solutions are not evaluated under this frame-

work. Work on MIMO broadcast includes [75], [76], where multiuser interference is

canceled at the transmitter by Dirty Paper Coding, which is of theoretical importance

but is considered impractical due to high complexity. Prior work on interference can-

cellation (IC) of multiuser MIMO systems has mainly focused on the uplink [80], [81].
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However, because of the need for inexpensive mobile units with low complexity of

realization, closed loop MIMO systems have been studied where CSI is known at the

transmitter of the base station. In related work, multi-user precoder designs [83], [19]

can serve multiple mobile units over the same frequency in such a way that co-channel

interference is mitigated.

Although a number of papers present formal network optimization problem formu-

lations [[8], [9], [48], [53], [52]], they introduce some simplification in the models and/or

problem formulation. Sundaresan, et al., give a probabilistic throughput formulation

but do not explicitly consider interference constraints [52]. Chu and Wang [48] in-

clude constraints that are sufficient but not necessary for feasibility and they assume

receiver-side suppression only. The recent work on MIMO-aware routing by Chu

and Wang [51] mathematically formulates a multi-commodity flow problem, but they

only consider receiver-side suppression and do not provide details of how the stream

rate function is modeled. Liu, Hou, and Sherali jointly consider the problems of

power control and routing with a maximum throughput objective through a network

flow formulation [53]. Interference constraints are not considered. Mumey, Tang, and

Hahn give an approximation algorithm for joint stream control and scheduling, where

only receiver-side interference suppression is considered.

3.3 Feasibility

The problems of stream allocation and link scheduling for throughput optimization

are closely tied to the problem of solving feasibility. One of the major findings of

our research was that in a MIMO setting, with the exception of certain special

cases, feasibility checking is a very expensive operation. However, many existing

iterative scheduling algorithms assume that feasibility can be determined efficiently

([10], [11], [12], [13]). In these cases, the scalability with increasing network size would

probably be quite limited.
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Therefore, feasibility is a fundamentally important problem to be researched. Very

little work has been done on this subject. The biggest contributions of this thesis are in

providing analytical and experimental results towards better understanding feasibility.

In fact, it was only after publishing our first three papers on feasibility ([49],[50],[54]),

that work done on this subject by other researchers began to appear. The most

substantive of these is [33] by Yetis, Gou, Jafar and Kayran. This work considers

the problem of checking feasibility of interference alignment in signal vector space,

based only on beamforming, for the K-user MIMO interference channel. They relate

the feasibility issue to the problem of determining the solvability of a multivariate

polynomial system. They show that a necessary condition for an assignment to be

feasible is that the system of equations describing the assignment is proper (i.e. the

number of equations does not exceed the number of variables). That is to say, if

the system is proper, then it is likely to be feasible. They find a lower bound for

the throughput (number of streams) in a K-user single collision domain (the authors

of [33] refer to this as the K-user interference channel). They conjecture that this

lower bound is also an upper bound and therefore they conjecture it to be optimal

(see pg 4,5 of [33]). In our first work [49], we had considered the same problem and

had derived the optimal value of throughput for a K-user single collision domain with

uniform antenna array sizes, and this matches with the result conjectured to be true

in [33]. They further extend their analysis to the case where every link in the single

collision domain has receiver array size equal to M and transmitter array size equal

to N (this is a slight loosening of the uniform array size requirement).
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CHAPTER IV

PROBLEM DEFINITION

The problem at large, is to determine which links of a MIMO network, when sched-

uled together concurrently, will maximize the aggregate throughput. This is a version

of network scheduling in a MIMO setting where the goal is to maximize the throuh-

put delivered in a single scheduling slot. We identify three inter-related problems

discussed below.

4.1 Feasibility

The problem of feasibility is to determine if a set of transmissions can be undertaken

concurrently such that all individual transmissions are successful, under a given in-

terference model. Many existing scheduling algorithms assume that feasibility can be

determined efficiently[[10], [11], [12], [13]]. These algorithms iteratively add transmis-

sions to slots in a frame, checking a slot for feasibility whenever a new transmission

is proposed to be added to a slot by the algorithm. Thus, feasibility is considered

to be a very simple operation that can be repeated many times during execution of

the scheduling algorithm. One of the interesting findings of this research is that with

MIMO links, in certain cases, feasibility checking becomes a very expensive opera-

tion. In these cases, the scalability with increasing network size could be quite limited

for this iterative schedule construction with repeated feasibility checking approach.

Thus, alternative scheduling approaches might have to be developed for the most

general MIMO link scheduling problems.

Without MIMO links, checking feasibility of a set of transmissions amounts to

simply checking the transmissions against the given interference model. However,

MIMO links have the capability to suppress interference. Thus, whether a set of
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transmissions is feasible depends both on the interference model and on how the

links choose to use their degrees of freedom (DOFs) in suppressing interference. As

detailed earlier, the number of DOFs necessary for the transmitter of a link i to

suppress interference on the receiver of a link j is given by the number of streams

carried on link j. (The same is true if the receiver of i is suppressing interference

from the transmitter of j.) Thus, to determine feasibility, we must know both which

links are transmitting and how many streams are carried on each of the links.

Let the set of links under consideration be denoted by L = {(t1, r1), . . . , (tm, rm)}.

Let S = [s1, . . . , sm] be the stream allocation vector, i.e. the number of streams

carried by (ti, ri) is si > 0.Let Kt = [kt1, . . . , k
t
m] be the vector of (effective) DOFs of

the transmitters, Similarly, let Kr = [kr1, . . . , k
r
m] be the vector of (effective) DOFs of

the receivers. Let atij = 1 if the transmitter of link i suppresses interference on the

receiver of link j and let atij = 0, otherwise. Furthermore, let atii = 1, for all i. Denote

by At the matrix of atij values. Similarly, let arij = 1 if the receiver of link i suppresses

interference from the transmitter of link j, let arij = 0, otherwise, and let arii = 1, for

all i. Denote by Ar the matrix of arij values.

The feasibility problem is defined as follows:

Input: A set L = {(t1, r1), . . . , (tm, rm)} of links, a stream allocation vector S for L,

and a conflict graph Gc = (L,Ec).

Output: True if S and L are feasible and False otherwise. S and L are defined to

be feasible if L is free of primary interference and there exist At and Ar such that:

1. AtS ≤ Kt,

2. ArS ≤ Kr, and

3. for all i 6= j such that (li, lj) ∈ Ec, atij + arji ≥ 1.

Conditions 1 and 2 ensure that a node does not use more DOFs than it has

43



available. For each ti, we have that:

si +
∑

j:j 6=i and (li,lj)∈Ec

atijsj ≤ kti

In other words, ti uses si DOFs for spatially multiplexing its streams and uses sj

DOFs for every receiver on which it suppresses its interference, and the total of these

values cannot exceed the size of ti’s antenna array. Condition 1 states this inequality

in matrix form over all transmitters and Condition 2 is the equivalent for receivers.

Condition 3 ensures that all interference is cancelled, i.e. for every pair of links i and

j where i interferes with j, either the transmitter of i or the receiver of j (or both)

suppresses the interference from i to j.

Note that the cases of receiver-side suppression only and transmitter-side suppres-

sion only can easily be handled by this general problem statement. For receiver-side

suppression only, atij is set to zero for all i 6= j, and for transmitter-side suppression

only, arij is set to zero for all i 6= j.

Note also that Conditions 1 and 2 above are a variation of the basic DOF inequality

in which a set of boolean variables, the atij’s and the arij’s, are included. These boolean

variables indicate which nodes are suppressing interference on which other nodes.

Thus, one way of stating the feasibility problem is to ask the question: “Does there

exist an assignment of interference suppressions to nodes (atij and arij values) that

satisfy the DOF inequalities at every node and together suppress all interference?”.

This formulation makes it clear that the feasibility problem is a special type of Boolean

satisfiability problem.

4.2 Stream Allocation

The achievable rate R(ti, ri,ADOFti ,ADOFri) on a link depends on the numbers of

available degrees of freedom (DOFs) at both ends of the link. The number of available

DOFs at ti is given by kti−ksti , where ksti denotes the number of DOFs that ti uses to

suppress its streams on receivers other than ri. Note that ksti =
∑

i 6=j a
t
ijsj, i.e. ksti
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is the sum of the numbers of streams received by all receivers on which ti suppresses

its interference. Similarly, the number of available DOFs at ri is given by kri − ksri ,

where ksri =
∑

i 6=j a
r
ijsj.

The stream allocation problem, formally defined below, is to find an optimal

stream vector, given a set of links that could be scheduled concurrently. An optimal

stream vector is defined as a feasible stream vector with maximum aggregate trans-

mission rate. Links that could be scheduled concurrently means that the links are

free of primary interference.

Input: A set L = {(t1, r1), . . . , (tm, rm)} of primary-interference-free links, DOF vec-

tors Kt and Kr, and rate function R(ti, ri,ADOFti ,ADOFri).

Output: A stream allocation vector S and matrices At and Ar that make S feasible,

where (S,At, Ar) has maximum aggregate rate over all feasible stream vectors.

4.3 One-Shot Link/Stream Scheduling

In the stream allocation problem, a set of primary-interference-free links is given.

However, in classical one-shot link scheduling, the problem is to determine which links,

when scheduled together concurrently, will maximize the aggregate rate. In other

words, this is a version of link scheduling in which the goal is to squeeze as much out of

a single scheduling slot as possible. Repeatedly scheduling a maximum-rate set of links

over and over will yield a maximum throughput solution. However, such a schedule

obviously does not meet any fairness criteria and, therefore, this approach cannot be

considered a solution to an overall network scheduling problem. Nevertheless, one-

shot scheduling algorithms can be adapted in various ways to address fairness and

can therefore still form a core component of an overall scheduling approach.

We can generalize the stream allocation problem into a one-shot scheduling prob-

lem. In this case, we simply need to start with an arbitrary set of links (rather than

being given a primary-interference-free set of links) while maintaining the same goal
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of maximizing the aggregate rate. Thus, in this situation, the problem can be defined

as follows:

Input: An arbitrary set L = {(t1, r1), . . . , (tm, rm)} of links, DOF vectors Kt and Kr,

and rate function R(ti, ri,ADOFti ,ADOFri).

Output: A set of primary-interference-free links Lpif , a stream assignment vector S

for Lpif , and matrices At and Ar that make S feasible, where (Lpif , S, A
t, Ar) has

maximum aggregate rate over all sets of primary-interference-free links and feasible

stream vectors.

The three problems we consider herein can be summarized as follows. In feasibility,

a set of primary-interference-free links and a stream assignment vector are given

and the problem is to determine if there is a DOF assignment that will allow the

links to successfully receive the given numbers of streams when they are transmitted

concurrently. In stream allocation, a set of primary-interference-free links is given and

the problem is to determine a stream assignment vector (and DOF assignments) that

maximizes the achievable aggregate rate on the links. Finally, for one-shot link/stream

scheduling, an arbitrary set of links is given and the problem is to determine a set

of primary-interference-free links and a stream assignment vector that maximize the

achievable aggregate rate. In the following sections, we will consider these problems

individually and we will build solutions to these problems on top of one another to

ultimately produce a solution to the one-shot scheduling problem.
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CHAPTER V

FEASIBILITY: THEORETICAL RESULTS

As discussed in Section 4.1, the problem of verifying feasibility over a MIMO network

is a special type of Boolean satisfiability problem and in general, it is highly complex.

Link scheduling and optimal stream allocation are closely related to checking feasibil-

ity, thus making it an fundamentally important problem. Analytical characterizations

of feasibility over different MIMO network scenarios is the subject of this chapter. In

section 5.2, results on a single collision domain (SCD) are derived. All links that are

concurrently active in a single collision domain interfere with one another i.e. for any

two active links li and lj, the transmitter of li interferes with the receiver of lj and the

transmitter of lj interferes with the receiver of li. In section 5.3, arbitrary multi-hop

MIMO networks are considered. The following analyses are done in this chapter: (1)

An analytical expression for the maximum number of streams that can be scheduled

in a single collision domain in one time-slot is derived. This is done by evaluating the

the optimal stream allocation vector. (2) The complexity of the problem of verifying

feasibility is studied for a number of specific Multu-hop MIMO network scenarios. In

Chapter 6, the results and insights obtained from these theoretical analyses are used

to develop efficient heuristics for checking feasibility.

Before developing the system model, the notation introduced in Section 4.1 is
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recapitulated here and some additional quantities are defined.

Kt = [kt1, . . . k
t
l ]is the vector of (effective) DOFs of the transmitters

Kr = [kr1, . . . k
r
l ]is the vector of (effective) DOFs of the receivers

l = number of active links

s = [s1 . . . sl]is the l × 1 stream allocation vector containing the number

of data streams carried by each link

w(A) = weight of matrix or vector A (sum of all entries)

sm = optimal s vector (having maximum weight)

WT = total amount of work (number of links on which

IC is performed) done by all transmitters

WR = total amount of work done by all receivers

5.1 Matrix Formulation For MIMO Feasibility Checking

Interference suppression is modeled by the full degrees-of-freedom model, which was

described in Section 2.3. The full DOF model allows both transmitters and receivers

to handle interference suppression. A transmitter (or receiver) node i with k DOFs

can spatially multiplex si streams on its link and null (or suppress) interference at the

receivers (or transmitters) of a set links denoted by Li if and only if si+
∑

j∈Li
sj ≤ k.

Consider a multi-hop MIMO network with a set L of l links and represented by

a conflict graph is Gc = (L,Ec). For any two links li, lj ∈ L, Gc(i, j) = 1 if the

transmission on li interferes with the receiver of link lj. Similarly, Gc(j, i) = 1 if the

transmission on lj interferes with the receiver of link li. For a stream allocation vector

s to be feasible over L, interference between every pair of links must be removed.

Therefore for the transmitter side, we have

si +
∑
j∈Li

sj ≤ kti ∀i ∈ L (5)
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where Li is the set of links at which the transmitter of link i nulls itself. Rewrite this

as

A1s ≤ Kt (6)

Similarly, for the receiver side, we have

si +
∑
j∈Mi

sj ≤ kti ∀i ∈ L (7)

where Mi is the set of links whose transmissions the receiver of link i suppresses.

Rewrite this as

A2s ≤ Kr (8)

The transmitter-side matrix A1 and the receiver-side matrix A2 are binary, square

matrices such that A1(i, j) = 1 if the transmitter of link i nulls itself at the receiver of

link j, and similarly, A2(i, j) = 1 if the receiver of link i suppresses the transmission

from on link j. A1 and A2, however, are related. Any choice of A1 completely

determines A2 and vise-versa. The relation is
A2(j, i) = 1− A1(i, j) if Gc(i, j) = 1 ,∀i 6= j

A1(i, j) = 0;A2(j, i) = 0 if Gc(i, j) = 0 ,∀i 6= j

A1(i, i) = 1;A2(i, i) = 1 ∀i

(9)

Equation 9 follows from the fact that if transmitter i nulls itself at receiver j, then

receiver j need not suppress the signal from transmitter i (coordinated interference

cancellation). We therefore have

A1 = Gc + I − AT2 (10)

Therefore, for the stream allocation vector s to be feasible, the following three Con-

ditions must hold. 
A1s ≤ Kt

A2s ≤ Kr

A1 = Gc + 1− AT2

(11)

49



5.2 Results on Single Collision Domain

Here, we consider the case when all links are in the same collision domain. By the

same collision domain, we mean that any two links that are being used simultaneously

will each cause the other’s transmission to fail unless interference between them is

canceled. We make some assumptions in our analysis of the single collision domain.

These are

1. Primary interference has been eliminated, i.e. the set of links with data to

transmit is free of primary interference.

2. All links have identical transmit and receive arrays, in terms of their sizes and

signal processing capabilities i.e. Kt
i = Kr

i = k ∀i ∈ L

3. All links have the same rate. Moreover, different streams on any given link have

equal rates. This is the uniform rate model.

The assumption of the uniform rate model implies that maximizing the throughput in

the SCD is equivalent to maximizing the total number of streams that are concurrently

scheduled.

Details of the following analyses are reported in this section:

1. When both spatial reuse and spatial multiplexing are performed together, we

obtain an analytical expression for the optimal total number of streams as a

function of the number of simultaneously active links.

2. Moreover, at this optimal point, we determine how the work of interference

cancellation is distributed among all the transmitters and receivers.

3. The result in item 1 allows us to compute the maximum size of an SCD for a

given value of k. This is the case of spatial reuse only (SRO), i.e. each link

carries only one data stream and no multiplexing is done.
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4. The result in item 1 also trivially shows that in the case that the size of the SCD

equals one, i.e. when only one link is active, the optimal number of streams

equals k. This is the case of spatial multiplexing only (SMO), i.e. no spatial

reuse is done.

The next three sub-sections are devoted to deriving the optimal total number of

streams in a SCD with l links (for odd values of l). When it is possible to use both

spatial reuse and spatial multiplexing with MIMO links (SR+SM), the optimal way

to use the MIMO DOFs is not obvious. The transmitters and receivers of a given link

could use their DOFs to multiplex several streams, thereby increasing the link data

rate of that link, or they could use their DOFs to cancel interference, thereby allowing

more links to be simultaneously active. We will show that the optimal total number

of streams equals 2kl
l+1

, and this is achieved when the work of interference cancellation

is equally distributed among all transmitters and receivers.

5.2.1 Spatial Multiplexing with IC: A Matrix Formulation

Interference cancellation between l(l−1)
2

pairs of links (l(l−1) cancellations total) must

be done. Thus,

WT +WR = l(l − 1)

For the transmitter side, we have

si +
∑
j∈Li

sj ≤ k

where Li is the set of links at which the transmitter of link i nulls itself. Rewrite this

as

A1s ≤ k where l ≤ w(A1) ≤ l2

Similarly, for the receiver side, we have

si +
∑
j∈Mi

sj ≤ k
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Mi is the set of links whose transmissions the receiver of link i suppresses. Rewrite

this as

A2s ≤ k where l ≤ w(A2) ≤ l2

Note that w(A1) = WT + l and w(A2) = WR + l. The solution s must satisfy

A1s ≤ k and A2s ≤ k

The optimal solution is the vector with maximum weight subject to the constraints

A1sm ≤ k and A2sm ≤ k, i.e.

sm = max
A1,A2

{w(sm)→ sm : A1sm ≤ k and A2sm ≤ k}

A1 and A2, however, are related on account of coordinated IC by

A2 = I + 1− AT1

The relation between the weights of A1 and A2 naturally follows from this as

w(A1) + w(A2) = 2l + l(l − 1) = l(l + 1) (12)

The optimal solution can now be simplified as

sm = max
A1

{w(sm)→ sm : A1sm ≤ k, (I + 1− AT1 )sm ≤ k}

Now, define the mapping f from two vectors s1 and s2 to choose the vector with

minimum weight as

f : {s1, s2} → 1{w(s2) ≥ w(s1)}s1 + 1{w(s1) > w(s2)}s2

where the function 1(C) = 1 if C is true and 0 otherwise. The optimal solution

amounts to maximizing the minimum-weight vector of the two vectors s1, s2 which

satisfy A1s1 = k and A2s2 = k. This is expressed as

sm = max
A1

{
w(f(s1, s2))→ f(s1, s2) : A1s1 = k

and (I + 1− AT1 )s2 = k
}

(13)
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Equation 13 follows because

If w(s1) > w(s2)

=⇒ w(A1) < w(I + 1− AT1 )

=⇒ (A1 + AT1 )1 < (I + 1)1

=⇒ (A1 + AT1 )s2 < (I + 1)s2 (∵ s2 is positive)

=⇒ A1s2 − (I + 1− AT1 )s2 < 0

=⇒ A1s2 < k

(and vice-versa with s1 and s2 interchanged.)

Now, w(A1) = l =⇒ A1 = I lxl. This represents one extreme where the total

work done by transmitters is zero, i.e. WT = 0. All work is done by the receivers, i.e.

WR = l(l − 1). In this case, A2 = 1 and w(A2) = l2. At the other extreme, we have

the transmitters creating nulls at every receiver (w(A1) = l2, A1 = 1,WT = l(l − 1))

and the receivers doing zero work (w(A2) = l, A2 = I lxl,WR = 0).

To find the optimal solution, we evaluate the right hand side of Equation 13 for all

A1 with weight ranging from w(A1) = l [corresponding to WT = 0,WR = l(l − 1)] to

w(A1) = l2 [corresponding to WT = l(l−1),WR = 0]. We obtain a set of l · (l−1) + 1

solutions, each being maximal over the class of matrices having a certain weight. The

optimal solution is the maximum of this set. In practice, we do not need to sweep the

weight of A1 beyond the midpoint (WT = WR = l(l−1)
2

) up to WT = l(l − 1) because

of the following property.

Lemma 1 The MIMO system under consideration is equivalent to its dual configu-

ration, obtained by reversing the direction of every communication link.

Proof: We model transmitters and receivers identically, i.e. transmitter and re-

ceiver arrays have equal numbers of antenna elements and identical signal processing

capabilities. Thus, reversing the roles of transmitters and receivers and the directions
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of data transfer, preserves the optimal total number of streams. The roles of A1 and

A2 are then reversed, i.e. A1 is the receiver side matrix and A2 is the transmitter side

matrix.

5.2.2 Lagrange Multiplier Method of Optimization: SR+SM

For every value ‘w’ of w(A1) ∈ [l, l2], we apply the Lagrange Multiplier Method of

optimization to find the maximal solution

swm = max
A1

{
w(f(s1, s2))→ f(s1, s2) : A1s1 = k ,

(I + 1− AT1 )s2 = k , w(A1) = w
}

(14)

Finally, the optimal solution is calculated as

sm = max
w(A1)=w

{swm} (15)

We will see that this maximum occurs when w(A1) = l(l+1)
2

. Moreover, Equa-

tion 12 gives w(A2) = l(l + 1) − w(A1) = w(A1). Let the weights of A1 and A2

be

w(A1) = l + n where 0 ≤ n ≤ l · (l − 1)

=⇒ w(A2) = l2 − n

We have, for the transmitter side,

A1s1 = k

=⇒ s1c
T
1 + s2c

T
2 + . . . slc

T
l = k

where ci is the ith column of A1 and si is the ith element of s1. Denoting w(ci) by Awi ,

s1A
w
1 + s2A

w
2 + . . . slA

w
l = kl (16)
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We also have

w(A) = l + n

=⇒ Aw1 + Aw2 + . . . Awl = l + n (17)

We want to maximize the function

f(s1,A1) = s1 + s2 + . . . sl (18)

where s1 = (s1, . . . sl) and A1 = (Aw1 , . . . A
w
l )

subject to the following two constraints:

φ(s1,A1) = s1A
w
1 + s2A

w
2 + . . . slA

w
l

−kl = 0 and

θ(s1,A1) = Aw1 + Aw2 + . . . Awl

−(l + n) = 0

This is done by the method of Lagrange multipliers as follows. Define

F (s1,A1, λ, µ) = f(s1,A1)− λφ(s1,A1)− µθ(s1,A1)

= s1 + s2 + . . . sl − λ(s1A
w
1 + . . .+ slA

w
l

− kl)− µ(Aw1 + . . .+ Awl − (l + n))

Then, we solve the system

δF

δsi
= 0 ∀i = 1 . . . l (19)

δF

δAwi
= 0 ∀i = 1 . . . l (20)

φ(s1,A1) = 0 (21)

θ(s1,A1) = 0 (22)
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This gives

Aw1 = . . . = Awl =
1

λ
(from equation 19)

s1 = . . . = sl =
−µ
λ

(from equation 20)

l
−µ
λ

1

λ
= kl (from equation 21)

=⇒ µ = −kλ2

l
1

λ
= (l + n) (from equation 22)

=⇒ λ =
l

l + n

Finally, we have

A1 = . . . Al = (
n

l
+ 1) and

s1 = . . . = sl = k · λ = k
l

l + n

And so, the maximum value of the function f(s1,A1) = s1 + s2 + . . .+ sl is

wm(s1, n) = k
l2

l + n

Similarly, for the receiver side, we obtain

wm(s2, n) = k
l2

l2 − n

Evaluating the optimal solution from equations 14 and 15 amounts to evaluating

w(sm) = max
n

{
min{wm(s1, n), wm(s2, n)}

}
= k

2l

(l + 1)
(23)

This maximum occurs at n = l(l−1)
2

. Correspondingly, λ = 2
l+1

. Therefore

w(A1) = l + n =
l(l + 1)

2

w(A2) = l2 − n =
l(l + 1)

2
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Figure 7: Interference Cancellation between Two Links li and lj

Hence, optimal total number of streams sm occurs at the mid-point where w(A1) =

w(A2) i.e. transmitters and receivers share work equally. Smax = w(sm) = k (2l)
l+1

= 2kl
l+1

.

For this to be integral, k should be a multiple of l+1
2

.

This situation is depicted in Figure 7. The total number of bi-directional interfer-

ence cancellations a given link can achieve in this manner is
k− 2k

l+1
2k
l+1

= l−1
2

. Note that

in the case under consideration, l must be odd so that this value is an integer. So,

any given link can cancel interference in both directions with exactly l−1
2

other links

and will completely use its DOFs to do so. Interference must be canceled between all(
l
2

)
= l · l−1

2
pairs of links. Since each link can cancel interference with l−1

2
others, the

number of possible cancellations matches the number required. Our analysis cannot

be completed before making the following important observation.

Note: The values of Awi should be integral as these are the weights of the columns

of A1, which have ‘1’ and ‘0’ as entries. However, we have disregarded this fact and

carried out the Lagrange Multiplier Method of optimization in the Real domain. At

the optimal point (mid point), the value of the column weights, 1
λ

= l+1
2

is integral

if l is odd. Furthermore, optimal values of Awi yielded by the Lagrange Method are

integral also for those values of n which are multiples of l. For all other values of

n, the column weights obtained are non-integer. Given that we have determined

that the value of min{wm(s1, n), wm(s2, n)} is strictly lower than k 2l
l+1

for all n other

than n = l(l−1)
2

, imposing the integer constraint would only further strengthen the

inequality. Therefore the approach is justified, and we are safe in performing the

optimization in the Real domain.

An Example: Table 2 compares the number of active streams achievable for the
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Table 2: No.of active streams with SR only and with SR+SM (k = 8)

No. of links 1 3 5 7 9 11 13 15
No. of streams(SRO) 1 3 5 7 9 11 13 15
No. of streams (SR+SM) 8 12 12 14 14 14 14 15

Figure 8: Interference Cancellation Assignment for l = 7

two scenarios: SRO and (SR+SM) when k = 8.

5.2.3 Structure of the Matrices at Optimal Point: SR+SM

At the optimal point, we have w(A1) = w(A2). Moreover, the outcome of the La-

grange Method gives the weight of each row and of each column of A1 and A2 to

be equal to (l−1)
2

+ 1. This result translates to our MIMO setting to mean that ev-

ery transmitter and every receiver performs interference cancellation with (l−1)
2

other

links. That is to say, the work of IC is equally distributed among all transmitters and

receivers. Finally, the relation A2 = I+ 1−AT1 implies A1 = A2. Hence, the transmit

and receive matrices are equal at the optimal point. We can therefore write

A1 = A2 =⇒ A1 + AT1 = I + 1 =⇒ A1(i, j) = 1− A1(j, i) ∀i 6= j

A1(i, j) = A2(i, j)
(24)

An example of this assignment for l = 7 is shown in Figure 8. Every transmitter

performs IC at 7−1
2

= 3 receivers and similarly, every receiver performs IC with 3

transmitters.
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Equation set 24 is the Symmetry Condition. The symmetry condition implies

that if transmitter i nulls itself at receiver j, then transmitter j will not null itself

at receiver i. Instead, it is receiver i which suppresses the signal from transmitter j.

Therefore, interference cancellation between a pair of links is done entirely by one of

the links at the optimal point.

5.2.4 Handling Primary Interference

Primary interference occurs when a station is involved in more than one commu-

nication task at the same time (sending and receiving, receiving from two different

transmitters, etc.). Let G = (V,E) be a subgraph of the communication graph of the

system containing all links that have data to transmit. In general, the links of G are

not free of primary interference.

A matching of G is a set of edges, where each vertex appears in at most one edge

of the matching. Thus, by definition the links making up a matching of G are free

of primary interference. The following theorem demonstrates that, if we obtain a

maximum matching M of G and apply our optimal construction from the previous

sections to the links contained in M , then this achieves the maximum total number of

streams possible among all of the links in G. This then provides an optimal solution

to the one-shot stream scheduling problem under consideration.

5.2.5 Optimal total number of streams in an SCD with Uniform Rate
Model

In subsections 5.2.1, 5.2.2, and 5.2.3, we showed that the optimal total number of

streams that can be scheduled on l links is 2kl
l+1

, with every link multiplexing an equal

number 2k
l+1

of streams. See equation 23. Since the minimum number of streams an

active link can multiplex is one, we must have

2k

l + 1
≥ 1 (25)

=⇒ l ≤ 2k − 1 (26)
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This result implies that for a given value of k, there is a limit to the number of

links that can be concurrently active in an SCD. In other words, the maximum size of

the SCD equals 2k−1. This is the case of spatial reuse only. Since each link transmits

only one stream, mo spatial multiplexing is done. This is stated in the lemma below

(See Lemmas 1 and 2 in our work [49]).

Lemma 2 The maximum size, l, of a single collision domain where every node has

an array size of k, is equal to 2k − 1 i.e. l ≤ 2k − 1

Proof: See discussion above.

Furthermore, equation 23 leads to the result that the minimum value of the op-

timal total number of streams that can be scheduled in an SCD is k streams. This

occurs when l equals one. This is the case of spatial multiplexing only where a single

link is active and it employs all its DOFs to multiplex k streams.

The maximum value of the optimal total number of streams in an SCD asymptot-

ically equals 2k. This is when k is arbitrarily large. In practice however, the value of

k is usually around 4 to 8 antennas. Therefore the maximum total number of streams

in practice equals 2k− 1, which is achieved when l = 2k− 1 links are scheduled with

one stream on each link.

Theorem 1 Let M be a maximum matching among all links having data to transmit.

Let the number of links in M be l ∈ [1, 2k − 1] such that 2k
l+1
∈ Z. This implies

l = 2m + 1 for some m ∈ N and k is a multiple of (m + 1). Then the optimal total

number of streams is Smax = 2kl
l+1

.

Proof: In subsections 5.2.1, 5.2.2, and 5.2.3, it was proven that in the absence

of primary interference, the optimal total number of streams supported by a set of

l ≤ 2k − 1 links in a single collision domain is Smax = 2kl
l+1

for odd l. Since this

is an increasing function of l, no set of links which form a matching smaller than l
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Figure 9: (a) Communication graph in a single collision domain (b) Maximum match-
ing of the communication graph

(size of the maximum matching) can support a higher total number of streams. (See

Theorem 3 in our work [49])

Note that Theorem 2 holds only if the number of links in the maximum matching

is odd. Exactly characterizing the optimal solution for an even number of links is

an open problem. However, the optimal constructions for odd numbers of links can

be used to achieve bounds on optimality for even numbers of links. For example,

in Table 2, observe that for 6 links, we can achieve 12 streams using the optimal

construction for 5 links. Furthermore, the optimal for 6 links can be no better than

the optimal for 7 links, which achieves 14 streams. Therefore, the 5-link construction

is within two streams of optimal for 6 links. Note also that as the number of links

increases, this bound gets tighter. From the same table, we can see that the optimal

construction for 7 links is also guaranteed to be optimal for 8, 10, and 12 links. In

general, if we use the optimal construction for l − 1 links for an even l, we can get

within at least 4k
l(l+2)

of optimal, which decreases in proportion to l2.

5.2.6 An Example

Consider a single collision domain with 6 links as shown in Figure 9a. Assume all

links have data to transmit. We want to schedule the maximum number of streams

possible in one time slot across these links. Obtain a maximum matching of size 3 as

shown in Figure 9b. Thus we get the maximum number of primary-interference-free

links to be l = 3. Choose the size of the antenna array to be k = 2. We will apply

the optimization procedure derived above to this setting in order to find the maximal
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Table 3: Output of the Lagrange multiplier optimization method.

n 0 1 2 3 4 5 6
wm(s1,n) 6 4.5 3.60 3 2.5714 2.25 2
wm(s2,n) 2 2.25 2.5714 3 3.60 4.5 6
w(sm) 2 2.25 2.5714 3 2.5714 2.25 2

total number of streams and the structure of the A1 and A2 matrices at the optimal

point.

The weight of A1 is swept from n = 0 to n = 6. Note the symmetry about the

mid-point, which is a result of the duality property. For values of n smaller than the

mid-point i.e. for n < 3, we have w(A1) < w(A2). This implies WT < WR i.e. the

total work done by the transmitters in IC is less than that done by the receivers.

The number of degrees of freedom available at the transmitters for multiplexing data

streams is therefore larger than that available at the receivers. Hence the receiver

side matrix A2 determines (imposes a stronger constraint on) the achievable total

number of streams. This is evident from Table 3. On the other hand, for values of n

larger than the mid-point i.e. for n > 3, we have w(A1) > w(A2). In this case, the

achievable total number of streams is constrained more strongly by the transmit side

matrix A1 as seen in the table.

5.2.7 Discussion

In this section, we qualitatively compare our results with the ones (based on numerical

evaluation) reported in [8]. We stress that the network setting considered in [8] is

quite different from ours: multi-hop flows are to be scheduled on a set of links with

arbitrary collision domains. On the other hand, our approach assume single links to be

scheduled (one-hop flows), and all links are part of a single collision domain. Despite

the different network settings, the main qualitative findings of [8] are fully confirmed

by our analytical results. To be specific, Hamdoui, Shin, and Jiang observe that, as
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Figure 10: Optimal total number of streams achievable with l = 7 links and in-
creasing number of antenna elements, with SR only, SM only, and SM+SR MIMO
systems.
the number of antenna element increases, the maximum achievable total number of

streams first raises and then flattens out asymptotically under SRO, while it increases

“almost” linearly under SMO or SR+SM. As seen from Figure 10, this behavior can

be observed also when the results derived in the previous subsections are extended to

arbitrarily large values of k: in case of SRO, the total number of streams increases

when relatively few DOFs are available; once the available DOFs are sufficient to

null/suppress all interference, the optimal total number of streams flattens to the

optimal value of l, corresponding to scheduling one stream on each possible link. In

case of SMO, only one link can be active at a time. Hence, optimal total number of

streams increases linearly with k, which corresponds to the maximum possible number

of streams that can be transmitted on the active link. In case of SM+SR, additional

total number of streams benefit (near two-fold) can be achieved by combining the

two MIMO techniques. It is also worth observing that when relatively few DOFs are

available (k ≤ 5), all DOFs are used to mitigate interference (SRO and SM+SR curves

are overlapped); as the number of available DOFs increases, interference mitigation

can be combined with spatial multiplexing to achieve considerable total-number-of-

streams gains over the SRO and SMO approaches.
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5.3 Complexity of MIMO Feasibility

In this section, we study the complexity of checking the feasibility of a stream allo-

cation vector in a MIMO network. As is made clear in the formal problem definition

given in Section 4.1, feasibility is a special type of Boolean satisfiability problem. It

is well known that many variations of Boolean satisfiability are NP-complete. Due

to the specialized constraints in the MIMO feasibility problem, it is unlikely that a

proof of NP-completeness will be found, but we conjecture that MIMO feasibility is

NP-complete. However, certain special cases of the feasibility problem are solvable in

polynomial time and we provide proofs of this for several cases in this section.

The fact that feasibility can no longer be trivially solved with MIMO links could

have important implications for scheduling algorithms. As mentioned earlier, many

greedy scheduling algorithms attempt to assign links to the first slot in which they are

feasible. This common approach assumes that feasibility can be efficiently tested, so

that repeated execution of feasibility checks does not negatively impact the execution

time of the scheduling algorithm. Since this assumption is not valid for the general

MIMO link scheduling case, alternative approaches to building schedules might have

to be developed. For example, approaches that build schedules, which are provably

feasible by the manner in which they are constructed and thus do not have to employ

feasibility tests, could be preferable.

5.3.1 Receiver-Side Suppression

When CSI is available only at the receivers and not at the transmitters, then only

receiver side interference suppression can be done. Theorem 2 states that, in this

special case, the feasibility problem is polynomial time in complexity.

Theorem 2 Checking feasibility of a stream allocation vector S and a link set L

over an arbitrary MIMO network with receiver-side-suppression only can be done in

polynomial time.
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Proof: Let S = [s1, . . . , sm] and recall that si > 0, for all i (otherwise, we can

simply remove link i from L and consider feasibility of the smaller vector and link set).

Denote the conflict graph of the network by Gc = (L,Ec). Note that Condition 3 of

feasibility (see Section 4.1) says that for all distinct links i and j that conflict with each

other, either atij = 1 (meaning ti suppresses its interference on rj) or arji = 1 (meaning

rj suppresses interference from tj). Since only receiver-side suppression is done in this

case, atij = 0 and in order to satisfy Condition 3, it is required that arji = 1. Thus,

every receiver must necessarily suppress interference from every transmitter whose

link conflicts with the receiver’s link.

Checking feasibility amounts to checking whether all of the conditions from the

feasibility problem definition are true. In light of the fact that At = 0 with receiver-

side-suppression only, the following procedure suffices to check feasibility.

Step 1: Check that L is primary-interference-free. This can be done by simply scan-

ning through all links and counting the number of occurrences of every node. If any

node appears more than once, L is not primary-interference-free and S and L are not

feasible. If all nodes appear at most once in L, then continue to Step 2.

Step 2: Check whether there exist At and Ar that satisfy Conditions 1-3 of feasibility.

From the above discussion At is the matrix of all zeros and therefore Condition 1

(AtS ≤ Kt) is trivially satisfied. Since At is all zeros, Ar is therefore fixed by Condi-

tion 3. Therefore, it is only necessary to check that Condition 2 is satisfied for every

link. In the case under consideration, for a given receiver ri, Condition 2 becomes:

si +
∑

j:j 6=i and (li,lj)∈Ec

sj ≤ kri

Since all si’s are given by the input stream allocation vector S, checking this condition

amounts to simply checking the above inequality for every receiver. This can be easily

done in O(l2) time.
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The essence of what makes feasibility polynomial time in the special case of

receiver-side-suppression only is that the choice of how to suppress interference (ei-

ther by the transmitter of the interfering link or by the receiver of the interfered

with link) is removed. In the general MIMO case, for every pair of interfering

links, there is a choice as to how to suppress the interference, and combining these

choices over all pairs of interfering links yields an enormous number of possibilities

that are all potential ways to make a stream allocation vector feasible. The case of

transmitter-side-suppression only also removes the choice of how to suppress interfer-

ence and, therefore, it has the same effect on problem complexity, i.e. feasibility for

the transmitter-side-suppression only case is also of polynomial complexity.

5.3.2 Maximum Antenna Array Size K = 2

Another interesting special case is when the DOFs of all nodes are small. In particular,

when every node in the network has k = 2 DOFs, even when interference suppression

can be done at both transmitter side and receiver side, then the feasibility problem is

polynomial time in complexity. This result is stated in Theorem 2.

Theorem 3 Checking the feasibility of a stream allocation vector S and a link set L

over an arbitrary MIMO network where every node has k = 2 degrees of freedom is a

polynomial time operation.

Proof: The proof is constructive, i.e., we describe a polynomial time algorithm

that, given inputs S and L, returns True if and only if stream allocation vec-

tor S is feasible for link set L. The algorithm first checks whether L is primary-

interference-free in polynomial time (as in the proof of Theorem 2). If L is not

primary-interference-free, the algorithm returns False, otherwise it continues with

the procedure described next.

Let the conflict graph of the MIMO network be Gc = (L,Ec). Every active link li

carries a number of streams si = {1, 2}. Inactive links (with zero streams allocated)
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are not represented in Gc. Let L2 = {li ∈ L : si = 2}. Since each link in L2 utilizes

its full multiplexing capacity, no resources for interference suppression are available.

The remaining links are contained in the set L1 = L\L2, composed of links carrying

a single stream.

The feasibility algorithm first checks whether all links of L2 are isolated vertices

in Gc. If not, the algorithm returns False, otherwise, it considers the subgraph G1

of Gc induced by node set L1. Let G1, . . . , Gh be the connected components of graph

G1. The algorithm checks whether for each Gi = (Li, Ei), inequality |Ei| ≤ |Li| is

satisfied; if the inequality is not satisfied for any of the Gi, the algorithm returns

False, otherwise it returns True and terminates.

It is immediate to see that the above algorithm has polynomial time complexity.

We now prove that, when the algorithm returns False on input S, L, stream allocation

vector S is infeasible for L. To prove this, we observe that the algorithm returns False

if only if one of the following conditions hold:

1) set L is not primary-interference-free; in this case, it is clear that any non-zero

stream allocation vector S for L is infeasible.

2) L2 contains at least one link, which is not an isolated vertex in Gc; denote such

a link by li and suppose it is adjacent to link lj in the conflict graph. Since li

carries two streams, it has no DOFs available for suppression. Link lj carries at

least one stream and, therefore, has at most one DOF remaining, which is not

enough to suppress the two streams on li. Hence, condition (3) for feasibility

cannot be satisfied for links li, lj unless conditions (1) and (2) are violated. This

implies that stream assignment S is not feasible for link set L.

3) there exists a connected component Gj of graph G1 such that |Ej| > |Lj|. A

simple counting argument can be used to prove that S is not feasible for L:

for each link l ∈ Lj, two DOFs are available at the link endpoints to suppress
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interference (one at the transmitter and one at the receiver side). Thus, 2|Lj|

DOFs in total are available to suppress interference within Gj. On the other

hand, suppressing interference between any two adjacent links li, lj in the con-

flict graph requires using 2 DOFs: one for suppressing interference generated

by ti on rj, and one for suppressing interference generated by tj on ri. Thus,

2|Ej| DOFs in total are needed to suppress the interference the |Lj| links in Gj

cause to each other receivers. Hence, |Ej| > |Lj| implies that not enough radio

resources (DOFs) are available within Gj to completely suppress interference,

which proves that stream allocation vector S is infeasible for L.

The next step is to prove that whenever none of conditions 1), 2), 3) hold on given

input S, L, then stream allocation vector S is feasible for L, which implies correctness

of our feasibility checking algorithm (which returns True in this situation). We prove

this last step by showing a construction (DOF assignment) that makes S feasible for

L subject to the fact that none of the conditions 1), 2), 3) are satisfied.

If condition 3) is not satisfied, we have |Lj| ≤ |Ej| for each connected compo-

nent Gj of G1. We first observe that DOF assignments for the Gjs can be built

independently, since links in different G1 connected components do not interfere with

each other. We hence show the construction for a single Gj, making the overall con-

struction the result of the composition of DOF assignments for the single connected

components. It is not difficult to see that the topology of Gj can take only one of

the four following forms: a) single vertex; b) tree; c) simple cycle; d) connected graph

containing a single simple cycle. If Gj is of type a), no DOF has to be allocated for

interference suppression. If Gj is a tree (type b)), perform the following procedure:

1. Designate some vertex in Lj to be the root.

2. For every edge (li, lk) ∈ Ej, use the two available DOFs of the link deeper in

the tree (say, lk) to suppress mutual interference between li and lk.
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It is easy to see that, since every vertex in a tree (except the root) has a single parent,

each link in the above construction uses at most 2 DOFs to suppress interference, thus

not exceeding the available DOFs. On the other hand, mutual interference between

all links in Gj is taken care of at the end of the above procedure, implying that the

resulting DOF assignment makes S feasible (when restricted to Gj).

Let us now consider case c). In this case, it is sufficient to give either clock-wise or

counterclock-wise orientation to the edges in Ej, and to choose an arbitrary vertex

li in Lj. Consider any two adjacent vertices ls, lt in Gj, and assume w.l.o.g. that ls

precedes lt in the chosen orientation, starting form li. Then, the two DOFs available

at ls are used to suppress mutual interference between ls and lt. It is easy to see

that, similarly to what happens in case b), this construction results in a feasible DOF

assignment for S (when restricted to Gj).

Finally, consider case d). In this case, we start by designating every vertex in Lj that

is contained in the simple cycle and is of degree equal to 3 as the root of the tree

component it belongs to. DOFs are then assigned by combining the construction for

case b) within the trees, with construction for case c) along the single simple cycle

contained in Gj. Note that the resulting construction is feasible since root vertices in

construction b) do not use their available DOFs to suppress interference with other

links in the tree; hence, these available DOFs can be used to suppress interference

with the successive vertex (link) in the simple cycle as described in the construction

for case c). Thus, the resulting DOF assignment makes S feasible (when restricted

to Gj), and the theorem is proved.

5.3.3 Maximum Antenna Array Size K=3

Consider a MIMO network where every node has K = 3 antennas. For simplicity,

interference between links is assumed to be symmetric. The resulting conflict graph

is an undirected graph, call it G = (V,E). We include in G only links that 1) carry a
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non-zero stream allocation and that 2) carry less than three streams. For feasibility,

any links with three streams must form an independent set. Since this can be easily

checked in polynomial time, we do this as a pre-processing step and then remove

these links from the graph. Links that are not allocated any streams can also be

safely ignored. Thus, links in G can carry either one or two streams.

We first consider the special case of checking feasibility when all links carry exactly

one stream in a MIMO network. This problem can be re-formulated as below:

Problem 1 - Can the edges of graph G be directed such that every vertex has at most

two outgoing edges?

Theorem 2 states that the K = 3 special case of feasibility, where every link carries

exactly one stream is equivalent to checking whether the conflict graph G has any

subgraphs of average degree greater than 4.

Theorem 1 Let D1 be the property of a graph G = (V,E), whereby every vertex

induced subgraph of G has an average degree at most equal to four. D1 is necessary

and sufficient for the edges of G to be directed such that every vertex has at most two

outgoing edges.

Proof:

Necessary condition: Assume the edges of G can be directed such that every

vertex has at most two outgoing edges. We will prove that Property D1 holds, i.e.

that all subgraphs of G have average degree no greater than 4. Consider an arbitrary

subgraph G1 with n1 vertices. Since, in some complete labeling of G each vertex has

at most two outgoing edges, the total number of edges in the subgraph can be at

most 2n1. Since each edge is incident on two vertices, the average degree is at most

2·2n1

n1
= 4.

Sufficient condition: Suppose the given graph G satisfes D1. We prove the suffi-

cient condition through construction, by determining a direction for all of G’s edges

such that every vertex has at most two outgoing edges. The construction is described
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in Procedure Proc I, which is given after the following definitions. The quantities

defined by these definitions are dynamic, i.e. they are recalculated dynamically as

the construction proceeds.

1. Let the quantity nv denote the number of remaining edges that can be marked

as outgoing from vertex v in V . At the start, nv = 2 for all vertices v. At

any intermediate point during the construction, this value equals two minus

the number of edges that have already been marked as outgoing from v. The

construction does not allow more than 2 edges to be marked as outgoing for

any vertex and, therefore, 0 ≤ nv ≤ 2 always. 1

2. Define for any subgraph Gsub = (Vsub, Esub) of G the quantity ED (ED stands

for ‘extra DOF’s’ ). Let Eum ⊆ Esub be the set of edges of Gsub that are not yet

marked with a direction.

ED(Gsub) =
∑
v∈Gsub

nv − |Eum|

Property D1 implies that ED is greater than equal or to zero for every subgraph,

at the beginning of Procedure Proc 1.

3. Define for any edge (v, v′) in E, the boolean quantity DO (DO stands for ‘di-

rectable outwards’ ) :

DO(v, v′) =
∧
∀Gsub

(
ED(Gsub) > 0

)
where Gsub is a vertex-induced sub-graph of G/v′ such that it contains vertex

v and
∧

refers to the Boolean AND operation.

The DO definition is illustrated in Figure 11. If all subgraphs containing v but

not v′ have “extra DOFs”, then it is safe to direct the edge (v, v′) outwards.

1The “number of remaining edges nv that can be marked as outgoing from v”, refers to the number
of DOF’s that are available for interference suppresion at the transmitter and at the receiver of link
v in the MIMO feasibility problem.
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v

v'

ED1

ED3

ED2

ED4

DO(v,v')=(ED1>0) (ED2>0) (ED3>0) (ED4>0)...

G=(V,E)

Figure 11: Illustration of definition: DO(v, v′)

Keeping the above definitions in mind, apply Procedure Proc 1 to a graph G =

(V,E) which satisfies D1. By definition, every subgraph of G has an ED value greater

than equal to zero at the beginning of the procedure.

Begin Procedure Proc I

Input: G = (V,E) satisfying Property D1

Output: f : E → {0, 1, . . . , n}, where f((ui, uj)) = i indicates that the edge is directed

from ui to uj and f((ui, uj)) = j indicates that the edge is directed from uj to ui

1. Repeat: If any vertex vi in V has all but p edges marked as incoming, where

p ∈ {1, 2}, mark these p edges as outgoing, i.e. f((vi, vj)) = i for these edges,

and set nvi = nvi − p

Until: No such vertex exists

2. Vn = the set of all vertices with at least one unmarked edge

3. while there exists a vertex vi in Vn with nvi = 2 (i.e. with no outgoing edges

assigned)

3a.Let vj, j = 1, 2, 3... be the neighbors of vi connected by unmarked edges

72



3b.j = 1

3c.while (nvi = 2)

if (DO(v, vi) = TRUE)

Mark (vi, vj) as outgoing, i.e. f(vi, vj) = i

nvi = nvi − 1

else

Mark (vi, vj) as incoming, i.e. f(vi, vj) = j

nvj = nvj − 1

end if

if (vi has only two unmarked edges and nvi = 2)

Mark the remaining two edges incident to vi as outgoing, i.e. f((vi, vj)) = i

for these two edges

nvi = nvi − 2

end if

j = j + 1

end while

3d.Repeat: If any vertex vi in V has all but p ≤ nvi edges marked as incoming,

mark these p edges as outgoing, i.e. f((vi, vj)) = i for these edges, and set

nvi = nvi − p

Until: No such vertex exists

3e. end while

4. while there exists a vertex vi in Vn with nvi = 0

mark the remaining unmarked edges incident to v as incoming, i.e. f(vi, vj) =

j for these edges

end while
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5. Let G′ = (V ′, E ′) be the graph that results from removing all marked edges

from G and removing all vertices that have every edge marked

6. Direct the edges of G′ according to the procedure used for the k = 2 case

presented in our earlier work [54]

End Procedure

Analysis of procedure:

Step 1: At the start of the procedure, every subgraph of G has ED ≥ 0. During

this step, all edges of degree-one and degree-two vertices in V are marked.

Step 2: Vn contains only vertices in V with degree > 2.

Step 3: If during the procedure, we determine DO(v, v′) to be TRUE, that means

that every subgraph containing v but not v′ has ED > 0. The procedure is allowed

to direct vertex v towards v′ if and only if DO(v, v′) = TRUE. Consequently, after

the procedure directs v outwards to v′, every subgraph containing v but not v′ will

have ED ≥ 0. Moreover, all subgraphs containing v′ as well as all subgraphs with

neither v nor v′ will have an unchanged ED value.

On the other hand, if DO(v, v′) = FALSE and DO(v′, v) = TRUE then the

procedure directs v′ outwards to v. The procedure is allowed to direct vertex v′

towards v if and only if DO(v′, v) = TRUE. By the same argument as above, after

doing this, every subgraph containing v′ but not v will have ED ≥ 0 and other

subgraphs will not be affected.

Therefore, if the DO(v, vi) = TRUE condition in Step 3c is entered or the else

condition is entered with DO(vi, v) = TRUE, then all subgraphs will maintain the

property that ED ≥ 0.

Next, we show that at no point during the procedure, can both DO(v, v′) and

DO(v′, v) simultaneously evaluate to FALSE. This is stated in Lemma L1.

Lemma L1: DO(v, v′)|DO(v′, v) is always equal to TRUE at every iteration of

Step 3c.
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Proof of lemma:

If we were to have DO(v, v′) = FALSE and DO(v′, v) = FALSE, that would

imply that v is contained in some subgraph G1 = (V1, E1) such that it does not

contain v′ and has ED = 0. Also, v′ is contained in some subgraph G
′
1 = (V

′
1 , E

′
1)

such that it does not contain v and has ED = 0. And since an edge exists between v

and v′, the subgraph induced in G by V1 + V ′1 has ED = −1. Since every subgraph

of the original graph G had ED ≥ 0, this means that at some previous point in

the procedure, the subgraph induced in G by V1 + V ′1 had ED ≥ 0. Consider the

point in the procedure when the value of this ED was exactly equal to zero. Suppose

without loss of generality that G1 had an ED value equal to 1 and G′1 had an ED

value equal to 0 at this point (this would make the ED of the subgraph induced in G

by V1 + V ′1 equal to zero). Now, in order for the ED value of the subgraph induced

in G by V1 + V ′1 to become −1 from 0, there must have been some vertex va from

G1 = (V1, E1) that was directed outwards by the procedure to a vertex vb where vb is

not contained in V1
2 and also not contained in V

′
1

3 If va was directed outwards to

such a vb, that would imply that the procedure was applied incorrectly since clearly

there is a subgraph containing va, namely the subgraph induced in G by V1+V ′1 which

has an ED value exactly equal to zero, meaning that we are not allowed to direct va

to vb.

End of Lemma L1 proof.

Note that the final if statement in Step 3c does not cause any ED to become less

than zero, because if vi satisfies the condition and its last two edges are marked, this

can only increase ED for subgraphs containing vi.

2if vb was in V1, then the ED value of G1 would remain one and the ED value of the subgraph
induced in G by V1 + V ′

1 would still remain zero.
3if vb was in V

′

1 , that would violate the assumption that at this point, the ED value of the
subgraph induced in G by V1 + V ′

1 is zero (because, since we have said that ED of G1 is one and
ED of G

′

1 is zero, the fact that an edge between v and v′ exists and the fact that an edge between
va and vb exists would make the ED value of this subgraph equal to −1).
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Since DO(v, v′) is true or DO(v′, v) is true at all times and ED ≥ 0 for every

subgraph of G in either of these cases and the final if condition does not cause the

ED condition to be violated, we have the following invariant:

Invariant 1 - ED ≥ 0 for every subgraph of G at every iteration of Step 3, including

after the final iteration.

Next, we prove another invariant of the procedure. If the original graph G satisfies

D1, the procedure will never decrement the value of nv below zero for all v ∈ V .

Therefore, nv ≥ 0 is also an invariant. This follows from Lemma L1 and Lemma L2,

stated next.

Lemma L2: At every stage of the procedure, a vertex v ∈ Vn can have at most

nv neighbors that are contained in subgraphs that exclude v and with ED value equal

to zero. Moreover, if v has exactly nv such neighbors, then it is part of an average-

degree-four-subgraph in the original graph G.

Proof of lemma:

Suppose first that nv = 0. Consider a subgraph G1 = (V1, E1) that contains a

neighbor of v, but not v itself. Let the ED value of G1 be ED1. Therefore, the

subgraph induced by V1 + v in G will have ED = ED1 − 1. Since by Lemma L1, the

ED value of every subgraph of G is always greater than equal to zero, we must have

ED1 ≥ 1. Therefore, v has nv (= 0) neighbors that are contained in subgraphs that

do not contain v and with ED=0.

Similarly, for nv > 0, suppose that v has p such neighbors, contained in subgraphs

G1 = (V1, E1), ...Gp = (Vp, Ep). The subgraph induced by V1 + .. + Vp + v in G will

have ED = ED1 + ... + EDp − p + nv. Since by Lemma L1, ED of every subgraph

of G is greater than equal to zero, we must have p ≤ nv.

End of Lemma L2 proof.

Note 1 - Lemmas L1 and L2 preclude the following from occurring at any stage

of the procedure: DO(v, vi) = FALSE and nvi = 0. This is because we must have: 1)
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DO(v, vi) = TRUE and/or DO(v, vi) = TRUE by Lemma L1, and 2) vi has nvi = 0

neighbors in subgraphs with ED = 0 by Lemma L2. This means that if nvi = 0, then

DO(v, vi) = TRUE will always hold and v can be marked outwards to vi.

This establishes the following invariant.

Invariant 2 - nv ≥ 0 for every v ∈ V at every stage of the procedure.

Step 4: When Step 3 terminates, every vertex v ∈ Vn has nv equal to either one

or zero. This follows because, at Step 3c, vertex v with nv = 2 will have at least one

of its incident edges marked as outgoing, and hence its nv value will be decremented

by at least one.

During Step 4, every vertex v ∈ Vn with nv = 0 is fully marked. This is done by

marking every incident edge towards v. After this, all marked vertices and edges are

removed. Therefore, the remaining vertices v all have nv = 1.

Step 4 is justified by the observation that we made in Note 1 above based on

Lemmas L1 and L2, that the following can never occur at any stage of the procedure:

DO(v, vi) = FALSE and nvi = 0. In other words, whenever nv = 0, DO(v′, v) is

always TRUE where v′ is a neighbor of v. Therefore, we are allowed to mark all edges

incident to v as incoming.

Step 5: Lemma L3: If the input graph G satisfies D1 then every connected

component of the resulting graph G′ = (V ′, E ′) at the end of Step 4 will be a tree or

a simple cycle.

To see this, note that the invariant ED ≥ 0 holds true for every subgraph of G′.

Moreover, every vertex v in V ′ has nv = 1. Let G
′
i = (V

′
i , E

′
i) be the ith connected

component of G. We have ED(G
′
i) =

∑
v∈V ′

i
nv − |E

′
i | = |V ′

i | − |E
′
i |. Since by

Corollary C1, ED(G
′
i) ≥ 0, we have |V ′

i | ≥ |E
′
i |, making every connected component

of G′ a tree or a simple cycle.

Step 6: When we reach Step 6, every vertex v ∈ V ′ has nv = 1 and every

connected component is a tree or a simple cycle. In [54], we proved that such a
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graph can be directed such that every vertex has at most one outgoing edge and we

provided a procedure to do so. By applying this procedure to the remaining graph

G′, the result is that every edge of the original graph G is directed such that every

vertex has at most two outgoing edges.

5.4 Conclusion

5.4.1 Conclusions on SCD

We derived an algebraic expression for the maximum number of streams that can be

scheduled when the number of links is odd. This optimal is achieved by a combination

of spatial reuse and spatial multiplexing. We showed that optimum total number

of streams is achieved when the work of interference cancellation is shared equally

between every transmitter and every receiver, and therefore all links multiplex the

same number of streams. Moreover, we showed that at the optimum point, the

interference between every pair of links is canceled entirely by one of the links. That

is, if the transmitter of a given link nulls itself at the receiver of an interfering link,

then the receiver of the given link will suppress the signal from the transmitter of

the interfering link. Finally, we showed that the optimal total number of streams

obtained with spatial multiplexing and spatial reuse combined ( Smax = 2kl
l+1
≈ 2k

streams) is approximately twice of what it is with spatial multiplexing only (which is

k streams, all scheduled on a single link).

From the above result for optimal total number of streams, we obtain a bound on

the size l of the SCD when every node has an array size of k. This bound is given

by l ≤ 2k − 1. The maximum number of links that can be simultaneously scheduled

is therefore equal to 2k − 1. This is the case of spatial reuse only. The optimal total

number of streams in this case is thus equal to 2kl
l+1

= 2k(2k−1)
2k

= 2k − 1.

78



5.4.2 Conclusions on Multi-hop Networks

For arbitrary multi-hop networks where CSI is available only at the receivers i.e. when

the network is enabled with receiver-side-suppression only, the check for feasibility is

a polynomial time operation. In the case of arbitrary multi-hop networks where the

maximum array size is limited to two, verifying feasibility was seen to be polynomial

in complexity. If a stream allocation vector is feasible on such a communication

network (with k = 2) then the corresponding conflict graph was seen to have an

average vertex degree equal to at most two. This means that the conflict graph is

such that each connected component is a tree and/or a simple cycle. Finally, in the

case that the maximum array size is equal to three, we showed that allocating a single

stream to all links of the communication graph requires the corresponding conflict

graph G to be such that every vertex-induced subgraph has average vertex degree

at most equal to four. The complexity of verifying this however remains an open

problem. We conjecture that is is related to the NP-complete clique problem.

79



CHAPTER VI

FEASIBILITY: EXPERIMENTAL RESULTS

6.1 Feasibility Heuristics

6.1.1 Simple Greedy and Extended Greedy

Given that the general MIMO feasibility problem is quite possibly NP-complete,

heuristics for checking feasibility are necessary. Perhaps the most obvious heuristic

is to see whether all interference can be suppressed by greedily allocating DOFs for

interference suppression. The algorithm works as follows. Sort the links in order

of non-increasing number of allocated streams. Begin with the first link and use its

DOFs to suppress interference on the links with which it interferes one by one until all

its DOFs are used. Then, move onto the next link and continue until all interference

is suppressed or all DOFs are used up, whichever comes first. If all interference can

be removed with the available DOFs in the network, the allocation vector is declared

to be feasible. We refer to this approach as Algorithm Simple Greedy.

In experimenting with Algorithm Simple Greedy, we found that it tends to con-

centrate DOFs among small groups of nodes, rather than more evenly distributing

those resources across links in the network, and this causes it to frequently label fea-

sible vectors as infeasible. To remedy this problem, we developed the algorithm in

Figure 12, which we refer to as Algorithm Extended Greedy. This algorithm, when

considering multiple candidate links, all carrying equal number of streams, on which

to suppress interference, chooses a target link uniformly at random from the can-

didates. This tends to produce a better distribution of resources and outperforms

Algorithm Simple Greedy. In Figure 12, note that the standard notation < V,W >

is used to represent the inner product of vectors V and W and that I is the identity
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Input: Stream allocation vector S, link set L, Kt, Kr, conflict graph Gc = (Vc, Ec)
Output: feasible ∈ {true, false}, At, Ar

1: Order S in non-increasing fashion. Permute Gc accordingly.
2: At = Ar = I|L|×|L|
3: for i = 1→ |L|
4: if < At(i, 1 : i), S1:i > ≤ Kt

i , distribute 1′s in At(i, Gc(i, i+ 1 : l)) greedily, giving equal
priority to columns of equal weight such that < Ati, S > ≤ Kt

i

5: if < Ar(i, 1 : i), S1:i > ≤ Kr
i , distribute 1′s in Ar(i, Gc(i, i+1 : l)) greedily, giving equal

priority to columns of equal weight such that < Ari , S > ≤ Kr
i

6: Ar(m, i) = 1−At(i,m) and At(m, i) = 1−Ar(i,m) ∀m ≥ i + 1 : (i,m) ∈ Ec
7: end for
8: feasible = true if AtS ≤ Kt and ArS ≤ Kr, else feasible = false

Figure 12: Algorithm Extended Greedy

matrix.

Both Algorithm Simple Greedy and Algorithm Extended Greedy are safe, in the

sense that they always label infeasible vectors as infeasible. However, they are both

non-optimal in that they each label some feasible vectors as infeasible. The accuracy

of the two heuristics is evaluated in Section 6.1.2, in terms of the percentage of feasible

vectors that are labeled infeasible.

6.1.2 Accuracy of Greedy Heuristics for Uniform Antenna Arrays

The scalability of the heuristics for verifying feasibility of a stream allocation vector

in a MIMO network is studied experimentally by calculating the entire feasible space

for values of Kt = Kr = K = 8, 12, 16 and network sizes up to 15 links, for a

single collision domain. The results are shown in the graph of Figure 13. Note that

the Extended Greedy heuristic is significantly more accurate than Simple Greedy.

Extended Greedy is inaccurate at most 5% of the time with k = 8 and k = 12 and at

most 10% of the time with k = 16, for the network sizes studied here.

Accuracy of feasibility tests for arbitrary multi-hop networks is not studied in

this section. This is done in Section 7.5.2 and Section 7.5.3, where we simulate the

performance of stream allocation heuristics developed in Chapter 7. These heuristics
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Figure 13: Failure Rates of Simple Greedy and Extended Greedy Heuristics: SCD,
uniform array size

that employ the Extended Greedy feasibility test as a subroutine. This allows us

to quantify the performance of the Extended Greedy test and its impact on the

performance of the overall stream allocation heuristic in arbitrary multi-hop network

scenarios.

6.1.3 Accuracy of Greedy Heuristics for Non-uniform Antenna Arrays

The performance of Greedy and Extended Greedy feasibility tests in the case when

nodes have arbitrary antenna array sizes is experimentally studied here. Again, a

single collision domain is considered. Nodes can have array sizes from anywhere

between two and eight i.e. 2 ≤ Kt ≤ 8 and 2 ≤ Kr ≤ 8. The array sizes are

distributed uniformly. SCDs up to 16 links are considered. The results are averaged

over 10 array size distribution samples and plotted in Figure 14. Observe that at 9

links, Extended Greedy has a failure rate of approximately 13% which is about twice

of what it is in the uniform case of subsection 6.1.2, where all antenna arrays were

of size 8. The reason for this is that when array sizes are not uniform, then “giving
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Figure 14: Failure Rates of Simple Greedy and Extended Greedy Heuristics: SCD,
non-uniform array size

equal priority to columns of equal weight” in the Extended Greedy routine does not

yield as much benefit as it does in the uniform case. This potentially provides an

interesting opening for further research in developing higher accuracy feasibility tests

for non-uniform antenna array distributions.

Yet another experiment was performed when antenna arrays can have a size of

either 4 or 8 i.e. Kt ∈ {4, 8} and Kr ∈ {4, 8}. Results for a single collision domain

are shown in Figure 15. Both extended Greedy and Greedy perform very well, with

the failure rate of the former being just under 2% at 12 links. Since arrays can be

only either of size 4 or size 8, there is still a lot of symmetry in the system and both

tests perform very well.

6.1.4 isFeasibile3 Heuristic for K ≤ 3

As a result of the problem analysis in subsection 5.3.3, we give the following method

for testing for feasibility when K = 3, which is referred to as Algorithm isFeasible.

The method is approximate and polynomial in complexity.
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Figure 15: Failure Rates of Simple Greedy and Extended Greedy Heuristics: SCD,
array size= 4 or 8

6.1.5 Accuracy of isFeasible

The scalability of the heuristics for verifying feasibility of a stream allocation vector

in a MIMO network is studied experimentally by calculating the entire feasible space

for values of Kt = Kr = K = 3 and network sizes up to 20 links. The results are shown

in the graphs of Figures 17 and 18, which have logarithmic scales on the y axes. Note

that the isFeasible method is significantly more accurate than the Extended Greedy

heuristic. Here, we have also made a slight optimization to Extended Greedy that

is specific to the K = 3 case. isFeasible is inaccurate at most 0.005% of the time

whereas the optimized Extended Greedy is inaccurate at most 7.0% of the time for

an average conflict graph degree of 5.5 at 20 links. These numbers are respectively

0.2% and 13% for average conflict graph degree of 7.5.

6.2 Conclusion

We now ask the question, whether the improvement in performance delivered by is-

Feasible over Extended Greedy can be exploited to develop better stream allocation
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Input: Stream allocation vector S = {s1, s2 . . . sl}, link set L, conflict graph Gc =
(Vc, Ec)
Output: feasible ∈ {true, false}, At, Ar

1: Repeat: If any vertex v in V has all but p edges marked as incoming, where p ≤ 3−sv,
mark these p edges as outgoing.
Until: No such vertex v exists.

2: Remove all marked edges and marked vertices from G. Call the set of all unmarked
vertices Vn.

3a: while there is at least one vertex v in Vn with sv = 2.
3b: for every neighbor v′ of v
3c: if nv′ = 2, mark v′ outgoing toward v.
3d: if any neighbor v′′ of v′ has nv′ = 0 then feasible=FALSE. Exit procedure.
3e: else mark all neighbors v′′ outwards to v′. nv′′ = nv′′ − 1 ∀v′′. GOTO 3h.
3e: end if
3f: end if
3g: end for
3h: Repeat: If any vertex v in Vn has all but p ≤ nv edges marked as incoming, mark

these p edges as outgoing. nv = nv − p
Until: No such vertex v exists.

3i: Remove all marked edges and marked vertices from G. Call the set of all unmarked
vertices Vn.

3j: end while
4: Look for a vertex v in Vn with nv = 2.
5: Mark as outgoing a randomly chosen edge incident on v. nv = nv − 1.
6: Repeat: If any vertex v in V has all but p ≤ nv edges marked as incoming, where

p = 3− sv, mark these p edges as outgoing.
Until: No such vertex v exists.

7: Remove all marked vertices and edges. GOTO 4 and repeat through 6 until every
vertex v in Vn has nv = 1.

0: If the resulting graph G′ = (V ′, E′) is a tree and/or simple cycle then feasible =
TRUE and G′ is directed as per the procedure used for the K = 2 case presented in
subsection 5.3.2.
else feasible = FALSE.

end if

Figure 16: Algorithm isFeasible
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Figure 17: Failure rates of feasibility heuristics: cgd = 5.5
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heuristics when K = 3. This question is answered with the affirmative in Chapter 7

(Figure 30) where we show by experimental results that stream allocation heuris-

tics that employ isFeasible are superior to those that employ the Extended Greedy

method, thereby delivering a higher throughput.
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CHAPTER VII

STREAM ALLOCATION AND ONE-SHOT LINK

SCHEDULING

The problem that we consider is that of maximizing throughput in a MIMO network

while accounting for variable rate streams on MIMO links. The stream rates on a link

depend on the channel conditions of the link, and the manner in which the diversity-

multiplexing trade-off is handled. In this work, we use the dependence of stream

rates on the channel to develop methods of link selection and stream allocation that

approximately maximize the aggregate throughput. Maximizing throughput is closely

tied to the problem of allocating streams based on the stream rates of the selected

links.

Consider the general one-shot link scheduling problem of maximizing the aggre-

gate throughput over an arbitrary set of links (that are not necessarily primary-

interference-free). We approach the problem by splitting it into two subproblems.

In the first problem (stream allocation), an algorithm determines a stream alloca-

tion vector that approximately maximizes the throughput, given a set of primary-

interference-free links. The second problem considers how to select a “good” set of

primary-interference-free links to provide as input to the stream allocation algorithm.

When solving the overall one-shot link scheduling problem, we first run the primary-

interference-free link selection algorithm, then run the stream allocation algorithm

using the output of the link selection algorithm.

Optimal stream allocation/link scheduling is very complex even for networks with
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15 links or less. Section 7.1 and Section 7.4 are devoted to developing efficient heuris-

tics that approximately maximize throughput in a multi-hop MIMO network. Sec-

tion 7.2 develops a one-shot link scheduling algorithm. Section 7.3 and Section 7.5

present experimental results on stream allocation in both single collision domains and

in arbitrary multi-hop networks.

For all simulations, the channel is modeled as an idealized rich scattering static

environment, which corresponds to a quasi-static flat Rayleigh fading channel model.

Therefore, the channel has i.i.d. complex, zero mean, unit variance elements as de-

scribed by [58]. The gain of each channel matrix is calculated using Friis transmis-

sion equation and the log-distance path-loss model with a path-loss exponent of 3

([59, 70, 71, 2]). We assume channel state information is available to the transmitters

and therefore include optimal power allocation in our rate calculations. The data

rate is calculated from Shannon’s capacity formula using the optimal power alloca-

tion [60, 5].

In order to approximate the data rate due to the use of some DOFs for interference

suppression, we first perform antenna selection and then find the optimal data rate

as described above. Suppose the transmitter uses t antenna elements for transmission

of s streams and that the receiver uses r antenna elements for reception. We perform

best eigen-value selection by picking the t transmit elements and the r receive elements

that maximize the data rate of the link. We then calculate the rates for the case of

1 ≤ s ≤ min(t, r) streams by allocating power through the best s eigenmodes of the

t× r channel.

7.1 Stream Allocation Algorithm: StreamMaxRate

A simple heuristic for the stream allocation problem, which we will use as a baseline

for comparison, is to adopt a greedy approach. Streams are scheduled successively

from highest to lowest rate and the allocation vector is tested for feasibility at each
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step. We refer to this as the “upward construction” approach, because it simply

keeps adding streams in a greedy fashion until no more streams can be added without

making the allocation vector infeasible.

We now present an algorithm that provides a better approximation to the stream

allocation problem (compared to the simple upward construction approach). For a

given set of primary-interference-free links, the value of the stream allocation vector S

is initialized so as to maximize the aggregate throughput while satisfying the following

two constraints: (1) interference between every pair of links is suppressed and (2)

weight of the stream allocation vector is bounded by w0 such that

w0 =


⌊
2kl
l+1

⌋
for a single collision domain

kl for a multi-hop network

where l is the number of non-zero entries in the vector and k is the median value of

the vector resulting from taking the minimum of the elements of Kt and Kr.1 All

pairwise interference constraints can be checked in polynomial time. However, since

the initialization only checks pairwise interference between links, the initial vector

might not be feasible. In fact, for networks that are not extremely sparse, it is

highly likely that it will be infeasible. Therefore, the initial vector that is produced

will probably have a high throughput that provides a minimum level of interference

suppression. Pseudo-code is shown for the initialization procedure in Figure 19.

Once an initial stream allocation vector is determined, it is tested for feasibility

using any feasibility checking algorithm (in the description presented herein, we as-

sume the Extended Greedy heuristic of Section 6.1.1). If the initial vector is feasible,

then it becomes the final output of the algorithm. In most cases, the initial stream

allocation vector will not be feasible and the algorithm will then adjust it to try

1If Kt
i = Kr

i = k, ∀i, then
⌊

2kl
l+1

⌋
is the maximum number of streams [49].
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1: Let S0 = [0, . . . , 0]|L|
2: repeat
3: add the highest rate stream not already in S0 that maintains the following conditions
∀i, j ∈ L:
(1) If Gc(i, j) = 1, either si + sj ≤ Kt

i and/or s1 + s2 ≤ Kr
j

(2) If Gc(j, i) = 1, either si + sj ≤ Kt
j and/or s1 + s2 ≤ Kr

i

(3) si ≤ min(Ki
t ,K

i
r)

(4) sj ≤ min(Kj
t ,K

j
r )

4: until

|L|∑
i=1

s0i = w0, such that

w0 =

{ ⌊
2kl
l+1

⌋
for a single collision domain

kl for a multi-hop network

where l = no. of non-zero entries in S0 and k = median of min(Kt,Kr)

Figure 19: Initialization Procedure for Algorithm StreamMaxRate

Input: Primary-interference-free link set L, Kt, Kr, R(ti, ri, ADOFti , ADOFri),conflict
graph Gc = (Vc, Ec)
Output: Feasible stream allocation vector S for L, At and Ar that make S feasible

1: Initialization: Choose S0 to satisfy pairwise interference constraints and approximately
maximize aggregate rate as detailed in Figure 19

2: S = S0

3: (feasible, At, Ar) = ExtGr(S,L,Kt,Kr, Gc)
4: while not feasible
5: (feasible, S,At, Ar) = UpdateRule(S,L,Kt,Kr,At,Ar, Gc)
6: end while

Figure 20: Algorithm StreamMaxRate

to make it feasible. This is done by removing streams from the initial vector until

it becomes “more feasible” and then trying to add more streams in where possible

without reducing feasibility. The stream allocation vector is adjusted by an update

rule procedure, which is guaranteed to increase the number of rows that are feasible

of the LHS in each of Conditions 1 and 2 by at least one. Thus, repeated calls to

the update rule will eventually produce a stream allocation vector that is completely

feasible. Pseudo-code is shown for the overall StreamMaxRate algorithm in Figure 34

and for the allocation vector updating procedure in Figure 21.
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Input: Stream allocation vector S, link set L, Kt, Kr, At, Ar

Output: feasible ∈ {true, false}, updated stream allocation vector S, At, Ar

1: nfr0 = min(nfrt,nfrr), where nfrt and nfrr are the number of feasible rows in At and
the number of feasible rows in Ar, with respect to S

2: repeat
3: remove the lowest rate stream from S
4: until min(nfrt,nfrr) > nfr0

5: nfr1 = min(nfrt,nfrr)
6: for each stream si not included in S from highest rate stream to lowest rate stream
7: add si to S
8: (feasible, At, Ar) = ExtGr(S,L,Kt,Kr, Gc)
9: calculate nfrt and nfrr from At and Ar

10: if min(nfrt,nfrr) < nfr1 then remove si from S
11: end for

Figure 21: Update Rule for Algorithm StreamMaxRate

7.2 One-Shot Link Scheduling Algorithms

As mentioned earlier, our approach to one-shot link scheduling is to first pick a “good”

set of primary-interference-free links and then apply Algorithm StreamMaxRate to

optimize stream allocation among those links. Any set of links making up a matching

of the communication graph is primary-interference-free and is therefore an eligible

candidate for the input to Algorithm StreamMaxRate. Clearly, the optimal solution

will use a set of links corresponding to some maximal matching.

We consider two different primary-interference-free link selection heuristics, based

on weighted matching algorithms:

1. The weight of each link is set equal to the inverse of the physical distance

between the transmitter and receiver of that link, i.e. wi = 1
di

. Here, we find a

maximum weighted matching using the algorithm of [73].

2. The weight of each link is set equal to the physical distance between the trans-

mitter and receiver of that link, i.e. wi = di. We consider maximal matchings

with at least a given number of links. From among these candidates, we choose

the matching with minimum total weight.
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7.3 Stream Allocation and One-Shot Scheduling Results for
Single Collision Domain

We have proposed the StreamMaxRate Heuristic for approximately maximizing the

throughput over a given set of links in Section 7.1. In this section, we will define an

experimental set up and use simulation results to compare the performance of the

StreamMaxRate heuristic against the optimal throughput. Because of the relatively

small number of links that can be active concurrently within a single collision domain,

we are able to calculate the optimal solution for a good portion of the input parameter

space considered. Additionally, we have simulated the greedy upward construction

approach of finding a stream allocation and use this as a second comparison point.

Finally, we show some results on the overall one-shot link scheduling problem by in-

cluding the two weighted matching methods of selecting a set of primary-interference-

free links. Since brute-force searching the space of all possible maximal matchings is

infeasible, we only compare our approach to the greedy construction in this case.

7.3.1 Simulation Set-up

For all simulations, every node is equipped with an antenna array of size k = 8.

This allows for a maximum of l = 15 links to be active concurrently, given the

single collision domain assumption. The experimental set up for the stream allocation

results is as follows. We distribute 50 nodes (with a uniform distribution) over a field

of fixed dimensions. All nodes are within interference range of each other. We select

50 randomly generated matchings (sets of primary-interference-free links) with sizes

ranging from two to fifteen. This is averaged by repeating the procedure over a sample

space of node distributions. For different matching sizes, we compute (a) the optimal

throughput (b) the throughput resulting from application of the StreamMaxRate

heuristic and (c) the throughput obtained by applying the greedy upward construction

procedure.
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Figure 22: Throughput vs number of nodes for randomly selected matchings

The set-up for the one-shot link scheduling results is as follows. We distribute

(uniformly) an even number of nodes, ranging from N = 2 to N = 30 over a field

of fixed dimensions. For each value of N , we select a maximal matching (of size

N/2, since all nodes are within transmission range of each other). We do this by

the two weighted matching procedures described in Section 7.2. We combine these

two matching selection procedures with the two stream allocation heuristics (Stream-

MaxRate and greedy) to produce four different curves. For each data point on a

curve, an average was obtained by repeating the process over a large sample space of

node distributions.

7.3.2 Simulation Results

Figure 22 shows the results for the stream allocation problem alone. Due to the

large computation time of determining the optimal value of the throughput for larger

numbers of nodes and links, the optimal result is shown only up to 20 nodes, which

corresponds to 10 links. Note that at n = 20, the throughput from StreamMaxRate

is within 7% of the optimal. The greedy upward construction approach is within 15%
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of the optimal at this point. Thus, StreamMaxRate cuts the difference between the

heuristic and the optimal in half at this point. Note also that the difference between

the greedy heuristic and StreamMaxRate increases with network size. Extrapolating

the optimal curve in a natural way would indicate that the halving of the difference

from optimal produced by StreamMaxRate should continue over the range of network

sizes simulated.

We now present results for one-shot link scheduling. In this case, we have the two

weighted matching methods for selecting the set of primary-interference-free links and

we evaluate those using both Algorithm StreamMaxRate and the greedy construction

method for stream allocation. The results are shown in Figure 23. For both methods

of finding matchings, StreamMaxRate retains its performance advantage compared

to the greedy stream allocation heuristic (about 10-15% higher throughput for the

largest network size simulated). We also find that the matching selection approach

that finds the maximum weighted matching with links weighted by the inverse of

their distances outperforms the one that finds the minimum weighted matching with

weights equal to the distances. The difference between the two matching selection

approaches is only moderate, however, being about 5% for the largest network size.

Note that, for one-shot link scheduling, we cannot compare against the overall

optimal solution, since checking all maximal matchings is not feasible for the network

sizes considered. However, given the result of the maximum matching heuristic, we

can find the optimal allocation (as we did for the stream allocation problem results).

We did this comparison and found that StreamMaxRate was within 6% of optimal for

these specific matchings (essentially the same as its performance on random matchings

described earlier).
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7.4 Stream Allocation Algorithm: MultihopMaxThrpt

The StreamMaxRate algorithm was presented in Section 7.1 and is seen to be an over-

all “downwards” procedure in that a net number of streams are removed from the

initial infeasible vector to produce a feasible output stream allocation vector. Since

the intermediate values of the vector are infeasible, and therefore have no actual mea-

surable throughput, the update rule can meet the throughput maximization criterion

only by using an approximate estimate of vector throughput. In our implementation,

throughput estimation at intermediate stages of the algorithm was done by calculat-

ing the rate on each active link under the assumption that it has at its disposal, all

transmitter and receiver side resources available for multiplexing i.e. we calculated

the rate of each link as if the entire transmitter and receiver antenna arrays were

available.

Here, we present the MultihopMaxThrpt algorithm for stream allocation, which

in contrast to StreamMaxRate is a “build-up” procedure. It initializes the value of
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the stream allocation vector S to zero, adding streams to S such that at each it-

eration, S is incremented by that stream that if added to S, keeps S feasible and

maximizes the incremental throughput. MultihopMaxThrpt therefore involves check-

ing for feasibility (of the intermediate stream allocation vectors) and calculation of

throughput (resulting from intermediate stream allocation vectors) at each iteration.

Since intermediate vectors are always in the feasible space, we can calculate through-

put at each iteration accurately. Note that in contrast, Algorithm StreamMaxRate

requires an approximate throughput estimation since intermediate vectors might fall

outside the feasible space. Finally, we contrast MultihopMaxThrpt with the simple

greedy heuristic that we used as a baseline comparison against StreamMaxRate in

Section 7.1. In the simple upward greedy construction, streams were scheduled suc-

cessively from highest to lowest rate and the allocation vector was tested for feasibility

at each step. This differs from MultihopMaxThrpt in the following respects: In the

simple greedy algorithm, 1) stream rates of links were calculated assuming that all

MIMO resources of each link were available for multiplexing. In other words, stream

rates were only estimated and not exactly computed based on the actual number of

DOFs available for multiplexing; and 2) at each iteration of MultihopMaxThrpt, the

number of streams multiplexed is incremented by one for every link in turn. The

update to the stream allocation vector is finally made corresponding to the high-

est incremental throughput achieved. The simple greedy method on the other hand

simply estimates the highest rate stream at every iteration and updates the stream

allocation vector accordingly.

The MultihopMaxThrpt algorithm is presented in Figure 34. At each iteration of

the procedure, the feasibility check is performed by a call to the function isFeasible

and the throughput calculation is done by calling the function VariableRateThrpt.

Four variants of MultihopMaxThrpt potentially result depending on whether isFeasi-

ble checks for feasibility optimally or sub-optimally and whether VariableRateThrpt
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calculates throughput resulting from a stream allocation vector optimally or sub-

optimally. These variants are distinguished by correspondingly appending to Multi-

hopMaxThrpt one of the four following subscripts: a) OptF-OptT b) OptF-SubOptT

c)SubOptF-OptT d) SubOptF-SubOptT where (Sub-)OptF indicates that isFeasible

is implemented (sub-)optimally and (Sub-)OptT indicates that VariableRateThrpt is

implemented (sub-)optimally.

The optimal implementation of isFeasible ensures that whenever a vector is feasible

it is successfully identified as being feasible. Moreover, vectors that are not feasible

are always marked as being infeasible. For any given vector, the procedure constructs

DOF assignments until one is found that supports the vector (all interference is

suppressed) or until no further DOF assignments can be constructed. For vector

lengths greater than 28 checking for feasibility optimally becomes computationally

very expensive.

The sub-optimal version of isFeasible on the other hand can be implemented by

running any heuristic method for checking feasibility. In our experiments, we employ

the Extended Greedy method presented in Section 6.1.1. The pseudo-code for this

algorithm was presented in Figure 12. This heuristic is safe, in the sense that it

always labels infeasible vectors as infeasible. However, it is non-optimal in that it

labels some feasible vectors as infeasible. In subsection 6.1.4, we developed a better

feasibility test for the special case when all nodes have an antenna array size K = 3.

The optimal implementation of VariableRateThrpt finds the absolute maximum

throughput deliverable by any given stream allocation. This is done by constructing

all DOF assignments which support the given stream allocation and for each of these,

computing the corresponding throughput as the sum of R(ti, ri, ADOFti , ADOFri)

over all links i.

The sub-optimal version of VariableRateThrpt is implemented by calculating the

throughput of a stream allocation vector resulting from a single DOF assignment that
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Input: Primary-interference-free link set L, Kt, Kr, R(ti, ri, ADOFti , ADOFri) conflict
graph Gc = (Vc, Ec)
Output: Feasible stream allocation vector S for L, throughput MaxThroughput

1: feasible = 1; MaxThroughput = 0
2: WHILE feasible
3: io = −1, feasible = 0
4: FOR each link li in L
5: increment si by one.
6: (retval, At, Ar) = isFeasible(S,L,Kt,Kr)
7: IF retval = 1 then

CurrentThrpt = VariableRateThrpt(S,L,Kt,Kr)
IF CurrentThrpt > MaxThroughput then

MaxThroughput = CurrentThrpt; io = i
8: feasible=feasible | retval
9: decrement si by one.

10: end FOR
11: IF io 6= −1 then Increment the number of streams on the chosen

link lio by one i.e. sio = sio + 1
12: ELSE break out of WHILE loop.
13: end WHILE

Figure 24: Algorithm MultihopMaxThrpt

supports the vector. In the case of the variant SubOptF-SubOptT this is the DOF

assignment resulting from Extended Greedy.

Of the four variants of MultihopMaxThrpt, the OptF-OptT is the most com-

putationally expensive as both feasibility checking and throughput calculation are

done optimally at each iteration of the algorithm. The SubOptF-SubOptT version is

computationally the least expensive.

7.5 Stream Allocation Results For Multi-hop Networks

7.5.1 Simulation Set-up

For all simulations, every node has equal transmission range and an interference

range equal to 1.5 times the transmission range. The experimental set up for the

stream allocation results is as follows. We distribute a fixed number of nodes (with a

uniform distribution) over a field of fixed dimensions. From the link set induced by

the given transmission range we generate 50 matchings each, of sizes ranging from 8
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to 36. The matchings are selected by using a maximum-weighted-matching algorithm

with the links weighted by the inverse of the link lengths. Moreover, the average

density of the corresponding conflict graphs is maintained constant across the range

of matching sizes. This is done by controlling the area of the field over which links

are selected i.e. as the size of the matching grows, the area of the field within which

links can be selected also grows. The transmission range and interference range are

left as parameters that are tuned to generate conflict graphs of different densities.

Increasing the transmission range (while keeping the field area and node distribution

constant) results in an increase in the average vertex-degree of the resulting conflict

graph which we denote by “cgd”. We study graphs with cgd equal to 2.5, 5.5 and 7.5.

Furthermore all nodes are equipped with an antenna array of size K. Simulations

were done with K = 4 and K = 6. Since the results for these two cases were quite

similar, only the K = 4 results are presented herein.

7.5.2 Simulation Results: Uniform Array Size

The results plotted in Figure 25 compare three different variants of MultihopMax-

Thrpt with one another and with the optimal throughput for conflict graphs with

a cgd of 2.5 and for nodes that all have an array size of K = 4. Also plotted

is the performance of Algorithm StreamMaxRate (see Section 7.1), which we have

adapted here to work in multi-hop networks. The SubOptF-SubOptT variant and

StreamMaxRate both use the Extended Greedy feasibility check. Due to high com-

putational complexity, the optimal and MultihopMaxThrpt-OptF-OptT results are

shown only up to 24 and 28 links respectively. The OptF-SubOptT involves a lower

computational time and is plotted up to 32 links. Finally, the SubOptF-SubOptT and

StreamMaxRate methods are simulated up to 36 links. We see that OptF-OptT is

3.0% below optimal at 24 links. Furthermore, the OptF-OptT, OptF-SubOptT and

SubOptF-SubOptT variants all scale similarly with network size. OptF-SubOptT
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and SubOptF-SubOptT are respectively only 1.1% and 1.7% below OptF-OptT at

a network size of 28. StreamMaxRate performance is slightly worse than SubOptF-

SuboptT.

The experiment is repeated for conflict graphs with cgd equal to 5.5 (generated by

increasing the transmission and interference range) and the results are plotted in Fig-

ure 26. MultihopMaxThrpt-OptF-OptT is only about 2.2% below optimal at 24 links.

Also, OptF-SubOptT is only about 2.3% lower than the OptF-OptT variant for a net-

work size of 28. We see that the OptF-OptT and OptF-SubOptT variants scale sim-

ilarly with network size. The performance of SubOptF-SubOptT, on the other hand,

is good for small networks but starts to drop off around a network size of 28, where it

is 10.5% below OptF-SubOptT and then going down to 19% below OptF-SubOptT

at 32 links. The SubOptF-SubOptT therefore seems to deteriorate in performance

with network size for conflict graphs with higher cgd. The StreamMaxRate curve

shows the same trend as well, but again is slightly worse in performance compared

to SubOptF-SubOptT. The reason for this, as explained in Section 7.1 is because an

estimated value of throughput is used at every iteration of StreamMaxRate, whereas

exact values are calculated at each step of SubOptF-SubOptT.

Figure 27 shows results for cgd equal to 7.5 and K = 4. The same patterns

as in Figure 26 are seen. This indicates that at higher graph densities, the loss

in performance of MultihopMaxThrpt due to a sub-optimal check for feasibility by

isFeasible is much greater than the loss of performance due to sub-optimal throughput

calculation by VariableRateThrpt. Note that the Extended Greedy method is used

by both SubOptF-SubOptT and StreamMaxRate as the feasibility test. We see from

Figures 25–27 that the performances of these two heuristics are much closer to optimal

for conflict graphs with lower cgd than those with higher cgd. This can be explained

by looking at the performance of Extended Greedy as a function of network density.

Figure 17 and Figure 18 show the failure rate of Extended Greedy at average
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conflict graph degrees of 5.5 and 7.5, respectively. For any given network size, we see

that the failure rate is higher when the cgd is 7.5 compared to that when it is 5.5.

This drop in performance with increasing network density, of the feasibility testing

heuristic Extended Greedy, is the likely explanation for the drop in performance with

increasing network density, of heuristics like SubOptF-SubOptT and StreamMaxRate,

which employ the Extended Greedy method.

7.5.3 Simulation Results: Non-uniform Array Size

Here, the performance of the stream allocation heuristics are simulated for the case of

non-uniform array sizes. Nodes in the network are equipped with antenna arrays of

varying sizes anywhere in the range from two to six i.e. 2 ≤ K ≤ 6. The array sizes are

distributed uniformly. The communication graph is generated as above by selecting

maximum-weighted-matching algorithm with the links weighted by the inverse of the

link lengths. Note that the maximum number of streams that a link with transmitter

size equal to Kt and receiver size equal to Kr is min(kt, Kr). The optimal throughput,

MultihopMaxThrpt-OptF-OptT, OptF-SubOptT, SubOptF-SubOptT and SMR re-

sults are plotted in Figure 28 and Figure 29 for cgd values equal to 2.5 and 5.5

respectively. In Figure 28 we see that SubOPtF-SubOptT is 12.5% below OPtF-

SubOptT for 32 links (and that SMR is a little poorer than SubOPtF-SubOptT). For

the same value of cgd= 2.5 in the uniform array case, the difference between OPtF-

SubOptT and SubOPtF-SubOptT was only 1.5% for 32 links (see Figure 25). The

reason for the poorer performance of SubOPtF-SubOptT in the non-uniform case

is because of the degradation of performance of Extended greedy for non-uniform

network scenarios that we saw in subsection 6.1.3. In Figure 29 the same patterns

as in Figures 26, 27 are seen, only they are even more pronounced. That is, the

performance of SubOptF-SubOptT and SMR falls off even more sharply - due to the

combined effect of a higher cgd and non-uniform array sizes.
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Figure 25: Throughput vs no. of nodes for randomly selected matchings:cgd = 2.5
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Figure 26: Throughput vs no. of nodes for randomly selected matchings:cgd = 5.5
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Figure 27: Throughput vs no. of nodes for randomly selected matchings:cgd = 7.5
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Figure 28: Throughput vs number of nodes for randomly selected matchings: cgd =
2.5; Variable K case: K values can be anywhere between 2 and 6
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Figure 29: Throughput vs number of nodes for randomly selected matchings: cgd =
5.5; Variable K case: K values can be anywhere between 2 and 6

This is a direct motivation for developing more accurate feasibility testing meth-

ods. Clearly, Extended Greedy does not scale very well at higher conflict graph

degrees. Note that we developed a highly accurate feasibility checking heuristic, that

is far more accurate than Extended Greedy, for the special case when every node has

K = 3 antennas in Section 6.1.4. Developing feasibility heuristics with good accuracy

that scale well with network density remains an important open problem for K > 3.

The running times of optimal stream allocation calculation, Algorithm Stream-

MaxRate, and the three MultihopMaxThrpt variants are shown in Table 7.5.3. Run-

ning times are shown per sample, for the case when the cgd is equal to 5.5. As

expected, OptF-OptT has the highest running time of all the heuristics compared as

it performs both feasibility checking and throughput calculation operations optimally

at every iteration. OptF-SubOptT is next in computational load as it performs fea-

sibility checking optimally but computes the throughput sub-optimally thus making

it faster. SubOptF-SubOptT and StreamMaxRate are both very efficient in terms of

running time.
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Table 4: Average running times (per sample) for 24 links

optimal calculation 2059 min
OptF-OptT 819 min
OptF-SubOptT 598 min
SubOptF-SubOptT 3 min
StreamMaxRate 0.55 min

Finally, we answer the question, whether the improvement in performance deliv-

ered by isFeasible over Extended Greedy can be exploited to develop better stream

allocation heuristics when K = 3. To answer this, we use the same simulation set-up

as in Subsection 7.5.1, set K = 3, and focus on an average conflict graph degree

of 5.5. For this scenario, we evaluated MultihopMaxThrpt-SubOptF-SubOptT using

both the isFeasible feasibility test and Extended Greedy. For comparison, we also

evaluated the OptF-SuboptT variant, which uses a perfect feasibility test, and the

exact optimal algorithm. The results are plotted versus network size in Figure 30.

We can see that the new feasibility heuristic does improve the stream allocation al-
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Figure 30: Throughput vs no. of nodes for randomly selected matchings: K=3,
cgd=5.5

gorithm substantially compared to Extended Greedy. For 24 links, the throughput
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with the new feasibility heuristic is about 13% higher than the throughput with Ex-

tended Greedy, and it is only about 3% from the throughput achieved with a perfect

feasibility evaluation. For 28 links, the throughput with the new heuristic is about

15% higher than with Extended Greedy. These results show that the better accuracy

of the specialized K = 3 feasibility heuristic does translate into substantially better

performance for the stream allocation algorithm and, for the range of network sizes

evaluated, it is close to what can be achieved with a perfect feasibility evaluator.
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CHAPTER VIII

PARTIAL RESULTS AND FUTURE DIRECTIONS

8.1 Stream Allocation: Independent Connected Component
Partitioning

We saw in Figure 26 and Figure 27 of Section 7.5, that the performance of SMR falls

16% below ‘optimal’ for network sizes exceeding 28 links. An attempt is made here

to develop a stream allocation method which improves upon the performance of the

StreamMaxRate algorithm for larger network sizes. We were successful in achieving

a performance improvement for grid-shaped networks. However, algorithmic param-

eters needed to be carefully chosen even for these grids. Further experimentation

and analysis is necessary before the method can be made reliable for arbitrary net-

work topologies. As far as the running time of the method is concerned, it is clearly

lower than its SMR counterpart. Our results show some merits of the method which

indicate that it might be possible to refine the method so as to increase its utility.

The proposed stream allocation heuristic is called ‘PartitionedStreamMaxRate’.

The conflict graph of the multihop MIMO network is first partitioned into a carefully

chosen number of independent connected components. The connected components

are independent in the sense that no edges are present between pairs of components.

Once the partitioning is done, the StreamMaxRate procedure is applied over each

connected component independently. We have studied cases where the number of

partitions N varies from one to four. The running time of the heuristic is seen to

decrease with increase in N . For grids of size equal to 80 links and more, well chosen

input parameters delivers a performance improvement of as much as 10%− 15% over

SMR. Note that when N = 1, PartitionedSMR simply reduces to SMR.
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8.1.1 PartitionedStreamMaxRate Algorithm

For a given set of primary-interference free links, the corresponding conflict graph

Gc = (VC , Ec) is computed. This graph will be partitioned into N independent

components. Suitable values forN are studied through simulation in sub-section 8.1.3.

The value of N is chosen such that the size of the components are small enough to

ensure a low running time but such that too many vertices are not removed by

the partitioning. The N components are initialized to contain a single vertex each,

belonging to an appropriately chosen maximal independent set (IS) of Vc of size

N . This starting independent set is chosen so as to approximately maximize the

pairwise hop distance between its vertices. The reason for doing so is to separate

the components from one other as much as possible. The components are grown

iteratively such that they continue to remain independent of one another. The idea is

to keep the size of the components as balanced as possible. Maintaining independence

requires removing neighbors that are common to two or more components from Gc at

every iteration. Maintaining connectivity requires augmenting each component with

one or more of its neighbor vertices. Denote by ‘Neighbors’, the set of vertices at

any iteration of the algorithm that are not contained in any of the components and

that do not have neighbors in more than one component. This set constitutes the

possible candidates which can be used to grow the components. At each iteration

an independent set of vertices will be select from Neighbors to be used to augment

the components. Let Gn = (Vn, En) be the subgraph induced by Neighbors in Gc.

Remove from En edges between vertices which are neighbors of the same component.

Enumerate all maximal independent sets of Gn. Augment the connected components

with each of these in turn. Apply StreamMaxRate to each augmented component and

compute its throughput. The maximal independent set that maximizes the sum total

throughput over the N components is chosen as the augmenting set. The iterative

procedure ends when all vertices in Vc are checked i.e either (1) removed on account of
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Input: conflict graph Gc = (Vc, Ec), number of partitions N , link set L, Kt, Kr, Rates
R(ti, ri, ADOFti, ADOFri) R(ti, ri, ADOFti , ADOFri) conflict graph Gc = (Vc, Ec)
Output: independent partitions Gi = (Vi, Ei) ∀i = 1 . . . N , Root, stream allocation
vector S

1: find an independent set, Root∈ Vc, of Gc of size N that approximately maximizes the
sum total pairwise hop distance between the vertices in Root. Root = findRoot(Gc, N).

2: Initialize the N connected components as: Vi = Root(i) ∀i = 1 . . . N
3: The vector ~Trpt of the throughput of each components is initialized as ~Trpt =

Rates(Root)
4: Number of unchecked vertices Nv = |Vc|
5: repeat
6: Neighbors = set of all vertices adjacent to a connected component.
7: remove vertices that are common neighbors to two or more components from Neighbors.
8: Gn = (Vn, En) is the subgraph induced by Neighbors in Gc.
9: Remove from En, the edges between neighbors of the same connected component and

from Nv.
10: Consider all maximal independent sets ISjn of Gn, j = 1 . . .MaxNum. (MaxNum = no.

of such sets)
11: for j = 1→MaxNum
12: Add each vertex in ISjn to the corresponding connected component Gi = (Vi, Ei) to

produce G′i = (V ′i , E
′
i).

13: Compute the approximate maximum throughput of each component. Trpti =
StreamMaxRate(G′i = (V ′i , E

′
i), K

t, Kr, R(ti, ri, ADOFti, ADOFri)) ∀i = 1 . . . N .
14: TotalTrptj =

∑
{Trpt} is the sum total throughput of the N components.

15: end for
16: j0 = arg maxTotalTrptj
17: Augment the connected components Gi = (Vi, Ei) with the vertices in ISj0n
18: Remove Vn from Nv.
19: until Nv = 0

Figure 31: PartitionedStreamMaxRate Algorithm

being a common neighbor (2) added to a component. Finally vertices that have been

removed by the above procedure are scheduled by applying SMR over the subgraph

of G induced by these, while keeping stream allocation and DOF assignment over all

other vertices unchanged. This is illustrated in Figure 32 and Figure 33.

8.1.2 Simulation Set-Up

In this section, we will define an experimental set up and use simulation results to

compare the performance of the PartitionedStreamMaxRate heuristic against SMR.
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Figure 32: PartitionedSMR: neighbors of connected components identified and com-
mon neighbors removed.
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Figure 33: PartitionedSMR: maximal IS of neighbors selected to augment partitions

1: Input: conflict graph Gc = (Vc, Ec), number of partitions N .
2: Output: independent set Root of size N
3: Consider Nis <= |Vc|

2 candidate independent sets each of size greater than N.
4: Root=0
5: for each candidate independent set IS do the following.
6: R = 0. Add an arbitrary vertex in IS to R.
7: Greedily add vertices from IS such that the minimum hop distance of the vertex from

Root is maximized.
8: Continue until size of Root is equal to N.
9: If R has a cumulative minimum distance greater than Root, then set Root = R.

10: end for

Figure 34: findRoot procedure
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For all simulations, every node is equipped with an antenna array of size K = 8.

We consider a rectangular grid of size 20 × 10. Primary-interference-free links are

selected by picking different matchings of varying sizes. The transmission range and

interference range are defined in terms of hop intervals. We sweep the transmission

range (TR) over three hop intervals and the interference range (IR) over nine hop

intervals. If two nodes are with transmission range of one another, then they can

potentially form a link in the matching. If two nodes belonging to different links are

within interference range of one another, then the conflict graph will have an edge

(directed) between the two links. Tuning the transmission range controls the number

of links of different qualities that can be potentially included in a matching. Tuning

the interference range controls the density of the conflict graph. We pre-picked three

different matchings by varying the TR. For each matching, the interference range

is tuned in steps of three over a nine hop interval. Every choice of matching and

interference range results in a communication graph with links of fixed qualities and

a conflict graph of a certain density. PartitionedStreamMaxRate is applied over each

of these, with N as a parameter. Matching sizes from 50 to 100 are considered.

8.1.3 Simulation Results

Experiments are done on grid-based communication graphs. The type 4 grid is shown

in Figure 35.

Figure 36 shows results for a type 4 grid network with 70 links, IR = 4 hop

intervals and TR = 2 hop intervals. The partitionedSMR is applied as described

in Figure 31 but instead of calling the findRoot method to initialize the starting

independent set, we selected this set manually for each value of N . Through a careful

selection of the starting independent set, partitioned-SMR is seen to increase the

achievable throughput when the number of partitions increases from N = 1 (SMR)

to N = 3 while simultaneously reducing the computational load. (The point N = 0

112



T

T

T

T

R

R

R

R R

T

R

T

R

T

T

R

Type 4 Grid

Figure 35: Type 4 grid: links of length equal to one hop length and two hop lengths

corresponds to scheduling the links belonging to a maximal independent set.) The

experiment is repeated for a higher interference range of IR=5 in Figure 37 and the

same trends are seen here.

Figure 36: Throughput and running time from PartitionedSMR for type 4 grid as a
function of number of partitions
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Figure 37: Throughput and running time from PartitionedSMR for type 4 grid as a
function of the number of partitions

8.1.4 Drawbacks Of PartitionedStreamMaxRate

A crucial factor governing the performance of PartitionedSMR is the selection of the

starting independent set from which the connected components are grown. We ob-

served earlier that it is desirable to keep the sizes of the components as balanced as

possible. Our results showed that partitioning delivered an improvement in through-

put (over SMR) only when the components had more or less equal sizes. One obvious

requirement to achieve this is that the vertices of the starting set should be far apart

from one another as possible. The method findRoot achieves this condition. How-

ever, it appears that this condition is not sufficient to ensure balanced component

sizes. As an example Figure 38 shows the throughput and running time as a function

of the number of partitions for a type 4 grid with IR = 4. It is the same set up as

that used in Figure 36 except that here, the method findRoot is used to determine

the starting sets (rather than choosing them manually as done before). The indepen-

dent components created are not well balanced and no performance improvement in

throughput is seen when partitioning is applied. The throughput falls slightly (ap-

prox 5%) when N increases from one to four. Therefore a method of determining the
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starting set needs to be developed such that well balanced components result. When

this is done, PartitionedSMR can be tested on random network topologies. This is a

subject for future work and has not been studied further in this thesis.

Figure 38: Throughput and running time from PartitionedSMR for type 4 grid as a
function of the number of partitions

8.2 Complexity of Verifying Feasibility for Arbitrary MIMO
Networks

In Chapter 5, the complexity of verifying feasibility was studied for several specific

MIMO scenarios. It was shown that checking feasibility of a stream allocation vector

in an arbitrary MIMO network with only receiver-side interference suppression is

polynomial in complexity. It was also shown that in the case of a multi-hop MIMO

network where every node has at most K = 2 antennas, the feasibility of an allocation

vector can be checked in polynomial time. Next, the case when every node in the

network has K = 3 antennas was studied. The condition D1, stated in the theorem

below was established as necessary and sufficient for a vector to be feasible over such

a network. However, the complexity of verifying whether this condition holds still

remains an open problem.
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Theorem 2 Let D1 be the property of a graph G = (V,E), whereby every vertex

induced subgraph of G has an average degree at most equal to four. D1 is necessary

and sufficient for the edges of G to be directed such that every vertex has at most two

outgoing edges.

8.2.1 Open Problem

The following well defined problem remains open.

Open Problem P1 : What is the complexity of determining whether the edges of graph

G can be directed such that every vertex has at most two outgoing edges?

In other words, the question to be answered is - What is the complexity of verifying

condition D1?

From our analyses of this problem, we conjecture that the complexity might be

linked with the well known NP complete clique-problem. Problem P1 is a well defined

graph problem and lends itself easily to mathematical analysis. Therefore, trying to

answer this question as opposed to the very general question - “what is the complexity

of verifying feasibility over an arbitrary MIMO network” - gives us a better starting

point to tackle this problem. We believe that mapping the general question of the

complexity of MIMO feasibility to this specific graph problem is an important step

in terms of enabling future study of this subject.

8.2.2 Efficient Feasibility Check for K = 4

A very efficient and high performance feasibility check when K = 3 was developed

in Chapter 6. This check proceeds by construction and performs so well because it

is specifically tailored to the K = 3 case. This makes it seem very promising that a

similar constructive procedure tailored to the specific case of K = 4 can be developed

and which would probably be superior to generic feasibility tests like the Extended

Greedy check.
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8.3 Integrating Physical Layer Operations with the Net-
working Layer

Our laboratory is currently active in the design of a distributed, network-wide inter-

ference handling technique which involves computing MMSE-based weight vectors to

be used at transmit and receive MIMO arrays to handle interference. The procedure

is iterative, with each transmitter (receiver) weight vector being dependent on the

weight vector of all the other transmitters and receivers in the network.

It was seen that if a stream allocation vector was determined to be feasible (ac-

cording to the full degrees-of-freedom model) then a set of weight vectors for all nodes

of the network does exist such that all interference can be successfully removed. The

throughput estimated by this approach however deviates from the throughput that

we calculated based on the variable-rate-DOF model, the former being much more

realistic/accurate than the latter.

Clearly, given the fundamental nature of feasibility, it is clear that integrating

interference handling techniques with procedures for feasibility checking and stream

allocation is a very important step in obtaining a complete solution to the network

throughput optimization problem. In simple words, firstly, a feasible stream allocation

vector could be determined by any of the methods we have developed in this thesis

- MultihopMaxThrpt, SMR etc (based on the full DOF model). Secondly, the given

stream allocation vector is realized in practice (in the PHY layer) by applying the

interference management technique discussed above.

8.4 Practical Applications of this Work

The work presented in this dissertation would find practical application in outdoor

mesh networks if our procedures could be implemented in a distributed manner. One

approach would be to follow the distributed method that the authors of [44] developed
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to implement their stream controlled medium access (SCMA) protocol1. However, our

stream allocation heuristics require the distributed implementation to perform several

fundamental functions that are not a part of the approach in [44]. Firstly, since in

our framework we assume a CL-MIMO system, channel state information has to be

available to transmitters. The approach identifies cliques in the conflict graph and

performs stream allocation within each clique. Feedback of CSI from every receiver to

every transmitter within every clique in the conflict graph, must take place regularly

at appropriate time intervals in accordance with the channel dynamics. This would

require the distributed implementation to operate within a TDMA framework (unlike

in [44] where a contention based framework suffices). Secondly, since interference

cancellation is being done both by transmitters and by receivers, a DOF assignment

must be realized which allocates the interfering receivers at which a transmitter nulls

itself. Once all transmitters have performed nulling operations, each receiver will

decode its intended signal by suppressing the remaining interference with zero-forcing

or MMSE. The components of the distributed approach are listed here.

1. Coloring - At system start up, every transmitter transmits one stream. Each

receiver observes a certain number of streams, either less than or equal to K

or greater than K. The roles of transmitters and receivers are then reversed

for one time slot and all receiver nodes transmit one stream. Each transmitter

observes a certain number of streams, either less than or equal to K or greater

than K. Depending on the numbers of streams observed by the transmitter

and receiver of a link, the link colors itself as white if an average of less than or

equal to K streams is observerd, else it colors itself as red (bottle neck link).

2. Channel Access - White and red link sets are scheduled in alternate time slots

as per the TDMA scheme.

1This is a novel MAC protocol for ad hoc MIMO networks that enables the unique characteristics
of MIMO to be coupled with optimization considerations.
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3. Co-ordinated Scheduling - White links within interference range, by definition

are able to transmit simultaneously by multiplexing an appropriately reduced (<

K) number of streams and performing interference cancellation with remaining

DOFs. Red links on the other hand transmit at the full rate (K streams) when

the white links are inactive (these links do not interfere with one another and

therefore do not need to perform IC).

4. Stream Allocation - As mentioned earlier, CSI must be fed back from every

receiver to every transmitter within every clique at regular intervals, made pos-

sible by the TDMA framework within which we implement our scheme. At

designated time slots, no data transmissions are made. Only CSI is exchanged

between nodes. Along with this exchange, we propose to exchange node IDs (IP

addresses for example) as well. Therefore, 1)every transmitter (receiver) knows

the channel between itself and every other receiver (transmitter) and 2) every

transmitter knows every other receiver’s ID.

With this information available to the nodes, we can implement the DOF assig-

ment for cliques that was developed in our work [54]. For a clique of size equal to

l, the maximum number of streams that can be scheduled is
⌊
2Kl
l+1

⌋
. At the trans-

mitters, all interfereing receiver node IDs are ordered in a pre-determined fash-

ion. Suppose (for the purpose of illustration), that we label these receiver IDs as

{1, 2 . . . l}). The transmitter whose receiver has an ID equal to i then nulls itself

at the
⌊
l−1
2

⌋
receivers with IDs ranging from mod(i+ 1, l) to mod(i+

⌊
l−1
2

⌋
, l).

Once this is done, the receivers will have sufficient MIMO resources to decode

the desired signal and suppress remaining interference with a linear technique

such as ZF or MMSE.
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CHAPTER IX

CONCLUSION

Contributions made by this thesis to the subject of MIMO networking are

1. We proposed the variable rate model for a MIMO link, which accounts for

diversity gain and the law of diminishing returns of spatial multiplexing. This

overcomes a major limitation of the degrees-of-freedom model which does not

account these factors and which models stream rates of links uniformly. This

is called the uniform rate model and is widely used by researchers within the

DOF framework. For the test case of a single collision domain of size 10 links,

we achieved approximately a 20% higher network throughput by applying the

variable rate model as compared to what was achieved using the uniform-rate

model. (Chapter 1)

2. We cast the feasibility problem as a matrix formulation. This mathematical

framework was the basis for (a) our subsequent theoretical results on feasibility;

(b) the design of heuristics for feasibility tests and (c) the design of stream

allocation algorithms for optimizing MIMO network throughput. We see that

feasibility is a variation of a Boolean satisfiability. (Chapter 5)

3. We showed that in a single collision domain (SCD) with l links and where every

node has an array size equal to k, the optimal throughput is equal to
⌊
2kl
l+1

⌋
.

This was done using the Lagrange multiplier method of optimization. We note

that the maximum size of such an SCD is 2k − 1 links. (Chapter 5)

4. We showed that checking feasibility when only receiver-side interference sup-

pression is done is of polynomial-time complexity.
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5. We showed that for arbitrary multi-hop networks, if the size of every antenna

array is no greater than two, then the complexity of checking feasibility is poly-

nomial.

6. We derived a necessary and sufficient condition D1 (see subsection 5.3.3) for

verifying feasiblity in an arbitrary symmetric multi-hop network where the size

of every antenna array is no greater than three and every link carries one stream.

Although the complexity of verifying D1 remains an open problem, our inves-

tigations lead us to conjecture that this problem is related to the known NP-

complete clique-problem. This is an important open problem as the problem of

determining the complexity of verifying D1 lends itself to mathematical anayl-

sis easier than the general problem of determining the complexity of verifying

feasibility. (Chapter 5)

7. We developed two efficient heuristic feasibility tests: Extended Greedy and

isFeasible (Chapter 6)

8. We designed several efficient stream allocation heuristics: SteamMaxRate, Multihop-

Max-Thrpt-OptF-SubOptT,Multihop-Max-Thrpt-SubOptF-OptT and Multihop-

Max-Thrpt-SubOptF-SubOptT. (Chapter 7)

9. We developed yet another stream allocation heuristic: Partitioned Stream-

MaxRate which scales very well with network size. Certain aspects of the algo-

rithm need further development before it becomes fully reliable. The method

in general is elegant and therefore this is an interesting subject for future work.

(Chapter 8)
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