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PAC paraunitary asymmetric

cryptosystem

PDSS paraunitary digital-signature

scheme

SSC self-synchronizing stream cipher

TOWF trapdoor one-way function

TRMC tractable rational-map

cryptosystem

TTM tame transformation method

TTS tame transformation signature
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WSSC wavelet self-synchronizing stream

cipher

XL extended relinearization

Part III

CH cluster head

Du Du scheme

EG Eschenauer-Gligor scheme

GB grid-based scheme

HB hypercube-based scheme

IHA interleaved hop-by-hop

authentication

KPS key pre-distribution scheme

LBRS location-based resilient security

LEDS location-aware end-to-end data

security

LA-GB location-aware grid-based scheme

LA-MKPS location-aware multivariate key

pre-distribution scheme

LNCS location-aware network-coding

security

MAC message authentication code

MDS maximum distance separable

MKPS multivariate key pre-distribution

scheme

qComp q-composite scheme

RPB random polynomial-based scheme

SEF statistical en-route filtering

WSN wireless sensor network
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SUMMARY

This thesis is concerned with both link and network security. It explores applications of

wavelets and paraunitary (PU) matrices over finite fields in cryptography to provide link and

network security for resource-limited devices. It also exploits algebraic techniques to secure

wireless sensor networks. Algebraic natures of these tools allow not only the designation

of highly efficient cryptographic algorithms but also their security analysis in a systematic

manner. These advantages and features can be compared with the traditional methods that

are mostly ad hoc.

The primary focus of this thesis is cryptography and network security. However, since

multivariate PU matrices are one of the main ingredients in our designs, we study their fac-

torization in Part I. In a factorization method, one seeks a small set of fully-parameterized

building blocks that their multiplication generates PU matrices. By taking advantage of

the lifting method, we propose a multi-level technique that converts the problem of factor-

ing bivariate PU matrices into their univariate counterpart. Precisely, our contributions in

Part I are briefly as follows.

1. We propose, for the first time, fully-parameterized 2× 2 bivariate PU building blocks

along with a two-level factorization algorithm.

2. Using the newly proposed building blocks, we are able to generate a subclass of bivariate

PU matrices that is larger than the subclass generated using other methods.

3. The proposed bivariate PU building blocks have some practical applications. For ex-

ample, they can be used to construct two-dimensional error-correcting encoders and

syndrome generators.

The design of multivariate cryptographic primitives is the main goal in Part II. In

this part, first we use finite-field wavelets as sequence transformers to design the wavelet
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self-synchronizing stream cipher (WSSC). Although the new design mimics the traditional

canonical model, there are some fundamental differences, which are discussed. For example,

the secret key specifies the wavelet coefficients instead of determining the initial state of

a shift register. The security analysis of the proposed stream cipher indicates that it is

invulnerable to methods such as the correlation attack that threatens the security of many

designs based on linear feedback shift registers (LFSRs). Our contributions and innovations

in the stream-cipher design are summarized below.

1. None of the attacks developed for the state of the art stream ciphers is applicable on

the WSSC since it is not based on LFSRs.

2. By taking advantage of the relationship between wavelets and PU matrices, we provide

an efficient method to setup the WSSC. Short setup time is beneficial when stream

ciphers are implemented on resource-limited devices such as cell phones or PDAs.

3. We provide estimates of the circuit complexities of the WSSC and AES in the one-bit

cipher feedback mode. Our results reveal that the WSSC has less circuit complexity.

In the remainder of Part II, we propose a new framework for the design of multivariate

public-key cryptosystems. The new approach is based on the observation that the columns

of every PU matrix serve as basis vectors for the module of polynomial vectors. In Part II,

we explain how to use this observation to design a public-key cryptosystem and a digital

signature scheme. Algebraic properties of PU matrices allow establishing a connection

between the difficulty of breaking the proposed schemes and the difficulty of solving systems

of multivariate polynomial equations as the underlying mathematical problem. In addition

to our results on the computational security of the proposed schemes, we have studied

several algebraic attacks. Our results indicate that the proposed schemes resist all studied

attacks with proper choices of design parameters. Briefly, the following have been achieved

in Part II.

1. We propose a completely novel method to design multivariate cryptosystems using

PU matrices. In this new method, we establish a link between breaking any system
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designed based on our approach and a long standing open mathematical problem. No

such mathematical analysis exists in the previous work on multivariate cryptography.

2. Using our proposed new approach, we provide a practical public-key cryptosystem and

a digital signature scheme. Our complexity estimates reveal that our systems either

outperform previous designs or have comparable complexities.

Motivated by the wealth of algebraic methods, we investigate their applications in the

key pre-distribution and data authentication for wireless sensor networks in Part III. In this

part, we first propose a multivariate key pre-distribution scheme (MKPS) for wireless sensor

networks. In this method, sensor nodes are loaded with shares of multivariate polynomials

prior to the node deployment. After the network is deployed, nodes use their pre-loaded

information to establish pairwise keys among their one-hop neighbors. We show that this

method outperforms all previous techniques in terms of the resiliency against node capture.

In addition, we propose a location-aware version of the MKPS. In the following, we provide

a summary of our contributions in the key pre-distribution for sensor networks.

1. The MKPS significantly improves the resiliency of the network against the node capture

without any payoffs such as increase in the node memory or communication range.

2. We have proposed an algorithm to optimize the MKPS with respect to (1) the prob-

ability of secure link establishment (network connectivity) and (2) the probability of

link compromise (network resiliency). Considering both these criteria as design param-

eters allows the network designer to increase the network lifetime while maintaining

a desirable level of resiliency. None of the previous schemes offers such robustness in

design.

3. By taking advantage of information about the approximate locations of nodes on the

field, we propose the location-aware multivariate key pre-distribution scheme (LA-

MKPS) in Chapter 7. This scheme provides perfect network connectivity while signifi-

cantly improving the network resiliency compared to previous location-aware schemes.
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In Part III, in addition to data confidentiality, we study three other security services

that are: (1) entity authenticity, (2) data integrity, and (3) data availability. These services

are used to protect a network against eavesdropping, false data injection, data drop, and

noise injection. In Chapter 8, we propose location-aware network-coding security (LNCS)

that offers all the aforementioned security services to wireless sensor networks. In this

scheme, data is forwarded toward the sink via multiple paths, and it is collaboratively

authenticated by multiple nodes along the path. Our contributions and improvements over

previous schemes are as follows.

1. To our knowledge, LNCS is the first scheme that practically and feasibly provides all

the three aforementioned security services.

2. For the first time, the LNCS employs random network coding that intrinsically provides

data availability. This technique generates redundant information to facilitate the

recovery of packets erased by the channel or dropped by malicious nodes. This kind of

coding significantly improves data availability compared to all other schemes.

3. In contrary to previous schemes, our proposed scheme do not require a trustworthy

cluster head (CH) that is responsible for generating the report and forwarding it to the

next cell. We emphasize that the existence of a trustworthy CH cannot be guaranteed,

and a malicious CH completely breaks down the security of the protocol.
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CHAPTER 1

Introduction and Background Review

In our modern day in which massive amounts of information are communicated through-

out the globe, the need for efficient and reliable information processing devices has become

a necessity more than ever. Used on a daily basis, PDAs, laptops, cell phones, USB flash

drives, and smart cards are a few portable devices that store or process sensitive information

such as governmental, military, commercial, and personal. In most cases, data confiden-

tiality and authenticity are among the crucial security services that must be available to

users [114, 140, 100, 163]. The need for security arises from the fact that portable devices

communicate with the outside world through the wireless channel. Hence, eavesdropping

or mounting active attacks could be very easy for an adversary attempting to gain access

to the private information or simply to disrupt the flow of information. In addition to the

obvious necessity for secure portable connectivity, the secure storage of data is crucial as

well to protect compromising highly sensitive information in case a portable storage device

(such as a USB flash drive) is lost or stolen [196].

In spite of the considerable progress in the science of information security since World

War II, there is still a constant need for efficient cryptographic algorithms. Efficiency is

particularly a primary factor when an algorithm is implemented on resource-limited devices

where energy consumption is the bottleneck determining the lifetime of the device. Among

the cryptographic primitives, public-key cryptosystems are usually the most complex but

the most useful ones [119]. Therefore, the design of highly efficient public-key primitives has

been the topic of research for many years. In addition, it would be desirable to have practical

cryptosystems based on problems other than the handful of assumptions currently in use
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such as RSA and discrete logarithm. We might be in a safer state against possibilities such

as the emergence of an efficient algorithm for factoring or computing discrete logarithms.

Motivated by these observations, many cryptographers and mathematicians have at-

tempted to investigate the applications of algebraic techniques in the design of public-key

primitives in a multivariate setting. Multivariate cryptography, a new branch of cryptology,

encompasses cryptosystems describable by a set of well-defined algebraic equations over a

small-size algebraic structure such as a finite field or a ring. The security of multivariate

cryptosystems is based on the intractability of solving systems of multivariate polynomial

equations over finite fields or rings [1, 13]. To help visualize the standing of multivariate

cryptosystems with respect to the RSA, a well-studied cryptosystem, we provide a logical

interconnection. RSA is described by a single monomial over a ring of integers defined by

two very large primes. However, multivariate cryptosystems are usually specified by sev-

eral multivariate polynomials over a small finite field. Therefore, one expects the latter to

perform much faster than the RSA since all arithmetics are carried out over a small-size

algebraic structure. The improvement in speed comes with the price of increase in the size

of the memory required to store the description of the system, i.e., the coefficients and ex-

ponents of the multivariate polynomials. Nevertheless, the energy consumption, among all

other factors, usually dominates in determining the lifetime of most portable devices. Hence,

multivariate cryptosystems are suitable for applications in resource-limited environments.

The attraction of portable devices comes from the fact that they are compact yet can

carry out many tasks on their own. Hence, the idea of constructing a network of very small

and portable devices that are able to sense some attribute of the environment seems very

attractive. As a matter of fact, such distributed networks of wireless sensors have received

a lot of attention from the research society [5]. The generic definition of wireless sensor

networks (WSNs) serves as a descriptive template for many real-world problems such as

surveillance, energy management, medical monitoring, etc. [9]. A typical WSN may consist

of hundreds to several thousands of sensor nodes that are low cost and battery powered and

have limited computation power and memory. Sensor nodes are either randomly or manually
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scattered in a field. They form an unattended wireless network that collects information

about the field such as temperature, illumination, motion, some chemical material, etc.

The collected data is partially aggregated and forwarded to a central processing unit, called

the sink, that is responsible for interpreting the data and taking appropriate actions (e.g.,

sending personnel for precise measurements).

Security is a critical issue when WSNs are deployed in a hostile environment. An adver-

sary can monitor the traffic, capture or impersonate sensor nodes, and provide misleading

information. An essential security primitive, which is a building block for many security ser-

vices, is pairwise key establishment, referred to as key establishment. Although public-key

cryptography provides a complete solution to this problem, constraints in the node pro-

cessing capabilities and also limitations in the networking features demand new solutions

in WSNs. Data authenticity is another security concern that is automatically addressed in

a public-key infrastructure using digital signature schemes. Nevertheless, the complexity of

existing signature schemes renders them inapplicable in WSNs.

The design of highly efficient cryptographic algorithms using algebraic techniques is the

main goal of this thesis. Precisely, the objectives of this thesis are fourfold:

1. devising a technique to factorize bivariate paraunitary (PU) matrices over finite fields

into the product of fully-parameterized building blocks,

2. developing a new self-synchronizing stream cipher system based on finite-field wavelets,

3. proposing an algebraic framework for designing new multivariate public-key cryptosys-

tems and signature schemes using multivariate PU matrices over finite fields, and

4. developing algebraic multivariate key pre-distribution and authentication schemes for

WSNs.

In the following, we summarize previous works and our contributions in each of these topics.

- 3 -



Bivariate PU matrices are a subclass of invertible polynomial matrices, i.e., matrices which

their entries are polynomials. Algebraic properties of PU matrices make them attractive

tools in many mathematical and engineering problems. These properties include: (1) every

PU matrix is invertible by its definition and (2) the inverse of every PU matrix, which is

a polynomial matrix itself, can be obtained with no computation. The usefulness of PU

matrices is highlighted when there exist methods to efficiently generate them. Fortunately,

this is the case for univariate PU matrices, i.e., there are a few fully-parameterized build-

ing blocks that their multiplications generate all univariate PU matrices. This fact has

significant practical importance since: (1) every building block is determined by only a

few parameters (an advantage for software implementation) and (2) any multiplication of

these factors is translated to a cascade of parameterized systems (important for hardware

implementation).

Any PU matrix is specified by a set of multivariate polynomial equations. Therefore,

one may generate such matrices by simply solving their corresponding systems of equations.

(It is also possible to add new equations to impose extra properties on the resulting PU

matrix.) Two main disadvantages of this method are: (1) it is inefficient in the average since

there is no known polynomial-time algorithm to solve systems of multivariate polynomial

equations and (2) even if a PU matrix is generated using this method, it is not clear how

to implement it specifically in hardware. Fortunately, there exists an efficient factorization

method that allows representing any univariate PU matrix as a product of the building

blocks. As a summary, two problems of interest are:

1. devising an efficient and systematic method to generate all PU matrices and

2. providing an efficient algorithm for representing any given PU matrix in an imple-

mentable format.

As explained before, there are efficient algorithms for both problems in the case of univariate

PU matrices.
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Considering the interesting features of univariate PU building blocks and the efficiency

of their factorization method, there have been attempts to seek such building blocks and fac-

torization algorithm for bivariate (and possibly multivariate) PU matrices. Unfortunately,

the extension from the univariate to the bivariate case is not trivial. One of the naive meth-

ods, suggested in the literature, is using univariate building blocks in different variables.

However, this method neither generates nor allows factoring all bivariate PU matrices. An-

other incomplete method proposed by some researchers is using the Kronecker product of

two univariate PU matrices each in one of the variables. As an alternative method, it has

been suggested to use the Gröbner bases (a classical and universal method for solving sys-

tems of multivariate polynomial equations) to generate multivariate PU matrices. As we

will explain later, the complexity of this method is double exponential in the number of

variables. In addition, it does not provide a systematic way to implement a multivariate

PU system.

Since none of the previous methods has been successful, in Chapter 3, we propose a new

method for generating and factorizing 2×2 bivariate PU matrices over fields of characteristic

two. Our contributions and improvements over previous methods are as follows.

1. We propose fully-parameterized bivariate PU building blocks along with a two-level

factorization algorithm. This method always allows the first level of factorization that

is over a ring of polynomials in one of the variables. The possibility of the second level

of factorization depends on the factors obtained in the first level. Although there are

bivariate PU matrices that cannot be factored using this method, the ones that are

factorable are represented as a product of fully-parameterized building blocks. The

importance of such representation in terms of implementation was explained before.

2. Using the newly proposed bivariate building blocks, we are able to generate a subclass

of bivariate PU matrices that is larger than the subclass generated by multiplying

univariate building blocks and other methods. Therefore, the new method is a step

forward although not complete.
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3. The proposed bivariate PU building blocks have some practical applications. For ex-

ample, they can be used to construct two-dimensional error-correcting encoders and

syndrome generators. Previously proposed methods does not have such useful proper-

ties.

This is a new trend in cryptography in which algebraic methods over small-size fields or

rings are used to construct highly efficient public-key cryptographic algorithms. Two main

motivations for studying such systems are:

1. Existing public-key schemes are computationally too complex for resource-limited de-

vices such as PDAs, smart cards, wireless sensor nodes, etc.

2. We might be in a safer state against possibilities such as the emergence of an efficient

algorithm for factoring or computing discrete logarithms.

The security of currently in use public-key schemes is based on the difficulty of either fac-

toring large composite integers or computing discrete logarithm over large cyclic groups.

Cryptographic methods based on these two problems are complex since the underlying

algebraic structure is very large in size. To significantly improve efficiency, multivariate

cryptosystems base their security on the difficulty of solving systems of multivariate poly-

nomial equations over small finite fields. There is no known polynomial-time algorithm to

solve this problem. The classical method that completely solves this problem in theory is

Gröbner bases that its complexity is, in the average, double exponential in the number of

variables (unknowns) that we denote by n. Besides the number of variables, another impor-

tant factor in the complexity of solving systems of polynomial equations is the number of

equations m. Ifm is significantly larger than n (i.e., the system of equations is over-defined),

the system can be efficiently solved using methods such as linearization and its variations

such as extended relinearization (XL) and fixing and extended relinearization (FXL). These

methods are much less complex than the Gröbner bases method only when m is in the order
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of n2. Therefore, we focus our attention to systems of equations in which either m ≈ n or

at most m is linearly related to n.

Solving systems of homogenous quadratic equations over small finite fields is also con-

sidered as a hard problem. As a subproblem of solving systems of general polynomial

equations, this has been the underlying hard problem for almost all related work in mul-

tivariate cryptography so far. The interest in quadratic homogenous polynomials comes

from the fact that their special structure limits the number of monomials. Hence, the

amount of storage memory required to store the coefficients of the polynomials is limited.

Public-key cryptosystems designed based on this approach include C∗ algorithm, hidden-

field equations (HFE), big dragon, and tame transformation method (TTM). Examples of

signature schemes design based on this approach are tame transformation signature (TTS),

QUARTZ, FLASH, and SFLASH. Unfortunately, all these schemes have been shown to be

insecure due to the existence of unexpected algebraic relations.

Considering the insecurity of previous schemes in multivariate cryptography, we study

these systems and seek a systematic method for their designation in Chapter 6. Our main

contributions in this chapter are as follows.

1. We propose a completely novel method to design multivariate cryptosystems using

PU matrices. In this new method, we establish a link between breaking any system

designed based on our approach and a long standing open mathematical problem. In

other words, we prove that if the mathematical problem has a positive answer, then

efficiently breaking any instance of our approach is equivalent to finding an efficient

algorithm for solving systems of multivariate polynomial equations. We note that the

aforementioned open mathematical problem is not a computational problem. It has

either a positive or a negative answer.

The ability of establishing such link between the difficulty of breaking a cryptosystem

and a non-computational mathematical problem stems from interesting algebraic prop-

erties of PU matrices. We emphasize that none of the previous schemes has been able

to provide such evidence on the security of their method. They just simply make claims
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about the difficulty of breaking their systems in relation to solving a hard mathematical

problem. Therefore, our proposed approach is one step forward toward the design of

provably secure multivariate cryptosystems.

2. Using our proposed new approach, we provide a paraunitary asymmetric cryptosystem

(PAC) and a paraunitary digital-signature scheme (PDSS). In addition, we estimate

complexities of different algorithms associated with these schemes (such as encryption

and signature generation). Comparing with complexities of the same algorithms in

HFE-like systems, we deduce that our systems either outperform previous designs or

have comparable complexities while maintaining a desirable security level.

Considering the attractive features of public-key multivariate cryptosystems (such as

efficiency), we investigate the possibility of employing such techniques in the design of self-

synchronizing stream ciphers in Chapter 5. Most of the related work in stream cipher design

is based on linear feedback shift registers (LFSRs) and nonlinear Boolean functions. Nev-

ertheless, many powerful attacks have been developed for such systems such as correlation

attack. An alternative design for self-synchronizing stream ciphers is using any block cipher

(such as AES) in the cipher feedback mode that effectively converts it to a self-synchronizing

stream cipher. However, a stream cipher with a dedicated design is expected to perform

faster. In Chapter 5, we employ finite-field wavelets as algebraic sequence-transformers to

propose a wavelet self-synchronizing stream cipher (WSSC). Our interest in wavelet trans-

formations originates from their rich mathematical foundation. Our new approach to the

design of stream ciphers can be considered as a novel design methodology. The WSSC is

categorized a multivariate cryptosystem since it can be completely described using poly-

nomial equations over a non-binary field. Attractive features of this new design and our

contributions are as follows.

1. None of the attacks developed for the state of the art stream ciphers is applicable on

the WSSC since it is not based on LFSRs. In addition, our studies show that none of

the existing algebraic attacks also poses a threat on the WSSC.
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2. By taking advantage of the relationship between wavelets and PU matrices, we pro-

vide an efficient method to setup the WSSC. The efficiency of the setup algorithm

comes from the fact that PU matrices can be efficiently generated by multiplying fully-

parameterized PU building blocks. Short setup time is beneficial when stream ciphers

are implemented on resource-limited devices such as cell phones or PDAs.

3. We provide estimates of the circuit complexities of the WSSC and AES in the one-bit

cipher feedback mode. Our results reveal that the WSSC has less circuit complexity.

This observation, although not a definitive proof of superiority in speed, provides some

insight on the potential efficiency of the WSSC after implementation. The improvement

in speed comes with the increase in the amount of required storage memory.

Improvements in micro-electro-mechanical systems have paved the way for the design and

cost-efficient massive production of wireless sensor nodes. A sensor node is a battery pow-

ered device equipped with a processor (with low computational power), a sensing unit, and

a wireless communication unit. The objective is to construct a wireless network of sensor

nodes that are randomly scattered in a field. Triggered by an event in the field, the sensor

nodes compile a report of their own sensor readings and send it back to a central unit, called

the sink, in a hop-by-hop manner. The sink after collecting the sensor readings makes a

decision such as sending personnel for more accurate readings.

Security is a critical issue when sensor networks are deployed in a hostile environment.

An adversary can monitor the traffic, capture or impersonate sensor nodes, and provide mis-

leading information. An essential security primitive, which is a building block for many other

security services, is pairwise key establishment referred to as key establishment. Public-key

cryptography provides a complete solution in traditional networks. However, public-key

algorithms are too complex for sensor nodes. Moreover, the lack of infrastructure makes

it difficult to provide certificates for public keys. Key pre-distribution is a feasible solu-
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tion to the key establishment problem in sensor networks. In this approach, sensor nodes

are loaded with some keying material prior to their deployment in the field. After being

scattered in the field, nodes try to establish pairwise keys with their neighbors using the

preloaded information.

The previous work in key pre-distribution schemes (KPSs) can be generally categorized

as random and deterministic. In the former, keying materials are randomly selected from a

large pool of keys and stored in nodes. After the network deployment, neighbor nodes with

common keys can establish secure links. We emphasize that two nodes can establish a link if

and only if (1) they are within the communication range of each other and (2) they are able

to establish a common key. Therefore, to improve the probability of network connectivity

(which is dependent on the probability of node connectivity using the random graph model),

the number of keys stored in every node must be increased. By this increase, the number

of keys revealed to an adversary upon the physical capture of any node increases. Thus,

as an alternative solution to the key pre-distribution problem, deterministic KPSs have

been proposed in which the keying materials for every node are deterministically selected

based on an ID uniquely assigned to that node. Combining this approach with a threshold

key establishment scheme, some deterministic KPSs have been developed that significantly

improve the resiliency of the network against the node capture. Polynomial-based threshold

key establishment is one of the mostly used schemes in the literature.

One approach taken in the literature to improve the network connectivity while main-

taining the resiliency at the level provided by deterministic schemes is to take advantage

of the deployment knowledge when such information is available. For this purpose, one

of the proposed methods is to assign a probability distribution to the actual placement of

every node in the field. Although attractive in theory, this method is very difficult to im-

plement in practice. Another technique studied in the literature is to divide the terrain into

non-overlapping cells and uniformly at random scatter nodes inside every cell. With this

technique, although every node is unaware of its exact location on the field, it can determine

the center of its residing cell (e.g., by using a localization scheme). This technique is more

- 10 -



practical than the previous one.

In Chapter 7, we propose two new multivariate KPSs that are multivariate key pre-

distribution scheme (MKPS) for random node deployment and location-aware multivariate

key pre-distribution scheme (LA-MKPS). In these schemes, node IDs are selected from

points on a hypercube in a multidimensional space. Moreover, symmetric multivariate

polynomials are used for the first time in such schemes. Our contributions and improvements

over previous schemes are as follows.

1. The MKPS significantly improves the resiliency of the network against the node capture

without any payoffs such as increase in the node memory or communication range.

This improvement is related to the fact that any existing link between two nodes is

secured with a fixed number of common keys. Therefore, an adversary attempting to

compromise the secure link between any two un-capture nodes has to compromise all

the common keys.

2. We propose an algorithm to search for the optimum dimension for the hypercube

employed in the scheme. The optimality criteria are: (1) the probability of secure

link establishment (network connectivity) and (2) the probability of link compromise

(network resiliency). The MKPS is the first scheme that employs both these criteria as

design parameters. Using the random graph model for the network, the optimization

algorithm searches only over dimensions for which the network has a giant component

(a large connected subnetwork). The philosophy behind this choice is that the existence

of a giant component suffices for a network to carry out its normal functions. All the

previous work attempt to design a completely connected network, which may require

an unnecessarily high probability of the link establishment.

In the MKPS, taking into account the network connectivity as an optimization criterion

provides another advantage over previous schemes as follows. If the network designer

somehow knows that the percentage of captured nodes will not increase beyond some

threshold (e.g., because it will become too costly for an adversary), it is an over-
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design to provide resiliency to the network beyond that threshold. By decreasing

the network resiliency, one can improve the network connectivity and, as a result,

decrease the communication range. This provides a significant saving in energy (and

network lifetime) considering that the energy consumption for the radio communication

is directly proportional to a fixed power of the communication radius.

3. In the LA-MKPS, the field is divided into non-overlapping cells, and nodes are randomly

scattered in every cell. Two layers of MKPS are employed to secure the inter- and the

intra-cell communications. Comparing to previous location-aware schemes, the LA-

MKPS significantly improves the network resilience against the node capture.

In addition to data confidentiality, three other security services necessary in WSNs are:

(1) entity authenticity, (2) data integrity, and (3) data availability. These services are used

to protect a network against the following threats. (1) Eavesdropping: By listening to

the radio channel, the adversary tries to obtain meaningful information. (2) False Data

Injection: In this attack, an insider node attempts to cause false alarms or to consume

the energy of the forwarding sensors by injecting false data. (3) Data Drop: An insider

node drops a legitimate report on the forwarding path toward the sink. (4) Noise Injection:

Legitimate reports are modified by injecting noise. Thus, the sink is unable to recover the

original message.

To address the need for entity authenticity and data integrity, a few schemes have been

proposed in the literature including interleaved hop-by-hop authentication (IHA), statistical

en-route filtering (SEF), and location-based resilient security (LBRS) that employ some

message authentication code (MAC) mechanism. In all these schemes, the report generated

at the center of an stimulus is forwarded toward the sink in a hop-by-hop fashion. In every

hop, a single node on the forwarding path transmits the data to the next node on the

path. Therefore, a malicious node on the path can simply drop the data. Hence, none of

these schemes provides data availability. The only existing scheme (to our knowledge) that

attempts to provide data availability in addition to other security services is the location-
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aware end-to-end data security (LEDS). The main drawback of this technique is that it

requires overhearing nodes and a voting mechanism to assure data availability with some

probability. Although justifiable in theory, there does not seem to exist a practical and

feasible method to implement this technique.

Considering the shortcomings of previous works in proposing a practical solution that

provides all the aforementioned security services, we propose a novel authentication scheme

called location-aware network-coding security (LNCS) in Chapter 8. Our contributions and

innovations in the design of this scheme are as follows.

1. In the proposed scheme, data is forwarded toward the sink via multiple paths, and

it is collaboratively authenticated by multiple nodes along the path. This scheme

performs data authentication without overhearing nodes and voting systems. In the

LNCS, nodes generate the authentication information using a hash tree on the encoded

data. The existence of highly efficient algorithms to construct hash trees and to use the

information generated by them to authenticate data implies that the proposed LNCS

is an efficient algorithm.

2. For the first time, the LNCS employs random network coding that intrinsically provides

data availability. This technique generates redundant information to facilitate the

recovery of packets erased by the channel or dropped by malicious nodes. This kind of

coding significantly improves data availability compared to all other schemes.

3. In contrary to previous schemes, our proposed scheme do not require a trustworthy

cluster head (CH) that is responsible for generating the report and forwarding it to the

next cell. We emphasize that the existence of a trustworthy CH cannot be guaranteed,

and a malicious CH completely breaks down the security of the protocol.

1.1 Notation

In this section, mathematical notations used throughout the thesis are introduced. Some

notations are specific to a particular part or chapter of the thesis that are explained at the
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beginning of that part or chapter. We have tried to employ standard notation. Therefore,

one may skip this section and use it as a reference whenever needed. In the following, the

notations are categorized based on their mathematical relevance.

1.1.1 Set Notation

Frequently-used set notations are summarized in Table 1.1. In many cases, it is required

to refer to only a subset of a set A that satisfies a logical operator ℓ : A → { 0, 1 }.

The notation Aℓ is used for this purpose, i.e., Aℓ := {x ∈ A : ℓ(x) = 1 }. For example,

Z≥0 = { 0, 1, 2, . . . }. The symbol F is used for Galois fields whenever the size of the field

is clear from the context or the statements hold for all or some specified Galois fields. We

define special notations for the following two subsets of integers since they are frequently

used.

[n ] := {x ∈ N : x ≤ n } ∀n ∈ N (1.1a)

(n ) := {x ∈ Z≥0 : x ≤ n− 1 } ∀n ∈ N (1.1b)

For example, [ 3 ] = { 1, 2, 3 } and ( 4 ) = { 0, 1, 2, 3 }.

Sets defined in Table 1.1 are usually used to construct other algebraic structures. As-

Table 1.1: Frequently-used set notations.

Symbol Meaning

N Natural numbers { 1, 2, 3, . . . }

Z Integers { 0,±1,±2,±3, . . . }

R Real numbers

C Complex numbers

Fq Galois field GF(q) with addition operator + and multiplication operator ·

F A general notation for all Galois fields

Sn Symmetric group of all permutations of n symbols
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suming that A represents an arbitrary set, notations employed for such constructions are

summarized in Table 1.2. In this table, the notation A× denotes the multiplicative sub-

group of A. Thus, if A is a field, then A× = A \ { 0 }. The set A∗, referred to as signal

space or sequence space, consists of finite sequences, such as x, each of which is a mapping

x : Z≥0 → A. The set Z≥0 is referred to as the set of indices for sequences. The n-th

element of x is denoted by either x(n) or xn. A sequence is also referred to as a signal.

Let nf ∈ Z≥0 and nl ∈ Z≥0 be the indices of the first and the last nonzero elements of a

sequence x, respectively. The set {n ∈ Z≥0 : nf ≤ n ≤ nl } is called the support of x. To

study a sequence, it suffices to know its values for all indices in its support. The set A∗

Table 1.2: Sets constructed from an arbitrary set A.

Symbol Meaning

|A| Cardinality of A

An Column vectors of length n with entries from A

A× Largest multiplicative group contained in A

A∗ Finite sequences (or streams), including the empty sequence, constructed

from the alphabet A

A[x] Polynomials in nonnegative powers of x with coefficients from A

A[x−1] Polynomials in non-positive powers of x with coefficients from A

A[x±1] Laurent polynomials in x with coefficients from A

A(x) Rational functions in nonnegative powers of x with coefficients from A

Mn,k(A) n× k matrices with entries from A

Un(A) n× n unitary matrices over A

PUn(A) n× n paraunitary matrices over A

GLn(A) General linear group over A, i.e., the set of all n × n invertible matrices

with entries in A
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becomes a vector space when A is a finite field. In this case, the vector addition and scalar

multiplication operations are defined as follows. The addition of every two vectors x, y ∈ A∗

is a new vector x + y = z ∈ A∗ such that zn := xn + yn for all n ∈ Z≥0. Moreover, for all

a ∈ A, we have a · x = z ∈ A∗, where zn := axn for all n ∈ Z≥0. For any ℓ ∈ N, the set of

length-ℓ vectors that take their elements from A can be considered a vector subspace of A∗

consisting of sequences whose support is a subset of ( ℓ ).

The notation A[x] represents all polynomials in the nonnegative powers of the inde-

terminate x with coefficients from A. Every polynomial a ∈ A[x] is of the form a(x) =

a0 +a1x+ · · ·+aLx
L for some L ∈ Z≥0 in which aL 6= 0. The highest exponent L, with the

corresponding term having nonzero coefficient, is referred to as the order or degree of a with

respect to x and is denoted by Ordxa or Degxa, respectively. Similarly, the notation A[x−1]

represents polynomials of the form a(x) = a0 + a1x
−1 + · · · + aLx

−L for some L ∈ Z≥0 in

which a0, . . . , aL ∈ A. Polynomials with both positive and negative exponents are called

Laurent polynomials.

Definition 1.1.1 (Laurent Polynomial). Let A be an arbitrary set. A Laurent polynomial

over A is a polynomial a(x) of the form

a(x) = a−Mx
−M + a−M+1x

−M+1 + · · ·+ a−1x
−1 + a0 + a1x+ · · ·+ aL−1x

L−1 + aLx
L

in which L,M ∈ Z≥0 and ai ∈ A for all −M ≤ i ≤ L. The set of all Laurent polynomials

in the indeterminate x with coefficients from the set A is denoted by A[x±1]

Fact 1.1.1. Let F be a field. The set of Laurent polynomials F [x±1] forms a ring.

1.1.2 Matrix Notation

Throughout the thesis, matrices and vectors are represented by boldface letters. Commonly

used matrix notations are summarized in Table 1.3. For each one of the matrices in this

table, whenever the dimensions are clear from the context, we drop the subscripts explicitly

indicating them.
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Table 1.3: Matrix notations.

Symbol Meaning

A† Hermitian transpose of the matrix A

det(A) Determinant of the matrix A

wt(a1, . . . , an) Weight of a vector a = [ a1, . . . , an ]† that is the number of nonzero

components of a

diag(a1, . . . , an) n× n diagonal matrix with a1, . . . , an on the main diagonal

m,n m× n matrix with all entries being 1

0m,n m× n matrix with all entries being 0

In n×n identity matrix (1’s on the main diagonal and 0’s elsewhere)

ei
n i-th row of the n× n identity matrix In

A matrix with polynomial entries is referred to as a matrix polynomial or a polyno-

mial matrix [94]. These two terms, interchangeably used throughout the thesis, refer to

the same mathematical object. Indeed, let A(x) ∈ Mℓ,m(R[x]), where R is a ring, be a

matrix with polynomial entries aij(x) ∈ R[x]. The term “polynomial matrix” refers to the

representation [aij(x)] that emphasizes the matrix structure of A(x). On the other hand,

the term “matrix polynomial” refers to the representation

A = a0 + a1x+ · · ·+ aLx
L , aL 6= 0 (1.2)

in which ak ∈ Mℓ,m(R), for all k ∈ (L+ 1 ), is a matrix containing only the coefficients

of the term xk in all polynomials aij(x). In other words, if aij(x) =
∑L

k=0 aijkx
k, where

aijk ∈ R, then ak := [aijk]. The integer L ∈ Z≥0 in (1.2) is the maximum order of all

polynomial entries. Similar to ordinary polynomials, L is called the order of A(x) with

respect to x and is denoted by OrdxA. There is another nonnegative integer associated

with the matrix polynomials inA[x−1], i.e., polynomials with non-positive exponents. Every

matrix polynomial in this polynomial set can be regarded as the transfer matrix of a system
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[186]. The minimum number of delay elements with which the system can be constructed

is called the McMillan degree or simply degree of the matrix polynomial. The degree of an

arbitrary matrix polynomial A(x) ∈ A[x−1] with respect to the indeterminate x is denoted

by DegxA. Although the degree and the order of a matrix polynomial A(x) could be

different, the inequality

DegxA ≤ OrdxA (1.3)

always holds. We note that the order and the degree of any polynomial are the same.

1.1.3 Asymptotic Notation

In this thesis, we only use the asymptotic lower bound O. Detailed descriptions can be

found in [40]. Let D be the set of all real-valued discrete functions from N to R≥0. For a

given discrete function f ∈ D, we denote by O(g(n)) the set of functions

O(g(n)) :=
{

f ∈ D : ∃ c ∈ R>0, n0 ∈ N such that 0 ≤ f(n) ≤ cg(n) ∀n ≥ n0

}

.

(1.4)

A function f belongs to the set O(g(n)) if there exists a positive constant c such that

f(n) ≤ cg(n) for sufficiently large n. Since O(g(n)) is a set, we could write f ∈ O(g(n)).

Instead, with abuse of notation, we usually write “f = O(g(n))” to express the same notion.

1.1.4 General Notation

♦ The notations ⌈·⌉ and ⌊·⌋ are used for the ceiling and floor functions, respectively.

♦ The Kronecker delta is the function δ : Z→ { 0, 1 } defined as

δ(n) =







1 n = 0

0 n 6= 0 .

(1.5)

♦ For any x ∈ Z and any N ∈ N, the notation ((x))N denoted x mod N .

♦ Let x = (x1, . . . , xn) be a vector of variables and a = (a1, . . . , an) ∈ Zn be an integer

vector. We use the short notation xa := xa1
1 · · ·xan

n .

- 18 -



♦ Let I = (i0, . . . , id−1) be a d tuple. For any j ∈ ( d ), the notation I〈j〉 denotes a d − 1

tuple obtained from I by removing ij (the (j + 1)-th coordinate). In case I is a set, it

is regarded as a tuple with an arbitrary order.

♦ For an arbitrary n × l matrix A and any set of indices I ⊆ [n ], the symbol A〈I〉

represents a sub-matrix of A generated by removing any row of A with index outside I.

♦ The notation x‖y implies the concatenation of mathematical objects x and y seen as an

independent object of the same nature. Let x1, . . . , xn and y1, . . . , ym be the elements

of x and y in the specified order, respectively. Then, the elements of the object x‖y are

x1, . . . , xn, y1, . . . , ym.

1.2 Linear Algebra Background

In this section, we review linear algebra concepts such as the involution, sesquilinear forms,

unitary matrices, and paraunitary matrices. Throughout this section, we assume that F is

an arbitrary field, F is a finite field, and R is an arbitrary ring.

1.2.1 Involution

From the space of all linear functions from R → R, we fix an involution “−” that, by its

definition, has the property a = a for all a ∈ R. For example, in the complex field, the

conjugation operation is an involution. In finite fields, the identity operator is trivially an

involution. In the following, we progressively extend the definition of involution to higher

algebraic structures.

We naturally extend the concept of involution to the ring R[x] of univariate polynomials

over R as follows.

Definition 1.2.1 (Involution “−” over the Ring of Univariate Polynomials). We define the
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involution “−” over the polynomial ring R[x] as follows

− : R[x] −→ R[x−1]

a(x) =
∑L

i=0 aix
i 7−→ a(x) =

∑L
i=0 aix

−i .

Remark. By this definition, the involution “−” over the polynomial ring F[x] is simplified

to a(x) =
∑

i aix
i 7→ a(x) =

∑

i aix
−i for all a ∈ F[x].

Remark. Over the module R∗ of finite-length sequences over the ring R, we define “−” in

a similar fashion. For every a = ( an ) ∈ R∗, we define a := ( an ) ∈ R∗.

Given an involution and an arbitrary polynomial, we can uniquely associate to it a

reciprocal polynomial defined as follows [198].

Definition 1.2.2 (Reciprocal Polynomial). Given an involution “−”, we define the reci-

procity operation as

R : R[x] −→ R[x]

a(x) =
∑L

i=0 aix
i 7−→ aR(x) =

∑L
i=0 aL−ix

i.

Remark. It can be easily seen that aR(x) = xL a(x−1) for any degree-L polynomial a ∈

R[x].

Remark. Over the polynomial ring F[x], the reciprocity operation is simplified to a(x) =

∑L
i=0 aix

i 7→ aR(x) =
∑L

i=0 aL−ix
i for all a ∈ F[x]. Therefore, aR(x) = xL a(x−1).

As the next step, we extend our definition of “−” to the module MM,N (R[x]) con-

sisting of matrices with polynomial entries. To be consistent with the notation used in

mathematical textbooks, we employ the symbol † in the extended definition.

Definition 1.2.3 (Involution † over the Module of Univariate Matrix Polynomials). We

define the involution † over the matrix module MM,N (R[x]) as

† : MM,N (R[x]) −→ MN,M (R[x−1])

A = [aij ] 7−→ A† := [a′ij ] ,

where a′ij := aji for all i ∈ [M ] and all j ∈ [N ].
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Remark. In this book, † over the matrix module MM,N (F[x]) is extensively used. For every

A(x) ∈ MM,N (F[x]), we have A†(x) = AT (x−1) ∈ MN,M

(
F[x−1]

)
, where the superscript T

denotes matrix transposition.

Remark. Over the module of constant matrices, we have A† = [ aji ] ∈ MN,M (R) for every

A = [ aij ] ∈ MM,N (R).

1.2.2 Sesquilinear Form

Let M ∈ N be an arbitrary but fixed integer and − : R → R be an involution. As defined

in [122, 199], we say that a map 〈·, ·〉 : RM × RM → R is a sesquilinear form1 if for

arbitrary α ∈ R, a = [ ai ] ∈ RM , and b = [ bi ] ∈ RM , we have

〈αa, b〉 = α 〈a, b〉 , 〈a, αb〉 = α 〈a, b〉 .

For example, consider the module (F[x])M . It can be easily verified that the following map

is a sesquilinear form.

〈u(x), v(x)〉 := u†(x)v(x) ∀u(x),v(x) ∈ (F[x])2 (1.6)

Given any sesquilinear form 〈·, ·〉, we can define the conjugate transpose sesquilinear form

〈·, ·〉c defined by 〈a, b〉c := 〈b, a〉. A symmetric sesquilinear form, a form being identical

to is conjugate, is called a Hermitian form. A sesquilinear form in which the corresponding

involution is the identity map is called a bilinear form. As its name implies, a bilinear

form is linear with respect to both input arguments. We note that a bilinear form is not

necessarily symmetric.

To show an example of a symmetric bilinear form, consider the map

〈a, b〉 := a† b ∀a,b ∈ F
M . (1.7)

It can be easily verified that this is a symmetric bilinear form. Similar to (1.7), we can

define a symmetric bilinear form over the vector space F∗ of all finite sequences over any

1Sesquilinear means 1 1
2

times linear.
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finite field F. Precisely, we define

〈a, b〉 :=
∑

n∈I
an bn a, b ∈ F

∗ , (1.8)

where I is a countable set used to index sequences in F∗. We emphasize that since all

sequences in F∗ are finite, the summation in (1.8) is actually a finite sum. Therefore, the

symmetric bilinear form in (1.8) is well defined.

A sesquilinear form over a module M that satisfies the property

〈a, a〉 = 0 ⇔ a = 0 ∀a ∈M , (1.9)

called positive definiteness, is called an inner product or a dot product. The notion of

orthogonality is technically only associated with inner products. However, we use it for

sesquilinear forms as well. Two vectors a,b ∈M are called orthogonal, denoted by a⊥b, if

and only if 〈a, b〉 = 0. A set of vectors {a1, . . . ,aλ } ⊂M is called orthogonal if 〈ai, aj〉 = 0

for all distinct i, j ∈ [λ ].

Let N ⊂ M be a submodule. A vector v ∈ M is a right null vector of N with respect

to the sesquilinear form 〈·, ·〉 if it is orthogonal to all vectors in N from the right, i.e.,

〈w, v〉 = 0 for all w ∈ N. In a similar way, we define a left null vector. The set of all right

null vectors of N is called the right null space of N and is denoted as NullR(N), i.e.,

NullR(N) :=
{

v ∈M : 〈w, v〉 = 0 ∀w ∈ N

}

. (1.10)

In a similar fashion, we define the left null space of N that we denote by NullL(N). One

easily verifies that the left and right null spaces are, in fact, modules. A null space is self-

dual if it is equal to the vector space itself. For example if NullR(N) = N, then the right

null space of N is self-dual.

In some cases, the left and right null spaces are the same. This situation occurs, for

example, when the underlying sesquilinear form is symmetric. The sesquilinear form defined

in (1.7) satisfies this property. By the null space of a matrix, we mean the null space of the

module generated by the linear span of its columns. To put this definition in mathematical
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language, let A ∈ MM (R) be a matrix and a1, . . . ,aN ∈ RM be its column vectors. Then,

Null(A) := Null
(

span {a1, . . . ,aM }
)

. (1.11)

Fact 1.2.1. Let A ∈ MM (R) be an arbitrary matrix and v ∈ RM an arbitrary vector.

Then, v ∈ Null(A) if and only if A†v = 0.

Another notion, which we borrow from inner products, is norm. The map

‖ · ‖ : M −→ R

a 7−→ 〈a, a〉
(1.12)

is called the norm. A vector a ∈M with ‖a‖ = 0 is called self-orthogonal. A set of vectors

{a1, . . . ,aλ } ⊂ M is called orthonormal if it is an orthogonal set with the additional

property ‖ai‖ = 1 for all i ∈ [λ ].

Fact 1.2.2. Let {a1, . . . ,aλ } ⊂M be an orthogonal set. Then, for any linear combination

x = α1a1 + · · ·+ αλaλ ∈M with α1, . . . , αλ ∈ R, we have

‖x‖ =
λ∑

i=1

αiαi‖ai‖ .

1.2.3 Unitary Matrix

Unitary matrices are a subclass of the general linear group GL(R). Let † be the involution

in Definition 1.2.3 and 〈·, ·〉 be the sesquilinear form in (1.7). We define unitary matrices

as follows.

Definition 1.2.4 (Unitary Matrix). A matrix A ∈ MM (R) is unitary if and only if A†A =

I.

The set of all M ×M unitary matrices over the ring R is denoted by UM (R). One

easily verifies that UM (R) with the ordinary matrix multiplication forms a group. As an

example of unitary matrices, consider the matrix A = I+ ζvv† ∈ MM (F) in which ζ ∈ F is

an arbitrary constant and v ∈ FM is a vector satisfying the property ‖v‖ = 0. This matrix
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is unitary since

A†A =
(

I + ζvv†
) (

I + ζvv†
)

= I + ζvv† + ζvv† + ζ2v
(

v†v
)

v†

= I . (Recall that F is a field with characteristic two.)

To provide an example of unitary matrices over the complex field, consider the matrix

Hu := I− 2uu† , (1.13)

where u ∈ CM such that ‖u‖ = 1. It can be easily verified that this is a unitary matrix

[186]. The matrix in (1.13) is called a Householder matrix.

By Definition 1.2.4, if A is unitary, then A−1 = A†. This result leads to AA† = I. In

fact, one can easily prove the following fact [161].

Fact 1.2.3. For any matrix A = [a1, . . . ,aM ] ∈ MM (R), where a1, . . . ,aM are its columns,

the following statements are equivalent.

(i) A ∈ UM (R)

(ii) A† ∈ UM (R)

(iii) 〈ai, aj〉 = δ(i− j) ∀i, j ∈ [M ]

(iv) A†A = I

(v) AA† = I

(vi) A−1 = A†

An interesting property of unitary matrices is that they preserve the norm of any vector.

This important result is stated in the following.

Lemma 1.2.1 (Norm Preservation of Unitary Matrices). Let A ∈ UM (R) be an arbitrary

unitary matrix and v ∈ RM an arbitrary vector for some M ∈ N. The unitary matrix

preserves the norm of v, with respect to the symmetric bilinear form (1.7), as a linear

transformation, i.e., ‖Av‖ = ‖v‖.

Proof. ‖Av‖ = v†A†Av = v†v = ‖v‖.
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1.2.4 Paraunitary Matrix

A natural generalization of unitary matrices is paraunitary (PU) matrices. These are a

subclass of the general linear group of all invertible polynomial matrices GL(R[x]).

Definition 1.2.5 (PU Matrix). A polynomial matrix P ∈ MM (R[x]) is PU if and only if

P†P ≡ I. This is equivalent to

P†(x)P(x) = I ∀x ∈ R \ { 0 } .

The set of all M × M PU matrices over the polynomial module R[x] is denoted by

PUM (R[x]). One easily verifies that PUM (R[x]) with the ordinary matrix multiplication

forms a group. As an example, consider the matrix polynomial P(x) = I + vv† + vv†x ∈

MM (F[x]) in which v ∈ FM such that ‖v‖ = 1. It can be easily verified that this is a PU

matrix. Similar to Fact 1.2.3, we can prove the following.

Fact 1.2.4. For any polynomial matrix P(x) = [p1(x), . . . ,pM (x) ] ∈ MM (R[x]), where

p1(x), . . . ,pM (x) are its columns, the following statements are equivalent.

(i) P(x) ∈ PUM (R[x])

(ii) P(x) ∈ PUM (R[x−1])

(iii) 〈pi, pj〉 = δ(i− j) ∀i, j ∈ [M ]

(iv) P†(x)P(x) ≡ I

(v) P(x)P†(x) ≡ I

(vi) P−1(x) = P†(x)

Similar to unitary matrices, PU matrices have the norm preservation property as well.

Lemma 1.2.2 (Norm Preservation of PU Matrices). Let P(x) ∈ PUM (R[x]) be an arbitrary

PU matrix and v(x) ∈ (R[x])M an arbitrary vector polynomial for some M ∈ N. The PU

matrix preserves the norm of v(x), with respect to the symmetric bilinear form (1.7), as a

linear transformation, i.e., ‖P(x)v(x)‖ = ‖v(x)‖.

Proof. ‖P(x)v(x)‖ = v†(x)P†(x)P(x)v(x) = v†(x)v(x) = ‖v(x)‖.
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Part I

Bivariate PU Filter Banks over
Fields of Characteristic Two



CHAPTER 2

Finite-Field Wavelet Transform

Wavelets and filter banks over real or complex fields have found many applications such as

digital audio and image processing [189, 183, 184]. The extension of univariate filter banks

onto finite fields have been studied by several authors [185, 161, 86, 30, 84]. They have

applications in both error-control coding [86, 171, 172] and cryptography [60, 63, 33, 55].

Motivated by these applications, the primary objective of Part I is to propose a method

for efficiently generating bivariate PU matrix polynomials over fields of characteristic two.

Prior to providing such method, a review of finite-field wavelets and also univariate PU

matrices is required. In Section 2.1, we briefly review the mathematical philosophy behind

the wavelet transform and explain its connection with filter banks. In addition, we explain

the importance of PU matrices in the design of finite impulse response (FIR) filter banks.

In the direction of reviewing different building blocks proposed for generating univariate PU

matrix polynomials, we review the factorization of unitary matrices in Section 2.2. Followed

by that, we introduce univariate PU building block in Section 2.3.

2.1 Quick Introduction to Wavelet Transform

Wavelets have a very rich history in mathematics, engineering, and applied sciences [49,

51, 180, 186, 190, 83]. They are established as powerful tools for many practical prob-

lems. In contrast to the Fourier transform that mostly suits processing period discrete-

or continuous-time signals, the wavelet transform can be used to study signals with finite

supports. Another distinction between these two transforms is that the Fourier transform

does not exist over all finite fields since it requires an element with a specific order. In the
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other hand, the discrete-time wavelet transform (DTWT) expands a discrete-time sequence

as a linear combination of basis sequences belonging to nesting orthogonal-complement

vector spaces [85].

To mathematically explain the DTWT, let V be a (finite or infinite dimensional) vector

space over a finite field F. The wavelet transform decomposes V into two orthogonally

complement vector spaces V1 and W1 such that V = V1⊕W1, where the binary operator ⊕

is the direct sum. Let {ϕℓ ∈ F∗ : ∀ℓ ∈ Z } and {ψℓ ∈ F∗ : ∀ℓ ∈ Z } be the basis sets of the

vector subspaces V1 andW1, respectively, in which ϕℓ(n) = ϕ(n−2ℓ) and ψℓ(n) = ψ(n−2ℓ)

for all ℓ, n ∈ Z. Here, ϕ ∈ F∗ and ψ ∈ F∗ are respectively called the scaling sequence and

the mother wavelet. In orthogonal wavelet transforms, they must satisfy the following

properties.

〈ϕk, ϕℓ〉 = δ(k − ℓ) ∀k, ℓ ∈ Z (2.1a)

〈ψk, ψℓ〉 = δ(k − ℓ) ∀k, ℓ ∈ Z (2.1b)

〈ϕk, ψℓ〉 = 0 ∀k, ℓ ∈ Z (2.1c)

An important consequence of these relations is the following lemma proved in [83].

Lemma 2.1.1. Over any (finite or infinite dimensional) field F, the scaling function ϕ ∈ F∗

and the mother wavelet ψ ∈ F∗ have both supports with even lengths.

Any sequence x ∈ V can be expanded into a linear combination of basis sequences as1

x(n) =
∞∑

ℓ=−∞
w0(ℓ)ϕℓ(n) +

∞∑

ℓ=−∞
w1(ℓ)ψℓ(n) , (2.2)

where w0, w1 ∈ F∗ are the wavelet coefficients that are uniquely determined as

w0(ℓ) = 〈x, ϕℓ〉 ∀ℓ ∈ Z (2.3a)

w1(ℓ) = 〈x, ψℓ〉 ∀ℓ ∈ Z . (2.3b)

Equations (2.3) and (2.2) define the DTWT and its inverse, respectively.

1We note that the notion of convergence over finite fields is meaningless. Every summation in this paper
is taken over a finite set of indices since all sequences in F

∗ have finite supports.
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The DTWT and its inverse are already recognized as equivalent to the analysis and

synthesis banks of a two-band filter bank as shown in Figure 2.1. It can be easily verified

that for the analysis bank in this structure to output the sequences w0 and w1, we must

have g0(n) = ϕ(−n) and g1(n) = ψ(−n) for all n ∈ Z. To avoid anti-causal filters, we

design the scaling sequence and the mother wavelet such that their support is the set

{−L,−L+ 1, . . . , 0 } for some L ∈ Z≥0. The inverse DTWT can also be realized using the

synthesis bank of the filter bank in Figure 2.1. The output of this system is a shifted version

of x in which the nonnegative delay is introduced by the filters h0 and h1. The equation

representing the sequence reconstruction in terms of the analysis filters h0 and h1 is

x(n− L) =
∞∑

ℓ=−∞
w0(ℓ)h0(n− 2ℓ− L) +

∞∑

ℓ=−∞
w1(ℓ)h1(n− 2ℓ− L) , (2.4)

where h0(n) = ϕ(n− L) and h1(n) = ψ(n− L), for all n ∈ Z, are causal filters.

A two-band filter bank that realizes a DTWT and its inverse (i.e., it perfectly recon-

structs the input sequence x from the wavelet coefficients w0 and w1) is said to possess the

perfect reconstruction (PR) property. For the filter bank in Figure 2.1 to achieve the PR

property, the filters gi and hi must satisfy some conditions. To obtain them, we use the

equivalent polyphase representation of the filter bank in Figure 2.2. In this figure, P(z) =

[Pij(z) ] ∈ M2(F[z−1]) and Q(z) = [Qij(z) ] ∈ M2(F[z−1]) are the polyphase matrices if the

analysis and synthesis banks, respectively. To express their relationships with the filters in

Figure 2.1, let Gi(z) :=
∑L

n=0 gi(n) z−n ∈ F[z−1] and Hi(z) :=
∑L

n=0 hi(n) z−n ∈ F[z−1] be

x(n) x(n − L)↓2 ↑2g0(n) h0(n)

↓2 ↑2g1(n) h1(n)

b +

w0(n) y0(n)

w1(n) y1(n)

Analysis Bank Synthesis Bank

Figure 2.1: Two-band filter bank.
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P(z) Q(z)

↓2

↓2

↑2

↑2

b +

w0(n)

w1(n)z−1 z−1

Analysis Bank Synthesis Bank

Figure 2.2: Polyphase representation of two-band filter bank.

the z-transforms of gi and hi, respectively, for both i = 0, 1. Using this notation, we have

Gi(z) = Pi0(z
2) + z−1 Pi1(z

2) (2.5a)

Hi(z) = z−1Q0i(z
2) +Q1i(z

2) . (2.5b)

It is shown in [186] that the possession of the PR property can be expressed in the compact

form

Q(z)P(z) = zθ I , (2.6)

where θ ∈ Z. To avoid infinite impulse response (IIR) filters, the polyphase matrix P(z)

is chosen to be PU. With this choice, it suffices to set Q(z) = zθ P†(z) to achieve the PR

property.

The following fact, proved in [85] about the filter banks, will be used later in Chapter 5.

Fact 2.1.1. When the polyphase matrices of a two-channel filter bank as in Figure 2.1 are

all PU, the following hold.

1. Polynomials Gi(z) and Hi(z) all have the same degree L ∈ Nodd, which is an odd

integer. Moreover, their constant terms are nonzero, i.e., gi(0) 6= 0 and hi(0) 6= 0.

2. G1(z) = z−LG0(z) and g1(n) = g0(L− n) for all n ∈ { 0, 1, . . . , L }.

Collectively, to realize a DTWT and its inverse using the two-band filter bank in Fig-

ure 2.1, one employs Algorithm 2.1. By this algorithm, the main issue in the construction

of the DTWT is the generation of PU matrices. To this end, in the rest of this chapter, we

review the univariate PU building blocks for the generation of univariate PU matrices.

- 30 -



Algorithm 2.1: DTWT construction.

Input: Matrix polynomial P(z) ∈ PU2(F[z−1])

Output: Causal filters g0, g1, h0, and h1

θ ← Ordz−1P1.

Q(z)← z−θ P†(z)2.

Obtain Gi(z) using (2.5a)3.

Obtain Hi(z) using (2.5b)4.

2.2 Unitary Matrices

By Definition 1.2.4, a matrix A ∈ MM (F), for anyM ∈ N, is unitary if and only if A† A = I.

These matrices are important in the construction of the PU matrices. Furthermore, they

will be used in the construction of the public-key cryptosystem PAC in Chapter 6 in Part II.

The building block that generates all unitary matrices over F is the matrix

Uζ,u := I + ζuu† (2.7)

in which ‖u‖ = 0 and ζ ∈ F is an arbitrary element. The fact that this matrix generates

all unitary matrices is summarized in the following theorem for future references.

Theorem 2.2.1 (Factorization of Unitary Matrices). Let A ∈ MM (F) be an arbitrary ma-

trix. Then, A is unitary if and only if it can be factored as

A = UζM ,uM
UζM−1,uM−1

· · ·Uζ2,u2 S (2.8)

in which S is a permutation of the identity matrix, ζi ∈ F, and ui ∈ FM with the property

‖ui‖ = 0 for all i = 2, . . . ,M .

The proof is provided in [85, 83].

2.3 Univariate PU Matrices

A matrix polynomial P(z) ∈ MM (F[z−1]) is PU if and only if P†(z)P(z) = I (Defini-

tion 1.2.5). Based on the size of the univariate PU matrix (i.e., the value of M), there are
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different generating building blocks. This is in contrast to the complex field over which

univariate PU matrices are generated with a single building block [186]. In the rest of

this section, we list all PU building blocks, and then, in a theorem, explain the ones that

generate 2× 2 PU matrices and those that generate M ×M ones for M ≥ 3.

The univariate PU building blocks are as follows.

♦ Degree-one building block

B1(z; v) := I + vv† + vv†z−1 ∈ PUM (F[z−1]) , (2.9)

where v ∈ FM is a unit-norm vector, i.e., ‖v‖ = 1.

♦ Degree-two building block

B2(z; u,v) := I + uv† + vu† + (uv† + vu†)z−1 ∈ PUM (F[z−1]) (2.10)

in which u,v ∈ FM are self-orthogonal vectors, i.e., ‖u‖ = ‖v‖ = 0, such that u† v = 1.

♦ Degree-2τ building block

S2τ (z; ζ) := ζ 2,2 + Iz−τ + ζ 2,2z
−2τ ∈ PU2(F[z−1]) (2.11)

in which τ ∈ N and ζ ∈ F is an arbitrary finite-field element.

♦ Degree-Mτ building block

RMτ (x; V,Λ) := VΛV† + Ix−τ + VΛV†x−2τ ∈ PUM (F[z−1]) . (2.12)

Here, τ ∈ N, Λ = diag(λ1, . . . , λM ) ∈ MM (F), and V ∈ MM (F). If v1, . . . ,vM are the

column vectors of V, then v†
i vj = 0 for all i, j ∈ [M ].

It is worth noting that the product term VΛV† in definition (2.12) is independent of the

order by which we arrange the columns of V as long as they are consistent with the order

of elements on the main diagonal of Λ. In fact, we have

VΛV† =
M∑

i=1

λiviv
†
i . (2.13)
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This results suggests choosing distinct vectors for the columns of V.

The following theorem, proved in [85, 83], states that these building blocks generate all

univariate PU matrices.

Theorem 2.3.1 (Univariate PU Factorization). Let P(z) ∈ MM (F[z−1]) be an arbitrary

polynomial matrix. This matrix is PU if and only if it can be factorized as

P(z) = zm
N∏

i=1

Ai Ci(z)

in which m ∈ Z and N ∈ N such that N ≤ DegzP. In addition, for all i ∈ [N ], Ai is either

the identity matrix or a unitary matrix and Ci(z) ∈ PUM (F[z−1]) is one of the introduce

univariate building blocks depending on the size of P(z).

• M = 2: In this case, Ci(z) is either the degree-one building block B1 in (2.9) or the

degree-2τ building block S2τ in (2.11).

• M ≥ 3: Ci(z) is either the degree-one building block B1 in (2.9), the degree-two building

block B2 in (2.10), or the degree-Mτ building block RMτ in (2.12).

Based on this theorem, one can generate univariate PU matrices by arbitrarily multi-

plying appropriate building blocks. In the applications of interest in this thesis, including

unitary matrices or pure delays in the construction of PU matrices only adds to the com-

putational complexity without serving any practical purpose. Hence, in the following, we

provide algorithms for generating univariate PU matrices in which only the introduced

univariate building blocks are used.

By Theorem 2.3.1, to construct a univariate 2× 2 PU matrix, the following parameters

must be known to the designer.

− β1, β2 ∈ Z≥0: Numbers of degree-one and degree-2τ building blocks, respectively.

− µ ∈ { 1, 2 }β1+β2 : Vector determining the order in which the building blocks are multi-

plied. This vector has exactly βi i’s for both i = 1, 2.

− w ∈ Fβ1 : Parameters of the B1 building blocks
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− ζ ∈ Fβ2 , τ ∈ Nβ2 : Parameters of the S building blocks

We note that a 2×2 degree-one building block is completely determined with a single finite-

field element. To see why, we recall that the vector v ∈ F2 in the definition of this building

block must have unit norm. Since the characteristic of the underlying field is two, it can

be easily verified that every length-two unit-norm vector is of the form [ v 1 + v ]† for an

arbitrary v ∈ F. Therefore, in the parameters listed for the construction of univariate 2× 2

PU matrices, the vector w suffices to specify all degree-one building blocks. Based on this

description, Algorithm 2.2 can be used to generate univariate 2× 2 PU matrices.

Algorithm 2.2: 2× 2 PU matrix generation.

Input: Integers β1, β2 ∈ Z≥0 and vectors µ ∈ { 1, 2 }β1+β2 , w ∈ Fβ1 , ζ ∈ Fβ2 , and τ ∈ Nβ2

Output: A PU matrix polynomial P(z) ∈ PU2(F[z−1])

⊲ Components of an arbitrary vector x are denoted by x1, x2, . . . .

P(z)← I, i, j ← 01.

for ℓ = 1 to β1 + β2 do2.

case µℓ = 1, i← i+ 1, P(z)← P(z)B1(z; [wi, 1 + wi ]
†
)3.

case µℓ = 2, j ← j + 1, P(z)← P(z)S2τj
(z; ζj)4.

end5.

return P(z)6.
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CHAPTER 3

Factorization of Bivariate PU Matrices

Motivated by the applications of multivariate PU matrix polynomials in cryptography [60,

63, 33] and error-control coding [86, 171, 172], we study the generation of bivariate PU

matrices through multiplying a finite set of fully-parameterized PU building blocks. The

factorization proposed in this chapter is a multilevel technique [56, 65]. In this method,

a bivariate PU matrix polynomial is considered a univariate matrix polynomial in one of

the variables that its coefficients are polynomial matrices in the other variable. Precisely,

an arbitrary bivariate matrix polynomial P(x, y) ∈ MM (F[x−1, y−1]), for any M ∈ N, can

always be formulated as

P(x, y) =
L∑

i=0

Pi(x) y
−i , (3.1)

where L ∈ Z≥0 is the order with respect to y−1 and Pi(x) ∈ MM (F[x−1]) for all i =

0, . . . , L. The goal is treating P(x, y) as a univariate matrix polynomial over the ring

F[x−1]. Therefore, we extend the definition of PU matrices to the ring of polynomials as

follows.

Definition 3.0.1 (PU over the Ring F[x±1]). A bivariate matrix polynomial P(x, y) ∈

MM (F[x±1, y−1]) is PU over the ring F[x±1] of Laurent polynomials if and only if

P†(x, y)P(x, y) = α(x)α(x) I (3.2)

in which α(x) ∈ F[x±1] \ { 0 } is an arbitrary nonzero polynomial.

This generalization is in line with a general definition of PU matrices over the complex

field C. In this general form, a matrix polynomial P(x, y) ∈ MM (C[x−1, y−1]) is called PU

if and only if P†(x, y)P(x, y) = c c I for some c ∈ C×, where c is the complex conjugate of c.
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Using the representation in (3.1), we provide a complete factorization for P(x, y) in terms

of bivariate building blocks that are PU over F[x±1]. This gives a first-level factorization.

The possibility of a second-level factorization depends on the terms obtained in the first

level.

The organization of this chapter is as follows. In Section 3.1, we briefly review the related

work in the factorization of multivariate PU matrix polynomials. Some mathematical results

regarding the structure of self-orthogonal vector polynomials are gathered in Section 3.2.

These results are used in the following sections. The bivariate degree-one and degree-

2τ building blocks are introduced in Section 3.3. Using these building blocks, a first-

level factorization is provided in Section 3.4. In Section 3.5, the cases in which a second-

level factorization are possible are studied. The application of the proposed multilevel

factorization technique to the factorization of multivariate PU matrix polynomials over the

complex field and also the design of two-dimensional burst error-correcting codes is briefly

studied in Section 3.6.

3.1 Related Work

The problem of factorizing unitary and univariate PU matrices over the Galois field GF(2)

was first addressed in [161, 160]. In these works, the univariate degree-one and degree-

two PU building blocks (defined in (2.9) and (2.10), respectively) were introduced. It was

shown that these building blocks cannot generate all univariate PU matrices over GF(2).

However, a complete factorization for the subclass of lapped orthogonal transform (LOT)

was presented. This subclass consists of univariate PU matrices of the form p0 + p1x
−1 in

which p0,p1 ∈ MM (F). LOTs have applications in audio and image processing [35, 36] and

also watermarking [129]. State-space representation of univariate PU matrices over GF(2)

and a factorization of PU matrices over GF(q) for q > 2 are also examined in [161, 160].

The factorization of unitary matrices and univariate two-channel PU filter banks over

GF(2r), for an arbitrary r ∈ N, is studied in [86]. To complete the factorization, the degree-

- 36 -



2τ building block (defined in (2.11)) is introduced. For the factorization of univariateM×M

PU matrices with M ≥ 3, a new building block is also presented. It is conjectured that this

building block along with the degree-one and degree-two building blocks of [161] complete

the factorization.

Most of the work in the factorization of multivariate filter banks has been done over real

or complex field [186, 190]. Unfortunately, the results cannot be easily carried over to filter

banks over finite fields. Kronecker product of univariate PU matrices to generate bivariate

systems is proposed in [51]. In this method, if A(x) and B(y) are two univariate PU matrix

polynomials (not necessarily of the same size), then a bivariate PU matrix polynomial is

generated as A(x)⊗B(y), where ⊗ is the Kronecker product operator. Let A(x) = [ ai,j(x) ]

be an M×M PU matrix polynomials. Then, the Kronecker product A(x)⊗B(y) is defined

as

A(x)⊗B(y) :=










a1,1(x)B(y) · · · a1,M (x)B(y)

...
. . .

...

aM,1(x)B(y) · · · aM,M (x)B(y)










. (3.3)

This method does not generate all bivariate PU matrices even over the real field.

It is proved in [145] that bivariate PU matrices admit a factorization consisting of the

product of FIR PU factors. However, those factors are neither determined nor parame-

terized. Construction of bivariate PU matrices through multiplying univariate degree-one

building blocks with respect to any one of the two variables in an arbitrary order is studied

in [113]. In this method, if C(x; P) is a univariate PU building block with the parameter

set P, then a bivariate PU matrix polynomial is generated as
∏N

i=1 C(x; Pi)C(y; Qi). It

is also conjectured that C(x; P)C(y; Q) is a building block for generating all bivariate PU

systems. As discussed in [188], such a building block does not give a general factorization.

The importance of Gröbner bases in multidimensional multirate systems is discussed in

[111]. It is explained in that paper how Gröbner bases can be used to design multidimen-

sional filter banks, but a general factorization and realization technique is not provided. A

family of bivariate nonseparable PU matrices is introduced in [151] without giving any fac-
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torization technique. In addition, the non-separability condition of bivariate PU matrices

is discussed in this paper

As an alternative approach, Smith-form decomposition is studied in [191, 88]. Using this

technique, a polynomial matrix can be written as a product of a diagonal matrix packed in

between two unimodular matrices. The disadvantage of this technique is that unimodular

matrices cannot be well parameterized.

The factorization of a subclass of bivariate matrix polynomials in PUM (C[x−1, y−1]) is

studied in [128]. This subclass consists of bivariate matrix polynomials, such as P(x, y),

that have order one with respect to y−1.

P(x, y) =
L∑

i=0

1∑

j=0

pi,j x
−i y−j (3.4)

The core of the factorization is the following lemma.

Lemma 3.1.1. Consider a matrix polynomial P(x, y) ∈ PUM (F [x−1, y−1]) with Ordy−1P = 1

as in (3.4), where F is an arbitrary field. Assume that the coefficients p0,0 and p0,1 are

noth both zero. Similarly, assume the coefficients pL,0 and pL,1 are not both zero. There

exists a nonzero constant vector v ∈ FM such that either

v†p0,0 = v†p0,1 = 0 (3.5a)

or

p0,0v = p0,1v = 0 . (3.5b)

This lemma is proved in [128] for the case F = C. However, we claim that it holds

in general. For completeness and also to prove this claim, we have provided the proof in

Appendix A. An immediate result of Lemma 3.1.1 is the following corollary.

Corollary 3.1.1. Consider a matrix polynomial P(x, y) ∈ PUM (F [x−1, y−1]) with the

property Ordy−1P = 1 as in (3.4). Let P0(y) := p0,0 + p0,1y
−1. There exists a nonzero

vector v ∈ FM such that either v†P0(y) = 0 or P0(y)v = 0.
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3.2 Self-Orthogonal Polynomial Vectors over F[x±1]

As explained in the previous section, our approach in the factorization of bivariate PU

matrices is providing a two-level factorization. In the first level, the bivariate PU polynomial

matrix is considered a univariate one with its coefficients being polynomials in the other

variable. To find building blocks for this level of factorization, in this section, we study the

structure of self-orthogonal polynomial vectors in the module (F[x±1])2.

Vector spaces over the complex field and modules over the ring of polynomials behave

very similarly, but there are some major differences. One difference is the presence of

self-orthogonal polynomial vectors in the module (F[x±1])2. A polynomial vector v(x) ∈

(F[x±1])2 is self-orthogonal if and only if 〈v(x), v(x)〉 = 0, where the sesquilinear form 〈·, ·〉

is defined in (1.6). For example, the polynomial vector

v(x) =






xmp(x)

p(x−1)




 ∈ (F[x±1])2 (3.6)

is self-orthogonal since1

〈v(x), v(x)〉 = p(x)p(x−1) + p(x)p(x−1)

= 0 .

In fact, by the following lemma, every self-orthogonal polynomial vector is of this form.

Lemma 3.2.1. Every self-orthogonal polynomial vector in the module (F[x±1])2 has the form

β(x)






xmp(x)

p(x−1)




 ,

where β(x), p(x) ∈ F[x±1] and m ∈ Z are arbitrary elements.

The proof of this lemma is given in Appendix A. Polynomial vectors orthogonal to self-

orthogonal polynomial vectors also have a special form specified by the following lemma.

1We note that the characteristic of the underlying field is two.
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Lemma 3.2.2. Consider the self-orthogonal vector v(x) = β(x)v′(x), where β(x) ∈ F[x±1]

and v′(x) is as in (3.6). In addition, suppose xmp(x) and p(x−1) do not have any common

factor. Then, every vector orthogonal to v(x) has the form β′(x)v′(x) for some β′(x) ∈

F[x±1].

The proof is given in Appendix A. Using this lemma, we can easily prove the following

fact about rank-deficient polynomial matrices.

Fact 3.2.1. Any rank-deficient polynomial matrix A(x) in the algebra M2(F[x±1]) that its

left null-space is self-dual has the form

A(x) = β(x)






xmp(x)

p(x−1)




w†(x) ,

where m ∈ Z, β(x), p(x) ∈ F[x±1], and w(x) ∈ (F[x±1])2 are arbitrary elements.

A similar fact can be stated about rank-deficient matrices with their right null-spaces

being self-dual. The combination is the following fact.

Fact 3.2.2. Any rank-deficient polynomial matrix A(x) in the algebra M2(F[x±1]) that its

left and right null-spaces are both self-dual has the form

A(x) = β(x)






xmp(x)

p(x−1)






[

x−rq(x−1) q(x)

]

,

where m, r ∈ Z and β(x), p(x), q(x) ∈ F[x±1] are arbitrary elements.

Using the background given in this section, we introduce elementary building blocks

over the ring F[x±1] for the first-level factorization of bivariate PU matrices.

3.3 Bivariate Building Blocks PU over F[x±1]

Similar to the univariate case, it is desirable to have parameterized building blocks to

generate all bivariate PU matrices. In this section, we provide two elementary building

blocks for the first-level factorization of matrices in PU2(F[x, y]). These building blocks are
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defined over the ring F[x±1] of Laurent polynomials. We will prove in the next section that

these building blocks are sufficient to provide a first-level factorization for all bivariate PU

matrices.

3.3.1 Bivariate Degree-One PU Building Block

The generalization of the degree-one building block, defined in (2.9), is

B1



y; v(x)


:= α(x) I + v(x)v†(x) + v(x)v†(x) y−1 (3.7)

in which v(x) ∈ (F[x±1])2 is a polynomial vector such that v†(x)v(x) =: α(x) ∈ F[x±1] \

{ 0 }. By its definition, α(x) is a symmetric polynomial, i.e., α(x) = α(x). By direct

computation, one can show that B1



y; v(x)


is PU over the ring F[x±1], i.e.,

B
†
1



y; v(x)


B1



y; v(x)


= α2(x) I . (3.8)

Similar to the univariate case, the determinant of a bivariate PU matrix gives its degree

with respect to its variables. Since the introduced building block is PU over a ring, its

determinant gives its degree only with respect to y. The following lemma provides the

value of the determinant.

Lemma 3.3.1. The determinant of the building block defined in (3.7) is

detB1



y; v(x)


= α2(x) y−1 .

Proof. It can be easily shown that B1



y; v(x)


v(x) = α(x) y−1 v(x) that implies v(x) is

an eigenvector with the eigenvalue α(x) y−1. Furthermore, if u(x) ∈ (F[x±1])2 is orthogonal

to v(x), we have B1



y; v(x)


u(x) = α(x)u(x), which has a similar implication. One can

easily show that every length-two polynomial vector has an orthogonal polynomial vector

in (F[x±1])2. Since the matrix under study is 2×2, it has at most two distinct eigenvectors,

which we have determined them. The proof is complete by noting that the determinant of

an arbitrary matrix equals the product of its eigenvalues.
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By Lemma 3.3.1, the degree of the building block B1



y; v(x)


with respect to y is one.

This result is also verified by the block diagram of this building block shown in Figure 3.1.

Two useful observations are stated in the following facts.

Fact 3.3.1. The polynomial matrix B
†
1



y; v(x)


is PU over the ring F[x±1] as well, i.e.,

B1



y; v(x)


B
†
1



y; v(x)


= α2(x) I .

Fact 3.3.2. The polynomial α(x) in (3.7) is a normalizer since 1
α(x) B1



y; v(x)


is PU over

F.

3.3.2 Bivariate Degree- 2τ PU Building Block

To continue the first-level factorization when encountering a self-orthogonal polynomial

vector, we introduce the bivariate degree-2τ PU building block as follows.

S2τ



y; u(x),v(x), ζ(x)


:= ζ(x)u(x)v†(x) +






xm−r p(x) q(x−1) 0

0 p(x−1) q(x)




 y−τ

+ ζ(x)u(x)v†(x) y−2τ

(3.9)

Here, τ ∈ N, ζ(x) ∈ F[x±1] is a symmetric polynomial (i.e., ζ(x) = ζ(x)), and

u(x) =






xm p(x)

p(x−1)




 ∈ F[x±1] , v(x) =






xr q(x)

q(x−1)




 ∈ F[x±1] . (3.10)

By the factorization algorithm (presented in the next section), the introduced building block

cannot be factored using the degree-one building block in (3.7) since both vectors in (3.10)

y−1b +

v†(x) v(x)

+b

α(x)

Figure 3.1: Block diagram of the bivariate degree-one PU building block.
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are self-orthogonal. By a direct calculation, we can easily show that the building block

introduced in (3.9) is PU over F[x±1], i.e.,

S
†
2τ



y; u(x),v(x), ζ(x)


S
†
2τ



y; u(x),v(x), ζ(x)


= p(x) p(x−1) q(x) q(x−1) I . (3.11)

To determine the degree of S with respect to y, we directly calculate its determinant.

Fact 3.3.3. The determinant of the building block defined in (3.9) is

detS2τ



y; u(x),v(x), ζ(x)


= xm−r p(x) p(x−1) q(x) q(x−1) y−2τ .

By this fact, the introduced building block has degree 2τ with respect to y. This fact is

verified by the block diagram in Figure 3.2 in which the polynomial vectors u′(x) and v′(x)

are

u′(x) =






xm p(x)

0




 , v′(x) =






0

q(x−1)




 .

Similar to the degree-one building block, the following two facts will be used later in

this chapter.

Fact 3.3.4. The polynomial matrix S
†
2τ



y; u(x),v(x), ζ(x)


is PU over the ring F[x±1] as

well, i.e.,

S2τ



y; u(x),v(x), ζ(x)


S
†
2τ



y; u(x),v(x), ζ(x)


= p(x) p(x−1) q(x) q(x−1) I .

y−τb b

v†(x) u′(x)

b +

ζ(x) ζ(x)

y−τ+ +

v′†(x) u(x)

Figure 3.2: Block diagram of the bivariate degree-2τ PU building block.
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Fact 3.3.5. The polynomial p(x) q(x) in (3.9) is a normalizer since

1

p(x) q(x)
S2τ



y; u(x),v(x), ζ(x)




is PU over F.

Using the building blocks introduced in this section, we introduce the first-level factor-

ization algorithm over the ring F[x±1].

3.4 First-Level Factorization over F[x±1]

In this section, using the building blocks introduced in the previous section, we present a

complete first-level factorization for all bivariate polynomial matrices in PU2(F[x−1, y−1]).

The first step of factorization is to reformulate a given bivariate PU matrix as a matrix

polynomial in y−1 that its coefficients are matrices in M2(F[x−1]). Using this representation,

we can always extract one of the bivariate building blocks from either the left or the right

of the PU matrix. This extraction reduces the degree of the PU matrix with respect to y.

Repeating this process a finite number of times, we eventually obtain a polynomial matrix

independent of y that is PU over F[x±1]. This terminates the factorization algorithm.

Consider an arbitrary matrix P(x, y) ∈ PU2(F[x−1, y−1]). As explained at the beginning

of this chapter, it can always be reformulated as

P(x, y) =
L∑

i=1

Pi(x) y
−i , (3.12)

where L = Ordy−1P and Pi(x) ∈ M2(F[x−1]) for all i = 0, 1, . . . , L. Without loss of gener-

ality, we assume P0(x) 6= 0. Otherwise, we factor out y−1 and continue the factorization

with the remainder. By the PU property of P(x, y), we have

[
L∑

i=1

P†(x) yi

] 



L∑

j=1

P(x) y−j



 = I

from which we conclude that the coefficient of yL must be zero, i.e.,

P†
L(x)P0(x) = 0 . (3.13)
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Since P0(x) 6= 0 by our assumption, this result indicates that P0(x) is singular and all

column vectors of PL(x) are in NullL(P0(x)). Since P(x, y) is a square matrix, P†(x, y) is

PU as well from where we obtain

P0(x)P
†
L(x) = 0 . (3.14)

Similarly, this result indicates that all column vectors of P†
L(x) are in NullR(P0(x)).

The factorization algorithm is similar to the univariate case. We first attempt to extract

the degree-one building blocks from either the right or the left of the PU matrix. The

extraction of such factors fails only when both the left and the right null spaces of the

matrix coefficient of y0 (in a polynomial expansion similar to (3.12)) are self-dual. In

this situation, the factorization is continued using the degree-2τ building block. The goal

is proving that these two building blocks suffice to completely factorize all bivariate PU

matrices. The following lemma describes the situation in which a degree-one building block

can be extracted.

Lemma 3.4.1. Suppose NullL(P0(x)) is not self-dual. Randomly pick a polynomial vector

v(x) ∈ NullL(P0(x)) such that α(x) = v†(x)v(x) 6= 0. The matrix polynomial P(x, y) can

be factored as

α2(x)P(x, y) = B1



y; v(x)


P′(x, y) ,

where P′(x, y) ∈ M2(F[x±1, y−1]) is PU over F[x±1] such that DegyP
′ = DegyP− 1.

The proof of this lemma is provided in Appendix A. A similar lemma can be stated

about the extraction of a degree-one building block from the right.

Lemma 3.4.2. Suppose NullR(P0(x)) is not self-dual. Randomly pick a polynomial vector

v(x) ∈ NullR(P0(x)) among the column vectors of PL(x) such that α(x) = v†(x)v(x) 6= 0.

The matrix polynomial P(x, y) can be factored as

α2(x)P(x, y) = P′(x, y)B1



y; v(x)


 ,

where P′(x, y) ∈ M2(F[x±1, y−1]) is PU over F[x±1] such that DegyP
′ = DegyP− 1.
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By the previous two lemmas, the extraction of degree-one building block fails when both

null spaces of P0(x) are self-dual. In the following theorem, we prove that the degree-2τ

building block can be extracted in this situation.

Theorem 3.4.1. Assume both null spaces of P0(x) in (3.12) are self-dual. There exist

τ ∈ N and self-orthogonal polynomial vectors u(x),v(x) ∈ (F[x±1])2 such that P(x, y) can

be factored as either

p(x)q(x)P(x, y) = yτ−1
S2τ



y; u(x),v(x), ζ(x)


P′(x, y) (3.15a)

or

p(x)q(x)P(x, y) = yτ−1 P′(x, y)S2τ



y; u(x),v(x), ζ(x)


 . (3.15b)

In these equations, the polynomial matrix P′(x, y) ∈ M2(F[x±1, y−1]) is PU over F[x±1] and

DegyP
′ = DegyP− 2τ .

The proof is provided in Appendix A. The results obtained so far pave the way for

providing a complete first-level factorization as summarized in the following theorem.

Theorem 3.4.2 (First-Level Factorization). Let P(x, y) ∈ PU2(F[x−1, y−1]). This polyno-

mial matrix can always be factored as

P(x, y) = yt
[

1

ηN (x)
CN (x, y)

]

· · ·
[

1

ηN ′+1(x)
CN ′+1(x, y)

] [

1
∏N

i=1 ηi(x)
F(x)

]

×
[

1

ηN ′(x)
CN ′(x, y)

]

· · ·
[

1

η1(x)
C1(x, y)

]

.

(3.16)

Here, t ∈ Z, N ≤ DegyP, N ′ ∈ [N ], Ci(x, y) is one of the two bivariate building blocks in

(3.7) and (3.9), and ηi(x) ∈ F[x±1] is the corresponding normalizer as in Fact 3.3.2 and

Fact 3.3.5 for all i ∈ [N ].

Proof. To prove this theorem, we provide an algorithm that gives the desired factorization.

By (3.13) and (3.14), P0(x) is rank deficit. Therefore, there is either a nonzero polynomial

vector u(x) ∈ NullL(P0(x)) or a nonzero vector v(x) ∈ NullR(P0(x)). If at least one of these

two vectors is non self-orthogonal, we can extract a degree-one building block by either
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Lemma 3.4.1 or Lemma 3.4.2. Otherwise, there exists some τ ∈ N that we can factor a

degree-2τ building block by Theorem 3.4.1. In either case, the result is a polynomial matrix

in M2(F[x±1, y−1]) that is PU over F[x±1], and its degree with respect to y is reduced.

We emphasize that to apply any one of the algorithms for the extraction of a bivariate

degree-one or degree-2τ building block, the input polynomial matrix is sufficient to be PU

over F[x±1]. This algorithm terminates after at most DegyP steps after which we obtain

a polynomial matrix with degree zero with respect to y. This implies that the reminder is

independent of y; otherwise, another building block can be extracted. After the completion

of the factorization, some simple mathematical manipulations give a factorization as in

(3.16).

Terms in the factorization provided by Theorem 3.4.2 belong to the set M2(F(x±1)[y−1]),

bivariate matrices that are rational in x, but polynomial in y. If for some i, the normalizer

ηi(x) is a nonzero constant in F, then the term 1
ηi(x)Ci(x, y) belongs to M2(F[x±1, y−1]). In

the next section, we show how to further factorize such factors. The factorization in (3.16)

becomes a polynomial in both variables if and only if ηi(x) ∈ F× for all i ∈ [N ]. In this

case, the term 1
∏N

i=1
ηi(x)

F(x) becomes PU over F. Since it is univariate, it can be factorized

using the univariate PU building blocks and delays in x if necessary.

The existence of rational factors in (3.16) might seem strange since such terms do not

appear in the factorization of univariate PU matrices. The major difference between the

univariate factorization, studied in [186], and its bivariate version in (3.16) is that the

former is performed over the real or complex field whereas the later is done over the ring

F[x±1]. Since every nonzero element in a ring does not necessarily have a multiplicative

inverse, we get fractions in (3.16). The technique employed here is, in a sense, similar to

“lifting” used in algebraic geometry and category theory. The core of this technique is

considering a problem in an algebraic structure higher than the one it is already defined in.

Using the tools available in the higher structure, one may easily solve the problem. The

final answer is the projection of the solution to the lower algebraic structure. For example,

consider the factorization of univariate polynomials over a field. This factorization is always
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possible over the algebraic closure of the base field in which the polynomial splits into linear

factors [122]. However, the coefficients of these factors lie in the algebraic closure. To get

polynomial factors over the base field, it might be necessary to multiply some of the linear

factors.

In the factorization of an arbitrary polynomial matrix P(x, y) ∈ PU2(F[x−1, y−1]), we

have a similar problem. The objective is to make use of the technique developed for the

factorization of univariate PU matrix polynomials. Hence, the goal is to consider P(x, y)

as a univariate polynomial matrix in y that its coefficients are themselves Laurent ma-

trix polynomials in x. To this end, we take several steps. Lifting to the ring of Lau-

rent polynomials allows taking advantage of the properties of such polynomials namely

the extended definition of PU matrices over the ring of polynomials. In the first step, we

use the proper inclusion F[x−1] ( F[x±1] to consider P(x, y) as a matrix polynomial in

F[x±1, y−1]. To treat P(x, y) as a univariate matrix polynomial, we use the isomorphism

F[x±1, y−1] ∼= F[x±1][y−1]. Eventually, in the last step, we lift the factorization problem to

the monoid F(x±1)[y−1]. This is because, as observed, some terms in the first level of the

factorization require polynomial normalizers. To cover such terms, we lift to the field of

fractions constructed by Laurent polynomials, i.e., F(x±1). Collectively, we have employed

the following hierarchy of algebraic structures.

F ( F[x−1, y−1] ( F[x±1, y−1] ∼= F[x±1][y−1] ( F(x±1)[y−1] (3.17)

To convert the rational factors in in (3.16) into polynomial ones, one approach is multiplying

appropriate adjacent factors. Nevertheless, it seems difficult to identify potential factors.

3.5 Second-Level Factorization

Each term in the first-level factorization provided by Theorem 3.4.2 can be further factorized

if it belongs to PU2(F[x±1, y−1]). For example, consider an arbitrary factor 1
η(x)C(x, y) in

which η(x) = ν ∈ F×. There always exists the smallest integer ℓ ∈ Z≥0 such that

A(x, y) :=
x−ℓ

ν
C(x, y) ∈ PU2(F[x−1, y−1]) . (3.18)
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In this section, we provide a factorization for A(x, y) when C(x, y) is one of the building

blocks introduced in Section 3.3.

3.5.1 Degree-One Building Block

When C(x, y) in (3.18) is the bivariate degree-one building block defined in (3.7), we can

further factorize A(x, y) using Theorem 3.4.2 by changing the roles of x and y. This result

is summarized in the following fact.

Fact 3.5.1. Let A(x, y) = x−ℓ

ν B1



y; v(x)


∈ PU2(F[x−1, y−1]) in which ν = v†(x)v(x) ∈

F×. This matrix polynomial can be factored as

A(x, y) = xm
[

1

ρK(y)
HK(x, y)

]

· · ·
[

1

ρK′+1(y)
HK′+1(x, y)

] [

1
∏K

i=1 ρi(y)
T(y)

]

×
[

1

ρK′(y)
HK′(x, y)

]

· · ·
[

1

ρ1(y)
H1(x, y)

]

.

(3.19)

Here, m ∈ Z, K ≤ DegxA, K ′ ∈ [K ], Hi(x, y) is either the degree-one building block

B1



x; wi(y)


or the degree-2τ building block S2τ



x; t(y),w(y), ξ(y)


, and ρi(y) is the cor-

responding normalizer for all i ∈ [K ].

We note that the order of A(x, y) with respect to y is one. Hence, by Corollary 3.1.1,

there exists a nonzero vector u ∈ F2 such that either u ∈ NullL(A0(y)) or u ∈ NullR(A0(y)).

Here, A0(y) is the x-independent matrix coefficient in the expansion A(x, y) =
∑M

i=0 Ai(y)x
−i.

The vector u can be used in the factorization algorithm provided in Theorem 3.4.2 to ex-

tract a building block Hi(x, y) in (3.19). If u is not self-orthogonal, the resulting building

block resides in M2(F[x−1]), and thus, PU over F. When all ρi(y)’s in (3.19) are constants,

the factor 1
∏K

i=1
ρi(y)

T(y) resides in PU2(F[y−1]) in which case, it can be further factorized

using the univariate building blocks introduced in Section 2.3.

3.5.2 Degree-2τ Building Block

Assume C(x, y) in (3.18) is the bivariate degree-2τ building block S2τ



y; u(x),v(x), ζ(x)


.

We give a factorization for A(x, y) when ζ(x) = ζ ∈ F× is a nonzero constant. The
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assumption is that the normalizer (which is p(x) q(x) by Fact 3.3.5) is a nonzero constant,

i.e., p(x) q(x) = ν. Without loss of generality, we may assume ν = 1. This situation is

created when p(x) = xk and q(x) = x−k for some k ∈ Z. After substituting these results in

the definition of the degree-2τ building block in (3.9) and also in (3.18), we get

A(x, y) = ζ






x−ℓ+m−r x−ℓ+m−2k

x−ℓ−r x−ℓ−2k




+






x−ℓ+m−r+2k 0

0 x−ℓ−2k




 y−τ

+ ζ






x−ℓ+m−r x−ℓ+m−2k

x−ℓ−r x−ℓ−2k




 y−2τ .

(3.20)

The following lemma gives a complete factorization for this matrix polynomial.

Lemma 3.5.1. The bivariate PU matrix polynomial in (3.20) can be factorized as

A(x, y) = B
a
1(x; ψ)S2τ (x; ζ)B

b
1(x; ϕ)

for some a, b ∈ N and unit-norm vectors ψ,ϕ ∈ F2.

Proof. Depending on the signs and relative values of m, r, and k, different cases may be

considered. We give the proof only for the case m ≥ r ≥ 0 and k = 0. Proofs of other cases

are very similar.

Since ℓ is the smallest nonnegative integer such that A(x, y) ∈ M2(F[x−1, y−1]). When

m ≥ r ≥ 0, we must have ℓ = m, which gives

A(x, y) = ζ






x−r 1

x−m−r x−m




+






x−r 0

0 x−m




 y−τ + ζ






x−r 1

x−m−r x−m




 y−2τ .

First, we examine the possibility of extracting the univariate building block B1(x; ϕ), where

ϕ = [ 1 0 ]†, from the right side of A(x, y). It can be easily verified that r building blocks

of this form can be extracted from the right. The remaining matrix polynomial is

A1(x, y) := A(x, y)
[

B
†
1(x; ϕ)

]r

= ζ






1 1

x−m x−m




+






1 0

0 x−m




 y−τ + ζ






1 1

x−m x−m




 y−2τ .
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In the next step, we examine the possibility of extracting B1(x; φ), where ψ = [ 0 1 ]†,

from the left of A1(x, y). It is straightforward to show that m building blocks of this form

can be extracted. The remainder is

A2(x, y) :=
[

B
†
1(x; ψ)

]m
A2(x, y)

= ζ






1 1

1 1




+






1 0

0 1




 y−τ + ζ






1 1

1 1




 y−2τ ,

the degree-2τ building block. Combining these results, we have

A(x, y) = B
m
1 (x; ψ)S2τ (x; ζ)B

r
1(x; ϕ) ,

which completes the proof.

In practice, we are interested in designing all bivariate PU matrix polynomials in the ring

M2(F[x−1, y−1]) for applications in signal processing, coding [171, 172], and cryptography

[54, 60, 63, 62]. The traditional method for designing such matrix polynomials is multiplying

univariate primitive building blocks in different variables in an arbitrary order. However,

this method certainly does not generate all bivariate PU matrix polynomials. Hence, an

important question is whether we are able to capture all such matrix polynomials using the

factorization method provided here. Unfortunately, the answer is negative. Nevertheless,

using our method, we are able to generate a family of such matrices that is larger than

the class of matrices captured by the traditional method. In the following example, using

our technique, we generate a bivariate polynomial matrix that is PU over the field F and

cannot be factorized using univariate PU building blocks.

Example 3.5.1. Consider the bivariate polynomial matrix

P(x, y) = x−ℓ
S2



y; u(x),v(x), ζ(x)




in which p(x) = x, q(x) = x2, ζ(x) = 1, m = −1, and r = −2. The integer ℓ ∈ Z≥0

is chosen such that P(x, y) ∈ M2(F[x−1, y−1]). With this choice of parameters and by
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Fact 3.3.3, one can easily show that P(x, y) is PU over F. After substituting the parameters

and choosing ℓ = 2, we obtain the simplified form

P(x, y) =






x−2 1

x−3 x−1






︸ ︷︷ ︸

P0(x)

+






x−2 0

0 x−1




 y−1 +






x−2 1

x−3 x−1




 y−2 . (3.21)

We claim that this matrix cannot be factorized using any one of the univariate PU building

blocks in either of the two variables. For this purpose, we consider the following two cases.

♦ Extraction of a Building Block in y:

To extract a univariate degree-one PU building block from the left side of P(x, y), we

have to find a unit-norm vector v ∈ NullL(P0(x)). Any length-two unit-norm vector

over F with characteristic two is of the form v = [ v 1 + v ]† for some v ∈ F. One can

easily verify that such a vector does not exist. For a similar reason, we cannot extract a

univariate degree-one PU building block from the right side of P(x, y).

The next step is attempting to extract a univariate degree-2τ building block. This is

possible only when there exist a nonzero self-orthogonal vector in one of the two null-

spaces of P0(x). Since this is not the case, we cannot extract a univariate degree-2τ

building block from either side of P(x, y).

♦ Extraction of a Building Block in x:

To examine the possibility of extracting a univariate building block in x, we rearrange

P(x, y) as follows.

P(x, y) =






0 1 + y−2

0 0






︸ ︷︷ ︸

Q0(y)

+






0 0

0 1 + y−1 + y−2




x−1

+






1 + y−1 + y−2 0

0 0




x−2 +






0 0

1 + y−2 0




x−3

(3.22)

Similar to the previous case, there does not exist a unit-norm vector in any one of the

two null spaces of Q0(y). Therefore, we cannot extract a univariate degree-one building

- 52 -



block in x. In the other hand, none of the two null spaces of Q0(y) contains a constant

nonzero self-orthogonal vector. Hence, we cannot extract a univariate degree-2τ building

block in x.

3.6 Applications

In this section, we first briefly review the application of the two-level factorization method

in a complete factorization of multivariate PU matrices over the complex field. We will

specifically show that every bivariate PU matrix over the complex field can be factorized

into the product of PU IIR building blocks. We will also, very briefly, explain the application

of the proposed factorization technique to bivariate IIR PU matrices over the complex field.

As the next application of the bivariate PU building blocks, introduced in Section 3.3,

we explain how to design two-dimensional self-dual codes.

3.6.1 Factorization of Bivariate PU Matrices over C

The factorization problem over the complex field C is much easier than that over finite fields

since there are no self-orthogonal nonzero vectors over C. It is shown in [186] that all matrix

polynomials in PUM (C[x−1]) (FIR PU matrices), for any M ∈ N, are generated by the

degree-one FIR building block

BFIR(x; v) := I− v v† + v v† x−1 ∈ PUM (C[x−1]) (3.23)

in which v ∈ CM is an arbitrary unit-norm vector. Over the complex field, it makes sense

to study IIR PU matrices. It is proved in [186] that all matrices in PUM (C(x−1)), for any

M ∈ N, can be generated by the degree-one IIR building block

BIIR(x; v, a) := I− v v† + v v†
(

−a+ x−1

1− ax−1

)

∈ PUM (C(x−1)) , (3.24)

where v ∈ CM is an arbitrary unit-norm vector and a ∈ C is an arbitrary complex num-

ber. Using the two-level factorization method, introduced in the previous section, we have

proposed a complete factorization technique for all matrices in PUM (C[x−1, y−1]) [57, 58].
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Precisely, it is shown that an arbitrary bivariate matrix P(x, y) ∈ MM (C[x−1, y−1]) is PU

if and only if it can be factorized as

P(x, y) =

[

1

αNy(x)
B1



y; vNy(x)




]

· · ·
[

1

α1(x)
B1



y; v1(x)




] [

1
∏Ny

i=1 αi(x)
F(x)

]

. (3.25)

Here, Ny = DegyP and B1



y; v(x)


is the bivariate PU degree-one building block defined

as

BFIR



y; v(x)


:= α(x)I− v(x)v†(x) + v(x)v†(x) y−1 (3.26)

in which v†(x)v(x) =: α(x) ∈ C[x−1] \ { 0 }. Moreover, in (3.25), 1
∏Ny

i=1
αi(x)

F(x) ∈

PUM (C(x−1)) is an IIR PU matrix. Using a version of Lemma 3.1.1 extended to IIR

matrices, every term in (3.25) (except the last one) can be further factorized. Eventually,

the following theorem is proved in [58].

Theorem 3.6.1. Every matrix polynomial P(x, y) ∈ PUM (C[x−1, y−1]) can be factorized as

P(x, y) = xm
N∏

i=1

Ai BIIR(x; vi, ai)BIIR(y; ui, bi) ,

where m ∈ Z and N ∈ N. Moreover, for all i ∈ [N ], Ai is either the identity matrix or a

unitary matrix, ui,vi ∈ CM such that each one of them is either a unit-norm vector or the

zero vector, and ai, bi ∈ C are arbitrary complex numbers.

This level-by-level factorization method is extended to matrices in PUM (C[x−1
1 , . . . , x−1

n ])

for any n ∈ N≥3 [58]. For n ≥ 3, this technique does not give a complete factorization such

as the one in Theorem 3.6.1.

3.6.2 Error-Control Coding

Using the synthesis bank of a bivariate two-channel filter bank over a finite field, a two-

dimensional filter-bank code (TDFBC) is designed in [171, 172]. The encoder structure of

the TDFBC is depicted in Figure 3.3. In this figure, M is the upsamlping matrix with

detM = 2 and λ(n) is a pre-filter added to find codes with good performances. It is shown

in [172] that the TDFBC is lattice cyclic if and only if the dimensions of the codeword arrays
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m(n) c(n)b

λ(n)

↑M

↑M

h0(n)

h1(n)

+

Figure 3.3: Filter bank structure of the half-rate encoder of the TDFBC.

are both even. Because of the lattice-cyclic property of the TDFBC, the encoding and the

syndrome computing can be simplified to calculating two-dimensional circular convolutions.

The syndrome generator of this code can be realized by the analysis bank of a filter bank

as shown in Figure 3.4. The TDFBC is capable of correcting any error burst of pattern

N1 ×N2/2 and N1/2×N2, where it is assumed the filters in the employed filter bank have

supports of size N1 × N2. The bivariate PU building blocks introduced in Section 3.3 are

used to design the bivariate two-channel filter bank employed in the code design.

3.7 Summary

The factorization of bivariate, two-channel, FIR paraunitary filter banks was discussed in

this chapter. In our approach, we considered a bivariate FIR PU matrix as a univariate

polynomial whose coefficients are matrices with polynomial entries. Using this represen-

tation, we were able to extend the univariate factorization methods to the bivariate case.

We also generalized the definition of PU matrices to the ring of polynomials. Using this

new definition, we presented two fully-parameterized bivariate building blocks that are PU

c(n) s(n)b g0(n)

g1(n)

↓M

↓M

λ(n) +

Figure 3.4: Syndrome generator of the TDFBC.
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in the ring of polynomials. We developed a method for the first-level factorization of all

bivariate PU matrices. This factorization represents any bivariate PU matrices in terms of

elementary PU building blocks with respect to one of the variables. The resulting factors

are not necessarily FIR with respect to both variables. Hence, further factorization with

respect to another variable is not always possible. However, under some conditions, we

provided a second-level factorization for these factors. We also applied the factorization to

the bivariate PU matrices over the complex field a step forward in a long-standing open

research problem. In addition, using the introduced bivariate building blocks, we designed

two-dimensional self-dual codes using the synthesis bank of a bivariate filter bank over the

finite field.
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Part II

Multivariate Cryptography



CHAPTER 4

Introduction

4.1 Historical Background and Motivation

The application of cryptography to ensure privacy depends on the assumption that the

communicating parties share a key that is known to no one else. The secret key is tradi-

tionally sent in advance over some secure channel such as private courier or registered mail.

A private conversation between two people with no prior acquaintance is a common occur-

rence in the communication era in which people from across the globe communicate using

the modern technologies. However, it is unrealistic to expect initial business contacts to be

postponed long enough for keys to be transmitted by some physical means. The cost and

delay imposed by the old-fashion key-distribution methods is a major barrier to the transfer

of business communications specially after the advent of e-commerce. Public-key cryptog-

raphy, proposed by Diffie and Hellman [67] in 1976, provides a practical solution to this

problem [137, 16]. A public-key cryptosystem is a triple (KeyGen,Enc,Dec) of probabilistic

polynomial-time algorithms satisfying the following conditions [95].

Key Generation Algorithm: This is a probabilistic expected polynomial-time algorithm

KeyGen that on an input k ∈ K (the security parameter), where K is a finite key space,

produces the public key E and the secret key D. The size of the key space K must be

large enough to make the exhaustive key search infeasible.

Encryption Algorithm: This is a probabilistic polynomial-time algorithm Enc that takes

as inputs the security parameter k, the public key E , and a fixed-length plaintext

x ∈ X to generate as output a fixed-length ciphertext y = Enc(k, E ,x) ∈ Y. Here, X
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and Y are the plaintext and the ciphertext spaces, respectively.

Decryption Algorithm: This is a probabilistic polynomial-time algorithm Dec that takes

as inputs the security parameter k, the secret key D, and a ciphertext y ∈ Y to

generate a plaintext x′ = Dec(k,D,y) ∈ X such that for all x ∈ X and for all y ∈ Y,

the probability Prob(Dec(k,D,y) 6= x) is negligible.

We note that the public key E is made available to everybody including an adversary.

Nevertheless, the secret key D is known only to legitimate parties. The key generation

algorithm should be designed such that the public key does not leak any information about

the secret key with high probability.

A public-key cryptosystem significantly simplifies the key distribution problem. Each

user u generates a pair of inverse transformations Encku
and Decku

by selecting a secret key

ku, keeps ku and Decku
secret, and publishes the encryption algorithm Encku

in a public

directory along with his identification information. Any network user can send a secret

message to u over an insecure channel using the public encryption algorithm. However,

u is the only one who can decrypt the secret message. This strategy can be used for key

distribution. A user A willing to communicate with user B, randomly picks a secret key

kAB and sends it to B using B’s public encryption algorithm. Upon receiving EnckB
(kAB),

user B obtains kAB using his knowledge of the secret key kB. An eavesdropper has only

access to EnckB
(kAB) from which it is infeasible to obtain kAB without knowledge of kB.

The public-key cryptosystem proposed by Diffie and Hellman in [67] is based on the

following problem.

Problem 4.1.1 (Discrete Logarithm). Let (G, ·) be a cyclic group with a generator g and

order N = |G|. Every element x ∈ G can be represented as x = ga for a unique a ∈ ZN .

Define a function DL : G → ZN that maps any x ∈ G to a unique integer a ∈ ZN such that

x = ga. For an arbitrary x ∈ G, calculate DL(x).

The function DL in this problem is called the discrete logarithm function and the in-

teger a is referred to as the discrete logarithm of x. The complexity of the best currently
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known algorithm to provide an answer to Problem 4.1.1 is exponential in N , the size of the

underlying group. Thus, for large groups, this problem cannot be feasibly answered, and it

is considered as computationally hard.

To exchange keys using the Diffie-Hellman system, two users A and B willing to com-

municate choose secret integers a and b, compute ga and gb, respectively, and exchange

them over an insecure channel. The user A upon receiving gb raises that to power a to

obtain gba. Similarly, user B calculates gab. Since gab = gba, the two users have come up

with the same information that they use as a secret key. An eavesdropper only knows ga

and gb. Nevertheless, since the discrete logarithm problem is computationally difficult, it is

infeasible for her to obtain a or b.

At the core, public-key cryptography is based on the mathematical notion of trapdoor

one-way function (TOWF). A function Ψ : D → R is a TOWF if for every x ∈ D,

the computation of Ψ(x) is computationally efficient. However, for almost every y ∈ R,

the inversion f−1(y) is efficiently computable if and only if information of a trapdoor is

available. Otherwise, it is infeasible to solve the equation y = f(x) for x given y. A TOWF

can be used to produce a public-key cryptosystem [67].

Another application of TOWFs is in entity authentication. Assume a network user B

receives a message m from another user A. To provide some cryptographic evidence that

m was indeed generated by A, the user A employs a TOWF Ψ. Using her knowledge of the

trapdoor, A solves the equation m = Ψ(s) for s and sends m and s along with Ψ to B. Upon

receiving this information, B verifies the authenticity of the message by verifying m = Ψ(s).

Since without knowledge of the trapdoor information, calculation of s is infeasible, no other

user in the network could have generated an s that satisfies m = Ψ(s). Hence, this is a

legitimate procedure for entity authentication.

A one-way function (OWF) without a trapdoor has also cryptographic applications in

entity authentication. For example, consider the computer login scenario. When a user

first enters his password PW, the computer stores Ψ(PW) instead of PW assuming Ψ is

an OWF. At each successive login, the computer calculates Ψ(PW′), where PW′ is the
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proffered password, and compares it with Ψ(PW). If and only if these two are the same,

the user is accepted as being authentic.

4.2 RSA

The first practical implementation of a TOWF is RSA that was proposed by Rivest, Shamir,

and Adleman [167]. The TOWF employed in RSA is the univariate monomial xe, for some

fixed integer e ∈ N, over a very large ring such as Zn. Here, n = pq, called the modulus, is

a composite integer with large prime factors p and q. The public exponent e is invertible

modulo φ(n) = (p − 1)(q − 1), where φ is the Euler function [169]. The secret trapdoor

is the positive integer d = e−1 mod φ(n) ∈ N. Precisely, the decryption function is the

monomial xd over the ring Zn.

The difficulty of inverting this TOWF is related to the difficulty of solving the following

problem as will be explained shortly [137, 95].

Problem 4.2.1 (Integer Factorization). Given an arbitrary composite integer n ∈ N, factor

it into a product of primes.

The existence of any polynomial-time algorithm for the factorization problem implies

that RSA can be feasibly broken. Indeed, an adversary having access to such algorithm can

efficiently factor the modulus n into its prime factors p and q. Knowing these factors, the

adversary can simply calculate φ(n) and consequently the decryption exponent d. Never-

theless, it is unclear that breaking RSA is bound to the existence of an efficient factorization

algorithm.

In recent years, the limits of the best integer factorization algorithms have been ex-

tended greatly due in part to Moore’s law and in part to algorithmic improvements [28].

The best integer-factorization algorithm has sub-exponential time-complexity [47]. Hence,

the current minimum recommended size for the RSA modulus is 1024 bits. Moreover, as

suggested in [173], the minimum size must be 4096 bits by 2015 and 8192 bits by 2025.

Two problems in practical implementations of RSA are the key-setup time and the size of
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the signature that are too long for resource-limited devices using low-power processors. For

example, it takes tens of minutes on a Palm V that uses a 16.6 MHz Dragonball processor to

generate 1024-bit RSA key [142]. These problems become more sensible when the modulus

size is increased as suggested in [173]. Moreover, there exist attacks on RSA for small values

of the secret exponent d [23] or when a small fraction of the private key is known [24].

4.3 Elliptic Curve Cryptography

An instance of the public-key cryptosystem proposed in [67] is obtained when G is the

multiplicative group Z×
p of order p− 1 for any prime integer p. The advantage of using this

group is that the exponentiation can be efficiently performed using the binary representation

of the exponent. An algorithm is also proposed by Adleman et al. [2] for computing the

discrete logarithm over all finite fields that is conjectured to have sub-exponential time-

complexity. Therefore, the idea of using a cyclic subgroup of the group of points on elliptic

curves over Fp, for some prime p, was independently proposed by Miller [141] and Koblitz

[117]. An elliptic curve is a plane curve defined by an equation of the form y2 = x3 +ax+ b

for fixed a, b ∈ Fp. The points on this curve form a group with an addition law explained

in [118]. The time complexity of all algorithms for solving the discrete logarithm problem

over such groups is exponential (except the special case of super singular curves). Thus,

comparing to RSA, systems based on the discrete logarithm over elliptic curves are able to

maintain the same security level with shorter keys. However, the shortest signature that

can be generated using an elliptic curve digital signature algorithm (ECDSA) is 320 bits

[8] that is still long for some applications1. Moreover, the complexity of the elliptic-curve

signature-verification algorithm is high. A comparison between ECDSA and RSA in a

field with prime characteristic shows that for practical sizes of fields and moduli, signature

verification with ECDSA is 40 times slower than that with RSA [200].

1Using Weil paring, a signature scheme capable of producing signatures as short as 160 bits has been
proposed in [25].

- 62 -



4.4 Multivariate Cryptography

Considering the shortcomings of the RSA and ECDSA, it would be desirable to have prac-

tical cryptosystems based on problems other than the assumptions currently in use. We

might be in a safer state against possibilities such as the emergence of an efficient algorithm

for factoring or computing discrete logarithms. We note that both the RSA and elliptic

curve cryptography (ECC) based cryptosystems employ a monomial of large degree over a

very large ring or group. An alternative approach is using polynomials of small degrees over

small finite fields. Cryptosystems utilizing this approach fall in the category of multivariate

cryptography that is considered to be the cryptography of the 21st century [4]. The TOWF

in such cryptosystems usually consists of a collection of multivariate polynomials. There

are very efficient algorithms for evaluating polynomials at a point. However, the inverse

problem, i.e., given the values of the polynomials, solve the system of multivariate polyno-

mial equations for a point that satisfies all equations, is believed to be difficult [31, 121, 1].

Mathematically, this problem is stated as follows.

Problem 4.4.1 (Solving Systems of Polynomial Equations). Fix two integers n,m ∈ N and

a finite field F. Uniformly at random make the following choices.

(i) m integers N1, . . . , Nm ∈ N and m finite-field elements y1, . . . , ym ∈ F

(ii) for every i ∈ [m ], Ni finite-field elements αi,1, . . . , αi,Ni
∈ F and Ni integer vectors

ai,1, . . . ,ai,Ni
∈ (Z≥0)

n each of length n

Construct m multivariate polynomials f1, . . . , fm such that2 fi(x) =
∑Ni

j=1 αi,j xai,j for all

i ∈ [m ]. Solve the system of equations







f1(x1, . . . , xn) = y1

...

fm(x1, . . . , xn) = ym

(4.1)

for x1, . . . , xn.

2The notation xa is formally defined in Section 1.1.4.
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The classical solution to this problem is computing the Gröbner basis of the ideal (f1, . . . ,

fm) using a lexicographic order on the terms of multivariate polynomials [14, 45]. Polyno-

mials in the Gröbner basis of a system of polynomial equations have a triangular structure

such as the equations obtained after the Gaussian elimination of a system of linear equa-

tions. The first algorithm proposed for computing the Gröbner basis is the Büchberger

algorithm, which has exponential time-complexity [29, 31]. However, some new algorithms

have been proposed recently that are more efficient than the Büchberger algorithm [78, 79].

It can be shown [45] that Problem 4.4.1 is equivalent to the ideal membership problem

stated as “Given an ideal I = ( f1, . . . , fm ) ⊂ F[x1, . . . , xn] and an arbitrary polynomial

f ∈ F[x1, . . . , xn], determine whether f ∈ I.” Therefore, many authors have studied the

complexity of the latter [31, 121]. It is shown in [1] that over fields of characteristic two,

this problem is NP-hard in the worst case.

Fact 4.4.1 (Computational Complexity of Problem 4.4.1). The computation of a Gröbner

basis over a field of characteristic two is characterized by a space complexity that grows

doubly exponentially with the number of variables [1].

In cryptography, we are interested in the average complexity of problems. It is shown in

[13] that computing Gröbner bases in the average has lower complexity single exponential.

Precisely, it is shown that in zero-dimensional case3 and also when the homogenized system

has finitely many solutions, the average complexity is4 kO(1)θO(n), where k is the number of

equations, θ is the maximum degree of equations, and n is the number of variables. We note

that given a multivariate polynomial f(x1, . . . , xn) with maximum degree θ, it can always

be homogenized by rewriting it in n+ 1 variables as Xθ
0 f(X1

X0
, . . . , Xn

X0
).

The efficiency of multivariate cryptosystems comes from the fact that the underlying

algebraic structure (group, field, or ring) has an order much smaller than the order of the

ring used in RSA or the order of cyclic subgroups of points on elliptic curves. As a result,

such cryptosystems can be implemented in resource-limited environments such as smart

3When the system of polynomial equations has finitely many solutions.
4This case gives the lowest possible complexity.
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cards, cell phones, and PDAs. An implementation of an instance of the HFE cryptosystem

over GF(64) on a Pentium-III 730MHz running Java 1.3 is proposed in [201]. The reported

running times for the key generation, encryption, and decryption are 210µs, 14µs, and 56µs,

respectively. These numbers are much smaller than those of RSA or ECC based systems.

As another example, a fast implementation of the signature scheme SFLASH on a low-cost

eight-bit 10MHz smart card (without coprocessor) is proposed in [3]. The generation of a

259-bit signature using SFLASH takes only 59ms. However, generating signatures of lengths

1024 and 382 bits on a similar 10MHz card with coprocessor using RSA and ECDSA takes

111ms and 180ms, respectively.

Considering the attractive features of multivariate cryptography, it is desirable to in-

vestigate the possibility of implementing such techniques in designing symmetric cryptosys-

tems. To address this issue, in Chapter 5, we propose a multivariate stream cipher based

on wavelet transform. Using multivariate PU matrices, we propose general frameworks for

designing multivariate asymmetric cryptosystems and signature schemes in Chapter 6.
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CHAPTER 5

Wavelet Self-Synchronizing Stream-Cipher

Stream ciphers form an important class of encryption algorithms. They encrypt individ-

ual characters (or digits in digitized data) of a plaintext message one at a time using an

encryption transformation which varies with time [170, 179, 137, 68]. By contrast, block

ciphers simultaneously encrypt blocks of characters (digits) of a plaintext message using a

fixed encryption transformation. Stream ciphers are generally faster than block ciphers in

hardware and have less complex hardware circuitry. In addition, they are more appropriate

(e.g., in some telecommunications applications) when buffering is limited or when characters

must be individually processed as they are received. Because they have limited or no error

propagation, stream ciphers may also be advantageous in situations where transmission

errors are highly probable.

As we will explain later, most of the previous work in the design of stream ciphers

is based on linear feedback shift registers (LFSRs). The secret key determines the initial

states of the LFSRs employed in the design. To mask the linear recurrence relations at

the LFSR outputs, nonlinear Boolean functions are used. Many powerful attacks have

been developed for systems designed based on this approach. Therefore, it is desirable to

start afresh and propose a new methodology for the stream cipher design. Considering the

attractive features of multivariate cryptosystems, we investigate the possibility of developing

a multivariate self-synchronizing stream cipher in this chapter. Using the wavelet transform

over finite fields as a sequence transformer, we propose a novel technique for the design of

self-synchronizing stream ciphers in this chapter.
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5.1 Background Review

Vernam cipher is the first stream cipher in which the plaintext stream p ∈ F∗
2, the key

stream k ∈ F∗
2, and the ciphertext stream c ∈ F∗

2 are related as cn = pn + kn for all

n ∈ Z≥0. The decryption is performed as pn = cn + kn. If the key stream is employed only

once and its digits are generated randomly and independently, then the Vernam cipher is

called one-time pad.

Shannon proved that a necessary condition for a symmetric-key encryption scheme to

be “perfectly secure” is that H(K) ≥ H(P ), where H(·) is the entropy function and P and

K are random variables denoting the plaintext and the secret key, respectively [176]. In

other words, the uncertainty of the secret key must be at least as great as the uncertainty

of the plaintext. With this result, the one-time pad is perfectly secure, i.e., the scheme

is unconditionally secure regardless of the computational power of the adversary and the

distribution of the plaintext.

The major drawback of the one-time pad is that the key stream must be at least as long

as the plaintext stream. This observation motivates the design of stream ciphers in which

the key stream is pseudorandomly generated from a short secret key used as a seed to a key

generator. Although this approach does not offer perfect secrecy since H(K) ≪ H(P ), it

is intended to capture the spirit of one-time pad by designing a key generator that outputs

a sequence which appears random to a computationally-bounded adversary.

5.1.1 Classification of Stream Ciphers

Stream ciphers are commonly classified as synchronous and self-synchronizing (or asyn-

chronous) [170, 137, 168, 164]. The main property of the synchronous stream ciphers is

that both the sender and the receiver must be synchronized to allow proper operation. If

the synchronization is lost due to the insertion or deletion of the ciphertext digits by an

adversary or the transmission channel, the decryption fails. Hence, additional techniques

for the re-synchronization are required. Other two important properties of synchronous
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stream ciphers are:

No error propagation: The modification of a ciphertext digit during the transmission

does not affect the decryption of other ciphertext digits.

Active attacks: The absence of error propagation has a positive and a negative side in

the presence of an active attacker who may insert, delete, or replay ciphertext dig-

its. A careless attacker may cause immediate loss of synchronization that will be

detected at the decryption time. However, an intelligent adversary can selectively

modify ciphertext digits and forge a message without interfering with the synchro-

nization. Therefore, additional mechanisms must be employed to provide data origin

authentication and data integrity guarantee.

As their name implies, self-synchronization is possible in SSCs if ciphertext digits are

deleted or inserted. This is because the decryption function depends only on a limited num-

ber of previous ciphertext digits. Such ciphers are capable of automatically re-establishing

proper decryption after the loss of the synchronization. This property makes SSCs suitable

for applications such as pay TV in which a user joining the network at any time must be

able to decrypt the stream of enciphered data. Other properties of SSCs are as follows

[137]:

Limited error propagation: If a ciphertext digit is modified during the transmission,

the decryption of up to a fixed number of ciphertext digits might be incorrect after

which the correct decryption resumes. This property has its own pros and cons. The

advantage is robustness to channel noise and other environmental effects specially

in wireless transmission. The disadvantage, in comparison with synchronous stream

ciphers, is limited chance for detecting adversarial activities that put the system out

of synchronization.

Active attacks: The presence of error propagation implies that any modification of ci-

phertext digits (without tampering with the system synchronization) by an active
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adversary propagates to several other ciphertext digits, thereby improving the likeli-

hood of being detected at the decryption time.

Diffusion of plaintext statistics: Since each plaintext digit influences the entire follow-

ing ciphertext, the statistical properties of the plaintext are dispersed through the

ciphertext. Hence, SSCs may be more resistant to attacks based on plaintext redun-

dancy.

As suggested by Shannon in [176], two main strategies used in the design of crypto-

graphic schemes to prevent statistical analysis are diffusion and confusion. In diffusion,

the redundancy in the message, which is revealed to an adversary through an statistical

analysis, is dissipated into long-range statistics. As a result, the adversary has to observe

a large amount of the message to effectively mount an attack based on statistical analysis.

Confusion is intended to make the relationship between the key and the ciphertext as com-

plex as possible. Stream ciphers follow these guidelines as well. In the following, we briefly

review the relevant work in the design of stream ciphers.

A Synchronous Stream Ciphers

A synchronous stream cipher is one in which the key stream is generated independent of the

plaintext and the ciphertext. Such system can be modeled as a finite-state machine (FSM)

[103] consisting of the state space S. It takes a short secret key k ∈ FL, where F is some

finite field of characteristic two and L ∈ N. The key generator KeyGen : S×FL → F takes k

as a seed and a current state ̺n ∈ S and outputs the current key stream digit zn ∈ F. The

key generator is intended to be a pseudo-random number generator with good statistical

properties. The initial state ̺0 ∈ S is determined from the seed k. The current state is

updated using a state evolution function StateEv : S ×FL → S. The encryption function is

the XOR of the plaintext stream p with the key stream z digit-by-digit. Mathematically,
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this procedure is formulated as

̺n+1 = StateEv(̺n,k) (5.1a)

zn = KeyGen(̺n,k) (5.1b)

cn = pn + zn (5.1c)

for all n ∈ Z≥0. The encryption and decryption processes are depicted in Figure 5.1.

In the traditional approach to the deign of synchronous stream-ciphers, LFSRs are

used in the key generator since they are well-suited for hardware implementation, produce

sequences with large periods and good statistical properties, and can be analyzed using

algebraic tools [170, 137, 164]. As shown in Figure 5.2, an LFSR of length L consists of

L memory units D0, . . . , DL−1 each capable of storing one bit and having one input and

one output. Every LFSR is equipped with a clock that controls the flow of the data in the

register. During each unit of time (defined by a clock signal), Di takes the content of Di+1

for all i ∈ (L− 1 ). Let sn−i be the content of the memory unit DL−i at an arbitrary time

instance n ∈ Z≥0 for all i ∈ [L ]. The memory unit DL−1 takes

sn =
L∑

i=1

aL−i sn−i , (5.2)

where ai ∈ F2 for all i ∈ (L ). The vector ̺n := ( sn−1, . . . , sn−L ) ∈ FL
2 is the state of the

LFSR at the time instance n ∈ Z≥0. Given the initial state ̺0 of an LFSR, its output is

uniquely determined.

pn + cn

KeyGen

StateEv

b bk
̺n

zn

(a) Encryption.

cn + pn

KeyGen

StateEv

b b k
̺n

zn

(b) Decryption.

Figure 5.1: General model of synchronous stream ciphers.
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Figure 5.2: Linear feedback shift register of length L.

Equation (5.2) is called an L-th order linear recurring relation, and the corresponding

sequence s = (s0, s1, . . . ) is called an L-th order linear recurring sequence. The monic

polynomial

c(x) = xL − aL−1x
L−2 − aL−2x

L−2 − · · · − a1x− a0 ∈ F2[x] (5.3)

is called the characteristic polynomial of the linear recurring sequence. For every linear

recurring sequence, there exists a unique characteristic polynomial with minimum degree,

which is called the minimal polynomial of the sequence [125]. It can be shown that every

linear recurring sequence is periodic [125]. Since the goal is generating a pseudo-random

sequence, the period should be maximum. It can be proved that if the minimal polynomial

in (5.3) is a primitive polynomial, then the sequence has the maximum possible period

2L − 1 [125, 137]. Moreover, each of the 2L − 1 nonzero initial states generate a sequence

with maximum order.

An LFSR should never be used by itself as a key generator since its output sequence

is easily predictable using a known or chosen plaintext attack [125]. One technique for

destroying the inherent linearity in LFSRs is to include nonlinear Boolean functions in the

design of the key generator. Based on the structural combination of LFSRs and nonlinear

functions, there are two classical models for memoryless synchronous stream ciphers: the

nonlinear filter (NF) model and the nonlinear combiner (NC) model [68, 170, 137]. In the

former, one LFSR of length L is used. Let ̺n = (sn−1, . . . , sn−L) ∈ FL
2 be the current state

of the LFSR at time instance n ∈ Z≥0. The key stream digit zn at any time instance n is

the output of a nonlinear Boolean function f : FL
2 → F2 fed with ̺n. The initial state ̺0 is

the secret key k ∈ FL
2 of the system. Hence, the size of the key space is 2L.

- 71 -



In the NC model, several LFSRs are used. Let (si
n−1, . . . , s

i
n−Li

) ∈ F
Li
2 be the current

state of the i-th LFSR for all i ∈ [N ], where N ∈ N is the number of LFSRs and Li is the

length of the i-th LFSR. The key stream digit zn at any time instance n is the output of a

nonlinear Boolean function f : FN
2 → F2 for the input (s1n−L1

, . . . , sN
n−LN

). The secret key

determines the initial states of all LFSRs. The length of the secret key and the size of the

key space are L =
∑N

i=1 Li and 2L, respectively.

In an LFSR-based stream cipher, the coefficients of the minimal polynomial, i.e., the

constants a0, . . . , aL−1 in (5.3), may depend on the secret key as well as the initial state of

the LFSR. Although this strategy adds to the security, it may not be cost effective. The

first reason is that the minimal polynomial is usually primitive to achieve the maximum

period. Therefore, the number of possibilities is limited. The second reason is that the

minimal polynomial of every L-th order linear recurring sequence can be determined using

the Berlekamp-Massey algorithm from only 2L consecutive elements of that sequence [125].

Another approach to destroying the linearity of LFSRs is to use clock-controlled shift

registers [97]. In these systems, some of the registers are stepped or clocked in an irregular

manner under the control of other registers, so that attacks based on the regular motion

of the registers can be foiled. There are many variants and designs for clock-controlled

generators. In the following, we briefly review some of them and also some alternative

designs for pseudo-random generators. A good review of different designs can be found in

[168]. In all the following descriptions, we assume all sequences belong to F∗
2, and they are

indexed by nonnegative integers Z≥0 unless otherwise stated.

Stop-and-Go Generator: Proposed in [17], this generator consists of two LFSRs LA

and LB that generate sequences a and b, respectively. Let kn :=
∑n−1

i=0 bi ∈ Z≥0, where the

summation is carried out over the ring of integers. Then, zn = akn
for all n ∈ Z≥0, where

z is the output sequence.

Alternating Step Generator: This generator, proposed in [101], is very similar to the

stop-and-go generator. It consists of three LFSRs C, L, and L. In the proposed structure,
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C clocks L and L when it outputs 1 and 0, respectively. The output sequence is the XOR of

the output sequences of L and L. Let c, x, and x be the sequences generated by C, L, and

L, respectively, when they are independently clocked. In addition, let kn :=
∑n−1

i=0 ci ∈ Z≥0

and kn := n− kn ∈ Z≥0 for all n ∈ Z≥0, where all calculations are carried out over the ring

of integers. Then, the key stream digit zn at an arbitrary time instance n is

zn = xkn
+ xkn

∀n ∈ Z≥0 . (5.4)

Shrinking Generator: The shrinking generator employs two sources of pseudo-random

bits (two LFSRs) to generate a third one with better statistical properties [37]. The output

sequence is a subsequence of the first source such that its elements are chosen according to

the positions of 1’s in the second source. In other words, the output sequence is a shrunken

version of one of the sequences. Let a and b be sequences generated by the first and the

second sources, respectively, and z be the output sequence. At any time instance n ∈ Z≥0,

the output bit is zn = akn
, where kn is the position of the n-th 1 in the sequence b.

Self-Shrinking Generator: This is a variant of the shrinking generator that employs

only a single LFSR [135]. Let a = (a0, a1, a2, . . . ) ∈ F∗
2 be the sequence generated by

the LFSR when it is clocked normally. The self-shrinking operation considers this se-

quence as one of pairs of bits, i.e., b = ( (a0, a1), (a2, a3), . . . ) ∈ (F2 × F2)
∗. If a pair

(a2n, a2n+1) ∈ { (1, 0), (1, 1) }, then a2n+1 is the value of the output sequence at the cur-

rent time instance. Otherwise, if (a2n, a2n+1) ∈ { (0, 0), (0, 1) }, the pair (a2n, a2n+1) is

discarded. To put this idea into mathematical language, let kn be position of the n-th 1 in

the subsequence (a0, a2, a4, . . . ). Then, zn = a2kn+1, where z is the output sequence.

Generalized Self-Shrinking Generator: As its name implies, this is a generalization

of the self-shrinking generator [104]. Let a be a sequence generated by an LFSR when

clocked normally. Suppose g0, . . . , gL−1 ∈ F2 are fixed coefficients. Generate the sequence

b as bn =
∑L−1

i=0 gi an−i, where the assumption is an = 0 for all n ∈ Z<0. The shrunken

version of b is the sequence generated by the generalized delf-shrinking generator. It is
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shown in [104] that this sequence is balanced and has good statistical properties.

Generators Based on Cellular Automata: A pseudo-random number generator based

on cellular automata was proposed in [202]. A cellular automata is an extension of simple

shift registers in which every memory cell has access to the contents of its two neighbor

cells. Consider an array of L memory cells holding the values a
(0)
n , a

(1)
n , . . . , a

(L−1)
n ∈ F2 at

an arbitrary time instance n ∈ Z≥0. In the generator proposed in [202], the content of each

memory cell is updated as

a
(i)
n+1 = a(i−1)

n + a(i)
n + a(i+1)

n + a(i)
n a(i+1)

n ∀i ∈ (L ) , ∀n ∈ Z≥0 , (5.5)

where we assume a
(−1)
n = a

(L−1)
n and a

(L)
n = a

(0)
n . The secret key determines the initial state

of the cellular automata.

LILI Key-Stream Generator: This generator is constructed by two nonlinear-filter

generators such that the output of one irregularly clocks the other [178]. The clock-control

generator consists of an LFSR of length α and a nonlinear Boolean function fc : Fα
2 → F2.

Similarly, the data generator consists of an LFSR of length β and a nonlinear Boolean

function fc : Fβ
2 → F2. At an arbitrary time instance n ∈ Z≥0, let ̺c

n ∈ Fα
2 and ̺d

n ∈ F
β
2

be the state vectors of the clock control and data LFSRs, respectively. When normally

clocked, the two generators output cn = fc(̺
c
n) and dn = fd(̺

d
n). The output of LILI is the

sequence z such that zn = dkn
, where kn :=

∑n−1
i=0 ci.

Generators Based on OFB Mode of Block Ciphers: Block ciphers in the output

feedback (OFB) mode can be used as pseudo-random number generators [137, 81]. This

mode of operation is demonstrated in Figure 5.3. In this figure, k is the secret key of the

block cipher and IS is the initial state of the memory.

RC4: This stream cipher, developed by Ron Rivest in 1987, is a variable-key-size cipher

suitable for fast bulk encryption [168]. RC4 is very compact in terms of code size, and

it is particularly suitable for byte-oriented processors. It can encrypt at speeds of around
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Figure 5.3: OFB mode of block ciphers.

1 Mbyte/sec on a 33 MHz machine. RC4 has a secret internal state that is a permutation

σ ∈ S2n consisting of 2n different n-bit words for some fixed n ∈ N [173, 130]. The initial

state is derived from a variable-size secret key k ∈ ZL
2n . In practice, n is typically chosen as

8 that provides a huge state of approximate size 1,700 bits. Hence, it is infeasible to mount

a time-memory tradeoff attack. In addition, the state evolves in a complex and nonlinear

way that makes it difficult to combine partial information about states that are far away in

time. RC4 can be described as in Algorithm 5.1. The total memory required to implement

this algorithm is n2n + 2n bits.

B Self-Synchronizing Stream Ciphers

The second class of stream ciphers is self-synchronizing in which the key stream is generated

as a function of the secret key k ∈ FL and a fixed number of previous ciphertext digits.

The encryption function of an asynchronous stream cipher is described by the equations

̺n = (cn−1, . . . , cn−L) (5.6a)

̺n+1 = StateEv(̺n, cn,k (5.6b)

zn = KeyGen(̺n,k) (5.6c)

cn = pn + zn (5.6d)
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Algorithm 5.1: RC4 key generation.

Input: Secret key k = (k0, . . . , kL−1) ∈ ZL
2n and the number N ∈ N of key stream digits

Output: Key stream digits z0, . . . , zN−1 ∈ Z2n

σ ← id ⊲ Identity permutation1.

j ← 02.

for i = 0 to 2n − 1 do3.

j ←
(
j + σ(i) + k((i))

L

)
mod 2n4.

σ(i)↔ σ(j)5.

end6.

i, j ← 07.

for k = 0 to N − 1 do8.

i← (i+ 1) mod 2n9.

j ← (j + σ(i)) mod 2n10.

σ(i)↔ σ(j)11.

zk ← σ
(
(σ(i) + σ(j)) mod 2n

)
12.

end13.

for all n ∈ Z≥0. Here, L ∈ N is a fixed integer that determines the number of previous

cipher digits on which the next cipher digit depends and ̺n ∈ FL
2 is the state of the

cipher at time instance n. Moreover, StateEv : FL
2 × F2 × FL

2 → FL
2 is the state evolution

function and KeyGen : FL
2 ×FL

2 → F2 is the key generator. Figure 5.4 shows the canonical

representation of SSCs [134]. As the figure shows, the cipher digits are fed back to the

system and stored in a shift register of length L. At an arbitrary time instance n ∈ Z≥0,

the memory cell Di stores cn−i for all i ∈ [L ]. The contents of the shift register are fed to a

nonlinear Boolean function f : FL
2 → F2 that generates the key stream digit zn. The secret

key k ∈ FL
2 determines the initial state of the shift register and also is an input argument

to the nonlinear Boolean function f .

Similar to their synchronous counterpart, SSCs are traditionally designed using LFSRs

in either the NF or the NC model. It is also possible to design an SSC using any block
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Figure 5.4: Canonical model of self-synchronizing stream cipher.

cipher in the cipher feedback (CFB) mode as depicted in Figure 5.5.

We note that, as suggested by Shannon, diffusion and confusion are the two main design

strategies governing the structures in Figure 5.4:

1. The feedback at the encryption diffuses the statistics of the plaintext at any time

instance to all the future ciphertext digits.

2. The invertible transformations map a sequence into another through a set of complex

equations. In fact, they are designed to confuse the attacker. In addition, they help to

better diffuse the statistical properties of the plaintext into the ciphertext.

IS

Memory

Block Cipherk

b+pn cn

zn

Figure 5.5: CFB mode of block ciphers.
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5.2 Wavelet Self-Synchronizing Stream Cipher (WSSC)

Using the DTWT over fields of characteristic two, introduced in Part I, we propose a new

SSC [60], which we refer to as wavelet self-synchronizing stream cipher (WSSC). This

stream cipher is distinguished from traditional designs by the following differences.

1. While most of the stream ciphers operate on the binary field, the WSSC operates on

the Galois field GF(256) to enhance its byte-oriented implementation. Lifting to a

higher-order field allows using algebraic techniques that cannot be efficiently used in

the binary field.

2. In the design of SSCs, LFSRs are usually employed to realize FSMs. However, in

our design, we use DTWTs that are, in fact, sequence transformers. Since wavelets

are linear transformations, we also include nonlinear mappings in our design. Our

motivations for using the DTWT are as follows.

a. Wavelets have a rich history in mathematics and signal processing [50, 190, 186, 86].

They are shown to be useful tools for the efficient processing of finite sequences over

finite or infinite alphabets.

b. There are algorithms that are efficient in both software and hardware for the cal-

culation of the wavelet transformation.

c. The algebraic nature of the method enhances the design and the security analysis

of the stream cipher.

3. In contrast to traditional designs in which the secret key determines the initial states of

the LFSRs, it is used in our proposed cipher to construct DTWTs. Consequently, most

of the traditional attacks, such as correlation and linear attacks, fail in the WSSC.

4. The notion of “round” is usually reserved for block ciphers. A cascade of several basic

rounds makes a block cipher resistant to many attacks that intend to propagate some

characteristic to the output. In fact, Shannon showed in [176] that when the plaintext

and the ciphertext symbols both belong to the same alphabet, the iterative usage of a
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cipher improves the security. We adopt this notion in the design of the WSSC, where

one round is structured as in Figure 5.4.

Our goal is using the DTWT and its inverse as sequence transformers. For this purpose,

we may use the analysis and synthesis banks of the filter bank structure in Figure 2.1 as

the DTWT and its inverse, respectively. To setup the DTWT and its inverse, one employs

Algorithm 2.1 and Algorithm 2.2 in Chapter 2. However, the problem with these structures

is that each one of them has a pair of sequences either as input or as output. To enhance

employing these structures in a stream cipher, we seek a transformation with a single input

and a single output. In the following, we introduce the modified DTWT and its inverse

which both take a single input and generate a single output.

5.2.1 Modified Wavelet Transform

We propose the modified DTWT and its inverse as in Figure 5.6. It can be verified that the

modified DTWT in Figure 5.6a consists of an ordinary DTWT followed by a multiplexer

that combines the two sequences w0 and w1 without losing information. Assuming the input

to the modified DTWT is a one-sided sequence, the input-output relationship is

y(n) =
∞∑

ℓ=0

G(n, ℓ)x(ℓ) ∀n ∈ Z≥0 , (5.7)

x yb g0 ↓2 ↑2 +

g1 ↓2 ↑2

u0

u1

w0

w1

v0

v1 z−1

MultiplexerDTWT

(a) Transform.

x yb ↓2 ↑2 h0 +

↓2 ↑2 h1

w0

w1
z−1

De-multiplexer Inverse DTWT

(b) Inverse transform.

Figure 5.6: Modified DTWT and its inverse.
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where

G(n, ℓ) :=







g0(n− ℓ) n even

g1(n− ℓ− 1) n odd

∀n, ℓ ∈ Z≥0 (5.8)

is a finite sequence called the kernel of the modified DTWT. Since sequences g0 and g1 are

one sided, the following properties of G can be easily deduced using its definition in (5.8).

Causality: G(n, ℓ) = 0 ∀n, ℓ ∈ Z≥0 such that ℓ > n.

Odd Indices: G(n, n) = g1(−1) = 0 ∀n ∈ Nodd.

Periodicity: G(n+ 2, ℓ+ 2) = G(n, ℓ) ∀n, ℓ ∈ Z≥0.

Coefficients of G(n, ℓ) are listed in Table 5.1 for even and odd time indices neven and nodd in

terms of the coefficients of the filters g0 and g1. By this table and Fact 2.1.1, we can state

the following facts.

Fact 5.2.1. The kernel G(n, ℓ) in (5.8) has at most 2(L+1) nonzero coefficients. Moreover,

it is completely specified with L+ 1 finite-field elements.

Fact 5.2.2. The convolution in (5.7) can be calculated over the finite support

S(n) :=







{ 0, . . . , n− πn } n ≤ L

{n− πn − L, . . . , n− πn } n > L ,

(5.9)

where πn := n mod 2 is the parity of the time index n.

By this fact, convolution (5.7) can be calculated using a finite memory of length L+1.

Table 5.1: Coefficients of G(n, ℓ).

ℓ n− L− 1 n− L n− L+ 1 · · · n− 2 n− 1 n

G(neven, ℓ) 0 g0(L) g0(L− 1) · · · g0(2) g0(1) g0(0)

G(nodd, ℓ) g1(L) g1(L− 1) g1(L− 2) · · · g1(1) g1(0) 0
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Similar to (5.7), a convolution equation specifies the input-output relationship of the

modified inverse DTWT in Figure 5.6b. This equation is

y(n) =
∞∑

ℓ=0

H(n, ℓ)x(ℓ) ∀n ∈ Z≥0 , (5.10)

where

H(n, ℓ) :=







h0(n− ℓ) ℓ even

h1(n− ℓ− 1) ℓ odd

(5.11)

is the kernel. The convolution in (5.10) can be calculated over the finite support S(n)

defined in (5.9). It can be easily verified that H in (5.11) possesses the same properties as

G.

5.2.2 Basic Round of the WSSC

In this section, we integrate the modified DTWT and its inverse, proposed in the previous

section, with some nonlinear mappings to design a SSC as in Figure 5.7. We propose the

structure in Figure 5.7a as the basic round of the encryption system for the WSSC (we

recall that the proposed cryptosystem is iterative). In this structure, all the sequences

belong to the vector space F∗, where we choose F = GF(256) for practical purposes. The

blocks H1 and H2 are kernels of two modified inverse DTWTs as in (5.11). The mapping

(·)me : F → F operates on its input sequence symbol-by-symbol, and me ∈ N is selected

such that the mapping is invertible. The function f : F → F is a nonlinear mapping that

operates on its input sequence symbol-by-symbol. Inspired by the design of the S-box in

p(n) c(n)b

y(n)

+ H2

f(·)

(·)me H1

z−1

(a) Encryption.

c(n) p(n)b

y(n)
G1 (·)md G2

f(·)

+
u(n)

z−1

(b) Decryption.

Figure 5.7: Basic round of the WSSC.
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advanced encryption standard (AES) [48, 148], we suggest using the extended inversion

function for this mapping defined as

f(x) :=







x−1 x 6= 0

0 x = 0

∀x ∈ F . (5.12)

In Figure 5.7, the sequences p ∈ F∗ and c ∈ F∗ are the plaintext and the ciphertext,

respectively. The equations relating the ciphertext to the plaintext in the encryption system

of Figure 5.7a are

y(n) =
∞∑

ℓ=0

H2(n, ℓ)

[

p(ℓ) + f
(

v(ℓ− 1)
)]

(5.13a)

c(n) =
∞∑

ℓ=0

H1(n, ℓ) y
me(ℓ) (5.13b)

for all n ∈ Z≥0. The initial state of the first recursive equation is v(−1) = 0.

The decryption system of the WSSC (Figure 5.7b) is designed along the guidelines

employed in the design of the system in Figure 5.4b. In the structure depicted in Figure 5.7b,

G1 and G2 are two modified DTWTs as in (5.8). They are designed such that for both

i = 0, 1, Gi is the inverse of Hi in the encryption system. The mapping (·)md : F → F

operates symbol-by-symbol on its input sequence. It is the inverse of the mapping (·)me

in the encryption system. To serve this purpose, we must have memd ≡ 1 mod (|F| − 1).

The equations describing the decryption system are

u(n) =
∞∑

ℓ=0

G1(n, ℓ) c(ℓ) (5.14a)

p(n) =
∞∑

ℓ=0

G2(n, ℓ)u
md(ℓ) + f

([
u(n− 1)

]md
)

(5.14b)

for all n ∈ Z≥0. The initial state in the second recursive equation is u(−1) = 0.

As we will explain in Section 5.3, chosen-ciphertext attack is the strongest attack on

SSCs. This implies that the design of the decryption system requires careful attention.

Therefore, we choose the exponent md such that the power mapping (·)md possesses the

highest possible nonlinearity. The (non)linearity of power mappings over fields of charac-

teristic two is measured using the Walsh transform [149, 69]. To have a one-to-one power
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mapping (·)md with the highest possible nonlinearity over GF(2r), we selectmd = 2(r/2)+1−1

in the case r ≡ 0 mod 4 [69]. Since the underlying field in our design is GF(28), we set

md = 31. For the this value, we obtain me = m−1
d mod 255 = 181.

To reveal the relationship between one round encryption of the WSSC and the canon-

ical form of all SSC in Figure 5.4a, we transform the block diagram in Figure 5.7a. The

transformation process, depicted in Figure 5.8, consists of two steps. Figure 5.8a shows the

original form of the encryption block diagram1. The first step is moving the H2 transform

past the junction point A after which we get the configuration in Figure 5.8b. Since H2 is, in

fact, a filtering operation with time-dependent coefficients, it can be virtually implemented

using a shift register. The length of this register is L + 1 (similar to Fact 5.2.1). Hence,

the final step is reconfiguration to the structure in Figure 5.8c in which F : FL+1 → F

is a nonlinear function defined as F (x0, . . . , xL) := f(
∑L

i=0 xi), for all x0, . . . , xL ∈ F, and

A0(n), . . . ,AL(n) are the coefficients of the kernel H2 defined as Aℓ(n) := H2(n, n− πn − ℓ),

for all ℓ ∈ (L+ 1 ), where πn := n mod 2 is the parity of the time index n. With this

1The delay in the feedback path is omitted only to simplify figures.

p(n) c(n)+ H2

f

b

A

(·)me H1

(a) Original form.

p(n) c(n)+

f H2

b

A
H2 (·)me H1

(b) H2 moved past the junction point A.

p(n) c(n)+

F

D1DL+1 · · ·

A
0
(n

)

A
L

(n
)

· · ·

b

A
H

v(n)
z(n)

(c) Canonical form.

Figure 5.8: Transforming the WSSC encryption to the canonical form of SSCs in Figure 5.4a.
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notation, at any time instance n ∈ Z≥0, the output of the function F is

z(n) = f

(
L∑

ℓ=0

Aℓ(n) v(n− πn − 1− ℓ)
)

. (5.15)

In Figure 5.8c, H is the cascade of the three transformations H2, (·)me , and H1 in the

mentioned order.

A comparison between the canonical model of Figure 5.4a and the modified structure

in Figure 5.8c reveals similarities, in spite of which, we emphasize the following main dif-

ferences.

1. As explained before, in the design of SSCs, usually LFSRs are employed to realize

FSMs. However, in the WSSC, the FSM is implemented using only a shift register

without a feedback.

2. The secret key in WSSC determines the time-dependent weights with which the con-

tents of the shift register are combined whereas in an SSC it determines the initial state

of the LFSR.

By a similar approach, one shows that the decryption transform of the WSSC in Figure 5.7b

consists of a sequence transform followed by the decryption system of an SSC.

In the following, we study the proposed WSSC in the multiple rounds configuration.

5.2.3 Multiple Rounds of the WSSC

To increase the security of the WSSC, we can cascade multiple rounds of the encryption

and the decryption systems depicted in Figure 5.7. Assuming R is the number of rounds,

let T
(i)
enc : F∗ → F∗ be the transfer function of the encryption system, described by (5.13),

for the i-th round. In addition, let T
(i)
dec

: F∗ → F∗ be the corresponding decryption transfer

function described by (5.14) for i = 1, . . . , R. The encryption and decryption systems in

multiple round arrangements are shown in Figure 5.9. As shown in the figure, the encryption

and decryption blocks are arranged in the reverse order in the cascade chains.

Every modified DTWT, as explained in Section 5.2.1, is realizable using L+ 1 memory

units each of which holds only one element of F. Since every encryption round consists of
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Figure 5.9: Multiple rounds of the WSSC.

two modified DTWTs, the total amount of memory required to implement the encryption

chain in Figure 5.9a is 2R(L+1). The same amount of memory is required to implement the

decryption chain in Figure 5.9b. Therefore, the security gained by increasing the number of

rounds increases the delay in both the encryption and the decryption cascades. Precisely,

after processing a long plaintext or ciphertext sequence, the user has to wait for 2R(L+ 1)

time units to flush out the system memory. In the remainder of this section, we explain

how the secret key is involved in the specification of the WSSC.

5.2.4 Key Setup

To use multiple rounds of the WSSC, all the components of the encryption and the decryp-

tion systems must be specified. The nonlinear function f , defined in (5.12), is the same for

all rounds. Therefore, the modified DTWTs and their inverses are the only components

that have to be specified based on the secret key. As explained in Section 5.2.1, a DTWT

and its inverse are designed based on a PU matrix. Therefore, the secret key determines

the parameters of the PU building blocks.

Let G
(i)
1 , G

(i)
2 , H

(i)
1 , and H

(i)
2 be the modified DTWTs and their inverses employed in the

i-th round for i = 1, . . . , R. For every round of the WSSC, the parameters determining the

modified DTWTs and their inverses are listed in Table 5.2. In this list, only the finite-field

parameters of the PU building blocks are kept secret and determined based on the secret

key. The rest of them are made public2. By this table, a secret key of length κ = β1 + β2

suffices to generate a PU matrix, using Algorithm 2.2, which is used to design a modified

DTWT transform-inverse pair.

2We note that it is possible to make all these parameters key dependent.
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Table 5.2: Design parameters for every round of WSSC.

P
ub

lic
β1 ∈ Z≥0 Number of degree-one building blocks

β2 ∈ Z≥0 Number of degree-2τ building blocks

τ ∈ N
β2 Degrees of the degree-2τ building blocks

µ ∈ { 1, 2 }β1+β2 Order in which the PU building blocks are multiplied

S
ec

re
t

u ∈ F
β1 Design parameters for the degree-one building blocks

ζ ∈ F
β2 Design parameters for the degree-2τ building blocks

To design a WSSC consisting of R rounds, 2R modified DTWT transform-inverse pairs

are required. One of them is designed using the secret key. The rest are designed using

secret vectors obtained by expanding the secret key vector. For this purpose, we employ

Algorithm 5.2, with ǫ = 2R, to expand the secret key. This algorithm takes the secret key

k
$←− Fκ as the input and outputs the set K consisting of 2R vectors of the same length.

The structure of the key-expansion algorithm is very similar to that employed in the block

cipher AES [48]. The design criteria, similarly, is having nonlinear relations between each

output vector and the master key such that taking advantage of these relations in an attack

is infeasible. In Algorithm 5.2, the binary operation ⊕ is the bitwise exclusive-OR and

Algorithm 5.2: Key expansion.

Input: Master key k = [ k1, . . . , kκ ]
† ∈ Fκ

Output: Parameter set K = {k1, . . . ,kT } ⊂ Fκ

for i = 1 to κ do ki1 ← ki1.

k1 ← [ k11, . . . , kκ1 ]
†

2.

for j = 2 to T do3.

k1j ← k1,j−1 ⊕ k−1
1,j−1 ⊕ cj−14.

for i = 2 to κ do kij ← ki,j−1 ⊕ k−1
i−1,j5.

kj ← [ k1j , . . . , kκj ]
†

6.

end7.
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c1, . . . , c2R−1 are public constants.

To find the relationship between L = Degz−1G0(z) = Degz−1G1(z) and the length of the

secret key κ, we first calculate the order of the PU matrix P(z). We note that the degree

and the order of a matrix polynomial are not necessarily equal [186]. Nevertheless, the order

is always greater than or equal to the degree. Therefore, Ordz−1P ≥ β1 +
∑β2

i=1 τi, where

τ1, . . . , τβ2 are the parameters of the S building blocks. By the polyphase representations

(2.5), the parameter L is related to Ordz−1P as L = 2Ordz−1P + 1. Combining these two

results, we get

L ≥ 2



β1 +
β2∑

i=1

τi



+ 1 . (5.16)

The typical length of the secret key is κ = 16 GF(256)-elements that is equivalent to

128 bits. To calculate a typical value for L, we consider the scenario in which β1 = β2 = 8

and, hence, κ = 16. We assume all S building blocks have degree two. By (5.16), we have

L ≥ 33.

5.3 Cryptanalysis of the WSSC

In this section, we study the security of the proposed WSSC with respect to some known

and relevant cryptanalytic techniques and also present a new method specific to our stream

cipher. As Maurer has shown in [134], the chosen-ciphertext attack is the most powerful at-

tack against SSCs. Therefore, in this section, we mostly focus our attacks on the decryption

system of Figure 5.7b.

Attacks studied in this section are: interpolation, algebraic (such as Gröbner basis and

XL algorithm), delta, time-memory tradeoff, divide and conquer, correlation, and distin-

guishing. Among them, the delta attack is specifically developed for the WSSC. We will

show that one round of the system is vulnerable to this attack. We propose two methods

to prevent it. The first one is increasing the number of rounds. The other one is employing

combiners with memory. We highly recommend using at least two rounds of the WSSC.
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5.3.1 Interpolation Attack

Cryptosystems with algebraic relations between the plaintext and the ciphertext might be

vulnerable to this attack [108, 146, 107]. In the interpolation attack attack, the adversary

establishes an algebraic relation between the plaintext and the ciphertext with unknown

coefficients. Using a set of plaintext-ciphertext pairs, the adversary is able to construct a

system of linear equations in the unknown coefficients. After solving this linear system, the

adversary can decrypt any ciphertext without knowing the key.

By (5.14), every plaintext symbol is a function of the current and a limited number of

previous ciphertext symbols. To study the feasibility of applying the interpolation attack

to the WSSC, let γ := p(n), χi := c(n − i), and ωi := u(n − i), for all i = 0, . . . , n, at

an arbitrary and fixed time instance n ∈ Z≥0. We first study the case in which n is a

large enough and even integer. By (5.14a) and (5.9), we have ωj =
∑L

i=0 aij χi+j , where

aij := G1(n − j, n − j − i). Hence, ωmd

j is a homogenous polynomial of degree md in

χj , . . . , χj+L. To count the number of terms in this polynomial, let w be the Hamming

weight of md, i.e., md = 2θ1 + · · ·+ 2θw for proper θ1, . . . , θw ∈ Z≥0. Since for any θ ∈ Z≥0,

the power function (·)2θ
is F-linear, we have

ωmd

j =
w∏

ℓ=1

(
L∑

i=0

χ2θℓ

i

)

. (5.17)

From here, we deduce that ωmd

j has (L+ 1)w terms.

Now, by (5.14b), we have γ =
∑L

j=0 bj ω
md

j + ω255−md
1 , where bj := G2(n, n − j), and

we have used the equality χ−md ≡ χ255−md over GF(256). The summation expression of γ

is a homogenous polynomial of degree md in χ0, . . . , χ2L with maximum (L+ 1)w+1 terms.

The term ω255−md
1 is a homogenous polynomial of degree 255−md in χ1, . . . , χL+1 that has

(L+ 1)w
′
terms, where w′ is the Hamming weight of 255−md.

All results obtained for even n can be easily translated to the case in which n is odd.

One of the differences is that, by (5.9), ωj is a polynomial in χj+1, . . . , χj+L+1. In addition,

γ is a polynomial in χ1, . . . , χ2L+1. Collectively, we have proved the following lemma.

Lemma 5.3.1. At an arbitrary and fixed time instance n ∈ Z≥0, the plaintext symbol p(n)
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is a polynomial in 2L + 1 ciphertext symbols. It consists of two homogenous components

of degrees md and 255−md. Assuming w and w′ are respectively the Hamming weights of

these degrees, p(n) has (L+ 1)w+1 + (L+ 1)w
′
terms.

For md = 31, we have w = 5 and w′ = 3. For the typical value L = 33, the maximum

number of terms is approximately 231. Solving a system of linear equations for 231 unknowns

has complexity O(293) even using fast algorithms such as LUP decomposition [40]. This

complexity is even higher than that in the time-memory tradeoff attack that we will explain

later in this section. Hence, the interpolation attack is infeasible on one round of the WSSC.

For two rounds, the described version of the interpolation attack is trivially infeasible too.

Another version of the interpolation attack is meet-in-the-middle attack [108]. In this

version, the adversary writes an arbitrarily selected sequence in the middle of the system as

algebraic equations of both the input and the output sequences. After equating these two

equations and eliminating the middle sequence, she establishes a system of linear equations

from which the unknowns are obtained. The advantage of this version of the attack is

that the equations might be simpler in some cases. Assume this attack is mounted on the

decryption system of Figure 5.7b with respect to the sequence y(n). The two equations

relating y(n) to the input and output sequence respectively are:

y(n) =




∑

ℓ∈S(n)

G1(n, ℓ) c(ℓ)





md

(5.18a)

y(n) =
∑

ℓ∈S(n)

H2(n, ℓ)

[

p(ℓ) + f
(

y(ℓ− 1)
)]

. (5.18b)

In writing (5.18b), we have used the encryption system in Figure 5.7a and the fact that

(G1,H1) is a transform-inverse pair. Equating the two equations in (5.18) does not eliminate

y(n). As a matter of fact, the result is a multivariate polynomial in y(0), . . . , y(n−1) besides

plaintext and ciphertext symbols as its variables. Since the number of variables increases

by time, it is not possible to easily recover plaintext symbols. Therefore, this version of the

interpolation attack is more complicated than its original form. This observation renders

the meet-in-the-middle attack infeasible on one round of the WSSC. For similar reasons,
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the described attack is also infeasible on two rounds of the system.

5.3.2 Algebraic Attacks

The goal in the interpolation attack is constructing a system of linear equations because

such systems, if of moderate size, can be efficiently solved. However, we showed that the

system describing every plaintext symbol in terms of the ciphertext symbols in one round

of the WSSC is too large to be feasibly solved. We note that the unknown coefficients

obtained by an interpolation attack are related to each other through their dependencies to

the coefficients of the kernels G1 and G2. The interpolation attack ignores these dependencies

to construct linear equations. To reduce the number of unknowns and, hence, the size of

the system, we rewrite these equations in terms of the G1(n, ℓ) and G2(n, ℓ) coefficients.

In contrast to the interpolation attack, the resulting equations are nonlinear. The total

number of unknowns is equal to the number of coefficients required to specify these kernels.

By Fact 5.2.1, each of the two kernels is completely specified with L + 1 coefficients. In

the following, we study different methods for solving systems of multivariate polynomial

equations.

A Gröbner Basis

This is a general tool for solving all systems of polynomial equations [14, 73, 45, 46], which

is a generalization of the Gaussian elimination method. To solve the system







f1(x1, . . . , xν) = 0

...

fm(x1, . . . , xν) = 0

(5.19)

over a field F, one obtains the Gröbner basis of the ideal I = (f1, . . . , fm) with respect

to the reverse lexicographic ordering. If { g1, . . . , gm′ } is a Gröbner basis of I, in which

m′ ≤ min {m, ν }, then the polynomial gi depends only on the variables xi, . . . , xν for all

i = 1, . . . ,m′. If m′ = ν, then gm′ is a univariate polynomial in xν , which its root can be

solved using efficient root finding algorithms [125, 82]. The value of xν obtained from here
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is substituted in gm′−1 that is a polynomial in xν−1 and xν . Solving the resulting univariate

polynomial gives the value of xν−1. Continuing this procedure, one obtains all unknowns.

If m′ < ν, then gm′ is a multivariate polynomial in xm′ , . . . , xν . By randomly assigning

values to xm′+1, . . . , xν , we turn gm′ into a univariate polynomial in xm′ that its roots are

efficiently obtained. The rest of the root finding method is similar to the previous case.

The complexity of all algorithms for computing the Gröbner basis of a random system of

polynomial equations is exponential in the number of variables [73]. However, in cases where

either the number of variables or the degree of polynomials is too small, fast algorithms such

as the F4 [78] or the F5 [79] algorithm might be efficiently applicable. Using an approach

similar to the one used in the interpolation attack, one can prove the following fact.

Fact 5.3.1. The equation governing one decryption round of the WSSC is a polynomial in

ν = 2(L+ 1) variables consisting of two homogenous parts of degrees md + 1 and 255−md.

For the choices L = 33 and md = 31, the number of variables and the total degree are

68 and 224, respectively. Computing the Gröbner basis of a system of equations with these

specifications seems to be infeasible [44].

B XL Algorithm

The XL algorithm is an alternative method for solving over-defined systems of homogenous

polynomial equations [44, 203]. To briefly explain this method, consider the system of

polynomial equations (5.19) in which all polynomials are assumed to be homogenous of

degree θ ∈ N. The main ideas of the XL algorithm and the method of Gröbner basis are

essentially the same: constructing the ideal I = (f1, . . . , fm) and finding a set of polynomials

g1, . . . , gm′ ∈ I such that solving the system g1 = · · · = gm′ = 0 is easier than solving the

original system [11]. In the XL algorithm, the new system is constructed by polynomials of

the form (
∏

j∈J xj) fi, where J ⊂ { 1, . . . , ν } such that |J | = D−θ for some fixed D ∈ N≥θ

(i.e., D is the total degree of the new equations). In every equation of the new system, each

term with total degree less than or equal to D is replaced by a new variable. This step is

called linearization that was, first, used in [116] to break the HFE public-key cryptosystem
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[155]. This technique reduces the total degree of the system of equations and hence reduces

the complexity of inverting it.

To obtain the complexity of the XL algorithm in our case, we follow the guidelines of

[44] for the complexity calculation. Given m original homogenous equations of degree θ in

ν variables, the number of generated equations is Neq = νD−θ

(D−θ)! · m while we have about

Nvar = νD

D! linear variables. The method is successful when Neq ≥ Nvar, i.e., when

m ≥ νθ

D(D − 1) · · · (D − θ + 1)
= O(νθ) . (5.20)

By Fact 5.3.1, the one-round decryption equation of the WSSC is a polynomial in ν =

2(L+1) variables consisting of two homogenous parts of degrees md and 255−md. With the

typical values L = 33 and md = 31, we have ν = 68 and θ = max {md, 255−md } = 224.

By (5.20), the minimum number of required equations is in the order of 21364. The eventual

system of linear equations with this huge size is completely infeasible to solve practically.

C FXL Algorithm

The FXL is an extension of the XL algorithm in which the values of some variables are

randomly guessed and the resulting system is solved [44]. The random guessing technique

is intended to make the system of equations over-defined specially when m ≈ ν. The final

system of linear equations in the FXL is expected to be much smaller than that in the XL.

As explained in [44], there is a tradeoff between the size of search space (determined by the

number of guesses) and the complexity of the eventual linear system. The number of guesses

recommended in [44] is O(
√
ν) in which case the complexity of the FXL approximately

becomes 2r
√

ν(log2 ν+8) over GF(256). Here, r = m−ν ≥ 2 is the number of excess equations.

With the value ν = 68 in WSSC, the complexity of FXL becomes at least 2232, which is

still out of the computational reach of today computers.

5.3.3 Delta Attack

This is a chosen-ciphertext attack in which a number of ciphertext streams with a special

form are chosen and applied to the decryption system of the WSSC in Figure 5.7b. Using
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the corresponding plaintext streams, it is computationally possible to recover the coefficients

of G1(n, ℓ) and G2(n, ℓ) in only one round of the WSSC. The ciphertext streams employed

in this attack are of the form

cn0(n; α) :=







α n = n0

0 n 6= n0

(5.21)

in which n0 ∈ { 0, 1 } and α ∈ F\{ 0 }. Let pn0(n; α) be the corresponding plaintext stream.

In the following, we explain this attack for one and two rounds. We will discuss that this

attack is unsuccessful on two rounds.

A One Round

By (5.14a), we have u(n) = αG1(n, n0). Substituting this result in (5.14b), we get

pn0(n; α) = αmd X(n, n0) + f(αmd [G1(n− 1, n0)]
md) , (5.22)

where

X(n, n0) :=
∑

ℓ∈S(n)

G2(n, ℓ) [G1(ℓ, n0)]
md . (5.23)

Using another ciphertext-plaintext pair (cn0(n; β), pn0(n; β)) with β 6= α, we obtain a

system of equations. After eliminating X(n, n0) in this system, we get the polynomial

equation

αmd f
(

βmd [G1(n− 1, n0)]
md

)

+ βmd f
(

αmd [G1(n− 1, n0)]
md

)

+ αmd pn0(n; β) + βmd pn0(n; α) = 0 . (5.24)

For the extended inversion function f in (5.12), this polynomial equation has the unique

solution

G1(n, n0) =

[
(α/β)md + (β/α)md

αmd pn0(n+ 1; β) + βmd pn0(n+ 1; α)

]me

. (5.25)

Therefore, only two ciphertext streams as in (5.21) with n0 = 0, 1 suffice to completely find

the coefficients of G1. Once G1 is known, we obtain X(n, n0) from (5.22).

X(n, n0) = 1
αmd

[

pn0(n; α) + f(αmd [G1(n− 1, n0)]
md)

]

(5.26)

The coefficients of G2 can be obtained from the definition of X in (5.23).

- 93 -



B Two Rounds

Consider two decryption rounds of the WSSC in Figure 5.10. Streams at different points of

this system in response to the ciphertext stream in (5.21) are:

u(n) = αG
(1)
1 (n, n0) , (5.27a)

v(n) = αmd
∑

ℓ∈S(n)

G
(1)
2 (n, ℓ)

[

G
(1)
1 (ℓ, n0)

]md

︸ ︷︷ ︸

X(n,n0)

+α−md

[

G
(1)
1 (n− 1, n0)

]−md

, (5.27b)

y(n) = αmd
∑

ℓ∈S(n)

G
(2)
1 (n, ℓ) [X(ℓ, n0)]

md

︸ ︷︷ ︸

Y(n,n0)

+α−md
∑

ℓ∈S(n)

G
(2)
1 (n, ℓ)

[

G
(1)
1 (ℓ− 1, n0)

]−md

︸ ︷︷ ︸

Z(n,n0)

,

(5.27c)

and

pn0(n; α) =
∑

ℓ∈S(n)

G
(2)
2 (n, ℓ)

[

αmd Y(ℓ, n0) + α−md Z(ℓ, n0)
]md

+
[

αmd Y(n− 1, n0) + α−md Z(n− 1, n0)
]−md

(5.27d)

Staring from n = 0 and increasing n by one at a time, the adversary can find a few

first coefficients of some kernels. However, as n grows large, the equations become highly

complicated with many terms. The stream observed by the adversary pn0(n; α) consists of

highly nonlinear terms generated by the power mapping (·)md in the design of the decryption

system in Figure 5.7b. Therefore, linear approximations of these terms are very unlikely to

reduce the complexity of solving the final equations for the kernels coefficients. Hence, the

delta attack fails on two rounds of the system. We note that in practice, similar to RC4,

one can ignore a few first output symbols to prevent revealing any kernel coefficients.

c(n) p(n)G1
1 (·)md b G1

2

f(·)

+ G2
1 (·)md b G2

2

f(·)

+
u x y

Figure 5.10: Two decryption rounds of the WSSC.
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C Discussion

The modified DTWTs H and G in the design of the WSSC help to diffuse the symbols of the

input stream in the output. Every one of them, which consists of two one-sided filters (h’s

and g’s) as in Figure 5.6, spreads the length of its input stream by a factor proportional to

its length. Precisely, if Lin and Lout are the lengths of input and output streams of H or G,

then we have the relationship Lout = Lin+L, where L+1 is the maximum length of the h and

g filters. A delta ciphertext stream as in (5.21) delays the dissipation of its only coefficient

in the output. In one decryption round of the system, the diffusion of the delta stream does

not reached to a point where the final equations are complicated enough. Therefore, at least

two rounds of the WSSC are required to resists the delta attack. We note that replacing

the nonlinear function f , in the design of the WSSC, with a highly complicated S-box does

not improve the resistance to the delta attack. This is because every function f has a

polynomial representation over F by Lagrange’s interpolation formula. This representation

yields the univariate polynomial equation (5.24) that can be efficiently solved.

One approach to prevent the delta attack if a single round of the system is used is to

employ combiners with memory for the nonlinear function f [170, 10]. In the case of WSSC,

we suggest using a very simple combiner f : FM → F that takes as input the current and

past M − 1 symbols of the input stream. If y and z are the input and output streams of

f , respectively, then z(n) = f(y(n), . . . , y(n −M + 1)). In fact, we add a shift register of

length M at the input of the function f in our previous design. We assume the initial state

of this register is zero. This combiner makes the polynomial (5.24) multivariate, which

requires other similar equations to construct a system. As we discussed before, such system

of nonlinear polynomial equations cannot be easily solved. We note that the adversary

might be able to compute only a few first coefficients of G1 by observing the output stream

at time n = 1. However, as the time progresses, the complexity of the polynomial equation

(5.24) increases.
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5.3.4 Time-Memory Tradeoff Attack

Two obvious attacks applicable on all ciphers are exhaustive key search and table pre-

computation. In the first one, given a single plaintext-ciphertext pair, the attacker exhaus-

tively tries all possible keys. The matching pair reveals the secret key. The worst-case

time complexity of this attack is T = |F|κ = 28κ. Considering that typically κ = 16 in the

WSSC, the time complexity of this attack is T = 2128, which is infeasible to mount with

the state of the art in computational power.

Table pre-computation is the second obvious attack in which, in a chosen-ciphertext

attack, the attacker generates a table listing the plaintext sequences corresponding to a fixed

ciphertext sequence decrypted under all possible secret keys. Once the pre-computation is

over, the attack can be carried out almost instantly. The size of the memory required to

store all possible keys is 2128 bits that is completely beyond the storage capabilities of today.

In the spectrum covered by the exhaustive key search and the table pre-computation,

there are proposals that make a tradeoff between the time complexity and the storage

memory [102, 27, 150]. The first one of such methods was proposed by Hellman in [102].

To briefly explain this method, let Deck : F∗ → F∗ be the decryption function of the

WSSC with the secret key k ∈ Fκ. In addition, define the function λ : Fκ → Fκ as

k 7→ ρ
(

Deck(c0)
)

for all k ∈ Fκ and a fixed ciphertext c0, where ρ is either the identity

map or a reduction function. For any k ∈ Fκ, computing λ(k) is as simple as decryption.

However, inverting λ(k) is equivalent to cryptanalysis. Therefore, if WSSC is to be secure,

λ must be a OWF. As part of the pre-computation, the cryptanalyst uniformly at random

chooses m distinct keys k10, . . . ,km0 and computes the chains

k10
λ−−→ k11

λ−−→ · · · λ−−→ k1t

...

km0
λ−−→ km1

λ−−→ · · · λ−−→ kmt

(5.28)

each of length t ∈ N. To reduce memory requirements, the adversary discards all interme-

diate points and only stores pairs (ki0,kit) for all i ∈ { 1, . . . ,m }.
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Given a ciphertext-plaintext pair (c0, p0) obtained using the secret key k, i.e., p0 =

Deck(c0), the adversary computes S1 = ρ(p0) checks the endpoints of all chains. If S1 = kjt

for only one j ∈ { 1, . . . , t }, then the secret key must be kj(t−1). Since all the intermediate

points are discarded, the adversary obtains the secret key through t − 1 applications of

the function λ on the beginning point kj0. If more than one match is found, i.e., the

chains collide at the end, the adversary obtains all possible keys and checks them via

decrypting c0 under each one and comparing the result with p0. If no match is found,

the adversary computes S2 = λ(S1) and checks if it is an endpoint. If S2 = kℓt for some

ℓ ∈ { 1, . . . ,m }, then the secret key is kℓ(t−2), which is obtained through t−2 application of

λ on the beginning point kℓ0. In a similar way, the cryptanalyst computes S3 = λ(S2), S4 =

λ(S3), . . . , if necessary, and checks the endpoints. If no match is found at all, the adversary

has to pre-compute a different table by choosing different initial points and/or the fixed

ciphertext c0. As shown in [102], this method can recover a key in T 2/3 operations using

T 2/3 words of memory (when t = m = T 1/3). In the case of the WSSC, we have T 2/3 ≈ 285.3.

The time-memory tradeoff attack of [102] with this complexity is infeasible to mount.

A similar time-memory technique is proposed in [27] that employs distinguished points,

i.e., points that possess a property that can be easily checked. Complexities of this tech-

nique, although lower, are in the same order of those in the previous method. The latest

version of time-memory tradeoff attacks is proposed in [150]. This new method improves

the efficiency of such attacks by constant factors. Although it presents a threat to ciphers

with short keys such as data encryption standard (DES), the proposed WSSC is immune

against it by the choice of the key length.

5.3.5 Divide-and-Conquer Attack

The main idea in this attack is dividing the secret information (the secret key or some other

related material) into distinct pieces, making guesses for the values of some pieces, and

retrieving values of the others using observed information (e.g., the plaintext in the chosen-

ciphertext attack). If the bit lengths of the secret information and the pieces respectively
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are κ and κ1, . . . , κM (such that κ1 + · · ·+κM = κ), then the complexity of the divide-and-

conquer attack becomes
∑M

i=1 2κi that can be much smaller than the claimed complexity

2κ.

Consider mounting this attack on one decryption round of the WSSC in Figure 5.7b.

One approach is guessing the coefficients of the kernel H1 and solving some equations for

the coefficients of H2. However, by Fact 5.2.1, every one of these kernels is specified with

L + 1 finite-field elements. Considering that usually L + 1 > κ (e.g., typical values are

L = 33 and κ = 16), this approach is more complex than the simple exhaustive search.

Another approach is using the relationships between the kernel coefficients and the secret

key to determine H1. As we explained in Section 5.2.4, the secret information used to specify

any one of the kernels is derived from the secret key through a key expansion algorithm.

Therefore, guessing the secret information used to specify H1 is equivalent to guessing

the secret key. Collectively, we conclude that the divide-and-conquer attack is at least as

complex as the exhaustive search.

5.3.6 Correlation and Distinguishing Attacks

Proposed in [177], the main idea of the correlation attack is exploiting the correlation

between the LFSR output an of a stream cipher and the key stream zn. As shown in

Figure 5.4a, the output of the LFSR is passed through a nonlinear Boolean function f

to destroy all linear dependencies. However, since Boolean functions are imperfect, there

always exist some correlation. The correlation attack converts the problem of recovering the

sequence an from the the sequence zn into the following decoding problem. The sequence zn

can be considered a distorted version of an after transmitting through a binary symmetric

channel that is modeled by f . Since f is publicly known, the channel characteristics are

known as well. Moreover, using the feedback polynomial of the LFSR (which is also public),

the adversary can specify an error-correction code. Therefore, recovering an from zn is a

decoding problem. The are many proposals in the literature on what code best specifies the

LFSR output among which low-density parity-check (LDPC) codes seem to be one of the
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best candidates [147, 139].

To mount a correlation attack on the WSSC, we consider the modified structure of

Figure 5.8c. As we emphasized in Section 5.2.2, in spite of the structural similarities between

Figure 5.8c and Figure 5.4a, there are no LFSRs used in the design of the WSSC. Hence,

there are no feedback polynomials. In fact, recovering the sequence z(n) from c(n) in

Figure 5.8c is not a decoding problem. Therefore, the correlation attack is not well defined

for the WSSC.

To mount a correlation attack on the WSSC, we consider the modified structure of

Figure 5.8c. Access to the sequence v(n) at point A is necessary to perform decoding.

However, v(n) is masked by the transformer H before appearing at the output. We claim

that even with access to this sequence, the correlation attack is unsuccessful. To justify

this claim, we note that the register in this structure is not an LFSR, i.e., its state does

not evolve based on a linear recurrence equation. Therefore, the adversary is facing with

a decoding problem for an unknown code that is more difficult than decoding an arbitrary

but known linear code. The latter, known to be an NP-hard problem, is the basis for the

security of the McEliece public-key cryptosystem [137]. Therefore, the correlation attack

even with access to v(n) fails.

The distinguishing attack is similar to the correlation [75]. The main difference is that

no decoding algorithm is employed. Hence, it is expected to be faster than the correlation

attack. In a distinguishing attack, the adversary tries to decide whether the data originates

from the considered cipher or a random source. To make this decision, hypothesis testing

techniques are used. The probability of correct decision is based on the length of observed

ciphertext stream. To recover the initial state of the LFSR in a stream cipher, the attacker

has to find a low degree multiple of the register polynomial. This attack is irrelevant to the

WSSC since the concept of the register polynomial is meaningless in the design.
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5.4 Performance Evaluation

In this section, we study the implementation complexity of the proposed WSSC in com-

parison with the block cipher AES used in the one-bit CFB mode. Results are provided

in Table 5.3 for κ = 16 and L = 33. In this table, the measurements for AES are taken

from [165]. For a fair comparison, we have assumed that the finite field multiplication and

the extended inversion in the design of the WSSC are implemented as table lookups. The

third row of the table provides the number of table lookups and the size of the table. For

example, 136/(256 × 256) implies 136 lookups in a table of size 256 bits by 256 bits. A

similar notation is used in other rows of the table. As the last two rows of this table show,

the WSSC has less circuit complexity than the AES. Although the actual performance of a

cryptosystem depends on the circuit implementation of its algorithm, the circuit complex-

ity provides some insight about the performance. Based on this justification and Table 5.3,

we claim that the WSSC is relatively efficient in both hardware and software. The only

drawback is the total amount of memory that is about 4.5 times more than that in AES.

Table 5.3: Complexity comparison between the WSSC and AES in the one-bit CFB mode.

WSSC AES

Rounds 2 12

Key size (bits) 128 128

Table lookups / Table size (bits ×

bits)

136/(256 × 256), 2/(255 × 1) 160/(8 × 32)

XOR, ADD (bits) 134(8) 11(128), 120(32)

Total table lookups (byte) 138 160

Total logical operations (byte) 134 656

Total memory (bytes) 136 16

Table lookups per bit 17.25 20

Logical OPs per bit 16.75 82
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5.5 Summary

A new self-synchronizing stream cipher, called WSSC, is proposed in this chapter. In

contrast to the traditional designs in which LFSRs are the main ingredients, we employ

discrete-time wavelet transforms over fields of characteristic two specifically GF(256). Lift-

ing to fields higher than the binary field enables the usage of some algebraic tools unavailable

over the binary field. The new cipher is iterative, the feature mainly used in block ciphers.

There are two discrete-time wavelet transforms used in the structure of a single round of

the WSSC. The secret key (typically 128 bits) is used to construct the wavelet transforms.

Since the wavelet transform by itself is linear, we include some nonlinear components in

our design. We have studied the resistance of the WSSC to many known and relevant at-

tacks (interpolation, algebraic, time-memory tradeoff, divide and conquer, differential, and

correlation) and the newly developed delta chosen-ciphertext attack. Our results indicate

that one round of the WSSC is vulnerable to the delta attack. To prevent it, we recom-

mend using at least two rounds of the system. We have also evaluated our stream cipher

in terms of the performance. Our performance comparisons with the block cipher AES in

the one-bit cipher feedback mode reveal that WSSC has lower number of table lookups

and logical operations. The cost for improving the circuit complexity is additional memory.

As the future work, we plan to implement the WSSC in both software and hardware. We

hope that our new approach to the design of self-synchronizing stream ciphers leads to new

structures with improved efficient and security.
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CHAPTER 6

Paraunitary Public-Key Cryptography

6.1 Background Review

Fell and Diffie [87] were among the pioneers in designing public key cryptosystems based

on the difficulty of solving systems of multivariate polynomial equations (Problem 4.4.1).

Their first idea was to compose several invertible multivariate mappings each of a special

format that we call tame automorphism. A tame automorphism (will be formally defined

later in this chapter) is a multivariate mapping over some vector space Fn, where F is a

field and n ∈ N is arbitrary, of the form

ti : Fn −→ Fn

x = (x1, . . . , xn) 7−→ y = (x1, . . . , xi−1, xi + gi, xi+1, . . . , xn) .
(6.1)

Here, gi ∈ F[x1, . . . , xi−1, xi+1, . . . , xn] is an arbitrary polynomial in n − 1 variables and

i ∈ [n ]. Given y = (y1, . . . , yn) = ti(x), the inverse is

xj =







yj , j ∈ [n ] \ { i }

yi − gi(y1, . . . , yi−1, yi+1, . . . , yn), j = i .

(6.2)

Let ti1 , . . . , tiN be tame automorphisms, where i1, . . . , iN ∈ [N ] are distinct integers. The

OWF proposed in [87] is the multivariate matrix polynomial t = ti1 ◦ · · · ◦ tiN . The public

information consists of the entries of the matrix polynomial t. The indices i1, . . . , iN and

the polynomials gi1 , . . . , giN comprise the trapdoor information. The main problem with

this approach is the size of public key that exponentially grows by N . There have been

suggestions in [87] to reduce the size of public key such as constructing the OWF over a

nilpotent ring or a J ring. Unfortunately, none of these proposals gives a practical system.
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6.1.1 Signature Based on Birational Permutations

Consider a multivariate mapping (x1, . . . , xn) =: x 7→ y := (y1, . . . , yn) over a ring R

in which yi is a low-degree polynomial or rational function of x for all i ∈ [n ]. This

mapping is called birational if it is invertible and its inverse also consists of polynomials

or rational functions. Using birational bijections (permutations), a few signature schemes1

are proposed in [175] over the ring R = Zk, where k = pq and p and q are large primes.

The idea underlying all the proposed schemes is as follows. Let f = (f1, . . . , fn) : Zn
k → Zn

k

be a birational permutation. Ignore the first s > 0 polynomials and publish fs+1, . . . , fn as

public information. To sign a message m, the signer randomly chooses y1, . . . , ys ∈ Zk and

sets yi = h(m, i) for all i = s + 1, . . . , n, where h is a publicly known cryptographic hash

function. Using her knowledge of deleted polynomials, the signer calculates the signature

x = f−1(y). This signature is verified if fi(x) = h(m, i) for all i = s+ 1, . . . , n.

The main issue in using this scheme is designing birational permutations. One of the

designs suggested in [175] is the triangular birational permutation f = (f1, . . . , fn) : Zn
k →

Zn
k defined as

f1(x) = a1 x1 + g1

f2(x) = a2 x2 + g2(x1)

...

fi(x) = ai xi + gi(x1, . . . , xi−1)

...

fn(x) = an xn + gn(x1, . . . , xn−1) ,

(6.3)

where ai ∈ Z
×
k and gi ∈ Zk[x1, . . . , xi−1] for all i ∈ [n ]. To invert y = f(x), one starts from

y1 and proceeds to yn as follows

xi = a−1
i

[

yi − gi(x1, . . . , xi−1)
]

∀i ∈ [n ] . (6.4)

To hide the triangular structure of f , two invertible matrices A,B ∈ GLn(Zk) are employed.

1A formal definition of digital signature is provided in Section 6.7.
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The final birational permutation is the mapping Af(Bx). Unfortunately, this scheme

proposed in [175] was broken in [38, 39].

6.1.2 Tame Transformation Methods

A public-key cryptosystem based on the composition of four tame automorphisms, called

TTM, is introduced by Moh [143, 144]. Let t1, t2, t3, and t4 be tame automorphisms and t4◦

t3◦t2◦t1 =: f : Fn → Fn be their composition, where F is a field of characteristic two. The

public key consists of the n polynomials f1(x1, . . . , xr, 0, . . . , 0), . . . , fn(x1, . . . , xr, 0, . . . , 0)

each in r variables for some fixed r < n. A signature scheme based on this idea, called TTS,

is also proposed in [144, 34]. In the signature scheme, the reduced map f̂ := (f1, . . . , fr) is

employed.

The TTM and TTS schemes are broken in [98, 204] in which the cryptanalysis is reduced

to an instance of the MinRank problem that can be solved feasibly. The MinRank problem

is stated as follows. Given a set of matrices M1, . . . ,Mt ∈ Mn(F), find a linear combination

α1 M1 + · · · + αt Mt, where α1, . . . , αt ∈ F, that has the minimum rank among all such

linear combinations.

6.1.3 Tractable Rational Map Cryptosystem

A public-key cryptosystem based on tractable rational maps, called tractable rational-map

cryptosystem (TRMC), is proposed in [195]. The TRMC employs a triangular structure

such as the one used by the signature scheme proposed in [175]. A tractable rational map
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is a one-to-one affine transformation of the following form

y1 = r1(x1)

y2 = r2(x2) ·
p2(x1)

q2(x1)
+
f2(x1)

g2(x1)

...

yi = ri(xi) ·
pi(x1, . . . , xi−1)

qi(x1, . . . , xi−1)
+
fi(x1, . . . , xi−1)

gi(x1, . . . , xi−1)

...

yn = rn(xn) · pn(x1, . . . , xn−1)

qn(x1, . . . , xn−1)
+
fn(x1, . . . , xn−1)

gn(x1, . . . , xn−1)
,

(6.5)

where pi, qi, fi, gi ∈ F[x1, . . . , xi−1] are polynomials and ri[xi] ∈ K[xi] is a rational permu-

tation for all i ∈ [n ]. In (6.5), F is a finite field and K is an F-algebra (e.g., an extension

field of F or a matrix algebra). Although attractive, the security of the TRMC has not

been well studied.

6.1.4 C∗ Algorithm and its Variants

The main challenge in designing multivariate cryptosystems is including a trapdoor in the

public polynomials without employing polynomials with special structures. A practical ex-

ample is the Matsumoto-Imai scheme, called C∗, that uses a quadratic univariate monomial

over an extension field of a small finite field [132]. The representation of this monomial over

the small field gives a set of quadratic polynomials. Unfortunately, this scheme and many

of its variants have been broken because of unexpected algebraic relations and the special

structure of the public polynomials. In the following, we briefly describe the main idea of

the C∗ scheme based on the description provided in [118].

Let K be an extension field of degree n of the finite field Fq with characteristic two.

Assume β1, . . . , βn ∈ K is a secret basis of K as an Fq-vector space. Every element x ∈ K

can be regarded as an n-tuple x = (x1, . . . , xn) ∈ Fn
q , where x =

∑n
i=1 xi βi. In transforming

the plaintext into the ciphertext, Alice chooses an exponent h of the form

h = qθ + 1 , (6.6)
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where θ ∈ N is a secret exponent, 0 < h < qn, and gcd(h, qn − 1) = 1 2. The gcd condition

guarantees that the following map is bijective.

φ : K −→ K

u 7−→ uh = uqθ
u

(6.7)

The inverse map is φ−1(v) = vh′
, where h′ = h−1 mod (qn − 1). In addition to φ, Alice

chooses two secret affine transformations s, t : Fn
q → Fn

q , which are bijections over K. The

purpose of these affine transformations is to hide the monomial map φ; hence, the name

“hidden monomial cryptosystem.”

The public polynomials of the encryption transformation are obtained by representing

the map Ψ : K→ K, defined as

Ψ := t−1 ◦ φ ◦ s , (6.8)

as n multivariate polynomials over Fq. To find this representation, we note that the map

u 7→ uqθ
is an Fq-linear transformation. Thus, there exist a matrix C = [ cij ] ∈ Mn(Fq)

such that uqθ
=
∑n

i=1 ui β
′
i, where

β′i =
n∑

j=1

cji βj ∀i ∈ [n ] . (6.9)

In addition, it is possible to write the product of two basis elements in terms of the basis,

i.e.,

βi βj =
n∑

k=1

mijk βk, mijk ∈ Fq (6.10)

for all i, j ∈ [n ]. Assuming v = φ(u) and using (6.9) and (6.10), equation (6.7) can be

expanded as
n∑

ℓ=1

vℓβℓ =

(
n∑

i=1

uiβ
′
i

)



n∑

j=1

ujβj



 (6.11)

that gives

vℓ =
n∑

i,j,k=1

ckimjkℓ ui uj ∀ℓ ∈ [n ] . (6.12)

2If the characteristic of the field were odd, then gcd(h, qn − 1) ≥ 2.
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After applying the linear transformations s and t, we get n multivariate polynomials each

consisting of a degree-two homogenous part, a linear part, and a constant term.

To decrypt the ciphertext block y = (y1, . . . , yn) ∈ Fn
q , Alice, first, calculates v =

t(y) ∈ K, where y is the element in K corresponding to the vector y. Then, she obtains

u = vh′ ∈ K. The plaintext block is the vector representation of s−1(u).

This scheme was broken in [153] using the observation that if we raise both sides of the

equation v = uh = uqθ
u to qθ − 1 and multiply both sides by u v, we get

u vqθ

= uqθ

v (6.13)

that leads to equations in x1, . . . , xn and y1, . . . , yn that are linear in both sets of vari-

ables. Using linear algebra, the cryptanalyst can find these equations without requiring the

knowledge of Alice’s secret parameters. Solving these equations probably do not uniquely

determines the plaintext from the ciphertext. However, it reduces the search for the plain-

text to an affine subspace of Fn
q that is small enough to allow an exhaustive search.

After breaking the Matsumoto-Imai cryptosystem, it has been evolved in many different

ways. Some of these variants are described in the following. Unfortunately, many of them

are shown to be insecure.

A Hidden-Field Equations (HFE)

In [155], Patarin proposed a new scheme called HFE or little dragon to repair the C∗

algorithm. The main different between the C∗ algorithm and the HFE scheme is in the

exponent h in (6.6). In the HFE, this exponent is

h = qθ + qϑ − 1 , (6.14)

where θ, ϑ ∈ N are secret integers such that 0 < h < qn and gcd(h, qn − 1) = 1. Since

there are not many possibilities for h, it is regarded as a public integer. Because of the

special form of the exponent h in (6.14), the characteristic of the ground field Fq is no

longer necessarily even. Hence, it can be any prime. We note that because of the special

form of the exponent h in (6.14), the public polynomials are quadratic and, yet, the attack
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explained before for the C∗ algorithm is unapplicable on the HFE. The only other difference

between the C∗ algorithm and the HFE is in the affine mappings s and t that are linear

in the HFE. Thus, as Fn
q transformations, there are matrices A,B ∈ Mn(Fq) such that

u = s(x) = Ax and v = t(y) = By.

An efficient attack on the HFE scheme is proposed in [154]. To briefly explain this

attack, let Y ⊂ Fn
q be the vector subspace of all ciphertext vectors. The attack in [154]

takes advantage of the existence of a bilinear map

⋄ : Y × Y −→ Y

(y,y′) 7−→ y′′ = y ⋄ y′
(6.15)

such that if v = By, v′ = By′, and v′′ = By′′, then v′′ = v v′, where v, v′, and v′′ are the

elements in K corresponding to the vectors v,v′, and v′′, respectively. Using this bilinear

map, it is possible to efficiently find a matrix C ∈ Mn(Fq) such that x = Cy(h′) where

y(h′) := y ⋄ · · · ⋄ y
︸ ︷︷ ︸

h′ times

(6.16)

and h′ = h−1 mod (qn − 1). Since h′ is public, knowledge of C enables the adversary to

decrypt any ciphertext y ∈ Y. The details of this attack can be found in [118].

B Big Dragon

To repair the HFE scheme, the big dragon was proposed by Patarin in [154]. In this scheme,

as before, K is a degree-n extension of the finite field Fq of characteristic two. Similar to

the previous schemes, x,y ∈ Fn
q are the plaintext and ciphertext vectors that are related

to two intermediate vectors u,v ∈ Fn
q through two linear maps, respectively. Alice chooses

an integer h of the form

h = qθ1 + qθ2 − qϑ1 − qϑ2 (6.17)

such that gcd(h, qn − 1) = 1. Let u, v ∈ K be the elements corresponding to the vectors u

and v, respectively. The relationship between the two intermediate elements u and v is

uqθ1+qθ2
φ1(v) = uqϑ1+qϑ2

φ2(v) , (6.18)
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where φ1, φ2 : K → K are affine transformations such that the map v 7→ φ1(v)/φ2(v) is

bijective. The representation of (6.18) in Fq gives n quadratic equations in 2n variables

each of the form

n∑

i,j,k=1

γijk xi xj yk +
n∑

i,j=1

(ξij xi xj + ρij xi yj) +
n∑

i=1

(χi xi + ωi yi) + δ = 0 , (6.19)

where all the coefficients are public. Since the public polynomials are linear in the yi

variables, they can be efficiently solved by fixing the xi variables. However, given the

ciphertext vector y = (y1, . . . , yn), the adversary is confronted with a set of quadratic

equations. In the other hand, Alice can use her knowledge of the affine transformations φ1

and φ2 to decrypt the ciphertext v as

u =

[
φ1(v)

φ2(v)

]h′

, (6.20)

where h′ = h−1 mod (qn − 1). Unfortunately, as explained in [154, 118], the big dragon is

often vulnerable to the same type of attacks as the little dragon.

C Efficient Algorithms for Solving Overdefined Systems

As a general cryptanalysis method for solving all systems of quadratic equations, Kipnis and

Shamir proposed in [116] the re-linearization technique that efficiently solves a system of

public polynomials for the unknowns x1, . . . , xn. As explained before, the public polynomials

in the C∗ algorithm and all its variants consist of n quadratic polynomials in the n variables

x1, . . . , xn. The proposed cryptanalytic technique, takes advantage of the special structure

of quadratic polynomials by replacing every product xi xj with the new variable wij for

all 1 ≤ i < j ≤ n. The result is a large system of linear equations. Since the number of

unknowns in the new system is much more than the number of equations, new equations

must be generated to solve the linear system using the Gaussian elimination method. New

equations are generated using the observation

wij wkℓ = wik wjℓ = wiℓwjk (6.21)

for all distinct i, j, k, ℓ ∈ [n ]. However, numerical examples showed that most of the newly

generated equations are linearly dependent [44]. Hence, the re-linearization algorithm is
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less efficient than one may expect. As an improvement to this algorithm, the XL algorithm

is proposed in [44] that has polynomial running-time nO(1/
√

ǫ) for solving any system of

ǫn2 quadratic equations in n variables for all 0 < ǫ ≤ 1/2. It is also conjectured that

the XL algorithm solves any randomly generated system of polynomial equations in sub-

exponential time when the number of equations slightly exceeds the number of variables

[44]. The difference between the re-linearization and the XL algorithms is that the later

generates a set of equations from the given quadratic equations that is larger than the set

which the former generates. From this large set, the XL algorithm extracts independent

equations, and then applies the linearization algorithm. Hence, the XL algorithm includes

the re-linearization as an special case.

A variant of the XL algorithm, called FXL, is introduced in [44]. In this algorithm, some

variables are guessed to make the system slightly overdefined. Then, the XL algorithm

is applied. The main question is how many variables must be guessed. Although more

guesses make the system more unbalanced, they add to the complexity of the algorithm.

The optimum number of guesses is provided in [44].

D C∗ Family as Signature Schemes

The C∗ algorithm and all its successors can be used as signature schemes as well as public-

key cryptosystems. Using the same notation as before, we note that the public polynomials

in these schemes are derived from the following mapping

φ
(
t(y)

)
= s(x)h , (6.22)

where s and t are affine or linear transformations and φ is the identity map in the C∗

and HFE algorithms and φ : u 7→ φ1(u)/φ2(u) in the big dragon. In light of (6.22), the

signature corresponding to the plaintext y ∈ K is the vector representation of the element

s−1
(

φ
(
t(y)

)h′)

∈ K, where h′ = h mod (qn−1). A signature x ∈ K of the plaintext x ∈ K

is verified if it satisfies (6.22). Examples of practical signature schemes are QUARTZ [157],

FLASH [156], and SFLASH that is a modified version of FLASH [131]. The security of

these schemes are studied in [93, 42, 43].
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E Some Other Variations

Any algorithmA that belongs to the set of algorithms introduced before has many variations

[155, 158]. The first two simple variations are the A− and A+ in which k public polynomials

are omitted or k randomly generated polynomials are added, respectively. These variations

aim to destroy the unexpected algebraic relations, which are employed in many attacks, or

blocks attacks such as re-linearization and XL that solve the system of public polynomials.

To decrypt a shrunk ciphertext in the A− algorithm, one performs an exhaustive search on

all qk possible ciphertexts. Hence, the value of k must be small to allow efficient exhaustive

search. When A− is employed is a signature algorithm, k may be large, but not too large

to weaken the collision resistance property of the one-way function inherent in algorithm

A. The value of k could be very large in the A+ when it is used as an encryption scheme.

However, it should not be too large to allow mounting an attack such as re-linearization or

XL. When used as a signature scheme, the value of k in the A+ must be small since for a

given plaintext, the probability of satisfying the extra equations is q−k. Two other variations

are Av− and Av+. In the former, k variables are omitted from the public polynomials while

in the later, k variables are added to them. Similar to the previous two variations, the value

of k depends on whether the scheme is used as a public-key cryptosystem or as a signature

scheme. It is possible to combine the variations in any order to create new variations. For

example, A−+ is a variation in which some public polynomials are first omitted and then

some randomly generated ones are added. However, none of these variations is guaranteed

to increase the security of the original algorithm A. There are cryptanalytic attacks on

some of them [158, 41].

6.2 Paraunitary Asymmetric Cryptosystem (PAC)

Throughout this section, we assume

Ln := F[x±1] = F[x±1
1 , . . . , x±1

n ] (6.23a)

Pn := F[x] = F[x1, . . . , xn] (6.23b)
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are the ring of Laurent polynomials, defined in Definition 1.1.1, and ordinary polynomials,

respectively, in the variable vector x = (x1, . . . , xn) for some arbitrary n ∈ N.

The main theme in multivariate public-key cryptography is designing a trapdoor OWF

using a set of multivariate polynomials f1, . . . , fn′ ∈ Ln for some n′ ∈ N. The trapdoor

information is used to efficiently invert the OWF. To enhance studying these polynomials,

we encapsulate them in a single polynomial vector f := [ f1, . . . , fn′ ]† ∈ Ln′

n that can be

considered a polynomial mapping Fn → Fn′
with domain Df and range Rf . Based on the

application, the one-way function f must have different characteristics as follows.

Fact 6.2.1. Consider the polynomial mapping f : Fn → Fn′
with domain Df and range

Rf .

(i) If f is used in a public-key cryptosystem, it must be one-to-one or one-to-many (n ≤ n′)

and Df = Fn.

(ii) If f is used in a signature scheme, it must be many-to-one (n ≥ n′) and surjective,

i.e., Rf = Fn′
. In addition, for any given y ∈ Fn′

, at least one solution to the equation

y = f(x) must be efficiently computable.

The challenge in achieving these goals is including a trapdoor in the multivariate poly-

nomials, that contains the inversion information, without using polynomials with special

structures that weaken the security of the scheme. In the following, we first introduce a gen-

eral framework for studying all multivariate polynomial vectors using PU matrices. Based

on this framework, we propose two different approaches for designing multivariate trapdoor

OWFs suitable for public-key cryptosystems. We show that the first approach results in

schemes such as C∗ introduced in Section 6.1.4. The second approach leads to an efficient

scheme that we call paraunitary asymmetric cryptosystem (PAC) [63].

Consider a set of n randomly-generated polynomials represented by the polynomial

vector f := [ f1, . . . , fn ]† ∈ Ln
n. Since the column vectors of every polynomial matrix

P ∈ PUn(Ln) form an orthonormal basis for the module Ln
n (Fact 1.2.4), there exists a
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polynomial vector t ∈ Ln
n associated with P such that

f(x) = P(x) t(x) . (6.24)

In the first approach for designing a trapdoor OWF, we randomly choose a constant unitary

matrix P ∈ Un(F) and set t equal to a bijection over Fn. In this setting, the mapping f in

(6.24) becomes a bijection over Fn that satisfies all the conditions requited for both public-

key and signature schemes. An instance of schemes designed based on this approach is the

C∗ algorithm with t substituted by the polynomial-vector representation of φ ◦ a in (6.8).

Similarly, all the successors of C∗ such as HFE are representable as in the general formula

(6.24). As explained before, most of the HFE-like cryptosystems have been broken.

In the second approach, we choose P ∈ PUn(Ln) \Un(F) a nonconstant PU polynomial

matrix. Similar to the previous approach, the polynomial vector t is an arbitrary bijection

over Fn. The difficulty in using this approach is that for any y ∈ Fn, solving the equation

y = P(x) t(x) for x requires knowledge of the value of P†(x) at x that in turn requires

the knowledge of x. In order to overcome this paradigm, we use an r-variate PU matrix

P ∈ PUn(Lr) for some r ∈ N with the restriction 1 ≤ r ≤ n. This PU matrix is composed

with a polynomial vector ϕ(x) ∈
(
F[x±1]

)r
. To decrypt the ciphertext, only the value of

ϕ(x) is required. By the definition of PU matrices in Definition 1.2.5, P(z) is singular at

every z = (z1, . . . , zr) in which zi = 0 for some i ∈ [ r ]. This implies that none of the entries

of the vector polynomial ϕ(x) must have a root in Fn. The polynomial ϕ is appended to

the vector polynomial

Ψ1(x) := (P ◦ϕ) (x) t(x) (6.25)

to form the new vector polynomial

Ψ2(x) :=






(P ◦ϕ) (x) t(x)

ϕ(x)




 . (6.26)

To mix the equations, we use the secret affine transformation ν(x) = Ax + b, where

A ∈ Un+r(F) is a unitary matrix and b ∈ Fn+r is an arbitrary vector. A unitary matrix is

used since:
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1. It can be easily and efficiently generated using Theorem 2.2.1.

2. It is guaranteed to be invertible.

3. Its inverse can be easily obtained with no computation.

In a single formula, the PU trapdoor OWF Ψ is as follows.

Ψ : Fn −→ Fn+r

x 7−→ y = A






(P ◦ϕ) (x) t(x)

ϕ(x)




+ b

(6.27)

In the following lemma, we prove that the proposed mapping satisfies all the properties

listed in Fact 6.2.1-(i).

Lemma 6.2.1. Consider the mapping Ψ in (6.27) with the following specifications:

(i) P ∈ PUr(Lr),

(ii) t ∈ Ln
n is a bijection over Fn that can be efficiently inverted, and

(iii) ϕ ∈
(
F[x±1]

)r
such that none of the coordinates of ϕ(x) is zero for all x ∈ Fn.

Then, the mapping Ψ is one-to-one with Df = Fn that can be efficiently inverted.

Proof. It is clear that Df = Fn. To show that Ψ is one-to-one, let y = Ψ(x) for some

y ∈ RΨ ⊂ Fn+r. Let v̂ = A† (y − b). Set v̂ =
[

v†, z†
]†

, where v = [ v1, . . . , vn ]†

and z = [ z1, . . . , zr ]†. It can be easily seen that P(z) t(x) = v from which we obtain

t−1(P†(z)v). Since x is uniquely obtained from y, the map Ψ in (6.27) is one-to-one.

By this lemma, the OWF Ψ can be used a public-key cryptosystem. The trapdoor infor-

mation consist of the PU matrix P, the unitary matrix A, the vector b, the automorphism

t, and the multivariate polynomial ϕ. Algorithm 6.1 and Algorithm 6.2 are used to encrypt

and decrypt in the PAC cryptosystem.

The proposed scheme operates on any finite field GF(2m) with m ≥ 2. The reason it

should not be used over GF(2) is that since none of the entries of the vector polynomial ϕ
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Algorithm 6.1: PAC encryption.

Input: Plaintext block x ∈ Fn

Output: Ciphertext block y ∈ Fn+r

Evaluate the public vector-polynomial Ψ(x) at x.1.

Algorithm 6.2: PAC decryption.

Input: Ciphertext block y ∈ Fn+r

Output: Plaintext block x ∈ Fn

v̂← A† (y + b) ∈ Fn+r1.

v← [ v1, . . . , vn ]
†

and z← [ z1, . . . , zr ]
†
, where v̂ =

[
v†, z†

]†
2.

x← t−1
(
P†(z)v

)
3.

must take the value zero, the only possible choice is ϕ(x) ≡ 1n,1. With this choice, the PU

matrix P becomes a constant matrix independent of x. In this setting, the second approach

reduces to the firs one that seems to be insecure. We suggest using GF(256) to enhance

the implementation of the scheme.

In the rest of this section, we study efficient and practical methods to generate different

components of the PAC and also the setup algorithms.

6.2.1 Bijective Mappings

In this section, we address the issue of generating bijective polynomial-vectors in Pn
n required

in the design of the PAC. It can be easily verified that the Pn-module of endomorphisms

over Pn is isomorphic to the module Pn
n [187]. The immediate consequence of this result is

that every bijection over Fn is uniquely representable by an isomorphism over Pn. Hence,

we can reduce the study of all polynomial vectors in Pn
n that are bijective over Fn, denoted

by B(Fn), to the Pn-module of all automorphisms over Pn denoted by Aut(Pn). Two

important subgroups of Aut(Pn) are:
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(i) the group of all affine automorphisms

Aff(Pn
n) :=

{

Ax + b : ∀A ∈ GLn(F),b ∈ F
n
}

(6.28)

and

(ii) the group of all elementary automorphisms EA(Pn
n). An elementary automorphism is

a polynomial vector of the form

e(x) := [x1, . . . , xi−1, xi + g, xi+1, . . . , xn ]† , (6.29)

where i ∈ [n ] is an arbitrary index and g ∈ F[x1, . . . , xi−1, xi+1, . . . , xn]. (We note

that g is a multivariate polynomial that is independent of xi.)

All finite compositions of affine and elementary automorphisms generate a group that has

practical importance [187].

Definition 6.2.1 (Tame Automorphism). The subgroup of Aut(Pn) generated by all finite

compositions of affine and elementary automorphisms is called the group of tame automor-

phisms denote by

TA(Pn
n) :=

{

f1 ◦ · · · ◦ fℓ : fi ∈ Aff(Pn
n) ∪ EA(Pn

n) ∀ℓ ∈ N, ∀i ∈ [ ℓ ]
}

. (6.30)

The practical interest in tame automorphisms comes from the fact that both affine and

elementary automorphisms can be efficiently inverted. Hence, tame automorphisms have

the same property. An interesting question is whether all automorphisms over Pn are tame.

The following result answers this question [133].

Theorem 6.2.1. For all fields F of characteristic two excluding the binary field F2 and for

all n ≥ 2, |TA(Pn
n)| = |B(Fn)| /2. In fact, TA(Pn

n) is the alternating subgroup3 of S|Fn|.

This result shows that by using only tame automorphisms, we are missing out half of

all bijections.

3The alternating group consists of all even permutations.
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As a conclusion, we suggest using the following tame automorphism for the bijection

t = [ t1, . . . , tn ]† in the design of the PAC.

ti(x) = αi xσ(i) + gi(xσ(1), . . . , xσ(i−1)) ∀i ∈ [n ] (6.31)

Here, σ ∈ Sn is a public permutation, αi ∈ F×, and gi ∈ F[xσ(1), . . . , xσ(i−1)] for all i ∈ [n ].

To efficiently solve y = t(x) for x for a given y ∈ Fn, the following formula is recursively

used starting from i = 1.

xσ(i) = α−1
i

(

yi + gi(xσ(1), . . . , xσ(i−1))
)

∀i ∈ [n ] (6.32)

6.2.2 Polynomial Vector ϕ

The composite matrix polynomial (P ◦ϕ) (x) in (6.27) approximates the PU matrix P(x)

in (6.24). This approximation is in the sense that the entries of the PU matrix P(x) in

(6.24) are taken from the ring F[x] while those of (P ◦ϕ) (x) in (6.27) belong to the ring

F[ϕ(x)]. These two rings are both extensions of the finite field F, and their relationship is

expressed by

F ⊆ F[ϕ(x)] ⊆ F[x] . (6.33)

To determine the extension degree of F[ϕ(x)], we use the notion of transcendence degree

that generalizes the notion of the dimension of a vector space [105, 122].

Definition 6.2.2 (Transcendence Degree). Let S be a subset of F[ϕ(x)] that is algebraically

independent over F and is maximal with respect to the set-theoretic inclusion among the set

of all algebraically independent subsets of F[ϕ(x)]. The cardinality of S is an integer between

0 and n that is called the transcendence degree of F[ϕ(x)] over F.

Let d be the transcendence degree of the extension ring F[ϕ(x)]. If d = 0, then

F[ϕ(x)] ∼= F, and if d = n, F[ϕ(x)] ∼= F[x]. It can be easily verified that if ϕ(x) is

invertible, then F[ϕ(x)] ∼= F[x], i.e., F[ϕ(x)] achieves its highest transcendence degree

[187]. A polynomial vector f ∈ Ln
n is called invertible if there exists a polynomial vector

g ∈ Ln
n such that (g ◦ f) (x) ≡ x. We note that both affine and elementary automorphisms
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are invertible. Thus, tame automorphisms have the same property. Since in practice usually

r < n, ϕ(x) cannot be invertible that implies d < n. For F[ϕ(x)] to achieve the highest

possible transcendence degree, which is r, we design ϕ(x) to be “semi-invertible”, i.e., after

evaluating it at n−r coordinates of x, the resulting r-variate polynomial becomes invertible.

If ϕ = [ϕ1, . . . , ϕr ]†, then we suggest using the following composition

ϕi = χ ◦ ρi ∀i ∈ [ r ] . (6.34)

Here, ρ = [ ρ1, . . . , ρr ]† ∈ (F[x])r is close to a bijection and χ ∈ F[x] is a polynomial

irreducible over F. We may use the vector polynomial

ρi(x) = αi xσ(r−i+1) + gi(xσ(r−i+2), . . . , xσ(n)) ∀i ∈ [ r ] , (6.35)

where σ ∈ Sn, αi ∈ F×, and gi ∈ F[xσ(r−i+2), . . . , xσ(n)] for all i ∈ [ r ]. In order to invert

ρ in (6.35), the values of xσ(r+1), . . . , xσ(n) can be arbitrarily chosen and then the values of

xσ(1), . . . , xσ(r) are obtained from a recursive equation. Hence, |ρ−1(z)| = |F|n−r for any

z ∈ Fr that implies ρ in (6.34) is “close” to a bijection.

As explained before, none of the entries of the vector polynomial ϕ must have a root in

Fn. The irreducible polynomial χ ∈ F[x] in (6.34) is used to guarantee that this does not

happen. We suggest using the polynomial

χ(x) = x2 + x+ ω, ω ∈ F (6.36)

that is irreducible whenever Tr(ω) :=
∑m−1

k=0 ω
2k 6= 0 assuming F = GF(2m) [136]. Since χ

is not an automorphism, ϕ is not as close to a bijection as ρ is. However, χ is a two-to-

one mapping since χ(x + 1) = χ(x) for all x ∈ F. Hence, the vector polynomial ϕ is not

significantly deviated from a bijection.

6.2.3 Setup Algorithms

In this section, we explain the algorithms required to setup the PAC. The master secret-key

provided by the user is a vector k of length n that is uniformly at random chosen from
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Fn. The bit length of the master secret-key is n|F|. In a typical setting, n = 16 and the

underlying finite-field is GF(256). In this situation, the master secret-key is 128 bits long.

The secret vectors required to be specified for all the components of the PAC are derived

from the master secret-key by using the key-expansion algorithm in Algorithm 5.2. The

output of this algorithm is the set K consisting of T secret vectors. The integer κ is chosen

such that there are enough vectors in K for the specification of all components of PAC.

It is possible to replace the proposed key-expansion algorithm with a pseudo-random

number generator. For our purpose, a fast pseudo-random number generator such as the

shrinking or self-shrinking generator, explained in Chapter 5, is adequate [37, 135].

Algorithm 6.3 is used to generate the public and secret information in the PAC.

Algorithm 6.3: PAC key generation.

Input: Master secret-key k ∈ Fn

Public Output: Polynomial vector Ψ ∈ (F[x])
n+r

Secret Output: P : an r-variate PU matrix in PUn(F[z]), ϕ : a vector polynomial in

(F[x])
r
, t : an automorphism in Aut(F[x]), A : a unitary matrix in

Un+r(F), b : a constant vector in Fn+r.

Use Algorithm 5.2 to generate the set K.1.

Generate an r-variate PU matrix P ∈ PUn(F[z]) by multiplying elementary building blocks2.

whose parameters are taken from the set K.

Choose a semi-invertible vector polynomial ϕ ∈ (F[x])r such that none of its entries, as a3.

polynomial in F[x], has a root in Fn. Use the vectors in K as the design parameters. (The

composition in (6.34) might be used.)

Choose an automorphism t ∈ Aut(F[x]) using vectors in K as its coefficients.4.

Construct the vector polynomials Ψ1 and Ψ2 as in (6.25) and (6.26), respectively.5.

Generate a unitary matrix A ∈ Un+r(F) by multiplying the elementary building blocks with6.

different design parameters. In addition, choose a vector b ∈ Fn+r using the vectors in K.

Construct the vector polynomial Ψ(x) as in (6.27).7.
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6.3 Probabilistic PAC

The proposed PAC is a deterministic scheme, i.e., the mapping from the plaintext space to

the ciphertext space is deterministic. In other words, given the plaintext, the corresponding

ciphertext is always the same. This determinism might cause some leakage of partial in-

formation to the adversary. For example, the RSA function preserves the Jacobi symbol of

the plaintext, and with the discrete-log function, it is easy to compute the least significant

bit of the plaintext from the ciphertext by a simple Legendre symbol calculation [95]. To

prevent the leakage of partial information, the notion of semantic security is proposed in

[96].

Informally, a public-key cryptosystem is semantically secure if, for all probability dis-

tributions over the message space, whatever a passive adversary can compute in expected

polynomial time about the given ciphertext, it can compute in expected polynomial time

without the ciphertext [96, 137]. Semantic security is the reminiscent of Shannon’s perfect

secrecy in which the adversary is given unbounded computational power. Although theoret-

ically attractive, perfect secrecy is not achievable unless the key is as long as the message.

This requirement hinders the practical usefulness of perfect secrecy. By contrast, semantic

security can be viewed as the polynomially-bounded version of perfect secrecy in which the

adversary is given limited computational power.

In a semantically secure cryptosystem, the mapping from the plaintext to the ciphertext

is probabilistic. Hence, different encryptions give different ciphertexts corresponding to a

single plaintext. An efficient probabilistic public-key cryptostsem based on the RSA one-

way function is proposed in [21]. In general, there are standard methods to construct

probabilistic schemes based on deterministic one-way functions. In the following, we briefly

explain the method proposed in [15] to achieve semantic security. This method is based on

the random oracle model.

Let G : Fn → Fn be a random generator that is public to everybody and Ψ be a
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TOWF such as the one in (6.27). Consider the following probabilistic encryption function.

EG : Fn −→ F2n+r

x 7−→ Ψ(u)|| (G(u) + x) .
(6.37)

Here, u ∈ Fn is a randomly chosen vector and || denotes the concatenation of two vectors.

It is proved in [15] that the encryption function EG is semantically secure in the random

oracle model. Note that the data expansion factor of 2n+ r is unavoidable. The decryption

algorithm is straightforward: The receiver, who knows the trapdoor, uses his information

about Ψ−1 to obtain u, applies the random generator G to u, and then easily obtains the

message x from G(u) + x. The adversary, without the trapdoor information, is unable to

calculate u and hence x although G is public.

6.4 On the Computational Security of the PAC

In this section, we study the computational security of the PAC by providing evidences that

relate the difficulty of inverting the underlying OWF in the PAC to a known computationally

hard problem. The computational security measures the amount of computational effort

required, by the best currently-known methods, to defeat a system [137]. In general, it is

very difficult to prove the security of public-key cryptosystems [137, 179]. For example, it

is known that if the public modulus in RSA is factored into its prime factors, then RSA can

be broken. However, it is not proved that breaking RSA is equivalent to factoring the public

modulus [26, 95]. By providing some theorems and conjectures, in this section, we establish

a connection between the hardness of inverting the mapping Ψ in the proposed PAC and

the difficulty of solving a general system of multivariate polynomial equations. We note

that the general framework for designing multivariate cryptosystems based on PU matrices,

presented in the previous section, has made the following mathematical analysis possible.

We would also like to emphasize that this section only focuses on the one-way property of

the mapping Ψ. The concept of “semantic security” was addressed in Section 6.3.

As explained in the previous section, the proposed public-key cryptosystem PAC is
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based on the general formulation (6.24), where f ∈ Pn
n is an arbitrary polynomial vector,

P ∈ PUn(Pn), t ∈ Aut(Pn), and Pn = F[x]. Since the column vectors of any PU matrix

form an orthonormal basis for the module Pn
n, given an arbitrary polynomial vector f , the

relation (6.24) is always valid when the automorphism condition on t is relaxed. To study

the relationship between all polynomial vectors generated as in (6.24) and the module of

all polynomial vectors Pn
n, let PACn(F) be the set of all such vectors, i.e.,

PACn(F) :=
{

f ∈ P
n
n : ∃P ∈ PUn(Pn) and t ∈ Aut(Pn) such that f = Pt

}

. (6.38)

Clearly, PACn(F) ⊆ Pn
n. The security of our proposed scheme (assuming r = n) reduces to

the difficulty of solving a randomly-generated system of multivariate polynomial equations

if and only if equality holds.

Conjecture 6.4.1. In the description of the PAC, assume r = n. Then, PACn(F) = Pn
n.

In other words, given an arbitrary polynomial vector f ∈ Pn
n, there always exists a matrix

P ∈ PUn(Pn) and an automorphism t ∈ Aut(Pn) such that (6.24) holds.

This conjecture implies that an arbitrary system of multivariate polynomial equations

can always be represented as an instance of the proposed PAC. Hence, if proved to be valid,

this conjecture shows that the public polynomials in the PAC are indistinguishable from an

arbitrary system of multivariate polynomial equations.

To investigate Conjecture 6.4.1, we note that the group PUn(Pn) acts on the mod-

ule Pn
n by matrix multiplication. By the norm-preservation property of PU matrices in

Lemma 1.2.2, the group PUn(Pn), in fact, acts on the set Vα
n(Pn) :=

{

f ∈ Pn
n : f †f = αα

}

for every α ∈ Pn. This group action is transitive if for every two arbitrary f , t ∈ Vα
n(Pn),

there exists a matrix P ∈ PUn(Pn) such that f = Pt. The statement of Conjecture 6.4.1 is

weaker than the transitivity of the action of the group PUn(Pn) on Vα
n(Pn) since to prove

the indistinguishability of the public polynomials in the PAC, the polynomial vector t is

not required to be a fixed vector, but it suffices to be any arbitrary automorphism. Hence,

the proof of the following conjecture, immediately proves Conjecture 6.4.1.
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Conjecture 6.4.2 (Transitivity of the Action of the PU Group). The group PUn(Pn) acts

transitively on the set Vα
n(Pn).

This conjecture has strong ties with the PU completion problem stated below4 [152, 122].

Problem 6.4.1 (PU Completion Problem). Given the vector f ∈ Pn
n such that f †f = αα,

where α ∈ Pn, does there exist a matrix P ∈ PUn(Pn) such that f is the first column of

αP?

The equivalence between the transitivity of the action of PUn(Pn) and the PU comple-

tion problem is proved in the following lemma.

Lemma 6.4.1. The group PUn(Pn) acts transitively on Vα
n(Pn) for every α ∈ Pn if and only

if the PU completion problem has a positive answer.

Proof. To prove the (⇒) direction, let f ∈ Pn
n such that f †f = αα. Since PUn(Pn) acts

transitively on Vα
n(Pn), there exists a matrix P ∈ PUn(Pn) such that f = Pαe1

n, where

e1
n is defined in Table 1.3. The first column of αP is f and αP is the PU completion of

f . For the (⇐) direction, let f ,g ∈ Vα
n(Pn) be arbitrary polynomial vectors. Since every

PU polynomial vector has a PU completion, there are PU matrices P,Q ∈ PUn(Pn) such

that f = αPe1
n and g = αQe1

n. This implies f = PQ†g, so PUn(Pn) acts transitively on

Vα
n(Pn).

The PU completion problem has a positive answer if the class of generalized-paraunitary

matrices, denoted by GPUn(Pn), is considered instead of the class of PU matrices [152, 122].

Theorem 6.4.1 (Quillen-Suslin). Every generalized-paraunitary polynomial-vector f ∈ Pn
n

has a completion in GPUn(Pn).

The matrix P ∈ Mn,k(Pn) is called generalized PU if there exists a matrix Q ∈ Mn,k(Pn)

such that Q†P = Ik. The set of all n× n generalized PU matrices with entries in the ring

4We emphasize that this is not a computational problem. In other words, the problem is not about finding
an algorithm to complete any PU vector into a square PU matrix. The question raised in this problem is
only about the possibility of such completion.
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Pn is denoted by GPUn(Pn). We note that PUn(Pn) ⊆ GPUn(Pn). The PU completion

problem has a positive answer for the case n = 2, but for n > 2, it is still an open problem

[152]. This problem also has a positive answer for arbitrary n when Pn = C[x] [152].

Collectively, the results obtained so far can be summarized as follows.

Fact 6.4.1. If the PU completion problem (Problem 6.4.1) is shown to have a positive

answer, then the indistinguishability conjecture holds (i.e., PACn(F) = Pn
n). However, the

inverse is not necessarily true.

The OWF Ψ in (6.27) is slightly different from the general formula (6.24) in two ways:

1. The PU matrix P(x) is approximated by the composite matrix polynomial (P ◦ϕ) (x).

2. The vector polynomial ϕ(x) is concatenated to the end of the vector polynomial Ψ(x)

in (6.25).

This deviation might seem as a source of leaking partial information in the ciphertext. In

order to address this issue, we note the following points.

Approximating the PU matrix P(x) with the composite matrix polynomial (P ◦ϕ) (x)

is necessary in order to design an efficient protocol. Security and complexity are often in

the same direction: increasing one increases the other one. In order to achieve a practical

system, a tradeoff between the security and complexity must be established. This is not

only specific to the PAC. For example, the idea in RSA is using the hardness of factoring

general composite integers. In theory, the modulus can be any composite integer. However,

in practice, only composite integers with only two distinct prime factors are used. Without

this simplification, key generation in RSA could be time consuming. The ElGamal digital

signature scheme is another example. The underlying hard problem in this scheme is the

discrete-log problem. However, the trapdoor OWF employed in this scheme is such that for

selective forgery, solving the discrete-log problem is not required. It seems that the general

strategy in designing one-way functions consists of the following steps:

1. choose a mathematical problem that is believed to be hard,

- 124 -



2. design a trapdoor OWF based on this hard problem, and

3. make some simplification to the general scheme to design an efficient and practical

scheme.

We have followed these guidelines in designing the PAC.

To address the concatenation issue, we note that the coefficients of the elements con-

structing Ψ1(x) are calculated using the expanded key. Hence, they are unavailable to the

adversary. Moreover, the unitary matrix A and the vector b are also secret. Therefore,

there does not seem to exist an easy way for the adversary to obtain the coefficients of the

vector polynomial ϕ(x) from the public polynomials.

In the worst case, the adversary has somehow obtained the vector polynomial ϕ(x).

Since ϕ is a many-to-one mapping, its value cannot be used to calculate the plaintext x.

Another approach for the adversary to decrypt the ciphertext is obtaining the PU matrix

P(z). In this approach, the adversary is facing with the following question: “How to find

the coefficients of the PU matrix P(z) from Ψ1(x)?” This problem seems to be strongly

related to the polynomial decomposition problem which is as follows.

Problem 6.4.2 (Polynomial Decomposition Problem). Given a vector polynomial f ∈ Rn,

determine whether there exist vector polynomials g,h ∈ Rn such that f = g ◦ h. In the

affirmative case, compute g and h.

This problem has been studied extensively in the literature [66, 89, 90, 120, 192]. There

are polynomial-time algorithms for Problem 6.4.2 in the univariate case. In the multivariate

case, there are only solutions for cases when either g or h is univariate. A general solution

to the multivariate case seems to be difficult [192]. The instance of Problem 6.4.2 in which

the characteristic of the field divides the degree of the polynomial g is called wild case.

There is only a sub-exponential solution to the univariate version of the problem in the

wild case [90]. We note that the characteristic of the field in case of the OWF Ψ is two. If

the degree of the PU matrix P is even, then we have a wild case of Problem 6.4.2. Hence,

concatenating ϕ(x) at the end of Ψ1(x) does not seem to leak any information.
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6.5 A Practical Instance of the PAC

The PAC proposed in Section 6.2 by Algorithm 6.3 is the template of a multivariate public-

key cryptosystem since some components of the scheme (such as the automorphism t) are

not precisely specified although some suggestions were made. Therefore, there are numerous

ways to design a public-key scheme based on the proposed template. A good design should

meet the following criteria:

1. Exploiting the structure of the public polynomials in an attack without knowledge of

the secret information should be infeasible. In other words, structures in which the

public polynomials can be efficiently solved by an adversary must be avoided.

2. To reduce both the size of the memory required to store the public polynomials and

the time to encrypt and to decrypt, the public polynomials should be sparse.

3. The automorphism t should be efficiently invertible.

In this section, we present an instance of the PAC that satisfies the suggested properties. In

this instance, we use F = GF(256) as the underlying field to enhance the byte-oriented im-

plementation of the scheme. To eliminate the possibility of performing a feasible exhaustive

search on the entire key space, we choose n = 16. With this choice, the master secret-key

consists of 16 symbols from GF(256) that leads to a key space of size 2128. The proposed

scheme is very flexible and these settings can be easily changed. We fix the value of r in

our design. Considering the value of n, we suggest r = 10 for reasons that will be explained

later in this chapter. With these choices, the size of the ciphertext block becomes 208 bits.

6.5.1 Constructing the Polynomial Vector Ψ

For the PU matrix, we use only the degree-one and the degree-two building blocks defined

in (2.9) and (2.10) because they have less parameters than the degree-Mτ building block

in (2.12). Moreover, the degree-one and the degree-two building blocks can be generated

with less complexities. To generate the PU matrix P ∈ PUn(F[z]), where z = (z1, . . . , zr),
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we employ N ∈ N univariate building blocks in each variable. The value of N (typically 2)

is fixed and independent of n. Let C(i−1)N+1(zi), . . . ,CiN (zi) be the PU building blocks in

the variable zi for all i ∈ [ r ]. The PU matrix P is obtained as follows

P(z) =
rN∏

i=1

Cσ(i)(z⌈σ(i)/N⌉) , (6.39)

where σ ∈ SrN is a public permutation. We note that since these building blocks do not

commute, the order of terms in the above multiplication is important. We employ the

method explained in Appendix B for the efficient generation of the PU matrix.

For ϕ, we use the structure suggested in (6.34) for the irreducible polynomial χ as in

(6.36) (in which the value of ω is public) and the vector polynomial ρ as follows.

ρi(x) = αixr−i+1 + βi

n∏

j=r−i+2

x
aij

j ∀i ∈ [ r ] (6.40)

Here, aij ∈ N are public exponents and αi, βi ∈ F×, for all i ∈ [ r ], are secret coefficients

whose values are obtained from the set K in Algorithm 6.3. The exponents aij directly

influence the degree of the final public polynomials. As we will explain later, to make sure

that some attacks are not applicable on the system, we choose these exponents proportional

to the block length n, i.e.,

aij = O(n) ∀i, j . (6.41)

As the result, the total degree of the public polynomials becomes proportional to n. Notice

that since all the computations are performed in GF(2m), all exponents are modulo 2m− 1.

Hence, if 2m ≤ n, (6.41) will not have the desired effect. The following fact gives the

complexity of constructing ϕ.

Fact 6.5.1. The complexity of constructing ϕ as in (6.34) is O(r) = O(1) since r is

constant.

The next step is composing P(z) and ϕ(x) to get the matrix polynomial (P ◦ ϕ)(x).

Let P(z) = [ pij(z) ], where pij(z) =
∑

α∈C pijαzα ∈ F[z] and C ⊂ Zr
≥0 is a finite set such

that |C| = O(1) by Fact B.1. To construct P(ϕ(x)) = [
∑

α∈C pijαϕ
α(x)], we must compute
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ϕα(x) for all α ∈ C. Since the exponents α ∈ C are independent of n, the complexity

of computing (pij ◦ϕ) (x) is O(|C|). Hence, the total complexity of constructing P ◦ ϕ is

O(|C|n2) = O(n2).

Using Fact B.1, the following fact can be stated.

Fact 6.5.2. Entries of the matrix P ◦ϕ are multivariate polynomials whose monomials are

subsets of a maximal set of monomials. The cardinality of the maximal set is independent

of n.

Having the matrix polynomial P◦ϕ, an automorphism t is required to obtain the public

vector-polynomial Ψ. We suggest the composite automorphism

t = t2 ◦ t1 , (6.42)

where t1 and t2 are tame automorphisms over Fn. If t1 = [ t11, . . . , t1n ]†, then

t1i(x) = xi + ηi

i−1∏

j=1

x
bij

j + ξi ∀i ∈ [n ] , (6.43)

where η2, . . . , ηn ∈ F×, ξ1, . . . , ξn ∈ F, and bij ∈ N for all i ∈ { 2, . . . , n } and j ∈ [ i− 1 ].

Similarly, if t2 = [ t21, . . . , t2n ]†, then

t2i(x) = xn−i+1 + µi

min(i,K)
∏

j=2

x
cij

n−i+j ∀i ∈ [n ] , (6.44)

where µ2, . . . , µn ∈ F×, cij ∈ N for all i ∈ { 2, . . . , n } and j ∈ { 2, . . . ,min(i, k) }, and K is a

constant such that K < n (a typical value is K = 5). The coefficients ηi and ξi in (6.43) and

µi in (6.44) are kept secret and their values are obtained from the set K in Algorithm 6.3.

The exponents bij and cij are public. To keep the complexity of the encryption low, we

impose the restriction bij , cij ≤ B for all i and j, where B is a fixed integer independent of

the block length n. We note the following important fact.

Fact 6.5.3. Each entry of t is a multivariate polynomial that has a constant number of

monomials independent of n.

The complexities of evaluating t and t−1 are given in the following facts.
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Fact 6.5.4. Complexities of evaluating t and t−1 are both O(n2).

The next step in generating the OWF Ψ is multiplying (P ◦ϕ) (x) and t(x) to get

the vector polynomial Ψ1(x) as in (6.25). By Fact 6.5.2 and Fact 6.5.3, the complexity of

carrying out this multiplication is O(n2). The vector polynomial Ψ1 consists of n multi-

variate polynomials whose number of monomials, given by the following fact, influences the

complexity of the encryption.

Fact 6.5.5. Entries of Ψ1 are polynomials whose monomials are subsets of a maximal set

of monomials. The cardinality of the maximal set is O(n).

The final step is generating a unitary matrix A and multiplying it by the vector poly-

nomial Ψ2 defined in (6.26). As explained in Section 2.2 in Part I, all unitary matrices are

generated by multiplying copies of the building block Uζ,v defined in (2.7). To reduce the

complexity, we use only one building block for A with ζ = 1 and v taken from K. The

algorithm in Appendix B can be used to generate A with complexity O((n+ r)2) = O(n2).

Once we have the unitary matrix A, the final step is performing the multiplication AΨ2.

Entries of the matrix A are constants, but those of Ψ2 are multivariate polynomials that

have O(n) terms by Fact 6.5.5. Hence, the complexity of carrying out the multiplication

AΨ2 is O(n(n + r)2) = O(n3). The number of monomials of the entries of Ψ is given in

the following fact.

Fact 6.5.6. Entries of Ψ are polynomials whose monomials are subsets of a maximal set

of monomials. The cardinality of the maximal set is O(n).

All the exponents involved in the construction of Ψ are fixed integers except the expo-

nents aij in (6.40) that are proportional to n. Hence, the following fact can be stated about

the total degree of Ψ.

Fact 6.5.7. The total degree of the public polynomials in Ψ is proportional to n.

Complexities of constructing the suggested instance of the PAC are summarized in

Table 6.1.

- 129 -



A toy example of the PAC is provided in Appendix C. We note that this is not a

practical example of the PAC, and the resulting public-key system is insecure in practice

due to small choices for parameters. The purpose of this example is to show how the system

is designed and illustrate the structure of public polynomials.

6.5.2 Complexity of the PAC

In this section, we give complexities of the key generation, the encryption, and the decryp-

tion in the PAC. Adding up the complexities listed in Table 6.1, we conclude that the total

complexity of the public-key generation is O(n3). The secret key consists of the PU matrix

P, the automorphism t, the unitary matrix A, and the constant vector b. By Table 6.1,

the total complexity of generating these matrices and vectors is O(n2).

To compute the complexity of Algorithm 6.1 that is the encryption algorithm, we note

that by Fact 6.5.6, the public polynomials Ψ1, . . . , Ψn+r (entries of Ψ) share the same set

of monomials. LetM⊂ Zn
≥0 be the set of exponents of all monomials. Then

Ψi(x) =
∑

α∈M
Ψi,α xα , (6.45)

where Ψi,α ∈ F. Thus, Ψ(x) has the matrix formulation Ψ(x) = ΦX, where Φ := [ Ψi,α ]

is an (n + r) × |M| matrix and X := [xα1 , . . . ,xα|M| ]† is a vector of length |M|. The

complexity of computing ΦX is |M| (n + r). Since |M| = O(n) by Fact 6.5.6, the total

complexity is O(n2). The complexity of evaluating the vector X at the plaintext block is

O(n3) by Fact 6.5.7. Hence, the total complexity of the encryption is O(n3).

For the decryption, Algorithm 6.2 is employed. The complexity of computing v̂ in this

Table 6.1: Complexities of constructing the components of PAC.

Complexity Complexity Complexity Complexity

P O(n2) P ◦ϕ O(n2) Ψ1 O(n2) AΨ2 O(n3)

ϕ O(1) t O(n2) A O(n2)
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algorithm is O((n + r)2) = O(n2). Since by Fact B.1 every entry of the PU matrix P

has constant number of monomials (when only degree-one and degree-two building blocks

are used), the complexity of computing P†(z−1
1 , . . . , z−1

r ) in Algorithm 6.2 is O(n2). Using

Fact 6.5.4, the complexity of computing the plaintext vector x in this algorithm is O(n2).

Hence, the total complexity of the decryption is O(n2).

We summarize the complexity of PAC in Table 6.2. The complexities of HFE and

RSA public-key schemes are also provided for comparison5. The table shows that the

computational complexity of the public-key generation and the decryption in the proposed

PAC is lower than those in the HFE. Moreover, the PAC outperforms the RSA in terms of

key generation, encryption, and decryption. In Table 6.2, m is the number of bits per field

element.

6.6 Cryptanalysis of the Instance of the PAC

The entries of the vector polynomial Ψ are the public information in PAC. To attack this

scheme, one approach is solving the system of polynomial equations yi = Ψi(x), i ∈ [n+ r ],

for x, where y = (y1, . . . , yn+r) is the ciphertext. The other approach is finding the secret

key from the public polynomials. In this section, we investigate the vulnerability of PAC

to algebraic attacks initially developed for the HFE family. Some of these attacks are

quite general and applicable on other schemes. We also investigate the vulnerability of

5In RSA, mn is the bit length of the modulus.

Table 6.2: Complexity comparison in the number of binary multiplications.

Public-Key Generation Secret-Key Generation Encryption Decryption

PAC O(m2n3) O(m2n2) O(m2n3) O(m2n2)

HFE O(m2n4) O(m2n2) O(m2n3) O(m2n2(m+ log n))

RSA O(m3n3) O(m3n3) O(m3n3) O(m3n3)
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the PAC for some bad choices of parameters. These attacks follow one of the approaches

mentioned above. Our results show that the practical instance of the PAC, introduced

in Section 6.5, is resistant to all these attacks. Note that key exhaustive-search has the

complexity |F|n ≥ 2128 that is infeasible. Attacks studied in this section are Gröbner basis,

univariate polynomial representation, XL, and FXL algorithms, and an attack for small r.

Since the public polynomials of HFE are homogenous, all attacks developed for HFE

are specialized for homogenous polynomials. The public polynomials in PAC are not ho-

mogenous. However, they can be converted into the homogenous form using a technique

employed in algebraic geometry for going from the affine space to the projective space [174].

Let θi be the total degree of the public polynomial Ψi in the PAC for all i ∈ [n+ r ]. Sup-

pose θ = max{θ1, . . . , θn+r}. To convert the system of public polynomials into a system

of homogenous polynomial equations, replace xi by Xi/X0 for all i ∈ [n ] and multiply

through each equation by Xθ
0 . The result is the following system of homogenous equations

of degree θ that consists of n+ r equations in n+ 1 variables X0, . . . , Xn

Xθ
0yi = Xθ

0 Ψi(
X1
X0
, . . . , Xn

X0
) ∀i ∈ [n+ r ] . (6.46)

By Fact 6.5.7, we note that the total degree of the homogenous polynomials in this system

is proportional to n, i.e., θ = O(n).

6.6.1 Gröbner Basis

As explained in Section A, this is a classical method for solving systems of polynomial

equations. Although it can theoretically solve every system of polynomial equations, its

complexity is exponential in the number of variables for randomly chosen polynomials.

Because of the special form of the public polynomials, computing the Gröbner basis of the

HFE-based schemes is feasible using the algorithm F5 introduced in [79]. As expressed in

[80], “A crucial point in the cryptanalysis of HFE is the ability to distinguish a random

algebraic system from an algebraic system coming from HFE.” As justified in Section 6.4,

the public polynomials of the PAC are indistinguishable from a system of randomly chosen
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polynomials if Conjecture 6.4.1 holds. Hence, we expect the complexity of computing

the Gröbner basis of the public polynomials of the PAC to be exponential in the number

of variables. This computation becomes infeasible in the practical instance provided in

Section 6.5 in which the number of variables is 16. Moreover, when the total degree of

the polynomials is proportional to the number of variables, there does not seem to exist a

polynomial time algorithm to compute the Gröbner basis [80]. We note that this is the case

in the homogenous form of the public polynomials in the PAC by (6.46).

6.6.2 Univariate-Polynomial Representation of the Public P olynomials

This attack is based on the observation that any system of n multivariate polynomials in

n variables over a field F can be represented as a single sparse univariate polynomial of

a special form over an extension field K of degree n over F. This is summarized in the

following lemma that is proved in [116].

Lemma 6.6.1. Let fi(x1, . . . , xn), i ∈ [n ], be any system of n multivariate polynomials in n

variables over F with the cardinality q. Then, there are coefficients a0, . . . , aqn−1 ∈ K such

that the system of polynomials is equivalent to the univariate polynomial F (x) =
∑qn−1

i=0 aix
i.

The drawback of this approach is that the number of terms of the equivalent univariate

representation F ∈ K[x] is exponentially related to the number of variables. However, when

the polynomials fi are homogenous, which is the case in HFE, the polynomial F is sparse.

This fact, stated in the following lemma, significantly enhances the attack on the HFE using

univariate polynomial representation.

Lemma 6.6.2. Let C be any collection of n homogenous multivariate polynomials of degree θ

in n variables over F. Then, the only powers of x that appear in the univariate polynomial

representation F over K are sums of exactly θ (not necessarily distinct) powers of q, i.e.,

qi1 + · · ·+ qiθ . Hence, the number of nonzero terms and the degree of F are both O(nθ).

To apply the above technique to solve the homogenous form of the public polynomials in

the PAC in (6.46), we recall that the degree of the homogenous polynomials θ is proportional
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to n. Hence, the degree and the number of nonzero terms of the univariate polynomial

representation F are bothO(nn). The complexity of root finding algorithms, e.g., Berlekamp

algorithm, is polynomial in the degree of the polynomial [136]. This results in an exponential

time algorithm to find the roots of F . Therefore, this approach is less efficient than the

exhaustive search.

6.6.3 XL and FXL Algorithms

As explained in Section 5.3.2, these are techniques for solving over-defined systems of poly-

nomial equations. To mount an attack on the HFE scheme using these methods, the equiv-

alent univariate polynomial representation of the public polynomials are obtained using

Lemma 6.6.1. By Lemma 6.6.2, it has the form G(x) = xGx†, where G := [ gij ] and

x :=
[

xq0
, . . . , xqn−1

]

.

It is shown in [115] that the cryptanalyst can use this matrix representation to obtain a

system of O(n2) polynomial equations in O(n) variables. One of the algorithms in the XL

family can be used to solve this system. Since the homogenous form of the public poly-

nomials of the PAC in (6.46) are not quadratic, their univariate polynomial representation

is not quadratic. Hence, it does not have a matrix representation as G(x). Therefore, the

attack developed in [115] is not applicable on the PAC.

The adversary may directly apply one of the XL or FXL algorithms to the system of

homogenous polynomials (6.46). By (5.20), the minimum number of equations needed is

O(nθ), where n is the number of variables and θ is the degree of the homogenous equations.

In the homogenous form of the public polynomials in PAC, (6.46), we have θ = O(n).

Hence, the number of equations needed is O(nǫn) for some ǫ > 0. However, in PAC, the

number of equations n+ r ≤ 2n. Therefore, the XL algorithm is unsuccessful in solving the

system of public polynomials of the PAC.

To apply the FXL algorithm, the number of recommended guesses isO(
√
n), as explained

in Section C, in which case the complexity of the FXL algorithm approximately becomes
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2r
√

n(log2 n+8) over GF(256). For the practical instance of the PAC in which n = 16 and

r = 10, the complexity of the FXL algorithm is approximately 2480 that is infeasible.

6.6.4 An Attack for Small r

This attack is applicable on the PAC when r is small, specially r = 1, and also when

t = [ t1, . . . , tn ]† in (6.27) is a tame automorphism of the form

ti(x) = xi + gi(x1, . . . , xi−1) ∀i ∈ [n ] , (6.47)

where gi ∈ F[x1, . . . , xn−1]. We briefly describe the attack for r = 1. In this case, ϕ is a

multivariate polynomial in x, denoted by ϕ(x), i.e.,

ϕ(x) = χ(αx1 + β
n∏

i=2

xai

i ) . (6.48)

The adversary fixes x1, . . . , xn−1 and computes the value of Ψ for all xn ∈ F. There exists

a subset D ⊂ F and a constant ϕ0 ∈ F such that for all xn ∈ D, ϕ(x) = ϕ0. The PU

matrix becomes the constant matrix P(ϕ0) over D. Because of the special structure of the

automorphism t in (6.47), the values of the polynomials t1, . . . , tn−1 do not change over D

since they depend only on x1, . . . , xn−1. The only polynomial that varies over D is tn. This

implies that E := {Ψ(x) : xn ∈ D } is a one-dimensional subspace of Fn+1. Examination

of E gives the value of the last column of P up to scaling.

In the next step, the adversary fixes x1, . . . , xn−2 and computes the value of Ψ for all

(xn−1, xn) ∈ F2. Using a similar approach, the adversary can obtain some information about

the next-to-the-last column of the PU matrix P. Repeating this process, the adversary is

able to obtain useful information about the PU matrix. This attack works for two reasons:

1. The variable xn appears only in the last entry of the automorphism t. Hence, by fixing

x1, . . . , xn−1, the polynomials t1, . . . , tn−1 become constant. The practical instance of

the PAC, introduced in Section 6.5, does not have this problem. The automorphism t

employed in the practical instance is the composition of two tame automorphisms t1

and t2 given in (6.43) and (6.44). By the special structure of these automorphisms,

every variable appears in at least K entries of t.
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2. In the example given here, F[ϕ(x)] has the lowest transcendental degree. To avoid such

attacks, the value of r should not be small. In general, in order to find D, the adversary

must examine the set Fr that has cardinality |F|r = 28r. For the typical choice r = 10,

the size of this space is 280. Thus, finding D becomes infeasible for the adversary.

6.7 Paraunitary Digital Signature Scheme (PDSS)

The general framework explained in Section 6.2 can be used toward the design of signature

schemes. Before providing more detail, we define digital signatures. A signature scheme

within the public-key framework is defined as a triple of algorithms (KeyGen,Sig,Ver) that

are explained below [95].

♦ The key generation algorithm KeyGen is a probabilistic, polynomial-time algorithm that

on an input k ∈ K as a security parameter produces the public key P and the secret key

S. Here, K is the key space of finite size that has to be large enough to make exhaustive

search infeasible.

♦ The signature algorithm Sig is a probabilistic polynomial-time algorithm that is provided

with the security parameter k, the secret key S, and a message y. Based on these inputs,

the signature algorithm produces as output the signature z = Sig(k,S,y).

♦ The verification algorithm Ver is a probabilistic polynomial-time algorithm that is pro-

vided with the public key P, a signature z, and a message y. This algorithm returns

either accept or reject to indicate whether the signature is valid or not.

We say that a digital signature is secure if an adversary who can use the real signer as an

oracle can not in time polynomial in the size of the public key forge a signature for any

message which its signature was not obtained from the real signer.

Based on the mathematical conjecture discussed in Section 6.4, this approach provides

a simple relationship between any vector polynomial and those acting as automorphisms

over the underlying finite field. This relationship involves multivariate PU matrices. The

- 136 -



advantage of this technique is that if the conjecture is proved to hold, the set of public

polynomials in the resulting cryptosystem are indistinguishable from a set of randomly

selected multivariate polynomials6. Therefore, the security of the designed cryptosystem

would be proved to be based on the difficulty of solving Problem 4.4.1. In this section, we

design such signature scheme. Throughout this section, as in (6.23), we assume Ln and

Pn are the rings of Laurent and ordinary polynomials, respectively, in the variable vector

x = (x1, . . . , xn) for some arbitrary n ∈ N.

By (6.24) and assuming Conjecture 6.4.2 holds, for any vector polynomial f ∈ Ln
n and

any tame automorphism t ∈ Ln
n, there exists a matrix polynomial P ∈ PUn(Ln) such that

f(x) = P(x) t(x). Assuming y is the message to be signed and x is the signature, the

objective, in a simple language, is solving y = P(x) t(x) for x by taking advantage of the

property of PU matrices and the fact that t is an automorphism. In other words, we desire

to provide an efficiently-computable solution as x = t−1
(

P†(x)y
)

. To make the right

hand side of this equation independent of x, we take an approach similar to the one used

in designing the PAC, i.e., we approximate the PU matrix by composing it with a vector

polynomial. To this end, we propose the mapping

Ψ : Fn+r −→ Fn

(x,x′) 7−→ y = (P ◦ϕ) (x,x′) t(x) ,
(6.49)

where P ∈ PUn(Lr) for a fixed r ∈ N≤n, x′ = (x′1, . . . , x
′
r), ϕ(x,x′) ∈ Lr

n+r, and t ∈ Ln
n

is a bijection over Fn. Let ϕx′(x) and ϕx(x′) denote the polynomial vector ϕ(x,x′) when

x′ and x are fixed, respectively. The only restriction that we impose on ϕ is that for any

x ∈ Fn, the polynomial mapping ϕx : Fr → Fr must be bijective. The following lemma

shows that the proposed mapping satisfies all the properties required for a signature scheme.

Lemma 6.7.1. Consider the mapping Ψ in (6.49) with the following specifications:

(i) P ∈ PUr(Lr),

(ii) t ∈ Ln
n is a bijection over Fn that can be efficiently inverted, and

6We emphasize that similar to Section 6.4, our results on the security of the signature scheme proposed
in this section only concern the one-way property of the underlying OWF.
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(iii) ϕ ∈ Lr
n+r such that ϕx : Fr → Fr is a bijection that can be efficiently inverted.

Then, the mapping Ψ is many-to-one with Rf = Fn that can be efficiently inverted.

Proof. Let y ∈ Fn be an arbitrary vector. Randomly choose a vector z = (z1, . . . , zr) ∈

(F×)r, and set ϕ(x,x′) = z. Since t is an efficiently invertible bijection, the value of x is

uniquely obtained as follows using the inverse of the PU matrix P.

x = t−1
(

P†(z)y
)

(6.50)

In addition, uniquely obtain the value of x′ from the equation ϕx(x′) = z. Since this

procedure is valid for all y ∈ Fn, the mapping Ψ is surjective. Moreover, by the presented

procedure, the value of x depends on the random choice for z. Hence, Ψ is a many-to-one

function that can be efficiently inverted.

In a practical signature scheme based on this approach, to avoid the division by zero

that may happen when employing Laurent polynomials, we restrict the design to the ring

of polynomials Pn. In other words, we design a PU matrix P ∈ PUn(Pr), compose it with

a polynomial vector ϕ(x,x′) ∈ Pr
n+r, and multiply the result by a bijection t ∈ Pn

n. By

Lemma 6.7.1, the result is a signature scheme that we call paraunitary digital-signature

scheme (PDSS) [62]. The signature generation and verification algorithms of the PDSS are

presented in Algorithm 6.4 and Algorithm 6.5, respectively. The PDSS should not be used

over the binary field for the same reasons as those explained in Section 6.2 for the PAC.

Since the signature generation depends on the random choice for z, the PDSS is a non-

deterministic scheme similar to the ElGamal signature scheme [74]. In other words, there is

Algorithm 6.4: PDSS sign.

Input: Message y ∈ Fn

Output: Signature (x,x′) ∈ Fn+r

Randomly choose z = (z1, . . . , zr) ∈ (F×)r.1.

x← t−1
(
P†(z)y

)
, x′ ← ϕ−1

x
(z)2.

return (x,x′)3.
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Algorithm 6.5: PDSS verify.

Input: Message y ∈ Fn and the signature (x,x′) ∈ Fn+r

Output: Accept or Reject

if y = Ψ(x,x′) then return Accept1.

else return Reject2.

not a unique signature associated with a message. This is an interesting feature that was not

possible in the C∗ scheme and its variants. The verification algorithm of the PDSS consists

only of evaluating the public polynomial-vector Ψ at the signature. Since the polynomial

evaluation can be performed very fast and efficient, the signature verification in the PDSS

has the same properties. This feature makes the PDSS very attractive for many applications

in which a message is signed only once, but verified many times.

6.7.1 Polynomial Vector ϕ

Since the PDSS and the PAC share many components, we only briefly explain the mapping

ϕ which differs in PDSS. As explained in Section 6.2.2, composing the PU matrix P with

the polynomial vector ϕ has the effect of approximating the PU matrix. Similar to (6.33),

we have the chain relation

F ⊆ F[ϕx′(x)] ⊆ F[x] , (6.51)

where x′ ∈ Fr is a fixed vector. For F [ϕx′(x) ] to achieve its maximum possible transcen-

dence degree, which is r, we design ϕx′(x) to be semi-invertible, i.e., after evaluating ϕx′(x)

at n− r coordinates of x, the resulting r-variate polynomial becomes invertible. To achieve

this goal, we suggest using a composition of two tame automorphisms as follows

ϕ = s ◦ ρ. (6.52)

Here, s ∈ (F [x′ ])r is an automorphism (that can be generated by composing tame auto-

morphisms) and ρ ∈ (F [x,x′ ])r is semi-invertible. If ρ = [ ρ1, . . . , ρr ]T , then it can be
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easily verified that the following polynomial vector is semi-invertible.

ρi(x,x
′) = αix

′
π(i) + βixσ(r−i+1)

+ gi(xσ(r−i+2), . . . , xσ(n), x
′
π(1), . . . , x

′
π(i−1)) ∀i ∈ [ r ] .

(6.53)

Here, σ ∈ Sn and π ∈ Sr are public permutations, αi, βi ∈ F×, and gi ∈ F[xσ(r+2−i), . . . ,

xσ(n), x
′
π(1), . . . , x

′
π(i−1)] for all i ∈ [ r ]. After fixing x, we note that ρx turns into a tame

automorphism in r variables. Now, assume x′ is fixed. By the definition of ρ in (6.53), it

can be easily verified that after its evaluation at n−r arbitrary symbols from F substituted

for xσ(r+1), . . . , xσ(n), ρ becomes invertible. Hence, ρx′ is semi-invertible. Since s is an

automorphism, ϕ in (6.52) has the same property.

6.7.2 Setup Algorithm

The secret key is a vector k ∈ Fn that is randomly selected by the signer. Using Algo-

rithm 5.2, the secret key is expanded to a set of vectors K of the same size that are used

to determine parameters of the PU building block, coefficients of the bijection t, and the

polynomial vector ϕ. Algorithm 6.6 is used to generate the public and the secret keys in

the PDSS.

6.7.3 A Practical Instance of the PDSS

As in Section 6.5, we suggest a practical instance of the PDSS by specifying components of

the scheme. In our design, we follow the same guidelines as those mentioned for the PAC.

Briefly, the design criteria are: (1) without knowledge of the secret key, exploiting the

structure of the public polynomials in an attack must be infeasible, (2) public polynomials

should be sparse, and (3) The automorphism t must be efficiently invertible.

We construct the matrix P ∈ PUn(F[z]) and the automorphism t ∈ Aut(F[x]) as in (6.39)

and (6.42), respectively. For the vector polynomial ϕ(x,x′), we use the structure suggested

in 6.52 with s = id (the identity automorphism) and ϕ = [ϕ1, . . . , ϕr ]† as follows.

ϕi
(
x,x′) = αix

′
i + βixr−i+1 + γi

n∏

j=r−i+2

x
aij

j

i−1∏

j=1

(x′j)
bij ∀i ∈ [ r ] (6.54)
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Algorithm 6.6: PDSS key generation.

Input: Master secret-key k ∈ Fn

Public Output: Polynomial vector Ψ ∈ (F[x,x′])
n

Secret Output: P : an r-variate PU matrix in PUn(F[z]), ϕ : a vector polynomial in

(F[x,x′])
r
, t : an automorphism in Aut(F[x]).

Use Algorithm 5.2 to generate the set K.1.

Generate an r-variate PU matrix P ∈ PUn(F[z]) by multiplying elementary building blocks2.

whose parameters are taken from the set K.

Choose a vector polynomial ϕ ∈ (F[x,x′])
r

with the following properties: (1) invertible when3.

x ∈ Fn is fixed and (2) semi-invertible when x′ ∈ Fr is fixed. Use the vectors in K as the

design parameters. (The composition in (6.52) may be used.)

Choose an automorphism t ∈ Aut(F[x]) using vectors in K as its coefficients.4.

Construct the vector polynomial Ψ(x) as in (6.49).5.

Here, aij , bij ∈ N are public exponents and αi, βi, γi ∈ F∗ are secret coefficients for all

i ∈ [ r ]. The vectors in the set K generated by Algorithm 5.2 are used to specify these

coefficients. The exponents aij and bij , which are made public, directly influence the degree

of the final public polynomials. As we will explain later, to make sure that some attacks are

not applicable on the scheme, we choose these exponents proportional to the block length

n, i.e.,

aij = O(n) , bij = O(n) ∀i, j . (6.55)

As the result, the total degree of the public polynomials is proportional to n. Complexities

of constructing the suggested instance of the PDSS are summarized in Table 6.3.

A toy example of the PDSS is provided in Appendix C. We emphasize that this example

is insecure and should not be used in practice. The purpose of this example is to show how

the scheme is designed and illustrate the structure of public polynomials.

In Table 6.4, we compare the total complexities of the key generation, signature gener-

ation, and verification between the suggested instance of the PDSS and the HFE and RSA

used as signature schemes. In this table, m is the number of bits per field element, i.e., the
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Table 6.3: Complexities of constructing the components of PDSS.

Complexity Complexity Complexity

P O(n2) P ◦ϕ O(n2) Ψ O(n2)

ϕ O(1) t O(n2)

Table 6.4: Complexity comparison in the number of binary multiplications.

Public-Key Generation Secret-Key Generation Signature Generation Verification

PDSS O(m2n2) O(m2n2) O(m2n3) O(m2n3)

HFE O(m2n4) O(m2n2) O(m2n2(m+ log n)) O(m2n3)

RSA O(m3n3) O(m3n3) O(m3n3) O(m3n3)

underlying field is GF(2m). In RSA, mn is the bit length of the modulus. Table 6.4 reveals

that the computational complexity of public-key generation for the proposed PDSS is lower

than that in the HFE. Moreover, the PDSS is generally less complex than RSA. We note

that the assumption 6.55 may not be necessary for the security of the PDSS. By relaxing

this condition, the complexities of the PDSS becomes lower than those in the HFE.

6.8 Summary

Multivariate cryptography is the new trend in information security with the goal of designing

highly efficient and fast cryptosystems. The security of systems in this family is based on

the difficulty of solving systems of multivariate polynomial equations. In contrast to the

traditional approach in which the underlying algebraic structure has very large order, the

size of the operating field in multivariate cryptosystems is comparatively much smaller.

Hence, these systems are much faster and more efficient. These properties make them

suitable for implementing in resource limited environments such as smart cards, personal
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digital assistants, cell phones, etc.

Using the successful factorization of all PU matrices in terms of fully parameterized

elementary building blocks, we proposed new public-key and digital signature schemes in

this chapter. We showed that the computational security of the proposed multivariate

schemes is based on the difficulty of solving systems of multivariate polynomial equations

given a mathematical conjecture holds. In other words, these systems are proved to be

computationally secure if the conjecture is true. Such proof does not exist for any of the

currently-in-use public-key cryptosystems. By providing practical instances of the proposed

schemes, we showed that their efficiency is comparable to other existing multivariate schemes

while maintaining security. In addition, we studied the resistance of our designs against some

well known algebraic attacks. Our studies did not reveal any vulnerabilities.

- 143 -



Part III

Security of Wireless Sensor Networks



CHAPTER 7

Key Pre-Distribution

7.1 Background Review

In the era of information technology and with the advent of micro-electro-mechanical sys-

tems and low power highly integrated electronic devices, wireless sensor networks (WSNs)

are expected to play key roles in many applications such as managing energy plants, logis-

tics and inventory, battlefields, and medical monitoring [9]. A typical sensor network may

consist of hundreds to several thousands of sensor nodes that are low cost and battery pow-

ered, and have limited computation power and memory. Sensor nodes are either randomly

or manually scattered in a field. They form an unattended wireless network that collects

information about the field such as temperature, illumination, motion, some chemical ma-

terial, etc. The collected data is partially aggregated and forwarded to a central processing

unit, called the sink, that is responsible for interpreting the data and taking appropriate

actions (e.g., sending personnel for precise measurements).

Security is a critical issue when sensor networks are deployed in a hostile environment.

An adversary can monitor the traffic, capture or impersonate sensor nodes, and provide

misleading information. An essential security primitive, which is a building block for many

security services, is pairwise key establishment referred to as key establishment. Public-key

cryptography provides a complete solution in traditional networks. However, key estab-

lishment in sensor networks is far more complicated because of the node constraints and

networking features.

Any public-key infrastructure requires a trusted third party to distribute public-key cer-

tificates. The sink can take the role of a trusted party. However, because of the short com-
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munication range and widespread distribution of sensor nodes, the sink cannot be reached

by many nodes. To address this problem, there have been proposals for using symmetric

cryptography [72] or identity-based signature schemes [207]. In addition, public-key algo-

rithms are complex and require significant computational power and storage. Sensor nodes

have limited memory and computational capabilities. Hence, storing public keys, their cor-

responding codes, and excusing it in the traditional fashion are not desirable [159]. To

solve these problems, some new research have been focused on improving the efficiency of

public-key algorithms [92, 91, 194, 18].

We believe that the usage of public key in sensor networks depends on the application.

If a sensor network is supposed to simultaneously carry out many tasks and live for a

long period of time, then energy preservation is very critical. In such cases, public-key

cryptography should be avoided. Another motivation for considering alternatives to public-

key cryptography is that key establishment can be used for many security services such

as end-to-end confidentiality, data integrity, and entity authenticity. If these were the only

security services that are required, then symmetric key cryptography would be very efficient

and effective.

An alternative is pre-distributing the keys among the sensor nodes in the network;

hence, so called key pre-distribution schemes (KPSs). Although this solution seems feasible

at the first glance, its realization has more subtleties compared to the previous schemes

due to the massive number of nodes in the network and their resource limitations. A naive

approach is using a single key to secure the communication traffic in the entire network.

Nevertheless, this approach must be avoided since capturing only one node compromises

the entire network to the adversary. Another approach, in a network of size n, is storing

n − 1 pairwise keys in every node, each for communicating with one other node in the

network. However, in a typical sensor network with thousands of sensor nodes, the storage

requirement for this approach is beyond the memory limitations of sensors. Moreover, not

every two sensors are in the communication range of each other. If the neighbor sensors of

every sensor in the field are known prior to the deployment, then it suffices to store only
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pairwise keys for the communication with neighbor sensors. However, such information are

unavailable in typical sensor networks.

7.2 Related Work

The first practical KPS was proposed by Eschenauer and Gligor in [77]. In the Eschenauer-

Gligor scheme (EG), a large pool of keys and key IDs are randomly generated off-line by the

sink. For every sensor node, a small fraction of keys, called the key ring, is randomly drawn

from the key pool and loaded into the memory of the sensor along with the corresponding

key IDs prior to the network deployment. The size of the key ring is independent of the size

of the network and is dictated by the memory limitation of the sensors. After the network

deployment, each sensor broadcasts the IDs of the keys in its key ring. Upon receiving

such broadcast messages, every node determines the neighbors with which it shares at least

a key. Every two nodes at the communication range of each other establish a secure link

only if they share at least a key in their key rings. The probability of link establishment

is determined by the sizes of the key pool and the key ring. The neighbor nodes that are

unable to establish a secure link use other neighbors to find a secure path connecting them

through which they exchange a secret key.

A WSN can be considered as a random graph in which vertices are the nodes and the

edges are links that the pairs of nodes have established using a link key [109]. In this

model, the network is connected if and only if there exists a link or a path connecting every

two arbitrary nodes. Using the theory of random graphs, we can study the connectivity

properties of the network. There are different models for random graphs among which

G (n, Plk) suits studying sensor networks with unlimited communication range for every

sensor node. In this model, every two nodes, in a network of size n, establish a link key

with probability Plk. Using this model, Erdős and Rényi showed in [76] that the asymptotic
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probability of the network connectivity is

Pc = Prob
n→∞

[

G(n, Plk) is connected
]

= e−e−c

,

(7.1)

where c ≥ 0 is a real constant satisfying the equation Plk = (lnn + c)/n. From here, the

probability of the link establishment for a desired probability of network connectivity is

Plk =
ln (−n/ lnPc)

n
. (7.2)

Therefore, the expected degree of a node is d = Plk (n− 1).

In reality, the communication range of every sensor node is limited. Hence, the number

of neighbors of every sensor node with which it can establish a link is limited to n′ ≪ n.

Given n′, the required probability of the link establishment is

preq =
d

n′

=
(n− 1) ln (−n/ lnPc)

nn′
≫ Plk .

(7.3)

Considering the fact that any two nodes that share a key in their key rings can establish a

link, the actual probability of the link establishment is

pact = 1−
(P

r

)(P−r
r

)

(P
r

)2 (7.4a)

≈ 1−

(

1− r
Plk

)2(P−r+ 1
2)

(

1− 2r
Plk

)(P−2r+ 1
2)

, (7.4b)

where r and P are the sizes of the key ring and the key pool, respectively. The size of the

key pool is obtained from (7.3) and (7.4b) by setting pact ≥ preq.

Example 7.2.1. Consider a network of size n = 10,000 with the connectivity probability

Pc = 0.99999. Assume by the transmission range of every sensor node, each one has

n′ = 60 neighbors on the average. Let the memory size of every sensor be 200. Thus, the

size of the key ring must be r = 200. The average node-degree turns out to be d = 21. The

required probability of link establishment is preq = 0.3454 by (7.3). This gives a key pool of

size P = 94,616.
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A WSN might be deployed in a hostile environment in which sensor nodes are vulnerable

to the physical capture by an adversary. To keep down the cost of the sensors, usually

they are not tamper resistant [6, 7]. Therefore, upon the capture of a sensor node, the

adversary reads all the information stored in it. However, this information might be used

in another part of the network to establish a secure link between two non-captured nodes.

In this situation, that link is regarded as compromised. Upon detecting a captured node,

the sink broadcasts a key-revocation message to all the nodes to delete the compromised

keys. The resilience of the network against the node capture refers to the probability

of the link compromise amongst non-captured nodes in the presence an adversary who

physically captures sensor nodes. Let x be the number of captured nodes in the network.

The probability that none of the keys in the key ring of a sensor node is compromised is

1− r
P . Hence, the probability of the link compromise is

Plkc = 1−
(

1− r

P

)x

. (7.5)

The number of functional and non-malicious sensor nodes in the network decreases in

time due to either dying because of consuming all their energy or being captured by an

adversary. Hence, in order to keep the network connected and functional, new sensor nodes

must be added to the network. The newly added nodes must be able to establish secure

links with existing nodes in the network. A KPS that supports the addition of new nodes

to the network is called scalable. The EG is scalable up to a maximum size of the network.

7.2.1 q-Composite Scheme

In EG, any two neighboring nodes that share a single common key establish a secure link. A

modification of this scheme is proposed in [32] in which q common keys (q > 1) are required

to establish a link. Thus, it is called the q-composite scheme (qComp). Let k1, . . . , kq be all

the common keys where q′ ≥ q. The final secret key between the nodes is k = χ(k1, . . . , kq),

where χ is a function symmetric in the order of its input arguments. Increasing the amount

of the key overlap required to establish a link improves the resilience of the network against
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the node capture. The disadvantage of this technique is that since every two nodes must

share at least q keys in their key rings with a certain probability, the adversary compromises

more keys by capturing less nodes comparing to EG. Therefore, the probability of the link

compromise in the qComp is less than that in the EG for a small number of captured

nodes. However, as the number of captured nodes increases, this probability increases in

the qComp. A procedure similar to the one employed in the EG is used here to calculate

the size of the key pool. The actual probability of the link establishment in the qComp [32]

pact = 1−
q−1
∑

i=0

p(i) , (7.6)

where

p(i) =

(P
i

)( P−i
2(r−i)

)(2(r−i)
r−i

)

(P
r

)2 , 0 ≤ i ≤ r (7.7)

is the probability that any two sensor nodes have exactly i shared keys in their key rings.

In (7.7), P and r are the sizes of the key pool and the key ring, respectively. The size of

the key pool is obtained by setting pact ≥ preq, where preq is obtained from (7.3).

Example 7.2.2. Consider the network in Example 7.2.1. Using the qComp q = 2, the

size of the key pool must be P = 47,910. However, it is P = 94,616 in EG as calculated

in Example 7.2.1. The reduction in the size of the key pool increases the number of keys

shared between any two nodes.

The probability of the link compromise in the qComp is [32]

Plc =
r∑

i=q

(

1−
(

1− r

P

)x)i p(i)

pact
(7.8)

in which x is the number of captured nodes and p(i) and pact are given in (7.7) and (7.6),

respectively.

7.2.2 Blom’s Scheme

The resilience of the previous KPSs against the node capture gradually decreases by in-

creasing the fraction of the captured nodes. In some applications, when the fraction of
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captured nodes does not increase beyond some threshold, it is desirable to have perfect

secrecy before reaching that threshold. A KPS that offers this feature is called a threshold

schemes. In [20], Blom proposed a threshold scheme for ad hoc networks using maximum

distance separable (MDS) codes. The Blom’s scheme allows any pair of users in a network

to compute a secret pairwise key (with the underlying assumption that the communication

range of the sensor nodes is infinite). In addition, prior to capturing at most t nodes, the

scheme is perfectly secure. However, once at least t + 1 nodes are captured, the security

completely breaks down. Hence, the scheme is called t-secure. In general, a d-conference

t-secure scheme is defined as follows.

Definition 7.2.1 (d-Conference t-Secure Scheme). Let U be a set of n users and d, t ∈ N

such that d ≤ n. A KPS for U , initialized by a server, is d-conference t-secure if and only

if without the involvement of the server:

1. every subset V ⊆ U of |V| = d users can compute a group key by cooperating with each

other (e.g., exchanging their IDs).

2. the coalition of every set A ⊂ U \ V of |A| ≤ t users reveals no information about the

group key established by the d users in V.

Based on this definition, the Blom’s scheme is 2-conference t-secure.

To explain the Blom’s threshold scheme, consider a network of size n. The sink designs

a matrix G ∈ Mt+1,n(Fq), where q is a power of a prime, as the generator matrix of a

(n, t+1) linear code over Fq [197]. The matrix is designed to be full rank that is equivalent

to the linear code being MDS [197]. This matrix is made public to everybody including all

the users and the adversary. In addition, the sink secretly generates a symmetric matrix

D ∈ Mt+1(Fq) and computes the matrix A = (DG)† ∈ Mn,t+1(Fq). Prior to the network

deployment, the sink stores the i-th row of the matrix A and the i-th column of the matrix

G in the memory of the i-th user for all i ∈ [n ]. It can be easily verified that the matrix

K = AG ∈ Mn(Fq) is symmetric since the matrix D has the same property. After the

deployment, the users i and j who want to communicate exchange the columns of the
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matrix G that each one is storing. After the exchange, both users have the i-th and the

j-th column of G. Using this information, user i is able to compute kij , the (i, j) entry

of the matrix K = [ kij ]. Similarly, user j is able to compute kji. Since the matrix K is

symmetric, kij = kji. Thus, the two users have calculated a common pairwise key. As an

example of the generator matrix G = [ gij ], consider the matrix with entries gij = ε(i−1)j ,

for all i ∈ [ t+ 1 ] and j ∈ [n ], in which ε ∈ Fq is a primitive element and n < q. This is a

Vandermonde matrix, which is full rank. Because of its special structure, an arbitrary user

j ∈ [n ] only stores εj instead of the entire j-th column of G.

Since the underlying linear code is MDS, the minimum Hamming distance between any

two codewords is n − t [197]. Thus, a codeword is uniquely determined by at least t + 1

elements. Since the rows of the matrix K are, in fact, codewords, the coalition of at least

t+1 users is required to determine the pairwise key between a pair of other users. Therefore,

the Blom’s scheme is t-secure.

7.2.3 Du et al.’s Threshold Scheme

Proposed in [71], the Du scheme (Du) is, in fact, a randomized and extended version of the

Blom’s scheme. In this scheme, a key space is a tuple (D,G), where the matrices D and G

are as defined in the Blom’s scheme. In Du, every node is identified by an ID i ∈ [n ]. The

sink generates a Vandermonde matrix G using a primitive element ε ∈ Fq. This matrix

is regarded as public information. In addition, the sink secretly generates ω symmetric

matrices Di ∈ Mt+1(Fq) and calculates the corresponding matrices Ai = (DiG)T for all

i ∈ [ω ]. For every node i, a random index subset I ⊂ [ω ] of cardinality |I| = τ is selected,

where τ < ω is a fixed design parameter of the scheme. For all j ∈ I, the i-th row of

the matrix Aj is stored in the memory of the node i along with εi prior to the network

deployment. In other words, the node i picks the key spaces (Dj ,G) for all j ∈ I. By the

Blom’s scheme, every two nodes that pick the same key space are able to find a common

secret key.

The required storage memory in the Du is M = τ(t+ 1) + 1. Hence, given M and τ as
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the sizes of the sensor memory and key ring, respectively, the security threshold must be

t =
⌊

M−1
τ

⌋

− 1.

After the deployment, every node i ∈ [n ] broadcasts its ID, the indices of the spaces

it has picked, and εi. Assume after receiving such broadcast messages, two neighbor nodes

have discovered that they have a key space in common. Using Blom’s scheme, these nodes

can compute a common pairwise key. Similar to previous schemes, two neighbor nodes

that do not have any key spaces in common can discover a key path through which they

exchange a secret key.

To determine the total number of key spaces ω, a procedure similar to the previous

schemes is employed. The required probability of link establishment for a desired prob-

ability of network connectivity is obtained from (7.3). The actual probability of the link

establishment in Du is [71]

pact = 1−
(ω
τ

)(ω−τ
τ

)

(ω
τ

)2 . (7.9)

The value of τ is dictated by the memory constraint of sensor nodes. The total number of

key spaces is calculated by setting pact ≥ preq.

Example 7.2.3. Consider the network in Example 7.2.1 in which the size of the sensor

memory is M = 200. Assuming τ = 4, the security threshold must be t = 48. The number

of key spaces must be ω = 42.

In Du, the probability of link compromise is [71]

Plc =
x∑

i=t+1

(

x

i

)(
τ

ω

)i (

1− τ

ω

)x−i

, (7.10)

where x is the number of captured nodes.

7.2.4 Liu’s Polynomial-Based Schemes

Schemes proposed in [127] are other examples of threshold schemes. In these schemes,

symmetric bivariate polynomials are used as a mechanism to calculate pairwise keys. The

basic idea of this mechanism was first proposed in [19] and then generalized and further

studied in [22].
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To explain the polynomial-based KPS proposed in [22], consider a network with the

user set U = {U0, . . . , Un−1 } in which every user has an ID that is an integer in (n ). The

server generates a symmetric polynomial f(x0, . . . , xd−1) in d ≤ n variables of degree t in

each variable with coefficients from the finite field Fp for some prime integer p ≥ n. The

polynomial f is symmetric in the following sense

f(xσ(0), . . . , xσ(d−1)) = f(x0, . . . , xd−1) ∀σ ∈ Sd . (7.11)

The server assigns the coefficients of the polynomial fi(x1, . . . , xd−1) := f(i, x1, . . . , xd−1)

to user Ui for all i ∈ (n ). Since each polynomial fi has at most
(t+d−1

d−1

)
monomials, the

maximum memory storage requirement for each user is
(t+d−1

d−1

)
log2 p bits. This scheme is

optimal in the sense that the amount of information stored in each user is minimal [22].

Any set of at least d users is able to compute a common key using the polynomials in

their memories. To see how, consider the set of users {Ui : i ∈ I }, where I ⊆ (n ) is an

arbitrary subset of size |I| = d. The users in this set, first, exchange their IDs. Then,

each user Ui evaluates its polynomial fi at (x1, . . . , xd−1) = I〈i〉 (see Section subsec:general

notation for this notation). In light of (7.11), it is easily verified that the group key is

kI = f(I). Hence, this scheme is d-conference t-secure. The following example shows how

this idea works.

A Random Polynomial-Based Scheme

An amalgamation of the EG and the polynomial-based threshold scheme of [22] is proposed

in [127], which we refer to as the random polynomial-based scheme (RPB). In this scheme,

prior to the network deployment, the sink generates a pool { fi(x, y) ∈ Fp[x, y] : i ∈ (P ) }

of P symmetric bivariate polynomials each of degree t in both variables over the finite field

Fp in which p is a prime integer such that p ≥ n. For every sensor node i ∈ (n ), the sink

randomly selects a subset I ⊂ (P ) of size |I| = τ . The sink stores the coefficients of the

univariate polynomial fj(i, y), for all j ∈ I, in the memory of this sensor. The set univariate

polynomials stored in every node is called the polynomial ring. Using polynomials in their

rings, neighbor nodes discover common polynomials and calculate common key using a
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method similar to the one in EG. The RPB is a generalized version of the EG in the sense

that when the degrees of all polynomials t is zero, the polynomial ring becomes the key

ring. Another observation is that the RPB is 2-conference t-secure by Definition 7.2.1.

In the RPB, the required storage memory is M = τ(t + 1). Hence, given M and τ as

the sizes of the sensor memory and the polynomial ring, respectively, the security threshold

must be t =
⌊

M
τ

⌋

− 1.

The actual probability of the link establishment in RPB is [127]

pact = 1−
τ−1∏

i=0

P − τ − i
P − i . (7.12)

The algorithm for calculating the size of the polynomial pool is similar to the previous

schemes.

Example 7.2.4. Consider the network in Example 7.2.1 in which the size of the sensor

memory is M = 200. Assuming τ = 4, the security threshold must be t = 49. The size of

the polynomial pool must be P = 42.

To compromise a link in RPB, one of the bivariate polynomials must be recovered using

its shares distributed in the network. The probability of recovering a bivariate polynomial

is

Ppc = 1−
t∑

i=0

Ppc(i) (7.13)

where Ppc(i) is the probability of compromising i shares of any polynomial, i.e.,

Ppc(i) =

(

x

i

)(
τ

P

)i (

1− τ

P

)x−i

. (7.14)

Here, x is the number of captured nodes in the entire network.

B Grid-Based Scheme

The RPB is randomized in the sense that the polynomial ring is randomly selected from

the polynomial pool. Consequently, when the transmission range of all sensor nodes is

unlimited (a theoretical assumption), it is not guaranteed that every two sensor nodes can

establish a key. To remedy this problem, a grid-based scheme (GB) is proposed in [127]
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that takes a deterministic approach. In this scheme, for a network of given maximum size

n, a two-dimensional grid (m )2 is virtually generated in which m := ⌈√n⌉. This grid is

only used as a tool to assign IDs to the nodes and distribute shares of polynomials to them.

There is no relationship between the physical locations of the nodes in the field and the

points on the grid. The points on the grid are randomly assigned to the sensor nodes as

their IDs. Hence, the ID of every node is a tuple (i, j) ∈ (m )2. In the setup phase, the sink

generates a pool of 2m symmetric bivariate polynomials f r
i (x, y), f c

i (x, y) ∈ Fp[x, y] for all

i ∈ (m ). As shown in Figure 7.1, each row j in the grid is associated with a polynomial

f r
j (x, y) and each column i is associated with a polynomial f c

i (x, y). For the node at the

coordinate (i, j) ∈ (m )2, the sink pre-loads its ID and the shares of the two polynomials

f c
i (x, y) and f r

j (x, y), i.e., the coefficients of the univariate polynomials f c
i (j, y) and f r

j (i, y).

Therefore, the storage-memory requirement for every sensor node is M = 2(t + 1). Given

M as the size of the sensor memory, the security threshold must be t =
⌊

M
2

⌋

− 1.

After the network deployment, nodes broadcast only their IDs since this information is

sufficient to determine whether two neighbor nodes share a polynomial or not. Every two

nodes that lie on the same horizontal or vertical line on the grid can establish a link key.

For example, consider the nodes (i, j) and (i, j′) in Figure 7.1. Theses nodes can establish
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0 (x, y)

fr
j′(x, y)

fr
j (x, y)

fr
m−1(x, y)

f
c 0
(x

,y
)

f
c i′
(x

,y
)

f
c i
(x

,y
)

f
c m
−

1
(x

,y
)

(i′, j′)

(i′, j)

(i, j′)

(i, j)

. . . . . . . . .

...

...

...

b

b

b

b

Figure 7.1: Two-dimensional grid.
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the link key f c
i (j, j′) = f c

i (j′, j). Similarly, the nodes (i, j) and (i′, j) that lie on the same

vertical line can establish the direct key f r
j (i, i′) = f r

j (i′, i). Hence, the probability of the

link-key establishment in the GB is

Plk /
2(m− 1)

n− 1
. (7.15)

We note that since GB is not a probabilistic scheme, unlike previous schemes, the total

number of bivariate polynomials is independent of the required probability of network con-

nectivity.

The reconstruction of a bivariate polynomial in which both variables have degree t re-

quires at least t+1 univariate shares. Therefore, the probability of the link-key compromise

(equivalently the probability of compromising a polynomial) is [127]

Plkc = 1−
t∑

i=0

(

m

i

)

pi
nc(1− pnc)

m−i , (7.16)

where pnc is the faction of captured nodes in the entire network.

C Hypercube-Based Scheme

The hypercube-based scheme (HB) of [127] is a generalization of the GB to higher dimen-

sions. This scheme is designed along the guidelines of GB. The difference is that in the

setup phase, the sink generates a d-dimensional hypercube (m )d, where m = ⌈ d
√
n⌉. The

ID of every sensor is a d-tuple I = (i0, . . . , id−1) ∈ (m )d. The polynomial pool consists of

dmd−1 symmetric bivariate polynomials f j
I〈j〉(x, y) ∈ Fp[x, y], where j ∈ ( d ) and I ∈ (m )d.

Prior to the network deployment, the sensor node I is loaded with d univariate polynomials

f0
I〈0〉(i0, y), . . . , f

d−1
I〈d−1〉(id−1, y). Therefore, the required storage-memory is M = d(t + 1).

Similar to GB, given M as the size of the sensor memory and d as the dimensionality, the

security threshold must be t =
⌊

M
d

⌋

− 1.

In the polynomial-share discovery phase, every two nodes with IDs at the unit Hamming

distance of each other can establish a link key. For example, consider the two nodes:

I = (i0, . . . , ij−1, ij , ij+1, . . . , id−1) (7.17a)

I ′ = (i0, . . . , ij−1, i
′
j , ij+1, . . . , id−1) (7.17b)

- 157 -



for some j ∈ ( d ). These two nodes can establish the link key f j
I〈j〉(ij , i

′
j) = f j

I′〈j〉(i
′
j , ij) since

I〈j〉 = I ′〈j〉. Therefore, the probability of the link-key establishment is

Plkc /
d(m− 1)

n− 1
. (7.18)

The probability of the link-key compromise in HB is the same as that in the GB given by

(7.16).

The main difference between the HB and the GB is that the former provides a better

resiliency against the node capture. To see why, we note that to compromise a polynomial,

at least t+ 1 shares of that polynomial are required whereas there are only m such shares

in the entire network. if m < t + 1, there are not enough shares for any polynomial to be

compromised. Hence, the network becomes perfectly secure against the random attack. Let

mGB and mHB be the values of m in the GB and the HB, respectively. We have

mHB =
⌈

d
√
n
⌉
≤
⌈√
n
⌉

= mGB

since d ≥ 2. Hence, HB provides a better chance for perfect secrecy for a fixed degree t for

bivariate polynomials.

7.2.5 Location-Aware KPSs

The first location-aware KPS for wireless sensor networks is proposed in [70]. In this scheme,

the sensor nodes are partitioned into groups of almost equal size. The groups of sensors are

deployed on the points of a two-dimensional grid on the field. Although the exact location

of every sensor is unknown, the expected location of every group is known. The scheme

proposed in [70] takes advantage of the expected location information. Unfortunately, it does

not provide full connectivity and high resiliency against the node capture. A deterministic

location-aware KPS based on bivariate polynomials is proposed in [126]. In this scheme,

that we refer to as location-aware grid-based scheme (LA-GB), the deployment field is

divided into non-overlapping square cells, and every cell is assigned a unique ID. The sensor

nodes are uniformly distributed in the field. The shares of randomly-generated symmetric
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bivariate polynomials are distributed to the nodes based on the ID of the cell in which the

nodes reside. Using these shares, every two sensors within a cell and in adjacent cells can

establish common keys. In this chapter, we will compare this scheme with our proposed

location-aware scheme in terms of the resiliency against the node capture.

7.3 Multivariate Key Pre-Distribution Scheme

In this section, we introduce the multivariate key pre-distribution scheme (MKPS) [59,

64, 61, 53]. In the following, This scheme consists of two phases: setup and link-key

establishment. The first phase is performed by the sink prior to the network deployment.

In this phase, the sink generates a virtual hypercube in the d-dimensional space. This is

the smallest hypercube that fits a maximum number of nodes foreseen to be deployed in

the network. The points inside the hypercube are uniquely assigned to the sensor nodes.

There is no relationship between the hypercube and the actual placement of the nodes in

the field after the deployment. The hypercube is only used as a tool to assign IDs to the

nodes. The sink generates a symmetric d-variate polynomial for every line parallel to one of

the axis lines. Since every point in the d-dimensional space is at the intersection of d lines

each parallel to one of the axis lines, d polynomials are associated to every node. Every one

of these polynomials is evaluated at d− 1 variables determined by the node ID. The result

is d univariate polynomials that are stored in the node memory.

The link-key establishment phase of the protocol takes place in the field after the nodes

are randomly deployed. In this phase, every node broadcasts its own ID. Every two neighbor

nodes with IDs at the Hamming distance of one from each other establish exactly d − 1

common keys by evaluating their univariate polynomials. The final link key is a symmetric

combination of the common keys.

We also propose an optimization procedure to choose the optimal dimension d. In

contrast to previous schemes that consider only the network security, the optimality criteria

in our scheme are the probability of the link-key compromise and the probability of the link-
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key establishment. This consideration provides robustness to the designer to adjust the

network properties according to the desired application because similar to all other key pre-

distribution schemes, increasing one of these metrics decreases the other. We also include

a complete evaluation of our proposed scheme. The evaluation metrics are the network

connectivity, the resiliency of the network against the node capture, the amount of storage

memory required by every sensor node, and the communication overhead during the key

establishment. In order to study the connectivity of the MKPS scheme when the dimension-

optimization procedure is employed, we employ the random-graph model of the network.

This model helps to determine when the network has a giant component that is a connected

subgraph containing almost all the nodes except a few isolated ones. In our scheme, the

existence of the giant component is considered sufficient for the healthy operation of the

network as suggested in [106]. The theoretical analysis of the resiliency of our scheme

against the node capture reveals significant improvement over the previous schemes due to

the use of multivariate polynomials. In addition, the storage memory required to use the

MKPS scheme is at most the same as that in the HB scheme of [127]. We will show that the

expected communication-overhead in our scheme is lower than that in previously proposed

schemes.

To facilitate future references, frequently used notations are listed below with their

meanings.

n Total number of nodes in the network

d Dimension of the hypercube

m =
⌈

d
√
n
⌉

I Node ID (a d-tuple)

t Degree of the multivariate polynomials in every variable

M Maximum size of the storage memory in every node

kI,I′,ℓ ℓ-th key common between the nodes I and I ′

kI,I′ Final link key established between I and I ′
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Plk Average probability of link-key establishment

β Size of the giant component of the network normalized to the network size

λ Security threshold of the MKPS

Ppr Probability of the polynomial recovery

Plkc Probability of the link-key compromise

pτ Node-capture tolerance

dopt Optimal dimension

dwst Worst dimension

γ1, γ2 Thresholds used in the dimension-optimization procedure

In the following, we explain the two phases of MKPS in detail.

7.3.1 Setup

In this phase, the sink uniquely assigns IDs to sensor nodes. A node ID is a vector I =

( i0, . . . , id−1 ) of length d, where i0, . . . , id−1 are nonnegative integers. Let I be the set of all

n IDs. Then, [m− 1 ]d ( I ⊆ [m ]d, where m :=
⌈

d
√
n
⌉
. The details of the ID-assignment

algorithm are provided in Appendix D. Since every node is assigned a unique ID, node-to-

node authentication is available in our scheme. This feature enables every node to ascertain

the identity of the nodes that it is communicating with [32]. We note that this important

feature is missing in the EG and the qComp.

In addition, the sink randomly and independently generates dm symmetric d-variate

polynomials f j
i (x0, . . . , xd−1 ) for all i ∈ [m ] and all j ∈ [ d ]. The coefficients of all these

polynomials belong to the finite field F. Moreover, all polynomials have degree t in every

variable. For a node with ID I = ( i0 . . . , id−1 ) ∈ I, the sink constructs the set

FI :=
{

f j
ij

(
I 〈j〉 , xd−1

)
∈ F [xd−1 ] : ∀j ∈ [ d ]

}

(7.19)

consisting of d univariate polynomials. Prior to the network deployment, the sink stores

the coefficients of all d polynomials in FI in the node I along with its ID. We note that the
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virtual hypercube I has no relationship with the actual placement of the nodes in the field.

It is only used as a tool to assign IDs to the nodes and distribute shares of polynomials.

Since |FI | = d, the amount of memory required to store all the polynomials in FI is

M = d(t+1) in terms of the number of elements in F. The value of M is determined by the

memory limitation of the sensor nodes, and d is a design parameter that is either arbitrarily

chosen or optimized by the designer. Hence, given M and d, the value of t is

t = ⌊M/d− 1⌋ . (7.20)

Sets of polynomials assigned to the nodes are deterministically selected in our scheme based

on their IDs. Hence, from this view point, our scheme is deterministic comparing to the EG

and the qComp in which the key rings are randomly selected from a key pool. However, our

scheme appears random in terms of the scattering of the nodes after the network deployment.

The following example demonstrates how the polynomial set FI is constructed.

Example 7.3.1. Let d = 3. For a node with ID I = ( i0, i1, i2 ), the set FI is equal to

{
f0

i0
( i1, i2, x2 ), f1

i1
( i0, i2, x2 ) , f2

i2
( i0, i1, x2 )

}
.

7.3.2 Link-Key Establishment

This phase takes place after the deployment of the network in the field. In this phase, every

two nodes at the Hamming distance of one from each other establish some common keys.

Consider the two nodes I and I ′ as in (7.17) with Hamming distance one. We note that

the IDs of these nodes are different only at the j-th coordinate. By the symmetry property

of the polynomials, these nodes can establish the following d− 1 common keys.

kI,I′,ℓ = f ℓ
iℓ

(
I 〈 j, ℓ 〉 , ij , i′j

)
= f ℓ

iℓ

(
I ′ 〈 j, ℓ 〉 , i′j , ij

)
∀ℓ ∈ [ d ] \ { j } (7.21)

We note that using d-variate polynomials in our scheme has created the situation that

every two nodes at Hamming distance of one from each other can establish exactly d − 1

common keys. Hence, our scheme is in some sense (d − 1) composite. As we will show

later, this feature greatly lowers the probability of link-key compromise. Fortunately, this
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feature is obtained for free without any payoffs. The qComp possesses the same property by

requiring that every two nodes share at least q keys in their key rings to establish a direct

key. Although this restriction decreases the probability of the link-key compromise for small

numbers of captured nodes, it has the opposite effect when the number of captured nodes

increases. This is because the qComp is probabilistic, and to increase the probability of

sharing q keys between any two nodes, the size of the key pool must shrink. Thus, capturing

a large number of nodes compromises more links than capturing a small number of nodes.

However, our scheme is deterministic, and sharing d− 1 keys between any two nodes with

Hamming distance of one from each other is guaranteed by the structure of our scheme.

The final key established between the nodes I and I ′ is referred to as the link key. This

key, denoted by kI,I′ , is a symmetric function χ : Fd−1 → F of all the d− 1 common keys,

i.e.,

kI,I′ = χ
(

kI,I′,ℓ : ∀ℓ ∈ [ d ] \ { j }
)

. (7.22)

This function is public to all nodes including the adversary. It should possess the following

properties:

1. Its evaluation must be fast and efficient considering the limitations of the senor nodes

and

2. It must be symmetric with respect to any ordering of the input arguments for the

following reasons:

a. It enhances the establishment of the link key regardless of the ordering of the

participating common keys and

b. It gives a uniform distribution to the link key when the input arguments vary over

all possible values. Therefore, when compromising a link key, all the d− 1 common

keys are equally important. Consequently, an adversary has to obtain all of them

to compromise a link key.

It is straightforward to verify that both of the following functions satisfy the aforementioned
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properties.

χ (x1, . . . , xd−1 ) = x1 ⊕ · · · ⊕ xd−1 (7.23a)

χ (x1, . . . , xd−1 ) = H
(
x1|| · · · ||xd−1

)
(7.23b)

Here, the symbols ⊕, ||, and H denote the bitwise exclusive-OR, the concatenation of

two finite-field elements considered as bit strings, and a hash function, respectively. The

following example shows how a link key is established.

Example 7.3.2. Let d = 3. Consider the two nodes I = ( i0, i1, i2 ) and I ′ = ( i0, i1, i
′
2 ).

Since the Hamming distance between these two nodes is one, they can establish exactly

two common keys kI,I′,0 = f0
i0

( i1, i2, i
′
2 ) = f0

i0
( i1, i

′
2, i2 ) and kI,I′,1 = f1

i1
( i0, i2, i

′
2 ) =

f1
i1

( i0, i
′
2, i2 ). The link key is kI,I′ = χ

(
kI,I′,0, kI,I′,1

)
.

As explained before, if the Hamming distance between the nodes I and I ′ is strictly

greater than one, then these nodes are unable to establish a link key. However, there might

exist a path connecting these nodes such that every two adjacent nodes on the path are at

the Hamming distance of one from each other. In this case, the nodes I and I ′ can exchange

keys using the path since every link on the path is secured by a link key. The final secret

key established between I and I ′ is called path key. The establishment of such key is part

of some previous KPS such as HB. The disadvantage of establishing a path key is some

communication overhead that is imposed on the nodes connecting I and I ′. For this reason,

we have not included path key in our protocol.

In Section 7.4.1, we obtain the probability of network connectivity. In addition, we show

how to choose the protocol parameters such that the network has a giant component. The

presence of a giant component implies that there are only very few isolated nodes in the

network. We consider a network with this configuration as functional. Hence, the MKPS

setting eliminates the excessive communication overhead of the path-key establishment.

However, in HB, the network is attempted to be connected. To satisfy full connectivity, one

requires to establish path keys. Nevertheless, in MKPS, we may establish a path key only
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in a situation where it is critical for an isolated node to establish a secret key with another

node with Hamming distance greater than one.

7.4 Evaluation of the MKPS

In this section, we evaluate the proposed scheme. The evaluation metrics are the network

connectivity, the probability of the link-key compromise, the communication range, and the

storage memory of every node. Another critical metric is the communication overhead. We

note that link keys are established without any communication overhead; only path-key

establishment introduces communication overhead. Since we try to avoid establishing path

keys, as explained in Section 7.3.2, the communication overhead of the MKPS becomes

much lower than that in other similar protocols. Throughout this section, we assume that

n is the actual number of nodes in the network and m =
⌈

d
√
n
⌉
, where d is the length of the

node ID or, in other words, the dimension.

7.4.1 Network Connectivity

Similar to previous scheme, we employ the random graph model G (n, Plk) to study the con-

nectivity properties of the network. To calculate the probability of link-key establishment

in the proposed MKPS scheme, recall that every two nodes at the Hamming distance of

one from each other can establish a link key. Hence, as proved in Appendix D, the average

probability of the link-key establishment is

Plk ≈
[
d (m− 2) + ν

]
(m− 1)d

n (n− 1)
+
θmd

[

m (d− 1) + ν θν−1 +m (1− d) θν
]

n (n− 1)

≤ d (m− 1)

n− 1
,

(7.24)

where θ = 1− 1
m and ν is given in the appendix by (D.8).

The probability Plk is plotted in Figure 7.2a versus the total number of nodes n and the

length d of the nodes IDs. The abrupt jumps in this curve are due to the ceiling function

⌈·⌉ in the definition of m. As the figure shows, for a fixed d, the average probability of the
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link-key establishment Plk decreases by increasing the number of nodes n in the network.

However, by fixing n and increasing d, the probability Plk is globally decreasing, but it has

linearly increasing segments. It globally decreases because m exponentially decreases with d

although there is a term linear in d in the first fraction of Plk in (7.24). The linear increasing

segments of Plk correspond to the range of n for which m is constant and henceforth, the

linear coefficient of d has the dominant effect.

The relation between the local connectivity (the probability of the link-key establish-

ment) and the global connectivity of the whole network can be deduced from the “phase

transition” behavior of the random graphs studied by Erdős and Rényi [76, 109]. They
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Figure 7.2: Probability of the link-key establishment in the MKPS and its effect on the size of the
largest component of the network.
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showed that for any monotone property of the random graphs (such as connectivity), there

exists a value of Plk for which the property moves from “nonexistent” to “certainly true” in

a very large random graph. In order to summarize their result in a theorem, let c := nPlk.

They discovered that when c < 1, G (n, Plk) consists of small components the largest of

which has Θ(lnn) nodes. By increasing Plk and correspondingly c, particularly when c > 1,

small components join together to form a giant component of size Θ(n). The other compo-

nents are relatively small. Erdős and Rényi showed how to compute the local connectivity

required for a given global connectivity. The following theorem gives the size of the largest

component of the network [109].

Theorem 7.4.1. Consider the random graph model G (n, Plk). Let c = nPlk > 0 and

0 ≤ β ≤ 1 be the order of the largest component in the network normalized to the size of

the network n. (We note that β is a function of both n and Plk.) The following assertions

hold with probability → 1 as n→∞.

(i) If c < 1, then β ≤ 3 log n

n(1− c)2 .

(ii) If c > 1, then there is a giant component in the network with size
(
1 + o(1)

)
βn, where

β is the solution to the equation β + e−βc = 1.

Furthermore, the size of the second largest component is at most 16c log n/(c− 1)2.

We note that the presence of the giant component in the network may be sufficient for

its healthy operation [106]. Ignoring a few isolated sensor nodes in the network does not

considerably degrade the functionality of the network. However, it reduces the required

probability of the link-key establishment. As we will discuss in the next subsection, by this

tradeoff, we can increase the dimension d that results in the reduction of the probability

of the link-key compromise through the dimension-optimization procedure. Moreover, the

connectivity of the entire network may be impossible in many practical cases [106]. There-

fore, in our scheme, in contrast to the previous schemes, we only guarantee the presence of

the giant component in the network that is a more practical assumption. In the proposed

MKPS, the normalized size of the largest component β is plotted in Figure 7.2b versus n
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and d. As the figure shows, in most of the cases, the largest component is, in fact, the giant

component that implies the network is almost connected. However, for small-size networks,

the size of the largest component drastically drops when d is increased beyond some level.

This decrease in the size of the largest component is due to the abrupt decrease of the

probability Plk in Figure 7.2a.

So far, as previous schemes [77, 32, 71, 127], we have used the random graph model

G (n, Plk) to represent the network graph resulting from a KPS. In this model, the commu-

nication radius of every node is assumed unlimited. However, in practice, every node has

only a limited communication range. The relationship between the actual communication

radius of the sensor nodes and the probability of the link-key establishment is studied sepa-

rately in [162] under the network graph model G (n, Plk, R), where R is the communication

range. As proved in [162], the minimum communication radius required to have a connected

network is

R ∝
√

lnn+ ζ

πnPlk
, (7.25)

where ζ > 0 is a constant. The probability of link-key establishment Plk only depends

on the key distribution graph G (n, Plk). Once Plk is obtained for a KPS scheme, then a

minimum communication radius R can be chosen to minimize the power consumption.

In the following subsection, we study the resilience of the network against the node

capture when the MKPS scheme is employed.

7.4.2 Resilience Against Node Capture

In the previous subsection, we explained that the network maintains its functionality when

most of the nodes are connected together. In this case, the network has a giant component

while there might exist a few isolated nodes. An adversary might attack the network

by attempting to split the giant component into small components. In order to achieve

this goal, the adversary compromises the link keys established between the nodes without

physically capturing them. However, by (7.22), a link key between two nodes is a symmetric

function of all the d− 1 common keys established between them. Hence, the adversary has

- 168 -



to compromise all the d − 1 common keys. We note that by (7.21), the common keys are

obtained by evaluating the shares of multivariate polynomials at the nodes IDs. Therefore,

without physically capturing the nodes, the adversary has to recover some variables of the

multivariate polynomials generating these shares by capturing other nodes in the network

that store these shares. The parameters of the scheme determine the minimum number of

variables that can be recovered and hence, the minimum number of nodes that must be

captured. This observation introduces a threshold effect to the scheme that implies prior to

capturing a least number of nodes, the adversary is unable to compromise any link keys. In

this subsection, we, first, determine the security threshold of the proposed MKPS scheme.

Using this threshold, we calculate the probability of the link-key compromise in the MKPS

and compare it to the same probability in other schemes.

Consider two nodes I and I ′ as in (7.17a) and (7.17b), respectively, with h (I, I ′) = 1.

By (7.22), the link key kI,I′ is a symmetric function of all the d − 1 common keys kI,I′,ℓ.

Hence, the adversary has to compromise all these d− 1 keys generated by the polynomials

f ℓ
iℓ

(
I 〈ℓ〉 , xd−1

)
and f ℓ

iℓ

(
I ′ 〈ℓ〉 , xd−1

)
as in (7.21). However, these polynomials are stored

only in the memories of I and I ′ that are unavailable to the adversary. Thus, for every

ℓ ∈ [ d ] \ { j }, the adversary has to recover the polynomial

fℓ (xd−r−1, . . . , xd−1 ) = f ℓ
iℓ

( ı̂0, . . . , ı̂d−r−2, xd−r−1, . . . , xd−1 ) (7.26)

from its shares distributed in the network for some integer 1 ≤ r ≤ d−1, where ( ı̂0, . . . , ı̂d−2 )

= I 〈ℓ〉. The shares of this polynomial are fℓ ( ı̂d−r−1, . . . , ı̂d−2, xd−1 ), where ı̂d−r−1, . . . , ı̂d−2

∈ [m ]. These shares are accessible to the adversary upon capturing other sensor nodes.

There are at most mr shares of this polynomial available in the network. The minimum

number of shares required to recover this polynomial is given by the following lemma.

Lemma 7.4.1. To recover the polynomial fℓ in (7.26) from its shares, the required number

of shares is

λ(r, t) =

(

t+ r

r

)

, 1 ≤ r ≤ d− 1 . (7.27)
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Proof. We have

fℓ (xd−r−1, . . . , xd−1 ) =
t∑

i=0

fℓi (xd−r−1, . . . , xd−2 )xi
d−1 ,

where each fℓi(xd−r−1, . . . , xd−2 ) is an r-variate symmetric polynomial of degree t in each

variable that has
(t+r

r

)
coefficients. Hence, λ(r, t) shares is required.

If mr < λ(r, t) for some r, then there are not enough shares of the polynomial in the

network to recover r variables. Therefore, it is impossible for an adversary to obtain the

polynomial in (7.26) for the given value of r. We note that the inequality mr < λ(r, t) does

not imply mr+1 < λ(r + 1, t). In other words, we might have mr+1 ≥ λ(r + 1, t) in which

case there exist enough shares of f to recover r+ 1 variables. Hence, the security threshold

is determined by the number of variables for which there exist enough shares in the network

to recover that many variables. This result is summarized in the following corollary.

Corollary 7.4.1. If there exists an integer 1 ≤ r ≤ d − 1 such that mi < λ(i, t) for all

integers 1 ≤ i ≤ r−1, but mr ≥ λ(r, t), then the MKPS is
(
λ(r, t)−1

)
-secure in the network.

As this corollary states, the first positive integer r, such that mr ≥ λ(r, t), is the number

of variables for which there exist enough shares in the network to recover the corresponding

polynomial. To facilitate future references to the security parameters, we define the security

level of the MKPS as follows.

Definition 7.4.1 (r-Variate Secure). In the settings of Corollary 7.4.1, we say that the

MKPS scheme is r-variate secure.

In an r-variate secure scheme, the adversary has to capture at least λ(r, t) nodes to

recover the polynomial fℓ in (7.26). Recovering this polynomial enables the adversary to

compromise all the d − 1 common keys, and hence the link key, between the two non-

captured nodes I and I ′. In other words, the MKPS is perfectly secure up to capturing

λ(r, t) − 1 nodes. Hence, our scheme is a threshold KPS. The security threshold r is a

global parameter of the scheme, i.e., it is independent of the nodes I and I ′ since m and

λ(r, t) are global parameters of the network.
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Another security notion that is interesting from the theoretical point of view is perfect

secrecy. This notion addresses the case when capturing any number of nodes except the two

nodes I and I ′ does not reveal any information about the link key established between these

two nodes. In the MKPS scheme, perfect secrecy happens when there are insufficient shares

in the network to recover any number of variables. In light of Corollary 7.4.1, the necessary

and sufficient condition for perfect secrecy can be stated as in the following corollary.

Corollary 7.4.2 (Perfect Secrecy). The MKPS scheme is perfectly secure if and only if

mr < λ(r, t) for all 1 ≤ r ≤ d− 1.

We note that, in practice, the notion of perfect secrecy is unimportant since a net-

work with a high fraction of its nodes captured by an adversary is naturally considered

compromised regardless of the fact that the link between two non-captured nodes is still

secure.

The probability of compromising the link key established between any two nodes depends

on the security threshold of the scheme. Assume that a fraction of pnc nodes in the network

are captured and the MKPS is r-variate secure. By Lemma 7.4.1, the adversary has to

obtain at least λ(r, t) shares of any polynomial to recover r variables of that polynomial.

Since the number of shares of a polynomial is a binomially-distributed random variable, the

probability of polynomial recovery is

Ppr =
mr
∑

i=λ(r,t)

(

mr

i

)

pi
nc (1− pnc)

mr−i . (7.28)

A common key established between two arbitrary nodes is compromised only when r vari-

ables of the polynomial generating the common key are recovered. In order to compromise

a link key, all the d − 1 common keys must be compromised. This is because, by (7.22),

the common keys are obtained by evaluating different polynomials that are randomly and

independently generated by the sink. Hence, the probability of the link-key compromise is

Plkc = P d−1
pr . (7.29)

This probability versus the fraction of captured nodes pnc is plotted in Figure 7.3 for different

values of d. For a fair comparison, we have fixed the memory usage M of each sensor node to
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M = 50 elements from F. Hence, the polynomial degree in every variable is t = ⌊50/d− 1⌋

by (7.20). In all these curves, the total number of nodes n is 100,000. As this figure shows,

by increasing d, the probability Plkc generally decreases. However, for some values of d this

is untrue. Such an irregular behavior is due to the interplay between different parameters

in (7.28), which are all related to d, and the ceiling function ⌈·⌉ in the definition of m. In

the following, we present a design criteria to choose an optimal value for d that minimizes

the probability of link-key compromise while maintaining the network connectivity.

7.4.3 Dimension Optimization

The common characteristic of all the curves in Figure 7.3 is a sharp increase when pnc

increases beyond some value. This behavior can be characterized by a threshold 0 < τ < 1

(a typical value is τ = 0.1) and a minimal probability pτ such that Plkc ≥ τ for all pnc ≥ pτ .

We refer to pτ as the node-capture tolerance level beyond which we assume that the network

does not operate healthy. Since Plkc depends on the dimension d of the vector space [m ]d,

the threshold pτ is also a function of d. In other words, the node-capture tolerance is defined

as

pτ (d) := min
{

pnc : Plkc (pnc, d) ≥ τ, 0 ≤ pnc ≤ 1
}

. (7.30)
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Figure 7.3: Probability of the link-key compromise when n = 10,000 and t = ⌊50/d− 1⌋.
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To achieve the lowest probability of link-key compromise, we should choose the dimension

that maximizes pτ . However, as shown in Figure 7.2b, by increasing d beyond some value,

the size of the largest component of the network, βn, sharply drops. Hence, in the optimiza-

tion process, we consider only the set of dimensions for which β(d) ≥ β0 for some threshold

0 ≤ β0 ≤ 1. (Recall that β is a function of n and Plk, which, in turn, is a function of n

and d.) A typical value for this threshold is β0 = 0.9 that ensures the graph has a giant

component. Mathematically, we define this set as

Bβ0
:=
{

d ∈ { 2, . . . ,M } : β(d) ≥ β0

}

, (7.31)

where M is the size of the memory used by each sensor node to store the coefficients of

the polynomials. The optimal dimension can be considered the one that maximizes pτ (d)

within Bβ0 . However, as a rule of thumb in all KPSs, the probabilities of the link-key

establishment Plk and the link-key compromise Plkc vary in opposite directions: improving

one degrades the other. The probability Plkc directly influences the security of the network.

The importance of the probability Plk as a design parameter becomes clear when considering

that the transmission radius R of each sensor node is inversely related to the square root of

Plk. The transmission power, which is the bottleneck of the energy consumption in sensor

networks, is proportional to Rǫ, where 2 < ǫ < 4. Thus, to keep the energy consumption

minimal, it is desirable to maximize Plk. However, in general, maximizing Plk increases the

probability of the link-key compromise in the network. If prior to the network deployment,

we assume that at most a specific fraction of nodes might be captured (i.e., the node-

capture tolerance level is known), providing security to the network beyond this level is

not an optimal design. Therefore, in contrast to other schemes, we consider both pτ and

Plk as deign metrics. This provides the opportunity to the designer to adjust the network

properties according to the desired application. We note that these two metrics are not

monotonic functions of the dimension d. (The probability Plk globally decreases with d.

However, as shown in Figure 7.2a, there are some local fluctuations that cause the function

to be non-monotonic in the mathematical sense.) Therefore, we use the following set in the

- 173 -



optimization process

Dγ(p) :=
{

d ∈ Bβ0
: p(d) ≥ γ pmax + (1− γ) pmin

}

, (7.32)

where p is either pτ or Plk considered as a function of d. In addition, pmax and pmin are

the maximum and the minimum of p over Bβ0 , respectively, and 0 ≤ γ ≤ 1 is a design

parameter. We note that Dγ(p) is, in fact, the set of all d ∈ Bβ0 for which the value of the

function p is above its minimum by (100γ)% of its variation range within Bβ0 . With this

description, for γ = 0, the set Dγ(p) consists of all d ∈ Bβ0 . Similarly, for γ = 1, this set

consists of all d ∈ Bβ0 for which the value of the function p is equal to its maximum within

Bβ0 . These two observations correspond to the two extreme values of the parameter γ that

can be mathematically formulated as

D0(p) = Bβ0 , D1(p) = argmax
d∈Bβ0

p(d) . (7.33)

Therefore, the optimal dimension is

dopt := max
(
Dγ1 (pτ ) ∩Dγ2 (Plk)

)
, (7.34)

where 0 ≤ γ1, γ2 ≤ 1 are free design parameters. By the two observations in (7.33), the

parameters γ1 and γ2 in (7.34) determine the importance of lowering the probability of the

link-key compromise (as a security metric) and increasing the probability of the link-key

establishment (as a network-connectivity metric) in the dimension-optimization process,

respectively. As explained before, these two design metrics vary in the opposite directions.

Hence, choosing the values of γ1 and γ2 both close to 1 results in disjoint sets Dγ1 (pτ ) and

Dγ2 (Plk). As a rule of thumb, by increasing one of these two parameters, the other one

must be decreased. The two extreme cases are:

• γ1 = 1 and γ2 = 0: In light of (7.33), this choice for the parameters maximizes the

node-capture tolerance pτ without considering Plk in the optimization.

• γ1 = 0 and γ2 = 1: Similarly, this setting maximizes only Plk (hence, minimizes the

power consumption) without considering the security parameter pτ .
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We note that Dγ1 (pτ ) ∩ Dγ2 (Plk) is the set of dimensions in Bβ0 that satisfy the desired

security and connectivity properties. We take the maximum dimension in this set as the

optimal one in favor of the security. Similar to (7.34), the worst dimension dwst is defined

as

dwst := min
(
Dc

1−γ1
(pτ ) ∩Dc

1−γ2
(Plk)

)
, (7.35)

where the superscript c denotes the set complement. The curves of dopt and dwst versus the

network size n are plotted in Figure 7.4a for γ1 = 1 and γ2 = 0. To show the importance

of choosing the optimal dimension, the curves of pτ (dopt) and pτ (dwst) versus the network

size are depicted in Figure 7.4b. As this figure shows, the difference between these values

reaches as high as 0.93, which is very significant.

The probabilities of the link-key compromise in the EG of [77], the qComp of [32], the

HB of [127], and the proposed MKPS are compared to each other in Figure 7.5. For a

fair comparison, in plotting all these curves, the node memory M and the probability of
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(a) The optimal dimension dopt and the worst dimen-
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Figure 7.4: Optimal versus the worst dimension and the corresponding pτ . The memory size is
M = 50 and the thresholds are τ = 0.1, β0 = 0.9, γ1 = 1, and γ2 = 0.
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(a) In these curves, the optimal dimension in
the MKPS is dopt = 16 that is obtained
by choosing γ1 = 1 and γ2 = 0. The
corresponding probability of link-key es-
tablishment is Plk ≈ 10−4. The sizes of
the key pool in the EG and qComp are
P = 23,840,419 and P = 3,408, respec-
tively.
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(b) In these curves, the optimal dimension in
the MKPS is dopt = 3 that is obtained by
choosing γ1 = 0.01 and γ2 = 0.2. The
corresponding probability of link-key es-
tablishment is Plk ≈ 10−3. The sizes of
the key pool in the EG and qComp are
P = 1,858,772 and P = 3,354, respectively.

Figure 7.5: Probability of the link-key compromise versus the fraction of captured nodes for dif-
ferent schemes. In all these curves, n = 100,000, M = 50, τ = 0.1, β0 = 0.9, and q = 3
in the qComp.

the link-key establishment Plk are fixed. In Figure 7.5a the emphasis is on the security

metric Plkc by choosing γ1 = 1 and γ2 = 0. In contrast, in Figure 7.5b, the values of these

parameters are γ1 = 0.01 and γ2 = 0.2 for which the resulting KPS provides a high network

connectivity. As these curves show, the MKPS achieves the lowest probability of the link-key

compromise with the same memory size and network connectivity probability. For example,

in Figure 7.5a, when 90% of the nodes are captured, the fraction of compromised links among

non-captured nodes in the MKPS scheme is 0.8%. However, the same fraction in the HB,

EG, and qComp is 73%, 17%, and 100%, respectively. We note that the probability Plk in

Figure 7.5b is 10 times that in Figure 7.5a. As discussed before, this implies a reduction in

the transmission radius by a factor of 101/ǫ, where 2 ≤ ǫ ≤ 4.
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7.4.4 Communication Range

As explained before, communication transmission and reception are the most energy con-

suming operations in a sensor node. To prolong the network lifetime, the communication

radius should be minimized. The minimum communication radius, in any KPS, required to

have a connected network is given in (7.25). To incorporate the effect of captured nodes in

the network connectivity, we use the actual probability of the link-key establishment P act
lkc

in (7.25). This probability is related to Plk as follows

P act
lk = Plk (1− Plkc) , (7.36)

which reflects the fact that a link between two nonmalicious nodes is considered healthy

if:

1. these nodes have been able to establish a link key after the network deployment and

before any adversarial activities and

2. the link established between these nodes is not compromised.

We have compared communication radii of the EG, HB, and MKPS in Figure 7.61. In

all these curves, the size of the network is n = 100,000 and the size of the key pool in

the EG scheme is P = 1,000,000. Based on these curves, the proposed MKPS requires a

communication radius less than the HB does. The difference becomes significant for large

values of the dimension d. This observation supports the fact that while maintaining the

same network connectivity, the MKPS provides network resiliency much higher than the HB

does. For example, for M = 50 and d = 3, we have REG : RHB : RMKPS = 1 : 4.0466 : 2.8681

when 50% of the nodes in the network are captured. By increasing the dimension to d = 3,

this ratio becomes REG : RHB : RMKPS = 1 : 1.4946 : 1.3981.

Another observation in Figure 7.6 is that for small sizes of the node memory, the effect

of increasing the dimension becomes more significant. For example, we have REG : RHB :

RMKPS = 1 : 1.8747 : 1.3497 for M = 25, d = 3, and pnc = 0.25. The same ratio for d = 16

is REG : RHB : RMKPS = 1 : 2.7496 : 1.7861.

1In plotting these curves, we have ignored the constant coefficient of the communication radius in (7.25).
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(b) M = 50, d = 16.

0.0 0.25 0.5 0.75 1.0

−1.0

0.5

2.0

3.5

5.0

6.5

8.0

EG

HB MKPS

pnc

lo
g
1
0
R

(c) M = 25, d = 3.
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Figure 7.6: Communication radius versus the fraction of captured nodes for different schemes.
In all these curves, n = 100,000 and the size of the key pool in the EG scheme is
P = 1,000,000.

7.4.5 Storage Memory

Every sensor node I requires two different types of storage memory:

1. One type with amount Mk bits to store its ID and the coefficients of the d univariate

polynomials each of degree t with coefficients from F.

2. Another type with amount Mc to store the IDs of captured nodes that are at the the

Hamming distance of one from it. This is because I is able to establish link keys with

these nodes. If they are captured, all communications with them must be abandoned.
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As explained before

Mk = M log2 |F|+ d log2m , (7.37)

where M is the maximum capacity of every sensor node, in terms of the number of elements

in F, to store the coefficients of the polynomials.

To determine Mc for an arbitrary sensor node I, assume that the MKPS is r-variate

secure as in Definition 7.4.1. Let f be a multivariate polynomial such that I stores one of

its shares. The r-variate secrecy assumption implies that without capturing I, an adversary

has to capture at least λ(r, t) other nodes that also store the shares of f in order to recover

r variables of f . Let Nf be the set of all sensor nodes in the network that store the shares

of the multivariate polynomial f . The node I can establish a link key with another node

I ′ ∈ Nf if and only if h (I, I ′) = 1. We note that there are at most m − 1 such nodes in

the network. If λ(r, t) ≤ m − 1, then I has to store the IDs of at most λ(r, t) − 1 such

nodes when they are captured by the adversary. The rationale is that if more nodes are

captured, then f is compromised, and I can delete the share of f from its memory. This

case happens when the scheme is univariate secure, i.e., when r = 1. Since λ(1, t) = t+ 1,

we have Mc ≤ dt log2m. (Recall that if h (I, I ′) = 1, then the IDs of I and I ′ differ in

only one coordinate that may be stored by I.) Considering the maximum value of Mk, we

conclude that when the scheme is univariate secure, we have

Mk +Mc ≤ d(t+ 1)
(
log2 |F|+ log2m

)
. (7.38)

The required node storage-memory in the HB of [127] is the same.

The other possible case is λ(r, t) ≥ m. In this case, the adversary cannot compromise

the polynomial f by capturing all the m−1 nodes I ′ ∈ Nf such that h (I, I ′) = 1. However,

if the adversary does so, the node I cannot use the share of f to establish a link key with

another node in the network. Hence, the node I can delete the share of f from its memory

although the polynomial may not be compromised. We conclude that in this case, the node

I has to store the IDs of at most m− 2 other nodes I ′ ∈ Nf such that h (I, I ′) = 1. Hence,
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Mc ≤ d(m− 2) log2m. Using the maximum value of Mp, we conclude

Mk +Mc ≤ d(t+ 1) log2 |F|+ d(m− 1) log2m . (7.39)

To compare the memory usage in this case with that in the HB, we note that λ(r, t) ≥ m

when r > 1. Moreover, this implies m ≤ t by the definition of r-variate secrecy. Thus,

comparing (7.39) with (7.38), we conclude that the memory usage in this case is lower than

that in the previous case. In addition, we note that the memory usage in the HB is the

same as that when we have univariate secrecy. Therefore, the final conclusion is that the

node memory-usage in the proposed MKPS is less than or equal to that in the HB.

7.5 Location-Aware MKPS

A sensor network may randomly be deployed in a field in which case there is no prior

knowledge as to which sensors are located at the vicinity of each other. The MKPS is

an example of such schemes. In static sensor networks, although it is difficult to precisely

determine the location of the sensor nodes in the field, some approximate information are

sometimes available. For example, when a truck is used to deploy a network of static sensors,

we may arrange them on the points of a two-dimensional lattice prior to the deployment.

After the deployment, the sensors may not position on their preset locations, but their

approximate locations are known. We may take advantage of this information to design

a KPS that provides higher network connectivity comparing to the schemes that use the

random-deployment model.

In this section, we propose a location-aware multivariate key pre-distribution scheme

(LA-MKPS) based on the proposed MKPS. In this new scheme, the deployment field is

divided into non-overlapping hexagonal cells of equal areas. The sensors are uniformly

distributed among the cells by partitioning them into groups of almost equal size. The

LA-MKPS consists of two key pre-distribution layers. One layer is used for the secure

communication within a cell for which we use the MKPS. The second layer is designed
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for communications between adjacent cells. For this layer, we adopt an MKPS based on

bivariate polynomials. The details of the LA-MKPS are provided in this section.

The first step in the LA-MKPS is partitioning the deployment field into non-overlapping

cells of equal areas. For this purpose, we consider cells of hexagonal shape based on the

observation that sensors usually employ omnidirectional antennas [159]. Hence, similar to

mobile communication systems, a honeycomb-like structure of communication cells provides

the most efficient coverage [181, 110]. The advantage of using hexagons over squares is that

the deployment field can be covered with smaller number of cells with the former choice.

The coverage of the hexagonal cells versus that of the square cells is compared in Figure 7.7.

As this figure shows, a hexagonal cell gives a better approximation of the circular wireless

transmission-coverage of a sensor. Hence, a hexagonal cell with the maximum lateral di-

mension of 2R covers a larger area than a square cell with the same lateral dimension.

The corresponding areas of these cells are Asq = (2R)2

2 and Ahex = 3
√

3(2R)2

8 with the ratio

Asq/Ahex = 1.3.

Assuming that the wireless communication range of the sensors is R, we cover the target

field by non-overlapping hexagonal cells with lateral dimension 2R. If the area of the field

is A, the minimum number of cells required to cover the field is

C =

⌈

8
√

3

9

A

R2

⌉

. (7.40)

This choice guarantees that all sensors in a cell are in the communication range of each

other. The nodes are uniformly assigned to the cells. Thus, all the cells have almost

equal number of nodes. To secure the inter-cell communications, we employ MKPS by

2r
2r

Figure 7.7: Square versus hexagonal cell with the same communication range.
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distributing the shares of multivariate polynomials to all the sensors in a cell. Since these

sensors are all in the communication range of each other, every two of them can establish a

link key. To localize the effects of the link compromise, we use a different pool of multivariate

polynomials for every cell. The MKPS employed in every cell can be designed to provide

perfect secrecy as in Corollary 7.4.2.

To facilitate future references, frequently used notations are listed below with their

meanings.

C Number of hexagonal cells

M c
k Size of the memory to store coefficients of the bivariate polynomial shares

M c
c Size of the memory to store IDs of compromised groups in adjacent cells

mc = ⌈
√
C⌉

tc Degree of bivariate polynomials in both variables

pc Order of the finite field from which the coefficients of the bivariate polynomials

are taken

G Number of groups in every cell

(i, j)g g-th group in cell (i, j)

ng Number of sensors in every group in every cell

nc Number of sensors in every cell

P c
lkc Probability of the link-key compromise

ppsc Probability of compromising a share of a bivariate polynomial

7.5.1 Setup

To distribute keys required for the secure communication between adjacent cells, we use

a grid-based approach. In this approach, we assign the points on a two-dimensional grid

to the cells. In addition, we assign a unique symmetric bivariate polynomial to every cell.

To distribute the shares of this polynomial between sensors, we divide the sensors in every
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cell into equal-size groups. In every cell, the shares of the corresponding polynomial are

distributed among the sensors in the groups. Moreover, the sensors of a cell store the shares

of the polynomials corresponding to the neighbor cells. As a result, the neighbor cells are

able to establish pairwise keys. The setup algorithm is explained in an algorithmic language

in the following.

1. If C is the total number of cells, design a two-dimensional grid with size mc×mc, where

mc := ⌈
√
C⌉. To every cell, assign a unique point (i, j) on the grid, where i, j ∈ (mc ).

2. Design a pool of m2
c symmetric bivariate polynomials fi,j(x, y) ∈ Fpc [x, y] with degree

tc in both variables. For all i, j ∈ (mc ), assign the polynomial fi,j(x, y) to the cell

(i, j).

3. Divide the sensors in the cell (i, j) into G almost-equal-size disjoint groups labeled by

(i, j)0, . . . , (i, j)G−1. Let ng be the maximum number of sensors in every group. For

any g ∈ (G ), store the coefficients of the polynomial fi,j(g, y) in all the sensors in

(i, j)g.

4. As shown in Figure 7.8, assume the six neighbors of the cell (i, j) are (iℓ, jℓ) for ℓ ∈ ( 6 ).

Store the coefficients of the six polynomials fiℓ,jℓ
(g, y) to all the sensors in (i, j)g for

all g ∈ (G ).

(i, j)

(i0, j0)

(i1, j1)

(i2, j2)

(i3, j3)

(i4, j4)

(i5, j5)

Figure 7.8: A hexagonal cell and its six neighbors.
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Using this scheme, every sensor stores 7(tc +1) log2 pc bits in addition to d(t+1) log2 p bits

for the MKPS employed in every cell.

7.5.2 Link-Key Establishment

Every two nodes in two adjacent cells that are in the communication range of each other

can establish a link key using the proposed LA-MKPS. Consider two sensors I and I ′

respectively belonging to two groups (i, j)g and (i′, j′)g′ in adjacent cells (i, j) and (i′, j′) for

arbitrary g, g′ ∈ [G ]. These nodes both store the shares of the same bivariate polynomials

as follows.

I : fi,j(g, y), fi′,j′(g, y)

I ′ : fi′,j′(g
′, y), fi,j(g

′, y)

Using these shares, the nodes I and I ′ calculate two common keys as:

kI,I′,0 = fi,j(g, g
′) = fi,j(g

′, g) (7.41a)

kI,I′,1 = fi′,j′(g
′, g) = fi′,j′(g, g

′) . (7.41b)

The link key kI,I′ between these nodes is obtained by the application of a function χ as in

(7.23) with two inputs, i.e.,

kI,I′ = χ
(
kI,I′,0, kI,I′,1

)
. (7.42)

7.6 Evaluation of the LA-MKPS

Every two nodes within a cell are in the communication range of each other by our design.

Hence, by the properties of the MKPS, every two such nodes can establish either a link or a

path key. Moreover, as explained in the previous section, every two nodes in adjacent cells,

which are in the communication range of each other, can establish a link key. Therefore,

the LA-MKPS provides complete connectivity to neighbor sensor nodes. This idealistic

feature is obtained by taking advantage of the location information. In the remaining of
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this section, we study the resiliency of the LA-MKPS against the node capture and also its

required storage memory.

7.6.1 Resiliency Against the Node Capture

As explained before, the LA-MKPS consists of two KPS layers: one for the inner and

one for intra-cell communications. Since we use the proposed MKPS for the inner-cell

communications, the resiliency analysis of this layer against the node capture is provided in

Section 7.4.2. Hence, here, we study the resiliency of the intra-cell communications against

the node capture.

There are G shares of every symmetric polynomial fi,j(x, y) available in the network

that are fi,j(ℓ, y) for all ℓ ∈ (G ). Since all these polynomials are bivariate, one of the

following two cases is possible.

Perfect Secrecy: In this case, there are not enough shares of any bivariate polynomial in

the network to recover that polynomial. Since the degree of all bivariate polynomials

in both variables is tc, we must have G ≤ tc. Although perfect secrecy is an attractive

feature, we note that all the sensor nodes in a group use the same shares of the same

bivariate polynomials. Hence, capturing only one node in a group, compromises all the

communications within that group. This observation suggests increasing the number

of groups although it results in loosing perfect secrecy.

Univariate Secrecy: This case arises when G > tc. With an analysis similar to that

performed in Section 7.4.2, we deduce that the probability of the link-key compromise

is

P c
lkc =



1−
min(tc,G)
∑

i=0

(

G

i

)

pi
psc (1− ppsc)

G−i





2

, (7.43)

where ppsc is the probability of compromising a polynomial share. Since a polynomial

share, which is distributed among all the nodes of a group, is compromised if and only

if at least one of the nodes in that group is compromised, we have

ppsc = 1− (1− pnc)
ng , (7.44)
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where pnc is the probability of the node capture and ng is the number of nodes in

every group. If there are nc sensors in every cell, then ng =
⌈

nc

G

⌉
.

In Figure 7.9, we compare P c
lkc in the LA-GB of [126] and the proposed LA-MKPS. In

these curves, the assumption is that there are nc = 100 sensors in every cell. We note that in

the LA-GB, every sensor stores five polynomials while in the LA-MKPS, seven polynomials

are stored in every sensor. To take into account this difference, we have adjusted the value

of tc in our comparison as tc = ⌊75/d − 1⌋, where d = 5 in the LA-GB and d = 7 in the

LA-MKPS. As these curves show, the LA-MKPS has a lower probability of the link-key

compromise. For example, when 20% of the sensors are captured, about 92% of the link

keys in the LA-GB are compromised. However, in the LA-MKPS, only 10% of the link-keys

are compromised. Another observation is that by increasing the number of sensors ng in

each group, the probability P c
lkc further decreases. This is due to the inverse relationship

between ng and G that affects P c
lkc in (7.43).

7.6.2 Storage Memory

In this section, we calculate the amount of the storage memory required by every sensor

node to store the keying materials. Since for the first layer we use MKPS, the amount of

the storage memory for this layer is given in Section 7.4.5. Therefore, we only focus on the

amount of storage memory for the second layer. Similar to the MKPS, every node requires

0.0 0.25 0.5 0.75 1.0

0.0

0.25

0.5

0.75

1.0

L
A
-G

B

n
g

=
8

n
g

=
1
0

ng = 12

pnc

P
lk

c

Figure 7.9: Probability of the link-key compromise versus the fraction of captured nodes. Param-
eters are nc = 100, tc = 14 in the LA-GB, and tc = 9 in the LA-MKPS. The memory
usage of each sensor is 75.
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two different types of storage memory:

1. The first type is to store the coefficients of the seven polynomial shares, the ID the

cell in which this node is residing, and the IDs of the six adjacent cells. If M c
k is the

amount of this memory in bits, then

M c
k = 7 (tc + 1) log2 pc + 12 log2mc . (7.45)

2. The second type of memory is required to store the IDs of the groups in adjacent cells

for which at least one of the belonging nodes is captured. We denote the amount of

this memory by M c
c in terms of the number of bits.

To determine M c
c , consider an arbitrary node I in the cell C = (i, j) ∈ (mc )2. Let

C′ = (i′, j′) be a cell adjacent to C. If for some ℓ ∈ (G ), a node I ′ ∈ C′
ℓ is captured,

then I must abandon all communications with every node in the group C′
ℓ. By (7.42),

every link key established between I and a node I ′ ∈ C′ requires a share of the polynomial

fi′,j′(x, y). If this polynomial is compromised, then I cannot establish a link key with any

node in C′. Thus, the number of groups in C′ that the node I has to store their IDs in case

they are compromised depends on the security level of the second layer. First, assume the

second layer is perfectly secure, i.e., G ≤ tc. Since the cell C has six adjacent cells, we have

M c
c ≤ log2 6 + log2 g. If the second layer is univariate secure, then the node I has to store

the IDs of at most tc groups in every cell. Therefore, we have

M c
c ≤ log2 6 + log2 min (G, tc) . (7.46)

In LA-GB, we have M c
k = 5 (tc + 1) log2 pc + 2 log2mc [126]. Moreover, M c

c ≤ 2 +

log2 min (nc, tc), where nc is the total number of nodes in every cell. To compare the total

amount of storage memory between the proposed LA-MKPS and the LA-GB, we provide

numerical values for a typical case in the following example.

Example 7.6.1. Consider a field covered by C = 100 hexagonal cells each containing nc =

100 sensor nodes. Let tc = 9 and G = 8. In the LA-MKPS, we have M c
k +M c

c = 285 bits.

However, in the LA-GB, we have M c
k +M c

c = 205 bits.
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As the above example reveals, in most cases, the LA-MKPS required slightly larger

storage memory comparing to the LA-GB. However, LA-MKPS provides a higher resiliency

against the node capture.

7.7 Summary

We proposed two threshold key pre-distribution schemes in this chapter namely MKPS and

LA-MKPS. In the MKPS, every sensor node is assigned a unique d tuple of positive integer

as its ID. Using these IDs, the shares of multivariate polynomials are pre-distributed among

the sensor nodes. After the deployment, some nodes are able to directly establish exactly

d− 1 common keys using their stored shares of polynomials. The secret key between these

nodes is a combination of all these d− 1 keys. Hence, the proposed scheme is, in a sense, a

(d − 1)-composite method. This feature considerably improves the security of the MKPS.

Fortunately, this feature is obtained for free with no payoffs such as additional memory.

The proposed MKPS has the threshold property, i.e., it remains perfectly secure up to

the capture of a certain fraction of sensor nodes. We also proposed an algorithm to find

the optimal dimension d in our scheme. In contrast to previous schemes, we provide both

security and network connectivity as the optimization criteria. Therefore, the proposed

scheme provides an opportunity to the designer to adjust the network properties according

to the desired application.

The proposed LA-MKPS scheme takes advantage of the location information to improve

the connectivity of the network by partitioning the deployment field into hexagonal cells.

The evaluation of this technique shows significant improvement over the previous location-

aware schemes.
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CHAPTER 8

Data Authenticity and Availability

8.1 Introduction

In this chapter, we consider the data authentication and the data availability in WSNs1.

Triggered by an event in the field or upon a sink query, the nodes close to the center

of stimulus collaboratively generate a report and send it back to the sink. Considering

the wide scattering of the nodes in the field, the center of stimulus is usually distanced

from the sink rendering single-hop communication with the sink impossible. Therefore, the

generated report is forwarded to the sink through multi-hops.

Security of multi-hop data transfer in wireless sensor networks becomes very important

especially for the networks deployed in hostile environments. Constraints of sensor nodes

and the lack of infrastructure in such networks poses new challenges in designing security

services. The major attacks that this chapter is concerned on a wireless sensor network are

as follows:

Eavesdropping: By listening to the radio channel, the adversary tries to obtain meaningful

information (e.g., traffic monitoring).

False Data Injection: In this attack, an insider node attempts to cause false alarms or

to consume the energy of the forwarding sensors by injecting false data.

Data Drop: An insider node drops a legitimate report on the forwarding path toward the

sink.

1This part of the thesis is developed together with my colleague Mr. Erman Ayday.
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Noise Injection: Legitimate reports are modified by injecting noise. Thus, the sink is

unable to regenerate the original message.

Cryptographic services required to prevent these attacks are data confidentiality, data au-

thenticity, and data availability.

In this chapter, we propose a new scheme that provides all the aforementioned security

services with moderate communication and computation overhead [52, 12]. The proposed

scheme makes extensive use of the node collaboration and data redundancy to provide data

authenticity and availability. To achieve this goal, we assume that the node scattering is

dense enough such that a single event in the field is sensed by more than one sensor node

and a message broadcast is received by multiple nodes in the proximity. Every step of the

proposed scheme is carried out by multiple nodes involved in the protocol, and all of them

generate the same output. Hence, a few malicious nodes can be detected, and the bogus

packets generated by them are dropped.

To evenly distribute the load of report generation and forwarding and also enhance the

node collaboration, we partition the terrain into non-overlapping cells of the same shape

and area. A report generated at the event cell is forwarded toward the sink on the shortest

path in a cell-by-cell fashion. The advantages of this technique are localizing adversarial

activities and providing a robust and simple routing and authentication mechanism. To

provide an authentication mechanism, all the nodes involved in the protocol in every cell

generate a hash tree of the same packets. Every node broadcasts only a few packets along

with the corresponding authentication information. The nodes in the next forwarding cell

check the authenticity of all the received packets and drop bogus ones.

Linear random network coding is an essential component of the proposed scheme [124].

In this type of coding, intermediate nodes process the data by generating random linear

combinations of the packets they receive. This technique is advantageous in the erasure

channel model since the redundancy in the data allows the sink to recover the original

message packets by receiving few encoded packets. The erasure channel also models the

packet-drop attack by an adversary. Therefore, random network coding intrinsically pro-

- 190 -



vides a countermeasure to data drop.

8.1.1 Related Work

One of the first works in data authentication for wireless sensor networks is IHA [208]. In

this scheme, the sensor nodes are organized into clusters. A legitimate report is generated

by the collaboration of a minimum number of nodes inside a cluster. Every cluster has a

representative that is called the CH. The CH is responsible for collecting enough number of

MACs generated by the collaborating nodes, generating a report, and forwarding it to the

sink. At the initialization phase, the sink discovers the forwarding path from every CH to

itself by sending a HELLO message down the network and collecting the reflections. These

paths are periodically updated to take into account changes in the network topology over

time. Using the information gathered about the network structure, nodes connecting every

CH to the sink establish key chains. To explain in more detail, consider a typical scenario

shown in Figure 8.1. All nodes at the same number of hops away from each other form a key

chain (also called associated nodes). In Figure 8.1, this number is four hops. For example,

the sequences of nodes (v1, u1, u5, u9), (v2, u2, u6), and (CH, u4, u8) are key chains. Every

two consecutive nodes on a key chain establish a secret pairwise key that is used for report

authentication.

Triggered by an event in the field or queried by the sink, the CH starts compiling a

report. For this purpose, CH broadcasts its own sensor reading to all nodes in it cluster.

Every cluster node receiving such a message, compares the broadcast reading with its own.

S
in

kCH

v1

v2

v3

u1 u2 u3 u4 u5 u6 u7 u8 u9

Cluster

Figure 8.1: Key chains in IHA.
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If the difference is within an acceptable range, the cluster node calculates a MAC on the

reading of the CH using the secret key common with the next node on the corresponding

key chain. The CH collects all MACs and compiles a report as soon as the number of MACs

reaches a minimum number. In every hop on the path toward the sink, only one of the

many MACs attached to the report is verified. The verified MAC is updated by the enroute

node with the secret key common with the next node on the corresponding key chain. The

report is dropped by any enroute node if the MAC is unverified. Therefore, a malicious

node injecting noise to the network always causes these messages to be dropped. The

other drawback of IHA is the key chain maintenance that introduces high communication

overhead.

Another approach to data authentication is the SEF proposed in [206]. This scheme is

very similar to IHA. The main difference is that associated nodes are not manually deter-

mined at the initialization phase. In contrast to IHA, they are discovered by a probabilistic

approach. In SEF, every node is pre-distributed with the keying material that are used to

establish authentication keys after the network deployment. Key pre-distribution param-

eters are selected to guarantee, with a high probability, that any CH is able to establish

many authentication keys. The SEF provides data availability similar to IHA. Because of

the probabilistic nature of SEF, every node is required to store many keys to guarantee the

existence of a minimum number of authentication keys. Therefore, two other drawbacks of

SEF are the requirement for large storage memory and the possibility of revealing many

authentication keys by compromising only a few nodes.

Both previous schemes have a threshold property, i.e., an adversary has to compromise a

minimum number of authentication keys to forge a report. To achieve graceful performance

degradation to an increasing number of compromised keys, the location-binding keys and

location-based key assignment are employed in [205]. The proposed scheme, called LBRS,

is conceptually very similar to the SEF. However, the data is forwarded toward the sink in

a hop-by-hop fashion. Thus, LBRS localizes the adversarial activities to only the area of

the network which is under attack. The LBRS inherits the disadvantages of the SEF except
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the performance degradation behavior.

One of the most recent authentication schemes is the LEDS [166]. This is a location-

aware scheme that provides many security services such as data confidentiality, availability,

and authenticity. In LEDS, the data confidentiality is achieved by using symmetric cryptog-

raphy and linear secret sharing. To check the authenticity of the data, a legitimate report

carries many MACs that are verified by the nodes in the intermediate cells. For the data

availability, the overhearing nodes in every forwarding cell collaborate to inform the next

cell in case a legitimate report is dropped by a malicious node. Although overhearing nodes

theoretically provide data availability, there does not seem to exist a practical method to

implement this technique. The most logical realization is a voting system that has a high

communication overhead and its management introduces a high computational complexity.

8.2 Review of Some Cryptographic Primitives

In this section, we briefly introduce the cryptographic primitives employed in the design of

our authentication scheme.

8.2.1 Secret Sharing Algorithm

The idea of secret sharing is to start with a secret, divide it into pieces called shares, and

distribute them amongst a set of users [137]. The pooled shares of specific subsets of users

allow the reconstruction of the original secret. We employ a (T, t) threshold secret-sharing

algorithm. Such an algorithm generates T shares such that any combination of at least

t ≤ T shares suffices to reconstruct the original secret. We suggest Shamir’s algorithm that

generates T distinct shares using the following secret-share generator.

SSGk : F −→ F

M 7−→ M +
∑t−1

i=1(M ≫ i) ki
(8.1)

Here, k is a secret key and (M ≫ i) denotes cyclically shifting M to the right i bits.

Any combination of t shares generated using distinct secret keys can be used to construct
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a system of linearly-independent equations from which the original secret M is uniquely

obtained.

8.2.2 Pseudo-random Function

A pseudo-random function is a family of functions with the property that the input-output

behavior of a random instance of the family is computationally indistinguishable from that

of a random function [16]. The indistinguishability is measured in terms of the ability of

a computationally-limited adversary to distinguish the output sequence from a completely

randomly generated sequence. A function family is a map F : K × D → R, where K is

the set of possible keys, D is the domain, and R is the range. For simplicity, we assume

K = F although this is not a necessary condition. For any k ∈ K, the instance of the family

Fk : D → R is defined as Fk(·) := F (k, ·). Pseudo-random functions can be implemented

using the output feedback mode of block ciphers [137]. We employ a family of pseudo-

random functions with K = F, D = N ∪ { 0 }, and R = F such that each of them has a

unform distribution on the range R.

8.2.3 Hash Tree

Hash trees have many applications in theoretical cryptographic constructions such as data

authentication and commitment schemes [138, 182]. A hash tree on T data values e1, . . . , eT

is a binary tree on leaves H(e1), . . . , H(eT ), where H(·) is a one-way hash function. Let U

be the set of all nodes of the tree. Every interior node u ∈ U has a left child uL and a right

child uR. By labeling each left child with a “0” and each right child with a “1”, the digits

along the path from the root identify each node uniquely.

The tree is equipped with a one-way hash function H and a function φ : U → F that

iteratively assigns a value to every node of the tree. The assignment procedure starts at

the leaves of the tree by assigning them arbitrary values of F that are somehow related to

the data values. For every interior node u ∈ U with the left and right children uL and uR,

respectively, the value assigned to u is φ(u) := H
(
φ(uL)‖φ(uR)

)
.
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Assuming that ul
1, . . . , u

l
T are the leaves of the tree, we suggest the assignment function

with the leaf values φ(ul
i) := H(ei). Every arbitrary leaf is assigned a unique authentication

path that consists of all the values of all nodes that are siblings of the nodes on the unique

path from the root of the tree to that leaf. We note that an authentication path excludes

the value of the leaf itself and the root. Therefore, the length of all authentication paths is

at most ⌈log2 T ⌉, where ⌈·⌉ is the ceiling function.

The authentication path of every leaf is used to verify the authenticity of the corre-

sponding data value. Let AuthPath(i; e1, . . . , eT ) be an algorithm that calculates the au-

thentication path of the i-th leaf H(ei). An optimal algorithm is presented in [182] for this

purpose that generates the authentication paths in both time and space O(log2 T ). For

every i ∈ [T ], the data value ei is authentic if r = Auth
(
ei,AuthPath(i; e1, . . . , eT )

)
, where

Auth is an algorithm that takes any leaf value along with its corresponding authentication

path to generate the root of the tree.

A hash tree for the data values e1, . . . , e6 is shown in Figure 8.2. Here, hi = H(ei) for all

i ∈ [ 6 ], h12 = H(h1‖h2), h34 = H(h3‖h4), h56 = H(h5‖h6), h1∼4 = H(h12‖h34), and even-

tually the root value is r = H(h1∼4‖h56). The authentication path for the data value e3 is

the sequence h4, h12, h56. This data value is authentic if r = H(H(h12‖H(H(e3)‖h4))‖h56).

r

h1∼4

h12

h1 h2

h34

h3 h4

h56

h5 h6

Figure 8.2: Hash tree for four data values.
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8.3 Location-Aware Network-Coding Security

Together with my colleague, Mr. Erman Ayday, we proposed LNCS that provides data

confidentiality, authenticity, and availability for wireless sensor networks [52, 12]. The

proposed scheme makes extensive use of node collaboration to reduce the effect of adversarial

activities. To enhance node collaboration and localize the effect of malicious nodes, we

divide the terrain into non-overlapping cells with equal shapes. The sensor nodes are densely

and uniformly at random deployed in the field. Prior to the network deployment, every

node is loaded with a master secret key and a unique ID. We assume that a short period of

time after the network deployment, the entire network is secure during which every node

obtains the location of its cell and two keys (a cell and a node key) using the location and

preloaded information. After the initialization phase, all the nodes delete the secret master

key from their memories. Sink is the only entity with the ability of deriving the secret keys

of all nodes. We note that this secure initialization period is necessary for location based

authentication schemes to generate the location based keys. Hence, the previous location

based schemes including the LEDS are also making the secure initialization assumption.

An event in the field is sensed by multiple nodes because of the dense deployment of the

sensor nodes. To generate a report, the nodes close to the center of stimulus broadcast their

own sensor readings to the neighbors involved in the protocol. (All the inner-cell commu-

nications are secured using the cell key.) After the completion of information exchange, all

the nodes in the event cell, involved in the protocol, have access to the same set of packets.

These nodes aggregate the packets using a secure aggregation function such as median. In

the next step, every collaborating node generates a share of the aggregated data using a

threshold secret-sharing algorithm and encrypts that using its unique node key. Involved

nodes inside the source cell also exchange their encrypted shares between each other. To lin-

early encode the encrypted shares, these nodes generate the same coefficients matrix using a

pseudo-random function. The encoding is performed by multiplying the coefficients matrix

to the vector of encrypted secret shares. The involved nodes generate a hash tree on the
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encoded packets and the coefficients matrix. Eventually, every node broadcasts only a few

encoded packets, the corresponding rows of the coefficients matrix, and the authentication

information to the next cell closest to the sink. Every node tags its broadcast with the IDs

of its own and its cell. The report is routed in a cell-by-cell fashion on the shortest path

toward the sink.

Upon receiving the packets by the nodes in a forwarding cell, these nodes verify the au-

thenticity of the received packets and the coefficients matrix, and drop bogus ones. Similar

to the event cell, these nodes generate a common coefficients matrix, encode the authentic

packets, and generate a hash tree on the encoded packets and the coefficients matrix. The

result is forwarded to the next forwarding cell. Sink is the final check point that verifies

the authenticity of the packets. We note that only a fraction of the nodes in every cell take

part in the protocol. The remaining nodes remain inactive.

The main contributions of our scheme are summarized in the following.

1. In the proposed scheme, data is forwarded toward the sink using multiple paths and

authenticated by multiple nodes, using a collaboration between these nodes. Data au-

thentication is performed without overhearing nodes and voting systems. Such mecha-

nisms, employed by some other schemes, suffer from extensive communication overhead.

Moreover, in the proposed scheme, the bogus packets are identified and dropped by the

legitimate nodes in the next cell.

2. We employ random network coding in our scheme to generate redundant information

that facilitate recovery of the packets erased by the channel or dropped by malicious

nodes. This kind of coding significantly improves data availability compared to all

other schemes.

3. In contrary to previous schemes, our proposed scheme do not require a trustworthy

CH that is responsible for generating the report and forwarding it to the next cell.

We emphasize that the existence of a trustworthy CH cannot be guaranteed, and a

malicious CH completely breaks down the security of the protocol.
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In order to facilitate future references, frequently used notations are listed below with

their meanings.

n Total number of nodes in the network

N Average number of nodes in every cell

T0 Number of involved nodes in the event cell

T Number of involved nodes in the intermediate cells

T ′ (= T0 + τ) Total number of packets generated after the network coding

T̂ Number of legitimate packets after report authentication

t Minimum number of shares required to reconstruct the message

∆i The ith cell on the forwarding path

Vi Set of the involved nodes in the cell ∆i

ei Packet vector generated at the cell ∆i

Ci Coefficients matrix generated at the cell ∆i

x Number of malicious nodes in the entire network

pnc Fraction of captured nodes in the entire network

8.3.1 General Assumptions

Let n be the total number of sensor nodes in the network and N be the average number

of nodes in every cell. An event detected in a cell is endorsed by the collaboration of

many nodes within that cell. Next, it is forwarded toward the sink in a cell-by-cell fashion.

Our protocol provides a geographical routing mechanism that chooses the shortest path to

the sink. Throughout the chapter, we assume ∆0,∆1, . . . ,∆λ,∆λ+1 is a typical sequence

of report forwarding cells starting at the event cell ∆0 and ending at the sink ∆λ+1. In

every cell, only a fraction of the nodes are involved in the protocol. For every cell ∆i, we

denote this fraction by the set Vi :=
{

vi
1, . . . , v

i
Ti

}

, where Ti ≤ N is the size of the set. In
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addition, for simplicity, we assume Ti =: T for all i ∈ [λ ], but T0 is not necessarily equal

to T . In other words, the number of involved nodes T0 in the event cell is not necessarily

the same as that in intermediate cells. As we will explain later, this distinction provides

robustness in designing the network for required data authenticity and availability. We

employ Algorithm 8.1 with G = N and g = Ti to randomly select the set Vi that consists

of nodes with nonzero IDs. A flow chart of the proposed scheme is provided in Figure 8.3.

In the rest of this section, we explain different steps of this scheme.

8.3.2 Setup

This phase takes place prior to the network deployment during which every sensor node is

loaded with a unique ID u ∈ [n ] and a secret master key K. In addition, descriptions of

the following algorithms are loaded in the memory of every sensor node: a secret-key block

cipher Enck, a secret-share generator SSGk as in (8.1), a collusion-resistant hash function

H, and a pseudo-random function Fk. Each one of these algorithms is a function F → F

and k ∈ F is a secret key except the pseudorandom function Fk : N ∪ { 0 } → F. For the

ID assignment, Algorithm 8.1 with G = g = n is employed.

Algorithm 8.1: Tag.

Input: Total number of nodes G and the number of nodes g ≤ G to be tagged

Output: An ID in { 0, 1, . . . , g } for all G nodes

⊲ Let u1, . . . , uG be the nodes and γ ≥ G a fixed integer.

For all i ∈ [G ], the node ui runs a timer initially set to a random value ti ∈ [ γ ]. Moreover,1.

it sets its counter ci ← 1.

For all i ∈ [G ], the node ui listens to the medium when its timer fires. If there is no2.

transmission, it considers the value of ci as its ID and broadcasts it. Otherwise, it sets

ci ← ci + 1 and defers its transmission.

If the value of the last broadcast is < g, then return to 2.3.

Other nodes that never get access to the medium, set their IDs to zero.4.
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SecureInit, RepGen, i← 1

RepAuth Retransmission

ρi−1
p ≥ T0 ρi−1

v < ζT0

RepForw Drop Report

i ≤ λ SinkVer
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No

Yes

No

i← i+ 1

NoYes

Figure 8.3: Flow chart of the LNCS.

8.3.3 Secure Initialization

The initialization is a short period of time after the network deployment during which we

assume there is no adversarial activity. This assumption is practical as it has been made

by many other sensor-network protocols.

Assume an arbitrary node u that resides in the cell ∆. Using a localization scheme, such

as the one in [123], the node u obtains the location (xc, yc) of the center of ∆. The location

information is used to derive a cell key

k∆ := H(K‖xc‖yc) (8.2)

and a node key

ku := H(K‖xc‖yc‖u) . (8.3)

These keys are used to secure the inner-cell communications and the report endorsement.

At the end of the initialization step, all nodes in the network delete the master key K from

their memories.
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8.3.4 Report Generation

Triggered by an event or upon a sink query, all the N nodes within the event cell ∆0, first

update their cell key as

k∆0 ← H(k∆0) . (8.4)

(The reason for this update is provided at the end of this subsection.) Then, they run

Algorithm 8.1 with G = N and g = T0 to select a subset V0 consisting of T0 nodes. The

nodes tagged zero by this algorithm do not belong to this subset. Hence, they do not

participate in the protocol and remain inactive until the next session. Every node v0
i ∈ V0

performs the following steps in the specified order.

1. It broadcasts its own sensor reading Mi ∈ F to other nodes in the set V0. (Communi-

cations within every cell are secured using the cell key.)

2. Upon the completion of the information exchange, v0
i aggregates the T0 measurements

using a resilient aggregation function A. As suggested in [193], median is a resilient

aggregation function that is a good replacement for the mean value (which is shown

to be secure) when the data distribution is symmetric. Let M ∈ F be the aggregation

value, i.e.,

M := A(M1, . . . ,MT0) . (8.5)

The aggregated message M may also include a time stamp to avoid message-replay

attacks.

3. The node v0
i calculates the encrypted share

di = Encki

(
SSGki

(M)
)
, (8.6)

where ki = kv0
i
, as in (8.3), is the unique secret key of this node that is derivable only

by the sink. Using a (T0, t) secret sharing scheme allows the sink to reconstruct the

message M if up to T0 − t nodes in V0 are malicious.

4. The node v0
i broadcasts the encrypted share di, so all nodes in V0 have access to the

vector d := [ d1, . . . , dT0 ]†.
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5. Prior to encoding, v0
i generates the coefficients matrix C0 =

[
c0ij
]
∈ MT ′,T0(F) as follows

c0ij := Fk∆0
(i‖j) , (8.7)

where k∆0 is used as a seed known by all the nodes in V0 and

T ′ := T0 + τ , τ ≥ 0 . (8.8)

Since F is a pseudo-random function with uniform output distribution, the entries

of the matrix C0 are uniformly at random chosen from F. Hence, the matrix C0 is

invertible with a high probability.

6. The node v0
i encodes the vector d as follows

e0 := C0 d ∈ F
T ′

(8.9)

=
[

e01, . . . , e
0
T ′

]†
,

where d := [ d1, . . . , dT0 ]† ∈ FT0 . We note that v0
i generates more than T packets to

compensate for the packets lost or corrupted by noise (due to the medium or adversarial

activity) and allow decoding at the sink.

7. The final step of report generation is constructing the hash tree. To evenly distribute

the load of handling this step, we split the packet vector e0 and the rows of the co-

efficients matrix C0 into T0 groups of almost equal sizes. Let I1, . . . , IT0 ⊂ [T ′ ] be a

uniform partition of the set [T ′ ]. For all i ∈ [T0 ], the node v0
i generates the sequence

of authentication paths a0
i,1, . . . ,a

0
i,|Ii|, where

a0
i,j := AuthPath(j; f0

1 , . . . , f
0
T ′) ∀j ∈ Ii . (8.10)

Here, for all i ∈ [T ′ ],

f0
i := e0i ‖c0i1‖ · · · ‖c0iT0

(8.11)

is the concatenation of the ith packet with only the corresponding rows of the coeffi-

cients matrix. We note that both the generated packets and the entries of the coef-

ficients matrix are involved in the hash tree to prevent an adversary from tampering

with any one of them.
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8. Eventually, the node v0
i broadcasts the packets

P
0
i :=

(

e0(Ii),C0(Ii),a
0
i,1, . . . ,a

0
i,|Ii|, v

0
i ,∆0

)

(8.12)

to the next forwarding cell. We note that v0
i does not transmit the whole packet vector

e0 and the coefficients matrix C0; it only transmits the rows determined by the index

set Ii.

As a summary, the following packets are forwarded from the cell ∆0 to ∆1

P0 :=
(

e0,C0,a
0
1,1, . . . ,a

0
T,|IT |,V0,∆0

)

. (8.13)

Upon detecting the reception of the report by the nodes in ∆1, all the N nodes update their

cell key as k∆1 ← H(k∆1) and proceed to authenticate the received packets. Updating the

cell key adds to the security of the inner-cell communications. In addition, it changes the

random selection of the coefficients matrix C0 prior to every session since the cell key is

used as a seed to generate this matrix.

8.3.5 Report Authentication and Filtering

Every nonmalicious node in V0 transmits approximately T ′

T0
packets from the vector e0. One

possible attack is consuming the energy of the nodes in the forwarding cells. To launch such

attack, a malicious node in V0 may transmit many more than T ′

T0
packets using the IDs of

other nodes in V0. To prevent this attack, the nodes in V1 accept at most
⌈

T ′

T0

⌉

packets all

tagged with the same ID. This threshold for other forwarding cells is
⌈

T ′

T

⌉

.

In order to authenticate packets received from ∆0, the nodes in V1 require the root of

the hash tree. Since it is not transmitted, they assume it is within the set

R0 := mode
{

Auth(f0
i ,a

0
i ) : ∀i ∈

[
T ′ ]

}

, (8.14)

where f0
i is given in (8.11), a0

i is the authentication path of the packet e0i , and mode is

the statistic that from a list of data values returns the ones with the highest repetition.

We note that every member of R0 is repeated exactly ρ0
p ≤ T ′ times which represents the
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number of possible authentic packets. For all i ∈ [T ] and j ∈ [T ′ ], the node v1
i verifies

the authenticity of the packet e0j through the test Auth(ej ,a
0
j ) ∈ R0. If the packet e0j fails

the membership test, it is considered bogus; otherwise, it is authentic. Let ρ0
v ≤ T0 be the

number of nodes in V0 that have generated all authentic packets. To proceed to the next

step, report forwarding, the number of legitimate packets has to be at least T0 and the

number of nonmalicious nodes has to be at least ζT0, where 0 ≤ ζ ≤ 0.5. (This threshold

is ζT for other intermediate forwarding cells.) The possible cases are as follows:

♦ ρ0
p ≥ T0: In this case, any node in the intermediate cell is able to decode the data.

Therefore, nodes in V1 proceed to the report forwarding phase as explained in the

following subsection.

♦ ρ0
p < T0: Based on the value of ρ0

v, there are two possible cases:

– ρ0
v ≥ ζT0: This case may happen when malicious nodes, in contradictory to their

objective, generate some legitimate packets. Taking advantage of the situation, the

nodes in V1 ask for the retransmission of information from the legitimate nodes in

the previous cell ∆0 and discard all packets transmitted by the nodes detected as

malicious.

– ρ0
v < ζT0: The report is dropped.

We note that the result of the test ρ0
p ⋚ T0 stimulates the necessity for the test ρ0

v ⋚ ζT0.

If ρ0
p ≥ T0, then the data is decodable in the intermediate cell. Thus, there is no need to

check the number of nonmalicious nodes.

Setting ζ = 0.5 implies that the majority of the nodes in the previous forwarding cell

have to be nonmalicious to continue report forwarding. In this case, the set R0 has at most

one element, i.e., there could be only one authentic message. Nevertheless, for ζ < 0.5,

the set R0 may have more than one element. The implication of this scenario is that there

are different reports, each generated by the same number of nodes, but only one of them is

authentic. The intermediate nodes cannot determine which report is authentic since making
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this decision requires reconstructing the original message from its shares and the keys used

to encrypt the shares are unavailable to the intermediate nodes. As we will explain in

Section 8.4.3, data availability is inversely related to the value of ζ; for small values of ζ,

the probability of data drop due to malicious activities of captured nodes is low. However,

as we will see in Section 8.5.2, the payoff for increasing data availability is increasing the

communication overhead.

8.3.6 Report Forwarding

Let J ⊆ [T ′ ] with |J | = T̂ ≤ T ′ be the indices of authentic packets after the filtering phase.

The nodes in V1 have access to the common packet-vector ê0 := e0(J) ∈ FT̂ and coefficients

matrix Ĉ0 := C0(J) ∈ MT̂ ,T0
(F). To encode the authentic packets, the nodes in V1 generate

the coefficients matrix C′
1 =

[

c′1ij
]

∈ MT ′,T̂ (F) as follows

c′1ij := Fk∆1
(i‖j) . (8.15)

We note that, similar to the event cell, the cell key k∆1 , known by all the nodes in ∆1,

is used as a seed to randomly generate the matrix C′
1. The next step is performing the

network coding and updating the coefficients matrix. For all i ∈ [T ], the node v1
i calculates

the packet vector

e1 := C′
1 ê0 ∈ F

T ′
(8.16)

=
[

e11, . . . , e
1
T ′

]†

and updates the coefficients matrix

C1 := C′
1 Ĉ0 (8.17)

=
[

c1ij

]

∈ MT ′,T0(F) .

To evenly distribute the load of generating the authentication information, similar to

the event cell, we use a uniform partition I1, . . . , IT ⊂ [T ′ ] of the set [T ′ ]. Every node v1
i

generates the sequence of authentication paths a1
i,1, . . . ,a

1
i,|Ii|, where

a1
i,j := AuthPath(j; f1

1 , . . . , f
1
T ′) ∀j ∈ Ii . (8.18)
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Here, f1
i := e1i ‖c1i1‖ · · · ‖c1iT0

for all i ∈ [T ′ ]. Eventually, the node v1
i broadcasts the packets

P
1
i :=

(

e1(Ii), C1(Ii), a1
i,1, . . . , a1

i,|Ii|, v
0
i , ∆0

)

(8.19)

to the next forwarding cell. As a summary, the following packets are forwarded from the

cell ∆1 to ∆2

P1 :=
(

e1, C1, a1
1,1, . . . , a1

T,|IT |, V0, ∆0

)

. (8.20)

The message forwarding continues in the same fashion at every cell in the sequence ∆1, . . . ,∆λ.

It can be easily shown that for every i ∈ { 0, 1, . . . , λ }, we have

ei = Ci d . (8.21)

8.3.7 Sink Verification

The final verification point, the sink, receives the following packets

Pλ :=
(

eλ, Cλ, aλ
1,1, . . . , aλ

T,|IT |, V0, ∆0

)

. (8.22)

Let Rλ, as in (8.14), be the set of possible roots of the hash tree generated at the cell ∆λ−1.

This implies that the packet vector eλ consists of θ := |Rλ| sub-vectors that are equally

likely to be authentic. Let J1, . . . , Jθ ⊂ [T ′ ] be the indices of these sub-vectors. From

(8.21), we have eλ (Jℓ) = Cλ(Jℓ)dℓ for all ℓ ∈ [ θ ], where possibly dℓ = d for only one

ℓ ∈ [ θ ]. Therefore, for every invertible matrix Cλ (Jℓ), the sink decodes eλ(Jℓ) as

dℓ =
(
Cλ(Jℓ)

)−1
eλ(Jℓ) . (8.23)

In the next step, the sink decrypts the shares in every dℓ using the secret keys of the

nodes in V0. Then, the sink tries to reconstruct the original message using any t out of

the T0 shares. If the reconstructed message is meaningless, the sink tries a different set of

t shares. After exhausting all possible combinations, the sink repeats the same process for

another vector dℓ. Therefore, the maximum size of the search space is
(T0

t

)θ
.
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8.4 Security Evaluation of the LNCS

In this section, we evaluate the security of our scheme through analytical measurements of

the security services provided: confidentiality, authenticity, and availability. Throughout

this section, we assume that there are n nodes in the network, and every cell has approxi-

mately N nodes. In addition, we assume that an adversary has randomly captured x nodes

in the entire network. Therefore, the probability of node capture is pnc := x
n .

8.4.1 Data Confidentiality

All the communications within an arbitrary cell ∆ are secured using the cell key k∆. This

key is only used in the event cell to block a passive adversary who is only eavesdropping.

Capturing a single node in a cell compromises the security of the entire cell. However, it

does not affect other cells since different cells use distinct keys. Even after compromising

the security of the event cell, an adversary does not obtain meaningful information. This is

because the shares generated at the event cell are encoded using the unique keys pairwise

between the report-generating nodes and the sink.

The data confidentiality of the LNCS is the same as that in LEDS proposed in [166].

A cell is compromised when at least one node inside that cell is captured. Therefore, the

probability Pcomp of cell compromise with respect to data confidentiality is

Pcomp = 1−
(n−N

x

)

(n
x

) . (8.24)

The curves of this probability are provided in [166].

8.4.2 Data Authenticity

One possible attack launched by an adversary is capturing enough number of nodes in the

event cell to forge a report. We note that the shares of an event are generated at the event

cell using the secret keys known only to the report endorsing nodes and the sink. Therefore,

an adversary is unable to deceive the sink by capturing nodes along the forwarding path.
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Since the sink requires at least t consistent packets to reconstruct the data, the adver-

sary has to capture at least t nodes within the event cell. Thus, the probability of data

authenticity is

pauth =
t−1∑

j=0

pc(j) , (8.25)

where pc(j) is the probability that exactly j random nodes in the event cell are captured,

i.e.,

pc(j) =

(N
j

)(n−N
x−j

)

(n
x

) , j = 0, 1, . . . , N . (8.26)

The probability of authenticity is plotted in Figure 8.4 for different values of N and t. In

this graph, pnc is the probability of node capture. As these curves show, increasing the

value of t improves Pauth since the number of nodes to be captured by an adversary also

increases. Another observation is that increasing the cell size degrades the probability of

authentication. This is because in a large cell, the probability that a randomly captured

node resides in the cell under study is high. As an example, for t = 40, the probability of

authenticity is 75% when 36% of the nodes are captured.

8.4.3 Data Availability

To prevent the sink from receiving a legitimate report, an adversary has to capture a

minimum number of involved nodes in an arbitrary forwarding cell ∆i. As explained in
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Figure 8.4: Probability of authenticity in a network of size n = 10,000 and cell sizes N = 50
(solid lines) and N = 100 (dashed lines).
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Section 8.3.5, ζTi is the threshold2 on the number of nonmalicious nodes detected in Vi−1

that are required by the cell ∆i to forward the message to the cell ∆i+1. Therefore, the

adversary has to capture at least T − ζTi +1 involved nodes from the set Vi. In light of this

observation, the probability of data availability is

P i
av =

⌈T−ζTi⌉+1
∑

j=0

pi
inv(j) , (8.27)

where pi
inv(j) is the probability that among the nodes captured in the cell ∆i, exactly j of

them are involved. Using conditional probability, one can easily show that

pi
inv(j) =

N−Ti+j
∑

ℓ=j

pc(ℓ)

(

ℓ

j

)(
Ti

N

)j (

1− Ti

N

)ℓ−j

. (8.28)

A possible attack is selective forwarding in which malicious nodes may refuse to forward

the report and simply drop it [112]. In our proposed scheme, this attack fails when an

adversary randomly captures a few nodes within a forwarding cell. The adversary achieves

her goal by capturing only involved nodes in a cell.

Assuming T0 = T , the probability of data availability Pav is plotted in Figure 8.5 for

different values of T and ζ. In all these curves, a general observation is that for small values

of pnc, increasing T improves the probability Pav because the adversary has to capture

more nodes. However, beyond an specific value of pnc this effect reverses, i.e., increasing

T decreases the probability Pav. This phenomenon becomes clear recalling that the data

2We recall that Ti = T for all i ≥ 1.
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Figure 8.5: Probability of availability in a network with n = 10,000 and N = 100.
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is available in a forwarding cell only when this cell has received authentic packets from at

least ζT0 nonmalicious nodes in the previous cell. When there are too many malicious nodes

in the network, finding at least ζT nonmalicious nodes becomes difficult for large values

of T . Another observation is that for a fixed T , increasing N degrades availability since

the probability that a node is involved decreases. Another observation is that decreasing ζ

improves the availability since ζT is the threshold on data availability.

To mention a few numerical examples, in Figure 8.5a, at the crossing point of all curves,

data availability is 60% when 50% of the nodes are captured. For the same number of

malicious nodes and T = 20, in Figure 8.5b, data availability improves to 93%.

8.5 Performance Evaluation of the LNCS

In this section, we evaluate the performance of our scheme in terms of computation and

communication overheads per sensor node. Moreover, as explained in Section 8.3.5, a for-

warding cell may request the retransmission of the report from the previous cell. Hence,

we calculate the probability of retransmissions that is considered communication overhead.

Throughout this section, we assume T ′ = O(T0) that is a feasible assumption in network

coding.

8.5.1 Computation Overhead

The first phase in our scheme is report generation. The generation of the matrix C0 as in

(8.7) and the calculation of the vector e0 in (8.9) are computationally the most expensive

calculations in this phase. They both cost O(T 2
0 ) that is the total computational complexity

of report generation. We note that data aggregation in (8.5) is usually a fast operation. For

example, the computational complexity of calculating median, as suggested in Section 8.3.4,

is O(T0 log2 T0) [40].

The next phase is report authentication and filtering. The only computation performed

in this phase is constructing the set Ri that consists of the mode of T ′ data values. This is
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a relatively cheap operation with complexity O(log2 T0).

The last phase performed by the sensor nodes is report forwarding. The most expensive

computation in this phase is calculating the matrix Ci as in (8.17) that costs T ′ T̂ T0 =

O(T 3
0 ). Finally, we conclude that the computational complexity of our scheme is O(T 3

0 ) per

sensor node.

8.5.2 Communication Overhead

In this subsection, we calculate the communication overhead per sensor node in terms of

the number of elements of F transmitted or received considering the fact that both data

transmission and reception consume the same amount of energy.

During the report generation phase, every node in the set V0 broadcasts its own sensor

reading to other nodes in that set. Since the nodes outside this set remain inactive, the

communication overhead of this operation is exactly T0 per node. At the end of report

generation, every node v0
i transmits the set of packets P0

i as in (8.12) to the next cell. The

number of packets in this set approximately is T ′

T0
(1 + log2 T

′) +T ′ = O(T0). Therefore, the

communication overhead of report generation is O(T0) per node.

Every node in a forwarding cell receives a set of packets as in (8.13) that approximately

consists of T ′+T ′ T0 +T T ′

T0
log2 T

′ = O(T 2
0 ) packets. In addition, every such node transmits

a set of packets as in (8.19) that, similar to the report generation phase, consists of O(T0)

packets. Therefore, we conclude that in our scheme, the communication overhead per node

is O(T 2
0 ).

8.5.3 Retransmission

As explained in Section 8.3.5, the nodes in a forwarding cell ∆i+1 may require the retrans-

mission of information from the previous cell. The retransmission occurs only when the

number of nonmalicious nodes detected in the previous cell ρi
v is strictly less than ζTi while

the number of authentic packets ρi
p is greater than or equal to T0. We recall that a nonma-

licious node in Vi generates approximately T ′

Ti
authentic packets. Therefore, to violate the
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threshold T0 on the number of authentic packets ρi
p, the adversary has to capture at least

ηi :=

⌊

Ti

(

1− T0

T ′

)⌋

+ 1 (8.29)

nodes from Vi. On the other hand, to request retransmission, there has to be at least

ζTi nonmalicious nodes in ∆i, which implies that the adversary has to capture not more

than Ti(1− ζ) nodes in ∆i. Considering these facts, retransmission may happen only when

ηi < Ti(1− ζ), i.e.,

T0 > ζ(T0 + τ) (8.30)

by (8.8). In this case, the probability of retransmission requested by the nodes in ∆i+1 is

P i+1
re :=

⌊Ti(1−ζ)⌋
∑

j=ηi

pi
inv(j) . (8.31)

Here, pi
inv(j), given in (8.28), is the probability that exactly j involved nodes in the cell ∆i

are captured.

The probability of retransmission for different ratios of over-transmission τ
T is plotted

in Figure 8.6. As the curves in this figure show, increasing over-transmission decreases the

probability of retransmission, which intuitively makes sense. It can also be mathematically

explained noting that by increasing τ , the threshold η in (8.29) increases as well. Another

observation is that when the fraction of captured nodes in the network is high, the proba-

bility of retransmission is low. Although practically of less interest, this situation happens
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Figure 8.6: Probability of retransmission in a network of size n = 10,000 and other parameters
N = 100, T0 = T = 50, ζ = 0.5, and τ

T
∈ { 0.25, 0.5, 0.75 }.
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when the large number of captured nodes causes the report drop and the breakdown of the

protocol.

8.6 Comparison with LEDS

In this section, we compare LNCS with LEDS in terms of security and overhead since

LEDS is the only scheme that provides data availability. We note that none of the other

schemes (IHA, SEF, and LBRS) provides data availability since data is transmitted on a

path, consisting of single nodes, toward the sink. Therefore, a malicious node on the path

may drop the report to prevent its reception by the sink. In the following, we provide a

comparison between LNCS and LEDS.

1. The transmission of data from one cell to another is performed by a single trustworthy

node in LEDS called CH. The existence of such node cannot be guaranteed. In LNCS,

every node involved in the protocol broadcasts part of the generated report. Thus, in

terms of reliability in data transmission, LNCS outperforms LEDS.

2. To provide collaboration between overhearing nodes in LEDS, excessive amount of

redundant communication between adjacent cells is necessary to collect the votes of the

nodes in the previous cell on the broadcast message. Moreover, this voting mechanism

is not practical and will fail even in the presence of a few malicious nodes. The LNCS

does not employ a voting system. Therefore, it does not bear with the communication

overhead required for such a system.

3. In LEDS, the nodes in a forwarding cell behave independently. Therefore, malicious

nodes cause serious data availability and authenticity problems. For example, a mali-

cious node in LEDS may take the role of the CH and modify the legitimate message.

The use of network coding in our scheme significantly improves data availability.

In Figure 8.7, we compare LNCS with LEDS in terms of data availability. In this

experiment, the number of involved nodes in every cells is 40. Since in LEDS, all the
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Figure 8.7: Comparing data availability between LNCS and LEDS. The network size is n =
10,000 and other parameters are N = 50, T0 = T = 40, and ζ = 1

3 . In LEDS, we
have assume t = 20 and the number of nodes per cell is 40.

nodes in every forwarding cell participate in the protocol, we have assumed there are 40

nodes in every cell for a fair comparison. The other assumption we have made is t = T
2

that provides a fair tradeoff between data availability and authenticity. As the figure

shows, data availability in LNCS is much higher than that in LEDS. For example,

when 50% of the nodes in the entire network are compromised, the probabilities of

data availability in LNCS and LEDS are 98% and 56%, respectively. The payoff for

increasing data availability in LNCS is the increase in communication overhead.

4. The coefficients matrix used for network coding in LNCS is transmitted from one cell

to another. Therefore, in terms of communication overhead, the LEDS outperforms

LNCS. We note that communication overhead is the intrinsic drawback of all networks

using random network coding.

8.7 Summary

In this chapter, we proposed a package of security services for wireless sensor networks as a

protocol named location-aware network-coding security (LNCS). As the name of the pro-

tocol implies, the nodes take advantage of the location information by dividing the terrain

into non-overlapping cells and deriving location binding keys during the secure initialization

phase. Since a malicious cluster head can completely break down the security of a proto-
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col, in LNCS, we have remedied the need to a cluster head that is responsible for report

generation and forwarding. An event detected in the field is sensed by several nodes and

aggregated by all of them. Using a secret sharing algorithm, the aggregated information

is divided into several shares that are forwarded toward the sink in a cell-by-cell fashion.

To provide data availability, we employed random network coding in our scheme. A com-

parison with other schemes showed a significant improvement in data availability. As an

authentication mechanism, we construct a hash tree on the encoded packets generated at

every cell. The packets that fail the authentication test are dropped. Every node in the

forwarding cell transmits only a fraction of the generated packets along the corresponding

authentication information. The sink is the final entity being able to reconstruct the orig-

inal message using a few shares of the message. A comparison with the previous schemes

revealed significant improvement in data availability while maintaining the same level of

data confidentiality and authenticity.
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Postliminary Material



CHAPTER 9

Conclusion of the Thesis

♦ Chapter 2 briefly reviewed univariate orthogonal wavelets over fields of characteristic

two, their filter-bank realization, and the unitary and paraunitary (PU) building blocks.

Considering the importance of PU matrices in the design of orthogonal filter banks,

Chapter 3 undertook the study of the factorization of bivariate PU matrices over fields

of characteristic two. In this chapter, we proposed a two-level factorization method. In

this method, a bivariate matrix polynomial is considered a univariate one in one of the

variables with its coefficients being matrix polynomials themselves in the other variable.

By relaxing the definition of PU matrices, we successfully factorized bivariate matrix

polynomials one level over the ring of polynomials into the product of fully-parameterized

ring building blocks that we have proposed. A second level of factorization is sometimes

possible depending on the factors obtained in the first level.

♦ Multivariate cryptography using wavelet transform and PU matrices is the topic of

Part II. We proposed an iterative self-synchronizing stream cipher, named WSSC, using

the wavelet transform as a sequence transformer and also some nonlinear components

in Chapter 5. Although the structure of the WSSC mimics the canonical representation

of self-synchronizing stream ciphers, there some fundamental differences. For example,

the secret key determines the wavelet coefficients in contrast to the traditional design

in which it determines initial states of the shift registers. The cryptanalysis of the new

cipher, where we studied many algebraic attacks, revealed that two rounds of the WSSC

resists all attacks. In addition, we studied the circuit complexity of our cipher and

compared it with that in the AES. This comparison shows that the WSSC has less
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circuit complexity to the cost of more memory.

In Chapter 6, we proposed a new framework for the design of public-key cryptosystems.

This new approach is based on the fact that the columns of any PU matrix are bases for

the module of polynomial vectors. We took advantage of this fact to design a trapdoor

one-way function based upon we proposed new public-key and digital signature schemes.

Using a mathematical conjecture, we provided evidence connecting the security of these

new designs to the difficulty of solving systems of multivariate polynomial equations,

which is considered to be hard problem. Public information in both cryptosystems

are several multivariate polynomials. The encryption and signature verification in the

new schemes are very efficient since they both require only evaluations of the public

polynomials. Because of their low computational complexity, these new cryptosystems

are suitable for applications in resource-limited devices. In the cryptanalysis of these

systems, we considered many algebraic attacks. Results showed no vulnerability to any

one of these attacks.

♦ Providing security services such as data confidentiality, integrity, and availability to

wireless sensor networks (WSNs) was the problem under study in Part III. Data confi-

dentiality is provide through the use of symmetric cryptography that requires a secret

key shared between the communicating parties. Because of the low computational power

of sensor nodes, we proposed a key pre-distribution method named MKPS in Chapter 7.

This method uniquely assigns IDs to all sensors using points on a virtual hypercube

in the d-dimensional space for some fixed integer d. Based on these IDs, exactly d − 1

symmetric multivariate polynomials are selected from a pool of such polynomials and

their univariate shares are stored in the memory of sensor nodes prior to their deploy-

ment in the field. After the deployment, every two adjacent sensor nodes that their IDs

are at the unit Hamming distance of each other use the polynomial shares stored in

their memories to establish exactly d − 1 common keys. The final key is a symmetric

combination of the common keys. We showed that this method significantly improves
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the resiliency of the network to the physical capture of nodes by an adversary. This

improvement comes to the cost of reducing the probability of connectivity, which can be

compensated by increasing the communication radius. We also provided an algorithm

to optimize the dimension d based on two metrics: the network connectivity and the

network resiliency.

Taking advantage of the node location information (when it is available), we proposed

location-aware MKPS or LA-MKPS. In this scheme, the entire terrain is divided into

non-overlapping hexagonal cells. Sensor nodes are uniformly at random scattered in

every cell. The inner- and intra-cell communications are secured using an MKPS and

a bivariate version of that, respectively. The LA-MKPS provides perfect connectivity

while inheriting the superior resiliency of the MKPS.

♦ In Chapter 8, we proposed a new scheme called LNCS that provides data authenticity

and availability to WSNs. This scheme divides the entire terrain into non-overlapping

hexagonal cells inside each of which nodes are uniformly at random scattered. Using the

location of the center of their residing cell, all sensor nodes derive two keys, a cell key

and a node key, from a master key pre-stored in them. Triggered by an event in the field

or upon a query by the sink, a report is collaboratively compiled by the nodes in a cell.

Using a secret sharing scheme and the node keys, collaborating nodes generate secret

shares of the aggregated sensed data. To provide data availability, we employed random

network coding. The secret shares are encoded by multiplying their corresponding vector

by a matrix of random coefficients. For authenticity, we used a hash tree constructed

on the encoded data. The final report is forwarded toward the sink on a cell-by-cell

fashion. At every cell, the authenticity of the received data is verified via the hash tree

and unverified packets are considered bogus and dropped enroute. Sink is the final point

where the data is verified, decoded, and reconstructed. In a comparison with previous

schemes, we showed that the LNCS outperforms in terms of the data availability.
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APPENDIX A

Proofs of Chapter 3 in Part I

1 Proof of Lemma 3.1.1

By the PU property of P(x, y), i.e.,
[

L∑

i=0

p†
i,0 x

i +
L∑

i=0

p†
i,1 x

i y

] [
L∑

i=0

pi,0 x
−i +

L∑

i=0

pi,1 x
−i y−1

]

= I ,

we conclude that the coefficients of the terms xLy, xLy−1, and xL must be zero:

p†
L,1 p0,0 = 0 (A.1a)

p†
L,0 p0,1 = 0 (A.1b)

p†
L,0 p0,0 + p†

L,1 p0,1 = 0 . (A.1c)

Since P†(x, y) is also PU, using a similar approach and setting the coefficients of the same

terms, one gets:

p0,0 p†
L,1 = 0 (A.2a)

p0,1 p†
L,0 = 0 (A.2b)

p0,0 p†
L,0 + p0,1 p†

L,1 = 0 . (A.2c)

By the statement of the lemma, pL,0 and pL,1 are not both zero. Hence, we consider the

following cases.

• pL,0 6= 0, pL,1 = 0: In this case, equations (A.1) simplify to p†
L,0 p0,0 = 0 and p†

L,0 p0,1 =

0. Equations (3.5a) are satisfied by taking the vector v as any one of the nonzero columns

of pL,0.
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• pL,1 6= 0, pL,0 = 0: Similar to the previous case, equations (A.1) simplify to p†
L,1 p0,0 =

0 and p†
L,1 p0,1 = 0. Equations (3.5a) are satisfied by taking the vector v as any one of

the nonzero columns of pL,1.

• p†
L,0 p0,0 = 0 It can be easily verified (using (A.1)) that this case is the same as the

previous case.

• p†
L,0 p0,0 6= 0, pL,1 6= 0: We, first, post-multiply (A.2c) by p00 to get

p0,0 p†
L,0 p0,0 + p0,1 p†

L,1 p0,0 = 0 .

By (A.1a), this equation simplifies to p0,0 p†
L,0 p0,0 = 0. Post-multiplying (A.2b) by p0,0,

we get p0,1 p†
L,0 p0,0 = 0. With these two results, equations (3.5b) are satisfied by taking

v as any one of the nonzero columns of p†
L,0 p0,0.

2 Proof of Lemma 3.2.1

Let the polynomial vector

v(x) =






f(x)

g(x)






be self-orthogonal, i.e.,

f(x)f(x−1) = g(x)g(x−1) . (A.3)

There always exists an integer ℓ ∈ Z such that

f(x) = xℓ (a0 + · · ·+ anx
n)

︸ ︷︷ ︸

f+(x)

, (A.4)

where n ∈ Z≥0 and ai ∈ F for all i = 0, 1, . . . , n. The polynomial f+(x) in (A.4) can be

factored into the product of irreducible polynomials fi(x) ∈ F[x], i.e.,

f+(x) =
N∏

i=1

fi(x) (A.5)
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for some N ∈ N. Using (A.5) and (A.4) in (A.3), we get

g(x)g(x−1) =
N∏

i=1

fi(x)
N∏

j=1

fj(x
−1) .

Since the polynomials f1(x), . . . , fN (x) are all irreducible, for every i ∈ [N ], the factor fi(x)

belongs to either g(x) or g(x−1). In either case, the factor fi(x
−1) belongs to the other one.

Thus, g(x) can be expressed as

g(x) = h(x)
∏

i∈I+

fi(x)
∏

j∈I−

fj(x
−1) , (A.6)

where { I+, I− } is a partition of [N ], i.e., I+ ∩ I− = ∅ and I+ ∪ I− = [N ]. In (A.6),

h(x) has to satisfy the constraint h(x)h(x−1) = 1. It is easy to show that this constraint

enforces h(x) to be a monomial. Let h(x) = xs for some s ∈ Z. Using these results, the

polynomial f(x) can be reformulated as

f(x) = xℓ
∏

i∈I+

fi(x)
∏

j∈I−

fj(x) . (A.7)

Let β(x) = xs∏

i∈I+ fi(x). By (A.6) and (A.7), we obtain

v(x) = β(x)






xmp(x)

p(x−1)




 ,

where p(x) =
∏

i∈I− fi(x) and m = ℓ− s.

3 Proof of Lemma 3.2.2

Suppose the polynomial vector






f(x)

g(x)




 ∈ (F[x±1])2

is orthogonal to v(x). By the orthogonality condition, we must have

x−m p(x−1) f(x) = p(x) g(x) . (A.8)
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Since x−mp(x−1) and p(x) are relatively prime, we obtain

f(x) = xm p(x)β(x) , g(x) = p(x−1)β(x) , (A.9)

which is the desired result.

4 Proof of Lemma3.4.1

By (3.13), all column vectors of PL(x) are in NullR(P0(x)), which is not self dual by the

assumption of the lemma. Hence, at least one of the column vectors of PL(x) is non

self-orthogonal. Let v(x) be such vector. Obtain P′(x, y) as

P′(x, y) := B
†
1



y; v(x)


P(x, y)

= v(x)v†(x)P0(x)y

+
L−1∑

i=0

[

α(x)Pi(x) + v(x)v†(x)Pi(x) + v(x)v†(x)Pi+1(x)
]

y−i

+
[

α(x)PL(x) + v(x)v†(x)PL(x)
]

y−L .

(A.10)

The only term on the right hand side with positive y-exponent is v(x)v†(x)P0(x)y. Nev-

ertheless, this term vanishes since v(x) ∈ NullR(P0(x)). Since P′(x, y) is obtained through

the multiplication of two PU matrices, it is PU over F[x±1] as well.

P′†(x, y)P(x, y) = α2(x) I (A.11)

Pre-multiplying both sides of (A.10), we get the desired result. After taking the determinant

of both sides of (A.10) and using Lemma 3.3.1, we obtain

detP′(x, y) = [detP(x, y)] α−2(x) y , (A.12)

which implies the degree of P(x, y) with respect to y is reduced by one.
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5 Proof of Theorem 3.4.1

Since both null spaces of P0(x) are self dual, by Fact 3.2.2, it is in the form

P0(x) = β(x)






xm p(x)

p(x−1)






︸ ︷︷ ︸

u(x)

[

x−r q(x−1) q(x)

]

︸ ︷︷ ︸

v†(x)

, (A.13)

where β(x), p(x), q(x) ∈ F[x±1] and m, r ∈ Z. Suppose P(x, y) cannot be factored as

in (3.15). Then, for any µ(x) ∈ F[x±1], the matrix polynomial µ(x)P(x, y) cannot be

factorable either. By (3.12), we can expand µ(x)P(x, y) as

µ(x)P(x, y) = γ0(x)u(x)v†(x) +
L∑

i=1

P′
i(x) y

−i , (A.14)

where

γ0(x) := µ(x)β(x) (A.15)

and P′
i(x) := µ(x)Pi(x) for all i ∈ [L ]. As the first step, we attempt to extract the building

block S2



y; u(x),v(x), ζ(x)


. Let

A(x) :=






xm−rp(x)q(x−1) 0

0 p(x−1)q(x)




 .

In addition, let F1(x, y) and F2(x, y) be the polynomial matrices obtained by pre- and

post-multiplying µ(x)P(x, y) by S
†
2



y; u(x),v(x), ζ(x)


, respectively.

F1(x, y) := S
†
2



y; u(x),v(x), ζ(x)


µ(x)P(x, y)

=
[

γ0(x)A
†(x)u(x)v†(x) + ζ(x)v(x)u†(x)P′

1(x)
]

︸ ︷︷ ︸

G1(x)

y +
L∑

i=0

F1,i(x) y
−i (A.16a)

F2(x, y) := µ(x)P(x, y) S
†
2



y; u(x),v(x), ζ(x)




=
[

γ0(x)u(x)v†(x)A†(x) + ζ(x)P′
1(x)v(x)u†(x)

]

︸ ︷︷ ︸

G2(x)

y +
L∑

i=0

F2,i(x) y
−i (A.16b)

Both F1(x, y) and F2(x, y) are PU over F[x±1] since they are obtained by multiplying poly-

nomial matrices with the same property. If there exists a symmetric polynomial ζ(x) such
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that either G1(x) = 0 or G2(x) = 0, we have successfully extracted a degree-two building

block. Since by our assumption, µ(x)P(x, y) is not factorable, none of these matrices must

be zero. Moreover, using the equality A†(x)u(x)v†(x) = p(x)p(x−1)v(x)v†(x) (which can

be easily verified), we can show that

G1(x) = p(x)p(x−1)v(x)

[

γ0(x)v
†(x) + ζ ′(x)u†(x)P′

1(x)
︸ ︷︷ ︸

e
†
1(x)

]

, (A.17)

where ζ ′(x) ∈ F[x±1] is a symmetric polynomial satisfying ζ(x) = p(x)p(x−1)ζ ′(x). Let

e
†
1(x) := u†(x)P′

1(x) . (A.18)

The vector inside brackets in (A.17) must be self orthogonal since, otherwise, a degree-

one building block can be extracted from the right of F1(x, y). By the self-orthogonality

property of this vector, we get

[

γ0(x)v
†(x) + ζ ′(x)e†1(x)

] [

γ0(x)v(x) + ζ ′(x)e1(x)
]

= 0 .

Since v(x) is self orthogonal, this equation simplifies to

γ0(x)v
†(x)e1(x) + γ0(x)e

†
1(x)v(x) = ζ ′(x)e†1(x)e1(x) . (A.19)

This equation holds for every symmetric polynomial ζ ′(x). Since the left hand side is

independent of ζ ′(x), we must have e
†
1(x)e1(x) that implies e1(x) must be a self-orthogonal

vector. Consequently, (A.19) further simplifies to

γ0(x)v
†(x)e1(x) = γ0(x)e

†
1(x)v(x) . (A.20)

This equation holds for all symmetric polynomials γ0(x) without any condition on e1(x).

However, by its definition in (A.15), γ0(x) is determined by the choice for µ(x). Since we can

always choose µ(x) in such a way that γ0(x) is nonsymmetric, for (A.20) to hold for all γ0(x),

we must have e1(x) = 0. By this result and (A.18), we conclude that u(x) ∈ NullL(P′
1(x)),

which means P′
1(x) is a singular polynomial matrix. Therefore, there exist a polynomial

γ1(x) ∈ F[x±1] and a polynomial vector θ1(x) ∈ (F[x±1])2 such that

P′
1(x) = γ1(x)u(x)θ†1(x) . (A.21)
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Repeating a similar argument for G2(x), defined in (A.16b), one can show that

P′
1(x) = γ1(x)θ2(x)v

†(x) , (A.22)

where θ2(x) ∈ (F[x±1])2. Combining (A.21) and (A.22), we get θ1(x) = v(x) and θ2(x) =

u(x), i.e.,

P′
1(x) = γ1(x)u(x)v†(x) .

Now, we set τ = 2 and examine the possibility of factoring S4



y; u(x),v(x), ζ(x)


from

µ(x)P(x, y). Let

F′
1(x, y) := y−1

S4



y; u(x),v(x), ζ(x)


µ(x)P(x, y)

=
[

γ0(x)A
†(x)u(x)v†(x) + ζ(x)v(x)u†(x)P′

2(x)
]

︸ ︷︷ ︸

G′
1(x)

y +
L∑

i=0

F′
1,i(x) y

−i (A.23a)

and

F′
2(x, y) := y−1µ(x)P(x, y) S4



y; u(x),v(x), ζ(x)




=
[

γ0(x)u(x)v†(x)A†(x) + ζ(x)P′
2(x)v(x)u†(x)

]

︸ ︷︷ ︸

G′
2(x)

y +
L∑

i=0

F′
2,i(x) y

−i .
(A.23b)

If either G′
1(x) = 0 or G′

2(x) = 0 for some ζ(x), we have successfully extracted a degree-

four building block from µ(x)P(x, y). However, since we have assumed µ(x)P(x, y) is not

factorable, none of G′
1(x) and G′

1(x) can be zero. Using an argument similar the one used

for P′
1(x), we can show that

P′
2(x, y) = γ2(x)u(x)v†(x) (A.24)

for some γ2(x) ∈ F[x±1]. Continuing the same process and increasing τ one at a time, we

can show that

P′
i(x, y) = γi(x)u(x)v†(x) ∀i ∈ [L ] , (A.25)

where γi(x) ∈ F[x±1] for all i ∈ [L ]. An immediate implication of this result is that

P†(x, y)P(x, y) = 0 that contradicts the assumption that P(x, y) is PU. Therefore, there

exists an integer τ ∈ [L ] such that either

P′(x, y) = y−(τ−1)
S
†
2τ



y; u(x),v(x), ζ(x)


P(x, y) (A.26a)
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or

P′(x, y) = y−(τ−1) P(x, y)S
†
2τ



y; u(x),v(x), ζ(x)


 (A.26b)

is a polynomial matrix in M2(F[x±1, y−1]) that is PU over F[x±1]. After multiplying P′(x, y)

by S2τ



y; u(x),v(x), ζ(x)


(from left or right) and also yτ−1, we get the desired factoriza-

tion.

To examine the possibility of degree reduction, we take the determinant of P′(x, y). By

Lemma 3.3.3, we have

detP′(x, y) = [detP(x, y)] xm−r p(x) p(x−1) q(x) q(x−1) y−2τ , (A.27)

which implies the degree of P(x, y) with respect to y is reduced by 2τ .
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APPENDIX B

Efficient Generation of Multivariate PU Matrices

In this appendix, we provide efficient algorithms for generating univariate PU matrices in

PUn(F[z−1]) or multivariate ones in PUn(F[z1, . . . , zr]), where n ∈ Z>2, r ≤ n, and F is a

field of characteristic two. As discussed before, PU matrices over the ring of polynomials

with nonnegative and non-positive exponents are used to design asymmetric cryptosystems

and causal wavelets, respectively. In fact, the signs of exponents are irrelevant to algorithms

generating the building blocks. For convenience, we consider nonnegative exponents in this

appendix.

The first step in generating PU matrices is generating univariate building blocks defined

in (2.9), (2.10), and (2.12). To enhance further references, we have listed these building

blocks in Table B.1. In the rest of this appendix, we introduce algorithms for generating the

univariate building blocks and eventually explain how to efficiently multiply them. Outputs

of the provided algorithms are in a special format suitable for the efficient multiplication.

Table B.1: PU building blocks and their parameters

Building Block Parameters

B1(z; v) = I + vv† + vv†z v ∈ F
n, ‖v‖ = 1

B2(z; u,v) = I + uv† + vu† + (uv† + vu†)z u,v ∈ F
n, ‖u‖ = ‖v‖ = 0, u†v = 1

Rnτ (z; V,Λ) = VΛV† + Izτ + VΛV†z2τ τ ∈ N, Λ = diag(λ1, . . . , λn) ∈ Mn(F)

V = [v1, . . . ,vn ] ∈ Mn(F), v
†
i vj = 0 ∀i, j ∈ [ n ]
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1 Univariate Degree-One Building Block over F

Since the characteristic of F is two, the norm of any vector v = [ v1, . . . , vn ]† ∈ F can be

written as

‖v‖ =
n∑

i=1

v2
i =

(
n∑

i=1

vi

)2

. (B.1)

Hence, if v has a unit norm, its components satisfy

vn = 1 + v1 + · · ·+ vn−1 . (B.2)

Using this observation, Algorithm B.1 can be used to generate such vectors. Since no

multiplication is involved in this algorithm, it has constant time-complexity.

2 Univariate Degree-Two Building Block over F

By Table B.1, two vectors u = [u1, . . . , un ]† and v = [ v1, . . . , vn ]† are required that satisfy

the conditions ‖u‖ = ‖v‖ = 0 and u†v = 1. These conditions impose the three equations

u1 + · · ·+ un = 0 , v1 + · · ·+ vn = 0 , u1 v1 + · · ·+ un vn = 1 (B.3)

while we have 2n unknowns. Therefore, the degree of freedom is 2n − 3. Without loss

of generality, we may assume only un, vn−1, and vn are unknown and the rest of the

vector components are given. Since u is self orthogonal, we have
∑n

i=1 ui = 0 that yields

un =
∑n−1

i=1 ui. By the self orthogonality of v and u†v = 1, we obtain the following system

of linear equations






vn−1 + vn = α

un−1vn−1 + unvn = β
(B.4)

Algorithm B.1: Degree-One Building Block Generation

Input: Vector v̂ = [ v1, . . . , vn−1 ]
† ∈ Fn−1

Output: Vector v ∈ Fn such that v†v = 1

v←
[
v̂†, 1 + v1 + · · ·+ vn−1

]†
1.
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in the unknowns vn−1 and vn, where α =
∑n−2

i=1 vi and β = 1 +
∑n−2

i=1 ui vi. The solution to

this system is

vn−1 =
β + αun

un−1 + un
, vn =

β + αun−1

un−1 + un
. (B.5)

Using these results, Algorithm B.2 is suggested for designing parameters of the degree-

two building block. In this algorithm, calculations of β and vn−1 require n − 2 and 2

multiplications, respectively. Therefore, the time complexity of Algorithm B.2 is O(n).

3 Univariate Degree- nτ Building Block over F

By Table B.1, the generation of the degree-nτ building block takes a set of vectors v1, . . . ,vn

such that v†
ivj = 0 for all i, j ∈ [n ]. These conditions impose n(n + 1)/2 equations in

n2 unknowns, which yields the degree of freedom n(n − 1)/2. Therefore, without loss of

generality, we assume the last n − i components of the vector vi are fixed and given for

all i ∈ [n ]. Let vi = [ vi,1, . . . , vi,n ]† for all i ∈ [n ]. To solve the system of equations

for unknowns, we start with v1. This vector has a single unknown v1,1 that is obtained

as v1,1 =
∑n

i=2 v1,i using ‖v1‖ = 0. Proceeding toward vn, we completely calculate all

the unknown components of vectors one at a time. At the k-th step, we have completely

Algorithm B.2: Degree-Two Building Block Generation

Input: Vectors û = [u1, . . . , un−1 ]
† ∈ Fn−1 and v̂ = [ v1, . . . , vn−2 ]

† ∈ Fn−2

Output: Vectors u ∈ Fn and v ∈ Fn such that ‖u‖ = ‖v‖ = 0 and u†v = 1

un ← u1 + · · ·+ un−11.

α← v1 + · · ·+ vn−22.

β ← 1 + u1v1 + · · ·+ un−2vn−23.

vn−1 ← (β + αun)/(un−1 + un)4.

vn ← α+ vn−15.

u←
[
û†, un

]†
6.

v←
[
v̂†, vn−1, vn

]†
7.
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calculated all the vectors v1, . . . ,vk−1. The vector vk has k unknowns vk,1, . . . , vk,k that

satisfy the following linear equations







vk,1 + · · ·+ vk,k = αk,0

v1,1 vk,1 + . . .+ v1,k vk,k = αk,1

...

vk−1,1 vk,1 + · · ·+ vk−1,k vk,k = αk,k−1 ,

(B.6)

where αk,0 =
∑n

i=k+1 vk,i and αk,j =
∑n

i=k+1 vj,i vk,i for all j ∈ [ k − 1 ]. The complexity

of solving this system using Gaussian elimination is O(k3), where k = 2, 3, . . . , n. There-

fore, the total complexity of calculating the matrix V is O(n4). Combining these results,

Algorithm B.3 is used to generate the degree-nτ building block.

Algorithm B.3: Degree-nτ Building Block Generation

Input: Vectors v̂1 ∈ Fn−1, v̂2 ∈ Fn−2, . . . , v̂n−1 ∈ F

Output: Vectors v1, v2, . . . , vn ∈ Fn such that v†
i vj = 0 for all i, j ∈ [n ]

⊲ Assume v̂i = [ vi,i+1, . . . , vi,n ]
†
.

v1,1 ←
∑n

i=2 v1,i1.

v1 ←
[

v1,1, v̂
†
1

]†

2.

for k = 2 to n− 1 do3.

Solve the linear system of equations B.6 for vk,1, . . . , vk,k using Gaussian elimination.4.

vk ←
[

vk,1, . . . , vk,k, v̂
†
k

]†

5.

end6.

Solve the linear system B.6 for vn,1, . . . , vn,n using Gaussian elimination.7.

vn ← [ vn,1, . . . , vn,n ]
†

8.
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4 Efficient Multiplication of PU Building Blocks

For given and fixed integers r,N ∈ N, assume the goal is calculating an r-variate PU matrix

P(z) consisting of N univariate building blocks in each variable, i.e.,

P(z) =
rN∏

i=1

Cσ(i)(z⌈σ(i)/N⌉) , (B.7)

where σ ∈ SrN is a fixed permutation and Ci(z) is one of the univariate building blocks

in Table B.1. The special structure of these building blocks makes their multiplication less

complex than multiplying arbitrary matrices. By induction, it can be easily shown that

these building blocks and their multiplications have the following form

C(z) = I zβ +
∑

α∈A

∑

j∈J
uα,j v†

α,j zα , (B.8)

where uαj ,vαj ∈ Fn, β ∈ Zr
≥0, A ⊂ Zr

≥0, and J ⊂ N such that A and J are finite sets.

We notice that the matrix C is completely determined if the exponent vector β and the

sets A and J along with the following sets of vectors are known.

U(C) := {uα,j : α ∈ A, j ∈ J } (B.9a)

V(C) := {vα,j : α ∈ A, j ∈ J } (B.9b)

Hence, if D is one of the intermediate matrices in the process of multiplying the PU matrices

D1, . . . ,DL, instead of multiplying the vectors uαj and vαj , the sets U(D) and V(D) are

obtained. That is why the generating algorithms for the building blocks only compute the

vector parameters of these building blocks. The advantage of this strategy is reducing the

complexity of multiplying matrices. To find the complexity of matrix multiplication using

this method, we provide some lemmas.

Lemma B.1. Let Ta(z; ua,va) := ua v†
a za ∈ Mn(F[z]), where ua,va ∈ Fn and a ∈ Zr

≥0.

For fixed α,β ∈ Zr
≥0, the total complexity of calculating U(Tα Tβ) and V(Tα Tβ) is O(n).

Proof. By direct multiplication, we have

Tα(z; uα,vα)Tβ(z; uβ,vβ) = (v†
α uβ)uα v†

β zα+β .
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The constant scalar v†
α uβ can be absorbed either by uα or by vβ. Assuming it is absorbed

by the first one, we have U(Tα Tβ) =
{

(v†
α uβ)uα

}

and U(Tα Tβ) = {vβ }. The com-

plexity of calculating the first set is 2n while the other one obtains for free. Hence, the total

complexity is O(n).

Lemma B.2. Let D1, · · · ,DL be matrices each of the form (B.8) for some L ∈ N. Then,

the complexity of computing both U(
∏L

i=1 Di) and V(
∏L

i=1 Di) is O(n
∏L

i=1 ci), where ci =

1 + |U(Di)| is the number of terms of Di for all i ∈ [L ].

Proof. Let

Di(z) = I zβi +
∑

α∈Ai

∑

j∈Ji

ui,α,j v†
i,α,j zα .

By the definition of the matrix T in Lemma B.1, we have

Di(z) = I zβi +
∑

α∈Ai

∑

j∈Ji

Tα(z; ui,α,j ,vi,α,j) .

Therefore, by Lemma B.1, the complexity of calculating both sets U(
∏L

i=1 Di) and V(
∏L

i=1 Di)

is approximately O(n
∏L

i=1 ci).

Using the suggested technique, to obtain the matrix P(z) in (B.7), we first calculate the

sets U(P) and V(P). We can state the following fact about the matrix P using Lemma B.2

and by the fact that the degree-one, degree-two, and degree-nτ building blocks have three,

five, and 2n+ 1 terms, respectively.

Fact B.1. Assume the PU matrix P in (B.7) is constructed by N building blocks in the

variable zi among which cdi ∈ { 0, 1, . . . , N } of them are degree-d building blocks for d ∈

{ 1, 2, nτ }, where c1i + c2i + cnτ
i = N , for all i ∈ [ r ]. Then,

(i) The total number of terms in P is upper bounded by

c ≤
(

3
∑r

i=1
c1
i

) (

5
∑r

i=1
c2
i

) (

(2n+ 1)
∑r

i=1
cnτ
i

)

= O
(

n
∑r

i=1
cnτ
i

)

. (B.10)

(ii) The total complexity of calculating the sets U(P) and V(P) is

O(nc) = O
(

n1+
∑r

i=1
cnτ
i

)

. (B.11)
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An immediate consequence of this fact is the following result.

Fact B.2. If we employ only the degree-one and degree-two building blocks in the construc-

tion of the PU matrix P in (B.7), then

(i) The number of terms of the matrix polynomial P(z) is independent of n, i.e., |U(P)| =

O(1).

(ii) The total complexity of calculating the sets U(P) and V(P) is O(n).

Having the two sets U(P) and V(P), the final step is constructing the matrix P(z) that

consists of the summation of terms of the form uv†, where u,v ∈ Fn. This construction is

performed by carrying out the multiplication uv†, which has complexity n, for every term.

Hence, assuming that only the degree-one and degree-two building blocks are employed, we

have the following fact.

Fact B.3. Having the sets U(P) and V(P), the total complexity of constructing P(z) is

|U(P)| n2 = O(n2).
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APPENDIX C

Toy Examples of the PAC and PDSS

In this appendix, we provide toy examples for both the public-key cryptosystem PAC and

the signature scheme PDSS introduced in Chapter 6. We note that these are not practical

examples, and the resulting schemes are insecure in practice because of the small choices

for parameters. The purpose of these examples is to show how the introduced systems are

designed and illustrate the structure of public polynomials. In our design, we have used the

computer algebra software Singular [99].

In both examples, we assume n = 3 and r = 1, the operating field is GF(256), and ε is

a primitive element of the field.

1 A Toy Example of PAC

In our design, we follow the guidelines of Section 6.5. Since r = 1, the PU matrix P(z) is

a univariate polynomial matrix. We construct it with one degree-one building block as in

(2.9) with the unit-norm vector v =
[
ε, ε5, ε47

]†
. The resulting PU matrix is

P(z) =










ε50 + ε2z ε6 + ε6z ε48 + ε48z

ε6 + ε6z ε21 + ε10z ε52 + ε52z

ε48 + ε48z ε52 + ε52z ε202 + ε94z










. (C.1)

As suggested in (6.43) and (6.44), we use the tame automorphisms

t1(x) =










x1 + ε3

x2 + ε4x3
1 + 1

x3 + x5
1x

6
2 + ε14










t2(x) =










x3

x2 + ε11x2
3

x1 + ε3x2
2x3










. (C.2)
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The composite tame automorphism t = t1 ◦ t2 = [ t1, t2, t3 ]† is

t1(x) = ε14 + x3 + x5
1x

6
2

t2(x) = ε106 + x2 + ε11x2
3 + ε4x3

1 + ε11x10
1 x

12
2

t3(x) = ε227 + x1 + ε3x3 + ε17x2
2 + ε3x2

2x3 + ε25x6
1

+ ε11x6
1x3 + ε3x5

1x
6
2 + ε3x5

1x
8
2 + ε11x11

1 x
6
2 .

(C.3)

The vector polynomial ρ in (6.40) is a one-dimensional multivariate polynomial. We

choose its coefficients and exponents as follows.

ρ(x) = εx1 + ε3x8
2x

6
3 (C.4)

For the irreducible polynomial χ(x) in (6.36), we use ω = ε5 since Tr(ε5) 6= 0. These

choices give the following irreducible multivariate polynomial for the vector polynomial

ϕ(x) in (6.34).

ϕ(x) = ε5 + εx1 + ε2x2
1 + ε3x8

2x
6
3 + ε6x16

2 x
12
3 (C.5)

In the design of the unitary matrix A in (6.27), we use the building block Uζ,v in (2.7)

with ζ = 1 and the self-orthogonal vector v =
[
1, ε, ε6, ε98

]†
. The resulting unitary matrix

is

A =














0 ε ε6 ε98

ε ε50 ε7 ε99

ε6 ε7 ε127 ε104

ε98 ε99 ε104 ε23














. (C.6)

The constant vector b in (6.27) is chosen to be b =
[
ε3, ε2, 1, ε17

]†
.

As stated in Fact 6.5.6, the entries of the OWF Ψ are polynomials whose monomials are

subsets of a maximal set of monomials. Hence, we just give one of the public polynomials.

The rest of them have similar structures. If Ψ(x) = [ Ψ1(x), Ψ2(x), Ψ3(x) ]†, then the

terms of the polynomial Ψ1(x) are given in Table C.1. The row a, α1, α2, α3 in this table

corresponds to the term εa xα1
1 xα2

2 xα3
3 in the polynomial.

The Singular code used to generate this example is provided in the following.
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Table C.1: Coefficients of the polynomial Ψ1(x) in PAC

ε x1 x2 x3 ε x1 x2 x3 ε x1 x2 x3 ε x1 x2 x3

47 0 0 0 158 1 2 1 157 1 8 6 101 0 16 12

82 1 0 0 125 2 0 2 115 0 9 6 160 1 16 12

186 0 1 0 118 5 0 0 53 0 8 7 118 0 17 12

46 0 0 1 159 2 2 1 174 0 10 6 56 0 16 13

204 2 0 0 76 6 0 0 126 0 8 8 177 0 18 12

113 1 1 0 180 7 0 0 62 11 6 0 129 0 16 14

68 0 2 0 62 6 0 1 119 3 8 6 168 11 14 6

51 1 0 1 181 8 0 0 160 0 10 7 122 3 16 12

197 0 0 2 166 7 0 1 166 12 6 0 163 0 18 13

37 3 0 0 167 8 0 1 167 13 6 0 185 6 16 12

114 2 1 0 46 5 6 0 182 6 8 6 171 6 16 13

172 1 2 0 51 6 6 0 168 6 8 7 126 10 20 6

52 2 0 1 52 7 6 0 197 10 12 0 56 5 22 12

54 0 2 1 54 5 8 0 124 11 12 0 163 5 24 12

124 1 0 2 158 6 8 0 125 12 12 0 171 11 22 12

117 4 0 0 98 0 8 6 53 5 14 6 129 10 28 12

173 2 2 0 159 7 8 0 160 5 16 6

1 // This is the toy example provided for the PAC

2 //

3 ring r = (256,a), (x(1..3)), ds;

4 // Use minpoly to specify the minimal polynomial

5 //

6 poly z = a*x(1) + a^3*x(2)^8*x(3)^6;

7 poly w = z^2 + z + a^5;

8 //

9 matrix I[3][3] = 1, 0, 0, 0, 1, 0, 0, 0, 1;
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10 //

11 matrix c[2][1] = a, a^5;

12 matrix v[3][1] = c, 1+c[1,1]+c[2,1];

13 matrix P[3][3] = I + v*transpose(v) + v*transpose(v)*w;

14 //

15 matrix t1[3][1] = x(1) + a^3,

16 x(2)+a^4*x(1)^3 + 1,

17 x(3)+x(1)^5*x(2)^6 + a^14;

18 matrix t[3][1] = t1[3,1],

19 t1[2,1] + a^11*t1[3,1]^2,

20 t1[1,1] + a^3*t1[2,1]^2*t1[3,1];

21 //

22 matrix g1[3][1] = P*t;

23 //

24 matrix g2[4][1] = transpose(g1), w;

25 //

26 matrix I[4][4] = 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1;

27 matrix d[3][1] = 1, a, a^6;

28 matrix u[4][1] = d, d[1,1]+d[2,1]+d[3,1];

29 matrix A[4][4] = I + u*transpose(u);

30 //

31 matrix b[4][1] = a^3, a^2, 1, a^17;

32 //

33 matrix f[4][1] = A*g2+b;

2 A Toy Example of the PDSS

In the toy example of the PDSS, we use the same PU matrix as in (C.1) and the same automorphisms

t1 and t2 as in (C.2). For the vector polynomial ϕ(x,x′), we use

ϕ(x, x′) = εx′ + ε2x1 + ε9x5
2 x

7
3 . (C.7)
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Assuming Ψ(x, x′) = [ Ψ1(x, x
′), Ψ2(x, x

′), Ψ3(x, x
′) ]

†
, the terms of the polynomial Ψ1(x, x

′) are

given in Table C.2. The row a, α1, α2, α3, α
′ in this table corresponds to the term εa xα1

1 xα2

2 xα3

3 (x′)α′

in the polynomial.

The Singular code used to generate this example is provided in the following.

1 // This is the toy example provided for the PDSS

2 //

3 ring r = (256,a), (x(1..4)), ds;

4 // Use minpoly to specify the minimal polynomial

5 //

6 poly z = a*x(4) + a^2*x(1) + a^9*x(2)^5*x(3)^7;

7 //

8 matrix I[3][3] = 1, 0, 0, 0, 1, 0, 0, 0, 1;

Table C.2: Coefficients of the polynomial Ψ1(x, x
′) in PDSS

ε x1 x2 x3 x′ ε x1 x2 x3 x′ ε x1 x2 x3 x′ ε x1 x2 x3 x′

40 0 0 0 0 67 1 2 0 0 60 6 0 1 1 60 0 7 8 0

162 1 0 0 0 51 0 2 1 0 75 5 6 0 0 59 11 6 0 0

6 0 1 0 0 19 1 0 2 0 201 6 6 0 0 61 12 6 0 0

75 0 0 1 0 66 0 2 0 1 221 0 5 7 0 82 6 5 7 0

213 0 0 0 1 18 0 0 2 1 200 5 6 0 1 60 11 6 0 1

50 2 0 0 0 12 4 0 0 0 51 5 8 0 0 68 6 5 8 0

8 1 1 0 0 53 1 2 1 0 57 1 5 7 0 17 10 12 0 0

65 0 2 0 0 11 3 0 0 1 15 0 6 7 0 19 11 12 0 0

201 1 0 1 0 52 0 2 1 1 208 0 5 8 0 208 5 11 7 0

17 0 0 2 0 73 6 0 0 0 53 6 8 0 0 18 10 12 0 1

49 1 0 0 1 75 7 0 0 0 74 0 7 7 0 60 5 13 7 0

7 0 1 0 1 59 6 0 1 0 26 0 5 9 0 68 11 11 7 0

200 0 0 1 1 74 6 0 0 1 52 5 8 0 1 26 10 17 7 0

10 3 0 0 0 61 7 0 1 0 19 3 5 7 0
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9 //

10 matrix c[2][1] = a, a^5;

11 matrix v[3][1] = c, 1+c[1,1]+c[2,1];

12 matrix P[3][3] = I + v*transpose(v) + v*transpose(v)*z;

13 //

14 matrix t1[3][1] = x(1) + a^3,

15 x(2)+a^4*x(1)^3 + 1,

16 x(3)+x(1)^5*x(2)^6 + a^14;

17 matrix t[3][1] = t1[3,1],

18 t1[2,1] + a^11*t1[3,1]^2,

19 t1[1,1] + a^3*t1[2,1]^2*t1[3,1];

20 //

21 matrix f[3][1] = P*t;
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APPENDIX D

Details and Proofs of MKPS

1 ID-Assignment Algorithm

Let n be the maximum number of sensor nodes in the network, m =
⌈

d
√
n
⌉
, and I be the set of all IDs.

Since [m− 1 ]
d

( I ⊆ [m ]
d
, all the d tuples in [m− 1 ]

d
are assigned as node IDs. The remaining

IDs come from the set [m ]
d \ [m− 1 ]

d
. This set can be partitioned as [m ]

d \ [m− 1 ]
d

=
⋃d−1

j=0 Ij ,

where

Ij :=
{

( i0, . . . , ij−1,m− 1, ij+1, . . . , id−1 ) :

0 ≤ i0, . . . , ij−1 ≤ m− 2, 0 ≤ ij+1, . . . , id−1 ≤ m− 1
}

. (D.1)

The ID-assignment algorithm continues by assigning the vectors in Ij progressing from j = 0 to

j = d − 1. Since every I ∈ Ij is determined by I〈j〉, the task of assigning the IDs in Ij in the

d-dimensional space reduces to assigning the vector I〈j〉 in the (d − 1)-dimensional space. The

ID-assignment algorithm can be recursively used since the dimension is reduced by one at each

step. The recursion stops at dimension two in which case the grid-assignment algorithm of [127] is

employed.

2 Average Probability of Link-Key Establishment

Given a node I ∈ I, the probability of establishing a link key with this node is

Plk,I =
XI

n− 1
, (D.2)
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where XI :=
∣
∣{ I ′ ∈ I : h (I, I ′) = 1 }

∣
∣. If n is a perfect dth root, then I = [m ]

d
and XI = d(m−1)

for all I ∈ I. Otherwise, I ( [m ]
d

is a proper subset, and XI ≤ d(m− 1). The average probability

of link-key establishment is

Plk =
1

n− 1
E
(

XI | I ∈ [m− 1 ]
d
)

Prob
(

I ∈ [m− 1 ]
d
)

+
1

n− 1
E
(

XI | I ∈ I \ [m− 1 ]
d
)

Prob
(

I ∈ I \ [m− 1 ]
d
)

, (D.3)

where Prob
(

I ∈ [m− 1 ]
d
)

= (m − 1)d/n and Prob
(

I ∈ I \ [m− 1 ]
d
)

= 1 − (m − 1)d/n. For

I ∈ [m− 1 ]
d
, we have

XI = d(m− 2) +

d−1∑

j=0

YI,j , (D.4)

where

YI,j :=







1, ∃I ′ ∈ Ij ∩ I such that h(I, I ′) = 1

0, otherwise .

(D.5)

and the set Ij is defined in (D.1). For all j ∈ [ d ], we define the set Nj as

Nj :=
{

( i0, . . . , ij−1,m− 1, ij+1, . . . , id−1 ) ∈ Ij ∩ I :

0 ≤ i0, . . . , ij−1, ij+1, . . . , id−1 ≤ m− 2
}

. (D.6)

It can be easily shown that

E
(

XI | I ∈ [m− 1 ]
d
)

= d(m− 2) +

∑d−1
j=0 |Nj |

(m− 1)d−1
. (D.7)

Let 0 ≤ ν ≤ d − 1 be the maximum integer such that all the vectors in I0, . . . , Iν−1 are completely

assigned using the ID-assignment algorithm. Hence, ν is the maximum integer such that
∑ν−1

j=0 |Ij | ≤
∣
∣
∣I \ [m− 1 ]

d
∣
∣
∣. Since |Ij | = (m− 1)jmd−j−1 for all j ∈ [ d ], it is easy to show that

ν =

⌊

log
(
1 + θd − nm−d

)

log θ

⌋

, (D.8)

where

θ := 1− 1

m
. (D.9)

Hence, we have
∑d−1

j=0 |Nj | ≈ ν(m − 1)d−1. Substituting this result in (D.7), we get E
(

XI | I ∈

[m− 1 ]
d
)

= d(m− 2) + ν.

To compute E
(

XI | I ∈ I \ [m− 1 ]
d
)

, we note that

E
(

XI | I ∈ I \ [m− 1 ]
d
)

≈
ν−1∑

j=0

E
(
XI | I ∈ Ij

)
Prob

(

I ∈ Ij | I ∈ I \ [m− 1 ]
d
)

. (D.10)
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Since all the vectors in Ij are assigned for all j ∈ [ ν ], we have XI = (m− 2)j + (m− 1)(d− j) for

all I ∈ Ij . Substituting this result in (D.10) and simplifying the equations, we get

E
(

XI | I ∈ I \ [m− 1 ]
d
)

≈ m(d− 1) + νθν−1 +m(1− d)θν

n− (m− 1)d
(m− 1)md−1 . (D.11)

Thus, we have

Plk ≈
(
d(m− 2) + ν

)
(m− 1)d

n(n− 1)
+
θmd

(
m(d− 1) + νθν−1 +m(1− d)θν

)

n(n− 1)
. (D.12)
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XL and Gröbner basis algorithms, in Proc. Adv. Cryptol. - ASIACRYPT’04, P. J. Lee, ed.,

vol. 3329 of Lect. Notes Comput. Sci., Berlin, 2004, Springer-Verlag, pp. 338–353.

[12] E. Ayday, F. Delgosha, and F. Fekri, Location-aware security services for wireless sen-

sor networks using network coding, in Proc. IEEE Conf. Comput. Commun. - INFOCOM’07,

AK, May 2007. CD-ROM.
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Z. Maamar, eds., INSTICC Press, 2005, pp. 88–93.

[19] R. Blom, Non-public key distribution, in Proc. Adv. Cryptol. - CRYPTO’82, D. Chaum, R. L.

Rivest, , and A. T. Sherman, eds., NY, 1982, Plenum Publishing, pp. 231–236.

- 246 -



[20] , An optimal class of symmetric key generation systems, in Proc. Adv. Cryptol. - EURO-

CRYPT’84, T. Beth, N. Cot, and I. Ingemarsson, eds., vol. 209 of Lect. Notes Comput. Sci.,

Berlin, 1984, Springer-Verlag, pp. 335–338.

[21] M. Blum and S. Goldwasser, An efficient probabilistic public key encryption scheme

which hides all partial information, in Proc. Adv. Cryptol. - CRYPTO’84, G. R. Blakley

and D. Chaum, eds., vol. 196 of Lect. Notes Comput. Sci., Berlin, 1984, Springer-Verlag,

pp. 289–302.

[22] C. Blundo et al., Perfectly-secure key distribution for dynamic conferences, in Proc. Adv.

Cryptol. - CRYPTO’92, E. F. Brickell, ed., vol. 740 of Lect. Notes Comput. Sci., Berlin, 1992,

Springer-Verlag, pp. 471–486.

[23] D. Boneh and G. Durfee, Cryptanalysis of RSA with private key d less than N0.292, IEEE

Trans. Inform. Theory, it-46 (2000), pp. 1339–1349.

[24] D. Boneh, G. Durfee, and Y. Frankel, An attack on RSA given a small fraction of the

private key bits, in Proc. Adv. Cryptol. - ASIACRYPT’98, K. Ohta and D. Pei, eds., vol. 1514

of Lect. Notes Comput. Sci., Berlin, 1998, Springer-Verlag, pp. 25–34.

[25] D. Boneh, B. Lynn, and H. Shacham, Short signatures from the Weil pairing, in Proc.

Adv. Cryptol. - ASIACRYPT’01, C. Boyd, ed., vol. 2248 of Lect. Notes Comput. Sci., Berlin,

2001, Springer-Verlag, pp. 514–532.

[26] D. Boneh and R. Venkatesan, Breaking RSA may not be equivalent to factoring, in

Proc. Adv. Cryptol. - EUROCRYPT’98, vol. 1233 of Lect. Notes Comput. Sci., Berlin, 1998,

Springer-Verlag, pp. 59–71. Available at: http://crypto.stanford.edu/~dabo/abstracts/

no_rsa_red.html.

[27] J. Borst, B. Preneel, and J. Vandwalle, On the time-memory tradeoff between exhaus-

tive key search and table precomputation, in Symp. Inform. Theory in the Benelux, P. H. N.

de With and M. van der Schaar-Mitrea, eds., Werkgemeenschap Informatie- en Communicati-

etheorie, Enschede (NL), 1998, pp. 111–118. Available at: http://citeseer.ist.psu.edu/

borst98timememory.html.

[28] R. P. Brent, Recent progress and prospects for integer factorization algorithms, in Computing

and Combinatorics - COCOON’00, D.-Z. Du et al., eds., vol. 1858 of Lect. Notes Comput.

Sci., Springer-Verlag, Berlin, 2000, pp. 3–22.

- 247 -
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