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SUMMARY

Analytic models for the performance of the forward link of 3G CDMA systems using
different maximum ratio combining (MRC) RAKE finger weight assignments are presented.
The spreading modulations under investigation are the balanced QPSK and the complex-
spreading QPSK. The models are computationally efficient, accurate, and applicable to Root
Raised Cosine (RRC) pulse shaping with any roll-off factor, variable processing gain, chip
rate, and data rate for orthogonal codes, random codes, quasi-orthogonal codes, Gaussian
noise, and realistic channel models. The expressions derived are then used to obtain the
so-called orthogonality factor, which is commonly used in system-level simulations.

Next, closed-form mathematical expressions for the variance due to infinite chips interfer-
ing in systems using arbitrary Nyquist pulses are derived. These expressions are applicable
to both the forward link and the reverse link. For the latter, the existing knowledge on the
accurate and efficient estimation of the performance of CDMA systems is extended by pre-
senting closed mathematical expressions for bandlimited systems using arbitrary Nyquist
pulses for both BPSK and Offset-QPSK (OQPSK) modulation. The impact of adjacent
channel interference in bandlimited systems is subsequently considered. Finally, mathe-
matical expressions for the accurate and efficient estimation of a CDMA system using RRC

pulse-shaping and a RAKE receiver in the presence of multipath interference are presented.

xiii



CHAPTER 1

INTRODUCTION

Until now, spread spectrum analysis has usually been conducted by making several simplify-
ing assumptions such as a square pulse-shaping function at the transmitter and a chip-spaced
multipath channel model, which result in the number of chips causing interchip interference
(ICI) being proportional to the number of channel paths and therefore relatively simple ex-
pressions. Analysis taking into account Root Raise Cosine (RRC) pulse shaping, commonly
used in communication systems, results in an infinite number of chips that cause ICI. The
complexity of the analysis is thus greatly increased.

Real channel models can have several paths arriving within a chip, and as the processing
gain decreases (for high data rate 3G CDMA systems), the delay spread can be comparable
to the bit period. It is going to be shown in this work that multipathlof the signal of the
reference user can contribute to both the desired signal and the self-interference.

Several wideband CDMA systems are set to be deployed as alternatives for 3G wireless
communication systems. These systems use different values for various parameters, such
as chip rates, roll-off factors, and processing gain (see Table 1); moreover, to calculate the
performance of these systems, there are different channel models. Previous versions of the
proposals for these systems have also had different values for the parameters, and as they
further transition into 4G systems, they will continue changing. Therefore, it would be con-
venient to obtain an analysis that could be easily adjusted to these changing parameters. At
the same time, some of the services offered by 3G systems require a bit error rate (BER) on
the order of 1079, which implies link-level simulations with 10® points; consequently, it also
becomes necessary to have a computationally efficient method to estimate the performance.

The forward link (downlink) in wideband CDMA channels has increased its importance

!Multipath in this work is used as both an adjective and as a noun. In the latter case, it implies the
ensemble of paths or replicas of the originally transmitted signal.



Table 1: Specifications for WCDMA and CDMA 2000, from [48].

| | WCDMA | CDMA2000 |
Channel bandwidth 1.25, 5, 10, 20 MHz | 1.25, 5, 10, 15, 20 MHz
Downlink RF channel structure Direct spread Direct spread
or multicarrier
Chip rate 1.024, 4.096, (1,3,6,12 x) 1.2288Mc/s
8.192, 16.384 Mcps for DS and MC
Roll-off factor for chip shaping 0.22 Similar to IS-95
Data Rate 2.3 Mbps Maximum 144, 307, 384,
2400,4800 Kbps
Spreading modulation Balanced QPSK Balanced QPSK
(downlink) (downlink)
Data modulation QPSK (downlink) QPSK (downlink)
Multirate Variable spreading Variable spreading
and multicode and multicode
Spreading factors 4-256 4-256
Spreading (downlink) Variable-length WH |  Variable-length WH
and Gold-Sequence and M-Sequence

due to the appearance of high data-rate multimedia applications. In the downlink, a set of
orthogonal codes is assigned to the users belonging to each cell; as a result, in the presence
of a single path of transmission between the base station (BS) and the mobile user (MS), the
interference caused by the rest of the in-cell users is zero, but in the presence of multipath,
this orthogonality is destroyed; the degree of loss depends on the particular channel, the
RAKE scheme used, the chip-rate, and the pulse-shaping function used. Determining this
loss of orthogonality also becomes important in novel systems that are proposed in present-
day research. The total interference perceived by a mobile user depends on its relative
location in the cell: When close to the BS, the in-cell interference is predominant, when
located at the border of a cell, the in-cell interference could be much less than 1/2 of the
total. In other words, the advantage of using orthogonal codes depends on the channel, the
system used, and the location of the mobile user. Consequently, it is again necessary to
have good means to calculate the loss of the orthogonality.

In this work, an analysis is proposed that applies to different wideband channel models,
various chip rates, RRC roll-off factors, different data rates, different processing gain, and

choice of variable spreading or multicode. The analysis is to work for random, orthogonal



codes, quasi-orthogonal codes, or Gaussian noise. The spreading modulation under study is
QPSK. Also, the analysis is to use a realistic model of MRC. The results are to be accurate
and computationally efficient to obtain.

Furthermore, in the estimation of the system-level performance of novel architectures
and schemes, usually some assumptions are made about the link level. Sometimes the
effect of using orthogonal codes is not considered. Other times, the effect of using orthog-
onal codes, a particular waveform, chip rate, processing gain, RAKE receiver scheme, and
modulation for a particular channel is lumped together into a single parameter called the
orthogonality factor; sometimes, its value is rather arbitrarily chosen, although some work
has been done to derive this figure of merit in [16] and [41].

We also propose a model for the loss of orthogonality of balanced and complex-spreading
QPSK, using RRC pulse shaping with different roll-off factors, a simple model and another
improved one for the finger weights of an MRC RAKE receiver (weights set to the composite
of paths perceived at each finger) that allows sub-chip finger assignment analysis, and
different chip rates for any given power delay profile.

Moreover, a simple-to-use closed-form expression for the inter-chip interference caused
by a delayed RRC function is proposed; this implies QPSK SNR expressions (conditioned
on the fading) that are also in closed form.

Next, closed forms of infinite sums are presented that would make the previous expres-
sions for the forward link applicable not only to RRC pulses, but arbitrary Nyquist pulses.
These closed forms are subsequently applied to an existing method for obtaining accurate
reverse-link low-BER estimates, but for the performance of the BPSK and Offset-QPSK
modulation with arbitrary Nyquist pulses. The method is then extended to ACI on one
hand and a system that uses a RAKE receiver in a channel with two paths on the other

hand.

1.1 Qualities Expected

The forward-link theoretical expressions derived are to be applicable to the following;:

¢ Balanced QPSK and complex-spreading QPSK systems. 1S-95 and 3G systems do not



use BPSK.

e Orthogonal codes, quasi-orthogonal random codes, and Gaussian noise.

¢ RRC waveshaping with variable roll-off factors.

e Variable spreading factors and multicode schemes; the first scheme is used for 3G

systems to increase the data rate for a fixed chip rate; the second scheme was proposed.

e Any channel models. The maximum delay can be greater than the symbol period,
especially when using a low processing gain. Also, the channel model does not need

to be a set of paths equally spaced by multiples of a chip period.

Variable processing gain, data rate, and chip rate.
Also the following is expected from the forward-link expressions

e To be fast to compute.
—Only theoretical insight is gained from expressions that are as slow to compute as

simulations.
e To be applicable to BER estimations up to 1E-6.

e To match simulation results. The theoretical Signal-to-Noise ratio (SNR) predicted

must match that obtained from simulations.
e To match known simple-case expressions available in the literature.
The following is expected from the reverse-link expressions:
e To be applicable to arbitrary Nyquist pulses
e To be in closed form and to have a computational complexity of O(1).
e To match the Gaussian approximation at high BER.

e To be applicable to BER estimations with values less than 1E-3.



1.2 Background

1.2.1 Performance for Balanced Quaternary Transmitter

The transmitter and the receiver for the forward link of a CDMA system can be seen in
Figs. 1 and 2, respectively. The received signal can be expressed as follows:

ZZal\/ ( (t—m) —jsg)(t—n)) +Z(t), (1)

i=1 [=1

) = Z_: d%chngl(t—nTC), 59 = ; d({i)% |l (t = o), (2)

where these parameters and others to be used later are defined as
K, L, F total number of users, paths, and RAKE fingers,
respectively;
@y, 0q,0;, 7, the complex attenuation, fading coefficient, received carrier phase, and
delay of path [, respectively; oy = a;e/%, || = qy; the attenuation

coefficients are normalized such that Zlel o =1;

PO P, power received from user ¢ and mean power received from each user,
respectively;

cg),céz) in-phase and quadrature code chip sequence for user 7;

g1(t) RRC waveshaping filter with roll-off factor £;

T,T.,,N bit and chip duration, and processing gain, respectively; N = T /T;

dgf? = d(i)l | m-th bit value corresponding to the n-th chip, m = [ ¥ |;
N

—

Z(t) the sum of out-of-cell interference, adjacent channel interference, and
AWGN noise; in the bandpass, it has a double-sided power spectrum
density of I,/2 (I, in baseband);

Z output of the RAKE receiver; Z = Zpegs + Zhslte;frf + Zyar1, the sum of
the desired, self-interference (interchip and intersymbol interference),
and the multi-access interference (MAI); it excludes the effect of I(t)

Ry output of finger f of the RAKE receiver; Z = Z?:l Ry;

Gy weight (complex number) used for finger f; Gy = Gyellr, |G| = Gy.
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Figure 1: Balanced QPSK transmitter (just for user i) followed by the channel.
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Figure 2: Balanced QPSK RAKE receiver for user k.



(4)

The variables s;

=9

and Sy represent, respectively, the spreading waveforms for the in-
phase and quadrature of user i (the tilde entails that spreading waveforms are multiplied
by the respective data bits).

It is implied that the channel response and the received signal are, respectively,

L
=S @t -n), (ZV S0 JsQ(t»)*h(tHI(t), (3)
=1

where * stands for convolution.

At the receiver, in the bandpass domain, each RAKE finger multiplies r(¢) by coher-
ent in-phase (I) and quadrature (Q) local oscillator references, namely, cos(w.t + 65) and
sin(wct + 0y); the first and the second products are respectively correlated with a copy of
sglfj)v(t — 7f) and sg,)N(t — 7f) (notice that the correlation includes the low-pass filtering);
these two correlations are added together and the sum is then multiplied with Gy for MRC.
The output of the fingers are added up to form the output of the QPSK RAKE receiver;

this output, in the baseband domain, is equivalent to

1
Z = §Re /_ - conj Z Gy (sy;t—7f) = jsg\,)Q(t —7y)) ¢ | dt,
N-1
k k
SNI Z CI ngl nTe), Ssv,)Q(t) = Z Cg,g,)ngl (t — nTy). (4)
n=0

There has been a plethora of papers studying the performance of a CDMA system,
starting with [54] and including papers such as [21] and [32].

In order to ease the analysis of CDMA systems, several simplifications have appeared
throughout the literature; the following are some of them:

A) The assumption of short spreading codes, that is, codes that repeat every bit.

B) The autocorrelation of the spreading code is nonzero only when there is no offset.

C) The delay spread is smaller than 7.

D) Rectangular pulse-shaping (waveform) instead of RRC.

E) Channel model where paths are spaced out by multiples of T, instead of the more
appropriate physical model where the paths can have any separation. In [63], these two
models are respectively called the T-model (it will be called T,-model because of the notation

in this work) and the 7-model.



F) Maximum Ratio Combining (MRC) is accomplished by assuming that G; = & when
7f = 7 obtained from matching to h(t); this type of simplified assignment is going to be
referred as Simple MRC (SMRC). In reality, after despreading, a RAKE receiver perceives
the composite g(t) * h(t) * g(—t) = go(t) * h(t) where h(t) is a 7-model; therefore, the appro-
priate MRC should be obtained by matching to this composite; this assignment is going to
be referred as Appropriate MRC (AMRC). In [63], it is mentioned that a T.-model can be
obtained from the composite by sampling at multiples of T¢, but these samples are corre-
lated, yet in practice, this derived T;-model (and a corresponding SMRC model matched to
this 7. model) assumes that the samples are independent. The SMRC assumption is good
when using rectangular pulse-shaping and a T,-model, but not for RRC pulse shaping with
subchip-spaced path delays.

Another key issue is that the delays corresponding to the local power maximums of this
g2(t) * h(t) composite do not exactly correspond to the local maximums of h(t); in other
words, these new delays are a little different from the set of 75, [ =1... L.

Moreover, the optimum MRC takes into account the variance of the interference per-
ceived by each finger as well as the correlation between each finger, but this fact is not
considered in the 3G standards.

G) It is assumed that orthogonal codes have the same cross-correlation properties as
two random codes when offset with respect to one another. This assumption results in a
pessimistic estimation of the multipath interference for a system using orthogonal codes.
In fact, it can be concluded from the work to be presented that the variance of the actual
cross-correlation is always smaller or equal to the variance of the cross-correlation between
random codes.

H) The spreading assumed is real (BPSK spreading); actually, CDMA systems use
complex spreading.

A combination of C and D usually results in only two bits having to be considered.

The D and E assumptions result in the outputs of the fingers of the RAKE receiver to

be mutually independent, which is not normally the case in practical situations.



The work by Pursley [54] presents a K-user BPSK system utilizing rectangular pulse
shaping; the system is asynchronous in both the transmission time and the carrier phase
for each user. The worst-case performance and the average signal-to-noise ratio are studied.
This work contains the methodology, concepts, and notation that are used in studying
CDMA systems up to the present (the notation presented above is more in terms of our
work). Concepts such as the discrete aperiodic cross-correlation function (11) and the
continuous-time partial croscorrelation functions (6) are utilized in his work.

Assuming that 0 < 7, < T, the MAI interference of the k-th user to the i-th user is

given as
Ini = T Hd? Ry dVR, 5
ki [d Ry.i(Tx) + dy’ Ry i(Tk)] cos ¢, (5)
where

Rea(r) = / ) (¢ 4 75 () dt,
0
A~ T .
Ryi(r) = / B (¢ — )% s (1)t (6)

¢n, and Ty, represent the phase angle and delay of the waveform of the k-th user with respect
to that of the i-th user.

Gilhousen et al. in [21] study the performance of both single-cell and multiple-cell
CDMA systems from a system-level point of view, namely, from the point of view of power
distributions and number and location of active users but not link-level considerations such
as modulation, waveshaping, and spreading sequences.

With regards to the impact of waveshaping (including RRC) on CDMA performance,
Anjaria and Wyrwas in [6] treat it for the first time, but their work is limited to waveshaping
of one chip duration: g(t) = \/g (1—cos(%rt)) for 0 < t < T, zero otherwise. The modulation

is BPSK with differential data encoding; a T,-model is utilized.

*Time-limited waveform (with duration T¢).

tExpression left in expectation form, i.e., E[Z?], etc.

tPaths separated by T. or more, but not necessarily multiples of T¢.
$Requires integration.

Y Infinite Sum.



Table 2: Assumptions made in representative studies. N. A. stands for not applicable.

Reference Assumption
A ] BJCID[]E]J]F | G [H| Closed
Sousa [16] v v v v oV Yes
Pursley [54] vV |INA |V | VvV |NA |NA [ NA. | Yes
Kchao and Stuber [32] Vv Vv vV | v |NA |NA | Yes
Asano et al. [7] N.A. va N.A. | NA. |/ Yes
Win et al. [67] NA. | ViV v | N.A. | v/ | Not Closed®
Cheun [13] NV v | N.A. Yes
Hwang [27] v oV v | N.A. | /| Not Closed’
Boujemaa and Siala [11] N.A. Yes
Ki, Kwon, et al. [33] N.A. | v/ | Not Closed’¥
Adachi [5] ViVl WV Vv v, | v/ | Not Closed’
Fong et al. [17] ViV vV Vv v | v | Not Closed!
Bottomley et al. [10] Not Closed¥
Kuo [36] v/ | Not Closed¥
Sun and Cox[64] Not Closed!
Choi [15] vV Vv Vv Yes
Geraniotis [20] v oV v, | N.A. [ /| Not Closed’
Proakis [52] Vv vV v | N.AA. Yes
Sebeni [58] ViVl oV Vv v Y Yes

Assuming a BPSK system in the reverse link with large processing gain and random

spreading sequences, Asano et al. [7] utilize RRC waveshaping for g;(¢):

cos[(1 + B)wt/T,] + sin[(1 — B)nt/T]/(48t/T:)
VT [(4Bt/Te)? — 1] ’
sin(nt/T,)  cospnt/T,

92(t) = g1(t) x g1(t) = T/, 1= (2Bt/T)2 (8)

g1(t) =4p

(7)

The probability distribution of the MAI interference is assumed to be Gaussian; in the
calculation of the variance, averaging is done over phases and path arrival time; the quan-
tity my = TLC fo ° g2(t)dt evaluates to 1 — % Therefore, for an asynchronous reverse-link

system with one path and equal power received from each user, neglecting noise and self-

interference, the probability of bit error becomes P, = @ (1 / %(1 - g)) instead of

P=Q (\ / Ig—]fl) for rectangular chips (mg = 1/3), where

Qe - [ h \/%e-@z/?)dy. (9)
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More recently, there have been some papers, such as [47] and [46], regarding the reverse
link that could have some resemblance to the work presented here. These works study, re-
spectively, the effect of processing gain (called chip rate) for CDMA and chip rate (properly
called) for WCDMA, but both of these include only differential phase shift keying, RAKE
receiver with equal-gain square law combining, and square pulse shaping.

The work by Kim et al. in [35] presents a simple comparison (ignores RAKE and
multipath) of the reverse-link performance of a system using rectangular pulses and RRC
with a roll-off factor of 0.35.

Using mathematical techniques, the work of Win et al. [67] results in simple expressions
for the performance of the RAKE receiver as a function of bandwidth and number of fingers,
but the receiver it considers uses BPSK, RRC waveform of chip duration, a T,-model, and
no MAI, just noise.

Cheun in [13] studies the performance of a single user of a long PN code (period of the
code much larger than N) in the presence of only Gaussian noise. The system considers
rectangle pulse-shaping and both BPSK and QPSK; for the RAKE receiver, selection com-
bining, equal-gain combining, and simple MRC are considered. The finger selections are
made based on the best paths instantaneously in one case and the best paths on average
in another case. Given a certain time delay profile, path phases, and fading coefficients,
a closed form is obtained after some simplifications. Nevertheless, since the analysis does
not include MAI, just Gaussian noise and self-interference modelled as additional Gaussian
noise, it does not correspond to a practical situation where multiple users share a cell.
Moreover, the channel model utilized to arrive at the expressions is such that the paths are
separated by at least 7.

Using a BPSK system and rectangle pulse shaping, Hwang and Lee characterize the self-
interference as a sum binomial variables in [27] and show that the Gaussian approximation
is not accurate for processing gains that are less than 8; this fact has also been shown by
Boujemaa and Siala in [11] for a QPSK system using RRC waveform with 5 = 0.22.

Ki et al. in [33] study the effect of finger spacing in the RAKE receiver, and it is a good
work that includes RRC pulse shaping and AMRC, but only considers BPSK and leaves
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many expressions in either convolution or matrix form.

Finally, [34] presents RRC, QPSK, and different chip rates, but no RAKE receiver.

Above all, the previous articles consider the reverse link, the link from the MS to the
BS, has a set of implications that make it somewhat different from the forward link (BS to
MS), to be considered here first. In the reverse link, the interference comes from many MSs;
while in the forward link, it effectively comes from a few BSs. Same-cell users in the forward
link are synchronized and their interference to the reference user travels through the same
channel, which leads to an advantage in using orthogonal codes, even in multipath channels.
In the reverse link, same-cell users are asynchronous (a synchronization procedure would
be technically difficult) and the interference they cause travels through different channels.
Since the BS is fixed and there is a multitude of MSs, on average, the power of the out-of-cell
interference does not change much; on the other hand, the out-of-cell interference that MSs
experience changes considerably as they move around. Moreover, same-cell-interference is a
bigger problem in the reverse link than in the forward link. The overall effect of the same-
cell and other-cell interference is that in the forward link you need a power control scheme
that has less dynamic range, but is a function of both same-cell and other-cell interference.
Moreover, a pilot signal is used in the forward link to demodulate the signals coherently,
and QPSK is used in the forward link as opposed to OQPSK in the reverse link. More
differences can be found in [38, p. 367].

The studies that most closely approach the one presented here are [5], [16], [17], and
[10].

Adachi et al. [5] study the effect of using orthogonal codes multiplied by (concatenated
with) random codes in the forward link. The type of spreading modulation is BPSK; the
channel model is composed of paths separated by multiples of T,; rectangle pulse-shaping
is assumed.

DaSilva et al. [16] present a BPSK model where each user had a different phase; the
pulse-shaping is RRC with a roll-off of zero (sinc function). The channel model is allowed to
have any separation as long as the total delay spread is much smaller than 7', the bit period.

The processing gain is assumed to be high, and assumptions E and F are made. In obtaining
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the performance, the power of the desired signal, the MAI, and the self-interference are
averaged not only over the codes, but also over the phases of the paths; also, the weights of
the fingers are set equal to the fading coefficients (G = ay when 7; = 7;). Additionally, it is
assumed that for each finger, the desired signal only comes from the path it is synchronized
to, and assumption G is made. The performance is presented in terms of the cumulative
distribution of the SNR due to orthogonal and random codes. Although this work presents
the mentioned shortcomings, the approach is different from the line of papers dating back
to [54]. In taking the expectation of the variances of the MAI and self-interference with
respect to the codes, terms such as E[c%kl)cg? c,(ll;)cg?gg((nl —a1)T. —115)g2((n2 — a2)Te — 7y5)]
are obtained for both 1 = k and ¢ # k; taking into account whether the codes were random
or orthogonal, this expectation is obtained for different possible cases such n; = a; when

ng = as. A great deal of simplification is achieved in the expression for the SNR by using

the following identity for sinc functions, which is obtained from the sampling theorem:

o0

> PeT-n) =g [ fa (10)

oo —00

Fong et al. in [17] compare the performance of concatenating orthogonal with random
codes on one hand and PN codes on the other hand. The discrete partial correlation
functions are used, but the spreading modulation is BPSK, and the D, E, F assumptions
are made. The I} ; expression in (5) is used to calculate the MAIL. A Gaussian approximation
is assumed. In calculating the variance of the interference, it is averaged not only over the
codes, but also over the phases of the paths. The assumption that the MAI is Gaussian
without being conditioned on the codes or phases of the paths appears to be good when D
and E are also assumed.

Bottomley et al. [10] present the analysis of the performance of the RAKE receiver using
MRC and maximum likelihood weights for the forward link, RRC waveshaping, orthogonal

codes, and QPSK. To perform the analysis, the discrete aperiodic cross-correlation function,

13



defined in [54], is used. For a delay of 7 and 0 <IT, <7 < (I+ 1)T. < T,

SN PD s 0<i<N-1
Cri(l) = ZHNZ_OH Cn) 7(1), : 1-N<I<0 (11)
0, : || >N.

The output of each finger in the RAKE receiver is obtained without the weights; this
output is divided into desired signal y4, interference due to ISI y;gy, interference due to
MAT yarar, and noise y,. It is important to mention that their criteria for choosing what
represents ISI and what is desired signal is that ISI includes only the signals belonging to
the preceding and following bits (m # 0). The terms are assumed to be independent of one
another; therefore, the correlation between different fingers (or the correlation of a finger)
is assumed to be the sum of the correlation (or autocorrelation) due to ISI, MAI, and noise.
Given fingers f; and fy synchronized to times 74 and 7y,, these correlations and desired

signal are given as

L—-1L-1
Risi(r7, ) = 3 Y 3 e
11=0102=0
%) N—-1
> Y (N - InDga(ry, +nTe —mT — 7,)g3(1s, + T — mT — 71,), (12)
m=—00 p=1—-N
m#0
L—-1L-1
Ryar(ty,7p) = N2 Z Zallalz
11=0102=0
o0
Z Z — |n)ga(7s, + 0T — mT — 7,) g3 (s, + nTe — mT — 7,) (1 — 6(n)d(m)), (13)

m=—oon=1-N

Rn’ (Tf1an2) = 92(7f157f2)’ (14)
L—1

a(7r,) Zalg? 75 — 71).(15)
=0

The bar in R, (74,,7,) and §a(7y,) Tepresents averaging over the codes.
As it can be seen, the expressions obtained involve a great deal of computation.
Making vector w and h out of the y4 (h includes the power of the signal), the SNR is

computed as

wlhhfw
NR = ———— 1
SNE wiR,w’ (16)
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where R, is the sum of Rrsy, Ryrar, Ry weighted with their respective powers. The only
problem with this approach is that it considers the complex quantity wH h instead of just
the real part (necessary because of the correlator), as in [17], [33], and [36]. For MRC and
other special cases, wH h is in fact real, but the denominator of (16) becomes double for
not using the real parts, but this factor is indeed considered when obtaining the BER. Also,
Rjgr fails to consider self-interference that comes from the desired bit but from different
paths as in [33]; nonetheless, this shortcoming can be easily fixed.

In most aspects, the approach of [33] is very similar to that in [10] and with the appro-
priate modifications, it arrives to equivalent expressions for the reverse link.

In the absence of MAI and using MRC, Sun and Cox in [64] compare analytical perfor-
mance results with and without simplifications and simulation results. The waveform used
is the sinc function and the MAT is ignored (signal in the presence of noise).

In [15], a comparison is presented between the performance of orthogonal codes and
random codes. The system uses rectangular pulse shaping. The channel is assumed to be
composed of L propagation paths spaced by multiples of a chip period. The desired signal
at each path only comes from the path a RAKE finger is synchronized; for orthogonal
codes, only the MAT interference synchronized to each RAKE finger is cancelled. These two
assumptions are correct for the pulse shaping and channel model used, but real systems do
not operate under these conditions.

In [31], almost the same approach is undertaken, although the analysis includes only
BPSK, square pulse shaping, and SMRC for a system with one user with a RAKE receiver
in the presence of noise.

In [8], channel delay profiles are explored where the paths and the RAKE fingers have
sub-chip spacings for complex-spreading systems, but the rectangular pulse shaping is used
and there is no maximum ratio combining. The weight for each RAKE is that of SMRC.

On the other hand, there are a few ways to calculate the (conditional) probability of

error when the decision variable Z is assumed (conditionally) Gaussian and L = F'. In [33],
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Z is written as

L
2 =Re {leyz‘} = o} +ajy =" Qa", a7
=1
where z = [xy], x = [z1%2...21] is the output of each finger without the weight, y =

[y1 Y2 -.-yr] is the particular weight for each finger, and for I an (L x L) identity matrix

01
Q= . (18)
I 0

Using the characteristic function of Z as in [57],

2L
1
P, =Prob[z'Qz" <0]= Y [[-—F (19)
A<oic T— X/

where for i = 1,2,...2L, the set of ); is the set of eigenvalues of RQ, R = E[zTz*].

Kuo in [36] has an alternative way of calculating (the conditional) P,:

— ) Residue [M]

_ QL /(H-jOO ¢(S) ds — right planepoles ¢?5) (20)
) Js=o—joo S Z Residue [—] ,
S

leftplanepoles |J0
where ¢(s) is the characteristic function of Z and 0 < o < Relfirst right plane pole of ¢(s)]:

(s) = Ble™) = s -oxp (Bl €[ — (1+5C,Q) ' IBa),

C, =E[(z — E[z])(z - El2))"].  (21)

The more common and straightforward way to obtain the (conditional) probability of
error when Z is a (conditionally) Gaussian-distributed variable is by using the formula
Q(vV/SNR), where SNR is E?[Z]/Var[Z]. Tt should be noted that all these methods are
equivalent. The unconditional probability is of course obtained from the conditional prob-
ability of error by averaging the latter over the conditional variables (such as phase and
Rayleigh coefficients).

Geraniotis and Pursley in [20] use the method of characteristic functions, which does
not assume Gaussianity in the calculation of P,. For a single BPSK user with time-limited

pulse (rectangular or sine) in the presence of noise, a receiver is synchronized to the first
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(main) path of a 7-model channel. Modelling the output of the receiver as Z = ng +
v/ %PT Zlel - Fy, where 7) is zero-mean Gaussian noise with mean NyT'/4 and Fj is similar
to (5):

Fy =T [dY R(m) + d¥ B(r))] cos ¢, (22)

then the probability of error given «; is shown to be
00
Qo) + W_l/o u" sin(u)gy[l — o(u)g(w)]du, o = (2B,/N,) ", (23)
where ¢, do(u), B(u) are the characteristic function of n = no/(\/gPT), a1 Fy, and
Zlez aFy, respectively. These characteristic functions involve a great deal of computa-
tion.
Also, for one user in the presence of noise, transmitting in a T.-model channel with L
Rayleigh-distributed paths (having different powers), the work in [52, pg. 847] presents

a well-known benchmark expression for the BER using BPSK (can be used for balanced

QPSK):

1
Py=2)"m [1— B |, m= _%_., (24)

where for the nomenclature used, J;, = N%E[ai] is referred as the average SNR for finger k
and v, = N% 25:1 ai = 7y is referred as the SNR per bit.

The work by Geraniotis and Ghaffari in [18] extends the study to MAI for both BPSK
and QPSK systems using random codes in the forward and reverse link. The forward link
channel is assumed to be one path.

In [58], the study further extends to include concatenated orthogonal codes, SMRC,
MAI, T.-model, and rectangular pulse shaping. The Gaussian approximation is compared
with results obtained using the characteristic function approach [20] and simulations. It is

concluded that the Gaussian approximation is justified.

1.2.2 Orthogonality Factor

In the estimation of the system-level performance of novel architectures and schemes, usually

some assumptions are made about the link level. Sometimes the effect of using orthogonal
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codes is not considered as in [34]. Other times, the combined effect of using orthogonal codes,
a particular waveform, chip rate, processing gain, RAKE receiver scheme, and modulation
for a particular channel is modelled by a single parameter called orthogonality factor, which
ranges between 0 and 1; its value is rather arbitrarily chosen as in [56], [65], and [42]. Qiu
et al. in [55] estimate the performance of the forward link in CDMA for the typical urban
(TU) channel assuming a value of 0.65 for the orthogonality factor, as obtained in [41].
Mehta et al. in [41] and [40] compare two expressions for the SNR at the output of the
RAKE receiver. The expression
NP®| " Grayl

(Bo =I5 PO ST 0] + Loe + No) T (G5 P

SNR = (25)

is made equal to an actual SNR that is the ratio of the power of the desired signal at
the output of the RAKE and the power of all the other sources (noise, out-of-cell users,
same-cell users); then the equation is solved for ,. In other words, a value for 3, is derived
such that the expression above is equal to the actual SINR at the output of the RAKE. The
actual SNR is obtained using an approach close to that in [17] and, as a result, it has similar
shortcomings; the difference consisted in simulating RRC waveforming with roll-off factor
of 0.22, and the study of both the traditional MRC (Gy = ) assignment and one that
accounts for the difference in interference power that each finger observes in the absence of
out-of-cell interference. This last assignment is not used by 3G mobile handsets; besides, a
mechanism is needed to estimate the out-of-cell interference.

A value where 3, is averaged over the phases of the multipaths is also obtained. One
of the peculiarities of this work is that although on average 8, is in the range from 0 to
1, instantaneously it can be greater than 1, which would go against the normal physical
intuition that random codes can never perform better than orthogonal codes; this seems to
suggest that the value obtained is instead an error factor to compensate the above expression

to become the actual SNR. The phase-averaged value of 3, is given as

b5 = i St el Py o)+ Rayti))
(S lasP) (SE leiP)

where Rgg(T’) = ffooo g(t)g(t — 7")dt and Rye(7") = ffooo g(t)g(t + T, — 7')dt.

; (26)
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In [48], the orthogonality factor is given as @ = 1 — %(%)_1, where % is the figure
required in the presence of intercell interference and % is the figure required in the presence
of same-cell interference; these figures are obtained from computer simulations.

Hunukumbure et al. in [26] and [25] study the orthogonality factor for wideband CDMA
and MRC RAKE receiver based on the work in [5].

In [50], using SMRC and work in [52], the orthogonality factor is given as the complement

of a “multipath loss factor” (MPL =1 — a):

F
MPL™! =

1.2.3 Efficient and Accurate Performance Estimation for Reverse Link

In the estimation of the BER of the reverse link of binary CDMA, the Central Limit
Theorem (CLT) is invoked to approximate the interference as being Gaussian in distribution;
this approach, used in [54] and other articles, is generally known as Standard Gaussian
Approximation (SGA). In this method, the average probability of error is determined by

the average signal-to-noise ratio (SNR):

P. = Q(VE(SNR)). (28)

It has been shown that the BER obtained in system simulations departs from the BER
obtained from SGA for low BER values [43] (in the order of 10~ or less), which occurs
when the number of users is much smaller than the processing gain.

In [39], an expression for the interference is derived for a particular code, phase, and delay
of each interfering user; this work is used in [43] to obtain the probability density function

(pdf) of U, the variance of the MAIL Then, the average probability of error becomes

P=E [Q (%)] -/ e (%) fur (), (29)

where the pdf of ¥ is obtained from convolution of the pdf for the variance of the inter-
ference for each user; the work was then improved in [44]. These last two works make

the observation that for a large spreading gain N, a given set of delays and phases of the
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interfering users, ¥ can be approximated as Gaussian. This approach (Eq. 2) is called Im-
proved Gaussian Approach (IGA), but is computationally intensive. Consequently, another
approach was devised that is simple without compromising the estimation: The Simplified
Gaussian Approximation (SIGA) [24], which uses the work in [39] and [43], and a result
from [23]. The SIGA approach was further simplified in [45] at a negligible impact on the
estimation. These works have all assumed rectangular pulse shaping, which has a one chip
duration. The work in [7] uses RRC pulses and assumes SGA, which was shown in [68] to be
inaccurate, as in the rectangular case, for low BER situations. In [69], the SIGA approach
is obtained for RRC pulses; the SIGA approach in this work presents a non-closed form
that requires a great deal of computation.

All the previous works have only considered BPSK, but present spread-spectrum systems
use offset QPSK (OQPSK); Song and Leung in [62], based on [69], present OQPSK BER
expressions for bandlimited pulses, yet not in closed form either. Above all, none of these
works present the effect of multiple paths from the same user and a RAKE receiver; neither
they consider the effect of adjacent channel interference (ACI).

A closed form for SIGA for RRC pulses, based on and in inspired in the work in [45], is

proposed.

1.3 Proposed Approach

The objective of the proposed research is to obtain analytical expressions to calculate the
performance of 3G CDMA when applying SMRC and AMRC, 7-model channel, balanced
and complex-spreading QPSK, RRC with any roll-off factor, variable chip rate, processing
gain, and data rate for concatenated orthogonal codes, random codes, and noise. Quasi-
Orthogonal codes and systems using Multicodes and Variable Spreading Factor are also to
be considered. The results are to be accurate and computationally efficient to obtain. The
so-called Orthogonality Factor, used in system simulations, is also to be studied.

We first demonstrate what part of VAY corresponds to Zpes. It is then shown that
Zses , Znal, and Z, are independent. The weights for SMRC and AMRC are obtained.

Interf

For SMRC, the conditional variance of Z is obtained over the codes, data bits, and phases;
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for AMRC, the conditional variance of Z is obtained only over codes and data bits. For
SMRC, the interference is assumed conditionally Gaussian; for AMRC, it is shown to be
conditionally Gaussian. The performance is obtained from Q(v/SNR) and then Monte-Carlo
averaging over the conditional variables.

In the calculation of the variance of the interference, the approach taken did not consider
the discrete aperiodic cross-correlation function and the continuous-time partial croscorrela-
tion functions from [54] as it is customary in many studies in the field. Rather, an approach
was taken that is similar to that in [16], where a straight evaluation of expressions in the
form E[cp, €4y CnyCa,] for random and orthogonal codes is performed.

In the expansion of the variance of Z we encounter terms in the form

o0

Y ST Y & o ) 0y Ly [+ €1:C2:C,Cae {1,Q).

n1=0a1=—00n2=0 az=—00
In the evaluation of Var[Z], the pairs of integrals that together contain only one code with
a C equal to I or Q, are statistically orthogonal and do need to be evaluated; otherwise,
depending on whether i = k or ¢ # k, we show the cases that need to be considered; for
k # 4 and all the C equal, the variance is nonzero when n; = ns and a1 = ao. All the
nonzero cases are added. In the evaluation of the variance of Z, not only the variance of
each finger, but also the covariance between fingers are derived.

The expressions obtained for SMRC are simpler than those for AMRC not only because
of the choice of weights, but also because of the averaging over the ensemble of phases.

Also, following the approach in [16], where the sampling theorem is used to attain (10)
for the sinc function, an adjustment to the sampling theorem (for functions that result in
aliasing) and functional series were used to obtain expressions in closed form for an arbitrary

roll-off factor:

Y BnT—7)=1- gsinQ(%),
N;oo g2(nTe = 7)g2(nTe + ) = Sg(r, =7) = g2(27) + %92( )Sln( T, ) Sln(ﬁ;:),
nzz—oo go(nT. — 11)g2(nT, — 72) = go(d) — 2ﬁ(d/in§€(d/g )( )/TC)Q) sin(zl ) sin(ZZ),
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where d = 171 — 79. It was subsequently observed that this adjustment in the Sampling

Theorem is consistent with the Poisson Summation Formula [29, 49):

o

> et enT) = Y X, o= (30)

n=—00 m=—00
where T¢ is an arbitrary constant and X(f) is the Fourier transform of z(t): X(f) =
e z(t)e 727 ftdt, provided that z(t) satisfies some mild analytic conditions: for instance,
that it be differentiable and it and its derivative decay reasonably rapidly at infinity.

The Orthogonality Factor is obtained from the expressions for random codes and orthog-
onal codes as the ratio of the carrier-to-interference ratio (CIR) values for orthogonal and
random codes necessary to achieve 1072 BER. The analysis of the performance can also be
used for the ratio of the CIR values for orthogonal codes and Gaussian noise. Nevertheless,
the expressions obtained for performance are simple, accurate, and fast to compute, thus

eliminating the need to use the orthogonality factor.
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CHAPTER 11

FORWARD LINK PERFORMANCE

2.1 Simple MRC Model

2.1.1 Balanced Quaternary Transmitter

Following the nomenclature in the Background Section and referring to Figs. 1 and 2, the

output of the RAKE receiver is given as

1
7 = §Re /_ - conj ZGf Tt —7f) —jSSV)Q(t —7y)) ¢ | dt
K L F 1 00 .
= 2D e/ 5(/ I~ rp) + o3¢~ mppat-
i=11=1 f=1 oo
cos(6; — 0f) + / s (t — mp) — s (13 (t — mip)dt - sin(8) — ef)), (31)

where the parameter 7;; is defined as 7, — 75 (7 is the time the f-th finger is synchronized
to). The effect of of I(t) is treated in Appendix C. The chip waveform g¢;(¢) is assumed not
to be truncated; as a result, it is not necessary to consider partial aperiodic correlations
of g1(t). The N subscript in S(Nk,)I(t) and 35\];,)@(15) is to emphasize that the received signal
is correlated with a spreading waveform consisting of NV chips; the subscript is going to be

dropped from now on. The expression (31) can therefore be expanded as

1 K L F N—-1
Z=3530 3 GV PO Y S ([ (- T, - 7p)+
i=1[=1 f=1 n=0a=-—0oc

(k) d(LZ) ch)ag ((n—a)T, — 'rlf)] -cos (6, — 0f) +

[cg“}nd@% (&2 g2((n — @) T, — mp) — )l )ﬁ 165020 — )T, — f)] sin (6 — af)) . (32)
where go(t) = g1(t) *g1(t), namely, the raised cosine (RC) function with roll-off factor g [52
p. 560] (see also (8)). First, a system using only PN codes is going to be assumed. Each user
is assigned unique in-phase and quadrature PN sequences (a total of 2K different PN codes)
whose periods are assumed much larger than N. This system is called here random-codes

system. Systems using Walsh (orthogonal) codes will be considered in section 2.1.4.
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If PN sequences whose period is much greater than N are used, we have the code

property

Eclc{) ¢

S )] E [ Q n€ ] = Onadik, (33)
where ¢ is the Kronecker delta. Moreover,
Ec[Cy;)ng),a] =0 (34)

for any 7 and k, and the expectation of partial correlations (correlation over N chips)
between different shifts of a PN sequence is zero. It is important to mention that although
the mean of the correlation of two different sequences is zero, the variance is not.

On the other hand, if the Doppler fading is negligible, that is f47" < 1, the o coeflicients
and the #; phases do not change significantly during a bit period.

We need to determine the desired signal and the appropriate finger weights. The terms
multiplied by sin(6; — 0 in (32) do not add to the desired signal; they add to the self-
interference and the MAI Using the remaining terms in (31), for finger f and user i = k,
= Z Gfoq\/ﬁ Z Z d(k ¢y ncgkg + cgc)n (k) ) - 92((n —a)T, — 1y5) cos (6; — 0f). (35)

n=0 a=—00
If the weight G is temporarily ignored and the analysis in [52, pp. 554-555] is applied
to our spread spectrum signal, the output of each finger can be reformulated as (y, = Ry

without Gy)

_ (k)
Yo = dL%J% +

l\Dll—l

i

Z <LW> () + ) 8 )ga((n — @)Te — miy) cos (6; — 8y),

L
+ cgcy)ncgi)a) = Z VvV P*) N go(7s) cos (6, — 6y).

=1

l\DIb—t

I MZ MMIZ
il\‘M8

In [52], it is explained that the first term of y, represents the desired signal (for each finger
and without Gy) and the second, ISI. Notice that due to chip pulse shaping, signal multipath
for the reference user does contribute to its signal power (when a = n) and also contributes

to the ISI (when a # n). The closer a second path is to the one the finger is synchronized
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to (smaller 7;¢), the less it contributes to the interference and the more it contributes to
the mean. Then in our case, setting d*¥) = 1 without a loss in generality,

F L

ZDes = ZGfZalv P®)Ngo(15) cos (6, — 0f). (36)

f=1 =1
Ignoring vV P(k) and N in z,, which are common to all fingers, it can be seen that the
signal for finger f is proportional to Zf: 1 cug2(Tip) cos (0 — 0f), that is, a particular finger
f synchronized to the path arriving at 7; actually perceives a composite of paths: The
pulse-shaping tends to smear the different paths together [66]. Therefore, if each finger
experiences the same interference, for MRC it is necessary to set

L
Gr=>_ auga(my) (37)

=1

(these conditions for Gy and ¢ are called here appropriate MRC model, AMRC, which will
be considered in section 2.2); for a finger f synchronized to path l;, G fej 9f is usually picked
to be the complex conjugate of a;e’? (this simple MRC model is called SMRC). The two
models converge as the paths become more separated; the models are equal when the paths

are spaced by exact multiples of T,.. For this section, SMRC is followed:
Gf:@f when f =1. (38)
The mean of Z*), considering the code properties presented above, becomes (subscript
¢ for codes)

L F
E (28] = N33 ayad)VP®gy(ny) cos(6) — ). (39)

=1 f=1

Whenever finger f is locked to path [, and there is another path /5 nearby, because of
fading I> occasionally might be strong enough to make the phase of Gy for SMRC be off
by more than 7/2 with respect to the phase of Gy AMRC. This problem is remedied by
making G § = —ay in this situation. More on the finger selection process is considered in
the numerical results section.

The desired signal (same as mean of Z) becomes

L F
Zpes = Bel2) = B[2(0,] = 3" apou vV POINAP ga(mif) cos (6, - 0). (40)
=1 f=1
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Each of the factors oy, 0, d, and P*) are dependent on time and assumed independent
of one another. The parameter of importance in calculating the SNR is the average power
of Zpes- It is assumed that Z is Gaussian conditioned on the set of fading coefficients

a = {o,q9,...,ar} as in [37]; then, the average BER is

2
r.= [ Q/3NRapla)da,  SRa = Bl 2Dl . (@)
Z {Var[Rf|a] + Z Cov[Rf,Rf1|a]}
= i

Expanding Z]%es results

F

F L L

E[Z]%es] = N° Z Z Z Z aflafzahalQP(k)QQ(Thfl)gQ(lefz) ) (42)
fi=1 fa=111=1 =1

cos(0;, — Oy,) cos (6, — 0y,). (43)

When the expectation is taken with respect to the phases, there are the following cases:

a) l1 = f1, lo = fo results in szl 1Zf2 1aflaf , F <L,

b) i = lp, f1 = fo results in & le:l Eh:l allaflgg 2(Tis fr)s

c) Iy = fa, lo = f1 results in Zfl 12f2 lOéfIOéfng(TfoI) and

d) Iy =l = fi = fo results in sz af.

Adding the first three cases and considering that the last case is common to all of the

previous three, the following mean conditioned on « is reached:
F
BlZnelo] = N2P® 3 a3 { Z o, (14 192 () + Z of g3(mup) — oy} (49)
fi=1 f2=1

On the other hand, when expanding Z2 in (32), 10 summation signs are obtained (let’s
called them summations in iy, i9, l1, l2, f1, f2, n1, no, a1, and ag). In the derivation of
E.[Z?] from (32), observe that terms with factors in the form

Z Z Z Z Cl M1 |_a1J C2)al (Cl:cs)nzdf_z‘%gj 24)az

n1=0a1=—oc na=0az=—o0

’ C1a627c37646{IaQ} (45)

are obtained. They reduce to zero if 41 # i2 and as a result, Var[Z|a] = Var[zg L Z9a) =
Zfil Var[Z()|a]. Because Z = 2?21 Ry,

F F F F
Var[Zla] = E[Z’|a]l-E’[Zla]l= Y Y E[R;Rplal— Y > E[R;|aJE[Ry|a]
f1i=1fa=1 fi=1 fo=1
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F F F
> Var[Rgla]+ > > Cov[Ry,, Rpla]

f=1 h=t
F
= Z (Var[RUc |a] + Cov[R )|a) + Z (ZVar[Rf)\a 1+ Z Z Cov[R(Z |a])
f=1 i= fi=1 fa=1
7k f2#f1
= Var[Zsar |at] + Var[Zua1| @] (46)

Interf

It will be observed later that the P, obtained by averaging the numerator and denominator

over the phases is only accurate for a channel where paths are separated by 7, or more.

2.1.2 Self-Interference

It can be seen that expanding Z2 from (31) and (32) for i = k, double sums in / and f are
obtained, and are called here sums in /1, I3, f1, and fo. This expansion results in factors
in the form y;, r, - y1,,5,, Where y; y € {cos(6; — 0;),sin(0; — 0f)}. For fi = fo (variance of
Ry, ), these terms reduce to zero when averaged over the phase unless I1 = lp; for f1 # fo
(covariance of Ry, and Ry, ), these factors reduce to zero unless

a) fi=1; and fo =1y or

b) fi=lyand fo =1

The first case results in the factor go((n1 — a1)Te)g2((n2 — a2)T;), which is nonzero for
n1 = a1 and ny = ay, and thus belongs to the mean (and therefore Zpes), but not the
variance (self-interference). Additionally, for ¢ = &k in (31), the correlation (over the codes)
between the first and second terms is nonzero; the same applies to the third and fourth

terms; any other pairs are statistically orthogonal (with respect to codes); for instance,

E[/ NOFC t—n)dt/ 58 (¢ - my)dt] =
N—-1 oo N—-1 ™

{ Z Z Z Z d(L“) d ch’f)ll gkglcg,r)lzcgc,)az )

aj
n1=0a1=0mn2=0a>=0 N

92((m = a1)T. = y)ga(ny — a2)Te = ) } =0 (47)
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for the first and third terms because E, [cgkgncg (zlcy?m gc)az)] 0.

Then, E.[R3|i = k] = Zafa PR {[(/ s )3 ()(t—Tlf)d)2—|—

—0oQ

(@i e-mnpar)’

—00

+2/0T3§’“>(t) ()(t—nf)dt/ 038 (1t — g cos? (0, — 07) +

[(/Oo sgk)(t)gg)(t — 7'llt)dt)2 + </00 sg“)( )3 (k)(t - Tlf)dt) _

—oQ -0

2 / B 058 (¢ — )t / @I (¢ - np)ai] i’ 0p)}. (49)

—0oQ
Because of the independence of the variables d, (m = |]), the expectation of the first

term with respect to the data bits (d) becomes

b [(/—: sP ) - Tlf)dt>2]

Eq

(e
= Eqg %:(pgf (Tlf))2]

_ (k) (k) (k) (k)
- Z Z ‘r 1 ‘r ach,MCI,CQ ’
m n1=0 ai=mN n2=0 as=mN
g2((n1 — a1)Te — 1iy) - g2((n2 — a2) T, — 7i5), (49)

where partial correlation pﬁ,? (11f) is defined as

. . . (m+)N-1
p@) (7p) = / sPWs@ t—mpydt,  s@o= S dDgt-al).  (50)
—00 a=mN

The expectation E [cgk)“cl 3105167)”0%1 ] is nonzero for the code cases
i) n1 = a1 and ny = ag,
ii) n; = ny and a; = ag,
iii) n1 = a2 and a1 = ne,
iv) n1 = ng = a1 = as.
Case i belongs to the mean; for case ii, making n = n1—a; = ng—ag, Ny oo g3(nT,—

N-1

77); for iii, making n =n; —ng =as —a1, ), — |n|)g2 (0T, + 717)g2(nTe — Ti5).

-1V
Both cases ii and iii include case iv, which yields Ng3(r;s) and is also part of the mean

when case i is possible.
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To calculate the variance of Ry (for i = k), it can observed that the first integral results
in cases il and iii; the second integral, in cases ii and iii; the third integral, in (2 times)
case i (and then does not add to the variance); the fourth, in case ii; the fifth, in case iii;
the sixth, in (-2 times) case iii. The expectation of the cases is independent of the integral
they come from (all cases iii for instance result in the same expression). Adding all the
cases together yields (4 times) case ii. Using the relation (101), derived in Chapter 3, and

remembering to subtract case iv,

, . o, T,
Var[R¢li = k, Zaf 2p k)N{ gsm2(Tlf) — g%(nf)}. (51)

When fi # fo, it was mentioned above that the covariance between the outputs of the

fingers due to self interference can be obtained by applying case b) f; =I5 and fo = [;:

Cov[Ry Ry,|i = k,a] =
o0

1 -
Za?ﬁafﬁp(k){ [/ sgk)(t)sgk)(t - Tfol)dt : / (k)( ) 34 )(t - Tflfz)dt +

—0o0 —0oQ

2/ st —7p,p)dt - / S (1059 (t = 717,) ] cos” (0, — 0y,
— [/ sgk) (t)gg“) (t— szfl)dt . / Sgk)(t) gc) (t - 7_f1f2)dt +
/ sg) (t)§§k) (t— Tf2f1)dt : / Sg)(t)ggk) (t— 7-f1f2)dt

2 [Pt [ PO~ ] i’ 0 -0} 62

—00 —00
instead of (48). Again, considering code cases i, ii, iii, and iv results in 4 times case iii; case

i belongs to the mean. Particularly, for the first integral above, when using the relation

[(Zd ot ( Tlf) (Z i i) (=i )] Zp (71)P5) (—71), (53)

it becomes

N—-1 (m+1)N-1 N—1 (m+1)N—-1

S, PPE[ 3 3%yl

—1(
n1=0 =mN n2=0 ao=mN

- +nﬂm«z—ﬂﬁ%—nﬂ] (54)



after taking the expectation with respect to the phases and then,

N
) 1
COV[Rf1aRf2|z =k,a] = Ea%aip(k) Z (N = [n[)g2(nTe — Tf2f1)92(nTC - Tf2f1) - (55)
n=—N
n#0

Notice that because of the choice of G, Cov[Ry,, Ry,] does not tend to Var[Ry,] for
fi = fa

2.1.3 Multi-Access Interference
To calculate the variance of the MAI interference, note that for 7 # k, (31), all the terms

are statistically orthogonal with one another, and thus the variance of the output of the

finger f due to MAI is given by

. _}KL 2 2 p(4) > (*) MOV 2
Varc[Rf|Z7ék]—4ZZafalP {Ec[(/ sy ()8} (t Tlf)dt> +
i=1 |=1 —0o0
itk
( / Z 3 ()58 (¢ - Tlf)dt)Q] - cos?(8, — 0;) + E, [( / Z s ()38 (¢ - Tlf)dt)2
+( / Z s 30t~ Tlf)dt)Z] sin®(6) — af)}. (56)

Taking the inner expectations and noticing that E[( [ sgk)(t)dgf)sgi) (t — mp)dt)?], the

expectation of the other three terms are all equal to (1 — gsiDQ(%)) since they involve

(k) (&) (k) (3)

factors in the form Ec[anlcI,alc[mcIm], which reduce to zero unless n1 = ng and a1 = ag

(case ii). Therefore, the above expression results in

1 )
VarlRyli # k,a] = 5> 3 afaf PON{1 - gsnﬁ(“;lf)}. (57)
i=1 |=1 ¢
ik

Notice that case iv is not substracted here since case i is not possible.

On the other hand, the covariance between two different fingers, which for MAI only is
the same as the correlation, is obtained in a very similar way as for the self-interference.
The difference now is that the case that makes a contribution is a)f; = [; and fo = Is.
Case b) f1 =l and fo = [; reduces to zero after averaging over the phases. Therefore, the

covariance between the fingers due to MAI is simply

K
. 1 ;
Cov[Ry,, Ry, i # k,a] = 50‘3‘10‘%2 E PUN. (58)
i=1
i#k

30



2.1.4 Orthogonal Codes

For the IS-95 system, each user is assigned a unique Walsh code c( ). ; this code is multiplied
by a shared (common to all users) PN code for the in-phase channel cpy ; and a shared
PN code for the quadrature channel cpy . Therefore, the resulting code for the in-phase

(k) ()

channel for user k (cy/ - cpn,r) is orthogonal to the one for user i # k - cpn,1); the

same applies to the quadrature channel; nevertheless, c%,f,) »cpn,r is not orthogonal to c%; .
cpn, for any 4 or k, but assumed to appear random to one another. A RAKE finger is
synchronized to a particular delay-path; when using orthogonal codes, multiuser interference
arriving through that path is going to be cancelled; moreover, interference from paths
slightly asynchronous to this RAKE finger, especially paths offset less than a chip period,
are going go be partially cancelled.

The variance of the self-interference has the same form as that for the random codes.
To calculate the variance of Ry due to MAI, we look again at (56) and take into account

that N1 cgf, ”cw) ,, = 0 (thus substracting case i from each of the first two terms); we also

see that each term results in case ii. Besides (56), we also need to consider

o0

—2E, | / Pt - mpae [ P50 - np)ae] = 248y, (59)

—0o0

(1) (k) (2) ]

which is nonzero since E [anch n1CW,a, €Q,01 CWyny CQnaCy g, CLaz] = 1 when ny = ng =
_ PRRT @ (k) (8 o
a1 = agz, which is not the case for random codes (Ec[cl,ch 01€Qn>CT.0,) = 0). Putting it

all together,

K L
) B . o5, T
Varormo R3li # kel = 3 Y~ ajaf P, N{1 = & sin’(=50) — g3 (my)). (60)
i=1, 1=1 ¢

i£k I£f

The covariance between the fingers due to MAI reduces to zero for orthogonal codes.
2.1.5 Orthogonality Factor

The orthogonality factor © is defined here as the ratio of the in-cell CIR (in the absence of
thermal noise and out-of-cell interference) required to achieve an uncoded BER of 10~2 for

Random Codes to the respective in-cell CIR for orthogonal codes codes:

CIR;pnq

O=———.
CIRortho

(61)
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The in-cell CIR means that I,, the sum of AWGN noise and out-of-cell interference, is
excluded. The © is a figure of merit for the amount of in-cell interference that is produced;
notice that for a channel that has only one path, © is equal to zero since there is no in-cell
interference; a channel with many multipaths would have a © value close to 1.

In [60], the effective interference at the output of the RAKE is composed of the thermal
noise, the out-of-cell interference Z,., and the product of the in-cell interference and an
orthogonality factor © (our © and their a; add to 1); all of this interference is divided by
the processing gain. Since the thermal noise is negligible in comparison with the Z,., in
obtaining ©, we would really want to compare the in-cell interference with Z,. with the
same power K P, Zl 1 al The codes from other cells appear as random codes to a user
in the reference cell since they are multiplied by different PN codes. The channel profile is
different for each cell and we can thus average over the path delay and get a 1 — g factor
instead of 1 — gsm (%) Putting all together, we obtain an SNR-based orthogonality

factor:

2?21 Va"rortho[Rf]
L F
KPuN Y 0 Y5 031 - 5)

L T
l

S ot - S sin? (T — g3my)
Cc

OsNr =

=1 =1
7 = (62)
>_ai Y ej1-7
=1 f=1
2.1.6 Complex-Spreading Quaternary Transmitter
The received signal is modelled as follows:
K/2 L _
=33 aVP {[gy; (t =) — 8op(t — )] — G185yt — m) + &)t — n)]} +Z(t)(63)
i=1 I=1

where Sc 62( ) = Zn Cl 1 Jccl)c2 n91(t — nTe), for Ci, Cy € {I,Q}. Data streams dgi) and
dg) are different, but belong to the same user ¢; there are K/2 users (K even). For a
random-code system, cgiI), cs%, cg)l, CS)Q are all different PN codes (for a total of 2K PN

codes).

To obtain the in-phase and the quadrature data, the received signal is correlated with
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Gy(srr(t —14) — jsrq(t — 14)) and Gy(—sqq(t — 7¢) — jsqr(t — 7¢)). Since this system is
symmetric in the in-phase and quadrature components, we can look at the performance
from the point of view of the in-phase data; therefore,

7 = %Re [7(t) conj (G¢(Sir — §S1q))]

L F T
~1 (i i
= Z Z GragV P(Z)§ (/ sy;) (t)sgI) (t—my) — sy})(t)s(Q)Q(t — 7)) +

0
S (030 (t — 1) + s\ (£)3y(t — mip)dt - cos(6) — B7) +
/0 R CIOY I YR S I C RO Y
s 0,500 — mp) + 5 (5,5t — mp)dt -sin(B - 67)).  (64)
Only the first and the fourth terms in the integrand of the first integral contribute to the

mean. The mean of Z; turns out to be the same as in the BPSK and balanced QPSK case

since:

L F
1
Z(lC :ZZafal — 2N92(Tlf)cos(0l gf)- (65)

=1 f=1

The instantaneous variance of the interference caused by each user i # k reduces to

Var.[Ry,|i # k| = Z afoleP' { [(/ sgl) (t)sgzl) (t— Tlf)dt)2 +

( /0 "Bt - npat) +
(/OT3<C3() SOt mpat)” + (/Ong’g(t)ggg(t—nf)dt)Q] cos? (0, — 07) +
wo[( [ 50 -mpar) + ([ s - npar)’ +

(/Ongcg( )&t~ mp)at) + (/OTs“g(t)sQQ (t—mp)at) | sin®(6 — 0. (66)

Each of these integrals contributes a case code ii for a total of eight. Therefore, the variance

of the interference contributed by each of the other users becomes

L
Var[Ryli # k,a] = 3 a%a%P(i)N{l - gsinQ(”;” )}. (67)
=1 ¢

With regards to the variance of the self-interference, Var[Ry|i = k], we obtain the same

terms as in (66) and

T .
—2( / s (0350t — ) / SO — mp)dt) sin?(0, — 0p), =k (68)
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T (k k
The term Z(fo SH )sgl) t—my) [y sgcg )3563 (t— Tlf)dt) cos®(6; — 0¢) does not add to the
variance. The first integral and the fourth integral in (66) each contribute a code case iii
(n1 = a2 and ny = ay), which cancel out with the 2 cases iii in (68). In (66), we have 8
cases iv; two of those contribute to the mean but not the variance; (68) contributes 2 with

negative sign:

Var(Ry, i = k,a Zafa N {1- 2t (CL) - hnp) (69)

For an orthogonal system, we have céil)cz = c%,[zcl CPNC,, that is, the product of the Walsh-
code for the C; component (in-phase or quadrature) of user i, and the PN code for the C,
component. The Walsh-code is different for the quadrature and in-phase of user %, and also
different for each user; the in-phase PN code is common to all users; the same applies to
the quadrature PN code. The variance of the self-interference is the same as in the random
case. For the variance due to MAI, we obtain 8 times case ii and 2 times case iii from (66);
for instance, for the first integral we get Ec[cgc,)ljnlc[,mcgv)[’alc[,alcg:,)lmcj,nzcg,l[c,)Iyachaz] is
nonzero only if ii) n; = ng, a1 = ag or iii) n; = ag, ne = a;. Additionally, for the first,
fourth, fifth, and eight integrals case iv (n; = a1 = ne = a3) is cancelled when counted
in the deterministic property Zn 0 cV][C,)Inc%; I, = Zg 01 cgf,)lncw 0, =0 of the orthogonal

codes used. We also get -2 times case ii from (68) for i # k; moreover, we get another -2

times case ii from

T
k k k ~(k .
~2( / S W35L (- ) / S ()51t — mp)dt) sin?(6; — 0y). (70)

Putting all together,

L
. . T,
Var[Ry,|i # k,a] = 3 :a}al?P(k)N{1 . gsmz( 1) - gg(nf)}. (71)
=1 ¢

It can be seen that the expressions obtained are the same as in the balanced QPSK case if
we consider each dgi) and dg) as coming from a different user; following this observation and
applying the code cases, the respective expressions for the covariance between the fingers

of the RAKE receiver can be shown to be the same as (55), (57), (58), and (60).
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2.2 Appropriate MRC Model

2.2.1 Quaternary Transmitter

In this section, we obtain the SNR and the BER of CDMA systems when the more accurate
form of Gy (37) is used.

From Monte Carlo simulations, it was observed that, unlike for the simple finger weight
model, the interference due to either orthogonal codes or random codes deviated heavily
from the Gaussian distribution even for fixed fading coeflicients. Nevertheless, when both
the fading coefficients and the phases were fixed, the sample distribution can be assumed
Gaussian for all practical reasons (see Figs. 3 and 4 for 10,000 points). Therefore, we reuse
all the results for expectations with respect to codes (code case i through iv and correlation
between terms in Z), but we use the complex form of Gy and do not average over the

phases.

x10°°
121 ;
— - Gaussian for Orthogonal
— - Gaussian for Random
—*— Histogram for Orthogonal
—%— Histogram for Random

08

04r

0.2

s L yaaeed 1 V) J

0
-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000

Figure 3: Comparison of interference in output of RAKE for AMRC model with the
Gaussian distribution (8 = 0.00).
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Figure 4: Comparison of interference in output of RAKE for AMRC model with the
Gaussian distribution (8 = 1.00).

The total interference perceived by finger f; of user k£ due to user 4 is
RY = —Re{ S VPG, (/ Dt —m)sP (b —7p) + 59t — m)sy) (t = 7)
+5 35t — )Pt —rp) — 550t —m)s (¢ — Tf)dt) é;}. (72)

We then set up an equation similar to (56) and (48) and define the parameters

Al g, f) = —Re{ Z ay, - Gf} Z Z (Otll 1,1 + Q0,0 )92(Tl2f)

=11ly=1
B(zl,zg,f)z—Re{Zyah Gi} = Zz(all,zaw—ah,czalz,)gzm,«). (73)
I1=1 l1 1lp=1

This expression is in the same form as (31); for 7 # k the four integrals are uncorrelated of
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one another; therefore, in obtaining EC[RSC? Sc? |i # k], we encounter the terms

Ay = A(ly, 1y, f1)A(l3, s, f2)[N Sg(71, 15 Tiaf,)]  and

By = B(llal2af1)B(l3al4af2)[N Sg(Tllfl’Tl:afz)]' (74)

The infinite sum Sg(r1,72) = Y oo g2(mTe — 71)g2(mTe — 72) comes from case ii of the

expectation with respect to the codes; a closed form has been derived in Chapter 3 (see Eq.

100.)

Expanding,

L L L L NP(z)
COV[Rfl’Rf2|d] = Z Z Z Z Z 9 [al1,1a12,1a13,1al4,1 + oy QUL Q5,11

o l1=11l=11l3=11ly

i
i
F001,Q 005, 1 3,Q U, T — AUy T, QU3 Q0T — Oy QO T3, TOU,,Q T Quy Ty QO3 10, ,Q

oy 100, 1015,Q0,,Q T Uy QUQM5,Q Q) SE(TLy 15 Tis £2)92(Tia £1) 92(Tis 1)- (75)

Rearranging the terms,

K NP(,L) L L
Cov[Ry,, Rpy|a] = Z 9 Z Z(all,lal?}:] + 01,,Q013,Q)58(T1 15 Tis o)
i=1 l1=113=1
i#k
L L
Z Z(alz,fal4,1 + alz,Qah,Q)g?(leﬁ)92(714f2) +
la=114=1
L L
D0 (e 10u5,0 — Q0 1)SE(Ty 115 Tis ) -
l1=113=1
L L
30 (o101, — 1,001, 1)92(T1o 1) g2(Tapy) |, (76)
la=114=1

where & is a vector corresponding to the set of a; complex fading coefficients. With this
rearrangement, the first pair of summations in [ are independent from the second pair of

summations in /[, which improves the computation efficiency.

For the self interference, Sg(7, f,, 71, ,) is replaced by Sg(7, 1,5 713 1,) — 92(71, 1) 92(Ti5 15)
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in (76) for user k:

L

_ Np® L
COVSI,A[RflaRh'a] ~ 9 Z Z(ah,fals,f + u1,Q013,Q)
l1=113=1

L L

(Se(Tt i Tis o) = 92T fis Tis ) - D D (s 10,1 + 0ty 0114, Q)92(Tir 1) 92(Thags) +
lo=114=1
L L

Z Z (all,fals,Q - all,QalB,I)(Sg(Tllfl ’ Tl3f2) - gQ(Tllfl ’ Tl3f2)) :
l1=113=1

L L

Z Z(alz,lal4,Q — 1,,004,1)92(T1,11)92(T1a ) | (77)
lo=114=1

There is an additional expression to consider for the self-interference: As in the case for
SMRC, where we expand Cov[Ry,, Ry,], we get additional cases. From (72), the 1st and 2nd
term in the integrand result additionally in 2 time case iii, the third and the fourth terms
in the integrand (the terms multiplied by j) are correlated and correspond additionally to

code case iii; adding at these case iii terms, we call the sum

COVSI,B[Rfl,Rf2|d] =
L L N-1
>N (e r0u,r — ay gous Q) Y (N — [n])g2(nT. — 71, 1,)g2(nTe + 715 ,)-
l1:1 13:1 n:()
L L
30> (10,1 — a1y,0,,0)92(Ti 1) 92 (Tiagy) +
lo=114=1
L L N-1
3D o rang + o gausn) > (N = |n)g2(nTe — 1i,p,)g2(nTe + 71, p,) -
l1=113=1 n=0
L L

30D (1010, + 2,001, 1)92(Tis 1) 92(Tiaps) | - (T8)
lo=114=1

pk)
2

The covariance between fingers f; and fo due to self-interference becomes
COVSI[Rfl,Rf2|a] = COVSI’A[RfI,Rf2|6z] + COVS],B[Rfl,Rf2|d]. (79)

For orthogonal codes, the expressions for the self-interference remain the same, but to get
the expressions for the MAI, Sg(7y, f,,7,7,) is replaced by Sg(7, £, Tiaf.) — 92(71, £,)92(T15 £5)
in (76).
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With regards to the desired signal, the expectation of the output of finger f; with respect

to the codes becomes

EC[Rf 1

Therefore,

]= ZZN P(k)QZ(Thfl)g?(lefl){all,falz,f + al1,Qal2,Q}'

I Is

2

F L L
E? Z|a, 8] = N2pk) Z Z Z 92(Tl1f1)92(772]”1){0”1,10‘12,1 + all,Qalz,Q}
f=1l1=11y=1

(81)

Notice that if we multiply the expressions (76), (78), and (80) by dy,1,07,1,, which is the

same as replacing Iy and Iy by fi and fo, respectively, we will obtain the expressions for

Gy = ay without phase averaging.

2.2.2 Variable Spreading Factor and Quasi-Orthogonal Codes

When data rate beyond that of the basic service is required, two approaches are possible;

one is to assign multiple codes per user; the other is to use a variable spreading factor,

where each bit comprises 2" < N chips. To maintain the orthogonality between users, the

tree structure proposed in [4] is used; if a user is allocated a code, the other users cannot

use its branches (if c4,1 is used, cg1 and cg2 cannot be used). Following this scheme, codes

of different length (for different rate) are orthogonal (this is a ”window” property of Walsh

codes).
cg.1 = (171317131713171)
o =LLLY 1,1,1,1,-1,-1,-1,-1
621:(11) |082_(a7a7 7 7_7_)
, : C8,3 = (lala _1 13 1,13 15 _1)
cp =11, -1, 71) | 1,1,-1,-1,-1,-1,1,1
611—(1) |CS4_(73_ a_aa)
(1 1.1 1) (17 ]-a]-a 1517 171’_1)
Ccp3 = — —

22 = (1 —1) . , = I (1’ 11 1,-1,-1, 1’_1’1)
, ’ C8,7 = (, 1,131, 1, - 1’1)

caa=(1,-1,-1,1)
| 088_( » 1’15 151’15_1)

Figure 5: Construction of orthogonal spreading codes for different spreading factors
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Table 3: Masking functions for QOS codes.

Function Masking Function
Hexadecimal Representation of QOFy;y, ‘ Walshyot

0 00000000000000000000000000000000 Wgoe
00000000000000000000000000000000

1 7228d7724eebebblebdeblebd78d8d28 WEHS
278282d81b41belb411b1bbe7dd8277d

2 1724bd71b28118d48ebddb172b187eb2 W2
€7d4b27ebd8ee82481b22be7dbe871bd

( CN/2,1 CN/21
CN,1
Cn/2,1 —CN/2,1
CN,2 ]
@dev=| =~ |= : (82)
CN/2,N/2  CN/2,N/2
CN,N

\ CN/2,N/2 —CN/2,N/2

On the other hand, the number of Walsh codes might not be enough. The cdma2000
standard [2] has introduced three sets of Quasi-Orthogonal (QOS) codes. They are con-
structed by applying a particular mask and a rotation to the set of Walsh codes. Within each
resulting set, the properties of Walsh codes are preserved (window property as well as the
property that within each set all the codes are mutually orthogonal). Simulations show that
when we take one of these 256x256 QOS matrices and correlate the codes (rows of the ma-
trix) from any of the resulting four 128x128 submatrices with codes (rows) from a 128x128
Walsh matrix, the correlation is in the form /128 exp(46), where 8 = /4, 3 /4,57 /4, T /4
with equal probability; when correlating a code from one of the resulting sixteen 64x64 sub-
matrices with a code from a 16x16 Walsh matrix, the correlation is in the form /128 exp(j6),
where § = 0,7/2,m,31/2. In general, when we take any code from one of the (256/N)?
NxN (N = 2", n integer) resulting submatrices with a code from a NxN Walsh matrix, the
result is of the form /128 exp(j6), where 6 = 7/4, 37 /4, 57 /4, 77 /4 with equal probability
for n odd and 6 = 0,7/2,7,37/2 with equal probability for n even. Therefore, if we use

Walsh codes for the in-phase and quadrature, the average of the sum of their correlations
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with a QOS code is VN (same as correlating with a random code in the in-phase or quadra-
ture) . Since both the Walsh codes and the QOS codes are concatenated with PN codes,
the asynchronous correlations between the two sets will have the same statistical properties
as those between Walsh and random codes.

In conclusion, we can use the formulas for orthogonal codes for the MAI interference
between different QOS codes and we can use the formulas for random codes for the MAI

interference between a QOS code and a Walsh code.
2.2.2.1 Voice Activity

During a cellphone conversation, one party is not talking continuously; it was observed in
[12] that a speaker is active between 35% and 40% of the time; we will assume the speaker
is active 37.5% of the time as in [21]. This effect could be modelled with a voice activity

factor v() [66] multiplying P(*) in the MAT expressions:
P9 =1)=3/8, PLY =0)=5/8. (83)

When considering the effect of voice activity and code rate of 1/2, the length of the Walsh
Hadamard code (and the number of WH codes) is halved: If the processing gain is 128, a bit
of information becomes two coded bits, and each of these two coded bit is spread by a WH
code with length of 64. Even without considering the coding gain, just the gain through
interleaving (in the presence of fading), under some channel conditions (one main path and
a second smaller path at subchip spacing from the first), the number of WH codes is not
going to be sufficient. The mathematical expressions could be adjusted and still be used

under these conditions.

2.3 Comparison with Previous Work

Usually in the literature, square pulse shaping is assumed, and the fingers are spaced by T,
or more. Defining gs(¢) as a square function of duration 7, then the triangular function

gt(t) = gs(t) * gs(t) = 1 — |t|/T. (for t between —T, and T.) and g¢(t) = 0 (for ¢ elswhere).
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Instead of Y- %_ . g5(nT. — ) =1 — gsinQ(W—;iﬁ), it is better to define

> 1 / 2
T T 77 o
Si(miy) = Z G(nTe—myp)=(1- =)+ () =1- f _9Tlf

9 U 84
= T. T. T2 °T, (84)

where 7' is mod (77, T,) for any value of 7;5. The above expression is usually averaged over
715, yielding 2 3; such average for 1 — gsin2 (%) is1— %, a value already obtained in [7]
and [61].

When using g,(t) and 75 > T, the equivalent expression for (44) is

E[E2[Z]| N2PZ Zahaﬁ N2p Zaf : (85)
f1=1 fo=1

For random codes, when the path is synchronized to the finger
Var[R¢|a] = Z @} PN (K Si(mi5) — g2(mip)), (86)
l 1
which after averaging over 7;; and observing that S;(0) = 1, becomes 3 fP N(K -1)+
%Z{;l, afcameN K. For orthogonal codes, averaging over the path delays, Var[R;|a] =
I#f
% ijzl a?a%PmK N is obtained. The expression for the covariance between two fingers for
I#f
random codes is still valid; for orthogonal codes, the covariance can be assumed to be zero.
Making Ey = NP,,92(0) = NP, (g2(t) has time units since g¢;(¢) is unitless), for a

synchronous system using random codes with a channel model containing only one path,

-1
NEyaj _ (K-t <2E,,) -\ @)
fEb(K - 1) + NOAZ%J 2N I, ’

see the Appendix C for the effect of I,(¢). For an asynchronous random-code system,

(% 4 (25”)1) - (88)

is obtained. Keeping in mind how the SNR is defined in this paper and in other sources,

the SNR becomes

the last two expressions agree with the binary DS/SSMA system expressions in [18] and
[53]. Also they match the Quaternary DS/SSMA without offset cases, which differ from the
balanced-mode in that each I and Q has different data, when N is replaced by 2N —keeping

in mind that in our case the data is carried by 2N chips (the I and Q sequences).
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Figure 6: BER vs. Ep/I, for AMRC and [52].

10

Also, in Fig. 6, the AMRC expressions were compared with (24) for a T,-model channel
with 4 Rayleigh-distributed paths with power 0, -1.5, -3.0, and -4.5 dB, respectively.

Fig. 7 shows the BER vs. number of orthogonal-code users for the AMRC expressions
and (16) for a fixed T,-model channel having 4 paths with powers 0, -1.5, -3.0, and -4.5 dB,
respectively and phases 0, 60, 120, and 180 degrees, respectively. In [10], the R;g; for the
same bit is mistakenly omitted; if it is considered for a T,-channel model, then it is equal to
the Ry a7 due to one user with the same power, so Rrsr was lumped into Rjs 4r; basically,
the number of users for Rjs 45 included the reference user and Rrgs; was omitted. An exact
fit was obtained in the absence of noise for Ej/N,= 5 dB and 10 dB.

In this study, two wideband CDMA forward-link performance model sets of expressions
were derived that were general enough to apply to different channel models, chip rates, roll-
off factors, spreading gain, number of users, for QPSK and MRC, using orthogonal codes,

quasi-orthogonal codes, or noise as the source of interference. Moreover, the expressions
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Figure 7: BER vs. number of users for AMRC and [10].
resulted in great saving of computational processing with respect to system simulations.
The loss of the orthogonality of the forward link was also obtained; it was shown that
the roll-off factor, the chip rate, channel, and the model for the finger weight can have a

significant impact on this orthogonality and therefore performance of the link.

2.4 Impact of Work

The analysis obtained here applies to real systems; it applies to variable data rate, chip
rate, processing gain, any channel model, RRC waveshaping with arbitrary roll-off factor;
it takes into account properties of random codes, orthogonal codes, quasi-orthogonal codes,
and Gaussian noise. The analysis can be used with Variable Spreading Factor and Multicode
proposed systems for 3G CDMA.

For a fixed channel model, the expressions are in closed-form. To obtain the BER, the

expressions only require Monte-Carlo Integration over the probability distribution of the
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paths; the net effect is a reduction of the computation by several orders of magnitude. At
the same time, the analysis is very accurate and works not only for special channel cases
and finger spacings, but very general types of channels and any finger spacing.

The analysis provides insight into the importance of each variable and can be used
for further studies; it can be used for related fields in CDMA such as novel architectures,
multi-user detection, and wireless networks. The analysis provides a very good tool for
predicting the performance of 3G systems. We have shown that an increase in bandwidth
does not necessarily result in better spectral efficiency for those users close to the Base
Station. Also, we have shown that depending on the roll-off factor used, the performance
can be significantly different from that obtained by assuming square pulse shaping.

Above all, the work makes it possible to have joint link and system-level simulations
without making any assumptions. Otherwise, it is usually necessary to run separate sim-
ulations to obtain the average values of link-level parameters such as required E},/N, and
orthogonality factor, which would result in the loss of estimation accuracy. The required
E, /N, changes not only with the power delay profile, but also with the location of the mobile
in the cell. Also, the BER depends more on the instantaneous orthogonality rather than
the average value; the study presented here bypasses the need to estimate the orthogonality
factor, in effect making it obsolete.

The work shows analytic expressions using RRC pulse shaping. Most CDMA books are
written using square pulse shaping. We expect the work presented here to help change this

literature.

2.5 Numerical Results and Conclusions

It is necessary to validate the SMRC and AMRC conditional SNR expressions derived.
System simulations were performed for the simple MRC model for two channels: The ITU-
R M.1225 Vehicular Test Environment Channel A and the COST 207 CODIT Macrocell
Channel (referred from now on as channel 1 and channel 4 respectively) for a rate of 1.2288
Mcps; these and other channels used in this work can be found in [1] and [51]). Channels

1 and 4 were modified as follows: The delay of the paths in the two channel models were
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adjusted to the nearest 0.17;; the fading coefficients were set to their average values. The
chip wave shaping was limited to the window [—10T, 107;] (a length of 207,) and sampled
10 times per chip. The values were set to K = 16, N = 16. For the AMRC model,
additionally, the phases were set to constant but arbitrary values.

In Table 4, we see the fingers assigned for the

Table 4: Path numbers assigned to fingers

Channel Chip Rate
1.2288 Mcps ‘ 3.6864 Mcps ‘ 5.0 Mcps ‘ 10 Mcps
1 1,3,5,6 all all all
2 1,3,5,6 all all all
3 1,3,5,6 all all all
4 1,6 1,4,5,7,8 | 1,4,5,7,8,10 | 1,2,3,4,5,7,8,10
Table 5: Table of Channels. Delay is in msec. and Power is dB.
Path Channel 1 Channel 2 Channel 3 Channel 4
Delay (msec) | Power (dB) | Delay | Power | Delay | Power | Delay | Power
1 0 0.0 0 -2.5 0 0.0 100 -32
2 310 -1.0 300 0.0 380 10.0 200 -5.0
3 710 -9.0 8900 | -12.8 930 -22.7 500 -4.5
4 1090 -10.0 12900 | -10.0 | 1940 | -24.7 600 -3.6
5 1730 -15.0 17100 | -25.2 | 2290 | -20.7 900 0.0
6 2510 -20.0 20000 | -16.0 | 2910 | -22.1 | 1050 -3.0
7 1050 -3.0
8 1350 -1.2
9 1450 -5.0
10 1500 -3.5

The reason for selecting these two was that channel 1 has a main path and a few other
smaller paths; channel 4 has many paths at about the same power and they are closely
spaced in time. The other channels mentioned in the figure are the ITU-R M.1225 Vehicular
Test Environment Channel B (channel 2) and the Outdoor/Indoor /Pedestrian Environment
Channel B (channel 3). For all the channels we assigned a fixed finger to the path with
the most average power when there were two or more paths within a chip (E[a;] > E[ag]),
even though sometimes oy > a; because of the Rayleigh distribution. The selection of the
fingers of the RAKE receiver were also such that they were spaced by approximately one

chip or more.
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The conditional SNR values obtained were virtually the same as those predicted by the
theoretical formulas.

The next step in the validation of our formulas was to determine the accuracy of the
models when including the statistics of the unconditional variables; namely, the Rayleigh
coefficients were allowed to change for both models and the phases were allowed to change
for AMRC; this way the average of the conditional SNR over the conditioning variables was
obtained; this is tantamount to Monte Carlo integration for the theoretical expressions.

Simulations were done for the simple MRC model, where the users were assigned or-
thogonal codes and random codes (K = 32, N = 32) and arbitrary phases for the paths
(the phases varied with the path but not the user); the process was repeated M, per = 1000
times and each of these times, the PN codes (those for random codes on one hand and
those concatenated with the orthogonal codes on the other hand) and phase of each path
changed (following the uniform distribution), but the randomly generated fading coeffi-
cients remained the same. The results were used to obtain an SNR conditioned to the given
set of fading coefficients (as in the previous validation step). The process was repeated
Mouter = 1000 times (each time the fading coefficients changed), and the values obtained
were used to obtain the average SNR (Table 6 in the Tables and Figures section). Ad-
ditionally, we generated Gaussian noise that had the power of K interfering users within
the frequency band of the users (but we did not count the self-interference caused by the
reference user); the noise sample function changed every single time (Mipner - Moyter)-

Moreover, an alternative scheme (orthoV) was attempted (a’ = ay/ (ZZL:U# @), that
is, each original weight is divided by the sum of all path coefficients except the one corre-
sponding to that finger) to take into account that each finger in an orthogonal code scheme
perceives a different amount of interference.

Simulations were also performed for the AMRC model, with the same parameters, but
for each event in M;,,er only the codes changed, and for each My, both the phase
and fading coefficients changed. For the orthoV scheme, this time we experimented with
G'f = Gy/ (25:1,_11 21 G ), that is, each original weight divided by the sum of all finger

weights except itself.
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Table 6: Conditional SNR (dB) Comparison for SMRC Model, Channel 1 and a Chip Rate
of 1.2288 Mcps

System Theoretical
B Ortho ‘ OrthoV ‘ Rnd ‘ Noise | Ortho ‘ OrthoV ‘ Rnd ‘ Noise

0.00 | 6.74 7.52 0.64 | 1.08 6.90 7.80 0.68 | 1.29
0.12 || 7.19 8.08 0.75 | 1.11 7.13 7.94 0.76 | 1.25
0.22 || 7.38 8.31 0.81 | 1.11 7.32 8.24 0.82 | 1.30
0.35 | 7.61 8.59 0.88 | 1.08 7.56 8.56 0.89 | 1.27
0.50 | 7.87 8.90 0.96 | 1.05 7.82 8.81 097 | 1.19
1.00 || 8.70 9.94 1.21 | 0.91 8.66 9.80 1.23 | 1.02
Ch4
0.00 || 1.97 2.20 -1.31 | -0.87 | 2.07 2.33 -1.29 | -0.85
0.12 || 2.19 2.44 -1.21 | -0.85 | 2.25 2.50 -1.21 | -0.85
0.22 || 2.34 2.60 -1.15 | -0.86 | 2.39 2.64 -1.14 | -0.86
0.35 || 2.50 2.78 -1.06 | -0.89 | 2.56 2.80 -1.06 | -0.87
0.50 || 2.70 3.03 -0.98 | -1.07 | 2.73 3.05 -0.98 | -0.93
1.00 | 3.17 3.54 -0.73 | -1.13 | 3.22 3.53 -0.73 | -1.13

In the forward link, the same-cell interference travels through the same channel as the
signal for the intended user; therefore it can be expected that the power of the desired
signal is correlated with the power of the interference. For orthogonal codes, we are able to
reduce some same-cell interference and this correlation is expected to be smaller in general.
For Gaussian noise, the correlation is expected to be even smaller. The effect of these
observations is that it is necessary to use a greater number of points for the value of the
SNR due noise to converge. We used M;,per = 2000 and M yq4e = 1500.

The IS-95 waveform (the same as the one used for cdma2000) was investigated and it
turned out to be very close to a raised cosine function with roll-off factor of 0.12. The
factor used for W-CDMA is 0.22; we also investigated S values of 0 (sinc function), 0.35 (as
in IS-54), and 1.

The results were compared with the theoretical ones (10000 points were generated for
Monte Carlo integration) and it can be observed that they match very well (Tables 6 and
7). These Monte Carlo integrations to obtain the theoretical values were several orders of
magnitude faster to obtain than the Monte Carlo simulations of the system; more about
the efficiency of computation will be mentioned below.

The accuracy of the theoretical formulas just for self-interference was also compared
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Table 7: Conditional SNR (dB) Comparison for AMRC Model, Channel 1 an d Chip Rate
= 1.2288 Mcps

System Theoretical ‘
B Ortho ‘ OrthoV ‘ Rnd ‘ Noise | Ortho ‘ OrthoV ‘ Rnd ‘ Noise

Chl
0.00 | 9.03 9.91 1.77 | 2.96 9.21 10.24 | 1.78 | 2.76
0.12 | 9.51 10.71 1.85 | 2.96 9.42 10.57 | 1.83 | 2.72
0.22 || 9.67 11.04 | 1.89 | 2.90 9.54 10.86 1.87 | 2.73
0.35 || 9.83 1144 | 1.93 | 2.80 9.71 11.33 1.93 | 2.66
0.50 || 10.01 11.89 1.96 | 2.68 9.90 11.81 1.95 | 2.62
1.00 || 10.58 13.04 | 2.04 | 2.18 | 10.38 12.83 | 2.03 | 2.19

Ch4
0.00 || 6.24 6.42 0.72 | 1.64 6.49 6.68 0.72 | 1.56
0.12 | 6.67 6.88 0.80 | 1.64 6.61 6.81 0.80 | 1.50
0.22 || 6.81 7.06 0.81 | 1.61 6.74 6.95 0.84 | 1.49
0.35 || 6.97 7.24 0.88 | 1.55 6.97 7.15 0.87 | 1.43
0.50 || 7.10 7.41 091 | 1.45 7.15 7.34 092 | 1.35
1.00 || 7.46 7.81 0.98 | 1.02 7.44 7.67 0.98 | 0.90

with system simulations results for (5 = 0.00, 0.50, 1.00) and K = N = 8; the difference
was 0.02, 0.00, and 0.01 dB for SMRC and the difference was 0.23, 0.06, and 0.06 dB for
the AMRC. For both system simulations we used Myyter = 4000 and M;,per = 1000.

An immediate observation is that the SNR for both random and orthogonal codes in-
creases with roll-off factor 8. It can be explained by observing that as [ increases, the
value of the waveform outside |¢| < T, becomes small (reducing interchip interference). The
improvement in SNR with roll-off can also be explained in terms of effective processing gain
(with higher roll-off, higher is the bandwidth and thus the spreading).

A simulation of a system using a square pulse shaping function was also undertaken
and the results obtained were 2.37 dB for random codes and 8.28 dB orthogonal codes
(SMRC); also, we obtained 3.19 dB for random codes and 9.18 dB for orthogonal codes
(AMRQC). These results point out that the common assumption of square pulse shaping
yields optimistic results compared to the IS-95 pulse shape.

For SMRC, the component due to interference at the output of the RAKE receiver was
assumed unconditionally Gaussian in distribution; simulations showed it departed some-

what for SMRC; simulations also showed that this component was essentially Gaussian in
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distribution for the AMRC model (see Figures 3 and 4). Essentially, at the RAKE output,
the component due to other codes is Gaussian in distribution conditioned on the fading
coefficients and phases. The SMRC formulas were obtained by taking the variances of the
interference due to orthogonal codes, random codes, and Gaussian noise at the output of
the RAKE receiver (and the signal power) with respect to not only codes but also phases;
this was the cause of the small deviation from the Gaussian distribution. Consequently, we
compared simulations of the SMRC formulas (case I) on one hand with AMRC formulas
with the same finger weights as SMRC (case II). Case II essentially results in formulas for
SMRC without phase averaging the variances and signal power. It was discovered that the
averaging over the phases did not pose a problem for channels 1, 2, and 3 when using rates
of 3.6864 Mcps and higher; the reason for this effect is that under those circumstances, the

paths become well separated (and the output of each finger uncorrelated).

10°F

-8~ Orthogonal Codes (a)
— Random Codes (a)
— - Gaussian Noise (a)
— Orthogonal Codes (b)
-6~ Random Codes (b)
3 —— Gaussian Noise (b)

Figure 8: Performance with 2 paths for AMRC.

From now on, we are going to discuss the AMRC model. For this model, there is no
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need to assign a finger to coincide exactly with a path; the model can easily take care of
this by changing the time location of the finger. In Figure 8, we tested a channel with two
paths (first at 0 and the second at ¢, which varied from 0.17, and 27,) with two different
finger location schemes: a) three fingers (at 0, T, and 27,), b) two fingers (at 0 and 7)
always time-alligned with the paths. The f factor was set to 0.50, N = 128 (constant), and
each path was Rayleigh-distributed. The number of users was 128 for orthogonal codes,
36 for random codes; for noise, there were 18 users transmitting Gaussian noise (no self-
interference). The experiment becomes also a test for bandwidth and spectral efficiency, if
it is interpreted as the paths remaining at constant separation and the chips reducing their
length (therefore increasing data rate as well).

It can be seen that scheme b) is better and that the relative delays of the paths impact
the performance. For scheme b, the performance when the second path is located between
1.17, and 1.97, is clearly better that when it is located at 27,; if we realize that for a
fixed two-path channel, the separation of the paths increases with rate (and bandwidth),
this figure has an important implication: A system with a lower chip rate (and bandwidth)
can have sometimes a better spectral efficiency than a system with higher chip rate (and
bandwidth) for both orthogonal and random codes for a particular power delay profile (with
both schemes using same number of fingers). This situation where the interference from
same-cell orthogonal codes or random codes is predominant for mobiles close to the base
station.

With regards to Gaussian noise, we modelled the user as subjected to Gaussian noise
with a power of K users in the bandwidth (we have desired signal and noise yet no self-
interference). When the paths are increasingly separated, the two fingers become increas-
ingly decorrelated and provide more diversity. It is not altogether clear that one scheme
is superior to the other for a path separation of T, or less: Although scheme a) has more
decorrelated fingers (Cov(Ry,, Ry,) is smaller), scheme b) captures better the energy in
the desired signal. Clearly, scheme b) is superior. The performance for scheme b) should
remain approximately constant for high path separation; the small deviation from a line

in the figure can only be attributed to the sample number in the Monte Carlo simulation.
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Looking again at the curve of scheme b) for noise, it is essentially a monotonically decreas-
ing function for both schemes for 7 in [0, T;]. For 7 greater than 7T, scheme a) decreases
performance as the second path becomes equidistant between the second and third fingers;
scheme b) appears to reach an asymptote, but the curve wiggles around it, which implies
that up to a certain point higher chip rate (and bandwidth) results in better performance
when the number of fingers remains constant and tracking the paths, but after that point,
the performance is going to vary a little around the ultimate asymptote; this effect can be
easily understood by looking at (274).

Scheme b) was repeated (Figure 9) for 30, 15, and 5 users for orthogonal codes, random
codes, and Gaussian noise respectively. For noise, using higher § resulted in some improve-
ment in performance when the delays between the two paths were less than 1 chip; for delays
greater than one chip, the same performance was obtained for 8. Additional simulations
were done with higher number of samples and it was observed that curve becomes straight

for delays greater than a chip.
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Figure 9: Performance for different roll-off factors.

52



For random and orthogonal codes, higher § resulted in better performance; there was
also some periodicity over 7 greater than a chip (except 8 = 0 for random codes).

On the other hand, the performance was obtained (not shown) for separations less than
0.1 chips and it was observed that as expected, the interference indeed approaches zero as
the the two paths reduce to one path.

Next, we consider BER (Figs. 11 through 18), number of users (Figs. 19 through 22),
and the required Ej,/I, (for BER of 1073) (Figs. 23 through 30) vs. roll-off factor and chip
rate for orthogonal codes, random codes, and Gaussian noise using the AMRC scheme.

The results were obtained for different rates: cdma2000 uses 1.2288 and 3.6864 Mcps,
W-CDMA uses 3.84 Mcps now, so this last value was omitted since it is very close to 3.6864.
We also explored the possibility of using 5.0 and 10 Mcps in future systems. The processing
gain and the number of users constants were set to 128 (therefore the data rate increased
with chip rate).

The BER vs roll-off factor and chip rate was obtained for orthogonal codes, random
codes, and Gaussian noise for channel 1 (K was set to 37 for orthogonal codes and 17 for
random codes). For noise, a power equivalent to 17 users (same as random codes) was
generated, no self-interference coming from the user. From now on, the path delays in the
channel models are not rounded to the nearest 0.17,.

Orthogonal codes result in a much better performance (taking into account more users
are operational) than random codes. Notice that increasing the chip rate (increasing band-
width) does not necessarily result in better performance; this was expected from the previous
two figures. Two characteristics of orthogonal codes are i) the correlation between the de-
sired signal and the interference is lower than that for random codes and ii) there is loss of
orthogonality as paths very closely situated become separated. As you increase the rate, on
one hand you increasingly lose the orthogonality between the codes, but on the other hand
you can average over more paths.

For channels 1 through 3, we allocated a finger to each path for the rates 3.6864, 5.0, and
10.0 Mcps; it can be seen that for noise with increasing rate, the performance improves over

virtually all values of 3; the exception can be attributed to the randomness in the fading
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simulations (more Monte Carlo samples). Overall, for all channels, the performance appears
to improve with increasing chip rate. It can be easily understood since with increasing
bandwidth, the paths can be distinguished better and the multipath of the reference signal
can be combined better. Nevertheless, the performance does not improve with 3, which is
not difficult to see from [66, p. 27|, where the variance of the noise depends on the absolute
squared value of the Fourier Transform of the pulse-shaping function, which equals simply
g2(0) = 1 in our case.

For random codes, it was observed the power of the desired signal was very correlated
with the power of the interference (correlation factor of approximately 0.99 and even close
to unity). As a result, the increase in the number of fingers and the captured energy of the
desired signal also results in the corresponding increase in the power of the interference.
It then becomes difficult to predict whether the performance improves or deteriorates with
increasing number of fingers; the only assurance is that the performance is going to be
within a certain window of the best (as in Figure 9). Nevertheless, we can see that only
at 8 = 0.00, the performance either improves or remains the same with increasing rate (for
the same number of fingers); this is not easy to explain physically, but can be understood
by looking at (76) (Sg(t1,t2) = g2(2(t2 — t1)) for § = 0) and taking into account that we
have path separations greater or equal to 7.

With regards to the maximum allowable number of users, it increases with g for random
and orthogonal codes. The channel that allows the most users is 3. We can also see the
same tendencies as in the BER figures with regards to rate. It is necessary to remember
that the processing gain is kept constant at 128; therefore, the data rates for the various
chip rates are different. As a result, the figures can be interpreted as spectrum efficiency in
the presence of only same-cell interference.

The next set of figures present the Ep/N, (the N, here is either noise or MAI) required
at the output of the RAKE receiver to achieve a BER of 1073. Again, these values are in
the presence of only orthogonal codes, random codes, or noise.

It was mentioned already that the power of the desired signal is very correlated with

the power of the interference coming from random codes; as a result, there is not going to
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be much variation of the SNR and the value for E,/N, is going to be close to the value in
the absence of fading (6.79 dB).

Many system level simulations assume that a certain fixed Ej,/N, is necessary to ac-
complish a BER of 1073, As a mobile moves around the cell, it is going to be subjected
to different proportions of out-of-cell (modelled as noise) and in-cell (orthogonal or random
codes) interference; the figures show clearly that the value of E,/N, would be dependent
on the location of the mobile.

The last two tables present the values of the orthogonality factor © obtained. As the
chip rate is increased, there should be a tendency for ® to go up: the reason for this is
that as the chip period becomes smaller (and the bandwidth of the system increases), it
is easier to distinguish a path from another. Therefore, paths spaced very closely together
that might have appeared before as being one path now are a manifold of paths. Some of
this tendency can still be observed, but it is not very obvious because of other factors, such

as relative paths delays and finger assignments.

Table 8: Orthogonality Factor for QPSK using Simplified Finger Weights

Without Variance With Variance
0.00 | 0.12 | 0.22 | 0.35 | 0.50 | 1.00 0.00 | 0.12 | 0.22 | 0.35 | 0.50 | 1.00
chl
1.2288 || 0.547 | 0.528 | 0.515 | 0.507 | 0.498 | 0.476 || 0.539 | 0.520 | 0.507 | 0.500 | 0.490 | 0.468
3.6864 || 0.364 | 0.359 | 0.353 | 0.348 | 0.342 | 0.320 || 0.341 | 0.337 | 0.332 | 0.327 | 0.322 | 0.303
5.0 0.364 | 0.354 | 0.347 | 0.338 | 0.328 | 0.291 || 0.341 | 0.330 | 0.325 | 0.315 | 0.305 | 0.270
10.0 0.371 | 0.367 | 0.366 | 0.363 | 0.360 | 0.352 || 0.348 | 0.344 | 0.344 | 0.341 | 0.338 | 0.331
ch2
1.2288 || 0.783 | 0.781 | 0.772 | 0.740 | 0.742 | 0.705 || 0.790 | 0.788 | 0.779 | 0.746 | 0.748 | 0.709
3.6864 || 0.360 | 0.354 | 0.347 | 0.340 | 0.333 | 0.307 || 0.336 | 0.330 | 0.324 | 0.318 | 0.314 | 0.291
5.0 0.354 | 0.344 | 0.336 | 0.327 | 0.317 | 0.275 || 0.330 | 0.321 | 0.313 | 0.304 | 0.294 | 0.254
10.0 0.362 | 0.362 | 0.362 | 0.361 | 0.361 | 0.362 || 0.339 | 0.339 | 0.338 | 0.337 | 0.337 | 0.338
ch3
1.2288 || 0.540 | 0.528 | 0.525 | 0.468 | 0.490 | 0.478 || 0.524 | 0.511 | 0.509 | 0.449 | 0.474 | 0.464
3.6864 || 0.300 | 0.288 | 0.281 | 0.268 | 0.259 | 0.217 || 0.271 | 0.260 | 0.253 | 0.240 | 0.232 | 0.194
5.0 0.310 | 0.304 | 0.299 | 0.295 | 0.289 | 0.271 || 0.280 | 0.276 | 0.271 | 0.269 | 0.263 | 0.249
10.0 0.309 | 0.304 | 0.300 | 0.296 | 0.286 | 0.264 || 0.279 | 0.276 | 0.272 | 0.269 | 0.259 | 0.240
ch4
1.2288 || 0.691 | 0.693 | 0.676 | 0.662 | 0.660 | 0.657 || 0.697 | 0.699 | 0.682 | 0.668 | 0.665 | 0.663
3.6864 || 0.639 | 0.635 | 0.625 | 0.623 | 0.619 | 0.590 || 0.639 | 0.635 | 0.625 | 0.623 | 0.620 | 0.591
5.0 0.617 | 0.613 | 0.606 | 0.601 | 0.598 | 0.565 || 0.616 | 0.612 | 0.606 | 0.601 | 0.598 | 0.565
10.0 0.585 | 0.580 | 0.573 | 0.565 | 0.560 | 0.523 || 0.582 | 0.577 | 0.570 | 0.562 | 0.557 | 0.521

On the other hand, © decreases with roll-off factor; this can be easily understood if we
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Table 9: Orthogonality Factor for QPSK and AMRC

Without Variance With Variance
0.00 | 0.12 | 0.22 | 0.35 | 0.50 | 1.00 0.00 | 0.12 | 0.22 | 0.35 | 0.50 | 1.00
chl
1.2288 || 0.466 | 0.434 | 0.406 | 0.390 | 0.378 | 0.348 || 0.417 | 0.385 | 0.362 | 0.349 | 0.340 | 0.315
3.6864 || 0.415 | 0.402 | 0.398 | 0.393 | 0.380 | 0.347 || 0.374 | 0.363 | 0.361 | 0.358 | 0.348 | 0.320
5.0 0.417 | 0.403 | 0.392 | 0.381 | 0.369 | 0.324 || 0.381 | 0.366 | 0.357 | 0.347 | 0.333 | 0.290
10.0 0.376 | 0.374 | 0.372 | 0.369 | 0.365 | 0.352 || 0.349 | 0.348 | 0.347 | 0.344 | 0.340 | 0.330
ch2
1.2288 || 0.651 | 0.626 | 0.613 | 0.582 | 0.580 | 0.521 || 0.672 | 0.641 | 0.624 | 0.585 | 0.578 | 0.506
3.6864 || 0.362 | 0.356 | 0.349 | 0.345 | 0.334 | 0.307 || 0.338 | 0.333 | 0.327 | 0.323 | 0.313 | 0.290
5.0 0.370 | 0.358 | 0.347 | 0.335 | 0.318 | 0.270 || 0.348 | 0.337 | 0.325 | 0.313 | 0.296 | 0.248
10.0 0.359 | 0.360 | 0.359 | 0.358 | 0.358 | 0.357 || 0.336 | 0.336 | 0.335 | 0.335 | 0.334 | 0.334
ch3
1.2288 || 0.428 | 0.401 | 0.374 | 0.368 | 0.358 | 0.367 || 0.400 | 0.371 | 0.344 | 0.338 | 0.322 | 0.327
3.6864 || 0.321 | 0.308 | 0.298 | 0.287 | 0.269 | 0.217 || 0.289 | 0.277 | 0.268 | 0.258 | 0.239 | 0.190
5.0 0.315 | 0.307 | 0.304 | 0.300 | 0.289 | 0.270 || 0.281 | 0.276 | 0.273 | 0.270 | 0.262 | 0.247
10.0 0.310 | 0.306 | 0.301 | 0.295 | 0.285 | 0.262 || 0.278 | 0.275 | 0.271 | 0.266 | 0.256 | 0.237
ch4
1.2288 || 0.832 | 0.788 | 0.785 | 0.789 | 0.798 | 0.774 || 0.857 | 0.816 | 0.812 | 0.822 | 0.826 | 0.792
3.6864 || 0.539 | 0.528 | 0.530 | 0.516 | 0.516 | 0.494 || 0.513 | 0.500 | 0.500 | 0.488 | 0.487 | 0.465
5.0 0.523 | 0.513 | 0.513 | 0.502 | 0.493 | 0.471 || 0.500 | 0.491 | 0.490 | 0.479 | 0.471 | 0.450
10.0 0.530 | 0.523 | 0.517 | 0.513 | 0.507 | 0.490 || 0.520 | 0.511 | 0.506 | 0.500 | 0.493 | 0.477

consider the fact the chip waveform decays faster for higher roll-off factor: there is going
to be less ICI for both random and orthogonal codes, but the orthogonal codes are going
to experience the most increase in SNR since they already have lower interference. Notice
also, how in some instances there is a meaningful variation in ©® depending on the roll-off
selected.

Notice that high values of © are related to high values Ej/N,: Same cell interference
is composed of i) desired signals for other users, ii) their own self-interference. Low values
for ii) means more correlation between one user’s desired signal and the interference from
other users, and thus less variability in the SNR.

Also notice that for channel 1 (10 Mcps), Channels 2 and 3 (3.6864, 5.0, and 10 Mcps),
the values for orthogonality without variance for SMRC have similar values to AMRC; this
implies that we can use the simpler method to come out with approximately the same result
for channels with paths well separated.

The SNR-based orthogonality factor Ogyr was also obtained (see Table 10). Notice

that Ogngr values are very different from the © values; also ©gngr decreases with increasing
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B, but in general increases with chip rate.

Without Variance

000 [ 012 [ 022 [ 035 [ 050 | 1.00
chl
1.2288 || 0.3336 | 0.3257 | 0.3152 | 0.3057 | 0.2985 | 0.2788
3.6864 || 0.3248 | 0.3290 | 0.3307 | 0.3345 | 0.3404 | 0.3558
5.0 0.3239 | 0.3199 | 0.3181 | 0.3128 | 0.3086 | 0.2849
10.0 0.3312 | 0.3377 | 0.3462 | 0.3530 | 0.3641 | 0.4104
ch2
1.2288 || 0.4122 | 0.4022 | 0.3898 | 0.3734 | 0.3643 | 0.3318
3.6864 || 0.3134 | 0.3157 | 0.3165 | 0.3192 | 0.3227 | 0.3303
5.0 0.3083 | 0.3040 | 0.3020 | 0.2970 | 0.2933 | 0.2688
10.0 0.3161 | 0.3250 | 0.3356 | 0.3450 | 0.3600 | 0.4225
ch3
1.2288 || 0.1523 | 0.1488 | 0.1436 | 0.1355 | 0.1337 | 0.1219
3.6864 || 0.1857 | 0.1842 | 0.1803 | 0.1758 | 0.1740 | 0.1556
5.0 0.1930 | 0.1943 | 0.1960 | 0.1987 | 0.2011 | 0.2173
10.0 0.1924 | 0.1946 | 0.1966 | 0.1993 | 0.1999 | 0.2106
ch4
1.2288 || 0.5124 | 0.5051 | 0.5004 | 0.4944 | 0.4884 | 0.4810
3.6864 || 0.5561 | 0.5551 | 0.5521 | 0.5525 | 0.5546 | 0.5528
5.0 0.5410 | 0.5403 | 0.5387 | 0.5387 | 0.5409 | 0.5385
10.0 0.5211 | 0.5209 | 0.5188 | 0.5178 | 0.5187 | 0.5124

Table 10: SNR-based Orthogonality Factor for different channels, roll-offs and chip rate

The algorithm for AMRC is in the order O(F? - L?): The sum over Iy and I; can be
obtained from reusing the sum over /; and l3; the Sg(t1,t2) and g2(¢) functions need only
be calculated once for each combination of the paths; there are other ways to simplify
the algorithm even further (such as using the identity Zﬁzl Zl;;zl apayp, = Z}VZI afc +
ZZ}Z _ Zf}; —f,+1@faf,), but we chose not to use them for the sake of code simplicity.
For N=128, the expressions for AMRC took 7.4 seconds to generate 10,000 points (each
point a different fading situation) for channel 4, 8 = 0.22 and rate of 1.2288 Mcps; it takes
3.3 days to system-simulate 1 million points (which would be enough for estimate BER
values up to 10™%); it would take the same time to simulate the SMRC system (since only
the weights change). The theoretical expression for SMRC takes 1.88 seconds. Under the

same conditions, the values for channel 1 become respectively 11.05 seconds, 3.4 days, 2.83

seconds.
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2.5.1 Tables and Figures
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Figure 10: Comparison of Simple MRC models I and II for Channel 1.
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Figure 11: BER vs. Roll-off Factor for Channel 1 using different rates.
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Figure 12: BER vs. Roll-off Factor for Channel 1 (Noise) using different rates.
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Figure 13: BER vs. Roll-off Factor for Channel 2 using different rates.
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Figure 14: BER vs. Roll-off Factor for Channel 2 (Noise) using different rates.
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Figure 15: BER vs. Roll-off Factor for Channel 3 using different rates.
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Figure 16: BER vs. Roll-off Factor for Channel 3 (Noise) using different rates.
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Figure 17: BER vs. Roll-off Factor for Channel 4 using different rates.
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Figure 18: BER vs. Roll-off Factor for Channel 4 (Noise) using different rates.
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Figure 19: Number of Users vs. Roll-off Factor for Channel 1 using different rates.
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Figure 20: Number of Users vs. Roll-off Factor for Channel 2 using different rates.
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Figure 21: Number of Users vs. Roll-off Factor for Channel 3 using different rates.
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Figure 22: Number of Users vs. Roll-off Factor for Channel 4 using different rates.
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Figure 24: Output E}/I, vs. Roll-off Factor for Channel 1 using different rates.
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Figure 25: Output E}/I, vs. Roll-off Factor for Channel 2 using different rates.
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Figure 26: Output Ej/I, vs. Roll-off Factor for Channel 2 using different rates.
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Figure 27: Output E}/I, vs. Roll-off Factor for Channel 3 using different rates.
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Figure 28: Output E}/I, vs. Roll-off Factor for Channel 3 using different rates.
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Figure 29: Output E}/I, vs. Roll-off Factor for Channel 4 using different rates.
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Figure 30: Output E}/I, vs. Roll-off Factor for Channel 4 using different rates.
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CHAPTER III

CLOSED-FORM FOR INFINITE SUM OF NYQUIST
FUNCTIONS

3.1 Raised Cosine Pulses

In the estimation of the performance of CDMA systems, many works assume rectangular
pulse shaping to simplify the mathematical analysis. Some works do consider Root-Raised-
Cosine (RRC) pulse shaping analysis ([7], [61], [16], [33], [69], [62]), usually in the reverse
link, but leave the expressions for BER in terms of a variation (¢; = t3) of the following

infinite sum form:

o0

Z g2(nT, — t1)ga(nT, — t2), (89)

n=—o00
where go(t) is the RC function defined in (8).

While obtaining the expressions for the forward link of a CDMA system using RRC,
the author ran into the more general form ¢; # to form of the sum, which is presented in a
closed form in this section.

Previously, Asano in [7] and Sibata et al. in [61] showed that
i %/T g5 (nT, +t)dt =1 — g. (90)
n=—oo ¢ 0
DaSilva et al. [16] used the Sampling Theorem to show that > oo g3(nT, —t) = 1
for 8 = 0 and any . In trying to extend the result for arbitrary (3, the author obtained
(101) through curve-fitting; the expression matched very well the sum and it was decided
to demonstrate it theoretically; a modification of the Sampling Theorem was used for this
purpose (see A). Subsequently, functional series were used to derive the expression (102)

for t; = —to (see B). It was also observed that, for 5 =0,

o

Y g2(nTe — 1)g2(nTe — t2) = g2(2(h — 12), B =0. (91)

n=oo

These expressions ultimately shed light on the general expression.
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3.1.1 Closed-Form Representation and Applications

Let Go(f) and H(f) be the Fourier Transforms (FT) of go(t) and h(t) = g2(t), respectively.

. e
Go(f) = %{1—#(:05 [”TC (|f| 2TC)]} : <2Tc ‘
0 - (111> 52)

A modification of the Sampling Theorem is used to take into account the aliasing when

I/\
I/\

E
IA
=
I/\

) (92)

RRC with a # 0 is sampled. The Fourier Transforms of g3(t) = g2(t — 71) and g4(t) =
go(t—To) are respectively Go(f)e™72™/™ and Go(f)e™727/72 where Go(F) is the FT of go(t).
Expressing convolution with an asterisk sign, the expression Y2 ga(nTc—71)g2(nTe—72)
can be rewritten as

/ " s > 6t —nT.)dt

n—=——oo

_ %( [GQ(f)eijan] . [Gg( e ]27rf72] n_z_:ooé f— % )\f 0
— i{j( [Gz(f')e_ﬂ”f“] * |: i Ga(f — %) e 72U ] )‘f 0
_ 1 Z / Co(— ﬂm/nGg(l/ . %)e—j%(u—%)mdy (93)

Setting v = — f" and considering that Ga(f’) is bandlimited (|f’| > %, 0 < B <1), the

values of n reduce to just -1, 0, and 1. Therefore, it becomes

1 & B
7_1 (/ G%( *J27rf T1I—T2) df +/ G2 )GQ(— _ f) —j2nf' (1 — 72) ] Tc df

It was latter observed that this expression could have been alternatively obtained using the

Poisson Summation Formula (30) and that it is in the form z; + zoe 7272/Te | z3e72772/Te
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where 21, 22, and 23 can be shown to be respectively (f' = f/T., d = (11 — ) /T¢):

148

2= /6]27rfdco ( (f4ﬁl+ﬂ))df+
1-5

2 m(=2f -1+ p) = .
j2w fd 4 ( jorfd
/—1+ﬂ ¢ €08 ( 43 ) df + /—12+B ¢ df

2
_] (3_362](1+,3)d7r+ (—5+8,62d2) (erdﬂ_er,Bdﬂ)) (95)
B 167d (1—5p52d2 +4B4d) el (1h)dm ’

1 /(1+ﬂ)/2 i fd( [w 1-8
Z9 = — e 77 1+ cos |=(f———)| ) -
4Ja-p)2 B 2

B 3 j (—1+€2iPdm)
(HCOS [5( fH1- T)D Y = o d (G5 5d) (1 Bd) d A an
—2 cos(d ) sin(dnf) + 27 sin(d ) sin(d 7 j)

= 67d((Bd)7?—1) (%)

1 _(1_:3)/2 . T 1-— /6
23 = = e_JQWfd<1-|—cos[—— ——})
P /—(1+ﬁ)/2 CARAN

(1+cos[ﬁ(f+1—¥)])df:zg. (97)

Combining these three expressions, we obtain

21 + zge 22/ Te | i/ Te — sin(d 3)(—2 Cfggrdg()(;;)g S_ni()dw)) e J2mm2/Te N
sin(d 7 8)(—2 cos(d7) — 2 sin(d)) ef27m2/Te
16md((Bd)* —1)
7 (34 (-5+8B%d?) €294 + (5 - 8% d?) o2 Bdm _ 362]-(14_@,”)
16md (1—5p2d2+4p%dh) el (1HA)dm

_.l_

The first two terms in the sum simplify to

sin(fBdn) cos(m(11 + 72)/T¢)
dnd(1 - B2d2) )

and the third term to

3sin((1 — B)dm) + 3sin((1 + B)dn) n 2sin(dr (1 — B))
8dr(1 — 43°0) (1 — B22) 4dr(1 - B22)

After further simplification and redefining d = (11 — 12),

sin(S(d/Te)m)
2n(d/Te)(1 — B*(d/Te)?)

™
T,

TTY

Sg(T1,72) = go(d) — T

) sin(

); (100)

sin
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which for , = 71 = 7, d = 0, and applying the Rule of L’Hopital and simplifying, we

obtain:
> B T
Z g5(nT. — 7) = Sg(r,7) = 1 — = sin?(—). (101)
2 T
n=—00
Ifr = —7o,
had 1 T BrT
Z g2(nTe. — 7)go(nT. + 7) = Sg(7, —7) = 92(27) + 592(7') sin(?) sin( T ). (102)
n=—oo C Cc

For =0, (100) reduces to g2(d). The expression (101) is periodic in 7 and its average
is1— %, a value obtained in [7] and [61]; the equivalent value for rectangular pulse shaping
is 2. An interesting property is that Sg(0,¢) = Sg(,0) = g2(%).

Averaging Sg(t,t + d) over ¢ in [0,T¢] results in the convolution of go(t) with itself:

Tic /OTC n_i)o g2(n T + D)o (T, + ¢ + d)dt = Ti /o; oo(7) o + d)dr
_ Ti/o; g5(r)ga(—7 — d)dr = Ticgz(—d) k go(—d) = %QQ(d) v 92(d). (103)
Therefore,
005200 = 00 ~ g Gy () (104)

In Fig. 31, the expression derived (solid lines) was compared with the sum (dotted lines)
for 8 = 0.22 and T, = 1. The sum was done for —10 < n < 10. The values for 7; and 7o
were multiple of 0.1 between -2 and 2.

This expression applies to the variance of the MAI in the reverse link of CDMA systems
[33, eq. A7]. In [69, eq 21], the variance of the MAI is in the same form as (101); also, the
infinite sum in [62, egs. 9-10 and egs. 19-23] are in the (101) form. Notice that in [10, eq.
26], collecting the i and m variables together and taking into account that N = T'/T., we
can obtain an equation in the form
NY 2 o go(nTe — t1)g2(nT, — t2) — Ngo(t1)ga(t2). In [36, eq. A2.6], the expression we
derived is applicable to var_p; it can also be used to approximate res_p_aias for large Ny
and Ny and A much smaller than the bit duration.

We have thus presented a close-form expression for an infinite sum that often appears

in CDMA systems analysis that include RRC pulse shaping with arbitrary roll-off factor.
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Examples of the applications of this expression were also presented. It is expected as a

result that new studies will not need to rely as much on rectangular pulse shaping from now

on.

Figure 31: Comparison of Infinite Sum (dotted lines) and Derived Formula (solid lines)

for g =0.22

3.1.2 Detailed Proof

We can use the following identities to simplify the integrals in z;:

/cos(bx;— C)e_j”dx =

_3+4 cos(2x) + cos(4 x)
8 9
jh cos(%‘”) (ah cos(§) +jbsin(§))
eie® (—b+ah) (b+ah)
h (= (b cos(£)) — jah sin(£)) sin(%2)

cos*(z)

_|_

eie® (—b+ah) (b+ah)
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For z1, the first integral without the limits becomes

3 j B cos(L) (Zdﬂ cos(THE) + Sin(w(_zil’jﬂ)))
T6rdezidlm © 2e2ﬂdf7r (=1+2dp) (1+2dp)
ﬁsin(%ﬂ) ( cos (™ m (= 1+ﬂ)) 25dp sin(”(;ilgﬂ)))
2¢2740 1 (~1+2dp) (1+2dp)
j B cos(25E) (d cos(ZF) + j sin(TH)) )
16e2i4/mm (=1 +dp) (1+dp)
B sin(”T”) (_ COS(W) jdp sin(T BH/B)))
16e2id/mr (—1+dp) (1+dp)

(107)

For z;, the second integral without the limits becomes
37 ip COS(%) (QBd cos(%) —j sin(%))
16d62jdf7f7r+ 2(-1+2Bd) (1+284d) e*idfr g
iB COS(2£ ) (,Bd cos(l%ﬁ)w) —j sin( (—1;,3)'”))
16 (—1+ B8d) (1+ Bd) e2idfr g
B (cosS52) — 2 pa sin(527)) sinly)
2 (-1+28d) (1+28d) e2idfng
B (cos(EH25) — j g d sin(CH527)) sin(27)
16 (=1 + Bd) (1+ Bd) e2idfn g

(108)

For z,, we have that

(1—|—Cos [%(f— #)D (1—|—Cos [ﬂ( f+1- #)D = % +% cos(% - 2’07”).(109)

Therefore, without the limits, it is simply

je2idfm JiB cos( (ﬁd cos(g) — J sin(%))
16dm + 167 (-1 (1+ﬁd) e2jdfm
B (cos(%) jBd sm(g)) sm(QJ/;W)

6

167 (-1 +8d) (1+pd) e2idim (110)
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Replacing the limits for zq,

I (rim By d _ gmim (-14B)dy _ 3 _ 3
2wd ¢ ) 16deidr =B 7 16deidr =B 7 |
3J N 3j N
16deidm(=148) 5  16deidm (1+8) ¢
-ipB cos(”(glﬂ_ﬁ)) (Zdﬂ cos(”(;ilgﬂ)) —j sin(”(_;;ﬂ)))
¢j dm (—1-B)
8 cos(“5 ) (28 cos(“GHD) — j sin(*GH))
ejdm(— 1+ﬂ)
j B cos(* (1/3 ) <2dﬂ cos(™ 1+ﬁ)) + j sin( Hﬁ) )
e]dﬂ(l /B)
B cos(ZG52) (248 cos("GH) + j sin(TGF) )
ejdw(1+ﬂ)
B ain(*55) (—cos(=552) — 25 sin(=GH) |
ejdﬂ'(l_ﬂ)
B sin(*G52) (cos(“GH2) — 25 dp sin(*52)
ejdﬂ'(_ _ﬂ)
p Sin(“;ilgﬂ)) (cos(w(;ilgﬂ)) 2jdp sin( )
ejdﬂ(—l—l—ﬂ)
5 (~eon(*1552) — 27 sin(*GH2)) sin(*42)
i dm (1+8) 27 (=1+2dpB) (1+2dB)) +
—JB COS(F(_ﬂl_ﬂ)) (dﬂ cos(”(_;'ﬂ)) j sin(® m( ,3+5)))+
ejdﬂ'(_l_ﬂ)
j B cos(™L ;Jrﬂ)) (dﬁ COS(W) —j sin(iﬂ(_ﬁﬂ))) )
ejdm(—1+8)
j B cos("U52) (B cos(H) 4 j sin(“5H))
e]dw(l 8) +
j B cos(* ) (dp cos(“EH) + j sin(TL=HE)))
¢d dn (1+P) -
B sin(0 ) (= cos("52) - ja B sin(“FH)) +
ejdﬂ’(l*ﬁ)
B sin(#) (cos(%) —jdp Sin(ﬂ(—;-l-/a’))) )
ejdﬂ'(_l_ﬂ)
B sin(ZEF) (cos(ZEH2) — jaf sin(ZEF))
- +
ejdm(=1+8)
B (—eos(™52) — jdp sin(*5H) ) sin(TL) 167 (~1+dB) (1+d
ed dn (115) (167 (-1+dp) (1+dp))
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After algebraic simplification

j (3_362j(1+ﬂ)d7r+ (—5+8ﬁ2d2) (erdw_er,Bdw))

oo 16md (1 —5p42d2 +4p4d4) e 1+B)dm (111)
With regards to zo,
8deidn (P g | §deddn(ih) 7 |
~3 cos(T072) (4 con(3) — j sin(3))
e]dﬂ'(lfﬁ) +
iB cos(ﬂ(1+ﬁ ) (dﬁ cos(%) —7J sm(%)) o] (cos(%) —jdp Sin(%)) Sin(w(lﬂ—/)’))
eJdW(H'ﬂ) + ejdﬂ'(l—ﬁ)
B (cos(3) —jdp sin() sin(%)
- ( e]dw(l—i—ﬂ)) (167 (-1+dp) (1+dp)), (112)
which simplifies to
i (—1 2jpdm

79 = j(-1+te ) (113)

8md (—1+Bd) (1+ Bd) ef(1+h)dn
It can be easily seen that by substituting f by —f in (96), we have that 2, is the conjugate

of z3. Simplifying,

«  —2cos(dm) sin(dnf3) + 2 j sin(d ) sin(dnp3)

=¥ = 114
2=% 167d((Bd)?—1) (114
Therefore,
, , i (14B) dn=2jmna/Te (L] (25 Bdm)
— —j2n7o/Te j2mo [ Te — Je
Sg(r1, ) = ze + z3e + 2 T6rd (<15 Ad) (11 Bd)
jefj(71+,3)d7r+2j7rTz/Tc (_1 T €2jﬂd7r)
+ 167d (—1+ Bd) (L+ Bd)
i _ 2 42\ 2j5dw _ 2 2) g2iBdm _ 325 (14+p)dn
G 3+ (-5+8p7d%) /17 + (5-85°d%) 3e )(115)
d(1-58%2d?+4p84d4) el (1+B)dm
The first two terms simplify as follows:
1 —4cos(dm) sin(dr ) cos(2m72 /T) + 4sin(dm) sin(drB) sin(27 72 /T¢)
167 —d(1 — p2d?)
_ sin(dnB)(cos(dm) cos(2mTa/T.) — 4sin(dn) sin(2772/T))
N 4md(1 — 2d2)
sin Bdmw
cos(m(t1 + t2)/T¢) (116)

= 4rd(1 - B2

76



And the third term to

§(—67 sin(1 + B)dr) + (88%d? — 5)(e(dn—Bdm) _ o—j(dn—pdr))
16d(1 — 452%2d?)(1 — B2d*)w
_ 3sin((1 + B)dr) + 3sin(dr — Bdr) + (2 — 84%d?) sin(dm — Bdr)
N 8d(1 — 42d2)(1 — B2d?)=
_ 3sin((1 — B)dr) + 3sin((1 + B)d) n 2sin(dn(1 — B))

8dr(l — AB2P)(1 — P°dP) tdr(1 - B2dP) (117)
Using partial fractions for the first term in the sum (117)
3sin((1 — B)dm) + 3sin((1 + B)dm)
8dr(1 — 43°2) (1 — B22)
—sin((1 — B)dn) — sin((1 + B)dm) N 4sin((1 — B)dn) + 4sin((1 + B)dr) (118)

8dr (1 — B2d?) 8dn(1 — 4B%d2) ’

but sin((1+ 8)dw) + sin((1 — 8)dw) = 2sin(dn) cos(Bdr), the second term in (118) is simply

g2(d). Putting together the remaining terms of Sg(7, 72):

Se(r1.7) = 4 gy o8 (m(t + )/ T
_ 2sin(dr) cos(fdm) go(d) + 2sin(dr (1 — B))

8dr (1 — B2d7) 2dr(1 — B22)
sin(fdm) cos(w (11 + 72)/T.) — sin(Bdn) cos(dr)

= g2(d) + Ind(1 — B2 (119)
Redefining d = (11 — 1),
Sg(T1,72) = g2(d) — 2W(d/s;1?§é(ci/£§)(7;}TC)2) sin( 7;71;1 ) sin( 7;71;2) (120)

3.2 General Nyquist Pulses

In the study of the forward and reverse link of bandlimited CDMA systems with pulse
p(t), chip period T, and roll-off factor §, often appears a sum of the form > >° _ p(r —
nT.)p(me — nT,), where 71 and 79 are time differences related to the delay profile and finger
allocation in the RAKE receiver. In the previous section, a close form is presented for a
raised cosine (RC) pulse with arbitrary . Recently, novel pulses have been presented that
have certain properties better than those of the RC pulse. A “Better than” Nyquist (BTN)
pulse [9] has an eye diagram that is better than that for the RC pulse with the same 3. In

[14], a pulse was presented that is optimum in terms of multi-access interference. Also, in
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[59], a family of Nyquist filters is presented that has an asymptotic decay faster than that
of the raised cosine; this property is important when considering that in practise, the filters
have to be truncated. We present an elegant approach that can be applied to any Nyquist
pulse with arbitrary 8 and use the approach to obtain the close forms for the first two pulses

for any 7 and 79, and close forms for the family of Nyquist filters for 71 = 70 = 7.
3.2.1 Closed-Form Representation and Applications

Let P(f) be the FT of a Nyquist pulse p(¢). We have that because

> P(f—n/T.) =T, for a pulse that is bandlimited with arbitrary 0 < 8 <1,

T, : Olsﬂlfls%1
S ST LE<|feat

P(f) = Tc|—|¢(1—|f|) L < fl< b (121)
0 > B

and using the properties of FTs, p(t) is real and even as P(f). Let also, p(t) = p(t- T¢) be
the normalized Nyquist pulse and P(f) = P(f/|Te|)/|T:| be the respective FT.

It was shown in the previous section that if the F'T of a pulse is bandlimited such that
it is zero for |f'| > %, then

o0 1 fo'e) ‘ ,
SNy (11,72, 8) = Z p(nT, — m)p(nT, — 1) = T (/ P2(f')e_727rf (TI_TZ)df'-I—
n=-—00 ¢ -0

2wTy

| PP - e e R g
—0o0 c

+ [ PP - e e R )z

which is in the form z; + zoe™72772/Te 4 oei2772/Te  Notice that the first integral, z1, is the
FT of P?(f) divided by T, and after using the duality and convolution properties of FTs
and the fact that p(d) is an even function, z; simplifies to I%Cp(d). Making the substitutions

f' = f/T. and and using the equality 15(—1 —-f)= P(f+1), the sum Sxy (71, 72, ) becomes

o0 - oo . - Dy
[P ars [ pgpg - e e

—0o0

_j2mfd j2mTy

+ oof’(f)f’(f+1)e o e T df. (123)

Using the equality P(f) = 1 — (1 — P(f)) and taking into account that 1 — P(f) = 0 for
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If| < 52,

SO ior fd (1+8)/ R R P27 fd
= / P g + / P — P(f)eF g
—00 (1-8)/2

(1-p)/2 . _jomfd
+/ P(f)(1—P(f))e T df. (124)
—(1+8)/2

Using duality from the f to the d domain, the first integral is just p(—d/T.) = p(—d).
Noticing that P(f +1) = 1 — P(f) for |f| > 152 and considering the domain of P(f) in
(123), the second and third integrals in (124) are respectively zo and z3 are respectively zo

and z3. As a result,
z1 = p(—d) — 29 — z3 = p(d) — 25 — 23. (125)

Using the change of variable f = f’ — 1/2 for the second integral and f = f' + 1/2 for

the third one,

ﬂ/Q N ]_ N ]_ _j2rfd jnd
a@=pld) - [ P(f+ P - e Fee Hay
—B/2
ﬂ/2 N L L
[ - - e R gy (126)
—B/2
We can see that P(f + %)P(f -1 = P(—f - %)P(f — 1) is an even function and

R{e 72714} is even and I{e 7?74} is 0dd; also, observe that z3 = z3:

ﬁ/z N wfd _m
n o= [ PG+ PG - oo s T

B2 N wfd jmd
- /0 2P(f+§)P(f—§)COS(2TJ: Jdfe®,

_ z2e—]27r72/Tc + z36]27r72/Tc

223 =
52 .
= 4 A P(f + ) (f——)co(Qde)dfcos(w(Tl +79)/Te),
) 62
a = POy a [T )
p(f - %) cos(2n fd/T)df cos(wd/T,). (127)
Therefore,
8/2
S = d) — 8sin ™M in UKE/ .
N ) = pld) = ssin() sin(2) [
P74 )P~ ) cosCDa
= p(d)—4sin(7;1)sin(%)z26ﬂd/ﬂ, (128)



where f' = f —1/2 and P(f) is the normalized version of (121). As mentioned in [28],
this infinite sum with arbitrary 7; and 75 has applications towards [10, eq. 26] , while the
convolution form (127) can be used towards [33, eq. AT7]. The special case 71 = 79 = T,
d = 0 in (128), has applications towards the infinite sum in [62, egs. 9-10, 19-23], [36, eq.
A2.6], and in [69, egs. 18 and 21].

. . . 1—
Since the optimum pulse has a simple spectrum [14] (Popt(f) = T¢ for |f| < Q—Tf,

Popt(f) = % for % <|fl £ %, and zero elsewhere) it is easy to demonstrate that

3 pln = nTp(m — ) = pld) - Lo 1) suayryms), (129
p(d) xp(d) cos(md/T.) .
T - p(d) — 20T sin((d/Tc)mp),
where
p(t) = 1- 'Bsinc((l - p)t/T,) + ! ;ﬂsinc((l + B)t/T.) = sinc(t/T;) - cos(nft/T.). (130)

For the frequency spectrum of the BTN pulse [9] (corrected for a minus sign), using

B=

T,
of) =27 7T, (131)
The BTN pulse, using a = 21’%2 can be rewritten in the following way:
. dan(t/T,) sin(rat/T,) + 202 cos(rat/T,) — o?
p(t) = sinc(t/T) - (/T.) sint 4;2/@/)1:_)2 ¥ a2 (mat/Te)
 sin(mt/T,) (—1n(2)2 +2 cos(mt B/Te) In(2)? + 27 (¢/T.) B In(2) sin(rt ﬁ/Tc)) 5
- m(t/T.) (72 (¢/T2)2 62 + n(2)?) '
Therefore,
> p(r = nTe)p(r2 — nTe) = p(d) +
2 In(2) sin(m 1 /T¢) sin(mw 12/ T¢) [2 cos(B (d/T) ) — 3 (d/T;) p(d) 7 csc((d/Te) )] (133)
B2 (d/Te)? 72 + 41n(2)*
B0 3(d) _

B In(2) cos((d/T.) m) (2 cos((d/Tc) w B) — 3 (d/Te) p(d) m csc((d/T.) 7))
(d/T,)? w2 2 + 41n(2)?

(134)
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Because d 7 csc(dw) = 1/sinc(d7), for d=0 (and 71 = 7o = 7) the previous expression

simplifies to

o
2 _ B . 9T
_Z p(tr—nTy)=1— ) sin (?c) (135)
n=—00
Averaging over 7, the factor 1 — ﬁb) = 1—1/(2a) is obtained; it is equal to 2/3 for

rectangular pulses, 1 — g for raised cosine [7], and 1 — g for the optimum pulse [14]; this
implies that for a given roll-off factor the Multiuser Interference is smaller for BTN pulses
than Raised Cosine Pulses.

In Figs. (32) and (33), the infinite sums (dotted lines) for the BTN and optimum pulses
are compared with the closed forms presented (solid lines) for 5 = 0.50.

On the other hand, the generalized Nyquist filters are of the form

27T, 1
P(f)=T 2Ty, (2Le -
(1) = Tocos® (Fvu 5011 - 710 (136)
where
(-1 (z < —1)
z n=1 and (-1<z<1)
271 (=23 + 32) n=2 and (-1<z<1)
273(325% — 1023 + 15z) n=3 and (-1<z<1)
Va(2) 274(—5z" 4 212 — 3523 + 35x) n=4 and (-1<z<1) (137)
277(352° — 18027 + 3782°
—42023 + 315z) n=5 and (-1<z<l)
! (x> 1),
Notice that when n = 1, it results in the RC function. The expression
/ﬂ/2 cos’ (= + V(2L o2+ Tv(2L)) cos(24 M4y (138)
o 47147\ 47473 T,

can be obtained numerically, particularly for the special case d = 0 (7; = 70 = 7), the

substitution f' = f/f can be made and the result becomes /3 times a constant a,,. Therefore,

o0
Z p(nT. —1)p(nT, —1)=1—a,-B- cosQ(ﬂ) (139)
n=—oo TC
where
0.5 : o n=1
0.360733 : n=2
anp = ¢ 0.295872 n=3 (140)
0.256695 n=4
0.229808 n = 5.
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The average of (139) is simply 1 — %.

In conclusion, in this section the study started in this chapter was extended to include
bandlimited CDMA systems using arbitrary Nyquist pulses and roll-off factors. Close form
expressions were presented for the “Better than” Nyquist pulse, the optimum pulse, and a
family of Nyquist filters based on generalized-cosine spectra. The work is going to facilitate

the study of both the forward and reverse link of CDMA systems with novel pulses.

Figure 32: Comparison of Infinite Sum (dotted lines) and Derived Formula (dotted lines)
for the “Better than” Nyquist pulse for g = 1.00

82



Sum

Figure 33: Comparison of Infinite Sum (dotted lines) and Derived Formula (dotted lines)
for the optimum pulse for § = 1.00

3.2.2 Detailed Proof
3.2.2.1 “Better Than” Nyquist Pulse

The spectrum [9] with the correct sign in the exponential of 2 is

1—
. L (0<|f1 < 52
pi=4 <" v - <lf<3 (141)
Y 7. (11— 9 FGED 1o if] < 148
c ¢ - 9> |f| = 27,
0 s> 5

We are going to obtain Syy (71, 72, 8) by expanding z1, z2, and 23 from 122 and then compare

the result with that from (128).
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9-ct/B o-2jdfn
(—j2dm —cIn(2)/8)

We have that for a real number c, /e_ﬂ”fd 2_Cf/ﬂdf =

1 148

21 = /2 22(1=B-21)/B g=25d [y +/T (1 — 2—(1+ﬂ—2f)//3)26—2jdf7rdf + (142
1— 1
2 2
-1+ _1
/ 2 92(1-8+42)/8 e—2jdf7rdf+/ ? (1 _ 2—(1+,6+2f)/,6)26—2jdf7rdf
-3 -8

7 gy
—148

- /1 P g2/ (1_2(1—ﬂ—2f)/ﬂ) e2idfmgs |
/ ? 9-(1+8-21)/8 (1 —(1+8- 2f)//3) e2idfnyf (143)
1
2

= / = o(1-B+21)/B (1_2<1 ﬂ+2f//3) e—2idfTgr 4

/‘2 —(14B+21)/8 (1 9- (1+2f+ﬂ)/5) e~2idfTqy (144)

eI dn=idr(1-B) (_4eidn | idn(1-P)) g
8 (—jdm B —2In(2))

The first integral in z; becomes

The second integral in z; becomes

e—i (148 dm J + B + %ﬁ _
2dm  jfBdm—1In(2)  pdw+2j5 In(2)

' 95— %" B g1+ 52
¢ 2drn | jRdr—1n(2) T Bdr+2j In@2) (143)
The third integral in z; becomes
. 2(=148) .
jeddm(-1+8) g B jz—%— FeldTp (146)
2(dmB+2j In(2)) 2(drB+2351n(2)
The fourth integral without the limits becomes
(1 - 2(_1_Zf_ﬂ))2 (j 3 2(14+8) N 271.7%72(&3) 5 o RIS % 2(1+8) ,B)
dm —jdm B—21n(2) dm f—j In(2)

(147)

P 2
22 (-1-3-%) (_1 +21+%+%) e2idfr

jeddn(1=8)  j—idm(~1+)

The fifth int l1b -
e integral becomes 5dn S dn
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Putting it all together, z; can be rewritten as

B cos(d ) __Beos((1-p)dm) n B cos(d )
8(—jBdm—21In(2)) 2(—jBdm—21n(2)) 8 (j8dm—2In(2))
(B cos(dm (1)) d?> % B3 (cos(dm) — j sin(dm))

2(jdnp—2In(2)) 8 (jdnpB—2In(2) (drpB+jIn(2)) (drB+ 27 In(2))
n 7dmf? In(2) (j cos(d)sin(dr))
8 (jdnB—21In(2) (dnp+jIn(2)) (dnw B+ 25 In(2))
B 9 81n(2)? (cos(dw) — j sin(d))
4 (jdnp—21n(2)) (dnfB+jIn(2)) (dnB+2j In(2))
~ 2§ 1n(2)? (cos(dn) — j sin(dr))
drm (jdnf—21In(2)) (dnf+jIn(2) (dr B+ 27 In(2))
drm 32 (COS(d?T) + j sin(d))

T8 (—jdrB-n@) (@r B -2j In(2))
_ 58In(2) (4 cos(d m) —1lsin(dm) In(2)? (COS(dﬂ') + j sin(d))
8 (—jdmnp—1n(2)) (drf—2jIn(2) dr(—jdrp—1n(2) (d7p 23 In(2))
B j B sin(d ) j B sin(d )
8(—jdnf—21n(2)) 8(jdw B —2In(2))
In(2)? (cos(dm (=1 — B)) — j sin(dw (—1 — f)))
dr (=jdnf —1n(2)) (dnf —2j In(2))
B1n(2)? (cos(dm (=1 —B)) + j sin(d 7 (=1 — B)))

(jdmB—21n(2)) (dnfB+jIn(2)) (dnB+2j In(2))
25 1n(2)® (cos(dm (=1 —B)) + j sin(dr (-1 — B)))
dm (jdnp—21In(2)) (drf+jIn(2) (dr B+ 27 In(2))
N %,6 sin(dr (1-p))  jBsin(dr (1-p)) sin(dr (=1+5))
2(—jdm—21n(2)) 2(jdnp—2In(2)) dm

(148)

Expanding the sine and cosine functions such as sin((1 — ) d«) and cos((1 — ) d«) and

putting all the terms under one denominator, the numerator of z; can be written as

2d° 7 3% cos(d ) cos(dw ) In(2)

+3d7 8 cos(dm)In(2)® — 4dnx B cos(dn) cos(dn ) In(2)?
—d? 7% 821n(2)? sin(d7) + 2d* 72 % cos(d 7 §) In(2)? sin(d )
—41n(2)* sin(d7) + 8 cos(dr B) In(2)* sin(d )

—6d? 7% 8% cos(d ) In(2)? sin(d 7 B)

+2d® 7w 8% In(2) sin(d 7) sin(d 7 B) + 8dw B1n(2)? sin(d ) sin(d ) (149)
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which simplifies to

In(2) (dwﬁ cos(d ) (2 cos(dm f3) (d2 72 §? — 21n(2)2) + A)
+sin(d) (cos(dn B) (81n(2)° +da* B2 n(4)) + B))
A=31n(2) (In(2) —2dn g sin(dnw ),

B= (d2 n2p2 + 4ln(2)2) (—In(2) + 2d« B sin(d~ B)). (150)

The denominator of z; is
B’ p 4+ 58373 B2 In(2)? + 4drn(2)t = <d2 w2 6% + ln(2)2) (d2 72 6% + 41n(2)2) .
The expression z; can be rewritten as
2 cos(dr) cos(dn ) In(2) 38 cos(d ) In(2)?
d? w2 82 + 41n(2)? (d2 w2 B2 + ln(2)2) (d2 72 42 4 41n(2)>
6 8 cos(d ) cos(d ) 1n(2)?
- (d27r252 +1n(2) ) (d27r2ﬂ2 +41n(2)?
)

In(2)? sin(d

_dﬂ' <d2 72 42 4 In(2)*
2 cos(dw B) In(2)? sin(d ) 6dm 2 cos(dn)In(2)? sin(d )
_I_ —
dr <d2 2 ﬁ2+ln(2)2) (d2 72 B2 + In(2) ) (d2 72 32 4 41n(2)>

)
|
|
3

N 28 In(2) sin(d ) sin(dw 3

P 72 B2 + In(2)? (151)
which can in turn be rewritten as
sin(dr) (~In(2) +2 cos(dr f) n(2)” + 2dn B In(2) sin(dr f) )
d (d2 w2 32 —I—ln(2)2)
+2ﬂ cos(dm) cos(dw f3) In(2) + 38 cos(dn)In(2)
d2 72 32 + 41n(2)? <d2 2 B2 + ln(2)2) <d2 72 B2 + 41n(2)2)
63 cos(dm) cos(dw 8) In(2)®
(@78 1 m(@)?) (27252 + 4n(2)?)
_ 6dwp? cos(dm)In(2)” sin(dw B) (152)
(27282 +1(2)%) (2272 B2 + 41(2)*)
The last four terms can be written as
B cos(d ) In(2) (2 cos(dm ) — 3(tn(@) 42 coswgf;:;?ﬁ:é;i;ﬁ e Sin(dwm)) (153)

d2 72 32 + 41n(2)”
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Therefore,

B In(2) cos(dn) (2 cos(dn ) —3dp(d) w csc(dn))
d2 72 32 + 41n(2)?

Z1 = p(d) + (154)

The first integral in z9 is

_q_1_-148 1-2_2C18) 1+ﬂ)
pddn [ 27 ° g j2

—jdrf—In(2) dmwf—2jIn(2

1-8  —148 L1 2(1 B) _2(= 1+ﬂ)
B 2

—jdnB—In(2)  dwS—2jIn(2

:e—jdw ( ﬂ
4 (—jBdm —1n(2)) (Bdﬁ—2j In(2

o (1 B)dn p N
’ (2 (—jBdr —n(2)) ,Bd7r—2]1n( )) (155)

Putting the expression under one denominator and expanding the exponential function,

an expression is obtained; its numerator is

B (Bdm cos((1—B) dm) + 47 cos(dn) In(2) —3j cos((1 — ) dn) In(2)
—4 1n(2) sin(d7) + j Bdm sin((1 — B) dn) + 3 In(2) sin((1 — B) dn)) -

(cos(dm+ (1= p) dn) —jsin(dn + (1 — B) dn))

and denominator 8 (—j Bdm — 2 In(2)) (Bdm — j In(2)).

With regards to the second integral in 2z

—1—

5 G +2%) B 1n(2)
(dmB+j In(2)) (dw B+ 25 In(2))

3 (j (2“% _ 2%) dr B+ (—22+% +2%> ln(2))

(dm B+ 7 1In(2)) (dn B+ 25 In(2))

e—ddm(148) 9

. —-1-38
e*]dw2 B

(156)

Multiplying out and converting the exponentials with imaginary argument to trigono-

metric form

dm (3% (cos(dm) — j sin(dm)) + 35 B8 In(2) (cos(dn) — j sin(d))
8 (jdw B —21n(2) (dnw B+ j In(2))
_ 3B 1n(2) (cos(dm (1+ B)) —j sin(dn (1+5)))
2 (jdn—21In(2)) (dn B+ 7 In(2))

(157)
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Adding the two parts of the integral, putting the expression under one denominator and
expanding the trigonometric expressions,
. (/3 In(2) (cos(dn) — j sin(d)) (2 cos(d B) <d2 w2 B2 2ln(2)2) v 312))
2 (d4 7 B4 4 5d2 w2 B2 1n(2)? + 4 1n(2)4)
Bia =3 In(2) (In(2) — 2dn B sin(dnw B)) (158)

7

The numerator of the quantity zo e/ 27 + 23 €727 is (for t = 79/T%)
—4d? 7% B3 cos(dm) cos(27t) cos(dn B) In(2) — 68 cos(d ) cos(2t) In(2)*
+8 4 cos(dm) cos(2mt) cos(dn ) In(2)?
+4d* 7% B cos(dw B) In(2) sin(d ) sin(27t)
+6 81n(2)? sin(d ) sin(27t) — 88 cos(dw ) In(2)? sin(d ) sin(27 )
+12d7 2 cos(dn) cos(27t)In(2)? sin(dw B)
—12d 7 %2In(2)? sin(d7) sin(2 7 t) sin(dw B)  (159)
Using the identity cos(d ) cos(27t)—sin(d7) sin(27t) = cos(r (d + 21t)), for zpe 27t +

j2rt
z3el°Tt,

B cos( (d+2t)) In(2) (2 cos(dm f) (d2 w22 21n(2)2) + B12)

- dAwt B 4+ 5d2 w2 821n(2)% + 41n(2)* ’ (160)
which replacing d + 2¢ = (11 + 72)/T,) and redefining d = 71 — 79,
_ B cos(m (11 + 72) /T¢) In(2) (2 cos(dm B/Tc) — 32(d/Tc) p(d) 7 csc(dn/Te)) (161)
(d/T.)? 72 5% 4+ 41n(2)
Since cos(m (11 — 12)/T¢) — cos(m (11 + 12) /T¢) = sin(n 71 /1) sin(m 12 /T¢),
Sny (71,72, 8) = p(d) +
26 In(2) sin(”T:l) sin(%?) [2 cos(Bdn/T.) — 3(d/T.) p(d) w csc(dn/T.)] o

B (d/T.)? 72 + 41n(2)*
When using (128), replacing the value obtain for z, the second term in (128) (for

d = (11 — 12)/T;) becomes

4sin(%1) sin(%?) (ﬁ In(2) (2 cos(d ) <d2 n2 52— 21n(2)2) + 312))

(163)
2 (d4 T B+ 5d2 72 B2 In(2)? + 4 ln(2)4)

Using a similar simplification from (160) to (161), adding the first term in (128), for d =

T1 — T2, (162) is obtained.
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3.2.2.2  Optimum Pulse

(1-8)/2 (+8)/2 -(1-8)/2
2 = / e—ﬂ”fddf+/ e_ﬂ”fd(l/él)df—l-/ e 127 I d(1/4)df
(

—(1-8) /2 1-8) /2 —(1+8) /2
_ ettt d jeidnas) je2idm (1+=52-5)
8dm 8dm 2dw
Jomdm148) jo2dn (FFEATHELE) L a5 0 142)
_ 164
2dw + 8dm + 8dm (164)

After converting the exponentials to trigonometric function,

—3 sin(dn (=14 B)) +sin(dn (1 + 8))

zZ1T =

4dw
4 cos(dn B)sin(dw) — 2cos(dn) sin(dm j3)
B - 4dm
_ ) - cos(d7r2) (sil:(dﬂﬁ) (165)
(14+8)/2 , _jeddn(1-8)  jo2idm (P4 =5E 4R
_ —j2n fd _—Je€ Je
v /(1—/3)/2 el = =g+ 8dm
_ (cos(dm) —j ercll(:w)) sin(d r 3) (166)
vy = 2 = (cos(dm) +j S;I:l(jw)) sin(d 7 3) (167)
s = cos(m (1 —|—27('123r) sin(d  3) (168)
n_zoo Popt (nTc - 7'1)popt (nTc - 7’2) = p(d) - COS(dWQ) Zli(dﬂ-ﬂ)
+cos(7r (11 + 12)) sin(dw 3)
2d~
_ ) - sin(m 11) sin(7 72) Sil’l(dﬂ'ﬂ). (169)

dr
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CHAPTER IV

REVERSE LINK ESTIMATION THROUGH SIMPLIFIED
IMPROVED GAUSSIAN APPROXIMATION

It was mentioned in Section 1.2.3 that the assumption that the MAI is Gaussian in distri-
bution is inaccurate at low BER values (below 1073). Nevertheless, it has been observed
[43, 44] that the distribution of the MAT is Gaussian over the codes given that the other
parameters remain constant (set of phases and path delays for all the interfering users). As

a result, a more accurate method would be to calculate
P,=FE [Q (1/\@)] , (170)

where U is the variance of the interference over codes normalized by the power of the
desired signal (in other words, the inverse of the SNR) and the expectation is over the the
set of phases and path delays. In the Simplified Improved Gaussian Approximation (SIGA)

method, the probability of error (BER) is approximated as

P = 20 (1/vE) + g (111/Blw) + VivarTe]
-I—éQ (1/\/E[\I/] - JW) : (171)

Closed-form expressions for the values of E[¥] and Var[¥] will be presented for BPSK
and OQPSK modulation, Adjacent Channel Interference, and RAKE receiver for multipath

channel.

4.1 BPSK

Oftentimes the reverse link (also called uplink) in CDMA mobile communications is mod-
elled as one path coming from each user; due to the random location of the subscribers,
each of these paths has different phase and delay. The power received from each user can
also be modelled as constant if perfect power control is assumed. Instead of OQPSK, for

simplicity, the modulation is modelled as BPSK. The analysis for the reverse link can be
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obtained by making some simplifications to the analysis and models used in the forward
link (Chapter 2).

Referring to Figure 1, in BPSK, the data d® is only spread by the random PN chip
sequence c([izl (the quadrature branch is eliminated); also, instead of VP®) , it is V2P0 to
maintain the same total power in the signal. Modifying (1) and (2), the received signal can

be expressed as follows:

r(t) = 3 @vV2POFY) (t — ) + I(2). (172)

At the RAKE receiver, correlation is performed only with S} (k) 1(t — 7x); therefore, the

output of the RAKE receiver due to in-cell interference becomes

Zakazv Z Z (cIk d % cy agg((n —a)T. — 1) cos (6; — Hk)> (173)

5
n=0a=—o0

The delay 7; and the phase 6; for the received signal of each user are modelled as uniformly
distributed in [0,7,] and [0, 27|, respectively. Without any loss in generality, 75, and 6 for
the desired user are set both to zero.

It is straightforward to show that the desired signal is
Zpes = N d®) v/ Pk), (174)

Following the analysis to equations (56) and (57), it can be seen that without averaging

over the phase

Var[Z] = PN Z p*(nT, — 7;) cos? 6;, (175)

n—oo
where p(t) is the pulse used (convolution of the receiver and transmitter pulses). It was

already shown that

Z p’(nT, —7;) =1 — Asin®(r 7). (176)

n=-—oo

It was already shown in Chapter 3 that A = § for OPT pulses, A = /2 for RRC pulses,

and A = ($/(2In(2)) for BTN pulses.
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Therefore, for a given 7; and 6;, the interference due to user ¢ at the output of the RAKE

receiver normalized by the square of the desired signal Zpes becomes

P

\IJZ' = m . (]. — ASinZ(ﬂ't)) . COS2 97, (177)

Taking expectations with respect to 7; and 6;,

P A\ 1
pi = E[¥] = 720) (1 - 5) K (178)
PO\’ 342\ 3
2 . —_ —_— DR
E2[;] (Np<k>> (1 A+ ) o (179)
P \* /1 4 542
= 2 —_ 2 S = . —_ — — e
o? = Var[¥;] = E[¥?] — E?[¥;] (Np(k)) (8 e+t ) (180)
For Raised Cosine:
P B
i = Np® (1 - Z) 2 (181)
. 2
9 P 1 B 552
%= (NP(k) + 256 (182)
For BTN:
(%) Jij 1
M= Np® (1 - (4]n(2))> ) (183)
. (PO N (1 B L (184)
7% T\ NP® 8 (161n(2)) ' (256(n(2))2) )
For OPT:

P B

A
2’
2
P
2 _ RS .
% = (NP(M) ( ) (186)

Noticing that ¥ = Y/ ;, and that E[¥;, ¥;,] = E[¥;,JE[T;,] for i, # ia, the above

results and

p=E Z Hi, (187)

o = Var[U Z oi, (188)
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are used to obtain the probability of error.

On the other hand, the method of Characteristic Function (CF), first presented in [19],
is another way to obtain the BER. Recently, Yoon in [68, 69], based on the method in [18],
expanded the work from square pulses to arbitrary bandlimited pulses:

sin(w)

1 1 [
Pomg— | duntw)no ™ aw, (189

where ¢na1 and ¢r(w) are the characteristic functions of the MAT and the noise, respectively.

From [69],

KI
OMAT = H OMAT;,
i=1

’LU2 U)2 9

1 [T
IVINIES ?c/() exp(_7012\/{AI¢|719)I°(7UMAI¢\Tk)di (190)

where K’ = K — 1, the interfering users, I, is the modified Bessel Function of the first kind

and order zero and

i M
o? _1r > pP(mTe— ) (191)
MAL|T — IN p&) p c k)»

m=—

where that author used a time-limited waveform defined in (—M7T,, MT,). Setting ¢(w)
to unity since the interest is in the effect of MAI, and setting all the powers P = P(¥),
the probability of error is now obtained. Notice that Z%Zi 1 P2(mT, — 1) can be replaced
by 1 — Asin?(n7/T.) as M — oo.

The BER was obtained through Monte Carlo simulations (Sim), the SIGA, CF, and
Standard Gaussian Approximation (SGA) methods in Figs. 34 and 35 for the OPT and
BTN pulses (the BER for RRC has already been in [22]). For the Monte Carlo simulations,
a Root-OPT pulse and a Root-BTN pulse were first derived for the transmitter and the
receiver (the composite effect is an OPT and a BTN pulse respectively).

It can be observed in Figs. 34 and 35 that the SIGA method matches well the simulations

and the CF method.

4.2 Offset-QPSK

The actual modulation used by IS-95 is OQPSK, which is similar to two BPSK transmit-

ters (one for the in-phase carrier, and the other for the quadrature carrier), but with the
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Figure 34: Output Bit Error Rate vs K’ for Optimum Pulse Shape (5 = 0.5).

quadrature carrier offset by T¢/2; as a result, the received signal becomes
K . . o .
r(t) =Y a; V2P0 (dg%y) (t—m) = jdy) st — To/2 — T,-)) +I(t) (192)
i=1

The tilde has been removed from § to emphasize that each the spreading waveforms for
the in-phase and quadrature carriers are multiplied by different bits as opposed to balance
QPSK, where they are multiplied by the same; the chip sequences used are PN random
codes. The analysis is very similar to that of QPSK and complex-spreading QPSK. The
desired signal is the same as the one for BPSK. At the receiver, correlation with S](\I,c’)l (t—7%)

is performed to obtain the in-phase data dgi) and correlation with Sg\l,i)[(t — 7y) is performed

to obtain the quadrature data dg). Since the performance of the system is symmetric over
dgi) and dg), the analysis can be concentrated only on the in-phase data. could just be on

the in-phase data.

Following again equations (56) and (57), the variance of the output of the RAKE receiver
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Figure 35: Output Bit Error Rate vs K’ for BTN Pulse Shape (8 = 0.5).

becomes

K 00 ]
Var,[2] = % > a2a2P [ ( / P03 (¢~ mp)at) | - cos?0;
i=1

—00
itk
o0

. 2

A / D038 (1~ Tof2 — mp)at) | sin ;). (193)
—00

where again the delays and phase of the other users are set to be respect to the delay and

phase of the reference user k, that is, 7, and 6 were set to zero. Following the code cases

that lead to (57) when taking the expectations only over the codes,
K ; TT;
Var[Z] = Z ot PON ({1 - AsinQ(?z)} cos? §;

i=1 ¢

ik
+ ) pA(nT. — Te/2 — 7;) sin® 01) , (194)
n—oo
but
= 7 (1 +T./2) T
Z p’(nT, — 7 —T./2) =1 — AsinZ(%) =1 — Acos?( Tz). (195)
n—oo ¢ ¢
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Therefore, Var[Z(®)] (variance of interference due to user i at the output of the RAKE

receiver) normalized by the Z3 .. (same as in the BPSK case) becomes

(%)
= % (1 — Asin*(n 73/T,)) - cos®(6;)
p@ 9 .2
—I—w - (1 — Acos®(mw1;/T¢)) - sin” 6;, (196)
and
p® A
i = TEOR (1 _ E) , (197)
N2
v (PN, A
E[(‘I/z) ] - (Np(lc) 1-A+ 16 /)’ (198)

@ \* /A2

of = (%) : (‘f—ﬁ) (199)

The SGA and the SIGA method were used to obtain the BER for an OQPSK system
with f = 0.0,0.5,1.0 and RRC, BTN, and OPT pulses (see Figs. 36-38). It can be seen
that the results obtained using the SGA method are very close to those obtained using
SIGA, except at very low BER levels. Moreover, except for § = 0.0, where all the pulses
become sinc pulses, it can be seen that the performance is best for the OPT pulses, then
the BTN pulses, and then the RRC pulses; that is because the OPT pulse is the optimum
for same-carrier MAI. The impact of adjacent carrier interference is going to be explored in

the next section.

4.3 Adjacent Channel Interference

The effect of adjacent channel interference (ACI) is rarely presented in the literature. The
previous mathematical analysis results is still applicable to systems with ACI if it is noticed

that instead of using a pulse g;(t) * g1(t), the pulse

gn = 1(8) + (92(2) - 27 511) (200)

is used for the band to the right. It is assumed that the carriers are separated by Af = 1/T,.

From simulations and curve-fitting, it was observed that

o
A A 27T
Z g%(t—7)=§+§cos T (201)

n=—oo
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Figure 36: Output Bit Error Rate vs K’ for OPT Pulse Shape in OQPSK.

It was observed that the effect of delay and the phase of the interfering carrier can be
lumped together into the variable 7.

The result is the same for the band to the left. Therefore, assuming the same number of
interfering users K’ = K — 1 in the middle band, the left band, and the right band, and all
users having the same power, it can be shown that the at the output of the RAKE receiver
for user k£ in the middle band, the variance of the interference normalized by the power of
the desired signal is given as

K’ 1
T, =) —- (1—Asin2(

i=1

K’
27TTi 1 A A 27‘(”722
T ) cos? 0; + E (§ + g oos T,

K’
1 A A 27 Ti3
E; <§ g o8 T, ) . (202)
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Figure 37: Output Bit Error Rate vs K’ for RRC Pulse Shape in OQPSK.

Then,
1
1 3 1 3A2
Ev?l=_—_.[2 242
(3] N (8 8+32>’
1 (1 A 342

An important conclusion is that the mean of the interference power does not depend on
the shape of the Nyquist pulse under these conditions. It was also observed that, at low
values of 3, the value for Var[¥;] was slightly smaller for the OPT pulse than for the BTN
pulse, and for the BTN pulse it was slightly smaller than for the RRC pulse; essentially,
the performance for the OPT pulse is slightly better (not in a significative way) than the
other two at low BER values. This conclusion suggests that pulses should be optimized in
terms of eye diagram and effect under truncation rather than in terms of MAI minimization

(since all pulses under the presence of the same number of interferers in the left, same, or
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Figure 38: Output Bit Error Rate vs K’ for BTN Pulse Shape in OQPSK.
right bands would have essentially the same performance).

4.4 Simplified Improved Gaussian Approximation for RAKE
and Multipath

Up until now, the signal from each user was assumed to come through one path. In this
section, the SIGA analysis is extended to channels with two paths and systems with a
RAKE receiver with two fingers; the power of each path for each user is normalized such
that Zlel ozl2 = 1, and thus the power received from each user is P(%). The modulation
used is BPSK. The channel model for the reference user k are two paths arriving at 0 and
T., while for the other users the time of arrival of their two paths are uniformly distributed

over [0,T;] and [T, 2T;]. The pulse shape to be studied is the RRC pulse.
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4.4.1 Multiple-Access Interference

Following the same analysis as for QPSK with MRC, at the output of the RAKE receiver,
the variance of the interference due to user ¢ normalized by the power of the desired signal,
P®) N2 is given as

U, = Z Z Z Z Qg o, 0 oy, SE(TY, £y Tio ) €O (0, — 0,) cos (0, — 0,).(204)

11 1la=1 fi=1 fa=1

Notice that the f subindexes are assigned to the fingers of the reference user k, and the [
weights are assigned to the paths for the user 7. Without any loss in generalization, time is
going to be normalized such that T, = 1.

It is straightforward to see that for ay = oy = 1/V/2,

J210) L&,
BrolWi] = 5 Ere YD ajaiSg(ny, miy) cos® (6, — by)
1
— 2
5 (205)

PO KK, 8 p)
= Npm 2o 20l = 7) 12 = gl _Z

In the calculation of the second moment of W, the following cases are encountered
(cases that do not go to zero):
Case 1: I =lpo =3 =14 and f1 = fo = f3 = f4.
Case 2: a)f1 = fo # fs = frand [y = 1ly =13 = ly or b)fy = fo = f3 = f, and
=1y #l3=14.
Case3: a) i =ls#lo=ly, fi=fs# fo=fi, D) li =ls £y =1lo, fr = fa # f2 = f5.
Case 4: fi=fo=fs=foand a)ly =13 # o =14 or b)ly =14 # lo = ls.
Case b: f1 = fo# fs = faand a)ly =1y # I3 =14 or b)ly =13 # lo = l4.
Case 6: [y =lo=Il3=lgand i)f; = f3 # fo= faorii)f1 = fo # fo = f3.
Case T: fo=f1# fi=fsand a)ly =13 #lo =14 or b)ly =14 # 1o = 3.
Case 8: [y =lo #lg=1lsa)f1 = fs# fo = faor b)f1 = fa # fo = f3.
Notice that except for cases 1 and 2, all the other cases would disappear for L = F = 1.
The following properties of the function Sg(t1,t2) will be used:
1.Sg(a,b) = Sg(b, a),
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2.5g(a,0) = g2(a),
3.5g(a,b) = Sg(a + k,b+ k).

While taking the expectation of the cases 1 through 8, the following integrals are en-

countered:

Ca(B

a+1
C1(8) = / Sg2(t1, 1) dt, a€{—1,0,1}, (206)
¢ a+1
Cza(ﬁ) = / Sg(tl,tl) Sg(t1 + 1,141 + 1) dity
a+2 ¢
- / Se(ti,t1) Se(ti — 1t — 1) dt1, a € {—1,0}, (207)
a+1
b+1
/ / tl,tl Sg(tQ,tQ) dt1dte, a,bé€ {—1,0, 1} and a-b 7é 1, (208)

C3(B) = //Sg (t1,t2) dt; dta, (209)

= / / tl,tg dtl dty, a € {0, 1}, (210)
a—

0 1
C5(,3) = / / Sg(t1,t2) Sg(tl — 1,t2 — 1) dt1 dtQ
—-1J0
1 2
_ / / Sg(tr,t2) Se(t + 1, 1o + 1) dt1 dty = Ca(8),  (211)
0 1

0
Cﬁa = / Sg2(t1, 1-— t1)dt1, (212)
-1

a+1 a+2
Ces(B) = / Sg?(t1,t; +1)dt; = / Sg?(t1,t1 — 1)dt;, a € {-1,0}, (213)
a a

+1

0 2 2 0
C7(,3) :/1/1 Sg2(t1,t2) dtl dtZ:A /ISgQ(tl,tQ) dt1 dtz, (214)
1 0
Cs() = [ [ Selti,1+0) g2 1 4 12) dt
0 —1

0 1
= / / Sg(tl, 1+ tl) Sg(tz, 1+ tg) dtq dis. (215)
—-1J0

A change of variables and property 2 of Sg(t1,%2) was used to show that Cs(8) = Cu(f).

The values of the first two integrals are known; they can be easily shown to be section in

this chapter:

Cu(B) = (1-p/2+35%/32), (216)
C2(f) = (1-pB/2+p°/16). (217)
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It can also be shown that Cg(8) = 2Cg,(83)/3. As a matter of fact,

sin(Bm) sin(ty ) sin(nty + )  sin(Br) sin®(ty)
2m(1 - p?) (17
! in?(Bn ! in2 T

and Cg(ﬂ / / Sg t1,1+ tl) Sg(tz, 1+ tz) dtq dts

B 8
4:21(1117_;2/ / sin?(7t1) sin?(7to)dt dty = % (219)

For the case that 8 = 0, integration for the remaining terms C3(0), C4(0), Cs,(0), C7(0)

Sg(tl, 1 + tl) = RC(l) -

can be done. First, notice the following identities:

/SiHZ(Wd)dd _ /Mdd

w2 d? 272d?

B 1 cos(2md)  sin(2dn) sin(2dm)

B / 272 d? ( 272 d? + dm + dm dd

1 cos(2dm)  Si(27wd)
_ , 220
2712d * 2 dr? * s (220)
sin? (7d) 1 — cos(27d) In(d)  Ci(2dn)

dd= | ——————=dd = — 221

/ m2d / 2n2d 272 2r2 (221)

where the Sine Integral Si(d) and Cosine Integral Ci(d) are given as [3]

Si(z) = /02 de, Ci(z) = — /00 de =v+1In(z) — /Oz 1L()S(I)dac. (222)

T z g
As a result
p— 1 2 i i
/(K d) sin®(d) dd = — K K cos(22d7r) n K Si(2rd)  In(d) Cl(2d7r). (223)
w2d? 272d 2dn T 2> 2m?

K (cos(2dm)—1)

5 22 approaches zero; therefore as d ap-

Since Si(0) = 0, as d approaches zero,
t ~y+1n(27)
272

proaches zero, the expression 223 simplifies to jus . Therefore,

sin? (7d)

C3(0) =2 /0 1(1 )= g dd = 28i(2r) | Ci(2r) 7+ n(2m)

T 2 2

~0.65355.  (224)

-1 in“(m 0 in?(7
C4(0) = /_2 (2+d)#dd+/_l(—d)s(ﬂé)j)dd:
1;17(3) 4 Sil=Am) o 2 Ci(=2m) | 2%2 + 2']7 ~0.13633.  (225)

%(Si(—%) ~ Si(—4n))
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Cott) - [ S )y, [0 sl Silom)— St

1 (w2t - 1))? 15 (2mt)? 2
~ 0.0158958. (226)
! sm 2(rd) 2 sin?(rd) .
/2 i dd+/ 3+ )~ =
Ci(—6m) — 2 Ci(—47) + Ci(—27) + In(3) + 2 (Si(27) — 4 Si(4m) + 3 Si(67))

2m?
2—71TQ (Ci(—ﬁw) — 2Ci(—4r) + Ci(—27) +In (g))
+% (Si(2m) — 48i(4) + 3Si(67)) ~ 0.015060.  (227)

For 8 > 0, numerical integration and curve fitting to obtain C3(3), C4(8), Csa(8), C7(B)

can be done:

C3(B) ~ 0.655837 — 0.349163 8 — 0.0325283 82 + 0.0409641 33 + 0.0106074 5*
—0.00648542 3%, (228)
Cs(B) ~ 0.136297 4 0.0344131 8 — 0.0509339 52 + 0.126899 3> — 0.175946 5*

+0.066279 8°, (229)
Cea(B) ~ 0.0162891 — 0.00847849 B + 0.185908 52 — 0.605793 8 + 0.611257 B*
—0.198451 35, (230)

C7(B) 0.0152837 — 0.00371089 3 4 0.0685334 52 — 0.298431 3% + 0.331247 5*

Q

—0.112576 5. (231)

The previous factors show that for L > 1, the variance of ¥ differs from 0.

The cosine factors when averaged over the phases for the above cases results in % for
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case 1), 1 for cases 2, 3, 4, 6, and 7, and 3 for cases 5 and 8. Therefore, for 07 = Var, g[¥;],

2 L F
NP®) 9 44 3
(W of=Ci1) ) aje} o+
=1 f=1
L L F F F 1
2DIDIDD Z hotof,of, +Z Z > alefof, | g
l1=1 lp=1 fi=1 fo=1 I fi=1 fa=1
la#l fa#f1
L L 1 L L F 1
4
+2C3 Z aial2akllakl2-1+204z Zalzla%zaf-z—i-
Ii=1 lp=1 li=1 la=1 f=1
lo#lq 1712
F F 1 L F F 1
4
QCSZ Z > 2. ahehefed, 8+206aZZ > afafaf, Vil
l1=1 l2=1 f1=1 f1=1 =1 fi=1 f2=1
l1#ly f1#f2 f1#f2
L F F L L 1
2Cs Z > O atadal, 34200 Y b efedaby, g
=1 fi=1 f2=1 =1 lp=1
f1#f2 lg#l1
2
F L F 1
2 2
+2CBZ Z Z Z allabaflafz 8 -G Zzal ay Wk (232)
=1 12 1 f1 1 fh;éfl =1 f=1
1 2

which can be simplified to

2
NPk 3 1 u
(T(z’) ) ‘ot = (501~ 1) 3 ata}

=1 f=1
L L 1
+2(C3 + C7) Z Z al21al22ai,l1ai,l2 ' Z
l1=1 lp=1
la#l
L L F 1
+2C4Z Z Zazlazﬂf 2(Cs + Cs) Z 2. 2. DL eheheheh g
l1=1 Ix=1 f=1 1=1 :f:lf:
11#ly ;é #f2
F

f1
L F

+2(Cea + Cep) D Y Z ajefaf, -~ (233)
=1 f1=1

2=1
f2

For the case that each of the two paths has the same power and the power received from

each user is equal to that of the reference user (perfect power control), ay = oy =1/ V2,

1

1 1
N?.5% = (401 +12Cq - = -I- 4C3 - = —|— 8Cy - = -I- 8Cs - + 4Cg, -

)t
1716 4
1

Since E[cos? (0( ) _ ) - cosQ(Gl( 2) _ 6¢)] = E[cos? (Ol( Do 6¢)] - E[cos? (6, 6{"”) )] for
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iy # 19, then E[\Ilzl \I/ZZ] = E[\I/ZI]E[\I/zz] for 41 # 49,

KI
o2 = (W) (1.5963 — 0.508113 8 + 0.303581 52 — 0.482564 8% + 0.221699 *

—0.118675 8° + 0.141729 8% — 0.0554373 87) . (235)
We simulated systems with different conditions:

Table 11: BER comparison for RAKE system with two fingers using an RRC pulse with
B8=0.5

‘ Conditions H Simulations ‘ SIGA ‘ SGA ‘
N=32, K'=5, =05 || 2.57E-4 | 2.06E-4 | 6.54B-5
N=32, K'=10, B = 0.5 | 4.30E-3 | 4.08E-3 | 3.42E-3
N=64, K'=10, = 0.5 | 1.65E-4 | 1.34E-4 | 6.55B-5

4.4.2 Third Moment of Self-interference and MAI

An important observation is that for large N, for fixed delays and phases, both the self-
interference and the MAT can be approximated as Gaussian over the codes; both the self-
interference and the MAI have third central moments (over the codes equal to zero), but
once the self interference and the MAI are added together, their third moment is no longer
zero and thus the pdf is skewed (asymmetrical). Taking into account that the mean of the
self-interference and the MAI is zero for both, during the expansion of the third moment of

their sum, there is the term
L L F F F F N—1 N—1 N—
DIDIDIDIPIDIR:DIDIDD
l1=11l2=1 f1=1 fo=1 f3=1 f{;47é:)‘14 n1=0n2=0n3=0

[y

N-1

i T DB

4=0a1=—00az=—00

3

g2((n1 — a1)Te — 113 11) - g2((n2 — a2)Te — Tuyp,) - go((n3 — na)Te — Tpyp,) -

cos(ﬁl(f) —0y,)] -cos(H(i) —60y,) - cos(0f, — 04,).(236)

l2

We have not normalized the delay by T.. Since f3 # fi and go(nT;) = 0 only when the
integer n is zero, the equalities n3 = ny + 1 (when 74,5, = T;) or n3 = ng — 1 (when
Tfsfs = —T,) can be made. Making then ny = ng and ny = ng and Iy = lo, f1 = f3, fo = f4,
a negative third moment is obtained.

The sections on self-interference and cross-covariance have been included for the sake of

completeness.
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4.4.3 Self-Interference

The self-interference can be expressed in the following way

N N F F

v P@) Z Z Z Z aflafzchaQQ((n —a)T, — Tf1f2) COS(9f1 - 9f2)'

n=la=1 f1 f2
The variance (over the codes) of the self-interference has the form

N N N N F F F F

E Z Z Z Z ZZZZaflafZQfSaf4cnlcalc”2602'

n1:1 CL1:1 'IZ2:1 Cl,2:1 fl f2 f3 f4

92((n1 — a1)Te — 74, 1,) cos(0p, — Oy,) - go((n1 — a1)Te — 7y, ) cos(Op, — Op,) | -

(237)

For cases I) n; = a; and ng = a9, II) n; = ng and a1 = a9, I11) ny = a2 and ny = a1

and IV) n; = ny = a; = a9, the above expression does not go to zero, but cases I) and

IV) belong the desired signal, therefore normalizing the variance of the interference by the

power of the desired signal

F F F F
1
U=+ DD Y (S8(Ths Ten) — 92(Th 1) 92(Ths ) +

f1:1 f2:1 f3:1 f4:1
Se(Tsifar T fafa) — 92(T11 £2)92(Tf31,)) cO8(0f, — O7,) cos(Op, — O7,)-

Using the particular values for the delays of the fingers in this section,

F F
2
U, = ¥ Z Z a0, cos(0y, —05,)%,

1=1 f2=1
f f1#f2

F F
E[l]=NY Y ofaf,

=1 fo=1
h=t for,

F F F F
E[\IIZQ] = FE Z Z Z Z a?’lafcza;:saf‘zx Cos(0f1 - 0f2)2cos(9f3 - 9f4)2
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4.4.4 Cross-Covariance between MAI and Self-interference

The Cross-Covariance between ¥; and ¥, can be obtained as

F F

E[¥; U] — E[W]E[¥] = 2N Y >~ o af, cos (07, —05,)* -
f1=1 fo=1

L L F F
Z Z Z Z a%lafza?%a?cﬁg(nlfs,lef4))cos (6, — 0yp,) cos (01, — 0y,) —

l1=112=1 f3=1 fa=1

1
Nz > o, NS Y a0 - D

fi=1 fa=1 =1 fz=1
4.5 Conclusion

In summary, closed-form expressions were presented for the SIGA method for both BPSK
and OQPSK systems for different Nyquist pulses and arbitrary roll-off factors.

It was also shown that when CDMA bands are spaced by Af = 1/T, the pulse shape
and roll-off factor have little impact on the performance.

The SIGA method was also extended to a simple RAKE receiver with two fingers,
where the desired signal propagates through two paths that are spaced by a chip. The MAI
propagated through two paths randomly spaced from the two paths of the desired signal.
It was shown that if the system can eliminate self-interference, then the SIGA method is
much more accurate than the SGA method.

It was also shown that when the self-interference and the MAT are combined, the sum
has a third moments and thus, neither the SGA nor SIGA methods would be appropriate

to estimate the probability of error.
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CHAPTER V

CONCLUDING REMARKS

5.1 Summary of Results

5.1.1 Forward Link Performance

Expressions were obtained to for the performance of the forward link under arbitrary channel
models, two models of RAKE receiver, different processing gains, data rates, chip rates, RRC
pulse with arbitrary roll-off factors. These expressions can be used with random codes,
orthogonal codes, quasi-orthogonal codes, noise, multicode scheme or variable-spreading
factor scheme. These expressions were several order of magnitudes faster to obtain than
Monte-Carlo simulations, which were accurately matched.

The expressions were used to analyze the impact of roll-off and chip rate.

The SNR for both random and orthogonal codes improves with .

The SMRC model can be used when the paths are well separated.

A system with a higher bandwidth does not necessarily improve the spectral efficiency
for the users close to the BS.

For a given channel model, with increasing bandwith, the spectral efficiency does improve
in the presence of only Gaussian noise, but up to a certain point before reaching a limit,
but it does not necessarily improve with .

The number of users increases with 8 for both random and orthogonal codes.

The Ey/I, (or SNR) required to obtain a BER of 1E-3 depends on the location of the
MS in the cell.

The orthogonality factor was studied from the expressions derived, and it was observed

that it decreases with increasing .
5.1.2 Closed Form for Infinite Sum of Nyquist Pulses

Expressions were first obtained for the RRC pulse and then for general Nyquist pulses with

arbitrary roll-off factor. These expressions can be used in the forward and reverse link.
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5.1.3 Reverse Link Estimation through Simplified Improved Gaussian A pprox-
imation
The SIGA method was applied and closed form expressions were obtained for the reverse
link for both BPSK and OQPSK when using a Nyquist pulse with arbitrary 8. Results
where shown for specific pulses. It was observed that for the OQPSK, the results obtain
with the Gaussian approximation and with the SIGA method were essentially very similar.
In the presence of equal interference power from the same carrier and from adjacent
carriers, essentially no Nyquist pulse has an advantage over another. This fact suggest that
Nyquist pulses should be optimized for eye diagram and performance under filter truncation,
rather than MAI minimization.
Finally, the SIGA method was extended to a system with two paths and a RAKE

receiver with two fingers while using BPSK modulation.

5.2 Suggestion for Further Research

5.2.1 Accurate Analysis of the Impact of Adjacent Channel Interference on
the Performance of the Forward Link

The analysis presented here for the forward link is limited to the MAI, self-interference, and
thermal noise, but could be easily adjusted to include the interference coming from the two

adjacent bands.
5.2.2 Impact of the SMRC and AMRC Models to System-Level Analysis

System-level simulations of cellular networks usually ignore link-level details, such as mod-
ulation, channel coding, and pulse-shape. It would be of importance to obtain the system-

level performance using the expressions derived here.

5.2.3 Accurate Performance Analysis for Reverse Link in More General Situ-
ations

It would be of importance to obtain accurate and simple expressions for the performance
under multipath, arbitrarily-spaced RAKE fingers, and using the AMRC assignment for

the finger weights.
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APPENDIX A

DERIVATION OF SUM OF SQUARES OF SAMPLES OF
THE RAISED COSINE FUNCTION FOR ARBITRARY
ROLL-OFF FACTOR

Let Go(f) and H(f) be the FTs of go(t) and h(t) = g(t), respectively.

T, O<Ifl< o
Ga(f) = %{1+cos [% (|f|—%)]} : (ﬂ<\f\<% (243)
0 (1> 52)

Time-shifting and impulse-sampling h(t),

FT{ Z h(nT, — 7)é(t — nTy) } Z Hf—— exp( 27rj7'(f—%)> (244)

TL*—OO ¢

We have that [%_ f(t)dt = F(0) for F(w) = FT {f(t)}; also, there is an overlap between

the shifted replicas of H(f) since the spectrum of H(f) goes between — 1+’B and 1+’B

Z h(nT, — 1) / Z h(nT, — 7)6(t — nT,) dt

n=-—oo n=—oo

= 110) + 71 (~ 7 Yexp(-2i 7 + 1 (1) expleni) (219

Alternatively, this result can be attained with proper implementation of the Poisson

Summation Formula [49]. Since H (%) = H(

—Tic) due to symmetry of H(f),

Z h(nTe — ) [H(O) +2H(%)cos(27rl)] (246)
Ly [ e T2 =14 5)
H(0) _4/(1—,8)/(2) 7 08 (T)df+
=B/ 1, n(=2f — 14 ) s

! 7% d 1df = S+ f+1— 247
/(1+ﬂ)/(2) R /<1+m/<z> f=gPtghti=F (247

1 ra+8)/2 ot 8 _g ﬁ

Z/(lﬂ)/2 e +Cos[ﬂ(f a —)D(l +cos[ﬂ( f+1- T)])df ==
(248)
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Therefore,

Z h(nT, —7)=1- g + gcos(%rTlc) =1- g (1 - 008(2;:)> =1- 551112(%)
(249)

Making the substitution 7 = a7, whenever g is an integer between —N and N, it can

be easily seen that

N-1
> - vary = -9 - o - I (250)
n=—(N—1) ¢

Whenever a is not an integer, limy_, (1 — %) = limy_00(1 — |Nﬂ) = limy_00(1 — %)

and since the maximum values of g2(nT, + aT.) for integer n is at n = |a| and [a].

lim Y (1- %)g%(nTc +al,)~ (1 - gsnﬁ(%))u - %) (251)
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APPENDIX B

EXPRESSION USED FOR CORRELATION OF FINGERS

Defining the function g¢o,(t), such that g2(t) = gon(t/T:), where go(t) is the raised co-

sine function with roll-off factor 8, go,(t) = Singt) = ;%i()?fi)%t) = sin(nt) (:os(7r,8t){L
(B/m) _ (B/m)

=557 — 11op¢) can be written. Define the function F(Z,7) = gan(t — 7)g2n(t + 7) and using

trigonometric identities and partial fraction decomposition,

F(t,7)=— sin2(7r'r)[1 cos(27r,8’r)% cos(2mpT) + %cos(%rﬂt)] . {ﬁ
(B/m) (8/m) (8/m) (8/7)
i —28(t—71) 1+428(t— )} { (t+T) 1-28(t+71) 1+2ﬁ(t+r)} (252)
n_f:w F(n,7) = n_f:oo - sin2(7r7')[% cos(2mAn) Hy (n) + % cos(2mBn)Hy(n)]  (253)
where
_ A1 A3 A4 _ Al
Hi(t) = 7(t —7) + 1—2B1 — 20t + 1+287+26t =w(t+7)
Ay A;
+1+2ﬂ¢—2ﬁt 1—2B7+ 28t
247 243(1 — 287) 244(1 + 2p7)
) = T ) Y T2 - A7 T 12677 - 2607 259
1 _ p B —B
A= e M T T 280 (0 = 4B M T (i 2B (1 + ) )

From [30], the following functional series are used:

o0

1 m  sin(2wa)
2 —a2 a4 cos(2ma) —1 256
n:Z_oo n? —a? a cos(2ma) — 1 (256)
o
Z cos{nf) = w,whereo <0<2rm (257)
e, MG sin(am)
Therefore, for 8 # 0,
o 1 _ cos(T(2mB — 7))
D geos(mpmHi(n) = —A ==

As, . cos((5F7) (= 2mP)) 4,
2

278 sin((1547))

m ¢ ((1“[37)(#—2%))
5 sin((2 2ﬂf))

+(

(258)
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o0

. . D
Z Ha(n) = 24, - sin(27T) D, m sin(2rDy)
= cos(27m7) — 1 Dy cos(2mDy) — 1
in(2mr D
p,. X . _sin@rDa) (259)

Dy cos(2rDy) — 1
where the coefficients D1, Dy, D3, and D4 are given as

~ 2A4(1 +2p7) D _1+287 ~ 2A3(1 —2p71) D _1-2p7
Y Y e N OY:) R Y.

D,

Replacing all the coefficients and simplifying,

— 'n2 T )
(1- 20%5; +(645)4¢4)877r (COS(%TW) [(1 + 667 +85°7%) cot (55 — 7))

+(168272 — 4) cot(t7) — (1 — 687 + 86%7%) cot((% + T)ﬂ))]

1 1
—(1 + 687 +88%1%) cos((% — 7+ 207)m) csc((% —7)7)
+(168%7% — 4) cos((1 — 26)77) csc(rm)

+(1 — 687 + 86°72) cos((% + 7 — 2087)7) csc(21 + T7r)> (260)

There are three terms of the form cos(A + B) csc(A); replacing them by

cot(A) cos(B) — sin(B), several terms cancel out,

[sin(287m) (166272 — 1) + cos(2B7) cot(Tm) (166272 — 4)]
4rr(1 —168272)(1 — 4/5272)

_ sin(277) cos(2p7w) | sin(nT)cos(mfBT) 1 sin(wT)

- 27r(1 - 166272) (n7)(1 — 48272) 4 cos(xfT)

— sin?(7)

sin(2p7)

o0

= Y (0T — (T +7) = ga(27) + %gQ(T) sin(r) sin(Brr). (261)

n=—oo

Whenever 3 = 0, using (256), the following is obtained

i (nT Vo (nTy+7) = i sin?(r7)  —sin(rr)  sin(277)
g2lltfe = T)g2iNte TT) = w2(t2 —72) 7T cos(2wrt) — 1
n=—o00 n=—00
= sinc(27). (262)
The expression
N—1 in|
lim Y7 (1 F)gx(nT. + aTe)ga(nT, — aTy)
n=—(N-1)
1
=go(27) + 592(7’) sin(77) sin(f7T) (263)
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can be proven as follows

o o0
> Inlga(nTe = T)ga(nTe+7) < Y |nga(nTe — 7)ga(nTe + 7))
n=—00 n=—o00
o
< Y Inga(nTe — 1)
n=—00
o o0
Y Inlga(nTe — 7)ga(nT.+7) > — Y |nga(nT. — 7)ga(nTe + 7)|
n=—00 n=—o00

bl

o
> — Z |nga2(nT, — )
=—0Q

but since lim, o [nge(nT, — 7)| is O(1/n?),
N-1 in|
lim Y (52)g2(nTe + aTt)ga(nT. — aT,) =0,

N—oxo N
n=—(N-1)
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APPENDIX C

NOISE

The output of finger f due to Interference, modelled as AWGN, can be expressed as follows:
1 * N k
Iy = 3Re / 1(t)-coni § 326 () 3sP(0)) b at (267)
_ =

Given I(t) = Z;(t) + jZg(t) and Gy = Gy 1+ jGr,q, Iy can be rewritten as

I= / Z Z1(8)G 1t — To(HGr0l s (1) + (To(M)G s + Tr(t)Gro) sB (B)dt  (268)

The correlation between the output of fingers fi and fo become

BizpTnlal = 8| [ [ {TOnO6H 060+
To()Zo(!)C ()G o)} 51" W5 (t)
+ {ZoW ()G 1 (G 1 () + TiOTH ()G, o(OC 1ot)} s (s (#)ae]  (269)

Here I is the model in the low-pass domain; 1E[I(¢)I*(t')] = I, and E[I;(t)I}(¢)] =

ElIo)15(t"] = I, [52, pg. 158]

1 [
BITRS) = 7 [ TAGA0GA 1)+ CroCna) s 00 +

L {G,1(0)G(t) + Gy o()Gro)} si) (H)sS) (At (270)

Since

o0 o
/ g1(t =nTe —74,)g1(t — nTe — 7p,)dt = g1(t = nTe)g1(t — nTe — 7p, 4, )dt

—00 —00

o
= / g1(t — nTe)g1 (Tf2f1 — (t —nTe))dt = 92(Tf2f1)a

—0o0

I B
E[Z;,Iy,|a) = ZIo/ Re [Gf,G},] -
o0

N-1 N—-1
{ 3> (crmcrne + c@micqm,) g1 (mTe — 71,)g1 (naTe — Tf2)} dt

n1=0n2=0

1 ~ Yk
= §I°Re [Gf1 Gf2] Nga(74,1,) (271)
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For the SMRC, Re [Gfl G}Q] = af oy, cos (05, — 6y,), which when taking the expectation

with respect to phase reduces to zero unless f; = fo; therefore

1
E[IfIIf2|a] = §Ioaf104f2N5f1fz (272)

For AMRC, since

L L

Re [GrGp] =Re | >0 > auga(min)oi,02(mp,) | =

Then

E[Ifll.lea] =

I1=112=1

L L
D0 w101 + aiy,@ou,,0)92(T 11)92(Tis ) (273)
I1=11=1
1 L L
5LV ZZI lz:l(all,falz,l + ay,005,0)92(T1 £1)92(Ta £,)92(Tr 1) (274)
1= 2=

For complex spreading, it is straightforward to demonstrate that the resulting formulas

are the same because instead of s;™ and s, there are s}, and s

(k) (k) (k) (k)
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