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SUMMARY

This thesis investigates the consequences of a simple physical intuition: waves scat-

tered from objects of the same approximate size but different shapes will be virtually the

same if their wavelength is much larger than the size of the objects, even if there is a low-

energy resonance. We apply this idea to the interaction of quantum particles at energy

scales much smaller than the characteristic scale of any internal degrees of freedom, for

example collisions of trapped cold atoms or elastic nuclear scattering. Using zero-range

models, which avoid making arbitrary choices about the interaction by replacing them with

appropriately chosen boundary conditions, we investigate the interaction between two par-

ticles and a flat surface as well as that between three particles. We show how zero-range

interactions can bind multiple particles together when the underlying potential is close to

supporting a bound state at zero energy. Taking a different approach from many previous

studies, we reduce these problems to solving a one-dimensional singular integral equation

and demonstrate several analytical and numerical solutions with greater precision that prior

techniques. Further, we show how asymptotic analysis based on the Mellin transform can

extract the important parameters that describe the short-range correlations in the system,

called the contacts. These results may be useful in many-particle systems if the states we

describe play an important role and the methods developed can be applied to many other

zero-range models.

x



CHAPTER 1

INTRODUCTION AND BACKGROUND

In principle, every physical system can be described according to a very small set of fun-

damental physical laws. However, none of these laws have known general solutions that

would allow us to mechanically generate predictions from either a physical or mathemat-

ical description of the system. So, although the laws are known (at least to some level of

approximation), we must still create more specific models to make testable predictions. Ev-

ery physical model then faces the competing concerns of accuracy and broad applicability.

Models that account for all the details of a particular system can be incredibly accurate,

but then usually have a narrow range of applicability. Tractable models that apply to a

broad range of very different systems can reach general conclusions, but may fail in prac-

tice because important physics is neglected. Within quantum mechanics, for example, the

Schrodinger Equation can be solved essentially exactly when applied to a system of two

interacting particles, say, a proton and either an electron or a neutron. However, for several

particles we must often either drastically limit the strength of the interactions to apply ana-

lytical tools or use numerical techniques that require specific details about the system and

its interactions to operate.

Our work attempts to chart an intermediate course for some strongly interacting sys-

tems. We strive for some degree of analytical tractability and thus we must use a greatly

simplified model of interactions between just a few (2 to 3) particles. In our model, par-

ticles interact only when they overlap; the force has a range of zero. However, we can

identify regimes where we expect this simple model to apply to broad classes of atomic

and nuclear systems. The advantage of this approach is that we can make qualitative and

quantitative predictions regardless of how strongly the constituents are interacting. And,

we are sometimes able to identify features that should persist regardless of the number of
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interacting particles. The disadvantage is that we must ignore many details of the inter-

action – such ignorance can cause both mathematical and empirical difficulties – and we

do not have direct access to the many-body regime. The precise degree to which we can

understand systems of many particles from studying their interacting sub-systems remains

an interesting open question.

The most obvious path between two-body systems and many-body systems is, of course,

to add a third interacting particle, the quantum mechanical three-body problem. In the con-

text of our zero-range model, this problem was studied by Thomas in 1935 who found that

its spectrum is unbounded from below [1]. The model was therefore essentially discarded,

until Efimov showed in 1970 that at energy scales much lower than that of the deepest

bound states, zero-range forces tuned to have a zero energy two-body bound state give rise

to a sequence of many low-energy three-body bound states, dubbed the Efimov effect. Efi-

mov discussed specifically the cases of the carbon-12 nucleus as well as the triton (a tritium

nucleus); however his work has found its broadest application within atomic physics. Un-

like nuclear physics where the interaction strengths are fixed by nature, atomic interactions

can be tuned using a magnetic Feshbach resonance. It is thus possible to create atomic

systems that are much more accurately described by Efimov’s original theory than almost

any nuclear system.

In this thesis, we both build on the existing literature for the Efimov effect and in-

vestigate a new direction for supplementing two-body interactions, resonant interactions

between two particles and some external geometry. In Chapter 1 we discuss the founda-

tions of our model, including two particle interactions via zero-range forces, and briefly

summarize necessary prior work. In Chapter 2 we introduce a model for two particles

interacting resonantly with a plane and derive an integral equation for this system which

we then solve analytically in several special cases and numerically for arbitrary interaction

strengths. Chapter 3 continues this work using asymptotic techniques to relate the behav-

ior of this system during two- and three-particle collisions to its momentum distribution,
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energy, and response to changes in the interaction strength. Finally, in Chapter II we return

to the Efimov effect, derive a similar integral equation to that of Chapter 2, solve it ana-

lytically for zero binding energy and use this solution to compute the two- and three-body

contacts.

1.1 What Are the Relevant Length Scales in Cold Atom Experiments?

The natural world spans many orders of magnitude in length, from the size of the observable

universe (∼ 1027m) to subnuclear structures (< 1015m), and we must identify which length

scales are relevant for the physics that we wish to describe and which length scales are

irrelevant. Typically, length scales either much larger or much smaller than the overall size

of our system can be safely ignored.

For example, in a system of cold atoms, we can immediately identify a hierarchy of

length scales. Neutral atoms interact primarily through a Van der Waals potential,

VV dW (r) = −C6

r6
,

which is much shorter ranged than Coulomb or magnetic dipole interactions because it is

inversely proportional to the sixth power of the distance between atoms. The characteristic

length scale associated with this potential is called the Van der Waals length,

rV dW =
1

2

(
mC6

~2

) 1
4

,

which is a few nanometers (10−9m) for the atoms most commonly used in cold atom ex-

periments.

By contrast, the overall size of the system combined with the number of atoms present

gives a scale for the average separation between atoms,

L =

(
N

V

) 1
3

. (1.1)
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For the typical size of atom traps and the number of atoms present, the average separation

is a few microns (10−6m). When treated as point-like objects, the atoms would almost

never be within the characteristic range of the potential. However, when cooled the atoms

can maintain internal coherence over longer and longer length scales, making them behave

more as wave-like objects. Their characteristic wavelength, which acts as a kind of average

size for a cold atom, is known as the de Broglie wavelength,

Λ =

√
2π~2

mkBT
, (1.2)

and can range from 100 nanometers for microkelvin systems to more than a micron as the

system is cooled to the nanokelvin range.

Therefore, throughout the range of experimental parameters the Van der Waals length

is much smaller than the length scales that characterize the system overall,

rV dW � Λ ∼ L. (1.3)

We might therefore expect that at the experimental scale, the interactions between atoms

should be largely negligible and we should be able to think about the system primarily as a

collection of non-interacting wave-like objects. And, in fact, many experiments with cold

atomic gases take exactly this view and show very good agreement with non-interacting or

weakly interacting models. However, as we shall see in the next section, quantum scattering

can produce pathological cases where interactions over a very short length scale modify the

system’s behavior at much larger scales.

1.2 Two Particle Scattering at Low Energy

Consider the case of scattering between two particles interacting via an isotropic potential.

We can derive two important results, known as the Effective Range Expansion and the
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Bethe-Peierls boundary condition, which illuminate how the length scale of scattering may

be much larger than that of the underlying potential.

The Schrodinger equation for two particles of mass m with center of mass R ∈ R3

and relative position s ∈ R3 interacting via a potential that depends only on their relative

position vector V (s) is given by

(
− ~2

2m
∇2 + V (s)

)
Ψ(R, s) = E Ψ(R, s). (1.4)

Because the potential depends only on the relative coordinates, we can separate out the

center of mass variables using a product ansatz,

Ψ(R, s) = φ(R)ψ(s),

which leads to the differential equations

(
−∇2

s + U(s)
)
ψ(s) = k2ψ(s) (1.5)

−∇2
Rφ(R) = K2φ(R) (1.6)

with the wavenumbers k,K satisfying ~2K2

4m
+ ~2k2

m
= E and V (s) ≡ ~2

m
U(s). For a

spherically symmetric potential U(s) = U(r), r = |s|, and if we expand the relative

wavefunction as

ψ(s) = χ(r)Ylm(θ, φ), (1.7)

with the Ylm constructed such that with

∇2
s =

1

r2

∂

∂r

(
r2 ∂

∂r

)
− L̂2

r2
,

L̂2 ≡ − 1

sin2 θ

(
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

∂2

∂φ2

)
,
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they satisfy [2]

L̂2Ylm = l(l + 1)Ylm,

then for the radial component we are left with

− d2

dr2
(rχ(r)) +

l(l + 1)

r2
rχ(r) + U(r)rχ(r) = k2

l rχ(r) (1.8)

provided that
∑∞

l=0 k
2
l = k2. And finally letting rχ(r) ≡ u(r) in the s-wave (l = 0)

channel we have a radial Schrodinger equation which is equivalent to a one dimensional

Schrodinger equation

− d2

dr2
u(r) + U(r)u(r) = k2

0u(r). (1.9)

If the potential U has compact support, that is U(r) = 0, r > r∗, then outside this range of

interaction, u(r) satisfies a free Schrodinger equation and we can write a general solution

as

u(r) =
sin (k0r + δ(k0))

sin (δ(k0))
, (1.10)

where the s-wave scattering phase shift δ(k0) must be determined by matching the logarith-

mic derivative of the radial wavefunction at r = r∗ and the normalization is chosen purely

for convenience. That leaves for the logarithmic derivative

u′(r)

u(r)
= k0 cot (k0r + δ(k0)). (1.11)

Returning to our discussion of length scales, because the thermal deBroglie wavelength is

so large compared to the Van der Waals length and k0 characterizes the wavelength of the

particles outside the range of interaction, we will investigate the range where k0r
∗ � 1.

We can neglect k0r
∗ on the right-hand side leaving only the r-independent k0 cot (δ(k0))

and relate this logarithmic derivative to the difference between the radial Schrodinger solu-

tion with and without the interaction potential by considering two solutions with different

6



eigenvalues [3, 4, 5, 6]

− d2

dr2
v(r) + U(r)v(r) = v2

0v(r),

− d2

dr2
w(r) + U(r)w(r) = w2

0w(r).

Further, divide the solutions into inner and outer sections

v(r) =


v<(r) r < r∗,

v>(r) r > r∗,

w(r) =


w<(r) r < r∗,

w>(r) r > r∗.

If we cross-multiply and subtract the Schrodinger equations associated to these two solu-

tions, the terms dependent on the potential cancel and we are left with

v(r)
d2

dr2
w(r)− w(r)

d2

dr2
v(r) = (v2

0 − w2
0)v(r)w(r).

The left-hand side is, in fact, a total derivative with respect to r, which can be integrated

from 0 to some arbitrary point R giving

[
v(r)

d

dr
w(r)− w(r)

d

dr
v(r)

]R
0

= (v2
0 − w2

0)

∫ R

0

v(r)w(r) dr

for the full solution, and repeating this process considering only the solution outside the

range of interaction

[
v>(r)

d

dr
w>(r)− w>(r)

d

dr
v>(r)

]R
0

= (v2
0 − w2

0)

∫ R

0

v>(r)w>(r) dr.

If we let R > r∗, then v(r) = v>(r), w(r) = w>(r) and so when subtracting these

7



equations, the upper limit on the left-hand side cancels. In addition, the full solutions will

have v(0) = w(0) = 0 and so in that relation, the lower limit will also be zero. Therefore

subtracting gives

(v2
0 − w2

0)

∫ R

0

v>(r)w>(r)− v(r)w(r) dr = v>(0)
d

dr
w>(0)− w>(0)

d

dr
v>(0)

= w0 cot (δ(w0))− v0 cot (δ(v0)).

Let w0, v0 be small compared to the energy scale of the potential, then these solutions will

be small correction to the solutions at zero energy, v(0, r), w(0, r). Further, let v0 → 0,

then

w0 cot (δ(w0)) = lim
v0→0

v0 cot (δ(v0)) + w2
0

∫ r∗

0

w(0, r)2 − w>(0, r)2 dr +O(w0)3.

We define limv0→0 v0 cot (δ(v0)) = − 1
a

to be the inverse of the s-wave scattering length

and we refer to the coefficient of the second term as the s-wave effective range

1

2
rs =

∫ r∗

0

w(0, r)2 − w>(0, r)2 dr.

These are the first two terms in the Effective Range Expansion

k cot (δ(k)) = −1

a
+

1

2
rsk

2 +O(k4), (1.12)

and we will apply this parameterization to the logarithmic derivative which we derived

earlier,
u′(r)

u(r)
= −1

a
+

1

2
rsk

2
0 +O(k4

0). (1.13)
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This implies that

ψ′(r)

ψ(r)
= −1

r
+
u′(r)

u(r)
,

and then integrating and considering the small-r behavior, we find that

ψ(r) =
1

r
− 1

a
+O(r). (1.14)

This expression, which we arrived at by considering the exact behavior of the wavefunction

anywhere outside the range of interaction and applying the results of the effective range

expansion, leads to what is called the Bethe-Peierls boundary condition [3]. At first glance,

this appear to be an extremely local condition on the wavefunction; it only considers the

behavior at the range of interaction. However, its consequence can propagate to scales

much large than that.

The Bethe-Peierls boundary condition implies that the wavefunction has a node outside

the range of interaction at

ψ(a) ≈ 0.

If the scattering length is of order the range of interaction,

a ∼ r∗,

then ψ(a) ≈ ψ(r∗) ≈ 0 and the wavefunction will be close to zero just outside the range of

interaction. The difference then between the scattering solution and the free solution (the

solution of the Schrodinger equation with no potential at all) is just that the node of the free

solution at r = 0 has been displaced to r ∼ r∗. Because r∗ is negligible compared to the

wavelength 1/k0 ∼ Λ this amounts to only a small change of phase of the solution. In this
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case, the scattering solution is almost the same as the free solution everywhere outside the

range of interaction. By contrast, if the scattering length is much larger than the range of

interaction,

a� r∗,

then the wavefunction just outside the range of interaction has a very large value, in fact

it is near a maximum/minimum, and therefore the phase shift is near π/2. The solution

outside the range of interaction is then altered in the most radical way possible compared

to the free solution everywhere outside the range of interaction.

We see then that when the scattering length is large, we cannot necessarily neglect

interactions that have a small range because they alter the behavior of the wavefunction

over lengths of order the scattering length, much larger than the size of the underlying

potential. Our hierarchy of length scales will be disrupted, then, when we have

rV dW � a ∼ Λ ∼ L. (1.15)

In these situations, our starting point cannot be a non-interacting model because the length

scale of our interactions is comparable to the average size of the atoms and the average

distance between them.

1.3 Zero Range Models

The effective range expansion demonstrates that regardless of the functional form of the

interaction potential, systems that have the same scattering length, effective range, and/or

higher-order shape parameters behave similarly at low energies. We may therefore choose

interaction potentials that are especially convenient for our analysis, confident that the re-

sults do not depend on the particular choice up the appropriate order. For a potential of

finite range, this would involve specifying the range of the potential and requiring that both

the wavefunction and its derivative be continuous at r = r∗. However, we can further
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eliminate this arbitrary choice by considering a potential of zero range.

The main idea of this approach is that we extend the behavior given by the Bethe-Peierls

boundary condition all the way in to the origin, collapsing the potential into an infinitesi-

mal region. Doing this in a naive way with no fine-tuning would eliminate the scattering

altogether since as the size of the scatterer shrinks, so generally does the probability of a

scattering event and thus the cross section. However, in the zero-range procedure, as the

range of interaction goes to zero, we keep the potential tuned so that the scattering length is

fixed. This fixes the low energy cross section and preserves the scattering even in the limit

of an infinitesimal scatterer [7]. Note that it is not possible to carry out this procedure with

all of the (infinite) coefficients in the expansion of the scattering phase shift fixed; only a

finite number may be fixed. Inverse scattering theory shows that the scattering amplitude

due to a finite ranged potential is an analytic function of the incoming wavenumber and

therefore the scattering phase shift is given everywhere by its expansion about zero [8].

As such, the full effective range expansion uniquely specifies a short-range potential and

it is therefore not possible to reduce the range of the potential and keep the entire expan-

sion fixed. Nevertheless, we can fix any finite number of the coefficients and carry out our

procedure.

This procedure can lead to mathematical difficulties; for example, the resulting wave-

functions may no longer be within the domain of the kinetic energy operator, or the implied

Hamiltonian may fail to be essentially self-adjoint [9]. As they arise, we will need to nav-

igate such issues while keeping in mind that this model should always be thought of as a

particular limiting procedure involving finite-ranged potentials. With that understanding,

we realize why particular mathematical issues arise and how their solution is settled by the

short-range physics which our models neglect.

Throughout this thesis, we follow a particular method to implement zero-range mod-

els and the Bethe-Peierls boundary condition which we will now summarize. So long as

two or more particles are not overlapping, the zero-range wavefunction will satisfy the
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free Schrodinger equation. Extending that behavior to the entire configuration space nat-

urally leads to a system of free particles. However, we will show that we can enforce the

Bethe-Peierls boundary condition by considering a non-homogeneous Schrodinger equa-

tion perturbed by a delta function. The solution can then be written in terms of the free

Green’s function and will automatically have the appropriate singular behavior present in

the Bethe-Peierls boundary condition. We will however still need to match our solution to

the regular part of the Bethe-Peierls boundary condition which will lead to an integral equa-

tion involving the weight of the non-homogeneous term in the Schrodinger equation. It is

this integral equation that will be the primary object of study in each of our investigations.

1.4 The Shallow Dimer

To illustrate the methods that we discussed in the previous section, let us begin with the

simplest zero-range model; that of two identical spinless bosons of massm interacting with

an s-wave scattering length a in free space. This system is well-known in the literature and

therefore our methods should reproduce the known wavefunctions and eigenenergies.

Let (x, y) ∈ R3 × R3 be the positions of these bosons. The bosons are unconfined,

but experience an interparticle interaction, which we take to be of zero-range. Then, when-

ever the two particles are not in contact (almost everywhere) the system obeys the free

Schrodinger equation:

(
− ~2

2m
∇2
x −

~2

2m
∇2
y

)
ψ(x, y) = Eψ(x, y), x 6= y. (1.16)

And in the center of mass and relative coordinates

R = x+y
2

, r = x− y,(
− ~2

4m
∇2
R −

~2

m
∇2
r

)
ψ
(
R +

r

2
, R− r

2

)
= E ψ

(
R +

r

2
, R− r

2

)
, r 6= 0. (1.17)

To satisfy the Bethe-Peierls boundary condition, our prescription includes adding a source
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term to the Schrodinger equation

(
− ~2

4m
∇2
R −

~2

m
∇2
r

)
ψ
(
R +

r

2
, R− r

2

)
− E ψ

(
R +

r

2
, R− r

2

)
=

~2

m
f(R)δ(r),

(1.18)

where the unknown function f(R) appears in the boundary condition,

ψ
(
R +

r

2
, R− r

2

)
∼ f(R)

(
1

r
− 1

a

)
, r → 0.

Taking the Fourier Transform over all 6 coordinates,

ψ̃(K, q) ≡
∫
R6

ψ
(
R +

r

2
, R− r

2

)
eiK·Reiq·r d3R d3r,

f̃(K) ≡
∫
R3

f(R)eiK·R d3R,

(
~2

4m
K2 +

~2

m
q2

)
ψ̃(K, q)− E ψ̃(K, q) =

~2

m
f̃(K), (1.19)

and therefore a particular solution to Eq. 1.18 is

ψ
(
R +

r

2
, R− r

2

)
=

1

(2π)6

∫
R6

~2

m
f̃(K)

~2

4m
K2 + ~2

m
q2 − E

e−iK·Re−iq·r d3K d3q. (1.20)

The dependence on q is entirely explicit and so we can carry out the integral. There

will, however, be a pole when ~2

4m
K2 + ~2

m
q2 − E = 0 that must be bypassed. In this case,

both ways of avoiding the pole lead to the same expression,

ψ
(
R +

r

2
, R− r

2

)
=

1

32π4

∫
R3

[
e−iK·R−r

√
K2

4
−mE~

r
f̃(K) Θ

(
~2K2

4m
− E

)

+
e−iK·R+ir

√
mE
~ −

K2

4

r
f̃(K) Θ

(
E − ~2K2

4m

)]
d3K,
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where Θ(x) is the Heaviside theta function. This expression can be combined in the form

ψ
(
R +

r

2
, R− r

2

)
=

1

32π4

∫
R3

e−iK·R+ir

√
mE
~ −

K2

4

r
f̃(K) d3K,

provided that we understand that for negative arguments, we take the principal branch of

the square root function. Rewriting this expression using the Fourier convolution theorem

gives

ψ
(
R +

r

2
, R− r

2

)
= − mE

(2π)3~2

∫
R3

f(R′)

K2

(
− i

~

√
4mE

√
(R−R′)2 +

(
r
2

)2
)

(R−R′)2 +
(
r
2

)2 d3R′.

For the first time, we introduce Kn(x), the modified Bessel function of the second kind

of order n, sometimes also called the MacDonald function. The properties of this family

of special functions that will be relevant to several points of analysis through the thesis

are summarized in Appendix G At this point, we need to investigate the behavior of the

wavefunction when two atoms closely approach each other to enforce the Bethe-Peierls

boundary condition by taking the limit r → 0. However, the integrand in our particular

solution has a non-integrable singularity in this limit at R = R′. We therefore divide the

region of integration and treat each region separately.

Let

r << ε <<

∣∣∣∣∣
√

~2

4mE

∣∣∣∣∣ .
Then, when |R−R′| ≤ ε we have that

√
4mE

~

√
(R−R′)2 +

(r
2

)2

<< 1

and we can replace the Bessel function with its expansion for small arguments in this re-
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gion. In the outer region, |R−R′| > ε and we may thus neglect r directly,

=
f(R)

4π2

∫ ε

0

|R′′|2(
|R′′|2 +

(
r
2

)2
)2 d|R

′′|+

− mE

(2π)3~2

∫
|R−R′|>ε

f(R′)
K2

(
− i

~

√
4mE|R−R′|

)
|R−R′|2

d3R′ +O(r)

=
f(R)

8πr
− f(R)

4π2ε
− mE

(2π)3~2

∫
|R−R′|>ε

f(R′)
K2

(
− i

~

√
4mE|R−R′|

)
|R−R′|2

d3R′+O(r)+O(
r

ε
).

We will take a sequence of limits to match this expression to the Bethe-Peierls boundary

condition. First, we let r → 0 and then let ε→ 0 with the result that

f(R)

a
= lim

ε→0

(
mE

π2~2

∫
|R−R′|>ε

f(R′)
K2

(
− i

~

√
4mE|R−R′|

)
|R−R′|2

d3R′ +
2f(R)

πε

)
.

It is this integral equation which determines the particular function f(R) that characterizes

our system.

Noting that the integral operator on the right-hand side resembles a convolution opera-

tor, we can try an ansatz,

f(R) = eiK0·R, (1.21)

with K0 to be determined. Substituting this ansatz into the integral equation and also

shifting the origin in the integral, we have

eiK0·R

a
= lim

ε→0

(
mE

π2~2

∫
|R′|>ε

eiK0·(R−R′)
K2

(
− i

~

√
4mE|R′|

)
|R′|2

d3R′ +
2eiK0·R

πε

)
.

The dependence on R cancels and K0 must be chosen so that

1

a
= lim

ε→0

mE

π2~2

∫
|R|≥ε

eiK0·R
K2

(
− i

~

√
4mE|R|

)
R2

d3R +
2

πε

 . (1.22)
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Performing the integrals over the direction of R gives

1

a
= lim

ε→0

(
4mE

π~2

∫ ∞
ε

K2

(
− i
~
√

4mE|R|
)

sinK0|R|
K0|R|

d|R|+ 2

πε

)
. (1.23)

Rather than compute this integral via a subtraction regularization, we instead compute

1

a
= lim

α→1

4mE

π~2

∫ ∞
0

K2α(− i
~
√

4mE|R|)sinK0|R|
K0|R|α

d|R|, (1.24)

which exists as an ordinary integral for |α| < 1
2

and can be expressed as a sum of sev-

eral Gauss hypergeometric functions of K2
0

β2 . The limit however gives the relatively simple

relation

−1

a
=

i

2~

√
4mE − ~2K2

0 . (1.25)

For a real scattering length, this relation is only satisfiable when

~2K2
0

4m
> E, (1.26)

and because we have taken the principal branch of the square root, there are no solutions

when the scattering length is negative. When both conditions are satisfied, we can find a

solution with

K2
0 =

4mE

~2
+

4

a2
. (1.27)

Given this result for f(R),

f̃(K) = (2π)3δ3(K −K0), (1.28)
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and therefore

ψK0

(
R +

r

2
, R− r

2

)
=

1

32π4

∫
R3

e−iK·R+ir

√
mE
~ −

K2

4

r
f̃(K) d3K,

=
e
−iK0·R+ir

√
mE
~ −

K2
0

4

4πr

=
e−

r
a

4πr
e−iK0·R.

We can normalize this wavefunction such that

∫
R6

ψ∗K1

(
R +

r

2
, R− r

2

)
ψK2

(
R +

r

2
, R− r

2

)
d3R d3r = (2π)3δ3(K1 −K2)

and therefore the normalized wavefunction is given by

ψK0

(
R +

r

2
, R− r

2

)
=

1√
2πa

e−
r
a

r
e−iK0·R, (1.29)

with a > 0, K0 ∈ R3 arbitrary, and

E =
~2K2

0

4m
− ~2

ma2

We have found then a single bound state within the zero-range model for two particles

in free space, commonly referred to as the shallow dimer. Our expressions for both the

wavefunction and the binding energy of this state agree with those found in the literature

[10]. This validates that we can implement a zero-range model via our non-homogeneous

Schrodinger equation, and we will continue by applying a similar procedure for the inter-

action of more than two particles and for two particles interacting with a surface.
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1.5 The Efimov Effect

The Efimov Effect is the spontaneous generation of relatively long range effective three-

body forces within a system of three (or more) particles with scattering lengths (see Section

1.2) that are much larger than the characteristic length scale of the underlying two-body po-

tentials. It was first predicted in 1970 by Efimov [11], who was investigating the interaction

between neutrons and protons at low energies, and he predicted that such three-body forces

should create a sequence of three-body bounds states regardless of the size and shape of the

particular microscopic potential. The system’s properties are said to be ”universal” in that

all of the details of the interaction can be summarized by just two parameters, the scattering

length a and what is known as the Efimov parameter, which we will refer to as β0 [10, 12,

13]. Efimov himself later showed how the binding energy of the triton (a bound state of

two neutrons and a proton) could be predicted within this paradigm; however, it would take

several decades before his original prediction for identical bosons could be verified.

Cold atomic gases later replaced nucleons as the most natural setting in which to con-

sider Efimov’s predictions, both because many trappable atomic species behave as com-

posite bosons and because the presence of magnetic Feschbach resonances allow systems

to be tuned so that the scattering length becomes very large. We will postpone any tech-

nical details describing or setting up the three-boson problem until the appropriate chapter

within this thesis. However, we will for now summarize several known facts about the Efi-

mov Effect in the three-boson problem to set the stage for later work. We do not give here

a comprehensive list of facts about Efimov trimers because several comprehensive review

articles exist; rather, we list only the central elements that set a foundation for our work.

In the zero-range model, the main feature of the Efimov Effect is a series of three body

bound states which exist for arbitrary scattering length. These states can be understood as

a consequence of an effective inverse square potential which arises in the problem when

viewed in the hyperspherical coordinate system [11, 14, 15]. As is well-known, inverse
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square potentials exhibit a ”fall to the center” effect which would lead to probability ”es-

caping” into the origin; however, this is generally remedied by applying a boundary condi-

tion at the edge of the region of configuration space where three particles collide such that

probability is conserved [9, 1, 16, 17, 18, 19]. One would expect from the classical action

of such a potential that a continuous scale symmetry exists within the system; however, that

symmetry is broken at the quantum level by this additional boundary condition to a discrete

scaling symmetry [20]. Within a real system, the short-range physics will create a cut-off

such that these mathematical issues do not arise. The phase of the three-body wavefunction

will be determined by the details of the interparticle interaction, which will set the Efimov

parameter, and there will be some deepest bound Efimov trimer of size comparable to the

range of interaction such that the spectrum is bounded from below [21].

Whenever we find a trimer state with a binding energy β at a scattering length a, we

can find an entire sequence of associated trimer states at binding energies βn = e
nπ
s0 β at

scattering lengths an = e
−nπ
s0 a for n ∈ Z. These trimers are all identical up to this scale

transformation [22]. The numbers ±is0 are the only imaginary roots of the transcendental

equation
8√
3

sin
(πν

6

)
− ν cos

(πν
2

)
= 0. (1.30)

and λ = e
π
s0 ≈ 22.7. If we define the binding wavenumber of a particular trimer at unitarity

(a→ ±∞) as β0, then away from unitarity, we can follow the binding wavenumber of that

particular state as the scattering length is tuned. On the positive side, the ratio of the

binding energies of adjacent trimers at fixed scattering length is generally smaller than λ2.

Each binding energy approaches that of the universal two-body bound state (the shallow

dimer) as the scattering length is decreased to a critical value, where that state disappears

into the continuum. Specifically, the trimer with binding wavenumber β0 at unitarity decays

into one free atom and a universal dimer at a∗ = 0.070764509β−1
0 [10].

On the negative side, the opposite is true as the ratio of the binding energies of adjacent

trimers at fixed scattering length generally becomes larger than the ratio at unitarity. Each
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trimer eventually reaches a negative critical scattering length; if its binding wavenumber

was beta0 at unitarity, then at a scattering length a′∗ = −1.507639982β−1
0 the binding

energy of the trimer approaches zero and it disassociates into three free atoms [23]. It is

this limit that will be the focus of our work on the Efimov effect.

1.6 The Contacts

Effective calculations of the properties of a many-body quantum system typically rely on

finding a representation of the system in which the degrees of freedom are relatively uncor-

related. For strongly interacting systems, such a representation rarely overlaps significantly

with the stationary states of the non-interacting system, which are typically well-known.

However, in the case of zero-range interactions, the short-range correlations can be charac-

terized by a quantity called the contact which determines both how changes in the collective

properties of the system are related to changes in the interaction parameters and also how

the energy of the interacting system depends on the degrees of freedom relevant for a non-

interacting system.

This surprising result was first derived by Tan for the two-component Fermi gas [24,

25, 26]. It has been extended in several directions, including being defined for a system

of N identical particles with wavenumbers k1, ..., kN ∈ R3 and wavefunction ψ̃(k1, ..., kN)

as the leading coefficient in the asymptotic expansion of the single particle momentum

distribution,

C2 ≡ lim
k→∞

k4n(k), (1.31)

n(k) ≡
N∑
i=1

∫
|ψ̃(k1, ..., kN)|2

∏
j 6=i

d3kj. (1.32)

Precisely the same contact also characterizes the small-distance limit of the pair distribution

function, G2(r, r′), which describes the probability distribution of finding one particle at

r and a second at r′. When integrated, the total probability of finding a pair of size r
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somewhere in the system is proportional to the contact,

∫
G2(R + r, R− r) d3R ∼ C2

r2
, r → 0. (1.33)

Further, due to the duality between smoothness and decay for the Fourier Transform, the

contact for an unconstrained gas of particles can also be related to the behavior of the wave-

function when two or more particles are close. According to the Bethe-Peierls boundary

condition,

Ψ(r1, ..., rN) ∼
(

1

|ri − rj|
− 1

a

)
A

(
r1 + rj

2
, {rk}k 6=i,j

)
ri → rj, (1.34)

and the contact is then related via [25]

C2 ∼
∫ ∣∣∣∣A(r1 + rj

2
, {rk}k 6=i,j

)∣∣∣∣2 ∏
l 6=i,j

d3rl. (1.35)

Despite the fact that the contact is defined by the behavior of the wavefunction in a

particular region of configuration space, it is also directly related to the overall properties

of the system. For instance, after accounting for the contact, the internal energy of the

interacting gas can be written in a form reminiscent of the non-interacting gas [24]:

E =
~2C2

4πma
+
∑
k

~2k2

2m

(
n(k)− C2

k4

)
. (1.36)

Essentially, after removing the high-momentum component of the distribution, the kinetic

energy of the system can be calculated by ignoring any correlation between particles in

different modes. Given that this formula holds even for very strongly interacting systems,

it suggests that the contact completely characterizes the correlations between modes that

results from zero-range scattering. The contact has also been shown to relate changes in
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the scattering length to changes in the energy of the system

∂E

∂
(−1
a

) ∼ C2 (1.37)

as well as to the pressure of a uniform Fermi gas [25],

P =
2

3

E

V
+

~2C2

12πam
. (1.38)

Beyond these results first established by Tan, parameters analogous to the contact have

been extended to bosonic systems [27, 28], systems in dimension other than 3 [29, 30],

higher partial waves [31, 32, 33, 34, 35, 36], finite-range interactions [37, 38], spin systems

including spin-orbit coupling [39, 40], and nuclear systems [41, 42, 43, 44, 45]. Due to

the proliferation of ”contacts,” the original quantity defined by Tan has come to be known

as the s-wave two-body contact (or Tan’s contact), hence C2. For our analysis here, the

bosonic extensions are the most important since they relate directly the the Efimov effect,

which we have already discussed. In particular, the three-body contact similarly describes

the probability that three particles cluster within a small region and is also related to a

sub-leading correction to the asymptotic expansion of the momentum distribution [27]:

n(k)− C2

k4
∼ C3

L(k)

k5
, k →∞, (1.39)

where L(k) is a log-periodic function of k. The change in the energy as the Efimov param-

eter, mentioned in a previous section on the Efimov effect, is varied is also proportional to

the three-body contact
∂E

∂ log κ∗
∼ C3. (1.40)

The three-body contact has been shown to be related to the the behavior of the wavefunction

in regions of configuration space where three or more particles are closely clustered, and

Werner and Castin have further shown that the loss rate of particles due to recombination
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to deeply bound dimer states is proportional to C3 [28].

Clearly, the contact plays a central role in characterizing systems with zero-range inter-

actions; therefore, a variety of tools must be developed to investigate this quantity. Within

this thesis we will show several methods by which relations involving the contact can be

derived, even for systems exhibiting less symmetry than a gas of particles in free space. We

will also show how to derive governing equations for the unknown function that appears in

the Bethe-Peierls boundary condition and which characterizes short-range correlations and

therefore the contact. These equations allow us to determine the contact analytically and

numerically for a variety of systems with zero-range interactions.

1.6.1 Measurement of the contact

Because the contact appears in many exact universal relations, several experimental probes

of it have been developed and suggested, including measuring pair correlations directly via

Bragg spectroscopy, the momentum distribution via time-of-flight photography, and the

transition rate between internal states via rf-spectroscopy.

The first verification of the universal relations proposed by Tan and measurement of

the two-body contact for a unitary Fermi gas were carried out by the Jin group at JILA.

They used time-of-flight imaging, photo emission spectroscopy, and rf spectroscopy to in-

dependently measure the single-particle momentum distribution, the disassociation energy

within a trap, and the number of atoms transferred to a different internal state by an rf

pulse. The measurement of the contact from all three probes agreed to within the precision

of the experiment, providing the first measurement of this quantity and verifying two of the

universal relations propsed by Tan [46]. The Vale group at Swinburne University instead

used Bragg spectroscopy to measure the static structure factor of a Fermi gas, which is

the Fourier transform of the two-point correlation function and proportional to the contact.

Their measurements near unitarity were consistent with those of the Jin group [47, 48].

One recent approach has suggested that momentum distributions may be measured in situ
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in the trap via Raman spectroscopy, although challenges remain in applying this technique

to strongly interacting systems [49].

Extending beyond the two-component Fermi gas, several groups have measured contact-

like parameters in bosonic systems and in spin-polarized systems dominated by p-wave

interactions. In weakly interacting BEC as well as the p-wave case, analogous universal

relations were observed in both the single particle momentum distribution and the rf tran-

sition rate. For strongly interacting bosonic systems, however, the instability of the system

complicates measurement, and even at wavenumbers approximately twice the natural scale

(set by the density of the gas), the universal scaling of the momentum distribution was not

observed. It is also important to note that these experiments also investigated the possi-

bility of sub-leading corrections proportional to contact-like parameters beyond the typical

two-body contact, but all measurements were consistent with a value of zero for these ad-

ditional contacts, though with relatively large errors [50, 51, 35]. However, later work

has since shown using Ramsey interferometry that the three-body contact can be measured

in strongly interacting bosonic systems and is indeed necessary to accurately predict the

properties of the gas [52, 53]. Nevertheless, more work needs to be completed refining ex-

perimental procedures and developing new relations where sub-leading corrections to the

momentum distribution appear as dominant terms in order to access these parameters.
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Part I

Two Bosons Resonantly Interacting with

a Plane
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CHAPTER 2

UNIVERSAL BOUND STATES BETWEEN TWO PARTICLES AND A SURFACE

A potential that supports a near zero-energy bound state will strongly scattering incom-

ing particles with wavelengths much larger than the characteristic size of the potential.

Moreover, potentials with very different shapes but the same energy for this near-threshold

bound state have similar scattering properties. These ideas allow extremely complicated

interactions to be summarized by simple models that have only a few parameters. Several

surprising results, particularly that three identical bosons possess a geometric sequence of

three-body bound states and that macroscopic properties like the energy and pressure of a

gas are intimately related to particle correlations as small distances, have been discovered

and later observed by applying these models to systems of a few or many interacting par-

ticles. Applying the same idea to potentials that are generated by a line or a surface rather

than a point particle has drawn much less attention, despite the fact that such potentials can

be engineered more easily than ever before. In this work, we investigate the consequences

of modelling a short-range potential created by a surface as a ”zero-range force” imposing

the condition that the normal derivative of the wavefunction must vanish at the surface (ho-

mogeneous Neumann boundary conditions). We give the bound states of this model and

find that even under conditions where two unconstrained atoms would have no low energy

bound states, they can nevertheless form states that are bound to the surface. We further

investigate the properties of these bound states as a function of the inter-particle scatter-

ing length, including the binding energies, the inter-particle Tan’s Contact, and a further

Contact involving both atoms and the surface which is analogous to the three-body Contact

from Efimov physics.
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2.1 Boundary Conditions for One Particle Resonantly Interacting with a Plane

To motivate and investigate the use of homogeneous Neumann boundary conditions, con-

sider a single spinless particle of mass m, with position x = (x1, x2, x3), interacting with a

planar surface, which we take to be the x2x3-plane. Let the surface subject the particle to a

potential, V (x1), (Figure 2.1) which is translationally invariant in the x2 and x3 directions,

but in the x1 direction is given by

V (x1) =


∞ x1 < 0

V0(x1) 0 < x1 < x0

0 x1 > x0,

with V0(x1) smooth and therefore bounded on the compact set [0, x0]. One optical method

Figure 2.1: Surface potential, V (x1). The potential should have a ”well” so that bound
states are possible. It should also increase rapidly at small distance to form a barrier at the
origin.

for creating such a potential that interacts with neutral atoms is by using the evanescent
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light wave created when a laser beam undergoes total internal reflection from the inner

surface of a prism. The exponentially decreasing electric field will polarize neutral atoms,

which creates a dipole interaction between the atoms and the field. By using two such

beams, both the intensity and the frequency of each beam can be tuned to alter both the

depth and the range of the result. The typical size of the potential is roughly in the range

that we require, with reported ranges varying from 100-300 nanometers [54, 55]. In this

regime, they will be significantly longer-ranged than the nanometer length scale Van der

Waals interaction, but not so large that they dwarf a tuned scattering length in size.

The Schrödinger equation is then

ĤΨ(x1, x2, x3) = EΨ(x1, x2, x3),

with the Hamiltonian for this system given by

Ĥ =
p̂2

1

2m
+

p̂2
2

2m
+

p̂2
3

2m
+ V (x̂1),

with p̂i the momentum operator conjugate to x̂i.

Since the potential depends only on the x1-coordinate, separation of variables

Ψ(x1, x2, x3) ≡ ψ(x1)φ(x2, x3)

leads to a free particle description in the directions parallel to the surface, and a one-

dimensional equation in the perpendicular direction where the particle is restricted to the

half-space x > 0:

(
p̂2
x2

2m
+
p̂2
x3

2m

)
φ(x2, x3) = E2,3 φ(x2, x3),(

p̂2
x1

2m
+ V (x̂1)

)
ψ(x1) = E1 ψ(x1),
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with the eigenvalue relation E = E2,3 + E1.

From here, our strategy will be to investigate the behavior of the wavefunction and its

derivative outside the range of interaction, x0, with the surface. Then, we will take the

limit that the range of interaction goes to 0. However, we will not take this limit with all

other aspects of the potential fixed because this would cause the scatting by the potential

to become weaker and weaker. Instead, we will take this limit while holding the scattering

length, a, between the particle and the surface constant so that the low-energy scattering

behavior remains unchanged. The goal will be to arrive at an effective model where the

surface potential is completely replaced by a boundary condition at x1 = 0, valid for

energy scales E1 <<
~2

mx2
0
.

Focusing on the x1-direction, when x1 > x0 we have that V (x1) = 0 and so we can

represent the solution in this region as a standing wave

ψ(x1) = A sin (k1x1 + δ(k1)), (2.1)

with the coefficient A determined by the choice of normalization for scattering states and

E1 =
~2k2

1

2m
. The scattering phase-shift δ(k1) is determined by requiring continuity of the

wavefunction and its derivative at x1 = x0. However, rather than solve the Schrödinger

equation and for x1 < x0 and match at the boundary, instead we take the the scattering

length, a, which appears in the effective range expansion (see Section 1.2),

k1 cot (δ(k1)) = −1

a
+

1

2
rsk

2
1 +O(k4

1), (2.2)

as empirically given. Then for k1x0 → 0,

ψ′(x0)

ψ(x0)
= k1 cot (δ(k1))−

(
1 + cot (δ(k1))2) k2

1x0 +O(k3
1x

2
0) (2.3)

= −1

a
+
(rs

2
− x0

)
k2

1 +O
(x0

a2

)
+ o(rsk

2
1). (2.4)
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Typically, the effective range rs scales as the range of interaction (rs ∼ x0), which can be

seen by noting that the interval of integration in the definition of rs, Eq. 1.2, goes to zero.

Therefore, if the interaction between the surface and the particle is tuned such that a→∞,

then in the limit that x0 → 0 (and consequently rs → 0), we have that ψ′(x0)→ 0. Thus for

a finite range potential that has been tuned to resonance with the particle (a → ±∞), the

wavefunction will have a normal derivative of 0 at the boundary. That is, the wavefunction

satisfies homogeneous Neumann boundary conditions at the surface.

2.2 Two Particles Resonantly Interacting with a Plane: A Formal Solution

Consider next a system of two particles interacting resonantly with the surface described

in the previous section (see Figure 2.2). When a particle approaches the surface and the

Figure 2.2: Two particles and a resonant surface. By convention, the 1-direction always
points perpendicular to the surface while the 2, 3-directions always point parallel to it.

other particles are far away (compared to the range of interaction), then asymptotically the

wavefunction will approximately factorize and obey this Nuemann boundary condition.
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Previously, models where the Bethe-Peierls boundary condition (which we introduced in

Section 1.2) is enforced in many-particle systems, although it is only exactly valid for two

particles, have been studied extensively [10]. We extend in a similar way the homogenous

Neumann boundary condition at the surface derived from the one-particle model to the case

of two particles. We enforce that this condition should be satisfied by each particle exactly,

without respect to the location of the second particle (at least so long as the two particles

are not both coincident with the surface; a case which we investigate in Appendix B).

Simultaneously, we will model the inter-particle interaction as a zero-range force satisfying

the Bethe-Peierls boundary condition. The result is then a model Hamiltonian with two

particles that have positions x = (x1, x2, x3) and y = (y1, y2, y3) respectively, and at least

when |x− y| > 0, x1 > 0, y1 > 0 we have the Schrödinger equation

− ~2

2m

( ∂2

∂x2
1

+
∂2

∂y2
1

+
∂2

∂x2
2

+
∂2

∂y2
2

+
∂2

∂x2
3

+
∂2

∂y2
3

)
ψ(x, y) = E ψ(x, y), (2.5)

simultaneously subject to the boundary conditions

ψ(x, y) = NA
(x+ y

2

)( 1

|x− y|
− 1

a

)
+O(|x− y|), |x− y| → 0, (2.6)

∂ψ(x, y)

∂x1

∣∣∣
x1=0

= 0,
∂ψ(x, y)

∂y1

∣∣∣
y1=0

= 0, (2.7)

(with N a normalization constant) due to both the interparticle zero-range interaction and

the zero-range interaction with the surface. As in our model with a single particle, we take

the surface to act as an infinite potential whenever at least one particle would be inside the

surface and therefore

ψ(x, y) ≡ 0, x < 0, y < 0. (2.8)

The function A we refer to as the ”source distribution” (for reasons that will become more

clear later), must be in C2(0,∞) so that it can satisfy the Schrödinger Equation and must
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also be square-integrable so that the wavefunction is normalizable, but is otherwise as yet

undetermined. The source distribution must be chosen appropriately so that all terms within

the Bethe-Peierls boundary conditon are indeed satisfied, and we will later accomplish this

by finding a singular integral equation that the source distribution must satisfy.

Having developed a Schrödinger Equation valid for |x− y| > 0, we seek an extension

of this equation that automatically incorporates the behavior dictated by the Bethe-Peierls

boundary condition (2.6). Using the coordinates

R = (R1, R2, R3),

r = (r1, r2, r3),

R1 =
x1 + x2

2
, R2 =

y1 + y2

2
, R3 =

z1 + z2

2
,

r1 = x1 − x2, r3 = y1 − y2, r3 = z1 − z2.

The Schrödinger equation is tranformed to

−~2

m

(1

4
∇2
R +∇2

r

)
ψ
(
R +

r

2
, R− r

2

)
= E ψ

(
R +

r

2
, R− r

2

)

with the notation

∇2
R =

∂2

∂R2
1

+
∂2

∂R2
2

+
∂2

∂R2
3

,

∇2
r =

∂2

∂r2
1

+
∂2

∂r2
3

+
∂2

∂r2
3

.

Note here that since the Hamiltonian is invariant under translations of both the 2nd and

3rd coordinates of the center of mass and there are no boundary conditions to constrain

solutions in these directions. The center of mass momentum parallel to the surface will
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therefore be conserved. The wavefunction can then be written as

ψ
(
R +

r

2
, R− r

2

)
= eiq2R2+iq3R3φ(R1, r). (2.9)

Throughout this chapter, we will work in the center of momentum frame parallel to the

surface so that q2 = q3 = 0, and the source distribution appearing in the Bethe-Peierls

boundary condition will depend only on the perpendicular distance of the center of mass

from the surface and not the parallel coordinates,

A(R) = A(R1). (2.10)

Any translational motion of the center of mass parallel to the surface can be recovered after

we find a solution by appending any plane wave solutions in the parallel center of mass

coordinates to the wavefunctions we show here. One additional important fact about the

source distribution is that since it represents the local strength of the interaction between

the particles, it must be zero in any region where the particles are forbidden from being and

therefore

A(R1) ≡ 0, R1 < 0. (2.11)

The operator∇2
r acting on the wavefunction in the region described by (2.6) gives zero

almost everywhere. But precisely at r = 0, where we have collapsed all of the interaction

via our limiting procedure, the wavefunction fails to exist as an ordinary function and the

action of the Laplacian is not well-defined. However, if we extend the Laplacian in the

sense of distributions, then we have that [56]

∇2
r

(
1

|r|

)
= −4πδ(r),

and so we infer that on the set r = 0 we should include a source term in the Schrödinger
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equation to cancel this contribution for the distributional Laplacian.

(
−~2

m

(1

4
∇2
R +∇2

r

)
− ~2k2

2m

)
ψ
(
R +

r

2
, R− r

2

)
=

8π~2

m
A(R1)δ(r). (2.12)

Since the functionA describes the strength of the zero-range interaction, represented by the

source term in our Schrödinger equation, we call it the source distribution. The solution of

this equation will satisfy the first term in the Bethe-Peierls condition (Eq. 2.6)) by construc-

tion; however, for arbitrary A it will not necessarily satisfy the second term, involving the

scattering length. To find sufficient conditions under which the full Bethe-Peierls boundary

condition will be satisfied, we will first need to find a formal solution to Eq. (2.12).

In Appendix A we derive the Green’s function for our Schrödinger equation and enforce

the homogeneous Neumann boundary conditions. The result for the wavefunction is

ψ
(
R +

r

2
, R− r

2

)
= ψ1

(
R +

r

2
, R− r

2

)
+ ψ2

(
R +

r

2
, R− r

2

)
(2.13)

where

ψ1

(
R +

r

2
, R− r

2

)
≡ Nk

π

∫ ∞
0

[
K1(k

√
2R2

1 + 1
2
((r1 + 2x′)2 + r2

3 + r2
3))√

2R2
1 + 1

2
((r1 + 2x′)2 + r2

3 + r2
3)

+
K1(k

√
2R2

1 + 1
2
((r1 − 2x′)2 + r2

3 + r2
3))√

2R2
1 + 1

2
((r1 − 2x′)2 + r2

3 + r2
3)

+
K1(k

√
2(R1 + x′)2 + 1

2
(r2

1 + r2
3 + r2

3))√
2(R1 + x′)2 + 1

2
(r2

1 + r2
3 + r2

3)

]
A(x′) dx′,

(2.14)

ψ2

(
R +

r

2
, R− r

2

)
≡ Nk

π

∫ ∞
0

K1(k
√

2(R1 − x′)2 + 1
2
(r2

1 + r2
3 + r2

3))√
2(R1 − x′)2 + 1

2
(r2

1 + r2
2 + r2

3)
A(x′) dx′,

(2.15)
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and K1 is the modified Bessel function of the second kind of order 1. Shortly, the fact that

this modified Bessel function has a singularity when its argument approaches zero will be

relevant (see Appendix G for relevant properties of this special function).

This formal solution will serve as the starting point for much of our further analysis.

It will allow us to derive an integral equation for the unknown source distribution, A in

the next section, and also facilitate our investigation of the momentum distributions of the

system in Chapter 3.

2.3 Integral Equation for the Source Distribution

Having found a formal solution to Eq. 2.12 that satisfies the Neumann boundary conditions,

it remains to enforce that it also satisfies the Bethe-Peierls condition Eq. 2.6. We must

therefore expand our wavefunction for small r, including any singular and r-independent

terms.

Lemma 2.1.

ψ
(
R +

r

2
, R− r

2

)
=
N
|r|
A(R1) +

Nk
π

Λ(R1) +O(|r|), r → 0,

where

Λ(R1) ≡
∫ ∞

0

[
2
K1(k

√
2(R2

1 + x′2))√
2(R2

1 + x′2)
+
K1(k

√
2(R1 + x′)2)√

2(R1 + x′2)

]
A(x′) dx′

+ =

∫ ∞
0

K1(k
√

2(R1 − x′)2√
2(R1 − x′)2

A(x′) dx′,
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and

=

∫ ∞
0

K1(k
√

2(R1 − x′)2√
2(R1 − x′)2

A(x′) dx′ = lim
ε→0

[
k

π

∫ R1−ε

0

K1(k
√

2(R1 − x′)2√
2(R1 − x′)2

A(x′) dx′

+
k

π

∫ ∞
R1+ε

K1(k
√

2(R1 − x′)2√
2(R1 − x′)2

A(x′) dx′

− A(R1)

πε

]

Proof. The ψ1 term in Eq. 2.13 can be dealt with simply because each term is bounded

above by an integrable function as r → 0 and therefore the dominated convergence the-

orem allows us to interchange the limit and the integral. To see this, note that K1(x)
x

is a

monotonically decreasing function of x. Therefore, for all α, δ

K1

(√
(x+ δ)2 + α2

)
√

(x+ δ)2 + α2
≤
K1

(√
x2 + α2

)
√
x2 + α2

,

K1

(√
(x+ δ)2 + α2

)
√

(x+ δ)2 + α2
≤
K1

(√
(x+ δ)2

)
√

(x+ δ)2
,

and the expressions on the right-hand side above are integrable over R, provided that α > 0

and δ > 0 respectively. Applying these estimates to ψ1 gives us

lim
r→0

ψ1

(
R +

r

2
, R− r

2

)
=
Nk
π

∫ ∞
0

[
2
K1(k

√
2(R2

1 + x′2))√
2(R2

1 + x′2)

+
K1(k

√
2(R1 + x′)2)√

2(R1 + x′2)

]
A(x′) dx′.

By contrast, the integrand in ψ2 has a non-integrable singularity when r = 0 and x′ →
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R1. So, we will decompose the integration interval [0,∞) into three pieces,

ψ2

(
R +

r

2
, R− r

2

)
=
Nk
π

[∫ R1−ε

−∞
+

∫ R1+ε

R1−ε
+

∫ ∞
R1+ε

]
K1

(
k
√

2(R1 − x′)2 + 1
2
r2
)

√
2(R1 − x′)2 + 1

2
r2

A(x′) dx′.

The same dominated convergence argument applies to the intervals [0, R1 − ε) and

[R1 + ε,∞) and so we can move the limit inside the integral there. For the contribution to

ψ2,-

Nk
π

∫ R1+ε

R1−ε

K1

(
k
√

2(R1 − x′)2 + 1
2
r2
)

√
2(R1 − x′)2 + 1

2
r2

A(x′) dx′, (2.16)

when kε << 1 and kr << 1, an acceptable approximation to 2.16 is to Taylor expand

A(x′) about R1 and also replace the modified Bessel function with its expansion for small

arguments (see Appendix G),

∫ R1+ε

R1−ε

K1(k
√

2(R1 − x′)2 + 1
2
r2)√

2(R1 − x′)2 + 1
2
r2

A(x′) dx′ =
A(R1)

k

∫ R1+ε

R1−ε

1

2(R1 − x′)2 + 1
2
|r|2

dx′

=
2A(R1)

k|r|
arctan

(
2ε

|r|

)
+O(ε).

With ε fixed and r → 0 this reduces to

k

π

∫ R1+ε

R1−ε

K1(k
√

2(R1 − x′)2 + 1
2
r2)√

2(R1 − x′)2 + 1
2
r2

A(x′) dx′ = A(R1)

(
1

|r|
− 1

πε

)
+O(ε) +O(r).
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Recombining the three partitioned intervals for ψ2 we have that

ψ2

(
R +

r

2
, R− r

2

)
= N lim

ε→0

[
k

π

∫ R1−ε

0

K1(k
√

2(R1 − x′)2√
2(R1 − x′)2

A(x′) dx′

+
k

π

∫ ∞
R1+ε

K1(k
√

2(R1 − x′)2√
2(R1 − x′)2

A(x′) dx′ − A(R1)

πε

]
+N A(R1)

|r|
,

and we introduce the notation

=

∫ ∞
0

K1(k
√

2(R1 − x′)2√
2(R1 − x′)2

A(x′) dx′ ≡ lim
ε→0

[ ∫ R1−ε

0

K1(k
√

2(R1 − x′)2√
2(R1 − x′)2

A(x′) dx′

+

∫ ∞
R1+ε

K1(k
√

2(R1 − x′)2√
2(R1 − x′)2

A(x′) dx′

− A(R1)

kε

]
.

This is an example of a Hadamard Finite Part integral, which is a generalization of the

Cauchy Principal Value integral and a regularized version of what would ordinarily be a

linearly divergent integral. For functions with no singularities, the Hadamard Finite Part

simply reduces to an ordinary integral. Note that this regularization did not arise by start-

ing from a divergent integral and then ’by hand’ replacing it with a regularized counterpart;

rather, we started from a well-defined convergent integral and discovered that the appropri-

ate limit as r → 0 involves the Hadamard Finite Part.
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Combining the results for ψ1 and ψ2, we have, as desired,

ψ
(
R +

r

2
, R− r

2

)
=
Nk
π

∫ ∞
0

[
2
K1(k

√
2(R2

1 + x′2))√
2(R2

1 + x′2)

+
K1(k

√
2(R1 + x′)2)√

2(R1 + x′2)

]
A(x′) dx′

+
Nk
π

=

∫ ∞
0

K1(k
√

2(R1 − x′)2√
2(R1 − x′)2

A(x′) dx′

+
NA(R1)

|r|
+O(r), r → 0,

If we compare the result of Lemma 2.1 with the Bethe-Peierls condition, 2.6, it must

simultaneously be true that

ψ
(
R +

r

2
, R− r

2

)
=
NA(R1)

|r|
+
Nk
π

Λ(R1) +O(|r|), r → 0,

ψ
(
R +

r

2
, R− r

2

)
= NA (R1)

(
1

|r|
− 1

a

)
+O(|r|), r → 0.

The terms that diverge as r → 0 match exactly, but we must require that the r-independent

terms also match so that our solution satisfied the Bethe-Peierls condition. Therefore we

must have
A(R1)

a
= −kΛ(R1)

π
(2.17)

If we substitute in the definition of Λ, we can write the relation more succinctly by making

a slight change of notation β ≡
√

2k and by symmetrically extending the function A such

that,

A(x) ≡


A(x) x ≥ 0,

A(−x) x < 0.

(2.18)
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Finally, then we have the integral equation

=

∫ ∞
−∞

[
K1(β|R1 − x′|)
|R1 − x′|

+
K1(β

√
R2

1 + x′2)√
R2

1 + x′2

]
A(x′) dx′ = −2π

βa
A(R1). (2.19)

This integral equation, which we refer to as the position-space integral equation because its

solution can be used to calculate the position-space representation of the wavefunction, is a

significant milestone for this problem because it is a single relationship that when satisfied

guarantees that our solution, Eq 2.13, satisfies the Schrödinger equation, the homogeneous

Neumann boundary conditions, and the Bethe-Peierls boundary condition.

Because this integral equation for the source distribution contains a Hadamard finite

part, it is classified as a second kind hypersingular integral equation [57]. Such integral

equations arise somewhat regularly in many fields that deal with scattering and radiation,

including fracture dynamics [58], acoustics [59], and electrodynamics [60], but are not

particularly well-studied beyond numerical solutions.

For the remainder of this chapter, we will give analytical solutions of this integral equa-

tion in several special cases

• At distances close to the surface, (βR1 << 1),

• At unitarity (a = ±∞), and

• At the free breakup threshold (β = 0, a finite).

We will finish by deriving and carrying out a numerical solution to find the binding energies

at arbitrary scattering length.

2.3.1 Solution near the surface

Our first task is to investigate the behavior of the source distribution near the surface of

the plane. We expect from experience with the Efimov effect that this behavior will be

important for future analysis. Using the results of Appendix B, we find that at small values
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of R1, the asymptotic expansion for A begins

A(R1) ∼ α+
0 R

is0
1 + α−0 R

−is0
1 +O(Rs1

1 ), R1 → 0, (2.20)

where s0 is the only positive real solution to the transcendental equation

s0 sinh
(πs0

2

)
− 1 = 0. (2.21)

A(R1) therefore fails to be analytic at R1 = 0, which we can see by differentiating term-

by-term,

A′(R1) ∼ is0

(
α+

0 R
is0−1
1 − α−0 R−is0−1

1

)
,

which clearly diverges as R1 → 0. The non-analytic behavior of A will have consequences

for later analysis, both as we seek a solution to our integral equation and for further asymp-

totic results in a later chapter. From this expansion and the proportionality between A and

the wavefunction given by the Bethe-Peierls boundary condition, Eq. 2.6, we can calculate

the probability current in the R1 direction as two particles approach the surface (R1 → 0).

It is given by

ψ∗ ∂R1ψ − ψ ∂R1ψ
∗ ∝ −2s0

R1

(
|α−0 |2 − |α+

0 |2
)
, R1 → 0. (2.22)

The current is therefore singular as R1 → 0, probability will escape through the plane, and

the model will fail to be self-adjoint, unless we impose the condition

|α−0 |2 = |α+
0 |2,

41



so that Eq. 2.22 is then zero. If we rewrite the coefficients in the asymptotic expansion, Eq.

2.20, in terms of a real amplitude |α| and real phases φ+ and φ−

α+
0 ≡ |α|eiφ+ ,

α−0 ≡ |α|eiφ− ,

then we can rearrange the asymptotic expansion Eq. 2.20 so that it is written in terms of

the new length scale, x0,

A(R1) = 2|α| e
i(φ−+φ+)

2 sin

(
s0 log

(
R1

x0

))
+O(x), (2.23)

where

x0 ≡ exp

(
−π + φ+ − φ−

2s0

)
. (2.24)

It is well-known in the Efimov effect that there is a three-body parameter, entering as a

similar length scale, that is required for the model to be self-adjoint but not fixed within

the zero-range approximation [61, 62], and so the appearance of the surface parameter,

x0, is not entirely unexpected. The Efimov three-body parameter specifies the relative

phase between incoming and outgoing waves during a collision of three particles, just as

our surface parameter, x0, specifies the relative phase of incoming and outgoing waves

when two particles collide with the surface. In our model, x0 is a free parameter, but we

expect that just as the details of the three-body interaction specify the Efimov three-body

parameter, the details of the interactions between our particles and the surface specify x0 in

a physical system. We cannot show this in our model; however, because we have replaced

the details of the surface interaction with the Neumann boundary condition.

The choice of a particular surface parameter corresponds to a self-adjoint extension of

our Hamiltonian. Because more than one choice of x0 is possible (in fact, infinitely many

are possible), the Hamiltonian is not essentially self-adjoint and the value of observables
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will depend on the particular self-adjoint extension that we choose. This is not a significant

barrier for our analysis; however, because we can give results for the scattering lengths and

binding energies in terms of β0, which will be defined later (Eq 2.35) and is determined

solely by x0. In addition, we will show that the choice of x0 affects only the overall scale of

the bound states that we will find, and the ratio of adjacent binding energies is independent

of x0. We also note that x0 does not appear explicitly in our integral equation Eq. 2.19 and

so when we find a family of solutions in Section 2.3.2, every member will not necessarily be

a solution to any particular self-adjoint extension and we must determine which solutions

belong to which self-adjoint extension.

Note, however, that not every choice for x0 leads to a unique self-adjoint extension. In

fact, the rescaling

x0 → x0e
nπ
s0 , n ∈ Z (2.25)

alters the relation Eq. 2.23 at most by an overall factor of −1, which is an irrelevant

change of global phase for the wavefunction. There is, therefore, an equivalence relation

on the possible choices for x0 whereby two choices are equivalent if they are related by

the transformation Eq. 2.25. The same behavior has been observed as a limit cycle in the

renormalization group flow of effective field theories describing the Efimov effect [63, 64,

65].

In our future analysis, we will regularly refer back to the asymptotic behavior Eq. 2.20

as well as the length scale x0 because they allow us to connect the particle-surface interac-

tion to other aspects of the problem.

2.3.2 Solution at unitarity (a = ±∞)

When the scattering length diverges, the right-hand side of our integral equation Eq. 2.19

becomes zero and we find that A satisfies

=

∫ ∞
0

[
K1(β|R1 − x′|)
|R1 − x′|

+
K1(β(R1 + x′))

R1 + x′
+ 2

K1(β
√
R2

1 + x′2)√
R2

1 + x′2

]
A(x′) dx′ = 0. (2.26)
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Lemma 2.2. The solutions of Eq. 2.26 are given by

A(R1) ∝ Kis0

(
β0R1e

−nπ
s0

)
, n ∈ Z, n ∈ Z,

with

β0 ≡
2

x0

e
− 1
s0

arg (Γ(1−is0))

Proof. In light of both the solution of the radial equation for the Efimov trimer [66], and

the expression for the wavefunction given by Tan [30], we attempt the ansatz

A(R1) ∝ Kis(βR1), (2.27)

with s a complex number that will be determined later. We must have that−1 < Im(s) < 1,

otherwise A(R1) will have a non-integrable singularity as R1 → 0 and the wavefunction

will not exist anywhere according to Eq. 2.13.

We substitute the ansatz, Eq. 2.27, into the left-hand side of the integral equation, 2.26,

and apply the following identities

∫ ∞
0

xµ−1(x+ b)−µKµ(x+ b)Kν(x) dx =

√
π Γ(µ+ ν)Γ(µ− ν)

2µΓ(µ+ 1
2
)

Kν(b)

bµ
, (2.28)∫ ∞

0

xµ−1|x− b|−µKµ(|x− b|)Kν(x) dx =
Γ(1

2
− µ)Γ(µ+ ν)Γ(µ− ν) cosπν

√
π(2b)µ

Kν(b).

(2.29)∫ ∞
0

2
K1(β

√
R2

1 + x′2)√
R2

1 + x′2
Kis(βx

′) dx′ =
π sech(πs

2
)

βR1

Kis(βR1) (2.30)

Eqs. 2.28 and 2.29 are Eq. 6.582 and a corrected version of Eq. 6.583 from Gradshteyn and

Ryzhik’s Table of Integrals, Series, and Products, 8th Edition [67]. We show in Appendix

C how we have corrected their Eq. 6.583. We have also calculated Eq. 2.30 by the same

Fourier tranform methods as shown in Appendix C. Applying these identities to our case

of µ = 1, ν = is, b = R1 and summing the three contributions, we find that s must satisfy
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sech
(πs

2

)
− s tanh

(πs
2

)
= 0, (2.31)

for our ansatz to satisfy the integral equation. There is only a single pair of real solutions,

s = ±s0, with s0 ≈ 0.7201977502. Because the modified Bessel functions of the second

kind, Kν , are symmetric when ν → −ν, the positive and negative solutions to Eq. 2.31

correspond to the same A, and so we consider only the positive value. There are additional

complex solutions to Eq. 2.31, but they all have |Im(s)| > 1 and thus would lead to a

divergent expression for the wavefunction when substituted into Eq. 2.13. Therefore we

conclude that at unitarity,

A(R1) ∝ Kis0(βR1), (2.32)

consistent both with the analysis in Appendix B and the wavefunction found by Tan [30].

At this point, we have made no restriction on the allowed values of β for solutions at

unitarity. It therefore seems that β is arbitrary and a continuous scaling symmetry exists,

allowing for a bound state at any value of β. However, we must determine which values

of β lead to solutions consistent with our earlier choice of self-adjoint extension via the

surface parameter, x0.

If we perform an expansion of the solution Eq. 2.32 as small R1, we find that

A(R1) ∼
(
2−1−is0βis0Γ(−is0)

)
xis0 +

(
2−1+is0β−is0Γ(is0)

)
x−is0 +O(x), x→ 0.

(2.33)

Comparing this to the small distance expansion for A in terms of x0, Eq. 2.23, the two

agree only if

β =
2

x0

e
− 1
s0

arg (Γ(1−is0))
. (2.34)

Therefore, β is not arbitrary in our solution, but rather is fixed by x0. However, recall

that in Section 2.3.1 we showed that each x0 is one representative from a set of equivalent

x0,
{
x0e

nπ
s0

∣∣∣ n ∈ Z
}

, all of which lead to the same self-adjoint extension and identical

45



physics. We call the β determined by the representative x0,

β0 ≡
2

x0

e
− 1
s0

arg (Γ(1−is0))
. (2.35)

By iterating through all of the equivalent values of x0, we find a family of allowable solu-

tions at unitarity for this self-adjoint extension,

A(R1) ∝ Kis0

(
β0R1e

−nπ
s0

)
, n ∈ Z. (2.36)

The binding energies at unitarity therefore form a geometric sequence,

En+1

En
= e2π/s0 . (2.37)

Notice that this ratio is independent of x0 and thus independent of which self-adjoint exten-

sion we choose. Knowing the solution of our integral equation, we can completely charac-

terize the collective bound states at unitarity and extract any useful quantities, for example

the contacts or the spatial distribution of the particles. The exact solution at unitarity also

gives a robust check for comparison with our later numerical results.

2.3.3 Solution at zero binding energy

Next, we investigate the possibility that for some finite value of the scattering length, the

lowest-lying collective bound state may become unbound, and its binding energy go to

zero. When taking the limit β → 0 with a remaining finite in Eq. 2.19, the kernel of the

integral equation simplifies greatly, since for any fixed values of R1 and x′, the arguments

of the Bessel functions become small. We can write the reduced integral equation as

=

∫ ∞
0

(
1

(R1 − x′)2
+

2

R2
1 + x′2

+
1

(R1 + x′)2

)
A(x′) dx′ = −2π

a
A(R1). (2.38)
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Because the kernel of the reduced integral equation is now a homogeneous function of

degree −2, we expect a Mellin-type representation of A(R1) will be useful and may reveal

scaling behavior,

X(ν) ≡
∫ ∞

0

A(x)

(
x

|a|

)−ν−1

dx, (2.39)

A(x) =
1

2πi

∫ c+i∞

c−i∞
X(ν)

(
x

|a|

)ν
dν, (2.40)

where c < 0 so that we perform the inversion integral within the domain of analyticity of

X(ν) [68]. Plugging this expression into Eq. 2.38 and doing the integral over x′ we have

that

π

2πi

∫ c+i∞

c−i∞

(
sec
(πν

2

)
+ ν tan

(πν
2

))
X(ν)

x′ν−1

|a|ν
dν

= −2π

a

1

2πi

∫ c+i∞

c−i∞
X(ν)

(
x′

|a|

)ν
dν.

So long asX(ν) has no poles between Re(ν) = c and Re(ν) = c−1, we are free to displace

the contour to the left on the right-hand side of the above equation. SinceA(x) must at least

be decaying for large x, we take c to be a small negative value, say −1 < c < 0 to avoid

crossing any poles that might arise due to this large x behavior [69]. We then relabel

ν → ν − 1 to write

∫ c+i∞

c−i∞

(
sec
(πν

2

)
+ ν tan

(πν
2

))
X(ν)

x′ν−1

|a|ν
dν

= −2

a

∫ c+i∞

c−i∞
X(ν − 1)

(
x′

|a|

)ν−1

dν,

which is satisfied for negative scattering lengths when we have

1

2

[
sec
(πν

2

)
+ ν tan

(πν
2

)]
X(ν) = X(ν − 1), a < 0. (2.41)
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To solve this functional relation, we apply an idea pioneered by Gogolin, Mora, and

Egger [23]. We use a well-known result of complex analysis, Hadamard’s strengthening of

the Weierstrass Factorization Theorem [70, 71], which says that any meromorphic function

can be written as an product of factors where each pole and each zero of the function

contributes exactly one factor to the product. We will use this result to write

1

2

(
sec
(πν

2

)
+ ν tan

(πν
2

))
= −1

2

∞∏
p=0

(2p+ 1)2

|up|2
u2
p − ν2

b2
p − ν2

, (2.42)

with bp ≡ 2p+ 1 and the up are the complex solutions (sorted by ascending absolute value)

to the transcendental equation

z(u) ≡ 1 + u sin
πu

2
= 0,

The details of constructing 2.42 are given in Appendix F. This factorization is helpful

because it replaces the trigonometric factor in Eq. 2.41 with a product of polynomials in ν.

We can then solve a well-known functional relation for each polynomial factor separately

and then multiply the solutions for all factors together to find X .

Solving the functional relation Eq. 2.41 for X requires that we be able to solve three

more elementary functional relations:

fp(ν − 1) = (u2
p − ν2)fp(ν), (2.43)

gp(ν − 1) = (ν2 − u2
p)gp(ν), (2.44)

hp(ν − 1) =
1

b2
p − ν2

hp(ν). (2.45)

Eqs. 2.43 and 2.44 are functional relations for factors coming from the numerator of Eq.

2.42, while Eq. 2.45 corresponds to relations involving the denominator of 2.42. We can
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write the corresponding solutions as:

fp(ν) =
Γ(up − ν)

Γ(1 + up + ν)
(2.46)

gp(ν) = Γ(−up − ν)Γ(up − ν) (2.47)

hp(ν) =
Γ(1 + bp + ν)

Γ(bp − ν)
(2.48)

We will use the partial solutions, fp, gp, hp to construct the solution, X , of Eq. 2.41.

There is one functional relation involving each up and each bp in Eq. 2.42. For each factor

involving up in Eq. 2.42, we must make a choice of whether to include a factor fp or a

factor gp (and the associated minus sign) in X . We must include at least one factor of gp in

X to fulfil the functional relation, but could potentially include further pairs of gp, because

the pair of minus signs will have no effect on whether our product satisfies Eq. 2.41. Our

choice must be consistent, however, with the earlier choices to take −1 < c < 0 and that

X(ν) should have no singularities between Re(ν) = c and Re(ν) = c − 1. The fp have

no poles for Re(ν) < 0; however, the gp have poles at ν = −up + n with n ∈ N. For

each p, the pole of gp at νp = −up + bupc will satisfy −1 < Re(νp) < 0 and the pole at

νp−1 = −up + bup− 1c will satisfy −2 < Re(νp−1) < −1. The two poles are a distance of

1 apart along the real axis and none of the up are integers. Therefore, unless bup− 1c /∈ N,

there can be no strip of width 1 within −2 < Re(ν) < 0 where gp has no poles. But,

bup − 1c /∈ N is satisfied only for p = 0. Therefore for all up with p > 0 we include a

factor fp in X , but for p = 0 we use gp to accommodate the minus sign in the Weierstrass

product.

X(ν) can then be written as

X(ν) = g0(ν)h0(ν)2ν+ 1
2 |u0|2ν+1

∞∏
p=1

λpfp(ν)hp(ν).

where the λp must be chosen so that the infinite product converges. All of our functional
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relations are homogeneous, therefore we have complete freedom to choose the λp. We must

have, then,

lim
p→∞

λpfp(ν)hp(ν) = 1.

Considering the behavior of fp and hp at large p,

fp(ν)hp(ν) =
b2ν+1
p

u2ν+1
p

+O
(

1

p2

)
,

and therefore we satisfy the necessary condition for convergence if we choose

λp =
u2ν+1
p

b2ν+1
p

Combining these elements, our solution is then

X(ν) = g0(ν)h0(ν)2ν+ 1
2 |u0|2ν+1

∞∏
p=1

u2ν+1
p

(2p+ 1)2ν+1
fp(ν)hp(ν).

From the general properties of the Mellin transform which relate the residues of X(ν) to

the asymptotic expansion of A(x) for small or large x [69], we find that

A(R1) ∼ Res(X(ν), is0)

|a|−is0
Ris0

1 +
Res(X(ν),−is0)

|a|is0
R−is01 +O(R1), R1 → 0. (2.49)

When ν → is0 all of the factors inX(ν) are regular, except for g0(ν), which is proportional

to Γ(is0 − ν). So, we can find the residue according to

Res(X(ν), is0) =− Γ(−2is0)Γ(2 + is0)

Γ(1− is0)
2ν+ 1

2 |u0|2ν+1

×
∞∏
p=1

(2p+ 1)−2ν−1

u−2ν−1
p

Γ(up − is0)Γ(1 + bp + is0)

Γ(bp − is0)Γ(1 + up + is0)
. (2.50)

We have already checked the necessary condition for convergence of our infinite prod-

uct, and now we must develop an approximate representation of the up to check sufficiency.

50



The main difficulty is that we have no algebraic representation of the up, and to overcome

this we will use the Newton-Raphson method to find an approximate algebraic form for the

up. This method finds a root by starting at an initial guess, linearizing the function we are

finding a root of about that initial guess, and then computing where the linearized function

is zero. The linearized zero becomes the new guess for the location of the true root and the

process repeats. When u is large, 1 + u sin πu
2

= 0 only when the sine function is small,

and therefore u ≈ 2p, p ∈ Z. We use this as an initial guess, and in Apprendix E we prove

the following necessary results:

• Within each interval u ∈ [2p− 1, 2p+ 1], p ∈ N+, z(u) has exactly 1 zero

• The Newton-Raphson method with initial guess up,0 = 2p applied to z(u) = 0

converges to the unique zero of z(u) in [2p− 1, 2p+ 1], ∀p ∈ N+

• Every real, positive zero of z(u), up, is given by

up = 2p− z(2p)

z′(2p)
+O(p−3)

= 2p− (−1)p

πp
+O(p−3),

(2.51)

and

|up − 2p| = |εp| ≤
2

πp
. (2.52)

To check the convergence, consider

∣∣∣∣∣
∞∏
p=1

(2p+ 1)−2is0−1

u−2is0−1
p

Γ(up − is0)Γ(2 + 2p+ is0)

Γ(1 + 2p− is0)Γ(1 + up + is0)

∣∣∣∣∣ =
∞∏
p=1

up
2p+ 1

∣∣∣∣2p+ 1 + is0

up + is0

∣∣∣∣
≤

√√√√ ∞∏
p=1

(
1 +

s2
0

(2p+ 1)2

)

=

(
cosh

(
πs0
2

)
1 + s2

0

)1
2

,
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which is finite and therefore the product converges.
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Figure 2.3: Numerical estimate of the critical negative scattering length as a function of the
number of roots included in the product at each iteration of the Newton-Raphson method.
The product converges rapidly as the number of roots increases. First, second, and third
refer to the number of iterations of the Newton-Raphson method used to approximate each
root after the initial guess. At the scale of this plot, further iterates are visually indistin-
guishable for the third iteration.
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Table 2.1: The calculated critical negative scattering length at each iteration of the Newton-Raphson
approximation to the set of roots. As the number of iterations increases, the calculated critical

negative scattering length converges rapidly to more than 10 digits of precision at 5 iterations.

Iterations Critical Scattering Length
0 -0.5371773089
1 -0.5361410951
2 -0.5362202918
3 -0.5362203454
4 -0.5362203454
5 -0.5362203454

Returning then to the residue, Eq. 2.50, we apply the Newton-Raphson technique with

initial guess up ≈ 2p to calculate the location of the first M roots. We use these approx-

imate roots to calculate a finite approximation of Eq. 2.50, increasing M until the result

converges to at least 10 digits of precision. Generally this requires including roughly the

first 10,000 factors of Eq. 2.50. The convergence of this process is shown in Figure 2.3.

Next, we compute the next Newton-Raphson iteration of each root and repeat the pro-

cess until our final estimate of the critical scattering length has converged to at least 10

digits of precision. Table 2.1 shows the calculated critical scattering length from the initial

Newton-Raphson guess through five iterations, which is sufficient for our desired precision.

Substituting the fully converged value into the asymptotic expansion Eq. 2.49 and

comparing with Eq. 2.23, we find that

x0 = exp

(
1

s0

arctan

(
cos (arg (Res(X(ν), is0))− s0 log |a|)
sin (arg (Res(X(ν), is0))− s0 log |a|)

)
− nπ

s0

)
(2.53)

≈ 0.7111864418|a|, (2.54)

and finally using Eq. 2.35 to re-express the critical scattering length at which the collective

binding energy vanishes in terms of the binding wavenumber at unitarity, β0,

1

|a|
≈ 0.5362203454 β0. (2.55)
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Recall from Section 2.3.2 that there is an infinite sequence of bound states at unitarity with

binding wavenumbers

β = β0e
nπ
s0 , n ∈ Z,

and therefore there is an infinite sequence of critical negative scattering lengths at which

each of these bound states disappears into the continuum of two free atoms.

The solution at zero energy is somewhat more cumbersome to use than that at unitarity.

Still, with enough effort we can extract any quantity of interest about the collective bound

states at threshold. Having a precise value for the critical negative scattering length also

helps greatly with the numerical solution we will carry out later because it defines the win-

dow in which a single bound state exists. Knowing these values precisely also allows for

a detailed comparison with experiment, which can facilitate measurement of new quanti-

ties, since the corrections to the universal results are themselves typically related to a few

well-known parameters (for example, the Efimov width, the s-wave effective range, etc.).

2.4 Numerical Solution at Arbitrary Scattering Length

2.4.1 Recasting the integral equation with a sequence of integral transforms

Although we have successfully found analytical solutions in some important limiting cases,

at arbitrary scattering length we must construct a solution numerically. However, the kernel

of the integral equation presents complications for any attempt to discretize the problem and

seek a numerical solution. Most obviously, there is a quadratic singularity in the kernel and

so any choice of quadrature points must be made carefully so that the naive divergences

are cancelled appropriately to compute the regularized integral. But the point x′ = R1 also

involves a logarithmic singularity, further complicating the choice of quadrature points.

Rather than develop a more sophisticated rule to handle this unusual scenario, we will

instead rewrite this integral equation via a series of integral transforms. The result will

convert this equation to one that, although still unusual, contains only simple poles at fixed
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values so that a simple numerical scheme suffices to achieve very high accuracy.

Lemma 2.3. Applying the integral transform

A(x) =
β

π2

∫ ∞
0

f̃(s) cosh
(πs

2

)
Kis(βx) ds, (2.56)

the integral equation Eq. 2.19 is transformed to

(
1− 1

s sinh πs
2

)
f̃(s) =

1

βa

∫ ∞
−∞

f̃(s′) sech
(
π(s− s′)

2

)
ds′. (2.57)

Remark. The primary benefit of this transform is that the kernel of Eq. 2.57 is smooth and

exponentially decaying.

Proof. To remove the quadratic divergence in the integrand, we first make a Fourier trans-

form according to

A(x) =
1

2π

∫ ∞
−∞

Ã(k′)eik
′x dk′.

substituting this into (2.19) and integrating requires the results

∫ ∞
−∞

K1(β
√
x′2 +R2

1)√
x′2 + x2

eik
′x′ dx′ =

π

β|x|
e−
√
k′2+β2|x|,

=

∫ ∞
−∞

K1(β|x− x′|)
|x− x′|

eik
′x′ dx′ = −π

β

√
k′2 + β2eik

′x,∫ ∞
−∞

e−
√
k′2+β2|x|

|x|
e−ikx dx = − ln

(
k2 + k′2 + β2

)
,

and leads to the representation of our integral equation in momentum space

1

2π

∫ ∞
−∞

ln
(
k′2 + k2 + β2

)
Ã(k′) dk′ =

(
2

a
−
√
k2 + β2

)
Ã(k). (2.58)

Next, we make a one-to-one change of variables and relabel the unknown function accord-
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ing to

k ≡ β sinh θ,

Ã(k) ≡
f(arcsinh( k

β
))√

1 + k2

β2

.

This gives an integral equation for f(θ),

1

2π

∫ ∞
−∞

ln
(
sinh2 θ′ + sinh2 θ + 1

)
f(θ′) dθ′ =

(
2

βa cosh θ
− 1

)
f(θ). (2.59)

Trading the term Ã(k)
√
k2 + β2 for a product term 2

βa cosh θ
f(θ) has the advantage that the

function depending explicitly on θ is smooth and exponentially decaying, and so its Fourier

transform, which becomes the kernel of a convolution, will be smooth and exponentially

decaying as well. With that in mind, along with the identity that

log
(
1 + sinh2 θ + sinh2 θ′

)
= log (cosh (θ − θ′)) + log (cosh (θ + θ′)),

we make use of the convolution and cross-correlation theorems to again apply a Fourier

transform according to

f(θ) =
1

2π

∫ ∞
−∞

eisθf̃(s) ds.

The result is

f̃(s)− 1

2s sinh πs
2

f̃(s)− 1

2s sinh πs
2

f̃(−s) =
1

βa

∫ ∞
−∞

f̃(s′) sech
(
π(s− s′)

2

)
ds′.

Because A(x) is a real and even function of x, Ã(k) is also real and even. Thus, f(θ) is

real and even by extension and so is f̃(s), therefore,

(
1− 1

s sinh πs
2

)
f̃(s) =

1

βa

∫ ∞
−∞

f̃(s′) sech
(
π(s− s′)

2

)
ds′. (2.60)
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The composition of this Fourier transform, change of variables, and then a second

Fourier transform can be written as a single transformation applied to the function A(x)

as,

f̃(s) = 4s sinh
(πs

2

)∫ ∞
0

A(x)Kis(βx)
dx

x
. (2.61)

This transform and bears a strong resemblance to the Kontorovich-Lebedev transform, first

developed to solve certain scattering problems in electrodynamics [72, 73].

Distribution contributions to the transformed solution

We extract the large-s behavior Eq. 2.60 by considering the ansatz f(s) ∼ e−αs, s >> s0

and splitting the integral into two pieces with s0 << s1 << s. We have

∫ ∞
−∞

f̃(s′) sech
(
π(s− s′)

2

)
ds′ =

∫ s1

−∞
f̃(s′) sech

(
π(s− s′)

2

)
ds′

+

∫ ∞
s1

f̃(s′) sech
(
π(s− s′)

2

)
ds′,

where in the second term we can replace f̃(s′) with the ansatz expression and for the first

we note that since s′ < s we can write

sech
(
π(s− s′)

2

)
= 2

∞∑
n=0

(−1)ne−(2n+1)
π(s−s′)

2 .

Supposing that the integrals over s′ are finite, we can neglect all but the n = 0 term in the

sum for asymptotically large s. The first term is then asymptotically

∫ s1

−∞
f̃(s′) sech

(
π(s− s′)

2

)
ds′ = O(e−

πs
2 ).
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So long as the remaining integral term is asymptotically dominant compared to e−
πs
2 , we

are free to neglect this contribution. And similarly we are free to add

∫ s1

−∞
e−αs

′
sech

(
π(s− s′)

2

)
ds′ = O(e−

πs
2 ),

without changing the leading order asymptotic behavior so that we find

f̃(s) ≈ 1

βa

∫ ∞
−∞

e−αs
′
sech

(
π(s− s′)

2

)
ds′ =

2

βa cos (α)
e−αs, s→∞.

This is consistent with our assumptions regarding dominant terms provided that α < π
2
,

and consistent with our initial ansatz provided that α = arccos
(

2
βa

)
. These conditions can

simultanesouly be true when βa > 2; therefore, we have that

f̃(s) ∼ exp
(
− arccos

(
2

βa

)
s

)
, βa > 2. (2.62)

As βa approaches 2 we expect the exponential decay of f̃(s) to become weaker until it

disappears precisely at βa = 2.

Recalling that A(x) ∝ Kis0(βx) at unitarity, we can find the corresponding solutions

by following the above sequence of transformations,

A(x) ∝ Kis0(βx), (2.63a)

Ã(k) ∝
π sech

(
πs0
2

)√
k2 + β2

cos

(
s0 arcsinh

(
k

β

))
, (2.63b)

f(θ) ∝
π sech

(
πs0
2

)
β

cos (s0θ), (2.63c)

f̃(s) ∝
π2sech

(
πs0
2

)
β

(
δ(s− s0) + δ(s+ s0)

)
. (2.63d)

These delta function solutions for f̃(s) are somewhat unexpected, but upon further analysis,

the solution to Eq. (2.60) must not be an ordinary function at unitarity. Consider that since
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the surface parameter is fixed by the short-range physics, Eq. 2.35 shows that β0 is finite

and therefore for a → ±∞, βa → β0a → ±∞. If we search for a solution near unitarity

then the right-hand side of Eq. 2.60 goes to zero, so f̃(s) = 0 almost everywhere. And

in addition, any expansion about βa ∼ ±∞ would never be able to balance factors of 1
βa

on both sides of the equation, and so f̃(s) = 0 would be the only continuous solution near

unitarity as well. Clearly, the trivial solution for f̃(s) does not correspond to the solution

for A(R1) that we found in Section 2.3.2 and so we should expect solutions that are not

ordinary functions.

To investigate the lack of smoothness of f̃(s) away from unitarity, we must trace its

signature through the series of integral transformations. To start, the wavefunction must

satisfy the free Schrödinger equation and thus be C2 (R6) at least when the two atoms are

not coincident with each other or with the surface. According to the Bethe-Peierls boundary

condition, the wavefunction is proportional to A(x) in a certain region of the configuration

space. We therefore conclude that A(x) ∈ C2(R \ {0}). The asymptotic expansion Eq.

2.23 however specifies the behavior of A(x) near the origin, where the function fails even

to be continuously differentiable, A′(x) ∼ 1
x1±is0 .

Given the duality between smoothness and decay for Fourier transforms, we expect that

the signature of the lack of differentiability manifests in the large-k behavior of Ã(k). By

replacing A(x) with its Mellin transform in the definition of Ã(k) we have

Ã(k) =

∫ ∞
−∞

A(x)e−ikx dx

=

∫ ∞
0

1

2πi

∫ c+i∞

c−i∞
φ(s)x−s ds

(
e−ikx + eikx

)
dx,

with 0 < c < 1 so that the Mellin transform ofA(x) exists in the ordinary sense. Evaluating

the integral over x

Ã(k) =
1

2πi

∫ c+i∞

c−i∞
−2|k|s−1 sin

(πs
2

)
φ(s)Γ(1− s) ds.
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Since all of the dependence on k is sequestered in one explicit factor, we can generate an

asymptotic expansion of the result by shifting the contour to the left in the complex s plane

[69]. The only contributions will arise from the poles of φ(s), and the first set arise at

s = ±is0, corresponding to the asymptotic expansion of A(x) at small x:

Ã(k) = 2s0 sinh
(πs0

2

)
|k|−1+is0Γ(−is0) Res(φ(s), is0)

+ 2s0 sinh
(πs0

2

)
|k|−1−is0Γ(is0) Res(φ(s),−is0) +O(k−2)

= 2|k|−1+is0Γ(−is0)α−0 + 2|k|−1−is0Γ(is0)α+
0 +O(k−2).

Then, combining this relation with Eq. 2.23 and Eq. 2.35 we have

Ã(k) ∼ −

√
2

s0 sinh (πs0)

1

|k|
cos

(
s0 log

(
2|k|
β0

))
+O(k−2), |k| → ∞. (2.64)

And after the change of variables,

f(θ) ∼ − 1

β

√
2

s0 sinh (πs0)
cos (|s0 θ|+ Φ) +O(e−|θ|), |θ| → ∞. (2.65)

Here, it is convenient to define the angle

Φ ≡ s0 log

(
β

β0

)
. (2.66)

Unlike in the k-space, the sub-leading terms in θ decrease faster than any polynomial.

Thus the only term which indicates that f̃(s) fails to be C∞(R), is the first; all others decay

sufficiently quickly that they correspond only to smooth behavior. We can find how this

non-decaying behavior of f corresponds to terms within f̃ that are tempered distributions
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but not L2 functions:

∫ ∞
−∞

cos (|s0 θ|+ Φ)e−isθ dθ

= π cos (Φ)
(
δ(s− s0) + δ(s+ s0)

)
+ P

2s0

s2 − s2
0

sin (Φ),

where P denotes that the term should be understood as a principal value distribution. And,

therefore, not just at unitarity, but regardless of scattering length we have that

f̃(s) ∼ π cos (Φ)δ(s± s0)± P sin (Φ)

s∓ s0

, s→ ±s0.

We now make a choice of normalization, namely that

f̃(s) = πδ(s− s0) + P
tan (Φ)

s− s0

+O(1), s→ s0, (2.67)

and then explicitly separate the delta functions from our solution via

f̃(s) = π
(
δ(s− s0) + δ(s+ s0)

)
+ f̃0(s).

Further we use the evenness of f̃(s) to rewrite the relation as an integral over only s > 0.

This recasts Eq. 2.60 into a non-homogeneous equation:

(
1− 1

s sinh πs
2

)
f̃0(s) =

1

βa
−
∫ ∞

0

f̃0(s′)S(s, s′) ds′ +
π

βa
S(s, s0), (2.68)

where,

S(s, s′) ≡ sech
(
π(s− s′)

2

)
+ sech

(
π(s+ s′)

2

)
(2.69)

Having accounted explicitly for the distributions within our solution, the remaining f0

will be an ordinary function that we can find by solving Eq. 2.68 numerically. First though,

we find that this representation easily allows us to give another approximate solution.
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2.4.2 Perturbative solution near unitarity

For βa >> 1, the right-hand side of Eq. 2.68 appears to become negligible, and so we can

attempt an iterative solution. First, write a trial solution as a power series,

f̃0(s) =
∞∑
n=0

f̃0,n(s)

(
1

βa

)n
.

Substituting this expansion into Eq. 2.68 and equating like powers of βa leads to the

recurrence relation

(
1− 1

s sinh πs
2

)
f̃0,n(s) = −

∫ ∞
0

f̃0,n−1(s′)S(s, s′) ds′ + π δ1,n S(s, s0).

Writing out the first few solutions, this leads to

f̃0,0(s) = 0,

f̃0,1(s) = π

(
1− 1

s sinh πs
2

)−1

S(s, s0),

f̃0,2(s) = π

(
1− 1

s sinh πs
2

)−1

−
∫ ∞

0

(
1− 1

s′ sinh πs′

2

)−1

S(s′, s0)S(s, s′) ds′.

We can further expand f̃0,1(s) near s0 and compare with Eq. 2.67 to extract,

tan (Φ) ≈ s0

β0

(β − β0) ≈ 1

βa

2πs0 (1 + sech(πs0))

2 + πs2
0 cosh

(
πs0
2

) ,

for which the approximate solution that reduces to β0 when a→ ±∞ is

β = β0 +
2π (1 + sech(πs0))

2 + πs2
0 cosh

(
πs0
2

) 1

a
+O

(
1

a2

)
(2.70)

We have, then, extended the the solution at unitarity that we found in Section 2.3.2

to a solution in a neighborhood of unitarity, which also provides a check for our later
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numerical calculation of the derivative of the binding energy with respect to the scattering

length. Once we have defined the interparticle contact for this system as the major result of

Chapter 3, we can also use this approximate solution to find the interparticle contact near

unitarity.

2.4.3 Details of the numerical scheme

Eq. 2.68 is the expression of our integral equation which we will discretize and evaluate

numerically. Compared to our original representation in terms of the function A, we have

made several improvements. First, the kernel of this integral equation is smooth and does

not depend on either the binding wavenumber β or the scattering length a. This allows

for all matrices involved in the numerical solution to be pre-computed, greatly decreasing

the computation time per unit of output. Second, we have traded a Hadamard regularized

integral of a kernel with both quadratic and logarithmic singularities for a Cauchy principal

value integral of a function which has only simple poles at s = ±s0. The principal value

is easier to implement because we can choose quadrature points symmetrically about the

locations of the poles to cancel the divergent contributions. Finally, since β and a occur in

this equation only through the non-dimensional combination βa, we do not need to specify

a value of a and then search for the appropriate β. Instead, we can simply specify a value of

the product βa and then extract the corresponding values of β and a by finding the residue

at s = s0.

We approximate the integral via a simple rectangular rule using an equally spaced grid

of points arranged symmetrically about the pole at s = s0. Let

pn ≡
(
n− 1

2

)
s0

N

f̃n ≡ f̃0(pn),

with N ∈ N, n ∈ N. Our approximation for Eq. 2.68 is the infinite system of linear
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equations for f̃n

(
1− 1

pn sinh πpn
2

)
f̃n =

1

βa

∞∑
n′=1

f̃n′S(pn, p
′
n)∆p′n +

π

βa
S(pn, s0)

=
s0

Nβa

∞∑
n′=1

f̃n′S(pn, p
′
n) +

π

βa
S(pn, s0),

(2.71)

which approaches our original integral equation as N → ∞. Computationally, we solve

the truncated system with n, n′ ≤M ,

M∑
n′=1

Ann′ f̃n′ = bn,

Ann′ =

(
1− 1

pn sinh πpn
2

)
δnn′ −

s0

Nβa
S(pn, p

′
n),

bn =
π

βa
S(pn, s0),

increasing M until the f̃n converge to the desired precision for a given N , then repeating

this procedure for each larger N until there is no change in output up to the desired preci-

sion. Two representative examples of the output of this process are shown below: Figure

2.4 when βa = 10 and Figure 2.5 when βa = −10−6. We see that indeed f̃(s) has a simple

pole at s = s0 in all cases. For positive βa, the fn decrease exponentially, whereas when

βa is negative, fn becomes oscillatory with the amplitude and frequency of oscillation

increasing as βa→ 0.

For a given value of βa, once we have computed the f̃n, we can extract the appropriate

β and a using the asymptotics derived earlier. In particular, suppose that we discretize the
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Figure 2.4: Numerical solution of Eq. 2.71 at βa = 10 (blue dots). The pole at s = s0 is
clearly visible, and the decay at large s is consistent with the asymptotic ansatz of Eq. 2.62
(dashed red line). Both axes are dimensionless.

integral in an identical manner, but let pn → s0, then

lim
s→s0

(
1− 1

s sinh πs
2

)
f̃0(s) =

d

ds

(
1− 1

s sinh πs
2

) ∣∣∣∣
s=s0

(s− s0)

(
tan (Φ)

s− s0

)
= tan (Φ)

(
1

s0

+
πs0

2
cosh

(πs0

2

))
,

and therefore

tan (Φ)

(
1

s0

+
πs0

2
cosh

(πs0

2

))
=

s0

Nβa

∞∑
n′=1

f̃n′S(s0, p
′
n) +

π

βa
S(s0, s0). (2.72)

For any particular solution, we can verify we have extracted the appropriate value of tan Φ

by comparing the result from Eq. 2.72 with the linear interpolation of (s − s0)f̃n near

s ≈ s0. In our solutions, the two values agree to beyond the pre-set precision goal, as

shown in Figure 2.6. Since the right-hand side depends only on the known product, βa, we
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Figure 2.5: Numerical solution of 2.71 at βa = −10−6 (blue dots). The pole at s = s0

is clearly visible, and the oscillations are characteristic of solutions that are close to the
free particle threshold, where a single bound state disappears into the continuum of two
particles unbound from the surface.

can solve for tan (Φ) and, recalling the definition of Φ from Eq. 2.66, extract β via

β = β0 exp
(

arctan (tan (Φ))

s0

)
= β0 e

(
Φ0+kπ
s0

)
.

For a given tan (Φ) and βa, there are then an infinite sequence of allowed values of β

indexed by the principle value of the arctangent, Φ0 ∈ [−π, π], and k ∈ Z. For each β we

can find a corresponding value of a related by

β → βe
kπ
s0 , a→ ae

− kπ
s0 , (2.73)

such that 2.72 is satisfied. Therefore, each value of βa for which our procedure converges

to a sequence of f̃n corresponds to an infinite sequence of solutions Ak(x) to Eq. 2.19,

each with its own unique value of β. The binding wavenumber and scattering length for
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Tan[ϕ] ≃ 0.12

s0

(s- s0) f (s)

0.05
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0.15

0.20

0.5 1.0
s

Figure 2.6: (s − s0)f̃(s) for βa = 10. The interpolated value of tan Φ shown here agrees
with the value extracted from 2.72 to the pre-specified precision goal.

any one of these solutions is related to that of all other solutions for the same value of βa

by the discrete scaling transform 2.73.

This procedure quickly yields accurate calculations of the f̃n when f̃(s) is rapidly de-

caying; that is, βa is not too close to 2, according to Eq. 2.62. However, as βa → 2, the

number of points needed to accurately solve for the f̃n becomes prohibitively large. Instead

when βa is close to 2 we extend the number of points considered from M to K > M , and

then for M < n′ < K we apply the asymptotic result of 2.62,

f̃n′ ≈ f̃M exp
(
− arccos

(
2

βa

)
(pn′ − pM)

)
, n′ > M. (2.74)
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Therefore,

K∑
n′=M+1

f̃n′S(pn, p
′
n)

≈
K∑

n′=M+1

f̃M exp
(
− arccos

(
2

βa

)
(pn′ − pM)

)
sech

(
π(pn − p′n)

2

)
.

So then when βa nears 2 we instead solve the linear system

(
1− 1

pn sinh πpn
2

)
f̃n =

s0

Nβa

M∑
n′=1

f̃n′S(pn, p
′
n) +

π

βa
S(pn, s0)

+
s0

Nβa

K∑
n′=M+1

f̃M exp
(
− arccos

(
2

βa

)
(pn′ − pM)

)
sech

(
π(pn − p′n)

2

)
, (2.75)

and extract the values of β and a via solving

tan (Φ)

(
1

s0

+
πs0

2
cosh

(πs0

2

))
=

s0

Nβa

M∑
n′=1

f̃n′S(s0, p
′
n) +

π

βa
S(s0, s0)

+
s0

Nβa

K∑
n′=M+1

f̃M exp
(
− arccos

(
2

βa

)
(pn′ − pM)

)
sech

(
π(s0 − p′n)

2

)
. (2.76)

A representative example of the output for this extended process is shown in Figure 2.7,

along with a comparison to the exponential ansatz Eq. 2.74.

Using this scheme we can, on a desktop computer, arbitrarily choose a particular value

of the bound state at unitarity, β0, and by sweeping through many values of βa determine

the evolution of the binding energy of this single bound state as the scattering length is

changed. Using about 1 day’s worth of computing time we have computed over 100,000

points along this curve to at least 10 digits of precision, which are displayed in Figure

2.8. This improves by several orders of magnitude both the number of points and precision

of each point that can be calculated, compared to the most recent analogous calculations

for the Efimov effect [74]. Our findings show a smooth crossover through unitarity with,
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Figure 2.7: Numerical solution of Eq. 2.71 at βa = 2.01 (blue dots). The pole at s = s0 is
clearly visible, and the decay at large s is consistent with the asymptotic ansatz of Eq. 2.62
(dashed red line). Both axes are dimensionless.

as expected, a decreasing binding energy (compared to unitarity) for positive scattering

length due to the effectively attractive interaction, and a binding energy approaching 0 for

negative scattering length. We find that as βa → 2+, the binding energy approaches that

of the shallow dimer (see Section 1.4) until, at βa = 2, our bound state disappears into

the continuum of dimer states unbound from the surface. We have computed the critical

scattering length at which this occurs, a+, to be 1
a+

= 4.010047279β0. As the scattering

length is tuned away from unitarity on the negative side, the bound state becomes less and

less tightly bound with its binding energy approaching 0 at an increasingly steep slope.

The bound state finally intersects the continuum of two free atoms, both unbound from the

surface, at the critical negative scattering length 1
a−

= −0.5362203455β0. Note that this
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Figure 2.8: The binding wavenumber of the collective bound state specified by β = β0

at unitarity as a function of the inverse scattering length. In the positive scattering length
direction, the binding energy decreases until the state becomes metastable due to crossing
into the continuum of shallow dimers unbound from the surface (dashed red line). In the
negative scattering length direction, the collective state becomes less and less weakly bound
until it disassociates into the continuum of free particles unbound from the surface.
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numerical result is consistent with the result derived earlier in Eq. 2.55.

2.4.4 Numerical calculation of the derivative of the binding energy with respect to the

scattering length

We anticipate that to compute any contacts associated with this system, we will need to

find the derivative of the binding energy with respect to the inverse of the scattering length.

Although we could compute this directly via a finite difference approximation from our

previous numerical results, the precision would be substantially reduced. Instead, taking

the already computed numerical values of β, a, and f̃n as given, we find a new linear system

which we solve first for the derivative of each f̃n with respect to the inverse of the scattering

length, and then similarly for the derivative of β.

Using the notation

αs0 ≡
(

1

s0

+
πs0

2
cosh

(πs0

2

))−1

,

p(Φ) ≡ s0 sec2 Φ + tan (Φ),

we find when taking the derivative of 2.71 and rearranging that

∂f̃n

∂
(

1
a

) + f̃n
s0αs0

Nβa p(Φ)

∞∑
n′=1

∂f̃n′

∂
(

1
a

)S(s0, pn′)

− s0

Nβa

(
1− 1

pn sinh πpn
2

)−1 ∞∑
n′=1

∂f̃n′

∂
(

1
a

)S(pn, pn′) = af̃n

(
1− tan (Φ)

p(Φ)

)
. (2.77)

We write this relation in matrix form as

∞∑
n′=1

Bn,n′ dfn′ = cn,
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where,

Bn,n′ ≡ δn,n′ −
s0

Nβa

(
1− 1

pn sinh πpn
2

)−1

S(pn, pn′) + f̃n
s0αs0

Nβa p(Φ)
S(s0, pn′)

cn ≡ af̃n

(
1− tan (Φ)

p(Φ)

)
dfn ≡

∂f̃n

∂
(

1
a

) ,
and we solve in an analogous way to Eq. 2.71. Once we determine the dfn, we take the

derivative of Eq. 2.72 and solve for the derivative of β to find

∂β

∂
(

1
a

) =
βa tan (Φ)

p(Φ)
+

s0αs0
Na p(Φ)

∞∑
n′=1

∂f̃n′

∂
(

1
a

)S(s0, pn′). (2.78)

Our numerical results for the derivative of the binding wavenumber are consistent with

the perturbative result near unitarity,

dβ

d
(

1
a

) =
2π (1 + sech(πs0))

2 + πs2
0 cosh

(
πs0
2

)
≈ 1.58.

(2.79)

They also show that the derivative β at the critical negative scattering length diverges (see

Figure 2.9); although, the divergence is weak enough that β dβ

d( 1
a)

approaches 0 and so the

derivative of the energy is zero. And finally, they suggest that as the collective bound state

approaches the dimer threshold, both the wavenumber and its derivative with respect to the

scattering length approach the values of the shallow dimer as shown in Figures 2.8 and 2.9.

βdimer =
2

a
,

dβdimer

d
(

1
a

) = 2.

This provides evidence that the bound state between the particles and the surface is decay-
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Figure 2.9: Results of the numerical calculation of the derivative of the binding wavenum-
ber, β, with respect to the inverse of the scattering length. Calculated points are shown
in green and connected by a linear interpolation. The vertical dashed line marks the posi-
tion of the critical negative scattering length. The horizontal dashed line marks the value
dβ

d( 1
a)

= 2

74



ing via an outgoing dimer at this point and not via any other channel.

2.5 Exact Relation Between the Derivatives of the Collective Binding Energy

As our numerical results demonstrate, the binding energy of the collective bound state is

determined solely by the scattering length, a, and the binding wavenumber at unitarity, β0.

As a result, we can write the binding energy in terms of the binding energy at unitarity

times a dimensionless function. And there is only a single dimensionless combination of

these two parameters, β0a. Therefore,

E =
~2β2

4m
=

~2β2
0

4m
ζ(β0a). (2.80)

Taking derivatives, then, we have

∂E

∂
(

1
a

) = −~2a2β3
0

4m
ζ ′(β0a) (2.81)

∂E

∂β0

=
~2β0

2m
ζ(β0a) +

~2aβ2
0

4m
ζ ′(β0a)

=
2

β0

E +
~2aβ2

0

4m
ζ ′(β0a),

and eliminating ζ ′ we can write these relations as

β0
∂E

∂β0

+
1

a

∂E

∂
(

1
a

) = 2E (2.82)

Therefore, from our numerical calculations of the binding wavenumber and the deriva-

tive of the binding wavenumber with respect to the inverse scattering length, we can use

this relation to find the derivative of the binding energy with respect to the parameter β0,

which is set by the short-range physics.

Consider the following limiting cases:
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1. Unitarity (a→ ±∞)

2. The dimer threshold (βa→ 2)

3. The breakup threshold (βa→ 0)

At unitarity, the scattering length diverges, but the derivative of the energy with respect

to the inverse scattering length remains finite. Therefore we have that

∂E

∂β0

= −~2β0

2m
,

which is consistent with the definition that at unitarity the energy is given by E = −~2β2
0

4m

At the dimer threshold, the curve for the binding energy of the collective bound state

intersects with that of the shallow dimer. It is well-known that

Edimer = − ~2

ma2
+

and we have already presented that our numerical results suggest a value for the derivative

of
∂E

∂
(

1
a

) = − 2~2

ma+

.

We can then substitute this results into Eq. 2.82 to find that

∂E

∂β0

→ 0, βa→ 2.

Finally, at the breakup threshold we showed that the derivative of the wavenumber ap-

pears to diverge at this point, but slowly enough that the derivative of the energy approaches

zero. By definition, the energy itself approaches zero at the point, and therefore

∂E

∂β0

→ 0, βa→ 0.
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This somewhat distinguishes our system from the Efimov effect. In that case, the three-

body contact is not zero at the breakup threshold and provides the leading-order contribu-

tion to the rate of three-body recombination. However, because the derivative of the energy

with respect to the three-body parameter is zero at the free particle threshold in our case, we

suspect that any associated contact is also zero. The rate of recombination in the vicinity of

this point for a gas of particles may potentially be suppressed, with the leading order con-

tribution coming either from finite-range corrections or collisions involving more particles

near the surface.

Following our work on the momentum distribution of the system in the next chapter,

we will return to this relation so that we can relate the contacts in our system to each other.

2.6 Conclusion

Within this chapter, we have given an extensive description of the universal interaction

between two particles and a surface tuned to resonance. We have shown how the interaction

can be modeled by requiring that the normal derivative of the wavefunction be zero at the

surface and that this simple model has some surprising consequences. In particular, we have

found a sequence of shallow bound states where both particles are bound to the surface and

to each other. Each of these states exists within a window of scattering lengths that is a

function only of the surface parameter, x0, which sets the relative phase induced when a

pair of particles interacts with the surface. We have also found a discrete scale invariance

with scaling factor eπ/s0 ≈ 78.4 (about 4 times the scaling factor observed in the Efimov

effect), which implies that these bound states can be extremely large – much larger than the

characteristic size of the underlying potentials.

The calculations shown in this chapter should be useful in both few- and many- body

realizations of atoms interacting with a resonantly tuned surface, for example the potential

created by a double evanescent wave mirror. We suspect that resonances associated with

the breakup of these collective bound states into either two free atoms or a free dimer can be
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observed; although, the scaling factor is prohibitively large and so it may not be possible to

observe more than one such resonance without other experimental advances. We also hope

that the precision of the calculations given here will allow for comparisons that determine

even small deviations indicative of interesting few- or many-body physics.

The work of this thesis forms a basis for addressing some open questions within the

field, in the same way that similar early work on the Efimov effect led to several future

studies. For example, the system described here has two further notable advantages for

studying zero-range models and strongly interacting systems beyond the scattering length

approximation, compared to the Efimov effect:

• These two-particle states do not themselves cause three particles to come into close

contact, so the states may be much longer lived.

• The surface potential is experimentally constructed, thus it can also be varied to

investigate parameters beyond the scattering length.

The three-body correlations created within the Efimov effect naturally lead to the particles

sometimes closely approaching each other, especially for the more deeply bound trimers. In

a cold atomic gas, this induces recombination events where two atoms enter a deeply bound

molecular state while the third atom is ejected at high speed, which leads to heating and

evaporation of the gas. By contrast, our states cause two atoms and the surface to sometimes

be in close proximity, but because the surface cannot carry energy or momentum away

from the system, recombination events that do not involve a third particle are kinematically

forbidden. Thus, these bound states may be much longer lived on average than Efimov

trimers and play an even more notable role in systems where they appear. Further, we

showed that the parameter x0 is determined by the relative phase induced by two particles

interacting with the surface, which implies that by modifying the surface potential, we

can modify x0. This is an interesting opportunity, because in the Efimov effect, the three-

body parameter is set by the Van der Waals interaction; we are stuck with what nature
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has provided. Here, though, we may be able to test predictions regarding the universality

and effect of the three-body parameter by varying the characteristic length of the surface

interaction.

It is also interesting to consider the problem of three identical bosons interacting with

such a surface, since both the conditions for our universal states as well as for Efimov

trimers are met. Whether both families of states coexist is an open question, and there will

almost certainly be points in the spectrum where the energy of the two states would be

identical, and thus we expect an avoided crossing with hybridized states.

In the next chapter, we continue discussing the interaction between two particles and a

surface; however, we shift focus to present a new method for determining how the short-

range correlations in the system are related to its large momentum behavior and to changes

in the system’s energy as the scattering length and surface parameter are varied.
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CHAPTER 3

CONTACTS AND THE ASYMPTOTIC EXPANSION OF THE

SINGLE-PARTICLE MOMENTUM DISTRIBUTION AT ARBITRARY

SCATTERING LENGTH

Following Tan’s invention of a microscopic parameter called the contact (see Section 1.6

for a more thorough introduction) and demonstration that this parameter plus the scattering

length (which describes the low-energy scattering, see Section 1.2) determines the internal

energy, the change in internal energy due to changes in the inter-particle interaction, and the

pressure, of a two-component Fermi gas [24, 25, 26], several authors have sought to extend

these insights to systems of bosonic particles [10, 28]. For two-component Fermi sys-

tems the Pauli exclusion principle suppresses the contributions of three-body interactions

to the these properties. However, bosonic systems require a more careful analysis because

the probability of finding three particles interacting may be greatly enhanced compared

to the fermionic case. In particular, it has been shown, using both renormalization group

techniques with the operator product expansion and combined asymptotic and numerical

techniques at unitarity, that for systems of unconfined bosons with zero-range interactions

(see Section 1.3 for a definition of zero-range models), analogous relations to those de-

veloped by Tan still hold. There are, however, both sub-leading modifications and new

relations that arise from the three-body physics [27, 28, 75].

Here, we apply the same physical intuition to our system of two particles interacting

resonantly with a plane. Instead of interactions among three or more particles, we have

interactions between two particles and a surface. Because our system exhibits a similar

discrete scale invariance (see Eqs. 2.25, 2.55, and 2.73) and log-periodic oscillations (see

Eq. 2.23) as that seen in the Efimov trimer, we suspect that the short-range correlations

created by inter-particle and particle-surface interactions can be observed in the number of
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particles, n(k‖), travelling with large momentna, ~k‖, parallel to the surface. Specifically,

we will show that

n(k‖) =
C2

k3
‖

+
C3L(k‖)

k4
‖

+ o(k−4
‖ ), k‖ →∞. (3.1)

We call C2 the two-particle contact because we will show it is proportional to the probabil-

ity of finding the particles within a small distance of each other. Further, we will demon-

strate that the function L exhibits log-periodic oscillations and that C3 is proportional to the

probability of finding the two particles near the surface, confirming that this sub-leading

term is a hallmark of the three-body-like interaction between the particles and the surface.

We will accomplish this goal starting with 2 inputs, the formal solution for the wave-

function given in Eq. 2.13 and the asymptotic form of the source distribution found in

Appendix B. In Section 3.1 we begin by proving several lemmas so that we can find the

momentum space representation of the wavefunction and then give an expression for the

distribution of particle momenta parallel to the surface. We then employ a double Mellin

transform to asymptotically expand this distribution in Section 3.2, keeping all relevant

terms through next-to-leading order and demonstrating the asymptotic form Eq. 3.1. Hav-

ing found this expression involving the two-particle and particle-surface contacts, we finish

in Sections 3.4 and 3.5 showing how the two-particle contact is related to the derivative of

the binding energy with respect to the scattering length and the probability of finding two

particles in close proximity.

Although our general goal is similar to several prior works in that we are seeking an

asymptotic expansion of a momentum distribution, our methods differ substantially. The

calculations performed in Refs. [27, 76, 77, 37] all utilize the operator product expansion

applied to an effective field theory. This technique is extremely powerful and allows for the

numerical computation of experimentally relevant parameters. However, although a calcu-

lation of the contacts for a particular state is in principle possible, it has not been demon-
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strated using this technique; whereas, our technique combined with either the analytical or

numerical results of Chapter 2 for a particular scattering length makes it straight-forward to

compute the contacts. In addition, the relevant effective field theory for a particular prob-

lem, including the necessary counter-terms to properly renormalize, are not always known

or easy to determine. We therefore wish to generate alternative procedures that serve as an

independent theoretical check and are understandable to practitioners without a background

in effective field theory.

Our calculations are more closely aligned with Refs. [75, 78, 79, 80] where an inte-

gral representation of a momentum distribution was given and expanded. We improve on

them, though, by considering arbitrary scattering lengths (rather than focusing primarily on

the unitarity limit) and giving exact calculations of all state-independent universal numbers

involved in the expansion through next-to-leading order. This enables us to show the phys-

ical origin of each coefficient in the expansion, even without computing it explicitly. Our

approach is also systematically improvable and can find higher-order contributions without

requiring any modifications.

3.1 Expression for the Wavefunction in Momentum Space and the Parallel Momen-

tum Distribution

We begin by defining our notation before proceeding to give an expression for the wave-

function in momentum space, in preparation for calculating the parallel momentum distri-

bution. Let x = (x1, x2, x3) ∈ R3 and y = (y1, y2, y3) ∈ R3 be coordinate vectors for

particles 1 and 2. Recall from the previous chapter that the particles are confined to the

space x1 > 0, y1 > 0, but rather than the wavefunction vanishing at x1 = 0 or y1 = 0, in-

stead its normal derivative is zero due to a resonant interaction with a flat surface spanning

the 2− 3 plane. Their conjugate Fourier variables are q = (q1, q2, q3) and k = (k1, k2, k3),

respectively. In addition, we utilize the slightly unusual scaling of center of mass and rel-

ative coordinates given by R = x+y
2

= (R1, R2, R3), r = x−y
2

= (r1, r2, r3) to minimize
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carrying additional numerical factors. By convention, the 1-direction will always corre-

spond to motion perpendicular to the flat surface, whereas, the 2-direction and 3-direction

always run parallel to the surface.

We define the Fourier transform of the square-integrable function g,

g̃(q, k) =

∫
R6

g(x, y)e−iq·x−ik·ydxdy,

where the scalar product q · x := q1x1 + q2x2 + q3x3, and |q| :=
√
q · q. Also, we define

the characteristic function

χ{x1>0}(x) =


1, if x ∈ {(x1, x2, x3) : x1 > 0}

0, otherwise

and similarly for χ{y1>0}(y).

Because the particles cannot penetrate the surface as discussed before Eq. 2.8, the

wavefunction is taken to be of the form

Ψ(x, y) = ψ(x, y)χ{x1>0}(x)χ{y1>0}(y). (3.2)

The first two sections of this chapter will establish the lemma,

Lemma 3.1. The distribution of particle momenta parallel to surface is given by

n(k2, k3) ≡ 1

(2π)4

∫
R4

|Ψ̃(q, k)|2 d3q dk1

=
27π2L2η2

β2

∫
R2

Ã(q1 + k1)Ã(q1 − k1) + Ã(q1 + k1)Ã(q1 + k1)

((q1 + k1)2 + (q1 − k1)2 + (2k2)2 + (2k3)2 + β2)2 dq1 dk1,

where β is the binding wavenumber, and Ã is the Fourier transform of the source distribu-

tion defined in Eqs. 2.18 and 2.12.

Remark. We note that the right-hand side of the above equation is a function of k2, k3
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because only the k1 dependence has been integrated out.

Proof. The proof will take up the remainder of this section.

We would like to calculate the Fourier transform of the wavefunction and the associated

single-particle momentum distribution; however, the characteristic functions in Eq. 3.2

complicate a direct calculation significantly. It will instead be more efficient to compute

the Fourier transform of ψ(x, y) defined in Eq. 3.2,

ψ̃(q, k) =

∫
R6

ψ(x, y)e−iq·x−ik·yd3xd3y, (3.3)

due to the following lemma:

Lemma 3.2. ∫
R4

|Ψ̃(q, k)|2 d3q dk1 =
1

4

∫
R4

|ψ̃(q, k)|2 d3q dk1.

Proof. Let

F (k) ≡ 1

(2π)3

∫
R3

|Ψ̃(q, k)|2 d3q (3.4)

f(k) ≡ 1

(2π)3

∫
R3

|ψ̃(q, k)|2 d3q (3.5)

and recall for later use that that our formal solution for the wavefunction is equivalent to

ψ(R + r, R− r) = η

∫ ∞
−∞

[
K1(β

√
(R1 − x′)2 + r2

1 + r2
2 + r2

3)√
(R1 − x′)2 + r2

1 + r2
2 + r2

3

+
K1(β

√
R2

1 + (r1 − x′)2 + r2
2 + r2

3)√
R2

1 + (r1 + x′)2 + r2
2 + r2

3

]
A(x′) dx′,

(3.6)

Substituting the expression Eq. (3.2) into the definition of F (k), we have

F (k) =
1

(2π)3

∫
R3

[ ∫
R6

ψ(x, y)χ{x1>0}(x)χ{y1>0}(y)e−iq·x−ik·y d3x d3y

×
∫
R6

ψ(x′, y′)χ{x′1>0}(x
′)χ{y′1>0}(y

′)eiq·x
′+ik·y′ d3x′ d3y′

]
d3q.

(3.7)
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Exchanging the order of integration and doing the integrals over q and then x′ in Eq.

3.7 gives

F (k) =

∫
R3

∫
R6

ψ(x, y)χ{x1>0}(x)χ{y1>0}(y)e−ik·y

×ψ(x, y′)χ{x1>0}(x)χ{y′1>0}(y
′)eik·y

′
d3x d3y d3y′,

which is symmetric in x1 since Eq. 3.6 is invariant under interchange of R1 and r1. Thus,

the characteristic functions in x1 can be removed by compensating with the appropriate

factor,

F (k) =
1

2

∫
R3

∫
R6

ψ(x, y)χ{y1>0}(y)e−ik·yψ(x, y′)χ{y′1>0}(y
′)eik·y

′
d3x d3y d3y′.

Continuing by applying the convolution theorem, we need the distributional Fourier trans-

form ∫ ∞
−∞

χ{y′1>0}(y
′)eik1y′1 dy′1 = πδ(k1)− i

k1

,

and then we decompose

F (k) = F1(k) + F2(k) + F3(k) + F4(k).

There are 4 terms to consider:

F1(k) ≡1

8

∫
R2

∫
R5

[∫ ∞
−∞

(∫ ∞
−∞

ψ(x, y)e−il1y1 dy1

)
δ(l1 − k1) dl1e

−ik2,3·y2,3

×
∫ ∞
−∞

(∫ ∞
−∞

ψ(x, y′)eim1y′1 dy′1

)
δ(m1 − k1) dm1e

ik2,3·y′2,3

]
d3x d2y d2y′
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F2(k) ≡ 1

8π

∫
R2

∫
R5

[∫ ∞
−∞

(∫ ∞
−∞

ψ(x, y)e−il1y1 dy1

)
δ(l1 − k1) dl1e

−ik2,3·y2,3

×
∫ ∞
−∞

(∫ ∞
−∞

ψ(x, y′)eim1y′1 dy′1

)
i

k1 −m1

dm1e
ik2,3·y′2,3

]
d3x d2y d2y′.

F3(k) ≡ 1

8π

∫
R2

∫
R5

[∫ ∞
−∞

(∫ ∞
−∞

ψ(x, y)e−il1y1 dy1

)
−i

k1 − l1
dl1e

−ik2,3·y2,3

×
∫ ∞
−∞

(∫ ∞
−∞

ψ(x, y′)eim1y′1 dy′1

)
δ(m1 − k1) dm1e

ik2,3·y′2,3

]
d3x d2y d2y′.

F4(k) ≡ 1

8π2

∫
R2

∫
R5

[ ∫ ∞
−∞

(∫ ∞
−∞

ψ(x, y)eil1y1 dy1

)
1

k1 − l1
dl1e

ik2,3·y2,3

×
∫ ∞
−∞

(∫ ∞
−∞

ψ(x, y′)eim1y′1 dy′1

)
1

k1 −m1

dm1e
ik2,3·y′2,3

]
d3x d2y d2y′

F1(k) contains two delta functions and therefore

F1(k) =
1

8

∫
R3

∫
R6

ψ(x, y)e−ik·xψ(x, y′)eik·y d3x d3y d3y′

=
1

8

1

(2π)3

∫
R3

|ψ̃(q, k)|2 d3q.

The next two terms each contain a single delta function:

F2(k) =
i

8π

∫
R6

ψ(x, y)e−ik·y d3y

∫ ∞
−∞

(∫
R3

ψ(x, y′)eim·y
′
d3y′

(
1

k1 −m1

))
dm1 d

3x,

F3(k) =
−i
8π

∫
R3

∫ ∞
−∞

(∫
R3

ψ(x, y)e−il·y d3y

(
1

k1 − l1

))
dl1

∫
R3

ψ(x, y′)eik·y
′
d3y′ d3x.

Relabeling the dummy variables in F3, l1 → m1, y′ → y, y → y′ makes clear that these

two terms are almost identical. The only difference is the sign in the exponential. However,

since ψ(−x,−y) = ψ(x, y), if we let the dummy variables y → −y, y′ → −y′, x→ −x,

the two terms cancel exactly.
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The final term has no delta functions:

F4(k) =
1

8

1

(2π)3

∫
R3

[
1

π

∫ ∞
−∞

ψ̃(q, (l1, k2, k3))

(
1

k1 − l1

)
dl1

× 1

π

∫ ∞
−∞

ψ̃(q, (m1, k2, k3))

(
1

k1 −m1

)
dm1

]
d3q

=
1

8

1

(2π)3

∫
R3

Hψ̃(q, k1, k2, k3)2 d3q,

where Hψ̃(q, k1, k2, k3) is the Hilbert transform defined as

Hf(a, t, b, c) ≡ 1

π

∫ ∞
−∞

f(a, τ, b, c)

t− τ
dτ.

All 4 terms combined will then give

F (k) =
1

8

1

(2π)3

[ ∫
R3

|ψ̃(q, k)|2 d3q +

∫
R3

Hψ̃(q, k1, k2, k3)2 d3q

]
(3.8)

If we further integrate out the k1 dependence, we can make a major simplification be-

cause it is a well-known property of Hilbert transforms (Theorem 8.1.7 of Ref. [81]) that

∫ ∞
−∞

f(a, t, b, c)2 dt =

∫ ∞
−∞

Hf(a, τ, b, c)2 dτ,

and therefore this second term in F (k) above is equal to the first. Therefore,

∫ ∞
−∞

F (k) dk1 =
1

4

1

(2π)3

∫ ∞
−∞

∫
R3

|ψ̃(q, k)|2 d3q dk1

=
1

4

∫ ∞
−∞

f(k) dk1,

which completes the proof in light of Eqs. 3.4 and 3.5.
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With Lemma 3.2 we have shown that

n(k2, k3) =
1

4

1

(2π)4

∫ ∞
−∞

∫
R3

|ψ̃(q, k)|2 d3q dk1. (3.9)

To then complete the proof of Lemma 3.1 it remains to show that

Lemma 3.3.

1

4

1

(2π)4

∫ ∞
−∞

∫
R3

|ψ̃(q, k)|2 d3q dk1

=
27π2L2η2

β2

∫ ∞
−∞

∫ ∞
−∞

Ã(q1 + k1)Ã(q1 − k1) + Ã(q1 + k1)Ã(q1 + k1)

((q1 + k1)2 + (q1 − k1)2 + (2k2)2 + (2k3)2 + β2)2 dq1 dk1.

Proof. We begin with an expression for the wavefunction equivalent to Eq. 2.13 from the

previous chapter,

ψ(R + r, R− r) = η

∫ ∞
−∞

[
K1(β

√
(R1 − x′)2 + r2

1 + r2
2 + r2

3)√
(R1 − x′)2 + r2

1 + r2
2 + r2

3

+
K1(β

√
R2

1 + (r1 − x′)2 + r2
2 + r2

3)√
R2

1 + (r1 + x′)2 + r2
2 + r2

3

]
A(x′) dx′.

(3.10)

This expression does not depend of R2 or R3 because the motion of the center of mass

parallel to the surface is completely unconstrained. To this point, we have been working

in the center-of-momentum frame, which implies that q2 + k2 = 0, q3 + k3 = 0, so that

no plane wave factors would appear in our solution. However, after returning them the

wavefunction will have to be normalized in the sense that∫
R6

ψ∗(x, y)ei(k2+q2)R2+i(k3+q3)R3ψ(x, y)ei(k
′
2+q′2)R2+i(k′3+q′3)R3 d3x d3y

= (2π)2δ(q2 + k2 − q′2 − k′2)δ(q3 + k3 − q′3 − k′3).

(3.11)

To overcome this normalization difficulty, we will temporarily imagine that the center of

mass coordinatesR2 andR3 are not unconstrained, but instead lie in a box of side-length L,

with periodic boundary conditions. We then require that the wavefunction be normalized
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within one unit-cell, which has the effect of constraining the domain of integration over

R2 and R3. Once we arrive at an expression for the momentum distribution, we will be

able to take the limit that L → ∞. If we then account for the normalization constant, all

dependence on the length L will disappear. This procedure leads to a unique result because

the Fourier transform is a one-to-one map from the space of tempered distributions to itself.

For this section, we will rewrite A in terms of its Fourier transform

A(x′) =

∫ ∞
−∞

Ã(l)eilx
′ dl

2π
, (3.12)

then in the first term make the shift x′ → x′ + R1 and in the second term x′ → x′ + r1,

which results in the expression:

ψ(R + r, R− r) =
η

2π

∫ ∞
−∞

∫ ∞
−∞

[
K1(β

√
x′2 + r2

1 + r2
2 + r2

3)√
x′2 + r2

1 + r2
2 + r2

3

eil(x
′+R1)

+
K1(β

√
x′2 +R2

1 + r2
2 + r2

3)√
x′2 +R2

1 + r2
2 + r2

3

eil(x
′+r1)

]
Ã(l) dx′ dl.

This requires us to compute the Fourier transform

∫ ∞
−∞

K1(β
√
x2 + α2)√

x2 + α2
eilx dx =

π

β
√
α2
e−
√
β2+l2

√
α2
, (3.13)

which we then apply to our previous expression for the wavefunction, yielding

ψ(R+ r, R− r) =
η

2β

∫ ∞
−∞

[
e−
√
l2+β2
√
r2
1+r2

2+r2
3√

r2
1 + r2

2 + r2
3

eilR1 +
e−
√
l2+β2
√
R2

1+r2
2+r2

3√
R2

1 + r2
2 + r2

3

eilr1
]
Ã(l) dl.

Now we take the Fourier transform in the 6 dimensional configuration space:

ψ̃(q, k) = ψ̃1(q, k) + ψ̃2(q, k),
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with

ψ1

(
P + p

2
,
P − p

2

)
≡ 4η

β

∫
R6

∫ ∞
−∞

e−
√
l2+β2
√
r2
1+r2

2+r2
3√

r2
1 + r2

2 + r2
3

Ã(l)e−iP ·R−ip·r+ilR1 dl d3r d3R,

ψ2

(
P + p

2
,
P − p

2

)
≡ 4η

β

∫
R6

∫ ∞
−∞

e−
√
l2+β2
√
R2

1+r2
2+r2

3√
R2

1 + r2
2 + r2

3

Ã(l)e−iP ·R−ip·r+ilr1 dl d3r d3R,

and P ≡ q + k = (P1, P2, P3), p ≡ q − k = (p1, p2, p3).

Considering ψ1, the integral over R1 immediately yields a delta function because it

is the Fourier transform of a plane wave that is then being integrated against a smooth,

rapidly-decaying function,

∫
R
e−i(l−P1)R1 dR1 = 2πδ(l − P1).

For the R2 and R3 directions, we are confined to a periodic box so we instead have

∫ L
2

−L
2

e−iPjRj dRj =
2

Pj
sin

(
PjL

2

)
.

Therefore we find

ψ̃1

(
P + p

2
,
P − p

2

)
=

32πη

β
σL(P2, P3)

∫
R3

∫ ∞
−∞

e−
√
l2+β2
√
r2
1+r2

2+r2
3√

r2
1 + r2

2 + r2
3

δ(l − P1)Ã(l) dl e−ip·r d3r,

with

σL(P2, P3) =
sin
(
P2L

2

)
P2

sin
(
P3L

2

)
P3

.

This allows us to perform the integration over l, which just replaces l with P1

ψ̃1

(
P + p

2
,
P − p

2

)
=

32πη

β
σL(P2, P3)Ã(P1)

∫
R3

e−
√
P 2

1 +β2
√
r2
1+r2

2+r2
3√

r2
1 + r2

2 + r2
3

e−ip·r d3r.
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The remaining integrals can then be completed easily using spherical coordinates

ψ̃1

(
P + p

2
,
P − p

2

)
=

128π2η

β
σ(P2, P3)

Ã(P1)

P 2
1 + p2 + β2

. (3.14)

The calculation for ψ2(q, k) proceeds analogously but with the roles of P1 and p1 reversed

and therefore:

|ψ (q, k)|2 = |ψ1(q, k) + ψ2(q, k)|2

=
214π4η2

β2
σ2
L(P2, P3)

|Ã(q1 + k1) + Ã(q1 − k1)|2

((q1 + k1)2 + (q − k)2 + β2)2 .

At this point, we can take the large L limit. All of the dependence on L is contained

within the function σ and the normalization constant η. We will compute the limit in an

unconventional way. Note that the inverse Fourier transform of σ2 exists in the ordinary

sense for finite L and is given by

1

(2π)2

∫
R2

σ2
L(P2, P3)eiP2R2+iP3R3 dP2 dP3 =

1

64

∏
j=2,3

(|L−Rj| − 2|Rj|+ |L+Rj|) .

(3.15)

In the limit of L→∞, this approaches pointwise

1

64

∏
j=2,3

(|L−Rj| − 2|Rj|+ |L+Rj|) ∼
L2

16
, L→∞.

Therefore the sequence of Fourier transforms of σ2
L approaches the constant function and

so

σ2
L(P2, P3)→ π2L2

4
δ(P2)δ(P3), L→∞. (3.16)

This results in our final expression for the momentum distribution of the bound state be-
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tween the surface and the two particles,

|ψ (q, k)|2 =
212π6η2L2

β2
δ(P2)δ(P3)

|Ã(q1 + k1) + Ã(q1 − k1)|2

((q1 + k1)2 + (q − k)2 + β2)2 . (3.17)

We show in Appendix D that η2L2 is in fact independent of L.

Recall that A is an even function and therefore its Fourier transform Ã is also even.

The above expression is then symmetric in the momenta of the two particles, and therefore

it does not matter which one we choose to integrate over when finding the single-particle

momentum distribution. Carrying out the integrals over q2, q3 using sifting property of the

delta function and recalling the definition Eq. 3.5,

f(k) =
29π3η2L2

β2

∫ ∞
−∞

|Ã(q1 + k1) + Ã(q1 − k1)|2

((q1 + k1)2 + (q1 − k1)2 + (2k2)2 + (2k3)2 + β2)2 dq1 (3.18)

There are two types of terms in the numerator, squared terms and cross terms. The

cross terms clearly have the same value and so can be combined. For the squared terms,

note that by taking q1 → −q1 and using the fact that Ã(k) is even we map one squared term

to the other, and therefore these also have the same value. We can therefore represent our

distribution as

f(k) =
210π3η2L2

β2

∫ ∞
−∞

Ã(q1 + k1)Ã(q1 − k1) + Ã(q1 + k1)Ã(q1 + k1)

((q1 + k1)2 + (q1 − k1)2 + (2k2)2 + (2k3)2 + β2)2 dq1. (3.19)

Combining Lemma 3.2 and Lemma 3.3 will then prove Lemma 3.1.

n(k2, k3) =
1

4

1

2π

∫
R
f(k) dk1

=
27π2L2η2

β2

∫
R2

Ã(q1 + k1)Ã(q1 − k1) + Ã(q1 + k1)Ã(q1 + k1)

((q1 + k1)2 + (q1 − k1)2 + (2k2)2 + (2k3)2 + β2)2 dq1 dk1
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3.2 Asymptotic Expansion of the Parallel Momentum Distribution

Now we proceed to the asymptotic expansion of n(k2, k3), by decomposing it into two

terms. For each, we will perform a separate expansion.

Lemma 3.4.

n(k2, k3) =
26π3L2η2

β2
(I1(γ) + I2(γ)) (3.20)

with

I1(γ) ≡ 1

γ

∫ ∞
−∞

∫ ∞
−∞

A(x)A(x′)|x+ x′|K1 (γ|x+ x′|) dx′ dx

I2(γ) ≡ 4

γ2

∫ ∞
0

∫ ∞
0

∫ ∞
0

A(x)A(x′)J(γ, θ, x, x′)dθ dx′ dx

J(γ, θ, x, x′) ≡ sech θ (γx′ + sech θ) e−γ x
′ cosh θ cos (γx sinh θ)

and

γ2 ≡ 4k2
2 + 4k2

3 + β2

Proof. Without loss of generality, we assume that the global phase of the wavefunction has

been chosen such that the wavefunction and therefore A are purely real functions. Begin-

ning from the result of Lemma 3.1, replacing Ã with its Fourier transform, and making the

change of variables to P1 = q1 + k1, p1 = q1 − k1 we have that

n(k2, k3) =
26π2L2η2

β2

∫ ∞
−∞

∫ ∞
−∞

A(x)A(x′) (L1(γ, x, x′) + L2(γ, x, x′)) dx′ dx (3.21)

with

L1(γ, x, x′) ≡
∫ ∞
−∞

∫ ∞
−∞

e−iP1(x+x′)

(P 2
1 + p2

1 + γ2)
2 dP1 dp1

L2(γ, x, x′) ≡
∫ ∞
−∞

∫ ∞
−∞

e−iP1x−ip1x′

(P 2
1 + p2

1 + γ2)
2 dP1 dp1.
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The integrals in L1 can both be performed immediately resulting in

L1(γ, x, x′) =
π|x+ x′|

γ
K1 (γ|x+ x′|) . (3.22)

Plugging this back into Eq. 3.21 gives the desired I1(γ).

For L2 only one integral can be carried out immediately. Using the identity that

∫ ∞
−∞

e−ip1x′

(P 2
1 + p2

1 + γ2)
2 dp1 =

π
(

1 + |x′|
√
P 2

1 + γ2
)

2 (P 2
1 + γ2)

3
2

e−|x
′|
√
P 2

1 +γ2
, (3.23)

and then making the change of variables P1 = γ sinh θ we find that

L2(γ, x, x′) =

∫ ∞
−∞

π sech θ (γ|x′|+ sech θ)
4γ2

e−γ(|x′| cosh θ+ix sinh θ)dθ. (3.24)

Returning this expression to 3.21 we see that since both A and L2 are even in x′, we can

rewrite the result as an integral over only positive x′. Next, we can separate the integral

over negative x values, let x → −x and recombine with the original integral over positive

x to find

∫ ∞
−∞

∫ ∞
−∞

A(x)A(x′)L2(γ, x, x′) dx′ dx

=
2π

γ2

∫ ∞
0

∫ ∞
0

∫ ∞
−∞

A(x)A(x′) sech θ (γx′ + sech θ) e−γx
′ cosh θ cos (γx sinh θ)dθ dx′ dx,

which is then also even in θ and therefore

=
4π

γ2

∫ ∞
0

∫ ∞
0

∫ ∞
0

A(x)A(x′) sech θ (γx′ + sech θ) e−γx
′ cosh θ cos (γx sinh θ)dθ dx′ dx.

(3.25)

Substituting this expression into Eq. 3.21 yields the desired I2(γ).

We are interested in the expansion of n(k2, k3) as the magnitude of the parallel momen-

tum becomes large, and we can implement this by looking at the asymptotic behavior of I1
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and I2 as γ becomes large. To that end, we can now proceed with the expansion of I1.

3.2.1 Asymptotic expansion of I1 for large parallel momentum

Recall that

I1(γ) =
1

γ

∫ ∞
−∞

∫ ∞
−∞

A(x)A(x′)|x+ x′|K1 (γ|x+ x′|) dx′ dx. (3.26)

There are 2 primary difficulties that must be overcome in the expansion of this expres-

sion:

• The function A(x) is not differentiable at x = 0 and therefore any scheme that re-

lies on approximating A(x) using a Taylor-like series will fail when the argument

becomes small; the error terms are unbounded.

• As γ → ∞ we would like to replace the kernel |x + x′|K1 (γ|x+ x′|) with its own

asymptotic expansion for large arguments (see Appendix G). However, the line x =

−x′ remains the dominant region of contribution as γ → ∞ and this asymptotic

replacement cannot be made there.

Therefore we will turn to a Mellin transform technique to avoid both of these problems.

We can summarize the primary steps as

1. Replace A(x) and A(x′) with their Mellin transforms φ(s) and φ(t).

2. Carry out the integrals over x and x′, which is equivalent to computing the double

Mellin transform of |x + x′|K1 (γ|x+ x′|). This will concentrate the γ dependence

into a single simple term.

3. Displace the s and t contours to the left in the complex s and t planes, picking up

the residues of any poles encountered. The remaining integrals will be asymptoti-

cally small compared to the sum of residues, which represent a complete asymptotic

expansion of the double integral.
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We are now ready to prove the following lemma:

Lemma 3.5.

I1(γ) =
2π

γ3

∫ ∞
0

|A(x)|2 dx+
α+

0 α
−
0

γ4
M(is0,−is0)

+ γ2is0−4
(
α−0
)2
M(is0, is0)

+ γ−2is0−4
(
α+

0

)2
M(−is0,−is0) + o

(
γ−4
)
, γ →∞

M(s, t) ≡ 2π
3
2 it+1 tan

(
πs
2

)
Γ(1− s)Γ

(
1
2
(s+ t− 1)

)
Γ(t)Γ

(
1
2
(s+ t− 2)

)
×
(
is+1 csc

(π
2

(s+ t)
)

+ sec

(
πt

2

))

Proof. We define the inverse Mellin transform of A by

A(x) =
1

2πi

∫ cs+i∞

cs−i∞
φ(s)x−s ds, (3.27)

where cs is a real number that must be chosen so that the vertical line Re(s) = cs lies

completely within the fundamental strip of φ. The fundamental strip is determined by the

values of Re(s) for which the Mellin transform

φ(s) =

∫ ∞
0

A(x)xs−1 dx (3.28)

exists in the ordinary sense. Let σ+ and σ− be the largest (respectively, smallest) values

of Re(s) such that the Mellin transform exists as an ordinary integral. As we argued after

Eq. 2.8, we must have A ∈ L2 (R) for the wavefunction to represent a state bound to the

surface and so the right boundary of the fundamental strip satisfies at least Re(σ+) ≥ 1
2
.

Further, we showed in Appendix B that A(x) = O(1), x → 0 and so the left boundary of

the fundamental strip will be at σ− ≤ 0. Therefore, at worst we may chose 0 < cs <
1
2

and

be guaranteed that our vertical contour is within the fundamental strip of φ. We will need
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to keep this choice in mind during the following calculations to ensure that they are valid

for these values of cs.

We first insert the definition of the Mellin transform Eq. 3.27 into the definition of I1

Eq. 3.26. Exchanging the order of integration, we must then carry out the double integral

D(γ, s, t) ≡ (2πi)2

∫ ∞
−∞

∫ ∞
−∞
|x+ x′|K1 (γ|x+ x′|) |x|−s|x′|−t dx′ dx. (3.29)

Lemma 3.6. For 0 < Re(s) < 1, 0 < Re(t) < 1, and Re(s+ t) > 1,

D(γ, s, t) = γs+t−3M(s, t),

where M(s, t) is defined in Lemma 3.5.

Proof. Here, we use a trick that applies to many integrals involving Bessel functions. Of-

ten, expressions involving Bessel functions have Fourier transforms that can be expressed

in terms of more elementary functions. To wit,

|x+ x′|K1 (γ|x+ x′|) =
1

2π

∫ ∞
−∞

πγ

(k2 + γ2)
3
2

eik(x+x′) dk.

Inserting this into Eq. 3.29 allows us to use the identities

∫ ∞
−∞
|x|−seikx dx = 2|k|s−1Γ(1− s) sin

(πs
2

)
, 0 < Re(s) < 1,

and

∫ ∞
−∞

|k|s−1

(k2 + γ2)
3
2

eikx
′
dk =

[
2√
π
γs−3 Γ

(
3

2
− s

2

)
Γ
(s

2

)
1F2

(
s

2
;
1

2
,
s

2
− 1

2
;
x′2γ2

4

)

− 2|x′|3−sΓ(s− 3) sin
(πs

2

)
1F2

(
3

2
; 2− s

2
,
5

2
− s

2
;
x′2γ2

4

)]
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to write

D(γ, s, t)

= γ (cos (πs)− 1) Γ(1− s)Γ(s− 3)

∫ ∞
−∞

1F2

(
3

2
; 2− s

2
,
5

2
− s

2
;
x′2γ2

4

)
|x′|3−s−t dx′

− 2s−1π
3
2γs−2Γ

(
1

2
− s

2

)
sec
(πs

2

)∫ ∞
−∞

1F2

(
s

2
;
1

2
,
s

2
− 1

2
;
x′2γ2

4

)
|x′|−t dx′,

where 1F2 is the generalized hypergeometric function.

One simplification is immediate: the integrals are even in x′ and can thus be rewritten

to range only over positive x′. They are then plainly the Mellin transforms of general-

ized hypergeometric functions which reduce to relatively simple expressions involving the

Gamma function:

D(γ, s, t) = 2it+1π
3
2γs+t−3 tan

(
πs
2

)
Γ(1− s)Γ

(
1
2
(s+ t− 1)

)
Γ(t)Γ

(
1
2
(s+ t− 2)

)
×
(
is+1 csc

(π
2

(s+ t)
)

+ sec

(
πt

2

))
= γs+t−3M(s, t)

so long as 0 < Re(t) < 1 and Re(s) + Re(t) > 1.

Remark. Our previous estimates that we can choose 0 < cs <
1
2

and 0 < ct <
1
2

are then

not quite adequate to apply Lemma 3.6.

We must further assume (without proof) that A(x) = O
(
x−

1
2
−ε
)
, x → ∞ for some

ε > 0 so that we may choose cs, ct such that cs + ct > 1 and apply Lemma 3.6. In practice,

we find that this assumption is always satisfied. When the binding wavenumber β > 0, we

expect that A(x) decreases exponentially at large x, and our solution at unitarity in Section

2.3.2 is a typical example. We may worry about power-law decay for β = 0; however, since

we have found an expression for the Mellin transform, X , of A at β = 0 in Section 2.3.3,

we can check that there are no poles of X(ν) between −2 < Re(ν) < 0 and therefore
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A(x) = O(x−1), x → ∞ even when β = 0. Therefore, although we have no general

proof, we believe that our decay assumption is always satisfied and so we can choose cs, ct

such that cs + ct > 1 and apply the result of Lemma 3.6.

Substituting this result into Eq. 3.26 we have

I1(γ) =
1

(2πi)2

∫ ct+i∞

ct−i∞

∫ cs+i∞

cs−i∞
φ(s)φ(t)γs+t−4M(s, t) ds dt. (3.30)

Remark. All of the dependence of I1 on γ has been segregated into the factor γs+t−3

and thus by considering different s or t contours in the complex plane, we are potentially

changing the order of the double integral in γ in an explicit and well-controlled way.

To generate an asymptotic expansion of I1 for large γ, we need to displace the s and

t contours to the left in the complex plane so that the real part of the exponent of γs+t−3

becomes smaller and smaller. Of course the contour cannot be displaced at will while

preserving the value of the double integral. Any time we cross a pole we must use the

residue theorem to preserve the overall value of the integral. The poles, then, determine the

asymptotic expansion in γ while the double integral is constantly being displaced so that

its value is asymptotically small and can be neglected.

Recall that by prior assumption we begin with 0 < cs < 1, 0 < ct < 1, and cs + ct > 1.

We will be careful to first displace the contour in the complex-s plane, and then in the

complex-t plane so that we do not accidentally cross a pole and then cross back across the

same pole.

The first pole we encounter as we move the s-contour of Eq. 3.30 is a pole of M(s, t)

at s = 1− t with

Res(M(1− t, t)) = 2π.
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Therefore

I1(γ) =
2π

γ3

1

2πi

∫ ct+i∞

ct−i∞
φ(1− t)φ(t) dt

+
1

(2πi)2

∫ ct+i∞

ct−i∞

∫ 1−ct−ε+i∞

1−ct−ε−i∞
φ(s)φ(t)γs+t−4M(s, t) ds dt, (3.31)

with 1− ct > ε > 0. We cannot let ε be larger than 1− ct or we would cross another set of

poles.

Lemma 3.7.

1

(2πi)2

∫ ct+i∞

ct−i∞

∫ 1−ct−ε+i∞

1−ct−ε−i∞
φ(s)φ(t)γs+t−4M(s, t) ds dt = o

(
γ−3
)

(3.32)

Proof. Let

δ1(γ) ≡ 1

(2πi)2

∫ ct+i∞

ct−i∞

∫ 1−ct−ε+i∞

1−ct−ε−i∞
φ(s)φ(t)γs+t−4M(s, t) ds dt,

|δ1(γ)| ≤ 1

4π2γ−3−ε

∫ ct+i∞

ct−i∞

∫ 1−ct−ε+i∞

1−ct−ε−i∞
|φ(s)φ(t)M(s, t)| ds dt.

The double integral is then independent of γ and so as long it is finite, then δ1(γ) = o(γ−3).

It is each to check directly using the asymptotic properties of the gamma and trigonometic

functions that M(s, t) grows at most as

M(s, t) ∼ Im(s)ct−ε−
1
2 Im(t)

1
2
−ct .

The decay properties of φ along vertical lines are then strong enough to guarantee that

the integrals converge. We do not give the full argument here; the interested reader may

consult Section 6.2 of Ref. [69] for detailed estimates and decay properties of Mellin

transforms.
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By the Plancherel-type formula for the Mellin transform then, we find from Eq. 3.31

I1(γ) =
2π

γ3

∫ ∞
0

|A(x)|2 dx+ o(γ−3).

As desired, this gives the leading order contribution in γ to I1(γ) sought for Lemma 3.5.

Next, we will proceed with the next-to-leading order term.

Lemma 3.8.

δ1(γ) =
α+

0 α
−
0

γ4
M(is0,−is0) + γ2is0−4

(
α−0
)2
M(is0, is0)

+ γ−2is0−4
(
α+

0

)2
M(−is0,−is0) + o

(
γ−4
)

(3.33)

Proof. Starting from Eq. 3.31, we continue displacing the s-contour to the left from

Re(s) = 1 − ct − ε > 0. The next poles that we encounter arise from φ(s) and φ(t).

These poles result from the asymptotic behavior of A(x) and A(x′) at small argument be-

cause if

A(x) ∼ αpx
p, x→ 0,

then

φ(s) ∼ αp∗

s− p
, s→ p.

Drawing on the result of Appendix B, in our case we have that

A(x) ∼ α+
0 x

is0 + α−0 x
−is0 +O(x1±is0).

Therefore, we next encounter the poles at s = ±is0. As a reminder, s0 ≈ 0.7202 is the

only real solution to the transcendental equation Eq. 2.31 and it defines the scaling factor

λ = e
π
s0 ≈ 78.4 for the discrete scaling symmetry present in our system of two particles

interacting with a surface. Carrying forward our definition of δ1 from Lemma 3.6, after
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moving the s-contour we have

δ1(γ) =
1

(2πi)
Res(φ(is0))

∫ ct+i∞

ct−i∞
φ(t)γis0+t−4M(is0, t) dt

+
1

(2πi)
Res(φ(−is0))

∫ ct+i∞

ct−i∞
φ(t)γ−is0+t−4M(−is0, t) dt

+
1

(2πi)2

∫ ct+i∞

ct−i∞

∫ −ε+i∞
−ε−i∞

φ(s)φ(t)γs+t−4M(s, t) ds dt,

where 0 < ε < ct. Again we must be careful not to let ε be too large or we will cross another

pole at s = −t− 1. In each of the first two terms above, we then move the t-contour to the

left, including the residues as we cross the poles of φ(t) at t = ±is0.

δ1(γ) = 2γ−4 Res(φ(is0))Res(φ(−is0))M(is0,−is0)

+ γ2is0−4Res(φ(is0))2M(is0, is0)

+ γ−2is0−4Res(φ(−is0))2M(−is0,−is0)

+
1

(2πi)2

∫ ct+i∞

ct−i∞

∫ −ε+i∞
−ε−i∞

φ(s)φ(t)γs+t−4M(s, t) ds dt,

since M is symmetric under interchange of s and t (although this is not obvious just by

inspection). For the term

δ2(γ) ≡ 1

(2πi)2

∫ ct+i∞

ct−i∞

∫ −ε+i∞
−ε−i∞

φ(s)φ(t)γs+t−4M(s, t) ds dt, (3.34)

we can show that δ2(γ) = o (γ−4) by the same argument as that we used for Lemma 3.6

provided that we recognize that we can displace the t-contour until 0 < Re(t) < ε so that

we do not cross the poles at Re(t) = 0, and yet Re(s + t) < 0. That way, |γs+t−4| =

γRe(t)−ε−4 = o (γ−4) and the double-integral is again asymptotically negligible. Replacing
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the residues of φ with the appropriate expansion coefficients gives the desired result

δ1(γ) =
2α+

0 α
−
0

γ4
M(is0,−is0) + γ2is0−4

(
α−0
)2
M(is0, is0)

+ γ−2is0−4
(
α+

0

)2
M(−is0,−is0) + o

(
γ−4
)
.

Combining Eq. 3.31 with the results of Lemmas 3.7 and 3.8 then proves Lemma 3.5

and gives a complete asymptotic expansion of I1(γ) as γ →∞:

I1(γ) =
2π

γ3

∫ ∞
0

|A(x)|2 dx+
2α+

0 α
−
0

γ4
M(is0,−is0)

+ γ2is0−4
(
α−0
)2
M(is0, is0)

+ γ−2is0−4
(
α+

0

)2
M(−is0,−is0) + o

(
γ−4
)
, γ →∞

To validate this expansion numerically, we chose two functional forms for A(x) and

computed I1(γ) using numerical integration for a random selection of γ values. The relative

differences between our numerical calculations and the asymptotic expansion of Lemma

3.5 are plotted in Figure 3.1. All comparisons show that the relative error decreases as

γ increases, at leading and next-to-leading order, and also that the next-to-leading order

corrections decrease the relative error by approximately the expected factor of γ−1. This

gives us confidence that our expansion is correct and includes all relevant terms through

next-to-leading order.
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○ Leading Order

△ Next-to-leading Order
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(a) A(x) = x3i+x−3i

1+x2 , and therefore α+
0 = α−0 = 1, s0 = 3.
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△ Next-to-leading Order
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(b) A(x) = Kis0(x), and therefore α+
0 = 2−1−is0Γ(−is0), α−0 = 2−1+is0Γ(is0), s0 ≈ 0.720198.

Figure 3.1: Relative difference between numerically computed I1(γ) and the asymptotic
expansion Eq. 3.5 through leading-order and next-to-leading order for two different choices
of A(x) and randomly chosen γ.
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3.2.2 Asymptotic expansion of I2 for large parallel momenta

The expansion of I2(γ) for large γ proceeds in a similar way to that of I1(γ) presented in

Section 3.2.1 and so we will not show all of the details because they give no new insight.

Summarizing, then, we again replace A(x) and A(x′) by their Mellin transforms and

use the identity that

∫ ∞
0

∫ ∞
0

∫ ∞
0

sech θ (γx′ + sech θ) e−γ(x′ cosh θ) cos (γx sinh θ) x−s(x′)−t dx′ dx dθ

=
γs+t−2

√
π

2−tΓ(1− s)Γ
(

1

2
− t

2

)
Γ
(s

2

)
Γ

(
2− s

2
− t

2

)
sin
(πs

2

)
,

provided that 0 < Re(s) < 1 and 0 < Re(t) < 1. This motivates the definition

N(s, t) ≡ 4√
π

2−tΓ(1− s)Γ
(

1

2
− t

2

)
Γ
(s

2

)
Γ

(
2− s

2
− t

2

)
sin
(πs

2

)
,

and therefore we can write I2 as

I2(γ) =
1

(2πi)2

∫ ct+i∞

ct−i∞

∫ cs+i∞

cs−i∞

φ(t)φ(s)

γ4−s−t N(s, t) ds dt (3.35)

Unlike the case of I1, the function N(s, t) has no poles in either left half-plane when

Re(s) < 1 and Re(t) < 1. The factor Γ
(
s
2

)
would contribute poles at the negative even

integers, but they all become removable singularities due to the sin
(
πs
2

)
factor. Therefore,

an asymptotic evaluation of this term will first encounter the poles of φ(s) and φ(t), which

are related to the short-distance asymptotic expansion of A(x).

As before, the first poles encountered as we shift the s and t contours to the left in the

respective complex planes will occur at s = ±is0 when the s-contour is shifted and then

t = ±is0 when the t-contour is shifted. Each pole contributes 2πi times its residue and
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adding the 4 terms we find, noting N(s, t) is symmetric under exchange of s and t, that

I2(γ) = γ−4+2is0(α−0 )2N(is0, is0) + γ−4−2is0(α+
0 )2N(−is0,−is0)

+ 2γ−4α+
0 α
−
0 N(is0,−is0) + o(γ−4).

(3.36)

We again carry out a numerical check to validate our expansion. Using the source

distribution at unitarity, we numerically calculated the expression for I2(γ) in terms of

the source distribution shown in Lemma 3.4 for several values of γ using a Monte Carlo

technique. The results are plotted in Figure 3.2 and show that the average of our Monte

Carlo calculations agrees very closely with the prediction from the expansion Eq. 3.36.

This again suggests that we have not omitted any terms or made any invalid approximations

when creating this expansion.

5.× 10-7

1.× 10-6

1.5× 10-6

2.× 10-6

25 30 35 40

Figure 3.2: Comparison between I2 computed numerically (green dots) and the asymptotic
expansion Eq. 3.36 (blue dashed line) for the function A(x) = Kis0(x). The dots represent
the mean of 64 MonteCarlo calculations of I2 with error bars spanning twice the standard
deviation of the samples.
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3.3 Expansion for the Parallel Momentum Distribution and the Contacts

Having given asymptotic expansions for I1(γ) and I2(γ) through order γ−4, we can in-

sert these expansions in the result of Lemma 3.4 to find an expansion for the distribution

of particle momenta parallel to the surface, n(k2, k3). We will then analyze the form of

this expansion and show how the two-particle and particle-surface contacts can be identi-

fied, and also how our formula qualitatively connects the two-body and particles-surface

correlations to each contact.

Recall from Lemma 3.4 that

n(k2, k3) =
26π3L2η2

β2
(I1(γ) + I2(γ))

At leading order, only I1(γ) contributes. Because we are interested in the large mo-

mentum limit, we write the expansion in terms of the magnitude of a particle’s momentum

parallel to the surface,

k‖ ≡
√
k2

2 + k2
3, (3.37)

to convert
1

γ3
=

1

8k3
‖

+O
(
k−5
‖

)
(3.38)

and find that

n(k2, k3) =
27π4L2η2

β2γ3

∫ ∞
0

|A(x)|2 dx+ o(γ−3)

=
(2π)4L2η2

β2k3
‖

∫ ∞
0

|A(x)|2 dx+ o
(
k−3
‖

)
.

Therefore by comparing with Eq. 3.1 and using the result of Appendix D we have that

C2 =
2π2

∫∞
0
|A(x)|2 dx∫∞

−∞

∫∞
−∞A(u′)A(u)

[
K0 (β|u− u′|) +K0

(
β
√
u2 + u′2

) ]
du′ du

. (3.39)
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We will turn then to the next-to-leading order terms and the particle-surface contact before

remarking further on this result.

At next-to-leading order we have three contributions each from I1(γ) and I2(γ). The

contribution from I1 we have called δ1:

δ1(γ) =
2α+

0 α
−
0

γ4
M(is0,−is0) + γ2is0−4

(
α−0
)2
M(is0, is0)

+ γ−2is0−4
(
α+

0

)2
M(−is0,−is0) + o

(
γ−4
)
.

And then we have I2,

I2(γ) = γ−4+2is0(α−0 )2N(is0, is0) + γ−4−2is0(α+
0 )2N(−is0,−is0)

+ γ−4α+
0 α
−
0 (N(is0,−is0) +N(−is0, is0)) + o(γ−4).

We note that using the definition of s0 from Eq. 2.31

M(is0,−is0) +N(is0,−is0) = 4π
(

sech
(πs0

2

)
− s0tanh

(πs0

2

))
= 0, (3.40)

therefore, although both I1 and I2 give a non-oscillatory contribution at order γ−4, the sum

is zero for the particular value of s0 relevant to our surface problem. This phenomenon also

occurs for the Efimov effect, where no non-oscillatory terms are observed at next-to-leading

order in the momentum distribution for large momenta.

For the remaining terms, note that since we assumed that A is a real function, we must

have that α−0 = (α+
0 )∗, and therefore

δ1(γ) + I2(γ) = γ2is0−4(α−0 )2 (N(is0, is0) +M(is0, is0)) + c.c.,

where c.c. stands for the complex conjugate of the prior expression. Decomposing the
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complex factors into (real) phases and amplitudes, we define

|α|e−iφα ≡ α−0 ,

|µ|e−iζ ≡ N(is0, is0) +M(is0, is0).

Recall from Eq. 2.24 that the surface parameter x0 was introduced to make our model

self-adjoint and conserve probability. The physical origin of this parameter is the short-

range details of the interaction between the particles and the surface, and we showed in the

previous chapter that x0 is given by the relative phase of the first two terms in the short

distance expansion of the source distribution, A. In terms of the phase we have defined

above, this leads to

x2is0
0 = e−2iφα. (3.41)

Therefore,

δ1(γ) + I2(γ) =
|µ||α|2

γ4

(
(γx0)2is0e−iζ + c.c.

)
=

2|µ||α|2

γ4
sin
(

2s0 log (γx0) +
(π

2
− ζ
))
. (3.42)

Finally, we are ready then to substitute Eq. 3.42 into the result of Lemma 3.4 and

compare our sub-leading term to the form Eq. 3.1 and we find that:

C3 =
(2π)3L2η2

β2
|µ||α|2, (3.43)

L(k‖) = sin
(

2s0 log (2k‖x0) +
(π

2
− ζ
))
. (3.44)

In contrast to the Efimov effect where the analogous parameters are known only numeri-

cally [27], the numbers |µ| and ζ are not dependent on the particular collective bound state

and can be computed exactly from the definitions of s0, M , and N . We give the first few
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digits below:

|µ| ≈ 7.730 (3.45)

ζ ≈ 0.0255 (3.46)

Together, Eqs. 3.39, 3.43, and 3.44 complete our sought after asymptotic expansion of the

distribution of momenta parallel to the surface in our problem:

n(k2, k3) =
C2

k3
‖

+
C3 L(k‖)

k4
‖

Interestingly, if we write our L(k‖) in the same way that the analogous function for

the Efimov effect is written in Ref. [27], we find that the phase of the oscillations is very

close to −π (differing by only 2 parts in 1000). Despite the fact that there is no known

importance to this phase, we mention it because it is a surprising coincidence, perhaps.

This expansion establishes the close connection between the short-range correlations

in our system and its behavior at large momenta. When combined with the numerical

scheme of Chapter 2, we have provided a method that exactly establishes the universal

features of the momentum distribution and a practical method for calculating the state-

dependent aspects at arbitrary scattering length. By contrast, for the Efimov effect, the

universal aspects were largely treated via effective field theory techniques that, at least

in part, must numerically determine the functional form and do not generally calculate

the state-dependent parameters (though such calculations are in-principle possible). In

addition, the state-dependent contacts have been calculated only near unitarity.

Our results also reveal a log-periodic oscillation in the system that may be measur-

able via time-of-flight imaging. Such log-periodic oscillations have proven challenging

to measure in the past and so having additional systems that exhibit this effect may open

new possibilities. Because our states are bound to the surface of the plane, it is possible

that a trapping potential can be turned off even as the surface potential is left on and the
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movement of particles along the surface can be imaged.

We turn now to relating the two-particle contact to changes in the energy due to changes

in the scattering length and the number of small pairs of particles before returning to these

result and discussing further conclusions.

3.4 The Adiabatic Derivative of the Energy

In Chapter 2, we computed the adiabatic derivative of the collective bound state energy with

respect to the scattering length numerically. In this section, we give an analytic relation-

ship between this derivative and the source distribution, A(x), so that we can compare this

expression with our asymptotic expansion of the single-particle parallel momentum distri-

bution (Eq. 3.1) and establish a quantitative relationship between the two. In particular,

based on the similarity to other systems with zero-range interactions, we expect that

dE

d
(
− 1
a

) =
αE
∫∞

0
|A(x)|2 dx∫∞

−∞

∫∞
−∞A(x′)A(x)

[
K0 (β|x− x′|) +K0

(
β
√
x2 + x′2

)]
dx′ dx

,

with αE a constant that is independent of the source distribution. This section will show

that, in fact,

αE =
π~2

m
.

Beginning with the Hamiltonian,

Ĥ = − h2

2m

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

+
∂2

∂y2
1

+
∂2

∂y2
2

+
∂2

∂y2
3

)
= − h2

2m
∇2,

Let |ψ〉 and |φ〉 be normalized eigenstates of this Hamiltonian with scattering lengths a

and α and eigenvalues E and E ′, respectively. Namely,

Ĥ|ψ〉 = E|ψ〉,

Ĥ|φ〉 = E ′|φ〉.
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Therefore, taking the adjoint of the second relation and cross-multiplying by ψ and φ∗,

〈φ|Ĥ|ψ〉 − 〈φ|Ĥ†|ψ〉 = (E − E ′)〈φ|ψ〉.

Here we have avoided setting H† = H as a reminder of the discussion preceding Eq.

2.24 where we found that probability is not conserved in our model unless we impose an

additional boundary condition. This implies that the model is not essentially self-adjoint

until we make a choice of a particular self-adjoint extension. Rewriting the left-hand side

we have

〈φ|Ĥ|ψ〉 − 〈φ|Ĥ†|ψ〉 =
−~2

2m

∫
V

φ∗ ∇2ψ − ψ ∇2φ∗ d3x d3y

=
−~2

2m

∫
V

~∇ ·
(
φ∗ ~∇ψ − ψ ~∇φ∗

)
d3x d3y,

where V ∈ R6 is the region of configuration space where x1 > δ, y1 > δ, and r > ε.

Because the expression for the wavefunction in V is even in each coordinate, we can rewrite

this as an integral over the region V ′ given by |x1| > δ, |y1| > δ, and r > ε:

〈φ|Ĥ|ψ〉 − 〈φ|Ĥ†|ψ〉 =
−~2

8m

∫
V ′
∇ · (φ∗∇ψ − ψ ∇φ∗) d3x d3y,

By the divergence theorem, we can rewrite this as a flux through boundary:

= − ~2

8m

[ ∫
|y1|>δ,r>ε

(φ∗∇ψ − ψ ∇φ∗) · (−x̂1) dx2 dx3 d
3y

+

∫
|x1|>δ,r>ε

(φ∗∇ψ − ψ ∇φ∗) · (−ŷ1) dy2 dy3 d
3x

+

∫
|x1|>δ,|y1|>δ

(φ∗∇ψ − ψ ∇φ∗) · d~S
]
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=
~2

8m

[ ∫
|y1|>δ,r>ε

(
φ∗

∂

∂x1

ψ − ψ ∂

∂x1

φ∗
)
dx2 dx3 d

3y

+

∫
|x1|>δ,r>ε

(
φ∗

∂

∂y1

ψ − ψ ∂

∂y1

φ∗
)
dy2 dy3 d

3x

−
∫
|x1|>δ,|y1|>δ

(φ∗∇ψ − ψ ∇φ∗) · d~S
]

As ε, δ
ε
→ 0, the contributions from |x1|, |y1| = δ go to 0 independent of a and α, since

the Neumann boundary condition holds independently for ψ and φ. The only relevant

contribution then comes from the third term where r = ε and we can take δ = 0. We make

the change of variables

R ≡ x+ y

2
≡ (R1, R2, R3), r ≡ x− y ≡ (r1, r2, r3),

so that

d~S = (−r̂)r2 sin θ dθ dφ d3R,

and then substituting we have that

(E − E ′)〈φ|ψ〉 = − ~2

8m

∫
r=ε

(φ∗∇ψ − ψ ∇φ∗) · r̂ r2 sin θ dθ dφ d3R,

where we can use the Bethe-Peierls ansatz

ψ
(
R +

r

2
, R− r

2

)
= A(R1)

(
1

r
− 1

a

)
, r → 0

φ
(
R +

r

2
, R− r

2

)
= B(R1)

(
1

r
− 1

α

)
, r → 0.
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to find that

(E − E ′)〈φ|ψ〉 = −π~
2ε2

m

∫
r=ε

(
φ∗

∂

∂r
ψ − ψ ∂

∂r
φ∗
)
d3R

= −4π3η2~2

β2m

(
1

α
− 1

a

)∫
R3

B(R1)A(R1) d3R

= −8π3L2η2~2

β2m

(
1

α
− 1

a

)∫ ∞
0

A(x)B(x) dx,

where we have again used the fact that A and B are even functions, as in the previous

chapter. In the limit then that α→ a, E ′ → E, B → A,

E − E ′

1/α− 1/a
→ dE

d
(
− 1
a

) =
8π3L2η2~2

β2m

∫ ∞
0

A(x)2 dx.

Therefore we can write the adiabatic derivative of the energy with respect to the scat-

tering length using the normalization result of Appendix D as,

dE

d
(
− 1
a

) =
π~2

m

∫∞
0
|A(x)|2 dx∫∞

−∞

∫∞
−∞A(x′)A(x)

[
K0 (β|x− x′|) +K0

(
β
√
x2 + x′2

) ]
dx′ dx

.

(3.47)

Relating this back to the two-particle contact that we found in Eq. 3.3, we find that

dE

d
(
− 1
a

) =
~2C2

2πm
. (3.48)

Therefore we find that as we vary the inter-particle interaction via changing the scatter-

ing length, the changes in bound state energy are completely determined by the correlation

between particles at small separation, encapsulated in the two-particle contact. This vali-

dates that the contact is also an important microscopic quantity in our system.
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3.5 The Probability of a Close Approach

Because the interaction is over zero-range, we expect that the change in the energy as the

scattering length is varied should be related to the probability that we indeed find the two

atoms in close proximity. For our system, this probability is particularly easy to calculate.

The probability of finding both atoms within a small sphere of radius ε, which is equivalent

to the average number of pairs in our system, is given by

P (r < ε) = Npairs(ε) =

∫
r<ε

∫
R3

∣∣∣Ψ(R +
r

2
, R− r

2

)∣∣∣2 d3R d3r. (3.49)

Recall that our wavefuction Ψ is zero whenever x1 < 0 or y1 < 0; however, because the

functional form in the non-zero region, ψ, is even in x1 and y1, we can take the behavior to

be non-zero everywhere, so long as we compensate with a factor of 4:

P (r < ε) =
1

4

∫
r<ε

∫
R3

∣∣∣ψ (R +
r

2
, R− r

2

)∣∣∣2 d3R d3r. (3.50)

If we take a >> ε >> r0, then we can replace the wavefunction by the Bethe-Peierls

ansatz in the above expression to find

P (r < ε) =
π2|η|2

β2

∫
r<ε

∫
R3

|A(R1)|2
(

1

|r|
− 1

a

)2

d3R d3r

=
4π3L2|η|2

β2

∫ ∞
−∞
|A(x)|2 dx

∫ ε

0

(
1

|r|
− 1

a

)2

r2dr

=
8π3L2|η|2

β2

(
ε− ε2

a
+

ε3

3a2

)∫ ∞
0

|A(x)|2 dx

=
8π3L2|η|2ε

β2

∫ ∞
0

|A(x)|2 dx+O(ε2).

Comparing this with our expression for the adiabatic derivative of the energy, Eq. 3.47,
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the two are proportional with the very simple relationship

dE

d
(
− 1
a

) =
~2

m

dN(ε)

dε

∣∣∣∣
ε=0

. (3.51)

This relationship requires some comment because it may be somewhat counter-intuitive.

Because the set of exactly overlapping configurations is measure zero in configuration

space, of course the probability of having exactly that configuration must be zero. So

we cannot meaningfully talk about the number of particles that are exactly overlapping,

for instance. However, what we find is that the more the particles are concentrated in an

infinitesimal region around 0 separation, the greater the change in energy when we change

the scattering length, which agrees with our intuition.

3.6 Conclusion

The expansion, Eq. 3.1, along with the results Eqs. 3.39 and 3.43 fully determine the

two-particle and particle-surface contacts in terms of the source distribution A. For any

particular scattering length, these expressions can be used to calculate the contacts from the

analytical or numerical results presented in Chapter 2. In addition, our expansion makes

clear that regardless of the particular state under consideration, the two-particle contact is

determined by the behavior of the source distribution throughout the region of configuration

space where two-particles are close together. Our results in Sections 3.47, 3.4, and 3.5 also

connect the short-range inter-particle and particle-surface correlations with the energy, the

change in the energy due to changes in the microscopic parameters, and the number of

small pairs found in our system. Almost everything about the state seems to be determined

by what happens in a small region of configuration space where particles closely approach

each other (and potentially collide).

Our result also makes clear that the parallel momentum distribution undergoes log peri-

odic oscillations at next-to-leading order, with the phase and log-period of the oscillations
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dependent on the short distance surface physics, but not the scattering length or the particu-

lar collective bound state in question. The particular state does, however, affect the overall

amplitude of these oscillations, but only through the behavior of the system very near the

surface. The greater the probability of finding two nearby particles close to the surface, the

greater the amplitude, since the wavefunction,

|Ψ|2 ∝ |A(x)|2, r → 0

∝ |α|2, r → 0, x→ 0,

according to Eqs. 2.6 and 2.23.

We also hope that these calculations may be useful if some systematic connection be-

tween the contact for few-body states and that for many-body states is found in the future

(for example, perhaps if a gas of such states near a surface is stable).
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Part II

Efimov Effect
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CHAPTER 4

EFIMOV TRIMER CONTACTS AT THE THREE ATOM THRESHOLD

As we have discussed previously (see Section 1.5), a system of three bosons interacting

via zero-range forces can form a three-body bound state, known as an Efimov trimer, with

properties that depend on just two parameters derived from the inter-particle potential: the

scattering length (which describes the low-energy scattering of two partcles, see Section

1.2) and the Efimov parameter (which specifies the phase shift due to three-particle scatter-

ing at low energy). The signature of this state has been observed experimentally in bosonic

systems ranging from three atoms to millions, and a detailed understanding of its prop-

erties has helped explain resonances and log-periodic oscillations observed in many-body

systems.

In this thesis, we have already investigated the importance of the contact, first defined by

Tan, as a microscopic parameter that relates the short distance two-body or three-body cor-

relations in a system to its macroscopic properties, including its internal energy, pressure,

rate of transition between internal states, and response to small changes in the inter-particle

potential. Because the Efimov effect has such notable three-body correlations, we would

expect that the associated contact plays an important role in any many-body states strongly

influenced by the presence of the Efimov effect. Calculating the contact of a state, though,

remains a difficult challenge. The most common approach in the literature is to first find the

wavefunction of a system and from there extract the contacts. However, the wavefunction

can rarely be found analytically, which limits the availability of analytical calculations of

the contact. For example, the only point at which the wavefunction of the Efimov trimer

is known in closed form is at the unitarity limit (scattering length, a → ±∞) and thus the

two-body contact of the Efimov trimer is known analytically only at unitarity [75]. How-

ever, this limit is not the only interesting point for Efimov physics. Another exceptional set
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of points is the three atom threshold, which is reached at a set of critical negative scattering

lengths where the least-bound Efimov trimer disappears into the continuum of three free

particles. Experimentally, these points have been used to identify Efimov trimer resonances

and measure their scaling ratio due to the easily observable peak in the three-body loss rate

[82, 83]. The three-body loss rate itself of course depends on how particles are correlated

at short distances, where three particles approach each other, and thus has been shown to

be proportional to the three-body contact of the state [28]. We therefore hope that a pre-

cise calculation of the two- and three-body contacts of the Efimov trimer at the three-atom

threshold will be useful when investigating these important points.

In this chapter we will demonstrate that the Efimov trimer state can be characterized by

solving a particular singular integral equation, similar in form to that of Chapter 2. We will

construct the solution to a transformed version of this integral equation when the binding

energy of the trimer is zero. We find a solution to the three-boson problem at zero binding

energy and negative scattering using the main idea of Ref. [23], although we begin from a

more general starting point. By analyzing this solution and its governing equation, we show

how to find an analytical expression for the trimer two-body contact in terms of the binding

wavenumber at unitarity (the so-called three-body parameter) and use this expression to

also find the trimer three-body contact at the three atom threshold.

4.1 A Singular Integral Equation for the Efimov Trimer

Consider a system of 3 bosonic particles with positions denoted x, y, z ∈ R3, respectively.

If the inter-particle potential, with characteristic length scale r0, decreases at large sepa-

ration faster than an inverse quadratic potential, then for energies where the characteristic

wavenumber, k, of the system is small (and therefore the characteristic size is large) such

that kr0 << 1 and the thermal de Broglie wavelength is large such that Λ >> r0, then we

expect that the system properties should depend only weakly on the particular shape of the

inter-particle potential. It should then be possible to categorize potentials into equivalence
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classes such that their properties are approximately the same below the appropriate scale.

For the case of two interacting particles, the interacting Schrödinger Equation can be

replaced by the free Schrödinger equation supplemented with the Bethe-Peierls boundary

condition, Eq. 1.14, which results in a model that depends only on the scattering length of

the underlying potential. Rather than developing approximate results based on a specific

choice of potential, we instead work in this model where the scattering length is the only

relevant two-body parameter at all scales, with the understanding that the results will only

be physically meaningful at scales large compared to that of the potential.

In the case of three particles, the same procedure applies modulo the complication

that the space of possible models is larger and requires that both the scattering length and

an additional three-body parameter be specified. This three-body parameter specifies the

behavior of the wavefuntion in the region of configuration space where all three particles

are interacting [27].

We implement the Bethe-Peierls boundary condition in the same manner as we have

previously. In particular, our system of 3 identical bosons obeys the free Schrödinger equa-

tion so long as no pair of particles is coincident,

− ~2

2m

(
∇2 − E

)
ψ(x, y, z) = 0, (4.1)

with x, y, z ∈ R3 the positions of the three identical bosons,

∇2 =
3∑
i=1

∂2

∂x2
i

+
∂2

∂y2
i

+
∂2

∂z2
i

,

and |x − y| > 0, |x − z| > 0, |y − z| > 0. We can describe this system using any of the

121



three equivalent sets of Jacobi coordinates defined by

R =
1

3
(x+ y + z)

s1 = y − z, t1 =
y + z

2
− x

s2 = z − x, t2 =
z + x

2
− y

s3 = x− y, t3 =
x+ y

2
− z

where R is the center of mass of the system, each of the si is the separation between one

pair of particles, and the ti are the position of the third particle relative to the center of mass

of the first two. The Laplacian in the Jacobi coordinates labeled by j becomes

∇2 =
3∑
i=1

1

3

∂2

∂R2
j,i

+
3

2

∂2

∂t2j,i
+ 2

∂2

∂s2
j,i

.

As we have done in the two-body case, we augment the free Schrödinger equation with

a non-homogeneous term that is relevant only when at least two of the atoms are coincident:

−
(
∇2 − 2κ2

)
φ(t, s, R) =

3∑
i=1

f(R, ti)δ(si), (4.3)

The weight f must match the Bethe-Peierls boundary condition,

φ(t, s, R) ∼s→0 f(R, t)

(
1

s
− 1

a

)
, (4.4)

and we will find the consistency condition that f must satisfy in this section. The general

strategy will be analogous to previous chapters. First, we write a formal solution to the

inhomogeneous Schrödinger equation as an integral involving f and the Green’s function

for the free Schrödinger equation. We then analyze the behavior of that solution in the

region where two particles are nearly coincident, and match this behavior to the Bethe-
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Peierls boundary condition. We find a match only if f satisfies a certain linear, singular

integral equation, and finding a solution to this equation, and by extension the full problem,

will occupy the later sections of this chapter.

As a first step, we can eliminate the dependence on the center of mass coordinate, R. If

we make the ansatz that

φ(t, s, R) = D(R)Φ(t, s),

then this factorization must also hold when two particles coincide, and therefore

f(R, ti) = D(R)G(ti).

Substituting this into Eq. 4.3 we can rearrange so that

∇2
RD(R)

3D(R)
= − 1

Φ(t1, s1)

[(
3

2
∇2
t + 2∇2

s − 2κ2

)
Φ(t1, s1) +

3∑
i=1

G(ti)δ(si)

]
.

Since the left-hand side is a function solely of R, while the right-hand side is a function

solely of t and s, they are equal if and only if both sides are, in fact, constant:

∇2
RD(R) = 3k2D(R),

−
(

3

2
∇2
t + 2∇2

s − 2β2

)
Φ(t, s) =

3∑
i=1

G(ti)δ(si), (4.5)

with 2β2 ≡ 2κ2−k2. The center of mass motion is unimportant for our purposes, so we will

not mention C(R) further. Eq. 4.5 is another example of the six dimensional Helmholtz

equation, the Green’s function of which is derived in Appendix A. By linearity, we can

write the complete solution as a sum over three terms, each of which corresponds to one of
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the inhomogeneous terms:

Φ(t, s) = η
3∑
i=1

∫
R6

K2

(
β
√

4
3
(ti − t′)2 + (si − s′)2

)
2
3
(ti − t′)2 + 1

2
(si − s′)2

G(t′)δ(s′) d3t′ d3s′

= η
3∑
i=1

∫
R6

K2

(
β
√

4
3
(ti − t′)2 + s2

i

)
2
3
(ti − t′)2 + 1

2
s2
i

G(t′) d3t′. (4.6)

We must then determine the behavior of this solution as one of the si → 0, and we will

make use of some properties of the modified Bessel functions listed in Appendix G. Due to

the bosonic symmetry, which si we choose is irrelevant, as the behavior will be the same in

all 3 cases. Suppose that we choose s1, we can rewrite our solution so that it is expressed

solely in terms of s ≡ s1 and t ≡ t1, and we find that

Φ(t, s) = Φ1(t, s) + Φ2(t, s), (4.7)

where

Φ1(t, s) ≡ η

∫
R3

[K2

(
β
√

4
3
(t2 + t · t′ + t′2) + 2s · t′ + s2

)
2
3
(t2 + tt′ + t′2) + s · t′ + 1

2
s2

+
K2

(
β
√

4
3
(t2 + t · t′ + t′2)− 2s · t′ + s2

)
2
3
(t2 + t · t′ + t′2)− s · t′ + 1

2
s2

]
G (t′) d3t′, (4.8)

Φ2(t, s) ≡ η

∫
R3

K2

(
β
√

4
3
(t− t′)2 + s2

)
2
3
(t− t′)2 + 1

2
s2

G (t′) d3t′. (4.9)

To state an important result, we first need to introduce a new notation,

=

∫ c

a

f(x)

(x− b)2
dx ≡ lim

ε→0

[ ∫ b−ε

a

f(x)

(x− b)2
dx+

∫ c

b+ε

f(x)

(x− b)2
dx− 2f(b)

ε

]
.

The dashed integral represents a Hadamard finite part [84], which is identical to the Rie-

mann integral for Riemann integrable functions, but assigns a finite value to integrals of
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functions with quadratic singularity at b ∈ (a, c) and f continuous. We can the state the

following useful result,

Lemma 4.1.

Φ(t, s) =
3
√

3ηπ

2β

(
Π(t)

s
+ Λ(t)

)
+O(s), s→ 0, (4.10)

with

Π(t) ≡ π

β
G(t)

Λ(t) ≡ =

∫ ∞
0

[K1

(
2β√

3

∣∣|t| − |t′|∣∣)∣∣|t| − |t′|∣∣ −
K1

(
2β√

3

∣∣|t|+ |t′|∣∣)∣∣|t|+ |t′|∣∣
− 4

K1

(
2β√

3

√
t2 + t′2 + |t||t′|

)
√
t2 + t′2 + |t||t′|

+ 4
K1

(
2β√

3

√
t2 + t′2 − |t||t′|

)
√
t2 + t′2 − |t||t′|

]
t′G (t′)

t
d|t′|.

Proof. Considering the Φ1 contribution of Eq. 2.66, at least when t 6= 0, the integrand is

bounded for all t′ and we may exchange the integral with the limit and simply set s = 0:

Φ1(t, s) = lim
s→0

η

∫
R3

[K2

(
β
√

4
3
(t2 + t · t′ + t′2) + 2s · t′ + s2

)
2
3
(t2 + t · t′ + t′2) + s · t′ + 1

2
s2

+
K2

(
β
√

4
3
(t2 + t · t′ + t′2)− 2s · t′ + s2

)
2
3
(t2 + t · t′ + t′2)− s · t′ + 1

2
s2

]
G (t′) d3t′

= 3η

∫
R3

K2

(
β
√

4
3
(t2 + |t||t′| cos θ + t′2)

)
t2 + |t||t′| cos θ + t′2

G (t′) d3t′

(4.11)

At this point, we will specialize to s-wave states by assuming that G(t) is independent of

the direction of t and so we can carry out the angular integrals,

Φ1(t, s) =
6
√

3ηπ

β

∫ ∞
0

[t′K1

(
β
√

4
3
(t2 − |t||t′|+ t′2)

)
t
√
t2 + t′2 − |t||t′|

−
t′K1

(
β
√

4
3
(t2 + |t||t′|+ t′2)

)
t
√
t2 + t′2 + |t||t′|

]
G (t′) d|t′|. (4.12)
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For the Φ2(t, s) contribution we will make the same assumption and integrate out the

angles first,

Φ2(t, s) = lim
s→0

[ΦS(t, s) + ΦR(t, s)] , (4.13)

where

ΦS(t, s) ≡ 3πη

β

∫ ∞
0

t′K1

(
β
√

4
3
(|t| − |t′|)2 + s2

)
t
√

4
3
(|t| − |t′|)2 + s2

G (t′) d|t′| (4.14)

ΦR(t, s) ≡ −3πη

β

∫ ∞
0

t′K1

(
β
√

4
3
(|t|+ |t′|)2 + s2

)
t
√

4
3
(|t|+ |t′|)2 + s2

]
G (t′) d|t′|. (4.15)

The integrand of ΦR again has no singularity as s → 0 and so we can again pass the limit

inside the integral for that term. For ΦS , however, we will treat the singularity by dividing

the region of integration into two components. Let

s << ε <<
1

β
,

then divide the region of integration into |t| − |t′| > ε and |t| − |t′| < ε:

ΦS(t, s) =
3ηπ

β

∫
|t|−|t′|<ε

t′K1

(
β
√

4
3
(|t| − |t′|)2 + s2

)
t
√

4
3
(|t| − |t′|)2 + s2

G (t′) d|t′|

+
3ηπ

β

∫
|t|−|t′|>ε

t′K1

(
β
√

4
3
(|t| − |t′|)2 + s2

)
t
√

4
3
(|t| − |t′|)2 + s2

G (t′) d|t′|.

When |t| − |t′| > ε, the integrand remains bounded for all s and so we again exchange the

integral and limit. However, within |t| − |t′| < ε, we cannot neglect s compared to |t| − |t′|
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throughout the entire region. We can, though, make two other approximations,

G (t′) = G (t) +O(ε), t′ → t

t′K1

(
β
√

4
3
(|t| − |t′|)2 + s2

)
t
√

4
3
(|t| − |t′|)2 + s2

=
|t′|

β|t|(4
3
(|t| − |t′|)2 + s2)

+O(log βε), t′ → t, s→ 0

since within this region β
√

4
3
(|t| − |t′|)2 + s2 ∼ O(βε) << 1. Applying these approxima-

tions to ΦS ,

∫
|t|−|t′|<ε

t′K1

(
β
√

4
3
(|t| − |t′|)2 + s2

)
t
√

4
3
(|t| − |t′|)2 + s2

G (t′) d|t′|

= G (t)

∫
|t|−|t′|<ε

|t′|
β|t|(4

3
(|t| − |t′|)2 + s2)

d|t′|+O(ε).

We can perform this integral and then take a series of limits, first letting s → 0 and then

letting ε→ 0 in such a way that s
ε
→ 0, and we find that the only non-zero contributions to

this integral in the limit are

lim
s→0

[
3π

β

∫
|t|−|t′|<ε

t′K1

(
β
√

4
3
(|t| − |t′|)2 + s2

)
t
√

4
3
(|t| − |t′|)2 + s2

G (|t′|) d|t′|
]

∼ 3
√

3π2G(|t|)
2β2s

− 9πG(|t|)
2εβ2

. (4.16)

Therefore, combining the results of Eq. 4.16 with the straightforward limit of ΦR, we find

127



that

Φ2(t, s) =
3
√

3ηπ2G(|t|)
2β2s

− 3πη

β

∫ ∞
0

t′K1

(
β
√

4
3
(|t|+ |t′|)2

)
t
√

4
3
(|t|+ |t′|)2

G (t′) d|t′|

+ lim
ε→0

[
3ηπ

β

∫
|t|−|t′|>ε

t′K1

(
β
√

4
3
(|t| − |t′|)2

)
t
√

4
3
(|t| − |t′|)2

G (t′) d|t′| − 9ηπG(|t|)
2εβ2

]

+O(s). (4.17)

It is easy to check that

=

∫ ∞
0

[K1

(
2β√

3

∣∣|t| − |t′|∣∣)∣∣|t| − |t′|∣∣ t′G (t′)

t
d|t′|

= lim
ε→0

[ ∫
|t|−|t′|>ε

t′K1

(
β
√

4
3
(|t| − |t′|)2

)
t
√

(|t| − |t′|)2
G (t′) d|t′| − 3G(|t|)

2εβ

]
.

If we then combine the Φ1 contributions from Eq. 4.12 with those of Φ2 from Eq. 4.17 we

find that

Φ(t, s) =
3
√

3ηπ

2β

[
πG(|t|)
βs

−
∫ ∞

0

t′K1

(
β
√

4
3
(|t|+ |t′|)2

)
t
√

(|t|+ |t′|)2
G (|t′|) d|t′|

+ 4

∫ ∞
0

[t′K1

(
2√
3
β
√
t2 + t′2 − |t||t′|

)
t
√
t2 + t′2 − |t||t′|

−
t′K1

(
2√
3
β
√
t2 + t′2 + |t||t′|

)
t
√
t2 + t′2 + |t||t′|

]
G (|t′|) d|t′|

+ =

∫ ∞
0

t′K1

(
2β√

3

∣∣|t| − |t′|∣∣)
t
∣∣|t| − |t′|∣∣ G (t′) d|t′|

]
+O(s), s→ 0, (4.18)

so that finally, as desired,

Φ(t, s) =
3
√

3ηπ

2β

(
Π(t)

s
+ Λ(t)

)
+O(s), s→ 0, (4.19)
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The Bethe-Peierls condition for this system can be written as

Φ(t, s) = B(t)

(
1

s
− 1

a

)
, (4.20)

and by comparing this to the result of Lemma 4.1 we find that

B(t) =
3
√

3ηπ2

2β2
G(t), (4.21)

and further that

πG(t)

βa
= =

∫ ∞
0

[t′K1

(
2β√

3

∣∣|t|+ |t′|∣∣)
t
∣∣|t|+ |t′|∣∣ −

t′K1

(
2β√

3

∣∣|t| − |t′|∣∣)
t
∣∣|t| − |t′|∣∣

+ 4
t′K1

(
2β√

3

√
t2 + t′2 + |t||t′|

)
t
√
t2 + t′2 + |t||t′|

− 4
t′K1

(
2β√

3

√
t2 + t′2 − |t||t′|

)
t
√
t2 + t′2 − |t||t′|

]
G (t′) d|t′|.

Simplifying by writing in terms of A( 2√
3
|t|) ≡ t G(t) and making the substitutions u =

2√
3
|t|, u′ = 2√

3
|t′|, we finally arrive at the final form of the integral equation that must be

satisfied for the Efimov effect,

π

βa
A (u) = =

∫ ∞
0

[
K1

(
β
∣∣u+ u′

∣∣)∣∣u+ u′
∣∣ −

K1

(
β
∣∣u− u′∣∣)∣∣u− u′∣∣

+ 4
K1

(
β
√
u2 + u′2 + uu′

)
√
u2 + u′2 + uu′

− 4
K1

(
β
√
u2 + u′2 − uu′

)
√
u2 + u′2 − uu′

]
A (u′) du′. (4.22)

This integral equation allows for very accurate calculations of the binding energy of

Efimov trimers at arbitrary scattering length via methods similar to those in Section 2.4.

Since it is a single relationship for a function of just one variable, it can be solved much

more efficiently than numerical calculations of the full wavefunction or hyperspherical

approaches that must use several coupled equations. It can also be used to find the source

distribution and reconstruct the spatial profile of an Efimov trimer. In this work, however,

we will focus on the zero binding energy limit of this relation and its solution.
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4.2 Solution for Zero Energy Trimers

In the limit that the binding energy of the trimer approaches zero while the scattering length

remains finite (as opposed to the case of weakly bound trimers at unitarity where β → 0,

but βa→∞), our integral equation reduces to the simplified form:

π

a
A (u) = =

∫ ∞
0

[
1(

u+ u′
)2 −

1(
u− u′

)2 +
4

u2 + u′2 + uu′
− 4

u2 + u′2 − uu′

]
A (u′) du′.

(4.23)

If we rewrite this relation in terms of the Mellin transform,

A(u) =
1

2πi

∫ c+i∞

c−i∞
X(ν)

(
u

|a|

)−ν
dν, (4.24)

which we will later abbreviate by

X(ν) =M(A, ν).

Substituting into 4.23, we find that

∫ c+i∞

c−i∞
X(ν)

(
u

|a|

)−ν
dν

= sign(a)

∫ c+i∞

c−i∞
ν cot

(πν
2

)(
1−

8 sin
(
πν
6

)
√

3ν cos
(
πν
2

))X(ν)

(
u

|a|

)−ν−1

dν,

provided at least that c ∈ (−2, 2) so that the contour in the complex plane lies entirely

within the strip of analyticity −2 < Re(ν) < 2. So long as we can choose c so that the

Mellin transform X(ν) has no poles in the region c− 1 < Re(ν) < c, then we can displace
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the contour of the integral on the left hand side so that

∫ c+i∞

c−i∞
X(ν)

(
u

|a|

)−ν
dν

= sign(a)

∫ c−1+i∞

c−1−i∞
ν cot

(πν
2

)(
1−

8 sin
(
πν
6

)
√

3ν cos
(
πν
2

))X(ν)

(
u

|a|

)−ν−1

dν.

Then we relabel ν → ν − 1 on the right-had side

∫ c+i∞

c−i∞
X(ν)

(
u

|a|

)−ν
dν

= sign(a)

∫ c+i∞

c−i∞
(ν − 1) cot

(
π(ν − 1)

2

)

×

1−
8 sin

(
π(ν−1)

6

)
√

3(ν − 1) cos
(
π(ν−1)

2

)
X(ν − 1)

(
u

|a|

)−ν
dν.

Since the Mellin transform is invertible within the fundamental strip, we have that

X(ν) = sign(a)(ν − 1) cot

(
π(ν − 1)

2

)1−
8 sin

(
π(ν−1)

6

)
√

3(ν − 1) cos
(
π(ν−1)

2

)
X(ν − 1),

provided that we take ν to be within −1 < Re(ν) < 1 so that the integrals converge in the

usual sense. For negative scattering lengths,

X(ν + 1) = −ν cot
(πν

2

)(
1−

8 sin
(
πν
6

)
√

3ν cos
(
πν
2

))X(ν). (4.25)

A solution to this functional relation can be constructed by considering the various
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factors:

X1(ν + 1) = ν X1(ν),

X2(ν + 1) = cot
(πν

2

)
X2(ν),

X3(ν + 1) =

(
8 sin

(
πν
6

)
√

3ν cos
(
πν
2

) − 1

)
X3(ν).

The first two relations are well known and can be solved immediately,

X1(ν) = Γ(ν),

X2(ν) = sin
(πν

2

)
.

For the third, we use the Weierstrass-Hadamard Factorization Theorem discussed in Ap-

pendix F. This allows us to rewrite

(
8 sin

(
πν
6

)
√

3ν cos
(
πν
2

) − 1

)
= −

∞∏
p=0

ν2 − u2
p

ν2 − b2
p

,

where the bp are the poles of the function being represented, bp = 2p + 1, p ∈ N, the up

are the set of zeroes, and u0 = is0 is the only complex zero with positive imaginary part.

All the remaining up are the positive zeroes arranged in increasing order.

We will solve this third relation factor by factor as we first demonstrated in Section

2.3.3. The same discussion of how to accommodate the negative sign applies to this case

as it did the case of how to solve Equation 2.41. Associating this sign with any factor

except that corresponding to u0 will cause the solution to have a sequence of poles within

the necessary critical strip, −2 < Re(ν) < 2. Whereas, associating it with the u0 factor

leaves the strip 0 < Re(ν) < 2 free of poles and thus wide enough to be consistent with

displacing the contour as we have done above. Combining these elements, we then have
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the full solution, which is equivalent to that of [23],

X(ν) = F (ν)
∞∏
p=1

Γ(up + ν)Γ(1 + bp − ν)

Γ(1 + up − ν)Γ(bp + ν)
, (4.26)

F (ν) ≡ Γ(ν) sin
(πν

2

)Γ(−is0 + ν)Γ(is0 + ν)Γ(2− ν)

Γ(1 + ν)
. (4.27)

From this representation of the solution, we can identify a useful reflection identity,

similar to that observed in the Riemann zeta function. Replacing ν → 1 − ν interchanges

the numerator and denominator of the infinite product and therefore

X(ν)X(1− ν) = F (ν)F (1− ν)

=
π3

cosh (2πs0)− cos (2πν)
.

(4.28)

This solution and the reflection relation that follows from it will be integral to our

calculation of the contacts in the following sections.

4.3 The Two-body Contact at Threshold

The function X(ν) completely determines the wavefunction of the Efimov trimer at thresh-

old and so in principle all of the properties of the state are known. However, calculating

such properties with the infinite product representation is difficult since there is no closed-

form representation of the zeroes, up. However, some properties depend on the solution in

a combination that removes any need to consider the infinite product by using the reflec-

tion formula Eq. 4.28 and the recurrence relation Eq. 4.25. We are then left to compute

the values of a set of integrals in the complex ν plane involving only elementary meromor-

phic functions, all of which can be evaluated by the residue theorem. One such property is

the two-body contact, which characterizes the probability that two atoms closely approach

each other.

Letting n̂(~r) ≡ ψ†(~r)ψ(~r) be the number density operator, then the contact can be

133



found from the pair correlation function [25, 28]

〈n̂(x)n̂(y)〉 = 6

∫
R3

|ψ(x, y, z)|2 d3z

=
C2

16π2|x− y|2
, x→ y,

(4.29)

where

C2 ≡ lim
k→∞

k4n(k)

n(k) = 3

∫
R3

∫
R3

∣∣∣ψ̃(k, k′, k′′)
∣∣∣2 d3k′

(2π)3

d3k′′

(2π)3

is the single-particle momentum distribution normalized such that

∫
R3

n(k)
d3k

(2π)3
= 3.

By applying the Bethe-Peierls boundary condition to Eq. 4.30 we can calculate

〈n̂(x)n̂(y)〉 =
81|η|2π4

2β4|x− y|2

∫
R3

|G (|t|)|2 d3t, (4.30)

which then leads to

C2 =
648|η|2π6

β4

∫
R3

|G (|t|)|2 d3t

=
2592|η|2π7

β4

∫
R+

∣∣∣∣A( 2√
3
|t|
)∣∣∣∣2 d|t|

=
1296
√

3|η|2π7

β4

∫ ∞
0

|A (y)|2 dy.

(4.31)

We are then left to calculate both the L2 norm of the function A(y) and the normaliza-

tion constant |η|2. We will tackle these in turn.
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4.3.1 The L2 norm of A(y)

By the Parseval theorem for the Mellin transform [85], we have that

∫ ∞
0

|A(y)|2 dy =
1

2πi|a|

∫ c+i∞

c−i∞
X(ν)X(1− ν) dν, (4.32)

with 0 < c < 1. By Eq. 4.28, this combination is known in closed form and we find

1

2πi|a|

∫ c+i∞

c−i∞
X(ν)X(1− ν) dν =

1

2πi|a|

∫ c+i∞

c−i∞

π3

cosh (2πs0)− cos (2πν)
dν

=
π2s0

|a| sinh 2πs0

(4.33)

For now, we will merely store this calculation so that later, after we have found the

normalization constant, it can be used in Eq. 4.31 to find the two-body contact.

4.3.2 The normalization constant at threshold

Taking the Fourier transform of our formal solution for the wavefunction, Eq. 4.6, we find

that

Φ̃(ks, kt) =
12
√

3ηπ3

β2(3
2
k2
t + 2k2

s)

(
G̃ (kt) + G̃

(
ks −

kt
2

)
+ G̃

(
ks +

kt
2

))
(4.34)

We can find the normalization constant by invoking the Plancherel Theorem,

∫
R3

∫
R3

|Φ(t, s)|2 d3ti d
3si =

∫
R3

∫
R3

∣∣∣Φ̃(kt, ks)
∣∣∣2 d3kt

(2π)3

d3ks
(2π)3

.

Substituting the expression in Eq. 4.34 into the Plancheral Theorem, we can rewrite G̃ in

terms of its Fourier transform and integrate each of the resulting 9 terms using spherical
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coordinates to find that

∫
R3

∫
R3

∣∣∣Φ̃(kt, ks)
∣∣∣2 d3kt

(2π)3

d3ks
(2π)3

=
9
√

3|η|2π3

2β4

∫
R6

(
3G(t)G(t′)

t2 + t′2 − 2t · t′
+

4G(t)G(t′)

t2 + t′2 − t · t′
+

2G(t)G(t′)

t2 + t′2 + t · t′

)
d3t d3t′

=
81
√

3|η|2π5

β4

∫ ∞
0

∫ ∞
0

(
log

(
y + y′

y − y′

)
+ 4ArcTanh

(
y y′

y2 + y′2

))
A∗ (y)A (y′) dy dy′.

(4.35)

Therefore, normalizing the wavefunction to unity we find that

|η|2 =

(
81
√

3π5

β4

∫ ∞
0

∫ ∞
0

h(y, y′)A∗ (y)A (y′) dy dy′

)−1

, (4.36)

where

h(y, y′) ≡
(

log

(
y + y′

y − y′

)
+ 4ArcTanh

(
y y′

y2 + y′2

))
In order to evaluate this expression, we need to recast it in terms of the Mellin trans-

form, X(ν), for which we have an explicit solution. Given that the functions above are not

particularly simple, it may seem far-fetched that rewriting using the Mellin transform cre-

ates any great simplification. However, the clever observer may discover that this integral

is in convolution form for the Mellin transform. We can therefore reorganize by defining

H(y′) ≡
∫ ∞

0

(
log

(
1 + y′

y

1− y′

y

)
+ 4ArcTanh

(
y′

y

1 + y′2

y2

))
(yA∗ (y))

dy

y

and replace A(y′) with its Mellin transform so that the normalization constant is given by

|η|−2 =
81
√

3π5

β4

1

2πi

∫ c+i∞

c−i∞
X(ν)

∫ ∞
0

H(y′)

(
y′

|a|

)−ν
dy′ dν

=
81
√

3π5

β4

1

2πi

∫ c+i∞

c−i∞
X(ν)M(H, 1− ν) dν.

Recall that we have determined earlier that we must choose 0 < c < 1. Because H is a
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Mellin convolution, its transform is a product in the Mellin space,

M(H, 1− ν) =M
(

log

(
1 + y

1− y

)
+ 4ArcTanh

(
y

1 + y2

)
, 1− ν

)
M(yA(y), 1− ν)

=

(
2π
(√

3 sin
(
πν
6

)
− cos

(
πν
6

))
(ν − 1) sin

(
πν
2

) −
π cot

(
πν
2

)
ν − 1

)
X(2− ν).

Further, note that we can use the recurrence relation Eq. 4.25 to write

X(2− ν) =

(
(ν − 1) tan

(πν
2

)
+

8 cos
(
πν
6

+ π
3

)
√

3 cos
(
πν
2

) )X(1− ν).

and therefore the normalization constant is given by the integral

|η|−2 =
81
√

3π5

β4

1

2πi

∫ c+i∞

c−i∞
(h1(ν) + h2(ν) + h3(ν)− π)X(ν)X(1− ν) dν

=
81
√

3π5

β4

1

2πi

∫ c+i∞

c−i∞

π3 (h1(ν) + h2(ν) + h3(ν)− π)

cosh 2πs0 − cos 2πν
dν

=
81
√

3π5

β4
J

where

J ≡ 1

2πi

∫ c+i∞

c−i∞

π3 (h1(ν) + h2(ν) + h3(ν)− π)

cosh 2πs0 − cos 2πν
dν,

h1(ν) ≡
2π
(√

3 sin
(
πν
6

)
− cos

(
πν
6

))
cos
(
πν
2

) ,

h2(ν) ≡ −
8π cos

(
πν
6

+ π
3

)
√

3(ν − 1) sin
(
πν
2

) ,
h3(ν) ≡

16π
(√

3 sin
(
πν
3

)
+ cos

(
πν
3

)
− 2
)

√
3(ν − 1) sin (πν)

.

We are then left with four integrals to perform to compute J . The simplest, is propor-
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tional to a result that we have already established,

∫ c+i∞

c−i∞

−π4

cosh 2πs0 − cos 2πν
dν = − 2π4is0

sinh (2πs0)
. (4.37)

The second,

∫ c+i∞

c−i∞

h1(ν)π3

cosh 2πs0 − cos 2πν
dν =

∫ c+i∞

c−i∞

2π4
(√

3 sin
(
πν
6

)
− cos

(
πν
6

))
cos
(
πν
2

)
(cosh 2πs0 − cos 2πν)

dν,

can be established by dividing the integrand into even and odd parts, h+
1 (ν) and h−1 (ν),

respectively:

h+
1 (ν) ≡

−2π4 cos
(
πν
6

)
cos
(
πν
2

)
(cosh 2πs0 − cos 2πν)

,

h−1 (ν) ≡
2
√

3π4 sin
(
πν
6

)
cos
(
πν
2

)
(cosh 2πs0 − cos 2πν)

.

Note for both parts that the integrand is meromorphic with poles due to the factor sec
(
πν
2

)
at ν = 2j + 1, j ∈ Z and also due to the factor (cosh 2πs0 − cos 2πν)−1 at ν = ±is0 +

j, j ∈ Z. For the odd part, consider a rectangular rectangular contour in the complex ν

plane centered at the origin,

lim
R→∞

[ ∫ c+iR

c−iR
h−1 (ν)X(ν)X(1− ν) dν +

∫ −c+iR
c+iR

h−1 (ν)X(ν)X(1− ν) dν

+

∫ −c−iR
−c+iR

h−1 (ν)X(ν)X(1− ν) dν +

∫ c−iR

−c−iR
h−1 (ν)X(ν)X(1− ν) dν

]
= 2πi

∑
ν=±is0

Res(h−1 (ν)X(ν)X(1− ν)).

The integrand is exponentially decreasing for large imaginary part, and therefore the contri-

butions from the sides with fixed imaginary part vanish in the limit. Further, the integrand

is odd and so the contributions from sides with fixed but opposite real part are identical.
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Therefore,

∫ c+i∞

c−i∞
h−1 (ν)X(ν)X(1− ν) dν = πi

∑
ν=±is0

Res(h−1 (ν)X(ν)X(1− ν))

=
3iπ4s0

4 sinh (2πs0)
.

The even portion of the integrand is more difficult because there is no clear way to ex-

ploit the periodicity to relate a single integral to a finite sum of poles. However, if we

could close our vertical line with a semi-circle in the right half-plane then the sum of these

two contributions would be given by an infinite sum over all poles to the right of our line.

Unfortunately, the integrand does not necessarily decrease for large real ν and so the con-

tribution from the infinite arc cannot immediately be neglected. We can remedy this defect

by considering the more general integral,

I(α) =

∫ c+i∞

c−i∞
h+

1 (ν)X(ν)X(1− ν)e−αν dν.

Let c = 1
2

and note that for α ≥ 0

∫ 1
2

+i∞

1
2
−i∞

∣∣h+
1 (ν)X(ν)X(1− ν)e−αν

∣∣ dν ≤ ∫ ∞
−∞

1√
3 cosh

(
πy
3

)
− 1

dy

=
6
√

2

π
arctan

(
1 +
√

3√
2

)
,

and therefore by dominated convergence we have that

∫ c+i∞

c−i∞
h+

1 (ν)X(ν)X(1− ν) dν = lim
α→0

I(α)

To compute I(α), then, we can close the contour with a semi-circle in the right half-plane

and the circular arc will now give 0 contribution due to the exponential decrease in the real

139



and imaginary directions. Therefore,

I(α) = −2πi

( ∞∑
j=1

Res
(
h+

2 (j ± is0)X(j ± is0)X(1− j ± is0)e−α(j±is0)
)

+
∞∑
j=0

Res
(
h+

2 (2j + 1)X(2j + 1)X(1− 2j + 1)e−α(2j+1)
))

.

These sums appear daunting, but can be computed thanks to the periodicity of the integrand.

Evaluating and taking the limit, we find that

I(0) =
iπ3
(
cosh

(
πs0
3

)
+ 3 cosh

(
2πs0

3

))
√

3 cosh (πs0) sinh2 (πs0)
− 4iπ3

√
3 sinh2 (πs0)

, (4.38)

and therefore the full calculation involving h1(ν) gives

∫ c+i∞

c−i∞
h1(ν)X(ν)X(1− ν) dν =

3iπ4s0

4 sinh (2πs0)
− 4iπ3

√
3 sinh2 (πs0)

+
iπ3
(
cosh

(
πs0
3

)
+ 3 cosh

(
2πs0

3

))
√

3 cosh (πs0) sinh2 (πs0)
(4.39)

Precisely the same procedure can be applied to the integrals involving h2 and h3: mul-

tiply by a convergence factor so that the contour can be closed in the right half-plane, find

the sum over all the residues, then take the limit that the convergence factor goes to 1
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everywhere. Applying this procedure for h2 we have

∫ c+i∞

c−i∞

π3h2(ν)

cosh 2πs0 − cos 2πν
dν =

8π4iarccoth(2)√
3 sinh2 (πs0)

−
8π4i cosh

(
πs0
3

)
3
√

3 sinh (πs0) sinh (2πs0)

(
Ψ

(
is0

3

)
+ Ψ

(
−is0

3

)
− log 4

)
−
(

3i sinh
(πs0

6

)
+
√

3 cosh
(πs0

6

))(
Ψ

(
1

6
+
is0

6

)
+ Ψ

(
1

6
− 5is0

6

)))

+
(

3i cosh
(πs0

6

)
+
√

3 sinh
(πs0

6

))(
Ψ

(
1

3
− is0

6

)
+ Ψ

(
2

3
+
is0

6

))
−

4π4i cosh
(

2πs0
3

)
3
√

3 sinh (πs0) sinh (2πs0)

(
Ψ

(
1

2
+
is0

6

)
+ Ψ

(
1

2
− is0

6

)
−Ψ

(
is0

6

)
−Ψ

(
−is0

6

))
− 2π4i

9 sinh
(
πs0
2

)
sinh (2πs0)

×

[(
3i sinh

(πs0

6

)
−
√

3 cosh
(πs0

6

))(
Ψ

(
1

6
− is0

6

)
+ Ψ

(
1

6
+

5is0

6

))

−
(

3i cosh
(πs0

6

)
−
√

3 sinh
(πs0

6

))(
Ψ

(
2

3
− is0

6

)
+ Ψ

(
1

3
+
is0

6

))]
,

(4.40)

and then for that involving h3,

∫ c+i∞

c−i∞

π3h3(ν)

cosh 2πs0 − cos 2πν
dν = −

16iπ4 log
(

4
3

)
√

3 sinh2 (πs0)

+
16iπ4eπs0√
3 sinh (πs0)

(
Ψ

(
1

2
− is0

2

)
+ Ψ

(
1

2
+
is0

2

)
−Ψ

(
1− is0

2

)
−Ψ

(
1 +

is0

2

))
−

16iπ4 log
(

4
3

)
e−πs0

√
3 sinh (πs0) sinh (2πs0)

[
B− 1

2
(1+i

√
3) (is0, 0) +B 1

2
(−1+i

√
3) (−is0, 0) +

e2πs0
(
B− 1

2
(1+i

√
3) (−is0, 0) +B 1

2
(−1+i

√
3) (is0, 0)

)]
,

(4.41)

where Ψ(x) is the digamma function and Bz(a, b) is the incomplete beta function.

Combining the contributions from Eqs. 4.37, 4.39, 4.40, and 4.41 while simplifying
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leads to the expression

J =δ0

[
6

(
log

256

27
− 1

)
cosh (πs0) + 9 cosh

(πs0

3

)
− 3 cosh

(
2πs0

3

)

+ 2 Re

(
5∑

k=0

c(k)Ψ

(
k + is0

6

))]
,

(4.42)

with

δ0 ≡
2
√

3π3

9 sinh (πs0) sinh (2πs0)
,

c(k) ≡ 4(−1)k+1 + 3 cos

(
π(2k − is0)

3

)
+ cos

(
π(k − 2is0)

3

)
.

Finally for the two-body contact we can calculate,

C2 =
(2π)4s0

J sinh (2πs0)

1

|a|

≈ 24.72 |a−|−1

≈ 16.40κ0,

(4.43)

where we have used the value of the scattering length at the three atom threshold of Ref.

[23] and κ0 is the binding wavenumber of the trimer at unitarity. Note that we have given

an exact formula for the two-body contact, so further digits of precision can be calculated

if required. We give the first few digits here just for easy comparison.

The numerical value we have computed can be compared to the value of the trimer

contact at unitarity, C∞2 ≈ 53.1κ0 [75] and thus the threshold value is over 3 times smaller.

It also contrasts with the threshold value for two particles interacting with a surface, which

we found to be zero by combining the results of Chapters 2 and 3. We also point out that

the methodology demonstrated here is not limited to this particular system. Zero-range

models with discrete scaling symmetry show remarkably similar mathematical structure

across different physical systems, and so we anticipate that the contact at threshold may be
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calculated in a substantially similar way as that shown here.

4.4 Three-body Contact and the Relation between the Contacts and the Binding En-

ergy

The Efimov problem can be completely specified using just two length scales: the scatter-

ing length, a which sets the two-body physics, and the three-body parameter, β0, which

specifies the result of three-particle scattering. There are several equivalent ways to choose

a three-body parameter, including by specifying the scattering phase of the wavefunction in

the region where three particles are nearly coincident. Here, we choose to set it by defining

the binding wavenumber of a particular Efimov trimer at unitarity to be β0, and therefore

the energy will be

lim
a→±∞

E

(
1

β0a

)
= −~2β2

0

m

at unitarity. As we tune away from unitarity, there is only one dimensionless combination

of these two numbers, β0a, and therefore the binding energy must evolve according to a

dimensionless function (∆) of this parameter,

E

(
1

a

)
= −~2β2

0

m
∆

(
1

β0a

)
.

In terms of this function, the derivatives of the binding energy can then be given by

∂E

∂
(
− 1
a

) =
~2β0

m
∆′
(

1

β0a

)
∂E

∂ (log β0)
= β0

∂E

∂β0

= −2~2β2
0

m
∆

(
1

β0a

)
+

~2β0

ma
∆′
(

1

β0a

)
.
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Combining these expressions to eliminate the derivative of ∆ we find the relation

a

2

∂E

∂ (log β0)
− 2

∂E

∂
(
− 1
a

) = aE. (4.44)

We can also replace each derivative term with its equivalent in terms of the contact,

∂E

∂
(
− 1
a

) =
~2C2

8πm
,

∂E

∂ (log β0)
= −2~2C3

m
,

E = −~2β2

m
,

therefore

C3 +
C2

4πa
= β2. (4.45)

At the trimer threshold, β = 0 and therefore the three-body contact is given by

C3 = − C2

4πa

≈ 0.866κ0.

(4.46)

At unitarity, the three-body contact is by definition equal to the binding wavenumber.

At threshold, then, the value is quite similar: it has changed by only about 14%. Again

this contrasts strongly with the case of two particles interacting with a surface, where the

three-body contact will be zero at threshold.

4.5 Conclusion

Within this chapter, we have showed how the methods developed in Chapter 2 can similarly

be applied to the Efimov effect. We derived a singular integral equation, constructed a

solution at zero binding energy, and then used that solution to find the two- and three-body

contacts at this threshold.

144



As presented, these results deepen the understanding of the Efimov effect and its param-

eters. They allow for very precise calculations of the sequence of trimer binding energies

at arbitrary scattering length and also for mapping the spatial structure of Efimov trimers.

When considering our calculations of the contact, a precise connection between the con-

tact of Efimov trimers, and those of an interacting bose gas has not yet been shown. Still,

we know both that the contacts describe the short-distance correlations in the trimer and

that at the three-atom threshold the loss rate of atoms in a gas is significantly enhanced be-

cause the three free atom state can form a meta-stable trimer before recombining. We hope,

therefore, that the calculation of these contacts will be relevant to further investigations and

measurements at such resonances and similar resonances in other systems.
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APPENDIX A

GREEN’S FUNCTION OF THE 6D HELMHOLTZ EQUATION WITH

HOMOGENEOUS NEUMANN BOUNDARY CONDITIONS

The 6D free time-independent Schrödinger Equation is just a 6D Helmholtz equation,

whose Green’s function satisfies

∇2G (~r, ~r0)− κ2G (~r, ~r0) = δ(6)(~r − ~r0) (A.1)

with the (negative) energy, E = −~2κ2

2m
and ~r, ~r0 ∈ R6. If we make the change of origin

~r → ~r + ~r0 then we are left with a spherically symmetric equation. Taking the Fourier

transform of this relation,

G̃(~k) =

∫
R6

G (~r, 0) e−i
~k·~r d6r,

where the dot product is the Euclidian one. We then have that

(−k2 − κ2) G̃(~k) = 1, (A.2)

and then via the inverse Fourier transform,

G (~r, 0) =
1

(2π)6

∫
R6

−1

k2 + κ2
ei
~k·~r d6k.

This expression can be evaluated using hyperspherical coordinates,

G (~r, 0) =
1

(2π)6

∫ ∞
0

∫
S5

−eikr cos θ1

k2 + κ2
k5 dΩ5 dk,
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where dΩ5 ≡ sin4 θ1 sin3 θ2 sin2 θ3 sin θ4 dθ1 dθ2 dθ3 dθ4 dφ is the differential element of

the 5-sphere, and after completing the angular integrals,

G (~r, 0) = − 1

(2π)3

∫ ∞
0

k3J2(kr)

r2(k2 + κ2)
dk,

where Jν is the Bessel Function of the first kind of order ν. Note that

k2

r
J2(kr) =

∂

∂r

(
1

r

∂J0(kr)

∂r

)
,

so that we can differentiate under the integral sign and rewrite this as

G (~r, 0) =
−1

(2π)3r

∂

∂r

(
1

r

∂

∂r

∫ ∞
0

kJ0(kr)

(k2 + κ2)
dk

)
,

=
−1

(2π)3r

∂

∂r

(
1

r

∂K0(kr)

∂r

)
,

where Kν is the modified Bessel function of the second kind of order ν. Finally, evaluating

the derivatives and restoring the original origin we have

G (~r, ~r0) = −k
2K2(k|~r − ~r0|)
8π3|~r − ~r0|2

. (A.3)

This result is not a unique solution to (A.1), but can be modified by including any linear

combination of solutions to the homogeneous version of the Schrödinger equation. And for

the particular case of homogeneous boundary conditions, whether Dirichlet or Neumann,

this is particularly useful since any linear combination of functions satisfying such homoge-

neous boundary conditions will itself satisfy the same homogeneous boundary conditions.

We will make use of this fact to modify our Green’s function in the next subsection.

If we return to the inhomogeneous Schrödinger equation of Section 2.2 with x, y ∈ R3,

∇2ψ(x, y)− κ2 ψ(x, y) = −8πA
(x1 + x2

2

)
δ(3)(x− y), (A.4)
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a formal solution can be written down using the just derived Green’s function. We write

the the fundamental solution as

G6 (x, y, x′, y′) ≡ −
κ2K2(κ

√
|x− x′|2 + |y − y′|2)

π2 (|x− x′|2 + |y − y′|2)
+Ghom (x, y, x′, y′) ,

where Ghom is a homogeneous solution to the defining equation that will be specified later

to ensure that the boundary conditions are satisfied. By the linearity of the Schrödinger

equation, a solution to Eq. A.4 is then

ψ(x, y) = −
∫
R6

G6 (x, y, x′, y′)A
(x′1 + x′2

2

)
δ(3)(x′ − y′) d3x′ d3y′, (A.5)

= −
∫
R3

G6 (x, y, x′, x′)A(x′1) d3x′, (A.6)

= −
∫
R2

∫ ∞
0

G6 (x, y, x′, x′)A(x′1) d3x′. (A.7)

The final step is justified since A(x) ≡ 0 when x < 0 because the particles are each

confined to the positive half-space.

We will return to the terms involving Ghom to ensure we satisfy the proper boundary

conditions in a moment, but first focus on the already computed contribution to the Green’s

function:

ψ0(x, y) ≡ κ2

π2

∫
R+×R2

K2(κ
√
|x− x′|2 + |y − x′|2)

(|x− x′|2 + |y − x′|2)
A(x′1) dx′1 dx

′
2 dx

′
3.

Since only the Green’s function depends on x′2 and x′3, we can explicitly compute these

integrals, first by shifting the origin parallel to the surface using

x′2 =
x2 + y2

2
+ ρ2, x

′
3 =

x3 + y3

2
+ ρ3,
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which will transform the argument of the Green’s function to a more amenable form,

|x− x′|2 + |y − x′|2 = Ξ2 + 2
(
ρ2

2 + ρ2
3

)
,

where because it is a collection of constants for the purposes of this integral, we define for

convenience

Ξ2 ≡ (x1 − x′1)2 + (y1 − x′1)2 +
1

2

(
(x2 − y2)2 + (x3 − y3)2

)
.

Our integral to compute is then

∫
R2

K2(κ
√

Ξ2 + 2 (ρ2
2 + ρ2

3))

(Ξ2 + 2 (ρ2
2 + ρ2

3))
dρ2 dρ3,

which we will do by a change to polar coordinates ζ2 = 2k2(ρ2
2 + ρ2

3), dρ2 dρ3 = ζ
2k2dζdθ

∫ ∞
0

πK2(
√
κ2Ξ2 + ζ2)

(κ2Ξ2 + ζ2)
ζ dζ =

πK1(κΞ)

κΞ
.

Substituting this into our expression for ψ0, we have a reduced expression for this contri-

bution to the wavefunction;

ψ0(x, y) =
κ

π

∫ ∞
0

K1(κ
√

(x1 − x′1)2 + (x2 − x′1)2 + 1
2

((y1 − y2)2 + (z1 − z2)2))√
(x1 − x′1)2 + (x2 − x′1)2 + 1

2
((y1 − y2)2 + (z1 − z2)2)

A(x′1) dx′1.

Or rewriting in terms of center of mass and relative coordinates,

R ≡ x+ y

2
= {R1, R2, R3}, r ≡ x− y = {r1, r2, r3},

ψ0

(
R +

r

2
, R− r

2

)
=
κ

π

∫ ∞
0

K1

(
k
√

2(R1 − x′)2 + 1
2
(r2

1 + r2
2 + r2

3)
)

√
2(R1 − x′)2 + 1

2
(r1 + r2

2 + r2
3)

A(x′) dx′.
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Enforcing the Neumann boundary conditions

Now, we can return to the question of how to choose Ghom(·) to satisfy our Neumann

boundary conditions. There are two elementary facts that allow us to determine this func-

tion. The first is that if the Green’s function were even in x1 and x2, then it would satisfy

the homogeneous Neumann boundary condition. And the second is that since the homo-

geneous Schrödinger equation for this system has no potential and does not depend on any

odd number of spatial derivatives of the wavefunction in Cartesian coordinates, from any

solution, another can be found by negating any of the coordinates.

With these facts in mind, let σ̂xif(xi) ≡ f(−xi) then a formal solution to our

Schrödinger equation satisfying all the boundary conditions is

ψ
(
R +

r

2
, R− r

2

)
= ψ0

(
R +

r

2
, R− r

2

)
+ σ̂x1ψ0

(
R +

r

2
, R− r

2

)
+ σ̂x2ψ0

(
R +

r

2
, R− r

2

)
+ σ̂x1σ̂x2ψ0

(
R +

r

2
, R− r

2

)
=
κ

π

∫ ∞
0

[
K1(κ

√
2(R1 − x′)2 + 1

2
(r2

1 + r2
2 + r2

3))√
2(R1 − x′)2 + 1

2
(r2

1 + r2
2 + r2

3)

+
K1(κ

√
2R2

1 + 1
2
((r1 + 2x′)2 + r2

2 + r2
3))√

2R2
1 + 1

2
((r1 + 2x′)2 + r2

2 + r2
3)

+
K1(κ

√
2R2

1 + 1
2
((r1 − 2x′)2 + r2

2 + r2
3))√

2R2
1 + 1

2
((r1 − 2x′)2 + r2

2 + r2
3)

+
K1(κ

√
2(R1 + x′)2 + 1

2
(r2

1 + r2
2 + r2

3))√
2(R1 + x′)2 + 1

2
(r2

1 + r2
2 + r2

3)

]
A(x′) dx′.
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APPENDIX B

BEHAVIOR OF THE WAVEFUNCTION DURING A TRIPLE COLLISION

One special region of the configuration space is the region where the two particles are

close together (and so the wavefunction approximately factorizes according to the Bethe-

Peierls boundary condition) and the center of mass of the two particles is also close to the

confining surface. We refer to this region where the two particles and the surface are all

roughly coincident as a triple collision. Given the approximate factorization, the probability

density of finding the two particles close to the surface scales as

|ψ(R− r, R + r)|2 ∝ |A (R)|2 , r → 0.

And therefore the behavior of A at small distances corresponds to the behavior of the

wavefunction during a triple collision.

To investigate this behavior more precisely, suppose as an ansatz that A has an asymp-

totic expansion

A(x) ∼
∞∑
j=0

αzjx
zj , x→ 0+,

where {zj} is a sequence of complex numbers with Re(zj) strictly increasing with j. Then,

z0 has the least positive real part and is thus the most dominant term in the expansion for

small x. In Eq. 2.19, we see that the kernel of our integral equation is dominated by values

of x′ for which the arguments of the bessel functions are small. When βx << 1, this

corresponds to values such that βx′ << 1. Contributions from the region of larger x′ are

exponentially suppressed by the decay of the kernel. Therefore, we can replace A by the

preceding asymptotic expansion ansatz both inside and outside of the integral, and attempt

a term-by-term comparison.
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We divide the integral

I(x) ≡ =

∫ ∞
0

(
K1(β

√
x2 + x′2)√

x2 + x′2
+
K1(β(x+ x′))

x+ x′
+
K1(β|x− x′|)
|x− x′|

)
x′zj dx′ (B.1)

= I1(x) + I2(x) + I3(x)

into three terms, two of which exist when interpreted in the ordinary sense:

I1(x) ≡
∫ ∞

0

K1(β
√
x2 + x′2)√

x2 + x′2
x′zj dx′ =

√
(2x)zj−1

βzj+1
Γ

(
zj + 1

2

)
K 1

2
(zj−1)(βx)

→ πxzj−1

2β
sec

πzj
2
, x→ 0,

and the more complicated expression

I2(x) ≡
∫ ∞

0

K1(β(x+ x′))

x+ x′
x′zj dx′

=
πxzj−1zj csc πzj

β
1F2

(
−1

2
;
zj + 1

2
,
zj
2

;
β2x2

4

)
− 2zj−2xβ1−zjΓ

(zj
2
− 1
)

Γ
(zj

2
+ 1
)

1F2

(
1− zj

2
;
3

2
, 2− zj

2
;
β2x2

4

)
+

2zj−2

βzj
Γ

(
zj − 1

2

)
Γ

(
zj + 1

2

)
1F2

(
−zj

2
;
1

2
,
3− zj

2
;
β2x2

4

)
→ πxzj−1zj csc πzj

β
, x→ 0.
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The third, however, exists only as a Hadamard regularized integral

I3(x) ≡ =

∫ ∞
0

K1(β|x− x′|)
|x− x′|

x′zj dx′

= −πx
zj−1zj cotπzj

β
1F2

(
−1

2
;
zj + 1

2
,
zj
2

;
β2x2

4

)
− 2zj−3π

3
2xβ1−zj csc

πzj
2

Γ
(

1 +
zj
2

)
1F2

(
1− zj

2
;
3

2
, 2− zj

2
;
β2x2

4

)
− 2zj−2π

3
2

βzj
Γ

(
zj + 1

2

)
sec

πzj
2

1F2

(
−zj

2
;
1

2
,
3− zj

2
;
β2x2

4

)
→ −πx

zj−1zj cot πzj
β

, x→ 0.

Combining all three terms when βx << 1 we have

I(x)→ πxzj−1

β
sec

πzj
2

+
πxzj−1zj csc πzj

β
− πxzj−1zj cotπzj

β

=
πxzj−1

β

(
sec

πzj
2

+ zj tan
πzj
2

)
, x→ 0,

which must be balanced against terms of the same order in x from the right hand side of

the integral equation,

αj−1 = αj
π

β

(
sec

πzj
2

+ zj tan
πzj
2

)
except that by hypothesis for j = 0, there are no terms on the right hand side proportional to

xz0−1. Therefore, the coefficient of this term must be zero, which restricts the possibilities

for z0 to solutions of the transcendental equation

sec
πzj
2

+ zj tan
πzj
2

= 0,

of which there are many solutions. We can exclude any solutions with Re(z0) < −1

because they would lead to a wavefunction that is too singular to be normalizable as x →

0. Let z0 ≡ r0 + is0; the remaining solutions with the smallest real part are the purely
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imaginary conjugate solutions

z0 = ±is0,

where s0 ≈ 0.72011977502.
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APPENDIX C

REVISED RESULT IN GRADSHETYN AND RHYZIK

Gradshetyn and Rhyzik Equation 6.582 claims that [67]

∫ ∞
0

xµ−1|x− b|−µKµ(|x− b|)Kν(x) dx
?
=

Γ(1
2
− µ)Γ(µ+ ν)Γ(µ− ν)

√
π(2b)µ

Kν(b).

We can show that this is incorrect by considering the analytic continuation of this result

to the case µ = 1, which appears in our problem. Start with an integral that has the same

µ→ 1 limit as that above,

∫ ∞
0

|x− b|−µKµ(|x− b|)Kν(x) dx,

and take the Fourier transform from b to k. After then integrating over x, the result is

π
3
2 csc πν Γ(1

2
− µ)

(k2 + 1)µ−12µ
sin
(ν

2
(π − 2i ArcSinh(k))

)
.

Luckily, when µ = 1 this expression has a simple inverse Fourier transform,

−πν cotπν

x
Kν(x), x > 0.

Whereas, the result from Gradshetyn and Rhyzik reduces to

−πν csc πν

x
Kν(x),
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differing by a factor cosπν. And, in fact, replacing this missing factor gives an expression

that is correct for all µ, ν:

∫ ∞
0

xµ−1|x− b|−µKµ(|x− b|)Kν(x) dx =
Γ(1

2
− µ)Γ(µ+ ν)Γ(µ− ν) cosπν

√
π(2b)µ

Kν(b).

And, thus, the µ = 1 case relevant to our system gives

=

∫ ∞
0

K1(β|xc − x′|)
|xc − x′|

Kis(βx
′) dx′ =

−πs coth (πs)

βxc
Kis(βxc).
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APPENDIX D

WAVEFUNCTION NORMALIZATION

In this appendix we will calculate the normalization coefficient of the wavefunction for

our system of two atoms resonantly interacting with a planar surface, starting from the

expression for the wavefunction as an integral of the source distribution times the Green’s

function.

We will represent the positions of the first and second atoms by x ≡ (x1, x2, x3) and

y ≡ (y1, y2, y3) respectively, and recall our choice of preferred variables,

R =
x+ y

2
≡ (R1, R2, R3), r =

x− y
2
≡ (r1, r2, r3).

Because the atoms are confined such that x1 > 0 and y1 > 0, our choice for the normaliza-

tion coefficient, η, will satisfy

N ≡ |η|2
∫
x1>0,y1>0

|ψ(x, y)|2 d3x d3y = 1.

However, since our expression for the wavefunction, Eq. 2.13, is even in both x1 and y1,

we can rewrite this expression in terms of an integral over the whole space,

|η|2

4

∫
R6

|ψ(x, y)|2 d3x d3y = 1. (D.1)

Converting to our peculiar center of mass and relative coordinates, we have

2|η|2
∫
R6

|ψ(R + r, R− r)|2 d3R d3r = 1,

where the factor of 8 arises because unlike the usual Jacobi coordinates, the Jacobian matrix
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of our transformation is not unitary. At this point, we can substitute in our expression for

the wavefunction:

ψ(R + r, R− r) = η

∫ ∞
−∞

[
K1(β

√
(R1 − u′)2 + r2

1 + r2
2 + r2

3)√
(R1 − u′)2 + r2

1 + r2
2 + r2

3

+
K1(β

√
R2

1 + (r1 − u′)2 + r2
2 + r2

3)√
R2

1 + (r1 − u′)2 + r2
2 + r2

3

]
A(u′) du′, (D.2)

≡ η

∫ ∞
−∞

[
G(R1 − u′, r1, r2, r3) +G(R1, r1 − u′, r2, r3)

]
A(u′) du′,

and the function A is the symmetrized source distribution which appears in the Bethe-

Peierls boundary condition Eq. 2.6. After substituting, there will be 4 terms:

N = 2|η|2
∫
R6

∫ ∞
−∞

∫ ∞
−∞

A(u′)A(u)

×
[
G(R1 − u′, r1, r2, r3) G(R1 − u, r1, r2, r3)

+G(R1 − u′, r1, r2, r3) G(R1, r1 − u, r2, r3)

+G(R1 − u, r1, r2, r3) G(R1, r1 − u′, r2, r3)

+G(R1, r1 − u′, r2, r3) G(R1, r1 − u, r2, r3)

]
du′ du d3R d3r.

The first and fourth terms differ only by by exchanging R1 and r1, but since each term

is symmetric under the exchange of any two arguments, and the region of integration is

symmetric under such exchange, both terms have the same value. Similarly, the second

and third terms differ only by exchange of u and u′, but again these dummy variables are

treated symmetrically and so their exchange does not alter the value. This reduces our
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expression to just two terms.

N = 4η

∫
R6

∫ ∞
−∞

∫ ∞
−∞

A(u′)A(u)

×
[
G(R1 − u′, r1, r2, r3) G(R1 − u, r1, r2, r3)

+ G(R1 − u′, r1, r2, r3) G(R1, r1 − u, r2, r3)

]
du′ du d3R d3r.

Note that the integrand does not depend on R2 or R3 and so to regularize, we place the

center-of-mass coordinates parallel to the plane in a periodic box of side length L:

N = 4L2|η|2
∫
R4

∫ ∞
−∞

∫ ∞
−∞

A(u′)A(u)

×
[
G(R1 − u′, r1, r2, r3) G(R1 − u, r1, r2, r3)

+ G(R1 − u′, r1, r2, r3) G(R1, r1 − u, r2, r3)

]
du′ du dR1 d

3r.

Our strategy for both terms is the same; replace the functionG by its Fourier transform over

all 4 coordinates, integrate out the position variables and then carry out a much simpler set

of integrals over the wave-numbers. To that end, we note that

G(~q) =
1

(2π)4

∫
R4

4π2

β(k2 + β2)
ei
~k·~q d4k,

where q, k ∈ R4 and the dot product in 4 dimensions, ~k · ~q, is the Euclidian one. Inserting

this identity we have

N = 4L2|η|2
∫
R4

∫ ∞
−∞

∫ ∞
−∞

A(u′)A(u)

×
[

1

(2π)4

∫
R4

4π2e−ik1u′

β(k2 + β2)
ei
~k·~s d4k

1

(2π)4

∫
R4

4π2e−il1u

β(l2 + β2)
ei
~l·~s d4l

+
1

(2π)4

∫
R4

4π2e−ik1u′

β(k2 + β2)
ei
~k·~s d4k

1

(2π)4

∫
R4

4π2e−il2u

β(l2 + β2)
ei
~l·~s d4l

]
du′ du dR1 d

3r,
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where s ≡ (R1, r1, r2, r3).

=
4L2|η|2

β2

∫ ∞
−∞

∫ ∞
−∞

∫
R4

∫
R4

A(u′)A(u)

×
[
e−ik1u′

(k2 + β2)

e−il1u

(l2 + β2)
δ4(~k +~l)

+
e−ik1u′

(k2 + β2)

e−il2u

(l2 + β2)
δ4(~k +~l)

]
d4k d4l du′ du

=
4L2|η|2

β2

∫ ∞
−∞

∫ ∞
−∞

∫
R4

A(u′)A(u)

[
eik1(u−u′)

(k2 + β2)2
+
e−ik1u′+ik2u

(k2 + β2)2

]
d4k du′ du,

which can be evaluated relatively straight-forwardly by using spherical coordinates in the

k-space to find that

N =
8π2L2|η|2

β2

∫ ∞
−∞

∫ ∞
−∞

A(u′)A(u)

[
K0 (β|u− u′|) +K0

(
β
√
u2 + u′2

)]
du′ du.

Imposing our normalization condition that N = 1, we have that

|η|2 =

(
8π2L2

β2

∫ ∞
−∞

∫ ∞
−∞

A(u′)A(u)

[
K0 (β|u− u′|) +K0

(
β
√
u2 + u′2

)]
du′ du

)−1

.

Throughout this work, we have adopted the condition that the wavefunction is normal-

ized to unity3 . However, when comparing to other published results, it is important to

remember that a different convention is often used. In particular, it is also common to

find the wavefunction normalized such that for a system of N identical bosons with ~ri the

position of the ith particle and ~ki its wavenumber,

∫
R3N

|Ψ (~r1, ..., ~rN)|2d3Nr =

∫
R3N

|Ψ̃
(
~k1, ..., ~kN

)
|2 d3Nk

(2π)3N
= N. (D.3)

Within this convention, we will have a new normalization constant ζ
(
|ζ| =

√
2|η|
)

.

Our asymptotic results of Chapter 3 are unaffected modulo the replacement of |η| with
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|ζ|. For instance, we will have that

1

(2π)4

∫ ∞
−∞

∫
R3

|Ψ̃(q, k)|2 d3q dk1 ∼
(2π)4L2ζ2

β2k3
‖

∫ ∞
0

|A(x)|2 dx+O(k−4
‖ ); (D.4)

however, our other results will take a different form because at some point in the calculation

we have divided by the L2 norm of the wavefunction.

In particular we have that

Npairs(ε) =

∫
r<ε

∫
R3

∣∣Ψ (R + r
2
, R− r

2

)∣∣2 d3R d3r∫
R3

∫
R3

∣∣Ψ (R + r
2
, R− r

2

)∣∣2 d3R d3r

=
1

2

∫
r<ε

∫
R3

∣∣∣Ψ(R +
r

2
, R− r

2

)∣∣∣2 d3R d3r

∼ 4π3L2|ζ|2ε
β2

∫ ∞
0

|A(x)|2 dx+O(ε2). (D.5)

And similarly that the adiabatic derivative of the energy with respect to the scattering length

is given by
dE

d
(
− 1
a

) =
4π3L2ζ2~2

β2m

∫ ∞
0

A(x)2 dx. (D.6)

As expected, this does not alter the relationship between Npairs(ε) and dE

d(− 1
a)

,

dE

d
(
− 1
a

) =
~2

m
lim
ε→0

Npairs(ε)

ε
, (D.7)

however if the contact, C2 is still defined as the coefficient of the leading order term in our

asymptotic expansion, then the relations between both quantities above and C2 are altered

such that
dE

d
(
− 1
a

) =
~2

4πm
C2, Npairs(ε) =

C2

4π
ε+O(ε2) (D.8)
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APPENDIX E

PROOF OF CONVERGENCE TO THE NEAREST ROOT USING

NEWTON-RAPHSON METHOD

Although the Newton-Raphson method applied to a smooth function often converges to

some root, conditions which guarantee convergence, and particularly guarantee conver-

gence to a nearby root, are somewhat involved. For example, even for some cubic polyno-

mials, the basins of attraction to each root exhibit a fractal structure [86].

In this appendix, however, we prove that the initial guesses up,0 = 2p are ”sufficiently

close” to the true solutions of

z(u) ≡ 1 + u sin
(
πu
2

)
= 0 (E.1)

such that each guess converges to the closest root of z(u), and for each positive root, one of

the u0,p converges to it. The main element in the proof is a theorem by Kantorovich which

gives sufficient conditions for such convergence to a unique nearby root [87, 88]:

Theorem E.1 (The Newton-Kantorovich Theorem). Let F : Ω ⊆ X → Y be a twice

continuously differentiable operator defined on a non-empty open convex domain Ω of a

Banach space X with values in a Banach space Y . Suppose that

• There exists the non-singular operator Γ0 = [F ′(x0)]−1 for some x0 ∈ Ω with

‖ Γ0 ‖≤ β and ‖ Γ0F (x0) ‖≤ η

• ‖ F ′′(x0) ‖≤M , for x ∈ Ω.

Let s∗ = 1−
√

1−2Mβη
Mβ

and s∗∗ = 1+
√

1−2Mβη
Mβ

. If Mβη < 1
2
, and the closed ball B(x0, s∗) ⊆
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Ω, then the Newton’s sequence given by

x0 ∈ Ω

xn = xn−1 − [F ′(xn−1)]−1F (xn−1), n ∈ N
(E.2)

converges to the unique solution x∗ of F (x) = 0 in B(x0, s
∗∗) ∩ Ω, with every xn ∈

B(x0, s∗) and hence x∗ ∈ B(x0, s∗).

In our case, then, z : R→ R is a smooth function and it is simple to check that

βp =

∣∣∣∣ 1

z′(2p)

∣∣∣∣ =
1

πp
6= 0, (E.3)

ηp =

∣∣∣∣ z(2p)

z′(2p)

∣∣∣∣ =
1

πp
. (E.4)

It remains then to find intervals Ωp over which z′′(u) is bounded such that 2Mpβpηp < 1

for each p. Note that the first Newton step

d0(p) = − z(2p)

z′(2p)
=

(−1)p

πp
, (E.5)

and so we will seek to bound the second derivative on u ∈ (2p− 1
πp
, 2p+ 1

πp
).

Lemma E.2. For u ∈ Ωp = (2p− 1
πp
, 2p+ 1

πp
), z′′(u) is monotonic.

Proof. Consider the third derivative

z′′′(2p+ ε) =
(−1)p+1π2

8

(
π(2p+ ε) cos

(
πε
2

)
+ 6 sin

(
πε
2

))
. (E.6)

The second derivative fails to be monotonic only if z′′′(u) = 0 for some u ∈ Ωp, which

requires that

π(2p+ ε) cos
(
πε
2

)
+ 6 sin

(
πε
2

)
= 0. (E.7)

At least for ε ∈ [0, 1], the left-hand side is strictly positive for positive p, and therefore there

164



can be no zero. For ε ∈ (−1
3
, 0), both terms in Eq. E.7 are increasing, therefore the sum is

increasing. Note that for ε = −1
3
,

π(2p− 1
3
) cos

(
−π

6

)
+ 6 sin

(
−π

6

)
= π

6p− 1

2
√

3
− 3

≥ 5π

2
√

3
− 3 > 0, p ∈ N+.

Therefore the left-hand side of Eq. E.7 is positive and increasing throught ε ∈ (−1
3
, 1)

for all p ∈ N+, and so the third derivative has no zeroes in this interval. Since for any

p > 1, Ωp ⊂ (2p − 1
3
, 2p + 1), the second derivative is therefore monotonic throughout

each Ωp.

Lemma E.3. For all p ∈ N+, let Mp = supu∈Ωp z
′′ (u), then Mpβpηp <

1
2

Proof. Since the second derivative is monotonic throughout each Ωp, it suffices to check

the boundary to bound the magnitude.

We have that

∣∣∣∣z′′(2p− 1

πp

)∣∣∣∣ =

∣∣∣∣ π4p (4p cos
(

1
2p

)
+ (2πp2 − 1) sin

(
1
2p

))∣∣∣∣ , (E.8)

∣∣∣∣z′′(2p+
1

πp

)∣∣∣∣ =

∣∣∣∣ π4p (4p cos
(

1
2p

)
− (2πp2 + 1) sin

(
1
2p

))∣∣∣∣ . (E.9)

For p = 1 we can check directly that

M1β1η1 =
∣∣z′′ (2− 1

π

)∣∣ |z (2)|
|z′ (2)|

≈ 0.48 < 1
2

(E.10)

While for p ≥ 2 we use that cosx ≤ 1, sinx ≤ x, and for A,B > 0, |A − B| ≤
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Max(|A|, |B|) to find ∣∣∣∣z′′(2p− 1

πp

)∣∣∣∣ ≤ π
(

1 +
π

4

)
,

∣∣∣∣z′′(2p+
1

πp

)∣∣∣∣ ≤ π

(
1

8p2
+
π

4

)
.

(E.11)

Our bound on the second derivative will then be

|z′′(u)| ≤Mp ≤ π
(

1 +
π

4

)
, u ∈ Ωp, (E.12)

and so
Mpβpηp ≤

1

p2

(
1 +

π

4

)
≤ 1

2
, p ≥ 2

(E.13)

These results allow us to prove the following theorem

Theorem E.4. Let {ui}, i ∈ N+ be the set of all real, positive zeroes of z(u) = 1 +

u sin
(
πu
2

)
ordered by increasing magnitude, then for every interval [2p−1, 2p+1], p ∈ N+,

there exists a unique zero, up within that interval and the Newton-Raphson method applied

with the initial guess up,0 = 2p converges to it.

Proof. We begin by partitioning R+ as the collection of intervals R+ =
⋃
p∈N+ [2p−1, 2p+

1] ∪ [0, 1] and consider the presence of zeroes in each interval.

In [0, 1], z(u) is strictly positive and therefore there is no zero.

Within [2p − 1, 2p + 1], the sine function is the only component of z(u) that changes

sign, doing so exactly one time; therefore, there is at most one zero within this interval. To

show that there is exactly one, note that for p > 1, supu∈[2p−1,2p+1] u sin
(
πu
2

)
≥ 1 and so

the change in sign of this term causes a change in sign for z(u) with a corresponding zero
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in the interior of the interval. At the boundaries, there are no zeroes, since

z(2p± 1) = 1 + (−1)p(1± 2p) 6= 0, p ∈ N+, (E.14)

and therefore there is exactly one zero and it is within the interior of each interval [2p −

1, 2p+ 1].

For each such interval, there is one u0,p = 2p within that interval. By the results of

Theorem E.1 together with the bound from Lemma E.3, we have that the Newton sequence

starting with u0,p converges to a zero within

B(up,0, s∗p) =

[
2p−

1−
√

1− 2Mpβpηp

Mpβp
, 2p+

1−
√

1− 2Mpβpηp

Mpβp

]

⊆
[
2p− 2

πp
, 2p+

2

πp

]
⊆ [2p− 1, 2p+ 1] , ∀p ∈ N+.

Therefore, the Newton sequence generated by up,0 converges to the unique zero within

[2p− 1, 2p+ 1] for every p.

This theorem ensures that our Newton-Raphson method gives a good approximation

of every zero of z(u) and that we can approximate any product or sum over the zeros as

a product or sum over the Newton-Raphson approximate zeroes without any skipping or

double-counting.
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APPENDIX F

WEIERSTRASS FACTORIZATION

In order to construct a factorization of the meromorphic function

α(u) ≡ β(u)

γ(u)
≡

1 + u sin
(
πu
2

)
2 cos

(
πu
2

)
we will apply a strengthening of the factorization theorem of Weierstrass due to Hadamard

[70, 71]:

Theorem F.1. Let f : C → C be an entire function of finite order ω. Let 0 be a zero of f

of multiplicity m, and let (un)n∈N be the sequence of other zeroes of f , repeated according

to their multiplicities. Further, define

En (z) ≡


1− z : n = 0

(1− z) exp

(
z +

z2

2
+ · · ·+ zn

n

)
: otherwise

Then, f has finite rank p ≤ ω and there exists a polynomial g of degree at most ω such

that

f (z) = zmeg(z)
∞∏
n= 1

Ep

(
z

an

)
Remark. The order of an entire function is the smallest number ω such that

f(z) = O(|z|ω)

The rank, p, of a function f with the set of non-zero zeroes {un} is the smallest integer

such that ∑
{un}

|un|−p−1 <∞
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Because γ(u) is proportional to a cosine function, we can utilize the well-know factor-

ization for a cosine,

cos
(πu

2

)
=
∏
q∈Z

(
1 +

u

2q + 1

)
e

u
2q+1

=
∞∏
q=0

(
1− u2

(2q + 1)2

) (F.1)

For the numerator, β(u), the sine here has order 1, which is unchanged by multiplying

by u or adding a constant. The order of β, then, ωβ = 1. For the rank, β has only two zeroes

away from the real axis, and so only the real zeros are relevant. Since β is even we may

consider the sum over only the positive zeroes, un. As we have shown, |un − 2n ≤ 2
πn
|,

and therefore
∞∑
n=1

|un|−p−1 ≤
∞∑
n=1

∣∣∣∣2n− 2

πn

∣∣∣∣−p−1

, (F.2)

which converges only when p > 0, and therefore β is of rank p = 1.

Order the zeroes of β with non-negative real and imaginary parts by increasing absolute

value. Because β is an even function and there is no zero at the origin, we may then write

β(u) = ec0+c1u

∞∏
n=0

(
1− u

un

)(
1 +

u

un

)
e
u
un e−

u
un

= ec0+c1u

∞∏
n=0

(
1− u

un

)(
1 +

u

un

)
,

where c0 and c1 must be determined.

Note that β(0) = 1 and thereforce c0 = 0. Further, taking the logarithmic derivative of

our factorization of β at u = 0 and comparing with the direct calculation of the same, we

have that
β′(0)

β(0)
= c1 = 0,

and therfore

β(u) =
∞∏
n=0

(
1− u2

u2
n

)
. (F.3)
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Combining results, we have that

α(u) =
1

2

∞∏
n=0

(
1− u2

u2
n

)
(

1− u2

(2n+1)2

)
=

1

2

∞∏
n=0

(2n+ 1)2

u2
n

(u2
n − u2)

((2n+ 1)2 − u2)

= −1

2

∞∏
n=0

(2n+ 1)2

|un|2
(u2

n − u2)

((2n+ 1)2 − u2)

(F.4)
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APPENDIX G

PROPERTIES OF THE MODIFIED BESSEL FUNCTION OF THE SECOND

KIND

The modified Bessel functions of the second kind, sometimes also called the Macdonald

functions, appear repeatedly throughout this thesis, and so rather than scatter facts about

them throughout, we concisely summarize the important points in this appendix.

Typically denoted Kν(z), the modified Bessel function of the second kind of order ν is

one of two linearly independent solutions to the differential equation

(
z2 d

2

dz2
+ z

d

dz
− (z2 + ν2)

)
Kν(z) = 0. (G.1)

Such differential equations and the associated solutions arise frequently when study-

ing and solving second order partial differential equations in hyper-spherical coordinates

via separation of variables. The same is true in this work; the modified Bessel functions

enter our problems as factors in the Green’s functions of the Helmholtz equation in even

dimensions, which can be seen from the following Fourier transform identity for k, r ∈ Rn,

∫
Rn

1

k2 + α2
eik·r dnk = 2π

(
2πα

|r|

)n/2−1

Kn
2
−1 (α|r|) . (G.2)

(Strictly speaking, this integral converges only when n < 4, but for n ≥ 4 we should under-

stand this identity as the Fourier transform of a tempered distribution). In odd dimensions,

this relation involves half-integer order modified Bessel functions, which reduce to more

elementary functions: exponentials times algebraic functions. However, in even dimen-

sions we find integer order modified Bessel functions, which cannot be written in closed

form using more elementary functions.

The behavior of the modified Bessel functions at large and small positive arguments
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also arises and so we show the general expansions for z → 0, where the behavior depends

on the order

Kν(z) ∼


− log z

2
− γ ν = 0

1
2

(|ν| − 1)!
(
z
2

)−|ν| |ν| ∈ N

1
2
Γ(ν)

(
z
2

)−ν
+ 1

2
Γ(−ν)

(
z
2

)ν
ν /∈ Z

(G.3)

and also for z →∞, where the behavior is independent of the order

Kν(z) ∼
√

π

2z
e−z
(

1 +O
(

1

z

))
. (G.4)

The behaior for small arguments is particularly notable in two cases in our studies

1. When we have a modified bessel function of purely imaginary order, the function has

log-periodic oscillations for small arguments. The value remains between −1 and 1,

but it oscillates with ever-increasing frequency.

2. Modified Bessel functions of integer order have poles where the argument is zero. In

several cases this means that the kernels of our integral equations are singular, hence

the regularized integrals.

Together, these facts about the small argument behavior mean that the modified Bessel

functions is never continuously differentiable at zero argument, which sometimes compli-

cates our analysis.

Some relevant additional facts are that Kν(z) is an even function of ν

K−ν(z) = Kν(z). (G.5)

The general characteristics of K on the complex plane are also sometimes useful to know.

Kν(z) is an entire function of ν for fixed z. For fixed ν, Kν(z) is a single-valued function

of z, provided that we cut the plane along z ∈ (−∞, 0). It is continuous when approaching

this branch cut from positive imaginary values.
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As we introduce the modified Bessel functions during the body of the thesis, we will

sometimes refer the reader to this Appendix.
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