
USING OBSERVATIONS TO RECOGNIZE THE BEHAVIOR OF
INTERACTING MULTI-AGENT SYSTEMS

A Dissertation
Presented to

The Academic Faculty

by

Adam Feldman

In Partial Fulfillment
Of the Requirements for the Degree

Doctor of Philosophy in Computer Science

Georgia Institute of Technology

August, 2008

COPYRIGHT 2008 BY ADAM FELDMAN

USING OBSERVATIONS TO RECOGNIZE THE BEHAVIOR OF
INTERACTING MULTI-AGENT SYSTEMS

Approved by:

Dr. Tucker Balch, Advisor
School of Interactive Computing
Georgia Institute of Technology

 Dr. Thad Starner
School of Interactive Computing
Georgia Institute of Technology

Dr. Irfan Essa
School of Interactive Computing
Georgia Institute of Technology

 Dr. Kim Wallen
Department of Psychology
Emory University

Dr. Charles Isbell
School of Interactive Computing
Georgia Institute of Technology

 Date Approved: May 12, 2008

For my father and friend,
Stuart Feldman

ACKNOWLEDGEMENTS

The work presented herein would not have been possible without a great deal of

assistance from others. I am equally indebted to those individuals who have helped me

stay sane as I plotted my course through graduate school as I am to those who directly

helped drive my research along these past six years.

As my advisor almost from day one, Tucker Balch was a great catalyst for the

inspiration which led me to the eventual topics of my thesis. He makes graduate research

fun by allowing his students to focus on their interests, while still providing ample

prodding whenever necessary. One key lesson he teaches is a healthy balance between

the theoretical and the practical. I know my graduate studies would have been a very

different, and not likely improved, experience had I wandered into a different lab in my

first year at Georgia Tech.

I have also received the benefit of four additional exceptional committee

members. Irfan Essa always found time to sit and chat about my latest developments and

prompt me to think on the implications of each. Charles Isbell helped me look at the

bigger picture from a different point of view than I usually saw in my lab. Thad Starner

and his wearable never let me forget anything I ever said, but he did help me find new

and better ways of analyzing my data and interpreting my results. Kim Wallen helped me

feel like this was all worthwhile, by showing me how my work might, in some small

way, help other researchers become more productive.

I would also like to thank every member of my lab, past and present, a more

talented bunch of people I have never met. Especially, thanks to Frank Dellaert who

 iv

provided great inspiration and guidance for many of the techniques I adapted to my

needs. Zia Khan provided the video tracking which generated the data I used in much of

my research. Without Andrew Guillory’s Teamview program, I cannot even imagine the

extra time analysis of my results would have taken. My first forays into laser-based

tracking relied on support from Wesley Wilson, Jorge Saguier, Summer Adams, and Hai

Nguyen. I cannot begin to count all the projects, big and small, which Dan Walker

helped me engineer my way through.

My research and I are also indebted to several individuals outside my lab. Tom

Collins helped me get my feet in dealing with the laser range finders (which often seemed

as unintuitive to use as possible). Maria Hybinette helped prepare a number of paper

submissions, even when her name was not attached. Amy Henry and Janice Hassett at

Emory were always quick to provide insights about the primates in their care. Most of

my results would not have been possible without all of the wonderful volunteers who

participated in my experiments. I cannot say your names, but you know who you are.

Thanks also must go to my friends, both at Georgia Tech and abroad, for helping

with my studies and life in general. Gillian Hayes, one of my first new friends in this

strange land called Georgia, helped me through some rough times. I think Keith O’Hara

attended all of my practice talks – and managed to provide useful feedback each and

every time. Tracy Westeyn has been a constant sanity check for all of my crazy ideas and

continues to be a great friend. My Yankee friends David Hill, Joshua Kershner, and

Chris Naegele provided escapes from lab just frequently enough to keep me lucid.

Diana Wey has been my constant companion. She was constantly patient when

my work made me boring or frustrated me until I was annoying to be around, yet always

 v

knew just when to provide a necessary distraction. Without her love and support this

would have been a much less enjoyable road, indeed. Thank you for always being there

for me.

 Finally, I offer acknowledgement to my parents, without whom I would not have

been possible. Their love and encouragement has made me the person I am today.

Thanks to my mother, Judy Feldman, for being a proper Jewish mother – and all that

entails. She has always been there when I needed her. Last but not least, thanks to my

father, Stuart Feldman, for his unwavering support in all that I do. This accomplishment

certainly would not have happened without him.

 vi

 vii

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS...iv

LIST OF TABLES..xii

LIST OF FIGURES ...xiii

SUMMARY...xviii

INTRODUCTION ..1

1.1 Research Questions... 2

1.1.1 Question 1: Tracking.. 3

1.1.2 Question 2: Track Association... 4

1.1.3 Question 3: Behavior Modeling... 5

1.1.4 Question 4: Behavior Recognition... 5

1.2 Example Domains and Motivation ... 6

1.3 Preview of Contributions .. 7

BACKGROUND AND RELATED WORK ..9

2.1 Tracking .. 9

2.2 Computer Vision... 10

2.2.1 Finding Tracks .. 10

2.3 Laser-based Tracking.. 12

2.3.1 Laser Range Finders ... 13

2.3.2 Finding Targets ... 15

2.4 Data Association ... 18

2.4.1 Probabilistic Techniques... 19

 viii

2.5 Unique Track Identification.. 23

2.5.1 Radio Frequency Identification (RFID).. 25

2.5.2 Localization Estimation from RF Signal Strength.................................... 28

2.5.3 Sensor Fusion.. 31

2.6 Behavioral Modeling .. 32

2.6.1 Sensory Models... 33

2.6.2 Trainable Models .. 34

2.6.3 Hidden Markov Models .. 36

2.6.4 Behavioral HMMs .. 39

2.6.5 Switching Linear Dynamic Systems... 40

2.7 Domains of Interest... 41

2.7.1 Social Insect Systems.. 42

2.7.2 Primate Systems.. 43

2.7.3 Human Systems .. 44

2.8 Discussion and Summary.. 45

LASER-BASED TRACKING..47

3.1 Registration... 48

3.2 Background Subtraction.. 50

3.3 Models (Templates) .. 52

3.4 Tracker .. 53

3.5 Methods... 60

3.6 Results... 66

3.7 Discussion and Summary.. 71

 ix

RFID BASED TRACK/TARGET ASSOCIATION ..73

4.1 Building the Lookup Tables.. 75

4.2 Scoring Each Track/Target Pairing... 77

4.3 Assigning Final Track Labels ... 78

4.4 Methods... 80

4.5 Results... 82

4.6 Discussion and Summary.. 83

BEHAVIOR RECOGNITION WITHIN HONEY BEE COLONIES..............................85

5.1 Tracker .. 87

5.2 TeamView... 88

5.3 Data Generation and Feature Extraction... 89

5.4 Kernel Regression Classification.. 90

5.5 Hidden Markov Model.. 91

5.5.1 Behavior Recognition ... 94

5.6 Methods... 95

5.7 Results... 96

5.7.1 Feature Selection... 96

5.7.2 Classification Results.. 97

5.7.3 Discussion of Results.. 98

5.8 Discussion and Summary.. 99

INTERACTION DETECTION BETWEEN ANTS...101

6.1 Approach... 101

6.2 Methods... 104

 x

6.3 Results... 105

6.4 HMM Comparison and Integration... 106

6.5 Discussion and Summary.. 107

LEARNING PRIMATE SOCIAL FAMILY HIERARCHY ...109

7.1 Detecting Interactions ... 111

7.2 Determining Family Hierarchy ... 114

7.3 Methods... 115

7.4 Results... 118

7.5 Discussion and Summary.. 121

SUMMARY AND CONTRIBUTIONS...123

8.1 Detection-Based Tracking .. 124

8.2 Track/Target Association.. 126

8.3 Social Insect Behavior Modeling and Recognition .. 127

8.4 Social Primate Family Hierarchy Detector ... 129

8.5 Future Directions .. 130

8.6 Conclusion .. 132

REFERENCES ...133

 xi

LIST OF TABLES

Page

Table 3.1: Summary of results of the tracker on two datasets...68

Table 3.2: Summary of results of the tracker on two datasets in real-time.
Included are both real-time and off-line results, including with and
without using the track splitter ...71

Table 4.1: The upper left table shows the initial track/target scores and track
confidences. In the upper right table, Track 2 has been labeled as Tag
A, and the confidences have been recalculated after zeroing the
scores for Tag A in Tracks 1 and 3. Then, the lower left table shows
that Track 1 was labeled with Tag C, removing this option from
Track 3. In the last table, the algorithm finishes by assigning Tag B
to the final track, Track 3 ...80

Table 4.2: Summary of results of the tracker (with RFID identification) on two
datasets ...82

Table 5.1: Fractional breakdown of accuracy, first with the kernel regression
classifier, then with the addition of the HMM. Final column shows
number of occurrences of each label in the test set..97

Table 5.2: Fractional breakdown of system labels. Each row shows the percent
of that row’s label identified as each possible label by the system................97

Table 6.1: Interaction detection accuracy for each of the techniques attempted.
Threshold is the initial system, KR/HMM is the system described in
Chapter 5, and Hybrid is the Threshold system combined with an
HMM. Dataset 1 has 191 events (98 interactions) and dataset 2 has
136 events (70 interactions). Total Extras refers to the number of
events in the automatically labeled data which are completely wrong........106

Table 7.1: Breakdown of system labels. Each row shows the number of that
row’s label identified as each possible label by the system118

 xii

LIST OF FIGURES

Page

Figure 2.1: One frame of laser data from 4 laser range finders in a lab. The 5
visible ovals were caused by people walking in the lab. From [Balch
et al 2005]...13

Figure 2.2: A SICK LMS-291 laser range finder. ..14

Figure 2.3: One situation in which the greedy algorithm fails. ..18

Figure 2.4: A painted honeybee in the hive. From [Balch et al 2005].............................19

Figure 2.5: (a) White rectangles represent particles, scored based how well the
underlying pixels match the model. (b) New particles are sampled
according to the probabilities. (c) Estimated location (white plus) is
calculated from the new particles. (d) The next image frame. (e)
Particles are advanced according to the stochastic motion model.
From [Balch et al 2005]. ..21

Figure 2.6: (a) Only ants in proximity are considered jointly. White lines
indicate joint considerations. From [Khan et al 2003]. (b) Nearby
ants make use of particles which encapsulate their poses (two
particles are indicated by white and black lines. (c) Within a filter,
particles which violate motion constraints are blocked. From [Balch
et al 2005]...22

Figure 2.7: (a) Ethogram representation of ant behavior. From [Holldobler &
Wilson 1990]. (b) Markov model of a robot’s behavior. In both
models, arrows represent transitions between actions (nodes). From
[Balch et al 2005]. ..32

Figure 2.8: Black lines model the sensory fields of the ant. When these fields
overlap with another ant’s fields, an interaction is said to be taking
place. From [Balch et al 2005]. ...34

Figure 2.9: Hypothetical hidden Markov model describing the weather in a
simple world. Numbers on the arrows are transition probabilities,
while the table gives the observation probability of each possible
observation while the world is in the given state. ..37

Figure 3.1: Overview of the tracking system..47

 xiii

Figure 3.2: Several different models, not to scale. (a) A model of a person, as
seen by a laser range finder. (b) A model of a person carrying a large
rectangular box in front of them. (c) A 2-d model of a fish, as
generated from video data. ...52

Figure 3.3: Fitting a model (green/grey dots) to data (black dots). In this step,
each all model points are paired with the nearest data point..........................56

Figure 3.4: Results of processing 4 frames, each about 1 second apart. Black
dots represent laser data. Red/grey dots are model instances placed at
track locations. Trails show past trajectory. Note one spurious track
in the 3rd image..58

Figure 3.5: Models used in the experiments, diamonds for the basketball players
and squares for the social behavior experiment participants. The
models are to scale, with the larger model measuring 0.6m wide by
0.4m high..67

Figure 4.1: The region in which a tag is located could be determined by the
signal strength received by one or more antennae. Circles and
numbers correspond to antennae #4 and #7.. ...74

Figure 4.2: The region at which this antenna received readings with signal
strength of 76 in the training data. ...75

Figure 4.3: Black lines show the trajectory of the lookup table training data, as
generated automatically by the laser range finders.81

Figure 4.4: Two examples of the hats worn by the participants during
experimental data collection. ...82

Figure 5.1: An overview of the system. After [Feldman & Balch 2004].87

Figure 5.2: TeamView software. Labeling options appear to the right of the main
viewing window, while playback controls are at the bottom. The
displayed labels were previously created using this software. From
[Feldman & Balch 2004b]..88

Figure 5.3: Possible HMM, after removing transitions with a probability less than
0.005. After [Feldman & Balch 2003]. ...93

Figure 5.4: Behavioral HMM, which is made up of a start state and the four sub-
models, one for each behavior. After [Feldman & Balch 2004a].95

Figure 6.1: Left: Three features used to classify interactions between ants.
Right: Training data is plotted in feature space. The boxes illustrate
the thresholds used to identify each type of interaction. From [Balch
et al 2005]...102

 xiv

Figure 6.2: This image shows an example frame of video of Leptothorax
albipennis labeled automatically by our human-trainable system. The
colored triangles over the animals are coded for the different types of
interaction that animal is experiencing (cyan: BH, yellow: HB,
magenta: HH, blue: X). From [Balch et al 2005]..105

Figure 7.1: Three potentially detected interactions. In each, the circles represent
the current track locations while the freeform lines are the trajectory
over the last second. The second image shows a line drawn from the
current location to the past location. In the third image, the minimum
distance between the lines is used to determine if an interaction is
taking place. (a) Even though the targets are always far apart during
this chase, their lines are close. (b) These targets are closer than
those in (a), but no interaction is detected because their lines remain
far apart. (c) These interacting targets are detected because they (and
their lines) are very close together. ..113

Figure 7.2: Graphical depiction of correct social structure assignments........................118

Figure 7.4: Graphical representation of the automatically learned rankings for the
hand generated tracks in datasets run1, run2, and run3.120

Figure 7.3: Graphical representation of the automatically learned rankings for the
automatically generated tracks in datasets run1, run2, and run3.120

Figure 7.5: Graphical depiction of learned hierarchy for combined run1-t and
run3-t. ...121

Figure 8.1: Graphical depiction of learned social structure assignments from
combined run1t, run2t, run 3t. Each row is a family (as learned), with
each square shaded according to the correct family. One alpha family
member is misidentified as a gamma member, while one gamma is
wrongly identified as a beta and one beta as an alpha, for a total of 3
incorrect out of 20. ...131

 xv

 xvi

 xvii

 SUMMARY

Behavioral research involves the study of the behaviors of one or more agents

(often animals) in order to better understand the agents’ thoughts and actions. Identifying

subject movements and behaviors based upon those movements is a critical, time-

consuming step in behavioral research. This task consists of using a pen and paper to

note the observations, and is especially onerous in studies involving multiple,

simultaneously interacting agents (such as ants in a colony or players on the field.

To successfully perform behavior analysis, three goals must be met. First, the

agents of interest are observed, and their movements recorded. Second, each individual

must be uniquely identified. Finally, behaviors must be identified and recognized. I

explore a system that can uniquely identify and track agents, then use these tracks to

automatically build behavioral models and recognize similar behaviors in the future.

I address the tracking and identification problems using a combination of laser

range finders, active RFID sensors, and probabilistic models for real-time tracking. The

laser range component adds environmental flexibility over vision based systems, while

the RFID tags help disambiguate individual agents. The probabilistic models are

important to target identification during the complex interactions with other agents of

similar appearance.

In addition to tracking, I present work on automatic methods for generating

behavioral models based on supervised learning techniques using the agents’ tracked

data. These models can be used to classify new tracked data and identify the behavior

exhibited by the agent, which can then be used to help automate behavior analysis.

 xviii

 xix

CHAPTER 1

INTRODUCTION

Imagine being given a pencil and paper sketch of the locations of all the people

currently on a basketball court. What can be deduced from this simple information? The

number of people tells if a game was being played, if there was a timeout in progress, or

if the halftime show was commencing. The location of each individual provides even

more information. It would be obvious if the ball was in play or if someone was about to

throw it in from out of bounds. No one would have trouble knowing which team, if

either, was about to shoot a free throw.

Now imagine having a series of these sketches, each showing the same court, but

indicating the positions of the players over time. More information could be gleaned as

more sketches were revealed: which players were on the same team, which team was on

defense, and perhaps even which player possessed the ball. Finally, by examining a

number of these sketch series (or tracks), an astute person could learn to recognize

behaviors that are frequently carried out; for example, a given play which is repeatedly

executed.

Just as a person can deduce a wealth of data from this simple information, so, too,

could a computer algorithm. The automatic detection of such information could be used

in a number of applications which are not conducive to human labeling. This will save

time and/or create entirely new capabilities which are beyond the means of human

labelers. In addition to sports, areas that could benefit from this automatically identified

data include robotics, biology, and even security.

 1

1.1 Research Questions

One area of artificial intelligence that has garnered much interest is behavior

recognition. That is, observing one or more agents and determining in which behavior

each is engaged from the trajectories of their movements. For example, such recognition

would allow for the identification of bees performing a waggle dance in an observation

hive or suspicious human activity in a subway terminal. One subset of behavior

recognition concerns itself specifically with the identification of behaviors which involve

multiple agents interacting, for example players (human or robotic) in a team sport or

ants encountering one another in an arena. The research question asked by this work

could be expressed as:

• How can observations of a multi-agent system be used to model and recognize the

behavior of that system’s interacting agents?

In order to explore this question, several sub-questions must be addressed. Four

in particular guide the research presented herein. They are:

1. How can multiple sensor observations be used to generate tracks of multiple

agents’ positions as they enter, move through, and exit the environment?

2. How can the observations of multiple sensor types be combined to provide more

accurate identified tracks?

 2

3. How can this information then be used to create models of the interacting

behaviors of the individual agents?

4. How can these models be used to recognize and/or predict the agents’ true

behaviors?

Each of these questions focuses on one of the steps necessary to accomplish the

aforementioned behavior recognition. First, one or more types of sensors must be used to

collect information about the agents being studied. This information is used to generate

tracks of each agent as it moves through the environment (Question #1). Each track must

then be associated with the specific agent that it represents (Question #2). Finally,

models can be created based on the behaviors evident in the tracked agents’ movements

(Question #3) – these models will then be available to recognize the subsequent

behaviors of the tracked agents (Question #4).

1.1.1 Question 1: Tracking

Tracking is accomplished using a number of laser range finders. Each of these

laser range finders scans, in half degree increments, an arc of 180 degrees, out to a range

of up to 80 meters. By placing several scanners around the edges of the environment of

interest (say, a basketball court or football field), pointed inwards, the entire area is

covered from multiple viewpoints. This is important because occlusion is a major

restriction of laser range finders. This means that a scanner cannot “see” agents which

are blocked by other agents or stationary objects. However, by using multiple sensors,

the effects of occlusion are greatly reduced.

 3

Tracking will rely solely on the laser-based data. However, RFID measurements

will later be used to match up each track with the unique agent represented by that track.

Therefore, each track must represent exactly one agent, from start to finish. Yet, because

the active RFID tags only send a signal periodically, it is important that the tracks

generated by the laser data be as long as possible, while still maintaining confidence that

a single track represents a single agent. All tracks made by a given agent can then be

combined to form a single track of that agent’s activity over the length of the experiment.

The tracker described in this dissertation functions by matching instances of one

or more models (or templates) to detection-based data (such as from laser range finders),

using iterative closest point (ICP) to determine the best location of each track.

Implementation of models allows the tracker to better differentiate near-collisions, as

well as being able to track agents of multiple sizes and shapes. Providing information as

to the type of agent of each track will assist in the track/agent association discussed

below.

1.1.2 Question 2: Track Association

The laser scanners used for tracking provide incredibly accurate measurements,

but do not have the ability to distinguish between agents. That is, one agent looks very

much like any other in the laser data. Therefore, to uniquely identify each agent over

time, another sensor must be used. Active radio frequency identification (RFID) has

been selected. The benefit of this sensor is that the tags, each placed on an agent, provide

perfectly unique identification (in the form of a serial number which is repeatedly

broadcast). Unfortunately, localization of the tags is very rough, preventing this sensor

 4

from being used alone. Thus, a mechanism for fusing the RFID data with data from the

laser scanners is developed.

Because the laser data is so accurate, it alone will be used to generate tracks. The

tracks, each representing a single agent, are labeled based on the probability that their

locations correspond to the RFID readings. The probabilities are generated from building

a histogram model from a set of training data, and an error minimization algorithm is

used to find the best set of track/label pairings. The result is a series of tracks, each of

which represents a single, specific agent from start to finish.

1.1.3 Question 3: Behavior Modeling

Given a set of uniquely identified tracks, certain behavioral information can be

determined about the agents. For example, in the context of a colony of non-human

primates, various interactions are detected, both affiliative and aggressive. From the

pattern of these interactions, the familial relationships between the individuals of the

colony can be learned. More interestingly, the hierarchical relationships of the families

are then deciphered. In the domain of social insects, the informative waggle dance of

honey bees can be recognized. The first step in performing this recognition is to create

models of these behaviors.

1.1.4 Question 4: Behavior Recognition

Once the behavioral models have been created, they must be used to recognize

subsequent occurrences of the behavior which they model. Two approaches form the

basis of this work. First, the threshold technique is used to recognize interactions which,

for some set of features, can be identified based on the value of those features. Detection

of other behaviors will benefit from the time element of the HMM technique.

 5

1.2 Example Domains and Motivation

There are many domains that can benefit from automated tracking and behavior

recognition. The research in this dissertation has been applied to several biological

domains. For instance, the behavior recognition techniques have been used to detect

waggle dances in a honey bee observation hive and count and classify types of

interactions between multiple ants in a potential nest. The tracking algorithms are also

applied to help study primate behavior. More generally, any biological system that is

currently observed by humans is a potential target for an automated tracking and behavior

recognition algorithm. This would reduce or eliminate the very arduous task of manual

observation and data labeling.

These algorithms could also be of benefit when applied to robotic agents. It is

sometimes useful to be able to confirm the behavior that a robot is executing, such as

while testing a new program. By creating a model of the robot’s observed activity and

comparing it to its desired behavior, the performance of the controller can be determined.

On the other hand, when dealing with an unknown or enemy robot, the creation of a

behavioral model would provide insights into its objectives. This would be useful in

applications ranging from security to robot soccer.

The impact of automatic tracking and behavior recognition on each of these

domains is further discussed in Chapter 2. Yet, while this research is applicable to many

domains, the effectiveness of the techniques to answer each of the research questions in

two specific areas is examined. One of these domains, a team sport setting, involves

tracking the players of an amateur basketball game. These activities take place in a

constrained, yet realistic, environment with multiple agents constantly engaging in social

 6

interactions. Such a setting is challenging, but not overwhelming, and provides an outlet

for theoretical and practical considerations, as well as many potential uses, including

augmented broadcasts, team training, and video game design. The other situation in

which this research is tested is an experiment which uses human volunteers to emulate a

setting consisting of several dozen small primates. The participants are free to move

about their arena and interact in a variety of ways, mimicking true monkey interactions.

The problems posed in this domain are slightly different, as the individuals move around

less quickly than sports players, yet there are more of them and they tend to cluster in

larger groups and for longer periods than the basketball players.

1.3 Preview of Contributions

The results of this research are applicable to several different domains, providing

contributions to a number of groups, including robotics, biology and machine learning.

Specifically, it is the goal of this research to answer the research questions by providing:

1. A method of tracking multiple, changing numbers of interacting agents using data

from multiple laser range scanners. This tracker, which tracks agents moving in a

single plane, must maximize the length of each track while simultaneously

ensuring that each track represents no more than a single agent. Success is

measured in its ability to generate such tracks which are long enough to allow

unique agent/track association to be performed.

2. RFID tag usage techniques to associate each laser-data generated track with the

agent that it represents. Only after performing this association will the tracks be

used to model and recognize behaviors. Accuracy is measured by the percent of

tracks correctly identified.

 7

3. Models used to represent and recognize choice social behaviors in which agents

might be engaged. The examined behaviors are those which can be described in

the trajectories of the agents. These models are evaluated on their ability to

recognize the behaviors present in the test data set.

4. Comparison of experimental results of applying these algorithms in several real-

world biological domains. By building a system, from start to finish, which

performs the above sub-tasks, the primary research question is answered.

5. Benchmarks of the ability of the tracking components of the system to function in

real-time applications.

Although many aspects of this research have been well studied individually, work

in the proposed combination of technologies is limited. Major contributions of this work

include the use of multiple laser range finders to generate tracking data. Using active

RFID to associate pre-created tracks with the agents that they represent is a novel

approach. Furthermore, tracking applications in the sports target domain have focused on

using computer vision; the use of laser range finders as the primary tracking sensor is a

new alternative to existing systems. The ability to function in real time enhances this

research’s impact. Finally, much of the behavior recognition literature concerns itself

with the activities of isolated individuals. On the contrary, the activity of interest for this

research consists of behaviors representing multiple, interacting agents.

 8

CHAPTER 2

BACKGROUND AND RELATED WORK

This research focuses on tracking multiple interacting agents (or “targets”, as they

are referred to in the sphere of tracking) while they move through the environment, and

then modeling and recognizing their interactions and behaviors from these tracks. Many

techniques exist for accomplishing these goals, incorporating a variety of sensors. While

these are far from being solved problems, some combinations have been well studied.

This chapter discusses the core research in tracking and behavior modeling, closing with

an examination of some of the domains in which this research has been applied. The goal

is to illustrate the foundation upon which this research is built, as well as differentiate it

from similar work.

2.1 Tracking

Tracking consists of determining the location of the targets present in each

“frame” of data. A frame is made up of all the data from a single point in time. With

video data, this corresponds to a single frame of video. For laser-based data, a frame

would be the measurements from one simultaneous scan from each of the sensors. Once

the laser scans are transformed into the same coordinate system, a single “picture” of the

scene at that time is created, like a video frame. This frame, then, can be examined for

the targets of interest.

One approach to tracking is to divide the task into two parts; finding the

“interesting” objects (targets) and then tracking a given target over time (the data

association problem). Obviously, the mechanism for finding the targets is based

 9

somewhat on the nature of the sensors being used. Two popular sensor types are video

cameras and laser-range finders. Techniques for finding the targets in each of these types

of data are discussed in Sections 2.2 and 2.3. Once any targets are found, the process is

sufficiently disjointed from the sensors that many methods no longer vary based on the

input. Therefore, Section 2.4 will close with a treatment of several popular ways to

perform this data association.

2.2 Computer Vision

One common method of obtaining tracking data is from video. Computer vision

attempts to identify the targets in a video sequence, separating them from the

uninteresting background. This is very challenging, as a number of factors can adversely

affect performance. Occlusion is a major problem, making camera placement very

important. Vision is also susceptible to changing lighting conditions, including changes

from sunny to cloudy in an outdoor environment. Nonetheless, there are ways to deal

with each of these issues.

2.2.1 Finding Tracks

The first step in many tracking algorithms (both in vision and non-vision tracking)

involves actually locating the “interesting” targets in the data. One approach to finding

these targets is tracking by color. In this method, efficiently accomplished by Bruce et al

[2000], each pixel is examined for inclusion in any of a fixed number of color

classifications, based on simple thresholding. Once every pixel is classified, connected

and near-connected regions of the same color are “grown,” then sorted by size. This

results in a list containing all occurrences of each color classification. In some cases, this

is sufficient to determine the location of each target, such as small scale robot soccer

 10

players, in which the rules stipulate very specific colorations to all elements of the game

[Han & Veloso 1998].

Unfortunately, such color segmentation is often not good enough; even in controlled

laboratory environments, shadows and changing lighting conditions can render tracking

by color techniques insufficient. An alternative to this color-based tracking is tracking by

movement. At the most basic level, this consists of frame differencing, or comparing

pixels in the current video frame with those of the previous frame. If a pixel has changed

amply, usually with regard to intensity, it is assumed that this pixel demonstrates

movement in this frame. Though effective, this method suffers from the main problems

of only detecting the “wavefront” of moving objects and not detecting slow movement

[Rosin & Ellis 1995].

To combat these issues, adaptive background subtraction can be used. In this

approach, a representative image of the background (without any moving objects) is

subtracted from the current image; what remains indicates movement. However, this is

computationally intensive. Balch et al [2001] overcome this hurdle by creating a hybrid

system. In this system, designed to track ants in a (mostly) white arena, color

segmentation is initially done to locate areas of the frame which are “ant colored.” This

quick operation determines potential locations of targets. Then, these specific locations

are further examined using background subtraction for indications of movement. Any

location of sufficient area which demonstrates movement is considered an ant.

Another approach is to segment the data based on models of the targets. For instance,

Zhao & Nevatia [2003] use human shape models to interpret the foreground in a

Bayesian framework. Mittal & Davis [2003] model the characteristics of people by

 11

observing them over time. These characteristics include color models at different heights

of the person. In both cases, the models are used to segment the images, resulting in the

detection of all targets. Further, the latter uses occlusion analysis to allow probabilistic

tracking through moments when the targets are not (completely) visible.

2.3 Laser-based Tracking

Laser-based tracking is developing as an alternative to video-based computer

vision. Recently, laser range finders (“ladar”) have been used in a variety of applications,

including localization on mobile robots [Dellaert et al 1999], tracking in crowded

environments [Prassler et al 1999], and map building [Gonzalez et al 1994]. In some

respects, lasers are ideal compared to video. They are more reliable because they are less

susceptible to “false positives” and “false negatives.” In other words, a detected object

(laser hit) almost certainly corresponds to an actual object in the world, while the lack of

a hit reliably indicates that there is no corresponding object in the world. Further, laser

range finders have very high spatial accuracy; the laser hit corresponds to the object’s

actual location, within 1.5 cm (according to the manufacturer). They are not sensitive to

noise such as changing light conditions, and they have significant range [Fod et al 2002].

Yet, lasers offer some of the same challenges as computer vision, including extracting the

targets from the cluttered background, differentiating one target from another, and an

inability to handle occlusions. Even worse, their usage poses additional complications:

lasers provide no way to uniquely identify a target (all targets “look alike” to the laser),

and they generally have a field of view limited to a single plane. An example data frame

from laser range finders is shown in Figure 2.1.

 12

Figure 2.1: One frame of laser data from 4 laser range finders in a lab. The 5 visible
ovals were caused by people walking in the lab. From [Balch et al 2005].

2.3.1 Laser Range Finders

Although some commercial laser tracking solutions exist, they are expensive and

impose restrictions on the movement of the targets [Fod et al 2002]. Thus, it is more

common for researchers to put together their own system, often using members of the

SICK brand line of lasers, such as the LMS-291 (Figure 2.2). The basis of this sensor is a

near-infrared laser pointed downward at a 45-degree angled mirror. The mirror rotates

rapidly, sending the laser out in a planar sweep parallel to the ground. This sweeping arc

can be up to 180 degrees, and generates measurements in one quarter, one half, or one

degree increments. The maximum range is either 8 meters (at millimeter resolution) or

80 meters (at centimeter resolution). When the laser beam strikes the nearest object at

 13

Figure 2.2: A SICK LMS-
291 laser range finder.

each angle, the beam bounces off the object and returns to the sensor. The distance

traveled is automatically calculated from the time of flight of the beam. If the beam is

not reflected by an object within range, then a “no reading” value is returned. A full

study of the LMS-200 was conducted by Ye & Borenstein [2002].

Multiple ladar can be placed around the environment to reduce the effects of

occlusion and increase the system’s field of view. For example, Jung & Sukhatme [2002]

use multiple sensors (on robots) to track multiple targets through environments with

varying occlusion characteristics. However, that work does not explicitly fuse the

multiple sensor data. Much like Stroupe & Balch [2003] use data from multiple range-

bearing sensors to improve accuracy, Fod et al [2002] combine data from several ladar to

track people in an office environment.

As previously mentioned, the field of view of a ladar is a single plane. This is

often sufficient for tracking objectives, such as robots (which do not change height) and

people in an office (placing the laser at about a meter high will catch standing people at

waist level and sitting people at chest or shoulder level) [Yan & Matarić 2002].

However, sometimes, one plane simply cannot capture all of the necessary data. In some

 14

of these cases, multiple lasers could be used to generate data at multiple, parallel planes.

Alternatively, Kornienko & Kleeman [2007] use vertical laser scans to track human

body-parts in 3-D. A more complete solution is to mount a ladar on a servomotor so that

it can rotate in a direction perpendicular to the plane of the laser scans. This would create

a 3-D “image” of the scene [Surmann et al 2001].

2.3.2 Finding Targets

In some sense, working with a ladar generated frame is easier than a video frame.

Every laser hit directly and accurately corresponds to the location of a physical object.

This makes certain tasks simpler. For example, by comparing a scan to a known map,

localization is very straightforward, even in a symmetric environment [Gutmann et al

2000]. In that work, a scan is compared to a model of the soccer field (including only

lines significantly longer than would be generated by another robot); with just three

visible walls, the robot could be localized to one of two places. Combining this with

odometry and passing it to a Kalman filter (introduced in Section 2.4.1) can consistently

and uniquely identify the robot’s exact position, all without having to perform

complicated analysis on a video frame. However, there are still challenges in using lasers

for tracking.

Background Subtraction

One important difficulty is in determining which laser hits correspond to targets to

be tracked (the foreground) and which correspond to background structures (e.g. walls,

desks, and other “uninteresting” obstacles). This process, which serves the same purpose

as background subtraction in computer vision, can be accomplished in several different

 15

ways. In the regulated, soccer-field environment of Gutmann et al [2000], once

localization is accomplished using the long scan lines of the walls, they are removed and

the remaining points make up the foreground.

In less constrained environments, it is not always feasible to have an a priori

model of the background. For example, Schulz et al [2003a] computes a probability grid

for each local minimum in the distance histogram. This is then compared to the data

from the previous frame to determine the probability that something has moved to that

location, eliminating close, but static, objects from being considered.

Another approach [Fod et al 2002] derives inspiration from the computer vision

background subtraction problem [Toyama et al 1999]. Instead of examining each pixel,

though, each angle of the laser’s scan arc is considered individually. For each scan, they

assume that background is made up of the farthest known stationary object. Therefore,

any measurements with a distance less than that of the current background will be treated

as part of a foreground target, while farther objects are treated as background and added

as part of a new background (maintaining the mean and variance to provide robustness to

noise).

Of course, sometimes it is desirable to not subtract the background. When the

sensor is mobile, then the background is important for obstacle avoidance algorithms.

For example, Prassler et al [1999] describe a tracking system for use on an automated

wheelchair. Although this system does not subtract the background, it does distinguish

between mobile and stationary targets for the purposes of motion modeling.

 16

Determining Structure

Once the majority of the background laser hits have been removed, it is necessary

to determine the structure of the targets, usually by joining the remaining laser hits into

clusters (sometimes referred to as “blobs”), each representing a single target. This is

often difficult, as two or more targets in close proximity may appear to be a single target.

Or, one entity may appear to be two separate targets. Obviously, this causes great

difficulties in data association, which relies on being able to identify each target being

tracked.

Several methods of resolving this phenomenon have been developed. The

approach used by the previously mentioned Gutmann et al [2000] system is to cluster the

points and denote a target as existing at the center of gravity for each cluster. Prassler et

al [1999] also grouped nearby hits into distinct objects. This can be potentially

problematic depending on the shape and relative sizes of the targets.

Another technique involves creating blobs, each composed of a continuous

surface, and then joining blobs together to form the desired target [Fod et al 2002]. Laser

hits are deemed part of a continuous surface (and thus a single blob) if they are within 10

centimeters of each other. Multiple blobs representing a single object (such as a person’s

torso and arms) are unified into a single target for data association. Complications could

arise when dealing with large ranges. For instance, at 30 meters, laser scans striking the

same surface will be over 25 centimeters apart, yet increasing the “surface threshold”

could cause disjoint surfaces to be viewed as continuous, especially when the targets are

frequently very closely interacting, such as in sporting activities.

 17

2.4 Data Association

Regardless of what sensors provide the original data, once the targets are located

in a frame, it is necessary to associate each target with itself in previous frames, the so-

called data association problem. A simple method of accomplishing this is with greedy

association [Veloso et al 1998]. Such an algorithm won the 1997 RoboCup small-robot

competition. The idea is that current targets are matched to the closest target in the

previous frame. Each current target/previous location pairing is examined for the pairing

with the lowest distance. This pairing is made, removing the target from the current and

previous frames’ lists. The algorithm iterates until all targets are matched. A similar

strategy is employed by Prassler et al [1999] on laser data. The only difference with their

“nearest neighbor criterion” is that they set a maximum distance threshold, beyond which

objects would be declared separate targets.

Although this algorithm works well in certain situations, it is theoretically not

guaranteed to find optimal associations. Figure 2.3 demonstrates an example of this sub-

optimal performance. In this circumstance, the greedy algorithm will incorrectly assume

that Target 2 barely moved, while Target 1 moved quite far to the right.

An improved algorithm was developed [Han & Veloso 1998] to handle such a

situation. In this algorithm, dubbed globally optimal association, all possible sets of

Figure 2.3: One situation in
which the greedy algorithm fails.

 18

matching are generated. For each set, the fitness is calculated as the sum of squared

distance between each pairing. The set which minimizes this criterion is selected.

Although still not theoretically optimal, this algorithm has been shown in a number of

implementations to be quite robust ([Han & Veloso 1998] and [Balch et al 2001]).

Unfortunately, with a large number of targets, this technique can slow down the tracking

process.

2.4.1 Probabilistic Techniques

Color-based tracking is appropriate in many circumstances. However, there are

many times it does not work well. For example, to track bees, it requires marking all of

the animals to be observed, as in Figure 2.4. This is difficult and does not guarantee

success; the tracker often gets confused when two animals interact. To solve these

problems, a probabilistic framework can be employed. Two popular methods have been

the Kalman filter and the particle filter. Each is discussed, along with some extensions.

Figure 2.4: A painted honeybee in
the hive. From [Balch et al 2005].

Kalman Filter

One method of probabilistically tracking a target using noisy data (such as in

computer vision, but also applicable to any noisy sensor) is the use of a Kalman filter.

 19

Originally introduced in 1960 by R. E. Kalman, the filter recursively maintains a current

state

 they have some serious limitations.

First, th

 to be between the two areas, as opposed to

actually

estimate (of, say, the target being tracked) by performing a time

update/measurement update cycle. The filter estimates the state for some time, and then

receives a measurement which is used to update that estimate. Formally, the time update

phase projects forward (temporally) to get the a priori estimates for the next time step.

Next, the measurement provides feedback, adjusting the a priori estimate to create a

better a posteriori estimate [Welch & Bishop 2004].

Kalman filters are useful in some situations, for example, to estimate depth from

image sequences [Matthies et al 1989] and to lessen the affects of occlusions and sensor

noise (with laser range finders) [Fod et al 2002], but

e basic Kalman filter is limited to a linear assumption. That is, the process model

and observation model must both be linear functions. Yet, this assumption does not hold

for many non-trivial systems. Therefore, the extended Kalman filter (or EKF) has been

developed. This filter linearizes the estimation using the partial derivatives of the process

and observation functions to calculate linear estimates, despite the non-linear

relationships. Rosales & Sclaroff [1998] use an EKF with an occlusion detector built on

top to improve tracking, though this system makes some assumptions on the

characteristics of the shape of the targets.

Another limitation of the Kalman filter is its inability to maintain a multimodal

representation. For example, if a target is likely to be in one of two non-connected areas,

a Kalman filter will estimate its location

 in either. For such a distribution, the particle filter is an attractive option.

 20

Particle Filter

Another probabilistic approach maintains a particle filter to use multiple particles

 represent the belief distribution of a tracked target [Dellaert et al 1999]. In each new

the particles are each scored according to how well the sensor data

(underl

. Particle filters,

therefo

to

frame of data,

ying pixels, for example, in the case of vision) supports the target being at the

location of the particle. The particles are then re-sampled according to their score,

resulting in the same number of particles, but better chosen to reflect likely target

locations. The new particles are averaged; this is where the target is said to be located in

this frame. Finally, each particle is stochastically moved according to the motion model,

readying them for the next iteration. Figure 2.5 illustrates this process.

One appeal of particle filters is that, unlike the Kalman filter, they are well suited

to representing data with a multimodal distribution. This ability serves to enhance the

robustness of the underlying state estimation process [Gutmann 1998]

re, are used in many trackers, both computer vision-based [Khan et al 2004a] and

laser-based [Panangadan et al 2004]. Particle filters are also used in other state

estimation problems including mobile robot localization [Fox et al 2001] and dynamic

probabilistic networks [Kanazawa 1995].

Figure 2.5: (a) White rectangles represent particles, scored based how well the
underlying pixels match the model. (b) New particles are sampled according to the
probabilities. (c) Estimated location (white plus) is calculated from the new particles.
(d) The next image frame. (e) Particles are advanced according to the stochastic motion
model. From [Balch et al 2005].

 21

Joint Particle Filter

When multiple targets are non-interacting, using multiple independent particle

filte s is sufficient, but in cases when targets interact, as is common in multi-agent

icle filter could model these interactions. However, the intense

comput

r

systems, a joint part

ation required makes this infeasible beyond a few targets. Khan et al [2003] takes

advantage of the limited perception of their targets (ants) to create a joint MRF (Markov

random field) particle filter. In effect, this adds an “interaction term,” allowing more

accurate motion models among close targets (e.g. two targets cannot occupy the same

space) without suffering from the intractability of a full joint particle filter (Figure 2.6a

and b). An extension in this research penalizes particles which overlap the location of

other targets, thus violating known constraints on movement (Figure 2.6c). To achieve

an even greater efficiency, work has been done to replace the traditional importance

sampling step in the particle filter with a Markov chain Monte Carlo (MCMC) sampling

step [Khan et al 2005]. This has also been extended to address a variable number of

targets.

Figure 2.6: (a) Only ants in proximity are considered jointly. White lines indicate joint
considerations. From [Khan et al 2003]. (b) Nearby ants make use of particles which
encapsulate their poses (two particles are indicated by white and black lines. (c) Within
a filter, particles which violate motion constraints are blocked. From [Balch et al 2005].

 22

Another approach uses laser-based data with a motion model in conjunction with

sample-based joint probabilistic data association filters (SJPDAFs) to track multiple

moving objects [Schulz et al 2003a]. By using the motion model, the tracker is able to

mai

2.5 Unique Track Identification

Laser range finders provide excellent data for tracking targets as they move

through an environment. Unfortunately, they do not have a means of differentiating

between multiple targets o e ll people (or monkeys or

other ta

ty of different types of sensors that could

ntain a spreading sample set to estimate the location of occluded objects. In other

research [Schulz et al 2003b], they use Rao-Blackwellised particle filters to estimate

locations of uniquely identified objects, beginning with anonymous tracking and

switching to sampling identification assignments once enough identification data has

been gathered, resulting in a fully Rao-Blackwellised particle filter over both tracks and

identification.

f th same type. In other words, a

rgets) look alike to a ladar. Therefore, to provide unique identification, another

sensor must be used. Specifically, it must be a sensor that can differentiate targets based

on their “appearance” in the data, for instance through color-indexing [Swain & Ballard

1991] or facial recognition in camera images [Stillman et al 1998] or the unique identifier

provided by infrared (IR) badges [Schulz et al 2003b]. Such a sensor must be used in lieu

of the ladar to provide both tracking and identification, or else combined with the laser-

based data to create uniquely identified tracks.

Of course, vision tracking is only appropriate if the targets are visually distinctive.

While this may work for human targets, homogenous robot or monkey targets could all

look alike. On the other hand, there are a varie

 23

be used

al 1992]) or vice versa [Azuma 1993]. Such systems

suffer f

environments, as buildings tend to

block t

tification accuracy, but require the targets to be tethered

to the

There are a number of ways to use RF for tracking and localization. Section 2.5.1

 to provide the needed functionality. Many of these have been used by a number

of researchers for several years.

For instance, IR transmitters and receivers have been used by putting the receivers

at known locations and transmitters on a badge worn by the person being tracked (the

Active Badge system [Want et

rom the poor range of IR and therefore require significant infrastructure intrusion

and installation, resulting in a high cost for even small scalability. Ultrasound techniques

[Harter et al 2001] suffer from the same disadvantages as IR (in one experiment, 100

receivers were needed to cover an area of 280m3), plus impose strict restrictions on the

number of signals that can be received every second.

Neither IR nor ultrasound techniques are well suited to functioning in outdoor

environments. On the other hand, the global positioning system (GPS) can provide

precise localization, but is only effectual in outdoor

he satellite signals. None of these technologies are ideal for a system which must

work both indoors and outdoors.

Another approach (overviewed in [Hightower 2001]) relies on electromagnetic

sensing to track positions. Systems such as the MotionStar DC magnetic tracker provide

phenomenal localization and iden

base station, and only support a range of less than 10 meters. While suited for

motion capture applications, such systems would not work for tracking targets in their

“natural” settings.

One technology that works both inside and outdoors is radio frequency (RF).

 24

describes one common RF machinery example, RFID, while Section 2.5.2 details some

ways of using the signal strength of the RF signal to localize. Finally, Section 2.5.3

discuss

2.5.1 Radio Frequency Identification (RFID)

RFID sensors are one type of ID-sensor which can be used to uniquely identify

targets. In fact, RFID provides perfectly accurate identification because each sensor is

given a unique identification number (like a serial number). RFID sensors consist of two

adcasts the ID number (and potentially

additio

 very small and flat, often smaller than a grain of rice. Instead of being

ternally powered, the tags are activated when brought in close proximity to a reader.

radio signal sent by the reader induces a small current in the tag; just

enough

es ways in which data from multiple sensors can be fused together to provide

more accurate or robust output.

parts; a tag and some sort of reader. The tag bro

nal information) at a specific RF frequency and nearby readers tuned to the

frequency can pick up the broadcast. RFID sensors have seen a great deal of

development in recent years [Finkenzeller 2000], and can be divided into passive and

active types.

Passive RFID

Passive RFID tags consist of a small integrated circuit, but no power supply. As

such, they are

in

The incoming

 to power up and transmit a response. Therefore, they have a very short range,

generally not more than 6 to 24 inches, although in some cases they can be detected up to

approximately 6 meters [Hähnel et al 2004].

 25

These passive tags have made their way into a variety of common uses. They can

be found in credit cards and passports, consumer goods, and even pets such as dogs and

cats. In credit cards and passports, they serve a similar function to magnetic strips,

contain

is used to infer the

person’

 objects. While such a technique would be

useful

ing identification information that can be used by the reader. By implanting in

dogs and cats, a found pet can be scanned to locate find its owners, even if the animal

was not wearing traditional tags. These tags are also often placed on consumer goods

both for inventory tracking and theft deterrence [Curtin et al 2006].

Passive RFID tags are also used in intelligent systems research. For instance, the

Guide project [Philipose et al 2003] uses a small reader attached to a home patient to

identify the objects a person touches. The sequence of objects

s activity and provide support if necessary. Hähnel et al [2004] investigates

generating maps of RFID tags (placed on a variety of objects throughout an indoor

environment). The resulting maps can then be used for accurate localization of the robot

and objects without odometry information. Unfortunately, these results require

cumbersome equipment (the reader, antennas, power supply) to be placed on the mobile

robot, which would not be appropriate on living targets. Additionally, with a read-range

of 6 meters, a larger environment would have to be instrumented throughout, a

proposition that is not always appropriate.

In general, passive RFID systems are designed to read one tag at a time.

However, Vogt [2002] created a way of identifying multiple objects simultaneously,

without explicitly knowing the number of

in certain applications (such as supermarket checkout), the short range of passive

 26

RFID technologies is not conducive to tracking individuals at the scale of dozens of

meters.

Active RFID

Unlike the passive RFID technology, active RFID tags include a built-in power

ags, therefore, broadcast their message at regular time intervals, whether a

reader

ers detecting the message which each tag

broadca

to

track m

s process requires using the signal strength

supply. The t

is within range or not. Further, because they have much more power available

than the induced current of the passive tags, active RFID tags’ signals can be received at

much greater distances, often 100 feet or more.

The added range of active RFID tags makes them better suited for localization

than are passive RFID tags. In addition to read

sts, the reader can determine the signal strength of the reading. This signal

strength varies based on the distance from the reader. Further, antennas can be attenuated

so as to restrict the distance at which they can receive a signal. This is useful when

tracking the location of targets at the resolution of a room; with one reader per room, the

reader that detects the tag indicates the tag’s location. Hospitals use such technology to

monitor the location of equipment, staff, and patients (especially babies) [Wang 2006].

Active RFID tags are used in a variety of industries and applications, including

transportation (“E-Z pass” and other toll-road automatic payment systems), athletics (

arathon runs on the course), and inventory management. These and other

applications are detailed by Schneider [2004].

Locating targets with active RFID at the room-level is simple, but trying to

determine location more finely is difficult. Thi

 27

from m

2.5.2 Localization Estimation from RF Signal Strength

Although RF techniques (such as RFID) are ideally suited for identification, they

arge distances. The signal

strength

nd then calculate the expected signal strength at

every location based on the distance from the readers. For instance, RADAR [Bahl &

ultiple readers to triangulate in order to find the source of the signal. Worse,

when the targets are moving rapidly compared to the temporal frequency of the tag

signals, the system is more susceptible to noise, as multiple readings cannot be averaged

to determine location. Further, the location of the target in between tag readings is

unknown. A number of methods of dealing with these uncertainties exist, and are

described in Sections 2.5.2 and 2.5.3.

present substantial hurdles for accurate localization over l

 reported by a reader is proportional to the transmitter’s distance from that reader;

triangulation can therefore be used to localize. However, there are a number of factors

that reduce the robustness of this approach, including multipath fading and shadowing of

the RF channel, as well as transmitter and receiver variability and antenna orientation

[Lymberopoulos et al 2006]. They show that it is possible to map signal strengths to

distances from an antenna only under the most ideal circumstances – any variation in

orientation or presence of obstacles introduces large amounts of noise. Worse, even with

no direct occlusions between the tags and readers, RF signals are susceptible to the

presence of metal in the surrounding area [Balch et al 2004]. This is a well studied

problem ([Howard et al 2003], [Ladd et al 2002], and [Haeberlen 2004]), with research

progressing along several techniques.

One approach to solve this problem attempts to build a model of the signal

strength propagation through space, a

 28

Padman

his joint clustering

techniq

refore, some systems

take a

abhan 2000] builds a radio propagation model which estimates signal strengths at

each location after taking into account effects based on the number of walls between that

location and the reader. RADAR also investigates an empirical method of gathering

readings from a number of known locations, and then localizing new readings by finding

the most similar readings (in signal strength space) in the training set. While the model

method was accurate to within 4.3m (in the 50th percentile), the empirical method

achieved an accuracy of 2.94m. Letchner et al [2005] also attempt to build a signal

strength sensor model, though theirs is learned through the use of a hierarchical Bayesian

framework, and achieves a median localization error of less than 2m.

Youssef et al [2003] use WLAN access points as the transmitters; a mobile

receiver can localize based on the joint probability distribution of the q strongest signals.

Location clustering is used to reduce the computational load. T

ue achieves an accuracy of approximately 2.3m in a large indoor environment.

Roos et al [2002] also use a probabilistic approach. Instead of directly modeling the

physical properties of the signal propagation, they model signal strength distribution in

different geographical areas based on sample measurements. Three machine learning

techniques (nearest neighbor, kernel regression, and histograms) are used to predict likely

locations based on readings – they achieved an accuracy of 1.5-2m.

One problem with these model-based approaches is that signal strength

propagation is very difficult to accurately model. There are a variety of environmental

factors which reduce the effectiveness of generalized models. The

more example-based approach. Much like RADAR’s empirical method, these

techniques gather many samples of readings at known locations and attempt to match

 29

new readings to one or more examples from the training data. MoteTrack [Lorincz &

Welsh 2007] extends this basic approach by improving robustness and decentralization,

achieving errors of only 2m (50th percentile) even with the failure of up to 60% of the

environmental beacons.

Although this method has promising results, one disadvantage is the massive

amounts of training data that must be collected; error increases when generating

likelihoods at locations for which no training data exists. Ferris et al [2002] overcome

such li

otential locations is

reduced

with a much lower level of error,

mitations using Gaussian processes to generate a likelihood model for signal

strength measurements from a limited number of training measurements. This process

allowed them to extrapolate the model into areas for which no training was left out, with

accuracy comparable to experiments that included such data. Overall, the accuracy

indoors (54 rooms, hallways, and stairs across 3 floors) was about 1.5-2m, while the

accuracy outside (in a 500km2 area) was on the order of 100-200m.

Another way to get around the sparse data problem is to discretize the space into

grids, and then determine the probability of being in each grid cell based on readings. By

grouping nearby points into a single grid cell, the number of p

 (from infinity), greatly limiting the number of training examples required. This

is the approach used by Kantor & Singh [2002] to achieve an average accuracy of 1.62

feet (in a test area of 50 feet by 50 feet). In simulation, their results are improved to an

average error of 0.77 feet by including odometry data.

Many of the above techniques have achieved localization accuracies on the order

of 0.5 to 2 meters. This level of accuracy is appropriate for many applications. However,

the target domains of this research requires tracking

 30

such as

2.5.3 Sensor Fusion

By combining sensor modalities, the benefits of each type of sensor can be used

to help offset the deficiencies of the other. This is done in a variety of situations. Singh

amera images and inertial data, combined with a Kalman filter, to

perform

 (regardless of coloration). Jung &

Sukhat

n. Schulz et al [2003b] use such an

 is provided with the laser data. Further, the level of hardware that most of these

systems require on the mobile targets is prohibitive in both sports and non-human primate

domains. The smaller RFID tags that are ideal for introduction into these situations

generally introduce even more noise than the RF instruments discussed above.

Therefore, it is necessary to combine data from multiple sensors in order to achieve

accurate, uniquely identified tracks. This process of joining data from multiple sensors is

referred to as sensor fusion.

et al [2002] uses both c

 simultaneous localization and mapping (SLAM). Kalman filters and other high-

and low-level sensor fusion techniques are reviewed by Kam et al [1997]. Hähnel et al

[2004] shows that including passive RFID readings can greatly accelerate laser-based

robot global localization (compared to lasers alone).

A number of different sensor modalities are available to assist with tracking. For

example, vision-based trackers are good at tracking distinctively colored objects, while

laser-based trackers can easily detect moving objects

me [2001] combine cameras and laser range-finders to capitalize on these traits,

although this does not provide target identification.

Instead of combining the readings from precise and noisy sensors, another

approach is to use the precise sensors (ladar) to generate the trajectories, and then use the

noisy ID-sensors to perform the target identificatio

 31

approac

2.6 Behavioral Modeling

Once a track consisting of the location (and orientation) of each target (or “agent”

in the recognition literature) over time has been generated, this data can then be examined

to determine behavior. This if be important in a variety of

situatio

h to track people in an indoor environment, generating anonymous tracks from

ladar data, and then assigning IDs as the tracks approach short-range IR receivers. The

research presented here uses a similar technique, but uses long range (though noisier)

active RFID tags to allow identification in a larger area, and without instrumenting the

interior of the observation area. Additionally, a much greater number of targets are

tracked and identified than in Schulz et al [2003b], which also suffers from an inability to

recover from losing the correct ID hypothesis.

Figure 2.7: (a) Ethogram representation of ant behavior. From [Holldobler & Wilson
1990]. (b) Markov model of a robot’s behavior. In both models, arrows represent
transitions between actions (nodes). From [Balch et al 2005].

ident ication of behavior can

ns. For example, in robot soccer, behavior recognition would allow for adaptive

strategy (i.e. changing strategy based on what other players are doing) and automated

narrative agents, which could detect what a player was doing (at a high level) and offer

 32

interesting commentary [Han & Veloso 1999]. Further, behavioral ecologists use

ethograms to model animal behavior [Schleidt 1984]. As Figure 2.7 shows, these

ethograms are similar to the Markov models used to represent robot behavior.

There are several ways to implement this behavioral modeling. Some techniques

are relatively simple, including using thresholds to train models from labels provided by a

human expert and building sensory models based on beliefs about the agent’s perceptual

apparat

2.6.1 Sensory Models

Sometimes, it is not possible to directly observe the studied behavior. For

instance, one social behavior of interest to myrmecologists is the interaction between two

teraction usually takes the form of antennal contact on the part

of one

us. More complicated techniques include kernel regression techniques, hidden

Markov models, and switching linear dynamic systems. The following sections will

discuss each of these methods, after giving a brief overview of the sorts of behaviors that

can be modeled and recognized.

ants [Pratt 2005]. This in

or both ants (the contact can be antenna to antenna or antenna to body), although

contact between the bodies of two ants is also of interest. In cases such as these, one

method of identifying the interactions is by modeling the sensory fields of the agents.

For example, Egerstedt et al [2005] model the sensory field of an ant with two simple

geometric shapes, one representing the body and one for the head, as shown in Figure

2.8. Thus, interactions were detected whenever two ants’ sensory fields overlapped; the

type of interaction (head-to-head, head-to-body, etc) was determined by which fields

overlapped. The basis of this model was created to study army ant simulations [Couzin

and Franks 2002]. One problem with this type of model is that a new model must be

 33

created for each new application, making it difficult to apply in general [Balch et al

2005].

Figure 2.8: Black lines model the sensory
fields of the ant. When these fields overlap
with another ant’s fields, an interaction is said
to be taking place. From [Balch et al 2005].

2.6.2 Trainable Models

The basis of this category of techniques is in using labeled examples to create the

model. This requires a human expert to label a sampling of data (called the training set)

neral system to be built that does not rely on devising a

comple

manually, but allows a ge

tely new model for each application (as would be required for sensory models).

Instead, a model of the human’s labeling is created; this model is then used as a reference

to label new examples. The advantage of this approach is that the human expert does not

have to explicitly specify the considerations used in classification. Trainable models are

in widespread use, in a variety of applications, including gesture recognition, face

recognition and activity recognition.

 34

One such type of trainable models is the hidden Markov model, which is

discussed in detail in Section 2.6.3. Another representation of human trained models is

the dec

ld a football play recognition system. Plays are defined as a series of

tempor

ensional feature space (where n is the

number of features). First, the training set is used to populate feature space.

ision tree [Arkin et al 1993]. In a decision tree, each leaf node is given a

classification, while all other nodes represent a splitting based on some attribute.

Examples are classified by sorting them down the tree, from the root to some leaf node;

the example is given the classification of the leaf node at which it ends. Decision trees

are suited to such tasks as medical and equipment diagnosing and credit application

approval [Mitchell 1997]. On the other hand, decision trees suffer from problems when

dealing with continuous inputs or classifications, and overfitting is commonly a problem,

though more complicated extensions have been developed to help handle these situations

[Mitchell 1997].

Intille & Bobick [1999] take a different approach. They use a probabilistic

framework to bui

ally ordered goal actions carried out by the players. For a given set of trajectories,

each play recognizer returns the likelihood that the play was executed – the play with the

highest likelihood is chosen. One disadvantage of this system is that it requires a

knowledge engineer to design the action description, effort that would have to be

repeated for each specific application. Also, while their results display a high level of

accuracy, the system suffers from a slow runtime, which would not be ideal for the

applications being studied by this dissertation.

Another technique is k-nearest neighbor learning. In this method, data points are

classified based on their location in an n-dim

 35

Classif

ce as a

whole.

2.6.3 Hidden Markov Models

Hidden Markov models (HMMs) are probabilistic generalizations of Finite State

Automata. They can be used to represent Markov processes in which the underlying state

den. Instead, it is some observations emitted by the

process

ication occurs by evaluating each new data point in the populated feature space.

At the algorithm’s simplest level, the k nearest data points are examined and the most

common classification among these points is given to the new data point. More broadly,

kernel regression works similarly, but applies a function to “score” the contribution of

each data point to the classification (instead of taking the “one point, one vote”

approach); for example based somehow on distance so that farther points are less decisive

in the classification [Smola & Schlköpf 1997]. In this case, k is often set to the number

of training data points (a global, instead of local, method) [Shepard 1968].

Unfortunately, this has the limitation causing the algorithm to run slowly, as all the

distances have to be computed for each new data point (though a kd-tree can speed it up,

at an increased cost in memory [Friedman et al 1977]). Also, if there is a large difference

between the numbers of training points in each classification, a bias is introduced.

One problem with most of the techniques discussed in this section is that they

consider each new data point individually, without examining the data before or after.

Yet, with many data streams, information can be gained by considering the sequen

 The following approaches, on the other hand, use all of the data, which can

provide a “smoothing” influence that tends to suppress brief “noisy” detections.

of the system is unknown, or hid

, based stochastically on the current state, which can be seen. Further, movements

of the system from state to state are modeled in the HMM by probabilistic transitions.

 36

Formally, an HMM consists of a set of states, a set of observations, the probability

distribution table of each state emitting each observation, the probability distribution

table of each state transitioning to the other states (or itself, as a “self-transition”), and an

initial probability distribution table indicating the probability of the system starting in

each one of the states.

As an example, consider a three state HMM designed to model the weather. In

this simple example world, assume that there are three possible states of the world:

sunny, cloudy (but not precipitating), and raining, and that the weather on a given day is

only de

0.60 0.10

pendant on the previous day’s weather. Further assume that there is no way to

directly observe the sky; instead, it is only possible to measure the dryness of a small

patch of concrete. It can be dry, damp, or wet. Figure 2.9 shows one possible HMM

modeling this situation, including hypothetical probabilities. Consider, for example, that

it is unlikely to become sunny directly after raining, without entering the cloudy state.

This is reflected in a low transition probability between these two states. Also, assume

that this HMM is designed to model the weather in a rather dry location, where short,

quick rainstorms are common. This is modeled by the high self-transition probability of

the sunny state and the low self-transition probability of the raining state.

Sunny
(S)

Cloudy
(C)

Raining
(R)

0.10

0.30

0.05

0.15
0.80

0.20
0.70

Observation
Dry Damp Wet

S
ta

te

S

C

R

0.03 0.07 0.90
0.50 0.30 0.20
0.70 0.20 0.10

Figure 2.9: Hypothetical hidden Markov model describing the weather in a simple
world. Numbers on the arrows are transition probabilities, while the table gives the
observation probability of each possible observation while the world is in the given state.

 37

How are the probabilities in the model determined? One way is to simply look at

the freq

require

imary uses is to

determ

uency of occurrences of each observation and transition. This only works if there

is a large body of data which contains the observation and actual state. If such data

exists, it would be possible, for example, to determine the percent of sunny days in which

the concrete is wet, damp, and dry. Likewise, the sunny transition probabilities would be

calculated as the percent of instances in which day t is sunny and day t+1 is sunny,

cloudy, or raining. By determining each of these values, the observation and transition

probability distribution tables can be completed. Finally, the initial state distribution is

calculated as the percentage occurrence of each type of day (sunny, cloudy, and raining).

While the above method works well in many circumstances, sometimes the

d body of “labeled” data (consisting of observations and true states) is unavailable.

In these cases, the HMM parameters (λ) must be learned. This can be accomplished

using the Baum-Welch algorithm, which uses expectation-maximization to compute

maximum likelihood and posterior mode estimates of λ [Rabiner 1988].

Once an HMM’s parameters have been decided, one of the pr

ine the most likely underlying state sequence for a series of observations. For this

purpose, the Viterbi algorithm can be used. Viterbi uses dynamic programming to

determine the most likely sequence of states to have generated the given observations

[Rabiner 1988]. In the above example, this is akin to determining the actual weather on a

series of days, based on the concrete moisture level observations on these days. The

closely related forward algorithm computes the probability of an observed sequence

being generated by a specific model. This functionality can determine which of several

HMMs most likely generated an observation sequence, useful for behavior recognition.

 38

HMMs can also be executed, resulting in a sequence of states/observations created

probabilistically.

2.6.4 Behavioral HMMs

an observed agent acts according to a Markov model, it is

possibl

ide

easily

ing HMMs for behavior recognition, specifically gesture

recogni

If one assumes that

e to employ HMM-based approaches to identify its behavior. These behavioral

HMMs, or BHMMs, are ideal because the behavioral state of the agent is “hidden,” while

the manifestations of that behavior are observable and can act as the observations of the

BHMM. A separate BHMM is created for each potential behavior, which is made up of a

series of state traversals. As an observation sequence is gathered, the likelihood of being

in each BHMM is determined using the Viterbi algorithm [Rabiner 1988]. Further, the

exact mental state of the agent corresponds to the specific active state in the BHMM.

To account for the continuous nature of robot behaviors, which does not prov

detectable gaps, recognizers are instantiated at regular intervals. These

instantiations are then terminated after a fixed amount of time, or if a reject state (a

“catch-all” state which represents states that are unlikely to occur in a given behavior) is

probably reached [Han 1999].

Another example of us

tion, is to recognize American Sign Language gestures [Brashear et al 2003]. In

this system, a “first person” camera is combined with data from accelerometer-covered

gloves. HMMs are then trained to model the gestures representing a variety of words.

This system was able to achieve a recognition rate of over 90% on test data, while a 94%

accuracy on the training data shows how well the HMMs can model the data.

 39

HMMs have also been used to detect the self-stimulatory (or “stimming”)

behaviors which are often displayed in children with autism [Westeyn et al 2005].

Accelerometers placed on the child provide data to the system made up of models of

seven stimming behaviors. When the system was presented one at a time with isolated

examples of these activities, performed by a neurotypical adult, it achieved a recognition

accuracy of 90.95%. Further, in continuous recognition experiments, all stimming

activities were detected, though the exact start/stop frame of the data was not always

correctly detected – not necessarily a problem in this and other domains, where the goal

is to identify the occurrence and type of activity taking place.

Sometimes the transitions or observations of a system are dependant on some

input into the system, such as sensory perceptions. For example, a behavior change may

be triggered by a visual or auditory cue, such as an ant detecting a pheromone trail. In

these cases, the model would be more accurate by representing behaviors as conditional

responses to input. Input/output hidden Markov models (IOHMMs) provide just this

functionality. They are similar to HMMs, except the transition and observation

probabilities are conditional on the value of the input [Bengio & Frasconi 1996].

2.6.5 Switching Linear Dynamic Systems

Another approach to recognition uses Switching Linear Dynamic Systems

(SLDS) to model behaviors. The main advantage of SLDSs over HMMs is their ability

to model continuous hidden states. This is useful when additional information is desired,

beyond simply knowing the state of the model. For example, it has long been known that

the honey bee’s waggle dance encodes specific information related to the location of the

food source being passed on to the other bees [v. Frisch 1967]. One possible area of

 40

biology research which could benefit from automation would be to not only indicate

when a waggle dance is occurring, but to extract the exact information encoded in the

dance. Although an HMM could detect the occurrences of a waggle dance, it could not

extract the encoded information. On the other hand, an SLDS could actually provide an

estimate of this information directly to the biologist [Oh et al 2005].

Unfortunately, SLDS models suffer from three main limitations: Exact inference

is intractable, there are limitations in duration modeling, and there is an absence of a

systematic way to quantify global parameters. Solutions have been proposed for all of

these, by using a data-driven MCMC inference method with a segmental, parametric

SLDS (SP-SLDS) [Oh et al 2008].

2.7 Domains of Interest

The research presented here span many application domains. Uses of these

techniques are varied, and include such areas as social insect, primate, and human

systems. Even within each of these areas, there is a vast diversity of spheres being

studied. For example, social insect systems include ants, bees and locusts. Applications

to human systems include assisting those with health problems [Starner et al 1998],

providing video surveillance for security and safety [Cohen & Medioni 1999], and even

monitoring or providing commentary in sports settings [Pingali et al 1998]. One

commonality of these domains is that they currently benefit (or could potentially benefit)

from the automation provided by artificial intelligence, both in tracking the subjects and

modeling their behaviors.

 41

2.7.1 Social Insect Systems

Historically, there have been several examples of applying lessons from the

behavior of ants, bees, and other social insects to computer science problems. For

example, inspiration for solutions to discrete optimization problems has arisen from the

observation of social insects, such as ant colonies foraging. These “ant algorithms” have

been employed in a variety of domains, from the traveling salesman problem to routing in

telecommunications networks [Dorigo & Di Caro 1999]. In fact, whole books have been

written about using models of biological systems as inspiration in the design of complex

systems [Bonabeau et al 1999].

However, until recently, there has been little of the reverse application; using

technology and computer science techniques to assist in biological research. The decades

old pencil and paper direct observation method of biological research [v. Frisch 1967] has

seen some progress through the use of technology. For example, Mallon et al [2001] use

a video camera to record the ants being studied, permitting later review and analysis.

Likewise, when a researcher today studies honey bee colony behavior, the subjects are

videotaped and the resulting tape is viewed and hand-labeled [Seeley 1995].

Although this advance allows the researchers to return to the taped data, they are

still forced to analyze it by hand, manually generating models of the observed behavior.

Typically, this requires the observer to watch the video many times, and is a rather time-

consuming process. However, if the movements and behaviors of the subjects could be

recognized and identified automatically, research in these areas could be greatly

accelerated by allowing the researchers to focus their time on the interpretation of the

data, instead of simply gathering it. For example, Pratt et al [2002] were forced to watch

 42

hours of video to count the number of recruitment events in the migration of a colony of

the ant Leptothorax albipennis, a task well suited to computer automation. In fact, it has

been stated that two observers are required to study the activities of one ant (one to call

out the observations and the other to record them) [Gordon 1999]. Imagine the

complications of social animal studies involving numerous subjects interacting with one

another!

2.7.2 Primate Systems

In addition to work with social insect systems, higher-order biological systems

have also provided a venue for the application of computer science automation

techniques. One such recent study provides assistance to a behavioral

neuroendocrinologist. In this research, the biologist evaluates the spatial memory in

rhesus monkeys by measuring the paths the monkeys take as they explore an outdoor

three dimensional arena over repeated trials [Khan et al 2004b]. Previously, the biologist

was required to measure the path length indirectly (by timing the monkey) or through

estimation. However, by using computer vision to track each monkey as it moves

through the arena, exact path length can be easily determined.

Another study that will benefit similarly involves examining the behavior of a

large number of individuals simultaneously, similar to Wallen [2005]. In this research,

the biologist is interested in the social interactions of a group of monkeys. As with the

social insects mentioned above, the introduction of interactions dramatically increases the

time required to perform observations. Therefore, this is another area which could

potentially benefit greatly from computer automation.

 43

2.7.3 Human Systems

Some of the biggest impacts of automated tracking and behavior modeling fall

into this category. Two of the first applications of multi-target tracking were air traffic

control and battlefield surveillance [Reid 1979]. Since then, surveillance has become a

major area of research, including both safety and security applications. For example,

Coifman et al [1998] developed a feature-based tracking algorithm for tracking vehicles

on a highway. The goal involves determining the flow of traffic (number of vehicles per

hour), which could be used to identify accidents or other traffic incidents. Yan & Matarić

[2002] analyze spatial features for recognizing the activities of multiple interacting

humans to be applied to a video surveillance system or narrating agent. Outdoor

surveillance of person-vehicle interactions such as pick-up and drop-off has also been

studied [Ivanov et al 1999].

There are many other applications of tracking and behavior modeling of human

systems. For example, behavior modeling is used in the study of human gaits [Bregler

1997], speech recognition [Jelinek 1998], and gesture analysis [Darrell et al 1996]. In the

area of sports, Perš & Kovacic [2000] and Intille & Bobick [1995] use computer vision to

track human soccer and football players, respectively, while Han & Veloso [1999] apply

behavior recognition to robotic soccer to assist in controlling the players. Further, Pingali

et al [1998] also use computer vision to track a tennis game in real-time for enhanced

broadcasts.

Much of the work in this domain relies on video sensors, but some research has

involved laser range finders as the primary sensors. For example, Prassler et al [1999]

(discussed above) use lasers to track humans moving about an indoor environment, while

 44

Zhao & Shibasaki [2004] track pedestrians in a wide open area (such as a shopping mall)

with laser range finders placed at ankle level.

2.8 Discussion and Summary

This chapter presents a review of the important existing work which relates to the

dissertation. Approaches which are built upon in this work are examined, as are alternate

techniques for solving the problems addressed herein. The key points are:

• Laser range finders are growing in popularity as a sensor ideally suited for

tracking targets over time. However, they cannot be reliably used distinguish

specific individuals from each other.

• Active RFID Tags provide unique identification, but sensors which rely on the

strength of RF signals to localize are very noisy. A great deal of research has

gone into solving this problem in various domains with some success at coarse

resolutions (1-6 feet).

• Hidden Markov models and kernel regression are two machine learning

techniques that can be applied to behavior recognition tasks.

• Many domains which benefit from research towards automatically tracking and

recognizing behaviors. These include biology, sports, robotics, and

safety/security.

Other work differs from that presented here in a number of significant ways.

First, most existing research on tracking involves only a single kind of sensor as input.

 45

Those who use multiple types of sensors generally combine all data in order to improve

localization (such as through the use of a Kalman filter). Instead, this work relies on each

sensor modality to independently solve a separate part of the task, thus minimizing the

effects of the sensors’ failings. Additionally, this tracking algorithm is quick enough to

function in real-time at a reasonable frame rate. Further, other researchers studying

behavior recognition focus on single agents acting alone, whereas this research examines

social behaviors among multiple, interacting agents. Finally, the problem domains that

this dissertation concerns itself with (sports and biological systems) are relatively

unstudied, especially with regards to the techniques and approaches taken herein.

 46

CHAPTER 3

LASER-BASED TRACKING

This laser-based tracking approach focuses on automatically tracking the number

and locations of multiple animals, objects or people (hereafter, “targets”) in a dynamic

environment, either indoors or outdoors, as they move rapidly through the environment

over time. It is robust to uncertain and changing lighting conditions. This method

accurately computes the tracks of a varying and unknown number of moving and

interacting targets over time. These tracks can be generated in real-time or created from

previously logged raw sensor data. The approach uses multiple laser range finders that

record targets’ positions. It removes “uninteresting objects” (i.e. the background) and

accounts for individual targets in close proximity to one another. The ultimate result is a

series of snapshots of the positions of targets as time unfolds. Individual targets in these

snapshots are strung together, creating tracks representing an individual’s location over

time.

The key idea of this technique uses an iterative closest point (ICP) algorithm to

determine the optimal placement of one or more models (or templates) representing the

targets to be tracked. It exploits estimated locations of targets in previous frames to

initialize model placement in the next frame. The data is processed in several phases,

namely – data collection, registration, background subtraction and tracking. Figure 3.1

provides an overview, illustrating the flow of data from one phase to the next. First, in

the data collection phase, the laser range finders record the targets in the area of interest.

Basketball
Game

Laser Range
Finders

Space & Time
Registration

Background
Subtraction

Tracker Tracked
Output

Figure 3.1: Overview of the tracking system.

 47

This data can be processed immediately or logged to disk for later tracking. In the

registration phase the data is passed to several modules, which register the data in space

and time. The data is then run through the background subtraction module to remove

extraneous laser hits not related to the targets. Finally, in the tracking phase the

processed and formatted data is passed to the tracker, which computes tracks representing

the location of each target, using a model-based, ICP tracking algorithm. The rest of this

chapter details the approach taken in each phase and introduces the experiments and

metrics in which it is tested, before ending with the results of these experiments and a

brief summary.

3.1 Registration

A ladar captures data with respect to its own point of view, both spatially and

temporally. This results in isolating each sensor’s data from a comparison with the

others. In order to utilize multiple sensors, output of each ladar is combined into one

global “picture.”

To accomplish this, ladars are aligned in both space and time, creating a global

point of view. Synchronizing the sensors’ measurements in time (and in space) ensures

that all scans correspond to one another. Further, registering the measurements in space

allows the increase in coverage provided by using multiple sensors.

Data is timestamped according to when it appeared in real time. Ladars record

data continuously and independently of each other. In this approach, time is discretized

in order to synchronize the data among the different ladars. First, a master log is created

starting at the timestamp of the first scan and progressing in 26.67 ms increments

(corresponding to the scan rate of 37.5 Hz), rounded to the nearest millisecond, to the

 48

timestamp of the last scan. Scans from each laser are matched up to the master log entry

which minimizes the overall difference between scan times and master log times. This

serves to correct for the buffering issue, which results in scans being given timestamps

that generally increment by between 15 and 46 ms, despite the ladars generating the data

at a vary precise rate. Further, this method corrects for the occasional laser scan which is

lost due to corruption or communication buffer overflows.

Data is coordinated spatially and transformed into one global coordinate system

by converting from polar into Cartesian coordinates. To do this, the location of each

ladar in relation to the others is pre-computed. An initial “best guess” of global location

and orientation from each ladar is used. The exact location and orientation of each ladar

is fairly straightforward to calculate. A ladar is chosen as the primary ladar; its location

and orientation is the ground truth with which the other ladar match up accordingly.

Each ladar’s data, in turn, is compared with the primary ladar’s data in x/y space using

the initial “best guess” placement. An error is generated by summing SQRT(di), where

each di is the distance between each of the new ladar’s laser hits and the nearest laser hit

in the primary ladar’s data. Small moves to the initial location and orientation of the new

ladar are attempted, with the change that reduces the error the most accepted. This

process is iterated until no move results in a lower error, and then is repeated with smaller

and lastly even smaller moves. The final location and orientation of each laser is now

best matched to the primary laser.

Interestingly, although di
2 is often used in calculating error, for this algorithm

SQRT(di) works better. This is because several laser hits in a ladar’s scan may not

correspond to laser hits in the primary ladar’s data (due to the perception of different

 49

objects from different points of view). It is expected that these laser hits would be far

away from any other laser hits, since they truly do not appear in the other ladar’s scan.

However, by using di
2 to calculate error, these large distances would skew the desired

result. Therefore, large distances are weighted less compared to small distances (which

would represent laser hits that are more likely to correspond to each other).

This whole process can be likened to superimposing each subsequent ladar’s data

on top of the primary ladar’s data. Rubber bands are attached from the subsequent

ladar’s hits to the nearest primary ladar’s laser hit. The primary data is held fixed, while

the subsequent data is “released,” allowing it to slide about until equilibrium is reached.

Because each rubber band prefers a state of lesser stretching, the “error” (length of each

rubber band) is minimized. This process is repeated, connecting the bands to the new

nearest laser hit, until no movement results.

3.2 Background Subtraction

In order to isolate data that correspond to the objects that are tracked, hits that

represent the background are removed. Typically, the background is made up of

stationary objects (e.g., the wall and chairs) and targets that are outside the desired area of

monitoring.

The first step of background subtraction is designed to remove stationary (or

mostly stationary) objects, and acts upon each ladar’s data individually. Thus, it can be

run independently of the registration steps described above. Further, the algorithm

considers each angle of each ladar individually, determining at what distance (if any) a

stationary object appears at that angle. This is done by finding the distance at which the

most hits occur over time.

 50

Because the data is recorded to the nearest centimeter, while the accuracy of the

ladar is slightly lower, some fluctuation is likely. To account for this, “buckets” are used

to count the number of occurrences within a small range of measurements. For example,

all data with a distance of between 100 cm and 110 cm could be counted together if a

bucket size of 10 cm was used. It is important that the bucket size be large enough to

account for noise in the data, but not so large that desired targets to be tracked would be

subtracted while close to stationary objects. A bucket size of 5 cm was experimentally

determined to be ideal.

Once all of the data for each scanning angle is sorted into the correct bucket, the

buckets are examined for likely stationary objects. Starting with the bucket nearest the

ladar and working outward, the contents of each bucket is expressed as the percentage of

all laser hits. The first bucket with a percentage above a threshold (experimentally

determined to be 25%) is considered to contain a stationary object. If no such bucket is

found, then there is assumed to be no stationary object to be subtracted at that scan angle,

and nothing is done to that angle’s data.

If, on the other hand, a bucket is found to contain this high percentage of laser

hits, any data it contains can be subtracted as a stationary object. Further, any laser hits

in subsequent buckets, thus farther from the ladar, can also be subtracted. This is because

nothing beyond a stationary object can be “seen” by the ladar, implying that further laser

hits are the result of noise, and can thus be eliminated. Because of noise at the edge of

each bucket, subtraction actually starts one bucket closer to the laser than the one with the

necessary percentage of laser hits. This entire process is repeated for each scan angle of

each ladar.

 51

Once all of the stationary background is eliminated, and the data has been

registered in space and time, it is desirable to convert the data into “frames,” consisting of

data from all ladar at a given time, in Cartesian coordinates. These frames consist of a

full picture at a moment in time, and are analogous to, though quite different from, video

frames. After this conversion, the rest of the background data, consisting of all laser hits

outside the immediate area to be monitored, is eliminated (based simply on x- and y-

coordinates). This subtracts all data far away from the area, relying on the initial

background subtractions to remove the stationary objects near or inside the area (such as

the ladar devices themselves, which are “visible” to each other, and any bordering walls).

3.3 Models (Templates)

The purpose of the tracker is to determine the location of each target within the

data. This is done by attempting to fit an instance of a model to the data. Such a model

consists of a number of coordinate points, oriented in such a way as to approximate the

appearance of the actual targets to be tracked. For example, the model of a person being

observed by laser range finders placed at chest level would consist of a number of points

forming a hollow oval shape, as this is the way a person would appear in the laser data, as

shown in Figure 3.2. Only instances in which the data adequately conforms to the model

a. b. c.

Figure 3.2: Several different models, not to scale. (a) A model of a person, as seen
by a laser range finder. (b) A model of a person carrying a large rectangular box in
front of them. (c) A 2-d model of a fish, as generated from video data.

 52

are considered to be targets and tracked. In this way, noise (such as an incompletely

subtracted background) can be prevented from impersonating an interesting target.

It is also possible to use multiple models. Using more than one model may be

useful when it is necessary to track more than one type of target, such as several species

of fish swimming in an aquarium. There could be one model for each shape and size of

fish. Also, multiple models can be used when a given target can change shape. This may

be caused by a change in perspective (e.g. a fish in two dimensions looks different head-

on versus in profile) or when the targets can change states (such as a forklift which looks

different when it is loaded than when it is not). By attempting to fit each model to the

data, the tracker can determine which model best explains the data.

An instance of a model represents the location and orientation of a track.

Generally, a track is considered a single point and could be considered to reside at the

geometric center of a model. However, the actual pose of the model is maintained

throughout tracking. This allows for the location of a specific part of a target to be

known, in the case of an asymmetric model. Additionally, for such models, the actual

orientation of the target can be determined.

3.4 Tracker

Once the data has been registered, background subtracted, and converted to

Cartesian coordinates, it is tracked. A track represents the location of a single target over

time. Determining the correct tracks is challenging for a variety of reasons. Sometimes

the background is not fully removed or a target is (partially) occluded. Both of these

situations result in difficulties identifying the “interesting targets” in a given frame.

Further, the data association problem, the ability to correctly associate a given target with

 53

itself over time, is especially difficult when multiple targets are in proximity to each other

or moving quickly.

The goal of the tracker is twofold. First, it must determine which groups of laser

hits in a given frame correspond to one of the targets to be tracked (as opposed to non-

subtracted background or noise). This is accomplished by fitting a model to each

grouping of data points; the target’s pose corresponds to the location and orientation of

the model. Second, the tracker must recognize these groups of data points from frame to

frame in order to build tracks representing the same target over time. This tracker

accomplishes these goals in parallel, using the information about the clusters found in one

frame to help find the corresponding cluster in the next. Because the tracks will later be

paired up with the target which is responsible for the data, it is important that a single

track only represent a single target – if the track “jumps” from one target to another, the

track cannot be entirely correctly identified. On the other hand, it is also important that

the tracker generate tracks which are as long as possible, in order to assist in the target

assignment during a later step (see Chapter 4).

The tracker has two main elements. The first component, track generation, uses

the pose of the models in previous frames(s) and iterates on a given frame to find all valid

placements of models in the current frame, updating existing tracks then adding new

instances of models to account for any remaining data. The second part, is the track

splitter. It is responsible for splitting any tracks which are too close together to be

accurately separable, preventing any potential track “jumps”.

 54

Track Generation

After registration and background subtraction, the tracker must identify the

locations of each target within the remaining data. This can be thought of as a two step

process. First, any existing tracks are updated to reflect their new location. Then, new

tracks are looked for among any remaining data.

The first step in updating the existing tracks is to adjust the location and

orientation of each track based on the previous velocity. For instance, the starting

position of a track at t=2 would be found by calculating a vector between its locations at

t=0 and t=1, then adjusting the t=1 position by that vector. The vector would include not

only magnitude and direction of the location coordinates, but also the rotational changes

of the model representing this track between t=0 and t=1. The benefit of this initial

adjustment is that it allows for smaller distance requirements between the model points

and the data point than would otherwise be possible – without this update step, a target is

more likely to move too far away from its previous location, resulting in being identified

as a different track. Smaller distance requirements are useful to help prevent a track from

jumping from one target to another.

After the track location is updated based on velocity, all the data points within a

certain distance of the center of the model are examined. This distance is dependent on

the scale of the data and the size of the targets. For humans in an environment the size of

a basketball court, an appropriate distance was experimentally determined to be 1 meter.

All data points within range are potentially part of the target represented by the current

track. While some component data points may fall outside this range, the likelihood is

 55

small and the exclusion of many distant points can greatly improve the speed of the

algorithm.

Each model point is paired with the nearest data point (as shown in Figure 3.3).

Iterative closest point (ICP) is used to determine the transform of the model points which

minimizes the distance between each model-data point pairing. The model is adjusted

accordingly, and then each point is again paired with the nearest data point. ICP again

transforms the model points to better fit with the data points. This cycle is repeated until

the pairings do not change after an ICP adjustment. Now that the model is at the final

location, two tests are performed to determine if the track is considered to exist during

this frame. First, the fit is calculated as the sum of the distances between each of the final

pairs. If this (normalized) fit is outside of a threshold, then the data is determined to not

adequately reflect the appearance of a target and the track is removed. Finally, the

distance between each of these nearby data points and the nearest model point is

calculated. All data points that are within a certain distance are added to a list. If the list

Figure 3.3: Fitting a model (green/grey dots) to
data (black dots). In this step, each all model
points are paired with the nearest data point.

 56

is long enough (i.e. if there are enough data points very close to the model points), then

the track kept; otherwise, is it removed. Both of these measures help prevent noisy data

from generating extra tracks. Whether the track is ultimately kept or not, the data points

making up the final list of very close points are removed from further consideration.

If the tracker is processing data with multiple models, all of these steps are

repeated for each model. Once every model has been updated, the model with the best fit

(as calculated above) is noted as the most likely model, the track is kept or not based on

its parameters, and its list of nearby data points is removed. This entire process is

reiterated for each existing track.

After all existing tracks are updated the remaining data points must be examined

for new tracks, representing targets which were not tracked in the previous frame. First, a

data point is chosen at random. An instance of the model (or models) is centered at this

data point. From this point, the algorithm proceeds as with existing tracks, starting by

pairing each model point with the nearest data point and using ICP to find the best

transform. The only other difference between updating existing tracks and finding new

ones is that new tracks require a larger number of very close data points in order to be

kept – this is to allow known tracks to be partially occluded without being lost while still

preventing small amounts of noise from being wrongly identified as tracks. The final

results of four subsequent sample frames are illustrated in Figure 3.4.

The tracking algorithm can be described as follows:

Steps in tracking algorithm:

for each existing track

call UpdateTrack(list of unused data points, current model location)

 57

Figure 3.4: Results of processing 4 frames, each about 1 second apart. Black dots
represent laser data. Red/grey dots are model instances placed at track locations.
Trails show past trajectory. Note one spurious track in the 3rd image.

remove all data points near the updated model points

if #removed points < (minimum number of points / 4) || model-fit is too low

remove this track

while there are remaining data points

call UpdateTrack(list of unused data points, first data point location)

remove all data-points near the updated model points

if #removed points > minimum number of points && model-fit is not too low

create new track at this location

UpdateTrack(unused data points, current model location):

while (model point, data point) pairing list changes

call ICP to update model location

update (model point, data point) pairing list based on new model location

return(updated model location)

 58

Track Splitter

One of the goals of the tracker is to ensure that a single track only represents a

single target over its entire existence. This is because the tracks will later be associated

with a target; if the track jumps from one target to another, then it will be impossible for

the entire track to be correctly labeled. Therefore, it is crucial that track jumps be

avoided. Unfortunately, there are some situations in which the underlying laser data of

two nearby targets becomes ambiguous, resulting in uncertainty over which track belongs

to which target. In these situations, the best the tracker can do is to split the two tracks

into two “before ambiguity” and two “after ambiguity” tracks. This way, there is no

chance of the tracks switching targets during the indistinctness. Additionally, during the

uncertainty, the two tracks are replaced by a single track, located halfway between them.

This denotes that the targets are so indistinct as to effectively merge into a single track.

Therefore, the two tracks are split into a total of five distinct track segments.

The effectiveness of this technique is based on the distance at which two tracks

must be in order to perform the necessary splitting. At one extreme, all potential track

jumping can be eliminated by setting the split distance very high. However, this will

cause frequent splits, resulting in much shorter tracks. Yet, another goal of the tracker is

to generate tracks which are as long as possible, which will also help with track/target

assignment. Therefore, a moderate split distance must be used, acting as a balance

between track length and likelihood of track jumping. For humans, split distances of

roughly 0.5 m (experimentally determined) are ideal with slightly lower values better

when the targets move slowly and do not completely run into each other (track jumps are

less likely in these situations, so track splits are less important).

 59

3.5 Methods

Two sets of data are used to assess the tracking system’s accuracy. Both datasets

were gathered with 8 laser range finders placed around the perimeter of the area of

interest, a basketball court. Each consists of a group of people moving around and

interacting on the court in various ways. The first dataset includes 10 individuals playing

a 5 on 5 pickup basketball game which lasts for approximately 16 minutes. In the second

dataset, 25 people were asked to walk and run around, following a pre-described script

outlining various social behaviors to perform; the duration is 9 minutes. The datasets

each provided their own set of challenges. For example, while the basketball game has

fewer targets (reducing occlusions), the targets generally move much faster and tend to

interact in closer quarters than occur in the social behavior experiment. In addition to

these test datasets, the best model and parameter values are determined using two training

sets, consisting of a short (3 minute) section of the basketball game and a completely

separate 9 minute dataset of the social behavior experiment.

Accuracy of the tracker is assessed in three ways: detection accuracy, average

track length, and number of track jumps. The tracker’s performance across these three

metrics indicates how well it fulfills its stated goals. There are three main parameters

which can be tweaked in order to adjust performance on one or more of these metrics.

The first parameter, maximum point distance, is the maximum distance allowed between

a data point and the nearest model point; it is used in the determination of which data

points belong to which track. Next, the minimum number of points necessary for the

creation of a new track is the minimum points per track. Finally, split distance is the

distance inside of which two tracks are split. These parameters are dependent on the

 60

experimental set up (number and size of targets, typical distance from targets to ladars,

and the number of ladars present), and should be tweaked as needed to optimize the

tracker’s performance, though in some cases, increases in one metric results in the

decrease of another.

Finally, the system’s ability to function at real-time on live data is examined.

This test examines how well the tracker can perform when required to keep up with an

incoming data stream. For example, if the tracker cannot function at the full rate that the

data is being generated, then how is performance degraded by only processing as much

data as possible?

Detection Accuracy

This metric is designed to assess the tracker’s ability to detect the location of each

target in each frame. It represents the fraction of total targets correctly found in each

frame, and is expressed as the percent of “track-frames” found. A track-frame is defined

as an instance of a single track in a single frame. Therefore, for example, a dataset

containing of 5 frames, with 10 targets present in each frame, would consist of 5 * 10 =

50 track-frames. If the tracker only fails to detect one target in one frame, it would have

a detection accuracy of 49/50 = 98%.

To determine which track-frames are correctly detected, the ground truth target

locations are manually defined in each frame. Then, an attempt is made to match each

ground truth track-frame to the nearest automatically detected track (in the same frame).

If a match is found within 0.50 meter, then that ground truth track-frame is considered to

have been correctly detected. It should be noted that a single detected track could match

 61

to multiple ground truth tracks if they are close enough together. This is allowed because

of frames in which the track splitting module joined two nearby tracks – the single

remaining track actually represents both targets during its entire existence. As such, it is

possible to know when tracks represent two targets, and they could be marked

accordingly.

Of the three parameters, the maximum point distance and minimum points per

track have the largest effect on the detection accuracy. For example, decreasing the

minimum points per track can result in the creation of multiple tracks per target, which

will reduce the model fit and cause valid tracks to be eliminated. On the other hand, if

the minimum points per track is set too high, then some targets may not be tracked at all

(especially those farthest from the sensors or partially occluded). Likewise, adjustments

to the maximum point distance can have similar effects.

Average Track Length

The second metric used to assess the quality of the tracks generated by the tracker

is the average length of all detected tracks. This is important because many potential uses

of the tracks rely on long tracks. For example, the system of determining track/target

pairings described below uses RFID readings which are only broadcast every 2-2.5

seconds. As such, any tracks shorter than this are not guaranteed to be present for any

RFID readings, while tracks somewhat longer receive only sparse readings. Therefore, it

is important for the tracks to be as long as possible. The average track length is simply

the sum of all detected track-frames divided by the number of tracks, expressed in

seconds.

 62

Although the removal of tracks shorter than 1 second will slightly increase the

average track length (as compared to keeping them), the loss of these tracks will, in turn,

lower the detection accuracy. Such effects are minor, but demonstrate one way in which

the evaluation metrics are interconnected. It is important to optimize all of the metrics

together, instead of only considering one at a time.

The main parameter which affects the average track length is the split distance.

Decreasing the split distance increases the track length, but at the peril of increasing the

number of track jumps (discussed below). Because adjusting the split distance affects

both average track length and number of track jumps, unlike the primary detection

accuracy parameters, changes to this parameter require examining both metrics to find

the best value.

Track Jumps

The phenomenon of track jumping refers to instances of a single track segment

representing multiple targets throughout its existence. This generally happens when two

targets pass very close to one another, such that the track in question shifts from

corresponding to the data points from one target to the data points of another target.

Therefore, this metric counts the number of tracks which suffer from at least one track

jump.

To detect instances of track jumping, the first step is to sum the distance between

a data track and each ground truth track across all of the track’s frames. The ground truth

track with the lowest total distance is said to be the corresponding track. If this

corresponding track has an average distance (total distance divided by the number of

 63

frames) of greater than 0.5 meters, then it is likely that a track jump occurred.

Alternatively, if the distance between the data track and the corresponding track is greater

than 2.0 meters in any individual frame, it is also likely that a track jump occurred. Each

data track that suffers from either or both of these conditions is considered to have

undergone a track jump, thus incrementing the number of track jumps in the dataset. The

total number of track jumps reflects the number of tracks that have at least one jump – the

metric does not determine the total number of times a given track jumps; once a track

jumps once, the damage is done.

Similar to average track length, the parameter that has the largest affect on this

metric is the split distance. As expected, the greater this distance, the less likely tracks

are to jump from one target to another, because track jumps only occur when tracks are

very close together. On the other hand, too large of a split distance will result in

exceedingly short tracks. Therefore, a balance must be found.

Real-Time Tracking

Finally, the real-time performance of the system is examined. As data is read

from the sensors, it is immediately background subtracted and registered (with previously

obtained values), then given to the tracker for processing. The results (i.e. the locations

of each track in this data) are returned and immediately passed on to whatever service

will use the tracks. Currently, for this experiment, the tracks are simply logged for later

analysis.

The module responsible for splitting nearby tracks is designed as a batch process

which operates on entire tracks after they have been completely created. As such, it does

 64

not function in real-time mode. However, it could be re-implemented to work with tracks

as they are being generated. Therefore, results of real-time tracking are examined both

with and without running the track splitter. Additionally, the speed of the track splitter is

considered, to determine the likely effect it will have if built directly into the tracking

process.

In order to allow a comparison between live tracking and tracking pre-logged

data, the live tracking is simulated by using the raw logged data described above. A

module reads in this data at the rate that it would be read from the sensors. If the tracker

is not ready for the next frame of data by the time it is read in, it would be discarded and

the next frame made available. In this way, the tracker constantly receives the “current”

data, regardless of how long tracking takes. Therefore, the tracker was not allowed to fall

behind. On the other hand, if the tracker completes processing the current frame before

the next frame is read in, the data is read in immediately. This way, if the tracker can

process data faster than the sensors would provide it, its exact speed can be determined.

In addition to examining the rate at which the tracker can process data (expressed

in frames per second), performance is evaluated similarly to the off-line version of the

tracker. After all data is tracked and logged, the tracks are examined for number of track

swaps, average track length, and the percent of track-frames detected. The first two

metrics are the same as above, but the third is calculated slightly differently for this

experiment. Because only a subset of frames are processed, and there is no specific

temporal synchronization applied, it is difficult to compare these tracks with the hand-

labeled, ground truth tracks for these datasets. Therefore, the percent of track frames

found are estimated as the sum (across all frames) of the difference between the expected

 65

number of tracks (10 or 25) and the actual number of tracks. For instance, in two frames

of basketball data, the expected number of tracks in each are 10; if there are 9 tracks

detected in the first frame and 10 tracks detected in the second, then 19/20 or 95% of

track-frames were detected. In this test, both live and off-line tracks are assessed with

this detection estimation metric, which has been used by other trackers, such as Balch et

al [2001].

3.6 Results

Models and Parameters

To generate the best possible results, both the model(s) and parameters must be

varied. In the case of two parameters, maximum point distance and minimum points per

track, the same best values apply to both training datasets. On the other hand, the

differences between the two scenarios are such that the model and split distance which

results in the best tracking results are different.

Figure 3.5 shows the models that are used to perform tracking in the basketball

game and social behavior experiment, respectively. Note that the model for the social

behavior experiment, in which people generally move slower, consists of a smaller oval.

This is because the effects of rounding the ladar data to the nearest 26.67 ms is reduced

when movement is slower, resulting in a tighter grouping of data points representing each

target. Conversely, the consistent high speed of the basketball players cause the temporal

offset to shift the data points from each laser noticeably (up to 18 cm for targets traveling

at 15 mph). Additionally, the basketball player model includes more points because the

players were typically much closer together (even colliding frequently) than the social

 66

Figure 3.5: Models used in the experiments,
diamonds for the basketball players and squares
for the social behavior experiment participants.
The models are to scale, with the larger model
measuring 0.6m wide by 0.4m high.

behavior experiment participants, necessitating more model points to prevent a track from

being pulled into the center of two targets.

Like the models, the best split distance is also different for each type of dataset,

with the basketball data requiring a higher value (0.6 m, compared to 0.4 m). As

previously stated, the basketball players were more prone to fast, close movements,

resulting in less model-like data point distributions (due to the temporal offset). Thus, the

tracks are more prone to jumping, requiring a higher split distance to combat the effect.

The parameters for maximum point distance and minimum points per track are

affected less by the ways in which the targets move than they are by inherent constraints

of the environment. Specifically, these parameters are most affected by the number of

sensors used, the size of the targets being tracked, and their rough distance from the

sensors. All of these factors affect the number of laser hits which will strike a target.

The number of sensors and the target’s distance from each also dictates how far apart the

laser hits will occur, affecting the maximum distance between data points and model

 67

points. Therefore, in all experiments, 25 minimum points per track (with 25% as many

required for existing tracks) and 0.2 m maximum point distance produce the best results.

Table 3.1 shows a summary of the tracking results. Included are both test data

sets and the tracker’s performance with regards to each metric. Below is an analysis of

the results.

Table 3.1: Summary of results of the tracker on two datasets.
Dataset Total Track-Frames Avg. Track Length Track Jumps Detected Track-Frames

Basketball Game 366,196 39.81 seconds 5 360,443 (98.43%)

Social Behavior Experiment 496,810 339.57 seconds 2 496,307 (99.90%)

Detection Accuracy

The tracker achieved a detection accuracy of 98.43% of all track-frames in the

basketball data. Most of the missing track-frames are due to either temporarily losing

track of occluded players in the center of a multi-person “huddle” or the deletion of a

number of short (less than 1 second) tracks which result from the middle segment created

in track splitting. The tracker performed even better on the social behavior experiment

data, achieving 99.10% of all track-frames detected. This dataset proved slightly easier,

despite the increase in targets, due to the participants remaining more spread out than the

basketball players.

These results compare favorably to vision-based tracking. For example [Balch et

al 2001] achieved an 89% accuracy examining a similar metric (in which accuracy was a

measure of the number of tracks detected in each frame, compared to the actual number

of targets present) with a vision-based tracker applied to a number of ants in an arena.

 68

Average Track Length

The average track length of the basketball players’ tracks is 39.81 seconds, while

tracks for the slower moving social behavior experiment participants are an order of

magnitude longer at an average of 339.57 seconds. These results compare favorably to

earlier versions of this tracker, which never surpassed an average track length of 10

seconds [Feldman et al 2007].

Track Jumping

Applying the track splitter after tracking reduced the number of track jumps in

both datasets. Specifically, there are only 5 track jumps in the basketball game, or 2.07%

out of a total of 242 tracks. The social behavior experiment also succeeds in this regard,

with only 2 track jumps out of 39 tracks, or 5.13% of all tracks. It would be possible to

eliminate some of these track jumps, but the associated reduction in average track length

actually proves more detrimental to the track/target association phase (as described in

Chapter 4) than the few existing track jumps. For example, by increasing the split

distance until both of the social behavior experiment track jumps are eliminated results in

average track length decreasing by nearly a factor of 10.

Real-Time Tracking

The tracker was evaluated when presented with data at a rate equal to or faster

than would be gathered by the sensor (i.e. 37.5 frames per second). The basketball data

can be tracked at 39.12 frames per second. That is, the tracker processes data even faster

than it would be generated by the sensor. On the other hand, the social behavior

 69

experiment data is only tracked at 28.05 frames per second. The discrepancy is due to

there being two and a half times as many targets in the latter dataset. There would be an

even larger difference in the processing rate if not for the reduced number of data points

in the model used by the social behavior experiment, as the running time is proportional

to these two factors. Therefore, for datasets with more targets, a higher frame rate can be

achieved by reducing the number of data points in the model(s).

Each dataset was evaluated both live and off-line, and with and without also using

the track splitter as a post processing step. The track splitter (as currently implemented)

only runs as a batch process, but is very quick, able to process over 700 frames per

second, or about 1.5ms per frame. As such, even if it were made no more efficient for

live use, it would only reduce the frame rate of the tracker by about 5%. This would have

no effect on the basketball data (which would still have a frame rate above the sensors’

rate) and only a decrease of 1-2 frames per second on the other dataset.

Table 3.2 shows the quality of the tracks generated in each configuration. For the

basketball data, in which only a few frames of data are lost, the results are almost

identical between the live and off-line tracking. Even though 25% of the frames are

discarded in the social behavior experiment dataset, the tracker performance is almost as

good, with the only major difference being a couple more track jumps. Therefore, the

tracker can successfully track at least 25 targets live as the data is gathered with little

degradation in track quality due to frame rate decreases.

On the other hand, most vision trackers cannot track in real time with a high level

of accuracy. For example, Balch et al [2001] can locate ants at the rate of 24 frames per

second, but requires additional time to perform the data association step necessary to

 70

create individual tracks over time. This tracker does not require such a step, as data

association is performed in concert with the detection of tracks.

Table 3.2: Summary of results of the tracker on two datasets in real-time. Included are
both real-time and off-line results, including with and without using the track splitter.

Dataset Live? Split? Avg. Track Length Track Jumps Detected Track-Frames

Basketball Game Yes No 59.87 seconds 52 99.36%

Basketball Game No No 60.69 seconds 52 99.38%

Basketball Game Yes Yes 40.13 seconds 6 98.69%

Basketball Game No Yes 39.81 seconds 5 98.59%

Social Behavior Exp. Yes No 339.36 seconds 5 97.94%

Social Behavior Exp. No No 308.00 seconds 3 98.03%

Social Behavior Exp. Yes Yes 339.32 seconds 4 97.94%

Social Behavior Exp. No Yes 339.54 seconds 2 98.02%

3.7 Discussion and Summary

This chapter presents an algorithm used to produce tracks which fulfill the goals

introduced in Section 3.4. Specifically, tracks average 40 seconds in the high-speed,

high-impact basketball game and over 5 minutes in the slower moving (but more

crowded) social behavior experiment. This means that, on average, a track is lost and re-

initialized (or split) every 5-10 seconds. At that rate, a human labeler would have no

problem assigning labels in (near) real-time, resulting in useful tracks, even in situations

in which the RFID techniques presented in Chapter 4 cannot be used. Also, track jumps

are rare, occurring only once every several minutes.

One important contribution of this work is the ability to track a varying (and

unknown) number of targets moving in a single plane. The introduction or removal of

targets in the middle of tracking does not add any complexity to the algorithm. Further,

although the runtime is proportional to the number of targets, at least 25 targets can be

 71

efficiently tracked at a frame rate capable of producing high quality tracks from a real-

time data stream. This is unlike most vision trackers which run slowly and/or require

pre- or post-processing steps to remove the background or perform data association.

 72

CHAPTER 4

RFID BASED TRACK/TARGET ASSOCIATION

Laser range finders provide excellent localization, but there is no way to associate

tracks with the specific targets which the data represents using lasers alone. To account

for this, a second sensor can be incorporated. Therefore, this chapter introduces a

technique to use such a sensor to label the tracks generated in Chapter 3. Specifically,

active RFID tags were chosen for the task of associating tracks with the targets they

represent. RFID tags are a logical choice, as they provide completely unique signals

(each has its own “serial number”) and have a range comparable to the laser sensors.

However, they also have two notable problems. First, they only send a signal every 2-2.5

seconds, reducing the number of data points they can provide, hence the reason for the

tracker to strive for the creation of long tracks. This first problem can be further

mitigated by placing multiple tags on each target. The second and more troublesome

problem is the noisiness of the signal strength readings which are the only means of

localizing the tags. It is this second problem that needs to be solved to make the RFID

tags a useful addition to the system.

Ideally, the signal strength of a tag reading received at an antenna should be

relatively deterministic based on the linear distance from the tag to the antenna. If this

were the case, approximate tag locations could be determined by imagining concentric

circles, centered at each antenna. The tag would be in the region formed by the overlap

of the correct circles, based on the signal strength of the reading at each antenna. For

example, Figure 4.1 shows an arena with two antennas. If the signal strength of 69 is

received by antenna #4 and 82 is received by antenna #7, then the tag would be found in

 73

Figure 4.1: The region in which a tag is located could be determined by the signal
strength received by one or more antennae. Circles and numbers correspond to
antennae #4 and #7.

the region bounded by the black line. The addition of more antennae would reduce the

size of that region. Unfortunately, the level of noise present in the signal strength

readings result in very convoluted shapes emerging when signal strength is plotted

against tag location. For example, Figure 4.2 shows the locations in which antenna #1

reads a signal strength of 76 in the training data. Therefore, RFID readings will not be

used to generate approximate target locations which can then be used to augment other

sensors in track generation.

The laser range finders are much more accurate at localization than any RFID

system, so the tracks are generated solely from the laser data, with the RFID data only

being used to label each existing track with the most likely target represented by the data.

The technique works by building lookup tables of known tag locations versus recorded

signal strengths at each of the antennae. Then, when new tag data is recorded, the lookup

tables are consulted to determine how likely the tag (and thus the target) is to be in the

 74

Figure 4.2: The region at which this antenna received readings with signal strength
of 76 in the training data.

vicinity of each of the known laser-based tracks. This likelihood is updated over time,

until a score is created for each track/target pairing. The final pairings are then assigned

in an order based on the relative confidence of each track’s scores.

4.1 Building the Lookup Tables

Instead of attempting to represent exact topologies with the RFID readings, coarse

lookup tables are used to contain the training data. First, the area of interest is divided

into a grid with cells measuring 2.6 meters by 2.6 meters (experimentally determined).

For the rest of this process, instead of using actual x/y coordinate information to represent

a location, the relevant grid cell will be used. Each lookup table consists of a single such

grid, and will correspond to one signal strength/antenna pairing. Therefore, the number

of lookup tables is the number of antennae times the number of possible discrete signal

strength values. Then, to perform a single lookup, queries such as Lookup(antenna a,

 75

signal strength ssi, x-cell xc, y-cell yc) are used to retrieve the correct lookup table and

then find the value in the correct cell of the table. This value corresponds to the

likelihood of a receiving a reading of ssi when the tag is actually located in grid cell (xc,

yc).

Initially, the value of every cell in every table is set to 0. Then, training data is

used to increment the values of the correct cells. This training data consists of RFID

readings (signal strength at each antenna) and tag locations. It is gathered when a single

individual slowly walks around the environment to be tracked. Since this individual is

the only target in the environment during training, laser range finders can determine the

true location of the tag at every moment in time – the tag is simply at the location of the

only track. Therefore, it is unnecessary to manually label any training data to complete

this process. It is important that the training data cover the area of interest completely

and slowly, so as to generate many readings spread out among all grid cells. Once the

training data has been gathered, the lookup tables are incremented as follows. For a

given training data point, the grid cell of the tag is determined and the value of this cell in

the lookup table for each antenna/signal strength pairing found in the data is incremented

to denote that there was one additional occurrence of this antenna receiving this signal

strength while the tag was at this location. In this way, each training data point is

responsible for incrementing one value per antenna it represents. After all of the training

data has been processed, each lookup table is individually normalized by dividing by the

sum of all the values of all the cells in that particular table. This results in each lookup

table representing the probability distribution of tag locations for that antenna/signal

strength pairing.

 76

4.2 Scoring Each Track/Target Pairing

Once the lookup table values are set from the training data and normalized, they

can be used to generate scores representing the likelihood that a given target/track pairing

is correct. The score of a pairing is based solely on the track location during each of the

RFID readings for the target’s tags. Therefore, each pairing is scored independently of

the other tracks and the other target information, although these other factors are

considered when actually assigning the final pairing (see Section 4.3). The score

represents how likely this track/target pairing is to be correct.

To determine the score of an individual track/target pairing, the lookup tables are

consulted with regards to each of that target’s RFID readings. For each reading, retrieve

the lookup tables corresponding to each antenna/signal strength combination. The table

cell of interest is the cell corresponding to the grid location of the track at this time.

Increment the score by the sum of the values in the appropriate cell of each lookup table.

Continue increasing the score in this way for each of this target’s tags’ readings. After all

RFID readings have been used, normalize the score by dividing by the number of

readings thus examined, to prevent scores from being skewed just because one or more

readings were recorded for a given tag.

The above process generates the score for a single track/target pairing. It must

then be repeated with respect to all pairings. This will result in a total number of (tracks

* targets) scores. The final pairings can then be decided using these scores.

The algorithm can be described as follows:

Steps in track/target scoring algorithm:

for each track

 77

for each target

 for each of this target’s RFID readings

 retrieve the lookup tables for each antenna/signal strength combination

 calculate the grid cell of the track’s current position

 increment score by the sum of the correct cell in each retrieved lookup

table

 normalize score by dividing by the number of RFID readings

4.3 Assigning Final Track Labels

The last step in determining the correct track/target pairings is to use the

previously generated scores to find a labeling scheme which heuristically maximizes the

sum of the selected scores. Because this refers to the physical locations of the targets, the

labeling process can benefit from the fact that it is not possible for one target to be in

multiple locations at the same time. Therefore, once a target label is applied to a track,

no other coexisting track (even if only coexistent for a short time) can use that label. This

makes the order of labeling very important, as each assigned label restricts the choices

available to the other tracks.

To decide the order in which to label the tracks, a confidence is calculated for

each one. This confidence is the product of the track length squared times the difference

between the two highest available scores. The confidence represents a measure of the

assurance that the highest scored label is correct. The track length is included because

longer tracks benefit from existing during more RFID readings. By using the difference

between the two highest scores, the algorithm is capturing the relative cost of using the

second best label, similar to the process used in the Hungarian algorithm [Kuhn 1995].

 78

For example, tracks that have a large difference between the highest and second highest

scores are sacrificing more “likelihood of correctness” than tracks in which the two

highest scores are more similar.

After all the confidences are calculated, the track with the highest is chosen for

assignment. The target label that is assigned to this track is the one which has the highest

score. As soon as this assignment is made, all unlabeled tracks are updated; any

unlabeled, coexistent track has its score for the chosen label reduced to 0. Then, all the

confidences are re-calculated, to take into account the new scores. Again, the track with

the highest new confidence is labeled next, according to its highest scored target. This

process is repeated until all the tracks are assigned a label. In some cases, it is possible

that there is no valid assignment for a track (for instance, there may be an extra track

which does not correspond to any of the targets wearing RFID tags) – if this occurs, a

track with no available targets would be labeled as “UNLABELED.” Table 4.1 gives a

simple example of this process.

The algorithm functions as follows:

Steps in track/target assignment algorithm:

while there are unlabeled tracks

calculate confidence for each unlabeled track (length2 * (best score – 2nd

best score))

apply the best label to the track with the highest confidence

if all labels have score of 0

 apply label “UNLABELED”

else

 79

reset scores for this label to 0 for all coexisting tracks

Table 4.1: The upper left table shows the initial track/target scores and track
confidences. In the upper right table, Track 2 has been labeled as Tag A, and the
confidences have been recalculated after zeroing the scores for Tag A in Tracks 1 and 3.
Then, the lower left table shows that Track 1 was labeled with Tag C, removing this
option from Track 3. In the last table, the algorithm finishes by assigning Tag B to the
inal track, Track 3. f

 Length Tag A Tag B Tag C Confidence

Track 1 1720 0.35 0.07 0.33 59,168

Track 2 907 0.27 0.15 0.12 98,717

Track 3 1251 0.40 0.44 0.38 62,600

 Length Tag A Tag B Tag C Confidence

Track 1 1720 0 0.07 0.33 769,184

Track 2 907 0.27 0.15 0.12 Tag A

Track 3 1251 0 0.44 0.38 93,900

 Length Tag A Tag B Tag C Confidence

Track 1 1720 0 0.07 0.33 Tag C

Track 2 907 0.27 0.15 0.12 Tag A

Track 3 1251 0 0.44 0 688,600

 Length Tag A Tag B Tag C Confidence

Track 1 1720 0 0.07 0.33 Tag C

Track 2 907 0.27 0.15 0.12 Tag A

Track 3 1251 0 0.44 0 Tag B

4.4 Methods

To evaluate the quality of track/target assignments generated by the system, two

datasets are used. The origin of these datasets is the same two experiments previously

described: a 16 minute, 5 on 5 basketball game, and a 9 minute social behavior

experiment involving 25 participants. The actual tracks are those automatically generated

by the tracker described above. In addition, the technique was tweaked using a separate 9

minute experiment and a 3 minute subset of the basketball game. Finally, the data used

to create the lookup tables consists of a single target walking around the basketball court

in a grid-like fashion. This data is about 46 minutes long and includes 2369 RFID

readings. The trajectory is shown in Figure 4.3.

In the case of both the training data and the actual experimental data, the

participants wore hats on which were affixed two RFID tags, as shown in Figure 4.4.

 80

Figure 4.3: Black lines show the trajectory of the lookup table training data, as
generated automatically by the laser range finders.

Using two tags effectively doubled the rate of readings, providing a richer data set. The

tags were attached to the relatively steady surface provided by the top of the hat in order

to help reduce the signal strength variability caused by changes in orientation. Although

participants could be facing in any direction, the hat kept the tags generally fairly

perpendicular to the ground, reducing their degrees of freedom. Each tag was color

coded (and the entire experiment was videotaped) only to assist with human labeling of

ground truth for evaluation.

Evaluation is similar to the detection accuracy metric described in the track

methods above. However, instead of comparing the distance between a ground truth

track and the nearest data track to see if it was detected, it is only compared to a data

track with the same target label. If such a track is too far away (greater than 0.5 m), or if

there are no tracks with the correct label in this frame, this track-frame is considered

 81

Figure 4.4: Two examples of the
hats worn by the participants during
experimental data collection.

incorrect. Therefore, the accuracy reflects the fraction of track-frames in which a target

has an associated track which is correctly located and identified.

4.5 Results

Table 4.2 summarizes the results of the target association algorithm on the two

test datasets. The original tracker results from above are also repeated. As the table

shows, the percent of track-frames which are correctly identified in the basketball game is

95.9% of all track-frames, or 97.5% of the detected track-frames. Performance is also

strong on the social behavior dataset, with 90.2% of all track-frames accurately detected

and labeled.

Table 4.2: Summary of results of the tracker (with RFID identification) on two datasets.

Dataset
Total Track-

Frames
Average Track

Length
Track
Jumps

Detected Track-
Frames

Identified
Track-Frames

Basketball Game 366,196 39.81 seconds 5 360,443 (98.43%) 351,262 (95.9%)
Social Behavior Experiment 496,810 339.57 seconds 2 496,307 (99.90%) 448,188 (90.2%)

Despite the social behavior experiment proving easier to track, the basketball

game actually has a higher identification accuracy. An examination of the errors in

 82

identification of the social behavior experiment reveals that about 80% of the wrong

track-frames are due to two tracks having reversed labels – unfortunately, these tracks

both persisted for the entire dataset, resulting in 18 minutes of reversed track-frames.

The people which these tracks represent spent the entire experiment in close proximity,

roaming the arena side by side the whole time. Thus, they scored very similar to each

other on all labels, with the wrong label just edging out the correct one. This is an

example of long tracks actually being a hindrance, for, although the tracks never jumped

targets, if they were split, even occasionally, they probably would have been labeled

correctly at least some of the time. On the other hand, since these two participants

largely traveled together, and interacted with the same other people, it is likely that the

reversed tracks would not greatly hinder behavioral research. Without this single error,

identification accuracy on this dataset would surpass 98%.

Most trackers which rely on RF signals for localization report accuracy in terms

of the average distance between a target’s reported location and its actual location.

Taking this metric, Kantor & Singh [2002] achieve an average accuracy of 1.62 feet.

Although a different metric, the system described here compares favorably with accuracy

of at least 0.5 meters over 90% of the time.

4.6 Discussion and Summary

The tracks created in Chapter 3 represent high quality trajectories of the locations

of each target at every moment in time. However, there is no way to differentiate specific

targets from one another. Without this functionality, the applications which can use those

tracks are limited. Therefore, a method of identifying the targets represented by each

track is introduced in this chapter. Using active RFID tags in conjunction with the

 83

previously generated ladar-based tracks, allows the targets to be uniquely identified

correctly over 90% of the time.

Most work involving localizing from RF signals has focused on localizing based

solely on the RF signal, which provides a best case of localization of roughly 1-2 feet –

good for some applications, but unsatisfactory for the types of social behavior research

which will use these tracks. Alternately, the use of passive RFID tags or other short

range beacons are not suited for the environments and targets studied here. Instead, the

technique of using RF signals to label pre-generated tracks presented in this work is a

novel approach compared to existing research.

 84

CHAPTER 5

BEHAVIOR RECOGNITION WITHIN HONEY BEE COLONIES

The main research question involves an exploration of learning about social

behaviors through observations. Once observations have been made, as discussed in

Chapters 3 and 4, they can be used to model and recognize behaviors. This chapter

describes a system that learns to label behavior automatically on the basis of a human

expert’s labeling of example data. As discussed previously, this will save the researcher

time, which can be better used by the researcher to analyze the automatically labeled

data.

The behaviors of interest are sequential activities that consist of several physical

motions. For example, bees commonly perform waggle dances. These waggle dances

consist of a sequence of motions: arcing to the right, waggling (consisting of walking in

a generally straight line while oscillating left and right), arcing to the left, waggling, and

so on [v. Frisch 1967]. In this work, the focus is on dancing, following, and active hive

work as behavioral roles to be identified.

Specifically, the behaviors are defined as follows. A follower is a bee who

follows a dancer, but does not perform the waggle segments, while a bee accomplishing

active hive work is neither a dancer nor a follower, yet moves around with apparent

purpose. Behaviors are distinguished from their constituent motions. Arcing, waggling,

moving straight, and loitering are examples of motions, which are sequenced in various

ways to produce behaviors. Accordingly, in order for a software system to recognize

behaviors, it must also identify the motions that make them up. And conversely,

 85

knowing which behavior a bee is executing allows better identification of the constituent

motions.

The system described here is designed to label a bee’s motions and then identify,

from motion sequences, the animal’s behavior. There are several steps in the operation of

this system. But before it can begin to operate, raw location data of each to be analyzed

must be gathered. Therefore, first, marked bees in an observation hive are videotaped

and tracking software extracts x- and y-coordinate information for each bee [Bruce et al

2000]. Then, the system begins by computing quantitative features of motion (such as

velocity and heading change) from the raw location data. A kernel regression classifier

identifies motions from these features (the classifier has been previously trained using

data labeled by an expert) [Mitchell 1997]. The labels are:

• ARCING_LEFT (AL) – The bee is moving in a counter-clockwise direction

• ARCING_RIGHT (AR) – The bee is moving in a clockwise direction

• STRAIGHT (S) – The bee is moving steadily in a fairly straight line

• WAGGLE (W) – The bee is moving straight while oscillating left and right

• LOITERING (L) – The bee is moving very slowly in a non-specific direction

• DEAD_TRACK (D) – The bee is not moving at all

Finally, the motion sequences are evaluated using a hidden Markov model which

identifies predicted labels of the data set (motions) and inferred behaviors. Hidden

Markov models (HMMs), explained in Section 2.6.3, are convenient models of behavior

that can also be used for recognition tasks. An HMM describes likely sequences of

motion that correspond to specific behaviors. In this application, HMMs are used to

increase accuracy by “smoothing” the labels across the data set.

 86

There are a number of algorithms that operate on HMMs that can be leveraged.

In this system, the output from the kernel regression classifier is used as input to the

Viterbi algorithm over a fully connected HMM [Rabiner 1989]. In this way, incorrect

classifications that are statistically unlikely can be discarded or corrected. For example,

if there is a series of ARCING_RIGHT data points with a single ARCING_LEFT in

the middle, it is likely that the single ARCING_LEFT is an error and should really be an

ARCING_RIGHT, even though the features quantitatively indicate an

ARCING_LEFT. The HMM technique will correct mistakes of this nature. HMMs can

also be used to identify behavior. By creating an HMM for each of the possible

behaviors, the correct behavior can be chosen by determining which HMM most closely

fits the data.

The hypothesis is that this system can provide a means of labeling new data with

reasonable accuracy. Note that since the overall goal of this recognizer is to identify

behaviors automatically, it is not necessary to be able to label every data point precisely.

If a majority of individual motions can be labeled properly, then it is possible to infer the

correct behavior (dancer, follower, etc). Figure 5.1 shows an overview of the system.

5.1 Tracker

Tracking software is necessary to convert the bee videos into data that can be used

by other software [Bruce et al 2000] [Khan et al 2003]. To collect the experimental data

Bees Camera HMM Tracker Labeled
Out

KR
Classifier put

Human Labeled Training Set

Figure 5.1: An overview of the system. After [Feldman & Balch 2004].

 87

used in this system, some bees were removed from the hive and individually painted, by

applying a drop of brightly colored paint (such as red or green) to each bee’s back. A

video camera was then trained on a section of the hive, and a recording was created. The

tracker is then applied to the recording. For each frame of the video, the tracker is able to

identify the location of each painted bee that is visible. Since the speed of the video is 30

frames per second, the data now consists of the coordinate information of each (visible)

painted bee every 0.033 seconds. This is enough information to get a clear picture of the

bee’s movements.

5.2 TeamView

The TeamView software (shown in Figure 5.2) is used to visualize and hand label

the data sets. The files that contain the x- and y- coordinate information (from the

Figure 5.2: TeamView software. Labeling options appear to the right of the main
viewing window, while playback controls are at the bottom. The displayed labels were
previously created using this software. From [Feldman & Balch 2004b].

 88

tracker) are loaded into TeamView. When the files are played, the main viewing window

displays the position of each bee currently in the field. The lines behind each “bee” are a

trail, showing where the bee has been over the last x frames (where x is definable by the

user). The labeling options allow a user to mark a segment of the video and apply any

label to a specific bee. In this way, it is possible to label the motions of each bee across

the entire data set. Further, once data is labeled, the labels will be displayed next to the

bee they are associated with. The advantage to using this software is the speed with

which a human can label the data, as compared to more traditional pen and paper method

of using a stopwatch and the original video.

5.3 Data Generation and Feature Extraction

The data used in this system begins as video of bees in the hive, prepared for

analysis by the tracker, as discussed above. Once the coordinate information for each

tracked bee is obtained from the tracker, numerical features of motion that are used to

determine the bee’s motion are extracted. All features are calculated for each tracked bee

during every frame in which it is visible. Since all values are normalized, the units of

measurement can be disregarded. Seven features that were extracted and examined for

their usefulness (where t is the current frame in time):

• Instantaneous Speed (v0) – from time t-1 to t

• Speed over a Window (v1) – from t-3 to t+3

• Raw Heading (h0) – from t to t+1

• Heading Change over a Small Window (h1) – from t-1 to t+1

• Heading Change over a Large Window (h2) – from t-20 to t+20

• Speed times Heading (sh0) – multiply h1 and v0

 89

• Average Speed times Heading (sh1) – average of sh0 values from t-5 to t+5

5.4 Kernel Regression Classification

Before kernel regression classification can be used, the appropriate features must

be determined. From the information generated by the tracker, seven features are

available. It is possible to use all seven of these features, however, it is beneficial to

reduce this number if not all features are useful in classification. Reducing the number of

features (and therefore the dimensionality of the feature space) will result in simpler and

quicker computation, greatly reducing the working time of the system. Also, in some

cases, more dimensions can make things worse – they are harmful to classification. This

is because two points close to each other in a dimension that does not affect labeling

would seem closer together in feature space than if that dimension were not included.

For example, bee color has nothing to do with what motion a bee is performing, so it

would not be a useful feature. Yet by including it, two bees of similar color which are

performing different motions may appear (in feature space) to be more similar than two

bees that are performing the same motion (and therefore warrant the same label) but are

very different colors. It is obvious that bee color is not relevant, but this example

illustrates how additional information, though correct, can be quite detrimental to results.

In order to determine which features are helpful and which are useless (or

harmful) in determining the label of a data point, a sensitivity analysis is conducted.

Every combination of the seven available features – from each one individually to all

seven together – is tested by applying the kernel regression algorithm to a large training

set. The combination of features that resulted in the highest accuracy (defined as the

 90

percent of the test points labeled correctly) are considered the most useful, and are the

only features used in the rest of the experiments.

In the experiments, the training set is made up of 1000 points of each type of

labeled motion. This ensures fair representation, despite frequency disparities among the

labels (unlike some other methods of selecting the training set). The importance of this

can be found in the infrequency of the most useful label – WAGGLE. This label is very

telling due to its appearance only during a dance. However, WAGGLE points make up

only 0.1% of the data. Therefore, choosing a random sampling of 6000 data points would

result in few, if any, WAGGLE points being chosen.

As discussed above, kernel regression classification usually results in a single

label being chosen for each point (the label with the highest score for that point).

However, in order to provide the HMM with as much useful information as possible,

instead of only recording the highest-scored label, this system actually records the

(normalized) scores for all the labels. This information represents a sort of “confidence”

level in the kernel regression classification. The advantage of this technique over

traditional kernel regression methods is that when the classifier is wrong (because the

correct answer has the second highest score, for example), the HMM can use the fact that

the correct answer has a relatively high score, instead of simply being given the wrong

information. This has the effect of helping to account for the large amount of noise in the

data.

5.5 Hidden Markov Model

The kernel regression algorithm is very good at classifying data points based on

features that are similar in value to those in the training set data. However, there are

 91

several reasons why the correct label does not directly reflect the features. For example,

often while a bee is arcing right, it will jitter, causing the features to look like there are

some frames of loitering or arcing left in the middle. In this case, the classifier will label

these frames differently. It is desirable to “smooth” these places where the data isn’t

representative of what is really going on. Since the kernel regression classifier only

considers each point individually, this time series information is lost. Thus, hidden

Markov models (HMMs) are examined.

Although many HMMs use a specific topology, this system uses a fully connected

HMM, as the system should learn this topology automatically. Instead, the HMM is used

to statistically smooth the labels provided by the kernel regression classifier. Therefore,

all of the states are connected, and use the training data to determine the probability of

each transition (see Figure 5.3). It should be noted that this technique may result in

certain transition probabilities dropping to zero, which causes the HMM to no longer be

fully connected.

Once the HMM is specified, it will be used by the Viterbi algorithm to determine

the most likely state sequence for a given observation sequence. It does this by using

time series information to correct “glitches” which are statistically unlikely. For

example, if there is a single ARCING_LEFT label in the midst of a series of

ARCING_RIGHT labels, the Viterbi algorithm will decide that the ARCING_LEFT is

an observation witnessed from the ARCING_RIGHT state since the low transition

probabilities between ARCING_LEFT and ARCING_RIGHT make it very unlikely

that the state changed twice here.

 92

The observation sequence given to the algorithm is actually the output from the

kernel regression classifier. The form of this sequence is a series of continuous vectors,

with one dimension for each possible label. It should be noted that since the observations

are continuous (vectors between 0 and 1 in each dimension) instead of discrete, there is

no observation table, per se. Instead, there are observation probability functions, which

represent the probability of seeing a particular observation in a given state. These

functions merely equal the value of a Gaussian at the observation. The mean of the

Gaussian is dependent upon which state is being examined.

For example, the observations are made up of a 6-dimensional vector, with one

dimension corresponding to each of the states (ARCING_LEFT, ARCING_RIGHT,

STRAIGHT, WAGGLE, LOITERING, DEAD_TRACK), such as o = (u, v, w, x, y,

Arcing
Left
(AL)

Waggle

(W)

Arcing
Right
(AR)

0.98

0.012

0.97 0.98

 0.008

0.015 0.014

Dead
Track

(D)

Loitering

(L)

Straight

(S)

0.98
0.99

0.97 0.007

0.017

0.016

Figure 5.3: Possible HMM, after removing transitions with a probability
less than 0.005. After [Feldman & Balch 2003].

 93

z). u corresponds to the “leftness” of the point, while x represents its “waggle-ness”, etc.

The observation function for the waggle state would be a Gaussian centered at (0, 0, 0, 1,

0, 0). Therefore, if observation o has a high x value, it will result in a higher probability

of being an observation in the waggle state than if it had a low x value. Similarly, a high

v value will move it closer to the mean of the ARCING_RIGHT state than a low v

value, resulting in a higher probability of being an ARCING_RIGHT point.

5.5.1 Behavior Recognition

The tasks of motion identification and behavior recognition are usually treated

separately, with recognition accuracy being dependent on the accuracy of the motion

identifier. This system, however, completes these two tasks in parallel, allowing each to

assist the other, by creating an HMM, as above, for each possible behavior. The

behaviors considered are:

• Dancer – The bee is performing a series of waggle dances

• Follower – The bee is following a Dancer

• Active – The bee is neither a Dancer or Follower, yet moves around the hive with

apparent purpose

• Inactive – The bee simply loiters about, not moving in a distinct direction

Each HMM is trained on a data set made up of only the corresponding behavior

(as provided by a human expert labeler). Thus, the model for a dancer is different from

the model for a follower. These HMMs are then connected via a null, start state, which

allows movement to every state in every HMM. However, there is no movement back to

the start state, nor between each smaller HMM (Figure 5.4).

 94

This technique allows the Viterbi algorithm to choose the best sequence of

motions, by falling into the sub-set of the HMM which best models the data.

Simultaneously, the algorithm can best choose the sub-set (and thus the behavior)

because it is the one that most closely fits the observations.

5.6 Methods

To assess this classification system, an experimental data set consisting of fifteen

minutes of video of honey bee behavior in an observation hive was collected. The tracker

was used to extract the features, while TeamView was used for hand labeling. There

were three human labelers, each labeling 5 minutes of the data. The data was then broken

into a training set, consisting of the last third of the data, and a test set, consisting of the

first two thirds. The test set is used only for accuracy validation after training the system.

S1 S1

S1 S1

S1 S1

S1 S1

S1 S1

S1 S1

S1 S1

S1 S1

S1 S1

S1 S1

S1 S1

S1 S1

Start

Behavior 1 Behavior 2

Behavior 4
Behavior 3

Figure 5.4: Behavioral HMM, which is made up of a start state and the four
sub-models, one for each behavior. After [Feldman & Balch 2004a].

 95

First, the training set is prepared for use by the kernel regression classifier by

having 1000 points of each label randomly extracted and placed in feature space. The

remainder of the training set is then labeled, using the technique described above. The

data is separated by (human determined) behaviors, and the labels, along with the

manually determined “correct” labels, are then examined to find the transition table and

the initial state probabilities of each sub-model. These are then combined to form the

overall, behavioral HMM.

To establish the accuracy of the system, these 6000 points in feature space and

HMM parameters are used to automatically label the test set, labeling both the motion of

each data point and the behavior of each entire track (bee). In this phase of the

experiment, the correct labels are not known by the system – instead they are only used to

evaluate its accuracy.

5.7 Results

5.7.1 Feature Selection

Every combination of the seven available features is tested by applying the kernel

regression algorithm to a large training set. This results in 127 possibilities (zero features

is not an option). The combination of features that result in the highest accuracy (defined

as the percent of the test points labeled correctly) is h2, v1, and sh1. Therefore, only

these features are considered in the rest of the experiments.

It is interesting to note that accuracies using these three features plus

combinations of other features range from 58.9% to 73.0%, while the accuracy of using

only these three features is 73.1%. This demonstrates that having extra features can

reduce accuracy.

 96

5.7.2 Classification Results

Table 5.1 shows the fractional accuracy for each label type. The system achieves

an overall accuracy of about 93%. Further, the overall accuracy increases by 17.9% by

including the use of the HMM to “smooth” the results of the kernel regression classifier.

Finally, the accuracy in determining the behavior is 79.8%. That is, roughly 80% of all

tracks are automatically labeled with the same behavior as given by the human labeler.

Table 5.2 is a confusion matrix showing how each data point is (mis)labeled. For

example, the W column indicates that 75% of the WAGGLE points are correctly labeled

as WAGGLE points, while 9% of them were mislabeled as ARCING_RIGHT points.

Table 5.1: Fractional breakdown of accuracy, first with the kernel
regression classifier, then with the addition of the HMM. Final
column shows number of occurrences of each label in the test set.

Label

Accuracy
(without HMM)

Accuracy
(with HHM)

Total Occurrences
in Test Set

ARCING_LEFT 0.71 0.84 2059
ARCING_RIGHT 0.65 0.83 2407
WAGGLE 0.49 0.75 1550
LOITERING 0.77 0.96 113285
DEAD_TRACK 0.91 0.90 5920
STRAIGHT 0.34 0.39 5343
Total 0.75 0.93 130564

Table 5.2: Fractional breakdown of system labels. Each row shows the
percent of that row’s label identified as each possible label by the system.

 System Label
 AL AR W L D S
AL 0.84 0.02 0.04 0.08 0.00 0.02
AR 0.02 0.83 0.03 0.09 0.00 0.03
W 0.10 0.09 0.75 0.01 0.00 0.05
L 0.01 0.02 0.00 0.96 0.01 0.01
D 0.00 0.00 0.00 0.09 0.90 0.00

Actual
Label

S 0.06 0.09 0.00 0.45 0.00 0.39

 97

5.7.3 Discussion of Results

As hypothesized, the use of an HMM in conjunction with a kernel regression

classifier provides higher accuracy than a kernel regression classifier alone. The HMM

improves overall accuracy by almost 18% above the 75.1% accuracy of kernel regression

alone. The two labels that correspond to the vast majority of the data (LOITERING and

DEAD_TRACK) are very similar to one another, both in features and in appearance.

Due to this fact, and some ambiguity among the human labelers, misclassifications

between them are less important than other misclassifications. If these two labels were

combined into one, the accuracy of the system would be approximately 94.1%.

Another label that caused many problems for the system was STRAIGHT. This

label was included to make the system as general as possible. However, none of the

common bee behaviors (dancing, following, active hive work) seem to rely on this label.

Therefore, it would be possible to eliminate this label. Removing all points labeled

STRAIGHT from consideration would increase the accuracy by about 2.5%, to 95.5%

(or about 96.6% after combining LOITERING and DEAD_TRACK).

It should be noted that if the system merely labeled each point LOITERING, an

accuracy of 86.8% would have been achieved. Although not much lower than the 93%

result, this is accuracy based on a frame by frame comparison. However, since the

ultimate goal is identifying the bee’s behavior, it is not important that every frame be

correctly identified, as long as each segment of like frames is recognized. For example, if

the system says that a series of WAGGLE points starts and ends several frames before or

after the “correct” labels indicate, it is of little importance, as the behavioral recognizer is

still given a WAGGLE sequence of approximately the correct length.

 98

The system achieves an accuracy of 79.8% in identifying the behaviors. It is

possible that this is not a higher value because the four behaviors are so similar. This

means that the transition probability table for each behavior is very similar to the

transition probability tables of the other behaviors.

An even bigger factor which reduces the system’s behavior recognition accuracy

is the assumption that behaviors persist for the entire duration of a bee’s presence.

However, in reality, a bee will switch behaviors. For example, it will enter the hive and

find a suitable place to begin dancing (Active Hive Bee), then it will dance for a time

(Dancer), then it will move to a new location (Active) and begin dancing again (Dancer).

By not letting a bee change behaviors, the models become diluted, and the all-important

distinctiveness is lost.

5.8 Discussion and Summary

The system of modeling behaviors examined in this chapter achieves an accuracy

at the motion level of approximately 93%. Further, a behavior accuracy of almost 80%

has been realized, despite the inaccuracies introduced by the method of labeling

behaviors. Thus, the system proves that its techniques are sound, and provides

reasonable accuracies, with room for improvement by structuring the data slightly

differently, as discussed above. By successfully mimicking the labels generated by a

human labeler, this system is a step towards the ultimate goal of performing automatic

behavior recognition, in the biological systems domain, without the need for a human

labeler.

 99

 100

CHAPTER 6

INTERACTION DETECTION BETWEEN ANTS

Chapter 5 presented one approach to learning behaviors in a social biological

system. This chapter introduces a method of detecting various interaction events between

multiple nearby individuals. The technique was developed for myrmecologist Stephen

Pratt to help him automatically detect interactions between ants in his research, as

discussed in Chapter 2. Recall that the interactions to be detected are head to head, head

to body, and body to head (from the point of view of the other ant in a head to body

interaction). Instead of using the sensory perception method previously discussed, this

system uses expertly labeled data to train a simple model. One of the goals of this

research requires designing the system in such a way that a person not trained in

computer science could understand how the results are derived.

The focus here is on using timestamped trajectories of the pose of each ant in

order to detect and classify the various interactions. Therefore, any tracking technique

that can handle multiple, interacting agents can be used to generate the trajectories. The

experiments presented here use the tracker described by [Khan 2005].

6.1 Approach

Once trajectory data has been gathered, features must be extracted from which the

model is built. These are the observable attributes of the trajectories which are used to

model the interactions. Then, a portion of the data (the training set) is hand labeled by an

expert, while the rest is put aside for validation (the test set). This training set is used to

determine the thresholds of each feature for each type of interaction. The thresholds can

be used to label new data (such as the test set). Once the labels are generated, they are

 101

updated in two post processing steps, to take advantage of the symmetry of interactions

and to smooth over time.

Three features of a potential encounter are selected; all are easily determined from

the data. The features are illustrated and described in Figure 6.1. The three features are

calculated from the point of view of each ant (called the focal ant). As with the

interactions, the features are also symmetrical, with one focal ant’s theta being another

ant’s phi, and vice versa. Although the figure only shows two ants, it is not uncommon

for three or more ants to be in close proximity to each other. To account for this, the

feature data for each ant includes distance, theta, and phi for up to the three closest ants.

Then, interaction detection is attempted separately on each of these pairings. The highest

priority interaction, if any, is chosen as the label. The priority of interaction is based on

the expert-perceived value of the interaction type, with the following order: head to head

(HH), head to body (HB), body to head (BH), and no interaction (X). Therefore, if three

ants are in close proximity and the focal ant is labeled as having an HH interaction with

one ant and a BH interaction with another ant, it will be given the HH label even if the

BH ant is closer.

Figure 6.1: Left: Three features used to classify interactions between ants. Right:
Training data is plotted in feature space. The boxes illustrate the thresholds used to
identify each type of interaction. From [Balch et al 2005].

 102

Once the features have been calculated, the thresholds can be determined. This is

accomplished through a hill-climbing optimization. For each type of interaction (set of

thresholds), the goal is to maximize the fraction of data points with that label inside the

bounding box while minimizing the fraction of data points with different labels inside the

box. Only data points which are labeled as an interaction are included in evaluation,

causing the many data points representing a lack of interaction (X) to not count. Each

interaction type is processed separately, generating a set of six thresholds (minimum and

maximum values of each feature to be considered that interaction type). It is possible for

overlap between bounding boxes; in this case, the interaction type with the highest

priority will take precedence in the overlap area. Likewise, areas which are outside all

three bounding boxes correspond to no interaction (X) taking place.

To find the optimal bounding box (set of six thresholds) for each interaction type,

it is first initialized to be the smallest box which encloses all data points with that

interaction type. The algorithm then adjusts the bounds of the box incrementally - in

each iteration, the threshold change that results in the minimum error is accepted. The

error function to be minimized is:

Error = # data points of current type outside the box * total # data points of other classes

+ # data points of other types inside the box * total # data points of current class

 (the error is then normalized by the total number of data points)

To help reduce the effects of local minima, the entire process is repeated with

three subsequently smaller steps. The resulting thresholds determined from a 5 minute

labeled sequence are illustrated in Figure 6.1. These thresholds are used to label new

data points, before two post processing steps are performed.

 103

First, labels are updated to take advantage of the symmetry of interactions.

Because each interaction involves two ants, any interaction should be specified in the

labels of both ants. If the labels do not agree, then the possibility with the highest priority

is used. For example, if ant 1 is labeled as having an HH interaction with ant 2, but ant 2

has anything other than an HH interaction with ant 1, its label is updated to be HH. The

second post processing step is to temporally smooth the data. This is done by changing

the label of frames that disagree with the previous and following frames.

6.2 Methods

Learning from the mistakes in evaluating the bee behavior identification system,

this system is evaluated by checking for the detection of interaction events. Instead of

comparing the system’s labels to the ground truth on a frame by frame basis, which is not

necessarily a useful measure of performance, events consisting of identical labels will be

examined. In this way, every continuous block of a single label will be considered one

event. Therefore, a single event consists entirely of frames with the same label, whether

an interaction (such as HH) or not (X). An event is considered as having been detected if

the correct label is given in at least one frame of the event.

The system is evaluated by having a human expert label two five minute videos of

Leptothorax albipennis searching a new habitat. In each segment, ants enter the field of

view, interact in various ways, and then depart. There are hundreds of interaction events

in each video. The labeling of one video is the training data for the system, which then

labeled the other video. The automatic labeling of the test data is compared to the human

labeling of the same data in two ways; the percent of interaction events detected and the

number of extraneous events detected.

 104

6.3 Results

The automatic method correctly identifies 94% of the interactions. The order of

training is then reversed: the system is trained on the second video, and then tested on the

first. In that case the system correctly identified 87% of the interactions. Figure 6.2

shows an example frame indicating labels provided by the system.

This performance is a good start, having detected almost all of the interactions.

However, the system reports as many as 43% too many events, many of which are false

positives (detecting an interaction when there was not one).

Figure 6.2: This image shows an example frame of video of Leptothorax albipennis
labeled automatically by our human-trainable system. The colored triangles over the
animals are coded for the different types of interaction that animal is experiencing (cyan:
BH, yellow: HB, magenta: HH, blue: X). From [Balch et al 2005].

 105

6.4 HMM Comparison and Integration

The system created to identify bee behaviors is tested with the ant data sets. First,

the system is used as described in Section 6.1 through the extraction of the three features,

which are then given to the kernel regression classifier, etc. (as described in Chapter 5).

In this case, there are many fewer extraneous events detected, due to the sophisticated

smoothing influence of HMMs that tends to suppress brief “noisy” detections. However,

there is also a decrease in event detection accuracy, with only 71% and 77% of the

interactions detected.

Finally, a hybrid system is attempted. For this attempt, the threshold technique is

first used to generate labels, then the labels are used with an HMM to improve accuracy,

as described above. This hybrid system achieves a better 84% interaction detection

accuracy (on both data sets), while maintaining a relatively low number of extraneous

interactions. The results of all three systems are summed up in Table 6.1.

Table 6.1: Interaction detection accuracy for each of the techniques attempted.
Threshold is the initial system, KR/HMM is the system described in Chapter 5, and
Hybrid is the Threshold system combined with an HMM. Dataset 1 has 191 events (98
interactions) and dataset 2 has 136 events (70 interactions). Total Extras refers to the
number of events in the automatically labeled data which are completely wrong.
Method Train Set Test Set Ints

Detected
X’s
Detected

Total Events
Detected

Total Events
Labeled

Total
Extras

Threshold 1 1 94.9% 69.9% 82.7% 408 164
Threshold 1 2 87.1% 68.2% 77.9% 294 129
Threshold 2 1 93.9% 70.1% 82.7% 388 165
Threshold 2 2 90.0% 65.2% 77.9% 244 114
KR/HMM 1 1 89.8% 57.0% 73.8% 185 43
KR/HMM 1 2 77.1% 57.6% 67.6% 129 33
KR/HMM 2 1 71.4% 72.0% 71.7% 184 50
KR/HMM 2 2 90.0% 68.2% 79.4% 129 20
Hybrid 1 1 84.7% 59.1% 72.3% 194 53
Hybrid 2 1 84.7% 62.4% 73.3% 176 40

 106

6.5 Discussion and Summary

As with the other behavior recognition techniques presented herein (in contrast

with most existing work), the main concern is with behaviors between multiple, socially

interacting agents in biological domains. Biological researchers spend an inordinate

amount of time gathering behavioral data from the systems they study. This task is

especially arduous in social systems, in which the behaviors of many individuals must be

simultaneously observed. These researchers would benefit from the introduction of tools

automating any parts of this data collection process. For instance, the techniques

presented in this chapter build upon earlier work to provide the frequency and types of

interactions between Leptothorax albipennis ants searching for a new habitat to a

myrmecologist. This way, he can gather much more data than would be possible through

manual observation, allowing the testing of many more hypotheses about why these ants

interact. Because this information is used in aggregate, 100% accuracy is not required to

be useful.

 107

 108

CHAPTER 7

LEARNING PRIMATE SOCIAL FAMILY HIERARCHY

The previous two chapters describe algorithms which model, recognize, and

detect behaviors and interactions within social insect colonies. The research in this

chapter expands interaction detection to non-human primates (as simulated by human

primates), and then seeks to use this information to learn information about the group as a

whole. Among many biologists, one area of study involves determining the social

structure within a colony of animals. This social structure, or the definite relationship

between the individuals in the colony, must be established before many subsequent

behavioral studies can be carried out. For instance, Drea & Wallen [1999] demonstrated

that performance on learning tasks in subordinate-ranked rhesus monkeys varied

dramatically based on the presence of hierarchical superiors. This “playing dumb” effect,

also encountered in human societies, can skew the results of behavioral studies if not

known and controlled for. It has also been shown that certain behaviors, such as

grooming, are used to express kinship, but also occur as tools by subordinates to achieve

the agonistic support of higher ranked individuals [Schino & Aureli 2008]. In order to

ascertain the motivation of such behavior, the researchers need to know the hierarchical

relationship of the individuals.

The social hierarchy dictates the manner in which individuals interact with one

another. For instance, monkeys may only be aggressive to those of a lower ranking, who

behave submissively in such situations. The social hierarchy among these animals, which

are matrilineal, is based upon a monkey’s lineage to the lead female. Therefore, learning

the hierarchy of the individuals amounts to learning the hierarchy of the families, which

 109

can be grouped by ranking: the alpha family, the beta family, etc. Each individual of the

beta family, for example, is considered to be more highly ranked than any member of the

gamma or delta families.

Often, the family relationships are inherently known by the researchers. In such

cases, the hierarchy can be learned by observing and recording a number of interactions

between members of different groups. By examining trends among these interactions,

relative rank between specific families can be determined. With enough observations, the

definite rank of all families (and thus all individuals) can be found. The process is made

more complicated by an incomplete adherence to the general ranking rules by certain

individuals (e.g. a monkey may occasionally be aggressive to a superior).

In a colony with only 100 individuals (divided into a number of families) to be

classified, hundreds or thousands of interactions must be observed to fully proscribe the

family relationships and rankings of all individuals. As previously stated, this task is

very time-consuming, greatly slowing the pace of behavioral research which relies on this

information. Fortunately, once uniquely identified tracks of each animal’s trajectory can

be created, a great deal of interactions can be automatically found and used to learn the

social structure.

The first step in automatically ranking the individuals of a colony is to detect

potential interactions from the tracks. These interactions consist of two individuals

behaving in a way which is generally known to occur only between members with a

certain hierarchical relationship, such as superior/inferior, similar rank, or only members

of the same family. Likely interactions can be found based on proximity over time.

Once found, each interaction is classified as one type or another (e.g. grooming,

 110

aggressive, etc.). Individual monkeys’ tendencies can then be used to assess relative

hierarchy. Finally, the families are ranked according to overall interactions of all family

members.

7.1 Detecting Interactions

Instead of attempting to create a label for each pair of agents consisting of the

type of interaction occurring between them in every frame (including “none” when there

is no interaction taking place), periods of likely interaction are detected based on track

proximity. Then, features representing the potential interaction as a whole are generated.

These features are then used to classify it (based on known examples) as a specific type

of interaction or as not an interaction at all.

Some interactions can only occur between individuals within close spatial

proximity to one another. For example, one monkey cannot groom another which is

several feet away. However, one important type of interaction is aggressive, in which

one agent chases another. During these interactions, the individuals are often never

within one or more meters of each other. This is because it is rare for the aggressor to

actually catch the agent being chased. To detect occurrences of such interactions by

looking at the relative locations of each agent in each frame, the permissible distance

between interacting agents would necessarily be several meters. This would result in

finding a large number of interactions between individuals merely sitting or walking

several meters apart.

Even if two individuals are never very close to each other in any point in time,

such as during a chase, their trajectories are near one another (possibly even overlapping)

within a short period of time. Therefore, by considering trajectory proximity – instead of

 111

physical proximity at an instant in time – the spatial threshold can be greatly decreased.

This will allow so-called chase interactions to be detected, without resulting in detections

of moderately distanced individuals without (nearly) crossing trajectories. Instead, only

pairs of agents which are very close to one another within a short temporal offset are

found to be interacting.

The detection process works as follows. For each frame of data, each pair of

agents is examined. A line is drawn between the current location of each agent and its

location one second in the past. If the minimum distance between these two lines is

“small enough,” then the two agents are said to be interacting in this frame. The

minimum distance required to indicate an interaction is roughly the distance between two

individuals engaging in one of the stationary interactions of interest. Also, the minimum

distance required to continue an interaction is slightly higher than that required to start an

interaction to prevent frequent toggles between interacting and non-interacting states

between individuals near the threshold. Figure 7.1 includes examples when interactions

would and would not be detected.

As each interaction is detected, important features which will be used to classify

its type are recorded. The features will be used to classify the interaction based on hand-

labeled training data using the kernel regression technique described above. The six

features are:

• Interaction length – the number of frames from the start of the interaction until

its end,

• Minimum total distance traveled – the total distance (in meters) traveled by

the participant which moved less,

 112

a.

b. c.
Figure 7.1: Three potentially detected interactions. In each,
the circles represent the current track locations while the
freeform lines are the trajectory over the last second. The
second image shows a line drawn from the current location
to the past location. In the third image, the minimum
distance between the lines is used to determine if an
interaction is taking place. (a) Even though the targets are
always far apart during this chase, their lines are close. (b)
These targets are closer than those in (a), but no interaction
is detected because their lines remain far apart. (c) These
interacting targets are detected because they (and their lines)
are very close together.

• Maximum total distance traveled – the total distance (in meters) traveled by

the participant which moved farther,

• Average distance – the distance (in meters) between the two participants,

averaged across every frame of the interaction,

• Minimum relative heading – the minimum of theta and phi (after Figure 6.1)

after each is averaged across every frame, and

• Maximum relative heading – the maximum of theta and phi.

The total distance traveled and relative heading features are categorized by

maximum and minimum values because it is unknown at this stage which participant is

fulfilling which role in each interaction.

To generate the training examples which populate the feature space used in

classification, the interaction finding algorithm is used to detect interactions in the

 113

training dataset. These interactions are then given a ground truth label by looking for a

hand-labeled interaction between the same two agents which at least partially overlaps in

time. If such an interaction is found, the detected interaction is assigned the same label

(aggressive, grooming, etc.); otherwise, the detected interaction is labeled as “non-

interaction.” In this way, the feature space can be populated by examples of each type of

interaction, as well as examples of non-interactions which might be detected but should

be differentiated from actual interactions. Each detected interaction can then be assigned

a type based on its distance, in feature space, from each of these training examples.

7.2 Determining Family Hierarchy

Once the list of detected interactions has been labeled according to type, the

relative social ranking can be decided. Only interactions which indicate the relative rank

of participants (outside of a single family) are considered. For example, an aggressive

interaction may indicate that one participant is of an arbitrarily higher ranking than the

other while a grooming interaction only occurs between two individuals with a similar

ranking (i.e. a member of the highest ranked family will not often groom a member of the

lowest ranked family).

A “dominance factor” is calculated for each family. This factor represents the

fraction of interactions involving this family’s members in which it is the dominant party

(e.g. the aggressor in a chase interaction). For each interaction occurring between

members of two different families, the dominance factor of each is adjusted accordingly.

Interactions which indicate a disparity between the participants’ ranking will result in an

increase of the dominant party’s family and similar decrease in the submissive party’s

family. Likewise, interactions which indicate a similarity between participants (such as

 114

grooming interactions) will result in a partial equalizing of the involved families’

dominance factors, by increasing the lower family and decreasing the higher. The

amounts of these adjustments for each type of interaction can be learned from a body of

training data or provided by an expert.

By adjusting the dominance factor of each family whose members are involved in

every interaction, families which are involved in more “lower rank” behaviors (e.g. being

submissive, grooming other lower ranked families, etc.) will have lower dominance

factors than those families which engage primarily in “higher rank” behaviors, such as

frequently being aggressive. In this way, the families become ordered relative to each

other, even if every individual does not interact with every other individual. Also, by

looking at the frequency of interaction types and participants across a large body of

interactions, the impact of an occasional incorrectly identified interaction (whether due to

an erroneous classification or a monkey behaving abnormally) is minimized.

7.3 Methods

There are many aspects that complicate attempts at tracking monkeys, including

their small size, 3-d movements, and the many occlusions in their environment.

Therefore, to test this method of determining family social hierarchy, the social behavior

experiment datasets introduced in Chapter 3 are used to simulate actual animal behaviors.

In these datasets, 25 individuals were given note cards detailing several behaviors in

which to engage. Additionally, 20 people were assigned to one of four families (alpha,

beta, gamma, delta), with 5 people per family. These 20 participants play the part of

female monkeys, while the remaining 5 participants play the part of the male monkeys,

which are outside the family groups of the females (but have their own hierarchy). All

 115

participants were instructed regarding which other families/individuals could be

interacted with in each of the following ways:

• Aggressive: Individuals could chase others of belonging to lower ranked families.

Males could aggress any female.

• Submissive: If aggressed by a member of a higher ranked family or any male (if a

female), individuals must retreat.

• Proximity: Includes two individuals standing next to one another, within an arm’s

length. Only appropriate if participants are within one hierarchical rank of each

other if female or of opposite sex.

• Grooming: One individual solicits grooming by bending at the waist. Groomer

must be within one hierarchical rank if female or of opposite sex, and should

stand close and scratch the other’s back for several seconds.

• Mating: Any female follows any male closely for several seconds, and then bobs

head. Male stands directly behind female.

These types of interactions were developed with a domain expert and designed to

mimic the sorts of interactions which would be common among an actual monkey

colony. Instead of attempting to detect and differentiate between all of these interaction

types, some adjustments are made. For example, there are few instances of mating

behaviors, and so this interaction type (which does not help differentiate families or

rankings in this experiment) is ignored. Additionally, because the sensors used to

perform tracking do not detect body part locations, grooming and proximity interactions

cannot be distinguished and are combined as “affiliative” interactions; fortunately, both

 116

interaction types have the same participatory rules. Finally, because the small number of

participants playing the part of male monkeys maintains their own social structure

independent of the females, and since the males do not often interact with one another,

only the social structure of the females is examined herein.

Aggressive interactions contain much richer information pertaining to

determining social hierarchy than do affiliative interactions. This is because aggressive

interactions occur only between two individuals with a specific relative hierarchy (one is

higher than the other). On the other hand, the affiliative interactions could occur between

individuals of the same family or individuals with slightly different ranking. Therefore,

only aggressive interactions are considered in determining rank for this experiment,

although the affiliative interactions can be useful in actually determining family

membership in future work.

Instances of aggressive interactions were hand-labeled for the training data. All

other detected interactions are considered to be examples of the affiliative interaction

group (proximity or grooming). Some of these training examples are then used to

classify interactions among the other datasets. There are a total of three 9 minute runs

used in this assessment. Additionally, there are two versions of each dataset – one

consisting of the actual ground truth tracks and identifications (run1g, run2g, run3g),

while the second is made up of the tracks and identifications automatically generated

(run1t, run2t, run3t), as detailed in Chapters 3 and 4. Two hand-labeled datasets are used

for training and validation data – the ground truth tracks of the second dataset (run2g)

and the automatically generated tracks of the third dataset (run3t). The detection and

 117

classification of interactions are assessed by using one hand-labeled dataset (run2g) to

find and label the interactions in the other (run3t), then comparing to its hand-labels.

The hierarchical rankings are learned for each of these datasets. Performance is

assessed as the number and magnitude of families placed at the wrong hierarchical

ranking. For instance, if the alpha family is ranked lowest, the error for that family

would be 3. Likewise, if the beta and gamma families are reversed, the pair would have

an error of 2. The maximum error is 8 and a random assignment would produce an

average error of 5. Figure 7.2 shows a graphical representation of perfect assignment –

each family is assigned a shade, with the darker shades representing higher ranking.

Figure 7.2: Graphical
depiction of correct social
structure assignments.

7.4 Results

The run3t dataset is used to find and classify interactions in the run2g dataset. Of

the 76 aggressive interactions manually identified, 53 are found and 40 correctly

classified as aggressive. Table 7.1 shows the complete confusion matrix.

Table 7.1: Breakdown of system labels. Each
row shows the number of that row’s label
identified as each possible label by the system.
 System Label

 Aggressive Affiliative
Aggressive 40 13

Actual
Label Affiliative 98 316

 118

There are a large number of affiliative interactions misclassified as aggressive.

Recall that affiliative is a catch-all that includes any interaction which is not found to be

aggressive. Many of the erroneous aggressive detections are due to one individual

aggressing a whole group. The human labeler only indicates an aggressive detection

involving the one individual who appears to be the target. Therefore, the interactions

between the aggressor and the other members of the group are technically considered

affiliative (since they are not specifically labeled as aggressive by the human labeler).

However, the system found there to be aggressive interactions between the aggressor and

several members of the group. While not strictly correct, this is not entirely wrong, as the

other members of the group often withdraw, as does the specific target, resulting in the

data visually appearing to contain multiple aggressions. Additionally, since participants

often cluster along family lines, these erroneous detections actually provided information

useful to learning the social structure. This, then, is a failing of the human labeler, not

the automatic identifier.

Despite these inconsistencies involving interaction detection, determining

hierarchy is successful. Figure 7.4 shows the results of automatically learning the family

rankings in each of the test datasets made up of the ground truth tracks. That is, the

hierarchies are automatically learned from tracks which were previously manually

corrected and labeled. Of the three datasets, the correct hierarchy was learned in two; the

third only reversed the two middle families. The errors, therefore are 2, 0, 0 – for an

average of 0.67.

 119

run1-g

run2-g

run3-g

Figure 7.4: Graphical
representation of the automatically
learned rankings for the hand
generated tracks in datasets run1,
run2, and run3.

Figure 7.3 illustrates the results on the three datasets created from the

automatically generated tracks and identifications. Although these datasets averaged an

approximate 10% identification error (as detailed in Section 4.5), the hierarchies that are

learned only contained one more error than in the datasets from the hand-labeled tracks

(namely, the reversal of the alpha and beta families in run2). These errors are 2, 2, and 0,

or an average of 1.33. This supports the hypothesis that occasional tracking errors have

minimal impact in the higher level applications.

run1-t

run2-t

run3-t

Figure 7.3: Graphical representation
of the automatically learned rankings
for the automatically generated tracks
in datasets run1, run2, and run3.

Currently, biologists must study many hours of data in order to detect sufficient

interactions to generate the social structure of a colony. However, each of the test

 120

datasets are only 9 minutes long. Because aggressive interactions are fairly scarce within

these short datasets (as often in real life), the algorithm is tested against a combination of

run1-t and run3-t (run2-t is left out because of its similarity to run2-g, the training

dataset). Figure 7.5 shows that in this case, the perfect hierarchy (error of 0) is

discovered. By demonstrating that more data helps overcome the noise of intermittent

incorrect track labeling or false interaction detections, this result demonstrates that the

algorithm has promise, even in the more complex real-life primate colony domain.

Figure 7.5: Graphical depiction
of learned hierarchy for combined
run1-t and run3-t.

7.5 Discussion and Summary

Some researchers have drawn inspiration from biological systems for assisting

robots in learning to behave according to social relations [Matarić 1997]. But applying

machine learning techniques towards automatically learning the social hierarchy of an

actual colony of primates is original. Although the work outlined in this chapter does not

reach that eventuality, the groundwork is laid through an experiment involving humans

simulating the actual hierarchical behaviors of rhesus monkeys. This experiment

demonstrates that the approach has the potential to learn actual social relationships in

these animal colonies, as discussed in Chapter 8.

 121

 122

CHAPTER 8

SUMMARY AND CONTRIBUTIONS

There are many domains which currently or theoretically have a need to model

and recognize behaviors from various types of observations. In some of these cases, such

as in biological research, these models and detections are currently carried out by hand,

consuming vast quantities of time. Others, such as security and sports applications, are

not fully realized, as completing this process manually is not always feasible. This

dissertation presents techniques designed to help automate the process in several fields,

namely team sports (basketball) and ant, honey bee, and primate colonies.

Observations into these environments are made with a variety of sensors and

logged to disk or processed in real-time. The trajectory of each individual is then

automatically extracted, after the uninteresting data (i.e. the background) is removed.

The target (or agent) which each trajectory represents is assigned a label to uniquely

identify it, allowing the behaviors and interactions of specific individuals to be examined.

From this trajectory information, models are created which represent the actions and

behaviors of the individuals in each context. Finally, these models are used to recognize

future instances. In the case of the human primate experiment, the detected interactions

are used to reason about the social structure of the entire group.

The specific contributions of this work are:

• An algorithm for tracking an unknown and changing number of targets as they

enter, move through and/or exit the observed planar arena using data from

multiple sensors in real-time (Chapter 3).

 123

• A method of integrating data from active RFID tags to produce labels which

uniquely identify each track, without the loss in track precision endemic of

noisy RF sensors (Chapter 4).

• Application of machine learning techniques to model motions and behaviors

based on the trajectories of honey bees in a hive (Chapter 5).

• Methodology for detecting frequency and types of social interactions between

pairs of Leptothorax albipennis ants exploring a potential nest site (Chapter 6).

• Experimental results of learning social structure automatically from raw sensor

observations (Chapters 3, 4 and 7).

This chapter reviews the main contributions of the research and summarizes the

results presented herein, before concluding with an examination of directions for future

work that show high potential.

8.1 Detection-Based Tracking

Before any behavioral models can be learned, trajectories of each target must be

generated as they move through the environment. It is not feasible for humans to

manually create these tracks with accuracy at the scale necessary to be useful in real

applications; even if possible, this would defeat the goal of saving humans time. Instead,

the algorithms presented provide a robust mechanism for the automatic creation of

trajectories.

The process consists of gathering data from a series of laser range finders. These

datasets are registered to one another in time and space before the background is

subtracted. The algorithm that uses this detection-based data relies on iterative closest

 124

point (ICP) to simultaneously locate the targets and perform data association in each

frame. The targets cannot be identified specifically, but multiple models can be used to

differentiate between targets of different types or in different states. Whenever two or

more tracks become so close together that they cannot be clearly differentiated in the

data, they are split into new tracks, preventing a single track from inadvertently

representing more than one target.

The tracker is tested in experimentation with 8 laser range finders observing a

basketball court. One experiment involves 10 people playing basketball and the other

consists of 25 people walking and running around according to a script of common

monkey behaviors. In both cases, over 98% of the track-frames are detected and the

tracks averaged approximately 40 and 340 seconds, respectively. While there are a few

track jumps, these only occurred every several minutes at most. Further, the tracker is

tested in a real-time environment, and shown able to track 10 targets at over 37.5Hz and

25 targets at about 28Hz, a frame rate high enough to have minimal impact on the

tracking results.

Compared to existing trackers, this work is differentiated in a number of ways.

First, it is designed to track an unknown and potentially changing number of targets.

This does not add complexity or slow the algorithm down. Therefore, unlike many other

trackers, it will work in real-time, including the data association step. Further, most

existing laser-based applications only make use of the data from one ladar, or consider

each ladar independently. On the other hand, this work combines readings from multiple

ladars in order to expand the field of view of the system and reduce the effects of

 125

occlusions. Finally, this tracker operates on detection-based data, regardless of what type

of sensor the data initially came from.

8.2 Track/Target Association

Chapter 4 outlines a novel technique for labeling each track with the target it

represents by employing active RFID tags. Adding id-sensors in addition to the ladars

used for tracking allows the creation of uniquely identified tracks. Without these

identifications, some basic group-wide aggregate behaviors can be studied. However,

these identifications are necessary for the majority of behavior modeling and recognition

tasks.

The environment is discretized and a series of lookup tables are generated from

training data to build histograms of signal strength/location occurrences for each antenna.

After normalizing, each table represents the probability that a tag is at each location when

a given signal strength reading is received by a given reader. All track/tag pairings are

scored based on the known location of the tracks at the time of each tag reading. Since

two tracks which overlap in time cannot represent the same tag, the order of the final

labeling is important; once a label is used, it is made unavailable to temporally

overlapping tracks. The crucial labeling order is decided based on calculating

confidences for each track. The most confident track is assigned to its highest scored tag,

and then the scores and confidences of the remaining tracks are recalculated, repeating

until all tracks are labeled.

The RFID-based identification algorithms are tested with the tracks created from

the two experiments previously described – a 16 minute basketball game and 9 minutes

of a social behavior experiment involving 25 people. Almost 96% of the ground truth

 126

track-frames are accurately labeled in the basketball game experiment. The social

behavior experiment also achieves positive results, with over 90% of the track-frames

correctly identified. Further, approximately 80% of the incorrect track-frames are due to

the reversal of two individuals who spent the entire experiment in close proximity to one

another.

Localizing based on RF signal strength is a well studied problem. However, this

technique differs significantly from existing approaches. Most researchers attempt to

localize directly from the RF data, whether alone or combined with data from another

sensor (such as with a Kalman filter). On the other hand, this work capitalizes on the

precise nature of the laser range finders to determine the exact track locations; the RFID

tags are merely used to determine the identities of the already detected tracks.

Alternately, short range sensors (included passive RFID and IR badges) are used as

detectors to determine proximity to known locations. This requires instrumenting the full

interior of the environment being observed, a constraint which is not always feasible in

sporting venues or animal habitats. By placing long range active RFID antennas around

the perimeter, this research has no such requirement.

8.3 Social Insect Behavior Modeling and Recognition

Machine learning approaches are applied to two very different real-world social

insect behavior modeling problems in Chapters 5 and 6. In the first, the motional

structures of honey bee behaviors in the hive (such as the so-called waggle dance) are

modeled. These models are then used to recognize future instances of each behavior, in

essence identifying the type of each bee based on which model fits its actions best.

Chapter 6 is concerned with detecting and categorizing four types of interactions which

 127

frequently occur among the ants being observed. Both of these phenomena are studied

by biologists would could benefit from being able to generate automatically generated

data from their videos.

In both applications, the first step is to create tracks from the input video data and

then generate several features from the raw trajectories of each tracked insect. The bee

behavior modeler determines the motion of each bee during every frame of data using

kernel regression. On the other hand, the ant interaction detector uses straightforward

thresholding (learned from the training data) to determine instances of interactions. Both

modelers then use hidden Markov models (trained automatically) to smooth the data,

eliminating noisy readings and determining a more likely sequence of labels. Finally, the

bee behavior recognizer chooses the bee’s behavior by picking the HMM (from a total of

one per behavior type) most likely to have generated the bee’s motion series.

A total of 93% of the bees’ motions are correctly labeled, resulting in

approximately 80% of the bees labeled with the correct behaviors in the test data. While

far from perfect, this partially achieves the goal of recognizing instances of bees

performing a waggle dance. Likewise, 84.7% of all interactions between nearby ants are

correctly detected and classified. Further testing is necessary to determine the precision

of this process, but if a similar percent of interactions are recognized in all datasets, then

these results provide exactly the information required to eliminate the need for human

labeling.

The focus of most behavior recognition research is on identifying individual

behaviors of sole agents, often acting in isolation from others. In contrast, the behaviors

detected by this research are socially motivated. They rely on and are guided by the

 128

presence of others. Further, the behaviors detected in Chapter 6 specifically require

multiple participants to occur. Although computer science has received much inspiration

from various biological systems, this has been a one way flow. Instead, this research

seeks to apply intelligent systems techniques to domains studied in biology, an area that

has not received much attention from computer science researchers.

8.4 Social Primate Family Hierarchy Detector

Different types of interactions can mean different things in a group of social

animals. For instance, friendly interactions often indicate familial behavior, while

aggressive interactions are a sign of disparity between the social statuses of the

participants. On the other hand, there are frequently interactions which occur for more

than one reason. An example of this in rhesus monkey colonies is the grooming

behavior, which may indicate friendship, but can also be used to gain protection from a

superior. In such cases, it is useful to know the social structure of the colony being

studied. Knowing the hierarchical structure is also important when studying a variety of

other areas (such as intelligence and learning capabilities). Because some technical

difficulties have delayed the testing of tracking on real monkey subjects, this research

learns the social structure of a group of humans following the strict behavioral guidelines

which govern monkey colony life.

First, individual interactions are detected whenever two people are located in

spatial proximity over a short temporal window. Specific features are extracted for each

interaction and used with a kernel regression classifier to determine which type of

interaction is taking place. Once all the interactions are thus detected and classified, the

 129

aggressive interactions are used to learn the hierarchical ranking of each family, relative

to the others.

The results of learning the social structure in this experiment are promising. The

correct hierarchy is learned with only one pair of swapped families between the three test

datasets involving hand labeled tracks. Further, when applied to the actual automatically

generated and identified tracks, the algorithm performed similarly, this time reversing a

single pair of families in each of two of the three test datasets. Finally, when the two

non-training, automatically created datasets are combined, the system successfully learns

the correct social ranking. Given the vast quantity of data available for a real-life

learning attempt, this algorithm should perform well on such data.

As with the rest of the modeling and recognition work presented in this

dissertation, learning the social structure of a monkey colony (whether or not through

simulation with people) is based upon detecting and understanding behaviors involving

social interactions. This is contrary to most behavior recognition research, which

concerns itself with modeling isolated behaviors of solitary individuals. Additionally,

this research contributes the application machine learning techniques to a new biological

domain with practical implications. It also validates the tracking and identification

techniques developed in Chapters 4 and 5 in a new, relevant domain.

8.5 Future Directions

One important extension of this work is to apply the tracking and identification

algorithms in the actual environments in which they can provide useful information.

Specifically, this includes real sporting events and actual non-human primates. To be

able to gather such data, the main hurdle to overcome is to find placement of the RFID

 130

tags which is acceptable to all participants. Additionally, some way to deal with the 3-d

nature of the monkeys’ trajectories must be found. Testing in these real world situations

will move us one step closer to tracking humans in an unconstrained environment for

safety and security.

Another direction for future work is to apply these learning techniques to data

from actual monkey colony interactions. In addition to determining the family rankings,

a logical extension is to be able to learn the families themselves, as there are many

situations in which they are unknown beforehand. Preliminary work to this end has

already been started, with Figure 8.1 showing the families learned in one early “human

experiment.” While the algorithm currently requires a priori knowledge of the size of

each family, in the future this can be made more generalized and applied to actual non-

human data.

Finally, the author hopes that other researchers will find this work to be useful in

new domains. While the research was designed with an eye towards sports and social

animal domains, there are a large number of other areas which can benefit from the

Figure 8.1: Graphical depiction of learned social structure
assignments from combined run1t, run2t, run 3t. Each row is a
family (as learned), with each square shaded according to the
correct family. One alpha family member is misidentified as a
gamma member, while one gamma is wrongly identified as a
beta and one beta as an alpha, for a total of 3 incorrect out of 20.

 131

methods introduced here, including other human systems and even robotics. Perhaps all

of these areas can benefit from using observations to recognize various behaviors.

8.6 Conclusion

The research detailed in this dissertation seeks to use observations to

automatically model and recognize the behaviors of a variety of multi-agent systems.

Applications of this work currently or potentially include both human (sports, safety, and

surveillance) and non-human (bees, ants, and monkeys) systems. Several machine

learning techniques have been explored and adapted to create new algorithms for solving

the tracking, identification, and modeling problems involved in these domains. Presented

is a method of using multiple laser range finders and active RFID tags to track and

identify targets, as well as several algorithms for learning and interpreting the behavior of

those targets as they interact with one another.

 132

REFERENCES

Arkin, E.M., Meijer, H., Mitchell, J.S.B., Rappaport, D., and Skiena, S. (1993). Decision
Trees for Geometric Models. International Journal of Computational Geometry
and Applications 8(3):343-364.

Azuma, R. (1993). Tracking Requirements for Augmented Reality. Communications of

the ACM 36(7):50-51.

Bahl, P. and Padmanabhan, V.N. (2000). RADAR: An In-Building RF-Based User

Location and Tracking System. In Proceedings of the Joint Conference of the
IEEE Computer and Communications Societies (Infocom).

Balch, T., Dellaert, F., Feldman, A., Guillory, A., Isbell, C., Khan, Z., Stein, A., and

Wilde, H. (2005). How A.I. and Multi-Robot Systems Research Will Accelerate
Our Understanding of Social Animal Behavior. In Proceedings of the IEEE
94(7):1445-1463.

Balch, T., Feldman, A., and Wilson, W. (2004). Assessment of an RFID System for

Animal Tracking. Georgia Tech Technical Report GIT-CC-04-10.

Balch, T., Khan, Z., and Veloso, M. (2001). Automatically Tracking and Analyzing the

Behavior of Live Insect Colonies. In Proceedings of the International Conference
on Autonomous Agents.

Bengio, Y. and Frasconi, P. (1996). Input-Output HMM’s for Sequence Processing. IEEE

Transactions on Neural Networks 7(5):1231-1249.

Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999). From Natural to Artificial Swarm

Intelligence. New York, Oxford University Press.

Brashear, H., Starner, T., Lukowicz, P., and Junker, H. (2003). Using Multiple Sensors

for Mobile Sign Language Recognition. In Proceedings of the IEEE International
Symposium on Wearable Computers.

Bregler, C. (1997). Learning and Recognizing Human Dynamics in Video Sequences.

IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR).

Bruce, J., Balch, T., and Veloso, M. (2000). Fast and Inexpensive Color Image

Segmentation for Interactive Robots. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).

Cohen, I. and Medioni, G. (1999). Detecting and Tracking Moving Objects for Video

Surveillance. IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR).

 133

Coifman, B., Beymer, D., McLauchlan, P., and Malik, J. (1998). A Real-Time Computer
Vision System for Vehicle Tracking and Traffic Surveillance. Transportation
Research Part C: Emerging Technologies 6(4):271-288.

Couzin, I.D. and Franks, N.R. (2002). Self-Organized Lane Formation and Optimized

Traffic Flow in Army Ants. In Proceedings of The Royal Society B: Biological
Sciences 270:139-146.

Curtin, J., Kauffman, R.J., and Riggins, F.J. (2007). Making the ‘MOST’ Out of RFID

Technology: A Research Agenda for the Study of the Adoption, Usage and
Impact of RFID. Information Technology and Management 8(2) 87-100.

Darrell, T., Essa, I.A., and Pentland, A.P. (1996). Task-Specific Gesture Analysis in

Real-Time Using Interpolated Views. IEEE Transactions on Pattern Analysis and
Machine Intelligence 18(12):1236-1242.

Dellaert, F., Fox, D., Burgard, W., and Thrun, S. (1999). Monte Carlo Localization for

Mobile Robots. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA).

Dorigo, M. and Caro, G.D. (1999). The Ant Colony Optimization Meta-Heuristic. New

Ideas in Optimization. McGraw-Hill.

Drea, C.M. and Wallen, K. (1999). Low-Status Monkeys ‘Play Dumb’ When Learning in

Mixed Social Groups. In Proceedings of the National Academy of Sciences
96(22):12965-12969.

Egerstedt, M., Balch, T., Dellaert, F., Delmotte, F., and Khan, Z. (2005). What Are the

Ants Doing? Vision-Based Tracking and Reconstruction of Control Programs. In
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA).

Feldman, A., Adams, S., Hybinette, M., Balch, T. (2007). A Tracker for Multiple

Dynamic Targets Using Multiple Sensors. Video Submission at the IEEE
International Conference on Robotics and Automation (ICRA).

Feldman, A. and Balch, T. (2003). Automatic Identification of Bee Movement Using

Human Trainable Models of Behavior. International Workshop on the
Mathematics and Algorithms of Social Insects.

Feldman, A. and Balch, T. (2004a). Representing Honey Bee Behavior for Recognition

Using Human Trainable Models. Adaptive Behavior 12(3-4):241-250.

Feldman, A. and Balch, T. (2004b). Modeling Honey Bee Behavior for Recognition

Using Human Trainable Models. In Proceedings of Modeling Other Agents from
Observations (MOO), an AAMAS’04 Workshop.

 134

Ferris, B., Hähnel, D., and Fox, D. (2006). Gaussian Processes for Signal Strength-Based

Location Estimation. In Proceedings of the Robotics: Science and Systems
Conference (RSS).

Finkenzeller, K (2000). RFID Handbook: Radio-Frequency Identification Fundamentals

and Applications. Wiley & Sons.

Fod, A., Howard, A., and Matarić, M. (2002). Laser-Based People Tracking. In

Proceedings of the IEEE International Conference on Robotics & Automation
(ICRA).

Fox, D., Thrun, S., Burgard, W., and Dellaert, F. (2001). Particle Filters for Mobile Robot

Localization. Sequential Monte Carlo Methods in Practice. New York, Springer-
Verlag.

Friedman, J., Bentley, J., and Finkel, R.A. (1976). An Algorithm for Finding Best

Matches in Logarithmic Expected Time. ACM Transactions on Mathematical
Software 3(3):209-226.

Frisch, K.v. (1967). The Dance Language and Orientation of Bees. Cambridge, Harvard

University Press.

Gonzales, J., Ollero, A., and Reina, A. (1994). Map Building for a Mobile Robot

Equipped with a 2D Laser Range Finder. In Proceedings of the IEEE International
Conference on Robotics & Automation (ICRA).

Gordon, D. (1999). Ants at Work. New York, The Free Press.

Gutmann, J.-S., Burgard, W., Fox, D., and Konolige, K. (1998). An Experimental

Comparison of Localization Methods. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).

Gutmann, J.-S., Hatzack, W., Herrmann, I., Nebel, B., Rittinger, F., Topor, A., and

Weigel, T. (2000). CS Freiburg Team: Playing Robotic Soccer Based on an
Explicit World Model. AI Magazine 21:37-46.

Haeberlen, A., Flannery, E., Ladd, A.M., Rudys, A., Wallach, D.S., and Kavraki, L.E.

(2004). Practical Robust Localization Over Large-Scale 802.11 Wireless
Networks. In Proceedings of the ACM International Conference on Mobile
Computing and Networking (MOBICOM).

Hähnel, D., Burgard, W., Fox, D., Fishkin, K., and Philipose, M. (2004). Mapping and

Localization with RFID Technology. In Proceedings of the IEEE International
Conference on Robotics & Automation (ICRA).

 135

Han, K. and Veloso, M. (1998). Reactive Visual Control of Multiple Non-Holonomic
Robotic Agents. In Proceedings of the IEEE International Conference on Robotics
& Automation (ICRA).

Han, K. and Veloso, M. (1999). Automated Robot Behavior Recognition Applied to

Robotic Soccer. In Proceedings of IJCAI-99 Workshop on Team Behaviors and
Plan Recognition.

Harter, A., Hopper, A., Steggles, P., Ward, A., and Webster, P. (2001). The Anatomy of a

Context-Aware Application. In Proceedings of the ACM/IEEE International
Conference on Mobile Computing and Networking (MOBICOM).

Hightower, J. and Borriello, G. (2001). Location Systems for Ubiquitous Computing.

Computer 34(8):57-66.

Howard, A., Siddiqi, S., and Sukhatme, G. (2003). An Experimental Study of

Localization Using Wireless Ethernet. In Proceedings of the International
Conference on Field and Service Robotics.

Intille, S.S., and Bobick, A.F. (1995). Closed-World Tracking. In Proceedings of the

IEEE International Conference on Computer Vision (ICCV).

Intille, S.S., and Bobick, A.F. (1999). A Framework for Recognizing Multi-Agent Action

from Visual Evidence. In Proceedings of the National Conference on Artificial
Intelligence (AAAI).

Ivanov, Y., Stauffer, C., Bobick, A., Grimson, W.E.L. (1999). Video Surveillance of

Interactions. In Proceedings of the CVPR’99 Workshop on Visual Surveillance.

Jelinek, F. (1998). Statistical Methods for Speech Recognition. Cambridge, MIT Press.

Jung, B., and Sukhatme, G. (2001). Tracking Multiple Moving Targets Using a Camera

and Laser Rangefinder. Institute for Robotics and Intelligent Systems (IRIS)
Technical Report IRIS-01-397.

Jung, B., and Sukhatme, G (2002). Tracking Targets Using Multiple Robots: The Effect

of Environment Occlusion. Autonomous Robots 13(3):191-205.

Kanazawa, K., Koller, D., and Russell, S.J. (1995). Stochastic Simulation Algorithms for

Dynamic Probabilistic Networks. In Proceedings of the Conference on
Uncertainty in AI (UAI).

Kantor, G. and Singh, S (2002). Preliminary Results in Range-Only Localization and

Mapping. In Proceedings of the IEEE International Conference on Robotics &
Automation (ICRA).

 136

Khan, Z., Balch, T., and Dellaert, F. (2003). Efficient Particle Filter-Based Tracking of
Multiple Interacting Targets Using an MRF-Based Motion Model. In Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS).

Khan, Z., Balch, T., and Dellaert, F. (2004a). A Rao-Blackwellized Particle Filter for

EigeTracking. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR).

Khan, Z., Balch, T., and Dellaert, F. (2005) MCMC-Based Particle Filtering for Tracking

a Variable Number of Interacting Targets. IEEE Transactions on Pattern Analysis
and Machine Intelligence 27(11):1805-1918.

Khan, Z., Herman, R. A., Wallen, K., and Balch, T. (2004b). An Outdoor 3-d Visual

Tracking System for the Study of Spatial Navigation and Memory in Rhesus
Monkeys. Behavior Research Methods, Instruments & Computers 37(3):453-63.

Kornienko, L. and Kleeman, L. (2007). An Autonomous Human Body Parts Detector

Using a Laser Range-Finder. Australasian Conference on Robotics and
Automation.

Kuhn, H.W. (1955). The Hungarian Method for the Assignment Problem. Naval

Research Logistics Quarterly 2:83-87.

Ladd, A.M., Bekris, K.E., Rudys, A., Marceau, G., Kavraki, L.E., and Wallach, D.S.

(2002). Robotics-Based Location Sensing Using Wireless Ethernet. In
Proceedings of the ACM/IEEE International Conference on Mobile Computing
and Networking (MOBICOM).

Letchner, J., Fox, D., and LaMarca, A. (2005). Large-Scale Localization from Wireless

Signal Strength. In Proceedings of the National Conference on Artificial
Intelligence (AAAI).

Lorincz, K. and Welsh, M. (2007). MoteTrack: A Robust, Decentralized Approach to RF-

Based Location Tracking. Personal and Ubiquitous Computing 11(6):489-503.

Lymberopoulos, D., Lindsey, Q., and Savvides, A. (2006). An Empirical Characterization

of Radio Signal Strength Variability in 3-D IEEE 802.15.4 Networks Using
Monopole Antennas. Embedded Networks and Applications Lab (ENALAB)
Tech Report 050501.

Mallon, E., Pratt, S., and Franks, N. (2001). Individual and Collective Decision-Making

During Nest Site Selection by the Ant Leptothorax Albipennis. Behavioral
Ecology and Sociobiology 50(4):352-359.

Matarić, M. (1997). Learning Social Behavior. Journal of Robotics and Autonomous

 137

Systems 20(2):191-204.

Matthies, L., Kanade, T., and Szeliski, R. (1989). Kalman Filter-Based Algorithms for

Estimating Depth from Image Sequences. International Journal of Computer
Vision 3(3):209-238.

Mitchel, T. (1997). Machine Learning. Boston, MIT Press & McGraw-Hill.

Mittal, A. and Davis, L. (2003). M2Tracker: A Multi-View Approach to Segmenting and

Tracking People in a Cluttered Scene. International Journal of Computer Vision
51(3):189-203.

Oh, S.M., Rehg, J.M., Balch, T., and Dellaert, F. (2005). Data-Driven MCMC for

Learning and Inference in Switching Linear Dynamic Systems. In Proceedings of
the National Conference on Artificial Intelligence (AAAI).

Oh, S.M., Rehg, J.M., Balch, T., and Dellaert, F. (2008). Learning and Inferring Motion

Patterns Using Parametric Segmental Switching Linear Dynamic Systems.
International Journal of Computer Vision 77(1-3):103-124.

Panangadan, A.M., Matarić, M., and Sukhatme, G. (2004). Detecting Anomalous Human

Interactions Using Laser Range-Finders. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).

Perš, J. and Kovacic, S. (2000). Computer Vision System for Tracking Players in Sports

Games. In Proceedings of the International Workshop on Image and Signal
Processing and Analysis (IWISPA).

Philipose, M., Fishkin, K., Fox, D., Kautz, H., Patterson, D., and Perkowitz, M. (2003).

Guide: Towards Understanding Daily Life via Auto-Identification and Statistical
Analysis. In Proceedings of the International Workshop on Ubiquitous Computing
for Pervasive Healthcare Applications (Ubi-health).

Pingali, G.S., Jean, Y., and Carlbom, I. (1998). Real Time Tracking for Enhanced Tennis

Broadcasts. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR).

Prassler, E., Scholz, J., and Elfes, A. (1999). Tracking People in a Railway Station

During Rush-Hour. Computer Vision Systems. Berlin, Springer.

Pratt, S.C. (2005). Quorum Sensing by Encounter Rates in the Ant Temnothorax

Curvispinosus. Behavioral Ecology 16: 488-496.

Pratt, S.C., Mallon, E.B., Sumpter, D.J.T., and Franks, N.R. (2002). Quorum sensing,

recruitment, and collective decision-making during colony emigration by the ant
Leptothorax albipennis. Behavioral Ecology and Sociobiology 52(2):117-127.

 138

Rabiner, L.R. (1988). A Tutorial on Hidden Markov Models and Selected Applications in

Speech Recognition. In Proceedings of the IEEE 77(2):257-286.

Reid, D.B. (1978). An Algorithm for Tracking Multiple Targets. IEEE Transactions on

Automatic Control 24(6):843-854.

Rosales, R. and Sclaroff, S. (1998). Improved Tracking of Multiple Humans with

Trajectory Prediction and Occlusion Modeling. In Proceedings of the CVPR
Workshop on the Interpretation of Visual Motion.

Rosin, P.L. and Ellis, T. (1995). Image Difference Threshold Strategies and Shadow

Detection. In Proceedings of the British Conference on Machine Vision.

Roos, T., Myllymäki, P., Tirri, H., Misikangas, P., and Sievänen, J. (2002). A

Probabilistic Approach to WLAN User Location Estimation. International Journal
of Wireless Information Networks 9(3):155-164.

Schino, G. and Aureli, F. (2008). Grooming Reciprocation Among Female Primates: A

Meta-Analysis. Biology Letters 4(1):9-11.

Schleidt, W., Yakalis, M., Donnelly, M., and McGarry, J. (1984) A Proposal for a

Standard Ethogram, Exemplified by an Ethogram of the Bluebreasted Queil
(Coturnix Chinensis). Zeitschrift für Tierpsychologie 64(3-4):193-220.

Schulz, D., Burgard, W., Fox, D., and Cremers, A. (2003a). People Tracking with a

Mobile Robot Using Sample-Based Joint Probabilistic Data Association Filters.
The International Journal of Robotics Research 22(2):99-116.

Schulz, D., Fox, D., and Hightower, J. (2003b). People Tracking with Anonymous and

ID-Sensors Using Rao-Blackwellised Particle Filters. In Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI).

Seeley, T. (1995). The Wisdom of the Hive: The Social Physiology of Honey Bee

Colonies. Cambridge, Harvard University Press.

Shepard, D. (1968). A Two-Dimensional Interpolation Function for Irregularly-Spaced

Data. In Proceedings of the ACM National Conference.

Singh, S., Kantor, G., and Strelow, D. (2002). Recent Results in Extensions to

Simultaneous Localization and Mapping. In Proceedings of the International
Symposium on Experimental Robotics.

Schneider, M. (2003). Radio Frequency Identification (RFID) Technology and its

Applications in the Commercial Construction Industry. Master’s Thesis, Civil
Engineering Department, University of Kentucky, Lexington.

 139

Smola, A.J. and Schölkopf, B. (1997). On a Kernel-Based Method for Pattern

Recognition, Regression, Approximation, and Operator Inversion. Algorithmica
22(1-2):211-231.

Starner, T., Weaver, J., Pentland, A. (1998). Real-Time American Sign Language

Recognition Using Desk and Wearable Computer Based Video. IEEE
Transactions on Pattern Analysis and Machine Intelligence 20(12):1371-1375.

Stillman, S., Tanawongsuwan, R., and Essa, I. (1998). A System for Tracking and

Recognizing Multiple People with Multiple Cameras. Georgia Tech Technical
Report #GIT-GVU-98-25.

Stroupe, A. and Balch, T. (2003). Value-Based Observations with Robot Teams

(VBORT) for Dynamic Targets. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).

Surmann, H., Lingemann, K., Nüchter, A., and Hertzberg, J. (2001). A 3D Laser Range

Finder for Autonomous Mobile Robots. In Proceedings of the International
Symposium on Robotics.

Swain, M. and Ballard, D. (1991). Color Indexing. International Journal of Computer

Vision 7(1):11-32.

Toyama, K., Krumm, J., Brumitt, B., and Meyers, B. (1999). Wallflower: Principles and

Practice of Background Maintenance. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV).

Veloso, M., Stone, P., and Han, K. (1998). The CMUnited-97 Robotic Soccer Team:

Perception and Multiagent Control. In Proceedings of the International
Conference on Autonomous Agents.

Vogt, H. (2002). Multiple Object Identification with Passive RFID Tags. IEEE

International Conference on Systems, Man and Cybernetics.

Wallen, K. (2005). Hormonal Influences on Sexually Differentiated Behavior in

Nonhuman Primates. Frontiers in Neuroendocrinology 26(1):7-26.

Wang, S., Chen, W., Ong, C., and Chuang, Y. (2006). RFID Applications in Hospitals: A

Case Study on a Demonstration RFID Project in a Taiwan Hospital. In
Proceedings of the Hawaii International Conference on System Sciences (HICSS).

Want, R., Hopper, A., Falcão, V., and Gibbons, J. (1992). The Active Badge Location

System. ACM Transactions on Information Systems 40(1):91-102.

Welch, G. and Bishop, G. (2004). An Introduction to the Kalman Filter. Chapel Hill, NC,

 140

UNC.

Westeyn, T., Vadas, K., Bian, X., Starner, T., and Abowd, G.D. (2005). Recognizing

Mimicked Autistic Self-Stimulatory Behaviors Using HMMs. In Proceedings of
the IEEE International Symposium on Wearable Computers (ISWC).

Yan, H. and Matarić, M.J. (2002). General Spatial Features for Analysis of Multi-Robot

and Human Activities from Raw Position Data. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).

Ye, C. and Borenstein, J. (2002). Characterization of a 2-D Laser Scanner for Mobile

Robot Obstacle Negotiation. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA).

Youssef, M., Agrawala, A., and Shankar, A. (2003). WLAN Location Determination via

Clustering and Probability Distributions. In Proceedings of the IEEE International
Conference on Pervasive Computing and Communications.

Zhao, H. and Shibasaki, R. (2004). A Novel System for Tracking Pedestrians Using

Multiple Single-Row Laser Range Scanners. IEEE Transactions on Systems, Man
and Cybernetics, Part A 35(2):283-291.

Zhao, T. and Nevatia, R. (2003). Bayesian Human Segmentation in Crowded Situations.

In Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR).

 141

	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	CHAPTER 6
	CHAPTER 7
	CHAPTER 8

