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 SUMMARY 

 

Behavioral research involves the study of the behaviors of one or more agents 

(often animals) in order to better understand the agents’ thoughts and actions.  Identifying 

subject movements and behaviors based upon those movements is a critical, time-

consuming step in behavioral research.  This task consists of using a pen and paper to 

note the observations, and is especially onerous in studies involving multiple, 

simultaneously interacting agents (such as ants in a colony or players on the field. 

To successfully perform behavior analysis, three goals must be met.  First, the 

agents of interest are observed, and their movements recorded.  Second, each individual 

must be uniquely identified.  Finally, behaviors must be identified and recognized.  I 

explore a system that can uniquely identify and track agents, then use these tracks to 

automatically build behavioral models and recognize similar behaviors in the future. 

I address the tracking and identification problems using a combination of laser 

range finders, active RFID sensors, and probabilistic models for real-time tracking.  The 

laser range component adds environmental flexibility over vision based systems, while 

the RFID tags help disambiguate individual agents.  The probabilistic models are 

important to target identification during the complex interactions with other agents of 

similar appearance. 

In addition to tracking, I present work on automatic methods for generating 

behavioral models based on supervised learning techniques using the agents’ tracked 

data.  These models can be used to classify new tracked data and identify the behavior 

exhibited by the agent, which can then be used to help automate behavior analysis. 

 xviii
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CHAPTER 1  

INTRODUCTION 

 

Imagine being given a pencil and paper sketch of the locations of all the people 

currently on a basketball court.  What can be deduced from this simple information?  The 

number of people tells if a game was being played, if there was a timeout in progress, or 

if the halftime show was commencing.  The location of each individual provides even 

more information.  It would be obvious if the ball was in play or if someone was about to 

throw it in from out of bounds.  No one would have trouble knowing which team, if 

either, was about to shoot a free throw. 

Now imagine having a series of these sketches, each showing the same court, but 

indicating the positions of the players over time.  More information could be gleaned as 

more sketches were revealed:  which players were on the same team, which team was on 

defense, and perhaps even which player possessed the ball.  Finally, by examining a 

number of these sketch series (or tracks), an astute person could learn to recognize 

behaviors that are frequently carried out; for example, a given play which is repeatedly 

executed. 

Just as a person can deduce a wealth of data from this simple information, so, too, 

could a computer algorithm.  The automatic detection of such information could be used 

in a number of applications which are not conducive to human labeling.  This will save 

time and/or create entirely new capabilities which are beyond the means of human 

labelers.  In addition to sports, areas that could benefit from this automatically identified 

data include robotics, biology, and even security. 
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1.1 Research Questions 

One area of artificial intelligence that has garnered much interest is behavior 

recognition.  That is, observing one or more agents and determining in which behavior 

each is engaged from the trajectories of their movements.  For example, such recognition 

would allow for the identification of bees performing a waggle dance in an observation 

hive or suspicious human activity in a subway terminal.  One subset of behavior 

recognition concerns itself specifically with the identification of behaviors which involve 

multiple agents interacting, for example players (human or robotic) in a team sport or 

ants encountering one another in an arena.  The research question asked by this work 

could be expressed as: 

 

• How can observations of a multi-agent system be used to model and recognize the 

behavior of that system’s interacting agents? 

 

In order to explore this question, several sub-questions must be addressed.  Four 

in particular guide the research presented herein.  They are: 

 

1. How can multiple sensor observations be used to generate tracks of multiple 

agents’ positions as they enter, move through, and exit the environment? 

 

2. How can the observations of multiple sensor types be combined to provide more 

accurate identified tracks? 
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3. How can this information then be used to create models of the interacting 

behaviors of the individual agents? 

 

4. How can these models be used to recognize and/or predict the agents’ true 

behaviors? 

 

Each of these questions focuses on one of the steps necessary to accomplish the 

aforementioned behavior recognition.  First, one or more types of sensors must be used to 

collect information about the agents being studied.  This information is used to generate 

tracks of each agent as it moves through the environment (Question #1).  Each track must 

then be associated with the specific agent that it represents (Question #2).  Finally, 

models can be created based on the behaviors evident in the tracked agents’ movements 

(Question #3) – these models will then be available to recognize the subsequent 

behaviors of the tracked agents (Question #4). 

1.1.1 Question 1:  Tracking 

Tracking is accomplished using a number of laser range finders.  Each of these 

laser range finders scans, in half degree increments, an arc of 180 degrees, out to a range 

of up to 80 meters.  By placing several scanners around the edges of the environment of 

interest (say, a basketball court or football field), pointed inwards, the entire area is 

covered from multiple viewpoints.  This is important because occlusion is a major 

restriction of laser range finders.  This means that a scanner cannot “see” agents which 

are blocked by other agents or stationary objects.  However, by using multiple sensors, 

the effects of occlusion are greatly reduced. 
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Tracking will rely solely on the laser-based data.  However, RFID measurements 

will later be used to match up each track with the unique agent represented by that track.  

Therefore, each track must represent exactly one agent, from start to finish.  Yet, because 

the active RFID tags only send a signal periodically, it is important that the tracks 

generated by the laser data be as long as possible, while still maintaining confidence that 

a single track represents a single agent.  All tracks made by a given agent can then be 

combined to form a single track of that agent’s activity over the length of the experiment. 

The tracker described in this dissertation functions by matching instances of one 

or more models (or templates) to detection-based data (such as from laser range finders), 

using iterative closest point (ICP) to determine the best location of each track.  

Implementation of models allows the tracker to better differentiate near-collisions, as 

well as being able to track agents of multiple sizes and shapes.  Providing information as 

to the type of agent of each track will assist in the track/agent association discussed 

below. 

1.1.2 Question 2:  Track Association 

The laser scanners used for tracking provide incredibly accurate measurements, 

but do not have the ability to distinguish between agents.  That is, one agent looks very 

much like any other in the laser data.  Therefore, to uniquely identify each agent over 

time, another sensor must be used.  Active radio frequency identification (RFID) has 

been selected.  The benefit of this sensor is that the tags, each placed on an agent, provide 

perfectly unique identification (in the form of a serial number which is repeatedly 

broadcast).  Unfortunately, localization of the tags is very rough, preventing this sensor 
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from being used alone.  Thus, a mechanism for fusing the RFID data with data from the 

laser scanners is developed. 

Because the laser data is so accurate, it alone will be used to generate tracks.  The 

tracks, each representing a single agent, are labeled based on the probability that their 

locations correspond to the RFID readings.  The probabilities are generated from building 

a histogram model from a set of training data, and an error minimization algorithm is 

used to find the best set of track/label pairings.  The result is a series of tracks, each of 

which represents a single, specific agent from start to finish. 

1.1.3 Question 3:  Behavior Modeling 

Given a set of uniquely identified tracks, certain behavioral information can be 

determined about the agents.  For example, in the context of a colony of non-human 

primates, various interactions are detected, both affiliative and aggressive.  From the 

pattern of these interactions, the familial relationships between the individuals of the 

colony can be learned.  More interestingly, the hierarchical relationships of the families 

are then deciphered.  In the domain of social insects, the informative waggle dance of 

honey bees can be recognized.  The first step in performing this recognition is to create 

models of these behaviors. 

1.1.4 Question 4:  Behavior Recognition 

Once the behavioral models have been created, they must be used to recognize 

subsequent occurrences of the behavior which they model.  Two approaches form the 

basis of this work.  First, the threshold technique is used to recognize interactions which, 

for some set of features, can be identified based on the value of those features.  Detection 

of other behaviors will benefit from the time element of the HMM technique. 
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1.2 Example Domains and Motivation 

There are many domains that can benefit from automated tracking and behavior 

recognition.  The research in this dissertation has been applied to several biological 

domains.  For instance, the behavior recognition techniques have been used to detect 

waggle dances in a honey bee observation hive and count and classify types of 

interactions between multiple ants in a potential nest.  The tracking algorithms are also 

applied to help study primate behavior.  More generally, any biological system that is 

currently observed by humans is a potential target for an automated tracking and behavior 

recognition algorithm.  This would reduce or eliminate the very arduous task of manual 

observation and data labeling. 

These algorithms could also be of benefit when applied to robotic agents.  It is 

sometimes useful to be able to confirm the behavior that a robot is executing, such as 

while testing a new program.  By creating a model of the robot’s observed activity and 

comparing it to its desired behavior, the performance of the controller can be determined.  

On the other hand, when dealing with an unknown or enemy robot, the creation of a 

behavioral model would provide insights into its objectives.  This would be useful in 

applications ranging from security to robot soccer. 

The impact of automatic tracking and behavior recognition on each of these 

domains is further discussed in Chapter 2.  Yet, while this research is applicable to many 

domains, the effectiveness of the techniques to answer each of the research questions in 

two specific areas is examined.  One of these domains, a team sport setting, involves 

tracking the players of an amateur basketball game.  These activities take place in a 

constrained, yet realistic, environment with multiple agents constantly engaging in social 

 6



interactions.  Such a setting is challenging, but not overwhelming, and provides an outlet 

for theoretical and practical considerations, as well as many potential uses, including 

augmented broadcasts, team training, and video game design.  The other situation in 

which this research is tested is an experiment which uses human volunteers to emulate a 

setting consisting of several dozen small primates.  The participants are free to move 

about their arena and interact in a variety of ways, mimicking true monkey interactions.  

The problems posed in this domain are slightly different, as the individuals move around 

less quickly than sports players, yet there are more of them and they tend to cluster in 

larger groups and for longer periods than the basketball players. 

1.3 Preview of Contributions 

The results of this research are applicable to several different domains, providing 

contributions to a number of groups, including robotics, biology and machine learning.  

Specifically, it is the goal of this research to answer the research questions by providing: 

1. A method of tracking multiple, changing numbers of interacting agents using data 

from multiple laser range scanners.  This tracker, which tracks agents moving in a 

single plane, must maximize the length of each track while simultaneously 

ensuring that each track represents no more than a single agent.  Success is 

measured in its ability to generate such tracks which are long enough to allow 

unique agent/track association to be performed. 

2. RFID tag usage techniques to associate each laser-data generated track with the 

agent that it represents.  Only after performing this association will the tracks be 

used to model and recognize behaviors.  Accuracy is measured by the percent of 

tracks correctly identified. 

 7



3. Models used to represent and recognize choice social behaviors in which agents 

might be engaged.  The examined behaviors are those which can be described in 

the trajectories of the agents.  These models are evaluated on their ability to 

recognize the behaviors present in the test data set. 

4. Comparison of experimental results of applying these algorithms in several real-

world biological domains.  By building a system, from start to finish, which 

performs the above sub-tasks, the primary research question is answered. 

5. Benchmarks of the ability of the tracking components of the system to function in 

real-time applications. 

Although many aspects of this research have been well studied individually, work 

in the proposed combination of technologies is limited.  Major contributions of this work 

include the use of multiple laser range finders to generate tracking data.  Using active 

RFID to associate pre-created tracks with the agents that they represent is a novel 

approach.  Furthermore, tracking applications in the sports target domain have focused on 

using computer vision; the use of laser range finders as the primary tracking sensor is a 

new alternative to existing systems.  The ability to function in real time enhances this 

research’s impact.  Finally, much of the behavior recognition literature concerns itself 

with the activities of isolated individuals.  On the contrary, the activity of interest for this 

research consists of behaviors representing multiple, interacting agents. 
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CHAPTER 2 

BACKGROUND AND RELATED WORK 

 

This research focuses on tracking multiple interacting agents (or “targets”, as they 

are referred to in the sphere of tracking) while they move through the environment, and 

then modeling and recognizing their interactions and behaviors from these tracks.  Many 

techniques exist for accomplishing these goals, incorporating a variety of sensors.  While 

these are far from being solved problems, some combinations have been well studied.  

This chapter discusses the core research in tracking and behavior modeling, closing with 

an examination of some of the domains in which this research has been applied.  The goal 

is to illustrate the foundation upon which this research is built, as well as differentiate it 

from similar work.  

2.1 Tracking 

Tracking consists of determining the location of the targets present in each 

“frame” of data.  A frame is made up of all the data from a single point in time.  With 

video data, this corresponds to a single frame of video.  For laser-based data, a frame 

would be the measurements from one simultaneous scan from each of the sensors.  Once 

the laser scans are transformed into the same coordinate system, a single “picture” of the 

scene at that time is created, like a video frame.  This frame, then, can be examined for 

the targets of interest. 

One approach to tracking is to divide the task into two parts; finding the 

“interesting” objects (targets) and then tracking a given target over time (the data 

association problem).  Obviously, the mechanism for finding the targets is based 
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somewhat on the nature of the sensors being used.  Two popular sensor types are video 

cameras and laser-range finders.  Techniques for finding the targets in each of these types 

of data are discussed in Sections 2.2 and 2.3.  Once any targets are found, the process is 

sufficiently disjointed from the sensors that many methods no longer vary based on the 

input.  Therefore, Section 2.4 will close with a treatment of several popular ways to 

perform this data association. 

2.2 Computer Vision 

One common method of obtaining tracking data is from video.  Computer vision 

attempts to identify the targets in a video sequence, separating them from the 

uninteresting background.  This is very challenging, as a number of factors can adversely 

affect performance.  Occlusion is a major problem, making camera placement very 

important.  Vision is also susceptible to changing lighting conditions, including changes 

from sunny to cloudy in an outdoor environment.  Nonetheless, there are ways to deal 

with each of these issues. 

2.2.1 Finding Tracks 

The first step in many tracking algorithms (both in vision and non-vision tracking) 

involves actually locating the “interesting” targets in the data.  One approach to finding 

these targets is tracking by color.  In this method, efficiently accomplished by Bruce et al 

[2000], each pixel is examined for inclusion in any of a fixed number of color 

classifications, based on simple thresholding.  Once every pixel is classified, connected 

and near-connected regions of the same color are “grown,” then sorted by size.  This 

results in a list containing all occurrences of each color classification.  In some cases, this 

is sufficient to determine the location of each target, such as small scale robot soccer 
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players, in which the rules stipulate very specific colorations to all elements of the game 

[Han & Veloso 1998]. 

Unfortunately, such color segmentation is often not good enough; even in controlled 

laboratory environments, shadows and changing lighting conditions can render tracking 

by color techniques insufficient.  An alternative to this color-based tracking is tracking by 

movement.  At the most basic level, this consists of frame differencing, or comparing 

pixels in the current video frame with those of the previous frame.  If a pixel has changed 

amply, usually with regard to intensity, it is assumed that this pixel demonstrates 

movement in this frame.  Though effective, this method suffers from the main problems 

of only detecting the “wavefront” of moving objects and not detecting slow movement 

[Rosin & Ellis 1995]. 

To combat these issues, adaptive background subtraction can be used.  In this 

approach, a representative image of the background (without any moving objects) is 

subtracted from the current image; what remains indicates movement.  However, this is 

computationally intensive.  Balch et al [2001] overcome this hurdle by creating a hybrid 

system.  In this system, designed to track ants in a (mostly) white arena, color 

segmentation is initially done to locate areas of the frame which are “ant colored.”  This 

quick operation determines potential locations of targets.  Then, these specific locations 

are further examined using background subtraction for indications of movement.  Any 

location of sufficient area which demonstrates movement is considered an ant. 

Another approach is to segment the data based on models of the targets.  For instance, 

Zhao & Nevatia [2003] use human shape models to interpret the foreground in a 

Bayesian framework.  Mittal & Davis [2003] model the characteristics of people by 
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observing them over time.  These characteristics include color models at different heights 

of the person.  In both cases, the models are used to segment the images, resulting in the 

detection of all targets.  Further, the latter uses occlusion analysis to allow probabilistic 

tracking through moments when the targets are not (completely) visible. 

2.3 Laser-based Tracking 

Laser-based tracking is developing as an alternative to video-based computer 

vision.  Recently, laser range finders (“ladar”) have been used in a variety of applications, 

including localization on mobile robots [Dellaert et al 1999], tracking in crowded 

environments [Prassler et al 1999], and map building [Gonzalez et al 1994].  In some 

respects, lasers are ideal compared to video.  They are more reliable because they are less 

susceptible to “false positives” and “false negatives.”  In other words, a detected object 

(laser hit) almost certainly corresponds to an actual object in the world, while the lack of 

a hit reliably indicates that there is no corresponding object in the world.  Further, laser 

range finders have very high spatial accuracy; the laser hit corresponds to the object’s 

actual location, within 1.5 cm (according to the manufacturer).  They are not sensitive to 

noise such as changing light conditions, and they have significant range [Fod et al 2002].  

Yet, lasers offer some of the same challenges as computer vision, including extracting the 

targets from the cluttered background, differentiating one target from another, and an 

inability to handle occlusions.  Even worse, their usage poses additional complications:  

lasers provide no way to uniquely identify a target (all targets “look alike” to the laser), 

and they generally have a field of view limited to a single plane.  An example data frame 

from laser range finders is shown in Figure 2.1. 
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Figure 2.1:  One frame of laser data from 4 laser range finders in a lab.  The 5 visible 
ovals were caused by people walking in the lab.  From [Balch et al 2005]. 

2.3.1 Laser Range Finders 

Although some commercial laser tracking solutions exist, they are expensive and 

impose restrictions on the movement of the targets [Fod et al 2002].  Thus, it is more 

common for researchers to put together their own system, often using members of the 

SICK brand line of lasers, such as the LMS-291 (Figure 2.2).  The basis of this sensor is a 

near-infrared laser pointed downward at a 45-degree angled mirror.  The mirror rotates 

rapidly, sending the laser out in a planar sweep parallel to the ground.  This sweeping arc 

can be up to 180 degrees, and generates measurements in one quarter, one half, or one 

degree increments.  The maximum range is either 8 meters (at millimeter resolution) or 

80 meters (at centimeter resolution).  When the laser beam strikes the nearest object at 
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Figure 2.2:  A SICK LMS-
291 laser range finder. 

each angle, the beam bounces off the object and returns to the sensor.  The distance 

traveled is automatically calculated from the time of flight of the beam.  If the beam is 

not reflected by an object within range, then a “no reading” value is returned.  A full 

study of the LMS-200 was conducted by Ye & Borenstein [2002]. 

Multiple ladar can be placed around the environment to reduce the effects of 

occlusion and increase the system’s field of view.  For example, Jung & Sukhatme [2002] 

use multiple sensors (on robots) to track multiple targets through environments with 

varying occlusion characteristics.  However, that work does not explicitly fuse the 

multiple sensor data.  Much like Stroupe & Balch [2003] use data from multiple range-

bearing sensors to improve accuracy, Fod et al [2002] combine data from several ladar to 

track people in an office environment. 

As previously mentioned, the field of view of a ladar is a single plane.  This is 

often sufficient for tracking objectives, such as robots (which do not change height) and 

people in an office (placing the laser at about a meter high will catch standing people at 

waist level and sitting people at chest or shoulder level) [Yan & Matarić 2002].  

However, sometimes, one plane simply cannot capture all of the necessary data.  In some 
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of these cases, multiple lasers could be used to generate data at multiple, parallel planes.  

Alternatively, Kornienko & Kleeman [2007] use vertical laser scans to track human 

body-parts in 3-D.  A more complete solution is to mount a ladar on a servomotor so that 

it can rotate in a direction perpendicular to the plane of the laser scans.  This would create 

a 3-D “image” of the scene [Surmann et al 2001]. 

2.3.2 Finding Targets 

In some sense, working with a ladar generated frame is easier than a video frame.  

Every laser hit directly and accurately corresponds to the location of a physical object.  

This makes certain tasks simpler.  For example, by comparing a scan to a known map, 

localization is very straightforward, even in a symmetric environment [Gutmann et al 

2000].  In that work, a scan is compared to a model of the soccer field (including only 

lines significantly longer than would be generated by another robot); with just three 

visible walls, the robot could be localized to one of two places.  Combining this with 

odometry and passing it to a Kalman filter (introduced in Section 2.4.1) can consistently 

and uniquely identify the robot’s exact position, all without having to perform 

complicated analysis on a video frame.  However, there are still challenges in using lasers 

for tracking. 

 

Background Subtraction 

One important difficulty is in determining which laser hits correspond to targets to 

be tracked (the foreground) and which correspond to background structures (e.g. walls, 

desks, and other “uninteresting” obstacles).  This process, which serves the same purpose 

as background subtraction in computer vision, can be accomplished in several different 
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ways.  In the regulated, soccer-field environment of Gutmann et al [2000], once 

localization is accomplished using the long scan lines of the walls, they are removed and 

the remaining points make up the foreground. 

In less constrained environments, it is not always feasible to have an a priori 

model of the background.  For example, Schulz et al [2003a] computes a probability grid 

for each local minimum in the distance histogram.  This is then compared to the data 

from the previous frame to determine the probability that something has moved to that 

location, eliminating close, but static, objects from being considered. 

Another approach [Fod et al 2002] derives inspiration from the computer vision 

background subtraction problem [Toyama et al 1999].  Instead of examining each pixel, 

though, each angle of the laser’s scan arc is considered individually.  For each scan, they 

assume that background is made up of the farthest known stationary object.  Therefore, 

any measurements with a distance less than that of the current background will be treated 

as part of a foreground target, while farther objects are treated as background and added 

as part of a new background (maintaining the mean and variance to provide robustness to 

noise). 

Of course, sometimes it is desirable to not subtract the background.  When the 

sensor is mobile, then the background is important for obstacle avoidance algorithms.  

For example, Prassler et al [1999] describe a tracking system for use on an automated 

wheelchair.  Although this system does not subtract the background, it does distinguish 

between mobile and stationary targets for the purposes of motion modeling. 
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Determining Structure 

Once the majority of the background laser hits have been removed, it is necessary 

to determine the structure of the targets, usually by joining the remaining laser hits into 

clusters (sometimes referred to as “blobs”), each representing a single target.  This is 

often difficult, as two or more targets in close proximity may appear to be a single target.  

Or, one entity may appear to be two separate targets.  Obviously, this causes great 

difficulties in data association, which relies on being able to identify each target being 

tracked. 

Several methods of resolving this phenomenon have been developed.  The 

approach used by the previously mentioned Gutmann et al [2000] system is to cluster the 

points and denote a target as existing at the center of gravity for each cluster.  Prassler et 

al [1999] also grouped nearby hits into distinct objects.  This can be potentially 

problematic depending on the shape and relative sizes of the targets. 

Another technique involves creating blobs, each composed of a continuous 

surface, and then joining blobs together to form the desired target [Fod et al 2002].  Laser 

hits are deemed part of a continuous surface (and thus a single blob) if they are within 10 

centimeters of each other.  Multiple blobs representing a single object (such as a person’s 

torso and arms) are unified into a single target for data association.  Complications could 

arise when dealing with large ranges.  For instance, at 30 meters, laser scans striking the 

same surface will be over 25 centimeters apart, yet increasing the “surface threshold” 

could cause disjoint surfaces to be viewed as continuous, especially when the targets are 

frequently very closely interacting, such as in sporting activities. 
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2.4 Data Association 

Regardless of what sensors provide the original data, once the targets are located 

in a frame, it is necessary to associate each target with itself in previous frames, the so-

called data association problem.  A simple method of accomplishing this is with greedy 

association [Veloso et al 1998].  Such an algorithm won the 1997 RoboCup small-robot 

competition.  The idea is that current targets are matched to the closest target in the 

previous frame.  Each current target/previous location pairing is examined for the pairing 

with the lowest distance.  This pairing is made, removing the target from the current and 

previous frames’ lists.  The algorithm iterates until all targets are matched.  A similar 

strategy is employed by Prassler et al [1999] on laser data.  The only difference with their 

“nearest neighbor criterion” is that they set a maximum distance threshold, beyond which 

objects would be declared separate targets. 

Although this algorithm works well in certain situations, it is theoretically not 

guaranteed to find optimal associations.  Figure 2.3 demonstrates an example of this sub-

optimal performance.  In this circumstance, the greedy algorithm will incorrectly assume 

that Target 2 barely moved, while Target 1 moved quite far to the right. 

An improved algorithm was developed [Han & Veloso 1998] to handle such a 

situation.  In this algorithm, dubbed globally optimal association, all possible sets of 

Figure 2.3:  One situation in 
which the greedy algorithm fails.

 18



matching are generated.  For each set, the fitness is calculated as the sum of squared 

distance between each pairing.  The set which minimizes this criterion is selected.  

Although still not theoretically optimal, this algorithm has been shown in a number of 

implementations to be quite robust ([Han & Veloso 1998] and [Balch et al 2001]).  

Unfortunately, with a large number of targets, this technique can slow down the tracking 

process. 

2.4.1 Probabilistic Techniques 

Color-based tracking is appropriate in many circumstances.  However, there are 

many times it does not work well.  For example, to track bees, it requires marking all of 

the animals to be observed, as in Figure 2.4.  This is difficult and does not guarantee 

success; the tracker often gets confused when two animals interact.  To solve these 

problems, a probabilistic framework can be employed.  Two popular methods have been 

the Kalman filter and the particle filter.  Each is discussed, along with some extensions. 

 

Figure 2.4:  A painted honeybee in 
the hive.  From [Balch et al 2005]. 

Kalman Filter 

One method of probabilistically tracking a target using noisy data (such as in 

computer vision, but also applicable to any noisy sensor) is the use of a Kalman filter.  
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Originally introduced in 1960 by R. E. Kalman, the filter recursively maintains a current 

state 

 they have some serious limitations.  

First, th

 to be between the two areas, as opposed to 

actually

estimate (of, say, the target being tracked) by performing a time 

update/measurement update cycle.  The filter estimates the state for some time, and then 

receives a measurement which is used to update that estimate.  Formally, the time update 

phase projects forward (temporally) to get the a priori estimates for the next time step.  

Next, the measurement provides feedback, adjusting the a priori estimate to create a 

better a posteriori estimate [Welch & Bishop 2004]. 

Kalman filters are useful in some situations, for example, to estimate depth from 

image sequences [Matthies et al 1989] and to lessen the affects of occlusions and sensor 

noise (with laser range finders) [Fod et al 2002], but

e basic Kalman filter is limited to a linear assumption.  That is, the process model 

and observation model must both be linear functions.  Yet, this assumption does not hold 

for many non-trivial systems.  Therefore, the extended Kalman filter (or EKF) has been 

developed.  This filter linearizes the estimation using the partial derivatives of the process 

and observation functions to calculate linear estimates, despite the non-linear 

relationships.  Rosales & Sclaroff [1998] use an EKF with an occlusion detector built on 

top to improve tracking, though this system makes some assumptions on the 

characteristics of the shape of the targets. 

Another limitation of the Kalman filter is its inability to maintain a multimodal 

representation.  For example, if a target is likely to be in one of two non-connected areas, 

a Kalman filter will estimate its location

 in either.  For such a distribution, the particle filter is an attractive option. 
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Particle Filter 

Another probabilistic approach maintains a particle filter to use multiple particles 

 represent the belief distribution of a tracked target [Dellaert et al 1999].  In each new 

the particles are each scored according to how well the sensor data 

(underl

.  Particle filters, 

therefo

to

frame of data, 

ying pixels, for example, in the case of vision) supports the target being at the 

location of the particle.  The particles are then re-sampled according to their score, 

resulting in the same number of particles, but better chosen to reflect likely target 

locations.  The new particles are averaged; this is where the target is said to be located in 

this frame.  Finally, each particle is stochastically moved according to the motion model, 

readying them for the next iteration.  Figure 2.5 illustrates this process. 

One appeal of particle filters is that, unlike the Kalman filter, they are well suited 

to representing data with a multimodal distribution.  This ability serves to enhance the 

robustness of the underlying state estimation process [Gutmann 1998]

re, are used in many trackers, both computer vision-based [Khan et al 2004a] and 

laser-based [Panangadan et al 2004].  Particle filters are also used in other state 

estimation problems including mobile robot localization [Fox et al 2001] and dynamic 

probabilistic networks [Kanazawa 1995]. 

Figure 2.5:  (a) White rectangles represent particles, scored based how well the 
underlying pixels match the model.  (b) New particles are sampled according to the 
probabilities.  (c) Estimated location (white plus) is calculated from the new particles.  
(d) The next image frame.  (e) Particles are advanced according to the stochastic motion 
model.  From [Balch et al 2005]. 
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Joint Particle Filter 

When multiple targets are non-interacting, using multiple independent particle 

filte s is sufficient, but in cases when targets interact, as is common in multi-agent 

icle filter could model these interactions.  However, the intense 

comput

r

systems, a joint part

ation required makes this infeasible beyond a few targets.  Khan et al [2003] takes 

advantage of the limited perception of their targets (ants) to create a joint MRF (Markov 

random field) particle filter.  In effect, this adds an “interaction term,” allowing more 

accurate motion models among close targets (e.g. two targets cannot occupy the same 

space) without suffering from the intractability of a full joint particle filter (Figure 2.6a 

and b).  An extension in this research penalizes particles which overlap the location of 

other targets, thus violating known constraints on movement (Figure 2.6c).  To achieve 

an even greater efficiency, work has been done to replace the traditional importance 

sampling step in the particle filter with a Markov chain Monte Carlo (MCMC) sampling 

step [Khan et al 2005].  This has also been extended to address a variable number of 

targets.   

Figure 2.6:  (a) Only ants in proximity are considered jointly.  White lines indicate joint 
considerations.  From [Khan et al 2003].  (b) Nearby ants make use of particles which 
encapsulate their poses (two particles are indicated by white and black lines.  (c) Within 
a filter, particles which violate motion constraints are blocked.  From [Balch et al 2005].
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Another approach uses laser-based data with a motion model in conjunction with 

sample-based joint probabilistic data association filters (SJPDAFs) to track multiple 

moving objects [Schulz et al 2003a].  By using the motion model, the tracker is able to 

mai

2.5 Unique Track Identification 

Laser range finders provide excellent data for tracking targets as they move 

through an environment.  Unfortunately, they do not have a means of differentiating 

between multiple targets o e ll people (or monkeys or 

other ta

ty of different types of sensors that could 

ntain a spreading sample set to estimate the location of occluded objects.  In other 

research [Schulz et al 2003b], they use Rao-Blackwellised particle filters to estimate 

locations of uniquely identified objects, beginning with anonymous tracking and 

switching to sampling identification assignments once enough identification data has 

been gathered, resulting in a fully Rao-Blackwellised particle filter over both tracks and 

identification. 

f th same type.  In other words, a

rgets) look alike to a ladar.  Therefore, to provide unique identification, another 

sensor must be used.  Specifically, it must be a sensor that can differentiate targets based 

on their “appearance” in the data, for instance through color-indexing [Swain & Ballard 

1991] or facial recognition in camera images [Stillman et al 1998] or the unique identifier 

provided by infrared (IR) badges [Schulz et al 2003b].  Such a sensor must be used in lieu 

of the ladar to provide both tracking and identification, or else combined with the laser-

based data to create uniquely identified tracks. 

Of course, vision tracking is only appropriate if the targets are visually distinctive.  

While this may work for human targets, homogenous robot or monkey targets could all 

look alike.  On the other hand, there are a varie
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be used

al 1992]) or vice versa [Azuma 1993].  Such systems 

suffer f

environments, as buildings tend to 

block t

tification accuracy, but require the targets to be tethered 

to the 

There are a number of ways to use RF for tracking and localization.  Section 2.5.1 

 to provide the needed functionality.  Many of these have been used by a number 

of researchers for several years. 

For instance, IR transmitters and receivers have been used by putting the receivers 

at known locations and transmitters on a badge worn by the person being tracked (the 

Active Badge system [Want et 

rom the poor range of IR and therefore require significant infrastructure intrusion 

and installation, resulting in a high cost for even small scalability.  Ultrasound techniques 

[Harter et al 2001] suffer from the same disadvantages as IR (in one experiment, 100 

receivers were needed to cover an area of 280m3), plus impose strict restrictions on the 

number of signals that can be received every second. 

Neither IR nor ultrasound techniques are well suited to functioning in outdoor 

environments.  On the other hand, the global positioning system (GPS) can provide 

precise localization, but is only effectual in outdoor 

he satellite signals.  None of these technologies are ideal for a system which must 

work both indoors and outdoors. 

Another approach (overviewed in [Hightower 2001]) relies on electromagnetic 

sensing to track positions.  Systems such as the MotionStar DC magnetic tracker provide 

phenomenal localization and iden

base station, and only support a range of less than 10 meters.  While suited for 

motion capture applications, such systems would not work for tracking targets in their 

“natural” settings. 

One technology that works both inside and outdoors is radio frequency (RF).  
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describes one common RF machinery example, RFID, while Section 2.5.2 details some 

ways of using the signal strength of the RF signal to localize.  Finally, Section 2.5.3 

discuss

2.5.1 Radio Frequency Identification (RFID) 

RFID sensors are one type of ID-sensor which can be used to uniquely identify 

targets.  In fact, RFID provides perfectly accurate identification because each sensor is 

given a unique identification number (like a serial number).  RFID sensors consist of two 

adcasts the ID number (and potentially 

additio

 very small and flat, often smaller than a grain of rice.  Instead of being 

ternally powered, the tags are activated when brought in close proximity to a reader.  

radio signal sent by the reader induces a small current in the tag; just 

enough

es ways in which data from multiple sensors can be fused together to provide 

more accurate or robust output. 

parts; a tag and some sort of reader.  The tag bro

nal information) at a specific RF frequency and nearby readers tuned to the 

frequency can pick up the broadcast.  RFID sensors have seen a great deal of 

development in recent years [Finkenzeller 2000], and can be divided into passive and 

active types. 

 

Passive RFID 

Passive RFID tags consist of a small integrated circuit, but no power supply.  As 

such, they are

in

The incoming 

 to power up and transmit a response.  Therefore, they have a very short range, 

generally not more than 6 to 24 inches, although in some cases they can be detected up to 

approximately 6 meters [Hähnel et al 2004]. 
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These passive tags have made their way into a variety of common uses.  They can 

be found in credit cards and passports, consumer goods, and even pets such as dogs and 

cats.  In credit cards and passports, they serve a similar function to magnetic strips, 

contain

is used to infer the 

person’

 objects.  While such a technique would be 

useful 

ing identification information that can be used by the reader.  By implanting in 

dogs and cats, a found pet can be scanned to locate find its owners, even if the animal 

was not wearing traditional tags.  These tags are also often placed on consumer goods 

both for inventory tracking and theft deterrence [Curtin et al 2006]. 

Passive RFID tags are also used in intelligent systems research.  For instance, the 

Guide project [Philipose et al 2003] uses a small reader attached to a home patient to 

identify the objects a person touches.  The sequence of objects 

s activity and provide support if necessary.  Hähnel et al [2004] investigates 

generating maps of RFID tags (placed on a variety of objects throughout an indoor 

environment).  The resulting maps can then be used for accurate localization of the robot 

and objects without odometry information.  Unfortunately, these results require 

cumbersome equipment (the reader, antennas, power supply) to be placed on the mobile 

robot, which would not be appropriate on living targets.  Additionally, with a read-range 

of 6 meters, a larger environment would have to be instrumented throughout, a 

proposition that is not always appropriate. 

In general, passive RFID systems are designed to read one tag at a time.  

However, Vogt [2002] created a way of identifying multiple objects simultaneously, 

without explicitly knowing the number of

in certain applications (such as supermarket checkout), the short range of passive 
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RFID technologies is not conducive to tracking individuals at the scale of dozens of 

meters. 

 

Active RFID 

Unlike the passive RFID technology, active RFID tags include a built-in power 

ags, therefore, broadcast their message at regular time intervals, whether a 

reader 

ers detecting the message which each tag 

broadca

to 

track m

s process requires using the signal strength 

supply.  The t

is within range or not.  Further, because they have much more power available 

than the induced current of the passive tags, active RFID tags’ signals can be received at 

much greater distances, often 100 feet or more. 

The added range of active RFID tags makes them better suited for localization 

than are passive RFID tags.  In addition to read

sts, the reader can determine the signal strength of the reading.  This signal 

strength varies based on the distance from the reader.  Further, antennas can be attenuated 

so as to restrict the distance at which they can receive a signal.  This is useful when 

tracking the location of targets at the resolution of a room; with one reader per room, the 

reader that detects the tag indicates the tag’s location.  Hospitals use such technology to 

monitor the location of equipment, staff, and patients (especially babies) [Wang 2006]. 

Active RFID tags are used in a variety of industries and applications, including 

transportation (“E-Z pass” and other toll-road automatic payment systems), athletics (

arathon runs on the course), and inventory management.  These and other 

applications are detailed by Schneider [2004]. 

Locating targets with active RFID at the room-level is simple, but trying to 

determine location more finely is difficult.  Thi

 27



from m

2.5.2 Localization Estimation from RF Signal Strength 

Although RF techniques (such as RFID) are ideally suited for identification, they 

arge distances.  The signal 

strength

nd then calculate the expected signal strength at 

every location based on the distance from the readers.  For instance, RADAR [Bahl & 

ultiple readers to triangulate in order to find the source of the signal.  Worse, 

when the targets are moving rapidly compared to the temporal frequency of the tag 

signals, the system is more susceptible to noise, as multiple readings cannot be averaged 

to determine location.  Further, the location of the target in between tag readings is 

unknown.  A number of methods of dealing with these uncertainties exist, and are 

described in Sections 2.5.2 and 2.5.3. 

present substantial hurdles for accurate localization over l

 reported by a reader is proportional to the transmitter’s distance from that reader; 

triangulation can therefore be used to localize.  However, there are a number of factors 

that reduce the robustness of this approach, including multipath fading and shadowing of 

the RF channel, as well as transmitter and receiver variability and antenna orientation 

[Lymberopoulos et al 2006].  They show that it is possible to map signal strengths to 

distances from an antenna only under the most ideal circumstances – any variation in 

orientation or presence of obstacles introduces large amounts of noise.  Worse, even with 

no direct occlusions between the tags and readers, RF signals are susceptible to the 

presence of metal in the surrounding area [Balch et al 2004].  This is a well studied 

problem ([Howard et al 2003], [Ladd et al 2002], and [Haeberlen 2004]), with research 

progressing along several techniques. 

One approach to solve this problem attempts to build a model of the signal 

strength propagation through space, a
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Padman

his joint clustering 

techniq

refore, some systems 

take a 

abhan 2000] builds a radio propagation model which estimates signal strengths at 

each location after taking into account effects based on the number of walls between that 

location and the reader.  RADAR also investigates an empirical method of gathering 

readings from a number of known locations, and then localizing new readings by finding 

the most similar readings (in signal strength space) in the training set.  While the model 

method was accurate to within 4.3m (in the 50th percentile), the empirical method 

achieved an accuracy of 2.94m.  Letchner et al [2005] also attempt to build a signal 

strength sensor model, though theirs is learned through the use of a hierarchical Bayesian 

framework, and achieves a median localization error of less than 2m. 

Youssef et al [2003] use WLAN access points as the transmitters; a mobile 

receiver can localize based on the joint probability distribution of the q strongest signals.  

Location clustering is used to reduce the computational load.  T

ue achieves an accuracy of approximately 2.3m in a large indoor environment.  

Roos et al [2002] also use a probabilistic approach.  Instead of directly modeling the 

physical properties of the signal propagation, they model signal strength distribution in 

different geographical areas based on sample measurements.  Three machine learning 

techniques (nearest neighbor, kernel regression, and histograms) are used to predict likely 

locations based on readings – they achieved an accuracy of 1.5-2m. 

One problem with these model-based approaches is that signal strength 

propagation is very difficult to accurately model.  There are a variety of environmental 

factors which reduce the effectiveness of generalized models.  The

more example-based approach.  Much like RADAR’s empirical method, these 

techniques gather many samples of readings at known locations and attempt to match 
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new readings to one or more examples from the training data.  MoteTrack [Lorincz & 

Welsh 2007] extends this basic approach by improving robustness and decentralization, 

achieving errors of only 2m (50th percentile) even with the failure of up to 60% of the 

environmental beacons. 

Although this method has promising results, one disadvantage is the massive 

amounts of training data that must be collected; error increases when generating 

likelihoods at locations for which no training data exists.  Ferris et al [2002] overcome 

such li

otential locations is 

reduced

with a much lower level of error, 

mitations using Gaussian processes to generate a likelihood model for signal 

strength measurements from a limited number of training measurements.  This process 

allowed them to extrapolate the model into areas for which no training was left out, with 

accuracy comparable to experiments that included such data.  Overall, the accuracy 

indoors (54 rooms, hallways, and stairs across 3 floors) was about 1.5-2m, while the 

accuracy outside (in a 500km2 area) was on the order of 100-200m. 

Another way to get around the sparse data problem is to discretize the space into 

grids, and then determine the probability of being in each grid cell based on readings.  By 

grouping nearby points into a single grid cell, the number of p

 (from infinity), greatly limiting the number of training examples required.  This 

is the approach used by Kantor & Singh [2002] to achieve an average accuracy of 1.62 

feet (in a test area of 50 feet by 50 feet).  In simulation, their results are improved to an 

average error of 0.77 feet by including odometry data. 

Many of the above techniques have achieved localization accuracies on the order 

of 0.5 to 2 meters.  This level of accuracy is appropriate for many applications.  However, 

the target domains of this research requires tracking 
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such as

2.5.3 Sensor Fusion 

By combining sensor modalities, the benefits of each type of sensor can be used 

to help offset the deficiencies of the other.  This is done in a variety of situations.  Singh 

amera images and inertial data, combined with a Kalman filter, to 

perform

 (regardless of coloration).  Jung & 

Sukhat

n.  Schulz et al [2003b] use such an 

 is provided with the laser data.  Further, the level of hardware that most of these 

systems require on the mobile targets is prohibitive in both sports and non-human primate 

domains.  The smaller RFID tags that are ideal for introduction into these situations 

generally introduce even more noise than the RF instruments discussed above.  

Therefore, it is necessary to combine data from multiple sensors in order to achieve 

accurate, uniquely identified tracks.  This process of joining data from multiple sensors is 

referred to as sensor fusion. 

et al [2002] uses both c

 simultaneous localization and mapping (SLAM).  Kalman filters and other high- 

and low-level sensor fusion techniques are reviewed by Kam et al [1997].  Hähnel et al 

[2004] shows that including passive RFID readings can greatly accelerate laser-based 

robot global localization (compared to lasers alone). 

A number of different sensor modalities are available to assist with tracking.  For 

example, vision-based trackers are good at tracking distinctively colored objects, while 

laser-based trackers can easily detect moving objects

me [2001] combine cameras and laser range-finders to capitalize on these traits, 

although this does not provide target identification. 

Instead of combining the readings from precise and noisy sensors, another 

approach is to use the precise sensors (ladar) to generate the trajectories, and then use the 

noisy ID-sensors to perform the target identificatio
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approac

2.6 Behavioral Modeling 

Once a track consisting of the location (and orientation) of each target (or “agent” 

in the recognition literature) over time has been generated, this data can then be examined 

to determine behavior.  This if  be important in a variety of 

situatio

h to track people in an indoor environment, generating anonymous tracks from 

ladar data, and then assigning IDs as the tracks approach short-range IR receivers.  The 

research presented here uses a similar technique, but uses long range (though noisier) 

active RFID tags to allow identification in a larger area, and without instrumenting the 

interior of the observation area.  Additionally, a much greater number of targets are 

tracked and identified than in Schulz et al [2003b], which also suffers from an inability to 

recover from losing the correct ID hypothesis. 

Figure 2.7:  (a) Ethogram representation of ant behavior.  From [Holldobler & Wilson 
1990].  (b) Markov model of a robot’s behavior.  In both models, arrows represent 
transitions between actions (nodes).  From [Balch et al 2005].

ident ication of behavior can

ns.  For example, in robot soccer, behavior recognition would allow for adaptive 

strategy (i.e. changing strategy based on what other players are doing) and automated 

narrative agents, which could detect what a player was doing (at a high level) and offer 
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interesting commentary [Han & Veloso 1999].  Further, behavioral ecologists use 

ethograms to model animal behavior [Schleidt 1984].  As Figure 2.7 shows, these 

ethograms are similar to the Markov models used to represent robot behavior. 

There are several ways to implement this behavioral modeling.  Some techniques 

are relatively simple, including using thresholds to train models from labels provided by a 

human expert and building sensory models based on beliefs about the agent’s perceptual 

apparat

2.6.1 Sensory Models 

Sometimes, it is not possible to directly observe the studied behavior.  For 

instance, one social behavior of interest to myrmecologists is the interaction between two 

teraction usually takes the form of antennal contact on the part 

of one 

us.  More complicated techniques include kernel regression techniques, hidden 

Markov models, and switching linear dynamic systems.  The following sections will 

discuss each of these methods, after giving a brief overview of the sorts of behaviors that 

can be modeled and recognized. 

ants [Pratt 2005].  This in

or both ants (the contact can be antenna to antenna or antenna to body), although 

contact between the bodies of two ants is also of interest.  In cases such as these, one 

method of identifying the interactions is by modeling the sensory fields of the agents.  

For example, Egerstedt et al [2005] model the sensory field of an ant with two simple 

geometric shapes, one representing the body and one for the head, as shown in Figure 

2.8.  Thus, interactions were detected whenever two ants’ sensory fields overlapped; the 

type of interaction (head-to-head, head-to-body, etc) was determined by which fields 

overlapped.  The basis of this model was created to study army ant simulations [Couzin 

and Franks 2002].  One problem with this type of model is that a new model must be 
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created for each new application, making it difficult to apply in general [Balch et al 

2005]. 

Figure 2.8:  Black lines model the sensory 
fields of the ant.  When these fields overlap 
with another ant’s fields, an interaction is said 
to be taking place.  From [Balch et al 2005]. 

2.6.2 Trainable Models 

The basis of this category of techniques is in using labeled examples to create the 

model.  This requires a human expert to label a sampling of data (called the training set) 

neral system to be built that does not rely on devising a 

comple

manually, but allows a ge

tely new model for each application (as would be required for sensory models).  

Instead, a model of the human’s labeling is created; this model is then used as a reference 

to label new examples.  The advantage of this approach is that the human expert does not 

have to explicitly specify the considerations used in classification.  Trainable models are 

in widespread use, in a variety of applications, including gesture recognition, face 

recognition and activity recognition. 
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One such type of trainable models is the hidden Markov model, which is 

discussed in detail in Section 2.6.3.  Another representation of human trained models is 

the dec

ld a football play recognition system.  Plays are defined as a series of 

tempor

ensional feature space (where n is the 

number of features).  First, the training set is used to populate feature space.  

ision tree [Arkin et al 1993].  In a decision tree, each leaf node is given a 

classification, while all other nodes represent a splitting based on some attribute.  

Examples are classified by sorting them down the tree, from the root to some leaf node; 

the example is given the classification of the leaf node at which it ends.  Decision trees 

are suited to such tasks as medical and equipment diagnosing and credit application 

approval [Mitchell 1997].  On the other hand, decision trees suffer from problems when 

dealing with continuous inputs or classifications, and overfitting is commonly a problem, 

though more complicated extensions have been developed to help handle these situations 

[Mitchell 1997]. 

Intille & Bobick [1999] take a different approach.  They use a probabilistic 

framework to bui

ally ordered goal actions carried out by the players.  For a given set of trajectories, 

each play recognizer returns the likelihood that the play was executed – the play with the 

highest likelihood is chosen.  One disadvantage of this system is that it requires a 

knowledge engineer to design the action description, effort that would have to be 

repeated for each specific application.  Also, while their results display a high level of 

accuracy, the system suffers from a slow runtime, which would not be ideal for the 

applications being studied by this dissertation. 

Another technique is k-nearest neighbor learning.  In this method, data points are 

classified based on their location in an n-dim
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Classif

ce as a 

whole. 

2.6.3 Hidden Markov Models 

Hidden Markov models (HMMs) are probabilistic generalizations of Finite State 

Automata.  They can be used to represent Markov processes in which the underlying state 

den.  Instead, it is some observations emitted by the 

process

ication occurs by evaluating each new data point in the populated feature space.  

At the algorithm’s simplest level, the k nearest data points are examined and the most 

common classification among these points is given to the new data point.  More broadly, 

kernel regression works similarly, but applies a function to “score” the contribution of 

each data point to the classification (instead of taking the “one point, one vote” 

approach); for example based somehow on distance so that farther points are less decisive 

in the classification [Smola & Schlköpf 1997].  In this case, k is often set to the number 

of training data points (a global, instead of local, method) [Shepard 1968].  

Unfortunately, this has the limitation causing the algorithm to run slowly, as all the 

distances have to be computed for each new data point (though a kd-tree can speed it up, 

at an increased cost in memory [Friedman et al 1977]).  Also, if there is a large difference 

between the numbers of training points in each classification, a bias is introduced. 

One problem with most of the techniques discussed in this section is that they 

consider each new data point individually, without examining the data before or after.  

Yet, with many data streams, information can be gained by considering the sequen

 The following approaches, on the other hand, use all of the data, which can 

provide a “smoothing” influence that tends to suppress brief “noisy” detections. 

of the system is unknown, or hid

, based stochastically on the current state, which can be seen.  Further, movements 

of the system from state to state are modeled in the HMM by probabilistic transitions.  
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Formally, an HMM consists of a set of states, a set of observations, the probability 

distribution table of each state emitting each observation, the probability distribution 

table of each state transitioning to the other states (or itself, as a “self-transition”), and an 

initial probability distribution table indicating the probability of the system starting in 

each one of the states. 

As an example, consider a three state HMM designed to model the weather.  In 

this simple example world, assume that there are three possible states of the world:  

sunny, cloudy (but not precipitating), and raining, and that the weather on a given day is 

only de

0.60 0.10 

pendant on the previous day’s weather.  Further assume that there is no way to 

directly observe the sky; instead, it is only possible to measure the dryness of a small 

patch of concrete.  It can be dry, damp, or wet.  Figure 2.9 shows one possible HMM 

modeling this situation, including hypothetical probabilities.  Consider, for example, that 

it is unlikely to become sunny directly after raining, without entering the cloudy state.  

This is reflected in a low transition probability between these two states.  Also, assume 

that this HMM is designed to model the weather in a rather dry location, where short, 

quick rainstorms are common.  This is modeled by the high self-transition probability of 

the sunny state and the low self-transition probability of the raining state. 

 

Sunny 
(S) 

 

Cloudy 
(C) 

 

Raining 
(R) 

0.10 

0.30 

0.05 

0.15 
0.80 

0.20 
0.70 

Observation 
Dry  Damp  Wet 

S
ta

te
 

S
   

C
   

R
 

0.03  0.07   0.90 
0.50  0.30   0.20 
0.70  0.20   0.10 

Figure 2.9:  Hypothetical hidden Markov model describing the weather in a simple 
world.  Numbers on the arrows are transition probabilities, while the table gives the 
observation probability of each possible observation while the world is in the given state.
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How are the probabilities in the model determined?  One way is to simply look at 

the freq

 

require

imary uses is to 

determ

uency of occurrences of each observation and transition.  This only works if there 

is a large body of data which contains the observation and actual state.  If such data 

exists, it would be possible, for example, to determine the percent of sunny days in which 

the concrete is wet, damp, and dry.  Likewise, the sunny transition probabilities would be 

calculated as the percent of instances in which day t is sunny and day t+1 is sunny, 

cloudy, or raining.  By determining each of these values, the observation and transition 

probability distribution tables can be completed.  Finally, the initial state distribution is 

calculated as the percentage occurrence of each type of day (sunny, cloudy, and raining). 

While the above method works well in many circumstances, sometimes the

d body of “labeled” data (consisting of observations and true states) is unavailable.  

In these cases, the HMM parameters (λ) must be learned.  This can be accomplished 

using the Baum-Welch algorithm, which uses expectation-maximization to compute 

maximum likelihood and posterior mode estimates of λ [Rabiner 1988]. 

Once an HMM’s parameters have been decided, one of the pr

ine the most likely underlying state sequence for a series of observations.  For this 

purpose, the Viterbi algorithm can be used.  Viterbi uses dynamic programming to 

determine the most likely sequence of states to have generated the given observations 

[Rabiner 1988].  In the above example, this is akin to determining the actual weather on a 

series of days, based on the concrete moisture level observations on these days.  The 

closely related forward algorithm computes the probability of an observed sequence 

being generated by a specific model.  This functionality can determine which of several 

HMMs most likely generated an observation sequence, useful for behavior recognition.  
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HMMs can also be executed, resulting in a sequence of states/observations created 

probabilistically. 

2.6.4 Behavioral HMMs 

an observed agent acts according to a Markov model, it is 

possibl

ide 

easily 

ing HMMs for behavior recognition, specifically gesture 

recogni

If one assumes that 

e to employ HMM-based approaches to identify its behavior.  These behavioral 

HMMs, or BHMMs, are ideal because the behavioral state of the agent is “hidden,” while 

the manifestations of that behavior are observable and can act as the observations of the 

BHMM.  A separate BHMM is created for each potential behavior, which is made up of a 

series of state traversals.  As an observation sequence is gathered, the likelihood of being 

in each BHMM is determined using the Viterbi algorithm [Rabiner 1988].  Further, the 

exact mental state of the agent corresponds to the specific active state in the BHMM. 

To account for the continuous nature of robot behaviors, which does not prov

detectable gaps, recognizers are instantiated at regular intervals.  These 

instantiations are then terminated after a fixed amount of time, or if a reject state (a 

“catch-all” state which represents states that are unlikely to occur in a given behavior) is 

probably reached [Han 1999]. 

Another example of us

tion, is to recognize American Sign Language gestures [Brashear et al 2003].  In 

this system, a “first person” camera is combined with data from accelerometer-covered 

gloves.  HMMs are then trained to model the gestures representing a variety of words.  

This system was able to achieve a recognition rate of over 90% on test data, while a 94% 

accuracy on the training data shows how well the HMMs can model the data. 

 39



HMMs have also been used to detect the self-stimulatory (or “stimming”) 

behaviors which are often displayed in children with autism [Westeyn et al 2005].  

Accelerometers placed on the child provide data to the system made up of models of 

seven stimming behaviors.  When the system was presented one at a time with isolated 

examples of these activities, performed by a neurotypical adult, it achieved a recognition 

accuracy of 90.95%.  Further, in continuous recognition experiments, all stimming 

activities were detected, though the exact start/stop frame of the data was not always 

correctly detected – not necessarily a problem in this and other domains, where the goal 

is to identify the occurrence and type of activity taking place. 

Sometimes the transitions or observations of a system are dependant on some 

input into the system, such as sensory perceptions.  For example, a behavior change may 

be triggered by a visual or auditory cue, such as an ant detecting a pheromone trail.  In 

these cases, the model would be more accurate by representing behaviors as conditional 

responses to input.  Input/output hidden Markov models (IOHMMs) provide just this 

functionality.  They are similar to HMMs, except the transition and observation 

probabilities are conditional on the value of the input [Bengio & Frasconi 1996]. 

2.6.5 Switching Linear Dynamic Systems 

Another approach to recognition uses Switching Linear Dynamic Systems 

(SLDS) to model behaviors.  The main advantage of SLDSs over HMMs is their ability 

to model continuous hidden states.  This is useful when additional information is desired, 

beyond simply knowing the state of the model.  For example, it has long been known that 

the honey bee’s waggle dance encodes specific information related to the location of the 

food source being passed on to the other bees [v. Frisch 1967].  One possible area of 
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biology research which could benefit from automation would be to not only indicate 

when a waggle dance is occurring, but to extract the exact information encoded in the 

dance.  Although an HMM could detect the occurrences of a waggle dance, it could not 

extract the encoded information.  On the other hand, an SLDS could actually provide an 

estimate of this information directly to the biologist [Oh et al 2005]. 

Unfortunately, SLDS models suffer from three main limitations:  Exact inference 

is intractable, there are limitations in duration modeling, and there is an absence of a 

systematic way to quantify global parameters.  Solutions have been proposed for all of 

these, by using a data-driven MCMC inference method with a segmental, parametric 

SLDS (SP-SLDS) [Oh et al 2008]. 

2.7 Domains of Interest 

The research presented here span many application domains.  Uses of these 

techniques are varied, and include such areas as social insect, primate, and human 

systems.  Even within each of these areas, there is a vast diversity of spheres being 

studied.  For example, social insect systems include ants, bees and locusts.  Applications 

to human systems include assisting those with health problems [Starner et al 1998], 

providing video surveillance for security and safety [Cohen & Medioni 1999], and even 

monitoring or providing commentary in sports settings [Pingali et al 1998].  One 

commonality of these domains is that they currently benefit (or could potentially benefit) 

from the automation provided by artificial intelligence, both in tracking the subjects and 

modeling their behaviors. 
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2.7.1 Social Insect Systems 

Historically, there have been several examples of applying lessons from the 

behavior of ants, bees, and other social insects to computer science problems.  For 

example, inspiration for solutions to discrete optimization problems has arisen from the 

observation of social insects, such as ant colonies foraging.  These “ant algorithms” have 

been employed in a variety of domains, from the traveling salesman problem to routing in 

telecommunications networks [Dorigo & Di Caro 1999].  In fact, whole books have been 

written about using models of biological systems as inspiration in the design of complex 

systems [Bonabeau et al 1999]. 

However, until recently, there has been little of the reverse application; using 

technology and computer science techniques to assist in biological research.  The decades 

old pencil and paper direct observation method of biological research [v. Frisch 1967] has 

seen some progress through the use of technology.  For example, Mallon et al [2001] use 

a video camera to record the ants being studied, permitting later review and analysis.  

Likewise, when a researcher today studies honey bee colony behavior, the subjects are 

videotaped and the resulting tape is viewed and hand-labeled [Seeley 1995]. 

Although this advance allows the researchers to return to the taped data, they are 

still forced to analyze it by hand, manually generating models of the observed behavior.  

Typically, this requires the observer to watch the video many times, and is a rather time-

consuming process.  However, if the movements and behaviors of the subjects could be 

recognized and identified automatically, research in these areas could be greatly 

accelerated by allowing the researchers to focus their time on the interpretation of the 

data, instead of simply gathering it.  For example, Pratt et al [2002] were forced to watch 
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hours of video to count the number of recruitment events in the migration of a colony of 

the ant Leptothorax albipennis, a task well suited to computer automation.  In fact, it has 

been stated that two observers are required to study the activities of one ant (one to call 

out the observations and the other to record them) [Gordon 1999].  Imagine the 

complications of social animal studies involving numerous subjects interacting with one 

another! 

2.7.2 Primate Systems 

In addition to work with social insect systems, higher-order biological systems 

have also provided a venue for the application of computer science automation 

techniques.  One such recent study provides assistance to a behavioral 

neuroendocrinologist.  In this research, the biologist evaluates the spatial memory in 

rhesus monkeys by measuring the paths the monkeys take as they explore an outdoor 

three dimensional arena over repeated trials [Khan et al 2004b].  Previously, the biologist 

was required to measure the path length indirectly (by timing the monkey) or through 

estimation.  However, by using computer vision to track each monkey as it moves 

through the arena, exact path length can be easily determined. 

Another study that will benefit similarly involves examining the behavior of a 

large number of individuals simultaneously, similar to Wallen [2005].  In this research, 

the biologist is interested in the social interactions of a group of monkeys.  As with the 

social insects mentioned above, the introduction of interactions dramatically increases the 

time required to perform observations.  Therefore, this is another area which could 

potentially benefit greatly from computer automation. 
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2.7.3 Human Systems 

Some of the biggest impacts of automated tracking and behavior modeling fall 

into this category.  Two of the first applications of multi-target tracking were air traffic 

control and battlefield surveillance [Reid 1979].  Since then, surveillance has become a 

major area of research, including both safety and security applications.  For example, 

Coifman et al [1998] developed a feature-based tracking algorithm for tracking vehicles 

on a highway.  The goal involves determining the flow of traffic (number of vehicles per 

hour), which could be used to identify accidents or other traffic incidents.  Yan & Matarić 

[2002] analyze spatial features for recognizing the activities of multiple interacting 

humans to be applied to a video surveillance system or narrating agent.  Outdoor 

surveillance of person-vehicle interactions such as pick-up and drop-off has also been 

studied [Ivanov et al 1999]. 

There are many other applications of tracking and behavior modeling of human 

systems.  For example, behavior modeling is used in the study of human gaits [Bregler 

1997], speech recognition [Jelinek 1998], and gesture analysis [Darrell et al 1996].  In the 

area of sports, Perš & Kovacic [2000] and Intille & Bobick [1995] use computer vision to 

track human soccer and football players, respectively, while Han & Veloso [1999] apply 

behavior recognition to robotic soccer to assist in controlling the players.  Further, Pingali 

et al [1998] also use computer vision to track a tennis game in real-time for enhanced 

broadcasts. 

Much of the work in this domain relies on video sensors, but some research has 

involved laser range finders as the primary sensors.  For example, Prassler et al [1999] 

(discussed above) use lasers to track humans moving about an indoor environment, while 
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Zhao & Shibasaki [2004] track pedestrians in a wide open area (such as a shopping mall) 

with laser range finders placed at ankle level. 

2.8 Discussion and Summary 

This chapter presents a review of the important existing work which relates to the 

dissertation.  Approaches which are built upon in this work are examined, as are alternate 

techniques for solving the problems addressed herein.  The key points are: 

• Laser range finders are growing in popularity as a sensor ideally suited for 

tracking targets over time.  However, they cannot be reliably used distinguish 

specific individuals from each other. 

• Active RFID Tags provide unique identification, but sensors which rely on the 

strength of RF signals to localize are very noisy.  A great deal of research has 

gone into solving this problem in various domains with some success at coarse 

resolutions (1-6 feet). 

• Hidden Markov models and kernel regression are two machine learning 

techniques that can be applied to behavior recognition tasks. 

• Many domains which benefit from research towards automatically tracking and 

recognizing behaviors.  These include biology, sports, robotics, and 

safety/security. 

Other work differs from that presented here in a number of significant ways.  

First, most existing research on tracking involves only a single kind of sensor as input.  
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Those who use multiple types of sensors generally combine all data in order to improve 

localization (such as through the use of a Kalman filter).  Instead, this work relies on each 

sensor modality to independently solve a separate part of the task, thus minimizing the 

effects of the sensors’ failings.  Additionally, this tracking algorithm is quick enough to 

function in real-time at a reasonable frame rate.  Further, other researchers studying 

behavior recognition focus on single agents acting alone, whereas this research examines 

social behaviors among multiple, interacting agents.  Finally, the problem domains that 

this dissertation concerns itself with (sports and biological systems) are relatively 

unstudied, especially with regards to the techniques and approaches taken herein. 
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CHAPTER 3 

LASER-BASED TRACKING 

This laser-based tracking approach focuses on automatically tracking the number 

and locations of multiple animals, objects or people (hereafter, “targets”) in a dynamic 

environment, either indoors or outdoors, as they move rapidly through the environment 

over time.  It is robust to uncertain and changing lighting conditions.  This method 

accurately computes the tracks of a varying and unknown number of moving and 

interacting targets over time.  These tracks can be generated in real-time or created from 

previously logged raw sensor data.  The approach uses multiple laser range finders that 

record targets’ positions.  It removes “uninteresting objects” (i.e. the background) and 

accounts for individual targets in close proximity to one another.  The ultimate result is a 

series of snapshots of the positions of targets as time unfolds.  Individual targets in these 

snapshots are strung together, creating tracks representing an individual’s location over 

time. 

The key idea of this technique uses an iterative closest point (ICP) algorithm to 

determine the optimal placement of one or more models (or templates) representing the 

targets to be tracked.  It exploits estimated locations of targets in previous frames to 

initialize model placement in the next frame.  The data is processed in several phases, 

namely – data collection, registration, background subtraction and tracking.  Figure 3.1 

provides an overview, illustrating the flow of data from one phase to the next.  First, in 

the data collection phase, the laser range finders record the targets in the area of interest.  

Basketball 
Game 

Laser Range 
Finders 

Space & Time 
Registration 

Background 
Subtraction 

Tracker Tracked 
Output 

 
Figure 3.1:  Overview of the tracking system. 
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This data can be processed immediately or logged to disk for later tracking.  In the 

registration phase the data is passed to several modules, which register the data in space 

and time.  The data is then run through the background subtraction module to remove 

extraneous laser hits not related to the targets.  Finally, in the tracking phase the 

processed and formatted data is passed to the tracker, which computes tracks representing 

the location of each target, using a model-based, ICP tracking algorithm.  The rest of this 

chapter details the approach taken in each phase and introduces the experiments and 

metrics in which it is tested, before ending with the results of these experiments and a 

brief summary. 

3.1 Registration 

A ladar captures data with respect to its own point of view, both spatially and 

temporally.  This results in isolating each sensor’s data from a comparison with the 

others.  In order to utilize multiple sensors, output of each ladar is combined into one 

global “picture.” 

To accomplish this, ladars are aligned in both space and time, creating a global 

point of view.  Synchronizing the sensors’ measurements in time (and in space) ensures 

that all scans correspond to one another.  Further, registering the measurements in space 

allows the increase in coverage provided by using multiple sensors. 

Data is timestamped according to when it appeared in real time.  Ladars record 

data continuously and independently of each other.  In this approach, time is discretized 

in order to synchronize the data among the different ladars.  First, a master log is created 

starting at the timestamp of the first scan and progressing in 26.67 ms increments 

(corresponding to the scan rate of 37.5 Hz), rounded to the nearest millisecond, to the 
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timestamp of the last scan.  Scans from each laser are matched up to the master log entry 

which minimizes the overall difference between scan times and master log times.  This 

serves to correct for the buffering issue, which results in scans being given timestamps 

that generally increment by between 15 and 46 ms, despite the ladars generating the data 

at a vary precise rate.  Further, this method corrects for the occasional laser scan which is 

lost due to corruption or communication buffer overflows. 

Data is coordinated spatially and transformed into one global coordinate system 

by converting from polar into Cartesian coordinates.  To do this, the location of each 

ladar in relation to the others is pre-computed.  An initial “best guess” of global location 

and orientation from each ladar is used.  The exact location and orientation of each ladar 

is fairly straightforward to calculate.  A ladar is chosen as the primary ladar; its location 

and orientation is the ground truth with which the other ladar match up accordingly.  

Each ladar’s data, in turn, is compared with the primary ladar’s data in x/y space using 

the initial “best guess” placement.  An error is generated by summing SQRT(di), where 

each di is the distance between each of the new ladar’s laser hits and the nearest laser hit 

in the primary ladar’s data.  Small moves to the initial location and orientation of the new 

ladar are attempted, with the change that reduces the error the most accepted.  This 

process is iterated until no move results in a lower error, and then is repeated with smaller 

and lastly even smaller moves.  The final location and orientation of each laser is now 

best matched to the primary laser. 

Interestingly, although di
2 is often used in calculating error, for this algorithm 

SQRT(di) works better.  This is because several laser hits in a ladar’s scan may not 

correspond to laser hits in the primary ladar’s data (due to the perception of different 
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objects from different points of view).  It is expected that these laser hits would be far 

away from any other laser hits, since they truly do not appear in the other ladar’s scan.  

However, by using di
2 to calculate error, these large distances would skew the desired 

result.  Therefore, large distances are weighted less compared to small distances (which 

would represent laser hits that are more likely to correspond to each other). 

This whole process can be likened to superimposing each subsequent ladar’s data 

on top of the primary ladar’s data.  Rubber bands are attached from the subsequent 

ladar’s hits to the nearest primary ladar’s laser hit.  The primary data is held fixed, while 

the subsequent data is “released,” allowing it to slide about until equilibrium is reached.  

Because each rubber band prefers a state of lesser stretching, the “error” (length of each 

rubber band) is minimized.  This process is repeated, connecting the bands to the new 

nearest laser hit, until no movement results. 

3.2 Background Subtraction 

In order to isolate data that correspond to the objects that are tracked, hits that 

represent the background are removed.  Typically, the background is made up of 

stationary objects (e.g., the wall and chairs) and targets that are outside the desired area of 

monitoring. 

The first step of background subtraction is designed to remove stationary (or 

mostly stationary) objects, and acts upon each ladar’s data individually.  Thus, it can be 

run independently of the registration steps described above.  Further, the algorithm 

considers each angle of each ladar individually, determining at what distance (if any) a 

stationary object appears at that angle.  This is done by finding the distance at which the 

most hits occur over time. 
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Because the data is recorded to the nearest centimeter, while the accuracy of the 

ladar is slightly lower, some fluctuation is likely.  To account for this, “buckets” are used 

to count the number of occurrences within a small range of measurements.  For example, 

all data with a distance of between 100 cm and 110 cm could be counted together if a 

bucket size of 10 cm was used.  It is important that the bucket size be large enough to 

account for noise in the data, but not so large that desired targets to be tracked would be 

subtracted while close to stationary objects.  A bucket size of 5 cm was experimentally 

determined to be ideal. 

Once all of the data for each scanning angle is sorted into the correct bucket, the 

buckets are examined for likely stationary objects.  Starting with the bucket nearest the 

ladar and working outward, the contents of each bucket is expressed as the percentage of 

all laser hits.  The first bucket with a percentage above a threshold (experimentally 

determined to be 25%) is considered to contain a stationary object.  If no such bucket is 

found, then there is assumed to be no stationary object to be subtracted at that scan angle, 

and nothing is done to that angle’s data. 

If, on the other hand, a bucket is found to contain this high percentage of laser 

hits, any data it contains can be subtracted as a stationary object.  Further, any laser hits 

in subsequent buckets, thus farther from the ladar, can also be subtracted.  This is because 

nothing beyond a stationary object can be “seen” by the ladar, implying that further laser 

hits are the result of noise, and can thus be eliminated.  Because of noise at the edge of 

each bucket, subtraction actually starts one bucket closer to the laser than the one with the 

necessary percentage of laser hits.  This entire process is repeated for each scan angle of 

each ladar. 
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Once all of the stationary background is eliminated, and the data has been 

registered in space and time, it is desirable to convert the data into “frames,” consisting of 

data from all ladar at a given time, in Cartesian coordinates.  These frames consist of a 

full picture at a moment in time, and are analogous to, though quite different from, video 

frames.  After this conversion, the rest of the background data, consisting of all laser hits 

outside the immediate area to be monitored, is eliminated (based simply on x- and y-

coordinates).  This subtracts all data far away from the area, relying on the initial 

background subtractions to remove the stationary objects near or inside the area (such as 

the ladar devices themselves, which are “visible” to each other, and any bordering walls). 

3.3 Models (Templates) 

The purpose of the tracker is to determine the location of each target within the 

data.  This is done by attempting to fit an instance of a model to the data.  Such a model 

consists of a number of coordinate points, oriented in such a way as to approximate the 

appearance of the actual targets to be tracked.  For example, the model of a person being 

observed by laser range finders placed at chest level would consist of a number of points 

forming a hollow oval shape, as this is the way a person would appear in the laser data, as 

shown in Figure 3.2.  Only instances in which the data adequately conforms to the model 

a. b. c. 

Figure 3.2:  Several different models, not to scale.  (a) A model of a person, as seen 
by a laser range finder.  (b) A model of a person carrying a large rectangular box in 
front of them.  (c) A 2-d model of a fish, as generated from video data. 
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are considered to be targets and tracked.  In this way, noise (such as an incompletely 

subtracted background) can be prevented from impersonating an interesting target. 

It is also possible to use multiple models.  Using more than one model may be 

useful when it is necessary to track more than one type of target, such as several species 

of fish swimming in an aquarium.  There could be one model for each shape and size of 

fish.  Also, multiple models can be used when a given target can change shape.  This may 

be caused by a change in perspective (e.g. a fish in two dimensions looks different head-

on versus in profile) or when the targets can change states (such as a forklift which looks 

different when it is loaded than when it is not).  By attempting to fit each model to the 

data, the tracker can determine which model best explains the data. 

An instance of a model represents the location and orientation of a track.  

Generally, a track is considered a single point and could be considered to reside at the 

geometric center of a model.  However, the actual pose of the model is maintained 

throughout tracking.  This allows for the location of a specific part of a target to be 

known, in the case of an asymmetric model.  Additionally, for such models, the actual 

orientation of the target can be determined. 

3.4 Tracker 

Once the data has been registered, background subtracted, and converted to 

Cartesian coordinates, it is tracked.  A track represents the location of a single target over 

time.  Determining the correct tracks is challenging for a variety of reasons.  Sometimes 

the background is not fully removed or a target is (partially) occluded.  Both of these 

situations result in difficulties identifying the “interesting targets” in a given frame.  

Further, the data association problem, the ability to correctly associate a given target with 
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itself over time, is especially difficult when multiple targets are in proximity to each other 

or moving quickly. 

The goal of the tracker is twofold.  First, it must determine which groups of laser 

hits in a given frame correspond to one of the targets to be tracked (as opposed to non-

subtracted background or noise).  This is accomplished by fitting a model to each 

grouping of data points; the target’s pose corresponds to the location and orientation of 

the model.  Second, the tracker must recognize these groups of data points from frame to 

frame in order to build tracks representing the same target over time.  This tracker 

accomplishes these goals in parallel, using the information about the clusters found in one 

frame to help find the corresponding cluster in the next.  Because the tracks will later be 

paired up with the target which is responsible for the data, it is important that a single 

track only represent a single target – if the track “jumps” from one target to another, the 

track cannot be entirely correctly identified.  On the other hand, it is also important that 

the tracker generate tracks which are as long as possible, in order to assist in the target 

assignment during a later step (see Chapter 4). 

The tracker has two main elements.  The first component, track generation, uses 

the pose of the models in previous frames(s) and iterates on a given frame to find all valid 

placements of models in the current frame, updating existing tracks then adding new 

instances of models to account for any remaining data.  The second part, is the track 

splitter.  It is responsible for splitting any tracks which are too close together to be 

accurately separable, preventing any potential track “jumps”. 
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Track Generation 

After registration and background subtraction, the tracker must identify the 

locations of each target within the remaining data.  This can be thought of as a two step 

process.  First, any existing tracks are updated to reflect their new location.  Then, new 

tracks are looked for among any remaining data. 

The first step in updating the existing tracks is to adjust the location and 

orientation of each track based on the previous velocity.  For instance, the starting 

position of a track at t=2 would be found by calculating a vector between its locations at 

t=0 and t=1, then adjusting the t=1 position by that vector.  The vector would include not 

only magnitude and direction of the location coordinates, but also the rotational changes 

of the model representing this track between t=0 and t=1.  The benefit of this initial 

adjustment is that it allows for smaller distance requirements between the model points 

and the data point than would otherwise be possible – without this update step, a target is 

more likely to move too far away from its previous location, resulting in being identified 

as a different track.  Smaller distance requirements are useful to help prevent a track from 

jumping from one target to another. 

After the track location is updated based on velocity, all the data points within a 

certain distance of the center of the model are examined.  This distance is dependent on 

the scale of the data and the size of the targets.  For humans in an environment the size of 

a basketball court, an appropriate distance was experimentally determined to be 1 meter.  

All data points within range are potentially part of the target represented by the current 

track. While some component data points may fall outside this range, the likelihood is 
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small and the exclusion of many distant points can greatly improve the speed of the 

algorithm. 

Each model point is paired with the nearest data point (as shown in Figure 3.3).  

Iterative closest point (ICP) is used to determine the transform of the model points which 

minimizes the distance between each model-data point pairing.  The model is adjusted 

accordingly, and then each point is again paired with the nearest data point.  ICP again 

transforms the model points to better fit with the data points.  This cycle is repeated until 

the pairings do not change after an ICP adjustment.  Now that the model is at the final 

location, two tests are performed to determine if the track is considered to exist during 

this frame.  First, the fit is calculated as the sum of the distances between each of the final 

pairs.  If this (normalized) fit is outside of a threshold, then the data is determined to not 

adequately reflect the appearance of a target and the track is removed.  Finally, the 

distance between each of these nearby data points and the nearest model point is 

calculated.  All data points that are within a certain distance are added to a list.  If the list 

Figure 3.3:  Fitting a model (green/grey dots) to 
data (black dots).  In this step, each all model 
points are paired with the nearest data point. 
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is long enough (i.e. if there are enough data points very close to the model points), then 

the track kept; otherwise, is it removed.  Both of these measures help prevent noisy data 

from generating extra tracks.  Whether the track is ultimately kept or not, the data points 

making up the final list of very close points are removed from further consideration. 

If the tracker is processing data with multiple models, all of these steps are 

repeated for each model.  Once every model has been updated, the model with the best fit 

(as calculated above) is noted as the most likely model, the track is kept or not based on 

its parameters, and its list of nearby data points is removed.  This entire process is 

reiterated for each existing track. 

After all existing tracks are updated the remaining data points must be examined 

for new tracks, representing targets which were not tracked in the previous frame.  First, a 

data point is chosen at random.  An instance of the model (or models) is centered at this 

data point.  From this point, the algorithm proceeds as with existing tracks, starting by 

pairing each model point with the nearest data point and using ICP to find the best 

transform.  The only other difference between updating existing tracks and finding new 

ones is that new tracks require a larger number of very close data points in order to be 

kept – this is to allow known tracks to be partially occluded without being lost while still 

preventing small amounts of noise from being wrongly identified as tracks.  The final 

results of four subsequent sample frames are illustrated in Figure 3.4. 

The tracking algorithm can be described as follows: 

Steps in tracking algorithm: 

for each existing track 

call UpdateTrack(list of unused data points, current model location) 
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Figure 3.4:  Results of processing 4 frames, each about 1 second apart.  Black dots 
represent laser data.  Red/grey dots are model instances placed at track locations.  
Trails show past trajectory.  Note one spurious track in the 3rd image. 

remove all data points near the updated model points 

if #removed points < (minimum number of points / 4) || model-fit is too low 

remove this track 

while there are remaining data points 

call UpdateTrack(list of unused data points, first data point location) 

remove all data-points near the updated model points 

if #removed points > minimum number of points && model-fit is not too low 

create new track at this location 

 

UpdateTrack(unused data points, current model location): 

while (model point, data point) pairing list changes 

call ICP to update model location 

update (model point, data point) pairing list based on new model location 

return(updated model location) 
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Track Splitter 

One of the goals of the tracker is to ensure that a single track only represents a 

single target over its entire existence.  This is because the tracks will later be associated 

with a target; if the track jumps from one target to another, then it will be impossible for 

the entire track to be correctly labeled.  Therefore, it is crucial that track jumps be 

avoided.  Unfortunately, there are some situations in which the underlying laser data of 

two nearby targets becomes ambiguous, resulting in uncertainty over which track belongs 

to which target.  In these situations, the best the tracker can do is to split the two tracks 

into two “before ambiguity” and two “after ambiguity” tracks.  This way, there is no 

chance of the tracks switching targets during the indistinctness.  Additionally, during the 

uncertainty, the two tracks are replaced by a single track, located halfway between them.  

This denotes that the targets are so indistinct as to effectively merge into a single track.  

Therefore, the two tracks are split into a total of five distinct track segments. 

The effectiveness of this technique is based on the distance at which two tracks 

must be in order to perform the necessary splitting.  At one extreme, all potential track 

jumping can be eliminated by setting the split distance very high.  However, this will 

cause frequent splits, resulting in much shorter tracks.  Yet, another goal of the tracker is 

to generate tracks which are as long as possible, which will also help with track/target 

assignment.  Therefore, a moderate split distance must be used, acting as a balance 

between track length and likelihood of track jumping.  For humans, split distances of 

roughly 0.5 m (experimentally determined) are ideal with slightly lower values better 

when the targets move slowly and do not completely run into each other (track jumps are 

less likely in these situations, so track splits are less important). 
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3.5 Methods 

Two sets of data are used to assess the tracking system’s accuracy.  Both datasets 

were gathered with 8 laser range finders placed around the perimeter of the area of 

interest, a basketball court.  Each consists of a group of people moving around and 

interacting on the court in various ways.  The first dataset includes 10 individuals playing 

a 5 on 5 pickup basketball game which lasts for approximately 16 minutes.  In the second 

dataset, 25 people were asked to walk and run around, following a pre-described script 

outlining various social behaviors to perform; the duration is 9 minutes.  The datasets 

each provided their own set of challenges.  For example, while the basketball game has 

fewer targets (reducing occlusions), the targets generally move much faster and tend to 

interact in closer quarters than occur in the social behavior experiment.  In addition to 

these test datasets, the best model and parameter values are determined using two training 

sets, consisting of a short (3 minute) section of the basketball game and a completely 

separate 9 minute dataset of the social behavior experiment. 

Accuracy of the tracker is assessed in three ways:  detection accuracy, average 

track length, and number of track jumps.  The tracker’s performance across these three 

metrics indicates how well it fulfills its stated goals.  There are three main parameters 

which can be tweaked in order to adjust performance on one or more of these metrics.  

The first parameter, maximum point distance, is the maximum distance allowed between 

a data point and the nearest model point; it is used in the determination of which data 

points belong to which track.  Next, the minimum number of points necessary for the 

creation of a new track is the minimum points per track.  Finally, split distance is the 

distance inside of which two tracks are split.  These parameters are dependent on the 
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experimental set up (number and size of targets, typical distance from targets to ladars, 

and the number of ladars present), and should be tweaked as needed to optimize the 

tracker’s performance, though in some cases, increases in one metric results in the 

decrease of another. 

Finally, the system’s ability to function at real-time on live data is examined.  

This test examines how well the tracker can perform when required to keep up with an 

incoming data stream.  For example, if the tracker cannot function at the full rate that the 

data is being generated, then how is performance degraded by only processing as much 

data as possible? 

 

Detection Accuracy 

This metric is designed to assess the tracker’s ability to detect the location of each 

target in each frame.  It represents the fraction of total targets correctly found in each 

frame, and is expressed as the percent of “track-frames” found.  A track-frame is defined 

as an instance of a single track in a single frame.  Therefore, for example, a dataset 

containing of 5 frames, with 10 targets present in each frame, would consist of 5 * 10 = 

50 track-frames.  If the tracker only fails to detect one target in one frame, it would have 

a detection accuracy of 49/50 = 98%. 

To determine which track-frames are correctly detected, the ground truth target 

locations are manually defined in each frame.  Then, an attempt is made to match each 

ground truth track-frame to the nearest automatically detected track (in the same frame).  

If a match is found within 0.50 meter, then that ground truth track-frame is considered to 

have been correctly detected.  It should be noted that a single detected track could match 
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to multiple ground truth tracks if they are close enough together.  This is allowed because 

of frames in which the track splitting module joined two nearby tracks – the single 

remaining track actually represents both targets during its entire existence.  As such, it is 

possible to know when tracks represent two targets, and they could be marked 

accordingly. 

Of the three parameters, the maximum point distance and minimum points per 

track have the largest effect on the detection accuracy.  For example, decreasing the 

minimum points per track can result in the creation of multiple tracks per target, which 

will reduce the model fit and cause valid tracks to be eliminated.  On the other hand, if 

the minimum points per track is set too high, then some targets may not be tracked at all 

(especially those farthest from the sensors or partially occluded).  Likewise, adjustments 

to the maximum point distance can have similar effects. 

 

Average Track Length 

The second metric used to assess the quality of the tracks generated by the tracker 

is the average length of all detected tracks.  This is important because many potential uses 

of the tracks rely on long tracks.  For example, the system of determining track/target 

pairings described below uses RFID readings which are only broadcast every 2-2.5 

seconds.  As such, any tracks shorter than this are not guaranteed to be present for any 

RFID readings, while tracks somewhat longer receive only sparse readings.  Therefore, it 

is important for the tracks to be as long as possible.  The average track length is simply 

the sum of all detected track-frames divided by the number of tracks, expressed in 

seconds. 
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Although the removal of tracks shorter than 1 second will slightly increase the 

average track length (as compared to keeping them), the loss of these tracks will, in turn, 

lower the detection accuracy.  Such effects are minor, but demonstrate one way in which 

the evaluation metrics are interconnected.  It is important to optimize all of the metrics 

together, instead of only considering one at a time. 

The main parameter which affects the average track length is the split distance.  

Decreasing the split distance increases the track length, but at the peril of increasing the 

number of track jumps (discussed below).  Because adjusting the split distance affects 

both average track length and number of track jumps, unlike the primary detection 

accuracy parameters, changes to this parameter require examining both metrics to find 

the best value. 

 

Track Jumps 

The phenomenon of track jumping refers to instances of a single track segment 

representing multiple targets throughout its existence.  This generally happens when two 

targets pass very close to one another, such that the track in question shifts from 

corresponding to the data points from one target to the data points of another target.  

Therefore, this metric counts the number of tracks which suffer from at least one track 

jump. 

To detect instances of track jumping, the first step is to sum the distance between 

a data track and each ground truth track across all of the track’s frames.  The ground truth 

track with the lowest total distance is said to be the corresponding track.  If this 

corresponding track has an average distance (total distance divided by the number of 
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frames) of greater than 0.5 meters, then it is likely that a track jump occurred.  

Alternatively, if the distance between the data track and the corresponding track is greater 

than 2.0 meters in any individual frame, it is also likely that a track jump occurred.  Each 

data track that suffers from either or both of these conditions is considered to have 

undergone a track jump, thus incrementing the number of track jumps in the dataset.  The 

total number of track jumps reflects the number of tracks that have at least one jump – the 

metric does not determine the total number of times a given track jumps; once a track 

jumps once, the damage is done. 

Similar to average track length, the parameter that has the largest affect on this 

metric is the split distance.  As expected, the greater this distance, the less likely tracks 

are to jump from one target to another, because track jumps only occur when tracks are 

very close together.  On the other hand, too large of a split distance will result in 

exceedingly short tracks.  Therefore, a balance must be found. 

 

Real-Time Tracking 

Finally, the real-time performance of the system is examined.  As data is read 

from the sensors, it is immediately background subtracted and registered (with previously 

obtained values), then given to the tracker for processing.  The results (i.e. the locations 

of each track in this data) are returned and immediately passed on to whatever service 

will use the tracks.  Currently, for this experiment, the tracks are simply logged for later 

analysis. 

The module responsible for splitting nearby tracks is designed as a batch process 

which operates on entire tracks after they have been completely created.  As such, it does 
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not function in real-time mode.  However, it could be re-implemented to work with tracks 

as they are being generated.  Therefore, results of real-time tracking are examined both 

with and without running the track splitter.  Additionally, the speed of the track splitter is 

considered, to determine the likely effect it will have if built directly into the tracking 

process. 

In order to allow a comparison between live tracking and tracking pre-logged 

data, the live tracking is simulated by using the raw logged data described above.  A 

module reads in this data at the rate that it would be read from the sensors.  If the tracker 

is not ready for the next frame of data by the time it is read in, it would be discarded and 

the next frame made available.  In this way, the tracker constantly receives the “current” 

data, regardless of how long tracking takes.  Therefore, the tracker was not allowed to fall 

behind.  On the other hand, if the tracker completes processing the current frame before 

the next frame is read in, the data is read in immediately.  This way, if the tracker can 

process data faster than the sensors would provide it, its exact speed can be determined. 

In addition to examining the rate at which the tracker can process data (expressed 

in frames per second), performance is evaluated similarly to the off-line version of the 

tracker.  After all data is tracked and logged, the tracks are examined for number of track 

swaps, average track length, and the percent of track-frames detected.  The first two 

metrics are the same as above, but the third is calculated slightly differently for this 

experiment.  Because only a subset of frames are processed, and there is no specific 

temporal synchronization applied, it is difficult to compare these tracks with the hand-

labeled, ground truth tracks for these datasets.  Therefore, the percent of track frames 

found are estimated as the sum (across all frames) of the difference between the expected 
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number of tracks (10 or 25) and the actual number of tracks.  For instance, in two frames 

of basketball data, the expected number of tracks in each are 10; if there are 9 tracks 

detected in the first frame and 10 tracks detected in the second, then 19/20 or 95% of 

track-frames were detected.  In this test, both live and off-line tracks are assessed with 

this detection estimation metric, which has been used by other trackers, such as Balch et 

al [2001]. 

3.6 Results 

Models and Parameters 

To generate the best possible results, both the model(s) and parameters must be 

varied.  In the case of two parameters, maximum point distance and minimum points per 

track, the same best values apply to both training datasets.  On the other hand, the 

differences between the two scenarios are such that the model and split distance which 

results in the best tracking results are different. 

Figure 3.5 shows the models that are used to perform tracking in the basketball 

game and social behavior experiment, respectively.  Note that the model for the social 

behavior experiment, in which people generally move slower, consists of a smaller oval.  

This is because the effects of rounding the ladar data to the nearest 26.67 ms is reduced 

when movement is slower, resulting in a tighter grouping of data points representing each 

target.  Conversely, the consistent high speed of the basketball players cause the temporal 

offset to shift the data points from each laser noticeably (up to 18 cm for targets traveling 

at 15 mph).  Additionally, the basketball player model includes more points because the 

players were typically much closer together (even colliding frequently) than the social 
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Figure 3.5:  Models used in the experiments, 
diamonds for the basketball players and squares 
for the social behavior experiment participants.  
The models are to scale, with the larger model 
measuring 0.6m wide by 0.4m high.

behavior experiment participants, necessitating more model points to prevent a track from 

being pulled into the center of two targets. 

Like the models, the best split distance is also different for each type of dataset, 

with the basketball data requiring a higher value (0.6 m, compared to 0.4 m).  As 

previously stated, the basketball players were more prone to fast, close movements, 

resulting in less model-like data point distributions (due to the temporal offset).  Thus, the 

tracks are more prone to jumping, requiring a higher split distance to combat the effect. 

The parameters for maximum point distance and minimum points per track are 

affected less by the ways in which the targets move than they are by inherent constraints 

of the environment.  Specifically, these parameters are most affected by the number of 

sensors used, the size of the targets being tracked, and their rough distance from the 

sensors.  All of these factors affect the number of laser hits which will strike a target.  

The number of sensors and the target’s distance from each also dictates how far apart the 

laser hits will occur, affecting the maximum distance between data points and model 
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points.  Therefore, in all experiments, 25 minimum points per track (with 25% as many 

required for existing tracks) and 0.2 m maximum point distance produce the best results. 

Table 3.1 shows a summary of the tracking results.  Included are both test data 

sets and the tracker’s performance with regards to each metric.  Below is an analysis of 

the results. 

 

Table 3.1:  Summary of results of the tracker on two datasets. 
Dataset Total Track-Frames Avg. Track Length Track Jumps Detected Track-Frames

Basketball Game 366,196 39.81 seconds 5 360,443 (98.43%) 

Social Behavior Experiment 496,810 339.57 seconds 2 496,307 (99.90%) 

 
 

Detection Accuracy 

The tracker achieved a detection accuracy of 98.43% of all track-frames in the 

basketball data.  Most of the missing track-frames are due to either temporarily losing 

track of occluded players in the center of a multi-person “huddle” or the deletion of a 

number of short (less than 1 second) tracks which result from the middle segment created 

in track splitting.  The tracker performed even better on the social behavior experiment 

data, achieving 99.10% of all track-frames detected.  This dataset proved slightly easier, 

despite the increase in targets, due to the participants remaining more spread out than the 

basketball players. 

These results compare favorably to vision-based tracking.  For example [Balch et 

al 2001] achieved an 89% accuracy examining a similar metric (in which accuracy was a 

measure of the number of tracks detected in each frame, compared to the actual number 

of targets present) with a vision-based tracker applied to a number of ants in an arena. 
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Average Track Length 

The average track length of the basketball players’ tracks is 39.81 seconds, while 

tracks for the slower moving social behavior experiment participants are an order of 

magnitude longer at an average of 339.57 seconds.  These results compare favorably to 

earlier versions of this tracker, which never surpassed an average track length of 10 

seconds [Feldman et al 2007]. 

 

Track Jumping 

Applying the track splitter after tracking reduced the number of track jumps in 

both datasets.  Specifically, there are only 5 track jumps in the basketball game, or 2.07% 

out of a total of 242 tracks.  The social behavior experiment also succeeds in this regard, 

with only 2 track jumps out of 39 tracks, or 5.13% of all tracks.  It would be possible to 

eliminate some of these track jumps, but the associated reduction in average track length 

actually proves more detrimental to the track/target association phase (as described in 

Chapter 4) than the few existing track jumps.  For example, by increasing the split 

distance until both of the social behavior experiment track jumps are eliminated results in 

average track length decreasing by nearly a factor of 10. 

 

Real-Time Tracking 

The tracker was evaluated when presented with data at a rate equal to or faster 

than would be gathered by the sensor (i.e. 37.5 frames per second).  The basketball data 

can be tracked at 39.12 frames per second.  That is, the tracker processes data even faster 

than it would be generated by the sensor.  On the other hand, the social behavior 
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experiment data is only tracked at 28.05 frames per second.  The discrepancy is due to 

there being two and a half times as many targets in the latter dataset.  There would be an 

even larger difference in the processing rate if not for the reduced number of data points 

in the model used by the social behavior experiment, as the running time is proportional 

to these two factors.  Therefore, for datasets with more targets, a higher frame rate can be 

achieved by reducing the number of data points in the model(s). 

Each dataset was evaluated both live and off-line, and with and without also using 

the track splitter as a post processing step.  The track splitter (as currently implemented) 

only runs as a batch process, but is very quick, able to process over 700 frames per 

second, or about 1.5ms per frame.  As such, even if it were made no more efficient for 

live use, it would only reduce the frame rate of the tracker by about 5%.  This would have 

no effect on the basketball data (which would still have a frame rate above the sensors’ 

rate) and only a decrease of 1-2 frames per second on the other dataset. 

Table 3.2 shows the quality of the tracks generated in each configuration.  For the 

basketball data, in which only a few frames of data are lost, the results are almost 

identical between the live and off-line tracking.  Even though 25% of the frames are 

discarded in the social behavior experiment dataset, the tracker performance is almost as 

good, with the only major difference being a couple more track jumps.  Therefore, the 

tracker can successfully track at least 25 targets live as the data is gathered with little 

degradation in track quality due to frame rate decreases. 

On the other hand, most vision trackers cannot track in real time with a high level 

of accuracy.  For example, Balch et al [2001] can locate ants at the rate of 24 frames per 

second, but requires additional time to perform the data association step necessary to 
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create individual tracks over time.  This tracker does not require such a step, as data 

association is performed in concert with the detection of tracks. 

 

Table 3.2:  Summary of results of the tracker on two datasets in real-time.  Included are 
both real-time and off-line results, including with and without using the track splitter. 

Dataset Live? Split? Avg. Track Length Track Jumps Detected Track-Frames 

Basketball Game Yes No 59.87 seconds 52 99.36% 

Basketball Game No No 60.69 seconds 52 99.38% 

Basketball Game Yes Yes 40.13 seconds 6 98.69% 

Basketball Game No Yes 39.81 seconds 5 98.59% 

Social Behavior Exp. Yes No 339.36 seconds 5 97.94% 

Social Behavior Exp. No No 308.00 seconds 3 98.03% 

Social Behavior Exp. Yes Yes 339.32 seconds 4 97.94% 

Social Behavior Exp. No Yes 339.54 seconds 2 98.02% 

 

3.7 Discussion and Summary 

This chapter presents an algorithm used to produce tracks which fulfill the goals 

introduced in Section 3.4.  Specifically, tracks average 40 seconds in the high-speed, 

high-impact basketball game and over 5 minutes in the slower moving (but more 

crowded) social behavior experiment.  This means that, on average, a track is lost and re-

initialized (or split) every 5-10 seconds.  At that rate, a human labeler would have no 

problem assigning labels in (near) real-time, resulting in useful tracks, even in situations 

in which the RFID techniques presented in Chapter 4 cannot be used.  Also, track jumps 

are rare, occurring only once every several minutes. 

One important contribution of this work is the ability to track a varying (and 

unknown) number of targets moving in a single plane.  The introduction or removal of 

targets in the middle of tracking does not add any complexity to the algorithm.  Further, 

although the runtime is proportional to the number of targets, at least 25 targets can be 
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efficiently tracked at a frame rate capable of producing high quality tracks from a real-

time data stream.  This is unlike most vision trackers which run slowly and/or require 

pre- or post-processing steps to remove the background or perform data association. 
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CHAPTER 4 

RFID BASED TRACK/TARGET ASSOCIATION 

Laser range finders provide excellent localization, but there is no way to associate 

tracks with the specific targets which the data represents using lasers alone.  To account 

for this, a second sensor can be incorporated.  Therefore, this chapter introduces a 

technique to use such a sensor to label the tracks generated in Chapter 3.  Specifically, 

active RFID tags were chosen for the task of associating tracks with the targets they 

represent.  RFID tags are a logical choice, as they provide completely unique signals 

(each has its own “serial number”) and have a range comparable to the laser sensors.  

However, they also have two notable problems.  First, they only send a signal every 2-2.5 

seconds, reducing the number of data points they can provide, hence the reason for the 

tracker to strive for the creation of long tracks.  This first problem can be further 

mitigated by placing multiple tags on each target.  The second and more troublesome 

problem is the noisiness of the signal strength readings which are the only means of 

localizing the tags.  It is this second problem that needs to be solved to make the RFID 

tags a useful addition to the system. 

Ideally, the signal strength of a tag reading received at an antenna should be 

relatively deterministic based on the linear distance from the tag to the antenna.  If this 

were the case, approximate tag locations could be determined by imagining concentric 

circles, centered at each antenna.  The tag would be in the region formed by the overlap 

of the correct circles, based on the signal strength of the reading at each antenna.  For 

example, Figure 4.1 shows an arena with two antennas.  If the signal strength of 69 is 

received by antenna #4 and 82 is received by antenna #7, then the tag would be found in 
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Figure 4.1:  The region in which a tag is located could be determined by the signal 
strength received by one or more antennae.  Circles and numbers correspond to 
antennae #4 and #7. 

the region bounded by the black line.  The addition of more antennae would reduce the 

size of that region.  Unfortunately, the level of noise present in the signal strength 

readings result in very convoluted shapes emerging when signal strength is plotted 

against tag location.  For example, Figure 4.2 shows the locations in which antenna #1 

reads a signal strength of 76 in the training data.  Therefore, RFID readings will not be 

used to generate approximate target locations which can then be used to augment other 

sensors in track generation. 

The laser range finders are much more accurate at localization than any RFID 

system, so the tracks are generated solely from the laser data, with the RFID data only 

being used to label each existing track with the most likely target represented by the data.  

The technique works by building lookup tables of known tag locations versus recorded 

signal strengths at each of the antennae.  Then, when new tag data is recorded, the lookup 

tables are consulted to determine how likely the tag (and thus the target) is to be in the 
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Figure 4.2:  The region at which this antenna received readings with signal strength 
of 76 in the training data. 

vicinity of each of the known laser-based tracks.  This likelihood is updated over time, 

until a score is created for each track/target pairing.  The final pairings are then assigned 

in an order based on the relative confidence of each track’s scores.   

4.1 Building the Lookup Tables 

Instead of attempting to represent exact topologies with the RFID readings, coarse 

lookup tables are used to contain the training data.  First, the area of interest is divided 

into a grid with cells measuring 2.6 meters by 2.6 meters (experimentally determined).  

For the rest of this process, instead of using actual x/y coordinate information to represent 

a location, the relevant grid cell will be used.  Each lookup table consists of a single such 

grid, and will correspond to one signal strength/antenna pairing.  Therefore, the number 

of lookup tables is the number of antennae times the number of possible discrete signal 

strength values.  Then, to perform a single lookup, queries such as Lookup(antenna a, 
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signal strength ssi, x-cell xc, y-cell yc) are used to retrieve the correct lookup table and 

then find the value in the correct cell of the table.  This value corresponds to the 

likelihood of a receiving a reading of ssi when the tag is actually located in grid cell (xc, 

yc).   

Initially, the value of every cell in every table is set to 0.  Then, training data is 

used to increment the values of the correct cells.  This training data consists of RFID 

readings (signal strength at each antenna) and tag locations.  It is gathered when a single 

individual slowly walks around the environment to be tracked.  Since this individual is 

the only target in the environment during training, laser range finders can determine the 

true location of the tag at every moment in time – the tag is simply at the location of the 

only track.  Therefore, it is unnecessary to manually label any training data to complete 

this process.  It is important that the training data cover the area of interest completely 

and slowly, so as to generate many readings spread out among all grid cells.  Once the 

training data has been gathered, the lookup tables are incremented as follows.  For a 

given training data point, the grid cell of the tag is determined and the value of this cell in 

the lookup table for each antenna/signal strength pairing found in the data is incremented 

to denote that there was one additional occurrence of this antenna receiving this signal 

strength while the tag was at this location.  In this way, each training data point is 

responsible for incrementing one value per antenna it represents.  After all of the training 

data has been processed, each lookup table is individually normalized by dividing by the 

sum of all the values of all the cells in that particular table.  This results in each lookup 

table representing the probability distribution of tag locations for that antenna/signal 

strength pairing. 

 76



4.2 Scoring Each Track/Target Pairing 

Once the lookup table values are set from the training data and normalized, they 

can be used to generate scores representing the likelihood that a given target/track pairing 

is correct.  The score of a pairing is based solely on the track location during each of the 

RFID readings for the target’s tags.  Therefore, each pairing is scored independently of 

the other tracks and the other target information, although these other factors are 

considered when actually assigning the final pairing (see Section 4.3).  The score 

represents how likely this track/target pairing is to be correct. 

To determine the score of an individual track/target pairing, the lookup tables are 

consulted with regards to each of that target’s RFID readings.  For each reading, retrieve 

the lookup tables corresponding to each antenna/signal strength combination.  The table 

cell of interest is the cell corresponding to the grid location of the track at this time.  

Increment the score by the sum of the values in the appropriate cell of each lookup table.  

Continue increasing the score in this way for each of this target’s tags’ readings.  After all 

RFID readings have been used, normalize the score by dividing by the number of 

readings thus examined, to prevent scores from being skewed just because one or more 

readings were recorded for a given tag. 

The above process generates the score for a single track/target pairing.  It must 

then be repeated with respect to all pairings.  This will result in a total number of (tracks 

* targets) scores.  The final pairings can then be decided using these scores. 

The algorithm can be described as follows: 

Steps in track/target scoring algorithm: 

for each track 
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for each target 

 for each of this target’s RFID readings 

  retrieve the lookup tables for each antenna/signal strength combination 

  calculate the grid cell of the track’s current position 

  increment score by the sum of the correct cell in each retrieved lookup 

table 

 normalize score by dividing by the number of RFID readings 

4.3 Assigning Final Track Labels 

The last step in determining the correct track/target pairings is to use the 

previously generated scores to find a labeling scheme which heuristically maximizes the 

sum of the selected scores.  Because this refers to the physical locations of the targets, the 

labeling process can benefit from the fact that it is not possible for one target to be in 

multiple locations at the same time.  Therefore, once a target label is applied to a track, 

no other coexisting track (even if only coexistent for a short time) can use that label.  This 

makes the order of labeling very important, as each assigned label restricts the choices 

available to the other tracks. 

To decide the order in which to label the tracks, a confidence is calculated for 

each one.  This confidence is the product of the track length squared times the difference 

between the two highest available scores.  The confidence represents a measure of the 

assurance that the highest scored label is correct.  The track length is included because 

longer tracks benefit from existing during more RFID readings.  By using the difference 

between the two highest scores, the algorithm is capturing the relative cost of using the 

second best label, similar to the process used in the Hungarian algorithm [Kuhn 1995].  
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For example, tracks that have a large difference between the highest and second highest 

scores are sacrificing more “likelihood of correctness” than tracks in which the two 

highest scores are more similar. 

After all the confidences are calculated, the track with the highest is chosen for 

assignment.  The target label that is assigned to this track is the one which has the highest 

score.  As soon as this assignment is made, all unlabeled tracks are updated; any 

unlabeled, coexistent track has its score for the chosen label reduced to 0.  Then, all the 

confidences are re-calculated, to take into account the new scores.  Again, the track with 

the highest new confidence is labeled next, according to its highest scored target.  This 

process is repeated until all the tracks are assigned a label.  In some cases, it is possible 

that there is no valid assignment for a track (for instance, there may be an extra track 

which does not correspond to any of the targets wearing RFID tags) – if this occurs, a 

track with no available targets would be labeled as “UNLABELED.”  Table 4.1 gives a 

simple example of this process. 

The algorithm functions as follows: 

Steps in track/target assignment algorithm: 

while there are unlabeled tracks 

calculate confidence for each unlabeled track (length2 * (best score – 2nd 

best score)) 

apply the best label to the track with the highest confidence 

if all labels have score of 0 

 apply label “UNLABELED” 

else 
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reset scores for this label to 0 for all coexisting tracks 

 

Table 4.1:  The upper left table shows the initial track/target scores and track 
confidences.  In the upper right table, Track 2 has been labeled as Tag A, and the 
confidences have been recalculated after zeroing the scores for Tag A in Tracks 1 and 3.  
Then, the lower left table shows that Track 1 was labeled with Tag C, removing this 
option from Track 3.  In the last table, the algorithm finishes by assigning Tag B to the 
inal track, Track 3. f 

 Length Tag A Tag B Tag C Confidence

Track 1 1720 0.35 0.07 0.33 59,168

Track 2 907 0.27 0.15 0.12 98,717

Track 3 1251 0.40 0.44 0.38 62,600

 
 Length Tag A Tag B Tag C Confidence

Track 1 1720 0 0.07 0.33 769,184

Track 2 907 0.27 0.15 0.12 Tag A

Track 3 1251 0 0.44 0.38 93,900
 
 Length Tag A Tag B Tag C Confidence

Track 1 1720 0 0.07 0.33 Tag C

Track 2 907 0.27 0.15 0.12 Tag A

Track 3 1251 0 0.44 0 688,600

 
 Length Tag A Tag B Tag C Confidence

Track 1 1720 0 0.07 0.33 Tag C

Track 2 907 0.27 0.15 0.12 Tag A

Track 3 1251 0 0.44 0 Tag B

 

4.4 Methods 

To evaluate the quality of track/target assignments generated by the system, two 

datasets are used.  The origin of these datasets is the same two experiments previously 

described:  a 16 minute, 5 on 5 basketball game, and a 9 minute social behavior 

experiment involving 25 participants.  The actual tracks are those automatically generated 

by the tracker described above.  In addition, the technique was tweaked using a separate 9 

minute experiment and a 3 minute subset of the basketball game.  Finally, the data used 

to create the lookup tables consists of a single target walking around the basketball court 

in a grid-like fashion.  This data is about 46 minutes long and includes 2369 RFID 

readings.  The trajectory is shown in Figure 4.3. 

In the case of both the training data and the actual experimental data, the 

participants wore hats on which were affixed two RFID tags, as shown in Figure 4.4.  
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Figure 4.3:  Black lines show the trajectory of the lookup table training data, as 
generated automatically by the laser range finders. 

Using two tags effectively doubled the rate of readings, providing a richer data set.  The 

tags were attached to the relatively steady surface provided by the top of the hat in order 

to help reduce the signal strength variability caused by changes in orientation.  Although 

participants could be facing in any direction, the hat kept the tags generally fairly 

perpendicular to the ground, reducing their degrees of freedom.  Each tag was color 

coded (and the entire experiment was videotaped) only to assist with human labeling of 

ground truth for evaluation. 

Evaluation is similar to the detection accuracy metric described in the track 

methods above.  However, instead of comparing the distance between a ground truth 

track and the nearest data track to see if it was detected, it is only compared to a data 

track with the same target label.  If such a track is too far away (greater than 0.5 m), or if 

there are no tracks with the correct label in this frame, this track-frame is considered 
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Figure 4.4:  Two examples of the 
hats worn by the participants during 
experimental data collection. 

incorrect.  Therefore, the accuracy reflects the fraction of track-frames in which a target 

has an associated track which is correctly located and identified. 

4.5 Results 

Table 4.2 summarizes the results of the target association algorithm on the two 

test datasets.  The original tracker results from above are also repeated.  As the table 

shows, the percent of track-frames which are correctly identified in the basketball game is 

95.9% of all track-frames, or 97.5% of the detected track-frames.  Performance is also 

strong on the social behavior dataset, with 90.2% of all track-frames accurately detected 

and labeled. 

 

Table 4.2:  Summary of results of the tracker (with RFID identification) on two datasets. 
 

Dataset 
Total Track-

Frames 
Average Track 

Length 
Track 
Jumps 

Detected Track-
Frames 

Identified 
Track-Frames 

Basketball Game 366,196 39.81 seconds 5 360,443 (98.43%) 351,262 (95.9%) 
Social Behavior Experiment 496,810 339.57 seconds 2 496,307 (99.90%) 448,188 (90.2%) 
 

 
Despite the social behavior experiment proving easier to track, the basketball 

game actually has a higher identification accuracy.  An examination of the errors in 
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identification of the social behavior experiment reveals that about 80% of the wrong 

track-frames are due to two tracks having reversed labels – unfortunately, these tracks 

both persisted for the entire dataset, resulting in 18 minutes of reversed track-frames.  

The people which these tracks represent spent the entire experiment in close proximity, 

roaming the arena side by side the whole time.  Thus, they scored very similar to each 

other on all labels, with the wrong label just edging out the correct one.  This is an 

example of long tracks actually being a hindrance, for, although the tracks never jumped 

targets, if they were split, even occasionally, they probably would have been labeled 

correctly at least some of the time.  On the other hand, since these two participants 

largely traveled together, and interacted with the same other people, it is likely that the 

reversed tracks would not greatly hinder behavioral research.  Without this single error, 

identification accuracy on this dataset would surpass 98%. 

Most trackers which rely on RF signals for localization report accuracy in terms 

of the average distance between a target’s reported location and its actual location.  

Taking this metric, Kantor & Singh [2002] achieve an average accuracy of 1.62 feet.  

Although a different metric, the system described here compares favorably with accuracy 

of at least 0.5 meters over 90% of the time. 

4.6 Discussion and Summary 

The tracks created in Chapter 3 represent high quality trajectories of the locations 

of each target at every moment in time.  However, there is no way to differentiate specific 

targets from one another.  Without this functionality, the applications which can use those 

tracks are limited.  Therefore, a method of identifying the targets represented by each 

track is introduced in this chapter.  Using active RFID tags in conjunction with the 
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previously generated ladar-based tracks, allows the targets to be uniquely identified 

correctly over 90% of the time. 

Most work involving localizing from RF signals has focused on localizing based 

solely on the RF signal, which provides a best case of localization of roughly 1-2 feet – 

good for some applications, but unsatisfactory for the types of social behavior research 

which will use these tracks.  Alternately, the use of passive RFID tags or other short 

range beacons are not suited for the environments and targets studied here.  Instead, the 

technique of using RF signals to label pre-generated tracks presented in this work is a 

novel approach compared to existing research. 
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CHAPTER 5 

BEHAVIOR RECOGNITION WITHIN HONEY BEE COLONIES 

The main research question involves an exploration of learning about social 

behaviors through observations.  Once observations have been made, as discussed in 

Chapters 3 and 4, they can be used to model and recognize behaviors.  This chapter 

describes a system that learns to label behavior automatically on the basis of a human 

expert’s labeling of example data.  As discussed previously, this will save the researcher 

time, which can be better used by the researcher to analyze the automatically labeled 

data. 

The behaviors of interest are sequential activities that consist of several physical 

motions.  For example, bees commonly perform waggle dances.  These waggle dances 

consist of a sequence of motions:  arcing to the right, waggling (consisting of walking in 

a generally straight line while oscillating left and right), arcing to the left, waggling, and 

so on [v. Frisch 1967].  In this work, the focus is on dancing, following, and active hive 

work as behavioral roles to be identified. 

Specifically, the behaviors are defined as follows.  A follower is a bee who 

follows a dancer, but does not perform the waggle segments, while a bee accomplishing 

active hive work is neither a dancer nor a follower, yet moves around with apparent 

purpose.  Behaviors are distinguished from their constituent motions.  Arcing, waggling, 

moving straight, and loitering are examples of motions, which are sequenced in various 

ways to produce behaviors.  Accordingly, in order for a software system to recognize 

behaviors, it must also identify the motions that make them up.  And conversely, 
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knowing which behavior a bee is executing allows better identification of the constituent 

motions. 

The system described here is designed to label a bee’s motions and then identify, 

from motion sequences, the animal’s behavior.  There are several steps in the operation of 

this system.  But before it can begin to operate, raw location data of each to be analyzed 

must be gathered.  Therefore, first, marked bees in an observation hive are videotaped 

and tracking software extracts x- and y-coordinate information for each bee [Bruce et al 

2000].  Then, the system begins by computing quantitative features of motion (such as 

velocity and heading change) from the raw location data.  A kernel regression classifier 

identifies motions from these features (the classifier has been previously trained using 

data labeled by an expert) [Mitchell 1997].  The labels are: 

• ARCING_LEFT (AL) – The bee is moving in a counter-clockwise direction 

• ARCING_RIGHT (AR) – The bee is moving in a clockwise direction 

• STRAIGHT (S) – The bee is moving steadily in a fairly straight line 

• WAGGLE (W) – The bee is moving straight while oscillating left and right 

• LOITERING (L) – The bee is moving very slowly in a non-specific direction 

• DEAD_TRACK (D) – The bee is not moving at all 

Finally, the motion sequences are evaluated using a hidden Markov model which 

identifies predicted labels of the data set (motions) and inferred behaviors.  Hidden 

Markov models (HMMs), explained in Section 2.6.3, are convenient models of behavior 

that can also be used for recognition tasks.  An HMM describes likely sequences of 

motion that correspond to specific behaviors.  In this application, HMMs are used to 

increase accuracy by “smoothing” the labels across the data set. 
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There are a number of algorithms that operate on HMMs that can be leveraged.  

In this system, the output from the kernel regression classifier is used as input to the 

Viterbi algorithm over a fully connected HMM [Rabiner 1989].  In this way, incorrect 

classifications that are statistically unlikely can be discarded or corrected.  For example, 

if there is a series of ARCING_RIGHT data points with a single ARCING_LEFT in 

the middle, it is likely that the single ARCING_LEFT is an error and should really be an 

ARCING_RIGHT, even though the features quantitatively indicate an 

ARCING_LEFT.  The HMM technique will correct mistakes of this nature.  HMMs can 

also be used to identify behavior.  By creating an HMM for each of the possible 

behaviors, the correct behavior can be chosen by determining which HMM most closely 

fits the data. 

The hypothesis is that this system can provide a means of labeling new data with 

reasonable accuracy.  Note that since the overall goal of this recognizer is to identify 

behaviors automatically, it is not necessary to be able to label every data point precisely.  

If a majority of individual motions can be labeled properly, then it is possible to infer the 

correct behavior (dancer, follower, etc).  Figure 5.1 shows an overview of the system. 

5.1 Tracker 

Tracking software is necessary to convert the bee videos into data that can be used 

by other software [Bruce et al 2000] [Khan et al 2003].  To collect the experimental data 

Bees Camera HMM Tracker Labeled 
Out

KR 
Classifier put  

Human Labeled Training Set 

Figure 5.1:  An overview of the system.  After [Feldman & Balch 2004]. 
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used in this system, some bees were removed from the hive and individually painted, by 

applying a drop of brightly colored paint (such as red or green) to each bee’s back.  A 

video camera was then trained on a section of the hive, and a recording was created.  The 

tracker is then applied to the recording.  For each frame of the video, the tracker is able to 

identify the location of each painted bee that is visible.  Since the speed of the video is 30 

frames per second, the data now consists of the coordinate information of each (visible) 

painted bee every 0.033 seconds.  This is enough information to get a clear picture of the 

bee’s movements. 

5.2 TeamView 

The TeamView software (shown in Figure 5.2) is used to visualize and hand label 

the data sets.  The files that contain the x- and y- coordinate information (from the 

Figure 5.2:  TeamView software.  Labeling options appear to the right of the main 
viewing window, while playback controls are at the bottom.  The displayed labels were 
previously created using this software.  From [Feldman & Balch 2004b]. 
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tracker) are loaded into TeamView.  When the files are played, the main viewing window 

displays the position of each bee currently in the field.  The lines behind each “bee” are a 

trail, showing where the bee has been over the last x frames (where x is definable by the 

user).  The labeling options allow a user to mark a segment of the video and apply any 

label to a specific bee.  In this way, it is possible to label the motions of each bee across 

the entire data set.  Further, once data is labeled, the labels will be displayed next to the 

bee they are associated with.  The advantage to using this software is the speed with 

which a human can label the data, as compared to more traditional pen and paper method 

of using a stopwatch and the original video. 

5.3 Data Generation and Feature Extraction 

The data used in this system begins as video of bees in the hive, prepared for 

analysis by the tracker, as discussed above.  Once the coordinate information for each 

tracked bee is obtained from the tracker, numerical features of motion that are used to 

determine the bee’s motion are extracted.  All features are calculated for each tracked bee 

during every frame in which it is visible.  Since all values are normalized, the units of 

measurement can be disregarded.  Seven features that were extracted and examined for 

their usefulness (where t is the current frame in time): 

• Instantaneous Speed (v0) – from time t-1 to t 

• Speed over a Window (v1) – from t-3 to t+3 

• Raw Heading (h0) – from t to t+1 

• Heading Change over a Small Window (h1) – from t-1 to t+1 

• Heading Change over a Large Window (h2) – from t-20 to t+20 

• Speed times Heading (sh0) – multiply h1 and v0 

 89



• Average Speed times Heading (sh1) – average of sh0 values from t-5 to t+5 

5.4 Kernel Regression Classification 

Before kernel regression classification can be used, the appropriate features must 

be determined.  From the information generated by the tracker, seven features are 

available.  It is possible to use all seven of these features, however, it is beneficial to 

reduce this number if not all features are useful in classification.  Reducing the number of 

features (and therefore the dimensionality of the feature space) will result in simpler and 

quicker computation, greatly reducing the working time of the system.  Also, in some 

cases, more dimensions can make things worse – they are harmful to classification.  This 

is because two points close to each other in a dimension that does not affect labeling 

would seem closer together in feature space than if that dimension were not included.  

For example, bee color has nothing to do with what motion a bee is performing, so it 

would not be a useful feature.  Yet by including it, two bees of similar color which are 

performing different motions may appear (in feature space) to be more similar than two 

bees that are performing the same motion (and therefore warrant the same label) but are 

very different colors.  It is obvious that bee color is not relevant, but this example 

illustrates how additional information, though correct, can be quite detrimental to results. 

In order to determine which features are helpful and which are useless (or 

harmful) in determining the label of a data point, a sensitivity analysis is conducted. 

Every combination of the seven available features – from each one individually to all 

seven together – is tested by applying the kernel regression algorithm to a large training 

set.  The combination of features that resulted in the highest accuracy (defined as the 
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percent of the test points labeled correctly) are considered the most useful, and are the 

only features used in the rest of the experiments. 

In the experiments, the training set is made up of 1000 points of each type of 

labeled motion.  This ensures fair representation, despite frequency disparities among the 

labels (unlike some other methods of selecting the training set).  The importance of this 

can be found in the infrequency of the most useful label – WAGGLE.  This label is very 

telling due to its appearance only during a dance.  However, WAGGLE points make up 

only 0.1% of the data.  Therefore, choosing a random sampling of 6000 data points would 

result in few, if any, WAGGLE points being chosen. 

As discussed above, kernel regression classification usually results in a single 

label being chosen for each point (the label with the highest score for that point).  

However, in order to provide the HMM with as much useful information as possible, 

instead of only recording the highest-scored label, this system actually records the 

(normalized) scores for all the labels. This information represents a sort of “confidence” 

level in the kernel regression classification. The advantage of this technique over 

traditional kernel regression methods is that when the classifier is wrong (because the 

correct answer has the second highest score, for example), the HMM can use the fact that 

the correct answer has a relatively high score, instead of simply being given the wrong 

information.  This has the effect of helping to account for the large amount of noise in the 

data. 

5.5 Hidden Markov Model 

The kernel regression algorithm is very good at classifying data points based on 

features that are similar in value to those in the training set data.  However, there are 
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several reasons why the correct label does not directly reflect the features.  For example, 

often while a bee is arcing right, it will jitter, causing the features to look like there are 

some frames of loitering or arcing left in the middle.  In this case, the classifier will label 

these frames differently.  It is desirable to “smooth” these places where the data isn’t 

representative of what is really going on.  Since the kernel regression classifier only 

considers each point individually, this time series information is lost.  Thus, hidden 

Markov models (HMMs) are examined. 

Although many HMMs use a specific topology, this system uses a fully connected 

HMM, as the system should learn this topology automatically.  Instead, the HMM is used 

to statistically smooth the labels provided by the kernel regression classifier.  Therefore, 

all of the states are connected, and use the training data to determine the probability of 

each transition (see Figure 5.3).  It should be noted that this technique may result in 

certain transition probabilities dropping to zero, which causes the HMM to no longer be 

fully connected. 

Once the HMM is specified, it will be used by the Viterbi algorithm to determine 

the most likely state sequence for a given observation sequence.  It does this by using 

time series information to correct “glitches” which are statistically unlikely.  For 

example, if there is a single ARCING_LEFT label in the midst of a series of 

ARCING_RIGHT labels, the Viterbi algorithm will decide that the ARCING_LEFT is 

an observation witnessed from the ARCING_RIGHT state since the low transition 

probabilities between ARCING_LEFT and ARCING_RIGHT make it very unlikely 

that the state changed twice here. 
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The observation sequence given to the algorithm is actually the output from the 

kernel regression classifier.  The form of this sequence is a series of continuous vectors, 

with one dimension for each possible label.  It should be noted that since the observations 

are continuous (vectors between 0 and 1 in each dimension) instead of discrete, there is 

no observation table, per se.  Instead, there are observation probability functions, which 

represent the probability of seeing a particular observation in a given state. These 

functions merely equal the value of a Gaussian at the observation.  The mean of the 

Gaussian is dependent upon which state is being examined.   

For example, the observations are made up of a 6-dimensional vector, with one 

dimension corresponding to each of the states (ARCING_LEFT, ARCING_RIGHT, 

STRAIGHT, WAGGLE, LOITERING, DEAD_TRACK), such as o = (u, v, w, x, y, 
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Figure 5.3:  Possible HMM, after removing transitions with a probability 
less than 0.005.  After [Feldman & Balch 2003]. 
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z).  u corresponds to the “leftness” of the point, while x represents its “waggle-ness”, etc.  

The observation function for the waggle state would be a Gaussian centered at (0, 0, 0, 1, 

0, 0).  Therefore, if observation o has a high x value, it will result in a higher probability 

of being an observation in the waggle state than if it had a low x value.  Similarly, a high 

v value will move it closer to the mean of the ARCING_RIGHT state than a low v 

value, resulting in a higher probability of being an ARCING_RIGHT point. 

5.5.1 Behavior Recognition 

The tasks of motion identification and behavior recognition are usually treated 

separately, with recognition accuracy being dependent on the accuracy of the motion 

identifier.  This system, however, completes these two tasks in parallel, allowing each to 

assist the other, by creating an HMM, as above, for each possible behavior.  The 

behaviors considered are: 

• Dancer – The bee is performing a series of waggle dances 

• Follower – The bee is following a Dancer 

• Active – The bee is neither a Dancer or Follower, yet moves around the hive with 

apparent purpose 

• Inactive – The bee simply loiters about, not moving in a distinct direction 

Each HMM is trained on a data set made up of only the corresponding behavior 

(as provided by a human expert labeler).  Thus, the model for a dancer is different from 

the model for a follower.  These HMMs are then connected via a null, start state, which 

allows movement to every state in every HMM.  However, there is no movement back to 

the start state, nor between each smaller HMM (Figure 5.4). 
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This technique allows the Viterbi algorithm to choose the best sequence of 

motions, by falling into the sub-set of the HMM which best models the data.  

Simultaneously, the algorithm can best choose the sub-set (and thus the behavior) 

because it is the one that most closely fits the observations. 

5.6 Methods 

To assess this classification system, an experimental data set consisting of fifteen 

minutes of video of honey bee behavior in an observation hive was collected.  The tracker 

was used to extract the features, while TeamView was used for hand labeling.  There 

were three human labelers, each labeling 5 minutes of the data.  The data was then broken 

into a training set, consisting of the last third of the data, and a test set, consisting of the 

first two thirds.  The test set is used only for accuracy validation after training the system. 

S1 S1 

S1 S1 

S1 S1 

S1 S1 

S1 S1 

S1 S1 

S1 S1 

S1 S1 

S1 S1 

S1 S1 

S1 S1 

S1 S1 

Start 

Behavior 1 Behavior 2 

Behavior 4 
Behavior 3 

Figure 5.4:  Behavioral HMM, which is made up of a start state and the four
sub-models, one for each behavior.  After [Feldman & Balch 2004a]. 
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First, the training set is prepared for use by the kernel regression classifier by 

having 1000 points of each label randomly extracted and placed in feature space.  The 

remainder of the training set is then labeled, using the technique described above.  The 

data is separated by (human determined) behaviors, and the labels, along with the 

manually determined “correct” labels, are then examined to find the transition table and 

the initial state probabilities of each sub-model.  These are then combined to form the 

overall, behavioral HMM. 

To establish the accuracy of the system, these 6000 points in feature space and 

HMM parameters are used to automatically label the test set, labeling both the motion of 

each data point and the behavior of each entire track (bee).  In this phase of the 

experiment, the correct labels are not known by the system – instead they are only used to 

evaluate its accuracy. 

5.7 Results 

5.7.1 Feature Selection 

Every combination of the seven available features is tested by applying the kernel 

regression algorithm to a large training set.  This results in 127 possibilities (zero features 

is not an option).  The combination of features that result in the highest accuracy (defined 

as the percent of the test points labeled correctly) is h2, v1, and sh1.  Therefore, only 

these features are considered in the rest of the experiments. 

It is interesting to note that accuracies using these three features plus 

combinations of other features range from 58.9% to 73.0%, while the accuracy of using 

only these three features is 73.1%.  This demonstrates that having extra features can 

reduce accuracy. 
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5.7.2 Classification Results 

Table 5.1 shows the fractional accuracy for each label type.  The system achieves 

an overall accuracy of about 93%.  Further, the overall accuracy increases by 17.9% by 

including the use of the HMM to “smooth” the results of the kernel regression classifier.  

Finally, the accuracy in determining the behavior is 79.8%.  That is, roughly 80% of all 

tracks are automatically labeled with the same behavior as given by the human labeler. 

Table 5.2 is a confusion matrix showing how each data point is (mis)labeled.  For 

example, the W column indicates that 75% of the WAGGLE points are correctly labeled 

as WAGGLE points, while 9% of them were mislabeled as ARCING_RIGHT points. 

 

Table 5.1:  Fractional breakdown of accuracy, first with the kernel 
regression classifier, then with the addition of the HMM.  Final 
column shows number of occurrences of each label in the test set. 

 
Label 

Accuracy 
(without HMM)

Accuracy 
(with HHM)

Total Occurrences
in Test Set 

ARCING_LEFT 0.71 0.84 2059 
ARCING_RIGHT 0.65 0.83 2407 
WAGGLE 0.49 0.75 1550 
LOITERING 0.77 0.96 113285 
DEAD_TRACK 0.91 0.90 5920 
STRAIGHT 0.34 0.39 5343 
Total 0.75 0.93 130564 

 

 
Table 5.2:  Fractional breakdown of system labels. Each row shows the 
percent of that row’s label identified as each possible label by the system. 

 System Label 
 AL AR W L D S 
AL 0.84 0.02 0.04 0.08 0.00 0.02 
AR 0.02 0.83 0.03 0.09 0.00 0.03 
W 0.10 0.09 0.75 0.01 0.00 0.05 
L 0.01 0.02 0.00 0.96 0.01 0.01 
D 0.00 0.00 0.00 0.09 0.90 0.00 

 
 

Actual 
Label 

S 0.06 0.09 0.00 0.45 0.00 0.39 
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5.7.3 Discussion of Results 

As hypothesized, the use of an HMM in conjunction with a kernel regression 

classifier provides higher accuracy than a kernel regression classifier alone.  The HMM 

improves overall accuracy by almost 18% above the 75.1% accuracy of kernel regression 

alone.  The two labels that correspond to the vast majority of the data (LOITERING and 

DEAD_TRACK) are very similar to one another, both in features and in appearance.  

Due to this fact, and some ambiguity among the human labelers, misclassifications 

between them are less important than other misclassifications.  If these two labels were 

combined into one, the accuracy of the system would be approximately 94.1%. 

Another label that caused many problems for the system was STRAIGHT.  This 

label was included to make the system as general as possible.  However, none of the 

common bee behaviors (dancing, following, active hive work) seem to rely on this label.  

Therefore, it would be possible to eliminate this label.  Removing all points labeled 

STRAIGHT from consideration would increase the accuracy by about 2.5%, to 95.5% 

(or about 96.6% after combining LOITERING and DEAD_TRACK). 

It should be noted that if the system merely labeled each point LOITERING, an 

accuracy of 86.8% would have been achieved.  Although not much lower than the 93% 

result, this is accuracy based on a frame by frame comparison.  However, since the 

ultimate goal is identifying the bee’s behavior, it is not important that every frame be 

correctly identified, as long as each segment of like frames is recognized.  For example, if 

the system says that a series of WAGGLE points starts and ends several frames before or 

after the “correct” labels indicate, it is of little importance, as the behavioral recognizer is 

still given a WAGGLE sequence of approximately the correct length. 

 98



The system achieves an accuracy of 79.8% in identifying the behaviors.  It is 

possible that this is not a higher value because the four behaviors are so similar.  This 

means that the transition probability table for each behavior is very similar to the 

transition probability tables of the other behaviors. 

An even bigger factor which reduces the system’s behavior recognition accuracy 

is the assumption that behaviors persist for the entire duration of a bee’s presence.  

However, in reality, a bee will switch behaviors.  For example, it will enter the hive and 

find a suitable place to begin dancing (Active Hive Bee), then it will dance for a time 

(Dancer), then it will move to a new location (Active) and begin dancing again (Dancer). 

By not letting a bee change behaviors, the models become diluted, and the all-important 

distinctiveness is lost. 

5.8 Discussion and Summary 

The system of modeling behaviors examined in this chapter achieves an accuracy 

at the motion level of approximately 93%.  Further, a behavior accuracy of almost 80% 

has been realized, despite the inaccuracies introduced by the method of labeling 

behaviors.  Thus, the system proves that its techniques are sound, and provides 

reasonable accuracies, with room for improvement by structuring the data slightly 

differently, as discussed above.  By successfully mimicking the labels generated by a 

human labeler, this system is a step towards the ultimate goal of performing automatic 

behavior recognition, in the biological systems domain, without the need for a human 

labeler.   
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CHAPTER 6 

INTERACTION DETECTION BETWEEN ANTS 

Chapter 5 presented one approach to learning behaviors in a social biological 

system.  This chapter introduces a method of detecting various interaction events between 

multiple nearby individuals.  The technique was developed for myrmecologist Stephen 

Pratt to help him automatically detect interactions between ants in his research, as 

discussed in Chapter 2.  Recall that the interactions to be detected are head to head, head 

to body, and body to head (from the point of view of the other ant in a head to body 

interaction).  Instead of using the sensory perception method previously discussed, this 

system uses expertly labeled data to train a simple model.  One of the goals of this 

research requires designing the system in such a way that a person not trained in 

computer science could understand how the results are derived. 

The focus here is on using timestamped trajectories of the pose of each ant in 

order to detect and classify the various interactions.  Therefore, any tracking technique 

that can handle multiple, interacting agents can be used to generate the trajectories.  The 

experiments presented here use the tracker described by [Khan 2005]. 

6.1 Approach 

Once trajectory data has been gathered, features must be extracted from which the 

model is built.  These are the observable attributes of the trajectories which are used to 

model the interactions.  Then, a portion of the data (the training set) is hand labeled by an 

expert, while the rest is put aside for validation (the test set).  This training set is used to 

determine the thresholds of each feature for each type of interaction.  The thresholds can 

be used to label new data (such as the test set).  Once the labels are generated, they are 
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updated in two post processing steps, to take advantage of the symmetry of interactions 

and to smooth over time. 

Three features of a potential encounter are selected; all are easily determined from 

the data.  The features are illustrated and described in Figure 6.1.  The three features are 

calculated from the point of view of each ant (called the focal ant).  As with the 

interactions, the features are also symmetrical, with one focal ant’s theta being another 

ant’s phi, and vice versa.  Although the figure only shows two ants, it is not uncommon 

for three or more ants to be in close proximity to each other.  To account for this, the 

feature data for each ant includes distance, theta, and phi for up to the three closest ants.  

Then, interaction detection is attempted separately on each of these pairings.  The highest 

priority interaction, if any, is chosen as the label.  The priority of interaction is based on 

the expert-perceived value of the interaction type, with the following order:  head to head 

(HH), head to body (HB), body to head (BH), and no interaction (X).  Therefore, if three 

ants are in close proximity and the focal ant is labeled as having an HH interaction with 

one ant and a BH interaction with another ant, it will be given the HH label even if the 

BH ant is closer. 

Figure 6.1:  Left:  Three features used to classify interactions between ants.  Right:  
Training data is plotted in feature space.  The boxes illustrate the thresholds used to 
identify each type of interaction.  From [Balch et al 2005]. 
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Once the features have been calculated, the thresholds can be determined.  This is 

accomplished through a hill-climbing optimization.  For each type of interaction (set of 

thresholds), the goal is to maximize the fraction of data points with that label inside the 

bounding box while minimizing the fraction of data points with different labels inside the 

box.  Only data points which are labeled as an interaction are included in evaluation, 

causing the many data points representing a lack of interaction (X) to not count.  Each 

interaction type is processed separately, generating a set of six thresholds (minimum and 

maximum values of each feature to be considered that interaction type).  It is possible for 

overlap between bounding boxes; in this case, the interaction type with the highest 

priority will take precedence in the overlap area.  Likewise, areas which are outside all 

three bounding boxes correspond to no interaction (X) taking place. 

To find the optimal bounding box (set of six thresholds) for each interaction type, 

it is first initialized to be the smallest box which encloses all data points with that 

interaction type.  The algorithm then adjusts the bounds of the box incrementally - in 

each iteration, the threshold change that results in the minimum error is accepted.  The 

error function to be minimized is: 

Error = # data points of current type outside the box * total # data points of other classes 

+ # data points of other types inside the box * total # data points of current class 

  (the error is then normalized by the total number of data points) 

To help reduce the effects of local minima, the entire process is repeated with 

three subsequently smaller steps.  The resulting thresholds determined from a 5 minute 

labeled sequence are illustrated in Figure 6.1.  These thresholds are used to label new 

data points, before two post processing steps are performed. 
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First, labels are updated to take advantage of the symmetry of interactions.  

Because each interaction involves two ants, any interaction should be specified in the 

labels of both ants.  If the labels do not agree, then the possibility with the highest priority 

is used.  For example, if ant 1 is labeled as having an HH interaction with ant 2, but ant 2 

has anything other than an HH interaction with ant 1, its label is updated to be HH.  The 

second post processing step is to temporally smooth the data.  This is done by changing 

the label of frames that disagree with the previous and following frames. 

6.2 Methods 

Learning from the mistakes in evaluating the bee behavior identification system, 

this system is evaluated by checking for the detection of interaction events.  Instead of 

comparing the system’s labels to the ground truth on a frame by frame basis, which is not 

necessarily a useful measure of performance, events consisting of identical labels will be 

examined.  In this way, every continuous block of a single label will be considered one 

event.  Therefore, a single event consists entirely of frames with the same label, whether 

an interaction (such as HH) or not (X).  An event is considered as having been detected if 

the correct label is given in at least one frame of the event. 

The system is evaluated by having a human expert label two five minute videos of 

Leptothorax albipennis searching a new habitat.  In each segment, ants enter the field of 

view, interact in various ways, and then depart.  There are hundreds of interaction events 

in each video.  The labeling of one video is the training data for the system, which then 

labeled the other video. The automatic labeling of the test data is compared to the human 

labeling of the same data in two ways; the percent of interaction events detected and the 

number of extraneous events detected. 
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6.3 Results 

The automatic method correctly identifies 94% of the interactions.  The order of 

training is then reversed: the system is trained on the second video, and then tested on the 

first.  In that case the system correctly identified 87% of the interactions.  Figure 6.2 

shows an example frame indicating labels provided by the system. 

This performance is a good start, having detected almost all of the interactions.  

However, the system reports as many as 43% too many events, many of which are false 

positives (detecting an interaction when there was not one). 

Figure 6.2:  This image shows an example frame of video of Leptothorax albipennis 
labeled automatically by our human-trainable system.  The colored triangles over the 
animals are coded for the different types of interaction that animal is experiencing (cyan: 
BH, yellow: HB, magenta: HH, blue: X).  From [Balch et al 2005]. 
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6.4 HMM Comparison and Integration 

The system created to identify bee behaviors is tested with the ant data sets.  First, 

the system is used as described in Section 6.1 through the extraction of the three features, 

which are then given to the kernel regression classifier, etc. (as described in Chapter 5).  

In this case, there are many fewer extraneous events detected, due to the sophisticated 

smoothing influence of HMMs that tends to suppress brief “noisy” detections.  However, 

there is also a decrease in event detection accuracy, with only 71% and 77% of the 

interactions detected. 

Finally, a hybrid system is attempted.  For this attempt, the threshold technique is 

first used to generate labels, then the labels are used with an HMM to improve accuracy, 

as described above.  This hybrid system achieves a better 84% interaction detection 

accuracy (on both data sets), while maintaining a relatively low number of extraneous 

interactions.  The results of all three systems are summed up in Table 6.1. 

 

Table 6.1:  Interaction detection accuracy for each of the techniques attempted.  
Threshold is the initial system, KR/HMM is the system described in Chapter 5, and 
Hybrid is the Threshold system combined with an HMM.  Dataset 1 has 191 events (98 
interactions) and dataset 2 has 136 events (70 interactions).  Total Extras refers to the 
number of events in the automatically labeled data which are completely wrong. 
Method Train Set Test Set Ints 

Detected 
X’s 
Detected 

Total Events  
Detected 

Total Events 
Labeled 

Total 
Extras 

Threshold 1 1 94.9% 69.9% 82.7% 408 164 
Threshold 1 2 87.1% 68.2% 77.9% 294 129 
Threshold 2 1 93.9% 70.1% 82.7% 388 165 
Threshold 2 2 90.0% 65.2% 77.9% 244 114 
KR/HMM 1 1 89.8% 57.0% 73.8% 185 43 
KR/HMM 1 2 77.1% 57.6% 67.6% 129 33 
KR/HMM 2 1 71.4% 72.0% 71.7% 184 50 
KR/HMM 2 2 90.0% 68.2% 79.4% 129 20 
Hybrid 1 1 84.7% 59.1% 72.3% 194 53 
Hybrid 2 1 84.7% 62.4% 73.3% 176 40 
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6.5 Discussion and Summary 

As with the other behavior recognition techniques presented herein (in contrast 

with most existing work), the main concern is with behaviors between multiple, socially 

interacting agents in biological domains.  Biological researchers spend an inordinate 

amount of time gathering behavioral data from the systems they study.  This task is 

especially arduous in social systems, in which the behaviors of many individuals must be 

simultaneously observed.  These researchers would benefit from the introduction of tools 

automating any parts of this data collection process.  For instance, the techniques 

presented in this chapter build upon earlier work to provide the frequency and types of 

interactions between Leptothorax albipennis ants searching for a new habitat to a 

myrmecologist.  This way, he can gather much more data than would be possible through 

manual observation, allowing the testing of many more hypotheses about why these ants 

interact.  Because this information is used in aggregate, 100% accuracy is not required to 

be useful. 
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CHAPTER 7 

LEARNING PRIMATE SOCIAL FAMILY HIERARCHY 

The previous two chapters describe algorithms which model, recognize, and 

detect behaviors and interactions within social insect colonies.  The research in this 

chapter expands interaction detection to non-human primates (as simulated by human 

primates), and then seeks to use this information to learn information about the group as a 

whole.  Among many biologists, one area of study involves determining the social 

structure within a colony of animals.  This social structure, or the definite relationship 

between the individuals in the colony, must be established before many subsequent 

behavioral studies can be carried out.  For instance, Drea & Wallen [1999] demonstrated 

that performance on learning tasks in subordinate-ranked rhesus monkeys varied 

dramatically based on the presence of hierarchical superiors.  This “playing dumb” effect, 

also encountered in human societies, can skew the results of behavioral studies if not 

known and controlled for.  It has also been shown that certain behaviors, such as 

grooming, are used to express kinship, but also occur as tools by subordinates to achieve 

the agonistic support of higher ranked individuals [Schino & Aureli 2008].  In order to 

ascertain the motivation of such behavior, the researchers need to know the hierarchical 

relationship of the individuals. 

The social hierarchy dictates the manner in which individuals interact with one 

another.  For instance, monkeys may only be aggressive to those of a lower ranking, who 

behave submissively in such situations.  The social hierarchy among these animals, which 

are matrilineal, is based upon a monkey’s lineage to the lead female.  Therefore, learning 

the hierarchy of the individuals amounts to learning the hierarchy of the families, which 
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can be grouped by ranking:  the alpha family, the beta family, etc.  Each individual of the 

beta family, for example, is considered to be more highly ranked than any member of the 

gamma or delta families. 

Often, the family relationships are inherently known by the researchers.  In such 

cases, the hierarchy can be learned by observing and recording a number of interactions 

between members of different groups.  By examining trends among these interactions, 

relative rank between specific families can be determined.  With enough observations, the 

definite rank of all families (and thus all individuals) can be found.  The process is made 

more complicated by an incomplete adherence to the general ranking rules by certain 

individuals (e.g. a monkey may occasionally be aggressive to a superior). 

In a colony with only 100 individuals (divided into a number of families) to be 

classified, hundreds or thousands of interactions must be observed to fully proscribe the 

family relationships and rankings of all individuals.  As previously stated, this task is 

very time-consuming, greatly slowing the pace of behavioral research which relies on this 

information.  Fortunately, once uniquely identified tracks of each animal’s trajectory can 

be created, a great deal of interactions can be automatically found and used to learn the 

social structure. 

The first step in automatically ranking the individuals of a colony is to detect 

potential interactions from the tracks.  These interactions consist of two individuals 

behaving in a way which is generally known to occur only between members with a 

certain hierarchical relationship, such as superior/inferior, similar rank, or only members 

of the same family.  Likely interactions can be found based on proximity over time.  

Once found, each interaction is classified as one type or another (e.g. grooming, 
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aggressive, etc.).  Individual monkeys’ tendencies can then be used to assess relative 

hierarchy.  Finally, the families are ranked according to overall interactions of all family 

members. 

7.1 Detecting Interactions 

Instead of attempting to create a label for each pair of agents consisting of the 

type of interaction occurring between them in every frame (including “none” when there 

is no interaction taking place), periods of likely interaction are detected based on track 

proximity.  Then, features representing the potential interaction as a whole are generated.  

These features are then used to classify it (based on known examples) as a specific type 

of interaction or as not an interaction at all. 

Some interactions can only occur between individuals within close spatial 

proximity to one another.  For example, one monkey cannot groom another which is 

several feet away.  However, one important type of interaction is aggressive, in which 

one agent chases another.  During these interactions, the individuals are often never 

within one or more meters of each other.  This is because it is rare for the aggressor to 

actually catch the agent being chased.  To detect occurrences of such interactions by 

looking at the relative locations of each agent in each frame, the permissible distance 

between interacting agents would necessarily be several meters.  This would result in 

finding a large number of interactions between individuals merely sitting or walking 

several meters apart. 

Even if two individuals are never very close to each other in any point in time, 

such as during a chase, their trajectories are near one another (possibly even overlapping) 

within a short period of time.  Therefore, by considering trajectory proximity – instead of 
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physical proximity at an instant in time – the spatial threshold can be greatly decreased.  

This will allow so-called chase interactions to be detected, without resulting in detections 

of moderately distanced individuals without (nearly) crossing trajectories.  Instead, only 

pairs of agents which are very close to one another within a short temporal offset are 

found to be interacting. 

The detection process works as follows.  For each frame of data, each pair of 

agents is examined.  A line is drawn between the current location of each agent and its 

location one second in the past.  If the minimum distance between these two lines is 

“small enough,” then the two agents are said to be interacting in this frame.  The 

minimum distance required to indicate an interaction is roughly the distance between two 

individuals engaging in one of the stationary interactions of interest.  Also, the minimum 

distance required to continue an interaction is slightly higher than that required to start an 

interaction to prevent frequent toggles between interacting and non-interacting states 

between individuals near the threshold.  Figure 7.1 includes examples when interactions 

would and would not be detected. 

As each interaction is detected, important features which will be used to classify 

its type are recorded.  The features will be used to classify the interaction based on hand-

labeled training data using the kernel regression technique described above.  The six 

features are: 

• Interaction length – the number of frames from the start of the interaction until 

its end, 

• Minimum total distance traveled – the total distance (in meters) traveled by 

the participant which moved less, 
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a.

b. c.
Figure 7.1:  Three potentially detected interactions.  In each, 
the circles represent the current track locations while the 
freeform lines are the trajectory over the last second.  The 
second image shows a line drawn from the current location 
to the past location.  In the third image, the minimum 
distance between the lines is used to determine if an 
interaction is taking place.  (a) Even though the targets are 
always far apart during this chase, their lines are close.  (b) 
These targets are closer than those in (a), but no interaction 
is detected because their lines remain far apart.  (c) These 
interacting targets are detected because they (and their lines) 
are very close together. 

• Maximum total distance traveled – the total distance (in meters) traveled by 

the participant which moved farther, 

• Average distance – the distance (in meters) between the two participants, 

averaged across every frame of the interaction, 

• Minimum relative heading – the minimum of theta and phi (after Figure 6.1) 

after each is averaged across every frame, and 

• Maximum relative heading – the maximum of theta and phi. 

The total distance traveled and relative heading features are categorized by 

maximum and minimum values because it is unknown at this stage which participant is 

fulfilling which role in each interaction. 

To generate the training examples which populate the feature space used in 

classification, the interaction finding algorithm is used to detect interactions in the 
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training dataset.  These interactions are then given a ground truth label by looking for a 

hand-labeled interaction between the same two agents which at least partially overlaps in 

time.  If such an interaction is found, the detected interaction is assigned the same label 

(aggressive, grooming, etc.); otherwise, the detected interaction is labeled as “non-

interaction.”  In this way, the feature space can be populated by examples of each type of 

interaction, as well as examples of non-interactions which might be detected but should 

be differentiated from actual interactions.  Each detected interaction can then be assigned 

a type based on its distance, in feature space, from each of these training examples. 

7.2 Determining Family Hierarchy 

Once the list of detected interactions has been labeled according to type, the 

relative social ranking can be decided.  Only interactions which indicate the relative rank 

of participants (outside of a single family) are considered.  For example, an aggressive 

interaction may indicate that one participant is of an arbitrarily higher ranking than the 

other while a grooming interaction only occurs between two individuals with a similar 

ranking (i.e. a member of the highest ranked family will not often groom a member of the 

lowest ranked family). 

A “dominance factor” is calculated for each family.  This factor represents the 

fraction of interactions involving this family’s members in which it is the dominant party 

(e.g. the aggressor in a chase interaction).  For each interaction occurring between 

members of two different families, the dominance factor of each is adjusted accordingly.  

Interactions which indicate a disparity between the participants’ ranking will result in an 

increase of the dominant party’s family and similar decrease in the submissive party’s 

family.  Likewise, interactions which indicate a similarity between participants (such as 
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grooming interactions) will result in a partial equalizing of the involved families’ 

dominance factors, by increasing the lower family and decreasing the higher.  The 

amounts of these adjustments for each type of interaction can be learned from a body of 

training data or provided by an expert. 

By adjusting the dominance factor of each family whose members are involved in 

every interaction, families which are involved in more “lower rank” behaviors (e.g. being 

submissive, grooming other lower ranked families, etc.) will have lower dominance 

factors than those families which engage primarily in “higher rank” behaviors, such as 

frequently being aggressive.  In this way, the families become ordered relative to each 

other, even if every individual does not interact with every other individual.  Also, by 

looking at the frequency of interaction types and participants across a large body of 

interactions, the impact of an occasional incorrectly identified interaction (whether due to 

an erroneous classification or a monkey behaving abnormally) is minimized. 

7.3 Methods 

There are many aspects that complicate attempts at tracking monkeys, including 

their small size, 3-d movements, and the many occlusions in their environment.  

Therefore, to test this method of determining family social hierarchy, the social behavior 

experiment datasets introduced in Chapter 3 are used to simulate actual animal behaviors.  

In these datasets, 25 individuals were given note cards detailing several behaviors in 

which to engage.  Additionally, 20 people were assigned to one of four families (alpha, 

beta, gamma, delta), with 5 people per family.  These 20 participants play the part of 

female monkeys, while the remaining 5 participants play the part of the male monkeys, 

which are outside the family groups of the females (but have their own hierarchy).  All 
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participants were instructed regarding which other families/individuals could be 

interacted with in each of the following ways: 

• Aggressive:  Individuals could chase others of belonging to lower ranked families.  

Males could aggress any female. 

• Submissive:  If aggressed by a member of a higher ranked family or any male (if a 

female), individuals must retreat. 

• Proximity:  Includes two individuals standing next to one another, within an arm’s 

length.  Only appropriate if participants are within one hierarchical rank of each 

other if female or of opposite sex. 

• Grooming:  One individual solicits grooming by bending at the waist.  Groomer 

must be within one hierarchical rank if female or of opposite sex, and should 

stand close and scratch the other’s back for several seconds. 

• Mating:  Any female follows any male closely for several seconds, and then bobs 

head.  Male stands directly behind female. 

 

These types of interactions were developed with a domain expert and designed to 

mimic the sorts of interactions which would be common among an actual monkey 

colony.  Instead of attempting to detect and differentiate between all of these interaction 

types, some adjustments are made.  For example, there are few instances of mating 

behaviors, and so this interaction type (which does not help differentiate families or 

rankings in this experiment) is ignored.  Additionally, because the sensors used to 

perform tracking do not detect body part locations, grooming and proximity interactions 

cannot be distinguished and are combined as “affiliative” interactions; fortunately, both 
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interaction types have the same participatory rules.  Finally, because the small number of 

participants playing the part of male monkeys maintains their own social structure 

independent of the females, and since the males do not often interact with one another, 

only the social structure of the females is examined herein. 

Aggressive interactions contain much richer information pertaining to 

determining social hierarchy than do affiliative interactions.  This is because aggressive 

interactions occur only between two individuals with a specific relative hierarchy (one is 

higher than the other).  On the other hand, the affiliative interactions could occur between 

individuals of the same family or individuals with slightly different ranking.  Therefore, 

only aggressive interactions are considered in determining rank for this experiment, 

although the affiliative interactions can be useful in actually determining family 

membership in future work. 

Instances of aggressive interactions were hand-labeled for the training data.  All 

other detected interactions are considered to be examples of the affiliative interaction 

group (proximity or grooming).  Some of these training examples are then used to 

classify interactions among the other datasets.  There are a total of three 9 minute runs 

used in this assessment.  Additionally, there are two versions of each dataset – one 

consisting of the actual ground truth tracks and identifications (run1g, run2g, run3g), 

while the second is made up of the tracks and identifications automatically generated 

(run1t, run2t, run3t), as detailed in Chapters 3 and 4.  Two hand-labeled datasets are used 

for training and validation data – the ground truth tracks of the second dataset (run2g) 

and the automatically generated tracks of the third dataset (run3t).  The detection and 
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classification of interactions are assessed by using one hand-labeled dataset (run2g) to 

find and label the interactions in the other (run3t), then comparing to its hand-labels. 

The hierarchical rankings are learned for each of these datasets.  Performance is 

assessed as the number and magnitude of families placed at the wrong hierarchical 

ranking.  For instance, if the alpha family is ranked lowest, the error for that family 

would be 3.  Likewise, if the beta and gamma families are reversed, the pair would have 

an error of 2.  The maximum error is 8 and a random assignment would produce an 

average error of 5.  Figure 7.2 shows a graphical representation of perfect assignment – 

each family is assigned a shade, with the darker shades representing higher ranking.   

Figure 7.2:  Graphical 
depiction of correct social 
structure assignments. 

7.4 Results 

The run3t dataset is used to find and classify interactions in the run2g dataset.  Of 

the 76 aggressive interactions manually identified, 53 are found and 40 correctly 

classified as aggressive.  Table 7.1 shows the complete confusion matrix. 

 

Table 7.1:  Breakdown of system labels. Each 
row shows the number of that row’s label 
identified as each possible label by the system. 
 System Label 

 Aggressive Affiliative 
Aggressive 40 13 

 
Actual 
Label Affiliative 98 316 
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There are a large number of affiliative interactions misclassified as aggressive.  

Recall that affiliative is a catch-all that includes any interaction which is not found to be 

aggressive.  Many of the erroneous aggressive detections are due to one individual 

aggressing a whole group.  The human labeler only indicates an aggressive detection 

involving the one individual who appears to be the target.  Therefore, the interactions 

between the aggressor and the other members of the group are technically considered 

affiliative (since they are not specifically labeled as aggressive by the human labeler).  

However, the system found there to be aggressive interactions between the aggressor and 

several members of the group.  While not strictly correct, this is not entirely wrong, as the 

other members of the group often withdraw, as does the specific target, resulting in the 

data visually appearing to contain multiple aggressions.  Additionally, since participants 

often cluster along family lines, these erroneous detections actually provided information 

useful to learning the social structure.  This, then, is a failing of the human labeler, not 

the automatic identifier. 

Despite these inconsistencies involving interaction detection, determining 

hierarchy is successful.  Figure 7.4 shows the results of automatically learning the family 

rankings in each of the test datasets made up of the ground truth tracks.  That is, the 

hierarchies are automatically learned from tracks which were previously manually 

corrected and labeled.  Of the three datasets, the correct hierarchy was learned in two; the 

third only reversed the two middle families.  The errors, therefore are 2, 0, 0 – for an 

average of 0.67. 
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run1-g 
 
run2-g 
 
run3-g 

Figure 7.4:  Graphical 
representation of the automatically 
learned rankings for the hand 
generated tracks in datasets run1, 
run2, and run3.

Figure 7.3 illustrates the results on the three datasets created from the 

automatically generated tracks and identifications.  Although these datasets averaged an 

approximate 10% identification error (as detailed in Section 4.5), the hierarchies that are 

learned only contained one more error than in the datasets from the hand-labeled tracks 

(namely, the reversal of the alpha and beta families in run2).  These errors are 2, 2, and 0, 

or an average of 1.33.  This supports the hypothesis that occasional tracking errors have 

minimal impact in the higher level applications. 

run1-t 
 
run2-t 
 
run3-t 

Figure 7.3:  Graphical representation 
of the automatically learned rankings 
for the automatically generated tracks 
in datasets run1, run2, and run3.

Currently, biologists must study many hours of data in order to detect sufficient 

interactions to generate the social structure of a colony.  However, each of the test 
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datasets are only 9 minutes long.  Because aggressive interactions are fairly scarce within 

these short datasets (as often in real life), the algorithm is tested against a combination of 

run1-t and run3-t (run2-t is left out because of its similarity to run2-g, the training 

dataset).  Figure 7.5 shows that in this case, the perfect hierarchy (error of 0) is 

discovered.  By demonstrating that more data helps overcome the noise of intermittent 

incorrect track labeling or false interaction detections, this result demonstrates that the 

algorithm has promise, even in the more complex real-life primate colony domain. 

Figure 7.5:  Graphical depiction 
of learned hierarchy for combined 
run1-t and run3-t. 

7.5 Discussion and Summary 

Some researchers have drawn inspiration from biological systems for assisting 

robots in learning to behave according to social relations [Matarić 1997].  But applying 

machine learning techniques towards automatically learning the social hierarchy of an 

actual colony of primates is original.  Although the work outlined in this chapter does not 

reach that eventuality, the groundwork is laid through an experiment involving humans 

simulating the actual hierarchical behaviors of rhesus monkeys.  This experiment 

demonstrates that the approach has the potential to learn actual social relationships in 

these animal colonies, as discussed in Chapter 8.   
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CHAPTER 8 

SUMMARY AND CONTRIBUTIONS 

There are many domains which currently or theoretically have a need to model 

and recognize behaviors from various types of observations.  In some of these cases, such 

as in biological research, these models and detections are currently carried out by hand, 

consuming vast quantities of time.  Others, such as security and sports applications, are 

not fully realized, as completing this process manually is not always feasible.  This 

dissertation presents techniques designed to help automate the process in several fields, 

namely team sports (basketball) and ant, honey bee, and primate colonies. 

Observations into these environments are made with a variety of sensors and 

logged to disk or processed in real-time.  The trajectory of each individual is then 

automatically extracted, after the uninteresting data (i.e. the background) is removed.  

The target (or agent) which each trajectory represents is assigned a label to uniquely 

identify it, allowing the behaviors and interactions of specific individuals to be examined.  

From this trajectory information, models are created which represent the actions and 

behaviors of the individuals in each context.  Finally, these models are used to recognize 

future instances.  In the case of the human primate experiment, the detected interactions 

are used to reason about the social structure of the entire group. 

The specific contributions of this work are: 

 

• An algorithm for tracking an unknown and changing number of targets as they 

enter, move through and/or exit the observed planar arena using data from 

multiple sensors in real-time (Chapter 3). 
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• A method of integrating data from active RFID tags to produce labels which 

uniquely identify each track, without the loss in track precision endemic of 

noisy RF sensors (Chapter 4). 

• Application of machine learning techniques to model motions and behaviors 

based on the trajectories of honey bees in a hive (Chapter 5). 

• Methodology for detecting frequency and types of social interactions between 

pairs of Leptothorax albipennis ants exploring a potential nest site (Chapter 6). 

• Experimental results of learning social structure automatically from raw sensor 

observations (Chapters 3, 4 and 7). 

 

This chapter reviews the main contributions of the research and summarizes the 

results presented herein, before concluding with an examination of directions for future 

work that show high potential. 

8.1 Detection-Based Tracking 

Before any behavioral models can be learned, trajectories of each target must be 

generated as they move through the environment.  It is not feasible for humans to 

manually create these tracks with accuracy at the scale necessary to be useful in real 

applications; even if possible, this would defeat the goal of saving humans time.  Instead, 

the algorithms presented provide a robust mechanism for the automatic creation of 

trajectories. 

The process consists of gathering data from a series of laser range finders.  These 

datasets are registered to one another in time and space before the background is 

subtracted.  The algorithm that uses this detection-based data relies on iterative closest 
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point (ICP) to simultaneously locate the targets and perform data association in each 

frame.  The targets cannot be identified specifically, but multiple models can be used to 

differentiate between targets of different types or in different states.  Whenever two or 

more tracks become so close together that they cannot be clearly differentiated in the 

data, they are split into new tracks, preventing a single track from inadvertently 

representing more than one target. 

The tracker is tested in experimentation with 8 laser range finders observing a 

basketball court.  One experiment involves 10 people playing basketball and the other 

consists of 25 people walking and running around according to a script of common 

monkey behaviors.  In both cases, over 98% of the track-frames are detected and the 

tracks averaged approximately 40 and 340 seconds, respectively.  While there are a few 

track jumps, these only occurred every several minutes at most.  Further, the tracker is 

tested in a real-time environment, and shown able to track 10 targets at over 37.5Hz and 

25 targets at about 28Hz, a frame rate high enough to have minimal impact on the 

tracking results. 

Compared to existing trackers, this work is differentiated in a number of ways.  

First, it is designed to track an unknown and potentially changing number of targets.  

This does not add complexity or slow the algorithm down.  Therefore, unlike many other 

trackers, it will work in real-time, including the data association step.  Further, most 

existing laser-based applications only make use of the data from one ladar, or consider 

each ladar independently.  On the other hand, this work combines readings from multiple 

ladars in order to expand the field of view of the system and reduce the effects of 
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occlusions.  Finally, this tracker operates on detection-based data, regardless of what type 

of sensor the data initially came from. 

8.2 Track/Target Association 

Chapter 4 outlines a novel technique for labeling each track with the target it 

represents by employing active RFID tags.  Adding id-sensors in addition to the ladars 

used for tracking allows the creation of uniquely identified tracks.  Without these 

identifications, some basic group-wide aggregate behaviors can be studied.  However, 

these identifications are necessary for the majority of behavior modeling and recognition 

tasks. 

The environment is discretized and a series of lookup tables are generated from 

training data to build histograms of signal strength/location occurrences for each antenna.  

After normalizing, each table represents the probability that a tag is at each location when 

a given signal strength reading is received by a given reader.  All track/tag pairings are 

scored based on the known location of the tracks at the time of each tag reading.  Since 

two tracks which overlap in time cannot represent the same tag, the order of the final 

labeling is important; once a label is used, it is made unavailable to temporally 

overlapping tracks.  The crucial labeling order is decided based on calculating 

confidences for each track.  The most confident track is assigned to its highest scored tag, 

and then the scores and confidences of the remaining tracks are recalculated, repeating 

until all tracks are labeled. 

The RFID-based identification algorithms are tested with the tracks created from 

the two experiments previously described – a 16 minute basketball game and 9 minutes 

of a social behavior experiment involving 25 people.  Almost 96% of the ground truth 
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track-frames are accurately labeled in the basketball game experiment.  The social 

behavior experiment also achieves positive results, with over 90% of the track-frames 

correctly identified.  Further, approximately 80% of the incorrect track-frames are due to 

the reversal of two individuals who spent the entire experiment in close proximity to one 

another. 

Localizing based on RF signal strength is a well studied problem.  However, this 

technique differs significantly from existing approaches.  Most researchers attempt to 

localize directly from the RF data, whether alone or combined with data from another 

sensor (such as with a Kalman filter).  On the other hand, this work capitalizes on the 

precise nature of the laser range finders to determine the exact track locations; the RFID 

tags are merely used to determine the identities of the already detected tracks.  

Alternately, short range sensors (included passive RFID and IR badges) are used as 

detectors to determine proximity to known locations.  This requires instrumenting the full 

interior of the environment being observed, a constraint which is not always feasible in 

sporting venues or animal habitats.  By placing long range active RFID antennas around 

the perimeter, this research has no such requirement. 

8.3 Social Insect Behavior Modeling and Recognition 

Machine learning approaches are applied to two very different real-world social 

insect behavior modeling problems in Chapters 5 and 6.  In the first, the motional 

structures of honey bee behaviors in the hive (such as the so-called waggle dance) are 

modeled.  These models are then used to recognize future instances of each behavior, in 

essence identifying the type of each bee based on which model fits its actions best.  

Chapter 6 is concerned with detecting and categorizing four types of interactions which 
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frequently occur among the ants being observed.  Both of these phenomena are studied 

by biologists would could benefit from being able to generate automatically generated 

data from their videos. 

In both applications, the first step is to create tracks from the input video data and 

then generate several features from the raw trajectories of each tracked insect.  The bee 

behavior modeler determines the motion of each bee during every frame of data using 

kernel regression.  On the other hand, the ant interaction detector uses straightforward 

thresholding (learned from the training data) to determine instances of interactions.  Both 

modelers then use hidden Markov models (trained automatically) to smooth the data, 

eliminating noisy readings and determining a more likely sequence of labels.  Finally, the 

bee behavior recognizer chooses the bee’s behavior by picking the HMM (from a total of 

one per behavior type) most likely to have generated the bee’s motion series. 

A total of 93% of the bees’ motions are correctly labeled, resulting in 

approximately 80% of the bees labeled with the correct behaviors in the test data.  While 

far from perfect, this partially achieves the goal of recognizing instances of bees 

performing a waggle dance.  Likewise, 84.7% of all interactions between nearby ants are 

correctly detected and classified.  Further testing is necessary to determine the precision 

of this process, but if a similar percent of interactions are recognized in all datasets, then 

these results provide exactly the information required to eliminate the need for human 

labeling. 

The focus of most behavior recognition research is on identifying individual 

behaviors of sole agents, often acting in isolation from others.  In contrast, the behaviors 

detected by this research are socially motivated.  They rely on and are guided by the 
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presence of others.  Further, the behaviors detected in Chapter 6 specifically require 

multiple participants to occur.  Although computer science has received much inspiration 

from various biological systems, this has been a one way flow.  Instead, this research 

seeks to apply intelligent systems techniques to domains studied in biology, an area that 

has not received much attention from computer science researchers. 

8.4 Social Primate Family Hierarchy Detector 

Different types of interactions can mean different things in a group of social 

animals.  For instance, friendly interactions often indicate familial behavior, while 

aggressive interactions are a sign of disparity between the social statuses of the 

participants.  On the other hand, there are frequently interactions which occur for more 

than one reason.  An example of this in rhesus monkey colonies is the grooming 

behavior, which may indicate friendship, but can also be used to gain protection from a 

superior.  In such cases, it is useful to know the social structure of the colony being 

studied.  Knowing the hierarchical structure is also important when studying a variety of 

other areas (such as intelligence and learning capabilities).  Because some technical 

difficulties have delayed the testing of tracking on real monkey subjects, this research 

learns the social structure of a group of humans following the strict behavioral guidelines 

which govern monkey colony life. 

First, individual interactions are detected whenever two people are located in 

spatial proximity over a short temporal window.  Specific features are extracted for each 

interaction and used with a kernel regression classifier to determine which type of 

interaction is taking place.  Once all the interactions are thus detected and classified, the 
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aggressive interactions are used to learn the hierarchical ranking of each family, relative 

to the others. 

The results of learning the social structure in this experiment are promising.  The 

correct hierarchy is learned with only one pair of swapped families between the three test 

datasets involving hand labeled tracks.  Further, when applied to the actual automatically 

generated and identified tracks, the algorithm performed similarly, this time reversing a 

single pair of families in each of two of the three test datasets.  Finally, when the two 

non-training, automatically created datasets are combined, the system successfully learns 

the correct social ranking.  Given the vast quantity of data available for a real-life 

learning attempt, this algorithm should perform well on such data. 

As with the rest of the modeling and recognition work presented in this 

dissertation, learning the social structure of a monkey colony (whether or not through 

simulation with people) is based upon detecting and understanding behaviors involving 

social interactions.  This is contrary to most behavior recognition research, which 

concerns itself with modeling isolated behaviors of solitary individuals.  Additionally, 

this research contributes the application machine learning techniques to a new biological 

domain with practical implications.  It also validates the tracking and identification 

techniques developed in Chapters 4 and 5 in a new, relevant domain. 

8.5 Future Directions 

One important extension of this work is to apply the tracking and identification 

algorithms in the actual environments in which they can provide useful information.  

Specifically, this includes real sporting events and actual non-human primates.  To be 

able to gather such data, the main hurdle to overcome is to find placement of the RFID 
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tags which is acceptable to all participants.  Additionally, some way to deal with the 3-d 

nature of the monkeys’ trajectories must be found.  Testing in these real world situations 

will move us one step closer to tracking humans in an unconstrained environment for 

safety and security. 

Another direction for future work is to apply these learning techniques to data 

from actual monkey colony interactions.  In addition to determining the family rankings, 

a logical extension is to be able to learn the families themselves, as there are many 

situations in which they are unknown beforehand.  Preliminary work to this end has 

already been started, with Figure 8.1 showing the families learned in one early “human 

experiment.”  While the algorithm currently requires a priori knowledge of the size of 

each family, in the future this can be made more generalized and applied to actual non-

human data. 

Finally, the author hopes that other researchers will find this work to be useful in 

new domains.  While the research was designed with an eye towards sports and social 

animal domains, there are a large number of other areas which can benefit from the 

Figure 8.1:  Graphical depiction of learned social structure 
assignments from combined run1t, run2t, run 3t.  Each row is a 
family (as learned), with each square shaded according to the 
correct family.  One alpha family member is misidentified as a 
gamma member, while one gamma is wrongly identified as a 
beta and one beta as an alpha, for a total of 3 incorrect out of 20. 
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methods introduced here, including other human systems and even robotics.  Perhaps all 

of these areas can benefit from using observations to recognize various behaviors. 

8.6 Conclusion 

The research detailed in this dissertation seeks to use observations to 

automatically model and recognize the behaviors of a variety of multi-agent systems.  

Applications of this work currently or potentially include both human (sports, safety, and 

surveillance) and non-human (bees, ants, and monkeys) systems.  Several machine 

learning techniques have been explored and adapted to create new algorithms for solving 

the tracking, identification, and modeling problems involved in these domains.  Presented 

is a method of using multiple laser range finders and active RFID tags to track and 

identify targets, as well as several algorithms for learning and interpreting the behavior of 

those targets as they interact with one another. 
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