

USING PARAMETERIZED EFFICIENT SETS

TO MODEL ALTERNATIVES

FOR SYSTEMS DESIGN DECISIONS

A Dissertation
Presented to

The Academic Faculty

by

Richard J. Malak Jr.

In Partial Fulfillment
of the Degree

Doctor of Philosophy in the George W. Woodruff School of Mechanical Engineering

Georgia Institute of Technology

December 2008

USING PARAMETERIZED EFFICIENT SETS

TO MODEL ALTERNATIVES

FOR SYSTEMS DESIGN DECISIONS

Approved by:

Dr. Christiaan J.J. Paredis
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Leon McGinnis
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Dr. Bert Bras
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Ruchi Choudhary
School of Architecture
Georgia Institute of Technology

Dr. David Rosen
School of Mechanical Engineering
Georgia Institute of Technology

 iii

ACKNOWLEDGEMENT

Above all others, I must thank my family for their years of support and

encouragement. My mother has been particularly important to me. Looking back on my

childhood, her devotion to my education is clear: Before I could read, she would read to

me. Once I could read on my own, she would drive me regularly to the nearest public

library despite it being nearly an hour from our home. Throughout my college years, she

has been a steady source of encouragement and has consistently filled the financial gaps

left by my scholarships and loans But perhaps most importantly, she instilled in me at an

early age that I could do anything I wanted with my life—that I am not constrained by the

paths taken by my ancestors and predecessors, but by the limits of my imagination and

determination.

I also must acknowledge my younger siblings, my brother Daniel and my sister

Amanda. Their support has been invaluable to me. They keep me grounded and focused

on what is important. I value greatly my regular conversations with them.

To Donna, my wife and best friend, I offer the deepest thanks. It is hard to

articulate the role she plays in my life or the impact that she has had on this work.

Always there for me, she is the difference maker in my life.

Academically speaking, I am most deeply indebted to my advisor, Dr. Chris

Paredis. He is simultaneously open-minded and critical—a combination that is as

valuable as it is rare. His insights and criticisms have helped to shape both the ideas in

this thesis and my broader understanding of engineering.

 iv

I thank my committee members, Drs. Paredis, Rosen, Bras, McGinnis and

Choudhary for their questions and insights. Their input certainly has strengthened my

research and will be valuable to me in the future.

I owe gratitude to all the members of the Systems Realization Laboratory here at

Georgia Tech, where I have found both professional advice and personal friendship. I

have learned much from other members of the SRL, which is one of the greatest

compliments I can give. It is impossible for me to name everyone who has had a positive

impact on me in my time here. Those in the “266 crowd” standout in my mind due to our

relatively close interactions. Over the past few years I have enjoyed sharing MaRC 266

office space and engaging in discussions (on all topics) with Jason Aughenbaugh,

Stephanie Thompson, Scott Duncan, Steve Rekuc, Alek Kerzhner, Tommy Johnson,

Jonathan Jobe, Roxanne Moore, Morgan Bruns, Jay Ling and Tarun Rathnam.

Two undergraduate research assistants were instrumental in completing this

research. Lina Jensen played a large role in gathering the product information for the

design problem in Chapter 6. Michael Lennard is responsible for much of the

development and debugging work associated with the dynamical models for the hybrid

vehicle architectures in Chapter 7.

Finally, I gratefully acknowledge the support of the National Science Foundation

via grant DMI-0522116 and the ERC for Compact and Efficient Fluid Power under grant

EEC-0540834.

 v

TABLE OF CONTENTS

ACKNOWLEDGEMENT... iii

LIST OF TABLES ... xi

LIST OF FIGURES ... xiii

NOMENCLATURE... xvi

SUMMARY .. xviii

CHAPTER 1 : INTRODUCTION ..1

1.1 Research Overview...1

1.1.1 What is this Research About? ... 1

1.1.2 Why is it Important? ... 4

1.1.3 What is the Challenge? ... 6

1.2 Desirable Characteristics for a Modeling Approach...7

1.3 From Component-Level Data to System-Level Models.......................................9

1.3.1 Component-Level Attributes .. 10

1.3.2 Preferences and Modeling Component-Level Attributes 11

1.3.3 Parameterized Efficient Sets ... 13

1.3.4 Predictive Tradeoff Models .. 13

1.3.5 Composing System-Level Models from Component-Level Models 15

1.4 Research Questions and Validation Strategy..16

1.4.1 Component-Level Dominance Analysis ... 17

1.4.2 Tradeoff Model Domain Description.. 17

1.4.3 Composing Tradeoff Models .. 18

1.4.4 Tradeoffs under Uncertainty... 19

 vi

1.5 Investigation Roadmap ...20

CHAPTER 2 : PROBLEM BACKGROUND..25

2.1 Systems Realization Processes as Decision Chains..25

2.1.1 Relationships among Decisions in a Decision Chain 26

2.1.2 Modeling Decision Alternatives in a Decision Chain............................... 29

2.1.3 A Foundation for Modeling System-Level Decision Alternatives 34

2.2 Related Literature on Modeling and Decision Making36

2.2.1 Component Sizing Procedures.. 36

2.2.2 Decision Approaches Involving Qualitative Models................................ 38

2.2.3 Decision-based Design and Optimization... 39

2.2.4 Tradeoff Visualization in Design.. 46

2.3 Conclusions and Chapter Summary..48

CHAPTER 3 : PARAMETERIZED PARETO DOMINANCE AND

PREDICTIVE TRADEOFF MODELING.....................................50

3.1 Dominance Analysis ...51

3.1.1 Multi-Attribute Decisions ... 52

3.1.2 Classical Pareto Dominance ... 53

3.1.3 Limitations of Classical Pareto Dominance.. 55

3.1.4 Parameterized Pareto Dominance ... 57

3.2 A Methodology for Generating Tradeoff Models...59

3.2.1 Generating Tradeoff Models from Data ... 59

3.2.2 Generating a Model from Other Tradeoff Models.................................... 64

3.3 Formulating Decisions using Tradeoff Models ..65

3.3.1 Rudimentary Formulation... 66

3.3.2 General Formulation ... 67

3.3.3 Formulation using an Abstract Tradeoff Model 68

 vii

3.4 Gearbox Design Problem..71

3.4.1 Generating Tradeoff Models for Different Gearbox Configurations........ 72

3.4.2 Design Problem Scenario.. 78

3.4.3 Results... 83

3.5 The Practical Value of Performing Dominance Analysis...................................87

3.6 Conclusions and Chapter Summary..90

CHAPTER 4 : USING SUPPORT VECTOR DOMAIN DESCRIPTION

TO IMPROVE PREDICTIVE TRADEOFF MODELING93

4.1 The Problem of Domain Description for Tradeoff Models94

4.2 Support Vector Domain Description ..100

4.2.1 Basic SVDD.. 100

4.2.2 Mercer Kernels.. 104

4.2.3 Kernel-based SVDD ... 106

4.2.4 Kernel-Based SVDD Example ... 108

4.3 Support Vector Clustering ..108

4.3.1 Cluster Identification Theory.. 110

4.3.2 Cluster Labeling Methods... 111

4.3.3 Example .. 114

4.4 Creating Domain-Described Tradeoff Models ...115

4.5 Conclusions and Chapter Summary..120

CHAPTER 5 : A MATHEMATICAL ANALYSIS OF COMPOSING

PARAMETERIZED PARETO SETS ..122

5.1 Motivations for Composing Tradeoff Models ..123

5.2 Mathematical Framework for Composition..124

5.3 Soundness Conditions for Composing Non-Dominated Sets127

5.3.1 Soundness Condition for Composing Classical Pareto Sets 128

 viii

5.3.2 Soundness Condition for Composing Parameterized Pareto Sets........... 132

5.3.3 Practical Implications of the Mathematical Results................................ 133

5.4 Conclusions and Chapter Summary..134

CHAPTER 6 : REQUIREMENTS ALLOCATION FOR A HYDRAULIC

LOG SPLITTER...137

6.1 Generating Tradeoff Models for Hydraulics Components138

6.2 Hydraulic Log Splitter System and Design Preferences...................................141

6.3 System Composition and Requirements Allocation ...144

6.4 Comparison to Exhaustive Search of Components Database...........................146

6.5 Conclusions and Chapter Summary..148

CHAPTER 7 : ARCHITECTURE SELECTION FOR A HYBRID

HYDRAULIC VEHICLE ..150

7.1 Hybrid Hydraulic Vehicles ...151

7.2 Tradeoff Model Generation ..152

7.3 HHV Power Train Architectures and Designer Preferences155

7.3.1 Independent Torque Hybrid Hydro-Mechanical Drive Train................. 155

7.3.2 Simplified Hybrid Hydro-Mechanical Drive Train 157

7.3.3 System-Level Decision Objectives ... 158

7.4 System Dynamics ...160

7.4.1 System Model Overview... 160

7.4.2 Losses and Fuel Consumption .. 161

7.4.3 Computing the Decision Attributes .. 164

7.5 Solving the Decision Problem ..166

7.5.1 Component-Level Search Space ... 166

7.5.2 Decision Formulation.. 167

7.5.3 Results... 168

 ix

7.6 Conclusions and Chapter Summary..171

CHAPTER 8 : TRADEOFF MODELING UNDER DATA

UNCERTAINTY...173

8.1 Making Tradeoffs under Uncertainty ...174

8.1.1 Multi-Attribute Utility Theory.. 174

8.1.2 Generalized Tradeoff Spaces .. 175

8.2 Stochastic Dominance...177

8.2.1 Stochastic Dominance for Single-Attribute Utility Theory 178

8.2.2 Stochastic Dominance for Multi-Attribute Utility Theory 180

8.2.3 Stochastic Dominance for Specialized Distribution Functions 181

8.3 Parameterized Efficient Sets using Stochastic Dominance Rules184

8.3.1 Assumptions.. 184

8.3.2 Parameterized MV-SSD and Tradeoff Models....................................... 185

8.3.3 Formulating Decisions .. 187

8.4 Gearbox Design Problem..189

8.4.1 Generating Gearbox Tradeoff Models under Uncertainty 190

8.4.2 Design Problem Scenario.. 193

8.4.3 Results... 195

8.5 Conclusions and Chapter Summary..196

CHAPTER 9 : CONTRIBUTIONS, LIMITATIONS AND OPEN

QUESTIONS...198

9.1 Review of the Research ..198

9.1.1 Component-Level Dominance Analysis ... 199

9.1.2 Tradeoff Model Domain Description.. 201

9.1.3 Composing Tradeoff Models .. 202

9.1.4 Tradeoffs under Uncertainty... 203

 x

9.2 Summary of Contributions..204

9.2.1 Domain Description using Support Vector Machines 204

9.2.2 Contributions to Dominance Analysis .. 205

9.2.3 Tradeoff Analysis under Uncertainty.. 206

9.3 Limitations ..207

9.4 Open Questions and Opportunities for Future Research211

9.5 Summary...217

APPENDIX A : PROOFS OF MATHEMATICAL STATEMENTS....................219

REFERENCES ..224

 xi

LIST OF TABLES

Table 3.1: Domain descriptions for the gearbox tradeoff models.....................................77

Table 3.2: Values for parameters used in the example problem.80

Table 3.3: Results from the gearbox concept selection problem (using the tradeoff
models) and the reference solution for each configuration. 84

Table 3.4: Comparison of allocation solution using abstract tradeoff model to
reference solution for best concept. ...86

Table 3.5: Comparison of predictions from concept-specific tradeoff models to
prediction from abstract model. ...86

Table 3.6: Comparison of computational times for three approaches to the gearbox
design problem...86

Table 3.7: Percentage of implementations eliminated by parameterized Pareto
dominance for components used in log splitter design problem......................89

Table 4.1: Worst-case asymptotic running times and memory requirements for several
cluster labeling algorithms as reported by (Lee and Daniels 2006)...............114

Table 6.1: Summary of hydraulic component database...139

Table 6.2: Summary of data eliminations and tradeoff model generation.......................140

Table 6.3: Comparison of log splitter requirements allocation results from tradeoff
modeling approach and exhaustive search...147

Table 7.1: Summary of component database for HHV problem.153

Table 7.2: Summary of domination and model structure for HHV tradeoff models.......154

Table 7.3: Summary of data eliminations and tradeoff model generation for HHV
problem. ...155

Table 7.4: Summary of attribute search space for HHV drive train problem..................167

Table 7.5: Summary of results from HHV drive train selection......................................169

Table 7.6: Comparison of component sizing solutions to nearest database entry.171

 xii

Table 8.1: Summary of common classes of single-attribute utility functions and the
relevant stochastic dominance criteria. ..179

Table 8.2: Common classes of multi-attribute utility functions.181

Table 8.3: Uncertainty models for low-level parameters used during gearbox data
generation...192

Table 8.4: Uncertainty models for parameters used in the gearbox design problem.......193

Table 8.5: Results from gearbox example. ..196

Table 9.1: Components in database before and after dominance analysis.214

 xiii

LIST OF FIGURES

Figure 1.1: Possible power train configurations for a (a) serial and (b) parallel
hybrid vehicle..2

Figure 1.2: Physically heterogeneous implementations of a functional component
share the same attribute space...10

Figure 1.3: Illustrative visualization of dominance. ..12

Figure 1.4: Illustration of distinction between model fit to all data and model fit to
only the non-dominated data...12

Figure 1.5: Illustration of different interpretations of predictive tradeoff models.............15

Figure 1.6: Overview of content with major theme groupings indicated.24

Figure 2.1: The same decision modeled as: (a) a “one-shot” decision, (b) a chain of
decisions..28

Figure 2.2: Compromise Decision Support Problem...40

Figure 2.3: Selection Decision Support Problem...40

Figure 2.4: Distinction between (a) a CO framework and (b) system-level decision
making...44

Figure 3.1: Summary of the procedure for generating predictive tradeoff models.60

Figure 3.2: Summary of the procedure for generating an abstract tradeoff models
from other tradeoff models. ..65

Figure 3.3: Illustration of two procedures for making selection decisions using
tradeoff models.. ...70

Figure 3.4: Layout of the three gearbox concepts...73

Figure 3.5: Fitted tradeoff models for each of the design concepts...................................77

Figure 3.6: Tradeoff models for gearbox concepts plotted in same graph.79

Figure 3.7: Visualization of the abstracted gearbox model. ..79

Figure 3.8: Configuration of off-road vehicle components.. ...80

 xiv

Figure 3.9: Schematic view of how top-level preferences propagate down to the
concept-level attribute gear ratio.. ..81

Figure 3.10: Efficient and dominated implementations of planetary gear train for a
fixed value of gear ratio. ...88

Figure 4.1: A simple domain description for the one-dimensional case.95

Figure 4.2: An illustration of two independent variables with a valid domain that
occupies less than the rectangular region defined by their upper and
lower bounds. ..96

Figure 4.3: Two convex hull domain descriptions.. ..97

Figure 4.4: A synthetic data set with internal voids and distinct clusters.98

Figure 4.5: SVDD results for different settings of the Gaussian kernel width
parameter, q109

Figure 4.6: Cluster assignment logic. ..112

Figure 4.7: SVC on the dataset from Figure 4.4 for two different settings of the
kernel width parameter. ..115

Figure 4.8: A visualization of the adjacency information corresponding to the
graphs in Figure 4.7.. ..116

Figure 4.9: Refinement of process for generating tradeoff models (Figure 3.1) to
include a generalized domain description procedure..................................116

Figure 4.10: A 3D visualization of the 5D domain description for small four-stroke
engines.. ..119

Figure 5.1: Tradeoff model composition framework...125

Figure 5.2: Different monotonicity possibilities for a system composition model..........129

Figure 6.1: A hydraulic log splitter..142

Figure 6.2: Objectives hierarchy for the log splitter problem..142

Figure 6.3: Graphs of the individual value functions for the five system-level
attributes of the log splitter design problem. ..143

Figure 6.4: Summary of system composition model for log splitter design problem......144

Figure 7.1: A hydro-mechanical drive train with independent wheel torque control.156

Figure 7.2: A hybrid hydro-mechanical drive train with high-low gear..........................158

 xv

Figure 7.3: Graphs of the individual value functions for the HHV power train
design problem..159

Figure 7.4: Top-level view of Modelica model for the ITHHM drive train.162

Figure 7.5: Top-level view of Modelica model for the SHHM drive train......................162

Figure 7.6: EPA Urban Dynamometer Drive Schedule...164

Figure 7.7: Illustration of a speed trajectory that does not follow the EPA UDDS.........165

Figure 8.1: Illustration of distributions in an attribute space mapping to points in a
tradeoff space defined in terms of parameters of the distributions.177

Figure 8.2: Illustration of second-degree stochastic dominance under the mean-
variance assumptions.. ..183

Figure 8.3: Procedure for generating and evaluating gearbox implementations.192

 xvi

NOMENCLATURE

Nz ∈� , []1 2, , Nz z z=z … Respectively, a system-level attribute and a vector of
such attributes.

My ∈� , []1 2, , , My y y∈y … Respectively, a component-level attribute and a vector of
such attributes.

()i iz S= ⋅ System composition model; used to compute a system-
level attribute based on one or more component-level
attributes.

() () () ()1 2, , , NS S S⋅ = ⋅ ⋅ ⋅  S … Vector-valued system composition model. Note that

()=z S y .

()v ⋅ , ()u ⋅ Respectively, a value or utility function, indicating
preference for a particular attribute or making tradeoffs

among attributes. In this work, a value function, ()v ⋅ , is

indicative of a decision under certainty and a utility

function, ()u ⋅ , is indicative of a decision under

uncertainty.

[]E ⋅ Expectation operator.

()T ⋅ Tradoeff model.

() () () ()1 2, , , .KT T T⋅ = ⋅ ⋅  T … Vector-valued tradeoff model.

y� Vector of attributes used as inputs to a tradeoff model.

Y� Set of valid y� vectors.

x , x Respectively, a design variable and a vector of design
variables.

()=z F x An engineering analysis model that computes system-
level attributes given design variable values.

a A decision alternative

A A set of decision alternatives

 xvii

iU , where { }0,1, 2i ∈ A set of utility functions

ix A data vector input into the SVDD algorithm or a
support vector identified using the method.

a Center of the SVDD bounding hypersphere.

R Radius of the SVDD bounding hypersphere.

C SVDD outlier detection sensitivity parameter.

iβ Weight corresponding to the thi support vector.

(),K ⋅ ⋅ Kernel function.

: NΦ →Y� Nonlinear mapping from data space to feature space.

q Gaussian kernel function width parameter.

A , ijA Respectively, adjacency matrix identified during SVC

and the thij element of the matrix.

 xviii

SUMMARY

The broad aim of this research is to contribute knowledge that enables

improvements in how designers model decision alternatives at the systems level—i.e.,

how they model different system configurations and concepts. There are three principal

complications:

• Design concepts and systems configurations are partially-defined solutions to a

problem that correspond to a large set of possible design implementations,

• Each concept or configuration may operate on different physical principles, and

• Decisions typically involve tradeoffs between multiple competing objectives that

can include “non-engineering” considerations such as production costs and

profits.

This research is an investigation of a data-driven approach to modeling partially-defined

system alternatives that addresses these issues. The approach is based on compositional

strategy in which designers model a system alternative using abstract models of its

components. The component models are representations of the rational tradeoffs

available to designers when implementing the components. Using these models,

designers can predict key properties of the final implementation of each system

alternative.

A new construct, called a parameterized efficient set, is introduced as the

decision-theoretic basis for generating the component-level tradeoff models. Appropriate

efficiency criteria are defined for the cases of deterministic and uncertain data. It is

shown that the model composition procedure is mathematically sound under reasonable

assumptions for the case of deterministic data. This research also introduces an approach

 xix

for describing the valid domain of a data-driven model based on the use of support-vector

machines. Engineering examples include performing requirements allocation for a

hydraulic log splitter and architecture selection for a hybrid vehicle.

 1

CHAPTER 1:

INTRODUCTION

The focus of this chapter is on establishing the context for and scope of the

investigation. Section 1.1 is an overview of the research topic, including why it is

important and what are the main challenges. Section 1.2 is a summary of the main

desirable characteristics for an approach to modeling alternatives for system-level

decisions. Section 1.3 is an overview of the particular modeling approach studied in this

research. Section 1.4 is an explanation of the main research questions and the

corresponding hypotheses. Finally Section 1.5 is a roadmap to the remainder of this

document.

1.1 Research Overview

1.1.1 What is this Research About?

This research is about identifying new ways in which systems designers can think

about making decisions. This can lead to new ways of formulating and solving decision

problems as well as an improved understanding of decision methods in current use. Some

examples of the types of decisions targeted in this investigation include:

• Automotive designers are choosing between different architectural configurations

for a hybrid car. Options include both serial and parallel power train arrangements

(e.g., Figure 1.1). They care about profitability of the new design, which they

believe to be a function of fuel efficiency, reliability, performance characteristics

(acceleration, top speed, etc.), environmental impact, lifecycle considerations and

production costs.

 2

Power Storage
Unit

Power Storage
UnitIC EngineIC Engine GeneratorGenerator

Electric
Motor

Electric
Motor

Mechanical
Transmission

Mechanical
Transmission

Right
Drive Wheel

Right
Drive Wheel

Left
Drive Wheel

Left
Drive Wheel

DifferentialDifferential

Power Storage
Unit

Power Storage
UnitIC EngineIC Engine GeneratorGenerator

Electric
Motor

Electric
Motor

Mechanical
Transmission

Mechanical
Transmission

Right
Drive Wheel

Right
Drive Wheel

Left
Drive Wheel

Left
Drive Wheel

DifferentialDifferential

(a)

Power Storage
Unit

Power Storage
Unit

IC EngineIC Engine

Motor/
Generator

Motor/
Generator

Mechanical
Transmission

Mechanical
Transmission

Right
Drive Wheel

Right
Drive Wheel

Left
Drive Wheel

Left
Drive Wheel

DifferentialDifferential

Power Storage
Unit

Power Storage
Unit

IC EngineIC Engine

Motor/
Generator

Motor/
Generator

Mechanical
Transmission

Mechanical
Transmission

Right
Drive Wheel

Right
Drive Wheel

Left
Drive Wheel

Left
Drive Wheel

DifferentialDifferential

(b)

Figure 1.1: Possible power train configurations for a (a) serial and (b) parallel hybrid
vehicle.

• The same designers are considering different technologies to implement their

system: gas-electric and gas-hydraulic hybrids. Gas-electric hybrid vehicles have

been on the market for a few years and the designers are confident that they

understand the tradeoffs they will encounter if they choose that approach. In

contrast, gas-hydraulic systems have received less study. The designers believe

gas-hydraulic technology potentially has greater upside—particularly for heavier

vehicles such as sport-utility vehicles and service vehicles (garbage trucks,

delivery trucks, etc.)—but are uncertain about whether it is superior to gas-

electric technology for their particular problem.

 3

• Suppose these automotive designers choose to develop a gas-hydraulic system

using a parallel power train configuration. The next step is to assign domain

and/or subsystem specialists to design its components. The system-level designers

must identify implementation-neutral specifications for the components such that

the specifications are technically feasible and, if met, lead to good system

performance.

Other examples exist spanning numerous application domains. Collectively, these types

of decisions are referred to as system-level decisions in this research because they require

system-wide information and have a system-wide impact.

System-level decision making is a critical part of a systems design process, which

tends to follow a top-down, hierarchical progression (Royce 1970, Boehm 1988, Forsberg

and Mooz 1992, Wertz and Larson 1999, Buede 2000, Sage and Armstrong Jr. 2000).

Two main types of system-level decisions are considered in this research:

• System Selection Decisions. Decisions between different types of systems, such

as competing system architectures, design concepts or implementation

technologies.

• Requirements Allocation Decisions. Also called requirements flowdown or

component sizing, this type of decision entails determining appropriate design

specifications for the components of a particular system architecture.

In the preceding examples, the first two are systems selection problems and the last is a

requirements allocation problem.

Some authors use the terms compromise decisions (e.g., (Shupe, et al. 1987,

Karandikar, et al. 1989, Mistree, et al. 1993b)) or parametric design to refer to

 4

requirements allocation decisions. The latter term is adopted in this research because it

better better fits with the systems engineering literature and it better reflects the

specialized, system-level nature of the decisions of interest. Moreover, a requirements

allocation decision is a type of compromise decision or parametric design problem. Like

all such problems, designers determine the most preferred settings for certain parameters

associated with a particular system architecture (in this case, the specifications for its

components). However, unlike many compromise decisions, requirements allocation is

just one step in a sequence of allocation and selection decisions—after requirements

allocation, designers still must determine how to achieve the preferred specifications.

Practicing designers do make system-level decisions successfully. They design

automobiles, aircraft, ships, trains, computers, robots and all manner of complex systems.

However, this does not mean their decision methodology is ideal—or even good.

Designers do the best they can within the limits of their decision-making resources. The

goal of this research is to contribute knowledge about how designers can get more return

on their limited resources. Ideally, this would lead to designers being able to make sound

and quantitative decisions earlier in a design project than would be practical otherwise.

Another desirable, and related, outcome would be for designers to be able to evaluate a

greater number of heterogeneous system alternatives than they typically are able to do.

1.1.2 Why is it Important?

One perspective on the importance of system-level decision making relates to its

lasting impact on a design process. Numerous authors assert that system-level design

decisions are particularly important to the success of a design project on the basis that

these early-phase decisions constrain subsequent decisions. For example, in his survey of

 5

conceptual design research Hsu and Woon (1998) state that “a poorly conceived design

concept can never be compensated for by a good detailed design”. Pahl and Beitz (1996,

pp. 68) make a similar assertion, stating that “in the subsequent embodiment and detail

design phases it is extremely difficult or impossible to correct fundamental shortcomings

of the solution principle.”.

From a more quantitative perspective, Boehm (1981). and Davis (1993). both

conclude based on data about software system design projects that the cost of correcting

design mistakes increases the longer the mistakes go unrecognized. The implication is

that value exists in researching approaches for improved decision making in design.

Although their results are based on data about software systems, the general trend applies

to systems in general. Authors in the systems engineering community commonly cite

these studies to emphasize the importance of good decision-making practices early in a

project and systematic decision making in general.

Overall, quantitative data regarding the value and impact of any decision making

practices is sparse. However, there is some evidence to suggest that good practices can be

a source of competitive advantage. Ward and coauthors (1995) argue that the success of

Toyota Motor Company is due in part to the way in which they approach such decisions.

Sobek and coauthors (1999) build upon this work and characterize the decision-making

process at Toyota in terms of what they call set-based concurrent engineering. Liker and

coauthors (1996) demonstrate that set-based concurrent engineering is in fact more

prevalent among Toyota Motor Company and its suppliers, as compared to American

auto manufacturers and their suppliers.

 6

Despite the success of Toyota Motor Company and the insights gained by

studying its practices, it is unclear whether or to what extent any particular company

would gain by adopting these practices. Toyota relies heavily on highly experienced

personnel to execute their approach, which emerged over many years rather than being

imposed suddenly. In order to achieve improvements in system-level decision making on

a widespread basis, it is necessary to achieve a more substantial and fundamental

understanding of such decisions and approaches for solving them.

1.1.3 What is the Challenge?

The principles of decision making are well-established in the literature. One can

think of a decision process as a sequence of four main steps (Clemen 1996):

1. Formulate the decision problem in terms of solution-independent objectives and

willingness to make tradeoffs between competing objectives.

2. Identify alternative courses of action.

3. Evaluate each decision alternative relative to the stated objectives and identify the

most-preferred alternative.

4. Execute the most preferred course of action.

The challenge addressed in this research is how to achieve the third step for system-level

decision problems. In particular, the fundamental problem is how to model the decision

alternatives. Designers have limited resources, which means it is not necessarily in their

interest to create the most accurate or highest-fidelity model.

This research addresses both the theory and associated practical considerations for

how designers can model partially-defined systems at a high level of abstraction. An

assumption in this research is that systems designers generally can model the

 7

relationships between a system’s components, but that it is more difficult for them to

understand the tradeoffs involved with implementing the components. Although it is true

that most systems engineers have a tacit understanding of the components they would

used in a system, this knowledge is difficult formalize. Ideally, designers would use

formalized computer-interpretable models to enable fast and efficient exploration of

many different alternatives rather than fixating on only a handful of choices.

Furthermore, a model-based approach may be the only viable option for novel systems

and technologies about which systems designers lack a preexisting intuition.

Section 1.3 is an overview of the modeling approach investigated in this research.

It is based on component-level models that designers can use to predict the tradeoffs that

they or other designers would make when implementing the components of a system

under particular decision objectives. The models are data-driven, which enables system-

level designers to consider the far-reaching consequences of a course of action without

having to model every downstream consideration (detail design, manufacturing, etc.)

explicitly. As discussed in Section 2.1, this type of information is important when one

considers the relationships between different decisions in a systems realization process.

1.2 Desirable Characteristics for a Modeling Approach

It is instructive to consider which characteristics are desirable for an approach to

modeling system-level decision alternatives. To some degree, such characteristics are a

matter of perspective and different people may identify different considerations or assign

emphasis differently. The following are the main characteristics considered important in

this research.

 8

Soundness from a Decision-Making Perspective

At a minimum, a decision process should be internally consistent in that it does

not result in selections contrary to stated preferences or available information. The way in

which designers model their decision alternatives has a large impact on whether they can

make decisions soundly. Essentially, any model that ignores information—e.g., through

simplifying assumptions—potentially can lead to unsound decisions. In practice, no

model is free from assumptions and it is desirable to develop an understanding of the

potential impact of any major assumptions from this decision-making perspective.

Ideally, it would be provable that, at least under some mild assumptions, a particular

modeling strategy supports sound decision making.

Based on Quantitative, Computer-Interpretable Models

The principles of decision making place no requirements on how one models

decision alternatives except to say that models should reflect the available information

and be consistent with the beliefs of the decision maker. However, in the context of

system-level decision making it is desirable for models also to be quantitative and

computer-interpretable. One reason is that at this stage of a design process it typically is

valuable for designers to explore the space of alternatives widely. This exploration is

difficult without the use of quantitative, computer-interpretable models. Another reason is

that qualitative models (e.g., mental models) can lack the fidelity required to discriminate

between alternatives. They can be useful for eliminating inferior design concepts with

minimal effort or for identifying an obviously-superior concept, but are less effective for

discriminating between similarly-performing decision alternatives. Furthermore, lacking

a quantitative basis, they offer little support for allocation decisions. Although a

quantitative model may be sufficient for identifying whether a gear drive is superior to a

 9

belt drive for a particular application, it is poorly suited for deciding what specific gear

ratio the drive should have.

Comprehensive in Scope

A common pitfall for designers is that sometimes they ignore important system

attributes while making decisions. This usually is because they lack a good model for

computing the attributes. For example, a designer might consider only the “engineering

attributes” of a car, such as its top speed, acceleration and breaking figures of merit, but

ignore other equally important attributes, such as cost. Although this practice always is

undesirable, it is particularly deleterious for system-level decision making. Failure to

consider major system attributes and adopt a comprehensive view of the available

tradeoffs can lead designers down a path toward an undesirable outcome.

Based on Models that are Fast to Compute

If designers are to use models for system-level alternatives inside of an

optimization loop or in the context of design space exploration, then computational

complexity becomes an important concern. These computational procedures can require

tens- or hundreds-of-thousands of model evaluations. Therefore, it is desirable that the

models be fast to compute. The time to create the model also is important, but much less

so than the time required to evaluate it.

1.3 From Component-Level Data to System-Level Models

This research examines an approach to modeling system-level alternatives that

relies on predictive modeling and model composition. The vision is for designers to

generate reusable predictive models of common engineering components that they can

compose quickly and confidently to model a system-level alternatives of interest. Unlike

other applications of predictive modeling in design, the approach investigated here is

 10

based on models formulated strictly in terms of a component’s top-level attributes. This

allows designers to abstract away lower-level implementation details and focus on

system-level issues. The following is an overview of several key concepts associated with

the approach.

1.3.1 Component-Level Attributes

In this research, a top-level attribute for a component—or, a component-level

attribute—is an implementation-independent characteristic that applies to all components

of equivalent functionality. Designers commonly use these attributes when making

decisions about how to implement a component of that type. Figure 1.2 is a simplified

illustration of this idea for hydraulic pumps with efficiency and cost as attributes.

Designers can visualize physically heterogeneous pump implementations in terms of

these attributes. Other pump attributes potentially of interest include maximum operating

speed, mass, external dimensions and maximum flow rate.

Attribute Space for
Hydraulic Pumps

efficiency

cost

Gear PumpsGear Pumps

Vane PumpsVane Pumps

Piston PumpsPiston Pumps

Attribute Space for
Hydraulic Pumps

efficiency

cost

Gear PumpsGear Pumps

Vane PumpsVane Pumps

Piston PumpsPiston Pumps

Figure 1.2: Physically heterogeneous implementations of a functional component share
the same attribute space.

 11

For most types of components, the top-level attributes are characteristics that

would appear in a parts catalog or that companies would publish in their product

literature. Lower-level implementation details—information that would indicate precisely

how designers achieve the top-level attribute values—are not included. For example, one

would not include gear geometry, orifice geometry or materials specifications as part of

the top-level attributes for a gear pump.

Another aspect of component-level attributes is that designers typically cannot

determine their values independently. For example, increasing the flow rate of a pump

typically leads to an increase in its size since it would have to accommodate more fluid.

Similarly, increasing the efficiency typically leads to an increase in cost due to the tighter

tolerances required.

1.3.2 Preferences and Modeling Component-Level Attributes

In order to model components accurately in terms of their top-level attributes, it is

important for one to consider the effect of preferences and how designers would make

decisions when implementing that type of component. For example, suppose a designer

of a hydraulic system cares only about the efficiency of a pump and what it cost to buy it

(such that efficiency should be maximized and cost should be minimized). Several data

points depicted in Figure 1.2 would be considered inferior by such a designer because

there exist other pumps that are better in one or both of the attributes of interest.

The reason for this relates to the decision-theoretic notion of dominance. Figure 1.3 is a

depiction of the data points from Figure 1.2 classified as either dominated (ones no

designer would choose) and non-dominated (also called efficient or Pareto optimal).

Informally, one alternative dominates another if it is at least as good in all attributes and

 12

strictly better in at least one (see Chapter 3 for a formal definition). The significance of

this from a modeling perspective is that some of the data is misrepresentative of what

designers can achieve by implementing a component. Thus, in the approach studied here,

one constructs predictive models based only on efficient set data (i.e., the set of non-

dominated points). Figure 1.4 is an illustration of the difference between a model fit to all

data about a component and a model fit only to the efficient set. The model fit to all data

is a poor predictor of the relationship between costa and efficiency for pump

implementations that designers would actually choose. This is discussed further in

Chapter 3.

Attribute Space

efficiency

cost

Dominated

Non-dominated

prefer less

p
re

fe
r

m
o

re

Attribute Space

efficiency

cost

Dominated

Non-dominated

prefer less

p
re

fe
r

m
o

re

Figure 1.3: Illustrative visualization of dominance.

Attribute Space

efficiency

cost

Dominated

Non-dominated

prefer less

p
re

fe
r

m
o

re

Model of all data

Model of non-dominated data

Attribute Space

efficiency

cost

Dominated

Non-dominated

prefer less

p
re

fe
r

m
o

re

Model of all data

Model of non-dominated data

Figure 1.4: Illustration of distinction between model fit to all data and model fit to only
the non-dominated data.

a Note that in this context, cost refers to the purchase price of the pump because this is an expense incurred
by the system-level designer. The term cost is used in this way throughout this research. Clarification is
stated whenever the meaning is ambiguous.

 13

1.3.3 Parameterized Efficient Sets

Some types of components have attributes for which preference orderings are not

universal. For example, although designers generally will seek to minimize cost or

maximize efficiency, there is no problem-independent preference ordering for the bore of

a hydraulic cylinder or the gear ratio of a transmission. Such attributes are incompatible

with the classical notion of dominance.

To solve this problem, a novel extension of the classical Pareto dominance

criterion is introduced in Chapter 3. Under the new dominance rule, one classifies

attributes as dominator attributes or parameter attributes (respectively, those with and

without problem-independent preference orderings). One can determine whether one

component implementation dominates another only if their parameter attribute values are

equivalent. If this is the case, one uses the classical dominance rule applied to the

dominator subset of the attributes to draw conclusions about domination.

One can interpret the resulting non-dominated data—called the parameterized

efficient set—as a family of efficient sets. Designers can recover a specific efficient set

by specifying values for the parameter attributes. This construct is the basis for

component-level predictive modeling in this research.

1.3.4 Predictive Tradeoff Models

In this research, a predictive tradeoff model is a mathematical model fit to

parameterized efficient set data about a type of component. Typically, this is an algebraic

relationship designers can use to compute the value of one or more component-level

attributes as a function of the others. The intent of this model is to capture dependencies

 14

among the attribute values along the technology frontier—i.e., on the surface that

delineates between implementations that are feasible and those that are not.

Component implementations at different points along the model represent

different tradeoffs that designers can make. For example, one designer may place more

emphasis on cost while another emphasizes efficiency. Both solutions—if they are

rational in a decision theoretic sense—are in the parameterized efficient set and lie on the

tradeoff model. This is why they are called “tradeoff” models.

The “predictive” part of the term requires some additional explanation. Strictly

speaking, designers use the models to compute certain component-level attributes as a

function of the others. However, this is not the prediction of interest in this research. The

question of interest is:

What would be the resulting attribute vector if a designer implemented the

component in question with particular preferences for making tradeoffs among

the component-level attributes?

This prediction problem speaks to the actual use of the mathematical relationship. Figure

1.5 is an illustration of the two different interpretations. In Figure 1.5(a), one computes

pump efficiency as a function of its cost. In Figure 1.5(b), one searches along the

modeled relationship for the combination of cost and efficiency that maximizes decision

maker preferences. The second interpretation is adopted in this research.

 15

Hydraulic Pumps

efficiency

cost

c

eff

Hydraulic Pumps

efficiency

cost

c

eff

Hydraulic Pumps

efficiency

cost

c

eff

preference

Hydraulic Pumps

efficiency

cost

c

eff

preference

(a) (b)

Figure 1.5: Illustration of different interpretations of predictive tradeoff models: (a) one
of the attributes is predicted given the other and (b) the complete attribute vector is
predicted given the relationship between the attributes and the decision preferences.

1.3.5 Composing System-Level Models from Component-Level Models

Designers can compose a model for a system-level decision alternative by

combining component-level predictive tradeoff models with models of the interactions

 among the components. They can use the resulting model to compute system-level

attributes as a function of component-level attributes. The advantage of taking a

compositional approach is that data is more likely to exist for the components of a system

than for the system itself. In principle, designers can model a novel system for which they

have no prior data provided it consists of well-understood components that interact in a

well-understood way.

The mathematical form of the interaction model depends on the system in

question and the system-level attributes of interest. The example problems in research

involve both algebraic interaction models (the log splitter system of Chapter 6) and

dynamical interaction models (the hydraulic hybrid vehicle example of Chapter 7).

 16

Designers formulate system-level decision problems as searches over the

component-level attributes that are used as independent variables in their respective

tradeoff models. One can conduct this search using standard optimization techniques.

This problem formulation is described in Chapter 5.

1.4 Research Questions and Validation Strategy

One can summarize the motivation for this investigation in terms of a research

question:

How can designers model system-level decision alternatives quantitatively in

order to support sound and effective system-level decision making?

This question is too broad to be answered satisfactorily in a single study. Instead, it

serves as a launching pad to several specific research questions that revolve around the

concepts introduced in Section 1.3. The broad aim is to discover new and general

knowledge about system-level decision making. There are four main research questions:

RQ1. How can designers conclude that one implementation of a component

dominates another when they lack specific knowledge of the system in which

the component will be used?

RQ2. How can designers describe the set of valid inputs to a tradeoff model

mathematically?

RQ3. Under what conditions can designers compose component-level tradeoff

models in order to model a system-level decision alternative soundly?

RQ4. How should designers identify and visualize the (parameterized) efficient set of

tradeoffs when the attribute data is uncertain?

 17

1.4.1 Component-Level Dominance Analysis

Designers typically apply dominance analysis—usually in the form of the

classical Pareto dominance criterion—at the system level and in the context of a specific

decision problem. Although useful in many situations, classical Pareto dominance is

inadequate at the component level or when problem-independence is desirable. The

following hypothesis is studied in this research:

H1. Designers can use the parameterized Pareto dominance rule to eliminate

attribute data about dominated implementations of a component.

This novel dominance rule is defined and validated in Chapter 3. The evidence in support

of this hypothesis is a mathematical proof that the rule is sound under reasonable

assumptions. In this context, soundness means that if the rule indicates that one

implementation dominates another then the utility of a system that includes the

dominated implementation is guaranteed to be lower than that of a system that includes

the other implementation.

1.4.2 Tradeoff Model Domain Description

In the context of predictive modeling, a domain description is a mathematical

representation of the set of valid inputs to a model. In many applications, one can

describe the input domain using upper and lower bounds on the individual input

variables. However, the inputs to a tradeoff model seldom are independent and the valid

domain usually is not hypercube-shaped. When examining attribute data for a

component, one typically finds irregularly-shaped, non-convex regions of data. Since the

approach to generating tradeoff models is data-driven, designers ideally would have a

 18

data-driven approach to describing its domain. Thus, the hypothesis corresponding to

RQ2:

H2. Designers can use a domain description procedure based on kernel-based

support vector domain description and clustering methods.

The domain description methodology is presented in Chapter 4. it is an extension

of methods found in the machine learning literature. Chapter 4 includes basic examples to

illustrate the approach and to provide evidence that it is effective. Further validation of

the methodology stems from the example problems of Chapter 6 (requirements allocation

for a hydraulic log splitter) and Chapter 7 (architecture selection for a hydraulic hybrid

vehicle). Domain descriptions of the component-level tradeoff models are essential to the

success of both examples.

1.4.3 Composing Tradeoff Models

Tradeoff model composition is an essential part of the modeling approach

investigated in this research. However, it is prudent to question the validity of this

procedure. Designers fit a tradeoff model to parameterized efficient set data, which is a

subset of the original implementation data. Consequently, the composition procedure

could be invalid if any of the excluded implementations could be part of the optimal

system configuration.

The hypothesis corresponding to this question is as follows:

H3. One can compose predictive tradeoff models soundly if the tradeoff models are

based on parameterized Pareto sets and all induced preferences for any

component-level dominator attribute are monotonic in the same direction.

 19

An induced preference is the preference ranking on the values of a component-level

attribute implied indirectly by preferences for another attribute. This situation arises in

systems problems where one has preferences directly for system-level attributes (e.g., to

minimize cost or maximize system performance measures). The induced preference

relates to how a component-level attribute affects the system-level attributes. If an

induced preference is monotonically increasing, then increasing the value of that

component-level attribute (whilst holding all others equal) leads to an increase in overall

utility. The soundness conditions are explained in detail in Chapter 5.

This hypothesis is subjected to both mathematical and empirical validation

efforts. The mathematical analysis, reported in Chapter 5, deals with the composition of

parameterized Pareto sets. It is proved that provided one treats dominator attributes

appropriately, any component implementation eliminated by the parameterized Pareto

dominance rule cannot be part of the optimal system. This result has significance beyond

tradeoff modeling, which is discussed in Chapter 5.

Designers forfeit any mathematical guarantees once they begin approximating the

data using a continuous model. This necessitates an empirical investigation. The example

problems of Chapter 6 and Chapter 7 serve this purpose. In both examples, the results one

obtains using the composed model compares favorably with an exhaustive search of the

components database.

1.4.4 Tradeoffs under Uncertainty

Two complications emerge when attribute data is uncertain. First, one cannot

conduct the comparisons required for the Pareto dominance test because the attributes do

 20

not take on precise values. Second, one now has additional flexibility in terms of

tradeoffs since, informally speaking, one can trade performance for reductions in risk.

In the deterministic case, one can visualize a parameterized Pareto set as a surface

in the space of attributes. A similar representation is desirable for tradeoffs under

uncertainty. In the interest of problem scope, this investigation is limited to the special

case of attributes modeled as being normally distributed and statistically independent.

Under this assumption, the hypothesis corresponding to RQ4 is:

H4. Designers can identify the (parameterized) efficient set of tradeoffs under

uncertainty using (parameterized) stochastic dominance criteria and can

visualize this set as a surface in mean-variance space.

Stochastic dominance criteria are analogous to Pareto dominance, but account for

uncertainty in the attributes and a designers attitude toward risk. Chapter 8 contains an

explanation of stochastic dominance and the generalized interpretation of tradeoffs when

uncertainty is present. One can extend the stochastic dominance criteria to operate in a

manner similar to parameterized Pareto dominance.

Validation efforts associated with H4 include a logical development of the result

from the appropriate decision theoretic principles and an empirical investigation. In the

example problem, decision results obtained using a tradeoff model fit to the

parameterized efficient set data correspond well to a decision obtained using a trusted,

but impractical, solution method. These efforts are reported in Chapter 8.

1.5 Investigation Roadmap

This document is organized into several major theme groups, each of which has

one or more associated chapters. Figure 1.6 is a high-level summary of the material.

 21

The first theme area is introductory and contextual material. This group consists

of the current and succeeding chapters and focuses on establishing the conceptual

foundations for ensuing chapters. These are summarized as follows:

• Chapter 1 is a high-level introduction to the problem of modeling system-level

decision alternatives and the aims of this research. It contains a vision for how

designers can model system-level decision alternatives quantitatively as well as a

description of the key research questions addressed in this investigation.

• Chapter 2 is an exploration of the problem background in greater detail. The

conceptual foundations for system-level decision making are identified and it is

argued that the approach being studied is reasonable in light of these foundations.

The chapter also contains a survey of the related literature, which has a focus on

the limitations of existing approaches in light of the characteristics of the problem

and the desired solution characteristics (identified in Section 1.2).

The focus next shifts to the problem of generating tradeoff models. This group

consists of two chapters that deal with foundational and practical issues relating to how to

generate a tradeoff model of a component from data about the component.

• Chapter 3 includes the basic definition for parameterized Pareto dominance and

tradeoff modeling. A general methodology for generating tradeoff models is

described and the formulation of basic decisions (involving a single tradeoff

model) is demonstrated on a gearbox design problem. The potential consequences

 22

of not performing dominance analysis prior to model fitting are discussed and it is

concluded that dominance analysis is worthwhile.

• Chapter 4 focuses on the practical problem of describing the valid domain of a

tradeoff model. Existing theory for domain modeling and clustering are reviewed

and a methodology for creating domain described tradeoff models is presented.

Having tackled some basic issues about tradeoff model generation, the next group

of chapters focus on validating the use of tradeoff models to compose system-level

models and make system-level decisions. This is done using both theory and

demonstration.

• Chapter 5 is a theoretical analysis of the composition problem. It contains the

general formulation of system-level decisions using composed tradeoff models. It

also contains several original mathematical statements regarding the conditions

under which it is theoretically valid to compose tradeoff models.

• Chapter 6 is an engineering example of performing requirements allocation for a

hydraulic log splitter system. Tradeoff models are fit to data about commercially-

available components. These are composed to model the system and requirement

allocation is performed by searching the component-level attribute spaces. The

results compare favorably to an exhaustive search of the components database.

• Chapter 7 is an engineering example of performing system architecture selection

for a hydraulic hybrid vehicle system. The problem involves multiple system

architectures, each of which is modeled by composing tradeoff models of the

underlying components.

 23

The final two chapters are not part of a larger theme group. The first covers the

problem of how to deal with uncertain data:

• Chapter 8 is a discussion of the foundations of generating tradeoff models under

data uncertainty. The conclusion is that doing so is difficult in general but is

straightforward in certain special cases, one of which is presented. A critical

insight is that one no longer can use Pareto-based dominance criteria to identify

an efficient set and instead must use a stochastic dominance criterion.

The final chapter brings closure to the research:

• Chapter 9 is a description of the contributions and limitations of this research. It

also includes a discussion of open questions raised during the course of this

research.

There also is an appendix worth noting:

• Appendix A contains proofs of the mathematical statements made elsewhere in

this document. The proofs are collected here so that they do not disrupt the flow

of the other chapters.

 24

Chapter 2

• Problem Background
• Conceptual Foundations
• Related Literature

Chapter 3
• Parameterized Pareto Dominance
• Predictive Tradeoff Modeling
• Model Generation Methodology
• Formulating Decisions (non-composition case)

Chapter 1

• Research Objectives and Scope
• Research Questions

Chapter 4
• Support Vector Domain Description
• Support Vector Clustering
• Creating Domain Described Tradeoff Models

Chapter 5

• Composing Tradeoff Models
• Soundness Criteria for Compositional Modeling

Chapter 6

• Log Splitter System Design Example
• Requirements Allocation Decisions

Chapter 7
• Hydraulic Hybrid Vehicle Design Example
• System Selection Decisions

Chapter 8

• Tradeoff Modeling under Data Uncertainty
• Stochastic Dominance Rules

Chapter 9
• Contributions, Limitations and Open Questions

Appendix A
• Mathematical Proofs

Introductory and Contextual Material

Generating and Making Decisions with
Individual Tradeoff Models
• Hypothesis 1 (Chapter 3)
• Hypothesis 2 (Chapter 4)

Composing System-Level Models from
Individual Tradeoff Models: Mathematical
Analysis and Engineering Demonstrations
• Hypothesis 3
• Further validation for Hypotheses 1 & 2

Dealing with Uncertain Data
• Hypothesis 4

Closing Material

Supplementary Material

Chapter 2

• Problem Background
• Conceptual Foundations
• Related Literature

Chapter 3
• Parameterized Pareto Dominance
• Predictive Tradeoff Modeling
• Model Generation Methodology
• Formulating Decisions (non-composition case)

Chapter 1

• Research Objectives and Scope
• Research Questions

Chapter 4
• Support Vector Domain Description
• Support Vector Clustering
• Creating Domain Described Tradeoff Models

Chapter 5

• Composing Tradeoff Models
• Soundness Criteria for Compositional Modeling

Chapter 6

• Log Splitter System Design Example
• Requirements Allocation Decisions

Chapter 7
• Hydraulic Hybrid Vehicle Design Example
• System Selection Decisions

Chapter 8

• Tradeoff Modeling under Data Uncertainty
• Stochastic Dominance Rules

Chapter 9
• Contributions, Limitations and Open Questions

Appendix A
• Mathematical Proofs

Introductory and Contextual Material

Generating and Making Decisions with
Individual Tradeoff Models
• Hypothesis 1 (Chapter 3)
• Hypothesis 2 (Chapter 4)

Composing System-Level Models from
Individual Tradeoff Models: Mathematical
Analysis and Engineering Demonstrations
• Hypothesis 3
• Further validation for Hypotheses 1 & 2

Dealing with Uncertain Data
• Hypothesis 4

Closing Material

Supplementary Material

Figure 1.6: Overview of content with major theme groupings indicated.

 25

CHAPTER 2:

PROBLEM BACKGROUND

A basic premise of this research is that one cannot understand system-level

decisions properly without considering how they relate to other decisions in a design

process. This chapter is a review and synthesis of the prior thinking on this relationship

and an examination of the limitations of current approaches to decision making in light of

this assertion.

Section 2.1 is a review of the literature on interrelated decisions in a systems

realization process. Several authors conceive of a systems realization process as a chain

of related decisions and describe various related problems, such as conflict resolution and

decision sequencing. However, few consider the problem of modeling system-level

decision alternatives in a decision chain context and the approaches that are described in

the literature have limitations from a practical perspective. Section 2.2 is a survey of

other approaches to decision making that designers sometimes apply to system-level

decisions. Most of these methods are useful within a particular context, but are not good

general approaches to system-level decision making.

2.1 Systems Realization Processes as Decision Chains

Many in the design research community recognize decision making as a central

aspect of engineering design (Thurston 1991, Mistree, et al. 1993b, Hazelrigg 1998,

Lewis, et al. 2006). The principles of how to model and solve an individual, isolated

decision are well understood. However, most design problems are too complex for

designers to solve directly as a single decision problem. Instead, designers simplify the

 26

search for a satisfactory design by decomposing the problem into a series of related

decisions. Several authors recognize and discuss the implications of this decomposition

and the consensus is that a design process—or, more broadly, a systems realization

process—consists of many interrelated decisions that occur in time. However, there is no

consensus on how to model this chain of decisions mathematically.

2.1.1 Relationships among Decisions in a Decision Chain

Mistree and coauthors (1990) describe a design process as consisting of many

interrelated decisions. They characterize the inception of a design process as the point at

which designers begin establishing a hierarchicy of “decision entities” from the naturally

heterarchical description of a design problem. They also describe an approach for

identifying and formulating such decision entities. However, they do not address the

problem of modeling how decisions that designers will make later in a process affect

those that come earlier. Herrmann and Schmidt (2006) also view a systems realization

process as consisting of numerous interrelated decisions and attribute this to a need to

decompose a large problem into manageable sub-problems. They explore the question of

whether such a process can be rational (in the sense of profit maximization; they argue in

the affirmative) and offer insights into the complexities of information flow in a product

development organization. However, they do not address the issue of how to model

chains of decisions mathematically. Donndelinger (2006) identifies that the common

“series of tasks” and “series of decisions” views of design are both valid and consistent

with one another. He discusses how a series of decisions leads to iteration and

distinguishes between two types of iteration. However, he offers no specific

 27

recommendations about how to formulate the decisions or model the outcome of a

particular chain of decisions.

Figure 2.1 is a simple example of how a decision maker might decompose a larger

decision into a chain of smaller ones. Figure 2.1(a) is a depiction of a “one-shot” decision

in which a decision maker considers all possible alternatives at once. Although tractable

for very small problems, this is unrealistic for systems realization problems. Figure 2.1(b)

is a decision tree depiction of one possible decomposition of the “one-shot” decision into

a chain of related decisions. The first decision is about which power train to use and the

second is between power storage technologies.

This example is simple for conceptual reasons. The need for decision chains is

more apparent when one considers that a systems realization process can involve design,

manufacturing, supply chains and other concerns. Imagine modeling a decision problem

that encapsulates the design of a car, its manufacturing system and the associated supply

chain. In this broader context, it is difficult for one to evaluate the consequences of a

decision alternative without considering the chain of decisions that will follow from it.

For example, a particular choice of material may appear favorable from a an engineering

standpoint (e.g., it is strong and lightweight) but this choice is poor when one considers

the implications on manufacturing, supply chains or other enterprise concerns (e.g., it

may be difficult to machine, expensive or difficult to acquire in sufficient quantities, or

unfavorable in light of end-of-life considerations).

This same consideration underlies the “Design for X” and concurrent engineering

perspectives (e.g., see (Huang 1996, Prasad 1996)). These perspectives have led to many

 28

Parallel Power Train
w/ Ultra-Cap’s

Parallel Power Train
w/ Ultra-Cap’s

Parallel Power Train
w/ Li-Ion Batt’s

Parallel Power Train
w/ Li-Ion Batt’s

Parallel Power Train
w/ Pb-Acid Batt’s

Parallel Power Train
w/ Pb-Acid Batt’s

Series Power Train
w/ Ultra-Cap’s

Series Power Train
w/ Ultra-Cap’s

Series Power Train
w/ Li-Ion Batt’s

Series Power Train
w/ Li-Ion Batt’s

Series Power Train
w/ Pb-Acid Batt’s

Series Power Train
w/ Pb-Acid Batt’s

Gasoline-Electric
Hybrid Car

Gasoline-Electric
Hybrid Car

“One-Shot” Decision

Parallel Power Train
w/ Ultra-Cap’s

Parallel Power Train
w/ Ultra-Cap’s

Parallel Power Train
w/ Li-Ion Batt’s

Parallel Power Train
w/ Li-Ion Batt’s

Parallel Power Train
w/ Pb-Acid Batt’s

Parallel Power Train
w/ Pb-Acid Batt’s

Series Power Train
w/ Ultra-Cap’s

Series Power Train
w/ Ultra-Cap’s

Series Power Train
w/ Li-Ion Batt’s

Series Power Train
w/ Li-Ion Batt’s

Series Power Train
w/ Pb-Acid Batt’s

Series Power Train
w/ Pb-Acid Batt’s

Gasoline-Electric
Hybrid Car

Gasoline-Electric
Hybrid Car

Parallel Power Train
w/ Ultra-Cap’s

Parallel Power Train
w/ Ultra-Cap’s

Parallel Power Train
w/ Li-Ion Batt’s

Parallel Power Train
w/ Li-Ion Batt’s

Parallel Power Train
w/ Pb-Acid Batt’s

Parallel Power Train
w/ Pb-Acid Batt’s

Series Power Train
w/ Ultra-Cap’s

Series Power Train
w/ Ultra-Cap’s

Series Power Train
w/ Li-Ion Batt’s

Series Power Train
w/ Li-Ion Batt’s

Series Power Train
w/ Pb-Acid Batt’s

Series Power Train
w/ Pb-Acid Batt’s

Gasoline-Electric
Hybrid Car

Gasoline-Electric
Hybrid Car

“One-Shot” Decision

(a)

Gasoline-Electric
Hybrid Car

Gasoline-Electric
Hybrid Car

Parallel Power
Train

Parallel Power
Train

Series Power
Train

Series Power
Train

Ultra-Cap’sUltra-Cap’s

Li-Ion Batt’sLi-Ion Batt’s

Pb-Acid Batt’sPb-Acid Batt’s

Ultra-Cap’sUltra-Cap’s

Li-Ion Batt’sLi-Ion Batt’s

Pb-Acid Batt’sPb-Acid Batt’s

Chain of Decisions

Gasoline-Electric
Hybrid Car

Gasoline-Electric
Hybrid Car

Parallel Power
Train

Parallel Power
Train

Series Power
Train

Series Power
Train

Ultra-Cap’sUltra-Cap’s

Li-Ion Batt’sLi-Ion Batt’s

Pb-Acid Batt’sPb-Acid Batt’s

Ultra-Cap’sUltra-Cap’s

Li-Ion Batt’sLi-Ion Batt’s

Pb-Acid Batt’sPb-Acid Batt’s

Gasoline-Electric
Hybrid Car

Gasoline-Electric
Hybrid Car

Parallel Power
Train

Parallel Power
Train

Series Power
Train

Series Power
Train

Ultra-Cap’sUltra-Cap’s

Li-Ion Batt’sLi-Ion Batt’s

Pb-Acid Batt’sPb-Acid Batt’s

Ultra-Cap’sUltra-Cap’s

Li-Ion Batt’sLi-Ion Batt’s

Pb-Acid Batt’sPb-Acid Batt’s

Chain of Decisions

(b)

Figure 2.1: The same decision modeled as: (a) a “one-shot” decision, (b) a chain of
decisions.

 29

contributions to the theory and practice of systems realization. However, they have not

resulted in a comprehensive understanding of how to model individual decisions in a

decision chain context. This literature tends to have an emphasis on managing

dependencies between decisions and tasks as opposed to how to make an individual

decision or perform an individual task.

Several authors have investigated the problem of modeling information flow

among a series of related tasks and/or decisions. The Design Structure Matrix (DSM),

originally described by Steward (1981), is a common representation for this type of

information. Although several extensions of the DSM representation exist, the most basic

form involves a symmetric binary matrix that indicates whether two tasks share

information. Researchers have applied the DSM and its extensions to problems ranging

from task scheduling to system dependency analyses (see (Browning 2001) for a survey).

Although this perspective acknowledges that a systems realization process consists of a

chain of related decisions, it deals with these relationships at a very high level of

abstraction. Moreover, one can use a DSM to sequence a group of decisions, but it

provides no support for making individual decisions.

2.1.2 Modeling Decision Alternatives in a Decision Chain

Relatively little literature exists in which the authors consider how to model a

decision alternative in the context of a decision chain. There exist four different views on

the subject:

• Designers should model downstream decisions explicitly and use simulation to

evaluate the outcomes associated with their decision alternatives.

 30

• Designers should model decision alternatives in a set-based fashion and delay

making a decision until progressing further downstream, focusing on eliminating

demonstrably inferior alternatives from the set in the meantime.

• Designers should model the decision alternatives as they would in an isolated

decision and then treat downstream decisions as a source of uncertainty.

• Designers should model a decision alternative by abstracting from data about

similar systems.

Explicit Modeling of Downstream Decisions

Barton and coauthors take a direct approach by modeling and simulating an entire

business enterprise (Barton and Love 2000, Barton, et al. 2001). They refer to this as a

“whole business simulator,” and account for all relevant design, manufacturing and

business decisions occurring within the scope of the decision chain. Using this approach,

designers can evaluate consequences of any decision alternative at any point in a decision

chain.

Although this approach is logically correct, it is questionable from a practical

perspective. To construct and validate a model of an entire business enterprise would

require significant resources and its upkeep would be burdensome. Also, the simulation,

unless using very abstract models, is likely to be computationally intense. It is

undesirable to include such a simulation into design space exploration and optimization

routines.

Delaying Decisions in Set-based Design

Set-based design is an approach in which one focuses on eliminating inferior

implementations from a set of alternatives rather than selecting the one that is most

preferred. Ward (1989) originally introduced the idea as a means for dealing with

 31

imprecisely defined design specifications and environmental conditions. Under his

approach, designers can rule out types of components or large intervals of component

attribute values while not having to commit to a final specification until later. An

advantage of this is that designers can make some progress in a design process while

awaiting information from decisions that normally would come later in a design process.

These ideas form the conceptual basis for describing the design practices of Toyota

Motor Company (c.f. Section 1.1.2).

Set-based design has a clear relationship to the decision chain perspective.

Consider again the decision chain in Figure 2.1(b). Under a set-based approach, one

would consider the design concept “gas-electric hybrid car” to be a set of potential

implementations, each of which is represented as a unique path from the root to a leaf.

Thus, one implementation would be “parallel power train + ultra capacitors.”b Designers

reason about a set-based design concept by eliminating specific implementations from the

set.

Ward focuses on elimination methods based on interval-based constraint

propagation. Finch and Ward (1997) extends this to the use of more generally defined

sets. Other researchers report computer-based tools that support set-based design (e.g.,

(Parunak, et al. 1997, Nahm and Ishikawa 2004)). Research also exists on extending the

set-based design perspective to include eliminations based on domination (i.e.,

preference-based) criteria (Rekuc, et al. 2007, Malak, et al. 2008).

The main limitation of set-based design is that it is not a comprehensive approach

to decision making—it focuses on the elimination of inferior alternatives, but not the

b Strictly speaking, this is a simplification for the sake of brevity. A fully-defined implementation would
include more information, such as the storage capacity and other characteristics of the capacitors.

 32

selection of the most preferred alternative. The fundamental problem is that an explicit

set-based approach to modeling decision alternatives leads designers to rate a decision

alternative with an interval of utility. Designers cannot distinguish between alternatives

with overlapping utility intervals without appealing to heuristics. This is known as the

problem of indeterminacy (Kyburg and Pittarelli 1996, Rekuc, et al. 2007).

Downstream Decisions as a Source of Uncertainty

In the context of conceptual design, Chen and coauthors adopt the perspective that

one cannot model the downstream portion of a decision chain adequately and therefore

one should make decisions that are insensitive to the uncertainties involved (Chen, et al.

1996, Chen, et al. 1997). They describe a method in which a designer models uncertainty

about the final implementation of a concept explicitly using uniform probability

distributions applied to the design parameters and makes decisions using a modified

robust design formulation. Thus, designers can make a tradeoff between performance and

risk.

The main limitation of this approach is that the uncertainty distribution does not

account for the impacts of designer rationality in a systems realization process. The

uniform distribution ascribes equal odds to all outcomes in its domain, when in reality

there are some combinations of values that no designer would choose. This could lead

one to conclude an alternative unduly risky even though it may be the best choice.

Predictive Modeling

Predictive modeling is the practice of formalizing relationships among the various

factors in a study (Hand, et al. 2001). A predictive model typically does not have

explanatory power or imply causation (Geisser 1982, 1993, Rygielski, et al. 2002). In

general, one can fit a predictive model to observational data (as is typical in a data mining

 33

problem) or experimental data (where one has control over the sample locations).

Construed broadly, predictive modeling can include response surface modeling based on

computer experiments, a practice sometimes called meta-modeling (Simpson, et al.

2001b, Wang and Shan 2007).

In the context of conceptual design, Wood and coauthors utilize observational

data about existing systems in a decision-based approach to design exploration (Wood

and Agogino 2005, Wood and Dong 2006). They model a concept by generating a

“design PDF” from data about existing implementations to serve as beliefs in a utility-

theoretic decision framework. They also discuss how designers can use this approach to

model concepts at different levels of abstraction (e.g., one could model all motors and

then refine the model to represent only AC motors). This approach has some similarity to

that of Chen and coauthors in that a designer models a concept in terms of a distribution

function. However, Wood and coauthors construct their distribution function directly

from data and use a more general decision formulation (utility theory in lieu of robust

design).

Although the approach Wood and coauthors describe has some advantages, it is

questionable in two key respects. First, they provide no concrete interpretation for the

“design PDF” they construct. They suggest a functional form for this distribution with

little justification and never define clearly the meaning of “the probability of a point in

the design space.” One might assume this means the odds that a newly-designed

component of that type will be at that point in the design space. However, intuitively,

such odds should depend on designer objectives and their willingness to make tradeoffs

 34

among competing objectives. Yet, their “design PDF” is independent of designer

preferences.

A second limitation of their approach is that it does not provide for composing

systems from component-level models. This is a practical concern. For all but the most

common systems, designers are unlikely to have sufficient data for generating probability

distributions. Although one could attempt to compose “design PDF” models together, it is

unclear whether such an operation would be sound.

Several other authors apply predictive modeling techniques to design decisions,

but their motivation is to support traditional engineering design analysis. Rather than

modeling a system-level decision alternative abstractly based on data about similar

systems, they use the data to establish a relationship between the physical form of the

system and one of the system-level attributes. Cost estimation is perhaps the most

common application (e.g., see (Dean 1976, Daschbach and Apgar 1988, Farineau, et al.

2001, Seo, et al. 2002, Shabani and Yekta 2006)). Others include power transmissions

(Krus 2005) and environmentally benign design (Dewulf 2003). This type of model is

useful in the context of traditional engineering analysis and optimization, particularly in

cases where it is difficult to develop a model analytically. However, they are formulated

in terms of lower-level design details that are inconvenient or inappropriate for system-

level decision making.

2.1.3 A Foundation for Modeling System-Level Decision Alternatives

Although the methods reviewed in the preceding section have limitations, they

each have roots in a meritorious point of view:

 35

• Barton and coauthors are correct to assert that to make a particular decision in a

decision chain, one should consider all of the decisions that will follow it.

Without doing so, one cannot understand comprehensively the consequences of

choosing a particular decision alternative.

• Ward’s notion of set-based design is correct in that system-level decision

alternatives relate to a set of specific design implementations. His premise of

eliminating demonstrably inferior solutions from consideration also is sensible.

• Chen and coauthors are correct in that downstream decisions are difficult to

model explicitly and that designers should consider uncertainty and their risk

attitude when engaging in such decisions.

• Wood and coauthors are correct to use observational data about design

implementations and predictive modeling techniques in order to model system-

level decision alternatives. Using this approach, one can consider the impact of

decisions that will occur downstream in a decision chain without having to model

the decision processes explicitly.

These perspectives are complementary, rather than contradictory. The modeling approach

investigated in this research is based on a global perspective that blends these individual

ideas:

• Designers consider the chain of future decisions implicitly using predictive

models fit to data about prior implementations of similar systems or obtained

from a validated model of the system (that accounts for the relevant enterprise

considerations).

 36

• Designers eliminate demonstrably inferior solutions using dominance analysis.

This results in a set-based characterization called the efficient set.

• Designers deal with uncertainty in the data using stochastic dominance criteria

and an appropriate tradeoff space representation. They consider their risk attitude

by formulating their decisions using utility theory.

This is not to suggest that the approach is simply a hybridization of the prior methods. It

is formulated with the aim of improving upon the practical and fundamental limitations

of prior approaches. This requires significant extensions beyond current methods (c.f. the

approach overview in Section 1.3).

2.2 Related Literature on Modeling and Decision Making

The following is a review of other literature related to system-level modeling and

decision making. The approaches described here are useful in a particular context, but

have limitations in light of the decision chain perspective or lack other desirable

characteristics (c.f. Section 1.2). However, this is not to say that all of the following ideas

described are fundamentally incompatible with this perspective. For example, one can

extend many of the decision-based design and optimization approaches (Section 2.2.3) to

incorporate the modeling approach investigated in this research.

2.2.1 Component Sizing Procedures

The engineering product literature contains several examples of what one can

characterize as “component sizing procedures.” A sizing procedure is a sequence of

computational steps through which a designer can identify the appropriate component

model number in a particular company’s product line. Essentially, these are simplified

requirements allocation procedures. The term “sizing” is common because the primary

 37

distinction between products in a single product family often is the magnitude of one or

more attributes (e.g., for a family of hydraulic pumps, larger “sizes” would correspond to

larger flow rates, masses and outer dimensions).

One can find procedures such as these in the literature associated with many types

of engineering components. For example, Sauer-Danfoss publishes an applications

manual on how to select and size driveline components (primarily hydraulic pumps and

motors) for mobile applications (Sauer-Sundstrand Co. 1997). Given assumptions about

the engine, loading characteristics, gearing and design requirements (e.g., lifetime), they

define a procedure for determining which of their pumps and/or motors are suitable for

the given application. Eaton publishes a similar document for their hydraulic pumps and

motors (Eaton Corp. 1998).

The main limitation of component sizing procedures is that they restrict the

decisions that designers can make. They require designers to assume values for several

key parameters and then have them work backwards to identify which component in a

particular company’s product line is suited for the task. However, this leaves designers

with minimal discretion in making tradeoffs between the performance characteristics and

other factors such as cost or service life.

Another limitation is that sizing procedures are effective only in the context of

one product line or, at best, one company’s products. This is because they generally

assume “size” and price (which would be a cost to a systems designer) relate directly and

thus there is no tradeoff to be had between the two (i.e., ranking components by price and

ranking by “size” yields the same ordering). This assumption commonly holds among the

product line of a single company, but may not hold when including products from

 38

different manufacturers. Designers require a general means to deal with the tradeoffs that

occur in such situations.

2.2.2 Decision Approaches Involving Qualitative Models

A primary concern in this research is how to model a system-level decision

alternative quantitatively. However, this is not the only approach one can take. Decision

theory places no restrictions on the form of the model a decision maker uses. It requires

only that a decision maker use a model that reflects his or her beliefs about the outcomes

that will occur upon choosing an alternative. Consequently, if designers feel confident in

their ability to assess the outcomes of their decision alternatives, they can formulate a

system-level decision problem using an appropriate variant of utility theory—e.g., the

single- and multi-attribute formulations of von Neumann-Morgenstern utility theory or

the analogous deterministic formulation (Luce and Raiffa 1957, Fishburn 1965, von

Neumann and Morgenstern 1980, Keeney and Raiffa 1993). Note that such an approach

would result in quantitative evaluations of the decision alternatives (i.e., numerical

utilities), even though the models are the tacit understanding of the designers.

The design literature contains descriptions of several other selection methods that

rely on designer expertise to evaluate decision alternatives but that are not utility-based.

Pugh selection (Pugh 1991), Quality Function Deployment (Akao 2004), various rating

matrix approaches and the analytic hierarchy process (Saaty 1990) are common

examples. A debate exists about the suitability of these methods, but this has nothing to

do with the use of designer expertise to model the alternatives. The primary concerns

revolve around whether the methods are mathematically sound and could lead to self-

contradictory decisions (Saari 2000, Hazelrigg 2003, Mullur, et al. 2003). For example,

 39

one can construct simple examples in which Pugh selection leads one to choose the worst

alternative rather than the best.

Regardless the debate about certain methods, all decision approaches founded on

using mental models to evaluate design alternatives have limitations. Such models are not

useful in the context of broad design space exploration or automated search routines,

which require many thousands of model evaluations. They also can be inadequate for

discriminating between decision alternatives and provide little support for allocation

decisions. Although a utility-based decision approach based on designer expertise

sometimes is the best one can do, there is ample motivation to research quantitative

modeling approaches.

2.2.3 Decision-based Design and Optimization

Much research exists on decision-based design and optimization methods in

engineering design. Decision making and optimization methods are closely linked in the

design literature because optimization methods are a typical means for solving decision

problems. A rich body of literature exists in both areas. Although this work has

limitations in the context of system-level decision making, it is best viewed as synergistic

with the current research rather than in conflict with it.

Decision-Based Design and Decision Support Problems

Decision-based design (DBD) is the perspective that decision-making is a central

activity in a design process and that designers therefore should formulate and solve

decision problems in a sound and rational manner (Shupe 1988, Hazelrigg 1998,

Thurston 2001, Lewis, et al. 2006). The topic of much of the DBD literature is the tasks

of formulating decisions and organizing the information relating to a decision. Muster

 40

and Mistree (1988) describe the Decision Support Problem Technique, which is an

approach to formulating design problems in terms of a construct called a Decision

Support Problem (DSP). A DSP is a template for structuring various types of decision

problems. The most basic types are the compromise DSP (Karandikar, et al. 1989,

Mistree, et al. 1993a) and selection DSP (Kuppuraju, et al. 1985). These are summarized

in Figure 2.2 and Figure 2.3, respectively. Other types include hierarchical formulations

(Shupe, et al. 1987, Bascaran, et al. 1989), decisions under uncertainty (Vadde, et al.

1994), robust design (Bras and Mistree 1993) and utility-based selection (Fernandez, et

al. 2005).

Given A candidate alternative.
Find • The values of system variables, which describe the physical

characteristics of an artifact.

• The values of deviation variables, which indicate the extent to which
goals are achieved.

Satisfy • System Constraints: Define what constitutes a feasible combination of
system variables.

• System Goals: Target values for system attributes of interest.

• Bounds: Lower and upper bounds on system variables.
Minimize An objective function that quantifies the deviation of system performance

from that implied by the goals and their associated priority levels or relative
weights.

Figure 2.2: Compromise Decision Support Problem.

Given A set of feasible alternatives
Identify The principal attributes influencing selection
Rate The alternatives with respect to each attribute.
Rank The feasible alternatives in order of preference based on the attributes and

their relative importance.

Figure 2.3: Selection Decision Support Problem.

 41

Although the literature relating to the DSP and DSP Technique offers a rich

language with which designers can describe their decision problems, it contributes

relatively little to how designers should model the decision alternatives themselves. For

example, Step 3 of the utility-based selection DSP is to “specify levels and/or probability

distributions for each attribute for each alternative” and the authors presume designers are

able to do this easily (Fernandez, et al. 2005). However, a basic premise of the current

research is that evaluating the attributes of a partially-defined system-level alternative is a

challenging task and that designers require a better approach for doing it. In this sense,

the current research is synergistic with the prior work on formulating selection decisions.

A similar gap exists in the context of requirements allocation decisions, which are

a subset of compromise decisions. An underlying assumption of the compromise DSP is

that designers can formulate their decision problem in terms of system variables that

describe the physical characteristics of the system. The typical interpretation of this is

that these are physical dimensions, material specifications and other relatively low-level

details. However, such details are either unavailable or impractical to work with when

making system-level decisions. The approach summarized in Section 1.3 is intended to

provide designers a means by which they can make decisions at a higher level while still

accounting for the impact of lower-level details through predictive tradeoff models.

The same gap exists in other DBD frameworks. For example, Hazelrigg (1998)

advocates a utility-based framework in which one treats a design problem essentially as a

large optimization problem. In this framework, designers perform a parametric

optimization for each alternative system configuration and then select from them the most

 42

preferred. The parametric optimization is, like the compromise DSP, based on low-level

system variables that relate to the physical construction of a system.

The Use of Surrogate Models

The introduction of and advances in surrogate modeling within the DBD

community have reduced concerns about dealing with lower levels of abstraction.

However, this has not eliminated concern entirely. A surrogate model (sometimes called

a meta-model or a reduced-order model) is a computationally simple abstraction of a

more complex model. One achieves this by sampling the more complex model and fitting

the simpler model to the input-output data. Several examples of surrogate modeling exist

in the DBD community. Pacheco and coauthors (2001) demonstrate the use of Bayesian

techniques to produce surrogate models for a heat transfer problem. Simpson and

coauthors (2001a) investigate the use of Kriging models as surrogates in the context of

multidisciplinary design optimization and Martin and Simpson (2006) apply Kriging

models of subsystems to estimate system-level uncertainties. There exist several surveys

of surrogate modeling techniques in a DBD context (Simpson, et al. 2001b, Jin, et al.

2003, Wang and Shan 2007).

The advantage of surrogate models is that designers can explore the space of

system variables more quickly using the simpler model. However, a surrogate model

retains an input-output structure similar to that of the more complex model—i.e., inputs

are physical descriptions of the artifact and the output consists of one or more attributes

of interest from a decision-making perspective. Consequently, designers still must

formulate their decisions in terms of the lower-level system variables. This can be

burdensome when designers want to consider multiple heterogeneous implementations of

different components.

 43

For example, Chapter 3 includes a design problem involving different concepts

for a fixed-ratio gearbox. Although these all have the same interface to the rest of the

system and the decision problem, they have very different physical descriptions. Using

the modeling approach summarized in Section 1.3, designers can abstract several

heterogeneous implementations into a single predictive tradeoff model and solve the

problem using a single optimization run. However, if using surrogate models for each

concept, they would require an optimization run for each concept. The situation becomes

worse when designers consider different concepts for multiple components due to the

combinatorial effect.

Parametric Optimization in Systems Design

An extensive body of literature exists on applying optimization in the context of

design. However, of particular interest in this review are the approaches that are intended

explicitly for system-wide optimization. These approaches enable designers to apply

optimization methods to a well-defined system efficiently. They typically operate by

introducing auxiliary variables that enable designers to partially decompose the search

problem. This yields a number of smaller, coordinated search problems. Different

formulations of this general strategy are useful depending upon the desired

decomposition. Collaborative optimization (CO) methods are based on decomposing the

system according to various analyses (i.e., different computational models) (Alexandrov

and Lewis 1999, Kroo and Manning 2000, Gu, et al. 2002). Multidisciplinary design

optimization (MDO) methods are based on decomposing the system analysis according to

various analysis disciplines (e.g., statics, dynamics, thermal) (Cramer, et al. 1994,

Sobieszczanski-Sobieski and Haftka 1997). Analytical target cascading (ATC) involves a

 44

system-subsystem hierarchical decomposition (Kim, et al. 2003, Michelena, et al. 2003,

Kokkolaras, et al. 2004).

Although these methods clearly are system-wide in scope, they actually operate at

a relatively low level of abstraction compared to the decisions considered in this research.

Figure 2.4 is an illustration of how a typical collaborative optimization framework

(Figure 2.4(a), which is adapted from (Kroo and Manning 2000)) compares to the

decision framework investigated in the current research (Figure 2.4(b)). The CO

framework involves several coordinated optimization sub-problems, and designers

formulate each of these sub-problems in terms of low-level design details—i.e., what are

called system variables in the DSP literature. Due to system-level interactions and

decision objectives, designers may have to re-execute the lower-level optimization

System
Coordinator

System
Coordinator

Subspace
Optimizer

Subspace
Optimizer

Disciplinary
Analysis

Disciplinary
Analysis

Subspace
Optimizer

Subspace
Optimizer

Disciplinary
Analysis

Disciplinary
Analysis

Subspace
Optimizer

Subspace
Optimizer

Disciplinary
Analysis

Disciplinary
Analysis

Collaborative Optimization Framework

System
Coordinator

System
Coordinator

Subspace
Optimizer

Subspace
Optimizer

Disciplinary
Analysis

Disciplinary
Analysis

Subspace
Optimizer

Subspace
Optimizer

Disciplinary
Analysis

Disciplinary
Analysis

Subspace
Optimizer

Subspace
Optimizer

Disciplinary
Analysis

Disciplinary
Analysis

System
Coordinator

System
Coordinator

Subspace
Optimizer

Subspace
Optimizer

Disciplinary
Analysis

Disciplinary
Analysis

Subspace
Optimizer

Subspace
Optimizer

Disciplinary
Analysis

Disciplinary
Analysis

Subspace
Optimizer

Subspace
Optimizer

Disciplinary
Analysis

Disciplinary
Analysis

Subspace
Optimizer

Subspace
Optimizer

Disciplinary
Analysis

Disciplinary
Analysis

Subspace
Optimizer

Subspace
Optimizer

Disciplinary
Analysis

Disciplinary
Analysis

Subspace
Optimizer

Subspace
Optimizer

Disciplinary
Analysis

Disciplinary
Analysis

Collaborative Optimization Framework

Component
Optimizer

Component
Optimizer

Component
Analysis

Component
Analysis

Component
Optimizer

Component
Optimizer

Component
Analysis

Component
Analysis

Component
Optimizer

Component
Optimizer

Component
Analysis

Component
Analysis

System-Level OptimizerSystem-Level Optimizer

System-Level Model
(Composed Tradeoff Models)

System-Level Model
(Composed Tradeoff Models)

System-Level Decision

Component
Optimizer

Component
Optimizer

Component
Analysis

Component
Analysis

Component
Optimizer

Component
Optimizer

Component
Analysis

Component
Analysis

Component
Optimizer

Component
Optimizer

Component
Analysis

Component
Analysis

Component
Optimizer

Component
Optimizer

Component
Analysis

Component
Analysis

Component
Optimizer

Component
Optimizer

Component
Analysis

Component
Analysis

Component
Optimizer

Component
Optimizer

Component
Analysis

Component
Analysis

System-Level OptimizerSystem-Level Optimizer

System-Level Model
(Composed Tradeoff Models)

System-Level Model
(Composed Tradeoff Models)

System-Level Decision

System-Level OptimizerSystem-Level Optimizer

System-Level Model
(Composed Tradeoff Models)

System-Level Model
(Composed Tradeoff Models)

System-Level OptimizerSystem-Level Optimizer

System-Level Model
(Composed Tradeoff Models)

System-Level Model
(Composed Tradeoff Models)

System-Level Decision

(a) (b)

Figure 2.4: Distinction between (a) a CO framework and (b) system-level decision
making.

 45

problems many times. In this sense, a CO framework is a closed-loop structure. An ATC

framework operates on a similar principle—it is a closed-loop decomposition of a larger

optimization problem—but differs in the structure of the decomposition.

In contrast with collaborative optimization and related approaches, the system-

level decision making procedure investigated in this research is open loop. Rather than

coordinate several lower-level problems interactively, designers use a predictive

procedure to identify specifications that are communicated to lower-level problem

solvers. The idea is that designers can use a system-level model composed from

component-level tradeoff models to predict the most preferred component-level attributes

accurately. Designers at the component level can use these predictions as design-to

requirements when developing the individual components (this part of the problem is

beyond the scope of the current research). Assuming these predictions are reasonably

accurate, the need additional coordination among the sub-problems is minimized.

Furthermore, abstracting the system in this way allows designer to make system-level

decisions in the absence of the disciplinary analysis models required in the CO

framework.

Ultimately, one should not view the system-level decision making perspective

strictly as competing with the CO, MDO and ATC literature. Opportunities exist for

combining both approaches. For example, one can apply any of those approaches at the

lower levels of the procedure illustrated in Figure 2.4(b) (e.g., the “component” may be a

large subsystem that would benefit from a multi-level approach to optimization).

 46

2.2.4 Tradeoff Visualization in Design

Several authors investigate the use of efficient set information in the context of

design decision making. These approaches typically require designers to model a system

using a an engineering analysis model which they sample at different settings of the

design variables. The model outputs are system-level attribute vectors, which the

designer filters using the classical Pareto dominance criterion. The resulting efficient set

is the basis for visualization and tradeoff analysis.

Representing Concepts with Efficient Sets

Mattson and Messac (2003) investigate a method for conceptual design in which a

designer represents each concept using a different efficient set and makes decisions by

comparing the sets. Ulrich (2005) applies a similar method to evaluate technology

options in the context of mobility scooters. Both Gurnani and coauthors (2006) and

Ferguson and coauthors (2005) use an efficient set to abstract more complex engineering

models in order to improve preliminary design efforts. They use a model fit to efficient

set data in order to speed computation during design exploration and to ensure the

solution will be technically feasible. Thus, their approach has similarities with the one

investigated in the current research. However, they rely on a different dominance

criterion and do not perform model composition.

Although these approaches are useful in specific situations, they are poor general

solutions to the problem of making system-level decisions. They require that designers

already have a validated model of the entire system in question or have access to ample

observational data about implementations of similar systems. This may be the case for

systems that are simple or common, but these assumptions typically are not met for

 47

systems that are complex or novel. Model composition is not a viable solution under

these approaches due to their reliance on classical Pareto dominance (see Chapter 3).

Visual Decision Methods

Some authors use efficient sets in concert with visualization tools to support

decision making and design exploration. Balling (1999) advocates making design

decisions by visualizing the efficient set and choosing a solution based on the visual

information (as opposed for formalizing a utility function). He refers to this as “design by

shopping” since the selection method is analogous to how one might shop at a store. One

also can find similar arguments in favor of making decisions based on visualizations of

the efficient set from outside the design community (Lotov, et al. 2004). Other work on

tradeoff visualization includes methods to steer optimization (Winer and Bloebaum 2002)

and design space exploration (Yukish, et al. 2007).

One objection to visual decision making is that it should not matter. That is, a

decision maker should have preferences that exist independent of the available

alternatives. The proponents of visual decision methods would counter that human

decision makers do not behave in such an idealized manner and that this information

really is relevant.

Philosophical disagreements aside, there are practical limitations to visual

decision methods. First, they suffer the same drawbacks as the other tradeoff modeling

approaches—they require preexisting models of the system or ample data about prior

implementations of similar systems. Secondly, and perhaps more problematically, the

visual decision methods do not scale beyond a handful of decision attributes. Problems

involving two or three attributes are straightforward and advanced visualization

techniques exist that push the practical limit up to perhaps five or six (e.g., see the tool

 48

described in (Stump, et al. 2004)). However, visualization-based decision methods are

impractical beyond this point.

Dealing with Uncertainty

Another limitation of the preceding modeling approaches is that they include no

means by which designers can consider uncertainty in their decisions. These methods rely

on the classical Pareto dominance criterion, which is an inherently deterministic

construct.

Mattson and Messac (2005) extend their concept modeling approach to support

decisions involving uncertainty. However, their approach remains rooted in the Pareto

domination construct. In their formulation, one constructs a Pareto-like frontier in the

space of the attribute means; variation tends to “shift” the location of this frontier.

Moreover, they treat risk essentially by incorporating a safety factor that is related to

variance. They include no means by which designers can consider tradeoffs between, say,

average performance and risk.

2.3 Conclusions and Chapter Summary

Based on this review of the literature, one can conclude that a gap exists between

the accepted fundamental understanding of system-level decision making and the practice

of modeling system-level decision alternatives. The consensus is that a systems

realization process consists of a chain or interrelated decisions and that designers should

consider the consequences of a decision alternative in light of the decisions that will

follow it. However, prior approaches to modeling system-level decision alternatives have

significant limitations. Thus, there is motivation to study new approaches and techniques.

One could argue that the system-level decision making situation is not all that

dire. After all, designers clearly make such decisions in practice and quite often realize a

 49

system that operates as desired. Designers routinely apply sizing procedures, methods

based on qualitative models, system-level parametric optimization and tradeoff

visualization to design problems and it would be foolish to dismiss these approaches

outright. However, none of them are good general solutions for system-level decision

making as it is defined in this research. They lack a quantitative basis or require a well-

defined system. Therefore, they are inappropriate for design exploration over a space of

partially-defined decision alternatives.

 50

CHAPTER 3:

PARAMETERIZED PARETO DOMINANCE

AND PREDICTIVE TRADEOFF MODELING

The preceding chapters are about the motivation and vision for this research. This

chapter is the first step toward formalizing and studying the modeling approach

introduced in Chapter 1. This approach is based on the idea of composing a system-level

model from predictive tradeoff models of its components. The tradeoff models enable

designers to predict the component-level attributes they would achieve should they

implement the system according to their preferences. The topic for this chapter is how

designers can generate these component-level predictive tradeoff models.

A the core of this chapter is a new decision-theoretic construct called

parameterized Pareto dominance. This is an extension of the classical Pareto dominance

criterion and is instrumental in the generation of reusable component-level tradeoff

models. Recall Research Question 1 from Chapter 1:

RQ1. How can designers conclude that one implementation of a component

dominates another when they lack specific knowledge of the system in which

the component will be used?

Without an answer to this question, designers have no basis for generating reusable

component-level tradeoff models. Parameterized Pareto dominance is a critical part of the

hypothesized answer:

H1. Designers can use the parameterized Pareto dominance rule to eliminate

attribute data about dominated implementations of a component.

 51

This chapter contains an explanation of the limitations of classical Pareto

dominance, a formal definition of the new dominance rule, proof that it is mathematically

sound and a demonstration that is an appropriate basis for tradeoff modeling. The

demonstration is a gearbox design problem that involves both concept selection and

requirements allocation decisions. Tradeoff models are generated from parameterized

efficient set data and used during decision making. The decision results compare

favorably with results obtained using classical optimization methods.

Chapter organization is as follows. Section 3.1 includes an explanation of

dominance analysis, formal definitions and properties of the classical and parameterized

Pareto rules, and an explanation of the shortcomings of the classical rule. Section 3.2 is a

description of a tradeoff modeling methodology based on the use of parameterized Pareto

dominance. Section 3.3 is an explanation of how to formulate decision problems using a

tradeoff model. Section 3.4 contains the gearbox design problem demonstration. Section

3.5 addresses the question of whether it is necessary, as a practical matter, to perform

dominance analysis. This question is answered in the affirmative.

3.1 Dominance Analysis

A dominance criterion is a mathematical test that indicates whether one

alternative is assured of being more preferred to another based on limited information

about a decision maker’s preferences on a multi-attribute decision problem. The

significance is that it allows a decision maker to draw conclusions in situations when

formalizing preferences precisely. Dominance analysis is the practice of applying a

dominance criterion.

 52

The classical Pareto criterion is by far the most widely used of such tests, but

others exist and each requires different assumptions about the structure or characteristics

of decision maker preferences. For example, Yu (1974) describes a cone-based extension

of Pareto dominance that Hunt and coauthors (2007) apply to problems in which a

decision maker knows something about the relative importance of different decision

attributes. Other dominance criteria are appropriate for problems in which the data is

uncertain. These are reviewed in Chapter 8, which is an expansion of the ideas in this

chapter to deal with uncertainty.

3.1.1 Multi-Attribute Decisions

Before defining any dominance criteria, it is necessary to establish some notation

regarding multi-attribute decisions. For decisions under certainty, one can state a multi-

attribute decision problem as (Keeney and Raiffa 1993, Marler and Arora 2004):

()()()

()

()

* arg max

subject to

P

V
∈

=

≤

=

x

x F x

g x 0

h x 0

�

where P∈x � is a vector of design variables; () () () ()1 2, , , NF F F=   F x x x x… , such

that () : P

iF ⋅ →� � for 1i N= … , is a vector-valued design model that relates design

variables to decision attributes (also called criteria and denoted ()i iz F= x for 1i N= …);

()⋅g and ()⋅h are vector-valued inequality and equality constraints, respectively;

: NV →� � is a formalization of a decision maker’s preferences for making tradeoffs

among the competing objectives; and *x is the most preferred design vector. For

 53

notational brevity, let X denote the set of feasible design vectors as indicated by the

equality and inequality constraints. Thus, one can restate the above as:

 ()()* arg maxV
∈

=
x X

x F x . (3.1)

The function ()V ⋅ is known variously as an objective function, aggregation function,

value function or utility function. There are many approaches for formalizing ()V ⋅ .

According to multi-attribute value theory, a decision maker elicits ()V ⋅ to be sound with

respect to stated decision preferences (i.e., such that if a decision maker prefers the

consequences of ′x to ′′x , then ()() ()()V V′ ′′>F x F x ; see (Fishburn 1965, Keeney and

Raiffa 1993) for elicitation procedures). Researchers also describe various means for

defining value functions that are not based on the elicitation of decision-maker

preferences (e.g., see the surveys of (Otto and Antonsson 1991, Marler and Arora 2004)).

The results of this research hold regardless of how one determines ()V ⋅ .

3.1.2 Classical Pareto Dominance

The classical Pareto dominance criterion is based on the notion of market

efficiency described in the early 20th century by the economist Vilfredo Pareto (1971). In

that context, one market situation dominates another if it makes at least one person better

off without making anyone worse off. Transformed into engineering terms, one decision

alternative dominates another if it is better in at least one attribute and no worse in any

other.

Suppose a decision maker defines his or her value function, ()V ⋅ , such that it is

monotonically increasing in each decision attribute, iz for 1i N= … . Since larger values

 54

of ()V ⋅ are more preferred (implied by the maximization operator in Equation (3.1)),

“better” in this case means larger attribute values. Let []1 2, , , Nz z z=z … denote a vector

of attributes and Z denote the set of achievable attribute vectors. This leads to the

following definition:

Definition 3.1 (Classical Pareto Dominance): An alternative with attribute

vector ′′∈z Z is said to be Pareto dominated by one with attribute vector ′∈z Z

if and only if 1i iz z i N′ ′′≥ ∀ = … and 1i iz z i N′ ′′> ∃ = … .

In many practical situations, a decision maker can formulate problems such that the

monotonicity condition on ()V ⋅ holds by defining the top-level attributes (i.e., the iz)

appropriately. Thus, the significance of classical Pareto dominance in this context is that

a dominated alternative cannot be the most preferred solution. This is summarized in the

following theorem. Let DOM′ ′′z z denote that ′z dominates ′′z according to Definition

1. Then one has (see Appendix A for the proof):

Theorem 3.1: If a value function, ()()V =z F x , is monotonically increasing in

each attribute and DOM′ ′′z z for two alternatives with attribute vectors

,′ ′′∈z z Z , then () ()V V′ ′′>z z .

Some authors develop classical Pareto dominance from a slightly different perspective,

but the preceding is equally valid. For example, Marler and Arora (2004) describe the

Pareto set as the set of possible solutions to the followingc:

c Many authors, including the work cited, express this using minimization. However, we use maximization
without loss of generality in order to maintain consistency with Equation (3.1).

 55

 () () () ()()1 2max , , , NF F F
∈

=   
x X

F x x x x… , (3.2)

where the terms are defined as above and ()i iz F= x for 1i N= … . One interprets this as

having a set of solutions—i.e., the efficient set—from which a decision maker will make

a final selection using some indeterminate method. This is analogous to assuming that a

decision maker will choose using a monotonic value function, but has not yet elicited it

precisely.

3.1.3 Limitations of Classical Pareto Dominance

In the current context—of using efficient sets or tradeoff models as an abstract

representation for a design concept or system architecture—the crucial limitation of

classical Pareto dominance lies in what a decision maker must do to ensure that their

value function is monotonic in every attribute. As noted in the previous section, it often is

possible for a decision maker to reformulate the attributes of a problem such that

preference increases monotonically with each. However, this reformulation almost

always is problem-specific, which creates challenges when one wishes to use efficient

sets as a basis for a general and reusable representation.

In order to promote reusability of these models, designers must formulate them in

terms of relatively generic attributes that pertain more to the system being modeled than

to any particular decision about it. This is analogous to how design catalogs list parts

using general characteristics of the part; designers must relate these to their specific

decision problem. For example, one might describe hydraulic pumps in terms of their

displacements, maximum operating pressures, mechanical and volumetric efficiencies

and masses. However, a designer would formulate a decision involving hydraulic pumps

 56

in terms of design objectives. For an excavator, these might include maximizing the load

it can lift, its operating speed or fuel efficiency.

The problem with classical Pareto dominance is that it often is unclear how to

apply it independently of a particular decision problem. Suppose designers wish to

abstract gearbox concepts using tradeoff models. Attributes relevant to gearboxes might

include mass, mechanical efficiency, reliability, expected lifetime, manufacturing cost

and, most importantly, gear ratio. Most of these correspond to monotonic preferences—

rarely would a designer not prefer less mass, more reliability, etc.—but gear ratio poses a

special problem in that the most preferred ratio is problem-dependent. Because designers

cannot establish a problem-independent preference ordering of this attribute, they cannot

apply classical Pareto dominance in order to generate a reusable tradeoff model.

This problem can exist even when creating tradeoff models at high levels of

abstraction. Suppose designers create a tradeoff model for various implementations of an

excavator for use in high-level decision making (defining product families, selecting a

system architecture, allocating requirements, etc.). Hazelrigg (1998) argues that designers

should formulate decisions as a profit-maximization problem. Taking this approach

requires designers to relate their multi-attribute excavator model to profit through one or

more models (for manufacturing, supply chain, customer demand, etc.). If they are to

apply classical Pareto dominance when modeling the excavator, they must be sure that

profit is monotonically increasing in each excavator attribute. Whether this is possible

depends on the structure of the profit-computing models. However, it seems unlikely to

be the case given the potential complexity of the models involved.

 57

3.1.4 Parameterized Pareto Dominance

Parameterized Pareto dominance is an extension intended to address the limitation

of classical Pareto dominance in the context of tradeoff modeling. The name follows

from the interpretation of the corresponding efficient set: a parameterized Pareto set

consists of multiple classical Pareto sets, any of which one can recover by specifying a

vector of parameters.

The new rule requires one to distinguish between two types of attributes: those for

which any associated preference ordering is monotonic and those for which it is not. The

former category, which are referred to as dominator attributes, includes things such as

mass, cost, efficiency and reliability—all are characteristics of a system that any designer

would prefer strictly more (or less) of, all other factors being equal, and for which the

classical Pareto assumptions hold. The latter category, called the parameter attributes,

include attributes that associate commonly with preferences that are non-monotonic or

likely to be influenced in opposing directions by competing objectives. One cannot

determine a preference ordering for such attributes without problem-specific information.

To define the parameterized Pareto dominance, one requires notation to account

for the two categories of attributes. For a system with attributes indexed 1 through N , let

D denote the non-empty set of indices for the dominator attributes and P denote the set

of indices corresponding to parameter attributes. Note that { }1D P N∪ = … and

D P∩ = ∅ .

Definition 3.2 (Parameterized Pareto Dominance): An alternative having

attributes ′′∈z Z is parametrically Pareto dominated by one with attributes

′∈z Z if i iz z i P′ ′′= ∀ ∈ , i iz z i D′ ′′≥ ∀ ∈ and i iz z i D′ ′′> ∃ ∈ .

 58

Notice that this rule essentially applies the classical rule to the dominator attributes

provided the parameter attributes are equal; one solution cannot dominate another by this

rule if the parameter attributes are not equal. Also notice that the parameterized and

classical Pareto dominance rules are equivalent if and only if there are no parameter

attributes (i.e., if P = ∅).

Like the classical rule, the significance of parameterized Pareto dominance in the

current context is that decision makers can use it to identify and eliminate alternatives

that cannot possibly be their most preferred. Let PDOM′ ′′z z denote that ′z

parametrically Pareto dominates ′′z .

Theorem 3.2: If a value function, ()()V =z F x , is monotonically increasing in

every dominator attribute and PDOM′ ′′z z for two alternatives with attribute

vectors ,′ ′′∈z z Z , then () ()V V′ ′′>z z .

A proof of this statement is provided in Appendix A.

The task of determining which attributes one should model as parameters and

which to model as dominators requires some domain expertise. When generating a

tradeoff model, designers should consider the types of problems in which they are likely

to use it. A survey of these problems should reveal most of the parameter attributes that

are relevant. This procedure is demonstrated in the gearbox design problem in Section 3.4

as well as the example problems of Chapter 6 and Chapter 7. However, before tackling

design problems it is necessary to discuss how to generate tradeoff models from efficient

set data and how to formulate decisions in terms of tradeoff models.

 59

3.2 A Methodology for Generating Tradeoff Models

Designers can create tradeoff models in two ways: from data sources and from

other tradeoff models.

3.2.1 Generating Tradeoff Models from Data

Figure 3.1 is a summary of a data-driven methodology for generating tradeoff

models. With the exception of the dominance analysis step, this phase is similar to other

predictive modeling procedures (e.g., see (Hand, et al. 2001, Kutner, et al. 2005, Witten

and Frank 2005)). The main concerns are defining what data to collect, how to validate

the data prior to generalization and how best to generalize it into a valid continuous

model. What follows is a description of the major steps in this methodology. As with any

predictive modeling process, some iteration of the steps may be necessary.

Step 1: Model Planning

In this step, one’s objective is to determine precisely what to model. This includes

deciding which component to model and which attributes to use when modeling it. The

attributes should be properties of the component about which designers typically have

preferences (e.g., reliability, technical specifications) or use to compute other attributes

for which they have preferences (e.g., cost, used to compute profit). There is no firm rule

for what qualifies, but a reasonable heuristic is to include those properties that would be

valid descriptors of any possible implementation of the component and avoid ones that

are implementation-specific. Also, attributes appearing in spec sheets commonly are good

choices since the reason they are listed is because designers tend care about them.

Designers also must classify each attribute as a dominator or a parameter. For the

dominators, they also must identify a preference ordering for it (prefer larger values or

 60

Step Description

1. Model planning Decide what to model and how to model it. Identify a type of
component to model and the attributes designers typically
associate with it in a decision-making context. Classify attributes
as dominators or parameters.

2. Data collection Gather data about components that fall within tradeoff model
scope. Possible data sources: published datasheets and catalogs,
manufacturers and vendors, experimental test data, and
mathematical models of a component.

3. Data validation Verify that data fits tradeoff model scope. Data should appear
plausible upon inspection by an expert. Examine for outliers. If
necessary, use clustering analysis to re-scope into multiple
tradeoff models. Many texts cover the required data analysis
methods (e.g., (Hand, et al. 2001, Kutner, et al. 2005, Witten and
Frank 2005)).

4. Dominance
analysis

Eliminate data points that are dominated by the parameterized
Pareto dominance criterion.

5. Domain
characterization

Identify valid domain for model inputs to prevent automated
search routines from extrapolating too far beyond the data. Often
more complex than upper and lower bounds. See Chapter 4.

6. Model fitting Fit a tradeoff model to the non-dominated data using function
approximation (e.g., regression, artificial neural network) or
interpolation (e.g., Kriging). Model computes one or more
attributes as a function of the others. Choice of inputs and outputs
is arbitrary.

7. Model validation Validate the model fit. For regression models, standard statistical
analyses are reasonable. For other function approximation
methods (e.g., artificial neural networks) and interpolation
methods (e.g., Kriging), the hold-out or cross-validation
approaches are more appropriate.

Figure 3.1: Summary of the procedure for generating predictive tradeoff models.

 61

prefer smaller values). Note that these preference orderings assume all other attributes are

equal (i.e., for a fixed cost and fuel efficiency, would you prefer more or less power?).

One considers tradeoffs between attributes when making a particular decision.

Step 2: Data Collection

Identify potential data sources and gather data. If a validated model of the

component exists, one can obtain data by sampling the model. Research exists on

improving the sampling and representation of efficient set data (e.g., (Wilson, et al. 2001,

Messac and Mattson 2004, Berezkin, et al. 2006, Harada, et al. 2007)). These approaches

are intended for use with classical Pareto dominance, but one can extend them to work

with parameterized Pareto dominance.

For model generation from observational data, suitable data sources depend on the

component of interest. Parts catalogs, product data sheets, product literature and vendor-

supplied information all can be useful. One of the main challenges in this setting is to

ensure that all data sources are consistent with the attribute definitions. For example,

some component pricing data is a function of the purchase quantity. Similarly, two

manufacturers may measure or calculate particular attributes differently (e.g. lifetime

estimates using different operating assumptions). Designers must do their best to ensure

semantic consistency.

Step 3: Data Validation

This step is easily overlooked, but highly important. Designers must validate the

correctness and completeness of their data. They should remove from the data set

samples for which some attributes are missing. They also should remove duplicates and

any obvious outliers. Numerous data mining techniques exist for identifying possible

outliers (see (Han and Kamber 2001, Hand, et al. 2001, Kutner, et al. 2005)). Another

 62

opportunity for eliminating outliers exists during the domain description step. However,

removing obvious outliers early on simplifies subsequent steps of the process.

Step 4: Dominance Analysis

During dominance analysis, one’s objective is to eliminate data about any designs

that no rational designer would choose as an implementation for the concept of interest.

This is achieved using the parameterized Pareto dominance rule (Definition 3.2). The

preceding section is a description of the motivation for and mathematical foundations of

this rule.

Step 5: Domain Description

One’s objective in this step is to prevent search routines from extrapolating too far

beyond the data during decision making phase. A fitted model will return predictions for

any inputs values, regardless of whether these predictions are meaningful. Sometimes,

one can describe the valid domain of a model using upper and lower bounds on the model

inputs. Although these prove sufficient for the gearbox design problem of Section 3.4,

this approach often is unreliable. A new, general approach is described in Chapter 4.

An analysis of the domain may reveal multiple clusters of data between which

few points exist. In such cases, it may be advisable to fit a different model to each cluster.

The potential advantage is improved fitting accuracy compared to one model fit to both

clusters. In this case, one applies steps 6 and 7 to each cluster individually. Note that even

if fitting a single model to all clusters, the domain may be divided into disjoint regions.

Step 6: Model Fitting

Model fitting involves two critical decisions: (1) choosing inputs and outputs for

the model and (2) choosing a mathematical structure for the model. Both are influenced

strongly by convenience and effectiveness.

 63

In principle, the only restriction on inputs and outputs is that parameter attributes

must be inputs. This is necessary to ensure a functional relationship exists (i.e., avoiding

a many-to-one relationship) and to reflect the meaning of a parameterized efficient set

(i.e., for a parameterized model, the parameters should be inputs). Beyond this, the choice

is a matter of what is convenient for the designer and what yields good predictive

accuracy.

The mathematical structure of the generalizing function is a more critical choice.

Several alternatives are available, including regression models, artificial neural networks

and interpolators. No general rule exists for selecting a model structure, though some

approaches may be impractical depending on the data. For example, interpolators may be

cumbersome if there are too many data points. However, unless carefully constructed,

regression models tend to “average out” key features of a tradeoff relationship. This

behavior is desirable for many statistical estimation problems, but not for tradeoff

modeling where “elbows” and other irregular relationships often are the critical

determinants in the location of the most preferred tradeoff.

A third consideration is whether or not there is an advantage to fit different

models to different subsets of the data. This can be the case when multiple clusters of

data exist. This relates to the domain description problem. See Section 4.4 for a

discussion.

Step 7: Model Validation

Model validation relates closely with model fitting and one may prefer to think of

them as one larger step in the process. For regression models, standard statistical analyses

are reasonable. See (Kutner, et al. 2005). For other function approximation methods (e.g.,

artificial neural networks) and interpolation methods (e.g., Kriging), the hold-out or

 64

cross-validation approaches are more appropriate (Han and Kamber 2001, Hand, et al.

2001).

3.2.2 Generating a Model from Other Tradeoff Models

It can be advantageous from a computational perspective for designers to abstract

a single tradeoff model from several existing tradeoff models. This is possible when the

tradeoff models represent different implementation strategies for a component or system

that achieves the same function. For example, designers could combine tradeoff models

for four-cylinder, V6 and V8 engines to obtain a generic engine tradeoff model. This also

assumes that all the tradeoff models deal with the same attributes, which is somewhat

likely since they represent the same functional component.

The computational advantage comes during decision making. Rather than search

each tradeoff model independently, designers can search the abstract model. This helps to

reduce the combinatorial explosion that can occur in system-level decision making. As

explained in Section 3.3, designers are able to identify which of the implementation

strategies is most preferred based on the search results. For example, designers could

identify that a V6 engine is the most preferred using an abstract engine tradeoff model.

Figure 3.2 is a summary of the procedure for generating an abstract tradeoff

model from other tradeoff models. It is similar to the procedure from Figure 3.1. The

main difference is the data source prior to dominance analysis. Designers should sample

all tradeoff models at the same sites—i.e., same input values. This makes it easier to

compare the models during dominance analysis. Design of experiments or other efficient

sampling methods are advisable in order to achieve a good fit at a minimum of sample

points.

 65

Step Description

1. Gather Tradeoff Models Gather tradeoff models for different implementation
concepts of the same functional unit. Verify that they all use
the same attributes.

2. Sample Tradeoff
Models

Sample the tradeoff models at the same sample sites. Design
of experiment techniques can be used.

3. Dominance analysis Eliminate data points that are dominated by the
parameterized Pareto dominance criterion.

4. Domain
characterization

Identify valid domain for model inputs. This will be union
of domains of constituent tradeoff models.

5. Model fitting Same as Step 6 of Figure 3.1.

6. Model validation Same as Step 7 of Figure 3.1.

Figure 3.2: Summary of the procedure for generating an abstract tradeoff models from
other tradeoff models.

3.3 Formulating Decisions using Tradeoff Models

This section is an explanation of how designers can formulate a design decision in

terms of a tradeoff model. This chapter covers requirements allocation and selection

decisions, but is limited to the case in which designers represent only one component

using a tradeoff model. The formulation for multiple composed tradeoff models is given

in Chapter 5.

The discussion that follows is organized into three parts. First is a rudimentary

decision formulation in which a decision maker has preferences directly for the

component-level attributes (i.e., the component-level attributes and the system-level

attributes are equivalent). Next is a formulation in which one accounts for

transformations of the component-level attributes into system-level attributes (e.g.,

computing profit using component costs). The third formulation is a special case in which

 66

a decision maker abstracts several tradeoff models (each representing a different

implementation concept) into a single tradeoff model. Doing so has a computational

advantage and is possible when the model that transforms component-level attributes to

system-level attributes is the same for all of the implementations.

3.3.1 Rudimentary Formulation

Requirements Allocation Decisions

A requirements allocation decision is a straightforward specialization of the

general decision problem stated in Equation (3.1). Rather than search over the space of

design variables, one searches over the space of component-level attributes as constrained

by the tradeoff model.

Let ()⋅T denote the tradeoff model associated with a component of interest.

Furthermore, let z� denote a vector of inputs to the tradeoff model and ẑ denote the

attribute vector output by the tradeoff modeld. Finally, let z denote the complete vector

of component-level attributes such that ()ˆ,= =  z z z T z� � . If Z� denotes the set of valid

tradeoff model inputs (i.e., it is the set indicated by the domain description), then one can

formulate a requirements allocation decision as:

 ()* * *, =  z z T z� � ,

where

 ()()* arg max ,V
∈

=   
z Z

z z T z
��

� � � .

d Note that a tradeoff model often will output a scalar. However, the decisions formulations are given here
in their most general form.

 67

System Selection Decisions

A system selection decision is a generalization of a requirements allocation

decision. The approach is to choose the alternative that has the most preferred

requirements allocation. In essence, it is a nested search problem.

Suppose there are L distinct alternatives from which designers must choose. Let

1l L= … be an index denoting each of these alternatives. Thus, ()l ⋅T is the tradeoff

model corresponding to the thl discrete alternative and lZ� is the corresponding set of

valid model inputs. The most preferred requirements allocation for the thl alternative is

 ()* * *,l l l l
 =  z z T z� � ,

where

 ()()* arg max ,
l l

l l l lV
∈

=   
z Z

z z T z
��

� � � .

Thus, the most preferred system alternative is

 ()* *

1

arg max l
l L

l V
=

= z
…

.

3.3.2 General Formulation

In general, a decision maker may formulate system-level decisions in terms of

attributes that are transformations of component-level attributes. One example is a

preference to maximize profit, where profit is computed from the component-level

attribute of cost. Another example occurs in the gearbox example of the next section.

Designers have a preference for maximizing winnings in a race, which they compute as a

function of gearbox attributes (gear ratio, cost and reliability). Reformulating the

preceding to address this situation is straightforward, but requires some additional

notation.

 68

Let ()l ⋅S denote a system model for the thl system alternative that computes

system-level attributes in terms of component-level attributes. Let z denote a vector of

system-level attributes and ly represent a vector of component-level attributes for the thl

system alternative. Thus, ()l l=z S y .

As in the simpler formulation, designers use tradeoff models to search the space

of component-level attributes. Let lY� denote the set of valid inputs to tradeoff model

()l ⋅T . Thus, (),l l l=   y y T y� � and ()(),l l l=   z S y T y� � . For a particular system

alternative, one can predict the most preferred requirements allocation as

 ()* * *,l l l l
 =  y y T y� � , (3.3)

where

 ()()()* arg max ,
l l

l l l l lV
∈

=   
y Y

y S y T y
��

� � � . (3.4)

Given this, the most preferred system alternative is

 ()()* *

1

arg max l l
l L

l V
=

= S y
…

. (3.5)

It is worth noting that the system model, ()l ⋅S , plays a significant role in determining

whether it is best to treat a component-level attribute as a dominator or as a parameter.

Chapter 5 contains a more thorough discussion of this topic and includes a mathematical

analysis that indicates when an attribute is a dominator and it is a parameter.

3.3.3 Formulation using an Abstract Tradeoff Model

Suppose designers of a hydraulic system wish to choose a type of pump and

allocate requirements to the system components. Several types of pumps exist—gear

 69

pumps, vane pumps and piston pumps are a few examples—and designers might have a

tradeoff model for each type of pump. Provided the system model, ()⋅S , is the same

regardless of the type of pump, the solution procedure from the previous section

(Equations (3.3) through (3.5)) is inefficient. It requires that designers solve an

optimization problem for each type of pump. They can do better by abstracting the

different tradeoff models, the ()l ⋅T for 1l L= … , into a single abstract model, ()0 ⋅T .

Figure 3.3 is an illustration of the distinction between the two approaches.

The requirements allocation problem is similar to before, with the main difference

being that there is only one system model, ()⋅S , and one tradeoff model, ()0 ⋅T , to

consider. Formally, one can state the most preferred allocation as

 ()* * *

0, =  y y T y� � , (3.6)

where

 ()()()
0

*

0arg max ,V
∈

=   
y Y

y S y T y
��

� � � , (3.7)

And 0Y� is the domain description for the abstract tradeoff model, ()0 ⋅T . Note that this

entails a single search problem over the abstract tradeoff model.

To make a selection decision, designers must determine to which of the source

tradeoff models the solution to Equation (3.7) corresponds. Designers can accomplish

this by computing each of the source tradeoff models at the solution point. The

appropriate decision is to choose the source tradeoff model that most closely matches the

solution obtained by solving the abstract model. One can formalize this as

 () ()* * *

0
1

arg min l
l L

l
∈

= −T y T y
…

� � . (3.8)

 70

System Model 1System Model 1

Tradeoff Model 1Tradeoff Model 1

OptimizerOptimizer

1y�

z

()* * * *

1 1 1 1, , ,Vz z y y�

()1 ⋅T

()1 ⋅S

()1 1 1 1,=   y y T y� �

System Model 2System Model 2

Tradeoff Model 2Tradeoff Model 2

OptimizerOptimizer

2y�

z

()* * * *

2 2 2 2, , ,Vz z y y�

()2 ⋅T

()2 ⋅S

()2 2 2 2,=   y y T y� �

System Model LSystem Model L

Tradeoff Model LTradeoff Model L

OptimizerOptimizer

Ly�

z

()* * * *, , ,L L L LVz z y y�

()L ⋅T

()L ⋅S

(),L L L L=   y y T y� �

…

Select the 1l L∈ … with the largest ()()* *

l l lV =z S y

System Model 1System Model 1

Tradeoff Model 1Tradeoff Model 1

OptimizerOptimizer

1y�

z

()* * * *

1 1 1 1, , ,Vz z y y�

()1 ⋅T

()1 ⋅S

()1 1 1 1,=   y y T y� �

System Model 2System Model 2

Tradeoff Model 2Tradeoff Model 2

OptimizerOptimizer

2y�

z

()* * * *

2 2 2 2, , ,Vz z y y�

()2 ⋅T

()2 ⋅S

()2 2 2 2,=   y y T y� �

System Model LSystem Model L

Tradeoff Model LTradeoff Model L

OptimizerOptimizer

Ly�

z

()* * * *, , ,L L L LVz z y y�

()L ⋅T

()L ⋅S

(),L L L L=   y y T y� �

…
System Model 1System Model 1

Tradeoff Model 1Tradeoff Model 1

OptimizerOptimizer

1y�

z

()* * * *

1 1 1 1, , ,Vz z y y�

()1 ⋅T

()1 ⋅S

()1 1 1 1,=   y y T y� �

System Model 1System Model 1

Tradeoff Model 1Tradeoff Model 1

OptimizerOptimizer

1y�

z

()* * * *

1 1 1 1, , ,Vz z y y�

()1 ⋅T

()1 ⋅S

()1 1 1 1,=   y y T y� �

System Model 2System Model 2

Tradeoff Model 2Tradeoff Model 2

OptimizerOptimizer

2y�

z

()* * * *

2 2 2 2, , ,Vz z y y�

()2 ⋅T

()2 ⋅S

()2 2 2 2,=   y y T y� �

System Model 2System Model 2

Tradeoff Model 2Tradeoff Model 2

OptimizerOptimizer

2y�

z

()* * * *

2 2 2 2, , ,Vz z y y�

()2 ⋅T

()2 ⋅S

()2 2 2 2,=   y y T y� �

System Model LSystem Model L

Tradeoff Model LTradeoff Model L

OptimizerOptimizer

Ly�

z

()* * * *, , ,L L L LVz z y y�

()L ⋅T

()L ⋅S

(),L L L L=   y y T y� �

System Model LSystem Model L

Tradeoff Model LTradeoff Model L

OptimizerOptimizer

Ly�

z

()* * * *, , ,L L L LVz z y y�

()L ⋅T

()L ⋅S

(),L L L L=   y y T y� �

…

Select the 1l L∈ … with the largest ()()* *

l l lV =z S ySelect the 1l L∈ … with the largest ()()* *

l l lV =z S y

(a)

System ModelSystem Model

Tradeoff ModelTradeoff Model

OptimizerOptimizer

y�

z

()* * * *, , ,Vz z y y�

()0 ⋅T

()0 ⋅S

()0,=   y y T y� �

Abstracted from

Tradeoff Model 1Tradeoff Model 1

()1 ⋅T

Tradeoff Model 2Tradeoff Model 2

()2 ⋅T

Tradeoff Model LTradeoff Model L

()L ⋅T

…

Select the 1l L∈ …

with the smallest

() ()* *

0 l−T y T y� �

System ModelSystem Model

Tradeoff ModelTradeoff Model

OptimizerOptimizer

y�

z

()* * * *, , ,Vz z y y�

()0 ⋅T

()0 ⋅S

()0,=   y y T y� �

Abstracted from

Tradeoff Model 1Tradeoff Model 1

()1 ⋅T

Tradeoff Model 2Tradeoff Model 2

()2 ⋅T

Tradeoff Model LTradeoff Model L

()L ⋅T

…

Select the 1l L∈ …

with the smallest

() ()* *

0 l−T y T y� �

Select the 1l L∈ …Select the 1l L∈ …

with the smallest

() ()* *

0 l−T y T y� �

(b)

Figure 3.3: Illustration of two procedures for making selection decisions using tradeoff
models. Approach (a) involves an independent optimization problem for each tradeoff
model; approach (b) requires only one optimization problem, but assumes the system
model is the same for all alternatives.

 71

The rationale for Equation (3.8) is that the abstract tradeoff model, ()0 ⋅T ,

essentially is a piece-wise aggregation of the source tradeoff models. Moreover, the

abstract model is equivalent to the source model that is non-dominated at a particular

point in the tradeoff space. Consequently, designers can determine the most preferred

solution by checking to see which of the source models yield nearly the same prediction

as the abstract model.

Note that this formulation assumes all of the source tradeoff models have the

same interface—i.e., they have matching inputs and outputs. This should be reasonable

for functionally equivalent components. If designers can legitimately replace one type of

component with another in a system, then both should be described by the same set of

attributes. It is possible that two tradeoff models involve the same attributes, but do not

use the same inputs and outputs. In this case, designers can reformulate one of the models

to match the other by sampling it and refitting a new relationship to the sample data. This

is reasonable since tradeoff models do not imply causation among the inputs and outputs.

3.4 Gearbox Design Problem

This section is a demonstration of applying tradeoff modeling to a design

problem. There are three main objectives:

• To illustrate the tradeoff modeling approach, including model generation and

decision making.

• To provide evidence that a model fit to parameterized efficient set data can be an

effective representation of the capabilities and limitations of a particular design

component.

 72

• To demonstrate the computational advantage of abstracting heterogeneous

implementations of a functional component into a single tradeoff model.

The topic for this example is a gearbox design problem situated in the context of a small

off-road racing vehicle similar to an SAE Mini Baja care. It is an adaptation of a problem

originally formulated by Bruns (2006), which involves retrofitting an existing vehicle to

include an additional fixed-ratio gearbox. Designer objectives are to maximize profits,

which depend on race winnings and fabrication costs. The design problem is to identify

the best concept for implementing a gearbox in the vehicle transmission and determining

the most preferred specifications for the winning concept. The problem entails both

concept selection and requirements allocation decisions using tradeoff models to

represent each of three physically heterogeneous gearbox concepts.

To show that the tradeoff models are good representations of the gearbox

concepts, the problem also is solved using standard engineering optimization methods.

This is tractable due to the simple nature of the problem, but often this option is

unavailable to systems designers.

3.4.1 Generating Tradeoff Models for Different Gearbox Configurations

Gearbox Concepts

Preexisting vehicle components constrain the gearbox to have co-axial input and

output shafts that rotate in the same direction. Three gearbox concepts are considered.

Figure 3.4 is an illustration of the different configurations.

• Planetary Gearbox (PGB): Basic planetary gear system, with input on sun, output

on arm and fixed ring. Depicted in Figure 3.4(a).

e http://students.sae.org/competitions/bajasae/

 73

Ring (Stationary)

Sun (Input)

Planet Carrier (Output)Ring (Stationary)

Sun (Input)

Planet Carrier (Output)

(a)

Input pinion Output GearInput pinion Output Gear

Input-side View

Input

Output

Input

Output

Top View

(b)

Input-side View

Top View

Input

Output

Input pinion Output Gear

Input-side View

Top View

Input

Output

Input pinion Output Gear

(c)

Figure 3.4: Layout of the three gearbox concepts: (a) planetary gearbox; (b) single-sided
reverted gear train; (c) double-sided reverted gear train.

 74

• Single-Sided Fully-Reverted Gearbox (SGB): Four-gear system with two

identical pinions and two identical gears. Depicted in Figure 3.4(b).

• Double-Sided Fully-Reverted Gearbox (DGB): Similar to single-sided concept,

but includes two paths for torque flow. Depicted in Figure 3.4(c).

Each concept is an abstraction of many possible implementations that conform to a

particular structure. Within each concept, designs have a common parametric structure.

These control the number of teeth on each gear, the gear face widths and the gear module.

Other parameters, such as gear material, quality factor, etc., are assumed the same for all

concepts; it is possible to vary these, but doing so would add little to the demonstration.

All three concepts are defined over a wide domain in their respective design

spaces. The number of teeth on any gear is allowed to vary from 15 to about 50. The

face width, constant for all gears in the same gearbox, is permitted to vary from 6.35 mm

to 8.75 cm. Gear module can take on any of the 25 standard Series 1 values, which range

from 0.1 mm to 5 cm.f

Gearbox Attributes and Preference Classifications

The gearbox tradeoff models account for three attributes.

• Costg: The expense of purchasing the gearbox, computed as a function of the

material and parts involved. Classified as a dominator attribute (less is better).

f Source: http://www.qtcgears.com/Q410/QTC/Q410P337.htm

g Price and cost are closely-related terms. In this research, the cost for a component refers to what the
system designer would have to pay to purchase the component in question. The term “cost” is used because
this is an expense incurred by the system designer. However, one should not confuse this with the cost of
manufacturing the component. From a manufacturer’s perspective, what a system designer calls “cost” is
better described as the “price” for the component (i.e., cost plus markup).

 75

• Reliability: The probability that the gearbox operates without failure, considering

both static and dynamic loading phenomena. Classified as a dominator attribute

(more is better).

• Gear ratio: The ratio of transformation from input to output. Classified as a

parameter attribute. In the current context (power transmission), decision

objectives such as maximizing power and torque throughput result in opposing

preferences for gear ratio.

In general, other attributes may be important for considering gearboxes. For example,

outside dimensions and mass may be important in some problems. However, the three

attributes listed above are sufficient for this example.

Data Generation and Dominance Analysis

A model-based data gathering approach is used for this example (for examples

involving observational data, see Chapter 6 and Chapter 7). For each concept, one can

compute gear ratio and reliability from the design variables using standard engineering

models (see e.g., (Norton 2000)). Each gearbox concept has a different design space

representation. Cost is an empirical relationship based on gear dimensions fit from

catalog data (i.e., it is a traditional application of predictive modeling techniques).

Implementations of each concept are generated by sampling the design space

systematically. Although it is possible to use design-of-experiments (DOE) techniques to

reduce data requirements, the engineering models are computationally simple in this case

and efficiency is not a major concern. Each sample point is verified for technological

feasibility—e.g., vetted against basic geometric constraints—and the ones deemed

feasible are analyzed according to the engineering models to compute the attributes of

 76

interest. The sample contains many implementations that are feasible but poor from a

decision-making perspective. These are eliminated during dominance analysis.

Dominance analysis is conducted using parameterized Pareto dominance

(Definition 3.2) using reliability and cost as dominator attributes and gear ratio as a

parameter attribute. Mathematically, the negative of cost is used so that it is consistent

with Definition 3.2. However, graphs and tables display cost in its natural sense.

Model Fitting and Validation for Concept-Specific Tradeoff Models

For each concept, gear ratio and reliability are used as inputs to the tradeoff

model. Gear ratio must be an input because it is a parameter attribute. The decision to use

cost as an output is arbitrary (initial experiments indicated no significant difference in

fitting accuracy for using cost or reliability as the output). Strictly speaking, gear ratio is

not a continuous variable since it is determined by the numbers of gear teeth in mesh.

However, it is approximated as continuous for modeling purposes.

To generalize the parameterized efficient set data, Kriging interpolation methods

and the DACE Matlab Kriging Toolbox are used (Lophaven, et al. 2002). Fifty non-

dominated implementations of each concept are reserved for estimating prediction error

(i.e., they are not used during model fitting). This approach is known as hold-out

validation (Han and Kamber 2001, Hand, et al. 2001). Tradeoff models are fit to the rest

of the parameterized efficient set data for each concept.

According to the holdout validation procedure, the estimated root mean square

prediction errors for the tradeoff models are:

• PGB Model: $2.17

• SGB Model: $6.14

• DGB Model: $4.81

 77

The minimum cost of any gearbox being considered is about $165, so this represents an

error of less than 5%.

Domain characterization is straightforward in this example. The upper and lower

bounds on the model inputs are found to be adequate representations of the valid input

domain. Table 3.1 is a summary of the tradeoff model domain descriptions.

Figure 3.5 is a visualization of the fitted models for gear ratios up to 5 (the models

are valid for ratios up to about 9). It is impractical to report the closed-form equations for

these models since the Kriging models are interpolators (i.e., the equation is a function of

every individual point in the data set).

Table 3.1: Domain descriptions for the gearbox tradeoff models.

 Input Variable Lower Bound Upper Bound

SGB and DGB Concepts Reliability, R 0.85 1
 Gear Ratio, gN 1.13 9.0

PGB Concept Reliability, R 0.85 1
 Gear Ratio, gN 2.54 9.2

2
3

4
5

0.85

0.9

0.95

1

200

220

240

260

280

300

320

340

Reliability

PGB

Gear Ratio

C
o
s
t

0
2

4
6

0.8

0.9

1

150

200

250

300

350

400

Reliability

SGB

Gear Ratio

C
o
s
t

1
2

3
4

5

0.8

0.9

1

200

250

300

350

400

Reliability

DGB

Gear Ratio

C
o
s
t

Figure 3.5: Fitted tradeoff models for each of the design concepts for gear ratios up to 5.

 78

Generating an Abstract Tradeoff Model

Because the tradeoff models for the gearbox concepts share the same interface—

they all compute cost as a function of gear ratio and reliability—it is possible to abstract

them into a single tradeoff model. Figure 3.6 is a graph with all three gearbox tradeoff

models plotted on the same axes. One can observe that the PGB and SGB concepts are

dominant in particular regions of the tradeoff space.

To generate an abstract tradeoff model, the tradeoff models for each concept are

sampled at the same locations. A simple grid sampling scheme is used, consisting of 225

points in the model inputs space. These samples are fast to generate because the tradeoff

models are algebraic equations. Parameterized Pareto dominance is applied to the

resulting data set. This reduces the 675 sample points (225 samples each of three models)

to 192 non-dominated points.

Like with the concept-specific tradeoff models, a Kriging model is used to

represent the abstract surface and hold-out validation is performed using 50 data points.

This results in a root-mean-squared error of $5.32. Figure 3.7 is a graph of the resulting

model over its entire domain.

3.4.2 Design Problem Scenario

System and Environment

The system under consideration is a small, single-person off-road vehicle. The

components relevant to this problem are its engine, continuously-variable transmission

(CVT), a fixed-ratio gearbox and a rear differential with a fixed gear ratio, arranged

according to Figure 3.8. All the components are preexisting on the vehicle except the

gearbox that is the focus of this design problem. Table 3.2 is a summary of the system

and environmental parameters that affect vehicle performance.

 79

0
2

4
6

8
10 0.8

0.85
0.9

0.95
1

150

200

250

300

350

400

450

500

ReliabilityGear Ratio

C
o
s
t

DGB

SGB

PGB

0
2

4
6

8
10 0.8

0.85
0.9

0.95
1

150

200

250

300

350

400

450

500

ReliabilityGear Ratio

C
o
s
t

DGB

SGB

PGB

Figure 3.6: Tradeoff models for gearbox concepts plotted in same graph.

0
2

4
6

8
10 0.8

0.85
0.9

0.95
1

150

200

250

300

350

400

450

ReliabilityGear Ratio

C
o
s
t

Figure 3.7: Visualization of the abstracted gearbox model.

 80

Output to

Off-road

course

Engine

CVT
Fixed-ratio

Gearbox

Off-Road Vehicle

Rear

Differential

Drive

Wheels

Output to

Off-road

course

Engine

CVT
Fixed-ratio

Gearbox

Off-Road Vehicle

Rear

Differential

Drive

Wheels

Figure 3.8: Configuration of off-road vehicle components. Grayed components are
already designed; the fixed-ratio gearbox is of interest in this demonstration.

Table 3.2:Values for parameters used in the example problem.

Parameter Value

System and Environment

Total Vehicle Mass 300 [kg]

External Drag Coefficient 0.45 [N/(m/s2)]

Internal Drag Coefficient 0.02 [N/rpm]

Gearing

Application Factor 1.7

Gear Quality Factor 8

Bending Strength Geometry Factor 0.24

Gear Material, Bending Fatigue Strength 200e6 [Pa]

Decision Problem

The problem is to design a gearbox for the vehicle that competes in a race.

Designer preferences are to maximize profit, which in this case yields a value function of

 (), ,V R W C RW C= − ,

where R is the reliability of the gearbox, W is the anticipated winnings assuming perfect

reliability and C is the cost of building the gearbox. At the decision level, reliability and

cost are equivalent to the corresponding gearbox attributes. The anticipated winnings

decision attribute is a non-monotonic function of gear ratio, gN . Figure 3.9 is a summary

 81

of how winnings relates to gear ratio. Vehicle dynamics account for aerodynamic drag,

rolling resistance and engine characteristics. Maximum velocity and maximum

acceleration are computed at the appropriate engine operating points. Race finish time is

approximated using an algebraic relationship developed originally by Bruns (2006). The

first term in this expression is the time it would take to complete the entire race if

traveling at top speed, and the second term accounts for the time to accelerate to top

speed. The cK parameter accounts for the relative amount of accelerating for a given

course. Finish time is used to compute the anticipated winnings for the race. The finish

time model is non-monotonic in maximum velocity and the vehicle dynamics are non-

monotonic in gN .

Decision
Problem

Gearbox Attributes
(Concept Level) CRgN

max

max max

Course Length
c

v
t K

v a
= +Finish Time (s):

Winnings ($):

()max v gv f N=Vehicle Dynamics: ()max a ga f N=

Maximize V RW C= −

() ()16 4 / 3600

1
Prize Money * 1

1
t

W
e

−

 
= − 

+ 

More is Better

Less is Better

Non-monotonic More is Better

Non-monotonic

Decision
Problem

Gearbox Attributes
(Concept Level) CRgN

max

max max

Course Length
c

v
t K

v a
= +Finish Time (s):

Winnings ($):

()max v gv f N=Vehicle Dynamics: ()max a ga f N=

Maximize V RW C= −

() ()16 4 / 3600

1
Prize Money * 1

1
t

W
e

−

 
= − 

+ 

More is Better

Less is Better

Non-monotonic More is Better

Non-monotonic

Figure 3.9: Schematic view of how top-level preferences propagate down to the concept-
level attribute gear ratio. Vehicle dynamics are non-monotonic functions of gear ratio,
and account for aerodynamic drag, rolling resistance and engine characteristics.

 82

Solution Formulation using Concept-Specific Tradeoff Models

The decision problem is solved using both concept-specific tradeoff models and a

tradeoff model abstracted from them in order to compare the approaches. The concept-

specific approach follows the formulation from 3.3.2. Concept selection begins with

performing requirements allocation for each concept. The first step is to specialize

Equation (3.4) to the problem at hand. This yields

 ()()()*

,

, arg max , , ,
g l

g g l gl
R N

R N V R N T R N
 ∈ 

   =   
Y

S
�

, (3.9)

where gN is the gear ratio, ()lT ⋅ is the tradeoff model corresponding to the thl gearbox

concept, ()⋅S represents the system model that calculates system-level attributes from the

concept-level attributes and lY� is search domain for the reliability and gear ratio

attributes for the thl concept. The domain descriptions that define lY� are specified in

Table 3.1. Note that the system model in this example is the same for all concepts and

consists of all the models listed in Figure 3.9.

One can solve Equation (3.9) using standard optimization methods. A pattern

search method is used in this example. After Equation (3.3), one can construct the

allocation decision for concept l as

 ()* ** , , ,l g l gl l
R N T R N    =      

y .

Given this result, one can use Equation (3.5) to find the most preferred concept. This

yields the expression

{ }

()()* *

, ,

arg max l
l PGB SGB DGB

l V
∈

= S y ,

 83

where PGB , SGB and DGB denote the planetary gearbox, single-sided gearbox and

double-sided gearbox, respectively.

Solution Formulation using Abstract Tradeoff Model

To predict the most preferred requirements allocation using the abstracted model,

denoted ()0T ⋅ , one must solve the following search problem:

 ()()()
0

*

00
,

, arg max , , ,
g

g g g
R N

R N V R N T R N
 ∈ 

   =   
Y

S
�

, (3.10)

where the 0Y� denotes the search domain for the abstract model and the other terms are as

defined above. The most preferred gearbox concept is the one that satisfies the following:

{ }

() ()* **

0 0 0
, ,

arg min , ,g l g
l PGB SGB DGB

l T R N T R N
∈

   = −    .

3.4.3 Results

Approach based on Concept-Specific Tradeoff Models

Table 3.3 contains results from the gearbox concept selection problem. The table

contains the attributes and value for the most preferred implementation of each design

concept as predicted using the fitted tradeoff models. The planetary concept has the

largest value of all three design concepts, and therefore is the most preferred. In practice,

designers would continue by designing a planetary gearbox using the indicated attributes

as design targets.

The table also contains reference solutions for each gearbox configuration. These

solutions are computed using optimization methods to search the design parameter space

for each concept. This relies on using the appropriate engineering models for each

concept. These are the same models that were sampled when generating the tradeoff

 84

models. Thus, if the solutions differ significantly, one could question the use of tradeoff

models based on parameterized efficient set data.

A comparison of the results yields two main observations. First, the selection

decision obtained using the tradeoff models appears to be correct. For both the tradeoff

modeling solutions and the reference solutions, the preference order is

PGB SGB DGB� � (where � means “is preferred to”). Second, the allocation

predictions are accurate for each configuration, differing by no more than a few percent.

This indicates that no important information was lost by applying parameterized Pareto

dominance criterion to the sampled data. These tradeoff models yield the correct decision

for the correct reason.

Table 3.3: Results from the gearbox concept selection problem (using the tradeoff
models) and the reference solution for each configuration. The most preferred
design in each case is the PGB concept.

 Using Tradeoff
Models

Reference
Solution

Percent
Difference

PGB Maximum Value 682.65 681.72 0.14
 Gear Ratio 4.14 4.13 0.12

 Reliability 0.994 0.994 0.00

 Cost ($) 262.42 262.91 0.19

SGB Maximum Value 651.20 670.87 2.93
 Gear Ratio 4.12 4.27 3.51

 Reliability 0.968 0.988 2.02

 Cost ($) 268.20 266.55 0.62

DGB Maximum Value 613.40 606.34 1.16
 Gear Ratio 4.16 4.27 2.58

 Reliability 0.980 0.984 0.41

 Cost ($) 319.00 327.47 2.59

 85

Approach based on an Abstract Tradeoff Model

Table 3.4 contains the results of solving Equation (3.10) using the abstract

tradeoff model. The allocation decision compares favorably with the reference solution

obtained using engineering optimization methods.

Table 3.5 contains the results from comparing the three concept-specific tradeoff

models to the solution obtained using the abstract model. Based on these results, a

designer would choose the PGB concept. Compared to the other concepts, it agrees very

closely with the cost computed using the abstract model. This selection is consistent with

the engineering optimization results reported in Table 3.3.

Table 3.6 contains a comparison of the computational times involved in using the

three different approaches. Times represent actual process execution time on a personal

computer (i.e., not wall clock time). Since computer processor power varies, one should

focus on the relative computational times rather than the absolute numbers. All times are

low because the system model involves simple algebraic equations.

Both tradeoff modeling approaches are two orders of magnitude faster than the

engineering optimization approach. This may be an extreme example since the

engineering optimization solution is computed using a very thorough search to avoid

local optima (to yield a quality reference solution; this involved multiple optimizer runs

starting from different initial points). However, this does not explain the difference

completely and one can conclude that it is faster to make the decision using tradeoff

models.

It is worth noting that the time data does not include the time one requires to

generate the tradeoff models. Adding this to the time required to solve the decision

 86

Table 3.4: Comparison of allocation solution using abstract tradeoff model to reference
solution for best concept.

 Using Tradeoff Model Reference Solution Percent Difference

Maximum Value 677.52 681.72 0.62

Gear Ratio 4.13 4.13 0.0

Reliability 0.994 0.994 0.0

Cost ($) 266.85 262.91 1.51

Table 3.5: Comparison of predictions from concept-specific tradeoff
models to prediction from abstract model.

 Predicted
Cost ($)

Cost from Abstract
Model ($)

Absolute
Difference ($)

PGB 262.33 4.52

SGB 344.17 77.32

DGB 304.95

266.85

38.10

Table 3.6: Comparison of computational times for three approaches to the gearbox
design problem.

Model Partial Times (sec) Total Time (sec)

Abstract Tradeoff Model n/a 0.139

PGB 0.131
SGB 0.175

Concept-Specific Tradeoff
Models

DGB 0.145
0.451

PGB 19.46
SGB 13.57

Engineering Optimization
Approach

DGB 13.46
46.48

problem would be misleading since one can reuse a tradeoff model across many

problems. Moreover, one designer might incur the time but another would not because

the model already exists.

The approach relying on the abstract tradeoff model is about three times faster

than the approach that uses concept-specific tradeoff models. This is approximately what

one would expect since there are three concepts. These results confirm the computational

advantage of the approach based on abstract tradeoff models.

 87

3.5 The Practical Value of Performing Dominance Analysis

The example from the preceding section addresses the practical viability of

applying parameterized Pareto dominance to the gearbox data, but not the practical value

of doing so. The practical value of dominance analysis is due to two main factors:

• Parameterized Pareto dominance is not expensive to apply.

• Designers expose themselves to risk by not performing this step.

The cost argument itself has two considerations, both of which are favorable to

the value proposition. First, dominance analysis is something designers do during model

generation, but not during decision making. This means they incur the computational

expense exactly once—it is not something that is repeated inside an optimization loop or

in the context of design space exploration. Second, the algorithm is relatively fast to

apply for the sizes of data sets designers are likely to encounter. Because designers can

draw conclusions about domination only at equivalent parameter settings, it is

unnecessary for them to compare most pairs of attribute vectors. This reduces

computational costs compared to that of applying classical Pareto dominance to a

similarly-sized data set. For all of the design problems considered in this research, the

parameterized Pareto dominance step takes on the order of seconds complete.

The risk argument is based on the observation of how including dominated

implementations in the training set will bias the predictive model away from the tradeoff

relationship it is intended to represent. This idea is illustrated graphically in Figure 1.4

(page 12). Although the bias may be small at times, designers have no means by which to

ascertain whether this is the case without conducting dominance analysis in the first

place. Furthermore, the importance of the bias depends on the particular decision at hand.

 88

Given the low cost of performing dominance analysis and the risks associated with

forgoing it, designers are well advised to not skip this step.

Another perspective is to consider the relative proportion of implementations that

one would eliminate using parameterized Pareto dominance. This provides no evidence

about the amount of bias that the dominated points might introduce. However, larger

numbers of dominated points would tend to introduce larger biases into a tradeoff model,

all other factors remaining equal.

Dominance analysis is essential whenever one wishes to fit a tradeoff model to

data generated by sampling an analysis model (i.e., as opposed to using observational

data). Such data necessarily includes implementations that are technically feasible but

grossly inferior to the best in the sample set. Figure 3.10 is an illustration of this for data

used in the gearbox design example. This graph is for one setting of the parameter

attribute for the planetary gearbox, but is representative of other parameter levels and the

0.95 0.96 0.97 0.98 0.99 1

200

250

300

350

400

Reliability

C
o
s
t

($
)

Valid Designs: Planetary Gear Train

Efficient

Dominated

0.95 0.96 0.97 0.98 0.99 1

200

250

300

350

400

Reliability

C
o
s
t

($
)

Valid Designs: Planetary Gear Train

Efficient

Dominated

Figure 3.10: Efficient and dominated implementations of planetary gear train for a fixed
value of gear ratio.

 89

other gearbox concepts. Clearly, fitting a model to all of this data would misrepresent the

tradeoff relationship between reliability and cost.

Rather than sampling of the design space, one might incorporate optimization

criteria to arrive at solutions that more closely represent how designers might implement

the component in question. For some problems, this could be more efficient that sampling

(randomly or systematically). However, this simply is a form of dominance analysis since

optimization entails the use of an objective function.

The situation is more varied for the case of using observational data, but it is clear

that many dominated implementations exist in such data. Table 3.7 is a summary of

dominance analysis results for observational data about the components used in the

example problem of Chapter 6. Some implementations of each component are removed

from the database initially based on outlier analysis. This includes both “common sense”

eliminations and points excluded using the domain description and clustering procedure

described in Chapter 4. The stated percentage of each data set removed via parameterized

Pareto dominance is relative to the post-outlier quantities. The proportion of

implementations removed is significant.

Table 3.7: Percentage of implementations eliminated by parameterized Pareto
dominance for components used in log splitter design problem (Chapter 6).

Component Engine Pump Cylinder Control Valve

Total # in DB 59 61 188 36
after Outlier Analysis 49 43 158 32

after Dominance Analysis 19 24 137 8

% removed by PDOM 61% 44% 13% 75%

 90

Several factors may explain why so much of the observed data is dominated. One

factor is that designers have bounded rationality and design components and systems in

this context. As such, it is reasonable to expect that some proportion of the available

implementations of a component are dominated by other implementations.

Another factor is that implementations that seem to be dominated when one

examines them with a particular set of attributes may be non-dominated when one

considers additional attributes. For example, a hermetically sealed motor may be

considerably more expensive than a comparable standard motor with similar engineering

characteristics. If one does not account for an attribute relating to sealing, the

hermetically sealed implementation likely will appear to be dominated (since odds are

that it would cost more). To eliminate such implementations actually is desirable so long

as the sealing or other attributes are unimportant for the current context. Thus, dominance

analysis is a useful data cleansing step.

3.6 Conclusions and Chapter Summary

Based on the results of this chapter, one can conclude that parameterized efficient

sets are an appropriate basis for generating reusable predictive tradeoff models of

engineered components. Several observations support this conclusion.

The first observation is that parameterized Pareto dominance is mathematically

sound and appropriate for the problem of eliminating data about dominated

implementations of a component without problem-specific information. This is

established in Section 3.1. It is an extension of classical Pareto dominance, which is

inappropriate when problem-specific information is unavailable. In order for tradeoff

models to be reusable—i.e., applicable across many design problems—it is necessary for

 91

the underlying dominance criterion to be largely problem independent. According to

Theorem 3.2, any component implementation eliminated by parameterized Pareto

dominance cannot be the most preferred. When one considers this in light of the decision

chain arguments of Barton and coauthors (Barton and Love 2000, Barton, et al. 2001) and

the set-based design principles described by Ward, Sobek and other authors (Ward 1989,

Ward, et al. 1995, Sobek II 1996) (see Chapter 2), one can conclude reasonably that the

parameterized efficient set of a component is what designers should use as a basis for

predictive tradeoff models.

Another observation is that a reasonable procedure exists by which designers can

generate a predictive tradeoff model for a particular type of component. This approach is

the topic of Section 3.2. It is based on typical data-driven modeling procedures, but is

specialized for dealing with the problem of tradeoff model generation. Extensions to the

typical procedures follow logically from the needs of the problem.

The design example of Section 3.4 also is evidence that parameterized efficient

sets are an effective basis for tradeoff modeling. It is possible to generalize a continuous

model effectively from parameterized efficient set data and use it to make decisions about

partially-defined design solutions through design concept selection and requirements

allocation. The results obtained using the tradeoff modeling approach match well with

results obtained via a traditional engineering optimization approach. Although this design

problem is relatively simple, the results are encouraging.

A final observation is that there is a practical motivation for applying

parameterized Pareto dominance. The cost of eliminating data about dominated

implementations from a data set is small and designers need perform the operation only

 92

once during model generation (as opposed to repeatedly inside of an optimization loop).

Furthermore, the risk of not performing dominance analysis is difficult to assess on a

case-by-case basis and possibly is significant. In observational data sets about four

common engineering components, only one data set had fewer than 40% of the

implementations eliminated via the parameterized Pareto dominance rule. Thus, there is

practical value in performing the dominance analysis using parameterized Pareto

dominance.

Although one can conclude that parameterized efficient sets are a reasonable basis

for tradeoff modeling, many open questions remain. The example problem in this chapter

is of modest complexity, does not involve observational (i.e., mined) data and includes

tradeoff models of only one functional component. Subsequent chapters and example

problems expand the range of evidence supporting the overall approach through deeper

mathematical analysis and more complex example problems. However, the immediate

next step is to resolve a practical challenge associated with tradeoff model generation.

This relates to the domain description step of the procedure summarized in Figure 3.1. It

is possible to deal with domain description in a naïve way in this chapter, but this

approach will not suffice in general. Chapter 4 is a description of a general approach for

describing the valid input domain of a tradeoff model.

 93

CHAPTER 4:

USING SUPPORT VECTOR DOMAIN DESCRIPTION

TO IMPROVE PREDICTIVE TRADEOFF MODELING

Based on the analysis of the previous chapter, predictive tradeoff models are

promising as an abstract representation for sets of designs in the context of system-level

decision making. Because tradeoff models are attribute-space representations of a

subsystem, they are abstract of implementation details. However, creating predictive

models at this high level of abstraction poses a special challenge: certain attribute

combinations for a component may be unobtainable. These restrictions are due to

fundamental physical constraints that would be evident when modeling a component at a

lower level of abstraction, but can be difficult to infer when abstracting from attribute

data.

From a modeling perspective, the challenge is to identify the domain of the

tradeoff model input space over which predictions can be valid. Despite the fact that

solutions beyond this domain are physically infeasible, one still can compute predictions

using a tradeoff model. These are meaningless and to be avoided. To constrain automated

search routines (optimization and design exploration codes), a formalized domain

description is necessary. Thus, this chapter addresses the second research question:

RQ2. How can designers describe the set of valid inputs to a tradeoff model

mathematically?

The hypothesized answer to this question is that designers can apply an approach based

on specific machine learning techniques:

 94

H2. Designers can use a domain description procedure based on kernel-based

support vector domain description and clustering methods.

Using the approach, designers can create a mathematical model for the valid input

domain of a tradeoff model. They also can identify clusters (disjoint sub-domains) and

outlying data points, both of which are useful in constructing accurate tradeoff models.

The focus of this chapter is on defining the tradeoff model domain description

procedure and the methods upon which it is based. The chapter organization is as follows.

Section 4.1 contains a definition of the domain description problem and a discussion of

the requirements for its solution. Sections 4.2 and 4.3 are reviews of the theory

underlying the approach for tradeoff model domain description. The former is focused on

Support Vector Domain Description (SVDD) and the latter on Support Vector Clustering

(SVC). Section 4.4 is a summary of the domain description approach for tradeoff

modeling.

4.1 The Problem of Domain Description for Tradeoff Models

The problem of domain description is to define in a mathematical way what

constitutes a valid input to a tradeoff model. This problem is analogous to the one-

dimensional problem of preventing extrapolation. Figure 4.1 is a depiction of this simpler

case with a model ()y f x= fit to (),x y pairs that fall within the input domain [],lb ubx x .

A rule of thumb is that one should avoid using the model ()f ⋅ to make predictions

beyond the domain of the observed data—i.e., for lbx x< or ubx x> . The rationale for

this is that one cannot be confident that the local trend observed on [],lb ubx x will hold for

 95

y

x

lbx ubx

x

x x
x

x
x

x x

()y f x=y

x

lbx ubx

x

x x
x

x
x

x x

()y f x=

Figure 4.1: A simple domain description for the one-dimensional case.

any other region of x h. For example, it is common for a nonlinear relationship to appear

linear over a small neighborhood. In the one-dimensional case, the simple solution is to

restrict evaluations of the model to between the upper and lower bounds on the model

input. However, this approach does not generalize to higher-dimensional problems.

Figure 4.2 is a graphical depiction of the domain description problem for a model

(),z f x y= . In this example, an input domain defined by the upper and lower bounds on

each of the input variables yields an overly conservative domain description. This domain

includes all the observed data, but also includes many regions in which no observations

exist. Using such a domain definition can lead to unwarranted extrapolation beyond the

observations.

The need for a proper domain description is particularly acute when generating a

tradeoff model. Unlike many other predictive modeling scenarios, the inputs to a tradeoff

h In principle, one cannot even know what will happen between samples in the observed region. This is the
Problem of Induction described in the 18th century by David Hume (1965, Orig. 1739-40). The question of
how to validate a continuous model based on a finite data sample has received considerable attention in the
literature (see e.g., (Balci 1997, Kleindorfer, et al. 1998, Law and McComas 2001, Sargent 2001,
Oberkampf and Trucano 2002, Malak and Paredis 2007)) and several professional and governmental
organizations publish model validation guidelines (including the AIAA (AIAA 1998), ASME (ASME
2006), and the U.S. Department of Defense (US DoD 2003)). However, this issue is beyond the scope of
this research.

 96

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

x

y

Regions lacking observations

xlb xub

ylb

yub

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

x

y

Regions lacking observations

xlb xub

ylb

yub

Figure 4.2: An illustration of two independent variables with a valid domain that occupies
less than the rectangular region defined by their upper and lower bounds.

model may not be independent of one another. Consider the reliability and cost of an

engine. These attributes seldom are independent—they tend to have a positive

correlation—and one cannot, for example, produce an engine with 100% reliability for

zero cost. Such relationships exist because the attributes of interest during tradeoff

modeling depend on lower-level design variables. When multiple attributes relate to the

same design variables, correlations occur and certain combinations of attribute values can

be impossible to achieve. The practical consequence is that predictions from these

unobtainable regions in the attribute space are meaningless. This is somewhat worse than

the ordinary problem of extrapolation (at least the extrapolated model might be correct)

and designers must take care to describe a tight domain for their tradeoff models.

Although there are many approaches by which a designer can describe the domain

associated with a tradeoff model, most of these are appropriate only under certain

circumstances or have other limitations. For example, one approach is to estimate a

 97

probability density function associated with the data and to define the domain according

to a probability threshold (Tarassenko, et al. 1995). However, to obtain a good

probability model can require a great deal of data. The data sets used to generate tradeoff

models in this research often contain only dozens of points (see the example problems of

Chapter 6 and Chapter 7), which is insufficient. Another approach is to use a convex

hulling algorithm such as Quickhull (Barber, et al. 1996) to define a geometric boundary

for the data. However, many of the data sets encountered in this research are sufficiently

non-convex for their convex hull to be a poor domain description. Figure 4.3 is an

illustration of how a convex hull can be inappropriate as a domain description.

1 2 3 4
2.5

3

3.5

4

4.5

5

x

y

1 2 3 4
2.5

3

3.5

4

4.5

5

x

y

(a)

0 1 2 3 4
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

y

0 1 2 3 4
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

y

(b)

Figure 4.3: Two convex hull domain descriptions. In (a), the convex hull envelops the
data somewhat tightly leaving little extra space in the domain. In (b), a large region
without any data still falls within the domain description.

At times it may be possible for designers to transform their data nonlinearly such

that they can more easily describe the domain of the remapped data. For example, it may

be possible for one to transform the x -axis in Figure 4.3(b) such that the point cloud is

convex in the transformed space. This strategy is akin to the use of nonlinear

 98

transformations in regression analysis to achieve a better fit. However, as in regression,

the appropriate transformation is highly problem-dependent and not automated easily. It

is preferable for designers to have a more general approach to domain description.

A final complication to domain description is that the attribute data—particularly

when it is observational data of existing components—may contain gaps or occur in

disjoint groupings. Figure 4.4 is an illustration of this problem. The data contains void

regions internal to the main data cloud as well as a secondary cluster that is disjoint from

the outer ring of data. Although this is a synthetic data set, gaps and disjoint clusters

occur in real engineering data sets. Voids likely are due to a physical constraint that

prevents designers from achieving a particular combination of attributes. Clusters in

observational data may indicate popular niches in the market. Designers require a general

approach for dealing with such situations.

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.4: A synthetic data set with internal voids and distinct clusters.

 99

The capability to handle outliers is another desirably quality for a domain

description approach. In Figure 4.4, there is an isolated data point at approximately (-0.6,-

0.2) and another at approximately (-0.75, 1). These are far from all other data points and

one might be justified in removing it from the analysis. Ideally, one could identify such

situations more easily using a domain description method since visual approaches do not

scale well beyond a few dimensions.

In addition to the preceding considerations, designers require an approach for

tradeoff model domain description that yields fast evaluations of whether or not a given

point is in the domain. This requirement is particularly important because designers often

will use tradeoff models in concert with automated optimization and design exploration

algorithms. Such algorithms can require upwards of tend of thousands of tradeoff model

evaluations. A slow domain evaluation routine will slow such searches noticeably.

To summarize the requirements, an approach for tradeoff model domain

description should be:

• capable of handling non-convex domains,

• capable of handling gaps in a domain,

• capable of handling disjoint sub-domains,

• capable of identifying potential outliers, and

• fast at determining whether a given point is in the domain.

The approach described in this chapter addresses each of these concerns using two key

methods: support vector domain description and support vector clustering.

 100

4.2 Support Vector Domain Description

The approach to creating a domain description for tradeoff models proposed in

this research is based on an existing method called support vector domain description

(SVDD) described originally by Tax and Duin (1999b). Their method is inspired by

Vapnik’s support vector machines (SVMs) (Vapnik 1995). A SVM is a classifier that

distinguishes between classes geometrically using a hyperplane. One determines this

hyperplane during the learning phase based on labeled examples of each class. Tax and

Duin developed the SVDD method using mathematics similar to that of a SVM.

However, instead of identifying classes using a hyperplane, they determine whether a

point is in the data domain using a hypersphere that envelops the data. This formulation

requires only data about what is in the domain (i.e., one requires no examples of what is

not in the domain).

The principal motivation to apply SVDD in the current context is its capability to

establish a domain classification boundary without examples of points that are outside the

domain. This sets it apart from most other machine learning algorithms. Another

advantage is that one can apply kernel techniques to model domains for which a

hyperspherical domain is inappropriate (including non-convex domains). It also

accommodates gaps in the data and disjoint sub-domains, and one can use it to identify

outliers. Finally, one can extend it to perform clustering analysis (see Section 4.3). Thus,

the approach satisfies all of the requirements identified in the preceding section.

4.2.1 Basic SVDD

For the basic (non kernel-based) SVDD method, one tries to find the minimum-

radius hypersphere that contains a set of N data points, { }, 1i i N=x … . Thus, the domain

 101

description consists of a sphere center, a , and radius R . The domain description problem

is to determine the center and radius given the data. In the most rudimentary formulation,

one has the constraint

2 2

i R i− ≤ ∀x a ,

Where a is the sphere center, R is its radius and ⋅ is the Euclidean norm.

However, this representation is sensitive to outliers in the data. It is advantageous to

formulate the problem in a way that allows one to exclude the most extreme outliers. In

the original formulation of SVDD, Tax and Duin achieve this by introducing slack

variables, 0iξ ≥ , in a manner analogous to the classical SVM formulation. Thus, the

domain description problem becomes

 () 2

, ,
min , ,

i
i i

R
i

F R R C
ξ

ξ ξ
 

= + 
 

∑
a

a , (4.1)

where C is a constant scalar and
ii

C ξ∑ is a penalty term. The minimization is subject to

the modified constraints

2 2

i iR iξ− ≤ + ∀x a . (4.2)

One can combine Equations (4.1) and (4.2) in order to construct the Lagrangian

 () ()22 2, , ,i i i i i i i i

i i i

L R R C Rβ ξ ξ β ξ µ ξ= + − + − − −∑ ∑ ∑a x a ,

which has Lagrange multipliers 0iβ ≥ and 0iµ ≥ i. Optimality conditions require the

partial derivatives to equal zero. This yields new constraints:

i This notation follows that of Ben-Hur and coauthors (Ben-Hur, et al. 2001). In their original paper on

SVDD, Tax and Duin (Tax and Duin 1999b) use the symbols iα and iγ rather than iβ and iµ ,

respectively.

 102

 1i

i

β =∑ , (4.3)

i ii

i ii
ii

β
β

β
= =
∑

∑
∑

x
a x , and (4.4)

 0i iC iβ µ− − = ∀ . (4.5)

Since 0iβ ≥ and 0iµ ≥ , it is valid to remove the variables iµ from Equation (4.5) and to

use instead the constraint 0 i C iβ≤ ≤ ∀ .

By rewriting the Lagrangian problem by substituting in the preceding constraints,

one can obtain the Wolfe dual form problem

 () ()
,

max
i

i i i i j i j

i i j

W
β

β β β= ⋅ − ⋅∑ ∑x x x x , (4.6)

subject to constraints 0 i C iβ≤ ≤ ∀ and 1ii
β =∑ .

Note that Equation (4.4) defines the location of the center of the hypersphere as a

linear combination of the data points. One finds the weights for this linear combination,

the iβ , by solving Equation (4.6). For each data point, ix for 1i N= … , there are three

possible classifications:

• It is inside the hypersphere, which is indicated by 0iβ = .

• It is on the boundary of the hypersphere, which is indicated by 0 i Cβ< < .

• It is an outlier outside of the hypersphere, which is indicated by i Cβ = .

Data falling inside the hypersphere has no effect on the computation of the

centroid and is not part of the representation of the domain description. This is an

advantage in cases involving many data points. Typically only a small percentage of the

data falls at the hypersphere boundary.

 103

Data on the boundary of the hypersphere are called support vectors and are

essential to the domain description representation. For any given point in the data space,

z , the squared distance to the hypersphere centroid is

 ()
22R = −z z a .

Substituting in the definition of the center, Equation (4.4), one obtains

 ()2

,

2 i i i j i j

i i j

R β β β= ⋅ − ⋅ + ⋅∑ ∑z z z z x x x . (4.7)

Since support vectors are on the hypersphere boundary, their distance to the centroid

defines the hypersphere radius. One can compute this radius as

 () , s.t. is a support vectori iR R= x x ,

where ()R ⋅ is the square root of ()2R ⋅ .

Note that one can represent the two critical characteristics of the bounding

hypersphere—its radius and the location of its centroid—using only the support vectors

and their corresponding iβ . This is a significant result, and one of the main advantages of

SVDD. For most data sets, only a small proportion of the data will lie on the hypersphere

boundary. Thus, the resulting domain representation is compact relative to the data set.

To determine whether a test point is in the domain defined by the support vectors,

one need only compute its distance from the hypersphere centroid. Test point z is in the

domain if

 ()2 2R R≤z ,

where ()2R ⋅ is from Equation (4.7) and 2R is the squared hypersphere radius.

Outliers are data points for which i Cβ = and some authors refer to these as

bounded support vectors. They are not part of the domain description. Whether one

 104

detects any outliers depends on one’s choice of C . Due to the constraint in Equation

(4.3), choosing 1C ≥ yields no outliers. There must be at least one support vector (i.e.,

0 i Cβ< <), which means i Cβ = cannot occur for 1C ≥ . Also note that no solution is

possible for 1C N< due also to the constraint in Equation (4.3). Empirical evidence

presented by Tax and Duin in their original investigation of SVDD suggests that the

value of C is not highly critical on the domain description (large ranges of C values

yielded identical domain descriptions). However, the specific effect is problem-

dependent.

4.2.2 Mercer Kernels

The basic formulation of SVDD is valuable when a hypersphere is a good model

for the domain. However, this will not be the case in most situations. Tax and Duin

address this problem in their original work on SVDD. Their solution is to use kernel

functions to remap the data nonlinearly into a higher-dimensional feature space in which

a hypersphere is a good model for the domain. Kernel functions allow one to perform this

nonlinear transformation without explicit representations of the transformation or the

higher-dimensional space. In fact, the feature space could be of infinite dimension

(Scholkopf and Smola 2002).

Many machine learning algorithms perform better in after being “kernelized.” In

their survey of clustering methods, Filippone and coauthors (2007) attribute the first use

of kernel methods to Aizerman and coauthors (1964) and the recent popularity of such

methods to the success of the kernel-based version of Vapnik’s SVM (Vapnik 1995).

Kernel methods are particularly useful for support vector approaches because the

classification scheme in such approaches is a simple geometric construct (a hyperplane or

 105

hypersphere). Data that is not separable by such a surface in the original space may be

separable after a non-linear remapping to a feature space.

Mercer kernels form the foundation of kernel-based learning methods. One can

define a Mercer kernel as follows (Aronszajn 1950):

Definition 4.1 (Mercer Kernel): Let { }1 2, , , N=X x x x… be a non-empty set of

data such that d

i i∈ ∀x � . A function :K × →X X � is called a positive

definite kernel or Mercer kernel if and only if K is symmetric (i.e.

() (), ,i j j iK K=x x x x) and

()
1 1

, 0 2
N N

i j i j

i j

c c K N
= =

≥ ∀ ≥∑∑ x x ,

where 1kc k N∈ ∀ =� … .

Strictly speaking, this definition also holds for data defined in the complex plane.

However, this research involves only real-valued data.

The significance of Mercer kernels in the current context is that one can express

any Mercer kernel as the dot product of a nonlinear mapping of the data space (Scholkopf

and Smola 2002, Shawe-Taylor and Cristianini 2004). That is,

 () () (),i j i jK = Φ ⋅Φx x x x , (4.8)

where :Φ →X Y is a nonlinear mapping from the data space to a high-dimensional

feature space, Y . This representation of the kernel is powerful. One can use it to

reformulate machine learning problems that involve dot products, such as the SVDD

problem of Equation (4.6). Essentially, it allows one to compute the dot product of two

 106

feature-space vectors without knowing explicitly the nonlinear mapping ()Φ ⋅ . This is an

important result that several machine learning researchers have exploited. This procedure

is at the heart of the so-called distance kernel trick, which is valuable for several

clustering and pattern recognition problems (Scholkopf and Smola 2002, Shawe-Taylor

and Cristianini 2004, Filippone, et al. 2007).

There exists a multitude of valid kernel functions. Ones common in machine

learning include (Scholkopf and Smola 2002):

• Linear: (),L i j i jK x = ⋅x x x .

• Polynomial (degree p): () (), 1 ,
p

p i j i jK p= + ⋅ ∈x x x x � .

• Gaussian: ()
2

, i jq

G i jK e
− −

=
x x

x x .

The prior literature on SVDD favors the Gaussian kernel because it leads to closed

domains in the data space (Tax and Duin 1999a).

4.2.3 Kernel-based SVDD

One can recast the SVDD problem as a kernel-based method. The strategy is to

map the data into a higher-dimensional feature space and apply the representation from

Equation (4.8) to express the result in terms of a Mercer kernel rather than the explicit

transformation function. The domain description remains a hypersphere, but now the

sphere is described in the feature space.

One develops kernel-based SVDD by revising the constraint that defines the

enclosing hypersphere. For non-kernel SVDD, this is given in Equation (4.2), which

involves a distance measure in the data space (d
�). To reformulate this in the feature

 107

space, one can replace the data-space distance with the corresponding feature-space

distance. Recall Equation (4.2):

 2

i iR iξ− ≤ + ∀x a .

This now becomes

 ()
2 2

i iR iξΦ − ≤ + ∀x b , (4.9)

where b is the centroid of the feature-space hypersphere and ()Φ ⋅ is a nonlinear

mapping from the data space to the feature space. From this point, one can develop the

corresponding Wolfe dual problem in a way that directly parallels Section 4.2.1 to obtain

 () () () ()
,

i i i i j i j

i i j

W β β β= Φ ⋅Φ − Φ ⋅Φ∑ ∑x x x x ,

where 0 ,i C iβ≤ ≤ ∀ . This formulation is in terms of dot products of the nonlinear

transformation, ()Φ ⋅ . Recalling Equation (4.8), one can rewrite the above in terms of a

Mercer kernel, (),K ⋅ ⋅ :

 () ()
,

, ,i i i i j i j

i i j

W K Kβ β β= −∑ ∑x x x x . (4.10)

Given a set of data, one maximizes Equation (4.10) over the iβ subject to 0 ,i C iβ≤ ≤ ∀

and 1 1N C< ≤ .

One can compute the center of the hypersphere as

 ()i i

i

β= Φ∑b x ,

where the ix are the support vectors (i.e., 0 i Cβ< <). Using this relationship, the

squared distance of the feature-space image of a point, z , to the center of the

hypersphere is

 108

() ()

() () ()

22

,

, 2 , , .i i i j i j

i i j

R

K K Kβ β β

= Φ −

= − +∑ ∑

z z b

z z x z x x
 (4.11)

This expression depends on the support vectors, their weights and the kernel, but not on

the nonlinear transformation. The test to evaluate whether a point, z , is in the domain is

directly analogous to the non-kernel case: one compares ()2R z with the radius of the

hypersphere (i.e., feature space distance from the centroid to a support vector).

4.2.4 Kernel-Based SVDD Example

Figure 4.5 is an illustration of kernel-based SVDD. The data depicted in Figure

4.4 is input to the algorithm, which uses a Gaussian kernel function. From these graphs,

one can observe the general effect of varying the kernel width parameter, q . Smaller

values yield fewer support vectors and a broader domain description. As the value

increases, so does the number of support vectors. The domain description also follows the

data more closely and breaks into multiple disjoint regions. However, readers should

understand that the precise effect is problem-dependent.

4.3 Support Vector Clustering

Support vector clustering (SVC) is an extension to kernel-based SVDD described

originally by Ben-Hur and coauthors (2001). It is a numerical approach for identifying

when a domain description contains multiple disjoint regions in the original data space.

The method takes a domain description and the original data set as inputs and outputs the

appropriate cluster labels for the original data set. One can use this information to label

new data points.

 109

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5
q=0.5 C=0.4

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5
q=5 C=0.4

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5
q=10 C=0.4

 -1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5
q=15 C=0.4

Figure 4.5: SVDD results for different settings of the Gaussian kernel width parameter,
q . The regularization constant is held at 0.4C = . Support vectors are indicated by boxes.

This can be useful in the context of tradeoff modeling for two reasons. First, one

sometimes can benefit in terms of model accuracy by fitting a different model to each

cluster. In this case, it is necessary to identify these clusters and to associate each model

with the appropriate cluster. Second, even when a single model describes the relationship

in each cluster accurately, one must have a means of ensuring that automated search

 110

routines (optimization or design space exploration codes) explore all valid regions of the

domain. One can achieve this by modeling each cluster independently.

The current research focuses on the original formulation of SVC by Ben-Hur and

coauthors. Other researchers report extensions to the basic SVC method, any of which

one can apply to the problem of generating a tradeoff model. Lee and Daniels (2005)

report a numerical method for determining the Gaussian kernel width parameter in the

context of SVC. Typically, one must rely on intuition or experience to determine an

appropriate value for this parameter. Similarly, Jun and Oh (2006) describe an

evolutionary method for determining the Gaussian kernel width parameter and the

regularization constant, C . Several researchers have investigated advanced cluster

labeling methods, since this is a critical bottleneck in the original SVC method. These are

reviewed in Section 4.3.2.

Other approaches to clustering exist that are not based on SVDD. These include

partitioning-based methods (e.g., the K-means algorithm), hierarchical methods,

probabilistic methods (approaches based on mixture models and use of the expectation

maximization algorithm) and grid-based methods—see Han and Kamber (2001, Chapter

8), Hand and coauthors (2001, Chapter 9), Xu and Wunsch (2005) and Filippone and

coauthors (2007) for surveys of clustering methods. Although it is clear from the

literature that many effective clustering methods exist, the focus of this research is on the

SVC approach because it is closely allied with the SVDD method.

4.3.1 Cluster Identification Theory

Figure 4.6 is a domain description obtained using kernel-based SVDD for a two-

dimensional data set. The areas enclosed by the contours represent the two-dimensional

 111

projection of the feature-space hypersphere. Any point enclosed by one of the contours is

internal to the hypersphere; all other points are outside of it. Ben-Hur and coauthors

recognized that one can determine whether two points are in the same cluster by checking

to see whether it is possible to connect them via line segments between the data points

without crossing the domain boundary contours.

The simplest scenario for this is illustrated in Figure 4.6. Points A and B are part

of the same cluster because segment AB remains wholly within the domain boundary. In

contrast, points C and D potentially are in different clusters because segment CD crosses

the domain boundary. That is, the feature space representation of the segment leaves and

then re-enters the enclosing hypersphere.

Two points can be part of the same cluster even when their connecting segment

crosses a domain boundary. This is because cluster membership is associative: if A is in

the same cluster as B and B is in the same cluster as C, then A must be in the same cluster

as C. This logic is important when the domain region is a non-convex shape. Figure 4.6 is

an illustration of this situation.

4.3.2 Cluster Labeling Methods

Due to the associative nature of cluster labeling, one requires an algorithm

capable of identifying indirect relationships among the data points. Most approaches to

labeling the clusters operate using adjacency information based on the theory presented in

the preceding section. Two data points are considered adjacent if the segment connecting

them in the data space does not cross the domain boundary.

 112

1 2 3 4 5 6 7
0

5

10

15

20

25

30

AB

C

D

+

Support Vector

Data Point

Outlier

1 2 3 4 5 6 7
0

5

10

15

20

25

30

AB

C

D

+

Support Vector

Data Point

Outlier

+

Support Vector

Data Point

Outlier

Figure 4.6: Points A and B are in the same cluster because segment AB stays within the
domain boundary. Points B and C are in the same cluster for the same reason. Points A
and C are in the same cluster via association through point B, even though segment AC
leaves the boundary. Point D is in a different cluster than the other points.

The most straightforward approach is to build a complete adjacency matrix for all

combinations of (non-outlier) points. Let A denote this matrix and ijA denote whether

points ix and jx are adjacent. Thus, ijA is a binary variable such that

()() []1 if , 0,1 ;

0 otherwise.

i j i

ij

R R
A

λ λ + − ≤ ∀ ∈
= 


x x x
 (4.12)

Given the matrix A , one labels clusters as connected components of the graph implied

by A . To evaluate ijA , one can sample values of []0,1λ ∈ . Several researchers report 10

to 20 samples being a reasonable level of resolution.

The preceding approach is called the Complete Graph (CG) method in the

literature and is known to be fairly inefficient. Ben-Hur and coauthors (2001) suggest an

 113

approximate method of evaluating only the ijA such that ix or jx is a support vector.

This approach, sometimes called the Support Vector Graph (SVG) method, is slightly

faster than the CG method, but it sometimes can fail to detect that two clusters are in fact

a single larger cluster. Yang and coauthors (2002) describe a labeling approach based on

proximity graphs intended to be fast while solving this problem. Their approach is

actually a family of methods because one can use different proximity graph (PG) models,

such as k-nearest neighbors, Delaunay diagrams and minimum spanning trees. Their

approach is among the faster of the adjacency-based approaches, but it can be difficult to

implement and still can lead to classification errors. Lee and Lee (2005) describe a

method for cluster labeling based on a gradient descent (GD) algorithm and the notion of

stable equilibrium points. An advantage of their approach over the PG approach is that it

tends to have a low error rate. However, because one must compute gradients the GD

method is slow on high dimensional data sets. Lee and Daniels (2006) describe a method

that does not rely on sampling a segment between pairs of points. Their method, called

Cone Cluster Labeling (CCL), is approximate but is considerably faster than other

methods.

For tradeoff modeling, one can apply any of the aforementioned methods.

Although computational cost is not unimportant, the likely workflow for tradeoff

modeling would require one to perform SVC only once when the model is created. That

is, it is not something one must perform during design space exploration or optimization

and, as such, it is not essential that one use the fastest algorithm possible. The CG

algorithm is used in the current investigation.

 114

Table 4.1, adopted from (Lee and Daniels 2006), is a summary of the theoretical

space and time bounds for each of the methods surveyed. In this notation, N is the total

number of data points, svN is the number of support vectors, m is the number of samples

made along segments between points (used to evaluate Equation (4.12)), sepN is the

number of stable equilibrium points (used only for the GD method) and k is the number

of iterations for GD convergence. In all cases, svN N≥ and sepN N≥ . Usually, one

chooses 10 20m≤ ≤ .

Table 4.1: Worst-case asymptotic running times and memory requirements for several
cluster labeling algorithms as reported by (Lee and Daniels 2006).

Method CG SVG PG GD CCL

Adjacency
Matrix Size

()2
O N ()sv

O NN ()2
O N ()2

sep
O N ()2

sv
O N

Total
Asymptotic

Time

()2

sv
O mN N ()2

sv
O mNN ()2

sv
O N mNN+ ()()2

sv
O mN k N+ ()sv

O NN

4.3.3 Example

Figure 4.7 is a demonstration of SVC on the data set depicted in Figure 4.4. It

contains results for different settings of the kernel width parameter. Figure 4.7(a) contains

two large clusters. The larger value for the width parameter used to generate Figure

4.7(b) leads to a larger number of smaller clusters. There are six in all, two of which

contain only one point and enclose a very small surrounding domain (C1 and C6).

Clusters of such small size are candidates for being discarded as outliers. This issue is

discussed in Section 4.4.

 115

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5 q=5 C=0.4 # clusters = 2

C1

C2

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5 q=5 C=0.4 # clusters = 2

C1

C2

(a)

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5 q=15 C=0.4 # clusters = 6

C1

C2

C3

C4

C5

C6

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5 q=15 C=0.4 # clusters = 6

C1

C2

C3

C4

C5

C6

(b)

Figure 4.7: SVC on the dataset from Figure 4.4 for two different settings of the kernel
width parameter.

Figure 4.8 is a visualization of the adjacency information corresponding to the

graph of Figure 4.7(a). From this, one can observe how the algorithm associates points

into clusters. One typically would not visualize this information during model building. It

is useful primarily for pedagogical and debugging purposes.

4.4 Creating Domain-Described Tradeoff Models

Figure 4.9 is a summary of the process for creating a domain-described predictive

tradeoff models. This is an expansion of Step 5 of Figure 3.1 (domain description) into

four sub-steps and a clarification of Step 6 (model fitting) in light of the possibility that

the data contains multiple distinct clusters.

 116

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 q=5 C=0.4 # clusters = 2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 q=5 C=0.4 # clusters = 2

 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

q=20 C=0.4 # clusters=6

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

q=20 C=0.4 # clusters=6

Figure 4.8: A visualization of the adjacency information corresponding to the graphs in
Figure 4.7. Two distinct clusters are evident in (a). In (b), six distinct clusters are evident,
including two that contain only one point each.

Step 5.1: Preprocessing. Scale raw data. Usually normalizing (map to [0,1] scale) or
centralizing (map to [-1,1] scale) is effective.

Step 5.2: SVDD. Apply the SVDD method using a Gaussian kernel function. This step
may require iteration if domain description is too loose or too tight (as indicated through
visualization or other diagnostics). Can use adaptive methods to tune the Gaussian kernel
width parameter, q .

Step 5.3: SVC. Apply SVC method (with cluster labeling method of choice). If too many
clusters, repeat Step 2 with a smaller value for the kernel width parameter, q . Adaptation

of q to achieve desired number of clusters can be automated.

Step 5.4: Eliminate degenerate clusters. Clusters with too few points can be considered
as outliers. Either reduce the kernel width parameter, q , until those points become part of

a larger cluster or drop them from the analysis as outliers.

Step 6: Model fitting.

� If fitting a different model to each cluster: Apply SVDD to each cluster
individually to model sub-domains. Adjust width parameter, q , as necessary to

obtain a single major cluster for each sub-domain (a few points may be lost as
outliers). Fit models to each cluster of data.

� If fitting one model to all data: Fit models to all non-outlier data.

Figure 4.9: Refinement of process for generating tradeoff models (Figure 3.1) to include
a generalized domain description procedure.

 117

Step 5.1 involves scaling the data. Although one could skip this step, the

algorithms involve in the process are more reliable when the data is scaled and relocated.

Anecdotally, centralizing the data—scaling everything to the range [-1,1] and centering

on the origin—appeared most effective during the course of this research. Normalization

is another common scaling scheme.

Step 5.2 involves applying kernel-based SVDD using a Gaussian kernel, as

described in Section 4.2.3. One may wish at this point to adapt the kernel width

parameter, q , until an acceptable domain description is found. For example, one may

want to reduce q if there is a larger proportion of support vectors relative to the number

of data points (e.g. more than half the data are support vectors) because this may be an

indication of overfitting. In the current context, it can be easier to iterate over both Steps

5.2 and 5.3 using the number of clusters as a driver for width parameter adaptation. The

basic rule is to reduce q if the number of actual clusters is larger than the number

desired.

Step 5.3 involves applying the SVC method in concert with the cluster labeling

method of choice as described in Section 4.3. As already noted, the number of clusters

can be a driver for adapting the kernel width parameter (either manually or through an

automated numerical method). Whenever possible, visualization of the clusters and their

domain boundaries is recommended as a final validation step.

Step 5.4 is necessary because it is common for SVC to yield clusters with very

few points and a very small domain region. This occurs for example in Figure 4.7(b),

where clusters C1 and C6 each contain only one data point. In such cases, one has two

choices: (1) decrease parameter q until the points are absorbed into a nearby cluster or

 118

(2) eliminate the data points as outliers. The first choice is appropriate when the

degenerate cluster is close to another larger one. Otherwise, it is common practice to

eliminate the data.

After constructing a domain description and identifying any disjoint clusters, one

must fit one or more continuous models to the data. This step is discussed originally in

Section 3.2. Here, this step is expanded to account for the additional consideration of how

to model the data in each cluster. The appropriate action is one that balances fitting

accuracy with convenience. One incurs additional organizational overhead by fitting

several individual models, but often achieves a superior fit to each cluster of data.

Regardless of how many individual models one fits, it is necessary to ensure that any

optimization or design exploration activities consider all the relevant sub-domains. For a

gradient-based search, it may be best to initiate multiple optimization runs, with at least

one originating in each sub-domain. Typically, such solvers search only within a single

contiguous domain and are unable to explore disjoint sub-domains.

If electing to fit a different tradeoff model to each sub-domain, one must obtain an

independent description of the sub-domains. A practical approach to this is to repeat

SVDD independently for each cluster. It also is advisable to repeat SVC and to adapt the

width parameter such that a single cluster is obtained (i.e., a single domain region). It is

possible to establish a hierarchical clustering (such that the original clusters are

subdivided into additional clusters), but doing so would have value only if it leads to a

fitted model with considerably greater accuracy or if the sub-domain would have been

better as multiple clusters in the first place. Note that the application of SVDD and SVC

 119

to the sub-domain data will proceed faster than the initial application because there are

fewer data points involved.

Figure 4.10 is a 3D visualization of the centralized domain description identified

for data about small four-stroke engines. The actual data domain is five-dimensional. In

addition to mass, maximum power and maximum torque, the remaining dimensions are

efficiency and maximum speed. The data is for commercially-available engines and is

obtained from publicly-available data sources (e.g., spec sheets and catalogs) as well as

data supplied by vendors and companies supporting this research. Engine retail price (the

cost to the system designer) is predicted by a tradeoff model fit to the underlying data,

and so is not part of the domain description (only inputs to the tradeoff model require a

domain description).

mass

max power

max torque

3D Projection of Engine Domain (5D)

Cluster 2

Cluster 1

mass

max power

max torque

3D Projection of Engine Domain (5D)

Cluster 2

Cluster 1

Figure 4.10: A 3D visualization of the 5D domain description for small four-stroke
engines. This figure is generated by randomly sampling the 5D unit hypercube and
classifying each point. Larger points belong to one of the clusters; smaller points are not
part of the engine tradeoff model domain.

 120

The figure is generated by randomly sampling the five-dimensional unit

hypercube. Points that fall within one of the two sub-domains (clusters in the original

data) are labeled appropriately. Points that do not fall within one of those regions are

rejected and appear as small dots in the figure. Although the two sub-domains appear

discontinuous due to the sampling, each one is in fact continuous.

4.5 Conclusions and Chapter Summary

The main conclusion of this chapter is that the kernel-based SVDD and SVC

methods are an appropriate and logical basis for solving the tradeoff model domain

description problem. The approach, summarized in Section 4.4, is based on a well-

founded mathematical theory for domain description and clustering. This theory is

presented in Sections 4.2 and 4.3. The domain description procedure also fits directly

within the overall model generation procedure from Section 3.2.

The kernel-based SVDD and SVC methods have several advantageous

characteristics. By virtue of being kernel-based, they are capable of representing complex

data domains. This includes domains that are non-convex or contain disjoint sub-regions.

They also provide designers with the means to subdivide a data set into multiple

independent tradeoff models should doing so improve the model fit. Several data sets

encountered during the course of this research exhibit such complex input domains (e.g.,

the engine data of Figure 4.10). Consequently, these characteristics are important in

practice.

Perhaps the most important characteristic is that it is fast to test whether a

candidate point is in the domain. This is important because typically this must occur

repeatedly within an optimization loop. The computation entails evaluating an algebraic

 121

equation involving several weighted sums and kernel functions (Equation (4.11)).

Although this computation would become slow for an extremely large numbers of

support vectors, this situation has not been observed in this research and it seems highly

unlikely to occur.

Algorithms for constructing the domain description and clusters do not scale well

in the number of data points and number of attributes, but designers need only apply them

during model generation. Moreover, the slower algorithms never need be part of a design

exploration or optimization routine.

This chapter contains several synthetic examples to illustrate the concepts and

provide a basic level of support for its effectiveness. Although these are successful, they

are inadequate for one to judge fully the practical usefulness of the approach. Further

empirical evidence comes in later chapters. Neither the log splitter design problem of

Chapter 6 nor the hybrid vehicle problem of Chapter 7 would be solvable using tradeoff

models without effective domain descriptions. Both problems involve tradeoff models fit

to data with non-convex domains and the log splitter example involves a domain

comprised of two disjoint clusters.

 122

CHAPTER 5:

A MATHEMATICAL ANALYSIS

OF COMPOSING PARAMETERIZED PARETO SETS

The focus of the preceding chapters has been on individual tradeoff models: how

to construct them, formulate decisions in terms of them and describe the domain over

which they are valid. This chapter, along with the two that follow, is an investigation of

system-level decision making using multiple tradeoff models. The vision is that designers

can model a system using tradeoff models for its components along with a model for how

they interact to yield system-level attributes.

This chapter addresses the third research question:

RQ3. Under what conditions can designers compose component-level tradeoff

models in order to model a system-level decision alternative soundly?

The focus is on parameterized Pareto dominance, which designers use to eliminate

ostensibly irrelevant data prior to fitting a tradeoff model. Whether these eliminations are

appropriate is critical, since dominated data are left out of the final model. Designers

must be confident that applying parameterized Pareto dominance will not lead them to

eliminate data about solutions that could be the most preferred.

It is not immediately obvious whether parameterized Pareto dominance is sound

in this sense. One applies parameterized Pareto dominance to each component

individually when creating its tradeoff model. However, the attributes of a system depend

on the interactions between its components. For example, one combination of gearbox

 123

and motor may be effective while the same motor performs poorly when connected to a

different gearbox.

This chapter contains a mathematical analysis of parameterized Pareto dominance

in the context of composed system models. Using set theory and decision theory, it is

shown that composing parameterized Pareto sets is sound under mild assumptions about

how the components of a system interact. In particular, the following hypothesis is

evaluated:

H3. One can compose predictive tradeoff models soundly if the tradeoff models are

based on parameterized Pareto sets and all induced preferences for any

component-level dominator attribute are monotonic in the same direction.

In this context, soundness refers to the informational completeness of the parameterized

efficient set. The argument is that it contains all the component-level information one

requires to search for the most preferred system-level solution. Similar soundness criteria

are derived for classical Pareto dominance, and these are shown to be a subset of those

for parameterized Pareto dominance. The main conclusion of this chapter is that

parameterized Pareto dominance is a sound basis for generating tradeoff models.

The chapter organization is as follows. Section 5.1 is a review of the motivations

for composing tradeoff models. Section 5.2 contains a mathematical definition for the

compositional modeling framework. Section 5.3 is a theoretical analysis of the soundness

of composing classical and parameterized Pareto sets in this framework.

5.1 Motivations for Composing Tradeoff Models

Tradeoff model composition is an appealing capability. One challenge of system-

level decision making is the question of how to incorporate lower-level considerations

 124

into a decision without having an explosion in problem complexity. The approach of

composing tradeoff models addresses this directly. Component designers can formalize

the capabilities and limitations of the various implementations of their components into a

tradeoff model for use by system-level designers. This conveys to system designers the

implications of the lower-level details in a quantitative way without encumbering them

with the actual details.

In the context of data-driven predictive modeling, composition is essential to

enable designers to model novel systems at a systems level. It is impossible for designers

to construct a model of such a system from observational data because no prior

implementations of it exist. It may be possible for designers to rely on data sampled from

an existing model of the system, but this approach is questionable for similar reasons—if

the system is sufficiently novel, would designers already have a detailed model during

system-level decision making? Even if designers sometimes would have such a model,

more often they would not and must rely on a compositional approach.

Model reuse is another major benefit of tradeoff model composition. The more

often designers expect to use a particular model, the more easily they can justify devoting

resources to developing, validating and maintaining it. It also is not far-fetched to

imagine components manufacturers developing tradeoff models of their own components

for use by potential clients. In this sense, a tradeoff model would be a computable version

of a components catalog.

5.2 Mathematical Framework for Composition

Figure 5.1 is an illustration of the compositional modeling framework under

consideration. At the lowest level are tradeoff models, ()kT ⋅ for 1k K= … , that abstract

 125

the characteristics of the non-dominated implementations of the system components. Let

ky denote the attribute vector associated with the thk component and ky� denote a vector

consisting of the attributes used as inputs to the tradeoff model. Thus, (),k k k kT =  y y y� �

for 1k K= … . Also, let []1 2, , , K=y y y y… denote a vector comprised of all component-

level attributes and let M denote the dimensionality of this vector. A vector-valued

function, () () () ()[]1 2, , , NS S S⋅ ⋅ ⋅⋅ =S … , relates the component-level attributes to the

system-level attributes, denoted iz for 1i N= … . Thus, ()i iz S= y and ()=z S y . The

value function, ()V ⋅ , is a formalization of designer preferences for the system-level

attributes, []1 2, , , Nz z z=z … .

S1 S2 SN

Value

Value Function

T1 T2 TKT3

System
Composition

Model

…

…
Subsystem

Tradeoff
Models

[]1 2, , , My y y=y …

Subsystem-Level Attributes

[]1 2, , , Nz z z=z …

System-Level Attributes

Numerical Search
(Optimization Methods)

2y�1y� 3y� Ky�

S1 S2 SN

Value

Value Function

T1 T2 TKT3

System
Composition

Model

…

…
Subsystem

Tradeoff
Models

[]1 2, , , My y y=y …

Subsystem-Level Attributes

[]1 2, , , My y y=y …

Subsystem-Level Attributes

[]1 2, , , Nz z z=z …

System-Level Attributes

[]1 2, , , Nz z z=z …

System-Level Attributes

Numerical Search
(Optimization Methods)

2y�1y� 3y� Ky�

Figure 5.1: Tradeoff model composition framework.

 126

Given this notation, one can express the value of the thl system alternative as:

 () () ()()()1 1 2 2, , , ,l l l l l l l lK lKv V T T T=   S y y y y� � � �… , (5.1)

where lS denotes the composition models for the thl system-level decision alternative,

[]1 2, , ,l l l lK l= ∈y y y y Y�� � � �… is a vector consisting of the component-level attributes used as

inputs to their respective tradeoff models and 1 2l l l lK= × × ×Y Y Y Y� � � �� is the set of feasible

tradeoff model input vectors for alternative l . Note that one determines the lkY� using the

domain description procedure from Chapter 4.

Using Equation (5.1), one can formulate requirements allocation and system

selection decision problems. These are direct extensions of the corresponding

formulations from Section 3.3.2. For the thl system-level alternative, one can predict the

most preferred requirements allocation as:

 () () ()* * * * *

1 11 2 2, , , ,l l l ll l l lK lKT T T =  y y y y y� � � �… , (5.2)

where

 () () ()()()*

1 1 2 2arg max , , , ,
l l

l l l l l l l lK lKV T T T
∈

=   
y Y

y S y y y y
��

� � � � �… . (5.3)

Given this, the most preferred system alternative is:

 ()()* *

1

arg max l l
l L

l V
=

= S y
…

. (5.4)

One limitation of this notation is that different system configurations can have

different numbers of components. Thus, the parameter K in the above notation really

should be indexed according to the system number—i.e., we should use lK for 1l L= … .

 127

However, this detail is omitted to make the notation less cumbersome. It is

inconsequential with respect to the analysis in the next section.

5.3 Soundness Conditions for Composing Non-Dominated Sets

The procedure defined in Equations (5.2) through (5.4) incorporates an

assumption that warrants scrutiny. If designers fit tradeoff models to data identified using

a component-level optimality criteria—a dominance analysis performed on data about

component implementations—how can they be sure that some combination of tradeoffs

that appear dominated at the level of their respective components will not yield the most

preferred solution from a system-level perspective?

If it is valid to compose tradeoff models, then the answer to this question must be

that it can never happen—that if a component tradeoff is eliminated by a dominance

analysis, then it also would be eliminated when considered at higher levels in the system

hierarchy. Whether this is the case depends on how component-level attributes relate to

system-level attributes through the system composition model, ()⋅S . The aim in this

section is to identify mathematical conditions that guarantee validity in this sense for both

classical and parameterized Pareto dominance.

The analysis is limited to the idealized case of dealing directly with a non-

dominated set, as opposed to a tradeoff model fit to it. However, the results are an

important justification for trying to generalize a non-dominated set in the first place. If it

could be that the most preferred tradeoff is not in this set, then the use of tradeoff models

surely is unwarranted.

 128

5.3.1 Soundness Condition for Composing Classical Pareto Sets

In the following, it is shown that it is sound to model a component using a

classical Pareto set provided the system composition model is strictly monotonic in all of

the component’s attributes. Building on this result, one can reason that designers can

compose classical Pareto sets provided the system composition model is strictly

monotonic in all attributes from all components. This is a restrictive assumption and

motivates the use of parameterized Pareto dominance, further considered in Section 5.3.2.

Since a system composition model, ()⋅S , is a vector-valued function, it is

necessary to clarify the meaning of monotonicity in this context. It is useful to begin with

the definition of monotonicity for a scalar function. Note that what follows adopts the

convention used in (Keeney and Raiffa 1993) of denoting an attribute in the abstract

using an uppercase letter and denoting a specific value for that attribute using a lowercase

letter (e.g., if Y is the attribute “gear ratio”, y would be 10.72 or some other numeric

value).

Definition 5.1 (Strictly Increasing in kY , scalar function): A function

: MS →� � is strictly monotonically increasing in kY if for , M′ ′′∈y y � ,

1 ,j jy y j M j k′ ′′= ∀ = ≠… and k ky y′ ′′> implies () ()S S′ ′′>y y .

This discussion is restricted to increasing functions without loss of generality; if ()S y is

decreasing in Y , it is increasing in the negation of Y . One can extend the preceding

definition to vector-valued functions as follows:

 129

Definition 5.2 (Strictly Increasing in kY , vector function): A function

: M N→S � � such that () () ()[]1 2
, , ,

N
S S S⋅ ⋅ ⋅=S … is strictly increasing in kY if

every ()iS ⋅ that is a function of kY is strictly increasing in kS .

Figure 5.2 is an illustration of different monotonicity scenarios for a system composition

model, []1 2 3, ,S S S=S . The model is strictly increasing in 1Y because 1S and 2S are

strictly increasing in 1Y and 3S is not a function of 1Y . However, S is not strictly

increasing in either 2Y or 3Y . For 2Y , this is evident in that 2S non-monotonic in 2Y . The

situation for 3Y is more complicated, but essentially the same. The function 2S is

monotonically decreasing in 3Y , but the function 3S is monotonically increasing in 3Y .

Consequently, the overall effect is non-monotonic. No simple reformulation of the

problem can avoid this and, as shall be proved in the following, one cannot compose

classical Pareto sets soundly under these circumstances.

[]1 2 3 4, , ,y y y y=y

()1 1 2 32S y y y= + +y () ()
2

2 1 2 32 4S y y y= + − −y� ()3 4S y=y

() () ()1 1 2 2 3 3, ,z S z S z S= = = =  z y y y

[]1 2 3 4, , ,y y y y=y

()1 1 2 32S y y y= + +y () ()
2

2 1 2 32 4S y y y= + − −y� ()3 4S y=y

() () ()1 1 2 2 3 3, ,z S z S z S= = = =  z y y y

Figure 5.2: Different monotonicity possibilities for a system composition model.

To formalize conditions for when composing classical Pareto sets is

mathematically sound, some additional notation is needed. Let kY and *

kY denote,

 130

respectively, the feasible and non-dominated sets corresponding to component 1k K= …

and 1 2 K= × × ×Y Y Y Y� denote the set of all combinations of feasible component-level

points. Also, let 1 1 1k k k K− − += × × × × ×Y Y Y Y Y� � denote the set of all combinations of

feasible component-level points except those from the thk component and *

k−Y denote the

analogously-defined non-dominated set. Finally, we use the notation [],k k−=y y y such

that k k∈y Y and k k− −∈y Y to mean that ∈y Y .

Given this notation, one can make three related statements about the validity of

using classical Pareto sets in a compositional modeling framework. As before, let

DOM′ ′′y y denote that ′y dominates ′′y by the classical Pareto criterion.

Theorem 5.1: If a system composition model, : M N→S � � , is strictly

increasing in all inputs originating from the thk component and DOMk k
′ ′′y y for

,k k k
′ ′′ ∈y y Y , then there exist *,k k k− − −

′ ′′ ∈y y Y such that () ()DOM′ ′′S y S y , where

[],k k−
′ ′ ′= ∈y y y Y and [],k k−

′′ ′′ ′′= ∈y y y Y .

This means that under the assumption of a strictly increasing system composition model,

it is guaranteed that a solution dominated at the component level also is dominated at the

system level. In concrete terms, designers can, in principle, eliminate an alternative for a

motor without considering the load it must drive. A proof of Theorem 5.1 is given in

Appendix A. Two related corollaries follow (also proved in the appendix).

Corollary 5.1: Theorem 5.1 holds for ,k k k− − −
′ ′′ ∈y y Y .

 131

Whereas Theorem 5.1 is expressed in terms of classical Pareto sets—i.e., *,k k k− − −
′ ′′ ∈y y Y —

Corollary 5.1 is in terms of the corresponding feasible set. This means that applying

classical Pareto dominance at a component level can be valid independent of whether one

applies it to the other components in a system model. From a practical perspective, this

indicates that one can combine classical Pareto sets or tradeoff models based on them

with more traditional engineering models (i.e., ones that compute attributes from design

variables).

Another useful corollary of Theorem 5.1 is that one can extend it to the system-

wide scenario.

Corollary 5.2: If a system composition model, : M N→S � � , is strictly

increasing in every component-level attribute, then Theorem 3 holds for all

components, 1k K= … .

This is a generalization of Theorem 5.1 to establish that one can compose classical Pareto

sets whenever the system composition model is strictly increasing in all inputs. Although

this indicates that it is possible for one to compose classical Pareto sets, the monotonicity

requirement is restrictive in practice. Many system composition models resemble those of

Figure 5.2. For example, in the gearbox design problem of Chapter 3, gear ratio is an

attribute that relates to the system-level decision attributes through a non-monotonic

composition model of engine and vehicle dynamics (i.e., it is analogous to 2Y from

Figure 5.2). The log splitter example (Chapter 6) also violates the strict monotonicity

requirement. Larger cylinder bore is preferred to improve in a force-maximization

objective, but smaller bore is preferred to improve in a speed-maximization objective

 132

(i.e., it is analogous to 3Y in Figure 5.2). These are relatively simple engineering

problems and there is no reason to expect such circumstances would not exist for more

complicated ones. Designers need an approach that is generally sound under realistic

conditions.

5.3.2 Soundness Condition for Composing Parameterized Pareto Sets

Parameterized Pareto dominance does not have the limitations of the classical

rule, provided one classifies the attributes correctly as parameters or dominators.

Appendix A contains proofs for the following statements.

Theorem 5.2: If a system composition model, : M N→S � � , is strictly

increasing in inputs that are dominator attributes of the thk component and

PDOMk k
′ ′′y y for ,k k k

′ ′′ ∈y y Y , then there exist *,k k k− − −
′ ′′ ∈y y Y such that

() ()DOM′ ′′S y S y , where [],k k−
′ ′ ′= ∈y y y Y and [],k k−

′′ ′′ ′′= ∈y y y Y .

This has an interpretation similar to that of Theorem 5.1, with the main distinction being

the application of PDOM at the component level. In terms of the example of Figure 5.2,

1Y would be a dominator attribute while 2Y and 3Y are parameters. Like Theorem 5.1, the

practical consequence of Theorem 5.2 is that designers can eliminate component-level

alternatives soundly without considering how the properties of other components in the

system. However, the monotonicity requirements for doing this are much less strict in

this case. In fact, the circumstances in which using parameterized Pareto dominance is

sound subsume those for the classical rule. This is evident in that Theorem 5.2 reduces to

Theorem 5.1 in the event that all attributes from the thk component are dominators.

 133

One can extend Theorem 5.2 in a way that parallels the corollaries associated with

Theorem 5.1:

Corollary 5.3: Theorem 5.2 holds for ,k k k− − −
′ ′′ ∈y y Y .

Corollary 5.4: If a system composition model, : M N→S � � , is strictly

increasing in all component-level dominator attributes, then Theorem 5.2 holds

for all components, 1k K= … .

According to Corollary 5.3, it is sound to use parameterized Pareto dominance to model a

particular component regardless of how one models other components provided the stated

monotonicity property holds. Corollary 5.4 is an extension of Theorem 5.2 to all

components in a system.

5.3.3 Practical Implications of the Mathematical Results

Designers cannot perform dominance analysis at the component level without

some understanding of the system composition model. This is evident in the

monotonicity assumptions required to make the preceding propositions work. Essentially,

one cannot draw any conclusions about the soundness of composing non-dominated sets

without saying something about how they are composed.

Ultimately, this requirement is not oppressive. Monotonicity is a relatively simple

property that designers often can verify by inspecting their models. Designers who wish

to develop reusable tradeoff models—which necessarily must be developed without a

specific composition model in mind—can consider the odds of a particular type of

attribute being used in a particular type of model. For example, cost, mass and reliability

will, for most systems, map monotonically from the subsystem to the system level and

 134

therefore designers can use those attributes as dominator attributes in the parameterized

Pareto dominance rule. In cases where an attribute is likely to undergo a non-monotonic

transformation (e.g., gear ratio, cylinder bore) or no clear usage is evident, designers can

treat an attribute as a parameter. The risk of designers misusing a tradeoff model is low

because they can validate any monotonicity assumptions incorporated into the model at

the time of use.

The main practical consequence of the preceding theoretical analysis is that

classical Pareto dominance is very limiting in a compositional modeling context. Only in

cases where one can treat every one of a component’s attributes as dominator attributes is

this dominance rule helpful. This assumption appears unlikely to hold in most cases.

It is important to stress that the classical and parameterized dominance rules are

not competing modeling formalisms. Parameterized Pareto dominance is a generalization

of the classical rule, completely subsuming the situations in which the classical rule is

valid. Thus, classical Pareto dominance is parameterized Pareto dominance for the case

of no parameter attributes (i.e., when P = ∅). Although one could use the classical rule

outside its soundness conditions, it is unclear what one would gain from this. To do so

would require one to make aggressive assumptions about preferences for some of the

attributes and could lead to unsound decisions. One can apply parameterized Pareto

dominance without these assumptions and with the guarantee of a sound decision

process.

5.4 Conclusions and Chapter Summary

The study reported in this chapter provides a firm theoretical basis for modeling

system-level design alternatives by composing tradeoff models based on parameterized

 135

efficient sets. Under reasonable assumptions, the parameterized efficient set for a

component is guaranteed to contain the most preferred solution according to system-level

preferences. The formal statements in this chapter are novel contributions to the study of

dominance analysis and tradeoff modeling. Based on these, one can draw three important

conclusions:

First, designers can develop component tradeoff models independently of one

another. This is evident from Theorem 5.2, which includes no assumptions about

subsystems other than the one being considered. At a glance, one may be inclined to

believe this should not be so on the basis that the solution that is most preferred in one

component depends on what tradeoffs are available in the other components as well as

the way in which the components interact (via the system composition models).

However, the parameterized Pareto set construct enables designers to identify the set of

all tradeoffs for a component that could be the most preferred rather than identifying one

individual solution.

Second, designers can develop component tradeoff models without specific

knowledge about the system-composition model with which it will be used. Theorem 5.2

(and Corollary 5.4) requires only that a general property for the system composition

model holds for certain attributes. Although this requires designers constructing tradeoff

models to have some general insight into a particular problem domain, it does not require

them to know exactly how a given system will be modeled. For example, it is sufficient

for designers to know that increasing the mass of a subsystem leads to an increase in

system mass—they need not know whether increasing the subsystem mass also requires

enlarging a structural component elsewhere, thus adding to the increase at the system

 136

level. It is reasonable to believe designers have this sort of insight, as it is similar to the

type of knowledge upon which experts rely when applying traditional design methods.

Third, designers can develop component tradeoff models independently of specific

system-level preferences. As with system composition models, designers require some

level of insight into a system or application domain but problem-specific knowledge is

unnecessary. Put simply, a designer constructing a tradeoff model need not know the

degree to which a $90 pump is preferred to a $100 pump (all other factors being equal)—

only that it is safe to assume that less cost is preferred to more.

Strictly speaking, the mathematical results of this chapter apply only to the case of

composing parameterized efficient sets. However, one can infer that composing

predictive tradeoff models, which are fit to parameterized efficient set data, can be

effective. The next two chapters contain example problems that provide empirical

evidence to this effect.

 137

CHAPTER 6:

REQUIREMENTS ALLOCATION FOR A HYDRAULIC LOG SPLITTER

This is the first of a pair of example problems aimed at providing evidence that

the tradeoff modeling approach is useful in engineering practice. The main conclusion of

the previous chapter is that reasonable conditions exist under which it is mathematically

sound to compose parameterized efficient sets. However, the main idea of tradeoff

modeling is to generalize from the finite data sample using predictive models. These

models preclude any mathematical guarantees and, consequently, empirical study is

required.

This chapter addresses requirements allocation decisions using a hydraulic log

splitter design example. A database of hydraulics and related components is assembled

and tradeoff models are generated according to the procedure outlined in Figure 3.1.

System composition models that describe the interactions among the various components

are identified and used to relate component-level attribute to system-level attributes.

Decision results obtained using the tradeoff modeling approach are compared to an

exhaustive search of the components database. Although one would not expect both

approaches to yield precisely the same decisions, comparing the two is instructive.

Chapter organization is as follows. Section 6.1 is an overview of the tradeoff

model generation procedure for the hydraulics components. Section 6.2 is a description of

designer preferences for the requirements allocation problem. Section 6.3 is a description

of the system composition model for the log splitter system. Section 6.4 is a comparison

 138

of the decision obtained using tradeoff models to that obtained via an exhaustive search

of the components database.

6.1 Generating Tradeoff Models for Hydraulics Components

To demonstrate the tradeoff modeling methodology, a library of tradeoff models

for hydraulics components is generated. The library consists of tradeoff models for gear

pumps, directional control valves, cylinders and engines. Tradeoff models are generated

using data primarily from publicly-available data sheets and catalogs, with the remainder

obtained from corporate partner companies or their venders. All of the pricing data is for

similar purchase quantities and, whenever necessary, the data has been “anonymized” to

protect proprietary interests. Table 6.1 (next page) is a summary of the scope of the

components in the database and Table 6.2 (page 140) is a summary of the results from

data analysis and model fitting.

A number of points are removed prior to fitting according to standard data

cleansing and analysis practices. A vast majority of the data had nearly the same

maximum operating pressure, which rendered that attribute uninformative from a

prediction standpoint. Accordingly, any components with a maximum pressure below this

level—about 172 bar (2500 psi)—were eliminated and that attribute was removed from

the analysis. A similar observation applies to the engine speed data: the speed at

maximum power was the same for most engines in our database (3600 rpm), and the

same was true for speed at maximum torque (2500 rpm). Consequently, any engine data

deviating from these marks by more than 100 rpm was eliminated and the tradeoff

 139

Table 6.1: Summary of hydraulic component database.

Component Description Attribute Symbol Min Max Units

Cost pumpc 213 859 $

Mass pumpm 2.26
(4.98)

20.5
(45.2)

kg
(lb)

Displacement gV 1.18
(0.072)

48
(2.93)

cm3/rev
(in3/rev)

Max. op.
pressure

max,pumpp∆ 120
(1740)

250
(3625)

bar
(psi)

Max. op.
speed

max,pumpn 3000 4000 rpm

Pump Single-stage
gear pump with
relief valve

Efficiency
(total)

η 0.44 0.92 -

Cost cylc 57 404 $

Mass cylm 25.3
(11.47)

390
(177)

kg
(lb)

Stroke length cylL 0.2 (8)
 1.52
(60)

m (in)

Bore diameter cylb 0.038
(1.5)

0.127
(5)

m (in)

Cylinder Dual-acting
medium- or
heavy-duty.

Max. op.
pressure

max,cylp∆ 172
(2500)

207
(3000)

bar
(psi)

Cost dcvc 70 168 $

Mass dcvm 7
(15.4)

16
(35.3)

kg (lb)

Max. op. flow
rate

Q 60.6
(16)

113.6
(30)

l/min
(gal/min

)

Directional
Control
Valve
(DCV)

Manual, spool-
type, three-way
closed center or
four-way closed
center (w/ open
position) w/
load-side relief
valve or detent

Max. op.
pressure

max,dcvp∆ 138
(2000)

310
(4500)

bar
(psi)

Cost engc 180 1907 $

Mass engm 3.4
(7.5)

58.5
(129)

kg (lb)

Max. power
output

max,engP 0.75
(1.0)

18.6
(25.0)

kW
(hp)

Speed at max.
power output

eng,maxPn 3600 7500 rpm

Max. torque
output

max,engτ 1.08
(0.8)

55
(40.6)

Nm
(lb-ft)

Engine Internal
combustion
engine
(gasoline-
fueled)

Speed at max.
torque output

eng,maxTn 2200 5500 rpm

 140

Table 6.2: Summary of data eliminations and tradeoff model generation.

Component Engine (A) Engine
(B)

Pump Cylinder DCV

Total # in DB 59 61 188 36
after outlier analysis 49 43 158 32
after dominance analysis 14 5 24 137 8

Validation results: MSE
(% of mean)

45.8
(15%)

33.2
(2%)

3.63
(1%)

14
(9%)

14.2
(13%)

Notes: • Kriging interpolation used for all tradeoff models

• All tradeoff models predict cost as a function of the
other attributes

• Engine split into two models after clustering analysis

models did not incorporate this attribute. A small percentage of components were

eliminated on the basis of being outliers or appearing suspect in some way (e.g.,

unusually high or low price for the stated performance attributes).

Parameterized Pareto dominance is applied after making eliminations based on

the above grounds. This accounts for the largest number of eliminations (see Table 6.2).

Applying the tradeoff modeling domain description approach (Figure 4.9) does not result

in further eliminations, but SVC results indicate that two disjoint clusters exist in the

engine data. It was determined that considerably better tradeoff model accuracy could be

had by fitting independent models to each sub-domain. This was deemed worthwhile,

despite the expense of requiring two independent optimization searches to allocate

requirements for the system (one using each engine tradeoff model).

The tradeoff model for each component is formulated to predict cost as a function

of its other attributes. Kriging methods and the DACE Matlab Kriging Toolbox

(Lophaven, et al. 2002) are used to fit the tradeoff models. Validation is conducted using

leave-one-out cross validation (Witten and Frank 2005).

 141

6.2 Hydraulic Log Splitter System and Design Preferences

A log splitter is a system that divides a roughly cylindrical log into two or more

pieces, typically in association with the harvesting of firewood. Several physical

configurations are possible, but the current example is limited to a horizontal-acting type

(Figure 6.1). An operator loads a log into the system and then operates a control to drive

a wedge into the log. The wedge action is aligned with the grain of the wood, so minimal

effort is required after initiating the split. Critical requirements include portability

(typically light weight, has wheels for transport, etc.), cost and splitting capabilities

(maximum size of log it can handle, maximum force it can apply at wedge, etc.).

As a first step in formulating the decision problem, it is useful to identify an

objectives hierarchy. This is given in Figure 6.2. Each leaf of the tree associates with an

attribute the one must compute:

• Cost: Sum of the purchase prices of the hydraulic components and the engine

(which are costs to a system designer). Assembly or other cost factors are not

considered in this example.

• Mass: Sum of the masses of the hydraulic components and the engine. Structure

weight is not considered in this example.

• Ram Force: Maximum force the system can apply to the log.

• Log Length: The maximum length of log that will fit into the system.

• Cycle Time: An index for how long it takes to split a log. Defined as the time for

the wedge to extend 0.15 meters (6 inches) at maximum engine torque (i.e.,

maximum ram force) plus the time to retract it with the engine running at

maximum power (a conservative approximation of maximum ram speed).

 142

Engine &
Pump

Hydraulic Cylinder &
Ram

Directional
Control Valve

Log Loading &
Splitting Area

Engine &
Pump

Hydraulic Cylinder &
Ram

Directional
Control Valve

Log Loading &
Splitting Area

Engine Pump

Directional
Control Valve

Cylinder

Control Input

Load (Log)

Hydraulic Connection

Mechanical Connection

Tank

Engine Pump

Directional
Control Valve

Cylinder

Control Input

Load (Log)

Hydraulic Connection

Mechanical Connection

Hydraulic Connection

Mechanical Connection

Tank

(a) (b)

Figure 6.1: A hydraulic log splitter: (a) physical layout, (b) functional
configuration, where white boxes correspond to components modeled in this example
using tradeoff models.

Log Splitter Objectives

Minimize
Cost

Minimize
Mass

Maximize
Performance

Maximize
Ram Force

Maximize
Log Length

Minimize
Cycle Time

Log Splitter Objectives

Minimize
Cost

Minimize
Mass

Maximize
Performance

Maximize
Ram Force

Maximize
Log Length

Minimize
Cycle Time

Figure 6.2: Objectives hierarchy for the log splitter problem.

 143

Figure 6.3 contains graphs of the individual value functions that represent

designer preferences corresponding to the individual system attributesj. Preferences for

tradeoffs are elicited in a hierarchical fashion by first eliciting a value function for the

three performance attributes and then combining this result with weight and cost for the

top-level elicitation (for a discussion on eliciting preferences, see (Keeney and Raiffa

1993, Section 5.8, Clemen 1996, pp. 546-52)). The performance attribute is a tradeoff

among its constituent objectives:

 P T F L T F T L F L T F L0.15 0.17 0.01 0.3 0.1 0.1 0.17v v v v v v v v v v v v v= + + + + + + ,

where ()T TTv V z= is the value function result for the cycle time attribute at Tz , ()F FFv V z=

is for the ram force attribute and ()L LLv V z= is for the log length attribute. The top-level

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Value function for cost

cost ($)
0 10 20 30 40 50 60 70

0

0.2

0.4

0.6

0.8

1

Value function for cycle time

cycle time (s)
0 100 200 300 400 500 600 700

0

0.2

0.4

0.6

0.8

1

Value function for mass

mass (lb)

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1
Value function for ram force

ram force (tons)
0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1
Value function for log length

Log length (in)

Figure 6.3: Graphs of the individual value functions for the five

system-level attributes of the log splitter design problem.

j All preferences are those of the researcher.

 144

value function is

 ()sys C P M C P C M P M C P M0.45 0.12 0.02 0.16 0.07 0.07 0.11V v v v v v v v v v v v v= + + + + + +z ,

where the ()C C Cv V z= is the value function for the cost evaluated at Cz , ()M M Mv V z= is for

the mass attribute, Pv is the performance attribute defined above and z is the system-

level attribute vector. Thus, the requirements allocation problem is to find the

component-level attribute values that maximize ()sysV ⋅ .

6.3 System Composition and Requirements Allocation

Figure 6.4 is a summary of the system composition model for the log splitter

example. The model consists of the algebraic relationships designers typically use to

analyze hydraulic systems. The cost and mass models are sums of the costs and masses of

Cost ()C C pump cyl dcv engz S c c c c= = + + +y

Mass ()M M pump cyl dcv engz S m m m m= = + + +y

Ram
Force () () 2

F F max,sys cyl
4

z S p b
π 

= = ∆  
 

y

where max,sysp∆ is the maximum operating pressure of the system as dictated

by the rating limitations of components or the pressure that can be generated
by the engine-pump combination.

Log
Length

()L L cylz S L= =y

Cycle
Time () ()2

T T cyl 4

PWR

1 1
1.56z S b

Q Q
π

τ

 
= = + 

 
y

where Qτ is the maximum flow rate the system can achieve at max,engτ and

PWRQ is the maximum flow rate (in gal/min) at max,engP . Both are non-

decreasing functions of pump displacement, the engine speeds at the
respective operating points and component rating limitations.

Figure 6.4: Summary of system composition model for log splitter design problem.

 145

the individual components. Ram force is a function of the maximum system operating

pressure and cylinder bore. Log length is equivalent to the cylinder stroke length. Cycle

time is an index (i.e., not the actual cycle time, but a measure that correlates with it

strongly) that depends on the maximum system flow rate at maximum engine torque, the

maximum system flow rate at maximum engine power and cylinder bore.

To formalize the requirements allocation problem, let S represent the vector-

valued system composition model (comprised of the ()iS ⋅ from Figure 6.4), y� denote the

vector of component-level attributes controlled by the optimization routine, and ()iT y�

denote the vector of all the component-level tradeoff model predictions using the thi

engine tradeoff model, where 1,2i = . Thus, requirements allocation problem is to find

 ()* *, =  y y T y� � ,

such that

{ }

()()()
* * *

1 2

* * *

,

arg max ,
i

sys i i iV
∈

 =  
y y y

y S y T y
� � �

� � � , (7.1)

and

 ()()()* arg max ,
i

i sys iV
∈

=   
y Y

y S y T y
��

� � � , (7.2)

where 1,2i = indicates which engine tradeoff model is used and iY� is the domain in

which the tradeoff model predictions are valid (i.e., the domain description determined

via SVDD). Note that although Equation (7.2) entails an optimization search over the

input domain of the tradeoff models, Equation (7.1) simply is a discrete choice between

two alternatives.

 146

A couple of implementation notes are worth mentioning. First, in general it is

important that designers use every attribute of a tradeoff model in the system model or

assign them constant value. Passing unused variables to the optimization method can

reduce solver efficiency significantly. In this example, the system integration model uses

all available component-level attributes. Second, the optimization problem of Equation

(7.2) is, in general, nonlinear and non-convex. Designers must choose their optimization

algorithms appropriately. Gradient-based methods are used in this example, but with a

number of random-restart runs to improve the odds of finding the global maximum.

6.4 Comparison to Exhaustive Search of Components Database

To demonstrate that the tradeoff modeling approach yields a reasonable

requirements allocation solution for the log splitter, the results of the requirements

allocation problem are compared to an exhaustive search of the components database.

One typically would not do an exhaustive search in practice due to the large number of

combinations that can exist. Even after removing outliers, the modestly-sized database

yields nearly 13 million possible combinations for the log splitter system. Although one

does not necessarily expect the two approaches to yield equivalent solutions—since the

tradeoff models are able to generalize beyond the database contents—the exhaustive

solution does provide a meaningful baseline for comparison. The tradeoff modeling

approach should do no worse than the exhaustive search on the basis that the tradeoff

models are representations of the database contents.

Table 6.3 contains results from the exhaustive search and the two tradeoff

modeling optimization runs (one with each engine tradeoff model). The Engine 1 tradeoff

 147

Table 6.3: Comparison of log splitter requirements allocation results from
tradeoff modeling approach and exhaustive search.

Component Attribute

Composed
Tradeoff
Models

 (Engine 1)

Composed
Tradeoff
Models

(Engine 2)

Exhaustive Search
of DB

Cost $ 223 $ 221 $ 223
Weight 11.7 kg (5.3 lb) 7.9 kg (3.6 lb) 11.7 kg (5.3 lb)

Displacement
6.1 cc/rev

(0.37 in3/rev)
5.7 cc/rev

(0.35 in3/rev)
6.1 cc/rev

(0.37 in3/rev)
Max. op. speed 4000 rpm 4000 rpm 40000 rpm

Pump

Efficiency 0.88 0.63 0.88

Cost $ 233 $ 213 $ 260
Weight 181 kg (82.3 lb) 155 kg (70 lb) 254 kg (115 lb)

Stroke length 0.68 m (27 in) 0.88 m (34.5 in) 0.71 m (28 in)

Cylinder

Bore diameter 0.114 m (4.5 in) 0.102 m (4 in) 0.127 m (5 in)

Cost $ 83 $ 75 $ 90
Weight 18.7 kg (8.5 lb) 26 kg (12 lb) 15.4 kg (7 lb)

Directional
Control
Valve Max. op. flow

rate
68.1 l/min

(17 gal/min)
73.8 l/min

(19.5 gal/min)
68 l/min

(18 gal/min)

Cost $ 330 $ 800 $ 300
Weight 105 kg (47 lb) 192 kg (87 lb) 121 kg (55 lb)

Maximum
Power

6.7 kW
(8.9 hp)

11.2 kW
(15 hp)

6.7 kW
(9 hp)

Engine

Maximum
Torque

18.8 N-m
(13.8 ft-lb)

32.3 N-m
(23.8 ft-lb)

19 N-m
(14 ft-lb)

Ram Force
(Fv)

0.897 0.775 0.958

Log Length
(Lv)

0.944 0.996 0.963

Cycle Time
(Tv)

0.987 0.993 0.967

Performance
(Pv)

0.874 0.812 0.918

Weight (Wv) 0.928 0.887 0.87

Value
Components

Cost (Cv) 0.955 0.850 0.955

System Value (v) 0.958 0.933 0.956

 148

model corresponds to the tradeoff model for lower-torque engines. According to the

tradeoff modeling approach, a system that includes an engine from the Engine 1 domain

is preferred to a system with an engine from the Engine 2 domain (preference value of

0.958 compared to 0.933). The exhaustive search corroborates this result, with its engine

being virtually identical to the engine predicted using the Engine 1 tradeoff model.

Overall, the tradeoff modeling approach yields results similar to the exhaustive

search solution. The tradeoff modeling approach identifies targets for the pump and

engine that are virtually identical to those of the exhaustive search solution. However, the

tradeoff modeling approach does generalize beyond the database contents for the cylinder

and DCV requirements. Upon examining the system attribute valuations, one can see that

the tradeoff modeling solution sacrifices small amounts in terms of the performance

attributes in order to improve in the weight attribute. That this particular solution is not in

the database underscores a strength of the tradeoff modeling approach to generalize

beyond the discrete data.

6.5 Conclusions and Chapter Summary

The results of the log splitter design problem provide evidence that designers can

make requirements allocation decisions in a practical setting by using component-level

tradeoff models to compose a system-level model. The process of generating tradeoff

models begins with observational data about existing implementations of each type of

component. For each component, a tradeoff model is fit to the parameterized efficient set

of the observed data. These tradeoff models are composed together using a system

composition model (Figure 6.4) based on models designers typically use when designing

fluid power systems.

 149

Requirements allocation is an important type of decision during systems design,

which means these results have practical significance. As noted in Section 2.2.1, the

typical procedures that designers use for accomplishing this have significant limitations.

They tend to require strong assumptions about system operation and preclude designers

from considering all the tradeoffs that are important to them. The approach based on

composing tradeoff models has no such limitations.

It is noteworthy that the requirements allocation problem would not have been

solvable using tradeoff models if not for the application of the domain description

approach from Chapter 3. Most obviously, the engine data contains two distinct clusters

that one can model much more accurately using independent models. However, even

though the other components feature only a single predominance cluster, they all have

complex domain boundaries (i.e., they are irregular and non-convex).

The results of this chapter build upon the mathematical results of Chapter 5,

providing empirical evidence that the theoretical conclusions hold in practice. However,

further empirical study is required. The log splitter example is not highly complex. Only

one system configuration is considered and the system composition model is algebraic in

nature. The next chapter contains a more complex example that involves multiple system

configurations and dynamical system models.

 150

CHAPTER 7:

ARCHITECTURE SELECTION FOR A HYBRID HYDRAULIC VEHICLE

This is the last in a trio of chapters aimed at evaluating whether it is effective for

designers to compose system-level models using component-level tradeoff models.

Theoretical results from Chapter 5 indicate that composing parameterized efficient sets,

which are the basis for predictive tradeoff models, is a sound operation in principle.

Empirical evidence from Chapter 6 indicates that tradeoff modeling can be effective in

practice. The current chapter contains additional empirical evidence through a more

complex design example.

The log splitter problem from Chapter 6 involves a requirements allocation

decision and algebraic system interaction models. This is a realistic design problem, but

is not representative of all system-level decision problems. The design problem in the

current chapter is the selection of a power train architecture for a hybrid hydraulic vehicle

(HHV). This problem involves dynamical system models, which are considerably more

complex than the algebraic models from the previous example.

Section 7.1 is a brief overview of the problem. Section 7.2 is a summary of the

tradeoff model generation procedure and results associated with this problem. Section 7.3

is a description of the alternative HHV drive train architectures to be considered in the

decision problem. Section 7.4 is an overview of the dynamical models used to evaluate

the alternatives. Section 7.5 contains the results of the decision problem. Readers should

note that the emphasis in this chapter is on the approach to tradeoff modeling and

decision making rather than the design of a hybrid vehicle.

 151

7.1 Hybrid Hydraulic Vehicles

A hybrid vehicle combines two different sources of power for propulsion: an

internal combustion engine and a second source that is capable of storing regenerated

energy during the driving cycle. Energy regeneration occurs when a driver slows a

vehicle. Rather than dissipate the kinetic energy of the vehicle as heat through friction

brakes, a hybrid vehicle converts the energy into a storable form. Two common

technologies for storing and using the regenerated energy are batteries with electric

motors/generators and accumulators with hydraulic motors/pumps.

Both types of systems have advantages and disadvantages for this application.

The main advantage of hybrid electric vehicles is that electric power technology has a

relatively high energy density (i.e., they can store a larger quantity of energy per unit

mass). Conversely, hybrid hydraulic vehicles have an advantage in terms of the power

density.

Presently, hybrid electric vehicles (HEVs) are more common, particularly for

passenger vehicles. However, hybrid hydraulic vehicles (HHVs) have found application

in service vehicles such as delivery and garbage trucks and have received increasing

attention from the research community. The large power density of hydraulic power

systems makes them attractive since this means they can recuperate a larger proportion of

the energy typically dissipated during breaking.

Although vehicle power train components have grown increasingly sophisticated,

the architecture for a conventional internal-combustion vehicle remains straightforward:

there is a single flow of power flows from the engine to the drive wheels through a

mechanical transmission. In contrast, several power transmission architectures are

possible using hybrid technology and most of these can involve different energy flows

 152

depending on the vehicle state. The search for effective and efficient hybrid vehicle

architectures is a topic of ongoing research; one can find several studies and surveys in

the recent literature—e.g., see (Bernhard 2004, Achten 2008, Van de Ven, et al. 2008),

among others.

The complex nature and novelty of hybrid vehicle power trains makes them an

interesting example problem in the context of this research. Hybrid vehicle technology—

HHV technology in particular—continues to evolve. It is difficult for designers to

identify whether one architecture is superior to another simply by inspection, which

means they need some amount of quantitative modeling. The tradeoff modeling approach

investigated in this research can benefit designers of HHVs by providing them with a

means to evaluate their alternatives quickly and confidently.

Another interesting consideration is that comparing HHV power train

architectures typically requires an analysis of vehicle dynamics. Although it is possible to

make comparisons using algebraic relationships akin to those in the log splitter problem,

these are limiting. System-level objectives for vehicles often include things such as

maximizing fuel economy and acceleration. It is difficult for designers to evaluate these

accurately without considering the dynamical characteristics of a vehicle.

7.2 Tradeoff Model Generation

For this example, tradeoff models are generated for three types of components:

variable-displacement hydraulic pump/motors, hydraulic accumulators and gasoline-

fueled internal combustion engines. Like the log splitter example, the tradeoff models are

 153

Table 7.1: Summary of component database for HHV problem.

Component Description Attribute Min Max Units

Cost 980 2980 $
Mass 4.99 41.73 kg
Max. Displacement 10.49 140 cm3/rev
Max. Pressure 138 361 bar

Pump Axial piston
type, variable
displacement

Max. Speed 1800 3200 rpm

Cost 330 1500 $
Mass 14.0 167.83 kg
Volume 0.0036 0.0568 m3

Accumulator Bladder type
hydraulic
accumulator

Max Pressure 207 350 bar

Cost 180 2845 $
Mass 3.4 80.2 kg
Max. Power 0.75 26.1 kW

Engine Gasoline-
fueled internal
combustion
engine Speed at Max. Power 3600 7500 rpm

based on data that originate from published sources and information requests from

vendors. Table 7.1 is an overview of the database of components collected for the HHV

architecture selection problem.

Tradeoff model generation follows the procedure outlined in Figure 3.1 and the

domain description procedure outlined in Figure 4.9. During data validation it was

observed that each component had at least one uninformative attribute. For example,

nearly all the engines had the maximum power at the same engine speed. Similar

observations apply to maximum pressure and maximum speed for the pumps and

maximum pressure for the accumulators. Each of these attributes is removed from the

analysis and the few data points with different values for these attributes is removed from

the database.

The parameterized Pareto dominance rule is applied to the remaining data. Table

7.2 includes a summary of how each attribute is treated during this step. Note that all

 154

Table 7.2: Summary of domination and model structure for HHV tradeoff models.

Component Attribute Attribute Type Tradeoff Model
Role

Pump Cost Dominator (less is better) Output
 Mass Dominator (less is better) Input
 Max. Displacement Parameter Input

Accumulator Cost Dominator (less is better) Output
 Mass Dominator (less is better) Input
 Volume Dominator (more is better) Input

Engine Cost Dominator (less is better) Output
 Mass Dominator (less is better) Input
 Max. Power Parameter Input

accumulator attributes are dominators, which means in that case the dominance rule is

equivalent to classical Pareto dominance. Maximum pump displacement is modeled as a

parameter attribute because although it is tends to influence performance-oriented

objectives positively (i.e., increasing it increases power output) it tends to influence

efficiency-oriented objective negatively. Maximum engine power is a parameter attribute

for a similar reason: although higher power generally means better performance, it also

means a higher fuel consumption rate.

The domain description procedure (Figure 4.9) is performed on the parameterized

efficient set for each component and tradeoff models are fit to the data using Kriging

methods (Lophaven, et al. 2002). Table 7.3 is a summary of those results. Validation is

performed using leave-one-out cross validation (Witten and Frank 2005). The results

reported in the table are the mean percentage prediction error as measured using that

technique. The engine model error is somewhat higher than is desirable, but the other

models yield good fits.

 155

Table 7.3: Summary of data eliminations and tradeoff model generation for
HHV problem.

Component Engine Pump Accumulator

Total # in DB 44 31 31
after outlier analysis 24 31 29
after dominance analysis 14 29 19

Validation Results (mean % error) 28% 5.5% 4.5%

7.3 HHV Power Train Architectures and Designer Preferences

Two HHV power train architectures are considered in this example. Both are

variants of a hydro-mechanical parallel configuration in which power may be delivered to

the drive wheels from either or both of the internal combustion engine and the hydraulic

motor (Van de Ven, et al. 2008).

7.3.1 Independent Torque Hybrid Hydro-Mechanical Drive Train

The first alternative is an independent torque hybrid hydro-mechanical (ITHHM)

drive train. Figure 7.1 is an illustration of the first configuration considered in this

example. It is capable of supplying torque to each drive wheel independently by virtue of

the dual pump and planetary gearbox arrangement (PGB1 and PGB2). The internal

combustion engine, when running, operates at a fixed speed and power output. This

allows one to set the operating point to minimize fuel consumption.

Power flow through the system changes depending on the vehicle state. Different

operating scenarios include the following:

• The engine is off and the vehicle is propelled by the pumps (acting as motors)

using energy stored in the accumulator. The displacement of the pumps is varied

to provide the appropriate amount of torque to the wheels.

 156

DIFF

PGB1

PGB2

IC Engine

HPA

Pump B

Pump E2

Pump E1

Mechanical Connection

Hydraulic Connection

Left Drive Wheel

Right Drive Wheel

Mechanical
Transmission

DIFF

PGB1

PGB2

IC Engine

HPA

Pump B

Pump E2

Pump E1

Mechanical Connection

Hydraulic Connection

Mechanical Connection

Hydraulic Connection

Left Drive Wheel

Right Drive Wheel

Mechanical
Transmission

Figure 7.1: A hydro-mechanical drive train with independent wheel torque control.

• The accumulator has released most of its stored energy, but a higher vehicle speed

is desired. In this case, the engine is turned on and drives the wheels directly. Any

excess energy is used to restore the accumulator (with the pumps in pumping

mode).

• Deceleration of the vehicle is desired. Kinetic energy of the vehicle is transformed

into potential energy stored in the accumulator by running the pumps. The rate of

energy transformation (and, consequently, deceleration) is controlled by the pump

displacement setting. Friction brakes may be engaged to assist or to bring the

vehicle to a complete halt.

Some control logic is required to ensure the power train is in the appropriate state. The

engine is controlled by a pressure sensor on the high-pressure accumulator, HPA. The

 157

engine starts when system pressure falls below a predetermined threshold and is shut off

when the pressure becomes sufficient. Hysteresis is designed in to the controller to

prevent the engine from cycling on and off rapidly. Speed and torque controllers set the

appropriate pump displacements based on the current and desired state of the vehicle. The

displacement of Pump B is varied to maintain a constant engine operating point. The

displacements of Pump E1 and Pump E2 are set as a function of the desired speed of the

vehicle.

7.3.2 Simplified Hybrid Hydro-Mechanical Drive Train

The second alternative is a simplified hybrid hydro-mechanical (SHHM) drive

train. This is a variant of the ITHHM concept. Figure 7.2 is an illustration of this concept.

Relative to that of Figure 7.1, this architecture has slightly less complex hydraulics (only

one pump on the high-pressure side), but is incapable of independent control of wheel

torque.

The simpler architecture potentially is advantageous because it requires fewer

components. Potentially, this can result in a lighter and less expensive transmission with

fewer hydraulic losses to detract from efficiency.

The mechanical transmission implementation is identical to the more complex

configuration. The control logic also is largely the same.

 158

DIFFPGB

IC Engine

HPA

Pump B
Pump E

Mechanical Connection

Hydraulic Connection

Left Drive Wheel

Right Drive Wheel

Mechanical
Transmission

DIFFPGB

IC Engine

HPA

Pump B
Pump E

Mechanical Connection

Hydraulic Connection

Mechanical Connection

Hydraulic Connection

Left Drive Wheel

Right Drive Wheel

Mechanical
Transmission

Figure 7.2: A hybrid hydro-mechanical drive train with high-low gear.

7.3.3 System-Level Decision Objectives

There are three system-level design objectives for this problem: maximize fuel

economy, maximize vehicle acceleration and minimize costs. They are quantified as

follows:

• Fuel economy: Measured in miles-per-gallon (liters-per-kilometer) achieved on

the EPA Urban Dynamometer Drive Cycle (U.S. EPA 2008). Computed using a

simulation of vehicle dynamics.

• Acceleration: Measured as time required to accelerate from full stop to 60 mph

(96.56 kph). Computed using a simulation of vehicle dynamics.

 159

• Costs: Measured as purchase prices of all major drive train components in US$

(which, from the perspective of a system designer, are costs). Assembly and

transport costs not considered. Computed using tradeoff model predictions.

Figure 7.3 contains graphs of the value functions associated with each attribute. These

represent the preferences of the researcher and are elicited using standard decision-

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mileage Value Function

EPA Urban Drive Cycle Mileage (mpg)

v
m

p
g

0 5000 10000 15000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cost Value Function

System Cost ($)

v
c
o

s
t

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Acceleration Value Function

0-60 mph Acceleration Time (seconds)

v a
c
c

Figure 7.3: Graphs of the individual value functions for the HHV power train design
problem.

 160

analysis techniques (see (Keeney and Raiffa 1993, Section 5.8, Clemen 1996, pp. 546-

52)). The individual value functions are combined using the following value function:

0.35 0.22 0.1

0.1 0.1 0.06

0.11

sys mpg acc price

mpg acc mpg price acc price

mpg acc price

v v v v

v v v v v v

v v v

= + + +

+ + +

where sysv is the overall system value and mpgv , accv and pricev are the values obtained

from the mileage, acceleration and cost value functions, respectively.

7.4 System Dynamics

7.4.1 System Model Overview

Both power train alternatives are modeled in the Modelica modeling languagek

using an open-source Fluid Power library (Paredis 2008). The models account for engine

behavior, vehicle dynamics and energy losses. Figure 7.4 (page 162) is a top-level view

of the Modelica model for the ITHHM drive train alternative. The key model components

are:

• driveTrainMech. Encapsulates all of the mechanical transmission components. In

addition to the “mechanical transmission” block from Figure 7.1, it also includes

the differential and planetary drives located at the wheels.

• engine. The engine is modeled as having inertia and the model accounts for fuel

consumption.

• vehicleBody. This model accounts for inertia as well as rolling and aerodynamic

resistances.

• HPA. The high-pressure accumulator.

k The Modelica Association: http://www.modelica.org/

 161

• Pumps (PumpE1, PumpE2 and PumpB). Variable displacement axial piston

pumps modeled with losses (see Section 7.4.2).

• engineControl. Controller for turning engine on or off based on hydraulic system

pressure.

• TorqueControl. Changes the displacement of Pump B to ensure that the engine

remains at a fixed operating point.

• speedControl. Implements the speed commands for the system. Determines

displacements for the E Pumps to achieve desired vehicle speed. Inputs are

current vehicle speed and hydraulic pressure.

Figure 7.5 (next page) is the corresponding view of the SMMH drive train alternative.

The main distinction is that there is only one E pump and the driveTrainMech component

implementation is different to reflect the lack of independent torque control of the drive

wheels.

7.4.2 Losses and Fuel Consumption

Hydraulic Pump Losses

One of the larger disadvantages of HHV technology relative to HEV technology

is that variable displacement hydraulic pumps/motors are inefficient relative to electric

generator/motors. Consequently, to evaluate any HHV drive train architecture accurately,

one must account for these losses.

The pump model in the open source fluid power library incorporates a loss model

based on the work of McCandlish and Dorey (1984). Using this

 162

 environment

p_amb = 101325
T_amb = 288.15

L
P
A

H
P
A

p
u
m
p
E
R
i..
.

T P

p
u
m
p
E
L
e
ft

T P

pumpB1
T

P

j2

j1

vehicle...

driveTra...

E...

engine

t...

torqueC...

Spe...

w

speedC...

Spe...

w

engineC...

B A

reliefValve

B A
checkVa...

Pump E2

Pump E1

HPA

 environment

p_amb = 101325
T_amb = 288.15

L
P
A

H
P
A

p
u
m
p
E
R
i..
.

T P

p
u
m
p
E
L
e
ft

T P

pumpB1
T

P

j2

j1

vehicle...

driveTra...

E...

engine

t...

torqueC...

Spe...

w

speedC...

Spe...

w

engineC...

B A

reliefValve

B A
checkVa...

Pump E2

Pump E1

HPA

Figure 7.4: Top-level view of Modelica model for the ITHHM drive train.

 environment

p_amb = 101325
T_amb = 288.15

L
P
A

H
P
A

p
u
m
p
E

T P

p
u
m
p
BT P

j2

j1

E...

engine

t...

torqueC...

Spe...

w

speedC...

Spe...

w

engineC...

vehicle...

driveTra...

B A

reliefValve

B A
checkVa...

Pump E

HPA

Pump B

 environment

p_amb = 101325
T_amb = 288.15

L
P
A

H
P
A

p
u
m
p
E

T P

p
u
m
p
BT P

j2

j1

E...

engine

t...

torqueC...

Spe...

w

speedC...

Spe...

w

engineC...

vehicle...

driveTra...

B A

reliefValve

B A
checkVa...

Pump E

HPA

Pump B

Figure 7.5: Top-level view of Modelica model for the SHHM drive train.

 163

model, one can account for volumetric and mechanical losses with reasonable accuracy

over a wide range of operating conditions. This model requires one to know four pump

parameters:

• A volume ratio associated with flow loss

• Slip coefficient associated with flow loss

• Viscous drag coefficient associated with torque loss

• Coulomb friction coefficient associated with torque loss

One can determine these parameters for a given pump experimentally, but pump

manufacturers tend not to publish these coefficients. For the current example problem,

the same coefficients are used for all pumps. These coefficients are determined

experimentally using a pump that is representative of those used to fit the tradeoff model.

Ideally, one would incorporate these coefficients in a pump tradeoff model should they

vary significantly over the set of pumps being modeled.

Fuel Consumption

The fuel consumption model is based on published brake-specific fuel

consumption (BSFC) data from the engine product literature. Brake-specific fuel

consumption is a measure of engine fuel consumption rate for a particular power output

that one determines using a dynamometer. Minimum BSFC values for various engines of

the same fuel type are remarkably constant (Aird 2000). For engines in the database used

to generate the engine tradeoff model, the BSFC is about is 295 g/kW-hr. Since the

engine in both architectures has a constant operating point, it is possible to compute a fuel

consumption rate in volume per unit time. The calculation is

1

* * *
3600

gasoline engfcr bsfc Pρ
 

=  
 

,

 164

where fcr is the fuel consumption rate in gallons/second, bsfc is the brake-specific fuel

consumption rate in g/kW-hr, gasolineρ is the density of gasoline expressed in gallons per

gram, engP is the operating power of the engine in kW and the last term converts from

hours to seconds. Because the engine operates at a fixed point when running, one can

compute the total fuel consumed on a particular drive by multiplying the fcr by the total

time the engine was running.

7.4.3 Computing the Decision Attributes

Estimating Fuel Economy

Fuel economy is estimated by simulating the EPA Urban Dynamometer Drive

Schedule (UDDS) (U.S. EPA 2008). This consists of a velocity-time profile

representative of a typical passenger vehicle in an urban setting. Figure 7.6 is a graph of

the driving schedule in units of miles-per-hour versus time in seconds. The total driving

duration is 1369 seconds, covering a distance of 7.45 miles (approximately 12 km) at an

average speed of 19.59 mph (8.7575 m/s or 31.53 kph). To conduct the UDDS

0 200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60

EPA Urban Dynamometer Drive Schedule

Time (s)

V
e
h
ic

le
 S

p
e
e
d
 (

m
p
h
)

Figure 7.6: EPA Urban Dynamometer Drive Schedule.

 165

simulation, the drive profile is input to the speed controller component in the Modelica

model. This controller issues the signals required for the vehicle to follow the given

schedule.

One challenge in estimating fuel economy is that some combinations of

component-level attributes result in a system that is incapable of following the drive

cycle. This usually happens when components are undersized. Figure 7.7 is an illustration

of this effect. The problem is that the fuel economy computed for such a system may

actually be quite good. In this sense, the system is “cheating” the test by deviating from

it.

To avoid favoring systems that are incapable of following the EPA UDDS, a

constraint is added to the decision problem based on a global trajectory error measure.

The measure is computed as the integral of the squared error relative to the EPA drive

schedule. Alternative solutions to this problem include using a maximum error criterion

or creating an additional decision attribute to formalize a preference for solutions that

follow the drive schedule closely.

Time (seconds)

S
p
e

e
d

 (
m

/s
)

0 250 500 750 1000 1250
0

5

10

15

20

25

30

Desired Speed

Actual Speed

Time (seconds)

S
p
e

e
d

 (
m

/s
)

0 250 500 750 1000 1250
0

5

10

15

20

25

30

Desired Speed

Actual Speed

Figure 7.7: Illustration of a speed trajectory that does not follow the EPA UDDS.

 166

Estimating Acceleration Time

The time required to accelerate from full stop to 60 mph (96.56 kph) is estimated

using the same dynamical model as is used for the fuel economy simulations. However,

rather than providing the speed controller with the urban driving schedule, the

acceleration simulation is implemented by inputting a (large) step function into the speed

controller. This prompts the simulated vehicle to its full acceleration in an attempt to

track the step function. The simulation terminates when the desired speed is achieved.

If power train components are undersized, it is possible that a simulation does not

obtain the desired top speed. In this case, the simulation proceeds for 60 seconds of

simulated time and that solution is assigned a zero utility for the acceleration attribute

(c.f. Figure 7.3). One need not enforce a constraint on the optimizer in this case because

the solution receives such a poor rating.

7.5 Solving the Decision Problem

7.5.1 Component-Level Search Space

Because the aim of this example is illustrative, the mechanical transmission

components are held fixed during this decision process. This is a significant

simplification because the gear ratios have a significant impact on acceleration and fuel

economy. Although this will not yield the best possible HHV drive train architecture, the

problem retains adequate complexity to explore the role of tradeoff models in the

decision solution process.

For each system alternative, tradeoffs for four components are explored: the

engine, the accumulator, the B pump and the E pump(s). The two E-level pumps in the

ITHHM drive train are assumed identical. Table 7.4 is a summary of the search space and

tradeoff models for the problem.

 167

Table 7.4: Summary of attribute search space for HHV drive train problem.

Component Search Attributes Tradeoff
Model

Predicted
Attribute

Pump B Max displacement, mass ()pumpT ⋅ Cost

Pump E Max displacement, mass ()pumpT ⋅ Cost

Engine Max power, mass ()engT ⋅ Cost

Accumulator Max volume, mass ()accumT ⋅ Cost

7.5.2 Decision Formulation

The decision problem formulation follows the general formulation from Section

3.3.2. Requirements allocation is performed on each drive train architecture to predict the

attributes designers would achieve if they continued to implement that alternative. The

system selection decision is a discrete choice between the two predictions. To formalize

the decision problem mathematically, let { },a ITHHM SHHM∈ be an indicator to

distinguish between the drive train architectures. Then let:

• ()mpg,aS ⋅ denote the simulation model for mileage estimation for architecture a ,

• ()acc,aS ⋅ denote the simulation model for estimating 0-60 mph time for

architecture a , and

• ()cost,aS ⋅ denote the algebraic model that computes system cost for architecture a

given the prices of its components.

Also, let () () () ()mpg, acc, cost,, ,a a a aS S S ⋅ = ⋅ ⋅ ⋅ S represent a vector-valued model composed

of the three scalar models. As in previous chapters, let y� denote the vector of search

 168

attributes (second column of Table 7.4) and Y� represent the valid search domain as

identified by the support vector domain description procedure. Thus, the requirements

allocation problem for each { },a ITHHM SHHM∈ is to find

 ()* * *,a a a
 =  y y T y� �

such that

 ()()()* arg max ,a sys av
∈

=   
y Y

y S y T y
��

� � � . (8.1)

The final selection decision is formalized as

{ }

()* *

,

arg max sys a
a ITHHM SHHM

a v
∈

= y .

In addition to the usual domain description constraints, the optimization problem stated in

Equation (8.1) is subject to an additional inequality constraint regarding the squared error

integral of the vehicle tracking the speed profile for fuel economy estimation. This is

implemented as an inequality constraint.

7.5.3 Results

For each architecture, a search of the component-level attribute space (Equation

(8.1)) is conducted using a pattern search optimization method. Table 7.5 is a summary of

the results. The ITHHM concept—the one with the more complex hydraulics and

mechanical transmission—is the most preferred.

Part of the motivation for exploring the SHHM architecture was that it could be

less expensive than the more complex architecture for similar levels of performance.

However, according to these results this is not the case. In order to implement the SHHM

architecture in a way that is capable of following the EPA UDDS successfully, one

 169

Table 7.5: Summary of results from HHV drive train selection.

Architecture Component Variable
ITHHM SHHM

Units

Engine Max Power 12.6 15.6 kW
 Mass 36.2 40.3 kg
 Cost 591 1565 $

Accumulator Volume 0.0322 0.0322 m3
 Mass 69.4 69.3 kg
 Cost 1036 1036 $

Pump B Max Displacement 11.78 16.96 cm3/rev
 Mass 4.9 5.2 kg
 Cost 998 1076 $

Pump E Max Displacement 12.42 33.79 cm3/rev
 Mass 5.3 13.1 kg
 Cost 1020 1361 $

System Attributes Mileage 49.2 36.6 mi/gal
 Acceleration 8.89 8.26 sec
 Cost 6167 6538 $

Value Function System 0.8034 0.7588
 Mileage 0.9834 0.9028
 Acceleration 0.8062 0.8449
 Cost 0.6867 0.6257

requires a relatively large and expensive engine. Although the SHHM architecture is

better than the ITHHM in terms of pumps (recall that there are two identical Pump E

components in the ITHHM configuration), this difference is less than the added cost of

the larger engine. This is an interesting result that would not have been apparent without

the tradeoff model based optimization study.

It is interesting to note that both solutions have essentially identical solutions for

the accumulator. Accumulator size impacts energy storage most directly; it has relatively

little to do with the rate at which it can be stored or returned. Thus, the solution likely is

the smallest accumulator that still allows for successful completion of the acceleration

and fuel economy tests.

 170

It is difficult to validate whether these predictions are valid. Unlike in the log

splitter example, it is impractical to compare these results to an exhaustive search of the

components database. Although the database is small, it still contains 21,576

combinations after removing gross outliers. The simulation models require on the order

of two minutes to solve, which means this many combinations requires on the order of a

month of computer time.

One can obtain some insight into the solutions by comparing them with the

database entry that is the most similar. Table 7.6 (next page) is a summary of such a

comparison. Nearest neighbors are selected using an equally-weighted normalized

distance metric. The percent difference is relative to the entry from the database.

Negative results indicate under-estimates.

Most of the solution points are within about 10% of a database entry, but the

differences between others is much greater. One should not expect perfect

correspondence between a solution found using the tradeoff model based attribute space

search and the database. The tradeoff modeling approach is intended to generalize the

database entries, potentially enabling designers to identify novel solutions that should be

feasible.

In light of this, Pump B from the SHHM drive train is the only troubling result.

Although the displacement and cost predictions match closely with a database entry, the

mass is very different. Judging from the other pumps reported in the table, it seems the

real mass of a pump having that displacement should be somewhere in between the two

values. Notice that database entry listed for Pump E of the SHHM alternative has a higher

 171

Table 7.6: Comparison of component sizing solutions to nearest database entry.

Component Variable
Predicted
Solution

Nearest
Neighbor in
Database

Percent
Difference

Independent Torque Hybrid Hydro-Mechanical Drive Train

Engine Max Power 12.6 11.9 5.9
 Mass 36.2 36.3 -0.28
 Cost 591 500 18.2

Accumulator Volume 0.0322 0.034 -5.29
 Mass 69.4 80 -13.25
 Cost 1036 1113 -6.92

Pump B Max Displacement 11.78 10.48 12.4
 Mass 4.9 4.9 0
 Cost 998 980 1.84

Pump E Max Displacement 12.42 13.76 -9.74
 Mass 5.3 5.9 -10.17
 Cost 1020 1000 2

Simplified Hybrid Hydro-Mechanical Drive Train

Engine Max Power 15.6 15.7 -0.64
 Mass 40.3 42.6 -5.4
 Cost 1565 1700 -7.94

Accumulator Volume 0.0322 0.034 -5.29
 Mass 69.3 80 -13.37
 Cost 1036 1113 -6.92

Pump B Max Displacement 16.96 16.39 3.48
 Mass 5.2 16.3 -68.1
 Cost 1076 1050 2.48

Pump E Max Displacement 33.79 32.93 2.6
 Mass 13.1 13.6 -3.68
 Cost 1361 1470 -7.41

displacement but a lower mass than the one for Pump B. Typically, one would expect

mass and displacement to correlate positively. It is likely that with more data gathering,

one could identify a pump that would dominate this uncharacteristically heavy option.

7.6 Conclusions and Chapter Summary

The two HHV drive trains considered here serve as a good example for the

importance of incorporating tradeoff modeling into architecture selection decisions. The

 172

alternatives are closely matched, with neither being superior to the other. Certainly, this is

not a decision that designers—no matter what their level of expertise—can make

confidently without some amount of modeling and simulation.

Another factor is that the final result—that the more complex architecture is

superior—is slightly counter-intuitive. The motivation for considering the simplified

drive train is because it has fewer components and seems as though it could perform

similarly for less cost. The tradeoff model based analysis yields a contrary conclusion.

One also can understand the part of value of applying tradeoff modeling to system

selection decisions in the context of this example. Given that the alternatives have such

similar levels of performance it is important that designers evaluate the solutions at

realistic settings for the component-level attributes. Surely, it would be inappropriate to

conclude that the SHHM alternative is superior based on a simulation that assumes a 25

kW engine cost only $500.

Perhaps more significantly is that tradeoff modeling combined with support

vector domain description is a critical for enabling simulations at this level of abstraction.

Although it is reasonable to suppose designers have an understanding of the upper and

lower bounds on most of the component-level attributes, the odds are against their having

a detailed understanding of the associations between them. Allowing an optimizer to

search the entire hypercube defined by the upper and lower bounds certainly would yield

invalid solutions. The alternative to tradeoff modeling is to model the constraints

analytically, based on physical principles. Although this is reasonable to do at lower

levels of abstraction, the aim is to avoid these lower levels when making system-level

decisions.

 173

CHAPTER 8:

TRADEOFF MODELING UNDER DATA UNCERTAINTY

An assumption underlying the research reported in the preceding chapters is that

the attribute data designers use to generate a tradeoff model is known with certainty.

Although this is reasonable in some cases, one cannot expect this assumption to hold in

all situations. This chapter addresses the problem of dealing with uncertain data as

expressed in the fourth research question:

RQ4. How should designers identify and visualize the (parameterized) efficient set of

tradeoffs when the attribute data is uncertain?

The parameterized Pareto dominance rule is meaningless when attribute values are

uncertain (this is true of all Pareto-based dominance criteria). Designers instead must use

a dominance rule that accounts for the impact of uncertainty on their decision making.

Uncertainty opens the door to designers making tradeoffs between their base objectives

(e.g., to maximize reliability or to minimize cost) and their risk attitude toward

uncertainty in achieving those objectives. In the simplest case, designers can trade

between the mean value of an attribute and its variance. This problem in its full generality

is too broad to tackle in this research. However, it is possible to handle an important

special case and lay a foundation for future work.

This chapter addresses the case in which designers can model the uncertainty in

attribute data using statistically independent normal distributions. A further assumption is

that designers make decisions in a non-risk-taking manner (the precise meaning of which

 174

is defined in Section 8.2). Under these conditions, designers can use a parameterized

version of an appropriate stochastic dominance criteria as a basis for tradeoff modeling:

H4. Designers can identify the (parameterized) efficient set of tradeoffs under

uncertainty using (parameterized) stochastic dominance criteria and can

visualize this set as a surface in mean-variance space.

Stochastic dominance criteria are mathematically rigorous generalizations of the notion

of dominance to the case of decisions under uncertainty. Under the current assumptions,

the appropriate stochastic dominance rule yields a frontier in the mean-variance space of

the distribution functions much in the way that classical Pareto dominance leads to a

frontier in the attribute space. Like classical Pareto dominance, one can parameterize the

stochastic dominance rule to enable model composition and reuse. The new dominance

rule is demonstrated on a gearbox design problem similar to the one in Chapter 3.

Chapter organization is as follows. Section 8.1 is a review of an appropriate

theory for decision making under uncertainty, called multi-attribute utility theory, and a

description of how designers can reinterpret the notion of a tradeoff space in the case of

uncertainty in the attribute data. Section 8.2 is a review of the literature on stochastic

dominance. Section 8.3 is a description of a parameterized version of a stochastic

dominance rule and how to apply it to tradeoff modeling. Section 8.4 contains the

gearbox design example.

8.1 Making Tradeoffs under Uncertainty

8.1.1 Multi-Attribute Utility Theory

This research is based upon the decision theoretic framework of Multi-Attribute

Utility Theory (MAUT) (Keeney and Raiffa 1993), which is an extension of the utility

 175

theory by von Neumann and Morgenstern (von Neumann and Morgenstern 1980) to the

case of multiple competing objectives. Using MAUT, designers can make decisions in a

way that considers their preferences with regard to tradeoffs under uncertainty. One can

formulate a decision in MAUT as:

 ()*

A

arg max E a
a

a u
∈

=   z ,

or

 () ()*

A

arg max a a a a
a

a u F d
∈

= ∫ z z z ,

where A is the set of feasible decision alternatives, a A∈ is a specific alternative, *a is

the most preferred alternative, N

a ∈z � is a random vector of attributes for alternative a

having distribution function aF , : Nu →� � is a suitably defined utility function, and

[]E ⋅ is the expectation operator.

The function ()u ⋅ is analogous to ()V ⋅ from previous chapters. However, one

must elicit ()u ⋅ in a manner that accounts for risk attitude. In contrast, ()V ⋅ accounts

only for one’s preferences for tradeoffs among the attributes. Several references describe

procedures for eliciting utility functions (e.g., (Keeney and Raiffa, 1993; Clemen, 1996)).

8.1.2 Generalized Tradeoff Spaces

In preceding chapters, the space in which designers evaluate, visualize and model

tradeoffs is the space of decision attributes. For example, the classical and parameterized

Pareto dominance rules both involve comparisons of attribute values and one can

visualize the corresponding efficient sets as surfaces in the space of attributes. This is

 176

precisely the relationship designers capture in a tradeoff model. However, the attribute

space is unsuitable for considering tradeoffs for decisions involving uncertainty.

One must extend the notion of a tradeoff space in order to deal with attributes

under uncertainty. In this chapter, a generalized tradeoff space refers to the space of

probability distributions over the attribute space. This follows from the axiomatic

definition MAUT as decisions between lotteries (see (Keeney and Raiffa 1993) for a

development of this theory) and is evidenced by the procedures for eliciting preferences

in MAUT, which involves comparisons of lotteries over attributes (as opposed to

comparisons of precise attribute values).

Strictly speaking, the notion of a “space” of probability distributions is ill-defined.

However, one can specify several common distributions unambiguously by a small

number of parameters. If those distributions—which includes normal, log-normal,

uniform, Poisson, etc.—are good representations of the uncertainties, then designers can

define a space of distributions in terms of such parameters.

The definition of a generalized tradeoff space makes intuitive sense when one

considers the kinds of tradeoffs that occur when uncertainty is involved. For example,

when product quality is a concern it is common for designers to trade mean performance

to achieve reduced variability in that same attribute. One can visualize this tradeoff in the

mean-variance space of that attribute. Figure 8.1 is an illustration of the relationship

between the attribute space and the generalized tradeoff space for MAUT decision

problems.

 177

Tradeoff SpaceAttribute Space

x1

x2

µ1

µ2

σ2
1

Tradeoff SpaceAttribute Space

x1

x2

µ1

µ2

σ2
1

Figure 8.1: Illustration of distributions in an attribute space mapping to points in a
tradeoff space defined in terms of parameters of the distributions.

8.2 Stochastic Dominance

Although the study of stochastic dominance dates back to the late 19060’s (e.g.,

(Fishburn 1965, Hanoch and Levy 1969)), it has received little attention beyond the

economics and operations research literature. A stochastic dominance test involves

comparing distribution functions that are defined over an attribute space—i.e., it is an

evaluation in the generalized tradeoff space. It also requires assumptions about the

mathematical structure of the corresponding utility function. This is similar to the

monotonicity assumption associated with the deterministic concept of Pareto dominance.

However, the useful assumptions are more varied in the stochastic case owing to the

greater complexity of preferences for decisions under uncertainty.

Researchers have identified a number of stochastic dominance conditions for

different classes of utility functions and assumptions about the uncertainties involved.

Examples include stochastic dominance in the case of statistically independent attributes

(Huang, et al. 1978), for when attributes are mutually utility independent (Mosler 1984),

for specialized uncertainty distributions (Levy 1973, 1990), for multi-attribute problems

 178

(Levhari, et al. 1975, Huang, et al. 1978, Russell and Seo 1978, Scarsini 1988, Baccelli

and Makowski 1989, O'Brien and Scarsini 1991), for non-transitive preferences

(Fishburn 1978) and for the case in which stochastic dominance is equivalent to mean-

variance analysis (Baron 1977). The following is an overview of the results most relevant

to this research.

8.2.1 Stochastic Dominance for Single-Attribute Utility Theory

Researchers commonly distinguish between different classes of utility functions,

each having different mathematical properties and to which different stochastic

dominance rules apply. Table 8.1 is a summary of three common classes of single-

attribute utility functions, their relationships to one another and the associated stochastic

dominance criteria (see (Levy 1992) for a survey of these and other related criteria as

well as mathematical proofs for the rules).

Class 0U is the set of all utility functions. All other classes are a subset of this and

no stochastic dominance rule applies to all of 0U . Class 1U includes only the monotonic

utility functions (i.e., increasing the value of the decision attribute cannot result in a

decrease in utility). The stochastic dominance rule for this class is called first-degree

stochastic dominance and involves a comparison of cumulative distribution functions as

stated in Table 8.1. If one alternative dominates another by the first-degree stochastic

dominance (FSD), then designers are assured its utility is higher than that of the

dominated alternative for any monotonic utility function.

The FSD rule is the most directly analogous to the Pareto-based rules. However, it

is relatively weak in the sense that it incorporates no assumptions about designer risk

 179

Table 8.1: Summary of common classes of single-attribute utility functions and the
relevant stochastic dominance criteria.

Class Defining Assumptions Interpretation Associated Dominance Criterion

0U none
All utility
functions.

n/a

1U
()

1 0: | 0
du z

U u U
dz

  
= ∈ ≥ 
  

Monotonic
utility
functions.

First-degree stochastic dominance
(FSD): Alternative az with

cumulative distribution function aF

dominates bz with CDF bF according

to FSD if and only if

() ()a bF z F z z≤ ∀ .

2U
()2

2 1 2
: | 0

d u z
U u U

dz

  
= ∈ ≤ 
  

Monotonic and
non-risk-taking
(i.e., risk
neutral or risk
averse).

Second-degree stochastic dominance
(SSD): Alternative az with CDF aF

dominates bz with CDF bF according

to SSD if and only if:

() () 0
z

b aF t F t dt z
−∞
 − ≥ ∀ ∫ .

3U
()3

3 2 3
: | 0

d u z
U u U

dz

  
= ∈ ≥ 
  

Monotonic,
non-risk-taking
and decreasing
absolute risk
aversion.

Third-degree stochastic dominance
(TSD): Alternative az with CDF aF

dominates bz with CDF bF according

to TSD if and only if:

() () 0
t v

b aF t F t dtdv z
−∞ −∞

 − ≥ ∀ ∫ ∫ and

E Ea bz z≥       .

attitude. If designers know something about their risk attitude, then they can eliminate a

larger proportion of the alternatives by using a stronger stochastic dominance rule.

The class 2U is a subset of 1U and includes only those utility functions that are

monotonic and that correspond to a non-risk-taking attitude. Under the typical

interpretation, a utility function corresponding to a non-risk-taking attitude has a positive

derivative with respect to the decision attribute. The corresponding stochastic dominance

rule is called second-degree stochastic dominance (SSD). It also requires that one

 180

compare cumulative distribution functions, but the comparison differs from that of first-

degree stochastic dominance.

Note that any alternative that is dominated via FSD also is dominated via SSD.

This is because the set 1U subsumes 2U (i.e., what is true of every element of 1U must

also hold for every element of 2U because every element of 2U is an element of 1U).

However, the converse is not true in general: an alternative that is dominated assuming a

risk-averse utility function may be non-dominated for a risk-taking attitude.

Another common class, 3U , is a subset of 2U and includes only those utility

functions that are monotonic, correspond to a non-risk-taking attitude and have

decreasing absolute risk aversion. The corresponding stochastic dominance criterion is

called third-degree stochastic dominance (TSD). Like the others, it involves a

comparison of distribution functions.

8.2.2 Stochastic Dominance for Multi-Attribute Utility Theory

The stochastic dominance rules from the preceding section apply only to single-

attribute utility functions. Researchers have generalized these criteria to the case of multi-

attribute decisions, but the conditions are not always straightforward extensions of the

single-attribute tests (Levhari, et al. 1975, Russell and Seo 1978).

Table 8.2 is an overview of several common classes of multi-attribute utility

functions that researchers have investigated in the context of stochastic dominance. These

are extensions of those from Table 8.1. One can define other classification schemes. For

example, Scarscini (1988) identifies utility functions according to a non-classical

characterization of risk, called multivariate risk aversion. However, only those listed in

Table 8.2 are of interest in the current research.

 181

Table 8.2: Common classes of multi-attribute utility functions.

Class Defining Assumptions Interpretation

0U None All utility functions.

1U
()

1 0: | 0 1
i

u
U u U i N

z

∂  
= ∈ ≥ ∀ = 

∂  

z
… Monotonic utility functions.

2U
()2

2 1 2
: | 0 1

i

u
U u U i N

z

 ∂ 
= ∈ ≤ ∀ = 

∂  

z
… Monotonic and non-risk-taking (i.e., risk

neutral or risk averse).

3U
()3

3 2 3
: | 0 1

i

u
U u U i N

z

 ∂ 
= ∈ ≥ ∀ = 

∂  

z
… Monotonic, non-risk-taking and

decreasing absolute risk aversion.

In general, stochastic dominance tests for multi-attribute problems involve

comparisons of multivariate distribution functions and are difficult to evaluate. However,

researchers have identified that under certain circumstances one can simplify the multi-

attribute rules considerably. One of the more powerful simplifying assumptions is

statistical independence.

When attribute distributions are statistically independent, one can test any multi-

attribute dominance condition by testing the corresponding single-attribute condition

using the marginal distributions (the general proof is non-trivial; see Theorem 2 in

(Huang, et al. 1978)). Single-attribute tests are more amenable to numerical computation.

Although this assumption may not hold perfectly for many engineering problems, it is a

reasonable approximation in a number of cases.

8.2.3 Stochastic Dominance for Specialized Distribution Functions

One can obtain a further reduction in the computational effort required to evaluate

the stochastic dominance rules when the attribute distributions have a special form.

Simply knowing the closed form expression for the distribution function can be helpful

 182

because it may allow one to simplify the integrals or reformulate them in a way more

conducive to numerical solutions. However, one can achieve considerably greater

simplification for a few special distribution functions.

Researchers have shown that when the attributes are independent and normally

distributed, the SSD test simplifies to a comparison of the means and variances (Tobin

1958, Hanoch and Levy 1969, Baron 1977). This significantly reduces computational

complexity. To formalize this simplified rule, some notation is required. Let , N

a b ∈z z �

denote the attribute vectors for decision alternatives a and b . Also, let ()aF ⋅ and ()bF ⋅

denote the distribution functions for az and bz , respectively. Finally, let ,i aµ and 2

,i aσ

denote the mean and variance, respectively, of the thi attribute of alternative a and ,i bµ

and 2

,i bσ the corresponding means and variances for alternative b . Thus, one can state the

mean-variance dominance rule as:

Definition 8.1 (Multi-Attribute Mean-Variance SSD): If ()~a aF ⋅z and

()~b bF ⋅z are independent and normally distributed, then az dominates bz by

MV-SSD if an only if, , , 1i a i b i Nµ µ≥ ∀ = … , 2 2

, , 1i a i b i Nσ σ≤ ∀ = … , and at

least one of the inequalities is strict.

Strictly speaking, one should compare means and variances using statistical tests.

However, when sufficient data exists comparisons of the point estimates are a reasonable

approximation. The important implication of the mean-variance SSD rule is formalized as

follows. Let MV-SSDa bz z denote that az dominates bz via the MV-SSD rule. Thus:

 183

Theorem 8.1: For an alternative a with uncertain attributes ()~a aF ⋅z and an

alternative b with uncertain attributes ()~b bF ⋅z , MV-SSDa bz z if and only if

() () 2a bu u u U> ∀ ∈z z .

Several authors prove that the mean-variance assumptions hold for the single-attribute

case (e.g., (Tobin 1958, Hanoch and Levy 1969, Baron 1977)). Combining this result

with Theorem 2 in (Huang, et al. 1978) yields a complete proof of the multi-attribute case

of Theorem 8.1. A similar result exists for log-normal distributions (Levy 1973, 1990).

Figure 8.2 is an illustration in mean-variance space of this dominance rule as

applied in the single-attribute case. The MV-SSD rule always results in a curve or surface

in mean-variance space. As with statistical independence, the assumption of normally

distributed attributes is not valid in general. However, it is an effective approximation in

many practical cases—e.g., measurement errors tend to be normal, as is the sum of

several random variables.

µ

σ2 Stochastically
Dominated
Distribution
Parameters

Efficient
Set

µ

σ2 Stochastically
Dominated
Distribution
Parameters

Efficient
Set

Figure 8.2: Illustration of second-degree stochastic dominance under the mean-variance
assumptions. Note the orientation for comparisons of variance.

 184

8.3 Parameterized Efficient Sets using Stochastic Dominance Rules

Just like the deterministic case from previous chapters, it may be difficult for

designers to identify a universal preference ordering for each attribute for a particular

component. Moreover, one still must deal with attributes such as gear ratio and cylinder

bore, for which no problem-independent preferences exist, regardless of whether there is

uncertainty in the attribute data. Consequently, designers need a parameterized version of

the relevant stochastic dominance criterion. This section is a description of a

parameterized version of the mean-variance SSD rule and how to formulate decisions

using a generalized tradeoff model fit to the parameterized efficient set that results from

applying the parameterized MV-SSD rule.

8.3.1 Assumptions

The stochastic dominance rule used in this study incorporates three main

assumptions. They are summarized as follows.

Designers are Non-Risk-Taking

Designers are assumed to be non-risk-taking. Mathematically, this means that

their utility function must be convex:

()2

2
0 1

i

u
i N

z

∂
≤ ∀ =

∂

z
… ,

where []1 2, , , Nz z z=z … is a vector of decision attributes. Under this risk attitude, one is

willing to sacrifice some amount of “upside” to avoid the risk of potential “downside.”

For situations in which the mean-variance assumptions hold, this means one is willing to

trade mean attribute value for reductions in attribute variance.

Although this assumption about risk attitude will not hold for all design decisions,

it is a common attitude among designers. For example, the desire to improve product

 185

quality through reduced product variation, commonly called robust design, is one

manifestation of this type of risk attitude.

Attributes are Statistically Independent

The uncertainty in attributes is assumed to be statistically independent. Whether

this assumption is valid depends on both the data source and the characteristics of the

underlying uncertainty. If the principal uncertainty is measurement error in determining

the attribute values, statistical independence likely is a good model. However, there can

exist underlying uncertainties that affect multiple component-level attributes and thereby

lead to correlations. For example, manufacturing variations can influence multiple

attributes in this way. Designers must consider whether this assumption holds on a case-

by-case basis.

Attributes are Normally Distributed

The uncertainty in attributes is assumed to be normally distributed. Like the

assumption about statistical independence, this assumption will hold only in some cases.

Normal distributions are common when multiple uncertainties are added together, and so

can be reasonable uncertainty models for component-level attributes in at least some

cases.

8.3.2 Parameterized MV-SSD and Tradeoff Models

Under the preceding assumptions, one can formulate a parameterized version of

the MV-SSD rule from Definition 8.1. Only attribute means may be parameters in this

framework. This is due to the assumption that designers are non-risk-taking in every

attribute. That assumption induces a preference ordering on all attribute variances (i.e.,

 186

they all are dominators). Aside from this distinction between means and variances, the

notions of dominators and parameters is the same as in Chapter 3.

Let { }1, ,D N⊆ … denote the set of indexes corresponding to dominator attributes

and { }1, ,P N⊂ … denote the set of indexes corresponding to parameter attributes. As in

the deterministic case, { }1, ,P D N∪ = … and P D∩ = ∅ . Thus, one can define

parameterized MV-SSD as follows:

Definition 8.2 (Parameterized MV-SSD): If ()~a aF ⋅z and ()~b bF ⋅z are

independent and normally distributed, then az parametrically dominates bz by

parameterized MV-SSD if an only if, , ,i a i b i Pµ µ= ∀ ∈ , , ,j a j b j Dµ µ≥ ∀ ∈ ,

2 2

, , 1k a k b k Nσ σ≤ ∀ = … , and at least one of the inequalities is strict.

This parameterization of the mean-variance SSD rule is a direct analogy to the way in

which parameterized Pareto dominance is an extension of classical Pareto dominance. As

with the other dominance rules, the significance of this rule from a decision-making

perspective is that a dominated alternative cannot be the most preferred alternative under

the prevailing assumptions. This is formalized as follows:

Theorem 8.2: For an alternative a with uncertain attributes ()~a aF ⋅z and an

alternative b with uncertain attributes ()~b bF ⋅z , if PMV-SSDa bz z then

() () 2a bu u u U> ∀ ∈z z .

Appendix A contains a proof of this statement.

 187

By applying PMV-SSD, designers obtain a parameterized efficient set similar to

the deterministic case. The main distinction is that one interprets the efficient set resulting

from parameterized Pareto dominance directly in the space of decision attributes, whereas

one interprets the set resulting from PMV-SSD in the space of distribution parameters—

i.e., mean-variance spacel.

One also can fit a tradeoff model in this generalized tradeoff space. Like the

deterministic case, one’s choice of tradeoff model inputs and outputs is largely arbitrary.

The main restriction is that attribute means that are parameters must be inputs to a

tradeoff model. This avoids the possibility of a one-to-many mapping, which one cannot

represent functionally. Beyond this, one should choose a model structure with accuracy in

mind.

8.3.3 Formulating Decisions

For decisions under uncertainty, tradeoff models capture the association between

attribute distribution functions. Designers can use this information to formulate

requirements allocation and system selection decisions. However, unlike in the

deterministic case, designers explore a generalized tradeoff space. For example, rather

than resulting in target values for attributes, requirements allocation results in target

values for attribute distribution parameters.

Although the general idea is similar to the deterministic case, the notation one

requires to formalize a decision is somewhat more complicated in the case of decisions

under uncertainty. The following definitions are used:

l For ease of visualization and interpretation, designers may prefer using a space constructed using attribute
means and standard deviations. All the results of this chapter hold for both cases.

 188

• Let iy for 1i N= … denote component-level attributes that are independent and

normally distributed.

• Let [] []1 2, , , N Eµ µ µ= =µ y… denote the vector of attribute means and

2 2 2 2

1 2, , , Nσ σ σ =  σ … denote the vector of attribute variances.

• Let 2,θ  =  µ σ denote a generalized coordinate vector in mean-variance space.

The data one uses to fit a tradeoff model in this case consists of θ samples.

• Let ()2| ,i i iN y µ σ   denote a normal distribution with the mean and variance

given and let () ()2

1

| | ,
N

i i i

i

MN N yθ µ σ
=

 =  ∏y denote a multivariate normal

distribution constructed from independent normal marginal distributions with the

given distribution parameters.

• Let 1l L= … be an index indicating which one of L discrete alternatives are

being considered.

• Let ()l ⋅S denote a system model that relates component-level attributes to

system-level attributes for the thl discrete system alternative.

• Let ()l ⋅T denote a tradeoff model fit to parameterized efficient set data in the

mean-variance space as indicated by the PMV-SSD rule.

• Let lθ� denote the subset of generalized coordinates used as inputs to the tradeoff

model, such that (), lθ θ θ =  T� � is a complete coordinate vector in the mean-

variance space.

• Let lΘ� denote the valid input domain for tradeoff model ()l ⋅T .

 189

Given this notation, one can predict the most preferred requirements allocation

decision as

 ()* * *,l l lθ θ θ =  T� � ,

where

()

()() ()()

*

,
arg max

arg max | , .

l l l
l l

l l

l l

l l l l

E u

u MN d

θ θ
θ

θ

θ

θ θ

 
 ∈Θ

∈Θ

   =       

 =  ∫

T
S y

S y y T y

� �
� �

� �

�

� �

This computational procedure is analogous to that of Equation (3.4). However, in this

case is that one searches over distribution functions rather than directly over attribute

values.

Given the preceding formalization of allocation decisions, one can state the

selection decision formally as:

()()

()() ()

*

*

1

*

1

arg max

arg max | .

l
l

l L

l l
l L

l E u

u f d

θ

θ

=

=

 =
  

= ∫

S y

S y y y

…

…

One should note that designers already will have evaluated the expected utility of their

alternatives during requirements allocation. Consequently, this decision is

computationally straightforward.

8.4 Gearbox Design Problem

For the purposes of demonstrating how to make decisions using tradeoff models

under uncertainty, the gearbox design problem from Chapter 3 is revisited. The problem

largely is the same, except that an uncertainty model is used when generating attribute

data for the different gearbox configurations. The PMV-SSD rule is applied to the data

 190

for each configuration and a tradeoff model is fit to the resulting parameterized efficient

sets. The decision problem involves identifying the most preferred gearbox configuration.

8.4.1 Generating Gearbox Tradeoff Models under Uncertainty

Gearbox Concepts

This example involves the same concepts as the example from Chapter 3. To

review, Figure 3.4 (page 73) is an illustration of the different configurations:

• Planetary Gearbox (PGB): Basic planetary gear system, with input on sun, output

on arm and fixed ring. Depicted in Figure 3.4(a).

• Single-Sided Fully-Reverted Gearbox (SGB): Four-gear system with two

identical pinions and two identical gears. Depicted in Figure 3.4(b).

• Double-Sided Fully-Reverted Gearbox (DGB): Similar to single-sided concept,

but includes two paths for torque flow. Depicted in Figure 3.4(c).

As in the earlier gearbox example, each concept has its own parametric structure. These

low-level design parameters control the number of teeth on each gear, the gear face

widths and the gear module. This low-level design space is sampled in order to generate

component-level attribute data about feasible implementations of each concept.

Gearbox Attributes and Preference Classifications

The gearbox tradeoff models account for three attributes.

• Cost: The cost of constructing the gearbox, computed as a function of the material

and parts involved.

• Reliability: The probability that the gearbox operates without failure, considering

both static and dynamic loading phenomena.

• Gear ratio: The ratio of transformation from input to output.

 191

Of these attributes, reliability and cost involve significant uncertainties, which are

assumed normally distributed and independent. However, one can compute gear ratio

with certainty. Thus, the resulting tradeoff space consists of five dimensions:

• Gear ratio, gN ,

• Mean reliability, Rµ ,

• Variance of reliability, 2
Rσ ,

• Mean cost, Cµ , and

• Variance of cost, 2
Cσ .

Of these, gear ratio is a parameter and the rest are dominators. The rationale for this is

straightforward. The variances must be dominators since it is assumed that designers are

non-risk-taking (and thus less variance is preferred to more, all things being equal). Mean

cost is a dominator because designers generally prefer to minimize cost. Similarly, mean

reliability is a dominator because designer prefer to maximize it. No universal preference

exists for gear ratio, and so it must be a parameter (see Section 3.4.1 for an elaboration).

Data Generation and Dominance Analysis

As with the earlier gearbox example, a model-based data gathering approach is

used. The distinction is that this example assumes uncertainty exists on the low-level

design parameters. Table 8.3 is a summary of the low-level uncertainties used as inputs to

the engineering analysis models.

Implementations of each concept are generated by sampling the design parameter

space systematically. Each implementation is evaluated under uncertainty using Latin

hypercube sampling (LHS) (McKay, et al. 1979). The LHS procedure results in

 192

Table 8.3: Uncertainty models for low-level parameters used during gearbox
data generation.

Parameter Uncertainty Model

Normal(mean, std dev)

Gearing
Application Factor N(1.7, 0.1)
Gear Quality Factor N(8, 0.25)
Bending Strength Geometry Factor N(0.24,0.025)
Gear Material, Bending Fatigue Strength N(200e6, 40e6) [Pa]
Gearbox cost model N(0, 5) [$]

attribute samples from which distribution statistics (means and variances) are computed

for the cost and reliability attributes (Figure 8.3). The result of this procedure is data

samples in the mean-variance space, each of which represents one feasible gearbox

implementation. The PMV-SSD rule (Definition 8.2) is applied to the sample data using

gear ratio as a parameter and the reliability and cost statistics as dominators.

Model Fitting and Validation

For each concept, the tradeoff model inputs are gN , Rµ , 2

Rσ and 2

Cσ ; the output is

Cµ . Kriging interpolation methods and the DACE Matlab Kriging Toolbox are used for

Gearbox
Analysis Model

LHS Sampler

Design
Parameters

Design
Attributes

Design Space
Sampler

Design Space
Sampler

Attribute Statistics
(Mean & Variance)

Nominal Design
Parameters &

Uncertainty Model

Tradeoff Data
(Mean-Variance Space)

Gearbox
Analysis Model

LHS Sampler

Design
Parameters

Design
Attributes

Gearbox
Analysis Model

LHS Sampler

Design
Parameters

Design
Attributes

Design Space
Sampler

Design Space
Sampler

Attribute Statistics
(Mean & Variance)

Nominal Design
Parameters &

Uncertainty Model

Tradeoff Data
(Mean-Variance Space)

Figure 8.3: Procedure for generating and evaluating gearbox implementations.

 193

fitting the tradeoff models (Lophaven, et al. 2002). Hold-out validation is conducted

using fifty non-dominated implementations of each concept. Tradeoff models are fit to

the rest of the parameterized efficient set data for each concept.

8.4.2 Design Problem Scenario

System and Environment

The system is the same as from the example of Chapter 3 (see Figure 3.8).

However, the parameters used to evaluate the system differ in this case, with several of

them being modeled as random variables. Table 8.4 is a summary of the uncertainty

models.

Decision Problem Formulation

Designer objectives are the same for this problem as they are in the design

problem of Chapter 3: to maximize profits from competing in a race. However, because

system attributes are uncertain in this case—by virtue of uncertain gearbox attributes as

well as the uncertainties indicated in Table 8.4—designers formulate the decision

problem in terms of expected profit. The utility function in this case is

 (), ,u R W C RW C= − ,

Table 8.4: Uncertainty models for parameters used in the gearbox design problem.

Parameter Value

System and Environment
Total Vehicle Mass N(240, 15) [kg]
External Drag Coefficient N(0.4, 0.05) [N/(m/s2)]
Internal Drag Coefficient N(0.01, 0.0025) [N/rpm]
Course Roughness Coefficient N (4, 0.5)
Winnings model uncertainty N(0,5.5) [$]

 194

where R is the reliability of the gearbox, W is the anticipated winnings assuming perfect

reliability and C is the cost of building the gearbox. Details on how these attributes are

computed from the gearbox attributes are given in Chapter 3.

The first step in the solution process is to perform requirements allocation for

each gearbox configuration. Let 2 2, , , ,g R R C CNθ µ σ µ σ =   denote a coordinate vector in

the generalized attribute space for the gearbox component. Also let 2 2, , ,l g R R CNθ µ σ σ =  
�

denote a vector of inputs to the gearbox tradeoff model, ()lT ⋅ , for concept

{ }, ,l SGB DGB PGB= , where PGB , SGB and DGB denote planetary gearbox, single-

sided gearbox and double-sided gearbox, respectively. Finally, let φ denote the random

vector of system and environmental parameters that influence system-level attributes via

the system model, ()l ⋅S . Thus, the requirements allocation decision is to find

()* * *,l l l lTθ θ θ =  
� � such that

()

()() ()() ()

*

,
arg max ,

arg max , | , ,

l l l
l l

l l

l l T

l l l l

E u

u MN T f d d

θ θ
θ

θ

θ φ

φ θ θ φ φ

 
 ∈Θ

∈Θ

   =       

 =  ∫∫

S y

S y y y

� �
� �

� �

�

� �

where lΘ� is the domain description for the thl tradeoff model and ()f ⋅ is the

multivariate distribution function for the random vector φ . Since the component-level

attributes, y , and the uncertain system parameters, φ , are statistically independent, one

can express the multivariate distributions as products of the nominal distributions. One

can solve this problem using standard methods optimization under uncertainty.

 195

Given the requirements allocation solutions for each gearbox configuration, one

can select the configuration that is most preferred:

{ }

()()*

*

, ,

arg max ,
ll PGB SGB DGB

l E u
θ

φ
∈

 =
  

S y .

8.4.3 Results

Table 8.5 (next page) contains results from the gearbox concept selection

problem. It contains the tradeoff criteria and expected utilities corresponding to the most

preferred implementation of each gearbox configuration as predicted using the tradeoff

models. The final decision is to design the PGB concept. To continue development of

this concept, designers can use the tradeoff criteria indicated in the table as design-to

targets.

The problem also is solved using classical design optimization techniques, the

results of which are listed in Table 8.5. These confirm the results based on tradeoff space

search. The decision approach formulated using predictive tradeoff models yields the

same decision—to develop the PGB concept—as one would reach using the more

computationally taxing extensive search method. Furthermore, one can observe that the

approach based on tradeoff models yields accurate predictions of the tradeoffs

corresponding to the most preferred implementation of each concept. This indicates that

the tradeoff models yield the right decision for the right reason.

The results from the tradeoff modeling approach are remarkably close to those

from the reference solution. This is a consequence of using a large amount of data during

tradeoff model generation, both in terms of the numbers of points in the design space that

 196

Table 8.5: Results from gearbox example.

 Tradeoff
Modeling
Results

Reference
Solution

Percent
Difference

PGB Expected Utility 1185 1185 0.0
 Gear Ratio

gN 5.733 5.733 0.0
 Reliability Mean

Rµ 0.99 0.99 0.0
 Std 2

Rσ 0.012 0.013 7.7
 Cost ($) Mean

Cµ 275 275 0.0
 Std 2

Cσ 7.4 7.5 1.3

SGB Expected Utility 1138 1138 0.0
 Gear Ratio

gN 5.76 5.76 0.0
 Reliability Mean

Rµ 0.989 0.989 0.0
 Std 2

Rσ 0.014 0.014 0.0
 Cost ($) Mean

Cµ 320 320 0.0
 Std 2

Cσ 7.5 7.5 0.0

DGB Expected Utility 1078 1081 -0.3
 Gear Ratio

gN 5.76 5.76 0.0
 Reliability Mean

Rµ 0.993 0.985 0.8
 Std 2

Rσ 0.008 0.02 60.0
 Cost ($) Mean

Cµ 389 372 4.6
 Std 2

Cσ 7.3 7.5 2.7

are explored and the number of samples taken at each design site to estimate the means

and variances. One obtains good estimates of the distribution parameters at many

locations, which lead to accurate tradeoff models. Such accuracy is unlikely to be the

case in general, particularly when sample data is more limited.

8.5 Conclusions and Chapter Summary

The main conclusion one can draw from this chapter is that it is possible for

designers to deal with uncertain data rigorously in a tradeoff modeling framework. To do

 197

so, designers must adopt an expanded interpretation of what constitutes a tradeoff space

and use parameterized efficient sets that are based on a suitable stochastic dominance

criterion. This is demonstrated through the use of the PMV-SSD criterion defined in

Section 8.3 and the successful solution of a gearbox design problem.

The ideas presented in this chapter can serve as the foundation for tradeoff

modeling under uncertainty, but this is not the final word on the subject. As one can

observe from Table 8.2, dominance rules are more varied in the case of decisions under

uncertainty. This research is based on one rule that is appropriate under fairly specific

assumptions—that designers are risk averse and all uncertainty is statistically

independent and normally distributed. Although these assumptions are met in some cases,

they are restrictive in general and open questions remain about how to generalize the

approach. Interesting questions include: “what assumptions about design risk attitude and

data uncertainty are most representative of reality?” and “which stochastic dominance

criteria apply to those situations?”

One interesting observation about the PMV-SSD rule is that it preserves a Pareto-

like representation as a frontier in the mean-variance space. Much of the prior literature

on tradeoff modeling is motivated by visualization and visual decision making, and it

would seem that the frontier one obtains by applying PMV-SDD would be useful in that

context. However, visualization is cumbersome when the number of dimensions is large.

For a problem having N decision attributes, the number of tradeoff dimensions for the

PMV-SSD rule is 2N . This limits the viability of straightforward visualization

techniques for tradeoff modeling under uncertainty.

 198

CHAPTER 9:

CONTRIBUTIONS, LIMITATIONS AND OPEN QUESTIONS

This chapter is a review and synthesis of material from the preceding chapters.

The main objective is to reexamine the research questions and hypothesis first introduced

in Section 1.4 in light of the results reported in the other chapters. Section 9.1 is a recap

of the questions, the corresponding hypotheses and the results of efforts to validate these

hypotheses. Section 9.2 is a review of the main research contributions made during the

course of this investigation. Section 9.3 is a summary of the main limitations of this

research. Section 9.4 is brief exploration of potential avenues for future research relating

to this problem or stemming from the ideas developed in this research. Section 9.5

contains a summary and closing remarks.

9.1 Review of the Research

The broad motivation for this research is summarized in Chapter 1 in terms of the

following question:

How can designers model system-level decision alternatives quantitatively in

order to support sound and effective system-level decision making?

The research objective is to study a particular approach to modeling system-level

decision alternatives. Section 1.3 is an outline of this approach, in which designers

compose a system-level model using component-level models that they (or other

designers) generate from attribute data about efficient implementations of a component.

 199

These component-level models are predictive in the sense that designers can use them to

answer the following question:

What would be the resulting attribute vector if a designer implemented the

component in question with particular preferences for making tradeoffs among

the component-level attributes?

The presumption is that having a prediction of this attribute vector for each component in

a system would enable designers to evaluate the system with confidence. By extension,

they can choose between different system-level alternatives by repeating this prediction-

and-evaluation procedure for each alternative. The specific research questions for this

investigation are aimed at determining whether this approach is fundamentally correct.

9.1.1 Component-Level Dominance Analysis

The first research question and hypothesis are about identifying when a particular

component is inferior to others in a manner that is independent of any specific design

problem:

RQ1. How can designers conclude that one implementation of a component

dominates another when they lack specific knowledge of the system in which

the component will be used?

H1. Designers can use the parameterized Pareto dominance rule to eliminate

attribute data about dominated implementations of a component.

The main evidence supporting Hypothesis 1 is as follows:

• Classical Pareto dominance is insufficient in many cases because there may be no

problem-independent preference for one or more component-level attributes. The

 200

assumptions required for classical Pareto dominance are expressed in Definition

3.1 and Theorem 3.1 and the basic argument in favor of a new approach is given

in Section 3.1.3.

• Parameterized Pareto dominance is defined and shown to be mathematically

sound in Section 3.1.4 (Definition 3.2 and Theorem 3.2). Although both the

parameterized and the classical rules are sound, the parameterized rule is

applicable under a broader set of assumptions that better suit the concept-level

tradeoff modeling problem.

• Section 3.2.2 is a description of a procedure for formulating decisions by

abstracting a single tradeoff model from multiple tradeoff models of a component

using the parameterized Pareto dominance rule. The procedure is demonstrated

successfully in the gearbox design example of Section 3.4. This further supports

the correctness and appropriateness of the dominance rule.

• Tradeoff models based on parameterized Pareto set data are used to solve design

problems in Chpater 3 (concept selection for a gearbox design problem), Chapter

6 (requirements allocation for a log splitter) and Chapter 7 (architecture selection

for a hydraulic hybrid vehicle). If parameterized Pareto dominance was incorrect

in some way—e.g., it leads one to eliminate solutions that could be most

preferred—then one would expect to have difficulty on these examples. To the

contrary, the tradeoff modeling approach is successful in each example.

 201

9.1.2 Tradeoff Model Domain Description

Although phrased in terms of the tradeoff modeling problem, the second research

question and hypothesis relate to a practical challenge of any data-driven modeling

procedure:

RQ2. How can designers describe the set of valid inputs to a tradeoff model

mathematically?

H2. Designers can use a domain description procedure based on kernel-based

support vector domain description and clustering methods.

The main evidence in support of this hypothesis is as follows:

• A mathematical framework exists in the literature for describing the domain of a

data set using a technique inspired by kernel-based support vector machines. The

mathematical foundations of this is reviewed in Section 4.2.

• An extension of this framework is reported in the literature that allows one to

identify distinct clusters in a data set. This theory is reviewed in Section 4.3 and

the technique is demonstrated on synthetic data sets (Figures 4.5-4.7) and an

actual data set (Figure 4.10).

• A procedure for applying support-vector domain description and support-vector

clustering in the context of tradeoff modeling is given in Section 4.4. This fits

within the procedure for generating tradeoff models described in Chpater 3..

• It is difficult to validate positively the use of the tradeoff model domain

description approach. However, the example problems of Chapter 6 (log splitter)

and Chapter 7 (hydraulic hybrid vehicle) would be difficult to complete if this

approach was not effective. If the domain descriptions were deficient, one could

expect either nonsensical solutions to the design problems (e.g., because the

 202

domain would be failing to constrain the optimization search) or a failure to detect

reasonable solutions (e.g., because the domain description rules out reasonable

solutions).

9.1.3 Composing Tradeoff Models

The third research question is about making the component-level tradeoff models

useful at a systems level:

RQ3. Under what conditions can designers compose component-level tradeoff

models in order to model a system-level decision alternative soundly?

H3. One can compose predictive tradeoff models soundly if the tradeoff models are

based on parameterized Pareto sets and all induced preferences for any

component-level dominator attribute are monotonic in the same direction.

The main evidence supporting this hypothesis is as follows:

• Section 5.3 contains a mathematical analysis of composition problem. Assuming

one is dealing with parameterized Pareto sets (as opposed to tradeoff models fit to

that data), then the composition procedure is mathematically sound: if a an

implementation of a component is dominated by parameterized Pareto criterion

then it cannot be part of the most preferred system. Theorem 5.2 and Corollaries

5.3 and 5.4 are the relevant results. One can conclude that if a tradeoff model is a

perfect representation of the actual parameterized efficient set of a component,

then composition is valid.

• The design problems of Chapter 6 (log splitter) and Chapter 7 (hydraulic hybrid

vehicle) are evidence that it is valid to compose tradeoff models that approximate

the true parameterized efficient sets.

 203

9.1.4 Tradeoffs under Uncertainty

The final research question and hypothesis are about the problem of dealing with

uncertainty in the attribute data one would use to generate a tradeoff model:

RQ4. How should designers identify and visualize the (parameterized) efficient set of

tradeoffs when the attribute data is uncertain?

H4. Designers can identify the (parameterized) efficient set of tradeoffs under

uncertainty using (parameterized) stochastic dominance criteria and can

visualize this set as a surface in mean-variance space.

The evidence in support of this hypothesis is as follows:

• From the survey of Section 8.2, one can conclude that stochastic dominance

criteria are the appropriate mathematical constructs for performing dominance

analysis under uncertainty in a multi-attribute utility theory setting.

• The multivariate mean-variance second-order stochastic dominance (MV-SSD)

rule is defined and shown to be a consequence of other results from the literature

(see Definition 8.1 and Theorem 8.1). Under the assumptions associated with

MV-SSD, designers can visualize the efficient set as a curve or surface in the

mean-variance space.

• A parameterized version of MV-SSD, denoted PMV-SSD, is introduced in

Section 8.3 and shown to be sound under the prevailing assumptions (Definition

8.2 and Theorem 8.2).

• Section 8.3.1 contains explanations of the main assumptions underlying PMV-

SSD. Although these assumptions do not hold in general, one can conclude that

 204

they are reasonable at least some of the time and correspond to assumptions

designers commonly make.

• The PMV-SSD rule is demonstrated successfully on a gearbox design problem

(Section 8.4). The example is conducted under nearly ideal circumstances, and so

questions remain about the general viability of the approach. However, the results

are sufficient to conclude that the approach is internally consistent.

9.2 Summary of Contributions

9.2.1 Domain Description using Support Vector Machines

The mathematical framework for support-vector domain description and support-

vector clustering existed in the literature. However, this research extends the basic

framework to a complete procedure for constructing a domain description. It also is a

novel application of domain description and clustering techniques in a systems design

context.

The procedure for support-vector domain description is significant in that it is an

indispensable part of the overall approach to tradeoff modeling. Numerical search

routines—optimizers and design exploration codes—lack the intuition of a designer and

therefore require a formalized expression of what constitutes a valid input to a model.

The domain description procedure also has significance beyond the tradeoff

modeling approach to decision making. Interest in data-driven predictive modeling is on

the rise within the design community as evidenced by publications in leading journals

 205

and a recent workshop on the subjectm. The domain description procedure described in

Section 4.4 can be useful in this context.

9.2.2 Contributions to Dominance Analysis

This research includes several contributions relating to dominance analysis:

• A new dominance criterion, called parameterized Pareto dominance, is defined

and validated mathematically.

• The soundness of composing efficient sets is studied mathematically for both

classical and parameterized Pareto dominance.

• A new approach to decision making based on composing approximations of

parameterized efficient sets, called tradeoff models, is demonstrated and shown

to be effective.

• A new stochastic dominance criterion, called parameterized mean-variance

second-order stochastic dominance, is defined and validated mathematically.

The new dominance criteria are sound extensions of existing criteria. From this research,

one can conclude that they are useful constructs for systems design and have value from

an applications perspective. The modeling approach studied in this research would not be

possible without them and their general nature is conducive to broader application.

The general approach to system-level decision making studied in this research—

based on abstracting problem-independent models of components from parameterized

efficient set data—is a new and noteworthy departure from prior research. Prior work on

tradeoff analysis in design is monolithic and problem-specific, requiring a full system

m Workshop on Performance Prediction in System-Level Design, held at the ASME International Design
Engineering Technical Conferences (IDETC2008), Brooklyn, NY, 3 August 2008

 206

model and precluding the reuse and composition of the resulting tradeoff models. Prior

work on hierarchical decision-based design and optimization is based on tightly-coupled

system and component models and generally requires more information than designers

have available during system-level decision making. The approach investigated in this

research addresses these limitations. Design processes are not large monolithic decision

processes in practice, and it is important that research reflects this reality.

The soundness results for composing efficient and parameterized efficient sets are

an important part of this research in terms of understanding when it is valid to eliminate a

component from consideration. It also is interesting from the standpoint of understanding

the system-level implications of component-level actions and has applications beyond

this research. Section 9.4 includes some speculation about applying these dominance

results to combinatorial optimization problems. Preliminary results are encouraging and

further study is warranted.

9.2.3 Tradeoff Analysis under Uncertainty

Although there is much prior work in the design community on tradeoff analysis,

nearly all of it is devoted to the case in which attribute values are known with certainty.

The current research contributes a new perspective on how designers can model and

visualize tradeoffs under uncertainty. The mathematics at the core of this perspective are

established results from the decision theory and operations research communities.

However, the application of these ideas to systems design problems is novel. They

provide a mathematical basis for identifying efficient sets under uncertainty, an

understanding of which previously was lacking in the design community.

 207

This investigation includes only a preliminary foray into stochastic dominance

and its potential applications to design. The achievements in the context of the tradeoff

modeling approach studied in this research are modest. However, the more valuable

contribution may be the introduction of ideas about mathematically-sound stochastic

dominance criteria to the design community.

9.3 Limitations

There are several limitations or caveats associated with the approach to making

system-level decisions using predictive tradeoff models. The following is a summary of

and response to the more notable of these.

Scalability in the Number and Types of Attributes

Scalability could be a problem for certain types of components. In the examples

presented here, most components had fewer than four or five attributes. Tradeoff model

generation and validation is tractable under these circumstances, but it could become

practically difficult if the number of attributes becomes large. It is unclear how many

attributes would be too many, and such a threshold probably is component-dependent.

Another consideration is that some components have attributes that are not readily

quantifiable or are otherwise difficult to work with in this setting. For example, the

engine models in this investigation consisted of fairly abstract “peak” attributes—e.g.,

maximum power, maximum torque and the speeds at those points. These capture only a

small aspect of engine behavior and it would be preferable from a simulation standpoint

to have complete engine and fuel-consumption maps. However, it is unclear how one

could incorporate information like this into a tradeoff model in a meaningful way.

 208

The Attributes for a Component are Not Unique

There is no unique set of decision attributes for a given decision problem. One

designer may select an engine primarily based upon its maximum power output and cost

while another also considers mass and service life. The complication from a tradeoff

modeling perspective is that a tradeoff model the first designer generates (with power and

cost as attributes) is inadequate for the second designer.

Although this fact does impact the practical value of the tradeoff modeling

approach, it is not indicative of a fundamental flaw. All models involve assumptions and

it is a practical impossibility to create any model that is universally valid. In truth, there is

remarkable commonality in the attributes systems designers use to describe a particular

component. This is evidenced by parts catalogs that report a certain set of information for

each type of component. It seems reasonable to infer that the data set reported for each

component type is reflective of the attributes that designers use most commonly.

Designers who generate tradeoff models can focus on those types of attributes, thereby

maximizing the applicability of the models.

Preferences Can Change over Time / Exceptions to Preference Rules

Tradeoff modeling is based on the notion that for at least some component-level

attributes there is a general and identifiable preference structure. Designers always want

less cost, more reliability, less noise, and so forth. One criticism of the approach is that

preferences may not be so fixed—that designers could change their mind during a project

or simply have unconventional preferences at the outset.

The response to this is twofold. First, a change in preferences is not necessarily

the same as changing a general property about preferences, such as monotonicity. There

is little doubt that preferences can shift during the course of a design project—e.g.,

 209

designers receive new marketing data that prompts them to rethink what they should

design. However, one should think it rare for a designers to completely reverse their

objectives—e.g., to go from wanting to maximize reliability to wanting to minimize it.

Provided preferences do not undergo such a structural change, a tradeoff model will

remain valid.

Second, it is impossible to account for all possible exceptions to a rule and some

designers may be unable to reuse a preexisting tradeoff model. For example, although

most designers would minimize mass (all other factors being equal), dynamics

considerations might lead designers to treat the mass of particular components more like

a target-type attribute. Designers should treat target-type attributes as parameters rather

than dominators because target-matching preferences are incompatible with the

monotonicity assumptions associated with dominator attributes.

The Impact of Environmental or Boundary Conditions

One challenge that has been ignored to this point is the problem of dealing with

the influence of environmental and boundary conditions. For example, in the gearbox

example one must assume loading conditions in order to estimate reliability.

There are two main ways to deal with this issue. One is to include some or all of

the environmental variables in the tradeoff model. This would enable designers to

account for their impact, but would complicate the models considerably. Another

approach is to evaluate attributes impacted by external considerations under agreed-upon

conditions. Although it is difficult for an industry to identify standard test conditions, this

probably is the better approach and certainly reflects how parts catalogs deal with similar

issues today. For example, the L10 lifetime rating for bearings works this way. Another

 210

example is fuel consumption rates for engines, which usually are reported only at open

throttle.

Data Availability

Data availability is a major practical consideration. Without data or a validated

model with which one can generate data, it is impossible to generate a valid tradeoff

model. Presently, data sources are limited. The examples in this research were made

possible in part because corporate sponsors agreed to share some of their data. Other data

was collected through a variety of means—on the internet, via phone conversations with

vendors, etc.—but this process is painstaking and, at times, frustrating.

However, this does not mean research into data-driven modeling techniques lacks

merit. If designers have data-driven methods that are effective, manufacturers and

vendors will get the message and publish more of their data.

Generalizing across Discrete Alternatives

The tradeoff modeling approach is based on creating continuous models from

discrete data samples. This has two principal advantages: it permits designers to make

inferences about potential implementations of a component or system and it allows them

to use search and optimization algorithms that perform better on continuously-valued

models. The first advantage makes sense if designers are able to custom design their

components (or have them custom built on their behalf). However, one can question the

wisdom of doing this when designers ultimately will select off-the-shelf components for

their system.

The response to this is that it depends. In some cases, many different sizes of a

particular component are on the market and designers can be reasonably confident that

one will exist that is “close enough” to the solution they obtain using their continuous

 211

tradeoff model. However, if system utility is highly sensitive to the attributes of this

component or there are few sizing choices available on the market, designers may be well

advised to avoid fitting a tradeoff model and instead to work directly with the efficient set

data.

9.4 Open Questions and Opportunities for Future Research

Practical Aspects and Extensions of Tradeoff Modeling

This research focuses on studying the foundations of tradeoff modeling rather

than investigating the practical aspects of the approach. This leaves several open

questions:

• Are tradeoff models really a general and reusable representations of a type of

component? Although this seems to be the case in principle, it may be that

practical considerations such as the logistics of model documentation and upkeep

may detract significantly from their value. Another problem may be that the

required dimensionality is unmanageably large for many types of components.

• Can designers update an existing tradeoff model easily given new data? This is

important in determining whether tradeoff modeling is a practical approach to

representing engineering knowledge. Intuitively, it would seem that such

procedures are possible and practically reasonable. However, this remains to be

demonstrated conclusively.

• Can companies use tradeoff models as an effective knowledge representation

among a multidisciplinary team? While much about a detailed simulation of an

engine would be meaningless to a marketing analyst, a tradeoff model that

expresses a relationship between a company’s technical capabilities and other

enterprise concerns (manufacturing, pricing, environmental impact, etc.) might be

 212

a useful mode of communication. The same idea applies to communication among

designers with different engineering backgrounds.

• Can designers use tradeoff models to create technology forecasts? In the current

research, tradeoff models are assumed to be static entities that describe a current

state of affairs. However, as technology improves over time, a tradeoff model too

must change. Designers may be able to achieve higher power outputs from their

engines at less cost. This means a parameterized efficient frontier will move

through the tradeoff space over time. Designers may be able to infer trends useful

for strategic planning or identify opportunities in the marketplace by analyzing

this motion over time.

• Can tradeoff models replace design catalogs (at least for some components)? One

interpretation of a tradeoff model is that it is a computable representation of the

information contained within a design catalog. Because it is abstract of design

details it naturally shields a manufacturer from divulging trade secrets that lead to

its competitive advantage. This is not necessarily the case for classic engineering

analysis models, which compute higher-level attribute from lower-level design

information. This approach may be useful in the context of mass customization,

where manufacturers offer customers nearly infinite variety.

• Can designers use tradeoff models to account for attributes relating to

environmental impact? In principle, there is no reason why this should not be

possible provided the relevant attributes are quantitative measures. The larger

challenge may lie in how to assess the environmental impact of a particular

component. This issue goes well beyond system-level decision making, but

 213

tradeoff modeling could be a useful connecting point between research on

environmental impact and systems decisions.

Implications of the Decision Chain Perspective

The role in this research of the decision chain concept is to motivate a perspective

on decision making that is broader than engineering optimization. The core idea is that

design problems are too complex to be formulated as one large optimization problem. In

the current research, this leads to a data-driven predictive modeling approach. The basic

idea is that designers can infer much about the other decisions in a decision chain from

this data without having to model the decision processes explicitly. However, this

perspective has other implications.

A common definition for a decision is that it is “an irrevocable allocation of

resources” (Hazelrigg 1996). From a detail design perspective, one can interpret this as a

designer making choices about the product: How large should it be? What should it be

made of? The allocated resources are the materials and labor that go into making the

product. However, a decision-chain perspective implies a broader interpretation of what

this allocation means. A systems designer makes relatively few choices about the

engineered artifact that are not revocable. For example, even after choosing one particular

system architecture, a design team can reevaluate and backtrack to go with another

alternative. What, then, has the system designer allocated irrevocably?

The only commitment of resources dictated by the systems designer in this

example relate to the design process itself: the time spent by the design team developing

the system according to a particular architecture, including any computational resources

devoted to the project. Designers require a better understanding of their decisions from

this perspective. One of the basic arguments from the set-based design literature is that it

 214

can be advantageous for designers to develop a large number of alternatives in parallel

(Sobek II, et al. 1999). However, it remains unclear how designers should determine how

many alternatives to consider or when to narrow the field down to a single solution

strategy. Although some research exists on characterizing the relationship between a

design process and its outcome (e.g.,(Sobek II and Jain 2007)), it remains a largely open

topic.

Combinatorial Optimization

The parameterized Pareto dominance criterion may be useful for certain types of

combinatorial optimization problems. Table 9.1 is a condensed version of Table 6.2 that

contains the numbers of components in the hydraulics database used for the log splitter

problem before and after dominance analysis. What is striking about this table is the last

column: the number of valid component combinations. By taking a purely combinatorial

approach, one could construct over 24 million valid log splitter systems from the original

database. Even after eliminating a number of components using rudimentary outlier

analysis, one is left with over 10 million combinations. However, after dominance

analysis one has only a half-million combinations—a rather manageable number.

Table 9.1: Components in database before and after dominance analysis.

Component Engine Pump Cylinder Control
Valve

Total # of
Combinations

Hours to
Evaluate*

Total # in DB 59 61 188 36 24,358,032 6.8
aft. outlier
analysis

49 43 158 32 10,652,992 2.9

aft. dom.
analysis

19 24 137 8 499,776 0.14

 *Assuming 1ms computation time per combination.

 215

To put these results in perspective, suppose each configuration requires one

millisecond to evaluate. To consider all combinations of the original database, one would

require almost seven hours while the evaluations would be a matter of minutes after

applying the parameterized Pareto dominance criterion—a speedup of 98%! The potential

value of dominance analysis is even more apparent for longer computation times: if

evaluations instead take one-tenth of a second, the full combinatorial search would take

over 28 days, while the post-dominance analysis search would require about a half day

(14 hours).

What makes this speedup possible are the theoretical results from Chapter 5,

specifically the soundness results for composing parameterized Pareto sets. Those results

guarantee that eliminating components via parameterized Pareto dominance is sound

from a systems perspective—i.e., designers will not eliminate a component that would

have been part of the best system configuration.

Although these preliminary results are very encouraging, the true value of this

approach depends on how typical it is for designers to eliminate large numbers of

components using parameterized Pareto dominance. It is likely that this particular

example is atypical, but the effect would be notable even if the average speedup were

more modest. Future research is required to ascertain what kind of improvements are

likely and to characterize the search approach mathematically.

Applications of Support-Vector Domain Description

The support vector-domain description and clustering techniques introduced in

Chapter 4 have many potential applications in design.

• The most critical application may be in the context of validating models generated

from observational data. Although often an afterthought, it is important for model

 216

developers to describe the context in which others may validly use their models

(Malak and Paredis 2007).

• The SVDD and SVC techniques also may be useful in the context of strategic

planning for design projects. Domain description and clustering may be useful in

identifying different types of customers or in identifying unexploited niches in the

product landscape.

• Support-vector domain description is applicable to outlier detection and therefore

can be useful for quality control in manufacturing. Typical classification

algorithms require examples of both positive and negative results (i.e., good and

bad parts) to learn the desired associations. In contrast, the SVDD algorithm

requires only positive examples to learn a decision boundary. This could be

advantageous.

• A SVDD can serve as a compact representation for a very large set of data. It may

require only a handful of support vectors to represent thousands of data points.

This can be useful in the context of data mining applications relating to design.

Tradeoffs under Uncertainty

Ample room exists for further research into applications of stochastic dominance

rules in systems design. Just within the context of tradeoff modeling, several open

questions exist.

• Are there other distributions for which the mean-variance space is a rigorous

tradeoff representation? As noted in Chapter 8, this is known to be the case for

normal and log-normal distributions. Other types of distributions are common on

engineering problems, including the uniform, triangular and exponential. Are any

 217

of these compatible with this representation? If not, what is a suitable

representation for them?

• When is the benefit of modeling tradeoffs under uncertainty worth the added

complexity? This is a difficult, but important question. Even using somewhat

aggressive assumptions, the PMV-SSD rule requires twice as many dimensions as

parameterized Pareto dominance. At what point to other uncertainties in the

problem dominate those due to the underlying data?

• What is the practical implication of assuming attributes are statistically

independent? This assumption simplifies the representation considerably, but

probably is, strictly speaking, incorrect in most cases. What is the impact of

modeling the distributions as independent when they really are not? What

recourse is available to designers when independence is a very poor assumption?

• Is there practical value in visualizing efficient tradeoffs in a generalized tradeoff

space (e.g., mean-variance space)? Such a space has high dimensionality and it

can be problematic to visualize relationships in such a space. For this to be

practical, researchers must consider the meaning of these relationships and

provide practicing designers with insight into how to interpret them. Research into

advanced visualization tools also may be useful.

9.5 Summary

System-level decision making requires both insight and foresight about the design

problem and the potential solutions to it. This type of knowledge is difficult for designers

to formalize. In fact, they commonly rely on qualitative approaches due to the difficulty

of evaluating their decision alternatives using quantitative models. This is not because it

 218

is difficult for designers to model the interactions between and behaviors of individual

system components mathematically. Instead, it is due to the difficulty in arriving at

reasonable estimates for the likely attributes of those components. Put in the simplest of

terms, it would be invalid to conclude that an all-electric vehicle is superior to a hybrid

one based on exaggerated assumptions about how much electrical power storage one can

have for a given cost and mass.

This research is an investigation of a predictive approach to modeling system-

level decision alternatives. The core premise is that designers can make inferences about

how they or other designers would implement a particular component based on attribute

data about prior implementations of that type of component. They can use this

information at the systems level by composing together the component-level models. The

component-level models are based on a new decision-theoretic construct, called a

parameterized efficient set. The internal consistency of this approach is validated using

mathematical analysis and practical applicability is demonstrated on representative

design problems.

The contributions from this research are significant in the context of this modeling

approach and there is reason to believe they also have broader significance. Several

potential extensions to the modeling approach and alternative applications of these

research ideas have been explored. Whether this particular approach to modeling system-

level alternatives is the best solution to the problem remains unclear. However, one can

conclude that the contributions made in this research are useful waypoints on the path to

a lasting and effective solution to the problem.

 219

APPENDIX A:

PROOFS OF MATHEMATICAL STATEMENTS

A.1 Theorem 1

The theorem follows directly from the definitions of classical Pareto dominance

and monotonicity. From Definition 3.1 (page 54), DOM′ ′′z z means 1i iz z i N′ ′′≥ ∀ = …

and 1iz z i N′ ′′> ∃ = … . From Definition 5.1, if a scalar function, ()V ⋅ , is monotonically

increasing in []1 2, , , Nz z z=z … then the condition 1i iz z i N′ ′′≥ ∀ = … and

1iz z i N′ ′′> ∃ = … implies () ()V V′ ′′>z z ■

A.2 Theorem 2

The theorem follows directly from the definitions of parameterized Pareto

dominance and monotonicity. From Definition 3.2 (page 57), PDOM′ ′′z z means if

i iz z i P′ ′′= ∀ ∈ , i iz z i D′ ′′≥ ∀ ∈ and i iz z i D′ ′′> ∃ ∈ which is special case of

1i iz z i N′ ′′≥ ∀ = … and 1iz z i N′ ′′> ∃ = … since { }1P D N∪ = … and P D∩ = ∅ .

From Definition 5.1, if a scalar function, ()V ⋅ , is monotonically increasing in

[]1 2, , , Nz z z=z … then the condition 1i iz z i N′ ′′≥ ∀ = … and 1iz z i N′ ′′> ∃ = … implies

() ()V V′ ′′>z z ■

A.3 Theorem 5.1

The theorem is proved using a direct approach. One can state Theorem 5.1 as:

 () ()DOM , DOM ,k k k k k
′ ′′ ′ ′′ ′ ′′ ′ ′′∀ ∈ → ∃ ∈y y y y Y S y S y y y Y ,

 220

where it is understood that [],k k−
′ ′ ′=y y y and [],k k−

′′ ′′ ′′=y y y such that *,k k k− − −
′ ′′ ∈y y Y , and

the stated monotonicity condition holds. Using the definition for classical Pareto

dominance (Definition 3.1) yields, for all ,k k k
′ ′′ ∈y y Y :

() ()

()() ()()

()() ()()

1 1

1
,

1

kj kj k kj kj k

i ii i

i ii i

y y j M y y j M

S S i N

S S i N

′ ′′ ′ ′′≥ ∀ = ∧ > ∃ = →

 ′ ′′≥ ∀ = ∧
  ′ ′′∃ ∈
 ′ ′′ > ∃ =
 

y y
y y Y

y y

… …

…

…

 (A1)

where ()iy denotes the vector of attributes used in the i th system composition model.

There always exists a [],k k−
′ ′ ′=y y y and [],k k−

′′ ′′ ′′=y y y such that

1 2, Y Y Y YK
′ ′′∈ = × × ×y y � and *

k k k− − −
′ ′′= ∈y y Y . Thus, to prove the proposition, one

need only prove that the premise implies the conclusion for attribute vectors constructed

this way. The conclusion of Equation (A1) involves two comparisons joined by a

conjunction, and so both must hold. The first inequality must hold for all system

composition models. Let { }1kI N∈ … denote the set of indices corresponding to system

composition models with an attribute from component k as an input and kI− be its

compliment. Strict equality holds for ()i kS i I−⋅ ∀ ∈ , since their inputs come from

k k− −
′ ′′=y y —i.e., ()() ()()i i ii kS S i I−

′ ′′= ∀ ∈y y . The ()i kS i I⋅ ∀ ∈ have inputs such that

() () 1
ii m i m

m My y ∀ =′ ′′≥ … because either the attribute is not from component k (in which

case () ()i m i m
y y′ ′′=) or it is from component k , in which case () ()i m i m

y y′ ′′≥ is assumed via

the theorem’s premise. Every ()iS ⋅ for ki I∈ is strictly increasing in any attribute from

component k and () () 1 ,
kii m i m

i Iy y m M ∈′ ′′≥ ∀ = … , so it follows from the definition of

 221

strict monotonicity that ()() ()()i i i ki i IS S′ ′′ ∀ ∈>y y . Thus, since { }1k k NI I−∪ = … , one has

()() ()()i 1
i ii i NS S′ ′′ ∀ =≥y y … . The second inequality requires only existence to hold and

was proved in the course of proving the first inequality—i.e., because

()() ()()i i i ki i IS S′ ′′ ∀ ∈>y y it follows that ()() ()()i 1
i ii i NS S′ ′′ ∃ =>y y … ■

A.4 Corollary 5.1

Since *

k k− −⊂Y Y , one can substitute the statement k k k− − −
′ ′′= ∈y y Y for

*

k k k− − −
′ ′′= ∈y y Y in the proof for Theorem 5.1 and the proof still works. Thus, it follows

that the corollary is true ■

A.5 Corollary 5.2

It follows that if every system composition model is strictly increasing in every

variable, then every component satisfies the scenario for Theorem 5.1. Since one can

apply Theorem 5.1 to every component, it follows that the corollary holds ■

A.6 Theorem 5.2

The logic for this proof follows that for Theorem 5.1. One can restate Theorem

5.2 as:

 () ()PDOM , DOM , Yk k k k k
′ ′′ ′ ′′ ′ ′′ ′ ′′∀ ∈ → ∃ ∈y y y y Y S y S y y y .

Recall that { }1D M⊂ … is the set of indices for the dominator attributes and

{ }1P M⊂ … is the set of indices for the parameter attributes and each are defined such

that D P∩ = ∅ , { }1D P M∪ = … and D ≠ ∅ . Applying the dominance definitions

yields, for all ,k k k
′ ′′ ∈y y Y :

 222

() () ()

()() ()()

()() ()()

1
,

1

kj kj kj kj kj kj

i ii i

i ii i

y y j P y y j D y y j D

S S i N

S S i N

′ ′′ ′ ′′ ′ ′′= ∀ ∈ ∧ ≥ ∀ ∈ ∧ > ∃ ∈ →

 ′ ′′≥ ∀ = ∧
  ′ ′′∃ ∈
 ′ ′′ > ∃ =
 

y y
y y Y

y y

…

…

Let kI ≠ ∅ denote the set of indices for system composition models, ()iS ⋅ , with one or

more attributes from component { }1k K∈ … as an input and kI− denote its compliment.

As in the case for Theorem 5.1, there always exists tradeoffs [],k k−
′ ′ ′=y y y and

[],k k−
′′ ′′ ′′=y y y such that *

k k k− − −
′ ′′= ∈y y Y . Let [],k kD kP=y y y , where kPy is a vector

consisting of all the attributes of subsystem k treated as parameters (the kjy for j P∈)

and kDy is a vector of the remaining attributes (the kjy for j D∈). Thus, one has

[], ,k kD kP k−
′ ′ ′ ′=y y y y and [], ,k kD kP k−

′′ ′′ ′′ ′′=y y y y . According to the premise of Theorem 5.2,

kP kP
′ ′′=y y and DOMkD kD

′ ′′y y . By letting [],kP k= −=y y y , one has [],kD =
′ ′ ′=y y y and

[],kD =
′′ ′′ ′′=y y y such that = =

′ ′′=y y , which is equivalent to the case proved for Theorem 5.1.

Therefore, it follows that Theorem 5.2 holds ■

A.7 Corollary 5.3

Since *

k k− −⊂Y Y , one can substitute the statement k k k− − −
′ ′′= ∈y y Y for

*

k k k− − −
′ ′′= ∈y y Y in the proof for Theorem 5.2 and the proof still works. Thus, it follows

that the corollary is true ■

A.8 Corollary 5.4

It follows that if every system composition model is strictly increasing in every

dominator attribute, then every component satisfies the scenario for Theorem 5.2. Since

one can apply Theorem 5.2 to every component, it follows that the corollary holds ■

 223

A.9 Theorem 8.1

Several authors prove that the mean-variance assumptions hold for the single-

attribute case (e.g., (Tobin 1958, Hanoch and Levy 1969, Baron 1977)). Combining this

result with Theorem 2 in (Huang, et al. 1978) yields a complete proof of the multi-

attribute case of Theorem 8.1 ■

A.10 Theorem 8.2

Proof follows directly from the definition of MV-SSD. Since , ,i a i b i Pµ µ= ∀ ∈ ,

, ,j a j b j Dµ µ≥ ∀ ∈ and { }1, ,P D N∪ = … , one can conclude that , , 1k a k b k Nµ µ≥ ∀ = … .

This yields the conditions for MV-SSD (Definition 8.1) and so dominance holds and the

theorem is proved ■

 224

REFERENCES

Achten, P. A. J. (2008). "A Serial Hydraulic Hybrid Drive Train for Off-Road Vehicles."
51st National Conference on Fluid Power (NCFP 2008). 515-21.

AIAA (1998). "Guide for the Verification and Validation of Computational Fluid
Dynamics Simulations." AIAA-G-077-1998. American Institute of Aeronautics
and Astronautics, Reston, VA.

Aird, F. (2000). Automotive Math Handbook. MotorBooks/MBI Publishing.

Aizerman, M., Braverman, E. and Rozonoer, L. (1964). Theoretical Foundations of the
Potential Function Method in Patter Recognition Learning. Automation and
Remote Control, 25, 821-37.

Akao, Y. (2004). Quality Function Deployment: Integrating Customer Requirements into
Product Design (G. H. Mazur, Trans.). New York: Productivity Press.

Alexandrov, N. M. and Lewis, R. M. (1999). "Comparative Properties of Collaborative
Optimization and Other Approaches to MDO." technical Report NASA/CR-1999-
209354. Institute for Computer Applications in Science and Engineering, NASA
Langley, Hampton, VA.

Aronszajn, N. (1950). Theory of Reproducing Kernels. Transactions of the American
Mathematics Society, 68(3), 337-404.

ASME (2006). "Guide for Verification and Validation in Computational Solid
Mechanics." ASME Standard American Society of Mechanical Engineers, New
York.

Baccelli, F. and Makowski, A. M. (1989). Multidimensional Stochastic Ordering and
Associated Random Variables. Operations Research, 37(3), 478-87.

Balci, O. (1997). Principles of Simulation Model Validation, Verification and Testing.
Transactions of the Society for Computer Simulation International, 14(1), 3-12.

Balling, R. (1999). "Design by Shopping: A New Paradigm." Third World Congress of
Structural and Multidisciplinary Optimization (WCMSO-3), Buffalo, NY. 295-7.

Barber, C. B., Dobkin, D. P. and Huhdanpaa, H. T. (1996). The Quickhull Algorithm for
Convex Hulls. ACM Transactions on Mathematical Software, 22(4), 469-83.

Baron, D. P. (1977). On the Utility Theoretic Foundations of Mean-Variance Analysis.
Journal of Finance, 32(5), 1683-97.

 225

Barton, J. A. and Love, D. M. (2000). Design Decision Chains as a Basis for Design
Analysis. Journal of Engineering Design, 11(3), 283-97.

Barton, J. A., Love, D. M. and Taylor, G. D. (2001). Evaluating Design Implementation
Strategies using Enterprise Simulation. International Journal of Production
Economics, 72(3), 285-99.

Bascaran, E., Bannerot, R. B. and Mistree, F. (1989). Hierarchical Selection Decision
Support Problems in Conceptual Design. Engineering Optimization, 14(3), 207-
38.

Ben-Hur, A., Horn, D., Siefelmann, H. T. and Vapnik, V. (2001). Support Vector
Clustering. Journal of Machine Learning Research, 2(2), 125-37.

Berezkin, V. E., Kamenev, G. K. and Lotov, A. V. (2006). Hybrid Adaptive Methods for
Approximating a Nonconvex Multidimensional Pareto Frontier. Computational
Mathematics and Mathematical Physics, 46(11), 1918-31.

Bernhard, B. (2004). "Hybrid Drives for Off-Road Vehicles." FISITA World Automotive
Congress, Barcelona, Spain, 23-27 May 2004.

Boehm, B. W. (1981). Software Engineering Economics. Upper Saddle River, NJ:
Prentice Hall.

--- (1988). "A Spiral Model of Software Development and Enhancement." IEEE
Computer, 21(5), 61-72.

Bras, B. and Mistree, F. (1993). Robust Design using Compromise Decision Support
Problems. Engineering Optimization, 21, 213-39.

Browning, T. R. (2001). Applying the Design Structure Matrix to System Decomposition
and Integration Problems: A Review and New Directions. IEEE Transactions on
Engineering Management, 48(3), 292-306.

Bruns, M. (2006). Propagation of Imprecise Probabilities through Black Box Models.
M.S. thesis, Georgia Institute of Technology.

Buede, D. M. (2000). The Engineering Design of Systems. New York: John Wiley &
Sons.

Chen, W., Allen, J. K., Marvis, D. N. and Mistree, F. (1996). A Concept Exploration
Method for Determining Robust Top-Level Specifications. Engineering
Optimization, 26, 137-58.

Chen, W., Allen, J. K. and Mistree, F. (1997). A Robust Concept Exploration Method for
Enhancing Productivity in Concurrent Systems Design. Concurrent Engineering,
5(3), 203-17.

 226

Clemen, R. T. (1996). Making Hard Decisions: An Introduction to Decision Analysis (2nd
ed.). Pacific Grove, CA: Duxbury Press.

Cramer, E. J., Dennis Jr., J. E., Frank, P., Lewis, R. M. and Shubin, G. R. (1994).
Problem Formulation for Multidisciplinary Optimization. SIAM Journal of
Optimization, 4, 754-76.

Daschbach, J. M. and Apgar, H. (1988). Design Analysis through Techniques of
Parametric Cost Estimation. Engineering Costs and Production Economics, 14(2),
87-93.

Davis, A. M. (1993). Software Requirements: Objects Functions and States. Upper
Saddle River, NJ: Prentice Hall.

Dean, J. (1976). Statistical Cost Estimation. Bloomington, IN: Indiana University Press.

Dewulf, W. (2003). A Pro-Active Approach to Ecodesign: Framework and Tools. Ph.D.
thesis, Katholieke Universiteit Leuven.

Donndelinger, J. (2006). "A Decision-Based Perspective on the Vehicle Development
Process." In K. Lewis, W. Chen and L. C. Schmidt (Eds.), Decision Making in
Engineering Design (pp. 217-25). New York: American Society of Mechanical
Engineers.

Eaton Corp. (1998). "Pump and Motor Sizing Guide." Eaton Corporation Hydraulics
Division, Eden Prarie, MN.

Farineau, T., Rabenasolo, B., Castelain, J. M., Meyer, Y. and Duverlie, P. (2001). Use of
Parametric Models in an Economic Evaluation Step During the Design Phase.
International Journal of Advanced Manufacturing Technology, 17(2), 79-86.

Ferguson, S., Gurnani, A., Donndelinger, J. and Lewis, K. (2005). A Study of
Convergence and Mapping in Preliminary Vehicle Design. International Journal
of Vehicle Systems Modelling and Testing, 1(1/2/3), 192-215.

Fernandez, M. G., Seepersad, C. C., Rosen, D. W., Allen, J. K. and Mistree, F. (2005).
Decision Support in Concurrent Engineering - The Utility-based Selection
Decision Support Problem. Concurrent Engineering: Research and Applications,
13(1), 13-27.

Filippone, M., Camastra, F., Masulli, F. and Rovetta, S. (2007). A Survey of Kernel and
Spectral Methods for Clustering. Pattern Recognition, 41(1), 176-90.

Finch, W. W. and Ward, A. C. (1997). "A Set-based System for Eliminating Infeasible
Designs in Engineering Problems Dominated by Uncertainty." 1997 ASME
Design Engineering Technical Conferences, Sacramento, CA, Sept 14-17.
American Society of Mechanical Engineers, Paper No. DETC97/DTM-3886.

 227

Fishburn, P. C. (1965). Decision and Value Theory. New York: Wiley.

--- (1978). Stochastic Dominance without Transitive Preferences. Management Science,
24(12), 1268-77.

Forsberg, K. and Mooz, H. (1992). The Relationship of Systems Engineering to the
Project Cycle. Engineering Management Journal, 4(3), 36-43.

Geisser, S. (1982). Aspects of the Predictive and Estimative Approaches in the
Determination of Probabilities. Biometrics, 38, 75-85.

--- (1993). Predictive Inference: An Introduction. New York: Chapman & Hall.

Gu, X., Renaud, J. E., Ashe, L. M., Batill, S. M., Budhiraja, A. S. and Krajewski, L. J.
(2002). Decision-based Collaborative Optimization. Journal of Mechanical
Design, 124(1), 1-13.

Gurnani, A., Ferguson, S., Lewis, K. E. and Donndelinger, J. (2006). A Constraint-based
Approach to Feasibility Assessment in Preliminary Design. Artificial Intelligence
in Engineering Design, Analysis and Manufacturing, 20(4), 351-67.

Han, J. and Kamber, M. (2001). Data Mining: Concepts and Techniques. San Francisco,
CA: Morgan Kaufmann.

Hand, D. J., Mannila, H. and Smyth, P. (2001). Principles of Data Mining. Cambridge,
MA: MIT Press.

Hanoch, G. and Levy, H. (1969). The Efficiency Analysis of Choices Involving Risk. The
Review of Economic Studies, 36, 335-46.

Harada, K., Sakuma, J. and Kobayashi, S. (2007). "Uniform sampling of local pareto-
optimal solution curves by pareto path following and its applications in multi-
objective GA." 9th annual conference on Genetic and evolutionary computation,
London, England. 813-20.

Hazelrigg, G. A. (1996). Systems Engineering: An Approach to Information-based
Design. Upper Saddle River, NJ: Prentice-Hall.

--- (1998). A Framework for Decision-Based Engineering Design. ASME Journal of
Mechanical Design, 120, 653-8.

--- (2003). Validation of Engineering Design Alternative Selection Methods. Engineering
Optimization, 35(2), 103-20.

Herrmann, J. W. and Schmidt, L. C. (2006). "Product Development and Decision
Production Systems." In K. E. Lewis, W. Chen and L. C. Schmidt (Eds.),
Decision Making in Engineering Design (pp. 227-42). New York: American
Society of Mechanical Engineers.

 228

Hsu, W. and Woon, I. (1998). Current and Future Research in the Conceptual Design of
Mechanical Products. Computer Aided Design, 30(5), 377-89.

Huang, C. C., Kira, D. and Vertinsky, I. (1978). Stochastic Dominance Rules for Multi-
Attribute Utility Functions. The Review of Economic Studies, 45(3), 611-5.

Huang, G. Q. (Ed. (1996). Design for X: Concurrent Engineering Imperatives. Springer.

Hume, D. (1965). A Treatise of Human Nature. Oxford: Clarendon Press. (Original work
published in 1739-40).

Hunt, B. J., Blouin, V. Y. and Wiecek, M. M. (2007). Modeling Relative Importance of
Design Criteria with a Modified Pareto Preference. Journal of Mechanical
Design, 129(9), 907-14.

Jin, R., Du, X. and Chen, W. (2003). The Use of Metamodeling Techniques for
Optimization under Uncertainty. Structural and Multidisciplinary Optimization,
25(2), 99-116.

Jun, S.-H. and Oh, K.-W. (2006). "A Competitive Co-Evolving Support Vector
Clustering." Neural Information Processing (pp. 864-73). Berlin: Springer.

Karandikar, H., Srinivasan, R., Mistree, F. and Fuchs, W. J. (1989). Compromise: An
Effective Approach for the Design of Pressure Vessels using Composite
Materials. Computers & Structures, 33(6), 1465-77.

Keeney, R. L. and Raiffa, H. (1993). Decisions with Multiple Objectives (2nd ed.).
Cambridge, UK: Cambridge University Press.

Kim, H. M., Michelena, N. F., Papalambros, P. Y. and Jiang, T. (2003). Target Cascading
in Optimal System Design. Journal of Mechanical Design, 125(3), 474-80.

Kleindorfer, G. B., O'Neill, L. and Ganeshan, R. (1998). Validation in Simulation:
Various Positions in the Philosophy of Science. Management Science, 44(8),
1087-99.

Kokkolaras, M., Louca, L. S., Delagrammatikas, G. J., Michelena, N. F., Filipi, Z. S.,
Papalambros, P. Y., Stein, J. L. and Assanis, D. N. (2004). Simulation-based
Optimal Design of Heavy Trucks by Model-based Decomposition: An Extensive
Analytical Target Cascading Case Study. International Journal of Heavy Vehicle
Systems, 11(3/4), 402-32.

Kroo, I. and Manning, V. (2000). "Collaborative Optimization: Status and Directions."
8th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and
Optimization, Long Beach, CA. AIAA, Paper No. AIAA-2000-4721.

 229

Krus, P. (2005). "Estimation Models for Concept Optimisation of Power Transformation
and Transmission." The Ninth Scandinavian International Conference on Fluid
Power (SICFP'05), Linkoping, Sweden.

Kuppuraju, N., Ittimakin, P. and Mistree, F. (1985). Design through Selection: A Method
that Works. Design Studies, 6(2), 91-106.

Kutner, M. H., Nachtsheim, C. J., Neter, J. and Li, W. (2005). Applied Linear Statistical
Models (5th ed.). New York: McGraw-Hill/Irwin.

Kyburg, H. E. and Pittarelli, M. (1996). Set-based Bayesianism. IEEE Transactions on
Systems, Man and Cybernetics, 26(3), 324-39.

Law, A. M. and McComas, M. G. (2001). "How to Build Valid and Credible Simulation
Models." Winter Simulation Conference (B. A. Peters, J. S. Smith, D. J. Medeiros
and M. W. Rohrer, Eds.).

Lee, J. and Lee, D. (2005). An Improved Cluster Labeling Method for Support Vector
Machines. IEEE Transactions on Pattern Analysis and Machine Intelligence,
27(3), 461-4.

Lee, S.-H. and Daniels, K. (2005). "Gaussian Kernel Width Generator for Support Vector
Clustering." In M. He, G. Narasimhan and S. Petoukhov (Eds.), Advances in
Bioinformatics and Its Applications (pp. 151-62). Fort Lauderdale, FL: World
Scientific.

--- (2006). "Cone Cluster Labeling for Support Vector Clustering." 6th SIAM
International Conference on Data Mining, Bethesda, MD (J. Ghosh, D. Lambert,
D. Skillicorn and J. Srivastava, Eds.). 484-8.

Levhari, D., Paroush, J. and Peleg, B. (1975). Efficiency Analysis for Multivariate
Distributions. The Review of Economic Studies, 42(1), 87-91.

Levy, H. (1973). Stochastic Dominance Among Log-Normal Prospects. International
Economic Review, 14, 601-14.

--- (1990). "Stochastic Dominance." In J. Eatwell, M. Milgate and P. Newman (Eds.),
Utility and Probability (pp. 251-4). New York: Norton & Company.

--- (1992). Stochastic Dominance and Expected Utility: Survey and Analysis.
Management Science, 38(4), 555-93.

Lewis, K., Chen, W. and Schmidt, L. C. (Eds.). (2006). Decision Making in Engineering
Design. New York: American Society of Mechanical Engineers.

Liker, J. K., Sobek II, D. K., Ward, A. C. and Cristiano, J. J. (1996). Involving Suppliers
in Product Development in the United States and Japan: Evidence for Set-based

 230

Concurrent Engineering. IEEE Transactions on Engineering Management, 43(2),
165-78.

Lophaven, S. N., Nielsen, H. B. and Sondergaard, J. (2002). "DACE: A Matlab Kriging
Toolbox." Technical Report IMM-TR-2002-12. Technical University of
Denmark.

Lotov, A. V., Bushenkov, V. A. and Kamenev, G. K. (2004). Interactive Decision Maps.
Boston: Kluwer Academic Publishers.

Luce, R. D. and Raiffa, H. (1957). Games and Decisions. New York: Wiley.

Malak, R. J., Aughenbaugh, J. M. and Paredis, C. J. J. (2008). Multi-Attribute Utility
Analysis in Set-Based Conceptual Design. Computer Aided Design, In Press.

Malak, R. J. and Paredis, C. J. J. (2007). Validating Behavioral Models for Reuse.
Research in Engineering Design, 18(3), 111-28.

Marler, R. T. and Arora, J. S. (2004). Survey of Multi-Objective Optimization Methods
for Engineering. Structural and Multidisciplinary Optimization, 26(6), 369-95.

Martin, J. D. and Simpson, T. W. (2006). A Methodology to Manage System-Level
Uncertainty During Conceptual Design. Journal of Mechanical Design, 128(4),
959-68.

Mattson, C. A. and Messac, A. (2003). Concept selection using s-Pareto frontiers. AIAA
Journal, 41(6), 1190-8.

--- (2005). Pareto Frontier Based Concept Selection Under Uncertainty, with
Visualization. Optimization and Engineering, 6(1), 85-115.

McCandlish, D. and Dorey, R. E. (1984). The Mathematical Modeling of Hydrostatic
Pumps and Motors. Proceedings of the Institution of Mechanical Engineers, Part
B: Management and Engineering Manufacture, 198(10), 165-74.

McKay, M. D., Beckman, R. J. and Conover, W. J. (1979). A Comparison of Three
Methods for Selecting Values of Input Variables in the Analysis of Output from a
Computer Code. Technometrics, 22(2), 239-45.

Messac, A. and Mattson, C. A. (2004). "Normal Constraint Method with Guarantee of
Even Representation of Complete Pareto Frontier." 45th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials
Conference, Palm Springs, California, 19-22 April 2004.

Michelena, N. F., Park, H. and Papalambros, P. Y. (2003). Convergence of Analytical
Target Cascading. AIAA Journal, 41(5), 897-905.

 231

Mistree, F., Hughes, O. F. and Bras, B. (1993a). "Compromise Decision Support Problem
and the Adaptive Linear Programming Algorithm." In M. P. Kamat (Ed.
Structural Optimization: Status and Promise (pp. 251-90). Washington, D.C.:
AIAA.

Mistree, F., Smith, W. F. and Bras, B. (1993b). "A Decision-Based Approach to
Concurrent Engineering." In H. R. Paresai and W. Sullivan (Eds.), Handbook of
Concurrent Engineering (pp. 127-58). New York: Chapman & Hall.

Mistree, F., Smith, W. F., Bras, B., Allen, J. and Muster, D. (1990). Decision-based
Design: A Contemporary Paradigm for Ship Design. Transactions, Society of
Naval Architects and Marine Engineers, 98, 565-97.

Mosler, K. C. (1984). Stochastic Dominance Decision Rules when the Attributes are
Utility Independent. Management Science, 30(11), 1311-23.

Mullur, A. A., Mattson, C. A. and Messac, A. (2003). "Pitfalls of the Typical
Construction of Decision Matrices for Concept Selection." 41st Aerospace
Sciences Meeting and Exhibit, Reno, NV. Paper No. AIAA 2003-0466.

Muster, D. and Mistree, F. (1988). The Decision Support Problem Technique in
Engineering Design. International Journal of Applied Engineering Education,
4(1), 23-33.

Nahm, Y.-E. and Ishikawa, H. (2004). Integrated Product and Process Modeling for
Collaborative Design Environment. Concurrent Engineering: Research and
Applications, 12(1), 5-23.

Norton, R. L. (2000). Machine Design: An Integrated Approach (2nd ed.). Upper Saddle
River, NJ: Prentice Hall.

O'Brien, G. and Scarsini, M. (1991). Multivariate Stochastic Dominance and Moments.
Mathematics of Operations Research, 16(2), 382-9.

Oberkampf, W. L. and Trucano, T. G. (2002). Verification and Validation in
Computational Fluid Dynamics. Progress in Aerospace Sciences, 38, 209-72.

Otto, K. N. and Antonsson, E. K. (1991). Trade-off Strategies in Engineering Design.
Research in Engineering Design, 3(2), 87-104.

Pacheco, J. E., Amon, C. H. and Finger, S. (2001). "Developing Baysian Surrogates for
Use in Preliminary Design." AMSE Design Theory and Methodology Conference,
Pittsburgh, PA. American Society of Mechanical Engineers, Paper No.
DETC2001/DTM-21701.

Pahl, G. and Beitz, W. (1996). Engineering Design: A Systematic Approach (2nd ed.) (K.
Wallace, L. Blessing and F. Baurt, Trans.). London: Springer-Verlag.

 232

Paredis, C. J. J. (2008). "An Open-Source Modelica Library of Fluid Power Models."
Bath/ASME Symposium on Fluid Power and Motion Control, Bath, UK,
September 10-12.

Pareto, V. (1971). Manual of Political Economy (A. S. Schwier, Trans.). New York:
Macmillan. (Original work published in 1906).

Parunak, H. V. D., Ward, A. C., Fleischer, M. and Sauter, J. (1997). "A Marketplace of
Design Agents for Distributed Concurrent Set-based Design." ISPE/CE97: Fourth
ISPE International Conference on Concurrent Engineering: Research and
Applications, Troy, MI, Aug 20-22. 287-93.

Prasad, B. (1996). Concurrent engineering fundamentals : integrated product and
process organization. Upper Saddle River, NJ: Prentice Hall PTR.

Pugh, S. (1991). Total Design: Integrated Methods for Successful Product Engineering.
Reading, MA: Addison-Wesley.

Rekuc, S., Aughenbaugh, J. M., Bruns, M. and Paredis, C. J. J. (2007). Eliminating
Design Alternatives based on Imprecise Information. Society of Automotive
Engineering Transactions.

Royce, W. W. (1970). "Managing the Development of Large Systems: Concepts and
Techniques." 9th International Conference on Software Engineering. ACM, 328-
38.

Russell, W. R. and Seo, T. K. (1978). Ordering Uncertain Prospects: The Multivariate
Utility Functions Case. The Review of Economic Studies, 45(3), 605-10.

Rygielski, C., Wang, J.-C. and Yen, D. (2002). Data Mining Techniques for Customer
Relationship Management. Technology in Society, 24, 483-502.

Saari, D. G. (2000). Mathematical Structure of Voting Paradoxes: 1. Pairwise Votes.
Economic Theory, 15(1), 1-53.

Saaty, T. L. (1990). How to Make a Decision: The Analytical Hierarchy Process.
European Journal of Operations Research, 48(1), 9-26.

Sage, A. P. and Armstrong Jr., J. E. (2000). Introduction to Systems Engineering. Wiley
and Sons.

Sargent, R. G. (2001). "Some Approaches and Paradigms for Verifying and Validating
Simulation Models." Winter Simulation Conference (B. A. Peters, J. S. Smith, D.
J. Medeiros and M. W. Rohrer, Eds.). Piscataway, NJ: Institute of Electrical and
Electronics Engineers, 106-14.

Sauer-Sundstrand Co. (1997). "Selection of Driveline Components." Sauer-Sundstrand
Company, Ames, IA.

 233

Scarsini, M. (1988). Dominance Conditions for Multivariate Utility Functions.
Management Science, 34(4), 454-60.

Scholkopf, B. and Smola, J. A. (2002). Learning with Kernels. MIT Press.

Seo, K.-K., Park, J.-H., Jang, D.-S. and Wallace, D. (2002). Approximate Estimation of
the Product Life Cycle Cost using Artifical Neural Networks in Conceptual
Design. International Journal of Advanced Manufacturing Technology, 16(6),
461-71.

Shabani, M. R. and Yekta, R. B. (2006). Chemical Process Equipment Cost Estimation
using Parametric Models. Cost Engineering, 48(5), 26-32.

Shawe-Taylor, J. and Cristianini, N. (2004). Kernel Methods for Pattern Analysis.
Cambridge University Press.

Shupe, J. A. (1988). Decision-Based Design: Taxonomy and Implementation, University
of Houston.

Shupe, J. A., Mistree, F. and Sobieszczanski-Sobieski, J. (1987). Compromise: An
Effective Approach for the Hierarchical Design of Structural Systems. Computers
& Structures, 26(6), 1027-37.

Simpson, T. W., Mauery, T. M., Korte, J. J. and Mistree, F. (2001a). Kriging Models for
Global Approximation in Simulation-Based Multidisciplinary Design
Optimization. AIAA Journal, 39(12), 2233-41.

Simpson, T. W., Peplinski, J. D., Koch, P. N. and Allen, J. K. (2001b). Metamodels for
Computer-based Engineering Design: Survey and Recommendations.
Engineering with Computers, 17(2), 129-50.

Sobek II, D. K. (1996). "A Set-based Model of Design." Mechanical Engineering,
118(7), 78-81.

Sobek II, D. K. and Jain, V. K. (2007). Relating Design Process to Quality: A Virtual
Design of Experiments Approach. Journal of Mechanical Design, 129(5), 483-90.

Sobek II, D. K., Ward, A. C. and Liker, J. K. (1999). Toyota's Principles of Set-Based
Concurrent Engineering. Sloan Management Review, 40(2), 67-83.

Sobieszczanski-Sobieski, J. and Haftka, R. T. (1997). Multidisciplinary Aerospace
Design Optimization: Survey of Recent Developments. Structural and
Multidisciplinary Optimization, 14(1), 1-23.

Steward, D. V. (1981). The design structure system- A method for managing the design
of complex systems. IEEE Transactions on Engineering Management, 28, 71-4.

 234

Stump, G., Yukish, M., Simpson, T. W. and O'Hara, J. J. (2004). "Trade Space
Exploration of Satellite Datasets using Design by Shopping." IEEE Aerospace
Conference, 6-13 March 2004. 3885-95.

Tarassenko, L., Hayton, P., Cerneaz, N. and Brady, M. (1995). "Novelty Detection for
the Identification of Masses in Mammograms." 4th International Conference on
Artificial Neural Networks, Cambridge, UK. 442-7.

Tax, D. M. J. and Duin, R. P. W. (1999a). "Data Domain Description using Support
Vectors." European Symposium on Artificial Neural Networks, Bruges, Belgium,
21-23 April. 251-6.

--- (1999b). Support Vector Domain Description. Pattern Recognition Letters, 20, 1191-
9.

Thurston, D. L. (1991). A Formal Method for Subjective Design Evaluation with
Multiple Attributes. Research in Engineering Design, 3(2), 105-22.

--- (2001). Real and Misconcieved Limitations to Decision Based Design with Utility
Analysis. Journal of Mechanical Design, 123, 176-82.

Tobin, J. (1958). Liquidity Preferences as Behavior Toward Risk. The Review of
Economic Studies, 25, 65-86.

U.S. EPA (2008) Environmental Protection Agency Urban Dynamometer Driving
Schedule http://www.epa.gov/nvfel/testing/dynamometer.htm (accessed 31
October 2008).

Ulrich, K. T. (2005). Estimating the Technology Frontier for Personal Electric Vehicles.
Transportation Research Part C, 13, 448-62.

United States Department of Defense. (2003). DoD Modeling and Simulation (M&S)
Verification, Validation and Accreditation (VV&A). DoD Instruction Number
5000.61. By US DoD, 13 May. Washington, D.C.: GPO. Accessed 24 Feb 2005 at
<http://www.dtic.mil/whs/directives/corres/pdf/i500061_051303/i500061p.pdf>.

Vadde, S., Allen, J. K. and Mistree, F. (1994). Compromise Decision Support Problems
for Hierarchical Design Involving Uncertainty. Computers & Structures, 52(4),
645-58.

Van de Ven, J., Olson, M. W. and Li, P. Y. (2008). "Development of a Hydro-
Mechanical Hydraulic Hybrid Drive Train with Independent Wheel Torque
Control for an Urban Passenger Vehicle." Proceedings of the International Fluid
Power Exposition, Las Vegas, NV, March 11-15.

Vapnik, V. (1995). The Nature of Statistical Learning Theory. New York: Springer.

 235

von Neumann, J. and Morgenstern, O. (1980). Theory of Games and Economic Behavior
(3rd ed.). Princeton, NJ: Princeton University Press. (Original work published in
1944).

Wang, G. G. and Shan, S. (2007). Review of Metamodeling Techniques in Support of
Engineering Design Optimization. Journal of Mechanical Design, 129(4), 370-80.

Ward, A. C. (1989). A Theory of Quantitative Inference Applied to a Mechanical Design
Compiler. Ph.D. thesis, MIT.

Ward, A. C., Liker, J. K., Cristiano, J. J. and Sobek II, D. K. (1995). The Second Toyota
Paradox: How Delaying Decisions Can Make Better Cars Faster. Sloan
Management Review, 36(3), 43-61.

Wertz, J. R. and Larson, W. J. (1999). "The Space Mission Analysis and Design
Process." In J. R. Wertz and W. J. Larson (Eds.), Space Mission Analysis and
Design (3rd ed.). Torrance, CA: Microcosm Press.

Wilson, B., Cappelleri, D., Simpson, T. W. and Frecker, M. (2001). Efficient Pareto
Fronier Exploration using Surrogate Approximations. Optimization and
Engineering, 2(1), 31-50.

Winer, E. H. and Bloebaum, C. L. (2002). Development of Visual Design Steering as an
Aid in Large-Scale Multidisciplinary Design Optimization: Part I: Method
Development. Structural and Multidisciplinary Optimization, 23(6), 412-24.

Witten, I. H. and Frank, E. (2005). Data Mining: Practical Machine Learning Tools and
Techniques. Academic Press.

Wood, W. H. and Agogino, A. M. (2005). Decision-based Conceptual Design: Modeling
and Navigation of Heterogeneous Design Spaces. Journal of Mechanical Design,
127(1), 2-11.

Wood, W. H. and Dong, H. (2006). "Generating Design Alternatives across Abstraction
Levels." In K. E. Lewis, W. Chen and L. C. Schmidt (Eds.), Decision Making in
Engineering Design (pp. 61-72). New York: ASME Press.

Xu, R. and Wunsch II, D. (2005). Survey of Clustering Algorithms. IEEE Transactions
on Neural Networks, 16(3), 645-78.

Yang, J., Estivill-Castro, V. and Chalup, S. K. (2002). "Support Vector Clustering
Through Proximity Graph Modeling." Ninth International Conference on Neural
Information Processing. 898-903.

Yu, P. L. (1974). Cone Convexity, Cone Extreme Points, and Nondominated Solutions in
Decision Problems with Multiobjectives. Journal of Optimization Theory and
Applications, 14(3), 319-77.

 236

Yukish, M., Stump, G. and Lego, S. (2007). "Visual Steering and Trade Space
Exploration." 2007 IEEE Aerospace Conference, Big Sky, MT. 1-9.

