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SUMMARY 

The broad aim of this research is to contribute knowledge that enables 

improvements in how designers model decision alternatives at the systems level—i.e., 

how they model different system configurations and concepts. There are three principal 

complications:  

• Design concepts and systems configurations are partially-defined solutions to a 

problem that correspond to a large set of possible design implementations,  

• Each concept or configuration may operate on different physical principles, and  

• Decisions typically involve tradeoffs between multiple competing objectives that 

can include “non-engineering” considerations such as production costs and 

profits.  

This research is an investigation of a data-driven approach to modeling partially-defined 

system alternatives that addresses these issues. The approach is based on compositional 

strategy in which designers model a system alternative using abstract models of its 

components. The component models are representations of the rational tradeoffs 

available to designers when implementing the components. Using these models, 

designers can predict key properties of the final implementation of each system 

alternative. 

A new construct, called a parameterized efficient set, is introduced as the 

decision-theoretic basis for generating the component-level tradeoff models. Appropriate 

efficiency criteria are defined for the cases of deterministic and uncertain data. It is 

shown that the model composition procedure is mathematically sound under reasonable 

assumptions for the case of deterministic data. This research also introduces an approach 



 xix 

for describing the valid domain of a data-driven model based on the use of support-vector 

machines. Engineering examples include performing requirements allocation for a 

hydraulic log splitter and architecture selection for a hybrid vehicle.  
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CHAPTER 1: 

 

INTRODUCTION 

The focus of this chapter is on establishing the context for and scope of the 

investigation. Section 1.1 is an overview of the research topic, including why it is 

important and what are the main challenges. Section 1.2 is a summary of the main 

desirable characteristics for an approach to modeling alternatives for system-level 

decisions. Section 1.3 is an overview of the particular modeling approach studied in this 

research. Section 1.4 is an explanation of the main research questions and the 

corresponding hypotheses. Finally Section 1.5 is a roadmap to the remainder of this 

document. 

1.1 Research Overview 

1.1.1 What is this Research About? 

This research is about identifying new ways in which systems designers can think 

about making decisions. This can lead to new ways of formulating and solving decision 

problems as well as an improved understanding of decision methods in current use. Some 

examples of the types of decisions targeted in this investigation include: 

• Automotive designers are choosing between different architectural configurations 

for a hybrid car. Options include both serial and parallel power train arrangements 

(e.g., Figure 1.1). They care about profitability of the new design, which they 

believe to be a function of fuel efficiency, reliability, performance characteristics 

(acceleration, top speed, etc.), environmental impact, lifecycle considerations and 

production costs. 
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(b) 

Figure 1.1: Possible power train configurations for a (a) serial and (b) parallel hybrid 
vehicle. 

 

• The same designers are considering different technologies to implement their 

system: gas-electric and gas-hydraulic hybrids. Gas-electric hybrid vehicles have 

been on the market for a few years and the designers are confident that they 

understand the tradeoffs they will encounter if they choose that approach. In 

contrast, gas-hydraulic systems have received less study. The designers believe 

gas-hydraulic technology potentially has greater upside—particularly for heavier 

vehicles such as sport-utility vehicles and service vehicles (garbage trucks, 

delivery trucks, etc.)—but are uncertain about whether it is superior to gas-

electric technology for their particular problem. 
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• Suppose these automotive designers choose to develop a gas-hydraulic system 

using a parallel power train configuration. The next step is to assign domain 

and/or subsystem specialists to design its components. The system-level designers 

must identify implementation-neutral specifications for the components such that 

the specifications are technically feasible and, if met, lead to good system 

performance. 

Other examples exist spanning numerous application domains. Collectively, these types 

of decisions are referred to as system-level decisions in this research because they require 

system-wide information and have a system-wide impact. 

System-level decision making is a critical part of a systems design process, which 

tends to follow a top-down, hierarchical progression (Royce 1970, Boehm 1988, Forsberg 

and Mooz 1992, Wertz and Larson 1999, Buede 2000, Sage and Armstrong Jr. 2000). 

Two main types of system-level decisions are considered in this research: 

• System Selection Decisions. Decisions between different types of systems, such 

as competing system architectures, design concepts or implementation 

technologies.  

• Requirements Allocation Decisions. Also called requirements flowdown or 

component sizing, this type of decision entails determining appropriate design 

specifications for the components of a particular system architecture. 

In the preceding examples, the first two are systems selection problems and the last is a 

requirements allocation problem.  

Some authors use the terms compromise decisions (e.g., (Shupe, et al. 1987, 

Karandikar, et al. 1989, Mistree, et al. 1993b)) or parametric design to refer to 
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requirements allocation decisions. The latter term is adopted in this research because it 

better better fits with the systems engineering literature and it better reflects the 

specialized, system-level nature of the decisions of interest. Moreover, a requirements 

allocation decision is a type of compromise decision or parametric design problem. Like 

all such problems, designers determine the most preferred settings for certain parameters 

associated with a particular system architecture (in this case, the specifications for its 

components). However, unlike many compromise decisions, requirements allocation is 

just one step in a sequence of allocation and selection decisions—after requirements 

allocation, designers still must determine how to achieve the preferred specifications.  

Practicing designers do make system-level decisions successfully. They design 

automobiles, aircraft, ships, trains, computers, robots and all manner of complex systems. 

However, this does not mean their decision methodology is ideal—or even good. 

Designers do the best they can within the limits of their decision-making resources. The 

goal of this research is to contribute knowledge about how designers can get more return 

on their limited resources. Ideally, this would lead to designers being able to make sound 

and quantitative decisions earlier in a design project than would be practical otherwise. 

Another desirable, and related, outcome would be for designers to be able to evaluate a 

greater number of heterogeneous system alternatives than they typically are able to do. 

1.1.2 Why is it Important? 

One perspective on the importance of system-level decision making relates to its 

lasting impact on a design process. Numerous authors assert that system-level design 

decisions are particularly important to the success of a design project on the basis that 

these early-phase decisions constrain subsequent decisions. For example, in his survey of 
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conceptual design research Hsu and Woon (1998) state that “a poorly conceived design 

concept can never be compensated for by a good detailed design”. Pahl and Beitz (1996, 

pp. 68) make a similar assertion, stating that “in the subsequent embodiment and detail 

design phases it is extremely difficult or impossible to correct fundamental shortcomings 

of the solution principle.”.  

From a more quantitative perspective, Boehm (1981). and Davis (1993). both 

conclude based on data about software system design projects that the cost of correcting 

design mistakes increases the longer the mistakes go unrecognized. The implication is 

that value exists in researching approaches for improved decision making in design. 

Although their results are based on data about software systems, the general trend applies 

to systems in general. Authors in the systems engineering community commonly cite 

these studies to emphasize the importance of good decision-making practices early in a 

project and systematic decision making in general. 

Overall, quantitative data regarding the value and impact of any decision making 

practices is sparse. However, there is some evidence to suggest that good practices can be 

a source of competitive advantage. Ward and coauthors (1995) argue that the success of 

Toyota Motor Company is due in part to the way in which they approach such decisions. 

Sobek and coauthors (1999) build upon this work and characterize the decision-making 

process at Toyota in terms of what they call set-based concurrent engineering. Liker and 

coauthors (1996) demonstrate that set-based concurrent engineering is in fact more 

prevalent among Toyota Motor Company and its suppliers, as compared to American 

auto manufacturers and their suppliers.  
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Despite the success of Toyota Motor Company and the insights gained by 

studying its practices, it is unclear whether or to what extent any particular company 

would gain by adopting these practices. Toyota relies heavily on highly experienced 

personnel to execute their approach, which emerged over many years rather than being 

imposed suddenly. In order to achieve improvements in system-level decision making on 

a widespread basis, it is necessary to achieve a more substantial and fundamental 

understanding of such decisions and approaches for solving them.  

1.1.3 What is the Challenge? 

The principles of decision making are well-established in the literature. One can 

think of a decision process as a sequence of four main steps (Clemen 1996): 

1. Formulate the decision problem in terms of solution-independent objectives and 

willingness to make tradeoffs between competing objectives.  

2. Identify alternative courses of action.  

3. Evaluate each decision alternative relative to the stated objectives and identify the 

most-preferred alternative. 

4. Execute the most preferred course of action. 

The challenge addressed in this research is how to achieve the third step for system-level 

decision problems. In particular, the fundamental problem is how to model the decision 

alternatives. Designers have limited resources, which means it is not necessarily in their 

interest to create the most accurate or highest-fidelity model.  

This research addresses both the theory and associated practical considerations for 

how designers can model partially-defined systems at a high level of abstraction. An 

assumption in this research is that systems designers generally can model the 
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relationships between a system’s components, but that it is more difficult for them to 

understand the tradeoffs involved with implementing the components. Although it is true 

that most systems engineers have a tacit understanding of the components they would 

used in a system, this knowledge is difficult formalize. Ideally, designers would use 

formalized computer-interpretable models to enable fast and efficient exploration of 

many different alternatives rather than fixating on only a handful of choices. 

Furthermore, a model-based approach may be the only viable option for novel systems 

and technologies about which systems designers lack a preexisting intuition. 

Section 1.3 is an overview of the modeling approach investigated in this research. 

It is based on component-level models that designers can use to predict the tradeoffs that 

they or other designers would make when implementing the components of a system 

under particular decision objectives. The models are data-driven, which enables system-

level designers to consider the far-reaching consequences of a course of action without 

having to model every downstream consideration (detail design, manufacturing, etc.) 

explicitly. As discussed in Section 2.1, this type of information is important when one 

considers the relationships between different decisions in a systems realization process.  

1.2 Desirable Characteristics for a Modeling Approach 

It is instructive to consider which characteristics are desirable for an approach to 

modeling system-level decision alternatives. To some degree, such characteristics are a 

matter of perspective and different people may identify different considerations or assign 

emphasis differently. The following are the main characteristics considered important in 

this research. 



 8 

Soundness from a Decision-Making Perspective 

At a minimum, a decision process should be internally consistent in that it does 

not result in selections contrary to stated preferences or available information. The way in 

which designers model their decision alternatives has a large impact on whether they can 

make decisions soundly. Essentially, any model that ignores information—e.g., through 

simplifying assumptions—potentially can lead to unsound decisions. In practice, no 

model is free from assumptions and it is desirable to develop an understanding of the 

potential impact of any major assumptions from this decision-making perspective. 

Ideally, it would be provable that, at least under some mild assumptions, a particular 

modeling strategy supports sound decision making.  

Based on Quantitative, Computer-Interpretable Models 

The principles of decision making place no requirements on how one models 

decision alternatives except to say that models should reflect the available information 

and be consistent with the beliefs of the decision maker. However, in the context of 

system-level decision making it is desirable for models also to be quantitative and 

computer-interpretable. One reason is that at this stage of a design process it typically is 

valuable for designers to explore the space of alternatives widely. This exploration is 

difficult without the use of quantitative, computer-interpretable models. Another reason is 

that qualitative models (e.g., mental models) can lack the fidelity required to discriminate 

between alternatives. They can be useful for eliminating inferior design concepts with 

minimal effort or for identifying an obviously-superior concept, but are less effective for 

discriminating between similarly-performing decision alternatives. Furthermore, lacking 

a quantitative basis, they offer little support for allocation decisions. Although a 

quantitative model may be sufficient for identifying whether a gear drive is superior to a 
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belt drive for a particular application, it is poorly suited for deciding what specific gear 

ratio the drive should have. 

Comprehensive in Scope 

A common pitfall for designers is that sometimes they ignore important system 

attributes while making decisions. This usually is because they lack a good model for 

computing the attributes. For example, a designer might consider only the “engineering 

attributes” of a car, such as its top speed, acceleration and breaking figures of merit, but 

ignore other equally important attributes, such as cost. Although this practice always is 

undesirable, it is particularly deleterious for system-level decision making. Failure to 

consider major system attributes and adopt a comprehensive view of the available 

tradeoffs can lead designers down a path toward an undesirable outcome.  

Based on Models that are Fast to Compute 

If designers are to use models for system-level alternatives inside of an 

optimization loop or in the context of design space exploration, then computational 

complexity becomes an important concern. These computational procedures can require 

tens- or hundreds-of-thousands of model evaluations. Therefore, it is desirable that the 

models be fast to compute. The time to create the model also is important, but much less 

so than the time required to evaluate it.  

1.3 From Component-Level Data to System-Level Models 

This research examines an approach to modeling system-level alternatives that 

relies on predictive modeling and model composition. The vision is for designers to 

generate reusable predictive models of common engineering components that they can 

compose quickly and confidently to model a system-level alternatives of interest. Unlike 

other applications of predictive modeling in design, the approach investigated here is 
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based on models formulated strictly in terms of a component’s top-level attributes. This 

allows designers to abstract away lower-level implementation details and focus on 

system-level issues. The following is an overview of several key concepts associated with 

the approach. 

1.3.1 Component-Level Attributes 

In this research, a top-level attribute for a component—or, a component-level 

attribute—is an implementation-independent characteristic that applies to all components 

of equivalent functionality. Designers commonly use these attributes when making 

decisions about how to implement a component of that type. Figure 1.2 is a simplified 

illustration of this idea for hydraulic pumps with efficiency and cost as attributes. 

Designers can visualize physically heterogeneous pump implementations in terms of 

these attributes. Other pump attributes potentially of interest include maximum operating 

speed, mass, external dimensions and maximum flow rate.  
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Figure 1.2: Physically heterogeneous implementations of a functional component share 
the same attribute space. 
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For most types of components, the top-level attributes are characteristics that 

would appear in a parts catalog or that companies would publish in their product 

literature. Lower-level implementation details—information that would indicate precisely 

how designers achieve the top-level attribute values—are not included. For example, one 

would not include gear geometry, orifice geometry or materials specifications as part of 

the top-level attributes for a gear pump. 

Another aspect of component-level attributes is that designers typically cannot 

determine their values independently. For example, increasing the flow rate of a pump 

typically leads to an increase in its size since it would have to accommodate more fluid. 

Similarly, increasing the efficiency typically leads to an increase in cost due to the tighter 

tolerances required.  

1.3.2 Preferences and Modeling Component-Level Attributes 

In order to model components accurately in terms of their top-level attributes, it is 

important for one to consider the effect of preferences and how designers would make 

decisions when implementing that type of component. For example, suppose a designer 

of a hydraulic system cares only about the efficiency of a pump and what it cost to buy it 

(such that efficiency should be maximized and cost should be minimized). Several data 

points depicted in Figure 1.2 would be considered inferior by such a designer because 

there exist other pumps that are better in one or both of the attributes of interest.  

The reason for this relates to the decision-theoretic notion of dominance. Figure 1.3 is a 

depiction of the data points from Figure 1.2 classified as either dominated (ones no 

designer would choose) and non-dominated (also called efficient or Pareto optimal). 

Informally, one alternative dominates another if it is at least as good in all attributes and 
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strictly better in at least one (see Chapter 3 for a formal definition). The significance of 

this from a modeling perspective is that some of the data is misrepresentative of what 

designers can achieve by implementing a component. Thus, in the approach studied here, 

one constructs predictive models based only on efficient set data (i.e., the set of non-

dominated points). Figure 1.4 is an illustration of the difference between a model fit to all 

data about a component and a model fit only to the efficient set. The model fit to all data 

is a poor predictor of the relationship between costa and efficiency for pump 

implementations that designers would actually choose. This is discussed further in 

Chapter 3. 
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Figure 1.3: Illustrative visualization of dominance. 
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Figure 1.4: Illustration of distinction between model fit to all data and model fit to only 
the non-dominated data. 

                                                 
a Note that in this context, cost refers to the purchase price of the pump because this is an expense incurred 
by the system-level designer. The term cost is used in this way throughout this research. Clarification is 
stated whenever the meaning is ambiguous. 
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1.3.3 Parameterized Efficient Sets 

Some types of components have attributes for which preference orderings are not 

universal. For example, although designers generally will seek to minimize cost or 

maximize efficiency, there is no problem-independent preference ordering for the bore of 

a hydraulic cylinder or the gear ratio of a transmission. Such attributes are incompatible 

with the classical notion of dominance. 

To solve this problem, a novel extension of the classical Pareto dominance 

criterion is introduced in Chapter 3. Under the new dominance rule, one classifies 

attributes as dominator attributes or parameter attributes (respectively, those with and 

without problem-independent preference orderings). One can determine whether one 

component implementation dominates another only if their parameter attribute values are 

equivalent. If this is the case, one uses the classical dominance rule applied to the 

dominator subset of the attributes to draw conclusions about domination. 

One can interpret the resulting non-dominated data—called the parameterized 

efficient set—as a family of efficient sets. Designers can recover a specific efficient set 

by specifying values for the parameter attributes. This construct is the basis for 

component-level predictive modeling in this research. 

1.3.4 Predictive Tradeoff Models 

In this research, a predictive tradeoff model is a mathematical model fit to 

parameterized efficient set data about a type of component. Typically, this is an algebraic 

relationship designers can use to compute the value of one or more component-level 

attributes as a function of the others. The intent of this model is to capture dependencies 
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among the attribute values along the technology frontier—i.e., on the surface that 

delineates between implementations that are feasible and those that are not.  

Component implementations at different points along the model represent 

different tradeoffs that designers can make. For example, one designer may place more 

emphasis on cost while another emphasizes efficiency. Both solutions—if they are 

rational in a decision theoretic sense—are in the parameterized efficient set and lie on the 

tradeoff model. This is why they are called “tradeoff” models. 

The “predictive” part of the term requires some additional explanation. Strictly 

speaking, designers use the models to compute certain component-level attributes as a 

function of the others. However, this is not the prediction of interest in this research. The 

question of interest is:  

What would be the resulting attribute vector if a designer implemented the 

component in question with particular preferences for making tradeoffs among 

the component-level attributes? 

This prediction problem speaks to the actual use of the mathematical relationship. Figure 

1.5 is an illustration of the two different interpretations. In Figure 1.5(a), one computes 

pump efficiency as a function of its cost. In Figure 1.5(b), one searches along the 

modeled relationship for the combination of cost and efficiency that maximizes decision 

maker preferences. The second interpretation is adopted in this research. 
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Figure 1.5: Illustration of different interpretations of predictive tradeoff models: (a) one 
of the attributes is predicted given the other and (b) the complete attribute vector is 
predicted given the relationship between the attributes and the decision preferences. 

 

1.3.5 Composing System-Level Models from Component-Level Models 

Designers can compose a model for a system-level decision alternative by 

combining component-level predictive tradeoff models with models of the interactions 

 among the components. They can use the resulting model to compute system-level 

attributes as a function of component-level attributes. The advantage of taking a 

compositional approach is that data is more likely to exist for the components of a system 

than for the system itself. In principle, designers can model a novel system for which they 

have no prior data provided it consists of well-understood components that interact in a 

well-understood way. 

The mathematical form of the interaction model depends on the system in 

question and the system-level attributes of interest. The example problems in research 

involve both algebraic interaction models (the log splitter system of Chapter 6) and 

dynamical interaction models (the hydraulic hybrid vehicle example of Chapter 7).  
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Designers formulate system-level decision problems as searches over the 

component-level attributes that are used as independent variables in their respective 

tradeoff models. One can conduct this search using standard optimization techniques. 

This problem formulation is described in Chapter 5. 

1.4 Research Questions and Validation Strategy 

One can summarize the motivation for this investigation in terms of a research 

question:  

How can designers model system-level decision alternatives quantitatively in 

order to support sound and effective system-level decision making?  

This question is too broad to be answered satisfactorily in a single study. Instead, it 

serves as a launching pad to several specific research questions that revolve around the 

concepts introduced in Section 1.3. The broad aim is to discover new and general 

knowledge about system-level decision making. There are four main research questions: 

RQ1. How can designers conclude that one implementation of a component 

dominates another when they lack specific knowledge of the system in which 

the component will be used?  

RQ2. How can designers describe the set of valid inputs to a tradeoff model 

mathematically?  

RQ3. Under what conditions can designers compose component-level tradeoff 

models in order to model a system-level decision alternative soundly? 

RQ4. How should designers identify and visualize the (parameterized) efficient set of 

tradeoffs when the attribute data is uncertain? 



 17 

1.4.1 Component-Level Dominance Analysis 

Designers typically apply dominance analysis—usually in the form of the 

classical Pareto dominance criterion—at the system level and in the context of a specific 

decision problem. Although useful in many situations, classical Pareto dominance is 

inadequate at the component level or when problem-independence is desirable. The 

following hypothesis is studied in this research:  

H1. Designers can use the parameterized Pareto dominance rule to eliminate 

attribute data about dominated implementations of a component. 

This novel dominance rule is defined and validated in Chapter 3. The evidence in support 

of this hypothesis is a mathematical proof that the rule is sound under reasonable 

assumptions. In this context, soundness means that if the rule indicates that one 

implementation dominates another then the utility of a system that includes the 

dominated implementation is guaranteed to be lower than that of a system that includes 

the other implementation. 

1.4.2 Tradeoff Model Domain Description 

In the context of predictive modeling, a domain description is a mathematical 

representation of the set of valid inputs to a model. In many applications, one can 

describe the input domain using upper and lower bounds on the individual input 

variables. However, the inputs to a tradeoff model seldom are independent and the valid 

domain usually is not hypercube-shaped. When examining attribute data for a 

component, one typically finds irregularly-shaped, non-convex regions of data. Since the 

approach to generating tradeoff models is data-driven, designers ideally would have a 
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data-driven approach to describing its domain. Thus, the hypothesis corresponding to 

RQ2: 

H2. Designers can use a domain description procedure based on kernel-based 

support vector domain description and clustering methods. 

The domain description methodology is presented in Chapter 4. it is an extension 

of methods found in the machine learning literature. Chapter 4 includes basic examples to 

illustrate the approach and to provide evidence that it is effective. Further validation of 

the methodology stems from the example problems of Chapter 6 (requirements allocation 

for a hydraulic log splitter) and Chapter 7 (architecture selection for a hydraulic hybrid 

vehicle). Domain descriptions of the component-level tradeoff models are essential to the 

success of both examples. 

1.4.3 Composing Tradeoff Models 

Tradeoff model composition is an essential part of the modeling approach 

investigated in this research. However, it is prudent to question the validity of this 

procedure. Designers fit a tradeoff model to parameterized efficient set data, which is a 

subset of the original implementation data. Consequently, the composition procedure 

could be invalid if any of the excluded implementations could be part of the optimal 

system configuration.  

The hypothesis corresponding to this question is as follows: 

H3. One can compose predictive tradeoff models soundly if the tradeoff models are 

based on parameterized Pareto sets and all induced preferences for any 

component-level dominator attribute are monotonic in the same direction. 
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An induced preference is the preference ranking on the values of a component-level 

attribute implied indirectly by preferences for another attribute. This situation arises in 

systems problems where one has preferences directly for system-level attributes (e.g., to 

minimize cost or  maximize system performance measures). The induced preference 

relates to how a component-level attribute affects the system-level attributes. If an 

induced preference is monotonically increasing, then increasing the value of that 

component-level attribute (whilst holding all others equal) leads to an increase in overall 

utility. The soundness conditions are explained in detail in Chapter 5. 

This hypothesis is subjected to both mathematical and empirical validation 

efforts. The mathematical analysis, reported in Chapter 5, deals with the composition of 

parameterized Pareto sets. It is proved that provided one treats dominator attributes 

appropriately, any component implementation eliminated by the parameterized Pareto 

dominance rule cannot be part of the optimal system. This result has significance beyond 

tradeoff modeling, which is discussed in Chapter 5. 

Designers forfeit any mathematical guarantees once they begin approximating the 

data using a continuous model. This necessitates an empirical investigation. The example 

problems of Chapter 6 and Chapter 7 serve this purpose. In both examples, the results one 

obtains using the composed model compares favorably with an exhaustive search of the 

components database. 

1.4.4 Tradeoffs under Uncertainty 

Two complications emerge when attribute data is uncertain. First, one cannot 

conduct the comparisons required for the Pareto dominance test because the attributes do 
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not take on precise values. Second, one now has additional flexibility in terms of 

tradeoffs since, informally speaking, one can trade performance for reductions in risk.  

In the deterministic case, one can visualize a parameterized Pareto set as a surface 

in the space of attributes. A similar representation is desirable for tradeoffs under 

uncertainty. In the interest of problem scope, this investigation is limited to the special 

case of attributes modeled as being normally distributed and statistically independent. 

Under this assumption, the hypothesis corresponding to RQ4 is: 

H4. Designers can identify the (parameterized) efficient set of tradeoffs under 

uncertainty using (parameterized) stochastic dominance criteria and can 

visualize this set as a surface in mean-variance space. 

Stochastic dominance criteria are analogous to Pareto dominance, but account for 

uncertainty in the attributes and a designers attitude toward risk. Chapter 8 contains an 

explanation of stochastic dominance and the generalized interpretation of tradeoffs when 

uncertainty is present. One can extend the stochastic dominance criteria to operate in a 

manner similar to parameterized Pareto dominance. 

Validation efforts associated with H4 include a logical development of the result 

from the appropriate decision theoretic principles and an empirical investigation. In the 

example problem, decision results obtained using a tradeoff model fit to the 

parameterized efficient set data correspond well to a decision obtained using a trusted, 

but impractical, solution method. These efforts are reported in Chapter 8. 

1.5 Investigation Roadmap 

This document is organized into several major theme groups, each of which has 

one or more associated chapters. Figure 1.6 is a high-level summary of the material. 
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The first theme area is introductory and contextual material. This group consists 

of the current and succeeding chapters and focuses on establishing the conceptual 

foundations for ensuing chapters. These are summarized as follows: 

• Chapter 1 is a high-level introduction to the problem of modeling system-level 

decision alternatives and the aims of this research. It contains a vision for how 

designers can model system-level decision alternatives quantitatively as well as a 

description of the key research questions addressed in this investigation. 

• Chapter 2 is an exploration of the problem background in greater detail. The 

conceptual foundations for system-level decision making are identified and it is 

argued that the approach being studied is reasonable in light of these foundations. 

The chapter also contains a survey of the related literature, which has a focus on 

the limitations of existing approaches in light of the characteristics of the problem 

and the desired solution characteristics (identified in Section 1.2). 

 

The focus next shifts to the problem of generating tradeoff models. This group 

consists of two chapters that deal with foundational and practical issues relating to how to 

generate a tradeoff model of a component from data about the component.  

• Chapter 3 includes the basic definition for parameterized Pareto dominance and 

tradeoff modeling. A general methodology for generating tradeoff models is 

described and the formulation of basic decisions (involving a single tradeoff 

model) is demonstrated on a gearbox design problem. The potential consequences 
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of not performing dominance analysis prior to model fitting are discussed and it is 

concluded that dominance analysis is worthwhile. 

• Chapter 4 focuses on the practical problem of describing the valid domain of a 

tradeoff model. Existing theory for domain modeling and clustering are reviewed 

and a methodology for creating domain described tradeoff models is presented. 

 

Having tackled some basic issues about tradeoff model generation, the next group 

of chapters focus on validating the use of tradeoff models to compose system-level 

models and make system-level decisions. This is done using both theory and 

demonstration.  

• Chapter 5 is a theoretical analysis of the composition problem. It contains the 

general formulation of system-level decisions using composed tradeoff models. It 

also contains several original mathematical statements regarding the conditions 

under which it is theoretically valid to compose tradeoff models.  

• Chapter 6 is an engineering example of performing requirements allocation for a 

hydraulic log splitter system. Tradeoff models are fit to data about commercially-

available components. These are composed to model the system and requirement 

allocation is performed by searching the component-level attribute spaces. The 

results compare favorably to an exhaustive search of the components database. 

• Chapter 7 is an engineering example of performing system architecture selection 

for a hydraulic hybrid vehicle system. The problem involves multiple system 

architectures, each of which is modeled by composing tradeoff models of the 

underlying components. 
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The final two chapters are not part of a larger theme group. The first covers the 

problem of how to deal with uncertain data: 

• Chapter 8 is a discussion of the foundations of generating tradeoff models under 

data uncertainty. The conclusion is that doing so is difficult in general but is 

straightforward in certain special cases, one of which is presented. A critical 

insight is that one no longer can use Pareto-based dominance criteria to identify 

an efficient set and instead must use a stochastic dominance criterion. 

 

The final chapter brings closure to the research: 

• Chapter 9 is a description of the contributions and limitations of this research. It 

also includes a discussion of open questions raised during the course of this 

research. 

 

There also is an appendix worth noting: 

• Appendix A contains proofs of the mathematical statements made elsewhere in 

this document. The proofs are collected here so that they do not disrupt the flow 

of the other chapters. 
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Figure 1.6: Overview of content with major theme groupings indicated. 
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CHAPTER 2:  

 

PROBLEM BACKGROUND 

A basic premise of this research is that one cannot understand system-level 

decisions properly without considering how they relate to other decisions in a design 

process. This chapter is a review and synthesis of the prior thinking on this relationship 

and an examination of the limitations of current approaches to decision making in light of 

this assertion.  

Section 2.1 is a review of the literature on interrelated decisions in a systems 

realization process. Several authors conceive of a systems realization process as a chain 

of related decisions and describe various related problems, such as conflict resolution and 

decision sequencing. However, few consider the problem of modeling system-level 

decision alternatives in a decision chain context and the approaches that are described in 

the literature have limitations from a practical perspective. Section 2.2 is a survey of 

other approaches to decision making that designers sometimes apply to system-level 

decisions. Most of these methods are useful within a particular context, but are not good 

general approaches to system-level decision making. 

2.1 Systems Realization Processes as Decision Chains 

Many in the design research community recognize decision making as a central 

aspect of engineering design (Thurston 1991, Mistree, et al. 1993b, Hazelrigg 1998, 

Lewis, et al. 2006). The principles of how to model and solve an individual, isolated 

decision are well understood. However, most design problems are too complex for 

designers to solve directly as a single decision problem. Instead, designers simplify the 
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search for a satisfactory design by decomposing the problem into a series of related 

decisions. Several authors recognize and discuss the implications of this decomposition 

and the consensus is that a design process—or, more broadly, a systems realization 

process—consists of many interrelated decisions that occur in time. However, there is no 

consensus on how to model this chain of decisions mathematically. 

2.1.1 Relationships among Decisions in a Decision Chain 

Mistree and coauthors (1990) describe a design process as consisting of many 

interrelated decisions. They characterize the inception of a design process as the point at 

which designers begin establishing a hierarchicy of “decision entities” from the naturally 

heterarchical description of a design problem. They also describe an approach for 

identifying and formulating such decision entities. However, they do not address the 

problem of modeling how decisions that designers will make later in a process affect 

those that come earlier. Herrmann and Schmidt (2006) also view a systems realization 

process as consisting of numerous interrelated decisions and attribute this to a need to 

decompose a large problem into manageable sub-problems. They explore the question of 

whether such a process can be rational (in the sense of profit maximization; they argue in 

the affirmative) and offer insights into the complexities of information flow in a product 

development organization. However, they do not address the issue of how to model 

chains of decisions mathematically. Donndelinger (2006) identifies that the common 

“series of tasks” and “series of decisions” views of design are both valid and consistent 

with one another. He discusses how a series of decisions leads to iteration and 

distinguishes between two types of iteration. However, he offers no specific 
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recommendations about how to formulate the decisions or model the outcome of a 

particular chain of decisions.  

Figure 2.1 is a simple example of how a decision maker might decompose a larger 

decision into a chain of smaller ones. Figure 2.1(a) is a depiction of a “one-shot” decision 

in which a decision maker considers all possible alternatives at once. Although tractable 

for very small problems, this is unrealistic for systems realization problems. Figure 2.1(b) 

is a decision tree depiction of one possible decomposition of the “one-shot” decision into 

a chain of related decisions. The first decision is about which power train to use and the 

second is between power storage technologies.  

This example is simple for conceptual reasons. The need for decision chains is 

more apparent when one considers that a systems realization process can involve design, 

manufacturing, supply chains and other concerns. Imagine modeling a decision problem 

that encapsulates the design of a car, its manufacturing system and the associated supply 

chain. In this broader context, it is difficult for one to evaluate the consequences of a 

decision alternative without considering the chain of decisions that will follow from it. 

For example, a particular choice of material may appear favorable from a an engineering 

standpoint (e.g., it is strong and lightweight) but this choice is poor when one considers 

the implications on manufacturing, supply chains or other enterprise concerns (e.g., it 

may be difficult to machine, expensive or difficult to acquire in sufficient quantities, or 

unfavorable in light of end-of-life considerations). 

This same consideration underlies the “Design for X” and concurrent engineering 

perspectives (e.g., see (Huang 1996, Prasad 1996)). These perspectives have led to many 
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Figure 2.1: The same decision modeled as: (a) a “one-shot” decision, (b) a chain of 
decisions.  
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contributions to the theory and practice of systems realization. However, they have not 

resulted in a comprehensive understanding of how to model individual decisions in a 

decision chain context. This literature tends to have an emphasis on managing 

dependencies between decisions and tasks as opposed to how to make an individual 

decision or perform an individual task. 

Several authors have investigated the problem of modeling information flow 

among a series of related tasks and/or decisions. The Design Structure Matrix (DSM), 

originally described by Steward (1981), is a common representation for this type of 

information. Although several extensions of the DSM representation exist, the most basic 

form involves a symmetric binary matrix that indicates whether two tasks share 

information. Researchers have applied the DSM and its extensions to problems ranging 

from task scheduling to system dependency analyses (see (Browning 2001) for a survey). 

Although this perspective acknowledges that a systems realization process consists of a 

chain of related decisions, it deals with these relationships at a very high level of 

abstraction. Moreover, one can use a DSM to sequence a group of decisions, but it 

provides no support for making individual decisions.  

2.1.2 Modeling Decision Alternatives in a Decision Chain 

Relatively little literature exists in which the authors consider how to model a 

decision alternative in the context of a decision chain. There exist four different views on 

the subject:  

• Designers should model downstream decisions explicitly and use simulation to 

evaluate the outcomes associated with their decision alternatives. 
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• Designers should model decision alternatives in a set-based fashion and delay 

making a decision until progressing further downstream, focusing on eliminating 

demonstrably inferior alternatives from the set in the meantime. 

• Designers should model the decision alternatives as they would in an isolated 

decision and then treat downstream decisions as a source of uncertainty. 

• Designers should model a decision alternative by abstracting from data about 

similar systems. 

Explicit Modeling of Downstream Decisions 

Barton and coauthors take a direct approach by modeling and simulating an entire 

business enterprise (Barton and Love 2000, Barton, et al. 2001). They refer to this as a 

“whole business simulator,” and account for all relevant design, manufacturing and 

business decisions occurring within the scope of the decision chain. Using this approach, 

designers can evaluate consequences of any decision alternative at any point in a decision 

chain.  

Although this approach is logically correct, it is questionable from a practical 

perspective. To construct and validate a model of an entire business enterprise would 

require significant resources and its upkeep would be burdensome. Also, the simulation, 

unless using very abstract models, is likely to be computationally intense. It is 

undesirable to include such a simulation into design space exploration and optimization 

routines.  

Delaying Decisions in Set-based Design 

Set-based design is an approach in which one focuses on eliminating inferior 

implementations from a set of alternatives rather than selecting the one that is most 

preferred. Ward (1989) originally introduced the idea as a means for dealing with 
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imprecisely defined design specifications and environmental conditions. Under his 

approach, designers can rule out types of components or large intervals of component 

attribute values while not having to commit to a final specification until later. An 

advantage of this is that designers can make some progress in a design process while 

awaiting information from decisions that normally would come later in a design process. 

These ideas form the conceptual basis for describing the design practices of Toyota 

Motor Company (c.f. Section 1.1.2). 

Set-based design has a clear relationship to the decision chain perspective. 

Consider again the decision chain in Figure 2.1(b). Under a set-based approach, one 

would consider the design concept “gas-electric hybrid car” to be a set of potential 

implementations, each of which is represented as a unique path from the root to a leaf. 

Thus, one implementation would be “parallel power train + ultra capacitors.”b Designers 

reason about a set-based design concept by eliminating specific implementations from the 

set. 

Ward focuses on elimination methods based on interval-based constraint 

propagation. Finch and Ward (1997) extends this to the use of more generally defined 

sets. Other researchers report computer-based tools that support set-based design (e.g., 

(Parunak, et al. 1997, Nahm and Ishikawa 2004)). Research also exists on extending the 

set-based design perspective to include eliminations based on domination (i.e., 

preference-based) criteria (Rekuc, et al. 2007, Malak, et al. 2008). 

The main limitation of set-based design is that it is not a comprehensive approach 

to decision making—it focuses on the elimination of inferior alternatives, but not the 

                                                 
b Strictly speaking, this is a simplification for the sake of brevity. A fully-defined implementation would 
include more information, such as the storage capacity and other characteristics of the capacitors. 
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selection of the most preferred alternative. The fundamental problem is that an explicit 

set-based approach to modeling decision alternatives leads designers to rate a decision 

alternative with an interval of utility. Designers cannot distinguish between alternatives 

with overlapping utility intervals without appealing to heuristics. This is known as the 

problem of indeterminacy (Kyburg and Pittarelli 1996, Rekuc, et al. 2007).  

Downstream Decisions as a Source of Uncertainty 

In the context of conceptual design, Chen and coauthors adopt the perspective that 

one cannot model the downstream portion of a decision chain adequately and therefore 

one should make decisions that are insensitive to the uncertainties involved (Chen, et al. 

1996, Chen, et al. 1997). They describe a method in which a designer models uncertainty 

about the final implementation of a concept explicitly using uniform probability 

distributions applied to the design parameters and makes decisions using a modified 

robust design formulation. Thus, designers can make a tradeoff between performance and 

risk. 

The main limitation of this approach is that the uncertainty distribution does not 

account for the impacts of designer rationality in a systems realization process. The 

uniform distribution ascribes equal odds to all outcomes in its domain, when in reality 

there are some combinations of values that no designer would choose. This could lead 

one to conclude an alternative unduly risky even though it may be the best choice.  

Predictive Modeling 

Predictive modeling is the practice of formalizing relationships among the various 

factors in a study (Hand, et al. 2001). A predictive model typically does not have 

explanatory power or imply causation (Geisser 1982, 1993, Rygielski, et al. 2002). In 

general, one can fit a predictive model to observational data (as is typical in a data mining 
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problem ) or experimental data (where one has control over the sample locations). 

Construed broadly, predictive modeling can include response surface modeling based on 

computer experiments, a practice sometimes called meta-modeling (Simpson, et al. 

2001b, Wang and Shan 2007). 

In the context of conceptual design, Wood and coauthors utilize observational 

data about existing systems in a decision-based approach to design exploration (Wood 

and Agogino 2005, Wood and Dong 2006). They model a concept by generating a 

“design PDF” from data about existing implementations to serve as beliefs in a utility-

theoretic decision framework. They also discuss how designers can use this approach to 

model concepts at different levels of abstraction (e.g., one could model all motors and 

then refine the model to represent only AC motors). This approach has some similarity to 

that of Chen and coauthors in that a designer models a concept in terms of a distribution 

function. However, Wood and coauthors construct their distribution function directly 

from data and use a more general decision formulation (utility theory in lieu of robust 

design).  

Although the approach Wood and coauthors describe has some advantages, it is 

questionable in two key respects. First, they provide no concrete interpretation for the 

“design PDF” they construct. They suggest a functional form for this distribution with 

little justification and never define clearly the meaning of “the probability of a point in 

the design space.” One might assume this means the odds that a newly-designed 

component of that type will be at that point in the design space. However, intuitively, 

such odds should depend on designer objectives and their willingness to make tradeoffs 
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among competing objectives. Yet, their “design PDF” is independent of designer 

preferences. 

A second limitation of their approach is that it does not provide for composing 

systems from component-level models. This is a practical concern. For all but the most 

common systems, designers are unlikely to have sufficient data for generating probability 

distributions. Although one could attempt to compose “design PDF” models together, it is 

unclear whether such an operation would be sound.  

Several other authors apply predictive modeling techniques to design decisions, 

but their motivation is to support traditional engineering design analysis. Rather than 

modeling a system-level decision alternative abstractly based on data about similar 

systems, they use the data to establish a relationship between the physical form of the 

system and one of the system-level attributes. Cost estimation is perhaps the most 

common application (e.g., see (Dean 1976, Daschbach and Apgar 1988, Farineau, et al. 

2001, Seo, et al. 2002, Shabani and Yekta 2006)). Others include power transmissions 

(Krus 2005) and environmentally benign design (Dewulf 2003). This type of model is 

useful in the context of traditional engineering analysis and optimization, particularly in 

cases where it is difficult to develop a model analytically. However, they are formulated 

in terms of lower-level design details that are inconvenient or inappropriate for system-

level decision making.  

2.1.3 A Foundation for Modeling System-Level Decision Alternatives 

Although the methods reviewed in the preceding section have limitations, they 

each have roots in a meritorious point of view: 
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• Barton and coauthors are correct to assert that to make a particular decision in a 

decision chain, one should consider all of the decisions that will follow it. 

Without doing so, one cannot understand comprehensively the consequences of 

choosing a particular decision alternative. 

• Ward’s notion of set-based design is correct in that system-level decision 

alternatives relate to a set of specific design implementations. His premise of 

eliminating demonstrably inferior solutions from consideration also is sensible.  

• Chen and coauthors are correct in that downstream decisions are difficult to 

model explicitly and that designers should consider uncertainty and their risk 

attitude when engaging in such decisions. 

• Wood and coauthors are correct to use observational data about design 

implementations and predictive modeling techniques in order to model system-

level decision alternatives. Using this approach, one can consider the impact of 

decisions that will occur downstream in a decision chain without having to model 

the decision processes explicitly. 

These perspectives are complementary, rather than contradictory. The modeling approach 

investigated in this research is based on a global perspective that blends these individual 

ideas:  

• Designers consider the chain of future decisions implicitly using predictive 

models fit to data about prior implementations of similar systems or obtained 

from a validated model of the system (that accounts for the relevant enterprise 

considerations).  
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• Designers eliminate demonstrably inferior solutions using dominance analysis. 

This results in a set-based characterization called the efficient set.  

• Designers deal with uncertainty in the data using stochastic dominance criteria 

and an appropriate tradeoff space representation. They consider their risk attitude 

by formulating their decisions using utility theory. 

This is not to suggest that the approach is simply a hybridization of the prior methods. It 

is formulated with the aim of improving upon the practical and fundamental limitations 

of prior approaches. This requires significant extensions beyond current methods (c.f. the 

approach overview in Section 1.3). 

2.2 Related Literature on Modeling and Decision Making 

The following is a review of other literature related to system-level modeling and 

decision making. The approaches described here are useful in a particular context, but 

have limitations in light of the decision chain perspective or lack other desirable 

characteristics (c.f. Section 1.2). However, this is not to say that all of the following ideas 

described are fundamentally incompatible with this perspective. For example, one can 

extend many of the decision-based design and optimization approaches (Section 2.2.3) to 

incorporate the modeling approach investigated in this research. 

2.2.1 Component Sizing Procedures 

The engineering product literature contains several examples of what one can 

characterize as “component sizing procedures.” A sizing procedure is a sequence of 

computational steps through which a designer can identify the appropriate component 

model number in a particular company’s product line. Essentially, these are simplified 

requirements allocation procedures. The term “sizing” is common because the primary 
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distinction between products in a single product family often is the magnitude of one or 

more attributes (e.g., for a family of hydraulic pumps, larger “sizes” would correspond to 

larger flow rates, masses and outer dimensions). 

One can find procedures such as these in the literature associated with many types 

of engineering components. For example, Sauer-Danfoss publishes an applications 

manual on how to select and size driveline components (primarily hydraulic pumps and 

motors) for mobile applications (Sauer-Sundstrand Co. 1997). Given assumptions about 

the engine, loading characteristics, gearing and design requirements (e.g., lifetime), they 

define a procedure for determining which of their pumps and/or motors are suitable for 

the given application. Eaton publishes a similar document for their hydraulic pumps and 

motors (Eaton Corp. 1998).  

The main limitation of component sizing procedures is that they restrict the 

decisions that designers can make. They require designers to assume values for several 

key parameters and then have them work backwards to identify which component in a 

particular company’s product line is suited for the task. However, this leaves designers 

with minimal discretion in making tradeoffs between the performance characteristics and 

other factors such as cost or service life.  

Another limitation is that sizing procedures are effective only in the context of 

one product line or, at best, one company’s products. This is because they generally 

assume “size” and price (which would be a cost to a systems designer) relate directly and 

thus there is no tradeoff to be had between the two (i.e., ranking components by price and 

ranking by “size” yields the same ordering). This assumption commonly holds among the 

product line of a single company, but may not hold when including products from 
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different manufacturers. Designers require a general means to deal with the tradeoffs that 

occur in such situations. 

2.2.2 Decision Approaches Involving Qualitative Models 

A primary concern in this research is how to model a system-level decision 

alternative quantitatively. However, this is not the only approach one can take. Decision 

theory places no restrictions on the form of the model a decision maker uses. It requires 

only that a decision maker use a model that reflects his or her beliefs about the outcomes 

that will occur upon choosing an alternative. Consequently, if designers feel confident in 

their ability to assess the outcomes of their decision alternatives, they can formulate a 

system-level decision problem using an appropriate variant of utility theory—e.g., the 

single- and multi-attribute formulations of von Neumann-Morgenstern utility theory or 

the analogous deterministic formulation (Luce and Raiffa 1957, Fishburn 1965, von 

Neumann and Morgenstern 1980, Keeney and Raiffa 1993). Note that such an approach 

would result in quantitative evaluations of the decision alternatives (i.e., numerical 

utilities), even though the models are the tacit understanding of the designers.  

The design literature contains descriptions of several other selection methods that 

rely on designer expertise to evaluate decision alternatives but that are not utility-based. 

Pugh selection (Pugh 1991), Quality Function Deployment (Akao 2004), various rating 

matrix approaches and the analytic hierarchy process (Saaty 1990) are common 

examples. A debate exists about the suitability of these  methods, but this has nothing to 

do with the use of designer expertise to model the alternatives. The primary concerns 

revolve around whether the methods are mathematically sound and could lead to self-

contradictory decisions (Saari 2000, Hazelrigg 2003, Mullur, et al. 2003). For example, 



 39 

one can construct simple examples in which Pugh selection leads one to choose the worst 

alternative rather than the best.  

Regardless the debate about certain methods, all decision approaches founded on 

using mental models to evaluate design alternatives have limitations. Such models are not 

useful in the context of broad design space exploration or automated search routines, 

which require many thousands of model evaluations. They also can be inadequate for 

discriminating between decision alternatives and provide little support for allocation 

decisions. Although a utility-based decision approach based on designer expertise 

sometimes is the best one can do, there is ample motivation to research quantitative 

modeling approaches. 

2.2.3 Decision-based Design and Optimization 

Much research exists on decision-based design and optimization methods in 

engineering design. Decision making and optimization methods are closely linked in the 

design literature because optimization methods are a typical means for solving decision 

problems. A rich body of literature exists in both areas. Although this work has 

limitations in the context of system-level decision making, it is best viewed as synergistic 

with the current research rather than in conflict with it. 

Decision-Based Design and Decision Support Problems 

Decision-based design (DBD) is the perspective that decision-making is a central 

activity in a design process and that designers therefore should formulate and solve 

decision problems in a sound and rational manner (Shupe 1988, Hazelrigg 1998, 

Thurston 2001, Lewis, et al. 2006). The topic of much of the DBD literature is the tasks 

of formulating decisions and organizing the information relating to a decision. Muster 
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and Mistree (1988) describe the Decision Support Problem Technique, which is an 

approach to formulating design problems in terms of a construct called a Decision 

Support Problem (DSP). A DSP is a template for structuring various types of decision 

problems. The most basic types are the compromise DSP (Karandikar, et al. 1989, 

Mistree, et al. 1993a) and selection DSP (Kuppuraju, et al. 1985). These are summarized 

in Figure 2.2 and Figure 2.3, respectively. Other types include hierarchical formulations 

(Shupe, et al. 1987, Bascaran, et al. 1989), decisions under uncertainty (Vadde, et al. 

1994), robust design (Bras and Mistree 1993) and utility-based selection (Fernandez, et 

al. 2005).  

 

Given A candidate alternative. 
Find • The values of system variables, which describe the physical 

characteristics of an artifact. 

• The values of deviation variables, which indicate the extent to which 
goals are achieved. 

Satisfy  • System Constraints: Define what constitutes a feasible combination of 
system variables. 

• System Goals: Target values for system attributes of interest. 

• Bounds: Lower and upper bounds on system variables. 
Minimize An objective function that quantifies the deviation of system performance 

from that implied by the goals and their associated priority levels or relative 
weights. 

Figure 2.2: Compromise Decision Support Problem. 

 

Given A set of feasible alternatives 
Identify The principal attributes influencing selection 
Rate The alternatives with respect to each attribute. 
Rank The feasible alternatives in order of preference based on the attributes and 

their relative importance. 

Figure 2.3: Selection Decision Support Problem. 
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Although the literature relating to the DSP and DSP Technique offers a rich 

language with which designers can describe their decision problems, it contributes 

relatively little to how designers should model the decision alternatives themselves. For 

example, Step 3 of the utility-based selection DSP is to “specify levels and/or probability 

distributions for each attribute for each alternative” and the authors presume designers are 

able to do this easily (Fernandez, et al. 2005). However, a basic premise of the current 

research is that evaluating the attributes of a partially-defined system-level alternative is a 

challenging task and that designers require a better approach for doing it. In this sense, 

the current research is synergistic with the prior work on formulating selection decisions. 

A similar gap exists in the context of requirements allocation decisions, which are 

a subset of compromise decisions. An underlying assumption of the compromise DSP is 

that designers can formulate their decision problem in terms of system variables that 

describe the physical characteristics of the system. The typical interpretation of this is 

that these are physical dimensions, material specifications and other relatively low-level 

details. However, such details are either unavailable or impractical to work with when 

making system-level decisions. The approach summarized in Section 1.3 is intended to 

provide designers a means by which they can make decisions at a higher level while still 

accounting for the impact of lower-level details through predictive tradeoff models. 

The same gap exists in other DBD frameworks. For example, Hazelrigg (1998) 

advocates a utility-based framework in which one treats a design problem essentially as a 

large optimization problem. In this framework, designers perform a parametric 

optimization for each alternative system configuration and then select from them the most 
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preferred. The parametric optimization is, like the compromise DSP, based on low-level 

system variables that relate to the physical construction of a system.  

The Use of Surrogate Models 

The introduction of and advances in surrogate modeling within the DBD 

community have reduced concerns about dealing with lower levels of abstraction. 

However, this has not eliminated concern entirely. A surrogate model (sometimes called 

a meta-model or a reduced-order model) is a computationally simple abstraction of a 

more complex model. One achieves this by sampling the more complex model and fitting 

the simpler model to the input-output data. Several examples of surrogate modeling exist 

in the DBD community. Pacheco and coauthors (2001) demonstrate the use of Bayesian 

techniques to produce surrogate models for a heat transfer problem. Simpson and 

coauthors (2001a) investigate the use of Kriging models as surrogates in the context of 

multidisciplinary design optimization and Martin and Simpson (2006) apply Kriging 

models of subsystems to estimate system-level uncertainties. There exist several surveys 

of surrogate modeling techniques in a DBD context (Simpson, et al. 2001b, Jin, et al. 

2003, Wang and Shan 2007). 

The advantage of surrogate models is that designers can explore the space of 

system variables more quickly using the simpler model. However, a surrogate model 

retains an input-output structure similar to that of the more complex model—i.e., inputs 

are physical descriptions of the artifact and the output consists of one or more attributes 

of interest from a decision-making perspective. Consequently, designers still must 

formulate their decisions in terms of the lower-level system variables. This can be 

burdensome when designers want to consider multiple heterogeneous implementations of 

different components.  
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For example, Chapter 3 includes a design problem involving different concepts 

for a fixed-ratio gearbox. Although these all have the same interface to the rest of the 

system and the decision problem, they have very different physical descriptions. Using 

the modeling approach summarized in Section 1.3, designers can abstract several 

heterogeneous implementations into a single predictive tradeoff model and solve the 

problem using a single optimization run. However, if using surrogate models for each 

concept, they would require an optimization run for each concept. The situation becomes 

worse when designers consider different concepts for multiple components due to the 

combinatorial effect. 

Parametric Optimization in Systems Design 

An extensive body of literature exists on applying optimization in the context of 

design. However, of particular interest in this review are the approaches that are intended 

explicitly for system-wide optimization. These approaches enable designers to apply 

optimization methods to a well-defined system efficiently. They typically operate by 

introducing auxiliary variables that enable designers to partially decompose the search 

problem. This yields a number of smaller, coordinated search problems. Different 

formulations of this general strategy are useful depending upon the desired 

decomposition. Collaborative optimization (CO) methods are based on decomposing the 

system according to various analyses (i.e., different computational models) (Alexandrov 

and Lewis 1999, Kroo and Manning 2000, Gu, et al. 2002). Multidisciplinary design 

optimization (MDO) methods are based on decomposing the system analysis according to 

various analysis disciplines (e.g., statics, dynamics, thermal) (Cramer, et al. 1994, 

Sobieszczanski-Sobieski and Haftka 1997). Analytical target cascading (ATC) involves a  
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system-subsystem hierarchical decomposition (Kim, et al. 2003, Michelena, et al. 2003, 

Kokkolaras, et al. 2004). 

Although these methods clearly are system-wide in scope, they actually operate at 

a relatively low level of abstraction compared to the decisions considered in this research. 

Figure 2.4 is an illustration of how a typical collaborative optimization framework 

(Figure 2.4(a), which is adapted from (Kroo and Manning 2000)) compares to the 

decision framework investigated in the current research (Figure 2.4(b)). The CO 

framework involves several coordinated optimization sub-problems, and designers 

formulate each of these sub-problems in terms of low-level design details—i.e., what are 

called system variables in the DSP literature. Due to system-level interactions and 

decision objectives, designers may have to re-execute the lower-level optimization  
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Figure 2.4: Distinction between (a) a CO framework and (b) system-level decision 
making. 
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problems many times. In this sense, a CO framework is a closed-loop structure. An ATC 

framework operates on a similar principle—it is a closed-loop decomposition of a larger 

optimization problem—but differs in the structure of the decomposition. 

In contrast with collaborative optimization and related approaches, the system-

level decision making procedure investigated in this research is open loop. Rather than 

coordinate several lower-level problems interactively, designers use a predictive 

procedure to identify specifications that are communicated to lower-level problem 

solvers. The idea is that designers can use a system-level model composed from 

component-level tradeoff models to predict the most preferred component-level attributes 

accurately. Designers at the component level can use these predictions as design-to 

requirements when developing the individual components (this part of the problem is 

beyond the scope of the current research). Assuming these predictions are reasonably 

accurate, the need additional coordination among the sub-problems is minimized. 

Furthermore, abstracting the system in this way allows designer to make system-level 

decisions in the absence of the disciplinary analysis models required in the CO 

framework.  

Ultimately, one should not view the system-level decision making perspective 

strictly as competing with the CO, MDO and ATC literature. Opportunities exist for 

combining both approaches. For example, one can apply any of those approaches at the 

lower levels of the procedure illustrated in Figure 2.4(b) (e.g., the “component” may be a 

large subsystem that would benefit from a multi-level approach to optimization).  
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2.2.4 Tradeoff Visualization in Design 

Several authors investigate the use of efficient set information in the context of 

design decision making. These approaches typically require designers to model a system 

using a an engineering analysis model which they sample at different settings of the 

design variables. The model outputs are system-level attribute vectors, which the 

designer filters using the classical Pareto dominance criterion. The resulting efficient set 

is the basis for visualization and tradeoff analysis.  

Representing Concepts with Efficient Sets 

Mattson and Messac (2003) investigate a method for conceptual design in which a 

designer represents each concept using a different efficient set and makes decisions by 

comparing the sets. Ulrich (2005) applies a similar method to evaluate technology 

options in the context of mobility scooters. Both Gurnani and coauthors (2006) and 

Ferguson and coauthors (2005) use an efficient set to abstract more complex engineering 

models in order to improve preliminary design efforts. They use a model fit to efficient 

set data in order to speed computation during design exploration and to ensure the 

solution will be technically feasible. Thus, their approach has similarities with the one 

investigated in the current research. However, they rely on a different dominance 

criterion and do not perform model composition.  

Although these approaches are useful in specific situations, they are poor general 

solutions to the problem of making system-level decisions. They require that designers 

already have a validated model of the entire system in question or have access to ample 

observational data about implementations of similar systems. This may be the case for 

systems that are simple or common, but these assumptions typically are not met for 
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systems that are complex or novel. Model composition is not a viable solution under 

these approaches due to their reliance on classical Pareto dominance (see Chapter 3).  

Visual Decision Methods 

Some authors use efficient sets in concert with visualization tools to support 

decision making and design exploration. Balling (1999) advocates making design 

decisions by visualizing the efficient set and choosing a solution based on the visual 

information (as opposed for formalizing a utility function). He refers to this as “design by 

shopping” since the selection method is analogous to how one might shop at a store. One 

also can find similar arguments in favor of making decisions based on visualizations of 

the efficient set from outside the design community (Lotov, et al. 2004). Other work on 

tradeoff visualization includes methods to steer optimization (Winer and Bloebaum 2002) 

and design space exploration (Yukish, et al. 2007). 

One objection to visual decision making is that it should not matter. That is, a 

decision maker should have preferences that exist independent of the available 

alternatives. The proponents of visual decision methods would counter that human 

decision makers do not behave in such an idealized manner and that this information 

really is relevant.  

Philosophical disagreements aside, there are practical limitations to visual 

decision methods. First, they suffer the same drawbacks as the other tradeoff modeling 

approaches—they require preexisting models of the system or ample data about prior 

implementations of similar systems. Secondly, and perhaps more problematically, the 

visual decision methods do not scale beyond a handful of decision attributes. Problems 

involving two or three attributes are straightforward and advanced visualization 

techniques exist that push the practical limit up to perhaps five or six (e.g., see the tool 
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described in (Stump, et al. 2004)). However, visualization-based decision methods are 

impractical beyond this point. 

Dealing with Uncertainty 

Another limitation of the preceding modeling approaches is that they include no 

means by which designers can consider uncertainty in their decisions. These methods rely 

on the classical Pareto dominance criterion, which is an inherently deterministic 

construct.  

Mattson and Messac (2005) extend their concept modeling approach to support 

decisions involving uncertainty. However, their approach remains rooted in the Pareto 

domination construct. In their formulation, one constructs a Pareto-like frontier in the 

space of the attribute means; variation tends to “shift” the location of this frontier. 

Moreover, they treat risk essentially by incorporating a safety factor that is related to 

variance. They include no means by which designers can consider tradeoffs between, say, 

average performance and risk.  

2.3 Conclusions and Chapter Summary 

Based on this review of the literature, one can conclude that a gap exists between 

the accepted fundamental understanding of system-level decision making and the practice 

of modeling system-level decision alternatives. The consensus is that a systems 

realization process consists of a chain or interrelated decisions and that designers should 

consider the consequences of a decision alternative in light of the decisions that will 

follow it. However, prior approaches to modeling system-level decision alternatives have 

significant limitations. Thus, there is motivation to study new approaches and techniques. 

One could argue that the system-level decision making situation is not all that 

dire. After all, designers clearly make such decisions in practice and quite often realize a 
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system that operates as desired. Designers routinely apply sizing procedures, methods 

based on qualitative models, system-level parametric optimization and tradeoff 

visualization to design problems and it would be foolish to dismiss these approaches 

outright. However, none of them are good general solutions for system-level decision 

making as it is defined in this research. They lack a quantitative basis or require a well-

defined system. Therefore, they are inappropriate for design exploration over a space of 

partially-defined decision alternatives. 
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CHAPTER 3:  

 

PARAMETERIZED PARETO DOMINANCE  

 

AND PREDICTIVE TRADEOFF MODELING 

The preceding chapters are about the motivation and vision for this research. This 

chapter is the first step toward formalizing and studying the modeling approach 

introduced in Chapter 1. This approach is based on the idea of composing a system-level 

model from predictive tradeoff models of its components. The tradeoff models enable 

designers to predict the component-level attributes they would achieve should they 

implement the system according to their preferences. The topic for this chapter is how 

designers can generate these component-level predictive tradeoff models.  

A the core of this chapter is a new decision-theoretic construct called 

parameterized Pareto dominance. This is an extension of the classical Pareto dominance 

criterion and is instrumental in the generation of reusable component-level tradeoff 

models. Recall Research Question 1 from Chapter 1: 

RQ1. How can designers conclude that one implementation of a component 

dominates another when they lack specific knowledge of the system in which 

the component will be used?  

Without an answer to this question, designers have no basis for generating reusable 

component-level tradeoff models. Parameterized Pareto dominance is a critical part of the 

hypothesized answer: 

H1. Designers can use the parameterized Pareto dominance rule to eliminate 

attribute data about dominated implementations of a component. 
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This chapter contains an explanation of the limitations of classical Pareto 

dominance, a formal definition of the new dominance rule, proof that it is mathematically 

sound and a demonstration that is an appropriate basis for tradeoff modeling. The 

demonstration is a gearbox design problem that involves both concept selection and 

requirements allocation decisions. Tradeoff models are generated from parameterized 

efficient set data and used during decision making. The decision results compare 

favorably with results obtained using classical optimization methods.  

Chapter organization is as follows. Section 3.1 includes an explanation of 

dominance analysis, formal definitions and properties of the classical and parameterized 

Pareto rules,  and an explanation of the shortcomings of the classical rule. Section 3.2 is a 

description of a tradeoff modeling methodology based on the use of parameterized Pareto 

dominance. Section 3.3 is an explanation of how to formulate decision problems using a 

tradeoff model. Section 3.4 contains the gearbox design problem demonstration. Section 

3.5 addresses the question of whether it is necessary, as a practical matter, to perform 

dominance analysis. This question is answered in the affirmative. 

3.1 Dominance Analysis  

A dominance criterion is a mathematical test that indicates whether one 

alternative is assured of being more preferred to another based on limited information 

about a decision maker’s preferences on a multi-attribute decision problem. The 

significance is that it allows a decision maker to draw conclusions in situations when 

formalizing preferences precisely. Dominance analysis is the practice of applying a 

dominance criterion.  
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The classical Pareto criterion is by far the most widely used of such tests, but 

others exist and each requires different assumptions about the structure or characteristics 

of decision maker preferences. For example, Yu (1974) describes a cone-based extension 

of Pareto dominance that Hunt and coauthors (2007) apply to problems in which a 

decision maker knows something about the relative importance of different decision 

attributes. Other dominance criteria are appropriate for problems in which the data is 

uncertain. These are reviewed in Chapter 8, which is an expansion of the ideas in this 

chapter to deal with uncertainty.   

3.1.1 Multi-Attribute Decisions 

Before defining any dominance criteria, it is necessary to establish some notation 

regarding multi-attribute decisions. For decisions under certainty, one can state a multi-

attribute decision problem as (Keeney and Raiffa 1993, Marler and Arora 2004): 

 

( )( )( )

( )

( )

* arg max

subject to

P

V
∈

=

≤

=
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x F x

g x 0

h x 0

�

 

where P∈x �  is a vector of design variables; ( ) ( ) ( ) ( )1 2, , , NF F F=   F x x x x… , such 

that ( ) : P

iF ⋅ →� � for 1i N= … , is a vector-valued design model that relates design 

variables to decision attributes (also called criteria and denoted ( )i iz F= x  for 1i N= … ); 

( )⋅g  and ( )⋅h  are vector-valued inequality and equality constraints, respectively; 

: NV →� �  is a formalization of a decision maker’s preferences for making tradeoffs 

among the competing objectives; and *x  is the most preferred design vector. For 
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notational brevity, let X  denote the set of feasible design vectors as indicated by the 

equality and inequality constraints. Thus, one can restate the above as: 

 ( )( )* arg maxV
∈

=
x X

x F x . (3.1) 

The function ( )V ⋅  is known variously as an objective function, aggregation function, 

value function or utility function. There are many approaches for formalizing ( )V ⋅ . 

According to multi-attribute value theory, a decision maker elicits ( )V ⋅  to be sound with 

respect to stated decision preferences (i.e., such that if a decision maker prefers the 

consequences of ′x  to ′′x , then ( )( ) ( )( )V V′ ′′>F x F x ; see (Fishburn 1965, Keeney and 

Raiffa 1993) for elicitation procedures). Researchers also describe various means for 

defining value functions that are not based on the elicitation of decision-maker 

preferences (e.g., see the surveys of (Otto and Antonsson 1991, Marler and Arora 2004)). 

The results of this research hold regardless of how one determines ( )V ⋅ . 

3.1.2 Classical Pareto Dominance 

The classical Pareto dominance criterion is based on the notion of market 

efficiency described in the early 20th century by the economist Vilfredo Pareto (1971). In 

that context, one market situation dominates another if it makes at least one person better 

off without making anyone worse off. Transformed into engineering terms, one decision 

alternative dominates another if it is better in at least one attribute and no worse in any 

other.  

Suppose a decision maker defines his or her value function, ( )V ⋅ , such that it is 

monotonically increasing in each decision attribute, iz  for 1i N= … . Since larger values 
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of ( )V ⋅  are more preferred (implied by the maximization operator in Equation (3.1)), 

“better” in this case means larger attribute values. Let [ ]1 2, , , Nz z z=z …  denote a vector 

of attributes and Z denote the set of achievable attribute vectors. This leads to the 

following definition:  

Definition 3.1 (Classical Pareto Dominance): An alternative with attribute 

vector ′′∈z Z  is said to be Pareto dominated by one with attribute vector ′∈z Z  

if and only if 1i iz z i N′ ′′≥ ∀ = …  and 1i iz z i N′ ′′> ∃ = … . 

In many practical situations, a decision maker can formulate problems such that the 

monotonicity condition on ( )V ⋅  holds by defining the top-level attributes (i.e., the iz ) 

appropriately. Thus, the significance of classical Pareto dominance in this context is that 

a dominated alternative cannot be the most preferred solution. This is summarized in the 

following theorem. Let DOM′ ′′z z  denote that ′z  dominates ′′z  according to Definition 

1. Then one has (see Appendix A for the proof): 

Theorem 3.1: If a value function, ( )( )V =z F x , is monotonically increasing in 

each attribute and DOM′ ′′z z  for two alternatives with attribute vectors 

,′ ′′∈z z Z , then ( ) ( )V V′ ′′>z z . 

Some authors develop classical Pareto dominance from a slightly different perspective, 

but the preceding is equally valid. For example, Marler and Arora (2004) describe the 

Pareto set as the set of possible solutions to the followingc: 

                                                 
c Many authors, including the work cited, express this using minimization. However, we use maximization 
without loss of generality in order to maintain consistency with Equation (3.1). 
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 ( ) ( ) ( ) ( )( )1 2max , , , NF F F
∈

=   
x X

F x x x x… , (3.2) 

where the terms are defined as above and ( )i iz F= x  for 1i N= … . One interprets this as 

having a set of solutions—i.e., the efficient set—from which a decision maker will make 

a final selection using some indeterminate method. This is analogous to assuming that a 

decision maker will choose using a monotonic value function, but has not yet elicited it 

precisely.  

3.1.3 Limitations of Classical Pareto Dominance 

In the current context—of using efficient sets or tradeoff models as an abstract 

representation for a design concept or system architecture—the crucial limitation of 

classical Pareto dominance lies in what a decision maker must do to ensure that their 

value function is monotonic in every attribute. As noted in the previous section, it often is 

possible for a decision maker to reformulate the attributes of a problem such that 

preference increases monotonically with each. However, this reformulation almost 

always is problem-specific, which creates challenges when one wishes to use efficient 

sets as a basis for a general and reusable representation. 

In order to promote reusability of these models, designers must formulate them in 

terms of relatively generic attributes that pertain more to the system being modeled than 

to any particular decision about it. This is analogous to how design catalogs list parts 

using general characteristics of the part; designers must relate these to their specific 

decision problem. For example, one might describe hydraulic pumps in terms of their 

displacements, maximum operating pressures, mechanical and volumetric efficiencies 

and masses. However, a designer would formulate a decision involving hydraulic pumps 
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in terms of design objectives. For an excavator, these might include maximizing the load 

it can lift, its operating speed or fuel efficiency.  

The problem with classical Pareto dominance is that it often is unclear how to 

apply it independently of a particular decision problem. Suppose designers wish to 

abstract gearbox concepts using tradeoff models. Attributes relevant to gearboxes might 

include mass, mechanical efficiency, reliability, expected lifetime, manufacturing cost 

and, most importantly, gear ratio. Most of these correspond to monotonic preferences—

rarely would a designer not prefer less mass, more reliability, etc.—but gear ratio poses a 

special problem in that the most preferred ratio is problem-dependent. Because designers 

cannot establish a problem-independent preference ordering of this attribute, they cannot 

apply classical Pareto dominance in order to generate a reusable tradeoff model. 

This problem can exist even when creating tradeoff models at high levels of 

abstraction. Suppose designers create a tradeoff model for various implementations of an 

excavator for use in high-level decision making (defining product families, selecting a 

system architecture, allocating requirements, etc.). Hazelrigg (1998) argues that designers 

should formulate decisions as a profit-maximization problem. Taking this approach 

requires designers to relate their multi-attribute excavator model to profit through one or 

more models (for manufacturing, supply chain, customer demand, etc.). If they are to 

apply classical Pareto dominance when modeling the excavator, they must be sure that 

profit is monotonically increasing in each excavator attribute. Whether this is possible 

depends on the structure of the profit-computing models. However, it seems unlikely to 

be the case given the potential complexity of the models involved. 
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3.1.4 Parameterized Pareto Dominance 

Parameterized Pareto dominance is an extension intended to address the limitation 

of classical Pareto dominance in the context of tradeoff modeling. The name follows 

from the interpretation of the corresponding efficient set: a parameterized Pareto set 

consists of multiple classical Pareto sets, any of which one can recover by specifying a 

vector of parameters.  

The new rule requires one to distinguish between two types of attributes: those for 

which any associated preference ordering is monotonic and those for which it is not. The 

former category, which are referred to as dominator attributes, includes things such as 

mass, cost, efficiency and reliability—all are characteristics of a system that any designer 

would prefer strictly more (or less) of, all other factors being equal, and for which the 

classical Pareto assumptions hold. The latter category, called the parameter attributes, 

include attributes that associate commonly with preferences that are non-monotonic or 

likely to be influenced in opposing directions by competing objectives. One cannot 

determine a preference ordering for such attributes without problem-specific information. 

To define the parameterized Pareto dominance, one requires notation to account 

for the two categories of attributes. For a system with attributes indexed 1 through N , let 

D  denote the non-empty set of indices for the dominator attributes and P  denote the set 

of indices corresponding to parameter attributes. Note that { }1D P N∪ = …  and 

D P∩ = ∅ .  

Definition 3.2 (Parameterized Pareto Dominance): An alternative having 

attributes ′′∈z Z  is parametrically Pareto dominated by one with attributes 

′∈z Z  if i iz z i P′ ′′= ∀ ∈ , i iz z i D′ ′′≥ ∀ ∈  and i iz z i D′ ′′> ∃ ∈ . 
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Notice that this rule essentially applies the classical rule to the dominator attributes 

provided the parameter attributes are equal; one solution cannot dominate another by this 

rule if the parameter attributes are not equal. Also notice that the parameterized and 

classical Pareto dominance rules are equivalent if and only if there are no parameter 

attributes (i.e., if P = ∅ ).  

Like the classical rule, the significance of parameterized Pareto dominance in the 

current context is that decision makers can use it to identify and eliminate alternatives 

that cannot possibly be their most preferred. Let PDOM′ ′′z z  denote that ′z  

parametrically Pareto dominates ′′z .  

Theorem 3.2: If a value function, ( )( )V =z F x , is monotonically increasing in 

every dominator attribute and PDOM′ ′′z z  for two alternatives with attribute 

vectors ,′ ′′∈z z Z , then ( ) ( )V V′ ′′>z z . 

A proof of this statement is provided in Appendix A.  

The task of determining which attributes one should model as parameters and 

which to model as dominators requires some domain expertise. When generating a 

tradeoff model, designers should consider the types of problems in which they are likely 

to use it. A survey of these problems should reveal most of the parameter attributes that 

are relevant. This procedure is demonstrated in the gearbox design problem in Section 3.4 

as well as the example problems of Chapter 6 and Chapter 7. However, before tackling 

design problems it is necessary to discuss how to generate tradeoff models from efficient 

set data and how to formulate decisions in terms of tradeoff models. 
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3.2 A Methodology for Generating Tradeoff Models 

Designers can create tradeoff models in two ways: from data sources and from 

other tradeoff models.  

3.2.1 Generating Tradeoff Models from Data 

Figure 3.1 is a summary of a data-driven methodology for generating tradeoff 

models. With the exception of the dominance analysis step, this phase is similar to other 

predictive modeling procedures (e.g., see (Hand, et al. 2001, Kutner, et al. 2005, Witten 

and Frank 2005)). The main concerns are defining what data to collect, how to validate 

the data prior to generalization and how best to generalize it into a valid continuous 

model. What follows is a description of the major steps in this methodology. As with any 

predictive modeling process, some iteration of the steps may be necessary. 

Step 1: Model Planning 

In this step, one’s objective is to determine precisely what to model. This includes 

deciding which component to model and which attributes to use when modeling it. The 

attributes should be properties of the component about which designers typically have 

preferences (e.g., reliability, technical specifications) or use to compute other attributes 

for which they have preferences (e.g., cost, used to compute profit). There is no firm rule 

for what qualifies, but a reasonable heuristic is to include those properties that would be 

valid descriptors of any possible implementation of the component and avoid ones that 

are implementation-specific. Also, attributes appearing in spec sheets commonly are good 

choices since the reason they are listed is because designers tend care about them. 

Designers also must classify each attribute as a dominator or a parameter. For the 

dominators, they also must identify a preference ordering for it (prefer larger values or  
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Step Description 

1. Model planning Decide what to model and how to model it. Identify a type of 
component to model and the attributes designers typically 
associate with it in a decision-making context. Classify attributes 
as dominators or parameters.  

2. Data collection Gather data about components that fall within tradeoff model 
scope. Possible data sources: published datasheets and catalogs, 
manufacturers and vendors, experimental test data, and 
mathematical models of a component. 

3. Data validation Verify that data fits tradeoff model scope. Data should appear 
plausible upon inspection by an expert. Examine for outliers. If 
necessary, use clustering analysis to re-scope into multiple 
tradeoff models. Many texts cover the required data analysis 
methods (e.g., (Hand, et al. 2001, Kutner, et al. 2005, Witten and 
Frank 2005)). 

4. Dominance 
analysis 

Eliminate data points that are dominated by the parameterized 
Pareto dominance criterion. 

5. Domain 
characterization 

Identify valid domain for model inputs to prevent automated 
search routines from extrapolating too far beyond the data. Often 
more complex than upper and lower bounds. See Chapter 4.  

6. Model fitting Fit a tradeoff model to the non-dominated data using function 
approximation (e.g., regression, artificial neural network) or 
interpolation (e.g., Kriging). Model computes one or more 
attributes as a function of the others. Choice of inputs and outputs 
is arbitrary. 

7. Model validation Validate the model fit. For regression models, standard statistical 
analyses are reasonable. For other function approximation 
methods (e.g., artificial neural networks) and interpolation 
methods (e.g., Kriging), the hold-out or cross-validation 
approaches are more appropriate. 

Figure 3.1: Summary of the procedure for generating predictive tradeoff models. 
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prefer smaller values). Note that these preference orderings assume all other attributes are 

equal (i.e., for a fixed cost and fuel efficiency, would you prefer more or less power?). 

One considers tradeoffs between attributes when making a particular decision. 

Step 2: Data Collection 

Identify potential data sources and gather data. If a validated model of the 

component exists, one can obtain data by sampling the model. Research exists on 

improving the sampling and representation of efficient set data (e.g., (Wilson, et al. 2001, 

Messac and Mattson 2004, Berezkin, et al. 2006, Harada, et al. 2007)). These approaches 

are intended for use with classical Pareto dominance, but one can extend them to work 

with parameterized Pareto dominance.  

For model generation from observational data, suitable data sources depend on the 

component of interest. Parts catalogs, product data sheets, product literature and vendor-

supplied information all can be useful. One of the main challenges in this setting is to 

ensure that all data sources are consistent with the attribute definitions. For example, 

some component pricing data is a function of the purchase quantity. Similarly, two 

manufacturers may measure or calculate particular attributes differently (e.g. lifetime 

estimates using different operating assumptions). Designers must do their best to ensure 

semantic consistency. 

Step 3: Data Validation 

This step is easily overlooked, but highly important. Designers must validate the 

correctness and completeness of their data. They should remove from the data set 

samples for which some attributes are missing. They also should remove duplicates and 

any obvious outliers. Numerous data mining techniques exist for identifying possible 

outliers (see (Han and Kamber 2001, Hand, et al. 2001, Kutner, et al. 2005)). Another 
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opportunity for eliminating outliers exists during the domain description step. However, 

removing obvious outliers early on simplifies subsequent steps of the process. 

Step 4: Dominance Analysis 

During dominance analysis, one’s objective is to eliminate data about any designs 

that no rational designer would choose as an implementation for the concept of interest. 

This is achieved using the parameterized Pareto dominance rule (Definition 3.2). The 

preceding section is a description of the motivation for and mathematical foundations of 

this rule. 

Step 5: Domain Description 

One’s objective in this step is to prevent search routines from extrapolating too far 

beyond the data during decision making phase. A fitted model will return predictions for 

any inputs values, regardless of whether these predictions are meaningful. Sometimes, 

one can describe the valid domain of a model using upper and lower bounds on the model 

inputs. Although these prove sufficient for the gearbox design problem of Section 3.4, 

this approach often is unreliable. A new, general approach is described in Chapter 4. 

An analysis of the domain may reveal multiple clusters of data between which 

few points exist. In such cases, it may be advisable to fit a different model to each cluster. 

The potential advantage is improved fitting accuracy compared to one model fit to both 

clusters. In this case, one applies steps 6 and 7 to each cluster individually. Note that even 

if fitting a single model to all clusters, the domain may be divided into disjoint regions.  

Step 6: Model Fitting 

Model fitting involves two critical decisions: (1) choosing inputs and outputs for 

the model and (2) choosing a mathematical structure for the model. Both are influenced 

strongly by convenience and effectiveness.  
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In principle, the only restriction on inputs and outputs is that parameter attributes 

must be inputs. This is necessary to ensure a functional relationship exists (i.e., avoiding 

a many-to-one relationship) and to reflect the meaning of a parameterized efficient set 

(i.e., for a parameterized model, the parameters should be inputs). Beyond this, the choice 

is a matter of what is convenient for the designer and what yields good predictive 

accuracy.  

The mathematical structure of the generalizing function is a more critical choice. 

Several alternatives are available, including regression models, artificial neural networks 

and interpolators. No general rule exists for selecting a model structure, though some 

approaches may be impractical depending on the data. For example, interpolators may be 

cumbersome if there are too many data points. However, unless carefully constructed, 

regression models tend to “average out” key features of a tradeoff relationship. This 

behavior is desirable for many statistical estimation problems, but not for tradeoff 

modeling where “elbows” and other irregular relationships often are the critical 

determinants in the location of the most preferred tradeoff. 

A third consideration is whether or not there is an advantage to fit different 

models to different subsets of the data. This can be the case when multiple clusters of 

data exist. This relates to the domain description problem. See Section 4.4 for a 

discussion. 

Step 7: Model Validation 

Model validation relates closely with model fitting and one may prefer to think of 

them as one larger step in the process. For regression models, standard statistical analyses 

are reasonable. See (Kutner, et al. 2005). For other function approximation methods (e.g., 

artificial neural networks) and interpolation methods (e.g., Kriging), the hold-out or 
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cross-validation approaches are more appropriate (Han and Kamber 2001, Hand, et al. 

2001).  

3.2.2 Generating a Model from Other Tradeoff Models 

It can be advantageous from a computational perspective for designers to abstract 

a single tradeoff model from several existing tradeoff models. This is possible when the 

tradeoff models represent different implementation strategies for a component or system 

that achieves the same function. For example, designers could combine tradeoff models 

for four-cylinder, V6 and V8 engines to obtain a generic engine tradeoff model. This also 

assumes that all the tradeoff models deal with the same attributes, which is somewhat 

likely since they represent the same functional component. 

The computational advantage comes during decision making. Rather than search 

each tradeoff model independently, designers can search the abstract model. This helps to 

reduce the combinatorial explosion that can occur in system-level decision making. As 

explained in Section 3.3, designers are able to identify which of the implementation 

strategies is most preferred based on the search results. For example, designers could 

identify that a V6 engine is the most preferred using an abstract engine tradeoff model. 

Figure 3.2 is a summary of the procedure for generating an abstract tradeoff 

model from other tradeoff models.  It is similar to the procedure from Figure 3.1. The 

main difference is the data source prior to dominance analysis. Designers should sample 

all tradeoff models at the same sites—i.e., same input values. This makes it easier to 

compare the models during dominance analysis. Design of experiments or other efficient 

sampling methods are advisable in order to achieve a good fit at a minimum of sample 

points. 
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Step Description 

1. Gather Tradeoff Models Gather tradeoff models for different implementation 
concepts of the same functional unit. Verify that they all use 
the same attributes. 

2. Sample Tradeoff 
Models 

Sample the tradeoff models at the same sample sites. Design 
of experiment techniques can be used. 

3. Dominance analysis Eliminate data points that are dominated by the 
parameterized Pareto dominance criterion. 

4. Domain 
characterization 

Identify valid domain for model inputs. This will be union 
of domains of constituent tradeoff models.  

5. Model fitting Same as Step 6 of Figure 3.1. 

6. Model validation Same as Step 7 of Figure 3.1. 

Figure 3.2: Summary of the procedure for generating an abstract tradeoff models from 
other tradeoff models. 

 

3.3 Formulating Decisions using Tradeoff Models 

This section is an explanation of how designers can formulate a design decision in 

terms of a tradeoff model. This chapter covers requirements allocation and selection 

decisions, but is limited to the case in which designers represent only one component 

using a tradeoff model. The formulation for multiple composed tradeoff models is given 

in Chapter 5. 

The discussion that follows is organized into three parts. First is a rudimentary 

decision formulation in which a decision maker has preferences directly for the 

component-level attributes (i.e., the component-level attributes and the system-level 

attributes are equivalent). Next is a formulation in which one accounts for 

transformations of the component-level attributes into system-level attributes (e.g., 

computing profit using component costs). The third formulation is a special case in which 
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a decision maker abstracts several tradeoff models (each representing a different 

implementation concept) into a single tradeoff model. Doing so has a computational 

advantage and is possible when the model that transforms component-level attributes to 

system-level attributes is the same for all of the implementations.  

3.3.1 Rudimentary Formulation 

Requirements Allocation Decisions 

A requirements allocation decision is a straightforward specialization of the 

general decision problem stated in Equation (3.1). Rather than search over the space of 

design variables, one searches over the space of component-level attributes as constrained 

by the tradeoff model.  

Let ( )⋅T  denote the tradeoff model associated with a component of interest. 

Furthermore, let z�  denote a vector of inputs to the tradeoff model and ẑ  denote the 

attribute vector output by the tradeoff modeld. Finally, let z  denote the complete vector 

of component-level attributes such that ( )ˆ,= =  z z z T z� � . If Z�  denotes the set of valid 

tradeoff model inputs (i.e., it is the set indicated by the domain description), then one can 

formulate a requirements allocation decision as: 

 ( )* * *, =  z z T z� � , 

where  

 ( )( )* arg max ,V
∈

=   
z Z

z z T z
��

� � � .  

                                                 
d Note that a tradeoff model often will output a scalar. However, the decisions formulations are given here 
in their most general form. 
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System Selection Decisions 

A system selection decision is a generalization of a requirements allocation 

decision. The approach is to choose the alternative that has the most preferred 

requirements allocation. In essence, it is a nested search problem.  

Suppose there are L  distinct alternatives from which designers must choose. Let 

1l L= …  be an index denoting each of these alternatives. Thus, ( )l ⋅T  is the tradeoff 

model corresponding to the thl  discrete alternative and lZ�  is the corresponding set of 

valid model inputs. The most preferred requirements allocation for the thl  alternative is 

 ( )* * *,l l l l
 =  z z T z� � ,  

where  

 ( )( )* arg max ,
l l

l l l lV
∈

=   
z Z

z z T z
��

� � � .  

Thus, the most preferred system alternative is  

 ( )* *

1

arg max l
l L

l V
=

= z
…

.  

3.3.2 General Formulation 

In general, a decision maker may formulate system-level decisions in terms of 

attributes that are transformations of component-level attributes. One example is a 

preference to maximize profit, where profit is computed from the component-level 

attribute of cost. Another example occurs in the gearbox example of the next section. 

Designers have a preference for maximizing winnings in a race, which they compute as a 

function of gearbox attributes (gear ratio, cost and reliability). Reformulating the 

preceding to address this situation is straightforward, but requires some additional 

notation. 
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Let ( )l ⋅S  denote a system model for the thl  system alternative that computes 

system-level attributes in terms of component-level attributes. Let z  denote a vector of 

system-level attributes and ly  represent a vector of component-level attributes for the thl  

system alternative. Thus, ( )l l=z S y .  

As in the simpler formulation, designers use tradeoff models to search the space 

of component-level attributes. Let lY�  denote the set of valid inputs to tradeoff model 

( )l ⋅T . Thus, ( ),l l l=   y y T y� �  and ( )( ),l l l=   z S y T y� � . For a particular system 

alternative, one can predict the most preferred requirements allocation as 

 ( )* * *,l l l l
 =  y y T y� � , (3.3) 

where 

 ( )( )( )* arg max ,
l l

l l l l lV
∈

=   
y Y

y S y T y
��

� � � . (3.4) 

Given this, the most preferred system alternative is 

 ( )( )* *

1

arg max l l
l L

l V
=

= S y
…

. (3.5) 

It is worth noting that the system model, ( )l ⋅S , plays a significant role in determining 

whether it is best to treat a component-level attribute as a dominator or as a parameter. 

Chapter 5 contains a more thorough discussion of this topic and includes a mathematical 

analysis that indicates when an attribute is a dominator and it is a parameter. 

3.3.3 Formulation using an Abstract Tradeoff Model 

Suppose designers of a hydraulic system wish to choose a type of pump and 

allocate requirements to the system components. Several types of pumps exist—gear 
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pumps, vane pumps and piston pumps are a few examples—and designers might have a 

tradeoff model for each type of pump. Provided the system model, ( )⋅S , is the same 

regardless of the type of pump, the solution procedure from the previous section 

(Equations (3.3) through (3.5)) is inefficient. It requires that designers solve an 

optimization problem for each type of pump. They can do better by abstracting the 

different tradeoff models, the ( )l ⋅T  for 1l L= … , into a single abstract model, ( )0 ⋅T . 

Figure 3.3 is an illustration of the distinction between the two approaches. 

The requirements allocation problem is similar to before, with the main difference 

being that there is only one system model, ( )⋅S , and one tradeoff model, ( )0 ⋅T , to 

consider. Formally, one can state the most preferred allocation as  

 ( )* * *

0, =  y y T y� � , (3.6) 

where 

 ( )( )( )
0

*

0arg max ,V
∈

=   
y Y

y S y T y
��

� � � , (3.7) 

And 0Y�  is the domain description for the abstract tradeoff model, ( )0 ⋅T . Note that this 

entails a single search problem over the abstract tradeoff model.  

To make a selection decision, designers must determine to which of the source 

tradeoff models the solution to Equation (3.7) corresponds. Designers can accomplish 

this by computing each of the source tradeoff models at the solution point. The 

appropriate decision is to choose the source tradeoff model that most closely matches the 

solution obtained by solving the abstract model. One can formalize this as  

 ( ) ( )* * *

0
1

arg min l
l L

l
∈

= −T y T y
…

� � . (3.8) 
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Figure 3.3: Illustration of two procedures for making selection decisions using tradeoff 
models. Approach (a) involves an independent optimization problem for each tradeoff 
model; approach (b) requires only one optimization problem, but assumes the system 
model is the same for all alternatives. 
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The rationale for Equation (3.8) is that the abstract tradeoff model, ( )0 ⋅T , 

essentially is a piece-wise aggregation of the source tradeoff models. Moreover, the 

abstract model is equivalent to the source model that is non-dominated at a particular 

point in the tradeoff space. Consequently, designers can determine the most preferred 

solution by checking to see which of the source models yield nearly the same prediction 

as the abstract model.  

Note that this formulation assumes all of the source tradeoff models have the 

same interface—i.e., they have matching inputs and outputs. This should be reasonable 

for functionally equivalent components. If designers can legitimately replace one type of 

component with another in a system, then both should be described by the same set of 

attributes. It is possible that two tradeoff models involve the same attributes, but do not 

use the same inputs and outputs. In this case, designers can reformulate one of the models 

to match the other by sampling it and refitting a new relationship to the sample data. This 

is reasonable since tradeoff models do not imply causation among the inputs and outputs. 

3.4 Gearbox Design Problem 

This section is a demonstration of applying tradeoff modeling to a design 

problem. There are three main objectives:  

• To illustrate the tradeoff modeling approach, including model generation and 

decision making. 

• To provide evidence that a model fit to parameterized efficient set data can be an 

effective representation of the capabilities and limitations of a particular design 

component.  
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• To demonstrate the computational advantage of abstracting heterogeneous 

implementations of a functional component into a single tradeoff model. 

The topic for this example is a gearbox design problem situated in the context of a small 

off-road racing vehicle similar to an SAE Mini Baja care. It is an adaptation of a problem 

originally formulated by Bruns (2006), which involves retrofitting an existing vehicle to 

include an additional fixed-ratio gearbox. Designer objectives are to maximize profits, 

which depend on race winnings and fabrication costs. The design problem is to identify 

the best concept for implementing a gearbox in the vehicle transmission and determining 

the most preferred specifications for the winning concept. The problem entails both 

concept selection and requirements allocation decisions using tradeoff models to 

represent each of three physically heterogeneous gearbox concepts. 

To show that the tradeoff models are good representations of the gearbox 

concepts, the problem also is solved using standard engineering optimization methods. 

This is tractable due to the simple nature of the problem, but often this option is 

unavailable to systems designers.  

3.4.1 Generating Tradeoff Models for Different Gearbox Configurations 

Gearbox Concepts 

Preexisting vehicle components constrain the gearbox to have co-axial input and 

output shafts that rotate in the same direction.  Three gearbox concepts are considered. 

Figure 3.4 is an illustration of the different configurations. 

• Planetary Gearbox (PGB):  Basic planetary gear system, with input on sun, output 

on arm and fixed ring.  Depicted in Figure 3.4(a).   

                                                 
e http://students.sae.org/competitions/bajasae/ 
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Figure 3.4:  Layout of the three gearbox concepts: (a) planetary gearbox; (b) single-sided 
reverted gear train; (c) double-sided reverted gear train. 
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• Single-Sided Fully-Reverted Gearbox (SGB):  Four-gear system with two 

identical pinions and two identical gears.  Depicted in Figure 3.4(b).   

• Double-Sided Fully-Reverted Gearbox (DGB):  Similar to single-sided concept, 

but includes two paths for torque flow.  Depicted in Figure 3.4(c).   

Each concept is an abstraction of many possible implementations that conform to a 

particular structure.  Within each concept, designs have a common parametric structure.  

These control the number of teeth on each gear, the gear face widths and the gear module.  

Other parameters, such as gear material, quality factor, etc., are assumed the same for all 

concepts; it is possible to vary these, but doing so would add little to the demonstration. 

All three concepts are defined over a wide domain in their respective design 

spaces.  The number of teeth on any gear is allowed to vary from 15 to about 50.  The 

face width, constant for all gears in the same gearbox, is permitted to vary from 6.35 mm 

to 8.75 cm.  Gear module can take on any of the 25 standard Series 1 values, which range 

from 0.1 mm to 5 cm.f 

Gearbox Attributes and Preference Classifications 

The gearbox tradeoff models account for three attributes.  

• Costg: The expense of purchasing the gearbox, computed as a function of the 

material and parts involved. Classified as a dominator attribute (less is better).  

                                                 
f Source: http://www.qtcgears.com/Q410/QTC/Q410P337.htm 

g Price and cost are closely-related terms. In this research, the cost for a component refers to what the 
system designer would have to pay to purchase the component in question. The term “cost” is used because 
this is an expense incurred by the system designer. However, one should not confuse this with the cost of 
manufacturing the component. From a manufacturer’s perspective, what a system designer calls “cost” is 
better described as the “price” for the component (i.e., cost plus markup). 
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• Reliability: The probability that the gearbox operates without failure, considering 

both static and dynamic loading phenomena. Classified as a dominator attribute 

(more is better).  

• Gear ratio: The ratio of transformation from input to output. Classified as a 

parameter attribute. In the current context (power transmission), decision 

objectives such as maximizing power and torque throughput result in opposing 

preferences for gear ratio.  

In general, other attributes may be important for considering gearboxes. For example, 

outside dimensions and mass may be important in some problems. However, the three 

attributes listed above are sufficient for this example. 

Data Generation and Dominance Analysis 

A model-based data gathering approach is used for this example (for examples 

involving observational data, see Chapter 6 and Chapter 7). For each concept, one can 

compute gear ratio and reliability from the design variables using standard engineering 

models (see e.g., (Norton 2000)). Each gearbox concept has a different design space 

representation. Cost is an empirical relationship based on gear dimensions fit from 

catalog data (i.e., it is a traditional application of predictive modeling techniques).  

Implementations of each concept are generated by sampling the design space 

systematically. Although it is possible to use design-of-experiments (DOE) techniques to 

reduce data requirements, the engineering models are computationally simple in this case 

and efficiency is not a major concern. Each sample point is verified for technological 

feasibility—e.g., vetted against basic geometric constraints—and the ones deemed 

feasible are analyzed according to the engineering models to compute the attributes of 
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interest. The sample contains many implementations that are feasible but poor from a 

decision-making perspective. These are eliminated during dominance analysis. 

Dominance analysis is conducted using parameterized Pareto dominance 

(Definition 3.2) using reliability and cost as dominator attributes and gear ratio as a 

parameter attribute. Mathematically, the negative of cost is used so that it is consistent 

with Definition 3.2. However, graphs and tables display cost in its natural sense. 

Model Fitting and Validation for Concept-Specific Tradeoff Models 

For each concept, gear ratio and reliability are used as inputs to the tradeoff 

model. Gear ratio must be an input because it is a parameter attribute. The decision to use 

cost as an output is arbitrary (initial experiments indicated no significant difference in 

fitting accuracy for using cost or reliability as the output). Strictly speaking, gear ratio is  

not a continuous variable since it is determined by the numbers of gear teeth in mesh. 

However, it is approximated as continuous for modeling purposes. 

To generalize the parameterized efficient set data, Kriging interpolation methods 

and the DACE Matlab Kriging Toolbox are used (Lophaven, et al. 2002). Fifty non-

dominated implementations of each concept are reserved for estimating prediction error 

(i.e., they are not used during model fitting). This approach is known as hold-out 

validation (Han and Kamber 2001, Hand, et al. 2001). Tradeoff models are fit to the rest 

of the parameterized efficient set data for each concept. 

According to the holdout validation procedure, the estimated root mean square 

prediction errors for the tradeoff models are: 

• PGB Model:  $2.17 

• SGB Model:  $6.14 

• DGB Model:  $4.81 
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The minimum cost of any gearbox being considered is about $165, so this represents an 

error of less than 5%.  

Domain characterization is straightforward in this example. The upper and lower 

bounds on the model inputs are found to be adequate representations of the valid input 

domain. Table 3.1 is a summary of the tradeoff model domain descriptions. 

Figure 3.5 is a visualization of the fitted models for gear ratios up to 5 (the models 

are valid for ratios up to about 9). It is impractical to report the closed-form equations for 

these models since the Kriging models are interpolators (i.e., the equation is a function of 

every individual point in the data set). 

 

Table 3.1: Domain descriptions for the gearbox tradeoff models. 

 Input Variable Lower Bound Upper Bound 

SGB and DGB Concepts Reliability, R  0.85 1 
 Gear Ratio, gN  1.13 9.0 

PGB Concept Reliability, R  0.85 1 
 Gear Ratio, gN  2.54 9.2 
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Figure 3.5: Fitted tradeoff models for each of the design concepts for gear ratios up to 5. 
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Generating an Abstract Tradeoff Model 

Because the tradeoff models for the gearbox concepts share the same interface—

they all compute cost as a function of gear ratio and reliability—it is possible to abstract 

them into a single tradeoff model. Figure 3.6 is a graph with all three gearbox tradeoff 

models plotted on the same axes. One can observe that the PGB and SGB concepts are 

dominant in particular regions of the tradeoff space.  

To generate an abstract tradeoff model, the tradeoff models for each concept are 

sampled at the same locations. A simple grid sampling scheme is used, consisting of 225 

points in the model inputs space. These samples are fast to generate because the tradeoff 

models are algebraic equations. Parameterized Pareto dominance is applied to the 

resulting data set. This reduces the 675 sample points (225 samples each of three models) 

to 192 non-dominated points.  

Like with the concept-specific tradeoff models, a Kriging model is used to 

represent the abstract surface and hold-out validation is performed using 50 data points. 

This results in a root-mean-squared error of $5.32. Figure 3.7 is a graph of the resulting 

model over its entire domain. 

3.4.2 Design Problem Scenario 

System and Environment 

The system under consideration is a small, single-person off-road vehicle. The 

components relevant to this problem are its engine, continuously-variable transmission 

(CVT), a fixed-ratio gearbox and a rear differential with a fixed gear ratio, arranged 

according to Figure 3.8. All the components are preexisting on the vehicle except the 

gearbox that is the focus of this design problem. Table 3.2 is a summary of the system 

and environmental parameters that affect vehicle performance. 
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Figure 3.6: Tradeoff models for gearbox concepts plotted in same graph. 
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Figure 3.7: Visualization of the abstracted gearbox model. 
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Figure 3.8: Configuration of off-road vehicle components.  Grayed components are 
already designed; the fixed-ratio gearbox is of interest in this demonstration. 

 

Table 3.2:Values for parameters used in the example problem. 

Parameter Value 

System and Environment 

Total Vehicle Mass  300 [kg] 

External Drag Coefficient   0.45  [N/(m/s2)] 

Internal Drag Coefficient  0.02  [N/rpm] 

Gearing 

Application Factor  1.7 

Gear Quality Factor 8 

Bending Strength Geometry Factor 0.24 

Gear Material, Bending Fatigue Strength 200e6 [Pa] 

 

Decision Problem  

The problem is to design a gearbox for the vehicle that competes in a race. 

Designer preferences are to maximize profit, which in this case yields a value function of 

 ( ), ,V R W C RW C= − , 

where R  is the reliability of the gearbox, W is the anticipated winnings assuming perfect 

reliability and C  is the cost of building the gearbox. At the decision level, reliability and 

cost are equivalent to the corresponding gearbox attributes. The anticipated winnings 

decision attribute is a non-monotonic function of gear ratio, gN . Figure 3.9 is a summary 
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of how winnings relates to gear ratio. Vehicle dynamics account for aerodynamic drag, 

rolling resistance and engine characteristics. Maximum velocity and maximum 

acceleration are computed at the appropriate engine operating points. Race finish time is 

approximated using an algebraic relationship developed originally by Bruns (2006). The 

first term in this expression is the time it would take to complete the entire race if 

traveling at top speed, and the second term accounts for the time to accelerate to top 

speed. The cK  parameter accounts for the relative amount of accelerating for a given 

course. Finish time is used to compute the anticipated winnings for the race. The finish 

time model is non-monotonic in maximum velocity and the vehicle dynamics are non-

monotonic in gN .  
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Figure 3.9: Schematic view of how top-level preferences propagate down to the concept-
level attribute gear ratio. Vehicle dynamics are non-monotonic functions of gear ratio, 
and account for aerodynamic drag, rolling resistance and engine characteristics. 
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Solution Formulation using Concept-Specific Tradeoff Models 

The decision problem is solved using both concept-specific tradeoff models and a 

tradeoff model abstracted from them in order to compare the approaches. The concept-

specific approach follows the formulation from 3.3.2. Concept selection begins with 

performing requirements allocation for each concept. The first step is to specialize 

Equation (3.4) to the problem at hand. This yields 

 ( )( )( )*

,

, arg max , , ,
g l

g g l gl
R N

R N V R N T R N
 ∈ 

   =   
Y

S
�

, (3.9) 

where gN  is the gear ratio, ( )lT ⋅ is the tradeoff model corresponding to the thl  gearbox 

concept, ( )⋅S  represents the system model that calculates system-level attributes from the 

concept-level attributes and lY�  is search domain for the reliability and gear ratio 

attributes for the thl  concept. The domain descriptions that define lY�  are specified in 

Table 3.1. Note that the system model in this example is the same for all concepts and 

consists of all the models listed in Figure 3.9.  

One can solve Equation (3.9) using standard optimization methods. A pattern 

search method is used in this example. After Equation (3.3), one can construct the 

allocation decision for concept l  as 

 ( )* ** , , ,l g l gl l
R N T R N    =      

y . 

Given this result, one can use Equation (3.5) to find the most preferred concept. This 

yields the expression  

 
{ }

( )( )* *

, ,

arg max l
l PGB SGB DGB

l V
∈

= S y , 
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where PGB , SGB  and DGB  denote the planetary gearbox, single-sided gearbox and 

double-sided gearbox, respectively. 

Solution Formulation using Abstract Tradeoff Model 

To predict the most preferred requirements allocation using the abstracted model, 

denoted ( )0T ⋅ , one must solve the following search problem: 

 ( )( )( )
0

*

00
,

, arg max , , ,
g

g g g
R N

R N V R N T R N
 ∈ 

   =   
Y

S
�

, (3.10) 

where the 0Y�  denotes the search domain for the abstract model and the other terms are as 

defined above. The most preferred gearbox concept is the one that satisfies the following: 

 
{ }

( ) ( )* **

0 0 0
, ,

arg min , ,g l g
l PGB SGB DGB

l T R N T R N
∈

   = −    . 

3.4.3 Results 

Approach based on Concept-Specific Tradeoff Models 

Table 3.3 contains results from the gearbox concept selection problem.  The table 

contains the attributes and value for the most preferred implementation of each design 

concept as predicted using the fitted tradeoff models.  The planetary concept has the 

largest value of all three design concepts, and therefore is the most preferred.  In practice, 

designers would continue by designing a planetary gearbox using the indicated attributes 

as design targets.   

The table also contains reference solutions for each gearbox configuration. These 

solutions are computed using optimization methods to search the design parameter space 

for each concept. This relies on using the appropriate engineering models for each 

concept. These are the same models that were sampled when generating the tradeoff 
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models. Thus, if the solutions differ significantly, one could question the use of tradeoff 

models based on parameterized efficient set data.  

A comparison of the results yields two main observations. First, the selection 

decision obtained using the tradeoff models appears to be correct. For both the tradeoff 

modeling solutions and the reference solutions, the preference order is 

PGB SGB DGB� �  (where �  means “is preferred to”). Second, the allocation 

predictions are accurate for each configuration, differing by no more than a few percent.  

This indicates that no important information was lost by applying parameterized Pareto 

dominance criterion to the sampled data. These tradeoff models yield the correct decision 

for the correct reason. 

 

Table 3.3:  Results from the gearbox concept selection problem (using the tradeoff 
models) and the reference solution for each configuration.  The most preferred 
design in each case is the PGB concept. 

  Using Tradeoff 
Models 

Reference 
Solution 

Percent 
Difference 

PGB Maximum Value 682.65 681.72 0.14 
 Gear Ratio 4.14 4.13 0.12 

 Reliability 0.994 0.994 0.00 

 Cost ($) 262.42 262.91 0.19 

SGB Maximum Value 651.20 670.87 2.93 
 Gear Ratio 4.12 4.27 3.51 

 Reliability 0.968 0.988 2.02 

 Cost ($) 268.20 266.55 0.62 

DGB Maximum Value 613.40 606.34 1.16 
 Gear Ratio 4.16 4.27 2.58 

 Reliability 0.980 0.984 0.41 

 Cost ($) 319.00 327.47 2.59 
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Approach based on an Abstract Tradeoff Model 

Table 3.4 contains the results of solving Equation (3.10) using the abstract 

tradeoff model. The allocation decision compares favorably with the reference solution 

obtained using engineering optimization methods.  

Table 3.5 contains the results from comparing the three concept-specific tradeoff 

models to the solution obtained using the abstract model. Based on these results, a 

designer would choose the PGB concept. Compared to the other concepts, it agrees very 

closely with the cost computed using the abstract model. This selection is consistent with 

the engineering optimization results reported in Table 3.3.  

Table 3.6 contains a comparison of the computational times involved in using the 

three different approaches. Times represent actual process execution time on a personal 

computer (i.e., not wall clock time). Since computer processor power varies, one should 

focus on the relative computational times rather than the absolute numbers. All times are 

low because the system model involves simple algebraic equations. 

Both tradeoff modeling approaches are two orders of magnitude faster than the 

engineering optimization approach. This may be an extreme example since the 

engineering optimization solution is computed using a very thorough search to avoid 

local optima (to yield a quality reference solution; this involved multiple optimizer runs 

starting from different initial points). However, this does not explain the difference 

completely and one can conclude that it is faster to make the decision using tradeoff 

models.  

It is worth noting that the time data does not include the time one requires to 

generate the tradeoff models. Adding this to the time required to solve the decision  

 



 86 

Table 3.4: Comparison of allocation solution using abstract tradeoff model to reference 
solution for best concept. 

 Using Tradeoff Model Reference Solution Percent Difference 

Maximum Value 677.52 681.72 0.62 

Gear Ratio 4.13 4.13 0.0 

Reliability 0.994 0.994 0.0 

Cost ($) 266.85 262.91 1.51 

 

Table 3.5: Comparison of predictions from concept-specific tradeoff 
models to prediction from abstract model. 

 Predicted  
Cost ($) 

Cost from Abstract 
Model ($) 

Absolute  
Difference ($) 

PGB 262.33 4.52 

SGB 344.17 77.32 

DGB 304.95 

266.85 

38.10 

 

Table 3.6: Comparison of computational times for three approaches to the gearbox 
design problem. 

Model Partial Times (sec) Total Time (sec) 

Abstract Tradeoff Model  n/a 0.139 

PGB 0.131 
SGB 0.175 

Concept-Specific Tradeoff 
Models 

DGB 0.145 
0.451 

PGB 19.46 
SGB 13.57 

Engineering Optimization 
Approach 

DGB 13.46 
46.48 

 

problem would be misleading since one can reuse a tradeoff model across many 

problems. Moreover, one designer might incur the time but another would not because 

the model already exists. 

The approach relying on the abstract tradeoff model is about three times faster 

than the approach that uses concept-specific tradeoff models. This is approximately what 

one would expect since there are three concepts. These results confirm the computational 

advantage of the approach based on abstract tradeoff models. 
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3.5 The Practical Value of Performing Dominance Analysis 

The example from the preceding section addresses the practical viability of 

applying parameterized Pareto dominance to the gearbox data, but not the practical value 

of doing so. The practical value of dominance analysis is due to two main factors:  

• Parameterized Pareto dominance is not expensive to apply. 

• Designers expose themselves to risk by not performing this step. 

The cost argument itself has two considerations, both of which are favorable to 

the value proposition. First, dominance analysis is something designers do during model 

generation, but not during decision making. This means they incur the computational 

expense exactly once—it is not something that is repeated inside an optimization loop or 

in the context of design space exploration. Second, the algorithm is relatively fast to 

apply for the sizes of data sets designers are likely to encounter. Because designers can 

draw conclusions about domination only at equivalent parameter settings, it is 

unnecessary for them to compare most pairs of attribute vectors. This reduces 

computational costs compared to that of applying classical Pareto dominance to a 

similarly-sized data set. For all of the design problems considered in this research, the 

parameterized Pareto dominance step takes on the order of seconds complete. 

The risk argument is based on the observation of how including dominated 

implementations in the training set will bias the predictive model away from the tradeoff 

relationship it is intended to represent. This idea is illustrated graphically in Figure 1.4 

(page 12). Although the bias may be small at times, designers have no means by which to 

ascertain whether this is the case without conducting dominance analysis in the first 

place. Furthermore, the importance of the bias depends on the particular decision at hand. 
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Given the low cost of performing dominance analysis and the risks associated with 

forgoing it, designers are well advised to not skip this step. 

Another perspective is to consider the relative proportion of implementations that 

one would eliminate using parameterized Pareto dominance. This provides no evidence 

about the amount of bias that the dominated points might introduce. However, larger 

numbers of dominated points would tend to introduce larger biases into a tradeoff model, 

all other factors remaining equal. 

Dominance analysis is essential whenever one wishes to fit a tradeoff model to 

data generated by sampling an analysis model (i.e., as opposed to using observational 

data). Such data necessarily includes implementations that are technically feasible but 

grossly inferior to the best in the sample set. Figure 3.10 is an illustration of this for data 

used in the gearbox design example. This graph is for one setting of the parameter 

attribute for the planetary gearbox, but is representative of other parameter levels and the 

 

0.95 0.96 0.97 0.98 0.99 1

200

250

300

350

400

Reliability

C
o
s
t 

($
)

Valid Designs: Planetary Gear Train

Efficient

Dominated

0.95 0.96 0.97 0.98 0.99 1

200

250

300

350

400

Reliability

C
o
s
t 

($
)

Valid Designs: Planetary Gear Train

Efficient

Dominated

 

Figure 3.10: Efficient and dominated implementations of planetary gear train for a fixed 
value of gear ratio. 
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other gearbox concepts. Clearly, fitting a model to all of this data would misrepresent the 

tradeoff relationship between reliability and cost. 

Rather than sampling of the design space, one might incorporate optimization 

criteria to arrive at solutions that more closely represent how designers might implement 

the component in question. For some problems, this could be more efficient that sampling 

(randomly or systematically). However, this simply is a form of dominance analysis since 

optimization entails the use of an objective function.  

The situation is more varied for the case of using observational data, but it is clear 

that many dominated implementations exist in such data. Table 3.7 is a summary of 

dominance analysis results for observational data about the components used in the 

example problem of Chapter 6. Some implementations of each component are removed 

from the database initially based on outlier analysis. This includes both “common sense” 

eliminations and points excluded using the domain description and clustering procedure 

described in Chapter 4. The stated percentage of each data set removed via parameterized 

Pareto dominance is relative to the post-outlier quantities. The proportion of 

implementations removed is significant. 

 

Table 3.7: Percentage of implementations eliminated by parameterized Pareto 
dominance for components used in log splitter design problem (Chapter 6). 

Component Engine Pump Cylinder Control Valve 

Total # in DB 59 61 188 36 
# after Outlier Analysis 49 43 158 32 

# after Dominance Analysis 19 24 137 8 

% removed by PDOM 61% 44% 13% 75% 
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Several factors may explain why so much of the observed data is dominated. One 

factor is that designers have bounded rationality and design components and systems in 

this context. As such, it is reasonable to expect that some proportion of the available 

implementations of a component are dominated by other implementations.  

Another factor is that implementations that seem to be dominated when one 

examines them with a particular set of attributes may be non-dominated when one 

considers additional attributes. For example, a hermetically sealed motor may be 

considerably more expensive than a comparable standard motor with similar engineering 

characteristics. If one does not account for an attribute relating to sealing, the 

hermetically sealed implementation likely will appear to be dominated (since odds are 

that it would cost more). To eliminate such implementations actually is desirable so long 

as the sealing or other attributes are unimportant for the current context. Thus, dominance 

analysis is a useful data cleansing step. 

3.6 Conclusions and Chapter Summary 

Based on the results of this chapter, one can conclude that parameterized efficient 

sets are an appropriate basis for generating reusable predictive tradeoff models of 

engineered components. Several observations support this conclusion.  

The first observation is that parameterized Pareto dominance is mathematically 

sound and appropriate for the problem of eliminating data about dominated 

implementations of a component without problem-specific information. This is 

established in Section 3.1. It is an extension of classical Pareto dominance, which is 

inappropriate when problem-specific information is unavailable. In order for tradeoff 

models to be reusable—i.e., applicable across many design problems—it is necessary for 
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the underlying dominance criterion to be largely problem independent. According to 

Theorem 3.2, any component implementation eliminated by parameterized Pareto 

dominance cannot be the most preferred. When one considers this in light of the decision 

chain arguments of Barton and coauthors (Barton and Love 2000, Barton, et al. 2001) and 

the set-based design principles described by Ward, Sobek and other authors (Ward 1989, 

Ward, et al. 1995, Sobek II 1996) (see Chapter 2), one can conclude reasonably that the 

parameterized efficient set of a component is what designers should use as a basis for 

predictive tradeoff models.  

Another observation is that a reasonable procedure exists by which designers can 

generate a predictive tradeoff model for a particular type of component. This approach is 

the topic of Section 3.2. It is based on typical data-driven modeling procedures, but is 

specialized for dealing with the problem of tradeoff model generation. Extensions to the 

typical procedures follow logically from the needs of the problem. 

The design example of Section 3.4 also is evidence that parameterized efficient 

sets are an effective basis for tradeoff modeling. It is possible to generalize a continuous 

model effectively from parameterized efficient set data and use it to make decisions about 

partially-defined design solutions through design concept selection and requirements 

allocation. The results obtained using the tradeoff modeling approach match well with 

results obtained via a traditional engineering optimization approach. Although this design 

problem is relatively simple, the results are encouraging.  

A final observation is that there is a practical motivation for applying 

parameterized Pareto dominance. The cost of eliminating data about dominated 

implementations from a  data set is small and designers need perform the operation only 
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once during model generation (as opposed to repeatedly inside of an optimization loop). 

Furthermore, the risk of not performing dominance analysis is difficult to assess on a 

case-by-case basis and possibly is significant. In observational data sets about four 

common engineering components, only one data set had fewer than 40% of the 

implementations eliminated via the parameterized Pareto dominance rule. Thus, there is 

practical value in performing the dominance analysis using parameterized Pareto 

dominance. 

Although one can conclude that parameterized efficient sets are a reasonable basis 

for tradeoff modeling, many open questions remain. The example problem in this chapter 

is of modest complexity, does not involve observational (i.e., mined) data and includes 

tradeoff models of only one functional component. Subsequent chapters and example 

problems expand the range of evidence supporting the overall approach through deeper 

mathematical analysis and more complex example problems. However, the immediate 

next step is to resolve a practical challenge associated with tradeoff model generation. 

This relates to the domain description step of the procedure summarized in Figure 3.1. It 

is possible to deal with domain description in a naïve way in this chapter, but this 

approach will not suffice in general. Chapter 4 is a description of a general approach for 

describing the valid input domain of a tradeoff model. 
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CHAPTER 4: 

 

USING SUPPORT VECTOR DOMAIN DESCRIPTION  

 

TO IMPROVE PREDICTIVE TRADEOFF MODELING 

Based on the analysis of the previous chapter, predictive tradeoff models are 

promising as an abstract representation for sets of designs in the context of system-level 

decision making. Because tradeoff models are attribute-space representations of a 

subsystem, they are abstract of implementation details. However, creating predictive 

models at this high level of abstraction poses a special challenge: certain attribute 

combinations for a component may be unobtainable. These restrictions are due to 

fundamental physical constraints that would be evident when modeling a component at a 

lower level of abstraction, but can be difficult to infer when abstracting from attribute 

data.  

From a modeling perspective, the challenge is to identify the domain of the 

tradeoff model input space over which predictions can be valid. Despite the fact that 

solutions beyond this domain are physically infeasible, one still can compute predictions 

using a tradeoff model. These are meaningless and to be avoided. To constrain automated 

search routines (optimization and design exploration codes), a formalized domain 

description is necessary. Thus, this chapter addresses the second research question: 

RQ2. How can designers describe the set of valid inputs to a tradeoff model 

mathematically?  

The hypothesized answer to this question is that designers can apply an approach based 

on specific machine learning techniques:  
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H2. Designers can use a domain description procedure based on kernel-based 

support vector domain description and clustering methods. 

Using the approach, designers can create a mathematical model for the valid input 

domain of a tradeoff model. They also can identify clusters (disjoint sub-domains) and 

outlying data points, both of which are useful in constructing accurate tradeoff models.  

The focus of this chapter is on defining the tradeoff model domain description 

procedure and the methods upon which it is based. The chapter organization is as follows. 

Section 4.1 contains a definition of the domain description problem and a discussion of 

the requirements for its solution. Sections 4.2 and 4.3 are reviews of the theory 

underlying the approach for tradeoff model domain description. The former is focused on 

Support Vector Domain Description (SVDD) and the latter on Support Vector Clustering 

(SVC). Section 4.4 is a summary of the domain description approach for tradeoff 

modeling.  

4.1 The Problem of Domain Description for Tradeoff Models 

The problem of domain description is to define in a mathematical way what 

constitutes a valid input to a tradeoff model. This problem is analogous to the one-

dimensional problem of preventing extrapolation. Figure 4.1 is a depiction of this simpler 

case with a model ( )y f x=  fit to ( ),x y  pairs that fall within the input domain [ ],lb ubx x . 

A rule of thumb is that one should avoid using the model ( )f ⋅  to make predictions 

beyond the domain of the observed data—i.e., for lbx x<  or ubx x> . The rationale for 

this is that one cannot be confident that the local trend observed on [ ],lb ubx x  will hold for 
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Figure 4.1: A simple domain description for the one-dimensional case. 

 

any other region of x h. For example, it is common for a nonlinear relationship to appear 

linear over a small neighborhood. In the one-dimensional case, the simple solution is to 

restrict evaluations of the model to between the upper and lower bounds on the model 

input. However, this approach does not generalize to higher-dimensional problems. 

Figure 4.2 is a graphical depiction of the domain description problem for a model 

( ),z f x y= . In this example, an input domain defined by the upper and lower bounds on 

each of the input variables yields an overly conservative domain description. This domain 

includes all the observed data, but also includes many regions in which no observations 

exist. Using such a domain definition can lead to unwarranted extrapolation beyond the 

observations. 

The need for a proper domain description is particularly acute when generating a 

tradeoff model. Unlike many other predictive modeling scenarios, the inputs to a tradeoff  

 

                                                 
h In principle, one cannot even know what will happen between samples in the observed region. This is the 
Problem of Induction described in the 18th century by David Hume (1965, Orig. 1739-40). The question of 
how to validate a continuous model based on a finite data sample has received considerable attention in the 
literature (see e.g., (Balci 1997, Kleindorfer, et al. 1998, Law and McComas 2001, Sargent 2001, 
Oberkampf and Trucano 2002, Malak and Paredis 2007)) and several professional and governmental 
organizations publish model validation guidelines (including the AIAA (AIAA 1998), ASME (ASME 
2006), and the U.S. Department of Defense (US DoD 2003)). However, this issue is beyond the scope of 
this research. 
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Figure 4.2: An illustration of two independent variables with a valid domain that occupies 
less than the rectangular region defined by their upper and lower bounds. 

 

model may not be independent of one another. Consider the reliability and cost of an 

engine. These attributes seldom are independent—they tend to have a positive 

correlation—and one cannot, for example, produce an engine with 100% reliability for 

zero cost. Such relationships exist because the attributes of interest during tradeoff 

modeling depend on lower-level design variables. When multiple attributes relate to the 

same design variables, correlations occur and certain combinations of attribute values can 

be impossible to achieve. The practical consequence is that predictions from these 

unobtainable regions in the attribute space are meaningless. This is somewhat worse than 

the ordinary problem of extrapolation (at least the extrapolated model might be correct) 

and designers must take care to describe a tight domain for their tradeoff models. 

Although there are many approaches by which a designer can describe the domain 

associated with a tradeoff model, most of these are appropriate only under certain 

circumstances or have other limitations. For example, one approach is to estimate a 
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probability density function associated with the data and to define the domain according 

to a probability threshold (Tarassenko, et al. 1995). However, to obtain a good 

probability model can require a great deal of data. The data sets used to generate tradeoff 

models in this research often contain only dozens of points (see the example problems of 

Chapter 6 and Chapter 7), which is insufficient. Another approach is to use a convex 

hulling algorithm such as Quickhull (Barber, et al. 1996) to define a geometric boundary 

for the data. However, many of the data sets encountered in this research are sufficiently 

non-convex for their convex hull to be a poor domain description. Figure 4.3 is an 

illustration of how a convex hull can be inappropriate as a domain description.  
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(b) 

Figure 4.3: Two convex hull domain descriptions. In (a), the convex hull envelops the 
data somewhat tightly leaving little extra space in the domain. In (b), a large region 
without any data still falls within the domain description. 

 

At times it may be possible for designers to transform their data nonlinearly such 

that they can more easily describe the domain of the remapped data. For example, it may 

be possible for one to transform the x -axis in Figure 4.3(b) such that the point cloud is 

convex in the transformed space. This strategy is akin to the use of nonlinear 
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transformations in regression analysis to achieve a better fit. However, as in regression, 

the appropriate transformation is highly problem-dependent and not automated easily. It 

is preferable for designers to have a more general approach to domain description. 

A final complication to domain description is that the attribute data—particularly 

when it is observational data of existing components—may contain gaps or occur in 

disjoint groupings. Figure 4.4 is an illustration of this problem. The data contains void 

regions internal to the main data cloud as well as a secondary cluster that is disjoint from 

the outer ring of data. Although this is a synthetic data set, gaps and disjoint clusters 

occur in real engineering data sets. Voids likely are due to a physical constraint that 

prevents designers from achieving a particular combination of attributes. Clusters in 

observational data may indicate popular niches in the market. Designers require a general 

approach for dealing with such situations.  
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Figure 4.4: A synthetic data set with internal voids and distinct clusters. 

 

 



 99 

The capability to handle outliers is another desirably quality for a domain 

description approach. In Figure 4.4, there is an isolated data point at approximately (-0.6,-

0.2) and another at approximately (-0.75, 1). These are far from all other data points and 

one might be justified in removing it from the analysis. Ideally, one could identify such 

situations more easily using a domain description method since visual approaches do not 

scale well beyond a few dimensions. 

In addition to the preceding considerations, designers require an approach for 

tradeoff model domain description that yields fast evaluations of whether or not a given 

point is in the domain. This requirement is particularly important because designers often 

will use tradeoff models in concert with automated optimization and design exploration 

algorithms. Such algorithms can require upwards of tend of thousands of tradeoff model 

evaluations. A slow domain evaluation routine will slow such searches noticeably. 

To summarize the requirements, an approach for tradeoff model domain 

description should be: 

• capable of handling non-convex domains, 

• capable of handling gaps in a domain, 

• capable of handling disjoint sub-domains, 

• capable of identifying potential outliers, and 

• fast at determining whether a given point is in the domain. 

The approach described in this chapter addresses each of these concerns using two key 

methods: support vector domain description and support vector clustering. 
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4.2 Support Vector Domain Description 

The approach to creating a domain description for tradeoff models proposed in 

this research is based on an existing method called support vector domain description 

(SVDD) described originally by Tax and Duin (1999b). Their method is inspired by 

Vapnik’s support vector machines (SVMs) (Vapnik 1995). A SVM is a classifier that 

distinguishes between classes geometrically using a hyperplane. One determines this 

hyperplane during the learning phase based on labeled examples of each class. Tax and 

Duin developed the SVDD method using mathematics similar to that of a SVM. 

However, instead of identifying classes using a hyperplane, they determine whether a 

point is in the data domain using a hypersphere that envelops the data. This formulation 

requires only data about what is in the domain (i.e., one requires no examples of what is 

not in the domain).  

The principal motivation to apply SVDD in the current context is its capability to 

establish a domain classification boundary without examples of points that are outside the 

domain. This sets it apart from most other machine learning algorithms. Another 

advantage is that one can apply kernel techniques to model domains for which a 

hyperspherical domain is inappropriate (including non-convex domains). It also 

accommodates gaps in the data and disjoint sub-domains, and one can use it to identify 

outliers. Finally, one can extend it to perform clustering analysis (see Section 4.3). Thus, 

the approach satisfies all of the requirements identified in the preceding section. 

4.2.1 Basic SVDD 

For the basic (non kernel-based) SVDD method, one tries to find the minimum-

radius hypersphere that contains a set of N  data points, { }, 1i i N=x … . Thus, the domain 
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description consists of a sphere center, a , and radius R . The domain description problem 

is to determine the center and radius given the data. In the most rudimentary formulation, 

one has the constraint  

 
2 2

i R i− ≤ ∀x a , 

Where a  is the sphere center, R  is its radius and ⋅  is the Euclidean norm. 

However, this representation is sensitive to outliers in the data. It is advantageous to 

formulate the problem in a way that allows one to exclude the most extreme outliers. In 

the original formulation of SVDD, Tax and Duin achieve this by introducing slack 

variables, 0iξ ≥ , in a manner analogous to the classical SVM formulation. Thus, the 

domain description problem becomes  

 ( ) 2

, ,
min , ,

i
i i

R
i

F R R C
ξ

ξ ξ
 

= + 
 

∑
a

a , (4.1) 

where C  is a constant scalar and 
ii

C ξ∑  is a penalty term. The minimization is subject to 

the modified constraints 

 
2 2

i iR iξ− ≤ + ∀x a . (4.2) 

One can combine Equations (4.1) and (4.2) in order to construct the Lagrangian 

 ( ) ( )22 2, , ,i i i i i i i i

i i i

L R R C Rβ ξ ξ β ξ µ ξ= + − + − − −∑ ∑ ∑a x a , 

which has Lagrange multipliers 0iβ ≥  and 0iµ ≥ i. Optimality conditions require the 

partial derivatives to equal zero. This yields new constraints: 

                                                 
i This notation follows that of Ben-Hur and coauthors (Ben-Hur, et al. 2001). In their original paper on 

SVDD, Tax and Duin (Tax and Duin 1999b) use the symbols iα  and iγ  rather than iβ  and iµ , 

respectively. 
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 1i

i

β =∑ , (4.3) 

 
i ii

i ii
ii

β
β

β
= =
∑

∑
∑

x
a x , and (4.4) 

 0i iC iβ µ− − = ∀ . (4.5) 

Since 0iβ ≥  and 0iµ ≥ , it is valid to remove the variables iµ  from Equation (4.5) and to 

use instead the constraint 0 i C iβ≤ ≤ ∀ .  

By rewriting the Lagrangian problem by substituting in the preceding constraints, 

one can obtain the Wolfe dual form problem 

 ( ) ( )
,

max
i

i i i i j i j

i i j

W
β

β β β= ⋅ − ⋅∑ ∑x x x x , (4.6) 

subject to constraints 0 i C iβ≤ ≤ ∀  and 1ii
β =∑ . 

Note that Equation (4.4) defines the location of the center of the hypersphere as a 

linear combination of the data points. One finds the weights for this linear combination, 

the iβ , by solving Equation (4.6). For each data point, ix  for 1i N= … , there are three 

possible classifications: 

• It is inside the hypersphere, which is indicated by 0iβ = . 

• It is on the boundary of the hypersphere, which is indicated by 0 i Cβ< < . 

• It is an outlier outside of the hypersphere, which is indicated by i Cβ = . 

Data falling inside the hypersphere has no effect on the computation of the 

centroid and is not part of the representation of the domain description. This is an 

advantage in cases involving many data points. Typically only a small percentage of the 

data falls at the hypersphere boundary. 
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Data on the boundary of the hypersphere are called support vectors and are 

essential to the domain description representation. For any given point in the data space, 

z , the squared distance to the hypersphere centroid is  

 ( )
22R = −z z a . 

Substituting in the definition of the center, Equation (4.4), one obtains 

 ( )2

,

2 i i i j i j

i i j

R β β β= ⋅ − ⋅ + ⋅∑ ∑z z z z x x x . (4.7) 

Since support vectors are on the hypersphere boundary, their distance to the centroid 

defines the hypersphere radius. One can compute this radius as  

 ( ) , s.t. is a support vectori iR R= x x , 

where ( )R ⋅  is the square root of ( )2R ⋅ .  

Note that one can represent the two critical characteristics of the bounding 

hypersphere—its radius and the location of its centroid—using only the support vectors 

and their corresponding iβ . This is a significant result, and one of the main advantages of 

SVDD. For most data sets, only a small proportion of the data will lie on the hypersphere 

boundary. Thus, the resulting domain representation is compact relative to the data set. 

To determine whether a test point is in the domain defined by the support vectors, 

one need only compute its distance from the hypersphere centroid. Test point z  is in the 

domain if  

 ( )2 2R R≤z , 

where ( )2R ⋅  is from Equation (4.7) and 2R  is the squared hypersphere radius. 

Outliers are data points for which i Cβ =  and some authors refer to these as 

bounded support vectors. They are not part of the domain description. Whether one 
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detects any outliers depends on one’s choice of C . Due to the constraint in Equation 

(4.3), choosing 1C ≥  yields no outliers. There must be at least one support vector (i.e., 

0 i Cβ< < ), which means i Cβ =  cannot occur for 1C ≥ . Also note that no solution is 

possible for 1C N<  due also to the constraint in Equation (4.3). Empirical evidence 

presented by Tax and Duin in their original investigation of SVDD suggests that the 

value of C  is not highly critical on the domain description (large ranges of C  values 

yielded identical domain descriptions). However, the specific effect is problem-

dependent. 

4.2.2 Mercer Kernels 

The basic formulation of SVDD is valuable when a hypersphere is a good model 

for the domain. However, this will not be the case in most situations. Tax and Duin 

address this problem in their original work on SVDD. Their solution is to use kernel 

functions to remap the data nonlinearly into a higher-dimensional feature space in which 

a hypersphere is a good model for the domain. Kernel functions allow one to perform this 

nonlinear transformation without explicit representations of the transformation or the 

higher-dimensional space. In fact, the feature space could be of infinite dimension 

(Scholkopf and Smola 2002). 

Many machine learning algorithms perform better in after being “kernelized.” In 

their survey of clustering methods, Filippone and coauthors (2007) attribute the first use 

of kernel methods to Aizerman and coauthors (1964) and the recent popularity of such 

methods to the success of the kernel-based version of Vapnik’s SVM (Vapnik 1995). 

Kernel methods are particularly useful for support vector approaches because the 

classification scheme in such approaches is a simple geometric construct (a hyperplane or 
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hypersphere). Data that is not separable by such a surface in the original space may be 

separable after a non-linear remapping to a feature space. 

Mercer kernels form the foundation of kernel-based learning methods. One can 

define a Mercer kernel as follows (Aronszajn 1950): 

Definition 4.1 (Mercer Kernel): Let { }1 2, , , N=X x x x…  be a non-empty set of 

data such that d

i i∈ ∀x � . A function :K × →X X �  is called a positive 

definite kernel or Mercer kernel if and only if K  is symmetric (i.e. 

( ) ( ), ,i j j iK K=x x x x ) and  

( )
1 1

, 0 2
N N

i j i j

i j

c c K N
= =

≥ ∀ ≥∑∑ x x , 

where 1kc k N∈ ∀ =� … . 

Strictly speaking, this definition also holds for data defined in the complex plane. 

However, this research involves only real-valued data. 

The significance of Mercer kernels in the current context is that one can express 

any Mercer kernel as the dot product of a nonlinear mapping of the data space (Scholkopf 

and Smola 2002, Shawe-Taylor and Cristianini 2004). That is,  

 ( ) ( ) ( ),i j i jK = Φ ⋅Φx x x x , (4.8) 

where :Φ →X Y  is a nonlinear mapping from the data space to a high-dimensional 

feature space, Y . This representation of the kernel is powerful. One can use it to 

reformulate machine learning problems that involve dot products, such as the SVDD 

problem of Equation (4.6). Essentially, it allows one to compute the dot product of two 
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feature-space vectors without knowing explicitly the nonlinear mapping ( )Φ ⋅ . This is an 

important result that several machine learning researchers have exploited. This procedure 

is at the heart of the so-called distance kernel trick, which is valuable for several 

clustering and pattern recognition problems (Scholkopf and Smola 2002, Shawe-Taylor 

and Cristianini 2004, Filippone, et al. 2007). 

There exists a multitude of valid kernel functions. Ones common in machine 

learning include (Scholkopf and Smola 2002):  

• Linear: ( ),L i j i jK x = ⋅x x x . 

• Polynomial (degree p ): ( ) ( ), 1 ,
p

p i j i jK p= + ⋅ ∈x x x x � . 

• Gaussian: ( )
2

, i jq

G i jK e
− −

=
x x

x x . 

The prior literature on SVDD favors the Gaussian kernel because it leads to closed 

domains in the data space (Tax and Duin 1999a). 

4.2.3 Kernel-based SVDD 

One can recast the SVDD problem as a kernel-based method. The strategy is to 

map the data into a higher-dimensional feature space and apply the representation from 

Equation (4.8) to express the result in terms of a Mercer kernel rather than the explicit 

transformation function. The domain description remains a hypersphere, but now the 

sphere is described in the feature space.  

One develops kernel-based SVDD by revising the constraint that defines the 

enclosing hypersphere. For non-kernel SVDD, this is given in Equation (4.2), which 

involves a distance measure in the data space ( d
� ). To reformulate this in the feature 



 107 

space, one can replace the data-space distance with the corresponding feature-space 

distance. Recall Equation (4.2): 

 2

i iR iξ− ≤ + ∀x a . 

This now becomes 

 ( )
2 2

i iR iξΦ − ≤ + ∀x b , (4.9) 

where b  is the centroid of the feature-space hypersphere and ( )Φ ⋅  is a nonlinear 

mapping from the data space to the feature space. From this point, one can develop the 

corresponding Wolfe dual problem in a way that directly parallels Section 4.2.1 to obtain 

 ( ) ( ) ( ) ( )
,

i i i i j i j

i i j

W β β β= Φ ⋅Φ − Φ ⋅Φ∑ ∑x x x x , 

where 0 ,i C iβ≤ ≤ ∀ . This formulation is in terms of dot products of the nonlinear 

transformation, ( )Φ ⋅ . Recalling Equation (4.8), one can rewrite the above in terms of a 

Mercer kernel, ( ),K ⋅ ⋅ : 

 ( ) ( )
,

, ,i i i i j i j

i i j

W K Kβ β β= −∑ ∑x x x x . (4.10) 

Given a set of data, one maximizes Equation (4.10) over the iβ  subject to 0 ,i C iβ≤ ≤ ∀  

and 1 1N C< ≤ .  

One can compute the center of the hypersphere as 

 ( )i i

i

β= Φ∑b x , 

where the ix  are the support vectors (i.e., 0 i Cβ< < ). Using this relationship, the 

squared distance of the feature-space image of a point, z , to the center of the 

hypersphere is  
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( ) ( )

( ) ( ) ( )

22

,

, 2 , , .i i i j i j

i i j

R

K K Kβ β β

= Φ −

= − +∑ ∑

z z b

z z x z x x
 (4.11)  

This expression depends on the support vectors, their weights and the kernel, but not on 

the nonlinear transformation. The test to evaluate whether a point, z , is in the domain is 

directly analogous to the non-kernel case: one compares ( )2R z  with the radius of the 

hypersphere (i.e., feature space distance from the centroid to a support vector). 

4.2.4 Kernel-Based SVDD Example 

Figure 4.5 is an illustration of kernel-based SVDD. The data depicted in Figure 

4.4 is input to the algorithm, which uses a Gaussian kernel function. From these graphs, 

one can observe the general effect of varying the kernel width parameter, q . Smaller 

values yield fewer support vectors and a broader domain description. As the value 

increases, so does the number of support vectors. The domain description also follows the 

data more closely and breaks into multiple disjoint regions. However, readers should 

understand that the precise effect is problem-dependent. 

4.3 Support Vector Clustering 

Support vector clustering (SVC) is an extension to kernel-based SVDD described 

originally by Ben-Hur and coauthors (2001). It is a numerical approach for identifying 

when a domain description contains multiple disjoint regions in the original data space. 

The method takes a domain description and the original data set as inputs and outputs the 

appropriate cluster labels for the original data set. One can use this information to label 

new data points.  
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Figure 4.5: SVDD results for different settings of the Gaussian kernel width parameter, 
q . The regularization constant is held at 0.4C = . Support vectors are indicated by boxes. 

 

This can be useful in the context of tradeoff modeling for two reasons. First, one 

sometimes can benefit in terms of model accuracy by fitting a different model to each 

cluster. In this case, it is necessary to identify these clusters and to associate each model 

with the appropriate cluster. Second, even when a single model describes the relationship 

in each cluster accurately, one must have a means of ensuring that automated search 
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routines (optimization or design space exploration codes) explore all valid regions of the 

domain. One can achieve this by modeling each cluster independently. 

The current research focuses on the original formulation of SVC by Ben-Hur and 

coauthors. Other researchers report extensions to the basic SVC method, any of which 

one can apply to the problem of generating a tradeoff model. Lee and Daniels (2005) 

report a numerical method for determining the Gaussian kernel width parameter in the 

context of SVC. Typically, one must rely on intuition or experience to determine an 

appropriate value for this parameter. Similarly, Jun and Oh (2006) describe an 

evolutionary method for determining the Gaussian kernel width parameter and the 

regularization constant, C . Several researchers have investigated advanced cluster 

labeling methods, since this is a critical bottleneck in the original SVC method. These are 

reviewed in Section 4.3.2.  

Other approaches to clustering exist that are not based on SVDD. These include 

partitioning-based methods (e.g., the K-means algorithm), hierarchical methods, 

probabilistic methods (approaches based on mixture models and use of the expectation 

maximization algorithm) and grid-based methods—see Han and Kamber (2001, Chapter 

8), Hand and coauthors (2001, Chapter 9), Xu and Wunsch (2005) and Filippone and 

coauthors (2007) for surveys of clustering methods. Although it is clear from the 

literature that many effective clustering methods exist, the focus of this research is on the 

SVC approach because it is closely allied with the SVDD method.  

4.3.1 Cluster Identification Theory 

Figure 4.6 is a domain description obtained using kernel-based SVDD for a two-

dimensional data set. The areas enclosed by the contours represent the two-dimensional 
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projection of the feature-space hypersphere. Any point enclosed by one of the contours is 

internal to the hypersphere; all other points are outside of it. Ben-Hur and coauthors 

recognized that one can determine whether two points are in the same cluster by checking 

to see whether it is possible to connect them via line segments between the data points 

without crossing the domain boundary contours.  

The simplest scenario for this is illustrated in Figure 4.6. Points A and B are part 

of the same cluster because segment AB remains wholly within the domain boundary. In 

contrast, points C and D potentially are in different clusters because segment CD crosses 

the domain boundary. That is, the feature space representation of the segment leaves and 

then re-enters the enclosing hypersphere. 

Two points can be part of the same cluster even when their connecting segment 

crosses a domain boundary. This is because cluster membership is associative: if A is in 

the same cluster as B and B is in the same cluster as C, then A must be in the same cluster 

as C. This logic is important when the domain region is a non-convex shape. Figure 4.6 is 

an illustration of this situation. 

4.3.2 Cluster Labeling Methods 

Due to the associative nature of cluster labeling, one requires an algorithm 

capable of identifying indirect relationships among the data points. Most approaches to 

labeling the clusters operate using adjacency information based on the theory presented in 

the preceding section. Two data points are considered adjacent if the segment connecting 

them in the data space does not cross the domain boundary.  
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Figure 4.6: Points A and B are in the same cluster because segment AB stays within the 
domain boundary. Points B and C are in the same cluster for the same reason. Points A 
and C are in the same cluster via association through point B, even though segment AC 
leaves the boundary. Point D is in a different cluster than the other points. 

 

The most straightforward approach is to build a complete adjacency matrix for all 

combinations of (non-outlier) points. Let A  denote this matrix and ijA  denote whether 

points ix  and jx  are adjacent. Thus, ijA  is a binary variable such that  

 
( )( ) [ ]1 if , 0,1 ;

0 otherwise.

i j i

ij

R R
A

λ λ + − ≤ ∀ ∈
= 


x x x
 (4.12) 

Given the matrix A , one labels clusters as connected components of the graph implied 

by A . To evaluate ijA , one can sample values of [ ]0,1λ ∈ . Several researchers report 10 

to 20 samples being a reasonable level of resolution. 

The preceding approach is called the Complete Graph (CG) method in the 

literature and is known to be fairly inefficient. Ben-Hur and coauthors (2001) suggest an 
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approximate method of evaluating only the ijA  such that ix  or jx  is a support vector. 

This approach, sometimes called the Support Vector Graph (SVG) method, is slightly 

faster than the CG method, but it sometimes can fail to detect that two clusters are in fact 

a single larger cluster. Yang and coauthors (2002) describe a labeling approach based on 

proximity graphs intended to be fast while solving this problem. Their approach is 

actually a family of methods because one can use different proximity graph (PG) models, 

such as k-nearest neighbors, Delaunay diagrams and minimum spanning trees. Their 

approach is among the faster of the adjacency-based approaches, but it can be difficult to 

implement and still can lead to classification errors. Lee and Lee (2005) describe a 

method for cluster labeling based on a gradient descent (GD) algorithm and the notion of 

stable equilibrium points. An advantage of their approach over the PG approach is that it 

tends to have a low error rate. However, because one must compute gradients the GD 

method is slow on high dimensional data sets. Lee and Daniels (2006) describe a method 

that does not rely on sampling a segment between pairs of points. Their method, called 

Cone Cluster Labeling (CCL), is approximate but is considerably faster than other 

methods.  

For tradeoff modeling, one can apply any of the aforementioned methods. 

Although computational cost is not unimportant, the likely workflow for tradeoff 

modeling would require one to perform SVC only once when the model is created. That 

is, it is not something one must perform during design space exploration or optimization 

and, as such, it is not essential that one use the fastest algorithm possible. The CG 

algorithm is used in the current investigation. 
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Table 4.1, adopted from (Lee and Daniels 2006), is a summary of the theoretical 

space and time bounds for each of the methods surveyed. In this notation, N  is the total 

number of data points, svN  is the number of support vectors, m  is the number of samples 

made along segments between points (used to evaluate Equation (4.12)), sepN  is the 

number of stable equilibrium points (used only for the GD method) and k  is the number 

of iterations for GD convergence. In all cases, svN N≥  and sepN N≥ . Usually, one 

chooses 10 20m≤ ≤ . 

 

Table 4.1: Worst-case asymptotic running times and memory requirements for several 
cluster labeling algorithms as reported by (Lee and Daniels 2006). 

Method CG SVG PG GD CCL 

Adjacency 
Matrix Size 

( )2
O N  ( )sv

O NN  ( )2
O N  ( )2

sep
O N  ( )2

sv
O N  

Total 
Asymptotic 

Time 

( )2

sv
O mN N  ( )2

sv
O mNN  ( )2

sv
O N mNN+  ( )( )2

sv
O mN k N+  ( )sv

O NN  

 

4.3.3 Example 

Figure 4.7 is a demonstration of SVC on the data set depicted in Figure 4.4. It 

contains results for different settings of the kernel width parameter. Figure 4.7(a) contains 

two large clusters. The larger value for the width parameter used to generate Figure 

4.7(b) leads to a larger number of smaller clusters. There are six in all, two of which 

contain only one point and enclose a very small surrounding domain (C1 and C6). 

Clusters of such small size are candidates for being discarded as outliers. This issue is 

discussed in Section 4.4. 
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Figure 4.7: SVC on the dataset from Figure 4.4 for two different settings of the kernel 
width parameter.  

 

Figure 4.8 is a visualization of the adjacency information corresponding to the 

graph of Figure 4.7(a). From this, one can observe how the algorithm associates points 

into clusters. One typically would not visualize this information during model building. It 

is useful primarily for pedagogical and debugging purposes. 

4.4 Creating Domain-Described Tradeoff Models 

Figure 4.9 is a summary of the process for creating a domain-described predictive 

tradeoff models. This is an expansion of Step 5 of Figure 3.1 (domain description) into 

four sub-steps and a clarification of Step 6 (model fitting) in light of the possibility that 

the data contains multiple distinct clusters. 
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Figure 4.8: A visualization of the adjacency information corresponding to the graphs in 
Figure 4.7. Two distinct clusters are evident in (a). In (b), six distinct clusters are evident, 
including two that contain only one point each. 

 

Step 5.1: Preprocessing. Scale raw data. Usually normalizing (map to [0,1] scale) or 
centralizing (map to [-1,1] scale) is effective. 

Step 5.2: SVDD. Apply the SVDD method using a Gaussian kernel function. This step 
may require iteration if domain description is too loose or too tight (as indicated through 
visualization or other diagnostics). Can use adaptive methods to tune the Gaussian kernel 
width parameter, q . 

Step 5.3: SVC. Apply SVC method (with cluster labeling method of choice). If too many 
clusters, repeat Step 2 with a smaller value for the kernel width parameter, q . Adaptation 

of q  to achieve desired number of clusters can be automated. 

Step 5.4: Eliminate degenerate clusters. Clusters with too few points can be considered 
as outliers. Either reduce the kernel width parameter, q , until those points become part of 

a larger cluster or drop them from the analysis as outliers. 

Step 6: Model fitting. 

� If fitting a different model to each cluster: Apply SVDD to each cluster 
individually to model sub-domains. Adjust width parameter, q , as necessary to 

obtain a single major cluster for each sub-domain (a few points may be lost as 
outliers). Fit models to each cluster of data. 

� If fitting one model to all data: Fit models to all non-outlier data. 

Figure 4.9: Refinement of process for generating tradeoff models (Figure 3.1) to include 
a generalized domain description procedure. 
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Step 5.1 involves scaling the data. Although one could skip this step, the 

algorithms involve in the process are more reliable when the data is scaled and relocated. 

Anecdotally, centralizing the data—scaling everything to the range [-1,1] and centering 

on the origin—appeared most effective during the course of this research. Normalization 

is another common scaling scheme. 

Step 5.2 involves applying kernel-based SVDD using a Gaussian kernel, as 

described in Section 4.2.3. One may wish at this point to adapt the kernel width 

parameter, q , until an acceptable domain description is found. For example, one may 

want to reduce q  if there is a larger proportion of support vectors relative to the number 

of data points (e.g. more than half the data are support vectors) because this may be an 

indication of overfitting. In the current context, it can be easier to iterate over both Steps 

5.2 and 5.3 using the number of clusters as a driver for width parameter adaptation. The 

basic rule is to reduce q  if the number of actual clusters is larger than the number 

desired. 

Step 5.3 involves applying the SVC method in concert with the cluster labeling 

method of choice as described in Section 4.3. As already noted, the number of clusters 

can be a driver for adapting the kernel width parameter (either manually or through an 

automated numerical method). Whenever possible, visualization of the clusters and their 

domain boundaries is recommended as a final validation step. 

Step 5.4 is necessary because it is common for SVC to yield clusters with very 

few points and a very small domain region. This occurs for example in Figure 4.7(b), 

where clusters C1 and C6 each contain only one data point. In such cases, one has two 

choices: (1) decrease parameter q  until the points are absorbed into a nearby cluster or 
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(2) eliminate the data points as outliers. The first choice is appropriate when the 

degenerate cluster is close to another larger one. Otherwise, it is common practice to 

eliminate the data. 

After constructing a domain description and identifying any disjoint clusters, one 

must fit one or more continuous models to the data. This step is discussed originally in 

Section 3.2. Here, this step is expanded to account for the additional consideration of how 

to model the data in each cluster. The appropriate action is one that balances fitting 

accuracy with convenience. One incurs additional organizational overhead by fitting 

several individual models, but often achieves a superior fit to each cluster of data. 

Regardless of how many individual models one fits, it is necessary to ensure that any 

optimization or design exploration activities consider all the relevant sub-domains. For a 

gradient-based search, it may be best to initiate multiple optimization runs, with at least 

one originating in each sub-domain. Typically, such solvers search only within a single 

contiguous domain and are unable to explore disjoint sub-domains.  

If electing to fit a different tradeoff model to each sub-domain, one must obtain an 

independent description of the sub-domains. A practical approach to this is to repeat 

SVDD independently for each cluster. It also is advisable to repeat SVC and to adapt the 

width parameter such that a single cluster is obtained (i.e., a single domain region). It is 

possible to establish a hierarchical clustering (such that the original clusters are 

subdivided into additional clusters), but doing so would have value only if it leads to a 

fitted model with considerably greater accuracy or if the sub-domain would have been 

better as multiple clusters in the first place. Note that the application of SVDD and SVC 
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to the sub-domain data will proceed faster than the initial application because there are 

fewer data points involved. 

Figure 4.10 is a 3D visualization of the centralized domain description identified 

for data about small four-stroke engines. The actual data domain is five-dimensional. In 

addition to mass, maximum power and maximum torque, the remaining dimensions are 

efficiency and maximum speed. The data is for commercially-available engines and is 

obtained from publicly-available data sources (e.g., spec sheets and catalogs) as well as 

data supplied by vendors and companies supporting this research. Engine retail price (the 

cost to the system designer) is predicted by a tradeoff model fit to the underlying data, 

and so is not part of the domain description (only inputs to the tradeoff model require a 

domain description). 

 

mass
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3D Projection of Engine Domain (5D)
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Figure 4.10: A 3D visualization of the 5D domain description for small four-stroke 
engines. This figure is generated by randomly sampling the 5D unit hypercube and 
classifying each point. Larger points belong to one of the clusters; smaller points are not 
part of the engine tradeoff model domain.  
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The figure is generated by randomly sampling the five-dimensional unit 

hypercube. Points that fall within one of the two sub-domains (clusters in the original 

data) are labeled appropriately. Points that do not fall within one of those regions are 

rejected and appear as small dots in the figure. Although the two sub-domains appear 

discontinuous due to the sampling, each one is in fact continuous.  

4.5 Conclusions and Chapter Summary 

The  main conclusion of this chapter is that the kernel-based SVDD and SVC 

methods are an appropriate and logical basis for solving the tradeoff model domain 

description problem. The approach, summarized in Section 4.4, is based on a well-

founded mathematical theory for domain description and clustering. This theory is 

presented in Sections 4.2 and 4.3. The domain description procedure also fits directly 

within the overall model generation procedure from Section 3.2. 

The kernel-based SVDD and SVC methods have several advantageous 

characteristics. By virtue of being kernel-based, they are capable of representing complex 

data domains. This includes domains that are non-convex or contain disjoint sub-regions. 

They also provide designers with the means to subdivide a data set into multiple 

independent tradeoff models should doing so improve the model fit. Several data sets 

encountered during the course of this research exhibit such complex input domains (e.g., 

the engine data of Figure 4.10). Consequently, these characteristics are important in 

practice. 

Perhaps the most important characteristic is that it is fast to test whether a 

candidate point is in the domain. This is important because typically this must occur 

repeatedly within an optimization loop. The computation entails evaluating an algebraic 



 121 

equation involving several weighted sums and kernel functions (Equation (4.11)). 

Although this computation would become slow for an extremely large numbers of 

support vectors, this situation has not been observed in this research and it seems highly 

unlikely to occur.  

Algorithms for constructing the domain description and clusters do not scale well 

in the number of data points and number of attributes, but designers need only apply them 

during model generation. Moreover, the slower algorithms never need be part of a design 

exploration or optimization routine.  

This chapter contains several synthetic examples to illustrate the concepts and 

provide a basic level of support for its effectiveness. Although these are successful, they 

are inadequate for one to judge fully the practical usefulness of the approach. Further 

empirical evidence comes in later chapters. Neither the log splitter design problem of 

Chapter 6 nor the hybrid vehicle problem of Chapter 7 would be solvable using tradeoff 

models without effective domain descriptions. Both problems involve tradeoff models fit 

to data with non-convex domains and the log splitter example involves a domain 

comprised of two disjoint clusters. 

 



 122 

 

 

CHAPTER 5:  

 

A MATHEMATICAL ANALYSIS  

 

OF COMPOSING PARAMETERIZED PARETO SETS 

The focus of the preceding chapters has been on individual tradeoff models: how 

to construct them, formulate decisions in terms of them and describe the domain over 

which they are valid. This chapter, along with the two that follow, is an investigation of 

system-level decision making using multiple tradeoff models. The vision is that designers 

can model a system using tradeoff models for its components along with a model for how 

they interact to yield system-level attributes. 

This chapter addresses the third research question: 

RQ3. Under what conditions can designers compose component-level tradeoff 

models in order to model a system-level decision alternative soundly? 

The focus is on parameterized Pareto dominance, which designers use to eliminate 

ostensibly irrelevant data prior to fitting a tradeoff model. Whether these eliminations are 

appropriate is critical, since dominated data are left out of the final model. Designers 

must be confident that applying parameterized Pareto dominance will not lead them to 

eliminate data about solutions that could be the most preferred.  

It is not immediately obvious whether parameterized Pareto dominance is sound 

in this sense. One applies parameterized Pareto dominance to each component 

individually when creating its tradeoff model. However, the attributes of a system depend 

on the interactions between its components. For example, one combination of gearbox 
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and motor may be effective while the same motor performs poorly when connected to a 

different gearbox.  

This chapter contains a mathematical analysis of parameterized Pareto dominance 

in the context of composed system models. Using set theory and decision theory, it is 

shown that composing parameterized Pareto sets is sound under mild assumptions about 

how the components of a system interact. In particular, the following hypothesis is 

evaluated: 

H3. One can compose predictive tradeoff models soundly if the tradeoff models are 

based on parameterized Pareto sets and all induced preferences for any 

component-level dominator attribute are monotonic in the same direction. 

In this context, soundness refers to the informational completeness of the parameterized 

efficient set. The argument is that it contains all the component-level information one 

requires to search for the most preferred system-level solution. Similar soundness criteria 

are derived for classical Pareto dominance, and these are shown to be a subset of those 

for parameterized Pareto dominance. The main conclusion of this chapter is that 

parameterized Pareto dominance is a sound basis for generating tradeoff models. 

The chapter organization is as follows. Section 5.1 is a review of the motivations 

for composing tradeoff models. Section 5.2 contains a mathematical definition for the 

compositional modeling framework. Section 5.3 is a theoretical analysis of the soundness 

of composing classical and parameterized Pareto sets in this framework.  

5.1 Motivations for Composing Tradeoff Models  

Tradeoff model composition is an appealing capability. One challenge of system-

level decision making is the question of how to incorporate lower-level considerations 
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into a decision without having an explosion in problem complexity. The approach of 

composing tradeoff models addresses this directly. Component designers can formalize 

the capabilities and limitations of the various implementations of their components into a 

tradeoff model for use by system-level designers. This conveys to system designers the 

implications of the lower-level details in a quantitative way without encumbering them 

with the actual details.  

In the context of data-driven predictive modeling, composition is essential to 

enable designers to model novel systems at a systems level. It is impossible for designers 

to construct a model of such a system from observational data because no prior 

implementations of it exist. It may be possible for designers to rely on data sampled from 

an existing model of the system, but this approach is questionable for similar reasons—if 

the system is sufficiently novel, would designers already have a detailed model during 

system-level decision making? Even if designers sometimes would have such a model, 

more often they would not and must rely on a compositional approach. 

Model reuse is another major benefit of tradeoff model composition. The more 

often designers expect to use a particular model, the more easily they can justify devoting 

resources to developing, validating and maintaining it. It also is not far-fetched to 

imagine components manufacturers developing tradeoff models of their own components 

for use by potential clients. In this sense, a tradeoff model would be a computable version 

of a components catalog.  

5.2 Mathematical Framework for Composition 

Figure 5.1 is an illustration of the compositional modeling framework under 

consideration. At the lowest level are tradeoff models, ( )kT ⋅  for 1k K= … , that abstract 
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the characteristics of the non-dominated implementations of the system components. Let 

ky  denote the attribute vector associated with the thk  component and ky�  denote a vector 

consisting of the attributes used as inputs to the tradeoff model. Thus, ( ),k k k kT =  y y y� �  

for 1k K= … . Also, let [ ]1 2, , , K=y y y y…  denote a vector comprised of all component-

level attributes and let M  denote the dimensionality of this vector. A vector-valued 

function, ( ) ( ) ( ) ( )[ ]1 2, , , NS S S⋅ ⋅ ⋅⋅ =S … , relates the component-level attributes to the 

system-level attributes, denoted iz  for 1i N= … . Thus, ( )i iz S= y  and ( )=z S y . The 

value function, ( )V ⋅ , is a formalization of designer preferences for the system-level 

attributes, [ ]1 2, , , Nz z z=z … .  
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Figure 5.1: Tradeoff model composition framework. 
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Given this notation, one can express the value of the thl  system alternative as: 

 ( ) ( ) ( )( )( )1 1 2 2, , , ,l l l l l l l lK lKv V T T T=   S y y y y� � � �… , (5.1) 

where lS  denotes the composition models for the thl  system-level decision alternative, 

[ ]1 2, , ,l l l lK l= ∈y y y y Y�� � � �…  is a vector consisting of the component-level attributes used as 

inputs to their respective tradeoff models and 1 2l l l lK= × × ×Y Y Y Y� � � ��  is the set of feasible 

tradeoff model input vectors for alternative l . Note that one determines the lkY� using the 

domain description procedure from Chapter 4.  

Using Equation (5.1), one can formulate requirements allocation and system 

selection decision problems. These are direct extensions of the corresponding 

formulations from Section 3.3.2. For the thl  system-level alternative, one can predict the 

most preferred requirements allocation as: 

 ( ) ( ) ( )* * * * *

1 11 2 2, , , ,l l l ll l l lK lKT T T =  y y y y y� � � �… , (5.2) 

where 

 ( ) ( ) ( )( )( )*

1 1 2 2arg max , , , ,
l l

l l l l l l l lK lKV T T T
∈

=   
y Y

y S y y y y
��

� � � � �… . (5.3) 

Given this, the most preferred system alternative is: 

 ( )( )* *

1

arg max l l
l L

l V
=

= S y
…

. (5.4) 

One limitation of this notation is that different system configurations can have 

different numbers of components. Thus, the parameter K  in the above notation really 

should be indexed according to the system number—i.e., we should use lK  for 1l L= … . 
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However, this detail is omitted to make the notation less cumbersome. It is 

inconsequential with respect to the analysis in the next section. 

5.3 Soundness Conditions for Composing Non-Dominated Sets 

The procedure defined in Equations (5.2) through (5.4) incorporates an 

assumption that warrants scrutiny. If designers fit tradeoff models to data identified using 

a component-level optimality criteria—a dominance analysis performed on data about 

component implementations—how can they be sure that some combination of tradeoffs 

that appear dominated at the level of their respective components will not yield the most 

preferred solution from a system-level perspective? 

If it is valid to compose tradeoff models, then the answer to this question must be 

that it can never happen—that if a component tradeoff is eliminated by a dominance 

analysis, then it also would be eliminated when considered at higher levels in the system 

hierarchy. Whether this is the case depends on how component-level attributes relate to 

system-level attributes through the system composition model, ( )⋅S . The aim in this 

section is to identify mathematical conditions that guarantee validity in this sense for both 

classical and parameterized Pareto dominance.  

The analysis is limited to the idealized case of dealing directly with a non-

dominated set, as opposed to a tradeoff model fit to it. However, the results are an 

important justification for trying to generalize a non-dominated set in the first place. If it 

could be that the most preferred tradeoff is not in this set, then the use of tradeoff models 

surely is unwarranted.  
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5.3.1 Soundness Condition for Composing Classical Pareto Sets 

In the following, it is shown that it is sound to model a component using a 

classical Pareto set provided the system composition model is strictly monotonic in all of 

the component’s attributes. Building on this result, one can reason that designers can 

compose classical Pareto sets provided the system composition model is strictly 

monotonic in all attributes from all components. This is a restrictive assumption and 

motivates the use of parameterized Pareto dominance, further considered in Section 5.3.2. 

Since a system composition model, ( )⋅S , is a vector-valued function, it is 

necessary to clarify the meaning of monotonicity in this context. It is useful to begin with 

the definition of monotonicity for a scalar function. Note that what follows adopts the 

convention used in (Keeney and Raiffa 1993) of denoting an attribute in the abstract 

using an uppercase letter and denoting a specific value for that attribute using a lowercase 

letter (e.g., if Y  is the attribute “gear ratio”, y would be 10.72 or some other numeric 

value). 

Definition 5.1 (Strictly Increasing in kY , scalar function): A function 

: MS →� �  is strictly monotonically increasing in kY  if for , M′ ′′∈y y � , 

1 ,j jy y j M j k′ ′′= ∀ = ≠…  and k ky y′ ′′>  implies ( ) ( )S S′ ′′>y y . 

This discussion is restricted to increasing functions without loss of generality; if ( )S y  is 

decreasing in Y , it is increasing in the negation of Y . One can extend the preceding 

definition to vector-valued functions as follows:  



 129 

Definition 5.2 (Strictly Increasing in kY , vector function): A function 

: M N→S � �  such that ( ) ( ) ( )[ ]1 2
, , ,

N
S S S⋅ ⋅ ⋅=S …  is strictly increasing in kY  if 

every ( )iS ⋅  that is a function of kY  is strictly increasing in kS . 

Figure 5.2 is an illustration of different monotonicity scenarios for a system composition 

model, [ ]1 2 3, ,S S S=S . The model is strictly increasing in 1Y  because 1S  and 2S  are 

strictly increasing in 1Y  and 3S  is not a function of 1Y . However, S  is not strictly 

increasing in either 2Y  or 3Y . For 2Y , this is evident in that 2S  non-monotonic in 2Y . The 

situation for 3Y  is more complicated, but essentially the same. The function 2S  is 

monotonically decreasing in 3Y , but the function 3S  is monotonically increasing in 3Y . 

Consequently, the overall effect is non-monotonic. No simple reformulation of the 

problem can avoid this and, as shall be proved in the following, one cannot compose 

classical Pareto sets soundly under these circumstances. 
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( )1 1 2 32S y y y= + +y ( ) ( )
2
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Figure 5.2: Different monotonicity possibilities for a system composition model. 

 

To formalize conditions for when composing classical Pareto sets is 

mathematically sound, some additional notation is needed. Let kY  and *

kY  denote, 
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respectively, the feasible and non-dominated sets corresponding to component 1k K= …  

and 1 2 K= × × ×Y Y Y Y�  denote the set of all combinations of feasible component-level 

points. Also, let 1 1 1k k k K− − += × × × × ×Y Y Y Y Y� �  denote the set of all combinations of 

feasible component-level points except those from the thk  component and *

k−Y  denote the 

analogously-defined non-dominated set. Finally, we use the notation [ ],k k−=y y y  such 

that k k∈y Y  and k k− −∈y Y  to mean that ∈y Y . 

Given this notation, one can make three related statements about the validity of 

using classical Pareto sets in a compositional modeling framework. As before, let 

DOM′ ′′y y  denote that ′y  dominates ′′y  by the classical Pareto criterion. 

Theorem 5.1: If a system composition model, : M N→S � � , is strictly 

increasing in all inputs originating from the thk  component and DOMk k
′ ′′y y  for 

,k k k
′ ′′ ∈y y Y , then there exist *,k k k− − −

′ ′′ ∈y y Y  such that ( ) ( )DOM′ ′′S y S y , where 

[ ],k k−
′ ′ ′= ∈y y y Y  and [ ],k k−

′′ ′′ ′′= ∈y y y Y .  

This means that under the assumption of a strictly increasing system composition model, 

it is guaranteed that a solution dominated at the component level also is dominated at the 

system level. In concrete terms, designers can, in principle, eliminate an alternative for a 

motor without considering the load it must drive. A proof of Theorem 5.1 is given in 

Appendix A. Two related corollaries follow (also proved in the appendix). 

Corollary 5.1: Theorem 5.1 holds for ,k k k− − −
′ ′′ ∈y y Y . 
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Whereas Theorem 5.1 is expressed in terms of classical Pareto sets—i.e., *,k k k− − −
′ ′′ ∈y y Y —

Corollary 5.1 is in terms of the corresponding feasible set. This means that applying 

classical Pareto dominance at a component level can be valid independent of whether one 

applies it to the other components in a system model. From a practical perspective, this 

indicates that one can combine classical Pareto sets or tradeoff models based on them 

with more traditional engineering models (i.e., ones that compute attributes from design 

variables).  

Another useful corollary of Theorem 5.1 is that one can extend it to the system-

wide scenario. 

Corollary 5.2: If a system composition model, : M N→S � � , is strictly 

increasing in every component-level attribute, then Theorem 3 holds for all 

components, 1k K= … . 

This is a generalization of Theorem 5.1 to establish that one can compose classical Pareto 

sets whenever the system composition model is strictly increasing in all inputs. Although 

this indicates that it is possible for one to compose classical Pareto sets, the monotonicity 

requirement is restrictive in practice. Many system composition models resemble those of 

Figure 5.2. For example, in the gearbox design problem of Chapter 3, gear ratio is an 

attribute that relates to the system-level decision attributes through a non-monotonic 

composition model of engine and vehicle dynamics (i.e., it is analogous to 2Y  from 

Figure 5.2). The log splitter example (Chapter 6) also violates the strict monotonicity 

requirement. Larger cylinder bore is preferred to improve in a force-maximization 

objective, but smaller bore is preferred to improve in a speed-maximization objective 
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(i.e., it is analogous to 3Y  in Figure 5.2). These are relatively simple engineering 

problems and there is no reason to expect such circumstances would not exist for more 

complicated ones. Designers need an approach that is generally sound under realistic 

conditions.  

5.3.2 Soundness Condition for Composing Parameterized Pareto Sets 

Parameterized Pareto dominance does not have the limitations of the classical 

rule, provided one classifies the attributes correctly as parameters or dominators. 

Appendix A contains proofs for the following statements. 

Theorem 5.2: If a system composition model, : M N→S � � , is strictly 

increasing in inputs that are dominator attributes of the thk  component and 

PDOMk k
′ ′′y y  for ,k k k

′ ′′ ∈y y Y , then there exist *,k k k− − −
′ ′′ ∈y y Y  such that 

( ) ( )DOM′ ′′S y S y , where [ ],k k−
′ ′ ′= ∈y y y Y  and [ ],k k−

′′ ′′ ′′= ∈y y y Y . 

This has an interpretation similar to that of Theorem 5.1, with the main distinction being 

the application of PDOM  at the component level. In terms of the example of Figure 5.2, 

1Y  would be a dominator attribute while 2Y  and 3Y  are parameters. Like Theorem 5.1, the 

practical consequence of Theorem 5.2 is that designers can eliminate component-level 

alternatives soundly without considering how the properties of other components in the 

system. However, the monotonicity requirements for doing this are much less strict in 

this case. In fact, the circumstances in which using parameterized Pareto dominance is 

sound subsume those for the classical rule. This is evident in that Theorem 5.2 reduces to 

Theorem 5.1 in the event that all attributes from the thk  component are dominators. 
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One can extend Theorem 5.2 in a way that parallels the corollaries associated with 

Theorem 5.1:  

Corollary 5.3: Theorem 5.2 holds for ,k k k− − −
′ ′′ ∈y y Y . 

Corollary 5.4: If a system composition model, : M N→S � � , is strictly 

increasing in all component-level dominator attributes, then Theorem 5.2 holds 

for all components, 1k K= … . 

According to Corollary 5.3, it is sound to use parameterized Pareto dominance to model a 

particular component regardless of how one models other components provided the stated 

monotonicity property holds. Corollary 5.4 is an extension of Theorem 5.2 to all 

components in a system.  

5.3.3 Practical Implications of the Mathematical Results 

Designers cannot perform dominance analysis at the component level without 

some understanding of the system composition model. This is evident in the 

monotonicity assumptions required to make the preceding propositions work. Essentially, 

one cannot draw any conclusions about the soundness of composing non-dominated sets 

without saying something about how they are composed. 

Ultimately, this requirement is not oppressive. Monotonicity is a relatively simple 

property that designers often can verify by inspecting their models. Designers who wish 

to develop reusable tradeoff models—which necessarily must be developed without a 

specific composition model in mind—can consider the odds of a particular type of 

attribute being used in a particular type of model. For example, cost, mass and reliability 

will, for most systems, map monotonically from the subsystem to the system level and 
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therefore designers can use those attributes as dominator attributes in the parameterized 

Pareto dominance rule. In cases where an attribute is likely to undergo a non-monotonic 

transformation (e.g., gear ratio, cylinder bore) or no clear usage is evident, designers can 

treat an attribute as a parameter. The risk of designers misusing a tradeoff model is low 

because they can validate any monotonicity assumptions incorporated into the model at 

the time of use. 

The main practical consequence of the preceding theoretical analysis is that 

classical Pareto dominance is very limiting in a compositional modeling context. Only in 

cases where one can treat every one of a component’s attributes as dominator attributes is 

this dominance rule helpful. This assumption appears unlikely to hold in most cases.  

It is important to stress that the classical and parameterized dominance rules are 

not competing modeling formalisms. Parameterized Pareto dominance is a generalization 

of the classical rule, completely subsuming the situations in which the classical rule is 

valid. Thus, classical Pareto dominance is parameterized Pareto dominance for the case 

of no parameter attributes (i.e., when P = ∅ ). Although one could use the classical rule 

outside its soundness conditions, it is unclear what one would gain from this. To do so 

would require one to make aggressive assumptions about preferences for some of the 

attributes and could lead to unsound decisions. One can apply parameterized Pareto 

dominance without these assumptions and with the guarantee of a sound decision 

process. 

5.4 Conclusions and Chapter Summary 

The study reported in this chapter provides a firm theoretical basis for modeling 

system-level design alternatives by composing tradeoff models based on parameterized 
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efficient sets. Under reasonable assumptions, the parameterized efficient set for a 

component is guaranteed to contain the most preferred solution according to system-level 

preferences. The formal statements in this chapter are novel contributions to the study of 

dominance analysis and tradeoff modeling. Based on these, one can draw three important 

conclusions:  

First, designers can develop component tradeoff models independently of one 

another. This is evident from Theorem 5.2, which includes no assumptions about 

subsystems other than the one being considered. At a glance, one may be inclined to 

believe this should not be so on the basis that the solution that is most preferred in one 

component depends on what tradeoffs are available in the other components as well as 

the way in which the components interact (via the system composition models). 

However, the parameterized Pareto set construct enables designers to identify the set of 

all tradeoffs for a component that could be the most preferred rather than identifying one 

individual solution.  

Second, designers can develop component tradeoff models without specific 

knowledge about the system-composition model with which it will be used. Theorem 5.2 

(and Corollary 5.4) requires only that a general property for the system composition 

model holds for certain attributes. Although this requires designers constructing tradeoff 

models to have some general insight into a particular problem domain, it does not require 

them to know exactly how a given system will be modeled. For example, it is sufficient 

for designers to know that increasing the mass of a subsystem leads to an increase in 

system mass—they need not know whether increasing the subsystem mass also requires 

enlarging a structural component elsewhere, thus adding to the increase at the system 
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level. It is reasonable to believe designers have this sort of insight, as it is similar to the 

type of knowledge upon which experts rely when applying traditional design methods. 

Third, designers can develop component tradeoff models independently of specific 

system-level preferences. As with system composition models, designers require some 

level of insight into a system or application domain but problem-specific knowledge is 

unnecessary. Put simply, a designer constructing a tradeoff model need not know the 

degree to which a $90 pump is preferred to a $100 pump (all other factors being equal)—

only that it is safe to assume that less cost is preferred to more. 

Strictly speaking, the mathematical results of this chapter apply only to the case of 

composing parameterized efficient sets. However, one can infer that composing 

predictive tradeoff models, which are fit to parameterized efficient set data, can be 

effective. The next two chapters contain example problems that provide empirical 

evidence to this effect.  
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CHAPTER 6:  

 

REQUIREMENTS ALLOCATION FOR A HYDRAULIC LOG SPLITTER 

This is the first of a pair of example problems aimed at providing evidence that 

the tradeoff modeling approach is useful in engineering practice. The main conclusion of 

the previous chapter is that reasonable conditions exist under which it is mathematically 

sound to compose parameterized efficient sets. However, the main idea of tradeoff 

modeling is to generalize from the finite data sample using predictive models. These 

models preclude any mathematical guarantees and, consequently, empirical study is 

required. 

This chapter addresses requirements allocation decisions using a hydraulic log 

splitter design example. A database of hydraulics and related components is assembled 

and tradeoff models are generated according to the procedure outlined in Figure 3.1. 

System composition models that describe the interactions among the various components 

are identified and used to relate component-level attribute to system-level attributes. 

Decision results obtained using the tradeoff modeling approach are compared to an 

exhaustive search of the components database. Although one would not expect both 

approaches to yield precisely the same decisions, comparing the two is instructive.  

Chapter organization is as follows. Section 6.1 is an overview of the tradeoff 

model generation procedure for the hydraulics components. Section 6.2 is a description of 

designer preferences for the requirements allocation problem. Section 6.3 is a description 

of the system composition model for the log splitter system. Section 6.4 is a comparison 
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of the decision obtained using tradeoff models to that obtained via an exhaustive search 

of the components database. 

6.1 Generating Tradeoff Models for Hydraulics Components 

To demonstrate the tradeoff modeling methodology, a library of tradeoff models 

for hydraulics components is generated. The library consists of tradeoff models for gear 

pumps, directional control valves, cylinders and engines. Tradeoff models are generated 

using data primarily from publicly-available data sheets and catalogs, with the remainder 

obtained from corporate partner companies or their venders. All of the pricing data is for 

similar purchase quantities and, whenever necessary, the data has been “anonymized” to 

protect proprietary interests. Table 6.1 (next page) is a summary of the scope of the 

components in the database and Table 6.2 (page 140) is a summary of the results from 

data analysis and model fitting.  

A number of points are removed prior to fitting according to standard data 

cleansing and analysis practices. A vast majority of the data had nearly the same 

maximum operating pressure, which rendered that attribute uninformative from a 

prediction standpoint. Accordingly, any components with a maximum pressure below this 

level—about 172 bar (2500 psi)—were eliminated and that attribute was removed from 

the analysis. A similar observation applies to the engine speed data: the speed at 

maximum power was the same for most engines in our database (3600 rpm), and the 

same was true for speed at maximum torque (2500 rpm). Consequently, any engine data 

deviating from these marks by more than 100 rpm was eliminated and the tradeoff 
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Table 6.1: Summary of hydraulic component database. 

Component Description Attribute Symbol Min Max Units 

Cost pumpc  213 859 $ 

Mass pumpm  2.26 
(4.98) 

20.5 
(45.2) 

kg  
(lb)  

Displacement gV  1.18 
(0.072) 

48  
(2.93) 

cm3/rev 
(in3/rev) 

Max. op. 
pressure 

max,pumpp∆   120 
(1740) 

250 
(3625) 

bar  
(psi) 

Max. op. 
speed 

max,pumpn  3000 4000 rpm 

Pump Single-stage 
gear pump with 
relief valve 

Efficiency 
(total) 

η  0.44 0.92 - 

Cost cylc  57 404 $ 

Mass cylm  25.3 
(11.47) 

390  
(177) 

kg  
( lb) 

Stroke length cylL  0.2 (8) 
 1.52 
(60) 

m (in) 

Bore diameter cylb  0.038 
(1.5) 

0.127 
(5) 

m (in) 

Cylinder Dual-acting 
medium- or 
heavy-duty. 

Max. op. 
pressure 

max,cylp∆  172 
(2500) 

207 
(3000) 

bar  
(psi) 

Cost dcvc  70 168 $ 

Mass dcvm   7 
(15.4) 

16 
(35.3) 

kg (lb) 

Max. op. flow 
rate 

Q  60.6  
(16) 

113.6  
(30) 

l/min 
(gal/min

) 

Directional 
Control 
Valve 
(DCV) 

Manual, spool-
type, three-way 
closed center or 
four-way closed 
center (w/ open 
position) w/ 
load-side relief 
valve or detent 

Max. op. 
pressure 

max,dcvp∆  138 
(2000) 

310 
(4500) 

bar  
(psi) 

Cost engc  180 1907 $ 

Mass engm  3.4 
(7.5) 

58.5 
(129) 

kg (lb)  

Max. power 
output 

max,engP  0.75 
(1.0) 

18.6 
(25.0) 

kW  
(hp) 

Speed at max. 
power output 

eng,maxPn  3600 7500 rpm 

Max. torque 
output 

max,engτ  1.08 
(0.8) 

55  
(40.6) 

Nm  
(lb-ft) 

Engine Internal 
combustion 
engine 
(gasoline-
fueled) 

Speed at max. 
torque output 

eng,maxTn  2200 5500 rpm 
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Table 6.2: Summary of data eliminations and tradeoff model generation. 

Component Engine (A) Engine 
(B) 

Pump Cylinder DCV 

Total # in DB 59 61 188 36 
# after outlier analysis 49 43 158 32 
# after dominance analysis 14 5 24 137 8 

Validation results: MSE  
(% of mean) 

45.8 
(15%) 

33.2 
(2%) 

3.63 
(1%) 

14  
(9%) 

14.2  
(13%) 

Notes: • Kriging interpolation used for all tradeoff models 

• All tradeoff models predict cost as a function of the 
other attributes 

• Engine split into two models after clustering analysis 
 

models did not incorporate this attribute. A small percentage of components were 

eliminated on the basis of being outliers or appearing suspect in some way (e.g., 

unusually high or low price for the stated performance attributes).  

Parameterized Pareto dominance is applied after making eliminations based on 

the above grounds. This accounts for the largest number of eliminations (see Table 6.2). 

Applying the tradeoff modeling domain description approach (Figure 4.9) does not result 

in further eliminations, but SVC results indicate that two disjoint clusters exist in the 

engine data. It was determined that considerably better tradeoff model accuracy could be 

had by fitting independent models to each sub-domain. This was deemed worthwhile, 

despite the expense of requiring two independent optimization searches to allocate 

requirements for the system (one using each engine tradeoff model). 

The tradeoff model for each component is formulated to predict cost as a function 

of its other attributes. Kriging methods and the DACE Matlab Kriging Toolbox 

(Lophaven, et al. 2002) are used to fit the tradeoff models. Validation is conducted using 

leave-one-out cross validation (Witten and Frank 2005). 
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6.2 Hydraulic Log Splitter System and Design Preferences 

A log splitter is a system that divides a roughly cylindrical log into two or more 

pieces, typically in association with the harvesting of firewood. Several physical 

configurations are possible, but the current example is limited to a horizontal-acting type 

(Figure 6.1). An operator loads a log into the system and then operates a control to drive 

a wedge into the log. The wedge action is aligned with the grain of the wood, so minimal 

effort is required after initiating the split. Critical requirements include portability 

(typically light weight, has wheels for transport, etc.), cost and splitting capabilities 

(maximum size of log it can handle, maximum force it can apply at wedge, etc.). 

As a first step in formulating the decision problem, it is useful to identify an 

objectives hierarchy. This is given in Figure 6.2. Each leaf of the tree associates with an 

attribute the one must compute:  

• Cost: Sum of the purchase prices of the hydraulic components and the engine 

(which are costs to a system designer). Assembly or other cost factors are not 

considered in this example. 

• Mass: Sum of the masses of the hydraulic components and the engine. Structure 

weight is not considered in this example.  

• Ram Force: Maximum force the system can apply to the log. 

• Log Length: The maximum length of log that will fit into the system. 

• Cycle Time: An index for how long it takes to split a log. Defined as the time for 

the wedge to extend 0.15 meters (6 inches) at maximum engine torque (i.e., 

maximum ram force) plus the time to retract it with the engine running at 

maximum power (a conservative approximation of maximum ram speed). 
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Figure 6.1: A hydraulic log splitter: (a) physical layout, (b) functional  
configuration, where white boxes correspond to components modeled in this example 
using tradeoff models. 
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Figure 6.2: Objectives hierarchy for the log splitter problem. 
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Figure 6.3 contains graphs of the individual value functions that represent 

designer preferences corresponding to the individual system attributesj. Preferences for 

tradeoffs are elicited in a hierarchical fashion by first eliciting a value function for the 

three performance attributes and then combining this result with weight and cost for the 

top-level elicitation (for a discussion on eliciting preferences, see (Keeney and Raiffa 

1993, Section 5.8, Clemen 1996, pp. 546-52)). The performance attribute is a tradeoff 

among its constituent objectives: 

 P T F L T F T L F L T F L0.15 0.17 0.01 0.3 0.1 0.1 0.17v v v v v v v v v v v v v= + + + + + + , 

where ( )T TTv V z=  is the value function result for the cycle time attribute at Tz , ( )F FFv V z=  

is for the ram force attribute and ( )L LLv V z=  is for the log length attribute. The top-level  
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Figure 6.3: Graphs of the individual value functions for the five  

system-level attributes of the log splitter design problem. 

 

   

                                                 
j All preferences are those of the researcher.  
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value function is  

 ( )sys C P M C P C M P M C P M0.45 0.12 0.02 0.16 0.07 0.07 0.11V v v v v v v v v v v v v= + + + + + +z ,  

where the ( )C C Cv V z=  is the value function for the cost evaluated at Cz , ( )M M Mv V z=  is for 

the mass attribute, Pv  is the performance attribute defined above and z  is the system-

level attribute vector. Thus, the requirements allocation problem is to find the 

component-level attribute values that maximize ( )sysV ⋅ . 

6.3 System Composition and Requirements Allocation 

Figure 6.4 is a summary of the system composition model for the log splitter 

example. The model consists of the algebraic relationships designers typically use to 

analyze hydraulic systems. The cost and mass models are sums of the costs and masses of 

 

Cost ( )C C pump cyl dcv engz S c c c c= = + + +y  

Mass ( )M M pump cyl dcv engz S m m m m= = + + +y  

Ram 
Force ( ) ( ) 2

F F max,sys cyl
4

z S p b
π 

= = ∆  
 

y  

where max,sysp∆  is the maximum operating pressure of the system as dictated 

by the rating limitations of components or the pressure that can be generated 
by the engine-pump combination. 

Log 
Length 

( )L L cylz S L= =y  

Cycle 
Time ( ) ( )2

T T cyl 4

PWR

1 1
1.56z S b

Q Q
π

τ

 
= = + 

 
y  

where Qτ  is the maximum flow rate the system can achieve at max,engτ  and 

PWRQ  is the maximum flow rate (in gal/min) at max,engP . Both are non-

decreasing functions of pump displacement, the engine speeds at the 
respective operating points and component rating limitations. 

Figure 6.4: Summary of system composition model for log splitter design problem. 
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the individual components. Ram force is a function of the maximum system operating 

pressure and cylinder bore. Log length is equivalent to the cylinder stroke length. Cycle 

time is an index (i.e., not the actual cycle time, but a measure that correlates with it 

strongly) that depends on the maximum system flow rate at maximum engine torque, the 

maximum system flow rate at maximum engine power and cylinder bore. 

To formalize the requirements allocation problem, let S  represent the vector-

valued system composition model (comprised of the ( )iS ⋅  from Figure 6.4), y�  denote the 

vector of component-level attributes controlled by the optimization routine, and ( )iT y�  

denote the vector of all the component-level tradeoff model predictions using the thi  

engine tradeoff model, where 1,2i = . Thus, requirements allocation problem is to find 

 ( )* *, =  y y T y� � , 

such that 

 
{ }

( )( )( )
* * *

1 2

* * *

,

arg max ,
i

sys i i iV
∈

 =  
y y y

y S y T y
� � �

� � � , (7.1) 

and  

 ( )( )( )* arg max ,
i

i sys iV
∈

=   
y Y

y S y T y
��

� � � , (7.2) 

where 1,2i =  indicates which engine tradeoff model is used and iY�  is the domain in 

which the tradeoff model predictions are valid (i.e., the domain description determined 

via SVDD). Note that although Equation (7.2) entails an optimization search over the 

input domain of the tradeoff models, Equation (7.1) simply is a discrete choice between 

two alternatives. 
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A couple of implementation notes are worth mentioning. First, in general it is 

important that designers use every attribute of a tradeoff model in the system model or 

assign them constant value. Passing unused variables to the optimization method can 

reduce solver efficiency significantly. In this example, the system integration model uses 

all available component-level attributes. Second, the optimization problem of Equation 

(7.2) is, in general, nonlinear and non-convex. Designers must choose their optimization 

algorithms appropriately. Gradient-based methods are used in this example, but with a 

number of random-restart runs to improve the odds of finding the global maximum. 

6.4 Comparison to Exhaustive Search of Components Database 

To demonstrate that the tradeoff modeling approach yields a reasonable 

requirements allocation solution for the log splitter, the results of the requirements 

allocation problem are compared to an exhaustive search of the components database. 

One typically would not do an exhaustive search in practice due to the large number of 

combinations that can exist. Even after removing outliers, the modestly-sized database 

yields nearly 13 million possible combinations for the log splitter system. Although one 

does not necessarily expect the two approaches to yield equivalent solutions—since the 

tradeoff models are able to generalize beyond the database contents—the exhaustive 

solution does provide a meaningful baseline for comparison. The tradeoff modeling 

approach should do no worse than the exhaustive search on the basis that the tradeoff 

models are representations of the database contents. 

Table 6.3 contains results from the exhaustive search and the two tradeoff 

modeling optimization runs (one with each engine tradeoff model). The Engine 1 tradeoff 
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Table 6.3: Comparison of log splitter requirements allocation results from  
tradeoff modeling approach and exhaustive search. 

Component Attribute 

Composed 
Tradeoff 
Models 

 (Engine 1) 

Composed 
Tradeoff 
Models  

(Engine 2) 

Exhaustive Search 
of DB 

Cost $ 223 $ 221 $ 223 
Weight 11.7 kg (5.3 lb) 7.9 kg (3.6 lb) 11.7 kg (5.3 lb) 

Displacement 
6.1 cc/rev 

(0.37 in3/rev) 
5.7 cc/rev  

(0.35 in3/rev) 
6.1 cc/rev 

(0.37 in3/rev) 
Max. op. speed 4000 rpm 4000 rpm 40000 rpm 

Pump 

Efficiency 0.88 0.63 0.88 

Cost $ 233 $ 213 $ 260 
Weight 181 kg (82.3 lb) 155 kg (70 lb) 254 kg (115 lb) 

Stroke length 0.68 m (27 in) 0.88 m (34.5 in) 0.71 m (28 in) 

Cylinder 

Bore diameter 0.114 m (4.5 in) 0.102 m (4 in) 0.127 m (5 in) 

Cost $ 83 $ 75 $ 90 
Weight 18.7 kg (8.5 lb) 26 kg (12 lb) 15.4 kg (7 lb) 

Directional 
Control 
Valve Max. op. flow 

rate 
68.1 l/min 

(17 gal/min) 
73.8 l/min 

(19.5 gal/min)  
68 l/min 

(18 gal/min) 

Cost $ 330 $ 800 $ 300 
Weight 105 kg (47 lb) 192 kg (87 lb) 121 kg (55 lb) 

Maximum 
Power 

6.7 kW  
(8.9 hp) 

11.2 kW  
(15 hp) 

6.7 kW  
(9 hp) 

Engine 

Maximum 
Torque 

18.8 N-m  
(13.8 ft-lb) 

32.3 N-m  
(23.8 ft-lb) 

19 N-m  
(14 ft-lb) 

Ram Force 
( Fv ) 

0.897 0.775 0.958 

Log Length 
( Lv ) 

0.944 0.996 0.963 

Cycle Time 
( Tv ) 

0.987 0.993 0.967 

Performance 
( Pv ) 

0.874 0.812 0.918 

Weight ( Wv ) 0.928 0.887 0.87 

Value 
Components 

Cost ( Cv ) 0.955 0.850 0.955 

System Value ( v ) 0.958 0.933 0.956 
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model corresponds to the tradeoff model for lower-torque engines. According to the 

tradeoff modeling approach, a system that includes an engine from the Engine 1 domain 

is preferred to a system with an engine from the Engine 2 domain (preference value of 

0.958 compared to 0.933). The exhaustive search corroborates this result, with its engine 

being virtually identical to the engine predicted using the Engine 1 tradeoff model. 

Overall, the tradeoff modeling approach yields results similar to the exhaustive 

search solution. The tradeoff modeling approach identifies targets for the pump and 

engine that are virtually identical to those of the exhaustive search solution. However, the 

tradeoff modeling approach does generalize beyond the database contents for the cylinder 

and DCV requirements. Upon examining the system attribute valuations, one can see that 

the tradeoff modeling solution sacrifices small amounts in terms of the performance 

attributes in order to improve in the weight attribute. That this particular solution is not in 

the database underscores a strength of the tradeoff modeling approach to generalize 

beyond the discrete data.  

6.5 Conclusions and Chapter Summary 

The results of the log splitter design problem provide evidence that designers can 

make requirements allocation decisions in a practical setting by using component-level 

tradeoff models to compose a system-level model. The process of generating tradeoff 

models begins with observational data about existing implementations of each type of 

component. For each component, a tradeoff model is fit to the parameterized efficient set 

of the observed data. These tradeoff models are composed together using a system 

composition model (Figure 6.4) based on models designers typically use when designing 

fluid power systems.  
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Requirements allocation is an important type of decision during systems design, 

which means these results have practical significance. As noted in Section 2.2.1, the 

typical procedures that designers use for accomplishing this have significant limitations. 

They tend to require strong assumptions about system operation and preclude designers 

from considering all the tradeoffs that are important to them. The approach based on 

composing tradeoff models has no such limitations. 

It is noteworthy that the requirements allocation problem would not have been 

solvable using tradeoff models if not for the application of the domain description 

approach from Chapter 3. Most obviously, the engine data contains two distinct clusters 

that one can model much more accurately using independent models. However, even 

though the other components feature only a single predominance cluster, they all have 

complex domain boundaries (i.e., they are irregular and non-convex).  

The results of this chapter build upon the mathematical results of Chapter 5, 

providing empirical evidence that the theoretical conclusions hold in practice. However, 

further empirical study is required. The log splitter example is not highly complex. Only 

one system configuration is considered and the system composition model is algebraic in 

nature. The next chapter contains a more complex example that involves multiple system 

configurations and dynamical system models.  
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CHAPTER 7:  

 

ARCHITECTURE SELECTION FOR A HYBRID HYDRAULIC VEHICLE 

This is the last in a trio of chapters aimed at evaluating whether it is effective for 

designers to compose system-level models using component-level tradeoff models. 

Theoretical results from Chapter 5 indicate that composing parameterized efficient sets, 

which are the basis for predictive tradeoff models, is a sound operation in principle. 

Empirical evidence from Chapter 6 indicates that tradeoff modeling can be effective in 

practice. The current chapter contains additional empirical evidence through a more 

complex design example. 

The log splitter problem from Chapter 6 involves a requirements allocation 

decision and algebraic system interaction models. This is a realistic design problem, but 

is not representative of all system-level decision problems. The design problem in the 

current chapter is the selection of a power train architecture for a hybrid hydraulic vehicle 

(HHV). This problem involves dynamical system models, which are considerably more 

complex than the algebraic models from the previous example. 

Section 7.1 is a brief overview of the problem. Section 7.2 is a summary of the 

tradeoff model generation procedure and results associated with this problem. Section 7.3 

is a description of the alternative HHV drive train architectures to be considered in the 

decision problem. Section 7.4 is an overview of the dynamical models used to evaluate 

the alternatives. Section 7.5 contains the results of the decision problem. Readers should 

note that the emphasis in this chapter is on the approach to tradeoff modeling and 

decision making rather than the design of a hybrid vehicle.  
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7.1 Hybrid Hydraulic Vehicles 

A hybrid vehicle combines two different sources of power for propulsion: an 

internal combustion engine and a second source that is capable of storing regenerated 

energy during the driving cycle. Energy regeneration occurs when a driver slows a 

vehicle. Rather than dissipate the kinetic energy of the vehicle as heat through friction 

brakes, a hybrid vehicle converts the energy into a storable form. Two common 

technologies for storing and using the regenerated energy are batteries with electric 

motors/generators and accumulators with hydraulic motors/pumps.  

Both types of systems have advantages and disadvantages for this application. 

The main advantage of hybrid electric vehicles is that electric power technology has a 

relatively high energy density (i.e., they can store a larger quantity of energy per unit 

mass). Conversely, hybrid hydraulic vehicles have an advantage in terms of the power 

density.  

Presently, hybrid electric vehicles (HEVs) are more common, particularly for 

passenger vehicles. However, hybrid hydraulic vehicles (HHVs) have found application 

in service vehicles such as delivery and garbage trucks and have received increasing 

attention from the research community. The large power density of hydraulic power 

systems makes them attractive since this means they can recuperate a larger proportion of 

the energy typically dissipated during breaking.  

Although vehicle power train components have grown increasingly sophisticated, 

the architecture for a conventional internal-combustion vehicle remains straightforward: 

there is a single flow of power flows from the engine to the drive wheels through a 

mechanical transmission. In contrast, several power transmission architectures are 

possible using hybrid technology and most of these can involve different energy flows 
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depending on the vehicle state. The search for effective and efficient hybrid vehicle 

architectures is a topic of ongoing research; one can find several studies and surveys in 

the recent literature—e.g., see (Bernhard 2004, Achten 2008, Van de Ven, et al. 2008), 

among others. 

The complex nature and novelty of hybrid vehicle power trains makes them an 

interesting example problem in the context of this research. Hybrid vehicle technology—

HHV technology in particular—continues to evolve. It is difficult for designers to 

identify whether one architecture is superior to another simply by inspection, which 

means they need some amount of quantitative modeling. The tradeoff modeling approach 

investigated in this research can benefit designers of HHVs by providing them with a 

means to evaluate their alternatives quickly and confidently. 

Another interesting consideration is that comparing HHV power train 

architectures typically requires an analysis of vehicle dynamics. Although it is possible to 

make comparisons using algebraic relationships akin to those in the log splitter problem, 

these are limiting. System-level objectives for vehicles often include things such as 

maximizing fuel economy and acceleration. It is difficult for designers to evaluate these 

accurately without considering the dynamical characteristics of a vehicle.  

7.2 Tradeoff Model Generation 

For this example, tradeoff models are generated for three types of components: 

variable-displacement hydraulic pump/motors, hydraulic accumulators and gasoline-

fueled internal combustion engines. Like the log splitter example, the tradeoff models are 
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Table 7.1: Summary of component database for HHV problem. 

Component Description Attribute Min Max Units 

Cost 980 2980 $ 
Mass 4.99 41.73 kg 
Max. Displacement 10.49 140 cm3/rev 
Max. Pressure 138 361 bar 

Pump Axial piston 
type, variable 
displacement 

Max. Speed 1800 3200 rpm 

Cost 330 1500 $ 
Mass 14.0 167.83 kg 
Volume 0.0036 0.0568 m3 

Accumulator Bladder type 
hydraulic 
accumulator  

Max Pressure 207 350 bar 

Cost 180 2845 $ 
Mass 3.4 80.2 kg 
Max. Power  0.75 26.1 kW 

Engine Gasoline-
fueled internal 
combustion 
engine Speed at Max. Power 3600 7500 rpm 

 

based on data that originate from published sources and information requests from 

vendors. Table 7.1 is an overview of the database of components collected for the HHV 

architecture selection problem.  

Tradeoff model generation follows the procedure outlined in Figure 3.1 and the 

domain description procedure outlined in Figure 4.9. During data validation it was 

observed that each component had at least one uninformative attribute. For example, 

nearly all the engines had the maximum power at the same engine speed. Similar 

observations apply to maximum pressure and maximum speed for the pumps and 

maximum pressure for the accumulators. Each of these attributes is removed from the 

analysis and the few data points with different values for these attributes is removed from 

the database.  

The parameterized Pareto dominance rule is applied to the remaining data. Table 

7.2 includes a summary of how each attribute is treated during this step. Note that all 
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Table 7.2: Summary of domination and model structure for HHV tradeoff models. 

Component Attribute Attribute Type Tradeoff Model 
Role 

Pump Cost Dominator (less is better) Output 
 Mass Dominator (less is better) Input 
 Max. Displacement Parameter Input 

Accumulator Cost Dominator (less is better) Output 
 Mass Dominator (less is better) Input 
 Volume Dominator (more is better) Input 

Engine Cost Dominator (less is better) Output 
 Mass Dominator (less is better) Input 
 Max. Power  Parameter Input 

 

accumulator attributes are dominators, which means in that case the dominance rule is 

equivalent to classical Pareto dominance. Maximum pump displacement is modeled as a 

parameter attribute because although it is tends to influence performance-oriented 

objectives positively (i.e., increasing it increases power output) it tends to influence 

efficiency-oriented objective negatively. Maximum engine power is a parameter attribute 

for a similar reason: although higher power generally means better performance, it also 

means a higher fuel consumption rate.  

The domain description procedure (Figure 4.9) is performed on the parameterized 

efficient set for each component and tradeoff models are fit to the data using Kriging 

methods (Lophaven, et al. 2002). Table 7.3 is a summary of those results. Validation is 

performed using leave-one-out cross validation (Witten and Frank 2005). The results 

reported in the table are the mean percentage prediction error as measured using that 

technique. The engine model error is somewhat higher than is desirable, but the other 

models yield good fits. 
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Table 7.3: Summary of data eliminations and tradeoff model generation for 
HHV problem. 

Component Engine Pump Accumulator 

Total # in DB 44 31 31 
# after outlier analysis 24 31 29 
# after dominance analysis 14 29 19 

Validation Results (mean % error) 28% 5.5% 4.5% 

 

7.3 HHV Power Train Architectures and Designer Preferences 

Two HHV power train architectures are considered in this example. Both are 

variants of a hydro-mechanical parallel configuration in which power may be delivered to 

the drive wheels from either or both of the internal combustion engine and the hydraulic 

motor (Van de Ven, et al. 2008). 

7.3.1 Independent Torque Hybrid Hydro-Mechanical Drive Train 

The first alternative is an independent torque hybrid hydro-mechanical (ITHHM) 

drive train. Figure 7.1 is an illustration of the first configuration considered in this 

example. It is capable of supplying torque to each drive wheel independently by virtue of 

the dual pump and planetary gearbox arrangement (PGB1 and PGB2). The internal 

combustion engine, when running, operates at a fixed speed and power output. This 

allows one to set the operating point to minimize fuel consumption.  

Power flow through the system changes depending on the vehicle state. Different 

operating scenarios include the following: 

• The engine is off and the vehicle is propelled by the pumps (acting as motors) 

using energy stored in the accumulator. The displacement of the pumps is varied 

to provide the appropriate amount of torque to the wheels. 
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Figure 7.1: A hydro-mechanical drive train with independent wheel torque control. 

 

• The accumulator has released most of its stored energy, but a higher vehicle speed 

is desired. In this case, the engine is turned on and drives the wheels directly. Any 

excess energy is used to restore the accumulator (with the pumps in pumping 

mode). 

• Deceleration of the vehicle is desired. Kinetic energy of the vehicle is transformed 

into potential energy stored in the accumulator by running the pumps. The rate of 

energy transformation (and, consequently, deceleration) is controlled by the pump 

displacement setting. Friction brakes may be engaged to assist or to bring the 

vehicle to a complete halt.  

Some control logic is required to ensure the power train is in the appropriate state. The 

engine is controlled by a pressure sensor on the high-pressure accumulator, HPA. The 
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engine starts when system pressure falls below a predetermined threshold and is shut off 

when the pressure becomes sufficient. Hysteresis is designed in to the controller to 

prevent the engine from cycling on and off rapidly. Speed and torque controllers set the 

appropriate pump displacements based on the current and desired state of the vehicle. The 

displacement of Pump B is varied to maintain a constant engine operating point. The 

displacements of Pump E1 and Pump E2 are set as a function of the desired speed of the 

vehicle.  

7.3.2 Simplified Hybrid Hydro-Mechanical Drive Train 

The second alternative is a simplified hybrid hydro-mechanical (SHHM) drive 

train. This is a variant of the ITHHM concept. Figure 7.2 is an illustration of this concept. 

Relative to that of Figure 7.1, this architecture has slightly less complex hydraulics (only 

one pump on the high-pressure side), but is incapable of independent control of wheel 

torque.  

The simpler architecture potentially is advantageous because it requires fewer 

components. Potentially, this can result in a lighter and less expensive transmission with 

fewer hydraulic losses to detract from efficiency. 

The mechanical transmission implementation is identical to the more complex 

configuration. The control logic also is largely the same. 
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Figure 7.2: A hybrid hydro-mechanical drive train with high-low gear. 

 

7.3.3 System-Level Decision Objectives 

There are three system-level design objectives for this problem: maximize fuel 

economy, maximize vehicle acceleration and minimize costs. They are quantified as 

follows: 

• Fuel economy: Measured in miles-per-gallon (liters-per-kilometer) achieved on 

the EPA Urban Dynamometer Drive Cycle (U.S. EPA 2008). Computed using a 

simulation of vehicle dynamics. 

• Acceleration: Measured as time required to accelerate from full stop to 60 mph 

(96.56 kph). Computed using a simulation of vehicle dynamics. 
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• Costs: Measured as purchase prices of all major drive train components in US$ 

(which, from the perspective of a system designer, are costs). Assembly and 

transport costs not considered. Computed using tradeoff model predictions. 

Figure 7.3 contains graphs of the value functions associated with each attribute. These 

represent the preferences of the researcher and are elicited using standard decision- 
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Figure 7.3: Graphs of the individual value functions for the HHV power train design 
problem. 
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analysis techniques (see (Keeney and Raiffa 1993, Section 5.8, Clemen 1996, pp. 546-

52)). The individual value functions are combined using the following value function: 

 

0.35 0.22 0.1

0.1 0.1 0.06

0.11

sys mpg acc price

mpg acc mpg price acc price

mpg acc price

v v v v

v v v v v v

v v v

= + + +

+ + +  

where sysv  is the overall system value and mpgv , accv  and pricev  are the values obtained 

from the mileage, acceleration and cost value functions, respectively. 

7.4 System Dynamics 

7.4.1 System Model Overview 

Both power train alternatives are modeled in the Modelica modeling languagek 

using an open-source Fluid Power library (Paredis 2008). The models account for engine 

behavior, vehicle dynamics and energy losses. Figure 7.4 (page 162) is a top-level view 

of the Modelica model for the ITHHM drive train alternative. The key model components 

are: 

• driveTrainMech. Encapsulates all of the mechanical transmission components. In 

addition to the “mechanical transmission” block from Figure 7.1, it also includes 

the differential and planetary drives located at the wheels. 

• engine. The engine is modeled as having inertia and the model accounts for fuel 

consumption. 

• vehicleBody. This model accounts for inertia as well as rolling and aerodynamic 

resistances. 

• HPA. The high-pressure accumulator.  

                                                 
k The Modelica Association: http://www.modelica.org/ 
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• Pumps (PumpE1, PumpE2 and PumpB). Variable displacement axial piston 

pumps modeled with losses (see Section 7.4.2). 

• engineControl. Controller for turning engine on or off based on hydraulic system 

pressure. 

• TorqueControl. Changes the displacement of Pump B to ensure that the engine 

remains at a fixed operating point.  

• speedControl. Implements the speed commands for the system. Determines 

displacements for the E Pumps to achieve desired vehicle speed. Inputs are 

current vehicle speed and hydraulic pressure. 

Figure 7.5 (next page) is the corresponding view of the SMMH drive train alternative. 

The main distinction is that there is only one E pump and the driveTrainMech component 

implementation is different to reflect the lack of independent torque control of the drive 

wheels. 

7.4.2 Losses and Fuel Consumption 

Hydraulic Pump Losses 

One of the larger disadvantages of HHV technology relative to HEV technology 

is that variable displacement hydraulic pumps/motors are inefficient relative to electric 

generator/motors. Consequently, to evaluate any HHV drive train architecture accurately, 

one must account for these losses.  

The pump model in the open source fluid power library incorporates a loss model 

based on the work of McCandlish and Dorey (1984). Using this  
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Figure 7.4: Top-level view of Modelica model for the ITHHM drive train. 
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Figure 7.5: Top-level view of Modelica model for the SHHM drive train. 
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model, one can account for volumetric and mechanical losses with reasonable accuracy 

over a wide range of operating conditions. This model requires one to know four pump 

parameters: 

• A volume ratio associated with flow loss 

• Slip coefficient associated with flow loss 

• Viscous drag coefficient associated with torque loss 

• Coulomb friction coefficient associated with torque loss 

One can determine these parameters for a given pump experimentally, but pump 

manufacturers tend not to publish these coefficients. For the current example problem, 

the same coefficients are used for all pumps. These coefficients are determined 

experimentally using a pump that is representative of those used to fit the tradeoff model. 

Ideally, one would incorporate these coefficients in a pump tradeoff model should they 

vary significantly over the set of pumps being modeled. 

Fuel Consumption 

The fuel consumption model is based on published brake-specific fuel 

consumption (BSFC) data from the engine product literature. Brake-specific fuel 

consumption is a measure of engine fuel consumption rate for a particular power output 

that one determines using a dynamometer. Minimum BSFC values for various engines of 

the same fuel type are remarkably constant (Aird 2000). For engines in the database used 

to generate the engine tradeoff model, the BSFC is about is 295 g/kW-hr. Since the 

engine in both architectures has a constant operating point, it is possible to compute a fuel 

consumption rate in volume per unit time. The calculation is 

 
1

* * *
3600

gasoline engfcr bsfc Pρ
 

=  
 

, 
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where fcr  is the fuel consumption rate in gallons/second, bsfc  is the brake-specific fuel 

consumption rate in g/kW-hr, gasolineρ  is the density of gasoline expressed in gallons per 

gram, engP  is the operating power of the engine in kW and the last term converts from 

hours to seconds. Because the engine operates at a fixed point when running, one can 

compute the total fuel consumed on a particular drive by multiplying the fcr  by the total 

time the engine was running. 

7.4.3 Computing the Decision Attributes 

Estimating Fuel Economy 

Fuel economy is estimated by simulating the EPA Urban Dynamometer Drive 

Schedule (UDDS) (U.S. EPA 2008). This consists of a velocity-time profile 

representative of a typical passenger vehicle in an urban setting. Figure 7.6 is a graph of 

the driving schedule in units of miles-per-hour versus time in seconds. The total driving 

duration is 1369 seconds, covering a distance of 7.45 miles (approximately 12 km) at an 

average speed of 19.59 mph (8.7575 m/s or 31.53 kph). To conduct the UDDS  
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Figure 7.6: EPA Urban Dynamometer Drive Schedule. 
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simulation, the drive profile is input to the speed controller component in the Modelica 

model. This controller issues the signals required for the vehicle to follow the given 

schedule. 

One challenge in estimating fuel economy is that some combinations of 

component-level attributes result in a system that is incapable of following the drive 

cycle. This usually happens when components are undersized. Figure 7.7 is an illustration 

of this effect. The problem is that the fuel economy computed for such a system may 

actually be quite good. In this sense, the system is “cheating” the test by deviating from 

it.  

To avoid favoring systems that are incapable of following the EPA UDDS, a 

constraint is added to the decision problem based on a global trajectory error measure. 

The measure is computed as the integral of the squared error relative to the EPA drive 

schedule. Alternative solutions to this problem include using a maximum error criterion 

or creating an additional decision attribute to formalize a preference for solutions that 

follow the drive schedule closely. 
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Figure 7.7: Illustration of a speed trajectory that does not follow the EPA UDDS. 
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Estimating Acceleration Time 

The time required to accelerate from full stop to 60 mph (96.56 kph) is estimated 

using the same dynamical model as is used for the fuel economy simulations. However, 

rather than providing the speed controller with the urban driving schedule, the 

acceleration simulation is implemented by inputting a (large) step function into the speed 

controller. This prompts the simulated vehicle to its full acceleration in an attempt to 

track the step function. The simulation terminates when the desired speed is achieved. 

If power train components are undersized, it is possible that a simulation does not 

obtain the desired top speed. In this case, the simulation proceeds for 60 seconds of 

simulated time and that solution is assigned a zero utility for the acceleration attribute 

(c.f. Figure 7.3). One need not enforce a constraint on the optimizer in this case because 

the solution receives such a poor rating. 

7.5 Solving the Decision Problem 

7.5.1 Component-Level Search Space 

Because the aim of this example is illustrative, the mechanical transmission 

components are held fixed during this decision process. This is a significant 

simplification because the gear ratios have a significant impact on acceleration and fuel 

economy. Although this will not yield the best possible HHV drive train architecture, the 

problem retains adequate complexity to explore the role of tradeoff models in the 

decision solution process. 

For each system alternative, tradeoffs for four components are explored: the 

engine, the accumulator, the B pump and the E pump(s). The two E-level pumps in the 

ITHHM drive train are assumed identical. Table 7.4 is a summary of the search space and 

tradeoff models for the problem.  
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Table 7.4: Summary of attribute search space for HHV drive train problem. 

Component Search Attributes Tradeoff 
Model 

Predicted 
Attribute 

Pump B Max displacement, mass ( )pumpT ⋅  Cost 

Pump E Max displacement, mass ( )pumpT ⋅  Cost 

Engine Max power, mass ( )engT ⋅  Cost 

Accumulator Max volume, mass ( )accumT ⋅  Cost 

 

7.5.2 Decision Formulation 

The decision problem formulation follows the general formulation from Section 

3.3.2. Requirements allocation is performed on each drive train architecture to predict the 

attributes designers would achieve if they continued to implement that alternative. The 

system selection decision is a discrete choice between the two predictions. To formalize 

the decision problem mathematically, let { },a ITHHM SHHM∈  be an indicator to 

distinguish between the drive train architectures. Then let: 

• ( )mpg,aS ⋅  denote the simulation model for mileage estimation for architecture a , 

• ( )acc,aS ⋅  denote the simulation model for estimating 0-60 mph time for 

architecture a , and 

• ( )cost,aS ⋅  denote the algebraic model that computes system cost for architecture a  

given the prices of its components. 

Also, let ( ) ( ) ( ) ( )mpg, acc, cost,, ,a a a aS S S ⋅ = ⋅ ⋅ ⋅ S  represent a vector-valued model composed 

of the three scalar models. As in previous chapters, let y�  denote the vector of search 
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attributes (second column of Table 7.4) and Y�  represent the valid search domain as 

identified by the support vector domain description procedure. Thus, the requirements 

allocation problem for each { },a ITHHM SHHM∈  is to find 

 ( )* * *,a a a
 =  y y T y� �  

such that  

 ( )( )( )* arg max ,a sys av
∈

=   
y Y

y S y T y
��

� � � . (8.1) 

The final selection decision is formalized as  

 
{ }

( )* *

,

arg max sys a
a ITHHM SHHM

a v
∈

= y . 

In addition to the usual domain description constraints, the optimization problem stated in 

Equation (8.1) is subject to an additional inequality constraint regarding the squared error 

integral of the vehicle tracking the speed profile for fuel economy estimation. This is 

implemented as an inequality constraint. 

7.5.3 Results 

For each architecture, a search of the component-level attribute space (Equation 

(8.1)) is conducted using a pattern search optimization method. Table 7.5 is a summary of 

the results. The ITHHM concept—the one with the more complex hydraulics and 

mechanical transmission—is the most preferred.  

Part of the motivation for exploring the SHHM architecture was that it could be 

less expensive than the more complex architecture for similar levels of performance. 

However, according to these results this is not the case. In order to implement the SHHM 

architecture in a way that is capable of following the EPA UDDS successfully, one 
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Table 7.5: Summary of results from HHV drive train selection. 

Architecture Component Variable 
ITHHM SHHM 

Units 

Engine Max Power 12.6 15.6 kW 
 Mass 36.2 40.3 kg 
 Cost 591 1565 $ 

Accumulator Volume 0.0322 0.0322 m3 
 Mass 69.4 69.3 kg 
 Cost 1036 1036 $ 

Pump B Max Displacement 11.78 16.96 cm3/rev 
 Mass 4.9 5.2 kg 
 Cost 998 1076 $ 

Pump E Max Displacement 12.42 33.79 cm3/rev 
 Mass 5.3 13.1 kg 
 Cost 1020 1361 $ 

System Attributes Mileage 49.2 36.6 mi/gal 
 Acceleration  8.89 8.26 sec 
 Cost 6167 6538 $ 

Value Function System 0.8034 0.7588  
 Mileage 0.9834 0.9028  
 Acceleration 0.8062 0.8449  
 Cost 0.6867 0.6257  

 

requires a relatively large and expensive engine. Although the SHHM architecture is 

better than the ITHHM in terms of pumps (recall that there are two identical Pump E 

components in the ITHHM configuration), this difference is less than the added cost of 

the larger engine. This is an interesting result that would not have been apparent without 

the tradeoff model based optimization study. 

It is interesting to note that both solutions have essentially identical solutions for 

the accumulator. Accumulator size impacts energy storage most directly; it has relatively 

little to do with the rate at which it can be stored or returned. Thus, the solution likely is 

the smallest accumulator that still allows for successful completion of the acceleration 

and fuel economy tests.  
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It is difficult to validate whether these predictions are valid. Unlike in the log 

splitter example, it is impractical to compare these results to an exhaustive search of the 

components database. Although the database is small, it still contains 21,576 

combinations after removing gross outliers. The simulation models require on the order 

of two minutes to solve, which means this many combinations requires on the order of a 

month of computer time.  

One can obtain some insight into the solutions by comparing them with the 

database entry that is the most similar. Table 7.6 (next page) is a summary of such a 

comparison. Nearest neighbors are selected using an equally-weighted normalized 

distance metric. The percent difference is relative to the entry from the database. 

Negative results indicate under-estimates.  

Most of the solution points are within about 10% of a database entry, but the 

differences between others is much greater. One should not expect perfect 

correspondence between a solution found using the tradeoff model based attribute space 

search and the database. The tradeoff modeling approach is intended to generalize the 

database entries, potentially enabling designers to identify novel solutions that should be 

feasible.  

In light of this, Pump B from the SHHM drive train is the only troubling result. 

Although the displacement and cost predictions match closely with a database entry, the 

mass is very different. Judging from the other pumps reported in the table, it seems the 

real mass of a pump having that displacement should be somewhere in between the two 

values. Notice that database entry listed for Pump E of the SHHM alternative has a higher 
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Table 7.6: Comparison of component sizing solutions to nearest database entry. 

Component Variable 
Predicted 
Solution 

Nearest 
Neighbor in 
Database 

Percent 
Difference 

Independent Torque Hybrid Hydro-Mechanical Drive Train 

Engine Max Power 12.6 11.9 5.9 
 Mass 36.2 36.3 -0.28 
 Cost 591 500 18.2 

Accumulator Volume 0.0322 0.034 -5.29 
 Mass 69.4 80 -13.25 
 Cost 1036 1113 -6.92 

Pump B Max Displacement 11.78 10.48 12.4 
 Mass 4.9 4.9 0 
 Cost 998 980 1.84 

Pump E Max Displacement 12.42 13.76 -9.74 
 Mass 5.3 5.9 -10.17 
 Cost 1020 1000 2 

Simplified Hybrid Hydro-Mechanical Drive Train 

Engine Max Power 15.6 15.7 -0.64 
 Mass 40.3 42.6 -5.4 
 Cost 1565 1700 -7.94 

Accumulator Volume 0.0322 0.034 -5.29 
 Mass 69.3 80 -13.37 
 Cost 1036 1113 -6.92 

Pump B Max Displacement 16.96 16.39 3.48 
 Mass 5.2 16.3 -68.1 
 Cost 1076 1050 2.48 

Pump E Max Displacement 33.79 32.93 2.6 
 Mass 13.1 13.6 -3.68 
 Cost 1361 1470 -7.41 

 

displacement but a lower mass than the one for Pump B. Typically, one would expect 

mass and displacement to correlate positively. It is likely that with more data gathering, 

one could identify a pump that would dominate this uncharacteristically heavy option. 

7.6 Conclusions and Chapter Summary 

The two HHV drive trains considered here serve as a good example for the 

importance of incorporating tradeoff modeling into architecture selection decisions. The 
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alternatives are closely matched, with neither being superior to the other. Certainly, this is 

not a decision that designers—no matter what their level of expertise—can make 

confidently without some amount of modeling and simulation. 

Another factor is that the final result—that the more complex architecture is 

superior—is slightly counter-intuitive. The motivation for considering the simplified 

drive train is because it has fewer components and seems as though it could perform 

similarly for less cost. The tradeoff model based analysis yields a contrary conclusion. 

One also can understand the part of value of applying tradeoff modeling to system 

selection decisions in the context of this example. Given that the alternatives have such 

similar levels of performance it is important that designers evaluate the solutions at 

realistic settings for the component-level attributes. Surely, it would be inappropriate to 

conclude that the SHHM alternative is superior based on a simulation that assumes a 25 

kW engine cost only $500.  

Perhaps more significantly is that tradeoff modeling combined with support 

vector domain description is a critical for enabling simulations at this level of abstraction. 

Although it is reasonable to suppose designers have an understanding of the upper and 

lower bounds on most of the component-level attributes, the odds are against their having 

a detailed understanding of the associations between them. Allowing an optimizer to 

search the entire hypercube defined by the upper and lower bounds certainly would yield 

invalid solutions. The alternative to tradeoff modeling is to model the constraints 

analytically, based on physical principles. Although this is reasonable to do at lower 

levels of abstraction, the aim is to avoid these lower levels when making system-level 

decisions.  
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CHAPTER 8:  

 

TRADEOFF MODELING UNDER DATA UNCERTAINTY 

An assumption underlying the research reported in the preceding chapters is that 

the attribute data designers use to generate a tradeoff model is known with certainty. 

Although this is reasonable in some cases, one cannot expect this assumption to hold in 

all situations. This chapter addresses the problem of dealing with uncertain data as 

expressed in the fourth research question: 

RQ4. How should designers identify and visualize the (parameterized) efficient set of 

tradeoffs when the attribute data is uncertain? 

The parameterized Pareto dominance rule is meaningless when attribute values are 

uncertain (this is true of all Pareto-based dominance criteria). Designers instead must use 

a dominance rule that accounts for the impact of uncertainty on their decision making. 

Uncertainty opens the door to designers making tradeoffs between their base objectives 

(e.g., to maximize reliability or to minimize cost) and their risk attitude toward 

uncertainty in achieving those objectives. In the simplest case, designers can trade 

between the mean value of an attribute and its variance. This problem in its full generality 

is too broad to tackle in this research. However, it is possible to handle an important 

special case and lay a foundation for future work. 

This chapter addresses the case in which designers can model the uncertainty in 

attribute data using statistically independent normal distributions. A further assumption is 

that designers make decisions in a non-risk-taking manner (the precise meaning of which 



 174 

is defined in Section 8.2). Under these conditions, designers can use a parameterized 

version of an appropriate stochastic dominance criteria as a basis for tradeoff modeling: 

H4. Designers can identify the (parameterized) efficient set of tradeoffs under 

uncertainty using (parameterized) stochastic dominance criteria and can 

visualize this set as a surface in mean-variance space. 

Stochastic dominance criteria are mathematically rigorous generalizations of the notion 

of dominance to the case of decisions under uncertainty. Under the current assumptions, 

the appropriate stochastic dominance rule yields a frontier in the mean-variance space of 

the distribution functions much in the way that classical Pareto dominance leads to a 

frontier in the attribute space. Like classical Pareto dominance, one can parameterize the 

stochastic dominance rule to enable model composition and reuse. The new dominance 

rule is demonstrated on a gearbox design problem similar to the one in Chapter 3. 

Chapter organization is as follows. Section 8.1 is a review of an appropriate 

theory for decision making under uncertainty, called multi-attribute utility theory, and a 

description of how designers can reinterpret the notion of a tradeoff space in the case of 

uncertainty in the attribute data. Section 8.2 is a review of the literature on stochastic 

dominance. Section 8.3 is a description of a parameterized version of a stochastic 

dominance rule and how to apply it to tradeoff modeling. Section 8.4 contains the 

gearbox design example. 

8.1 Making Tradeoffs under Uncertainty 

8.1.1 Multi-Attribute Utility Theory 

This research is based upon the decision theoretic framework of Multi-Attribute 

Utility Theory (MAUT) (Keeney and Raiffa 1993), which is an extension of the utility 



 175 

theory by von Neumann and Morgenstern (von Neumann and Morgenstern 1980) to the 

case of multiple competing objectives. Using MAUT, designers can make decisions in a 

way that considers their preferences with regard to tradeoffs under uncertainty. One can 

formulate a decision in MAUT as: 

 ( )*

A

arg max E a
a

a u
∈

=   z , 

or 

 ( ) ( )*

A

arg max a a a a
a

a u F d
∈

= ∫ z z z , 

where A  is the set of feasible decision alternatives, a A∈  is a specific alternative, *a  is 

the most preferred alternative, N

a ∈z �  is a random vector of attributes for alternative a  

having distribution function aF , : Nu →� �  is a suitably defined utility function, and 

[ ]E ⋅  is the expectation operator.  

The function ( )u ⋅  is analogous to ( )V ⋅  from previous chapters. However, one 

must elicit ( )u ⋅  in a manner that accounts for risk attitude. In contrast, ( )V ⋅  accounts 

only for one’s preferences for tradeoffs among the attributes. Several references describe 

procedures for eliciting utility functions (e.g., (Keeney and Raiffa, 1993; Clemen, 1996)).  

8.1.2 Generalized Tradeoff Spaces 

In preceding chapters, the space in which designers evaluate, visualize and model 

tradeoffs is the space of decision attributes. For example, the classical and parameterized 

Pareto dominance rules both involve comparisons of attribute values and one can 

visualize the corresponding efficient sets as surfaces in the space of attributes. This is 
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precisely the relationship designers capture in a tradeoff model. However, the attribute 

space is unsuitable for considering tradeoffs for decisions involving uncertainty.  

One must extend the notion of a tradeoff space in order to deal with attributes 

under uncertainty. In this chapter, a generalized tradeoff space refers to the space of 

probability distributions over the attribute space. This follows from the axiomatic 

definition MAUT as decisions between lotteries (see (Keeney and Raiffa 1993) for a 

development of this theory) and is evidenced by the procedures for eliciting preferences 

in MAUT, which involves comparisons of lotteries over attributes (as opposed to 

comparisons of precise attribute values).  

Strictly speaking, the notion of a “space” of probability distributions is ill-defined. 

However, one can specify several common distributions unambiguously by a small 

number of parameters. If those distributions—which includes normal, log-normal, 

uniform, Poisson, etc.—are good representations of the uncertainties, then designers can 

define a space of distributions in terms of such parameters.  

The definition of a generalized tradeoff space makes intuitive sense when one 

considers the kinds of tradeoffs that occur when uncertainty is involved. For example, 

when product quality is a concern it is common for designers to trade mean performance 

to achieve reduced variability in that same attribute. One can visualize this tradeoff in the 

mean-variance space of that attribute. Figure 8.1 is an illustration of the relationship 

between the attribute space and the generalized tradeoff space for MAUT decision 

problems. 
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Figure 8.1: Illustration of distributions in an attribute space mapping to points in a 
tradeoff space defined in terms of parameters of the distributions. 

 

8.2 Stochastic Dominance 

Although the study of stochastic dominance dates back to the late 19060’s (e.g., 

(Fishburn 1965, Hanoch and Levy 1969)), it has received little attention beyond the 

economics and operations research literature. A stochastic dominance test involves 

comparing distribution functions that are defined over an attribute space—i.e., it is an 

evaluation in the generalized tradeoff space. It also requires assumptions about the 

mathematical structure of the corresponding utility function. This is similar to the 

monotonicity assumption associated with the deterministic concept of Pareto dominance. 

However, the useful assumptions are more varied in the stochastic case owing to the 

greater complexity of preferences for decisions under uncertainty.  

Researchers have identified a number of stochastic dominance conditions for 

different classes of utility functions and assumptions about the uncertainties involved. 

Examples include stochastic dominance in the case of statistically independent attributes 

(Huang, et al. 1978), for when attributes are mutually utility independent (Mosler 1984), 

for specialized uncertainty distributions (Levy 1973, 1990), for multi-attribute problems 
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(Levhari, et al. 1975, Huang, et al. 1978, Russell and Seo 1978, Scarsini 1988, Baccelli 

and Makowski 1989, O'Brien and Scarsini 1991), for non-transitive preferences 

(Fishburn 1978) and for the case in which stochastic dominance is equivalent to mean-

variance analysis (Baron 1977). The following is an overview of the results most relevant 

to this research. 

8.2.1 Stochastic Dominance for Single-Attribute Utility Theory 

Researchers commonly distinguish between different classes of utility functions, 

each having different mathematical properties and to which different stochastic 

dominance rules apply. Table 8.1 is a summary of three common classes of single-

attribute utility functions, their relationships to one another and the associated stochastic 

dominance criteria (see (Levy 1992) for a survey of these and other related criteria as 

well as mathematical proofs for the rules).  

Class 0U  is the set of all utility functions. All other classes are a subset of this and 

no stochastic dominance rule applies to all of 0U . Class 1U  includes only the monotonic 

utility functions (i.e., increasing the value of the decision attribute cannot result in a 

decrease in utility). The stochastic dominance rule for this class is called first-degree 

stochastic dominance and involves a comparison of cumulative distribution functions as 

stated in Table 8.1. If one alternative dominates another by the first-degree stochastic 

dominance (FSD), then designers are assured its utility is higher than that of the 

dominated alternative for any monotonic utility function.  

The FSD rule is the most directly analogous to the Pareto-based rules. However, it 

is relatively weak in the sense that it incorporates no assumptions about designer risk  
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Table 8.1: Summary of common classes of single-attribute utility functions and the 
relevant stochastic dominance criteria. 

Class Defining Assumptions Interpretation Associated Dominance Criterion 

0U  none 
All utility 
functions. 

n/a 

1U  
( )

1 0: | 0
du z

U u U
dz

  
= ∈ ≥ 
  

 
Monotonic 
utility 
functions. 

First-degree stochastic dominance 
(FSD): Alternative az  with 

cumulative distribution function aF  

dominates bz  with CDF bF  according 

to FSD if and only if 

( ) ( )a bF z F z z≤ ∀ . 

2U  
( )2

2 1 2
: | 0

d u z
U u U

dz

  
= ∈ ≤ 
  

 

Monotonic and 
non-risk-taking 
(i.e., risk 
neutral or risk 
averse). 

Second-degree stochastic dominance 
(SSD):  Alternative az  with CDF aF  

dominates bz  with CDF bF  according 

to SSD if and only if: 

( ) ( ) 0
z

b aF t F t dt z
−∞
 − ≥ ∀ ∫ . 

3U  
( )3

3 2 3
: | 0

d u z
U u U

dz

  
= ∈ ≥ 
  

 

Monotonic, 
non-risk-taking 
and decreasing 
absolute risk 
aversion. 

Third-degree stochastic dominance 
(TSD):  Alternative az  with CDF aF  

dominates bz  with CDF bF  according 

to TSD if and only if: 

( ) ( ) 0
t v

b aF t F t dtdv z
−∞ −∞

 − ≥ ∀ ∫ ∫  and 

E Ea bz z≥       . 

 
 

attitude. If designers know something about their risk attitude, then they can eliminate a 

larger proportion of the alternatives by using a stronger stochastic dominance rule. 

The class 2U  is a subset of 1U  and includes only those utility functions that are 

monotonic and that correspond to a non-risk-taking attitude. Under the typical 

interpretation, a utility function corresponding to a non-risk-taking attitude has a positive 

derivative with respect to the decision attribute. The corresponding stochastic dominance 

rule is called second-degree stochastic dominance (SSD). It also requires that one 
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compare cumulative distribution functions, but the comparison differs from that of first-

degree stochastic dominance.  

Note that any alternative that is dominated via FSD also is dominated via SSD. 

This is because the set 1U  subsumes 2U  (i.e., what is true of every element of 1U  must 

also hold for every element of 2U  because every element of 2U  is an element of 1U ). 

However, the converse is not true in general: an alternative that is dominated assuming a 

risk-averse utility function may be non-dominated for a risk-taking attitude. 

Another common class, 3U , is a subset of 2U  and includes only those utility 

functions that are monotonic, correspond to a non-risk-taking attitude and have 

decreasing absolute risk aversion. The corresponding stochastic dominance criterion is 

called third-degree stochastic dominance (TSD). Like the others, it involves a 

comparison of distribution functions. 

8.2.2 Stochastic Dominance for Multi-Attribute Utility Theory 

The stochastic dominance rules from the preceding section apply only to single-

attribute utility functions. Researchers have generalized these criteria to the case of multi-

attribute decisions, but the conditions are not always straightforward extensions of the 

single-attribute tests (Levhari, et al. 1975, Russell and Seo 1978).  

Table 8.2 is an overview of several common classes of multi-attribute utility 

functions that researchers have investigated in the context of stochastic dominance. These 

are extensions of those from Table 8.1. One can define other classification schemes. For 

example, Scarscini (1988) identifies utility functions according to a non-classical 

characterization of risk, called multivariate risk aversion. However, only those listed in 

Table 8.2 are of interest in the current research. 



 181 

 

Table 8.2: Common classes of multi-attribute utility functions. 

Class Defining Assumptions Interpretation 

0U  None All utility functions. 

1U  
( )

1 0: | 0 1
i

u
U u U i N

z

∂  
= ∈ ≥ ∀ = 

∂  

z
…  Monotonic utility functions. 

2U  
( )2

2 1 2
: | 0 1

i

u
U u U i N

z

 ∂ 
= ∈ ≤ ∀ = 

∂  

z
…  Monotonic and non-risk-taking (i.e., risk 

neutral or risk averse). 

3U  
( )3

3 2 3
: | 0 1

i

u
U u U i N

z

 ∂ 
= ∈ ≥ ∀ = 

∂  

z
…  Monotonic, non-risk-taking and 

decreasing absolute risk aversion. 

 

In general, stochastic dominance tests for multi-attribute problems involve 

comparisons of multivariate distribution functions and are difficult to evaluate. However, 

researchers have identified that under certain circumstances one can simplify the multi-

attribute rules considerably. One of the more powerful simplifying assumptions is 

statistical independence. 

When attribute distributions are statistically independent, one can test any multi-

attribute dominance condition by testing the corresponding single-attribute condition 

using the marginal distributions (the general proof is non-trivial; see Theorem 2 in 

(Huang, et al. 1978)). Single-attribute tests are more amenable to numerical computation. 

Although this assumption may not hold perfectly for many engineering problems, it is a 

reasonable approximation in a number of cases.  

8.2.3 Stochastic Dominance for Specialized Distribution Functions 

One can obtain a further reduction in the computational effort required to evaluate 

the stochastic dominance rules when the attribute distributions have a special form. 

Simply knowing the closed form expression for the distribution function can be helpful 



 182 

because it may allow one to simplify the integrals or reformulate them in a way more 

conducive to numerical solutions. However, one can achieve considerably greater 

simplification for a few special distribution functions. 

Researchers have shown that when the attributes are independent and normally 

distributed, the SSD test simplifies to a comparison of the means and variances (Tobin 

1958, Hanoch and Levy 1969, Baron 1977). This significantly reduces computational 

complexity. To formalize this simplified rule, some notation is required. Let , N

a b ∈z z �  

denote the attribute vectors for decision alternatives a  and b . Also, let ( )aF ⋅  and ( )bF ⋅  

denote the distribution functions for az  and bz , respectively. Finally, let ,i aµ  and 2

,i aσ  

denote the mean and variance, respectively, of the thi  attribute of alternative a  and ,i bµ  

and 2

,i bσ  the corresponding means and variances for alternative b . Thus, one can state the 

mean-variance dominance rule as: 

Definition 8.1 (Multi-Attribute Mean-Variance SSD): If ( )~a aF ⋅z  and 

( )~b bF ⋅z  are independent and normally distributed, then az  dominates bz  by 

MV-SSD if an only if, , , 1i a i b i Nµ µ≥ ∀ = … , 2 2

, , 1i a i b i Nσ σ≤ ∀ = … , and at 

least one of the inequalities is strict. 

Strictly speaking, one should compare means and variances using statistical tests. 

However, when sufficient data exists comparisons of the point estimates are a reasonable 

approximation. The important implication of the mean-variance SSD rule is formalized as 

follows. Let MV-SSDa bz z  denote that az  dominates bz  via the MV-SSD rule. Thus: 
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Theorem 8.1: For an alternative a  with uncertain attributes ( )~a aF ⋅z   and an 

alternative b  with uncertain attributes ( )~b bF ⋅z , MV-SSDa bz z  if and only if 

( ) ( ) 2a bu u u U> ∀ ∈z z . 

Several authors prove that the mean-variance assumptions hold for the single-attribute 

case (e.g., (Tobin 1958, Hanoch and Levy 1969, Baron 1977)). Combining this result 

with Theorem 2 in (Huang, et al. 1978) yields a complete proof of the multi-attribute case 

of Theorem 8.1. A similar result exists for log-normal distributions (Levy 1973, 1990). 

Figure 8.2 is an illustration in mean-variance space of this dominance rule as 

applied in the single-attribute case. The MV-SSD rule always results in a curve or surface 

in mean-variance space. As with statistical independence, the assumption of normally 

distributed attributes is not valid in general. However, it is an effective approximation in 

many practical cases—e.g., measurement errors tend to be normal, as is the sum of 

several random variables.  
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Figure 8.2:  Illustration of second-degree stochastic dominance under the mean-variance 
assumptions. Note the orientation for comparisons of variance. 
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8.3 Parameterized Efficient Sets using Stochastic Dominance Rules 

Just like the deterministic case from previous chapters, it may be difficult for 

designers to identify a universal preference ordering for each attribute for a particular 

component. Moreover, one still must deal with attributes such as gear ratio and cylinder 

bore, for which no problem-independent preferences exist, regardless of whether there is 

uncertainty in the attribute data. Consequently, designers need a parameterized version of 

the relevant stochastic dominance criterion. This section is a description of a 

parameterized version of the mean-variance SSD rule and how to formulate decisions 

using a generalized tradeoff model fit to the parameterized efficient set that results from 

applying the parameterized MV-SSD rule. 

8.3.1 Assumptions 

The stochastic dominance rule used in this study incorporates three main 

assumptions. They are summarized as follows. 

Designers are Non-Risk-Taking 

Designers are assumed to be non-risk-taking. Mathematically, this means that 

their utility function must be convex: 

 
( )2

2
0 1

i

u
i N

z

∂
≤ ∀ =

∂

z
… , 

where [ ]1 2, , , Nz z z=z …  is a vector of decision attributes. Under this risk attitude, one is 

willing to sacrifice some amount of “upside” to avoid the risk of potential “downside.” 

For situations in which the mean-variance assumptions hold, this means one is willing to 

trade mean attribute value for reductions in attribute variance.  

Although this assumption about risk attitude will not hold for all design decisions, 

it is a common attitude among designers. For example, the desire to improve product 
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quality through reduced product variation, commonly called robust design, is one 

manifestation of this type of risk attitude. 

Attributes are Statistically Independent 

The uncertainty in attributes is assumed to be statistically independent. Whether 

this assumption is valid depends on both the data source and the characteristics of the 

underlying uncertainty. If the principal uncertainty is measurement error in determining 

the attribute values, statistical independence likely is a good model. However, there can 

exist underlying uncertainties that affect multiple component-level attributes and thereby 

lead to correlations. For example, manufacturing variations can influence multiple 

attributes in this way. Designers must consider whether this assumption holds on a case-

by-case basis. 

Attributes are Normally Distributed  

The uncertainty in attributes is assumed to be normally distributed. Like the 

assumption about statistical independence, this assumption will hold only in some cases. 

Normal distributions are common when multiple uncertainties are added together, and so 

can be reasonable uncertainty models for component-level attributes in at least some 

cases.  

8.3.2 Parameterized MV-SSD and Tradeoff Models 

Under the preceding assumptions, one can formulate a parameterized version of 

the MV-SSD rule from Definition 8.1. Only attribute means may be parameters in this 

framework. This is due to the assumption that designers are non-risk-taking in every 

attribute. That assumption induces a preference ordering on all attribute variances (i.e., 
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they all are dominators). Aside from this distinction between means and variances, the 

notions of dominators and parameters is the same as in Chapter 3. 

Let { }1, ,D N⊆ …  denote the set of indexes corresponding to dominator attributes 

and { }1, ,P N⊂ …  denote the set of indexes corresponding to parameter attributes. As in 

the deterministic case, { }1, ,P D N∪ = …  and P D∩ = ∅ . Thus, one can define 

parameterized MV-SSD as follows: 

Definition 8.2 (Parameterized MV-SSD): If ( )~a aF ⋅z  and ( )~b bF ⋅z  are 

independent and normally distributed, then az  parametrically dominates bz  by 

parameterized MV-SSD if an only if, , ,i a i b i Pµ µ= ∀ ∈ , , ,j a j b j Dµ µ≥ ∀ ∈ , 

2 2

, , 1k a k b k Nσ σ≤ ∀ = … , and at least one of the inequalities is strict. 

This parameterization of the mean-variance SSD rule is a direct analogy to the way in 

which parameterized Pareto dominance is an extension of classical Pareto dominance. As 

with the other dominance rules, the significance of this rule from a decision-making 

perspective is that a dominated alternative cannot be the most preferred alternative under 

the prevailing assumptions. This is formalized as follows:  

Theorem 8.2: For an alternative a  with uncertain attributes ( )~a aF ⋅z   and an 

alternative b  with uncertain attributes ( )~b bF ⋅z , if PMV-SSDa bz z  then 

( ) ( ) 2a bu u u U> ∀ ∈z z . 

Appendix A contains a proof of this statement.  
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By applying PMV-SSD, designers obtain a parameterized efficient set similar to 

the deterministic case. The main distinction is that one interprets the efficient set resulting 

from parameterized Pareto dominance directly in the space of decision attributes, whereas 

one interprets the set resulting from PMV-SSD in the space of distribution parameters—

i.e., mean-variance spacel.  

One also can fit a tradeoff model in this generalized tradeoff space. Like the 

deterministic case, one’s choice of tradeoff model inputs and outputs is largely arbitrary. 

The main restriction is that attribute means that are parameters must be inputs to a 

tradeoff model. This avoids the possibility of a one-to-many mapping, which one cannot 

represent functionally. Beyond this, one should choose a model structure with accuracy in 

mind. 

8.3.3 Formulating Decisions 

For decisions under uncertainty, tradeoff models capture the association between 

attribute distribution functions. Designers can use this information to formulate 

requirements allocation and system selection decisions. However, unlike in the 

deterministic case, designers explore a generalized tradeoff space. For example, rather 

than resulting in target values for attributes, requirements allocation results in target 

values for attribute distribution parameters. 

Although the general idea is similar to the deterministic case, the notation one 

requires to formalize a decision is somewhat more complicated in the case of decisions 

under uncertainty. The following definitions are used: 

                                                 
l For ease of visualization and interpretation, designers may prefer using a space constructed using attribute 
means and standard deviations. All the results of this chapter hold for both cases.  
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• Let iy  for 1i N= …  denote component-level attributes that are independent and 

normally distributed. 

• Let [ ] [ ]1 2, , , N Eµ µ µ= =µ y…  denote the vector of attribute means and 

2 2 2 2

1 2, , , Nσ σ σ =  σ …  denote the vector of attribute variances.  

• Let 2,θ  =  µ σ  denote a generalized coordinate vector in mean-variance space. 

The data one uses to fit a tradeoff model in this case consists of θ  samples. 

• Let ( )2| ,i i iN y µ σ    denote a normal distribution with the mean and variance 

given and let ( ) ( )2

1

| | ,
N

i i i

i

MN N yθ µ σ
=

 =  ∏y  denote a multivariate normal 

distribution constructed from independent normal marginal distributions with the 

given distribution parameters. 

• Let 1l L= …  be an index indicating which one of L  discrete alternatives are 

being considered. 

• Let ( )l ⋅S  denote a system model that relates component-level attributes to 

system-level attributes for the thl  discrete system alternative. 

• Let ( )l ⋅T  denote a tradeoff model fit to parameterized efficient set data in the 

mean-variance space as indicated by the PMV-SSD rule. 

• Let lθ�  denote the subset of generalized coordinates used as inputs to the tradeoff 

model, such that ( ), lθ θ θ =  T� �  is a complete coordinate vector in the mean-

variance space. 

• Let lΘ�  denote the valid input domain for tradeoff model ( )l ⋅T . 
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Given this notation, one can predict the most preferred requirements allocation 

decision as 

 ( )* * *,l l lθ θ θ =  T� � , 

where  

 
( )

( )( ) ( )( )

*

,
arg max

arg max | , .

l l l
l l

l l

l l

l l l l

E u

u MN d

θ θ
θ

θ

θ

θ θ

 
 ∈Θ

∈Θ

   =       

 =  ∫

T
S y

S y y T y

� �
� �

� �

�

� �

 

This computational procedure is analogous to that of Equation (3.4). However, in this 

case is that one searches over distribution functions rather than directly over attribute 

values.  

Given the preceding formalization of allocation decisions, one can state the 

selection decision formally as: 

 
( )( )

( )( ) ( )

*

*

1

*

1

arg max

arg max | .

l
l

l L

l l
l L

l E u

u f d

θ

θ

=

=

 =
  

= ∫

S y

S y y y

…

…

 

One should note that designers already will have evaluated the expected utility of their 

alternatives during requirements allocation. Consequently, this decision is 

computationally straightforward. 

8.4 Gearbox Design Problem 

For the purposes of demonstrating how to make decisions using tradeoff models 

under uncertainty, the gearbox design problem from Chapter 3 is revisited. The problem 

largely is the same, except that an uncertainty model is used when generating attribute 

data for the different gearbox configurations. The PMV-SSD rule is applied to the data 
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for each configuration and a tradeoff model is fit to the resulting parameterized efficient 

sets. The decision problem involves identifying the most preferred gearbox configuration. 

8.4.1 Generating Gearbox Tradeoff Models under Uncertainty 

Gearbox Concepts 

This example involves the same concepts as the example from Chapter 3. To 

review, Figure 3.4 (page 73) is an illustration of the different configurations: 

• Planetary Gearbox (PGB):  Basic planetary gear system, with input on sun, output 

on arm and fixed ring.  Depicted in Figure 3.4(a).   

• Single-Sided Fully-Reverted Gearbox (SGB):  Four-gear system with two 

identical pinions and two identical gears.  Depicted in Figure 3.4(b).   

• Double-Sided Fully-Reverted Gearbox (DGB):  Similar to single-sided concept, 

but includes two paths for torque flow.  Depicted in Figure 3.4(c).   

As in the earlier gearbox example, each concept has its own parametric structure. These 

low-level design parameters control the number of teeth on each gear, the gear face 

widths and the gear module. This low-level design space is sampled in order to generate 

component-level attribute data about feasible implementations of each concept. 

Gearbox Attributes and Preference Classifications 

The gearbox tradeoff models account for three attributes.  

• Cost: The cost of constructing the gearbox, computed as a function of the material 

and parts involved.  

• Reliability: The probability that the gearbox operates without failure, considering 

both static and dynamic loading phenomena.  

• Gear ratio: The ratio of transformation from input to output.  
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Of these attributes, reliability and cost involve significant uncertainties, which are 

assumed normally distributed and independent. However, one can compute gear ratio 

with certainty. Thus, the resulting tradeoff space consists of five dimensions:  

• Gear ratio, gN ,  

• Mean reliability, Rµ , 

• Variance of reliability, 2
Rσ , 

• Mean cost, Cµ , and 

• Variance of cost, 2
Cσ . 

Of these, gear ratio is a parameter and the rest are dominators. The rationale for this is 

straightforward. The variances must be dominators since it is assumed that designers are 

non-risk-taking (and thus less variance is preferred to more, all things being equal). Mean 

cost is a dominator because designers generally prefer to minimize cost. Similarly, mean 

reliability is a dominator because designer prefer to maximize it. No universal preference 

exists for gear ratio, and so it must be a parameter (see Section 3.4.1 for an elaboration). 

Data Generation and Dominance Analysis 

As with the earlier gearbox example, a model-based data gathering approach is 

used. The distinction is that this example assumes uncertainty exists on the low-level 

design parameters. Table 8.3 is a summary of the low-level uncertainties used as inputs to 

the engineering analysis models. 

Implementations of each concept are generated by sampling the design parameter 

space systematically. Each implementation is evaluated under uncertainty using Latin 

hypercube sampling (LHS) (McKay, et al. 1979). The LHS procedure results in 
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Table 8.3: Uncertainty models for low-level parameters used during gearbox 
data generation. 

Parameter Uncertainty Model 

Normal(mean, std dev) 

Gearing 
Application Factor  N(1.7, 0.1) 
Gear Quality Factor N(8, 0.25) 
Bending Strength Geometry Factor N(0.24,0.025) 
Gear Material, Bending Fatigue Strength N(200e6, 40e6) [Pa] 
Gearbox cost model N(0, 5) [$] 

 

 

attribute samples from which distribution statistics (means and variances) are computed 

for the cost and reliability attributes (Figure 8.3). The result of this procedure is data 

samples in the mean-variance space, each of which represents one feasible gearbox 

implementation. The PMV-SSD rule (Definition 8.2) is applied to the sample data using 

gear ratio as a parameter and the reliability and cost statistics as dominators. 

Model Fitting and Validation 

For each concept, the tradeoff model inputs are gN , Rµ , 2

Rσ  and 2

Cσ ; the output is 

Cµ . Kriging interpolation methods and the DACE Matlab Kriging Toolbox are used for 
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Figure 8.3: Procedure for generating and evaluating gearbox implementations. 
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fitting the tradeoff models (Lophaven, et al. 2002). Hold-out validation is conducted 

using fifty non-dominated implementations of each concept. Tradeoff models are fit to 

the rest of the parameterized efficient set data for each concept. 

8.4.2 Design Problem Scenario 

System and Environment 

The system is the same as from the example of Chapter 3 (see Figure 3.8). 

However, the parameters used to evaluate the system differ in this case, with several of 

them being modeled as random variables. Table 8.4 is a summary of the uncertainty 

models. 

Decision Problem Formulation 

Designer objectives are the same for this problem as they are in the design 

problem of Chapter 3: to maximize profits from competing in a race. However, because 

system attributes are uncertain in this case—by virtue of uncertain gearbox attributes as 

well as the uncertainties indicated in Table 8.4—designers formulate the decision 

problem in terms of expected profit. The utility function in this case is  

 ( ), ,u R W C RW C= − , 

 

 

Table 8.4: Uncertainty models for parameters used in the gearbox design problem. 

Parameter Value 

System and Environment 
Total Vehicle Mass  N(240, 15) [kg] 
External Drag Coefficient   N(0.4, 0.05) [ N/(m/s2)] 
Internal Drag Coefficient N(0.01, 0.0025)  [N/rpm] 
Course Roughness Coefficient N (4, 0.5) 
Winnings model uncertainty N(0,5.5) [$] 
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where R  is the reliability of the gearbox, W is the anticipated winnings assuming perfect 

reliability and C  is the cost of building the gearbox. Details on how these attributes are 

computed from the gearbox attributes are given in Chapter 3. 

The first step in the solution process is to perform requirements allocation for 

each gearbox configuration. Let 2 2, , , ,g R R C CNθ µ σ µ σ =    denote a coordinate vector in 

the generalized attribute space for the gearbox component. Also let 2 2, , ,l g R R CNθ µ σ σ =  
�  

denote a vector of inputs to the gearbox tradeoff model, ( )lT ⋅ , for concept 

{ }, ,l SGB DGB PGB= , where PGB , SGB  and DGB  denote planetary gearbox, single-

sided gearbox and double-sided gearbox, respectively. Finally, let φ  denote the random 

vector of system and environmental parameters that influence system-level attributes via 

the system model, ( )l ⋅S . Thus, the requirements allocation decision is to find 

( )* * *,l l l lTθ θ θ =  
� �  such that   
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where lΘ�  is the domain description for the thl  tradeoff model and ( )f ⋅  is the 

multivariate distribution function for the random vector φ . Since the component-level 

attributes, y , and the uncertain system parameters, φ , are statistically independent, one 

can express the multivariate distributions as products of the nominal distributions. One 

can solve this problem using standard methods optimization under uncertainty.  
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Given the requirements allocation solutions for each gearbox configuration, one 

can select the configuration that is most preferred: 

 
{ }

( )( )*

*

, ,

arg max ,
ll PGB SGB DGB

l E u
θ

φ
∈

 =
  

S y . 

8.4.3 Results 

Table 8.5 (next page) contains results from the gearbox concept selection 

problem. It contains the tradeoff criteria and expected utilities corresponding to the most 

preferred implementation of each gearbox configuration as predicted using the tradeoff 

models.  The final decision is to design the PGB concept. To continue development of 

this concept, designers can use the tradeoff criteria indicated in the table as design-to 

targets. 

The problem also is solved using classical design optimization techniques, the 

results of which are listed in Table 8.5. These confirm the results based on tradeoff space 

search. The decision approach formulated using predictive tradeoff models yields the 

same decision—to develop the PGB concept—as one would reach using the more 

computationally taxing extensive search method. Furthermore, one can observe that the 

approach based on tradeoff models yields accurate predictions of the tradeoffs 

corresponding to the most preferred implementation of each concept. This indicates that 

the tradeoff models yield the right decision for the right reason. 

The results from the tradeoff modeling approach are remarkably close to those 

from the reference solution. This is a consequence of using a large amount of data during 

tradeoff model generation, both in terms of the numbers of points in the design space that 
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Table 8.5: Results from gearbox example. 

    Tradeoff 
Modeling 
Results 

Reference 
Solution 

Percent 
Difference 

PGB Expected Utility   1185 1185 0.0 
 Gear Ratio  

gN  5.733 5.733 0.0 
 Reliability Mean 

Rµ  0.99 0.99 0.0 
  Std 2

Rσ  0.012 0.013 7.7 
 Cost ($) Mean 

Cµ  275 275 0.0 
  Std 2

Cσ  7.4 7.5 1.3 

SGB Expected Utility   1138 1138 0.0 
 Gear Ratio  

gN  5.76 5.76 0.0 
 Reliability Mean 

Rµ  0.989 0.989 0.0 
  Std 2

Rσ  0.014 0.014 0.0 
 Cost ($) Mean 

Cµ  320 320 0.0 
  Std 2

Cσ  7.5 7.5 0.0 

DGB Expected Utility   1078 1081 -0.3 
 Gear Ratio  

gN  5.76 5.76 0.0 
 Reliability Mean 

Rµ  0.993 0.985 0.8 
  Std 2

Rσ  0.008 0.02 60.0 
 Cost ($) Mean 

Cµ  389 372 4.6 
  Std 2

Cσ  7.3 7.5 2.7 

 

 

are explored and the number of samples taken at each design site to estimate the means 

and variances. One obtains good estimates of the distribution parameters at many 

locations, which lead to accurate tradeoff models. Such accuracy is unlikely to be the 

case in general, particularly when sample data is more limited.  

8.5 Conclusions and Chapter Summary 

The main conclusion one can draw from this chapter is that it is possible for 

designers to deal with uncertain data rigorously in a tradeoff modeling framework. To do 



 197 

so, designers must adopt an expanded interpretation of what constitutes a tradeoff space 

and use parameterized efficient sets that are based on a suitable stochastic dominance 

criterion. This is demonstrated through the use of the PMV-SSD criterion defined in 

Section 8.3 and the successful solution of a gearbox design problem. 

The ideas presented in this chapter can serve as the foundation for tradeoff 

modeling under uncertainty, but this is not the final word on the subject. As one can 

observe from Table 8.2, dominance rules are more varied in the case of decisions under 

uncertainty. This research is based on one rule that is appropriate under fairly specific 

assumptions—that designers are risk averse and all uncertainty is statistically 

independent and normally distributed. Although these assumptions are met in some cases, 

they are restrictive in general and open questions remain about how to generalize the 

approach. Interesting questions include: “what assumptions about design risk attitude and 

data uncertainty are most representative of reality?” and “which stochastic dominance 

criteria apply to those situations?” 

One interesting observation about the PMV-SSD rule is that it preserves a Pareto-

like representation as a frontier in the mean-variance space. Much of the prior literature 

on tradeoff modeling is motivated by visualization and visual decision making, and it 

would seem that the frontier one obtains by applying PMV-SDD would be useful in that 

context. However, visualization is cumbersome when the number of dimensions is large. 

For a problem having N  decision attributes, the number of tradeoff dimensions for the 

PMV-SSD rule is 2N . This limits the viability of straightforward visualization 

techniques for tradeoff modeling under uncertainty. 
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CHAPTER 9:  

 

CONTRIBUTIONS, LIMITATIONS AND OPEN QUESTIONS 

This chapter is a review and synthesis of material from the preceding chapters. 

The main objective is to reexamine the research questions and hypothesis first introduced 

in Section 1.4 in light of the results reported in the other chapters. Section 9.1 is a recap 

of the questions, the corresponding hypotheses and the results of efforts to validate these 

hypotheses. Section 9.2 is a review of the main research contributions made during the 

course of this investigation. Section 9.3 is a summary of the main limitations of this 

research. Section 9.4 is brief exploration of potential avenues for future research relating 

to this problem or stemming from the ideas developed in this research. Section 9.5 

contains a summary and closing remarks. 

9.1 Review of the Research  

The broad motivation for this research is summarized in Chapter 1 in terms of the 

following question: 

How can designers model system-level decision alternatives quantitatively in 

order to support sound and effective system-level decision making? 

The research objective is to study a particular approach to modeling system-level 

decision alternatives. Section 1.3 is an outline of this approach, in which designers 

compose a system-level model using component-level models that they (or other 

designers) generate from attribute data about efficient implementations of a component. 
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These component-level models are predictive in the sense that designers can use them to 

answer the following question: 

What would be the resulting attribute vector if a designer implemented the 

component in question with particular preferences for making tradeoffs among 

the component-level attributes? 

The presumption is that having a prediction of this attribute vector for each component in 

a system would enable designers to evaluate the system with confidence. By extension, 

they can choose between different system-level alternatives by repeating this prediction-

and-evaluation procedure for each alternative. The specific research questions for this 

investigation are aimed at determining whether this approach is fundamentally correct. 

9.1.1 Component-Level Dominance Analysis 

The first research question and hypothesis are about identifying when a particular 

component is inferior to others in a manner that is independent of any specific design 

problem: 

RQ1. How can designers conclude that one implementation of a component 

dominates another when they lack specific knowledge of the system in which 

the component will be used? 

H1. Designers can use the parameterized Pareto dominance rule to eliminate 

attribute data about dominated implementations of a component. 

The main evidence supporting Hypothesis 1 is as follows: 

• Classical Pareto dominance is insufficient in many cases because there may be no 

problem-independent preference for one or more component-level attributes. The 
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assumptions required for classical Pareto dominance are expressed in Definition 

3.1 and Theorem 3.1 and the basic argument in favor of a new approach is given 

in Section 3.1.3. 

• Parameterized Pareto dominance is defined and shown to be mathematically 

sound in Section 3.1.4 (Definition 3.2 and Theorem 3.2). Although both the 

parameterized and the classical rules are sound, the parameterized rule is 

applicable under a broader set of assumptions that better suit the concept-level 

tradeoff modeling problem. 

• Section 3.2.2 is a description of a procedure for formulating decisions by 

abstracting a single tradeoff model from multiple tradeoff models of a component 

using the parameterized Pareto dominance rule. The procedure is demonstrated 

successfully in the gearbox design example of Section 3.4. This further supports 

the correctness and appropriateness of the dominance rule.  

• Tradeoff models based on parameterized Pareto set data are used to solve design 

problems in Chpater 3 (concept selection for a gearbox design problem), Chapter 

6 (requirements allocation for a log splitter) and Chapter 7 (architecture selection 

for a hydraulic hybrid vehicle). If parameterized Pareto dominance was incorrect 

in some way—e.g., it leads one to eliminate solutions that could be most 

preferred—then one would expect to have difficulty on these examples. To the 

contrary, the tradeoff modeling approach is successful in each example.  
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9.1.2 Tradeoff Model Domain Description 

Although phrased in terms of the tradeoff modeling problem, the second research 

question and hypothesis relate to a practical challenge of any data-driven modeling 

procedure:  

RQ2. How can designers describe the set of valid inputs to a tradeoff model 

mathematically?  

H2. Designers can use a domain description procedure based on kernel-based 

support vector domain description and clustering methods. 

The main evidence in support of this hypothesis is as follows: 

• A mathematical framework exists in the literature for describing the domain of a 

data set using a technique inspired by kernel-based support vector machines. The 

mathematical foundations of this is reviewed in Section 4.2. 

• An extension of this framework is reported in the literature that allows one to 

identify distinct clusters in a data set. This theory is reviewed in Section 4.3 and 

the technique is demonstrated on synthetic data sets (Figures 4.5-4.7) and an 

actual data set (Figure 4.10). 

• A procedure for applying support-vector domain description and support-vector 

clustering in the context of tradeoff modeling is given in Section 4.4. This fits 

within the procedure for generating tradeoff models described in Chpater 3..  

• It is difficult to validate positively the use of the tradeoff model domain 

description approach. However, the example problems of Chapter 6 (log splitter) 

and Chapter 7 (hydraulic hybrid vehicle) would be difficult to complete if this 

approach was not effective. If the domain descriptions were deficient, one could 

expect either nonsensical solutions to the design problems (e.g., because the 
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domain would be failing to constrain the optimization search) or a failure to detect 

reasonable solutions (e.g., because the domain description rules out reasonable 

solutions). 

9.1.3 Composing Tradeoff Models 

The third research question is about making the component-level tradeoff models 

useful at a systems level: 

RQ3. Under what conditions can designers compose component-level tradeoff 

models in order to model a system-level decision alternative soundly? 

H3. One can compose predictive tradeoff models soundly if the tradeoff models are 

based on parameterized Pareto sets and all induced preferences for any 

component-level dominator attribute are monotonic in the same direction. 

The main evidence supporting this hypothesis is as follows: 

• Section 5.3 contains a mathematical analysis of composition problem. Assuming 

one is dealing with parameterized Pareto sets (as opposed to tradeoff models fit to 

that data), then the composition procedure is mathematically sound: if a an 

implementation of a component is dominated by parameterized Pareto criterion 

then it cannot be part of the most preferred system. Theorem 5.2 and Corollaries 

5.3 and 5.4 are the relevant results. One can conclude that if a tradeoff model is a 

perfect representation of the actual parameterized efficient set of a component, 

then composition is valid. 

• The design problems of Chapter 6 (log splitter) and Chapter 7 (hydraulic hybrid 

vehicle) are evidence that it is valid to compose tradeoff models that approximate 

the true parameterized efficient sets. 
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9.1.4 Tradeoffs under Uncertainty 

The final research question and hypothesis are about the problem of dealing with 

uncertainty in the attribute data one would use to generate a tradeoff model: 

RQ4. How should designers identify and visualize the (parameterized) efficient set of 

tradeoffs when the attribute data is uncertain? 

H4. Designers can identify the (parameterized) efficient set of tradeoffs under 

uncertainty using (parameterized) stochastic dominance criteria and can 

visualize this set as a surface in mean-variance space. 

The evidence in support of this hypothesis is as follows: 

• From the survey of Section 8.2, one can conclude that stochastic dominance 

criteria are the appropriate mathematical constructs for performing dominance 

analysis under uncertainty in a multi-attribute utility theory setting. 

• The multivariate mean-variance second-order stochastic dominance (MV-SSD) 

rule is defined and shown to be a consequence of other results from the literature 

(see Definition 8.1 and Theorem 8.1). Under the assumptions associated with 

MV-SSD, designers can visualize the efficient set as a curve or surface in the 

mean-variance space. 

• A parameterized version of MV-SSD, denoted PMV-SSD, is introduced in 

Section 8.3 and shown to be sound under the prevailing assumptions (Definition 

8.2 and Theorem 8.2). 

• Section 8.3.1 contains explanations of the main assumptions underlying PMV-

SSD. Although these assumptions do not hold in general, one can conclude that 
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they are reasonable at least some of the time and correspond to assumptions 

designers commonly make. 

• The PMV-SSD rule is demonstrated successfully on a gearbox design problem 

(Section 8.4). The example is conducted under nearly ideal circumstances, and so 

questions remain about the general viability of the approach. However, the results 

are sufficient to conclude that the approach is internally consistent. 

9.2 Summary of Contributions 

9.2.1 Domain Description using Support Vector Machines 

The mathematical framework for support-vector domain description and support-

vector clustering existed in the literature. However, this research extends the basic 

framework to a complete procedure for constructing a domain description. It also is a 

novel application of domain description and clustering techniques in a systems design 

context.  

The procedure for support-vector domain description is significant in that it is an 

indispensable part of the overall approach to tradeoff modeling. Numerical search 

routines—optimizers and design exploration codes—lack the intuition of a designer and 

therefore require a formalized expression of what constitutes a valid input to a model.  

The domain description procedure also has significance beyond the tradeoff 

modeling approach to decision making. Interest in data-driven predictive modeling is on 

the rise within the design community as evidenced by publications in leading journals 
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and a recent workshop on the subjectm. The domain description procedure described in 

Section 4.4 can be useful in this context.  

9.2.2 Contributions to Dominance Analysis 

This research includes several contributions relating to dominance analysis: 

• A new dominance criterion, called parameterized Pareto dominance, is defined 

and validated mathematically. 

• The soundness of composing efficient sets is studied mathematically for both 

classical and parameterized Pareto dominance.  

• A new approach to decision making based on composing approximations of 

parameterized efficient sets, called  tradeoff models, is demonstrated and shown 

to be effective. 

• A new stochastic dominance criterion, called parameterized mean-variance 

second-order stochastic dominance, is defined and validated mathematically. 

The new dominance criteria are sound extensions of existing criteria. From this research, 

one can conclude that they are useful constructs for systems design and have value from 

an applications perspective. The modeling approach studied in this research would not be 

possible without them and their general nature is conducive to broader application. 

The general approach to system-level decision making studied in this research—

based on abstracting problem-independent models of components from parameterized 

efficient set data—is a new and noteworthy departure from prior research. Prior work on 

tradeoff analysis in design is monolithic and problem-specific, requiring a full system 

                                                 
m Workshop on Performance Prediction in System-Level Design, held at the ASME International Design 
Engineering Technical Conferences (IDETC2008), Brooklyn, NY, 3 August 2008 
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model and precluding the reuse and composition of the resulting tradeoff models. Prior 

work on hierarchical decision-based design and optimization is based on tightly-coupled 

system and component models and generally requires more information than designers 

have available during system-level decision making. The approach investigated in this 

research addresses these limitations. Design processes are not large monolithic decision 

processes in practice, and it is important that research reflects this reality. 

The soundness results for composing efficient and parameterized efficient sets are 

an important part of this research in terms of understanding when it is valid to eliminate a 

component from consideration. It also is interesting from the standpoint of understanding 

the system-level implications of component-level actions and has applications beyond 

this research. Section 9.4 includes some speculation about applying these dominance 

results to combinatorial optimization problems. Preliminary results are encouraging and 

further study is warranted.  

9.2.3 Tradeoff Analysis under Uncertainty 

Although there is much prior work in the design community on tradeoff analysis, 

nearly all of it is devoted to the case in which attribute values are known with certainty. 

The current research contributes a new perspective on how designers can model and 

visualize tradeoffs under uncertainty. The mathematics at the core of this perspective are 

established results from the decision theory and operations research communities. 

However, the application of these ideas to systems design problems is novel. They 

provide a mathematical basis for identifying efficient sets under uncertainty, an 

understanding of which previously was lacking in the design community.  
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This investigation includes only a preliminary foray into stochastic dominance 

and its potential applications to design. The achievements in the context of the tradeoff 

modeling approach studied in this research are modest. However, the more valuable 

contribution may be the introduction of ideas about mathematically-sound stochastic 

dominance criteria to the design community. 

9.3 Limitations 

There are several limitations or caveats associated with the approach to making 

system-level decisions using predictive tradeoff models. The following is a summary of 

and response to the more notable of these. 

Scalability in the Number and Types of Attributes 

Scalability could be a problem for certain types of components. In the examples 

presented here, most components had fewer than four or five attributes. Tradeoff model 

generation and validation is tractable under these circumstances, but it could become 

practically difficult if the number of attributes becomes large. It is unclear how many 

attributes would be too many, and such a threshold probably is component-dependent.  

Another consideration is that some components have attributes that are not readily 

quantifiable or are otherwise difficult to work with in this setting. For example, the 

engine models in this investigation consisted of fairly abstract “peak” attributes—e.g., 

maximum power, maximum torque and the speeds at those points. These capture only a 

small aspect of engine behavior and it would be preferable from a simulation standpoint 

to have complete engine and fuel-consumption maps. However, it is unclear how one 

could incorporate information like this into a tradeoff model in a meaningful way. 
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The Attributes for a Component are Not Unique 

There is no unique set of decision attributes for a given decision problem. One 

designer may select an engine primarily based upon its maximum power output and cost 

while another also considers mass and service life. The complication from a tradeoff 

modeling perspective is that a tradeoff model the first designer generates (with power and 

cost as attributes) is inadequate for the second designer.  

Although this fact does impact the practical value of the tradeoff modeling 

approach, it is not indicative of a fundamental flaw. All models involve assumptions and 

it is a practical impossibility to create any model that is universally valid. In truth, there is 

remarkable commonality in the attributes systems designers use to describe a particular 

component. This is evidenced by parts catalogs that report a certain set of information for 

each type of component. It seems reasonable to infer that the data set reported for each 

component type is reflective of the attributes that designers use most commonly. 

Designers who generate tradeoff models can focus on those types of attributes, thereby 

maximizing the applicability of the models.  

Preferences Can Change over Time / Exceptions to Preference Rules 

Tradeoff modeling is based on the notion that for at least some component-level 

attributes there is a general and identifiable preference structure. Designers always want 

less cost, more reliability, less noise, and so forth. One criticism of the approach is that 

preferences may not be so fixed—that designers could change their mind during a project 

or simply have unconventional preferences at the outset.  

The response to this is twofold. First, a change in preferences is not necessarily 

the same as changing a general property about preferences, such as monotonicity. There 

is little doubt that preferences can shift during the course of a design project—e.g., 
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designers receive new marketing data that prompts them to rethink what they should 

design. However, one should think it rare for a designers to completely reverse their 

objectives—e.g., to go from wanting to maximize reliability to wanting to minimize it. 

Provided preferences do not undergo such a structural change, a tradeoff model will 

remain valid. 

Second, it is impossible to account for all possible exceptions to a rule and some 

designers may be unable to reuse a preexisting tradeoff model. For example, although 

most designers would minimize mass (all other factors being equal), dynamics 

considerations might lead designers to treat the mass of particular components more like 

a target-type attribute. Designers should treat target-type attributes as parameters rather 

than dominators because target-matching preferences are incompatible with the 

monotonicity assumptions associated with dominator attributes.  

The Impact of Environmental or Boundary Conditions 

One challenge that has been ignored to this point is the problem of dealing with 

the influence of environmental and boundary conditions. For example, in the gearbox 

example one must assume loading conditions in order to estimate reliability.  

There are two main ways to deal with this issue. One is to include some or all of 

the environmental variables in the tradeoff model. This would enable designers to 

account for their impact, but would complicate the models considerably. Another 

approach is to evaluate attributes impacted by external considerations under agreed-upon 

conditions. Although it is difficult for an industry to identify standard test conditions, this 

probably is the better approach and certainly reflects how parts catalogs deal with similar 

issues today. For example, the L10 lifetime rating for bearings works this way. Another 
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example is fuel consumption rates for engines, which usually are reported only at open 

throttle. 

Data Availability 

Data availability is a major practical consideration. Without data or a validated 

model with which one can generate data, it is impossible to generate a valid tradeoff 

model. Presently, data sources are limited. The examples in this research were made 

possible in part because corporate sponsors agreed to share some of their data. Other data 

was collected through a variety of means—on the internet, via phone conversations with 

vendors, etc.—but this process is painstaking and, at times, frustrating. 

However, this does not mean research into data-driven modeling techniques lacks 

merit. If designers have data-driven methods that are effective, manufacturers and 

vendors will get the message and publish more of their data.  

Generalizing across Discrete Alternatives 

The tradeoff modeling approach is based on creating continuous models from 

discrete data samples. This has two principal advantages: it permits designers to make 

inferences about potential implementations of a component or system and it allows them 

to use search and optimization algorithms that perform better on continuously-valued 

models. The first advantage makes sense if designers are able to custom design their 

components (or have them custom built on their behalf). However, one can question the 

wisdom of doing this when designers ultimately will select off-the-shelf components for 

their system.  

The response to this is that it depends. In some cases, many different sizes of a 

particular component are on the market and designers can be reasonably confident that 

one will exist that is “close enough” to the solution they obtain using their continuous 
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tradeoff model. However, if system utility is highly sensitive to the attributes of this 

component or there are few sizing choices available on the market, designers may be well 

advised to avoid fitting a tradeoff model and instead to work directly with the efficient set 

data. 

9.4 Open Questions and Opportunities for Future Research 

Practical Aspects and Extensions of Tradeoff Modeling 

This research focuses on studying the foundations of tradeoff modeling rather 

than investigating the practical aspects of the approach. This leaves several open 

questions: 

• Are tradeoff models really a general and reusable representations of a type of 

component? Although this seems to be the case in principle, it may be that 

practical considerations such as the logistics of model documentation and upkeep 

may detract significantly from their value. Another problem may be that the 

required dimensionality is unmanageably large for many types of components. 

• Can designers update an existing tradeoff model easily given new data? This is 

important in determining whether tradeoff modeling is a practical approach to 

representing engineering knowledge. Intuitively, it would seem that such 

procedures are possible and practically reasonable. However, this remains to be 

demonstrated conclusively. 

• Can companies use tradeoff models as an effective knowledge representation 

among a multidisciplinary team? While much about a detailed simulation of an 

engine would be meaningless to a marketing analyst, a tradeoff model that 

expresses a relationship between a company’s technical capabilities and other 

enterprise concerns (manufacturing, pricing, environmental impact, etc.) might be 



 212 

a useful mode of communication. The same idea applies to communication among 

designers with different engineering backgrounds.  

• Can designers use tradeoff models to create technology forecasts? In the current 

research, tradeoff models are assumed to be static entities that describe a current 

state of affairs. However, as technology improves over time, a tradeoff model too 

must change. Designers may be able to achieve higher power outputs from their 

engines at less cost. This means a parameterized efficient frontier will move 

through the tradeoff space over time. Designers may be able to infer trends useful 

for strategic planning or identify opportunities in the marketplace by analyzing 

this motion over time. 

• Can tradeoff models replace design catalogs (at least for some components)? One 

interpretation of a tradeoff model is that it is a computable representation of the 

information contained within a design catalog. Because it is abstract of design 

details it naturally shields a manufacturer from divulging trade secrets that lead to 

its competitive advantage. This is not necessarily the case for classic engineering 

analysis models, which compute higher-level attribute from lower-level design 

information. This approach may be useful in the context of mass customization, 

where manufacturers offer customers nearly infinite variety.  

• Can designers use tradeoff models to account for attributes relating to 

environmental impact? In principle, there is no reason why this should not be 

possible provided the relevant attributes are quantitative measures. The larger 

challenge may lie in how to assess the environmental impact of a particular 

component. This issue goes well beyond system-level decision making, but 
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tradeoff modeling could be a useful connecting point between research on 

environmental impact and systems decisions. 

Implications of the Decision Chain Perspective 

The role in this research of the decision chain concept is to motivate a perspective 

on decision making that is broader than engineering optimization. The core idea is that 

design problems are too complex to be formulated as one large optimization problem. In 

the current research, this leads to a data-driven predictive modeling approach. The basic 

idea is that designers can infer much about the other decisions in a decision chain from 

this data without having to model the decision processes explicitly. However, this 

perspective has other implications. 

A common definition for a decision is that it is “an irrevocable allocation of 

resources” (Hazelrigg 1996). From a detail design perspective, one can interpret this as a 

designer making choices about the product: How large should it be? What should it be 

made of? The allocated resources are the materials and labor that go into making the 

product. However, a decision-chain perspective implies a broader interpretation of what 

this allocation means. A systems designer makes relatively few choices about the 

engineered artifact that are not revocable. For example, even after choosing one particular 

system architecture, a design team can reevaluate and backtrack to go with another 

alternative. What, then, has the system designer allocated irrevocably? 

The only commitment of resources dictated by the systems designer in this 

example relate to the design process itself: the time spent by the design team developing 

the system according to a particular architecture, including any computational resources 

devoted to the project. Designers require a better understanding of their decisions from 

this perspective. One of the basic arguments from the set-based design literature is that it 
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can be advantageous for designers to develop a large number of alternatives in parallel 

(Sobek II, et al. 1999). However, it remains unclear how designers should determine how 

many alternatives to consider or when to narrow the field down to a single solution 

strategy. Although some research exists on characterizing the relationship between a 

design process and its outcome (e.g.,(Sobek II and Jain 2007)), it remains a largely open 

topic.  

Combinatorial Optimization 

The parameterized Pareto dominance criterion may be useful for certain types of 

combinatorial optimization problems. Table 9.1 is a condensed version of Table 6.2 that 

contains the numbers of components in the hydraulics database used for the log splitter 

problem before and after dominance analysis. What is striking about this table is the last 

column: the number of valid component combinations. By taking a purely combinatorial 

approach, one could construct over 24 million valid log splitter systems from the original 

database. Even after eliminating a number of components using rudimentary outlier 

analysis, one is left with over 10 million combinations. However, after dominance 

analysis one has only a half-million combinations—a rather manageable number. 

 

Table 9.1: Components in database before and after dominance analysis. 

Component Engine Pump Cylinder Control 
Valve 

Total # of 
Combinations 

Hours to 
Evaluate* 

Total # in DB 59 61 188 36 24,358,032 6.8 
# aft. outlier 
analysis 

49 43 158 32 10,652,992 2.9 

# aft. dom. 
analysis 

19 24 137 8 499,776 0.14 

    *Assuming 1ms computation time per combination. 
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To put these results in perspective, suppose each configuration requires one 

millisecond to evaluate. To consider all combinations of the original database, one would 

require almost seven hours while the evaluations would be a matter of minutes after 

applying the parameterized Pareto dominance criterion—a speedup of 98%! The potential 

value of dominance analysis is even more apparent for longer computation times: if 

evaluations instead take one-tenth of a second, the full combinatorial search would take 

over 28 days, while the post-dominance analysis search would require about a half day 

(14 hours).  

What makes this speedup possible are the theoretical results from Chapter 5, 

specifically the soundness results for composing parameterized Pareto sets. Those results 

guarantee that eliminating components via parameterized Pareto dominance is sound 

from a systems perspective—i.e., designers will not eliminate a component that would 

have been part of the best system configuration. 

Although these preliminary results are very encouraging, the true value of this 

approach depends on how typical it is for designers to eliminate large numbers of 

components using parameterized Pareto dominance. It is likely that this particular 

example is atypical, but the effect would be notable even if the average speedup were 

more modest. Future research is required to ascertain what kind of improvements are 

likely and to characterize the search approach mathematically.  

Applications of Support-Vector Domain Description  

The support vector-domain description and clustering techniques introduced in 

Chapter 4 have many potential applications in design.  

• The most critical application may be in the context of validating models generated 

from observational data. Although often an afterthought, it is important for model 
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developers to describe the context in which others may validly use their models 

(Malak and Paredis 2007).  

• The SVDD and SVC techniques also may be useful in the context of strategic 

planning for design projects. Domain description and clustering may be useful in 

identifying different types of customers or in identifying unexploited niches in the 

product landscape.  

• Support-vector domain description is applicable to outlier detection and therefore 

can be useful for quality control in manufacturing. Typical classification 

algorithms require examples of both positive and negative results (i.e., good and 

bad parts) to learn the desired associations. In contrast, the SVDD algorithm 

requires only positive examples to learn a decision boundary. This could be 

advantageous. 

• A SVDD can serve as a compact representation for a very large set of data. It may 

require only a handful of support vectors to represent thousands of data points. 

This can be useful in the context of data mining applications relating to design. 

Tradeoffs under Uncertainty 

Ample room exists for further research into applications of stochastic dominance 

rules in systems design. Just within the context of tradeoff modeling, several open 

questions exist.  

• Are there other distributions for which the mean-variance space is a rigorous 

tradeoff representation? As noted in Chapter 8, this is known to be the case for 

normal and log-normal distributions. Other types of distributions are common on 

engineering problems, including the uniform, triangular and exponential. Are any 
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of these compatible with this representation? If not, what is a suitable 

representation for them? 

• When is the benefit of modeling tradeoffs under uncertainty worth the added 

complexity? This is a difficult, but important question. Even using somewhat 

aggressive assumptions, the PMV-SSD rule requires twice as many dimensions as 

parameterized Pareto dominance. At what point to other uncertainties in the 

problem dominate those due to the underlying data? 

• What is the practical implication of assuming attributes are statistically 

independent? This assumption simplifies the representation considerably, but 

probably is, strictly speaking, incorrect in most cases. What is the impact of 

modeling the distributions as independent when they really are not? What 

recourse is available to designers when independence is a very poor assumption? 

• Is there practical value in visualizing efficient tradeoffs in a generalized tradeoff 

space (e.g., mean-variance space)? Such a space has high dimensionality and it 

can be problematic to visualize relationships in such a space. For this to be 

practical, researchers must consider the meaning of these relationships and 

provide practicing designers with insight into how to interpret them. Research into 

advanced visualization tools also may be useful. 

9.5 Summary 

System-level decision making requires both insight and foresight about the design 

problem and the potential solutions to it. This type of knowledge is difficult for designers 

to formalize. In fact, they commonly rely on qualitative approaches due to the difficulty 

of evaluating their decision alternatives using quantitative models. This is not because it 
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is difficult for designers to model the interactions between and behaviors of individual 

system components mathematically. Instead, it is due to the difficulty in arriving at 

reasonable estimates for the likely attributes of those components. Put in the simplest of 

terms, it would be invalid to conclude that an all-electric vehicle is superior to a hybrid 

one based on exaggerated assumptions about how much electrical power storage one can 

have for a given cost and mass.  

This research is an investigation of a predictive approach to modeling system-

level decision alternatives. The core premise is that designers can make inferences about 

how they or other designers would implement a particular component based on attribute 

data about prior implementations of that type of component. They can use this 

information at the systems level by composing together the component-level models. The 

component-level models are based on a new decision-theoretic construct, called a 

parameterized efficient set. The internal consistency of this approach is validated using 

mathematical analysis and practical applicability is demonstrated on representative 

design problems.  

The contributions from this research are significant in the context of this modeling 

approach and there is reason to believe they also have broader significance. Several 

potential extensions to the modeling approach and alternative applications of these 

research ideas have been explored. Whether this particular approach to modeling system-

level alternatives is the best solution to the problem remains unclear. However, one can 

conclude that the contributions made in this research are useful waypoints on the path to 

a lasting and effective solution to the problem. 
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APPENDIX A: 

 

PROOFS OF MATHEMATICAL STATEMENTS 

A.1 Theorem 1 

The theorem follows directly from the definitions of classical Pareto dominance 

and monotonicity. From Definition 3.1 (page 54), DOM′ ′′z z  means 1i iz z i N′ ′′≥ ∀ = …  

and 1iz z i N′ ′′> ∃ = … . From Definition 5.1, if a scalar function, ( )V ⋅ , is monotonically 

increasing in [ ]1 2, , , Nz z z=z …  then the condition 1i iz z i N′ ′′≥ ∀ = …  and 

1iz z i N′ ′′> ∃ = …  implies ( ) ( )V V′ ′′>z z ■ 

A.2 Theorem 2 

The theorem follows directly from the definitions of parameterized Pareto 

dominance and monotonicity. From Definition 3.2 (page 57), PDOM′ ′′z z  means if 

i iz z i P′ ′′= ∀ ∈ , i iz z i D′ ′′≥ ∀ ∈  and i iz z i D′ ′′> ∃ ∈  which is special case of 

1i iz z i N′ ′′≥ ∀ = …  and 1iz z i N′ ′′> ∃ = …  since { }1P D N∪ = …  and P D∩ = ∅ . 

From Definition 5.1, if a scalar function, ( )V ⋅ , is monotonically increasing in 

[ ]1 2, , , Nz z z=z …  then the condition 1i iz z i N′ ′′≥ ∀ = …  and 1iz z i N′ ′′> ∃ = …  implies 

( ) ( )V V′ ′′>z z  ■ 

A.3 Theorem 5.1 

The theorem is proved using a direct approach. One can state Theorem 5.1 as: 

 ( ) ( )DOM , DOM ,k k k k k
′ ′′ ′ ′′ ′ ′′ ′ ′′∀ ∈ → ∃ ∈y y y y Y S y S y y y Y , 



 220 

where it is understood that [ ],k k−
′ ′ ′=y y y  and [ ],k k−

′′ ′′ ′′=y y y  such that *,k k k− − −
′ ′′ ∈y y Y , and 

the stated monotonicity condition holds. Using the definition for classical Pareto 

dominance (Definition 3.1) yields, for all ,k k k
′ ′′ ∈y y Y : 

 

( ) ( )

( )( ) ( )( )

( )( ) ( )( )

1 1

1
,

1

kj kj k kj kj k

i ii i

i ii i

y y j M y y j M

S S i N

S S i N

′ ′′ ′ ′′≥ ∀ = ∧ > ∃ = →

 ′ ′′≥ ∀ = ∧
  ′ ′′∃ ∈
 ′ ′′ > ∃ =
 

y y
y y Y

y y

… …

…

…

  (A1) 

where ( )iy  denotes the vector of attributes used in the i th system composition model. 

There always exists a [ ],k k−
′ ′ ′=y y y  and [ ],k k−

′′ ′′ ′′=y y y  such that 

1 2, Y Y Y YK
′ ′′∈ = × × ×y y �  and *

k k k− − −
′ ′′= ∈y y Y . Thus, to prove the proposition, one 

need only prove that the premise implies the conclusion for attribute vectors constructed 

this way. The conclusion of Equation (A1) involves two comparisons joined by a 

conjunction, and so both must hold. The first inequality must hold for all system 

composition models. Let { }1kI N∈ …  denote the set of indices corresponding to system 

composition models with an attribute from component k  as an input and kI−  be its 

compliment. Strict equality holds for ( )i kS i I−⋅ ∀ ∈ , since their inputs come from 

k k− −
′ ′′=y y —i.e., ( )( ) ( )( )i i ii kS S i I−

′ ′′= ∀ ∈y y . The ( )i kS i I⋅ ∀ ∈  have inputs such that 

( ) ( ) 1
ii m i m

m My y ∀ =′ ′′≥ …  because either the attribute is not from component k  (in which 

case ( ) ( )i m i m
y y′ ′′= ) or it is from component k , in which case ( ) ( )i m i m

y y′ ′′≥  is assumed via 

the theorem’s premise. Every ( )iS ⋅  for ki I∈  is strictly increasing in any attribute from 

component k  and ( ) ( ) 1 ,
kii m i m

i Iy y m M ∈′ ′′≥ ∀ = … , so it follows from the definition of 



 221 

strict monotonicity that ( )( ) ( )( )i i i ki i IS S′ ′′ ∀ ∈>y y . Thus, since { }1k k NI I−∪ = … , one has 

( )( ) ( )( )i 1
i ii i NS S′ ′′ ∀ =≥y y … . The second inequality requires only existence to hold and 

was proved in the course of proving the first inequality—i.e., because 

( )( ) ( )( )i i i ki i IS S′ ′′ ∀ ∈>y y  it follows that ( )( ) ( )( )i 1
i ii i NS S′ ′′ ∃ =>y y …  ■ 

A.4 Corollary 5.1 

Since *

k k− −⊂Y Y , one can substitute the statement k k k− − −
′ ′′= ∈y y Y  for 

*

k k k− − −
′ ′′= ∈y y Y  in the proof for Theorem 5.1 and the proof still works. Thus, it follows 

that the corollary is true ■ 

A.5 Corollary 5.2 

It follows that if every system composition model is strictly increasing in every 

variable, then every component satisfies the scenario for Theorem 5.1. Since one can 

apply Theorem 5.1 to every component, it follows that the corollary holds ■ 

A.6 Theorem 5.2 

The logic for this proof follows that for Theorem 5.1. One can restate Theorem 

5.2 as:  

 ( ) ( )PDOM , DOM , Yk k k k k
′ ′′ ′ ′′ ′ ′′ ′ ′′∀ ∈ → ∃ ∈y y y y Y S y S y y y . 

Recall that { }1D M⊂ …  is the set of indices for the dominator attributes and 

{ }1P M⊂ …  is the set of indices for the parameter attributes and each are defined such 

that D P∩ = ∅ , { }1D P M∪ = …  and D ≠ ∅ . Applying the dominance definitions 

yields, for all ,k k k
′ ′′ ∈y y Y : 
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( ) ( ) ( )

( )( ) ( )( )

( )( ) ( )( )

1
,

1

kj kj kj kj kj kj

i ii i

i ii i

y y j P y y j D y y j D

S S i N

S S i N

′ ′′ ′ ′′ ′ ′′= ∀ ∈ ∧ ≥ ∀ ∈ ∧ > ∃ ∈ →

 ′ ′′≥ ∀ = ∧
  ′ ′′∃ ∈
 ′ ′′ > ∃ =
 

y y
y y Y

y y

…

…

 

Let kI ≠ ∅  denote the set of indices for system composition models, ( )iS ⋅ , with one or 

more attributes from component { }1k K∈ …  as an input and kI−  denote its compliment. 

As in the case for Theorem 5.1, there always exists tradeoffs [ ],k k−
′ ′ ′=y y y  and 

[ ],k k−
′′ ′′ ′′=y y y  such that *

k k k− − −
′ ′′= ∈y y Y . Let [ ],k kD kP=y y y , where kPy  is a vector 

consisting of all the attributes of subsystem k  treated as parameters (the kjy  for j P∈ ) 

and kDy  is a vector of the remaining attributes (the kjy  for j D∈ ). Thus, one has 

[ ], ,k kD kP k−
′ ′ ′ ′=y y y y  and [ ], ,k kD kP k−

′′ ′′ ′′ ′′=y y y y . According to the premise of Theorem 5.2, 

kP kP
′ ′′=y y  and DOMkD kD

′ ′′y y . By letting [ ],kP k= −=y y y , one has [ ],kD =
′ ′ ′=y y y  and 

[ ],kD =
′′ ′′ ′′=y y y  such that = =

′ ′′=y y  , which is equivalent to the case proved for Theorem 5.1. 

Therefore, it follows that Theorem 5.2 holds ■ 

A.7 Corollary 5.3 

Since *

k k− −⊂Y Y , one can substitute the statement k k k− − −
′ ′′= ∈y y Y  for 

*

k k k− − −
′ ′′= ∈y y Y  in the proof for Theorem 5.2 and the proof still works. Thus, it follows 

that the corollary is true ■ 

A.8 Corollary 5.4 

It follows that if every system composition model is strictly increasing in every 

dominator attribute, then every component satisfies the scenario for Theorem 5.2. Since 

one can apply Theorem 5.2 to every component, it follows that the corollary holds ■ 
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A.9 Theorem 8.1 

Several authors prove that the mean-variance assumptions hold for the single-

attribute case (e.g., (Tobin 1958, Hanoch and Levy 1969, Baron 1977)). Combining this 

result with Theorem 2 in (Huang, et al. 1978) yields a complete proof of the multi-

attribute case of Theorem 8.1 ■ 

A.10 Theorem 8.2 

Proof follows directly from the definition of MV-SSD. Since , ,i a i b i Pµ µ= ∀ ∈ , 

, ,j a j b j Dµ µ≥ ∀ ∈  and { }1, ,P D N∪ = … , one can conclude that , , 1k a k b k Nµ µ≥ ∀ = … . 

This yields the conditions for MV-SSD (Definition 8.1) and so dominance holds and the 

theorem is proved ■ 
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