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SUMMARY

We consider a risk averse entrepreneur who approaches a diversified venture capitalist

(VC) for financing of a project with positive potential return. We develop several models

that capture key features of the venture financing, including staged investment, VC oversight

costs and agency conflicts. The contract between the VC and the EN includes risk-free and

pay-performance sensitive compensation. Moral hazard arises because the EN must exert

effort for the project to succeed. Our model is novel in that it also allows for asymmetric

beliefs about project quality due to the EN’s optimism even when the VC and EN face

symmetric information.

We first analyze the VC-EN relationship when the VC has bargaining power. We charac-

terize the equilibrium levels for the pay-performance sensitivities, investment and effort over

time and show they can be either increasing or decreasing or initially increasing and then

decreasing. We find that asymmetric beliefs and risk aversion have opposite effects on the

VC-EN relationship. When the EN is moderately more optimistic than the VC, he accepts

more risk and exerts more effort and the VC responds with more investment. In contrast,

risk aversion reduces effort and investment. Our model predicts a performance-sensitive

investment policy where critical milestones must be achieved for investment to continue.

These milestones increase with the risk aversion and decrease with the asymmetry in beliefs.

Consequently, project duration increases with asymmetric beliefs and decreases with risk

aversion.

We calibrate this core model to empirical data and use numerical analysis to demonstrate

that the technical and systematic risks have opposite effects. The VC’s payoff and the

project’s value and duration increase with technical risk and decrease with systematic risk.

We analyze the relationship when the EN has bargaining power, and find that the

equilibrium and the corresponding implications for venture financing do change. In this

setting, the negative effects due to risk aversion are more pronounced. We also find that

x



if the EN’s effort cannot be observed by the VC, then the pay-performance sensitivities,

investment and effort all increase.
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CHAPTER I

INTRODUCTION

Venture capital is the primary means through which innovative ideas are financed, nurtured

and brought to fruition and therefore plays a crucial role in economic growth. Indeed,

Gompers and Lerner (2001a) calculate that over the years “venture capitalists have created

nearly one-third of the total market value of all public companies in the United States.” The

“Venture Capitalist-Entreprenuer” (VC-EN) relationship exhibits several proven features,

each of which is essential to the understanding of VC financing. First, the process of

developing, testing and marketing an innovative idea possesses inherently high levels of

technical and systematic risks. The VC and EN have different attitudes towards risk,

since the VC is more diversified than the EN. Second, empirical evidence documents that

the VC and EN often have divergent views (“asymmetric beliefs”) about the economic

potential of the project.1 As noted in The Economist : “Entrepreneurs tend to be wildly

over-optimistic; if they were not, they would never get past their first crisis.”2 Third, several

studies document the prevalence of staged investment to mitigate the inefficiencies created

by the agency conflicts that naturally arise between the VC and EN. In the presence of

imperfect information, staged investment over time is a sensible means to avoid large capital

investments before learning more about the project’s true quality.

In this thesis, we develop, to the best of our knowledge, the first theoretical framework

of venture capital investment that incorporates the essential features of venture capital rela-

tionships in a dynamic setting—the different attitudes and components of risk, asymmetric

beliefs, agency conflicts, imperfect information and dynamic learning, staged investment.

We examine this framework under three different settings. The first, which we call the Basic

1See, for example, Sahlman (1990), Gladstone and Gladstone (2002), and Landier and Thesmar (2005).
Lerner (1998) argues that an entrepreneur’s strong sense of commitment to the firm he founded makes him
loathe to admit failure and accept the true value of the firm. Gompers and Lerner (2001b) emphasize the
prevalence of high levels of imperfect information about project qualities in venture capital financing.

2The Economist, April 16, 2005, p. 68.
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Model, assumes the VC possesses the bargaining power. In the second setting, named the

Shift of Power Model, we assume the EN holds the bargaining power. In the third model,

the Unobservable Effort Model, we assume information asymmetry between the VC and

the EN caused by the VC’s inability to observe the EN’s effort levels.

We demonstrate that the interactions between risk, asymmetric beliefs and the agency

conflicts have a major impact on the key characteristics of venture capital relationships,

namely, the economic value they generate, the structure of the long-term contracts between

VCs and entrepreneurs, how VC investment is staged over time, and the duration of VC

relationships. We examine and characterize the robustness of these results to the assumption

of bargaining power and the observability of effort. Theoretical and numerical analysis of

our framework suggests several novel testable implications for the financing, development,

and economic value of new ventures. Chief among them are:

i) VC’s have significant incentives to “feed” entrepreneur optimism and exploit it to

their advantage;

ii) the equilibrium long-term contract for the EN features either increasing or decreasing

pay-performance sensitivities; that is, the EN’s compensation will either be always

more or less sensitive to performance in earlier stages as compared with later stages;

iii) the equilibrium staged VC investments over time (contingent on continuation) will

either increase, decrease or initially increase and then subsequently decrease;

iv) firm value and the VC’s expected payoff are actually enhanced when there is greater

noise in the perception of project quality, a striking normative implication;

v) the relationship duration decreases with the project’s systematic risk but increases

with the project’s technical risk or the degree of asymmetry of beliefs;

vi) the pay-performance sensitivity and investment are lower when the EN has bargaining

power as compared to when the VC enjoys bargaining power; and

vii) the pay-performance sensitivity and investment increase when the VC cannot observe

the EN’s labor investment.

2



Our framework incorporates a dynamic principal-agent model where a cash-constrained,

risk-averse entrepreneur (EN) with a project approaches a well-diversified, risk-neutral ven-

ture capitalist (VC) for financing at the initial date. The project generates potential value

through physical capital investments by the VC and human capital (effort) investments

by the EN. Both the VC and the EN have imperfect information about the project and

may, in general, differ in their initial assessments of the project’s quality with the EN being

more optimistic. The VC’s investment in the project may be staged over time. Future

investment is contingent on intermediate observations of the project’s termination value,

the fundamental state variable that represents the value of the project from the perspec-

tive of “outside” investors.3 These observations serve as “signals” that enable the VC and

the EN to update their assessments of its quality in a Bayesian manner. All payoffs occur

when the relationship is terminated.4 The EN is provided with inter-temporal incentives

to invest human capital through a long-term renegotiation-proof contract that may depend

on the entire path of the project’s termination value process. Either the VC or the EN may

terminate the relationship at any intermediate date.

Under the assumption that the EN has CARA preferences, we derive and characterize

the equilibrium long-term contract between the VC and the EN, which describes the VC’s

investments over time, the EN’s path-dependent payoff upon termination, and the inter-

temporal performance targets that must be met for the relationship to continue. Keep in

mind that the duration of the relationship (or the number of stages of financing) is en-

dogenously determined by the characteristics of the underlying project. Conditional on

continuation, the VC’s staged investments, the sensitivities of the EN’s compensation to

performance over each period (the pay-performance sensitivities), and the EN’s effort in each

period, are all deterministic functions of time. The paths of investment, pay-performance

sensitivities, and effort crucially depend on the relative magnitudes of the initial degree

3We assume the VC and the EN possess specific skills and neither is permitted to supplying them to a
third party. Hence, the termination value of the project at any date is lower than its rational expectations
market value, namely, the value of the project under hypothetical full commitment by the VC and the EN,
which incorporates the effect of their future physical and human capital investments. The termination value
of the project is observable and verifiable, but the rational expectations market value is non-verifiable.

4Our analysis could be generalized to incorporate intermediate cash flows without qualitatively altering
our main results.
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of asymmetry in beliefs about project quality and the cost of risk, which increases with

the EN’s risk aversion and the project’s total (systematic + technical) risk. If the initial

degree of asymmetry in beliefs is below a threshold relative to the cost of risk, investments,

pay-performance sensitivities, and effort increase monotonically over time. If the degree

of asymmetry in beliefs is above this threshold, however, the pay-performance sensitivities

and effort decrease monotonically over time, while the VC’s investment schedule initially

increases and subsequently decreases with time. Our theory therefore provides a poten-

tial explanation for the significant heterogeneity in contractual structures and investment

schedules reported in earlier empirical studies (for example, Gompers, 1995).

The intuition for these results, described in greater detail in the thesis, hinges on the

complex interplay among the value-enhancing effort by the EN that is positively affected

by his optimism, the costs of risk-sharing due to the EN’s risk aversion that is affected by

the project’s systematic and technical risk, and the effect of both the VC’s physical capital

investment and the EN’s effort on output. The passage of time causes technical risk to

be resolved thereby lowering the costs of risk-sharing. However, the passage of time also

lowers the degree of asymmetry in beliefs of the VC and the EN, since successive project

realizations cause the EN to revise his optimistic assessment of project quality. The decline

in the degree of asymmetry in beliefs lowers the rents that the VC can extract by exploiting

the EN’s optimism. If the initial degree of asymmetry in beliefs is below a threshold,

the beneficial effect of time on the costs of risk-sharing dominate so that the EN’s pay-

performance sensitivities and effort increase. As the EN’s effort increases over time, the

VC optimally increases her investment over time. An increase in the project’s systematic

or technical risk and/or a decrease in the degree of asymmetry in beliefs increases the costs

of risk sharing compared with the economic rents that the VC can extract from the EN’s

optimism. If the degree of asymmetry in beliefs is above a threshold, the EN is willing to

accept all the risk of the project so that his risky compensation and effort are initially high.

The negative effect of the evolution of time on the degree of asymmetry in beliefs, however,

dominates its positive effect on the costs of risk-sharing so that the EN’s risky compensation

effort declines over time. The VC’s investments initially increase to “compensate” for the

4



decrease in effort of the EN. After a certain point in time, however, the decreasing effort of

the EN makes it optimal for the VC to also lower her capital investments.

We derive the sensitivity of the equilibrium dynamics to the project’s systematic and

technical risk and the degree of asymmetry in beliefs. The EN’s pay-performance sensitiv-

ities decline with risk and increase with the degree of asymmetry in beliefs. The effects of

risk and the degree of asymmetry in beliefs on the VC’s investment path, however, depend

on their relative magnitudes. If the initial degree of asymmetry in beliefs is below a thresh-

old relative to the cost of risk, the VC’s investments decrease with systematic and technical

risk and increase with the degree of asymmetry in beliefs. If the degree of asymmetry in

beliefs is above a threshold relative to the cost of risk, however, the VC’s investments ac-

tually increase with risk in early periods and decrease in later periods, whereas the VC’s

investments actually decrease with the degree of asymmetry in beliefs in early periods and

increase in later periods.

With respect to the duration of the relationship, we demonstrate that it increases with

the degree of asymmetry in beliefs and decreases with the EN’s risk aversion. An increase

in the degree of asymmetry in beliefs and/or a decrease in the EN’s risk aversion raises the

economic rents that the VC captures due to the EN’s optimism relative to the costs of risk-

sharing, thereby inducing her to prolong the relationship. The negative relation between

duration and the degree of asymmetry in beliefs is consistent with the evidence in Kaplan

and Stromberg (2003) that experienced entrepreneurs, who are likely to have more realistic

beliefs, receive fewer rounds of financing.

We numerically implement and calibrate the parameters of our structural model to

empirical evidence on venture capital financing. We demonstrate that our model does

reasonably well in matching data on the durations of venture capital relationships and the

distributions of returns from venture capital investment reported by Sahlman (1990) and

Gompers (1995). We then analyze the calibrated model and numerically derive the effects

of the degree of asymmetry of beliefs, the project’s technical and systematic risk and the

project’s output elasticity of capital on the duration, firm value and VC’s expected payoff.

Consistent with our earlier analytical results, EN optimism significantly enhances firm
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value as well as the expected payoff to the VC.5 The increase in the VC’s expected payoff

due to EN optimism is generally disproportionately greater than the increase in firm value,

which reflects the substantial rents that the VC may extract by “feeding” EN optimism.

The positive effects of EN optimism are consistent with the empirical evidence reported

in Gelderen, Thurik and Bosma (2005). We also find that firm value is positively related

to the duration of the relationship, which is also consistent with the evidence in Gompers

(1995).

We demonstrate analytically for a two-period model and numerically for the general

model that systematic and technical risk have dramatically opposite effects on duration, firm

value, and the VC’s expected payoff. All three output variables generally increase with the

project’s initial technical risk, but decrease with its systematic risk. The intuition for these

results hinges on a subtle interplay between the effects of technical and systematic risk on

the “speed of learning” about project quality, and the mean and variance of the assessments

of project quality, which affect the VC’s “option value” of continuing the relationship. An

increase in the initial technical risk increases the variance of the distribution of project

quality assessments, since assessments are more responsive to signals due to higher signal

to noise ratios. Hence, the likelihood of “high” realizations of project quality assessments is

increased. In the presence of limited liability, where the VC will terminate the relationship if

it is no longer profitable for her to continue, the “option value” of continuing the relationship

at any date increases, which leads to a higher expected duration, firm value, and expected

payoff to the VC. On the other hand, an increase in the project’s systematic risk lowers the

signal to noise ratio, which generally leads to a decline in the variance of the distribution

of project quality assessments, as they are less responsive to intermediate signals. Hence,

the “option value” of continuing the relationship declines leading to a shorter expected

duration, firm value, and expected payoff to the VC.

We show that duration, firm value, and the VC’s expected payoff all decrease with

the physical capital intensity of the underlying project and increase with its human capital

5Firm value is the initial “rational expectations” market value of the firm from the perspective of the
VC.
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intensity. With a constant returns-to-scale production technology, an increase in the human

capital intensity lowers the physical capital intensity and, therefore, increases the relative

contribution of the EN’s effort. As the EN’s human capital is the key driver of value in our

model, an increase in the marginal product of human capital increases firm value, duration,

and the VC’s expected payoff. These results also represent potentially testable implications

of our theory.

In the later models of this thesis we check the robustness of our results to some of

the assumptions made in the Basic Model. In the Shift of Power Model we assume a

competitive VC market and assume the EN enjoys the bargaining power. As a result, the

pay-performance sensitivities, capital investment and human effort decrease.

We introduce asymmetric information in the Unobservable Effort Model. We show

that when effort is unobservable, the VC will invest more and the EN will receive more

incentives to exert effort. The EN will indeed respond with higher effort levels. These

results are similar to Gibbons and Murphy (1992). In our model, the increased investment

provides additional incentive to the EN.

While the effects of agency conflicts and imperfect information have been studied in

several contexts by prior studies, theoretical literature that incorporates asymmetric beliefs

is relatively nascent. Landier and Thesmar (2005) develop a VC model with asymmetric

beliefs, but focus solely on debt financing. They show that optimistic entrepreneurs tend to

rely on short term debt rather than long term debt. Their model, however, does not allow

for investment to be staged over time and limits contracts to debt alone. Cuny and Talmor

(2005) analyze the effects of asymmetric beliefs in a VC finance model that compares the

performance of firms funded by milestone staging to those funded by investment rounds.

They find that when the EN is more optimistic than the VC, the advantages associated with

round financing are increased. Their analysis of the effects of asymmetric beliefs is, however,

of limited scope as they focus only on comparing the two types of finance mentioned above.

With respect to staging of investment, Neher (1999) shows that staging is essential to

overcome the hold-up problem. As in Neher (1999), staging arises endogenously in our

model with the number of stages also being determined endogenously. As Neher’s (1999)
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model is fully deterministic, however, his framework cannot be used to study the effects of

risk, imperfect information, and asymmetric beliefs, which is a key focus of our study.6

Our framework shares features of dynamic principal-agent models that incorporate im-

perfect information (for example, Gibbons and Murphy, 1992, Holmstrom, 1999). Our

study, however, differs significantly from these studies in that both the VC (the principal)

and the EN (the agent) make investments (physical and human capital) over time, have

asymmetric beliefs about project quality, and the relationship is terminated endogenously.7

Our model could also be applied to study the financing of research and development. Berk,

Green and Naik (2003) develop an R&D model in which staging is exogenous. Since their

focus is on the valuation of R&D ventures, they do not incorporate agency conflicts or

asymmetric beliefs.

The plan for the rest of the thesis is as follows. In Chapter 2, we provide a comprehensive

literature review of recent research related to this thesis. In Chapter 3, we develop and

analyze the Basic Model. Chapter 4 presents a risk analysis of a two-period version of the

Basic Model. In Chapter 5, we describe the numerical implementation and calibration of

the model and its findings. In Chapter 6, we develop and analyze the Shift of Power Model.

In Chapter 7, we develop and analyze the Unobservable Effort Model. Chapter 8 provides

concluding remarks and some suggestions for further research. Proofs are provided in the

last section of each chapter. The code design of the numerical analysis Matlab code is

provided in the Appendix.

6Kockesen and Ozerturk (2004) argue that some sort of EN “lock-in” is essential for staged financing to
occur. Egli, Ongena and Smith (2005) argue that staging can be used to build an EN’s credit rating.

7Admati and Pfleiderer (1994) and Fluck et. al. (2005) analyze two-period models of venture capital
investment. We differ significantly from these studies in that we analyze the effects of asymmetric beliefs
and agency conflicts on VC relationships in a dynamic framework where staging and project durations are
endogenously determined.
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CHAPTER II

LITERATURE REVIEW

Our model may be applied to a number of interrelated fields including venture finance,

managerial incentives and project R&D. In his seminal work describing the venture capital

industry, Sahlman (1990) describes three central motifs in the VC - EN relationship.

1. The inflow of capital is installed over time rather than provided upfront.

2. The contract between the VC and the EN is structured so that cashflow rights and

control rights may be separated.

3. The VC continuously monitors and oversees the project and provides valuable advice

to the EN.

Researchers employ a number of approaches to explain why these features developed (mainly

1 and 2), and how they affect the industry (mainly 3). One approach, which we do not

employ, is the real options analysis (Cossin et. al. (2002), Berger et. al. (1996), Benaroch

and Kauffman (1999) among others). Another approach, which we consider, is by means of

the principal-agent problem also known as the agency problem. The agency problem rises

from frictions and asymmetries between the VC and the EN. For example, if the VC is risk-

neutral but the EN is risk-averse, the EN’s objectives may be unaligned with the VC’s and

consequently the EN may employ investment strategies that are not optimal to the VC and

inefficient society-wise. Similarly, if the EN is able to divert funds from the firm to his private

consumption he may act in an efficient manner. Finally, agency conflicts from information

or belief asymmetries may result in the VC’s and EN’s actions colliding. Kaplan and

Stromberg (2001) provide a comprehensive review of empirical findings pertaining venture

finance and the agency problem and Hart (2001) provides a review of theoretical models.

Our review covers many of the papers in those review papers as well as other, more recent,

papers. Section 2.1 describes empirical findings in the field of venture finance and Section 2.2
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reviews literature related to venture finance and managerial incentives emphasizing agency

conflicts.

2.1 Empirical Evidence

2.1.1 Staging Investment

The single most important tool employed by the VC to guarantee his return is the staging

of investment (Sahlman (1990)). The life of a project is divided into stages or investment

rounds, starting from seed investments, whose sole purpose is to evaluate the project and

its prospects for success, through development and expansion stages until liquidation stages

or going to initial public offering (IPO). As the firm moves from one round to the next it

usually requires ever-increasing investment, which may be provided by the same VC. The

cost of capital to the firm, however, will decrease from round to round due to lower risks

associated with better forecasts of project earnings (Plummer (1987)).

Using data from 794 venture-backed firms Gompers (1995) finds that staging investment

enables the VC to acquire knowledge about the firm, monitor it and, if necessary, abandon

it. They find that VCs concentrate their efforts in early stage firms where informational

asymmetries between the VC and the EN are high and for which VC’s monitoring and

insight is of importance. They find that firms that are successful get more funding rounds

and receive more total investment. Further, Gompers finds that unsuccessful firms are

revealed (and discontinued) earlier and receive less funds than successful firms (success

measured by going to IPO). Our model makes similar predictions. In our model, if a firm

gets a positive signal in the first period its expected project duration (and consequently, its

expected total funding) is larger. If the same firm received a negative signal, its expected

project duration and its expected total funding decreases. We use data from Gompers

(1995) to calibrate the parameters of our model for the numerical analysis.

In our model staging is allowed and the exact number of stages is endogenously derived.

The capital investment in each period is set endogenously, and we are able to characterize

when investment is increasing or decreasing or non-monotonic over time. Sahlman (1990)

reports that there is typically up to eight different stages. In the numerical analysis, we
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find that the probability for more than eight stages is negligible. Our model’s prediction

that experienced entrepreneurs, who possess a more realistic belief about the firm’s quality

(small asymmetry in beliefs), will be funded in fewer rounds is supported by Kaplan and

Stromberg (2003).

2.1.2 Contract structure

Sahlman (1990) reports that the VC-EN contract is a stock purchase agreement in which

the VC guarantees capital at a certain schedule for which he receives some form of stock

and other rights. Typically, the stock will be in a form of convertible preferred stock and

the contract specifies the exact terms of the stock including conversion price, liquidation

schemes and dividend terms. Other rights include (i) the “right of first refusal” in which the

insider VC is given priority over outside investors in participation in new investments in the

firm, (ii) information rights providing independent access to all information concerning the

progress of the firm, and (iii) voting and control rights. The VC-EN contract also typically

includes a number of restrictions on the EN such as a “no compete clause” that prevents

the EN from working in the same industry for a period of time should he leave the firm.

Finally, the contract specifies vesting schedules on the EN’s equity share, and the VC’s

rights to buy-back those shares in case of the EN’s early resignation.

In their survey of 213 VC investments, Kaplan and Stromberg (2003) find the structure

of the contracts is carefully designed to mitigate known problems such as the aforementioned

principal-agent problem and the hold-up problem. The hold-up problem stems from the lack

of the legal means to enforce EN commitment to the project. This problem is most severe

when the entrepreneur is critical to firm success. With respect to the agency problem,

they find that the VC-EN contract is designed to separate the allocation of cash flow

rights, control rights and liquidation rights so that if the project performs poorly, the VC

is able to independently increase his control and liquidation rights, whereas if the project’s

performance is quite positive, the VC can reduce those rights while retaining his cash flow

rights.
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Gibbons and Murphy (1992) find empirical evidence that the EN’s contingent compen-

sation is increasing over time. In their theoretical model, which we discuss in length in

Section 2.2.2, the EN can signal to the market about his ability. They show that this sig-

naling is very strong in the early years of the EN’s career (high career concerns) and is

minimal in later years. Accordingly, the EN’s contingent compensation is increasing over

the years as his incentives shift from career concerns to immediate consumption concerns.

Our model predicts that when the EN is risk averse and the asymmetry in beliefs is

sufficiently small, the contingent compensation is increasing over time. This result is robust

to small changes in the initial degree of asymmetry in beliefs, who has the bargaining power

(EN or VC) and whether effort is observable or not. Our assumption with regard to the

EN’s right to repudiation is supported by the fact that the VC must devise different schemes

to ensure EN’s long-term participation in the project.

2.1.3 VC Oversight

VC monitoring and oversight is another central theme in VC finance, and is considered essen-

tial for firm success. The purpose of this oversight is multi-fold. In contrast to “arms-length

funding”, where the EN is not monitored by the financier, VC finance is a “relationship

funding”, and the EN not only receives the necessary capital but also critical advice, busi-

ness ties and managerial support. Sahlman (1990) claims this is an essential advantage to

the VC-EN relationship. Sahlman also reports that by monitoring firm performance the

VC is able to avoid further investment if progress is not satisfactory. Indeed, Lerner (1995)

finds that VC oversight increases during CEO change, a “sensitive” time in a project’s life.

Oversight, however, does not come without cost, as reported by Sahlman (1990) and

Kaplan and Stromberg (2004). While Sahlman does not give an estimate to the actual

cost of this oversight, he reports that VC fund managers usually receive a managerial fee

that is on average 2.5% of the capital invested by the fund, and that only few VC fund

managers were paid according to the portfolio value. However, this does not represent the

true costs of oversight because in addition to the mentioned VC management fee these VC

fund managers receive at least 20% of profits (Gompers and Lerner (1999)). According to
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Sahlman, the VC’s way of financing the oversight costs is through the required expected

rate of return, which is relatively high in comparison to other forms of funding. This,

Sahlman explains, is due to the additional monitoring and oversight costs, and due to the

“well-known bias in financial projections made by entrepreneurs” (p. 512). Lerner (1995)

finds that companies physically nearer to the VC are more likely to be chosen for funding

due to the reduced oversight costs.

Another consequence of the VC oversight is the choice of projects to be funded. In

Hellmann and Puri (2000), candidate projects are labeled as either innovative or imitat-

ing. Innovative projects develop a new technology or non-existent service, while imitat-

ing projects continue already established products or services. They find that innovative

projects are more likely to be financed by VC’s than imitating projects, which they claim is

due to the greater advantage oversight offers with innovative projects. They also find that

for innovative projects VC financing is associated with a reduction of the time to bring the

product to market. In another paper, Hellmann and Puri (2002) find yet another effect of

the VC’s oversight. They report that firms funded by VC’s are more likely to hire marketing

vice presidents, develop human resource policies and other professional measures than firms

financed by other means.

We assume the VC considers oversight costs when investing in a firm. This corresponds

to the empirical reports that find that these costs are substantial, and specifically to Lerner

(1998), who reports evidence to strong VC consideration of oversight costs. In our model,

we assume that the VC’s cost of monitoring is exogenous and aggregate it with depreciation

costs and losses to competition.

2.1.4 Bargaining Power

Baker and Gompers (2003) study 1,116 firms of which a third are backed by venture cap-

italists. They report that tenured CEO’s have greater bargaining power and are able to

increase the number of insiders sitting in the board. However, VC finance decreases the

CEO’s power, and they find that the influence of the EN (i.e. his bargaining power) is

decreasing with the VC reputation. They explain this last result by assuming that a more
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reputable VC gains bargaining power since he has better contacts to find suitable replace-

ment for the EN. Consequently, they turn to check the rate of CEO turnover and find it is

increasing with the VC’s reputation.

Using valuation data for 4069 firms, Gompers and Lerner (2000) find that in periods

with greater amounts of capital available in venture funds, the evaluations of venture firms

increase. This implies that in times when less venture money is available the VC gets more

for his money, effectively implying the VC’s bargaining power is decreasing at times of

abundant venture capital.

We test our model when the VC has bargaining power and when the EN has bargain-

ing power. We find that when the EN has bargaining power he will have less contingent

compensation.

2.1.5 Risk Analysis

Kaplan and Stromberg (2004) conduct a study of 67 portfolio investments in which they

classify investment risks and uncertainties into one of the following three categories:

1. Internal Risks — risks that are associated with asymmetries between the VC and the

EN (agency conflict risks). These risks may include the EN’s ability, his willingness

to exert effort, insider’s information about the project, etc.

2. External Risks — risks that are equally uncertain for the VC and the EN, such as

market condition, competition, etc.

3. Complexity Risks — risks that are equally uncertain to the VC and the EN but that

are partly under the control of the EN. Success of developing a product or executing

management strategy are examples for complexity risk.

Kaplan and Stromberg find that internal risks are associated with more VC control, more

contingent investment in a given round and more contingent compensation to the EN.

External risks are associated with more VC liquidation rights, in contrast to the theoretical

view of optimal risk sharing between the risk neutral VC and the risk averse EN. Complexity
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risks are associated with more vesting of the EN’s compensation, which corresponds to

mitigating hold-up problems.

Gompers and Lerner (2001b) describe why little is known about the risk of early stage

venture funded firms. VCs avoid pricing their firms until they go public and use the firm’s

book value as the firm’s value prior to IPO. Thus, when many firms go public there is an

upwards bias in the returns of venture firms, when in fact many of the gains reported in

the IPO year were realized in the years proceeding the IPO. They stress the importance of

learning about the risk involved with venture capital due to the fact more and more public

institutions allocate ever increasing fractions of their portfolios in this market.

Our model tackles issues related to the risk of venture firms. In a two-period model

we demonstrate analytically many results with respect to risk effects on venture duration

and VC’s share. We are also able to numerically demonstrate different effects of risk in the

multi-period model.

2.2 Theoretical Models

2.2.1 Staging Investment

Neher (1999) provides a theoretical framework to show that staging is essential to overcome

the hold-up problem. In this model, the investments made by the VC can be materialized

into salvageable physical assets only upon completion of an investment period. If the EN

decides to abandon the project during a period, then all the current period’s investment is

lost. Therefore, if the venture capitalist provides the whole required investment upfront,

the entrepreneur can, prior to completion, force renegotiation on the VC. At this point

the VC has already put in all the money required and therefore has no bargaining power.

Thus, renegotiation will always result in the VC incurring losses, and therefore no VC will

ever finance such a project in the first place. By staging investment, the VC can build

collateral to his prior investments and give him bargaining power in case of renegotiation.

In early investment periods, the VC’s bargaining power stems from the fact that he has

not yet invested much, whereas in later periods he has already built a physical collateral

to preempt renegotiation. In this manner, the VC can assure his bargaining power at any
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given time in the project’s life, thus enabling him to get his required rate of return.

Our model is similar to Neher (1999) in the sense that we too see staging as a technique

to overcome inefficiency due to the agency problem. The aspect of the agency problem that

our staging overcomes is not the commitment problem that Neher addresses, but rather the

inefficiency due to the EN’s risk-aversion and the effort he must invest in the project (Neher’s

model is fully deterministic and so the issue of risk-aversion does not rise). The friction that

rises as result of the EN’s effort is commonly called a moral hazard problem and results in

the EN considering not only the firm’s value but also his effort level. Consequently, the EN’s

objectives are different from the VC’s objectives that emphasize only firm’s value. Another

difference between our model and Neher’s is in the compensation to the EN. Neher assumes

that if the EN repudiates prior to project completion he receives no income, whereas in

our model if the EN repudiates he receives his previously committed share of the project

value. Both models, however, share the notion that a project accumulates value through

investment even prior to its completion.

Another explanation for staging is provided by Kockesen and Ozerturk (2004), who find

that some sort of EN lock-in is required for staged financing to occur. The reason is that

following the VC’s initial investment, the EN can opt out and seek finance from another VC.

In this case, the first VC gets zero return for his investment and therefore no VC will want

to make the initial investment. However, if the EN can be locked into the initial VC, VC

finance may be feasible; even more so, it may be more attractive than “upfront finance” in

which the entire investment is made at the beginning. A natural lock-in is an “information

lock-in”. This happens when a signal indicating the success of the project is received after

some initial investment is made. This signal can be observed only by the EN and the initial

VC, and therefore if the signal indicates success the EN will prefer staying with the original

VC, because any alternative VC is unaware of the project’s promise, and will therefore

make a less appealing offer to the EN. This lock-in results in the EN having less bargaining

power over the VC and hence, the VC can extract surplus when writing the second period

contract. Another consequence is that the EN will overinvest in the initial period before

information is revealed. This extra level of investment can be viewed as the cost to the
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VC to be an insider in the project. The added value to the VC enables him to invest even

when the project is rejected from an “upfront finance” point of view. In such cases, or

when an upfront investor barely brakes even, the EN will prefer to share surplus with a

more willing “relationship” financier. When informational lock-in is technically impossible,

Kockesen and Ozerturk find that it is necessary for the EN to lock himself into the VC by

adding a clause to the initial agreement that prevents him from seeking alternative sources

of finance.

In our model we do not allow informational lock-in to arise. We assume the EN can

effortlessly convey to any prospect investor the traits of the project and that due to com-

petitiveness in the VC market, all VC’s will make similar lending offers. The “right of

first refusal”, reported by Sahlman (1990), justifies our assumption that the same VC will

continue in consecutive rounds. In addition, when our model assumes the VC market is

competitive and the EN has bargaining power, the terms in which the VC will continue to

invest must be identical to the terms in which any other VC would invest. Therefore, even

without maintaining informational lock-in or a non-compete clause, we are able to explain

why the same VC will invest in consecutive stages.

Egli, Ongena and Smith (2005) provide another advantage to staging investments. They

describe a world where there are two types of ENs. The first chooses never to default

on a loan and the second defaults whenever it is profitable for him to do so. In these

circumstances, they show that the EN may prefer to have the investment staged over time

so that the EN can build his “credit worthiness” reputation, and therefore increase his

access to inexpensive capital. Their model also helps explain why it is common for the

EN to seek capital from the same VC in consecutive rounds. Once the EN is able to build

positive credit reputation with the initial VC he will prefer to stay with him since he receives

better financing conditions. Their model can also explain why VC’s require a decreasing

rate of return between rounds (Plummer (1980)). The VC is assuming less risk due to the

increasing EN credit worthiness.

At the heart of Egli, Ongena and Smith (2005) lies the assumption that an EN may

prefer to repay a loan even when he is permitted to default. In our model, we make a

17



similar assumption by assuming that the EN does not default on his monetary agreement.

To make this assumption less objectionable, we point out that in our model we assume firm

value grows positively in such a way that the probability the EN might find it beneficial to

default is negligible. Reputation concerns similar to those raised by Egli et. al. may further

serve to remove objection to this assumption.

2.2.1.1 Contract structure

The moral hazard problem, mentioned above, may be caused by a different reason than

the EN’s distaste with effort. For example, moral hazard may arise when the EN receives

private benefits from the firm. These private benefits, pecuniary or not, may induce the

EN to practice business policies that are not optimal to either the VC (whose objective is

maximizing firm value) or society (whose objective is maximizing benefits to both parties).

One approach to address this issue is the incomplete contracts approach (Hart and Moore

(1988), Aghion and Bolton (1992) among others). This approach assumes that many actions

the EN takes are unobservable or unverifiable and thus non contractible. Further, there may

be many cases in which unforseen events happen under which it is unclear what actions

should be taken. Accordingly, an important purpose of the contract is to state who takes

control of the firm rather than just what actions should be taken. Following this approach,

Aghion and Bolton (1992) show that due to moral hazard, the contract written between the

VC and EN will include not only monetary remunerations but also, independently, allocation

of control rights. They find that when efficiency (i.e. maximizing social surplus) emphasizes

maximizing firm value then control should be transferred to the VC. In contrast, when the

private benefits are significant, then maximizing firm value results in losses in social surplus

and therefore control should be shifted to the EN. Hart (2001) extends a simple version of

Aghion and Bolton’s model to explain shifts of control between different types of investors

such as creditors and shareholders (VCs).

In contrast to Aghion and Bolton (1992) and Hart (2001), Kirilenko (2001) allows control

to be divided continuously between the VC and the EN. In Kirilenko’s model the VC faces

an EN that enjoys nonpecuniary benefits from the firm whose value are known only to the
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EN. Kirilenko shows that the VC requires disproportionately higher control rights than his

equity size, and that the VC’s control rights grow with the severity of the agency conflict.

The reward to the EN for the loss of control is the ability to get better terms of financing,

and to shift some of the risk to the VC. Without the possibility to separate control rights

from equity holdings, investment will not take place in the first place.

Trester (1998) shows that the popularity of preferred equity contracts over debt contracts

in venture finance projects is due to asymmetric information between the VC and the EN.

His model predicts that if auditing were inexpensive and feasible then debt contracts would

be optimal. His analysis is somewhat limited in comparison to our model because he assumes

that the EN is risk-neutral and he does not consider contracts of a mixed nature. Indeed,

Trester conjectures that if risk-averseness is introduced then mixed debt-equity contracts

may be optimal. In our model, we find evidence that increased risk-averseness results in

less contingent compensation.

Control is also in the core of Chan, Siegel and Thakor (1990), who consider a two-period

model in which the EN is replaceable. The EN’s skill is unknown upfront but both parties

share the same beliefs about it. In the first period, the VC invests an initial amount. The

output at the end of the first period depends on the amount of effort the EN exerts. At the

end of the first period the EN’s true skill is revealed to both parties and the VC can decide

whether to take over the control of the firm or leave it by the EN. At the end of the second

period a second and final cash flow is received, which is shared according to the division

rule set a date zero. Chan et. al. consider renegotiation proof contracts, which specify the

monetary compensation and the second period control decision as a function of the firm’s

output and the EN’s skill. Chan et. al. explain why the EN is prohibited from seeking

alternative sources of finance (in the second period). This result also corresponds to the

prevalence of no-compete clauses. In addition, they find that the VC takes control of the

firm if the EN’s revealed skill is lower than a critical value. In this case, the VC will pay

the EN a fixed amount. This result explains why a VC may retain the option to buy out

the EN’s shares. In contrast, when the EN stays in control his compensation is increasing

with his skill.
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Admati and Pfleinderer (1994) explain that absent an insider VC with precise knowledge

of the firm overinvesting will occur. This happens because when uniformed outside investors

provide the funding, the decision maker EN has incentive to continue that project even when

it is optimal to abandon it. On the other hand, having an insider investor who is not the sole

owner may lead to underinvesting for a number of reasons, mainly, due to the EN getting

some of the surplus for which the VC has invested. Admati and Pfleinderer show that the

optimal contract is a fixed-fraction contact. Under this contract the insider VC does not

increase nor decrease his share in subsequent financing rounds. They show the fixed fraction

contract is robust in the sense that it is optimal for any probability distribution of the firm’s

output. This type of contract explains why in later rounds investors other than the initial

VC invest in the firm. It also suggests that the insider VC should be chosen to set the price

of newly issued securities in future rounds. This is because the VC retains a fixed fraction

of the total securities and consequently has no incentive to misprice them, whereas the EN

will gain if they are overpriced and the new investors will tend to underprice.

Fluck, Garrison and Myers (2005) show that when EN effort is determined endogenously,

the fixed fraction contract is not optimal. This happens because in the event the VC has a

fixed fraction contract he still has the incentive to overprice the firm since by overpricing the

EN share’s value the EN is induced to work harder. Consequently, outsider investors cannot

trust the insider VC’s information and inefficiency occurs. They find that in some cases by

increasing the insider VC’s share the VC will lose the incentive to misprice newly issued

securities. The Fluck et. al. model assumes two investment periods in which investment

is set exogenously. The results of their analysis, which is purely numerical, indicate that

underinvesting is a severe problem. However, their focus is mostly on corporate structure

rather than optimal investment levels and they do not consider important aspects of the

EN-VC relationship such as optimal investment levels, risk averseness and VC’s monitoring

costs.
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2.2.2 Managerial Incentives

One of the most important tools the VC employs to overcome the agency problem is giving

incentives to the EN to act according to the VC’s objectives. The typical example is when

the EN must exert effort to increase firm value, but this effort comes to the EN at some

cost. The question of what are the optimal incentive scheme is addressed in the literature

of managerial incentives (see Holmstrom (1999), Holmstrom and Ricart I Costa (1986)) and

is very much related to the field of venture finance since the EN is usually in the managerial

position and the VC is the firm’s board of director.

Gibbons and Murphy (1992) develop a model for optimal managerial incentives. The

purpose of managerial incentives is to persuade managers to behave according to what

is optimal for the firm. These incentives are required because optimal behavior requires

the manager to exert effort, something he may be reluctant to do. On the other hand, if

the manager’s concerns are to build his reputation to attract future employers to him, also

named “career concerns”, he will invest more than the optimal amount. Recall, it is typically

assumed the effort by the EN is either unobservable or unverifiable and, therefore, non-

contractible. Therefore, an ideal incentive scheme will link the manager’s income directly

with his abilities in a manner that results in the EN himself choosing the optimal effort

level. However, since the EN’s ability is also unknown the scheme ties the manager’s

compensation with other contractible measures that are good proxies to the EN’s ability,

such as the the firm’s performance or output. When the VC cannot observe the effort by the

EN, information asymmetry develops between the VC and the EN with regard to the EN’s

ability. Models such as Holmstorm (1979), Gibbons and Murphy (1992) and Bergemann

and Hege (1998) employ this scheme of learning about the effort and ability indirectly by

observing output. The model we develop is an extension of Gibbons and Murphy (1992).

We therefore present this model in more detail.

Gibbons and Murphy consider a T period model where in each period t the firm’s output

is

yt = η + at + εt,
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where at is the manager’s effort, εt, is a noise signal and η is the manager’s ability. There

is symmetric information about εt ∼ N(0, σ2
ε ). Before the first period there is symmetric

information about the manager’s ability which is assumed by both parties η ∼ N(m0, σ
2
0).

However, since the manager’s effort can not be observed by the firm owner, informational

asymmetries develop in consequent periods. The manager has disutility from effort mea-

sured by g(at) and his utility from consumption and effort is given by:

U(w1, ...wT , a1, ..., aT ) := − exp
{
− r

[ T∑

t=1

δt−1
(
wt − g(at)

)]}
.

Following Holmstrom and Milgrom (1987), Gibbons and Murphy assume the contract

between the firm owner and the manager is a short term linear contract given by

ct + btyt

for each period t. Due to competition between firm owners the firm owner gains zero

expected return. In the first period, after the parties have chosen the optimal contract, the

manager chooses his optimal effort level. After both parties observe the firm’s output they

each update their estimate of the manager’s ability according to Bayesian updating. Since

the firm owner cannot observe the manager’s actual level effort he makes a conjecture about

the effort level the manager exerted and updates his beliefs with regard to the manager’s

ability according to this conjecture, â1. Since the prior distribution of η is normal, so is the

posterior distribution and the volatility is agreed upon by the firm owner and the manager

at each period.

In what follows, we describe the equilibrium results of a simplified two-period model of

Gibbons and Murphy (1992). In the second period, the manager’s optimal effort decision

a∗2(b2) satisfies g′(a2) = b2. Competition between firm owners dictates

c2(b2) = (1− b2)E[y2|y1].

Substituting this into the manager’s utility results with an optimal slope, b∗2, that satisfies

b2 =
1

1 + r(σ2
1 + σ2

ε )g′′(a∗2(b2))
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where σ2
1 is the posterior variance of η. Since, by assumption, g′′(a) is positive it follows that

b∗2 < 1. In the first period, since the manager knows he can affect the firm owner’s future

estimate of η through his unobservable exerted effort, the manager’s optimal effort does not

depend on this period alone but also on optimal decisions in the last period. Consequently,

Gibbons and Murphy show the optimal effort, a∗1(b1), that satisfies

g′(a1) = b1 + δ(1− b∗2)
σ2

0

σ2
0 + σ2

ε

:= B1.

The total incentive to the manager in the first period, B1, is obtained from the contingent

compensation in the first period contract, b1, and from career concerns δ(1− b∗2)
σ2
0

σ2
0+σ2

ε
. The

optimal slope, b∗1, satisfies

b1 =
1

1 + r(σ2
0 + σ2

ε )g′′(a∗1(b1))
− δ(1− b∗2)

σ2
0

σ2
0 + σ2

ε

− rδb∗2σ
2
0g
′′(a∗1(b1))

1 + r(σ2
0 + σ2

ε )g′′(a∗1(b1))
.

Since b∗2 < 1 it follows that b∗1 < b∗2, namely, the compensation slopes are increasing from

the first period to the second. In fact, Gibbons and Murphy show that this statement is

true in a general T period model, i.e., the contractual incentives, b∗t , increase over time.

The reason for this is that in early periods the manager’s career concerns are greater than

his concern for current wages, whereas towards the end of his career the manager is mostly

interested in his wages and his leisure. By gradually increasing the part of the contract

tied with performance, the firm can suppress the tendency to over-invest in earlier periods,

and induce the manager to invest more than he would have otherwise in later periods of his

career.

We adapt the model introduced by Gibbons and Murphy (1992) to address venture-

financed projects. While we adopt the treatment of contracting, risk-averseness, effort and

learning, we differ from their model in a number of meaningful ways by introducing three

important features of venture capital. First, we introduce investment by the VC and allow

it to be derived endogenously. Second, we allow for losses due to VC oversight and value

depreciation. Third, we introduce asymmetric beliefs between the VC and the EN.

Baker and Hall (2004) examine the relationship between firm size and CEO incentives.

There are two natural ways to measure the strength of CEO incentives: (i) the change in

CEO wealth relative to a dollar change in the firm’s value or (ii) the absolute value of the
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CEO’s wealth. They find that according to the first measure the compensation to CEO’s

in small firms is extremely large as compared to CEO’s in large firms. However, according

to the second measure the results are opposite. To reconcile these results they develop a

new measure for the strength of CEO incentives. In their model they assume a marginal

product of the manager’s effort, γ. That is, they assume that every unit of manager effort

contributes only γ < 1 units to increase firm value. Baker and Hall’s approach is novel in

the fact that they assume the marginal productivity (γ) depends on firm size, and consider

the elasticity of the marginal productivity to firm size as a critical factor in determining

the strength of the CEO’s incentive. They measure the incentive’s strength as the CEO’s

sensitivity pay to performance multiplied by his marginal productivity. Using data from

1749 firms they find that while the sensitivity pay to performance sharply declines with firm

size, the incentive’s strength measure is roughly constant with firm size. In the context of

our model, however, they find that the manager’s marginal productivity increases with firm

size. This empirical evidence resonates well with the numerical analysis of our model in

which we find that increasing the EN’s output elasticity of effort increases the firm’s value.

Simply put, our model also predicts that firms with higher output elasticity of effort will

be of larger size.

2.2.3 Asymmetric Information and Beliefs

Many of the models discussed above contain some form of informational asymmetry between

the EN and the VC to incorporate this feature observed in the VC industry. This asymmetry

is either between the VC and the EN (Gibbons and Murphy (1992), Trester(1998)) or

between insider and outsider VC’s (Admati and Pfleinderer (1994) Fluck et. al. (2005),

Kockesen and Ozerturk (2004)) or between them all (Egli et. al. 2005). In our model, we

do not consider asymmetries between prospective investors but only between VC and the

EN. Our contribution to the understanding of the effects of asymmetry is that we allow for

asymmetry in beliefs. In the basic model we only consider asymmetry in belief between the

EN and the VC. In the unobservable model, we also allow for asymmetries in information

to develop because of the unobservability of effort.
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Our motivation to introduce asymmetry in beliefs is the extensive empirical evidence

to support it. Sahlman (1990) and Gladstone and Gladstone (2002) report that even in

face of the same information, managers and owners have differences in opinion. The EN

will almost always have a more positive view with regard to the venture’s success. To

quote Palich and Bagby (1995): “In other words entrepreneurs are more likely to see the

business world through ‘rose colored glasses’ ”. When extreme, this optimism leads the EN

to irrational beliefs or to seem risk tolerant (Cave and Minty (2004)). Indeed, in our model,

we assume the VC’s beliefs are the “true beliefs”, and if the EN is more optimistic than the

VC, he is unrealistic. Lerner (1998) provide additional insight to understanding a cause for

EN’s unrealistic optimism. Strong EN commitment to the firm he founded and the lack to

admit failure prevents him from conceding to the true (and low) value of the firm.

The importance of beliefs cannot be underestimated. Gelderen, Thurik and Bosma

(2005) follow 517 nascent entrepreneurs (i.e. EN’s with active manifested desire to start a

business before actually starting it) over a period of three years and examine their success.

They find that the perceived risk of the market is negatively tied with EN success. They

also find a strong positive relationship between the EN’s ambition to succeed. Assuming a

strong correlation between ambition and optimism, Gelderen, Thurik and Bosma support

our findings of the positive effects of EN’s optimism.

Asymmetry in beliefs between the VC and the EN is comprehensively reported by

Landier and Thesmar (2005). They start by explaining the source of such asymmetry

and confirm that ENs tend to be more optimistic than the investors. Their model focuses

on debt contracts to show that optimistic entrepreneurs tend to rely on short term debt

rather than long term debt. The early maturity of debt enables the investor to take control

of the project in case the project is unsuccessfully managed. They continue to back their

results with empirical data from the French industry, which heavily relies on debt finance.

The significance of Landier and Thesmar (2005) to our model lies more in the theoretical

support to the existence of asymmetry in beliefs even when the VC and the EN face iden-

tical information. With regard to venture finance, however, their model limits contracts to

debt alone and investment is not staged. Nevertheless, their results may be interpreted to
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support the conclusions of our model. For example, the fact that optimistic ENs receive

short term debt is interpreted as a means for the VC to allocate control when downside

information on the project is revealed. Indeed, our model suggests that the contingent

compensation of an optimistic EN is decreasing with time due to the arriving information.

In our model, this decrease is the sum of two forces, one resulting from the decrease in risk

and the second due to the decrease in the EN’s optimism.

Cuny and Talmor (2005) analyze the effects of asymmetric beliefs in a VC finance

model that compares the performance of firms funded by milestone staging to those funded

by investment rounds. In milestone staging further investment is guaranteed to the EN if a

milestone is reached, whereas in investment rounds finance, the firm is given no guarantee

that further investments will be given. They find that when the EN is more optimistic than

the VC, the advantages associated with round financing are increased. Their analysis of the

effects of asymmetric beliefs is of limited scope as they focus only on comparing the two

types of finance mentioned above.

Bigus (2003) develops a single period, three states of the world model that incorporates

asymmetric beliefs between the VC and the EN with respect to the project’s mean value

and riskiness. The VC is more pessimistic than the EN and assumes the project’s payoff

has a lower mean and higher volatility. Bigus introduces a moral hazard problem in the

form of an EN who is able to consume perks, an action that negatively affects the firm’s

return. He then examines the optimal contract under different cases: with or without perk

consumption and for different cases of asymmetries in beliefs. His model predicts that VC’s

equity increases with the asymmetry in beliefs with regard to risk and that the debt level

increases with the asymmetry in beliefs with regard to the mean of the project’s return.

The focus of Bigus (2003) is on the structure of the optimal contracts in face of asymme-

tries in beliefs. He does not incorporate staged investment or even learning, two ingredients

that seem only natural in the context of venture capital and asymmetries between the VC

and the EN. Moreover, since his analysis is limited to a three state model with many re-

strictive assumptions, many questions are raised with regard to the robustness of the results

to changes in these assumptions.
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Surprisingly, there is very little venture finance literature, empirical or theoretical, ded-

icated to understanding the effects of asymmetry in beliefs. In this context the model we

develop is a step towards a comprehensive approach towards understanding theses effects.

2.2.4 VC Oversight

The moral hazard problem can be extended to a two-sided problem where both the EN and

the VC need to exert effort for the project to succeed. This problem, also known as a double

sided moral hazard, is used in Repullo and Suarez (2004) and Inderst and Muller (2004) to

model the need of the VC to offer advice and the EN to exert effort. These models assume

both the EN and the VC have disutility from the effort and advice they have to exert. In

our modeling of the VC’s problem, we choose a slightly different course: We acknowledge

the importance of the VC’s effort but we do not view it in the context of a moral hazard.

Instead, we aggregate it as an exogenous loss cost.

Another paper that considers the significance of oversight is Allen and Gale (1999). They

compare the efficiency of financial markets and financial intermediaries in face of asymmetry

in beliefs of investors. In the financial markets each investor monitors the firm closely and is

well informed of the details of the investment and has full control on the decision to invest.

By using intermediaries, however, investors have limited access to information and rely on

the manager of the investment fund to make the investment decision. Allen and Gale show

the advantage of financial markets over financial intermediaries increases with the diversity

of the investors. Since the focus of Allen and Gale is with regard to the optimal financial

method they put little attention on the investment process itself and their model does not

involve staged investment. In addition, they focus on asymmetry within investor groups

and not between the investor and the entrepreneur.

The intermediaries in Allen and Gale (1999) are close in spirit to the 3-Tier modeling

of venture capital, described as in Holmstrom and Tirole (1997) and Dessi (2005). This

modeling separates the investors in the venture capital fund from the VC who manages this

fund, and the EN. This three-tier hierarchy of venture finance (investor - fund manager -

EN) is similar to the double sided moral hazard, considered above, since the investors in
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the venture capital fund need both the VC (fund manager) and the EN to exert effort.

2.2.5 Bargaining Power

Many of the theoretical models assume the VC industry is competitive, thus assuming the

VC has no bargaining power. One exception is Inderst and Muller (2004), who develop a

model that incorporates the possibility of bargaining power being shared between the VC

and the EN and who predict that bargaining power affects the valuation of firms. Their

model, however, does not consider staged investment and agents are risk neutral. Although

we do not allow for bargaining power to be shared we examine the effects of shifting the

bargaining power between the EN and the VC, and find the EN’s contingent compensation

decreases when the EN has bargaining power.

2.2.6 Risk Analysis

The staged evolution of the project is an important feature common to venture finance

models and R&D models. Indeed, many papers labeled as venture finance can readily be

applied to the field of R&D; see, for example, the concluding remarks in Wang and Zhou

(2004). Berk, Green and Naik (2003) develop an R&D model in which staging is exogenously

given. In their model, which addresses project valuation and the cost of risk, a project must

complete N successful stages in order to begin producing a cash flow. This cash flow behaves

according to a standard geometric Brownian motion and is the sole source of systematic

risk in their model. Their model has several sources of idiosyncratic risks including risk of

obsolescence, the technical risk pertaining to the success of an investment round, and the

duration and the total cost of the project. Investment is necessary but not a guarantee for

the project to move to the next stage. In fact, the probability for success is updated from

one investment round to the other through the history of the project. The investment made

in each investment round is a linear function of the projected cash flow. As part of their

risk analysis, Berk et. al. compare the risk premium required for a non-venture project

(one with completed R&D) to the risk premium required for a venture project when both

projects share the same cash flow projection. Since idiosyncratic risk can be diversified,

they argue that traditional analysis should result in equal risk premium for both projects.
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However, they demonstrate this is not the case and that “required risk premium for the

R&D (project) is higher than it would be were the R&D (project) complete and the venture

a traditional, cash producing project” (p. 2). This, they claim, is a result of the fact that

while pure idiosyncratic risk can be diversified, the decision to continue an R&D project

involves the resolution of both systematic and idiosyncratic risks. Thus, the project behaves

similarly to a compound option on systematic uncertainty, which bears higher systematic

risk than the underlying asset.

Since Berk, Green and Naik (2003) develops an R&D model they do not consider agency

conflict but rather consider a single entity that manages and finances the project. This

analysis is more suitable for large corporations who have their own R&D management but

less so for the standard VC-EN venture projects. We share Berk, Green and Naik’s notion

of separating between different sources of risk. They find that projects that perform poorly

are abandoned early in their development stage. We reach a similar result, if in a slightly

different context. In our model, all projects are terminated, rather than either completed

or abandoned, and we too find that poor performing projects will have a shorter project

duration.

An alternative approach to the handling of risk can be found in Guo and Yang (2005),

who propose that the risk of a project is not exogenous but rather can be managed by the EN

and the VC. In their model, the managers (EN) optimize their utility by controlling for the

mean and the risk. When risk is determined exogenously they find a negative relationship

between risk and the contingent compensation to the EN and that effort increases with

the contingent compensation. However, when allowing risk to be determined endogenously,

these standard results do not necessarily hold.

Guo and Yang (2005) presents a single period model and they do not consider invest-

ment. However, their model is very exciting in the sense that it considers managing the

risk of firm’s output and not only its mean output, an approach that we may consider for

future research.
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CHAPTER III

THE BASIC MODEL

3.1 The Model

We consider an infinite time horizon with discrete dates 0, 1, 2, 3, ... that are assumed to be

equally spaced for convenience. Period i, i ≥ 1 refers to the time interval [i−1, i). At date 0,

a cash-constrained entrepreneur (EN) with a project approaches a venture capitalist (VC)

for funding. The project can potentially generate value through physical capital investments

by the VC and human capital (effort) investments by the EN. Both the VC and the EN have

imperfect information about the project and differ, in general, in their initial assessments

of the project’s quality.

If the VC agrees to invest in the project, she offers the EN a long-term contract that

describes her investments in the project over time, and the EN’s compensation. Investments

by the VC (if they occur) are made at the beginning of each period. Either the VC or the

EN could terminate the relationship at any date and could also initiate a renegotiation of

their contract, that is, there is two-sided lack of commitment. In equilibrium, therefore, the

contract between the VC and the EN is renegotiation-proof. We assume the VC possesses

all the bargaining power in any negotiation with the EN. We show, however, that in order

to provide appropriate inter-temporal incentives to the EN, the EN’s reservation payoff at

any date, that is, his promised payoff if the VC-EN relationship were terminated, varies

over time. Since the VC possesses all the bargaining power in negotiations with the EN, in

equilibrium termination occurs at the VC’s behest.

The fundamental state variable is the market value Vi of the project if the VC-EN

relationship is terminated at date i. This is the value of the claim to future earnings from

the project outside the VC-EN relationship, that is, from the perspective of outside investors

at date i. Therefore, Vi is the total payoff to the VC and the EN if their relationship is

terminated at date i. We assume that both the VC and the EN possess project-specific
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skills that are not transferrable. Neither the VC nor the EN can commit to supplying these

skills to a third party. Hence, the amount outside investors would be willing to pay for the

project is, in general, lower than the value if full commitment by the VC and the EN were

hypothetically possible. The value under full commitment is the “rational expectations”

value of the project, that is, the value after rationally incorporating the effects of future

physical capital investments by the VC and human capital investments by the EN.

To simplify the analysis and exposition, we assume the project does not generate inter-

mediate cash flows so that all payoffs occur upon termination (our analysis can be general-

ized to allow for intermediate cash flows without altering any of our main results). Hereafter,

we refer to the variable Vi as the project’s termination value at date i. The termination

value at any date is observable and verifiable and, therefore, contractible. The hypothetical

value of the project under full commitment by the VC and the EN, the rational expectations

value, is non-verifiable.

The VC has linear inter-temporal preferences whereas the EN is risk-averse with inter-

temporal CARA preferences. The VC chooses her dynamic investment policy, the long-

term renegotiation-proof contract for the EN, and the termination time (that is a random

stopping time in general) to maximize her expected utility payoff upon termination. The

EN, in turn, dynamically chooses his effort to maximize his expected utility payoff upon

termination. The contract between the VC and the EN, the VC’s investment policy, the

EN’s effort policy, and the termination time are derived endogenously in a subgame-perfect

equilibrium of the dynamic game between the VC and the EN.

The incremental termination value, that is, the change in termination value over any

period, depends on the level of investment by the VC, the amount of effort exerted by

the EN, the intrinsic quality of the project, and market risk. The VC closely monitors

the EN so that the EN’s effort is observable to the VC. However, it is non-verifiable by

a third party and, therefore, not directly contractible. Both the VC and the EN have

imperfect information about the intrinsic quality of the project, but have priors on it that

may, in general, differ from each other. The VC and the EN update their assessments of the

project’s intrinsic quality in a Bayesian manner based on their observations of the project’s
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termination values, investments by the VC, and human capital inputs by the EN.

We begin by first describing how the VC’s physical capital investments and the EN’s

human capital (effort) investments affect the project’s termination value over time.

3.1.1 The evolution of the termination value

The termination value of the project in any period is proportional to the initial termina-

tion value V0, which we hereafter normalize to one. In each period i ≥ 1, the project’s

termination value evolves as follows

Vi − Vi−1 = ( cα
i ηβ

i − li ) + Θ + Si. (1)

The change in termination value is derived from three sources— “net discretionary excess

output”, “project quality” and “systematic risk”—each of which is described below.

Net discretionary excess output. Discretionary excess output in period i is a direct

result of the VC’s capital investment ci and the EN’s effort ηi, and is described by the

Cobb-Douglas production function cα
i ηβ

i , α, β > 0. Net discretionary output in period i is

output less the “operating costs”, which we represent by an exogenous constant li. The

operating costs could include wages to salaried employees, depreciation expenses, decline

in revenues due to increased competition, fixed costs arising from increases in the scale of

the project, etcetera. These costs are assumed to increase through time. For convenience

and concreteness, we assume li = Li2, L > 0, which will ensure termination occurs in

finite time almost surely. All our results remain qualitatively unaltered under alternative

(deterministic) functional specifications of the operating costs as long as they are convex

over time.

Systematic risk. The Si represent the “systematic” component of the project’s risk. It is

common knowledge that the Si are independently and identically distributed with common

distribution N(0, s2).

Project quality. The variable Θ represents the per-period increase in the project’s ter-

mination value arising from the intrinsic quality of the project. The VC and the EN have

imperfect information about Θ and may also differ in their beliefs about its value. Their

respective beliefs are, however, common knowledge. The uncertainty in the value of Θ may
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be viewed as the project’s technical risk. The technical risk is resolved over time as the VC

and the EN update their priors on Θ in a Bayesian manner based on observations of the

firm’s performance.

Specifically, we assume that the VC’s and EN’s initial priors on Θ are normally dis-

tributed with Θ ∼ N(µV C
0 , σ2

0) and Θ ∼ N(µEN
0 , σ2

0), respectively. Define the random

variable

Yi := Vi − Vi−1 − cα
i ηβ

i + li = Θ + Si, i = 1, 2, ...T − 1. (2)

Since the VC’s capital investment ci, and the EN’s effort ηi are observable, it follows from

well-known formulae (DeGroot 1970) that the posterior distribution on Θ for each date

i ≥ 1 is N(µ`
i , σ

2
i ), where

σ2
i =

s2σ2
i−1

s2 + σ2
i−1

=
s2σ2

0

s2 + iσ2
0

, (3)

µ`
i =

s2µ`
i−1 + σ2

i−1Yi

s2 + σ2
i−1

=
s2µ`

0 + σ2
0(

∑i
t=1 Yt)

s2 + iσ2
0

, ` = V C, EN. (4)

Note that E[µ`
i | µ`

i−1] = µ`
i−1 since E[Yi | µ`

i−1] = µ`
i−1 and that the σi tend to zero. Let

∆i := µEN
i − µV C

i =
s2∆0

s2 + iσ2
0

=
σ2

i

σ2
0

∆0, i = 0, 1, 2, . . . (5)

denote the degree of asymmetry in beliefs at date i. It follows from (5) that the degree of

asymmetry in beliefs is resolved deterministically over time, and there is a linear relationship

between the resolution of the asymmetry of beliefs and the resolution of the technical risk.

Following Landier and Thesmar (2005), Sahlman (1990) and other researchers, we assume

the EN is initially more confident of the success of his ideas, and so ∆0 ≥ 0.

For future reference, we denote the information filtration of the probability space gen-

erated by the random variables {Vi, i ≥ 0} by {Fi}. We let {Gi} denote the information

filtration describing the history of termination values, effort choices by the EN, and capital

investments by the VC, which is known to both the VC and EN. Clearly, Fi ⊂ Gi.

3.1.2 VC-EN interaction

Since the project does not generate intermediate cash-flows, the contract between the VC

and the EN describes the payoffs to be received by both parties upon termination. Further,
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since either the VC or the EN could choose to terminate the relationship at any date, the

contract specifies the payoffs to be received by both parties as if the project were terminated

at any date in the set {0, 1, ...}.
More precisely, a feasible contract is described by the stochastic process P (·), where

P (i) is the EN’s payoff and Vi − P (i) is the VC’s payoff if the relationship is terminated

at date i ≥ 0. Since the EN owns the project at the initial date, P (0) equals V0. As the

project’s termination value is the only economic quantity that is contractible, the process

P (·) is {Fi}-measurable. If the project is terminated at date τ (where τ is a {Gi}-stopping

time), the EN’s expected utility at date zero is given by

−E

[
exp

{
− λ

(
P (τ)−

τ−1∑

i=1

kηγ
i

)}]
. (6)

In (6), the parameter λ ≥ 0 characterizes the EN’s risk aversion. The EN’s disutility from

effort in period i is given by kηγ
i with k > 0, γ > 0.

By (6), the EN has multiplicative separable inter-temporal CARA preferences. We follow

Gibbons and Murphy (1992) in therefore restricting consideration to affine contractual

structures, that is, contracts where

P (i)− P (i− 1) = ai + bi(Vi − Vi−1), i = 1, 2, . . . . (7)

In (7), the contractual parameters ai, bi are {Fi−1}-measurable. It will follow from our

subsequent analysis that contracts where bi < 0 for any i cannot arise in equilibrium. Note

that the change in the EN’s promised payoff over period i is an affine function of the

incremental termination value Vi − Vi−1. It follows easily from (7) that the process P (·)
describing the EN’s contract is given by

P (τ) = P (0) +
τ∑

i=1

ai + bi(Vi − Vi−1). (8)

We show that, in equilibrium, the “fixed” component ai of the EN’s compensation in period

i depends on the history of past “signals” {V0, V1, . . . , Vi−1} whereas the “proportional”

component bi in period i is deterministic. It follows from (6) and (8) that the EN’s expected

utility at date 0 is

−E

[
exp

{
− λ

(
V0 +

τ∑

i=1

[ ai + bi(Vi − Vi−1)− kηγ
i ]

)} ]
. (9)
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At each date i, the EN can choose to terminate the relationship with the VC and receive

his payoff P (i), and therefore chooses to continue the relationship over the next period if

and only if his expected utility from continuation exceeds his utility from termination. The

continuation utility ratio of the EN at time i, CUR(i), is defined as the ratio of his expected

utility from continuing the relationship to his utility from termination. The continuation

utility ratio is given by

CUR(i) := EEN
i

[
exp

{
− λ

( τ∑

j=i+1

aj + bj(Vj − Vj−1)− kηγ
j

)}]
(10)

where the notation EEN
i denotes the EN’s expectation conditioned on the information

available at date i, that is, the σ-field Gi. Since the EN has a negative exponential utility

function, the EN prefers a smaller continuation utility ratio. He, therefore, chooses to

continue the relationship if and only if his continuation utility ratio is at most one.

Similarly, the VC chooses to continue the relationship if her expected utility from con-

tinuing exceeds her utility from termination. We define the VC’s continuation value as the

expected increase in the VC’s utility if she continues the relationship, namely, the expected

value of the VC’s future compensations less her capital investments. The VC’s continuation

value at date i, CV (i), is given by

CV (i) := EV C
i

[ τ∑

j=i+1

(
(1− bj)(Vj − Vj−1)− aj − cj

)]
, (11)

where EV C
i denotes the VC’s expectation conditioned on the information available at date i.

The VC chooses to continue the relationship at date i if and only if her continuation value is

non-negative. Since the VC possesses all the bargaining power in negotiations with the EN,

it follows that, in equilibrium, the EN’s continuation utility ratio is equal to one at every

date and in all states of the world. Moreover, the EN is indifferent between continuation

and termination in all states. The VC, on the other hand, terminates the relationship when

her continuation value is negative.

3.2 Equilibrium

In order to simplify the subsequent analysis and notation, we assume there exists a maximum

possible date T > 0 such that project termination will occur when the VC has a negative
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continuation value or at T , whichever comes earlier. We later show that this assumption

is not restrictive by demonstrating that a sufficiently large T could be chosen so that the

VC voluntarily terminates the project at a date earlier than T with probability arbitrarily

close to one. Our subsequent analysis also shows that the VC-EN relationship over any

time interval [0, t] does not depend on the choice of time horizon T > t , that is, the VC’s

investments, the EN’s contract P (·), and the EN’s effort over the time interval [0, t] do not

depend on the time horizon T > t.

The following two conditions on the parameters of the model are sufficient to ensure

that an equilibrium exists, and will be assumed throughout the remainder of the thesis:

Assumption 1 γ > β.

Assumption 2 (1− α) γ
β ≥ 2.

The first condition implies that the EN faces decreasing returns to scale from the pro-

vision of effort. The second condition implies that the decreasing returns to scale from the

EN’s effort provision are sufficiently pronounced that the VC’s “contract choice” problem

has a solution, that is, an equilibrium exists. In the next Section we add a third condition,

which guarantees that the equilibrium is unique and stable.

We use backward induction to characterize the equilibrium. First consider the last

possible investment period i = T . Suppose that the project has not been terminated as of

the date T−1 (i.e. the beginning of period T ). Recall that the EN and VC priors on Θ as of

date T−1 are N(µj
T−1, σ

2
T−1) with µj

T−1 and σ2
T−1 given by (4) and (3), respectively with the

index i set to T . For subsequent convenience in our inductive derivation of the equilibrium,

it will be convenient to use the index i to denote the time period. The index i = T for now,

but it will later denote an arbitrary time period when we establish the inductive step in our

analysis.

3.2.1 The EN’s Optimal Effort in Period T for a Given Contract

Suppose that, in period i (recall that i = T ), the VC’s investment is c and the EN’s con-

tractual parameters are (a, b) (see 7). If the EN exerts effort η in period i, his continuation
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utility ratio (10) is given by

CUR(i−1) = EEN
i−1

[
exp

{
− λ

(
a+b(Vi−Vi−1)−kηγ

)}]
, (12)

Using the fact that

EEN
i−1

[
Vi − Vi−1

]
= EEN

i−1

[
cαηβ − li + Yi

]
= cαηβ − li + µEN

i−1 ,

the EN’s continuation utility ratio equals1

exp
{
− λ

(
a+b(cαηβ−li+µEN

i−1 )−kηγ − λ

2
b2(σ2

i−1 + s2)
)}

. (13)

Since the EN prefers a lower continuation utility ratio he will choose the effort level to

minimize (13). The optimal effort level is, therefore, given by2

η(b, c) :=
(βcαb

γk

) β
γ−β

. (14)

3.2.2 The VC’s Choice of Contract in Period T

The VC rationally anticipates the EN’s best response to his contract. She therefore chooses

her investment c and the EN’s contractual parameters (a, b) so that the EN’s participation

constraint is satisfied, that is, the EN’s continuation utility ratio is at most one (recall that

the EN has a negative exponential utility function). Since the VC has the bargaining power,

it is optimal for her to choose (a, b) so that the EN’s continuation utility ratio is equal to

one, that is, his participation constraint is satisfied with equality. We can then show that

the relation between the parameters a, b, and c in in period i (recall that i = T ) is

a(b, c) :=
λ

2
b2(σ2

i−1 + s2) + kη(b, c)γ − b(cαη(b, c)β − li + µEN
i−1 ). (15)

The above condition guarantees that the EN’s continuation utility ratio is exactly one

regardless of the state at date i−1, that is,

CUR(i−1) ≡ 1. (16)

1Recall that E[exp{−λX}] = exp{−λ(µ̂− λ
2
σ̂2)} if X ∼ N(µ̂, σ̂2).

2Note that Assumption 1 is a necessary and sufficient condition for the EN’s problem to be well-defined.
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Incorporating the EN’s best (effort) response, the VC’s continuation value (11) at date i−1

is given by

EV C
i−1

[
(1− b)(Vi − Vi−1)− a(b, c)− c

]
. (17)

Substituting the EN’s optimal effort (14) into (17) and using the fact that

EV C
i−1

[
Vi − Vi−1

]
= EV C

i−1

[
cαηβ − li + Yi

]
= cαηβ − li + µV C

i−1 ,

the VC’s continuation value simplifies to

Λi(b, c) := ∆i−1b− 1
2
pi−1b

2 + φ(b)cα γ
γ−β − c + µV C

i−1 − li . (18)

In (18),

pi−1 := λ(σ2
i−1 + s2) (19)

φ(b) :=
(1

k

) β
γ−β

((βb

γ

) β
γ−β

(
1− βb

γ

))
, (20)

where σ2
i−1 and ∆i−1 are given in (3) and (5), respectively.

It remains to determine the VC’s optimal choices for the capital investment ci and risky

compensation bi to the EN to maximize her continuation value (18). We begin with the

optimal investment c(b) as a function of the risky compensation b. The optimal investment

will be zero whenever b ≥ γ/β. This extraordinary outcome would occur if the degree

of asymmetry ∆i−1 is sufficiently high. We shall impose an upper bound on ∆0 that

guarantees the investment is positive if the project continues. Fix then a value of b ∈
(0, γ/β). Assumptions 1 and 2 guarantee the function Λi(b, ·) is strictly concave in the

investment c (the exponent on c is guaranteed to be less than 1). As a consequence, setting

the partial derivative of Λi(b, ·) with respect to c equal to zero yields

c(b) := K̂φ(b)
γ−β

(1−α)γ−β , (21)

from which the VC’s continuation value as a function of the risky compensation, Λi(b, c(b)),

is given by

Λi(b, c(b)) = ∆i−1b− 1
2
pi−1b

2 + Kc(b) + (µV C
i−1 − li) . (22)
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The constants K̂ and K in (21) and (22) are positive and depend on α, β and γ. Let

Fi(b) := ∆i−1b− 1
2
pi−1b

2 + Kc(b) (23)

denote the variable portion of the VC’s continuation value at the beginning of period i. The

VC clearly chooses the risky compensation in period i to solve

F ∗
i := max

b≥0
Fi(b). (24)

3.2.3 The Inductive Step

We now set i = T −1, and suppose the project has not been terminated as of the beginning

of this period (i.e. date T−2). If in period i the VC’s investment is c, the EN’s contractual

parameters are (a, b), and he exerts effort η, his continuation utility ratio (10) is given by

CUR(i−1) = EEN
i−1

[
exp

(
− λ(a + b(Vi − Vi−1)− kηγ)

)
CUR(i)

]

= EEN
i−1

[
exp

(
− λ(a + b(Vi − Vi−1)− kηγ

)]
, (25)

The first line above follows by the law of iterated expectations and the second line follows

by (16). Since the expression (25) is identical to (12), we may use our previous arguments

to show that the EN’s optimal effort is η(b, c) given in (14) and the “fixed” component of

the EN’s compensation is a(b, c) given in (15).

It remains to determine the VC’s optimal choices for the investment and risky compen-

sation. Incorporating the EN’s best (effort) response, the VC’s continuation value at the

beginning of period i (recall that the index i = T − 1) is given by

CV (i−1) = EV C
i−1

[
(1−b)(Vi−Vi−1)− a(b, c)− c + max{CV (i), 0}

]
(26)

= Λi(b, c) + EV C
i−1

[
max{CV (i), 0}] . (27)

The above follows from the fact that the expression

EV C
i−1

[
(1− b)(Vi − Vi−1)− a(b, c)− c

]

is identical to (17) and hence (18). As the right-hand side of (27) is unaffected by the actions

taken by the VC and EN during period i, we may use our previous arguments to show that
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the VC’s continuation value in period i will be maximized when the optimal investment is

given by (21) and the optimal risky compensation solves (24).

We can clearly extend the above arguments by induction to any period i and thereby

derive the unique equilibrium, as characterized in the following theorem.

Theorem 1 (Characterization of Equilibrium)

Under Assumptions 1 and 2, if the project has not been terminated as of date i−1, 1 ≤
i ≤ T , then the equilibrium contract offered by the VC and the EN’s effort in the period is

characterized, as follows:

• The risky compensation is b∗i , the unique solution to (24);

• The investment is c∗i := c(b∗i ) defined in (21);

• The fixed compensation is a∗i := a(b∗i , c
∗
i ) defined in (15);

• The optimal effort level is η∗i := η(b∗i , c
∗
i ) defined in (14).

• The VC’s maximum continuation value at date i−1 is given by

CV (i−1) =

within-period flow︷ ︸︸ ︷
F ∗

i + µV C
i−1 − li +

future option value︷ ︸︸ ︷
EV C

i−1

[
max{CV (i), 0}] . (28)

3.3 Properties of the Equilibrium in Each Period

We now begin our analysis of the properties of the equilibrium that is characterized in

Theorem 1. In this section, we focus on the VC’s equilibrium investment c∗i and the EN’s

contractual parameters a∗i and b∗i in a given period i conditional on the project not having

been terminated. By our earlier discussion, the VC continues funding the project in period

i if and only if her continuation value (28) is nonnegative. Since the degree of asymmetry

in beliefs ∆i−1 and variance σ2
i−1 are deterministic functions of time, an examination of (24)

and (28) reveals that the equilibrium values for the risky compensation, investment and

effort in each period are also deterministic. In addition, the controllable portion of the

“within-period flow” in period i, namely F ∗
i , is also deterministic. The only component

of the contract that is stochastic and is adjusted based on realizations of the termination
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value Vi of the project (the “signal” of project quality) is the fixed component a∗i of the

EN’s compensation.

The within-period flow depends on the VC’s current assessment of project quality, µV C
i−1

and the operating costs, li. If the within-period flow is positive, the VC continues the

project. If it is negative, the VC continues the project only if the “future option value” of

continuing is large enough to compensate for the current period’s expected loss. Keep in

mind that the equilibrium values b∗i , c∗i , η∗i and F ∗
i only “exist” if the project continues into

period i.

3.3.1 VC’s Objective Function

By (23) and (24), the nature of the equilibrium crucially depends on the VC’s objective

function

Fi(b) = ∆i−1b− 1
2
pi−1b

2 + Kc(b) (29)

The objective function consists of three components:

• Economic rent from the EN’s optimism. The term, ∆i−1b, reflects the rents that the

VC extracts from the EN by “exploiting” his “optimism” about the project’s intrinsic

quality (we elaborate on this later).

• Cost of risk. The term, 1
2pi−1b

2, reflects the VC’s costs of risk-sharing with the risk-

averse EN. We refer to the parameter, pi−1 = λ(σ2
i−1 + s2), as the “price of risk” in

period i.

• Return on investment. The “return on investment” term, Kc(b), reflects the VC’s

expected return as a result of his investment and the EN’s effort.

From (29), the EN’s risky compensation in equilibrium clearly depends on the optimal

investment function c(·). The following proposition establishes properties of this function

that play a key role in our subsequent analysis.
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Proposition 1

(i) The optimal investment function c(·) is strongly unimodal3 on [0, γ
β ] and achieves its

maximum at b = 1.

(ii) The optimal investment function c(·) is strictly concave on [0, bM ] and strictly con-

vex on [bM , γ
β ], where bM ∈ (1, γ

β ) is the unique minimum of the marginal optimal

investment function c′(·).

Figure 1 illustrates the structure of the optimal investment function.4 The intuition for the

non-monotonicity of the optimal investment function, which is important for understanding

our subsequent results, is as follows. An increase in the risky compensation increases the

EN’s incentives to exert effort, but also increases the costs arising from the EN’s higher

disutility of effort (these costs are indirectly borne by the VC due to the EN’s participation

constraint) and the costs of risk-sharing with the risk-averse EN. For lower values of the

risky compensation, the benefits of improved risk-sharing with the EN predominate so that

the VC finds it beneficial to increase her investment. However, beyond a threshold level of

risky compensation, the costs of risk-sharing outweigh the benefits so that the VC reduces

her investment. In these regions, the VC induces the EN to exert high effort to generate

value, but commits less money. In fact, our subsequent results establish that the equilibrium

risky compensation for the EN exceeds 1 only if the degree of asymmetry in beliefs about

the project’s quality exceeds a threshold. In these scenarios, the VC “exploits” the EN’s

exuberance about the project’s prospects.

The ratio of the initial degree of asymmetry of beliefs to the initial price of risk, namely,

∆0/p0, provides an a priori bound on a solution to (24).

3Recall that a real-valued function of one variable f is strongly unimodal on the interval [a, b], a < b, if
there exists an x∗ ∈ (a, b) such that f is increasing on [a, x∗] and f is decreasing on [x∗, b]. Obviously, the
value x∗ maximizes f on [a, b]. This class of functions possesses a very simple but extremely useful property
for analysis, which we repeatedly exploit: If f is strongly unimodal on [a, b] and also differentiable, then
the sign of the derivative indicates the direction of the optimum solution, i.e., if f ′(x) > 0, then x∗ > x;
if f ′(x) < 0, then x∗ < x; and if f ′(x) = 0, then x∗ = x. A simple and extremely fast (bisection search)
algorithm will find the optimal solution to a strongly unimodal function.

4Unless otherwise stated, the parameters for all figures in this thesis are α = 0.3875, γ
β

= 3.2653,

k = 0.1914, λ = 1.0938, s2 = 0.5 and σ2
0 = 0.5, ∆0 = 0.5. In Chapter 5 we explain why this particular choice

of numbers.
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Figure 1: Optimal investment function

Proposition 2

(i) If ∆0/p0 ≤ 1, then an optimal solution to (24) is at most 1.

(ii) If ∆0/p0 > 1, then an optimal solution to (24) is less than ∆0/p0.

In our subsequent analysis we assume that

Assumption 3 ∆0/p0 ≤ bM ,

where the parameter bM is defined in Proposition 1. The above condition implies that the

initial degree of asymmetry in beliefs ∆0 of the EN and the VC is below a threshold relative

to the price of risk p0.

It follows from Proposition 2 and Assumption 3 that a solution to (24) must lie in the

interval [0, bM ]. By Proposition 1, the VC’s objective function is easily seen to be strictly

concave and hence strongly unimodal. Consequently, there exists a unique solution b∗i to

(24), which we show must be positive.5 We summarize these observations with the following

proposition.

5The marginal optimal investment evaluated at zero is infinite.
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Proposition 3

Under Assumptions 1-3, each Fi(·) is strictly concave and hence strongly unimodal on

[0, bM ], and the solution to (24) is positive and less than bM .

Remark 1

The strong unimodality of the function Fi ensures the stability of the equilibrium described

in the above theorem, that is, the EN’s equilibrium risk-free and risky compensation and

effort choices, and the VC’s capital investments are continuous functions of the model para-

meters. Moreover, the equilibrium risky compensation can easily be numerically computed

using an efficient bisection search—see footnote 3.

We now use the above results to further analyze the VC’s objective function (29) and

thereby determine the properties of the EN’s equilibrium risky compensation. By the result

of Proposition 3, the VC’s objective function attains a unique, interior maximum so that its

derivative must necessarily vanish at this maximum. The derivative of the VC’s objective

is

F ′
i (b) = ∆i−1 − pi−1b + Kc′(b). (30)

The EN’s equilibrium risky compensation b∗i in period i is therefore determined by the

interplay among the degree of asymmetry in beliefs ∆i−1, the price of risk pi−1, and the

marginal optimal investment function c′(·). The following proposition precisely describes

how the relation between the degree of asymmetry in beliefs and the price of risk affect the

EN’s equilibrium risky compensation in any period.

Proposition 4

Suppose that the VC-EN relationship is active in period i, that is, the project has not been

terminated prior to date i. When the degree of asymmetry of beliefs ∆i−1 at date i − 1 is

less than (equal, greater than) the price of risk pi−1, the corresponding equilibrium risky

compensation parameter b∗i is less than (equal, greater than) 1.

The intuition for the results of the above proposition can be understood using the

intuition for the non-monotonicity of the optimal investment function c(·) described earlier.

The VC’s optimal choice of risky compensation for the EN reflects the tradeoff between
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providing appropriate incentives for the EN to exert effort with the costs of risk-sharing

with the risk-averse EN and the costs associated with the EN’s disutility of effort. This

tradeoff is significantly affected by the degree of asymmetry of beliefs about the project’s

quality as the VC could “exploit” the EN’s optimism by inducing him to exert greater effort

without incurring significant risk-sharing costs. When the degree of asymmetry of beliefs

is lower than the price of risk (the EN is “reasonably optimistic”), the VC chooses a level

of risky compensation less than one as the costs of risk sharing dominate the benefits of

the EN’s optimism. However, if the degree of asymmetry of beliefs exceeds the price of

risk (the EN is “exuberant”), the VC “exploits” the EN by inducing her to accept a level

of risky compensation that exceeds one. The effects of the EN’s optimism and the costs

of risk-sharing and effort are “perfectly balanced” when the degree of asymmetry in beliefs

equals the cost of risk. In this scenario, the EN’s risky compensation is exactly equal to

one.

Remark 2

As we subsequently demonstrate, when the EN is initially “reasonably optimistic”, i.e.,

∆0 < p0, he will remain so classified as time goes by. However, when the EN is initially

“exuberant”, i.e., ∆0 > p0, the resolution of the technical uncertainty about the project’s

intrinsic quality over time leads to a decline in the EN’s level of optimism so that he

eventually shifts from being “exuberant” to “ reasonably optimistic”.

The following proposition describes the effect of the degree of asymmetry in beliefs ∆i−1

and the price of risk pi−1 = λ(σ2
i−1 + s2) on the equilibrium levels of risky compensation and

investment in period i.

Proposition 5

(i) The equilibrium risky compensation parameter b∗i in period i is a decreasing function

of the price of risk (and hence the individual parameters λ, s2, and σ2
i−1), and is an

increasing function of the degree of asymmetry of beliefs.

(ii) When the degree of asymmetry of beliefs is less (more) than the price of risk, the

equilibrium level of investment c∗i in period i is a decreasing (increasing) function of

45



the price of risk and an increasing (decreasing) function of the degree of asymmetry

of beliefs.

Remark 3

With regard to the equilibrium level of effort, it is clear from (14) that when the degree

of asymmetry of beliefs is less than the price of risk, the equilibrium effort is a decreasing

function of the price of risk and an increasing function of the degree of asymmetry of beliefs.

However, when the degree of asymmetry exceeds the price of risk, the equilibrium effort

might be non-monotonic.

An increase in the EN’s perception of the project’s intrinsic quality means he is willing

to accept more risky compensation from the VC.

3.4 Equilibrium Dynamics

In the previous section, we described the “static” properties of the equilibrium, that is,

the level of investment by the VC and the EN’s contractual parameters in a given period

(conditional on continuation of the project). In this section, we investigate the dynamics of

the equilibrium, that is, we describe the evolutions of the EN’s contract, his effort, and the

VC’s investment. We show that the interplay between the technical risk of the project that

represents the uncertainty about the project’s intrinsic quality, and the degree of asymmetry

in beliefs about the project’s quality is the key determinant of the dynamics of the VC-EN

relationship.

Before analyzing the general scenario where there is imperfect information as well as

asymmetry in beliefs about the project’s quality, we briefly discuss two “benchmark” sce-

narios.

3.4.1 Symmetric Attitudes towards Risk and Symmetric Beliefs about Project
Quality (Full Symmetry)

In this scenario, the VC and the EN are both risk-neutral and have symmetric beliefs about

the project’s quality. Therefore, λ = 0 and ∆i = 0 for all i.6 It follows that the first and

second components of the VC’s objective function (29) are zero. The third component, the

6With CARA preferences, maximizing utility converges to maximizing the mean as λ → 0.
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return on investment, is always maximized at b = 1 (Proposition 1). Therefore, the equi-

librium levels of risky compensation, the VC’s investment and the EN’s effort are constant

through time, and the VC’s investment is at its highest possible level. These results follow

from the fact that as the VC and the EN have symmetric attitudes towards risk and sym-

metric beliefs, they effectively function as a monolithic agent. Moreover, the risk-neutrality

of the VC/EN implies that risk (systematic and technical) of the project does not affect the

level of investment, the EN’s contract, or his effort.

Remark 4

While it is true that the investment levels are at their highest level in this scenario, it

is important to emphasize that project value need not attain its maximum possible value.

Optimism on the part of the EN can potentially be exploited by the VC by inducing greater

effort from the EN thereby generating more value.

3.4.2 Perfect Information

In the perfect information case the EN is risk averse (λ > 0) but there is perfect information

about the project’s quality so that there is no technical risk (σ2
0 = 0) In this scenario, the

VC’s objective function

Fi(b) = F (b) := −λ

2
s2b2 + Kc(b), (31)

is independent of time. The time paths of risky compensation, investment and effort are all

constant; we let b∗p, c∗p and η∗p denote the corresponding equilibrium values.

By Proposition 1 the optimal investment function achieves it maximum at b = 1, which

implies that c′(1) = 0. Since

F ′(b∗p) = 0, (32)

it follows from (31) that F ′(1) < 0. The strong unimodality of F (b) now guarantees that

b∗p < 1, and therefore both c∗p and η∗p are less than the investment and effort levels in the “full

symmetry” scenario where the VC and the EN are both risk-neutral and have symmetric

beliefs about project quality.
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3.4.3 Imperfect Information, Asymmetric Beliefs and Asymmetric Risk Atti-
tudes - The Actual Scenario

We now analyze the scenario of interest where the attitudes towards risk as well as beliefs

about project quality are asymmetric, that is, σ2
0 > 0, λ > 0. Recall that b∗i , c∗i and η∗i

denote, respectively, the equilibrium levels of risky compensation, investment and effort in

period i (if the project has not been terminated).

The equilibrium paths of the EN’s risky compensation, the (b∗i ), the VC’s investments,

the (c∗i ), and the EN’s effort, the (η∗i ), depend on the interplay among the three components

of the VC’s objective function (29)—the economic rent from the EN’s optimism, the cost of

risk and the return on investment. As the third component is obviously constant through

time, the evolution of the optimal value F ∗
i of the VC’s objective function is determined

by the evolutions of the first two components, which are deterministic functions of time.

Both ∆i−1 and pi−1 decrease with time so that the sum of the first two components is not

necessarily monotonic with time. Consequently, the equilibrium values F ∗
i (the maximum

value of the VC’s objective function 29), are not generally monotonic, either.

We now present a complete characterization of the equilibrium dynamics of the VC-EN

relationship. The VC’s objective function may be expressed as

Fi(b) = (
∆0

σ2
0

b− λ

2
b2)σ2

i−1 + F (b). (33)

Since σi → 0, it follows from the Envelope Theorem that b∗i → b∗p, and thus (c∗i , η
∗
i ) →

(c∗p, η∗p) by continuity. We now precisely describe the manner in which these economic

variables converge to their asymptotic values. To simplify the subsequent exposition, we

consider the index i as a continuous variable. Define

i∗ := max
(∆0 − λs2

λσ2
0

, 0
)
. (34)

Note that i∗ is positive only when the EN is initially “exuberant”; otherwise, it is always

zero. The following theorem describes the evolutions of the EN’s risky compensation, his

effort, and the VC’s investment.
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Figure 2: Optimal risky compensation path for different levels of initial asymmetry

Theorem 2 (The Dynamics of the Equilibrium Contract)

(i) If ∆0 < λσ2
0b
∗
p, then the b∗i , c∗i and η∗i increase monotonically towards b∗p, c∗p and η∗p,

respectively.

(ii) If ∆0 = λσ2
0b
∗
p, then the b∗i , c∗i and η∗i are constant and equal b∗p, c∗p and η∗p, respectively.

(iii) If ∆0 > λσ2
0b
∗
p, then the b∗i decrease monotonically towards b∗p, the c∗i increase until

i = i∗ and then decrease monotonically towards c∗p, and the η∗i decrease monotonically

towards η∗p when i ≥ i∗.

Remark 5

The value of i∗ is precisely the point in time when the EN’s risky compensation parameter is

1 and the investment is at its maximum. Prior to this point in time, the EN is “exuberant”

and risky compensation exceeds one. After this point in time, the EN is “reasonably

optimistic” and his risky compensation parameter in less than 1. The VC’s equilibrium

investment path is non-monotonic when the EN is initially “exuberant”. When the EN is

initially “reasonably” optimistic, i.e., i∗ = 0, investments by the VC decrease over time.

The intuition for the results of Theorem 2 hinges on the complex interplay among the

value-enhancing effort by the EN that is positively affected by his optimism, the costs of

risk-sharing due to the EN’s risk aversion that is affected by the project’s systematic and

technical risk, and the effect of both the VC’s physical capital investment and the EN’s

effort on output.
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The passage of time causes technical risk to be resolved thereby lowering the costs of

risk-sharing. However, the passage of time also lowers the degree of asymmetry in beliefs of

the VC and the EN as successive project realizations cause the EN to revise his optimistic

assessment of project quality. The decline in the degree of asymmetry in beliefs lowers the

rents that the VC can extract by exploiting the EN’s optimism.

If the initial degree of asymmetry in beliefs is below a threshold so that the EN is

“reasonably optimistic”, the beneficial effect of time on the costs of risk-sharing dominate

so that the EN’s risky compensation and effort both increase. As the EN’s effort increases

over time, the VC optimally lowers her investment over time

If the degree of asymmetry in beliefs is above a threshold so that the EN is “exuberant”,

he is willing to accept all the risk of the project so that his risky compensation and effort

are initially high. The negative effect of the evolution of time on the degree of asymmetry

in beliefs, however, dominates its positive effect on the costs of risk-sharing so that the

EN’s risky compensation effort declines over time. Due to the previously discussed non-

monotonic relation between the VC’s investment and the EN’s risky compensation, the VC’s

investment initially increases to “compensate” for the decrease in effort of the EN. After a

certain point in time when the VC’s investment attains its maximum, the decreasing effort

of the EN makes it optimal for the VC to also lower her capital investments.

There exists an initial degree of asymmetry of beliefs for which the positive effects of

the resolution of technical risk on the costs of risk sharing and its negative effects on the

EN’s incentives to exert effort due to his effort balance each other exactly so that risky

compensation, investment, and effort are constant over time.

Figure 2 illustrates the results of Theorem 2 and the intuition underlying it. It describes

three possible trajectories of risky compensation, whose outcomes depend on the initial de-

gree of asymmetry in beliefs ∆0.7 When the initial asymmetry is low compared to the initial

technical risk and the EN’s risk-aversion, the positive effect of the resolution of technical

risk dominates the negative effect of the resolution of the asymmetry. Consequently, risky

compensation increases with time. When the initial degree of asymmetry in beliefs is high

7The value 0.1908 = λσ2
0b∗p .
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Figure 3: Equilibrium investment paths

relative to the initial technical risk and degree of risk-aversion, the negative effect of the

resolution of asymmetry now dominates the positive effect of the resolution of technical

risk, and risky compensation now decreases with time.

Figure 3 depicts three possible trajectories of investment, whose outcomes depend on

∆0.8 When ∆0 = 0.5, the economic rent component is not sufficiently high to place the

initial risky compensation above 1, and so the risky compensation path lies below 1. Conse-

quently, the value of i∗ is zero, and so the equilibrium investment path is strictly decreasing.

3.5 Sensitivity of Equilibrium Dynamics

In this section, we investigate how the equilibrium dynamics are affected by changes in the

degree of asymmetry in beliefs, ∆0, the EN’s risk aversion, λ, the project’s initial technical

risk, σ2
0, the EN’s cost of effort, k, and the systematic risk, s2.

In light of Theorem 2, the subsequent analysis critically depends on the initial value

of the degree of asymmetry in beliefs ∆0. The EN is termed “reasonably optimistic” if

∆0 ∈ [0, λs2b∗p) and “exuberant” if ∆0 ∈ (λs2b∗p, p0bM ).9

8The value 2.1876 = bMp0 .
9Recall that Assumption 3 guarantees that ∆0 ≤ p0bM .
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3.5.1 Risk

The following theorem characterizes the effects of the EN’s risk aversion, λ, the initial

technical risk, σ2
0, and the systematic risk, s2 on the equilibrium dynamics. The statements

below regarding the systematic risk, s2, require the additional condition that

Assumption 4 ∆0 < 2p0.

This condition is automatically satisfied when bM < 2. Recall that our prior assumptions

ensure the b∗i must lie below bM ; it is quite reasonable to assume the problem parameters

are such that the risky compensation offered to the EN by the VC would not exceed twice

the change in termination value.

Theorem 3

(i) The EN’s equilibrium risky compensation in any period is a decreasing function of

the price of risk and, therefore, the EN’s risk aversion λ and the initial technical risk

σ2
0. This property also holds for the systematic risk s2 under Assumption 4.

(ii) If the EN is initially reasonably optimistic, then the VC’s equilibrium investment in

any period is a decreasing function of the price of risk and, therefore, the EN’S risk

aversion λ and the initial technical risk σ2
0. This property also holds for the systematic

risk s2 under Assumption 4.

(iii) If the EN is initially exuberant, then the path of equilibrium investment by the VC

changes as in Figure 4 as a result of a change in the price of risk and, therefore, a

change in the EN’s risk aversion λ and the initial technical risk σ2
0.

10 (The time-path

of investment moves “to the left” if the initial price of risk increases.) This property

also holds for the systematic risk s2 under Assumption 4.

Remark 6

Figure 4 demonstrates that the path of equilibrium investment will converge to different

limiting values depending on the EN’s risk aversion.

10The parameters σ0 = 0.1 and ∆0 = 1.31256.
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Figure 4: Sensitivity of equilibrium investment path to the price of risk.

The EN’s risky compensation compensation parameter b∗i in any period i declines with

his risk aversion, the initial technical risk, and the systematic risk as an increase in any of

these parameters increases the costs of risk-sharing between the VC and the EN.

The effects of risk aversion, systematic and technical risk on the VC’s investment path

are, however, more subtle due to the presence of asymmetric beliefs. If the EN is initially

reasonably optimistic, the costs of risk sharing outweigh the benefits of the EN’s optimism.

The VC’s equilibrium investment path, therefore, declines pointwise with the EN’s risk

aversion and the project’s market and technical risk in this region. If the EN is initially

exuberant, an increase in risk increases the costs of risk sharing, thereby partially offsetting

the VC’s rents from the EN’s exuberance. In early periods, it is beneficial for the VC to

“compensate” for the resulting decline in the EN’s effort by increasing investment. As time

passes, however, the EN’s degree of optimism declines thereby reducing the rents to the

VC. The costs of risk-sharing, therefore, dominate in later periods so that an increase in

risk results in a decline in the VC’s investment.

3.5.2 Asymmetry in beliefs

Not surprisingly, the effect of the initial degree of asymmetry in beliefs ∆0 on the EN’s

equilibrium risky compensation path and the VC’s equilibrium investment path is opposite

to the effects of the cost of risk on these paths.
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Figure 5: Sensitivity of equilibrium investment path to the initial asymmetry in beliefs

Theorem 4

(i) The EN’s equilibrium risky compensation parameter in any period increases with the

initial degree of asymmetry in beliefs ∆0.

(ii) If the EN is initially reasonably optimistic, then the VC’s equilibrium investment in

any period is an increasing function of the initial degree of asymmetry in beliefs ∆0.

(iii) If the EN is initially exuberant, then the path of equilibrium investment by the VC

changes as in Figure 5 as a result of a change in the initial degree of asymmetry in

beliefs ∆0.
11 (The time-path of investment moves “to the right” if the initial degree

of asymmetry increases.)

While the trajectory of b moves upward (downward) if ∆0 increases (decreases), the influence

of a perturbation of ∆0 on the trajectory of c depends on whether ∆0 lies in the increasing

or decreasing region.

3.5.3 Cost of effort

The influence of a change in the cost of effort k on the EN’s equilibrium risky compensation

again depends on whether the EN is initially reasonably optimistic or exuberant.

11The parameter σ0 = 0.1.
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Figure 6: Sensitivity of risky compensation to the cost of effort

Theorem 5

(i) If the EN is initially reasonably optimistic, then his equilibrium risky compensation

parameter in any period is a decreasing function of the cost of effort k.

(ii) If the EN is initially exuberant, then the change in his path of risky compensation as

a result of a change in his cost of effort is as described in Figure 6.12

(iii) The VC’s equilibrium investment path is a pointwise decreasing function of the EN’s

cost of effort k.

The intuition for the effect of a change in the cost of effort on the equilibrium paths of

risky compensation and investment is as follows. When the degree of asymmetry of beliefs

is “low” in comparison to the price of risk, the economic rents that the VC can potentially

capture due to the EN’s exaggerated assessment of project quality are low compared with

the costs of risk sharing and inducing effort from the EN. Therefore, as the EN’s cost of

effort increases, the VC lowers the EN’s risky compensation as well as her own investment

in the project in each period. On the other hand, if the EN is initially exuberant so that the

degree of asymmetry of beliefs is “high” in comparison to the price of risk, the beneficial

12The parameters σ0 = 0.1 and ∆0 = 1.31256.
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effects of exploiting the EN’s exuberance about the project’s prospects dominate the costs

of risk sharing and inducing effort in early periods. Therefore, the VC increases the EN’s

risky compensation in early periods, but lowers her own investment. As time evolves,

project realizations cause the EN to revise his own assessment of project quality so that

the costs of risk sharing eventually dominate the rents from exploitation. Hence, the EN’s

risky compensation and the VC’s investment both decline in later periods.

3.6 Project Duration

In our analysis thus far, we have examined the dynamics of the VC’s investments, the

EN’s compensation, and the EN’s effort conditional on the project’s continuation. As

described earlier, the VC continues the project as long as her expected continuation value

is positive. We now investigate the optimal termination decision of the VC, that is, the

project’s duration.

We first describe the optimal termination policy of the VC.

Proposition 6

The optimal stopping policy for the VC is a trigger policy: there exist µ∗i , 0 ≤ i ≤ T − 1,

such that the VC should terminate the project only if µV C
i < µ∗i .

The intuition for the above result is straightforward. At any date i, the VC’s expected

continuation value increases with her current assessment µ∗i of the project’s quality. Since

the VC continues the project if and only if her expected continuation value is nonnegative,

at each date, there exists a trigger level such that she continues the project if and only if

her current assessment of the project’s quality exceeds the trigger.

This trigger policy can be also expressed to depend on the termination value instead of

the quality assessment. By equation (1)

Vi − V0 =
i∑

t=1

∆Vt =
i∑

t=1

(
Yt + c∗t

αη∗t
β − lt

)
(35)

and therefore we can express

i∑

t=1

Yt = Vi − V0 −
i∑

t=1

(
c∗t

αη∗t
β − lt

)
. (36)
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Substituting (36) in µi given in (4) we have

µV C
i =

s2µV C
0 + σ2

0

(
Vi − V0 −

∑i
t=1

(
c∗t

αη∗t
β − lt

))

s2 + iσ2
0

(37)

and may conclude that

µi ≥ µ∗i if and only if Vi ≥ V ∗
i ,

where

V ∗
i := V0 +

i∑

t=1

(
c∗t

αη∗t
β − lt

)
+

(s2 + iσ2
0)µ

∗
i − s2µ0

σ2
0

.

The sequence of the V ∗
i may be thought of as the performance targets the firm must reach

at each date or else it will terminate the project. Thus, either the µ∗i or the V ∗
i may be used

to define the trigger policy; the performance targets are more commonly used in practice.

The following result describes the effect of the EN’s initial assessment of project quality,

his risk aversion, and his cost of effort on the duration of the project.

Proposition 7

The project duration τ (i) increases with the EN’s initial assessment of project quality,

∆EN
0 , and (ii) decreases with his risk aversion, λ, and his cost of effort, k.

As discussed earlier, an increase in the EN’s initial degree of optimism about project

quality increases the rents that the VC is able to extract by exploiting the EN’s optimism

thereby increasing her expected continuation value in every period. Hence, it is optimal

for the VC to prolong the project’s duration. An increase in the EN’s risk aversion or

cost of effort, however, increases the costs of risk-sharing for the VC, thereby lowering her

continuation value in every period. Hence, the VC terminates the project earlier.

In the next section, we numerically analyze the effects of the project’s market and

technical risk on the duration of the VC-EN relationship. We demonstrate the striking

result that market and technical risk generally have opposing effects on the project duration.

The following result establishes that the project is terminated in finite time almost

surely.
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Proposition 8

For any δ > 0 there exists an N > 0 such that, for any N ′ ≥ N , in the scenario where the

maximum possible number of periods is N ′, the termination time is strictly less than N

with probability greater than 1− δ.

3.7 Proofs

To simplify the notation in the proofs to follow, we make a useful observation. The incre-

mental change in termination value (1) depends on η only through the terms ηβ, ηγ . There

is no loss of generality if the unit of effort is redefined as z := ηβ, the production function

is taken as cαz and the disutility of effort is taken as zγ/β . Note how the equilibrium, as

characterized in Theorem 1, depends on the parameters β and γ only through their ratio

γ/β. Accordingly, we shall hereafter normalize β to 1.

Proof of Proposition 1. The marginal (optimal) investment is given by

c′(b) ∝
(1

k

) 1
(1−α)γ−1

bt(γ − b)s(1− b) (38)

where

t :=
2− (1− α)γ
(1− α)γ − 1

and s :=
αγ

(1− α)γ − 1
, (39)

and where the symbol ∝ means “equal up to a positive multiplicative constant”. Under

Assumption 2, the parameter s is positive and the parameter t is negative. (Keep in mind

that β is now 1.) Since γ > 1 (Assumption 1), the strong unimodality of c(·) easily follows

from (38). Since c(0) = c(γ) = 0 and c′(0) = +∞, it also follows from (38) that c(·) achieves

its maximum at b = 1. Part (i) has been established.

As for part (ii), the second derivative is given by

c′′(b) ∝ bt−1(γ − b)s−1[t(γ − b)(1− b)− sb(1− b)− b(γ − b)]. (40)

The expression inside the brackets is a strictly convex quadratic function whose value at 1

is negative, whose value at γ > 1 is positive, and whose value at 0 is negative since t < 0.

Consequently, there is exactly one root bM of the quadratic in the interval (1, γ) such that

c′′(bM ) = 0. At bM the marginal investment is at its minimum. Moreover, since c′′(·) is
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negative on [0, bM ) and is positive on (bM , γ), the optimal investment function is therefore

strictly concave on [0, bM ] and strictly convex on [bM , γ]. This establishes part (ii).

We note the ratio of the asymmetry of beliefs ∆i−1 to the price of risk pi−1 = λ(s2 +σ2
i−1)

in period i may be expressed as

∆i−1

pi−1
=

∆0

λ(s2 + iσ2
0)

. (41)

Using (41), we shall find it convenient to express the derivative of Fi (23) as

F ′
i (b) = pi−1

[ ∆0

λ(s2 + iσ2
0)
− b

]
+ Kc′(b); (42)

this functional form shall be repeatedly exploited in the proofs to follow.

Proof of Proposition 2. Obviously, pi−1

[
∆0
p0
− b

]
≤ 0 if ∆0

p0
≤ b. Parts (i) and (ii) now

directly follow from (42) and Proposition 1.

Proof of Proposition 3. By Proposition 1, each Fi is the sum of a concave and strictly

concave function on [0, bM ], and so is strictly concave on this region, too. Since bM > 1,

it follows directly from Proposition 2 that an optimal solution to (24) must lie below bM .

Since F ′
i (0) = +∞, the optimal solution must be positive.

With a slight abuse of notation, for each parameter “Π” we let bi(π) and ci(π) denote,

respectively, the value of b and c at date i when the parameter Π’s value equals π, and we

let b(π) and c(π) denote the entire time path of pay performance sensitivity and optimal

investment when the parameter Π’s value equals π. We shall also write F ′
i (b, π) to make

explicit the functional dependence of the derivative of Fi on the parameter value π.

The following simple observation, embodied in the following Lemma, will be used re-

peatedly in the proofs to follow.

Lemma 1

If F ′
i (b, π) is an increasing (decreasing) function of π, then bi(π) is an increasing (decreasing)

function of π.
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Proof. Let π1 < π2. Suppose first that F ′
i (b, π) is an increasing function of π. By definition,

0 = F ′
i (bi(π2), π2) = F ′

i (bi(π1), π1) < F ′
i (bi(π1), π2),

which immediately implies b(π1) < b(π2) by the strong unimodality of Fi. The proof in the

decreasing case is analogous.

Proof of Proposition 5. Each part follows by a straightforward application of Lemma 1.

Proof of Theorem 2. We begin by proving the claim concerning the b∗i . From (33) and

(32),

F ′
i (b

∗
p) = (

∆0

σ2
0

− λb∗p)σ
2
i−1. (43)

Therefore, the sign of F ′
i (b

∗
p) is identical to the sign of ∆0− λσ2

0b
∗
p. The strong unimodality

of each Fi(·) now ensures that if this sign is negative (positive) then the b∗i will lie strictly

below (above) b∗p. If the sign is zero then the b∗i coincide with b∗p. It remains to show the

convergence is monotonic in the first and third cases. To this end suppose ∆0 < λσ2
0b
∗
p.

Pick a period i. The optimal solution b∗i satisfies

0 = F ′
i (b

∗
i ) = (

∆0

σ2
0

− λb∗i )σ
2
i−1 + F ′(b∗i ). (44)

Since F (·) is strongly unimodal, it follows from b∗i < b∗p and F ′(b∗p) = 0 that F ′(b∗i ) > 0. We

may conclude from (44) that ∆0/σ2
0 − λb∗i < 0. Since σ2

i < σ2
i−1, it now easily follows that

F ′
i+1(b

∗
i ) = (

∆0

σ2
0

− λb∗i )σ
2
i + F ′(b∗i ) > F ′

i (b
∗
i ) = 0,

which implies b∗i+1 > b∗i since Fi+1 is strongly unimodal. Thus, the b∗i increase monotonically

towards b∗p, as claimed. The argument when ∆0 > λσ2
0b
∗
p is analogous.

We now turn our attention to the c∗i . Suppose first that ∆0 < λσ2
0b
∗
p. In this case the

b∗i increase monotonically towards b∗p, which is less than one. Since c is strongly unimodal

with a maximum at one, the c∗i will increase monotonically towards c∗p. The second case

is obvious. As for the third case, the ratio ∆0

λ(s2+iσ2
0)

in (42) is greater than, equal or less

than one depending on whether i is less than, equal or greater than i∗. Since c′ is negative
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on (1, γ) and positive on (0, 1), it now follows easily from (42) that b∗i > 1 when i < i∗;

b∗i = 1 when i = i∗; and b∗i < 1 when i > i∗. Since the b∗i decrease monotonically towards

b∗p, initially the c∗i will increase until i = i∗, and then will decrease monotonically towards

c∗p, as claimed.

The result for the η∗i is the immediate consequence of the optimal effort function (14)

and the results for pay performance sensitivity and investment.

Proof of Theorem 3. We start by establishing the claims for the parameters π = λ, σ2
0.

As for part (i), by substituting (3) and (5) in (42),

F ′
i (b, π) =

∆0s
2

s2 + (i−1)σ2
0

− λbs2 s2 + iσ2
0

s2 + (i−1)σ2
0

+ Kc′(b), (45)

we see that F ′
i (b, π) is clearly decreasing in π. The result now follows from Lemma 1.

As for part (ii), we first suppose ∆0 lies in the increasing region. We know from Theorem

2 the b trajectory increases towards b∗p, which is less than one. Since the trajectory of b

is pointwise decreasing by part (i), and since c is an increasing function on [0, 1], the first

claim has been established.

Now suppose ∆0 lies in the decreasing region. Suppose π1 < π2. Let i∗j , j = 1, 2,

denote the value of i∗ (34) corresponding to πj . Clearly, i∗1 > i∗2. By Theorem 2, in the

interval [0, i∗2) both b(π1) and b(π2) lie above one; since b(π1) > b(π2), it immediately

follows that c(π1) < c(π2) in this interval. Analogously, by Theorem 2, in the interval

(i∗1,∞) both b(π1) and b(π2) lie below one; since b(π1) > b(π2), it immediately follows that

c(π1) > c(π2) in this interval. By Theorem 2, we know c(π1) is increasing in the interval

[i∗2, i
∗
1] whereas c(π2) is decreasing in this interval. Moreover, since ci∗1(π

1) = c(1) > ci∗1(π
2)

and ci∗2(π
1) < ci∗2(π

2) = c(1), the trajectories c(π1) and c(π2) cross exactly once in this

interval.

We now turn our attention to s2. By Proposition 1 it is sufficient to show that F ′
i (b

∗
i , s

2)

is decreasing in s2. By (45), F ′
1(b

∗
1, s

2) is clearly decreasing in s2. Now suppose i ≥ 2. The

sign of the derivative of (45) with respect to s2 coincides with the sign of

−
(
λbs4 + σ2

0(i−1)
[
bλ(2s2 + iσ2

0)−∆0

])
, (46)
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and therefore the result will follow if we can establish that b∗i λ(2s2 + iσ2
0) > ∆0. To this

end let

b̂i :=
∆0

λ(2s2 + iσ2
0)

.

By assumption ∆0 < 2p0, and so b̂i < 1, which implies c′(b̂i) is positive. Therefore, the

derivative

F ′(b̂i, s
2) = Kc′(b̂i) +

∆0s
2

s2 + (i−1)σ2
0

[
1− s2 + iσ2

0

2s2 + iσ2
0

]
(47)

is positive, and we may conclude that b∗i > b̂i since Fi is strongly unimodal. Thus,

b∗i λ(2s2 + iσ2
0) > b̂iλ(2s2 + iσ2

0) = ∆0,

as required.

Proof of Theorem 4. Part (i) follows by a straightforward application of Lemma 1.

As for the proof of part (ii), we first suppose ∆0 lies in the increasing region. We know

from Theorem 2 the b trajectory increases towards b∗p, which is less than one. Since c is an

increasing function on [0, 1], the first claim has been established.

Now suppose ∆0 lies in the decreasing region. (Please refer to Figure 5.) Suppose

∆1
0 < ∆2

0. Let i∗j , j = 1, 2, denote the value of i∗ (34) corresponding to ∆j
0. Clearly,

i∗1 < i∗2. By Theorem 2, in the interval [0, i∗1) both b(∆1
0) and b(∆2

0) lie above one; since

b(∆1
0) < b(∆2

0), it immediately follows that c(∆1
0) > c(∆2

0) in this interval. Analogously, by

Theorem 2, in the interval (i∗2,∞) both b(∆1
0) and b(∆2

0) lie below one; since b(∆1
0) < b(∆2

0),

it immediately follows that c(∆1
0) < c(∆2

0) in this interval. By Theorem 2, we know c(∆1
0)

is decreasing in the interval [i∗1, i
∗
2] whereas c(∆2

0) is increasing in this interval. Moreover,

since ci∗1(∆
1
0) = c(1) > ci∗1(∆

2
0) and ci∗2(∆

1
0) < ci∗2(∆

2
0) = c(1), the trajectories c(∆1

0) and

c(∆2
0) cross exactly once in this interval.

Proof of Theorem 5.

Part (i). Suppose first ∆0 lies in the increasing region. We know from Theorem 2 the

trajectory of b lies strictly below b∗p, which is less than one. It follows the term Kc′(b) in

(42) is always positive. Since c′(b) is a decreasing function of k, it follows that F ′
i (b, k) is

an increasing function of k, which establishes the claim by Lemma 1.
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Now suppose ∆0 lies in the decreasing region. The term Kc′(b) in (42) is negative when

b > 1 and positive when b < 1. Since c′(b) is a decreasing function of k, it follows that if

k1 < k2, then F ′
i (b, k1) < F ′

i (b, k2) when b > 1 and F ′
i (b, k1) > F ′

i (b, k2) when b < 1. For a

fixed value of k the trajectory of b lies above 1 until time i = i∗ at which point it lies below

1 thereafter, and the value of i∗ is independent of k. The result now follows by Lemma 1.

Part (ii). When ∆0 lies in the increasing region, the trajectory of b lies below one. The

claim follows immediately from part (i).

Now suppose ∆0 lies in the increasing region and let k1 < k2. By Part 1 of this theorem,

(i) b(k1) < b(k2) in the interval [0, i∗), which immediately implies c(k1) > c(k2) since both

b(k1) and b(k2) lie above 1; and (ii) b(k1) > b(k2) in the interval (i∗,∞), which implies

c(k1) > c(k2) since both b(k1) and b(k2) lie below 1. At period i∗, b(k1) = b(k2) = 1. Since

c′(b) is a decreasing function of k, it follows ci∗(k1) > ci∗(k2).

We now make explicit the functional dependence of the VC’s continuation value (28) on

her current assessment of the project’s intrinsic quality and write it as CVi(µi). We drop

the superscript on µi since it shall always refer to the VC’s assessment. Let Z denote the

standard normal random variable. We note the continuation value may be expressed as

CVi(µi) =
[
F ∗

i + µi − li+1

]
+ ei(µi), (48)

where

ei(µi) : = Ei

[
max{CVi+1(µi+1), 0}

]
(49)

= E
[
max{CVi+1(σ̂iZ + µi), 0}

]
(50)

and σ̂2
i := σ2

i + s2, and that there exists a uniform bound B on the F ∗
i .13

Lemma 2

CVi(µi) is nonnegative and bounded for each date i.

Proof. At date i the expected within-period value at any future date is bounded above by

µi + B, with a finite number of periods left (T − i), and so the VC’s continuation value at

13For example, one may set B := max
b≥0

[∆0b− λ/2 s2b2 + Kc(b)].
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date i is bounded above by the present value of this constant stream or zero, whichever is

larger.

Lemma 3

The continuation value CVi is a continuous, increasing function of µi for each date i, 0 ≤
i ≤ T − 1.

Proof. The function

CVT−1(µT−1) = F ∗
T−1 + µT−1 − lT

is obviously an increasing, continuous function of µT−1, which implies from definition (50)

that the function eT−2 and hence CVT−2 are each increasing functions of µT−2, too. Given

that eT−2 is an increasing function, it is obviously finite by Lemma 2. Since the function

max{CVT−1(σ̂T−2Z + µT−2), 0}

is continuous in µT−2 (given the continuity of CVT−1), one may apply Lebesgue’s bounded

convergence theorem to establish that eT−2 is continuous, and hence CVT−2 is continuous,

too. We have demonstrated that CVT−2 is an increasing, continuous function of µT−2, as

claimed. The process continues recursively by using the increasing and continuous properties

of CVi+1 and Lemma 2 to establish the increasing, finite and then continuous properties of

ei.

Proof of Proposition 6. By Lemma 3 each function CVi is continuous and increasing.

The proof of Lemma 3 also shows that each ei is increasing, which implies each CVi is

negative for sufficiently small µi. Since each CVi is obviously positive for sufficiently high

µi, there exists a unique value µ∗i for which CVi(µ∗i ) = 0. Clearly, the VC should terminate

only if µi < µ∗i .

Proof of Proposition 7. The objective function Fi (29) is an increasing function of ∆EN
0 ,

which implies that F ∗
i is also a increasing function of ∆EN

0 . One may proceed exactly as

in the proof of Lemma 3 to establish that each CVi is a pointwise increasing function of

∆EN
0 , too, and it should be clear from the proof of Proposition 6 that the trigger values will
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decrease. Since a change in this parameter has no effect on the sample paths, the result (i)

follows. The proof of (ii) is the same, except that each Fi is now a decreasing function of

either λ or k, and thus the trigger values will increase.

Proof of Proposition 8. Pick ε > 0 and define θ0 so that P (Θ > θ0) = ε. Now

P (τ > i) = P{µt > µ∗t for all t = 0, 1, . . . , i} (51)

≤ P{µi > µ∗i } (52)

≤ P{µi > µ∗i | Θ ≤ θ0}P (Θ ≤ θ0) + P (Θ > θ0) (53)

≤ P{µi > µ∗i | Θ = θ0}+ ε. (54)

By Proposition 6 and the assumed property of the li, the µ∗i eventually lie above a positive

constant. Given this fact and the fact that the conditional distribution of
∑i

t=1 Yt/i given

Θ = θ0 is N(θ0, s
2/i),

P{µi ≥ µ∗i | Θ = θ0} = P{s2µ0 + σ2
0(

∑i
t=1 Yt)

s2 + iσ2
0

≥ µ∗i | Θ = θ0} (55)

≤ P{
∑i

t=1 Yt

i
≥ µ∗i −

s2µ0

iσ2
0

| Θ = θ0} → 0 as i →∞. (56)

The result now follows from (54) and (56) since ε was chosen arbitrarily.
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CHAPTER IV

ANALYSIS OF RISK — A TWO-PERIOD MODEL

In Proposition 7 and its proof we find that continuation value and project duration are

increasing in the initial asymmetry in beliefs, ∆0, and decreasing with the risk aversion, λ,

and the cost of effort, k. In this chapter we continue this analysis by inquiring how contin-

uation value and project duration depend on the systematic risk and the initial technical

risk in a two-period model. These results illuminate the forces through which risk affects

the firm’s economics. We find clear distinction between the effects of the systematic risk

and the effects of technical risk. We show that risk may have positive effects on the firm

and demonstrate that risk effects need not be monotone.

4.1 Risk and Continuation Value

We assume there are at most two investment periods. We examine how the VC’s contin-

uation value at date zero, CV0, changes with initial technical risk and the systematic risk.

Keep in mind, by (28), CV0 is the sum of the first period’s within period flow and the second

period’s option value, namely,

CV0 = F ∗
1 − l1 + µV C

0 + E0

[
max{CV1, 0}

]
. (57)

where CV1, the VC’s continuation value at date 1, is given by

CV1 = F ∗
2 − l2 + µV C

1 . (58)

For expositional purposes, in what follows, we remove the VC notation from the µi. We

also assume symmetric information (∆0 = 0) to simplify the analysis. (In our discussion we

describe how asymmetry affects the results.) At date 0, CV1 is a random variable because

the second period quality µ1 is a random variable. In light of (4)

CV1 ∼ N(F ∗
2 − l2 + µ0︸ ︷︷ ︸

a

(π),
σ4

0

s2 + σ2
0︸ ︷︷ ︸

b(π)2

). (59)
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where π ∈ {σ2
0, s

2}. Notice that a(·) is the expected second period’s within period flow as

viewed at date zero. The following two lemmas, whose proofs are in the last section of this

chapter, are key to understanding the various effects of risk on the continuation value.

Lemma 4

If λ > 0 then F ∗
i is decreasing in s2 and in σ2

0 for all i ≥ 1. If λ = 0 then F ∗
i is independent

of s2 and in σ2
0 for all i.

Lemma 5

The derivative of the second period option value with respect to s2 or σ2
0 E0

[
max{CV1, 0}

]

is of the form:

a(π)′K1 + b(π)′K2, π ∈ {σ2
0, s

2}, (60)

where a(·) and b(·) are defined in (59) and K1 and K2 are positive.

We now turn to characterize the relationship between CV0 and risk.

Proposition 9

Assume symmetric information, i.e., ∆0 = 0.

(i) If the EN is risk averse (λ > 0) then CV0 is decreasing in the systematic risk, s2, but

may be non-monotonic in the initial technical risk, σ2
0.

(ii) If the EN is risk neutral (λ = 0) then CV0 is decreasing in the systematic risk, s2, and

increasing in the initial technical risk, σ2
0.

Proof: Observe that:

(a) By Lemma 4 and the definition of a(·), if λ > 0 then a(·) is decreasing in s2 and in

σ2
0.

(b) If λ = 0, then a(·) is independent of s2 and in σ2
0.

(c) b(·) is decreasing in s2 but increasing in σ2
0.

First suppose that λ > 0. By observation (a) the derivatives of a(·) and b(·) with respect

to s2 satisfy a′(·) < 0 and b′(·) < 0. Thus, CV0 is decreasing with s2 by Lemma 5. By
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observations (a) and (c) the derivatives of a(·) and b(·) with respect to σ2
0 satisfy a′(·) < 0 but

b′(·) > 0. Applying Lemma 5 reveals there are conflicting forces affecting the future option

value and accordingly CV0 may be non-monotonic. Now suppose λ = 0. Observation (b)

reveals that a(·) is independent of risk. Since b(·) is decreasing in s2, CV0 is also decreasing

in the systematic risk by Lemma 5. Similarly, since b(·) is increasing in σ2
0, CV0 is increasing

in the initial technical risk by Lemma 5.

Proposition 9 illuminates two means by which risk can affect the continuation value.

First, risk affects within period flow. As stated in Lemma 4, due to the added cost of risk

both the technical risk and the systematic risk negatively affect the within period flow when

the EN is risk averse. In addition, Lemma 5 reveals risk changes the future option value

of the continuation value. A more volatile future is advantageous since in the presence of

high volatility the VC enjoys the higher upside values without having to pay the price for

the lower downside values. Interestingly, Lemma 5 shows that technical risk and systematic

risk may have opposite effects on the option value. Increasing the systematic risk makes the

learning more difficult, which results in a posterior assessment closer to the prior assessment.

Thus, an increase in systematic risk is responsible for less volatility and less option value.

Increasing the initial technical risk, on the other hand, increases the ratio between the

technical and systematic risk and results in a more effective learning, which means that

the parties are very sensitive to the signals and the posterior assessment is more volatile.

Consequently, initial technical risk is positively tied with higher option value.

Proposition 9 shows that market risk is negatively tied with both components of the

continuation value, and so the continuation value at date zero decreases with market risk.

However, while technical risk increases the volatility, it simultaneously decreases the within

period flow and the net affect on the future option value is unclear (as implied by Lemma

5). Therefore, as stated in Proposition 9, the net effect of technical risk on the continuation

value is unclear and depends on the values of the model’s parameters.

When the parties have asymmetric beliefs matters are more complicated since the within

period flow, F ∗
i , is not necessarily decreasing with the systematic risk. By (5) one can show
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Table 1: Risk forces affecting continuation value

Type of Risk Market Setting a′ b′ Net Effect
Due to
Asymmetry

Due to Risk
Aversion

Systematic
No Agency 0 0 - -
Symmetric 0 - - -
Asymmetric + - - ±

Technical
No Agency 0 0 + +
Symmetric 0 - + ±
Asymmetric - - + ±

that ∆i is decreasing in σ2
0 and increasing in s2. This is because increasing the systematic

risk diminishes the EN’s learning ability and therefore he does not update (decrease) ∆i

in as fast a pace. Increasing technical risk, however, has an opposite effect because it

increases the technical to market risk ratio, making the market risk relatively smaller. The

argument used in the proof of Lemma 4 may be used to show that F ∗
i is not necessarily

decreasing in systematic risk but is still (or even more so) decreasing in technical risk.

Therefore, introducing asymmetric information on the one hand mitigates the positive effect

of technical risk on the continuation value and on the other hand mitigates the negative

effects of the systematic risk. We summarize how the “forces of risk” affect the continuation

value in Table 1.

The effects of risk on continuation value are demonstrated in Figures 7 - 9, which displays

lattices simulating the two-period model for different levels of initial technical risk. Recall,

σµ
0 , the standard deviation of the VC’s assessment of the firm’s quality in the beginning of

the second period, is given by (73). At the end of the first period the VC’s assessment of

the firm’s quality moves up (u) by one standard deviation (σµ
0 ), stays at the same level (m)

or moves down (d) σµ
0 . Due to this structure, the corresponding probabilities pu, pm, pd are

independent of the risk and are equal to (0.31,0.38,0.31), respectively. In each figure we

display for each period the asymmetry level, the price of risk and F ∗
i − li, the within period

flow minus µi−1. Except for σ2
0, the value of the parameters is equal to the basic numbers
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given in Table 6 and Table 8.

Figure 7 describes the evolution of the two-period model for a low level of technical risk

(σ2
0 = 0.1) and for which CV0 = 0.5. Figure 8 reveals that increasing σ2

0 to 0.5 decreases

CV0 to 0.41. The reason for this is the steep decline of the deterministic component of the

within period flow, F ∗
i − li, i = 1, 2. This loss of income cannot compensate for the gains

due to the added volatility (CV u
1 for σ2

0 = 0.1 is higher than CV u
1 for σ2

0 = 0.1). Further

increasing σ0 to 1 results in CV0 = 0.43 (Figure 9). The loss in F ∗
i − li, i = 1, 2, as result

of the increase is less pronounced and therefore the increase in the volatility, manifested in

the higher µu
1 and CV u

1 , is the dominant force.

The reason why continuation value is initially decreasing and then increasing in σ2
0 is

explained by the magnitude of the within period flow when σ2
0 is low compared to when σ2

0

is high. In the first case, the within period flow is large, thus the potential for great losses.

However, when σ2
0 is high the within period flow is small and it can never be negative. In

this case the gains in the volatility are more dominant and hence the continuation value

increases.

4.2 Risk and Project Duration

The expected timing of implementation, E[τ ], is closely tied with continuation value since

continued investment is conditioned on a positive continuation value. Assuming there is

initial investment, E[τ ] depends only on the continuation value of the second period. As

will be shown in the following proposition, we find it convenient to distinguish between

the case where the expected second period flow, a(·) := F ∗
2 − l2 + µ0, is nonnegative and

the case where it is negative. When the expected second period is nonnegative investment

is guaranteed in the second period if the firm receives a neutral signal (i.e. µ1 = µ0)

and conversely if the expected second period flow is negative. The following proposition

describes how the project’s duration, assuming there is initial investment, changes with risk.

Proposition 10

Assume symmetric information, i.e., ∆0 = 0.

(i) Suppose the expected second period flow is nonnegative. If the EN is risk averse
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Period 2

CV x
1 = F ∗

2 −l2+µx
1

x ∈ {d,m, u}

∆1 = 0.417

λ(s2+σ2
1) = 0.31

F ∗
2 −l2 = 0.039

wµd
1 = µ0−σµ

0 = −0.029
CV d

1 = 0.01

wµm
1 = µ0 = 0.1

CV m
1 = 0.139

wµu
1 = µ0+σµ

0 = 0.229
CV u

1 = 0.268

pu = Pr[µ1 ∈ (µ0 + σµ
0
2 ,∞)|µ0] = Pr[Z > 0.5] = 0.31

pm = Pr[µ1 ∈ [µ0 − σµ
0
2 , µ0 + σµ

0
2 ]|µ0] = Pr[−0.5 ≤ Z ≤ 0.5] = 0.38

pd = Pr[µ1 ∈ (−∞, µ0 − σµ
0
2 )|µ0] = Pr[Z < −0.5] = 0.31

Period 1

CV0 = F ∗
1 − l1 + µ0+

+
∑

x∈{d,m,u}
px max{CV x

1 , 0}

σµ
0 := σ2

0√
s+σ2

0

= 0.129

∆0 = 0.5

λ(s2+σ2
0) = 0.328

F ∗
1 −l1 = 0.275

wµ0 =0.1
CV0 =0.514

´
´

´
´

´
´

´
´

´
´

´
3́

pu

-pm

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Qs

pd

Figure 7: Two period lattice for base numbers and initial technical risk σ2
0 = 0.1
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Period 2

CV x
1 = F ∗

2 −l2+µx
1

x ∈ {d,m, u}

∆1 = 0.25

λ(s2+σ2
1) = 0.41

F ∗
2 −l2 = −0.096

wµd
1 = µ0−σµ

0 = −0.4
CV d

1 = −0.496

wµm
1 = µ0 = 0.1

CV m
1 = 0.004

wµu
1 = µ0+σµ

0 = 0.6
CV u

1 = 0.504

pu = Pr[µ1 ∈ (µ0 + σµ
0
2 ,∞)|µ0] = Pr[Z > 0.5] = 0.31

pm = Pr[µ1 ∈ [µ0 − σµ
0
2 , µ0 + σµ

0
2 ]|µ0] = Pr[−0.5 ≤ Z ≤ 0.5] = 0.38

pd = Pr[µ1 ∈ (−∞, µ0 − σµ
0
2 )|µ0] = Pr[Z < −0.5] = 0.31

Period 1

CV0 = F ∗
1 − l1 + µ0+

+
∑

x∈{d,m,u}
px max{CV x

1 , 0}

σµ
0 := σ2

0√
s+σ2

0

= 0.5

∆0 = 0.5

λ(s2+σ2
0) = 0.547

F ∗
1 −l1 = 0.174

wµ0 =0.1
CV0 =0.431

´
´

´
´

´
´

´
´

´
´

´
3́

pu

-pm

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Qs

pd

Figure 8: Two period lattice for base numbers and initial technical risk σ2
0 = 0.5
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Period 2

CV x
1 = F ∗

2 −l2+µx
1

x ∈ {d,m, u}

∆1 = 0.167

λ(s2+σ2
1) = 0.456

F ∗
2 −l2 = −0.140

wµd
1 = µ0−σµ

0 = −0.716
CV d

1 = −0.856

wµm
1 = µ0 = 0.1

CV m
1 = −0.04

wµu
1 = µ0+σµ

0 = 0.916
CV u

1 = 0.777

pu = Pr[µ1 ∈ (µ0 + σµ
0
2 ,∞)|µ0] = Pr[Z > 0.5] = 0.31

pm = Pr[µ1 ∈ [µ0 − σµ
0
2 , µ0 + σµ

0
2 ]|µ0] = Pr[−0.5 ≤ Z ≤ 0.5] = 0.38

pd = Pr[µ1 ∈ (−∞, µ0 − σµ
0
2 )|µ0] = Pr[Z < −0.5] = 0.31

Period 1

CV0 = F ∗
1 − l1 + µ0+

+
∑

x∈{d,m,u}
px max{CV x

1 , 0}

σµ
0 := σ2

0√
s+σ2

0

= 0.816

∆0 = 0.5

λ(s2+σ2
0) = 0.820

F ∗
1 −l1 = 0.111

wµ0 =0.1
CV0 =0.45

´
´

´
´

´
´

´
´

´
´

´
3́

pu

-pm

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Qs

pd

Figure 9: Two period lattice for base numbers and initial technical risk σ2
0 = 1
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(λ > 0), then E[τ ] is decreasing in the initial technical risk, σ2
0, but may be non-

monotonic in the systematic risk, s2. If the EN is risk neutral (λ = 0), then E[τ ] is

decreasing in the initial technical risk, σ2
0, and increasing in the systematic risk, s2.

(ii) Suppose the expected second period flow is negative. If the EN is risk averse (λ > 0),

then E[τ ] may be non-monotonic in the initial technical risk, σ2
0, and decreasing in

the systematic risk, s2. If the EN is risk neutral (λ = 0), then E[τ ] is increasing in

the initial technical risk, σ2
0, and decreasing in the systematic risk, s2.

Proof: We continue the notation used in the proof of Proposition 9 and equation (59).

We write the expected timing of implementation assuming initial investment takes place,

(CV0 > 0), as

E[τ ] = 1 + Prob[CV1 > 0] = 1 +

∞∫

−a
b

1√
2π

exp−
x2

2

︸ ︷︷ ︸
φ(x)

dx. (61)

The derivative of E[τ ] with respect to π ∈ {s2, σ2
0} is

−φ(−a(π)
b(π)

)
(
− a(π)

b(π)

)′
, (62)

which is proportional to

a′(π)b(π)− a(π)b′(π) (63)

Keeping in mind that b(π) > 0, the rest of the proof follows immediately by considering

whether a(π), the expected second period flow, is nonnegative and observations (a) - (c)

made in the proof to Proposition 9.

The effects of risk on the timing of implementation depend heavily on the sign of the

expected second period flow (as viewed at date zero). In the case where it is positive, then

the closer the second period assessment, µ1, is to its mean, µ0, the more likely investment will

take place in the second period. Therefore, increasing the sensitivity to the market signals

adversely affects the likelihood of investment in the second period. Accordingly, Proposition

10 states that increasing σ2
0 decreases the project duration. This happens because increasing

σ2
0 not only increases the learning sensitivity but also decreases the deterministic part of
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Table 2: Risk forces affecting project duration

Risk a > 0 Market Setting a′ −ab′ Net Effect
Due to
Asymmetry

Due to Risk
Aversion

Systematic

Yes
No Agency 0 0 + +
Symmetric 0 - + ±
Asymmetric + - + ±

No
No Agency 0 0 - -
Symmetric 0 - - -
Asymmetric + - - ±

Technical

Yes
No Agency 0 0 - -
Symmetric 0 - - -
Asymmetric - - - -

No
No Agency 0 0 + +
Symmetric 0 - + ±
Asymmetric - - + ±

the second period flow, F ∗
2 , with both effects resulting in a higher probability for second

period negative continuation value. Increasing the systematic risk results in two opposite

effects. On the one hand, the parties ability to learn diminishes and therefore the second

period quality assessment µ1 is less volatile, which increases the probability for second period

investment. On the other hand, increasing systematic risk results in a decrease in the second

period deterministic return, which decreases the probability for second period investment.

The net effect of these two forces depends on the specific values of the parameters.

When the expected second period flow is negative then the closer the second period

quality is to its mean the higher the probability for no investment. Now volatility increases

the probability for second period investment and therefore we get oppositive effects.

Recall, when there is asymmetric information, F ∗
i is still decreasing in the technical

risk but is not necessarily increasing in systematic risk. Therefore, if ∆0 > 0, a(·) is

still decreasing in technical risk but it is unclear how a(·) changes with systematic risk,

and accordingly the net effect on project duration may change. Table 2 summarizes the

effects of risk on the timing of implementation for the different market settings (Asymmetric
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Information, Symmetric Information and No Agency).

4.3 Proofs

Proof of Lemma 4 Since ∆0 = 0, we have by (3) and (23)

F ∗
i = max

b1≥0
Fi(bi) = Kc(bi)− λ

(
s2 +

s2σ2
0

s2 + iσ2
0

)
b2
i

where Kc(bi) is independent of either σ2
0 or s2. Let r represent either the technical or

systematic risk parameters, r ∈ {s2, σ2
0}, F ∗

i (r) denote F ∗
i for a given level of r, let Fi(bi, r)

be similarly defined and let b∗i (r) denote the optimal solution for a given level of r. Let

r1 < r2. Since the expression s2 + s2σ2
0

s2+iσ2
0

is increasing in r we have that if λ > 0, Fi(bi, r1) >

Fi(bi, r2) for all bi. Thus,

F ∗
i (r1) = Fi(b∗i (r1), r1) > Fi(b∗i (r2), r1) > Fi(b∗i (r2), r2) = F ∗

i (r2)

where the first inequality follows from the uniqueness of the optimal solution and the second

inequality follows from the observation that Fi(bi, r1) > Fi(bi, r2) for all bi. When λ = 0,

Fi(bi) is independent of either s2 or σ2
0, hence F ∗

i is independent of risk.

Proof of Lemma 5 The future option value is

E0

[
max{CV1, 0}

]
= (64)

E0

[
CV1 · 1{CV1≥0}

]
= (65)

E0

[
CV1 · 1{CV1−a

b
≥−a

b
}
]

= (66)

bE0

[CV1 − a

b
· 1{CV1−a

b
≥−a

b
}
]
+ aPr0

[CV1 − a

b
≥ −a

b

]
= (67)

bE0

[
Z · 1{Z≥−a

b
}
]
+ aE0

[ · 1{Z≥−a
b
}
]
. (68)

where Z denotes a standard normal random variable and where we use the notation

1{X} =





1 if X,

0 if not X.
(69)

In integral form, (68) is equal to

a

∞∫

−a
b

1√
2π

exp−
x2

2

︸ ︷︷ ︸
φ(x)

dx + b

∞∫

−a
b

x
1√
2π

exp−
x2

2

︸ ︷︷ ︸
φ(x)

dx (70)
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Applying Leibnitz’s rule, the first derivative of (70) is

a′
∞∫

−a
b

φ(x)dx + a
[
− φ(−a

b
)
(
− a

b

)′]
+ b

[
− (−a

b
)φ(−a

b
)
(
− a

b

)′]

︸ ︷︷ ︸
=0

+b′
∞∫

−a
b

xφ(x)dx =(71)

a′ ·
∞∫

−a
b

φ(x)dx

︸ ︷︷ ︸
positive

+ b′ ·
∞∫

−a
b

xφ(x)dx

︸ ︷︷ ︸
positive

(72)
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CHAPTER V

NUMERICAL ANALYSIS AND RESULTS

5.1 Introduction

Some of the questions we set out to investigate in this research cannot be answered ana-

lytically. Our analytical analysis is limited upfront by the lack of closed-form solution for

the deterministic path (e.g. investment, EN’s compensation). This problem is compounded

when we attempt to find explicit solutions for the continuation value and the project dura-

tion. Consequently, we must use numerical methods to overcome the limitations posed by

the analytical analysis and to this end we develop MATLAB code that simulates the model.

The greatest drawback of numerical analysis lies in the fact that the attained solutions

are valid only for the specific values of the parameters used in the analysis. Consequently,

any theoretical analysis based on these solutions is subject to the suspicion that it cannot

be generalized to other parametric values. Therefore, if the parameter values are not a true

reflection of empirical evidence and market behavior, the results of the numerical analysis

are less meaningful and may not lead to a serious theoretical discussion. It is therefore

imperative to set the parameter values so values given to the parameters be such that

they properly reflect empirical evidence on the market. Unfortunately, for many of the

parameters in our model there is no direct empirical findings that can help us set their

values. In these cases, we set the value of the parameters indirectly to empirical evidence

via a calibration process soon to be described. Using both the direct and indirect methods

we calibrate the model’s parameters and obtain a basic set of parametric values that closely

reflect the venture capital industry. Thus, we can be comfortable in using the model to

explain or predict other market phenomena.

The parameters we set directly to data are s2, the systematic risk, σ2
0, the initial technical

risk, µV C
0 , the VC’s belief on the initial firm quality, and ∆0, the initial asymmetry in belief.

We normalize the initial firm termination value V0 to 1. We will refer to these parameters
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Figure 10: Schematic overview of the numerical analysis

(including V0) as the data driven parameters. We set the basic values of these parameters

directly according to empirical evidence.

The remaining parameters λ, the EN’s risk aversion, γ and k, the parameters associated

with the EN’s disutility from effort, α and β, the parameters associated with the firm’s

production function, and L, the loss parameter, are calibrated to match a body of empirical

evidence as closely as possible. These parameters will hereafter referred to as the calibrated

parameters. Henceforward, we refer to these values as the basic values of the model.

The core code we develop to solve the model is therefore used in two different settings.

First, it is used in the calibration phase in which we solve the model for many parametric

values. Second, after we have set the basic values, we use the code to solve the model to

obtain economical results and predictions. Figure 10 describes this relationship between

the core code, the calibration and the numerical analysis processes.

In Section 5.2 we describe the core code’s components. In Section 5.3 we describe the

calibration process and in Section 5.4 we describe the numerical analysis results.
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5.2 The Core Code

The core code computes the solution to the model for a given value of the model’s parame-

ters. It is executed in three steps: (1) compute the “deterministic path”; (2) compute the

termination triggers; and (3) simulate the firm’s evolution (Monte Carlo simulation). We

now proceed to describe in detail each of these steps.

5.2.1 Computing the deterministic path

In this step we compute the equilibrium time paths associated with the EN’s risky compen-

sation, the VC’s investment and the EN’s exerted effort, namely, the b∗i , c∗i and η∗i . These

results do not depend on the realization of the signals of project quality and are character-

ized in Theorem 1. Under our assumptions, the VC’s problem, (24), is strongly unimodal

and therefore we may easily compute the EN’s risky compensation, b∗i , via bisection search.

The c∗i and η∗i are computed directly from b∗i .

5.2.2 Computing the termination triggers

The continuation value CVi(·) at each date i = 0, 1, 2, . . . , T − 1 is a continuous, increasing

function of µi (see Lemma 3). As a consequence (see Proposition 6), the optimal termination

policy is a trigger policy: the VC continues investment if and only if the project quality at

date i, µi, is greater than µ∗i , where CVi(µ∗i ) = 0. Given CVi(·) a simple bisection search

will determine the trigger µ∗i .

It remains to compute the continuation value function. Here, we generate a lattice

describing the evolution of the project’s quality over time. We now turn to describe in more

detail the project quality lattice, the way the continuation value is computed and issues

related with solution accuracy and computation time.

5.2.2.1 Lattice design

The lattice, depicted in Figure 11, simulates the evolution of the project quality. Each

column in the lattice represents a date in the life of the firm. At date 0 the project quality

is given by µ0. At following dates the quality may be one of many different states, depending

on the realization of the signal. Let
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• n(i) denote the number of states at date i

• µi,j denote the firm’s quality at the jth state at date i, j = 1, ..., n(i).

The standard deviation of the project’s quality at date i, σµ
i , may be derived from equation

(4) and is given by:

σµ
i =

σ2
i√

s2 + σ2
i

. (73)

We design the lattice so that the maximal state at date i is κ standard deviations above the

maximal state at date i − 1 for some κ > 0; the minimum state is defined symmetrically.

That is,

µi,n(i) = µi−1,n(i−1) + κσµ
i−1 (74)

µi,1 = µi−1,1 − κσµ
i−1 . (75)

The remaining n(i) − 2 states are determined by setting their values to be equally spaced

between the minimum and maximum states. That is,

µi,j+1 = µi,j +
µi,n(i) − µi,1

n(i)− 1
for all j = 1..., n(i)− 1. (76)

5.2.2.2 Continuation value

The last column in the lattice represents the possible project quality states at date T − 1,

which is the last possible date for investment. At this point the continuation value is

independent of the future and can be computed explicitly using the deterministic path values

and the project quality. Thus, the terminal state µT−1,j corresponds to a continuation value,

denoted by CVT−1,j , according to:

CVT−1,j = µT−1,j + F ∗
T−1 − lT−1 , (77)

where F ∗
i is the optimal solution to the variable portion of the VC’s problem at date i, (24),

and li is the loss at date i.

To compute the continuation value for each state at date i < T−1 we proceed as follows.

Let Di,j denote the set of all states that are “immediate descendants” of µi,j—µi+1,k ∈ Di,j

if and only if µi+1,k is within ±κσµ
i from µi,j . We shall say the firm transitions from state
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µi,j to its descendant µi+1,k ∈ Di,j if the project quality changes from level µi,j to a point

in
[

1
2(µi+1,k + µi+1,k−1), 1

2(µi+1,k + µi+1,k+1)
]
. In case that µi+1,k is a minimal (maximal)

state we define µi+1,k−1 := −∞ (µi+1,k+1 := +∞). The transition probability pi,j,k from

state µi,j to µi+1,k is therefore given by

pi,j,k = Φ
[
(
1
2
(µi+1,k + µi+1,k+1)− µi)

1
σµ

i

]
− Φ

[
(
1
2
(µi+1,k + µi+1,k−1)− µi)

1
σµ

i

]
. (78)

In the discrete approximation, the continuation value at state µi,j is given by:

CVi,j = µi,j + F ∗
i − li +

∑

µi+1,k∈Di,j

pi,j,k max(CVi+1,k, 0) . (79)

Starting from (77) and working backwards through time in the familiar way, the continuation

values for all states and dates are computed. Since the true continuation value function is

continuous and increasing, we complete the approximation to CVi(·) via linear interpolation.

5.2.2.3 Computation time vs. solution accuracy

The accuracy of the triggers µ∗i computed in this step depends heavily on the number of

states in each column of the lattice as well as on κ, the parameter that determines the

range of firm quality represented in the lattice. In addition, the choice for the maximal

number of periods, T , affects not only the accuracy of µ∗i , but also affects on the accuracy

of the economic results of the model as compared to the infinite horizon solution. We let

the number of states in the lattice increase linearly from period to period in the following

manner:

n(i) =





1, if i = 0;

Mi, if i > 0.

(80)

The value of M is set to 50 and the value of κ is set to κ = 2.5. In the many experiments

we conducted, we found that an increase in M or κ or both did not change the value of

µ∗i (to within a 3% tolerance). With regard to the choice of T , Sahlman (1990) provides

empirical evidence there are at most 8 investment stages. We set T = 10. We note that

in almost all of the experiments we conducted, the probability of the firm surviving to the

10th period was less than 0.1%.
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5.2.3 Computing the model’s results

In the last step of the core code we compute the economic statistics of the model by conduct-

ing a Monte Carlo simulation of N firms. In each experiment we simulate the change in the

firm’s quality over time. As the firm evolves we compute statistics such as the EN’s payout,

and upon termination we compute statistics such as number of periods, total investment

and termination value. We set N = 100, 000. In the many experiments we conducted, we

found the results for expected net firm value, continuation value at date zero (expected net

VC share) and expected project duration did not change by more than 1% when N was

increased.

5.3 Calibration

We start the calibration process by setting values to the data driven parameters, s2, σ2
0, µ0

and ∆0. These parameters are set relative to V0, which has been normalized to 1. Next,

we set the values of the calibrated parameters α, β, γ, λ, k and L, through the calibration

process to be described below.

5.3.1 Data driven parameters

The values for the volatilities, σ2
0 and s2, and the parameters relating to the potential per-

period gains if the parties took no action depend on the length of the period. Gompers

(1995) provides data for the amount of time between funding for different investment stages.

This data, provided in Table 3, reveals that the average time between investments for all

stages is approximately 1 year (1.09). Hereafter, we set the investment period’s length to

one year.

Parameter µ0: The initial quality of the firm, µ0, is computed according to the CAPM

model:
µ0

V0
= rf + beta · rp, (81)

where r is required rate of return, rf is the risk-free rate, rp is the risk premium. Following

empirical findings by Kerins et. al. (2004) we set rf = 0.04, beta = 1, and rp = 0.06.

Accordingly, µ0 = 0.1V0 = 0.1.
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Table 3: Average time between funding for different investment stages

Industry Time to Next Funding Number of Investments
Seed 1.63 122
Startup 1.21 129
Early Stage 1.03 114
First Stage 1.08 288
Other Early 1.08 221
Expansion 1.26 377
Second Stage 1.01 351
Third Stage 0.86 181
Bridge 0.97 454

Parameters σ2
0 and s2: The standard deviation in firm value is reported by Kerins et. al.

(2004), Table 4, to be 102%. We round this figure and assume that the initial standard

deviation is equal to the initial termination value,
√

s2 + σ2
0

V0
= 1. (82)

Further, we assume that the initial risk is equally divided between technical and systematic

risk. Thus, s2 = σ2
0 = 0.5.

Parameter ∆0: We believe the EN’s experience is the most important factor in determining

the asymmetry in beliefs parameter, ∆0, between the EN and the VC. A more experienced

EN is expected to be more reasonable and realistic and hold opinions similar to the VC.

We set ∆0 = 0.5V0 = 0.5.

5.3.2 Calibrated parameters

The calibrated parameters are α, β, γ, λ, k and L. The value of these parameters is set so

that the model’s output “best matches” empirical evidence described in Sahlman (1990) and

Gompers (1995). An explicit definition of “best match” is given as part of our description of

the calibration process. We start by explaining the difficulty associated with directly linking

the parameters in this group to empirical data. Subsequently, we describe the empirical

evidence, how we compute it in our model and the calibration process itself.

85



• α and β: The parameters α and β represent the output elasticities of investment and

effort, respectively. We limit the values of α and β to α + β = 1 to model a constant

returns-to-scale production function. Different values of α, β describe different indus-

tries. Since the data we use to calibrate is cross-industry, the baseline values for α

and β must be calibrated.

• γ and k: No data is available from which to estimate the values for γ and k, the

parameters associated with the EN’s disutility from effort. Recall Assumption 2,

(1 − α) γ
β ≥ 2. Since α + β = 1 we have γ ≥ 2. We set γ = 2 and calibrate k to the

data.

• λ: Setting a value for risk-averseness directly from data is difficult if not impossible.

Rabin and Thaler (2001), quoting Kandel and Stambaugh (1991), demonstrate that

attempting to do so may result in absurdly high levels of risk-aversion. They warn

researchers to be very careful when setting values to risk-aversion and conclude that

“economists should use care in choosing the appropriate hypothetical examples when

measuring risk aversion” (Rabin and Thaler (2001) p. 225).

• L: The loss function is assumed to be increasing and convex. Specifically, we model

the loss in period i to be

li = Li2 . (83)

As with γ and k, there is no empirical evidence from which to directly estimate the

loss parameter, L, and therefore it must be calibrated.

5.3.2.1 Empirical evidence

The empirical evidence that we use consists of seven economical statistics about the venture

capital industry reported by Sahlman (1990) and Gompers (1995). The average number of

investment periods is computed indirectly from Gompers (1995), Table IV, and is summa-

rized in Table 4. We conclude that:

1. The average number of rounds for all the firms is approximately 2.7.
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Table 4: Average number of investment rounds by industry

Industry Average Number of Rounds Number of Firms
Communications 2.78 98
Computers 3.89 27
Computer Related 3.66 90
Computer Software 2.99 77
Electronic components 3.27 22
Other electronics 3.21 41
Biotechnology 3.69 29
Medical/health 2.98 90
Energy 1.91 22
Consumer products 2.14 103
Industrial products 2.09 89
Transportation 1.93 15
Other 1.60 96

Sahlman (1990, Figure 1) provides data about the distribution of the return from invest-

ment. Investments are divided into six groups. The first group contains all investments that

ended with total loss, the second group contains investments that ended with partial loss,

and the third, fourth, fifth and sixth groups comprise investments that returned a payoff

of between [0, 2], [2, 5), [5, 10) and [10,∞), respectively. Table 5 summarizes his empirical

findings. By merging adjacent groups we conclude that:

2. 34.5% of total investment resulted in a negative return.

Table 5: Investment categorized by return

Investments with return Percentage of Total Amount Invested
Total Loss 11.5%

Partial Loss 23.0%
0 to 1.999 30.0%
2 to 4.999 19.8%
5 to 9.999 8.9%
≥ 10 6.8%
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3. 49.8% of total investment resulted in a return between zero and five times the amount

invested.

4. 15.7% of total investment resulted in a return greater than five times the amount

invested.

Sahlman (1990, p. 485) also investigates the firm’s rate of success and he reports that:

5. 32.4% of the companies (70 of 216) failed to yield the amount invested.

6. 67.6% of the companies yielded more than the amount invested.

7. 4.28 is the ratio between the total value of the firms and the total amount invested

($1,049 million and $245 million, respectively).

We summarize the empirical evidence (EE) in the following array:

EE := (EE1, ..., EE7) = (2.7, 0.345, 0.498, 0.157, 0.324, 0.676, 4.28) . (84)

5.3.2.2 Code Outputs

In the simulation step of the core code we simulate a large number of firms. The statistics

that are gathered in the simulation process are then used to compute economical results

corresponding to the empirical evidence array, EE. Let

• N denote the number of simulated firms.

• τf denote the duration of firm f , f = 1, ..., N .

• Cf denote the total amount of investment in firm f .

• TVf denote the value at termination of firm f .

• Retf denote the return of firm f , Retf := TVf−V0−Cf

Cf
.

• Inv denote the total amount of investment in all the firms, Inv :=
N∑

f=1

Cf .

• I1 denote the sum of Cf ’s such that Retf ∈ (−∞, 0).

• I2 denote the sum of Cf ’s such that Retf ∈ [0, 5).
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• I3 denote the sum of Cf ’s such that Retf ∈ [5,−∞).

• N1 denote the number of firms such that Retf < 0

The model’s results are Res := (Res1, ..., Res7) where

1. the expected number of periods: Res1 := 1
N

N∑
f=1

τf .

2. the percent of total investment resulting with a negative return: Res2 := I1
Inv

3. the percent of total investment resulted with a return in [0, 5): Res3 := I2
Inv

4. the percent of total investment resulted with a return in [5,∞): Res4 := I3
Inv

5. the percent of firms failing to return the investment: Res5 := N1
N

6. the percent of firms succeeding to return the investment: Res6 := 1−Res5

7. the total return from total investment is Res7 := 1
Inv

N∑
f=1

(TVf − V0).

In addition to the results computed for the calibration process, Res, described above,

the code computes other statistics to address a variety of research questions. Let:

• NFVf denote the net firm value of firm f , NFVf = TVf − Cf .

• ENPf denote the EN’s payout from firm f , ENPf = V0 +
τf∑
i=1

(
ai + bi(Vi − Vi−1)

)

• NV CSf denote the net VC share from firm f , NV CSf = TVf − ENPf − Cf .

• Nτ=t denote the number of firms with τf = t, t = 1, 2, ..., T .

In addition to Res, we compute:

1. Expected firm duration: Eτ := 1
N

N∑
f=1

τf .

2. The distribution of τ : P [τ = t] := 1
N Nτ=t.

3. The expected net firm value: ENFV := 1
N

N∑
i=f

NFVf .

4. The expected net VC share1: ENV CS := 1
N

N∑
f=1

NV CSf .

1The expected VC share is the VC’s continuation value
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5. The expected total investment: EC := 1
N

N∑
f=1

Cf .

5.3.2.3 The Calibration Process

The purpose of the calibration process is to determine the base values of the parameters

α, β, γ, λ, k and l. Keep in mind that we have already established the values of the other

parameters of the model and the calibration process takes them as given. The process starts

by setting a feasible range for each one of the parameters α, γ, λ, k and l. In the initial

search we start by allowing each parameter to receive one of n equally spaced points in the

parameter’s feasible range. Since we are calibrating 5 parameters we will have to examine

the economical results, Res, of each of the n5 possible experiments. For each one of these

n5 arrays we compute its sup-norm distance to the empirical evidence array EE. The best

match is the array Res that minimizes the sup-norm distance to the empirical evidence

array EE. Formally, let

• the `th parameter, ` = 1, ..., 5, denotes the calibrated parameters in the following order

(α, β, γ, λ, k, l)

• [rm
` , rM

` ] denotes the initial feasible range for parameter `.

• step` := rM
` −rm

`
n−1 denotes the search resolution for parameter `.

• (v1
` , ..., v

n
` ) be n equally spaced points on the initial feasible range for parameter `,

where

– v1
` = rm

` ,

– vj+1
` = vj

` + step` for j = 1, ..., n− 1,

– vn
` = rM

` .

• V := (v1
1, ..., v

n
1 )× (v1

2, ..., v
n
2 )× · · · × (v1

5, ..., v
n
5 ) denotes the search space, and notice

the number of elements of V is n5.

• v ∈ V denotes a candidate value for the calibrated parameters, v = (v1, ..., v5)
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• Res(v) := (Res(v)1, ..., Res(v)7) denotes the model results corresponding to candidate

v.

Then the initial best match values are:

bmv := (bmv1, ..., bmv5) = arg min
v∈V

{
max
1≤j≤7

{ |Res(v)j − EEj |
EEj

}}
. (85)

At this point we start an iterative search process centered around the initial best match.

In each iteration we define a grid around the current best match—in the first iteration the

current best match values are bmv—and search over the points of the grid. The distance

between points on the grid is divided by two from one iteration to the next, and the search

results of any iteration are set to be the new current best match. We repeat this process

iteratively, until we reach the desired accuracy for the basic values. The last iteration’s

results are the base values of the model.

We now formally describe this process. Let

• the current best match values, cbmv := bmv,

and repeat the following process 4 times:

1. the current best match values, cbmv := bmv.

2. the current step, cstep` := step` for each parameter `.

3. (v1
` , v

2
` , v

3
` ) be 3 equally spaced points around cbmv` for parameter `, which

• v1
` = cbmv` − cstep`,

• v2
` = cbmv`,

• v3
` = cbmv` + cstep`.

4. The search space, V := (v1
1, v

2
1, v

3
1) × (v1

2, v
2
2, v

3
2) × · · · × (v1

5, v
2
5, v

3
5), and notice the

number of elements of V is 35.

5. Let v ∈ V denote a candidate value for the calibrated parameters, v = (v1, ..., v5).

res(v) := (res(v)1, ..., res(v)7) be the model results corresponding to candidate v.

Then the current best match values, cbmv := (cbmv1, ..., cbmv5) are given by (85).
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Table 6: The initial feasible regions and base values for the calibrated parameters

Parameter Region Base Values
α [0.1 , 0.9] 0.3875
β 1− α 0.6125
γ 2 2
λ [0.05 , 0.2] 1.0938
k [0 , 0.1] 0.1914
l [0.5 , 3] 0.0586

Table 7: Economic results of the calibration process

` Economic Result Resi EEi

1 expected number of periods 1.929 2.7
2 percent of total investment resulting with a negative return 0.247 0.345
3 percent of total investment resulting with a return in [0, 5) 0.56 0.498
4 percent of total investment resulting with a return in [5,∞) 0.194 0.157
5 percent of firms failing to return the investment 0.415 0.324
6 percent of firms succeeding to return the investment 0.585 0.676
7 total return from total investment 3.061 4.28

The base values for the calibrated parameters are contained in the vector cbmv produced

in the last iteration.

5.3.3 The Base Values

The initial feasible regions for the calibrated parameters are given in Table 6. The regions

were chosen in a trial and error process so that the initial base numbers are interior points.

Executing the calibration process on these regions with n, the number of points in the

initial grid, set n = 9 provided base values for the calibrated parameters as given in Table

6. The economic results, Res, are given in Table 7, which compares our models results to

the empirical evidence (EE). The distance of Res from EE is approximately 0.285, which

means that the largest deviation was less than 29%. To complete the picture we summarize

the base values for the data driven parameters in Table 8.
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Table 8: The base values for the data driven parameters

Parameter Base Value
V0 100
µ0 0.1
σ0 0.5
s2 0.5
∆0 0.5

5.4 Numerical Results

We provide the multi-period model’s numerical results given for the basic numbers. Our

analysis focuses on finding how continuation value, project duration and net firm value

behave. We examine this behavior for changes in the risky components, sigma2
0 and s2 and

for changes in the output elasticity to capital, α. Similarly to our risk analysis in Chapter

4, we find clear distinction between the effects of the systematic risk and the effects of

technical risk and demonstrate that these effects need not be monotone. In addition, we

find that for firms with constant returns-to-scale increasing the output elasticity of labor,

i.e. increasing β while maintaining α + β = 1, increases continuation value, firm duration

and expected net firm value.

5.4.1 Risk Analysis

Experimenting with the base numbers for different values of σ2
0 provides similar results to

those in the two period model. In the no agency and symmetric cases continuation value is

increasing whereas under asymmetric information the relationship is non monotonic. These

results are depicted in Figure 13, which describes the relationship between the continuation

value and the initial asymmetric risk for the three market settings.

Figure 12 depicts the dependency of firm value on the initial systematic risk. For the

symmetric and no agency market settings we have that firm value and the VC’s share

behave similarly. In both cases the dominant effect of the technical risk is to increase of the

parties learning sensitivity. This effect is positive to the firm and prices it higher. When
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Figure 12: Expected net firm value vs. initial technical risk
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Figure 13: Date zero continuation value vs. initial technical risk
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Figure 14: Expected firm duration vs. initial technical risk

∆0 > 0, the firm does not carry the losses to the VC’s share due to increases in technical

risk. Nevertheless, the firm is slightly affected by the VC’s loss, due to the decrease in

the expected number of investment periods. However, we find that for our base numbers

this negative secondary effect is negligible compare to the positive effect of the enhanced

sensitivity and consequently the asymmetric case is also increasing in Figure 12.

In contrast to technical risk, experimenting for different values of systematic risk on the

basic numbers results in a consistent decreasing behavior. Figures 15 and 16 depict the net

firm value and the expected VC share for the basic numbers when varying s2. We find that

even when ∆0 > 0 the negative net effects due to the loss of learning and the increase in

risk costs are dominant.

The main conclusion of the two-period model with regards to the effect of risk on the

timing of implementation is that it depends on the sign of the expected within period flow of

future periods. The loss function we use is quadratic form and, therefore, increases quickly

which makes the deterministic part of the within period flow negative very quickly. We

therefore expect, in the spirit of the second part of Proposition 10, that E[τ ] will decrease
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Figure 15: Expected net firm value vs. market risk

with the systematic risk and increase with the initial technical risk. The complexity of

the T -period model in comparison to the two-period model is manifested in Figure 14

where we see that E[τ ] is initially decreasing with σ2
0 in contrast to the 2-period model

prediction. Notwithstanding, the T -period model results correspond very well to the two-

period predictions. We now examine how E[τ ] behaves in the presence of conflicting forces

such as when increasing s2 under symmetric or asymmetric information. In Figures 14 and

17 we present the expected project duration as a function of the initial technical risk and

the systematic risk, respectively, for the three market settings. We find a strong relationship

between project duration and the VC continuation value. Indeed, comparing Figure 14 with

Figure 13 reveals that the presence of strong conflicting forces allows for non-monotonic

behavior similar to the non-monotonic behavior measured for the continuation value.

5.4.2 Labor and Capital Substitution

The parameters α and β denote the returns to scale from capital and labor, respectively.

Keep in mind our numerical analysis focuses on firms with constant returns-to-scale, i.e.
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Figure 16: Date zero continuation value vs. market risk
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Figure 17: Expected firm duration vs. market risk
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α + β = 1. Therefore, a firm with high α will have a low β and therefore enjoys a high

output elasticity to capital but a low output elasticity to effort. In this case we call the firm

capital elastic. Conversely, a firm with low α is capital inelastic. The numerical analysis

examines how firms with different capital elasticity behave. We find that asymmetry and

agency effects and VC’s ability to exploit EN’s optimism are more pronounced for capital

inelastic industries.

Figure 18 shows how the expected net firm value, changes with capital elasticity. The

expected net firm value is described for asymmetric beliefs, symmetric beliefs and for the no

agency case. In all market settings firm value declines with capital elasticity. Interestingly,

we have that for sufficiently high capital elasticity firm value is almost equal for all three

market settings. We explain these phenomena by noticing that the increase in termination

value and the VC’s within period low consist of an element that is contingent on effort and

capital (cα
i ηβ

i and F ∗
i , respectively) and an independent contributor (µi−1 − li). When the

firm is capital inelastic, EN’s effort comes “cheap” since the ratio between the cost of effort

and the return from effort (γ/β) is low and therefore the EN is willing to invest more effort.

This extra effort has a significant positive effect on the firm’s performance due to the high

returns from labor. Increasing α increases the relative cost of effort γ/β and discourages

the EN and consequently the VC from activity in the firm. At some point, however, the

change in the size of the contingent component is negligible compared to the independent

contributor to the termination value and the within period flow. Since firm value and the

continuation value are very much tied to the increase in termination value and the within

period flow, respectively, we claim that the effects of elasticity are similar for firm value and

continuation value, too. We also note the strong relationship between project duration and

continuation value. Accordingly, for high capital elasticity firms, since firm’s performance

is almost unchanged by α, we find similar results for its net value, the expected time to

implementation and the initial continuation value. This result is illustrate in Figures 18 -

20. For high α the graphs are almost constant.

The reason why firm value is almost identical for the asymmetric beliefs, symmetric

beliefs and no agency cases for sufficiently high α is explained by the relative high cost
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of effort. Agency and asymmetry costs are negligible compared to the high cost of EN

effort. Nevertheless, as one can see from Figure 19, the VC will always be able to exploit

the EN’s optimism, because the EN is effectively willing to forgo some of the firm’s gains

and hand it over to the VC. Notice that when α = 0.2 the VC “harvests” almost all the

asymmetry. With symmetric beliefs the VC’s continuation value is slightly above 0.61,

whereas with asymmetric beliefs (∆0 = 0.5) the VC’s continuation value increases by 0.44,

which is almost 90% ∆0. However, when α = 0.8 the VC gains less than 30% of ∆0 as result

of the asymmetric information. The reason for this is that for low capital elastic firms the

EN does not need to share the risk with the VC, which is implied by the high equilibrium

EN contingent compensation (b∗i ) values. Therefore, the EN is highly exposed to losses due

to asymmetric beliefs, hence the ability of the VC to fully exploit the asymmetry. However,

when there is high capital elasticity, the EN requires more risk sharing, and is therefore more

protected from losses due to the asymmetric beliefs. Finally, we note that in the asymmetry

case project duration is longer than the other market settings for high capital elastic firms

(see Figure 20). This phenomenon is explained by the higher level of continuation value.
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Figure 18: Expected net firm value vs. capital elasticity
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Figure 20: Expected firm duration vs. capital elasticity
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CHAPTER VI

SHIFTING THE BARGAINING POWER

6.1 Introduction

In the previous chapters we assumed that the VC has the bargaining power in negotiations

with the EN. We now examine the scenario where the EN has the bargaining power. For

tractability, this model requires the additional assumption that the parties agree upfront on

the number of investment periods, T and no early termination is possible. As the EN has

all the bargaining power, the time horizon T is chosen such that the EN’s expected utility

is maximized. Through our analyses in the previous chapters and this one, we hope to shed

more light on the effects of bargaining power on investments, labor supply and equilibrium

contracts.

6.2 The Model

Our model is similar to the one described in Chapter 3. However, we now assume that the

VC market is competitive and the EN possesses all the bargaining power in any negotiation

with the VC. As in the basic model, the VC has linear inter-temporal preferences whereas the

EN is risk-averse with CARA preferences. Since the EN possesses all the bargaining power,

in contrast with the previous model, the EN offers the VC a long-term renegotiation-proof

contract at date zero, which describes the VC’s investments, the EN’s compensation, and the

termination time, T . The contract between the VC and the EN, the VC’s investment policy,

the EN’s effort policy and the termination time are derived endogenously in a subgame-

perfect equilibrium of the dynamic game between the VC and the EN.

As in the Basic Model, the project’s termination value, Vi, evolves as follows:

Vi − Vi−1 = ( cα
i ηβ

i − li ) + Θ + Si.. (86)
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The EN’s expected utility at date 0 is

−E

[
exp

{
− λ

(
V0) +

T∑

i=1

[ ai + bi(Vi − Vi−1)− kηγ
i ]

)} ]
. (87)

The conditions that we assumed on the parameters in the Basic Model are also assumed

to hold here. We now characterize the equilibrium.

6.3 Equilibrium

As before, we use backward induction to characterize the equilibrium. First consider the

last investment period i = T . Recall that the EN and VC priors on Θ as of date T−1 are

N(µj
T−1, σ

2
T−1) with µj

T−1 and σ2
T−1 given by (4) and (3), respectively, with the index i set to

T .

6.3.1 Optimal Contractual Parameters in Period T

Suppose that at the beginning of period T , i.e. (date T-1), the VC’s investment is c and the

EN’s contractual parameters are (a, b). If the EN exerts effort η in period T , his expected

utility, (87), is given by

−E

[
exp

{
− λ

T−1∑

t=1

(
at + bt∆Vt − kηγ

t

)
+

(
a + b∆VT − kηγ

)}]
(88)

At date T − 1, that is, the beginning of period T ,

∆VT = cαηβ − lT + Θ + ST ,

where, according to the EN, Θ + ST ∼ N(µEN
T−1, σ

2
T−1 + s2). Since past decisions and signal

realization are observed by all, the EN’s expected utility equals1

max
η

− exp
{
−λ

T−1∑

t=0

(
at+bt∆Vt−kηγ

t

)}
· exp

{
−λ

(
a+bE[∆VT ]−kηγ−1

2
b2pT−1

)}
, (89)

where, recall, pT−1 = λ(σ2
T−1 +s2). Accordingly, the EN chooses his effort level to maximize:

bcαηβ − kηγ (90)

and the optimal effort level is

η(b, c) =
(βcαb

γk

) β
γ−β

. (91)

1Recall that E[exp{−λX}] = exp{−λ(µ̂− λ
2
σ̂2)} if X ∼ N(µ̂, σ̂2).
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Competition between the VCs ensures that

a = −c + (1− b)(cαη(b, c)β − lT + µV C
T−1). (92)

Since the EN has all the bargaining power, the contractual parameters maximize the EN’s

expected continuation utility expressed in (88). Substituting (92) in (89) and taking expec-

tations, the optimal contractual parameters in period T solve

max
b,c

− exp
{
−λ

(
−c+(cαη(b, c)β−lT +µV C

T−1)+b∆T−1]−kη(b, c)γ− 1
2
b2pT−1

)}
. (93)

where recall ∆T−1 := µEN
T−1−µV C

T−1. Substituting the optimal effort (91) into (93) and consid-

ering only the relevant expressions, the (93) simplifies to

max
b,c

∆T−1b− 1
2
pT−1b

2 + φ(b)cα γ
γ−β − c , (94)

where

φ(b) :=
(1

k

) β
γ−β

((βb

γ

) β
γ−β

(
1− βb

γ

))
. (95)

The problem (95) is, in fact, identical to problem (18). Since the assumptions on the

parameters used for the Basic Model still apply, we can use the results from the Basic

Model to deduce that the optimal investment as a function of the contingent compensation

is given by

c(b) := K̂φ(b)
γ−β

(1−α)γ−β (96)

where

K̂ :=
( αγ

γ − β

) γ−β
(1−α)γ−β

> 0.

Hence, (95) can be expressed as

max
b

GT (b) := ∆T−1b− 1
2
pT−1b

2 + Kc(b) (97)

where

K :=
(1− α)γ − β

αγ
> 0.

By the arguments used in the analysis of the Basic Model, Theorem 1 characterizes the

optimal risky compensation, b∗T , the optimal investment, c∗T , and the optimal effort, η∗T .
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6.3.2 The inductive step

We note that b∗T , the solution to (97), is independent of past decisions. This observation

is critical to the analysis of the inductive step (i < T ). We will show going backwards

that each period’s decisions are independent of past decisions. Hence, in the inductive step

we need not consider how the current decisions (b, c, η) affect future decisions, (bt, ct, ηt),

t > i. Further, since at each future date competition between VC’s ensures they receive

zero return, they consider only the current period’s returns. Now, assume we are at the

beginning of period i < T . Suppose the VC investment is c and the EN’s contractual

parameters are (a, b). If the EN exerts effort η in period i, the relevant part of his expected

utility at the terminal date, (87), is given by

E

[
exp

{
− λ

[(
a + b∆Vi − kηγ

)
+

T∑

t=i+1

(
a(b∗t , c

∗
t ) + b∗t ∆Vt − kη∗t

γ
)]}∣∣∣∣Gi−1

]
(98)

as we need not consider past periods. Since ∆Vi = cαηβ−li+Θ+Si, the EN’s effort problem

is identical to the T period problem and the optimal effort is given by (91). Competition

between VC’s ensure

a(b, c) = −c + (1− b)(cαη(b, c)β − li + µV C
i−1), (99)

which by the induction assumption is true for all i > t. Therefore, we rewrite (98) as

E

[
exp

{
− λ

(
− c + (1− b)(cαη(b, c)β − li + µV C

i−1) + b∆Vi − kη(b, c)γ+

+
T∑

t=i+1

(
− c∗t + (1− b∗t )(c

∗
t
αη∗t

β − lt + µV C
t−1) + b∗t ∆Vt − kη∗t

γ
) )}∣∣∣∣Gi−1

]
. (100)

At date i − 1, the VC’s future assessment of Θ, µV C
t−1, t > i, is a random variable. By (2)

and (4) it may be expressed as

µV C
t−1 =

s2µV C
i−1 + σ2

i−1

(
(t− i)Θ +

t−1∑
j=i

Sj

)

s2 + (t− i)σ2
i−1

. (101)

As the EN has the bargaining power and chooses the contract, the parameters b, c maximize

the EN relevant utility. Keep in mind, by the induction assumption, future optimal decisions
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(b∗t , c∗t , η∗t , t > i) are independent of b and c. Their only possible influence on the optimal

choices of b, c may be through the risk. To avoid burdening the reader, in each of the

following derivations we remove any expression that is irrelevant to the EN’s maximization

problem. Substituting ∆Vi, (86), and µV C
t−1 in the relevant expected utility (100), the EN’s

objective is to maximize

E

[
exp

{
− λ

(
φ(b)cα γ

γ−β − c− bµV C
i−1 + b(Θ + Si)+

+
T∑

t=i+1

(
(1− b∗t )

σ2
i−1

(
(t− i)Θ +

t−1∑
j=i

Sj

)

s2 + (t− i)σ2
i−1

+ b∗t (Θ + St)
) )}∣∣∣∣Gi−1

]
. (102)

To compute the relevant expectation of (102) we point out that (102) is in the form of

E
[
exp{−λ( Zi )}|Gi−1

]
(103)

where Zi is the sum of normal variables and hence, normally distributed. Recall, for nor-

mally distributed X, E[exp{λX}] = expλ(E[X]−1
2
V ar[X]), and therefore to proceed we need

to find the relevant mean and the relevant variance of Zi. The relevant mean of Zi is given

by

E
[
Zi|Gi−1

]
= E

[
φ(b)cα γ

γ−β −c−bµV C
i−1 +b(Θ+Si)

∣∣Gi−1

]
= φ(b)cα γ

γ−β −c+b∆i−1 (104)

because the VC is aware of the EN’s beliefs and so E[Θ|Gi−1] = µEN
i−1 . Notice now that

only Θ and Si are contained in risky expressions in Zi that also contain b or c. Therefore,

in computing the relevant variance of Zi we need only consider the variance of the risky

components Θ and Si (but not Sj , j > i). The relevant risky component of Zi is therefore

given by

Θ
[
b +

T∑

t=i+1

((1− b∗t )σ2
i−1(t− i)

s2 + (t− i)σ2
i−1

+ b∗t
)]

+ Si

[
b +

T∑

t=i+1

(1− b∗t )σ2
i−1

s2 + (t− i)σ2
i−1

]
. (105)

Its variance is given by

σ2
i−1

(
b +

T∑

t=i+1

((1− b∗t )σ2
i−1(t− i)

s2 + (t− i)σ2
i−1

+ b∗t
))2

+ s2

(
b +

T∑

t=i+1

(1− b∗t )σ2
i−1

s2 + (t− i)σ2
i−1

)2

, (106)
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which is equal to (after eliminating irrelevant expressions)

(σ2
i−1+s2)b2+2b

(
σ2

i−1

T∑

t=i+1

((1−b∗t )σ2
i−1(t−i)

s2+(t−i)σ2
i−1

+b∗t
)
+s2

T∑

t=i+1

(1−b∗t )σ2
i−1

s2+(t−i)σ2
i−1

)
(107)

= (σ2
i−1+s2)b2+2bσ2

i−1

T∑

t=i+1

((1−b∗t )σ2
i−1(t−i) + (1−b∗t )s2

s2+(t−i)σ2
i−1

+b∗t
)

(108)

= (σ2
i−1 + s2)b2 + 2bσ2

i−1(T − i). (109)

The relevant price of risk at date i− 1 is given by

λ
(1

2
pi−1b

2 + bσ2
i−1(T − i)

)
=

λ

2
pi−1b

2 + λσ2
i−1(T − i)b (110)

and includes the immediate period’s cost of risk and the future cost that depends linearly

on the number of periods left. Considering (102), the relevant price of risk and since, the

EN’s optimal contract problem may be expressed as

max
b,c

{
− c + φ(b)cα γ

γ−β +
(
∆i−1 − λ(T − i)σ2

i−1

)
b− λ

2
pi−1b

2
}

. (111)

The optimal investment is identical to the T period and is given by (96). Accordingly,

the EN’s maximization problem at the beginning of period i is

max
b

Gi(b) := (∆i−1 − λσ2
i−1(T − i))b− 1

2
pi−1b

2 + Kc(b) , (112)

Recall, bM ∈ (1, γ
β ) is the point where c′′(b) = 0 (Proposition 1). The following proposition

ensures the solution to the EN’s maximization problem exists and is unique.

Proposition 11

Under Assumptions 1-3, each Gi(·) is strictly concave and hence strongly unimodal on

[0, bM ], and the solution to (112) is positive and less than bM .

The proof of Proposition 11 is identical to Proposition 3, hence omitted. Since the

EN’s maximization problem (112) is independent of past decisions, we can extend the

above arguments by backward induction to any period i and thereby derive the unique

equilibrium, as characterized in the following theorem.

Theorem 6 (Characterization of Equilibrium)

Under Assumptions 1 - 3 the equilibrium contract offered by the EN and his effort in period

i, 1 ≤ i ≤ T is characterized, as follows:
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• The risky compensation is b∗i , the unique solution to (112);

• The investment is c∗i := c(b∗i ) defined in (96);

• The fixed compensation is a∗i := a(b∗i , c
∗
i ) defined in (99);

• The optimal effort level is η∗i := η(b∗i , c
∗
i ) defined in (91).

6.4 Analysis and Discussion

We now examine the effect of the shift in bargaining power on the EN’s risky compensation

parameters, the VC’s investments, and the EN’s effort (b∗i , c
∗
i , η

∗
i ). When the EN is risk-

neutral (λ = 0) or when there is perfect information (σ2
0 = 0,∆0 = 0), the EN’s objective

function, G(·) is identical to F (·), the VC’s objective function in the Basic Model. Hence,

the optimal solution is independent of who has the bargaining power.

Proposition 12

The deterministic path trajectories when the EN is risk neutral or when there is perfect

information are unaffected by whether the EN or the VC has the bargaining power.

The following theorem shows that the allocation of bargaining power does matter when

the EN is risk averse (λ > 0) and there is imperfect information.

Theorem 7 (Decreasing Contingent Compensation)

Suppose the EN is risk averse.

(i) Switching the bargaining power from the VC to the EN decreases the EN’s risky

compensation parameters (b∗i ) trajectory at all dates except the last for which the

contingent compensation is equal for both models.

(ii) If the EN is reasonably optimistic (∆0 ≤ p0) then switching the bargaining power from

the VC to the EN decreases the optimal investment (c∗i ) and effort (η∗i ) trajectories

at all dates except the last for which investment and effort are equal for both models.

If the risk averse EN has the bargaining power, then the efficiency of risk-sharing is reduced

so that the EN’s risky compensation path, his effort, and the VC’s investments are all

lowered.
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Recall b∗p is the solution in the perfect information case and that b∗p < 1 (Section 3.4.2).

For the Basic Model, Theorem 2 divides the value of ∆0 into three distinct regions. In

the first region, (∆0 ∈ [0, λσ2
i−1b

∗
p) ), the EN’s compensation path is increasing. In the

second region, (∆0 = λσ2
i−1b

∗
p), the EN’s compensation path is constant and in the third

region, (∆0 > λσ2
i−1b

∗
p), the compensation path is decreasing. In the first and second region

investment and effort behave analogously to the EN’s compensation path. We now show

that the region of ∆0 for which the deterministic trajectories are increasing strictly contains

the corresponding region when the EN has bargaining power:

Theorem 8 (Increasing Trajectory Region)

If ∆0 ≤ λ(1 + bp)σ2
0 then the EN’s contingent compensation trajectory is increasing. If, in

addition, ∆0 ≤ λ(Tσ2
0 +s2) then the trajectories of investment and effort are also increasing.

The region of ∆0 for which investment, contingent compensation and effort are increasing

is considerably larger when the EN has bargaining power than when the VC has bargaining

power. This implies that the asymmetry in beliefs effects are much weaker when the EN

has bargaining power. In the Basic Model when ∆0 = λσ2
i−1b

∗
p the simultaneous resolution

of asymmetry and technical risk results in a constant risk sharing over time. This result is

not replicated when the EN has bargaining power. Now, the effects of asymmetry are much

weaker and consequently the resolution of risk is the dominant force. Consequently, even

for relatively high levels of asymmetry we will see an increasing trajectory of contingent

compensation as the EN is assuming more and more risk in response to the decrease in

technical risk.

We now turn to consider parametric effects on the deterministic path:

Theorem 9 (Comparative Statics)

If ∆0 ≤ λ(Tσ2
0 + s2) then in any period the EN’s risky compensation, the EN’s effort and

the VC’s investment are increasing in the initial asymmetry in beliefs, ∆0, and decreasing

in the risk averseness, λ, the initial technical risk, σ2
0, the systematic risk, s2, and the effort

parameter, k.
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By comparing Theorem 9 to the sensitivity of equilibrium theorems in the Basic Model

(Section 3.5) we find that the sensitivity results that were limited to the “reasonably opti-

mistic” region (i.e. ∆0 < λ(σ2
0 + s2)) are now valid for a larger region. When the EN is in

charge, the effects of asymmetric beliefs are strongly mitigated in the early periods because

of the relatively high magnitude of the forces of the risk averseness. Consequently, for the

EN to be considered overtly optimistic his asymmetry needs to surpass a higher threshold

than in the Basic Model.

6.5 Proofs

Proof of Theorem 7: The derivative of the EN’s maximization problem, (112), is

G′
i(b) := (∆i−1 − λσ2

i−1(T − i))− pi−1b + Kc′(b) , (113)

Let bX
i denote the contingent compensation at period i when X ∈ {V C, EN} has

bargaining power. By definition, F ′
i (b

V C
i ) = 0 and observe that G′

i(b) = F ′
i (b)−(T−i)λσ2

i−1b.

Hence, G′
i(b

V C
i ) = −(T−i)λσ2

i−1b
V C
i . Unimodality of G(b) implies that bEN

i < bV C
i for any

i < T and bEN
T = bV C

T , which establishes part (i). When ∆0 ≤ p0, by Proposition 2

bEN
i < bV C

i ≤ 1 for any i < T and bEN
T = bV C

T ≤ 1. Part (ii) now follows from the fact that

c(b) is strictly increasing on [0, 1) and that η(b, c) is increasing.

Proof of Theorem 8: Let x := ∆0

λσ2
0
. The derivative to the EN’s maximization problem,

(113), can be rewritten

G′
i(b) := σ2

i−1λ(x− (T − i)− b) −λs2b + Kc′(b)︸ ︷︷ ︸
F ′(b)

. (114)

Notice that by Proposition 11 Gi(b) and consequently, F (b) are strictly unimodal for all i.

We start by proving the first statement of the theorem when ∆0 ≤ λb∗pσ2
0, i.e. 0 ≤ x ≤ b∗p.

In Step 2 we prove for b∗p < x ≤ 1 + b∗p. In Step 3 we complete the proof for the second

statement.

Step 1: Suppose 0 ≤ x ≤ b∗p, Let i ∈ (2, ...T ) and let b∗i denote the optimal solution

in date i. By Theorem 2, when x ≤ b∗p the optimal solution when VC has bargaining

power lies below or equal to b∗p for all i and as a consequence of Theorem 7 we have that
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b∗i ≤ b∗p. Hence, by unimodality, F ′(b∗i ) ≥ 0. By definition, G′
i(b

∗
i ) = 0 and therefore

σ2
i−1λ(x− (T − i)− b∗i ) = −F ′(b∗i ) ≤ 0. Consider the EN’s problem at period i− 1:

G′
i−1(b

∗
i ) = σ2

i−2λ(x− (T − i + 1)− b∗i ) + F ′(b∗i ) (115)

= (σ2
i−2 − σ2

i−1)︸ ︷︷ ︸
positive

λ(x− (T − i)− b∗i )︸ ︷︷ ︸
nonpositive

−σ2
i−2λ < 0. (116)

By unimodality, b∗i−1 < b∗i .

Step 2: Suppose b∗p < x ≤ 1 + b∗p. We start by establishing that the optimal solution at

period T maintains x − b∗T ≤ 1. At period T , GT (·) ≡ FT (·) and so by Theorem 2 we

have b∗T > b∗p and by unimodality, F ′(b∗T ) < 0. By definition, G′
T (b∗T ) = 0 and therefore

σ2
T−1λ(x − b∗T ) = −F ′(b∗i ) > 0 and consequently, x > bT ∗. Since x ≤ 1 + b∗p we have that

x− b∗T ≤ 1 since b∗T > b∗p. Let i ∈ (2, ...T ) and let b∗i denote the optimal solution in date i.

Consider the EN’s problem in period i− 1:

G′
i−1(b

∗
i ) = σ2

i−2λ(x− (T − i + 1)− b∗i )− F ′(b∗i ) (117)

= (σ2
i−2 − σ2

i−1)︸ ︷︷ ︸
less than σ2

i−2

λ (x− (T − i)− b∗i )︸ ︷︷ ︸
less than 1

−σ2
i−2λ < 0. (118)

By unimodality, bi−1 < b∗i .

Step 3: By (5) and (3), (and algebraic manipulation), ∆0 ≤ λ(Tσ0 + s2) implies ∆T−1 ≤
λ(σ2

T−1 + s2). Similarly to Proposition 2 we have that b∗T ≤ 1. Since, x < 1 + b∗p we have

from the previous steps of the proof that the optimal b are increasing over time and hence,

b∗i ≤ 1 for all i = 1...T . The rest of the proof follows immediately from the fact that c(b) is

strictly increasing on (0, 1) and η(b, c) is increasing.

Proof of Theorem 9: We begin by noting that for all i = 1, ..T , by Proposition 11 Gi(·)
is strictly unimodal on [0, bM ] and therefore Lemma 1 and its proof apply to Gi(·). Since

∆0 < λ(Tσ0 + s2), similarly to Step 3 of the proof of Theorem 8 we have that b∗i < 1 and

therefore c′(b∗i ) > 0 for any period i. The rest of the proof is an immediate application of

Lemma 1.

111



CHAPTER VII

NON-OBSERVABLE EFFORT

7.1 Introduction

In the previous chapters we assumed that the EN’s effort choices are observable (but non-

contractible). In this chapter we relax this assumption and examine the scenario where

effort is unobservable. As in Chapter 6, we assume

• The VC market is competitive and the EN enjoys all the bargaining power.

• The timing of termination, T , is decided upfront at date zero.

The basic model is as described in Chapter 6, but we now assume that the EN’s effort

cannot be observed by the VC. The EN’s assessment of project quality is still given by (3)

and (4). However, the VC’s learning now depends on his conjectures about the EN’s effort

in past periods. Specifically, if at the beginning of period i the VC conjectures the EN’s past

effort choices are (η̂1, ..., η̂i−1) then her posterior distribution on Θ is N(µV C
i , σ2

i ), where

µV C
i = µV C

i (η̂1, ..., η̂i−1) =
s2µV C

0 + σ2
0

i−1∑
t=1

(
∆Vt − cα

t η̂β
t + lt

)

s2 + (i−1)σ2
0

. (119)

The EN’s information at any date is identical to the previous models. However, the VC’s

information set is now changed to exclude knowledge of the previous effort choices of the

EN. We denote the EN and the VC’s information set the beginning of date i by GEN
i−1 and

GV C
i−1 , respectively. Clearly, GV C

i ⊂ GEN
i .

The dynamics of the equilibrium are similar to the Shift of Power Model with the

exception that the EN and the VC have different information sets. Specifically, we assume

that for any contract offer the EN responds in effort levels that take into account the fact

the VC cannot observe the true effort but instead may conjecture them. Generally, the EN’s

effort may depend on the contract offer and the VC’s conjectures. That is, η = η(a, b, c, η̂).
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The VC, on the other hand, must provide the EN with the most appealing contract. The

VC, however, is aware of the EN’s effort best response and therefore his conjecture with

regard to the effort also depends on his choice of contract, i.e. η̂ = η̂(a, b, c). In equilibrium,

the VC conjectures correctly and matches his conjecture to the EN’s effort function (i.e.

η̂(a, b, c) = η(a, b, c, η̂(a, b, c)))1. This equilibrium conjecture is used by the VC in order

to maximize the EN’s utility. To simplify the exposition of the equilibrium, we begin by

developing the solution for a two-period model.

7.2 Two-Period Model

As usual, we use backward induction to derive the equilibrium. For given contractual

parameters (b, c) the EN’s utility for a choice of effort level η in the second period is

− exp
{− λ(a1 + b1∆V1 − kη2

1)
} · E

[
exp

{− λ(a + b∆V2 − kηγ)
}|GEN

1

]
, (120)

where a1, b1, c1 and η1 are the first period decisions. Since ∆V2 = cαηβ − l2 + Θ + S2, the

EN’s optimal choice of effort problem is

max
η
−E

[
exp

{− λ(a + b(cαηβ − l2 + Θ + S2)− kηγ)
}|GEN

1

]
. (121)

The EN’s optimal choice of effort is

η(b, c) =
(βcαb

γk

) β
γ−β

. (122)

Competition among VCs ensures that the VC’s offer guarantees her zero expected return.

−c + (1− b)E[∆V2|GV C
1 ]− a = 0 , (123)

which implies:

a = −c + (1− b)(cαη(b, c)γ + E[Θ|GV C
1 ]− l2) . (124)

At date 1, the VC’s assessment of Θ, E[Θ|GV C
1 ], depends on his conjecture about the EN’s

first period’s effort. By (119)

E[Θ|GV C
1 ] = µV C

1 (η̂1) =
s2µV C

0 + σ2
0(∆V1 − cα

1 η̂1 + l1)
s2 + σ2

0

. (125)

1In fact, we will show that η = η(a, b, c) and therefore the equilibrium condition about the conjecture
is trivially set as η̂(a, b, c) = η(a, b, c). Since the EN’s actions are independent of the conjectures, the
conjectures need not be common knowledge.
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Therefore,

a = a(b, c) := −c + (1− b)
(
cαη(b, c)γ − l2 + µV C

1 (η̂1)
)

. (126)

Substituting a(b, c) in the EN’s utility, (121), where now we consider the VC’s information

set, we have the optimal contract must solve

max
b,c

−E

[
exp

{
−λ

[
−c+(1−b)(cαη(b, c)β−l2+µV C

1 (η̂1))

+b(cαη(b, c)β−l2+Θ+S2)−kη(b, c)γ
]}∣∣∣GV C

1

]
. (127)

Since the VC’s objective is to maximize the EN’s utility he must consider the EN’s beliefs

about the project’s quality. The VC’s conjectures about past investment are consistent with

(125) and so, in (127), E[Θ|GV C
1 ] is given by

E[Θ|GV C
1 ] = µEN

1 (η̂1) =
s2µEN

0 + σ2
0(∆V1 − cα

1 η̂1 + l1)
s2 + σ2

0

. (128)

Notice that the asymmetry in beliefs under the VC’s information set GV C
1 satisfies

µEN
1 (η̂1)− µV C

1 (η̂1) = ∆1 , (129)

where ∆1 is defined in (5). Taking the expectation of (127) and removing irrelevant expres-

sions, the optimal contract must solve

max
b,c

− exp
{
− λ

[
− c + cαη(b, c)β + b∆1 − kη(b, c)γ − λ

2
(σ2

1 + s2)b2
]}

, (130)

where, in the above, we substitute E[Θ|GV C
1 ]−µV C

1 (η̂1) according to (129). The rest of the

derivation is identical to the Basic Model and, accordingly, the optimal investment is

c(b) := K̂φ(b)
γ−β

(1−α)γ−β (131)

and the optimal choices of contractual parameters solve

max
b

∆1b− 1
2
p1b

2 + Kc(b) , (132)

where K and K̂ are positive constants. We denote the optimal solution in the second

period by b∗2 and the corresponding optimal risk free compensation, investment and effort
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by a∗2 := a(b∗2, c
∗
2), c∗2 := c(b∗2) and η∗2 := η(b∗2, c

∗
2), respectively. We also note the second

period optimal solution is independent of first period decisions.

In the first period, for contract (a, b), investment c and effort level η, the EN’s expected

utility is given by

−E

[
exp

{
− λ

(
a + b∆V1 − kη2 + a∗2 + b∗2∆V2 − kη∗2

γ
)}∣∣∣GEN

0

]
. (133)

Substituting a∗2 according to (126) and ∆Vi, i = 1, 2, according to (86), the EN’s expected

utility is given by

− E

[
exp

{
− λ

(
(a + b(Θ + cαηβ + S1 − l1)− kηγ)

− c∗2 + (1− b∗2)(c
∗
2
αη∗2

β + µV C
1 (η̂1)− l2) + b∗2(Θ + c∗2

αη∗2
β + S2 − l2)− kη∗2

γ

)}∣∣∣GEN
0

]
.

(134)

Substituting µV C
1 (η̂1) according to (125), respectively, we have the EN’s choice of effort

problem

max
η

−E

[
exp

{
− λ

(
a + b(Θ + cαηβ + S1 − l1)− kηγ

− c∗2 + (1− b∗2)(c
∗
2
αη∗2

β +
s2µV C

0 + σ2
0(Θ + cαηβ + S1 − cαη̂β

1 )
s2 + σ2

0

− l2)

+ b∗2(Θ + c∗2
αη∗2

β + S2 − l2)− kη∗2
γ

)} ∣∣∣ GEN
0

]
. (135)

Removing irrelevant terms, the EN’s effort problem is

max
η

bcαηβ − kηγ + (1− b∗2)
σ2

0

s2 + σ2
0

cαηβ (136)

and the optimal effort

η(b, c) =
(βcαB1(b)

γk

) β
γ−β

, (137)

where

B1(b) := b + (1− b∗2)
σ2

0

s2 + σ2
0

. (138)

By the above analysis, given the VC’s conjecture of the EN’s effort η̂1, η(b, c) is the

EN’s best response. In particular, the EN’s best response is independent of the market’s
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conjecture. The VC’s contract offer anticipates the EN’s best response and therefore the

VC’s conjecture about the EN’s effort depends on b and c as well. In equilibrium, the

VC’s conjecture equals the EN’s best response. Since, however, the EN’s best response is

independent of the VC’s conjecture we trivially set

η̂1 = η(b, c). (139)

Competition among the VC’s guarantees the contract satisfies

−c + (1− b)E[∆V1|GV C
0 ]− a = 0 (140)

and therefore

a(b, c) = −c + (1− b)(cαη(b, c)β + µV C
0 − l1). (141)

The contract maximizes the EN’s expected utility (135). After substituting a(b, c) into

(135), the EN’s utility equals

−E

[
exp

{
− λ

(
−c+(1−b)(cαη(b, c)β+µV C

0 −l1)+b(Θ+cαη(b, c)β+S1−l1)−kη(b, c)γ +

− c∗2 + (1− b∗2)(c
∗
2
αη∗2

β +
s2µV C

0 + σ2
0(Θ + cαη(b, c)β + S1 − cαη̂β

1 )
s2 + σ2

0

− l2)

+ b∗2(Θ + c∗2
αη∗2

β + S2 − l2)− kη∗2
γ

)} ∣∣∣ GV C
0

]
. (142)

Applying (139) and removing (some) irrelevant terms the optimal contractual parameters

solve

− E

[
exp

{
− λ

(
−c+cαη(b, c)β+µV C

0 +b(Θ+S1−µV C
0 )−kη(b, c)γ +

+ (1− b∗2)
σ2

0(Θ + S1)
s2 + σ2

0

+ b∗2(Θ + S2)
)} ∣∣∣ GV C

0

]
. (143)

We denote the exponent term in (143) by λZ and note that since Z is the sum of normal

variables it is normally distributed, too. To compute the relevant expectation of the VC’s

maximization problem we need to consider the relevant parts of E[Z|GV C
0 ] and V ar[Z|GV C

0 ].

Since the VC is maximizing the EN’s expectation, E[Θ|GV C
0 ] = µEN

0 and the relevant

components of E[Z|GV C
0 ] that affect the decision variables b and c are

−c+cαη(b, c)β+µV C
0 +b(E[Θ|GV C

0 ]−µV C
0 )−kη(b, c)γ

= φ(B1(b))c
α γ

γ−β − c + ∆0b, (144)
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where we obtain (144) by substituting optimal effort according to (137) similarly to the

analysis in the Basic Model. The relevant risky components are those that multiply current

period’s decisions, in this case Θ and S1. Accordingly, the relevant variance of Z is

(
b + (1− b∗2)

σ2
0

s2 + σ2
0︸ ︷︷ ︸

B1(b)

+b∗2
)2
· V ar[Θ|GV C

0 ]︸ ︷︷ ︸
σ2
0

+
(

b + (1− b∗2)
σ2

0

s2 + σ2
0︸ ︷︷ ︸

B1(b)

)2
· V ar[S1|GV C

0 ]︸ ︷︷ ︸
s2

and so the relevant cost of risk is given by

λ

2

(
(B1(b) + b∗2)

2(s2 + σ2
0)− 2B1(b)b∗2s

2
)
. (145)

Therefore, the contract problem is

max
b,c

φ(B1(b))c
α γ

γ−β − c + ∆0b− λ

2

(
(B1(b) + b∗2)

2(s2 + σ2
0)− 2B1(b)b∗2s

2
)
. (146)

The optimal investment is c(B1(b)) where c(·) is given by (131). Since B1(b) is of the form

B1(b) = b + Constant,

we can

• replace the term ∆0b in (146) with ∆0B1 and

• maximize over B1 := B1(b) instead of b.

We therefore rewrite the optimal contract problem as

max
B1

Kc(B1) + ∆0B1 − λ

2

(
(B1 + b∗2)

2(s2 + σ2
0)− 2B1b

∗
2s

2
)
. (147)

where K is a positive constant. Rearranging, and removing irrelevant terms, the optimal

contract problem is

max
B1

Kc(B1) + ∆0B1 − λ

2
B2

1(s2 + σ2
0) + B1(∆0 − λb∗2σ

2
0). (148)

The optimal solution satisfies 0 < B∗
1 < b∗2 (we prove this for the T -period model). If

we assume the EN is realistically optimistic (∆0 < p0) then 0 < b∗2 < 1.2 Therefore, the

optimal first period contingent compensation, b∗1 = B∗
1−(1−b∗2)

σ2
0

s2+σ2
0

satisfies b∗1 < B∗
1 < b∗2

and may be negative.

2Recall results from the Basic Model and, in particular, Proposition 2.
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7.3 T-period Model

We use backward induction to characterize the equilibrium contract. As in the two-period

model, we show the decisions in each period are independent of the past. In addition,

competition in the VC market ensures that, in each period, the VC’s expected return

equals zero. We formalize the induction assumptions at the beginning of period i. Suppose

the EN’s contractual terms in period i are a, b, c and the EN’s effort is η. Let (a∗t , b∗t , c∗t , η∗t )

denote the optimal decisions in future periods, t, T ≥ t > i.

1. Future decisions are independent of the current decision. That is, (b∗t , c∗t , η∗t ) are

independent of (b, c, η), T ≥ t > i.

2. The VC’s expected return in each future period is zero, that is,

a∗t := at(b∗t , c
∗
t ) = −c∗t + (1− b∗t )E[∆Vt|GV C

t−1 ], T ≥ t > i. (149)

3. The optimal effort, η∗t := η(B∗
t , c∗t ), and the optimal investment, c∗t := c(B∗

t ), T ≥ t > i

where η(·, ·) and c(·) are given by (131) and (137), respectively, and where

B∗
t = b∗t +

T∑

j=t+1

(1− b∗j )
σ2

0

s2 + (j − 1)σ2
0

. (150)

We now describe the optimal contractual parameters in period i, 1 ≤ i ≤ T . Suppose

that at the beginning of date i the EN’s contractual parameters are (a, b) and the VC’s

investment is c. For an effort level, η, the relevant part of the EN’s expected utility is

−E

[
exp

{
− λ

[(
a + b∆Vi − kηγ

)
+

T∑

t=i+1

(
at(b∗t , c

∗
t ) + b∗t ∆Vt − kη∗t

γ
)]}∣∣∣∣GEN

i−1

]
. (151)

The fixed portion of the EN’s compensation at(b∗t , c∗t ), depends on the VC’s conjectures

about the EN’s prior effort choices. Specifically, suppose that the VC’s conjectures about

past EN effort are (η̂1, ..., η̂t−1). Then

E[Θ|GV C
t−1 ] = µV C

t−1 (η̂1, ..., η̂t−1) :=

s2µV C
0 + σ2

0

t−1∑
j=1

(
∆Vj − c∗j

αη̂∗βj + lj
)

s2 + (t− 1)σ2
0

. (152)
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Substituting at(b∗t , c∗t ), t > i and ∆Vt, t ≥ i, according to (149) and (86), respectively, and

considering (152), the EN’s (relevant) expected utility (151) is

− E

[
exp

{
− λ

[
a + b(Θ + Si + cαηβ − li)− kηγ+

+
T∑

t=i+1

(
− c∗t + (1− b∗t )

(
c∗t

αη∗t
γ − lt + µV C

t−1 (η̂1, ..., η̂t−1)
)
+

+ b∗t
(
c∗t

αη∗t
γ − lt + Θ + St)− kη∗t

γ

)]}∣∣∣∣∣G
EN
i−1

]
. (153)

Keep in mind at the beginning of period i, for t > i, (152) can be rewritten

µV C
t−1 (η̂1, ..., η̂t−1) =

s2µV C
0 +σ2

0

(
Θ+Si+cαηβ−cαη̂β

i +
t−1∑

j=1,j 6=i

(
∆Vj−c∗j

αη̂β
j +lj

))

s2+(t−1)σ2
0

. (154)

and the only relevant component of µV C
t−1 (η̂1, ..., η̂t−1) to the EN’s effort problem is the one

containing the current period’s effort, η. We disregard irrelevant terms and rewrite the

EN’s effort problem, (153)

max
η

bcαηβ − kηγ +
T∑

t=i+1

(1− b∗t )
σ2

0c
αηβ

s2 + (t− 1)σ2
0

. (155)

The optimal effort at date i is therefore given by

η(Bi, c) =
(βcαBi

γk

) β
γ−β

, (156)

where

Bi = b +
T∑

t=i+1

(1− b∗t )
σ2

0

s2 + (t− 1)σ2
0

. (157)

Notice that the EN’s optimal effort choice does not depend on the VC’s conjectures of her

prior effort choices. The VC is aware the EN’s best effort response in each period t ≥ i

depends on the tth period contract offer (at, bt, ct). Therefore, his current and future conjec-

tures (η̂i, ..., η̂T−1) depend on the contract offer. Since, however, by (156) and the inductive

assumption, the EN’s effort does not depend on the VC’s conjectures, in equilibrium, the

VC’s anticipation of the EN’s effort in the current and future periods is correct and satisfies

(
η̂i(b, c), η̂i+1(bi+1, ci+1), ..., η̂T−1(bT−1, cT−1)

)
=

(
η(b, c), η∗i+1, ..., η

∗
T−1

)
. (158)
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Due to perfect competition among VCs, (149) holds true for the current period as well.

Hence,

a(b, c) = −c + (1− b)(cαη(b, c)β + µV C
i−1 (η̂1, ..., η̂i−1)− li). (159)

The optimal contract maximizes the EN’s expected utility. We substitute a according to

(159) in the EN’s expected utility, (153), and remove irrelevant expressions. The contractual

parameters, (b, c), therefore, maximize

− E

[
exp

{
− λ

[
− c + cαη(b, c)β + b

(
Θ + Si − µV C

i−1 (η̂1, ..., η̂i−1)
)− kη(b, c)γ+

+
T∑

t=i+1

(
(1− b∗t )µ

V C
t−1 (η̂1, ..., η̂t−1) + b∗t

(
Θ + St)

)]}∣∣∣∣∣G
V C
i−1

]
. (160)

Substituting η(b, c) and µV C
t−1 (η̂1, ..., η̂t−1) according to (156) and (152), respectively, and

considering the effort equilibrium, (158), the parameters (b, c) to maximize (again, removing

irrelevant expressions)

− E

[
exp

{
− λ

[
φ(Bi)c

α γ
γ−β − c + b

(
Θ + Si − µV C

i−1 (η̂1, ..., η̂i−1)
)
+

+
T∑

t=i+1

(
(1− b∗t )

σ2
0

(
Θ+Si+

t−1∑
j=i+1

(
Θ+Sj

))

s2+(t−1)σ2
0

+ b∗t
(
Θ + St)

)]}∣∣∣∣∣G
V C
i−1

]
. (161)

In what follows, it is more convenient to express the optimal contract problem in terms of

Bi rather than directly b. To compute the expectation of (161) we need to find the relevant

mean and the relevant variance. Since the VC is maximizing the EN’s utility according to

the EN’s beliefs,

E[Θ|GV C
i−1] = µV C

i−1 (η̂1, ..., η̂i−1) :=

s2µV C
0 + σ2

0

i−1∑
j=1

(
∆Vj − c∗j

αη̂∗βj + lj
)

s2 + (i− 1)σ2
0

.

Therefore, by (152),

E
[

Θ− µV C
i−1 (η̂1, ..., η̂i−1)

∣∣ GV C
i−1

]
= ∆i−1. (162)

The relevant risky components of (161) are the risky components that are in expressions

containing b or c. Therefore, the only relevant risky components are Θ and Si (but not Sj
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for j > i). The relevant risk is therefore

Θ
[
b +

T∑

t=i+1

((1− b∗t )(t− i)σ2
0

s2 + (t− 1)σ2
0

+ b∗t
)]

+ Si

[
b +

T∑

t=i+1

(1− b∗t )σ2
0

s2 + (t− 1)σ2
0

]
(163)

= Θ
(

Bi +
T∑

t=i+1

B∗
t

)
+ SiBi, (164)

where B∗
t is given by (150) for the optimal level at date t. We show the derivation of (164)

in the proofs. The corresponding variance is

σ2
i−1

(
Bi +

T∑

t=i+1

B∗
t

)2

+ s2B2
i , (165)

equal to (eliminating irrelevant expressions)

(s2 + σ2
i−1)B

2
i + 2σ2

i−1Bi

T∑

t=i+1

B∗
t . (166)

Evaluating the expectation of (161), (that is, considering (166) and (162)), the optimal

contract problem is

max
Bi,c

φ(Bi)c
α γ

γ−β − c + b∆i−1 − λ

2

(
(s2 + σ2

i−1)B
2
i + 2σ2

i−1Bi

T∑

t=i+1

B∗
t

)
. (167)

The optimal investment, c(Bi), is given by (131). Since Bi = b + Constant we can replace

b∆i−1 with Bi∆i−1 in (167). Substituting the optimal investment the optimal contract

problem is

max
Bi

Hi(Bi) := Kc(Bi)− λ

2
(s2 + σ2

i−1)B
2
i + Bi

(
∆i−1 − λσ2

i−1Bi

T∑

t=i+1

B∗
t

)
. (168)

We denote the optimal solution by B∗
i .

Recall, bM ∈ (1, γ
β ) is the point where c′′(b) = 0 (Proposition 1). The following propo-

sition ensures the solution to the EN’s maximization problem exists and is unique.

Proposition 13

Under Assumptions 1-3, each Hi(·) is strictly concave and hence strongly unimodal on

[0, bM ], and the solution to (168), B∗
i , is positive and less than bM .

The proof of Proposition 13 is identical to Proposition 3, hence omitted. Since the

current period’s maximization problem and the other decision variables in period i satisfy
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the induction assumptions we can extend the above arguments by backward induction to

any period i and thereby derive the unique equilibrium, as characterized in the following

theorem.

Theorem 10 (Characterization of Equilibrium)

Under Assumptions 1 - 3 the equilibrium contract offered by the VC and the EN’s effort in

period i, 1 ≤ i ≤ T is characterized, as follows:

• The risky compensation is b∗i = B∗
i −

T∑
t=i+1

(1− b∗t )
σ2
0

s2+(t−1)σ2
0
;

• The investment is c∗i := c(B∗
i ) defined in (131);

• The fixed compensation is a∗i := a(b∗i , c
∗
i ) defined in (159);

• The optimal effort level is η∗i := η(B∗
i , c∗i ) defined in (156).

7.4 Analysis and Discussion

We first characterize the trajectory of the Bi’s.

Proposition 14 (B∗
i Trajectory Region)

Suppose the EN is reasonably optimistic (∆0 < p0)

(i) The trajectory of B∗
i increasing.

(ii) B∗
i ≤ 1 for all 1 ≤ i ≤ T ;

Proposition 14 is significant since the optimal investment and effort behave according to

B∗
i . When effort was observable, the EN’s effort level was tied directly to his current period’s

contingent compensation. Now, however, effort depends on future contingent compensation

as well.

We now turn to examine how optimal effort and investment levels compare to the Basic

Model and the Shift of Power Model.

Theorem 11

Suppose the EN is realistically optimistic (∆0 < p0). Prior to the last period, the effort

level η∗i , and the investment level, c∗i , in each period are less than the effort and investment

122



levels in the Basic Model but are more than the effort and investment levels in the Shift of

Power Model, respectively. In the last period investment and effort levels are identical for

the three models.

Investment is monotonically increasing in the EN’s contingent incentives (whether they are

b∗i as in the previous models or B∗
i as in our current model) as long as the EN is reasonably

optimistic. Consequently, and assuming the EN is reasonable, increasing the contingent

incentives to the EN increases the amount of investment. The EN’s effort, which is induced

by both the investment incentives and the contingent incentives, will behave similarly and

increases with the contingent incentives.

7.5 Proofs

Proof of Proposition 14: The derivative of the EN’s maximization problem, (168), is

H ′
i(B) := ∆i−1 − λσ2

i−1

T∑

t=i+1

B∗
t − pi−1B + Kc′(B) . (169)

Let B∗
i be the optimal solution at period i. Therefore, H ′

i(B
∗
i ) = 0. Notice that H ′

i−1(B) =

H ′
i(B)−λσi−1B

∗
i . Since by Proposition 13 B∗

i > 0 we have H ′
i−1(B

∗
i ) < 0 and by unimodal-

ity B∗
i−1 < B∗

i , which completes the proof to part (i). For period T , HT (·) ≡ F1(·) and

applying Proposition 2 we have B∗
T < 1. The rest of the proof now follows from part (i).

Proof of Theorem 11: Let bX
i denote the contingent compensation at period i when

X ∈ {V C, EN} has bargaining power (observable effort). We start by showing that for all

i < T , bEN
i < B∗

i < bV C
i . We note that:

H ′
i(b) = F ′

i (b)− λσ2
i−1

T∑

t=i+1

B∗
t (170)

H ′
i(b) = G′

i(b) + λσ2
i−1

T∑

t=i+1

(1−B∗
t ) (171)

By definition, F ′
i (b

V C
i ) = 0 and G′

i(b
EN
i ) = 0. Since by Propositions 13 and 14 0 < B∗

i < 1,

we have H ′
i(b

V C
i ) < 0 and H ′

i(b
EN
i ) > 0 and by unimodality bEN

i < B∗
i < bV C

i . Since

the EN is realistically optimistic, by Proposition 2 bV C
i < 1. Since investment and effort

are identical functions for the three models and are increasing (since b < 1) we have the
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investment and effort ordered in an identical manner. The second statement immediately

follows from the fact HT (·) = GT (·) = FT (·).

Derivation of Equation 164: Let

xt := (1− b∗t )
σ2

0

s2 + (t− 1)σ2
0

and notice that

B∗
i = b∗i +

T∑

t=i+1

xt. (172)

In addition, we note that

T∑

t=i+1

T∑

k=t

xk =

= xi+1 + 2xi+2 + 3xi+3 + ... + (T − i)xT =

=
T∑

t=i+1

(t− i)xt (173)

By (157), the right hand side term of (164), SiBi, clearly equals

Si

[
b +

T∑

t=i+1

(1− b∗t )σ2
0

s2 + (t− 1)σ2
0

]
,

the right hand side term of (163). It is therefore left to show the left hand side terms of

(163) and (164) are equal. But,

Bi +
T∑

t=i+1

B∗
t

= b +
T∑

t=i+1

xt +
T∑

t=i+1

(
b∗t +

T∑

k=t+1

xk

)

= b +
T∑

t=i+1

b∗t +
T∑

t=i+1

xt +
T∑

t=i+1

( T∑

k=t+1

xk

)

= b +
T∑

t=i+1

b∗t +
T∑

t=i+1

(
xt +

T∑

k=t+1

xk

)

= b +
T∑

t=i+1

b∗t +
T∑

t=i+1

( T∑

k=t

xk

)
(174)
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and by (173) this equals to

b +
T∑

t=i+1

b∗t +
T∑

t=i+1

(t− i)xt (175)

= b +
T∑

t=i+1

(
(t− i)xt + b∗t

)

= b +
T∑

t=i+1

((1− b∗t )(t− i)σ2
0

s2 + (t− 1)σ2
0

+ b∗t
)]

.
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CHAPTER VIII

CONCLUSIONS

In this thesis we presented a model that incorporates key features of the venture financing

process. Our model features staged investment, allows for contingent and risk-free compen-

sation to the EN and considers costs of VC oversight. The VC’s capital inflow commitment

must be coupled with human capital investment by the EN. Another central feature of our

model is the learning about the project’s quality. We tested our model under different con-

flict scenarios between the VC and the EN including asymmetry in attitude towards risk

and asymmetric beliefs about the project. In addition, we tested our model for different

bargaining power assumptions and informational asymmetries.

Our research incorporates and explains empirical evidence about the VC-EN relation-

ship. More importantly, we make predictions about the true meaning of empirical evidence.

For example, Gibbons and Murphy (1992) find that pay-performance sensitivity of CEO’s

increase over time. We find similar findings. We predict, however, that this phenomena will

happen only when the asymmetric beliefs between the VC and the EN are not too large.

We also predict that it is more likely to happen when the EN has bargaining power.

We endogenously derive a milestone financing policy and find that the milestones are

increasing with risk-averseness and decreasing with the asymmetry in beliefs. We also

predict that the VC will benefit from an EN’s optimism, which he can exploit.

Using a two-period version of our Basic Model, we conduct a full risk analysis and

demonstrate the distinct effects of technical risk and market risk. Calibrating our model

to empirical data enables us to conduct a more meaningful numerical analysis. The most

significant conclusion from this analysis is that the two-period results are extended to the

T -period model and that systematic risk and technical risk have opposite effects on the

firm. Systematic risk is associated with decreasing payoffs to the VC, less firm value and

shorter project duration. Conversely, technical risk is associated with future promise and
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increases the VC payoff, firm value and project duration.

We predict that with a constant-return-to-scale production technology, increasing the

labor output elasticity increases the firm’s value, duration and appeal to the VC.

We examine the effects of asymmetric information by assuming the VC cannot observe

the EN’s effort. In this setting, we show that the EN receives more incentives to exert effort.

More capital and human investment takes place.

There are a number of possible extensions to our research.

• VC oversight is a central feature in VC finance. There is empirical evidence about

the positive effects of the VC’s advice to the EN. In addition, researchers have shown

that this advice requires considerable resources form the VC. In the current model we

assume the VC’s oversight is exogenous. An alternative model could consider a double-

sided moral hazard formulation that allows the VC’s monitoring costs and oversight

to be determined endogenously. This approach may provide insight to explain how

VC oversight behaves and address questions such as: When do we expect to see more

VC oversight and when less? Will asymmetric beliefs allow VC to invest less resources

in oversight? How does the EN’s degree risk aversion affect oversight?

• Another way of introducing richness to the moral hazard problem in our model is by

relaxing the assumption that the VC is a single entity. A more elaborate description

of the VC will distinguish between the investors in the venture fund and the VC fund

managers who interact directly with the EN. Incorporating this feature into our model

will enable an improved understanding of the full scope of the VC finance process.

Why do venture funds have a limited investing horizon? Why are VC funds structured

as limited partnerships? How should the fund investors optimally compensate the VC

fund manager? Do the answers to these questions depend on the VC-EN relationship?

• Our investigation of the effects of the bargaining power is limited to examining two

extreme cases in which either the VC or the EN possesses all bargaining power. Under

this assumption, we found that the deterministic path trajectories are lower when the

EN has bargaining power. However, we do not know how the deterministic paths
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behave when bargaining power is divided somewhere between the EN and the VC.

Future research may incorporate a bargaining model that allows bargaining power to

be shared between the parties. This will enable a more meaningful analysis of the

effects of bargaining power.

• The stopping time in the Shift of Power and the Non Observable Effort models is

determined upfront. Further research could allow one to relax this assumption and

allow a dynamic investment policy with a random stopping time as in the Basic Model.

This will enable one to examine how bargaining power and effort observability affect

project duration.

• Our model may be generalized to a strategic management decision analysis model.

As the firm’s manager, the EN must allocate available resources between marketing

and product improvement. The EN’s allocation considerations may be influenced by

project risks and by his ability to signal potential VC’s about the project’s potential.

• The contracts we assume in our model allow for per-performance sensitivities and risk

free payments to the EN. By introducing explicit compensation securities it could be

possible to better address specific empirical evidence about the EN’s compensation

schemes.

• In our model, we limit asymmetry in beliefs to µ0, the assessment of project quality.

Introducing asymmetry in belief about the risk of the project will enable a further

understanding of both the effects of asymmetric beliefs and the effects of risk.

• There is no quantitative empirical evidence about asymmetric beliefs and EN risk

aversion. Most theoretical models assume the EN is risk averse. In contrast, anecdotal

empirical evidence has led other researchers to consider EN’s as risk-takers (Cave and

Minty (2004)). Our model predicts a tradeoff between the effects of risk aversion

and asymmetric beliefs that explains this contradiction. Many researchers conjecture

(Sahlman (1990), Gladstone and Gladstone (2002) among others) the EN is very

optimistic. Empirical research based on our model could attempt to quantify and
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differentiate between these two features of the VC-EN relationship.

In closing, we believe our research contributes to the understanding of the multi-faceted

phenomena of the VC-EN relationship.
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APPENDIX A

CODE DESIGN

A.1 Module Overview

The Matlab code contains a number of of files, which we group into 6 modules, described

below. In addition to these modules, there is a file containing the all the parameters that

control the experimentation or calibration processes. In this way, to conduct an experiment

or run a calibration process one need change only the parameters gathered in this file.

• Module 1: Main Program. This is module managing the numerical experiments. It

produces an experiment scenario (i.e. assigned values to the parameters) and activates

the other modules of the program.

• Module 2: Deterministic Path. This module produces the deterministic path results

of the model.

• Module 3: Dynamic Evaluation. This module computes the continuation value for

each state of the lattice and the trigger termination policy and the economic statistics.

• Module 4: Lattice Construction. This module generates the lattice representing the

evolution of the state variable µV C
i .

• Module 5: Result Presentation. Displays the deterministic and simulation results.

• Module 6: Calibration. This module manages the calibration of the parameters. It

creates the experiment scenarios to be tested in the calibration process and activates

the other modules of the program.

In the next section we describe the parameters of the code, given in the file. In Section

A.3 we described the rest of the files of the code.
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Table 9: Model parameters

alpha α the capital elasticity
gamma γ

gambet γ
β

k effort k, effort parameter
lambda λ, risk aversion
s risk s2, market risk
sigma 0 σ0, initial technical risk
Delta 0 ∆0, Initial asymmetry
V 0 V0, Initial termination value
mu o µV C

0 , initial VC assessment of project quality
loss1 parameter L from loss formula li = Lix

loss2 x from loss formula

A.2 Code Parameters - Parameters.m

In the file Parameters.m , we conveniently gather all the parameters that control the out-

put of the code. The user of the code need only access these parameters when wanting to

conduct an experiment or multiple experiments involving a change in one of the model’s

parameters or a calibration process. All variables on this file are global and unless stated

otherwise, all variables are a single-cell. We group the parameters into four groups, model

parameters, programming parameters, multiple experiment parameters and calibration pa-

rameters.

A.2.1 Model Parameters:

The model parameters are described in Table 9. We point out that β does not appear

because to solve the model we do not need both β and γ but rather their ratio, γ
β .

Programming Parameters:

The programming parameters include all the parameters that control the lattice struc-

ture, the monte carlo simulation and the display of the results. These parameters are

summarized in 10.
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Table 10: Programming parameters

T T , Maximum number of periods
num states The number of nodes in date 1 (end of first period)
states inc Number of nodes added every date after date 1

std inc
Number of standard deviations added to the extreme
lattice values in each period

sim num
Number of simulation runs to be executed in the
Monte Carlo simulation

display zero
Indicating whether ZERO DISPLAY or ALL DATES
DISPLAY or both.

display type
Indicating which of the lattice dynamic values be dis-
played.

val num Number of dynamic values stored in each node.
dynamic names Contains the labels of the lattice dynamic values.

There are two formats of the lattice display: ZERO DISPLAY and ALL DATES DIS-

PLAY. ZERO DISPLAY will contain ALL lattice dynamic values but only for date zero,

whereas ALL DATES DISPLAY displays results for all dates but the results can be limited

through the parameters display type.

display zero: If equal 0 then only ZERO DISPLAY will be displayed. If equal 1 then

both ZERO DISPLAY and ALL DATES DISPLAY. If equal 2 then only ALL DATES

DISPLAY is displayed.

Keep in mind that date ZERO DISPLAY is a complete lattice display and will contain

all dynamic values regardless of the values of display type. These parameters only affect

ALL DATES DISPLAY in the following manner:

dynamic names and display type are arrays of the size [1 X val num]. Each element in

display type is either 1 or 0. An entry of 1 in the ith location indicates that the ith dynamic

value is to be displayed in the lattice display. The dynamic values are given according to

the following order:

1. State value (µi);

2. Continuation value.
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Table 11: Multiple experiment parameters

mult flag Indicating whether multi- or single-experiment scenario.
mult param Indicating the variable parameter - see below.
mult values An array consisting of the values of the var parameter.

Table 12: Calibrations parameters

calibration Indicating whether calibration process or not.
num values The number of values we are searching on.
cal limits The initial feasible region for the calibrated parameters.
output val The empirical evidence data for the calibration.

Remark: To add dynamic values capabilities the following actions are needed: 1. Increase

parameter val num. 2. Add an entry to the parameter display type 3. Update the functions

Values to support the computation of the new dynamic value.

Multiple Experiment Parameters:

The parameters controlling the multiple experiment scenario are provided in Table 11

If mult flag =1 then the program executes a multi-experiment scenario, whereas zero

indicates a single-experiment. In a multi-experiment scenario we allow one of the model

parameters to change. The variable parameter is given by mult param according to the fol-

lowing rule: 1 = alpha, 2=gambet, 3=k effort, 4=lambda, 5=s risk, 6=sigma 0, 7=Delta 0,

8=V 0, 9 = mu 0, 10=loss1, 11=loss2, 12=d disc. The values the variable parameter re-

ceives are stored in mult values. The size of mult values depends on the number of experi-

ments desired.

Calibrations Parameters:

The parameters of the calibration process are provided in Table 11

If calibration =1 then the program is running the calibration process instead of the

regular single or multi experiment. This parameter affects the type of display. For example,

in a calibration scenario we do not display the deterministic path, the lattice display nor
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the trigger policy.

In the initial step of the calibration process the calibration grid is a five dimensional

grid (each dimension representing one of the calibrated parameters - α, γ, k, L and λ). The

number of points on each dimension is num values and these points are equally spaced

between the lower limit and the upper limit of the initial feasible region for the dimension’s

parameter. The initial feasible regions for the calibrated parameters is stored in cal limits

in the following order: alpha,gamma,k effort,loss2 and lambda. The size of cal limits is [2

X 5], where the first column is the lower limit and the second column is the upper limit.

EE = EE1, ..., EE7), the empirical evidence used in the calibration process, defined in

Section 5.3.2.1, is stored in output val. The size of output val is [1 X 7]

A.3 Module Design

Unless stated otherwise, all data structures in each subroutine/function are private to the

subroutine/function itself.

A.3.1 Module 1 - Main Program

File List:

1. Program.m

2. UpdatePar.m contains the function UpdatePar

3. ExecProg.m contains the function ExecProg

Detailed Description:

• Program.m : We allow for either a single-experiment execution or a multiple-experiment

execution of the program. Program reads the parameters’ values via Parameters, and

then either executes a multi-experiment program or a single-experiment program. In

a multi experiment scenario we allow (exactly) one of the model parameters to receive

different values. The function UpdatePar sets the new value of the variable parame-

ter. The number of experiments is equal to the size of mult values, which contains the

different values the variable parameter receives.
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• UpdatePar(i): In the multi-experiment setting, the variable parameter’s value must

be updated for each experiment. UpdatePar.m handles this. The function’s parame-

ter, i, is the experiment number.

• ExecProg(experiment): For experiment number experiment, ExecProg computes

and displays the deterministic path and the dynamic values. Note that in a single-

experiment setting experiment = 1.

A.3.2 Module 2 - Deterministic Path

File name DetPath.m contains the following functions:

• DetPath : The Main function in the file. This function takes no arguments and

returns seven arrays that contain the deterministic path results. The arrays are optb,

optc, opteta, optf, loss, Delta and sigma and they correspond to b∗i , c∗i , η∗i , F ∗
i ,li, ∆i−1

and σi−1], respectively. These arrays are global and each is of the size [1 X T ], where

recall, T is the number of periods.

The following utility functions are used to generate the deterministic path results.

• BisectionSearch(sigmai,Deltai): Computes b∗i . The arguments sigmai and Deltai are

σ2
i−1 and ∆i−1, respectively.

• VCproblemDeriv(b,sigmai,Deltai): Computes F ′
i (b). The arguments sigmai and Deltai

are σ2
i−1 and ∆i−1, respectively.

• VCproblemFunc(b,c,i,sigmai,Deltai): Computes F (b). The arguments sigmai and

Deltai are σ2
i−1 and ∆i−1, respectively. The argument c denotes c∗i

• LossFunc(i): Computes li.

• Investment(b): Computes c(b).

• DerivInvestment(b): Computes c′(b).

• Effort(b,c): Computes η(b, c)
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A.3.3 Module 3 - Dynamic Evaluation

File List:

1. DynamicVal.m contains the function DynamicVal

2. Values.m contains the function Values

3. MuStar.m contains the function MuStar

4. TestRes.m contains the function TestRes

Detailed Description:

• DynamicVal(i): It runs from the last period backwards until date i and computes

the values associated with each state. It returns a matrix of size [val num*(T -i) X

CompSize(T-1)] where CompSize(T-1) is the number of states at the last date (see

below in Module 4). Each val num rows correspond to a period (The first val num

rows to period i+1, the next val num rows to period i+2, ..., the last val num rows

to period T ). Each val num rows are ordered according to the order of the lattice

dynamic values. In the rows corresponding to period i, the number of valid columns

is CompSize(i).

• Values(c date,c list,n list,n value): Produces dynamic value arrays for all the

states of date c date. To that end, it calls the Descend function (see Module 4 below),

which computes the descendants and the probabilities of getting to the descendants.

The other arguments of Values are: c list— the list of nodes in date c date. n list,

n value— the list of nodes in date c date+1 and their dynamic values. Notice the size

of n value is [val num X length of n list ].

The function returns the value arrays packaged in a single matrix answer whose size

is [val num X length of n list ].

The computation of the values is as follows: for each state in c list we call Descend to

receive its descendants and the probability to reach those descendants. The evaluation
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of each dynamic value now follows from its recursive definition, which is described

below.

Each row in answer stores a different value according to the order of the parameter

display type.

Computation of the lattice dynamic values:

– The project quality (µV C) is given by the state’s value (part of the Module 4).

– Continuation value at date i (CV):

CV =





max(µV C
i + F ∗

i − li+1, 0), if i = T − 1;

max
(
0 , µV C

i +F ∗
i −li+1+d

∑
x∈desc

pxCVx

)
, if i ≤ T − 2.

(176)

• MuStar(StVal): This function computes and returns the trigger policy. It’s ar-

gument, StVal, contains the lattice dynamic values described above. The function

returns an array size [1 X T ] containing µ∗1, ..., µ
∗
T .

• TestRes(mu star): This function receives the trigger policy and runs a Monte Carlo

simulation of the model. It computes the following economical results: Res1, ..., Res7,

expected VC share (i.e. the continuation value), expected net firm value and the

expected total investment as defined in Section A.3.

A.3.4 Module 4 - Lattice Construction

File List:

1. States.m contains the function States.

2. Descend.m contains the functions Descend and Probability.

3. CompSize.m contains the function CompSize.

Detailed Description:

The design of the lattice is as follows. In date zero there is a single node whose state

value is mu 0. The number of states in the next date is num states, and thereafter in
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each date states inc nodes are added. The value of a state at date i describes µi. We

allow for the state values to increase from date i to date i + 1 in the following manner.

The highest value date will increase by std inc times
√

s2+σ2
i

σ2
i

. Similarly, the lowest value

date will decrease by std inc times
√

s2+σ2
i

σ2
i

. (See derivations below in the discussion of

the function Probability.) The other states’ values will be equally spread between the two

extreme states.

General Comment: All the state lists are given in arrays whose size is [1 X CompSize(T-

1)] where CompSize(T-1) is the number of states at the last date (see below). This is to

ensure that all lists are of the same length. However, the number of relevant cells in each

array varies and depends on the number of states in the date.

• States(i): This function returns all the states of date i. An array containing all the

possible values of µi is returned to the calling command. The relevant cells in the

returned array lie between the first cell and the CompSize(i)th cell.

• Descend(cdate, mu, NStates): A function that searches for the descendants of

state mu from date cdate, where candidate descendants are given in NStates. NStates

is the list of states in date following the date of mu, and next size is the cdate+1. The

function returns pointers to the first and least descendant cells, startpos and endpos,

respectively. (recall, the lattice structure is such that the state values are sorted

increasing.) To be a descendant of mu a candidate state must be within std inc times

stdev from mu.

In addition, the function returns StateProb, an array containing the probabilities to

reach the descendant. Similarly to the state lists, the probability list is also of size

[1 X CompSize(T-1)]. The relevant data of this array lies between cells startpos and

endpos.

• Probability(mu,b range, t range): Computes the probability of going from state
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mu) to the range [b range, t range]. Following the following formula

Prob[µi+1 < x] = (177)

= Prob
[s2µi + σ2

i Yi+1

s2 + σ2
i

< x
]

(178)

= Prob
[
µi +

σ2
i√

s2 + σ2
i

Z < x
]

(179)

= Prob
[
Z < (x− µi)

√
s2 + σ2

i

σ2
i

]
(180)

where the third line is since Yi+1 ∼ N(µi, s
2 + σ2

i ). Replacing x with b range and

t range and taking the difference between the probabilities (top minus bottom) gives

us the required probability.

• Compsize(i) Computes the number of nodes in date i.

A.3.5 Module 5 - Result Presentation

File name DispRes.m contains the functions DispRes, OpenDisplay, OpenDisCal, Display-

DetPath, DisplayZero, DisplayAll, DisplayCalExp, DispMuRes, DispCalBase and CloseDis-

play.

We describe the main function of this module, DispRes. The rest of the functions receive

data from DispRes and display it.

DisplayResults(phase,data,experiment): The argument phase’s value is from (1, 2, 3, 4, 5)

with each value requiring the following actions:

1. Initializing the file. In this case data and experiment are disregarded.

2. Display the deterministic path. In this case data is the deterministic path matrix

whereas experiment is disregarded. The deterministic path is displayed only in a

single experiment scenario.

3. Display the lattice dynamic values. If single experiment scenario then displays either

ZERO DISPLAY or ALL DATES DISPLAY or both (depending on the value of

the parameter display zero). In multi experiment scenario only ZERO DISPLAY is

displayed. In the calibration process there is no lattice dynamics value display.
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4. Displays the trigger policy and the economic results of the model. If not a calibration

scenario then displays all the economical results. If a calibration scenario then displays

only the first seven results.

5. Closing the file. In this case data and experiment are disregarded.

A.3.6 Module 6 - Calibration

File List:

1. calibrate.m

2. CBaseNum.m contains the functions CBaseNum and CompDistance.

3. CCalVal3.m contains the function CCalVal3.

4. CFineTune.m contains the function CFineTune.

Detailed Description:

• calibrate.m : This is the main procedure of the calibration process. Recall, in the

initial step of the calibration process the calibration grid is a five dimensional grid

with each dimension representing one of the calibrated parameters - α, γ, k, L and

λ). The value of points on each dimension is stored in cal val (an array of size [5 X

num values]). We also store the distance between the points (recall they are equally

spaced so each dimension has one such distance to store) for each dimension/parameter

in step val (an array of size [5 X 1]). We now call the function CBaseNum to receive

the initial base numbers. In the next step we run a number of iteration to fine tune

the grid search. The result of each iteration is another set of basic numbers. The

basic numbers of the last iteration are chosen as the basic numbers of the calibrated

parameters.

• CBaseNum(num values, cal val): This function receives the number of points in

each dimension of the grid (num values) and their values (cal val). For each permu-

tation of these values it runs an experiment (computing the deterministic path, the
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lattice dynamic values and the monte carlo simulation) using the other modules of

the code. Given the experiment results, it computes the distance from the empiri-

cal evidence and returns the parameters’ values of the experiment with the minimal

distance. These values are the basic numbers.

• CompDistance(ExpResults): This function receives the current experiment’s re-

sults and returns their distance from the empirical evidence.

• CFineTune(param val,cstep val,index): This function computes the new basic

numbers in the second step of the calibration process. In this step we are fine tun-

ing the grid iteratively. Given the current base numbers param val and the current

distance between points on the grid cstep val, it invokes CCalVal3 to receive the new

grid parameters. Next it computes the new basic numbers from CBaseNum. The

third argument of CFineTune, index denotes which iteration of basic numbers is now

handled and is used for purpose of display. CFineTune returns the basic numbers

(size [1 X 5]) and the new distance between points on the grid (size [5 X 1]).

• CCalval3(param val,cstep val): This function receives the current base numbers

param val and the current distance between points on the grid cstep val. It returns

the parameters for a finer grid search in the following manner. Each dimension of

the new grid contains three points that are centered around the current base value of

the parameter represented by that dimension. If the current base number is equal to

the upper (lower) limit of the feasible region of that parameter then the three points

are the current base number and below (above) it. The new distance between points

is half (one third in the equal to limit cases) of the current distance between points.

The function CCalVal3 returns the new values of each dimension (size [5 X 3]) and

the new distance between points (size [5 X 1]).

141



REFERENCES

1. Admati, A. and Pfleinderer, P., (1994), “Robust Financial Contracting and the Role
of Venture Capital”, The Journal of Finance, 49, 371-402.

2. Aghion, P. and Bolton, P., (1992), “An Incomplete Contracts Approach to Financial
Contracting”, The Review of Economic Studies, 59, 473-494.

3. Allen, F. and Gale, D., (1999), “Diversity of Opinion and Financing of New Technolo-
gies”, Journal of Financial Intermediation, 8, 68-89.

4. Baker, M. and Gompers, P., (2003), “The Determinants of Board Structure at the
Initial Public Offering”, Journal of Law and Economics, 46, 569-598.

5. Baker, G. and Hall, B., (2004), “CEO Incentives and Firm Size”, Journal of Labor
Economics, 22, 767-798.

6. Benaroch, M. and Kauffman, R., (1999), “A Case for Using Real Options Pricing
Analysis to Evaluate Information Technology Project Investments”, Information Sys-
tems Research, 10, 70-86.

7. Bergemann, D. and Hege, U., (1998), “Venture Capital Financing, Moral Hazard, and
Learning”, Journal of Banking & Finance, 22, 703-735.

8. Berger, P. and Ofek, E. and Swary, I., (1996), “Investor Valuation of the Abandonment
Option”, Journal of Financial Economics, 42, 257-287.

9. Berk, J. and Green, R. and Naik, V., (2004), “Valuation and Return Dynamics of
New Ventures”, The Review of Financial Studies, 17, 1-35.

10. Bigus, J., (2003), “Heterogeneous Beliefs, Moral Hazard and Capital Structure”,
Schmalenbach Business Review, 55, 136-160.

11. Cave, F. and Minty, A., (2004), “How Do Entrepreneurs View Opportunities: Rose
Tinted Spectacles or the Real Options Lens?”, The Journal of Private Equity, Sum-
mer, 60-67.

12. Chan, Y. and Siegel, D. and Thakor, A., (1990), “Learning, Corporate Control and
Performance Requirements in Venture Capital Contracts”, International Economic
Review, 31, 365-381.

13. Cossin, D. and Leleux, B. and Saliasi, E., (2002), “Understanding the Economic Value
of Legal Covenants in Investment Contracts: A Real-Options Approach to Venture
Equity Contracts”, Working Paper, University of Lausanne.

14. Cuny, C. and Talmor, E., (2005), “The Staging of Venture Capital Financing: Mile-
stone Vs. Round”, Working Paper.

15. DeGroot, M.H., (1970), Optimal Statistical Decisions, McGraw-Hill, New-York, NY.

142



16. Dessi, R., (2005), “Start-up Finance, Monitoring and Collusion”, Rand Journal of
Economics, 36, 255-274.

17. Egli, D. and Ongena, S. and Smith, D.C., (2005), “On the Sequencing of Projects,
Reputation Building, and Relationship Finance”, Finance Research Letters, forth-
coming.

18. Fluck, Z. and Garrison, K. and Myers S., (2005), “Venture Capital Contracting and
Syndication: An Experiment in Computational Corporate Finance”, NBER Working
Paper No. 11624.

19. Gelderen, M. and Thurik, R. and Bosma, N., (2005), “Success and Risk Factors in
the Pre-Startup Phase”, Small Business Economics, 24, 365-380.

20. Gibbons, R. and Murphy, K., (1992), “Optimal Incentive Contracts in the Presence of
Career Concerns: Theory and Evidence”, Journal of Political Economy, 100, 468-505.

21. Gladstone, D. and Gladstone, L., (2002), Venture Capital Handbook: An Entrepre-
neur’s Guide to Raising Venture Capital, Prentice Hall, Upper Saddle River, New
Jersey.

22. Gompers, P., (1995), “Optimal Investment, Monitoring, and the Staging of Venture
Capital”, The Journal of Finance, 50, 1461-1489.

23. Gompers, P. and Lerner, J., (1999), The Venture Capital Cycle, MIT Press, Cam-
bridge, MA.

24. Gompers, P. and Lerner, J., (2000),“Money Chasing Deals? The Impact of Fund
Inflows on Private Equity Valuations”, Journal of Financial Economics, 55, 281-325.

25. Gompers, P. and Lerner, J. (2001a), The Money of Invention: How Venture Capital
Creates New Wealth, Harvard Business School Press, Cambridge, MA.

26. Gompers, P. and Lerner, J., (2001b), “The Venture Capital Revolution”, Journal of
Economic Perspectives, 15, 145-168.

27. Guo, M. and Ou-Yang, H., (2005), “Incentives and Performance in the Presence of
Wealth Effects and Endogenous Risk”, Journal of Economic Theory, forthcoming.

28. Hart, O., (2001), “Financial Contracting”, Journal of Economic Literature, 39, 1079-
1100.

29. Hart, O. and Moore, J., (1988), “Incomplete contracts and renegotiations”, Econo-
metrica, 56, 755-786.

30. Hellmann, T. and Puri, M., (2000), “The Interaction Between Product Market and
Financing Strategy: The Role of Venture Capital”, The Review of Financial Studies,
13, 959-984.

31. Hellmann, T. and Puri, M., (2002), “Venture Capital and the Professionalization of
Start-Up Firms: Empirical Evidence”, The Journal of Finance, 57, 169-197.

32. Holmstrom, B., (1979), “Moral Hazard and Observability”, The Bell Journal of Eco-
nomics, 10, 74-91.

143



33. Holmstrom, B., (1999), “Managerial Incentive Problems: A Dynamic Perspective”,
Review of Economic Studies, 66, 169-182.

34. Holmstrom, B. and Milgrom, P., (1987), “Aggregation and Linearity in the Provision
of Intertemporal Incentives”, Econometrica, 55, 303-328.

35. Holmstrom, B. and Ricart I Costa, J., (1986), “Managerial Incentives and Capital
Management”, The Quarterly Journal of Economics, 101, 835-860.

36. Holmstrom, B. and Tirole, J., (1997), “Financial Intermediation, Loanable Funds and
the Real Sector”, The Quarterly Journal of Economics, 112, 663-691.

37. Inderst, R. and Muller, H., (2004), “The Effect of Capital Market Characteristics on
the Value of Start-Up Firms”, Journal of Financial Economics, 72, 319-356.

38. Kaplan, S. and Stromberg, P., (2001), “Venture Capitalists as Principals: Contracting,
Screening and Monitoring”, American Economic Review, 91, 426-430.

39. Kaplan, S. and Stromberg, P., (2003), “Financial Contracting Theory Meets the Real
World: An Empirical Analysis of Venture Capital Contracts”, Review of Economic
Studies, 70, 281-315.

40. Kaplan, S. and Stromberg, P., (2004), “Characteristics, Contracts and Actions: Evi-
dence From Venture Capitalist Analysis”, The Journal of Finance, 59, 2177-2210.

41. Kerins, F. and Smith, J. and Smith, R., (2004), “Opportunity Cost of Capital for
Venture Capital Investors and Entrepreneurs”, Journal of Financial and Quantitative
Analysis, 39, 385-405.

42. Kirilenko, A., (2001), “Valuation and Control in Venture Finance”, The Journal of
Finance, 56, 565-587.

43. Kockesen, L. and Ozerturk, S., (2004), “Exclusivity and Overinvestment: A Model of
Relationship Financing”, Working Paper, Columbia University.

44. Landier, A. and Thesmar, D., (2005), “Financial Contracting with Optimistic Entre-
preneurs: Theory and Evidence”, Working Paper.

45. Lerner, J., (1995), “Venture Capitalists and the Oversight of Private Firms”, The
Journal of Finance, 50, 301-318.

46. Lerner, J., (1998), “Comment on Bergemann and Hege”, Journal of Banking & Fi-
nance, 22, 736-740.

47. Neher, D., (1999), “Staged Financing: An Agency Perspective”, Review of Economic
Studies, 66, 255-274.

48. Palich, L. and Bagby, D., (1995), “Using Cognitive Theory to Explain Entrepreneurial
Risk-Taking: Challenging Conventional Wisdom”, Journal of Business Venturing, 10,
425-438.

49. Plummer, J., (1987), “QED Report on Venture Capital Financial Analysis”, QED
Research, Inc., Palo Alto, CA.

144



50. Rabin, M. and Thaler, R., (2001), “Anomalies: Risk Aversion”, Journal of Economic
Perspectives, 15, 219-232.

51. Rupello, R. and Suarez, J., (2004), “Venture Capital Finance: A Security Design
Approach”, Review of Finance, 8, 75-108.

52. Sahlman, W., (1990), “The Structure and Governance of Venture-Capital Organiza-
tions”, Journal of Financial Economics, 27, 473-521.

53. Trester, J., (1998), “Venture Capital Contracting Under Asymmetric Information”,
Journal of Banking & Finance, 22, 675-699.

54. Wang, S. and Zhou, H., (2004), “Staged Financing in Venture Capital: Moral Hazard
and Risks”, Journal of Corporate Finance, 10, 131-155.

145


