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SUMMARY

Advanced technology such as various types of automatic data acquisitions, management,

and networking systems has created a tremendous capability for managers to access valu-

able production information to improve their operation quality and efficiency. Especially,

due to the development of sensing and computer technology, on-line measurements of many

process variables are available in current manufacturing processes. The functional data

curve refers to an analog or digital signal measured during each operation cycle of a manu-

facturing process. In many manufacturing processes today, large volumes of functional data

are being generated at an ever increasing pace. A set of Functional data is a class of very

important in-process measurement, which contains rich information about the process con-

dition and product quality for product design, process troubleshooting, quality/efficiency

improvement and resource allocation decisions. It is highly desired to fully utilize the func-

tional data curves for process monitoring and diagnosis. In this situation, signal processing

and data mining techniques are more popular than ever in many fields, including intelligent

manufacturing. As data sets increase in size, their exploration, manipulation, and analysis

become more complicated and resource consuming. A major obstacle in those intelligent

manufacturing systems is that tools for processing a large volume of information coming

from numerous stages of manufacturing operations are not available. Thus, the underlying

theme of this thesis is to reduce the size of data in a mathematically rigorous framework,

and apply existing or new procedures to the reduced-size data for various decision-making

purposes.

For the above purpose, wavelet transform is used in this research. Wavelet transforms

model irregular data patterns such as cusps and lobes in a single curve better than the

Fourier transform and standard statistical procedures. Most wavelets research in statistics

focused on ”data denoising” (also called ”data shrinkage”), which screens out smaller sizes
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of wavelet coefficients for removing data noises to obtain a smoother representation of the

original data. Although they are proven to have quite good performance in a single curve

shrinkage, a serious problem is often encountered when they are applied in data mining

techniques for multiple curves, such as cluster analysis and classification. For example,

when the existing shrinkage methods are applied to several curves which need to be analyzed

together, different sets of selected wavelet coefficients for each curve are produced.

Most of the wavelet procedures are developed for a single data curve. The traditional

typical wavelet model has a noise error component at each wavelet atom position to describe

the narrow fluctuations at each time positions. This thesis, first, proposes Wavelet-based

Random-effect Model which can generate multiple functional data signals which have wide

fluctuations(between-signal variations) in the time domain. Also, the random-effect wavelet

atom position in the model has locally focused impact which can be distinguished from other

traditional random-effect models in biological field.

For the data-size reduction, in order to deal with heterogeneously selected wavelet coef-

ficients for different single curves, this thesis introduces the newly-defined Wavelet Vertical

Energy metric of multiple curves and utilizes it for the efficient data reduction method. As

a result, if the vertical energy metric at certain wavelet atom position is large, it means that

the wavelet atom position includes many important wavelet coefficients across all multiple

curves, which represent most jumps or dips of each curve. The newly proposed method in

this thesis will select important positions for the whole set of multiple curves by comparison

between every vertical energy metrics and a threshold (Vertical Energy Threshold; VET)

which will be optimally decided based on an objective function. The objective function bal-

ances the reconstruction error against a data reduction ratio. Also, the moment estimate

of optimal threshold and its asymptotic properties are provided.

Based on class membership information of each signal obtained, this thesis proposes

the Vertical Group-Wise Threshold method to increase the discriminative capability of the

reduced-size data so that the reduced data set retains salient differences between classes

as much as possible. The selection problem of class-wise thresholding scheme (intersection,

union, and voting) is also briefly addressed. A new thresholding function using intersection
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and a class-separability measure are proposed for finding the optimal threshold. A two-stage

procedure based on these tools successfully increases the class separability with reasonably

small loss of data reduction efficiency. Also, investigations on how several different situations

can impact the performance of reconstruction accuracy, data reduction ratio, and class

separability in the reduced-size data, are carried out using Monte-carlo simulations. A

real-life example (Tonnage data) shows our proposed method is promising.

The following summarize the contributions of this thesis.

• A widely fluctuated multiple functional data signal set is well modelled using random-

effects in wavelet domain. This has locally focused impact, which can be distinguished

from other traditional random-effect models in biological field.

• A wavelet-based data reduction method for multiple curves is developed to deal with

heterogeneously selected wavelet coefficients for different single curves, and its ana-

lytical properties are provided.

• The proposed data reduction method balances the reconstruction error against data

reduction efficiency so that it is effective in capturing the key patterns in the multiple

data signals. It also improves the time efficiency of clustering analysis.

• Based on class membership information of each signal obtained, the proposed method

increases the discriminative capability of the reduced-size data. Consequently, the

reduced data set retains salient differences between classes as much as possible.

xi



CHAPTER I

INTRODUCTION

Advanced technology such as various types of automatic data acquisitions, management,

and networking systems has created a tremendous capability for managers to access valuable

production information to improve their operation quality and efficiency. Signal processing

and data mining techniques are more popular than ever in many fields including intelligent

manufacturing. As data sets increase in size, exploration, manipulation, and analysis be-

come more complicated and resource consuming. Timely synthesized information is needed

for product design, process trouble-shooting, quality/efficiency improvement and resource

allocation decisions. A major obstacle in those intelligent manufacturing systems is that

tools for processing a large volume of information coming from numerous stages of man-

ufacturing operations are not available. Thus, the underlying theme of this thesis is to

reduce the size of data in a mathematically rigorous framework, and apply existing and

new procedures to the reduced-size data for various decision-making purposes.

There are many types of large size data requiring different data reduction techniques.

The data studied in this thesis do not have many attributes (e.g., data from grocery sales)

for ”dimension reduction” typically performed in PCA(Principle Component Analysis) and

other multivariate analysis. Many manufacturing practices indicated difficulties in handling

complicated ‘functional data’ with nonstationary, correlated and dynamically changing pat-

terns contributed from potential process faults, which are difficult to handle for standard

data modelling techniques such as Fourier transform, polynomial regression, time series and

neural network. Figure 1(a) shows an example taken from Nortel’s antenna manufacturing

process which has several nonstationary sharp-changes characterizing process behaviors or

product characteristics. For example, the peaks and valleys in the center three main lobes

of the data shown in Figure 1(b),which is an azimuth cut of Figure 1 (a), are very important

for antenna signal quality. See Gardner et al. (1997), Bakshi (1998), Jin and Shi (1999),
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Ganesan, Das, Sikder and Kumar (2002), Lada, Lu and Wilson (2002) for other studies

of complicated functional data in semiconductor fabrication, chemical manufacturing and

sheet-metal stamping applications.

(a) (b)

Figure 1: Data Signals from Nortel’s Antenna Manufacturing Process

Most of the models and analysis of complicated functional data involve only one se-

quence of data. Examples are in Rao and Bopardikar (1998; Chapter 5), Jeong, Lu, Huo,

Vidakovic and Chen (2003) and references therein. Many applications require multiple sets

of complicated functional data. For instance, to estimate model parameters in a Phase-I

study for establishing control limits in statistical process control (SPC) procedures (see

Woodall (2000) for its definition), 18 sets of the antenna data are randomly collected under

a baseline process condition. The two-dimensional antenna data presented in Figure 1(a)

can be also viewed as multiple sets of (shifted in parallel) one-dimension functional data

shown in Figure 1(b). The following briefly presents a motivating example for analyzing

multiple sets of functional data.

Example 1. In a process of developing a pattern recognition procedure for un-

derstanding process faults in a semiconductor thin-film deposition experiment (see Rying,

Ozturk, Bilbro and Lu (2003) for details), several sets of functional data were collected

2



from various process conditions. Figure 2 shows the separation of these curves into distinct

classes based on the two most representative energy metrics, which are sums of squares of

wavelet coefficients at different resolution levels. These energy metrics are called scalogram

(Vidakovic 1999, page 289) in the signal processing field.
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Figure 2: Four Types of Signals from a Semiconductor Manufacturing Process.

Ganesan et al. (2002) and Lada et al. (2002) are other examples of engineering studies

for understanding process behaviors and fault patterns with multiple sets of functional data.

In biological and medical studies, many sets of repeated measurements collected at succes-

sive time points are analyzed for examining treatment effects and patient characteristics.

See Zhang, Lin, Ras and Sowers (1998) for an example.

Due to the advance of information technology, larger amounts of data are now available

for improving process quality and operation efficiency. There are many different purposes

of using the reduced-size(RS) data. If RS data are constructed to detect specific types

of known faults, a reduction procedure could be derived to minimize Type-one and /or

Type-two errors in testing occurrence of fault. However, this data set might not be suitable

for other purposes of analysis(e.g., failure prediction, design of experiment(DOE) for qual-

ity/efficiency improvement) or for handling cases when the fault patterns were changed.
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Thus, the aim of our data reduction is to produce a small set of representative data suit-

able for many kinds of decisions of analysis for a set of functional curves. Moreover, if it

is necessary, an accurate ‘approximation’ of the original data could be obtained for many

types of analysis, (i.e., our procedure has the ‘data compression’ properties.) Ideally, these

RS data could be combined with other data in the original or RS formats collected from

many systems at different process stages and possibly located at various sites for process

characterization, optimization and strategic planning purposes. As reviewed in Jeong et

al. (2003), there are limited studies on analyzing potentially large-size complicated func-

tional data. Some approaches do exist for analyzing data with smooth patterns. These

include Functional Principle Component Analysis (PFCA; Ramsay and Silverman, 1997)

and related procedures, e.g., Hall, Poskitt and Presnell’s (2001) proposal of coordinates

for representing their data curves. In dealing with complicated data patterns, engineer-

ing knowledge is commonly used to guide data preserving or feature extraction methods

(Jin and Shi, 1999) for selecting representative data in smaller size for subsequent analy-

ses. Many studies (e.g., Jin and Shi, 2001) used wavelet-based data denoising techniques

(Donoho and Johnstone, 1994 and 1995) for data-reduction purposes. More examples are

given in the data reduction paper by Jeong et al. (2003). Wavelet-based procedures are

popular in these publications due to their ability to model sharp-changes in data patterns

and the multi-scale data compression property. Thus, our studies will focus on wavelets.

Wavelet transforms model irregular data patterns such as cusps and lobes in Figure 1

(b) better than the standard statistical procedures mentioned above, and provide a multi-

resolution approximation to the data (Mallat, 1998). Wavelet transforms have been demon-

strated very useful in image and audio compression practices(e.g., Rao and Bopardikar,

1998; Chapter 5) and many data-denosing studies (e.g., Donoho and Johnstone, 1994) in

various applications. However, the existing methods using wavelet are mostly about select-

ing representative wavelet coefficients for only a single curve. Then, for a system with large

number of curves, the wavelet atom positions of selected wavelet coefficients are mostly

different for different curves so that those methods unavoidably choose many unnecessary

coefficients through a union concept(choose all coefficients at a wavelet atom position if

4



at least one of them is selected) for the use of data mining techniques such as clustering

and classification. It may bring a serious inefficiency of data reduction for the whole set of

curves. Thus, this thesis will focus on wavelet-based data reduction procedures for compli-

cated multiple functional data, which can achieve high efficiency against the heterogeneously

selected wavelet positions.

Chapter 2 reviews relevant literatures on the topics of this research, such as func-

tional data analysis, data reduction and mining, and wavelet transformation, and compares

them to this research. Chapter 3 introduces and explains the details about newly- defined

Wavelet-based Random-effect Model. Most of the wavelet procedures are developed for a

single data curve. The traditional typical wavelet model has a noise error component at

each wavelet atom position to describe the narrow fluctuations at each time positions. This

thesis, first, proposes Wavelet-based Random-effect Model which can generate multiple func-

tional data signals which have wide fluctuations(between-signal variations) in time domain.

Also, the random-effect wavelet atom position in the model has locally focused impact which

can be distinguished from other traditional random-effect models in biological field.

For the data-size reduction, in order to deal with heterogeneously selected wavelet coef-

ficients for different single curves, Chapter 4 introduces the Wavelet Vertical Energy metric,

that is newly defined, of multiple curves and utilize it for the efficient data reduction method.

If the wavelet vertical energy metric at certain wavelet atom position is large, the wavelet

atom position includes many important wavelet coefficients across all multiple curves, which

represent most jumps or dips of each curves. The newly proposed method in this chapter

will select important positions for the whole set of multiple curves by comparison between

every vertical energy metrics and a threshold (Vertical Energy Threshold; VET) which will

be optimally decided based on an objective function. The objective function balances the

reconstruction error against a data reduction ratio. Also the moment estimate of optimal

threshold and its asymptotic properties are provided.

As far as the case that class membership information of each functional curve is avail-

able is concerned, another thresholding scheme, Vertical Group-wise Threshold, is explored

in Chapter 5 with several data selection strategies (Union, Intersection, and Voting). This

5



chapter also combines the class-separability concept with the key components in the ob-

jective function of VET method. This combination in the Vertical Group-wise Thresh-

old(VGWT) method was motivated by the idea that the reduced size data can maximize

the ability to retain salient differences between classes. The class separability term given

by the between-class variability using the class mean at each wavelet position is defined.

The absolute value of each class means at each wavelet atom positions are taken into ac-

count to compare with a common threshold(VGWT). In order to achieve several purposes

such as high signal reconstruction accuracy, efficient data reduction and retaining the class

separability as much as possible in the reduced-size data, the guideline to get the optimal

threshold is proposed.

Finally, Chapter 6 states the summary of results in the thesis and possible future research

problems.
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CHAPTER II

LITERATURE REVIEWS

The topics of this research can be categorized as the following three factors.

• Domain : Multiple functional data

• Purpose : Data reduction and mining

• Methodology : Wavelet transformation

In this section, some details to key references in each topic will be provided pointing

out some that have been overlooked and not yet been explored.

2.1 Literature on Functional Data Analysis

Most statistical analysis involves one or more observations taken on each of a number of

individuals in a sample, with the aim of making inferences about the general population

from which the sample is drawn. In an increasing number of fields, these observations are

curves or images. Curves and images are examples of functions, since an observed intensity

ia available at each point on a line segment, a portion of a plane, or a volume. For this

reason, we call observed curves and images ’functional data’, and statistical methods for

analyzing such data are described by the term ’functional data analysis’ (FDA), coined by

Ramsay and Dalzell (1991).

The goals of functional data analysis are essentially the same as for other branches of

statistics, and include the following: (a) to represent and transform the data in ways that

aid further analysis, (b) to display the data so as to highlight various characteristics, (c)

to study important sources of pattern and variation among the data, and (d) to explain

variation in an outcome or dependent variable by using input or independent variable in-

formation. Ramsay and Silverman (1997) illustrated the nature of functional data, these

goals, and FDA tools through a series of examples, such as (a) Human Growth Data: Look-

ing at Velocity and Acceleration, (b) The Mean Function and the Registration Problem,
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(c) The Nondurable Goods Index and More Derivatives, (d) Functional Principle Compo-

nents Analysis, (e) A Functional Linear Model and Regularization, and (f) Modeling with

Derivatives: A Central Theme, etc.

Some research work has been reported on fully utilizing the functional data for the

process monitoring and diagnosis purposes in manufacturing system. Jin and Shi(1999)

proposed a ”feature preserving” procedure to extract patterns in the waveform signal and

link them to corresponding faults in stamping process. Pittner and Kamarthi(1999) pro-

posed a wavelet-based procedure for feature extraction of waveform signals. They transform

the waveform signals into the wavelet domain and then select the wavelet coefficients based

on the magnitude of the coefficients. Lada, et al(2002) proposed a wavelet coefficient selec-

tion procedure not only based on the magnitude of the coefficients , but also based on an

additional term that penalizes the number of selected coefficients. The purpose is to keep

the number of the wavelet coefficients small to simplify further analysis.

From above review, the available FDA in manufacturing domain either focus on (a)

representing, transforming, and displaying the data so as to highlight various characteristic

or (b) extract features in data to study important sources of pattern and variation among

the data. Very few effort have been made on the concept of efficient data reduction for the

whole set of functional data. Jeong and Lu(2003) proposed the method of wavelet-based

data reduction techniques for process fault detection. The proposed method minimized the

objective functions to balance the tradeoff between data reduction and modelling accuracy

for a single curve. For a system with large number of curves, the selected wavelet coefficients

are mostly different for each curves. Then this method unavoidably choose many unneces-

sary coefficients through union concept for the use of data mining techniques such as CART

so that the data reduction ratio of the whole set of curves become considerably low. In order

to achieve high efficiency of data reduction, new approach on modelling and analyzing a set

of multiple data curves are required. In this thesis, the wavelet based method to analyze a

set of functional data curves will be proposed for the purpose.
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2.2 Literature on Data Reduction and Mining

2.2.1 Data Mining

Data mining, the objective of which is to make predictions or discoveries involving a large

amount of data, is an exciting field for both researchers and practitioners. However, data

mining means different things to different people. For example the requirements and expec-

tations for data mining in business and science-oriented applications may be quite differ-

ent. Nevertheless, in parallel to diverging trends in various application, important common

themes have also emerged from various application.

Articles and books on data mining are abundant. Data mining has been a favorite topic

by academic researchers as well as business practitioners and is often discussed from very

different perspectives. There are numerous books on data mining for practitioners, address-

ing practical concerns. For example, Berry and Linoff(1997) presented a wide range of data

mining methods, and Westphal and Blaxton(1998) described how to use existing commer-

cial tools to conduct data mining. On the other hand, within academia, issues related to

data mining have been studied from different perspectives such as statistics, pattern recog-

nition, database management system, and artificial intelligence(AI). For exmaple, the book

by Fayyad et al.(1996) is a well-known volume on some research progress up to the year

1995. Kennedy et al.(1997) discussed pattern recognition techniques for data mining, and

Cios et al(1998) promoted the use of computational intelligence techniques (such as rough

theory, fuzzy logic, artificial neural networks) for data mining. More recently, Han and

Kamber(2000) presented an excellent discussion on data mining mainly from a database

perspective.

Note that different application may have very different focuses. For example, scientific

data mining seems to focus mostly on finding explanations for the most variable elements of

the data set(i.e., to find and explain the outliers). For example, one may want to understand

the purchasing habits of most of our customers (skillicorn 1999). Applications of data mining

include

1. Medicine, such as diagnosis and prognosis
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2. Public administration

3. Marketing and finance

4. Scientific database

5. Fraud detection

6. Engineering, such as diagnostics of mechanisms and process

7. Data mining on the Web in text and heterogeneous data

Some illustrate the strong need of data mining research in manufacturing process, e.g.,

chemical manufacturing(Bakshi, 1998), nanomachining (e.g., see http://www.eng.usf.edu/das

for the work of T.K.Das and his colleagues in chemical mechanical planarization(CMP) pro-

cesses), semiconductor fabrication. However, the attention in this direction is far less than

what ”business operation” have received. To our knowledge, most of successful data mining

applications with large size data are in grocery- for fashion-goods-sale studies, customer

relationship management, telecommunication fraud analysis, etc. The recent book edited

by Braha (2001) on Data Mining for Design and Manufacturing made attempts to bring

engineers’ attention in this important research area.

2.2.2 Data Reduction

Data can be reduced to a simpler form; for example, continuous variables can be discretized

to get range variables. If we push this view point a little further, we can claim that the

task of data mining as a whole, can be viewed as a reduction process. After all, the result of

data mining is a more concise description of the original data themselves. The role of data

mining is to discovery general patterns that describe the data. Theses patterns may have the

form of rules, or some model. Each generated pattern represents a subset of the raw data.

Knowledge extraction can be achieved through data reduction. Chen (2001) addressed in

his book that some basic data mining techniques such as clustering, sampling, along with

some other methods such as visualization(such as the use of histograms), singular value

decomposition, wavelets, regression, loglinear models, can viewed as a kind of reduction

method.
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Lu(2001) summarized many data reduction procedures into three categories: Sampling

Approaches, Modelling and Transformation Techniques, and Data Splitting Methods. The

well known systematic, stratified and segmentation sampling methods and feature extrac-

tion procedures(e.g., Mallat and Hwang, 1992; Jin and Shi, 1999) are examples of sampling

approaches. The classical regression, principle components analysis (PCA), Fourier and

wavelet transformations and simple summary statistics (e.g., mean, variance) are exam-

ples of the second category. Similar (but different) to sampling approaches, data splitting

methods such as kd-trees and c-means clustering are very useful in reducing data sizes.

As mentioned before, this thesis will focus on wavelet-based data reduction procedures

for complicated functional data. In many engineering application (e.g., Lada, et al.(2002))

of the data de-nosing and the AMDL methods, we found that many coefficients were used

to achieve a very small signal reconstruction error. By experimenting various numbers

of coefficients used in the nonlinear signal approximation methods, we found that many

sets of reconstructed signals using a fewer number of coefficients provide a very reasonable

approximation to the original data. See Jeong and Lu (2002). More importantly, the

selected wavelet coefficients were rather representative in most of the data analysis, e.g.,

chi-square test for process fault detection (e.g., Lada, et al. (2002)) or decision tree analysis

for process fault classification (Jeong and Lu, 2002). This motivate us to search for a more

aggressive ”data reduction” method for multiple functional data curves.

Aggressive data reduction method for multiple functional data has a great potential at

the age of high technology. The advance of computer, networking systems and automatic

data acquisition instruments facilitates the growth of information in a form of functional

data curves. Functional data curves represent a class of analog or digital signals over time,

which normally can be measured using in-process sensors in a manufacturing process. It

has broad potential applications, such as tonnage signals in stamping, torque signals in

tapping, and force signals in welding, etc(See Jin and Shi(2001)). While those in-process

measurements contain rich information about process condition and product quality, the

massive amount of measurement data are a major obstacle to achieve quality and efficiency

improvement in relatively short time. Also, if the data size is not very large, one can use
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visualization techniques to examine potential systematic data patterns. However, when the

data size become larger, visualization of large size data become more difficult.

2.3 Literature on Wavelet Transformation

2.3.1 Introduction to Discrete Wavelet Transformation(DWT)

In order to introduce the new thresholding method for representing well the whole set of

multiple curves and keep the high data reduction ratio, the Wavelet transformation is briefly

reviewed below.

A wavelet is a function ψ(t) ∈ L2(R) with the following basic properties∫
R
ψ(t) dt = 0 and

∫
R
ψ2(t) dt = 1,

where L2(R) is the space of square integrable real functions defined on the real line R

Wavelets can be used to create a family of time-frequency atoms, ψs,u(t) = s1/2ψ(st−u), via

the dilation factor s and the translation u. We also require a scaling function φ(t) ∈ L2(R)

that satisfies ∫
R
φ(t) dt 6= 0 and

∫
R
φ2(t) dt = 1.

Selecting the scaling and wavelet functions as {φL,k(t) = 2L/2φ(2Lt− k); k ∈ Z}, {ψj,k(t) =

2j/2ψ(2jt− k); j ≥ L, k ∈ Z}, respectively, one can form an orthonormal basis to represent

a signal function f(t) ∈ L2(R) as follows.

f(t) =
∑
k∈Z

cL,kφL,k(t) +
∑
j≥L

∑
k∈Z

dj,kψj,k(t)

where Z denote the set of all integers {0,±1,±2, . . .}, and the coefficients cL,k =
∫

R f(t)φL,k(t) dt

are considered to be the coarser-level coefficients characterizing smoother data patterns, and

dj,k =
∫

R f(t)ψj,k(t) dt are viewed as the finer-level coefficients describing (local) details of

data patterns. In practice, the following finite version of the wavelet series approximation

is used:

f̃(t) =
∑
k∈Z

cL,kφL,k(t) +
J∑

j=L

∑
k∈Z

dj,kψj,k(t) , (1)

here J > L and L correspond to the coarsest resolution level. Consider a sequence of data

y = (y(t1), · · · , y(tN ))′ taken from f(t) or obtained as a realization of y(t) = f(t) + εt at
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equally spaced discrete time points t = ti’s, where εti ’s are independent and identically

distributed (i.i.d.) noises. The discrete wavelet transform (DWT) of y is defined as

d = Wy

where W is the orthonormalN×N DWT-matrix. From (1), we can write d = (cL,dL,dL+1, · · · ,dJ),

where cL = (cL,0, · · · , cL,2L−1),dL = (dL,0, · · · , dL,2L−1), · · · ,dJ = (dJ,0, · · · , dJ,2J−1) are

called scales or subbands. Using the inverse DWT, the N × 1 vector y of the original signal

curve can be “reconstructed” as y = W
′
d. The process of transforming a data set via the

DWT closely resembles the process of computing the Fast Fourier Transformation (FFT)

of that data set. By applying the DWT to the data yi’s, d = Wy, we obtain the following

model in the wavelet domain: dj,k = θj,k + ηj,k, for j = L, · · · , J , k = 0, 1, · · · , 2j − 1,

and cL,k = θL,k + ηL,k, for k = 0, 1, · · · , 2L − 1, where J = log2N − 1. The model can be

represented in the vector format as follows.

d = θ + η (2)

where d,θ and η represent the collection of all coefficients, parameters and errors, respec-

tively. Since W is an orthonormal transform, ηj,k’s are still i.i.d. N(0, σ2) (Vidakovic 1999,

page 169). To simplify the notation, we use d = (d1, d2, . . . , dN )> instead of using cLk, djk

for the components of d without any confusing.

2.3.2 Variety of Applications

Strictly speaking, wavelets are topic of pure mathematics, however in only a few years of

existence as a theory of their own, they have shown great potential and applicability in

many fields. Wavelet analysis is shown to be useful in handling irregular data patterns

and in effectively reducing the data into a smaller number of representative wavelet co-

efficients. At present, statistical applications of wavelets predominately concentrate on

curve estimation(Donoho and Jonston 1994 and 1995), time series analysis(Moulin 1994),

survival analysis(Antoniadis 1999), classification(Learned and Willsky 1995) and Bayesian

analysis(Vidakovic 1998). With increasing usage of automatic data collection tools, wavelet
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models can be very important in the intelligent manufacturing research, where a huge

amount of data must be analyzed in real-time for process control and improvement.

Some research work has been reported on applying wavelet transformation to functional

data for the process monitoring and diagnosis purpose in manufacturing system. To detect

faults in a time-dependent process, Lada, et al(2002) applied a discrete wavelet trans-

form(DWT) to several independently replicated data sets generated by that process. The

DWT can capture irregular data patterns such as sharp ”jumps” better than the Fourier

transform and standard procedures without adding much computational complexity. Their

wavelet coefficient selection method effectively balances model parsimony against data re-

construction error. The few selected wavelet coefficients serve as the ”reduced size” data set

to facilitate an efficient decision-making method in situation with potentially large-volume

data sets. Jin and Shi (2001) proposed an automatic feature extraction methodology for

fault diagnostics purposes. In particular, for the monitoring of the normal process condi-

tion, they applied the Hotelling(1947) T 2 statistic to construct the SPC(statistical process

control) limits. The data used in their T 2 statitic is the ”denoised” wavelet coefficients from

the Visu method developed in Donoho and Johnstone (1994). Their application data are

from stamping processes. Koh, et al(1999) introduced an uniformly most powerful test on

individual coefficients of the Haar transformation (one of wavelet families) of the cycle-based

waveform signal. Based on this test, a monitoring system that is similar to Shewhart control

chart is proposed to distinguish normal and abnormal conditions of the process based on

cycle-based signals.

2.3.3 Threshold Strategy

One method often used to fit a single curve data using wavelets is to compute a set of

multi-resolution approximation (Mallot,1998). This method involves first constructing an

approximation to the data using the coarsest-scale signal and then adding increasingly

finer levels of resolution. As more levels of resolution are used, the approximation to the

target data set improves. At the finest level of resolution, the total number of estimated

wavelet coefficients equals the size of the single curve data set so that the data set is exactly
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reconstructed. While easy to use, this type of ”linear” multi-resolution approximation tends

to over-smooth the data. In order to avoid this drawback, Donoho and Johnston(1995)

developed several wavelet based ”shrinkage” techniques which is nonlinear approximation

method to accurately represent small jumps or dips in the data. Nonlinear methods that

select ”important” wavelet coefficients(usually the largest in magnitude) and set to zero

the ”unimportant” coefficients(usually those representing noise) are effective with fewer

coefficients than an approach based on a straightforward multi-resolution approximation.

In the shrinkage scheme, wavelet coefficients are set to zero if their absolute values are below

a certain Threshold level, λ > 0. Since the small size of wavelet coefficients in magnitude

are usually contributed from data noises, thresholding out these coefficients has an effect of

”removing data noises” so that the shrinkage methods are called data de-noising methods.

In using any type of wavelet threshold, the main issue is how to choose the threshold

value λ. Choosing a very large threshold will make it difficult for a coefficient to be included

in the data signal reconstruction, consequently resulting in an over-smoothing of the data

curve. On the other hand, choosing a very small threshold value will allow many coefficients

to be included in the reconstruction, giving a result close to the original noisy signal. The

proper choice of threshold involves a careful balance of these principles. Comprehensive

overview for threshold selection is given in Antoniadis, Gijbels and Gregoire (1997).

There are many wavelet model selection procedures in the literature that are based on

the idea of selecting ”important” wavelet coefficients and setting to zero the ”unimportant”

coefficients. These methods attempt to find an optimal number of coefficients to accurately

represent the data, thereby leading to a simplified and smoother (less noisy)data. The next

paragraph will briefly review the following three methods without giving their technical

details.

SURE(Stein’s Unbiased Risk Estimate) method proposed by Donoho and Johnston(1995)

introduced a scheme that uses the wavelet coefficients at each resolution level to choose a

different threshold. Wavelet coefficients smaller than the level-dependent threshold are set

to zero. This method is very popular in practice. The AMDL (Approximation Minimum

Description Length) procedure is proposed by Saito(1994). It minimize the cost function
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AMDL(C) where C is the number of wavelet coefficients selected to be nonzero. As ad-

dressed in Antoniadis et al(1997) the AMDL function is similar to the Akaike information

quantity commonly used in many statistical model selection procedures, including linear re-

gression models. Jeong and Lu(2002) developed RRE method to find the optimal threshold

λ to minimize the objective function which balances the goals of decreasing errors in the

signal reconstruction and increasing the data reduction ratio. Its threshold level depends

on signal in terms of its energy, and does not require the estimation of variance of noise

while other data shrinkage methods require it.

All the thresholding methods introduced in most literatures so far is based on a single

curve shrinkage concept. They are proved to have a quite good performance in a single curve

shrinkage concept itself. However, when they are utilized for some data mining techniques

for multiple curves, such as cluster analysis and classification, a serious problem is often

confronted. For example, when we apply the existing shrinkage methods to several curves

which are analyzed together, we usually experience the different sets of selected wavelet

coefficients for each curve. This means that there is sometimes no selected wavelet coefficient

at a certain position on certain curve which is supposed to be corresponding to other selected

ones for different curve. It means there is nothing compared to other curves’ information.

The usual way to tackle this problem in the previous literatures (Jeong et al(2002), Jin and

Shi(2001)) is that they used the ”Union” concept. This means, if there is a selected wavelet

coefficient at a certain position, other curves’ wavelet coefficients at the same position are

also selected. This method may bring a serious inefficiency of data reduction for the whole

set of curves since there must be some unnecessary wavelet coefficients to represent and

contain important information of the original curves.

Clearly, the above thresholding rule incurs the reduced size data from original data since

we only pay attention to relatively a few thresholded coefficients. Thus, in this research,

those thresholded data are treated as reduced size data in process fault detection, classifi-

cation and other decisions for improving process quality. As far as it is concerned to deal

with multiple functional data curves with the problem of heterogeneously selected wavelet

coefficients mentioned in the above paragraph, few thresholding ideas for whole multiple
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cures were come up with in the literature. In this thesis, we develop new thresholding

method considering all multiple curves for high efficiency of data reduction and model rep-

resentation.
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CHAPTER III

WAVELET-BASED RANDOM-EFFECT MODEL

3.1 Introduction

Most of the wavelet procedures are developed for a single data curve. A typical model

assumed in the above studies is y(t) = f(t) + z(t), where the mean function f(t) for the

data y(t) collected at time point t is a sum of wavelet coefficients multiplied by their

wavelet bases as shown in Eq. (3) in Section 3.2, and the errors z(t) at all time points

are independent and identically distributed as normal with mean zero and variance σ2.

Figure 3 shows that this type of model will not be able to generate the multiple sets of

functional data such as the 18 sets of antenna data we collected. Although only single

curves at different levels of noise are shown, one can imagine that when multiple sets of

data curves are generated, the wider fluctuations in the left and right sides of the antenna

curves presented in Figure 3(a) cannot be produced from the above model. Moreover,

data-denoising or -reduction procedures developed for single data curves cannot capture

the common characteristics among all curves. Similar to random-effect models advocated

in the biological and medical studies of repeated measurements, this chapter explores a

random-effect model in the wavelet domain for a type of data set like in Figure 3(a).

Random-effect models in the wavelet domain are quite different from the traditional

models used in the biological studies, where usually an intercept or slope is considered as

random and the impact of random changes of this effect is well understood. In general,

the wavelet-based random-effect model will have locally focused impact. In particular, if

the random-effect is placed on the coarser level of coefficients, random changes of a certain

wavelet coefficient could have a wide-range impact on many data points in the time domain.

If the random-effect is placed on the finer level of coefficients, the range of time-domain data

affected will be much narrower. Moreover, the supports of the coefficients in the coarser

levels are overlapped. This leads to a possible “compounding” effect from two adjacent
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(d) sigma = 5.44

Figure 3: Problems with the Traditional Data Models

coefficients when they are both random. When there are multiple random-effects at various

resolution levels of coefficients, the compounded impact is complicated. See section 3.2 for

details of the proposed random-effect model and for studies of exploring these properties.

3.2 Model Formulation

Denote by yi = [yi1, yi2, · · · , yiN ]T a vector of N equally-spaced data points from a signal

curve where N = 2J with some positive integer J and i = 1, 2, · · · ,M . The superscript

T represents the transpose operator. Let Y = [yT
1 ,y

T
2 , · · · ,yT

M ]T be the collection of M

multiple sets of functional data. When a discrete wavelet transform (DWT) W is applied to

a data set, the matrix of wavelet coefficients obtained from this transformation is D = Y W ,

where D = [dT
1 ,d

T
2 , · · · ,dT

M ]T , di = [di1, di2, · · · , diN ]T , and dim is the wavelet coefficient at

the mth wavelet-position for the ith data curve. See Mallat (1998; Chapter IV) for details

of the discrete wavelet transform. When W is orthonormal, the original observations Y

can be recovered using the inverse DWT. That is, through Y = DW T the original data

can be expressed as a linear sum of products of wavelet coefficients (cL,k and dj,k) and their
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corresponding wavelet-basis functions (φL,k(t) and ψj,k(t)) as follows:

f̃(t) =
∑
k∈Z

cL,kφL,k(t) +
J∑

j=L

∑
k∈Z

dj,kψj,k(t), (3)

where the resolution (or scale) level J is greater than the coarsest level L, and Z is the set of

positive integers. Note that if there are N data points, there will be N wavelet coefficients.

The data reduction procedure rests on the idea that many of the coefficients are set as zeros

such that only a smaller number of bases are used to “reconstruct” the original data curve.

See Vidokovic (1999) for more details of the wavelet approximation models.

In the literature of random-effect models (Zhang et al., 1998), which variable is a

random-effect and which is a fixed-effect are determined based on “external information”

(e.g., covariate or prior knowledge). This research will follow that tradition. However, we

propose a simple guideline to find the random-effect variable. See Example 2 for the use

of the normal probability plot to identify the seven random effects from all wavelet coeffi-

cients for modelling antenna data curves. The following examples explains the role of the

random-effect in the wavelet models.

Example 2. Consider a simple example with the functional data shown in Figure

4(a) (in solid line) from the nominal process of a semiconductor thin-film deposition experi-

ment. Assume that there is only one random coefficient c4,2. The dotted line in Figure 4(a)

represents the data-curve reconstructed with only fixed-effect wavelet coefficients. The solid

line in Figure 4(b) presents the reconstructed data curve with both fixed- and random-effect

curves added together, where the dashed line is a realization of the random-effect c4,2 mul-

tiplied by its wavelet basis. Note that only the data in the support area around 50 to 85 are

affected by this random effect. Figure 4(c) presents another set of curves similar to Figure

4(b), but the random-effect c4,2 is generated far away from its mean. Thus, the shape of

the dashed line is quite different from what we see in Figure 4(b), and then the sum of the

fixed- and random-effects will be different from the original curve. Most difference occurs

around the peak (around the time point 70). See Example 4 for more explorations with the

real-life antenna data.
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(b) Simulated Curve (solid line) and Random-effect curve (dashed line). 
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(b)Another Set of Simulated Curve Similar to (b) 

Figure 4: Impact of Random-effects

Define um as one if the wavelet coefficients at the mth wavelet-position is a random-

effect; zero, otherwise, where m = 1, 2, . . . , N . Here, m can be at any resolution level

described in Eq. (1). Denote by V = [u1, u2, ..., uN ]T a column vector. Define U =

[V T , . . . ,V T ]T with V repeated M times as a column of M × N indicator variables for

locating the coefficients that are random.

The distributions of the random coefficients Rm’s are assumed to be independent normal

with mean zero and variance τm2. Figure 5 in Example 3 shows an example that the assump-

tion of normality is reasonable in the analysis of antenna data. Besides the “between-curve”

variation from these random effects, the “within-curve” variation of wavelet coefficients is

characterized by the common process variance σ2 for all curves. Other than these two

sources of variations, these M replicated curves have a common mean structure for all

wavelet coefficients. Using the similar notation of U , the mean column vector is defined

as θ = [θvN
T , . . . ,θvN

T ]T , where θvN
T is repeated M times and θvN = [θ1, θ2, . . . , θN ]T .

Thus, the model of the wavelet coefficients D from M curves is as follows:

D = θ + R + Z, (4)
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where R = [RvN
T , . . . ,RvN

T ]T , RvN = [R1 × u1, . . . , RN × uN ]T and Z is a column of

M × N random errors with the normal distribution N(0, σ2). Note that the indicators

of the random-effects um’s are involved in the vector R. Based on this model, Figure 7

shows the comparison of the simulated multiple curves to the original data. Overall, the

model captures key characteristics of variations in multiple curves. See the next example

for details of deciding which coefficients are random.

Example 3. The formal research of deciding which coefficient is random in the

wavelet-thresholding content (for data reduction and denoising purposes) is complicated

and thus deferred to a future research. The following presents a simple idea of using the

popular normal quantile-quantile plot (see Figure 5) to identify the random-effects, which

exhibit excessive variance compared to the process variance σ2 from random noises.
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Figure 5: Normal Quantile-Quantile Plot of ln s2m .

Our decision of random effects for D is rested on an implicit hypothesis of so called

“factor sparsity” in the analysis of active effects without replicates (see Lenth (1989) and

Box and Meyer (1986) for details and examples). That is, there will be only a few random-

effects with a “significantly” large size of variance in the wavelet coefficients from replicated
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data curves. Specifically, note that

(M − 1)s2m =
M∑
i=1

(dim − dm)2 ∼ σ∗
2χ2

M−1, and σ∗
2 = σ2 + umτm

2, (5)

where χ2
a is the chi-square distribution with a degree of freedom. Taking a logarithm to this

sample variance yields ln s2m = lnσ∗2 + ln[χ2
M−1/(M − 1)]. The distribution of ln s2m can be

approximated by N(lnσ∗2, 2(M − 1)−1). When the wavelet coefficient is a random effect,

i.e., um = 1, the mean of s2m will become σ2 + τ2
m which should be significantly larger than

σ2. Thus, when plot the quantiles of ln s2m against the quantiles of N(lnσ2, 2(M − 1)−1) in

a normal probability plot, the random-effect coefficients will not be in a straight line. The

variance σ2 can be estimated by a pooled-variance using Donoho and Johnstone’s (1994)

robust estimate:

σ̂2 = M−1
M∑
i=1

0.6745−1median(| dim |: N/2 + 1 ≤ m ≤ N). (6)

Figure 5 shows that there are several significantly larger-size variance terms. For ex-

ample, the first seven in the upper-right corner of the plot show a clear departure of the

straight line. The top 11 (or even 24) coefficients (in terms of their between-curve variance)

could also be considered as random effects.

3.3 Antenna Data Example

Example 4. Consider only the first seven effects in the upper-right corner of Figure 5

as random wavelet coefficients. That is, the coefficients c4,8, c4,9, c4,10, c4,11, c4,12, d4,16, and

d5,32 are random. See Figure 7(a) for their wavelet bases. Most of them have overlapped

support areas, and the coefficient cL,k’s with father wavelets φL,k(t) have wider support

than dj,k’s with mother wavelets ψj,k(t). Because all the support areas from these random-

effects are only on the very left and very right sides of the antenna data, Figure 6(b) shows

that when generating several realizations of random-effects, only the very left and very

right sides of the antenna data curve have significant random fluctuations. Moreover, as

experienced in Figure 3, this type of fluctuations is very different from the data noises. (See

in the bottom two figures of Figure 3).
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Figure 6: Wavelet Bases of Random-effects

Figure 7 shows different cases of simulated antenna data from the random-effect model

with three different numbers (7, 11 and 24) of random-effects. Because the results look alike,

we will use the case with seven random-effects in further studies for simplicity. Note that

the simulated data curves based on the normality assumption of random-effects resemble

the original data curves. Thus, we will stay with the normality assumption without any

transformation. This assumption also makes the development of data-reduction procedures

easier.
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Figure 7: Simulated Multiple Sets of Data Curves
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CHAPTER IV

VERTICAL ENERGY THRESHOLD(VET) WITHOUT

CLASS INFORMATION

4.1 Introduction

Most of the work in the wavelet literature for handling multiple data curves are to apply data

denoising (or reduction) procedures to each curve one at a time. Then, they use the union

or intersection of wavelet coefficients selected from individual data curves to construct a

“combined” representative set of coefficients for approximating the original data curves. See

Lada et al. (2002) for such an example. Thus, their selections are based on the optimality

criteria designed for a single data curve, not for multiple data curves. This chapter presents

a criteria designed for multiple curves and its optimization details.

According to the previous literatures in data shrinkage methods, it was found that the

reconstructed signals using a fewer number of wavelet coefficients provided a very reasonable

approximation to the original data. In other words, the selected wavelet coefficients are

rather representative in most of the data analysis. The newly proposed method in this

proposal will also follow the principle that large magnitude wavelet coefficients (in their

absolute value) will better characterize each signal patterns and retain more information.

This principle will be expanded to that the large magnitude wavelet vertical energy will

better characterize the whole set of signals and retain more information against the problem

of heterogeneously selected wavelet coefficients for different single curves.

Figure 1 represents a kind of data in a form of curves. This data is from a project

sponsored by Nortel and the NSF. The goal of the project was to develop timely product

testing procedures to monitor antenna production quality, and to help trouble-shoot process

imperfections. Nortel built a product functionality testing chamber to collect antenna signal

patterns similar to data plotted in Figure 1. Although more detailed data could be obtained,
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for the convenience of our data processing, for each of the 28 antennae studied we used at

128 elevation*150 azimuth grid to collect 19200 signal-amplitudes. The cusps and lobes of

the azimuth cut of antenna data presented are difficult to handle by standard techniques

such as polynomial regression or Fourier transform. Looking into the antenna data closely,

we found that there is a certain systematic pattern useful in further data analysis. For

example, although the data in azimuth cuts have many humps, data in the elevation cuts

are rather smooth. It seems that there are several curves which are just vertical shifted

from a curve with a certain pattern. However, unfortunately, even though almost all curves

have a very similar systematic pattern, sets of thresholded wavelet coefficients for different

curve are quite different each other after discrete wavelet transformation is applied to each

curve.

In order to deal with heterogeneously selected wavelet coefficients for different single

curves, we come up with several ideas. First, one can use the sum of wavelet coefficients at

same position across all curves. However, in the case that many coefficients have different

sign and same magnitude, the simple sum can not measure the importance of the wavelet

positions. Secondly, the sum of absolute value of wavelet coefficients can be considered.

Although this idea can successively measure the importance of a few wavelet positions,

absolute sign causes the difficulty of deriving the distributional characteristics of meta-

data(data of data). Thus, in this research, we introduce the wavelet vertical energy metric

of multiple curves and utilize it for the efficient data reduction method.

4.2 Overall Relative Reconstruction Error(ORRE)

Inspired by the popularity of the scalogram (see Vidakovic (1999), page 289 for details),

we develop the following vertical-energy based thresholding (VET) procedure. When a

wavelet-position is selected, coefficients from all curves at this position will be selected.

Learning from the hard-thresholding idea used in the procedures for single-curve based data

reduction (see Jeong et al., 2003), we propose the following minimization criteria,Overall

Relative Reconstruction Error;ORRE,:

ORRE(λ) =
∑N

m=1E[‖dvm(1− I(‖dvm‖2 > λ))‖2]∑N
m=1E[‖dvm‖2]

+ ξ ·
∑N

m=1E[I(‖dvm‖2 > λ)]
N

. (7)
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Note that the thresholding procedure described in the indicator function I(‖dvm‖2 > λ) is

based on a “vertical energy” metric,

‖dvm‖2 = d1m
2 + d2m

2 + · · ·+ dMm
2, m = 1, 2, . . . , N, (8)

which is the sum of all wavelet coefficients at the mth wavelet-position. This metric is

similar to scalogram. However, in the scalogram applications, the coefficients are from the

same wavelet-resolution level based on data in a single curve, not from different data curves.

See Jeong, Chen and Lu (2003) for more details of the scalogram and its applications. Other

metric such as the sum of absolute value of the coefficients could be used. However, after

trying several choices we found that our vertical-energy is easier for deriving the optimum,

the estimate of the thresholding parameter λ and its distribution properties. Thus, this

article will not explore other methods.

The motivation of the criteria ORRE (overall relative reconstruction error) is from a

simple idea of balancing the reconstruction error and the data-reduction ratio. The use

of “normalizing constants” to make the two balancing terms compatible is critical. Note

that all the data-denoising procedures (Donoho and Johnstone, 1994, 1995) do not have this

type of normalization factors. Jeong et al. (2003) used empirical studies (in the single-curve

situation) to show that without the normalization factors, the procedures studied were not

effective for data-reduction purpose. This normalization idea is also motivated from many

engineering applications (e.g., Mallat, 1998, pages 378-391), where the reconstruction error

RE = ||f − f̂ ||/||f ||, where ||f || = (
N∑

i=1

f(ti)2)1/2,

is commonly used in comparing signal approximation quality. It characterizes the accuracy

of the approximation to the original data. Thus, the first component of the objective

function Eq. (7) represents a “normalized” reconstruction error from the approximated

wavelet model Y = D∗W T . This article utilizes a thresholding parameter λ to decide which

wavelet-domain data to keep and which to discard in decision-making analysis. Ideally, only

a small portion of the data satisfying dvm · I(‖dvm‖2 > λ)) should be selected for meeting

the data-reduction goal.
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The second component of Eq. (7) is the normalized number of coefficients used. Note

that there shall be an M factor in both numerator and denominator for the total number of

coefficients considered from all M data curves. However, they cancel each other. In order

to keep the representation or approximation model simple, this term acts as a penalty for

avoiding the use of excessive number of coefficients. Similar penalty ideas have been used

in ridge regression (Hastie et al., 2001, page 59) and neural network (Hastie et al., 2001,

page 356). For example, the ridge regression finds the optimal choice of estimate for the

regression coefficients by minimizing the following objective function:

N∑
i=1

(yi − β0 − β1xi1 − ...− βpxip)2 + ω

p∑
j=1

βj
2,

where ω is a weighting parameter like ξ in Eq. (7). Note that this objective function is not

normalized as done in Eq. (7).

The weighting parameter ξ is user-selected or provided by methods such as general-

ized cross-validation (GCV) (Weyrich and Warhola, 1998). However, as experienced from

Weyrich and Warhola (1998) further studies are needed for developing the GCV-like selec-

tion of ξ in our problem and understanding its properties. For simplicity, this article will

use ξ = 1, which places equal weights on both components in the follow-up studies.

In the “follow-up analyses” (see Section 4.4 for examples), the selected coefficients are

treated as the “reduced-size” data for various types of decision-making. Thus, we will deal

with a small size of wavelet-domain data instead of the large size of the original time-

domain data for saving computing time and storage space. The following section presents

the analytical properties of the VET method. Section 4 conducts simulation comparisons

of VET and single-curve based methods.

Remark: [1] In the objective function ORRE(λ), the thresholding parameter λ is

applied to all curves. When the traditionally used single-curve based data-denoising or -

reduction method is used on multiple curves, the thresholding parameters could be different

for distinct data curves. Even the idea of union or intersection could be used to select a

common set of wavelet positions across all curves to reconstruct the data, but in that case

the property of the thresholding parameters is changed. Thus, the properties of the resulted
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ad hoc procedures are unknown, and analytical study of their properties is needed in future

work.

[2] The main purpose of the ORRE-based data reduction method is to rigorously con-

struct a representative “reduced-size” data in many types of further analysis. The following

are a few examples. In developing statistical process control tools for monitoring com-

plicated function data, multiple sets of data curves are needed in “Type-I” studies for

establishing model parameters and so on. See Jeong and Lu (2004) for details. Sections

4.3 and 4.4 present classification and data visualization studies for several classes of mul-

tiple curves. Analysis of variance for complicated and large-size functional data could be

conducted on the VET-selected wavelet coefficients, where their wavelet bases for all data

curves are the same. Because our procedure is developed for general-purpose use, it can

be improved for specific decision-making analysis. For example, one can add some kind of

“class-separation” measures to ORRE for distinguishing curves in different classes. This

will possibly improve the accuracy of classification for data classes. Further investigations

are needed, and they are out of the scope of the studies in this thesis.

4.3 Optimal λ and Its Estimator

Solving the optimization problem with the objective function ORRE(λ) requires proof of

existence and uniqueness of the optimal solution. See Theorem 1 for details and Theorem 2

for an estimate of the thresholding parameter and its large-sample distribution properties.

Proofs are left in Appendices.

Theorem 1. Consider the model stated as D = θ + R + Z. The objective function

ORRE(λ) is minimized uniquely at λ = λNM , where

λNM =
N∑

m=1

E(‖dvm‖2)/N =
N∑

m=1

M(σ2 + θ2
m + umτ

2
m)/N = Mσ2 +M(

N∑
m=1

θ2
m + umτ

2
m)/N.

Since each wavelet coefficient is independent and distributed as normal, thus each

wavelet-position’s vertical energy follows a non-central chi-square distribution. Using this

result and following some calculus derivations, the theorem is proved.
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Proof of Theorem 1. Since ‖dvm‖2 is equal to
∑M

i=1 d
2
im, where dim’s are indepen-

dent and distributed as N(θm, umτ
2
m + σ2), it follows that Ym = ‖dvm‖2 has a non-central

chi-square distribution. That is, Ym ∼ (σ2 + umτ
2
m) χ2

(
M,M [θ2

m/(σ
2 + umτ

2
m)]
)
, where

E[Ym] = M(σ2 + θ2
m + umτ

2
m) and V ar[Ym] = 2M(σ2 + umτ

2
m)(σ2 + umτ

2
m + 2θ2

m).

Denote by

Λm(λ) = E[‖I(‖dvm‖2 < λ)dvm‖2] = E[I(‖dvm‖2 < λ)‖dvm‖2]

= E[I(Ym < λ)ym] =
∫ λ

0
ymfm(ym)dym,

and

Ψm(λ) = E[I(‖dvm‖2 > λ)] = Pr(‖dvm‖2 > λ)

= Pr(Ym > λ) = 1−
∫ λ

0
fm(ym)dym,

where fm(ym) is a noncentral chi-square density of Ym. It follows that

N∑
m=1

E[‖dvm(1− I(‖dvm‖2 > λ))‖2] =
N∑

m=1

E[‖dvm‖2I(‖dvm‖2 < λ)] =
N∑

m=1

Λm(λ).

Then, ORRE(λ) can be written as

ORRE(λ) =
∑N

m=1E[‖dvm(1− I(‖dvm‖2 > λ))‖2]∑N
m=1E[‖dvm‖2]

+
∑N

m=1E[I(‖dvm‖2 > λ)]
N

=
∑N

m=1 Λm(λ)∑N
m=1E[‖dvm‖2]

+
∑N

m=1 Ψm(λ)
N

.

Because

∂Ψm(λ)/∂λ = ∂

(
1−

∫ λ

0
fm(ym)dym

)
/∂λ = −fm(ym) < 0

and

∂Λm(λ)/∂λ = ∂

(∫ λ

0
ymfm(ym)dym

)
/∂λ = λfm(λ) = −λ∂Ψm(λ)/∂λ,

then

∂ORRE(λ)
∂λ

= −λ

(
N∑

m=1

∂Ψm(λ)
∂λ

)(
1∑N

m=1E[‖dvm‖2]

)
+

1
N

(
N∑

m=1

∂Ψm(λ)
∂λ

)

=

(
− λ∑N

m=1E[‖dvm‖2]
+

1
N

)(
N∑

m=1

∂Ψm(λ)
∂λ

)
= 0
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if and only if λ =
∑N

m=1E(‖dvm‖2)/N .

Theorem 2. A simple and closed-form estimate of the thresholding parameter λNM is

the following moment estimate,

λ̂NM =
N∑

m=1

M∑
i=1

d2
im/N.

Then, λ̂NM is a strongly consistent estimate of λNM , and its asymptotic distribution is
√
N(λ̂NM−λNM )/σ∗NM

d−→ N(0, 1), where (σ∗NM )2 = 2M
∑N

m=1(σ
2+umτ

2
m)(σ2+umτ

2
m+

2θ2
m)/N.

The reason that we did not present the maximum likelihood estimate is due to the use

of robust estimating procedure in Eq. (6) for the σ2, instead of its MLE.

Proof of Theorem 2. Since DWT is orthonomal, |θm|, m = 1, 2, . . . , N, are uniformly

bounded as N −→ ∞. Without loss of generality, we assume that |θm| < C1, 0 < τ2
m <

C2, m = 1, 2, . . . , N, where C1 and C2 constants. Therefore,
∞∑

m=1

V ar(
M∑
i=1

d2
im)/m2 =

∞∑
m=1

V ar(ym)/m2 =
∞∑

m=1

2M(σ2 + umτ
2
m)(σ2 + umτ

2
m + 2θ2

m)/m2

<
∞∑

m=1

2M(σ2 + C2)(σ2 + C2 + 2C1)/m2 <∞, where M <∞.

Thus, according to the Kolmogorov Theorem (Serfling, 1980, page 27), we conclude that(
1
N

N∑
m=1

(
M∑
i=1

d2
im)− 1

N

N∑
m=1

E(‖dvm‖2)

)
w.p.1−→ 0.

That is,
(
λ̂NM − λNM

)
w.p.1−→ 0

It is sufficient to verify the Lindeberg-Feller theorem (Serfling, 1980; page 29) for showing

the asymptotic normality of λ̂NM . Let Ym be independent with means µm, finite variance

σ2
m and distribution function Fm. Suppose that B2

N =
∑N

m=1 σ
2
m satisfies σ2

N/B
2
N −→ 0,

B2
N −→∞ as N −→∞. Then, according to the Lindeberg-Feller theorem,

1
N

N∑
m=1

Yi is AN

(
1
N

N∑
m=1

µm,
1
N2

B2
N

)
if and only the Lindeberg condition,

N∑
m=1

1
B2

N

∫
|t−µm|>εBN

(t− µm)2dFm(t) −→ 0, N −→∞, ε > 0,

32



is satisfied. In our problem, the notation can be interpreted as follow:

λ̂NM =
N∑

m=1

Ym/N, Ym ∼ (σ2 + umτ
2
m) χ2(M,Mθ2

m/(σ
2 + umτ

2
m))

λNM =
N∑

m=1

µm/N, µm = E(Ym) = M(σ2 + θ2
m + umτ

2
m)

(σ∗NM )2 = B2
N/N =

N∑
m=1

σ2
m/N, σ2

m = V ar(Ym) = 2M(σ2 + umτ
2
m)(σ2 + umτ

2
m + 2θ2

m).

Note that B2
n =

∑N
m=1 σ

2
m = N · CB, where CB is a finite constant. Then, the Lindeberg

condition in our problem can be satisfied as follows:

N∑
m=1

1
N · CB

∫
|t−µm|>ε

√
N ·CB

(t− µm)2dFm(t) =
N∑

m=1

1
N · CB

O

(∫
t>µm+ε

√
N ·CB

(t− µm)2dFm(t)
)

=
N∑

m=1

1
N · CB

O

(∫
tε
√

N ·CB

t2fm(t) dt
)

=
N∑

m=1

1
N · CB

O
(
ε2 ·N · CB · fm(ε

√
N · CB)

)
−→ 0.

Note that it is true that fm(ε
√
N · CB) converge to zero as N goes to infinity using the fact

that fm(t) is a noncentral chi-square density function.

4.4 Illustrative Example

The popular testing data curve in Mallat (1998, page 378) is used for our simulation studies.

Three models are considered. Model 1 has only one random effect set at the coarsest wavelet

resolution level. Model 2 entertains two random effects, one at the coarsest level and the

other at the second coarsest level. Model 3’s random effects includes all coefficients at the

coarsest level (denoted as “Case 1”; see Figure 8(a) for data), the second coarsest level

(denoted as “Case 2”; see Figure 8(c) for data), or both of them (denoted as “Case 3”; see

Figure 8(e) for data). The standard deviations (s.d.’s) τm of the random effects for Model

3 are all set at 4.5 and the s.d. σ for the noise error is set at 1. Other s.d.’s are explored

as well. The conclusion is similar and thus skipped here. Each curve in Figure 8(b), (d),

and (f) is an individual-curve example of each 10 simulated curves of (a), (c), and (e),

respectively.

Although the data structures in Model 3 are much more complicated than the other

two models, and the supports of these random effects are complicatedly overlapped, the
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observations learned from these three models are alike. Thus, only the results for the most

complicated model, Model 3, are presented here. Three methods are applied to the simulated

data: VET and VisuShrink with union and VisuShrink with intersection, where VisuShrink

is a commonly used single-curve based data denoising procedure developed in Donoho and

Johnstorne (1994). Table 1 presents comparison results using the following measures: (1)

Relative Error: RE=
∑

i ‖f i − f̂ i‖/
∑

i ‖f i‖; (2) Reduction ratio (%): RR=(1 - Number

of selected positions/N)× 100; (3) Overall Relative Reconstruction Error: ORRE = (1)

+ (2). After 400 simulation runs, the average of each measure in all these three cases is

reported. The standard deviations are all less than 0.0001 so that they are not presented

in the Table 1. Results in Table 1 show that VET has about 95% data reduction ratio,
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Figure 8: Simulated Data Curves from Model 3

which is quite aggressive. However, as seen from Figure 9, when using only 5% of the data,

the original data curves can be constructed satisfactorily. Compared to the reconstruction

curves from the other two methods, although VET has larger relative errors than the other

methods, visually, the errors are reasonably small as seen in Figure 9. Compared in terms

of ORRE, VET performs the best for all cases considered. VET has about 18.91 % (Case 3)

to 28.36% (Case 1) smaller ORRE than the VisuShrink-intersection method, and 30.65 %
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Table 1: Comparison of Data-reduction Methods

Model 3
Method Case 1 Case 2 Case 3

VisuShrink RE 0.0061 0.0064 0.0061
(Union) RR 88.02% 86.9% 87.07%

ORRE 0.1258 0.1374 0.1354
VisuShrink RE 0.0064 0.0340 0.0366

(Intersection) RR 91.44% 91.93% 92.08%
ORRE 0.0920 0.1147 0.1158

RE 0.0234 0.0375 0.0437
VET RR 95.76% 94.76% 94.98%

ORRE 0.0659 0.0899 0.0939

(Case 3) to 47.62 % (Case 1) smaller ORRE than the VisuShrink-union method. A simpler

case such as Case 1 has larger difference. The VET method is applied to the real-life
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Figure 9: Reconstructed Data Curves

antenna data set consisting of 18 curves. Figure 10 presents the comparisons of the original

antenna data and the reconstruction from the VET method. In total, 39 wavelet positions

(the wavelet coefficients in the coarsest resolution level and the thresholded coefficients in

other resolution levels) were used out of 128. The data reduction ratio is 69.53% and the

35



reconstruction looks very reasonable and captures the patterns in peaks and valleys. See

Figure 10 for details.
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Figure 10: Reconstructed Antenna Data Curves

4.5 Decision based on the Reduced-size VET Data

When the data size is large, many standard software packages will face problems with limited

working space and the data analysis time will be longer. Some of the iterative real-time

data-exploration activities are not feasible in this situation. For example, in one of the

studies in Jeong et al. (2003), typical commercial cluster analysis software cannot process

3,600 data curves (with 1,024 observations in each curve). This section uses examples to

illustrate the potential of analyzing the reduced-size data obtained from the VET method

in various decision-making applications.

Four different groups of process signals in Figure 11 are constructed based on certain

modification of Mallat’s data. Compared to the Nominal Class data given in Figures 8 and

9, Fault Class 1 has a different shape in the first peak around time point 180. Fault Class

2 has a only one jump level (instead of two) between time points 750 to 900. Fault Class

3 does not have the second peak in time points 380 to 450 and also has a smaller vertical
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jump in time points 740 to 840. Each group has seven replicates (with 1,024 data points

in each replicate), and there are 32 random effects assumed in the coarsest level of wavelet

coefficients. The standard deviation τ of the random-effects is set at 20, and the standard

deviation of process noises is 0.5.

Apply the VET method to the 7× 4 = 28 data curves and select representative wavelet

coefficients. Based on these selected coefficients, we will make simple plots to see if these

four groups of data curves are very different. Moreover, we will conduct a hierarchical

classification study to these coefficients for distinguishing curves in these four groups. Figure
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Figure 11: Four Groups of Simulated Data Curves

12 shows the selected wavelet-positions using the VET method for the “combined data set”

from all four groups. The family of symmlet-8 is used in the discrete wavelet transformation

for all data curves in this experiment. The vertical energy metrics for all 1,024 positions are

displayed in six different panels representing wavelet’s resolution levels. The thresholding

value from VET is plotted in each panel, and the vertical energy larger than the threshold

is marked in “triangle.” It is found that all wavelet-positions (32 of them) in the coarsest

level c5,k are selected. Then, seven out of 32 positions in the second coarsest level d5,k,

three out of 64 positions in the next level d6,k, one out of 128 positions in d7,k, and none
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out of 256 positions in d8,k and none out of 512 positions in the finest level d9,k are selected,

respectively. Thus, 43 out of 1,024 wavelet-positions are selected to reconstruct all four

different groups of replicated data curves. This implies that the data reduction ratio is 95.8

%, i.e., only 4.2 % of the original wavelet domain data were used to reconstruct the original

time domain data with a little loss of accuracy (see Figure 13 for its visual presentation).

Importantly, the same wavelet-positions are used to reconstruct all four distinct groups of

data curves even though the curves in different groups could be very different. This is

important in further analysis such as wavelet-based functional analysis of variance studies.

In such analysis, these curves will be compared using the same set of “reduced-size” data,

which are the selected coefficients. To simplify the presentation and thus avoid many
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Figure 12: Vertical Energy at Each Resolution Level

replicated curves being placed in one plot, Figure 13 shows a pair of one representative

original and reconstructed data curves for each group of curves in each row. Overall, these

reconstructed curves capture the major differences among the four groups very well. In

particular, the difference between Fault Class 2 and Nominal Class in panels (d) and (h) in

the amount of vertical drop of the rectangle-shaped dip around 740 to 840 time points is

captured well. The uniqueness of Fault Class 1 in panel (b) at the first dip around 150 to
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Table 2: Elapsed Time for Hierarchical Clustering Analysis

Elapsed Time (seconds)
Number of Total Replicated Signals VET Wavelet Domain Original Time Domain

28 0.03 0.31
112 0.24 2.80
448 7.62 53.68
896 55.27 225.50

200 time points compared with the other groups is well depicted. Flat signal around 430

time point of Fault Class 3 in panel (f) is well distinguished from the other groups.

Many types of decision analysis can be applied to the VET-selected wavelet coefficients,

here, we apply the VET-based reduced-size data for cluster analysis. Hierarchical clustering

(see Duda, Hart, and Stork (2001) for its definition) is a way to investigate the grouping

of a data set. The result is the construction of a hierarchy, which is a tree-like structure

(dendrogram). In the structure, each data curve is treated as an object and is presented

on the x-axis, and the other axis portrays the steps in the hierarchical procedure. Starting

with each object represented as a separate class, the dendrogram graphically shows how

the clusters are combined at each step of the procedure until all are contained in a single

class. Figure 14 shows the details of its application to the above four groups of curves

with 28 total replicates. The results from both wavelet-domain reduced-size data and the

original time-domain data are exactly the same in the dendrogram plot. In fact, even

as the number of replicates increases, e.g., 112, 448 or 896, the dendrograms from both

wavelet and time domains are the same. Moreover, both achieve the perfect clustering: the

identified class membership from the dendrogram is the same as the class assignment used

to generate the data curves. Table 2 reports an experiment of elapse-time calculation

for processing the wavelet-domain reduced-size data and the original time-domain data

using the dendrogram. Matlab’s commands, Tic(at starting) and Toc(at ending), provide a

convenient way to calculate the elapsed time. In our experiment, the above random-effect

model is used to generate different numbers of total replicates, e.g., 28, 112, 448, and 896,

with equal size of replicates for each of the four groups. The experiments were implemented
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Figure 13: Reconstructed Data Curves

in MATLAB with Intel Pentium-III 996 MHz processor. When small number of replicates

were used for clustering analysis, the difference of computing time was negligible. However,

as the number of replicates increased, the differences becomes more significant. For the

total of 896 replicates, the processing time in the original time-domain data was five times

larger than the reduced-size data.

Figures 15 (a) and (b) plot a few selected wavelet coefficients pairwisely. Depending

on the choice of the coefficients, the separation between the replicates in the four groups

is different. Figure 15(c) plots the scalogram of all selected coefficients at the coarsest

two resolution levels. The scalogram plot has the best separation among the three cases

presented here. Since our current research focuses on one class of data curves, future

research is needed to select a VET-like metric considering class separability for increasing

the separation among groups of replications.
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Figure 14: Hierarchical Clustering by the Dendrogram
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Figure 15: Clusters of Data Curves
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CHAPTER V

VERTICAL GROUP-WISE THRESHOLD(VGWT) WITH

CLASS INFORMATION

5.1 Introduction

It is conjectured that VET(Vertical Energy Threshold) method must be very efficient espe-

cially when a set of curves are homogeneous in their pattern. Cluster analysis provides us

the class information of each curves which indicates that the curves in same class probably

have same or similar pattern even though there are a little noise. Thus, as long as we have

the class information of each curve, VET can be applied to each class successfully. In this

section, we would like to explore some further problems of applying VET to the process

containing multi-classes in its output.

As indicated in the previous section, the number of wavelet positions used to represent

a class can be different for different classes from the same process. Moreover, even if the

number of selected wavelet coefficients are same, the wavelet positions can be different. Our

challenge is to decide on a set of wavelet positions to represent adequately the overall data

structure of the process and perform further data mining analysis, there are a number of

different selection strategies based on VET such as union, intersection, and voting strategy.

There have not been any research result about how these different strategies affect the

efficiency of representing the data structure and how to measure the efficiency itself. The

motivation of exploring this aspect is based on the assumption that there might be the most

suitable selection strategy depending on different process in a sense of statistical inference.

It can be said that the most suitable selection strategy can be regarded as an intrinsic

parameter of the system. If we can clarify the most suitable strategy for different processes,

it will enable us to perform more justified data reduction procedure in real practice. We

will explore the mathematically rigorous best strategy selection scheme using objective
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function-based comparison.

Also, an expansion of this research is directed to combine the class separability concept

with our key components of data reduction goal. It was motivated that our reduced size

data can maximize the ability to make different classes further distinguished (separated)

each other in terms of distance of each class means. This combination, called Vertical

Group-Wise Threshold(VGWT) method, focuses the ability to retain salient differences

between classes. The absolute value of each class means at wavelet positions were taken

into account to compare with a common threshold λ in order to reduce the size of data.

Use of the absolute value of each class mean at wavelet positions was reasonable approach

since class means at wavelet positions are good representation of different classes at each

wavelet positions and the absolute value can successively measure the importance of wavelet

positions. In order to achieve several purposes such as signal reconstruction accuracy, data

reduction efficiency and retaining the class separability as much as possible in the reduced-

size data, the guideline to get the optimal threshold is proposed.

5.2 VET for Data with Class Information

5.2.1 Selection Strategies (Union, Intersection and Voting)

For simplicity of notations, we newly define dijk, a wavelet coefficient at jth position of ith

curve in kth class, and dk
vj = (d1jk, d2jk, . . . , dijk, . . . , dMkjk)> as wavelet vertical vector of

class k where k = 1, 2, . . . ,K is an index for classes, j = 1, 2, . . . , N for wavelet positions,

and i = 1, 2, . . . ,Mk for curves in class k. We use xjk instead of ‖dk
vj‖2 without any

confusion and Xj for a set of all xjk at position j.

xjk = ‖dk
vj‖2, k = 1, 2, . . . ,K, j = 1, 2, . . . , N

Xj = {xj1,xj2, . . . , xjk} j = 1, 2, . . . , N

We will use an indicator variable of several selection strategies such as Union, Intersec-

tion, and Voting denoted by Λunion(Xj), Λintersept(Xj), and Λvoting(Xj) respectively. See

Figure 16 and 17 to understand better the direct use of VET for several classes and choices

of several selection strategies.
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Figure 16: Direct use of Vertical energy threshold.

One can use the union set of all wavelet positions selected by VET method for the

all class data sets. This approach gives a comprehensive selection of the representative

coefficients that covers many of the data fluctuations across all classes and captures the

most important features of each classes. However the number of wavelet positions in the

union set can be very large against efficient data reduction. The indicator variable for Union

strategy will be obtained like below.

Λunion(Xj) = max(I(xj1 > λ1), I(xj2 > λ2), · · · , I(xjk > λK))

=
K∐

k=1

I(xjk > λk)

= 1− (1− I(xj1 > λ1))(1− I(xj2 > λ2)) · · · (1− I(xjk > λK))

An alternative approach is to select the intersection set of all wavelet positions that are

selected by the VET method on every class. This strategy will keep the number of selected

wavelet positions smaller than any other strategies. The weakness of this method is that

the more detailed data patterns for each class can be ignored so that it will make the data
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Figure 17: Example of several selection strategies.

model approximation overly smoothed. The indicator variable for Intersection strategy will

be obtained like below.

Λintersection(Xj) = min(I(xj1 > λ1), I(xj2 > λ2), · · · , I(xjk > λK))

=
K∏

k=1

I(xjk > λk)

= I(xj1 > λ1)I(xj2 > λ2) · · · I(xjk > λK)

The above two strategies can be generalized to the other strategy, which is called Voting

strategy. This approach is to select the set of all wavelet positions that are selected by the

VET method on at least a certain number of classes, say C classes. If C equals one, then

it means Union strategy, and C equals K (the number of all classes), it means Intersection

strategy. This idea could lead to a theoretically justified procedure for fining optimal value

for C. However, it is still under development and its performance remains to be studied.
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The indicator variable for Voting strategy with constant C will be obtained like below.

Λvoting(Xj) =


1 if

∑K
k=1 I(xjk > λk) > C

0 otherwise.
(9)

In the next section, The objective function for best selection strategy problem will be

formulated based on the indicator variables introduced in this section. It turns out that

the least voting strategy constant C is the key of strategy selection and an optimal C for a

certain system should be numerically obtained from previous data.

5.2.2 Direct Use of VET to Individual Class

In Chapter 4, we obtained the optimal threshold value for each class such as λk where k is an

index for classes. The objective function-based best strategy selection problem addressed in

the previous section can be simplified to the problem of finding optimal C of the following

objective function

ORREvoting =
E
[∑N

j=1

∑K
k=1 ‖d

k
vj(1− Λvoting(Xj))‖2

]
E
[∑N

j=1

∑K
k=1 ‖d

k
vj‖2

]
+
E
[∑N

j=1 Λvoting(Xj)
]

N

=
E
[∑N

j=1

{∑K
k=1 ‖d

k
vj‖2

}
(1− Λvoting(Xj))

]
E
[∑N

j=1

∑K
k=1 ‖d

k
vj‖2

]
+
E
[∑N

j=1 Λvoting(Xj)
]

N

=
E
[∑N

j=1

{∑K
k=1 xjk

}
(1− I(

∑K
k=1 I(xjk > λk) > C))

]
E
[∑N

j=1

∑K
k=1 xjk

]
+
E
[∑N

j=1 I(
∑K

k=1 I(xjk > λk) > C)
]

N

The first component of above objective function represents a ”normalized” reconstruc-

tion error from the approximated wavelet model structured by selected wavelet coefficients

using VET and the least voting strategy constant C. The term dk
vj · Λvoting(Xj) is the
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shrunken vertical vector of wavelet coefficients for class k by hard thresholding. The second

component is the normalized number of coefficients used. A constant multiplier α that can

be added to the second term may be considered to control the trade-off between the two

terms as mentioned before.

Particularly, when C is equal to 1 or K, the above objective function equals to the

followings respectively.

When C = 1

ORREunion =
E
[∑N

j=1

{∑K
k=1 xjk

}∏K
k=1(1− I(xjk > λk))

]
E
[∑N

j=1

∑K
k=1 xjk

]
+
E
[∑N

j=1

∏K
k=1(1− I(xjk > λk))

]
N

When C = K

ORREintersection =
E
[∑N

j=1

{∑K
k=1 xjk

}
(1−

∏K
k=1 I(xjk > λk))

]
E
[∑N

j=1

∑K
k=1 xjk

]
+
E
[∑N

j=1

∏K
k=1 I(xjk > λk)

]
N

In the voting strategy, optimal selection of constant C might be possible through nu-

merical search technique since closed form solution does not exist.

REMARKS 5.2.1. :

1. The λk we obtained is optimal for class k itself. However, when we deal with several

classes all together with objective function, we can not assure that {λ1, · · · , λK} is optimal

for objective function with several classes. There might be the optimal set of thresholds

{λ∗1, · · · , λ∗K} for several classes.

2. In order to find the optimal set of thresholds {λ∗1, · · · , λ∗K}, we might need to use

some numerical search methods such as Newton-Raphson method using {λ1, · · · , λK} as the

starting point. However, we don’t hereby dig out the solution for this problem, but clarify

the questions we confront.

47



5.3 Vertical Group-Wise Threshold(VGWT) with Between-
Class Separability

5.3.1 Class Separability with Threshold Rule

Generally speaking, classification performance depends on four factors : class separability,

the training sample size, dimensionality, and classifier type(or discriminant function). To

improve classification performance, attention is often focused on seeking improvements on

the factors other than class separability because class separability is usually considered

inherent and predetermined. The objective of this section is to call attention to the fact that

class separability can be increased by careful selection of reduced sized data as compensation

of possible loss of data reduction efficiency.

The most important property of a classification system is its ability to find the most

informative features describing the objects that are classified, because it guarantees as

compact decision rules as possible. In order to design a simple and efficient classification

and segmentation scheme one has to select features that are most effective in showing the

salient differences between the signals. This selection may or may not be appropriate for

other tasks such that approximation or compression. In other words the selection must

give the best minimal set of features in terms of the separability of signal classes in the

feature space. Examples of quantitative measures of class separability are Bayes error,

Bhattacharya distance, divergence based or variational distribution distances and scatter

matrix based measures.

Unlike Mean Square Error(MSE) which is the most widely used criterion for signal repre-

sentation, class separability measures are typically invariant under any non-singular, linear

or non-linear, transformation. However any non-singular mapping used for dimensionality

reduction results in losing some of classification information. Our objective is to find the

mapping that provides the maximum class-separability for a given range of acceptable re-

duction in space dimension satisfying comparatively accurate signal approximation as well.

In other words we are searching among all possible transformations for the best subspace

which preserves class-separations as much as possible in the lowest possible dimensional

space fulfilling good signal reconstruction .
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A simplified and yet elegant way of formulating criteria of class separability is based on

within and between class scatter matrices which are used widely in discriminant analysis

of statistics. Usually within-class, between-class, and mixture scatter matrices are used to

formulate the criteria of class separability. A within-class scatter matrix of the input vectors

X for L classes is expressed by

SSWX =
L∑

i=1

PiE[(X −mi)(X −mi)T |wi] =
L∑

i=1

PiΣi

where Pi(Pr(w = wi)) means the prior probability of class i, mi is the conditional mean

vector and Σi is the conditional covariance matrix. A between class scatter matrix is

expressed as

SSBX =
L∑

i=1

Pi(mi −m0)(mi −m0)T =
L−1∑
i=1

L∑
j=i+1

PiPj(mi −mj)(mi −mj)T

where m0 is the overall mean vector. The optimal features are determined by optimizing

the Fisher criteria given by

tr(SSW−1
X SSBX) or tr(SSBX)/tr(SSWX)

However, this criteria will be calculated by a single set of samples from a certain distribution

of signal. So the more nature-oriented criteria of class-separability would be

JX = E[tr(SSW−1
X SSBX)] or E[tr(SSBX)]/E[tr(SSWX)]

. So we are seeking a transformation A from Rn to Rm, X ⊂ Rn −→A Y ⊂ Rm, with

m < n such that A optimizes JY , i.e. minimizes the drop in cost JX − JY incurred by

the maximum reduction in the feature space dimensionality satisfying the high accuracy of

signal representation using Y .

In order to define the class separability measure in our context, we define dijk, a wavelet

coefficient at jth position of ith curve in kth class where k = 1, 2, . . . ,K, j = 1, 2, . . . , N ,

and i = 1, 2, . . . , nk. Denoted by d.jk the average of dijk’s over all i = 1, · · · , nk curves in the

kth class, and d.j. the average over all curves from all classes at jth wavelet atom position.

Let us take a given input dh11, · · · ,dhnKK where dhik = {di1k, di2k, · · · , diNk} (i = 1, · · · , nk

and k = 1, · · · ,K) is N-dimensional row vector (horizontal vector), i.e. N is the total number
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of wavelet atom positions. Let the input matrix Dn×N = {dh11, · · · ,dhnKK}T be formed

by the row vectors dhik where n = n1 + · · ·+nK . The inputs should be classified into classes

k (k = 1, · · · ,K) which possess a priori probabilities Pk and the cardinality of the classes

is nk. Pk can be estimated by nk
n . Let D′

n×N ′ = {d′h11, · · · ,d′hnKK}T be generated by a

thresholding rule (feature selection technique) from D, where d′hik are N ′-dimensional row

vector. (N ′ < N). D′ is generated by deleting some N − N ′ columns of D. A criterion

to measure the class separability is defined as J(D′) =
E[tr(SSB

D′ )]

E[tr(SSW
D′ )]

where SSBD′ is the

between class scatter matrix and SSWD′ is the within class scatter matrix of D′ which is

transformed by a certain thresholding rule such as D′ = Λ(D, λ).

At this stage, as we discussed in the previous section, there are several options of the

thresholding function to decide N − N ′ columns of D(e.g. N − N ′ numbers of j wavelet

atom positions out of N ) to be deleted for the reduction of feature space. Here we decide to

use the intersection concept using class mean d.jk. Thus, when dvj = {d1j1, · · · , dnKjK}T is

defined as n-dimensional column vector (vertical vector) in the input matrix D, the decision

whether jth wavelet atom position in the input matrix D should be deleted or not can be

made by a thresholding function such as

d′vj := Λ(dvj , λ) =

 dvj if Λintersection(dvj , λ) = 1

zero vector o/w

using the indicator function Λintersection(dvj , λ) at jth position such as

Λintersection(dvj , λ) = min(I(|d.j1| > λ), I(|d.j2| > λ), · · · , I(|d.jK | > λ))

=
K∏

k=1

I(|d.jk| > λ)

= I(|d.j1| > λ)I(|d.j2| > λ) · · · I(|d.jK | > λ)

where

I(|d.jk| > λ) :=

 1 if |d.jk| > λ

0 o/w
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Then the class separbility measure J(D′) in our context becomes

J(D′) = J(D, λ)

=
E[tr(SSBD′)]
E[tr(SSWD′)]

=
E[tr(SSBD,λ)]

E[tr(SSWD,λ)]

=
E
[∑N

j=1 (
∑K

k=1 nk(d.jk − d.j.)2 ·
∏K

k=1 I(|d.jk| > λ) )
]

E
[∑N

j=1 (
∑K

k=1(
∑nk

i=1(dijk − d.jk)2) ·
∏K

k=1 I(|d.jk| > λ) )
]

The use of the class mean d.jk in the indicator function was considered making sense that

it can be well used for several reasons. First, one may consider some assumptions for ease

of computation of J(D′) since E[tr(SSBD′)] is composed of linear combination of d.jk.

Second, since we have several classes of curves, it is our main interest to study how the

each class mean curve looks like. Then, the class mean can represent well each class so

that ‘reconstruction error’ term can be replaced with ‘class mean reconstruction error’ for

modelling accuracy concept. The practical implementation of this idea will be conducted

in the following section.

We can take advantage of computation with further assumption which can leads us to

mainly focus on the between class separability of the thresholded data. When all curves

are classified to several class, small difference of curves in magnitude is usually experienced

to decide that those curves are in same class. That is, we may assume that ‘within class

variance’ is quite small compared to ‘between class variance’. (exceptional case may be

possible though.) From the above assumption, the denominator of class separability term

can also be modified. Under the assumption of very small ‘within class variance’, applying

the thresholding rule to ‘within class variance’ of the original data does not make big

change in magnitude. Thus, we can get rid of the indicator variable for the denominator

of J(D′), then ‘within class variance’ term becomes a constant which is nothing to do

with the thresholding rule. Finally, we can only pay attention to ‘between class variance’

term to increase the class separability measure. Once we have reduced the size of data, it

is important to realize how much portion of the original between class separability can be

reflected in the reduced size data’s between class separability. So the ratio of E[tr(SSBD′)]
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to the E[tr(SSBD)] will be main interest and can be used as the measure of the efficiency

in terms of the class separability. The new measure of class separability of the reduced-size

data, called BCSR(Between Class Separability Ratio), is that

BCSR(λ) =
E[tr(SSBD′)]
E[tr(SSBD)]

=
E[tr(SSBD(λ))]
E[tr(SSBD)]

=
E
[∑N

j=1 {
∑K

k=1 nk(d.jk − d.j.)2 ·
∏K

k=1 I(|d.jk| > λ) }
]

E
[∑N

j=1

∑K
k=1 nk(d.jk − d.j.)2

]
5.3.2 Two-Stage Procedure

We propose a ”two-stage procedure” to achieve our several purposes. As mentioned before,

the informative features can be different according to different tasks so that the optimal

feature selection method also varies for different purposes as well. If one just wants to

maximize the ability to show the salient differences between signals, the number of in-

formative features(important wavelet atom positions in our context) could be very small.

However, we here still want to keep the important features for high level of accuracy in

signal approximation.

So we apply ORRE (Overall Relative Reconstruction Error) concept, like in the previous

chapter, in our new circumstance ( data knowledge with class membership information,

and different thresholding function) for balancing the accuracy of the signal class mean

reconstruction and high performance in data reduction in the first stage. More specifically,

our strategy here is that we first find optimal λ0 in the thresholding function for balancing

low level of the class-mean-reconstruction-error(CMRE) and large reduction in data size

that can be measured as the used-data-ratio(UDR). In order to balance these two objectives

CMRE and UDR, the criterion ORRE,which is a weighted sum of these two measure, will

be used like in the previous chapter.

Then, in the second stage, we decide a certain upper limit of ORRE according to the

engineering knowledge and historical experience so that we can get a certain range of possible

λ’s. It will guarantee that any λ in that range satisfies the acceptable level of ORRE. In the
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range of λ’s, we study the behavior of our class separability measure(BCSR; Between Class

Separability Ratio), then we find the optimal λ∗ which maximize the BCSR in the range

of λ’s. In certain case, it would be hard to find the upper limit of acceptable ORRE when

one does not have the engineering knowledge and historical experience. Even in this case,

we proposed a guideline of how to decide the upper limit(U) of ORRE. It will be discussed

in the chapter later.

5.3.3 ORRE-driven Optimal λ0

Similar to the optimization problem in the Chapter 4.2, we here still use the criterion

ORRE which is the weighted sum of two components; ”signal reconstruction error” and

”data reduction efficiency”.

Since we have several classes of multiple curves, we become more interested in the

signal class mean so that we use the signal-class-mean-reconstruction-error-ratio (CMRE)

for signal reconstruction error component.

CMRE(λ) =
E
[∑N

j=1

∑K
k=1 nk(d.jk − d.jk ·

∏K
k=1 I(|d.jk| > λ))2

]
E
[∑N

j=1

∑K
k=1 nkd

2
.jk

]
The nominator represents the signal-class-mean-reconstruction error which is the mean

square of difference between before and after thresholding. The denominator is ”normalizing

constant” which characterizes the accuracy of the approximation to the original signal

class mean data, which is same to the nominator in the case that none of j wavelet atom

positions is deleted. Thus, CMRE represents a ”normalized” reconstruction error from the

approximated signal class mean data after the thresholding rule is applied with a certain λ.

Ideally, a small value of this component explains good approximation performance.

The second component of ORRE is the used-data-ratio(UDR).

UDR(λ) = E

[∑N
j=1

∏K
k=1 I(|d.jk| > λ)
N

]
=

1
N

N∑
j=1

E

[
K∏

k=1

I(|d.jk| > λ)

]
It is the normalized number of coefficients used. Like the ORRE in the previous chapter,

note that there shall be an n = n1+n2+ · · ·+nK factor in both numerator and denominator

for the total number of coefficients considered from all n data curves. However, they cancel

each other.
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In order to estimate the expectation term(E) of both CMRE and UDR in the maxi-

mum likelihood manner, considering the invariance property of MLE, we can use the meta-

function Rjk(λ) with the assumption of normal distribution of d.jk with mean µjk and

variance σ2
jk, such as

Rjk(λ) = E[I(|d̄.jk| > λ)]

= 1− Φ
(
λjk − µjk

σjk

)
+ Φ

(
−λjk − µjk

σjk

)
where two common functions φ(y) and Φ(y) are defined as

φ(y) =
1√
2π

exp(−0.5y2)

Φ(y) =
∫ y

−∞
φ(z)dz

Details are explained and proved in the appendix 1.

Using the meta-function above, the CMRE and UDR can be expressed as follows

CMRE(λ) =

 N∑
j=1

{1−
K∏

k=1

Rjk(λ)}
K∑

k=1

nk(µ2
jk + σ2

jk)

 /

 N∑
j=1

K∑
k=1

nk(µ2
jk + σ2

jk)



UDR(λ) =
N∑

j=1

K∏
k=1

Rjk(λ)/N

Details for this derivation is proved in the appendix 3.

Due to the complexity of CMRE and UDR functions, it is impossible to get the closed

form solution of the optimal λ0 which minimize the ORRE(λ). From the derivation of

CMRE and UDR, the ORRE(λ) = CMRE(λ) + UDR(λ) can be computable in the most

computational software, such as Matlab, so that we can search the optimal λ0 which mini-

mize the ORRE(λ) in iterative procedure such as Golden-section search. More brute force

method to find the root of the function is a simple piece-wise plotting using acceptably

small interval.
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5.3.4 Optimal λ∗ with Known U

Here we consider the class separability term with respect to λ. The between-class-separability

measure with respect to λ, E[tr(SSB(λ))], is

E[tr(SSB(λ))] = E

 N∑
j=1

K∑
k=1

nk(d.jk − d.j.)2 ·
K∏

k=1

I(|d.jk| > λ)


and the original between-class-separability measure is

E[tr(SSB)] = E

 N∑
j=1

K∑
k=1

nk(d.jk − d.j.)2


Like the previous section, in order to estimate the expectation term(E) of both E[tr(SSB(λ))]

and E[tr(SSB)] in the maximum likelihood manner, considering the invariance property of

MLE, we can use the two other meta-functions Pjk(λ), and Qjk(λ) with the assumption of

normal distribution of d.jk with mean µjk and variance σ2
jk, such as

Pjk(λ) = E[d̄2
.jkI(|d̄.jk| > λ)]

=
{

1− Φ
(
λjk − µjk

σjk

)
+ Φ

(
−λjk − µjk

σjk

)}
(σ2

jk + µ2
jk)

−2σjk

{
φ

(
−λjk − µjk

σjk

)
− φ

(
λjk − µjk

σjk

)}
−σ2

jk

{(
−λjk − µjk

σjk

)
· φ
(
−λjk − µjk

σjk

)
−
(
λjk − µjk

σjk

)
· φ
(
λjk − µjk

σjk

)}
and

Qjk(λ) = E[d̄.jkI(|d̄.jk| > λ)]

=
{

1− Φ
(
λjk − µjk

σjk

)
+ Φ

(
−λjk − µjk

σjk

)}
· µjk

−σjk

{
φ

(
−λjk − µjk

σjk

)
− φ

(
λjk − µjk

σjk

)}
Then E[tr(SSB(λ))] and E[tr(SSB)] can be computed as below.

E[tr(SSB(λ))] =
N∑

j=1

K∑
k=1

nk(1−
nk

nT
)Pjk(λ)

∏
r 6=k

Rjk(λ)− 2
nT

N∑
j=1

∑
a 6=b

Qja(λ)Qjb(λ)
∏

r 6=a,b

Rjr(λ)

E[tr(SSB)] =
N∑

j=1

K∑
k=1

nk(1−
nk

nT
)(σ2

jk + µ2
jk)−

2
nT

(
N∑

j=1

∑
a 6=b

nanbµjaµjb)
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Details are explained in the appendix 1 and 2. Then our class separability measureBCSR(λ)

will be defined as

BCSR(λ) =
E[tr(SSB(λ))]
E[tr(SSB)]

Then, when we have the engineering knowledge and historical experience so that a

certain upper limit of ORRE, U , can be decided, the problem of finding optimal λ∗ in the

range of possible λ’s can be formulated as

max
λ

E[tr(SSB(λ))]

s.t. ORRE(λ) ≤ U

The objective function is E[tr(SSB(λ))] instead of BCSR(λ) because the only nomina-

tor E[tr(SSB(λ))] of BCSR(λ) is related to λ. So it is actually same problem of maximizing

BCSR(λ) with respect to λ.

The case that we do not have the engineering knowledge and historical experience for

deciding U will be covered in Section 5.3.5.

The solution of the constraint optimization problem above is

If U < min ORRE(λ), No feasible solution

else if U = min ORRE(λ), λ∗ = ORRE−1(U)

else if U > min ORRE(λ), λ∗ = {λ; λ = ORRE−1(U), λ < λ0}

= min ORRE−1(U)

The constraint ORRE(λ) ≤ U results in the range of λ such as {λ;min ORRE−1(U) ≤

λ ≤ max ORRE−1(U), U ≥ min ORRE(λ)}. Also E[tr(SSB(λ))] is a monotonically

decreasing function of λ ( see Lemma 5.3.1.). So the optimal λ∗ will be the smallest value

in the range of all possible λ’s. Then the proof of the optimal solution set is done.

LEMMA 5.3.1. E[tr(SSB(λ))] is a monotonically decreasing function of λ

For the proof of Lemma 5.3.1, see the appendix 4.
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Maximum Likelihood Estimator of Optimal λ

The theoretically optimal solution of λ∗ is proved as min ORRE−1(U ;µjk, σjk). Then

the MLE of the optimal λ can be obtained , according to the Invariance Property (see

appendix 5 ), as

λ̂ = min ORRE−1(U ; µ̂jk, σ̂jk)

where, with the fact that the distribution of d̄.jk is assumed as N(µjk, σ
2
jk), µ̂jk and σ̂jk are

the MLE of µjk and σjk respectively.

µ̂jk =
nk∑
i=1

dijk/nk

σ̂2
jk =

nk∑
i=1

(dijk − µ̂jk)2/n2
k

Then we need to solve the equation ORRE(λ̂) = U . Like most practical application, one can

not simply solve the equation in closed form. Instead one has to use iterative methods and

one of the most famous one is Newton-Rapson. We wish to apply Taylors Approximation

in solving h(λ) = ORRE(λ) − U = 0. Suppose λ0 is a ”good guess” of the solution to

h(λ) = 0. Then

h(λ̂) = 0 ≈ h(λ0) + h′(λ0)(λ̂− λ0)

Solving the last ”equation” gives

λ̂ ≈ λ0 −
h(λ0)
h′(λ0)

In this special practice we do have a ”good guess” λ0 with 0 because we are looking for the

minimum λ which make the equation equals zero and it tends to be a lot smaller than the

possible largest λ. The formula suggests the following iterative scheme which is known as the

Newton-Rapson algorithm. Start with some initial value λ0 and then calculate successively

λ1 ≈ λ0 −
h(λ0)
h′(λ0)

λ2 ≈ λ1 −
h(λ1)
h′(λ1)

λ3 ≈ · · ·
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In most (but certainly not all) problems arising in practice there will be very little change

in the λ-values after a few iterations. One can then stop and the final value is then taken

to be the maximum likelihood estimate.

Differentiating the h(λ) would not give a simple analytical form due to the complexity

of function itself such as

h(λ; µ̂jk, σ̂jk) = ORRE(λ)− U

= CMRE(λ) +DRR(λ)− U

=

 N∑
j=1

{1−
K∏

k=1

R̂jk(λ)}
K∑

k=1

nk(µ̂2
jk + σ̂2

jk)

 /

 N∑
j=1

K∑
k=1

nk(µ̂2
jk + σ̂2

jk)


+

N∑
j=1

K∏
k=1

R̂jk(λ)/N − U

where

R̂jk(λ) = 1− Φ
(
λ− µ̂jk

σ̂jk

)
+ Φ

(
−λ− µ̂jk

σ̂jk

)
However, it is computationally possible to differentiate h(λ) using Secant method(see ap-

pendix 6).

Asymptotic Property of Maximum Likelihood Estimator of Optimal λ

Let θ be a 2nK × 1 parameter vector,

θ = (µ11, · · · , µnK , σ
2
11, · · · , σ2

nK)T

= (θ1, θ2, · · · , θ2nK)T

, with maximum likelihood estimator θ̂ such that

θ̂ ∼ N(θ, V ar(θ̂))

where V ar(θ̂) is a covariance matrix of θ̂ and its element can, due to the assumption of

independence among wavelet atom positions and among classes, be understood as

V ar(µ̂jk) = σ2
jk/nk, V ar(σ̂2

jk) = 2(nk − 1)σ4
jk/n

2
k,

Cov(µ̂jk, µ̂j′k′) = Cov(σ̂2
jk, σ̂

2
j′k′) = Cov(µ̂jk, σ̂jk) = Cov(µ̂jk, σ̂j′k′) = 0
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where j 6= j′ and k 6= k′. Estimating a nonlinear function g(U ;θ) and its asymptotic

distribution can be obtained using a general method called the Delta method explained

below.

Suppose g(U ;θ) is a nonlinear continuous function of θ, in our context, g(U ;θ) =

min ORRE−1(U ;θ). Expending in Taylor series about the true value θ,

g(U ; θ̂) = g(U ;θ) + g′(U ;θ)(θ̂ − θ) + o(‖ θ̂ − θ ‖)

= g(U ;θ) +
2nK∑
j=1

∂g

∂θj
(θ̂j − θj) + o(‖ θ̂ − θ ‖)

where we have defined

g′(U ;θ) =
∂g

∂θ
= (

∂g

∂θ1
,
∂g

∂θ2
, · · · , ∂g

∂θ2nK
)T

evaluated at θ. As the optimal λ is equal to g(U ;θ),

∂g(U ;θ)
∂θ

=
∂λ

∂θ
=
∂U

∂θ

(
∂U

∂λ

)−1

=
ρ1(λ,θ)
ρ2(λ,θ)

=
ρ1(g(U ;θ),θ)
ρ2(g(U ;θ),θ)

where ρ1(λ,θ) = ∂U
∂θ

and ρ2(λ,θ) = ∂U
∂λ . That is

g′(U ;θ) =
ρ1(g(U ;θ),θ)
ρ2(g(U ;θ),θ)

The vector g′ has dimension 2nK × 1. Rearranging terms,

g(U ; θ̂)− g(U ;θ) = g′(U ;θ)(θ̂ − θ) + o(‖ θ̂ − θ ‖)

We will estimate g(U ; θ) by g(U ; θ̂). If θ̂ is a maximum likelihood estimate, then g(U ; θ̂) is

the MLE of g(U ;θ). Taking the variance of both sides,

V ar(g(U ; θ̂)− g(U ;θ)) = g′(U ;θ)TV ar(θ̂)g′(U ;θ)

where V ar(θ̂) is defined above. This equation is the heart of the delta method, so one will

write it out again as a scalar equation. Let g′i be the i-th element of g′(U ;θ),and let vij be

the ij-element of the matrix V ar(θ̂). Then the variance of g(U ; θ̂) is

V ar(g(U ; θ̂)) =
2nK∑
i=1

2nK∑
j=1

g′ig
′
jvij
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In large samples and under regularity conditions, g(U ; θ̂) will converge to g(U ;θ), and

g(U ; θ̂) ∼ N

(
g(U ;θ),

[
ρ1(g(U ;θ),θ)
ρ2(g(U ;θ),θ)

]T

V ar(θ̂)
[
ρ1(g(U ;θ),θ)
ρ2(g(U ;θ),θ)

])

Using λ notation,

λ̂ ∼ N

(
λ,

[
ρ1(g(U ;θ),θ)
ρ2(g(U ;θ),θ)

]T

V ar(θ̂)
[
ρ1(g(U ;θ),θ)
ρ2(g(U ;θ),θ)

])

In practice, all derivatives and true θ are evaluated at θ̂. The implementation of all deriva-

tives can be done using Secant method.

5.3.5 Guideline for the Selection of U

When we do not have the given U , the upper limit of acceptable ORRE, without the

engineering knowledge and historical experience, we confront another problem of deciding

reasonable value of U . That is, how to set up the acceptable upper limit of ORRE. We

propose a guideline of how to set it up in this section. Referring Figure 18 will help one to

understand every notation.

λ

)(λORRE

0λ

λλ ∆−0

U

)( 0λORRE
ORRE∆

)(λCMRE

0λ

)( 0λCMRE
CMRE∆
)( 0 λλ ∆−CMRE

λλ ∆−0

λ λ

)(λUDR

0λ
λλ ∆−0

)( 0λUDR

UDR∆

)( 0 λλ ∆−UDR

λ

)(λBCSR

0λ
λλ ∆−0

)( 0λBCSR

BCSR∆

)( 0 λλ ∆−BCSR

Figure 18: Notations
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According to the notation illustrated in Figure 18 above, one can say

U = ORRE(λ0 −4λ)

= ORRE(λ0) +4ORRE

= CMRE(λ0) + UDR(λ0)−4CMRE +4UDR

Since we use the intersect concept in our thresholding function, λ0 is usually located as

comparatively small value(left side of the plot of ORRE) and 4UDR is much more sensitive

to the 4λ than 4CMRE is. It can be seen in the plot of CMRE(λ) and UDR(λ). Than

is, 4CMRE � 4UDR. then one would better focus on 4UDR more than 4CMRE in the

problem of finding optimal U .

Since it is also true that BCSR(λ0−4λ) = BCSRλ0)+4BCSR, the problem of finding

U∗ is actually same to the problem of finding 4∗
λ(optimal 4λ) which can minimize 4UDR

and maximize 4BCSR, where

4UDR = UDR(λ0 −4λ)− UDR(λ0),

4BCSR = BCSR(λ0 −4λ)−BCSR(λ0)

Using the wight (w) for the general purpose, like in our previous research in ORRE

definition, we can define 4∗
λ such as

4∗
λ = arg max

4λ

{w · 4BCSR − (1− w) · 4UDR}

Then the optimal λ∗ and the optimal upper limit of ORRE, U∗, can be obtained as

λ∗ = λ0 −4∗
λ

U∗ = ORRE(λ0 −4∗
λ)

In order to understand the impact of UDR and BCSR pattern to the optimal 4∗
λ, one

may wish to use the coefficients of polynomial regression to characterize the pattern of UDR

and BCSR. Let’s assume that the third-order polynomial regression can approximate the

UDR(λ) and BCSR(λ) (0 < λ < λ0) accurate enough. Since our interested range of λ is
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{o < λ < λ0} ,where BCSR(λ) can be increased, the input vector of λ for the regression

will be discretized in the range.

UDR(λ) = f(λ) = α0 + α1λ+ α2λ
2 + α3λ

3

BCSR(λ) = g(λ) = β0 + β1λ+ β2λ
2 + β3λ

3

Then the 4UDR and 4BCSR become

4UDR = f(λ0 −4λ)− f(λ0)

= α1(−4λ) + α2(−2λ0 4λ +42
λ) + α3(−3λ2

0 4λ +3λ0 42
λ −43

λ)

4BCSR = g(λ0 −4λ)− g(λ0)

= β1(−4λ) + β2(−2λ0 4λ +42
λ) + β3(−3λ2

0 4λ +3λ0 42
λ −43

λ)

Then, when the weight(w) of objective function of 4λ is ignored (e.g. same weights), the

objective function,4BCSR −4UDR, becomes

4BCSR −4UDR = −43
λ (β3 − α3)

+42
λ {3λ0(β3 − α3) + (β2 − α2)}

−4λ {3λ2
0(β3 − α3) + 2λ0(β2 − α2) + (β1 − α1)}

In order to find optimal 4λ which maximize 4BCSR − 4UDR, we need to get the first

derivative 4BCSR −4UDR)′.

(4BCSR −4UDR)′ = −342
λ (β3 − α3)

+24λ {3λ0(β3 − α3) + (β2 − α2)}

−{3λ2
0(β3 − α3) + 2λ0(β2 − α2) + (β1 − α1)}

Thus the root of function (4BCSR −4UDR)′ becomes

4λ =
3λ0(β3 − α3) + (β2 − α2)±

√
2
√

(β2 − α2)2 − 3(β3 − α3)(β1 − α1)
3(β3 − α3)

Then the optimal 4∗
λ would be one of the four candidates. That is, two from the root of

62



(4BCSR −4UDR)′ = 0, and two from the both end of range of 4λ.

4(0)
λ = 0

4(1)
λ =

3λ0(β3 − α3) + (β2 − α2)−
√

2
√

(β2 − α2)2 − 3(β3 − α3)(β1 − α1)
3(β3 − α3)

4(2)
λ =

3λ0(β3 − α3) + (β2 − α2) +
√

2
√

(β2 − α2)2 − 3(β3 − α3)(β1 − α1)
3(β3 − α3)

4(3)
λ = λ0

If the fifth-order polynomial regression is, for another example, applied, then

4BCSR −4UDR = −45
λ (β5 − α5)

+44
λ {5λ0(β5 − α5) + (β4 − α4)}

−43
λ {10λ2

0(β5 − α5) + 4λ0(β4 − α4) + (β3 − α3)}

+42
λ {10λ3

0(β5 − α5) + 6λ2
0(β4 − α4) + 3λ0(β3 − α3) + (β2 − α2)}

+4λ {5λ4
0(β5 − α5) + 4λ3

0(β4 − α4) + 3λ2
0(β3 − α3) + 2λ0(β2 − α2) + (β1 − α1)}

Then the optimal 4∗
λ would be one of the roots (e.g. 4(1)

λ , · · · ,4(4)
λ ) of the (4BCSR −

4UDR)′, or 0(e.g. 4(0)
λ ) or λ0(e.g. 4(5)

λ ) , which maximize the objective function 4BCSR−

4UDR.

Figure 19 is four types of Mallat data variation simulated with noise error variance σ2 = 1

and random effect variance τ2 = 32. We applied several order of polynomial regression to

the BCSR(λ) and UDR(λ) of this data set. The λ-axis of CMRE(λ), UDR(λ) and

BCSR(λ) is discretized with the unit of 0.87 and the ORRE-driven optimal λ0 is obtained

as 12.18 (e.g. 14th unit of λ in total 100 units; 100th units equals the maximum of d.jk).

From Figure 20, the third-order polynomial regression would not be appropriate due to the

inaccurate approximation of BCSR(λ) and UDR(λ) resulting inaccurate approximation of

4BCSR − 4UDR. That is, it leads to the far different optimal 4∗
λ approximation. From

Figure 22, the fifth-order polynomial regression would be accurate enough bringing us the

quite reliable optimal 4∗
λ.

Table 3 shows that the result of VGWT without considering the increase of BCSR. This

table illustrates that,with λ0 = 12.18, only 26.56% of original data are remaining as non-zero
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Figure 19: Four types of Mallat data

Table 3: Min-ORRE-based Statistic for Mallat data

σ2 Min ORRE(λ;θ) λ̂ CMRE UDR BCSR

12 0.3171 12.18 0.0515 0.2656 0.7054

and there is 5.15% of reconstruction error were measured. These two measures compose

the minimum of ORRE(31.71%). At this time, 70.54% of original between-class variation

is reflected in the reduced-size data(non-zero wavelet coefficients). Table 4 represents the

result of the second stage with the upper limit of ORRE. It is shown that, as U is getting

increased, UDR is getting worse and BCSR is getting better. Table 5 shows the result of

deciding the optimal U (e.g. optimal 4∗
λ). As shown from the plot of 4BCSR −4UDR in

Figure 22 (the optimal 4∗
λ was the fourth unit), the optimal λ∗ = 8.70 achieved the largest

4BCSR−4UDR (0.069). (λ∗ = λ0−4∗
λ = 12.18− 4 ∗ (0.87) = 8.70). As the result, 28.73%

(2.17% up) of original data are remaining as non-zero and 79.61% (9.07% up) of original

between-class variation is reflected in the non-zero wavelet coefficients.
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Figure 20: Third-order polynomial regression for BCSR(λ) and UDR(λ)

Table 4: Upper-limit-ORRE(U)-based Statistic for Mallat data

σ2 U λ̂ CMRE UDR BCSR 4BCSR −4UDR

12 0.32 9.5372 0.0511 0.2689 0.7071 -0.0016
(4UDR = 0.0033) (4BCSR = 0.0017)

0.35 5.9412 0.0422 0.3078 0.8009 0.0533
(4UDR = 0.0422) (4BCSR = 0.0955)

0.45 1.8610 0.0290 0.4210 0.8392 -0.0216
(4UDR = 0.1554) (4BCSR = 0.1338)

Table 5: Optimal 4λ-based Statistic for Mallat data

σ2 Optimal U∗ λ∗ CMRE UDR BCSR 4BCSR −4UDR

12 0.3308 8.70 0.0435 0.2873 0.7961 0.0690
(4UDR = 0.0217) (4BCSR = 0.0907)
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Figure 21: Fourth-order polynomial regression for BCSR(λ) and UDR(λ)
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Figure 22: Fifth-order polynomial regression for BCSR(λ) and UDR(λ)
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Figure 23: Sixth-order polynomial regression for BCSR(λ) and UDR(λ)
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5.4 Illustrative Case Study using Monte-Carlo Simulation

In this section, we illuminate how sensitive the each performance measure is to several

variations of situation, such as the cases that the input data set varies with different levels

of class-variations, different random-effect positions, and different noise-error variances, etc.

The real-life data set would be very complicated, which might naturally be the combination

of many cases, so that we can not fully track the impact of each characteristics of the cases

above. However, it would be very meaningful to conduct the focused study for each case so

that we have better understanding of the possible impact of case-by-case situations.

5.4.1 Different Levels of Class-Variation

In order to study the impact of different levels of class-variation, we generated a simple form

of sine curves. On Figure 24, three different cases are considered. The difference between

three cases (Case 1,2, and 3) is in the magnitude of difference in signal-class-means at every

time positions. Each case presents four classes of similar pattern curves(e.g. sine curves)

with different magnitude of signal-class-means. Each curve has the noise-error variance

σ2 = 0.32 and the variance of random-effect at 10th wavelet atom position τ2
10 = 32. Each

class contains 10 curves and the length of data series is N = 128. Each sine curve in

kth (k = 1, 2, 3, 4) class is generated as the form of yi = Mk · sin(2π · i/N), i = 1, · · · , N

where Mk is the magnitude of kth class. The magnitude {M1,M2,M3,M4} for Case 1 is

{1, 2, 3, 4} , {1, 3, 5, 7} for Case 2, and {1, 4, 7, 10} for Case 3 so that Case 3 has the most

distinct classes and Case 1 has the least.

Table 6 represents the result of VGWT for each case. It shows that, as the the classes

are more distinct, the performance of VGWT becomes better. That is ,all the performance

measures improve. Even the worst case (Case 1), it shows only 7% of CMRE and 11.6%

of UDR. This confirms the excellence of signal mean reconstruction accuracy and data

reduction efficiency. When the upper limit of ORRE is decided above the minimum of

ORRE, the BCSR is increased as we expected. The amount of increase of BCSR in the case

of the least distinct class (case 1)is the largest among three cases. It can be explained as

because the case of distinct classes already achieved quite high performance of BCSR. This
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Table 6: Min-ORRE-based Statistic for Sine data with different class variation

σ2 Min ORRE(λ;θ) λ̂ CMRE UDR BCSR

Case 1 0.1789 0.5827 0.0629 0.1160 0.7858
Case 2 0.1409 0.6787 0.0254 0.1155 0.9280
Case 3 0.1268 0.7238 0.0130 0.1138 0.9658

result is presented in Table 7.
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Figure 24: Different Class Separability in Similar Shape

5.4.2 Different Random-effect Positions

In order to study the impact of different random-effect position, we generated a simple form

of sine curves like the previous section. In Figure 25, three different cases are considered.

The difference between three cases (Case 1,2, and 3) is in the position and number of

random-effect wavelet atoms. Each case presents four classes of same pattern curves(e.g.

sine curves) with different random-effect wavelet atom positions. Each curve has the noise-

error variance σ2 = 0.32. Each class contains 10 curves and the length of data series is

N = 128 as used in the previous section. The magnitude {M1,M2,M3,M4} for all cases

is {1, 3, 5, 7}. Case 1 has a single random-effect term at 14th wavelet atom(one of scale

69



Table 7: Upper-limit-ORRE-based Statistic for Sine data with different class variation

σ2 U (ORRE Upper Limit) λ̂ CMRE UDR BCSR

Case 1 0.25 0.1735 0.0549 0.1953 0.8125
0.5 0.1032 0.0362 0.4500 0.8765

Case 2 0.25 0.1928 0.02 0.2397 0.9418
0.5 0.1054 0.0129 0.4983 0.9623

Case 3 0.25 N/A 0.0102 0.2284 0.9726
0.5 N/A 0.0065 0.4989 0.9826

functions) with τ2
14 = 52. For Case 2, τ2

22 = 52 in the coarsest level. And Case 3 has two

random-effect positions at both 14th and 22nd with τ2
14 = 52 and τ2

22 = 52. Due to the

different support of each wavelet atom position, different type of curve-variation in time

domain are shown in Figure 25. Especially, in Case 3, two random-effect wavelet atom

positions have the support overlapped, the variation becomes more complicated in time

domain.

Table 8 also represent the promising result of signal mean reconstruction error ratio and

data reduction efficiency. Interestingly, this simulation results very high BCSR performance.

More importantly, three different cases do not provide much difference in all performance

measures. This can be explained in two ways. First, the signal curves are generated in

random-effect wavelet model which has zero mean and τj variance (j is random effect

wavelet atom position) so that our thresholding rule, which compare d.jk with λ, will not

much affected. Second, we set only one or two random-effect wavelet atom positions out of

N = 128 for this simulation so that their impact to the each measure will not be serious

even though they have non-zero mean. This is another example of excellence of random-

effect wavelet model in the point that very complicated curve variations in time domain can

be very simply modelled in our wavelet model. Table 9 represents the result of the second

stage(the upper limit of ORRE). Since the first stage performed good enough in BCSR, the

increase in BSCR at second stage is not very significant.
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Figure 25: Different Random-effects in Similar Shape

Table 8: Min-ORRE-based Statistic for Sine data with different random-effect coefficients

σ2 Min ORRE(λ;θ) λ̂ CMRE UDR BCSR

Case 1 0.1304 0.5286 0.0209 0.1095 0.9489
Case 2 0.1409 0.6889 0.0187 0.1159 0.9498
Case 3 0.1268 0.5251 0.0224 0.1160 0.9463

5.4.3 Different Levels of Noise-error Variance

In Figure 26, three different cases of four types of RTCVD data curves are considered. The

difference between three cases (Case 1,2, and 3) is in the level of noise-error variance σ2.

The variance of random-effect at 10th wavelet atom position is equally applied to all cases

with τ2
10 = 32 and its impact is revealed the both end of data series. Each class contains 10

curves and the length of data series is N = 128. The different level of noise-error variance

is 0.12, 0.32,and 0.52 for Case 1,2,and 3, respectively.

Table 10 clearly shows the impact of noise-error variance. It shows that, as noise-error

variance σ2 increases, CMRE and BCSR are getting worse. Table 11 also shows that the

increase of BCSR is not very significant compared to other case studies. The term N/A
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Table 9: Upper-limit-ORRE-based Statistic for Sine data with different random-effect
coefficients

σ2 U (ORRE Upper Limit) λ̂ CMRE UDR BCSR

Case 1 0.20 0.2062 0.0175 0.1828 0.9556
0.25 0.1682 0.0159 0.2341 0.9587

Case 2 0.20 0.2082 0.0163 0.1837 0.9558
0.25 0.1735 0.0148 0.2352 0.9599

Case 3 0.20 0.2113 0.0178 0.1822 0.9548
0.25 0.1704 0.0163 0.2337 0.9582

is inserted because there is no solution since the upper limit U is below the minimum of

ORRE (e.g. U should be greater or equal to 0.3157 for Case 3).
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Figure 26: Different Noise-error Variance in RTCVD Data

5.5 Real-life Example: Tonnage data

Sheet-metal stamping has been known as a very complicated and sensitive manufacturing

process. In recent years, stamping tonnage sensors have been used widely to measure the

stamping force for each stamped part for the purpose of stamping process monitoring and

fault diagnosis. Stamping process performance can be illuminated from rich information
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Table 10: Min-ORRE-based Statistic for RTCVD data

σ2 Min ORRE(λ;θ) λ̂ CMRE UDR BCSR

0.12 0.1454 0.20 0.0121 0.1333 0.9865
0.32 0.2368 0.18 0.1069 0.1299 0.8868
0.52 0.3157 0.39 0.1829 0.1328 0.8033

Table 11: Upper-limit-ORRE-based Statistic for RTCVD data

σ2 U (ORRE Upper Limit) λ̂ CMRE UDR BCSR

0.12 0.25 0.0383 0.0071 0.2429 0.9923
0.3 0.0328 0.0065 0.2935 0.9930
0.35 0.0288 0.0052 0.3448 0.9948

0.32 0.25 0.1359 0.0845 0.1655 0.9080
0.3 0.1024 0.0684 0.2316 0.9241
0.35 0.0862 0.0588 0.2912 0.9352

0.52 0.25 N/A N/A N/A N/A
0.3 N/A N/A N/A N/A
0.35 0.2298 0.1539 0.1961 0.8349

and characteristics contained in the tonnage signal. Figure 27 shows the total tonnage

or stamping force which is the sum of the outputs of all tonnage sensors mounted on the

press. In Figure 27 (a), the horizontal axis is the crank angle which is transformed to

appropriate data index with size N = 256. In order to monitor successfully stamping

process and diagnose any fault type in the past experience, various tonnage signal-analysis

techniques have been studied. (Koh, Shi, and Black 1996; Jin and Shi 1999). Especially,

due to the massive amount of data from high stamping productivity and the limited storage

capacity for historical data, the efficient tonnage data compression techniques, retaining

high reconstruction accuracy and high discriminative ability, becomes hot and critical issue

recently.

Figure 27 (a) represents three classes of tonnage signals, which has 25 signals in each

class. The significant difference among classes mainly resides in the middle lobes at data

index from 90 to 115. Figure 27 (b) focuses the middle lobes for visually better distinction.

Table 12 shows that data reduction results with the optimal λ0 = 4021.7. The result is very

impressive with only 0.8% of signal class-mean reconstruction error, only 1.17% of original
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Table 12: Min-ORRE-based Statistic for Tonnage data

Min ORRE(λ;θ) λ̂ CMRE UDR BCSR

0.0197 4021.7 0.008 0.0117 0.9290

data usage and 92.9% preservation of original between-class-variation in the reduced-size

data. This impressive output is due to the very smooth and similar signal patterns among

classes, even in each class. Table 13 shows that, according to our second stage procedure,

only less than 1% increase in UDR can achieve almost 7% increase in BCSR (when U=0.025).

It is quite successful data reduction process keeping high accuracy of signal representation

and preserving almost all distinct features of original data in the reduced size data.
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Figure 27: Three Different Types of Tonnage Signal Class
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Table 13: Upper-limit-ORRE(U)-based Statistic for Tonnage data

U λ̂ CMRE UDR BCSR

0.025 1304.8 0.0035 0.0215 0.9965
(4UDR = 0.0098) (4BCSR = 0.0675)

0.05 537.1527 0.0014 0.0486 0.9985
(4UDR = 0.0369) (4BCSR = 0.0695)
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CHAPTER VI

CONCLUSION AND FUTURE RESEARCH

6.1 Summary of Results

6.1.1 Wavelet-based Random-effect Model

This section proposed the Wavelet-based Random-effect Model to characterize the between-

curve variation among multiple complicated functional data with sharp changes. The de-

mand for a new model was addressed with a real life example (Antenna data). The differ-

ence from the traditional random-effect model is that our model using wavelet has locally

focused impact in time domain. A simple way to find the random-effect wavelet atom posi-

tions using a simple QQ-plot is suggested. Several cases of different number of random-effect

positions are compared and a real life data set (Antenna data) was successfully modelled

using random-effect wavelet model.

6.1.2 Vertical Energy Threshold(VET) without Class Information

For the sake of efficient, reliable and effective data reduction, this section proposed Vertical

Energy Threshold method. This vertical-energy based thresholding method is easy to un-

derstand and implement, where a closed-form expression of the estimate of the thresholding

parameter is provided. This parameter depends on the positions of random effects and their

variations. Analytical properties such as the strong consistency and the large-sample nor-

mal distribution of the parameter estimate are derived. Based on the simulation studies and

real-life examples from the antenna data collected from Nortel’s manufacturing process, the

proposed method is more effective in capturing the key patterns in the multiple data curves

with very limited number of coefficients than other single-curve based data denoising meth-

ods. The reduced-size data of wavelet coefficients are shown to be very useful in separating

the characteristics among several classes of data curves for the clustering analysis.
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6.1.3 Vertical Group-wise Threshold(VGWT) with Class Information

Based on class membership information of each signal obtained, this thesis proposed the Ver-

tical Group-Wise Threshold method to increase the discriminative capability of the reduced-

size data so that the reduced data set retains salient differences between classes as much

as possible. The selection problem of class-wise thresholding scheme (intersection, union,

and voting) was also briefly addressed. A new thresholding function using intersection and

a class-separability measure were proposed for finding the optimal threshold. A two-stage

procedure based on these tools successfully increased the class separability with reasonably

small loss of data reduction efficiency. Also, investigations on how several different situ-

ations can impact the performance of reconstruction accuracy, data reduction ratio, and

class separability in the reduced-size data, were carried out using Monte-carlo simulations.

A real-life example (Tonnage data) showed our proposed method is promising.

6.2 Future Research

Future work is needed to explore a more rigorous framework to find the random-effect

wavelet atom positions in wavelet-based random-effect model, and to use a quantitative

measure to decide the most suitable number of random-effect positions. The vertical en-

ergy threshold(VET) in a soft thresholding version can also be studied and compared to

our hard thresholding one. Other than wavelets, several multiscale methods such as beam-

lets and wedgelets can be explored in our proposed objective functions. The most suitable

degree of high order polynomial regression to characterize the component of the objective

functions in vertical group-wise thresholding method and its performance in class separa-

bility approximation can be researched in a more mathematical framework. The extension

of our proposed methods to 2-D data (image and spatial data) will be very demanding and

important in the area of signal processing. Also, its statistical analysis will have a large

contribution to the statistical data mining field.
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APPENDIX A

SOME ANCILLARY STUFF

A.1 Meta-functions : Pjk(λ), Qjk(λ) and Rjk(λ)

Let’s assume the distribution of d̄.jk as N(µjk, σ
2
jk), and define the two common functions

φ(y) and Φ(y) as

φ(y) =
1√
2π

exp(−0.5y2)

Φ(y) =
∫ y

−∞
φ(z)dz

Then, let the meta-functions Pjk(λ), Qjk(λ) and Rjk(λ) defined as

Pjk(λ) = E[d̄2
.jk · I(|d̄.jk| > λ)]

Qjk(λ) = E[d̄.jk · I(|d̄.jk| > λ)]

Rjk(λ) = E[I(|d̄.jk| > λ)]

These meta-functions will be used in computation of CMRE(λ), UDR(λ), andBCSR(λ).

They can be derived to computable formulas using two common functions φ(y) and Φ(y),

as below.

Pjk(λ) =
{

1− Φ
(
λjk − µjk

σjk

)
+ Φ

(
−λjk − µjk

σjk

)}
(σ2

jk + µ2
jk)

−2σjk

{
φ

(
−λjk − µjk

σjk

)
− φ

(
λjk − µjk

σjk

)}
−σ2

jk

{(
−λjk − µjk

σjk

)
· φ
(
−λjk − µjk

σjk

)
−
(
λjk − µjk

σjk

)
· φ
(
λjk − µjk

σjk

)}

Qjk(λ) =
{

1− Φ
(
λjk − µjk

σjk

)
+ Φ

(
−λjk − µjk

σjk

)}
· µjk

−σjk

{
φ

(
−λjk − µjk

σjk

)
− φ

(
λjk − µjk

σjk

)}
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Rjk(λ) =
{

1− Φ
(
λjk − µjk

σjk

)
+ Φ

(
−λjk − µjk

σjk

)}
The proof of derivations above is following.

Let’s assume the distribution of y as N(µ, σ2). Then simple notations of Pjk(λ), Qjk(λ)

and Rjk(λ) without subscripts j and k can be derived as

R(λ) = E[I(|y| > λ)]

=
∫ ∞

−∞

1
σ
φ(
y − µ

σ
)dy −

∫ λ

−λ

1
σ
φ(
y − µ

σ
)dy

= 1−

[∫ λ−µ
σ

−λ−µ
σ

φ(z)dz

]

= 1−
{

Φ(
λ− µ

σ
)− Φ(

−λ− µ

σ
)
}

= 1− Φ(
λ− µ

σ
) + Φ(

−λ− µ

σ
)

Q(λ) = E[yI(|y| > λ)]

=
∫ ∞

−∞
y

1
σ
φ(
y − µ

σ
)dy −

∫ λ

−λ
y

1
σ
φ(
y − µ

σ
)dy

= µ−

[∫ λ−µ
σ

−λ−µ
σ

(µ+ σz)
1
σ
φ(z)σdz

]

= µ−

[
µ

∫ λ−µ
σ

−λ−µ
σ

φ(z)dz + σ

∫ λ−µ
σ

−λ−µ
σ

zφ(z)dz

]

= µ−

[
µ

∫ λ−µ
σ

−λ−µ
σ

φ(z)dz + σ

{∫ λ−µ
σ

−∞
zφ(z)dz −

∫ −λ−µ
σ

−∞
zφ(z)dz

}]

= µ−
[
µ(Φ(

λ− µ

σ
)− Φ(

−λ− µ

σ
)) + σ(−φ(

λ− µ

σ
) + φ(

−λ− µ

σ
)
]

=
{

1− Φ(
λ− µ

σ
) + Φ(

−λ− µ

σ
)
}
µ− σ

{
−φ(

λ− µ

σ
) + φ(

−λ− µ

σ
)
}
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P (λ) = E[y2I(|y| > λ)]

=
∫ ∞

−∞
y2 1
σ
φ(
y − µ

σ
)dy −

∫ λ

−λ
y2 1
σ
φ(
y − µ

σ
)dy

= µ2 + σ2 −

[∫ λ−µ
σ

−λ−µ
σ

(µ2 + 2σz + σ2z2)
1
σ
φ(z)σdz

]

= µ2 + σ2 −

[
µ2

∫ λ−µ
σ

−λ−µ
σ

φ(z)dz + 2σ
∫ λ−µ

σ

−λ−µ
σ

zφ(z)dz + σ2

∫ λ−µ
σ

−λ−µ
σ

z2φ(z)dz

]

= µ2 + σ2 −

[
µ2
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σ
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σ

φ(z)dz + 2σ
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σ
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zφ(z)dz −
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σ
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zφ(z)dz

}
+ σ2
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σ
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σ

z2φ(z)dz

]
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−µ2
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σ
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(
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where∫ λ−µ

σ

−λ−µ
σ

φ(z)dz = Φ(
λ− µ

σ
)− Φ(

−λ− µ

σ
),

∫ λ−µ
σ

−∞
zφ(z)dz = −φ(

λ− µ

σ
),∫ −λ−µ

σ

−∞
zφ(z)dz = −φ(

−λ− µ

σ
),∫ λ−µ

σ

−λ−µ
σ

z2φ(z)dz =
1√
2π

{
−z · e−0.5z2 |

λ−µ
σ
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σ

+
∫ λ−µ

σ
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σ
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σ
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σ
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σ
)φ(
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σ
) + Φ(

λ− µ

σ
)− Φ(

−λ− µ

σ
)

.
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A.2 Class Separability

First, let’s consider E[tr(SSB(λ))] term based on Between-class variability using Class

mean like following.

E

 N∑
j=1

K∑
k=1

nk(d.jk − d.j.)2 ·
K∏

k=1

I(|d.jk| > λ)


For ease of computation of E[tr(SSB(λ))], we investigate the followings.

K∑
k=1

nk(d.jk − d.j.)2 =
K∑

k=1

nk(d
2
.jk − 2d.jkd.j. + d

2
.j.)

=
K∑

k=1

nkd
2
.jk − 2d.j.

K∑
k=1

nkd.jk + nTd
2
.j.

=
K∑

k=1

nkd
2
.jk − nTd

2
.j. since d.j. =

∑K
k=1 nkd.jk

nT

K∑
k=1

nk(d.jk − d.j.)2 ·
K∏

k=1

I(|d.jk| > λ)) =
K∑

k=1

[
nkd

2
.jk

K∏
k=1

I(|d.jk| > λ)

]
− nTd.j.

K∏
k=1

I(|d.jk| > λ)

Then, the E[tr(SSB(λ))] term is rearranged like below.

E

 N∑
j=1

K∑
k=1

nk(d.jk − d.j.)2 ·
K∏

k=1

I(|d.jk| > λ))


=

N∑
j=1

K∑
k=1

nkE

[
d

2
.jk

K∏
k=1

I(|d.jk| > λ)

]
− nT

N∑
j=1

E

[
d

2
.j.

K∏
k=1

I(|d.jk| > λ)

]

=
N∑

j=1

K∑
k=1

nkE
[
d

2
.jkI(|d.jk| > λ)

]∏
r 6=k

E
[
I(|d.jr| > λ)

]
− nT

N∑
j=1

E

[
d

2
.j.

K∏
k=1

I(|d.jk| > λ)

]

If we look at the second term in the last equation above, it can be rearranged like below.

nT

N∑
j=1

E

[
d

2
.j.

K∏
k=1

I(|d.jk| > λ)

]

= nT

N∑
j=1

E

[
(
∑K

k=1 nkd.jk

nT
)2

K∏
k=1

I(|d.jk| > λ)

]

= nT

N∑
j=1

E

 1
n2

T

(
K∑

k=1

n2
kd

2
.jk + 2

∑
a 6=b

nanbd.jad.jb)
K∏

k=1

I(|d.jk| > λ)


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=
N∑

j=1

1
nT

E

 K∑
k=1

(n2
kd

2
.jkI(|d.jk| > λ)

∏
r 6=k

I(|d.jr| > λ))


+

N∑
j=1

2
nT

E

∑
a 6=b

nanbd.jaI(|d.ja| > λ)d.jbI(|d.jb| > λ)
∏

r 6=a,b

I(|d.jr| > λ)


=

1
nT

N∑
j=1

K∑
k=1

n2
kE(d2

.jkI(|d.jk| > λ))
∏
r 6=k

E(I(|d.jr| > λ))

+
2
nT

N∑
j=1

∑
a 6=b

nanbE(d.jaI(|d.ja| > λ))E(d.jbI(|d.jb| > λ))
∏

r 6=a,b

E(I(|d.jr| > λ))

Then, according to the definition of meta-functions, E[tr(SSB(λ))] term in new notations

is

E

 N∑
j=1

K∑
k=1

nk(d.jk − d.j.)2 ·
K∏

k=1

I(|d.jk| > λ)


=

N∑
j=1

K∑
k=1

nkE
[
d

2
.jkI(|d.jk| > λ)

]∏
r 6=k

E
[
I(|d.jr| > λ)

]
− nT

N∑
j=1

E

[
d

2
.j.

K∏
k=1

I(|d.jk| > λ)

]

=
N∑

j=1

K∑
k=1

nkE
[
d

2
.jkI(|d.jk| > λ)

]∏
r 6=k

E
[
I(|d.jr| > λ)

]
− 1
nT

N∑
j=1

K∑
k=1

n2
kE(d2

.jkI(|d.jk| > λ))
∏
r 6=k

E(I(|d.jr| > λ)))

− 2
nT

N∑
j=1

∑
a 6=b

nanbE(d2
.jaI(|d.ja| > λ))E(d2

.jbI(|d.jb| > λ))
∏

r 6=a,b

E(I(|d.jr| > λ))

=
N∑

j=1

K∑
k=1

nkPjk(λ)
∏
r 6=k

Rjk(λ)

− 1
nT

N∑
j=1

K∑
k=1

n2
kPjk

∏
r 6=k

Rjk(λ))

− 2
nT

N∑
j=1

∑
a 6=b

nanbQja(λ)Qjb(λ)
∏

r 6=a,b

Rjrλ

=
N∑

j=1

K∑
k=1

nk

(
1− nk

nT

)
Pjk(λ)

∏
r 6=k

Rjr(λ)

− 2
nT

N∑
j=1

∑
a 6=b

nanbQja(λ)Qjb(λ)
∏

r 6=a,b

Rjrλ

.
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A.3 ORRE(λ) for VGWT

The nominator of the cluster mean reconstruction error term (CMRE(λ)) using cluster

mean in new notations is

E

 N∑
j=1

K∑
k=1

nk(d.jk − d.jk ·
K∏

k=1

I(|d.jk| > λ))2


=

N∑
j=1

K∑
k=1

nkE

[
(d.jk − d.jk ·

K∏
k=1

I(|d.jk| > λ))2
]

=
N∑

j=1

K∑
k=1

nkE

[
(d.jk − d.jk ·

K∏
k=1

I(|d.jk| > λ))2 | |d.jk| > λ for all k

]
×P (|d.jk| > λ for all k)

+
N∑

j=1

K∑
k=1

nkE

[
(d.jk − d.jk ·

K∏
k=1

I(|d.jk| > λ))2 |(|d.jk| > λ for all k)c

]
×P ((|d.jk| > λ for all k)c)

=
N∑

j=1

K∑
k=1

nk

[
0 + E(d2

.jk) · P ((|d.jk| > λ for all k)c)
]

=
N∑

j=1

K∑
k=1

nk · (µ2
jk + σ2

jk) · (1−
K∏

r=1

Rjk(λ))

=
N∑

j=1

[
(1−

K∏
r=1

Rjk(λ)) ·
K∑

k=1

nk · (µ2
jk + σ2

jk)

]

The denominator of CMRE(λ) can easily derived from the above derivation.

The used-data-ratio UDR(λ) using cluster mean in new notations is

E

[∑N
j=1

∏K
k=1 I(|d.jk| > λ)
N

]
=

1
N

N∑
j=1

E

[
K∏

k=1

I(|d.jk| > λ)

]

=
1
N

N∑
j=1

[
K∏

k=1

E(I(|d.jk| > λ))

]

=
1
N

N∑
j=1

[
K∏

k=1

Rjk(λ)

]

A.4 Proof of monotonicity of E[tr(SSB(λ))]

Let’s define λL = λS + ε, where λi is any certain value in R+ (i.e., 0 < λi <∞) and ε > 0,

and J(λi) = E[tr(SSB(λi))]. Considering several sets of j′s that are associated with λL
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and λS , we can define S, L, and Lc|S, i.e., sets of the form

S = {j;
K∏
k

I(| ¯d.jk| > λS) = 1}

L = {j;
K∏
k

I(| ¯d.jk| > λL) = 1}

Lc|S = {j; j ∈ S, but not j ∈ L}

and realize S ⊃ L since λS < λL. Also we define JS , JL, and JLc|S in the manner that

Ja =
∑
j∈a

K∑
k=1

nk( ¯d.jk − d̄.j.)2

Then

J(λS) = E[
N∑

j=1

K∑
k=1

nk( ¯d.jk − d̄.j.)2
K∏
k

I(| ¯d.jk| > λS)]

= E[
∑
j∈S

K∑
k=1

nk( ¯d.jk − d̄.j.)2] = JS

= E[
∑
j∈L

K∑
k=1

nk( ¯d.jk − d̄.j.)2] + E[
∑

j∈Lc|S

K∑
k=1

nk( ¯d.jk − d̄.j.)2]

= JL + JLc|S

= J(λL) + JLc|S

Realizing that JLc|S is always greater than or equal to 0, it is proved that J(λS) ≥ J(λL).

That is, J(λi) is monotonically decreasing function.

A.5 Invariance Property

The MLE satisfies the invariance principle; If θ̂ is the MLE of θ, then for any function

τ(θ) the MLE of τ(θ) is τ(θ̂).

Note that the invariance property also holds for vector θ. Then invariance principle

states that if Y = τ(X) denotes a change in measurement scale such that X and Y have

the same underlying structure, then inference about a parameter is invariant under the

transformation.
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A.6 Iterative Secant Method

The slop of the curve y = f(x) at the point x = xk can be approximated in the case

if the exact derivative f ′(xk) is difficult to compute. The backward difference formula

approximates the derivative by the slop of the secant line between two points (xk, f(xk))

and (xk−1, f(xk−1)) :

f ′(xk) =
f(xk)− f(xk−1)

xk − xk−1

With the backward approximation, the Newton-Raphson method becomes the secant method:

xk+1 = g(xk) = xk ·
f(xk)(xk − xk−1)
f(xk)− f(xk−1)

Starting with two initial approximations x0 and x1, use the mapping above to find x2, etc.

If the sequence {xk} converges to a fixed point x = x∗ such that x∗ = g(x∗), then the value

x∗ is the root of the nonlinear equation f(x) = 0.
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