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“Politicians use statistics in the same way that a drunk uses lamp-posts - for sup-

port rather than illumination.”

-Andrew Lang
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SUMMARY

This thesis explores topics from two distinct fields of mathematics. The first

part addresses a theme in abstract harmonic analysis, while the focus of the second

part is a topic in compressive sensing.

The first part of this dissertation explores the application of dominating opera-

tors in harmonic analysis by sparse operators. In the second chapter, we introduce

sparse operators. Presented therein are preliminary results on dominating certain

operators by sparse operators, and we also prove several analogous results for

other operators that we use in later chapters. The results were achieved in collab-

oration with the coauthors credited for corresponding chapters. The third chapter

concerns Calderón-Zygmund operators. We make use of the sparse domination

introduced in Chapter 2 to derive weighted inequalities for Calderón-Zygmund

operators and the Hardy-Littlewood maximal operator. This chapter comprises

results that were established in independent collaborations with Michael Lacey

and Robert Rahm. Chapter 4 establishes weighted inequalities for the fractional

integral operators (also known as Riesz potentials) and fractional maximal opera-

tor. These results were also achieved in collaboration with Robert Rahm. Chapter

5 deviates from the theme of domination by sparse operators, but continues the

study of fractional integral operators. There is a another notion from dyadic cal-

culus used here, namely averaging over dyadic operators. We use these methods

to achieve weighted inequalities for commutators of fractional integral operators

with multiplication operators. An interesting result is that the inequality can be

reversed. Since the bound depends on a BMO norm of the function in the multi-

plication operator, we characterize a certain BMO space by the boundedness of the

commutator with fractional integral operators. This work was done in collabora-

tion with Robert Rahm and Irina Holmes. Chapter 6 addresses oscillatory integral

viii



operators and random discrete Hilbert transforms. The oscillatory integrals are

built by polynomial modulation of Calderón-Zygmund kernels. For both of these

classes of operators, we establish sparse bilinear bounds that induce weighted in-

equalities. In the case of the random discrete Hilbert transforms, these are believed

to be the first results of their kind. This work is done in collaboration with Michael

Lacey.

In the second part, we explore the utility of learning theory in the relatively

new field of compressive sensing. The focus is on the subfield of one-bit sensing.

Chapter 7 briefly introduces the pertinent topics from compressive sensing and

demonstrates how a fundamental result of the field can be established using the

techniques in Chapter 8. The last chapter contains the point Part II. We introduce

the notion of one-bit sensing and an analogue of the Restricted Isometry Property,

which is a type of quasi-isometry developed in compressive sensing. We are able

to effectively estimate the VC-dimension of hemispheres relative to sparse vec-

tors, which allows us to employ learning theory techniques to control an empirical

process. This control implies the desired Restricted Isometry Property with high

probability. With these methods, we are also able to discuss the effects of certain

noise models on the acquisition scheme.

ix



INTRODUCTION

The first part of this dissertation explores application of dyadic calculus, a fruitful

subfield of harmonic analysis. This theme is relatively new, and there are many

avenues still to be explored.

In the second chapter, we introduce sparse operators. Preliminary results on

dominating certain operators by sparse operators are presented. We also prove

several analogous results for other operators that we use in later chapters. The ap-

peal of sparse operators is that they are highly-localized, positive operators, some-

thing that the operators they dominate are not. While this comparison is surprising

in its own right, the focus is on the application to attain weighted inequalities.

Next, we introduce several related classes of operators: fractional integral op-

erators, Calderón-Zygmund operators, and their related oscillatory and random

versions. These are the complicated, non-local operators mentioned above. The

sparse bounds allow the easy deduction of weighted inequalities. A weighted in-

equality is an inequality that bounds the norm of an operator, or a class of op-

erators, by a characteristic of the weights on the spaces the operator maps be-

tween. A weight is a non-negative, locally integrable function. Since we treat

them as densities of the induced measure, for a weightwwe will often writew(A)

meaning
∫
A
w(x)dx. There are two techniques of domination that are explored.

For a Calderón-Zygmund or fractional integral operator, we dominated the oper-

ator pointwise by sparse operators. For an oscillatory singular integral or random

Hilbert transform, we dominate the bilinear form 〈Tf,g〉 by sparse bilinear forms.

This is a generalization of the former since the sparse bilinear forms are a gen-

eralization of the bilinear forms associated to sparse operators. While the sparse

1



objects in both cases depend on the function function(s) the operator is applied

to (see Section 2.2, for instance), weighted inequalities for the class of sparse op-

erators extend. In both cases, we are able to deduce new, meaningful weighted

inequalities.

Chapter 5 deviates from the theme of domination by sparse operators, but con-

tinues the study of fractional integral operators. There is a another notion from

dyadic calculus used here, namely averaging over dyadic operators. We use these

methods to achieve weighted inequalities for commutators of fractional integral

operators with multiplication operators. An interesting result is that the inequal-

ity can be reversed. Since the bound depends on a BMO norm of the function in

the multiplication operator, we characterize a certain BMO space by the bounded-

ness of the commutator with fractional integral operators.

In the second part, we explore the utility of learning theory in the relatively new

field of compressive sensing. The objective of compressive sensing is to exploit

low dimensionality properties of certain classes of signals (read high dimensional

vectors) to acquire and reconstruct the signals at sub-Nyquist rates. For us, we

assume the signals are sparse, i.e. they have relatively few non-zero coordinates.

We point out here that this notion of sparseness is unrelated to the one mentioned

earlier. The nomenclature is admittedly inconvenient, but it is consistent with the

existing literature. We are primarily be interested in extremely quantized mea-

surement, a topic embodied by the subfield one-bit sensing. In this case, only the

sign-bit of each measurement is retained. We are able to prove results concerning

a quasi-isometry property of the measurement maps by effectively estimating the

VC-dimension of the class of hemispheres relative to sparse signals and applying

techniques from learning theory.

In both parts, constants are suppressed: by A . B, we mean that there is an

absolute, positive constant c so thatA 6 cB. ByA ∼ B, we meanA . B and B . A.

2



Part I

Weighted Inequalities via Dyadic

Operators



CHAPTER 2

SPARSE DOMINATION

Due to deep and important theorems of Lerner, Lacey, and Rey and Conde–Alonso

[56, 47, 16] important operators in harmonic analysis (for example, maximal func-

tions, Calderón–Zygmund Operators, Haar shifts) are pointwise dominated by fi-

nite sums of sparse operators. Thus, proving two–weight inequalities for these

sparse operators will imply the same theorems for other operators of interest. We

begin with some preliminary definitions.

Definition 2.1. A collection D of cubes in Rn is said to be a dyadic grid if:

(i) Each Q ∈ D has side length of 2k for some k ∈ Z.

(ii) For Q,R ∈ D : Q ∩ R is measure zero, Q ⊂ R, or R ⊂ Q.

(iii) If Dk = {Q ∈ D : the side length of Q equals 2k}, then Rn = ∪Q∈Dk
Q.

Definition 2.2. A subset S of a dyadic grid is said to be sparse if for every P ∈ S :

∑
Q∈S:Q(P
Q is maximal

|Q| 6
1
2
|P| .

The portion 1
2 is arbitrary, and any positive constant less than 1 would work

equivalently. That is also true for the following equivalent notion of a sparse col-

lection of cubes which is sometimes more convenient. A collection S of cubes is

sparse if there is a set EQ ⊂ Q for each Q ∈ S so that

(a) |EQ| >
1
2 |Q| for each Q ∈ S, and
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(b) the collection of sets {EQ : Q ∈ S} are pairwise disjoint.

Here and throughout, we denote by 〈f〉µQ the µ-average of f on Q: µ(Q)−1
∫
Q
f.

When µ is Lebesgue measure, we simply write 〈f〉.

Definition 2.3. An operator S is sparse if there is a sparse collection of cubes S so

that

Sf =
∑
Q∈S

〈f〉Q1Q.

We typically suppress the dependence of S on the sparse collection S. By abuse of

notation, if an operator is sparse with respect to a choice of grid, we call it sparse.

The following deep and useful theorem is due to Sawyer [84]. This result is an

integral part of several of the proofs in the following chapters.

Theorem A. Let D be a dyadic grid and let S ⊂ D be sparse. Define:

T1 := sup
P∈S

1
σ(P)

∫
P

∣∣∣∣∣ ∑
Q∈S:Q⊂P

〈σ〉Q1Q(x)

∣∣∣∣∣
p

w(x)dx

T2 := sup
P∈S

1
w(P)

∫
P

∣∣∣∣∣ ∑
Q∈S:Q⊂P

〈w〉Q1Q(x)

∣∣∣∣∣
p ′

σ(x)dx.

Then:

‖TSσ· : Lp(σ)→ Lp(w)‖ . T
1
p

1 + T
1
p ′

2 .

2.1 Calderón-Zygmund Operators

A sparse operator is bounded on all Lp, and in fact, is a ‘positive dyadic Calderón-

Zygmund operator.’ And the class is sufficiently rich to capture the norm behavior

of an arbitrary Calderón-Zygmund operator. We use the recent inequality [47],

5



which gives pointwise control of a Calderón-Zygmund operator by a sparse opera-

tor.

Theorem B. [47, Thm 4.2] Let T be a Calderón-Zygmund operator and f ∈ L1 be com-

pactly supported. Then there are at mostN 6 3d sparse operator S1, . . . ,SN (associated to

distinct choices of grids) so that |Tf| .
∑N
n=1 S|f|.

As a consequence, it suffices to prove our main theorems on Calderón-Zygmund

operators for sparse operators.

2.2 Fractional Integral Operators

In this section, we list several known results related to dominating fractional max-

imal and fractional integral operators by sparse-like operators; we include some

proofs because we could not find them in the literature. Much of this section is

taken from [77].

For a given dyadic grid, D, define the dyadic fractional maximal operator:

MD
α f(x) := sup

Q∈D
1Q(x) |Q|

α/n 〈f〉Q

and the dyadic fractional integral operator:

IDα f(x) :=
∑
Q∈D

|Q|
α/n 〈f〉Q1Q(x).

The following lemma is well–known and shows that fractional maximal and frac-

tional integral operators can be estimated pointwise by sums of dyadic operators.

For the proof of the fractional integral estimate see [20]; the proof of the estimate

for the fractional maximal operator is obvious given the fact that for every cube,

Q, there is a cube, PQ in a dyadic grid such that Q ⊂ PQ and |PQ| 6 3n |Q| .
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Lemma 2.4. Let Mα be the fractional maximal operator and Iα be the fractional inte-

gral operator. There is a collection of 3n dyadic grids such that the following point–wise

equivalences hold for all non–negative f:

Mαf '
3n∑
k=1

MDk
α f and Iαf '

3n∑
k=1

IDk
α f.

Remark 2.5. When proving the estimates below for the dyadic fractional maximal

operator, it is more convenient to deal with the following truncated version:

1Q0(x) sup
Q∈D:Q⊂Q0

|Q|
α/n 〈f〉Q1Q(x). (2.6)

We then prove estimates that are independent of Q0 and appeal to the monotone

convergence theorem to conclude the desired results. Assuming that f is finite

almost everywhere (which will always be the case for us), we can further simplify

matters. We start by building a stopping collection, S. Initialise {Q0} → S, and

in the recursive stage, if P ∈ S is minimal, add to S all maximal children Q of P

such that |Q|
α/n 〈f〉Q > 4 |P|α/n 〈f〉P. For a cube Q ⊂ Q0, let QS denote the S–

parent of Q. Similarly, let ch(S) denote the maximal S–descendants of S. Finally,

let EQ = Q \ ch(Q). A simple computation shows that for every S ∈ S,

∑
Q∈ch(S)

|S| 6
1
2
|S| and |S| 6 2 |ES| .

That is, the stopping collection S is sparse. Additionally, the EQ are pairwise dis-

joint and for almost every x ∈ Q0 there is some Q with x ∈ EQ (this follows from

the fact that f =∞ on a set of measure zero). Thus, we may further reduce (2.6) to:

1Q0(x) sup
Q∈D:Q⊂Q0

|Q|
α/n 〈f〉Q1Q(x) =

∑
Q∈S:Q⊂Q0

|Q|
α/n 〈f〉Q1EQ(x). (2.7)

7



We also note that if {EQ}Q∈D is any collection of pairwise disjoint sets such that

EQ ⊂ Q, then
∑
Q∈D |Q|

α/n 〈f〉Q1EQ(x) 6Mαf(x).

There is a similar reduction for the dyadic fractional integral operator. Again,

we may reduce matters to:

1Q0(x)
∑

Q∈D:Q⊂Q0

|Q|
α/n 〈f〉Q1Q(x). (2.8)

We now create the stopping family by initialising {Q0} → S and in the recursive

stage, if P ∈ S is minimal, add to S all maximal children Q of P such that 〈f〉Q >

4〈f〉P. Note that we are stopping on averages, not fractional averages. Again, simple

computations show that S is sparse. For fixed x ∈ Q0, and fixed S ∈ S, the sequence

{|Q|
α/n 1Q(x)}QS=S is geometric and so

∑
QS=S

|Q|
α/n 1Q(x) ' Cα,n |S|

α/n 1S(x). (2.9)

Therefore, the sum in (2.8) can be estimated as:

∑
S∈S

∑
QS=S

|Q|
α/n 〈f〉Q1Q(x) .

∑
S∈S

〈f〉S
∑
QS=S

|Q|
α/n 1Q(x)

.
∑
S∈S

|S|
α/n 〈f〉S1S(x). (2.10)

Therefore, in all estimates below, for fixed f, we can replace the operator of

interest with one from the right hand side of (2.7) or (2.10); our estimates will be

independent of sparse collection S and root Q0.

We have the following well–known testing conditions for dyadic operators,

originally due to Sawyer. See [84, 36, 51].

Theorem C. Let 1 < p 6 q < ∞, let D be a dyadic grid and let S ⊂ D be sparse. Let T

8



be the operator given by Tf =
∑
Q∈S |Q|

α/n 〈f〉Q1Q. Define:

β1 := sup
P∈S

1
σ(P)q/p

∫
P

∣∣∣∣∣ ∑
Q∈S:Q⊂P

|Q|
α/n 〈σ〉Q1Q(x)

∣∣∣∣∣
q

w(x)dx,

β2 := sup
P∈S

1
w(P)p ′/q ′

∫
P

∣∣∣∣∣ ∑
Q∈S:Q⊂P

|Q|
α/n 〈w〉Q1Q(x)

∣∣∣∣∣
p ′

σ(x)dx.

Then:

‖Tσ : Lp(σ)→ Lq(w)‖ . β1 + β2.

2.3 Sparse Bilinear Forms

2.3.1 Oscillatory Singular Integrals

Recall the notion of a sparse collection of cubes S in Rn that requires the existence

of a set EQ ⊂ Q for each Q ∈ S so that (a) |EQ| > c|Q| for each Q ∈ S, and (b) the

collection of sets {EQ : Q ∈ S} are pairwise disjoint. Here 0 < c < 1 will be a

dimensional constant that we do not track.

Definition 2.11. A sparse bilinear form is one of the form

Λr,s(f,g) =
∑
Q∈S

〈f〉Q,r〈g〉Q,s|Q|, 1 6 r, s <∞,

where 〈f〉rQ,r := |3Q|−1
∫

3Q|f|
r dx, and if r = s, then Λr = Λr,r.

We consider Calderón-Zygmund singular integral operators T , which can also

be defined as L2 bounded convolution operator (with Calderón-Zygmund kernel

K) given by

〈Tf,g〉 =
∫∫
K(x− y)f(y)g(x) dxdy

for compactly supported functions f,g with disjoint supports. Notable examples

9



are K(y) = 1/y in dimension one, and the Riesz transform kernels y/|y|n+1, in

dimension n.

We consider polynomials of a fixed degree d, given by

P(x,y) =
∑

α,β : |α|+|β|6d

λα,βx
αyβ,

where we use the usual multi-index notation. The polynomial modulated Calderón-

Zygmund operators are

TPf(x) =

∫
eiP(x,y)K(y)f(x− y) dy.

The Lp result below is a special case of the results of Ricci and Stein [78, 79], and

the weak-type result is due to Chanillo and Christ [13].

Theorem D. For 1 < p <∞, the operator TP is bounded on Lp, that is

‖TP : Lp 7→ Lp‖ . 1,

where the implied constant depends on the degree of P, and in particular is independent of

λ. Moreover, TP maps L1 to weak L1, with the same bound.

The dependence on the polynomial being felt only through the degree of P is

important in many applications, see [79]. This dependence continues to hold in the

Theorem below, the proof of which we deffer to Section 6.1.

Theorem 2.12. For each 1 < r < 2, Calderón-Zygmund operator T , polynomial P = P(y)

of degree d and functions f,g with bounded support, there is a bilinear form Λr so that

|〈TPf,g〉| . Λr(f,g).

The implied constant depends only on T , the degree d, dimension n and choice of r > 1.

10



2.3.2 Random Singular Integrals

Define a sequence of Bernoulli random variables {Xn : n 6= 0} with P(Xn = 1) =

|n|−α, where 0 6 α < 1. The set {n : Xn = 1} is a.s. infinite by the Borel-Cantelli

Lemma. We consider the random Hilbert transform and maximal function below:

Hαf(x) =
∑
n 6=0

Xn

n1−α f(x− n),

Mαf(x) = sup
n>0

∣∣∣ 1
SN

N∑
n=1

Xnf(x− n)
∣∣∣, where SN =

N∑
n=1

Xn.

Our sparse bound here is more restrictive, with the value of the sparse index r

depending on the parameter α.

Theorem 2.13. For any 0 < α < 1, 1 + α < r < 2, the following holds almost surely:

For all functions f,g finitely supported on Z, there is a bilinear sparse operator Λr so that

|〈Hαf,g〉| . Λr(f,g).

The same inequality holds forMα. (The sparse operator can be taken non-random, but the

implied constant is random.)

Weighted inequalities are a corollary. They are the first we know of holding

for operators defined on sets of integers with zero asymptotic density. We state

these corollaries in Chapter 6 and defer their proofs, along with the proof of Theo-

rem 2.13, to Section 6.2.
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CHAPTER 3

CALDERÓN-ZYGMUND OPERATORS

This chapter develops two-weight inequalities for Calderón-Zygmund operators.

The work is inspired by a general question: What is the ‘simplest’ condition which

is analogous to the Muckenhoupt Ap condition, and is sufficient for a two weight

inequality to hold for all Calderón-Zygmund operators? This question arose shortly

after the initial successes of the Muckenhoupt’s 1972 report that the maximal func-

tion is bounded on a weighted Lp space if and only if the weight is in Ap [66].

A year later, Hunt-Muckenhoupt-Wheeden discover that the same is true of the

conjugate function [34]. In both of these works, the weight in the domain and

range are the same. It is natural to ask what can be done when the operators map

between different weighted spaces. Nearly a decade later, Neugebauer proves a

result that is fruitful in extending many one-weight inequaltites to the two-weight

setting [68], which lead to the notion of testing the density of the weights in func-

tion spaces of slightly stronger norms. This theme has been investigated by many

authors, with motivations coming from potential applications in different settings

where Calderón-Zygmund operators appear, see for instance [88, 26] for two dis-

parate applications. More relevant citations are in the introduction to [21], for in-

stance.

Concerning the maximal operator itself, the finest result in this direction is due

to Pérez [72]: A sharp integrability condition is used to describe a class of Orlicz

spaces, and an Ap like condition, which is a sufficient condition for a two weight

inequality for the maximal function. We do not recall the exact conditions, since

the entropy conditions used below allow a shorter presentation of more general
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results. For the maximal function, this is Theorem 3.3 below.

Pérez also raised two conjectures concerning singular integrals, on being the

so-called two–bump conjecture resolved in [67, 59], and the so-called separated

bump conjecture which is unresolved, [21, 49].

Several recent papers have focused on the role of theA∞ constant in completing

these estimates. This theme was started in [50], and was further quantified in

several papers [61, 58, 46, 40, 39, 37, 38].

Recently, Treil-Volberg [86] combined these two trends in a single approach,

which they termed the entropy bounds, and as is explained n [86, § 2], this approach

yields (slightly) stronger results than that of the Orlicz function approach. In what

follows, we will extend their results to the Lp-setting, using very short proofs.

3.1 Definition

We say that K : Rd × Rd → R is a Calderón-Zygmund kernel if for some constants

and CK > 0, and 0 < η < 1, such that these conditions hold: For x, x ′,y ∈ Rd

‖K(·, ·)‖∞ <∞,

|K(x,y)| < CK|x− y|−d , x 6= y,

|K(x,y) − K(x ′,y)| < CK
|x− x ′|η

|x− y|d+η
, if 2|x− x ′| < |x− y|,

and a fourth condition, with the roles of the first and second coordinates of K(x,y)

reversed also holds. These are typical conditions, although in the first condition,

we have effectively truncated the kernel, at the diagonal and infinity. The effect of

this is that we needn’t be concerned with principal values.

Given a Calderón-Zygmund kernel K as above, we can define

Tf(x) :=

∫
K(x,y)f(y) dy

13



which is defined for all f ∈ L2 and x ∈ Rd. We say that T is a Calderón-Zygmund

operator, since it necessarily extends to a bounded operator on L2(Rd). We define

CT := CK + ‖T : L2 → L2‖. (3.1)

It is well-known that T is also bounded on Lp, 1 < p < ∞, with norm controlled

by CT .

3.2 Main Results

Throughout, let

ρσ(Q) =

∫
Q
M(σ1Q) dx
σ(Q)

, ρσ,ε(Q) = ρσ(Q)ε(ρσ(Q)),

where ε will be an increasing function on [1,∞). But, if the role of the weight σ is

understood, it is suppressed in the notation. Define

dσ,wep,ε := sup
Q a cube

ρσ,ε(Q)〈σ〉p−1
Q 〈w〉Q. (3.2)

Throughout, 〈f〉Q = |Q|−1
∫
Q
f(x) dx. In this Theorem, we extend the result of

Pérez [72] for the Hardy-Little-wood maximal function, denotedM, to the entropy

language.

Theorem 3.3. Let σ and w be two weights with densities, and 1 < p < ∞. Let ε

be a monotonic increasing function on (1,∞) which satisfies
∫∞

1
dt
ε(t)t

= 1. Denote by

Mσf =M(σf). The following two-weight inequality holds:

‖Mσ : Lp(σ) 7→ Lp(w)‖ . dσ,we1/pp,ε . (3.4)

As above, we use the notation Mσf =M(σf) so that inequalities are stated in a
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self-dual way. It is natural to include 3.3 in this chapter since it is well-known that

the maximal function serves as a bounding operator for the Calderón-Zygmund

operators in an intuitive sense. For the most compelling result, see the famous

Coifman-Fefferman inequality in [15], which says the maximal function pointwise

bounds the maximal Calderón-Zygmund operators on any A∞-weighted space.

However, the dependencies of the implied constants in that inequality are delicate,

so as is the case here, it is often necessary to examine the maximal and Calderón-

Zygmund operators independently.

Concerning Calderón-Zygmund operators, the case of p = 2 below is [86,

Thm 2.5]. It is slightly stronger than the two–bump results in [67, 59].

Theorem 3.5. Let σ and w be two weights with densities, and 1 < p < ∞. Let ε be a

monotonic increasing function on (1,∞) which satisfies
∫∞

1
dt
ε(t)t

= 1. Define

bσ,wcp := sup
Q a cube

〈σ〉p−1
Q ρσ,ε(Q)〈w〉Qρw,ε(Q)p−1 (3.6)

For any Calderón-Zygmund operator, there holds

‖Tσ : Lp(σ)→ Lp(w)‖ . CTbσ,wc1/pp ‖f‖Lp(σ).

The constant CT is defined in (3.1).

In the condition (3.6) above, both of the weights σ and w are ‘bumped.’ Below,

the bump is applied to each weight separately, hence the name separated bump con-

dition. The case p = 2 below corresponds to [86, Thm 2.6] It is slightly stronger

than the corresponding results proved in [49].

Theorem 3.7. Let σ and w be two weights with densities, and 1 < p < ∞. Let εp, εp ′

be two monotonic increasing functions on (1,∞) which satisfy
∫∞

1 εp(t)
−1/pdt

t
= 1, and
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similarly for εp ′ with root 1/p ′. For any Calderón-Zygmund operator, there holds

‖Tσ : Lp(σ)→ Lp(w)‖ . CT
{
dσ,we1/pp,εp + dw,σe1/p

′

p ′,εp ′

}
.

The terms involving the weights is defined in (3.2), and the constant CT is defined in (3.1).

One should not fail to note that the integrability condition imposed on εp(t)−1

is stronger than in Theorem 3.5. It is not known if the condition in Theorem 3.7 is

the sharp. The following result is another separated bump condition for Calderón-

Zygmund Operators.

The type of theorems we are proving are known as “bumps” because they

slightly strengthen the joint Ap characteristic. The bumps in Theorem 3.7 were

introduced in [86] and are known as “entropy bumps”. However, the bumps in

Theorem 3.8 are slightly different due to their dependence on the behavior of αp

at zero, and they seem to be new. There is a long history of theorems of this type

(see for example [20, 22, 17, 21, 49, 37, 61, 68, 67, 72]), but in [86] it is shown that

under some mild conditions, the entropy bumps are smaller than other bumps,

encouraging progress with this approach.

Our proof builds on the techniques in the proofs of Theorem 3.7 and uses an

interesting formula by Hytönen in [36] that generalizes the expansion of sums like

(
∑
j aj)

2 to powers other than 2. This formula is powerful and it seems to have

been first observed in [36].

Theorem 3.8. Let σ and w be two weights with densities, and 1 < p <∞. Define

[[σ,w]]p,αp := sup
Q a cube

〈w〉Q〈σ〉p−1
Q αp(〈σ〉Q),

where αp is a function that is decreasing on (0, 1) and increasing on (1,∞) and that
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satisfies
∑
r∈Z αp(2

−r)−
1
p <∞. Then it follows that

‖TSσ· : Lp(σ)→ Lp(w)‖ . [[σ,w]]
1
p
p,αp + [[w,σ]]

1
p ′

p ′,αp ′
.

For all of the above, the method of proof we use is, like Lerner [57], to reduce

to sparse operators. With the recent argument of Lacey [47], this reduction now

applies more broadly, namely it applies to (a) Calderón-Zygmund operators on

Euclidean spaces as stated above; (b) non-homogenous Calderón-Zygmund oper-

ators; and (c) general martingales.

After the reduction to sparse operators, we use arguments involving pigeon-

holes, stopping times, reduction to testing conditions, and an Ap-A∞ inequality.

These are the shortest proofs we could find.

3.3 An Entropy Condition for the Maximal Function

We prove the maximal function estimate (3.4). It suffices to prove the theorem with

the maximal function replaced by a dyadic version, since it is a classical fact that in

dimension d, there are at most 3d choices of shifted dyadic grids Dj, for 1 6 j 6 3d,

which approximate any cube in Rd.

By Sawyer’s characterization [83] of the two weight maximal function inequal-

ity, it suffices to check that inequality for f = 1Q0 , and any dyadic cubeQ0. Namely,

we should prove ∫
Q0

M(σ1Q0)
p dw . dσ,wep,εσ(Q0).

To do so, let S be a sequence of stopping cubes for σ, defined as follows. The

root of S is Q0, and if S ∈ S, the maximal dyadic cubes Q ⊂ S such that 〈σ〉Q >

4〈σ〉S are also in S. Note that this is a sparse collection of cubes. Then, we have

1Q0 ·M(σ1Q0) .
∑
S∈S

〈σ〉S1ES
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where ES := S \
⋃
{S ′ ∈ S : S ′ ( S}. The collection S is sparse, and the sets ES are

pairwise disjoint, hence,

∫
Q0

M(σ1Q0)
p dw .

∑
S∈S

〈σ〉pSw(S).

The sparse collection S is divided into collations Sa,r, for a ∈ Z and r ∈ N defined

by S ∈ Sa,r if and only if

2a ∼ 〈σ〉p−1
S 〈w〉Qρσ,ε(Q), and 2r ∼ ρ(Q).

Notice that Sa,r is empty if dσ,wep,ε < 2a−1.

Holding a and r constant, it follows that

∑
S∈Sa,r

〈σ〉pSw(S) . 2a
∑
S∈Sa,r

σ(S)

2rε(2r)
. 2a

∑
maximal S ∈ Sa,r

∫
S
M(σ1S)

2rε(2r)
. 2a

σ(Q0)

ε(2r)
.

Notice that sparsity is essential to the domination of the sum by the maximal func-

tion in the second line. To sum this over r ∈ N, we need the integrability condition∫∞
1

dt
ε(t)t

= 1. Take pth roots and sum over appropriate a ∈ Z to conclude.

3.4 A Two–Bump Condition

This section is dedicated to the proof of the two–bump inequality that is Theo-

rem 3.5. Fix a sparse collection S so that for all cubes Q ∈ S there holds, for some

a ∈ Z,

2a ∼ 〈σ〉p−1
Q ρσ,ε(Q)〈w〉Qρσ,εp ′ (Q)p−1

Here, 2a−1 6 bσ,wcp. In this case, we will verify that the norm of the associated

sparse operator is bounded as by . 2a/p. This estimate is clearly suitable in rele-

vant a ∈ Z.

18



The proof is by duality. Thus, for f ∈ Lp(σ) and g ∈ Lp ′(w), we bound the

pairing 〈S(σf),gw〉. In so doing, we will write

〈fσ〉Q = 〈f〉σQ〈σ〉Q,

where 〈f〉σQ is the average of f relative to weight σ on the cube Q. Then,

2−a/p〈S(σf),gw〉 = 2−a/p
∑
Q∈S

〈σf〉Q〈gw〉Q · |Q|

=
∑
Q∈S

〈f〉σQ〈σ〉
1/p
Q

{〈σ〉1/p ′Q 〈w〉1/pQ
2a/p

}
〈w〉1/p

′

Q 〈g〉wQ · |Q|

.
∑
Q∈S

〈f〉σQ
σ(Q)1/p

ρσ,ε(Q)1/p · 〈g〉
w
Q

w(Q)1/p ′

ρw,ε(Q)1/p ′ .

Apply Hölder’s inequality to the last expression. It clearly suffices to show that

∑
Q∈S

(〈f〉σQ)p
σ(Q)

ρσ(Q)
. ‖f‖pLp(σ),

and similarly for g.

This last expression is a Carleson embedding inequality. It is well known that

it suffices to check this inequality for f = 1Q0 , for Q0 ∈ S, and the assumption that

Q0 is the maximal element in S. But notice that the sum to control is then

∑
Q∈S

σ(Q)

ρσ(Q)
.

∞∑
r=1

∑
Q∈S

ρσ(Q)∼2r

σ(Q)

2rε(2r)

.
∞∑
r=1

∑
Qmaximal s.t.
Q∈S , ρσ(Q)∼2r

∫
Q
M(σ1Q) dx
2rε(2r)

. σ(Q0)

∞∑
r=0

1
ε(2r) ·

The middle inequality follows from sparseness. The last sum over r should be
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finite, which is integrability condition
∫∞

1
dt
tε(t)

= 1. The proof is complete.

3.5 Separated Bump Condition I

This section is dedicated to the proof of Theorem 3.7. In fact, we will follow the

argument presented here with an alternative one. There are two key preliminaries

in the first proof. One is the testing condition Theorem A presented in Chapter 2.

Namely, it suffices to verify: For any dyadic cube Q0,

∫
Q0

∣∣∣ ∑
Q∈S :Q⊂Q0

〈σ〉Q1Q
∣∣∣p dw . dσ,wep,εpσ(Q0).

The dual inequality will also hold, and so complete the proof of Theorem 3.7.

The other ingredient is following Lemma 3.9 below. In the current setting, it

originates in [46], though we give a more convenient reference below. Notice that

the bound on the right in the estimates below are specific to the sparse collection

being used.

Lemma 3.9. [37, Prop. 5.3] Let S be a sparse collection of cubes all contained in a cube

Q0, defining a sparse operator S. For two weights σ and w,

∫
Q0

(Sσ1Q0)
p dw . Ap(S)A∞(S)σ(Q0), (3.10)

where Ap(S) := sup
Q∈S
〈σ〉p−1

Q 〈w〉Q and A∞(S) := sup
Q∈S

∫
Q
M(1Qσ) dx
σ(Q)

.

For integers a ∈ Z, and r ∈ N set Sa,r to be all those cubes Q ∈ S such that

Q ⊂ Q0,

2a ∼ ρσ,εp(Q)〈σ〉p−1
Q 〈w〉Q, and 2r ∼

∫
Q
M(1Qσ) dx
σ(Q)

.
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This collection is empty if dσ,wep,εp < 2a+1. By construction, A∞(Sa,r) . 2r, and

Ap(Sa,r) .
2a

ρσ,εp(Q)
' 2a

2rεp(2r)
.

Thus, from (3.10), we have

∫
Q0

[ ∑
Q∈Sa,r

〈σ〉Q1Q

]p
dw . Ap(Sa,r)A∞(Sa,r)σ(Q0) .

2a

εp(2r)
σ(Q0).

Take pth root, and sum over the relevant a ∈ Z, and r ∈ N. The sum over r is finite

since
∫∞

1
dt

tεp(t)1/p = 1, completing the proof.

3.5.1 An Alternative Proof

We first give the proof of Theorem 3.7 in the case p = 2. We will verify the testing

conditions hold; we will only verify the first condition as the second condition

is verified similarly. Fix P ∈ S. By the triangle inequality and the summability

condition of ε2, it suffices to show

∫
P

∣∣∣∣∣∑
Q∈Qr

〈σ〉Q1Q

∣∣∣∣∣
2

w .
1

ε2(2r)
[σ,w]2,ε2σ(P), (3.11)

where Qr := {Q : Q ⊂ P and ρσ(Q) ' 2r} for r ∈ N. Since two cubes in Qr are either

nested or disjoint, there holds

∣∣∣∣∣∑
Q∈Qr

〈σ〉Q1Q(x)

∣∣∣∣∣
2

'
∑
Q∈Qr

∑
Q ′⊂Q

〈σ〉Q〈σ〉Q ′1Q ′(x).

21



Inserting this into (3.11), and using ρσ(Q) ' 2r for Q ∈ Qr,

∫
P

∣∣∣∣∣∑
Q∈Qr

〈σ〉Q1Q

∣∣∣∣∣
2

w '
∑
Q∈Qr

∑
Q ′⊂Q

〈σ〉Q〈σ〉Q ′w(Q ′)

=
∑
Q∈Qr

〈σ〉Q
∑
Q ′⊂Q

|Q ′| 〈σ〉Q ′〈w〉Q ′
ρσ(Q)ε(ρσ(Q))

ρσ(Q)ε(ρσ(Q))
.

.
1

2rε2(2r)
[σ,w]2,ε2

∑
Q∈Qr

〈σ〉Q
∑
Q ′⊂Q

|Q ′| .

Since Qr is sparse,
∑
Q∈Qr〈σ〉Q

∑
Q ′⊂Q |Q ′| .

∑
Q∈Qr σ(Q).

Recall that for a sparse collection S of cubes, the following holds uniformly over

P ∈ S: |∪Q∈S:Q⊂PQ| 6 1
2 |P|. This implies that the following holds uniformly over

all P ∈ S:
∑
Q∈S:Q⊂P |Q| . |P| . For a cube Q ∈ S, let EQ := Q \ ∪S∈S:S⊂QS and note

that |EQ| ' |Q|. Set Q∗r to be the maximal cubes in Qr. Using the fact that |EQ| ' |Q|

and that {EQ} are pairwise disjoint, it follows that:

∑
Q∈Qr

σ(Q) '
∑
Q∗∈Q∗r

∫
Q∗

∑
Q⊂Q∗

〈σ〉Q1EQ (3.12)

6
∑
Q∗∈Q∗r

∫
Q∗
M(σ1Q∗)

6 2r
∑
Q∗∈Q∗r

σ(Q∗).

Since the cubes in Q∗r are pairwise disjoint, the sum is bounded by σ(P), as desired.

To use a similar idea for p 6= 2 we need the following theorem proven in [36].

Theorem E. Let Q be any collection of cubes. With obvious notation, there holds

∫
P

( ∑
Q∈Q:Q⊂P

〈σ〉Q1Q

)p
w . [w,σ]Qp

∑
Q⊂P

〈σ〉Q |Q| .

We use this to prove Theorem 3.7 for all p > 1. We will verify the first testing

condition in A, and the dual condition is verified similarly. Thus, let P be any cube
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in S. For r > 0, let Qr = {Q ⊂ P : ρσ(Q) ' 2r}. Note that for these cubes, there

holds

[w,σ]Qp .
1

2rεp(2r)
[w,σ]p,εp .

Therefore, by the triangle inequality and Lemma E,

(∫
P

( ∑
Q:Q⊂P

〈σ〉Q1Q

)p
w

) 1
p

6
∑
r>0

(∫
P

(∑
Q∈Qr

〈σ〉Q1Q

)p
w

) 1
p

. [w,σ]
1
p
p,εp

∑
r>0

1

εp(2r)
1
p

(
1
2r
∑
Q∈Qr

σ(Q)

) 1
p

. [w,σ]
1
p
p,εp

∑
r>0

1

εp(2r)
1
p

σ(P)
1
p .

In the last estimate, we used the fact that for the cubes in Qr, ρσ(Q) ' 2r and so we

can use the same estimate as in (3.12). The summability condition on εp completes

the proof.

3.6 Separated Bump Condition II

We conclude the chapter with a proof of the second separated bump condition

mentioned: Theorem 3.8. As above, it suffices to verify the testing conditions in

Theorem A, and we will only verify the first. Thus, let P be any cube in S. For r ∈ Z

let Qr = {Q ⊂ P : 〈σ〉Q ' 2r}. Using the summability condition on αp, as in the

proof of Theorem 3.7, we may assume that all cubes are contained in Qr.
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Again let Q∗r denote the maximal cubes in Qr. Using Lemma ??, there holds

∫
P

(∑
Q∈Qr

〈σ〉Q1Q

)p
w .

1
αp(2r)

[[w,σ]]p,αp

∑
Q∈Qr

〈σ〉Q |Q|

' 1
αp(2r)

[[w,σ]]p,αp

∑
Q∗∈Q∗r

∑
Q⊂Q∗

|Q|

' 1
αp(2r)

[[w,σ]]p,αp

∑
Q∗∈Q∗r

|Q|
∗ .

In the second line we used the definition of Qr and in the third line we used sparse-

ness. Again, using the definition of Qr, the sum is equivalent to
∑
Q∗∈Q∗r σ(Q

∗) and

by the maximality of the cubes in Q∗, it follows that this sum is dominated by σ(P).
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CHAPTER 4

FRACTIONAL INTEGRAL OPERATORS

We are concerned with two-weight inequalities for the fractional maximal and frac-

tional integral operators. The goal is to find simple, Ap−like conditions for a pair

of weights (non–negative, locally integrable functions) σ,w to ensure

‖Tσ : Lp(σ)→ Lq(w)‖ <∞, (4.1)

where T denotes a fractional maximal or fractional integral operator, and Tσ(f) :=

T(σf). One popular approach, initiated by Neugebauer in [68] and developed by

Pérez in [71, 70], has been to slightly strengthen the Ap characteristic by intro-

ducing new factors. These new factors, known as bumps, have come in different

forms. For example, Neugebauer requires that the weights σ1+ε and w1+ε belong

to Ap, while Pérez requires that the two weights have finite Orlicz norm. The Or-

licz approach is also taken by Cruz-Uribe and Moen in [20]. See the recent paper

of Cruz–Uribe [18] and the references therein for more information.

In the context of Calderón–Zygmund operators, Treil–Volberg have recently in-

troduced the notion of entropy bounds and are able to deduce stronger results than

have been obtained using the Orlicz approach [86]. Lacey and the author [52]

simplified and extended the approach to the entropy conditions in the singular in-

tegral case. We use these same techniques to prove similar results for the fractional

integral and fractional maximal operators. These results represent an extension of

what is known, and can be proved by relatively simple techniques. In particular,

we require that our weights satisfy certain bump or separated bump conditions (to
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be defined below.) It is not known to what extent these results are sharp. However,

Treil and Volberg show that the bumps used here are - in many cases of interest -

smaller than the Orlicz–based bumps.

Before stating the main theorems, we give some definitions. For 0 < α < n, the

fractional maximal operator for functions defined on Rn is

Mαf(x) := sup
Q a cube

1Q(x)

|Q|
1−α

n

∫
Q

|f(y)|dy,

and the fractional integral operator is

Iαf(x) :=

∫
Rn

f(y)

|y− x|
n−αdy.

4.1 Main Results

One reasonable generalization of the Muckenhoupt Ap condition to the present

setting is to set [σ,w] := supcubesQ σ(Q)1/p ′w(Q)1/q |Q|
α/(n−1). Ideally, we would

like for (4.1) to hold when [σ,w] is finite. This condition is insufficient (see [19] for

a counter example in the case of the fractional maximal operator). This condition

is enough, however, to deduce weak-type bounds for the maximal operator. We

present an alternate proof of this well–known result in Section 4.2 as an example

of the techniques used in the main theorems of this section; see [19] for another

proof. In particular, there holds:

Theorem 4.2. With [σ,w] defined as above, Mα the fractional maximal operator, and

1 6 p 6 q 6∞, there holds:

‖Mα(σ·) : Lp(σ)→ Lq,∞(w)‖ . [σ,w].

Since the finiteness of [σ,w] is not enough to deduce strong bounds, we use
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two types of bumped conditions to deduce the strong estimates. The first set of

conditions on the weights that we consider require a single bump (compare with

the separated bumps to be discussed later). Set ρσ(Q) := 1
σ(Q)

∫
Q
M(σ1Q), and

define ρw similarly, where M is the Hardy–Littlewood maximal operator. We deal

first with the fractional maximal operator. In [71, 70], Pérez establishes bump con-

ditions related to Theorems 4.3 and 4.4 using Orlicz norms.

Theorem 4.3. Let σ and w be two weights, 1 < p 6 q < ∞, and Mα be the frac-

tional maximal operator. Let εq be a monotonic increasing function on (1,∞) that satisfies∫∞
1

dt
tε
q
q(t)

= 1. Define

β(Q) :=
σ(Q)1/p ′w(Q)1/q

|Q|
1−α/n ρ1/p

σ (Q)εq(ρσ(Q)),

and set dσ,we := supQ∈D β(Q). Then

‖Mα(fσ)‖Lq(w) . dσ,we ‖f‖Lp(σ) .

The corresponding theorem for the fractional integral operator is:

Theorem 4.4. Let 1 6 p 6 ∞ and σ and w be two weights and let Iα be the frac-

tional integral operator. Let εp be a monotonic increasing function on (1,∞) that satisfies∫∞
1

dt
tε
p
p(t)

= 1 and similarly for εq ′ . Define:

β(Q) :=
σ(Q)1/p ′w(Q)1/q

|Q|
1−α/n ρσ(Q)1/pεp(ρσ(Q))ρw(Q)1/q ′εq ′(ρw(Q)),

and set bσ,wc := supQ∈Q β(Q). Then

‖Iα(fσ)‖Lq(w) . Cα,nbσ,wc ‖f‖Lp(σ) ,

where Cα,n is from (2.9).
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The condition in the next theorem is called a “separated bump” for obvious rea-

sons. We use a bump defined in terms of the fractional maximal operator, namely

ρα,p,q
σ (Q) :=

∫
Q
Mα(1Qσ)q/pdx

σ(Q)q/p
,

or simply ρσ or ρwhen clear. We have the following

Theorem 4.5. Let σ and w be weights with densities, 1 < p 6 q < ∞, and εq, εp ′ :

R+ → R be nonincreasing on (0, 1) and nondecreasing on (1,∞) such that
∫∞

0
dt

tε
1/q
q (t)

and
∫∞

0
dt

tε
1/p ′
p ′ (t)

are finite. Define

[[σ,w]]α,p,q := sup
Q a cube

(
|Q|α/n〈σ〉Q

)q/p ′ 〈w〉Qρα,p,q
σ (Q)εq (ρ

α,p,q
σ (Q)) .

There holds:

‖Iσα : Lp(σ)→ Lq(w)‖ . Cα,n

(
[[σ,w]]1/qα,p,q + [[w,σ]]1/p

′

α,q ′,p ′

)
.

In Section 4.2, we give some preliminary information and lemmas that will be

used below. In Section 4.3, we give a proof of the weak estimates. Section 4.4

and Section 4.5 contain the proofs of the one–bump theorems for the fractional

maximal and fractional integral operators. The proofs in these sections use the

theory of sparse operators discussed in Chapter 2, but avoid the explicit use of

testing inequalities. Finally, Section 4.6 contains the proof of the separated bump

theorem for the fractional integral operator. The proof uses both sparse operators

and testing inequalities but is still elementary.
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4.2 Preliminaries

In this section, we state a definition and believed-to-be-well-known theorem that

will be usefull later in the chapter. We include the proof for completeness.

Definition 4.6. Given a measure µ on Rn and a dyadic grid, D, a sequence of

positive numbers, {aQ}Q∈D, is called a p,q–Carleson Sequence if for every P ∈ D,

1
µ(P)q/p

∑
Q∈D:Q⊂P

aQ . 1. (4.7)

The following is a variant of a Carleson Embedding Theorem. We are certain

that Theorem F is contained in a paper, but we have not been able to find a refer-

ence. For the “continuous” version of this theorem, see [29].

Theorem F. Let µ be a measure on Rn, D be a dyadic grid, and {aQ}Q∈D be a p,q–

Carleson Sequence. If 1 < p 6 q <∞, there holds:

∑
Q∈D

aQ
(
〈f〉µQ

)q
. ‖f‖qLp(µ) ,

where the implied constant depends on p,q and the best constant in (4.7).

Proof. We will treat D as a discrete measure space with measure ν where ν(Q) =

aQ. We show that the operator T with rule (Tf)(Q) = 〈f〉µQ satisfies ‖Tf‖qLq(ν) .

‖f‖qLp(µ). The objective then is to show that for every λ > 0, there holds:

λqν({Tf > λ}) . (λpµ(Mf > λ))
q/p , (4.8)

where M is the dyadic maximal function. The lemma follows from (4.8) since the
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dyadic maximal function is bounded for p > 1:

‖Tf‖qLq(ν) '
∑
k∈Z

2kqν({Tf > 2k}) .

(∑
k∈Z

2kpµ({Mf > 2k})

)q/p
' ‖Mf‖q/pLp(µ) .

We now turn to proving (4.8). Fix λ > 0, and let Dλ be the maximal elementsQ ∈ D

such that 〈f〉µQ > λ (such maximal cubes exist since f ∈ Lp(µ)). Using the Carleson

property of the sequence {aQ}Q∈D, there holds:

λqν({Tf > λ}) = λq
∑
P∈Dλ

∑
Q∈Dλ:Q⊂P

aQ 6
∑
P∈Dλ

(λpµ(P))q/p 6 (λpµ({Mf > λ}))q/p.

The last inequality follows by the disjointness of the P ∈ Dλ and the fact that

q/p > 1.

4.3 A Weak-Type Inequality for the Fractional Maximal Operator

By Lemma 2.4, Theorem 4.2 follows from the following lemma.

Lemma 4.9. Let 1 6 p 6 q < ∞ and σ and w be two weights. Let D be a dyadic grid,

and letMα the dyadic fractional integral operator. Define:

β(Q) =
σ(Q)1/p ′w(Q)1/q |Q|

α/n

|Q|
.

Set [σ,w] := supQ∈D β(Q), then

λqw({Iαf > λ}) . [σ,w]q ‖f‖qLp(σ) . (4.10)

Proof. Let Dλ be the maximal elements of D contained inQ0 such that |Q|
α/n 〈fσ〉Q >
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λ. Since 〈fσ〉Q = 〈f〉σQ〈σ〉Q, there holds:

λqw{Mf > λ} 6
∑
Q∈Dλ

λqw(Q) 6
∑
Q∈Dλ

|Q|
qα
n 〈σ〉qQw(Q)

(
〈f〉σQ

)q
6 [σ,w]q

∑
Q∈Dλ

σ(Q)
q
p

(
〈f〉σQ

)q .

Given the disjointness of the setsQ ∈ Dλ, (4.10) is immediate for p = 1. For p > 1,

notice the sequence {σ(Q)q/p}Q∈Dλ
is p,q–Carleson with respect to the measure

σ.

4.4 A One-Bump Condition for the Fractional Maximal Operator

By Lemma 2.4, Theorem 4.3 follows from the following lemma. We remark that

while the following proof does not make explicit use of the Sawyer Maximal test-

ing inequalities in [84], the proof does use some of the same ideas.

Lemma 4.11. Let 1 < p 6 q <∞, and let σ and w be two weights. Given a dyadic grid

D, let Mα be the dyadic fractional maximal operator. Let εq be a monotonic increasing

function on (1,∞) that satisfies
∫∞

1
dt

tε
q
q(t)

= 1. Define

β(Q) :=
σ(Q)1/p ′w(Q)1/q

|Q|
1−α/n ρ1/p

σ (Q)εq(ρσ(Q)),

Set dσ,we := supQ∈Q β(Q), then

‖Mαfσ‖Lq(w) . dσ,we ‖f‖Lp(σ) .

Proof. Let S be any sparse subset of D. By Remark 2.5 we need to verify

∫
Q0

∣∣∣∣∣ ∑
Q∈S:Q⊂Q0

|Q|
α/n 〈fσ〉Q1EQ(x)

∣∣∣∣∣
q

w(x)dx . dσ,weq ‖f‖qLp(σ) . (4.12)
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Let Qk := {Q ∈ S,Q ⊂ Q0 : dσ,we2−k 6 β(Q) 6 dσ,we2−k+1}. We will show

∫
Q0

∣∣∣∣∣∑
Q∈Qk

|Q|
α/n 〈fσ〉Q1EQ(x)

∣∣∣∣∣
q

w(x)dx . (2−k)qdσ,weq ‖f‖qLp(σ) . (4.13)

Taking qth roots and summing over k will imply (4.12).

Using the identity 〈fσ〉Q = 〈σ〉Q〈f〉σQ and the pairwise disjointness of the sets

EQ, (4.13) will follow from:

∑
Q∈Qk

|Q|
qα/n

σ(Q)qw(Q)

|Q|
q (〈f〉σQ)q . (2−k)qdσ,weq ‖f‖qLp(σ) .

Thus, by the Carleson Embedding Theorem (Theorem F), it is enough to verify:

1
σ(P)q/p

∑
Q∈Qk:Q⊂P

|Q|
qα/n

σ(Q)qw(Q)

|Q|
q . (2−k)qdσ,weq,

for all P ∈ Qk. Using the fact that β(Q) ' 2−kdσ,we for Q ∈ Qk we estimate:

∑
Q∈Qk:Q⊂P

|Q|
qα/n

σ(Q)qw(Q)

|Q|
q =

∑
Q∈Qk:Q⊂P

|Q|
qα/n

σ(Q)q/p
′
w(Q)

|Q|
q σ(Q)q/p

' (2−k)qdσ,weq
∑

Q∈Qk:Q⊂P

σ(Q)q/p

ρσ(Q)q/pεqq(ρσ(Q))
.

We want to show that the sum above is dominated by σ(P)q/p. To this end, set

Sr = {Q ∈ Qk,Q ⊂ P : 2r−1 6 ρσ(Q) 6 2r}. Thus, the sum above is dominated by

∞∑
r=0

1
2rq/pεqq(2r)

∑
Q∈Sr

σ(Q)q/p.

Appealing to the summability condition on εq, it suffices to show that

∑
Q∈Sr

σ(Q)q/p 6 2qr/pσ(P)q/p.

32



Let S∗r be the maximal elements in Sr. Observe that for fixed S∗ ∈ S∗r, and for any

P ⊂ S∗, there holds:

(∫
EQ

〈1S∗σ〉Q1Q

)q/p
6

(∫
EQ

sup
P∈D
〈1S∗σ〉P1P

)q/p
.

Since the sets EQ are pairwise disjoint, |Q| ' |EQ|, and
∫
S∗ supP∈D〈1S∗σ〉P 6 σ(S∗)ρσ(S∗) '

2rσ(S∗) for S∗ ∈ S∗r, we estimate

∑
Q∈Sr

σ(Q)q/p 6
∑
S∗∈S∗r

∑
Q⊂S∗

(∫
EQ

sup
P∈D
〈1S∗σ〉P1P

)q/p

6
∑
S∗∈S∗r

(∫
S∗

sup
P∈D
〈1S∗σ〉P1P

)q/p
. 2qr/p

∑
S∗∈S∗r

σq/p(S∗).

Using the disjointness of the sets S∗ ∈ S∗r, the sum in the last line above is domi-

nated by σ(P)q/p, completing the proof.

4.5 A One-Bump Condition

By Lemma 2.4, Theorem 4.4 follows from the following lemma.

Lemma 4.14. Let 1 < p 6 q < ∞, and let σ and w be two weights. Given a dyadic

grid D, let IDα be the dyadic fractional integral operator. Let εp be a monotone increasing

function on (1,∞) such that
∫∞

1
dt

tε
p
p(t)

= 1, and similarly for εq ′ . Define

β(Q) :=
σ(Q)1/p ′w(Q)1/q |Q|

α/n

|Q|
ρσ(Q)1/pεp(ρσ(Q))ρw(Q)1/q ′εq ′(ρw(Q)).

Set bσ,wc := supQ∈Q β(Q), then

∥∥IDα (fσ)∥∥Lq(w)
. bσ,wc ‖f‖Lp(σ) .
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Proof. We proceed by duality. Let f ∈ Lp(σ) and g ∈ Lq ′(w). We use the identity:

〈fσ〉Q = 〈f〉σQ〈σ〉Q, where 〈f〉σQ := σ(Q)−1
∫
Q
fσ. From the definition of bσ,wc,

〈∑
Q∈Q

|Q|
α/n 〈fσ〉Q1Q,gw

〉
=
∑
Q∈Q

〈f〉σQ〈g〉wQ |Q|
α/n 〈σ〉Qw(Q) |Q|

α/n

=
∑
Q∈Q

〈f〉σQσ(Q)
1
p 〈g〉wQw(Q)

1
q ′
σ(Q)

1
p ′w(Q)

1
q |Q|

α/n

|Q|
1−α

n

. bσ,wc
∑
Q∈Q

〈f〉σQσ(Q)
1
p

ρ
1
p
σ(Q)εp(ρσ(Q))

〈g〉wQw(Q)
1
q ′

ρ
1
q ′
w (Q)εq ′(ρw(Q))

.

The inner product in the first line is in L2(dx). By Hölder’s inequality, it suffices to

show that

(∑
Q∈S

σ(Q)

ρσ(Q)εppρσ(Q)
(〈f〉σQ)p

) 1
p

and

(∑
Q∈S

w(Q)p
′/q ′

ρ
p ′/q ′
w (Q)εp

′

q ′ρw(Q)
(〈g〉wQ)q

′

) 1
p ′

are dominated by ‖f‖Lp(σ) and ‖g‖Lq ′(w), respectively. Since p 6 q, it follows that

q ′ 6 p ′, so by the the Carleson Embedding Theorem (Theorem F), it suffices to

show the following hold for all Q0 ∈ S:

(1) ∑
Q∈S:Q⊂P

σ(Q)

ρσ(Q)εpp(ρσ(Q))
. σ(Q0)

(2) ∑
Q∈S:S⊂P

w(Q)p
′/q ′

ρ
p ′/q ′
w (Q)εp

′

q ′(ρw(Q))
〈g〉wq

′

Q . wp
′/q ′(Q0).

But we omit the details since the proofs are similar to those in Lemma 4.11.
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4.6 A Separated Bump Condition

From Remark 2.5 and Lemma A, it is enough to show

∫
Q0

∣∣∣∣∣ ∑
Q∈Q:Q⊂Q0

|Q|
α/n 〈σ〉Q1Q(x)

∣∣∣∣∣
q

w(x)dx . [[σ,w]]α,p,qσ(Q0)
q/p

for any sparse collection Q and Q0 ∈ Q (the dual testing condition follows iden-

tically). For the remainder, fix a root Q0 and let Q be a sparse collection of cubes

contained in Q0. Fix α,p,q in the respective appropriate range; we’ll ignore these

fixed indices where there is no confusion. It remains to show

∥∥∥∥∥∑
Q∈Q

|Q|
α/n 〈σ〉Q1Q

∥∥∥∥∥
Lq(w,Q0)

. [[σ,w]]1/qσ(P)1/p.

For Q ∈ Q, define

β(Q) :=
(
|Q|α/n〈σ〉Q

)q/p ′ 〈w〉Qρσ(Q)εq (ρσ(Q)) .

For integers a and r, set Qa,r := {Q ∈ Q : β(Q) ' 2a, ρ(Q) ' 2r}; notice Qa,r

is empty for a large enough. Construct a stopping family S for the σ fractional

averages: let S be the minimal subset of Qa,r containing the maximal cubes in Qa,r

such that whenever S ∈ S, the maximal cubes Q ⊂ S, Q ∈ Qa,r with |Q|α/n〈σ〉Q >

4|S|α/n〈σ〉S are also in S. Denote by QS the S–parent of Q. Partition Qa,r into

Qa,r
k , those cubes in Qa,r such that |Q|α/n〈σ〉Q ' 2−k|QS|α/n〈σ〉QS . We temporarily

denote Qa,r
k by Q ′. We will show

∥∥∥∥∥∑
Q∈Q ′

|Q|α/n〈σ〉Q1Q

∥∥∥∥∥
Lq(w)

. 2−k

[∑
S∈S

|S|qα/n〈σ〉qSw(S)

]1/q

, (4.15)
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where summing over k > −2 gives

∥∥∥∥∥ ∑
Q∈Qa,r

|Q|α/n〈σ〉Q1Q

∥∥∥∥∥
Lq(w)

.

[∑
S∈S

|S|qα/n〈σ〉qSw(S)

]1/q

. (4.16)

Define for each S ∈ S

ΦS :=
∑

Q∈Q ′:QS=S

|Q|α/n〈σ〉1Q and ΦS,` := ΦS1{ΦS'`2−k|S|α/n〈σ〉S}.

Since
∑
S∈S

ΦS,` is geometric for fixed ` ∈ Z+, Hölder’s inequality yields some

(∑
`>1

∑
S∈S

ΦS,`

)q
.
∑
`>1

`2q/q
′

(∑
S∈S

ΦS,`

)q
'
∑
`>1

`2q/q
′∑
S∈S

ΦqS,`. (4.17)

It is apparent that we need the following distributional estimate.

Lemma 4.18. There holds

w
{
ΦS > λ2−k|S|α/n〈σ〉S

}
. 2−λw(S).

Proof. The inequality is immediate in the casew is Lebesgue measure from sparse-

ness of Q. Notice that we have for Q ∈ Q ′ with QS = S,

〈w〉Q '
2a

2rεq(2r)
(2−k〈σ〉S|S|α/n)−q/p

′
=: τS,

where the equivalence is independent of S. Denote by Q∗ the maximal cubes in Q ′.

Since the
{
ΦS > λ2−k|S|α/n〈σ〉S

}
is the union of the maximal cubes P ∈ Q ′ with
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PS = S and inf
x∈P

ΦS(x) > λ2−k|S|α/n〈σ〉S, hence a disjoint union, it follows that

w
{
ΦS > λ2−k|S|α/n〈σ〉S

}
' τS

∣∣{ΦS > λ2−k|S|α/n〈σ〉S
}∣∣

. τS

(
2−(λ−1)

∑
Q∗∈Q∗

|Q∗|

)

' 2−λ
∑
Q∗∈Q∗

w(Q∗).

The collection Q∗ is disjoint, so the proof is complete.

Since {ΦS,` > λ2−k|S|α/n〈σ〉S} is constant for 0 < λ < `
2 and is empty for λ > `,

we have

∫
Q0

ΦqS,`dw = 2−kq|S|qα/n〈σ〉qS
∫∞

0
qλq−1w{ΦS,` > λ2−k|S|α/n〈σ〉S}dλ

. 2−kq|S|qα/n〈σ〉qS
[(
`

2

)q
2−`/2w(S) +

`

2
q`q−12−`/2w(S)

]
' 2−kq|S|qα/n〈σ〉qS

[
`q2−`/2w(S)

]
,

where the second inequality is the application of Lemma 4.18. Recalling (4.17), this

gives (4.15).

For each S define ES to be S less the members of S properly contained in S. Let

S∗ be the maximal elements of S. Since β(S) ' 2a and ρ(S) ' 2r for all S ∈ S, the

right hand side of (4.16) is equivalent to

2a

2rεq(2r)

∑
S∈S

(
|S|α/n〈σ〉S

)q/p
|S| .

2a

2rεq(2r)

(∑
S∗∈S∗

∑
S∗⊇S∈S

∫
ES

Mα(1S∗σ)
q
pdx

)

' 2a

εq(2r)

(∑
S∗∈S∗

σ(S∗)q/p

)

.

[
(21/q)a

1

ε
1/q
q (2r)

σ(Q0)
1/p

]q
.
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The first inequality above follows from |S| ' |ES| =
∫
ES
dx, and the third by com-

paring qth roots and remembering p 6 q. Take qth roots above to attain the de-

sired inequality. Summing the last quantity over integers r > 0 evokes the integra-

bility condition on εq; summing over relevant integers a completes the proof.
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CHAPTER 5

COMMUTATORS WITH FRACTIONAL INTEGRAL OPERATORS

Recall the Calderón-Zygmund operators:

Tf(x) :=

∫
Rn
K(x,y)f(y)dy, x /∈ suppf,

where the kernel satisfies the standard size and smoothness estimates:

|K(x,y)| 6
C

|x− y|
n ,

|K(x+ h,y) − K(x,y)|+ |K(x,y+ h) − K(x,y)| 6 C
|h|
δ

|x− y|
n+δ

,

for all |x− y| > 2 |h| > 0 and a fixed δ ∈ (0, 1].

To contrast the Calderón-Zygmund operators with the fractional integral op-

erators, note for example that fractional integral operators are positive, which in

many cases makes them easier to work with. On the other hand, the fractional inte-

gral operators do not commute with dilations and therefore can never boundedly

map Lp(dx) to itself. Additionally, the kernel of the fractional integral operator

does not satisfy the standard estimates above. Therefore, the theory of fractional

integral operators is not just a subset of the theory of Calderón–Zygmund opera-

tors. Because of this, results which are known for Calderón-Zygmund operators

also need to be proved for the fractional integral operators.

In this chapter we will characterize the triples (b,µ, λ), where b is a function

and µ and λ are Ap,q weights (to be defined shortly), such that the commutator

[b, Iα] is bounded from Lp(µp) to Lq(λq). Commutators with fractional integral
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operators were first studied in [12].

Our characterization will be in terms of the norm of b in a certain weighted

BMO space, built from the weights µ and λ. This is an adaptation to the fractional

integral setting of a viewpoint introduced by Bloom [5] in 1985, and recently in-

vestigated by the first Holmes, Lacey and Wick in [33, 32]. Specifically, Bloom

characterized ‖[b,H] : Lp(µ)→ Lp(λ)‖, where H is the Hilbert transform and µ, λ

areAp weights, in terms of ‖b‖BMO(ν), where BMO(ν) is the weighted BMO space

associated with the weight ν := µ1/pλ−1/p. Recall that the Hilbert transform is the

one-dimensional prototype for Calderón-Zygmund operators, a role played by the

fractional integral operators in Rn.

A modern dyadic proof of Bloom’s result was recently given in [33], and the

techniques developed were then used to extend the result to all Calderón-Zygmund

operators in [32]. In particular, it was proved that

‖[b, T ] : Lp(µ)→ Lp(λ)‖ 6 c‖b‖BMO(ν), (5.1)

for all Ap weights µ, λ, and all Calderón-Zygmund operators T on Rn, for some

constant c depending on n, T , µ, λ and p. Specializing to the fractional integral

operators, a lower bound was also proved. The center of the proof of (5.1) is the

Hytönen Representation Theorem, which allows one to recover T from averaging

over some dyadic operators, called dyadic shifts. Then the upper bound reduced

to these dyadic operators.

We take a similar approach here, where the role of the dyadic shifts will be

played by the dyadic version of the fractional integral operator Iα, given by:

IDα f :=
∑
Q∈D

|Q|
α/n 〈f〉Q1Q. (5.2)

Our main result is:
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Theorem 5.3. Suppose that α/n+ 1/q = 1/p and µ, λ ∈ Ap,q. Let ν := µλ−1. Then:

‖[b, Iα] : Lp(µp)→ Lq(λq)‖ ' ‖b‖BMO(ν) .

It is important to observe that we require that each weight belong to a certain

Ap,q class and this will imply that µλ−1 is an A2 weight and in particular, an A∞
weight. Standard properties of these weight classes will be used throughout the

chapter, with out tracking dependencies on the particular weight characteristics.

The liberal use of these properties indicates the subtleties involved in the general

two–weight setting. For an excellent account of this and other topics related to

fractional integral operators, see [18].

The chapter is organized as follows. In Section 5.1, we will give the requisite

background material and definitions. Note, however, that most of the material

not relating strictly to fractional integral operators (such as the Haar system, Ap

weights, and weighted BMO) is standard and was also needed in [32] where it is

discussed in more detail. In Section 5.2 we will briefly discuss how the fractional

integral operator can be recovered as an average of dyadic operators. In Section 5.3

we will prove ‖[b, Iα] : Lp(µp)→ Lq(λq)‖ . ‖b‖BMO(ν) and in Section 5.4, we will

prove the reverse inequality: ‖b‖BMO(ν) . ‖[b, Iα] : Lp(µp)→ Lq(λq)‖.

5.1 Background and Notation

5.1.1 The Haar System

Let D be a dyadic grid on Rn and let Q ∈ D. For every ε ∈ {0, 1}n, let hεQ be

the usual Haar function defined on Q. For convenience, we write ε = 1 if ε =

(1, 1, . . . , 1). Note that, in this case,
∫
h1
Q = 1. Otherwise, if ε 6= 1, then

∫
hεQ = 0.

Moreover, recall that {hεQ}Q∈D,ε 6=1 forms an orthonormal basis for L2(Rn). For a
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function f, a cube Q ∈ D and ε 6= 1, we denote

f̂(Q, ε) := 〈f,hεQ〉,

where 〈·, ·〉 is the usual inner product in L2(Rn).

5.1.2 Ap Classes and Weighted BMO

Let w be a weight on Rn, that is, a locally integrable, almost everywhere positive

function. For a subset Q ⊂ Rn we denote

w(Q) :=

∫
Q

wdx and 〈w〉Q :=
w(Q)

|Q|
.

Given 1 < p < ∞, a weight w is said to belong to the Muckenhoupt Ap class

provided that:

[w]Ap := sup
Q

〈w〉Q〈w1−p ′〉p−1
Q <∞,

where p ′ denotes the Hölder conjugate of p, and the supremum is over all cubes

Q ⊂ Rn. Moreover,w ∈ Ap if and only ifw1−p ′ ∈ Ap ′ and, in this case, [w1−p ′]Ap ′ =

[w]p
′−1
Ap

. Furthermore, if 1 < p < q <∞, then Ap ⊂ Aq, with [w]Aq 6 [w]Ap for all

w ∈ Ap.

For a dyadic lattice D, recall the dyadic square function:

(SDf)
2 =

∑
P∈D,ε 6=1

∣∣∣f̂(Q, ε)
∣∣∣2 1Q
|Q|

.

Another property of Ap weights which will be useful for us is the following well–

known weighted Littlewood–Paley Theorem:
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Theorem 5.4. Let w ∈ Ap, then:

‖SD : Lp(w)→ Lp(w)‖ ' c(n,p, [w]Ap).

For a weight w on Rn, the weighted BMO space BMO(w) is defined to be the

space of all locally integrable functions b that satisfy:

‖b‖BMO(w) := sup
Q

1
w(Q)

∫
Q

|b− 〈b〉Q |dx <∞,

where the supremum is over all cubesQ in Rn. For a general weight, the definition

of the BMO norm is highly dependent on its L1 average. But, if the weight is A∞,

one is free to replace the L1-norm by larger averages. Namely, for w ∈ Ap, define

‖b‖BMOp
′
(w)

:= sup
Q

(
1

w(Q)

∫
Q

|b− 〈b〉Q |p
′
dw ′

) 1
p ′

,

where w ′ denotes the conjugate weight w1−p ′ . Then there holds

‖b‖BMO(w) 6 ‖b‖BMOp
′
(w)

6 C(n,p, [w]A∞)‖b‖BMO(w). (5.5)

The proof is similar to the proof in the unweighted case. In particular, the first

inequality is a straightforward application of Hölder’s inequality and the second

inequality follows from a suitable John–Nirenberg property (which requires a suit-

able Calderón–Zygmund decomposition). The details are in [64].

For a dyadic grid D on Rn, we define the dyadic versions of the norms above

by taking supremum over Q ∈ D instead of over all cubes Q in Rn, and denote

these spaces by BMOD(w) and BMOp
′

D (w). Clearly BMO(w) ⊂ BMOD(w) for any

choice of D, and the equivalence in (5.5) also holds for the dyadic versions of these

spaces.
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A fact which will be crucial to our proof is the following:

Lemma 5.6. If w ∈ A2, then

|〈b,Φ〉| . ‖b‖BMO2
D(w)‖SDΦ‖L1(w).

This comes from a duality relationship between dyadic weighted BMO spaces

and dyadic weighted Hardy spaces. For a more detailed discussion and a proof

of this fact, see [32, Section 2.6]. We remark here that Lemma 5.6 was also funda-

mental for the proof of the upper bound (5.1) in [32], essentially for the following

reason: if µ, λ are Ap weights, then ν := µ1/pλ−1/p is an A2 weight. Thus the du-

ality statement above applied to ν eventually yields, through Hölder’s inequality,

some bounds in terms of Lp(µ) and Lp ′(λ) norms. This is also the strategy we will

adapt accordingly to the fractional integral case, which makes use of Ap,q classes

instead. We discuss these next.

5.1.3 Ap,q Classes

Throughout this subsection, α,n,p,q are fixed and satisfy 1/p − 1/q = α/n. We

recall first the fractional maximal operator,

Mαf := sup
Q

|Q|α/n〈|f|〉Q1Q,

with the supremum being over all cubesQ. This was first introduced in [65], where

it was used to prove weighted inequalities for Iα, a result analogous to the classic

result [14] of Coifman and Fefferman, relating the Hardy-Littlewood maximal op-

erator and singular integrals. We will be working with the dyadic version of this

operator,MD
α , defined for a dyadic grid D just as above, but only taking supremum

over Q ∈ D.
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Also in [65] was introduced a generalization of Ap classes for the fractional

integral setting: we say that a weight w belongs to the Ap,q class provided that

[w]Ap,q := sup
Q

〈wq〉Q〈w−p ′〉
q/p ′

Q <∞.

See [80, 77, 20, 19, 18] for other generalizations.

We will use the following important result concerning Ap,q weights due to, for

example, Sawyer and Muckenhoupt and Wheeden [83, 84, 65]:

Theorem 5.7. Let w be a weight. Then the following are equivalent:

(i) w ∈ Ap,q,

(ii)
∥∥MD

α : Lp(wp)→ Lq(wq)
∥∥ ' C(n,α,p, [w]Ap,q),

(iii)
∥∥IDα : Lp(wp)→ Lq(wq)

∥∥ ' C(n,α,p, [w]Ap,q).

We now make two observations about Ap,q weights which will be particularly

useful to us. First, we note that:

If w ∈ Ap,q, then: wp ∈ Ap, w−p ′ ∈ Ap ′ , wq ∈ Aq, and w−q ′ ∈ Aq ′ , (5.8)

where all weights above have Muckenhoupt characteristics bounded by powers of

[w]Ap,q . To see that wp ∈ Ap, first notice w ∈ Ap,q if and only if wq ∈ Aq0 , with

[wq]Aq0
= [w]Ap,q , where

q0 := 1 + q/p ′ = q(1 − α/n).

Since the Ap classes are increasing and q0 < q, we have thatwq ∈ Aq. In turn, this

gives that w−q ′ = (wq)1−q ′ ∈ Aq ′ . The other two statements in (5.8) follow in a

similar fashion from the fact that w ∈ Ap,q if and only if w−1 ∈ Aq ′,p ′ .
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Second, suppose that µ, λ ∈ Ap,q and let ν := µλ−1. Since µp, λp ∈ Ap, Hölder’s

inequality implies ν ∈ A2 (with [ν]pA2
6 [µp]Ap[λ

p]Ap), a fact which will be used in

proving the upper bound. Moreover, we claim that for any cube Q:

µp(Q)1/pλ−q
′
(Q)1/q ′ . ν(Q)|Q|α/n, (5.9)

a fact which will be useful in proving the lower bound. To see this, note first that

〈µp〉1/pQ 〈µ
−p ′〉1/p

′

Q . 1 and 〈λ−q ′〉1/q
′

Q 〈λq〉1/qQ . 1,

which simply come from µp ∈ Ap and λq ∈ Aq. Since p ′ > q ′, Hölder implies

(
1
|Q|

∫
Q

µ−q ′ dx

)1/q ′

6

(
1
|Q|

(∫
Q

µ−p ′ dx

)q ′/p ′ (∫
Q

dx

)1−q ′/p ′
)1/q ′

=

(
1
|Q|

∫
Q

µ−p ′ dx

)1/p ′

,

and hence 〈µ−q ′〉1/q
′

Q 6 〈µ−p ′〉1/p
′

Q . Combining these estimates gives:

〈µp〉1/pQ 〈λ
−q ′〉1/q

′

Q .
1

〈µ−p ′〉1/p
′

Q

1

〈λq〉1/qQ
.

1

〈µ−q ′〉1/q
′

Q 〈λq〉1/qQ
6

1
〈ν−1〉Q

6 〈ν〉Q.

The last two inequalities are more application of Hölder’s inequality and the fact

that ν−1 = µ−1λ. This proves (5.9).

5.2 Averaging Over Dyadic Fractional Integral Operators

In this section, we show that Iα can be recovered from (5.2) by averaging over

dyadic lattices. The proof here is modified (and abridged) from the proof in [74],

but it is possible to modify any of the proofs in, for example, [75, 35, 48]. For the

sake of clarity, we only give the proof for the one–dimensional case.
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Given an interval [a,b) (it is not too important that the interval be closed on

the left and open on the right) of length r, we can create a dyadic lattice, Da,r in a

standard way. In particular, Da,r is the dyadic lattice on R with intervals of length

r2−k, k ∈ Z, and the point a is not in the interior of any of the intervals in Da,r. For

example, D0,1 is the standard dyadic lattice on R. For a given lattice Da,r, we let

Dka,r denote the intervals in Da,r with length r2−k. In this section we slightly abuse

notation and let h1
I = |I|

−1/2 1I.

Define:

P0
(a,r)f(x) :=

∑
I∈D0

a,r

|I|
α 〈
f,h1

I

〉
h1
I(x).

With r and x fixed, we can parameterize the dyadic grids by the set (−r, 0] and

we can give this set the probability measure da/r. For a fixed x ∈ R, we want to

compute:

E(P0
(a,r)f(x)) =

∫ 0

−r

P0
(a,r)f(x)

da

r
.

Let τtf(x) := f(x + t) be the translation operator and note that Pa−tτt = τtPa.

From this it easily follows that EP0
(a,r)τt = τtP0

(a,r). That is, EP0
(a,r) is given by

convolution. Let:

EP0
(a,r)f(x) = F0,r ∗ f(x).

We want to compute F0,r. First, note that P0
a,r is convolution with the function
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rα

r
1[−r/2,r/2]. Therefore, we have:

F0,r ∗ f(x) = EP0
(a,r)f(x)

= EP0
(a/2,r)f(x)

∫x+r/2

x−r/2

∫
R
f(s)

rα

r
1−r/2,r/2(t− s)ds

dt

r
.

Using Fubini, we see that:

F0,r(x) =

∫x+r/2

x−r/2

rα

r
1[−r/2,r/2](t)

dt

r
=
rα

r
1[−r/2,r/2](x)

(
1 −

∣∣∣x
r

∣∣∣) =
rα

r
F0,1(x/r).

Now, fix an r ∈ [1, 2) and define:

Fr =
∑
n∈Z

F0,2nr.

The grids Dka,r,k ∈ Z can be unioned to form a dyadic lattice (here a is fixed). Call

r the calibre of the dyadic lattice. Convolution with Fr is averaging over all the

dyadic lattices Da,r with fixed calibre r. That is:

Fr ∗ f = EPDa,rf.

Finally, we need to average over r ∈ [1, 2). Set
∫2

1 Fr(x)
dr
r
:= F(x) and compute:

F(x) =

∫ 2

1
Fr(x)

dr

r

=

∫ 2

1

∑
n∈Z

F0,2nr(x)
dr

r

=

∫∞
0
F0,ρ(x)

dρ

ρ

=

∫∞
0
F0,1(

x

ρ
)
ρα

ρ2 dρ

=

∫∞
0

1−1/2,1/2(
x

ρ
)(1 −

∣∣∣∣xρ
∣∣∣∣)ραρ2 dr.
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Now, if x > 0, making the change of variable t = x/ρ, we see:

F(x) =
xα

x

∫∞
0
F0,1(y)

dy

yα
= cα

1
x1−α .

A similar computation for x < 0 yields F(x) = cα 1
|x|1−α

.

5.3 The Weighted Inequality

The decomposition in Section 5.2 means that the upper bound in Theorem 5.3

follows from the following, where the implied constants are independent of the

dyadic lattice:

Lemma 5.10. Suppose that α/n+ 1/q = 1/p and µ, λ ∈ Ap,q. Let ν := µλ−1. Then:

∥∥[b, IDα ] : L
p(µp)→ Lq(λq)

∥∥ . ‖b‖BMO(ν) .

Proof. We show that [b, IDα ] can be decomposed as the sum of four operators which

will be fairly easy to bound. First note that for ε 6= 1, there holds:

IDαh
ε
Q =

∑
P∈D:P(Q

|P|
α/n

hεQ(P)1P =

( ∑
P∈D:P(Q

|P|
α/n 1P

)
hεQ = cα |Q|

α/n
hεQ.

Similarly,

IDα 1Q = (1 + cα) |Q|
α/n 1Q + |Q|

∑
R∈D:Q(R

|R|
α/n 1R

|R|
.

Using these computations:

IDα (h
ε
Ph
η
Q) =

 cα|P ∩Q|
α
nhεPh

η
Q , if P 6= Q or if P = Q and ε 6= η;

(1 + cα)|Q|
α
n

1Q
|Q|

+
∑
R)Q |R|

α
n

1R
|R|

, if P = Q and ε = η.
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Thus:

[hεP, IDα ]h
η
Q =


cαh

η
Q(P)h

ε
P

(
|Q|

α
n − |P|

α
n

)
, if P ( Q;

−|Q|
α
n

1Q
|Q|

−
∑
R)Q |R|

α
n

1R
|R|

, if P = Q and ε = η;

0 , if Q ( P, or if Q = P and ε 6= η.

Expressing b and f in terms of their Haar coefficients, we obtain that

[b, IDα ]f =
∑
P,Q∈D

∑
ε,η6=1

b̂(P, ε)f̂(Q,η)[hεP, IDα ]h
η
Q.

Using this, there holds

[b, IDα ]f = cαT1f− cαΠ
(0,1,0)
b,α f− Π

(0,0,1)
b,α f− T2f,

where:

Π
(0,1,0)
b,α f :=

∑
Q∈D,ε 6=1

b̂(Q, ε)〈f〉Q|Q|
α
nhεQ;

Π
(0,0,1)
b,α f :=

∑
Q∈D,ε 6=1

b̂(Q, ε)f̂(Q, ε)|Q|
α
n

1Q
|Q|

;

T1f :=
∑

P∈D,ε 6=1

b̂(P, ε)

( ∑
Q)P,η6=1

f̂(Q,η)hηQ(P)|Q|
α
n

)
hεP;

T2f :=
∑

P∈D,ε 6=1

b̂(P, ε)f̂(P, ε)

(∑
Q)P

|Q|
α
n

1Q
|Q|

)
.

We will show that all of these operators are bounded Lp(µp)→ Lq(λq). Below,

all implied constants are allowed to depend on n,α,p, [µ]Ap,q , and [λ]Ap,q . Also all

inner products below are taken with respect to dx and therefore it is enough to

show:

|〈Tf,g〉| . ‖b‖BMO(ν) ‖f‖Lp(µp) ‖g‖Lq ′(λ−q ′) ,
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for each of the four operators above (this is because the dual of Lq(λq) with respect

to the unweighted inner product is Lq ′(λ−q ′)). The idea, which is taken from [33,

32], is to write the bilinear form, 〈Tf,g〉 as 〈b,Φ〉 and then show that ‖SDΦ‖L1(ν)

is controlled by ‖f‖Lp(µp) ‖g‖Lq ′(λ−q ′); by the weighted H1 − BMO duality, this is

enough to prove the claim.

The estimates for the two paraproducts are almost identical, and we only give

the proof for Π(0,1,0)
b,α . First with

Φ :=
∑

Q∈D,ε 6=1

〈f〉Q|Q|
α
n ĝ(Q, ε)hεQ,

there holds:

〈
Π

(0,1,0)
b,α f,g

〉
= 〈b,Φ〉 .

Then:

(SDΦ)2 =
∑

Q∈D,ε 6=1

|〈f〉Q|2|Q|
2α
n |ĝ(Q, ε)|2

1Q
|Q|

6 (Mαf)
2(SDg)

2.

Therefore,

‖SDΦ‖L1(ν) 6 ‖Mαf‖Lq(µq)‖SDg‖Lq ′(λ−q ′) . ‖f‖Lp(µp)‖g‖Lq ′(λ−q ′),

where the last inequality follows from Theorem 5.7 for the fractional maximal func-

tion, and from Theorem 5.4 and the fact that λ−q ′ ∈ Aq ′ for the dyadic square

function. The proof for Π(0,0,1)
b,α is very similar, and we omit the details.

Now let us look at T1. As above, we have 〈T1f,g〉 = 〈b,Φ〉, with

Φ :=
∑

P∈D,ε 6=1

ĝ(P, ε)

( ∑
Q)P,η 6=1

f̂(Q,η)hηQ(P)|Q|
α
n

)
hεP,
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Then:

(SDΦ)2 6
∑

P∈D,ε 6=1

|ĝ(P, ε)|2
( ∑
Q)P,η6=1

〈|f|〉Q|Q|
α
n

)2
1P
|P|

6 (IDα |f|)
2(SDg)

2.

From Theorem 5.7 and Theorem 5.4, it follows that

‖SDΦ‖L1(ν) 6 ‖IDα |f|‖Lq(µq)‖SDg‖Lq ′(λ−q ′) . ‖f‖Lp(µp)‖g‖Lq ′(λ−q ′).

The estimates for T2 are similar and we omit the details.

5.4 The Reverse Weighted Inequality

In this section, we prove the lower bound in Theorem 5.3, which follows immedi-

ately from the Lemma below. In particular, we will show the following:

Lemma 5.11. For all cubes, Q:

1
ν(Q)

∫
Q

|b(x) − 〈b〉Q|dx . ‖[b, Iα] : Lp(µp)→ Lq(λq)‖ .

Proof. The proof here follows along the lines of the proof in [11]. We first make

some reductions. As with unweighted BMO, we can replace the 〈b〉Q with any

constant. Indeed, there holds:

1
ν(Q)

∫
Q

|b(x) − 〈b〉Q|dx 6
1

ν(Q)

∫
Q

|b(x) − CQ|dx+
|Q|

ν(Q)
|CQ − 〈b〉Q|

6
2

ν(Q)

∫
Q

|b(x) − CQ|dx.

Second, let P be the cube with l(P) = 4l(Q), where l(Q) is the side length ofQ, and

with the same “bottom left corner” asQ. By the doubling property of A∞ weights,

52



there holds ν(P) ' ν(Q), and therefore it is enough to prove:

1
ν(P)

∫
Q

|b(x) − CQ|dx . ‖[b, Iα] : Lp(µp)→ Lq(λq)‖ .

Finally, let PR be the “upper right half” of P. Below, we will use CQ = 〈b〉PR .

Now, for x ∈ Q and y ∈ PR there holds:

|x− y|

2
√
n |P|

1/n >

√
n |Q|

1/n

2
√
n |P|

1/n =
1
8

and
|x− y|

2
√
n |P|

1/n 6

√
n |P|

1/n

2
√
n |P|

1/n 6
1
2

.

The point is that there is a function, K(x), that is smooth on [−1, 1]n, has a smooth

periodic extension to Rn, and is equal to |x|
n−α for 1/8 6 |x| 6 1/2. Therefore, for

x ∈ Q and y ∈ PR there holds:

(
|x− y|

2
√
n |P|

1/n

)n−α
= K

(
x− y

2
√
n |J|

)
.

Important for us is the fact that K has a Fourier expansion with summable coeffi-

cients.

We are now ready to prove the main estimate. First, let σ(x) = sgn(b(x)−〈b〉PR).

Then:

∫
Q

|b(x) − 〈b〉PR |dx =
1

|PR|

∫
R

∫
R
(b(x) − b(y))σ(x)1Q(x)1PR(y)dydx

=
1

|PR|

∫
R

∫
R

b(x) − b(y)(
|x−y|

2
√
n|P|

)n−α ( |x− y|

2
√
n |P|

)n−α
σ(x)1Q(x)1PR(y)dydx

' |P|
−α/n

∫
R

∫
R

b(x) − b(y)

|x− y|
n−α K

(
x− y

2
√
n |P|

)
σ(x)1Q(x)1PR(y)dydx.

Observe that the integral above is positive, so the “'” is not a problem. Expanding
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K in its Fourier series:

K

(
x− y

2
√
n |P|

)
=
∑
k

ake
ikx/2

√
n|P|e−iky/2

√
n|P|,

the integral above becomes:

∑
k

ak

∫
Q

∫
PR

b(x) − b(y)

|x− y|
n−α σ(x)e

ikx/c|P|−iky/c|P|dydx =
∑
k

ak

∫
R
hk(x)[b, Iα]fk(x)dx,

where hk(x) = σ(x)eikx/c|P|1P(x) and fk(y) = e−iky/c|P|1PR(y). We control the

integral by:

∫
R
hk(x)[b, Iα]fk(x)dx 6 ‖[b, Iα] : Lp(µp)→ Lq(λq)‖ ‖fk‖Lp(µp) ‖hk‖Lq ′(λ−q ′)

= ‖[b, Iα] : Lp(µp)→ Lq(λq)‖µp(PR)1/pλ−q
′
(P)1/q ′

= ‖[b, Iα] : Lp(µp)→ Lq(λq)‖µp(P)1/pλ−q
′
(P)1/q ′ .

By (5.9), this is dominated by:

‖[b, Iα] : Lp(µp)→ Lq(λq)‖ |P|α ν(P).

This completes the proof.
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CHAPTER 6

OSCILLATORY AND RANDOM SINGULAR INTEGRALS

This chapter explores the theme of bounding singluar integral operators by sparse

operators in the settings of (a) oscillatory singular integrals, and (b) discrete ran-

dom operators. In both cases, we easily derive weighted inequalities. In the latter

case, these are the first such weighted inequalities known. We state our results

before providing a broader context.

Theorem 2.12 yields a non-trivial corollary:

Corollary 6.1. For 1 < p <∞, the operator TP, where P = P(y) is of degree d, is bounded

on Lp(w), where w is a Muckenhoupt weight w ∈ Ap.

Weak-type and weighted estimates for oscillatory singular integrals have been

studied in this and more general contexts by various authors, see for instance [27,

28, 30, 31, 82]. Y. Ding and H. Liu [27] were interested in Lp(w) inequalities for

more general operators T . The approach of these authors entails many complica-

tions.

The method of proof of Theorem 2.12 is very simple, so we suspect that stronger

results are possible. For instance, this Conjecture would imply nearly sharp Ap

bounds, for all 1 < p < 2.

Conjecture 6.2. For 1 < r <∞, the operator TP, where P = P(y) is of degree d, for each

bounded compactly supported function f, there is a sparse operator Λ1,r so that

|〈TPf,g〉| . Λ1,r(f,g).
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It seems likely that the weak type argument of Chanillo and Christ [13] would

establish the Conjecture for r = 2. Also see [45].

We turn to weighted inequalities for discrete random Hilbert transforms acting on

functions on `2(Z).

Corollary 6.3. For any 0 < α < 1, almost surely, the following holds: For all 1 + α <

p < 1+α
α

, and weights w so that

w1+α ∈ A(1+α)(p−1)+1, w ∈ A1+ 1
(1+α)(p ′−1)

, (6.4)

we have ‖Hα : `p(w) 7→ `p(w)‖ < ∞. The implied constant only depends upon

[w1+α]A(1+α)(p−1)+1 , and [w]A
1+ 1
α(p ′−1)

. The same inequality holds forMα.

The study of these questions was initiated by Bourgain [8], as an elementary

example of a sequence of integers for which one could derive `p inequalities, with

the sequence of integers also having asymptotic density zero. Various aspects of

these questions have been studied, both in `p and at the weak (1, 1) endpoints [81,

9, 63, 87, 53]. We are not aware of any result in the literature that proves a weighted

estimate in this sort of discrete setting. (If the set of integers has full density, it is

easy to transfer weighted estimates.)

There is a subtle difference between the Hilbert transform and the maximal

function in this random setting. In particular, more should be true for the maximal

function. Prompted by the work of LaVictoire [53], we pose

Conjecture 6.5. For 0 < α < 1/2, almost surely, for all 1 < r < 2, and finitely supported

functions f,g, there is a sparse operator Λ1,r so that

〈Mαf,g〉 . Λ1,r(f,g).

We turn to the context for our paper. The concept of sparse operators arose from
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Lerner’s remarkable median inequality [56]. It’s application to weighted inequali-

ties was advanced by several authors, with a high point of this development being

Lerner’s argument [57] showing that the weighted norm of Calderón-Zygmund

operators is comparable to that of the norms of sparse operators. This lead to the

question of pointwise control, namely Theorem ??. First established by Conde-

Alonso and Rey [16], also see Lerner and Nazarov [54], Lacey [47] established

Theorem ?? with a stopping time argument. The latter argument was extended

by Bernicot, Frey and Petermichl [3] to a setting where the operators are gener-

ated by semigroups, including examples outside the scope of classical Calderón-

Zygmund theory. For closely related developments see [60, 41]. The sparse bounds

for commutators [55, 25] are remarkably powerful. Edging beyond the Calderón-

Zygmund context, Benau, Bernicot and Frey [2] have supplied sparse bounds for

certain Bochner-Riesz multipliers.

Very recently, Culiuc, di Plinio and Ou [23] have established a sparse domina-

tion result in a setting far removed from the extensions above: The trilinear form

associated to the bilinear Hilbert transform is dominated by a sparse form. This is

a surprising result, as the bilinear Hilbert transform has all the difficult features of

the Hilbert transform, with additional oscillatory and arithmetic-like aspects. Wile

the point of this chapter is to understand how general a technique ‘domination

by sparse’ could be, there are plenty of additional directions that one could think

about.

For instance, the interest in the oscillatory singular integrals is driven in part by

their application to singular integrals defined on nilpotent groups. Implications of

the sparse bound in this setting are unexplored.

After applying the known sparse bounds for singular integrals, for the remain-

ing parts of the operator, there is a very simple interpolation argument which you

can use in the bilinear setting. The notable point about the proofs are that they are
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quite easy, and yet deliver striking applications.

6.1 The Sparse Bilinear Bound of Oscillatory Singular Integrals

We prove here Theorem 2.12. Our conclusion is invariant under dilations of the

operator. Hence, we can proceed under the assumption that ‖P‖ =
∑
α|λα| = 1.

We can also assume that the polynomial P has no linear term, as it can be absorbed

into the function f. Under these assumptions we prove

Theorem 6.6. Let P be a polynomial without linear terms, and ‖P‖ = 1. Then, for

bounded compactly supported functions f,g and 1 < r <∞, there is a sparse formΛ1 and

a η > 0 so that

|〈TPf,g〉| . Λ1(f,g) +
∑

Q∈D : |Q|>1

〈f〉Q,r〈g〉Q,r|Q|1−η (6.7)

It is easy to see that this implies Theorem 2.12, since the second term on the

right is restricted to dyadic cubes of volume at least one, and there is a gain of

|Q|−η. Moreover, we will see that this Theorem implies the weighted result.

Let e(λ) = eiλ for λ ∈ R. If the kernel K of T is supported on 2B = {y : |y| 6 2},

then we have

|e(P(y))K(y) − K(y)| . 12B(y)|y|
−n+1,

so that |TPf − Tf| . Mf. Both T and M admit pointwise domination by sparse

forms, hence also by bilinear forms. (This is the main result of [47].)

Thus, we can proceed under the assumption that the kernel K is not supported

on B. We can then write

K =

∞∑
j=1

ϕj

where ϕj is supported on 2j−1B \ 2j−2B, with ‖∇sϕj‖∞ . 2−nj−sj, for s = 0, 1.

We use shifted dyadic grids, Dt, for 1 6 t 6 3n. These grids have the property
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that

{ 1
3Q : Q ∈ Dt, `Q = 2k, 1 6 t 6 3n}

form a partition of Rn. Throughout, `Q = |Q|1/n is the side length of the cube

Q. We fix a dyadic grid Dt throughout the remainder of the argument, and set

D+ = {Q : `Q > 210}. Define

IQf =

∫
e(P(y))ϕk(y)(1 1

3Q
f)(x− y) dy, `Q = 2k+2.

Note that IQf is supported onQ, and that we have suppressed the dependence on

P, which we will continue below.

The basic estimate is then this Lemma.

Lemma 6.8. For each cube Q with |Q| > 1 and 1 < r < 2, there holds

|〈IQf,g〉| . 2−ηk〈f〉Q,r〈g〉Q,r|Q|, (6.9)

where η = η(d,n, r) > 0.

Theorem 6.6 follows immediately from this Lemma. The oscillatory nature of

the problem exhibits itself in the next Lemma. Write

I∗QIQφ(x) = 11
3Q

(x) ·
∫

1
3Q
KQ(x,y)φ(y) dy.

Lemma 6.10. For each cube Q ∈ D+, and x ∈ 1
3Q, we have

|KQ(x,y)| . |Q|−11ZQ(x− y) + |Q|−1−ε1Q(x)1Q(y),

where ZQ ⊂ Q has measure at most (`Q)−ε|Q|, where ε = ε(n,d) > 0.

This Lemma is well known, see for instance [85, Lemma 4.1]. Here is how we
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use the Lemma. Using Cauchy-Schwartz, we have

‖IQf‖2
2 . |Q|−1

∫
Q

∫
ZQ

|f(x)||f(x− y)| dydx+ |Q|−ε〈f〉2Q,1|Q|

. |Q|−ε/n‖f1Q‖2
2.

We also have the trivial but rarely used ‖IQf‖∞ . |Q|−1‖f1Q‖1. By Riesz Thorin

interpolation, there holds with `Q = 2k,

‖IQf‖r ′ . 2−ηk|Q|−1+2/r ′‖f1Q‖r, 1 < r 6 2, r ′ = r
r−1 .

Above, η = η(ε, r). But, this immediately implies (6.9). Namely,

|〈IQf,g〉| . ‖IQf‖r ′‖g1Q‖r

. 2−ηk|Q|−1+2/r ′‖f1Q‖r‖g1Q‖r

= 2−ηk〈f〉Q,r〈g〉Q,r|Q|.

(Alternatively, one can just use bilinear interpolation.)

We now give the weighted result.

Proof of Corollary 6.1. The qualitative result that TP is bounded on Lp(w) for w ∈

Ap, 1 < p < ∞ is as follows. Given w ∈ Ap, recall that the dual weight is σ =

w1−p ′ . Then, it is equivalent to show that

|〈TP(fσ),gw〉| . C[w]Ap
‖f‖Lp(σ)‖g‖Lp ′(w).

Using the sparse domination from (6.7), we see that we need to prove the corre-

sponding bound for the terms on the right in (6.7). Now, it is well known [57]

that

Λ1(f,g) . [w]
max{1, 1

p−1 }

Ap
‖f‖Lp(w)‖g‖Lp ′(w).
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Indeed, this is a key part of the proof of the A2 Theorem by sparse operators.

So, it remains to consider the second term on the right in (6.7). For each k ∈ N,

we have by Proposition 6.15, k ∈ Z,

∑
Q∈D : |Q|=2nk

〈f〉Q,r〈g〉Q,r|Q| . [w]
1/p
Ap

[w]RHr[σ]RHr‖f‖Lp(w)‖g‖Lp ′(w).

As we recall in § 6.3, there is a r = r([w]Ap) > 1 so that [w]RHr[σ]RHr < 4. And so

the proof of the Corollary is complete.

Indeed, it is easy enough to make this step quantitative. For 2 < p < ∞, the

choice of r can be taken to satisfy r− 1 > c[w]−1
Ap

, which then means that the choice

of η = η(r) in (6.7) is at least as big is c[w]−1
Ap

. Then, our bound is

〈TP(σf),gw〉 . [w]
1+ 1

p

Ap
‖f‖Lp(σ)‖g‖Lp ′(w), 2 < p <∞.

We have no reason to believe that this estimate is sharp.

6.2 Random Hilbert Transforms

The discrete Hilbert transform

Hf(x) =
∑
n 6=0

f(x− n)

n

satisfies a sparse bound: For all finitely supported functions f and g, there is a

sparse operator Λ so that

|〈Hf,g〉| . Λ1,1(f,g). (6.11)

This is a consequence of the main results of Theorem ??. Recall the definition ofHα

in Subsection 2.3.2; there is also stated there Theorem 2.13, which we prove here.
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Notice that EHαf = Hf, so it remains to consider the difference

Hαf(x) −Hf(x) :=

∞∑
k=1

∑
n : 2k−16|n|<2k

Xn − n−α

n1−α f(x− n)

:=

∞∑
k=1

Tkf(x).

Above, we have passed directly to the distinct scales of the operator. We will subse-

quently write Yn = Xn−n
−α, which are independent mean zero random variables.

The crux of the matter are these two estimates:

Lemma 6.12. Almost surely, for all 0 < ε < 1, and for all integers k, and f,g supported

on an interval I of length 2k, we have

|〈Tkf,g〉| .


2−k 1−α

2 +ε〈f〉I,2〈g〉I,2|I|

2kα〈f〉I,1〈g〉I,1|I|
.

The implied constant is random, but independent of k ∈ N and the choice of functions f,g.

Proof. The second bound follows trivially from |Yn|/n
1−α12k−16|n|<2k . 2k(α−1). For

the first bound, we clearly have

|〈Tkf,g〉| 6 ‖Tk : `2 → `2‖ · 〈f〉I,2〈g〉I,2|I|,

so it suffices to estimate the operator norm above. The assertion is that with high

probability, the operator norm is small:

P
(
‖Tk : `2 → `2‖ > C

√
k2−k 1−α

2
)
. 2−k,

provided C is sufficiently large. Combine this with the Borel Cantelli Lemma to

prove the Lemma as stated.
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By Plancherel’s Theorem, the operator norm is equal to ‖Z(θ)‖L∞(dθ), where

Z(θ) :=
∑

n : 2k6|n|<2k+1

Yn
e2πiθ

n1−α .

The expression above is a random Fourier series, with frequencies at most 2k+2.

By Bernstein’s Theorem for trigonometric polynomials, the L∞(dθ) norm can be

estimated by testing the norm on at most 2k+3 equally spaced points in T, that is,

we have

P
(
‖Z(θ)‖∞ > C√k2−k 1−α

2
)
. 2k sup

θ

P
(
|Z(θ)| > C

√
k2−k 1−α

2
)
,

where we have simply used the union bound.

Now, Z(θ) is the sum of independent, mean zero random variables, which are

bounded by one, and have standard deviation bounded by c2−k 1−α
2 . So by, for

instance, the Bernstein inequality, it follows that

P(|Z(θ)| > C
√
k2−k 1−α

2 ) . 2−2k,

for appropriate C. This completes the proof.

From the previous Lemma, we have the Corollary below. It with the sparse

bound for the Hilbert transform (6.11) completes the proof of Theorem 2.13, for

the random Hilbert transform. The case for maximal averages is entirely similar.

Corollary 6.13. Almost surely, for 1 + α < r < 2, there is a η > 0 so that for all integers

k, and all functions f,g supported on an interval I of length 2k, we have

|〈Tkf,g〉| . 2−ηk〈f〉I,r〈g〉I,r|I|. (6.14)

Proof. This follows from Lemma 6.12 by interpolation. The relevant interpolation

63



parameter θ0 at which we have only an epsilon loss in the interpolated estimate is

given by

(1 − θ0)α = θ0
1 − α

2
,

so
1
r0

=
1 − θ0

1
+
θ0

2
.

We see that r0 = 1 + α. And so we conclude that for r0 = 1 + α < r < 2, we have

the required gain in the interpolated bound, which proves the Corollary.

We now turn to the weighted inequalities of Corollary 6.3.

Proof of Corollary 6.3. For the deterministic Hilbert transform, we have the sharp

bound of Petermichl [73], namely

‖H : `p(w) 7→ `p(w)‖ . [w]
max{1, 1

p−1 }

Ap
.

So, it remains to bound the terms in (6.14). By Proposition 6.15, we then need to

see that the hypotheses onw, namely (6.4), imply that for some choice of r > 1+α,

we have

w ∈ Ap, w ∈ RHr, σ = w1−p ′ ∈ RHr.

Recall that v ∈ Aq ∩ RHs if and only if vs ∈ As(q−1)+1. Now, by assumption,

w1+α ∈ A(1+α)(p−1)+1. So, there is a t > 1 so that wt(1+α) ∈ A(1+α)(p−1)+1, and the

Aq classes increase in q, so we conclude that w ∈ Ap ∩ RHr, for a r > 1 + α.

The second hypothesis is w ∈ A1+ 1
(1+α)(p ′−1)

. This is equivalent to

(w(1−p ′))1+α ∈ A(1+α)(p ′−1)+1.

Now,w1−p ′ = σ is the dual weight. So by the argument in the previous paragraph,
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σ ∈ RHr, for some r > 1 + α. So the proof is complete.

6.3 Weighted Inequalities

Let us recall the weighted estimates that we need for our corollaries. A function

w > 0 is a Muckenhoupt Ap weight if

[w]Ap = sup
Q

[w 1
1−p (Q)

|Q|

]p−1w(Q)

|Q|
<∞.

Above, we are conflatingw as a measure and a density, thusw
1

1−p (Q) =
∫
Q
w(x)

1
1−p dx.

We have these estimates, which are sharp in the Ap characteristic. They are an ele-

ment of the sparse proof of the A2 conjecture. (See [57] for a proof.)

Theorem G. These estimates hold for all 1 < p <∞.

‖Λ1,1 : Lp(w) 7→ Lp(w)‖ . [w]
max{1, 1

p−1 }

Ap
.

For our applications, we have a second class of operators, a simplified form

of those introduced by Benau-Bernicot-Petermichl [2]. For our purposes, we need

a much simplified version of their result. Define an additional characteristic of a

weight, namely the reverse Hölder property.

[w]RHr = sup
Q

〈w〉Q,r

〈w〉Q
.

Proposition 6.15. Fix an integer k, and 1 < r < 2. We have the bound below for all

w ∈ Ap, where r 6 p 6 r ′ = r
r−1 .

∑
Q∈D : |Q|=2nk

〈f〉Q,r〈g〉Q,r|Q| . [w]
1/p
Ap

[w]RHr[σ]RHr‖f‖Lp(w)‖g‖Lp ′(w)
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where σ = w1−p ′ is the ‘dual’ weight to w.

Let us recall these well known facts.

1. We always have [w]Ap , [w]RHr > 1.

2. For w ∈ Ap and σ = w1−p ′ , the weight σ is locally finite, its ‘dual’ weight is

w, and [σ]Ap ′ = [w]p
′−1
Ap

.

3. For every w ∈ Ap there is a r = r([w]Ap) > 1 so that w ∈ RHr. (In particular,

we can take r so that r− 1 ' [w]−1
Ap

, by [39]*Thm 2.3. )

4. For every w ∈ Ap, there is a r = r([w]Ap) > 1 so that wr ∈ Ap.

5. We have w ∈ Ap ∩ RHr if and only if wr ∈ Ar(p−1)+1, by [44].

Proof of Proposition 6.15. This inequality is rephrased in the self-dual way, namely

setting σ = w1−p ′ , it is equivalent to show that for k ∈ Z,

∑
Q∈D

|Q|=2nk

〈fσ〉Q,r〈gw〉Q,r|Q| . [w]
1
p

Ap
[σ]RHr[w]RHr‖f‖Lp(σ)‖g‖Lp ′(w). (6.16)

Fix the integer k. We can assume that for |Q| = 2nk, if f is not zero on Q, then

f13Q\Q ≡ 0, and we assume the same for g. Then, set

f ′ =
∑

Q∈D : |Q|=2nk

1Q
[ 1
σ(Q)

∫
Q

|f|r dσ
]1/r

and likewise for g ′. It is immediate that ‖f ′‖Lp(σ) . ‖f‖Lp(σ), thus in (6.16), it

suffices to assume that f = f ′. Then, we can even assume that f and g are supported

on a single cube Q, and take the value 1 on that cube.
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Then, write

〈σ1Q〉Q,r〈w1Q〉Q,r|Q| 6 [σ]RHr[w]RHr〈σ1Q〉Q,1〈w1Q〉Q,1|Q|

6 [σ]RHr[w]RHr〈σ1Q〉1/p
′

Q,1 〈w1Q〉1/pQ,1 · σ(Q)1/pw(Q)1/p ′

6 [σ]RHr[w]RHr[w]
1/p
Ap
σ(Q)1/pw(Q)1/p ′ .

This is the inequality claimed.

67



Part II

A Learning Theory Approach to

Compressive Sensing



CHAPTER 7

COMPRESSIVE SENSING

Compressed sensing is a modern data processing scheme that is proving useful in

many scientific areas, such as MR imaging, radar, astronomy: see [1, 6, 62] for more

details. The overarching goal is to reconstruct a signal x ∈ Rn from the measure-

ments Ax ∈ Rm (m� n) given the sensing matrix A ∈ Rm×n and some constraint

on the set of signals. Without such a constraint, this is an ill-posed inverse problem,

while more information about the signal xmay make the objective approachable.

One common situation is that the signal is sparse: for a signal x = (x1, . . . , xn),

we say x is s-sparse if
∣∣{xj 6= 0}

∣∣ 6 s. A successful program for reconstructing

sparse signals is `1-minimization. This convex optimization algorithm is tractable

and perfectly reconstructs s-sparse vectors (and well approximates them in the

presence of noise) if the sensing matrix A has the (s, δ)-RIP with small enough δ

[10]. A matrix A is said to have the (s, δ)-RIP if

(1 − δ)‖x− y‖2
2 6 ‖Ax−Ay‖2

2 6 (1 + δ)‖x− y‖2
2

for all pairs x,y of s-sparse vectors.

The focus of this Part is the analogue, i.e., dimension reducing quasi-isometric

embeddings of sparse vectors, in the one-bit sensing framework. The purpose of

this chapter is two-fold. First, it is natural to first introduce the somewhat easier

case of linear measurements. After all, it was linear compressive sensing that came

first, begetting one-bit sensing only as the intricacies of quantization in applica-

tions became apparent. Secondly, it turns out that some of the arguments in Chap-

ter 8 extend naturally to the linear case. As such, we are able to prove a known
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results, Corllary 7.3, with a new and efficient proof. These results are organized in

the following section

7.1 Corollaries

For s-sparse x ∈ Rn, set Hx,α = {y ∈ Rn : 〈x,y〉 > α}, the half-space associated to

x at height α. Denote by Hn,s the set of such skew half-spaces in Rn associated to

s-sparse signals: Hn,s = {Hx,α : x ∈ Rn, |{xj 6= 0}| 6 s,α ∈ R}. The first result listed

here gives a useful upper bound on the VC-dimension of Hn,s. VC-dimension is

defined in Section 8.2

Corollary 7.1. VC(Hn,s) . s log(n/s).

Proof. The analogue of the lower bound in Lemma 8.11 is achieved by shattering

B = {0, e1, . . . , es}, the standard basis vectors together with the origin. Any subset

of {e1, . . . , es} can be achieved in the same was as in the Lemma, and an appropriate

choice of α includes or excludes the origin as needed. The upper bound is Radon’s

theorem. This establishes VC(Hs,s) = s+ 1. The extension to VC(Hn,s) is the same

as the remainder of Section 8.2.2.

Consider a sensing matrix with rows {gk} drawn from the standard Gaussian

distribution. Then 1√
m
A has the (s, δ)-RIP if and only if

1
m

∣∣∣∣∣
m∑
k=1

〈gk, z〉2 − 1

∣∣∣∣∣ < δ
for all 2s-sparse unit signals z ∈ Rn. It is clear that {{〈·, z〉2 > α} : |{zj 6= 0}| 6

2s, α ∈ R} is a subset of the set of all unions of pairs of skew half-spaces in Hn,2s.

We have the following Lemma to control the VC-dimension of the latter.

Lemma 7.2. If VC(C) = d, then VC(C∗) 6 10d, where C∗ := {B ∪ C : B,C ∈ C}.
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Proof. Suppose |X| = k and C∗ shatters X. From Theorem H,mC(k) 6
(
ek
d

)d. Hence

2k 6
(
ek
d

)2d, or equivalently k 6 2d log2

(
ek
d

)
.

This Lemma and the discussion preceding it establishes the bound

VC
(
{{〈·, z〉2 > α} : |{zj 6= 0}| 6 2s, α ∈ R}

)
. s log(n/s).

An argument identical to the one in Section 8.3 proving Theorem 8.3 yields the fol-

lowing corollary. This is one of the fundamental results inspiring randomly drawn

sensing matrices in compressive sensing. It is the smallest known portion of mea-

surements necessary for the Restricted Isometry Property, and many practitioners

and theorists believe that it cannot be beaten.

Corollary 7.3. Let A ∈ Rm×n with rows drawn independently from the standard Gaus-

sian distribution. Then for any 0 < ε, δ < 1 and 1 6 s < n, 1√
m
A has the (s, δ)-RIP with

probability at least 1 − ε provided

m & δ−2 [log(2/ε) + s log(n/s)] .
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CHAPTER 8

ONE-BIT SENSING

We study the dimension reducing sign-linear maps of one-bit compressed sensing.

Associated to each A ∈ Rm×n is the sign-linear map

ΦA : Sn−1 → Hm

ΦAx = sgn(Ax),

where Hm is the Hamming Cube {±1}m, the sgn map is applied component-wise,

and

sgn(x) =

 +1, x > 0

−1, x 6 0.

We restrict our attention to the sphere since any two signals that differ only in norm

will have identical measurements. In the larger realm of compressed sensing, one-

bit sensing is the case of extreme quantization: only the sign-bit of each linear

measurement is preserved. The concept was initially suggested by Boufounos-

Baraniuk [7] in 2008.

Let Sn−1
s denote the set of n-dimensional, unit length s-sparse signals. The

(s, δ)-Restricted Isometry Property, or (s, δ)-RIP, analogue forΦA that we investigate

is

sup
x,y∈Sn−1

s

|dHm(ΦAx,ΦAy) − d(x,y)| 6 δ,

where d(·, ·) is geodesic distance on the sphere, and dHm(·, ·) is the Hamming met-

ric:

dHm(a,b) := 1
m
|{1 6 k 6 m : ak 6= bk}| .
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The reader may notice that the one-bit RIP given above is single-scale, while

the original RIP is multiscale. This modification is unavoidable; given A ∈ Rm×n

and ε > 0, there are x,y ∈ Sn−1
s such that d(x,y) 6 ε and dHm(ΦAx,ΦAy) > 1

m
.

This formulation of the RIP has been studied theoretically, see [4, 43, 76]; it also

plays a role in sparse signal recovery from one-bit measurements, e.g. [42, 43].

The effects of noise on a one-bit embedding is a natural concern, and we con-

sider the case of additive white noise prior to quantization. When our sensing

matrix is drawn randomly, we always assume the noise and matrix are indepen-

dent. Associated to a matrix A ∈ Rm×n and random vector η ∈ Rm is a one-bit

embedding of the form

ΦηA : Rn → Hm

ΦηAx = sgn(Ax+ η).

This is the the model of systematic noise, where the noise is randomly drawn but

constant relative to the signals. In many applications, however, this is not the case,

and the noise varies from signal to signal. In attempt to model such noise, we

consider the one-bit embeddings associated to a matrix A ∈ Rm×n and collection

of random vectors {η(x)} ⊂ Rm:

ΨηA : Rn → Hm

ΨηAx = sgn(Ax+ η(x)).

The affects of the additive white noise on the RIP are analyzed by increasing the

Gaussian measurements’ dimension and lifting the sphere to a higher dimension

by padding with σ2 (and zero, depending on the noise model).
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8.1 Outline and Main Results

For x ∈ Sn−1, set Hx = {p ∈ Sn−1 : 〈p, x〉 > 0}, the hemisphere associated to

x. Denote by Hn,s the set of hemispheres of Sn−1 associated to s-sparse signals:

Hn,s = {Hx : x ∈ Sn−1
s }. The first result listed here gives a useful upper bound on

the VC-dimension, defined in Section 8.2.2, of Hn,s. The result easily applies to

half-spaces (Corollary 7.1), a well studied classification scheme in learning theory;

it is well known that the VC-dimension of half-spaces in Rn indexed by s-sparse

vectors is O(s logn). The theorem below is slightly better (at least in some case,

when n/s is small enough), but the author is unsure if it is known. We include the

proof in Section 8.2.2 for completeness, and note that it is quite surprising to find

the popular s log(n/s) quantity. Throughout, x . y means there is an absolute

C > 0 such that x 6 Cy.

Theorem 8.1. VC(Hn,s) . s log(n/s).

Definition 8.2. Let Φ : Sn−1
s → Hm. We say Φ has the (s, δ)-RIP if

sup
x,y∈Sn−1

s

|dHm(Φx,Φy) − d(x,y)| 6 δ.

Of note in Definition 8.2 is the metric d(·, ·), which is not the euclidean distance,

but rather the geodesic distance on the sphere, normalized so that antipodal points

are unit distance apart:

d(x,y) := 1
π

arccos〈x,y〉.

This choice of metric is natural since it is the expectation of dHm(ΦAx,ΦAy).

In Section 8.3 we employ a standard entropy integral argument to bound a

supremum, indexed by pairs of s-sparse vectors. This is an alternative proof of a

recent result of Bilyk-Lacey, the case of sparse vectors in [4, Theorem 1.14], which

is:
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Theorem 8.3. Let A ∈ Rm×n with rows drawn independently from the standard Gaus-

sian distribution. Then for any 0 < ε, δ < 1 and 1 6 s < n, ΦA has the (s, δ)-RIP with

probability at least 1 − ε provided

m & δ−2 [log(2/ε) + s log(n/s)] .

The next theorems, proved in Section 8.4, are the import of the chapter. We

consider the one-bit sign-linear maps with additive white noise prior to quantiza-

tion. A curious detail about the result is that the error due to noise is not naturally

expressed in the distortion parameter, nor the number of measurements or prob-

ability of success, but rather in the metric on the sphere. That is, if the sphere is

endowed with a certain “distorted” geodesic metrics (8.4) and (8.5), the noisy em-

beddings have the (s, δ)-RIP with the same order of measurements and probability

of success as determined in Theorem 8.3. Before stating the theorems, we define:

dσ(x,y) := 1
π

arccos
(
〈x,y〉+σ2

1+σ2

)
(8.4)

dσ(x,y) := 1
π

arccos
(
〈x,y〉
1+σ2

)
. (8.5)

We also define the following noisy versions of the one-bit RIP:

Definition 8.6. Let Φ : Sn−1
s → Hm. We say Φ has the (s, δ)σ-RIP if

sup
x,y∈Sn−1

s

|dHm(Φx,Φy) − dσ(x,y)| 6 δ,

and it has the (s, δ)σ-RIP if

sup
x,y∈Sn−1

s

|dHm(Φx,Φy) − dσ(x,y)| 6 δ.

Theorem 8.7. Let A ∈ Rm×n with rows drawn independently from the standard Gaus-
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sian distribution and η ∼ N(0,σ2Im). Then for any 0 < ε, δ < 1 and 1 6 s < n, ΦηA has

the (s, δ)σ-RIP with probability at least 1 − ε provided

m & δ−2 [log(2/ε) + s log(n/s)] .

Theorem 8.8. Let A ∈ Rm×n with rows drawn independently from the standard Gaus-

sian distribution and {η(x)} a collection of pairwise independent random vectors indexed

over the sphere with each η(x) ∼ N(0,σ2Im). Then for any 0 < ε, δ < 1 and 1 6 s < n,

ΨηA has the (s, δ)σ-RIP with probability at least 1 − ε provided

m & δ−2 [log(2/ε) + s log(n/s)] .

Remark. It is a common goal in signal processing to “eliminate” the noise. That is, one

wishes to take enough measurements so that the noise is practically negligible. Theorem 8.7

and Theorem 8.8 demonstrate that this possibility is controlled by the variance in the Gaus-

sian noise model. The empirical process of interest approaches a distorted metric, which is a

deterministic object that necessarily deviates from the geodesic metric when σ2 > 0. How-

ever, the distorted distances are close to geodesic distance at small scales, and when σ2 � 1,

the metrics are close globally.

We conclude with Section 8.4.3, comparing the geodesic distance with the met-

rics defined in (8.4) and (8.5). Crude upper bounds on their differences give lower

bounds on the number of Gaussian measurements needed for a noisy embedding

to have the RIP into the Hamming cube with the geodesic metric prescribed to the

sphere. While this result is appealing for obvious reasons, Theorem 8.7 and The-

orem 8.8 may be more useful in practice, allowing the reader to appeal to the fact

that the two metrics are indeed very close at small scales.

Corollary 8.9. Let A ∈ Rm×n with rows drawn independently from the standard Gaus-
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sian distribution and η ∼ N(0,σ2Im). Then for any 0 < ε < 1 and δ > 1− 1
π

arccos
(
σ2−1
σ2+1

)
,

ΦηA has the (s, δ)-RIP with probability at least 1 − ε provided

m &
[
δ+ 1

π
arccos

(
σ2−1
σ2+1

)
− 1
]−2

[log(2/ε) + s log(n/s)] .

Corollary 8.10. Let A ∈ Rm×n with rows drawn independently from the standard Gaus-

sian distribution and {η(x)} a collection of pairwise random vectors indexed on the sphere

with each η(x) ∼ N(0,σ2Im). Then for any 0 < ε < 1 and δ > 1
π

arccos
(

1
1+σ2

)
, ΨηA has

the (s, δ)-RIP with probability at least 1 − ε provided

m &
[
δ− 1

π
arccos

(
1

1+σ2

)]−2
[log(2/ε) + s log(n/s)] .

8.2 The VC-Dimension of Sparse Hemispheres

Let X be a set and C be a collection of subsets of X. Denote by
(
X
k

)
the set of subsets

of Xwith k elements. For each k ∈ N, define

mC(k) := max
B∈(Xk)

|{B ∩ C : C ∈ C}| .

Clearly mC(k) 6 2k. The Vapnik-Chervonenkis dimension (VC−dimension) of C,

denotedVC(C), is the supremum of integers d such thatmC(d) = 2d. Alternatively,

we say C shatters B if every subset of B is realized as the intersection of B with an

element of C. Then VC(C) is the cardinality of the largest subset it shatters. For

example, if X = R and C = {(−∞, t] : t ∈ R}, then VC(C) = 1; if C = {[a,b] : a < b ∈

R}, then VC(C) = 2. VC dimension measures, in an intuitive sense, the complexity

of a class of subsets.
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8.2.1 VC-Dimension Background

Sauer’s lemma is a fundamental result in VC theory, and we will use it several

times. A proof and other details on the subject can be found in [24].

Theorem H (Sauer’s Lemma). Let C be a class of subsets with VC(C) = d <∞. Then

for any k > d,

mC(k) 6
(
ek
d

)d .

For a class of functions F ⊂ {f : X→ {0, 1}}, denote by CF the set of subgraphs of

functions in F: CF = {{(x, t) : t 6 f(x)} : f ∈ F}. The VC dimension of F is defined

as VC(CF), where this last quantity is the VC-dimension of a class of subsets of

X × R. It is worth noting that if F is the set of indicators of subsets in the class C,

F = {1C : C ∈ C}, then VC(F) = VC(C).

It is well known in learning theory that empirical processes in the form of (8.14)

can be bounded via the VC-dimension of the indexing class. Such results are often

eponymously referred to as the “VC inequality” after Vapnik and Chervonenkis,

the pioneers of the theory. In Section 8.3 we use a version of the VC inequality

from [69], which extends the VC inequality to a more general case, when a class

satisfies uniform entropy bounds. For a function f and a probability P, denote by Pf

the expectation
∫
f dP. For a class of binary functions F and a probability P, the

packing number D(F, t,P) is the cardinality of the largest subset F ′ ⊂ F such that

P|f− g| > t2 for all f 6= g ∈ F ′. Finally, set

D(F, t) := sup
P
D(F, t,P),

where the supremum is taken over all discrete probabilities. Then [69, corollary 1]

reads
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Theorem I. Suppose ∫∞
0

√
logD(F, t)dt <∞.

Then there exists an absolute constant K > 0 such that for any u > 0 with probability at

least 1 − 2e−u for all f ∈ F:

m∑
k=1

(Pf− f(xk)) 6 K
√
m

(
√
uPf+

∫√Pf

0

√
log(D(F, t))dt

)
.

8.2.2 Main VC Estimate

This section is dedicated to the proof of Theorem 8.1. We begin by computing the

VC-dimension of all hemispheres, the case when s = n.

Lemma 8.11. VC(Hss) = s.

Proof. We first observe Hss shattering the standard basis vectors B = {e1, . . . , es},

and hence VC(Hss) > s. Let S ⊂ [s] and B(S) = {ej : j ∈ S}. Define p = (p1, . . . ,ps)

by setting pj = 1S(j) − 1Sc(j). Then B(S) = B ∩Hp.

On the other hand, let X = {x1, . . . , xs+1} be an arbitrary (s + 1)-subset of Ss−1 .

Without loss of generality, assume

xs+1 =

s∑
k=1

αkxk.

Set A := {xk : αk < 0} ∪ {xs+1}; we’ll see that for all p ∈ Rs, A 6= X ∩Hp. For any p

such that 〈p, xk〉 > 0 if αk < 0 and 〈p, xk〉 6 0 if αk > 0,

〈p, xs+1〉 =
s∑
k=1

αk〈p, xk〉

=
∑
k:αk<0

αk〈p, xk〉+
∑
k:αk>0

αk〈p, xk〉

6 0.
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Therefore Hss doesn’t shatter X, so VC(Hss) < s+ 1.

We are now ready to estimate VC(Hn,s). Let d = VC(Hn,s) 6 n and choose

a subset X = {x1, . . . , xd} of Sn−1 shattered by Hn,s. Fix an index set S ∈
(
[n]
s

)
;

for x ∈ Sn−1 let xS =
∑
j∈S〈x, ej〉ej. For any B ⊂ Sn−1, let BS = {bS/‖bS‖ : b ∈

B and bS 6= 0}. Notice that |XS| 6 d, so by Lemmas 8.11 and Theorem H,

∣∣{XS ∩Hp : p ∈ Sn−1
S }

∣∣ 6 (ed
s

)s .

The natural map {X∩Hp : p ∈ Sn−1
S }→ {XS∩Hp : p ∈ Sn−1

S } viaA 7→ AS is well-

defined and surjective since sgn(〈x,p〉) = sgn(〈xS,p〉) for all x ∈ X and p ∈ Sn−1
S .

This map is also injective. Suppose A = X ∩ Hp and B = X ∩ Hp ′ are distinct, for

instance a ∈ A \ B (hence aS 6= 0). If aS/‖aS‖ ∈ BS, then there is b ∈ B such that

aS/‖aS‖ = bS/‖bS‖. But then sgn(〈a,p ′〉) = sgn(〈b,p ′〉), a contradiction.

It follows that ∣∣{X ∩Hp : p ∈ Sn−1
S }

∣∣ 6 (ed
s

)s ,

and by the union bound, 2d 6
(
n
s

) (
ed
s

)s . After applying a familiar version of

Stirlings approximation,
(
n
s

)
6
(
en
s

)s , and some algebraic manipulation, we arrive

at the inequality:

− log(2)d
s
e− log(2)ds 6 −

log(2)s
e2n

. (8.12)

To simplify further, we use the lower branch of the Lambert W function, which

is defined on (−1
e

, 0) by the relation W−1(x)e
W−1(x) = x. That is, W−1 is the inverse

of the map x 7→ xex restricted to (−∞,−1). We use the following lower bound of

W−1 to simplify (8.12).

Lemma 8.13. For all −1/e < x < 0,W−1(x) > log(x2).

Proof. Notice that W−1 is decreasing, as is its inverse W−1
−1(x) = xex. Applying

W−1
−1 to each side of the equation in the statement and dividing by x, we find the
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equivalent: x log(x2) 6 1 for all −1
e
< x < 0. This holds since x 7→ x log(x2) is

decreasing on (−1/e, 0) and (−1
e
) log( 1

e2 ) =
2
e
< 1.

Applying the decreasing W−1 to both sides of (8.12) and using Lemma 8.13

gives:

d 6 2
log(2)s log

(
ne2

s log(2)

)
.

8.3 The RIP of one-bit Embeddings

This section proves Theorem 8.3. LetA ∈ Rm×n with rows {gk}mk=1 drawn indepen-

dently from the standard Gaussian distribution N(0, In). The Hamming distance

between the images of two signals x and y under the one-bit embeddingΦA is

dHm(ΦAx,ΦAy) =
1
m

m∑
k=1

1 − sgn〈x,gk〉sgn〈y,gk〉
2

.

For x,y ∈ Sn−1 we call Wx,y := Hx4Hy (the symmetric difference of the two

hemispheres) the wedge associated to x and y. Notice sgn〈x,gk〉 6= sgn〈y,gk〉 if and

only if gk is in the wedgeWx,y. The Hamming distance above can be reformulated

as

dHm(ΦAx,ΦAy) =
1
m

m∑
k=1

1Wx,y(gk).

The empirical processes framework suggests the sphere should be endowed with

the distance (x,y) 7→ P(Wx,y). Fix x,y ∈ Sn−1, let g ∼ N(0, In), and let Z =

(〈x,g〉, 〈y,g〉)>; then Z ∼ N (0,Σ) with

Σ =

 1 〈x,y〉

〈x,y〉 1

 .
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It is a basic computation to find

P(Wx,y) =
1

π
√

1−〈x,y〉2

∫∞
0

∫∞
0

Exp
(

2uv〈x,y〉−u2−v2

2−2〈x,y〉2

)
dudv

= 1
π

arccos
(
〈x,y〉

)
.

This last quantity is the geodesic distance on the sphere that we denote by d(x,y).

This brings our attention to the following object:

sup
x,y∈Sn−1

s

∣∣∣∣∣ 1
m

m∑
k=1

1Wx,y(gk) − d(x,y)

∣∣∣∣∣ . (8.14)

The above formulation is paraphrased from [4]; this is the point at which our

argument deviates. To utilize the VC theory for hemispheres developed in the

previous section, we bound the VC-dimension of the class of “sparse wedges”

Wn,s := {Wx,y : x,y ∈ Sn−1
s }.

Lemma 8.15. Let C be a class of subsets of X with VC(C) = d <∞. Let C4C = {C4C ′ :

C,C ′ ∈ C}. Then VC(C4C) 6 10d.

Proof. Let B ⊂ X of size m := |B| to be prescribed later. For a fixed pair C,C ′ ∈ C,

notice that

B ∩ (C4C ′) = [(B ∩ C) \ (B ∩ C ′)] ∪ [(B ∩ C ′) \ (B ∩ C)] .

That is, B ∩ (C4C ′) is determined by B ∩ C and B ∩ C ′. By Theorem H, there are

no more than
(
em
d

)2d such pairs. Takingm > 10d yields
(
em
d

)2d
< 2m.

Along with Theorem 8.1, this lemma implies VC(Wn,s) . s log(n/s). We use

this VC-dimension estimate to bound the packing numbers of the sparse wedges,

D(Wn,s, ε,P), which is the largest d so that there exists w1, . . . ,wd ∈ Wn,s with

P(wi4wj) > ε2 for i 6= j. General results bounding packing numbers via VC-
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dimension are well-known and the argument is standard; we include a proof in

the current context for completeness.

Proposition 8.16. For 0 < ε < 1,

D(Wn,s, ε,P) .
(

1
ε2

)VC(Wn,s)+1 .

Proof. Fix 0 < ε < 1. Let d = D(Wn,s, ε,P) and letw1 . . . ,wd such that P(wi4wj) >

ε2 for all i 6= j. Let {Xk}nk=1 be independent and identically distributed on the sphere

with law P, where n will be determined later. Notice that wi ∩ {Xk} 6= wj ∩ {Xk}

if and only if (wi4wj) ∩ {Xk} is nonempty. Thus the probability that there is i 6= j

such that wi ∩ {Xk} = wj ∩ {Xk} is no more than

(
d
2

) max
16i 6=j6d P (wi ∩ {Xk} = wj ∩ {Xk}) =

(
d
2

) max
16i 6=j6d (1 − P(wi4wj))n

<
(
d
2

)
(1 − ε2)n

< d2e−nε
2

= e2 log(d)−nε2
.

Now we take n =
⌈

2 log(d)+1
ε2

⌉
so the above probability is less than one, hence there

is a deterministic X = {xk}
n
k=1 so that the intersections {wj ∩ X}dj=1 are distinct. Let

v = VC(Wn,s). Employing Theorem H, there is Kv > 0 such that

d 6 Kv
(

2 log(d)+2
ε2

)v
.

Choose d0 large enough so that for d > d0, (2 log(d) + 2)v+1 < d1/v. This yields

d 6 max{d0,K
v+1
v
v }

(
1
ε2

)(v+1) .
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Notice that the bound in Proposition 8.16 holds uniformly over all probabilities

on the sphere. This fact allows us to use a version of the entropy integral in the

final stage of our argument. Recall Theorem I. Adapted to our current setting, we

have the following corollary:

Corollary 8.17. There exists an absolute constant K > 0 such that for any u > 0 with

probability at least 1 − 2e−u for allWx,y ∈Wn,s:

m∑
k=1

(
d(x,y) − 1Wx,y(gk)

)
6 K
√
m

(√
ud(x,y) +

∫√d(x,y)

0

√
log(D(Wn,s, t))dt

)
.

We adjust this result in two ways to produce the main results of this section.

First, increase the right side of the inequality by replacing all distances with one.

Now that the bound is uniform over pairs of signals in Sn−1
s , we observe

sup
x,y∈Sn−1

s

m∑
k=1

(
d(x,y) − 1Wx,y(gk)

)
= sup
x,y∈Sn−1

s

∣∣∣∣∣
m∑
k=1

1Wx,y(gk) − d(x,y)

∣∣∣∣∣ .
This is because 1W−x,y = 1 − 1Wx,y (a.s.), and d(−x,y) = 1 − d(x,y). Thus we have:

Corollary 8.18. There exists an absolute constant K > 0 such that for any u > 0 with

probability at least 1 − 2e−u,

sup
x,y∈Sn−1

s

1
m

∣∣∣∣∣
m∑
k=1

1Wx,y(gk) − d(x,y)

∣∣∣∣∣ 6 K√
m

(√
u+

∫ 1

0

√
log(D(Wn,s, t))dt

)
.

After applying the uniform entropy bounds of Proposition 8.16 in the above

corollary and setting u = log(2/ε), Theorem 8.3 is immediate.
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8.4 The RIP of Noisy one-bit Embeddings

8.4.1 Systematically Noisy RIP with the Distorted Metric

This section proves Theorem 8.7. We again consider A ∈ Rm×n with rows {gk}
m
k=1

drawn independently from the standard Gaussian distribution N(0, In). We are

now interested in the case of systematic additive white noise prior to quantization;

let η ∼ N(0,σ2Im). Then the Hamming distance between the images of two signals

under the one-bit embeddingΦηA is

dHm(ΦηAx,ΦηAy) =
1
m

m∑
k=1

1 − sgn(〈x,gk〉+ ηk)sgn(〈y,gk〉+ ηk)
2

. (8.19)

Fix x,y ∈ Sn−1. Let g ∼ N(0, In) and µ ∼ N(0,σ2) be independent. Then
(〈x,g〉+µ
〈y,g〉+µ

)
is a Gaussian vector with covariance matrix 1 + σ2 〈x,y〉+ σ2

〈x,y〉+ σ2 1 + σ2

 .

A computation similar to 8.3 yields

P
(
sgn(〈x,g〉+ µ)sgn(〈y,g〉+ µ) = −1

)
= 1
π

arccos
(
〈x,y〉+σ2

1+σ2

)
.

This last quantity is dσ(x,y), defined in (8.4). We’ll see soon that dσ is in fact a

metric; this is the distance with which Sn−1
s is naturally endowed in the presence

of systematic additive white noise. The object in the (s, δ)σ-RIP that we aim to

bound is

sup
x,y∈Sn−1

s

∣∣∣dHm(ΦηAx,ΦηAy) − d
σ(x,y)

∣∣∣.
Appealing to the methods in Section 8.3, we rewrite the additive noise as an

inner product by increasing the Gaussian measurements’ dimension by one and
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(Sn−1,dσ)

x

πσx

(Sn,d)

πσ

y

πσy

Figure 8.1: If πσ : {p ∈ Sn : 〈p, en+1〉 = σ} → Sn−1 is the normalization of the
projection onto the first n coordinates, then dσ(πσx,πσy) = d(x,y).

lifting the sphere to one higher dimension by padding with σ. Introduce the fol-

lowing notation:

xσ = 1√
1+σ2 (x

1, . . . , xn,σ) ∈ Sns+1.

Let h = (g1, . . . ,gn, 1
σ
η) and notice 〈xσ,h〉 = 1√

1+σ2 (〈x,g〉 + η) and h ∼ N(0, In+1).

Denote byWσ
x,y the wedge in Sn relative to xσ and yσ, i.e.,

Wσ
x,y := Hxσ4Hyσ .

Then sgn(〈x,gk〉 + ηk) 6= sgn(〈y,gk〉 + ηk) if and only if hk := (g1
k, . . . ,gnk , 1

σ
ηk) ∈

Wσ
x,y. The Hamming distance in (8.20) can be reformulated as

dHm(ΦηAx,ΦηAy) =
1
m

m∑
k=1

1Wσ
x,y
(hk).

Furthermore, notice that

〈xσ,yσ〉 = 〈x,y〉+σ2

1+σ2 ,

hence dσ(x,y) = d (xσ,yσ) , where we abuse notation to allow d (·, ·) to denote the
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normalized geodesic distance on Sn; see Figure 8.1 for an illustration. It is now

apparent that dσ is indeed a metric on Sn−1.

This brings our attention to the following object:

sup
x,y∈Sn−1

s

∣∣∣∣∣ 1
m

m∑
k=1

1Wσ
x,y
(hk) − d

σ (x,y)

∣∣∣∣∣ ,
where the row vectors hk are independently drawn from N(0, In+1). At this point,

the argument of Section 8.3 applies so long as we can estimate the VC-dimension

of

Wn,s
σ := {Wx,y ∈Wn+1,s+1 : xn+1 = σ = yn+1}.

Since Wn,s
σ ⊂Wn+1,s+1, it is clear that

VC(Wn,s
σ ) 6 VC(Wn+1,s+1) . (s+ 1) log

(
n+1
s+1

)
. s log(n/s).

8.4.2 Independently Noisy RIP with the Distorted Metric

We extend the results of the previous section to prove Theorem 8.8. We still con-

sider A ∈ Rm×n with rows {gk}mk=1 drawn independently from the standard Gaus-

sian distribution N(0, In). However, we are now interested in the case of inde-

pendent additive white noise prior to quantization; let η(x) ∼ N(0,σ2Im) for each

x ∈ Sn−1 with η(x),η(y) independent when x and y are distinct. Let g ∼ N(0, In)

and µx,µy ∼ N(0,σ2) be mutually independent. Then the Hamming distance be-

tween the images of two signals under this one-bit embedding ΨηA is

dHm(ΨηAx,ΨηAy) =
1
m

m∑
k=1

1 − sgn [(〈x,gk〉+ ηk(x))(〈y,gk〉+ ηk(y))]
2

. (8.20)
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Fix x,y ∈ Sn−1. Then
(〈x,g〉+µx
〈y,g〉+µy

)
is a Gaussian vector with covariance matrix

 1 + σ2 〈x,y〉

〈x,y〉 1 + σ2

 ,

and it follows that

P
(
sgn(〈x,g〉+ µ)sgn(〈y,g〉+ µ) = −1

)
= 1
π

arccos
(
〈x,y〉
1+σ2

)
.

The last quantity is dσ(x,y), defined in (8.5). dσ is also a metric; this is the distance

with which Sn−1
s is naturally endowed in the presence of independent additive

white noise. To proceed, we fix x,y on the sphere and lift them to Sn+1
s+2 :

x0,σ = 1√
1+σ2 (x

1, . . . , xn, 0,σ)

yσ,0 =
1√

1+σ2 (x
1, . . . , xn,σ, 0).

After increasing the dimension of the Gaussian measurements by two, the remain-

der of the proof is completely analogous to that of Theorem 8.7.

8.4.3 Noisy RIPs with geodesic metric on the sphere

The deviation of dσ from the geodesic distance is exaggerated at antipodes. That

is, for any x and y on the sphere, |d(x,y)−dσ(x,y)| 6 d(x,−x)−dσ(x,−x). In what

is to come, all suprema are over x,y ∈ Sn−1
s . If one prefers a bound of the form

sup |dHm(ΦηAx,ΦηAy) − d(x,y)| 6 δ,

90



it is enough for

sup |dHm(ΦηAx,ΦηAy) − d(x,y)| 6 sup |dHm(ΦηAx,ΦηAy) − d
σ(x,y)|+ |dσ(x,y) − d(x,y)|

6 sup |dHm(ΦηAx,ΦηAy) − d
σ(x,y)|+ 1 − 1

π
arccos

(
σ2−1
σ2+1

)
6 δ.

Corollary 8.9 follows easily from Theorem 8.7 and this observation. Similarly, we

have

sup |dHm(ΨηAx,ΨηAy) − d(x,y)| 6 sup |dHm(ΨηAx,ΨηAy) − dσ(x,y)|+ |dσ(x,y) − d(x,y)|

6 sup |dHm(ΨηAx,ΨηAy) − dσ(x,y)|+ 1
π

arccos
(

1
1+σ2

)
,

which yields Corollary 8.10
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reverse hölder RHr-classes,” Trans. Amer. Math. Soc., vol. 328, no. 2, pp. 639–
666, 1991.

[45] B. Krause and M. T. Lacey, “A weak type inequality for maximal monomial
oscillatory Hilbert transforms,” eprint: 1609.01564.

[46] M. T. Lacey, “An Ap-A∞ inequality for the Hilbert transform,” Houston J.
Math., vol. 38, no. 3, pp. 799–814, 2012.

[47] ——, “An elementary proof of the A2 bound,” Israel J. Math., to appear, 2015.
eprint: http://arxiv.org/abs/1501.05818.

[48] ——, “Haar shifts, commutators, and hankel operators,” Rev. Un. Mat. Ar-
gentina, vol. 50, no. 2, pp. 1–13, 2009.

[49] ——, “On the separated bumps conjecture for Calderón-Zygmund opera-
tors,” Hokkaido Math. J., vol. 45, no. 2, pp. 223–242, 2016.

95

http://arxiv.org/abs/1510.05789
http://arxiv.org/abs/1510.05789
1609.01564
http://arxiv.org/abs/1501.05818


[50] M. T. Lacey, S. Petermichl, and M. C. Reguera, “Sharp A2 inequality for haar
shift operators,” Math. Ann., vol. 348, no. 1, pp. 127–141, 2010.

[51] M. T. Lacey, E. T. Sawyer, and I. Uriarte-Tuero, “Two weight inequalities for
discrete positive operators,” Submitted, 2009. eprint: http://www.arxiv.
org/abs/0911.3437.

[52] M. T. Lacey and S. Spencer, “On entropy bumps for Calderón-Zygmund op-
erators,” Concr. Oper., vol. 2, pp. 47–52, 2015.

[53] P. LaVictoire, “An L1 ergodic theorem for sparse random subsequences,”
Math. Res. Lett., vol. 16, no. 5, pp. 849–859, 2009.

[54] A. K. Lerner and F. Nazarov, “Intuitive dyadic calculus: The basics,” eprint:
http://arxiv.org/abs/1508.05639.

[55] A. K. Lerner, S. Ombrosi, and I. P. Rivera-Rı́os, “On pointwise and weighted
estimates for commutators of Calderón-Zygmund operators,” eprint: http:
//arxiv.org/abs/1604.01334.

[56] A. K. Lerner, “A pointwise estimate for the local sharp maximal function
with applications to singular integrals,” Bull. Lond. Math. Soc., vol. 42, no. 5,
pp. 843–856, 2010.

[57] ——, “A simple proof of the A2 conjecture,” Int. Math. Res. Not. IMRN, no.
14, pp. 3159–3170, 2013.

[58] ——, “MixedAp-Ar inequalities for classical singular integrals and littlewood-
paley operators,” J. Geom. Anal., vol. 23, no. 3, pp. 1343–1354, 2013.

[59] ——, “On an estimate of Calderón-Zygmund operators by dyadic positive
operators,” J. Anal. Math., vol. 121, pp. 141–161, 2013.

[60] ——, “On pointwise estimates involving sparse operators,” New York J. Math.,
vol. 22, pp. 341–349, 2016.

[61] A. K. Lerner and K. Moen, “Mixed Ap-A∞ estimates with one supremum,”
Studia Math., vol. 219, no. 3, pp. 247–267, 2013.

[62] M. Lustig, D. D. L., and J. M. Pauly, “Sparse MRI: The application of com-
pressed sensing for rapid MR imaging,” Magn Reson Med, vol. 58, pp. 1182–
1195, 2007.

[63] M. Mirek, “Weak type (1, 1) inequalities for discrete rough maximal func-
tions,” J. Anal. Math., vol. 127, pp. 247–281, 2015.

96

http://www.arxiv.org/abs/0911.3437
http://www.arxiv.org/abs/0911.3437
http://arxiv.org/abs/1508.05639
http://arxiv.org/abs/1604.01334
http://arxiv.org/abs/1604.01334


[64] B. Muckenhoupt and R. L. Wheeden, “Weighted bounded mean oscillation
and the Hilbert transform,” Studia Math., vol. 54, no. 3, pp. 221–237, 1975–76.

[65] ——, “Weighted norm inequalities for fractional integrals,” Trans. Amer. Math.
Soc., vol. 192, pp. 261–274, 1974.

[66] B. Muckenhoupt, “Weighted norm inequalities for the Hardy maximal func-
tion,” Trans. Amer. Math. Soc., vol. 165, pp. 207–226, 1972.

[67] F. Nazarov, A. Reznikov, S. Treil, and A. Volberg, “A Bellman function proof
of the L2 bump conjecture,” J. Anal. Math., vol. 121, pp. 255–277, 2013.

[68] C. J. Neugebauer, “Inserting Ap-weights,” Proc. Amer. Math. Soc., vol. 87, no.
4, pp. 644–648, 1983.

[69] D. Panchenko, “Some extensions of an inequality of Vapnik and Chervo-
nenkis,” Electron. Comm. in Probab., vol. 7, 6:55–6:65, 2002.
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