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CHAPTER 1

INTRODUCTION

A fundamental problem in simulation output analysis concerns the computation of
point and confidence interval (CI) estimators for the mean, pu, of a stationary discrete-
time stochastic process {X; : j = 1,2,...}. The point estimation of x is an “easy”
problem when the underlying system starts in steady state; the sample mean X,, =
n! 71X based on the finite sample X,..., X, is an unbiased estimator of u
and usually is the estimator of choice. In order to provide a measure of the sample
mean’s precision, an estimate of Var(X,) also needs to be calculated. If the X;’s
are independent and identically distributed (i.i.d.) random variables, then the sample
variance S% (n) = (n—1)"' Y0, (X;— X,,)? is an unbiased estimator of the population
variance 0% = E[(X; — u)?]. In this case, Var(X,) can be estimated by S%(n)/n. By
the Central Limit Theorem (CLT), an asymptotically (n — oo) valid 100(1 —«)% CI
for p is

- S
Xn + tl—a/2,n—l M

Jn
where ¢, is the y-quantile of Student’s ¢ distribution with £ degrees of freedom.

Unfortunately, the X, are typically correlated in simulation problems. While
X, remains unbiased for u, S%(n) can be severely biased for o%. In fact, if the
autocovariance function R; = Cov(Xy, Xi4;), for j = 0,1,..., is positive, it can be
shown that E[S%(n)/n] < Var(X,,) (Law [24], pp. 230-231). In this case, valid Cls
for p1 can still be obtained based on estimators of the quantities {02 = nVar(X,,) :
n=1,2,...} or their limit 0® = lim,, ., o2, which is called the (asymptotic) variance
parameter of the process.

In the literature, one can find many techniques for estimating the quantities {02 :



n = 1,2,...} and ¢?, such as nonoverlapping batch means (NBM) (Fishman [13]),
overlapping batch means (OBM) (Meketon and Schmeiser [26]), and standardized
time series (STS) (Schruben [30]).

Some of the techniques above group observations into nonoverlapping or overlap-
ping batches. A method relying on nonoverlapping batches typically divides the data
into adjacent disjoint batches of equal size, calculates a corresponding estimator from
each batch separately, and then forms a grand estimator based on these batch esti-
mators. The NBM estimator for the variance parameter, o2, as well as the STS area,
Cramér-von Mises (CvM) (see, e.g. Alexopoulos et al. [4]), folded area, and folded
CvM estimators (Antonini [6]), all use nonoverlapping batches. To obtain the NBM
estimator, one computes the sample mean from each batch and multiplies the sample
variance of the batch means by the batch size. For STS area and CvM estimators,
one forms an STS based on each batch, computes the respective quantities based on
weighted areas of functions of the STSs, and averages these quantities. On the other
hand, the folded area and folded CvM estimation methods first “fold” STSs from
each batch and then use these folded STSs analogously to non-folded area and CvM
estimators to estimate the variance parameter. All methods above assume that the
relevant estimators obtained from different nonoverlapping batches are approximately
i.i.d. random variables.

The OBM, STS overlapping area, and STS overlapping CvM estimators are based
on a similar approach as their nonoverlapping counterparts, but use overlapping
batches to obtain the respective variance parameter estimators. Asymptotically (as
the batch size, hence the sample size, approaches infinity), the estimators obtained by
overlapping batches maintain the same bias but usually have smaller variances than
the respective estimators based on nonoverlapping batches.

This thesis makes the following contributions to variance estimation in steady-

state simulations. First, it obtains additional theoretical properties of (batched)



folded area and CvM estimators. Second, it introduces two new classes of variance
parameter estimators. The first class, namely, folded overlapping area (FOA) estima-
tors, is based on the concepts of overlapping batches and folded STSs. The second
class, namely, reflected estimators, is based on reflections of the STS formed by the
entire sample. Both folding and reflection operations are predicated on the concept of
data “re-use”. For instance, the folding operation on the original STS yields another
STS; both STSs converge (as the sample size goes to infinity) to Brownian bridges
with known cross-covariance structure, but the area estimators obtained from the
two STSs are asymptotically independent scaled chi-squared random variables. As a
result, one can obtain asymptotically independent estimators of o based on a single
data set (sample path). The third contribution of this thesis is the development of
linear combinations of folded and reflected estimators with substantially smaller mean
squared error (MSE) than the constituent estimators.

The estimators of Calvin and Nakayama [11] are based on another type of data
re-use. Specifically, they obtain permutations of path segments and develop an STS
estimator by averaging over the permuted sample paths. In addition, Calvin [10]
develops a method that is based on iterated integrations of the sample path.

The remainder of this thesis is organized as follows. Chapter 2 reviews background
material. Chapter 3 discusses several folded standardized time series estimators along
with their linear combinations and establishes their properties. Chapter 4 introduces
the folded overlapping area estimators, obtains their first two moments. and describes
approximate confidence intervals for o and 2. Chapter 5 studies various reflected

estimators. The Appendix contains several long proofs and a few detailed results.



CHAPTER 11

BACKGROUND

In this chapter, we list some assumptions and review results that are needed in the
rest of this thesis. We start with a list of necessary assumptions and a review of some
basic properties regarding the convergence of stationary processes in §2.1. We define
the standardized time series (STS) and some of the variance parameter estimators
based on STS in §2.2. Finally, the estimators based on nonoverlapping batches and

estimators based on overlapping batches are discussed in §2.3 and in §2.4, respectively.

2.1 Basics and Assumptions

We start with a Functional Central Limit Theorem (FCLT) which holds for several
stationary processes, e.g., stationary strongly mixing processes, associated stationary
processes, and regenerative processes (see, e.g. Glynn and Iglehart [16]).

Assumption FCLT Suppose that the series 02 = 3°° _ R; converges absolutely

j=—o0

and o2 > 0. For each positive integer n, let

Y, (t) = L””(XL”“_“), for t € [0,1], (1)

av/n

where |-] is the greatest integer function. Then

Yal() == W),

where W(-) is a standard Brownian motion process on [0,1] and T%O denotes weak
convergence (as n — o00) in the Skorohod space DI0, 1] of real-valued functions on
0, 1] that are right-continuous with left-hand limits (see Billingsley [9]).

Often, we will refer to the following assumption.

Uniform Integrability (Karr [22]) Let (2, F, P) denote a probability space, where

Q) is the sample space, I is a sigma-field, and P is a probability measure defined on



F. The random sequence {X; : j > 1} defined on a probability space (2, F, P) is said

to be uniformly integrable if

I / X, dP = E(|1X|I{x,5a}) =0,
msup f o 1l (151 Lgx;1201)

a—00
J

where I x;|>q} is the indicator function of the event {|X;| > a}. Also, notice that if

the {Xj : j > 1} are uniformly integrable, then sup; E(|X}|) < co.

Remark 1 A sufficient condition for uniform integrability of X,, is that E[X 7] is
finite for all n (Karr [22]). <«

Some of our results make use of a generalized version of the continuous mapping

theorem (CMT) given below.

Theorem 1 (Billingsley [9]) Let P,,, n =1,2,..., and P be probability measures on
(Q,TF), where Q is a metric space equipped with a sigma-field F. Let h, and h be
measurable mappings from 2 to another metric space Q). Let E be the set of z € Q
such that h,(z,) — h(z) fails to hold for some sequence z,, — x. Assume that E lies

in F. Under these conditions,

if P, = P and P(E) =0, then P,(h;!) = P(h7").

n—oo

Remark 2 If h,, = h, the generalized CMT reduces to the CMT — that is, Theorem
5.1 of Billingsley [9]. <«

Throughout this thesis, we refer to the following assumptions.

Assumptions A
1. The process {X, : j > 1} is stationary.
2. The process {X; : j > 1} satisfies Assumption FCLT.

3. The autocovariance function decays exponentially, i.e., |R;| = O(§), j =

1,2,..., for some § € (0,1). Further, the series 3% R; = 0% € (0, 00).

j=—00



We also need the following assumptions on the weight functions that will be used
in this document.

Assumptions F

1
1. The function f(-) is normalized so that Var[/ f)B(t) dt] =1, where B(-) is
0

a standard Brownian bridge process on [0, 1].
2. f(t) is twice continuously differentiable in [0, 1].
3. f(-) is symmetric about ¢ = 1/2; that is, f(¢t) = f(1 —t) for t € [0, 1].
Assumptions G

1
1. The function g¢(-) is normalized so that E[/ g(t)B(t) dt] = 1.
0

2. g(t) is twice continuously differentiable in [0, 1].

First, note that B(-) is independent of W(1). Further, B(:) can be expressed as
B(t) = tW(1)—=W(t), for t € [0, 1], and all finite-dimensional distributions of B(-) are
normal with E[B(t)] = 0 and Cov(B(s), B(t)) = min(s,t) — st for 0 < s,¢ < 1. In the
rest of this thesis we let v; = 252, ('Ry and 7;; = Yo, ('Ry, where i = 0,1,2,. ..
and j = 1,2,.... We use the “big-oh” notation p(n) = O(q(n)) to mean that there
are positive constants ¢ and k such that 0 < p(n) < cq(n) for all n > k, and we use
the “little-oh” notation p(n) = o(g(n)) to mean that nh_)nolop(n)/q(n) = 0. We also
define the functions F'(-) and F(-) by

F(t)z/otf(s)ds and F(t)E/OtF(S)dS,

for 0 <t <1, and we let F = F(1) and F = F(1). Finally, for 0 < ¢ < 1, we define
G(t) = [ig(s)ds, G = G(1), G(t) = [; G(s)ds, and G = G(1).

2.2 Standardized Time Series Estimators

In this section we define the standardized time series and review several variance

parameter estimation methods that depend on the STS.



Standardized Time Series The STS based on the sample X1, ..., X, is defined as

T,(t) = Lt (i’%)_( WJ), for t € [0,1]. (2)

Under Assumptions A, it can be shown that (Schruben [30])

V(X = ), 0To(-)] == [oW(1),0B()]. (3)

— 00

2.2.1 Weighted Area Estimator

Goldsman et al. [18] introduced the weighted area estimator, which is based on the
square of the weighted area under the STS (2), and its limiting functional. These are

defined by

1

A(f;n)zl%jz:f(%)aﬂ(%)r and A(f)zl/o f(t)aB(t)dtr,

respectively. The weight function f(-) is assumed to satisfy Assumptions F.

Under Assumptions A, the CMT implies that [, f(t)oB(t)dt 2 4N(0,1) and
A(f;n) 7%0 A(f) 2 62y2, where 2 denotes equality in distribution, N(0,1) denotes
a standard normal random variable, and x? denotes a chi-squared random variable
with v degrees of freedom.

Under Assumptions A and F, Song and Schmeiser [32] and Alexopoulos et al. [4]

show that the expected value of the weighted area estimator is

BA( 7)) = (Rz R Gin) +2 30 R S G (s + i;n>) @

_ 2 P (5)

where h(j;n) =X, %f (%) — 20 f(%), for j=1,2,...,n.
Further, if we assume that the sequence {A*(f;n) : n = 1,2,...} is uniformly
integrable, then
lim Var[A(f; n)] = VarA()] = 20" (6)

n—oo



Remark 3 Note that the limiting variance (6) does not depend on the weight func-

tion f(-). <«

Example 1 The most basic area estimator of Schruben [30] uses the constant weight

function fy(t) = v/12, t € [0,1]. In this case, Equation (4) gives

+ O(0") (7)

=0? =3y /n+o(l/n). < (8)

Example 2 We say that an estimator of o2 is first-order unbiased if it has bias of
the form o(1/n). Goldsman et al. [18] showed that the quadratic weight function
f2(t) = V840(3t2 — 3t + 1/2), t € [0,1], results in a first-order unbiased estimator
A(f2;n). In addition, Equation (4) yields

7(0% — 679) N 35(71 + 273)
2n? 2n3

E[A(fo;n)] = 0 + +0(1/n"). <

Example 3 The trigonometric weight functions of the form f..s j(t) = v/87j cos(2mjt)
with j =1,2,...,t € [0, 1], yield asymptotically independent, first-order unbiased es-
timators A(feos;; 1), J = 1,2,... (Foley and Goldsman [15]). From Equation (4), we

get

72(0? — 679) N 272 (v, + 273)
3n? 3n3

E[A(feos15n)] = 0° + +0(1/n%). «

2.2.2 Weighted Cramér—von Mises (CvM) Estimator

The CvM estimator for o2, introduced by Goldsman et al. [19], is the weighted area

under the square of the STS. This estimator and its limiting functional are

S o(2)r2(2) and clo) = [ otloBFar



respectively. Under Assumptions A and G, the CMT implies that C(g;n) 2, c (9).

n—~0o0

In this case, Aktaran-Kalayci et al. [1] showed that

1 2f}/l,n—l e k
E[C(gin)] = —5[Ro = 29001+ =] 3 (%) k(n — k)
k=1

+2§Rinz[g(%)+g(§)}k(n—k—z) (9)

—1i
1=1 k=1

202—%(G—1)+0(1/n), (10)

where the last equality follows from Goldsman et al. [19].
Further, if we assume that the sequence {C*(g;n) : n = 1,2,...} is uniformly

integrable, we have

lim Var[C(g; n)] = Var[C(g)] = 40* /0 o)1= 1) /0 "g(s)s2dsdr. (1)

Remark 4 In this case, the limiting variance (11) depends on the weight function
g(). <

Example 4 For the constant weight function go(t) = 6, ¢t € [0, 1], Equation (9) yields

b 6p—0® m-2 n
ElC(goin)] = 0* = == + —F—+ 2=+ 0(0")

=0® =571 /n+o(1/n).

Also, Var[C(go)] = 402/5. <

Example 5 The weight function gs.(t) = 51 — ¢/2 + ¢t — 150¢2, for ¢ € [0,1] and

¢ € IR yields a first-order unbiased estimator with

(¢ — 300¢ + 26856)0

Var[C(gz.c)] = 5590
This limiting variance is minimized when ¢ = 150, and g¢5(t) = go150(t) = —24 +
150t — 150¢% has
Var(C(g3)] = A7 > Var(C (o).



The expected value from Equation (9) is

4(0* —6v2) | 29(273 — )
n? * n3 *

O(1/n*). <

ElC(g3in)] = 0 +

Example 6 The first-order unbiased quartic weight function that minimizes the lim-

iting variance is (Goldsman et al. [19])

- 1310192700 252302 161201° 8060+
9a 21 21 7 3 3

for ¢t € [0, 1],

with limiting variance Var[C(g;)] = 1.0420*. Equation (9) gives the expected value

as

655(0% — 672) L 10290(29 — m)

6302 6313 Ot/n'). <

E[C(g3;n)] = o® +
2.3 FEstimators Based on Nonoverlapping Batches

In this section, we describe batched versions of the estimators discussed in §2.2. We
form b nonoverlapping batches each consisting of m observations (assuming n = bm).
Specifically, batch i consists of observations {X(_1yms; : 7 = 1,...,m}. The STS

from batch 7 is

Tam(t)ELmJ( ’ L tJ), forte€[0,1]andi=1,...,0b,

where

1 J

—Z (i—lymte, fori=1,... . bandj=1,. (12)
J =

2.3.1 Batched Area Estimator

The area estimator computed from batch 7 is

[ Zf( )T (4 )], fori=1,.. b

and the batched area estimator for o2 is the sample mean of the A;(f;m):

> Ailfs

=1

A(f;b,m) =

@I}—t

10



Since, under Assumptions A, the {7;,,(-) : ¢ = 1,...,b} converge to independent
Brownian bridge processes as m becomes large (with fixed b), we conclude that
{A;(f;m) : © = 1,...,b} are asymptotically independent as m — oo; and under

Assumptions A and F, generalized CMT implies that

2.2
D 07Xy
—

m—oo b

A(f;b,m)

Remark 5 We can obtain the expected value for A(f;b, m) if we replace n by m in

Equations (4) and (5), i.e.,

BA(S,m)] = - (Ro S hGim)+2 % 1S hGmnG + z’;m>) (13)

j=1 i=1 j=1

_p M EP A P (14)

where h(j;m) = >, %f (%) i f(%), for j =1,2,...,m. Also, for the weight
functions introduced in Examples 1-3, we can obtain the expected value results for

the batched area estimators if we replace n by m. <«

Further, if we assume that the sequence {A%(f;b,m):m =1,2,...} is uniformly

integrable, we have

lim bVar[A(f;b,m)] = lim bVar[A(f;m)] = Var[A(f)] = 20°.

2.3.2 Batched CvM Estimator

The CvM estimator obtained from batch 7 is

S g(3)o* T2, (1), fori=1,...,b

11



Remark 6 The expected values of the batched CvM estimators can be obtained if
we replace n by m in Equations (9) and (10), i.e.,

m—1

E[C(g;m)] = % [Ro — 2%,m-1 + 2717’;1_1} kz_: g(%)k(m — k)
25 RS [o(52) + o) m — k) (15)
:a%—%akau+dumy (16)

In addition, we can obtain the expected value of C(g;b, m) for different weight func-

tions if we replace n with m in Examples 4-6. <

Further, if we assume that the sequence {C?*(g;b,m) : m = 1,2,...} is uniformly

integrable, then

1 t
1nnzwachﬁbﬂnn::V@chﬁ]=4a2/’guxl-QZ/’g@ﬁﬁdsdt (17)
m— oo 0 0

2.3.3 Nonoverlapping Batch Means Estimator

The NBM estimator for o2 is probably the most popular one and serves as a bench-
mark for comparison with other estimators because of its simplicity and computa-
tional performance.

The quantities X;,,, i = 1,...,b, defined in (12) are referred to as the batch means
of the data {X; : j =1,...,n}. One can show (Law and Carson [23]) that as m — oo,
the batch means become approximately i.i.d. normal random variables. The NBM

estimator is

b—14

=1
It has been shown that (Steiger and Wilson [34]) for fixed b,

2.2
N (b, m) D, T Xp1

moce b—1

Aktaran-Kalayc1 et al. [1] and Goldsman and Meketon [17] obtained the following



expressions for the expected value of the NBM estimator;

b%,m—1 — Yo,n—1 i Y,n—1 — b271,m—1
b—1 n(b—1)
(b+1)m

202—74—0(1/771). (19)

B[N (b,m)] = Ro +

(18)

For fixed b, one can also show that

lim (b — 1)Var[N (b, m)] = 20*.

m—00

2.4 Estimators Based on Overlapping Batches

The overlapping variance estimators in Alexopoulos et al. [4] are based on n —m +
1 overlapping batches of size m each. Specifically, the observations {X;; : j =
0,...,m — 1} constitute overlapping batch ¢ for i = 1,...,n —m + 1. We define
b = n/m under the understanding that b is no longer the number of batches. The

overlapping STS computed from batch i is

mt|(X2, — X?
T? (t)EL J(X Z’LmtJ), forte[0,1]]andi=1,...,n—m+1,

,m O_\/m

where
_ 1471
ngEEZXi+£, fori=1,....n—m+landj=1,....m
=0

is the sample average of the first j observations from batch 7. In addition we define

By s(-), a standard Brownian bridge starting at time s, as
Byys(t) = tW(s +1) = W(s)] — [W(s +t) = W(s)], forte[0,1] and s € [0,b—1].
If Assumptions A hold, then for fixed s we have

TV m () m%go By s(-), for each s € [0,b—1].

sm|,m
2.4.1 Overlapping Area Estimator

The overlapping area estimator computed from batch i is
2

A%(fim) = %ilf(%)aﬂ?m(%) . fori=1,....,n—m+1,
=

13



and the overlapping area estimator for o2 is the sample mean of the A9(f;m):

1 n—m+1

> ANfim).

n—m+1 =

A°(f:b,m)

Alexopoulos et al. [4] show that under Assumptions A and F,

> 1 b—1 1 2
A°(f;b,m) 2 A°(f;b) = =1 {O’/O f(u) By s(u) du] ds, for b > 2.

Remark 7 The same argument as in Remark 5 holds for the expected value of the

overlapping area estimator. <

Further, if the sequence {[A°(f;b,m)]? : m = 1,2,...} is uniformly integrable,
then for fixed b,

40

Var[A°(f;b,m)] — Var(A°(f;b)) = o1 /Ol(b —1-y)p0,y) dy,  (20)

where
p(0,y) = FIF(L—y) — F(L—y) — Fyl+ F@)F — [ f(u)F(y+u) du,
for y € [0, 1].

Example 7 For the constant weight function fy(+), the asymptotic variance of the

overlapping area estimator as m — oo is given by

24b-31 , 24 ,

Val"[AO(f(); b)] = m@' ~ %U s

with the approximate result holding for large b. <

Example 8 The asymptotic variance using the weight function fy(+) is given by

3514b — 4359 , _ 3514

V © b)) = ———— ~ .
al A0 = gon =127 ~ o’
Example 9 The trigonometric weight functions fees (), 7 = 1,2, ..., yield

(16722 + 30)b — (20722 +33) , 8722415
° 08,51 b)| = ) ~ .
Var[A®(feos j; 0)] 227252(h — 1) 7 127252D 7

Remark 8 Contrary to the results for weighted area estimators based on nonover-
lapping batches, the asymptotic variance for the overlapping area estimator depends

on the weight function. <«

14



2.4.2 Overlapping CvM Estimator

The overlapping CvM estimator computed from overlapping batch i is

m

S g(2)o? [To. (2], fori=1,...n—m+1,

J=1

1

C?(g;m) = —

P(gsm) = —

and the overlapping CvM estimator for o2 is the sample mean of the C?(g; m):
1 n—m-+1

w1 & Glm:

=1

C°(g;b,m)

Alexopoulos et al. [4] show that under Assumptions A and G,

b-1
C°(g;b,m) % C°(g;b b—l/ / )o?Byy  (u) duds.

Remark 9 The same argument as in Remark 6 holds for the expected value of the

overlapping CvM estimator. <«

Further, if the sequence {[C°(g;b,m)]* : m = 1,2,...} is uniformly integrable,
then for fixed b,

Var[C®(g; b, m)] — Var(C°(g;b)) =

where
/ / ) Cov?[Byy.o(t), By, (v)] du do,

for y € [0, 1], and this covariance is a little nasty to calculate.

Example 10 For the constant weight function go(-), the asymptotic variance is

88h—115 , 44

Var|C°(go; b)] = 210612 ~ 1055”

with the approximate result holding for large b. <

Example 11 The asymptotic variance of the overlapping CvM estimator based on
the weight function ¢s .(-) in Example 5 is given by

3876480b + 187¢* — 56100c — 690300 o

Var[C°(ga.; b)] = 4989600(b — 1)?

15



This quantity is minimized when ¢ = 150 (as in the case of nonoverlapping batches);

then

. 107686 — 13605 , 10768
VarlC* (g0 )] = 312 7~ Taseor”

Example 12 The weight function g}(-) from Example 6 gives the following asymp-

totic variance:

. 0.4770*
Var[C®(g7; b)] ~ b

2.4.3 Overlapping Batch Means Estimator

The OBM estimator for 6% due to Meketon and Schmeiser [26] is given by

n—m+1

Ob:m) = o = Z}@Qm—xm.

Under Assumptions A, the expected value of O(b,m) is (Aktaran-Kalayc: et al. [1])

B0 m)] = o* - LT R o
_ 2 (b2 +Dm
=7 o1y Tol/m):

for b =mn/m > 2. The asymptotic variance of O(b,m) is (Damerdji [12])

, (40 — 110* + 4b + 6)0*  4o?
lim Var[O(b, m)] = ~ 7
g VarO(b, m) 3(b— 1)1 30

2.5 Summary

This chapter presented the basic assumptions and reviewed various existing estimators
for the asymptotic variance parameter o? of a stationary discrete-time stochastic

process. Chapter 3 proceeds with the folded area and CvM estimators.
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CHAPTER I11

FOLDED STANDARDIZED TIME SERIES ESTIMATORS

In this chapter, we start by reviewing the folded estimators discussed in Alexopoulos
et al. [5]. First, we define the folding operation on Brownian bridges and STSs.
Second, we discuss how to use the folded STSs to develop folded versions of area
and CvM estimators. After these necessary information, we start discussing our
findings on folded area and CvM estimators. We obtain detailed expressions for
the expected value of these estimators. In addition, we present linear combinations
of folded estimators, and analyze their expected value and variance behavior. We
also study batched folded area and CvM estimators obtained from nonoverlapping
batches. Similarly, we list expected value and variance results for these folded and
batched estimators, as well as their linear combinations. Finally, we provide Monte

Carlo simulation results for these estimators.

3.1 Folding Operation

This operation starts with a Brownian bridge, reflects its second half portion through
the first half (Figure 1(a)), takes the difference between the two portions in [0,1/2],
and stretches the difference over the interval [0, 1] as shown in Figure 1(b) (see An-
tonini [6] and Shorack and Wellner [31]).

The level-£ folded Brownian bridge, denoted by By (-), is defined recursively from

the level-(k — 1) Brownian bridge as follows:
B(k)(t) = B(k—l)(%) - B(k_l)(l - %), for t € [O, 1], (21)

where By (t) = B(t) is also called the level-0 Brownian bridge. Indeed, it can be

shown that By, (-), k > 1, are also Brownian bridge processes (Antonini [6]).

17



Brownian bridge
— - — - Reflected portion

0‘.2 0.‘4 0‘.5 0.‘8 1 e 0 0.‘2 0‘.4 0.‘6 0‘.8 1
(a) Reflection around t = 3 (b) Differencing and Stretching

Figure 1: Level-1 Folded Brownian Bridge

The level-k folded STS, T(4)n(:), is computed in an analogous fashion:
T(k),n(t) = T(k—l),n(%) — T(k—l),n(l — %), fOI‘ t e [0, 1] and k‘ = 1, 2, Cy

where we refer to Tig),(-) = T,,(+) as the level-0 STS. Lemma 1 expresses the folded
STS in terms of the original observations. Henceforth, we define S; = Zgzl Xy, for

j=1,2,...,n, with S5 = 0.
Lemma 1 (Antonini [6]) For k=1,2,...and j =0,1,...,n,
ok—1 . .
_ 5—1) J nt
() )

The following result from Antonini [6] shows that the joint distribution of folded

STSs converges to the joint distribution of the analogous folded Brownian bridges.
Theorem 2 If Assumptions A hold, then for £ = 0,1, ..., we have

T() = [Tioyn()s - Togn(-)] == B() = |Boy(), -, By ()],

where {B(t) : t € [0, 1]} is a multivariate Brownian bridge process whose component
univariate Brownian bridge processes have the following cross-covariances: for s,t €

0,1] and 5,¢ € {0,1,2,...,k},
Cov[B;)(s), By (1)] = E[Bo)(s), Byj—-a)(t)].

18



Moreover, \/H(Xn — ,u) and T'(+) are asymptotically independent as n — oc.

Remark 10 The univariate Brownian bridge processes Bo(-), ..., Bu)(-) that con-
stitute the components of B(-) are not independent. In addition, because B(-) is a
multivariate Gaussian process with mean E[B(t)] = 01, the (k+1)-dimensional vec-
tor of zeros, for all ¢ € [0, 1], Theorem 2 completely characterizes the asymptotic prob-
ability law governing the behavior of the multivariate STS process {T'(t) : ¢t € [0, 1]}

as the simulation run length n — co. <«

3.2 Folded Area Estimator

As in Alexopoulos et al. [5], the level-k folded area estimator A;)(f;n) and its limiting

functional A, (f) are

Am(f;n)z[%if(%)a%,n(%)r and A<k><f>z[/Olf@)o—&k)(t)dtr,

respectively.
Theorem 3 shows that the folded area estimators have the anticipated joint con-

vergence.
Theorem 3 (Alexopoulos et al. [5]) If Assumptions A and F hold, then

A(fin) = [Aoy(fin), ... Aw ()] —= A(f) = [Ag)(f).- -, Ag(f)]-

Further, \/H(X'n - ,u) is asymptotically independent of A(f;n) as n — oo.

The following remarkable result is also from Alexopoulos et al. [5].

Corollary 1 Under the conditions of Theorem 3, the random variables {A)(f) :
k=0,1,...} are iid. o®xi; and thus, A« (f;n),..., Aw(f;n) are asymptotically

iid. o%x3.
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3.2.1 Expected Value

The following theorem gives a detailed expression for expected value of the level-1
folded area estimator. The more compact expression (22) is due to Antonini [6]. The

proof is in Appendix A.1.

Theorem 4 Under Assumptions A and F, and for even n,

- [ o 2r0ns = 2
S ROV O C R H L G| FENAREE A
+ (] -n) Yon-14) T Nin-1g) T (= [n=5]) 0 [n=5) 7 Tin—[n—5]
= [n = & von-gimr + pegia] (18] = |n = £ ) v 08
+ Yt -14)
. %ééf(%)f(ﬁ) (L) + =50 Ro+ (3] = [5]) vo.18sm18s + Mg
+ (0= 8 = 2= 31) Yot tnts + Mt tn 1)
25 5 S A8+ o= 1)+ (18] = 1) ousan +nagie
+ ([ =4 = [ =30t tnets + ne i tnt]
_2 F ;71 +o(1/n). (22)
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Example 13 For the constant weight function fy(-), Theorem 4 yields

1 n/2-1 6;j 2 2452 65 48j3
ElA (fo: :<1——>R ————— 2L BT R (23
[Aq)(fo;n)] 0o+ jZl ( N R R TR ) i (23)
n—1 72 3
65 2 24y 25 167
+1211:/2(_2__+$jL n?  nd o )Rj
3 2412 3(1 +8
_ 0_2 . i . g . Y2 + (71 . 73) + O((Sn) (24)
n n n
=0 =3y /n+o(1/n). (25)

Note that, although Equation (24) has different terms than Equation (7), Equation

(25) is the same as Equation (8). <«

Example 14 The weight functions fa(-) and fees (), 7 = 1,2,..., from Examples 2
and 3 yield first-order unbiased folded area estimators as well. From Theorem 4, we

can see that

E[Aq)(f2;n)]
7 63 36 7— 16852 1055 4+ 8405 16805 — 63
14— + = R 2 —
( +2 +2n4 n> O+jz:1< + n? + n3 nt
84052 4415 — 84053 — 20165° 72 — 75652 — 16805* + 26885°
+ nt no - nb
2167 — 50453 — 20165° + 230447
L 2167 j : j j ) R,
n
- 40 1285 | 203+4052  672j +2405° 315 — 1685
Z n—j) n2 + n3 - nA - 05

'—E
_2

144(17 | B88j +1008;° — 1920;° , 72 — 168/ — 672" + 768j6>R
- J

nd nb n’
_ 0_2 i 7(0’2 — 168’72) i 105(’71 + 8’73) i O(l/n4) 4
2n2 2n3 ’

Remark 11 Notice that the multipliers of 7; associated with the second- and third-
order bias terms tend to be higher for the level-1 estimators than for the corresponding

level-0 estimators. <
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Further, if we assume that the sequence {.A%l)( fin) :n = 1,2,...} is uniformly
integrable, then
lim Var[Aq)(f;n)] = Var[Aq(f)] = 20 (26)

n—~0o0

Remark 12 As with the weighted area estimator, the limiting variance (26) does

not depend on the weight function. <«
3.2.2 Linear Combinations of Folded Area Estimators

At this point, we have a number of individual level-0 and level-1 folded area variance
estimators, some of which are first-order unbiased. All area estimators—whether or
not they are folded—have asymptotic variance of 20

We can form new estimators with lower variance by taking linear combinations of
the previously described estimators. The calculation of the expected value of such a
linear combination is easy. In order to calculate the variance, we will need to obtain
the covariances of the constituents of the linear combination. Theorem 5 computes

such covariances for level-0 and level-k folded area estimators.

Theorem 5 (Antonini et al. [7]) Suppose that Assumptions A hold and that f.(-)
and f,(-) are weight functions satisfying Assumptions F. In addition, suppose that
the sequence {Ao)(fz;n)Aw)(fy;n) :n=1,2,...} is uniformly integrable. Then for

k > 1, we have

Cov[Aw) (fa;n), Aw (fyin)] — Cov[Aw(fz), Aw (fy)]
K S(F s\ o (i-1 s -
= 20% [];1 /0 fy(s) {Fx (F — 2_k> — F, (F + 2_19)} ds — FxFy

where F,(u) = [y F,(t)dt and F,(u) = [3 f.(t)dt for 0 < u < 1.

, (27)

Example 15 Consider the weight functions fy(-), f2(-), and feos;(-). By Theorem 5,

we have:
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o Cov[Aw)(fo), A (fo)] = 0, for any level & > 1, an obvious fact in light of

Corollary 1.

o Cov[Aw)(f2), Au(f)] =0, for any level & > 1 and weight function f(-) satisfy-

ing Assumptions F; this follows since F' = 0 and

27 i s j—1 s
2 {F(zk—l _?>_F<2k—l +2_k>} =0

7j=1

o Cov[Aw)(feosj)s Auy(f)] = 0 for any j,k > 1 and any weight function f(-)

satisfying Assumptions F, by the same reasoning as above.

e By the joint normality of the limiting area functionals, zero covariance implies

independence.

These pleasant results will allow us to construct simple linear combinations of
area estimators that have about the same bias as their individual components, but
at the same time achieve a 50% variance reduction. For example, if we define the
linear combination estimator A 1)(f;n) = [A«) (f;n)+Aq)(f;n)]/2 and the limiting
functional A 1)(f) = [Aw(f) + Aq)(f)]/2 for any weight function f(-) satisfying
Assumptions F, we see that Equation (4) and Theorem 4 give

Bl Ao (fim)] = o* — I3 oy,

which converges to 0 as n — oo, and is first-order unbiased for weight functions fo(-)
and feosj(-). Further, for f = fo, fo, or feosj, we have Cov[ A (f), Aw(f)] =0, so

that
_ - 1
Var[Ao1)(f;n)] — VarlA)(f)] = Z(Var[.A(o)( P+ VarlAq)(f)]) = o*. <
3.3 Batched Folded Area Estimator

We define the level-k folded STS obtained from nonoverlapping batch i as
T(k),i,m(t) = T(k—l),i,m(%)_T(k—l),i,m(l_%)a for t € [0, 1], k= 1, 2, ...and 1 = 1, ey b.
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For each k = 0,1,... and i = 1,2,...,b, the level-k folded area estimator for o>
from the 7th batch and the respective square of the weighted area under the level-k
Brownian bridge are

2 . )
Awyi(f;m) = Zf( )UT(k )i (i)] and Agyi(f) = [/0 J(t)oByq(t) dt
Remark 13 Corollary 1 and the fact that, for fixed k, {B) () 14 =1,2,...,b} are
independent Brownian bridges imply that {Ay)(f) : £ = 0,1,...;4 = 1,2,...,b}

are i.i.d. o?x?. <
The respective level-k folded batched area estimator for o? is

w(fib,m) =

> A,

=1

®‘|H

The next theorem (which follows from Remark 13) and Corollary 1 give limiting

results for the level-k batched folded area estimator.
Theorem 6 Under Assumptions A and F, for fixed b and k£ =0,1,.. .,

2.2

o
Agey (£3b,m) % Zm ~ T

Remark 14 We can find the expected value of the level-1 batched folded area esti-

mator if we replace n with m in Theorem 4. Hence we get

2

BlAqy(f;bm)] = 0% = 2 4 o(1/m). (28)

Also, for different weight functions, the expected results can be found if we do the

same replacement in Examples 13 and 14. <«

Corollary 2 Suppose that the Assumptions A and F hold, and further, for fixed
k = 0,1,..., the sequence {A%k)(f;b, m) :m = 1,2,...} is uniformly integrable.

Then
Eldu(f;bm)] — o* and VarlAg(f;bm)] — 200

m—oo }
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The next theorem, which is analogous to Theorem 5, gives the asymptotic covari-

ance between batched folded area estimators from levels k£ > 0.

Theorem 7 (Antonini et al. [7]) Suppose that Assumptions A hold and that f.()
and f,(-) are weight functions satisfying Assumptions F. In addition, suppose that
the sequences {A«)i(fz;0,m)Aw)o(fy;0,m) : m = 1,2,...}, for i,0 € {1,2,...,b},

are uniformly integrable. Then for k£ > 1 and fixed b, we have

Covl A (fu by m), Ay (35, m)] — SVA@ ) Aw(fy)]

m— o0 b

where Cov]Aw)(fz), Aw)(fy)] is given in Equation (27).
3.3.1 Linear Combinations of Batched Folded Area Estimators

Theorem 7 suggests that we can combine batching and folding over multiple levels.
To this end, we have a simple version of such an estimator, constructed only from the
level-0 and level-1 folding.

The linearly combined batched folded area estimator for o2 is

A A §b7 + A ;b7
A (f;b,m) = 0 (f;b,m) ! w(f;bm)

The following result follows from Corollary 2 and Theorem 7.

Corollary 3 Suppose that Assumptions A and F hold, and further, for fixed b, the
sequence {A(1)(f;b,m):m =1,2,...} is uniformly integrable. Then

0.4

E[A@y(f;b,m)] — o' and Var[Agy(f;b,m)] — —

m— oo m—oo } ’
3.4 Folded CvM FEstimator

A similar development holds for the folded CvM estimators.

Definition 1 For k =0, 1,. .., the level-k folded CvM estimator for o2 is
Ciyl(gin) = = > g9(£)o*Thy..(L),

j=1
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where ¢(-) is a weight function satisfying Assumptions G. For k& = 0,1,..., the

weighted area under the square of the level-k Brownian bridge is

Colg) = /01 o(t)0* B2 (1) dt. <

Theorem 8 (Antonini et al. [7]) If Assumptions A and G hold, then

Clg;n) = [C(O)(g;n), e ,C(k)(g;n)] — Clg) = [C(O)(g), . ~~>C(k)(9)]-

n—oo

Corollary 4 Suppose that Assumptions A and G hold and further, for fixed k& =

0,1,..., the sequence {C(Zk) (g;m):n=1,2,... } is uniformly integrable. Then

lim E[Cq)(g51)] = E[Cay(9)] = 0”

n—~00

and

lim Var[Cg(g:n)] = Var[Cuy (g)] = 40 /0 (1= 1)? /0 " g(s)s? ds dt.

n—oo

Remark 15 Unlike the area estimator, the asymptotic variance of the level-k folded

CvM estimator does indeed depend on the weight function g(-). <«
Theorem 9 gives the first-order bias of the level-1 folded CvM estimator.

Theorem 9 (Antonini [6]) If Assumptions A and G hold, and n is even, then

(1/n%).

ElCu) (gin)] = o® — &

Example 16 The constant weight function go(t) = 6 yields E[Cq1y(go,n)] = o* —

871/n+0(1/n?) and Var[Cq)(go, n)] = 0.80*. This estimator has the same asymptotic
variance as, but significantly larger bias than, the original level-0 CvM estimator

C(0)(90,n), whose bias is about 57, /n (see Example 4). <

Remark 16 We will refer to the weight function g3(-) in Example 5 as gj,(-) with
the subscript 0 indicating that this weight function is used in level-0 CvM estimators.

Similarly, we will use gf 4(+) to denote the weight function gj(-) in Example 6. <
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Example 17 By using Lagrange multipliers as in Goldsman et al. [19], we can find
polynomial weights that minimize the limiting variance of the level-1 folded CvM esti-
mator for o2 while satisfying the first-order unbiasedness and normalizing constraints.
That is, we identify a function g(-) that minimizes Var[Cq)(g)] subject to Assump-
tions G and G + G = 1. For example, the minimum-variance, first-order unbiased
quadratic weight is g ,(t) = —180t* + 168t — 24, resulting in a limiting variance of
Var[C1)(g1 )] = 720" /35 = 2.0570" —a bit greater than that of the analogous level-0
quadratically weighted CvM estimator, which equals 1.7290* (see Example 5). The

first subscript of the weight again denotes the folding level. <«

Example 18 Similarly (see Antonini [6] for details), the asymptotically variance-

optimal, first-order unbiased, level-1 quartic weight is

2840t 9100¢*
gia(t) = =60 + == — 38601* + 5920t" — ——,

for which the limiting variance is Var[Cy)(gi,)] = 23600!/2079 ~ 1.1350*. This
variance is a bit larger than that of its level-0 analog, which is 1.0420% (Example 6).

<

Remark 17 In order to achieve further variance reductions, we can continue to in-
crease the degree of the polynomial weight function. However, the magnitudes of the
resulting coefficients become quite large, and one must be careful to avoid round-off

errors as well as deleterious second-order effects for small sample sizes. <

3.4.1 Fine-tuned Expected Value

We proceed with the derivation of detailed expressions for the expectations of the

various level-1 folded CvM estimators. The proof of Theorem 10 is in Appendix A.2.

Theorem 10 Suppose that Assumptions A and G hold, and n is even. Then, for

the constant weight function go(-),

1 n—1 8] 1 15]2 ] 8]3
E[C(l)(go;n)]:Ro(l—ﬁ)ﬂL?ZRa’(l_g_ﬁjL 2 T3 n3)'
j=1
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In addition, the quadratic weight function g7 ,(-) yields

E[C(l) (9?2? n)]

5 6 n/21 5— 6652 48] — 2885°
:R0(1+ﬁ—ﬁ)+2;}%j(l+ o

6 — 13152 4+ 4795*  288§° 65 12057
J Jt 288 65 J)

n n3

ni nd nd no
n-l 2567 37 —8345%2 1765 — 131243
+2 3 Ry(-s14+ 222 S m e
j:n/2 n n n
6 — 25952 +9915* 65 — 1205° + 2885°
- 4 + 5 )’
n n

and the quartic weight function gj ,(-) gives

E[C) (971 45m)]

110 769 650
= Ro(1+ 55~ 51+ 5p)
n/21 110/3 — 49052/ 7905 — 460052 769 — 1464552 + 60905,
2 R:(1 — —
+ ]z::l j( + 3n? 3n3 In4
56425 /3 — 63340j3/3 + 47876j5 1300/3 — 5827j2 + 109715j4/3
+ +
3n° 3n6
172814j6/3 6507 — 36400j3 + 145600j5 — 166400j7)
3nb In’
n—l 3626 1169925  22300/3 — 177620]’2 1676205 — 1330640j3
R:(— _
' j;m e 3n? 9’
- 12722/3 — 165470]’2 + 655430j4 n 560207 /3 — 723160j3/3 + 5729365°
3n4 3n°
. 1300/3 — 26566]’2 + 517670j4/3 — 822812j6/3
3n6
13005 — 36400j3 + 145600j5 — 166400j7)
On’ ’

Remark 18 From Theorem 10, we can readily obtain the following simpler expres-
sions:

8 15y —o? v —87s N
E[C(g0in)] = 0 = —= + ———+ ——— + O(¢")

N 502 — 66y, 48(6v3 — 71)
Bl gt )] = o? + 220 4 BERZI) 4 o1

10(110’2 — 294’}/2) 20(460’}/3 — 79’71)
+
9In? 3n3

E[Cay(gi4n)] = o® + +O(1/nY). <
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As in the case of the area estimators, we see that the various bias terms tend
to be higher for the level-1 CvM estimators than for the corresponding level-0 CvM

estimators.
3.4.2 Linear Combinations of Folded CvM Estimators
The next theorem derives the covariance between folded CvM estimators at different

levels. Its proof is in Appendix A.3.

Theorem 11 Suppose that Assumptions A hold and that g,(-) and g,(-) are
weight functions satisfying Assumptions G. In addition, suppose that the sequence

{C0)(92;m)C1y(gy; ) : m = 1,2, ...} is uniformly integrable. Then,

Cov[Cio) (925 1),Cay (gyi )] —= Cov[Cio)(9a), Crr)(gy)]

=2U4/019y($) [/02
v [

At this point, we can take advantage of the covariance information to obtain

1_§
go()2(1 — s)2 dt +/§ ‘()5 (% - t)2 dt
2

Ge(H)(1 — 8)2(1 —t)? dt] ds.

N »

improved estimators for 2. As a simple example, let us define the linear combina-
tion C(o.1)(9z, gy; ;1) = aClg)(g2;n) + (1 — @)C1y(gy; n) and the limiting functional
C01)( gz g3 @) = aCloy(92) + (1 — a)C1y(g,) for any real a and appropriate weight
functions g,(-) and g,(-) satisfying Assumption G. Then Equation (10) and Theorem

9 give

E[C0,1)(ga, gy; s n)] = 07 — [0Ga+ (1= a)(Gy +Gy) —1m

(1/n%),  (29)

n

which converges to 02 as n — oo. Further, under the conditions of Theorem 11,

Var(Coo,1) (9es gy; i n)] —= Var[Co,1)(gz, 945 )]

= a*Var[C(p)(g,)] + (1 — @)*Var[C)(gy)] + 2a(1 — a)Cov[C(0)(9x), C1)(g,)]-  (30)
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The limiting variance can be minimized for the a-value

x = Var[C(1)(g,)] — Cov[C0)(9:),Ca1y(gy)]
Var[C)(92)] + Var[C)(gy)] — 2Cov[Ci0)(gz), Cry(gy)]

Example 19 Consider the linear combination C(o1)(go, go; @; n). By Equation (29),

«v

(31)

_ 13
ElCo(90: 90i @i m)] = 0> = L+ O(1/n?),

indicating very high first-order bias. In addition, by Theorem 11, we have

4
o
Cov[Cio)(g0:m), €y (goin)] =2 CoviCo(90), Cy(90)] = —- (32)

From Examples 4 and 16 and Equations (31) and (32) we obtain a* = 0.5; and then
Equation (30) implies

4
* * o

Var[Co,1)(0, go; ", 1) — Var[Co,1) (90, go; )] = >

a variance that is significantly smaller than the limiting variances of the components

of the linear combination, since Var[Cy)(go)] = Var[Cq1y(go)] = 0.80%. <

Example 20 Consider the weight functions gj,(-) and g7 ,(-) from Examples 5 and

17, respectively. Performing the same machinations as in Example 19, we obtain

ElCo,1)(952, 912 ;)] = o> 4+ O(1/n?),

so that the combined estimator is first-order unbiased (like its components). By
Theorem 11, we have

30t

CovlCo)(g0.2:1), Cy (912:)] =2 CovlCio)(90.2) Coy(912)] = ¢

As above, a* = 0.546; and then Equation (30) implies

Var[Cio.1) (95,2, 91.2: "3 )] — Var[Co) (95,2, 95 2: ")) = 0.99240%,

We note that even the naive choice of a = 0.5 yields Var[C(gj 4, 97 4;0.5)] = o, which
is nearly as good as that of the linear-combination estimator using the optimal a*.

N

30



Example 21 Finally, consider the weight functions g5 ,(-) and g7 4(-) from Examples

6 and 18, respectively. Proceeding in a similar fashion, we obtain

E[Co1) (954, 9743 sm)] = o® +0(1/n?),

so that the combined estimator is first-order unbiased. By Theorem 11, we have

820910*

Cov[Cio(g6.4: ), Cy(giai ] =, CovlCoy(96.4), Cy(gia)] = Zgiomr

(33)

Examples 6 and 18 and Equations (31) and (33) imply a* = 0.5301; and then Equation
(30) yields

Var[C )(96.45 97,45 5] — Var[(?(071)(ga74,gf74;oz)] = 0.69950".

Yet again, we have a first-order unbiased linearly combined estimator with a limiting
variance that is substantially smaller than those of its components, as Var[Co)(g54)] =
1.0420* and Var[C;)(gf,)] = 1.1350*. Note that the choice of o = 0.5 yields

Var[Cio,1) (954> 9145 0.5)] = 0.7015*—very close to the optimal result. <

Remark 19 Since the calculation of the level-k folded STS from the level-(k — 1)
STS takes O(n) time, and computation of the various area and CvM estimators given
the underlying STS takes O(n) time, our level-k folded estimators can be computed

in O(kn) time. <
3.5 Batched Folded CvM FEstimator

Definition 2 For each £ = 0,1,... and 2 = 1,2,...,b, the level-k folded CvM esti-
mator for 0% from the ith batch and the respective weighted area under the square

of the level-k Brownian bridge are

m 1
Cryilgsm) = 2_: (L) 2T(k)zm( ) and Cyi(g) = 02/0 9(t)B, (1) dt,

where ¢(+) is a weight function satisfying Assumptions G.
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Definition 3 For each k = 0,1, ..., the level-k batched folded CvM estimator for o2

18

The next theorem (which follows from Slutsky’s theorem; see Karr [22]) and corol-

lary give limiting results for the level-k£ batched folded CvM estimator.

Theorem 12 If Assumptions A and G hold, then

1 b
Ciwy (g5 0,m) ﬂ&o EZC(k)z(g)
=1

We now give results that are analogous to those in Corollary 4 and Theorem 9 for

the folded CvM estimator.

Corollary 5 Suppose Assumptions A and G hold, and that the sequence {0(21)71-(9; m):

m =1,2,...} is uniformly integrable for each i = 1,2,...,b. Then

71
» (G+G )71+0

E[Cu)(g;:0,m)] = E[Cu)i(gim)] = o -

(1/m?). (34)

Further, for fixed b we have

Var(Ca (g b)) — 0l AT oy e [ g()asar. (39)

m—00 b b Jo 0
Remark 20 We can obtain fine-tuned results on the expected values of the level-1

folded batched CvM estimators by replacing n by m in Theorem 10. <

3.5.1 Linear Combinations of Batched Folded CvM Estimators

The next result, which is analogous to Theorem 11, gives the asymptotic covariance
between batched folded CvM estimators from levels £ > 0. Its proof is similar to that

of Theorem 7 (though Theorem 11 only gives explicit expressions for the case k = 1).

Theorem 13 Suppose Assumptions A and G hold and {C(g);(gz; m)C.e(gy;m) :
m=1,2,...}, for i, € {1,2,...,b}, are uniformly integrable. Then for £ > 1 and

fixed b,

Cov|C 2),C

m— o0 b
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Similar to our work in §3.4.2, we define the linearly combined batched folded CvM

estimator as

C0,1)(9as gy @3 b,m) = aC0)(gus b,m) + (1 — @)C1)(gy3 b, m).
The next result follows from Corollary 5 and Theorem 13.

Corollary 6 Suppose Assumptions A and G hold, and further, for fixed b, the se-

quence {@(071)(%, gy;obom):m=1,2,.. } is uniformly integrable. Then

E[C0,1)(9a: gy; s b,m)] — o7

m—00

and

bV&I’[C(Q,l) (gxa gy; Q; bv m)]

— a2Var[C(0) (92)] + (1 — a)2Var[C(1)(gy)] + 2a(1 — a)Cov|C0)(gz), C1y(gy)]-

m—00

Table 1 lists the asymptotic bias and variance of some of the variance estimators
discussed so far. The linearly combined folded CvM estimators are based on the

optimal o* values obtained in Examples 19-21 and Corollary 6.

3.6 FExamples

In this section, we illustrate the performance of the level-1 folded area and CvM
estimators as applied to a number of stochastic processes. First, in §3.6.1 we consider
an i.i.d. Gaussian process. Then in §3.6.2 we conduct Monte Carlo studies based on
a stationary first-order autoregressive Gaussian process and the delay-time process
in a stationary M/M/1 system. §3.6.3 compares the expected values of level-1 folded
estimators and some of the other estimators. In §3.6.4, we estimate the limiting
distributions of folded estimators discussed in this chapter. Finally, in §3.6.5 we

undertake a brief analysis for level-k folded area estimators with k& = 2, 3, 4.
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Table 1: Approximate Asymptotic Bias and Variance for Different Estimators

Area (m/v1)Bias (b/o*)Var | CvM (m/y1)Bias (b/c*)Var
A(f;b,m) Eq. (14) 2 C(g;b,m) Eq. (16) Eq. (17)
A(fo;b,m) 3 2 C(go; b, m) 5 0.8
A(f2;0,m) o(1) 2 C(95.2;b,m) o(1) 1.723
A(feos1;0,m) o(1) 2 C(g5.450:m) o(1) 1.042
Aw(f;0,m) Eq. (28) 2 Cay(g; b, m) Eq. (34)  Eaq. (35)
A(l) (fo;b,m) 3 2 C(l) (go; b, m) 8 0.8
Aqy(fa;0,m) o(1) 2 Cay(97.2:b,m) o(1) 2.057
Ay (feos,130,m) o(1) 2 Cay (97 450,m) o(1) 1.135
.»4_\(071)(f0;b, m) 3 1 C(071 (90, go; @*; b, m) 6.5 0.5
./L_l(071)(f2; b, m) o(1) 1 (3(071)(95,2, 9123 %3 b, m) o(1) 0.99
A.1)(feos.1;0,m) o(1) 1 Con(gbs giaa®ibm) o) 0.70
N (b, m) 1 2 O(b,m) 1 1.333




3.6.1

I.i.d. Gaussian Process

In the case of i.i.d standard normal random variables, we can calculate exactly the

biases and variances for the level-1 folded estimators. Table 2 lists these moments.

Note that in this special case, the usual sample variance is unbiased and has variance

2/(n—1), so it is the “best” estimator for 0% = 1. We see that the entries in Table 2

indeed match up nicely with those of Table 1 with v, = 0.

3.6.2

Table 2: Bias and Variance for Folded Estimators in i.i.d. Normal Case

Estimator Bias Variance
Ay (fo; b, m) — 2
A (faibym) | 5l + 52 — 58 2
Ca1y(go; b, m) —L 03
Ca1y (97 2:b,m) 5 8 2051
Cay(gtasbsm) | oor — gog 4 2% L135

Monte Carlo Examples

In this section, we examine the performance of the folded estimators using the fol-

lowing processes.

1.

First-order autoregressive (AR(1)) process: A stationary (Gaussian) AR(1) pro-
cess is defined by X; = ¢X,_1 +¢; for j =1,2,..., where 1 < ¢ < 1, Xj is a
standard normal random variable, and the ¢; are i.i.d. N(0,1—¢?) random vari-
ables that are independent of X;. This process has covariance function R; = ol
for all j = 0,41,42,.. ., so that 0% = (1+¢)/(1—¢) and ; = 2¢/(1 — ¢)*. In

our examples in this thesis, we chose ¢ = 0.9, hence o = 19.

. M/M/1 delay-time process: We consider the stationary delay-time process for

an M/M/1 queue with interarrival rate p < 1 and service rate 1. The variance

parameter for this process is 02 = p(2 + 5p — 4p> + p?)/(1 — p)* (Steiger and
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Wilson [34]). In the following examples, we consider an arrival rate of 0.8 and
service rate of 1.0 (hence p = 0.8). The variance parameter for this process is

o? = 1976.

Tables 3 and 4 contain the estimated expected values and standard deviations of
the folded variance estimators and their counterparts for the AR(1) process, respec-
tively. Similarly, in Tables 5 and 6 we present the corresponding estimated expected
values and standard deviations for the M/M/1 delay-time process. All entries in
Tables 3—6 are based on b = 32 batches and 10,000 independent replications. We
employ common random numbers across all variance estimation methods, and we use
the combined pseudo-random number generator described in Figure 1 of L’Ecuyer
[25]. The standard errors of the point estimators in Table 4 (6) have an upper bound
of about 0.05 (10.3, respectively).

Based on Tables 3-6, the following conclusions can be drawn:

e The estimated expected values of all variance estimators converge to o2 as the

batch size m becomes large, in accordance with theory.

e For small values of m, the level-0 and 1 batched area and CvM estimators with
constant weights fo(-) and go(-), respectively, are much more biased than the

other estimators. This is consistent with the bias results from Table 1.

e For small m, the level-1 folded estimators are more biased for o2 than the
analogous level-0 estimators. This increase in bias is primarily due to the larger
second-order terms in the expectations of the level-1 estimators (Theorem 4 and

Theorem 10).

e For small m, the estimator Cp)(g74;b,m) appears to have the smallest bias
among the level-1 CvM estimators under study here. This makes sense in light
of Example 18 and Remark 20, especially after we notice that v, > o2 for the

positively autocorrelated AR (1) and M/M/1 processes under consideration.
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e We see from the M/M/1 results in Table 6 that the estimated standard de-
viations require very large batch size m before approaching their asymptotic

values. For instance, we know from Table 1 that

VVar(lCo (G54, 943 0% b,m)] — 1/0.69950% /b = 292,

yet even for m = 32,768, the estimated standard deviation is still 364.

e The combined area estimators A1) (f;a;b,m) and C(o1)(ga, gy; a; b,m) per-
form as expected. Their bias is between the biases of the constituent level-0
and level-1 estimators for small m, and dissipates for large m. The bonus from
the combined estimators is the substantially reduced variance compared to their
constituents. For large m, the standard deviation of a combined area estimator
is about a factor of v/2 smaller than those of its constituents, which is reason-
able since the constituents are asymptotically independent (Example 15 and
Table 1). The reduction in standard deviation achieved by the combined CvM
estimators is a bit smaller due to the positive correlation between the level-0

and level-1 estimators, but is in line with the theory (Examples 19-21 and Table

1).
3.6.3 Expected Value Examples

Figure 2 plots the expected values of various level-0 and level-1 batched area and
CvM estimators, as well as the NBM estimator, as functions of the batch size m for
the AR(1) process introduced in §3.6.2. By Theorems 4 and 10, the expected values
of these area and CvM estimators depend on the batch size, but not on the number of
batches; however, since the expected value of N (b, m) depends on both m and b, we
decided to use b = 32 batches, a realistic number in practice. The figure shows that, as
m becomes large, the expected value of level-0 estimators tend to converge to o2 = 19
more quickly than their level-1 counterparts. The STS estimators incorporating first-

order unbiased weight functions (i.e., Aw)(f2;0,m) and Cuy(gj 950, m) for k = 0,1)
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Table 3: Estimated Expected Values of Variance Estimators for the AR(1) Process for b = 32

Level-0 Estimators

8¢

m | A (fo;0,m) A (fa;0,m) C0)(go; b, m) C(0)(g5 250, m) C(0)(95,430,m)
512 17.98 18.78 17.34 18.76 18.42
1024 18.47 18.94 18.15 18.93 18.84
2048 18.77 19.05 18.61 19.04 18.99
4096 18.87 19.00 18.79 18.99 19.01

Level-1 Folded Estimators

m | Ag(fo;b,m)  Aq)(f2;0,m) Ca1)(go0; b,m) Cay(g7;0,m) Cy (9143 b,m)
512 17.81 18.19 16.38 18.34 17.68
1024 18.48 18.82 17.67 18.87 18.62
2048 18.79 18.97 18.36 18.98 18.95
4096 18.91 19.08 18.69 19.07 18.99

Linearly Combined Estimators

m | Ao (fosbom) Ay (f2:0,m)  Coay(go, goi o*:0,m)  Ciony(ghar 0 a50,m)  Cooay (954 9Fas @3 bm)

012 17.89 18.48 16.86 18.57 18.07
1024 18.47 18.88 17.91 18.91 18.74
2048 18.78 19.01 18.48 19.01 18.97

4096 18.89 19.04 18.74 19.03 19.00




Table 4: Estimated Standard Deviations of Variance Estimators for the AR(1) Process for b = 32

Level-0 Estimators

6€

m | A (fo;0,m) A (fa;0,m) C0)(go; b, m) C(0)(g5 250, m) C(0)(95,430,m)
512 4.54 4.74 2.91 4.35 3.30
1024 4.63 4.75 2.95 4.37 3.35
2048 4.71 4.76 2.99 4.40 3.42
4096 4.74 4.74 3.00 4.42 3.42

Level-1 Folded Estimators

m | Ag(fo;b,m)  Aq)(f2;0,m) Ca1)(go0; b,m) Cay(g7;0,m) Cy (9143 b,m)
512 4.49 4.53 2.85 4.59 3.30
1024 4.58 4.64 2.91 4.68 3.45
2048 4.69 4.77 2.97 4.81 3.52
4096 4.67 4.67 2.96 4.76 3.55

Linearly Combined Estimators

m | Ao (fosbom) Ay (f2:0,m)  Coay(go, goi o*:0,m)  Ciony(ghar 0 a50,m)  Cooay (954 9Fas @3 bm)

012 3.19 3.27 2.27 3.25 2.67
1024 3.25 3.31 2.31 3.28 2.72
2048 3.33 3.38 2.36 3.34 2.79

4096 3.32 3.33 2.35 3.32 2.79




0¥

Table 5: Estimated Expected Values of Variance Estimators for the M/M/1 Process for b = 32

Level-0 Estimators

m | A (fo;0,m)  Agw)(fa;0,m) C0)(go; b,m) Ci0)(95,2: b:m) C0)(95.43b,m)
2048 1849 1942 1760 1935 1883
4096 1900 1968 1858 1964 1940
8192 1939 1972 1917 1974 1968
16384 1960 1980 1949 1980 1978
32768 1962 1969 1957 1970 1968

Level-1 Folded Estimators

m | Ay (fo;0,m)  Aq)(fa;0,m) Ca)(go; b,m) Ca1) (9320, m) Ca1) (93 450, m)
2048 1803 1833 1625 1861 1767
4096 1896 1931 1791 1939 1901
8192 1947 1972 1889 1973 1964
16384 1960 1977 1930 1979 1972
32768 1964 1969 1950 1969 1975

Linearly Combined Estimators

m -’Zl(O,l)(fOQ b,m) -’Zl(O,l)(fZQ b,m) 6(0,1) (90, go: @*; b,m) C_(O,l) (95,27 9{72% a*;b,m) 6(0,1) (9674, gf,4; a*;b,m)
2048 1826 1887 1692 1902 1829
4096 1898 1949 1825 1953 1922
8192 1943 1972 1903 1973 1966
16384 1960 1979 1939 1979 1975
32768 1963 1969 1953 1970 1971




Table 6: Estimated Standard Deviations of Variance Estimators for the M/M/1 Process for b = 32

Level-0 Estimators

17

m | A (fo;0,m)  Agw)(fa;0,m) C0)(go; b,m) C0)(95.2;0,m) C0) (95450, m)
2048 1010 1026 744 924 874
4096 809 831 606 738 705
8192 700 688 510 623 579
16384 614 611 433 557 488
32768 555 550 377 507 423

Level-1 Folded Estimators

m | Ag(forbm) A (f2;0,m) Cry(go; b, m) Cr1)(9i2:0:m) C1) (93,40, m)
2048 951 852 656 858 764
4096 790 787 568 756 662
8192 727 677 513 669 587
16384 604 607 424 598 497
32768 557 542 375 547 442

Linearly Combined Estimators

m | Ao (forb,m) A (faibm)  Coy(go, gos*:b,m)  Cooy(95.2: 91 0ia*50.m)  Cony (g 9Fas 1 b,m)

2048 829 793 640 796 744
4096 668 677 538 655 616
8192 o976 549 460 539 516
16384 478 475 376 466 425

32768 412 408 320 405 364




converge more quickly than do the other estimators (A (fo; b, m) and C(x)(go; b, m)
for k =0,1, and N'(b,m)). <«

3.6.4 Density Estimation

Alexopoulos et al. [3] used the method of Satterthwaite [29] to develop distributional
approximations for the distributions of (overlapping) area and CvM estimators as
the batch size grows. In this section, we estimate the distributions of the level-0 and
1 folded area and CvM estimators for quadratic weight functions. Similar approxi-
mations exist for the remaining weight functions. First, we find approximations to
the theoretical distributions of Ay(f;b,m) and Cuy(g;b,m), for k =0,1,2,..., and

sufficiently large values of m.
3.6.4.1 Batched Folded Area Estimators

Using an argument that is similar to that of §4.3 of Alexopoulos et al. [3], we obtain

the approximation

2E* [ Ay (f; 0, m)]
Var[Ag, (f; b, m)]ﬂ - (39)

Ay (F:b,m) < E[ Ay (3 by m)]x2 e, where v = |[

for k = 0,1,2,..., where [-] denotes rounding towards the nearest integer and the
quantity veg is called the “effective” degrees of freedom.

For example, for the first-order unbiased quadratic weight function f5(-), we see
that

E[Aq (f2;b,m)] = o® and vy, ex = b; (37)
hence from Equation (36) we have
Aw)(f23b,m) ~ a*x3 /b. (38)

To compare our run results with these theoretical results, we generated 1,000,000
independent sample paths of the stationary AR(1) process. Each sample path con-

tained n = 32768 observations and all variance estimators were computed using a
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Figure 2: Expected Values of Folded Estimators Based on the AR(1) Process
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batch size of m = 2048. Figure 3(a) displays the empirical probability density func-
tion (p.d.f.) of A()(f2;16,2048) (drawn as a frequency polygon as discussed in the
§3.3 of Hald [20]) and the fitted empirical p.d.f. based on Equations (37) and (38). We
see that an appropriately scaled chi-squared random variable provides an excellent
approximation to the distribution of A (f2; 16,2048).

For the level -1 folded area estimator with the first-order unbiased quadratic weight

function fo(t), we see that
E[Aq)(f2;0,m)] =~ o2 and Vi, off = b (39)
hence from Equation (36) we have
Aqy(fa;0,m) ~ a?x2 /b. (40)

Figure 3(b) displays the empirical p.d.f. of Agy(f2; 16,2048) and the fitted p.d.f. based
on Equations (39) and (40). Again we see that an appropriately scaled chi-squared

random variable is a very good approximation to the distribution of Aq)( f2; 16,2048).
3.6.4.2 Batched Folded CoM Estimators

Similar to Equation (36), we obtain the following equation for batched folded CvM

estimators:

2E2[Cx)(g; b, m)]
VarlCu (9:1. m>1ﬂ )

Ciry(g:b,m) ~ E[Cuy(g: b, m)]X;, ./ Verr, where veg = |[

for k =0,1,2,.... If we follow a similar argument to that of §3.6.4.1 for the weight

function g7 ,(-), we can see that

N 1400
E[C(O) (90,2§ b,m)] ~ o’ and Vgs grefft = ﬂﬁﬂv (42)
hence from Equation (41) we have
Co) (9623 b:m) ~ X5 o Vi et (43)

44



0.07 : . . |

empirical

— — — fitted

0.06

0.05

0.04

0.03f

0.02}

0.01p

50

(a) A(o)(f2;16,2048)

0.07 : . . |

empirical
— — —fitted

0.06

0.05

0.04

0.03f

0.02}

0.01p

50

(b) Aqy(f2:16,2048)

Figure 3: Empirical and Fitted p.d.f.’s for Folded Area Estimators Based on the
AR(1) Process
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Figure 4(a) displays the empirical p.d.f. of C()(g5 »; 16, 2048) and the fitted p.d.f. based
on Equations (42) and (43). It can be seen that an appropriately scaled chi-squared
random variable is a very good approximation to the distribution of Cg) (g5 »; 16, 2048).

Also, for level-1 folded CvM estimators with weight function g ,(-), we have

* 700
E[C(l)(9172§ b, m)] ~ o’ and Vs peff = ﬂﬁﬂy (44)
hence from Equation (41) we have
Ca1y (91950, m) ~ U2X3gfz’eﬁ/1/g{72,eff- (45)

Figure 4(b) displays the empirical p.d.f. of Cq1)(g7;16,2048) and the fitted p.d.f.
based on Equations (44) and (45). Hence, an appropriately scaled chi-squared random
variable is a very good approximation to the distribution of C(;)(g7 5; 16,2048).

We now show how one can construct approximate Cls for the parameters pu and
o If Auy(f;b,m), k =1,2,..., is a first-order unbiased estimator for o2, then for
a € (0,1) and a sufficiently large batch size m, an approximate 100(1—«)% two-sided
CI for o2 is given by

Ver Ak (f; 0,m)

2
Xl_a/27’/ef:f

<o?< Ver Ay (f; b,m)

, (46)

2
Xa/27'/eff

where the X%,y denotes the 3-quantile of the y? distribution with v degrees of freedom.
Similarly, an approximate 100(1 — a)% two-sided CI for o? for CvM estimators
can be obtained as follows:

Veffc(k) (ga bv m)

2
Xa/27VcH

Veffc(k) (97 b> m)

2
Xl_a/27VcH

<o’ < : (47)

We can also obtain an estimated CI for the mean pu, provided that the batch
size m is sufficiently large. First, Equation (3) implies that for large n we have
X, ~ N(u,0?/n) and X, is approximately independent of the STS formed from
{X;,,j=1,...,n}. It follows that for sufficiently large m,

Xn— N
\/-A(k)(f; b,m)/n

(48)

Veff
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Table 7: Critical Values and Coverages of Cls for 02 and p, for b = 16 and m = 2048

2

4 T
Estimator Xize/z%ﬁ % '/’ foyﬁ Coverage | ti—a/2.., | Coverage

A)(fa;b,m) 0.6085  2.0095 | 0.8997 0.0096 0.9003
Aqy(fa;0,m) 0.6085  2.0095 | 0.9002 0.0096 0.8994
A1) (f23 b,m) 0.6927  1.5943 | 0.8997 0.0094 0.9002
C0)(95.2; b, m) 0.6033  1.8780 | 0.8981 0.0096 0.8999
Cy(g72;0,m) 0.6085  2.0095 | 0.8952 0.0096 0.8988

Co.1) (962, 9195 030,m) | 0.6927  1.5943 | 0.9026 0.0094 0.9005

for k=0,1,2,..., where t, denotes a random variable having Student’s t-distribution

with v degrees of freedom. Hence an approximate 100(1 — «)% two-sided CI for pu is

Xn - tl—a/z,ljcﬁ‘\/A(k)(f; ba m)/n < 2 < Xn + tl—a/z,ljcﬁ‘\/'A(k)(f; bv m)/n (49)

Following a similar argument for CvM estimators, we get the following approximate

100(1 — a)% two-sided CI for p:

Xn - tl—a/Z,I/eff\/C(k) (ga b7 m)/n < % < Xn + tl_Oé/2,Veﬁ'\/C(k) (97 b7 m)/n (50)

Table 7 lists the critical values and coverage probabilities for approximate 90%
two-sided CIs for o2 and p obtained from (46)—(47) and (49)-(50), respectively, for
the AR(1) process. It can be seen that all empirical coverages are very close to the

nominal value, illustrating the validity of the Cls.
3.6.5 Multi-level Folding

In this section we study the effect of multi-level folding on the first moment of the
folded area estimators. A Monte Carlo study revealed that the bias of level-k folded
area estimators increases as the level k£ increases. Table 8 illustrates these findings
for the AR(1) process using folded area estimators with weights fo(-) and fao(-). At

level 0, the weight function fs(+) yields a first-order unbiased estimator with less bias
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Table 8: Estimated Expected Values of Multi-level Folded Area Estimators for the
AR(1) Process for b = 20

m_ | A (fo;bm)  Ag)(fo;bm) A (fo;b,m)  Ag)(fo;b,m)
100 13.80 11.83 7.30 3.05
300 17.22 16.88 15.37 11.03
500 17.94 17.80 17.18 14.91
m | A (fa;0,m)  Aqy(f2;0,m) A (fa;0,m)  Ag)(fa;b,m)
100 14.92 11.06 6.12 2.29
300 18.34 17.05 14.25 9.51
500 18.77 18.16 16.58 13.33

than the constant weight fy(-). But, Table 8 shows that, for small sample sizes, the
bias of estimators based on the weight fo(-) deteriorates faster (as the folding level
increases) than the bias of estimators based on fy(+). This puzzling behavior is the

subject of ongoing research.

3.7 Summary

This chapter presented various folded estimators, their batched versions obtained
from nonoverlapping batches, and their linear combinations. We extended the results
in Antonini [6] and Antonini et al. [7] by obtaining detailed expressions for the ex-
pectation of folded estimators at level 1, conducting a detailed Monte Carlo study
as the batch size increases while the number of batches remains constant, describing
distributional approximations for the batched estimators, and constructing Cls for
the mean and the variance parameter of the underlying process. Chapter 4 proceeds
with folded overlapping area estimators, which combine the overlapping operation

discussed in §2.4 with the folding operation that was reviewed in §3.1.
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CHAPTER IV

FOLDED OVERLAPPING AREA ESTIMATORS

4.1 Introduction

In this chapter we introduce and study the folded overlapping area estimators for
o? and list the main results. These estimators are based on a combination of the
folding and overlapping operations. As discussed in Chapter 3, linear combinations of
folded estimators can have smaller variance than their “unfolded” analogues, whereas
Alexopoulos et al. [3] show that estimators based on overlapping batches are usually
less variable than their competitors based on nonoverlapping batches. Hence, the
combination of these two techniques should be expected to reduce the variance of the
variance parameter estimator even more than applying each technique separately. In
§4.2 we introduce the level-k folded STS and overlapping area estimator. §4.3 lists
the limiting properties, and obtains approximations for the first two moments for
the proposed folded overlapping area (FOA) estimator. In §4.4 we introduce linearly
combined estimators obtained from FOA estimators from levels 0 and 1. §4.5 lists
algorithms to compute the level-1 FOA estimator in order-of-sample-size time for
constant and quadratic weight functions. Finally, in §4.6 we conduct Monte Carlo

studies.

4.2 Folded Overlapping Area Estimator

The level-k folded STS obtained from overlapping batch 7 is

T&),i,m(t) = T&—l),i,m(%) - T(Ok—l),i,m(]‘ - %)9
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where T, ;. (t) = 17, (1), for t € [0,1], k=1,2,..,andi=1,...,n —m+ 1. The

level-k FOA estimator from batch 7 is

2
) Lo .
Alyi(f;m) = E,Z:lf(%)gT(k)vivm(%) , fork=0,1,2,...andi=1,...,n—m+ 1L
]:

Averaging these estimators from all n — m + 1 batches gives the level-k FOA

estimator for o2:

n—m+1
A(k)(ﬁb,m)g m+1 ; Al

4.3 Properties of the Folded Overlapping Area Estimator

Let B),s(-) denote the level-k folded Brownian bridge on [0, 1] starting at time s. In

particular, we denote the level-0 Brownian bridge starting at time s by

B),s(t) = tW(s +1) = W(s)] = [W(s+t) = W(s)], forte[0,1] and s € [0,b— 1].

The analogous folded Brownian bridge By () can be defined recursively as follows:
By s(t) = Bpe-1),s(3) — Bp-1)s(1 — 5), fort €0,1].

The next theorem gives the limiting distribution of the level-k FOA estimator Ay, (f; b, m).

Its proof, along with several auxiliary results, is given in Appendix A.4.
Theorem 14 If Assumptions A and F hold, then

. . . 1 b—1 1 2

o (f30,m) e Al (f:0) = m/o {U/O fW)Bys(u) du| ds,
for fixed b>2and k=1,2,....

The following theorem obtains the expected value of the level-1 FOA estimators,

which is indeed the same result as in Remark 14.
Theorem 15 If Assumptions A and F hold and m is even, then

BLAD) (f:b,m)] = E[AQ) , (f;m)] = 0 — +0(1/m?). (51)
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The next theorem gives the asymptotic variance of the level-1 FOA estimator. The

proof follows from the generalized CMT.

Theorem 16 If Assumptions A and F hold and for each fixed b the sequence

{[AQ)(f;b,m)]* s m =1,2,...} is uniformly integrable, then
Var[A‘()l)(f; b, m)] n:;OVar[A?l)(f; b)].

By Lemma 2 in Alexopoulos et al. [4], we can write the asymptotic variance of the

FOA estimator as

Vel (1:0)] = s [ 6= 1= 00 52)
where
00.9)= [ [ F)f@)CovBoyo(w), By, o)) dude, (53)

for y € [0,1]. A detailed expansion of (52) is given in Appendix A.5.

Example 22 For the constant weight function fy(-), Equations (52) and (53) yield

23b-29 , 23

VarlApy) (fo; b,m)] — Var[At(fo; 0)] = mg R

Example 23 For the quadratic weight function f5(-), we have

4639 — 5782 , 4639

Var[ Ay (f2:0,m)] —— VarlAQy)(f2;b)] = S580(b— 1) 7 85800

Example 24 For the trigonometric weight function fes1(-), we have

(600 + 1287)b — (160m” +732) ,
38472(b — 1)2

Val"[-A(()l) (.fcos,l; b> m)] rr:;o Var['A(()l) (fcos,l; b)] -

33,
T

Table 9 lists approximations for the asymptotic bias and variance of several vari-
ance estimators. We see that the asymptotic variances of the level-1 FOA estimators
are lower than those of the NBM estimator, the OBM estimator, the area estimator,
the overlapping area estimator, and the level-1 folded (nonoverlapping) area estimator

for all weight functions under consideration.
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Table 9: Approximate Asymptotic Bias and Variance for Different Variance Estimators

Nonoverlapping ~ (m/v;)Bias (b/o*)Var | Overlapping  (m/v1)Bias (b/c?)Var
A(f;0,m) Eq.(14) 2 A°(f:b,m) Eq.(14) Eq.(20)
A(fo:b,m) 3 2 A°(fo; b, m) 3 0.686
A(f2;b,m) o(1) 2 A°(fa;0,m) o(1) 0.819
A(feos150,m) o(1) 2 A°(feos,1:0,m) o(1) 0.793
Aw(f;0,m) Eq.(28) 2 A% (f;b,m) Eq.(51) Eq.(52)
Ay (fo; b,m) 3 2 Ay (fo; b,m) 3 0.657
Ay (f2:6,m) o(1) 2 Ay (fa:0,m) o(1) 0.541
Aq) (feos13b,m) o(1) 2 A2 (foos130,m)  o(1) 0.492
N (b, m) 1 2 O(b, m) 1 1.333




4.4 Linear Combinations

We have seen that level-1 FOA estimators appear to be more biased than the respec-
tive level-0 overlapping area estimators. Therefore, linear combinations of level-0 and
level-1 estimators could lead to estimators with smaller bias than the level-1 FOA
estimators. Unfortunately, FOA estimators from different levels are correlated. For
example, we ran 1,000,000 independent replications to approximate the correlation
between different levels of estimators with b = 20 and m = 1000. For the weight func-
tion fo(-), the correlation between A°(fo;0,m) and AP (fo; b,m) is 0.599. Similarly,
for the weight function fy(-), the correlation is 0.765.

In any case, consider the linearly combined estimator with weight function fy(+)
-’Zl(()o,l)(fm b,m) = aAly (fo;0,m) + (1 — a) Ay, (fo; b,m).

The limiting variance of Ap ,(fo; b,m) is

lim Var[A{, 1) (fo; b, m)] = Var[AQ 1) (fo; ; b)]

m—00

= a?Var[AQ, (fo; b)] + (1 — a)*Var[ A2 (fo; )]

+ 2a(1 — a)Cov[Afy (fo; b), ALy (fo3 )],

where Var[AY (fo; b)] & 0.6860* /b and Var[A?,(fo;b)] ~ 0.6570*/b. The value of o
that minimizes this variance is a* = 0.512; hence Var[/_l‘()m)( fo;a*;b)] = 0.640% /b,
which is greater than the variance of the individual estimators in the linear combina-
tion.

Similarly, for the weight function f5(-), we obtain o* = 0.59, and
Var[Af, 1) (f2; a*;b)] &~ 0.750*/b. This result is also greater than variance of indi-
vidual estimators since Var[ A, (f2;b)] ~ 0.8190* /b and Var[AQ) (f2;0)] = 0.5410*/b.
Hence, for FOA estimators, linear combinations do not seem to yield the desired

variance reduction. Further analysis is part of our future research.
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4.5 Computational Complexity

The ability to compute the proposed FOA variance estimators with only order-of-
sample-size work is very important. In this section, we show how to calculate the
level-1 FOA estimators for a polynomial weight function of degree < 2 in O(n) time
and provide the formal algorithms.

Let S, ; = Z{;& Xyiy, for £ > 1 and j > 1, and note that fori =1,...,n—m+1

and 7 =1,...,m, the level-1 folded STS from overlapping batch ¢ can be written as

1
oy/m

Hence, we can rewrite the level-1 folded overlapping area estimator from batch ¢

i () = o= (U = m) X0 = 5,10+ S g))

as

2
nalfsm —[3m2f(ﬂ mx%‘%@+@m%w’

fori=1,...,n—m+1. First, we show how AP, ;(f;m) can be computed recursively

in O(1) time fori =1,...,n—m+1and m =1,2,.... To this end, we have
e lme(L)( ) (X + 5t = 3

2
— (Si—17|_jJ + XZ'H_%J — XZ) -+ (Si_lvl_m jJ + XZ+|_m J — XZ))‘|

1 N .
- 5 By

Now write

m3 2 D;(fim) = (Xppi — X; zm: (—) L—1)+ Zf(%)(Xiﬂm—lJ - Xz'ﬂ%J)’
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where we note that the quantity -7, f ( )( 1) can be computed a priori in O(m)
time. If we show that each of the quantities K;(f;m) = ZT:lf(%)(XiJ,-Lm—%J —
XZ.H%-J) can also be computed recursively in O(1) time for i = 1,...,n — m + 1,
then the entire estimator A{))(f;b,m) can be computed in O(n) time. To analyze
K;(f;m), we consider specific weight functions separately. For the remainder of this

section, we assume that m is even. Similar results can be obtained for odd m.

4.5.1 Constant Weight Function

Let f(t) = ¢, where ¢ is a constant. Then

= Kia(fim)+c(2Xpmo1y + Xi + X0 — 3Xm 14 — X%H)’

fori=2,...,n—m+1. Notice that after the quantity Ko(f;m) is computed in O(m)
time, each of the remaining quantities K;(f;m), i > 1, can be calculated recursively

in O(1) time.
4.5.2 Linear Weight Function

Let f(t) =t. Then

Ki(fim) = Z; %(Xz’ﬂm—%J - Xiﬂ%J)
p

3 4S; Xi_
= Kl—l(f7 m) -+ aXm_l_H' + : L BX%—H’—I — X%—I—Z + m 1,

for i = 2, o —=m + 1. Since Si,m—l = Si—l,m—l - Xi—l -+ Xi+m_2 for i = 1, o, =

m+ 1, S; m-1 and, therefore K;(f;m), can be updated in O(1) time.
4.5.3 Quadratic Weight Function

Let f(t) = t* Then

Ki(fim) = G0 (X gy = Xiv13))
=1
5 L; Ay Ay X1
= i_l(f; m) + m2Xm—l+’i + W m2X_+Z 2X%+i 1 —2’
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fort=2,...,n—m+ 1, where

T2+ m—2+i
Li= > [2+16G -)lX;+ Y {As—16[i— (2 +i+1)]}x;
Jj=i J=F 41+
and
Ay =(m—2)%+ (m—3)*—(m— 1)

Ay =2(m —1)2 + (m —2)%

As=(m -2+ (m—3)? —(m —4)* — (m —5)~
First, we write
B 240 m—2+i
Li= 3 N24+16G -0+ > {A-16[— (3 +i+1)]}x,
j=i Jj=g+1+i
B—2+i m—2+i T2+
=(12-160) 3 X; + [As+16(2+1+4)] 3 X416 Y X,
j=i =5 +14i J=i
=M; =M, o =Mi3
m—2+1
-16 > jXj.
J=F A1+

=M; 4
Note that for i =2,....,n—m+1,
My =Mi—1n — Xion + Xpoy,
Mo =M; 12— Xoyi+ Xin—opi,
: m _
Mz = M3 — (i —1)X;_1 + (— -2+ Z)Xm_2+,-,
2 2
mo :
My = M;_ 14— (5 + Z)X%LH +(m—24+19) X 0w
Since all of the M, ;’s can be updated in O(1) time, so can L; for i =2,...,n—m+1

and j = 1,2,3,4. As aresult, K;(f;m), fori=1,...,n—m++ 1, can also be updated

from available information in O(1) time.
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4.5.4 Algorithms

Algorithms 1-3 below list pseudocodes for computing the level-1 FOA estimators
in O(n) time for each of the weight functions, f(t) = ¢, f(t) = t, and f(t) = t*
respectively. Although, these are not the weight functions that satisfy Assumption F,
they are the components of all such weight functions. The computations for arbitrary

second-degree polynomial weights involve simple augmentations.

4.6 FExamples

In this section, we illustrate the performance of the level-1 FOA estimators based
on the stochastic processes in §3.6. First, in §4.6.1 we consider an i.i.d. Gaussian
process. Then in §4.6.2 we conduct Monte Carlo studies based on a stationary first-
order autoregressive Gaussian process and the delay-time process in the stationary
M/M/1 system. In §4.6.3 we discuss distributional approximations for level-1 FOA

estimators.
4.6.1 I.i.d. Gaussian Process

Table 10 contains results for the i.i.d. Gaussian process in §3.6.1 for b > 2. The

entries indeed match up nicely with those of Table 9 with v, = 0.

Table 10: Bias and Variance for FOA Estimators in the [.i.d. Normal Case

Estimator Bias Variance
¢ ; .660—0.
ARy (fo; 0,m) -1 %
Ayt | o+ e 3 | it

4.6.2 Monte Carlo Examples

In this section, we examine the empirical performance of the FOA estimators using

the AR(1) and M/M/1 processes from §3.6.2.
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Algorithm 1 Computation FOA Estimators with Constant Weight Functions (f(t) =
¢)

Step 1: Initialization
se«—0forb=1,...,5, Ay, <0, i1

Step 2: Calculate Af) ,(f;m) and K;
repeat
J—1
repeat
81 < 81+ Xj
until j = EJ
J {m — %J +1
repeat
S — 89 + Xj
until ) =m
= 3]+
repeat
S3 <— S3 + Xj

until j = {m — %J

A‘(’l),l — 14‘()1)71 + C[(# — 1)(81 + s9) + 33(#)]
sp«—0for 0 =1,2,3
S4 < Sq + Xiy|m—is2) — X14]is2)
S5 «— S5 + C(% —1
until 2 =m
A((J1),1 - A(()l),l/m?’/2
K|« c* sy

Step 3:

i 2, sum « [Af) ]

repeat
Ki— K1 +c(2Xm_14i + Xi + Xio1 — 3Xom2-140 — Xinjo4i)
AQyi = Ay + [55(Xmgi — X)) + Kol /m??
sum < sum + [Af) ;]?

untili =n—m+1

Return Ay} < sum/(n —m+1)
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Algorithm 2 Computation of FOA Estimators with Linear Weight Functions (f(t) =
t)

Step 1: Initialization
sp«—0forl=1,...,5, A‘(jl)’l — 0,11, K1 <0

Step 2: Calculate Af)),(f;m) and K,
repeat
J 1
repeat
81 < 81+ Xj
until j = {%J
J {m — %J +1
repeat
So < So + Xj
until j =m
= 2]+
repeat
S3 «— S3 + Xj

2
Ay = Ay + A (5 = 1) (o4 52) + 3 ()
sp«—0for 0 =1,2,3
Sy — 84—|—fi(% - 1)

Ky — K1+ fil X1 (m—ij2) — Xit1i/2))

until i =m

J—2

repeat
Sy < S5 + 4X]

until j =m

A(()l),l - 14(()1),1/7713/2

Step 3:
i 2, sum « [Af)]?
repeat
Ki e Ki 1+ BXp14i+ 55+ Xio1)/m — 3X 2140 — Xonjogi
55— 85 — 4 X; — Xinyio1)
Ay = Ay + (X — Xi)sa + K] /m?/?
sum < sum + [Af) ;]?
untili =n—-—m+1

until j = {m — 1J

Return Af)) <« sum/(n —m+1)
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Algorithm 3 Computation of FOA Estimators with Quadratic Weight Functions
(f(t) =1
Step 1: Initialization
sp«—0forl=1,...,4, A(()1),1 — 0,11, Ky <0, My, O0forl=1,...,4,
Al — (m =2+ (m—3)—(m—1)2, Ay« 2(m — 1)+ (m — 2)?,
Az — (m—=22+(m—-32%—(m—4)>*—(m—>5)2 Ay — (m—1)%+ (m —2)? -
(m—3)% = (m —4)?

Step 2: Calculate M171, MLQ, M173, M174, A(()l),l(f; m) and Kl
repeat
J =1
repeat
S1 < 81+ Xj
until j = EJ
J {m — %J +1
repeat
So +— So + Xj
until ) =m
i [i] 2
repeat
S3 «— S3 + Xj
until j = {m — iJ

2
A%y = A%y + (= 1) (514 52) + s3()]
sp«—0for 0 =1,2,3
54 S4+ fz(% - 1), Ky — K1+ fil X1 m—ij2) — Xit1i/2)),
if i <(m/2—1) then

My — Mg+ Xi, Mys— M3 +1X;
else if i >m/2+1+iand i < (m—2+1i) then
Mo Mo+ X;, Mg M 4+1X;
end if
until 2 =m
A((J1),1 — A(()l),l/m?’/2

Step 3:
i 2, sum « [Af)]?
repeat
My — My — X0+ Xonjo2vi, Mig— Mio— Xojori + Xonogi
Mg — Mgz—(i—1)X;1 4+ (m/2 =2+1) X004
M174 — M174 — (m/2 + Z)Xm/2+2 + (m -2+ i)Xm_g_H'
L; — (12 —=161)My 1 + [A3 + 16(m/2 + 1 +0)| My 2 + 16(My 3 — My 4)
Ki— K1 + (5Xm-14i + Li — Ao X o140 — A1 Xonjop + Xi_1)/m?
A(()l),_i — A(()l),i—l + [84(Xmti — Xi) + Ki]/m3/2, sum «<— sum + [A(()l),i]z
untili=n—m+1

Return A{)) <« sum/(n —m+1)
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Tables 11 and 12 contain the estimated expected values and standard deviations
of the FOA variance estimators and their counterparts for the AR(1) process. Simi-
larly, in Tables 13 and 14 we present the corresponding estimated expected values and
standard devations for the M/M/1 delay-time process. All entries in Tables 11-14
are based on 10,000 independent replications. In Tables 12 and 14, the rows labeled
“m — o0” provide the asymptotic standard deviations of the respective variance es-

timators, which are summarized in Table 9.

Table 11: Estimated Expected Values of Variance Estimators for the AR(1) Process
for ¢ = 0.9, 02 =19 and b = 32

Level-0 Folded Area Estimators
m A(o)(fo;b,m) A‘(’g)(fo;@m) A(O)(fz;b>m) A(()o)(f%b’m)

512 17.98 17.94 18.78 18.75
1024 18.47 18.43 18.94 18.88
2048 18.77 18.72 19.05 18.96
4096 18.87 18.86 19.00 18.98

Level-1 Folded Area Estimators
m A(l)<f07 b7 m) A(()l)(f(h b7 m) A(l)<f27 b7 m) A(()l)(f% b7 m)

012 17.81 17.82 18.19 18.18
1024 18.48 18.46 18.82 18.78
2048 18.79 18.75 18.97 18.97
4096 18.91 18.87 19.08 18.98

From Tables 11 and 13, we can make the following conclusions concerning the

expected values of the FOA estimators:

e The expected values of all estimators converge to o as m increases, as dictated
by our theoretical results. For small values of m, the level-1 FOA estima-
tors have larger bias than corresponding level-0 variance estimators mentioned

above.

e For the M/M/1 process the estimated expected values of all variance estimates
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Table 12: Estimated Standard Deviations of Variance Estimators for the AR(1) Pro-
cess for ¢ = 0.9, 0 = 19 and b = 32

Level-0 Folded Area Estimators
m A(O)(f07 b7 m) A?O)(f(h b7 m) A(O)(f27 b7 m) A(()O)(f% b7 m)

012 4.54 2.79 4.74 3.03
1024 4.63 2.84 4.75 3.09
2048 4.71 2.81 4.76 3.07
4096 4.74 2.82 4.74 3.09
— 00 4.75 2.78 4.75 3.04

Level-1 Folded Area Estimators
m A(l)(f07 b7 m) A((jl)(f(h b7 m) A(l)(f27 b7 m) A(()l)(f% b7 m)

012 4.49 2.72 4.53 2.45
1024 4.58 2.76 4.64 2.49
2048 4.69 2.77 4.77 2.51
4096 4.67 2.74 4.67 2.48
— 00 4.75 2.72 4.75 247

first increase and then decrease with m. This phenomenon was first observed

by Sargent et al. [28].

Based on Tables 12 and 14, we can make the following conclusions concerning the

variances of the FOA estimators:

e For the AR(1) process, all variance estimators converge to the theoretical asymp-
totic values quite quickly as m increases. We can see that the estimated stan-
dard deviations for the M/M/1 process converge to the theoretical values as m

increases, but at a slower rate than for the AR(1) process.

e The FOA estimators have smaller variances for both weight functions than their

competitors listed in Tables 12 and 14.
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Table 13: Estimated Expected Values of Variance Estimators for the M/M/1 Delay-
Time Process for p = 0.8, 0> = 1976 and b = 32

Level-0 Folded Area Estimators
m A(O) (f07 b7 m) A?O)(f(]u b7 m) A(O) (f27 b7 m) A(()(]) (f27 b7 m)

2048 1849 1819 1942 1950
4096 1900 1899 1968 1968
8192 1939 1959 1972 1970
16384 1960 1965 1980 1976
32768 1962 1964 1969 1973

Level-1 Folded Area Estimators
m A(l) (f07 b7 m) A((jl)(f(]u b7 m) A(l) (f27 b7 m) A(()l) (f27 b7 m)

2048 1803 1806 1833 1832
4096 1896 1894 1931 1929
8192 1947 1942 1972 1969
16384 1960 1960 1977 1976
32768 1964 1959 1969 1969

4.6.3 Density Estimation

In this section, we use the approach from §3.6.4 to estimate the limiting distributions
of the level-1 FOA estimators for sufficiently large values of m. Using an argument

that is similar to that of §3.6.4, we obtain the approximation

Q2[5 (f:b,m)]
Varl Al (-5, m)]ﬂ - B4

A% (f15,m) ~ E[A% (15, m)]x2,. /ver, where v = |[

for k=1,2,....
For the FOA estimator with the constant weight function fo(), we see that

(0% 4+ 3v/m)?70(b — 1)*]
(23 — 29)0 ﬂ +(39)

LA usbo)] = 0%+ 3/m and s |
hence from Equation (54), we have

Ay (fos bym) < (02 4 37/m)C, Vot (56)

To evaluate the approximation in Equation (54), we generated 1,000,000 inde-

pendent sample paths of the stationary AR(1) process. Each sample path contained
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Table 14: Estimated Standard Deviations of Variance Estimators for the M/M/1
Delay-Time Process for p = 0.8, 02 = 1976 and b = 32

Level-0 Folded Area Estimators
m A(O) (f07 b7 m) A?O)(f(]u b7 m) A(O) (f27 b7 m) A(()(]) (f27 b7 m)

2048 1010 772 1026 831
4096 809 633 831 704
8192 700 487 688 517
16384 614 407 611 432
32768 955 352 550 367
— 00 494 289 494 316

Level-1 Folded Area Estimators
m | Aq)(fo;b,m) APy (fo;b,m)  Awy(f2;0,m) Ay (fo;b,m)

2048 951 701 852 675
4096 790 579 787 575
8192 727 485 677 477
16384 604 404 607 389
32768 557 345 542 314
— 00 494 283 494 257

n = 20,000 observations and all variance estimators were computed using a batch
size of m = 1000. Figure 5(a) displays the empirical probability density function of
01y (f0320,1000) and the fitted p.d.f. based on Equations (55) and (56). We see that
an appropriately scaled chi-squared random variable provides a good approximation
to the distribution of A, (fo; 20, 1000).
For the level-1 FOA estimator with the first-order unbiased quadratic weight func-

tion f5(-), we have

o ' 2 [ (a7160(b — 1) .
E[AY) (fo;0,m)] = 0 and  vyep = |[(4639b —5732) | (57)
hence from Equation (54) we have
Al (fa;0,m) ~ 0'2X12127C3/V2,eﬁ"- (58)

Figure 5(b) displays the empirical p.d.f. of AP (f2;20,1000) and the fitted p.d.f. based
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on Equations (57) and (58). Again we see that an appropriately scaled chi-squared
random variable is a good approximation to the distribution of A‘(’l)( f2;20,1000).
As in §3.6.4, we can obtain approximate Cls for the parameters p and o?. For
example, if A‘(Jk)( fib,m), k=1,2,..., is a first-order unbiased estimator for o2, then
for @« € (0,1) and a sufficiently large batch size m, an approximate 100(1 — «)%

two-sided CI for o2 is
VCHA(()k)(f; bv m)

2
Xl_a/27’/ef:f

2 S VCHA(()k)(f; bv m)

<o 3
Xa/27'/eff

) (59)
Example 25 Consider the FOA variance estimator based on the quadratic weight

function f5(-), for which Equations (57) and (58) yield A$( fy; 20,1000) ~ o%x2,/71.
The two-sided 90% CI for o2 is

0.7745.4%, (f2; 20,1000) < 0 < 1.3498.A%(fo: 20, 1000). (60)

We used the 1,000,000 independent realizations of A‘(’l)( f2;20,1000) computed from
the AR(1) process to estimate the coverage probability of the CI defined by (60). The
estimated coverage was 0.9. We also obtained an empirical coverage probability of
0.9023 for the two-sided 90% CT (59) for 0% based on APy (fo;20,1000), even though

ARy (f0520,1000) is a biased estimator for o?. <

An approximate 100(1 — )% two-sided CI for p is given by

Xn - tl_Oé/2,Veﬁ'\/A?k) (fa b7 m)/n < w < Xn + tl_Oé/2,Veﬁ'\/‘A?k) (fa b7 m)/n (61)

Example 26 Consider the FOA estimator using the quadratic weight function fs(+).
The two-sided 90% CI for pu is

X, — 001178, /A% (f>;20,1000) < p < X, 4 0.01178, /A2 (f;20,1000).  (62)

We used the 1,000,000 independent realizations of A‘(’l)( f2;20,1000) computed from
the AR(1) process to estimate the coverage probability of the CI defined by Equa-
tion (62). The estimated coverage was 0.8973. Similarly, we obtained an estimated

coverage probability of 0.8944 for the two-sided 90% CI using A‘(’l)( f0;20,1000). <«
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Figure 5: Empirical and Fitted p.d.f.’s for FOA Estimators Based on the AR(1)
Process
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4.7 Summary

This chapter studied folded estimators based on overlapping batches. Specifically, we
obtained the first two moments of level-1 FOA estimators, their limiting distribution
as the batch size goes to infinity while the ratio of the sample size to the batch size
remains constant, and developed algorithms for computing them in linear time for
polynomial weights of degree < 2. We also analyzed their performance via a Monte
Carlo study involving an AR(1) process and the delay-time process in a stationary
M/M/1 system. At level 1 and for a given weight function, the FOA estimators
are significantly less variable than their level-1 counterparts based on nonoverlap-
ping batches, and level-0 counterparts based on both nonoverlapping and overlapping
batches. However, level-1 FOA estimators exhibit more small-sample bias compared
to level-0 counterparts. Also, the correlation between folded overlapping estimators
at levels 0 and 1 reduces the potential benefits of linear combinations. Using an ap-
proach analogous to Alexopoulos et al. [4], we also showed that the FOA estimators
can be approximated (for sufficiently large batch sizes) by properly rescaled x? dis-
tributions (with appropriate degrees of freedom). Finally, we constructed Cls for the
variance parameter as well as the mean of the underlying process. The confidence
intervals exhibited nearly nominal coverage.

Chapter 5 proposes estimators based on reflections applied to the STS correspond-
ing to the entire sample. Reflections are another method of data re-use, which we

shall study in the next chapter.
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CHAPTER V

REFLECTED ESTIMATORS

5.1 Introduction

Assumptions A show that certain functionals of a stationary process converge in
distribution to a Brownian motion process. For the Brownian motion processes, the
following reflection principle holds.

Reflection Principle: If W(t) is a Brownian motion on [0, 1], then

W(t) ift<c
2W(e) —W(t) ift>c

WE(t) =

is also a Brownian motion process, where ¢ € [0, 1] is any reflection point. Note that

the processes W(-) and W(-) are correlated.

original

— - — reflected

; y
[ N
R :
Fo lod

I'je iyl pok

IR

\ \{

0.8 1

Figure 6: Original and Reflected Brownian Motion Processes
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Figure 6 shows an example of the original and reflected Brownian motion pro-
cesses, corresponding to the reflection point ¢ = 0.5. The reflection principle tells
us that Brownian motion processes reflected after they hit a point preserve the same
distributional properties as the original Brownian motion. Hence, we can use a sam-
ple path from a Brownian motion process to generate several other different sample
paths from the same process. Therefore, a set of data from a simulation output
process can be re-used to obtain different sample data sets, where their respective
functionals still converge in distribution to Brownian motion processes. The new
paths generated through reflection are generally correlated.

First of all, assume that Assumptions A hold. Without loss of generality, we will
assume the mean g for this process to be zero. For processes with mean different than
zero, we can take the difference of two independent replications, and the variance of
the sample mean of the difference is approximately o?/n. Hence the assumption of

zero mean is legitimate. Define

X; if 0 <j<|en]
—-X; iflen]+1<j5<n

Xr. =

C?]
for j=1,...,n. Let 57, = Z?:l X7, for k=1,2,.... Therefore, for t,c € [0, 1],

. B S\_nt] ift<e
¢ nt] =

QSanJ - SLntJ if t > c.

Further define X7, (t) = S7,;/(0/n), and note that

Slnt] .
Xia)=qgm o MESe
) lne] [nt] .
P~ P~ ift>c
p JW(?) ift<c
—

T 2W(e) = W(t) ift>c
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We have shown that the process X, () obtained from the reflected data {X; : j =
1,...,n} converges to the Brownian motion that results from a reflection at point ¢
of the limit of the original process X, ().

The rest of this chapter proceeds as follows. In §5.2, we introduce the reflected
NBM estimator for o2. In §5.3, we propose reflected estimators based on STS. Specif-
ically, §5.4 and §5.5 discuss reflected area and reflected CvM estimators, while §5.4.1
and §5.5.1 study linear combinations of reflected area and reflected CvM estimators,

respectively.

5.2 Reflected Nonoverlapping Batch Means Estimators

Recall that the nonoverlapping batch means estimator is

m .-
_/\/'C*(b, m) = — Z(X;um _ X:,n)2
b—1=
b
m _
= X*. 2 _ IX*  X* X* 2
b - 1 =1 |:( Cvlvm> cr,m= -e,n + ( cm) :|
m [2 b
=51 lZ(XZ,Z,m)Q 2X7, Y X+ b(X;n)Q] , (63)
L= i=1
where Xc*,i,m = % Z}%:l ;(i_l)mﬂ- fort=1,...,b, and X'c*m = %Z;—Ll X:’j,

5.2.1 Reflecting an Entire Batch

First, we consider reflecting an entire batch. We have b batches, and for each reflected
batch we obtain two different sample paths; one with original and the other with
negative of the original observations. Therefore, reflecting b batches yields 2° possible
combinations of reflected paths. We can see that in 2°~! reflected paths the values
in an arbitrary batch ¢ are X(_1)m41,. .., Xip, while in 20-1 reflected paths the data

points are —X(_1)m41, ..., —Xin. For instance, consider the trivial case for which
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m =1 and b = 2; hence X; and X, are the only observations in the first and second
batches, respectively. If we consider reflecting at the beginning of a batch, the possible
sample paths are { X1, Xo}, {X1, —Xs}, {—Xi, Xo} and {—X;, —X5}. Hence, there
are 22 possible combinations of reflected paths.

Under this setting, the reflected NBM estimator, say Nf‘/b(b, m), is the average
of all of the potential 2° NBM estimators obtained from the reflected paths. We
proceed with the computation of this estimator. The first summation in Equation

(63) becomes

i=1 i=1L\j=1 j=1
1 m 2 m
_ Xiiiim =—— S (Xin)? 4
m@_&)gxgg< D+J Y o) (64)

Similarly the second and third summation terms in Equation (63) become:

1
- _b(b —1) (; X;um) - _b(b —1) Z(Xi,m>2- (65)

i=1

Substitution of Equations (64) and (65) into Equation (63) yields

b
m _
l/b(b m = ?Zsz
The following theorem gives the expected value of this estimator.

Theorem 17 If Assumptions A hold, then

BN, (b.m)] = 0” = I o(m™").
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Proof:

m b 1 b m 9
i=1 i=1 j=1
1 m
= b ZE[Z (i—1)ym-+5) 242 Z (i— 1)m+jX(i—1)m+4
i=1 7j=1 1<5,0<m
j<£
1 b m
= ZZV&I‘ X(z 1m+] bz Z Ré]
i=1j=1 m 1=11<54<m
j<t
9 m—1
z—ZZR0+2ZR - ZJR
i=1j5=1
2. n -1
=0 m + ( )7
with the last equality following from Lemmas 2 and 12 in Appendix A.1. O

5.2.2 Reflection in the Middle of a Batch

We now analyze reflected batch means estimators with reflection in the middle of an
arbitrary batch. If the batch size m is even and the reflection is in batch ¢, the obser-
vations in that batch will be X_1)m+1, -, Xi—D)ymtms2, = X—1)mem/2415 - - 5 —Xim-

Then the reflected batch means estimator is given by

m i—1 b
i) = 5 S = K+ 3 (K = K

j=1 Jj=i+1

1 m/2 m _ 2
+ E( X(i—l)m+j - Z X(i—l)m+j - f/2,n> ]

Jj=1 j=m/2+1

m i—1 Y 1 m/2 m/2 ) b .
b1 Z jim T — lz_: T Z X(i—l)m+m/2+j} + Z Xj’m}

j=1 j=it+1

m i—1 m/2 m/2
S b(b—1) {z_: [Z Xi-tymss = D X(i—l)m+M/2+j]

J=1

Theorem 18 gives the expected value of the estimator Nl*/2,i(b> m). Its proof is

omitted here because it is very similar to the proof of Theorem 17.
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Theorem 18 If Assumptions A hold, then

(b+3)
mb

EN),i(b,m)] = 0® — 7+ o(m™).

When we compare this expected value with that of Equation (18), we can see that
reflecting in the middle of one arbitrary batch increases the bias by 271 /(mb). On the
other hand, the limiting variance of the reflected estimator is the same as the limiting
variance of the regular NBM estimator.

We now look at the average of (b, m) and N7, ; (b, m), say Ni(b,m) = [N (b, m)+
NY)y4(b;m)] /2. The expected value of N;(b,m) is 02 — 2:2~; + o(m™"); hence the bias
does not change significantly from the bias of AV(b,m). In order to approximate
the asymptotic variance of N;(b,m), we conducted a Monte Carlo experiment with
10,000 replications using the AR(1) process discussed in §3.6.2 with m = 5000 and
b = 20. When we reflect in the middle of batch i = 10, the estimated variance of
Ni16(20,5000) is 36. Further, reflection in the middle of the second batch yields an
estimated variance of 36.48 and reflection in the middle of batch 17 yields an estimated
variance of 36.49. Recall that the asymptotic variance of N'(b,m) (or Ny, (b, m)) is
38. The experiments showed that there is large positive correlation between N (b, m)
and N, ;(b,m); hence we do not get a significant reduction in variance with the

linear combination.

5.3 Reflected Standardized Time Series Estimators

In Chapter 2, we reviewed estimators based on the standardized time series T,,(-), and
showed that their limiting functionals are Brownian bridge processes. For ¢ € [0, 1],

the reflected STS with reflection point ¢ is

Tc,n(t) = U\/ﬁ
tSy, Sk (nt—[nt])X7,

c,n

- ovn  oyn o\/n
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The reflected Brownian bridge process with reflection point ¢ is defined as

B0 = (1) ) t2W(e) — W(L)] — W(1) ifo<t<c )

W(t) 4+ 2(t — 1))W(c) —tW(1) ife<t<1.
It is easy to verify that B}(t) is indeed a Brownian bridge process. To do so, we
can easily show that Cov(B(s), B:(t)) = min(s,t) — st for 0 < s, < 1; hence the
covariance structure is preserved.

Assumptions A imply
Tr. (1) 2 Bi(t)

n—oo

since we have

(nt — [nt]) X2, p

—0

ovn ’

P . .
where — denotes convergence in probability as n — oc.

5.4 Reflected Weighted Area Estimators

We define the reflected weighted area estimator A%(f;n) with reflection point ¢ €

[0, 1], and its limiting functional A%(f) as

” l WIOL >r and AZ(f)EVOlf(t)o—BZ(t)dtr,

respectively, where f(-) is a weight function satisfying Assumptions F. Under As-
sumptions A, it can be shown that A*(f;n) 7%2 A%(f). The following theorem gives
the expected value results of A%(f;n) for the weight functions fo(-) and fo(-). We

assume cn to be integer. The proof is in Appendix A.6.
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Theorem 19 If ¢ € [0,1] and Assumptions A and F hold, then

* 1 n—cn—1 202j_20j+j 2 _ 9 4¢/3 —1/6
m&mmwﬁy7@m+mlz,&@ 220 def3-1
Jj=1
J°/3+7/6  4c s 1
+T—?—|—20 _'_6)
2-2 2-7/6 /34+7j/6 5
R S Lk /L B VR T

n? ns3

n n

j=n—cn

cn—1

2c%) —2cj +2¢ 25 —4c/3 253445 4
3 Ry(- Jj—2cj L2 Ae/3 2 J+__202)

n n? 3n3 3

= 0" — (24¢® — 24c + 3)2 + O(1/n?) (67)

and

7 63 36
(502 + 51~ TR0
o 2¢%7 —6¢°5 4+ 13¢*5/2 — 33 25/2  12¢°5%/5
+840[2Rj(_0J ¢j +13¢4j/2 = 3% + 2j/2 012/
j=1 n n
| 3CR2/24 6042 — B2 4 TS5 — T2 4 3 — ¢ + o3
2

E[AL(f2in)] =

n
153 — 26353 + 253 — 36 — Tt /2 + T3 — 9¢%5 /2 + ¢j
n3
J/3—c/2 352 —9c%% )2+ 2¢j? — j/2 — A+ 3c%/2

B n3 B nt
2¢/5  55/10 — 23+ ¢ — 53/2 + 362 /2 — 3¢j/2 + 2 /5
+ nt no
3¢j2/5 — 6¢/35  7/35— 5710 — j3/10 + 6/35  4¢7
+ _ + _ + =
n n 7
13¢®> 3¢ &
B Y B
+ 5 2 + 3)

=, 30/20429/120 P12 4 T75/24-1/2 /A - )2
+ZR( n? 12n3 + n4

7 55/20 — /4 +35/40  352/10 — 3/35
Tt n’ ) n’
B J7/70 — 55/20 — 53 /20 + 35 /35 B L)
nt 420
n—cn—1 R (_206j — 6’ +13¢'j/2 = 3% + %[22 12¢%5%/5

+ 2
j=1

N 6c?5% + 3¢5 /2 — 5352 — §2/20 4+ 7P /5 — Tt 2 + 3¢ — 2
n2

n n?
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N ¢/3=T7/30 'j® =267 + 250 — 76 =Tt /2 + TP

n? n3
9?5 /2 —cj+3j/3+c/2—1/2  3c%5% —9c%j2 /2 + 2¢j?
+ 3 + T
n n
J/2—3%/2 = +3c%/2—2¢/5—1/10  5°/10 — ?j3 + ¢j?
+ v — g
3c%j /2 —j3/2 = 3cj/2+25/5  3j%/5+6¢/35—6/35
-7 _ 45 10 — -3 1 . 4 7 1 5 4
+]/35 7°/10 j/0+6j/35_i+266_ 3c +3i
n’ 7 5 2

03 i 1 )
3 210
=07 —420(4c° — 12¢° +13¢* — 6¢° + *) 2 + O(1/n?). (68)

Note that the first-order bias term in the expected value (68) is minimized in
[0,1] when ¢ = 1/2; this choice makes this bias equal to zero. Hence, reflection in
the middle of the sample yields a first-order unbiased estimator. The same argument

holds for ¢ = 0 and ¢ = 1 as expected.

5.4.1 Linear Combinations of Reflected Area Estimators

In §5.4, we saw that the biases of reflected area estimators depend on the reflection
points, while the limiting variances of these estimators remain unchanged. However,
we can obtain better estimators in terms of variance if we find appropriate linear
combinations of the original and reflected estimators. This is consistent with the

concept of data re-use. To this end, we consider linear combinations of the form

k
Z ajA:j (f)>
j=1
where 0 < ¢; < ¢ < -+ < ¢ <1 are the reflection points. Let & = (v, aa, ..., ),
and ¢ = (c1,¢2,...,¢¢). We can obtain the estimator with minimum asymptotic

variance if we solve the following minimization problem:

min Var
a,c

> AL(f )] (69)

j=1

k
subject to Zo‘j =1
j=1
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a; cR,0<¢; <1;5=1,... k.
5.4.1.1 Covariance Between Limiting Functionals of Reflected Area Estimators

To solve Problem (69), we first need to obtain the covariance between the limiting
functionals of two reflected weighted area estimators with reflection points ¢; < cs.

We have

Cov[A;(f),A;(f)]:CovK/Olf Do (1 ) (/f Vo, (y ﬂ
— 200V [/01 F(t)oBE (1)t / F)oB(y ]

(see Patel and Read [27])

— 9" <//f y)Cov B*(),B:2(y))dydt>2. (70)

First, we will calculate the covariance term in Equation (70) using the definition of

the reflected Brownian bridge process in (66). We write
Cov[B;, (1), BL, (y)]
Cov[W(t) — t(2W(er) = W(1)), W(y) — y(2W(c2) = W(1))]
f0<t<ecand 0<y<c
CovW(t) — t(2W(c1) = W(1)), = W(y) + 2(1 — y)W(c2) + yW(1))]
if0<t<candey<y<l1
Cov[=W(t) + 2(1 = )W (er) + V(1)) W(y) — y(2W(c2) = W(L))]
ife; <t<land0<y<c

Cov[-W(t) +2(1 — t)W(c1) +tW(1)), —W(y) + 2(1 — y)W(c2) + yW(1))]

ifep<t<lande<y<l1
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min (¢, y) — 2y min(t, co) + 3ty — 2t min(cy, y) + 4ty min(cy, )

— 2tycy — 2ytey if0<t<cand 0<y<c
—min(t,y) + 2(1 — y) min(¢, c2) + ty + 2t min(y, ¢1) — 4¢(1 — y) min(cq, ¢o)

— 2tycy + 2t(1 — y)eo if0<t<crande, <y<1
—min(¢,y) + 2y min(t, c2) + ty + 2(1 — ¢) min(y, ¢;) — 4y(1 — ¢) min(cq, c2)

+2(1 — t)yey — 2tycy ife;<t<land 0<y<c
min(t,y) — 2(1 — y) min(¢, o) — 2(1 — ¢) min(ey, y) + 2y(1 — t)ey — ty

+4(1 —t)(1 — y) min(ey, co) + 2t(1 — y)co ifey<t<landc <y<1

(71)

Substitution of Equation (71) into Equation (70) yields

Cov] A% (), Az (f)]

— 2" [ [ [7 1@ 5 mintt,y) - 25 = 2t minger,y) + dyter — 2yte
— 2ytes + 3yt) dy dt

+ /0 /l FOF)(—t +2(1 — )t + ty + 2ter — (1 — y)er — 2yer
—ty + 2t(1 — y)es + ty) dy dt

4 [ £ ) (- min(e, ) + 2gmin(e,e2) + 201~ 1) min(y, 1)
—4y(1 —t)er +2y(1 — t)ey + ty — 2tycy) dy dt

[ 05w minGy) — 20 ) win(e, ) — 20— e

2
+4(1—y)(1 —t)er +2y(1 —t)ey — ty + 2t(1 — y)co) dy dt

= 20 [ [ [ @05t - vt + 2gter - 2910) dya
+ /061 /jl F@&)fy)(t+ yt — 2yt + 2yte; — 2ytes) dy dt

+ /0 1 / CFO ()t + yt — 2ter + 2yter — 2ytes) dy dt
C1
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+ /Oc1 / j F) f(y)(=2te; + 2tyey — yt +t + 2tey — 2ytey) dy dt
77 £y Byt 2001 1) = 2(1 — 1)y — 2yt dy
+ /1 /0 FOF W) (—y + yt + 2y(1 — ) + 2ycs — 2y(1 — t)er — 2ytes) dy dt
+ 21 : FO L) (—y + 2yea + 2¢1(1 — £) — 2yer (1 — t) + yt — 2ytes) dy dt
+ /2 /j FOFW)(—y + 3yt +2(1 — t)ey — 2ycl(1 — t) — 2ytey) dy dt
+ /12 [2 FOLW) (=t + 3yt +2(1 — t)ey — 2y(1 — t)ey — 2ytes) dy dt
e[ O£ = =210 = ) 200 = s = 2001 — 1) + 20

— 2ytcy) dy dt
+ /: /: FO )y =yt —2(1 = y)ea +2c1(1 — 1) = 2y(1 — t)er + 2tey

— 2ytcy) dy dt

* /021 /tl FOFW)(t =yt = 2(1 = y)ea + 21 (1 = ) = 2y(1 — t)ey + 2ty

— 2ytcs) dy dt] 2.
Example 27 After some algebra, we can show that
Cov[ Az, (fo), AL (fo)] = 20" [1+8(ci — ) — 12(c] — &3) + 6(c1 — e2)*. <
Example 28 For the weight function f3(-), we have

Cov[A; (f2), AL (f2)] = 2041 4+ 240(c! — cb) — 840(cY — ¢5) + 1092(c% — )
—630(cf — c3) + 140(c — ¢)]®. <
5.4.1.2  Convexity Analysis

First we investigate the convexity of the objective function (69). For & = 2 and
weight function fo(+), we express the objective function as h(a,c¢) = 2a20* 4+ 2a30* +

dajaef?c?) where 6 = [1 + 6(c; — o) — 12(c? — c3) + 8(c — &3)], @ = (aq, ), and
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¢ = (c1,¢3). For h(a,c) to be a convex function, the Hessian matrix of h(e,¢) should

be a positive semi-definite (p.s.d.) matrix. We first obtain the gradient of h(a,¢)/o*:

40(1 + 40&292

40(2 + 40&1‘92
o ! V h(a,c) =
80(10(29(6 — 2401 + 240%)

80(10(29(—6 + 2462 — 240%)

The Hessian matrix o~* /> h(a, ¢) is

where

Ji = 8aias[(6 — 24c¢; + 24¢2)? + 0(—24 + 48¢))]
Jo = 8ajag(—6 + 24cy — 24¢3) (6 — 24c; + 24c7)
J3 = 8a1a(6 — 24cy + 24¢3)(—6 + 24cy — 24c3)

Ji = 8ajag(—6 + 24cy — 24c3)% + (24 — 48¢y)].

_ 4 462 8020(6 — 24c; + 24¢2)
462 4 8010(6 — 24cy + 24c3)

8aaf(6 — 24c1 +24c3)  8a10(6 — 24cy + 24¢2) J1

| 8of(—6 + 24co — 24c3)  8a10(—6 + 24ca — 24c3) J3

8of(—6 + 24co — 24c3)
8010(—6 + 24co — 24c3)
Jo

Ja

For this Hessian matrix to be p.s.d., all principle minor determinants must be

positive. We can see that

Ji Jo
det :J1XJ4—J2XJ3

Js  Jy

= —36864a5a;(2c; — 1)(2c; — 1)(2.50% — 1.50) (72)
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Let us consider the last expression of Equation (72). For @ = (0.1,0.9) and ¢ =
(0.2,0.3), we obtain # = 0.848, and Equation (72) takes the value of —37.68. Hence,
the objective function of Problem (69) is not convex. This means that there is no
unique optimal solution for the minimization Problem (69). We solved this problem
approximately using the pattern search algorithm in MATLAB (Hanselman and Lit-
tlefield [21]). The same analysis holds for & > 2 estimators, as well as for other weight
functions.

Table 15 below lists the optimal reflection points and optimal weights of each
estimator in various linear combinations. For k > 8 estimators, the variance reduction
becomes insignificant. Hence, 7 estimators suffice to realize the advantage of linearly
combined estimator in terms of variance reduction.

Note that the reflection points do not seem to have a pattern. Using the above
optimal reflection point and weight combinations, the respective expected values and
variances for the AR(1) process with n =10,000 can be found in the Table 16, along
with the simulated results. It can be seen that the point estimators are very close to
the theoretical values.

Recall that the asymptotic variance of the area estimator for one long batch of
observations for the AR(1) process under study is 20! = 722. Based on Table 16 and
Figure 7, the combination of merely two reflected estimators induces a reduction in
variance of about 50%, while the combination of 7 estimators yields an additional
reduction of about 10%.

On the other hand, as seen in Equations (67) and (68), the expected value of
reflected area estimators depends on the reflection points. Hence, the bias may in-
crease based on the reflection points, as seen in Table 16. Fortunately, this potential
increase in bias is insignificant with respect to its influence on the substantial reduc-

tion in MSE.
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Table 15: Optimal Reflection Points and Weights for Linearly Combined Reflected Area Estimators

# Estimators Jo
Reflection Points Weights
0,0.5 0.5,0.5
0,0.153,0.847 0.33,0.33,0.33

N O Ot = W N

0,0.103,0.491, 0.897
0.000034, 0.078,0.208, 0.793, 0.922
0.057,0.143,0.346, 0.836,0.93, 0.995
0.053,0.123,0.239,0.761,0.877,0.947, 1

0.25,0.25,0.25,0.25
0.2,0.2,0.2,0.2,0.2
0.167,0.167,0.167,0.167, 0.167, 0.167
0.143,0.143,0.143,0.143,0.143,0.143,0.143

# Estimators

fo

N O Ut e W N

Reflection Points Weights
0,0.5 0.5,0.5
0.208, 0.65,0.86 0.33,0.33,0.33

0.06,0.23,0.595,0.784
0.064, 0.204, 0.32, 0.699, 0.809
0.000017,0.1797,0.268, 0.492,0.732, 0.82
0.035,0.168,0.243,0.335,0.7,0.7597, 0.835

0.25,0.25,0.25,0.25
0.2,0.2,0.2,0.2,0.2
0.167,0.167,0.167,0.167,0.167,0.167
0.143,0.143,0.143,0.143,0.143,0.143,0.143
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Table 16: Theoretical and Estimated Means and Variances of Linearly Combined Reflected Area Estimators

# Estimators Jo
Theoretical Mean FEstimated Mean | Theoretical Variance Estimated Variance
1 18.95 18.90 722.00 710.35
2 19.00 18.88 361.00 354.45
3 18.98 18.84 294.15 289.38
4 18.99 18.85 270.75 264.99
5 18.99 18.82 259.92 253.66
6 19.03 18.79 254.04 247.68
7 18.99 18.83 250.49 245.67
# Estimators J2
Theoretical Mean FEstimated Mean | Theoretical Variance Estimated Variance
1 19.00 18.97 722.00 721.09
2 19.00 18.95 361.00 358.77
3 18.94 18.90 293.56 291.93
4 18.96 18.94 270.21 270.55
5 18.95 18.92 259.42 259.12
6 18.99 18.92 253.53 253.94
7 18.93 18.92 249.99 250.17




Variance

# Estimators

(a) Weight fo
2 T T T T T

Variance

# Estimators
(b) Weight fo

Figure 7: Theoretical Variances of Linearly Combined Reflected Area Estimators
(xo)
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5.5 Reflected Cramer—von Mises Estimators

We define the reflected CvM estimator CX(g;n) and its limiting functional C(g),

respectively, as
S og(D)[m @] and cio) = [ awo’[Br0) at

where ¢ € [0,1] is any reflection point and g(-) is a weight function satisfying As-
sumptions G. Under Assumptions A, it can be shown that CX(g;n) 7%0 Cx(g).

The following theorem gives the expected value of C¥(g;n) for different weight

functions. We assume cn to be integer. It’s proof is in Appendix A.7.

Theorem 20 Under Assumptions A and G, for ¢ € (0, 1),

) 10 1257 —2n*  45° -2
BIC!(g0,m)] = (1~ ) o Z Ry(=F =t o - 2)
ol 120j—|—8j 12¢j% + 1252 —4c 853 — 45
R.(— —
+ ; J( n + 2 3

+8c* — 12¢* + 8c)
n—cn—1 2 : ; -2 2
12¢77 — 24¢cj + 205 12¢j* — 245° — 4c+ 4
+ > R(- -
j=1
853 — 45
o3

— 0% — (12¢ — 12¢ + 9) % +o(1/n)

n n?

— 8+ 1262 — 8c+4)

and

N 4 5
E[C:(g5:n)] = (1 + Ol H)RO

en—1 (15004]' —200c%j +48¢%j +2j  300c%52 — 3003 + 485

R,
+ ; . - g
100¢® — 48]‘2 — 150¢? + 66¢ 3000233 — 2000] + 132]
n? n3
n 100cj — 665 — 15062j - 15Ocj4 + 50j4 150cj2 — 50j2 + 20¢
n3 nA

N 605° — 1005° + 205

nd

—60c® + 150¢* — 132¢% + 48¢% — 2c>
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n—cn—1 (15004] _ 40063] + 34802] — 96¢j n 30063j2 — 60002j2

+2Rj

96] — 348c¢j% + 100c¢® — 150¢* + 66¢ — 16 30002j3 —400c¢5?

n n?

n? n3
232] — 150¢? 7+ 200c; — 1165 15OCj4 — 200j4
+ ns3 nt
1500] + 200352 — 20c¢ + 20 60j5 — 10053 4 205
nt nd

+60c® — 150¢* + 132¢% — 48¢% + 2¢ + 4)

48] —8 1165 — 58 | 1005 — 10052 + 10
Z R — + 3
n n

nd

3057 - 509'3 +10j 2)

— (—150¢* + 300¢% — 198¢% + 48¢ + 1) 2L + O(1/n?).
n
For ¢ = 0 and ¢ = 1, the expected value results are the same as in Examples 4 and 5.

5.5.1 Linear Combination of Reflected CvM Estimators

k
Similar to the analysis in §5.4.1, we study linear combinations of the form Z oszC*j (9).
j=1
Let a@ = (a1, s, ...,qk), and ¢ = (¢1,¢a, ..., ). We can obtain the estimator with

minimum variance if we solve the following minimization problem:

mln Var[Za]C* ] (73)

7j=1
k
subject to Zo‘j =1
0<a<e< <<l
o, € R,0<¢; <1,5=1,... k.
5.5.1.1 Covariance Between Limiting Functionals of Reflected CoM Estimators

The covariance between the limiting functionals of reflected CvM estimators with

reflection points ¢; < ¢y can be written as:
! 2 2 ! 2 2
CovlCs, (9). €2 (9)] = Cov | [ g1 (Br, (1), [ gly)o? (B, (v)* dy
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Sy 19( Dg(y)Covl(B2, (1)), (B2, (v))? d dy
— 20" / / y)[Cov(B (£), B, ()2 dy dt.

The covariance inside the integrand can be computed using Equation (71).

Example 29 After some algebra, we can show that

Cov|[C?, (90), CZ, (90)]
=0 [15401 — 96¢; + 32¢] + —cl — 3202 + %cg — 64cycd + 144c1¢5 + 96cac3
— 32¢}c) — 448c8ey + B clcy — 1655 — Bele, — Leid) + 192¢165
@cg + 160c; + @c‘;’ 5181 8cy + wczcg 048 G4cicy

7 7

—96¢5 +32¢; + 5 + 2] + TP — ) — 256c165). <
Example 30 For the weight function g5(-), we have

Cov|C7, (93), CZ, (93)]

Y ()

14513896 . .7 _ 198504 5 117654204 (8 . 124908 5
[15360201 T 00 — TG0 — O — 1735545c5¢5 + = C]

4 13231400¢ c5 + 77823990c] ¢y — 55011600¢}°c3 — 3712¢5c3 — 64cicy

_ 48?)52 652) 7292261250 6%26 + 8703?1;;5000 61302 2010000000%203 966%
— SS90 ey — 110448c5cy + 1800¢; + 265 + L2041 4 192¢,¢5

— 8437500015 + 200c2c¢] 4+ 15000¢:¢5 + 6000c] ¢y — 8381211350 012

+ 185625000¢; ¢y — 4800c5¢] + 6807352 clel — 2647400 crch + 17104¢,65

+ 3200c}cy — 2500chc; + 88220000 o1 (F 4 1983095T0 05 — 337500001 ¢

4+ 16875000¢1°c3 + 176625000¢1°c3 + 3400cy” — 224552445¢1° — 17000c)

+ 643393892 09 + 248370 .8 759377401 CS 279480 7 + 535048201 + 129984 66

7 1 7 @2 28 1 5 2

— 3063927 .0 1 11600c5¢; — 960cic; — 128 cje, + By — 10000c3¢; — 96¢]

+ 2880c]cs + 1704c] + 3000c3¢] — 230298400¢;%cy + 2¢5 + 2104952001
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— 353603 + 12 -+ S8BIITH0 13 4 51200¢;¢5 — 6960c;c3 — 101250000¢;°

— Bley —deyey — 256¢5c; — BB —1800c3¢] + 16875000¢]7]. <

A similar analysis to that in §5.4.1.2 shows the objective function of Problem (73)
is not convex in « and ¢ for any weight function selected and for any k£ > 2. Hence,
we again use the pattern search algorithm in MATLAB to solve this problem as well.
Optimal reflection points and weights are given in Table 17 for various combinations
of reflected estimators based on the same weight function. For the weight function
g5(+), with more than three estimators in the linear combination, the degree of the
polynomial objective function becomes very large. As a result, the pattern search
algorithm did not terminate within the 3-day allocated time window. Hence for
this weight function, we only list the results for 2 and 3 estimators in the linear
combination.

Note that the weights of the individual estimators are not identical because of
the covariance structure of the estimators, which depends on the reflection points as
seen in Examples 29 and 30. Again, for the constant weight function go(-), we stop
at 7 estimators since the variance reduction is not significant for linear combinations
with a larger number of estimators. Using the optimal reflection point and weight
combinations in Table 17, the theoretical expected value and variances for the AR(1)
process with n =10,000 are listed in Table 18, along with the simulated results.
The estimated results confirm the calculated variance reduction. For example, for
the weight function g¢3(-), a comparison of an individual estimator with the linear
combination estimator with two components suggests a variance reduction of about
50%. Parallel to the findings in Theorem 20, Table 18 suggests that reflection may
increase the bias of CvM estimators depending on the reflection point. Fortunately,
the increase in bias is very insignificant when compared to the amount of variance

reduction.
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Table 17: Optimal Reflection Points and Weights for Linearly Combined Reflected CvM Estimators

# Estimators

90

Reflection Points

Weights

~N O Ot = W N

0.027,0.508
0.07,0.321,0.911
0.0,0.051,0.127,0.517
0.0,0.036,0.083,0.148,0.519
0.0,0.028,0.061,0.104, 0.161, 0.52
0.0,0.023,0.049,0.08,0.118,0.169, 0.52

0.5,0.5
0.342,0.334,0.323
0.251,0.188,0.163, 0.397
0.22,0.145,0.13,0.118,0.386
0.201,0.117,0.108,0.099, 0.093, 0.381
0.19,0.098,0.091, 0.085, 0.08,0.077,0.378

# Estimators

95

Reflection Points

Weights

0.172,0.824
0.121,0.391,0.853

0.5,0.5
0.371,0.272,0.367
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Table 18: Theoretical and Estimated Means and Variances of Linearly Combined Reflected CvM Estimators

# Estimators J0
Theoretical Mean FEstimated Mean | Theoretical Variance Estimated Variance
1 18.91 18.92 288.80 289.28
2 18.87 18.88 158.66 159.12
3 18.85 18.84 144.18 139.31
4 18.87 18.85 144.08 144.25
5 18.86 18.85 143.03 143.30
6 18.86 18.85 142.60 142.95
7 18.86 18.85 142.34 142.71
# Estimators 9
Theoretical Mean FEstimated Mean | Theoretical Variance Estimated Variance
19.00 19.01 624.01 622.05
18.93 18.88 314.70 301.19
18.94 18.91 259.73 246.26




5.6 Summary

This chapter introduced a new class of estimators based on reflections of a Brownian
motion. We started with reflected versions of NBM estimators, but discovered that
linear combination of such estimators did not yield a significant variance reduction.
On the other hand, we developed reflected area and reflected CvM estimators, where
the linear combinations of these estimators performed nicely in terms of variance
reduction. We provided analysis on the optimal selection of weights and reflection
points. A Monte Carlo study supported our theoretical findings. Chapter 6 proceeds
with a comprehensive summary of this dissertation and a list of problems we intend

to study in the future.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

6.1 Summary

This dissertation studied three classes of estimators for the asymptotic variance pa-
rameter of a stationary stochastic process. Chapter 3 extended the research at An-
tonini [6] on several fronts. We obtained detailed expressions for the expectation of
the folded area and CvM estimators at levels 0 and 1; those expressions explained
the puzzling increase in small-sample bias as the folding level increases. We also
used batching and linear combinations of estimators from different levels to produce
estimators with significantly smaller variance. Finally, we applied the technique of
Satterthwaite [29] to obtain very accurate approximations of the limiting distributions
of batched folded estimators (as the number of batches remains fixed while the batch
size increases) as appropriately scaled chi-square distributions. These approximations
were used to compute Cls for p and o2

To illustrate that this first class of variance estimators performs as advertised, we
conducted exact and Monte Carlo studies involving AR(1) and M/M/1 delay-time
processes. For large batch sizes, the level-1 estimators performed about the same
as their level-0 counterparts; and linear combinations of the corresponding level-0
and level-1 estimators outperformed the individual estimators—as anticipated by the
theory. Finally we studied folded batched area estimators at levels > 2. Our brief
study indicated that the bias of the estimators increases with the folding level.

The second class of variance estimators combines the concepts of folding and
overlapping. Recall that the folding operation on a Brownian bridge yields a new

Brownian bridge. Since the STS corresponding to the data {Xi,..., X, } converges
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to a Brownian bridge, the recursive application of folding applied to an STS results
in STS area estimators that are asymptotically independent. In a sense, both over-
lapping and folding operations are based on the concept of data re-use.

In Chapter 4, we showed that folded overlapping area (FOA) estimators have al-
most the same bias but smaller variance than other estimators in the literature, such
as the NBM, OBM, nonoverlapping area, overlapping area, and batched folded area
estimators. We also obtained the asymptotic distribution of the proposed estimators
along with detailed expressions for their first two moments. Further, we presented
efficient algorithms to obtain these estimators in order-of-sample-size time. We an-
alyzed linear combinations of level-0 and level-1 folded overlapping area estimators,
but the linearly combined estimator did not have a significantly smaller variance
than the individual estimators in the linear combination due to the excessive posi-
tive correlation between the constituent estimators. Monte Carlo examples based on
a stationary Gaussian AR(1) process and the waiting time process in a stationary
M/M/1 system illustrated the performance of the FOA estimators. We also showed
that the FOA estimators can be approximated with a scaled chi-square distributions.
In addition, we derived confidence intervals for the variance parameter and the mean
of the underlying process. These Cls exhibited nearly nominal coverage.

In Chapter 5, we introduced reflected estimators. These estimators also take the
advantage of data re-use. The idea is to combine estimators obtained from various
reflections of the original (entire) sample path. In particular, we started with two dif-
ferent reflected NBM estimators, based on reflections at the beginning of each batch
or in the middle of an arbitrary batch. A Monte Carlo example showed that linear
combinations of reflected estimators and the original estimators do not yield signifi-
cant reductions in variance because the constituent estimators are highly positively
correlated.

We proceeded with the reflected version of an area estimator based on an arbitrary
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point. The optimal weights and reflection points of the linearly combined estimators
were obtained by solving non-convex optimization problems. These linear combina-
tions yielded estimators with significantly smaller variances compared to the variances
of the individual estimators. We found that the bias of estimators depended on the
reflection points. Further, we performed similar analysis for reflected CvM estimators
and obtained optimal linear combinations with minimum variance. To complement
the theoretical work, we conducted Monte Carlo experiments which confirmed our

theoretical findings.

6.2 Other Topics of Interest

A number of interesting problems on folded estimators are the subjects of ongoing

research.

1. Higher Levels. Our theoretical and empirical analysis primarily concerned level-
0 and level-1 folded estimators. What happens when we go to higher levels?
Although we derived certain asymptotic properties related to the estimators’
expected value and variance at higher levels, we did not perform a fine-tuned
analysis of estimators from those levels. Preliminary Monte Carlo analysis, as
described in this thesis, indicates that bias becomes more problematic at higher
levels. Another question worth asking is: How many levels can we take an
estimator before the necessary asymptotics fail? (A similar question is addressed
in Foley and Goldsman [15] with respect to the number of orthogonal weights

that an area estimator could accommodate in practical situations.)

2. Linear Combinations of Estimators. Related to the above, we also intend to
study the properties of different linear combinations of area and CvM estimators
between and within higher levels. Estimators constructed with these ideas in

mind will likely have comparatively lower variance than their constituents.
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3. Quverlapping Folded CuM Estimators. Another extension of our work is to formu-
late overlapping folded CvM estimators. We intend to develop similar analysis

to that of Chapter 4.

4. Sequential Procedures. Procedures that deliver required batch and sample sizes
along with final point and CI estimates have typically been based on nonoverlap-
ping batch means, e.g., LABATCH.2 (Fishman and Yarberry [14]) and ASAP3
(Steiger et al. [35]). Rigorous sequential procedures based on folded STS esti-
mators will give simulation practitioners and software developers more-powerful

tools with which to conduct simulation output analysis.

In addition, future research topics on reflected estimators include the following:

1. Algorithms for Obtaining Minimum Variance Reflected Fstimators. The pat-
tern search algorithm proved to be very slow when applied to the variance
minimization problem relative to reflected CvM estimators. We are looking for

alternative algorithms to solve this problem.

2. Batching. What happens when batching (nonoverlapping or overlapping) is
combined with reflection? In this thesis, we only analyzed non-batched versions
of area and CvM estimators. We are interested in seeing if we can reduce

variances further when reflection is applied to batched STS estimators.

Finally, we want to conduct a comprehensive comparison of various estimators in
the literature and this thesis. The comparison will involve their properties such as
bias, variance, MSE, coverage probabilities of Cls, as well as the associated compu-
tational times. This work will provide a very useful summary for simulation practi-

tioners.
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APPENDIX A

PROOFS AND FURTHER RESULTS

A.1 Expected Value of Folded Area Estimators: Proof of
Theorem 4
We start with the derivation of the first equality in Theorem 4. We need the following

results in the proof.

Lemma 2 (Goldsman and Meketon [17], Equation (4)) Under Assumptions A,

Var(S;) = jo? — v — 22(]' —ORy = jo* — v +o(1).
=

Now note that the following equality holds from Lemma 1:

Ty (2) = %[(% —1)Su =S4y + S gy|, forj=1,....n

The expected value of Ag(f;n) can be obtained as follows:

E[Aq(f;n)]

B3 £(2)oTa(2 )r
5 s(2)enn(s)

= TS F(2)7(£)Cov (T (). T (£)), (74)
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where

2 Cov[Tyn (), Tiy(£)]
= Cov[( = n)Su = Sy + Siugp (5 =) S0 = 514y + Sy
(2 ) (£ V) — (&~ n)Cov (505 + (2 - n)Con (5 50
+ (£ =n)Cov(Sn, 84;) + Cov (S5 812)) = Cov(S|s s Snos))
+ (5 =) Cov (S, Sygy) = Cov(Sg:S5)) + Cov (S g Sigy ).
(75)

If we plug Equation (75) into Equation (74), and collect similar terms together, we

get
BlAq(fin)] = — [;( ~Uf (%)r\’af@n)
_ %ég(% —1)F(2)£(£)Cov[Su, S 2]
+ %;;(l = 1) ()1 () CoviSh, Sy ]
_ %ég;f(%)f(g)cov[sm S]]
o z S 1(2)1(2)Covlsiyy 5y
- %g}l;f(%)f(ﬁ)cw[sm—%ySLn—éJ]' (76)

Lemmas 3-7 below obtain the covariance terms in the sums of Equation (76).

Lemma 3

Cont 511 = |2 01502~ 610 10 s+ (2] =) 001

+ N2+ %] Ro-
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Proof:

Nles
[

!

Nles
[

Cov]| Sn,SL |

-
Il

A
Il

A

Ry + Z )
£
n—t

,i
Nles
[

t

-5
(

1
Ra—l-Ro—l-ZR)
1 a=1

-
Il

a

=

Nles

Jnt

tzz-zﬁ[gj R0+ZZR

I
M

EJI 1:1 o l5]-1 n—|%]

_ (L%J — )R, + [gj Ro+ Y tR,i+ %J > R
t=1 t=1 t=1
l5]-1 n—1 n—1

= (%J—t)Rt—i-{éJRo—Fant—zth
t=1 t=1 =1

n—|%] n—|%] n—| %]

—n Z R, + Z tR, + | £] > R

=[5 9015-1 = Tags1 + 0n-1 = 01+ (8] =) 200 1g)

Lemma 4
COV[S”’ SL”_%J] - {n a gJ 707Ln—%J—1 — In—%]-1 + ({ gJ - n)’VO,n—Ln—%J
T Vi ln—%] +NYn-1 — Yin—1 + {n — gJ Ry.

Proof:

,i
3
|
[VIES
[
—
S
|
Nl
[

Cov|[S,, SLn_%J

o
]

Ri—a+ > Ra_t>

t=1 ( a=1 a= Ln—gj-l—l
ln—=5] /-1 n—t
= ( R.+Ro+ Y Ra>
t=1 a=1 a=1
ln—%] 11 ln—%] n—t
= Rot+|n—& R+ > YR
t=1 a=1 t=1 a=1
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Lemma 5

Ln—%]—l
t=1
Ln—éJ—l n— Ln_%J
+ tRn_t + {n — gJ Z Rt
t=1 t=1
n—4]-1 ol ol
= Z ({n— éJ —t)Ry + {n—%J R0+ant— Zth
t=1 t=1 t=1
n—|n—%] n—|n—%] n—ln—3]

—n > R+ Y tRe+|n-%| Y R
t=1 t=1 t=1
== 50011 = M-+ ([P 5 = )01y

T Vi In—%) + NYon-1 — Yin—1 T {n - gJ Ry.

+ {n - gJ Jo,ln-£]-1 ~ V1, |n-£]-1 + {%J Ry.

12 /41 [n—£ -t
R.+Ry+ Y. Ra>
t=1 \a=1 a=1
13 11 . 3] In—§ )t
S Rt |3 R+ R,
t=1a=1 t=1 a=1
14)-1 141-1 [n—41-14]
EERITEES ST APRRTT I Sy
1£]-1 In—%£]-1 In—%]-1
(3] R+ 3| Ro+ |n—5] > R- > tR
t=1 t=1 t=1
In—51-1%] In—%1-13] In—%1-13]
~n—& X R+ Y tR+|i] Y R
t=1 t=1 t=1



- {%J Yo 4)-1 Mg T Q%J V“gJ)%,Ln—%J—L%J TN n-4-14

+ {n - %J Yo, ln-L£]-1 ~ V1, |n-L]-1 + {%J Ry.

Lemma 6 For j </,
CoviSgp» Sigtl = [$] o101 = Mg + (1) = 5] oss-19) + g0
+ 5] 0501 = Mg+ (3] o
while for j > ,
CoviSispr Syl = [§]v0185-1 = Mg+ ([5] = [3) a8 +mms-18
+ [ 01400 = g + 5] Bo

Proof: We will consider the case j < ¢. The proof for j > £ is similar.

141/ 13) 14)
CovlS 3}, 5141 = (ZRt—a|+ > Ra—t>

t=1 \ a=1 a=1
14 41 1§) 5]t
=Y Y Ra+ |[{| Ro+ R,
t=1a=1 t=1 a=1
1411 | 14]-1 51— %]
=Y ({%J — )R + {%J Ry + tRi)_y + {%J Ry
t=1 t=1 t=1
1411 . 1£)-1 1£)-1
= S (3| -OR+ || R+ 4] X R— X tR
t=1 t=1 t=1

151-13) 15)-15] 151-13)

-4 ; R, + ; tR, + | 1] ; R,
= [$] 70151 =g+ (1B = [E)vo00-100 + Mg

T {gJ Jo,l£1-1 7 T1,14)-1 + {%J Ry.
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The proof of Lemma 7 is very similar to the proof of Lemma 6.
Lemma 7 For j </,
COV[SLn—%p SLn—gﬂ
_ _ i . _ , _ L _ _ 1 .
=[n—4] Yo,ln—41-1 7 M fn-gj-1 T ([n=5] - |n 2J)%,Ln—%J—Ln—§J
, .
F Nttty [0 5] otno g1 = Mpnegon + [ 3] Ro
while for j > ¢,
COV[S\_n—%Jv SLn—gj]
- _ ¢ _ ) _ ¢z .
=[n—4] Yo,ln=4)-1 7 M ln-gj-1 T ([n=4]-1n 2D70,Ln—éJ—Ln—%J
j ‘
Vgt i) T $] 004 gt [0 8] Bo.

The first equality in the expected value result of Theorem 4 follows by combining
Lemmas 2-7 with Equation (76), and applying some additional algebra. In order
to establish the second equality we need several additional auxiliary definitions and

results. Let

Lmt]

FD’n(t)E% f(%), for 0 <t <1,

j=1
Fou = Fou1) = + 3 1(2),
j=1
Fp,= lnz_:lF,:,,n(%)
n =
Lemma 8
Fon = 223 (1=0)1(8) = Z 2 (14 - [4)r ()
Jj=1 j=1
Proof: Similar to the work in Foley and Goldsman [15],
o = 5 Fou(t) = £EES(E) = (- 2)0(2)
j=1 j=1 (=1 j=1

The second result follows from the fact that [n — 2] — 1] =n—j,j=1,2,...,n. O
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Lemma 9

_ 1,
FD,n - FD,n = ﬁ Z]f(%)
j=1
Proof: The result follows from Lemma 8 and the definition of Fp,,. O

During the proof of the second equality of Theorem 4, we replace the discrete
approximations to certain integrals with their respective integrals plus appropriate
error terms. We set up the necessary results with the Trapezoid Rule and the following

lemmas.

Trapezoid Rule (Atkinson [8]) Suppose ¢(t) is a function with two continuous

derivatives on [a,b]. Define h = (b —a)/n and z; = a + jh, for j =1,2,...,n.

Then
[ttt = 13 ole) + lete) + (0] + O™
Lemma 10 For j = 0,1,2, ..,
F(1) = Fp,(2)+ %j(%) +0(n?).

Proof: By the Trapezoid Rule with @ = 0, b = j/n, and h = (b—a)/j = 1/n, we

have
o a0 ()
F(i) — / Ndt — - ANEAEAY 2
=/ 1) n;mg+ o0 ?),
and the result follows from the definition of Fp,(2). O

Lemma 11

F = Fp,+ %2) +0(n™?).
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Proof: Applying the Trapezoid Rule, we have

1§f(%)+w+0(n—2)

j=1

_ 1

F:/Ftdt:—
0 (> n

F

) =5 00

<
Il
-

Il
S|
=
—
—
Sk~

Sl—= 3

Fou(2) 17

f(0)
2n

-

<
Il
—_

3
|

S
S
~—~
N
+
+
.

().

<.
Il
-

where the third equality follows from Lemma 10. O

Lemma 12 (Goldsman and Meketon [17], Lemma 1) Under Assumptions A, for ¢ >

J;

E[Aq) (fin)]

- 2[5 o
_ %;;( —1)F(D)F(L)1E = n)o® + 0 (1))
2 ggf(%)f(ﬁ){téw - % +o(1)}
+%§§f(%)f(£)ﬂ%w -3 +o(1)}
EPOWONGIEEEESIt
+%§§f(%)f(ﬁ){tn—§wz— 3+
# S ()2 417 = 3 o0
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(] )] -2 S @)
+Z—§(§f(%))2 - %;ij(%)f(é) + Z—igm(l) +o(n™)
0] B GRS OO
(gt ()

= j= /=1
207 I VAN ST
S WWIGHORSI WAC
—%(é(y—n)f(%)) ro(n™)
:02[_(Fpn Fpn)”+2(Fpn = Fpn)Fpn 2§:9f(n)FD"(5)
j=1
+%§Jf2(%)] Toalt 4o ()

where the last equality follows from definitions of Fp , and F D, and Lemmas 8 and

9. After some algebra we get

BlAw (fin)] = 0% [FR — Fhu— ﬁljf(%)FD,n(%) + iifz(%)}
— F:yl +o(n™h). (77)
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Finally, we write an integral expression for the coefficient of 0% in Equation (77).

By Lemmas 10 and 11, we have

le () - f(l))F] ) lp? ) M}

n

22
—2[/01tf<>F<)dt f<21>F]+f§lO>[/oltf<t>dt %%(‘1)
(by the Trapezoid Rule)

_ F? F2—2/tf t)dt + o (n™)

(after integration by parts on fy tf(t) dt and algebra)
1 _

= / F2(t)dt — F? +o(n™") (by Equation (A-2) from Goldsman et al. [18]),
0

=1+o(n™') (by Equation (2) from Goldsman et al. [18] and Assumptions A).
0J

A.2 Expected Value of Folded CvM Estimators: Proof of
Theorem 10

We have

> 9(2) s EW T (£)1

1
[C(l gsn E
7j=1
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LS el f gy

- B lEEL( %5 5]

_ %g g(2)Varl(j —n)Xo — S5 + S,y

_ %gg(%) [(2 1) Var(S,) + Var(S ) + Var(S,,_y))

—2(Z = 1)Cov(Su, S5 )) +2(Z = 1)Cov(Sn, S|,y

—2Cov(S,5 ) S )

Using Lemmas 2-5, after some algebra we have

S ()] = E)Ro+ 2oy = B o =9

+2(2 = ){= 0140+ % g0+ 10— 30 g1 = ey

- (L%J - n)%m—L%J = Vip-1g) T (Ln -3l - n)%,n -1 T Vi Ln__JH
(78)

In order to calculate the results in the Theorem, we will use the following relations.

For any function p(j),

z

Z %] ZE Rézp (79)

i=1

fori=0,1,2,...and z=1,2,.... Using Equatlon (79) and some algebra, we get

z:g(l) j—n zfz@ ’;R@g(%ﬁ)m, (30)
ég(i)(j—n);ﬁzg::z::ﬁRgzg(%j), (81)
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LéJ—l n/2—2  n/2-2

So(5)(f - X Re= X A3 [o(4) (250 )
=1 /=1 =/
+g( (Z+l)+1)(2(€+1) +1 . 1)}(6_‘_ 1)’
(82)
n [4]-1 n/2-2  n/2-2
o) -1 X the= 3 R 3 (R (50 1)
J=1 (=1 j=¢
—i—g( (g+1)+1)( (G+D+1 1)}’ (83)
n ln—4]-1 e .
Mo -4 X A= SR [p(t) ()
j=1 =1 =1 j=t

(2 (22 1)+
n/2—2  n/2-2

SRS o) (e

+g(50=) (= - )]G+ 0,
(59
L6 LZJER S o o) (e )
Fo(es) (et )
—H%Q«@Renfzzz[ (Hnd)2) (2o
+g(H) (B )], (89)
Ea)(c-)-) g, e S -
o252 (2 - 1)] (=)
nj2 02

— 2362[9(2@ nj +1)(2(n—nj)+1 B 1)

—l—g( (n— ))(2(n 9 _ 1)}(—j)
+9(3) (5 - 1)(—71)2:3@, (86)
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jz:g(—)(——l) Z (Ry = ZﬁRZZ{ ( n— a+1)(2(n—nj)+1_1)
o))

n/2 n/2

S (s )
o) (252 )

+9(2)(% - )}:eR& (87)
n n—|n—4] n/2  n/2
()G (=gl =n) 2 Re= 3R [o(37) (57— )
OICESEI

0] )

Given the appropriate weight function, Theorem 10 follows from Equations (78)

and (80)—(89), and after some algebra. [

A.3 Covariances of Folded CvM Estimators: Proof of The-
orem 11

First, it is easy to show that
t(1—s) if t <3
Cov[Bo)(t), By (s)] = {s(1 —¢) ifS<t<l-32 (90)

2

(s—1)(1—1t) if1—35<t

Then we have

%WMM@MM<MU1Mﬁm D2, [ g,(s)(0 B () ds
— 0 / / 5)Cov[B% (£), B ()] dt ds

= 20t /0 /0 00(1)9, (5)Cov?[Booy (£), Buy (s)] dt ds,
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where the last equality follows from Patel and Read [27], and the result follows from
Equation (90). O

A.}, Asymptotic Distribution of Folded Owverlapping Area
Estimator: Proof of Theorem 1}

The proof requires several auxiliary definitions and results.

Definition 4 Let D[0, b] denote the space of functions on [0, b] that are right-continuous
with left-hand limits. The bridging map © : (Z,s) € D[0,b] x [0,b — 1] — Oz, €
D|0,1] is defined by

Ozs(t)=t[Z(s+1)—Z(s)] — [Z(s+1t)— Z(s)], fortel0,1].

For each s € [0,b — 1], we have Oy ,(t) = B s(t), for t € [0,1]; thus By 4(-) is a

Brownian bridge starting at time s.

Definition 5 The folding operation ¥ : Z € D|0, 1] — ¥, € DJ0, 1] is defined by

Uy(t) = Z(4) — Z(1— 1), fortelo,1]. (91)

I

Definition 6 Let

Dy = {x € DI0,1] : for some sequence {x,,} C DI0, 1] converging to x as

m — o0, the sequence {V, } does not converge to V,} .

Tm

Proposition 1 (Alexopoulos et al. [5]) If W4(+) is defined by (91) with the event Dy,
then

Pr{W € Dg} =0, (92)

where Pr{-} denotes the Wiener measure.
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Proposition 1 shows that W(-) is continuous almost surely with respect to the

Wiener measure on D[0,1]. We have T, .(t) = Yo ( ) for t € [0,1], i =

(k—=1),3

L (b—1)m+1and k =1,2,... from Equation (91). Hence, by Equation (92) and
() == g,y () = Buos().

—1),i,m n—oo

Assumptions A, the generalized CMT gives \IIT(ok

Definition 7 Suppose that the weight function f(-) satisfies Assumptions F. The

folded overlapping area map = : Z € D[0,b] — Z(Z) € R is defined by

=(Z Eb_l/bll /1 \If@Z(u)rds. (93)

For m = 1,2, ..., we define the approximate folded overlapping area map =,, : Z €

D[0,b] — Z(Z) € R by

= ()= —— - m)]oW , , 4
D= T X [ o o il o0
where for m = 1,2,..., we take s(i,m) = (i — 1)/m, for i = 1 (b—1)m+ 1 and

u(j,m) =j/m,for j=1,....m
For level-1 folding, from Equations (1), (91) and (94) and the definitions of

s(i,m) and u(j,m), we have Vo, . (u(j,m)) = \IJT(%)W(;) = (Ol)lm(%), for

m=12....,i=1,....,(b—1ym+1,and j =1,...,m. Hence,
1 (b—1)m+1

T X > 1 (&) W(3)] = antinm. @9

To prove the theorem, it remains to show that =(-) is continuous almost surely with

En(Ym) =

respect to the Wiener measure on D]0,b]. This follows from Proposition 2, which is

preceded by Definitions 8 and 9.

Definition 8 Let A denote the class of strictly increasing, continuous mappings of
[0,b] onto itself such that for every A € A,, we have A(0) = 0 and A(b) = b. If
X, Z € D|0,b], then the Skorohod metric p,(X, Z) defining the “distance” between
X and Z in DJ0,b] is the infimum of those positive £ for which there exists a A € A,

such that

sup |A(t) — ¢] < € and sup |X(£) — ZAD)]| < &

te[0,b] te[0,b] o
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Definition 9 Let

=

D= = {:c € DI0,b] : for some sequence {x,} C D[0,b] with lim py(z, ) =0,

the sequence {Z,,(z,,)} does not converge to =(z)} .

(96)

Proposition 2 (Alexopoulos et al. [4]) If the weight function f(-) satisfies Assump-
tions F and if Z(-) and Z,,(-) are defined by Equations (93) and (94), respectively,

with the event Dz defined in (9), then
Pr{W e D=z} = 0. (97)

Proof of Theorem 14: Combining Assumptions A, and Equations (92), (94), (95)

and (97), we see that the result

1 b—1 1 2
Al (f;0,m) 7%0 Al (f;0) = m/o [0/0 f(u)Bys(u) du]

follows from the generalized CMT for k = 1. Using mathematical induction, one can

show that the result holds for k& > 2 as well. O
A.5 Ezxpansion of Equation (52):

We start with the covariance in the integrand of (53).

Cov[By,o(w), By (v)]

= Cov|[(u— (W (1) = W(0)) — (W(u/2) = W(1 - u/2)),
(0 =DW(y+1)=W(y) - (W(y+v/2) = W(y+1-v/2))

=(u—1)(v—1)Cov(W(1),W(y+1)) —(u—1)(v—1)Cov(W(1), W(y))
—(u—1)Cov(W(1),W(y+v/2)) + (u—1)Cov(W (1), W(y+1—v/2))
— (v =1)Cov(W(u/2),W(y+ 1))+ (v —1)Cov(W (u/2), W(y))

+ Cov(W (u/2), W (y +v/2)) — Cov(W(u/2), W(y+1—v/2))
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+ (v —1)Cov(W(y+ 1), W(1 —u/2)) — (v — 1)Cov(W (y), W (1 —u/2))
— Cov(W (1 — u/2), W(y +v/2))
+ Cov(W (1 —u/2),W(y+1—1/2))
=(u—1)(v—1)—(u—1)(v—=1y— (u—1)min(l,y +v/2)
+(u—Dmin(l,y+1—v/2) — (v — /2 + (v — 1) min(u/2, y)
+ min(u/2,y + v/2) — min(u/2,y+ 1 —v/2) + (v — 1)(1 — u/2)
— (v—1)min(y, 1 — u/2) — min(1 — u/2,y + v/2)
+min(l — u/2,y+ 1 —v/2)
= —wvy +uy + vy —y — (u— 1) min(1,y + v/2)
+ (u—1)min(l,y+ 1 —v/2)+ (v — 1) min(u/2,y) + min(u/2,y + v/2)
—min(u/2,y + 1 —v/2) — (v — 1) min(y, 1 — u/2)
—min(l —u/2,y +v/2) + min(1l — /2,y +1—v/2), (98)
for u, v,y € [0,1].

We proceed with the derivation of each term in Equation (98). Since u,v,y € [0, 1],

we have

y+ov/2 ifv<2—2y
min(1,y +v/2) =

1 ifv>2-2y

y+ov/2 if0<2y<1<2-—0v<2
=Jy+ov/2 if1<2y<2—-—0v<2

1 f1<2-0<2y<2,

1 if v <2y
min(l,y +1—1v/2) =

y+1—v/2 ifv>2y
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1 fo<ov<1<2y<?2
=131 fo<v<2y<1

y+1—v/2 if0<2y<wv<l,

u/2 if u <2y
min(u/2,y) =

Y it u > 2y
u/2 f0<u<2y<1
=Ju/2 f0<u<l<2y<?2

y if0<2y<u<l,

u/2 ifu<2y+w
min(u/2,y +v/2) =

y+uv/2 ifu>2y+wv

u/2 ifo<u<2y+ov<1
u/2 fo<u<1<22y4+v<2
u/2 if0<u<1<2<2y4v<3

y+v/2 if0<2y4+ov<u<l,

u/2 ifu<2y+2—w
min(u/2,y+1—0v/2) =

y+1—v/2 fu>2y+2-—v
=u/2 forall u,v,y,
Y ifu<2-—2y

min(y, 1 —u/2) =
1—wu/2 ifu>2-2y
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Y fo<2y<1<2—u<?2
=y f1<2y<2—u<2

I—wu/2 if1<2—u<2y<2,

y+v/2 ifu<2—-2y—v
min(1 —u/2,y+v/2) =

l—u/2 ifu>2-2y—vw

y+v/2 f0<u<2-2y—v<1
y+v/2 f0<u<1<2—-2y—0v<2
l—wu/2 if0<2-2y—v<u<l

1—wu/2 if2-2y—v<0<u<l,
y+1—v/2 ifu<v-—2y
min(l —u/2,y+1—v/2) =
1—u/2 ifu>wv—2y
y+1—v/2 if0<u<v—-2y<l1

=91 —u/2 ifo<v—2y<u<l1

1—wu/2 ifo—2y<0<u<l.

We can now write ¢*(0,y) as follows:

200 = ([ [ 1050 o 05 =) = 0= min(r s 072
+ (u—1)min(l,y + 1 —v/2) + (v — 1) min(u/2,y) + min(u/2,y + v/2)
~min(u/2,y + 1 —0/2) — (v — 1) min(y, 1 — u/2) — min(1 — /2,y + v/2)
min(l — w/2,y+1— u/z)} du dv>2
_ ( [ [ £ @) vyt uy vy — g due
- /01 /Olf(u)f(v)(u— 1) min(1, y + v/2) du dv
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+/ / v)(w— 1) min(l,y + 1 — v/2) dudo

+/ / v)(v — 1) min(u/2,y) du dv

+/ / F(u) f(v) min(u/2,y + v/2) du dv

_/ / F(u)f(v) min(u/2,y + 1 —v/2) dudv

_// v)(v — 1) min(y, 1 — u/2) dudv

_/ / Fu) f() min(l — u/2,y +v/2) dudo

+/ / F(u) f(v) min(1 — u/2, y+1—v/2)dudv>2. (99)

We denote the double integrals in Equation (99) as I1, Is, . . ., Iy, respectively. Then

PO0,y)= (I — Lo+ Is+ 1y + Is — Ig — I; — Ig + I)?
= I? — 2L 1, + 21, I5 + 20, I, + 21, I5 — 21,1 — 21, I — 21, Is + 2111,
+ 12 = 20,15 — 20,14 — 20505 + 2050 + 21,17 4 21,05 — 21,1y + 12
+ 2050y + 20305 — 2I515 — 203017 — 21515 + 2131y + I? + 21,15
— 210 — 21,07 — 21,05 + 21,0y + 12 — 2151 — 215017 — 21515 + 2151y

+ 12 + 21617 + 21gIs — 2061y + 12 + 21715 — 211y + I3 — 2151y + I3.
Substitution of this last expression into the integral of Equation (52) yields

[o-1-9)¢0.9)dy
- /Ol(b —1—y)(I? = 201y + 21 Is + 21, 1y 4 2115 — 21, 1 — 21,17 — 21, I
200y + 12 — 21505 — 21514 — 21505 + 21506 + 20517 + 21515 — 2151,
+ 124 2030, 4 21315 — 2130 — 21317 — 21315 + 2131 + 17 + 21,15
— 2y lg — 21,17 — 20405 + 21,0o + 12 — 201515 — 21517 — 21515 + 2151,
+ 1§ + 20617 + 21615 — 2I61g + IZ + 21715 — 2171 + I3 — 2151y + 15) dy

—/ b—1-—y // )(—uvy + uy + vy — y)dudv) dy
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_2/01/2(6— 1 —y)(/o1 /01 f(u)f(v)(—uvy+uy+vy—y)dudv)

/1/1 (u—1)(y+v/2)f(u)f(v)dvdudy
-9 1/2b 1—1y) // )(—uwvy + uy + vy — y)dudv)
//2 Y= 1)y +v/2)f dvdu—i—/ /2 (=1 f(w)(v) dvdu) dy
y
+2 1/2b 1—vy) //f —uvy + uy + vy — y)dudv)
// u—1)f v)dvdudy
+2/ (b—1-— y //f —uvy + uy + vy — y)dudv)
// u—1)f dvdu+// u—1D(y+1—v/2)f(u)f ()dvdu)dy
+2 1/2b—1—y /o/of —uvy + uy + vy — y)dudv)
/1/1 (v—1)(u/2)f(u)f(v)dudvdy
—|—2/12b 1—vy) // )(—uvy + uy + vy — y)dudv)
// D(u/2)f dudv+// v—1yf(u dudv)
—|—212b 1—1y) // )(—uvy + uy + vy — y)dudv)
/2—2y/0 (u/2)f dudv+/_2 / (u/2)f dudv)
—1—2/01/2(6—1—?4)(/0 /0 f(u —uvy + uy + vy — y)dudv)
/1_2y/2y+v (u/2)f dudv+/ / (u/2)f v)dudv
+/1 2y/ (y+0v/2)f dudv)dy
—2/ (b—1- y //f uvy+uy+vy—y)dudv)

/ / (u/2)f v) dudvdy

1/2
—2/ (b—1-— y //f ) f(v) —uvy+uy+vy—y)dudv)
// v—1)yf(u)f(v)dudvdy
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—2 1/25 1—y) // )(—uvy + uy + vy — y) dudv)
/0/02 (o - yf dudv+/0 /2_2y(v—1)(1—u/2)f(u)f(v)dudv)dy
2 [T /01 P (0)(—vy + g+ vy — ) dudo)
X (/Ol_zy /Ol(y+v/2)f(u)f(v) dudv+/ll_2y /02—2y—v(y+v/2)f(u)f(v) du do
L a2 dudo)dy

—2f o-1-n([ | lf(U)f(v)(—uvy+uy+vy—y)dudv)

/ o / T 0/2) F ) F(v) dudo + /0 o /2 1_2y_v(1 —w/2) f(u) f(v) dudo
+/ /1 w/2)f dudv)
+2/1Qb 1—vy) // )(—uvy + uy + vy — y) dudo)

/ /_2 (y+1—0/2)f dudw/%/v_% 1= w/2) f(u) f(v) dudo
+/ / (1—u/2)f dudv)dy
+2/ b—1—1y) //f (v)(—uvy + uy + vy —y) dudo)

// (1 = w/2) f(u) f(v) dudody

+/O b—1—1) /0/0 w— 1)y +v/2) f (u)f(v) dvdu)’
+/1 b—1-y)( /1/2_2yu D)y +v/2) f () f(v) dvdu

// (u—1)f(u)f(v) dvdu)” dy
—2/1219 1—y)( // w—1)(y +v/2) f (w)f(v) dodu)

// w—1)f(u dvdu+// w—1)(y+1-0/2)f(w)f(v)dudv)dy
9 1/26 1 y(/ol/o (u—1)(y +v/2) f(u) f(v) dvdu
+//22yu 1) f(u) f(v) dv du) // w—1)f(u) f(v) dvdudy
—2/01219 - y)(/o1 = 1)y +v/2) f () f ()dvdu)

0
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~1)
—2 (b-1-y)( (i~ 1)(y+v/2)()()dvdu
+/0 /Zl_zy(u ) f(u)f(v dvdu)// v—1)(u/2)f(u)f(v)dudvdy
—9 1(b—1—y)(/01 (u D(y +v/2)f(u)f(v) dvdu

1/2 0

+//22y 1) f () f(v) do du) /Hy/ (u)2) f () f(v) dudo
+/ /u/2f v) du dv) dy
—2/0 (bh—1- y/o/o w—1)(y +v/2)f () f(v) dvdu
/Hy/zy” (u/2)f () f(v) dudv+ [ 2y/ (w/2) f (1) f (v) du do
+/1 2y/ (y+v/2) f(u) f(v) dudv) dy
+2/ (b—1-y)( //2 = 1)y + v/2)F () f(v) dv du
// (u — 1) (u) f(v) dv du) // (u/2) f () f(v) du dv dy
+2/ (b—1- y// w—1)(y+v/2)f dvdu//u/2f v) dudody
+2/ (b—1—1y) // (= D)y +v/2)f () f(v) dvdu
+/0 /Hy 1) f(u)f(v) do du //2 o= 1y f(u) f(v) dudu
+/01/:_2y(v—1 (1= w/2) f(u) f(v) dudv) dy
+2/1/2b 1—y) /l/lu Dy +v/2) f(u)f(v) dvdu
// v — Dy f(u)f(v) dudody
+2/ (b—1—1y) // (= Dy +v/2)f () f(v) dvdu
+/0 /Hyu 1) f(u) f(v) dv du /2 " /2 Y 4 0/2) F(u) f(0) dudo
+/02_2y/:_2y_v(1—u/2)f( dudv+/ 2y/ (1= w/2)f(u) f(v) dudv) dy
+2/01/2(b—1—y)/01/01(u Dy + v/2) f(u)f(v) dvdu

o
o
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/1 zy/ (y+0/2)f dudv+/ 2y/2_2y_v(y+v/2)f(u)f(v) du dv

/1_2y /2_2y_v (1 —u/2)f(u)f(v)du dv) dy
_2/1/2b - y/l/lu 1)y +v/2)(w) £ (o) dv du

/zy/_%y%—l v/2) f dudv+// (1= w/2) f(u) f(v) dudo
+/ / (1—u/2)f dudv)dy
—21/5 1 y//l w/2) () f(v) du do

//22 (u—1)(y+v/2)f dvdu+//22yu 1)f(u) f (v) dodu) dy
_|_1/2bly//u1 dvdu+/bly)

// w—1)f dvdu+// w—1)(y+1—0/2)f(w)f ) dvdu)’ dy

1/2
+2/bly//u1 v) dvdu

+//u D(y+1—v/2) ()()dvdu)

// v —1)(u/2)f dudv+// v — Dy f(u dudv)
+9 1/219 1—y // w—1)f dvdux/o/o v — 1) (w/2) f(u) f(v) du dody
+2/ b—1- y// w—1)f () f(v) dv du

/ / (u/2)f dudv+/_2/ (w/2) £ (u) f(v) dudv) dy
+2/125 1-y)( // (u = 1) f(u) f(v) do du

+// w— 1)y + 1 —v/2) f(u) f(v) dvdu /12 /2y+ (w/2) f () f(v) dud
/1_2y/o (u/2)f dudv+/_2/ (y+ v/2) f(u)f ()dudv)dy

_9 1i2b 1—y) /l/lu 0 f dvdu/ / w/2f () f (v) dv du dy

—2/1219 1—y)( // w—1)f () () dvdu

+// w—1)(y +1 - v/2) f(u) f(v) dvodu)( // (w/2) £ (u) f(v) du do dy)
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—2/01/2(b—1—y)/01/01(v—1)yf dudv//zyu D) () f () dv du

+/1/1u Dy +1—0v/2) ()()dvdu)dy

—21/2b 1-y)( //2 " v) dudo
//22 v—1)(1—u/2)f dudv// w—1)f(w)f(v) dvdudy
_9 1/2b 1— y// w—1)f () f(v)dvdu
« /02 2y/oz 2y — v)y + v/ 2f (u) f(v) du dv
+/Hy/21 (=2 dudv+/2y/ (1— w/2)f (u)f(v) dudv) dy

—2/1/26 1—vy) // u—1)f v)dvdu

+/0 /Zyu Dy + 1 — 0/2)f () f(v) dvdu /O1 2y/01(y—|—v/2)f(u)f(v)dudv
/112 /2_2‘H (y + v/2) f () f (v )dudv+/l2y /212y_v(1—u/2)f(u)f(v) dudv) dy

+2/12b 1—y) // w—1)f(u) f(v) dvdu

+// w— 1y +1—v/2f(w)f(v) dvdu //_2yy+1 v/2) f(u) f (v) du dv
+/2y/2y1 w/2)f dudv+/ /1 w/2)f dudv)dy

w2 (b-1- y// (1—u/2)f dudv// w—1)f(u)f(v) dvdudy

[ b-1- y(// v—1)(u/2)f )dudv)

+/12 ) // v —1)(u/2) f(u) £ (v) du do

+// v — Dy f(u)f(v) dudo)’ dy

+21/2b 1 y/o/v 1)(u/2) f(u) f(v) du dv

X (/:_2y/(]1(u/2)f( dudv+/2 " / (u/2)f dudv)
—1—2/1/2 b—1-— y / / v—1)(u/2)f(u)f(v)dudv
+/ / (v—1)y v)dudv /1 2y/2y+ (u/2)f(u)f(v)dudv
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/ / (u/2)f dudv+/1 N /2y+ (y+v/2)f(u)f ()dudv)dy
—21/21) 1 y// v — 1)(w/2) f(u) f(v) du do

// (u/2)f v) dudvdy
—2/01/26 1—vy) // v—1)(u/2)f(u)f(v)dudv
—|—/1/1U Dyf(u dudv // (u/2)f v) dudvdy

—2/126 1— y//v Dyf(u)f(v)dudv
// v—1)(u/2)f dudv+// v—1Dyf(u dudv)

9 1/2(1) — //2 2yv Dy f(u)f(v) du do
+//22 v—1)(1 - u/2)f dudv// v —1)(w/2)f(u) £ (v) dudvdy
_9 1/2b 1—y /0/0 v — 1)(w/2) f () f(v) du dv

/Hy /Hy_v (4 + /2 (W) F(v) dudv + /02_2y / l_gy_v(l — u/2) f(u) f(v) dudo
+/ / (1—u/2)f dudv)dy

—2/126 1—vy) // v—1)(u/2)f dudv—l—//v Dyf(u dudv)

/1 2y/ (y+v/2)f dudv+/ 2y/2 v (y+v/2)f(u)f(v)dudv
/12y/2 Sy—v (L—u/2)f )dudv)dy

+2/ (b—1-— y// v—1)(u/2)f dudv//l u/2)f v) dudvdy
1/2
+2/ (b—1-— y // v—1)(u/2)f dudv+// v—1Dyf(u dudv)

//_2 (y—v/2)f dudv—l—// (1—wu/2)f v) dudv

+/ / (L—u/2)f dudv) dy
+/1/2 (b—1-y) /Hy/o (u/2)f dudv+/2 N / (u/2)f dudv)
—l—/ol/2(b_ 1 _y)(/ol_zy/o2y+v(u/2 dudv+/ 2y/ (u/2)f v) du dv
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+/1 2y/ (y+v/2)f dudv)
-2 1/2 (b—1—y) /22y/ (u/2)f dudv—i—/Oz_zy/ol(u/Q)f(u)f(v)dudv)

/ / (u/2)f v) dudvdy
1/2 1-2y  r2y+v
—2/ b—1-—1y) / / (u/2)f dudv—l—/ / (u/2)f v)dudv

1-2
+/ y/ (y+v/2)f v) du dv / / u/2f(u) f(v) dudody
2y+

-2 1/2() 1—1y) /22y/ (u/2)f dudv+/22/ (u/2)f dudv)
// (v—1Dyf(u dudv+// (v—1)(1—- u/2)()()dudv)dy

1/2 1-2y ,2y+v
—2/ b—1- y/ / (u/2)f dudv—l—/ /u/2 v)dudv

+/1 2y/ (y+v/2)f dudv// v—1yf(u)f(v)dudvdy

2-2y
—2) (b—1- y / / (u/2)f dudv—i—/ / (u/2)f dudv)
1/2 2-2y Jo
2-2y 2—2y—v 2-2y
/ / (y + v/2) f () f (v dudv+/ / (1= w/2) f(u)f(v) dudo
0 2—2y—v

+/ /1 u/2)f dudv)

—2/1/25 1-y)( /1 2y/2y+ (u/2) f (u dudv+/ / (u/2) f(u) f () du dv
+/12/ (y + v/2)f (w)f(v) dudo) ( / /y+v/2 v) dudv
/1_2y/02 Yy o)) ()dudv+/ 2y/2 MCEETCHON ()dudv)dy
+2/1 b—1-y)( /:zy/l (w/2) f(u) dudv+/2 2/ (w/2) £ (u) f(v) dudv)
// (1 — w/2) f(u) f(v) dudody
+2/0le 1—y)( /01 " /0y+ (w/2) f(u dudv+/ / (w/2) f(u) f(v) du dv
+/1_2y/1 (y + v/2) f () f(v) dudo //_2 (y+1—0/2)f(u)f(v) dudo

+// (1—u/2)f dudv+/ / (1= u/2)(u) f(v) dudv) dy
—|—/bly//u/2 dudv
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1/2 1 1
+2/ (b—1-— y// v—1Dyf(u dudv// (u/2)f v) dudvdy
o Jo
12—
+2/ b—1-— y // (v—"1yf(u)f(v)dudv
0o Jo

+//22y )1 —u/2)f dudv// (w/2) f(u) f(v) du dv dy
+2/012b - y/o/o (w/2)f dudv/0_2/0 (g +v/2) f(u) f (v) du dv

+ /1 l_zy /0 T 4 0/2) Fw) F(v) dudo + /1 l_zy /2 ;y_va — w/2)f(u) f(v) dudv) dy
+2 1j2(b—1—y)/01/01(u/2 v) du dv /2_2y/2_2y_v (y + 0/2)f () £ (v) du dv
+/02_2y/21_2y_v(1 —w/2) f(u) dudv+/ 2y/ (1—u/2)f dudv)
—2/1/25 - y/l/lu/2 dudv// (41— v/2) f(u) f(v) dudo
+// (1—u/2)f dudv+/ / (1—u/2)f dudv)dy

9 1/2b 1 y//l w/2)f dudv// (u/2) f () f(v) dudody

1/2
+/ bly//vlyf dudv)dy

+ 1/2(5 1—y) / /2 " (0 = 1y () f(v) dudo
//HU (1 = u/2)f )()dudv)
+2/Olzb 1y /0/0 v — Dy f(u)f(v) dudo /01_2y/01(y—|—v/2)f(u)f(v)dudv
+ /1 1_2y /0 T 0/2) F ) F(v) dudo + /1 1_2y /2 ;y_vu — w/2)f(u) f(v) dudv) dy
w2 [ o=1=p)([ [0 Dus ) dudy
+/01/21_2y(v—1)(1—u/2) W) f(v) du dv /2_2y/2_2y_” (y + 0/2)f (u) £ (v) du dv
+/02_2y/21_2y_v(1 —w/2) f(u) dudv+/ 2y/ (1—u/2)f dudv) dy
—2/1/25 1— y/l/lv Dy f(u dudv// (y+1—v/2) f(u) f(v) dudo
+/ / (1—u/2)f dudv+/ / (1—u/2)f dudv)dy

-2 b—1- y // (v—"1)yf(u)f(v)dudv
1/2
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//22 (v—11—u/2)f dudv// (1—u/2)f v)dudvdy

+/12b—1— /1 2y/ (y +0/2) f(u) f(v) du dv
/1_2y/o_ "y 0/2) F(u) F(v) dudo + /22y_v(1—u/2)f(u)f(v)dudv)2dy

1-2y

+ 1(5—1— /Hy/Hy_ (y + v/2)yf (w) £ (v) dudv
+/2 2y/ L a—uf dudv/ 2y/ (1 - u/2)f (w)f(v) dudv)” dy
‘2/1/25—1— ([ zy/ (y+v/2) f(u) f(v) dudv
*/1_%/02 "+ 0/2)f () (v)dudv+/ 2y/2 o (L= u/2) () (0) dudo)
/1/U_2yy+1—“/2 () dudv [ |7 (1= u/2)f(w)f0) dude

+/ / (1 - w/2)f(u) f(v) dudv) dy

_9 1/2(b—1—y /2 2y/2 Yy 4 02) Fu) f(0) dudo

+/2 2y/2 0= w2)f) i) dudvt [ 2y/ (1 - u/2)f (w)f(v) du dv)
// (1= u/2) f(u) f(v) dudody

+/”b_1_ //v2y+1—v/2 (u) f(v) du do

+// (1—u/2)f dudv+/ / (1 — w/2)f(u) f(v) dudv)” dy

+ /[ (b—1—y // (1—u/2)f dudv) dy.
12

If we substitute this expression in Equation (52), after some algebra we can obtain

the detailed expression for the variance result of level-1 FOA estimators.

A.6 Expected Value for Reflected Area Estimators: Proof
of Theorem 19

We have
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%Zn:Zf( ) (ﬁ)COV[Tc*,( ANE)

- LSS <>[zz<>ov i)~ 33 O, X

=1 a=1 nt=1a=1
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%Zzn: ov(X7;, X ZZCOV o Xoa) |- (100)
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M=
7

j=cn+1 =1 t=1a=1
n cn J 4
= 2 X)) X X Cov(x, Xa)
j=cn+14=1 t=cn+1a=1
+ 2 X F(E)F(5) X X Cov(xi, X
j=cn+1f=cn+1 t=1a=1
n n cn l
- Y @) Cov(X;, Xa)
j=cn+1/l=cn+1 t=1 a=cn+1
n cn ) 7 cn
- > F(2)F(5) Do X Cov(X, Xa)
j=cn+1l=cn+1 t=cn+1a=1

1(2)1(;) XJ: > Cov(X;, X,). (101)

t=cn+1 a=cn+1

‘—I—
M=
M=
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Similarly, the second covariance term in Equation (100) can be written as
n on ‘ Jj n
DSOS F(A)F(5)E D0 Cov(Xe, X2,
: il
=33 F(B)f(5) 5 D20 Cov(Xe,, X2,)



j=1¢=1 t=1 a=1
S ) E)ES Y Cov(x,, X
j=1¢=1 t=1 a=cn+1
+ zlézf(%)f(ﬁ)ﬁZCov(Xt,Xa)
j=cn+1/¢=1 t=1a=1
- Y S (EEY Y Cov(X,, X,
j=cn+1/(=1 t=1 a=cn+1
=Y S Y Y Cov(x, X
j=cn+1/4=1 t=cn+1a=1
£ S HOAHE Y Y CovX Xy, (102)

t=cn+1 a=cn+1
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Similar calculations can be carried out for the third and forth summation terms
in Equation (100). It can be seen that Equations (101) and (102) contain similar

covariance terms. We first analyze these covariance terms for ¢ € (0,1). We have

]:1 Zi:l R|t—a\ + Zgzj.ﬂ R\a—t|)

(
=37 (22;11 R, + Ry + Y04 Ra)
=y

— (103)
(] —t)Rt—I—]RO—I—th {Rt+2t Zr il —=t)R, for j </
=) Ry + Ry + LI R+ (G — )Ry for j > .
For j < ¢n,
Jj cn Jj—1 cn—j cn—1
S Cov(Xy, X)) => (j—t)Ri+jRo+7 > R+ > (ecn—t)R. (104)
t=1a=1 t=1 t=1 t=cn—j+1
For j <en < ¢,
J L VR j
Z Z COV(Xt, Z Z COV Xt, Z Z COV Xa, Xt
t=1 a=cn+1 t=1a=1 t=1a=1
=y cn—j -1 cn—1
=i(XR—-> R)+ (=R — 3 (en—1R. (105)
t=1 t=1 t=0—j+1 t=cn—j+1
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For ¢ < ¢n,

cn /L /-1 cn—~ cn—1

>N Cov(Xy, Xo) =Y (= t)Re + LRy + 0> R+ Y. (ecn—t)R,  (106)

t=1a=1 t=1 t=1 t=cn—F+1
For ¢ < en < g,

7 cn—/ cn—1

Z ZCOV X, X, (ZRt ZRt)—I— Z (j—t)R Z (cn —t)Ry.
t=cn+1a=1 t=j—0+1 t=cn—0+1
(107)
cn cn cn—1
>N Cov(Xy, X)) =2 ) (en — )Ry + cnRy. (108)
t=1a=1 t=1
For ¢ > cn,
cn J4 {—cn cn—1
> Y Cov(Xy, X,) =cn Z R, + Z (C—=t)Re— > (ecn—t)R,.  (109)
t=1 a=cn+1 t=f—cn+1 t=1
For 5 > cn,
J cn j—cn cn—1
Z Z COV(Xt, =Ccn Z Rt + Z (j - t)Rt - Z (Cn - t)Rt (110)
t=cn+1a=1 t=j—cn+1 t=1
For j,¢ > ¢n,
J Y4
Z Z COV(Xt,Xa)
t=cn+1a= cn+1
J
= (X Z -y Z )Cov(Xy, X,)
t=1 a=cn+1 t=1 a=cn+1
VA 7 cn cn cn cn
= (ZZ—ZZ—ZZ+ZZ)COV Xi, X
t=1a=1 t=1a=1 t=1a=1 t=1a=1
SIZHG = R+ (= en)Ro + j Sl Ry — en SIZ7 Ry — en SiZ5" Ry
+Zf;l}—j+1(€ ) Zt =j— cn—l—l( ) Zt ={— cn—i—l( t)Rt7
for j </
S =R+ (U —en)Ry+ (YT Ry —enYIZ" Ry — en 2" R
Zt =j— Z—l—l( t>Rt _Zg;;—cn—l—l(j ) Zt {— cn+1( t)Rt7
for j > (.
(111)
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Substitution of Equations (103)—(111) in Equations (101), (102) and the remaining

terms of Equation (100) and some algebra yield the desired expected value. The cases

c =0 and ¢ =1 are covered by the results in Examples 1 and 2. [

A.7 Expected Value for Reflected CvM Estimators: Proof

of Theorem 20

We have

BIC: (g:m)] =+ g(2)o BTz, (1))

7’L2 j=1 /=1 =cn+1 (=1
12 ) cn n 2
]S $ )]
j=1 /=1 {=cn+1
9 o ‘ ' i cn j n
—?Zﬂg(%)E[Z X=X ) Xt]
=1 (=1t=1 (=1  t=cn+l
2 n cn cn cn n
- > 39(%)]3 XD X =) X > X
" j=en+1 =1 t=1 =1 t=cn+l
J cn 7 n
- > XY X+ Y Xo Y th
f=cn+1 t=1 l=cn+1 t=cn+1
1 o ‘ t
) Zg(%) > > Cov(Xy, X))
=1 (=1t=1
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cno cn

Z g(2) [ Cov(Xy, X,) S z Cov(Xy, X,)
] =cn+1 (=11t=1 (=1t=cn+1

+ ij zjj Cov(Xy, Xy)]

l=cn+1t=cn+1

iz () [ZZCOVXZaXt —22 Z Cov (X, X3)
n J=1 {=11t=1 (=1 t=cn+1

- Z Z Cov(Xy, Xy)]

{=cn+1t=cn+1

1 zij _znj Cov(Xy, Xy)]

— 53 g(1)i[ Y Cov(Xn, X)) =30 > Cov(Xy, X))
n j=cn+1 /=1t=1 {=1t=cn+1
J n
— Y Y Cov(Xp, X))+ Y > Cov(Xy, Xy)| (112)
{=cn+1t=1 {=cn+1t=cn+1

Substitution of Equations (103)—(111) into Equation (112) and some additional

algebra complete the proof for ¢ € (0,1). The cases ¢ = 0 and ¢ = 1 are covered by
Examples 4 and 5. [
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