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SUMMARY

This dissertation consists of two problems in the field of Mathematical Physics.

The first part of our dissertation deals with a celebrated conjecture by Villani (See
|22]). Taking ideas that were presented in |4] one step forward we manage to give an
upper bound to the entropy production, showing that Villani’s conjecture is true for
all practical purposes.

The second part of our dissertation deals with developing a new trace inequality
for the fractional Laplacian. We show that the new inequality is sharp and continue
to give a complete characterization for the functions who minimize it, along with the

space where it is most natural.
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Chapter 1

INTRODUCTION

The Journal of Mathematical Physics defines "Mathematical Physics’ as "The appli-
cation of mathematics to problems in physics and the development of mathematical
methods suitable for such applications and for the formulation of physical theories’.
I find that this definition is a good phrasing of my own views. Mathematics has gone
a long way since the 17th century and the scientific revolution, and while at our stage
of knowledge and specialty Mathematics is a world of its own I still find that my
mathematical intuition and understanding rely heavily on my ability to relate the
problem to some physical situation.

This dissertation deals with two different problems in the field of Mathematical
Physics. As such, it consists of two main chapters, each dedicated to one problem,
and an Appendix for additional proofs.

The second chapter is dedicated to an almost solution of Villani’s conjecture, a
known conjecture related to a Statistical Mechanics model invented by Kac ([16]) in
1956, dealing with equilibrium of a system with large amount of particles. In 2003
Villani conjectured that the time it will take the system to equilibrate is proportional
to the number of particles in the system. Our main result of the chapter is a proof of
that conjecture, up to an e, showing that for all practical purposes we can consider
it to be true. This result have been published in the Kinetic and Related Models
Journal (See [8]).

The third chapter is dedicated to a newly developed trace inequality connecting
between the fractional Laplacian of a function and its restriction to the intersection

of the hyperplanes z,, = 0, ..., 2,_j31 = 0, where 1 < j < n. In this chapter



not only will we manage to prove the inequality, but also show that it is sharp, and
classify completely all the functions that attain equality. The results in this chapter
are the product of a joint work with Prof. Michael Loss and will be published in the
Proceedings of the American Mathematical Society Journal (See [9]).

The structure of the dissertation will be as followed:

Chapter 2 is divided into seven sections. Sections 2.1 to 2.3 are devoted to back-
ground material, motivation, and a small summary of known results including Villani’s
conjecture. Section 2.4 describes the properties of an important function that will be
used thoroughly throughout the chapter. Section 2.5 is the main theoretical section
of this chapter, consisting of a central limit theorem that will allow us to get an
asymptotic approximation which will play a key role in our proof. Section 2.6 is the
main computational section of the chapter. Following ideas presented in Section 2.3
and results from Sections 2.4 and 2.5 we will present an proof to Villani’s conjecture,
up to an €. The last section of the chapter, Section 2.7, is dedicated to a few last
remarks about the material presented in the chapter.

Chapter 3 is divided into eight sections. Sections 3.1 and 3.2 set the background
tone and motivation for our investigation of the new trace inequality. Section 3.3
consists of our main inequality, and an initial investigation of it. In Section 3.4
we will extend the class of functions we're allowed to use in the inequality, and
classify the functions that will attain equality. Section 3.5 will introduce another
trace inequality, that while similar in nature to our main inequality, still posses some
interesting features. Section 3.6 will discuss an important boundary case and Section
3.7 will contain a few last remarks on the material presented in the chapter.

Without further ado, let us begin!



Chapter 11

VILLANI'S CONJECTURE AND KAC’S MODEL

2.1 The Boltzmann Equation and Kac’s Model

One of the most important equations in non-equilibrium statistical mechanics is the
Boltzmann equation, describing the time evolution of the density function f (7, o, t),
where f(?, 7,1&) is defined as the number of particles in an infinitesimal rectangle
of volume d@dv about (?, 7) at time ¢, where 7 and ¥ represent position and

velocity respectfully. The time evolution of the density function is given by

wcv?]%? 7 t) djtq ‘collision<77 77 t)

@ T TV (T T )4
where ?(7, 7,75) is the external force acting on the system of particles and m is
the mass of the particles. This follows from the fact that at time ¢ + dt the position
and velocity of the particles is given by 7+ Udt and U + %dt respectfully. The
real problem is specifying what %|wlliswn(7,7,t) is. Boltzmann determined the
collision term resulting solely from collisions of two particles that are assumed to be
uncorrelated prior to the collision (’Stosszahlanastz’ as coined by Boltzmann, also
known as the 'molecular chaos assumption’). The effect of the collisions is expressed
in terms of a function o (€, |t — v3|) representing the differential scattering cross
section, describing the probability for the change of velocities (77, 73) — (Ul, ’02)

where €2 denoted the relative orientation of the vectors (172 — 171) and (v —v7). The

collision term is given by
/ a9 / avto(@. ot~ R[5t - B (7] 052,00~ @705, 3.0)

In 1956 Marc Kac developed a linear model from which a simple version of the

spatially homogenous Boltzmann equation appeared under certain conditions. In [16]



Kac considered a system of N particles in one dimension that interact through random
binary collisions: if vy, ..., vy are the velocities of the N particles, a collision can occur
between any two particles, leaving the rest unperturbed. If the ¢th particle and the jth
particle collided, their velocities change from (v;,v;) to (v; cos ¥ + v; sin ¥}, —v; sin v +
vjcos ), where ¥ is a random angle. While this model doesn’t conserve momentum,
it does conserve the total kinetic energy.

Given a probability density for ’scaterring’ in an angle ¢, this Possion-like process
yields a time evolution equation for the density function F. In the case of a constant

density, and a spatially independent density function the equation is given by

oOF
E(Ul,...,?)]\[,t) = —N(I— Q)F (Ul,...,UN,t) (211)
where
QF (v1,...,vN)
1 2w
:—2/ F(vy,...,v;cos¥ +v;sind, ..., —v;sind + vjcos?, ..., vy)dJ
N | i< VO
2w

2

We note that a beautiful probabilistic explanation to (2.1.1) and the entire process
can be found in |3].

Next in his paper, Kac noticed that if he defined the marginals

F(vy,...,on)dsV™"

falvr, .. 0,) = /
Z’f\;'rH—l U«?:E*Z?:1 “z‘2

where F is the fixed total energy and ds™ ~" is the uniform measure on SV -1 <\ /E =", vf) ,
then equation (2.1.1), which was coined as 'Kac’s Master Equation’, implies a similar

equation to the Boltzmann equation for the the first marginal f;! To get the exact



Boltzmann equation we must have

fu(vi, v, . o, t) &= fr(vg,t) oo f1(vp,t)

in some sense. The above observation prompted Kac to define what he called 'The
Boltzmann Property’: thinking of each particle as of unit energy particle, a sequence
of density functions Fy(vi,...,vy) on S¥"1(v/N) is said to have the Boltzmann
property if

lim fk (Ula---avk) = I}EOH?:J{N)(%)

N—oo
in some weak sense, where f,;(N) is the kth marginal of Fy. In his original paper, Kac
didn’t define the convergence rigorously. A complete explanation with the right type
of convergence can be found in [4].

Intuitively "The Boltzmann property’ means that as the number of particles get

larger, each given k particles become more and more independent. Kac proceeded

to prove that if Fix(vy,...,vy,t) is the solution to the master equation (2.1.1) with
initial condition Fy(vq,...,vN,0) = EFn(v1,...,vy) where Fy(vq,...,vy) has the
Boltzmann property, then Fy(v1,...,vy,t) will have the Boltzmann property for any

t. This is now known as 'Propogation of Chaos’. Moreover, in this case the time

evolution equation that fi(v,t) = limy_,uo fl(N) (v,t) satisfies is

of

5 (0:1) (2.1.2)

=5 [pdw f dY (fi (veost +wsind, t) fi (—vsind + wcos, t) — fi(v,t)fi(w, 1))
which is the Boltzmann equation in the spatially homogeneous, no external force case.
2.2 Kac’s Conjecture and the gap problem

Another observation made by Kac was that any solution to the master equation will
converge to the equilibrium state, represented by the constant function, as the time

goes to infinity. This is not hard to see since the operator (), given in the master



equation (2.1.1), is self adjoint, bounded, satisfies @ < I and dimker (Q — I) = 1.
Indeed, the solution to the master equation with initial condition F(vy,...,vy,0) =

F(vy,...,vy) is given by
F(v,...,uN,t) = e*N(I*Q)tF(Ul, Ce,UN)

That along with the fact that () has a one dimensional eigenspace for the eigenvalue 1
and @ < I shows that in a weak sense Fy(vy,...,vy,t) will converge to a function in
the above eigenspace. The fact that the eigenspace for the eigenvalue 1 is spanned by
the constant function shows the equilibrium convergence. Normalizing the measure
implies Fiy(vy,...,vn,t) will converge weakly to the function 1.

Since every solution converges in a weak sense (L2 (SN_l(\/N)> sense) a natural
question to ask is how quickly will the convergence occur? This prompted Kac to

define the spectral gap

AN:inf{«o,N(I—Q)@ | peL? (SN”(\/N))> (p,1) =0, <90,<,0>=1}

Any solution of the master equation satisfies

”F(Uh s 7UN7t) - ]-”LQ(SN—I\/N) < e_ANt ||F(U17 s 7UN70) - ]-HLQ(SN—I\/N) (221)

(See Lemma A.1.1 in the Appendix).

In hope for an exponential convergence rate Kac conjectured that
liminf Ay >0
N—o00

which will give a uniform bound in the exponent. The conjecture turned out to be
true as was first proved by Janvresse in [14]. Her proof, however, didn’t reveal what
the spectral gap is. Later on the same year Carlen, Carvalho and Loss managed to

find the exact value of Ay and showed it to be

N +2

RS



as well as finding a function attaining the above value (See [3]).

After 44 years Kac’s conjecture was proved. Is it enough? Unfortunately the
answer is no.

While the exponent appearing in the relaxation estimation is not affected by NV,
the initial condition can, and in most natural cases, is. A density function which
satisfies F(vy,...,vn,0) ~ ITIY, f(v;) would generate a very large L? (SN_l(m)

norm. Indeed, one can find many sequences of density functions that satisfy
HF</017 <. 7UH)HL2(§N71(\/N)> Z CN
where C' > 1. This implies that the estimation (2.2.1) would yield time proportional

to N and not the desired exponential decay Kac wanted.

2.3 Entropy and Vaillani’s Conjecture

Seeing how Kac’s conjecture didn’t help in showing a fast relaxation time, a differ-
ent approach was taken. In many subjects related to Statistical Mechanics a good
quantity to investigate is the entropy:

Given a density function Fy(vy,...,vy) on SN"1(y/N) we define

HN(f):/ FN(’Ul,...,UN)IOg(FN(’Ul,...,’UN))dO'N
SNfl(\/N)

where do is the uniform probability measure of SN=1(v/N).

A well known inequality by Csiszar, Kullback, Leibler and Pinsker asserts that

HFNdUN - dUNHzfotal Variation < 2H~(Fy)

Given Fy(vy,...,vn,t) that solves the master equation we find that

OFy
(B’HJB—&FN) - <}3—;FN> + (log (Fn), N(Q — 1)Fy)

= —(N(I - Q)Fn,1) + (log (Fy),N(Q — 1)Fy)

= N (Fy, (@ —D)1) + {log (Fv), N(Q — 1) Fy) = (log (Fx) , N(Q — 1) Fi)



In a similar way to the spectral gap we define the entropy production

<10g (¢(U17 e 7UN)) 7N(I - QW(% s 7UN>>
HN(Q/}(Ul, e ,’UN))

where the infimum is taken over all density functions ¢ € L? (SN (VN )) which are

FN = inf

symmetric in all their variables.

Much like (2.2.1), the entropy production gives us a relaxation estimation:

2 —
||FN(’01, ..., UN, t)dO'N — dUNHTotal Variation S 2e FNtHN(FN(Ul, ..., UN, O))

(2.3.1)
but with one crucial difference: The extensivity of the entropy. Intuitively speaking,

if FN(’Ul, ..., UN, t) ~ szilf(l),,t) then

N
Hy (Fn(vi,...,oN, 1)) = / Y f (v, t) (Z log f(vk,t)) do™
SNfl(\/N) 1

t
=N 1LY, f(vi, t) log @(vi, t)do™ =~ N/ f(v1,t)log 4Gt >dv1
SYTHVA) R 7(“1)

=N-H(f(v,t)]7(v))
where 7(v) is the standard Gaussian. While being informal, the above property is
indeed satisfied in the constructions related to the desired proofs. The extensivity of

the entropy implies that

2 _
HFN(U1, N, t)do — dUNHTotal Variation < 2NVe "NEH(f (0, 0)]y(v))

and so if we can prove that I'y > C' > 0 independently of N, we will manage to
achieve a far superior relaxation rate than that of the spectral gap!
Unfortunately, the evaluation of the entropy production is far more difficult and

delicate than that of the the spectral gap. In [22]| Villani managed to show that

9
Ty >
N=N_1

and proceeded to conjecture that this is of optimal order, i.e.

of3)



This will, of course, be disastrous for the relaxation time (as it will still imply a
relaxation time of order N) but poses an interesting mathematical question.
A step towards the proof of the conjecture was done in 2010 by Carlen, Carvalho,

Le Roux, Loss, and Villani. They managed to show that

Theorem 2.3.1. (Carlen, Carvalho, Le Rouz, Loss and Villani) For any ¢ > 0 there
is a probability density f(v) on R with [, vf(v)dv =0 and [ v*f(v)dv =1, and a
family of functions {Fn}ycy that have the Boltzmann property with fi(v,0) = f(v)

such that
lim sup (log (Fn),N(I — Q)Fy) <o
N—oo Hy(Fn)

In particular, for each ¢ > 0 the density function f is smooth, bounded and has

moments of all orders.

(See [4]). While the theorem doesn’t give us an expression for I'y, it does prove
that
jim Ty =0
as expected. The main result of this chapter is an upper bound for Iy that, while

it, doesn’t prove the exact conjecture, gets as close as possible to it:

Theorem. Let 0 < n < 1. There exists a constant C, depending only on n such that

I'y < %

(See Theorem 2.6.9 in Section 2.6).

Before we venture into the calculation and proof, we take a moment to shortly
explain how Carlen, Carvalho, Le Roux, Loss and Villani proved Theorem 2.3.1.
While our proof uses different computations, the idea behind the two proofs is the
same.

The Boltzmann Equation arising from Kac’s model (equation (2.1.2)) has a very

natural stationary state, which is very common in Statistical Mechanics: the maxwellian



_’U2
e 2a

function M,(v) = <5=. In [2] Bobylev and Cercignani exploited the maxwellians to

create a one variable density function which is a superposition of two stationary states

fi(v) = 6M s (0) + (1= OM_1_(v)

2(1-9%)
for a given fixed . The idea behind this is that each part in f5 has the same energy

1

(v)dv = 5

1
2(1-9)

/'02(5M216 (v)dv = /v2(1 — M

while obviously §M (v) represents far less ‘'mass’ than (1 — 6)M2(11 . (v) when 0 is
small. The attempt to equilibrate a large 'mass’ and a small 'mass’ with the same
amount of energy is exactly the situation which will create the low entropy production.

Carlen, Carvalho, Le Roux, Loss and Villani defined the N particle function

Y f (v
FN(U1, o ,UN) = L‘S()

ZN(f7 \/N>

where Zy(f,v/N) is the normalization function

Ity = [ fs(egao

and dol is the uniform probability measure on SY~1(r). Using an asymptotic ex-
pression to Zy(f, vV N) (a central limit theorem) the authors showed that

(log (Fy),N(I — Q)FN)

lim sup < —26logé + log  + 46° (2.3.2)
N—o0 N
. Hy(Fy) / fs(v)
lim ————==H = 1 d 2.3.
Aim == (f517) Rfa(v) 8 o) (2.3.3)

where ~y(v) is the standard Gaussian, and

log 2

lim H(fs) = (2.3.4)

Combining (2.3.2), (2.3.3) and (2.3.4) along with a suitable choice for § gives
Theorem 2.3.1.

Our proof will follow the same route, but will allow the parameter 6 to be depen-
dent in N.

We start by discussing several properties of the normalization function Zy(f,r).

10



2.4 The normalization function Zy(f,r)

The key to the computation of the entropy production lies with the normalization
function Zy(f,r). The probabilistic nature of the subject prompts us to use prob-
abilistic techniques in order to understand Zy(f,r) better. The main goal of this
section is to find a formula for Zy(f,r) that will serve us in the following sections.

The results presented in this section can also be found in [4].

Lemma 2.4.1. Let f be a density function for the real valued random wvariable V.

Then the density function for the random variable V? is given by

) = LD/

for u> 0.

Proof. For any continuous function ¢ = ¢(|z|) = ¢(r) we find that

Ep— / T o) () + f(—r)dr

On the other hand

Ep = /Ooogo (\/E) h(t)dt = /000 o(r)-2r-h(r?) dr

Since ¢ was arbitrary we find that

2r - h (7‘2) = f(r)+ f(—r)

or
h(w) = T+ (V)
2\/u
m
Next we extend Lemma 2.4.1 to find the interpretation of Zy(f,r).
Lemma 2.4.2. Let Vi, ..., Vy be independent real valued random variables with iden-

tical density function f(v). Then the density function for Sy = Zf\il V2 is given by
N—
sn(u) = B u¥ 125(f, ).

11



Proof. The proof follows the same route as Lemma 2.4.1. For any continuous ¢ =

o (|(v1,...,on)|) = @(r) we find that

Ep = / (v, ..., on)-TIY f(v)dvy ... doy = / o(r) (/ Hi]\ilf(vi)dS,]Y) dr
RN 0 SN=1(r)

= [ ety ( / Hﬁvlf@i)daﬁ) ir= [ onlsY N (e
0 SN=1(r) 0
On the other hand
Egp — / @(\/%)SN@)dt — / Sp(fr) Cr . SN (7"2) dr
0 0

Since ¢ is arbitrary

2r - sy (r2) = |SN’1\?"N’1ZN(f, T)

or
’SN_I, N_y
sn(u) = 5 U’ Zn(f, Vu)
O
Lastly, we combine the above lemmas to get a formula for the normalization
function.

Lemma 2.4.3. Let f be a density function on R, then

2h*N (1)

[SN=1[r

ZN(f7 \/F) =
where h™" is the N-fold convolution of h, defined in Lemma 2.4.1.

Proof. Thinking of f as the density function for N independent random variables

Vi,...,Vy we find from Lemma 2.4.2 that

Zy(7 V) = 22

R

where sy is the density function for Sy = Zf\il V?. On the other hand we know

that V2, ..., V2 have the same density function, given by A from Lemma 2.4.1, and

12



as Vi, ..., Vy are independent a known result in probability theory (See for instance
[7]) tells us that

sn(u) = B (u)
where h™" is the N-fold convolution of h. We thus conclude that

2h*N (1)

ERlEa

ZN(f7\/;):
L]

Armed with the formula for the normalization function we’re now ready to find

its asymptotic behavior.

2.5 A Central Limit Theorem

In order for us to be able prove our main result the asymptotic behavior for Zy(f,r)
is needed. The formula given in Lemma 2.4.3 ties the function Zy(f,r) to the N-fold
convolution of the density function h (given in Lemma 2.4.1). As such we’ll employ
techniques involving the Fourier transform in order to evaluate the normalization
function.

Unlike many other central limit theorems, the theorem we’ll present here gives
us a uniform estimation on the convergence of the N-fold convolution of the density
function to the Gaussian function, along with an explicit error estimation. The
explicit error estimation is crucial to our main theorem as it will allow to change the
‘one particle generating function’ f as N changes and still get the same result. The
only other similar convergence theorems we're aware of appear in [4] and in [12]. Our
own starting point is much the same, though as the proof progresses the difference
become very substantial.

The specific N particle function we’ll construct as a test function for the entropy
production has the property that the Fourier transform of the function A associated

to its ’one particle generating function’ f splits the line into two natural domains:

13



One where we can use analytic expansion, and one where the decay is dominated
by an exponential function. The radius of the separating circle would depend on a
parameter 6 = 0y that we’ll exploit later on to get the final conclusion. While this
is the case arising in our specific construction, we believe that it’s a natural way to
view the problem. Even though we have yet to attempt any different test functions
we think that similar situation would happen in a larger class of functions created
from one particle function. As a result, we tried to make the Theorems of this section
as general as we can make them.

Before we begin with the 'heavy’ computations we’ll state a few technical lemmas
whose proofs can be found at the Appendix and that would serve us throughout this

section.

Lemma 2.5.1. For any a,n > 0 we have that

\/ 7] a2cz72 \/
2m . \/1—@*¥ < e” 2 dr < 2 . 1 — e—a2n?
a

a |zl <n
and ,
/ _an
/ 6_ a2212 d(E S 27T - € 2
|lz|>n a
Lemma 2.5.2. For any a > 0 and ko, m € N we have that
22 o2k
Xm: e 2 < 2w -e” 7"
, vk~ a

(See Lemmas A.1.2 and A.1.3 in the Appendix)

While continuing to read this section, please keep in mind the following: the
function g will represent the Fourier transform of the function h, connected to the
one particle generating function f via Lemma 2.4.1. We'll start by exploring the

domain outside the radius of analiticity, and then point our attention to the domain

14



where analytic expansion is possible. The parameter ¢ itself should be thought of as
a function of N that goes to zero as N goes to infinity.
We'll denote by 71 (&) = e 27¢ . e~ 2755 wwhere X4 is a function of § which we’ll

introduce later on.

Lemma 2.5.3. Let g5(€) be such that
(i) for |€] > ¢8 |gs(€)] < 1 — a(8), where 0 < a(8) < 1.
(i) |gs(€)| < 1 for all €.

Then

[ GEEAGIE
le]>c5

N

_ 1-— 04(5))?71 1 _ 2 .2 212

< 2 N 1d ( . (1+N)7T C 6 26
<2 oo as e S

Proof. We have that

/ (&) — AV (€)| de = / 195(6) — (€)]- e
|€]>co |€]>co

S ¥ €k )
k=0

Since |71 (€)| = e 27 < 1 we find that

[l —t@las2 | Sla @] )]s

[>cd 3o
N—-1
<2 / 951V THdE+2) (1 - a(6))N M / ¢~ 2hmE T e
|€]>co k—1 |&|>cd

The last inequality is valid due to (7).

We notice that as k gets larger the expression (1 — a(6)) 7" gets bigger while
f\§|>c6 6_2’”25223(15 gets smaller, and vice versa as k gets smaller. As such we proceed
to divide the sum from £k = 1 to k = N — 1 to two sums, each with a definite
dominating small element, and a sum we can estimate easily.

/ 02(6) — ¥ ()] de < 2 / (&) de
|§]>cd

[€]>cd
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w2

3] N-1

253 (1 - a(5>>N—k—1/ e~ BT ge Lo Z (1— a(5>>N—k—1/ o2 g

_ [€]>cd [€]>cd
=[5l

<9 N-lg
< L G

(%] N-
+2 (1 — a((S))N*[%]fl /| 66—2kﬂ2522§d€ +9 Z /l 66_2’”2&22%6[5
>c N &|>c

k=1

vl

Using Lemma 2.5.1 and 2.5.2 we conclude that

N—1 N— 4k7r2(‘2622§
S [ emeaes e
2%2
k=kg ¥ 1§1>cd o 4km 2
_4km c25222
Z L okgr2e2s252
«/27&]? = - 2#052%

Hence

/ 62 (€) — 1V (0)] de < 2 / (&)Y de
|€|>cd €|>ed

[N
2(1— 0‘(5))]\[ 3 o 2m2c?6252 I —2([&]+1) 7225252
2med Y2 2med Y2

N

_ 1— 04(5))571 1 _ 2 252512
<9 N-1 4 ( . —(1+N)n2c25252
<2 o B

which is the desired result. O

Lemma 2.5.4. Let g5(&) be such that

IN

(@) there exist My, My, My > 0, independent of 6, such that sup .5 |95(§) — 71(§)|
(3 + 8 20) P

(i1) for c6* P < €] < ¢d |gs(€)] < 1 — ag(d) where 0 < ag() < 1, B > 0 and
0<o<l.

(id) |gs(§)l <1 for all €.

Then
6462 (M() + M15 + M252)

[ GEERGIEE :
€] <co
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+035\/N (Mo + M6 + My6?) (1 — 045(6))%_1 +c351*f3 (Mo + M6 + Msd?) o~ (N=1)c25%+2652
VT Es

2mcdN2 - \/1 _ 2P NEY]
L 260 (Mo + My + Mpd?) VN2

\/271'2(25

Proof. Just like Lemma 2.5.3 we have that

Y (&) — 7Y d_i1
L@b@ 7@§<;L

195(€) — 11(E)] |gs()1Y 7 (&)1 de

<cd

_ My, M,

N-1
<[ (e + 5+ 0 ) 1P laste) ™" s

N-1 IV
2> /IE 5 (5_0 t Mz) €1 1o ()™ I (€)1 dg
k=1 <c
Since |g5(&)| <1

L é\gév(é) — 1 (€)] ¢ (2.5.1)

MO Ml 3 i, MO Ml 3 Nek—1 K
oo (e eaesd [ (G 50 I O e

A% (My + M6 + Myp?) = M, M —h—
- SRS [ s (520 ) P a0 @
=1 cs1tB<|g|<ces

N-1 IRy
+Z/£| §1+6 (6_2(]+71+M2) €13 195 (€)Y " [ (&) de
k=17 [€l<edtt

Using (i7) and a similar idea of sum separation as in Lemma 2.5.3 yields

N-1

My, M L
Z/ o<l ( i *71”@) €7 gs (1 I (€)1 d
k=1 "v¢ <[é|<e

< 6 (Mo + Mo + M2(52)

(1-ax@)" " |

— 2¢2v02
e 2kﬂ§25d5

k=1 cs1tB<|¢|<cs
[%] 2¢2%12
=35 (Mo + M6 + M252) (1 . aﬁ(é))N—k—l/ o 2km3E zédg
k=1 cd1HB<|g|<cs
N—-1
+C35 (MO + M15 + M262) Z (1 _ O{B(a))N_k_l / 672kﬂ.2£22§d£
k=[¥]+1 e B <lg|<cs
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.—.
v
s

N
2

< 35 (M + My + Mpd?) (1 — ap(8))V (2171 / AT ¢
k=1 |€|<co
—1

N
+¢%0 (Mo + M6 + M»6?) Z / e~ 2R g
] Vet el <er

Using Lemma 2.5.1 and 2.5.2 gives

My M
/ (2°+ : Mz) € 191" I (€) [ de
co1+A<lgl<cs \ O 0

3]
2 \/1 _ 6—47r2k02622§

1 V2m82k
N-1

+c%0 (Mo + My + M252 Z (/ 72’”2522%5 — / €2kﬂ2£22§d£>
|€|<cd

k=[5]+1 lel<est+?
2

N-1

k=1

<% (Mo + M6 + Mso ) (1—ag(d))?

.—.
&=
s

-1 1
= V2m53k
« <\/1 — e ATREPS] _ (/] e—27r2kc252+262§>
+c%6 (Mo + Mo + M2(52)
k%ﬂ \V2mkY2
A6 (Mo + My + My6?) (1 — aﬁ((s))%—

- N> Vil=

N-1 —on2kc252128 %2 421252372
A6 (Mg + M6 + Myb?) 1 o—2mke2 320N —an?ke25?n2

w2

< P (Mo + M6 + Md?) (1 — a(d))

\/2mY2 e [5] 1 ﬁ ' (\/1 LRI N 6—27r2kc252+2,32§>
12

AGVN (Mo + Myb + Mys?) (1 — ag(6)) = !
T2

V 2 747r2kc25222

6 (Mo + My + Ms?) Nzl 1 o2 kc262 12852

FSVN (My + My + My6?) (1 — as(6))* !
a Y2
A6 (Mo + Myd + M252) Nz‘l M

JET o g
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B5VN (Mo + My + Mad?) (1 — ap(8))> ™"
7r2§

) (M0 F MG+ Mypo?) e 2 [R]etarng
/3 \/1 2 NEPE] | [Ar2c2522BY

o COVN (Mo + Mo + M252> (1—ag(d)? " L (Mo + M6 + Mad?) o (N=1)c262 42053

Vs 271'652(25 . \/1 _ o—2m?Ne262%2

SO
N-1

M M o
Z/ (ﬁ+f+%)¢mwN“M@M§ (2.5.2)
1 Y coltB<|El<es
o SOV (o + Mid + Mo) (1 = ap(O) 57" | 30177 (Mo + Db + Mai?) e =V 1
< NZ? ImeHY2 - \/1 o 2n?Ne25%3
Also, since |gs(§)] < 1 we have that

N-1

My M
/a s (_0 tg M2) 6P 1951 ™ (@) de
k=1 <cdlt

=

-1
< & (Mo + M3 + M,o%) 615 .

WM

/ o 2km?E?%3 d¢
|€]<cotts

_Akm2c2482+28 Eg

1

2

1
63 (MO + M1(S + M252) 51+3’B €

1 V2mkY3

3 (M0+M15+M252) 1+35 N-1 1
\/2mYE — k;

_ 268 (Mo + My§ + M8%) VNG

N \/ 27TE§

B
Il

SO
My M L
/ (5—20 + =+ Mz) €1 195 ()" In(€)]" de (2.5.3)
1 v lEl<cot+h
_ 268 (Mo + My§ + M8%) VNG
B /2132

Combining (2.5.1), (2.5.2) and (2.5.3) gives the desired result.

O

Now that we have proved Lemma 2.5.3 and 2.5.4 we can turn our attention to the

main theorem of this section, giving us the tool to approximate Zy(f,r)
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Theorem 2.5.5. Let hs(x) = hsy(x) be a continuous L' (R) function such that

~

96(€) = hs (&) satisfies

(i) for |&] > cdn |gsy ()] < 1 — a(dn), where 0 < a(dy) < 1.

(1) there exist Mo, My, My > 0, independent of dn, such that sup g .5, |95y (§) — 71(§)] <
< + 5t +M>|§y3.

(iii) for cOn < |€] < Oy |gsy (€)] < 1 — ap(dy) where 0 < az(dy) < 1 and
0<p<l.

(vi) gan (§) < 1 Jor all €.

and if

g) 0% 25N is bounded.

_ (u=N)?

1 e Uiy < e(N)
VN5, V21 |7 VN5,

where ;N (x) is the N-fold convolution of hsy and e(N) — 0. Moreover if for a

N—oo

sup | (u) — (2.5.4)

fized 5 € {0, ..., [%} }we have that
() VR =T80x fepesy 195 (O — 0.

N—o00
instead of condition (f°) then
_ ((u—N;LjQ)Q
1 e %y €;(N)
*N—j J
sup h : . < - 2.5.5
R R e B = R

where €;(N) P 0.

—00
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Proof. We start by noticing that

/\7(sz%2

oNT _(@=N)? ‘
]\172 ‘ [ - 5 (g) _ _ 1N2 /6 2ND3 | 6—27rz§xd$
vV 5 \/ 4T V 4T 5 JR

(& dy

—2miNE  (2migVNx4)? (y+2micVNEy)?
.e 2 e 2
R

V2r

, N
= (e’2’”5 . 672#2522§> =1 (§)

/ _ﬁ . 6727ri§(\/N25y+N)dy —
R

Since (2.5.4) follows from (2.5.5) for j = 0 we’ll only prove the second part of the

theorem. Using Lemma 2.5.3 and 2.5.4 we find that

_ (u7N+j2)2
2(N—j)=

Sup h*N j( ) 1 ) N
JN % Vor

S/R’gév_j( — j(é)’dé

gy (&) = (6)| de

5O -]+ [

|&|>cé

B /|§<06
1 64\/ ( )51+3B(52 E(gN (M() + M15N + M252 )

<
= UN — %, 2
N-j_ 4

AOn(N — ) (Mo + Myoy + Myd3) (1 —ag(dn)) 2
Nz

2+23
AN = o8 7 (Mo + Moy 4+ M%) e —mA(N—j -1y 5]

2meoN L5y - \/1 _ AN

NN N—j-1
+2 N_jE5N/ |95N(£)‘ d§

|§>con

263 (Mo + Ml(SN + M25]2\/) (N —
V2
Nl vN VN 6—(1+N—j)7r2c26?\,2§N)

+2 (1 = a(in)) 2 27706NZ(5N 7rc5N25N
& ()

VN =%,

Conditions (e) and (g) imply that
VNV = )it8si -0y, <\ [Nglsssa -y —0
—00
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Conditions (a), (¢) and the fact that j < & imply that

ag(dn)(N—j—2)
N—j—=2 2

(N = ) (1 = as(0)) " = 0N = ) (1~ ap(0)) )

ag(6n)(N—4)
el
< 6y N ((1 - a,g((sN))wN)) 0
N—oo

Also by condition (d):

N — 2)§2282
(N —j)0%2 > (N —j—1)07s2 > ( >2N 2 o0

and so along with condition (a) we have that

. 2 N—i_1 262+2522 .2 N—i_1 262+2522
(N = j)one™ NNy < Ny T NN s
—00

0N Son /N =5 - \/1 _ WK, oo

N—oo
which implies
- —j—1)c26%28
03\/]\7 — jéjlv_ﬂ (M() + M15N + M25]2V) € F(N=j=1) 261\’ Z%N

27TC5NE6N . \/1 . 6727r2(N7j)026?vE(2;N

. 2428
_ A(N —§)0n (Mo + Mydy + Maby,) TN )es R L

: N
27TC(5]1V+’325NMN —7- \/1 _ 2N T -

We also notice that conditions (e) and (f7), along with the fact that j < £ imply

that

(N_j)éjlv-&-&ﬁ’ < N5]1V+35 — 50

N—oo
VN %5, /

195 ()Y 771 dE — 0
>y N=ro0

Conditions (a), (b), (d) and the fact that j < & show that

(SN (N—j—2)
2

()t YN =T W (- awy ™)
AN 2meon sy ome/N — jono%s,

a(dn)(N—-4)
4

N}, (1= afon) ")
<
= Voo NOLPY, N
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Lastly,

N—-j (N R R (N = j)o% o (HN—r R TR
TeONDsy me/N — jon%s,

which we saw converges to zero.

Combining all the information presented we find that ¢;(N) — 0. O

N—oo

Remark 2.5.6. Conditions (a) to (g) were designed so that €;(/N) will converge to
zero. Looking over the proof of Theorem 2.5.5 we see that the constants My, M; and
M, play a role in the convergence. For instance: if My = 0 then many terms in the
expression for €;(N) would have an extra factor of §y - making the convergence faster
and allowing us to weaken conditions (a) to (h). Unfortunately, this is not the case
in our constructed sequence (to appear in the next section) but it may be the case

for a different type of construction.

We are now ready to construct our sequence of density functions that will yield

an upper bound to the entropy production, proving Villani’s conjecture, up to an e.

2.6 The main result: A Proof of Villani’s Conjecture, up to
an €

The route we’ll take in this section was outlined in Section 2.3.

We define our one particle generating function to be

f(;(v) = (SM%(U) + (1 — 5>M 1 (U)

3(1-9)

02

where M, (v) = f/% and 0 < 0 < 1. Since M, is a density function and fs is a convex

combination of two M,-s, we conclude that fs itself is a density function.

Let
(V) + fs(—/u)
2y/u

hs(u) =

for u > 0.

We'll start this section with finding properties of hg.
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Theorem 2.6.1. Let hs be defined as above. Then
(i) hs is a continuous density function on (0,00).
(i) [y~ uhs(u)du = 1.

) [t = iy
(

ZU) ( ) 271'15 \/1_,’_271'1{ :

Proof. Clearly hs is continuous on (0,00) as fs is smooth on R. Next we see that

/OOO W™ hy(u)du = %/OOO %faﬂ)du + % /0°° %\/g/@du

using the substitution v = /u in the first integration and v = —y/u in the second

integration yields
0

/Oooumh5(U)du:/OOOUmeé(v)dv+/_00112mf5(v)dv:/Rvaf(;(v)dv (2.6.1)

For m > 1 we have that

1 o2 a™
2m 2m _—o— 2m — 5
0" M, (v)dv = /v e 2dy = /m e 2dx
/R vV2ra Jr z=—T= 21 Jr

m . m 22
52_ cp?meh (—e 7) |©, + % (2m — 1) / " 2eT T dy
T T R
a 2 a
= —-2m—-1 e dy = =
V2 ( )/R V2

=2m—-1)-2m—-3)----1-a

m

-(2m—1)-(2m—3)----1-/eI?dx

m

We find that

/ u™hs(u)du = 5/ V"M 1 (v)dv + (1 — 6) / V"M 1 (v)dv
0 R 25 3(1=9)

R

:(2m—1).(2m_3)....1(5,(2_15)m+(1_5)_(ﬁ>m>

Hence

/Oooh(;(u)du:5/RM215(U)dv+(1—5)/RM2(11_6)(U)dU:5+(1—5):1
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which proves (i), (i) and ().
In order to prove (iv) we notice that due to fact that M, is a Schwartz class

function we have that

/M e 2mE = / (—2miu) M,y (u) - e 2mE gy,
dé R

(differentiation under the sign of integration is allowed)

Also since <L M, (u) = —“M,(u) we find that

, d
M 72m§u o I . 72m§u2 M
dﬁ/ du /R( miau - e ) T (u)du

= 2miau - e M, (u)|,, — 2ria / (1 - dmigu?) Ma(u) - 27" du

= —27rza/ M,( e~ 2miE® gy — dmika - — / M, ( e~ 2mE gy,
Thus
—2ma 2
M 727rz§u du = Ma ., 2milu d
de / = T dmiag J, MalW) e “

For a > 0 the initial value problem

d —2mia
d—gw(f) = m@(f)a §eR
p(0) =1

—2mifu?

has a unique solution, which must be [, M,(u)-e du by the above computation.

Since

d ( 1 ) B —A4ria _ —2mia ( 1 )
d§ \/1+ 4mia& 2(1+ 47ria£)% 1 +4mial \ 1+ 4miaé
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(notice that the root is well defined as Re (1 + 4mia) = 1), and

1
(V) o

we conclude that
1

Ma . —27ri§u2d - =
/R (u) e T T+ driat

Finally we have that, similarly to (2.6.1)

hs(€) = /O hi(w)e ™" du = /R fa(u)e 27 du

L (u) - e~ 2migw? gy,
2(1=9)

:5/M1(u)-e_%iguzdu—f—(l—(;)/M

R R
B ) i 1—4

\/1 + i \/1 +

concluding the proof of (iv). O

Next on the list is finding an asymptotic expression to Zy(fs,.7). In order to do
that we need to check that the conditions of Theorem 2.5.5 pertaining to hs, are true.

—2mil =25 Jepends

Before we begin, we need to specify what X3 is, as 11(§) = e
on it. Since it is a central limit theorem we're after, the natural selection would be
the variance of the random variable with density function hgs, which is exactly what

we’ll choose.

We define

22— /OOO W2hg(u)du — (/OOO uhg(u)du)l _ ﬁ .

Theorem 2.6.2. Let g5(&) = f;;(f) where § < 1. Then
' 5
(0) for [€] > £ 1g5(©)] < 1= (1= {/£) + pr(6) where 22 —s 0.
(11) there exist My, My, My > 0, independent of §, such that SUP|¢| < o lgs(&) —11(&)| <

Ir
(52 + 5+ M) €.

(i73) for 0 < p < 1 and % < [¢] < £ we have that |g5(€)] < 1 — 82 4 pa(6)

16
p2(9)
where 55 — 0.
6—0
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(iv) |gs(&)] < 1 for all €.
(v) for a fized j < N — 3 we have that
N—j—1
, 1—6(1—{/2)+pi(9)
[ e GG DR, -

T +7T<N—j—3)

Proof. (i) Since |1+ iz| = /|1 +iz| = V1422 for any € R we find that for
&> i

27rz§

2mi€
) 1+ s

195(E)] < ’

T2£2 4Ar2€2
41+45 ,4/1+(1§ \[ ,4/1+4(15

Using the expansion

1
:1—E+x2~77(13)

v1+zx 4

where 7 is analytic in |z| < 3, and the fact that for 0 < § <  we have that

52 52
A1=0)* " 4(1-1)

We find that

195(6)] < f/% 0+ (1-9) <1 - 16(152_ e 16(1(Si D <4(1(f 5)2»

:1-5(1— ‘ §>+p1(5)

(77) Using the expansions

where 2 ( ) —> 0.

1 r 3
=1->+ -2 +2° ¢z
— 5t 3 o(x)

2

6x:1+x+%+x3-w(1‘)
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where ¢(z) is analytic in |z| < 1 and ¢(z) is entire. we find that

B mi&  3w2E? 8mdigd | [ 2mig
95(5)—5(1—7— 552 T g3 ¢( 5 ))

mi€ 3m2&? 8m3ig3 2mi€
+1-9) (1_ 1—6 2(1—06)2 (1—5)3¢<1—5))

B , 32 32 . 1 2mi€ 1 2mi€
_1_27”5_52(25 +2(1—5)>_87T3@53(ﬁ’qb( 5 )+(1—5)2'¢(1—5>)
1 (2 1 o
= 1-mig - 2wt (534 1) 50 (0 (50 ) 4 g o (505

and

Y(8) = e M 2
= (1 — 2mi€ — 2 — 7%y (—2mi€))- (1 — 2m°T3€% + 2n* B3¢t — 8Oty (—2n%3¢?))
=1—2mif — 2% (25 4 1) + 4T + 2n'¢* (5 + 2%3)
—4mPiN3E5 — AnO3et — 8r3ie3e (—2mif) - e 2N _ 8m0¥8¢0y (—27?22352) . e 2T

From the above we conclude that

195(6) = 1 (€)] < I€P (ii - \qﬁ (2?5)' e '¢ <127i§5)‘

+4mPE5 + 27t (€| (5 + 2%3)

+HATE5[]* + 4n°Ee)?
+8m* |y (—2mi€)| + 873l [ (—27°T5¢7)|)

Denoting My = supj, <1 |p(z)| and M, = SUP|4|< 1 |(x)| and noticing that for

5 1
| < = and § < 5 we have

3 3
Y3 < B0 <35
2mi€ 1
) 2
2mi€

1
4 —
sl < 7r\§|<5<2
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we find that

2mi€ 83 M,
‘Qb(m)'ﬁ 7T52¢

<18—i>2 o (725)| < et
4mPY3 < 6%
2ml(¢] (33 +2%2) < ; (W+§> = 98—7? +377T3
st < T8 2 00

w6 9 93§ 93
AP < —— . = < —
R e TR A T R T
We also have that

51
_orig] < 2 < =
2 3 35 3 1
912y Z <z
|2 55}—2 % 4°8°2

And as such

872 |1 (—2mif)| < 872 M,
G613 363 27 _27r?
TSI v (2m"58) | < - g Mo = =
Deﬁning MO = 87‘('3]\4¢)7 Ml = 67'('3 + % and MQ = 327T3M¢, + % + % + % +
83 My, + 2 My, gives us

sup Las(€) = w(6)] < (G2 + 55+ ) Ief

el< 2 Kl

M,

(ii7) Much like the proof of (i), for |¢| > &7

41+4”252 = 41+ﬁ 41+4ﬁ+?

Since % < % and ‘(SHMQ < 2128 < 1 we find that
526 548 528 §52+28 §A+4B 52+28
<512 4% 1-6)(1- :
195(9)] —5< 6 " 16 7’( 4 ))+( 5)( 16(1—0) " 16(1—0)"" (4(1—5)2))
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p2(9)
where 55 — 0.
6—0

(1v) Since hs is a density function we have that for all £

5(6)] < Whsllosy = [ P =1

(v) For a fixed j

N—j—1
i 5 16
[ s ae< | 4 )

> o8 \ Y14 o1+ g

N—j-1

5 16
S e =l B
an <Kl<ar \/1 + 5 \/1 + ooz

N—j—1
) 1—94
- ; p
€1> 5=

4 47r2£2 4 4m2£2
1+ 1+ (=K
Using (i) we have that

N—j—1
/ 0 d (2.6.2)
5 clgl< \/1 N 47r252 \/1 L e .6.

1-0)2

(o g8 )

T
Also '
N—j—1
/ 0 1-— _ de
|£‘>ﬁ 4 1+ 71'2§2 4 1+ 7r§
2 3\ N-j-1
</ 68, (1-9) ’ "
lE]> V2m€ V2m€
) s\ N—j—1
2 <(5§ + (1 — (5)§> ’ 0 Nej1
— e ag
(2m) 2 ;

30



27

2(5§+(16ﬁ)N'j1'<2§(Né“ﬂ>m

_ 4<5§+(1—5)§>N—j—1 | (2ﬂ)w ) o (52 +(1_6)3)N—j—1

(2m) N-j-3 7(N —j—3)

For 0 < § < 1 we have that 65 + (1 —6)2 < 8+ (1 — ) = 1 and as such

N—j-1

) 1-96 2

/ + - de<——= (2.6.3)
o \ 1+ 1me 14 dm T(N=j—3)

Combining (2.6.2) and (2.6.3) we get that

[ e e GGt DAZID) -

s +7T<N—j—3)

as required. N
Now that we’ve checked that hs is a good candidate to use Theorem 2.5.4 we can

present the asymptotic behavior of the normalization function under some conditions

on dy.

Theorem 2.6.3. Let f5,(v) = oxvM_1 (v) + (1 —0n)M__1__(v) where 0 < éy < 3

2N 20-35)

and
(a") Oy is of order of a negative power of N.

) 05 N — oc.

N—o0
1+3
() 65PN 0.

Thenforaﬁxedje{O,l,...,[%}},j<N—3 and any0<ﬂ§§wehave that

_ (u—N+j2>2
2 e 2(N7])25N

N — - Ssy |SN—J'—1|U¥—1 V2m

Zn—j (fsn: V)

+)\J(N_J7u>

where sup,cp |\ (N — j,u)| < €;(N) and limy_, €;(N) = 0.
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Proof. We’ll check the conditions of Theorem 2.5.5: Property (i) in Theorem 2.6.1
shows that hs, is continuous and in L' (R). Properties (i) to (iv) of Theorem 2.6.2

corresponds to conditions (i) to (vi) of Theorem 2.5.5 with

o= (1= f2) - 162)

1 po(d
as(6w) = 5177 (1_6 - %)
N

and ¢ = 7=, Next we check conditions (a) to (g):

Condition (a) is satisfied due to condition (a’) and the definition of a(dy) and

ag(0n).

Condition (b) is satisfied since

a(dy)N = Néy ((1 _ </§> B P1§5N)>
> Néjlv-‘r?ﬁ <<1 - C/g) . pld((SN)) ]\:) 50

Condition (c) is satisfied since

by condition ().

by condition (b').

Condition (d) is satisfied since X5 = 45(5’_5) — 1 and
3
2 2428 _ 1428
N2 52N = <4(1 5 5N) NN — o

by condition (b').
Condition (e) is satisfied due to condition (¢).
Condition (f7) follows immediately from property (v) of Theorem 2.6.2 and a

similar computation to that presented in the proof of Theorem 2.5.5.
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Condition (g) is satisfied since

31-p) 30y .
O Yoy = \/m — §3(1=5)

and oy goes to zero while 0 < 3 < 2.

Since all the conditions are met, Theorem 2.5.5 assures us that

_ _(u=N+j)?

I D s . )
VN =5 Vo2r | T VN =Sy

sup hgff_j (u)

_ (qu+j2)2
2(N—HX
(N=3)5

where €;(V) e 0. Defining \;(N — j,u) = /N — jE(;thfj*j(u) — & and
using the expression for Zy(f,+/u) from Lemma 2.4.3 we find that
2h*N =i (u)

SN =1y 51

ZN—j(fa \/a) =

_ _(u=N+4j)?
9 2(N7j)E§N
= — + (N —Jju
=7 Tay et | var T
Clearly sup, |A\;j(N — j,u)| < €;(IN) and so the claim is proved. O

With the asymptotic expression in hand we’re finally ready to estimate the entropy
production.

Defining

FN(Ul""»”N):%

we will show that

(log Fy, N(I — Q)Fy)

< Ctype—6 (—5]\/ log (SN)

N
and
) fSN_1(ﬁ) Fy (v1,...,vn)log Fy (v, ..., vx) do™ . Hy(Fyn) log2
lim = lim =

where Cyype_s is a constant depending only on the behavior of d5. In order to do that
we will need the next technical lemma whose proof can be found in the Appendix

(See Lemma A.1.5 in the Appendix)
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Lemma 2.6.4. Let f (v1,...,v;) and g (vj41,...,vN) be continuous functions on R’

and RN=J respectively. Then

/ for,. . v5) g (Wi, on)doy
SN=1(r)

SV
o |SN—1|TN—2 /Z

N—j
gdo - dvy . ..dv;

j 5
flo,..v) [ r* = va
v2<r?

J -
i=1 =1

Y fs (Vi)
ZN(f55VN)

satisfies conditions (a') to (c') in Theorem 2.6.3. Then there exists a constant cyype—s

0 < B < 2 and iy

where 0 < 0y < i 3

Theorem 2.6.5. Let Fy = 3

depending only on the behavior of dn such that

(log Fy, N(I — Q) Fn)

N S Ctype—(5 (_5N log 6N)

Proof. Denoting
Rz](ﬁ) (Ul, ce ,’UN) = (’Ul, R ,'Uifl,’l]i(lg), Vitly .- ,Ujfl,’ljj(ﬂ), 'Uj+1, Ce 7UN)

where
v;(¥) = v; cos ¥ + v; sin v

vj(¥) = —v;sin? + v, cos V¥

we have that

N(I—Q)FN(Ul,...7UN)

1 1 27
=N —Z/O (Fy (1, . ox) — Fx (Ris(9) (vrs .., o)) dd

N i<j
2
= W(Nl_ 3 Z/O i (Fy (v1,...,0on) — Fy (Rm(q?) (v1,...,0y))) dV



- (N—l)Zjl\,(f(; 2/ (TR s Fone (00)) - (o (v3) fin (07) = fon (0i(9)) fi (05(9))) d?

(the operator ) was defined in Section 2.1). Also

N

log Fyy = ) _1og (fsy, (1)) —1og Zn(fsy, VN)

=1

Remembering that for any constant function ¢ we have
(e, N(I = Q)Fn) = (NI = Q)c, Fy) = (0, Fiy) = 0

(See Section 2.2), we find that

N
(log Fiy, N(I = Q)Fy) = > (log (fsy(v)), N(I — Q)Fy)
=1

1 N
Zn(fs, VN)(N — )m ZZ/SNWN) log fs (v1)

=1 i<y

~ ( | s (0) - U (0 () — i (0 (50 cw) do™

For a fixed 7,7 we find that if [ # 7.5 then by Lemma 2.6.4

Lo 198 50 0 T s 00U (0 () = o (O i (00 ™

Sl
- !SN |1|N 7 / / log Fou () (i o (2)

m 1m#1j

</§:1(\/N_ZTJ\:L i 2) (f(SN(U’L')f(SN(U]') - féN(vi(ﬁ))flsN(vj(ﬁ)))da\/ﬂizix R > dvl va72

Since S! with the uniform measure is invariant under rotation, we have that for a

given v

fJN('UZ)fJN(UJ dO’\/ N

2
m= 1m#z]

/Sl (\/N—Z%:Lm#,j ”2>

119 N \Uj 9))d 2 ~
/Sl(\/NZZ_me%) Jon (Wi(0)) o (05(0)) Y a——

We conclude that only [ =4 or [ = j contribute to the sum. Hence

(log Fiy, N(I — Q) F)
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Zn(fs \/_ N -1 E/SN " 1ng5N (vi) + log fsy (v)))

~ ( / T i o (00)) - (o (00 g (05) — i (0(9)) F (05(9))) cw) a0

Next we notice that by renaming ¢ as j and vice versa

DY IR TN
i<j /SVTHVN)

: (/0 W (TR gz fon (00)) - (fsn (0) foy () — faw(vz‘(ﬁ))fézv(“j(ﬁ)))dﬁ) do™
— 2/ 1 logng U])

1<t

(7 i () U)o () = o (=0 (=) 0 )
_:,qg ;/SN—l(\/ﬁ) lng(gN(Uj)

- ( [ s (00) - U (0 (0) — i (00 (50 dﬂ) do™

As such

1 N
(log Fn, N(I — Q)Fy) == Zn(fs, \/N)( — )7 ;;/SN‘I(\/N) log fsy (vs)

2
: (/0 (TRl i g o (vr)) = (fo (03) f3 (0) — faN(Ui(ﬁ))faN(Uj(ﬁ)))dﬁ) do™
For a given ¢, the transformation that replaces v; with v; and vice versa is invariant

under the uniform measure, and so

(o F, NI = Q)F) = = f R D3 /  Jog f(w1)

i=1 j#1

~ ( I (Hﬁzl,w,jfaw(vk)) s (00) o (05) — fi (01 (0)) i (05(6))) cw) do™

PR Z/SNI 108 f (1)

- ( [ o0 (00) - o () () = i 020 (5 0) cw) do™
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Using the same argument with v; and v, we find that

N

(log Fn, N(I = Q)Fy) = m /sN—l(\/N) log fsy (v1)

' (/0 ’ (s fan (0r)) - (fon (01) fon (02) = fon (01(9)) fon (02(99))) dﬁ) do™

Using Lemma 2.6.4 we conclude that

N |SN73|
Zn(fs5,VN)m  |SN-1 N2

<10gFN,N(I — Q)FN> =

N—-4

/o W / sy 108 Fon (00) (o (00) fo (02) = o (1 (0)) i (02(0))) (N = 0 = 05) =

N N-2
(»/SN—3< vaf—#) (Hk=3f5N (Uk)) d0m> dvldvgdﬁ

[SYEIN

SNUNY

0 ﬂ /2+ 2<N log fs (v1) (for (V1) fox (v2) = for (01(9)) for (v2(9)))

. Nes ZN-2 (f(;N.\/N—v%—v%)
(N =] —03) 2 Inoe M)

and here we finally use Theorem 2.6.3. For N > 4 (which means we’re allowed to use

dvidvadd

j=2)
ZN_2 (f(;N.\/N — ’U% — ’U%)
_ (—U%—U%+2>2
9 e z(N—z)ng
— - +)\2(N—2,N—vf—v§)
N—2-25N-|SN*3](N—U%—U§)¥ V2r
Zn(fsn, VN) 2 ( = +)\(NN))
ON > = —2 )
N\Jén VN - S, - |SN—1|NNT /o 0
And so
/N _ 2 _ 2
’SN—SUX . (N B v% B U§)¥ ZN_2 (f(gN. N (% U2>
|S‘N_1|]\/vT ZN(f§N7 \/N)
_ (—v%—1)§+2)2
_ N e RN V210 (N = 2,N — 02 —03)
N —2 14+ v27A\o (N, N)
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which allows us to rewrite

= N / ’T/ log f&N(m) (faN(m)faN(vQ) — faN(Ul(ﬁ))faN(vg(z‘})))
my/1— 2 Jo  Jupruisn
€ (N-2)%2 + \/ﬂ)\Z (N —_ 9N — Uf _
1+ 27(N, N)

Using the invariance of {v} + v3 < N} under rotation, and the notation (f ® g) (x,y) =
f(@)g(y), [¥* = f @ [ we find that

2
Y2) g1 dvacdd

/2+ 2 log foy (V1) (fsn (V1) fon (V2) = for (V1(9)) fiy (V2(V0)))

(2—1}%—1;3)

e D 4 \/2m)y (N — 2.N — v? — v}
1+ v2mAo(N, N)

= /2+ . 10g (fsy ® 1) (v1,02) (522 (v1,v2) — [ (01 (D), v2(9)))

2 2
(2—1}1 —v2>

e_m + \/27’(‘)\2 (N —2.N — U% - Ug)
1 + vV 27T)\0(N, N)

= /2+ o log (fs, © 1) (R12,—9 (v1,v2)) (f522 (Ri2,-0 (v1,02)) = f5 (Ria,—s(vi(0), v2(0))))

) dUl d’UQ

dUl dUQ

_ (2—1}%(—19)—1)%(—19))
e (V=23 +27 Ay (N — 2.N — v?(=0) — v3
1+ v2rho(N, N)

= [ 08 oy () U (=) o (=) = o (0 02)

(=9)) dviduvs

2 2
(2—1}1 —'u2)

e ODF 4 \/2m)y (N —2.N — o —
1+ V21 (N, N)

Thus, by using the substitution —J = ¢ and combining the above with (2.6.4) we

2
2 ) dUl dUQ

see that

(log Fxr, N(I — Q)Fy) (2.6.5)

= —/0 i /2Jr . log f&N(Ul(ﬁ)) (f5N(U1(T9))f5N(U2(19)) _ féN(Ul)f(SN(UQ»

/ 2
m/1—%

38



_ (2—1}%—1}%)
e W% 4 \/21) (N —2.N — 02 — 03

1+ /27X (N, N)
We also notice that if we replace v; with v, in (2.6.4) we find that

) dUl dUQdQ?

(log Fy, N(I — Q)Fy) (2.6.6)

J— / / o 08 T 02) U (00 o (0) = i (09 (42(9)

(-9

S 4By (N — 2.N — v — v}
.6 + T 2( vl v2)d1}1d02d19
1+ V271 (N, N)
and similarly to (2.6.5)
(log Fiy, N(I — Q)F) (2.6.7)

/ 7r/Jr . log fs, (v2(9)) (fs (v1(9)) fon (v2(9)) = for (V1) for (v2))

ﬂ\/1_—_

(i)

e VN 4210y (N — 2.N — o2
1+ v27Ao(N, N)
Combining (2.6.4), (2.6.5), (2.6.6) and (2.6.7) gives us

2
v) dvy dvsdd

N
477,/1—%
21
/0 / (0 fy(00) +10g f, (v2) = 108 f (0(9)) = o o (12(9))
vi4v3<

(fon (V1) fon (v2) = foy (v1(9)) fo (v2(19)))

_ (2*1}%*1}%)
e N5 421\ (N —2.N — v} —v3)

1++/21(N, N)

i (log (fsy (v1) fsy (V2 log (fs, (v1 sy (V2
4W\/1_—_/ L Q0B ) o 02) 108 i (30 i ()
(o (00 (02) = Foy (02(9) o (12(9))

(2—1%—1}%)
SR 27y (N — 2.N — 02 — 2
.6 * + 7T)\2 ( 4 UQ) dl}ldvgd’&
1+ v27A(N, N)

(log Fy, N(I = Q)Fy) = (2.6.8)

d'U1 dﬂgdﬁ
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Due to the monotonicity of the logarithm we know that

(logz —logy) (x —y) >0

for any =,y > 0. That along with the fact that sup,cg [A\j(N — j,u)| < €;(N) and

(log Fn, N(I — Q)Fy) > 0 (See Lemma A.1.6 in the Appendix) shows us that

<10gFN,N(I— Q)FN> = |<10gFN,N(I—Q)FN>|

N 21
< m/o /v%+v§§N\10g (fon (1) foy (v2)) — log (fsx (01(9)) fsy (v2(D)))]

| fan (01) foy (v2) = fon (01(9)) foy (v2(0))]

_ (2*1}%*1}%)
e N5 4 \2m |\ (N — 2.N — v} — v}

|1+ V27X (N, N)|
N 14+ v2mes(N)

= dryf1- 2 1+ V2rA(N, V)]
/o ﬂ / sy 108 (o (01) fon (22)) =108 (fox (01(9) fiy (22(9))))

(fon (V1) foy (02) = fon (V1 (D)) for (v2(19))) dvrdvadd)

) | d'Ul dﬂgdﬁ

Much like (2.6.8) we can 'untangle’ the above expression and get that

N 1+ v2mea(N)

m/1-2 |14+ V27 0(N, N)|

/0 TF /2+ 2<N log fon (v1) (fon (v1) fo (v2) = for (01(0)) fo (v2(9))) dvrdvadd

(log Fiy, N(I — Q)F) < (2.6.9)

B N 1+ v27mey(N)
m/1- 2 |1+ V27 Xo(N, N)|

/0 W/QJF . (—1og fon (v1)) (fon (v1(9)) fsy (02(0)) = fo (v1) fs (02)) dvrdvadd)

Remembering that f5 = 6M2*15 + (1 - 5)M2(115) and noticing that

1 U2(19) ”2(79) 1 v2(19)+v2(19)
MQ(U1<19)) . Ma(’l}2<19)) = %6_ 12(1. e 22(1 = %6_ L 2a 2
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= e M) Males)
and
fs(@) fsy) = My (2) My (y) + (1 = )My ()M _+_(y)
81— )My ()M () + (1= 8M_1_(2)M_1_(y)
we find that
F3(01(9)) f3(02(9)) = f5(01) fa(v2) (2.6.10)
= 01— 8) (Mg ()M (0(9)) = My ()M, (15))
+6(1 - 0) (Mz%( 2(9))M_

s (01(0)) = My (v2) M (m))

< 6(1—8) (M ()M (0a(0)) + My ()M 1 (02(9))

Also, since the logarithm is an increasing function and M, is a positive function
we find that

—log fy(v1) = —log (SMy (v1) + (1= O)M_1_(v1))

s (2.6.11)
02 52\  3logd logm 9
<o ) - o) 2
logd 1
< _3los + 2T + 8 (vf 4 v3)
2 2
logo 1
= 20 BT 5 (u300) +3(9)
and since
02 e (1=0)% 4 gp_ 02  (1-0):
= - —hmrt L 2.6.12
fs(v) ﬁe + NG e SN + NG (2.6.12)
1-— 5
we have that —log fs(v;) > 0. Combining this with (2.6.9), (2.6.10) and (2.6.11)
yields
N 1 +V2mes(N
(log Fv, N(I ~ Q)Fw) < : ()

1=z L+ V2ro(N )]
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2 3logd log
/ / (— o+ =T+ ox (vf(ﬂ)+v§(z9)))
0 v%—o—v%SN

S (1 — 6) (M; (0 (O)M__1 (0s(9)) + M 1 (02(9))M__s (vl(ﬁ)))dvldwdﬁ

20-0,) 20N 20-0,)

Using the rotation invariance of the the disc along with its invariance under the

transformation switching v; and wv,, we find that

2N (1+ v2mes(N)) on(1 — o)
1= 2 |14+ v270(N, N)|
3log oy logm 9 9
+ + oy (0] + v3) (ML (v1))M__a (’02)) dvydvedi)
v2+v§<N 2 25N 2(1=6)

AN (14 V276(N)) dn(1 — é)

iz L VIR N))
N

3logd 1
/ (_ og N oL Ogﬂ + 0 (v] + vg)) <M%(v1)M . (2,2)> dvydvs
+vi<N T3y 3 3

<lOgFN,N([ — Q)FN> S

(1-dy

Increasing the domain of integration from {v? 4+ vZ < N} to R? only increases the

above expression, and so

AN (L4 V21e(N)) on(1 = dn)

<10gFN,N<] — Q)FN> S

-2 |14 V27 X0(N, N)|
3logdy logm
(PR g () ) (Mg (0 () din
AN (1+v2mea(N)) on(1 — én)
-2 |14 v27X0(N, N)|

1 1
|:<_3 OgéN + Ogﬂ-)/ M (Ul)M 1 (Ug)dvldvg
2 R 286N 2(1=6p)

+(5N//'U1 1 ’Ul 1 (Ug)d'l)ld’UQ
2(1-6n)

5N//113M251N(v1)M2(115N) (v9)dvyduvy

Since [, My(v)dv =1 and [, v*M,(v)dv = a (See the proof of Lemma 2.6.1) we
conclude that

AN ' (]_—I— QWEQ(N)) 51\7(1—5]\[)
-2 |1+ V2w (N, N))|

<10gFN,N<] — Q)FN> S
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2 2 +5N'ﬁ+5N'2(1—5N)

3log d 1 1 1
(_ ogdy , logm >
Put differently

(log Fn, NU - Q)Fy) _ 4 (14 v2mex(N)) (1 — on)
N(=dylogon) = [{_ |14+ V27 0(N, N)|

2w

3 log 7 1 on
2 21Og6N 21Og5N 2(1—5N)10g5]v
Since 0 satisfies conditions (a’) of Theorem 2.6.3 and [Ag(N, N)| < €y(N) e 0
—00
we conclude that

4 (1+V21e(N)) (1 - 6n) Ly

1_2 |1+ V21X (N,N)|  Noeo
N

3 log ™ 1 on . 3
2 2logdy 2logony  2(1—0dn)logdy N—eo 2

and thus there exists a constant ¢;y,.—s, depending only on the behavior of d5 such

that
4 (1+V2mea(N)) (1 — bn) (%_ logr 1 on )
1_% ‘1—1—\/271')\0(]\7,]\[)‘ 2 2logdy 2logdy  2(1—dn)logiy
Sétype—é

This proves that for all N > 4 (which was needed for the approximation of Zy_5)

N

< 6type—(S (_6N log 5]\7)

Adding the cases N = 2,3 leads us to find a constant c¢;y,._s such that

(log Fy, N(I — Q)Fy)

S Ctype—6 <_5N 10g (5N>

N
for all N > 2, as was claimed. [
Y fop (v2) 1 2 .
Theorem 2.6.6. Let Fy = InUsn /) where 0 < oy < 5, 0 < B8 < 3 and O satisfies
conditions (a') to (') in Theorem 2.6.3. Then
. fSNfl(\/ﬁ) Fy (v1,...,ox)log Fiy (vq,...,05) do™ _ log 2
N—o0 N 2
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Proof. We have that

/ Fy (v1,...,ux)log Fy (vr,...,ox)do™
SV-1 (W)

(f51 \/N) /%N W) z lde UZ (Z 10gf5N Uk 1Og ZN(féz\H\/N)) dUN

N U; (% g
"X T Zn faN,\/_) /sw—wm (i (0)) Y& F (o)

k=1
1

— - N ) N
IOg ZN<f6N7 \/N) ZN(f(SN, \/N) /SNl(\/N) Hz:lféN(vz)da

N
- (Z m /SNl(\/N) (Hij\ilﬁsN (Uz)) 10g féN (Uk)dUN> - log ZN(de, \/N)
k=1 N2

For a fixed k, switching between v, and vy is invariant under the uniform measure

and as such

N i v o
Z ZN fé]\m \/_) /N_l(\/ﬁ) (HiZIfaN(rUZ)) log féN( k)d

k=1

N / N N
= ILZ) fsy (vi)) log fo (v1)do
Using Lemma 2.6.4 we find that

/ (Hﬁ\ilf&v (Uz)) log fs, (v1)do™
SN-1(y/N)

SN 2|

_W/ for (01) 10g fiy (02) (N =) =

(Hfi2f5]\, (vz)) dUNva?) dv;

</<¢N—>
SN_2 N
— B [ s o) (5= )T s (N

Using Theorem 2.6.3 for N > 4 and j = 0,1 we have

1 <f5N‘ N — U%)
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B (—v%+1)2
9 e 2(N71)E§N
= + M (N—-1,N—?
e B 1

2

1
A VN) = .
w(fon ) VN - T, - [SNUNTE (\/ﬂ
Thus
ZN—l (fé]\ﬂ V N — U%)

52 -
ST R
’SNA’NT ZN(ftSNa\/N)

()
- N e Uy 427 (N —1,N —v?)
VN - 1+ v27\(N, N)

and as such
/ Fy (v1,...,ox)log Fy (vl,...,vN)doN (2.6.13)
SNfl(\/N)

(i)

_ N /\/ﬁ £ () 108 fon (01). e "Ry 4 2 (N — 1, N —12) o
o N 1+ v27)(N, N)

1
Vi-w

Next we notice that

+ Mo(N, N))

—log Zn(fsy \/N)

21

|SN_1|: Ny _
(%) VaN.N*5 1+O(¢Lﬁ>>

and as such
2. /AN - N3 <1+O<\/LN>>

Zn(fsy: VN) = TR e ( \/%Jr/\o(N,N))

42

V2 <1 o <L>> (1 + V2 (N, N))

S, (2me)?

which implies

log Zx(f5, VN) = log (\/5 (1 +0 (Tlﬁ)) (14 V2rao(N, N))) (2.6.14)

N 1 3
- — . S
5 log (2me) 5 log (451\/(1 o) )
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Combining (2.6.13) and (2.6.14) yields

fsN " FN (v1,...,on)log Fy (v1,...,05) do® 1

N V1L (14 V2mr(N, N))

(2.6.15)
G

VN _
/ fon(v1)log fs(v1) | € 2N-DZF + 21\ (N -1, N — vf) dvy
VN

_log <\/§ <1 +0 (%ﬁ)}f (1 + \/ﬁ)\O(N, N>)> +2 log (271'6)—1—2% log (m — 1)

We'll show that each term in (2.6.15) converges as N goes to infinity.

VN _(dn)?
/\ﬁf(;N(vl) log fs,(v1) | € 2N-DZ 4 Vot (]V —1,N — Uf) dvy
VN

(i)™ ”1“)2
/faw(vl)logfaN(Ul)X[\/N,\/N](Ul) e "%y 4 V2 A (N = 1,N —7) | du
R

Since 0 < f5,, < 1(See (2.6.12) in the proof of Theorem 2.6.5) and sup,,cg | A1 (N — 1, u)| <

€1(N) we have that

(dn)” “1“)2
fon (V1) log fo (v1)x_yw,va(v1) | € RN 4 VoA (N - 1N — o)

(2.6.16)
< i (01) 0g fo, (01) (1 + V2res (N) )

The logarithm is an increasing function and M, is a positive function, and so

—log fi (01) = —log (I M_y_(0r) + (1= 65)M, 1 (u1))

2(0=0,)

< min (—1og (5NMﬁ (Ul)) , —log ((1 - 5N)M2( L (U1)>)

1=3n)

which implies

~Fon (1) 108 fi () = B M o (00)- (=108 fis, (00))+(1=0n)M_s_(02)-(~log f, (u1))
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—0nM_y_(vn) log (v M_y_(00)) = (1=0w)M 2 (wn)log (1= 6x)M___(v1))

Define

g (vr) = =0 My (v1)log (SxM s (1)) =(1=0x)M 1 (v1)log (1= 0w)M_ s ()

(1-6pn)

Since 6y — 0 from condition (a’) of Theorem 2.6.3 we conclude that

N—o00
3
oM 1 (0n) = jf;e—éfv”f 0 (2.6.17)
3 _
(1-— 5N)M2<155N> (v)) = % . e~ (1=0n)} — e\/:_j _ M%@)
and as such
gn{v1) — =My (vy) log (M%(vl)> (2.6.18)

pointwise. On the other hand, since

1 M,(v) 1 1 )
o M()l (2a )d = M()log(m-e%)dv

~3log(2a) — 1
_ Z3log(2a) Og”/Ma(v)dv— /M Jo*dv
. 4a?

4a
_ —3log(2a) —logm 1  —3log(2a) —logm — 1
B 4a da 4a

(the last equality is due the computation in the proof of Lemma 2.6.1), we find that

5N<—310g<$>—10g7r—1) (1—5N)< 310g< 15 ) logw—l)

/RgN(Ul)dvl = - 5 — 5
(2.6.19)
On (—3logdy +logm+ 1)+ (1 —0n) (—3log(l — on) + logm + 1)
B 2
log ™ + 1

/M1 v1) log <M1 (v1)> dvy

N—oo 2

Lastly (2.6.17) tells us that

Jox (01) 108 fi (00X (01) > My(v1)log (M (vr))
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pointwise, and since [sup, A1 (N — 1,u)| < & (N) — 0 and

N—oo

3
N2 =N|[——M—— — 1) —
o (46N<1 —ow) ) N ™
we have that

e,
fox (1) 10g for (V1) Xy v (v1) | € XN V2, (N=1,N—v7) | (2.6.20)

— My () log (My (o))

N—o0
pointwise. Combining (2.6.16), (2.6.18), (2.6.19), (2.6.20) and the generalized Domi-
nated Convergence Theorem gives

Vi ()
2(N-1)%2 2
N N N 1 - 1, — Up 1 0.
/\Ffd (v1)log fs(v1) | € N+ V2mA (N —1,N —v}) | dv (2.6.21)
~VN

logm+1

BN Ml (Ul) log <M1 (211)> dvy = — 9

N—oo R

Next we notice that since | Ao (N, N)| < €o(N) e 0
—00

o (V2 (140 () (1 + V0N, )

5 0 (2.6.22)
Also,
1 3 1 3
N loe (45N(1 “on) 1) N 108 <5N) T 5N 108 (4(1 —on) 5N)
SR S NI ; 5
T TONgy ONOBON 2N B \I1 o) N

= 525 Oy logdn + 1 I 3 -9
T Tongtrm OV OEON TN OB G —sy) N

Using condition (V') of Theorem 2.6.3 we find that

1 3
= oog [t 1) 2.6.2
oN 8 <45N(1—5N) )N%oo (2.6.23)
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Finally, (2.6.15), (2.6.21), (2.6.22), (2.6.23) and the fact that A(N,N) —s 0

N—oo
show that
fSN 1 FN (v1,...,un)1og Fy (v1, ..., vn) do?Y
1 1 1 log 2
_oert + —log (2me) = o8
—00 2 2
which is the desired result. O
The last two theorems allow us to conclude the following:
I ey (vi) 1 2
Theorem 2.6.7. Let Fiy = 2= where 0 < oy < 5, 0 < 3 < 5 and on

ZN(f5N7\/N)

satisfies conditions (a’) to (c') in Theorem 2.6.3. Then there exists a constant Cyype_s

depending only on the behavior of dn such that

<10gFN,N<[—Q)FN>
Jon- " FN (v1,...,on)log Fiy (vq,...,ox)doN —

In partzcular

< Cype—s (—On logdn)

FN < Ctype—5 (_5N log 5N)

Proof. This follows immediately from Theorems 2.6.5 and 2.6.6. Since

Jon— " FN (v1,...,on)1og Fy (vy, ... ,vn) do®N
N

£0

log 2
2

(See Lemma A.1.6 in the Appendix) and it converges to we know that it is

bounded from below by a positive constant «. As such

<1OgFN7N<I — Q)FN> < Ctype—6 (
fSNfl(\/ﬁ) FN (Ulu"'7UN)logFN (Ulu"‘»UN>d0-N N

—(SN log 5N)

where cyype—s is the constant found in Theorem 2.6.5. This concludes the first part of
the theorem.

Since

(logyn, N(I — Q)bn)
fSNfl(W) Uy (v, ..., on) log Yy (ve, ... o) doN

where vy is a density function on SY~'(v/N) we find that

FN = inf

FN S M (—(5]\[ 10g5N)
o

which is the second part of the theorem. O
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HzN:1f6N (Uz)

Theorem 2.6.8. Let FN = m
N?

where oy = ﬁ, and B > 0. Then there
exists a constant Cg depending only on [ such that

(log Fiy, N({ — Q) Fy) < Cplog N
fSN,l(\/ﬁ)FN(Ul,...,’UN)IOgFN (v1,...,o5)doN — N1=28

In particular

Cslog N
I'v < — s

Proof. Without loss of generality we can assume that § < %.

Since

1 1 (1 —2p8)log N
—log N1-28 ) N1-28 N1-28

this will follow immediately from Theorem 2.6.7 if we can show that conditions (a’)
to (/) of Theorem 2.6.3 are satisfied.

(a') is obviously true since 0y is a negative power of N.

For (0') we notice that

N
=N 5 o

1428 a7 _
5N N = N1_452 N—oo

For (¢/) we have that since 0 < 3 < ¢

SIS N = N-(438)(1-26) | — NBF -8 _ NB6E5-1)

N—oo

Obviously oy < % for N > 3 and the addition of the case N = 2 may only change

the constant Cjp slightly. O

Theorem 2.6.9. Let 0 < n < 1. There exists a constant C,, depending only on n

such that
Cy
I'y < N

Proof. Given any 0 < 7 < 1 we can find € > 0 such that < —— (for instance

1+e
e=1 (% - 1)) Choose
1—n(l+e€

3 77(2 )
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By Theorem 2.6.8, we can find a constant Cg, such that

Ca(y) log N
v s —yis

Since 1 — 25 = (1 + €) we have that

Cg log N 1
R VTR
and since the ne > 0 we can find another constant D, such that 1?\;5_7116\/ < D, for all
N > 2. Thus
CmDn
A T
which is the desired result. O

The last section of this chapter will be devoted to a few last remarks.

2.7 Last Remarks

For all practical purposes Theorem 2.6.9 tells us that the entropy production approach
is not better than that of the spectral gap. We’ll still have to wait time almost
proportional to NV in order to see every system of N particles equilibrate. Is there no

hope? A careful look at our results raises the following question:

Problem. In our result, as in [4] , the fourth moment of the one particle generating
function played a major role via the central limit theorem. In both, the sequence of
test functions had the property that its fourth moment, ¥5,, was unbounded as N
went to infinity. Will we get a better estimate on 'y if we restrict ourselves to the

case where the fourth moment of the test functions is bounded uniformly in N?

We still don’t have any ideas if the above is true or false. Another, more academic,

question is also natural:

Problem. Can the methods we employed in this chapter be used to prove or disprove

Villani’s conjecture?

o1



To this question we believe the answer is no. The purpose of the the technique we
developed was to estimate the entropy production via a known sequence dy. Hoping
to be able to use some negative power of N as dy proved to be possible but with

restriction: conditions (0') and (¢’) from Theorem 2.6.3

PPN — 0
N—o0

5]1\7"‘35]\/' N—> 0

00
This gives a very tight choice on possible dy’s and we feel we exploited it to the
fullest. There is a chance that one can pick a better one particle generating function,
and by that get different function a(¢), az(d) in an equivalent Theorem to Theorem
2.6.2, leading to a possible better upper bound, but we believe that our functions are
very natural and optimize the problem. We feel that in order to prove or disprove
Villani’s conjecture new techniques are needed, and we hope to be able to see the

conjecture settled in the near future.
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Chapter 111

TRACE INEQUALITY FOR THE FRACTIONAL
LAPLACIAN

3.1 Relativistic Energy and the Fractional Laplacian

The beginning of the 20th century was filled with great discoveries in the world of
Physics. One of the biggest and most influential, emerging in 1925, was Quantum
Mechanics. Quantum Mechanics provided a description to the dual wave-particle
properties of matter and investigated the subatomic level with incredible accuracy.
The combination of ideas from Statistical Mechanics, Classical Mechanics, Probability
Theory and the Physics of Waves resulted in a robust theory capable of explaining
and predicting many unexplained and unknown phenomena.

One of the crucial ideas in Quantum Mechanics is the introduction of the state
function ¥ (z), whose square is the density function for probability to find the particle
at position x. Due to wave-particle duality, the square of its Fourier transform, @@(p),
represents the density function for probability to find the particle the at momentum
p.

The main tool to understand phenomena in Quantum Mechanics is the Schrodinger
equation, which is the 'wave equation’ for the state function ¢(x). The roots of the
equation lie in the classical energy equation

2
E= 4y

2m

where ;;; is the kinetic energy term and U is the potential energy term.

Incorporating this into Quantum Mechanics we find that the correct expression
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for the kinetic energy in Quantum Mechanics is:

2

D(p)| dp

1 2
m o |

The fact that for nice enough function f, for instance Schwartz class, we have that

(=2)0) = ) [ 1o [Fo)| o (.11)

insinuates that we should connect the kinetic term % to the operator 5—(—A), which
is indeed what Schrodinger did in his equation.

In 1928 Quantum Mechanics took another leap forward by integrating Einstein’s
special relativity into itself, resulting in the celebrated Dirac Equation. The main
point behind the equation was that in relativity the kinetic energy is not given by
E = % but by E = |p|c, where ¢ is the speed of light. Dirac equation is far more
complicated than Schrodinger’s, but it managed to include a new property of matter
and energy called 'Spin’. Tt also managed to correctly explain some matter-energy
phenomena that were a mystery until then. For our discussion though, the interesting

part is that the new kinetic energy expression is
~ 2
C/ p| )@D(p)’ dp
]Rn

The resemblance with the classical kinetic energy, and its interpretation as a partial
differential equation related to the Laplacian, prompts us to define the operator v/—A

as

<f, \/jf> = 2W/Rn | ’f(p)rdp (3.1.2)
or (V=2 1) (p) = plF(p)-

Mathematically speaking, the language of Schrodinger’s equation is the language
of the Sobolev space H'(R"): The space of all L?(R") function that have weak
derivative in L? (R™). The language of Dirac’s equation is a that of the fractional

Sobolev space Hz (R™): The space of all L2 (R") function f such that their Fourier
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~ -2
transform f satisfies the condition [5, |p| ‘f(p)‘ dp < oo. This is the first and simplest
example of the fractional Laplacian.

In general we can define the fractional Laplacian of power o as the operator
(=2)" f(p) = [pI* f(p) (3.1.3)
when the right hand side makes sense. This operator, besides being a natural gener-
alization of the classical and relativistic operators, has its own merits: it is connected
to fractal stochastic process and stable Levy process (and as such to finances), it is
connected to nonlinear diffusion processes and in pure mathematics it is an exam-
ple for a pseudo- differential operators, arising naturally in the subject of Harmonic
Analysis.
In this chapter we will keep the definition of the fractional Laplacian as in (3.1.3)

when we can. Also, motivated by (3.1.1) and (3.1.2) we define

=a ) = o™ [ b |Fo)| do (31.4)

n

This chapter is devoted to a new trace inequality connected to the fractional
Laplacian. Before we begin with our new results, we will mention what have been

done so far.

3.2 Known Sharp Trace Inequalities connected to Fractional
Laplacian

Trace inequalities are very common in Mathematics and provide a way to connect

between 'boundary values’ of a function and ’interior values’ of its derivatives - usually

in an integral form. Sharp trace inequalities pose a far greater tool, as they distill the

inequality to its truest form, usually with the classification of possibilities to attain

equality in the inequality. Physically speaking, sharp trace inequality can reflect a

connection between some sort of density of charge on the boundary and the total
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energy inside the domain, it is connected to capacitance problems, and many more
examples.
A prime example for such sharp inequality is the inequality found by Jose” F.

Escobar in [10] showing that

(/Rn_l |7'f(x)|2(f:21) d$><nl) < v (1n — {FF(ZLH__li) }n ./Hn IV f(z, ) dedt
: (3.2.1)

where H" = {(z,t) |z € R", t > 0} and 7 f is the trace of the function on the boundary
of H". Escobar managed to show that the inequality is sharp and completely classify
the functions which give equality. Different proofs for (3.2.1) were found by Beckner
in [1], Carlen and Loss in [5] and Maggi and Villani in [20] whose approach to the
problem has been generalized by Nazaret in [21].

In view of such inequality a desire to try and find a similar one for the fractional
Laplacian is natural. In [24] Xiao managed to show that for a € (0, 1)

n—2a 2a

A T S NG o) SN N SN
(/R 5(z) d) S T2 2a) T (23 {r(g)} [ s ’?' t) ded!
3.2.2

where f(x,t) = e¥~2'g(x). The right hand side can be rewritten as (g, (—A)%g) (up
to a constant), which gives the connection with the fractional Laplacian. However,
this implies that (3.2.2) is nothing more than a Sobolev inequality for the fractional
Laplacian on R"! (one that can be found in [6]) and not a true trace inequality.

The inequality we develop here is closer in spirit to Escobar’s inequality.

3.3 The Main Trace Inequality

We start this section with two known results that will play a major role in our
discussion. The first is the case of equality in Hardy-Littlewood-Sobolev inequality,
originally proven by Lieb in [18], and the second is the Fourier transform of |x|*™".

Proves for both theorems can be found in [19].

26



Theorem 3.3.1. (Hardy-Littlewood-Sobolev inequality) Let 0 < X < n, ¢ = 522 and

f,h e LY(R"™) . Then

LI (e
/n Rn |:r; — y|A d d ’ r (2n_—>\) <F(n) ) £l o 170l £a (3.3.1)

2

>/

The inequality is sharp and there is equality in (3.3.1) if and only if h = const- f and
A
2n—X\

(02 + | — )
for some A€ C,0#~v€R and a € R".

fz) =

Theorem 3.3.2. If 0 < a < § and if f € LY (R") with q = then f exists.

n+2a ’

[N]1)
—

, r
Moreover, with c, = (
s

, the function g = c,_qo|x|*™™ % f is in L? (R™) and

f(p)
p|*

(Sl

Ca

=3(p)

i that case we have

)|
Coq ———dp = ¢p_9n ——————dxdy
’ /R” P ’ /n/n Ix—yl” 2‘“

We are now ready to state our main trace inequality, at least for nice functions.

Theorem 3.3.3. Let 5 < a < 2. For any f € S(R") define 7f (') = f («/,0) where
¥ € R"™'. Then

I7£1% 01 < Can £, (=2)" ) (3.3.2)

where
2a—1

o1 TR (rm—n)“

m T 92ara F(Q)F(n+22a72) : F(nTA)

Proof. We start by noticing that the inversion formula for Fourier transform states

that
Tf (ZL‘,) _ f (J}/, 0) f (p p ) 2mi(x’,0)o(p ”)d /dp//
Rn
Since f € S (R") we have

Tf (:E/) :/ (/ f(p/7p//) dp//> e27rz‘x/op’dp/
Re-1 \JR
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Clearly [, FW,p")dp" € L* (R"1) N L' (R*1) since for every k € N there exists
(% such that

S—gk
(14 Ip°)

An easy result from Fourier Analysis shows that

o] < =

Z/]?(p',p") dp//
R
(See Theorem A.2.1 in the Appendix).
Let g € S(R"™'). We have
2 . 2
ol =|[ en@g@a| <[ TFe) i@
Rn—1 Rn—1

2
< / T A(p’>|dp'dp“)
Rn

B0 45 )

/Rnl</fpp dp”)§ )dp’
= ([ o]

Using the Cauchy-Schwarz inequality we get

(rf,9)]” < (/ f(p)(z [p[** dp> (/R (‘p,‘?ipg,;)adp’dp”) (3.3.3)

= (LSS O )
(2r)* </ (W + D)

Since a > % we have that
1 1P| du 2 /°° du
ad /! — 5 — . T o 334
/R WP+ @) v pP Je T a2 P )y O+ @) (334

1 /00 . _ 1 N
= . t—z(1+t)“dt=—a-/ -t
= |p P o @)t

t)
_BG) _TEITCY) _ ve-T ()
)

2 2
P> PP T () !2“ T (o

As such

N2 I (2e=1 a ()2
/ 9 ()] _dpdp" = /7 - M/ %dp' (3.3.5)
R R

() + (")) I () i
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Since 0 < 2a—1<n—1and g € S(R"1!), we can conclude from Theorem 3.3.2

G@)° ,,  cnn-ean 1)/ / 9()g(y)
—dp’ = dxdy 3.3.6
/Rnl ’p/’2a 1 CQa 1 Rn— 1 Rn— 1 ‘l‘-y‘ n— 1) 2a 1 ( )
T ("Eza) T 9@gly)
- n—2qa : 204—]_ | _ (n—l)—(2a—1) x y
T 2 — Rn—1 JRn—1 |T y|

n2a
9(x)g(y)
dxd
2041/Rn1/Rn1’x_y’nl(2al Yy

Combining (3.3. 3) (3.3.5) and (3.3.6) gives us

TSN G )
(2 >2a NZE I () (3.3.7)

9(2)g(y)
' dzd
7T2 /]Rnl/]Rn1|:L‘—y|N1 —(2a—1) ray

Using Theorem 3.3.1 Wlth n— 1 as the dimension and A = (n — 1) — (2a — 1) we

that

(rf.9)]" <

71'

conclude from (3.3.7) that

=P o T(E) e
(2m)* vr
e T(3Y) ).(r(%)

T 2
r <(n71)+(2a71)
2

(rf.)l* <

L T (Te-n) T .
= e T(a)l (22) ( A

Thus, for every g € S (R"™1)

1ol 2o

2a—1

<Tﬁ¢>' <1 -F(%)F(Q_Tw-(””i”)n STAEN

gl 201 2%ere T ()0 (2%=2)  \ T'(%)
and since "’(Lio‘lf + 36 2‘{‘) =1and S (R"!) is dense in L4 (R"!) for all ¢ > 1 we have
that

2
17N 2y = sup L
L n=2a geS(RP—1) ||9|| An—1)

Ln+2a
2a—1

L () r(y) (Te-1) "™ .
S 22aa ) F(a>P(n+22oz—2) ) (F(nT_l) ) ’ <f7(_A) f>

which is the desired result. O
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A careful look at the proof reveals a few things. For starters, we didn’t really
need the requirement that f is a Schwartz class function, far weaker conditions would
have worked. Secondly, we see that the inequalities we used to show (3.3.2) are all
sharp inequalities that can be attained with a specific choice of functions (which we
call minimizers for obvious reasons). This leads us to hope that our trace inequality

is actually a sharp one and that we can classify its minimizers. Indeed,

e In order to get equality in the Cauchy-Schwarz inequality (3.3.3) we must have,

up to a constant,

~ g ()
f(p) =
®) =
e In order to get equality in the Hardy-Littlewood-Sobolev inequality (3.3.8) g

must be of the form

A

g(2') =

n+2a—2

(72 + |2 —af?) 7
for some A€ C,0# v € R and o’ € R*L,

It is not so hard to notice that the function we’ve constructed is not a Schwartz
function, and actually in many cases, not even an L? (R™) function. As such, our first
goal will be to extent our trace inequality for a larger class of function, hoping to find
the right space where the inequality is both natural and attainable.

Before we continue to do just that we notice that Theorem 3.3.3 can easily be

extended to traces of an intersection on several hyperplanes in the following way:
Theorem 3.3.4. Let 1 < j < n and % <a< g Forany f € S(R") we define

i f (2) = f(2',0) where 2’ € R"7. Then

171 200 < Can (f (=) £) (3.3.9)

where

e L F(Mj)l“(%){un—g)}"f

X 2
T Q2o T (Oz) T (n+2g—2j)
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Proof. The idea and proof are exactly like those of Theorem 3.3.3. We will repeat
the steps for completion.

If f € S(R") then 7;f € S (R™) and f € S (R™). As such

7 f (p/) _ J?(p/,p") dp//

RI

Let g € S(R™7). We find that

/an < . T @) dp”) AL 2 < (/

Using Cauchy-Schwartz inequality we find that

(i f, 97 < (/ f(p)r\ppa dp) </Rn (|p,||2§—i(_p8)|j)2)adp'dp") (3.3.10)

Denoting Do = [g; Wdy we have that

|§<p/)|2 I/ / o~ 1\|2 1 1/ /
sdp'dp” = 19 (') =dp” | dp’  (3.3.11)
/Rn (I + 10" Rr— w (o] + [p"[)

-~ N2 -~ N |12
1
p'=l'ly Jrn—i |p/| R (1+ [y]”) re-i [p/]

Since g € S (R?) and 0 < 2a — j < n — j Theorem 3.3.2 assures us that

~ / 2
C(n— a—
/ _|g,(§a)_|jdp'= (n—§)—(2a—j) / / - ngj)y)h —dedy  (3.3.12)
Rn—J ’p' CQOC j Rr—=3 JRn—J |I yl

n20¢
= n 2a
2a 2a-j /]Rn J/R"J’x _y|n 2a

Using Theorem 3.3.1 with n — j as the dimension and A\ = (n — j) — (2a — j) we find

9(z")3(y)
/Rn_j /Rn_]. mdl"dy’ (3.3.13)

20—
O EXCOR
=T TeEEy Ty Vs

Combining (3.3.10), (3.3.11), (3.3.12) and (3.3.13) we conclude that

(o) = 7w a0 dp'dp">

that

2a0—j

oo Do T(5) JT-j™
(73] 9)]" < 2a2+jl—‘(n+2g—2j>{ =i } SV GV R I ey

220 r (%) L nt2a—2;
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. (n—j) . .
Using the density of S (R"77) in Latea (R™7) and the fact that 2'3;3‘;.‘) +"2+(ia:j)2] =

1, we conclude that

2a—j

2 Do  T(*5*) [T(n—j)|"" o
Hij”L% < 220477-% T (n+2372j) T (%) <f> <_A) f> (3'3'14)

We only need to compute D;, in order to finish the proof. We notice that in the

2a—1
proof of Theorem 3.3.3 we showed that Dy, = /7 - F(r(i) ) For j > 1 we have that

1 1
b [ e [ (]
’ ri (1+[y[?) Ri—1 ( R (1+ y/|* + (?J”)Q)

1 1 /
— - sadt | dy
yr= P Jr (14 [y 272 \Jr (L42)
1

=D, ————————dy =Dy, Dj_m_;
Ri—1 (1 + ‘y/‘ 2)a—§ 2
Thus
1y o d=1)_
e [ () P
D;,= T 2 - T : — 73
J (J_ T (a) ) VT ['(a—1) VT INCEE=Y
Plugging this in (3.3.14) we conclude that
3 2a7j
b f ey < L TEEIT(F) [T —g) | ™
J L% — Q2aga I (Oé) I <n+2372j> r (%)
which is the desired result. ]

From this point onward we’ll deal with the more general inequality (3.3.9).
3.4 The space D* (R")

As discussed in the previous section, our goal is to find the most natural space where
(3.3.9) is not only true, but attainable. While the fractional Sobolev space H* (R"),

defined as the space of all L* (R") functions f such that [,

ﬂM@W@<mm@M

seem right we must go a different route.
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Definition 3.4.1. The space D (R"), where 0 < a < 3, is the space of all tempered

distributions f € S’ (R™) whose Fourier transform (in the distributional sense) f is a

function in L? (R™, |p|**dp).

Theorem 3.4.2. The space D (R") is a Banach space under the norm

I1£1le = ||7]

L2(|p|?>dp)

Proof. We start by noticing that ||| 5. is indeed a norm since [|-|| 2 ) is, and

|p|2~dp

f =0if and only if f = 0. The completeness is the only thing we really need to show.
Let fi € D* (R") be a Cauchy sequence in [||| pa(gny. This means that J?k(p)|p|°‘ is a
Cauchy sequence in L? (R™). Since L? (R") is complete we can find F(p)|p|* € L? (R™)
such that

— 0

L2(|p|?2@dp) k—o0

| 7o) - F )|

In order to finish the proof we need to construct a distribution f € S’ (R") with

f = F. Given any g € S (R™) Theorem 3.3.2 assures us that 28 ¢ L2 (R"). We

p|*

define

(f.9) = /n F(p)@dp :/ F(p)|p|~ - g(p>d

" Pl
By Theorems 3.3.2 and 3.3.1 we find that

/ 00 P b G ) / 9@9) 40 (3.4.1)

n pPe [ (e) oz =yl

- Ngll? s
(5) L

T T
T (%) : HgHL"i—ga
Also, for any r > 1 we have that

(RJM@VM>i=(A%meVw>i+(Ameme)i

1

QW@MMMLWM”M@M</ )

z|>1 |ZE
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n n S A
= llg(@)llo |1B"|" + [[]2]" - (S 1I/ T

dle| N
_ n n n—1
gl B + ol sl (1871 [~ o)

Since n(r — 1) > 0 we have that the second term converges and we can conclude that

for any r > 1 there exists C,,, such that

91l e < Crin (llg(2) | + lll2[* - 9(2)[] )

From this, and (3.4.1) we find that

o~

S 5(p)I°
/ F(p)g(p)dp‘ < N L2 ppeap) - /R d

|

n—2a
e ;E == {E E’)} Ny Coz (L@l + el 9(@)]0)
ie. = o F(p)g(p)dp indeed defines a distribution f € S’(R"). For any
ge S (R")
(Foy= .0 = [ Fo)lIp = (F.g)
Thus, ]/C\: F' and the proof is complete. O

Remark 3.4.3. The proof of Theorem 3.4.2 shows us more than the fact that D (R")
is a Banach space. It gives us an identification between it and L? (R", |p|**dp). Indeed,

the map
f—7

is an isometry by the definition of ||-|| 5. On the other hand, the proof of Theorem
3.4.2 showed that for any F € L? (R™, |p|**dp) we can find f € D®(R"™) such that

f = F, ie. the above map is an isometric isomorphism.

Before we can establish the trace inequality for D* (R"™) we’ll need to know a few

more things about the space.
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Theorem 3.4.4. Let f € L1(R") where 1 < ¢ < 2. If f € L* (R, |p|**dp) then
f € D*(R").

Proof. Clearly we can consider f as a tempered distribution since it’s an L7 (R")
function. The only thing we need to show is that the distributional Fourier transform
is the same as the regular Fourier transform. In order to show that we prove that for
any g € S (R")

(f.9)= [ F)ap)dp

R

Let { fi}en e a sequence of Schwartz functions that converges to f in L9 (R"). From
the theory of Fourier transforms on L7 (R™), when 1 < ¢ < 2, we know that there
exists Cy > 0 such that

[

iy < ClAll oy

where % + é =1 (See [17]). As such, {ﬁ}k  converges to f in LP (R™) and
S

P —

m [ fu(p)a(p)dp = Rnf(pﬁ(p)dp

(f.9) = Jm (fi.g) = Jim |
Now, if we denote by fAd the distributional Fourier transform we find that for any
g€ SR
<fd,g> =(f.9) = - F(p)g(p)dp = <f, g>

SO fd = f, and the proof is complete. O
Theorem 3.4.5. The space S (R") is dense in D* (R™).

Proof. We'll start by showing that H* (R") is dense in D® (R™). Theorem 3.4.4 as-

~

sures us that H (R") C D (R"). Given f € D* (R") we define fy(p) = X[z 4 (P]) f(p).

J.

ol w= [

=

We have that

—~ 2
Fo)| Ipl*dp < oo

n

—~ 2
R ap < [
and

—~ 2
R@)] 1ol dp

J.

)| ap<i [

+<IpI<k
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—~ 2
7o) lpl*dp < oo

:k2o¢/

Thus f, € L? (R™) and has an inverse Fourier transform which we denote by fj.

ﬁ(zp))2 p[**dp < k%‘/

n

Clearly from the above f, € H* (R™).
~ 2 ~ 2 —~ 2 —~ 2
Since | fu(p)| bl < |F(0)] IpP* € L' (®") and |fu)| bl — [Fw)] IpPe

pointwise we find by the Dominated Convergence Theorem that

= Flow = |

concluding that H* (R") is dense in D* (R").

Fuw) = F0)| o — 0

Given any € > O and f € D (R") we can find f. € H* (R") such that || f. — f]| pa <

5. Using the fact that S (R") is dense in H* (R") (See Lemma A.2.2) we can find

ge € S (R™) such that

2 2 €
1ge = fellga = A/ 1ge = FllZ2 + llge = flipe < 5
2

We have that
196 = fllpa < |[fe = fllpa + lge = fell pa
€
< 5 + ||ge - feHHQ <€
which concludes the proof. O

Theorem 3.4.5 immediately implies our trace inequality

Theorem 3.4.6. Let 1 < j < n and % <a< % There exists a continuous linear

2(n—j)

operator 7; : D% (R") — L™-2a (R") such that

112 s < G (F (=2 )

where _
2a—j

R ERICONE D {rm—ﬁ}w

 2%aqe [(a)D(2e=2) | T (%)
)

2 2
Moreover, for any f € S(R"™), 7;f (2/) = f (2/,0) where 2/ € R".
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Proof. This follows immediately from Theorem 3.3.4 and 3.4.5. [

Surprisingly enough, Theorem 3.4.5 tells us more than only the trace inequality -
it implies that D® (R™) is actually a function space and not an abstract distribution
space. While we don’t need this in order to show that (3.3.9) is sharp and attainable
in D*(R"), we decided to include this in our discussion as it will give us another
attribute of D* (R™) and, as will be mentioned later, gives an alternative proof to our
main inequality.

We begin with a Sobolev type theorem. This was originally proved in [6] but we

repeat it here due to its simplicity and relevance.

Theorem 3.4.7. Let 0 < a < § and f € S(R") then

1A 2n < cam I f] pa (3.4.2)

Ln—2a

where

F(EE) TG
Proof. The proof is similar to proofs presented in chapter 8 of [19] and our proof of

L Wa_r(%a).{w}?

Theorems 3.3.3 and 3.3.4. Given g € S (R") we find that
2 POENT:
NN g\p
Wi <. [ B8a
R" rr [Pl

Using the (3.4.1) from the proof of Theorem 3.4.2 we find that

I (n2e r B
(F )P < Ml -7 E_; | {F Eni } ol

Since %2 4 n=20 — | and S (R™) is dense in all L9 (R™) spaces the result follows. [

2n 2n

(fog)l” =

The following is an improvement to the above theorem:

Theorem 3.4.8. If f € D*(R") then f € L= 3 (R") and

A1l 2 < Can [l fllpa

Ln—"2«a

where ¢, was defined in Theorem 3.4.7.
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Proof. Given f € D*(R") we can find a sequence of functions {fi},.y € S (R") such

that
If = Fellpe — 0

(this is due to Theorem 3.4.5). As such, {fi},.y is Cauchy in D% (R") and (3.4.2)
implies that {fi},cy is Cauchy in Lo (R™). Since Lo (R™) is complete we can
find hy € L2 (R") such that

lhf— fell 2 — 0

LT3 fyoo

We’ll now show that f = hy. The proof of Theorem 3.4.2 and Remark 3.4.3 showed

that

(f0)= | Twaedp= | Flpl*- iﬁf) d

for any g € S (R"). Since 22 ¢ L2 (R") (as seen in (3.4.1)) and || f — fell pa - 0
— 00

Ip|*

we can conclude that

-~

9) 1) — fim | B3y = lim (fe.g) = (hy.9)

|p|o‘ k—o0

{f,9) = lim Fre(p)lp|* -
oo Jrn

which shows that f = hy and can be considered as a function. We also have that

/1

= lim [|fi]

2y < i con [ Fellpe = o e

Ln 2(1 L n—2«a

and the proof is complete. ]

We turn our attention to the study of the minimizers, if there are any. The next
technical Lemma is crucial in our discussion and is motivated by the proof of Theorem

3.3.4.

2(n—

Lemma 3.4.9. Let 1 < j <nand i <a < 2. Foranyg € Litias; (R™) and

f € D*(R"™) we have that

(mif,9)= | F@.,p")g@)dpdp"

R”

where p € R"7J.
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Proof. We start by noticing that since £ < a < § we have that

o m — i
(n—J) _,
n—+2a — 2

so g has a Fourier transform, and the righthand side makes sense. The main idea be-
hind the proof of this Lemma is using approximation by Schwartz functions, similar to

2(n—j) .
the steps taken in the proof of Theorem 3.4.4. Let f € S(R™) and g € Ln+2a=2 (R"77).

. 2(n—j) .
Since S (R™77) is dense in L% (R"7) we can find a sequence of Schwartz func-

i h th — n—j . k h
tions {gi }yen Such that ||gx g||Ln2+(2a3>2j kjo() We know that

Os(g9) = (1;/,9)

2(n—
is a bounded linear functional on L7525 (R™7) and so

(7f,9) = lim (7;f. g) = lim 9" G (p)dp'dp”

R’Il

Using Fubini’s Theorem we find that

FW.0") G () dp'dp” = /R . ( y F, " dp”) gx (P)dp’

Rn
Y . ~ 2(n—j) . .
Since g o 9 and [o, f (0, p") dp" € Lrvra2 (R™7) (same explanation as
n—j

L n—2a

given in the proof of Theorem 3.3.3) we conclude that

lim ( F@,p" dp”)@@(p’)dp’z / ( / F@.p") dp”)ﬁ(p’)dp’
k—oo Jrn—j RI Rn—J RI

Using Fubini’s Theorem again we see that

(mif,9)= | F@.p")q@)dpdp"

R"
for all f € S(R") and g € L% (R"9).
Next, given f € D*(R") and g € Lot (R"7) we can find a sequence of

Schwartz functions {fi}, .y such that

Ifi = fllpe — 0
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(this is true due to Lemma 3.4.5). By the definition of 7; we have that

il = Jim 7

2(n—j)

in the L7-ae (R” 7) sense, and so

(7f,9) = lim (7;fi, g) = lim Fe (00" G () dp'dp”

R

= lim Fo 0 0") Ip*2 i) )dpdp”

‘ «

We notice that

s / . ( / dp”) Lo T(EH) Al
dp: g\p dp =72 po
/n |p|? ]Rn—j| )] ri D% I' (a) R7—j |p’|2 J

as was shown in the proof of Theorem 3.3.4. Using Theorem 3.3.2 with n — j as the

[N

(n—j) , ,
dimension and 2« — j replacing 2, the fact that g € L2 (R*"7)and § <a <3
implies that —2&)_ ) € L*(R"7). Thus

p'|*~
~ N |12
L i<

i.e. |fa) € L2(R"). Since f(p)|p|® = lims_oo fr(p)|p|® in the L2 (R") sense (by the

definition) we conclude that

it =t [ @Iy — [ P, b Ty
—00 JRrn |p| - ’ |

= | 700" g W)dp'dp"
Rn
which is the desired result. O

The above theorem is the key to showing that (3.3.9) is sharp and attainable in
D> (R™).

Theorem 3.4.10. If f € D*(R") is a minimizer for (3.3.9) then fA must be of the

form
2o Gines (0)
flp) == e (3.4.3)
where p' € R and g; s (2') = o ’?2)n+23_2j for some A€ C,0#~ R and
,y + xlfa,
a € R,
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Proof. Assume that f € D*(R") is a minimizer for (3.3.9). Let g € L (R™7) =

<L2,§”2i) (R”—j)> be such that ||g|| 2 = 1 and
27
(7if.9) = 73|l 2mzn

We find that by Lemma 3.4.9

2

F.p") g w)dp'dp”

Rn

171 2 = (73 s ) =

2
F. ") 2 70 )dp’dp”
Rn

Ipl®

From this point we continue word to word as the proof of Theorem 3.3.4. Using

Cauchy-Schwartz inequality and Theorem 3.3.2 we find that

) ~ 2 2 9 ()
IIijIIL% < (/ f(p)‘ p| dp) (/ e dp)

_ ()T () . o)
- 22a . W%F(a)r (ZaT—]) ’ <f7 (_A) f> : /an /an de dy

Using Theorem 3.3.1 and the fact that ||g|| g = = 1 we find that
—2j

: LT r(eR) [ rie) | .
||TJf||L% < 220 a ) (OC)F (n+2a 2]) {F(n—j)} ’ <f7<_A) f>

= Clan (f, (=A)" f) = ||ij||i%

This implies that we must have had equality in every step of the way. Thus,

equality in the Cauchy-Schwartz inequality implies that

= o q()
f)Ipl*=C- e

for some C' € C, and equality in the Hardy-Littlewood-Sobolev inequality for g implies
that g must be of the form g¢; grs. Since the constant C' can be ’swallowed’ in the

general form of g; grs we obtain the desired result. ]
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Finding what might be a minimizer is only half the story. Are functions of the
form (3.4.3) in D« (R™)?

In order to show that it is indeed the case we need the next technical lemma:

n—2j+2a
2

Lemma 3.4.11. Let g;(2') = ( where ¥’ € R"™J. Then

_1
1+|z'|?
(i) g; € L9 (R"™) for allg > 1 when 1 < a < 2. In particular g; € € Lrints (R"7)

and by Theorem 3.3.2

~ (7|2 e ]F n—2o 2a
/ |g] (2{)12‘ dp/ — / / : 2) dLL'/dy
rei [/ I F 2“ 221y Jrn-i Jrn-d ‘37 - ‘" “

(i) for L < a < %,

g; decays faster than any polynomial at infinity. As such,

along with (i1) we conclude that g; € L* (R"~7) N C (R"7).

Proof. To prove (i) we notice that g; € C* (R"7), and so for any ¢ > 1 we have that

/ Jg5(@) = / rgj<x>|qu+/ |gj<x>|qug||g||zo-\B”-f'\+/ 19;(2)|da
Rn—J |z|<1 |x|>1 |z|>1

where | B"| is the volume of the n— j dimensional unit ball B"~7. We conclude that
the convergence or divergence of [, ; |g;(x)|%dx depends solely on the behavior ’at

infinity’. We also know that on R*

k—1 OO| ’k ! k—1 d|$’
/| il '/ 7dlzl =18 ‘/ TP

so convergence will occur if and only if 5 —k > 0, i.e. 8 > k.

Since

— 1

yw/‘n+2a—2j
|| =00

9;(«')
we know that g; will be in L? (R"7) if and only if W% € L7 (R™7 \ B"7). This
happens if and only if

g(n+2a—2j5)>n—j

Indeed, since % < a < g we have that for any ¢ > 1
gn+2a—-2j)>n+2a—-2j>n—75>0
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Also, % < a < 3 implies that 1 < ﬁg;g < 2 and so g; € L%ﬂ)f (R™7) which
proves the second part of (7).

The first part of (i) follows from the observation that g; € C> (R"77) and all of
its derivatives are L' (R"~7) functions, along with known facts about the decay of the
Fourier transform (see [13]). Indeed, if we have
P(z)

T8 = T epy

where P is a polynomial then for any 1 <7 <mn

Of () @) 28P@)
Oz; 1+ |z 1 +]z2)? 1+ [z

Since deg (gTP(x)) < deg (P(z)) — 1 and —21— < 1 we conclude that the behavior

at infinity of % is 'better’ than that of f (in the sense of integral convergence). Thus,
if fe Lt (]Rk) so would % and by induction all the derivatives. This is our case with
P(z) =1and g = 222,

The second part of (i¢) follows immediately from the fact that g; € L' (R"77),

which implies that g; € C'(R"). O

We're finally ready to show that D (R") is indeed the right space.

-~

Theorem 3.4.12. Let f(p) = % where p’ € R and gjmLs (2') = - AQ)"“g?f
Y2+ —a’|
for some A € C,0+# v € R and d € R"7. Then J/C\ is the distributional Fourier

transform of some f € D*(R™) and f is a minimizer for (3.3.9).

Proof. We start by noting that with the notations of Theorem 3.4.10 and Lemma

3.4.11 we have

(') A A 1
g,HLS x = n a—2j = n a— -
j (2t o) E e (

A ' —a
= imrea—z; 9i\ T
7] ot
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n4+2a—2j

7

1+

z’/—a’
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so g;mrs satisfies all the conclusions of Lemma 3.4.11.

We have that

R 2 — K i F 2a—) — L
/ fp)‘ |p|2adp:/ |55 ()] dp = 4 - (5 )/ ‘QJ,HLS(PH dy
Rn R Rn—J

P r(a) P
Using Theorem 3.3.1, Theorem 3.3.2 and the fact that g; s is the minimizer for

4

the Hardy-Littlewood-Sobolev inequality we see that

2a1’\ n— 2a

ag gj HLS 9 HLs(

/ ’ [p**dp = / / . HLWY) g0y
n Rr—3 JRn—J

|z —y'|n2e

2a—j

e
} 195, HLSH 2

27

o T2 T () { (%)

[ (o) D (=25=2) | T (n = j)
= (21)* Cjam ng,HLsHini(%;j < 00
ie. f € L?(R™, |p|**dp). From Theorem 3.4.2 and Remark 3.4.3 we conclude that
there exists f € D (R") such that ]?is its distibutional Fourier transform.
In order to show that f is indeed a minimzer we note that by Lemma 3.4.9 and
the above computation we have that

R — T
Loz N gmrsll 209

[ nt2a—2j

2 2

| [ F)Tmms 0y

ng,HLst _2(n—j)_
Ln+2a—2g

2
— 2 2 N ‘ 2aq )
1 }gj,HLS <p/)| (f]R |p| 14
= 2 ' Tpe
||gj,HLS|| 2(n—j) n Ip| Hg] HLSH 20n—i)
L nt2a—2j 2a—2j

(27T)2a Cj,Ohn /

which concludes our proof. O

)| 1 dp = Coen (1, (=2 )

n

Before we finish this chapter we’d like to show two more things:
e Why H*(R") isn’t the right space.

e Inequality (3.3.9) is actually sharp in S (R™), though equality is unattainable.
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Theorem 3.4.13. Let L < a < 2 and flp) = %ﬁ;p) where p € R"™7 and

gj,aLs (') was defined in Theorem 8.4.10. Then f € H* (R") if and only if o < 7.

Note that as H* (R") is contained in D (R™) Theorem 3.4.10 tells us that a function
in H* (R") can attain equality in (3.3.9) if and only if it’s of the form (3.4.3). As

such, the above theorem tells us that for many choices of o we won’t have a minimizer

in H* (R™).
Proof. Since o > % we have that 2o > £ - and as shown in Theorem 3.3.4

= | G @),y T ’ g "

[p|* [ (2a) p'[*

Ry 7 L 2k MM;.N‘%‘J’)'/ Gl
['(2a) Sy p)* I'(20)  Jypsr |p[*

f()

=T

Due to property (i7) in Lemma 3.4.11 we find that flp’\>1 ’gﬁH‘Z—iPJ”d < 00. Since

J;.mLs is continuous (property (i) again) and g; grs (p') ﬁ) Giwrs (0) = Ivl”% .

— , 2
9i (lfa/> H # 0 when g;prs # 0, we find that [, %4—?3”@/ will converge if

converges.

and only if f

dp’
[P <1 e

dn’ _ 1, /m—Jj—1 ' 1 dln
[ e [ = e [ 5
| 0

<1 |p,|4a—] |p/|4a—j 0 ‘p,‘4a—n+1

which will converge if and only if 4o —n < 0 or a < 7.

Thus, if @ < 7 we have that fis in L2 (R™) and as such has an inverse Fourier
transform f. We know that f € L2 (R", |p|**dp) (from Theorem 3.4.12) and as such
f e H(R™).

Conversely, if f € H* (R") then f € L* (R") and so « must satisfy a < 7. O

Theorem 3.4.14. Let 1 < j < n and % < a < 3. For any ¢ > 0 there exists

fe € S(R™) such that

73l sy 2 (1= €)Cam - (fer (A" £

0]



Proof. This is a direct result of the density of S (R") in D (R"), but we’ll show it
for completion. Let f € D*(R™) be a minimzer for (3.3.9). Since S (R") is dense in

D (R™) we can find a sequence of functions in f; € S (R™) such that
I —

As such

(o (“A) fi) = /

Fo)| tpPdp = (. (~8)° 1)

. ) . 2(n—j) .
By the definition of 7; we have that 7; f = limy_, 7; f5 in the L = (R™7) sense
and so
173 fill? 20y — 175 f I 20
J L n—2a k—oo J L n—2a

Thus, we can find k, such that

(s (D) fir,) < (L) (£, (=D)" f)

and
73l ez > (1= I 12 s

which implies

il 2ezn 2 A= I 1220 2 (1= 0)Can - (F (= A)° )
L—n
> — —
el 1+77 ]an <fk,,7 fk7,>
For a given € > 0 picking 7 such that %Z > 1 — e concludes the proof. O

In the next section we will develop another trace type inequality, using similar

methods to those we used to prove (3.3.9).
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3.5 Another trace inequality

Our main trace inequality (3.3.9) connects the fractional Laplacian of a function
to some L7 (R"™) norm of its restriction to the intersections of the hyperplanes z, =
0, ..., p_jy1 = 0. A different possibility we can investigate is an inequality connect-
ing the fractional Laplacian of a function to the fractional Laplacian of appropriate
order of its restriction to the intersection of the hyperplanes z, =0, ..., z,,—j41 = 0.

As usual, we start with S (R").

Theorem 3.5.1. Let 1 < j <n and 2 <a < 2. For any f € S (R") we have

. — a_%T, M, _ o
(nf Ay i) < SRl (35.1)

where 7; f was defined in Theorem 3.5.4.

Proof. As in the proof of Theorem 3.3.4 given f € S (R"), g € S (R"7) we have that

(o CAef) g DO o l8w)F
(2m)* I (o) /]R ‘p,‘zcy_jd (3.5.2)

(7f.g)]" <

On the other hand
/ )Ty / () P - g( >dp
Rn—J Rn—J

Denoting h (p) = 2L we find that h € L?(R"). Indeed, since § € S (R"7)

/ag

o~ / 2 Y ,
,|2a BEE g < oo, Also, S BB dp' < (512, - |, dp

p/|<1 |p/|2u J p/‘<1 |p/‘2a Fi

(T f, )" = (3.5.3)

we have that fp 151 |

19112, - |91 fo Wx#fnﬂg which will be finite since o < .

(3.5.2) and (3.5.3) can be rewritten as

B I HAC ) ;
Tt o] < TS Cap gy ] e
L AWt R <o e [l e
It is easy to show that functions of the form “TL)J where g € S(R"7) are dense
P2

in L? (R"7) (See Lemma A.2.3 in the Appendix). As such (3.5.4) is valid for any
h € L2 (R"7). This implies that 7/ (/) |p/|*% € L* (R") and

l‘ i
/ T3 .F(2a_ﬂ
Rn—j

ol =) (o

/12a0—3 /
dy < ——— 2 2 7
Y= 20" (o)

7



or

i
<ij7 (—A)" 2 ij> <
which is the desired result. O
The advantage of inequality (3.5.1) over (3.3.9) lies in its proof: we only used the
Cauchy-Schwarz inequality, removing a restriction on possible minimizers imposed

by the Hardy-Littlewood-Sobolev inequality! Indeed, we note the following theorem

whose proof we’ll leave to the Appendix:

Theorem 3.5.2. Let 1 < j <n and L < a < 2. Given g € C= (R" 7\ {0}), define

f(p) = f;f;g. Then f € L9 (R™) for any q > 1 and as such f = f is well defined.
Moreover, f € L* (R") N C (R"™) and
) 20—
(7if (A) i ryf) = #_F)(a) AL (=AY )

Before continuing to the next section we’d like to observe that the trace inequality
we developed here along with the Sobolev type inequality found in Theorem 3.4.7
can be combined together to give an alternative proof of our main inequality (3.3.9).
We've decided not to take that path since we wanted a simple way to see what the

minimizers were, and felt that proving (3.3.9) from scratch was more enlightening.

Our last theoretical section will investigate the case o = %

3.6 The case o =

ro .

Throughout this chapter we always demanded that o be bigger than % Our com-
putations showed why it was necessary - we had many integrals whose convergence
depended on it. In this short section we’ll see that it wasn’t just a technicality for a

tricky proof. We will show that no inequality of the form (3.3.9) is possible even for

Schwartz functions when o = % Before we start we notice that when o = %
i) _,
n+2a—2j
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Theorem 3.6.1. For any M > 0 there exists f € S(R™) such that

7l > M (£, (~2)% f)

@) |
[p|?8

Proof. Let 3 > 1 and § € C° (R"77 \ {0}). Define f/ﬁjn(p) =

wm (|0"]), where
p=(p,p") and w,, € C(0,00) be such that wm|[i m] = 1, suppw,, C [%, Qm] and
0 < wp(zr) <1 forall z € (0,00). f/f;; € C®°(R™) and as such it has an inverse

Fourier transform in S (R™). As shown in the proof of Theorem 3.3.4

Tifom ) = | fam (0, 0")dp"
RJ

and by Plancherel’s equality

2 /g\(p,) /1 //>2 / / ~/ 1\ |2 (/ Wm (‘p”’) //)2 /
sl = [ ([ S ntdar) ar= [ gene ([ 2 ar) o

: (') < 1 ay _ (%
Since 0 < g™ < sy Jps pm =

1 wm ([p”])
. — and —
|p'|26—3 Ip|?? S IpI?P

pointwise we can use the Dominated Convergence Theorem to conclude that

| :(ore N Ber

On the other hand,

/ pP
R’ﬂ

a similar discussion shows that

9 ~C |2 T (482 ~ (12
dp:/ 9wIE, _ 4. (3 )/ G@IP
re |p|48 U (48 = j) Jra-s |P'|?@P=D)

Since (I'(¢) — 1 we have that
¢—0

— G0
Frn@) o= | LR (0D

NS

lim |p\3

m—00

fﬁm()

1
) 5ot

28 —j (%)
4 r(4*‘

and so, for a given M > 0, we can find 3y > | such that

3. T2 (252 ) (48n — 7)
( ) (4,8M 2])

> 2(21)% - M
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For the fixed 8, we can find kj; such that

2
HTfﬁM,kHL2

; — 2
@) o Ipl | Fore s 0)

2
”Tf,BM,kM ”L2

@) o Dl | Fonr s (P)

1 ..
5 > = - lim
‘ 2 k—oo

_ 1 .W%-FQ (26A24—j)1"(4ﬁM_j) Y
2 (2m)2 2 (B) T (*225722)

Which concludes the proof. O

The last section of this chapter will be devoted to a few last remarks.

3.7 Last Remarks

A thing we may notice, looking at all the theorems presented in this chapter, is that
we choose to restrict the original function f to the intersection of the hyperplanes
ZTn =0, ..., Tp_j;1 = 0. However, this seems more of a convenience than an actual

necessity. Indeed, looking at all our formulas and remembering that

— -~

f(-=a)(p) = e 2™ f(p)

we conclude that we can easily replace 7; by 7; .» where

Tj’a”f (x/) — f (a:,/7 a//)

for 2/ € R" 7 and a” € R/, and still obtain the same results. The fact that the set
of minimizers we obtained is translation invariant (in the spatial sense) is not a big
surprise!

Lastly, while we feel that we’ve exploited everything we can from (3.3.9) we still
think that there is much more to be done concerning the fractional Laplacian, and

are eager to learn more and think more on the subject.

80



Appendix A

HELPFUL ADDITIONS

In this Appendix we present proofs to several results we used in our main chapters,

but felt they would hinder the flow of reading.
A.1 Additional Proofs to Chapter 2
Lemma A.1.1. Any solution of the master equation (2.1.1) satisfies
1F (v, ows ) = Ul agn-rymy < € NP 0w, 0) = 1l pa(sv-r vy

Proof. We know that F'(vy,...,vy,0) is a density function, and as such (F(vy,...,vx),1) =

1. Since F(vq,...,vn,t) solves the master equation we have that
d oF
7 (F(vy,...,oN,1),1) = E(Ul’ N t), 1) = =N (I —-Q)F(vy,...,un,1),1)

= _N<F(Ulv'"7UN7t)’(‘[—Q)]'> =0

and hence (F(vy,...,vn,t),1) =1 for all t. Next we notice that
d o(F—1
— |F(vy, ..., 0N, t) — 1”%2(@71\/@ =2 ¥,F —1)==2(NI-Q)(F-1),(F-1))
dt ot
and since (F'—1,1) =1 —1 = 0 we find that

d 2 2

i [ (1, on, t) — 1||L2(gN—1\/N) < 22AN|[[F (v, ... on, 0) = 1||L2(SN—1W)
and so

AN F(uy, ... un, ) — 1\|;(SN,1W) <||f(vi,... ,0N) = 1!@2@71@

which is the desired proof. n
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Lemma A.1.2. For any a,n > 0 we have that

1—

V2T _an? / _a2a? V2T
. e .
|z|<n

Vi—-e =2 < 2 dx <
a

and

Ve _aZq?
a2z2 27T - e 2
e 2 < —
|z|>n

Proof. We have that

e—a’n

2

/ —2 dx = // (zﬂ! dxdy<\///
[z|<n ||, |y|<n x24y2<2n?

2 2 a2

4 fn _a2r2 ]__6 an

== re 2 = 27 - - E—
0 0 a

And

a2(22 4y
/ e dr > // O dady = Vor
|z]<n x2+y2<n

Similarly

7112352 70,2322 7a2:c2 V 27T 7a2ac2
/e2dx:/e 2dx—/e2d:c: — e 2 d
|z[>n R |z|<n a |z|<n

a?(a2+y?)
2

2

1—6_7

m _d%k _a?kg
e 2 2m e 2
> <
a
k=ko+1 \/E
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2,
Proof. Since f(x) = = is a positive decreasing function on (1,00) we have that

i)
)

Vz
m a2k a21
—a’k m _—az 2 a/m 9 9 ) P

Z S g/ ¢ 2d:c = —/ egdyg—/ e’%dy
k=ko+1 vk o VT y=ave @ Ja/ky a J a/ky

1 ) 2 _a2k0

. 2
_ 1 / ey < YT
@ Jy|>avko a

where we used Theorem A.1.2 in the last inequality. Similarly

i%g " =2 (v Vi) < 2vim

Lemma A.1.4. Let f (vy,...,vy) be a continuous function on RY then

N—-1 9
/ (Ulv"'7UN—l7€ 2 _Zizl Ui)
fdo g duvy
3 SN er 2 1 2 N—-1
SN=1(r) | | v2<r? r2 — Z 2

e={+,—} i=1 Yi

Proof. We start by noticing that

1
do? = dsY
/SNI( )f o ’SN 1|7“N 1 /SNI(T)f 5r

where dsY is the uniform measure on S¥~!(r) induced from the regular measure on
RY. Next we see that since we can think of the upper hemisphere, Sﬂ\:_l(r), as the
graph of the function y(vy,...,on_1) = /7% — va 11 v?. Thus, we can compute the

surface element using the parametrization:
F(Ul, oy on—1) = (v, oo (v, - UN-T)

with the domain D = {vall vi<r }

As such
or 0y
=10,...,0 1 0,...,0,—
avi ) y YUy A \ A ,A y Uy y Uy avi
ith position
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The last vector we’ll need for the surface element is a unit normal to SY~'(r).

This is easily seen to be

N 1 < dy Oy vy 1)
n=-—/—/7m——— I N N R R N
/|V’}/|2 +1 31)1 (%2 81}1\;_1
Thus, the surface element is given by
o
1 0 0 0 8—771
o
X 0 1 0 0 8—772
ds = ————= - det
VAP +1
o 0 0 1
VN -1
_O9y 9y Oy __O9r 1
81}1 81}2 a’vg BUN—l
Oy
1 0 0 o
1
= - det
2 Oy
|V’}/‘ -+ 1 0 0 1 OvN_1
_o9y 9y e 1
8’[}2 31)3 8'UN—I
0 1 0 0
_1)N-1. 9
+—( ) WL et
VAP + 1 0 0 0 1
_Oy _ 5y _ Oy O
8’01 81}2 61)3 a’UN—l
Since
0 1 0 0 1 0 0
det = (=) "2 det
0 0 0 1 0 1 0
_Oy _ & _ Oy __ O _o _ O _ O
vy Ovg ovs OuN_1 Ovg Oun_1 vy
1 0 0
0 0
= ()N DL et = (—pN1.
_9r _ o0
81;2 8’[}]\[,1
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we conclude that

0
10 0o X 2
. . . . . oy
1 . . . . . (T)
ds = —————-det + _ N\
2 0 2
VIV +1 0 0o ... 1 To s VIV +1
Oy Oy Oy 1
81}2 8’(}3 T 8'UN—l

Continuing in the same way we find that

vy N—-2 2

1 1 Foe T 5}

ds = ———— | det ) R (aZ-) =/ |Vy]*+1
VIVA +1 el =1 N

3_"/

=———"_ and so
\r2— valva

valva r
dS—\/ N12+1:

In our particular case,

Thus

Tf (UIJ"‘7UN—17 2
/ deiV = / . dUN,1
SN_l(T’) ZN—IU?S,’,Q T2 o ZN*l 2

T i=1

In the same way

rf (vl, ce  UN1, — L
/ deiV = / c. dUN,1
¥ 1(r) AR ECE r2 — SN2

(3

Combining the two gives

V1, Ny, e T2 — ST 2
f ) ) ’ 21_1 [
fdoN / dv
/SNI() ‘SN 1| N— 2 Z N 1v2§7"2 TQ_ZN*]. 2 !

e={+—}

Lemma A.1.5. Let f (v1,...,v;) and g (vji1,...,vN) be continuous functions on RY

and RN=J respectively. Then

LN—l( )f('Ul, e ’Uj) ' g<vj+17 ce e ,UN) dO'TJ,V
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ISN?J;1| / f( ) 2 d 2 i
= —_— Viyeoo,Us rT — E V;
|SN_1|TN_2 g:1 ’U%S’I‘Q ) » Y - i

gdoN*j ) dvy . . . dv

Proof. By Lemma A.1.4

/ for,..05) g (Wi, ... on)do
SN=1(r)

2 N-1 2
Ul,...,vj)'g<1}j+1,...,UN1,6 2= Uz>
dv1 ..dUN,1

T X o

e={+—}
_ 1 / f(’Ul,...,Uj) )
|SN_1 ‘TN_Z I v2<r2 2 J 2

ré —

2\ 2 . ) 2 _ N\ 2) _ \\N-1 9
/ r =10 g (%H, <o, UN—1, 6\/<7" i=1 Ui) Zi:j—i-l Uz’)
Z 2< 2_ 2 - N—1
+1U T 1’U 2 _ ¥i 2 o 2
e={+,—} 2izj i=1"Y; \/<7” =1 Ui) Zi:j-l—l v;

. deJrl Ce dUNfl) d’Ul e de

1 f (Ul e ’Uj) / N—j
S L 7 — dvy ...dv;
|SN_1 |TN_2 / 5:1 v2<r? J 2 SN—-j—-1 ( 7“2*2?:1 UZ) ! r2=3i v} ! ’

2 _

|SN_j_1| ) j , 2
:W S u.2<rf(vl""’vj) r —Zvi

(/ gdaN_g ) dvy ... dv;
v (VAT |V
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Lemma A.1.6. For any continuous density function on SN=1(V/N), Fy, we have

that
(Fn,(I =Q)Fn) >0

Moreover, (Fn, (I — Q)Fn) =0 if and only if Fi is constant.

Proof. Using the definition of @ (given in Section 2.1) and the notation presented in
Theorem 2.6.5 we find that

(Fn, N(I — Q)Fn)

:N/ 1OgFN(U1,...,UN)
SN1 (V)

2w
FN(Ul,...,UN)—;Z/ FN(Ri,j,ﬁ(Uly-‘-aUN))dﬁ dO'N

N |\ i<i /0

2m
2

:LZ/ log Fy (v1,...,0N)
N\ i< SVTHVN)
2m

2

2m
/ (FN (’Ul, c. ;UN) — FN (RL]"ﬁ (Ul, R ,’UN)>) dﬁdO’N
0

By the same argument that led us to equation (2.6.5) in Theorem 2.6.5 in Section
2.6 we find that

1 27

=5 / log Fiy (Rijo (v1,...,uN)) (En (v1,...,on) — Fn (Rijw (v1,...,vn))) ddda™
™ Jo SNfl(\/N)

And so

(Fn, N(I = Q)Fy)
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N 2T
= —Z/ /SN . (log Fy (vy,...,vy) —log Fiy (Rijo (v1,...,0n)))
N 0 -

i<j
47
2

. (FN (Ul, . ,UN) — FN (Ri,j,ﬁ (’Ul, e ,UN))) dﬁdO'N

Since (logz —logy) (z —y) > 0 (as mentioned in Theorem 2.6.5) we attain the
desired result. Moreover, (Fx, N(I — Q)Fy) = 0 if and only if

FN (1}1, Ce ,UN) = FN (Ri,j,ﬂ (Ul, Ce ,”UN))
for each 7, j and ¥ which implies that Fy is constant. O

A.2 Additional Proofs to Chapter 3

Theorem A.2.1. Let g € L? (R") N L' (R™) and define

fla) = / _g(p)e’mrdp
Then f € L>(R") N C (R") and | = g.

Proof. We notice that by the definition

Using known properties of the Fourier transform (See for example [17]) we have
that f € L? (R") N C (R").
Let g, € S (R™) be such that || g, — gl| ;2 — 0. Define f, = n(—2). [ € S(R™)

and since the Fourier transform is an isometry on L? (R") we have that

1o = Fllze = 11G2 = Gll2 = llgn — gl — 0

Again, using the fact that the Fourier transform is an isometry and that for
g € S(R"), g(—=z)(p) = g(p) we find that

—

fp) = lim fu(p) = lim G,(~2)(p) = lim g, (p)

n—oo n—o0
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in L? (R"). But
lim g,(p) = g(p)

n—o0

in L2 (R") which implies that f = g. O

Lemma A.2.2. H* (R") is a Hilbert space with the inner product

P —

9o = [ T+ [ Fogwldp
Rn n
Moreover, S (R")is dense in H* (R™) as well as H' (R™) for any | > «, | € N.
Proof. We have that

U= |

which implies that (f, f) 5. only if f = 0. Given f,g and hin H*(R"), o, 8 € C it is

~ 2
)| tpP2dp > 11£15 > 0

o) an+ [

clear that

and

]

Thus (-, -) ya is an inner product. Next we’ll show completeness. Given a Cauchy
sequence { fi},cy in the induced norm ||-|| ;o we find that

2
o = Max ( / dp)
Rn

implying that {ﬁ(p)}k and {ﬁ(p)|p|a}k are Cauchy sequences in L* (R").
€Rn €Rn
2

Since L? (R") is a Hilbert space there are f.geL? (R™) such that Hﬁ(p) —f)||  —

L2 k—oo

[F— Fr®)[p|* = Fu(p)lp|®

o)~ Fatw)| o [
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~ 2
0 and ka(p)\p]a — /g\(p)‘ o 0. By passing to subsequences we can assume that

the convergence is also pointwise almost-everywhere. This implies that
9(p) = lim fi(p)lpl* = f(p)Ip|* € L* (R)

Proof. We can conclude that f € H* (R") and

= Fle = |

i.e. H*(R™) is a Hilbert space.

~

Rl — Fo)lpl”| do — 0

o) = R o+ [

Next, given any [ > «, | € N we have that for any f € H' (R")

J.

7] toPedp

fol 1o = [

Ip|<1
sﬁdﬂﬂwwﬁm
<[

foll av+ |

This implies that H' (R") C H* (R") and

115 = [ [Fo)| o+ [

<2f [fol a+ |

~

To prove density we define J?k(p) = f(p)Xo.5 (|p|) for a given f € H*(R™). We

Pl by + [

[p|>1

Fo)| I ap

~ 2
F)| pldp < o

7o) 1pdp (A2.1)

~ 2
Fo)| oy < 211

notice that ‘ﬁ(p)‘ < ‘J?(p) and so fp € L? (R"). Let f;, = (ﬁ) where g is the inverse

Fourier transform of g. We have that

J.

and so fr, € H® (R") for any s € R.. Moreover, since ’fk(p) - f(p)’ < 2 ‘f(p)’ and

P dp < oo

—~ 2
Rl oo < 1 |
R”

fk(p)rdp < Ik!%/

n

~ ~

fr(p) — f(p) pointwise, the Dominated Convergence Theorem implies that

k—o0

= Al = |

~

Fe®)pl* — F)lpl®

2
dp — 0
k—o0

fo) = i) o+ |
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which shows the density for H' (R") when [ > o, [ € N,

To show the density of S (R™) in H* (R™) we use the known result that S (R")
is dense in HI®*1(R™) (See [11]). Given f € H*(R") and ¢ > 0 we can find
fe € HEIFH(R™) such that || fe — fllye < 5. Next we find g. € S(R") such that

1fe = gell grorer < 555~ Using (A.2.1) we conclude that

€
9 = Flare < Ufe = Fllare + 1fe = gell e < 5+ V2UFe = ell easn <€

completing the proof. O
Lemma A.2.3. The set {‘g(ﬁ, lge S (R”)} is dense in L* (R") for any 5 < %.

Proof. Since g € S(R") we know that [, Li’pfz)@' dp < co. Also,

l9(p)|* > dp
——5z=dp < |lgll5 T2 <0
/|p<1 p|*# Ipl<1 |p|?

since 3 < %. This implies that {(—ﬁ|g € S(R”)} C L*(R"). Given f € L*(R")
we can find a function f. € S(R™) such that ||f. — f||;» < 5. Let w,, be as defined
in Theorem ??. We have that f.,,(p) = fe(p)wm (|p|) € C (R™\{0}), |fem(p)] <
|fe(p)| and f..(p) — fe(p) pointwise. Using the Dominated Convergence Theorem
we conclude that || feq — fell ;2 — 0. We can find m. such that ||f. .. — fe|| < 5
and conclude that || fem, — fl,» < €. Defining g.(p) = |p|’fem.(p) we find that
ge € C°(R™\ {0}) € S(R") and

9¢(p)

@) = lfem () = FP)ll 2 <€

L2

which is the desired result. O

Theorem A.2.4. Let 1 < j <n and i < a < 2. Given g € C= (R"7\ {0}), define




Proof. Since gqa > a > % we find that

/ ﬂm‘qdp:/ gl _ F(%)/ g @I

n |pl*ee I'(qa)  Jro-s [p|?90

as was shown in the proof of Theorem 3.3.4. Since g € C° (R"7 \ {0}) we have that

R,

Jons |Z|,g|/(£a| ~dp’ converges, and so f € L (R") for any ¢ > 1. This implies that f = f

is well defined and is indeed in L* (R") N C (R™).

Using the inversion formula, we have that

f(iL') _ /1;{ Me%ﬂxopdp

n ‘p|2a

By continuity we find that

g p, mi(z’,0)o g p, iz’ op’
ij ($/> _ / ( )62 (=,0) Pdp = / ‘p(’m) o2 P dp
RTL

Rr |p‘2a

Since f;('L;Q € L' (R") we have by Fubini’s Formula that

/ ;T (%) 9P omizey
T .CE, _ / (/ g (p )d ) 627rwc op’ dp = 72 - 2 / ‘627rm P’ g
= fo U o ™ PET T S S

(again we used the fact that o > 2). g € C>® (R"7\ {0}) and as such v

Bl €

2

L7 (R"7) for all ¢ > 1. An easy result from Fourier Analysis shows that 7;f €
L*(R™7)NC (R™) and

—~ T 9@) 9 () £

T‘f p/ = 72 . 2 = </ _dp//) — ( f p/)p// dp//)

A0 =T Ty e T e ol w! P07

(See Lemma A.2.1 in the Appendix).

From all the above we can the steps in Theorem 3.5.1 are valid and

200—7

<ij7(_A)a 27]f> ;(;—21—‘)@“) <f7(_A>af>

On the other hand

<ij, (—A)ai% 7 f (2m) 2o J/R

) ) 2a _] |2
— a=j | !
= () R" J ’p |2a ]dp
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and

2

/
|g(1?2)| J
n o |p?e

(f, (“A) f) = (2m) /

which leads to

200 1 F(ij)
= (277-) T2 . F(@) /R
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