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SUMMARY

This dissertation proposes approaches that enable effective planning and con-
trol of mobile transportation resources in large-scale consolidation networks. We
develop models, algorithms, and methodologies that are applied to fleet sizing and
fleet repositioning. Three specific but interrelated problems are studied. The first
two relate to the trade-offs between fleet size and repositioning costs in transporta-
tion resource management, while the third involves a dynamic empty repositioning
problem with explicit consideration of the uncertainty of future requirements that
will be revealed over time.

Chapter 1 provides an overview of freight trucking, including the consolidation
trucking systems that will be the focus of this research.

Chapter 2 proposes an optimization modeling approach for analyzing the trade-off
between the cost of a larger fleet of tractors and the cost of repositioning tractors for
a trucking company operating a consolidation network, such as a less-than-truckload
(LTL) company. Specifically, we analyze the value of using extra tractor repositioning
moves (in addition to the ones required to balance resources throughout the network)
to attain savings in the fixed costs of owning or leasing a tractor fleet during a planning
horizon. The primary contributions of the research in this chapter are that (1) we
develop the first optimization models that explore the impact of fleet size reductions
via repositioning strategies that have regularity and repeatability properties, and
(2) we demonstrate that substantial savings in operational costs can be achieved by
repositioning tractors in anticipation of regional changes in freight demand.

Chapter 3 studies the optimal Pareto frontiers between the fleet size and reposi-

tioning costs of resources required to perform a fixed aperiodic or periodic schedule
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of transportation requests. We model resource schedules in two alternative ways: as
flows on event-based, time-expanded networks; and as perfect matchings on bipartite
networks. The main contributions from this chapter are that (1) we develop an effi-
cient re-optimization procedure to compute adjacent Pareto points that significantly
reduces the time to compute the entire Pareto frontier of fleet size versus reposition-
ing costs in aperiodic networks, (2) we show that the natural extension to compute
adjacent Pareto points in periodic networks does not work in general as it may in-
crease the fleet size by more than one unit, and (3) we demonstrate that the perfect
matching modeling framework is frequently intractable for large-scale instances.

Chapter 4 considers robust models for dynamic empty-trailer repositioning prob-
lems in very large-scale consolidation networks. We investigate approaches that de-
ploy two-stage robust optimization models in a rolling horizon framework to address
a multistage dynamic empty repositioning problem in which information is revealed
over time. Using real data from a national package/parcel express carrier, we develop
and use a simulation to evaluate the performance of repositioning plans in terms of
unmet loaded requests and execution costs. The main contributions from this chap-
ter are that (1) we develop approaches for embedding two-stage robust optimization
models within a rolling horizon framework for dynamic empty repositioning, (2) we
demonstrate that such approaches enable the solution of very large-scale instances,
and (3) we show that less conservative implementations of robust optimization models
are required within rolling horizon frameworks.

Finally, Chapter 5 summarizes the main conclusions from this dissertation and

discusses directions for further research.
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CHAPTER I

INTRODUCTION

The focus of this dissertation is on mobile resource management problems arising in
large-scale freight consolidation systems. Specifically, this study investigates these
problems in the context of public consolidation trucking carriers, including both less-
than-truckload (LTL) and parcel/express carriers. The problems addressed here are
mainly related to fleet sizing and empty repositioning. Although these resource man-
agement problems are not new, there are now particular reasons to address them
again. First, the size of the problems has significantly increased. Large national
companies have shifted their focus from regional optimization of their operations to
enterprise-wide optimization, and models developed in the past do not necessarily
scale well when applied to these very large instances. Second, advances in computa-
tional capabilities have made it possible both to gather large volumes of information,
which are now available to be used in models, and to allow the solution of large-scale
mathematical programming problems. In particular, improvements in the strength of
commercial solvers for integer and mixed-integer programming have made it possible
to solve optimization models with hundreds of thousands of variables, such as the
ones presented in this study.

This introductory chapter first provides an overview of freight trucking, including
the consolidation trucking systems that will be the focus of this research. Then, the
resource management problems that will be addressed in this thesis are introduced.
Finally, the specific research objectives and the contributions of the dissertation are

summarized providing an overview of the primary results of this research work.



1.1 Trucking Operations

Trucking remains the dominant mode of freight transportation in the United States,
hauling about 11 billion tons of goods annually. Truck transportation in the U.S.
accounts for 70 percent of the total tonnage and 80 percent of the total value of the
domestic freight activity. The total revenue of the trucking industry is estimated
to be about $650 billion and represents about 5 percent of U.S. Gross Domestic
Product [3]. Furthermore, trucking is expected to gain additional ground in relation
to other domestic transport over the next several years. By 2018, truck tonnage
and revenue are expected to increase, respectively, about 30 percent and 72 percent
[3]. Additionally, the industry is greatly fragmented with about 500,000 carriers,
214,000 of which are public and the rest private, and the largest 50 companies account
for less than 30 percent of the market [3]. In this highly competitive environment,
the profitability of individual carriers depends heavily on developing cost-efficient
operations and finding out new ways to reduce costs without compromising service
standards.

Trucking transportation systems are organized to provide a certain combination
of cost and service to customers in certain geographic markets. Truckload trucking
handles shipments between 10,000 and 50,000 lbs and operates using direct trailer or
domestic rail container services in which no intermediate freight handling activities
occur. This thesis will refer to a container generically as a trailer or container hauled
by a truck providing the motive power. Customers of a truckload carrier are provided
with one or more containers at an origin location where they are loaded, and these
containers are then transported to a destination location, where they are unloaded.
Sometimes, truckload moves include multiple pickups and/or multiple dropoffs, but
this is less common than single origin to single destination moves. Importantly,
public truckload carriers do not use terminals to transfer freight en route from origin

to destination.



On the other hand, less-than-truckload (LTL) trucking, which handles customer
shipments between 150 and 10,000 lbs, and package/parcel express, which typically
handles smaller shipments less than 150 Ibs, operate consolidated container services.
Since the shipment requested by each customer does not fill an entire truck, transport-
ing each such shipment directly from origin to destination is not economically viable.
Consolidated container service providers collect and consolidate freight from multi-
ple customers, and route shipments through a terminal network of transfer points to
increase trailer utilization and to take advantage of transportation economies of scale.

Unlike truckload carriers providing direct origin to destination service, consolida-
tion service providers operate a fixed network of terminals, which may be owned or
leased. This network of terminals, and the transportation lanes connecting them, is
often referred to as the linehaul network and typically exhibits a hub-and-spoke topol-
ogy for larger networks. The terminals are used to consolidate outbound freight and
de-consolidate inbound freight, where a sorting process is used to transfer shipments
from arriving inbound containers to departing outbound containers. LTL terminals
are typically operated as cross-dock facilities, where forklifts are used during the sort
process to transfer goods. Parcel terminals typically include more sorting infrastruc-
ture within the terminal, such as various conveyance systems, to move parcels between
container unpacking and repacking.

Both LTL and parcel carriers use a so-called pickup-and-delivery system to trans-
port shipments from their origin location to an initial terminal. In parcel systems,
pickup-and-delivery tours are typically operated with small delivery vans, while in
LTL it is typical to use short trailers (“pups”) behind a city tractor. Each pickup
truck tour (or tour segment) will pick up shipments from several customers in a small
geographic area and transport them to a terminal serving the area, referred to as
a satellite or end-of-line (EOL). End-of-line terminals serve as sorting centers and

consolidation facilities for outbound freight. Since there usually is not enough freight



collected at an EOL to build full truckloads direct to EOLs serving other areas, ad-
ditional levels of consolidation frequently take place. Outbound freight from an EOL
may be loaded into a container destined to a terminal that consolidates freight from
many EOLs, often referred to as a breakbulk. Breakbulks handle enough freight to
build and dispatch cost-efficient loads with more nearly full containers. In an LTL
system, a typical shipment might travel from an origin EOL to an origin breakbulk,
then to a destination breakbulk and finally to a destination EOL. Between each pair
of terminals, the shipment travels in a so-called load that needs to be transported by

the carrier.

® Customer
® End-of-Line
™
origin o °
® ™ °
°
°
destination
L4 °

Figure 1: Consolidation system operations

Large national LTL or parcel/express shipping carriers in the United States might
operate 300 to over 600 EOL terminals, with approximately one breakbulk for ev-
ery 20 to 30 EOLs. In addition to their role in consolidation, terminals also serve
as temporary storage locations for freight, trailers, or tractors, provide a place for
servicing trailers and tractors (maintenance or repair), and provide a base for drivers

and dispatchers.



Both types of trucking system configurations use different types of mobile re-
sources to move loads and thus provide freight movement services to their customers,
including containers, the vessels into which freight is packed for movement, tractors,
the vehicles or power units used to transport the trailers, and drivers, the persons or

teams operating the vehicles.

1.2 Transportation Resource Management

Numerous planning and control problems arise in the management of a fleet of mobile
transportation resources, where a fleet may represent a group of tractors, trailers, or
drivers. An important characteristic that differentiates these problems from other
industrial planning and control problems is the fact that resources move across ge-
ography and across time. Additionally, the dynamics and large-scale nature of the
trucking operating environment add to the complexity of resource management prob-
lems. This situation is particularly critical for trucking companies operating national
networks because many operations research modeling and solution procedures for
such planning and control problems do not scale well when used in practically-sized
problems.

In this thesis, we study problems arising at the intersection of fleet sizing, fleet
repositioning, and dynamic planning under uncertainty for mobile transportation

resources, defined as follows:

o [Fleet repositioning. Almost all trucking carriers serve sets of loaded requests
that are imbalanced in both time and space. Some customer regions are typi-
cally net resource attractors while others are net resource generators. Due to
such imbalances, carriers need to move resources empty (i.e., without serving a
loaded request) between terminals. Planning and executing cost-effective empty

repositioning moves remains a primary challenge in trucking operations.

o Fleet sizing. The size of a fleet is the number of resources available to cover



the required loaded transportation movements. In general, small fleet sizes are
desired, but larger fleet sizes might be justified to reduce the need for empty
repositioning or as a hedge against uncertainty in operational conditions such

as future demand patterns and resource breakdowns.

e Dynamic planning under uncertainty. Dynamic decision making involves the fol-
lowing key features: a series of actions must be taken at different points in time
to control and optimize the performance of a dynamic and stochastic system; the
actions are interdependent (i.e., later decisions depend on earlier actions); and
information is revealed over time (i.e., only partial information is known when
decisions are made). In the particular context of trucking operations, monthly,
weekly, or even daily fleet management plans are constructed based on infor-
mation about customer locations and demand quantities and timing, which are
all uncertain to some degree before the actual execution. Thus, effective fleet
management planning must appropriately account for future operational un-
certainty to develop dynamic plans that hedge against adverse impacts on the

plans and avoid operational disruptions.

This dissertation proposes approaches that enable effective planning and control
of mobile transportation resources in large-scale consolidation networks. We develop
models, algorithms, and methodologies that are applied to fleet sizing and fleet repo-
sitioning. Three specific but interrelated problems are studied in this dissertation.
The first two relate to the trade-offs between fleet size and repositioning costs in
transportation resource management, while the third involves a dynamic empty repo-
sitioning problem with explicit consideration of the uncertainty of future require-
ments that will be revealed over time. Additionally, the first two problems involve
tactical decision making and are addressed using static deterministic network-based
optimization models, while the third problem involves dynamic operational decision

making in which information is revealed over time and is addressed with a framework



that explores how to properly deploy robust optimization models for dynamic plan-
ning problems. An important emphasis of this dissertation is in understanding the
limitations of existing and proposed models to solve these problems, as well as the
refinements that solution techniques need to address these shortcomings.

At the intersection of fleet sizing and fleet repositioning, we study the trade-offs
between tractor fleet sizing and repositioning costs. In trucking operations, tractors
are costly resources; therefore, reducing the required tractor fleet size can have an
important impact on profits. Since consolidation carriers often face demand with
different patterns over the course of a week or during the weeks of a month, and
because tractors have relatively few operating constraints, an interesting question is
what savings are possible from adding extra repositioning moves that deploy tractors
to different parts of the network at different times based on need. We developed
two sets of variants of tactical network flow optimization models using event-based,
time-expanded networks to investigate the tradeoffs between a larger fleet of tractors
and the cost of tractor repositioning under different strategies. The first variant set
includes models that combine fleet costs and repositioning costs into a single objective
function, including some with nonlinear objectives. The second variant set uses a bi-
criteria optimization framework and includes models that efficiently compute all the
points on the Pareto frontier of fleet size versus repositioning costs.

At the intersection of fleet repositioning and dynamic planning under uncertainty,
we study dynamic empty-trailer repositioning. Dynamic empty repositioning plans
involve the following characteristics: (1) repositioning decisions are updated over time
(daily, weekly, etc.), and move mobile resources from terminals which are net loaded
resource attractors to terminals that are net loaded resource generators; (2) at each
decision epoch, the number of empty resources available for repositioning and in tran-

sit depends on prior repositioning decisions as well as uncertain demand for loaded



resources; and (3) uncertain demands for loaded resources, and thus net resource re-
quirements at different terminals, are revealed over time. Developing dynamic empty
repositioning plans remains a major challenge for trucking transportation providers
operating very-large-scale consolidation networks because only partial future trailer
requirements are known. Although prior research has proposed robust optimiza-
tion models for empty repositioning problems under uncertainty, the existing models
do not scale well as the terminal network size grows. Furthermore, prior research
has not thoroughly addressed how to properly deploy robust optimization models
in multi-stage optimization problem settings such as those encountered in dynamic
repositioning. This study proposes approaches for embedding two-stage robust opti-
mization models within a rolling horizon framework for dynamic empty repositioning,
and demonstrates that such an approach can be used to create cost-effective, deploy-

able repositioning plans in very large-scale freight transport networks.

1.3 Daissertation Outline and Contributions

We conclude this introductory chapter by outlining the thesis, and describing its
specific primary contributions.

Chapter 2 proposes an optimization modeling approach for analyzing the trade-off
between the cost of a larger fleet of tractors and the cost of repositioning tractors for
a trucking company operating a consolidation network, such as a less-than-truckload
(LTL) company. Specifically, we analyze the value of using extra tractor reposi-
tioning moves (in addition to the ones required to balance resources throughout the
network) to attain savings in the fixed costs of owning or leasing a tractor fleet dur-
ing a planning horizon. We develop network flow optimization models, some with
side constraints and nonlinear objective functions, using event-based, time-expanded
networks to determine appropriate fleet sizes and extra repositioning moves under

different repositioning strategies with different degrees of implementation flexibility,



and we compare the optimal costs of the strategies. For repositioning costs, two
different cost schemes are explored: one linear and one nonlinear. Computational
experiments using real data from a national LTL carrier compare the total system
costs obtained with four different strategies and show that extra repositioning may
indeed enable fleet size reductions and concomitant cost savings up to 5%. The pri-
mary contributions of the research in this chapter are that (1) we develop the first
optimization models that explore the impact of fleet size reductions via repositioning
strategies that have regularity and repeatability properties, and (2) we demonstrate
that substantial savings in operational costs can be achieved by repositioning tractors
in anticipation of regional changes in freight demand.

Chapter 3 studies the optimal Pareto frontiers between the fleet size and reposi-
tioning costs of resources required to perform a fixed aperiodic or periodic schedule
of transportation requests. We model resource schedules in two alternative ways: as
flows on event-based, time-expanded networks; and as perfect matchings on bipartite
networks. For aperiodic schedules, all of the Pareto points can be computed in poly-
nomial time solving linear programming formulations of flows on the time-expanded
networks or solving minimum weight perfect matching problems on the bipartite net-
works. Furthermore, adjacent Pareto points can be computed efficiently by solving
a single shortest path problem in either type of network. Aperiodic schedules are
more difficult. The end points on the frontier can still be computed in polynomial
time by solving a sequence of two linear programs and the rest of the points on the
frontier can be computed using either integer programming flow formulations or per-
fect matchings with additional side constraints. Computational experiments using
real data from a national less-than-truckload (LTL) carrier compare both the prac-
tical applicability of the two proposed modeling frameworks and the computation
time to find all the points on the frontier. The main contributions from this chapter

are that (1) we develop an efficient re-optimization procedure to compute adjacent



Pareto points that significantly reduces the time to compute the entire Pareto fron-
tier of fleet size versus repositioning costs in aperiodic networks, (2) we show that the
natural extension to compute adjacent Pareto points in periodic networks does not
work in general as it may increase the fleet size by more than one unit, and (3) we
demonstrate that the perfect matching modeling framework is frequently intractable
for large-scale instances.

Finally, Chapter 4 considers robust models for dynamic empty-trailer repositioning
problems in very large-scale consolidation networks. We investigate approaches that
deploy two-stage robust optimization models in a rolling horizon framework to address
a multistage dynamic empty repositioning problem in which information is revealed
over time. Using real data from a national package/parcel express carrier, we develop
and use a simulation to evaluate the performance of repositioning plans in terms of
unmet loaded requests and execution costs, and show that the plans generated with
our proposed approaches can reduce the unmet loaded requests up to 80% with a
modest increase of 8% in execution costs compared to plans generated by deterministic
optimization models. Additionally, we provide computational evidence supporting
that (1) robust optimization models can use shorter planning horizons to obtain the
same or better quality decisions than those obtained with pure deterministic models,
and (2) robust optimization models designed explicitly to be embedded within rolling
horizon implementations can use less conservative uncertainty estimates than robust
optimization models which ignore this key implementation idea. These conclusions
are important because robust optimization models are more difficult to solve than
deterministic models, and they often do not scale well for large-scale systems over
the same planning horizon as that of a deterministic model. Therefore, reducing the
size of robust models (via a reduction of the planning horizon or via a simplification
of the uncertainty sets against which protection is sought) provides a mechanism to

increase the number of problem settings for which these approaches are tractable.
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The main contributions from this chapter are that (1) we develop approaches for
embedding two-stage robust optimization models within a rolling horizon framework
for dynamic empty repositioning, (2) we demonstrate that such approaches enable
the solution of very large-scale instances, and (3) we show that less conservative
implementations of robust optimization models are required within rolling horizon

frameworks.
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CHAPTER 11

BALANCING FLEET SIZE AND REPOSITIONING
COSTS IN LTL TRUCKING

Trucking companies operating consolidation networks, such as less-than-truckload
(LTL) carriers or parcel carriers, use tractors to move individual trailers or short
trailer trains between pairs of terminals in the so-called linehaul network. These
tractor dispatches not only move loaded trailers packed with customer shipments
through the network, but also may move empty trailers or no trailers at all. Although
a carrier is likely to serve customer demand that is not balanced over geography and
time, tractor dispatches throughout the network are balanced over time such that
tractors, trailers, and drivers are returned from locations that are net attractors of
freight shipments to locations that are net generators.

Operations research techniques such as mathematical programming and dynamic
programming have long been used to help determine tactical and operational resource
repositioning plans that correct resource imbalances that naturally arise due to de-
mand imbalance in such systems. This is not the focus of this chapter. Instead,
we assume that good resource repositioning plans have been developed to correct
demand-related resource imbalances, and focus instead on the required tractor fleet
size (and its associated fixed costs) required to execute the operations.

In trucking operations, tractors are costly resources and therefore reducing the
required owned or leased fleet size can have an important impact on the bottom
line. Furthermore, unlike driver resources that are subject to various government
(and sometimes union) work rules, tractors have relatively few operating constraints.

Therefore, in this chapter we explore the potential tractor fleet size savings that may

12



arise by adding extra tractor repositioning moves to deploy tractors to different parts
of the network at different times based on need. These additional tractor repositioning
moves may be executed, for example, by one-way drivers simply driving tractors in
deadhead moves, or may be larger groups of tractors moved together with a single
tractor pulling a flatbed trailer loaded with additional tractors. Since consolidation
carriers often face demand with different patterns over the course of a week, or during
the weeks of the month, such additional repositioning moves may be beneficial.

Tractor fleet sizing is a tactical decision problem for trucking carriers. Monthly
or quarterly adjustments to the fleet size are appropriate in practice. Therefore, in
this chapter we adopt an approach that determines an appropriate fleet size using
actual historical dispatch data (loaded and empty) for a recent month (for example,
an average-demand or peak-demand month during the time period since the previous
fleet size adjustment). Note again that we assume that this historical data already
includes necessary empty dispatches to correct imbalances in the demand for loaded
resources. We then develop a deterministic optimization model using the historical
dispatch data that explicitly models both the costs of carrying additional tractors in
the fleet and the costs associated with adding extra repositioning moves that may
enable a smaller fleet size.

We use the developed models to investigate the value of executing extra reposi-
tioning moves as a means to attain savings in the system-wide costs associated with
owning or leasing a tractor fleet during a planning horizon. Savings are realized if the
decrease in fleet costs, which results from the reduction in the fleet size required to
cover all the scheduled dispatches, offsets the costs of the extra repositioning moves.
We study a number of different repositioning strategies and compare the total costs of
each to the total system cost incurred when no extra repositioning moves are allowed.

The primary contributions of this chapter are the following:

e This chapter develops a modeling framework to explore the value of using a

13



repositioning strategy to attain savings in tractor fleet costs during a planning

horizon;

e This chapter investigates different repositioning strategies with different degrees
of implementation flexibility, and determines the total system cost savings that

may result from each; and

e This chapter presents computational results comparing repositioning strategies
using real data from a national LTL carrier under two different costing schemes,

and shows that total system cost savings of up to 5% are achievable.

The rest of the chapter is organized as follows. Section 2.1 presents a review of
additional literature related to this problem; Section 2.2 describes the modeling frame-
work and discusses the specific characteristics of our models; in particular, Section
2.2.1 describes the construction of the time-expanded networks used in our models,
Section 2.2.2 presents the different repositioning strategies which are analyzed, and
Section 2.2.3 discusses the two different costing schemes used to evaluate repositioning
strategies, a linear one and a nonlinear one. Finally Section 2.3 presents the results

of computational experiments performed using data from a national LTL carrier.

2.1 Related Literature

The subject of equipment fleet sizing has been extensively analyzed in the literature
and a large variety of problems have been reported. [56] presents an extensive survey
of the fleet sizing problems that have been studied in the literature. It integrates
several previously developed classifications for these problems , such as the one intro-
duced by [51] in terms of traffic patterns (one-to-one, one-to-many, or many-to-many)
and shipment size (full vehicle loads or partial loads), and the one presented by [15] in
terms of type of flows (empty or combined empty and loaded), transportation mode

(unimodal or multimodal), fleet homogeneity (homogeneous or heterogeneous), and
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type of company (freight carriers or industrial firms). Additionally, it also classifies
the problems by modeling approach (static or dynamic, deterministic or stochastic,
using mathematical programming, simulation, or a combined approach), application
environments (container terminals, manufacturing systems, railroad networks, ur-
ban/passenger transportation systems, freight transportation systems, or maritime
transportation), solution procedure (exact algorithms or approximate algorithms),
and number of objectives (single or multiple). In contrast, [37] presents a simpler
classification of fleet sizing problems, dividing them only into queueing models and
time-space models. The former are typically used for long-term decision making, such
as planning fleet sizes for several years; they are analytically tractable and rely on
aggregate data. The latter are used for short- and medium-term decision making;
they include a detailed representation of the underlying system but are also more
complex to solve.

The topic of operational repositioning of empty equipment has also received ex-
tensive attention by the research community. [21] provides a review of the existing
literature in this area, including approaches based on both deterministic and stochas-
tic models. Deterministic models are typically linear network flow models [31, 34, 54]
or else relatively easy-to-solve integer programming extensions that result from the
addition of various side constraints [1, 20]. Stochastic models are typically large scale
dynamic programming models [39, 40, 11], and are solved by a variety of approxima-
tion techniques.

A third branch of research has analyzed simultaneous fleet sizing and repositioning
decisions. [24, 25] report models and solution methods to minimize the total fleet
size and deadheading costs for a large trucking company and a large bus company
operating in a metropolitan area. Both cases assume linear costs and incorporate side
operational constraints. [7] considers a combined fleet sizing and vehicle allocation

problem under dynamic and uncertain conditions. [17] focuses its study of fleet sizing
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and empty equipment redistribution on hub-and-spoke networks with a single hub,
and apply inventory control models and queueing theory to develop decentralized
stock control policies for empty equipment based on stockout probabilities.

Closely related to our work in this chapter, fleet sizing and repositioning prob-
lems have been addressed for freight trucking operations. In particular, [7] considers
a combined fleet sizing and vehicle allocation problem under dynamic and uncertain
conditions. They propose a stochastic programming model and a network approxima-
tion, and develop a solution procedure which is illustrated on hypothetical problems.
Since the repositioning opportunities are not restricted and the uncertainty in travel
times is explicitly modeled, their models are intractable and approximate solutions
are sought. In contrast, we restrict the repositioning opportunities so that the result-
ing models can be solved, and the resulting repositioning moves can be implemented
in practice. In another related work, [17] also presents a model to simultaneously
study fleet sizing and empty equipment redistribution. They focus the analysis on
hub-and-spoke networks with a single hub, and apply inventory control models and
queueing theory to develop decentralized stock control policies for empty equipment
based on stockout probabilities. In contrast, in this chapter we do not restrict the
analysis to simple network structures since many real world companies operate com-
plex networks; however, since we use detailed models we do not provide closed form
results or simple control policies.

Also related to our research, but in a different transportation environment, [49]
investigates and compares static and dynamic models for determining rail-car fleet
sizes under different repositioning scenarios. Their proposed dynamic model is based
on a time-space network representation and is solved by a decomposition algorithm
that exploits the acyclic nature of the network. There are a few notable differences

between their time-space network and our time-space network; theirs has a regular
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discretization with a granularity of a day, whereas ours has a non-regular discretiza-
tion (as it is event-based with nodes only at the start and end times of scheduled
loaded moves and potential repositioning moves) with a time accuracy of a minute.
Furthermore, our time-space network wraps around as we assume repeating loaded
demands. In addition, the resulting networks differ substantially in size; [49] handles
networks of up to 27,000 nodes and 330,000 arcs whereas we deal with networks of
up to 442,126 nodes and 824,890 arcs.

Additionally, [9] also studies fleet sizing and repositioning but for a multi-terminal
urban bus transportation system. They develop a two-phase approach based on a
so-called “deficit function” to reduce the total bus fleet required to meet a fixed
scheduled of trips by inserting deadheading trips. They also prove a lower bound on
the minimum fleet size that can be attained by exploiting all possible deadheading
opportunities. This lower bound was later improved by [50]. [8] extended this work
further by permitting variable departure times along with the possible insertions of
deadheading trips.

Our research differs from all of this work because the repositioning strategies
that we consider in this chapter are not the same as those typically pursued in the
research literature that seek to redistribute resources to correct imbalances in loaded
demand. We consider repositioning strategies that seek to exploit differences in the
timing of loaded demand to reduce the fleet size. Additionally, we address a different
application environment with a different repositioning cost structure, we allow only a
restricted set of repositioning opportunities to facilitate the actual implementation of
such moves in practice, and we explicitly model the trade-off between the reduction

of fleet costs and the increase in repositioning costs.
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2.2 Modeling Framework

As mentioned before, tractor fleet sizing is a tactical decision problem for trucking
carriers concerned with determining the number of tractors required to ensure that
trailer dispatches can be executed; both loaded trailer dispatches and empty trailer
dispatches which correct imbalances in freight flows. Our focus in this chapter is
exploring whether tractor fleet size savings may arise when extra tractor repositioning
moves are added to deploy tractors to different parts of the network at different times
based on need. Our analysis uses historical trailer dispatch data.

This leads to the following problem: a trucking company operating a consolida-
tion network must serve a number of scheduled trailer dispatches among its terminals
throughout a planning horizon; such dispatches must occur at specific times, which
are known with certainty. The company wishes to determine the system-wide number
of tractors required to serve all of these requests as well as a plan for extra tractor
repositioning moves with the objective of minimizing the fleet sizing costs plus the
repositioning costs incurred during the planning horizon. Given that the costs asso-
ciated with serving the scheduled requests are the same for any feasible solution to

this problem, we ignore them throughout our analysis.
2.2.1 Time-expanded Networks

We model this situation using time-expanded networks in which each node represents
a specific terminal at a particular point in time and each arc represents the movement
or possible movement of tractors between different terminals at different times. We
consider different cases for our models. In the base case, in which no repositioning
moves are considered, only two types of arcs are involved: demand arcs, representing
scheduled trailer dispatches that require a tractor, and inventory arcs, representing

the option for tractors to remain idle at a terminal. Figure 2 exemplifies the time
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expansion of a network consisting of three terminals, and a planning horizon that cov-
ers ten periods and involves four scheduled dispatches. Given such a time-expanded
network, the deficit-function techniques outlined by [9] can be used to determine the
minimum fleet size required to serve all the scheduled requests. Since no repositioning
moves are considered, such a solution will also minimize the total costs throughout

the planning horizon.

Time
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) N 7/
] N y
g (/1/@_,0 ,
£
= \ /

T3

O Beginning / end of a scheduled move — — » Demand arc — Inventory arc

Figure 2: Event-based, time-expanded network without repositioning opportunities

In settings where extra tractor repositioning moves are considered, additional
repositioning arcs (and possibly additional nodes) have to be included into the net-
work. This situation is depicted in Figure 3 which shows the same scheduled dis-
patches as Figure 2 but also includes twelve potential repositioning options (six at
time 1 and six at time 6) among the three terminals; the traveling times between ter-
minals T1 and T2, T2 and T3, and T1 and T3 are equal to 1, 2, and 3, respectively.
In these settings, deficit-function techniques cannot be used to determine the actions
that will minimize the fleet size plus repositioning costs; in fact, these techniques
would not even be able to compute the minimum fleet size to cover all the scheduled

requests. We address this more complex setting using mathematical programming
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formulations of flows on the time-expanded networks. The decision variables are
the amount of flow on each of the arcs in the network. The flow on the demand arcs
corresponds to tractors serving the scheduled trailer movements, the flow on the repo-
sitioning arcs characterizes tractors being transported to a different terminal without
moving any loads, and the flow on the inventory arcs denotes tractors remaining idle
at the corresponding terminal. The constraints for our models are (C1) to satisfy
the flow balance equations at each of the nodes, (C2) to meet the demand require-
ments (i.e., to cover all scheduled requests), and (C3) to honor the flow integrality
requirements. Additionally, some repositioning strategies impose certain repeatabil-
ity patterns on the repositioning moves, such as weekly or bi-weekly repeatability; for
such strategies, the flows also have to satisfy the desired repeatability patterns (C4).
Finally, the objective function has two components: (1) a component capturing the
cost of operating the tractor fleet during the planning horizon (assumed to be a lin-
ear function of the number of tractors required in the network), and (2) a component
capturing the cost of the extra tractor repositioning moves (which will be discussed
in detail in Section 2.2.3).

Figure 3 reveals several other relevant aspects of our models and their input data.

The input data have the following characteristics:

e The scheduled trailer moves represent complete tours: The total number of
scheduled trailer moves out of a terminal equals the total number of sched-
uled trailer moves into that terminal. This ensures that the model is feasible
even without any extra tractor repositioning moves, which is desirable because
this constitutes the base case against which tractor repositioning strategies are

compared.

e There is a limited set of extra tractor repositioning moves: Only a subset of
potential extra tractor repositioning opportunities are included in the model.

This is necessary to ensure computational tractability, but also ensures practical

20



™

Terminals
T2

T3

O Beginning / end of a scheduled move Beginning / end of a potential repositioning move
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Figure 3: Event-based, time-expanded network with repositioning opportunities
solutions, (i.e., repositioning plans that can actually be implemented).
The models have the following characteristics:

e They are wrap-around models: The arcs corresponding to moves that begin
during the planning horizon but are completed after the end of the horizon
are wrapped around and connected to earlier periods of the horizon (Figure 1
shows only wrap-around inventory arcs, but demand arcs and repositioning arcs
can also wrap around). This characteristic is desirable to prevent warm-up or

cool-down effects at the beginning or end of the planning horizon.

e They are circulation models: The networks do not have external supplies or
demands of tractors. This property implies that the total number of tractors in
the time-expanded network at any point in time remains constant throughout

the entire planning horizon.
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e They are event-based models: The only events that need to be represented by
nodes are the beginning or end of scheduled trailer moves and potential extra
tractor repositioning moves. This ensures that the resulting networks do not

get too big.

This modeling framework is intended to identify time patterns in the scheduled
moves that could be exploited by extra repositioning moves to reduce the required
fleet size of a company. For example, consider the following idealized situation: A
company operates only two terminals, A and B, and during a planning horizon of
twelve periods, n scheduled trailer dispatches from A to B take place at periods 1
and 5, and n scheduled trailer dispatches from B to A take place at periods 7 and
11 (it takes one period to move between the terminals in either direction). Figure 4
illustrates this situation. The top part shows the base case where no repositioning
opportunities are available and the bottom part shows the case where tractors can be
repositioned between the terminals at periods 3 and 9. For both cases, we show the
time-expanded network with the minimum required tractor fleet size.

In this specific situation the fleet size is reduced by 50% (from 2n to n) by ex-
ploiting extra tractor repositioning opportunities. The specific time patterns that
make this reduction possible are described next: At terminal B, between the arrival
of n tractors at period 2 and the departure of n tractors at period 7, there is enough
time to move the tractors to terminal A and back. Likewise at terminal A, between
the arrival of n tractors at period 8 and the departure of n tractors at period 1 of
the next cycle, there is enough time to move the tractors to terminal B and back. In
general, due to the interactions between the scheduled moves among all the terminals,
spotting these types of time patterns in a large network is not trivial. Moreover, note
that if repeatability conditions were imposed on the repositioning, for example if the
same repositioning moves had to be performed in period 9 as in period 3, then the

fleet size could not be reduced.
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Figure 4: Example of fleet-size reduction due to repositioning

2.2.2 Tractor Repositioning Strategies

Clearly, there exists a trade-off between the flexibility of a repositioning strategy
and the reduction in fleet size it can attain. In general, a flexible repositioning
strategy tends to result in large fleet size reductions, but the actual implementation
of such a strategy may be challenging. On the other hand, a structured repositioning
strategy, in which the repositioning moves obey certain regularity and repeatability
patterns, tends to be easier to implement and monitor, but may only attain small fleet
size reductions. To explore these trade-offs, we analyze four different repositioning

strategies:

1. 2Rep: Performing at most two repositioning moves per day, with fixed depar-

ture times.

2. BiWKkly: Performing at most two repositioning moves per day, with fixed de-

parture times and biweekly repeatability.
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3. Wknd: Performing at most two repositioning moves per day, with fixed depar-

ture times, only on weekends.

4. Wkly: Performing at most two repositioning moves per day, with fixed depar-

ture times, and weekly repeatability.

These repositioning strategies will result in different fleet size reductions. However,
if the cost savings from the decrease in fleet size offset the costs of the extra tractor
repositioning moves, savings will be attained. The next section describes how these

costs are incorporated into our models to analyze this trade-off.
2.2.3 Tractor Repositioning Costs

The simplest cost structure to trade off tractor repositioning costs and fleet sizing

costs uses linear functions for both types of costs:
e Operating and maintaining a tractor throughout the planning horizon costs C™.
e Repositioning a tractor costs C* per mile traveled.

By assigning each extra tractor repositioning arc a cost of C* times the length in miles
from the terminal of origin to the terminal of destination of the corresponding tractor
repositioning move, the repositioning costs can be retrieved by multiplying the flow
along the tractor repositioning arcs with the cost assigned to these arcs. Because
we have a circulation model, the costs of operating and maintaining the tractor fleet
is equal to C"™ times the total number of tractors circulating in the time-expanded
network at some point in time. To quantify the number of tractors circulating in the
network, we use the concept of a temporal cut.

A temporal cut at t is defined as the subset of arcs in the time-expanded network
corresponding to events (i.e., scheduled moves, repositioning moves, and idle tractors)
that start on or before time ¢ and are completed after time ¢, where ¢ can take any

value within the planning horizon. Figure 4 illustrates this concept; the arcs that
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belong to the temporal cut at ¢ = 3.5 are shown in bold. A similar concept called a
count time-line is used for counting aircraft in airline fleet assignment models defined
over time-space networks. In those models, the flows associated with a specific type
of aircraft on all the arcs that cross a chosen count time-line are summed to enforce
that the total number of assigned aircraft does not exceed the number of available
aircraft of that particular type (cf., [48] for an extensive review of concepts, models,
and algorithms of airline fleet assignment models). In our case, by assigning a cost of
C™ to the arcs belonging to a temporal cut we can quantify the total fleet size costs.
Finally, the total cost of a repositioning strategy is simply the sum of its repositioning

costs plus its fleet size costs.

T

Terminals
T2

T3

Temporal Cutat t=3.5

Figure 5: Arcs belonging to a temporal cut

With this cost structure, the models for repositioning strategies that do not have
repeatability requirements correspond to minimum cost network flow models and are
thus easily solved. On the other hand, the models for repositioning strategies that
have repeatability requirements involve additional side constraints and are thus more

general and have to be solved using integer programming solvers, which may lead to
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larger solution times. Nevertheless, in all of our computational experiments, optimal
solutions were found quickly.

Next, we present a more realistic costing scheme to evaluate the trade-off between
fleet size costs and repositioning costs. For fleet size costs, we maintain the same set
up, that is, it costs C™ to operate and maintain a tractor throughout the planning
horizon. However, for the tractor repositioning moves we introduce a more complex,
nonlinear cost structure: Repositioned tractors are sent in batches (up to a maximum
batch size). They exhibit a nonlinear cost structure in which the first tractor of a
batch incurs a cost of C7 per mile traveled, and each of the remaining tractors on
the batch accrues a cost of C§ per mile traveled (we assume C} < C}' to prevent cost
unboundedness). The motivation behind this nonlinear cost structure has to do with
the way in which tractors would actually be transported between terminals. Tractors
are either repositioned individually by one-way drivers driving tractors in deadhead
moves, or repositioned in groups with a single tractor pulling a flatbed trailer loaded
with additional tractors. This nonlinear repositioning function is neither concave nor

convex, but it can be bounded below by the linear function corresponding to the

Cp+Cy (Spe-1)

Syt , where

average per-mile repositioning cost of a tractor on a full batch (
S7* is the maximum batch size). Figure 6 presents a graph that exemplifies the
nonlinear repositioning costs per mile corresponding to the parameters C7 = 2,C§ =
0.6, and SE* = 4. In this case, the lower bound corresponds to a per-mile linear
repositioning cost function with parameter C* = 0.95. Finally, the total repositioning
costs can be compactly stated as ) . 1r Dq <C’{L [%W +C¥ (:)sa — {%-‘ > >, where
AR is the set of repositioning arcs, D, is the distance (in miles) associated with arc
a, x, is the flow of tractors on arc a, S} is the maximum batch size, and [-] is the
ceiling function.

Although the resulting models are nonlinear programming problems, we can refor-

mulate them as mixed integer linear programs using additional integer variables for
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Figure 6: Nonlinear cost structure for repositioning moves

the number of batches sent on each of the repositioning arcs and additional constraints
to relate the number of batches sent to the number of tractors sent on each of the
repositioning arcs. Using the additional variables, the total repositioning costs can be
expressed as Yo an Do (Ol + C3 (20 — a)) = Sucan Da (Cha + (CF = C2) o),
where y, is the number of batches sent on arc a. Furthermore, the additional con-
straints state that the number of batches on a given repositioning arc must be greater
than or equal to the number of tractors sent on that arc divided by the maximum
batch size (i.e., y, > %,‘v’a € A). The complete mathematical formulations of all

the models introduced in this section are shown in the chapter appendix.
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2.3 Computational Results

In order to evaluate the cost savings that can result from different repositioning

strategies, we performed computational experiments using historical dispatch data

from a national LTL carrier that operates 346 terminals. The historical dispatches

span four weeks of operations, in which 115,140 scheduled trailer dispatches were

performed. The carrier imposed the following conditions on tractor repositioning

moves:

1. Tractor repositioning moves can only occur between terminals that act as domi-

cile for tours (in the historical data 135 out of the 350 terminals meet this

requirement).

2. No tractor repositioning move can take longer than 11 hours. This condition

was imposed to meet Hours-of-Service regulations in case tractor repositioning

moves are performed by the carrier itself. This restriction might be unnecessary

when tractor repositioning moves are outsourced.

3. Tractor repositioning moves are restricted to at most 2 per day with fixed de-

parture times.

Table 1 summarizes the characteristics of the potential repositioning moves associ-

ated with the four tractor repositioning strategies being evaluated when the above

conditions are taken into account.

Table 1: Characteristics of the tractor repositioning strategies

[ Strategy [ Max duration

# Moves per day

Start times

Frequency Repeatability =~ # Potential moves ]

2Rep 11 hr
BiWkly 11 hr
Wknd 11 hr
Wkly 11 hr

2

2
2
2

7:00 , 19:00
7:00 , 19:00
7:00 , 19:00
7:00 , 19:00

Daily None 267,624
Daily Bi-weekly 267,624
On weekends None 76,464
Daily Weekly 267,624
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The carrier provided us with accurate estimates of the cost of operating and
maintaining a tractor as well as the cost of repositioning a tractor for both costing
schemes. For confidentiality reasons these cost estimates are scaled when presenting
results.

All of our models were implemented using ILOG OPLStudio 6.010 which calls
CPLEX 11.110 as solver. The models for strategies 2Rep and Wknd correspond to
minimum cost network flow problems and can therefore be easily solved via linear pro-
gramming. On the other hand, the models for strategies BiWkly and Wkly require
side constraints to enforce the repeatability patterns; nevertheless, in our computa-
tional experiments the resulting integer programs all solved at the root node of the
branch and bound tree without adding any cutting planes to the formulation, i.e., the
linear programming relaxations happen to yield integral flows. A similar situation
was observed in [20], where it is reported that instances of a multi-commodity net-
work flow problem on a time-expanded network modeling the repositioning of empty
containers solve quickly. Table 2 shows the results obtained under the linear costing
scheme for each of the repositioning strategies. It also includes information about
the size of the models and the time required to solve them. The total costs reported
correspond to the costs associated with the optimal solution for a given strategy. The
numbers in brackets represent the changes of fleet size costs and total costs of the
given strategy with respect to those costs when there is no tractor repositioning. As
expected, the results show that the more restricted tractor repositioning options yield
smaller cost savings. Repeatability of the repositioning moves is desirable because
it facilitates the planning and execution of such moves, but it is also costly; in fact,
the cost savings are reduced by approximately % when biweekly repeatability is im-
posed and the cost savings are reduced to practically zero when weekly repeatability
is imposed. Limiting tractor repositioning moves to weekends (without repeatability

restrictions) provides an appealing compromise because tractor repositioning moves
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Table 2: Computational results using linear repositioning costs

[ Strategy [ Metrics [ Results | Additional Info ]
Fleet size (tractors) 2,305 # Variables 709,750
# Repositionings 423 # Constraints 442,126
2Rep Weighted repositionings (tractor-minutes) 68,628 Solution time 63 seconds
Fleet costs (%) 2,714,195 [-7.32%]
Repositioning costs ($) 102,625
Total costs ($) 2,816,847 [-3.81%]
Fleet size (tractors) 2,413 # Variables 709,750
# Repositionings 270 # Constraints 575,938
BiWkly Weighted repositionings (tractor-minutes) 32,952 Solution time 64 seconds
Fleet costs ($) 2,841,368 [-2.98%]
Repositioning costs ($) 49,289
Total costs ($) 2,890,657 [-1.29%]
Fleet size (tractors) 2,397 # Variables 518,590
# Repositionings 181 # Constraints 442,126
Wknd Weighted repositionings (tractor-minutes) 33,084 Solution time 59 seconds
Fleet costs ($) 2,822,527 [-3.62%]
Repositioning costs ($) 49,486
Total costs ($) 2,872,014 [-1.93%]
Fleet size (tractors) 2,470 # Variables 709,750
# Repositionings 132 # Constraints 642,844
Wkly Weighted repositionings (tractor-minutes) 8,372 Solution time 69 seconds
Fleet costs (%) 2,908,487 [-0.68%]
Repositioning costs ($) 12,523
Total costs ($) 2,921,439 [-0.26%]
Fleet size (tractors) 2,487 # Variables 187,589
# Repositionings - # Constraints 187,589
No Rep Weighted repositionings (tractor-minutes) - Solution time 24 seconds
Fleet costs ($) 2,928,505
Repositioning costs ($) -
Total costs (3) 2,928,505

take place only on the least busy days of the week, and substantial cost savings
remain.

With the nonlinear costing scheme, the resulting mixed integer programs cannot
be solved to proven optimality in 24 hours of computation time for any of the strategies
evaluated. However, the optimality gap after 24 hours is quite small, less than 0.52%
in all cases. Table 3 presents the results for each of the tractor repositioning strategies.
We report two solutions. The first solution reported (Adjusted LC Solution) results
from solving the model with linear repositioning costs with cost parameter equal to

Cp+(Sper—1)Cy

the average cost of a tractor in a full batch (i.e., C* = ), and setting

Yo = [I—“M—‘, Va € AP. The second solution reported (MIP Solution) is the best

SE

solution to the mixed integer program found in 24 hours of computation time. For
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information purposes, we also report the size of the models solved as well as statistics
related to the solution process. LP relax value corresponds to the objective function
value of the LP relaxation, Time to best is the time elapsed until the solver found
the best solution, and Optimality gap is the difference between the values of the best
solution and the best lower bound (after 24 hours of computation) as a percentage
of the value of the best solution. The results do not differ substantially from our
previous experiment. Requiring repeatability of the tractor repositioning moves is
costly, and restricting tractor repositioning may provide an acceptable compromise.
It is worth observing that the Adjusted LC solutions are quite close to the best
solutions found when minimizing the nonlinear costing scheme. Hence, they seem to
provide a computationally efficient approach for obtaining high-quality solutions very
quickly.

Next, we present a few figures that provide more detail and further insights into
the characteristics of the different tractor repositioning strategies. Figure 7 shows for
each tractor repositioning strategy the system-wide number of idle tractors over time
for the planning horizon compared against the idle tractors when no repositioning
moves are performed. The left column shows the entire planning horizon, whereas
the right column expands the results for the second week. Note that once again the
largest benefits (maximum reduction in idle tractors) are attained when no regularity
conditions are imposed on the repositioning moves. In addition, note that the system-
wide number of idle tractors never equals zero. The reason for this is as follows. In
an optimal solution to any of the tractor repositioning models, the number of idle
tractors at each terminal must equal zero at one point in time, but these time points
may be different for the different terminals. In fact, it is highly unlikely that these
time points would be perfectly aligned, which explains why the system-wide number

of idle tractors never reaches zero.
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Figure 7: Effect of repositioning strategies on idle tractors
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Table 3: Computational results using nonlinear repositioning costs

Strategy | Metrics Adjusted LC Solution Solution M|IP SA:(liltlitilt(;Snal Information
Fleet size 2,237 2,262 # Variables 977,374
# Repositionings 685 675 # Constraints 709,750
9Rep Weighted repositionings 179,186 147,632 LP relax value 2,749,923
Fleet costs 2,634,123 [-10.05%] 2,663,562 [-9.05%] | Time to best 10 hr
Repositioning costs 169,643 116,616 Optimality gap 0.52%
Total costs 2,803,766 [-4.26%] 2,780,177 [-5.06%]
Fleet size 2,359 2,378 # Variables 977,374
# Repositionings 522 470 # Constraints 843,562
BiWkly Weighted repositionings 115,713 92,697 LP relax value 2,852,561
Fleet costs 2,777,781 [-5.15%] 2,800,154 [-4.38%] | Time to best 4.5 hr
Repositioning costs 112,035 74,728 Optimality gap 0.36%
Total costs 2,889,816 [-1.32%] 2,874,882 [-1.83%]
Fleet size 2,364 2,371 # Variables 595,054
# Repositionings 295 318 # Constraints 518,590
Wknd Weighted repositionings 88,232 80,540 LP relax value 2,840,689
Fleet costs 2,783,669 [-4.95%] 2,791,912 [-4.66%)] | Time to best 15 hr
Repositioning costs 80,143 63,365 Optimality gap 0.27%
Total costs 2,863,812 [-2.21%] 2,855,277 [-2.50%]
Fleet size 2,445 2,467 # Variables 977,374
# Repositionings 320 172 # Constraints 910,468
Wkly Weighted repositionings 44,479 14,853 LP relax value 2,907,793
Fleet costs 2,879,049 [-1.69%] 2,904,954 [-0.80%] | Time to best 40 min
Repositioning costs 50,661 14,671 Optimality gap 0.11%
Total costs 2,929,710 [-0.04%] 2,919,625 [-0.30%]
Fleet size 2,487
# Repositionings -
Weighted repositionings -
No Rep | pieet costs 2,928,505
Repositioning costs -
Total costs 2,928,505

The different tractor repositioning strategies affect terminals in the system dif-
ferently. Figure 8 shows the details of tractor repositioning moves for the different
repositioning strategies performed at two terminals in the network (positive num-
bers represent incoming tractors and negative numbers represent outgoing tractors).
We see that Terminal 1 exploits repositioning opportunities in each of the different
tractor repositioning strategies whereas Terminal 2 does not. When repeatability

requirements are imposed limited repositioning takes place; in fact, when weekly re-

peatability is required, there is no repositioning at all.
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Figure 8: Details of the repositioning moves for two terminals
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2.4 Chapter Appendix - Mathematical Formulations

This appendix contains the mathematical formulations corresponding to the models
presented in Section 2.2.

Notation

Consider the time-expanded networks whose construction was described in Section
3.1. For a given time-expanded network, let AV be the set of nodes, and A be the
set of arcs such that A = A’ U AP U A” where A’ is the set of inventory arcs, A"
is the set of demand arcs, and A is the set of repositioning arcs. We can refer to a
node n € N as n = (L,t), where L is the specific terminal and ¢ is the specific time
associated with node n; and we can also refer to an arc a € A as a = (L1, 1, Lo, t2),
where (Lq,t;) and (Lo, t) are respectively the tail and head nodes of arc a. Consider

also the definition of the following parameters:

e T'= Length of the planning horizon.
e ¥V = Number of time periods in one week.

e (™ = Cost of operating and maintaining a tractor during the entire planning

horizon.
e D, = Distance (in miles) associated with arc a, Va € A%,
e N, = Number of tractors scheduled to traverse arc a, Va € AP.
e (C! = Cost per mile of repositioning a tractor under the linear costing scheme.

o (7' = Cost per mile of repositioning the first tractor in a batch under the

nonlinear costing scheme.

o (2 = Cost per mile of repositioning each tractor in addition to the first one in

a batch under the nonlinear costing scheme.
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o S = Maximum batch size for repositioning tractors under the nonlinear

costing scheme.

We also use the following additional notation:

e 0t (n) and §~ (n) denote respectively the set of arcs originating at node n and

the set of arcs ending at node n, Vn € N.

T(t) ={a= (L, t1, Lo ts) € A:ty <t,ty >t} is the set of arcs that belong to

the temporal cut at ¢, where 0 <t < T

AE denotes the set of repositioning arcs which correspond to repositioning moves

performed during weekdays.

RP? denotes the p-dimensional real numbers.

77" is the set of nonnegative integers.

Decision Variables

e 1, = Number of tractors traversing arc a, Va € A.

e y, = Number of batches of tractors traversing arc a, Va € A%,

Model without repositioning moves
The model associated with the simplest time-expanded network, which involves only

demand and inventory arcs, is simply a minimum cost network flow (MCNF') model:

Min 37 7 CM2a

St Za€6+(n) Ty — EGEJ_(TL) Ty — O Vn € N
Tq = N, Va € AP
g >0 Va € A
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Models with linear repositioning costs
Once repositioning opportunities are evaluated through the incorporation of reposi-

tioning arcs in the time-expanded networks, the following model results:

Min Y, can (CeDa) Ty + ZGGT(t) C™zx,

St Za€6+(n) Ty — Eaeé_(n) Ty — O vn € N

Tq = N, Va € AP
r={z,} € X
Tq € LT Ya € A

The set X C RM comprises the additional repeatability and regularity conditions
imposed by some of the repositioning strategies described in Section 3.2. The following

table shows the specific definition of X for each of the repositioning strategies:

[ Strategy | Definition of the set X

2Rep X = RMA

X= { zeRM:

T =25 Vab = (Li,t1,L3,t)),a% = (L3,13,L3,t3) € AR st. Li=1L3Li=13
BiWkly th <o2w, 3 > 2w
(t2 = t}) mod 2W =0

Wknd X= {zeRAT:. 2,=0; Vaec AE}

X= { zcRMH:

Ta1 =xa2; Val = (L1}, L3,43) 0% = (L}, 43, L3,13) € AR st Ll=12L)=12
Wkly t<W 2 >wW
(t% 7t%) mod W =0

Models with nonlinear repositioning costs
The original nonlinear programming model that incorporates the nonlinear reposi-

tioning costs is the following:

Min Y 45 Da (C{‘ {Sgﬁnw +CF (xg — [Sg;z] )) + Zae’T(t) Cmy,

s.t. Za€6+(n) Ty — Za€5_(n) 2, =0 VneN
T, = N, Va € AP
reX
Tq € LT Va e A
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This model is reformulated into the following integer programming problem using the

additional variables y,.

Min ZaGAR Dy (C;xa + (C? - Cg) ya) + ZaGT(t) Dz,

s.t. Za€5+(n) o Zaeé_(n) 2y =0 Vne N
z, = N, Ya € AP
Yo 2 gy Va € AR
reX
Tq € LT Va e A
Yo € LT Va € A%

The definitions of the set X for the specific repositioning strategies are the same as

above.
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CHAPTER III

FREIGHT TRANSPORTATION FLEET SIZING WITH
REPOSITIONING CONSIDERATIONS

In the previous chapter, a fleet sizing and empty repositioning problem was addressed
in which a single cost function was used to balance the savings from reducing the size
of a fleet of tractors with the costs of additional tractor repositioning moves. A poten-
tial drawback of such an approach is that the value of a fleet of resources of a given size
cannot entirely be quantified by just looking at the cost of operating and maintaining
it; higher fleet sizes might be justified as a means to hedge against uncertainty in op-
erational conditions such as future demand patterns and resource breakdowns. Care-
fully accounting for all those sources of variability will most likely lead to stochastic
programming or robust optimization models; however, simpler deterministic models
with two separate objective functions can still shed some light into the interactions
between fleet size and repositioning. As a result, analyzing the efficiency frontier
(also called optimal Pareto frontier) between fleet size and repositioning seems to be
a practical approach to provide the operator with good information to decide where
on the frontier to position itself. The analysis of the efficiency frontier between fleet
size and repositioning is the problem addressed in this chapter.

We will simplify our analysis by only considering linear repositioning costs and
ignoring any repeatability constraints, but we will generalize our application context
to any transportation operator that manages a fleet of homogeneous resources such as
containers, trucks, rail cars, aircraft, or buses, and uses them to fulfill a fixed schedule
of loaded transportation requests among different terminals (or depots) throughout

a planning horizon. The operator has to make two main decisions to satisfy the fixed
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schedule of loaded moves: 1) the fleet size (i.e., the number of resources to use), and
2) the resource schedule throughout the planning horizon (i.e., the activities that each
resource performs). Available resources must be assigned to the different loaded tasks,
but due to imbalances between the number of requests to/from the different terminals
in the transportation network, resources may sometimes need to be repositioned from
terminals with a surplus of resources to terminals with a deficit of resources. Once a
resource has completed a request, it can be left idle at its current location to be used
later to satisfy another loaded task originating at the current terminal, or it can be
repositioned to a different terminal to be used to fulfill a scheduled loaded request
originating there. As a result, a resource schedule must specify for each resource its
loaded moves (covering scheduled tasks), its empty (deadheading) moves, and its idle
times.

An important feature of the fixed loaded schedules is their periodicity. Aperiodic
loaded schedules occur within a finite planning horizon and vary from one planning
horizon to the next; in this case, the ending conditions of the resources are not relevant
(i.e., it does not matter in which terminal each resource winds up at the end of the
current planning horizon) mostly because resources schedules are determined using
rolling planning horizons, so any resource schedule that covers all the loaded requests
without exceeding the number of available resources is feasible. On the other hand,
periodic loaded schedules repeat themselves continuously; the finite planning horizon
is just representative of a larger (potentially infinite) time horizon. This characteristic
imposes an additional constraint for a resource schedule to be feasible, namely, that
each of the terminals must end up with the same number of resources it started with
at the beginning of the planning horizon (since otherwise the same schedule could
not be replicated in the next planning horizon). Regardless of its importance, the
inclusion of the periodicity of a scheduled is sometimes a modeling choice and as

such it might be ignored when dealing with periodic schedules (specially in cases
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that assume a large enough time between two successive planning cycles) or added
when dealing with aperiodic schedules (specially in cases in which even though no
ending conditions of the resources can be specified, a certain regularity on the ending
locations is desired).

We model the associated situation in two different ways: on one hand we develop
mathematical programming formulations of flows on event-based, time-expanded net-
works; on the other hand, we define perfect matching problems on bipartite networks.
For aperiodic schedules, all of the points in the optimal Pareto frontier can be com-
puted in polynomial time solving linear programming formulations of flows on the
time-expanded networks or solving minimum weight perfect matching problems on
the bipartite networks. In addition, we define an incremental problem to efficiently
compute adjacent points in the frontier by solving a single shortest path problem in
either type of network. Aperiodic schedules are more difficult. The end points in
the frontier can be computed in polynomial time by solving a sequence of two linear
problems and the rest of the points on the frontier can be computed using either
integer programming flow formulations or assignment formulations with additional
side constraints.

The rest of the chapter is organized as follows: Section 3.1 reviews the related
literature on fleet size and repositioning problems related to transportation schedules.
Section 3.2 presents the modeling framework used and describes how to construct the
time-expanded and bipartite networks. Section 3.3 discusses the computation of every
point on the optimal Pareto frontier, and presents efficient procedures to compute
adjacent Pareto points. Finally, Section 3.4 discusses the practical applications of
the models developed, compares the two different types of networks, and presents

the results of computational experiments using information from a major less-than-

truckload (LTL) carrier.
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3.1 Related Literature

The problem of minimizing the number of resources to meet a fixed transportation
schedule has been studied by the research community for a long time. The work in
this area can be classified into two main categories according to the characteristics of
the fixed schedule of resources. The first category comprises aperiodic schedules with
finite planning horizons, while the second category covers periodic schedules with
potentially infinite planning horizons.

[14] was among the pioneering works in this area. It reported that the minimum
number of vehicles to meet a fixed aperiodic schedule can be solved in polynomial
time by modeling the problem of minimizing the number of tankers to meet a fixed
schedule as a classic transportation problem and solving it using the well-known
simplex method.

[27] solved the simpler problem of minimizing the number of resources to meet a
fixed schedule of jobs (i.e., transportation schedules in which the starting and ending
terminals are the same for all the scheduled requests), along with the complicating
variant in which each job has a time window to start and end. The results of this
research were later used by [9], which studied how repositioning could help reduce the
required fleet size for a multi-terminal urban bus transportation system. A two-phase
approach was developed based on a so-called “deficit function” to reduce the total bus
fleet required to meet a fixed aperiodic scheduled of trips by inserting deadheading
trips. A lower bound on the minimum fleet size that can be attained by exploiting all
possible deadheading opportunities was also introduced. This lower bound was later
improved by [50]. [8] extended this work further by permitting variable departure
times along with the possible insertions of deadheading trips.

[23] also studied an urban bus system involving only two terminals between which
buses circulate performing alternating deadheading schedules in which some buses

return empty while others return in service. Three main problems were addressed:
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finding the minimum fleet size needed to meet a given alternating deadheading sched-
ule; constructing the alternating deadheading schedule that minimizes the required
fleet size subject to level-of-service constraints; and finding the alternating deadhead-
ing schedule that minimizes wait time for a given fleet size.

On the periodic side, [36] considered and solved in polynomial time the problem
of minimizing the number of vehicles to meet a fixed periodic schedule by posing it
as special case of the “minimum chain-cover” problem for periodic partially ordered
sets (posets), and then solving this more general problem as a finite network flow
problem. The application context was that of an airline that wishes to schedule a
minimum number of airplanes to meet a fixed daily-repeating set of flights, in which
deadheading between airports is allowed. [36] also reported that the problem of
minimizing the number of vehicles to meet a periodic schedule in which deadheading
is not allowed was solved by [5] and [6] using railroad scheduling as the application
context. [26] showed that deficit functions become periodic for periodic schedules in
which the total number of scheduled tasks into and out of a terminal are equal.

Regarding solution techniques, multicriteria optimization has long been used to
model problems with competing objective functions. In particular, multiobjective
combinatorial optimization problems related to transportation network design and
routing are vast and have received a lot of attention by the research community:.
[13, 12, 52, 19] review the works in this area, which include the development of exact
and heuristic techniques to compute all (or a subset) of the points on the optimal
Pareto frontier.

Even though their single criterion counterparts are polynomially solvable, multi-
criteria network flow problems and assignment problems are NP-hard even for two
criteria [18]. Theory and algorithms for solving the multiobjective minimum cost flow

problem are reviewed in [30]. An algorithm for the continuous versions of bicriteria
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network flow problems is presented in [32]. [33] expanded on these ideas and devel-
oped a procedure to compute the efficient solutions to the bicriteria integer network
flow problem. This latter problem has also been studied by [43, 46, 41, 44]. On the
other hand, [42] studied the biobjective assignment problem.

In addition, the efficient computation of exact (or approximate) Pareto points has
also been addressed in other contexts. [38] developed a heuristic two-phase solution
procedure for the biobjective dial-a-ride problem, and [53] developed tabu-search and
genetic algorithms to solve a bicriteria general job shop scheduling problem arising
in the printing and boarding industry.

Finally, other examples in the literature involve tactical models that explicitly
take into account the impact of operational decisions. In the context of supply chain
design, [47] developed a nonlinear model that determines distribution center loca-
tions to optimize cost and service objectives, explicitly considering the routing costs
of assigning demands to distribution centers and the inventory policy costs at the
distribution centers. Additionally, [55] addressed a fleet sizing problem in the context
of the truck-rental industry, incorporating the operational decisions of demand allo-
cation and empty truck repositioning with the tactical decisions of asset procurement
and sales into a linear programming model to determine the optimal fleet size and

mix.
3.2 Modeling Frameworks

Most large transportation service providers face two issues associated with fulfilling
their scheduled tasks throughout a planning horizon: establishing the number of
resources (fleet size) they should use and determining the schedule that each resource
should follow within the planning horizon. A resource schedule indicates the activities
that the resource performs at every point in time within the horizon, and these

activities include staying idle at some terminal, being moved between two terminals
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to satisfy a scheduled request, or being repositioned between two terminals. There
is a trade-off between fleet size and repositioning; the larger the fleet size, the less
likely it is to require to relocate a resource to a different terminal to serve the same
number of loaded tasks (up to a point where repositioning can no longer be reduced
by increasing the fleet size), and conversely, a smaller fleet size increases the need of
resource deadheading. The fixed schedules can be aperiodic or periodic; the former
involve scheduled tasks occurring within a finite planning horizon which are likely to
vary in the next planning horizon; the latter involve scheduled tasks that repeat over
a long (possibly infinite) time horizon.

Several modeling alternatives can be used to represent resource schedules. In this
chapter, we present two of them which we will later contrast in Section 3.4.2. In
the first approach, we use mathematical programming formulations of flows on time-
expanded networks. In this setting, a resource schedule corresponds to a path in
the network for the aperiodic case or a cycle in the network for the periodic case.
In the second approach, we define perfect matching problems on suitably defined
bipartite networks in which a matching or assignment corresponds to the next task
to be executed by a given resource.

Next, we outline the construction of both types of networks, for which we consider

the following input parameters:
o L = the finite set of terminals (or depots) in the transportation network.
® 1,4, = the number of periods in the planning horizon.

e S = the set of all scheduled loaded requests, that is, the fixed transportation
schedule to be met. Each scheduled loaded request s € S is specified by a
5-tuple s = (ly,t1,1la,ta,d), with I1,ly € L, 0 < t1,ty < tyas, and d € Zy. [y
is the departure terminal, ¢; is the departure time, [y is the arrival terminal,

to is the arrival time, and d is the number of resources required to satisfy the

45



transportation request. Z, denotes the set of nonnegative integers.

e 75,5, = the travel time from terminal /; to terminal Iy, VI, 1y € £
3.2.1 Construction of the time-expanded networks

Time-expanded networks are commonly used to model logistical problems. In this
application, we use event-based time-expanded networks in which each node repre-
sents a specific terminal at a particular point in time, and each arc represents either
the movement of resources between different terminals at different times to satisfy
a scheduled request (demand arc), the deadheading movement of resources between
different terminals at different times (repositioning arc) or the idleness of resources
at a given terminal (inventory arc). Networks corresponding to aperiodic schedules
include in addition a source and a sink node, as well as source arcs and sink arcs
which represent initial and ending locations of the resources.

For aperiodic schedules, the steps to construct the time-expanded network are the

following:
1. For each scheduled request s = (I, 1,3, t2,d) € S:

e Create a departure node (l1,%;) and an arrival node (I3, %3). In addition,

create a demand arc from the departure node to the arrival node.

e For each terminal [, € L\{lo}, if to + 71,1, < tmee Create a repositioning
node (l,,ty + 7, ) plus a repositioning arc joining the arrival node to the
repositioning node. Note that the repositioning node might not need to be
created if it coincides with the departure/arrival node of some scheduled

request previously handled.

2. Create an inventory arc connecting each node created in the previous step to
the closest node corresponding to the same terminal at a later time if such node

exists.
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3. Create a source node (labeled (Source,—1) to be consistent with the node
notation), and for each terminal create a source arc connecting the source node
to the terminal node with the earliest time. Create also a sink node (Sink, t,,4.+
1), and for each terminal create a sink arc connecting the terminal node with

the latest time to the sink node.

For periodic schedules, the steps to construct the time-expanded network are the

following;:
1. For each scheduled request:

e Create a departure node (ly,t;) and an arrival node (lo,t2). In addition,

create a demand arc from the departure node to the arrival node.

e For each terminal [, € L\{lo}, if to+71,;, < tae create a repositioning node
(I, ta + Ty, ), Otherwise, create a repositioning node (I, ts + 7,1, — tmaz);
create also a repositioning arc joining the arrival node to the repositioning

node.

2. Create an inventory arc connecting each node created in the previous step to
the closest node corresponding to the same terminal at a later time if such node

exists. In addition, for each terminal, connect its latest node to its earliest node.

Figure 9 exemplifies the construction of the time-expanded networks for the fol-
lowing set of five scheduled requests involving four terminals, and a planning horizon
[0,10]: S ={a=(2,0,1,2,1),56=(4,3,1,4,1),y=(2,4,3,5,1),0 = (3,6,2,7,1), ¢ =
(2,6,4,9,1)}. The repositioning times are 715 = To1 = 2,713 = T31 = 3,T14 = T41 =
1,793 = T30 = 1,704 = Ty = 3, and 734 = 743 = 4.

Note that in the periodic case, the arcs corresponding to moves that begin during
the planning horizon but are completed after the end of the horizon are wrapped

around and connected to earlier periods of the horizon.
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Figure 9: Construction of the time-expanded networks
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We will denote a time-expanded network as G = (N, .A), where N is the set of
nodes, and A is the set of arcs. For periodic schedules 4 = A’ U AP U A", whereas
for aperiodic schedules A = AT U AP U AR U A% U A5 AT, AP AR A5 and A
are respectively the sets of inventory, demand, repositioning, source, and sink arcs.
As shown before, we can refer to a node i € N as i = (I,t), where [ is the specific
terminal and ¢ is the specific time associated with node i; we can also refer to an arc
a € Aasa=(i,j), where ¢ and j are respectively the tail and head nodes of arc a.
For demand arcs, d;;,V(i,j) € A", will denote the number of resources required to
satisfy the associated request; and for repositioning arcs, 7,5, V(i, j) € Af, will denote
the travel time between the departure and arrival terminals.

The computation of the points in the optimal Pareto frontier will use mathemat-
ical programming formulations of flows on the described time-expanded networks.
These formulations will use as decision variables z;; = the amount of flow on arc
(1,7) (measured in units of resources), V(i, j) € A, and we will denote with z € R
a vector containing all flow values. The flow on the inventory arcs, demand arcs,
and repositioning arcs correspond respectively to resources remaining idle at the cor-
responding terminal, loaded movement of resources serving the scheduled requests,
and empty movement of resources, and, in the case of aperiodic networks, the flows
on the source and sink arcs represent starting and ending locations of the resources,

respectively.
3.2.2 Construction of the bipartite networks

As an alternative, given a fleet of size k, resource schedules can be modeled as perfect
matchings in a bipartite network which includes resource nodes and task nodes. This
approach is based on a similar idea to the one presented by [14] to model the tanker
scheduling problem as a classical transportation problem. In this case, only a single

type of bipartite network will be defined and periodic schedules will require additional
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side constraints to be properly modeled. The construction of the bipartite networks

is outlined next:

1. Create a resource node for each of the k available resources (to represent units
of equipment which have not been used on the given planning horizon). We will

denote the set of all these nodes as V5 .

2. Create d resource nodes associated with the end of each scheduled task s =
(I1,t1,12,t2,d) € S (to represent the availability of each of the d units of equip-
ment which just satisfied that task). We will denote the set of all these nodes

as VRrequest °

3. Create d task nodes associated with the beginning of each scheduled request
s = (l,t1,1z,t3,d) € S (to represent the demand of d units of equipment to

perform that request). The set of all such nodes will be denoted as V7,.,....-

4. Create a task node associated with each of the k£ available units of equipment
(to represent the end of the usage of each resource over the planning horizon).

The set of all such nodes will be denoted as Vj’fe .
5. Create edges joining every node in Vg, , to every node in V= VT, equest Y Vq’?e o
6. Create edges joining every node in V} = Vlf{stm UVR, cquese 10 €very nodein Vr, ..

7. For every pair of nodes vg € Vg, ueer» U € Viepuew» Create edge (vg, vr) if the
request a = (¢, t7,15,t5,d*) that generated vy can be feasible performed after

the request 8 = (12,4715 47 d°) that generated vy (i.e., if t& >t + Tléal?).

Let E* represent the set of all edges created. Then, G* = (VUV} E*) is an
undirected bipartite graph in which a perfect matching or assignment corresponds
to a feasible resource schedule as each of the matchings indicates either the next

scheduled request that an available resource has to fulfill, or the end of usage of that
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resource in the given planning horizon. We will also define weights w,., Ve € E¥,
whose specific values will depend on the problem being solved. Figure 11, part a)

shows the construction of G* for the same schedule of requests presented earlier.

3.3 Efficiency frontier of fleet size versus repositioning

In multi-criteria optimization models, a Pareto solution or Pareto point is a feasible
solution = such that any other feasible solution with a strictly better value for one
of the objectives attains a worse value than x for at least one other objective. The
set of all optimal Pareto points is known as the optimal Pareto frontier, or optimal
efficiency frontier. This chapter studies the optimal Pareto frontier of fleet size ver-
sus repositioning associated with entirely fulfilling aperiodic or periodic schedules of
fixed transportation requests. Figure 10 exemplifies an optimal Pareto frontier. We
will refer to points A and C as the end points of the frontier, and points By, B, . ..
as the interior points of the frontier. Throughout this chapter we assume that the
cost of operating and maintaining a fleet of resources of a certain size is a linear
function on the number of resources. We also assume that the cost of reposition-
ing one resource between two terminals is a linear function on the travel time be-
tween the two terminals. Using these metrics, point A = (Kpmin, Tmaz) corresponds
to the minimum repositioning time 7,,,, that can be attained given the minimum
fleet size ki, which can fulfill the fixed schedule (it is denoted as r,,,, because it
is the maximum repositioning time that should ever occur in any efficient resource
schedule); point C' = (knqaz, Tmin) corresponds to the minimum fleet size k,,q, that
is required to execute a resource schedule with the minimum possible repositioning
time Tpin (Kkmaee 1s the largest fleet size required in any efficient resource schedule);
and points By = (kpin + 1,71), B2 = (kmin + 2,72), ... correspond to the minimum
repositioning time r, required to fulfill the fixed schedule using k,,;, + n resources,

Vn € {17~~-7kmax — kmzn — 1}
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Figure 10: Example of an optimal Pareto frontier

One basic problem associated with computing the points in the optimal Pareto
frontier is the computation of k., and k,,;,, which are respectively the largest and
smallest fleet sizes that could ever be required to satisfy a given fixed schedule of
transportation requests; k,,q. is the fleet size associated with the resource schedule
having the smallest possible total repositioning time, whereas k,,;, is the fleet size
which if decreased by one unit would result in an inability to cover all the scheduled
tasks regardless of the repositioning moves introduced in the resource schedule. In
Figure 10, ki = 11 (point A) and k0, = 22 (point C).

We are interested in developing models to individually compute each Pareto point
(together with its associated resource schedule), and we are also interested in the
following incremental problem: given an optimal resource schedule with k > k,,;,
resources, how to obtain an optimal resource schedule with k + 1 resources? Note
that developing efficient procedures to solve the incremental problem will yield an

alternative and expectedly more efficient procedure to compute all of the Pareto
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points, since instead of solving an independent model to determine each point, one
can start at point A = (Knin, "'maz), and solve the incremental problem until point
C' = (kmaz, "min) 1s reached.

The next subsections present models for the computation of all of the points on
the optimal Pareto frontier for aperiodic and periodic schedules, as well as algorithms

to solve the associated incremental problems.

3.3.1 Efficiency frontier for aperiodic schedules

3.3.1.1  Computing all the Pareto points using time-expanded networks

Consider the aperiodic time-expanded networks whose construction was outlined in
Section 3.2.1. Using the notation introduced there, k,,;, can be computed using the

following linear program:

kmin = min f
f i = (Source, —1)
St D tptigear T~ Gaeay Ti = —f i = (Sink, tmas + 1)
0 otherwise
zy; = dy V(i,j) € AP
x5 > 0 V(i,j) e A

Note that the previous problem corresponds to a minimum cost network flow
(MCNF) problem and as such is guaranteed to produce integral flows. The variable
f represents the external supply of resources into the source node (out of the sink
node).

On the other hand, given that k,,,, is associated with the resource schedule that
attains the minimum possible repositioning time 7,,;,, and observing that r,,,, = 0
(consider for instance a resource schedule in which each task is executed by one exclu-
sive resource), it follows that k., can be computed by solving an MCNF problem on

a time-expanded network built without any repositioning arcs. As an alternative, the
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“deficit-function” techniques outlined by [9] can also be used to compute kyq.. These
techniques are essentially counting techniques that consider the number of resources
moved into and out of a terminal at different points in time. It follows that the end
point C' = (kyaz, 0) can be computed in polynomial time.

The rest of the points in the efficiency frontier (points A, By, B, ...) can also be

computed in polynomial time via linear programming:

Tn = min Z(i,j)eAR Tij s
Kpin + 1 i = (Source, —1)
st DiiuieayTis — 2giGieay Tii = § —(kmin +10) i = (Sink, tpes + 1)
0 otherwise
Tij = d;j v(i,j) € AP
x5 >0 V(i,j) € A

Point A = (kyin, o), whereas points B, = (kmin + 1n,70),Yn € {1, ... kmaz — Kmin —
1}. Note also that point C' = (Kmaws Tkypes—kni ). FOr notational convenience in
the following section, we will let & = k,,;, + n and refer to the previous LPs as
LP(k), for some ki < k < kpas; we will also let ¢;; = 7,5, V(i,j) € A" and
cij = 0,9(i,j) € A\A" to express the objective function in LP(k) as 35, ¢4 Cijij-
Given the correspondence of LP(k) to an MCNF problem, feasible solutions to LP(k)
are referred to as flows. Once an optimal flow = has been determined for a given k, the
specific resource schedules (which correspond to paths of arcs carrying a flow of 1 from
the source node to the sink node) can be identified by running a flow decomposition

algorithm.
3.3.1.2  Solving the incremental problem using time-expanded networks

In the context of aperiodic time-expanded networks, the incremental problem of
computing adjacent Pareto points can be posed as: given an optimal solution to

LP(k), k > kpin, how to compute an optimal solution to LP(k + 1)7 In what
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follows, we will show how to efficiently solve this problem.

First, we need to recall some additional concepts. A pseudoflow in LP(k) is an
infeasible solution to LP(k) that satisfies all the bounds and integrality requirements
but violates at least one flow balance constraint. Given a pseudoflow, the difference
between the right-hand side and the left-hand side of a balance constraint is the
imbalance at node 7. A positive imbalance is the excess at node ¢, whereas the
absolute value of a negative imbalance is the deficit at node 7.

Given a network G' = (V, E), we can associate with each node i € N a real number
7(i), which is referred to as the potential of node i. In addition, the reduced cost
cf; of an arc (i, j), with respect to node potentials 7 = (7(1),7(2),...,7(|N])), are
defined as cf; = ¢;; — (i) + 7(j).

Given a network G, and a flow z, G(z) denotes the residual network associated
with flow x. This network contains all the nodes in G and the arcs or arc reversals
with positive residual capacity. In the case of an aperiodic time-expanded network
G, all arcs (i,7) € A\AP are uncapacitated, and arcs in AP have a fixed flow. Thus,
G(z) can be constructed from G by including all arcs in A\ AP with a cost ¢;; and,
for every arc (i,7) € A\A” with x;; > 0, adding arc reversal (j,7) with a residual
capacity equal to x;; and a cost —c;;.

Next, we state without proof the following property, theorem, and lemmas, which
will be used to prove some results in this section. Their proofs can be found in [2],
where they correspond respectively to Property 2.5, Theorem 9.3, and Lemmas 9.11
and 9.12.

Property 1. a) For any directed cycle W and for any node potentials w, 3, oy €5 =
Z(i,j)GW Cij-

b) For any directed path P from node u to node v and for any node potentials ,

Z(LJ‘)EP ng = Z(i,j)eW Cij — m(u) + 7 (v).
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Theorem 1. A feasible solution x* is an optimal solution of the minimum cost flow
problem if and only if some set of node potentials m satisfy the following reduced cost

optimality conditions: cf; >0, V(i,j) € G(z*)

Lemma 1. Suppose that a pseudoflow (or a flow) x satisfies the reduced cost optimal-
ity conditions with respect to some node potentials w. Let the vector ¢ represent the
shortest path distances from some node u to all other nodes in the residual network

G(x) with cf; as the length of an arc (i, j). Then, the following properties are valid:

a) The pseudoflow = also satisfies the reduced cost optimality conditions with re-

spect to the node potentials 7' = 7w — /.

b) The reduced costs c;}/ are zero for all arcs (i,j) in a shortest path from node u

to every other node.

Lemma 2. Suppose that a pseudoflow (or a flow) x satisfies the reduced cost optimal-
ity conditions and we obtain x' from x by sending flow along a shortest path from node

u to some other node v; then x’ also satisfies the reduced cost optimality conditions.

We will now introduce and prove a theorem that shows how to efficiently solve

the incremental problem on the aperiodic time-expanded networks.

Theorem 2. Let xy be an optimal solution to LP(k), for some kpyin < k < kpae — 1
(i.e., the flow corresponding to the resource schedule that attains minimum repo-
sitioning time using k resources); let Ps be a shortest path from (Source,—1) to
(Sink, tmee + 1) in G(xy); and let o' be the flow that results from ) by augmenting

one unit of flow along Ps. Then, x,1 = .

Proof. First, observe that G(zy) contains a directed path from (Source, —1) to every
other node, and it does not contain negative cycles (otherwise, the optimality of
xp would be contradicted). Thus, Ps is well defined. Let 7 € RWT be an optimal

set of node potentials satisfying Theorem 1’s reduced cost optimality conditions in
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G(zr). Note that xy is a pseudoflow in LP(k + 1), in which there is a unique unit
of flow excess at (Source, —1) and a unique unit of flow deficit at (Sink,t,a. + 1).
On one hand, augmenting one unit of flow along Pg eliminates the flow excess at
(Source,—1) and the flow deficit at (Sink,t;mq + 1), and it does not affect the flow
balance constraints. Thus, 2’ is a feasible flow in LP(k 4+ 1). On the other hand, by
Lemma 2, ' also satisfies the reduced cost optimality conditions (together with node
potentials 7/ € RW! updated according to Lemma 1). Therefore, 2’ is an optimal

solution to LP(k + 1). O

Theorem 2 implies that we can compute all Pareto points by starting with xj_.
and iteratively finding a shortest path from (Source, —1) to (Sink,t,.. + 1) and
augmenting one unit of flow along such path in the residual network built with re-
spect to the original costs c;;. Note that since the arc reversals of repositioning arcs
have negative costs, Bellman-Ford’s algorithm needs to be applied to compute the
desired shortest paths. However, we can use node potentials to obtain and maintain
nonnegative arc costs in the residual networks so that we can use the more efficient
Dijkstra’s algorithm to find the shortest paths (Property 1 guarantees the correctness
of Theorem 2 under this cost transformation). Algorithm 1 summarizes the steps to
find all Pareto points by solving the incremental problem iteratively.

To show the correctness of Algorithm 1 it suffices to argue that the arc costs in
the residual network start nonnegative and remain nonnegative throughout all the
steps: Since the optimal dual variables for the balance constraints are optimal node
potentials, it follows that the costs of the residual network start nonnegative; in
addition, since, the node potentials are updated at each step according to Lemma 1,

it follows from Lemma 2 that the costs in the residual network remain nonnegative

throughout the algorithm.
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Algorithm 1 Incremental computation of Pareto points on time-expanded networks

1: Compute k,,;, and k5.

2: Solve LP(kyin). Let z and 7 be respectively the vector of optimal primal variables
and the vector of optimal dual variables for the balance constraints, and let 7.,
be the optimal objective function value.

Output point (kmin, Fmaz)-

Build G(x) with respect to costs cf; = c;j — 7(i) + 7(j).

Set Repositioning < Tmaz-

for k = k., t0 kpper — 1 do
Use Dijkstra’s algorithm to find the shortest paths in G(z) from (Source, —1)
to every other node. Let the vector ¢ represent the shortest path distances
from (Source,—1) to all other nodes, and let Pg be the shortest path from
(Source, —1) to (Sink, tme +1).

8:  Update x by augmenting one unit of flow along Ps.
. Update 7 + 7 — /.

10: ~ Update G(x) and its costs cJ;.

11:  Update Repositioning < Repositioning — (((Sink, tye. + 1)).

12:  Output point (k + 1, Repositioning).

13: end for

3.8.1.3 Computing all Pareto points using bipartite networks

Consider the bipartite networks G* for a given integer k, whose construction was
outlined in Section 3.2.2. We will use the notation defined there and we will also let
D =} .sd, where d° is the number of resources required to satisfy request s. In
this case, k,,;, can be computed by solving a minimum weight perfect matching on

GP with weights:

1 \Vle = (’U}%7 UT) s.t. VR c VRDstart and (%8 € VTrequest
We =
0 otherwise

Observing that r,,;, = 0, k... can also be computed by solving a minimum weight
perfect matching on the network HP, which is the same as the network G, but
without the edges (vg,vr), with Vg € Vi, wees U7 € Vieyues for which the terminal
associated with vy is different from the terminal associated with vy (i.e, H? is a
network in which no repositioning moves are allowed). Using the same weights w, as

above, this computation yields point C' = (kyqq, 0).
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Now, given a fleet of size k > k,,;,,, the problem of finding a resource schedule with
minimum repositioning time reduces to finding a minimum weight perfect matching
in G*, using as weights w, the repositioning times incurred by the move related to
edge e. That is, edges incident to Vg,,,,, U V1, , have a weight of zero, whereas
edges incident to both Vg,,,,.., and Vr, ..., have a weight equal to the repositioning
time between the terminal that generated the resource node and the terminal that
generated the task node. The weight W of the optimal matching in G* corresponds
to the minimum repositioning time using k resources. The Pareto points are then

(k> Wk); vkrmn S k S kmax-
3.3.1.4 Solving the incremental problem using bipartite networks

In the context of bipartite networks, the incremental problem of computing adjacent
Pareto points can be posed as: given a minimum weight perfect matching in G*, k& >
Kmin (with w, representing the repositioning time from the resource node to the task
node), how to obtain a minimum weight perfect matching in G¥+1? In this section,
we will show how to efficiently solve this problem.

First, we need to define another auxiliary bipartite graph, based on G*. Let M be
a minimum weight perfect matching on G* and note that it is also a matching on G*¥+1.
Let GEFL = (VL U V+L AF1) be the directed bipartite graph that is constructed
from G**! and M by orienting the edges as follows: edges in the matching are oriented
from task node to resource node and get the signs of their weights reversed, whereas
edges not in the matching are oriented from resource node to task node and maintain
their original weights. We will denote these new weights by @, Va € A*!

Figure 11 shows the construction of G* and éﬁj ! for the set of scheduled requests
S ={a = (2,0,1,2,1),8 = (4,3,1,4,1),y = (2,4,3,5,1),0 = (3,6,2,7,1),¢ =
(2,6,4,9,1)}, with repositioning times given by: 79 = 79y = 2,793 = 731 = 3,714 =

Ty = 1,703 = T30 = 1,794 = 742 = 3, and 734 = 743 = 4. Part a) shows the undirected
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bipartite graph G*, part b) shows a minimum weight perfect matching in G*, and

part ¢) shows the directed bipartite graph éﬁj L

a) Undirected Network b) Undirected Network with Matching c) Directed Network

Resources Tasks

Resources Tasks Resources Tasks

------ Edge in the Matching

——  Edge out of the Matching

Figure 11: Construction of the bipartite networks

We will now introduce and prove a theorem that shows how to efficiently solve
the incremental problem on the bipartite networks. Consider the following additional

notation:

e UAV =UUV\UNV, that is, the symmetric difference of sets U and V.
e E[P], E[Ps], E[C], E[C;] := undirected edge sets of P, Ps,C and C;

o A[P], A[Ps], A[C] := arc set of P, Pg, and C

e W(U) =3, we for some U C E* or some U C EFt!

o« W(U) =3,y W, for some U C AF+1

Theorem 3. Let M be a minimum weight perfect matching in G*, for some kmyin <

k < kpax — 1 (i-e., the assignment corresponding to resource schedule that attains
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minimum repositioning time using k resources); let U?l = V}';’LI\VIQ“ and U:]}H =
VITI\VE; and let Ps be a shortest path from vl to vk in C_j’]ﬁg Then, M' =

MAE|Ps| is a minimum weight perfect matching in G*1.

Proof. First of all, note that é'f\jl does not contain negative cycles (otherwise, the
optimality of M would be contradicted). Therefore, Ps is well defined.

Now, let N be a minimum weight perfect matching in G¥*!. Note that N exists
because M U (v&H 05+ is a perfect matching in G¥F1. It then suffices to show that
W(M') =W(N).

(>): Note that since vt and vAt! are exposed nodes with respect to M, Ps is
an M-augmenting path in G¥*1 therefore | M’ |=| M | +1 and by the optimality of
N it follows that W(M') > W(N).

(<): Consider Gy = (V1 UV MAN), with edge orientations and weights as
in é%, and consider its connected components. Note that only v and v5™ have
degree 1, all other nodes have either degree 0 (isolated nodes) or degree 2. Therefore,
the connected components are a path from UZ“ to Ur_lﬁ“ and a (possibly empty) set
of disjoint cycles of even cardinality.

Claim: Let C be a cycle in Gy, then W (A[C]) = 0.
Proof:

e Suppose W(A[C]) < 0. Then MAE[C] is a matching in G¥ with weight

W(MAE[C]) = W(M)+ W(A[C]) < W(M), which contradicts the optimality
of M.

e Suppose W(A[C]) > 0. Then NAE[C] is a matching in GF*! with weight
W(NAE[C]) = W(N) — W(A[C]) < W(N), which contradicts the optimality
of N.

Since the previous claim is true for any cycle C; in G, let N’ = N A(Ug, EICH)). Tt

follows that N is an optimal matching in G*+! such that Gy = (V1 UVE, MAN)
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contains only a path from UEJ’-I to Uéﬂ“, say P.

It then follows that:

W(N) = W(N') = W(MAE[P]) = W(M) + W(A[P]) > W (M) + W(A[Ps]) =
W(MAE[Ps]) = W(M')

Hence, W(M') < W(N) O

Theorem 3, whose proof is along the lines of the proof of the Hungarian Method
presented in [45], implies that we can compute all Pareto points by starting with a
minimum weight perfect matching in G* and iteratively finding a minimum weight
perfect matching in G+ by solving a shortest path from v%™ to o5+ in G&,. Given
that some of the arc costs are negative, the Bellman-Ford label-correcting algorithm
needs to be applied. However, similar to the way the Hungarian algorithm’s run-
ning time is improved in [45], node potentials could be used to obtain and maintain

nonnegative weights at each iteration so that Dijkstra’s algorithm can be applied to

compute the required shortest paths.

3.3.2 Efficiency frontier for periodic schedules

3.8.2.1  Computing all Pareto points using time-expanded networks

A basic concept used in the formulations on time-expanded networks for periodic
schedules is that of a temporal cut at time t, 7 (t) = {(¢,7) = ((f1,t1), ({2, t2)) € A :
t1 < t,ty > t} for some t € [0, e, which is defined as the subset of arcs in the
time-expanded network corresponding to events which start on or before time ¢ and
are completed after time t¢.

Consider the following set:

Do (stigeA) Tid — 2ogjGaeay Ti =0 VieN
X = e RM: 1y = dy V(i j) € AP
zi5 >0 V(i,j) e A
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Note that X is an integer polyhedron as it is the feasible region of an MCNF
problem.

For periodic schedules, k,,;, can be computed using the following LP in which
t is any real number between [0, tmaz]: Kmin = Mingcgia {Z(i’j)g—(t) Tij 1 X € X}.
However, the computation of k.. is not as straightforward as it was for aperi-
odic schedules because r,,;, = 0 only if the fixed schedule of requests is balanced,
which happens when the number of resources moving loads into a particular ter-
minal equals the number of resources moving loads out of the same terminal. If
the fixed schedule is unbalanced some minimum repositioning will always have to
be performed, and r,,;, > 0. Nevertheless, 7,,, can be computed with the LP
Trmin = Min,piaj {Z(m)eAR TijTij 1 T € X}.

Now, consider the sets:

XF: reX: Z xzj:kmzn and XR: reX: Z TijTij = Tmin
(1.H)ET(#) (i.5)eAR

Note that both X and X% are faces of the polyhedron X, and as such, they are
also integer polyhedra. It then follows that r,,,, and k,,., can be computed using the

following LP’s:

. _ F
Tmaz = Min,cpla) E TijTy; v € X
(i.j)€AR

kmaa: = MinzgRlAl Z Tij + X € XR
(6.3)ET(t)

Therefore, the end points of the frontier, A = (knin, "maz) and C' = (Kpazs Tmin),
can be computed in polynomial time.
The rest of the points in the optimal Pareto frontier (points B, = (kmin +

n, 1), Yn € {1,... kmaz — Kkmin — 1}) can be computed with the following integer
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program:

T = min Z(i,j)GAR Tij%ij
st Daped i ~ Lggaeay Ti =0 Vi €N

2 (ifer Lis = Kmin + 10

zy = dy v(i,j) € AP

Tij € Ly V(i,j) e A

Note that the previous IP’s; denoted IP(k), for some ki < k = kpin +1 < kias

correspond to MCNF problems with an additional bundle constraint that specifies the
number of available resources. The addition of such constraint destroys the total uni-
modularity property of the constraint matrix and therefore integrality requirements
must be explicitly enforced; nevertheless in our computational experiments, majority
of the I P(k)’s solved at the root node of the branch and bound tree without adding
any cutting planes to the formulation, that is, the linear programming relaxations
tend to yield integral flows. However, about 7% of the IP’s solved required either
some branching or the addition of some cutting planes to attain integral flows. We
suspect that the problem of computing the interior points of the frontier may be

NP-hard, though we do not have a formal proof for such a result.
3.3.2.2  Solving the incremental problem using time-expanded networks

Given xy, an optimal solution to I P(k), k > kpin, how to compute zj,1? The natural
extension from the approach used in the aperiodic case to solve the incremental
problem would be identify the most negative cycle in G(z) = (N®, A®), which is an
NP-hard problem in general [2]. In any case, even if such a cycle could be found
efficiently, it this approach would still fail to provide a solution procedure for the
incremental problem in the periodic case. To exemplify why, consider the following
instance involving three scheduled requests: « = (1,2,0,1,1),5 = (3,4,2,3,1),v =

(5,6,4,5,1), with repositioning times ¢;; = [i — j|,V i # j € 1,2,...,6. Figure 12
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illustrates how augmenting a unit of flow along a single cycle in the residual network
of a periodic schedule can increase the fleet size more than one unit. For the sake of
clarity only the arcs with nonzero flows are depicted. The top network illustrates the
flow that minimizes repositioning using a single resource; the middle network shows
the most negative cycle in the residual network; and the bottom network shows the
flow that results by augmenting one unit of flow along such cycle.

Thus, the solution to the incremental problem requires finding the most negative
circulation in the residual network so that the flow across a temporal cut equals 1.

Such a circulation can be found with an IP formulation similar to IP(k).
3.83.2.3  Computing the Pareto points with bipartite networks

The Pareto points can alternatively be computed using the bipartite-network frame-
work by including additional side constraints to enforce the periodicity of the resource

schedules. Let
EL() = {(vr,vr) € E* : vp € VR 10 U7 € Viyopnen and is associated with terminal [ }

E4(1) = {(vg,vr) € E* : vg € Vp,,..., and is associated with terminal [ ,vr € V7, ,}

Then, the computation of the Pareto points involves the same minimum perfect
matching problems used for the aperiodic case with the following additional con-

straints: |E% (1) N M| = |EL() N M

,V I € L. Note that these alternative models do
not offer any advantage over the IP formulations on time-expanded networks since
polynomial-time matching algorithms do not handle side constraints. The same ap-
plies to the incremental problem since no simple path algorithm can guarantee the

satisfaction of the additional constraints.

3.4 Use of the efficiency frontiers in practice

This section discusses some of the issues that arise when using the efficiency frontiers

of fleet size versus repositioning in practice. In particular, we will discuss a couple of
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practical applications for which the information from the frontiers is useful, we will
contrast the practical use of both types of modeling frameworks, and we will present

the results of some computational experiments from a real instance.
3.4.1 Practical applications

The framework presented in this chapter can be used to assist transportation oper-
ators in tactical and operational decision making. The following couple of examples
illustrate how.

On the tactical side, consider the case of LTL trucking carriers. Tractor fleet
sizing is a tactical decision problem for these carriers because monthly or quarterly
adjustments to the fleet size are appropriate in practice; therefore, under different
economic scenarios, they can take advantage of the fleet size and repositioning trade-
off to help them decrease their total costs; for instance, rises in fuel prices, such
as the ones experienced in Fall of 2008 due to shortages in fuel production, might
dictate enlarging the tractor fleet size as viable alternative to reduce the mileage
of repositioning moves and thereby reduce the operating costs; conversely, a decline
in the volumes of quantities shipped throughout a transportation network, as the
ones experienced in 2008 and 2009 due to the economic recession, might imply that
decreasing the number of tractors (and making up for them by increasing deadheading
moves) can help the carrier lower its overhead costs and remain competitive. In this
setting, the fixed schedule assumption is justified because carriers normally make fleet
sizing decisions using actual historical dispatch data for a recent month or quarter
(for instance, an average-demand or peak-demand month or quarter during the time
period since the previous fleet size adjustment).

On the operational side, consider the case of a bus company such as the ones
described in [25, 9, 23]. The sizes of bus fleets are generally determined by the

number of units that are required during the busiest periods (this problem itself may
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benefit at the tactical level from the frontier information); however, for the non-peak
periods, the company has a choice of how many units to utilize to fulfill its published
(and thus fixed) schedules.

In the following subsections we contrast the two modeling frameworks that we
have presented and we show the results of some computational experiments on the
time required to compute all Pareto points using different strategies. The data used
in both cases correspond to historical dispatch information from a major national
LTL carrier which operates 350 terminals across the U.S. This carrier was interested
in determining the correct tractor fleet size it should operate as well as the impact of

repositioning on such a decision. The input data have the following characteristics:

e The loaded requests span four weeks of operations (considered to be representa-
tive of the level of activity the carrier usually experiences) and include 115,140

scheduled tractor dispatches.

e The scheduled trailer moves correspond to complete tours, which means that
all of the terminals are balanced, that is, the the total number of scheduled
requests out of a terminal equals the total number of scheduled requests into

the same terminal.

e Repositioning moves can only occur among 135 out of the 350 terminals; they
cannot take longer than 11 hours; and they are restricted to at most 2 per day,

with fixed departure times.

3.4.2 Comparison of modeling frameworks

As it was presented in Section 3.3, both the time-expanded networks and the bipartite
networks can in principle be used to define models to individually compute each of
the Pareto points, and to compute adjacent Pareto points. In fact, most of the
results shown for both modeling frameworks parallel each other even though they

were derived independently.
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Furthermore, both types of networks can be modified easily to handle fixed sched-
ules with any or all of the following characteristics: 1) some of the scheduled requests
start or end outside of the planning horizon, 2) repositioning of resources can occur
only among a subset of the terminals, 3) maximum repositioning times are imposed ,
or 4) repositioning moves can be performed only at fixed times throughout the plan-
ning horizon. In fact, the computational experiments presented in this section are
based on data which encompasses all of these characteristics.

In contrast, there are some important differences between the sizes of the two
different types of networks. Given a fixed schedule of requests, the bipartite networks
tend to require fewer nodes but significantly more edges than the time-expanded
networks; moreover, the edge set of the bipartite networks grows at a much faster rate
than the arc set of the time-expanded networks as the planning horizon grows. In
both types of networks, the main decision to be made for each available resource is the
next scheduled request it will fulfill out of all the requests for which the resource can
be feasibly repositioned. In the case of bipartite-networks, this decision is explicitly
modeled and each of the edges represents a feasible assignment of the next request to
fulfill. There exists a correspondence between edges in the bipartite network and paths
in the time-expanded network since assigning a resource to a specific task is equivalent
to repositioning the resource to the desired terminal and keeping it in inventory
until the departure time of the request, so to represent a potential assignment the
bipartite-network requires one edge and the time-expanded network at least two arcs;
however, due to the fact that many of the paths associated with edges in the bipartite-
network overlap and arcs in the time-expanded network can carry any nonnegative
flow, significantly fewer arcs are required to represent all the feasible assignments.
The overlapping of paths makes it necessary to decompose the flows in the end to
determine the specific schedules for each resource, but that is a minor disadvantage.

Table 4 presents a summary of the sizes of the networks required to model different
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portions of the data set introduced before.

Table 4: Growth of the network sizes

Length of the planning horizon
1 week 2 weeks 3 weeks 4 weeks
Scheduled Dispatches 29,022 57,085 86,607 115,140
Bioartite notwork Ghmin 7 Nodes | 64,568 120,926 178,602 235,714
p 4 Fdges | 230,064,344 524,122,502  1,028,068,471  1,706,614,773
. Z Nodes | 112,011 222,248 332,333 442,128
Aperiodic time-expanded network | T, 206,683 410,989 616,692 821,836

Table 4 shows that even though from a theoretical perspective both modeling
frameworks can be used to compute the Pareto points, from a computational stand-

point, the bipartite network framework is impractical.
3.4.3 Running times to compute all Pareto points

In order to evaluate the savings in running time that can result from computing all the
Pareto points using the incremental procedure outlined in Algorithm 1 as opposed to
solving an independent linear program each time, we computed all the Pareto points
for the national LTL carrier. We present the results considering the input data both
as aperiodic and as periodic.

When we consider the input to be aperiodic, the computation of the end point C' =
(Kmaz> Tmin) takes 20 seconds, and the computation of the end point A = (kmin, F'maz)
takes 77 seconds. For this input data, k,.;,, = 2,158 and k..., = 2,487. Table 5
presents some statistics on the times required to compute the interior points B, =

(Kmin +n,7m0)¥n € {1,2,...,328} using each of the following methods:
e LP: Solving each LP(k) independently.

e LP(WS): Solving LP(k) by warm starting it with the optimal basis for LP(k—

1) (i.e., a dual feasible basis) and using the dual simplex algorithm.

e Inc: Using Algorithm 1.
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Table 5: Computing the interior points for aperiodic input

LP LP(WS) Inc
Total Time 2.9 hr 14.18 min | 6.87 min
Average Time 31.869 sec | 2.587 sec 1.256 sec
Standard deviation 2.608 sec 1.119 sec 0.023 sec

Table 5 shows that solving the LP’s with a warm start reduces the total time by
92%. The incremental procedure involving shortest paths yields an additional 52%
reduction for total savings of 96%. In addition, the standard deviation of the time to
compute a single point is also significantly reduced by 99% overall.

When we consider the input to be periodic, the computation of the end point C' =
(Kmaz, Tmin) takes 18 seconds, and the computation of the end point A = (knin, Tmaz)
takes 89 seconds. For this input data, coincidentally k,,;, = 2,158 and k.. = 2,487
(this need not be the case in general). Table 6 presents some statistics on the times
required to compute the interior points B, = (knin +n,7m,)Vn € {1,2,...,328} using

each of the following methods:
e IP: Solving each I P(k) independently.
e IP(SV): Solving IP(k) by providing the optimal flow values to IP(k — 1) as

starting values to the flow variables.

Table 6: Computing the interior points for aperiodic input

P IP(SV)
Total time 6.45 hr 4.98 hr
Average time 70.776 sec | 54.628 sec
Standard deviation | 28.397 sec | 11.182 sec

Table 5 shows that solving the IP’s by providing starting values reduces the total
time by 23% and the standard deviation of the time to compute a single point by

60%.
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Finally, Figure 13 shows the smoothed optimal Pareto frontiers of fleet size (in
number of tractors) versus repositioning (in tractor-minutes) when the input data
is considered aperiodic and periodic. In both cases, k.. represents only a 15%
fleet increase over k,,;, and both frontiers exhibit diminishing marginal returns as
each additional tractor yields smaller repositioning savings. In relative terms, both
frontiers exhibit similar results and asymptotic changes are observed near the end
points of the frontiers. Increasing the fleet size 1%, 2% and 3% with respect to ki
respectively yields repositioning savings of 30%, 47% and 59% in the aperiodic case,
and savings of 28%, 45%, and 57% in the periodic case. On the other hand, given
that the company was more interested in reducing its fleet size, it is interesting to
note that while reducing the tractor fleet size in 329 units might not be practically
attainable, reducing the fleet size 25% and 50% of the total feasible reduction only
requires respectively 3.75% and 13.2% of 7,4, in the periodic case and 4.71% and
14.77% of 1,4, in the periodic case.

A remark worth mentioning is that the input data includes scheduled requests
involving both loaded and empty tractor moves. We expect the repositioning savings

to be larger if those scheduled empty moves are removed from the input.
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Figure 13: Optimal Pareto frontiers for a national LTL carrier
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CHAPTER IV

ROBUST EMPTY REPOSITIONING IN VERY
LARGE-SCALE FREIGHT CONSOLIDATION
NETWORKS

The previous two chapters addressed transportation resource management problems
involving costly resources such as tractors. In both cases, fleet sizing was an impor-
tant component of the models because reducing the required owned or leased fleet
size could have an important impact on profits. Furthermore, we were interested
in evaluating the impact of fleet size reductions by using repositioning strategies
that exploit regional changes in freight demand over the course of a monthly plan-
ning horizon and deploy tractors to different parts of the network at different times
based on need. In that context, the use of known historical data corresponding to an
average-demand or peak-demand month was appropriate. In this chapter, we turn our
attention to dynamic empty-trailer repositioning problems arising in very large-scale
freight consolidation networks. These problems require the explicit consideration of
the dynamic and uncertain nature of the estimates of future trailer requirements to
reduce the chances of trailer stockouts and increase service levels. Furthermore, since
the focus is on operational decisions, we consider the fleet size as given.

In trucking operations, almost all carriers serve sets of loaded requests that are
imbalanced in both time and space. Some customer regions are typically net resource
attractors while others are net resource generators. Due to such imbalances, carriers
need to move resources empty (i.e., without serving a loaded request) between ter-
minals. Furthermore, unlike other application contexts, trucking companies react to

customer demands, but can do little to modify them, and information about customer
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locations and demand quantities and timing are all uncertain to some degree before
the actual execution. Developing dynamic empty repositioning plans remains a major
challenge for trucking transportation providers operating very large-scale consolida-
tion networks because it involves the following key issues: (1) repositioning decisions
are updated over time (daily, weekly, etc.); (2) uncertain demands for loaded resources
are revealed over time; and (3) at each decision epoch, the number of empty resources
available for repositioning and in transit depends on prior repositioning decisions and
uncertain demands.

In practice, one approach used by sophisticated carriers to plan empty reposi-
tioning in advance is to solve deterministic network flow optimization models over
time-expanded networks. Network nodes represent terminals at relevant points in
time, and point forecasts of net supplies at the nodes, usually historical averages,
are developed to estimate future empty trailers available or required at the different
terminals. Network arcs represent planning decisions of trailer idling and trailer repo-
sitioning together with their corresponding costs. Feasible flows on such a network
correspond to repositioning plans, and optimal cost flows can be found efficiently
via linear programming or network optimization algorithms. These models are usu-
ally implemented in a rolling horizon framework in which the model for a weekly or
monthly planning horizon is solved, but only a small subset of decisions (say, for the
first day) is actually executed. Then the planning horizon is “rolled” and a new model
is formulated and solved, and the process repeated. Rolling the horizon involves dis-
carding the input for the first day, updating the state of the system based on the
executed actions, and updating forecasts for net supplies, including new information
for an additional day at the end of the horizon.

A major drawback of this approach is that there may be significant uncertainty
around the point forecasts; this uncertainty may grow towards the end of the planning

horizon, but is present even in the near future. Deterministic models provide no
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mechanism for building safety stocks of resources anywhere in the system. Thus,
repositioning plans created with deterministic models may be at best suboptimal
or at worst badly infeasible when the realized net supplies differ from their point
forecasts. Infeasibility of the plans arises when insufficient resources are available to
satisfy the loaded requests at some terminals and additional resources are too far
away from the terminals where they are needed so that it is not possible to reposition
them in time to serve customer demands. This, in turn, implies either not satisfying
some of the customer loaded requests, negatively impacting service levels, or having to
procure costly external resources to cover those requests. To address these drawbacks,
effective planning must appropriately account for the dynamics and uncertainty of the
resource imbalances over time and use approaches that explicitly hedge against this
uncertainty. Explicitly incorporating the dynamics and uncertainty of future net
supplies leads to a multistage optimization model in which (partial) information is
revealed as time progresses.

A number of papers dealing with stochastic and dynamic variants of empty reposi-
tioning or related problems have been reported in the literature. Research along these
lines has made use of models from stochastic programming, dynamic programming,
and robust optimization. Stochastic models that focus on expected cost minimization
for a dynamic resource allocation problem in truckload trucking are initially developed
in [39] and [40]. Modeling approaches for stochastic empty container management
problems are presented in [11]. Dynamic programming models together with effective
approaches to approximate value functions for multistage problems are proposed in
[22] and [10]. Most of the successful approaches for expected value minimization use
a scenario-based approach, such as the adaptive dynamic programming approaches
to approximating nonlinear value functions that have been applied to single and
multicommodity problems [28, 29]. Another example of stochastic optimization for

transportation resource management is the multi-scenario optimization model in [16]
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that addresses a container maritime-repositioning problem where several parameters
are uncertain and deterministic models do not prove effective for decision-making.
Each of the stochastic models described above assume that probabilistic information
describing the future evolution of resource demands can be generated at a level of ac-
curacy sufficient to warrant an expected value minimization objective. Furthermore,
they assume that models can be built to appropriately capture all system costs and
constraints, including costs of shortages. Formulating and solving large-scale multi-
stage stochastic optimization problems to minimize expected costs can be a difficult
task.

Alternative approaches that have received more attention recently rely on ideas
from robust optimization. In particular, a two-stage robust optimization approach
for solving network flow and design problems with uncertain demand is presented in
[4], while a two-stage robust optimization framework for problems with right-hand-
side uncertainty, and specifically for empty repositioning problems is reported in [21]
and [35]. A primary motivation for the development of the approach in the latter
references is that it is often not possible or advisable to trade off shortage costs
with transportation costs, and therefore it may be more sensible to look for plans
with low transportation costs that ensure that future shortages will be small or non-
existent. Additionally, the approach attempts to allow the decision-maker to control
the conservatism of the plans generated; a more risk averse plan can be generated
that ensures that shortages do not arise for a larger set of future scenarios. A key
limitation of this existing work on robust optimization for dynamic and stochastic
empty repositioning problems is that the approaches were not designed to handle
large-scale networks, nor were they thoroughly developed for deployment within a
rolling horizon framework. This is a major shortcoming, since robust optimization
requires simpler input requirements to model forecast uncertainty and could lead

to more computationally tractable models than stochastic programming or dynamic
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programming approaches. Similar in spirit to the ideas we develop in this chapter,
[57] has recently proposed using a two-stage stochastic programming model iteratively
to solve approximately a complex multistage stochastic optimization problem arising
in the context of drayage operations.

The primary goal of the study in this chapter is to address this shortcoming,
and study how to effectively use a two-stage robust optimization approach that at-
tempts to control future resource shortages within a rolling horizon framework for
very large-scale network applications. The main contributions are that (1) we de-
velop approaches for embedding two-stage robust optimization models within a rolling
horizon framework for dynamic empty repositioning, (2) we demonstrate that such
approaches enable the solution of very large-scale instances that use real data from
a national package/parcel express carrier and produce plans with significantly fewer
unmet loaded requests and a modest increase in execution costs over those plans gen-
erated by deterministic optimization models, and (3) we show that less conservative
implementations of robust optimization models (via a reduction of the planning hori-
zon or via a simplification of the uncertainty sets against which protection is sought)

are required within rolling horizon frameworks.

4.1 Empty repositioning problems

We consider an empty-trailer repositioning problem faced by a national parcel /express
carrier, but the results will be valid for any transportation operator that uses a
centralized planner to manage a homogeneous fleet of reusable resources such as
containers, railroad cars or trucks. In parcel/express operations, empty trailers are
required at outbound doors of the terminals to be filled with packages bound to
other terminals in the linehaul network. Empty trailers are brought into service
during the sorting times at the terminals, and remain unavailable while being loaded,

transported, and finally unloaded at their destination terminal. Once they are empty
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they are brought to the terminal yard where they wait to be used again in the same
terminal or to be transported to a different terminal with larger outbound activity.
In this context, although execution costs of empty-trailer repositioning plans are
important and must be kept low, service levels are a main concern. Terminals cannot
afford to have shortages of empty trailers, since this will delay the outbound movement
of sorted freight. Since terminals also have limited freight storage capability, this is
a major concern. As such, methodologies used to develop empty repositioning plans
must address the uncertainty in point forecasts of future net supplies at the terminals.

A traditional approach used by more sophisticated carriers for generating cost-
effective repositioning plans is to use a deterministic minimum cost network flow
model (MCNF) over a time-expanded network for some planning horizon. Assuming
a planning horizon including 7 + 1 discrete periods, {0,1,2,--- ,7}, a time-expanded
network G = (N, A) can be constructed as follows. Let D = be the set of terminals
(or depots) in the transportation network. Let n¢ represent the time-space node
corresponding to terminal d at time ¢, and let s be a sink node. The complete set of
nodes is given by N' = (Uw’w nf) Us. An integer b(n?) is associated with each node
né to represent the forecast of the net supply of empty trailers that will be available at
terminal d at time ¢. An integer b(s) = —>_, _\n (4 b(n) is assigned as the net supply
at the sink to meet the feasibility condition of MCNF problems that the sum of all
node supplies must equal zero. The network includes inventory arcs (nf, nd +1) ,Vd €
D,V 0 <t <71—1, representing trailers held in inventory at a terminal from one time
period to the next, and inventory arcs (nﬁ, s) ,Vd € D, representing final inventories
of trailers at each of the terminals. Costs associated with inventory arcs are usually
ignored since they tend to be similar at the different terminals and much smaller
than repositioning costs. The network also includes repositioning arcs (ni, ni +h) with
costs ¢;; per trailer, which correspond to the potential move of empty trailers from

terminal ¢ at time ¢ to terminal j at time ¢ + h;;; where h;; is the repositioning travel
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time between terminals ¢ and j. Let A’, and A® denote the set of all inventory and
repositioning arcs, respectively. Thus A = Af U AE. The deterministic MCNF model
is:

min Y. 4r Cala

St D estn) Ta— Dacs-(my Ta =0(n) YneN

Ty >0 Va € A

The decision variables x, represent the amount of flow on the inventory and reposition-
ing arcs and correspond, respectively, to trailers remaining idle at the corresponding
terminal, and trailers being repositioned to a different terminal. The optimal solu-
tion to this model can be found in polynomial time via linear programming or using
well-known network flow algorithms. We will use repositioning plans generated with
this deterministic minimum cost network flow model as a benchmark for the more
sophisticated models that incorporate robust optimization ideas.

Optimization models used in empty-trailer repositioning should capture two im-
portant facts: first, partial information is revealed across time (i.e., different “stages”
should represent points in time where information is updated or new information is
revealed); and second, the generated plans must hedge against uncertain future trailer
requirements at the different terminals to ensure appropriate service levels. These re-
quirements point to the need for a multistage network flow optimization problem over
a time-expanded network in which the net supplies at the nodes are uncertain and
revealed dynamically at different stages in time. Over some fixed time horizon, there
is a notion of an a posteriori optimal solution for each realization of the net supplies;
if a feasible flow exists for each realization, the deterministic MCNF problem given
earlier could be used to find the optimal a posteriori flow. Since a full realization of
the net supplies is not available at any decision stage, one potential optimization ap-

proach is to find flows at each decision stage that minimize total expected costs over
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a planning horizon, including cost penalties for unmet demands (stochastic program-
ming). Another approach would be to appropriately capture all relevant costs and
instead find flows that minimize total costs, but also satisfy bounds and flow-balance
constraints to some specified probability (chance-constrained optimization). A third
approach is to find low-cost flows at each stage that can be modified via a limited
set of future decisions to recover feasibility for all possible outcomes, or a meaningful
subset, of the uncertain net supplies (robust optimization).

Given the complexity of the true multistage empty repositioning problem, sim-
pler models have been developed to generate very good approximate solutions. In
particular, two-stage robust optimization models that use simple net supply interval
forecasts have been studied by [21]. The models proposed in that work assume the
following sequence of events takes place: a repositioning plan is constructed, then
all the uncertain information in the planning horizon is revealed at once, and then
a limited set of recourse or recovery decisions are available to modify the plans and

recover feasibility in a single pass. The key ideas will be presented next.

4.2 Two-stage robust empty repositioning

This section summarizes some of the main results of the two-stage robust optimiza-
tion approach for empty repositioning problems developed by [21]. First of all, the
uncertainty of the net supplies at the different time-space nodes is modeled with
symmetric intervals around the point forecasts b(n), i.e., |b(n) —B(n), b(n) +/b\(n) :
where /b\(n) > 0. The realized net supply at n € A, b(n) is assumed to fall within
the interval, and the net supplies in the initial period are assumed to be certain, thus
b(nd) =0, Vd € D.

To allow control of the conservatism of the robust repositioning models, a pa-
rameter k£ specifies the maximum number of net supplies that may simultaneously

take an extreme value in a realization. A value of £ = 0 corresponds to absolute
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certainty in which every net supply realization is assumed to conform to its point
forecast, whereas a value of k = oo corresponds to absolute uncertainty in which all
net supplies could take their worst case values.

This two-stage approach seeks to find a minimum cost repositioning plan that (1)
satisfies flow bounds and balance equalities for the nominal net supply values, and
(2) is recoverable for every joint realization in which each time-space node net supply
value lies within its interval and no more than k values simultaneously take their
worst-case value. A plan is recoverable if there exists a set of recovery actions that can
transform the plan such that it satisfies flow bounds and balance equalities given the
realized net supply values. The recovery actions are usually a limited subset of future
repositioning movement decisions which include only low-cost options movements
used to recover feasibility.

Let ¢* be a limited perturbation set as a function of the uncertainty-budget pa-

rameter k defined as follows:

AeZ,: An)=bn)z(n), > onems 12(M)] < k()] < 1Vn e NM\s,

A(s) = =D nensp An)

AS)
Il

Assuming that each realization of interest is given by b+ A, for some A € ©*, the
following integer programming problem can be solved to generate a k-robust empty
repositioning plan, i.e., a set of flows that satisfy the nominal net supplies, and for
which recovery actions exist to modify the flows and recover feasibility for all net sup-
ply realizations in ¢*. This formulation (1) minimizes the total repositioning costs
during the first stage, subject to constraints for first and second-stage decisions. First-
stage flows are required to satisfy (2) flow balance and (3) nonnegativity constraints.
Second-stage flows require sets of constraints for each possible realization of the net
supplies against which protection is sought. These constraints include (4) balancing
the difference between the realized and nominal net supplies at each node, (5) hon-

oring integrality requirements of the overall resulting flows (first- plus second-stage
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decisions), and (6) ensuring nonnegativity of the recovery actions on repositioning

arcs.

min. Y e an Cata (1)
St D aest(n) Ta = 2aes—(n) Ta = b(n) VneN (2)
T, € Ly Va e A (3)
D aest(n) Wa' ™ Dacs(my Wa =A(n) VneN, VAcyh (4)
To +wh €7, Va € A, YA € ¢ (5)
wa =0 Va ¢ AW, VA € oF (6)
wa >0 Va € AR, VA € o (7)

where A% is the set of arcs in which recovery decisions are allowed to be nonzero.

A major drawback of the previous model is the fact that it requires a set of
constraints (4-6) for each possible net supply realization. Nevertheless, a number of
concepts were developed to set up an equivalent integer programming program whose
number of constraints is independent of the size of the uncertainty set.

The following are three important concepts that aided in such transformation:

Definition 1. RECOVERY NETWORK. A recovery network Ggr = (Ngr, Ag)
can be defined whose node set Ny is the same as the node set N', and whose arc set Ag
contains all inventory arcs in A and all repositioning arcs in A on which recovery

flow is permitted to be nonzero.
Definition 2. NODE SET VULNERABILITY. For a set of nodes C C N, its
vulnerability 9(C, k) is defined as

ﬁ(C,k):maxz{Zl;(n Z| )| <k, |z( )|§1,Vn60}

neC neC
Definition 3. INBOUND-CLOSED (IBC) NODE SET. A set of nodes U C
Ng is inbound closed if there exists no arc in Ar from any node i € Np\U to any

node j € U.
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The main result we will use is that solving the following integer programming
problem is equivalent to solving the original formulation that enforced constraints for
each realization of interest. Thus, the following IP will produce a k-robust empty
repositioning plan, i.e., a set of trailer flows that satisfy the nominal net supplies,
and for which recovery actions exist to modify the flows and recover feasibility for all

net supply realizations in which at most k& nodes take their worst-case value at the

same time.
min Y. 4r Cala (1)
St D aestin) Ta = Dacs-(ny Ta =b(n) VneEN (2)
> acst (ynat Ta = V(U k) VU C N : U is inbound closed in Gr (3)
Tq € Z+ Va € A (4)

This formulation (1) minimizes the total repositioning costs, subject to (2) flow-
balance constraints, (3) robust constraints that establish that the flow on inventory
arcs leaving an inbound closed set has to be at least equal to the vulnerability of the
set (i.e., enough inventory within the set must exist to hedge against demand surges
as no further reactive repositioning can be used to bring extra resources into the set),
and (4) flow integrality requirements.

We end this section with some additional remarks. First, one approach with
practical appeal designates a prior: some terminals that serve only as providers of
reactive resources, and some that serve only as recipients. In the remainder of this
chapter we will focus on recovery networks that include this structure. We will refer
to the providers of reactive resources as empty hubs, and to the recipients as non-
hubs. We will allow recipients to be assigned to only one empty hub. Second, in this
work we will control solution conservatism without using parameter £ and will instead
employ different approaches, as will be explained in the following sections. Thus, for
the rest of the chapter parameter k& will be set to oo; this assumption simplifies the

definition of the vulnerability 9#(C) of a set of nodes C' C N to 9(C) =3, . b(n).

neC

84



4.3 Dynamic empty repositioning in very large-scale net-
works

As mentioned earlier, the empty trailer repositioning problem involves information
that is revealed and/or updated dynamically, and as such, leads to a multistage
optimization model, in which the state of the system (numbers of trailers at the
different terminals and the number of trailers in transit) is updated at different stages.
The size of the network is a very important complicating factor because some of the
models that have been proposed for such problems do not scale well when applied to
very-large scale networks involving hundreds of terminals and hundreds of thousands
of repositioning opportunities. We will explore how to apply the results from two-
stage robust optimization models implemented within a rolling planning horizon to
approximate this multistage problem and compare the resulting plans against those
generated by simpler deterministic models. We will explore two alternatives: (1) A
two-stage robust optimization approximation and (2) A two-stage robust optimization
approximation with consideration of the rolling horizon implementation.

The two-stage robust optimization approach described in Section 4.2 was envi-
sioned and tested on networks resulting from the operations of a major tank con-
tainer fleet operator. In that application, the reactive repositioning sharing groups
(an empty hub and its assigned non-hubs) arose naturally by geography and were
small (at most three terminals in the sharing group). As a result, the number of
IBC node sets in the recovery network did not get too large and the corresponding
flow-bundling robustness constraints could be explicitly added into the integer pro-
gramming formulation to generate the desired empty repositioning plans. However
this approach becomes intractable as the networks and the number of terminals in a

sharing group gets larger.

Lemma 3. The number of IBC sets in a connected component of the recovery network

Gr involving hub j and a set L C D of its assigned non-hub terminals (with |L| = L)
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over a planning horizon involving T+1 discrete periods {0, 1,2, ..., 7} is bounded below

by (T4 2)* + 7 and bounded above by (1 + 2)" (T +1).

Proof. Let Ng = {ng,n‘f, - ,ng} for each d € D be the ordered set of nodes n¢
associated with terminal d from time ¢t = 0 to time ¢t = p. There are 7 4+ 1 IBC sets
involving involving only the hub j, namely {Ng, Nf ey Nﬁ} Additionally, given a
subset Z C L of non-hubs, an IBC set has the form U = J,.; Npi(l.) UNZj where
0 < p(i) < 7 and maz; {0, p(i) — hj;i} < p(j) < 7. Thus, given Z, there are at least
(7 + 1) different IBC sets, and there are at most (7 + 1)/(7 + 1). Furthermore,

L
there are (£> different subsets with £ non-hubs. Therefore, it follows that:

L L
LB:T+1+Z<4) T+ 1) =(T+2)"+7
=1

L
UB=7+1+( T+1Z<)T+1 = (14+ 251 +1)
=

1
O

Lemma 3 shows that the number of IBC sets grows exponentially with the number
of non-hubs in a sharing group; thus, for very-large scale networks it will be infeasible
to add all the flow bundle constraints required in the robust IP. More importantly,
given that these models are usually implemented in a rolling-horizon framework,
not all the robust constraints in the planning horizon are needed to guarantee the
feasibility of the model that will be solved the next period (say, the next day). This
situation is illustrated with the following example.

Consider the time-expanded network described before, but with repositioning op-
portunities among all pairs of terminals, all of which take one period. Also assume
that the net supplies l;f at terminal ¢ at time ¢ are computed from loaded moves
between pairs of terminals, all of which take one period as well, and whose trailer

requirements are such that b € [bt bt b+ bt] Using the decision variables xj; =
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the number of trailers repositioned from terminal ¢ to terminal j at the start of time

t, the multi-stage optimization model for this situation is given by:

; T—1
mn Zt:() Z(i,j)EAR Cija:gj 1)
s.t. Z{ji(i,j)eAR} iL';?j < b VieDVO<t<t—-1 2)
)
)

(2

(
(
(
(4

x>0 V(i,j)e AfVo<t<T-—1

where bf € |bf — bf, bt + b!| is revealed with certainty only at time ¢ — 1.

This formulation (1) minimizes the total repositioning over the planning horizon
subject to: (2) flow out of a terminal must not exceed its supply at time ¢, (3) flow
into a terminal must be at least its demand at time ¢ 4+ 1, and (4) flows must be
integer.

In this situation it is not difficult to see that, from a feasibility perspective, all
one needs to do is guarantee that the necessary trailers will be available in the next
immediate period (i.e., the only IBC sets that need to be considered are those span-
ning periods t and ¢ 4+ 1). Enforcing further protection into the future at stage ¢ is
not required because regardless of the demand realizations for future periods, in stage
t + 1 there will be a new opportunity to reposition resources in response to newly
revealed needs. Similar, but more complex arguments can hold for more complicated
settings in which not all repositioning moves are allowed and repositioning times take
more that one period. They key is that in a rolling horizon implementation, when
the horizon is rolled forward, new decision opportunities become available, and as
such, in the model for stage ¢, the robust constraints become less and less relevant
for feasibility when they involve periods further into the future. Although, it may
still be useful to add some set of robust constraints in the future since they should
help control the costs of responding to realized net supplies that deviate from their

nominal prediction
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4.3.1 Plan Generation

The original two-stage robust optimization idea requires that robust constraints be
constructed that protect against joint uncertain outcomes involving the empty hub
and all subsets of non-hubs in its influence sharing group. However, based on the
previous observations, this is computationally prohibitive for very large-scale networks
and might not be required. We will now outline two different approaches to generate
empty repositioning plans that use results from the two-stage robust model, but are

computationally tractable.
4.8.1.1 Two-stage robust-optimization approrimation

A feasible alternative to deploy the two-stage robust optimization approach for the
empty-trailer repositioning problem is to limit the number of IBC sets in the recovery
network for which robust constraints are included. We will introduce both a robust-
ness horizon Tk < 7 and a limit L on the number of non-hubs that can participate in
the IBC set. The robustness horizon limits the number of periods into the future for
which robustness constraints are added based on the observation that periods further
into the future become less relevant for protection against uncertainty because new
decisions will become available once the horizon is rolled. On the other hand, limiting
the number of non-hubs participating in an IBC set is also intended to reduce the
combinatorial explosion in the robustness constraints. The assumption behind this
idea is that serious empty resource deficits will occur at no more than a few terminals
in each sharing group on any given period. These two parameters also provide a
mechanism to control the conservatism because larger values of Tg or L increase the
number of uncertainty sets for which the resulting plan is recoverable. The resulting
model to be solved each period is given by:

The following formulation (1) minimizes the total repositioning costs, subject to
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(2) flow-balance constraints, (3) robust constraints that establish that the flow on in-
ventory arcs leaving an inbound closed set has to be at least equal to the vulnerability
of the set, and (4) flow-integrality requirements. The constraints on the IBC sets in
the recovery network for which robust constraints (3) are created enforce the robust-
ness horizon Tr < 7 and the limit L on the number of non-hubs that can participate

in an IBC set.

min. Y. ar Cala (1)
St D aestn) Ta = Daes—(myTa =0(n) VneN (2)
D aes+(Uynal Ta = Doney b(n) (3)

VUCN: U=Ur N;(i) U Ng(j) where j is an empty hub,
7 is a subset of non-hubs assigned to j s.t. |Z| < L
0 < p(i) < Tg,max; {0, p(i) — hyi} < p(j) < Tk
1, €7, VaeA (4)

4.8.1.2 Two-stage robust-optimization approximation with rolling horizon con-
siderations

The second approach to deploy a two-stage robust optimization is also based on the
explicit consideration that the empty repositioning models will be implemented in a
rolling-horizon framework. Consider a generic dynamic, stochastic planning problem
deployed using a rolling horizon of length 7. Let ¢! be the parameters used in the
model spanning time ¢ to time ¢ — 1 + 7 (cost and constraint coefficients, right-hand-
sides, etc.) estimated at time s, and let 2* be the decisions that will be fixed at stage

t. At stage t, the problem solved is:

min f(Clat, 2t 2t

st gi(¢hat, 2T Ty >0 Vi=1,2,...,m

At stage t+1, the horizon is rolled, the input of the model is updated based on the

actions x!, estimates for parameters occurring in ¢ + 1 through ¢ — 1 + 7 are refined,
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and new information for ¢ 4+ 7 is estimated. The model for stage ¢ + 1 becomes:
min  f (G, 2 a2 2t
st g (G, a2t T >0 Vi=1,2,...,m
A model with explicit consideration of the rolling horizon implementation includes

the constraints that appear in models corresponding to future stages within the cur-

rent planning horizon:

min F(¢E, at ottt
st g (¢at, 2t 2T T > 0 Vi=1,2,...,m
1 _ .
gj(f+,a§t+1,xt+2,...,xt 1+T’O) > 0 VvVy=12....m
1 _ _ .
gj(f+r 7l,t+7' l’l,t 1+r7,..,0,0) > 0 Vyi=12,....,m

gj(§f+7'7mt71+7"07...,0,0) > 0 Vj=1,2,...,m

In this formulation, the objective function and the first set of constraints corre-
spond to the original model solved at stage ¢, the rest of the sets of constraints appear
in models that correspond to future stages within the current planning horizon. The
values of the parameters in those sets of constraints are estimates available at time
t, and the variables appearing in those constraints representing decisions beyond the

current horizon are all set to zero.
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In the context of empty repositioning, let G(t) = (N(t),.A(t)) be the time-
expanded network associated with the model solved at stage t. Explicitly incor-

porating the rolling-horizon at each stage yields the following model for stage t:

min ZaeAR(t) Cala (1)
D aesH (Al () Ta = Doney b(n) (3)

Vi<s<r—1,
VUCN(s): U=Uper Nsi,p(l.) UNLZ’p(j) where j is an empty hub,
7 is a subset of non-hubs assigned to j s.t. |Z| < L
s<pl)<min{s—1+Tg,t—1+7},
max; {s, p(i) — hj;i} < p(j) <min{s —1+Tr,t —1+ 71}
z, € Zy Va € At) (4)

where we have generalized the definition of N;f to N, S‘f p = {ngl, nd ST ,nfpl} for each

d € D. Thus, Ng = N&p.

This formulation (1) minimizes the total repositioning costs, subject to (2) flow-
balance constraints, (3) robust constraints that establish that the flow on inventory
arcs leaving an inbound closed set has to be at least equal to the vulnerability of the
set, and (4) flow-integrality requirements. The constraints on the IBC sets in the
recovery network for which robust constraints (3) are created enforce the robustness
horizon Tk < 7 and the limit L on the number of non-hubs that can participate in
an IBC set, and they also enforce the inclusion of robust constraints that appear in
models corresponding to future stages within the current planning horizon. If the
interval forecasts for the net supplies remain static (i.e., they are not updated at new
stages), then the additional constraints that will be added at stage ¢ are exactly the
same constraints that will appear in models corresponding to future stages within the
current planning horizon. Otherwise, the right-hand-sides will be different in future

models.
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4.3.2 Plan Evaluation

Given that we cannot find optimal solutions to the multistage empty repositioning
problem, in order to evaluate the performance of the resulting repositioning plans,
we develop and use a simulation that mimics the daily generation and execution
of repositioning plans over a long horizon. The models that will be used for the
simulation are slightly different from the ones outlined above. Two main differences
are: (1) demand arcs will be explicitly modeled (corresponding to demand requests
that generate net supplies in the previous models), and (2) additional variables will be
used to capture the demands that cannot be met. A large penalty M will be used as a
cost for unmet demands in such a way that the model will only allow unmet demands
when it is infeasible to meet them. This approach aligns with the application context
in which service levels are a major driver of empty-trailer repositioning. Unmet
demands will only be allowed during the portion of the horizon that is assumed to be
known with certainty, T < 7. Note that this model could accommodate actual costs
of unmet demands if such estimates exist. Let x, = the flow on arc a Va € A, and y, =
the unmet demand (in number of trailers) on arc a, Ya = (n, ni,) € AP sit. t < Tkg.

The formulation is:

Min Y. in Caa + Z(ni,nf,)eAD:thK My, (1)
Sb. D aest(n) To — Dacs—(n) Ta = b(n) VneN (2)
To+ Yo = Dy Va = (ni,ni,) e AP 1t <Tx (3)
T, = D, Ya = (ni,ng,) ceAP t > Tk (4)
D aest @)t Ta > Dper b() VUCN:UeX (5)
To € Ly Vae A (6)
Yo € Ly Va = (ni,n)) € AP 1t < Ty (7)

In this formulation, b(n) > 0, n # s corresponds to the initial state of the system,
i.e., the number of resources available at the given node based on decisions made prior

to the horizon start of the model. Additionally, parameter D,, Va € AP represents
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the number of trailers required to satisfy the loaded request corresponding to arc a,
and set X captures the specific constraints on the IBC sets depending on the approach
used to generate the plans.

This formulation (1) minimizes the total repositioning costs plus the penalties
associated with unmet demands, subject to: (2) flows must be balanced at each
node, (3) - (4) trailer demands must be satisfied, but during ¢t < Tk, unmet demands
are allowed, (5) flows must build enough inventory into each IBC set, (6) - (7) flows
and unmet demands must be integer.

The simulation proceeds as follows: each period, a repositioning plan is developed
using a planning horizon of 7+1 periods. The first period worth of data corresponds
to known demands, while the rest of the data correspond to demand forecasts. The
execution cost and unmet demands of the first period are recorded and the decisions
for the first day are fixed. The next period, known demand values of that period
are revealed, and a new repositioning plan is generated, but the decisions made in

previous periods are not changed.
4.3.3 Empty Hub Selection

An important step to deploy either of the two-stage approximations described above
requires the identification of the terminals which will serve as the empty-trailer hubs.
Since the application context does not provide natural geographical divisions to define
the sharing groups (such as in [21]), an optimization model will be defined that will
attempt to capture all the important tradeoffs relevant in the selection of e-hubs.

Parameters
e D = Set of terminals.

e h; = magnitude of terminal i’s imbalance (b; > 0). The “imbalance” is a metric
of the level of activity that is expected at terminal ¢ regarding empty-trailer

repositioning. The metric used in our models is the sum of the absolute value of
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each of the net supplies corresponding to a given terminal in the entire planning
horizon [SumAbs]. Another possible metric is the absolute value of the sum of

the net supplies of all the time-expanded nodes corresponding to a terminal

[AbsSum).
e d;; = distance (or driving time) between terminals ¢ and j.
e w;;j = b; - d;; = weight of assigning terminal ¢ to an e-hub at terminal j.
e k = number of e-hubs to be selected.

® d;q,; = maximum distance (or driving time) between a terminal and its assigned

e-hub.

T

i = a(p) - dyar = minimum distance (or driving time) between two terminals
chosen as e-hubs. We use this parameter to enforce that the selected e-hubs
are spread throughout the service region and do not cluster around areas with
a high volume of activity !. a(p) € [0,2], and p (which becomes the real
parameter to define) is the maximum allowed percentage of overlap between the
service regions of any pair of e-hubs; for instance «(0) = 2 corresponds to no
overlap (p = 0%) between the service regions of any two selected e-hubs, whereas

a(100) = 0 corresponds to a potential maximum overlap of 100% between the

service regions of any pair of e-hubs.
Decision Variables

e YV, = 1 if terminal j is selected as an empty hub. 0 otherwise.
e X;; = 1if terminal ¢ is assigned to an empty hub at terminal j. 0 otherwise.

e [;; = 1 if terminals ¢ and j are both selected as empty hubs. 0 otherwise.

I The service region of e-hub j is the circle with center at j and radius dy,qe. For any two selected
e-hubs, the percentage of overlapped service region to individual service region is equal to the area
of the intersection of the two circles over the area of either circle times 100
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Formulation

Min 32 iep wii Xi (1)
s.t. ZjeD X =1 VieD (2)
2jep Y=k (3)
X; <Y, Vie D,Vj €D (4)]
dijXij < dpmew Vi€ D,VjeD (5)
dijl; > dH. Vie D,VieD:i#j (6)
I; <Y, VieDNjeD:i#j (7)
I; <Y; VieDVjeD:i#j (8)
I;>Yi+Y,—1 YieDVjeD:i#j (9)
Y; €{0,1} Vj €D (10)
X;; € {0,1} Vie D,VjeD (11)
I; € {0,1} VieDVjeD:i#j (12)

This formulation (1) minimizes the total weight of the assignment of terminals to
empty hubs, subject to: (2) Each terminal should be assigned to a unique empty hub.
(3) k terminals must be selected as empty hubs. (4) A terminal can be assigned to
an empty hub only if it is selected. (5) Terminals can only be assigned to empty hubs
within a maximum distance. (6) Two selected empty hubs must be separated by a
minimum distance. (7)-(9) Definition of [;;(1;; = Y;Y;). (10)-(12) Binary restrictions.
Note that constraints (7)-(10) guarantee that I;; € {0,1}, therefore, I;;’s can be

defined as a continuous variables.

4.4 Computational Results

In order to implement the proposed two-stage robust-optimization approximations
for empty repositioning and evaluate the plans generated, we performed computa-

tional experiments using data from a national package/parcel express carrier. For
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repositioning data, we received information describing all possible connections be-
tween the different terminals and their corresponding travel times, as well as rail
schedules for moves involving railheads. For loaded data, we received information
spanning six weeks and involving loaded trailer dispatches among 264 terminals. We
then used an extrapolation procedure to generate loaded trailer demands for different
scenarios and generated 14 weeks of loaded data which will be used in our simu-
lation. This procedure takes a stream of nominal loaded trailer dispatches (call it
a set Requests) spanning 14 weeks of operations and perturbs each of their trailer
requirements (i.e., the number of trailers D(r) that are moved from the origin ter-

minal to the destination terminal of request r) to achieve an overall perturbation

ZrERequests D(T’)—D(’I‘
ZTGRequests D(T)

[0,2D(r)]. In our computational experiments, we will use a value of « that, according

). Each perturbed demand D(r) can take values in the interval

O =

to the carrier, corresponds to the level of variability observed on its national opera-
tions. This will constitute Scenario 1. We will also experiment with data generated
using an overall perturbation equal to «/2. This will constitute scenario 2. In each
scenario, the nominal values will be used as forecasts and the perturbed values will

be used as real demand realizations.
4.4.1 Creation of the time-expanded network

The time-expanded network used in our computational experiments has an irregular
time discretization and is composed of two different pieces, the road network, which
includes inventory and repositioning arcs between carrier-operated terminals, and the
rail network, which includes repositioning options using rail moves between the ter-

minals and railheads.

The road network

e Nodes: In the given data, each terminal contains between 1 and 4 different
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times during the day when loaded moves start (i.e., when trailers become un-
available to be loaded and transport goods to a different terminal). Under the
assumption that repositioning decisions can only be made at these points in
time, we created a time-space node for each terminal at each of these times for
each of the days included in the planning horizon. A sink node was created
as well whose main purpose is to drain the resources at the end of the plan-
ning horizon with a large enough negative net supply. In the remainder of our

discussion, we will ignore the specifics about the sink node.

Arcs: The time-expanded network has three types of arcs: inventory, repo-
sitioning, and demand arcs. Inventory arcs join consecutive nodes associated
with the same terminal and represent the possibility of leaving trailers idle at a
given terminal. Repositioning arcs represent the option of moving empty trail-
ers among terminals. We create a repositioning arc joining the time-space node
of the terminal of origin at the time of origin with the closest time-space node
of the terminal of destination whose time is greater than or equal to the time
of origin plus the travel time between the two terminals. Finally, demand arcs
correspond to loaded trailer dispatches. We create a demand arc joining the
time-space node of the terminal of origin at the time of origin with the closest
time-space node of the terminal of destination whose time is greater than or
equal to the time of destination. Additionally, demand arcs have associated
trailer demands, the number of trailers that need to be moved between the pair
of terminals. In each model, the trailer demands for the first day correspond
to realized trailer requirements for the given scenario, while trailer demands for

the rest of the days correspond to forecasted trailer requirements.

Node net supplies: Since the model used in the simulation explicitly repre-

sents loaded demands using arcs, supplies at the nodes will correspond only to
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the number of trailers available at the given node based on decisions made prior

to the horizon start of the model (i.e., the initial state of the system).

e Interval forecasts for net empty-trailer requirements: The net trailer re-
quirements at each of the terminal time-space nodes corresponds to the empty
trailers that are available or required there before any repositioning takes place.
Even though in the model used in the simulation, specific loaded trailers arrive
at/depart from each node and there is no need to compute net empty-trailer
requirements, the flow-bundle constraints that enforce robustness use informa-
tion from interval forecasts of these net empty-trailer supplies. Point forecasts
b(n) for net empty-trailers are given by the difference between the total loaded
trailers into the node minus the total loaded trailers out of the node, and inter-
val forecasts are computed as [b(n) — ab(n); b(n) + ab(n)], where « corresponds
to the overall perturbation of the corresponding scenario. Notice that since the
interval forecasts are a function of nominal supplies, they remain static through-
out the entire simulation, that is, they do not get refined as execution time gets

closer.

The rail network

Trailers can also be repositioned among terminals using rail moves; however, unlike
road moves, rail legs are only available at specific times during a given week. We
model the rail network as follows: for each rail leg, we create nodes at the start
time at the origin railhead and at the end time at the destination railhead, and we
create the following arcs: one arc between the origin and destination railheads at
the specific timing, one arc for each feasible terminal-origin railhead, and destination
railhead-terminal connections. We do not allow inventory arcs at the railheads (to
avoid repositioning plans that would send trailers from a terminal to a single railhead
and then to another terminal), but we have added repositioning arcs correspond-

ing to feasible indirect connections between railheads. In particular, we added arcs
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representing all possible arc moves that would take up to three days of travel time.
4.4.2 Simulation Results

We simulated the generation and execution of our repositioning plans over 14 weeks of
operations for two different scenarios. Scenario 1 is the base scenario that exhibits an
amount of variability similar to that exhibited by the carrier on its national operations.
Scenario 2 exhibits half the amount of the variability of Scenario 1.

Each day, a repositioning plan over the following two weeks is developed. Input
data include the relevant portion of the time-expanded network for the current model,
the state of the system (number of trailers at each of the terminals and in transit)
based on repositioning decisions made in prior days, and the relevant demand data.
Data for day one correspond to realized trailer requirements for the given scenario
and data for days 2 through 14 correspond to forecasted trailer requirements. The
execution costs and unmet demands during that day are recorded and the decisions for
the first day are fixed. The next day, the horizon is rolled, known trailer requirements
within the new day are revealed, and a new model is solved. The process is repeated
over 14 weeks. To avoid cool down effects, the execution costs and unmet demands
are recorded for only the first 12 weeks worth of data for which models involving
entire two-week horizons can be solved.

In what follows, we will use the following notation to refer to the model results:
LX — TRY — RH represents the model that imposes a limit of X non-hubs that
can participate in an IBC set, with a robustness horizon T = Y. Parameter RH
is optional, and distinguishes the variant of the models that explicitly consider the
rolling horizon implementation. Using this notation, model L0 — T R0 corresponds to
the deterministic MCNF model that adds no robust constraints.

Figures 14 and 15 show the results of the models for Scenario 1 in terms of unmet

demands. The deterministic model provides a benchmark on the number of unmet
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Figure 14: Unmet demands on a given day - Scenario 1

demands that result from ignoring the uncertainties in the forecasts for future trailer
requirements. For this scenario, model L1 — T'R1 — RH provides the best results
with a reduction of 70% of the cumulative unmet demands over 12 weeks with re-
spect to those of the deterministic plans. Additionally, the models that ignore the
rolling horizon implementation do not produce significantly different results when the
robustness horizon is increased from one day to two days or when the number of al-
lowed non-hubs in an IBC set is increased from one to two. On average, these models
yield reductions of 64% of the cumulative demands.

Figures 16 and 17 show the results of the models for Scenario 1 in terms of plan
execution costs. The deterministic model also provides a benchmark on the costs of
the repositioning plans that result from ignoring the uncertainties in the forecasts for
future trailer requirements. For this scenario, model L1 — T'R1 — RH also provides
the best results with an increase of only 6% of the cumulative execution costs over
12 weeks over those of the deterministic plans. Once again, the models that ignore

the rolling horizon implementation do not produce significantly different results when
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Figure 15: Cumulative unmet demands - Scenario 1

the robustness horizon is increased from one day to two days or when the number
of allowed non-hubs in an IBC set is increased from one to two. On average, these
models involved increments of 13% of the cumulative execution costs.

Figures 18 and 19 show the results of the models for Scenario 2 in terms of unmet
demands. As expected, unmet demands are fewer in this scenario than in Scenario 1.
For this scenario, model L1 — T'R1 — RH provides the best results with a reduction
of 80% of the cumulative unmet demands over 12 weeks with respect to those of the
deterministic plans. Once again, the models that ignore the rolling horizon imple-
mentation do not produce significantly different results when the robustness horizon
is increased from one day to two days or when the number of allowed non-hubs in an
IBC set is increased from one to two. On average, these models yield reductions of
73% of the cumulative demands.

Figures 16 and 17 show the results of the models for Scenario 2 in terms of plan
execution costs. For this scenario, model L1 — TR1 — RH also provides the best

results with an increase of only 8% of the cumulative execution costs over 12 weeks
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Figure 16: Execution costs on a given day - Scenario 1

over those of the deterministic plans. On average, the models that ignore the rolling
horizon implementation involved increments of 13% of the cumulative execution costs.

In addition to studying the performance of the plans generated by our proposed
approaches against that of plans generated with deterministic models, we were also
interested in evaluating the effects that the choice of the planning horizon length
has over the performance of the plans. To this effect, we conducted computational
experiments in which we varied the length of the planning horizon used. Figures 22

and 23 illustrate two important points:

a) The robust optimization models can use shorter planning horizons to obtain
better quality decisions than those obtained with the pure deterministic model.
In particular, all the robust optimization models with a planning horizon of
at least three days provide better results in terms of unmet demands than the
deterministic model can attain with the same or longer planning horizons. In

terms of execution costs though, robust models require planning horizons of
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Figure 17: Cumulative execution costs - Scenario 1

around six days to achieve their best results.

The robust optimization models that explicitly consider the rolling horizon im-
plementation provide the best results and can use less conservative uncertainty
estimates than robust optimization models which ignore this key implementa-
tion idea. In particular, the robust models with rolling horizon implementations
that use Ty = 1 and L = 1 perform better than robust optimization models

with TR =2 or L = 2.
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Figure 18: Unmet demands on a given day - Scenario 2
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Figure 19: Cumulative unmet demands - Scenario 2
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700
E 600
: |
O 500 - .
T
D 400 -
L%4]
-g 300
S
v
= 200
o]
<
= 100

1]

1 8 15 22 29 36 43 50 57 64 71 78
Time (Days)
—L0-TRO —L1-TR1 —L2-TR1 —L1-TR2 —L1-TR1-RH
Figure 20: Execution costs on a given day - Scenario 2
Cumulative execution costs

35
" 30 _/6
5. =
o]
q-c_ 20 //////
(o]
2 15 /
o]
:é 10 //
= 5

1 8 15 22 29 36 43 50 57 64 71 78
Time (Days)

—LO0-TRO —L1-TR1 —L2-TR1 —L1-TR2 —L1-TR1-RH

Figure 21: Cumulative execution costs - Scenario 2
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Cumulative unmet demands (12 weeks)
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Figure 22: Cumulative unmet demands with different planning horizons - Scenario 1
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Figure 23: Cumulative execution costs with different planning horizons - Scenario 1
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

This dissertation proposed approaches that enable effective planning and control of
mobile transportation resources in large-scale freight consolidation networks. We
develop models, algorithms, and methodologies that are applied to fleet sizing and
fleet repositioning.

Chapter 2 introduced a modeling framework for exploring the value of tractor
repositioning strategies to reduce the costs of operating and maintaining a tractor
fleet during a given planning horizon. Four tractor repositioning strategies were eval-
uated and their benefits were quantified using two different costing schemes. Results
from a computational study, using real data from a national LTL carrier, show that
cost savings of up to 5% can be achieved by performing extra tractor repositioning
moves to reduce the fleet size. A number of issues remain and constitute venues for
future research. We investigated repositioning as a mechanism to reduce the fleet
size. This was done separate from the repositioning that takes place to balance re-
sources throughout the network. Planning repositioning moves to balance resources
and reduce fleet size simultaneously may yield further cost savings. In addition, a
similar modeling framework can be used to evaluate the benefits of the “dual-use” of
linehaul tractors. Dual-use of linehaul tractors refers to their use in pickup and deliv-
ery operations at terminals. Using linehaul tractors in pickup and delivery operations
may lead to reductions in the size of the tractor fleets maintained at terminals for the
pickup and delivery operations (the tractors used for pickup and delivery operations

are smaller and cannot be used for linehaul operations). In fact, integrated models
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that consider repositioning to reduce linehaul tractor fleet size and pickup and deliv-
ery tractor fleet size are also a possible option. Furthermore, the models presented
in Chapter 2 used historical trailer dispatch data and thus implicitly assume that
historical dispatch data is representative of future dispatches. Modeling uncertainty
in the scheduled trailer dispatch moves (for example, in terms of dispatch times or
the number of tractors required to serve the loaded requests) is a natural and useful
extension.

Chapter 3 elaborated on the work to understand the trade-offs between fleet size
repositioning costs. It described procedures that compute the optimal Pareto fron-
tier between fleet size and repositioning costs required to perform a fixed aperiodic
or periodic schedule of transportation requests. Two different modeling frameworks
(one using time-expanded networks and the other bipartite networks) were intro-
duced and contrasted in terms of practical applicability. For aperiodic schedules, it
was shown that all of the Pareto points can be computed in polynomial time via linear
programming formulations of flows on time-expanded networks or minimum weight
perfect matchings on bipartite networks. Furthermore, it was proved that adjacent
Pareto points can be computed efficiently by solving a single shortest path problem
in either type of network. Aperiodic schedules were found to be more difficult and
it was shown that the natural extensions from aperiodic networks fail to provide ef-
ficient algorithms to compute adjacent Pareto points. Only the end points on the
frontier were shown to be computed in polynomial time by solving a sequence of two
linear problems and the rest of the points in the frontier can be computed using ei-
ther integer programming flow formulations or perfect matchings with additional side
constraints. The NP-completeness of the bicriteria optimization model for periodic
networks remains an open problem. Future research should incorporate repeatability
and regularity conditions into the analysis; these conditions are desirable in practice

as they produce repositioning plans that are easier to implement and monitor.
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Chapter 4 considered robust models for dynamic empty-trailer repositioning prob-
lems in very large-scale consolidation networks. We investigated approaches that de-
ploy two-stage robust optimization models in a rolling horizon framework to address
a multistage dynamic empty repositioning problem in which information is revealed
over time. Using real data from a national package/parcel express carrier, we con-
ducted a simulation to evaluate the performance of repositioning plans in terms of
unmet loaded requests and execution costs, and showed that the plans generated
with our proposed approaches can reduce the unmet loaded requests up to 80% with
a modest increase of 8% in execution costs over those plans generated by deterministic
optimization models. Additionally, we provided computational evidence supporting
that (1) robust optimization models can use shorter planning horizons to obtain the
same or better quality decisions than those obtained with pure deterministic models,
and (2) robust optimization models designed explicitly for embedding within rolling
horizon implementations can use less conservative uncertainty estimates than robust
optimization models which ignore this key implementation idea. A number of ques-
tions remain open and constitute venues for future research, including: (1) How to
appropriately select the terminals that will serve as empty-hubs? In this study we
proposed an optimzation model that aimed to capture the important trade-offs in
the empty-hub selection, but further research is required to shed more light into this
important decision. (2) What role, if any, do trailer mix decisions have into the con-
struction and implementation of robust empty-trailer repositioning plans? (3) What
is the impact of correlations between net trailer imbalances? Uncertainty in net trailer
imbalances is driven by uncertainty in loaded demands, which are in turn driven by
changes in freight. Understanding the impact of correlations in those changes can

lead to better definitions of the uncertainty sets against which protection is sought.
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