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SUMMARY

The contributions of this dissertation are 1) a general dynamic condition suffi-

cient to ensure frequency synchronization of inverter-based AC power networks, and

2) a distributed control regime that is capable of guaranteeing that the above condi-

tion holds for all expected operating conditions of such networks. These methods are

applicable to networks of arbitrary structure and scale. First, we develop a structure-

preserving model of the frequency and voltage-angle dynamics of an arbitrary network

whose sources are all inverters operating frequency-droop control. By applying graph-

theoretic methods to the model, we will show that there exists a “safe region” of the

state space such that if the network voltage-angle trajectory stays in this region, then

synchronization and power sharing are shown by Lyapunov-like methods. By analogy

to similar problems solved in other applications, we will develop a new distributed

control regime to constrain an all-active-bus, acyclic inverter-based network to the

safe operating region, thus guaranteeing synchronization and a new form of power

sharing that enforces line power flow constraints. We then extend these methods to

a much more general class of inverter-based networks by introducing the concept of

power flow rigidity and developing a control method (which does not require com-

munication or centralized control) to enforce the power flow rigidity of a network for

all network operating conditions within an explicitly defined range. These techniques

will form the basis for future development of ultra-reliable inverter-based networks.

xiv



CHAPTER I

INTRODUCTION AND MOTIVATION

1.1 Introduction

Frequency synchronization and sharing of real power demand between power sources

is a necessary fundamental requirement of AC power networks, which almost all other

features of the power system take as an assumption. Emerging smart grid technolo-

gies, such as the Prosumer-based Power System Architecture being developed by the

Advanced Computational Electricity Systems (ACES) laboratory at Georgia Tech, re-

quire that synchronization and power sharing of networks be assured for all expected

network operating conditions without requiring communication or centralized con-

trol. At the same time, increasing penetrations of inverter-interfaced power devices

violate long-standing assumptions about synchronization. Therefore, new methods

of understanding frequency synchronization in networks with high penetration of

inverter-interfaced sources are needed, along with new distributed control regimes to

provide robust synchronization and power sharing behavior for such networks. Since

inverters are the least understood component of this new system, this dissertation

contributes new methods of analysis and control for networks whose sources are all

inverters, and makes significant steps towards providing truely robust, distiributed

sychronization and power sharing behavior.

The contributions of this dissertation are 1) a general dynamic condition sufficient

to ensure frequency synchronization of inverter-based AC power networks, and 2) a

distributed control regime that is capable of guaranteeing that the above condition

holds for all expected operating conditions of such networks. These methods are
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applicable to networks of arbitrary structure and scale. First, we develop a structure-

preserving model of the frequency and voltage-angle dynamics of an arbitrary network

whose sources are all inverters operating frequency-droop control. By applying graph-

theoretic methods to the model, we will show that there exists a “safe region” of the

state space such that if the network voltage-angle trajectory stays in this region, then

synchronization and power sharing are shown by Lyapunov-like methods. By analogy

to similar problems solved in other applications, we will develop a new distributed

control regime to constrain an all-active-bus, acyclic inverter-based network to the safe

operating region, thus guaranteeing synchronization and a new form of power sharing

that enforces line power flow constraints. We then extend these methods to a much

more general class of inverter-based networks by introducing the concept of power flow

rigidity and developing a control method (which does not require communication or

centralized control) to enforce the power flow rigidity of a network for all network

operating conditions within an explicitly defined range. These techniques will form

the basis for future development of ultra-reliable inverter-based networks.

1.2 Motivation

The traditional architecture and control regime of the North American electric power

system is based on the technologies available and consumer needs at the time of the

grid’s inception. As a result, the grid depends on a system of assumptions based

around these technologies and needs, which include inertial sources that are (rela-

tively) small in number and large in scale, lack of energy storage capability, and

static network structure. However, in the past few decades, new power devices and

power-management technologies have emerged (e.g., inertialess sources that are small

in scale and large in number and the possibility of energy storage), which defy the

assumptions that underly the traditional control regime. At the same time, new use-

cases and needs arise as the amount of electric power used increases and the way that
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it is used becomes more complex (e.g., controllable loads, need for dynamic networks,

and electric vehicles). As a result, the traditional control regime is unable to effec-

tively integrate key new technologies or meet the needs of a 21-century society. A

new control regime is needed, one that continues to provide traditional services, but

also allows technology independance, more flexible structure, greater reliability, and

more consumer participation.

The most basic capabilities required of a power network are synchronization of

power devices to a shared system frequency (frequency synchronization), sharing of

the network load power between sources according to some defined relationship (power

sharing), and enuring that the physical constraints of the network are met (physical

security), even in the face of unexpected disturbances and changes in the network.

Traditionally, these capabilities have been provided by the inertia and governor re-

sponse of the large synchronous machine sources, combined with centralized supervi-

sory control. The mathematical tools available for analyzing synchronization of the

network have been largely based on numeric simulation, in which it was assumed

that the network is static in structure and strongly dominated by inertial sources.

However, emerging power technologies are often interfaced to the power network by

power electronic inverters, which are not inertial, but are capable of much greater

controllability than machines. In addition, full consumer participation in the mar-

ket requires that the method of control be capable of integrating a large number of

new devices with ownership by many entities, which motivates a distributed control

regime. As a result, existing tools for analysis and control are inadequate to the needs

of the emerging grid.

In response to the above described needs, the Advanced Computational Electric-

ity Systems (ACES) lab at the Georgia Institute of Technology is in the process of

developing a new control regime to meet the needs of the emerging power network.
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Titled the “Prosumer-based Power System Architecture,” this system provides a vi-

sion for an “Energy Internet” allowing distributed, plug-and-play integration of new

technologies and full participation of consumers in the electricity market [32, 34].

The scope of this architecture is the operation of an internet-like power network from

sub-microsecond device controls to large-scale market transactions.

The Prosumer-based Power System Architecture works in layers, where each layer

performs significant functions of the power network and abstracts those functions

away from the layers above it. The Local Control Layer, which consists of controllers

operating locally on power devices without explicit communication, is response for

ensuring frequency synchronization and power sharing of the network. The integra-

tion of these capabilities into the Local Control Layer provides a basis for higher

layers that ensures physical operation of the network, even in the event of a failure of

communication or higher control layers. Therefore, it is necessary for the operation

of the Prosumer-based Power System Architecture to develop a distributed control

regime for a power network of arbitrary size and structure that provides frequency

synchronization and power sharing for all expected operating conditions of the net-

work.

The full specification of a control regime to meet all the requirements of the Local

Control Layer of the Prosumer-based Power System Architecture is beyond the scope

of this dissertation. However, since inverter-interfaced devices are the most novel

component of the emerging power system, and the creation of a stable network of

such devices is not well understood, this work will advance the understanding of

frequency synchronization, power sharing, and line-power-flow security of networks

containing high penetration of inverters by considering a network of ALL inverter

sources, particularly focusing on how a control regime can ensure synchronization

and power sharing in a way that is robust to changes in the generation references and
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loads. In addition, the outcome of this work will be applicable to isolated inverter-

based networks, such as military forward operating base networks [10] or inverter-

based microgrids (such as CERTS microgrids [46]).

1.3 Outline

This dissertation begins with a survey of the existing state of methods for model-

ing and control of synchronization and power sharing in AC networks (both syn-

chronous generator and inverter-based networks), as well as survey of existing meth-

ods for analysis of network convergence and synchronization in multi-agent system

theory (Chapter 2). We then propose a new structure-preserving dynamic model of

the frequency/voltage-angle/real-power dynamics of an inverter-based network whose

sources operate frequency-droop control. By applying multi-agent system methods

to this model, we show that synchronization and power sharing of such a network

can be guaranteed by satisfaction of a specified set of line power flow constraints on

each line in the network (Chapter 3). Based on the above condition, we then propose

a modified form of the frequency-droop control law (which we term the Constraint-

Enforcing Droop (CED) Control Law), and show that if each inverter in an all-active-

bus, acyclic network implements the CED control law, then robust synchronization

and a constrained form of power sharing behavior are guaranteed (Chapter 4). In

order to allow application to a more general class of networks, we then introduce the

concept of power flow rigidity (and power flow rigid key line sets), and show that

they permit relaxation of the sufficient condition for stability to the enforcement of

the line power flow conditions on only a subset of the network lines when the network

operates within a specified range of generation and load values (Chapter 5). Based

on the concept of power flow rigidity, we introduce rigidity-enforcing sparse CED, a

control approach applicable to very general inverter-based networks that provides sig-

nificantly improved synchronization and power sharing with only sparse application of
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CED-controlled inverters (Chapter 6). While our results fall short of formally control-

theoretic robustness, they provide significant improved performance as compared to

existing methods, and we argue that the non-robust assumptions they require are

mild in practice. Finally, we discuss the applications, capabilities, and limitations of

our proposed modeling and control methods (Chapter 7).
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CHAPTER II

LITERATURE REVIEW

2.1 Synchronization and Stability in Power Networks

This dissertation will combine results from two fields which have traditionally had

little interaction with each other: power system analysis and graph-theoretic meth-

ods for multi-agent system analysis. These fields often use different terminology to

describe similar concepts, or in some cases, they use the same term to mean different

things. In particular, the definitions of the concepts of frequency synchronization and

angle stability of an inverter-based power system bear discussion.

Frequency synchronization (sometimes simply called “synchronization”) is a topic

of significant discussion in power system analysis. A paper by the IEEE/CIGRE Joint

Task Force on Stability Terms and Definitions [44] seems to be the accepted source for

the definitions of terms relating to power system stability. This paper uses the term

“synchronization” undefined, but there seems to be general acceptance that this term

refers to the convergence of power system bus voltage angles and frequencies to a state

in which all bus frequencies are equal (e.g., [38]). Because of the physical relationship

between bus voltage angles and power-flow values in AC power networks, frequency

synchronization is also understood to imply the convergence of line power flows (and

thereby source generation values) to a known relationship. Frequency, therefore, acts

as a shared system variable by which power sources may coordinate their output, and

thus frequency synchronization is critical to almost all other functions of the power

system.

In control theory, many different definitions of stability may be adopted. Most

definitions are based on the concept of Lyapunov stability of an unforced system
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(see [43, Chapter 4]), which is the property of a system and an equilibrium such

that for initial conditions sufficiently near the equilibrium, the state dynamics will

stay near the equilibrium for all time, or in the case of asymptotic stability, will

converge to the equilibrium. LaSalle’s theorem allows expansion of this definition

to limit sets and compact sets of initial conditions. Further generalizations of this

definition include input-to-state stability, which ensures robustness to time-varying

forcing inputs, and local input-to-state stability [68, 69], which limits the region of

input-to-state stability to a compact set of inputs and initial conditions. Many of the

above definitions can be modified by the concept of partial stability, which considers

the stability of only a subset of the variables of the system [74, 73]. Multi-agent

system theory often considers stability of network state to “agreement”, which is the

state in which all nodes in the network share a common local state (see [54, Chapter

3]). While different in several significant ways, all of these definitions share a common

goal: the state trajectory of concern should stay within a bounded region (or converge

to a target equilibrium) for all expected initial conditions and inputs.

While in many ways similar, the understanding of stability in power systems is

much more specific. In [44], power system stability is defined as “the ability of an

electric power system, for a given initial operating condition, to regain a state of op-

erating equilibrium after being subjected to a physical disturbance, with most system

variables bounded so that practically the entire system remains intact.” Notice that

this definition is specific to a given operating point and a given set of physical distur-

bances (rather than ALL expected operating points and disturbances). In practice,

this concept is usually divided into several different partial stability concepts related

to the particular system variables of interest, such as rotor angle stability, voltage

stability, frequency stability, etc. It is generally assumed that it is not possible to

ensure stability of a power system to any disturbance or from all operating points

[44].
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The concept of “angle stability” in a power system deals with the conditions under

which frequency synchronization can be expected to occur. In [44], “rotor angle sta-

bility” is defined as “the ability of the synchronous machines in a system to maintain

synchronization after being subjected to a disturbance.” Obviously this definition is

specific to synchronous machines, but it can be easily generalized to voltage angles

(rather than rotor angles) since in synchronous machines the two are directly related.

The term “transient stability” deals with angle stability of a network in response to

large disturbances. It is generally assumed that the system is initially in an equilib-

rium condition, a physical disturbance is applied, and then it is determined whether

the system is able to return to a (possibly changed) post-disturbance equilibrium

[44, 64]. Transient stability of a power system has traditionally been assessed by

time-domain simulation of a dynamic model of the power system under a given set

of disturbance contingencies [44, 75], which is generally known as “contingency anal-

ysis.” Because of the large computational complexity of this type of analysis, only a

limited number of possible operating points or contingencies can be considered [48, 5].

Another major category of methods for analysis of transient stability of machine-

based networks are energy function methods, which involve the creation of a function

of network parameters and state, whose values gives some information about transient

stability of the network, such as a margin to instability. Excellent summaries of the

field are provided by [72, 64]. Many energy function methods (e.g. [7, 70, 71]) are

based on reduced-order models of the power network, in which load buses are alge-

braically eliminated so that only active (generator) buses need to be considered. In

1981, Bergen and Hill proposed their famous structure preserving model [9], in which

no load bus elimination is made, allowing a much more physical interpretation of the

results. Based upon the structure-preserving model, numerous methods have been

developed to provide greater physical insight into transient stability in machine-based

networks (e.g. [16, 37, 11, 29, 18]). However, a closed form method for determination
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of the boundaries of transient stability of a power network as a function of network

structure and parameters has not yet been developed [38].

2.2 Inverter Frequency-Droop Control

To enable high penetrations of inverter-interfaced sources, it is necessary to ensure

that such sources participate in the stabilization of the network. Much recent lit-

erature has discussed the frequency-droop controller for inverter-interfaced sources,

which was first proposed in [12]. This method is based on the physical intuition

that inverter real power tends to increase with increasing voltage angle. Therefore,

the inverter is operated as a voltage source and implements a linear droop of fre-

quency with respect to output power. This controller therefore creates a similar

relationship between frequency and source output power seen in traditional machine

networks, and so has been claimed to allow a network with high to complete pen-

etration of inverter sources to maintain frequency synchronization and share power

between sources. Based on the inverter droop controller, many methods for stabi-

lization and power sharing in inverter-based and mixed inverter/machine microgrids

have been proposed [62, 47, 61, 17, 35, 42, 51, 8], including the well known CERTS

Microgrid Concept [46, 24, 58].

Several related methods for the analysis of angle stability in droop inverter-based

networks have been proposed in the literature [15, 40, 52], which rely on detailed

modeling of the inverter device and controller, but with a simplified network model.

Small-signal stability is assessed numerically at a particular operating point by lin-

earization of the dynamics. These methods allow assessment of the local stability of

a particular network for a particular operating point, but they do not allow for as-

sessment of boundaries of stability or provide physical insight into how such stability

characteristics can be improved. In addition, little attempt is made at connection with

traditional system-level theory, and simplified network models do not allow complex
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or dynamic network structure to be considered.

2.3 Graph-theoretic Methods and Multi-agent Systems

Recent contributions to the field of algebraic graph theory (see [30]) have provided

powerful new mathematical tools with which to understand networks of intercon-

nected dynamic systems. This has resulted in the development of graph-theoretic

methods for multi-agent system analysis (for a summary, see [63, 54]), which study

convergence in dynamic networks through the underlying graph. In particular, [80]

considers a network of coupled dynamic systems through the edge states, that is, the

differences of state across each edge in the underlying graph. Some research has also

considered the possibility of non-linear coupling dynamics [63, 76, 81] for example the

Kuramoto Oscillator model [45], in which the agents represent coupled oscillators with

sinusoidal coupling functions. Using graph-theoretic methods, [1, 13, 22, 28, 27] have

explored conditions for synchronization of the Kuramoto Oscillator model (and gen-

eralizations thereof). Some literature has observed the connection between Kuramoto

oscillator model and power networks [50, 26]. Source [38] constrasts network-focused

modeling approaches with the dynamics-focused modeling approach traditional in

power system theory, and calls for application of network focused methods to power

system analysis.

One problem considered by multi-agent system control is that of achieving dis-

tributed agreement among mobile robots with limited sensor range. Mathematically,

this problem is formulated as an edge preservation problem in ∆-disk interaction

graphs (see [54, Chapter 7], [79]). A discrete-time method to achieve agreement un-

der limited sensor range was proposed in [6]. In [53] Meng and Egerstedt propose an

agreement controller to preserve edges in a network of agents with single-integrator

dynamics, based on application of unbounded non-linear gains to network coupling

terms. Other methods have been proposed to solve the single-integrator problem with
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bounded control terms [19, 4]. Finally, [59] has proposed a discrete-time method to

preserve connectivity among second-order agents with limited sensor range.

A significant concept often used in grapth-theoretic or multi-agent control is that

of graph rigidity or persistence (for an explanation, see [36]). Each vertex in a graph

is assigned a position in R2. An undirected graph is rigid if every such assignment

of positions such that the distance across each edge is a specified value is sufficient

to ensure that all pairwise distances between edges are maintained. Persistence is a

similar concept for directed graphs, in which any movement of vertices that maintains

the distances on the outgoing edges of each will also maintain the distance between

each other pair of vertices. In [41], a combinatoric method (the “pebble game”) was

introduced which allows analysis of rigidity. The concepts of rigidity and persistence

were extended to three and higher dimensions in [78]. Finally, in [67], methods were

proposed allowing for automatic generation of peristent formation for mobile robots

under sensing and communication range constraints.

2.4 Application of Graph-Theoretic Methods to Angle Sta-
bility of Power Networks

Recently, Dörfler and Bullo developed a reduced network model [23] for a machine-

based AC power network based on the Kuramoto model. They showed that in some

cases angle stability of the power system models can be approximated by the first

order non-uniform Kuramoto model. Using this model, they provide a system-level

condition on edge coupling weights that ensure angle stability of the network. In [21],

they showed that the structure-preserving model of a machine-based network can in

some cases also be approximated by non-uniform Kuramoto model. Very recently,

Simpson-Porco, Dörfler, and Bullo observed in [66] that radial, lossless networks of

droop controlled inverter sources may be modeled exactly as non-uniform Kuramoto

oscillators, and provided a system-level necessary and sufficient condition for angle

stability of such a network.
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In summary, a strong need exists for new mathematical tools for analysis and

control design in frequency synchronization of inverter-based network. In addition,

recent developments in graph-theoretic methods may provide many such tools, and

preliminary work has shown the potential for application of such tools to the prob-

lems of frequency synchronization in inverter-based networks. The field is ripe for

further development and application of these methods to enable new functionality

and improved reliability for inverter-based power networks.
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CHAPTER III

A STRUCTURE-PRESERVING MODEL AND

SUFFICIENT CONDITION FOR FREQUENCY

SYNCHRONIZATION OF LOSSLESS DROOP

INVERTER-BASED AC NETWORKS

In order to determine methods by which synchronization and power sharing can

be guaranteed for an inverter-based power network, it is first necessary to develop

methods allowing analysis of such a network, and determination of conditions under

which synchronization occurs (or fails to occur). Because frequency-droop control has

been shown to provide the desired synchronization and power sharing characteristics

under many (though not all) network conditions, and because it has the advantages

of modularity and locality, we will choose to focus on networks of inverters operating

frequency-droop control.

As was discussed in the previous chapter, existing models of inverter-based net-

works operating frequency-droop control are based on linearization about a specified

operating point, which is sufficient to show local stability to a synchronization equi-

librium under many conditions [15, 40, 52]. However, because AC power network

dynamics are highly non-linear, and because an inverter-based network may need to

operate under a wide range of conditions, local stability to a pre-specified equilibrium

is not sufficient to establish the desired guaranteed synchronization property across

the entire expected network operation range. Therefore, new dynamics models of such

a network, which include the full non-linear power-flow equations, must be developed.

Further, based on those models, conditions must be derived which are sufficient to

ensure synchronization and power sharing of the network, ideally conditions which
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can be determined based on local measurements.

In [66], the connection was made between network of frequency-droop inverters

and Kuramoto Oscillators [45], allowing development of system-level synchronization

conditions for a specific structure of network. However, in order to allow development

of distributed control methods to guarantee synchronization for arbitrary networks,

it is necessary to develop more a general dynamic model for any network structure,

and synchronization conditions which can be determined from local measurements.

In this chapter, we develop such a model of an inverter-based power nework

and sufficient conditions for its synchronization, which will be used as the basis for

our control methods to guarantee such synchronization using distributed control in

the following chapters. The results in this chapter were published in the paper A

Structure-Preserving Model and Sufficient Condition for Frequency Synchronization

of Inverter-Based Networks [3] in the IEEE Transactions on Power Systems. We build

on [66] by constructing a structure-preserving model which allows extention of many

of their results to an arbitrary (radial or meshed) network. Rather than focusing on

calculating the maximum stable droop constants, we use a simplified model of the

inverters to allow us to develop greater physical insight into how the interaction be-

tween the inverters creates (or fails to create) the network frequency synchronization

(as suggested by [38]). Our primary contributions are the connection of our model to

traditional structure-preserving power system models, a new condition for existence

of equilibria, and a sufficient criterion for frequency synchronization. Our results are

applicable to either radial (acyclic) or meshed (cyclic) networks. We emphasize that

our sufficient criterion for frequency synchronization consists of a set of local criteria,

each of which can be determined from local measurements.
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3.1 Class of Networks Under Consideration

An electric power system consists of sources, loads, and the network connecting them

together. The network consists of buses (electrical locations, to which loads and

possibly a source are attached) and lines (which each create an electrical connection

between a pair of buses). The voltage on each bus in an AC network is sinusoidal,

and is specified by a voltage magnitude, phase, and frequency. An AC network also

has a specified nominal frequency, which in North America is 60 Hz. Power flows in

an AC network consist of both real and reactive power. Real power sources energy

to loads (and losses), while reactive power supports voltage across reactances.

In this chapter, we develop a dynamic model for the voltage angle, frequency,

and real power dynamics of a 3-phase AC power network whose sources are voltage-

source inverters operating the frequency-droop control law developed in [12]. Such an

inverter regulates the AC voltage magnitude on its terminals to a specified value, and

controls the frequency based on its measured real power output. In contrast to the

methods of analysis used by [15, 40, 52] for network of such inverters, we approach

this modeling by focusing on the interaction of the inverter droop controllers and

the power network structure, rather than on detail power electronic models of the

individual components. To support this focus, we will address the following simplified

class of networks:

Definition 3.1. A lossless droop inverter-based power network with ideal voltage reg-

ulation (abbreviated as droop inverter-based network) is a 3-phase AC power network

with the following characteristics:

3.1.A All lines are lossless and inductive.

3.1.B All sources are voltage-source inverters implementing frequency-droop control

as described in [12] with no controller delays.
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3.1.C Each network bus has attached load with positive frequency dependence coeffi-

cient.

3.1.D Each bus has a constant (not necessarily homogeneous) voltage magnitude.

3.1.E Graph representing the network is connected.

A lossless droop inverter-based power network with ideal voltage regulation is an

idealized form of many inverter-based networks such as an isolated inverter-based

microgrid, though our results should apply to a network of any scale. The set of

assumptions in Definition 3.1 is similar to that made by Bergen and Hill’s famous

structure-preserving model [9], except that Bergen and Hill’s model considers a net-

work whose sources are all synchronous machines (hence referred to as a machine-

based power network). While in some ways restrictive, these assumptions result in

a model which is generally sufficient to study sychronization and real power shar-

ing between inverter sources. In particular, the assumption of constant bus voltage

magnitudes (Definition 3.1.D) decouples the problem of synchronization from that of

voltage stability (which is outside of the scope of this dissertation, see [44] for general

definitions of these terms).

3.2 Scalar Dynamic System-of-Equations Model

Consider a droop inverter-based network (per Definition 3.1) with M > 0 voltage

source inverters. Each electrical bus in such a network is either an inverter bus

(whose voltage is regulated by an attached inverter) or a network bus (to which no

inverter is attached). In our model, each inverter may be modeled as either an ideal

voltage source or an ideal voltage source behind a reactance. If the latter is used, an

additional bus is added to the model to represent the internal voltage of the inverter

with a line modeling its output reactance. Once these supplementary buses and lines

are added, the system has N total buses and L total lines.
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Each electrical bus in the network is assigned an index k ∈ {1 . . . N}, and the

network state consists of the positive-sequence voltage on all buses, each of which is

represented by the phasor Vk ∠ δk, where Vk > 0 is the voltage magnitude, δk ∈ T is

the voltage synchronous phase relative to an (arbitrary) system reference rotating at

the nominal network frequency, and T is the torus [−pi pi). If an offset ∆ωk ∈ R is

applied to the frequency of the voltage sinusoid at a bus k, then δ̇k = ∆ωk. Recall that

we have assumed that voltage magnitude Vk at each bus k can be treated as constant

(Definition 3.1.D), since our focus in this dynamic model is the voltage-angle and

frequency dynamics.

3.2.1 Network Power-Flow Laws

Consider an arbitrary bus k ∈ {1 . . . N} in the network. Kirkoff’s law (in power form)

states that the sum of the (real) power flows into bus k equals zero at any instant in

time:

PG,k = PL,k +
∑

m∈N (k)

PLine,k,m(δk − δm) (1)

where PG,k is the power generation of the source at bus k (zero if no source), PL,k is

the total load at bus k, PLine,k,m is the line power flow from bus k to bus m (measured

at bus k), and N (k) is the set of neighbors of bus k (that is, the set of buses to which

k is directly connected by a line).

The line power-flow value PLine,k,m on the line from bus k to bus m is a function

of the difference between the voltage angles at its incident buses (δk − δm). Since (by

assumption) all lines are lossless and inductive (Definition 3.1.A), we can find line

power flow PLine,k,m as:

PLine,k,m = −PLine,m,k = Yk,mVkVm sin(δk − δm), (2)

where Yk,m = Ym,k > 0 is the series line admittance magnitude parameter of line

(k,m). Substituting (2) for each line into (1) for each bus k ∈ {1 . . . N} yields the
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associated bus real power-flow equation. Since we have assumed constant voltage

magnitudes, the bus reactive power-flow equations are not necessary for our analysis,

and so are not considered in this dissertation.

We adopt Bergen and Hill’s model of a frequency-dependent load [9], which is:

PL,k = P 0
L,k +D′k∆ωk = P 0

L,k +D′kδ̇k (3)

where P 0
L,k is the nominal-frequency load at bus k and D′k ≥ 0 is the frequency

dependence coefficient of the load at bus k. By Definition 3.1.C, we require that

Dk > 0 if k is a network bus.

3.2.2 Inverter Dynamic Model

Now consider an arbitrary inverter in the network, which we will address by the bus

index of its attached bus. Each such inverter k ∈ {1 . . . N} implements the frequency-

droop control law, which operates by applying a frequency offset ∆ωk ∈ R to the

sinusoidal voltage waveform it creates at its attached bus k. The frequency-droop

control law (described in [12]) is as follows:

∆ωk = δ̇k = Rk [PRef,k − PG,k] (4)

where Rk > 0 is the frequency-droop constant for the inverter at bus k and PRef,k is

its assigned internal power reference, which we will treat as an input. By substituting

(1) and (3) into (4) and solving for δ̇k, we find the local dynamic equation governing

inverter bus k:

δ̇k = (R−1
k +D′k)

−1


PRef,k − P 0

L,k −
∑

m∈N (k)

PLine,k,m(δk − δm)


 (5)

The dynamic equation (5) represents the voltage-angle dynamics at an arbitrary

inverter bus k. It reveals that the effect of the frequency-droop controller is to adjust

the first-derivative of the bus synchronous voltage angle δk based on the difference

between the inverter reference and local nominal-frequency load (PRef,k−PL,k0), and
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to create a coupling between its voltage angle δk and the voltage angle δm of each of

its neighbors m. It is this coupling (and its characteristics) that create the desired

frequency synchronization behavior. In addition, the coupling between frequency and

real power offset PRef,k − PG,k in the frequency-droop control law (4) ensures that if

the inverter frequencies synchronize, then their real power output values must also

converge so that power is shared between the inverters according to their specified

reference and droop constant values. In this chapter, we will explore both of these

behaviors to determine their characteristics and the conditions under which they

occur (or fail to occur).

3.2.3 Network Dynamic System of Equations Model

At a network bus, since no inverter is present the inverter control law (4) does not

apply, and instead PG,k = 0. Therefore, we may obtain the dynamic equation at a

network bus k by substituting (3) and PG,k = 0 into (1) and solving for δ̇k:

δ̇k = D′−1
k


−P 0

L,k −
∑

m∈N (k)

PLine,k,m(δk − δm)


 (6)

We can combine equations (5) and (6) for each bus in the network to form a

dynamic system of equations representing the entire droop inverter-based network as

follows:

δ̇k = D−1
k


PRef,k − P 0

L,k −
∑

m∈N (k)

PLine,k,m(δk − δm)


 ∀ k ∈ {1 . . . N}, (7)

where Dk is the total frequency dependence coefficient at bus k and PRef,k = 0 if k is

a network bus.

If k is an inverter bus, then Dk = R−1
k + D′k, while if k is a network bus then

Dk = D′k. In either case, we assume that Dk > 0 (see Definition 3.1.C). This

is almost always true, since in practice network load almost always increases with

frequency. In general, the droop constant inverse R−1
k will generally be much larger
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than the load frequency dependence constant Dk for a bus, and therefore the total

frequency dependence term Dk at an inverter bus will be much larger than that at

a network bus. While this fact does not have significant influence on our stability

criterion (which will apply even if D′k approaches zero), it means that inverter buses

will generally have longer time constants than network buses, and that the inverter

time constant is primarily determined by the selection of the control constant Rk.

The dynamic system of equations (7) represents the voltage-angle state dynamics

of the entire droop inverter-based network. It reveals that both inverter and network

bus dynamics include a local forcing term (PRef,k−P 0
L,k, which is always non-positive

for a network bus) as well as line power-flow terms PLine,k,m to each neighbor m. As

we will see, the effect of these line power-flow terms is to couple the voltage angle (and

frequency) at each bus to those of its neighbors. By studying these couplings and their

characteristics using graph-theoretic methods, we will determine the synchronization

and power sharing characteristics of the network and their relationships to the network

structure and parameters.

3.2.4 Comparison to Existing Models

We observe that Bergen and Hill’s model of a network of machine sources [9, Equation

(2)] reduces to our model (7) with the following substitutions:

1. No inertial term (Mk = 0).

2. Machine damping term Dk replaced with bus total frequency dependence coef-

ficient.

3. Machine mechanical power PM,k replaced with inverter power reference PRef,k.

This confirms several intuitive relationships between inverter and machine power net-

works, namely that the dynamics of frequency-droop inverters closely resemble those
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of strongly overdamped machines, and that inverter power reference takes on an anal-

gous role to machine mechanical power. In this dissertation, we make use of this lack

of interia to show results that may not hold for networks with significant inertia (e.g.

machine-based networks).

In comparison to small-signal stability models of inverter-based networks, such as

that presented in [15], our model explicitly integrates the non-linear real power-flow

equations of the full network and (as we will show below) makes explicit connection

to graph-theoretic dynamic methods. However, we do not model an inverter voltage-

droop characteristic, and we do not consider a controller delay in the inverter droop

controller.

3.3 Graph-theoretic Model

A coupled dynamic system of the form of (7) with coupling functions (2) can be

viewed as a forced form of the “non-linear consensus equation” discussed in [63].

Based on this observation, we will represent (7) and (2) in a form which is convenient

for analysis by graph-theoretic methods.

3.3.1 Power-flow Structure Graph and Network Vector Quantities

We can explicitly represent the structure of the power network by defining the undi-

rected power-flow structure graph G = (V , E). The vertex set V = {1 . . . N} rep-

resents the buses of the droop inverter-based network, and the edge set E ⊂ V × V

representing its lines. Since G is undirected, then if buses k and m are connected by

a line, then both (k,m) and (m, k) are in E . If there exists (k,m) or (m, k) in E , then

we say that buses k and m ∈ V are adjacent, while we say that the line (k,m) ∈ E and

bus k ∈ V are incident (as are (k,m) and m). We also assign each bus k ∈ V to one

of two distinct sets: VDroop (indicating the droop inverters buses) or VNet (indicating

the network buses).
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Some quantities of interest in a droop inverter-based power network are bus-

oriented (such as bus voltage angles, power references, loads, etc.) while others are

line-oriented (such as power flows, admittances, etc). Since both kinds of quantities

are significant for our analysis, it is valuable to be able to quickly and easily reference

both and relate them to each other. For each bus-oriented quantity xk associated

with the bus k ∈ V , we assign the vector x =

[
x1 . . . xN

]T
(see Table 3.1 for a list).

Since the graph G = (V , E) is undirected, then for each line (k,m) in the edge set

E , its reverse (m, k) is also in E . Line-oriented quantities (such as the line power flow

PLine,k,m) have one of the following three properties:

1. Line-Even: A line-even quantity zk,m has the property zk,m = zm,k.

2. Line-Odd: A line-odd quantity zk,m has the property zk,m = −zm,k.

3. Line-Asymmetric: A line-asymmetric quantity zk,m is neither line-even nor line-

odd.

For example, the line power flow PLine,k,m is line-odd, since by (2) PLine,k,m = −PLine,m,k.

In contrast, the line series admittance Yk,m is line-even, since Yk,m = Ym,k. Throughout

this work we will introduce other line-oriented quantities, and for each note whether

it is line-even, line-odd, or line-asymmetric.

In order to simplify our notation, we will define a vector of length L for each

line-even or line-odd quantity, which contains exactly one of zk,m or zm,k for each

physical line in the network. It is therefore valuable to associate with each physical

line a direction indicating positive power flow, as well as an index i ∈ {1 . . . L}. The

directed edges indicating the direction of positive power flow for each line are assigned

to a directed-edge set
−→E . Therefore, if (k,m) and (m, k) are in E , then there exists

exactly one of (k,m) or (m, k) in
−→E . We will then define the vector z =

[
z1 . . . zL

]T
to

represent the network line-oriented quanties (see Table 3.1 for a list), where zi = zk,m

for each line (k,m) ∈ −→E , where i is the index assigned to (k,m). If (k,m) ∈ E , then
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Table 3.1: Vector Quantities for Structure-Preserving Model

Name Symbol Definition Type

Bus voltage-angle vector δ
[
δ1 . . . δN

]T TN

Bus frequency offset vector ∆ω
[
∆ω1 . . .∆ωN

]T RN

Bus power generation vector PG
[
PG,1 . . . PG,N

]T RN

Bus power reference vector PRef
[
PRef,1 . . . PRef,N

]T RN

Bus load vector PL
[
PL,1 . . . PL,N

]T RN

Bus nominal-frequency load vector PL
0

[
P 0
L,1 . . . P

0
L,N

]T RN

Line power-flow vector PLine

[
PLine,1 . . . PLine,L

]T RL (Line-Odd)

Line voltage-angle vector θ
[
θ1 . . . θL

]T TL (Line-Odd)

for line-even quantities zm,k = zk,m and for line-odd quantities zm,k = −zk,m. We do

not assign line-asymmetric quantities to vectors.

From (2), the line power flow PLine,k,m (line-odd) for each line (k,m) ∈ −→E is a

function of the difference between the voltage-angle states at its terminals (δk − δm).

It is therefore valuable to assign the line-oriented quantity θk,m = −θm,k = δk − δm
(line-odd), which can be viewed as the line voltage-angle state associated with the

physical line (k,m) ∈ −→E with index i. These line voltage-angle states may be formed

into a vector θ =

[
θ1 . . . θL

]
∈ TL, which may be viewed as a line-oriented network

state, an alternative perspective to the bus-oriented network state δ.

The incidence matrix D (as defined in [54, Chapter 2]) of the power-flow structure

graph G conveniently encodes the relationship between buses and lines, as well as the

assigned orientation of each line. The incidence matrix is defined in terms of an

arbitrary orientation of the lines, for which we will choose the positive power-flow

directions in
−→E . Rows in the incidence matrix D correspond to lines in G, while

columns in G correspond to its vertices. The element at row i and column k of D has

the value 1 if (k,m) ∈ −→E , −1 if (m, k) ∈ −→E , and 0 otherwise. Therefore, D explicitly

encodes the structure of the power network, and allows easy conversion between bus-

oriented quantities and line-oriented quantities, and in particular θ = DTδ.

Notice that the sum of the line voltage angles around a cycle equals some integer
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multiple of 2π. Therefore, if the network contains cycles, then the line voltage angles

are not linearly independent, and so there exist values of θ ∈ TL which are not

feasible, that is, there does not exist δ such that θ = DTδ.

3.3.2 Bus and Line-oriented Forms of the Structure-Preserving Model

The vector of line power flows PLine ∈ RL may be viewed as a function either of δ or

of θ as follows:

PLine(D
Tδ) = PLine(θ) = YLineVInVOut sin(θ), (8)

where

• YLine ∈ RL×L = diag(

[
Y1 . . . YL

]T
) is the constant diagonal matrix of line

admittance magnitude values.

• VIn ∈ RL×L is the constant diagonal matrix of “in” (per the power-flow direc-

tion) bus voltage magnitudes.

• VOut ∈ RL×L is the constant diagonal matrix of “out” (per the power-flow

direction) bus voltage magnitudes.

• sin(θ) =

[
sin(θ1) . . . sin(θL)

]T

It can be easily verified that each row i of (8) (associated with line (k,m) ∈ −→E which

was assigned index i) reduces to (2). Since PLine,m,k = −PLine,k,m, then the line power

flow associated with each line in E can be directly derived from an element of PLine.

Using the definition of PLine in (8), we can then write the bus voltage-angle (δ)

dynamics in a convenient vector form as follows:

∆ω = δ̇ = D−1
[
PRef −P0

L −DPLine(D
Tδ)
]
, (9)

where D ∈ RN×N = diag(

[
D1 . . . DN

]T
) is the diagonal matrix of the bus fre-

quency dependence coefficients. Since (by assumption) the network is lossless, PLine,m,k =

−PLine,k,m so each row k of (9) reduces to (7).
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The line voltage-angle state vector θ = DTδ provide an alternative perspective

on the voltage-angle and frequency dynamics, since they may be viewed as a line-

oriented state in contrast to the bus-oriented state δ. We may obtain the θ-space

dynamics by transforming (9) as follows:

θ̇ = DT δ̇ = DTD−1
[
PRef −P0

L

]
− LEPLine(θ), (10)

where LE = DTD−1D ∈ RL×L is the edge Laplacian matrix of the graph G (as

defined in [80]) weighted by D−1. Each element i of the vector θ̇ corresponds to

θ̇i = θ̇k,m = δ̇k − δ̇m = ∆ωk − ∆ωm, that is, the frequency difference across the line

(k,m) ∈ −→E which was assigned index i and direction k to m.

The vector dynamic equations (9) and (10) represent the voltage-angle and fre-

quency dynamics of a droop inverter-based power network (respectively in bus-oriented

and line-oriented forms). These two models provide alternative perspectives on the

dynamics, which will allow for easy analysis of bus or line quantities respectively.

In addition, both forms explicitly integrate the power-flow structure of the network

(through the incidence matrix D), the control law of each inverter (through the in-

verter model), the load frequency dependence (through the frequency-dependence

term D′k for load bus k), and the non-linear bus coupling (through the line power-flow

function represented in (8)). By analyzing the equilibria and convergence behavior of

(9) and (10) in the following sections, we will determine the frequency synchroniza-

tion and power sharing characteristics of a droop inverter-based network of arbitrary

size and structure.

3.4 Steady-State Equilibria (Frequency Agreement)

In [23], a dynamic model in the form of (9) with coupling functions (8) was desig-

nated as the non-uniform Kuramoto oscillator model, and based on it [66] derived

conditions for frequency synchronization applicable to radial (acyclic) inverter-based

power networks. We will now extend these results by considering how our models can
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be used to analyze frequency synchronization for connected networks of arbitrary size

and structure.

In power system analysis, steady state is the state in which all bus frequencies are

equal, that is:

∆ω = δ̇ ∈ span{1N} (11)

where 1N is the vector of length N where each element equals one and span{1N}

indicates the set of all ∆ω such that ∆ω = 1N∆ωSys for some ∆ωSys ∈ R.

Now consider the line voltage-angle state θ = DTδ. It has been shown that the

incidence matrix transpose DT of a graph G has null space span{1N} if and only

G is connected (see [54, Theorem 2.8]). Since the power-flow structure graph G is

connected (by assumption, see Definition 3.1.E), then the network is at steady state

(δ ∈ span{1N}) if and only if:

θ̇ = DT span{1N} = 0L (12)

where 0L is the vector of length L where each element equals zero.

We observe that the condition of all equal bus frequencies (δ̇ ∈ span{1N} or θ̇ =

0L) can be viewed as a form of network agreement, and therefore, we will use the term

frequency agreement to describe it. Similarly, we will adopt the term frequency syn-

chronization to describe convergence to the above state, that is, limt→∞ inf∆ωsys ||δ̇(t)−

1N∆ωSys|| = 0 (or limt→∞ ||θ̇|| = 0). Throughout this paper, we will use the short-

hand notation x(t)→ x̄ to indicate convergence of x(t) to a point x̄ (limt→∞ ||x(t)−

x̄|| = 0) and x(t)→ X̄ to indicate convergence of x(t) to a set X̄ (limt→∞ infx̄∈X̄ ||x(t)−

x̄|| = 0) using the standard Euclidian norm || • ||. Therefore, frequency synchroniza-

tion is indicated by the shorthand δ → span{1N} or θ̇ → 0L.

3.4.1 Center-of-Mass Frequency

To calculate the shared system frequency to which the network may converge, we will

create the concept of a center-of-mass frequency ∆ωCOM , defined as follows:
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Definition 3.2 (Center-of-Mass Frequency).

∆ωCOM(t) =

∑
k∈V Dk∆ωk(t)∑

k∈V Dk

=
1TND

1TND1N
∆ω(t) (13)

The center-of-mass frequency ∆ωCOM of a network represents the weighted av-

erage of the bus frequency offsets ∆ωk (each weighted by the corresponding total

frequency dependence coefficient Dk) for each bus in network. We show in Lemma

3.1 that frequency synchronization corresponds to convergence of all bus frequencies

to ∆ωCOM , and further that ∆ωCOM is independent of state and can be calculated

purely from system inputs and parameters:

Lemma 3.1 (Static Center-of-Mass Frequency of Droop Inverter-Based Networks).

Consider the dynamic equation (9) representing the voltage-angle dynamics of a loss-

less droop inverter-based power network with ideal voltage regulation (Definition 3.1),

and define center of mass frequency ∆ωCOM as in Definition 3.2. Then δ̇ → span{1N}

(Frequency Synchronization) corresponds to δ̇ → 1N∆ωCOM , and furthermore

∆ωCOM =

∑
k∈V PRef,k −

∑
k∈V P

0
L,k∑

k∈V Dk

(14)

Proof. If the network is in frequency agreement at a time t (δ̇(t) ∈ span{1N}), then

there exists ∆ωSys(t) ∈ R such that δ̇(t) = ∆ω(t) = 1N∆ωSys(t). Therefore:

∆ωCOM(t) =
1TND

1TND1N
1NωSys(t) = ∆ωSys(t) (15)

Therefore, frequency synchronization of the network (δ̇ → span{1N}) corresponds to

convergence of all frequencies to the center-of-mass frequency (δ̇ → 1N∆ωCOM(t)).

By substituting the state dynamic model (9) into the center-of-mass frequency

definition (13), we find:

∆ωCOM =

∑
k∈V (PRef,k − P 0

L,k)∑
k∈V Dk

+

∑
k∈V
∑

m∈N (k) PLine,k,m∑
k∈V Dk

(16)

Each line (k,m) ∈ E appears twice in the sum in the second term of (16), first for k

and then for m. Since PLine,k,m = −PLine,m,k, then the second term of (16) cancels,

yielding (14).
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Lemma 3.1 above shows that, while the bus frequencies change with state, the

center-of-mass frequency is a function only of power injections and bus frequency de-

pendence values, and can be viewed as a generalization of the scaled power imbalance

ωavg derived in [66, Theorem 3.3]. This concept also bears similarity to the static

centroid property used in linear consensus networks (see [60, 54]), and we therefore

refer to it as the static center-of-mass frequency property of a droop inverter-based

network.

The center-of-mass frequency of a network could be directly calculated (using

(14)) in real-time if complete input and parameter information for the network (not

necessarily state) were available. However, even if no device in the network has the

complete parameter and input information, ∆ωCOM can be used to show the steady-

state power sharing characteristics of the network, and to determine conditions under

which such a steady-state equilibrium will exist.

3.4.2 Power Sharing at Frequency Agreement

In addition to frequency synchronization, one of the major purposes of the inverter

frequency-droop control law is that it is claimed to result in power sharing between

inverters. We will investigate this claim below.

We define the following concepts related to inverter power sharing:

• Network total reference error ∆PRef is

∆PRef =
∑

k∈V

PRef,k −
∑

k∈V

P 0
L,k = 1TNPRef − 1TNP0

L (17)

• Network total frequency dependence:

D =
∑

k∈V

Dk = trace{D} (18)

Observe that we can rewrite (14) as

∆ωCOM =
∆PRef
D (19)
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Therefore, network total frequency dependenceD represents the dependence of center-

of-mass frequency ∆ωCOM on network total reference error ∆PRef .

The frequency-droop control law (4) creates an explicit connection between in-

verter output power error (the difference between its reference and measured output

power) and frequency. Therefore, if the network synchronizes in frequency (and so

all inverters converge to the same frequency), then the inverters must share the total

network load according to their reference and droop constant values. We formalize

this result below:

Lemma 3.2 (Simple Power Sharing Property of a Droop Inverter-Based Network).

Consider the lossless droop inverter-based power network with ideal voltage regulation

(Definition 3.1) whose bus voltage-angle (δ) dynamics are described by (9). Frequency

synchronization (δ̇ → span{1N}) implies convergence of all inverter output power

values to inverter final power value PF,k (PG,k → PF,k ∀ k ∈ VDroop), where

PF,k = PRef,k −R−1
k

∆PRef
D ∀ k ∈ VDroop (20)

Proof. Since frequency synchronization implies convergence of all inverter frequencies

to the center of mass frequency ∆ωCOM (see Lemma 3.1), by solving the droop control

law (4) for PG,k and subsitituting ∆ωk = ∆ωCOM ∀ k ∈ {1 . . .M} and (19), we get:

PG,k = PRef,k −R−1
k ∆ωCOM

= PRef,k −R−1
k

∆PRef
D (21)

Lemma 3.2 shows that frequency synchronization of a droop inverter-based net-

work implies convergence of each inverter’s output power PG,k to a value PF,k defined

by (20). This means that at frequency agreement, each inverter will source its refer-

ence power value PRef,k, with an offset such that the inverters share the total network
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reference error ∆PRef inverse-proportionally to their droop constants. We refer to

this property as the simple power sharing property of a droop inverter-based network.

The simple power sharing property is a desirable behavior for a droop inverter-

based network, since it means that, if frequency synchronization occurs, then the

steady-state power values of the inverters can be determined by the selection of the

reference and droop constants. However, it is not clear that a frequency agreement

equilibrium must always exist, or that such equilibria will be stable. These properties

of frequency agreement equilibria will be assessed in the following sections.

3.4.3 Equilibrium Equation

From Lemma 3.1, the points of frequency agreement are the points in which δ̇ =

1N∆ωCOM . We define the set of all such δ as:

Definition 3.3 (δ Equilibrium Set).

∆Eq(PRef −P0
L) = {δ such that δ̇ = 1N∆ωCOM} (22)

From (9), the members of ∆Eq are the solutions of:

1N∆ωCOM = D−1
[
PRef −P0

L −DPLine(D
Tδ)
]

(23)

Observe that (since null{DT} = span{1N}) if δEq ∈ ∆Eq, then [δEq+1Nα] ∈ ∆Eq

for all α ∈ R, that is, each δEq ∈ ∆Eq defines an affine space [δEq+span{1N}] ∈ ∆Eq.

While not technically equilibria, with some abuse of terminology we will use the term

equilibrium affine space to describe these spaces.

Similiarly we define the set of all points in the line-oriented structure-preserving

model (θ) corresponding to frequency agreement (θ̇ = 0L) as:

Definition 3.4 (θ Equilibrium Set).

ΘEq(PRef −P0
L) = {θ such that θ̇ = 0L and ∃ δ such that θ = DTδ} (24)
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From (10), the members of ΘEq are the feasible solutions of:

0L = DTD−1
[
PRef −P0

L

]
− LEPLine(θ) (25)

Each equilibrium affine space [δEq + span{1N}] ∈ ∆Eq maps to a single point

θEq = DTδEq ∈ ΘEq.

The equilibria of both the δ and θ dynamics are functions of PRef − P0
L, which

we will designate as the reference power injection vector and treat as a system distur-

bance. Most power system transient analysis considers power injection input constant

during pre-fault and post-fault condition, and so in this chapter we will treat this

analagous input as a (piecewise) constant.

3.4.4 Existence of Frequency-Agreement Equilibria

Since network convergence to frequency agreement corresponds to convergence of δ

to an equilibrium affine space in ∆Eq (or equivalently convergence of θ to a point

in ΘEq), it is clear that non-emptiness of ∆Eq (or equilvalently ΘEq) is a necessary

condition for frequency synchronization. We will therefore consider conditions under

which such an equilibrium exists.

In [66, Theorem 3.3], a necessary and sufficient condition for existance of an

equilibrium of a radial (acyclic) lossless inverter-based power network was presented.

This condition is based on maximum power transfer capability of each system line to

the radial center bus; however it is not applicable to meshed networks since no such

center bus exists. Below, we will generalize this condition to the meshed case, and

show that it generalizes as a necessary, but not sufficient, condition.

In order to assess the existence of a frequency agreement equilibrium for a droop

inverter-based network, we will introduce the concept of the frequency agreement

power imbalance for cuts in the network. The frequency agreement power imbal-

ance represents the power that must flow across each cut of the droop inverter-based
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network at frequency agreement. Since the power generation of each inverter at fre-

quency agreement can be calculated a-priori based on network references, loads, and

total frequency dependence coefficients (see Lemma 3.2), then the required power

flow across each network cut can also be calculated.

Consider any set of buses VC ⊂ V on the power-flow structure graph G = (V , E).

Each such bus set defines a directional cut
−→EC ⊂

−→E , where the removal of
−→EC from G

seperates VC from (V \ VC). If VC and (V \ VC) are considered as supernodes of the

power network, then Kirchoff’s law (in power form) states that any power imbalance

in VC must flow across the lines in
−→EC to (V \ VC).

More formally, let xC ∈ RN be the characteristic vector of VC , that is:

xC =

[
xC,1 . . . xC,N

]T
where xC,k =





1 Bus k ∈ VC

0 Bus k /∈ VC
(26)

At frequency agreement, the equilibrium equation (23) must be satisfied. Left-

multiplying (23) by xC
TD (which is equivalent to taking a Dk-weighted sum of the

rows associated with buses in VC) and re-arranging:

0 =xC
T (PRef −P0

L −D1N∆ωCOM)− xC
TDPLine(D

TδEq) (27)

The quantity xC
TD is the sum of rows of D corresponding to buses in VC , that is,

the transpose of the signed cut vector associated with the cut (VC , V \ VC) (see [30,

Chapter 14]). Therefore, we can rewrite (27) as:

∑

k∈VC

(PRef,k − P 0
L,k −Dk∆ωCOM) =

∑

(k,m)∈
−→
EC

±PLine,k,m(δEq,k − δEq,m), (28)

where the sign of PLine,k,m in the sum on the right hand side is determined by the

direction of the directed line (k,m) ∈ −→EC relative to the the bus set VC . The left-hand

side of (29) is a constant for constant inputs PRef,k and P 0
L,k, and we designate this

constant as the frequency agreement power imbalance associated with the the bus set

VC :
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Definition 3.5 (Frequency Agreement Power Imbalance). The frequency agreement

power imbalance ∆PEq,C associated with the bus set VC of the graph power-flow struc-

ture graph G is defined as:

∆PEq,C =
∑

k∈VC

(PRef,k − P 0
L,k −Dk∆ωCOM) (29)

where the center-of-mass frequency ∆ωCOM is calculated as in (14).

The constant ∆PEq,C is the total power injection to the bus set VC at frequency

agreement, and therefore (by (28)) it represents the total power that must flow across

the associated cut
−→EC at frequency agreement.

Since total power transfer capacity of a cut is limited, if there exists a cut of the

network that is not capable of carrying its required steady-state power imbalance,

then no frequency-agreement equilibrium can exist, and the network cannot achieve

frequency synchronization. We formalize this result in Theorem 3.1 below:

Theorem 3.1 (Necessary Condition for Existence of Equilibria in Droop Invert-

er-Based Network). Consider a lossless droop inverter-based power network with ideal

voltage regulation (Definition 3.1) whose bus voltage-angle dynamics are described by

(9) and whose power-flow structure graph is G = (V , E). Assume that there exists a

non-empty bus set VC ⊂ V and line set
−→EC ⊂

−→E associated with the cut (VC ,V \ VC)

of the graph G such that

|∆PEq,C | >
∑

(k,m)∈
−→
EC

Yk,mVkVm (30)

Then ∆Eq = ΘEq = ∅, and the network will NOT converge to frequency agreement.

Proof. Contradiction Hypothesis: There exists a bus set VC ⊂ V and associated cut

−→EC such that (30) holds but ∆Eq is non-empty. Then there exists δEq ∈ ∆Eq, that is,

δ = δEq solves (23).

34



We have already shown that if δEq solves (23), then:

∑

(k,m)∈
−→
EC

±PLine,k,m(δEq,k − δEq,m) = ∆PEq,C , (31)

for each cut
−→EC of the graph G.

Now consider the maximum absolute value of power-flow capacity of lines in the

cut EC from VC to (V \ VC). From (2), we can bound the absolute value of the

left-hand side of (31) by:

∣∣∣∣∣
∑

(k,m)∈
−→
EC

±PLine,k,m(δEq,k − δEq,m)

∣∣∣∣∣ ≤
∑

(k,m)∈
−→
EC

Yk,mVkVm (32)

Taking the absolute value of (31) and substituting into (32), we find

|∆PEq,C | ≤
∑

(k,m)∈
−→
EC

Yk,mVkVm (33)

which contradicts the assumption that (30) holds for VC . Therefore, if (30) holds for

some VC ⊂ V , then no solution to (23) exists (∆Eq = ∅), and the network cannot

converge to frequency agreement.

By Definition 3.4, θEq = DTδEq ∈ ΘEq implies that θ̇ = 0L when θ = θEq. Notice

that θ̇ = 0L = DT δ̇ implies that δ̇ ∈ null{DT} = span{1N}, that is, δ = δEq is a

solution (23). Therefore ∆Eq = ∅ implies ΘEq = ∅ and the proof is complete.

Theorem 3.1 states that an equilibrium cannot exist if there exists a cut whose

total power transfer capacity is less than the frequency agreement power imbalance of

its shore subnetworks. If this is the case, then sufficient power to balance the network

cannot flow across the cut, and therefore no equilibrium can exist.

If the power-flow structure graph G is radial (acyclic), then the condition of The-

orem 3.1 reduces to the necessary and sufficient parametric condition 3.5 in [66,

Theorem 3.3] since each cut of a radial graph is a linear combination of cuts of single

lines incident to the center bus.
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However, if the network is meshed, then the non-existence of a bus set VC such

that the condition of (30) holds is not sufficient to ensure existence of an equilibrium.

If (30) does not hold for any VC ⊂ V , then there exists θEq such that

∑

k∈VC

(PRef,k − PL,k −Dk∆ωCOM) =
∑

(k,m)∈EC

±PLine,k,m(θEq,i) (34)

However, if graph G contains cycles (network is meshed), then there may not exist

δEq such that θEq = DTδEq, that is, θEq may not be feasible. Therefore, the condition

defined in Theorem 3.1 is only a necessary condition (not necessary and sufficient)

for existence of an equilibrium in meshed networks.

3.5 Local Stability of Equilibria

Now that the power sharing properties of frequency agreement equilbria have been

determined, and a conditions for their existence found, we turn to considering their

local stability properties. In [15, 40, 52], linearized models of droop inverter-based

networks were developed, and it was suggested that local stability of equilibria could

be determined by eigenvalue analysis. In this section, we will generalize on their re-

sults by using a linearized form of the structure-preserving models developed earlier

in this chapter, allowing general eigenvalue analysis to determine local stability prop-

erties of frequency agreement equilibria based on their location in the voltage-angle

state space.

In [70], Tavora defines the concept of the principal region of the voltage-angle state

space, defined as the region in which all line voltage angles θk,m = δk − δm for each

(k,m) ∈ E have magnitude less than π/2. Following Tavora, we define the following:

Definition 3.6 (Principal Region). The principal region of the voltage-angle state

space is defined (respectively in bus voltage angle δ and line voltage angle θ spaces)

as:

∆Principal = {δ such that ||DTδ||∞ <
π

2
}
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ΘPrincipal = {θ such that ||θ||∞ <
π

2
}

Since θ = DTδ, then θ ∈ ΘPrincipal if and only if δ ∈ ∆Principal, that is, the two

regions simply represent transformed versions of each other. The principal region is

more simply defined in θ-space than in δ-space, since in θ-space it is a (bounded)

symmetric hypercube, while in δ-space it is dependant on the power-flow structure

graph G (and not necessarily bounded).

In [1], it was shown that for the classical Kuramoto oscillator model with homo-

geneous coupling weights, all stable equilibria exist inside the principal region. The

bus-oriented structure-preserving model (9) with coupling functions (8) is similar to

the classical Kuramoto model analyzed in [1], except that is forced (by the refer-

ence power injection terms PRef − P0
L) and has non-homogeneous coupling weights

(the peak line power terms YLineVInVOut). However, as we will show below, the

result of [1] (local stability of equilibria on the principal region) also extends to our

structure-preserving models of inverter-based networks.

We determine the local stability properties of an equilibrium affine space [δEq +

span{1N}] ∈ ∆Eq by small signal analysis. Linearization of the dynamics of δ near

this affine space will require the partial-derivative matrix ∂δ̇/∂δ, which may be found

by differentiating (9) with respect to δ:

∂δ̇

∂δ
= −D−1D

∂PLine(D
Tδ)

∂(DTδ)
DT = −LW (DTδ), (35)

where LW (DTδ) is the vertex and edge weighted Laplacian of graph G with constant

vertex weight matrix D−1 and state-dependant diagonal edge weight matrix W (DTδ)

where

W (DTδ) = W (θ) :=
∂PLine(D

Tδ)

∂(DTδ)
=
∂PLine(θ)

∂θ
(36)

We designate the matrix W (DTδ) as the line power-flow/voltage-angle Jacobian.

Since each line power flow PLine,k,m associated with line (k,m) ∈ −→E is a function only

of its own line voltage angle θk,m = δk − δm, W (DTδ) is in fact a diagonal matrix.
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Lemma 3.3 below shows that the line power-flow/voltage-angle Jacobian W (DTδ) is

positive definite if and only if δ is in the principal region:

Lemma 3.3 (Line Power-Flow/Voltage-Angle Jacobian Positive Definite on Principal

Region). Consider the line power-flow/voltage-angle Jacobian W (DTδ) :=
∂PLine(D

Tδ)

∂(DTδ)

where PLine(D
Tδ) is defined as in (8). Then W (DTδ) is positive definite for some

δ ∈ TN if and only if δ ∈ ∆Principal. Equivalently, W (θ) is positive definite for some

θ ∈ TL if and only if θ ∈ ΘPrincipal.

Proof. From (8), the partial derivative of PLine(D
Tδ) with respect to DTδ is

W (DTδ) = YLineVInVOutdiag
[

cos(DTδ)
]
, (37)

where cos(θ) =

[
cos(θ1) . . . cos(θL)

]T
.

The matrices YLine, VIn, and VOut are all (by assumption) constant, diago-

nal, and positive definite. Therefore W (DTδ) is positive definite if and only if

diag[cos(DTδ)] is positive definite, which holds if and only if ||DTδ||∞ < π/2 (re-

call that δ is defined on the N -torus [−π π)N), that is, if and only if δ ∈ ∆Principal.

Finally, θ = DTδ ∈ ΘPrincipal if and only if δ ∈ ∆Principal, and therefore W (θ) positive

definite if and only if θ ∈ ΘPrincipal.

From Lemma 3.3 we can determine the following significant properties of the

state-dependent weighted Laplacian LW (DTδ):

Corollary 3.1 (Bus Laplacian Non-Negative on Principal Region). Consider the

state-dependant weighted Laplacian

LW (DTδ) := D−1DW (DTδ) DT (38)

This matrix has no negative eigenvalues if and only if G is connected and δ ∈

∆Principal. Further, if G is connected and δ ∈ ∆Principal then null{LW (DTδ)} =

span{1N}.
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Proof. It has been shown that a graph Laplacian with vertex and edge weights has

no negative eigenvalues if all vertex weights are positive [14] and if and only if all

edge weights are positive (for example, see [54, Chapter 7]). By assumption we have

D−1 diagonal and positive definite (all positive vertex weights), and we showed in

Lemma 3.3 that the edge weights (represented by the line power-flow/voltage-angle

Jacobian) evaluated at δEq are all positive if and only if δEq ∈ ∆Principal. Further

since G connected implies null{DT} = span{1N} (see [54, Theorem 2.8]) and both

D−1 and W (DTδ) are full rank for δ ∈ ∆Principal, it is then easily shown from (38)

that null{LW (DTδ)} = span{1N}.

We are now ready to perform small-signal analysis of the δ dynamics and state

our equilibrium local stability result:

Theorem 3.2 (Local Stability of Frequency Agreement Equilibria). Consider the

lossless droop inverter-based power network with ideal voltage regulation (Definition

3.1) whose bus voltage-angle (δ) dynamics are described by (9). Define static equilib-

rium set ∆Eq(PRef − P0
L) as in Definition 3.3 and Principal Region ∆Principal as in

Definition 3.6, and assume that there exists static equilibrium δEq ∈ ∆Eq. Then the

equilibirum affine space [δEq + span{1N}] is locally asymptotically stable if and only

if δEq ∈ ∆Principal.

Proof. We define ξ = δ−δEq, the deviation of δ from equilibrium δEq. The dynamics

of ξ are ξ̇ = δ̇. If the affine space [δEq + span{1N}] is locally asymptotically stable,

then ξ → span{1N} for values of ξ near span{1N}. Therefore, we begin by linearizing

for ξ near span{1N}:

ξ̇ ≈ ξ̇
∣∣
ξ∈span{1N}

+
∂ξ̇

∂ξ

∣∣
ξ∈span{1N}

ξ

= δ̇
∣∣
δ∈[δEq+span{1N}]

+
∂δ̇

∂δ

∣∣
δ∈[δEq+span{1N}]

ξ (39)
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Substituting (35) and δ̇
∣∣
δ∈[δEq+span{1N}]

= 1N∆ωCOM (since [δEq+span{1N}] ∈ ∆Eq)

into (39) we find:

ξ̇ ≈ 1N∆ωCOM − LW (DTδEq)ξ (40)

We showed in Corollary 3.1 that LW (DTδEq) has no negative eigenvalues if and

only if δEq ∈ ∆Principal. Since a linear system with all non-negative eigenvalues

is asymptotically stable to the null space and null{LW (DTδEq)} = span{1N}, the

forced linearized dynamic in (40) are locally asymptotically stable to the agreement

subspace (and δ locally asymptotically stable to the affine space [δEq + span{1N}])

if and only if δEq ∈ ∆Principal.

Theorem 3.2 shows the powerful result that while points of frequency agreement

may exist elsewhere in the δ space, all equilibria in the principal region ∆Principal

are locally asymptotically stable, and all equilibria outside ∆Principal are not locally

asymptotically stable.

From Theorem 3.2 we may define the set of all stable equilibria of the δ (or θ)

dynamics as:

Definition 3.7 (Stable Frequency Agreement Equilibrium Sets).

∆Eq,Stable(PRef −P0
L) = ∆Eq(PRef −P0

L) ∩ ∆Principal

ΘEq,Stable(PRef −P0
L) = ΘEq(PRef −P0

L) ∩ ΘPrincipal

Theorem 3.2 describes the stability properties of static equilibria in a small re-

gion around each equilibrium, but it does not describe the convergence properties

elsewhere on the state space or provide a global condition for convergence to fre-

quency agreement. Therefore, we must seek a more general result (based on the full

non-linear model) describing convergence properties elsewhere in the δ (or θ) state

space.
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3.6 Frequency Synchronization of the Inverter-Based Power
Network

We now extend the logic of Theorem 3.2 to determine a condition on bus voltage-

angle trajectory δ(t) (or line voltage-angle trajectory θ(t)) that ensures convergence

of the network to frequency agreement.

In [23, Lemma 3.1], it was shown that a network whose dynamics can be described

by non-uniform Kuramoto oscillator model (similar to (9)) will reach agreement if

the entire state trajectory remains in the principal region. Rather than apply [23,

Lemma 3.1] to our model, we will re-derive this principal in terms of the line power-

flow/voltage-angle Jacobian, and show that positive definiteness of this matrix is

sufficient to ensure frequency synchronization.

We propose the following energy function for δ:

U(δ) =
1

2
||D 1

2 δ̇(t)||2 =
1

2
δ̇
T
Dδ̇ (41)

This function is non-negative and finite for all δ ∈ TN . The time-derivative of V (δ)

may be found as follows:

U̇(δ) = δ̇
T
D
∂δ̇

∂δ
δ̇ (42)

By substitituting (35) into (42) we find:

U̇(δ) = −δ̇TDLW (DTδ)δ̇

= −δ̇TDW (DTδ) DT δ̇ (43)

We showed in Lemma 3.3 that the line power-flow/voltage-angle JacobianW (DTδ)

is positive definite for δ ∈ ∆Principal; therefore U̇(δ) ≤ 0 for δ ∈ ∆Principal. Further

since null{DT} = span{1N}, U̇(δ) = 0 only when δ̇ ∈ span{1N}, that is, only when

the network is in frequency agreement. Therefore, given a trajectory δ(t) for t ≥ 0, if

δ(t) ∈ ∆Principal for all t ≥ 0, then δ̇ must converge to the agreement space, that is,

a network whose state trajectory does not leave the principal region MUST converge

to frequency agreement. We state this result more formally below:
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Theorem 3.3 (Sufficient Condition for Frequency Agreement Based on Bus Voltage

Angles). Consider the lossless droop inverter-based power network with ideal voltage

regulation (Definition 3.1) whose bus voltage-angle (δ) dynamics are described by (9).

Define stable equilibrium set ∆Eq,Stable(PRef −P0
L) as in Definition 3.7 and Principal

Region ∆Principal as in Definition 3.6. Assume that input PRef −P0
L is constant and

that ∆Eq,Stable(PRef − P0
L) 6= ∅. Consider the trajectory δ(t) defined on t ≥ 0, and

assume δ(t) ∈ ∆Principal ∀ t ≥ 0. Then

3.3.A Frequency Synchronization: ∆ω → ∆ωCOM1N .

3.3.B Simple Power Sharing: PG,k → PF,k = PRef,k −R−1
k ∆ωCOM ∀ k ∈ VDroop.

Proof. Contradiction Hypothesis: There exists trajectory δ(t) such that δ(t) ∈ ∆Principal ∀ t ≥

0 but δ̇ does not converge to span{1N}.

We have shown that U(δ) is non-negative and finite for all δ ∈ TN and U̇(δ) is

non-positive for all δ ∈ ∆Principal. Since (by assumption) δ(t) ∈ ∆Principal ∀ t ≥ 0,

we know that U̇(δ) ≤ 0 ∀ t ≥ 0. Further, since U̇(δ) = 0 only when δ̇ ∈ span{1N}

and (by the contradiction hypothesis) δ̇ does not converge to span{1N}, then U̇(δ)

does not converge to 0.

Consider the quantity

U(δ(t)) =

∫ t

0

U̇(δ(τ))dτ + U(δ(0)), (44)

along trajectory δ(t). Since U(δ(0)) finite and U̇(δ(t)) ≤ 0 does not converge to 0

along trajectory δ(t), then there exists time T > 0 such that U(δ(t)) < 0 ∀ t > T .

However, this contradicts the observation that U(δ) ≥ 0 ∀ t ≥ 0. Therefore, the

contradiction hypothesis is shown false, and instead δ(t) ∈ ∆Principal ∀ t ≥ 0 =⇒

δ̇ → span{1N}.

In Lemma 3.1 we have shown that convergence of δ̇ to the agreement space cor-

responds to convergence to the center-of-mass frequency (δ̇ = ∆ω → 1N∆ωCOM).
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Finally, in Lemma 3.2 we have shown that network convergence to the center-of-mass

frequency implies convergence of all inverter output power values to the final power

value PG,k → PF,k where PF,k is defined by (20), and the proof is complete.

Theorem 3.3 may also be reformulated in θ space as follows:

Theorem 3.4 (Sufficient Condition for Frequency Synchronization Based on Line

Voltage Angles). Consider the lossless droop inverter-based power network with ideal

voltage regulation (Definition 3.1) whose line voltage-angle (θ) dynamics are described

by (10). Define stable equilibrium set ΘEq,Stable(PRef −P0
L) as in Definition 3.7 and

Principal Region ΘPrincipal as in Definition 3.6. We assume that input PRef −P0
L is

constant and that ΘEq,Stable(PRef −P0
L) 6= ∅. Consider the trajectory θ(t) defined on

t ≥ 0, and assume θ(t) ∈ ΘPrincipal ∀ t ≥ 0. Then

3.4.A Frequency Synchronization: θ̇(t)→ 0L.

3.4.B Simple Power Sharing: PG,k → PF,k = PRef,k −R−1
k ∆ωCOM ∀ k ∈ VDroop.

Proof. We have shown that θ = DTδ ∈ ΘPrincipal implies δ ∈ ∆Principal, and so

θ(t) ∈ ΘPrincipal implies δ(t) ∈ ∆Principal. Also, notice that θ̇ = 0L = DT δ̇ implies

that δ̇ ∈ null{DT} = span{1N}, and by Lemma 3.1 δ̇ ∈ span{1N} implies δ̇ =

1N∆ωCOM . Therefore, if ΘEq,Stable(PRef − P0
L) 6= ∅ then ∆Eq,Stable(PRef − P0

L) 6= ∅.

Therefore, if the criteria in Theorem 3.4 hold then Theorem 3.3 also holds, and the

proof follows.

Theorems 3.3 and 3.4 provide sufficient conditions (in each of δ and θ spaces) for

frequency agreement based on bus/line voltage-angle trajectory. Conceptually, we

may think of Theorems 3.3 and 3.4 as defining a safe region (the principal region and

all subsets thereof) of the voltage-angle state space of a droop inverter-based network.

This means that as long as the network operates only within the safe region, then

frequency synchronization and simple power sharing are guaranteed.
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3.7 A Sufficient Condition for Frequency Synchronization
Based on Line Power Flows

Theorems 3.3 and 3.4 provide a state-space condition on the trajectories of δ(t) or

θ(t) respectively sufficient to guarantee frequency synchronization and simple power

sharing of droop inverter-based networks. Since θ = DTδ is the vector of line voltage

angles, we stress that the conditions in Theorems 3.3 and 3.4 are local in the sense

that they consist of a condition on each line voltage angle. However, these conditions

may not (in general) be determined directly from only local measurements (since line

voltage angles may not be measured locally at a bus). Therefore, we seek another

form of Theorems 3.3 or 3.4 which may be determined from local measurements.

3.7.1 Equivalence of Line Voltage-Angle and Line Power-Flow Constraints
on Principal Region

While the line voltage-angle values needed by the conditions of Theorems 3.3 and

3.4 cannot be measured locally, line power flows can be. Consider the relationship

between line voltage angle θk,m and line power flow PLine,km for an arbitrary line

(k,m) ∈ E . On the principal region (where |θk,m| ∈ (π/2 π/2)), this relationship

is invertible and non-decreasing, which means that line power-flow bounds can be

used in place of line voltage-angle bounds on ΘPrincipal (assuming constant voltage

magnitudes). We state this result formally in Lemma 3.4.

Lemma 3.4 (Equivalence of Line Voltage-Angle and Power-Flow Constraints). Con-

sider the quantity PLine,k,m(θk,m) for line (k,m) ∈ E as defined in (2). Then for each

PMax,k,m such that |PMax,k,m| < Yk,mVkVm there exists θMax,k,m such that |θMax,k,m| <

π/2 and PMax,k,m = PLine,k,m(θMax,k,m), where θMax,k,m is found by:

θMax,k,m = arcsin(Y −1
k,mV

−1
k V −1

m PMax,k,m) (45)

Further, if θ ∈ ΘPrincipal then |θk,m| ≤ θMax,k,m ⇐⇒ |PLine,k,m(θk,m)| ≤ PMax,k,m for

all (k,m) ∈ E.
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Figure 3.1: Example PLine,k,m vs. θk,m for arbitrary line (k,m) ∈ E .

Proof. From (2), we have PLine,k,m(θMax,k,m) = Yk,mVkVm sin(θMax,k,m) = PMax,k,m for

line (k,m). Since the quantities Yk,m, Vk, and Vm are all strictly positive, we may

then write:

Y −1
k,mV

−1
k V −1

m PMax,k,m = sin(θMax,k,m) (46)

The left hand side of (46) is by assumption is within (−1 1). On this domain,

the sin function is invertible and its inverse is arcsin, whose range is (−π/2 π/2).

Therefore, there exists unique θMax,k,m ∈ T such that |θMax,k,m| < π/2 and (45) is

found by solving (46) for θMax,k,m. Finally:

∂|PLine,k,m|
∂|θk,m|

= Yk,mVkVmcos(|θk,m|) ≥ 0 ∀ θk,m ∈ (−π
2

π

2
) (47)

Therefore, since |PLine,k,m| is non-decreasing in |θk,m| for θk,m ∈ (−π/2 π/2), then if

θ ∈ ΘPrincipal then |θk,m| ≤ θMax,k,m ⇐⇒ |PLine,k,m(θk,m)| ≤ PMax,k,m.

Lemma 3.4 shows that PLine,k,m(θk,m) is invertible on the principal region, and so
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for each line power flow bound PMax,k,m < Yk,mVkVm associated with line (k,m) ∈ E ,

there exists unique line voltage-angle value θMax,k,m such that |θMax,k,m| < π/2 and

|PLine,k,m(θk,m)| ≤ PMax,k,m if an only if |θk,m| ≤ θMax,k,m on the principal region, that

is, each line voltage-angle constraint within the principal region has an equivalent line

power flow constraint.

3.7.2 Safe Region of Line Voltage-Angle Space

Effectively, the sufficient conditions for synchronization presented by Theorems 3.3

and 3.4 are based on a set of line voltage-angle constraints |θk,m| < π/2 for all lines

(k,m) ∈ E (which define the principal region). This also implies that a subset of

the principal region (defined by the line voltage-angle constraints |θk,m| ≤ θMax,k,m

where 0 < θMax,k,m < Yk,mVkVm for each line (k,m) ∈ E) is also a safe region.

Further, Lemma 3.4 allows us to replace the line voltage-angle constraints |θk,m| ≤

θMax,k,m with the corresponding line power-flow constraints |PLine,k,m| ≤ PMax,k,m

(where PMax,k,m and θMax,k,m are related by (45)). Since line power flows can be

measured locally and in real-time, this condition can be tested by inverters locally.

We assume that the line-oriented quantities θMax,k,m and PMax,k,m are both line-even,

that is θMax,k,m = θMax,m,k and PMax,k,m = PMax,m,k for all (k,m) ∈ E . Like other

line-even quantities, we define the vector PMax = [PMax,1 . . . PMax,L]T ∈ RL where

PMax,i = PMax,k,m for each line (k,m) ∈ −→E where i is the index assigned to line

(k,m).

More formally, we will define the sets of safe line voltage-angle values ΘSafe as

follows:

Definition 3.8 (Safe Region of the Voltage-Angle State Space). Assume that each

line (k,m) ∈ E is assigned a line-even maximum power-flow magnitude bound PMax,k,m =

PMax,m,k such that 0 < PMax,k,m < Yk,mVkVm. Then we define the safe region ΘSafe
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of the line voltage-angle state space θ as:

ΘSafe = {θ ⊂ ΘPrincipal such that |PLine,k,m(θk,m)| ≤ PMax,k,m ∀ (k,m) ∈ E} (48)

It follows from Lemma 3.4 that θ is a member of ΘSafe if and only if |θk,m| ≤

θMax,k,m for all (k,m) ∈ E where θMax,k,m is found by (45):

Corollary 3.2. Consider the safe region ΘSafe as defined in Definition 3.8. Then

ΘSafe is equivalent to

ΘSafe = {θ ∈ TL such that |θk,m| ≤ θMax,k,m ∀ (k,m) ∈ E}, (49)

and therefore ΘSafe is compact and is a strict subset of ΘPrincipal.

Proof. Proof of (49) follows from Definition 3.8 and Lemma 3.4. It follows from (49)

that ΘSafe is closed and bounded (and therefore compact). Finally, since θMax,k,m <

π/2 (Lemma 3.4), the membership criterion of (49) is always stricter than that of

ΘPrincipal (Definition 3.6), and therefore ΘSafe is a strict subset of ΘPrincipal.

The fact that the two definitions of ΘSafe ((48) and (49)) are equivalent is very

useful, because it means that ΘSafe is compact, that it is a strict subset of ΘPrincipal,

and that its boundaries can be detected locally by line power-flow measurements.

We will use this fact below to develop a sufficient condition for droop inverter-based

network synchronization that be determined from local measurements.

3.7.3 Development of Sufficient Condition for Synchronization Based on
Line Power Flows

Now assume that there exists a trajectory θ(t) such that θ(0) ∈ ΘSafe. If θ(t) leaves

ΘSafe, then it must cross the boundary of ΘSafe, that is, at least one line voltage angle

θk,m must cross its corresponding boundary (θMax,k,m or −θMax,k,m). This means that

PLine,k,m(θk,m) must cross its corresponding PMax,k,m or −PMax,k,m. Since ΘSafe is

a subset of ΘPrincipal, then if θ(t) stays in ΘSafe for all t ≥ 0 (and if there exists
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an equilibrium in ΘSafe) then Theorem 3.4 holds and frequency synchronziation and

power sharing are guaranteed. Therefore, we have a condition on PLine that ensures

convergence to frequency agreement: No line power flow magnitude |PLine,k,m| may

cross its corresponding PMax,k,m (assuming that θ(0) ∈ ΘSafe and that there exists

an equilibrium in ΘSafe).

We state this result more formally below:

Theorem 3.5 (Sufficient Condition for Frequency Synchronization Based on Line

Power Flows). Consider the lossless droop inverter-based power network with ideal

voltage regulation whose line voltage-angle (θ) dynamics are described by (10). Select

a constant PMax ∈ RL =

[
PMax,1 . . . PMax,L

]T
such that 0 < PMax,k,m < YkmVkVm

for each (k,m) ∈ E, and define ΘSafe as in Definition 3.8. Define ΘEq,Stable(PRef −

P0
L) as in Definition 3.7 and assume that PRef − P0

L constant such that [ΘSafe ∩

ΘEq,Stable(PRef − P0
L)] 6= ∅. Consider the trajectory θ(t) defined on t ≥ 0 where

θ(0) ∈ ΘSafe. Then if |PLine,k,m(θk,m(t))| ≤ PMax,k,m for all (k,m) ∈ E and for all

t ≥ 0 then

3.5.A Frequency Synchronization: θ̇(t)→ 0L.

3.5.B Simple Power Sharing: PG,k → PF,k = PRef,k −R−1
k ∆ωCOM ∀ k ∈ VDroop.

Proof. We have shown in Corollary 3.2 that the definitions of ΘSafe (48) and (49) are

equivalent and that ΘSafe is a strict subset of ΘPrincipal. Therefore, we need only to

show that satisfaction of the line power-flow constraints |PLine,k,m(θk,m(t))| ≤ PMax,k,m

is sufficient to ensure that θ(t) stays in ΘPrincipal (and therefore also in ΘSafe), since

if this result holds then Theorem 3.4 applies.

Contradiction Hypothesis: There exists trajectory θ(t) for t ≥ 0 such that θ(0) ∈

ΘSafe and |PLine,k,m(θk,m(t))| ≤ PMax,k,m for all (k,m) ∈ E and for all t ≥ 0, but that

θ(t) /∈ ΘPrincipal for all t ≥ 0.
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Therefore, there must exist some line (k,m) ∈ E such that |θk,m|(0)| ≤ θMax,k,m <

π/2 and some time T > 0 such that |θk,m(T )| > π/2. Since trajectory θ(t) is continu-

ous, then there also exits a time T1 such that 0 < T1 < T and θMax,k,m < |θk,m(T1)| <

π/2, which implies that |PLine,k,m(θk,m(T1))| > PMax,k,m (this case is illustrated in Fig-

ure 3.2). However, this contradicts the assumption that |PLine,k,m(θk,m(t))| ≤ PMax,k,m

for all (k,m) ∈ E and all t ≥ 0. Therefore, the contradiction hypothesis is shown

false, and θ(0) ∈ ΘSafe and |PLine,k,m(θk,m(t))| ≤ PMax,k,m for all (k,m) ∈ E and all

t ≥ 0 implies that θ(t) ∈ ΘPrincipal for all t ≥ 0.

θk,m

PLine,k,m(θk,m)

π
2−π

2−θMax,k,m θMax,k,m

PMax,k,m

−PMax,k,m

θkm(0)

θ(t) exits ΘPrincipal

Trajectory of θkm(t)

Constraint Violated
(|PLine,k,m(θkm(t))| > PMax,k,m)

θkm(T1)

Figure 3.2: Trajectory of a line (k,m) ∈ E exiting the principal region

Since all line power-flow constraints |PLine,k,m| ≤ PMax,k,m are (by assumption)

met for all t ≥ 0, then θ(t) is also in ΘSafe for all t ≥ 0. Finally, the assumption

that [ΘSafe ∩ ΘEq,Stable(PRef −P0
L)] 6= ∅ implies that ΘEq,Stable(PRef −P0

L) 6= ∅, and

that θ(t)→ θEq ∈ ΘEq,Stable is consistent with θ(t) ∈ ΘSafe for all t ≥ 0. The above

satisfies all the conditions of Theorem 3.4, and the proof is complete.

We state Theorem 3.5 conceptually as follows: “If no line power flow exceeds its

assigned maximum value (and if there exists an equilbrium in the safe region), then
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the network must converge to frequency agreement and simple power sharing.” We

emphasize that the condition of Theorem 3.5 consists of a set of local line-power-flow

constraints, each of which can be determined from only local measurements at each

incident bus.

A note on the selection of PMax: Since our only requirement is that 0 < PMax,k,m <

YkmVkVm for each line (k,m) ∈ E , there is a great deal of freedom in the selection

of PMax,k,m. The smaller the value of PMax,k,m chosen, the smaller the associated

θMax,k,m will be. Since θMax,k,m will always be smaller than π/2, the condition in

Theorem 3.5 is a stricter condition than that of Theorems 3.3 and 3.4, and choosing

a smaller PMax,k,m will make it stricter still. Considerations for optimal selection of

PMax for a given network are very application specific, and are beyond the scope of

this dissertation.

3.7.4 Discussion on Significance of Sufficient Condition for Synchroniza-
tion Based on Line Power Flows

At first glace, Theorem 3.5 doesn’t seem to carry much value for design of control

for inverter-based networks. It consists of a set of line power-flow constraints such

that the satisfaction of those constraints (along with several parametric conditions,

including both an initial condition in the safe region and the existence of an equilib-

rium in the safe region) is sufficient to guarantee frequency synchronization and (by

implication) simple power sharing between inverters. However, the condition requires

a test of every line power flow in the network at every time, and it is not clear how the

condition advances the ability to guarantee synchronization in inverter-based power

networks.

The value of Theorem 3.5 is in the approach that is suggests for control design,

namely that if the line power-flow constraints could be enforced in real-time, then

guaranteed frequency synchronization and (possibly) simple power sharing would fol-

low. Stated another way, Theorem 3.5 shows that there exists operating a safe region
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of the network line voltage-angle state space such that bounding of the network tra-

jectory within that region would guarantee synchronization. Further, the boundaries

of the safe region can be detected locally, meaning that potentially an inverter per-

forming local measurement could respond so as to direct the network back into the

safe region. In the following chapters, we will use this concept to develop a modified

form of frequency-droop control which is capable of enforcing the specified set of line

power-flow constraints in real-time using only local measurements, thereby bounding

the network into the safe region and providing the desired frequency synchronization

and power sharing properties without requiring communication.

3.8 Example System Simulation

To clarify the results of this chapter, we present several simulations on an example

system. Our example system is a lossless six-bus inverter-based network, a single-

line diagram of which is shown in Figure 3.3. Notice that this network is meshed,

and structurally asymmetric. All voltage magnitudes are assumed to be unity, and

the input configuration for all four simulation cases are shown in Table 3.2. Each

simulation and the significance of its results is described below.

1

2 4 35

6
PG,1

PG,2 PG,3

PL,6

PL,5PL,4

Ỹ14 = −j3.0

Ỹ24 = −j2.5 Ỹ35 = −j3.0Ỹ45 = −j1.0

Ỹ56 = −j2.0
Ỹ46 = −j0.5

Droop

Droop Droop

Figure 3.3: Example Six-Bus Meshed Network
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Table 3.2: Input Conditions for Simulation Cases

Simulation 3.1 Simulation 3.2 Simulation 3.3 Simulation 3.4

t < 0 t ≥ 0 t < 0 t ≥ 0 t ≥ 0 t ≥ 0

PRef,1 1.0 1.0 1.0 1.0 1/3 0.0

PRef,2 1.0 1.0 1.0 1.0 1/3 1.5

PRef,3 1.0 1.0 1.0 1.0 1/3 1.5

PL,4 1.0 1.0 0.0 0.0 0.0 1.25

PL,5 0.0 0.0 1.0 1.0 0.5 2−
√

3

PL,6 1.0 2.0 1.0 2.0 0.5
√

3− 0.25

3.8.1 Simulation 3.1: Stable Load Step

Our first simulation case demonstrates a simple load step to a stable configuration. At

t = 0−, the network is in steady state (at a stable equilibrium). At t = 0, the load on

bus 6 steps from 1.0p.u. to 2.0p.u., disturbing the equilibrium. The post-step input

conditions still reside in the range of DPLine(θ) (and therefore there exists a stable

equilibrium). Response of the line voltage angles θ, line power flows PLine, inverter

output power PG, and bus frequency offsets ∆ω for Simulation 3.1 is shown in Figure

3.4. Notice that after the step, the θ trajectory stays inside the principal region, and

therefore Theorem 3.4 holds and the system stabilizes to the new equilibrium and

frequency agreement is achieved.

3.8.2 Simulation 3.2: Unstable Load Step

Our second simulation case demonstrates a load step similar to Case 1, but with a

slight alteration: a load of 1.0p.u. is moved from bus 4 to bus 6, resulting in a post-

step condition such that the condition of Theorem 3.1 is met across the cut consisting

of lines (4, 5) and (4, 6), and therefore there exist no post-step equilibria. Response

of the line voltage angles θ, line power flows PLine, inverter output power PG, and

bus frequency offsets ∆ω for Simulation 3.2 is shown in Figure 3.5. Observe that

the line voltage angles θ4,5 and θ4,6 begin to cycle around the torus, indicating that

52



−
1

0
1

2
3

−
0.

6

−
0.

4

−
0.

20

0.
2

0.
4

0.
6

0.
8

T
im

e(
se
c)

BusFrequency∆ω(rad/sec)

 

 

∆
ω
1

∆
ω
2

∆
ω
3

∆
ω
C
O
M

(a
)

B
u

s
F

re
q
u

en
cy

E
rr

or
∆
ω

−
1

0
1

2
3

0

0.
51

1.
5

T
im

e(
se
c)

LineRealPowerPLine(p.u.)

 

 

P
L
in
e,
1
,4

P
L
in
e,
2
,4

P
L
in
e,
3
,5

P
L
in
e,
4
,5

P
L
in
e,
4
,6

P
L
in
e,
5
,6

(b
)

L
in

e
P

ow
er

F
lo

w
s

P
L
in

e

−
1

0
1

2
3

0.
7

0.
8

0.
91

1.
1

1.
2

1.
3

1.
4

T
im

e(
se
c)

InverterPowerPG(p.u.)

 

 

P
G
,1

P
G
,2

P
G
,3

(c
)

In
ve

rt
er

G
en

er
at

ed
P

ow
er

P
G

−
1

0
1

2
3

0

0.
2

0.
4

0.
6

0.
81

1.
2

1.
4

T
im

e
(s
ec
o
n
d
s)

LineVoltageAngleθ(rad)

 

 

θ
1
,
4

θ
2
,
4

θ
3
,
5

θ
4
,
5

θ
4
,
6

θ
5
,
6

(d
)

L
in

e
V

ol
ta

ge
A

n
gl

es
θ

F
ig

u
re

3.
4:

S
im

u
la

ti
on

3.
1:

S
ta

b
le

L
oa

d
S
te

p
on

S
ix

-B
u
s

M
es

h
ed

N
et

w
or

k

53



the subnetwork of buses 1, 2, and 4 has lost synchronization with the subnetwork of

buses 3, 5, and 6 (across the cut of lines (4, 5) and (4, 6)).

3.8.3 Simulation 3.3: Seperation and Resynchronization

Our third simulation case is a pathological condition designed to show an interesting

special case. In this case, a stable equilibrium exists, and the network is initialized

at t = 0 in a non-equilibrium state. This initial state is within the principal region

and there exists a stable equilibrium, but the state trajectory exits the principal

region, and so the sufficient condition of Theorem 3.4 does not hold. Response of the

line voltage angles θ, line power flows PLine, inverter output powers PG, and bus

frequency offsets ∆ω for Simulation 3.3 is shown in Figure 3.6.

What we observe is that the line voltage angles θ4,5 and θ4,6 both diverge from the

principal region, indicating the seperation of the subnetwork of buses 1, 2, and 4 from

the subnetwork of buses 3, 5, and 6. However, after cycling around the torus, the two

subnetworks then resynchronize, with one subnetwork one complete cycle ahead of the

other. The network reaches stability, but by a highly undesirable trajectory: several

line power flows crossed their maximum power transfer point, which in practice might

result in hardware damage or result in unsafe conditions. This case bears further

consideration and study.

3.8.4 Simulation 3.4: Behavior Near Unstable Equilibrium

Our final simulation case in this chapter demonstrates behavior of a droop inverter

network near an unstable equilibrium. The unstable equilibrium is one in which the

voltage-angle magnitudes around the cycle (θ4,5, θ5,6, and −θ4,6) sum to 2π, resulting

in a non-trivial cyclical power flow. This equilibrium is unstable because it lies outside

of the principal region (see Theorem 3.2). There also exists a stable equilibrium inside

the principal region. Response of the line voltage angles θ, line power flows PLine,

inverter output power PG, and bus frequency offsets ∆ω for Simulation 3.4 is shown
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in Figure 3.7.

The initial condition of the network is placed a small distance from the unstable

equilibrium. The network state accelerates away from the unstable equilibrium, enters

the principal region and eventually settles to the stable equilibrium, thus demonstrat-

ing both the instability of the equilibrium outside the principal region and the stability

of the equilibrium inside the principal region as claimed by Theorem 3.2.

3.9 Conclusions

In this chapter, we have developed a structure-preserving model for the voltage-

angle, frequency, and real-power dynamics of a droop inverter-based network. This

model may be stated in two forms (one bus-oriented and the other line-oriented). We

showed that frequency synchronization corresponds to convergence to an equilibrium

of the model, and determined a necessary condition for existence of such equilibria

(Theorem 3.1). We showed that convergence to frequency agreement necessarily

corresponds to convergence of the network to a state where network load is shared

between the inverters based on assigned references and droop constants (Lemma 3.2),

a property which we designate the simple power sharing property of droop inverter-

based networks. We showed that equilibria are locally asymptotically stable if and

only if they lie in the principal region (Theorem 3.2). We presented sufficient criteria

for frequency synchronization based on bus voltage angles (Theorem 3.3) or line

voltage angles (Theorem 3.4). Finally, we used the concept of invertibility of the line

power flows to create a distributed sufficient criterion for frequency synchronization

based on line power flows (Theorem 3.5), which consists of a set of local criteria each

of which can be determined using only local measurements.

In the development of our model, we made a number of idealizing assumptions to

simplify the network to be considered (see Section 3.2), but these assumptions may not

always be realistic. In particular, the assumption of constant voltage magnitude does
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not consider the possibility of voltage collapse, and our results only apply to frequency

synchronization, not voltage stability. In addition, the omission of controller delays in

our model may not accurately reflect the real limitations of hardware frequency-droop

inverters, and does not allow for calculation of maximum stable droop constants.

Despite these limitations, our model captures the most significant dynamics effecting

synchronization and power sharing in droop inverter-based networks, and as such can

be used to develop new understand of synchronization and methods for improving

synchronzation properties of inverter-based networks.

The results in this chapter provide a new method of modeled the frequency and

voltage-angle dynamics of a droop inverter-based network, and they confirm that

such a network has several desirable properties, notably simple power sharing, local

convergence to frequency agreement, and no need for explicit communication between

inverters. However, due to the lack of a method to enforce line power flow constraints

in the network, it may fail to synchronize, resulting in power oscillations. Therefore,

a new method of control must be developed which is capable of enforcing these line

power flow constraints in real-time without sacrificing the desirable properties of

droop control. In the following chapters, we develop such a control method to improve

the synchronization properties of inverter-based networks by integrating constraint-

enforcement into the droop control law.
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CHAPTER IV

A CONSTRAINT-ENFORCING DROOP CONTROLLER

FOR ROBUST SYNCHRONIZATION OF

ALL-ACTIVE-BUS RADIAL INVERTER-BASED AC

NETWORKS

4.1 Introduction

In the previous chapter, we introduced a structure-preserving model of an inverter-

based AC network operating frequency-droop control, which includes the full non-

linear network equations. Using this model, we showed that frequency synchronization

of the network (that is, convergence of the bus frequencies to a common value) ensures

that all inverters share power according to their assigned reference values and offsets

(Lemma 3.2), which we termed the simple power sharing property. Further, frequency

synchronization can be guaranteed by enforcement of a specified set of line power flow

constraints (Theorem 3.5), which bound the network state trajectory within a safe

region of the voltage-angle state space. However, the traditional frequency-droop

control law (4) is not sufficient to ensure that these constraints are met, and as a

result the network may lost frequency synchronization, resulting in power oscillations

and potentially network failure. Therefore, the traditional frequency-droop controller

is not sufficient to provide guaranteed frequency synchronization and power sharing

for inverter-based networks across the entire expected operating range of the network.

Traditional frequency-droop control fails to provide the desired behavior because

it fails to integrate the non-linearities and constraints of the network power flows. If

droop control were able to enforce a specified line power flow constraint on each line in
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the network, then by Theorem 3.5 frequency synchronization would be guarananteed.

Further, if relationship between frequency and real power generation created by the

droop control law (4) were maintained, then guaranteed power sharing would follow.

Our approach in this work is based on an appliation of multi-agent system theorem

to AC inverter-based networks, in which we view the frequency synchronization of

inverters as a form of network consensus (see [63, 54]). In other applications of multi-

agent system theory, network constraints have been enforced in a distributed way by

explicit integration of those constraints into the consensus control law [79, 6, 53, 4, 19].

In particular, [53] enforces distance constraints between robots in a mobile robotic

network by application of unbounded adaptive gains to the edge tensions between

robots. We will show in this chapter that the problem of enforcement of line power

flow constraints in a droop inverter-based network is strongly analagous to that of

distance constraints in mobile robotic networks, and introduce a new method inspired

by [53] to enforce such line power flow constraints using only local data.

In this chapter, we introduce a modified form of the frequency-droop controller,

which is capable of enforcing specified line power flow constraints on its incident lines.

We term this new control law the constraint-enforcing droop (CED) controller, and

like the traditional frequency-droop controller it does not require explicit communi-

cation or non-local data (though it does require measurements beyond those required

by traditional droop). We consider in this chapter the most direct application of the

CED controller, in which an inverter implementing the proposed CED control law is

placed at each bus in a acyclic network, which we refer to as an all-active-bus, acyclic

CED network. While this case is limited in practice, it is valuable as a proof-of-

concept of distributed constraint enforcement in inverter-based networks. We show

that in such a network, the CED-controlled inverters are capable of enforcing the line

power flow constraints derived in Theorem 3.5, thereby bounding the network state

trajectory to the safe region of the voltage-angle state space. Further, we show that
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frequency synchronization is then guaranteed as long as the network initial condition

is in the safe region. Finally, we show that such a network has a modified form of the

simple power sharing property, which we term the constrained power sharing property.

These properties hold for all bounded, constant reference and load conditions (in the

absence of generation constraints), thus providing robust synchronization and power

sharing properties for this limited class of networks.

In Section 4.2, we reintroduce the all-active-bus CED control law and discuss its

requirements. In Section 4.3, we introduce the class of network under consideration

and state our main synchronization and power sharing result for networks of this

class. In Section 4.4, we consider the steady state behavior of an all-active-bus,

acyclic CED network, and derive the constrained power sharing property of such

an network. In Section 4.5, we prove our main result by showing that for such a

network, there exists a compact subset of the safe region which is invariant to he

network dynamics, thereby bouding network operation within the safe region and

guaranteeing frequency synchronization and constrained power sharing. Finally, in

Section 4.7 we draw conclusions.

4.2 Constraint-Enforcing Droop (CED) Controller

The frequency-droop control law (4) (introduced in [12]) creates an explicit connec-

tion between an inverter’s frequency offset ∆ωk and its output power PG,k, providing

the simple power sharing property (Lemma 3.2) and ensuring convergence of frequen-

cies between inverters as long as the network state trajectory stays within a safe

region ΘSafe (Theorem 3.5), which is defined by a set of line power flow constraints,

one on each line in the network (Definition 3.8). However, since it does not en-

force any such constraints, the frequency-droop control law is not sufficient to ensure

that the network remains bounded within the safe region, and therefore the network
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may lose frequency synchronization, resulting in power oscillations and possibly net-

work failure. To correct this shortcoming, we will introduce a modified form of the

frequency-droop control law that explicitly integrates the line power flow constraints

defining the boudaries of the safe region, enforcing them locally and thereby guaran-

teeing frequency synchronization and power sharing for all reference and load input

conditions.

4.2.1 Constraint Enforcement in Inverter-Based AC Networks

Consider again the view of the traditional frequency-droop dynamics (7) as a forced,

nonlinear form of the consensus equation from multi-agent system theory (for ex-

ample, see [63]). Under this interpretation, the line power flow values PLine,k,m

can be viewed as a non-linear dynamic “tensions” in the dynamics of δk. Since

−PLine,k,m(θk,m) always has the opposite sign of θk,m on the principal region, then

the dynamic tension associated with line (k,m) ∈ E tends to “pull” the state θk,m

towards zero. However, since |PLine,k,m| is bounded, this tension may not be sufficient

to overcome the other dynamic tensions pulling the state θk,m, and so the constraint

|PLine,k,m(θk,m)| < PMax,k,m may be violated (and the network may lose synchroniza-

tion). Notice that we now consider the strict form of the line power flow constraint

(|PLine,k,m(θk,m)| < PMax,k,m vs. |PLine,k,m(θk,m)| ≤ PMax,k,m).

A similar problem occurs in mobile robotic networks with range-limited sensing

(see [53]). Each robot operates a consensus controller (similar in form to (7)), which

causes each robot to converge towards the centroid of the neighbors it can sense.

It can be shown that as long as the mobile robot network operates within a safe

region defined by distance constraints, then the robots will always converge (similar

to Theorem 3.4). However, if the robots leave each other’s sensing range, then they

lose contact and may not converge. In [53], this problem is solved by introduction

of state-dependent weights to the edge tension values, which increase unbounded as
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any edge approaches its assigned distance constraint. As a result, when any edge

approaches its constraint, the associated edge tension increases to “pull” the network

back into the safe region, enforcing the constraint. Since the gain approaches infinity

as the state approaches its constraint, the associated tension will always be “large

enough” to overcome any opposing tension and strictly enforce the constraint.

The problem of line power flow constraint enforcement in inverter-based power net-

works has several significant differences from the problem considered by [53]. First,

[53] considers agents with unforced linear dynamics, while the inverter network dy-

namics in (7) are forced and non-linear. Second, it assumes that the state difference

across an edge can be measured directly, while in the inverter network case voltage

angle difference θk,m = δk− δm cannot be measured locally at bus k (without applica-

tion of emerging PMU technology). However, while it is not possible to measure θk,m

at a bus k, it is possible to measure line power flow PLine,km at bus k, and it follows

from Lemma 3.4 that |θk,m| < θMax,k,m corresponds to |PLine,km| < PMax,k,m. Using

these characteristics, we can implement a controller analagous to that proposed in

[53] to enforce line power flow constraints as shown in the next section.

4.2.2 All-Incident-Line CED Control Law

We now introduce a modified form of the frequency-droop control law for voltage-

source inverters, which explicitly integrates the line power flow constraints from The-

orem 3.5. We term this new control law the All-Incident-Line Constraint-Enforcing

Droop (CED) Control Law, since it enforces the specified line power flow constraint

on each line incident to the inverter. Similar to the method of constraint enforcing

proposed by [53] for mobile robotic networks, the CED control law (50) applies adap-

tive gain γk,m(|PLine,k,m|) to each line “tension” value, resulting in the “adaptive line

tension” γk,m(|PLine,k,m|)PLine,k,m (which for simplicity of notation we will indicate

as γk,mPLine,k,m). By increasing the gain γk,m unbounded as |PLine,k,m| approaches
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PMax,k,m, we can ensure that the adaptive line tension is always large enough to over-

come the tension opposing it as it nears its constraint, thus guaranteeing that the

constraint will be enforced.

The new All-Incident-Line Constraint-Enforcing Droop (CED) Control Law is

defined as follows:

Definition 4.1 (All-Incident-Line Constraint-Enforcing Droop Control Law). The

All-Incident-Line Constraint-Enforcing Droop (CED) Controller obeys the following

control law:

∆ωk = Rk


PRef,k − PL,k −

∑

m∈N (k)

γk,m(|PLine,k,m|) PLine,k,m


 (50)

where γk,m(|PLine,k,m|) = γm,k(|PLine,m,k|) is a line-even, positive weight function as-

sociated with line (k,m) ∈ E whose purpose is to enforce the line flow constraint

|PLine,k,m| < PMax,k,m.

The control law introduced in Definition 4.1 is called the ’“all-incident-line” CED

control law because it applies an adaptive gain γk,m to each line incident to the bus

k. Observe that when γk,m = 1.0 for all incident lines to bus k, the CED control law

(50) reduces to the traditional droop dynamics (7).

4.2.3 Selection of Adaptive Gain Function γk,m

The adaptive gain function γk,m(|PLine,k,m|) for each line (k,m) ∈ E is selected during

control design so that it has a set of characteristics needed to enforce the (strict)

line power flow constraint |PLine,k,m| < PMax,k,m, and so that when no incident con-

straints are active a CED-controlled inverter behaves identically to a traditional-

droop-controlled inverter. In particular, we require that γk,m be selected from the

following class of functions:
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Definition 4.2 (Feasible Set ΓUnbounded for γk,m). A function γk,m : [0 PMax,k,m)→

[1 ∞) is a member of the set ΓUnbounded for a given constant PMax,k,m > 0 if it has

the following characteristics:

4.2.A γk,m is Lipschitz continuous with respect to |PLine,k,m| for all |PLine,k,m| < (1−

µ)PMax,k,m and for all µ ∈ (0 1).

4.2.B γk,m equals unity for small |PLine,k,m|:

∃ εk,m ∈ (0 1) such that γk,m(|PLine,k,m|) = 1 for all |PLine,k,m| ≤ (1 −

εk,m)PMax,k,m.

4.2.C γk,m goes to ∞ as |PLine,k,m| approaches PMax,k,m (from below):

lim
|PLine,k,m|→PMax,k,m

γk,m(|PLine,k,m|) =∞.

4.2.D γk,m is line-even:

γk,m(|PLine,k,m|) = γm,k(|PLine,m,k|)

4.2.E γk,m is non-decreasing in |PLine,k,m|:
∂γk,m

∂|PLine,k,m|
≥ 0 ∀ |PLine,k,m| < PMax,k,m.

4.2.F γk,m is bounded for all |PLine,k,m| < PMax,k,m:

For each µ ∈ (0 1) there exists finite γk,m,µ > 1 such that 1 ≤ γk,m(|PLine,k,m|) ≤

γk,m,µ for all |PLine,k,m| ≤ (1− µ)PMax,k,m.

Any function which is a member of ΓUnbounded may be selected for each γk,m in the

CED control law. Later in this chapter, we will show that the characteristics required

by Definition 4.2 are sufficient to ensure enforcement of line power flow constraints,

convergence to frequency synchronization, and constrained power sharing between

inverters.

The quantity εk,m in Definition 4.2.B is a constant chosen to determine when a

constraint is considered to be active. If |PLine,k,m| < PMax,k,m, we say that the line

constraint at line (k,m) ∈ E is met, and if |PLine,k,m| ≥ PMax,k,m we say that the
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constraint is violated. Finally, if (1 − εk,m)PMax,k,m < |PLine,k,m| < PMax,k,m, we say

that the constraint is ε-active.
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Figure 4.1: Example selection of line weight γk,m vs. PLine,k,m (as in (51)) for line
(k,m) ∈ E with PMax,k,m = 0.8 p.u., εk,m = 0.1, and Ck,m = 0.1

For example, consider the function γk,m defined as in (51). This selection of γk,m

for given constants Ck,m > 0 and εk,m ∈ (0 1) can be shown to meet the requirements

of Definition 4.2, and is therefore a member of ΓUnbounded and a valid selection for

γk,m. Figure 4.1 shows a plot of γk,m vs. |PLine,k,m| for the example selection (51) for

γk,m.

4.3 Synchronization and Power Sharing in All-Active-Bus,
Acyclic CED Networks

4.3.1 All-Active Bus, Acyclic CED Networks

In this chapter, we consider a simplified class of inverter-based AC networks for the

purpose of enforcement of the set of line power flow constraints in Theorem 3.5. We

Example selection of γk,m ∈ ΓUnbounded for given constants Ck,m > 0, PMax,k,m > 0,
and εk,m > 0:

γk,m(|PLine,k,m|) :=





1.0 |PLine,k,m| ≤ (1− εk,m)PMax,k,m

1.0− Ck,m
εk,mPMax,k,m

+
Ck,m

PMax,k,m − |PLine,k,m|





(1− εk,m)PMax,k,m < |PLine,k,m| < PMax,k,m

(51)
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refer to this class of networks as all-active-bus, acyclic CED networks :

Definition 4.3 (All-Active-Bus, Acyclic CED Networks). An all-active-bus, acyclic

CED network is a 3-phase AC power network, which is identical to a lossless droop

inverter-based power network with ideal voltage regulation (Definition 3.1) with the

following differences:

4.3.A Each line (k,m) ∈ E is assigned a line-even, constant maximum power flow

value PMax,k,m = PMax,m,k, where 0 < PMax,k,m < Yk,mVkVm.

4.3.B Each line (k,m) ∈ E is assigned a line-even, positive gain function γk,m ∈

ΓUnbounded meeting the requirements of Definition 4.2.

4.3.C Each bus k ∈ V is an inverter bus, and implements the all-incident-lines

constraint-enforcing droop control law (Definition 4.1) using the assigned PMax,k,m

and γk,m for each of its incident line.

4.3.D The network is acyclic (contains no cycles).

In an all-active-bus, acyclic CED network, each line (k,m) ∈ E is incident to two

CED inverters, one at each of its incident buses. This is the simplest case to consider

for constraint-enforcment in inverter-based networks, since each line constraint is

explicitly measured and enforced by both of its incident CED inverters. We will show

that for this class of networks, each (strict) line power flow constraint |PLine,k,m| <

PMax,k,m will be enforced, thus bounding the network state trajectory within the safe

region and resulting in guaranteed frequency synchronization and (constrained) power

sharing.

4.3.2 Structure-Preserving Model for All-Active Bus, Acyclic CED Net-
works

Since all-active-bus, acyclic CED network have most of the same characteristics as

the droop inverter-based network considered in Chapter 3, it is possible to modify our
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structure-preserving model to represent their dynamics. Substituting the frequency-

dependent load model (3) into the all-incident-line CED control law (50) at each bus

k ∈ V and solving for ∆ωk = δ̇k, we obtain the bus-oriented dynamic system-of-

equations model for an all-active-bus, acyclic CED network:

δ̇k = D−1
k


PRef,k − P 0

L,k −
∑

m∈N (k)

γk,m(|PLine,k,m|) PLine,k,m


 ∀ k ∈ V (52)

where Dk = R−1
k +D′k is the total bus frequency-dependence coefficient at bus k.

As in Chapter 3, in order to form vectors of each line-oriented quantity we asso-

ciated a direction and an index i ∈ {1 . . . L} with each physical line, and assign these

directed edges to a set
−→E . We may then form vectors θ =

[
θ1 . . . θL

]T
∈ RL and

PLine =

[
PLine,1 . . . PLine,L

]T
∈ RL, where θi = θk,m = −θm,k and PLine,i = PLine,k,m =

−PLine,m,k for each line (k,m) ∈ −→E which was assigned index i. In addition, we assign

the vectors PMax =

[
PMax,1 . . . PMax,L

]T
∈ RL and γ =

[
γ1 . . . γL

]T
∈ RL, where

PMax,i = PMax,k,m = PMax,m,k and γi = γk,m = γm,k for each (k,m) ∈ −→E (recall that

PMax,k,m and γk,m are line-even).

Using the above line-oriented vectors and the incidence matrix D of the graph

G (using the line direction in
−→E ), we can represent the state dynamics of the line

voltage angle state θ as follows:

θ̇ = DTD−1
[
PRef −P0

L −D diag{γ(PLine(θ))} PLine(θ)
]

= DTD−1
[
PRef −P0

L −D γPLine(θ)
]

(53)

where D = diag

{[
D1 . . . DN

]T}
is the diagonal matrix of bus total frequency-

dependence coefficients, and we again use the shorthand notation

γPLine(θ) := diag{γ(PLine(θ))} PLine(θ) (54)

Each line i ∈ {1 . . . L} of the vector equation (53) (associated with the line (k,m) ∈ −→E

that was assigned index i) reduces to θ̇i = θ̇k,m = ∆ωk−∆ωm, the difference between

the bus dynamic equation (52) at bus k and bus m.
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4.3.3 Main Synchronization and Power Sharing Result

The main result is this chapter is that an all-active-bus acyclic CED network has

three very desirable properties:

1. Constraint Enforcement : An all-active-bus acyclic CED network enforces the

(strict) line power flow constraints |PLine,k,m| < PMax,k,m for all (k,m) ∈ E

using only local measurement and actuation. This capability is not provided by

traditional frequency-droop control.

2. Robust Frequency Synchronization: An all-active-bus acyclic CED network pro-

vides guaranteed convergence to a shared network frequency for all bounded,

constant network inputs (PRef and P0
L) as long as the network begins within

the principal region with all constraints initially strictly met. This capability

is also not provided by traditional frequency-droop control, though traditional

frequency-droop does provide local convergence to a shared frequency for many

operating conditions (see [15, 40, 52]).

3. Constrained Power Sharing : An all-active-bus acyclic CED network provides

similar power sharing behavior to that of the equivalent traditional droop net-

work at each inverter that is not adjacent to an ε-active constraint. Inverters

adjacent to active constraints must adjust their power output away from the

reference in order to enforce the active constraint. This is in contrast to the

simple power sharing property of a traditional droop network, in which syn-

chronization and power sharing may not be reached if a constraint is violated.

These properties make an all-active-bus, acyclic CED network much more robust

than traditional droop network, and means that CED-controlled inverters can provide

functionality to the network beyond what traditional droop can provide.

We state these results more formally below:
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Theorem 4.1 (Robust Synchronization and Power Sharing of All-Active-Bus Acyclic

CED Network). Consider an all-active-bus, acyclic CED network (Definition 4.3)

whose structure is described by the acyclic graph G = (V , E) and whose line voltage

angle (θ) dynamics are described by (53). Assume that the network inputs PRef and

P0
L are bounded and constant. Then if θ(t0) ∈ ΘPrincipal and there exists µ ∈ (0 1)

such that |PLine,k,m(θ(t0))| < (1− µ)PMax,k,m for all (k,m) ∈ E then:

4.1.A Strict Constraint Enforcement: |PLine,k,m(θ(t))| < PMax,k,m for all (k,m) ∈ E

and for all t ≥ t0.

4.1.B Frequency Synchronization: ∆ωk → ∆ωCOM for all buses k ∈ V where

∆ωCOM =

∑
k∈V PRef,k −

∑
k∈V P

0
L,k∑

k∈V Dk

=
∆PRef
D (55)

4.1.C Constrained Power Sharing: PG,k → PF,k where

PF,k = PRef,k −R−1
k

∆PRef
D (56)

for each bus k ∈ V such that |∆PEq,k,m(PRef − P0
L)| ≤ (1 − εk,m)PMax,k,m for

all m ∈ N (k) where:

∆PEq,k,m(PRef −P0
L) =

∑

l∈VC,k,m

∣∣PRef,l − P 0
L,l −R−1

l ∆ωCOM
∣∣ (57)

where VC,k,m ⊂ V is the cut of the graph G associated with the edge (k,m) ∈ E.

Theorem 4.1 considers the convergence and steady-state behavior of an all-active-

bus acyclic CED network under constant reference and load inputs. The network is

assumed to start (at t = t0) in the principal region with all constraints initially met.

Theorem 4.1.A states that the line power flow constraints will be enforced for

all t ≥ t0. Notice that this result applies both during transient and steady-state

conditions. We prove this result in Lemma 4.5 later in this chapter.

Theorem 4.1.B states that the CED network under the above conditions must

always synchronize to a shared system frequency ∆ωCOM . The quantity ∆ωCOM is
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the center-of-mass frequency of the network, and is defined in the same way as for a

tradition droop network (Definition 3.2). We will show in Lemma 4.2 an all-active-bus

acyclic CED network, like a traditional droop network, has the static center-of-mass

frequency property (see Lemma 3.1).

Theorem 4.1.C states that the inverter output power PG,k for each inverter k ∈ V

must converge to its final power value PF,k (the same value to which inverter k’s

output power must converge if synchronization is reached by a traditional droop

network, see Lemma 3.2) if and only if it is not adjacent to a line which will be ε-

active at steady-state. However, if an inverter k is adjacent to a constrained line, then

its final power will diverge from PF,k, since it must adjust its output to enforce the

constraint. The quantity ∆PEq,k,m(PRef − P0
L) is the Frequency-Agreement Power

Imbalance (Definition 3.5) for the cut associated with the line (k,m) ∈ E for the

network inputs PRef and P0
L. As we will show in Section 4.4 below, ∆PEq,k,m(PRef −

P0
L) is the value of the line adaptive tension γk,mPLine,k,m at frequency agreement.

In the following sections, we will prove Theorem 4.1 in several steps. Our approach

to the proof is similar to LaSalle’s Theorem (see [43, Thm. 4.4]). We will first

investigate the steady-state (frequency agreement) characteristics of the all-active-

bus acyclic CED network and show the existence and uniqueness of its frequency-

agreement equilibrium, as well as its power sharing characteristics. We will then show

that an all-active-bus acyclic CED network is capable of constraining the network

state trajectory θ(t) to a compact subset of the safe region such that the line power

flow constraints |PLine,k,m| < PMax,k,m are met for all lines (k,m) ∈ E . Finally, we

will show that on this compact subset, the state trajectory must necessarily converge

to the unique frequency-agreement equilibrium.
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4.4 Steady-State Behavior of an All-Active-Bus Acyclic CED
Network

We will first consider the steady-state characteristics of an all-active-bus acyclic CED

network, that is, the behavior of the network when ∆ω = 1N∆ωSys for some ∆ωSys ∈

R, which is equivalent to θ̇ = 0L (see Section 3.4). We will show that a network of the

above described class has a unique steady-state equilibrium such that all constraints

are enforced, and at that equilibrium, each inverter must source power identical to

that at steady-state under traditional droop as long as it is not adjacent to an ε-active

constraint.

4.4.1 Existence and Uniqueness of Frequency Synchronization Equilib-
rium

By (53), an equilibrium solution θEq,CED to the CED network dynamics (53) is a

solution to the following vector algebraic equation:

0L = DTD−1
[
PRef −PL −D γPLine(θ)

]
(58)

We will now show that, on the principal region, there exists a unique equilibrium

solution θEq,CED such that all line power flow constraints are met:

Lemma 4.1 (Existence and Uniqueness of Equilibrium of All-Active-Bus Acyclic

CED Network). Consider an all-active-bus, acyclic CED network (Definition 4.3)

whose structure is described by the acyclic graph G = (V , E) and whose line voltage

angle (θ) dynamics are described by (53). Then for each bounded input PRef − P0
L

there exists a unique equilibrium solution θEq,CED ∈ ΘPrincipal to the CED network

dynamics (53) such that |PLine,k,m(θEq,CED,k,m)| < PMax,k,m for all (k,m) ∈ E.

Proof. Rearranging (58):

DTDD γPLine(θ) = DTD
[
PRef −P0

L

]
(59)
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Since the graph G contains no cycles, then D has full column rank (see [54, Thm.

2.7]), and so the matrix DTD−1D is invertible. Therefore, there exists a unique line

tension vector γPLine(θ) that solves

γPLine(θ) = diag{γ(|PLine(θ)|)}PLine(θ)

= (DTD−1D)−1DTD−1
[
PRef −P0

L

]
(60)

The adaptive gain matrix diag{γ(PLine(θ))} is diagonal and (by Definition 4.2.E)

non-decreasing in |PLine|, and therefore γPLine(θ) is strictly increasing in PLine.

Also, we have shown in [3, Lemma 4] that PLine(θ) is invertible in θ on ΘPrincipal,

and therefore γPLine(θ) is invertible in θ on ΘPrincipal. Further, by Definition 4.2.C

γk,m has a range [1.0 ∞) for |PLine,k,m| < PMax,k,m on ΘPrincipal, and therefore

γk,mPLine,k,m has range (−∞ ∞) on the same domain. Therefore, for each bounded

value of the right-hand side of (60) there exists a unique solution θEq,CED ∈ ΘPrincipal

to (60) such that |PLine,k,m(θEq,CED,k,m)| < PMax,k,m for all (k,m) ∈ E .

Lemma 4.1 shows that there always exists a unique synchronization equilibrium

for the all-active-bus acyclic CED network on the principal region such that the line

power flow constraints are met for any bounded inputs PRef −P0
L (in the absence of

inverter generation constraints). Notice that this result is in contrast with Lemma 3.1,

which shows that for a traditional droop network, there may not exist an equilibrium

solution for many values of the inputs PRef − P0
L. Conceptually, this is because

PLine,k,m (the line tension in the traditional droop network) is bounded, and therefore

may not have sufficient range to compensate the network forcing inputs PRef −P0
L.

4.4.2 Center-of-Mass Frequency

In Chapter 3, we introduced the concept of the center-of-mass frequency ∆ωCOM of

an inverter-based network (Definition 3.2). In Lemma 3.1, it was shown that for a

traditional droop network, the center-of-mass frequency is the frequency to which the
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network will converge if it achieves frequency synchronization and that it is static for

static inputs, which we termed the static center-of-mass frequency property. We will

now show that the same results holds for the all-active-bus acyclic CED network:

Lemma 4.2 (Static Center-of-Mass Frequency of All-Active-Bus, Acyclic CED Net-

work). Consider an all-active-bus, acyclic CED network (Definition 4.3) whose struc-

ture is described by the acyclic graph G = (V , E) and whose line voltage angle (θ)

dynamics are described by (53). Assume that the network inputs PRef and P0
L are

bounded and constant. Consider the center-of-mass frequency ∆ωCOM as defined in

(13). Then θ̇ → 0L ⇐⇒ ∆ωk → ∆ωCOM for all k ∈ V. Further, the quan-

tity ∆ωCOM for the CED network is equal to that of the equivalent traditional droop

network, that is, (55) holds for the all-active-bus, acyclic network.

Proof. Since θ̇k,m = ∆ωk −∆ωm and the graph G is assumed to be connected, then

θ̇k,m → 0 for all (k,m) ∈ E if and only if ∆ωk and ∆ωm converge for each pair

of buses k,m ∈ N , that is, θ̇ → 0L if and only if there exists ∆ωSys ∈ R such

that ∆ωk → ∆ωSys for all k ∈ V . It can then be shown that ∆ωSys = ∆ωCOM by

substituting ∆ωk = ∆ωSys ∀ k ∈ V into (13):

∆ωCOM =

∑
k∈V Dk∆ωSys∑

k∈V Dk

= ∆ωSys (61)

In addition, substituting the CED control law (50) into (13) and rearranging:

∆ωCOM =

∑
k∈V(PRef,k − PL,k)∑

k∈V Dk

−
∑

(k,m)∈E(γk,m(|PLine,k,m|)PLine,k,m + γk,m(|PLine,m,k|)PLine,m,k)∑
k∈V Dk

(62)

Since PLine,k,m is line-odd (see (2)) and γk,m is line-even (Definition 4.2.D) for all

(k,m) ∈ E , then

γk,m(|PLine,k,m|)PLine,k,m + γk,m(|PLine,m,k|)PLine,m,k = 0, (63)

(that is, the line tension γk,mPLine,k,m is line-odd), and therefore (62) simplifies to

(55).
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Lemma 4.2 shows that an all-active-bus, acyclic CED network also possesses the

static center-of-mass frequency property, similar to that shown for traditional droop

inverter-based network shown in Lemma 3.1. This is because while the line adaptive

tension values γk,mPLine,k,m for each line (k,m) ∈ E may differ from those in the

traditional droop network (PLine,k,m), they are still line-odd, and therefore still cancel

in the center-of-mass frequency weighted average.

4.4.3 Line Frequency-Agreement Power Imbalances

In Chapter 3, we developed the concept of frequency-agreement power imbalance (Def-

inition 3.5) associated with cuts of the network. In a traditional droop network, the

frequency-agreement power imbalance ∆PEq,C associated with a cut VC is the total

power that must flow across the cut at frequency agreement (see (28)). As we will

show below, in an all-active-bus, acyclic CED network, each line defines a cut, and

the associated frequency-agreement power imbalance is the value of the line adaptive

tension (not necessarily the line power flow) at frequency-agreement.

Consider an arbitrary line (k,m) ∈ E . In an acyclic graph, each such line defines a

cut VC,k,m ⊂ N , where the removal of line (k,m) from G seperates VC,k,m (containing

k) from V \ VC,k,m (containing m). Now consider the all-active-bus acyclic CED

network bus dynamic equation (52) at an arbitrary bus l ∈ V when the network is at

steady state (θ = θEq,CED and (by Lemma 4.2) ∆ωl = ∆ωCOM ∀ l ∈ V), which may

be rewritten as:

∑

p∈N (l)

γl,pPLine,l,p(θEq,CED,l,p) =
∑

l∈VC,k,m

PRef,l − P 0
L,l −R−1

l ∆ωCOM (64)

Taking the sum of (64) for all l ∈ VC,k,m:

∑

l∈VC,k,m

PRef,l − P 0
L,l −R−1

l ∆ωCOM =
∑

l∈VC,k,m

∑

p∈N (l)

γl,pPLine,l,p(θEq,CED,l,p) (65)

Since the bus set VC,k,m is a cut defined by the edge (k,m) ∈ E , each line (l, p) ∈ E

incident to a bus l ∈ VC,k,m is either internal to VC,k,m (in which case p ∈ VC,k,m),
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or the cut line (k,m) itself. Therefore, we can rearrange the summation in (65) as

follows:

∑

l∈VC,k,m

PRef,l − P 0
L,l −R−1

l ∆ωCOM = PLine,k,m(θEq,CED,k,m)

+
∑

(l,p)∈E s.t. l,p∈VC,k,m

[
γl,pPLine,l,p(θEq,CED,l,p) + γl,pPLine,p,l(θEq,CED,p,l)

]

(66)

We have already shown (in the proof to Lemma 4.2) that γl,pPLine,l,p is line-odd, and

therefore γl,pPLine,l,p + γp,lPLine,p,l = 0. Therefore, (66) simplies to:

γk,mPLine,k,m(θEq,CED,k,m) =
∑

l∈VC,k,m

[
PRef,l − P 0

L,l −R−1
l ∆ωCOM

]

= ∆PEq,k,m(PRef −P0
L) (67)

The (constant) right-hand side of (67) is the frequency-agreement power imbalance

∆PEq,k,m(PRef−P0
L) (Definition 3.5) for the cut defined by EC = (k,m). Observe that

since γk,mPLine,k,m is line-odd, then so is ∆PEq,k,m (that is, ∆PEq,k,m(PRef − P0
L) =

−∆PEq,m,k(PRef −P0
L)).

In the traditional droop network, ∆PEq,k,m represents the power that must flow

across line (k,m) ∈ E at frequency agreement (see Section 3.4.4). In the CED network,

it represents the value of the line tension γk,mPLine,k,m at frequency agreement. If

|∆PEq,k,m| > (1−εk,m)PMax,k,m, then the line power flow constraint on line (k,m) ∈ E

will be ε-active (or violated) at frequency agreement.

4.4.4 Constrained Power Sharing of All-Active-Bus, Acyclic CED Net-
work

The traditional frequency-droop control law (4) creates an explicit link between the

output power of an inverter and its AC frequency. In Chapter 3, we showed that as

a result of this connection, frequency synchronization between inverters in a droop

inverter-based network implies a convergence of their output power values such that
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they share the network load according to their assigned reference and droop constants

(Lemma 3.2), which we termed the simple power sharing property of a droop inverter-

based network.

The all-incident-line CED control law (50) at an arbitrary bus k ∈ V also creates

such a connection between inverter output power and frequency, but less directly:

rather than operating directly on the output power PG,k, the CED control law instead

operates on a weighted sum of the load and incident line power flows. We have

already observed that when γk,m = 1 for all m ∈ N (k), then the all-incident-line

CED control law reduces to the droop dynamics (7), that is, the CED control law

implicitly creates the same output power/frequency connection as traditional droop.

By Definition 4.2.B, this condition occurs when no line incident to bus k is ε-active.

The line steady-state tension values determine when a line constraint will be ε-active

at steady-state.

Therefore, we would expect that if frequency synchronization occurs in an all-

active-bus CED network such that no line incident to k is ε-active at steady state,

then the CED inverter at bus k should converge to the same output power value that

it would under traditional droop. However, if any line incident to bus k is ε-active,

then γk,m does not equal unity for some m ∈ N (k), and therefore we would not expect

the CED inverter at bus k to converge to the same output power as in a traditional

droop network. We state this result formally in Lemma 4.3 below:

Lemma 4.3 (Constrained Power Sharing of All-Active-Bus Acyclic CED Networks).

Consider an all-active-bus, acyclic CED network (Definition 4.3) whose structure is

described by the acyclic graph G = (V , E) and whose line voltage angle (θ) dynamics

are described by (53). Assume that the network inputs PRef and P0
L are bounded and

constant. Consider an arbitrary bus k ∈ V and assume that the following holds for
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all m ∈ N (k):

|∆PEq,k,m(PRef −P0
L)| ≤ (1− εk,m)PMax,k,m (68)

Then at frequency agreement (θ̇ = 0L) where |PLine,k,m| < PMax,k,m for all (k,m) ∈ E,

each inverter power PG,k = PF,k = PRef,k − R−1
k ∆ωCOM where PF,k is the same final

power as results from the traditional frequency-droop dynamics (10) (Lemma 3.2).

Proof. We have shown in Lemma 4.1 that there exists a unique equilibrium θEq,CED ∈

ΘPrincipal such that θ̇ = 0L and |PLine,k,m| < PMax,k,m for all (k,m) ∈ E . By assump-

tion, the magnitude of the right-hand side of (67) is bounded by (1 − εk,m)PMax,k,m

for all m ∈ N (k). Since (by Definition 4.2) γk,m ≥ 1.0 for all PLine,k,m, then

|PLine,k,m(θEq,CED,k,m)| ≤ (1 − εk,m)PMax,k,m for all m ∈ N (k), and so (by Defini-

tion 4.2.B) γk,m = 1.0 for all m ∈ N (k) at θEq,CED.

We have shown in Lemma 4.2 that θ̇ = 0L ⇐⇒ ∆ωk = ∆ωCOM for all k ∈ V .

Substituting ∆ωk = ∆ωCOM and γk,m = 1.0 for all m ∈ N (k) into (50) at θEq,CED:

∆ωCOM =Rk

[
PRef,k − PL,k −

∑

m∈N (k)

PLine,k,m(θEq,CED,k,m)

]
(69)

Substituting Kirchoff’s Law into (69) and rearranging, we find that PG,k = PRef,k −

R−1
k ∆ωCOM = PF,k at θEq,CED where PF,k is the final power value determined for the

traditional frequency-droop network in Lemma 3.2. Therefore, if (68) holds for all

m ∈ N (k) then θ̇ = 0L =⇒ PG,k = PF,k.

Lemma 4.3 shows that an all-active-bus, acyclic CED network provides similar

(but not identical) power sharing behavior to that provided by traditional frequency-

droop networks. At steady-state (frequency agreement), inverters not incident to a

constrained line share the total network load according to their assigned reference

and droop values. However, inverters incident to active constraints must adjust their

output power in order to enforce the constraints on incident lines. We designate this

result as the constrained power sharing property of an all-active-bus, acyclic CED
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network (in contrast to the simple power sharing property of droop inverter-based

networks).

However, the primary strength of an all-active-bus, acyclic CED network is its

ability to enforce the line power constraints and guarantee frequency synchronization

(and therefore constrained power sharing) much more robustly than similar droop

inverter-based networks. We prove this result in the following section.

4.5 Convergence Behavior of an All-Active-Bus Acyclic CED
Network

In this section, we will show that an all-active-bus acyclic CED network will enforce

the line power flow constraints and converge to an equilibrium of the type described

by Lemma 4.3 if it begins in the principal region with all constraints initially met, thus

proving Theorem 4.1. Our approach to this proof is similar to LaSalle’s Theorem.

We first consider a family of compact, strict subsets of the safe region ΘSafe, where

the network dynamics (53) are locally Lipschitz continuous. We show as long as

the intial network condition is contained within any one of these subsets, then there

exists a (possibly larger) such subset that contains the entire state trajectory θ(t).

This means that the network state trajectory is bounded within the interior of the

safe region ΘSafe, that is, all line power flow constraints are strictly enforced. We

then show that convergence to a frequency agreement equilibrium necessarily follows,

thus guaranteeing the frequency synchronization and constrained power sharing of

the all-active-bus, acyclic CED network.

4.5.1 Compact Subsets Θµ of the Safe Region

Consider the following family of subsets of ΘPrincipal:

Definition 4.4 (µ-Safe Regions).

Θµ = {θ ∈ ΘPrincipal s.t. |PLine,k,m(θk,m)| ≤ (1− µ)PMax,k,m ∀ (k,m) ∈ E} (70)
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for µ ∈ (0 1).

The sets Θµ for all µ ∈ (0 1) are strict subsets of ΘSafe (Definition 3.8) where

each line power flow magnitude |PLine,k,m| is bounded by (1− µ)PMax,k,m. Following

the same logic as in Corollary 3.2, we can show that the sets Θµ for all µ ∈ (0 1)

have the following characteristics:

Lemma 4.4 (Characteristics of Θµ). Consider the µ-safe region Θµ as defined in

Definition 4.4. Then:

4.4.A For each µ ∈ (0 1), there exists θµ,k,m such that 0 < θµ,k,m < π/2 and Θµ is

equivalent to

Θµ = {θ ∈ RL such that |θk,m| ≤ θµ,k,m ∀ (k,m) ∈ E}, (71)

4.4.B The set Θµ is compact for all µ ∈ (0 1).

4.4.C The dynamics of θ in (53) are locally Lipschitz continuous on Θµ for all µ ∈

(0 1).

Proof.

Lemma 4.4.A:

Proof follows from Definition 4.4 and Lemma 3.4.

Lemma 4.4.B:

Since (by Lemma 4.4.A) Θµ is equivalent to (71), then Θµ is closed and bounded

for each µ ∈ (0 1), which implies that it is compact.

Lemma 4.4.C:

In order to show that the network dynamic equation (53) is locally Lipschitz on

Θµ for each µ ∈ (0 1), we must show that for each such µ there exists a constant
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scalar Gµ > 0 such that

||θ̇|θ=θ1 − θ̇|θ=θ2|| ≤ Gµ||θ1 − θ2|| (72)

for every θ1,θ2 ∈ Θµ, where || • || indicates the standard L2-matrix norm.

Substituting (53) into the left-hand side of (72):

||θ̇|θ=θ1 − θ̇|θ=θ2|| = ||DTD−1
[
PRef −P0

L

]
−DTD−1D γPLine(θ1)

−DTD−1
[
PRef −P0

L

]
+ DTD−1D γPLine(θ2)||

= ||DTD−1D γPLine(θ1)−DTD−1D γPLine(θ2)|| (73)

Applying the scalability property of the L2-norm:

||θ̇|θ=θ1 − θ̇|θ=θ2|| ≤||DTD−1D|| ||γPLine(θ1)− γPLine(θ2)||

=||DTD−1D|| ||diag{γ(|PLine(θ1)|)}PLine(θ1)

− diag{γ(|PLine(θ2)|)}PLine(θ2)|| (74)

By Definition 4.2.F, there exists a constant γµ,k,m for each (k,m) ∈ E such that

γk,m(|PLine,k,m|) ≤ γµ,k,m when θ ∈ Θµ. Therefore, we can bound

||diag{γ(|PLine(θ)|)}|| ≤ γMax,µ (75)

where

γMax,µ =

∥∥∥∥
[
γµ,1 . . . γµ,L

]∥∥∥∥ (76)

for all θ ∈ Θµ.

Substituting (75) into (74):

||θ̇|θ=θ1 − θ̇|θ=θ2|| ≤γMax,µ||DTD−1D|| ||PLine(θ1)−PLine(θ2)|| (77)

Substituting (8) into (77) and again applying the scalability property:

||θ̇|θ=θ1 − θ̇|θ=θ2|| ≤γMax,µ||DTD−1D|| ||YLineVInVOut|| || sin(θ1)− sin(θ2)|| (78)
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Substituting the trigonometric identity sin(θ1)−sin(θ2) = 1/2 sin(θ1−θ2) cos(θ1+

θ2):

||θ̇|θ=θ1 − θ̇|θ=θ2|| ≤
1

2
γMax,µ||DTD−1D|| ||YLineVInVOut|| || sin(θ1 − θ2) cos(θ1 + θ2)||

(79)

Since cos(θ) ≤ 1 for all θ:

||θ̇|θ=θ1 − θ̇|θ=θ2|| ≤
1

2
γMax,µ||DTD−1D|| ||YLineVInVOut|| || sin(θ1 − θ2)|| (80)

Finally, since sin(θ) ≤ θ for all θ:

||θ̇|θ=θ1 − θ̇|θ=θ2|| ≤
1

2
γMax,µ||DTD−1D|| ||YLineVInVOut|| ||θ1 − θ2||

= Gµ||θ1 − θ2|| (81)

for

Gµ =
1

2
γMax,µ||DTD−1D|| ||YLineVInVOut|| (82)

Lemma 4.4 shows that the set Θµ for each µ ∈ (0 1) is a compact, strict subset

of ΘSafe where the the dynamics of the network state θ are locally Lipschitz. Further,

it follows from Definition 4.2.F that for each Θµ there exists a bounded maximum

value γµ,k,m for each line adapative gain γk,m.

4.5.2 Enforcement of Line Power Flow Constraints

In Theorem 3.5, we showed that if the state trajectory θ(t) of a traditional droop

inverter-based network stays bounded within the safe region ΘSafe (of which all Θµ

are strict subsets), then it will necessarily achieve frequency synchronization (from

which follows simple power sharing). The boundaries of ΘSafe are defined by the

line power flow constraints |PLine,k,m| ≤ PMax,k,m for all lines (k,m) ∈ E . However,

since the traditional frequendy-droop does not enforce any such constraints, then
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the network may lose such synchronization, and with it convergence to simple power

sharing.

In an all-active-bus CED network, each inverter k ∈ V measures the line power

flow PLine,k,m on each line incident to it, and applies the adaptive gain γk,m (meeting

the requirements in Definition 4.2) to “pull” the network state trajectory back from

its constraint. As we will show below, this bounds the network state trajectory within

a strict subset of ΘSafe, enforcing all such constraints in the network.

Lemma 4.5 (Existence of an Invariant Subset of Safe Region on All-Active-Bus

Acyclic CED Network). Consider an all-active-bus, acyclic CED network (Definition

4.3) whose structure is described by the acyclic graph G = (V , E) and whose line

voltage angle (θ) dynamics are described by (53). Assume that the network inputs

PRef and P0
L are bounded and constant. Then for each µ ∈ (0 1) there exists

β(µ) ∈ (0 µ) such that θ(t0) ∈ Θµ =⇒ θ(t) ∈ Θβ(µ) ∀ t ≥ t0 where Θµ is defined

in Definition 4.4.

Proof. By assumption, θ(t0) is in some Θµ (interior of ΘSafe). Since the network

dynamics (53) are Lipschitz continuous on Θµ for all µ ∈ (0 1) (Lemma 4.4.C), then

in order for θ(t) to exit all Θµ it must approach the set where |PLine,k,m(θk,m)| =

PMax,k,m for at least one (k,m) ∈ E (the boundary of ΘSafe) from the interior of

ΘSafe.

Contradiction Hypothesis: There exists state trajectory θ(t) for t ≥ t0, time

T > t0, and line (k,m) ∈ E such that:

1. θ(t0) is in the interior of ΘSafe prior to T (θ(t0) ∈ Θµ and θ(t) ∈ ΘSafe for all

t0 < t < T ).

2. θ(t) approaches the (k,m) boundary of ΘSafe as t→ T (limt→T |PLine,k,m(θk,m(t))| =

PMax,k,m)
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Consider the network energy function U(θ) introduced in (41), reprinted below:

U(θ) =
1

2
δ̇
T
Dδ̇ =

1

2
f(θ)TDf(θ)

Applying the same approach as in Section 3.3, the bus-oriented dynamic system-of-

equations for an all-active-bus, acyclic CED network (52) can be written in vector

form as:

f(θ) = δ̇ = D−1
[
PRef −P0

L −D γPLine(θ)
]

(83)

We will now show that U(θ(t0)) is bounded, and that U̇(θ(t)) ≤ 0 for all t0 ≤ t < T .

By Definition 4.2.F there exists γµ,k,m such that γk,m ≤ γµ,k,m for all θ(t0) ∈ Θµ.

In addition, by (2) we can always bound |PLine,k,m| ≤ Yk,mVkVm and (by assumption)

PRef − P0
L is bounded. Therefore, each of the terms in the linear sum (83) are

bounded, and so there exists ft0,µ > 0 such that ||f(θ(t0))|| ≤ ft0,µ, and so there

exists Ut0,µ > 0 such that U(θ(t0)) ≤ Ut0,µ.

Taking the time-derivative of the energy function (41) and substituting θ̇ =

DTf(θ):

U̇(θ) = f(θ)TD−1 ˙f(θ)

= −f(θ)TD

[
diag{γ(PLine(θ))} ∂PLine

∂θ
+
∂γ

∂θ
diag{PLine(θ)}

]
θ̇

= −θ̇TD−1

[
diag{γ(PLine(θ))} ∂PLine

∂θ
+
∂γ

∂θ
diag{PLine(θ)}

]
θ̇ (84)

We have already shown in Lemma 3.3 that the partial-derivative matrix ∂PLine / ∂θ

is diagonal with all positive diagonal elements on Θµ ⊂ ΘPrincipal. By Definition 4.2,

γ(PLine(θ)) is similarly diagonal with all positive elements, and so the first term of

the weight matrix of (84) is as well. Finally, the term ∂γ / ∂θ diag{PLine} is also

diagonal with all non-negative diagonal elements:

∂γk,m
∂θk,m

PLine,k,m =
∂γk,m

∂|PLine,k,m|
∂PLine,k,m
∂θk,m

|PLine,k,m| (85)
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By Definition 4.2.E, ∂γk,m / ∂|PLine,k,m| ≥ 0 for |PLine,k,m| < PMax,k,m, and so (85) is

non-negative on Θµ for all µ ∈ (0 1). Therefore, the weight matrix on the far right-

hand side of (84) is diagonal with all positive diagonal elements, and so U̇(θ) ≤ 0 for

all θ in the interior of ΘSafe.

By the contradiction hypothesis, θ(t) is in the interior of ΘSafe for all t0 ≤ t < T ,

and therefore U̇(θ(t)) ≤ 0 ∀ t0 ≤ t < T . Since there exists Ut0,µ > 0 such that

U(θ(t0)) ≤ Ut0,µ, then U(θ(t)) ≤ Ut0,µ for all t0 ≤ t < T .

Also by the contradiction hypothesis, limt→T |PLine,k,m(θk,m(t))| = PMax,k,m > 0

for some (k,m) ∈ E . Therefore, by Definition 4.2.C the associated

lim
t→T

γk,m(|PLine,k,m(θk,m(t))|) =∞ =⇒ lim
t→T

γk,mPLine,k,m(θk,m(t)) = ±∞. (86)

Since the network is acyclic, the incidence matrix D has full column rank (see [54,

Thm. 2.7]), and so it follows from (83) and (41) that

lim
t→T

γk,mPLine,k,m(θk,m(t)) = ±∞ =⇒ lim
t→T
||f(θ(t))|| =∞

=⇒ lim
t→T

U(θ(t)) =∞ (87)

However, this contradicts with the observation that U(θ(t)) ≤ Ut0,µ for all t0 ≤ t < T .

Therefore, the contradiction hypothesis is proven false, and so θ(t0) ∈ Θµ for some

µ ∈ (0 1) implies that there does not exist line (k,m) ∈ E such that |PLine,k,m|

approaches PMax,k,m as t approaches T for any T > t0 (that is, all line power flow

constraints are strictly enforced).

Since we have shown that no line converges to its maximum power flow PMax,k,m,

then for each (k,m) ∈ E there exists µk,m ∈ (0 µ) such that |PLine,k,m| ≤ (1 −

µk,m)PMax,k,m for all t > t0. Therefore, there exists

β(µ) := min
(k,m)∈E

{µk,m} ∈ (0 µ) (88)

such that |PLine,k,m| ≤ (1 − β(µ))PMax,k,m ∀ (k,m) ∈ E and for all t ≥ t0, that is

θ(t) ∈ Θβ(µ) for all t ≥ t0.
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It follows from Lemma 4.5 that, as long as θ starts (at t = t0) in ΘPrincipal and

each |PLine,k,m| starts at least µ > 0 less than PMax,k,m, then all of the line power flow

constraints |PLine,k,m| < PMax,k,m will be enforced for all t ≥ t0, and the network will

necessarily remain in the interior of safe region ΘSafe.

4.5.3 Proof of Main Synchronization and Power Sharing Result

Lemma 4.5 has confirmed that state trajectories of an all-active-bus, acyclic CED net-

work are invariant to a compact subset of the safe region (that is, state trajectories

beginning in the interior of the safe region can’t leave it). Theorem 3.5 stated that

for a droop inverter-based network, this condition is sufficient to ensure network fre-

quency synchronization, which suggests that it should be for an all-active-bus, acyclic

network as well. In addition, we have already shown that convergence to frequency

synchronization implies convergence to the static center-of-mass frequency (Lemma

4.2) and constrained power sharing (Lemma 4.3). Therefore, our main synchroniza-

tion and power sharing result for all-active-bus, acyclic CED networks (Theorem 4.1)

can be proven by a method very similar to that used for Theorem 3.5:

Proof of Theorem 4.1. Contradiction Hypothesis: There exists θ(t) for t ≥ 0 and

µ ∈ (0 1) such that θ(t0) ∈ Θµ but θ̇ does not converge to 0L.

First, observe that (by assumption) θ(t0) ∈ Θµ. Therefore, by Lemma 4.5, there

exists β(µ) ∈ (0 µ) such that θ(t) ∈ Θβ(µ) for all t ≥ t0. Since (by Definition 4.4)

|PLine,k,m| < PMax,k,m for all θ ∈ Θβ(µ), this proves Theorem 4.1.A.

Consider the energy function U(θ(t)) ≥ 0 introduced in (41). We showed in the

proof to Lemma 4.5 that there exists finite Ut0,µ > 0 such that U(θ(t)) ≤ Ut0,µ and

U̇(θ(t)) ≤ 0 for all t ≥ t0. By the contradiction hypothesis, θ̇(t) does not converge

to 0L, and so (by (84)) U̇(θ(t)) ≤ 0 does not converge to 0 along trajectory θ(t).

Consider the quantity

U(θ(t)) =

∫ t

t0

U̇(θ(τ))dτ + U(θ(t0)) (89)
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along trajectory θ(t). Since U(θ(t0)) ≤ Ut0,µ and U̇(θ(t)) ≤ 0 does not converge to 0

along trajectory θ(t), then there exists time T > t0 such that U(θ(t)) < 0 ∀ t > T .

However, this contradicts the observation that U(θ) ≥ 0 ∀ t ≥ 0. Therefore, the

contradiction hypothesis is shown false, and instead θ(t0) ∈ Θµ =⇒ θ̇(t)→ 0L.

We have shown in Lemma 4.2 that θ̇ → 0L implies that ∆ωk → ∆ωCOM for all

k ∈ V , thus proving Theorem 4.1.B. Finally, we have shown in Lemma 4.3 that

θ̇ → 0L implies that PG,k → PF,k for each bus k such that no incident line (k,m)

for any m ∈ N (k) is ε-active at steady-state (inequality (68)), thus proving Theorem

4.1.C, and the proof is complete.

The above proof verifies that bounding of the network state trajectory within the

safe region ΘSafe (which follows from Lemma 4.5) is sufficient to ensure frequency

synchronization and constrained power sharing of an all-active-bus, acyclic CED net-

work (just as it was for a droop inverter-based network, see Theorem 3.5) for any

bounded, constant reference and load inputs.

4.6 Simulation Results

In order to demonstrate the claims in this chapter, we will provide simulation results

for an example all-active-bus, acyclic CED network showing both constained and

unconstrained cases. Our example system is a six-bus, radial, inverter-based micro-

grid, a single-line diagram of which is shown in Figure 4.2. The six network buses,

each with a voltage-source inverter, are located in two local subnetworks (subnet-

work {1, 2, 3} and subnetwork {4, 5, 6}), which are connected by a line ((3, 4)) with

a relatively low maximum power rating (PMax,3,4 = 1.0 p.u.). We will simulate the

response of this network if all inverters use the all-incident-line constraint-enforcing

droop control (Definition 4.1), and compare to traditional droop control (4) under

three load step conditions:

1. Simulations 4.1 and 4.2: The post-step condition is such that no constraints will
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be ε-active or violated at frequency agreement under traditional droop control

(that is, |∆PEq,k,m| ≤ (1− ε)PMax,k,m for all (k,m) ∈ E).

2. Simulations 4.3 and 4.4: The post-step condition is such that the constraint line

on line (3, 4) will be violated at steady state under traditional droop, but there

still exists a steady-state equilibrium (PMax,3,4 < |∆PEq,3,4| ≤ Y3,4V3V4).

3. Simulations 4.5 and 4.6: The post-step condition is such that an instability

exists due to the constraint on line (3, 4) (|∆PEq,3,4| ≥ Y3,4V3V4).

PL,3 PL,4

PL,6

PL,5

PL,2

PL,1

PG,1

PG,2

PG,3 PG,4

PG,6

PG,5

Y3,4 = −j1.5 Y5,4 = −j2.0

Y6,4 = −j1.5

Y2,3 = −j2.0

Y1,3 = −j1.5

PMax,3,4 = 1.0 p.u.

1

2

3 4

5

6

Figure 4.2: Example Six-Bus Radial Microgrid

The post-step input values of PRef and P0
L for the example network under each of

the simulation cases are listed in Table 4.1 below, along with the value of PF,k (the final

power under traditional droop) calculated from (56) for each inverter. Table 4.2 lists

the line parameters, along with the post-step frequency-agreement power imbalance

value ∆PEq,k,m calculated from (57) for each line. All bus voltage magnitudes are

assumed to be unity. We assign to each line (k,m) ∈ E an adaptive gain function γk,m

as in the example gain function (51), and we select εk,m = ε = 0.1 and Ck,m = C = 0.1

for each (k,m) ∈ E .

Observe from Table 4.1 that for each simulation case, inverters 1, 2, 5, and 6 are

are assigned a 1.0 p.u. power reference, while inverters 3 and 4 are assigned zero
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reference. In addition, the final power values PF,k for all buses do not change between

cases. The difference between the three cases is that load is shifted from bus 3 to

bus 4, creating a frequency-agreement power imbalance across line (3, 4). This can be

observed in the value of ∆PEq,3,4 shown in Table 4.2, which increases from 0.75 p.u.

(less than (1− ε)PMax,3,4) to 1.75 p.u. (greater than Y3,4V3V4), thus creating different

constraint conditions.

Table 4.1: Post-Step Bus Configuration for Six-Bus Radial Microgrid Simulation
Cases

Simulation Cases:
4.1 and 4.2 4.3 and 4.4 4.5 and 4.6

Bus Index (k) PRef

(p.u.)
P0

L

(p.u.)
PF

(p.u.)
PRef

(p.u.)
P0

L

(p.u.)
PF

(p.u.)
PRef

(p.u.)
P0

L

(p.u.)
PF

(p.u.)
1 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00
2 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00
3 0.00 1.25 0.00 0.00 0.75 0.00 0.00 0.25 0.00
4 0.00 1.75 0.00 0.00 2.25 0.00 0.00 2.75 0.00
5 1.00 0.50 1.00 0.50 1.00 1.00 1.00 0.50 1.00
6 1.00 0.50 1.00 0.50 1.00 1.00 1.00 0.50 1.00

Table 4.2: Post-Step sLine Configuration for Six-Bus Radial Microgrid Simulation
Cases

Simulation Cases:
4.1 and 4.2 4.3 and 4.4 4.5 and 4.6

i k m YLine

(p.u)
(1− ε)PMax

(p.u)
PMax

(p.u)
∆PEq (p.u)

1 1 3 2.00 1.35 1.50 1.00 1.00 1.00
2 2 3 2.00 1.35 1.50 1.00 1.00 1.00
3 3 4 1.50 0.9 1.00 0.75 1.25 1.75
4 5 4 2.00 1.35 1.50 0.00 0.00 1.00
5 6 4 2.00 1.35 1.50 0.00 0.00 1.00

4.6.1 Six-Bus Radial Network with No ε-Active Constraints

Simulations 4.1 and 4.2 consider the response of the example six-bus radial microgrid

to a load step at bus 4 when all inverters operate the traditional frequency-droop

control law (4) or the all-incident-line CED control law (Definition 4.1) respectively.
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The conditions are such that under traditional droop control, no constraints are ε-

active or violated (see Table 4.2), since |∆PEq,k,m| ≤ (1 − ε)PMax,k,m for all lines

(k,m) ∈ E). Figures 4.3 and 4.4 show the response of the network bus frequencies

∆ω(t), inverter output power values PG(t), line power flows PLine(t), and (in Figure

4.4) line adaptive gain values γ(t) to the step at t = 0 for Simulation 4.1 (Droop)

and 4.2 (CED) respectively.

Observe in Figure 4.3 that under traditional droop, since no constraints are vio-

lated, then after the step the bus frequency values all converge to the center-of-mass

frequency ∆ωCOM = 0, the power flow values PLine,k,m converge to their respec-

tive frequency-agreement power imbalance values ∆PEq,k,m, and the inverter output

power values PG,k converge to their respective final power values PF,k. In addition,

since ∆PEq,3,4 ≤ PMax,3,4, then the constraint on line (3, 4) is neither ε-active or vi-

olated. This is the expected behavior of a traditional droop inverter-based network

(from Theorem 3.5) for an unconstrained network.

From Theorem 4.1, since |∆PEq,k,m| ≤ (1 − ε)PMax,k,m for all lines (k,m) ∈ E ,

then we expect the all-active-bus, radial CED network considered in Simulation 4.2

to have nearly identical behavior to that of the equivalent droop network. Indeed,

Figure 4.4 shows that since no line becomes ε-active, then the line adaptive gain

values γk,m(t) for all lines (k,m) ∈ E equal unity for all t ≥ 0, and therefore the

all-active-bus CED network in Simulation 4.2 has nearly identical response to that

of the equivalent droop network considered in Simulation 4.1. In particular, its bus

frequencies also converge to the center-of-mass frequency (Theorem 4.1.B) and all of

the inverters converge to their respective final power values PF,k (Theorem 4.1.C).

Therefore, Simulations 4.1 and 4.2 confirm that when no constraints are active,

an all-active-bus, radial CED network has nearly identical behavior to that of a tradi-

tional droop inverter-based network, in particular that it provides the same frequency

synchronization and power sharing behavior.
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4.6.2 Six-Bus Radial Network with Single ε-Active Constraint

Simulations 4.3 and 4.4 consider the same network, but under a different set of condi-

tions. Some of the post-step load at bus 3 is shifted to bus 4 (see Table 4.1), thereby

increasing the frequency-agreement power imbalance across line (3, 4) (see Table 4.1).

In this case, the post-step value of |∆PEq,3,4| is greater than PMax,3,4, and therefore

we would expect the line power flow constraints across line (3, 4) to be violated un-

der traditional droop at steady state. However, |∆PEq,3,4| is less than Y3,4V3V4, and

therefore Theorem 3.1, does not hold for this network, meaning that there still ex-

ists a frequency agreement equilibrium under traditional droop control (recall that

Theorem 3.1 is a necessary and sufficient condition for ayclic networks).

Figure 4.5 shows the response of the example network under traditional droop

control to the load step. Notice that under traditional droop, the bus frequencies still

converge to the center-of-mass frequency ∆ωCOM = 0, and each inverter converges to

its final power value PF,k. However, since the frequency-agreement power imbalance

|∆PEq,3,4| for line (3, 4) is greater than PMax,3,4, then the constraint is violated under

traditional droop.

Figure 4.6 shows the response of the same network to the same step if each inverter

instead operates the all-incident-line CED control law. Notice that int his case, the

CED network response differs from the traditional droop network response. Inverters

3 and 4 respond to the approach of |PLine,3,4| to its constraint PMax,3,4 by increas-

ing the value of the adaptive gain γ3,4 above unity, thereby increasing its tension,

“pulling” the network back into the safe region, and enforcing the line power flow

constraint |PLine,3,4| ≤ PMax,3,4. The bus frequencies still converge to the center-of-

mass frequency, which has the same value (∆ωCOM = 0) as under traditional droop.

Therefore, the network stabilizes to a different equilibrium than under traditional

droop: inverters 3 and 4 (which are incident to the active constraint) provide compli-

mentary power injections to enforce the constraint, while the other inverters (which

94



do not have any measurements indicating that a constraint is active) converge to their

respective final power values.

Therefore, Simulations 4.3 and 4.4 demonstrate the following:

1. An all-active-bus, acyclic CED network is capable of enforcing line power flow

constraints and thereby bounding the network within the safe region (Theorem

4.1.A).

2. An all-active-bus, acyclic CED network maintains the static center-of-mass fre-

quency and frequency synchronization properties of a traditional droop inverter-

based network (Theorem 4.1.B).

3. Each inverter k in an all-active-bus, acyclic CED network will converge to the

same final power value PF,k as under traditional droop if and only if it is not

incident to an active constraint (Theorem 4.1.C). When a constraint is active,

the inverters incident to the active constraint provide complimentary power

injections to enforce it.

4.6.3 Six-Bus Radial Microgrid with Instability

Finally, Simulations 4.5 and 4.6 consider the same six-bus radial microgrid under

conditions such that no frequency agreement equilibrium exists under traditional

droop control. Even more post-step load is moved from bus 3 to bus 4 (see Table 4.1),

increasing the frequency-agreement power imbalance on line (3, 4) to a value greater

than Y3,4V3V4 (see Table 4.2). Therefore, Theorem 3.1 holds for the cut consisting of

line (3, 4), and so there does not exist a post-step frequency-agreement equilibrium

for this condition under traditional frequency droop, and therefore we should expect

the subnetworks defined by the cut across line (3, 4) to lost synchronization.

Figure 4.7 shows the response of the network to this step under traditional frequency-

droop control. Observe that after the step, PLine,3,4 exceeds its bound PMax,3,4, and
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is also unable to reach its frequency-agreement power imbalance value ∆PEq,3,4. This

is because |∆PEq,3,4| is greater than the peak power transfer Yk,mVkVm on line (3, 4).

As a result, the inverters in subnetwork {1, 2, 3} are unable to reach synchronization

with the inverters of subnetwork {4, 5, 6}, resulting in a continuous oscillation of fre-

quencies, line power flows, and inverter output powers. While no network protection

is modeled in Simulation 4.7, in practice such a condition would almost certainly

result in the operation of circuit breakers to prevent equipment damage or unsafe

conditions.

However, the response of the same network to this step when each inverter im-

plements the all-incident-line CED control law (Figure 4.8) is very different. After

the step is applied, inverters 3 and 4 detect the approach of |PLine,3,4| to its bound

PMax,3,4 and increase the value of the adaptive gain γ3,4 to enforce the constraint. As

a result, the network trajectory is again pulled back into the safe region, enforcing

the constraint. In addition, the bus frequencies now converge to the center-of-mass

freqency (again the same as under traditional droop), and all inverters not incident

to the constrained line converge to their respective final power values PF,k. Inverter

3 and 4 again provide complimentary power injections to enforce the constraint, and

as a result do not converge to their final power values.

Therefore, Simulations 4.5 and 4.6 demonstrate the following:

1. An all-incident-line, acyclic CED network enforces all line power flow constraints

(Theorem 4.1.A).

2. The network frequencies in an all-incident-line, acyclic CED network synchro-

nize to the center-of-mass frequency even when no frequency agreement equilib-

rium exists under traditional droop (Theorem 4.1.B).

3. In an all-incident-line acyclic CED network, all inverters not incident to active

constraints converge to the final power value even under conditions in which
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traditional droop fails to provide this behavior. Inverters incident to active con-

straints must inject power to enforce the constraint, and so do not converge to

the final power value (Theorem 4.1.C).

4.6.4 Discussion on Simulation Results

The above simulation cases demonstrate both the capabilities of all-incident-line CED

control and its limitations. When applied at each bus in an acyclic network, the all-

incident-line CED control law is capable of enforcing all of the network line flow

constraints, and in addition provides a signal (the line weights γk,m) that indicate

which constraints are active. It maintains the frequency synchronization and static

center-of-mass frequency properties of traditional frequency droop, and in fact when

no constraints are active behaves identically to traditional droop. Most significantly,

it is capable of providing robust frequency synchronization and constrained power

sharing for all bounded, constant reference and load conditions (in the absence of

generation constraints), including conditions in which traditional droop fails to pro-

vides these capabilities.

However, in order to enforce the line flow constraints, it is necessary that some

inverters adjust their output such that they do not converge to the final power value

PF,k, and so the goal of achieving power sharing between the inverters is partially

sacrified in order to enforce the constraints. In addition, only the inverters directly

incident to active constraints participate in their enforcement. This is due to the

lack of communication in the network: the active constraint was recognized by the

inverters incident to it, but that information is not passed to any other inverters in the

network. Finally, the inverters adjacent to a constraint must have available capacity

to source or sink sufficient power to enforce the constraint.
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4.7 Chapter Conclusions

In recognition of the need to enforce line power flow constraints to ensure synchroniza-

tion of an inverter-based network, we have proposed the All-Incident-Line Constraint-

Enforcing Droop (CED) control law, a modified form of frequency-droop control that

integrates specified line power flow constraints for each line in the network. We have

proven that an acyclic network in which each bus has an inverter implementing the

all-incident-line CED control law is capable of enforcing all the specified network line

power flow constraints and guaranteeing synchronization for any network forcing in-

puts (in the absence of actuation constraints) and any initial condition in the interior

of the safe region. Such synchronization ensures the convergence of inverter output

power to the same value as under traditional frequency droop (subject to constraints).

As a result, the CED controller provides significantly improved robustness of synchro-

nization as compared to existing control methods and is also capable of contributing

to network security by enforcement of constraints.

However, the proposed control method has several limitations. First, it requires

additional measurements beyond those necessary for traditional droop, increasing

cost. Second, when a constraint is active, the incident inverters must inject power

to enforce the constraint, and the other network inverters do not contribute to this

power injection, requiring the incident inverters to have sufficient available capacity.

It requires the application of an unbounded gain to line power measurements. While

we have shown that (in theory) the gains will never increase beyond a bounded

maximum, in practice such large gains may interact with unmodeled control delays

to cause oscillations or instability.

The most significant limitation of this chapter’s results, however, are its very lim-

ited range of applicability. While it is possible to construct a network in which each

bus has attached an inverter operating the proposed control law, in practice very few

power networks are of this type. Most inverter-based networks contain a mix of active
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(inverter) and passive (network) buses. In addition, it is desirable that some inverters

may enforce contraints, while other simply implement traditional droop or constant-

power controls. Therefore, in order for it to be applicable in practice, we must gener-

alize the class of network that we consider for application of constraint-enforcement

while maintaining the goals of robust frequency synchronization and power sharing

within the expected network operating range. In the following chapters, we propose

methods to achieve these goals with only sparse application of constraint-enforcing

inverters to a network, thereby significantly increasing our methods applicability.
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CHAPTER V

A TOOL FOR REDUCED-ORDER ENFORCEMENT OF

LINE POWER-FLOW CONSTRAINTS IN AC

NETWORKS

In the previous chapter, a novel frequency-droop controller was introduced, and a

method shown for its application to ensure robust frequency synchronization and

power sharing in an all-active-bus, acyclic inverter-based power network for all bounded,

constant reference and load inputs. This control method is based on the observa-

tion (from Chapter 3) that synchronization of an inverter-based network operating

frequency-droop control can be ensured by enforcement of a specified line power-flow

constraint on each line in the system. However, while it is possible to construct a

network of the type discussed in Chapter 4, in most cases it is not feasible to place

an inverter at each bus in a network, and therefore the method in the preceeding

chapter is not directly applicable to most power networks in practice. In this chapter,

we develop the concept of constraint-satisficing key line sets, which will allow the

replacement of the set of line flow constraints in Theorem 3.5 with a reduced-order

set of constraints on only a few key lines in the network. We develop this concept,

explain its significance, develop a sufficient (but not necessary) condition test for

constraint-satisficing key line sets for a given AC network and expected operating

range, and finally develop a search algorithm to find constraint-satisficing key line

sets. In the final technical chapter, we will show that this concept can be used to

allow enforcement of the synchronization and power-sharing conditions using only a

few constraint-enforcing inverters, thereby allowing application of to a much broader

class of AC networks.
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5.1 Reduced-Order Power-Flow Constraint-Enforcement

In the preceeding chapters, we dealt with frequency synchronization in AC networks

and showed that it can be modeled as a forced, non-linear network consensus prob-

lem. In Theorem 3.4, we showed that there exists a safe region of the voltage-angle

state space such that bounding of the network state trajectory within that safe re-

gion guarantees frequency synchronization, from which followed simple power sharing

(Lemma 3.2). We observed in Chapter 4 that the problem of bounding the voltage-

angle state trajectory of an AC network in the safe region is strongly analagous to

that of enforcement of distance constaints in a mobile multi-robot system (as in [53]),

and our method of such enforcement in an all-active-bus network is inspired by that

observation.

However, the method presented in Chapter 4 is very limited because it requires

explicit enforcement of a line power-flow constraint (which we showed in Lemma

3.4 is equivalent to enforcement of a line voltage-angle constraint) on every line in

the power network. This required placement of an inverter operating the proposed

constraint-enforcing control law at every bus in the network, which is not feasible

in practice. Therefore, in order to make our method of enforcement practical for

deployment in real AC networks, we must reduce this requirement so that robust

frequency synchronization and power sharing can be achieved by enforcement of line

power-flow constraints on a only a subset of the network lines (rather than all of

them).

In this chapter, we develop the concept of constraint-satisficing key line sets, which

are subsets of the lines in a power network such that enforcement of the line power-

flow constraints associated with only those lines (along with network operation within

a specified expected operating range) is sufficient to ensure that all of the line power

flow constraints are satisfied. The word “satisficing” is a portmanteau of “sufficient”

and “satisfying” [65]. In this dissertation, it indicates that satisfaction of a smaller
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set of constraints (the line power flow constraints associated with only the lines in the

key line set, plus those defining the expected operating range) is sufficient to satisfy

a larger set of constraints (the line power flow constraints on all lines in the network

and the expected operating range constraints). Therefore, if a constraint-satisficing

key line set of acceptable size is found for a given network and expected operating

range, then it is not necessary to enforce the line power-flow constraint on every line

in the network (as in Chapter 4), only on the lines in the satisficing key line set.

Section 5.2 below explicitly defines the concepts of expected operating range and

constraint-satisficing key line sets for a given AC power network. Section 5.3 develops

a sufficient condition test to determine whether a given candidate key line set is

constraint-satisficing for a given AC network and expected operating range. Section

5.4 then develops a search algorithm for generation of constraint-satisficing key line

sets for a given AC network and expected operating range. In Section 5.5, we present

example applications of the test and search methods to several selected networks.

Finally, in Section 5.6 we discuss the applications, capabilities, and limitations of the

methods proposed in this chapter.

5.2 Expected Operating Range and Constraint-Satisficing
Key Line Sets

Line power flows in an AC network are related to each other and to the generation and

load power values by Kirchoff’s Law applied to each bus in the network. Therefore,

bounds on the generation and load, combined with bounds on some line power flows,

imply bounds on the remaining line power flows. Assume that we select a subset of

the lines EKey ⊂ E , where the lines in EKey are the “key” lines whose constraints will

be explicitly enforced. Because the power-flow structure graph G = (V , E) specifies

the structure of the power flows, by combining G with a specification of possible

values of generation and load (defining the expected operating range), it is possible

to determine if enforcement of line power-flow cosntraints on lines in EKey is sufficient
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to ensure that all line power-flow constraints are met. If so, then enforement of the

line power-flow constrants on only the lines in EKey is sufficient to ensure satisfaction

of the line power-flow constraints for all lines in the network for the entire expected

operating range. In this section, we will formally define the expected operating range

for an AC network, as well as the concept of constraint-satisficing key line sets.

5.2.1 Expected Operating Range of an AC Network

In Chapter 1, we stated the goal of this work as a framework for guaranteeing fre-

quency synchronization and power sharing for an inverter-based AC network under all

expected operating conditions. In order to define the concept of constraint-satisficing

key line sets, we must first more clearly define “all expected operating conditions”.

The purpose of an AC network is to deliver power from generation to load, and

so for practical purposes the values and locations of generation and load define its

operating point. Because of limitations of its physical capacity, an AC network has

finite range of generation and load that it can support at each bus in the network. For

generators, this limit is generally due to the minimum and maximum capacity of the

generation hardware and power source. For loads, it is generally due to the maximum

value of power that can be delivered to a given bus in the network. In practice, there

are often time-dependent constraints as well (such as due to generation ramp rates),

but in this dissertation we assume static bounds for generation and load at each bus.

More formally, we define expected operating range of a network as follows:

Definition 5.1 (Expected Operating Range). Consider an AC power network whose

power-flow structure is represented by the graph G = (V , E) where PG =

[
PG,1 . . . PG,N

]T

and PL =

[
PL,1 . . . PL,N

]T
, where PG,k represents the generation and PL,k repre-

sents the load at bus k ∈ V. The expected operating range P ⊂ RN × RN of the

AC network is defined by the constant vectors PG,Max =

[
PG,Max,1 . . . PG,Max,N

]T
,
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PG,Min =

[
PG,Min,1 . . . PG,Min,N

]T
, and PL,Max =

[
PL,Max,1 . . . PL,Max,N

]T
∈ RN

where (PG,PL) ∈ P if and only if

PG,k ≤ PG,Max,k ∀ k ∈ V (90)

PG,k ≥ PG,Min,k ∀ k ∈ V (91)

PL,k ≤ PL,Max,k ∀ k ∈ V (92)

PL,k ≥ 0 ∀ k ∈ V (93)

The expected operating range as in Definition 5.1 defines a static range of values for

the network inputs (generation PG,k and load PL,k at each bus in the network). This

approach to definition of expected operating range is very general, and can encompass

network buses, droop inverter buses interfacing generation or energy storage, and even

constant-power inverter buses as follows:

• A network bus is characterized by PG,k = 0. This can be represented by selecting

PG,Min,k = PG,Max,k = 0.

• A droop inverter bus is characterized by its rated (“nameplate”) power value

PRated > 0, which can be represented by selecting PG,Max,k = PRated and

PG,Min,k = −PRated. In addition, if the inverter’s power source has a mini-

mum sustainable power, then this can assigned to PG,Min,k (e.g. PG,Min,k = 0 if

the source is not capable of sinking power).

• A constant-power inverter is characterized by an assigned generation value

PConst, which can be represented by selecting PG,Min,k = PG,Max,k = PConst.

5.2.2 Constraint-Satisficing Key Line Sets

The expected operating range of an AC network defines a set of constraints on its

bus generation and load values. Combined with the line power-flow constraints, they
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define an expected range of all of the power-flow values in the network. Because the

generation, load, and line power-flow values are all related by Kirchoff’s laws, their

constraints are similarly related, and combinations of constraints on some quantities

imply constraints on others. Therefore, many of the constraints may be rendered

unnecessary by others. Therefore, it is possible to select a subset of the constraints

such that the satisfaction of the subset is sufficient to ensure satisfaction of the original

(larger) constraint set.

In this chapter, we are concerned with reducing the size of the line power-flow

constraint set that must be enforced to ensure synchronization and power sharing.

Therefore, we will develop methods that allow some of the line power-flow constraints

to be eliminated, resulting in a smaller set of line constraints that must be enforced.

The set of lines associated with this reduced set of line power-flow constraints is

called a constraint-satisficing key line set, since the enforcement of the line power-

flow constraints associated with only the key lines (along with network generation

and loads within the expected operating range) is sufficient to ensure satisfaction of

the line power-flow constraints on all lines in the network. More formally, we define

constraint-satisficing key line sets for a AC network and a given expected operating

range as follows:

Definition 5.2 (Constraint-Satisficing Key Line Sets). Consider an AC power net-

work whose power-flow structure is represented by the graph G = (V , E). Assume that

there exist generation and load bounding vectors PG,Max, PG,Min, and PL,Max ∈ RN

defining expected operating range P as in Definition 5.1. Assume that each line

(k,m) ∈ E is assigned a maximum line power-flow constant PMax,k,m > 0.

Consider the line subset EKey ⊂ E. Then:

5.2.A The line set EKey is a Constraint-Satisficing Key Line Set for the triple (G,P,PMax)

if and only if |PLine,k,m| ≤ PMax,k,m ∀ (k,m) ∈ EKey implies that |PLine,k,m| ≤

PMax,k,m ∀ (k,m) ∈ E for all (PG,PL) ∈ P.
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5.2.B The line set EKey is an Irreducable Constraint-Satisficing Key Line Set for

the triple (G,P,PMax) if it is constraint-satisficing and there do not exist any

constraint-satisficing subsets of EKey.

5.2.C The line set EKey is a Minimal Constraint-Satisficing Key Line Set for the

triple (G,P,PMax) if it is constraint-satisficing and there do not exist any

constraint-satisficing subsets of E with fewer lines than EKey.

The definition of constraint-satisficing key line sets provided by Definition 5.2 is

dependent on the network structure graph G, a set of line power-flow bounds PMax,

and a selection of expected operating range P (as per Definition 5.1). If a given key line

set EKey is constraint-satisficing, then satisfaction of its line power-flow constraints

(|PLine,k,m| ≤ PMax,k,m ∀ (k,m) ∈ EKey) while the network operates in the expected

operating range ((PG,PL) ∈ P) is sufficient to ensure that all of the line power-

flow constraints are satisfied (|PLine,k,m| ≤ PMax,k,m ∀ (k,m) ∈ E). Therefore, when

the network operates on the expected range, then enforcement of the line power-flow

constraints associated with only the key lines is sufficient to ensure that the condition

of Theorem 3.5 holds, and therefore network frequency synchronization and power

sharing are guaranteed. This principal will form the basis of our control method for

sparse deployment of CED inverters in the next chapter.

5.3 A Sufficient Condition Test for Constraint-Satisficing
Key Line Sets

In this section, we will show (based on the network power-flow equations for a given

network) that bounds on the generation and load power values in a network (from

the expected operating range P), combined with assumption that line power-flow

constraints on key lines are satisfied, implies bounds on the line power-flow values of

remaining lines in the network. If the bounds on all non-key lines ((k,m) ∈ (E \EKey))

meet the constraints (are within ±PMax,k,m), then Definition 5.2 holds and EKey is a
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constraint-satisficing key line set.

5.3.1 Setup for Line Power-Flow Bounds

In this section, we will assume a given line set EKey ⊂ E such that the line power-flow

constraint |PLine,k,m| ≤ PMax,k,m is satisfied for each (k,m) ∈ EKey. Combined with

the generation and load bounds in Definition 5.1 for a given expected operating range

P, our goal is to calculate constant bounds PUBound,k,m ≥ 0 and PLBound,k,m ≤ 0 for

all (k,m) ∈ E \ EKey such that PLBound,k,m ≤ PLine,k,m ≤ PUBound,k,m.

Notice that since PLine,k,m = −PLine,m,k, then PUBound,k,m = −PLBound,m,k and

PLBound,k,m = −PUBound,m,k. In the interests of simplicity of notation, we will use

each of these pairs interchangeably throughout the following section.

If (k,m) ∈ EKey, then by assumption the line power-flow constraint |PLine,k,m| ≤

PMax,k,m is satisfied. Therefore, the following bounds are valid for PLine,k,m for all

(k,m) ∈ EKey:

PLine,k,m ≤ PMax,k,m = PUBound,k,m (94)

PLine,k,m ≥ −PMax,k,m = PLBound,k,m (95)

In order to generate similar bounds for non-key lines, we must turn to the physical

laws governing power flows in an AC network. Line power flows in an AC power

network are governed by the well-known power-flow equations, which are derived

from Kirchoff’s law. In power form, Kirchoff’s law states that the power flows out

of a bus sum to zero. Consider the arbitrary line (k,m) ∈ E in a power network

as illustrated in Figure 5.1. Remember that since (by assumption) the network is

lossless, then PLine,k,m = −PLine,m,k.

Kirchoff’s law applied to buses k and m produces the following:

PG,k = PL,k +
∑

l∈N (k)

PLine,k,l (96)

PG,m = PL,m +
∑

p∈N (m)

PLine,m,p (97)
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k m

PG,k PG,m

PL,k PL,m

PLine,k,m

∑

l∈N (k)\m
PLine,k,l

PLine,m,k ∑

p∈N (m)\k
PLine,m,p

Figure 5.1: Line power flow on an arbitrary line (k,m)

Solving (96) and (97) for PLine,k,m:

PLine,k,m = PG,k − PL,k −
∑

l∈N (k)\m

PLine,k,l (98)

PLine,k,m = −PG,m + PL,m +
∑

p∈N (m)\k

PLine,m,p (99)

Kirchoff’s law in the form of (98) and (99) express line power flow PLine,k,m in

terms of the generation and load at each of buses k and m, as well as the line power

flows on all other lines incident to k and m.

Our goal is to bound the line power flow PLine,k,m both from above and below

on the expected operating region. An upper bound can be placed on PLine,k,m by

either the maximum power available to be sourced by bus k, or the maximum power

available to be sunk by bus m. Since both methods are valid, we will calculate both

bounds (the sourcing bound and the sinking bound), and select the stricter of the two.

Similarly, a lowerbound can be placed on PLine,k,m (equivalent to an upper bound on

PLine,m,k) by either the maximum power available to be sunk by k or the maximum

power available to be sourced by m (again selecting the stricter of the two).

More formally, the Non-Homogenous Farkas’ Lemma (see [77], [57, Theorem

3.1.2]) states that a non-strict inequality follows from a set of other simultaenous

non-strict inequalities if the former can be expressed as a conic combination (sum

with all non-negative coefficients) of the later (and the tautologous inequality 0 ≤ 1).

By Definition 5.1, on the expected operating range the generation and load bounds

(90) - (93) apply. Since (98) and (99) can be expressed as a set of simultaneous

non-strict inequalities, then the following bounds on PLine,k,m can be derived by conic
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combinations of Kirhoff’s law (98) - (99) combined with the generation and load

bounds (90) - (93):

PLine,k,m ≤ PG,Max,k −
∑

l∈N (k)\m

PLine,k,l (100)

−PLine,k,m ≤ PG,Max,m −
∑

p∈NIn(m)\k

PLine,m,p (101)

PLine,k,m ≤ −PG,Min,m + PL,Max,m +
∑

p∈N (m)\k

PLine,m,p (102)

−PLine,k,m ≤ −PG,Min,k + PL,Max,k +
∑

k∈N (k)\m

PLine,k,l (103)

Inequality (100) places an upperbound on PLine,k,m in terms of the maximum power

available to be sourced by bus k, while (101) places a lowerbound on PLine,k,m in

terms of the maximum power available to be sourced by bus m. Similarly, inequality

(102) places an upperbound on PLine,k,m in terms of the maximum power available to

be sunk by bus m, and inequality (103) places a lowerbound on PLine,k,m in terms of

the maximum power available to be sunk by k. Thus, (100) - (103) bound PLine,k,m

in terms of generation and load bounds, but as they are in terms of other network

power flows, do not yet provide the constant bounds that we seek.

5.3.2 Bounding Power Flow on Lines Incident to Leaf Buses

Assume that k is a leaf bus, that is, (k,m) is the only line incident to bus k. Then

(100) and (103) can be rewritten as:

PLine,k,m ≤ PG,Max,k = PUBound,Sourcing,k,m (104)

−PLine,k,m ≤ −PG,Min,k + PL,Max,k = PLBound,Sinking,k,m (105)

where PUBound,Sourcing,k,m and PLBound,Sinking,k,m are constant upper and lower bounds

on the power flow PLine,k,m. Thus, if k is a leaf bus, then the maximum genera-

tion on bus k is a valid constant upperbound on PLine,k,m and the maximum sink-

ing at bus k is a valid constant lowerbound on PLine,k,m. Recall that we select the
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stricter of the sinking or sourcing bounds for both upper bound PUBound,k,m and lower

bound PLBound,k,m for the line power flow PLine,k,m. Therefore, if k is a leaf bus then

both PUBound,k,m and PLBound,k,m exist, and PUBound,k,m ≤ PUBound,Sourcing,k,m and

PLBound,k,m ≥ PLBound,Sinking,k,m.

Similarly, if m is a leaf bus, then (102) and (101) can be rewritten as:

PLine,k,m ≤ −PG,Min,m + PL,Max,m = PUBound,Sinking,k,m (106)

−PLine,k,m ≤ PG,Max,m = PLBound,Sourcing,k,m (107)

where PUBound,Sinking,k,m and PLBound,Sourcing,k,m are similarly valid bounds on PLine,k,m.

It then follows that if m is a leaf bus, then both PUBound,k,m and PLBound,k,m exist and

PUBound,k,m ≤ PUBound,Sinking,k,m and PLBound,k,m ≥ PLBound,Sourcing,k,m. Therefore, if

either k or m is a leaf bus, then there exist valid constant bounds PUBound,k,m and

PLBound,k,m for PLine,k,m.

5.3.3 Bounding Power Flows on General Lines

We have now shown that constant bounds PUBound,k,m and PLBound,k,m exist for line

(k,m) ∈ E if it is either a key line ((94) and (95)) or incident to a leaf bus ((104) -

(107)). Now consider an arbitrary line (k,m) ∈ E such that the above do not apply

(that is, (k,m) /∈ EKey and neither k nor m is a leaf bus). Assume that there exist

valid bounds PUBound,Sourcing,l,k for all l ∈ N (k) \m. In this case, by combining (100)

with the bounds PLine,l,k ≤ PUBound,Sourcing,l,k we find:

PLine,k,m ≤ PG,Max,k +
∑

l∈N (k)\m

PUBound,Sourcing,l,k = PUBound,Sourcing,k,m (108)

Therefore, there exists a valid sourcing upper bound PUBound,Sourcing,k,m for arbi-

trary line (k,m) ∈ E if there exist valid sourcing upper bounds PUBound,Sourcing,l,k

for all l ∈ N (k) \ m (notice that the upper bounds are on power flows into bus

k). PUBound,Sourcing,k,m then represents the maximum power which is available to be
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sourced to PLine,k,m from bus k (including the maximum value that can be imported

into bus k on the other incident lines).

Similarly, assume that there exist valid bounds PUBound,Sourcing,m,p for each p ∈

N (m) \ k. Then by combining (101) with the bounds PLine,m,p ≤ PLBound,Sourcing,m,p

we find:

−PLine,k,m ≤ PG,Max,m −
∑

p∈N (m)\k

PLBound,Sourcing,p,m = −PLBound,Sourcing,k,m (109)

Therefore, there exists a valid sourcing lower bound PLBound,Sourcing,k,m for arbitrary

line (k,m) ∈ E if there exist valid sourcing lower bounds PLBound,Sourcing,p,m for all

p ∈ N (m) \ k. PLBound,Sourcing,k,m then represents the maximum power which can be

sourced to PLine,k,m from bus m (including the maximum value that can be imported

into bus m on the other incident lines).

It must then be determined whether the assumed bounds (PUBound,Sourcing,l,k for

all l ∈ N (k) \m or PLBound,Sourcing,p,m for all p ∈ N (m) \ k) do in fact exist, and if so

what their values are. We have already shown that any such line is either a key line,

or is incident to a leaf bus, then its bounds exist and can be determined. If neither

of these is the case, then we can recursively apply either (108) or (109) to determine

if the bound exists for the new line, and if so what it’s value is. A tree of recursions

throughout the lines in the network is then formed, where recursive paths represent

paths of lines in the AC network, and such paths terminate when either a key line or

a leaf bus is reach.

Consider the recursion tree of the above method applied to an arbitrary line

(k,m) ∈ E . PUBound,Sourcing,k,m exists if each path descending the recursion tree

terminates in either a leaf node or a line in EKey. Each such path corresponds to a

path of lines through the graph G, which does not backtrack (since each recursive

step excludes the previous line). Therefore, since G is finite, any such path must

eventually do one of the following:
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1. Terminate at a line incident to a leaf bus.

2. Terminate in key line in EKey.

3. Enter a cycle in the graph G (that doesn’t contain a key line).

Either cases 1 or 2 terminates the recursion path, while 3 results in an infinite recur-

sion. Therefore, if a cycle is entered which does not contain a key line, then recursion

will fail to terminate unless this condition is detected and prevented. We must there-

fore track which lines are present in the recursion tree, and terminate with a failure

when a line is reached which is already in the tree (indicating an unbounded cycle in

the graph G). As an artifact of this case, the proposed method of bounding power

flows only returns a valid result if each cycle in the graph G contains at least one key

line.

If each cycle in G contains at least one key line, then each recursion path must

terminate, resulting by induction in a valid value of PUBound,Sourcing,k,m for each

(k,m) ∈ E . This value represents the total maximum power that can be sourced

by bus k, based on both its local sourcing capabilities, and the total power it can

draw from the subnetwork to which it is attached (the network on the k side of k,m).

The same method can be applied to show that a valid value of PLBound,Sourcing,k,m

must also exist for each (k,m) ∈ E (representing the total power that bus m can

source due to the subnetwork on the m side of k,m).

Applying the same method to the sinking bounds ((102) and (103)), we find:

PLine,k,m ≤− PG,Min,m + PL,m +
∑

p∈N (m)\k

PUBound,Sinking,m,p

= PUBound,Sinking,k,m (110)

−PLine,k,m ≤− PG,Min,k + PL,k −
∑

l∈N (k)\m

PLBound,Sinking,k,l

= −PLBound,Sinking,k,m (111)
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where PUBound,Sinking,k,m represents the maximum power that bus m can sink (based

on the subnetwork on the m side of (k,m)), and PLBound,Sinking,k,m represents the

maximum power that bus k can sink (based on the subnetwork on the k side of (k,m)).

Recursive trees can be built for each of PUBound,Sinking,k,m and PLBound,Sinking,k,m to

show that they also must always exist for each (k,m) ∈ E .

The above results show that two upperbounds and two lowerbounds (based on

sourcing and sinking capabilities respectively) exist for each line (k,m) ∈ E , and

can be calculated by a line-recursive approach, corresponding to power-flow paths in

the graph G. Since both both the sourcing and sinking bounds are valid, we will

select the stricter of the two and designate it as line power-flow bound PUBound,k,m

(or PLBound,k,m) as follows:

PUBound,k,m = min(PUBound,Sourcing,k,m, PUBound,Sinking,k,m) (112)

PUBound,k,m = min(PLBound,Sourcing,k,m, PLBound,Sinking,k,m) (113)

This recursive method allows the sourcing and sinking line power-flow bounds in a

network to be calculated in terms of generation and load bounds, combined with the

assumption that line constraints are enforced on key lines.

5.3.4 Procedure for Calculating All Line Power-Flow Bounds in a Net-
work

Using the above described method, it is possible to create a procedure which will

calculate the values of PUBound,k,m and PLBound,k,m for each line (k,m) ∈ E in a given

network.

Recall that since PLine,k,m = −PLine,m,k, then PUBound,k,m = −PLBound,m,k and

PLBound,k,m = −PUBound,m,k. Therefore, it is only necessary to calculate the bounding

values in a single direction for each line in the network. Therefore, like in Chapter 3,

we will arbitrarily assign a direction indicating positive power flow to each line in E

and assign these directed lines to a directed edge set
−→E .
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The following procedure uses the above described recursive method to calculate

the constants PUBound,k,m and PLBound,k,m for all (k,m) ∈ −→E . It requires inputs of

the power-flow structure graph G, the generation and load bound vectors PG,Max,

PG,Min, and PL,Max, the line power-flow constraints vector PMax = [PMax,1 . . . PMax,L]T

(where PMax,i = PMax,k,m for all (k,m) ∈ −→E and i ∈ {1 . . . L} is the index assigned

to (k,m)), and a given selection of EKey. This recursive procedure is summarized in

Procedure 5.1 below.

Procedure 5.1 (Determination of Bounds on Non-Key Lines on Expected Operating

Range Assuming Satisfaction of Key Line Constraints).

Inputs:

• Power-Flow Structure Graph G = (V , E).

• Directed edge set
−→E (representing the direction of positive power flow assigned

to each line in E). Each line (k,m) ∈ −→E is assigned an index i ∈ {1 . . . L}.

• Edge subset EKey ⊂ E. EKey represents the set of lines whose line power-flow

constraints |PLine,k,m| ≤ PMax,k,m are assumed to be satisfied.

• Line power-flow constraint vector PMax =

[
PMax,1 . . . PMax,L

]T
∈ RL, where

PMax,i = PMax,k,m > 0 where i ∈ {1 . . . L} is the index assigned to line (k,m) ∈
−→E .

• Constant vector PG,Max ∈ RN =

[
PG,Max,1 . . . PG,Max,N

]
where PG,Max,k rep-

resents the maximum generation at bus k ∈ V on the expected operating range

P.

• Constant vector PG,Min ∈ RN =

[
PG,Min,1 . . . PG,Min,N

]
where PG,Min,k ≤

PG,Max,k represents the minimum generation at bus k ∈ V on the expected op-

erating range P.

118



• Constant vector PL,Max ∈ RN =

[
PL,Max,1 . . . PL,Max,N

]
where PL,Max,k ≥ 0

for all k ∈ V, representing the maximum load power at each bus in the network

on the expected operating range P.

Outputs:

• Upper bound vector PUBound =

[
PUBound,1 . . . PUBound,L

]T
∈ RL, where

PUBound,i = PUBound,k,m where i ∈ {1 . . . L} is the index assigned to line (k,m) ∈
−→E . PUBound,k,m represents an upperbound on PLine,k,m on the expected operating

range P assuming that all key line power-flow constraints are met.

• Lower bound vector PLBound =

[
PLBound,1 . . . PLBound,L

]T
∈ RL, where PLBound,i =

PLBound,k,m where i ∈ {1 . . . L} is the index assigned to line (k,m) ∈ −→E .

PLBound,k,m represents a lowerbound on PLine,k,m on the expected operating range

P assuming that all key line power-flow constraints are met.

Procedure 5.1 (Determine Bound Vectors PUBound and PLBound):

5.1.1 Initialize the mutex variables Mk,m = 0 and validity variables VUBound,Sinking,k,m =

VLBound,Sinking,k,m = VUBound,Sinking,k,m = VLBound,Sinking,k,m = 0 for all (k,m) ∈
−→E .

5.1.2 For each line (k,m) ∈ −→E :

5.1.2.1 If VUBound,Sourcing,k,m = 0 then call Subprocedure 5.1A to determine

PUBound,Sourcing,k,m. If a failure is returned, then end the procedure with

a failure.

5.1.2.2 If VUBound,Sinking,k,m = 0 then call Subprocedure 5.1C to determine

PUBound,Sinking,k,m. If a failure is returned, then end the procedure with

a failure.
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5.1.2.3 If VLBound,Sourcing,k,m = 0 then call Subprocedure 5.1B to determine

PLBound,Sourcing,k,m. If a failure is returned, then end the procedure with

a failure.

5.1.2.4 If VLBound,Sinking,k,m = 0 then call Subprocedure 5.1D to determine

PLBound,Sinking,k,m. If a failure is returned, then end the procedure with

a failure.

5.1.2.5 Set

PUBound,k,m := min(PUBound,Sourcing,k,m, PUBound,Sinking,k,m), (114)

and

PLBound,k,m := max(PLBound,Sourcing,k,m, PLBound,Sinking,k,m). (115)

5.1.3 End the procedure with a successful result, returning a value value of PUBound,k,m

and PUBound,k,m for each (k,m) ∈ −→E .

Subprocedure 5.1A(Determine PUBound,Sourcing,k,m).

5.1A.1 If Mk,m = 1 then return a failure. Otherwise set Mk,m = 1.

5.1A.2 If (k,m) ∈ EKey then set

PUBound,Sourcing,k,m := PMax,k,m, (116)

and go to 5.1A.6. Otherwise (if (k,m) /∈ EKey) then proceed to step 5.1A.3.

5.1A.3 For each l ∈ NIn(k) \m: If VUBound,Sourcing,l,k = 0 then recursively call Subro-

cedure 5.1A to calculate PUBound,Sourcing,l,k. If any such call returns a failure,

then set Mk,m = 0 and return a failure.

5.1A.4 For each l ∈ NOut(k) \ m: If VLBound,Sourcing,k,l = 0 then recursively call

Subprocedure 5.1B to calculate PLBound,Sourcing,k,l. If any such call returns a

failure, then set Mk,m = 0 and return a failure.
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5.1A.5 Set:

PUBound,Sourcing,k,m := PG,Max,k +
∑

l∈NIn(k)

PUBound,Sourcing,l,k

−
∑

l∈NOut(k)\m

PLBound,Sourcing,k,l. (117)

5.1A.6 Set VUBound,Sourcing,k,m = 1, set Mk,m = 0, and return a valid value of PUBound,Sourcing,k,m.

Subprocedure 5.1B(Determine PLBound,Sourcing,k,m).

5.1A.1 If Mk,m = 1 then return a failure. Otherwise set Mk,m = 1.

5.1A.2 If (k,m) ∈ EKey then set

PLBound,Sourcing,k,m := −PMax,k,m, (118)

and go to 5.1B.6. Otherwise (if (k,m) /∈ EKey) then proceed to step 5.1B.3.

5.1A.3 For each p ∈ NIn(m) \ k: If VUBound,Sourcing,p,m = 0 then recursively call

Subprocedure 5.1A to calculate PUBound,Sourcing,p,m. If any such call returns a

failure, then set Mk,m = 0 and return a failure.

5.1A.4 For each p ∈ NOut(m) \ k: If VLBound,Sourcing,m,p = 0 then recursively call

Subprocedure 5.1B to calculate PLBound,Sourcing,m,p. If any such call returns a

failure, then set Mk,m = 0 and return a failure.

5.1A.5 Set:

PLBound,Sourcing,k,m := −PG,Min,m + PL,Max,m +
∑

p∈NIn(m)\k

PUBound,Sourcing,p,m

−
∑

p∈NOut(m)\k

PLBound,Sourcing,m,p.

(119)

5.1A.6 Set VLBound,Sourcing,k,m = 1, set Mk,m = 0, and return a valid value of PLBound,Sourcing,k,m.
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Subprocedure 5.1C(Determine PUBound,Sinking,k,m).

5.1C.1 If Mk,m = 1 then return a failure. Otherwise set Mk,m = 1.

5.1C.2 If (k,m) ∈ EKey then set

PUBound,Sinking,k,m := PMax,k,m, (120)

and go to 5.1C.6. Otherwise (if (k,m) /∈ EKey) then proceed to step 5.1C.3.

5.1C.3 For each p ∈ NIn(m)\k: If VLBound,Sinking,p,m = 0 then recursively call Subro-

cedure 5.1D to calculate PLBound,Sinking,p,m. If any such call returns a failure,

then set Mk,m = 0 and return a failure.

5.1C.4 For each p ∈ NOut(m) \ k: If VUBound,Sinking,m,p = 0 then recursively call

Subprocedure 5.1C to calculate PUBound,Sinking,m,p. If any such call returns a

failure, then set Mk,m = 0 and return a failure.

5.1C.5 Set:

PUBound,Sinking,k,m := −PG,Min,m + PL,Max,m −
∑

p∈NIn(m)\k

PLBound,Sinking,p,m

+
∑

p∈NOut(m)\k

PUBound,Sinking,m,p

(121)

5.1C.6 Set VUBound,Sinking,k,m = 1, set Mk,m = 0, and return a valid value of PUBound,Sinking,k,m.

Subprocedure 5.1D(Determine PLBound,Sinking,k,m).

5.1D.1 If Mk,m = 1 then return a failure. Otherwise set Mk,m = 1.

5.1D.2 If (k,m) ∈ EKey then set

PLBound,Sinking,k,m := −PMax,k,m, (122)

and go to 5.1D.6. Otherwise (if (k,m) /∈ EKey) then proceed to step 5.1D.3.
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5.1D.3 For each l ∈ NIn(k) \m: If VLBound,Sinking,l,k = 0 then recursively call Subro-

cedure 5.1D to calculate PLBound,Sinking,l,k. If any such call returns a failure,

then set Mk,m = 0 and return a failure.

5.1D.4 For each l ∈ NOut(k)\m: If VUBound,Sinking,k,l = 0 then recursively call Subpro-

cedure 5.1C to calculate PLBound,Sinking,k,l. If any such call returns a failure,

then set Mk,m = 0 and return a failure.

5.1D.5 Set:

PLBound,Sinking,k,m := −PG,Min,k + PL,Max,k +
∑

l∈NIn(k)\m

PLBound,Sinking,l,k

−
∑

l∈NOut(k)\m

PUBound,Sinking,k,l.

(123)

5.1D.6 Set VLBound,Sinking,k,m = 1, set Mk,m = 0, and return a valid value of PLBound,Sinking,k,m.

Procedure 5.1 formalizes the recursive method for calculation of the bounds PLBound,k,m

and PUBound,k,m for each directed line (k,m) ∈ −→E .The reverse-direction power-flow

bounds can then be simply calculated by PUBound,m,k = −PLBound,k,m and PLBound,m,k =

PUBound,k,m. The use of the validity flags (VUBound,Sourcing,k,m, VLBound,Sourcing,k,m,

VUBound,Sinking,k,m, and VLBound,Sinking,k,m for each directed line (k,m) ∈ −→E ) prevents

redundancy of calculation, since each bound value (PUBound,Sourcing,k,m, PLBound,Sourcing,k,m,

PUBound,Sinking,k,m, and PLBound,Sinking,k,m for each (k,m) ∈ −→E ) need only be calcu-

lated once, and can then be used many times in other calculations. Finally, the use

of the line mutex flags Mk,m for each (k,m) ∈ −→E allows detection of unconstrained

cycles in the graph, preventing the method from entering an infinite loop.

Lemma 5.1 below states formally the characteristics of Procedure 5.1: that PUBound,k,m

and PLBound,k,m exist for all lines (k,m) ∈ −→E (assuming a finite graph G such that

each cycle in G contains at least one line in EKey), and that those bounds are valid on
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the expected operating range assuming satisfaction of the line power-flow constraints

for all key lines.

Lemma 5.1. Consider an inverter-based power network whose structure is described

by the finite graph G = (V , E). Define edge set EKey ⊂ E, and assume that for each

cycle EC ⊂ E, then EC ∩EKey 6= ∅. Each line (k,m) ∈ E is assigned maximum power-

flow constant PMax,k,m such that 0 < PMax,k,m < Yk,mVkVm. Assume that there exists

PG,Min,k ≤ 0, PG,Max,k ≥ 0, and PL,Max,k ≥ 0 for each k ∈ V defining the expected

operating range P of the network (per Definition 5.1).

Then:

5.1.A PUBound,k,m ≥ 0 and PLBound,k,m ≤ 0 exist for all (k,m) ∈ E, and Procedure 5.1

will terminate with a finite number of recursions.

5.1.B If (PG,PL) ∈ P, then |PLine,k,m| ≤ PMax,k,m for all (k,m) ∈ EKey implies that

PLBound,k,m ≤ PLine,k,m ≤ PUBound,k,m for all (k,m) ∈ E, where PLBound,k,m and

PUBound,k,m are calculated by Procedure 5.1.

5.1.C The computational complexity of Procedure 5.1 is O(LNMax), where L is the

number of lines in the graph G and NMax = maxk∈V |N (k)| is the maximum

number of neighbors of any single bus in G.

Proof. Lemma 5.1.A:

We have shown that there are two cases in which a call to any of the Subprocedures

5.1A - 5.1D on line (k,m) ∈ −→E terminates without any recursive calls: if (k,m) ∈

EKey, or if either bus k or bus m is a leaf bus (has only one incident line, which is

(k,m)).

Since |E| (and therefore |−→E |) is finite, the number of calls in Procedure 5.1 is

finite, so it only needs to be shown that any recursion path of Subprocedures 5.1A

- 5.1D must have finite length. Consider the sequence of lines {eP,i} representing a
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recursion path. At each recursion step, if eP,i = (k,m) ∈ EKey, then the recursion

(and the sequence) terminates immediately. Likewise, if eP,i is incident to a leaf bus,

then recursion also terminates immediately. Otherwise, we select one of the lines on

which a recursive call is made and append it to {eP,i}.

Since |−→E | is finite, one of three conditions must eventually occur:

(1) The line eP,i ∈ EKey.

(2) eP,i is incident to a leaf bus.

(3) eP,i is already in the sequence.

In cases (1) or (2), recursion terminates immediately. Case (3) leads to a contra-

diction, since all of Subprocedures 5.1A - 5.1D exclude the preceeding line from the

recursive calls (so recursion cannot backtrack along the same path in G), and we have

assumed that each cycle in G must contain at least one line in EKey. Therefore, any

recursion path must terminate in a finite number of calls, resulting in a valid value

of PUBound,k,m or PLBound,k,m.

Finally, since for each (k,m) ∈ E there exists exactly one of (k,m) or (m, k) in

−→E , then each member of E is either in
−→E , or is the reverse of a directed line in

−→E . The reverse-direction bounds PUBound,m,k and PLBound,m,k may be calculated by

PUBound,m,k = −PLBound,k,m and PLBound,m,k = PUBound,k,m. Therefore, the bounds

PUBound,k,m and PLBound,k,m exist for each line (k,m) ∈ E , and are calculated by

Procedure 5.1.

Lemma 5.1.B:

We have already shown in the proof to Lemma 5.1.A above that the constant

bounds PUBound,Sourcing,k,m, PLBound,Sourcing,k,m, PUBound,Sinking,k,m, and PLBound,Sinking,k,m

exist for each line (k,m) ∈ E . By assumption (116), (118), (120), and (122) repre-

sent power-flow bounds on key lines (k,m) ∈ EKey. By appropriately substituting

PUBound,m,k = −PLBound,k,m and PLBound,m,k = −PUBound,k,m into (117), (119), (121),
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(123), we obtain (108), (109), (110), and (111) respectively, which we have shown

by construction (in Section 5.3.3 above) are valid bounds on PLine,k,m for non-key

lines (k,m) ∈ −→E \ EKey when (PG,PL) ∈ P (PG,Min,k ≤ PG,k ≤ PG,Max,k and 0 ≤

PL,k ≤ PL,Max,k ∀ k ∈ V). Therefore, Subprocedures 5.1A - 5.1D calculate valid

bounds PUBound,Sourcing,k,m, PLBound,Sourcing,k,m, PUBound,Sinking,k,m, PLBound,Sinking,k,m

such that PLBound,Sourcing,k,m ≤ PLine,k,m ≤ PLBound,Sourcing,k,m and PUBound,Sinking,k,m ≤

PLine,k,m ≤ PLBound,Sinking,k,m for each line (k,m) ∈ −→E .

Finally, for each (k,m) ∈ E , we can define PUBound,k,m and PLBound,k,m by (114)

and (115) such that PLBound,k,m ≤ PLine,k,m ≤ PUBound,k,m. Therefore, Procedure 5.1

numerically calculates valid power-flow bounds for all (k,m) ∈ E in terms of the

generation and load constrants, combined with a given selection of EKey.

Lemma 5.1.C:

The recursive subprocedures (Subprocedures 5.1A, 5.1C, 5.1B, and 5.1D) each re-

quire a summation over the neighbors of the incident buses, and therefore each such

subprocedure call requires O(NMax) calculations (excluding the recursive calls). The

use of the VUBound,Sourcing,k,m, VUBound,Sinking,k,m, VLBound,Sourcing,k,m, and VLBound,Sinking,k,m

flags ensures that each subprocedure is called only once for each line in G, and there-

fore there are a maximum of 4 ∗ L subprocedure calls. Therefore, the computational

complexity of Procedure 5.1 is O(LNMax).

5.3.5 Sufficient Condition Test for Constraint-Satisficing Key Line Sets

Procedure 5.1 above calculates the line power-flow bounds PLBound,k,m and PUBound,k,m

for each line (k,m) ∈ E , based on a set of generation constraints PG,Min,k ≤ PG,k ≤

PG,Max,k and load constraints 0 ≤ PL,k ≤ PL,Max for all buses k ∈ V , and a set of

lines EKey ⊂ E such that the constraint |PLine,k,m| ≤ PMax,k,m is assumed to be met

for all (k,m) ∈ EKey. Therefore, if EKey is selected such that −PMax,k,m ≤ PLBound,k,m

and PUBound,k,m ≤ PMax,k,m for all (k,m) ∈ E , then such a selection of EKey is a
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constraint-satisficing key line set per Definition 5.2.

We formalize this result in the following lemma:

Theorem 5.1 (Sufficient Condition Test for Constraint-Satisficing Key Line Sets).

Consider an inverter-based power network whose structure is described by the finite

graph G = (V , E). Each line (k,m) ∈ E is assigned maximum power-flow constant

PMax,k,m such that 0 < PMax,k,m < Yk,mVkVm. Assume that there exists PG,Min,k ≤ 0,

PG,Max,k ≥ 0, and PL,Max,k ≥ 0 for each k ∈ V defining the expected operating range

P of the network (per Definition 5.1).

Assume that there exists a subset of lines EKey ⊂ E such that PUBound,k,m ≤

PMax,k,m and PLBound,k,m ≥ −PMax,k,m for all (k,m) ∈ E, where PUBound,k,m and

PLBound,k,m are calculated by Procedure 5.1. Then EKey is a constraint-satisficing key

line set (per Definition 5.2).

Proof. We have already shown in Lemma 5.1 above that the constant bounds PUBound,k,m

and PLBound,k,m exist for each line (k,m) ∈ E , and further that |PLine,k,m| ≤ PMax,k,m ∀ (k,m) ∈

EKey =⇒ PLBound,k,m ≤ PLine,k,m ≤ PUBound,k,m ∀ (k,m) ∈ E . Since, by assumption

PUBound,k,m ≤ PMax,k,m and PLBound,k,m ≥ −PMax,k,m for all (k,m) ∈ E , then it follows

that −PMax,k,m ≤ PLBound,k,m ≤ PLine,k,m ≤ PUBound,k,m ≤ PMax,k,m ∀ (k,m) ∈ E , and

therefore |PLine,k,m| ≤ PMax,k,m ∀ (k,m) ∈ E , that is, the line set EKey meets the re-

quirements of Definition 5.2 and is therefore a constraint-satisficing key line set.

Theorem 5.1 shows that if the power-flow bounds PUBound,k,m and PLBound,k,m are

within ±PMax,k,m for each line (k,m) ∈ E in a power network for a given selection

of EKey and a given expected operating range P, then the line power-flow constraints

|PLine,k,m| ≤ PMax,k,m for all (k,m) ∈ E will be satisfiied. Therefore, explicit en-

forcement of only the line power-flow constraints associated with key lines is sufficient

to implicitly ensure satisfaction of the remaining constraints. This result allows re-

laxation of the sufficient condition for synchronization (Theorem 3.5) so that only
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a subset of the constraints need be enforced. In the final technical chapter, we will

use this result to form the basis of a control method allowing sparse deployment of

constraint-enforcing inverters while still providing the desired robust synchronziation

and power sharing result.

5.3.6 Discussion on Procedure 5.1 and Sufficient Condition for Constraint-
Satisficing Key Line Sets

Procedure 5.1 and Theorem 5.1 provide a direct test to determine whether a given

selection of the key line set EKey is constraint-satisficing for a given network power-flow

structure G = (V , E), expected operating range P, and power-flow constraints PMax.

This test explicitly integrates both the network structure and expected operating

conditions, and can be applied to networks of arbitrary size and structure. Any

subset of the network lines can be tested, including the full line set EKey = E (where

it confirms the principal that the complete line set is always trivially constraint-

satisficing) or the empty set. Of interest is the fact that some network are constraint-

satisficing for EKey = ∅, which we show in Section 5.5.

Procedure 5.1 avoids redundant calculations where possible, but still may be com-

putationally expensive for large networks. It also requires access to the structure and

expected operating range of the network, and therefore the test can only be per-

formed with global knowledge of the network parameters. In addition, it requires the

presence of at least one key line in each cycle of the graph G.

Procedure 5.1 determines the power-flow bounds for a line by using the maximum

(and minimum) generation and load capacity available on the subnetworks on each

side of the line (taking into account the limits imposed by the assumption of enforce-

ment of key line constraints). Because it lacks a method for bounding power flows

in cycles of the network, it is likely overly conservative for highly cyclical networks.
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Therefore, the test provided by Procedure 5.1 and Theorem 5.1 is a sufficient condi-

tion only (not necessary and sufficient), and as such may designate as not constraint-

satisficing some key line sets which might in fact be constraint-satisficing. Further

study is required to develop a method to more tightly bound power flows in highly

cyclical networks.

5.4 Generation of Constraint-Satisficing Key Line Sets

Procedure 5.1 and Theorem 5.1 together provide a sufficient condition test whether

a given candidate key line set EKey is constraint-satisficing for given network and

expected operating range. In order to constrain the network within the safe region

for across the entire expected operating range, it will be necessary to generate a

constraint-satisficing key line set EKey (or ideally an irreducable or minimal constraint-

satisficing key line set) given the network structure and bounds. This goal can be

accomplished by using the test provided by Procedure 5.1 and Theorem 5.1, combined

with a few key realizations about the characteristics of constraint-satisficing key line

sets. These realizations are that 1) the set of all lines of the network E is always

trivially constraint-satisficing, and 2) the subsets of non-constraint-satisficing key

line sets are also non-constraint-satisficing. We formalize these results below:

Lemma 5.2 (Characteristics of Constraint-Satisficing Key Line Sets). Consider the

definition of constraint-satisficing key line sets in Definition 5.2. Then:

5.2.A Set of all lines is always constraint-satisficing: The key line set EKey = E is

always a constraint-satisficing key line set for the network (G,P,PMax).

5.2.B Subsets of non-constraint-satisficing key line sets are always non-constraint-

satisficing: If EKey is not a constraint-satisficing key line set for (G,P,PMax),

then neither are any of its subsets.

Proof. Lemma 5.2.A:
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If EKey = E for a given network (G,P,PMax), then the condition for a constraint-

satisficing key line set becomes |PLine,k,m| ≤ PMax,k,m ∀ (k,m) ∈ E =⇒ |PLine,k,m| ≤

PMax,k,m ∀ (k,m) ∈ E for all (PG,PL) ∈ P, which is a tautology (of the form

A =⇒ (A restricted to X)).

Lemma 5.2.B:

Contradiction Hypothesis: Assume that EKey ⊂ E is NOT a constraint-satisficing

key line set for some (G,P,PMax) and that there exists E ′Key ⊂ EKey such that E ′Key
is a constraint-satisficing key line set for the same network.

Then |PLine,k,m| ≤ PMax,k,m ∀ (k,m) ∈ EKey implies that |PLine,k,m| ≤ PMax,k,m ∀ (k,m) ∈

E ′Key (since E ′Key ⊂ EKey), which further implies that |PLine,k,m| ≤ PMax,k,m ∀ (k,m) ∈

E for all (PG,PL) ∈ P (since E ′Key is a constraint-satisficing key line set for (G,P,PMax)).

Then by Definition 5.2, EKey is a constraint-satisficing key line set for (G,P,PMax),

which is a contradiction. Therefore, if EKey is not a constraint-satisficing key line set

for some (G,P,PMax), then there does not exist E ′Key ⊂ EKey such that E ′Key is a

constraint-satisficing key line set for (G,P,PMax).

5.4.1 Search Procedure for Constraint-Satisficing Key Line Sets

The two characteristics of constraint-satisficing key line sets described in Lemma 5.2,

together with the test provided by Procedure 5.1 and Theorem 5.1, allow development

of an inductive search method for constraint-satisficing key line sets for a specified

network (G,P,PMax). If a given EKey ⊂ E is a constraint-satisficing key line set, then

by one-by-one removing each of its lines and performing the test of Procedure 5.1 and

Theorem 5.1, we can determine if any of its one-less subsets is a constraint-satisficing

key line set. If any such subsets are constraint-satisficing key line sets, then we can

recursively perform the same test on each other their one-less subsets, thus forming

a recursive search tree of candidate key line sets. Since EKey = E is always trivially

constraint-satisficing (and all possible constraint-satisficing key line sets are subsets
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of E), then it makes sense to start the search there.

By Lemma 5.2.B, if a given candidate set EKey is not constraint-satisficing, then it

is not necessary to test any of its subsets (and so recursion terminates). If none of the

one-less subsets of a constraint-satisficing key line set EKey is constraint-satisficing,

then EKey is irreducably constraint-satisficing. Therefore, the branches of the recursive

search tree terminate at irreducably constraint-satisficing key line sets. Once the

entire space of candidate key line sets has been searched, the minimally constraint-

satisficing key line sets are those containing the minimum number of lines.

We formalize this inductive search procedure below:

Procedure 5.2 (Generation of Constraint-Satisficing Key Line Sets for a Specifed

Network and Expected Operating Range).

Inputs:

• Power-Flow Structure Graph G = (V , E).

• Directed edge set
−→E (representing the direction of positive power flow assigned

to each line in E). Each line (k,m) ∈ −→E is assigned an index i ∈ {1 . . . L}.

• Line power-flow constraint vector PMax =

[
PMax,1 . . . PMax,L

]T
∈ RL, where

PMax,i = PMax,k,m > 0 where i ∈ {1 . . . L} is the index assigned to line (k,m) ∈
−→E .

• Constant vector PG,Max ∈ RN =

[
PG,Max,1 . . . PG,Max,N

]
where PG,Max,k rep-

resents the maximum generation at bus k ∈ V on the expected operating range

P.

• Constant vector PG,Min ∈ RN =

[
PG,Min,1 . . . PG,Min,N

]
where PG,Min,k ≤

PG,Max,k represents the minimum generation at bus k ∈ V on the expected op-

erating range P.
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• Constant vector PL,Max ∈ RN =

[
PL,Max,1 . . . PL,Max,N

]
where PL,Max,k ≥ 0

for all k ∈ V, representing the maximum load power at each bus in the network

on the expected operating range P.

Outputs:

• Set of constraint-satisficing key line sets ESatisficing for the network (G,P,PMax).

• Set of Irreducable constraint-satisficing key line sets EIrr for the network (G,P,PMax).

• Set of Minimal constraint-satisficing key line sets EMin for the network (G,P,PMax).

Procedure 5.2 (Generate All constraint-satisficing key line sets for

the Specified Network):

5.2.1 Initialize the global variables ESatisficing = ∅, EIrr = ∅, EMin = ∅, and

ETested = ∅.

5.2.2 Call Subprocedure 5.2A with EKey = E to generate all constraint-satisficing

subsets of E (assigns the global variables ESatisficing and EIrr).

5.2.3 Assign

LMin := min
EKey∈EIrr

|EKey| (124)

5.2.4 Assign

EMin := {EKey ∈ EIrr s.t. |EKey| = LMin} (125)

5.2.5 Return ESatisficing, EIrr, and EMin.

Subprocedure 5.2A(Generate All Constraint-Satisficing Key Line Subsets of

EKey).

Arguments:

• Edge subset EKey ⊂ E. EKey is the candidate constraint-satisficing key line set.
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Returns:

• Boolean value Is Satisficing, indicating whether the candidate set EKey is a

constraint-satisficing key line set for (G,P,PMax).

5.2A.1 Is EKey ∈ ETested? If so, then go to 1a. Otherwise, go on to 5.2A.2.

(a) If EKey ∈ ESatisficing then return Is Satisficing = true. Otherwise,

return Is Satisficing = false.

5.2A.2 Add EKey to ETested.

5.2A.3 Call Procedure 5.1 on (G,P,PMax, EKey) to determine the bounding vectors

PUBound and PLBound.

5.2A.4 Determine whether (G,P,PMax, EKey) is constraint-satisficing by the test of

Theorem 5.1 (PUBound,k,m ≤ PMax,k,m and PLBound,k,m ≥ −PMax,k,m for all

(k,m) ∈ E). If not, then return Is Satisficing = false. Otherwise, continue

to 5.2A.5.

5.2A.5 Add EKey to ESatisficing.

5.2A.6 For each (k,m) ∈ EKey:

(a) Recursively call Subprocedure 5.2A for EKey \ (k,m).

5.2A.7 If no recursive calls from 6a return true, then add EKey to EIrr.

5.2A.8 Return Is Satisficing = true.

Because the use of the set ETested prevents multiple tests for a single candidate

key line set EKey, the number of calls to Subprocedure 5.2A is limited by the number

of subsets of E . Since each subset can be represented as a bitfield of length L (where

L is the number of lines in the graph G and each bit indicates membership of the
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corresponding line in the subset), then there are 2L possible subsets of E . Each call to

Subprocedure 5.2A also makes a single call to Procedure 5.1, which has already been

shown in Lemma 5.1.C to have computational complexity O(L NMax). Therefore,

the computational complexity of Procedure 5.2 is O(2L LNMax). Because of its high

computational complexity, it may be difficult to find constraint-satisficing key line

sets for large (or highly interconnected) networks using Procedure 5.2.

5.4.2 Discussion on Procedure 5.2

Procedure 5.2 provides a simple search procedure to find all of the constraint-satisficing

key line sets (as well as the irreducable and minimal constraint-satisficing key line

sets) for a specified network G on the expected operating range P with power-flow

constraints PMax. It can be easily modified to search only until the first irreducable

constraint-satisficing key line set below a certain size is found, which may be necessary

for large networks.

Since (as was discussed in Section 5.3.6) the test provided by Procedure 5.1 and

Theorem 5.1 is overly conservative for highly cyclical networks, then the search pro-

cedure provided by Procedure 5.2 may miss some valid constraint-satisficing key line

sets for highly cyclical networks. Therefore, the sets ESatisficing and EIrr should be

considered to represent a selection of the (irreducable) constraint-satisficing key line

sets for a given network and expected operating range, not necessarily all possible

such sets. In addition, EMin represents the set of the minimal constraint-satisficing

key line sets that were found, not necessarily the minimum possible. Improvements

in the test procedure (based on tighter power-flow bounds) are needed to ensure that

all possible constraint-satisficing key line sets are found.
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5.5 Constraint-Satisficing Key Line Sets for Selected Ex-
ample Networks

We will now present several simple example networks to illustrate the concept of

constraint-satisficing key line sets and application of Procedure 5.1, Theorem 5.1,

and Procedure 5.2.

5.5.1 Six-Bus Radial Network

Consider again the simple six-bus radial network used for simulation in Chapter 4, a

single-line diagram of which is shown in Figure 5.2. In order to assess the find the

constraint-satisficing key line sets of this network, we must define the expected oper-

ating range P (in terms of generation and load constraint values PG,Max,k, PG,Min,k,

and PL,Max,k to each bus k ∈ V), which is shown in Table 5.1 below.

PL,3 PL,4

PL,6

PL,5

PL,2

PL,1

PG,1

PG,2

PG,3 PG,4

PG,6

PG,5

PMax,4,6 = 1.5 p.u.

PMax,4,5 = 1.5 p.u.

PMax,2,3 = 1.5 p.u.

PMax,1,3 = 1.5 p.u.

PMax,3,4 = 1.0 p.u.

1

2

3 4

5

6

Figure 5.2: Single Line Diagram of Example Six-Bus Radial Network

In Simulation 4.5, this network lost synchronization due to violation of the line

power-flow constraint on line (3, 4) using traditional droop control under conditions

within the expected operating range defined in Table 5.1. Therefore, we would expect

that Procedure 5.1 would show the bounding values on line (3, 4) to be outside of

±PMax,3,4. Table 5.2 shows the results of Procedure 5.1 applied to this network

with EKey = ∅ (no constraint enforcement, as in Simulation 4.5), which does in fact

show that the bounds on PLine,3.4 are outside ±PMax,3,4. This is because the available
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Table 5.1: Six-Bus Radial Network: Expected Operating Range Generation and Load
Bound Values
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x

1 1.0 0.0 1.0

2 1.0 0.0 1.0

3 1.0 −1.0 4.0

4 1.0 −1.0 4.0

5 1.0 0.0 1.0

6 1.0 0.0 1.0

sourcing power in the subnetworks on either side of line (3, 4) (PUBound,Sourcing,3,4 = 3.0

p.u. and PLBound,Sourcing,3,4 = −3.0 p.u.) are larger than ±PMax,3,4 = ±1.0 p.u. (and

therefore the structure of the network is not sufficient to enforce |PLine,3,4| ≤ PMax,3,4).

Therefore, (by Theorem 5.1) EKey = ∅ is not a constraint-satisficing key line set for

this network and expected operating range P as defined in Table 5.1.

Table 5.2: Six-Bus Radial Network: Results of Procedure 5.1 for EKey = ∅
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1 1 3 False 1.0 13.0 −5.0 −1.0 1.0 −1.0 1.5 True

2 2 3 False 1.0 13.0 −5.0 −1.0 1.0 −1.0 1.5 True

3 3 4 False 3.0 7.0 −3.0 −7.0 3.0 −3.0 1.0 False

4 4 5 False 5.0 1.0 −1.0 −13.0 1.0 −1.0 1.5 True

5 4 6 False 5.0 1.0 −1.0 −13.0 1.0 −1.0 1.5 True

Since the line power flow on line (3, 4) is not bounded within its constraint on

the expected operating range, it makes sense that we should add it to the key line

set EKey. In addition, all other lines in the network are incident to leaf buses, and

therefore are constrained by the generation and load constraints on their incident

leaf buses. Therefore, Ekey = {(3, 4)} would seem to be an obvious candidate key
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line set. Application of Procedure 5.2 to this network does in fact confirm that

Ekey = {(3, 4)} is the unique irreducable (and unique minimal) constraint-satisficing

key line set for this network. The results of Procedure 5.1 applied to this network

with Ekey = {(3, 4)} are shown in Table 5.3, which reveal that enforcement of the

line power-flow constraint |PLine,3,4| ≤ PMax,3,4 is sufficient to ensure satisfaction of

the line power-flow constraints on all lines in the network across the entire expected

operating range.

Table 5.3: Six-Bus Radial Network: Results of Procedure 5.1 for EKey = {(3, 4)}
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1 1 3 False 1.0 7.0 −3.0 −1.0 1.0 −1.0 1.5 True

2 2 3 False 1.0 7.0 −3.0 −1.0 1.0 −1.0 1.5 True

3 3 4 True 1.0 1.0 −1.0 −1.0 1.0 −1.0 1.0 True

4 4 5 False 3.0 1.0 −1.0 −7.0 1.0 −1.0 1.5 True

5 4 6 False 3.0 1.0 −1.0 −7.0 1.0 −1.0 1.5 True

5.5.2 Six-Bus Meshed Network

Procedure 5.1 and Theorem 5.1 also apply to networks containing cycles, albeit with

some limitations. Consider again the six-bus meshed network that was used for

simulation in Chapter 3, a single-line diagram of which is shown in Figure 5.3. We

define the expected operating range P of this network by the generation and load

constraint values shown in Table 5.4.

Since this network contains a cycle (consisting of lines {(4, 5), (5, 6), (4, 6)}), then

in order to apply Procedure 5.1 we must select EKey so that at least one line in the cycle

is a key line. Recall that in Simulation 3.2, this network lost synchronization across the

cut consisting of lines (4, 5) and (4, 6) due to a load step within the expected operating
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Figure 5.3: Single Line Diagram of Example Six-Bus Meshed Network

Table 5.4: Six-Bus Meshed Network: Expected Operating Range Generation and
Load Bound Values
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1 1.0 0.0 1.0

2 1.0 0.0 1.0

3 1.0 −1.0 4.0

4 1.0 −1.0 4.0

5 1.0 0.0 1.0

6 1.0 0.0 1.0

range defined in Table 5.4. Application of Procedure 5.2 to this network reveals that

EKey = {(4, 5), (4, 6)} is the unique irreducable (and unique minimal) constraint-

satisficing key line set for this network and expected operating range. Results of

Procedure 5.1 applied to this network with EKey = {(4, 5), (4, 6)} are shown in Table

5.5.

The results in Table 5.5 show that EKey = {(4, 5), (4, 6)} is indeed a constraint-

satisficing key line set for the example six-bus meshed network, since PUBound,k,m ≤

PMax,k,m and PLBound,k,m ≥ −PMax,k,m for all lines (k,m) ∈ E . Therefore, explicit

enforcement of both |PLine,4,5| ≤ PMax,4,5 and |PLine,4,6| ≤ PMax,4,6 is sufficient to

ensure that all line power-flow constraints are met across the entire expected operating

range of the network.
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Table 5.5: Six-Bus Meshed Network: Results of Procedure 5.1 for EKey =
{(4, 5), (4, 6)}
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1 4 1 False 2.2 2.0 -1.0 -5.2 2.0 -1.0 2.5 True

2 4 2 False 2.2 2.0 -1.0 -5.2 2.0 -1.0 2.5 True

3 5 3 False 1.2 2.0 -1.0 -4.7 1.2 -1.0 2.5 True

4 5 4 True 0.8 0.8 -0.8 -0.8 0.8 -0.8 0.8 True

5 6 4 True 0.4 0.4 -0.4 -0.4 0.4 -0.4 0.4 True

6 6 5 False 0.4 4.8 -1.8 -1.9 0.4 -1.8 2.0 True

5.5.3 Star Network

The following example is an interesting special case, which shows that for some net-

works, the key line set EKey = ∅ may be constraint-satisficing. Consider the network

structure whose single-line diagram is shown in Figure 5.4. The underlying power-

flow structure graph of this network is a star graph, meaning that it consists of a

single center bus to which all other buses are directly connected (and no cycles are

present). The center bus is a load bus, while all leaf buses are inverter buses. This

type of power-flow structure might occur when a set of inverters are connected in par-

allel to power a single large load. Generation and load bounds defining the expected

operating region P are shown in Table 5.6.

Results from application of Procedure 5.1 to this network with EKey = ∅ are

shown in Table 5.7 below. Since all line flows are bounded within their respective

constraints, then (by Theorem 5.1) EKey = ∅ is a constraint-satisficing key line set

for this network under the expected operating range in Table 5.6. This reveals that

for this network and expected operating range, no explicit constraint enforcement is

required to bound the network within the safe region.

In fact, this result applies for most networks whose underlying graph is a star
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Figure 5.4: Single Line Diagram of Example Six-Bus Star Network

Table 5.6: Six-Bus Star Network: Generation and load bound values for Procedure
5.1
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1 0.0 0.0 5.0

2 1.0 -1.0 1.0

3 1.0 -1.0 1.0

4 1.0 -1.0 1.0

5 1.0 -1.0 1.0

6 1.0 -1.0 1.0

configuration. This is because in a star configuration, each line is incident to a leaf

bus, and therefore on the expected operating range each line power flow is bounded

by the sourcing and sinking capacity of its incident leaf bus ((104) and (105)). For

most power networks, the line capacity will be large enough to support the sourcing

and sinking capacity of the incident leaf bus (PG,Max,k ≤ PMax,k,1 and −PG,Min,k +

PL,Max,k ≤ PMax,k,1 for each leaf bus k ∈ {2 . . . N}, assuming the center bus is bus

1 and N total buses). In this case, then PUBound,k,1 ≤ PG,Max,k ≤ PMax,k,1 and

PLBound,k,1 ≤ −PG,Min,k + PL,Max,k ≤ PMax,k,1 for all k ∈ {2 . . . N}, and therefore

Theorem 5.1 applies. This confirms the result of [66], which found that for star-type
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Table 5.7: Six-Bus Star Network: Results of Procedure 5.1 for EKey = ∅
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1 1 2 False 4.0 2.0 -1.0 -13.0 2.0 -1.0 2.0 True

2 1 3 False 4.0 2.0 -1.0 -13.0 2.0 -1.0 2.0 True

3 1 4 False 4.0 2.0 -1.0 -13.0 2.0 -1.0 2.0 True

4 1 5 False 4.0 2.0 -1.0 -13.0 2.0 -1.0 2.0 True

5 1 6 False 4.0 2.0 -1.0 -13.0 2.0 -1.0 2.0 True

networks of droop inverters, as long as the lines have larger capacity than the inverters

then synchronization is guaranteed.

5.6 Chapter Conclusions

In this chapter, we have defined the concept of constraint-satisficing key line sets

based on an expected operating range of the network and a set of key lines whose

line power-flow constraints are assumed to be met. A constraint-satisficing key line

set is a subset of the network lines such that satisfaction of the key line constraints,

along with operation within the expected operating range, is sufficient to ensure that

all line power-flow constraints are satisfied (Definition 5.2). By applying Kirchoff’s

law at each bus, we developed a procedure for bounding all line power flows in the

network under the assumption of satisfaction of key line power-flow constraints and

generation and load values within the expected operating range (Procedure 5.1).

We then showed that if the resulting bound values for each line power-flow bounds

are within its constraints, then the network is constraint-satisficing for the specified

key line set and expected operating range (Theorem 5.1). Finally, we developed an

inductive search procedure (Procedure 5.2) which allows generation of constraint-

satisficing key line sets (as well as irreducable or minimal constraint-satisficing key
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line sets) for a given network and expected operating range.

Both the generation of a constraint-satisficing key line set (via Procedure 5.2) and

the test of its validity (via Procedure 5.1 and Theorem 5.1) require access to global

network data: the entire network structure (represented by graph G), the expected op-

erating range (represented by generation and load constraint vectors PG,Max, PG,Min,

and PL,Max), and the line power-flow constraints (represented by the power-flow con-

straint vector PMax). Therefore, selection and validation of a constraint-satisficing

key line set must be performed with global knowledge, preferably during power net-

work design or refitting. However, as we will show in the following chapter, once

a constraint-satisficing key line set EKey has been found, then it is possible to use

CED-controlled inverters to enforce the key line constraints (and therefore ensure ro-

bust synchronization and power sharing within the expected operating range) without

need for communication or system level control.
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CHAPTER VI

SPARSE APPLICATION OF CONSTRAINT-ENFORCING

DROOP CONTROLLER FOR IMPROVED

SYNCHRONIZATION OF INVERTER-BASED AC

NETWORKS

In Chapter 4, a novel constraint-enforcing frequency-droop controller was introduced,

and a method shown for its application to provide robust frequency synchronization

and power sharing in all-active-bus, acyclic inverter-based power networks. This con-

trol method is based on the observation (from Chapter 3) that synchronization of an

inverter-based network operating frequency-droop control can be ensured by enforce-

ment of a specified line power-flow constraint on each line in the system (Theorem

3.5). However, while it is possible to construct a network of the type discussed in

Chapter 4, most power networks are not acyclic in structure, nor is it feasible to

place an inverter at each bus in a network, and therefore the method in Chapter 4

is not directly applicable to most power networks in practice. In this chapter, a less

strict (and therefore much more practical) approach is presented, which allows sparse

deployment of a few constraint-enforcing inverters in a network (which need not be

acyclic) while maintaining most of the desirable properties produced by the approach

of Chapter 4. This will be accomplished by application of CED-controlled inverters

to enforce the power-flow constraints of only the lines of a constraint-satisficing key

line set (as defined in Chapter 5), thereby ensuring satisfaction all of the power-flow

constraints of the network (on the given expected operating range) and bounding its

voltage-angle state trajectory to the safe region.
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6.1 Challenges in Sparse Application of CED

In this chapter, we will generalize the class of networks we consider for application

of CED for the purpose of guaranteeing frequency synchronization and power shar-

ing. The networks considered in this chapter consist of a mix of inverter buses and

network buses. In addition, some inverters may operate CED control, while oth-

ers operate traditional frequency-droop. We will refer to networks of this class as

mixed-bus inverter-based networks. Moving from the all-active-bus, acyclic networks

considered in Chapter 4 to mixed-bus inverter-based networks will require a changes

in both the control approach and the method of analysis required to show frequency

synchronization and power sharing.

6.1.1 Implicit Enforcement of Line Power-Flow Constraints

The results of Chapter 3 show that guaranteed frequency synchronization requires

enforcement of a specified line power-flow constraint on each line in the system. The

control method presented in Chapter 4 provides this enforcement by placing a CED-

controlled inverter at each bus and using it to enforce the constraint on each incident

line, that is, by explicitly enforcing each line power-flow constraint with two incident

CED-controlled inverters. However, a sparse application of CED-controlled inverters

means that many lines will not be directly incident to a CED-controlled inverter,

and therefore many such constraints will not be explicitly enforced. In Chapter

5, we developed the concept of constraint-satisficing key line sets, which show that

enforcement of the line power-flow constraints associated with only the key lines in

a network is sufficient to ensure satisfaction of all the constraints (assuming that

the network generation and load are within a given expected operating range). In

this chapter, we will develop a distributed control method that allows CED inverters

to be placed and configured in the network so as to explicitly enforce only the line

power-flow constraints associated with lines in a constraint-satisficing key line set.
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This implicitly enforces the line power-flow constraint on each line in the network,

thus bounding the network within the safe region of the voltage-angle space.

6.1.2 Assymetry of Adaptive Line Tensions

In addition, sparse deployment of CED-controlled inverters means that some lines

may be incident to only a single CED-controlled inverter. Therefore, the adaptive

line tension values (see Section 4.2) for some key lines may be line-asymmetric, that

is, the line may effect the dynamics of one incident bus differently than the other. For

example, consider a line (k,m) ∈ E where bus k is a constraint-enforcing inverter bus

and bus m is a traditional droop inverter bus. The adaptive line tension associated

with line (k,m) appearing in the dynamics of δk is γk,mPLine,k,m, while that appearing

in the dynamics of δm is simply PLine,m,k. This means that the center-of-mass fre-

quency ∆ωCOM of a network with sparse CED deployment may not be independent

of state, and that the network energy function U (41) may not be non-increasing

everywhere on the safe region. Therefore, a more general method of showing the con-

vergence of frequency (and therefore power sharing) of the network will be required.

6.1.3 Problems with Unbounded Line Gains

The control approach presented in Chapter 4 requires that each CED-controlled in-

verter apply an unbounded adaptive gain to each incident line (see Definition 4.2).

This was due to the need for the adaptive line tension value to become “large enough”

to overcome all other dynamic tensions as the line near its constraint. However,

while in theory (and often in practice) this results in enforcement of the associated

line power-flow constraint, in practice unbounded gains may interact with unmodeled

feedback delays to result in oscillations, or even instability. Therefore, it is desirable

to move to a bounded form of the adaptive line gain function, while ensuring that the

associated line power-flow constraint is still enforced. In this chapter, we will present

a class of bounded adaptive line gain functions, and show that it is still possible to
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enforce the specified line power constraints using functions of that class.

6.1.4 Counterexample to Naive Approach for Sparse Deployment of CED
Inverters

Finally, to allow sparse deployment of CED-controlled inverters, it is necessary (as we

will show below) to modify the CED control law so that it applies an adaptive gain

to only a single incident line (rather than all incident lines as in Definition 4.1). This

is because it is not, in general, possible for a single constraint-enforcing inverter to

enforce multiple constraints simultaneously without the assistance of similar inverters

on the adjacent buses. To illustrate this phenominon, we will provide an example of a

naive approach to sparse deployment of CED based on a given constraint-satisficing

key line set in a network using the all-incident-line CED control law (50).

Consider the simple three-bus power network illustrated in Figure 6.1. The set

of all lines EKey = E = {(1, 2), (2, 3)} is trivially a constraint-satisficing key line

set for this network (Lemma 5.2.A). A naive approach to enforcement of the line

power-flow constraints on EKey might call for the inverter at bus 2 to operate the

all-incident-lines CED control law (50) (thereby attempting to enforce both the con-

straints |PLine,1,2| ≤ PMax,1,2 and |PLine,2,3| ≤ PMax,2,3), while inverters 1 and 3 operate

traditional frequency droop. As we will show below, under some conditions it is not

possible for inverter 2 alone to enforce both of these constraints at the same time

without the participation of inverters 1 and/or 3 in the constraint enforcement.

Droop
PRef,1 = 1.0

All-Incident-
Line CED
PRef,2 = 0.0

Droop
PRef,3 = 0.0

PMax,1,2 = 0.5 PMax,2,3 = 0.5
PL,3 = 1.0

1 2 3

Figure 6.1: Three-Bus Network for Counterexample

Consider the inputs PRef and P0
L as shown in Table 6.1, and select PMax,1,2 =
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PMax,2,3 = 0.5 p.u.

Table 6.1: Bus Configuration for Three-Bus Counterexample

Bus # Type PRef (p.u.) P0
L (p.u.)

1 Droop 1.0 0.0
2 All-Incident-Line CED 0.0 0.0
3 Droop 0.0 1.0

By substituting the input conditions in Table 6.1 into the droop control law (4)

and all-incident-lines CED control law (50), we obtain the dynamics of this network

as follows:

∆ω1 = R1[PRef,1 − P 0
L,1 − PLine,1,2] = R[1.0− PLine,1,2] (126)

∆ω2 = R2[PRef,2 − P 0
L,2 + γ1,2(|PLine,1,2|)PLine,1,2 − γ2,3(|PLine,2,3|)PLine,2,3]

= R[γ1,2(|PLine,1,2|)PLine,1,2 − γ2,3(|PLine,2,3|)PLine,2,3] (127)

∆ω3 = R3[PRef,3 − P 0
L,3 + PLine,2,3] = R[−1.0 + PLine,2,3] (128)

where we have assumed that R1 = R2 = R3 = R > 0

At steady state (frequency agreement, where ∆ω1 = ∆ω2 = ∆ω3) the following

simultaneous inequalities follow from (126) and (128):

∆ω2 ≤ R[1.0− PLine,1,2] (129)

∆ω2 ≥ R[1.0− PLine,1,2] (130)

∆ω2 ≤ R[−1.0 + PLine,2,3] (131)

∆ω2 ≥ R[−1.0 + PLine,2,3] (132)

In addition, if inverter 2 succeeds at enforcing its incident line power-flow con-

straints, then the following inequalities also apply:

PLine,1,2 ≤ PMax,1,2 = 0.5 (133)

PLine,2,3 ≤ PMax,2,3 = 0.5 (134)
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By Nonhomogeneous Farkas Lemma (see [57, Theorem 3.1.2]), we can combine

(130) with (133) and (131) with (134) respectively to obtain the following inequalities:

∆ω2 ≥ R[1.0− PMax,1,2] = 0.5R (135)

∆ω2 ≤ R[−1.0 + PMax,2,3] = −0.5R (136)

Since R > 0, then (135) and (136) are in contradiction. Therefore, the polytope

defined by the constraints (129)-(134) is infeasible, and so there does not exist a

steady state solution to the example network such that the constraints on lines (1, 2)

and (3, 4) are enforced. This is due to the fact that it is not possible for the single

control variable ∆ω2 to satisfy both the constraint associated with line (1, 2) and the

constraint associated with line (2, 3) simultaneously; inverter 2 is “pulled” in opposite

directions by the adaptive line tensions γ1,2PLine,1,2 and γ2,3PLine,2,3. Therefore, it is

not possible for the CED inverter on bus 2 to simultaneously enforce the constraints

|PLine,1,2| ≤ PMax,1,2 and |PLine,2,3| ≤ PMax,2,3 without the participation of inverters 1

and/or 3.

The preceeding example shows that a naive approach to sparse deployment of

constraint-enforcing inverters, based on deployment of an inverter operating the all-

incident-line CED control law (50) adjacent to each line in a constraint-satisficing

key line set, is not (in general) capable of enforcing the line power-flow constraints on

all of the the key lines, since a single control variable (the inverter output frequency)

may not in general be capable of satisfying all of the necessary constraints simulate-

nously. Therefore, is not capable of enforcing the line power-flow constraints on the

lines in EKey, and so cannot provide the desired property of guaranteed frequency

synchronization and power sharing. In this chapter, we will show that this limitation

can be overcome by modifying the CED control law so that it applies an adaptive

gain to only a single incident line, thereby ensuring that conflicts between the con-

straints never occur and allowing each CED inverter to sucessfully enforce only its
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single assigned line power-flow constraint.

6.2 Approach to Sparse Application of CED in Inverter-
Based Networks

In order to overcome the issues described in the previous section, of an inverter-based

network, and provide guaranteed frequency synchronization and power sharing (on

the expected operating range) by sparse application of CED-controlled inverters, it

will be necessary to develop a more nuanced approach to both the method of control

and of analysis. In particular, a bounded gain, single-line-constraint-enforcing form

of the CED control law must be developed, and the concept of a constraint-satisficing

droop control configuration developed and validated.

6.2.1 Class of Networks Under Considertion

In this chapter, we will consider a more general class of networks than in the previous

chapters. Our new class of networks consists of a mix of inverter buses and network

buses. In addition, some inverters will operate the traditional frequency-droop control

law (4), while others will operate a novel form of the CED control law (specified

below). More formally, we define a mixed-bus inverter-based network as follows:

Definition 6.1 (Mixed-Bus Inverter-Based Networks). A mixed-bus inverter-based

network is a 3-phase AC power network, which is identical to a lossless droop inverter-

based power network with ideal voltage regulation (Definition 3.1) with the following

differences:

6.1.A Each bus k ∈ V is exactly one of the following:

(a) A droop-inverter bus, in which case k ∈ VDroop, and inverter k implements

the traditional frequency-droop control law (4).

(b) A CED-inverter bus, in which case k ∈ VCED, and inverter k implements

the bounded, single-line CED control law (to be defined).
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(c) A network bus, in which case k ∈ VNet, and there is no inverter at bus k.

6.1.B Each line (k,m) ∈ E is assigned a line-even, constant maximum power-flow

value PMax,k,m = PMax,m,k, where 0 < PMax,k,m < Yk,mVkVm.

6.1.C Each bus k ∈ V has assigned generation and load bounds PG,Max,k, PG,Min,k,

and PL,Min,k, which defining the network expected operating range P as by Def-

inition 5.1.

Similar to the previous chapters, the underlying structure of the power network is

represented by the graph G = (V , E). As such, a mixed-bus inverter-based network

can be identified by the triple (G,P,PMax), where G represents its power-flow struc-

ture, P represents its expected operating range, and the vector PMax ∈ RL represents

its assigned line power-flow constraints.

In this chapter, we will develop a control method to enforce the line-power flow

constraints associated with a a selected constraint-satisficing key line set EKey for

a power network G on the expected operating range P . The key line set EKey
should be selected from the set of constraint-satisficing key line sets for (G,P,PMax)

determined by Procedure 5.2. In general there may exist many such constraint-

satisficing key line sets for a given network, and a strict method for determination

of the “best” such set is beyond the scope of this work (since the definition of the

“best” constraint-satisficing key line set for any given network is highly application-

dependent). For most appliations, an irreducable constraint-satisficing key line set

should be selected (since otherwise it might be possible to reduce cost by eliminating

some CED-controlled inverters), and often a minimal constraint-satisficing key line

set should be selected. In the remainder of this chapter, we will assume that a

constraint-satisficing key line set EKey has been selected and treat it as given.
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6.2.2 Approach to Sparse Application of CED

Successful guarantee of frequency synchronization and power sharing in an inverter-

based network with sparse deployment of CED-controlled inverters involves the careful

placement and configuration of CED-controlled inverters in the network. Such a con-

figuration of CED inverters in the network is known as a constraint-satisficing droop

control configuration. In a constraint-satisficing droop control configuration, CED

inverters are placed and configured so that they are able to enforce the line power-

flow constraints associated with the key lines in the selected constraint-satisficing key

line set EKey, thereby implicitly enforcing the line power-flow constraints on all lines

in the network on the expected operating range P. We will show that this in turn

bounds the network voltage-angle trajectory onto the safe region ΘSafe (as defined

in Definition 3.8) and provides the desired properties of guaranteed frequency syn-

chronization and constrained power sharing on the entire expected operating range

P.

Because of its non-local dependence on the graph structure and parameters, the

creation and validation of a constraint-satisficing droop control configuration is not a

distributed operation, and must be performed using global knowledge of the network

structure and parameters. However, once this operation has been performed and

CED-controlled inverters placed and configured, it is possible for them to enforce the

line power-flow constraints and guarantee frequency synchronization and power shar-

ing using only local measurements and control. Therefore, the sparse deployment of

CED-controlled inverters requires a two-stage approach: A placement and configura-

tion stage (performed with global knowledge), followed by an operation stage (which

is purely distributed). In this dissertation, we assume that the placement and config-

uration stage is performed during power network design (either of a new network or

retrofitting an existing one).

In Section 6.1.4, it was shown that the all-incident-line CED control law developed
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in Chapter 4 is not necessarily capable of enforcing line power-flow constraints on its

incident lines when deployed sparsely in a network, and that this is due to conflicts

that can arise between the constraints. To avoid this issue, we will introduce a new

form of the CED control law that enforces only a single incident line power-flow

constraint. In addition, this form of the CED control law uses a bounded adaptive

gain function, which improves performance under control delays. This requires a

selection of the maximum adaptive gain, which must be sufficiently large to overcome

any dynamic tension that could cause the line constraint to be violated. As we will

show, the maximum possible tension that could cause constraint violation is bounded

on the expected operating range, and therefore a bounded maximum gain can be

selected so as to overcome it. Determination of this maximum gain, and proof that it

is capable of enforcing the (single) designated incident power-flow constraint, appears

later in this chapter.

Finally, it is necessary to show that once CED inverters have been deployed and

configured so as to enforce the key line constraints (and thereby implicitly all of

the line constraints), then frequency synchronization and constrained sharing of real

power between inverters will necessarily follow. Since the class of networks now under

consideration does not necessarily exhibit symmetric adaptive line tensions, then the

energy-function based method developed in Chapters 3 and 4 is no longer applicable.

Therefore, a more general approach based on the Contraction Property (see [81])

of the class of network under consideration will be developed later in this chapter,

which will show that deployment of CED inverters to enforce key line constraints is

sufficient to guarantee frequency synchronization and (constrained) power sharing on

the expected operating range.
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6.2.3 Constraint-Satisficing Droop Control Configuration

A constraint-satisficing droop control configuration (associated with a given expected

operating range P and constraint-satisficing key line set EKey) is a specification of how

CED-controlled inverters are to be deployed in a network and configured so that line

power-flow constraints associated with the lines in the selected constraint-satisficing

key line set EKey can be enforced, thereby bounding the network within the safe region

of the voltage-angle state space.

Once a constraint-satisficing key line set EKey has been determined for a given

mixed-bus network (G,P,PMax), in order to form a constraint-satisficing droop con-

trol configuration, CED-controlled inverters must be placed and configured to enforce

the power-flow constraints for all key lines (k,m) ∈ EKey. Since we now employ a

form of the CED control law that only enforces a single line power-flow constraint

per CED inverter, it is necessary to place a CED-controlled inverter incident to each

line in EKey, and to configure that inverter so that it enforces the key constraint.

We represent the placement of the CED-controlled inverters with the CED inverter

bus set VCED ⊂ V , where k ∈ VCED indicates that bus k has an attached inverter

operating the new single-incident-line CED control law. We will also introduce the

CED assignment function σ(k) to map each CED-controlled inverter k ∈ VCED to

the line whose constraint it is assigned to enforce:

Definition 6.2 (CED Assignment Function σ(k)). The CED Assignment Function

σ : VCED 7→ V is a map of CED inverters to buses, where σ(k) = m indicates that

the CED inverter at bus k is assigned to enforce the line power-flow constraint on the

line (k,m) ∈ E. σ(k) must be a member of N (k).

Since we now use bounded adaptive gains in the CED control law, the adaptive

gain γk,m for a key line (k,m) ∈ EKey increases to a bounded constant γMax,k,m (rather
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than to∞ as for the unbounded form) as |PLine,k,m| approaches PMax,k,m. As in Chap-

ter 4, the adaptive gain function γk,m(|PLine,k,m|) must be designed so that the line

adaptive tension γk,mPLine,k,m becomes large enough as |PLine,k,m| approaches PMax,k,m

to overcome the opposing tensions and thereby enforce the constraint. Therefore, we

must select the constant γMax,k,m for each key line (k,m) ∈ EKey large enough (but

still bounded) to overcome the maximum opposing tensions. This is possible, since

(as we will show later in this chapter) the maximum opposing tension is bounded on

the expected operating range.

More formally, we define a constraint-satisficing droop control configuration as

follows:

Definition 6.3 (Constraint-Satisficing Droop Control Configurations and Constrain-

t-Satisficing Droop Inverter Networks). Consider a given mixed-bus inverter-based

power network (G,P,PMax) (Definition 6.1) and assume that there exists a given

constraint-satisficing key line set EKey for the network on P. Then a constraint-

satisficing droop control configuration consists of the following:

6.3.A A Constraint-Satisficing CED Inverter Placement and Assignment: A place-

ment VCED and assignment function σ : VCED 7→ V meeting the requirements

of Definition 6.6.

6.3.B A Set of Key-line-enforcing γk,m Selections: A selection of key line adaptive

gain function γk,m (meeting the requirements of Definition 6.5) and associated

enforcing bound constant γMax,k,m (meeting the requirements of Definition 6.7)

for each key line (k,m) ∈ EKey.

A mixed-bus inverter-based network to which a constraint-satisficing droop control

configuration has been applied is called a constraint-satisficing droop inverter network.

The primary goal of this chapter is to show that a deployment of CED inverters
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meeting the requirements of Definition 6.3 is sufficient to guarantee frequency syn-

chronziation and power sharing in an inverter-based power network on the expected

operating range. In Section 6.3, we define the single-line CED control law, along

with the class of bounded adaptive gain functions, and a specification for constraint-

satisficing placement and assignments of such CED inverters. In Section 6.4, we de-

velop a parametric condition for the bounded gain constant γMax,k,m for each key line

(k,m) ∈ EKey, and show that if the value of γMax,k,m for each CED inverter bus k is

selected accordingly then each line power-flow constraint in EKey can be enforced by a

single incident CED inverter, implying that the network voltage-angle state trajectory

will be bounded in the safe region, in which all line constraints are met. In Section

6.5 we show that bounding operation within this safe region is sufficient to ensure fre-

quency synchronization between inverters for the entire expected operating range. In

Section 6.6, we derive the power sharing characteristics of constraint-satisficing droop

inverter networks. Finally, in Section 6.7 we present several example applications of

our method to guarantee frequency synchronization and power sharing of mixed-bus

inverter-based networks for several different network structures.

6.3 Single-Line CED Control Law and Its Placement and
Assignment

Once a valid constraint-satisficing key line set EKey has been identified for a given

network (as by Procedure 5.2A), then CED-controlled inverters must be placed and

configured so as to explicitly enforce the line power-flow constraints |PLine,k,m| ≤

PMax,k,m on each key line (k,m) ∈ EKey. However, we have already shown that a

naive approach to such placement (based on the all-incident-lines CED control law in

Definition 4.1) is not sufficient to ensure the enforcement of the key line constraints

in a mixed-bus network. Therefore, in this section, we introduce a new form of the

CED control law in order to overcome challenges in its sparse deployment, as well as

making it more robust in practice.
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6.3.1 Bounded Gain, Single-Line-Constraint-Enforcing Droop Control Law

In the new form of the CED control law, an adaptive gain γk,m is applied only to

the line power flow associated with single assigned key line (k,m) ∈ EKey where

m = σ(k), while all other line power-flow values are left at unity gain. This causes

each CED-controlled inverter to be “responsible” for enforcing only a single incident

line constraint, thus avoiding the possibility of fighting between the constraints as

occured in the counterexample in Section 6.1.4. In addition, a bounded form of the

adaptive gain function γk,m is used. This makes the CED inverter response more

robust to feeback delays. We therefore refer to the new form of the CED control law

as the bounded gain, single-line CED control law.

We have already defined the the CED Assignment Function σ(k), which maps

each CED-controlled inverter k ∈ VCED to the (single) line that it is assigned to

enforce (Definition 6.2). Based on σ(k), the new form of the CED control law is as

follows:

Definition 6.4 (Single-Incident-Line CED Control Law). The Single-Incident-Line

form of the CED Control Law (at an arbitrary bus k ∈ VCED) is as follows:

∆ωk = Rk


PRef,k − PL,k −

∑

m∈N (k)\σ(k)

PLine,k,m − γk,σ(k)(|PLine,k,σ(k)|)PLine,k,σ(k)




(137)

The Single-Incident-Line CED control law in Definition 6.4 differs from the All-

Active-Bus CED control law in Definition 4.1 in that it applies an adaptive gain only

to the single line power flow PLine,k,m where m = σ(k). In addition, the adaptive gain

function γk,m(|PLine,k,m|) will be selected from a bounded class of functions, rather

than the unbounded class ΓUnbounded in Definition 4.2. We will show in this chapter

that the single-incident-line CED control law is capable of enforcing its assigned line

power-flow constraint |PLine,k,m| ≤ PMax,k,m when deployed properly in a network

(that is, when VCED, σ, and γMax,k,m are selected to meet specified requirements).
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6.3.2 Selection of Bounded Adaptive Gain Function γk,m

Similar to our approach in Chapter 4, the adaptive gain function γk,m(|PLine,k,m|) for

each CED-controlled inverter k ∈ VCED where m = σ(k) is selected during control

design so that it has a set of characteristics needed to enforce the single assigned line

power-flow constraint |PLine,k,m| ≤ PMax,k,m, and so that the CED-controlled inverter

behaves identically to a traditional-droop-controlled inverter when the assigned con-

straint is inactive. In particular, we require that γk,m be selected from the following

class of functions:

Definition 6.5 (Feasible Class ΓBounded for γk,m). A function γk,m : [0 ∞) 7→

[1 γMax,k,m] is a member of the class ΓBounded for given constants PMax,k,m > 0

and γMax,k,m ≥ 1 if it has the following characteristics:

6.5.A γk,m is Lipschitz continuous with respect to |PLine,k,m| for all |PLine,k,m|.

6.5.B γk,m is bounded by γMax,k,m:

1 ≤ γk,m(|PLine,k,m|) ≤ γMax,k,m for all |PLine,k,m|.

6.5.C γk,m equals unity for small |PLine,k,m|:

∃ εk,m ∈ (0 1) such that γk,m(|PLine,k,m|) = 1 for all |PLine,k,m| ≤ (1 −

εk,m)PMax,k,m.

6.5.D γk,m(|PLine,k,m|) goes to γMax,k,m as |PLine,k,m| approaches PMax,k,m:

lim
|PLine,k,m|→PMax,k,m

γk,m(|PLine,k,m|) = γMax,k,m.

6.5.E γk,m is non-decreasing in |PLine,k,m|:
∂γk,m

∂|PLine,k,m|
≥ 0 ∀ |PLine,k,m|.

Any function that meets the requirements of Definition 6.5 (and is therefore a

member of the set ΓBounded) may be selected for the adaptive gain function γk,m

for (k,m) ∈ EKey. We will show in this chapter that for a properly deployed CED
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inverter k, the selection of an adaptive gain function γk,m meeting the requirements of

Definition 6.5 is sufficient to ensure that the single assigned line power-flow constraint

|PLine,k,m| ≤ PMax,k,m where m = σ(k) when γMax,k,m is chosen to meet specified

requirements.

Consider the example function γk,m as defined in (138), a plot of which is shown

in Figure 6.2. This function meets the requirements of Definition 6.5, and therefore

is a valid choice for γk,m for given values of PMax,k,m, γMax,k,m, and εk,m. Throughout

the examples presented in this chapter, we will use the function (138) for the adaptive

gain function γk,m for each (k,m) ∈ EKey.

In Chapter 4, the unbounded-gain CED control law was introduced with the idea

that as the line power-flow magnitude |PLine,k,m| approached its constraint PMax,k,m

for any line (k,m) ∈ E , then the associated line adaptive tension value γk,mPLine,k,m

(which always opposes the increase of |PLine,k,m|) grows to become large enough to

overcome any dynamic tension that could cause the increase of |PLine,k,m|, thus en-

forcing the constraint. The unbounded growth of γk,m ensured that the line adaptive

tension is always large enough. However, in the case of bounded gain functions, the

maximum gain γMax,k,m must be selected so that it is just large enough to enforce

the associated line power-flow constraint. In the next section, we develop a paramet-

ric condition on γMax,k,m which ensures that it is sufficiently large to overcome the

Example adaptive gain function γk,m ∈ ΓBounded (for given values of PMax,k,m,
γMax,k,m, and εk,m):

γk,m(|PLine,k,m|) =




1 |PLine,k,m| ≤ (1− εk,m)PMax,k,m

1 +
γMax,k,m − 1

εk,mPMax,k,m

(|PLine,k,m|

− (1− εk,m)PMax,k,m)



 (1− εk,m)PMax,k,m < |PLine,k,m| ≤ PMax,k,m

γMax,k,m |PLine,k,m| > PMax,k,m

(138)
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Figure 6.2: Example selection of γk,m ∈ ΓBounded as in (138) with PMax,k,σ(k) = 0.8,
εk,m = 0.2, and γMax,k,m = 10.

maximum possible dynamic tension which could cause violation of the assigned key

constraint |PLine,k,m| ≤ PMax,k,m, thereby enforcing the constraint.

6.3.3 Placement and Assignment of CED-Controlled Inverters

In Chapter 3, we defined the safe region ΘSafe of the voltage-angle state space (Defi-

nition 3.8), which represents the subset of the principal region in which all of the line

power-flow constraints |PLine,k,m| ≤ PMax,k,m are satisfied. Our goal is to bound the

network state trajectory θ(t) in the safe region ΘSafe, which corresponds to enforce-

ment of all line power-flow constraints |PLine,k,m| ≤ PMax,k,m for all (k,m) ∈ E . Since

by assumption EKey is a constraint-satisficing key line set (per Definition 5.2), then en-

forcement of only the line power-flow constraints associated with key lines is sufficient

to also bound it into ΘSafe, that is, explicit enforcement of |PLine,k,m| ≤ PMax,k,m for

all key lines (k,m) ∈ EKey on the expected operating range P also implicitly enforces

the remaining constraints.

In order to enforce the key line constraints, we will place at least one CED inverter

incident to each key line (member of EKey) and assign the inverter to enforce the key

line constraint. Without loss of generality, for each key line (k,m) ∈ E we can assume

that k is the CED inverter assigned to enforce the constraint on (k,m), since we can

simply swap the (arbitrary) positive power-flow direction assigned to (k,m). Making
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this assumption, there are four possible configurations for each key line (k,m) ∈ EKey,

which are illustrated in Figure 6.3:

1. Bus m is a network bus (m ∈ VNet).

2. Bus m is a traditional droop inverter bus (m ∈ VDroop).

3. Bus m is a CED bus, and it is assigned to enforce the constraint on (k,m)

(m ∈ VCED and σ(m) = k).

4. Bus m is a CED bus, but it is assigned to enforce the constraint on another line

(m ∈ VCED and σ(m) 6= k).

Cases 1 and 4 above are not recommended, since they result in requirements on the

CED inverter configuration which are difficult to meet in practice. Therefore, we will

focus on Case 2 and Case 3, which we will call the asymmetric CED placement (Fig-

ure 6.3b) and the symmetric CED placement (Figure 6.3c) cases respectively. More

formally, we define a Constraint-Satisficing CED Inverter Placement and Assignment

as follows:

Definition 6.6 (Constraint-Satisficing CED Inverter Placement and Assignment). A

placement of inverters VCED and associated CED assignment function σ : VCED → V

is a constraint-satisficing CED inverter placement and assignment for a given network

(G,P,PMax) and an associated constraint-satisficing key line set EKey (per Definition

5.2) if for each (k,m) ∈ EKey one of the following applies:

6.6.A Asymmetric CED Placement: k ∈ VCED, σ(k) = m, and m ∈ VDroop.

6.6.B Symmetric CED Placement: k,m ∈ VCED, σ(k) = m, and σ(m) = k.

If the set of CED-inverter buses VCED and CED assignment function σ are chosen

according to Definition 6.6, then each key line (k,m) ∈ EKey is assigned to at least

one incident CED inverter. In the following section, we will show that appropriately
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(a) Case 1: Bus m is a network bus (m ∈ VNet)

k m
PG,k PG,m

PL,k PL,m

PLine,k,m

. . .. . .

CED Droop

N (k) \m N (m) \ k

(b) Case 2 (Asymmetric CED Placement): Bus m is a traditional droop inverter bus (m ∈
VDroop)

k m

PG,k PG,m

PL,k PL,m

PLine,k,m

. . .. . .

CED CED

N (k) \m N (m) \ k

(c) Case 3 (Symmetric CED Placment): Bus m is a CED inverter bus, and it’s also assigned
to enforce the constraint on (k,m) (m ∈ VCED and σ(m) = k)

k m

PG,k PG,m

PL,k PL,m

PLine,k,m

. . .. . .

CED CED

N (k) \m N (m) \ {k, σ(m)}

PLine,m,σ(m)

(d) Case 4: Bus m is a CED inverter bus, but it’s assigned to enforce a different line
constraint (m ∈ VCED and σ(m) 6= k)

Figure 6.3: Possible Configurations for key line (k,m) ∈ ECED assuming k ∈ VCED
and σ(k) = m
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selecting their control parameters, we can ensure that the CED inverters will be ca-

pable of enforcing their assigned line power-flow constraints, thus implicitly enforcing

the line power-flow constraints on all lines in the network and bounding it within the

safe region of the voltage-angle state space.

6.4 Sparse Enforcement of Key Line Constraints

In this section, we develop a parametric requirement on the gain bound constants

γMax,k,m for each CED inverter bus k ∈ VCED that ensures that the line power-

flow constraint |PLine,k,m| ≤ PMax,k,m associated with each key line (k,m) ∈ EKey
are all enforced for the entire expected operating range P of the network. This will

ensure that the line power-flow constraints associated with all lines in the network are

satisfied, thereby bounding its operation within the safe region ΘSafe (as in Definition

3.8), that is, the safe region becomes invariant to the network dynamics.

6.4.1 Modeling of Synchronization in Mixed-Bus Inverter-Based Net-
works

The class of networks under consideration is mixed-bus inverter-based networks (Def-

inition 6.1), which contain a mix of CED-inverter buses, traditional-droop inverter

buses, and network buses. We will therefore modify the structure-preserving dynamic

model presented in Chapter 3 to represent a mixed-bus inverter-based network. As

in Chapter 3, network buses (k ∈ VNet) or traditional frequency-droop inverter buses

(k ∈ VDroop) are represented by the scalar dynamic equation (7). By substituting the

frequency-dependent load model (3) into the single-line CED control law (137) and

solving for δ̇k = ∆ωk, we find the scalar dynamic model of a single-line-CED-inverter

bus:

δ̇k = ∆ωk = D−1
k

[
PRef,k(t)− P 0

L,k(t)−
∑

m∈N (k)\σ(k)

PLine,k,m(δk − δm)

− γk,σ(k)(|PLine,k,σ(k)|) PLine,k,σ(k)(δk − δσ(k))
]

(139)
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where Dk = R−1
k + D′k for each single-line-CED-controlled inverter bus k ∈ VCED.

Notice that we now allow for time-varying forcing inputs PRef,k and PL,k.

The scalar dynamic equation associated with any bus ((7) for a network or droop

bus or (139) for a CED-inverter bus) may be viewed as a (time-dependent) local forc-

ing term (PRef,k(t)−P 0
L,k(t)) summed with “tension” terms representing the coupling

between buses, each term associated with a line. Notice that in the dynamic equation

(7) from Chapter 3 (representing either a network bus or a traditional droop in-

verter bus), the line tension value associated with each incident line m ∈ N (k) equals

PLine,k,m, while in (139) (representing a CED inverter bus) one line ((k, σ(k)) for CED-

inverter bus k) has associated the dynamic tension γk,m(|PLine,k,σ(k)|) PLine,k,σ(k). To

simplify our notation, we will therefore introduce the line adaptive tension function

τk,m for each (k,m) ∈ E , defined as follows:

τk,m(θk,m) =





D−1
k PLine,k,m(θk,m)

k /∈ VCED or

[
k ∈ VCED and σ(k) 6= m

]

D−1
k γk,m(|PLine,k,m|) PLine,k,m(θk,m) k ∈ VCED and σ(k) = m

(140)

where (as in the previous chapters) θk,m = δk − δm for all lines (k,m) ∈ E . Since

(by assumption) Dk > 0 for all k ∈ V , PLine,k,m(θk,m) is odd with respect to θk,m on

the principal region (see (2)), and γk,m(|PLine,k,m|) ≥ 1 for all |PLine,k,m| (Definition

6.5.B), then τk,m is also odd with respect to θk,m, that is, τk,m(θk,m) has the same

sign as θk,m on θPrincipal. However, τk,m is not necessarily line-symmetric (that is, τk,m

does not necessarily equal τm,k).

As in the preceeding chapters, we define the line-oriented state vector θ =

[
θ1 . . . θL

]T
∈

RL in terms of an arbitrary line orientation
−→E and line indices i ∈ {1 . . . L}, where

θi = θk,m for each (k,m) ∈ −→E that was assigned index i. Then, using the line adaptive

tension functions τk,m and τm,k for each line (k,m) ∈ −→E , we can form the following
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line-oriented dynamic system-of-equations model for the state vector θ:

θ̇k,m =D−1
k PRef,k(t)−D−1

k P 0
L,k(t)−D−1

m PRef,m(t) +D−1
m P 0

L,m(t)

−D−1
k

∑

l∈N (k)\m

τk,l(θk,l) +D−1
m

∑

p∈N (m)\k

τm,p(θm,p)

− τk,m(θk,m)− τm,k(θk,m)





∀ (k,m) ∈ E

(141)

Notice that the dynamic equation (141) for each line consists of a local forcing

(based on PRef (t) and P0
L(t)), line coupling terms (in terms of the line adaptive

tensions associated with adjacent lines), and a self-tension (its own line adaptive

tension values, one in each direction). Further, since τk,m always has the same sign as

θk,m, then the line self-tension [−τk,m(θk,m)− τm,k(θk,m)] always opposes the increase

of |θk,m| for any line (k,m) ∈ E .

Also notice from (140) that τk,m(θk,m) is globally Lipschitz continuous with re-

spect to θk,m, since (by Definition 6.5.A) γk,m ∈ ΓBounded must be globally Lipschitz

continous with respect to |PLine,k,m|, which is in turn globally Lipschitz continuous

with respect to θk,m (see (2)). Therefore, the dynamic equation (141) is also globally

Lipschitz with respect to θk,m (and so θk,m(t) exists and is continuous).

6.4.2 Local Enforcment of Key Line Constraints

Consider the dynamic equation (141) for the line voltage angle θk,m associated with

a key line (k,m) ∈ EKey. By assumption, at least one bus incident to (k,m) must

be a CED-inverter bus, and without loss of generality we can assume it be be k

(and therefore k ∈ VCED and σ(k) = m). We observed above that the self-tension

term [−τk,m(θk,m) − τm,k(θk,m)] always opposes the increase of |θk,m| (and therefore

|PLine,k,m|) on the principal region. Therefore, if the self-tension term is larger than

the sum of the other line tension terms and the forcing terms (which we will call the

non-self-tension terms), then |θk,m| and |PLine,k,m| are both decreasing.

Since the network state trajectory θ(t) is continuous, in order for the network state
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trajectory θ(t) to leave the safe region ΘSafe (which is a subset of ΘPrincipal), the line

power-flow constraint |PLine,k,m| ≤ PMax,k,m for some key line (k,m) ∈ EKey must be

violated. Consider the boundary condition |PLine,k,m| = PMax,k,m for such a key line.

If at that condition the self-tension [−τk,m(θk,m)− τm,k(θk,m)] is greater than the sum

of the non-self-tension terms, then |PLine,k,m| is decreasing, and the network dynamics

will return to the interior of ΘSafe, thus enforcing the constraint. Since k is a CED-

inverter bus that is responsible for enforcing the key line constraint (k,m) ∈ EKey,

then as |PLine,k,m| approaches PMax,k,m, γk,m approaches γMax,k,m (Definition 6.5.D),

and so τk,m(θk,m) approaches ±D−1
k γMax,k,mPMax,k,m. Therefore, by select γMax,k,m

such that τk,m is always larger than the sum of the maximum value of the non-self-

tension terms when |PLine,k,m| = PMax,k,m, we can enforce the key line constraint

|PLine,k,m| ≤ PMax,k,m and bound the network state trajectory within ΘSafe. As we

will show below, this is possible because the maximum value of the non-self-tension

terms is bounded on the safe region ΘSafe under the expected operating range P.

6.4.3 Maximum and Minimum Non-Self-Tension

Consider again the dynamic equation (141) for the line voltage angle θk,m associated

with a key line (k,m) ∈ EKey. If the network inputs are on the expected operating

range, then (by Definition 5.1) PG,Min,k ≤ PG,k(t) ≤ PG,Max,k and 0 ≤ PL,k(t) ≤

PL,Max,k for all buses k ∈ V and for all t. It is reasonable to also assume that the value

of PRef,k assigned to each bus k ∈ V is bounded by PG,Min,k ≤ PRef,k(t) ≤ PG,Max,k

for all t, since it doesn’t make sense to assign a reference power to an inverter which

the inverter isn’t capable of sourcing or sinking. Further, we will assume that the

nominal-frequency load P 0
L,k is also bounded by 0 ≤ P 0

L,k(t) ≤ PL,Max,k (that is,

(PRef (t),P
0
L(t)) ∈ P) for all t .

In addition, on the safe region ΘSafe, by definition all of the key line power-flow

constraints are met (|PLine,l,p| ≤ PMax,l,p ∀ (l, p) ∈ EKey). Since by assumption EKey is

165



a constraint-satisficing key line set for (G,P,PMax), then by Lemma 5.1.B the bounds

PLBound,l,p ≤ PLine,l,p ≤ PUBound,l,p apply for each line (l, p) ∈ E , where PLBound,k,m

and PUBound,k,m are calculated by Procedure 5.1. Therefore, there exist bounds on all

of the non-self tension terms that appear in (146), bounding the total tension that

can oppose the self-tension and cause the associated line power-flow constraint to be

violated. We formalize this result as follows:

Lemma 6.1 (Bounding of Non-Self-Tensions on ΘSafe). Consider a given constraint-

satisficing droop inverter network (Definition 6.3). If θ ∈ ΘSafe and (PRef ,P
0
L) ∈ P

then θ̇k,m may be bounded by:

θ̇k,m ≤ τMax,k,m − τk,m(θk,m)− τm,k(θk,m) (142)

θ̇k,m ≥ τMin,k,m − τk,m(θk,m)− τm,k(θk,m) (143)

where constants τMax,k,m and τMin,k,m are defined as:

τMax,k,m =D−1
k PG,Max,k −D−1

m PG,Min,m +D−1
m PL,Max,m

−D−1
k

∑

l∈N (k)\m

PLBound,k,l +D−1
m

∑

p∈N (m)\k

PUBound,m,p (144)

τMin,k,m =D−1
k PG,Min,k −D−1

k PL,Max,k −D−1
m PG,Max,m

−D−1
k

∑

l∈N (k)\m

PUBound,k,l +D−1
m

∑

p∈N (m)\k

PLBound,m,p (145)

for all (k,m) ∈ EKey.

Proof. Then the dynamic equation (141) for (k,m) ∈ EKey can be rewritten as follows:

θ̇k,m =D−1
k PRef,k(t)−D−1

k P 0
L,k(t)−D−1

m PRef,m(t) +D−1
m P 0

L,m(t)

−D−1
k

∑

l∈N (k)\m

PLine,k,l(θk,l) +D−1
m

∑

p∈N (m)\k

PLine,m,p(θm,p)

− τk,m(θk,m)− τm,k(θk,m) (146)
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By Definition 5.1, the assumption that (PRef ,P
0
L) ∈ P implies bounds on the

reference and nominal-frequency load at each bus. By combining the bounds on

reference and load with (146) using Non-homogeneous Farkas’ Lemma (see [57, The-

orem 3.1.2]), we find the following upper and lower bounds on θ̇k,m on the expected

operating range P:

θ̇k,m ≤D−1
k PG,Max,k −D−1

m PG,Min,m +D−1
m PL,Max,m

−D−1
k

∑

l∈N (k)\m

PLine,k,l(θk,l) +D−1
m

∑

p∈N (m)\k

PLine,m,p(θm,p)

− τk,m(θk,m)− τm,k(θk,m) (147)

and

θ̇k,m ≥D−1
k PG,Min,k −D−1

k PL,Max,k −D−1
m PG,Max,m

−D−1
k

∑

l∈N (k)\m

PLine,k,l(θk,l) +D−1
m

∑

p∈N (m)\k

PLine,m,p(θm,p)

− τk,m(θk,m)− τm,k(θk,m) (148)

On the safe region ΘSafe, by Definition 3.8 all of the key line power-flow con-

straints are met (|PLine,l,p| ≤ PMax,l,p ∀ (l, p) ∈ EKey). Since by assumption EKey is a

constraint-satisficing key line set for (G,P,PMax), then by Lemma 5.1.B the bounds

PLBound,l,p ≤ PLine,l,p ≤ PUBound,l,p apply for each line (l, p) ∈ E , where PLBound,k,m

and PUBound,k,m are calculated by Procedure 5.1. We may again combine these line

power-flow bounds with (147) and (148) to further bound θ̇k,m by:

θ̇k,m ≤D−1
k PG,Max,k −D−1

m PG,Min,m +D−1
m PL,Max,m

−D−1
k

∑

l∈N (k)\m

PLBound,k,l +D−1
m

∑

p∈N (m)\k

PUBound,m,p

− τk,m(θk,m)− τm,k(θk,m)

= τMax,k,m − τk,m(θk,m)− τm,k(θk,m) (149)
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θ̇k,m ≥D−1
k PG,Min,k −D−1

k PL,Max,k −D−1
m PG,Max,m

−D−1
k

∑

l∈N (k)\m

PUBound,k,l +D−1
m

∑

p∈N (m)\k

PLBound,m,l

− τk,m(θk,m)− τm,k(θk,m)

= τMin,k,m − τk,m(θk,m)− τm,k(θk,m) (150)

where τMax,k,m and τMin,k,m are as defined in (144) and (145) respectively.

Lemma 6.1 shows that the sum of the non-self-tension terms in the dynamics of

θk,m for a key line (k,m) ∈ EKey is bounded on ΘSafe and the expected operating

range P. Based on this result, we will show below that there exist values of γMax,k,m

(and γMax,m in the case of symmetric CED placement) such that the self-tension

term is always “large enough” to overcome the maximum possible other tensions,

thus enforcing the key line constraint |PLine,k,m| ≤ PMax,k,m.

6.4.4 Parametric Requirement for γMax,k,m

Assume that the network state trajectory θ(t) approaches the boundary of ΘSafe

from inside. By assumption, EKey is a constraint-satisficing key line set, and so

θ(t) approaching the boundary of ΘSafe corresponds to some key line (k,m) ∈

EKey approaching its line power-flow constraint (|PLine,k,m| approaches PMax,k,m while

d|PLine,k,m|/dt > 0). On the principal region, d|PLine,k,m|/dt > 0 corresponds to

d|θk,m|/dt > 0 (see Lemma 3.3), and therefore if we select γMax,k,m so that d|θk,m|/dt ≤

0 when |PLine,k,m| = PMax,k,m for the maximum and minimum tensions in (142) and

(143), then at some point before it exits ΘSafe, θk,m will be pulled back into ΘSafe, and

therefore the key line power-flow constraint |PLine,k,m| ≤ PMax,k,m will be enforced.

By Lemma 6.1, when θ ∈ ∂ΘSafe (the boundary of ΘSafe) and (PRef ,P
0
L) ∈ P,

θ̇k,m can be bounded by (142) and (143). By Definition 6.6, if VCED and σ constitute

a constraint-satisficing CED inverter placement and assignment, then we use either

asymmetric or symmetric CED placement for the key line (k,m) ∈ EKey. Substituting
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the appropriate values of τk,m and τm,k into (142) and (143) for the key line (k,m) ∈ E :

θ̇k,m ≤ τMax,k,m +





−D−1
k γk,m(|PLine,k,m(θk,m)|) PLine,k,m(θk,m)

−D−1
m PLine,k,m(θk,m)





m ∈ VDroop

−D−1
k γk,m(|PLine,k,m(θk,m)|) PLine,k,m(θk,m)

−D−1
m γm,k(|PLine,k,m(θk,m)|) PLine,k,m(θk,m)





m ∈ VCED

and σ(m) = k

(151)

θ̇k,m ≥ τMin,km +





−D−1
k γk,m(|PLine,k,m(θk,m)|) PLine,k,m(θk,m)

−D−1
m PLine,k,m(θk,m)





m ∈ VDroop

−D−1
k γk,m(|PLine,k,m(θk,m)|) PLine,k,m(θk,m)

−D−1
m γm,k(|PLine,k,m(θk,m)|) PLine,k,m(θk,m)





m ∈ VCED

and σ(m) = k

(152)

Assume that θ is in the boundary of ΘSafe such that PLine,k,m = PMax,k,m for line

(k,m) ∈ EKey. By Definition 6.5.D, then γk,m = γm,k = γMax,k,m. To enforce the

line power-flow constraint |PLine,k,m| ≤ PMax,k,m, we should select γMax,k,m such that

θ̇k,m ≤ 0. Substituting into the inequality (151):

θ̇k,m ≤ τMax,k,m +




−(D−1

k γMax,k,m +D−1
m )PMax,k,m m ∈ VDroop

−(D−1
k +D−1

m )γMax,k,mPMax,k,m m ∈ VCED and σ(m) = k

≤ 0 (153)

Solving the inequality (153) for γMax,k,m:

γMax,k,m ≥





Dk

(
τMax,k,m

PMax,k,m

−D−1
m

)
m ∈ VDroop

τMax,k,m

PMax,k,m

(D−1
k +D−1

m )−1 m ∈ VCED and σ(m) = k

(154)

Alternatively, assume that θ is in the boundary of ΘSafe such that PLine,k,m =

−PMax,k,m for line (k,m) ∈ EKey (and so again γk,m = γm,k = γMax,k,m). For this case,
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we should select γMax,k,m such that θ̇k,m ≥ 0. Substituting into (151):

θ̇k,m ≥ τMin,km +





(D−1
k γMax,k,m +D−1

m )PMax,k,m m ∈ VDroop

(D−1
k +D−1

m )γMax,k,mPMax,k,m m ∈ VCED and σ(m) = k

≥ 0 (155)

Solving the inequality (155) for γMax,k,m:

γMax,k,m ≥





Dk

(−τMin,k,m

PMax,k,m

−D−1
m

)
m ∈ VDroop

− τMin,k,m

PMax,k,m

(D−1
k +D−1

m )−1 m ∈ VCED and σ(m) = k

(156)

If we select γMax,k,m according to the stricter of (154) and (156), then we ensure

that the self-tension associated with the key line (k,m) ∈ EKey is always large enough

to overcome the other tensions (on the expected operating range) so as to bound

|PLine,k,m| ≤ PMax,k,m, thus enforcing the key line power-flow constraint. Therefore,

we call a selection of γMax,k,m satisfying (154) and (156) as an enforcing γMax,k,m

selection:

Definition 6.7 (Enforcing γMax,k,m Selection). A selection of γMax,k,m = γMax,m,k for

a key line (k,m) ∈ EKey is an enforcing γMax,k,m selection if it satisfies the following:

γMax,k,m ≥





max

(
Dk

[
τMax,k,m

PMax,k,m

−D−1
m

]
,−Dk

[
τMin,k,m

PMax,k,m

−D−1
m

]
, 1

)
m ∈ VDroop

max

(
τMax,k,m

PMax,k,m

(D−1
k +D−1

m )−1,
−τMin,k,m

PMax,k,m

(D−1
k +D−1

m )−1, 1

) m ∈ VCED

and σ(m) = k

(157)

where τMax,k,m and τMin,k,m are calculated as in (144) and (145) respectively.

Notice in Definition 6.7 that we include the requirement (from Definition 6.5.B),

that γMax,k,m ≥ 1. If the selection of γMax,k,m for a key line (k,m) ∈ EKey meets

the requirements of Definition 6.7, then the self-tension for (k,m) will become large

enough as |PLine,k,m| approaches PMax,k,m so that θk,m will be pulled back into the

safe region ΘSafe, thus enforcing the line power-flow constraint |PLine,k,m| ≤ PMax,k,m.
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6.4.5 Invariance of the Safe Region ΘSafe

Assume that a CED inverter has been placed and assigned to enforce each line power-

flow constraint in a constraint-satisficing key line set EKey (per Definition 6.6), and

that each such inverter k ∈ VCED has assigned an enforcing γMax,k,m selection (per

Definition 6.7). Then each key line power-flow constraint should be enforced on the

entire expected operating range, and therefore all of the line power-flow constraints

should be enforced. Therefore, if the network begins within the safe region, then its

operation should be bounded within the safe region, that is, the safe region should

be invariant with respect to the network dynamics. We show this result formally in

Lemma 6.2 below:

Lemma 6.2 (Invariance of ΘSafe w.r.t. Constraint-Satisficing Droop Inverter Net-

work Dynamics). Consider the set ΘSafe as defined in Definition 3.8 for a given

constraint-satisficing droop inverter network (Definition 6.3), and assume that there

exists trajectory θ(t) of the network dynamics (141) for t ≥ 0 such that θ(0) ∈ ΘSafe.

Then if (PG(t),PL(t)) ∈ P and (PRef (t),P
0
L(t)) ∈ P for all t ≥ 0 then θ(t) ∈ ΘSafe

for all t ≥ 0, that is, ΘSafe is positively-invariant with respect to the dynamics in

(141).

Proof. Consider the following set on RL:

ΘSafe,Key = {θ ∈ ΘPrincipal s.t. |PLine,k,m(θk,m)| ≤ PMax,k,m ∀ (k,m) ∈ EKey} (158)

The set ΘSafe,Key represents the subset of the principal region where the line power-

flow constraints associated with the key lines in EKey are satisfied.

We will first show that ΘSafe = ΘSafe,Key for a constraint-satisficing droop in-

verter network. It trivially follows from the Definition 3.8 and (158) that ΘSafe ⊂

ΘSafe,Key, since the membership criterion of ΘSafe implies the membership criterion

of ΘSafe,Key. Further, since by assumption EKey is a constraint-satisficing key line set
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and (PG,PL) ∈ P, then (by Definition 5.2) |PLine,k,m| ≤ PMax,k,m ∀ (k,m) ∈ EKey (the

membership criterion for ΘSafe,Key) implies that |PLine,k,m| ≤ PMax,k,m ∀ (k,m) ∈ E

(the membership criterion for ΘSafe), and therefore ΘSafe,Key ⊂ ΘSafe. Since ΘSafe ⊂

ΘSafe,Key and ΘSafe,Key ⊂ ΘSafe, then ΘSafe = ΘSafe,Key.

Contradiction Hypothesis: There exists a trajectory θ(t) of the dynamics (141)

and a time T1 > 0 such that θ(0) ∈ ΘSafe,Key and θ(T1) /∈ ΘSafe,Key (that is, θ(t)

exits ΘSafe,Key sometime between t = 0 and t = T1).

We have already shown that the dynamics of θ̇ are globally Lipschitz, so θ(t) is

continuous. Therefore, it follows from the contradiction hypothesis there exists T such

that 0 < T < T1, θ(t) ∈ ΘSafe,Key for all t ≤ T , and θ(T ) ∈ ∂ΘSafe,Key. Time T is the

instant at which θ(t) first crosses the boundary of ΘSafe,Key, that is, there exists some

line (k,m) ∈ EKey such that |PLine,k,m(θk,m(T ))| = PMax,km. By Definition 6.5.D,

|PLine,k,m(θk,m(T ))| = PMax,k,m implies that γk,m(|PLine,k,m(θk,m(T ))|) = γMax,k,m.

In addition, the contradiction hypothesis implies that |PLine,k,m|must be increasing

at t = T , that is:

d|PLine,km|
dt

∣∣∣∣
t=T

=
∂|PLine|
∂|θkm|

∣∣∣∣
t=T

d|θkm|
dt

∣∣∣∣
t=T

=
∂PLine
∂θkm

∣∣∣∣
t=T

d|θkm|
dt

∣∣∣∣
t=T

> 0 (159)

We showed in Lemma 3.3 that ∂PLine/∂θkm > 0 on ΘPrincipal ⊃ ΘSafe,Key for all

(k,m) ∈ E . Therefore, we find that:

d|θk,m|
dt

∣∣∣∣
t=T

= sign(θk,m(T )) θ̇k,m
∣∣
t=T

> 0 (160)

There are two cases when |PLine,k,m(θk,m(T ))| = PMax,km: PLine,k,m(T ) = PMax,k,m

and PLine,k,m(T ) = −PMax,k,m. Consider the case where PLine,k,m(T ) = PMax,k,m.

Since (k,m) is a key line, then (by Definition 6.6) k ∈ VCED and σ(k) = m. Substi-

tuting into (140):

τk,m(θk,m(T )) = γk,m(PLine,k,m(θk,m(T )))PLine,k,m(θk,m(T ))) = γMax,k,mPMax,k,m

(161)
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By Lemma 6.1, we can bound θ̇k,m by (142) on ΘSafe when (PRef ,P
0
L) ∈ P. Substi-

tuting (161) into (142):

θ̇k,m ≤τMax,k,m +




−(D−1

k γMax,k,m +D−1
m )PMax,k,m m ∈ VCED

−(D−1
k γMax,k,m +D−1

m γMax,k,m)PMax,k,m m ∈ VCED and σ(m) = k

(162)

By substititing the upper bound (153) on γMax,k,m, we find that PLine,k,m(T ) =

PMax,k,m implies that θ̇k,m|t=T ≤ 0, and therefore:

d|θk,m|
dt

∣∣∣∣
t=T

= θ̇k,m(T ) ≤ 0 (163)

which contradicts the observation (160).

Alternatively, consider the case where PLine,k,m(T ) = −PMax,k,m. It then follows

that

τk,m(θk,m(T )) = γk,m(PLine,k,m(θk,m(T )))PLine,k,m(θk,m(T ))) = −γMax,k,mPMax,k,m

(164)

By Lemma 6.1, we can bound θ̇k,m by (143) on ΘSafe when (PRef ,P
0
L) ∈ P. Substi-

tuting (164) into (143):

θ̇k,m(T ) ≥τMin,k,m −




−(D−1

k γMax,k,m +D−1
m )PMax,k,m m ∈ VCED

−(D−1
k γMax,k,m +D−1

m γMax,k,m)PMax,k,m m ∈ VCED and σ(m) = k

(165)

Similarly by substititing the lower bound (155) on γMax,k,m, we find that PLine,k,m(T ) =

−PMax,k,m implies:

θ̇k,m(T ) ≥ 0 (166)

and therefore

d|θk,m|
dt

∣∣∣∣
t=T

= −θ̇k,m ≤ 0 (167)

which also contradicts the observation (160).
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Therefore, the contradiction hypothesis is shown false, and instead θ(0) ∈ ΘSafe,Key

implies that θ(t) ∈ ΘSafe,Key for all t ≥ 0, that is, ΘSafe,Key = ΘSafe is positively

invariant w.r.t. the dynamics (141).

Lemma 6.2 formalizes our statement that the following are sufficient enforce all

line power-flow constraints in the network for the entire expected operating range P:

1. EKey is a constraint-satisficing key line set (per Definition 5.2)

2. (VCED, σ) is a constraint-satisficing CED inverter placement and assignment

(per Definition 6.6).

3. γMax,k,m for each key line (k,m) ∈ EKey is selected as an enforcing γMax,k,m

selection (per Definition 6.7).

Therefore, the CED configuration specified by VCED, σ, and the set of γMax,k,m

values for all k ∈ VCED is a constraint-satisficing droop control configuration (Defini-

tion 6.3), and it bounds the voltage-angle trajectory of the network in the safe region

on the expected operating range. In the following sections, we will show that this

result is also sufficient to ensure frequency synchronization and constrained power

sharing of the network.

6.4.6 Constraint-Satisficing Droop Control Configurations for Example
Networks

To better illustrate the concept of a constraint-satisficing droop control configuration,

we will now form constraint-satisficing droop control configurations for some example

networks.

6.4.6.1 Six-Bus Radial Microgrid

Consider again the six-bus radial microgrid whose single-line diagram is shown in Fig-

ure 5.2, which was used for simulation in Chapter 4. In Section 5.5.1, we showed that
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EKey = {(3, 4)} is a valid constraint-satisficing key line set (per Definition 5.2) for this

network under the expected operating range defined in Table 5.1. We will now cre-

ate two constraint-satisficing droop control configurations (one based on asymmetric

placement and one symmetric placement) for EKey = {(3, 4)}.

Asymmetric CED placement (Definition 6.6.A) for line (3, 4) requires that we

should select exactly one of buses 3 or 4 to be a CED-inverter bus and assign it to line

(3, 4), while the other is a traditional droop inverter bus. We will arbitrarily select 3 ∈

VCED, σ(3) = 4, and 4 ∈ VDroop. Similarly for symmetric CED placement (Definition

6.6.B), we should select both buses 3 and 4 as CED-inverter buses and assign them

both to line (3, 4) (3, 4 ∈ VCED, σ(3) = 4, and σ(4) = 3). Both configurations are

shown in Figure 6.4, where Figure 6.4a shows the selected assymetric CED placement

for the single key line (3, 4), and Figure 6.4b shows the symmetric CED placement

for the same line.

Now consider the maximum and minimum tension constants τMax,k,m and τMin,k,m

for the single key line (3, 4) ∈ EKey, which may be calculated by (144) and (145)

respectively. Substituting the generation and load bounds from Table 5.1, the line

flow bounds calculated by Procedure 5.1 in Table 5.3, and assuming D−1
3 = D−1

4 =

1/(2 π 0.5) + 1e− 2 rad/sec, we can calculate numerical values of τMax,3,4 and τMin,3,4

as follows:

τMax,3,4 =D−1
3 PG,Max,3 −D−1

4 PG,Min,4 +D−1
4 PL,Max,4

+D−1
3 PUBound,1,3 +D−1

3 PUBound,2,3 −D−1
4 PLBound,5,4 −D−1

4 PLBound,6,4

=3.7699 rad/sec (168)

τMin,3,4 =D−1
3 PG,Min,3 −D−1

3 PL,Max,3 −D−1
4 PG,Max,4

+D−1
3 PLBound,1,3 +D−1

3 PLBound,2,3 −D−1
4 PUBound,5,4 −D−1

4 PUBound,6,4

=− 3.7699 rad/sec (169)
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(a) Asymmetric CED: VCED = {3}, σ(3) = 4, and 4 ∈ VDroop
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(b) Symmetric CED: VCED = {3, 4}, σ(3) = 4, and σ(4) = 3

Figure 6.4: Six-Bus Radial Network: Sparse CED Placement and Assignment
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In this case, because the network is symmetric about the line (3, 4), τMax,3,4 and

τMin,3,4 have equal magnitudes, but for other networks this may not be the case.

By Definition 6.7 in order for γMax,3,4 = γMax,4,3 to be an enforcing selection we

should select γMax,3,4 according to:

γMax,3,4 ≥





max

(
D3

[
τMax,3,4

PMax,3,4

−D−1
4

]
, D3

[−τMin,3,4

PMax,3,4

−D−1
4

]
, 1

)
4 ∈ VDroop

max

(
τMax,3,4

PMax,3,4

(D−1
3 +D−1

4 )−1,
−τMin,3,4

PMax,3,4

(D−1
3 +D−1

4 )−1, 1

) 4 ∈ VCED

and σ(4) = 3

=





max (5, 5, 1) 4 ∈ VDroop

max (3, 3, 1) 4 ∈ VCED and σ(4) = 3

(170)

Therefore, we should choose γMax,3,4 ≥ 5 for the asymmetric CED placement (Figure

6.4a), or γMax,3,4 = γMax,4,3 ≥ 3 for the symmetric CED placement (Figure 6.4b).

We have therefore constructed two constraint-satisficing droop control configura-

tions for the six-bus radial microgrid under the expected operating range in Table

5.1:

1. Symmetric configuration: V = {3, 4}, σ(3) = 4, σ(4) = 3, and γMax,3,4 =

γMax,4,3 = 3.

2. Asymmetric configuration: VCED = {3}, σ(3) = 4, and γMax,3,4 = 5.

6.4.6.2 Three-Bus Grid-Tied Microgrid

Consider the three-bus, grid-tied microgrid whose single-line diagram is shown in

Figure 6.5. This microgrid has two buses (buses 1 and 2) which each have a connected

inverter, one bus (bus 3) which is passive, and a single connection to an external grid,

modeled by the infinite bus 4 where D4 = ∞. This represents a typical case of a

multi-inverter grid-tied microgrid, and allows for multiple configurations of inverter

control type. The expected operating range for this network is shown in Table 6.2

below.
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Table 6.2: Expected Operating Range for Three-Bus Microgrid w/ External Infinite
Bus

B
u
s

P
G
,M

a
x

P
G
,M

in

P
L
,M

a
x

1 1.0 0.0 5.0
2 2.0 −2.0 6.0
3 0.0 0.0 6.0
4 ∞ −∞ 0.0

1

3

2

Y2,3 = −j20.0

Y1,2 = −j20.0

4

Y2,4 = −j4.0

PL,3

Infinite Bus

PMax,2 = 1.0 p.u.
PMin,2 = 0.0 p.u.

PMax,2 = 2.0 p.u.
PMin,2 = −2.0 p.u.

PMax,2,4 = 3.5 p.u.

PMax,1,2 = 7.0 p.u.

PMax,2,3 = 7.0 p.u.

PG,1

PG,2

PG,4

PL,1

PL,2

Figure 6.5: Single-Line Diagram of Lossless Three-Bus Grid-Tied Microgrid

Application of the search procedure for constraint-satisficing key line sets (Proce-

dure 5.2) determines that the key line set EKey = {(2, 4)} is the unique irreducable

(and unique minimal) constraint-satisficing key line set for this network under the

expected operating range in Table 6.2. Results of Procedure 5.1 applied to this net-

work for the expected operating range in Table 6.2 for the selection EKey = {(2, 4)}

are shown in Table 6.3.

Assume that we create a constraint-satisficing droop control configuration for this

network by using asymmetric CED at bus 2 to enforce the line power-flow constraint

on line (2, 4) (VCED = {2} and σ(2) = 4). We can calculate the maximum and min-

imum tension values on line (2, 4) by substituting the reference and load constraints
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Table 6.3: Results of Procedure 5.1 for Three-Bus Microgrid w/ External Infinite Bus
with EKey = {(2, 4)}

i k m In
E K

ey
?

P
U
B
o
u
n
d
,S
o
u
r
c
in

g

P
U
B
o
u
n
d
,S
in

k
in

g

P
L
B
o
u
n
d
,S
o
u
r
c
in

g

P
L
B
o
u
n
d
,S
in

k
in

g

P
U
B
o
u
n
d

P
L
B
o
u
n
d

P
M

a
x

C
o
n
st

ra
in

ts
M

e
t?

1 1 2 False 1.0 17.5 −5.5 −5.0 1.0 −5.0 7.0 True
2 2 3 False 6.5 6.0 0.0 −16.5 6.0 0.0 7.0 True
3 2 4 True 3.5 3.5 −3.5 −3.5 3.5 −3.5 3.5 True

from Table 6.2, the line power-flow bounds from Table 6.3, and the bus total fre-

quency dependence coefficients D2 = 1/(2π0.05) + 1e − 2 sec/rad and D4 = ∞ into

(144) and (145) as follows:

τMax,2,4 =D−1
2 PG,Max,2 −D−1

4 PG,Min,4 +D−1
4 PL,Max,4

+D−1
2 PUBound,1,2 −D−1

2 PLBound,2,3

=0.9422 rad/sec (171)

τMin,2,4 =D−1
2 PG,Min,2 −D−1

2 PL,Max,2 −D−1
4 PG,Max,4

+D−1
2 PLBound,1,2 −D−1

2 PLBound,2,3

=− 5.9672 rad/sec (172)

Notice that since D−1
4 = 0, then bus 4 does not contribute towards the total tension

on line (2, 4).

By Definition 6.7, in order for γMax,2,4 to be an enforcing selection, we should

select it according to:

γMax,2,4 ≥max

(
−D2

[
τMax,2,4

PMax,2,4

−D−1
4

]
, D2

[
τMin,2,4

PMax,2,4

−D−1
4

]
, 1

)

= max (0.8571, 5.4286, 1) = 5.4286 (173)
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We therefore select γMax,2,4 = 5.5 to form the a constraint-satisficing droop control

configuration VCED = {2}, σ(2) = 4, γMax,2,4 = 5.5 for the example three-bus grid-

tied microgrid in Figure 6.5.

6.5 Improved Frequency Synchronization and Power Shar-
ing of Constraint-Satisficing Droop Inverter Networks

We have shown that applying a constraint-satisficing droop control configuration

to a mixed-bus inverter-based network (thus creating a constraint-satisficing droop

inverter network, see Definition 6.3), we can explicitly enforce the key line constraints,

and thereby bound the network state trajectory θ(t) into the safe region ΘSafe. We

will now show that this is also sufficient to guarantee frequency synchronization for

the network on the expected operating range.

In Chapter 4, we used a modified form of LaSalle’s Theorem to show convergence of

the bus frequency values on closed subsets of the safe region. Because we now include

the possibility of network cycles and asymmetric application of CED, this method is

no longer sufficient to prove convergence (since the assumption of an acyclic network

and symmetric line tensions were necessary, see the proof to Theorem 4.5). In order

to show frequency synchronization of constraint-satisficing droop inverter networks,

we will use a method based on the Contraction Property (for a full explanation, [49,

81, 55]). Conceptually, the Contraction property of a system of coupled subsystems

states that under some mild assumptions, if the dynamics of each subsystem always

are always directed into the interior of the convex hull of the subsystem states, then

the convex hull of the states must contract, eventually reaching a point (corresponding

to state agreement).

We will apply the Contraction property method to the dynamics of the bus fre-

quencies in a mixed-bus inverter-based network under a constraint-satisficing droop

control configuration, and show that on the safe region, these frequencies are coupled

in such a way that the maximum and minimum bus frequencies are always converging,
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and as such must eventually converge to agreement (frequency synchronization). The

Convergence property as strictly stated does not directly apply to our network bus

frequency dynamics, since the bus frequency dynamics have non-linear state and time

dependences. However, by constructing a ficticious auxiliary system with minimum

convergence, we can show that the actual frequencies are always contained within

the interior of the auxiliary system, and that the Convergence property does directly

apply to the auxilliary system. Therefore, the auxiliary system must converge to a

point, and so the actual bus frequencies it contains must converge as well.

6.5.1 Modeling of Bus Frequency Dynamics

In this section, we are concerned with the dynamics of the bus frequency offset values

∆ωk for each bus k ∈ V . We have shown in Lemma 6.2 above that by correctly

selecting EKey and applying a constraint-satisficing droop control configuration to the

network (consisting of correctly chosen VCED, σ, and γMax,k,m for each (k,m) ∈ EKey),

it is possible to restrict the operation of the network to the safe region ΘSafe of the

voltage-angle state space. Therefore, we will restrict our analysis of the frequency

dynamics to the region where θ ∈ ΘSafe.

We showed in Chapter 3 that the dynamics of bus synchronous voltage angle δk

may be modeled by the dynamic equation (6) if k is a network bus or a traditional-

droop inverter bus. Since ∆ωk = δ̇k, we may find the dynamics of ∆ωk by taking the

time-derivative of (6):

∆̇ωk = D−1
k

[
˙PRef,k − ˙P 0

L,k −
∑

m∈N (k)

∂PLine,k,m
∂θk,m

θ̇k,m

]
(174)

for each k ∈ (V \ VCED)

Now consider the synchronous voltage-angle dynamic equation (139) for a CED

inverter bus. Taking the time-derivative, we find the bus frequency dynamics for a
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CED inverter bus:

∆̇ωk = D−1
k

[
˙PRef,k − ˙P 0

L,k −
∑

m∈N (k)\σ(k)

∂PLine,k,m
∂θk,m

θ̇k,l

− γk,σ(k)(|PLine,k,σ(k)|)
∂PLine,k,σ(k)

∂θk,σ(k)

θ̇k,σ(k)

− ∂γk,σ(k)

∂|PLine,k,σ(k)|
∂PLine,k,σ(k)

∂θk,σ(k)

|PLine,k,σ(k)|θ̇k,σ(k)

]
(175)

for each k ∈ VCED.

The dynamic equations (174) and (175) together form the bus frequency dynam-

ics for a mixed-bus inverter-based AC network. Both consist of two forcing terms

( ˙PRef,k − ˙P 0
L,k) plus a summation of coupling terms to other buses. Further, we

can combine the two equations, and represent them as a summation of weighted

frequency-coupling terms as follows:

∆̇ωk = D−1
k [ ˙PRef,k − ˙P 0

L,k]−
∑

m∈N (k)

αk,m(θk,m)θk,m

= D−1
k [ ˙PRef,k − ˙P 0

L,k]−
∑

m∈N (k)

αk,m(θk,m)(∆ωk −∆ωm) (176)

for all k ∈ V , where

αk,m(θk,m) =





D−1
k

[
γk,m(|PLine,k,m|) +

∂γk,m
∂|PLine,k,m|

|PLine,k,m|
]
∂PLine,k,m
∂θk,m

k ∈ VCED

and σ(k) = m

D−1
k

∂PLine,k,m
∂θk,m

Otherwise

(177)

is a state-dependent weight term for each line, where the weight αk,m is a function of

the associated line voltage-angle difference θk,m, and is not necessarily line-symmetric

(αk,m does not necessarily equal αm,k).

In Lemma 3.3, we showed that partial derivative ∂PLine,k,m/∂θk,m is strictly posi-

tive on the principal region (and therefore on the safe region since ΘSafe ⊂ ΘPrincipal).

By assumption D−1
k > 0 for all k ∈ V , and by Definition 6.5, γk,m(|PLine,k,m|) is strictly
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positive and ∂γk,m/∂|PLine,k,m| non-negative. Therefore, the state-dependent weight is

strictly positive (αk,m(θk,m) > 0) for all lines (k,m) ∈ E on the safe region θ ∈ ΘSafe.

Thus, the bus frequency dynamics of any bus can be represented as a conic com-

bination (summation with all non-negative weights) of the differences between bus

frequencies across each incident line (plus a forcing term).

Consider the vector of bus frequency values ∆ω =

[
∆ω1 . . . ∆ωN

]T
∈ RN , and

imagine its members as points on a line. Then their convex hull is a line segment

between the maximum and minimum values of ∆ωk. The terms of the bus frequency

dynamics (176) can then be imagined as tensions, which pull the bus frequencies

towards each other on ΘSafe (since the coefficients αk,m(θk,m) are always positive

on ΘSafe). If the forcing terms decay to zero (as when PRef,k and P 0
L,k converge to

constants), then the total dynamics ∆ωk for each k ∈ V should be directed into the

convex hull. However, this property is not sufficient to ensure synchronization of the

bus frequencies, since the Contraction Property Theorem [49, Theorem 3.8] as stated

applies only to networked systems where the weight depends only on the consensus

variable (∆ω in this case), and not when it depends on time or an external variable (θ

in this case). Therefore, we will introduce below a ficticious “auxiliary system”, such

that the convex hull of the auxiliary system always contains the actual bus frequency

values, and the Contraction Property Theorem can be shown to apply directly to the

auxiliary system.

6.5.2 Development of Auxiliary Bounding System

Consider again the state-dependent weight functions αk,m for each line (k,m) ∈ E in

(177). Finding the partial derivative ∂PLine,k,m/∂θk,m from (2) and substituting into
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(177):

αk,m(θk,m) =





D−1
k

[
γk,m(|PLine,k,m|) +

∂γk,m
∂|PLine,k,m|

|PLine,k,m|
]
Yk,mVkVm cos(θk,m)

k ∈ VCED

and σ(k) = m

D−1
k Yk,mVkVm cos(θk,m) Otherwise

(178)

Recall that Yk,m, Vk, Vm, and D−1
k are all (by assumption) strictly positive. By

Definition 6.5, γk,m(|PLine,k,m|) ≥ 1 and ∂γk,m/∂|PLine,k,m| ≥ 0. Therefore, we may

bound αk,m from below by:

αk,m(θk,m) ≥ D−1
k Yk,mVkVm cos(θk,m) (179)

Further, by Corollary 3.2, |θk,m| ≤ θMax,k,m on ΘSafe for each (k,m) ∈ E , and

therefore, we can further bound αk,m by:

αk,m(θk,m) ≥ D−1
k Yk,mVkVm cos(θMax,k,m) = αMin,k,m, θ ∈ ΘSafe (180)

where αMin,k,m > 0 is a constant, which represents the minimum value of the coeffi-

cient αk,m(θk,m) on ΘSafe.

Imagine a fictitious auxiliary variable vk(t) associated with each bus k ∈ V , where

vk(T ) = ∆ωk(T ) for some time T . However, while ∆ωk evolves in t ≥ T according

to the dynamics (176) (based on the state-dependent tension weights αk,m(θk,m)),

vk(t) evolves according to the same dynamics but with the constant minimum ten-

sion weights αMin,k,m). The auxiliary system v(t) therefore represents a “minimum

coupling” version of the frequency dynamics.

Figure 6.6 below shows the elements of the vector of bus frequency values ∆ω

and auxiliary variables v =

[
v1 . . . vN

]T
for an example system as points on a

line. Notice that at time t = T (Figure 6.6a), ∆ω(T ) = v(T ). However, vMax

(the maximum element of v) is decreasing more slowly than ∆ωMax (the maximum

element of ∆ω), since the tension weights in the dynamics of v are always less than
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or equal to those in the dynamics of ∆ω. Similarly, vMin is increasing more slowly

than ∆ωMin (for the same reason). Therefore, at time t = T + ∆T (Figure 6.6b),

vMax ≥ ∆ωMax and vMin ≤ ∆ωMin. Therefore, the line segment between vMin and

vMax (convex hull of v) always contains all of the bus frequency values. We formalize

this result in Lemma 6.3 below.

v

∆ω(T )

∆ω

∆ω(T ) = v(T )∆ω(T ) = v(T ) v̇ v̇

∆̇ω ∆̇ω

v(T )

(a) ∆ω and v at time t = T

v

∆ω(T +∆T )

∆ω

v̇ v̇

∆̇ω ∆̇ω

v(T +∆T )

∆ω(T +∆T )
≥

v(T +∆T )

∆ω(T +∆T )
≤

v(T +∆T )

(b) ∆ω and v at time t = T + ∆T for some ∆T > 0

Figure 6.6: Example bus frequencies and auxiliary variables

Lemma 6.3 (Bus frequencies are always contained inside auxiliary system convex

hull). Consider a trajectory ∆ω(t) of the bus frequency offset dynamics (176) with

weight coefficients (177), and assume that θ(t) ∈ ΘSafe for all t ≥ T and that ˙PRef =

Ṗ0
L = 0N . Consider the trajectory v(t) =

[
v1(t) . . . vN(t)

]T
∈ RN where v(T ) =

∆ω(T ) and

v̇k = −
∑

m∈N (k)

αMin,k,m(vk − vm) (181)

where

αMin,k,m = D−1
k VkVm cos(θMax,k,m) > 0 (182)

185



Consider also the following values:

∆ωMax(t) = max
k∈V
{∆ω(t)} (183)

∆ωMin(t) = min
k∈V
{∆ω(t)} (184)

vMax(t) = max
k∈V
{v(t)} (185)

vMin(t) = min
k∈V
{v(t)} (186)

Then the following inequality holds for all for all k ∈ V and for all t ≥ T :

vMin(t) ≤ ∆ωMin(t) ≤ ∆ωk(t) ≤ ∆ωMax(t) ≤ vMax(t) (187)

that is, the convex hull of the frequency error ∆ω(t) is contained within the convex

hull of v(t).

Proof. Consider the frequency dynamics (176) where PRef and P0
L are constant. Ob-

serve that these dynamics are of the form:

∆̇ωk = −
∑

m∈N (k)

αk,m(θk,m(t))(∆ωk −∆ωm) = fk(∆ω, t) ∀ k ∈ V (188)

where the state-dependent weight term αk,m(θk,m) is found as in (177). We have shown

above that αk,m(θk,m) ≥ αMin,k,m for all θ ∈ ΘSafe, where the constant αMin,k,m is

calculated as in (180).

Now consider the dynamic variables ∆ωMax(t) and vMax(t). For each t ≥ T , there

exists kMax(t) ∈ V such that vMax(t) = vkMax(t) and v̇Max(t) = v̇kMax(t). Since (by

definition) (vkMax(t)(t) − vm(t)) ≥ 0 for all m ∈ V and αk,m(θk,m) ≥ αMin,k,m > 0 for

all (k,m) ∈ E , then

v̇Max(t) = v̇kMax(t) = −
∑

m∈N (kMax(t))

αMin,kMax(t),m (vkMax(t) − vm)

≥ −
∑

m∈N (kMax(t))

αkMax(t),m(θkMax(t),m) (vkMax(t)(t)− vm)

= fkMax(t)(v(t), t) (189)
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Since ∆ωMax(T ) = vMax(T ) and v̇Max(t) ≥ fkMax(t)(v(t), t) for all t ≥ T , then (by the

Comparison Principal [43, Ch. 3]) vMax(t) ≥ ∆ωMax(t) for all t ≥ T .

Similarly for each t ≥ T , there exists kMin(t) ∈ V such that vMin(t) = vkMin(t) and

v̇Min(t) = v̇kMin(t), and since (vkMin(t)(t)− vm(t)) ≤ 0 for all m ∈ V , then

v̇Min(t) = v̇kMin(t) = −
∑

m∈N (kMin(t))

αMin,kMin(t),m (vkMin(t) − vm)

≤ −
∑

m∈N (kMin(t))

αkMin(t),m(θkMin(t),m) (vkMin(t) − vm)

= fkMin(t)(v(t), t) (190)

Since vMin(T ) = ∆ωMin(T ) and v̇Min(t) ≤ fkMin(t)(v(t), t) for all t ≥ T , then (by the

Comparison Principal [43, Ch. 3]) vMin(t) ≤ ∆ωMin(t) for all t ≥ T .

By definition ∆ωMin(t) ≤ ∆ωk(t) ≤ ∆ωMax(t) for all k ∈ V and all t. Therefore:

vMin(t) ≤ ∆ωMin(t) ≤ ∆ωk(t) ≤ ∆ωMax(t) ≤ vMax(t) (191)

for all k ∈ V and for all t ≥ T .

Lemma 6.3 shows that the line segment between the maximum and minimum

values of ∆ωk(t) for all k ∈ V (the convex hull of ∆ω(t)) is always contained within

the line segment between the maximum and minimum values of vk(t) (the convex hull

of v(t)). Conceptually, this is because vMin and vMax are pulled towards the interior

of v more slowly than ∆ωMin and ∆ωMax are pulled towards the interior of ∆ω (since

the tension weights are smaller).

6.5.3 Frequency Synchronization

In Lemma 6.2, we showed that in a constraint-satisficing droop inverter network

(Definition 6.3), the network voltage-angle trajectory is constrained to the safe region

ΘSafe, on which all line power-flow constraints are met (|PLine,k,m| ≤ PMax,k,m ∀ (k,m) ∈

E). We further showed in Lemma 6.3 that on ΘSafe, the bus frequency values ∆ω(t)
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are contained in the convex hull of a simple linear auxiliary system v(t). Therefore,

in order to show that a constraint-satisficing droop control configuration is sufficient

to guarantee frequency synchronization on the expected operating range, we need

only show that v(t) must converge to state agreement. We show this result via the

Contraction Theorem (see [49, Theorem 3.8], which applies directly to the auxiliary

system v(t). We show this result formally below:

Theorem 6.1 (Improved Frequency Synchronization of Constraint-Satisficing Droop

Inverter Networks). Consider a given constraint-satisficing droop inverter network

(Definition 6.3), and assume that (PG(t),PL(t)) ∈ P and (PRef (t),P
0
L(t)) ∈ P for

all t ≥ 0. Further assume that there exists time T > 0 such that ˙PRef (t) = 0 and

Ṗ0
L(t) = 0 for all t ≥ T . Consider the trajectory θ(t) of the network dynamics

(141) for t ≥ 0 such that θ(0) ∈ ΘSafe. Then there exists ∆ωSys ∈ R such that

∆ω(t) → ∆ωSys1N (frequency synchronization) and there exists θF ∈ ΘSafe such

that θ(t)→ θF (phase coherency).

Proof. We have shown (in Lemma 6.2) that the line voltage-angle θ dynamics (141)

of a network meeting the assumptions in Theorem 6.1 are invariant to the set ΘSafe.

Since (by assumption) θ(0) ∈ ΘSafe, then θ(t) ∈ ΘSafe ⊂ ΘPrincipal for all t ≥ 0.

Now consider the dynamics of the bus frequency dynamics ∆ω(t) in (176) with

tension weights (177). By assumption, ˙PRef,k(t) = 0 and ˙PL,k(t) = 0 for t ≥ T > 0.

Therefore, for t ≥ T :

∆̇ωk = −
∑

m∈N (k)

αk,m(θk,m)(∆ωk −∆ωm) ∀ k ∈ V (192)

Since T > 0, then θ(T ) ∈ ΘSafe. Therefore the results of Lemma 6.3 apply,

showing that the bus frequency values ∆ωk(t) for all k ∈ V are contained within the

convex hull of a simpler system v(t) =

[
v1(t) . . . vN(t)

]T
∈ RN for t ≥ T , where the

dynamics of v(t) are shown in (181) and v(T ) = ∆ω(T ). Therefore, if v(t) converges
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to state agreement (and so its convex hull contracts to a point), then ∆ω(t) must as

well.

We will show that for t ≥ T , the Contraction Thorem [49, Theorem 3.8] applies to

the bounding system v(t). The Contraction Theorem considers a system of non-linear

coupled subsystems with dynamics in the following form:

v̇k = −
∑

m∈NIn(k)

αk,m(v)(vk − vm) (193)

where NIn(k) the in-neighborhood for bus k ∈ V in a directed network, that is, the

set of all other buses such that there exists a line from m to k (not from k into m).

The dynamics in (188) are similar to (193), except that in (188) each ∆̇ωk depends

on all its neighbors in the power-flow structure graph G (N (k)) rather than just

NIn(k). Therefore, we will form the directed dynamic iteraction graph G′ = (V , E ′)

where E ′ = {E , reverse(E)} such that (181) can be written in the form (193) using G′

as the underlying dynamic-interaction graph. Further, observe that since the power-

flow structure graph G is assumed to be connected, then G′ is strongly connected for

all t (and therefore uniformly quasi-strongly connected).

The contraction property states that if αk,m(v) > 0 and locally Lipschitz for

all (k,m) ∈ E and the underlying dynamic interaction graph is uniformly quasi-

strongly connected then the network state v will converge to the agreement subspace

span{1N}. Therefore, the Contraction Theorem [49, Theorem 3.8] applies to the

auxiliary system v(t) since:

1. The network dynamics (181) are globally Lipschitz, satifying [49, Assumption

A1]).

2. The coupling weight term αMin,k,m for all (k,m) ∈ E of the v(t) dynamics is

strictly positive, satisfying the strict subtangentiality condition [49, Assumption

A2]).
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3. The dynamic interaction graph G′ (not the power-flow structure graph G) is

statically strongly connected (and therefore uniformly quasi-strongly connected,

satisfying [49, Assumption A3]).

The above show that [49, Theorem 3.8] applies to the bounding system v(t)

with dynamics (181), and therefore there exists ∆ωSys ∈ R such that limt→∞ v(t) =

∆ωSys1N . Since we have also shown (Lemma 6.3) that vMin(t) ≤ ∆ωk(t) ≤ vMax(t),

then limt→∞ vMin(t) = limt→∞∆ωk(t) = limt→∞ vMax(t) = ∆ωSys for all k ∈ V , that

is, limt→∞∆ω = ∆ωSys1N .

Finally, since θ̇ = DT δ̇ = DT∆ω and DT1N = 0L, then limt→∞ θ̇ = DT limt→∞∆ω =

0L. Since we have shown that θ(t) ∈ ΘSafe for all t ≥ 0 and ΘSafe is compact (Corol-

lary 3.2), then there exists θF ∈ ΘSafe such that limt→∞ θ(t) = θF .

Theorem 6.1 confirms the expectation that application of a constraint-satisficing

droop control configuration (per Definition 6.3), which was already shown to bound

the network operation into the safe region ΘSafe, is also sufficient to ensure frequency

synchronization of the network for any condition with the expected operating range

P. It extends Theorem 3.5 (which only applied to droop inverter-based network)

to the much more general case encompased by mixed-bus inverter-based networks.

In addition, it provides a much stronger result: by applying a constraint-satisficing

droop control configuration, it is possible to ensure frequency synchronization for any

initial condition and any operating conditions within the expected operating range.

6.6 Power Sharing in Constraint-Satisficing Droop Inverter
Networks

Throughout this work, we have attempted to use frequency synchronization of the

network to ensure equitable sharing of real power between the inverter sources (ac-

cording to their assigned reference and droop values). In Chapter 3 we showed that

frequency synchronization of traditional droop inverter-based networks is sufficient to
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ensure power sharing between inverters, which we termed the simple power sharing

property. We extended this result in Chapter 4 by showing that in all-active-bus,

acyclic CED networks, a similar property applies, but when a constraint is active

the incident inverter must adjust their real power output to enforce the constraint,

which we termed the constrained power sharing property. In this section, we consider

the convergence properties of a mixed-bus inverter-based network under a constraint-

satisficing droop control configuration, and show that it also possess properties en-

suring the sharing of real power between inverters. Further, since such a network

has been shown to have significantly improved frequency synchronization behavior

(as compared with traditional frequency-droop), it follows that its power sharing will

also be much more robust.

6.6.1 Center-of-Mass Frequency for Constraint-Satisficing Droop Inverter
Network

In Lemma 3.1, we showed that a traditional droop inverter-based network possesses

the static center-of-mass frequency property, that is, its center-of-mass frequency (de-

fined in Definition 3.2) is static (independent of state) for constant inputs PRef and

P0
L. We showed in Lemma 4.2 that the same property also holds for all-active-bus,

acyclic CED networks. In both cases, this property is due to the fact that all line

dynamic tensions (PLine,k,m in traditional droop and γk,mPLine,k,m for all-active-bus

CED) are line-odd, and therefore cancel in the center-of-mass frequency summation.

However, as we will show below, this property only holds for constraint-satisficing

droop inverter networks only under certain conditions, due to the asymmetry of some

line dynamic tensions.

Lemma 6.4 (Conditional Static Center-of-Mass Frequency for Constraint-Satisficing

Droop Inverter Networks). Consider the center-of-mass frequency ∆ωCOM(t) defined

in Definition 3.2 for a state trajectory θ(t) ∈ ΘSafe for t ≥ 0 of a given constraint-

satisficing droop inverter network (Definition 6.3) where (PG(t),PL(t)) ∈ P and

191



(PRef (t),P
0
L(t)) ∈ P for all t ≥ 0. Further assume that there exists time T > 0

such that ˙PRef (t) = 0 and Ṗ0
L(t) for all t ≥ T . Then ∆ωk(t) → ∆ωCOM(t) = 0 for

each k ∈ V. Further, the static center-of-mass frequency property:

∆ωCOM(t) =

∑
k∈V PRef,k(t)−

∑
k∈V P

0
L,k(t)∑

k∈V Dk

=
∆PRef
D , (194)

holds if Symmetric CED Placement (Definition 6.6.B) is used for each key line

(k,m) ∈ EKey.

Proof. We have already shown in Theorem 6.1 above that for the condition in Theo-

rem 6.2, then there exists ∆ωSys ∈ R and θF ∈ ΘSafe such that ∆ω(t) → ∆ωSys1N

and θ(t)→ θF .

Taking the limit of ∆ωCOM(t) as t→∞:

lim
t→∞

∆ωCOM(t) =

∑
k∈V Dk limt→∞∆ωk(t)∑

k∈V Dk

=

∑
k∈V Dk∆ωSys∑

k∈V Dk

= ∆ωSys = lim
t→∞

∆ωk(t) ∀ k ∈ V (195)

Therefore, ∆ωk(t) → ∆ωSys for all k ∈ V implies that ∆ωk(t) → ∆ωCOM(t) for all

k ∈ V .

Consider again the center-of-mass frequency ∆ωCOM as in Definition 3.2. Substi-

tuting the dynamic equation (7) for k ∈ (VDroop ∪ VNet) and (139) for k ∈ VCED:

∆ωCOM(t) =
1∑

k∈V Dk

∑

k∈(VDroop∪VNet)


PRef,k − P 0

L,k −
∑

m∈N (k)

PLine,k,m




+
1∑

k∈V Dk

∑

k∈VCED

[
PRef,k − P 0

L,k −
∑

m∈N (k)\σ(k)

PLine,k,m

− γk,σ(k)(|PLine,k,σ(k)|) PLine,k,σ(k)

]
(196)

Since the network is constraint-satisficing, then by Definition 6.6 each key line is

enforced either by asymmetric or symmetric CED placement. Let EKey,Sym by the set

of key lines enforced by symmetric CED placement and let EKey,Asym by the set of
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key line enforced by asymmetric CED placement. Then the summation in (196) may

be rearranged by lines as follows:

∆ωCOM(t) =
1∑

k∈V Dk

[∑

k∈V

[
PRef,k − P 0

L,k

]

+
∑

(k,m)∈(E\EKey)

[PLine,k,m + PLine,m,k]

+
∑

(k,m)∈EKey,Sym

[γk,m(|PLine,k,m|)PLine,k,m + γm,k(|PLine,m,k|)PLine,m,k]

+
∑

(k,m)∈EKey,Asym

[γk,m(|PLine,k,m|)PLine,k,m + PLine,m,k]

]

(197)

By assumption, γk,m(|PLine,k,m|) = γm,k(|PLine,m,k|), and by (2) PLine,k,m = −PLine,m,k.

Therefore, the summations associated with the non-key lines and symmetric CED key

lines cancel:

∆ωCOM(t) =
1∑

k∈V Dk

[∑

k∈V

[
PRef,k − P 0

L,k

]

+
∑

(k,m)∈EKey,Asym

[γk,m(|PLine,k,m|)PLine,k,m + PLine,m,k]

]

(198)

Now consider the condition where Symmetric CED Placement is used for all key

lines. Then EKey,Asym = ∅, and so (198) reduces to (194).

Lemma 6.4 shows that a constraint-satisficing droop inverter network using sym-

metric CED placement has the same static center-of-mass frequency ∆ωCOM as either

a traditional droop network (see Lemma 3.1) or an all-active-bus CED network (see

Lemma 4.2).

6.6.2 Constrained Power Sharing of Constraint-Satisficing Droop Inverter
Networks

The inverter sources in a constraint-satisficing droop inverter network are a mix of

traditional frequency-droop inverters and bounded, single-line CED inverters. We
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showed in Lemma 3.2 that because the traditional frequency-droop control law cre-

ates an explicit relationship between inverter output power and frequency, frequency

synchronization of the network is sufficient to ensure that traditional droop inverters

share power according to their assigned reference and droop constant values. Like the

all-incident-line CED control law, the single-line CED control law produces dynamics

identical to traditional droop when no incident line constraints are active. As such,

all droop inverters and all CED inverters not incident to lines with active constraints

should share power similarly to inverters in a traditional droop network. We formalize

this result as follows:

Theorem 6.2 (Constrained Power Sharing of Constraint-Satisficing Droop Inverter

Networks). Consider a given constraint-satisficing droop inverter network (Definition

6.3), and assume that (PG(t),PL(t)) ∈ P and (PRef (t),P
0
L(t)) ∈ P for all t ≥ 0.

Further assume that there exists time T > 0 such that ˙PRef (t) = 0 and Ṗ0
L(t) = 0

for all t ≥ T . Consider the trajectory θ(t) of the network dynamics (141) for t ≥ 0

such that θ(0) ∈ ΘSafe. Then for each k ∈ VDroop and each k ∈ VCED such that

|PLine,k,σ(k)(θF,k,σ(k))| ≤ (1− εk,m)PMax,k,σ(k):

lim
t→∞

PG,k(t) = PRef,k −R−1
k ∆ωSys (199)

for some ∆ωSys ∈ R. Further,

lim
t→∞

PG,k(t) = PRef,k −R−1
k

∆PRef
D = PF,k (200)

(where PF,k is defined in (20)) if Symmetric CED Placement (Definition 6.6.B) is

used for each key line (k,m) ∈ EKey.

Proof. We have already shown in Theorem 6.1 above that for the condition in The-

orem 6.2, then there exists ∆ωSys ∈ R and θF ∈ ΘSafe such that ∆ω(t)→ ∆ωSys1N

and θ(t)→ θF .
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Consider the traditional frequency droop control law (4), which applies at each

k ∈ VDroop. Solving for for PG,k(t):

PG,k(t) = PRef,k −R−1
k ∆ωk(t) (201)

We have shown in Theorem 6.1 that under the conditions in Theorem 6.2, ∆ωk →

∆ωSys for all k ∈ V . Taking the limit of (201) as t→∞ and substituting limt→∞∆ωk(t) =

∆ωSys yields (199).

Now consider the single-line CED control law (137), which applies at each k ∈

VCED. If |PLine,k,σ(k)(θF,k,σ(k))| ≤ (1 − εk,m)PMax,k,σ(k), then by Definition 6.5.C,

limt→∞ γk,σ(k)(|PLine,k,σ(k)(θk,m(t))|) = 1. Substiting into (137) and simplifying:

∆ωk = D−1
k


PRef,k − P 0

L,k −
∑

k∈N (k)

PLine,k,m


 (202)

Recall that PL,k = P 0
L,k+D

′
k∆ωk, Dk = R−1

k +D′k, and PG,k = PL,k+
∑

m∈N (k) PLine,k,m.

Substituting into (202) and solving for PG,k(t):

PG,k(t) = PRef,k −R−1
k ∆ωk(t) (203)

Taking the limit as t → ∞ and substituting limt→∞∆ωk(t) = ∆ωSys again yields

(199). Therefore, (199) holds either when k ∈ VDroop or when k ∈ VCED and

|PLine,k,σ(k)| ≤ (1− εk,m)PMax,k,σ(k).

Finally, we have shown in Lemma 6.4 that if symmetric CED placement is used

for each key line (k,m) ∈ EKey, then limt→∞∆ωCOM(t) = ∆ωSys = ∆PRef/D. Sub-

stituting into (199) yields limt→∞ PG,k(t) = PF,k, where PF,k if the final power value

in (20).

Thorem 6.2 shows that for a constraint-satisficing droop inverter network, a form

of constrained power sharing is guaranteed for any operating condition within the safe

region. In this form of power sharing, each traditional droop inverter and each CED

inverter not enforcing an active constraint must converge to a state such that each
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sources its reference power plus an offset inverse-proportional to its droop constant.

However, the frequency (and therefore offset term of each inverter’s output power)

does not necessarily converge to the same value as in the traditional droop or all-

active-bus, acyclic CED networks. This is due to the power injection associated

with active constraints on key lines being enforcing by asymmetric CED: the single

inverter asymemtrically enforcing a key line constraint must inject power which is not

balanced by complementary injection on the other end of the line, thus unbalancing

the center-of-mass frequency summation and skewing its results. If there are no key

lines to which were assigned asymmetric CED placements, or if no constraints are

active, then the center-of-mass frequency is the same as that in traditional droop

or all-active-bus, acyclic CED networks. As we will show in the following example

section, this constitutes an advantage associated with symmetric CED placement,

which may justify its increased cost as compared to asymmetric CED placement.

6.6.3 Discussion on Frequency Synchronization and Power Sharing in
Constraint-Satisficing Droop Inverter Networks

Together, Theorems 6.1 and 6.2 describe the synchronization and power sharing be-

havior of constraint-satisficing droop inverter networks. As compared with Theorem

3.5, they show that a constraint-satisficing droop inverter network has significantly

improved synchronization behavior as compared with a similar traditional frequency-

droop inverter network. While a traditional droop network may lose synchronization

(and therefore power sharing) due to network non-linearities and constraints, the

CED inverters in a constraint-satisficing droop inverter network enforce the specified

key line constraints, thereby bounding the network voltage-angle trajectory within

the safe region and ensuring synchronization and constrained power sharing.

However, the results of Theorems 6.1 and 6.2 still fall short of formal control-

theoretic robustness to changing operating conditions. This is because, in addition to

requiring the bounding of the network inputs PRef (t) and P0
L(t) within the compact
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set P (representing the network expected operating range), we also require the quanti-

ties PG(t) and PL(t) (the network generation and load vectors) to be bounded within

the same range. Because PG(t) and PL(t) are state-dependent quantities, Theorems

6.1 and 6.2 still constitute dynamic conditions for synchronization and power sharing.

Despite this limitation, we argue that the results of Theorems 6.1 and 6.2 still con-

stitute significantly improved synchronization behavior as compared with traditional

frequency-droop, since bounding generation and load is much simpler to accomplish

than bounding the network voltage-angle trajectory. Almost all inverter sources in

practice implement power-limiting behavior (which limits PG,k within its specified

range), and almost all load circuits are equipped with relays or circuit breakers to

limit the maximum load power within its specified range. Since power flows in a net-

work are bounded on the expected operating range, the power injections required of

CED inverters to enforce key line power-flow constraints are also bounded. Therefore,

by extending the dynamic model used to encompass power limiting behavior and by

requiring that CED inverters possess sufficient capacity to enforce the assigned key

line constraint under worst-case conditions, it should be possible to relax the assump-

tion that generation and load remain within the safe region, and instead show that it

follows from the network dynamics, resulting in formally robust synchronization and

power sharing behavior.

In addition, Lemma 6.4 and Theorem 6.2 reveal the trade-off inherent in choosing

symmetric vs. asymmetric CED configuration for key lines. In symmetric CED con-

figuration, a CED inverter is placed on each end of the key line, and the two inverters

share the responsibility for enforcing its constraint. In asymmetric CED configura-

tion, only a single CED inverter is placed at one incident bus, which is responsible for

the enforcement by itself. Symmetric CED configuration has the advantage that when

the constraint is active, the two CED inverters provide symmetric power injections
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whose effects cancel each other, and so the network maintains the static center-of-

mass frequency property and all other inverters are uneffected. Asymmetric CED

configuration results in an asymmetric power injection when the constraint is active,

which displaces the center-of-mass frequency as well as the final output power of the

other inverters. However, symmetric CED configuration requires two inverters and

more measurements, increasing cost.

6.7 Simulation Results for CED Sparse Configuration in
Example Networks

In this section, we present the development of a constraint-satisficing droop control

configuration for several example networks, and present simulation results verifying

the claim of guaranteed frequency synchronization and power sharing on the expected

operating range, as well as exploring the response of such a network to a variety of

input conditions. In the following examples, we use the example gain function γk,m

as defined in (138) with εk,m = 0.2 and Ck,m = 0.1 for all (k,m) ∈ EKey.

6.7.1 Six-Bus Radial Microgrid

In Chapter 4, we considered the six-bus radial microgrid network whose single-line

diagram is shown in Figure 4.2. In this network, two subnetworks ({1, 2, 3} and

{4, 5, 6} ⊂ V) are connected by a single line (3, 4). In Simulation 4.5, we showed

that this network may lose synchronization under traditional frequency-droop control

due to a significant imbalance between the reference power injection totals between

the two subnetworks. In Simulation 4.6, all-active-bus CED was applied, resulting in

frequency sychronization and constrained power sharing under the same conditions, in

which inverters 3 and 4 provided complementary power injections to enforce the line

constraint |PLine,3,4| ≤ PMax,3,4, while all other inverters converged to their respective

final power values. In Chapter 5, we showed that the key line set EKey = {(3, 4)} is a

constraint-satisficing key line set for this network under the expected operating range
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in Table 5.1. In Section 6.4.6.1, we developed two constraint-satisficing droop control

configurations, one symmetric (Figure 6.4b) and one asymmetric (Figure 6.4a) for

this network and expectedc operating range.

We will now simulate this network under both the symmatric and asymmetric

constraint-satisficing droop control configurations for the same load step condition

as in Simulation 4.5 and 4.6 (post-step conditions reprinted in Tables 6.4 and 6.5).

Notice that the (post-step) value of ∆PEq,3,4 is greater than Y3,4V3V4, and as a result

then without constraint enforcement, this network will lose synchronization across

line (3, 4) after the step (as occured in Simulation 4.5).

Table 6.4: Post-Step Bus Configuration for Simulations 6.1 and 6.2

k PRef (p.u) P0
L (p.u) PF (p.u)

1 1.00 0.00 1.00
2 1.00 0.00 1.00
3 0.00 0.25 0.00
4 0.00 2.75 0.00
5 1.00 0.50 1.00
6 1.00 0.50 1.00

Table 6.5: Post-Step Line Configuration for Simulations 6.1 and 6.2

i k m YLine(p.u) PMax(p.u) ∆PEq (p.u)
1 1 3 2.00 1.50 1.00
2 2 3 2.00 1.50 1.00
3 3 4 1.50 1.00 1.75
4 5 4 2.00 1.50 0.50
5 6 4 2.00 1.50 0.50

Simulation 6.1 applies the same load step as Simulations 4.5 and 4.6, but with

the symmetric CED configuration (Figure 6.4b) developed in Section 6.4.6.1 applied.

In this configuration, inverters 3 and 4 both implement the bounded, single-line form

of the CED control law (Definition 6.4) with γMax,3,4 = γMax,4,3 = 3, while all other

inverters implement traditional frequency-droop. By Theorems 6.1 and 6.2, this con-

figuration should be sufficient to enforce the line power-flow constraints and guarantee
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synchronization and constrained power sharing for the entire operating range defined

by Table 5.1.

In Simulation 6.1, the load step is applied at t = 0 to the network under the

symmetric CED configuration developed in Section 6.4.6.1 (Figure 6.4b), and the

network response is shown in Figure 6.7. Notice that in this sparse placement of

CED inverters, inverters 3 and 4 respond to the approach of |PLine,3,4| to PMax,3,4 by

increasing the adaptive gain γ3,4 = γ4,3, thereby enforcing the constraint and bounding

the network within the safe region of the voltage-angle space. The participation of

inverters 1, 2, 5, and 6 in the constraint-enforcement is not necessary, since the

constraints on their incident lines are implicitly enforced by the generation and load

constraints in Table 5.1. Therefore, the bus frequencies all synchronize to the center-

of-mass frequency, which is equal to that of the equivalent traditional-droop (or all-

active-bus, acyclic CED network) network, since all symmetric CED configuration

is used. Finally, the inverter output power values all converge to constants. Since

inverters 1, 2, 5, and 6 are operating traditional frequency-droop, their output power

values all converge to their respective PF,k values found by (20), while inverters 3 and 4

provide complimentary power injections to enforce the constraint |PLine,3,4| ≤ PMax,3,4.

Overall, Simulation 6.1 shows that the sparse, symmetric CED placement in Figure

6.4b provides almost identical behavior to that of all-active-bus deployment of CED

inverters, but only two CED inverters (and many fewer measurements) are required.

In contrast, Simulation 6.2 applies the same load step, but the asymmetric CED

configuration (Figure 6.4a) developed in Section 6.4.6.1 is used. In this configu-

ration, only inverter 3 implements the bounded, single-line CED control law with

γMax,3,4 = 5, while all other inverters implement traditional frequency-droop. Figure

6.8 shows the simulation results for this network with the load step applied at t = 0.

In this case, inverter 3 increases the adaptive gain γ3,4 to enforce the constraints

|PLine,3,4| ≤ PMax,3,4, bounding the network in the safe region and again resulting
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in frequency synchronization. However, in this case, the center-of-mass frequency

∆ωCOM does not remain static for static reference and load inputs after the step,

and as such does not equal ∆PRef/D (that is, the static center-of-mass frequency

property does not hold). This is due the fact that inverter 3 must asymmetrically

enforce the constraint on line (3, 4), and inverter 4 does not provide a complimentary

power injection. Further, while all of the inverters output power values converge to a

constant, none of them (including those of inverters operating traditional frequency-

droop) converge to their respective final power values PF,k. Finally, because inverter

3 must enforce the constraint without the participation of inverter 4, it must provide

a much larger power injection than under symmetric CED configuration (Simulation

6.1), and as such must have a higher power rating, and the values of PG,Min,3 and

PG,Max,3 must be set accordingly.

In summary, Simulations 6.1 and 6.2 confirm the following:

1. Both symmetric and asymmetric constraint-satisficing droop control configura-

tions are able to (either explicitly or implicitly) enforce the network line power-

flow constraints, thus rendering invariant the safe region of the voltage-angle

state space (Theorem 6.2).

2. Both symmetric and asymmetric constraint-satisficing droop control configura-

tions ensure network frequency synchronization (Theorem 6.1).

3. Symmetric CED configuration has the advantage that it ensures that the static

center-of-mass frequency property holds, while asymmetric CED configuration

does not necessarily provide this behavior (Lemma 6.4).

4. As a result, symmetric CED configuration ensures the convergence of the out-

put power values of droop inverters (or CED inverters assigned to inactive

constraints) to their associated final power values, while asymmetric CED con-

figuration does not (Theorem 6.2).
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5. Inverters in symmetric CED configuration assigned to an active constraint pro-

vide complimentary power injections to enforce the constraint, while an inverter

in asymmetric CED configuration assigned to an active constraint must provide

a (generally larger) power injection to enforce the constraint.

6.7.2 Lossless Three-Bus Grid-Tied Microgrid

In the next series of simulations, we will consider a lossless three-bus microgrid with an

external infinite bus source as in Figure 6.5. The purpose of this series of simulations is

to show the behavior of both traditional droop and CED control while grid-tied under

lossless conditions, and to show both the loss of synchronization under traditional

droop and how this issue can be corrected using application of a constraint-satisficing

droop control configuration. In Section 6.4.6.2, we showed that the key line set

EKey = {(2, 4)} is the unique constraint-satisficing key line set for this network under

the expected operating range in Table 6.2, and that a constraint-satisficing droop

control configuration can be created by assigning inverter 2 to enforce the constraint

on the tie line (line (2, 4)) with γMax,2,4 = 5.5.

In this series of simulations, we will force a set of reference and load changes to

explore the behavior of this network under a variety of conditions and transients,

representing the corners of the expected operating range. The network begins (at

t = 0 sec) at zero state and inputs, that is, both inverters have zero reference (PRef,1 =

PRef,2 = 0.0 p.u.), and there is no local load (PL,1 = PL,2 = PL,3 = 0.0 p.u.). At

t = 5.0 sec, the reference power of inverter 1 is increased to PG,Max,1 = 1.0 p.u.,

and the network allowed to settle to a new equilibrium. Next, at t = 15.0 sec, a

load of 1.0 p.u. is stepped onto bus 3, and the network again allowed to settle to

a new equilibrium. Finally, at t = 25.0 sec, the maximum load of PL,Max,3 = 6.0

p.u. is stepped onto bus 3, which is sufficient to cause loss of synchronziation under

traditional droop. These test conditions are summarized in Table 6.6 and illustrated
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in Figure 6.9.

Table 6.6: Simulation Test Conditions for Lossless Three-Bus Grid-Tied Microgrid

Parameter t < 5.0sec 5.0 ≤ t < 15.0sec 15.0 ≤ t < 25.0sec t ≥ 25.0sec

PRef,1 0.0 1.0 1.0 1.0
PRef,2 0.0 0.0 0.0 0.0
PL,3 0.0 0.0 1.0 6.0

1

3

2

Y2,3 = −j20.0

Y1,2 = −j20.0

4

Y2,4 = −j4.0

PL,3 = 0.0 → 1.0 → 6.0

Infinite Bus

Droop
PRef,1 = 0.0 → 1.0

Droop (Simulation 6.3)/
CED (Simulation 6.4)
PRef,2 = 0.0

PMax,2,4 = 3.5 p.u.

PMax,1,2 = 7.0 p.u.

PMax,2,3 = 7.0 p.u.

PG,1

PG,2

PG,4

Figure 6.9: Single-Line Diagram of Lossless Three-Bus Grid-Tied Microgrid (Simula-
tions 6.3 and 6.4)

We will apply the test conditions in Table 6.6 in simulation on this network under

two different control settings. In Simulation 6.3, inverters 1 and 2 both implement

traditional frequency-droop (results in Figure 6.10). In Simulation 6.4, we apply the

constraint-satisficing droop control configuration developed in Section 6.4.6.2, where

inverter 1 implements traditional droop while inverter 2 implements bounded, single-

line CED to enforce a line power-flow constraint on line (2, 4) (that is, the tie line

between the microgrid and the external grid) (results in Figure 6.11).

Consider the results of Simulation 6.3 in Figure 6.10. In the first part of the test

(0 ≤ t < 5.0 sec), there is no load on the microgrid, and the inverters have zero

power reference values. In this case, the network operates at the nominal frequency
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(∆ωk = ∆ωCOM = 0 rad/sec for all k ∈ V), all the inverters source zero power

(PG,k = 0 for all k ∈ V), and no power is drawn from the grid (PLine,2,4 = 0 p.u.). At

t = 5.0 sec, the value of PRef,1 (the power reference value of inverter 1) is stepped to

1.0 p.u. This triggers a transient, but since no constraints are violated, the microgrid

settles to a new equilibrium, with all inverters sourcing their reference power and

a total of 1.0 p.u. being exported to the grid. Since bus 4 (modeling the grid) is

an infinite bus, its frequency does not change (∆ω4(t) = 0 rad/sec for all t), and

therefore the center-of-mass frequency ∆ωCOM also has static value 0 rad/sec (and

so the network settles to the nominal frequency).

At t = 15.0 sec, a load of 1.0 p.u. is stepped onto bus 3 (the passive bus),

resulting in another transient. Since bus 3 is a passive bus, the power flow on line

(2, 3) increases almost immediately to supply the load, and inverter 2 responds by

decreasing its frequency. Inverter 1 responds by increasing its power generation and

dropping its frequency briefly, but quickly returns to its reference power. Ultimately,

the network again settles to a new equilibrium, again with all inverters sourcing their

reference power and operating at nominal frequency, but now no power is exported

to the grid, as inverter 1 sources all the power needed by the load.

Finally, at t = 25.0 sec, the maximum load of PG,Max,3 = 6.0 p.u. is stepped

onto bus 3. While the network is physically capable of supplying this load (the total

local generation on the microgrid is 3.0 p.u., plus the tie-line power limit of 3.5 p.u.

should be able to source 6.5 p.u.), there does not exist a dynamic equilibrium for this

network condition under traditional droop control (Theorem 3.1 applies across the

cut VC = {(2, 4)}). As a result, the traditional frequency-droop controlled inverters

are not able to stabilize this case, and the microgrid loses synchronization with the

external grid, resulting in continuous frequency and real power oscillations.

In Simulation 6.4 (Figure 6.11), the same test conditions are applied, but now

inverter 2 implements bounded, single-line CED to enforce a line power-flow constraint
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|PLine,2,4| ≤ PMax,2,4 = 3.5 p.u. Observe that for t < 25.0sec, Simulation 6.4 results

are identical to those of Simulation 6.3, confirming that a constraint-satisficing droop

inverter network behaves identically to traditional droop network under unconstrained

conditions. However, after the large load step is applied at t = 25.0 sec, when

|PLine,2,4| approaches PMax,2,4, inverter 2 responds by increasing γ2,4 to limit the power

flow. This results in inverter 2 beginning to source power to make up for that that

can’t be drawn from the grid. As a result, the microgrid stabilizes and does not

lose synchronization with the grid, instead settling to a (constrained) equilibrium, in

which inverter 2 now supplies some of the power needed by the load. Because bus 4

is an infinite bus, the center-of-mass frequency is still ∆ωCOM = 0 rad/sec, resulting

in network convergence to the nominal frequency.

Together, Simulation 6.3 and 6.4 demonstrate the following:

1. A constraint-satisficing droop inverter network (even one containing passive

buses) is capable of enforcing line power-flow constraints to bound the network

within the safe region of the voltage-angle space (Theorem 6.2) during grid-tied

operation.

2. Such a network also synchronizes in frequency and shares power between both

CED and traditional-droop inverters in a way that respects the network con-

straints (Theorems 6.1 and 6.2).

3. When no constraints are active, a constraint-satisficing droop inverter network

behaves identically to the equivalent traditional droop inverter network.

4. When an infinite bus is present, then ∆ωCOM = 0, and so the network must

converge to nominal-frequency operation. This can be compared to the concept

of “leaders” in a consensus network (see [54]), where the infinite bus k acts as

a leader with ∆ωk = 0.
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6.7.3 Lossy Three-Bus Grid-Tied Microgrid

The final series of simulations will consider a lossy three-bus, grid-tied microgrid.

This network is identical to that considered in Simulations 6.3 and 6.4, but includes

lines with non-negligible resistance, which has a significant effect on the behavior and

synchronization behavior of the network. The single-line diagram of the lossy network

is shown in Figure 6.12. Because our analytic results consider only lossless systems,

they do not apply directly to this network. However, these results are included in

order to demonstrate the ability of our methods to be extended to lossy systems.

1

3

2

Y2,3 = 4.0− j8.0

Y1,2 = 4.0− j8.0

4

Y2,4 = 3.0− j4.0

PL,3 = 0.0 → 1.0 → 3.0

Infinite Bus

Droop
PRef,1 = 0.0 → 1.0

PMax,2,4 = 1.8 p.u.

PMax,1,2 = 3.5 p.u.

PMax,2,3 = 3.5 p.u.

PG,1

PG,2

PG,4

Droop (Simulation 6.5)/
CED (Simulation 6.6)
PRef,2 = 0.0

Figure 6.12: Single-Line Diagram of Lossy Three-Bus Grid-Tied Microgrid (Simula-
tions 6.5 and 6.6)

We will apply a similar series of test conditions to the lossy network to those

in Simulations 6.3 and 6.4, but with a few values altered due to the network losses

(summarized in Table 6.7). Notice that in these tests, we apply a much more modest

load of 3.0 p.u. to bus 3 at t = 25.0 sec. The goal of this series of tests is to

demonstrate the behavior of traditional droop and bounded, single-line CED under

losses, to show the effect of losses on synchronization of traditional droop inverters,

and to show that CED control can similarly to be applied to guarantee synchronization
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and power sharing in lossy networks.

Table 6.7: Simulation Test Conditions for Lossy Three-Bus Grid-Tied Microgrid

Parameter t < 5.0 sec 5.0 ≤ t < 15.0 sec 15.0 ≤ t < 25.0 sec t ≥ 25.0 sec

PRef,1 0.0 1.0 1.0 1.0
PRef,2 0.0 0.0 0.0 0.0
PL,3 0.0 0.0 1.0 3.0

Similarly to Simulations 6.3 and 6.4, we will apply the test conditions in Table 6.7

in simulation on the lossy network under two sets of control settings. In Simulation

6.5, inverters 1 and 2 both implement traditional frequency-droop (results in Figure

6.13). In Simulation 6.6, inverter 1 implements traditional droop, while inverter

2 implements bounded, single-line CED to enforce a line power-flow constraint of

PMax,2,4 = 1.8 p.u. on line (2, 4) (results in Figure 6.14).

Similar to Simulations 6.3 and 6.4, in Simulation 6.5 (Figure 6.13) there is no

power flow for t < 5.0 sec. At t = 5.0 sec, the power reference of inverter 1 (PRef,1) is

stepped to 1.0 p.u, resulting in a transient which settles to a frequency synchronization

equilibrium in which inverter 1 sources 1.0 p.u. (minus losses) to the grid. At t = 15.0

sec, a load of 1.0 p.u. is stepped onto bus 3, and again after a short transient inverter

1 sources 1.0 p.u. to the load, with the microgrid importing a small amount of

power from the grid to cover losses. Finally, at t = 25.0 sec a moderate load of 3.0

p.u. is stepped onto bus 3. However, despite the fact that this load is within the

physical capacity of the network (3.0 p.u. local capacity plus 1.8 p.u. maximum on

the tie line = 4.8 p.u.), under traditional droop this additional load causes the loss

of synchronization between the microgrid and the external grid.

Simulation 6.6 considers the same network, but now inverter 2 implements bounded

gain, single-line CED to enforce the line power flow constraint |PLine,2,4| ≤ PMax,2,4.

The response in Figure 6.14 shows identical performance to Simulation 6.5 for t < 25.0

sec, again verifying that CED control behaves identically to traditional droop in the

absence of active constraints. However, after t = 25.0 sec, inverter 2 responds to
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the approach of |PLine,2,4| to PMax,2,4 = 1.8 p.u. by increasing γ2,4 so as to limit the

increase of power imported from the grid, enforcing the line power-flow constraint

|PLine,2,4| ≤ PMax,2,4. As a result, the network stabilizes to a frequency agreement

equilibrium at which inverter 1 supplies its reference output power, the maximum

power is imported from the grid on line (2, 4), and the CED inverter 2 makes up the

difference, including losses.

Together, Simulations 6.5 and 6.6 demonstrate the following:

1. In lossy grid-tied operation, traditional frequency droop controlled inverters

continue to be able to respond to transients, synchronize with each other and the

grid, and settle to near reference power output as long as the network stability

constraints aren’t violated. The conditions under which desynchronization may

occur are much more modest in the lossy network than in a lossless one.

2. A CED-controlled inverter is capable of synchronizing in frequency and sharing

power (subject to constraints) with traditional frequency droop inverters in the

presence of passive (load) buses and losses during grid-tied operation.

3. Again, when no constraints are active, a CED-controlled inverter behaves iden-

tically to a traditional droop controlled inverter with similar settings.

4. A CED-controlled inverter is capable (when applied in a mixed-bus, lossy grid-

tied network with appropriate settings) of enforcing its assigned line power-flow

constraint and thereby ensuring that the network synchronization conditions

are not violated, resulting in significantly improved synchronization and power

sharing behavior.

6.8 Chapter Conclusions

In this final technical chapter, we have introduced the concepts of constraint-satisficing

droop control configurations and constraint-satisficing droop inverter networks. A
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constraint-satisficing droop control configurations is a configuration of CED inverters

in a mixed-bus inverter network, which are placed and configured so as to explic-

itly enforce the line power-flow constraints associated with the lines of a constraint-

satisficing key line set, thus satisfing all of the network line power-flow constraints.

Inverters operating the bounded, single-line form of the CED control law are placed

incident to each key line constraint and configured so as the enforce the line power-

flow constraints on the key lines as long as the network operates within the expected

operating range, thus bounding the network state trajectory within the safe region.

We further showed that bounding of the network state trajectory within the safe

region ensures synchronization and constrained power sharing as long as both the

network inputs (references and nominal-frequency loads) and the generation and load

values are bounded within the expected operating range, and that the inputs converge

to constant values.

While our results fall short of formal control-theoretic robustness due the assump-

tion of generation and load bounds, in practice these assumptions are quite mild, and

as a result a constraint-satisficing droop inverter network has significantly improved

synchronziation behavior as compared with a simliar traditional frequency-droop net-

work. Further, if symmetric CED configuration is used for the key lines, then the

droop inverters and CED inverters not assigned to active constraints will converge to

the same final power value as for the equivalent traditional droop network. There-

fore, application of a constraint-satisficing droop control configuration to a network

provides robust synchronization and power sharing behavior for inverter networks on

a given expected operating range, which was the original goal of this dissertation.
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CHAPTER VII

CONCLUSIONS AND CONTRIBUTIONS

7.1 Summary of Contributions

In this dissertation, we have considered the frequency synchronization and sharing of

real power between sources in an inverter-based AC network. Our primary contribu-

tions are the following:

1. A structure-preserving dynamic model for the frequency/voltage-angle/real-power

dynamics of a droop inverter-based AC network, which allows application of

graph-theoretic control methods to analysis and control of synchronization and

power sharing in inverter-based AC networks. These contributions were pub-

lished in the IEEE Transactions on Power Systems paper [3].

2. A dynamic sufficient condition for synchronization and power sharing of droop

inverter-based networks based on satisfaction of a set of line power-flow con-

straints. These contributions were published in the IEEE Transactions on Power

Systems paper [3].

3. The all-incident-line CED control law, which was shown to enforce the above

set of line power-flow constraints and provide robust synchronization and con-

strained power sharing of an all-active-bus, acyclic network for any bounded

reference and load inputs. These results were first introduced in the conference

paper [2] at the IEEE Power Engineering Society General Meeting 2013, and a

more detailed journal paper has been prepared for submission to Automatica.

4. The concept of constraint-satisficing key line sets, which allow reduced-order

enforcement of line power-flow constraints in a network as long as the network
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generation and loads remain within a specified expected operating range. These

results have not yet been published, but a journal paper based on Chapter 5

will be prepared targeted at the IEEE Transactions on Smart Grid.

5. Constraint-satisficing droop control configurations and constraint-satisficing droop

inverter networks, which were shown to enforce the constraints associated with

a constraint-satisficing key line set and thereby provide robust synchronization

and constrained power sharing for all generation and loads within a specified

expected operating range. These results have not yet been published, but a

journal paper based on Chapter 6 will be prepared targeted at the IEEE Trans-

actions on Smart Grid.

Tabel 7.1 summarizes the completed and planned publications associated with the

contributions of this dissertation. Below, we discuss each of the above contributions,

their capabilities, limitations, and application to solving real-world problems.

7.2 Structure-Preserving Model of an Inverter-Based AC
Network

In Chapter 3, we introduced a novel dynamic model for the frequency, voltage-angle,

and real-power dynamics for networks of arbitrary structure and scale with a mix of

droop inverters buses and network buses. In Chapter 4, we extended the model to

include all-active-bus, acyclic networks where each bus has an inverter operating the

proposed all-incident-line CED control law, and in Chapter 6 it was further extended

to include networks containing a mix of droop inverters, single-line CED inverters,

and network buses.

The focus of the structure-preserving model is on allowing the application of graph-

theoretic and multi-agent system control methods to the frequency, voltage-angle,

and real-power dynamics of an inverter-based network for both analysis and control

design in as simple a way as possible. As such, the model is based on a number of
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Table 7.1: Completed and Planned Publications Associated with Dissertation Con-
tributions

Title Type

Venue Submission Date

A Structure-Preserving Model and Sufficient Condi-
tion for Frequency Synchronization of Lossless Droop
Inverter-Based AC Networks [3]

Journal Paper

IEEE Transactions on Power System Nov 2012

A Line Weighted Frequency Droop Controller for De-
centralized Enforcement of Transmission line power-flow
constraints in Inverter-Based Networks [2]

Conference Paper

PES General Meeting 2013 Dec 2012

A Constraint-Enforcing Droop Controller for Improved
Synchronization of All-Active-Bus Acyclic Inverter-
Based AC Networks

Journal Paper

Automatica June 2014

A Tool for Reduced-Order Enforcement of Line Power-
Flow Constraints in AC Networks

Journal Paper

IEEE Transactions on Smart Grid Sept 2014

A Constraint-Satisficing Sparse Application of
Constraint-Enforcing Droop Controller for Improved
Synchronization of Inverter-Based AC Networks

Journal Paper

IEEE Transactions on Smart Grid Dec 2014
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assumptions to allow this focus and simplicity, and to decouple other considerations

in power network analysis and control. For example, the assumption of constant

voltage-phasor magnitudes (which is also made by similar structure-preserving models

such as [9]) decouples the problem of voltage stability (see [44] for a definition).

The assumption of lossless lines renders the line power-flow values line-odd, thereby

significantly simplifying much of the mathematics. Together, these two assumptions

(constant voltage-phasor magnitudes and lossless lines) eliminate the need to consider

the reactive power-flow equations, also significantly simplifying the mathematics. We

do not include feedback time-delays in the model, nor do we include a detail model of

the inverter power electronics, instead relying on a simple voltage-source or voltage-

source-behind-reactance model for each inverter.

While these assumptions allow a straightforward derivation of our results, they

also create limitations for both our model and the results based on it. Some results

have shown that droop inverter-based networks may lose stability due to feedback time

delays if the droop gains are too large [62, 8, 40, 51]; our model does not produce

this result since we do not include feedback delays in the model. Since our model

does not include the network reactive power-flow equations or variable voltage-phasor

magnitudes, it does not necessarily protect against voltage collapse (see [44]), which

could also cause network failure and/or loss of synchronization. Finally, we do not

include synchronous machine dynamics in our model, and as such it and the results

based on it are only applicable to networks that do not contain synchronous machines.

Despite these limitations, our novel structure-preserving model has proved ex-

tremely valuable for providing new understanding of synchronization and power shar-

ing in inverter-based networks. Since it can be easily applied to networks of arbitrary

size or structure, it allows a scale-invariant understanding of synchronization that is

in keeping with the approach of the Prosumer-Based Power System Architecture. Its
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graph-theoretic form allows analysis of how network structure is related to synchro-

nization characteristics. Its relative simplicity allows for rapid simulation of large

networks based on initial-value solution of the model dynamic equations, which was

used to generate most of the simulation results in this dissertation. Finally, the

rest of the contributions of this dissertation would not have been possible without

the mathematical simplicity and graph-theoretic nature of the structure-preserving

model.

It may be possible in future work to extend the structure-preserving model to

mitigate its limitations and expand its applicability. If lossy lines were considered,

then line power flows would be rendered line-asymmetric, necessitating that two line

power-flow values be associated with each line (one in each direction). This would

result in a complication of the mathematics and reduction of the size of the prin-

cipal region, but most of our results should still apply with some modifications. It

should also be possible to extend the model to include time-varying voltage-phasor

magnitudes; most of our results should still apply if each voltage-phasor magnitude

is bounded from below by given minimum value. Some multi-agent system methods

have considered the possibility of convergence in networked systems with time delays

(e.g. [63, 39, 56]), and it may also be possible to apply these methods to include the

effects of time delays in our model.

Finally, it is possible that our structure-preserving model of an inverter-based

network could be combined with similar models of synchronous-generator-based net-

works (e.g. [9]) to create a dynamic model for the frequency, voltage-angle, and

real-power dynamics of a very general network containing a mix of synchronous gen-

erators, inverters (both traditional droop and CED-controlled), and network buses.

The resulting model could be used to analyze the synchronization and power sharing

behavior of almost any power network, including large-scale public utility networks

with arbitrary penetration of inverter-interfaced sources. While most of the rest of
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our contributions would not directly apply to such a network, it may form a basis

of methods for real-time simulation or development of new methods of control for

21st-century power grids.

7.3 Dynamic Sufficient Condition for Synchronization and
Power Sharing of Inverter-Based AC Networks

The second major contribution of this dissertation is a dynamic sufficient condition

for synchronization and power sharing, which is stated in three forms: a bus voltage-

angle form (Theorem 3.3), a line voltage-angle form (Theorem 3.4), and a line power-

flow form (Theorem 3.5). The first two forms are equivalent, since both state that

restriction of the voltage-angle trajectory to the (open) principal region is sufficient to

ensure synchronization. The third (line power-flow form) is a stricter condition than

the first two, since it requires the restriction of the network voltage-angle trajectory to

a compact subset of the principal region defined by a set of line power-flow constraints

(the “safe region” of the voltage-angle space).

The transitions from the sufficient conditions for stability based on voltage-angle

trajectory (bus- and line-oriented) to the line power-flow form is based on the idea

that line power-flow constraints are equivalent to line voltage-angle constraints on the

principal region. This principal only holds when bus voltage-phasor magnitudes are

constant. It could be generalized to the case when bus voltage-phasor magnitudes are

time-varying and bounded from below, but not if they collapse to zero. Therefore,

the sufficient conditions for synchronization do not protect against the possibility of

bus voltage collapse (see [44]), which is beyond the scope of this dissertation.

The sufficient conditions for synchronization presented in this dissertation are

dynamic conditions, meaning that they are conditions on the entire network voltage-

angle trajectory (not just the intiial condition or parameters). Initially, this might

seem to render them of little value, since they do not allow a-priori assessment of

the synchronization properties of a given network condition. Their value lies in the
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fact that they provide a set of measurable conditions, each of which can be enforced

in real-time based on local feedback. In addition, they provide a valuable physical

insight into the nature of synchronization in inverter-based networks: synchroniza-

tion is created by the attractive coupling between bus frequency offsets across lines

due to the monotonic relationship between line power flows and line voltage angles

(increasing voltage angle results in increasing power flow). This coupling across lines

must be larger enough to overcome the difference in reference power injections be-

tween different parts of the network. In general, greater line admittance creates more

coupling, resulting in stronger network attraction to synchronization. As a result,

the synchronization robustness of a network is limited by its weakest lines (those

with least admittance) across which the greatest reference power injection difference

occurs. These insights are the basis of the constraint-enforcing control method we

develop later in the dissertation.

7.4 All-Incident-Line CED Control Law for All-Active-Bus,
Acyclic CED Networks

The third major contribution of this dissertation is the all-incident-line constraint-

enforcing droop (CED) control law, and its application to all-active-bus, acyclic

networks (which we termed “all-active-bus acyclic CED networks”). The dynamic

sufficient condition for synchronization showed that if an inverter-based network is

constrained to a safe region of the voltage-angle space (equivalent to enforcement

of a specified line power-flow constraint on each line in the network), then synchro-

nization and power sharing will necessarily follow. However, because the traditional

frequency-droop control law does not enforce any such line power-flow constraints,

the network may lose synchronization as a result of a large reference power injection

differential across a weak line. The all-incident-line CED control law solves this issue

by applying an adaptive gain to each line power-flow measurement in the control law,

detecting the approach of any line power flow to its constraint value, and increasing
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its gain to “pull” the network away from the constraint. In an all-active-bus, acyclic

CED network, since each bus has an inverter and each inverter applies a gain to

each incident line, each line power-flow constraint will be explicitly enforced by both

incident inverters. This bounds the network state trajectory in the safe region, and

synchronization and constrained power sharing follow.

The all-incident-line CED control law and its application to all-active-bus, acyclic

networksa are the most straightforward, conceptually simple way to enforce line

power-flow constraints in a network so as to ensure that the dynamic sufficient condi-

tion for synchronization is met. While it is possible to construct a network of this type,

in practice such networks rarely occur. Most power networks in practice contain a mix

of source (active) and network (passive) buses. In addition, since the all-incident-line

CED control law requires a measurement of the line power flow on each incident line,

it has considerably higher measurement cost than traditional droop. Finally, many

power networks are meshed (that is, contain cycles). Therefore, the all-active-bus

acyclic application of all-incident-line CED control is not very applicable in practice.

Because we do not model inverter generation constraints and each bus has a

local inverter, our results show that an all-active-bus acyclic CED network provides

synchronization and constrained power sharing behavior that is robust to all reference

and load inputs that are bounded and constant. While in practice many such inputs

might be beyond the physical capacity of the network, our results show that the

control approach will remain stable for all inputs that the network can physically

handle.

We have shown that an all-active-bus, acyclic CED network provides power shar-

ing behavior similar to that of a traditional droop network, but it enforces the network

line power-flow constraints. If a constraint is active, then the inverters incident to it

must adjust their output power to enforce the constraint, and as such will not converge
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to the same final output power as in traditional droop. Because of its distributed na-

ture, all-incident-line CED control does not propogate such constraint enforcement,

and as such the two inverters incident to the constraint bear the complete resonsibil-

ity of its enforcement (and so must have the capacity to do so). In this dissertation,

we have not provided a method for determining the maximum capacity necessary to

enforce such constraints.

The primary value of the all-incident-line CED control law and its application

to all-active-bus acyclic networks is as a proof-of-concept for the enforcement of line

power-flow constraints and robust synchronization and power sharing in inverter-

based networks. In this dissertation, it acts as a stepping stone to the more realistic

results that follow based on sparse application of CED. The results that follow gen-

eralize the all-incident-line CED approach by showing that within a given expected

operating range, it is possible to still provide robust synchronization and power shar-

ing behavior by enforcement of a subset of the line power-flow constraints.

7.5 Constraint-Satisficing Key Line Sets

The next major contribution of this dissertation is the mathematical concept of

constraint-satisficing key line sets. We first explicitly define the expected operat-

ing range of an AC network, based on a set of generation and load constraints. We

then show that application of Kirchoff’s law at each bus in the network, combined

with the assumption of satisfaction of the line power-flow constraints associated with

a selected set of lines (the candidate key line set), implies bounds on all of the other

lines of the network. If these bounds on the non-key lines are sufficient to ensure

that their constraints are met, then we say the candidate key line set is a constraint-

satisficing key line set. The concept of constraint-satisficing key line sets allows the

dynamic sufficient condition for synchronization of the network to be satisfied by the

explicit enforcement of only a subset of the line constraints (those associated with
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the key line set) as long as the network generation and loads are within the expected

operating range.

Constraint-satisficing key line sets are the key to robust synchronization and power

sharing in general inverter-based networks, since they allow control architectures using

sparse constraint-enforcement to bound the network voltage-angle trajectory within

the safe region. They are dependent on a specific network structure, a specific selec-

tion of the network expected operating range (defined by generation and load bound

vectors), and a specific selection of key line flow constraints. We developed a method

for determining the bounds implied on non-key lines by a given expected operating

range and key line set, as well as a test for constraint-satisficing key line sets. This

test is a sufficient condition only, and may return a false-negative result for some valid

constraint-satisficing key line sets. In particular, our bounding procedure does not

include a method for implicitly bounding cyclical power flows, and as such requires

at least one key line per cycle in the network graph. Therefore, it may produce overly

conservative results for meshed networks (those that contain may cycles).

We also introduced a search procedure to find constraint-satisficing key line sets

for a given network structure, expected operating range, and power-flow constraints.

This procedure starts from the set of all lines (which is always constraint-satisficiing),

and tests each subset one by one, working down the tree of subsets until all irreducable

constraint-satisficing key line sets are found. For a large network (with many lines),

there are many such subsets, and our search procedure potentially might require

running the bounding procedure on each one. As a result, our search procedure may

require a very large computation time. Fortunately, this procedure need only be

run during design time (not during network operation), and so a long computational

time may be acceptable. In addition, it should be possible to significantly reduce the

computational time by further study and application of high-performance computing

techniques.
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The greater limitation of our search procedure is due to its dependence on the

bounding procedure and test. Since our test for constraint-satisficing key line sets is

a sufficient condition only, and since the search procedure does not test any subsets

of key line sets tested as non-constraint-satisficing, it may miss some valid constraint-

satisficing key line sets, particularly in meshed networks. At present, this limitation

of our approach results in unacceptably large constraint-satisficing key line sets when

the search procedure is applied to utility transmission networks, which are typically

heavily meshed. As a result, the example applications in this dissertation are limited

to small networks with few cycles (similar to small distribution networks or micro-

grids), rather than IEEE standard power-flow test cases.

However, by improvement of our existing test and search procedures (or devel-

opment of alternative methods for generation of constraint-satisficing key line sets),

it should be possible to generate constraint-satisficing key line sets for networks of

arbitrary size and structure, including both distribution and transmission networks.

Once a constraint-satisficing key line set of acceptable size for a given network and

expected operating range, then the last major contribution of this dissertation shows

that it is possible to develop a distributed control method to enforce the line power-

flow constraints associated with only the lines of a constraint-satisficing key line set,

thus satisfying all of the network line power-flow constraints and providing robust

synchronization and power sharing for all operating conditions within the expected

range.

7.6 Constraint-Satisficing Droop Inverter Networks

The final major technical contribution of this dissertation is constraint-satisficing

droop control configurations and constraint-satisficing droop inverter networks. A

constraint-satisficing droop control configuration is a configuration of CED inverters

for a mixed-bus inverter-based network (one that contains a mix of CED inverter,
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droop inverter, and network buses) and a given expected operating range. In a

constraint-satisficing droop control configuration, a CED inverter is placed adjacent

to each line in a constraint-satisficing key line set and configured so that it enforces the

key line power-flow constraint. Since each key line constraint is enforced by a CED

inverter, the line power-flow constraints associated with all lines will be satisfied,

rendering it a constraint-satisficing droop inverter network. The network voltage-

angle trajectory of such a network is bounded within the safe region, providing near-

robust synchronization and power sharing for all operating conditions within the

expected range, the ultimate goal of this dissertation.

A constraint-satisficing droop control configuration makes use of the bounded,

single-line form of the CED control law. Because the maximum value in this form

of the control law is bounded, it is more robust to faults and noise than the un-

bounded form. In addition, application of a state-dependent gain to only a single

incident line avoids conflicts between enforcement of multiple constraints. However,

it means that each CED inverter can only enforce a single line power-flow constraint,

necessitating at least one CED inverter per line in the constraint-satisficing key line

set. Therefore, if the selected constraint-satisficing key line set is too large, it may

be technically infeasible or uneconomical to implement a constraint-satisficing droop

control configuration. Because of the limitations of our current procedure for gener-

ating constraint-satisficing key line sets, at present it is difficult to apply our method

to utility transmission networks. Development of better methods for determination

of constraint-satisficing key line sets will contribute directly to the practicality of

constraint-satisficing droop inverter networks.

The determination of a constraint-satisficing droop control configuration for a

given network is dependent on the network structure, the definition of the expected
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operating range and line power-flow constraints, and the selection of a constraint-

satisficing key line set. In this work, we have not proposed an optimal way to de-

termine these quantities for a given network, only requirements for their validity. In

addition, we have not proposed a strict design procedure for constraint-satisficing

droop control configurations. The determination of such an optimal design procedure

(which may be specific to a given application) is beyond the scope of this dissertation.

Despite its present limitations, constraint-satisficing droop control configurations

provide a very important theoretical framework for improved synchronization and

power sharing of inverter-based networks. In its present form, it allows development of

control architectures for inverter-based microgrids that provide near-robust synchro-

nization and power sharing behavior. With further development (particularly with

better methods of generating constraint-satisficing key line sets), its results should

also be applicable to larger-scale inverter-based networks. Therefore, in addition

to its immediate applicability, it makes an important step towards enabling robust

distributed power networks with high penetration of inverter-interfaced sources.

7.7 Future Work

In this dissertation, we have laid a theoretical groundwork for a distributed control

method for robust synchronization and power sharing in inverter-based AC power

networks, as well as provided methods for analyzing such synchronization using multi-

agent control methods. These contributions open up a number of new research areas

for future work, which we discuss below.

7.7.1 Structure-Preserving Models and Sufficient Condition for Synchorniza-
tion of Inverter and Mixed Inverter/Machine Networks

The structure-preserving model for the frequency/voltage-angle/real-power dynamics

developed in this dissertation considers a lossless, all-inverter network with ideal volt-

age regulation. While this captures the most significant dynamics for our purposes
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in this dissertation, many of these assumptions could be relaxed to consider other

effects.

First, relaxation of the assumption of all lossless lines in the network renders the

line power flow function line-asymmetric. Therefore, it will be necessary to modify the

dynamic sufficient condition for synchronization to include the effects of this asymme-

try. The Lyanpunov-like method used for proof of synchronization in Theorems 3.3

and 3.5 will no longer be applicable (since it depends on the assumption of line-odd

power flows), but the Contraction Property method used in the proof of Theorem 6.2

will still apply by modifying the auxiliary bounding system v(t) to include the line

losses. The result will be synchronization on a “lossy principal region,” where the

range of line voltage angles for each line is reduced the the associated loss angle. This

result is similar to that shown in [20].

The structure-preserving model can also be generalized by including time-varying

voltage magnitudes and uncertain line admittances, both bounded from below. This

results in a “minimum coupling coefficient” on each line, and synchronization can

again be shown by the Contraction Property where the auxiliary bounding system

v(t) evolves based on the minimum coupling. This result would prove the formal

control-theoretic robustness of our proposed control methods to time-varying voltage

magnitudes and uncertain line admittances.

The structure-preserving model in this dissertation avoids the problem of voltage

stability by explicitly decoupling it from that of frequency synchronization. However,

if time-varying voltage magnitudes are included in the model, then it may be possible

to combine our dynamic sufficient conditions for synchronization with existing work

in necessary conditions for voltage collapse (e.g. [33, 31, 25, 11]) to create a condition

for combined voltage stability and synchronization of an inverter-based network. It is

possible that our proposed control methods could then be modified to provide both

robust synchronization and robust voltage stability.
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Finally, our structure-preserving model for synchronization and power sharing in

inverter-based networks can be combined with Bergen and Hill’s famous structure-

preserving model for synchronization in machine-based network to create a general

model for analysis of synchronization in network with an arbitrary mix of inverter

and machine sources. Such a model could be used to analyze the synchronization of

almost any power network, including networks with arbitrary penetration of inverter

sources, providing a very powerful new tool for analysis of next-generation power

networks.

7.7.2 Constraint-Satisficing Key Line Sets

In this dissertation, we proposed the concept of constraint-satisficing key line sets,

developed a method for testing for constraint-satisficing key line sets for a given net-

work and expected operating range (Procedure 5.1 and Theorem 5.1), and developed

a method for finding constraint-satisficing key line sets for a given network (Procedure

5.2). However, our method for testing for constraint-satisficing key line sets is limited

in that it may miss some valid constraint-satisficing key line sets and does not include

a method for explicitly bounding cyclical power flows. In addition, our search method

is not very computationally efficient, and as such may be difficult to apply to large,

highly meshed networks such as transmission networks. Since determination of an

acceptable constraint-satisficing key line set for a given network is one of the greatest

challenges in implementing our proposed control method, by improving both the test

and search procedures, it should be possible to significantly expand the applicability

of our methods.

First, our method for bounding power flows in a network (Procedure 5.1) termi-

nates when it encounters a key line, simply using the assigned maximum power flow

bounds. However, in many cases there may exist bounds on the power flow due to

the network that are more strict than the assigned maximum power flows, and so our
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method may be overly conservative. Instead of terminating when it encounters a key

line, Procedure 5.1 could attempt to calculate the bounds for the key line, and use

the stricter of the assigned maximum or the calculated bounds. This would result in

tighter bounds on power flows, resulting in fewer false-negative results.

Second, Procedure 5.1 could be improved by including a method for explicitly

bounding cyclical power flows in the network. This would relax the constraint that

each cycle in the network contain at least one key line, potentially significantly improv-

ing its performance in highly meshed networks and resulting in much small constraint-

satisficing key line sets.

Since the search procedure for constraint-satisficing key line sets (Procedure 5.2)

is based on the bounding procedure (Procedure 5.1), improvements in Procedure 5.1

will directly improve the performance of Procedure 5.2. In addition, the computation

time of Procedure 5.2 may be reduced directly by prioritization of key line set testing,

by pruning the key line set tree that must be considered, or by eliminating redundancy

of calculations. For example, by using the results of the Procedure 5.1 for a given key

line set, it may be possible to a-priori eliminate many of its subsets such that they

do not need to be tested, to prioritize some of its subsets for testing, or to eliminate

some redundant calculations when testing its subsets.

Finally, rather than performing a top-down search of the solution space for a

constraint-satisficing key line set for a given network and expected operating range,

it may be possible to construct such a key line set directly (from the bottom up) by

analyzing its power-flow bounds and determining where explicit constraint enforce-

ment is needed. Such a method is more mathematically complex, but potentially

computationally simpler than our proposed search method, and may produce more

desirable constraint-satisficing key line sets for practical implementation of our control

method.
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7.7.3 Development of Constraint-Satisficing Droop Control Configura-
tions for More General Networks

In this dissertation, we developed the concept of a constraint-satisficing droop control

configuration, and we developed such configurations for several small example net-

works. However, while we determined the conditions defining such a configuration,

we did not propose a method for selection of the expected operating range or design

of a constraint-satisficing droop control configuration for an arbitrary network. In

addition, due to limitations in the method of determation of a constraint-satisficing

key line set for a given network and expected operating range, it is difficult to deter-

mine such a configuration for many types of networks, including large transmission

networks. Our methods could be made much more practical by development of a

design methodology to create a constraint-satisficing droop control configuration for

an arbitrary network, along with an investigation of the design decisions involved and

how they can be optimally made.

In addition, our method does not at present provide formally robust synchroniza-

tion and power sharing, since our method of proof at present requires the assumption

not only that the reference power injection inputs remain within the expected oper-

ating range, but that the generation and load (which are state-dependent quantities)

do so as well. While we argued that this assumption is mild in practice, with further

development it should be possible to refine our method to relax the need to assume

that generation and load stay within the expected operating range, thus providing

formal robustness. By explicitly integrating a power-limiting control transition for

droop inverters, generation limits on droop inverter buses are enforced. It should also

be possible to calculate the maximum power injection that a given CED inverter must

provide on the expected operating range. Then, by requiring each CED inverter to

have sufficient capacity to provide that power injection, it can be shown that genera-

tion limits on CED buses will be met. Finally, by combining the generation and load
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limits into a single power injection limit, it should be possible to show that bounding

of reference power injections within the expected operating range will ensure that

actual power injections (generation minus load) are also so bounded, and formally

robust synchronization and power sharing for all reference power injection inputs on

the expected operating range will follow.

Further, improvements in the methods for testing and generation of constraint-

satisficing key line sets, along with improved methods for design of expected operating

range and an associated constraint-satisficing droop control configuration, should

allow our control method to be applied to much more general networks, including large

transmission networks. Therefore, with further development, it should be possible to

extend our methods so that they provide formally robust synchronization and power

sharing for inverter-based AC network of arbitrary size and structure.

7.7.4 Flexible, Robust 21st Century Power Network Control Architec-
tures

In this dissertation, CED control was applied to provide robust synchronization and

power sharing of all-inverter networks. However, CED also has application in mixed

inverter/machine networks. Due to the mechanical interia of sychronous machines,

it is probably not possible to formally bound the network within the safe region of

the voltage-angle space for all expected operating conditions. However, CED invert-

ers’ ability to limit real power flows can still be used to improve synchronization in

such networks. By placing CED inverters near synchronous machines, it should be

possible to use the rapid response of the inverter to limit the real power differential

experienced by the machines associated with faults in the network. This should al-

low significant improvement of the critical clearing time of such faults. This method

could be combined with a weaker form of constraint-satisficing CED (possibly based

on local constraint satisfaction) to provide a distributed control approach for robust

synchronization and power sharing of AC networks with an arbitrary mix of inverter
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and machine sources. This method could form a framework for a distributed control

architecture meeting the needs of the Local Control Layer of the the Prosumer-based

Power System Architecture [32]. Therefore, the methods introduced in this disserta-

tion will contribute directly to the development of system-level control architectures

to enable flexible, robust 21st-century power networks.

7.8 Closing Statements

Power network architectures are in a state of transition, moving from centralized

power sources interfaced by synchronous generators to a more distributed system

with a wide range of smaller sources, many or most of which are interfaced by power

electronic inverters. As such, a new control architecture that allows more flexibil-

ity, technology independence, and consumer participation is needed. The Prosumer-

Based Power System Architecture attempts to meet these needs, and it requires a

distributed control method to provide robust synchronization and power sharing in

networks with high penetration of inverter-interfaced sources.

The results of this dissertation form a theoretical framework for such a robust

distributed control method for inverter-based networks. Therefore, our results are

immediately applicable to inverter-based microgrids, capable of enabling robust net-

work operation in the absence of communication or centralized control. However,

they can also be combined with system-level control (through the power reference

values) to perform optimization or market functions. In this application, our meth-

ods provide a robust basis on which the higher functions can be built. In addition, we

have introduced a structure-preserving dynamic model that provides new mathemat-

ical tools for application of multi-agent system control analysis and design methods

to inverter-based networks. Finally, by expanding our analysis into networks whose

sources are a mix of inverters and synchronous generators, these methods will con-

tribute to the development of a distributed control architecture for networks with
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high penetration of inverter-interfaced sources (such as the Prosumer-Based Power

System Architecture), allowing highly distributed, highly robust control and market

structures for electric power to support the needs of 21st-century societies.
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