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SUMMARY

This thesis studies two related topics in liner shipping. The first topic is

the contract pricing problem for container carriers. The second part studies the

interaction of the longer term contracts and the spot markets/exchanges for the same

goods/services.

Most containerized freight is transported under the provisions of medium term

contracts between ocean carriers and shippers. One of the biggest challenges for an

ocean carrier is to find optimal ways to structure the prices in those contracts. In

particular, an ocean carrier would like to set the prices such that the best match

between supply and demand can be obtained to maximize its profit. We propose

three optimization models as decision tools that carriers can use to plan the contract

price structures, as well as the anticipated freight flows and empty container flows

for the period covered by the contracts. Based on the models, we propose algorithms

and build decision tools that generate the following output: optimal prices to be

charged for the movement of freight, the anticipated freight flows and empty flows,

containers to be leased, rented and purchased, and the additional voyage capacities

to be procured. The first two models are deterministic and represent the problem

at different levels of detail. In addition, a three-stage stochastic model is proposed

to handle uncertainties in demand rates, costs, bookings and transit times on feeder

arcs.

Recent developments in information technology and communication make spot

transactions more economical and more convenient. Nevertheless, the incidental spot

transactions still count for only a very small portion of freight transported both by the

large carriers who are the leaders in implementing e-commerce and in the industry
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as a whole. The second part of the thesis studies models to provide insight into

the effect of spot market participation rates on various economic quantities. This

may have implications for freight transportation industries, such as the sea cargo

industry, in which longer term contracts are still prevalent. We focus our study on

the following situation. Option contracts are signed before the demand is observed.

As is common in liner shipping, sellers (carriers) also sell goods/services on the spot.

Buyers (shippers) may or may not buy in the spot market as a matter of policy. We

investigate the effects of spot market participation on the contract market and on

the surpluses of all market players. It is found that the contract market shrinks as

more and more buyers participate in the spot market. However, the effects on the

surpluses of different market players are much more complicated and depend on the

following factors: market structure, demand variation along time, demand variation

among buyers and capacity level.
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CHAPTER I

INTRODUCTION

1.1 Liner shipping

As a source of cheap transport, shipping is one of the crucial contributors to economic

growth. It has provided access to the global market for almost every industry. U.S.

ports and waterways handle over 2.5 billion tons of cargo annually, responsible for

moving 99% of the country’s overseas trade by volume and 61% by value [3]. The

volume is projected to double in the next 15 years with the steady growth of U.S.

international trade.

The shipping industry contains two subdivisions, liner and bulk shipping. Though

liner companies and bulk companies belong to the same industry, they have very

little in common [49]. A bulk shipping service moves cargo in large consignments

at relatively low unit costs with flexible schedules, typically for large-scale industrial

purposes. Compared to bulk shipping, a liner service promises fixed schedules and

consolidates relatively smaller shipments from many shippers. The focus of the thesis

is on liner shipping. The commitment to fixed schedules causes huge fixed costs for

liner shipping. In contrast to bulk shipping, ships depart from predetermined ports

on a service cycle at specified times regardless whether the ships are fully loaded.

The number of ships needed to operate such a service is determined by the departure

frequency and the time that a ship takes to complete the service cycle. For example,

if it takes a ship approximately 6 weeks to complete the cycle, then 6 ships are needed

to offer the service with weekly departures at each port. Since large container ships

are very expensive, it becomes clear that for even the large carriers it would require a

huge investment to establish a service. Also, as liner services handle many relatively
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small parcels, larger administrative overhead is involved.

Seasonality is very common in liner shipping. For many trades, shipping volumes

fluctuate significantly during a year. Another widely known phenomenon in liner

shipping is that the freight moved in one direction can be very different from that in

the opposite direction. As a result, empty containers have to be moved from depots

to depots to maintain balance. Since late 1997, the U.S. liner trades have experi-

enced growing imbalance between the U.S. and Asia, Europe and Latin America. For

example, in the transpacific trades, imports from Asia to the U.S. grew almost 20%

per year, whereas exports increased at merely 5% annually [1]. Both seasonality and

cargo imbalance have important consequences for shipping rates. As reported in [1],

members of the Asia to U.S. Transpacific Stabilization Agreement applied a $900 per

40-foot equivalent unit (FEU) general rate increase for the high demand direction

and a $300 per FEU peak season surcharge in 1999. On the other hand, in the U.S.

to Asia trades carriers have constantly struggled with depressed demand and thus

plunging rates.

Vast initial capital investment, fixed schedules, significant seasonality, and cargo

imbalances make the pricing problem for ocean carriers important and complex. In

liner shipping, the conference system had played an important role in dealing with

pricing since the mid-1870s until very recently. Ocean carriers operating on the same

trades formed conferences to fix prices. Early on, conferences had tight control over

membership, capacity, cargo sharing, and prices. Because of anti-trust regulations,

the conference system had evolved to a relatively loose form but still kept tight

control over prices until the mid-1990s. In the United States, the conference system

was further weakened by the implementation of the United States Ocean Shipping

Reform Act (OSRA) of 1998. The key change of OSRA from the Shipping Act of

1984 was that OSRA allowed ocean carriers to enter into confidential contracts with

shippers, aiming at promoting a more market-driven, efficient liner shipping industry.
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Due to the flexibility and confidentiality of individual service contracting, the number

of service contracts and amendments filed with the FMA as well as the volume of

freight moving under those service contracts increased by 200% from May 1999 until

September 2001 [2]. Most ocean carriers move 80% or more of their containerized

freight under service contracts. An important problem for carriers is to structure the

prices in those contracts.

Instead of entering service contracts in advance, freight transportation services

can also be procured on the spot for a particular shipment at a price determined at

the time of the transaction. Recent developments in information technology make

such spot transactions more economical and more convenient. Prior to the passage of

OSRA, e-commerce started appearing in the liner shipping industry. Originally, such

e-commerce services focused on automated services tailored to the shipping industry

and internet auctions. OSRA has created a more competitive, market-oriented envi-

ronment and has arguably been a catalyst to emerging e-commence services. Right

after the passage of OSRA, an explosion of such dot-com companies was observed

in 1999. These companies underwent a rapid consolidation until early 2001. Many

dot-com intermediaries labeled as internet auction sites went out of business. The

surviving companies have shifted their focus drastically from auctions back to more

fundamental cargo-based applications. The core capability of most current internet

portals in liner shipping is the provision of track-and-trace systems. Most of the sur-

viving internet portals have been founded by big carriers, for example, Inttra.com by

Maersk Line, P&O Nedlloyd, Hapag-Lloyd, etc., CargoSmart.com by Orient Over-

seas Container Line, COSCO Container Line, Nippon Yusen Kaisha, etc., and Ship-

mentLink.com by Evergreen Line. These internet portals in the liner shipping in-

dustry are different from the well developed electronic marketplaces such as those

in the energy sector. They provide services for shippers such as shipment booking,

tracking and tracing, quotation of spot prices, and facilitation of spot transactions.
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Most shippers still rely mostly on service contracts for a variety of reasons, includ-

ing risk aversion and difficulties in obtaining spot rates from different carriers. As

a consequence, spot transactions still account for only a small portion compared to

transactions covered by contracts.

1.2 Contributions of the thesis

This thesis studies two closely related problems in liner shipping. The first part

focuses on the contract pricing problem. The second part studies the interaction of

the longer term service contracts and emerging spot exchanges.

As OSRA allows ocean carriers to enter confidential contracts with shippers, how

to structure the prices in service contracts has become one of the most important

problems for ocean carriers to achieve better revenue. In particular, an ocean carrier

would like to set the prices such that the best match between supply and demand can

be obtained, while maximizing its profit. The existing literature has not addressed

this problem. Chapter 2 presents three models that can be used as decision tools by

carriers before and during the contract negotiation season to plan the price structure,

as well as the anticipated freight flows and empty container flows for the covered

period. Based on the models, we propose algorithms and build decision tools that

generate the following output: (1) prices to be charged for the movement of freight,

as a function of the alternative paths allowed by the customer, the cargo class of the

freight, and the time of the year, (2) the anticipated quantity of freight of each cargo

class to be moved on each path at different times in the period, (3) the anticipated

flows of freight on feeder legs as well as major legs on the transportation network,

and (4) the anticipated flows of equipment, such as different types of containers and

chassis, between different parts of the transportation network. The first two models

are deterministic models that capture the problem at different levels of detail. Finally,

we propose a three-stage stochastic model that incorporates uncertainties. Efficient
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algorithms to solve the large scale stochastic problem are proposed and compared.

The pros and cons of the three models are discussed in terms of solution quality and

computation cost.

Various issues are considered in those models, such as demand imbalance and

seasonality, freight routing, container repositioning, procurement of extra voyage ca-

pacities, container leasing and rental, and container damage. Optimal solutions from

the three models are evaluated by SimSea, a simulation model that simulates ocean

carrier operations. The first model is called the steady state model. This model con-

siders each season in the planning horizon separately, ignoring the initial conditions

and flow changes between two seasons. It provides solutions with reasonable quality,

requiring small computing overhead. The second model is called the time stamped

model. The model integrates different seasons in the whole planning horizon into one

bigger problem. Since the initial conditions and flow changes are captured, we can

obtain significantly more revenue by using this model than the first one, at the cost

of a small increase in computing time. The third model is the stochastic model. It

captures the uncertainties in demand, travel times on feeder arcs, booking cancela-

tions and various costs. The third model can obtain the largest revenue among the

three. Although the model can obtain a little more revenue than the time stamped

model, this model needs significantly more input data and more computation time.

Based on our computational results, we conclude that the second model is likely the

most practical of the three.

The second part of the thesis investigates how the introduction of spot markets

changes the business of the liner shipping industry tightly bonded with longer term

contracts. Though the motivation of the research originates from liner shipping, the

models are quite general and can be applied to other industries with non-storable

goods. Unlike most of the existing literature, the spot price is endogenous, which

complicates the analysis significantly. As is present in practice, the spot market
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considered in our study is from sell side. Carriers can sell their remaining capacities

on the spot markets after satisfying service contracts. It is common that a large

portion of shippers still only use service contracts for a variety of reasons. This

motivates us to model the buyers’ participation in the spot market, which differs

our study from other literature. In particular, we study the effects of the buyers’

participation on the contract market, on the surpluses of all market players and on

the total social welfare.

In Chapter 3, we first present a model of a single-seller single-buyer setting. Sec-

ond, a model with a single seller and many buyers is considered. In that setting, every

buyer has the same utility only depending on a random state of the market. Third, we

consider the case where buyers have different utilities in addition to the state of the

market. Numerical results are presented to illustrate the effects of the spot market

participation. Fourth, a market with two sellers and a single buyer is studied. The

last part of Chapter 3 presents a numerical study on a market with many sellers and

many buyers for comparison purpose. In all settings, spot price is endogenous and

the effect of capacity is also studied. It is found that as the spot market participation

rate increases, the contract market shrinks under all market structures. For all the

single-seller settings with large capacity, the seller’s surplus increases in spot market

participation. However, the effects of the spot market participation rate on the buy-

ers’ surplus and on the total social surplus are more complicated. Depending on the

variation of the demand, an increase in the spot market participation rate may or

may not benefit the buyers, thereby may or may not increase the total social surplus.

For the undercapacity case, the surpluses of all players are invariant to spot market

participation if all the buyers have the same utilities. If the buyers have different util-

ities, the results do not hold any more. Numerical results show that both the buyers

and the seller are better off with higher participation rate. We also prove that all the

players have higher surpluses with full participation in the spot market compared to
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the contract market only case when the capacity is tight. As the market structure

moves from single seller to many sellers, it is observed that an increase in spot market

participation always improves the total social welfare though it may hurt either the

sellers or the buyers.
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CHAPTER II

CONTRACT PLANNING MODELS FOR OCEAN

CARRIERS

2.1 Introduction

Most of containerized freight transported by ocean carriers is transported under the

provisions of medium term contracts between the ocean carriers and shippers. Many

of the big ocean carriers do between 80% and 95% of their containerized freight trans-

portation under these contracts. Most contracts between ocean carriers and shippers

are negotiated once a year, typically one or two months before the peak season of

the major trades covered by the contracts. For example, the peak season for the

Trans-Pacific trade is approximately June through November, and most contracts

involving Trans-Pacific movements are negotiated during April. The peak season for

the Trans-Atlantic trade is approximately December through February, and most con-

tracts involving Trans-Atlantic movements are negotiated during November. There

seems to be a trend towards shorter term contracts, such as three month contracts,

as well as towards contracts with more flexible stipulations.

A key parameter of a contract is the set of prices specified in the contract. The

price charged for transporting a container depends on (1) the origin-destination pair

and the alternative paths between them allowed by the customer, (2) the classification

of the goods in the container (although this factor is often not taken into account with

Intra-Asia transportation), and (3) the time of the year. The United States Ocean

Shipping Reform Act (OSRA) of 1998 for the first time allows ocean carriers moving

freight into and out of the United States to enter into confidential contracts with

shippers, and to charge different shippers different prices. An important decision for
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an ocean carrier is how to structure these prices. Important considerations to be taken

into account when making this decision are (1) the price structures of competitors,

(2) the behavior of customer demand, (3) the available transportation capacities

(capacities on voyages, and in some cases also the capacities of the domestic modes of

transportation, such as truck, rail, and barge transportation), and (4) the availability

and flow balance of equipment such as containers and truck chassis. An ocean carrier

would like to structure the prices in such a way that the best match between supply

and demand is obtained, with the objective to maximize profitability.

We propose three models as decision tools that carriers can use before and during

the contract negotiation season to plan the contract price structure, as well as the

anticipated freight flows and empty container flows for the period covered by the

contracts. The output of the planning tool includes (1) prices to be charged for the

movement of freight, as a function of the alternative paths allowed by the customer,

the cargo class of the freight, and the time of the year, (2) the anticipated quantity

of freight of each cargo class to be moved on each path at different times of the

year, (3) the anticipated flows of freight on feeder legs as well as major legs of the

transportation network, and (4) the anticipated flows of equipment, such as different

types of containers and chassis, between different parts of the transportation network.

The first two models are deterministic models, which capture the problem at different

levels of detail. To deal with the uncertainty, we propose a three-stage stochastic

model.

The rest of the chapter is organized as follows. Section 2.2 contains a brief review

of the related literature. Section 2.3 describes a typical ocean carrier’s transportation

network and its operations. In Section 2.4, we present three different models for

the contract planning problem. Solution algorithms are provided in Section 2.5.

Section 2.6 presents computational results and Section 2.7 summarizes conclusions.
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2.2 Literature review

A major part of existing literature related to ocean cargo transportation is focused

on the empty container allocation problem. Florez [24] develops a deterministic net-

work model for this problem. It can be solved by using standard network algorithms.

Crainic and Gendreau et al. [17] develop empty container allocation models in a land

distribution and transportation system. They propose two dynamic deterministic

formulations for the single commodity and multi-commodity cases respectively. To

deal with uncertain demands and supplies, they also provide a two-stage stochastic

model for the single commodity case. In their models, empty containers received at

ports and empty containers sent from ports via ocean transportation are not modeled

as decision variables. Instead, they are modeled as external demands and supplies in

addition to those from customers. Compared with the work of Crainic and Gendreau

et al. [17], Cheung and Chen [14] propose a two-stage stochastic network model that

is focused on ocean transportation system. In their model, the randomness arises

from the demand and supply of empty containers and from the voyage capacities

for empty containers. Stochastic linearization method and stochastic hybrid approx-

imation method are used to solve the problem. They conduct implementations to

compare the effectiveness of the approaches. Moreover, they compare the stochas-

tic model with a deterministic model. Their results show that the stochastic model

performs better but not significant.

Other literature related to revenue management topics in ocean cargo industry

includes the follows. Wan and Levary [54] propose a negotiation procedure for a

shipper contracting with ocean carriers. The procedure uses the results from a linear

programming model with sensitivity analysis. The approach helps shippers to sign a

contract with the lowest obtainable prices. Cao and Ang et al. [13] develop a two-

stage mixed integer model for an ocean container carrier to select cargoes in order

to maximize its profit for a particular trip. In their setting, the freight prices are
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fixed at the decision stage. The carrier can refuse or delay cargoes and select most

profitable cargoes without violating the capacity constraints of the ship. Uncertain

available empty containers at origin ports, ship capacity and costs are considered.

Another branch of literature on freight network closely related to the pricing

problem of ocean cargo industry falls into a game theory framework. Friesz and

Gottfried et al. [25] develop a sequential shipper-carrier model. Shippers first select

commodity origins and carriers, which determines the transportation demands. Given

the fixed demands, each carrier then routes freight over its own portion of the network

to minimize the operation cost. The freight prices are not decision variables in this

model. They are calculated from a function of the cost, the commodity price and

other factors. Fisk [23] proposes a conceptual framework to formulate models for

optimal transportation systems planning. The Nash equilibrium between a single

supplier and its users and the equilibrium in an oligopolistic market are considered.

Hurley and Petersen [28] use a nonlinear tariff to obtain an equilibrium solution for

the freight network problem. They consider a system with multiple shippers and

multiple carriers, each acting as profit maximizing agents. They show that if the

carrier coalition uses vertically efficient nonlinear tariff schedule, then the problem

can be reduced to maximize the joint profit of shippers and carriers. The distribution

of the joint profit among the agents of the system is obtained by solving a linear

problem. Smallwood and Mirchandani [47] propose a non-cooperative game model

for the case where two carriers compete for a single customer. They consider a simple

setting where the two carriers both provide transport of goods from Port O to Port

D. The prices charged on the customer and terminal space to rent at the origin

port (capacity) are both decision variables for the carriers. Interactions between the

carriers and the customer are formulated by a bilevel programming. They show that

a Nash Equilibrium is unable to obtain when both price and capacity are decision

variables for the parameters they test. Brotcorne and Labbé et al. [10] propose a
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bilevel model for a freight tariff-setting problem in a single commodity case. They

formulate the model in a game theory setting where the leader is a carrier of a group

of competing carriers and the follower is a shipper. At the upper level, the leader

maximizes its revenues by setting the optimal tariffs on the subset of arcs under

its control. At the lower level, given the tariff schedule, the shipper minimizes its

transportation cost. A class of heuristic procedures to solve this problem is provided.

Numerical experiments are conducted to compare the efficiencies of these approaches

with respect to exact optimal solutions on small problem instances. Also numerical

results on large instances that could not be solved to optimal by exact method are

presented.

Though the tariff-setting problem addressed in Brotcorne and Labbé et al. [10]

in the previous paragraph are closely related, the contract planning problem we con-

sider here has its unique properties. First, in practice, there are several major factors

in determining freight prices. They include the paths required by customers, cargo

classes, container types, the seasons of the year. Thus, from practical point of view,

instead of setting prices to arcs, a better approach is to model prices according to

those factors, which can be more easily implemented in practice. Second, the con-

tract decisions must be made in a short period before the coming seasons and at a

whole network level (usually a trade). The carrier must consider demand requests of

different paths, cargoes and container types from different customers simultaneously.

Therefore, it is difficult to model the demands as the outcome from each individual

shipper to minimize its transportation costs. Third, the planning horizon is long and

usually includes multiple seasons. Demand responses to prices are very different in

the peak season than those in the off peak season. Thus, the optimal prices cannot

be constant through out the entire planning horizon. At the same time, the freight

flows change from one season to another. Fourth, empty container repositioning is

an important issue in ocean cargo transportation industry. Empty containers need
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to be moved to keep container balance at depots. Therefore, we approach this prob-

lem differently by explicitly assuming the demand functions. That is the demands

are modeled as a function of the prices charged by the carrier. Prices and demands

are classified by the paths required by customer, cargo classes and container types.

The problem is then reduced to a quadratic optimization problem. Different types

of demands covering the entire network thus are integrated in one single model. De-

mand seasonality, empty container repositioning and other practical issues are also

considered in the proposed models.

2.3 Ocean carrier operations

In this section we give a brief description of the aspects of ocean carrier operations

that are important for modeling the contract planning problem.

2.3.1 Ships, voyages, and services

Ocean container carriers usually operate their ships on schedules that are planned

months in advance. Each ship visits a set of ports in cyclical fashion. For example,

suppose that the set of ports visited by a particular ship is denoted by {A,B,C}, and

that the ship visits the ports in the sequence A,B, C,A, B, C, A, . . .. Such a cycle is

shown in Figure 1 with solid lines. Figure 1 also shows a cycle in which another ship

visits ports {A,C} in the sequence A,C, A, C, A, . . . with dotted lines.

A cyclical sequence of ports visited by one or more ships operated by a carrier

is called a service (also called a loop or a rotation or a service rotation). The trip

from a port in a cycle to the next port in the same cycle is called a voyage. Thus a

cycle that visits m ports consists of m voyages. Each voyage belongs to a particular

service. For example, if another service visits ports A,B,F ,G, then the voyage AB

in the first service and the voyage AB in the second service are regarded as different

voyages.

It is common for a service to be scheduled with regular departures at each port
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Figure 1: Example service network.

included in the cycle, typically weekly departures. Actual departure times may differ

from scheduled departure times, but usually the deviation is not more than a day.

To offer weekly departures at each port included in the cycle, the headway between

successive ships traversing the cycle must be one week. In addition, if it takes a ship

n weeks to complete one cycle, then n ships are needed to offer the service. For many

services that visit ports in Asia and North America, and services that visit ports in

Asia and Europe, it takes a ship approximately 6 weeks to complete one cycle, and

thus 6 ships are needed to offer the service. Taking into account that large container

ships are very expensive, it becomes clear that for even the large carriers it would

require a huge investment to establish a service.

One way to introduce a service is for several carriers to enter into an alliance to

offer the service. Many services that visit ports in Asia and North America, and

services that visit ports in Asia and Europe, are offered by alliances between two

carriers. Each carrier in the alliance provides one or more ships to be used for the

service. The capacity on each ship is then allocated to all the alliance members, often

in proportion to the capacity that the alliance member contributes to the service.

For example, if carrier 1 contributes 2 ships and carrier 2 contributes 4 ships to the

service, and all the ships in the service have the same capacity, then carrier 1 can use

1/3 of each ship’s capacity, and carrier 2 can use 2/3 of each ship’s capacity. That

way, each carrier in the alliance can offer weekly departures at each port in the service

even though it did not have enough ships by itself to do so. Provision is usually made
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for alliance members to obtain some of the capacity on a voyage that was allocated to

another alliance member. For example, if carrier 1 needs space for 3 more containers

on a voyage, and carrier 2 has enough surplus capacity on the voyage, then carrier 2

can sell the space to carrier 1 at an agreed price.

2.3.2 Freight flows, containers, and capacities

Containers filled with freight as well as empty containers are transported between

many origins and destinations. The locations of origins and destinations are called

inland locations. Origins and destinations are usually not at the ports, so that other

transportation modes, such as truck, rail, and barge transportation, are used in addi-

tion to the ocean transportation, to move shipments from their origins to their desti-

nations. Most often these other modes of transportation are used to move freight from

its origin to a nearby port, and from another port to its destination. In these cases

these other modes of transportation are called feeder services. Sometimes these other

modes of transportation are used to move freight from one port to another port, as

in the case of land bridge operations. In addition, when a customer uses a container

provided by the carrier, the container is usually moved from a container depot to the

consignor’s facility where the container is loaded, and later the container is moved

from the consignee’s facility where the container is unloaded to another container

depot. These movements usually take place by truck. To simplify the language, we

will refer to all other modes of transportation as feeder services.

A freight shipment moves from its origin to its destination along a path. Some of

the legs on a path are provided by feeder services, and in the applications that we

consider here at least one leg is provided by a voyage. More than one leg in a path

can be provided by voyages. For example, a shipment can be moved from origin O

to port A, loaded onto a ship at port A, and remain on the ship during voyages AB

and BC, after which it is unloaded at port C and then moved to destination D.

15



Different legs in a path can even be provided by voyages that belong to different

services, in which case the shipment has to be transferred between ships, possibly

with feeder services in between. For example, a shipment can be moved from origin O

to port B, loaded onto a ship at port B, and remain on the ship during voyage BC,

after which it is unloaded at port C, whereafter it is transferred by rail from port C

to port F , loaded onto a ship at port F , remains on the ship during voyage FG, after

which it is unloaded at port G and then moved to destination D.

There can be multiple paths from the same origin to the same destination. Differ-

ent paths between the same origin-destination pair may use voyages belonging to the

same or different services. For example, a shipment from Guangzhou to Atlanta can

move by truck from Guangzhou to the Yantian port in Shenzhen, where it is loaded

on a ship that stops thereafter at several other ports before the shipment is offloaded

at the port of Long Beach on the US west coast. Thereafter the shipment is loaded

on a train and is moved to Atlanta. Alternatively, the shipment can move by barge

from Guangzhou to the port in Hong Kong, where it is loaded on a ship that operates

on the same service mentioned in the previous example, that also stops thereafter at

several other ports such as Yantian before the shipment is offloaded at the port of

Long Beach on the US west coast. Thereafter the shipment is loaded on a truck and

is moved to Atlanta. Alternatively, the shipment can move by barge from Guangzhou

to the port in Hong Kong, where it is loaded on a ship that operates on a different

service than the one mentioned in the previous two examples, that stops thereafter

at several other ports before it moves through the Panama canal and the shipment is

offloaded at the port of Savannah on the US east coast. Thereafter the shipment is

loaded on a truck and is moved to Atlanta.

In this work we focus on containerized freight transportation. The containers that

freight is transported in can be provided by one of several parties. Sometimes the

customers provide their own containers. Sometimes the carrier rents containers from
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companies that specialize in container rentals. The carrier can rent containers for a

long time so that the carrier can use a rented container for multiple shipments, or

the carrier can rent a container for a single shipment. Most freight is transported

in containers provided by ocean carriers. There are several different container types,

including general purpose, refrigerated (reefer), high cube, reefer high cube, open top,

flat top, hanger, and tank containers. There are also various container sizes, including

20-foot, 40-foot and 45-foot. The most common combinations of container type and

container size are 20-foot general purpose, 40-foot general purpose, 40-foot high cube,

45-foot high cube, 20-foot reefer, and 40-foot reefer high cube containers.

It is a widely known phenomenon that usually the flow rates of loaded containers

of each container type and size into and out of a location are not balanced. Often

this results from the long run demand rate for loaded container movements in one

direction being different from the long run demand rate in the opposite direction. For

example, these days the demand rate for movements of loaded 40-foot general purpose

containers from Asia to North America is much higher than the demand rate in the

opposite direction. In addition, even if the long run demand rates were the same in

both directions, short run fluctuations could cause significant temporary imbalances in

loaded container flows. To provide a sufficient supply of empty containers at locations

where they are needed, it is usually desired to maintain flow balance of each container

type and size at each location over the longer run, and thus it is often necessary to

move empty containers.

Both the voyage legs as well as the feeder service legs have limited capacities.

There are constraints on the numbers of containers of different types that a container

ship can carry. Container ships have special slots with power supply for refrigerated

containers, as well as slots for 20-foot and 40-foot containers. Some slots can accom-

modate multiple container types; for example, a 40-foot general purpose container

can be placed in a slot for a 40-foot refrigerated container, and in many cases two
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20-foot general purpose containers can be placed in a single slot for a 40-foot gen-

eral purpose container or a 40-foot refrigerated container. There are also constraints

on the weight that a ship can carry, as well as the distribution of the weight, that

affects the loading and unloading of the ship. When we mention the capacity of a

ship or voyage, we refer to any combination of the constraints mentioned above. It is

common practice to summarize the capacity of a ship in a single number, namely the

number of twenty-foot equivalent units (TEU) that the ship can carry — one 40-foot

container counts as 2 TEU. If a carrier operates a service by itself, then the capacity

of each voyage in the service is the same as the capacity of the ship that makes the

voyage. If a carrier operates a service as a member of an alliance, then each carrier

in the alliance can use a specified amount of the capacity of each ship in the service,

which determines the capacity of each voyage in the service from an individual car-

rier’s point of view. In the latter case, an individual carrier can sometimes obtain

additional capacity on one or more voyages from other alliance members, typically at

an agreed price.

The capacities of feeder services are less predictable than the capacities of voyages,

because feeder services are usually provided by several independent carriers that also

carry freight for many other customers. At the same time, when several independent

carriers provide feeder services, insufficient capacity on a particular day usually causes

delays of at most a few days in the desired transportation time of freight. In contrast,

if a voyage does not have sufficient capacity, it can cause a freight shipment to be

delayed by a week or more.

2.3.3 Customers, demand, and contracts

Most customers of ocean carriers send multiple shipments from one or more origins

to one or more destinations during a year. A customer can purchase transportation

services on the spot market at the current price, or a customer can enter into a longer
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term contract with one or more ocean carriers. The prevalent practice depends on

the market; for example, in markets involving freight flows to and/or from North

America and/or Europe, most ocean freight (more than 80%) is transported under

longer term contracts, whereas for intra-Asia freight flows it is more common to

purchase transportation on the spot market. The duration of the contracts vary, with

one year being a typical duration. For most of the contracts in the same market, the

time periods covered by the contracts are the same, and the contract negotiations take

place within a short time period before the time periods covered by the contracts. For

example, in the trans-Pacific market between North America and East Asia, most of

the contracts are negotiated once a year around April, and in the intra-Asia market,

most of the contracts are negotiated quarterly.

The most important parameters specified by a contract are the prices that will be

charged for various transportation services. The specified prices depend on several

factors. The most important factor is the origin-destination pair, or more specifically,

the path or set of paths to be used for the freight movement. In some cases, customers

specify not only the origin and destination of a shipment, but also require a particular

path or a set of acceptable paths. A customer may prefer one path over other paths

for the same origin-destination pair because different paths have different transit

times. A customer may also want the shipment to clear customs at a particular port,

in which case the customer may be indifferent among all paths that clear customs

at the preferred port as long as the transit times of the paths are not significantly

different. In such a case, the customer lets the carrier choose the path among the set

of acceptable paths, and the customer pays the same price specified in the contract

for any of the acceptable paths. The contract prices also depend on the container

type and container size, even for the same path; for example, prices are typically

lower for general purpose containers than for refrigerated containers, and lower for

20-foot containers than for 40-foot containers. If the container used for a shipment
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is provided by the carrier, the carrier may provide financial incentives in an attempt

to balance container flows; for example, the carrier may charge a lower price for 40-

foot refrigerated containers than for 40-foot general purpose containers for particular

origin-destination pairs, in an attempt to get the refrigerated containers back to the

locations where the demand for them is relatively high. In some markets the contract

prices also depend on the freight classes even for the same path and in the same

containers; for example, it is quite common to charge higher prices to transport more

valuable freight. In addition, contract prices also depend on the time of the year

that the shipment is made; such price variations are usually specified in the contract

as peak period surcharges. There are also many other surcharges and fees, such as

a “bunker adjustment factor” that compensates the carrier for fuel prices that are

higher than a specified amount, and terminal handling charges.

Another parameter specified in freight transportation contracts that are some-

times of interest is a “minimum freight guarantee”. This specifies that the customer

promises to ship at least a certain amount of freight with the carrier during the time

period covered by the contract. Such a parameter has several shortcomings. First,

often contracts do not specify the consequences that would result if the customer

failed to ship the promised amount of freight, and even when the contract specifies

penalties, based on anecdotal evidence such penalties are hardly ever enforced. Sec-

ond, besides the amount of freight, the timing of freight shipments are also important

to the carrier. In fact, if too much of the freight is offered in a short time period,

the carrier would be unable to handle it. Some contracts also specify the maximum

amount of freight that the carrier can accept from the customer per week, and some

contracts specify higher prices if the amount of freight offered in a week exceeds a

specified amount.

Many customers who enter into contracts with ocean carriers do so with several

ocean carriers. Thus, when a customer wants to make a reservation for a freight
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shipment, the customer often has a choice between more than one carrier. The cus-

tomer’s choice can be influenced by the prices specified in the contracts with the

different carriers, the carriers’ availability of capacity, and other measures of service

quality. All other factors being the same, a carrier can expect higher demand if the

prices specified in its contracts are lower.

2.4 Contract planning models

An individual carrier’s contract planning problem can be summarized as follows. For

a given market, such as the trans-Pacific market, a given set of services in the market

with its associated scheduled voyages and capacities, and a given time period covered

by the contracts in the market, choose the prices in the contracts to obtain a portfolio

of contracts to maximize the carrier’s expected total profit over the time period.

The problem stated above can be modeled in many different ways. Below, in

Sections 2.4.2–2.4.4 we introduce three models in increasing order of complexity. First

we introduce common notation and assumptions in Section 2.4.1.

2.4.1 Basic assumptions and model description

The models are formulated towards maximizing an individual carrier’s profit under

the following assumptions:

1. The demand arrival rate of a certain type is a function of the charged price.

2. Prices depend on cargo classes, time and alternative paths allowed by the cus-

tomers.

3. The containers can be owned by the carrier, or rented by the carrier, or provided

by the customers.

4. The carrier may join alliance. In this case, extra voyage capacities can be

purchased from other carriers.
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5. Transshipment between different service rotations is not allowed in the stochas-

tic model.

The proposed models can be used dynamically with updated inputs during nego-

tiation seasons. For the deterministic model, the last assumption is not needed. It

will be discussed in the next section.

Let H denote the set of ports, let O denote the set of inland locations that act

as origins for both freight flows and empty container flows, and let D denote the

set of inland locations that act as destinations for freight flows and empty container

flows. One may choose O = D; nevertheless, it is convenient to use distinct notation

for origins and destinations. A natural choice for O and D is the set of container

depots used by the carrier; all consignors served from a container depot are associated

with the corresponding point in O, and all consignees close to a container depot are

associated with the corresponding point in D. Let V denote the set of voyages. Recall

that a voyage is a single leg of a service or cycle operated by the ocean carrier (or

alliance) under consideration, and thus a voyage v ∈ V is specified not only by the

start port and end port of the voyage, but also by the service that it belongs to.

Recall that a path l from an origin to a destination consists of a sequence of feeder

service legs and voyage legs, and that in some cases customers not only specify the

origin and destination of a shipment, but also require a particular path or one path

of a particular set L of paths to be used. Let L denote the set of all paths l in the

model, and let L denote the collection of all path sets L required by customers.

Hereafter, we use the term “container class” to refer to a combination of container

type and container size. Let B denote the set of all container classes. We use the

term “cargo class” to make a distinction between different types of freight on any

basis that is relevant for pricing purposes. For example, if the carrier sets different

prices for different freight classes, such as consumer electronics, furniture, and textiles,

then different cargo classes are used to distinguish these different freight classes. If
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the carrier sets different prices for different customer classes, then different cargo

classes are used to distinguish these different customer classes. Different cargo classes

are also used to distinguish different container classes, and thus each cargo class is

transported in a unique container class. Let C denote the set of cargo classes. Set C
is partitioned into two subsets, C = C ′ ∪ C ′′, such that C ′ denotes the cargo classes

for which the carrier provides the container (the carrier may own the container, or

lease the container for multiple shipments, or rent the container for a single shipment

— these are the same from the customer’s point of view), and C ′′ denotes the cargo

classes for which the customer provides the container. For each cargo class c ∈ C ′,
let b(c) ∈ B denote the container class used to transport cargo class c, and for each

container class b ∈ B, let C(b) ⊂ C ′ denote the set of cargo classes that is transported

in class b containers.

In our models, there are various types of decisions. First, there are the pricing

decisions, denoted by π. The demands during the time horizon depend on the prices.

In the first two models, the demands depend deterministically on the prices, and

in the third model the demands are random variables that depend on the prices.

Second, there are decisions regarding loaded container flows. If a customer’s demand

for transportation of a shipment can be satisfied by using one of several paths, then

there is a decision regarding which path to use. For the cargo classes C ′ for which

the carrier provides the containers, a distinction is made between flows of loaded

containers that belong to the carrier or that are leased by the carrier for a long

term (more than one shipment), denoted by xo; and flows of loaded containers that

are rented by the carrier for a single shipment, denoted by xr. The distinction is

needed because the carrier is responsible for the flow balance of some containers (the

containers owned by the carrier or leased by the carrier for a long term), but not

for the flow balance of containers rented for a single shipment. For the cargo classes

C ′′ for which the customer provides the containers, the flows of the containers are
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denoted by xc. In the stochastic model, a distinction is made between planned flows

and actual flows, the difference being due to cancelations of shipment bookings and

shipments that arrive too late for a voyage that it was planned to take, due to delays

at the consignor or delays with the feeder service. There are also decisions regarding

empty container flows of containers owned by the carrier or leased for a long term,

denoted by xe. If additional containers can be purchased or obtained with a long

term lease, then there are purchase decisions or lease decisions that are denoted by xp

and xl respectively. (Flows of containers rented for a single shipment, denoted by xr,

implies a decision to rent xr containers for the path that is indicated by the notation

introduced for each particular model.) If the carrier under consideration can obtain

additional capacity on voyages from other alliance members, then there are decisions,

denoted by ya, regarding how much additional capacity to obtain.

For each voyage v ∈ V , let u(v) denote the capacity that the carrier under con-

sideration can use on voyage v. If the carrier is a member of an alliance, then the

carrier may also be able to obtain additional capacities on the voyages, because the

alliance members have capacities on the same voyages. For each voyage v ∈ V , let

ua(v) denote the maximum additional amount of capacity that the carrier can obtain

on voyage v, and let ψa(v) denote the cost per unit of additional capacity obtained

on voyage v. At the planning stage the values ua(v) and ψa(v) may be unknown, and

in such a case point estimates of the values are used in the deterministic models.

2.4.2 Steady state deterministic optimization model

In this section, we present the simplest of the three models. For this model, it

is assumed that all input parameters are time-invariant, and that the system has

reached a steady state. Therefore, it is sufficient to express process parameters such as

demand, and decision variables such as flows, as rates per unit time. Initial conditions,

such as locations of containers and flows at the beginning of the planning period, do
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not occur in the model. Similarly, terminal conditions, such as locations of containers

and flows at the end of the planning period, do not occur in the model. These

assumptions simplify the steady state model considerably relative to the models that

follow later. As explained in Section 2.6, for the computational results, if the planning

period contains multiple seasons with different values for input parameters, then the

steady state model is applied separately for each season to determine the prices.

Decision variable π(c, L) denotes the contract price for cargo class c ∈ C to be

transported on any path l chosen by the carrier such that l ∈ L ∈ L, and π denotes the

vector of all contract prices. Let q(c, L, π) denote the demand rate of transportation

requests for cargo class c ∈ C per unit time on the path set L if the vector of contract

prices is π, measured in the same units as the transportation capacities. To facilitate

the description, we assume that the demand rate is expressed in number of containers

(or TEU) per week. As mentioned above, in the steady state model, π(c, L) and

q(c, L, π) are not functions of time. In the model, we assume that the demand is a

linear function of the price vector π, as follows:

q(c, L, π) = α(c, L)+
∑

c′∈C

∑

L′∈L
β(c, L, c′, L′)π(c′, L′) forall c ∈ C, L ∈ L

(2.4.1)

where α(c, L) and β(c, L, c′, L′) are input parameters.

As mentioned before, for the cargo classes C ′ for which the carrier provides the con-

tainers, the model distinguishes between freight moved in containers owned or leased

by the carrier under consideration for a long term; and freight moved in containers

rented by the carrier for a single shipment. Decision variable xo(c, l, L) denotes the

amount of flow per week (generated by demand requests with rate q(c, L, π)) in con-

tainers owned or leased for a long term by the carrier, that move on path l ∈ L loaded

with cargo class c ∈ C ′. The unit cost of such a movement is denoted by φo(c, l) and

includes feeder service cost, container storage cost, and loading and unloading cost.
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Similarly, decision variable xr(c, l, L) denotes the amount of flow per week in contain-

ers rented by the carrier for the particular shipment, that move on path l ∈ L loaded

with cargo class c ∈ C ′. The unit cost of such a movement is denoted by φr(c, l) and

includes feeder service cost, container rental cost, container storage cost, and loading

and unloading cost. For the cargo classes C ′′, decision variable xc(c, l, L) denotes the

amount of flow per week in containers provided by customers, that move on path

l ∈ L loaded with cargo class c ∈ C ′′. The unit cost of such a movement is denoted

by φc(c, l) and includes feeder service cost, container storage cost, and loading and

unloading cost. (The reason for including path sets L as arguments of the decision

variables becomes clear when the demand satisfaction constraints are considered.)

The demand satisfaction constraints are formulated as follows. In steady state,

the intensity of demand for transportation for each cargo class c and path set L must

equal the freight flow per unit time for the cargo class and path set:

∑

l∈L

[xo(c, l, L) + xr(c, l, L)] = α(c, L) +
∑

c′∈C

∑

L′∈L
β(c, L, c′, L′)π(c′, L′)

for all c ∈ C ′, L ∈ L (2.4.2)

∑

l∈L

xc(c, l, L) = α(c, L) +
∑

c′∈C

∑

L′∈L
β(c, L, c′, L′)π(c′, L′)

for all c ∈ C ′′, L ∈ L (2.4.3)

Containers are damaged at a rate proportional to their use, and to replace dam-

aged containers, new containers can be purchased or leased at specified locations. Let

µ(c, l) denote the fraction of containers moving on path l ∈ L loaded with cargo class

c ∈ C ′ that arrive at the destination of path l too damaged to be used again. Similar

damage rates can be defined for empty container flows, but are omitted here to reduce

notation. Decision variables xp(b, o) and xl(b, o) denote the number of containers of

class b ∈ B respectively purchased or long term leased per week with the container
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supplied at location o ∈ O by the container supplier. Also to reduce notation, we

assume here that long term leased containers are leased for the duration of the time

period covered by the model. The unit cost of a class b container purchased or leased

at location o is denoted by φp(b, o) and φl(b, o) respectively.

Decision variable xe(b, l) denotes the amount of empty container flows per week

of container class b ∈ B on path l ∈ L. The unit cost of such a movement is denoted

by φe(b, l), and includes feeder service cost, container storage cost, and loading and

unloading cost.

For any path l ∈ L, let L(l) := {L ∈ L : l ∈ L} denote the collection of path

sets that contain l.

The container flow balance constraints are formulated as follows. For any origin

o′ ∈ O, let Lo(o
′) denote the set of all paths starting at origin o′; and for any des-

tination d′ ∈ D, let Ld(d
′) denote the set of all paths ending at destination d′. At

each location o, for each container class b owned or leased by the carrier, the rate

of container flow into the location is equal to the rate of container flow out of the

location:

∑

c∈C(b)

∑

l∈Lo(o)

∑

L∈L(l)

xo(c, l, L) +
∑

l∈ Lo(o)

xe(b, l)

=
∑

c∈C(b)

∑

l∈Ld(o)

∑

L∈L(l)

(1− µ(c, l))xo(c, l, L) +
∑

l∈Ld(o)

xe(b, l) + xp(b, o) + xl(b, o)

for all b ∈ B, o ∈ O (2.4.4)

Note that the above container flow balance constraints do not apply to the containers

rented by the carrier or the containers provided by the customers.

Decision variable ya(v) denotes the amount of additional capacity obtained on

voyage v ∈ V from alliance members per week, and ψa(v) denotes the unit cost for

such additional voyage capacity.

The voyage capacity constraints are formulated as follows. For any voyage v′ ∈ V ,
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let Lv(v
′) denote the set of all paths that contain voyage v′. For each voyage v ∈ V ,

the total rate of loaded container flows and empty container flows that use the voyage

per unit time must be less than or equal to the voyage capacity:

∑

c∈C′

∑

l∈Lv(v)

∑

L∈L(l)

[xo(c, l, L) + xr(c, l, L)]+
∑

c∈C′′

∑

l∈Lv(v)

∑

L∈L(l)

xc(c, l, L)+
∑

b∈B

∑

l∈Lv(v)

xe(b, l)

≤ u(v) + ya(v) for all v ∈ V (2.4.5)

The individual decision variables also have bounds, such as

π(c, L) ≤ π(c, L) ≤ π(c, L) for all c ∈ C, L ∈ L (2.4.6)

0 ≤ xo(c, l, L) ≤ uo(c, l, L) for all c ∈ C ′, L ∈ L, l ∈ L (2.4.7)

0 ≤ xr(c, l, L) ≤ ur(c, l, L) for all c ∈ C ′, L ∈ L, l ∈ L (2.4.8)

0 ≤ xc(c, l, L) ≤ uc(c, l, L) for all c ∈ C ′′, L ∈ L, l ∈ L (2.4.9)

0 ≤ xe(b, l) ≤ ue(b, l) for all b ∈ B, l ∈ L (2.4.10)

0 ≤ xp(b, o) ≤ up(b, o) for all b ∈ B, o ∈ O (2.4.11)

0 ≤ xl(b, o) ≤ ul(b, o) for all b ∈ B, o ∈ O (2.4.12)

0 ≤ ya(v) ≤ ua(v) for all v ∈ V (2.4.13)

The total revenue per unit time (per week) is given by

∑
c∈C

∑
L∈L

π(c, L)q(c, L, π)

−
∑

c∈C′

∑
L∈L

∑

l∈L

[φo(c, l)xo(c, l, L) + φr(c, l)xr(c, l, L)]−
∑

c∈C′′

∑
L∈L

∑

l∈L

φc(c, l)xc(c, l, L)

−
∑

b∈B

∑

l∈L

φe(b, l)xe(b, l)−
∑
v∈V

ψa(v)ya(v)−
∑

b∈B

∑
o∈O

[φp(b, o)xp(b, o) + φl(b, o)xl(b, o)]

(2.4.14)

In summary, this model is to optimize objective function (2.4.14) subject to con-

straints (2.4.1)–(2.4.13). The decision variables include prices π(c, L), freight flow

rates xo(c, l, L), xr(c, l, L), xc(c, l, L), empty container flow rates xe(b, l), numbers
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xp(b, o) and xl(b, o) of containers added at each location per week, and purchased ex-

tra voyage capacities per week ya(v). The input parameters of the model include the

coefficients α(c, L) and β(c, L, c′, L′) defining the demand functions, the costs φo(c, l),

φr(c, l), φc(c, l), φe(b, l) of movements on the paths, the costs φp(b, o) and φl(b, o)

to obtain additional containers, the costs ψa(v) of extra voyage capacities, container

damage rates µ(c, l), voyage capacities u(v), and the bounds of all the variables.

Except the bounds for the prices and the voyage capacities, all the parameters

are not known at the planning stage. Thus point estimates are used in this model.

As mentioned before, the planning horizon may be partitioned into multiple time

intervals such that the demand rates and costs do not vary too much with respect to

time within each time interval. In this case, the steady state model can be applied to

each time interval. The initial conditions and the transitions from one time interval to

the next are not captured in the model. This simplifies the model, but also sacrifices

model accuracy. To overcome this shortcoming, we propose the time stamped model

next.

2.4.3 Time stamped deterministic optimization model

In this model, for each cargo class c and path set L ∈ L, the planning horizon [0, T ]

is partitioned into several time intervals, and within each time interval, the demand

rates for that cargo class c and path set L are modeled as constant over time. For

each cargo class c and path set L ∈ L, let T (c, L) denote the collection of time

intervals. The contract prices are allowed to be a function of the cargo class c, the

path set L, and the time interval τ ∈ T (c, L) in which the shipment originates. This

is consistent with current practice, in which contract prices are varied with time by

specifying a peak period surcharge. The quantities of freight flows are allowed to

vary with time on an even smaller time scale. Specifically, the flows on a path in

one week can be different from the flows on the same path in another week, i.e., the
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flows are functions of time even within the same time interval τ . Thereby, the impact

of initial conditions and the flow changes from one time interval to the next can be

captured more accurately. As mentioned before, the schedules of the service rotations

are model input.

In this model we have to make a distinction between a voyage, that is, a single

leg of a service rotation in which a ship moves from a port (eg. port A) to the next

port (eg. port B) on the service rotation, and a time stamped voyage, in which a ship

moves from a port to the next port at a particular time (eg. from port A to port B

starting at port A on the second day of week 3). For example, if a service rotation

maintains weekly departures, then for each voyage in the service rotation, a new time

stamped copy of the voyage occurs each week. Similarly, we have to make a distinction

between paths and time stamped paths. For example, if all service rotations maintain

weekly departures, then for each path, a new time stamped copy of the path occurs

each week. Here, we ignore the fact that the movements of feeder services, such as by

trucks, are often not scheduled with fixed headways, and often can be more frequent

than once per week, because the frequency of a path is determined by the path leg

with the lowest frequency, which is typically the long-haul ocean transportation by

the carrier under consideration. Time stamped voyages will be called timed-voyages

and time stamped paths will be called timed-paths for short.

The start time and end time of timed-path r are denoted by to(r) and td(r) re-

spectively. The start time to(r) is a cut-off time — it is the latest time at which

a transportation request should be received to enable the freight to be moved on

timed-path r, allowing sufficient time for an empty container to be moved from the

appropriate container depot to the consignor’s facility, time for the consignor to load

the container, time for the feeder service to move the loaded container from the con-

signor’s facility to the first port on timed-path r, and the processing time of the

container at the first port, such that the container will be on time for the scheduled
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start time of the first timed-voyage on timed-path r. The end time td(r) is deter-

mined similarly, i.e., by the arrival time of the last timed-voyage on timed-path r, the

processing time of the container at the last port, the travel time of the feeder service

from the last port to the consignee’s facility, the time allowed the consignee to unload

the container, and the travel time of the empty container from the consignee’s facility

to the appropriate container depot. Both timed-paths r with to(r) ∈ [0, T ] as well as

timed-paths r with to(r) < 0 and td(r) > 0 are included in the model. The flows on

the timed-paths r with to(r) ∈ [0, T ] are modelled as decision variables, but the flows

on the timed-paths r with to(r) < 0 and td(r) > 0 are input as initial conditions.

A set of timed-paths r with to(r) ∈ [0, T ] is denoted by R, and a set of timed-

paths r with to(r) < 0 and td(r) > 0 is denoted by R0. The set of all timed-paths r

with to(r) ∈ [0, T ] is denoted by R, and the set of all timed-paths r with to(r) < 0

and td(r) > 0 is denoted by R
0
. For any path l ∈ L, let R(l) denote the set of all

timed-paths r along path l with to(r) ∈ [0, T ]; and for any path set L ∈ L, let R(L)

denote the set of all timed-paths r along a path l ∈ L with to(r) ∈ [0, T ]. The path

associated with the timed-path r is denoted by l(r).

Decision variable π(c, L, τ) denotes the contract price for cargo class c ∈ C to be

transported on a timed-path r chosen by the carrier such that l(r) ∈ L ∈ L and

to(r) ∈ τ ∈ T (c, L), and π denotes the vector of contract prices. Let q(c, L, τ, π)

denote the demand rate of transportation requests for cargo class c ∈ C and path set

L per unit time during time interval τ ∈ T (c, L) if the vector of contract prices is π,

measured in the same units as the transportation capacities. As before, we assume

that the demand intensity q(c, L, τ, π) is a linear function of the price vector π, as

follows:

q(c, L, τ, π) = α(c, L, τ)−
∑

c′∈C

∑

L′∈L

∑

τ ′∈T (c′,L′)

β(c, L, τ, c′, L′, τ ′)π(c′, L′, τ ′)

for all c ∈ C, L ∈ L, τ ∈ T (2.4.15)
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where α(c, L, τ) and β(c, L, τ, c′, L′, τ ′) are input parameters.

The flow variables are defined as follows. Decision variable xo(c, r, L) denotes the

amount of flow (generated by demand requests with rate q(c, L, τ, π), with to(r) ∈ τ)

in containers owned or leased for a long term by the carrier, that move on timed-path

r ∈ R(L) loaded with cargo class c ∈ C ′. The unit cost of such a movement is denoted

by φo(c, r) and includes feeder service cost, container storage cost, and loading and

unloading cost. Similarly, decision variable xr(c, r, L) denotes the amount of flow in

containers rented by the carrier for the particular shipment, that move on timed-

path r ∈ R(L) loaded with cargo class c ∈ C ′. The unit cost of such a movement is

denoted by φr(c, r) and includes feeder service cost, container rental cost, container

storage cost, and loading and unloading cost. Decision variable xc(c, r, L) denotes

the amount of flow in containers provided by customers, that move on timed-path

r ∈ R(L) loaded with cargo class c ∈ C ′′. The unit cost of such a movement is denoted

by φc(c, r) and includes feeder service cost, container storage cost, and loading and

unloading cost.

Constraints have to be formulated that relate demand intensities to flow quantities,

to ensure that the freight flow demands are satisfied along acceptable paths and within

acceptable times. Clearly, no transportation requests received after time to(r) can be

satisfied with freight flows on timed-path r. However, transportation requests for

path set L received before time to(r) may be satisfied with freight flows on timed-

path r ∈ R(L) or on a later timed-path r′ ∈ R(L) with to(r) < to(r
′), as long as the

delay between the transportation request and time to(r
′) is acceptable. (In this model,

the start times of the timed-paths are used to determine whether a timed-path can

satisfy demand that appears at a particular time within acceptable time — recall that

all the paths in the set L are regarded as acceptable by the customer, and thus have

durations that are acceptable to the customer, and hence an acceptable start time of

a timed-path r ∈ R(L) should imply an acceptable delivery time for timed-path r.
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One may also use the end times of the timed-paths in a similar way to determine the

set of timed-paths with acceptable delivery times.) In this model, acceptable timed-

paths for satisfying demand are determined as follows. Consider any path set L ∈ L
and the associated set R(L) of timed-paths, and denote the number of associated

timed-paths by |R(L)|. Index the timed-paths r1, . . . , r|R(L)| ∈ R(L) in increasing

order of their start times, i.e., to(r1) ≤ to(r2) ≤ · · · ≤ to(r|R(L)|). Let input parameter

w(c, L) denote the maximum time that transportation demand for cargo class c and

path set L can be delayed from the time the transportation request is made to a later

timed-path if it can also be moved on an earlier timed-path (if demand for cargo class

c and path set L originates at time t and there are no timed paths r ∈ R(L) with

to(r) ∈ [t, t+w(c, L)], then the model allows the freight to move on the first timed-path

r ∈ R(L) with to(r) ≥ t). That is, all the transportation demand for cargo class c and

path set L that originates in time interval [0, min{to(r1), max{to(r2)−w(c, L), 0}}]
has to be moved on timed-path r1, all the transportation demand for cargo class c and

path set L that originates in time interval [0, min{to(r2), max{to(r3)−w(c, L), 0}}]
has to be moved on timed-path r1 or timed-path r2, and so on. At the same time,

the maximum amount of freight of cargo class c and path set L that can be moved

on timed-path r1 is the transportation demand originating in time interval [0, to(r1)],

the maximum amount of freight of cargo class c and path set L that can be moved

on timed-paths r1 and r2 is the transportation demand originating in time interval

[0, to(r2)], and so on. The remaining task is to calculate the transportation demand

originating in each time interval.

The transportation demand for cargo class c and path set L that originates in any

time interval [t1, t2] depends on the chosen prices. Thus, it depends on the intersection

of [t1, t2] with the pricing time intervals in T (c, L). For any time interval τ ∈ T (c, L),

the demand for cargo class c and path set L that occurs in τ ∩ [t1, t2] is given by

|τ ∩ [t1, t2]| q(c, L, τ, π), where |τ ∩ [t1, t2]| denotes the length of interval τ ∩ [t1, t2].

33



(Usually, [t1, t2] is small compared with the intervals in T (c, L), and thus τ ∩ [t1, t2] is

typically nonempty for at most two intervals τ ∈ T (c, L).) Thus, the transportation

demand for cargo class c and path set L that originates in time interval [t1, t2] is given

by
∑

τ∈T (c,L) |τ ∩ [t1, t2]| q(c, L, τ, π).

The two types of demand satisfaction constraints for each cargo class c and path

set L can now be written as follows. Recall that the timed-paths in R(L) are indexed

in increasing order of their start times. To satisfy demand within acceptable times,

the cumulative flow on all timed-paths in R(L) up to rk ∈ R(L) must be greater than

or equal to the demand that has arrived until that time point and which cannot be

delayed any more:

∑

{r∈R(L) : to(r)≤to(rk)}
[xo(c, r, L) + xr(c, r, L)]

≥
∑

τ∈T (c,L)

∣∣∣τ ∩
[
0, min

{
to(rk), max

{
to(rk+1)− w(c, L), 0

}}]∣∣∣

×

α(c, L, τ)−

∑

c′∈C

∑

L′∈L

∑

τ ′∈T (c′,L′)

β(c, L, τ, c′, L′, τ ′)π(c′, L′, τ ′)




for all c ∈ C ′, L ∈ L, rk ∈ R(L) (2.4.16)

∑

{r∈R(L) : to(r)≤to(rk)}
xc(c, r, L)

≥
∑

τ∈T (c,L)

∣∣∣τ ∩
[
0, min

{
to(rk), max

{
to(rk+1)− w(c, L), 0

}}]∣∣∣

×

α(c, L, τ)−

∑

c′∈C

∑

L′∈L

∑

τ ′∈T (c′,L′)

β(c, L, τ, c′, L′, τ ′)π(c′, L′, τ ′)




for all c ∈ C ′′, L ∈ L, rk ∈ R(L) (2.4.17)

Also, the cumulative flow on all timed-paths in R(L) up to rk ∈ R(L) must be less

than or equal to the demand that has arrived until that time point:

∑

{r∈R(L) : to(r)≤to(rk)}
[xo(c, r, L) + xr(c, r, L)]

≤
∑

τ∈T (c,L)

∣∣τ ∩ [
0, to(rk)

]∣∣
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×

α(c, L, τ)−

∑

c′∈C

∑

L′∈L

∑

τ ′∈T (c′,L′)

β(c, L, τ, c′, L′, τ ′)π(c′, L′, τ ′)




for all c ∈ C ′, L ∈ L, rk ∈ R(L) (2.4.18)

∑

{r∈R(L) : to(r)≤to(rk)}
xc(c, r, L)

≤
∑

τ∈T (c,L)

∣∣τ ∩ [
0, to(rk)

]∣∣

×

α(c, L, τ)−

∑

c′∈C

∑

L′∈L

∑

τ ′∈T (c′,L′)

β(c, L, τ, c′, L′, τ ′)π(c′, L′, τ ′)




for all c ∈ C ′′, L ∈ L, rk ∈ R(L) (2.4.19)

Initial conditions, including initial container inventories and initial container flows,

are included in the model. As mentioned before, the flows on the timed-paths that

start before time 0 but end after time 0 are input as part of the initial conditions.

The initial flows of cargo class c on timed-path r with to(r) < 0 and td(r) > 0 moved

in the carrier’s own or long term leased containers, in containers rented by the carrier

for the particular shipment, and in containers provided by the customer, are denoted

by x0
o(c, r), x0

r(c, r), and x0
c(c, r), respectively. Let x0

e(b, r) denote the initial flows of

empty class b containers on timed-path r. The initial number of class b containers at

location o is denoted by s(b, o).

For any origin o′ ∈ O, let Ro(o
′) denote the set of all timed-paths r with origin o′

and to(r) ∈ [0, T ]; for any destination d′ ∈ D, let Rd(d
′) denote the set of all timed-

paths r with destination d′ and with to(r) ∈ [0, T ]; and for any destination d′ ∈ D,

let R0
d(d

′) denote the set of all timed-paths r with destination d′ and with to(r) < 0

and td(r) > 0.

Let µ(c, r) denote the fraction of containers moving on timed-path r ∈ R ∪ R
0

loaded with cargo class c ∈ C ′ that arrive at the destination of timed-path r too

damaged to be used again. Damage rates can also be defined for empty container

flows, but are again omitted to reduce notation. Decision variables xp(b, o, r) and
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xl(b, o, r) denote the cumulative number of containers of type b ∈ B respectively

purchased or leased for a long term until time to(r) with the container supplied at

location o ∈ O by the container supplier. In this model we assume that long term

leased containers are leased for the remainder of the time period covered by the model.

The unit cost of a class b container purchased or leased at location o is denoted by

φp(b, o) and φl(b, o) respectively.

Decision variable xe(b, r) denotes the number of class b ∈ B empty containers

moved on timed-path r ∈ R. The unit cost of such a movement is denoted by φe(b, r),

and includes feeder service cost, container storage cost, and loading and unloading

cost.

For any timed-path r ∈ R, let L(r) := {L ∈ L : l(r) ∈ L} denote the collection

of path sets that contain l(r).

The container flow balance constraints are formulated as follows. For each con-

tainer class b, each location o, and each time t, the cumulative outflow from o of

class b containers up to time t is less than or equal to the cumulative inflow into o

of class b containers up to time t. It is sufficient to consider only times t = to(r) for

timed-paths r ∈ Ro(o):

∑

{r′∈Ro(o) : to(r′)≤to(r)}


 ∑

c∈C(b)

∑

L∈L(r′)

xo(c, r
′, L) + xe(b, r

′)




≤
∑

c∈C(b)


 ∑

{r′∈Rd(o) : td(r′)≤to(r)}

∑

L∈L(r′)

(1− µ(c, r′))xo(c, r
′, L)

+
∑

{r′∈R0
d(o) : td(r′)≤to(r)}

(1− µ(c, r′))x0
o(c, r

′)




+
∑

{r′∈Rd(o) : td(r′)≤to(r)}
xe(b, r

′)

+
∑

{r′∈R0
d(o) : td(r′)≤to(r)}

x0
e(b, r

′) + s(b, o) + xp(b, o, r) + xl(b, o, r)

for all b ∈ B, o ∈ O, r ∈ Ro(o) (2.4.20)
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In this model, V denotes the set of timed-voyages. Decision variable ya(v) denotes

the amount of additional capacity obtained on timed-voyage v ∈ V from alliance

members, and ψa(v) denotes the unit cost for such additional voyage capacity.

For any timed-voyage v′ ∈ V , let Rv(v
′) denote the set of all timed-paths r with

to(r) ∈ [0, T ] and that contain timed-voyage v′, and let R0
v(v

′) denote the set of all

timed-paths r with to(r) < 0 and td(r) > 0, and that contain timed-voyage v′.

The capacity constraints on the timed-voyages are formulated as follows:

∑

c∈C′


 ∑

r∈Rv(v)

∑

L∈L(r)

[xo(c, r, L) + xr(c, r, L)] +
∑

r∈R0
v(v)

[
x0

o(c, r) + x0
r(c, r)

]



+
∑

c∈C′′


 ∑

r∈Rv(v)

∑

L∈L(r)

xc(c, r, L) +
∑

r∈R0
v(v)

x0
c(c, r)




+
∑

b∈B


 ∑

r∈Rv(v)

xe(b, r) +
∑

r∈R0
v

x0
e(b, r)


 ≤ u(v) + ya(v) for all v ∈ V

(2.4.21)

Recall that decision variables xp(b, o, r) and xl(b, o, r) denote the cumulative num-

ber of containers of type b ∈ B respectively purchased or leased for a long term until

time to(r) with the container supplied at location o ∈ O by the container supplier.

For each location o ∈ O, index the timed-paths r1, . . . , r|Ro(o)| ∈ Ro(o) in increasing

order of their start times, i.e., to(r1) ≤ to(r2) ≤ · · · ≤ to(r|Ro(o)|). Thus, the following

constraints must hold:

xp(b, o, r1) ≤ xp(b, o, r2) ≤ · · · ≤ xp(b, o, r|Ro(o)|)

for all b ∈ B, o ∈ O (2.4.22)

xl(b, o, r1) ≤ xl(b, o, r2) ≤ · · · ≤ xl(b, o, r|Ro(o)|)

for all b ∈ B, o ∈ O (2.4.23)

The individual decision variables also have bounds as follows.

π(c, L, τ) ≤ π(c, L, τ) ≤ π(c, L, τ)
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for all c ∈ C, L ∈ L, τ ∈ T (c, L) (2.4.24)

0 ≤ xo(c, r, L) ≤ uo(c, r, L)

for all c ∈ C ′, r ∈ R,L ∈ L(r) (2.4.25)

0 ≤ xr(c, r, L) ≤ ur(c, r, L)

for all c ∈ C ′, r ∈ R,L ∈ L(r) (2.4.26)

0 ≤ xc(c, r, L) ≤ uc(c, r, L)

for all c ∈ C ′′, r ∈ R, L ∈ L(r) (2.4.27)

0 ≤ xe(b, r) ≤ ue(b, r)

for all b ∈ B, r ∈ R (2.4.28)

0 ≤ xp(b, o, r) ≤ up(b, o, r)

for all b ∈ B, o ∈ O, r ∈ Ro(o) (2.4.29)

0 ≤ xl(b, o, r) ≤ ul(b, o, r)

for all b ∈ B, o ∈ O, r ∈ Ro(o) (2.4.30)

0 ≤ ya(v) ≤ ua(v)

for all v ∈ V (2.4.31)

The total revenue over the time horizon [0, T ] is given by

∑
c∈C

∑
L∈L

∑

τ∈T (c,L)

|τ | π(c, L, τ)q(c, L, τ, π)

−
∑

c∈C′

∑

r∈R

∑

L∈L(r)

[φo(c, r)xo(c, r, L) + φr(c, r)xr(c, r, L)]−
∑

c∈C′′

∑

r∈R

∑

L∈L(r)

φc(c, r)xc(c, r, L)

−
∑

b∈B

∑

r∈R

φe(b, r)xe(b, r)−
∑
v∈V

ψa(v)ya(v)

−
∑

b∈B

∑
o∈O

[
φp(b, o)xp(b, o, r|Ro(o)|) + φl(b, o)xl(b, o, r|Ro(o)|)

]
(2.4.32)

where r|Ro(o)| is defined by indexing, for each location o ∈ O, the timed-paths

r1, . . . , r|Ro(o)| ∈ Ro(o) in increasing order of their start times.

In summary, this model is to optimize objective function (2.4.32) subject to
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constraints (2.4.15)–(2.4.31). The decision variables in this model include prices

π(c, L, τ), freight flows xo(c, r, L), xr(c, r, L), xc(c, r, L), empty container flows xe(b, r),

numbers xp(b, o, r) and xl(b, o, r) of containers added at each location, and purchased

extra voyage capacities ya(v). The input parameters of the model include the co-

efficients α(c, L, τ) and β(c, L, τ, c′, L′, τ ′) defining the demand functions, the costs

φo(c, r), φr(c, r), φc(c, r), φe(b, r) of movements on the timed-paths, the costs φp(b, o)

and φl(b, o) to obtain additional containers, the costs ψa(v) of extra voyage capac-

ities, initial conditions x0
o(c, r), x0

r(c, r), x0
c(c, r), x0

e(b, r), s(b, o), container damage

rates µ(c, r), voyage capacities u(v), and the bounds of all the variables.

Similar to the steady state model, except for the bounds for the prices and the

voyage capacities, all the parameters are not known at the planning stage, and point

estimates are used in this model. One way to pursue solutions that are robust against

variations in the unknown parameters values, is to formulate and solve a stochastic

optimization model. Such a model is formulated in the next section.

2.4.4 Stochastic optimization model

The following model parameters are usually uncertain in applications:

1. The demand rate q(c, L, π) as a function of cargo class c, path set L, and price

π.

2. The booking cancellations.

3. The travel times on the domestic arcs.

4. The maximum additional amount of capacity that the carrier can obtain on

each timed-voyage ua(v).

5. The maximum quantity of containers that can be rented ur(c, r, L).

6. The costs of freight flows moved in the carrier’s own containers φo(c, r, L), the

costs of freight flows moved in the containers rented by the carrier φr(c, r, L), the
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costs of freight flows moved in the containers provided by customers φc(c, r, L),

the costs of empty container flows φe(b, r), the cost of purchasing a type b box

at each origin φp(b, o), the cost of leasing a type b box at each origin φl(b, o),

and the cost of obtaining a unit of extra voyage capacity ψa(v).

7. The container damage ratios µ(c, r).

8. The initial conditions x0
o(c, r), x0

r(c, r), x0
c(c, r), x0

e(b, r) and s(b, o).

The uncertain parameters are modeled as random variables. It is assumed that the

decision maker has a joint probability distribution for these random variables at the

planning stage.

One can formulate a multistage stochastic optimization model (Markov decision

process) that models how decisions are to be made over time using the information

that is available when each decision is to be made. In such a model, the contract

pricing decisions would be made initially, and thereafter operational decisions such as

the routing of freight, the repositioning of empty containers, the rental of containers,

the procurement of containers, and the acquisition of additional capacity on voy-

ages would be made over time as the values of the random variables become known.

Here we formulate a three-stage stochastic optimization model, in which the pricing

decisions are made in the first stage when the values of the random variables are

still unknown. At the second stage, given the demand rates, the freight flows and

empty container flows are booked. At the third stage, the actual flows take place. A

multistage stochastic optimization model with more than three stages may be more

realistic, but a three-stage model is chosen for the following reasons. First, such a

multistage stochastic optimization problem is extremely hard to solve, whereas the

three-stage problem presented in this section is reasonably tractable. Second, the

purpose of the optimization model is to provide decision support to the carrier for ne-

gotiating contracts with potential customers, and not to control operations, and thus
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it seems that a very complex multistage problem that models operational decisions

in great detail is unnecessary.

In this model, we assume that the schedules of the service rotations are fixed and

ignore the uncertainties in the travel time on voyages. Though the real travel times

on domestic arcs are random, the start time and end time of routes to(r) and td(r) are

assumed to be deterministic according to the service schedule. The expected values

are used. Let ω1 denote a realization of the second stage random input parameters

and let ω2 denote a realization of the third stage random input parameters conditional

on ω1.

The first stage decision variables are the prices π(c, L, τ) for each c ∈ C, L ∈ L,

and τ ∈ T (c, L). At the end of the first stage, the demand is observed. Denote

mathematical expectation with respect to ω1 as Eω1 .

The first stage problem is:

maximizeEω1 [Q1(π, ω1)] (2.4.33)

Subject to the following constraints:

π(c, L, τ) ≤ π(c, L, τ) ≤ π(c, L, τ)

for all c ∈ C, L ∈ L, τ ∈ T (c, L) (2.4.34)

where π (π) denote the lower (upper) bounds of the prices and Q1(π, ω1) denotes the

optimal value of the second stage problem for each ω1 given π.

At the second stage, the freight flows and empty container flows are booked

along each route. For each second stage realization ω1, we again assume that each

demand rate is a linear function of the price. The coefficients α(c, L, τ, ω1) and

β(c, L, τ, c′, L′, τ ′, ω1) in the linear function are assumed as second stage parameters,

which become known at the beginning of the stage.

q(c, L, τ, π, ω1) = α(c, L, τ, ω1)−
∑

c′∈C

∑

L′∈L

∑

τ ′∈T (c′,L′)

β(c, L, τ, c′, L′, τ ′, ω1)π(c′, L′, τ ′)

41



for all c ∈ C, L ∈ L, τ ∈ T (2.4.35)

Let second stage decision variable xo(c, r, L, ω1) denote the booked flow (generated

by demand request with rate q(c, L, τ, π, ω1) with t0(r) ∈ τ)in the carrier’s own or

long term leased containers that move on timed-path r loaded with cargo class c ∈ C ′.
Similarly, decision variable xr(c, r, L, ω1) denotes the booked flow in containers rented

by the carrier for the particular shipment. Decision variable xc(c, r, L, ω1) denotes the

booked flow in containers provided by the customer that move on timed-path r loaded

with cargo class c ∈ C ′′. Unlike the previous deterministic models, not all demand

requests must be accepted. In some cases the demand is very high, the carrier may

not take all of it. Therefore, we use second stage decision variable xrj(c, r, L, ω1) to

indicate the cumulative amount of demand (with rate q(c, L, τ, ω1), to(r) ∈ τ) rejected

until time to(r). Let φrj(c, r, ω1) be the associated unit cost. For each path set L,

index the timed-paths r1, . . . , r|R(L)| ∈ R(L) in increasing order of their start times,

i.e., to(r1) ≤ to(r2) ≤ · · · ≤ to(r|R(L)|). Thus, the cumulative flow on all timed-paths

in R(L) up to rk ∈ R(L) must be greater than or equal to the demand that has been

accepted until that time point and which cannot be delayed any more:

∑

{r∈ R(L) : to(r)≤to(rk)}
[xo(c, r, L, ω1) + xr(c, r, L, ω1)] + xrj(c, rk, L, ω1)

≥
∑

τ∈T (c,L)

∣∣∣τ ∩
[
0, min

{
to(rk), max

{
to(rk+1)− w(c, L), 0

}}]∣∣∣

×

α(c, L, τ, ω1)−

∑

c′∈C

∑

L′∈L

∑

τ ′∈T (c′,L′)

β(c, L, τ, c′, L′, τ ′, ω1)π(c′, L′, τ ′)




for all c ∈ C ′, L ∈ L, and rk ∈ R(L) (2.4.36)

∑

{r∈ R(L) : to(r)≤to(rk)}
xc(c, r, L, ω1) + xrj(c, rk, L, ω1)

≥
∑

τ∈T (c,L)

∣∣∣τ ∩
[
0, min

{
to(rk), max

{
to(rk+1)− w(c, L), 0

}}]∣∣∣
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×

α(c, L, τ, ω1)−

∑

c′∈C

∑

L′∈L

∑

τ ′∈T (c′,L′)

β(c, L, τ, c′, L′, τ ′, ω1)π(c′, L′, τ ′)




for all c ∈ C ′′, L ∈ L, and rk ∈ R(L) (2.4.37)

Also, the cumulative flows on all timed-paths in R(L) up to rk ∈ R(L) is less or equal

to the demand accepted until the time point to(rk):

∑

{r∈ R(L) : to(r)≤to(rk)}
[xo(c, r, L, ω1) + xr(c, r, L, ω1)] + xrj(c, rk, L, ω1)

≤
∑

τ∈T (c,L)

|τ ∩ [0, to(rk)]|

×

α(c, L, τ, ω1)−

∑

c′∈C

∑

L′∈L

∑

τ ′∈T (c′,L′)

β(c, L, τ, c′, L′, τ ′, ω1)π(c′, L′, τ ′)




for all c ∈ C ′, L ∈ L, and rk ∈ R(L) (2.4.38)

∑

{r∈ R(L) : to(r)≤to(rk)}
xc(c, r, L, ω1) + xrj(c, rk, L, ω1)

≤
∑

τ∈T (c,L)

|τ ∩ [0, to(rk)]|

×

α(c, L, τ, ω1)−

∑

c′∈C

∑

L′∈L

∑

τ ′∈T (c′,L′)

β(c, L, τ, c′, L′, τ ′, ω1)π(c′, L′, τ ′)




for all c ∈ C ′′, L ∈ L, and rk ∈ R(L) (2.4.39)

It is assumed that the rejected demand cannot be recovered. We then have the

following constrains:

xrj(c, r1, L, ω1) ≤ xrj(c, r2, L, ω1) ≤ · · · ≤ xrj(c, r|R(L)|, L, ω1)

for all c ∈ C, L ∈ L (2.4.40)

Second stage decision variable xe(b, r, ω1) denotes the flows of class b empty

containers on timed-path r. Let second stage decision variables xp(b, o, r, ω1) and

xl(b, o, r, ω1) be the cumulative number of containers of type b respectively purchased
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or leased for a long term until time to(r) at location o ∈ O. Denote the associated

unit costs as φp(b, o, ω1) and φl(b, o, ω1) respectively.

The initial conditions and container damage rate are modelled as second stage

random variables that are observed at the beginning of the second stage. Denote the

initial flows of cargo class c on timed-path r with to(r) < 0 and td(r) > 0 moved in

the carrier’s own or long term leased containers, in containers rented by the carrier,

and in containers provided by the customer as x0
o(c, r, ω1), x0

r(c, r, ω1) and x0
c(c, r, ω1)

respectively. Similarly, the initial flows of empty class b containers on timed-path r is

denoted as x0
e(b, r, ω1). Let the initial number of class b empty containers at location

o be s(b, o, ω1). Random variable µ(c, r, ω1) denotes the fraction of containers that

move on timed-path r ∈ R
⋃

R
0

loaded with cargo class c too damaged to be used

again after arriving the destination of r.

For each o ∈ O, b ∈ B and each ω1, the cumulative outflow must be less or equal

to the cumulative inflow.

∑

{r′∈Ro(o) : to(r′)≤to(r)}


 ∑

c∈C(b)

∑

L∈L(r′)

xo(c, r
′, L, ω1) + xe(b, r

′, ω1)


 ≤

∑

c∈C(b)


 ∑

{r′∈ Rd(o) : td(r′)<to(r)}

∑

L∈L(r′)

(1− µ(c, r′, ω1))xo(c, r
′, L, ω1)

+
∑

{r′∈R0
d(o) : td(r′)<to(r)}

(1− µ(c, r′, ω1))x
0
o(c, r

′, ω1)




+
∑

{r′∈Rd(o) : td(r′)<to(r)}
xe(b, r

′, ω1) +
∑

{r′∈R0
d(o) : td(r′)<to(r)}

x0
e(b, r

′, ω1)

+ s(b, o, ω1) + xp(b, o, r, ω1) + xl(b, o, r, ω1)

for all b ∈ B, o ∈ O, and r ∈ Ro(o) (2.4.41)

Similar to the time stamped model, we assume that the added containers at the

origins can not be returned. Index the routes r ∈ Ro(o) such that to(r1) ≤ to(r2) ≤
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· · · ≤ to(r|Ro(o)|). Thus, we have the following constrains:

xp(b, o, r1, ω1) ≤ xp(b, o, r2, ω1) ≤ · · · ≤ xp(b, o, r|Ro(o)|, ω1)

for all b ∈ B, o ∈ O (2.4.42)

xl(b, o, r1, ω1) ≤ xl(b, o, r2, ω1) ≤ · · · ≤ xl(b, o, r|Ro(o)|, ω1)

for all b ∈ B, o ∈ O (2.4.43)

The second stage variables have bounds, which are assumed as second stage ran-

dom variables.

0 ≤ xo(c, r, L, ω1) ≤ uo(c, r, L, ω1)

for all c ∈ C ′, r ∈ R,L ∈ L(r) (2.4.44)

0 ≤ xr(c, r, L, ω1) ≤ ur(c, r, L, ω1)

for all c ∈ C ′, r ∈ R,L ∈ L(r) (2.4.45)

0 ≤ xc(c, r, L, ω1) ≤ uc(c, r, L, ω1)

for all c ∈ C ′′, r ∈ R, L ∈ L(r) (2.4.46)

0 ≤ xrj(c, r, L, ω1) ≤ urj(c, r, L, ω1)

for all c ∈ C, r ∈ R, L ∈ L(r) (2.4.47)

0 ≤ xe(b, r, ω1) ≤ ue(b, r, ω1)

for all b ∈ B, r ∈ R (2.4.48)

0 ≤ xp(b, o, r, ω1) ≤ up(b, o, r, ω1)

for all b ∈ B, o ∈ O, r ∈ Ro(o) (2.4.49)

0 ≤ xl(b, o, r, ω1) ≤ ul(b, o, r, ω1)

for all b ∈ B, o ∈ O, r ∈ Ro(o) (2.4.50)

0 ≤ ya(v, ω1) ≤ uv(v, ω1)

for all v ∈ V (2.4.51)
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Part of the booked flows may be canceled before actual flows take place. Let

ρ(c, L, τ, ω2) be the cancellation rate, which is realized at beginning of the third

stage, for the freight of cargo class c on path set L at time τ . Let Eω2|ω1 be the

expectation with respect to ω2 conditional on ω1. Second stage decision variables

ya(v, ω1) denotes the extra capacity procured on the timed-voyage v. The associated

unit cost is denoted as ψ(v, ω1). Let vector x denote all the second stage decision

variables. Denote the optimal objective value at the third stage for each scenario ω2

given x as Q2(x, ω2). The objective function of the second stage is:

G1(x, ω1) = Eω2|ω1 [Q2(x, ω2)]

+
∑
c∈C

∑
L∈L

∑

τ∈T (c,L)

|τ |π(c, L, τ)q(c, L, τ, π, ω1)(1− Eω2|ω1 [ρ(c, L, τ, ω2)])

−
∑
v∈V

ψa(v, ω1)ya(v, ω1)−
∑
c∈C

∑
L∈L

φrj(c, r, ω1)xrj(c, r|R(L)|, L, ω1)

−
∑

b∈B

∑
o∈O

φp(b, o, ω1)xp(b, o, r|Ro(o)|, ω1)

−
∑

b∈B

∑
o∈O

φl(b, o, ω1)xl(b, o, r|Ro(o)|, ω1) (2.4.52)

where r|R(L)| is defined by indexing the timed-paths in R(L) in increasing order of their

start times and r|Ro(o)| is defined by indexing the timed-paths in Ro(o) in increasing

order of their start times. Thus, the optimal value of the second stage is

Q1(π, ω1) = maximize G1(x, ω1) (2.4.53)

subject to constraints (2.4.35)–(2.4.51).

At the third stage, actual freight flows and empty container flows take place. At

this stage, some of scheduled flows are allowed to be canceled. The travel times on

the domestic arcs from origins to ports also involves uncertainties. In this model,

we assume that no transshipment is involved, i.e., the containers are moved on only

one service rotation along each path. On the domestic arc between the origin and

the first port, not all the booked flows can arrive the port on time. Let third stage
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random variable λ(c, r, ω2) denote the fraction of the freight flow with cargo class

c ∈ C scheduled on timed-path r that departs from o can arrive before the departure

time of the ship conditional on the capacity on the domestic leg being sufficient.

Let yo(c, r, L, ω2) be the actual flow (associated with scheduled flow xo(c, r, L, ω1)) of

cargo class c ∈ C ′ on timed-path r moved in containers owned by the carrier. The

unit cost of such a movement is denoted as φo(c, r, ω2). Similarly, let yr(c, r, L, ω2)

be the actual flow of c ∈ C ′ on timed-path r moved in the containers rented by the

carrier. The unit cost of such a movement is denoted as φr(c, r, ω2). Decision variable

yc(c, r, L, ω2) denotes the amount of actual flow of cargo class c ∈ C ′′ in containers

provided by the customer. The unit cost of such a movement is denoted as φc(c, r, ω2).

The remaining fraction of freight flow that is late for the ship is stored at the port

and rolled to the next ship.

The amount of flow, which is late for the ship and needs to be loaded on the next

timed-path after r, of freight type c ∈ C ′ in the carrier’s own or long term leased

containers and of demand path set L is denoted as zo(c, r, L, ω2). The unit cost of

such delay is denoted as ψo(c, r, ω2). Similarly, let zr(c, r, L, ω2) denote the amount of

delayed freight flow of cargo class c ∈ C ′ in containers rented by the carrier. The unit

cost of such delay is denoted as ψr(c, r, ω2). Decision variable zc(c, r, L, ω2) denotes

the amount of flow with cargo class c ∈ C ′′ in the customer’s own containers delayed

at the port. The associated unit cost is denoted as ψc(c, r, ω2). Let ye(b, r, ω2) denote

the actual empty flow of type b containers on timed-path r. The associated unit cost

is denoted as φe(b, r, ω2). The delayed empty container flow of type b containers,

which needs to be moved on the timed-path next to r, is denoted as ze(b, r, ω2). The

associated unit cost is denoted as and ψe(b, r, ω2).

The flow balance between the booked flows and actual flows in containers owned

or long term leased by the carrier is formulated as the following.

yo(c, rk, L, ω2) + zo(c, rk, L, ω2)
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= zo(c, rk−1, L, ω2) + λ(c, rk, ω2)xo(c, rk, L, ω1)(1− ρ(c, L, to(rk), ω2))

+(1− λ(c, rk−1, ω2))xo(c, rk−1, L, ω1)(1− ρ(c, L, to(rk−1), ω2))

for all c ∈ C ′, L ∈ L, l ∈ L, rk ∈ R(l) (2.4.54)

where rk is defined by indexing all the timed-paths in R(l) in increasing order of

their start times. The RHS of equation (2.4.54) represents the inflow at the first port

on the path l, including the flow booked on the timed-path rk arriving on time, the

delayed flow from the last timed-path rk−1, and the cumulative delayed freight stored

at the port. The LHS of equation (2.4.54) is outflow at the first port and is equal to

the summation of the actual flow on timed-path rk and the delayed flow stored at the

port after the ship tied to the timed-path rk sails. Similarly, this must also hold on

other types of flows:

yr(c, rk, L, ω2) + zr(c, rk, L, ω2)

= zr(c, rk−1, L, ω2) + λ(c, rk, ω2)xr(c, rk, L, ω1)(1− ρ(c, L, to(rk), ω2)

+(1− λ(c, rk−1, ω2))xr(c, rk−1, L, ω1)(1− ρ(c, L, to(rk−1), ω2))

for all c ∈ C ′, L ∈ L, l ∈ L, rk ∈ R(l) (2.4.55)

yc(c, rk, L, ω2) + zc(c, rk, L, ω2)

= zc(c, rk−1, L, ω2) + λ(c, rk, ω2)xc(c, rk, L, ω1)(1− ρ(c, L, to(rk), ω2))

+(1− λ(c, rk−1, ω2))xc(c, rk−1, L, ω1)(1− ρ(c, L, to(rk−1), ω2))

for all c ∈ C ′′, L ∈ L, l ∈ L, rk ∈ R(l) (2.4.56)

ye(b, rk, ω2) + ze(b, rk, ω2)

= ze(b, rk−1, ω2) + λ(b, rk, ω2)xe(b, rk, ω1) + (1− λ(b, rk−1, ω2))xe(b, rk−1, ω2)

for all b ∈ B, l ∈ L, rk ∈ R(l) (2.4.57)
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The following constraints ensure that the capacities of all timed-voyages can not

exceeded. Recall that the procured voyage capacities are second stage decision vari-

ables and can not be changed after the end of second stage.

∑

c∈C′


 ∑

r∈Rv(v)

∑

L∈L(r)

[yo(c, r, L, ω2) + yr(c, r, L, ω2)] +
∑

r∈R0
v(v)

[x0
o(c, r, ω1) + x0

r(c, r, ω1)]




+
∑

c∈C′′


 ∑

r∈Rv(v)

∑

L∈L(r)

yc(c, r, L, ω2) +
∑

r∈R0
v(v)

x0
c(c, r, ω1)




+
∑

b∈B


 ∑

r∈Rv(v)

ye(b, r, ω2) +
∑

r∈R0
v(v)

x0
e(b, r, ω1)


 ≤ u(v, ω1) + ya(v, ω1)

for all v ∈ V (2.4.58)

The third stage variables are bounded for each ω2.

0 ≤ yo(c, r, L, ω2) ≤ uo(c, r, L, ω2)

for all c ∈ C ′, r ∈ R, L ∈ L (2.4.59)

0 ≤ yr(c, r, L, ω2) ≤ ur(c, r, L, ω2)

for all c ∈ C ′, r ∈ R, L ∈ L (2.4.60)

0 ≤ yc(c, r, L, ω2) ≤ uc(c, r, L, ω2)

for all c ∈ C ′′, r ∈ R,L ∈ L(2.4.61)

0 ≤ ye(b, r, ω2) ≤ ue(b, r, ω2)

for all b ∈ B, r ∈ R (2.4.62)

0 ≤ zo(c, r, L, ω2) ≤ uo(c, r, L, ω2)

for all c ∈ C ′, r ∈ R, L ∈ L (2.4.63)

0 ≤ zr(c, r, Lr, ω2) ≤ ur(c, r, L, ω2)

for all c ∈ C ′, r ∈ R, L ∈ L (2.4.64)

0 ≤ zc(c, r, Lr, ω2) ≤ uc(c, r, L, ω2)

for all c ∈ C ′′, r ∈ R,L ∈ L(2.4.65)
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0 ≤ ze(b, r, ω2) ≤ ue(b, r, ω2)

for all b ∈ B, r ∈ R (2.4.66)

Let y be the vector containing all the third stage decision variables. The objective

function of the third stage is:

G2(y, ω2) = −
∑

c∈C′

∑

r∈R

∑
L∈L

[φo(c, r, ω2)yo(c, r, L, ω2) + φr(c, r, ω2)yr(c, r, L, ω2)]

−
∑

c∈C′′

∑

r∈R

∑
L∈L

φc(c, r, ω2)yc(c, r, L, ω2)

−
∑

c∈C′

∑

r∈R

∑
L∈L

[ψo(c, r, ω2)zo(c, r, L, ω2) + ψr(c, r, ω2)zr(c, r, L, ω2)]

−
∑

c∈C′′

∑

r∈R

∑
L∈L

ψc(c, r, ω2)zc(c, r, L, ω2)

−
∑

b∈B

∑

r∈R

[φe(b, r, ω2)ye(b, r, ω2) + ψe(b, r, ω2)ze(b, r, ω2)] (2.4.67)

Thus, the optimal value of the second stage is

Q2(x, ω2) = maximize G2(y, ω2) (2.4.68)

subject to (2.4.54)–(2.4.66).

2.5 Solution algorithms

2.5.1 Algorithms for the deterministic models

The two deterministic models are quadratic problems with linear constraints. Any

algorithm in standard software such as CPLEX can effectively solve the problems.

2.5.2 Algorithms for the stochastic model

In this section, we propose several approaches to solve the stochastic problem. First,

we simplify the notation for the demand. Recall the demand rate is

q(c, L, π, τ, ω1) = α(c, L, τ, ω1) +
∑

c′∈C

∑

L′∈L

∑

τ ′∈T (c′,L′)

β(c, L, τ, c′, L′, τ ′, ω1)π(c′, L′, τ ′)

for all c ∈ C, L ∈ L, τ ∈ T (c, L)
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over the region given by

π(c, L, τ) ≤ π(c, L, τ) ≤ π(c, L, τ)

Let π denote the column vector with entries π(c, L, τ), let a denote the column vector

with entry |τ |Eω1

[
α(c, L, τ, ω1)(1− Eω2|ω1 [ρ(c, L, τ, ω2)])

]
in the column correspond-

ing to π, and let B denote the symmetric matrix with entry

|τ |Eω1

[
β(c, L, τ, c′, L′, τ ′, ω1)(1− Eω2|ω1 [ρ(c, L, τ, ω2)])

+β(c′, L′, τ ′, c, L, τ, ω1)(1− Eω2|ω1 [ρ(c′, L′, τ ′, ω2)])
]
/2

in the column corresponding to (c, L, τ) and the row corresponding to (c′, L′, τ ′). Note

that the expected total revenue is given by

Eω1


∑

c∈C

∑
L∈L

∑

τ∈T (c,L)

|τ | π(c, L, τ)q(c, L, τ, π, ω1)(1− Eω2|ω1 [ρ(c, L, τ, ω2)])




=
∑
c∈C

∑
L∈L

∑

τ∈T (c,L)

|τ | π(c, L, τ)Eω1

[
α(c, L, τ, ω1)(1− Eω2|ω1 [ρ(c, L, τ, ω2)])

]

+
∑
c∈C

∑
L∈L

∑

τ∈T (c,L)

|τ | π(c, L, τ)

×
∑

c′∈C

∑

L′∈L

∑

τ ′∈T (c′,L′)

{π(c′, L′, τ ′)

×Eω1

[
β(c, L, τ, c′, L′, τ ′, ω1)(1− Eω2|ω1 [ρ(c, L, τ, ω2)])

]}

= aT π + πT Bπ (2.5.1)

We assume that B is negative semidefinite.

We propose to use the sample average approximation (SAA) method [33] to solve

the stochastic problem. The sample average problem is a three-stage stochastic pro-

gram with a much smaller number of scenarios than the original problem. We solve it

as a two-stage problem by combining the second stage and the third stage together.

The outline of the SAA method is as follows.

We use Bender’s decomposition to solve the sample average problem described in
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Algorithm 1: SAA Algorithm

1. Choose initial second stage sample size N1, N ′
1, initial third stage sample

size N2 and N ′
2 and the number of replications M ;

for m = 1, ..., M do
2.1 Generate N1 ×N2 samples and formulate the stochastic problem with
those samples. Solve the problem and obtain the optimal value f̂m and the
optimal solution π̂m;
2.2 Generate another N1′ ×N2′ random samples. Evaluate the expected
value with those samples as the lower bound of the objective function value
f̂m

lb ;
2.3 Calculate the upper bound of the objective function value

f̂ub =
PM

m=1 f̂m

M
;

2.4 Estimate the optimality gap f̂m
∆ = f̂ub − f̂m

lb and the variance of the gap
estimator;

end

3. If the optimal gap or the variance of the gap estimator are large, increase
the sample sizes Ni, N

′
i , i = 1, 2 or the number of replications M and go to

STEP 1.

4. Choose one π̂i out of the M candidate solutions by a screening and selection
procedure and stop.

STEP 2.1 denoted as (PSAA).

(PSAA) max
π

f(π) = πT Bπ + aT π +
1

N1

N1∑
n=1

Q1(π, ωn
1 )

s.t. π ≤ π ≤ π

where Q1(π, ω1) is the optimal value of the second stage problem of the sample average

problem:

Q1(x, ω1) = max

[
1

N2

N2∑
n=1

G2(y, ωn
2 )

−
∑
v∈V

ψa(v, ω1)ya(v, ω1)−
∑
c∈C

∑
L∈L

φrj(c, r, ω1)xrj(c, r|R(L)|, L, ω1)

−
∑

b∈B

∑
o∈O

φp(b, o, ω1)xp(b, o, r|Ro(o)|, ω1)

−
∑

b∈B

∑
o∈O

φl(b, o, ω1)xl(b, o, r|Ro(o)|, ω1)

]
(2.5.2)

subject to the all the second stage constraints (2.4.35)–(2.4.51) and N2 sets of third

stage constraints (2.4.54)–(2.4.66).
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Above problem is usually referred as the L-shaped problem. For each ω1, Q1(π, ω1)

is a non-smooth concave function of π. Such problem can be solved by cutting plane

algorithms. A generic cutting plane method is summarized here. The upper bound

and lower bound of the objective value of problem (PSAA) are denoted as fub and

flb. Let SGk = {g0, g1...} be the set of subgradients at iteration k. Denote the best

solution till iteration k as π∗k. Let the objective value at π be f(π). Denote the

optimal solution as π∗ and the optimal value as f ∗.

Algorithm 2: Cutting Plane Algorithm

Initialization: Let Π0 = {π0} and fub = ∞. Compute the subgradient g0 at
π0 and let SG0 = {g0}. Compute flb = f(π0). Choose tolerance ε of the
optimal gap ;

while fub − flb > ε do
Compute the subgradient gk at πk, SGk ← SGk−1

⋃{gk};
Compute f(πk).
if f(πk) > flb then

flb ← f(πk), π∗k ← πk

end
Solve the relaxed problem (RP ). Let fub be the optimal objective value;
Solve a candidate problem (CP ). Let πk+1 be the optimal solution of that
problem, Πk+1 ← Πk

⋃{πk+1};
k ← k + 1

end
Let π∗ ← π∗k, f

∗ ← f(π∗k). Stop.

To construct the candidate problem (CP ) and the relaxed problem (RP ), there are

several approaches that we ill discuss in detail next.

Trust Region Method: The trust region method can be found in [43]. Let h(π) =

1
N

∑N1

n=1 Q1(π, ωn
1 ). To efficiently solve this problem, we keep the quadratic term

and only approximate h(π) by cutting planes. In this case, the subgradients in SGk

are corresponding to h(π) instead of f(π). The relaxed problem (RP ) is defined as

follows.

(RQP ) max
π,θ

πT Bπ + aT π + θ

s.t. θ ≤ h(πi) + gT
i (π − πi) ∀gi ∈ SGk, πi ∈ Πk

53



π ≤ π ≤ π

In this approach, the candidate problem is the relaxed problem with trust region

constraints to stabilize the iterates, denoted as (TR). Choose some positive value κ

as the trust region size.

(TR) max
π,θ

πT Bπ + aT π + θ

s.t. θ ≤ h(πi) + gT
i (π − πi) ∀gi ∈ SGk, πi ∈ Πk

π ≤ π ≤ π

‖π − π∗k‖∞ ≤ κ

In this method, the trust region size κ can be adjusted according to the quality of

the solution of problem (TR). The details can be found in [43] and are not included

here.

Standard Bundle Level Method: We use a standard bundle level method in [30]

and [38] to approximate the concave function f(π) with cutting planes. Denote this

approach as BundleLp because the projection problems solved in this method are

linear. In this case, the subgradients in SGk are corresponding to function f(π). The

relaxed problem (RLP ) is defined as follows.

(RLP ) max
π,θ

θ

s.t. θ ≤ f(πi) + gT
i (π − πi) ∀gi ∈ SGk, πi ∈ Πk

π ≤ π ≤ π

In this approach, the candidate problem is a projection problem defined as follows.

Let π∗k be the projection center πc. Choose some ν ∈ (0, 1) and let f` = νflb+(1−ν)fub

be the projection level. The projection problem is a liner program.

(PRJLP ) min
π

(π − πc)
T (π − πc)

s.t. f(πi) + gT
i (π − πi) ≥ f` ∀gi ∈ SGk, πi ∈ Πk
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π ≤ π ≤ π

Note the the projection level f` can also be tuned dynamically.

Nonstandard Bundle Level Method: A (nonstandard) bundle level method that

only approximates h(π) by cutting planes as in the trust region approach. The sub-

gradients in SGk are corresponding to h(π) instead of f(π). The relaxed problem is

(RQP ). The projection problem becomes

(PRJQCP ) min
π

(π − πc)
T (π − πc)

s.t. πT Bπ + aT π + h(πi) + gT
i (π − πi) ≥ f` ∀gi ∈ SGk, πi ∈ Πk

π ≤ π ≤ π

The complicating aspect is that the constraint πT Bπ+aT π+h(πi)+gT
i (π−πi) ≥ f`

is nonlinear, specifically, it is quadratic. There are various approaches for solving

such a problem:

BundleQcp Approach: Solve the problem by using a barrier method, for exam-

ple the quadratic constrained problem (QCP) solver in CPLEX 9.0. We use Bundle-

Qcp to denote this bundle level approach.

BundleDual Approach: Use a Lagrangian dual approach as follows. We refer

this bundle level approach as BundleDual. For simplicity, let h(πi) − gT
i πi = ai and

assume |SGk| = m. The projection problem (PRJQCP ) can be rewritten as follows.

min
π

(π − πc)
T (π − πc)

s.t. πT Bπ + aT π + ai + gT
i π ≥ f` for all i = 1, . . . , m

π ≤ π ≤ π

As the target level f` is chosen in a way such that f` < fub, the optimal solution

of problem (RQP ), denoted as (π̃, θ̃), is feasible in problem (PRJQCP ) and satisfies

π̃T Bπ̃ + aT π̃ + ai + gT
i π̃ > f` for all i = 1, . . . , m
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Therefore, Slater condition is satisfied and strong duality holds [27]. Solving the

Lagrangian dual problem can obtain the optimal solution of problem (PRJQCP ).

Let

L∗(λ) = min
π

(π − πc)
T (π − πc) +

m∑
i=1

λi

[
g` −

(
πT Bπ + aT π + ai + gT

i π
)]

s.t. π ≤ π ≤ π

Consider the Lagrangian dual problem

max
λ
{L∗(λ) : λ ≥ 0} = max

λ,µ
{L∗(λ) : λ ≥ 0,

m∑
i=1

λi = µ}

= max
λ,µ

min
π
{ (π − πc)

T (π − πc) +
m∑

i=1

λi [f`

− (
πT Bπ + aT π + ai + gT

i π
)]

: π ≤ π ≤ π}

s.t.
m∑

i=1

λi = µ

λ ≥ 0

= max
µ

min
π

max
λ

(π − πc)
T (π − πc)

+
m∑

i=1

λi

[
f` −

(
πT Bπ + aT π + ai + gT

i π
)]

s.t.
m∑

i=1

λi = µ

λ ≥ 0

s.t. π ≤ π ≤ π

s.t. µ ≥ 0

Consider the inner optimization problem for any given µ ≥ 0 and given π:

max
λ

m∑
i=1

λi

[
f` −

(
πT Bπ + aT π + ai + gT

i π
)]

s.t.
m∑

i=1

λi = µ

λ ≥ 0
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Note that the optimal objective value of the inner optimization problem is

µ
[
f` − (πT Bπ + aT π)−min{(ai + gT

i π
)

: i = 1, . . . , m}]

As a result, for given µ ≥ 0, the middle optimization problem is the following

quadratic program:

M(µ) = min
π,θ

(π − πc)
T (π − πc) + µ

[
f` − (πT Bπ + aT π + θ)

]

= πT (I − µB)π − (2πc + µa)T π − µθ + πT
c πc + µf`

s.t. θ ≤ ai + gT
i π for all i = 1, . . . , m

π ≤ π ≤ π

In summary, the dual problem of the projection problem (DP ) is

(DP ) max
µ

M(µ)

s.t. µ ≥ 0

The optimal value of µ can be found with a line search method, such as bisection

search, if µ is bounded from above.

Now, we propose the method to get the upper bound of the optimal value of µ.

For a given µ ≥ 0, let π∗(µ), θ∗(µ) denote an optimal solution of the problem M(µ).

Denote the optimal solution of the projection problem (DP ) as (µ∗, π∗(µ∗), θ∗(µ∗)).

Let h(µ, π, θ) = (π−πc)
T (π−πc)+µ

[
f` − πT Bπ − aT π − θ

]
. Let µ = 0 and compute

the optimal objective value of the middle optimization problem M(0). Note that π ≤
πc ≤ π, thus, M(0) = 0 and π∗(0) = πc. For µ∗ and a feasible solution to the middle

optimization problem, (π, θ) ∈ {(π, θ) : θ ≤ ai+gT
i π for all i = 1, . . . , m; π ≤ π ≤ π},

we need h(µ∗, π, θ) ≥ M(0). Otherwise g(µ∗) ≤ h(µ∗, π, θ) < M(0) and µ∗ can not

be optimal.
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Note the optimal solution of the relaxed problem (RQP ), (π̃, θ̃), is also a feasible

solution to the middle optimization problem M(π). Thus,

(π̃ − πc)
T (π̃ − πc) + µ∗

[
f` − (π̃T Bπ̃ + aT π̃ + θ̃)

]
≥ 0

⇒ µ∗ ≤ (π̃ − πc)
T (π̃ − πc)

π̃T Bπ̃ + aT π̃ + θ̃ − f`

The last step is by f` − (π̃T Bπ̃ + aT π̃ + θ̃) < 0.

The two bundle level methods, BundleLp and BundleQcp, that we implemented

are in an improved version presented in [30]. In this approach, the relaxed problem

is solved to update fub only when the projection problem becomes infeasible. By

doing so, the computing time can be reduced. For details, please refer to [30]. For

the last bundle level method, BundleDual, we still use the original version since we

need the projection problem to be feasible thus the strong duality holds. In fact, the

most computional cost lies in solving the second stage subproblems (combined with

the third stage problems) to construct the subgradients at each iterate. Skipping the

relaxed problem in some iterates does not make a big difference in our case.

2.6 Computational results

In this section, we present computational results of the three models on several in-

stances. Running time and solution quality of the three models are reported and

compared. In addition, we evaluate the performance of the algorithms in solving the

stochastic problems.

2.6.1 Input data

All the instances used here have the same service rotations, sailing schedules, and

paths, which are constructed based on two service rotations of Orient Overseas Con-

tainer Line (OOCL), one of the world’s largest integrated international container

transportation companies. The demand parameters and costs are not real data. In

these instances, the two service rotations are South China Express (SCX) and Super
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Figure 2: The South China Express (SCX) service rotation.

Shuttle Express (SSX), which transport freight between west coast of North America

and Southeast Asia.

Total 17 different voyages and 28 Origin-Destination pairs are involved. Four of

the pairs have multiple alternative paths connecting the origin to the destination.

There are 10 ports, 15 inland locations, 32 paths in the network. The following

computations incorporate one type of container, one type of cargo class and 40 types

of demand requests. Half of the paths are from North America to Asia and the

others are of the opposite direction. The parameters in the demand functions, costs,

time horizon and other inputs are different for each instance. The time horizon of

instance A1, B1 and C1 is of three months with demand rates vary from month to

month. Instance A2, B2 and C2 are of 6 months. The peak season includes the first

three months and the off-peak season includes the last three months. Demand rates

vary from season to season. Instance A3–A5, B3–B5 and C3–C5 have one year time

horizon. Instance A3, B3 and C3 have two seasons with the first half year as season
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Figure 3: The Super Shuttle Express (SSX) service rotation.

one and the other half as season two. Similarly, demand rates are different in the first

season from those in the second season. Instance A4, B4, and C4 have four seasons

with different demand rates in each quarter. Instance A5, B5 and C5 have different

demand arrival rates each month. The time window of each demand type is randomly

chosen from one to six weeks. The solutions of instance B1–B5 and C1–C5 are tested

in a simulation software SimSea, which is a computer simulation model of ocean

container carrier operations. Those instances do not have extra voyage capacities

and damaged containers that are not incorporated in the current simulation model.

Instance A1–A5 contain all the features captured by the models. Thus, we could

not test those instances by SimSea. The prices are allowed from 500 to 3500 dollars

per TEU and the costs are chosen from 400 to 1200 dollars per TEU. The demand

parameters (α and β) are randomly generated in a way such that for a given price

set, the demand arrival rates from Asia to North America are bigger than those of the

opposite direction, which is consistent with the current situation in the industry. Also
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Table 1: Solution time in seconds for the models

Instance SS TS STO Instance SS TS STO Instance SS TS STO
A1 0 2 144 B1 0 2 63 C1 0 1 173
A2 0 22 2103 B2 0 9 689 C2 0 8 1269
A3 1 84 8838 B3 0 50 7131 C3 1 40 4609
A4 0 81 9430 B4 1 47 5696 C4 0 39 5188
A5 0 81 9800 B5 4 42 5584 C5 0 36 5277

for a given price set, the arrival rates in the peak seasons are much higher than those in

the off-peak seasons. The cancellation rates (ρ) vary from 0 to 0.3. The ratios(λ) are

in [0.7, 1.0] and the damage rates are in [0, 0.1]. For all the instances, all the random

parameters are assumed to follow uniform distributions. Point estimators are used

in the deterministic models. For the stochastic models, the random parameters are

positively correlated.

2.6.2 Comparison among the models

The quadratic solver of CPLEX 9.0 is used to solve the deterministic models. Both the

quadratic and linear solvers of CPLEX 9.0 are iteratively called to solve the subprob-

lems for the stochastic model. All computations are done on a Linux workstation

with dual 2.4 GHz Intel Xeon processors and 2 GB RAM. To solve the stochastic

model, the solution from the time stamped model is used as the starting point. For

all the instances in the Sample Average Approximation approach, the estimated gap

of the objective function values is less 1.5% and the standard deviation of the gap

is less than 1.6%. The solution time to solve the models are presented in Table 1,

where SS, TS, STO denote the stable status model, the time stamped model and the

stochastic model respectively.

Let πss, πts and πsto denote the optimal price sets from the stable status model

(SS), the time stamped model (TS), and the stochastic model (STO) respectively.

61



Table 2: Performance comparison of the deterministic models

Instance ∆FTS(πts) Instance ∆FTS(πts) Instance ∆FTS(πts)
A1 7.9% B1 7.3% C1 13.6%
A2 7.9% B2 8.3% C2 5.2%
A3 2.8% B3 3.8% C3 3.3%
A4 5.8% B4 7.0% C4 4.7%
A5 15.8% B5 16.8% C5 14.6%

And let FSS and FTS be the optimal revenues of the stable status model and

the time stamped model. For a given price set π, the revenue estimated in the

time stamped model is denoted as FTS(π). To compare the quality of the solutions

from the two deterministic models, the stable status solution πss is estimated in the

more accurate and detailed time stamped model. The relative revenue difference

∆FTS(πts) = [FTS(πts)− FTS(πss)]/FTS(πss) is listed in Table 2.

To compare the quality of the three solutions, we also evaluate them in the stochas-

tic models. A new set of samples is generated with second stage sample size 80, third

stage sample size 25 for the smaller problems (A1, A2, B1, B2, C1, C2) and 20

for bigger problems (A3–A5, B3–B5, C3–C5). The three solutions are evaluated in

the stochastic model with those samples. Common random numbers are used in

the estimation. Let F̃STO(π) be the expected revenue evaluated in the stochastic

model with price set π for each replication. For each replication, compute ∆ts,ss =

F̃STO(πts)−F̃STO(πss)

F̃STO(πss)
, ∆sto,ss = F̃STO(πsto)−F̃STO(πss)

F̃STO(πss)
and ∆sto,ts = F̃STO(πsto)−F̃STO(πts)

F̃STO(πts)
. Let

∆̂ts,ss, ∆̂sto,ss and ∆̂sto,ts be the estimated mean of ∆ts,ss, ∆sto,ss and ∆sto,ts. Denote

the estimated standard deviation of ∆̂ts,ss, ∆̂sto,ss and ∆̂sto,ts as σts,ss, σsto,ss and σsto,ts

respectively. Table 3 summarizes the results.

The optimal solutions of instance B1–B5 and C1–C5 are also evaluated by SimSea.

The results are reported in Table 4 with the same notation as in Table 3. Instead of

evaluating the solutions in the stochastic model, the expected revenues are generated
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Table 3: Performance comparison of all models by STO

Instance ∆̂ts,ss σts,ss ∆̂sto,ss σsto,ss ∆̂sto,ts σsto,ts

A1 1.2% 0.1% 1.2% 0.1% 0.0% 0.0%
A2 2.8% 0.1% 2.9% 0.1% 0.1% 0.0%
A3 0.8% 0.1% 1.6% 0.1% 0.7% 0.1%
A4 1.4% 0.1% 1.8% 0.1% 0.4% 0.1%
A5 1.8% 0.1% 2.3% 0.1% 0.4% 0.1%
B1 0.5% 0.0% 0.5% 0.0% 0.0% 0.0%
B2 2.6% 0.2% 2.7% 0.1% 0.1% 0.0%
B3 1.0% 0.1% 1.4% 0.2% 0.4% 0.1%
B4 1.9% 0.1% 2.1% 0.1% 0.2% 0.1%
B5 1.9% 0.1% 2.1% 0.1% 0.1 % 0.0%
C1 2.1% 0.1% 2.3% 0.1% 0.2% 0.0%
C2 0.9% 0.0% 1.7% 0.1% 0.8% 0.1%
C3 1.0% 0.1% 1.7% 0.1% 0.7% 0.1%
C4 0.5% 0.0% 1.0% 0.1% 0.6% 0.1%
C5 0.4% 0.0% 1.2% 0.1% 0.7 % 0.1 %

by SimSea. Common random numbers are also used in the comparison.

From the above results, we can see the solutions from the time stamped model

are much better than those from the stable status model and are fairly close to the

optimal solutions from the stochastic model for all the instances.

2.6.3 Comparison among the algorithms

In this section, we present the numerical results to investigate the performance of the

approaches to solve the stochastic L-shaped problem. The optimal solution of the time

stamped model is used as the starting point for each problem. The average number of

major iterations and average running time for solving one stochastic problem are listed

in Table 5. The solution time is the average time used in solving the M stochastic

problems and N denotes the average number of iterations for the M replications with

M = 5.

It is found that the BundleLp approach performances poorly in solving those

instances. That is because the number of cutting planes needed is much more than
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Table 4: Performance comparison of all models by SimSea

Instance ∆̂ts,ss σts,ss ∆̂sto,ss σsto,ss ∆̂sto,ts σsto,ts

B1 0.3% 0.1% 0.3% 0.1% 0.0% 0.0%
B2 3.3% 0.2% 3.3% 0.1% 0.0% 0.0%
B3 0.9% 0.1% 0.9% 0.1% 0.1% 0.1%
B4 0.7% 0.1% 0.6% 0.1% 0.0% 0.0%
B5 1.0% 0.1% 0.8% 0.1% -0.2% 0.0 %
C1 2.2% 0.1% 1.9% 0.1% -0.3% 0.1%
C2 0.6% 0.1% 0.3% 0.1% -0.2% 0.1%
C3 0.7% 0.1% 0.4% 0.1% -0.4% 0.1%
C4 0.1% 0.0% -0.5% 0.1% -0.5% 0.1%
C5 0.5% 0.0% 1.7% 0.1% 1.1% 0.1 %

Table 5: Performance comparison of the algorithms

Instance
BundleDual BundleQcp Trust Region

Solution Time (s) N Solution Time (s) N Solution Time (s) N

A1 161 1 164 1 174 1
A2 1008 2 1072 2 1019 2
A3 4458 3 - - 6782 3
A4 4586 3 - - 7065 3
A5 4376 3 - - 6705 3
B1 66 1 66 1 67 1
B2 535 2 793 2 537 2
B3 2419 3 - - 5269 3
B4 3554 3 - - 5724 3
B5 2540 3 - - 5646 3
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the other methods, at least as many as the dimension of the first stage problem. Even

for the smallest problem A1, it takes 12423 seconds and 122 iterations. Thus, we only

compare the performances of the other three methods. For instance A3–A5 and

B3–B5 with the BundleQcp approach, the quadratic constrained projection problems

experience numerical difficulties when using the QCP solver of CPLEX 9.0. Even we

scale those problems carefully, the solver is not able to get reasonable solutions. Thus,

this approach fails in solving those six problems. The performances of the BundleDual

method and the Trust Region method are comparably good. The BundleDual method

slightly outperforms the Trust Region Method for most problems.

2.7 Concluding remarks

In this chapter, we develop three models for the contract planning problem. Various

issues are considered in the models such as demand imbalance and seasonality, freight

routing, container balance at each origin, procurement of extra voyage capacities, and

container leasing, rental and procurement. The first model is called the steady state

model. This model considers each season in the planning horizon separately, ignoring

the initial conditions and flow changes between two seasons. It provides solutions

with reasonable quality, requiring small computing time. The second model is called

the time stamped model. The model integrates all the seasons in the planning horizon

into one bigger problem. Since the initial conditions and flow changes are captured,

we can obtain significantly more revenue by using this model than the first one, at the

cost of a small increase in computing time. The third model is called the stochastic

model. The third model captures the uncertainties in demand arrival rates, travel

times on feeder arcs, booking cancelations and costs. The third model can obtain the

largest revenue among the three. Although the model can bring a little more revenue

than the second model, this model needs significantly more computing time. Based

on our computational results, we conclude that the second model is likely the most
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practical of the three. All of the models can serve as decision tools for ocean carriers

to structure the optimal prices in service contracts and develop optimal negotiation

strategies.
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CHAPTER III

MODELS OF SPOT MARKETS AND LONGER TERM

CONTRACTS

3.1 Introduction

This work was originally motivated by the following observations in freight trans-

portation markets. Freight transportation services can be procured on the spot, that

is, when it is decided to send a shipment, the service of a carrier is procured for

the particular shipment at a price determined at the time of the transaction. Most

passenger transportation services are procured in this fashion. Freight transportation

services can also be procured by entering into longer term contracts with one or more

carriers. Such contracts usually apply to a specified time period, and the prices and

other conditions specified in the contracts apply to multiple shipments.

In many parts of the world, most freight is transported under the provisions

of longer term contracts. Most of the trucking and almost all rail freight in the

United States are transported under longer term contracts. Most ocean freight is

also transported in this fashion. Many of the big ocean carriers do 80% or more of

their containerized freight transportation under these contracts [2]. Many contracts

between ocean carriers and shippers are negotiated once a year, typically one or two

months before the peak season of the major trades covered by the contracts.

Recent developments in information technology and communication make spot

transactions more economical and more convenient. Electronic spot marketplaces

can reduce search cost and facilitate spot transactions in a timely manner. In the

ocean cargo industry, a survey conducted by Penaloza et al. [46] shows that more and

more ocean carriers are beginning to view electronic spot markets as a strategic driver
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for increasing their profitability. Nevertheless, the implementation of e-commerce has

been slow. A report by Bakker et al. [7] shows that until 2001, only 23% of the 66 large

ocean carriers worldwide who participated in the survey were at the stage of imple-

menting e-commerce and providing internet systems to integrate contracts and spot

exchanges. Almost all of the current internet portals in this industry are supported by

one or several of those large carriers, e.g., Inttra.com supported by Maersk Line, MSC

Mediterranean Shipping Company, CMA CGM, etc., CargoSmart.com supported by

Orient Overseas Container Line Limited, COSCO Container Line Limited, Nippon

Yusen Kaisha, etc., and ShipmentLink.com supported by Evergreen Line. The main

purpose of such internet portals is to serve the transactions covered by longer term

contracts. Their functionalities include facilitating online booking, cargo tracking,

and Bill of Lading (B/L) process, as well as publishing sailing schedules and spot

rates. For the transactions not covered by longer term contracts, spot rates are ap-

plied. Such spot rates usually are higher than those in the longer term contracts.

Incidental spot transactions still count for only a very small portion both in the large

carriers who are the leaders in implementing e-commerce and in the industry as a

whole.

In freight transportation industries, demand uncertainties are typical. For exam-

ple, many shippers are freight forwarders who enter into longer term contracts with

carriers before knowing the actual amounts of freight to be shipped by their own

customers. Therefore, on one hand, those contracts, which fix prices for the cov-

ered periods, reduce price fluctuation for both carriers and shippers. On the other

hand, fixing contract terms before the demand is revealed adds rigidity to the market.

In contrast, spot markets may make better use of up-to-date information and may

facilitate better dynamic matching between supply and demand.

In this chapter, we study the problem of how participation in spot markets may

change the business of the freight transportation industries which are dominated
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by longer term contracts. We consider settings with different market structures.

The seller/sellers sells/sell products under contracts and in the spot market. As is

currently typical in many freight transportation industries, the buyers may or may not

participate in the spot market as a matter of policy. Reasons for not participating

in the spot market can be risk aversion and difficulties in arranging last minute

transactions. Contracts are signed before the demand is observed. Spot market

participation is modeled as the fraction of all buyers who consider spot transactions,

denoted as λ.

In this study, the effect of capacity is also considered. We first study the case in

which the seller’s capacity is large. In other words, the seller can satisfy any level of

demand. Then we consider the case in which the capacity is small. We investigate

how the results differ from those in the former case.

The contracts are modeled as option contracts. The Black-Scholes paradigm is

widely used for modeling the pricing of financial and real options. In that frame-

work, the option transactions do not affect the prices of the underlying securities or

products. In our models, however, both option prices and spot prices are set by the

seller. Therefore, the spot prices depend on how many option contracts have been

sold in advance. The reason we consider option contracts instead of forward contracts

is because of the nature of most freight contracts currently used in practice. In most

sea cargo service contracts, the prices of movements are specified as a function of

paths and cargo classes. In addition, a minimum quantity guarantee is specified to

which the shipper agrees to commit during the time period covered by the contract.

It is not uncommon that the minimum quantity is relatively small compared with

the actual amount of freight shipped. Moreover, shippers are seldom penalized if the

minimum quantity guarantee is not met because carriers are reluctant to damage the

relationships. Thus those contracts resemble free options in some sense.

First we start with the single-seller single-buyer setting. Second, a model of a
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single seller and many buyers is considered. In that setting, every buyer has the same

utility only depending on the state of the market. Third, we consider the case when

the buyers have different utilities in addition to a random state of the market. Last,

the settings with multiple sellers are also studied. In all settings, spot prices are

endogenous and the effect of capacity is also considered.

In the first two settings with large capacity, it is found that as the spot market par-

ticipation rate increases, the contract market shrinks, i.e., the quantity of contracts

transacted decreases. In the single-buyer setting, this quantity remains positive even

when λ = 1. In the many-buyer setting, the quantity of contracts transacted de-

creases to zero as λ increases to 1. Under both market structures, the seller’s surplus

increases as spot market participation increases. However, the effects of the spot

market participation rate on the buyers’ surplus and on the total social surplus are

more complicated. Depending on the variation of the demand, an increase in the spot

market participation rate may or may not benefit the buyers, thereby may or may

not increase the total social surplus. On the other hand, in the undercapacity case, it

is found that the seller’s surplus and the buyer’s/buyers’ total surplus are invariant

with respect to the participation rate.

For the setting with a single seller and a continuum of buyers with different util-

ities, the results on the the contract market and on the seller’s surplus still hold.

Though we are not able to obtain analytical solution for any value of λ, numerical

results indicate the buyers’ total surplus also increases as spot market participation

increases. We also prove that if the seller’s capacity is small, both the seller and the

buyers are better off in the case with full spot market participation (λ = 1) compared

to the contract market only case (λ = 0).

We also consider the setting where there are two sellers and a single buyer. If

the sellers’ capacities are small, it is found that the sellers’ total surplus and the

buyer’s surplus are constant regardless of the spot market participation, which is
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consistent with the results in the single-seller undercapacity setting. In the last section

of this chapter, we also consider a market where there is a continuum of sellers and a

continuum of buyers with different utilities. Numerical results indicate that the total

quantity of contracts transacted decreases as spot market participation increases.

Though both the sellers and the buyers may be worse off, it seems the total social

welfare is always improved as spot market participation increases.

The rest of the chapter is organized as follows. Section 3.2 contains a brief review

of the relevant literature. A brief model description is contained in Section 3.3.

Section 3.4 presents our first model with a single seller and a single buyer. Section 3.5

extends that model with a continuum of buyers with the same utility. Section 3.6

considers the case when different buyers have different random utilities. In Section 3.7,

a market with two sellers and a single buyers is studied. For comparison purpose, a

market with many sellers and many buyers is also studied in Section 3.8. A numerical

study is conducted to investigate the effects of the spot market participation. The

results are summarized in Section 3.9 and the proofs are contained in the appendix.

3.2 Literature review

The contracts used in our models are in the form of call options that provide contract

holders with the right to purchase the underlying products at a fixed price. The

literature on financial options includes Bachelier [6] and Black and Scholes [9]. The

literature on real options includes Dixit and Pindyck [19], Majd and Pindyck [41],

Triantis and Hodder [50] and Trigeorgis [51]. In their models, the price of the underline

securities or products follows a stochastic process, which is independent from the

transactions of the options. In contrast, our model is different from them in that

we take the spot price as endogenous. Thus, the transaction of option contracts in

advance may alter the spot price of the underlying product.

In the economics literature, many papers address reasons for the existence of long

71



term contracts. One approach focuses on transaction costs to explain the existence of

such contracts between purchasers and suppliers. Literature along this line includes

Coase [15], Williamson [56], Klein [31], Williams [55], Laffont and Tirole [35].

Allaz and Vila [4] develop a model with an oligopolistic market structure and

explain the strategic reasons behind forward contracting. Green [26] considers an

electricity market with two sellers and many buyers. He shows that forward contracts

may hedge well their output in the spot market and remove much of the incentive to

use their market power.

There is also literature in operations management on the use of forward contracts

and option contracts in supply chain management. Eppen and Iyer [21] investigate

the impact of backup agreements between a fashion merchandise buyer and upstream

sellers. In such contracts, the buyer commits to a certain backup quantity of products

which he requests the seller to hold before demand is revealed. After the demand is

observed, the buyer can order up to that quantity at the original purchase cost with

quick delivery and will pay a penalty cost for the leftover units. They show that the

backup agreements have a substantial impact and may increase both the buyer and

the sellers’ revenue. Donohue [20] develops a two-stage newsvendor model between

a seller and a buyer under demand uncertainty. She shows that supply contracts

with predetermined wholesale prices and return price can coordinate the buyer and

the seller to achieve better performance of the channel. Barnes-Schuster et al. [8]

study the role of option contracts in supply chain performance. They consider a

two-period model with correlated demand. In their model, there is a single seller

and a single buyer who sells products to end consumers in the two periods. They

demonstrate how the option contracts improve channel performance by providing

the buyer with flexibility and increasing profits of both the buyer and the seller.

Taylor (2002) develops a two-period model with contracts between sellers and buyers.

Such contracts provide the buyers with price protection and rebates for the return
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of unsold inventory. Such contracts may guarantee both channel coordination and

win-win outcome. Kamrad and Siddique [29] analyze and value supply contracts

with uncertainty in exchange rates between sellers and a single buyer. Burnetas and

Ritchken [11] focus their study on the effect of option contracts in a supply chain with

a seller and a buyer. The seller sells option contracts that provide the buyer with

the right to reorder or return products at a fixed price after the demand is revealed.

They show that option contracts may make the buyer either better off or worse off,

depending on the level of the demand uncertainty. Excellent reviews of this branch

of literature can be found in Anupindi and Bassok [5], Lariviere [36], Tsay et al. [52],

and Cachon [12].

There is an emerging literature that focuses on the interaction between longer

term contracts and spot markets/exchanges. An excellent review on this topic can be

found in Kleindorfer and Wu [32]. The following is some of the literature along this

line. Within this type of literature, another important issue studied is the reason for

the existence of longer term contracts.

Cohen and Agrawal [16] compare the tradeoff between the flexibility provided by

short term contracts and price certainty offered by long term contracts. They show

that long term contracting is not always an optimal strategy and discuss conditions

under which short term contracts perform better.

Lee and Whang [37] develop a two-period model with a single upstream seller and

many downstream buyers who re-sell the products to end consumers. The buyers or-

der products from the seller at the beginning of the first period. Then the first period

retail sales are observed. Before the second period begins, the buyers can trade their

inventories among themselves in a secondary spot market. They endogenously derive

the exchange price, the optimal decisions for the buyers and investigate the impact

of the secondary market on the quantity sold by the seller and on the supply chain
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performance. The total sales volume for the seller may increase or decrease. How-

ever, the secondary market always benefits the buyers and improves the supply chain

allocative efficiency by increasing sales to end consumers and decreasing stockouts

and leftover stock. The combined effect on the welfare of the supply chain is unclear.

Peleg et al. [45] investigate the difference among three procurement strategies,

relational contracts, online search and the combination of the two. In their model,

the buyer’s decisions are solely driven by the expected cost. They derive the conditions

under which each strategy outperforms others and show that no strategy is always

the best. In their second part, they relax the number of suppliers to be contacted in

the online search as a decision variable. A numerical analysis is provided to compare

the three alternative strategies.

Wu et al. [58] consider a capital-intensive and non-storable good or service that

can be sold by a single seller under option contracts in advance or in a backup spot

market. The source of the uncertainty is the spot market price which is assumed to

be distributed according to an exogenous distribution. They show that the seller’s

optimal strategy is to set the strike price at the marginal cost and to extract the

margin from the buyer only using option prices. The imperfection of the spot market

is modeled by the probability that the seller can successfully sell its residual output

in the spot market. They show that if the seller can sell all its residual output in

the spot market probability 1, then no contracts are transacted. Wu and Kleindorfer

[57] extend the results to a setting with multiple sellers. Existence and structure of

market equilibria are characterized.

Deng and Wu [18] extend the two-period model in [58] to continuous time trading.

The spot price is assumed to follow a stochastic process. Between the contracting

period and the spot market period, the option contracts are traded continuously

between the single seller and single buyer. They find that contract market and spot

market coexist in this setting.
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Spinler et al. [48] extend the results of Wu et al. [58] to a setting where the

buyer’s willingness to pay (WTP) function depends on the state of the world and

find the main results in Wu et al. [58] still hold. They derive the buyer’s optimal

contracting strategy and the seller’s optimal price that reflect the correlation of the

buyer’s demand and the spot price.

Mendelson and Tunca [42] derive a three-stage model with a single seller and

multiple buyers for an intermediate industrial good. The buyers sell the end prod-

ucts in the consumer market. In their model, forward contracts are employed and

a spot exchange among the seller and the buyers takes place after the contracting

stage. Between the contracting stage and the spot exchange, the seller receives pri-

vate information of the realization of her costs and the buyers receives a signal of

the realization of consumer demand. They find that spot trading reduces prices,

increases the quantities produced, and improves supply chain profits and consumer

surplus. However, spot trading may make the seller or the buyers worse off. In addi-

tion, they find that contracting is persistent. Only when the number of buyers goes

to infinity, the contracted quantities converge to zero.

Levi et al. [39] consider a buyer’s decision to source intermediate products from

multiple sellers either by signing long term contracts or via spot markets. They study

the tradeoff between demand uncertainty and additional costs if the parties transact

on spot markets. They show that high additional cost in spot markets pushes the

buyer to relational long term contracts.

Tunca and Zenios [53] investigate the competition between two procurement mech-

anisms, long term contracts and online auction that serves the role of spot markets.

They study a supply chain where an industrial part with nonverifiable attributes is

sold. The procurement of high-quality parts relies on relational contracts whereas the

procurement of low-quality parts relies on auctions. Conditions under which the two

procurement mechanisms coexist and conditions under which one drives the other
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out of the market are characterized. They consider a different reason for contracts:

Relational contract is incentive to provide higher quality because of promise of future

sales.

Erhun et al. [22] develop a two-period model and compare it with two single period

models in an environment where a buyer procures capacity from a capacitated seller.

Equilibria in all capacity regions are characterized. They investigate the impact of

additional information and trading periods on both players’ welfare. The supplier’s

optimal capacity decision is also studied. Their two-period model in specific capacity

regions is the same as ours in the case in which 100 % participation in the spot

market. Instead of focusing on the impact of additional trading periods, we study

the efficiency of the spot markets that is modeled by the buyer’s participation rate.

We investigate the effects of the buyer’s spot market participation rate on all players’

welfare.

Our research follows the same framework. Unlike most of the existing literature,

we do not take the spot price as given or distributed according to an exogenous

distribution but endogenously derive the spot price, which complicates the analysis

significantly. Another aspect differs our study from other literature is on the effects

of the spot market participation from the buy side. As is present in practice, carriers

can sell their remaining capacities on the spot after satisfying service contracts. Thus,

the spot market considered in our study is a sell side market. It is common that a

large portion of shippers still only use service contracts for a variety of reasons. This

motivates us to model the buyers’ participation in the spot market. In particular, we

study the effects of the buyers’ participation on the contract market, on the surpluses

of all market players and on the total social welfare.
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3.3 Model description

This section gives a brief description of some of the features applied to all models

through out this chapter.

We model the contracts in the form of call options that are widely used in financial

markets. Call options provide option holders with the right to purchase the underlying

securities or products at specified prices. Options have values and are sold at some

positive prices. As mentioned before, the reason that we use option contracts instead

of other forms of contracts is the special property of most contracts used in freight

transportation industries.

It is assumed that the seller has a constant marginal cost c. In the sea cargo

industry, it is common that freight contracts always provide lower prices than the

published spot rates. Thus, in our model, we set the the strike price equal to the

marginal cost and use the option price to exact all the margin. Under this assumption,

the buyers always rely on contracts first and use the spot market to purchase extra

products if necessary. Similar assumption is used in Burnetas and Ritchken [11]. Wu

et al. [58] prove that setting the strike price at the marginal cost is optimal if the

spot price is exogenous. It should be pointed out, setting strike price at the marginal

cost may not always be optimal to the seller in general if the spot price is endogenous.

Relaxing this assumption complicates the analysis significantly and doesn’t represent

the current practice in the sea cargo industry.

Assumption 3.3.1. The strike price of the option contract is equal to the marginal

cost.

For the single-seller single-buyer model, the sequence of decisions is as follows.

Contracts are signed in Period 1 when the buyer’s future demand in Period 2 is not

observed. Those contracts provide the buyer with the right to purchase products at a

fixed price, which is the marginal cost, in Period 2. Before the beginning of Period 2,
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the buyer’s demand is revealed. Given the number of contracts purchased in Period 1,

the buyer decides the quantity to purchase under contracts. In financial economics

literature, those contracts are called exercised. If the seller still has remaining capacity

and the buyer’s policy is to participate in the spot market, the seller sets the spot

price. The buyer then decides the additional quantity to purchase from the spot

market according to the spot price. In the following context, we also refer Period 1

as the contracting period and Period 2 as the spot market period. The timeline for

all the other models is almost the same. For the two-seller model and the model with

a continuum of sellers, sellers simultaneously choose the option price and the spot

price.

In freight transportation industries, the spot markets are not as well developed as

those in some other industries, such as energy and electronic markets. In the sea cargo

industry, though some large carriers do support spot transactions as a less important

functionality of their internet portals, most shippers still prefer longer term contracts

due to various reasons. Incidental spot transactions count only for a small potion

of the total transactions. This motivates us to model the spot market participation

from buy side. In the models with a continuum of buyers, a fraction λ of the buyers

participate in the spot market and the remaining 1−λ of the buyers do not as a matter

of policy. For comparison purpose, we also include the counterpart under the single-

buyer market structure with λ interpreted as the buyer’s participation probability.

With probability λ, the buyer transacts in the spot market. With probability 1− λ,

as a matter of policy, the buyer doesn’t.

3.4 Single seller, single buyer

This section presents a two-period model with a market where there is a single seller

and a single buyer. The sole source of the uncertainty is the buyer’s demand that

depends on the state of the market in the spot market period. Assume the buyer’s
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normal utility function is quadratic and as follows:

U(q) = − q2

2β
+

αq

β

where q is the units of products purchased. This utility function is the basis to derive

normal demand function. The demand at a given price s is the optimal solution

to maximize U(q) − qs. Thus, the corresponding normal demand function is s =

(α − q)/β, i.e., q = α − βs. We assume that the uncertainty in the demand curve is

represented by the random variable α having probability distribution P . In particular,

P is a Bernoulli distribution,

α =





αh with probability p,

αl with probability 1− p.

To avoid degeneracy, it is assumed that

Assumption 3.4.1. The parameters satisfy αh > αl, 0 < p < 1.

Denote the expectation of α as E(α) and the variance of α as σ2. It holds that

E(α) = pαh + (1− p)αl

σ2 = p(1− p)(αh − αl)
2

We also assume that even at the low demand state, the buyer has nonnegative demand

if the price is at the marginal cost.

Assumption 3.4.2. If the demand state is low and the price is at the marginal cost,

then the buyer’s normal demand satisfies q = αl − βc ≥ 0.

As mentioned in the previous section, whether the buyer participates in the spot

market or not depends on many factors. Therefore, in this model, we assume the

buyer’s policy on participating in the spot market is exogenous and is not a conse-

quence of the game. Two cornerstone models of the two policies are presented in
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this section, which correspond to λ = 0 and λ = 1. As a benchmark to the models

with a continuum of buyers in the latter sections, we also include the case λ ∈ (0, 1)

with λ interpreted as the buyer’s spot market participation probablity unrevealed to

the seller in Period 1. With probability λ, the buyer transacts in the spot market.

With probability 1 − λ, as a matter of policy, the buyer doesn’t. At the end of the

first period, as the buyer’s contracting decision is revealed, the seller can deduce the

buyer’s policy on the spot market. In this model, we also assume the buyer doesn’t

take this information asymmetry into consideration because of consistency for com-

parison. Therefore, the buyer’s decision in Period 1 is suboptimal to his problem.

3.4.1 Large capacity case

This subsection considers the case when the seller’s capacity is large, i.e., the seller

can satisfy any of the buyer’s demand. Therefore, the capacity constraint needs not

to be considered at all in this case.

This section is organized as follows. First, we consider the case when the buyer

only transacts in the contract market, i.e., λ = 0. Second, we consider the case

when the buyer participates in both the contract market and the spot market, i.e.,

λ = 1. Third, we consider the case λ ∈ (0, 1). Last, we investigate the effects of the

spot market participation on the quantity of contracts transacted, as well as on the

surpluses of the seller and the buyer.

3.4.1.1 Contract market only

This subsection considers that the buyer only transacts on the contract market, i.e.,

λ = 0. The sequence of the events is as follows. In Period 1, the seller sets the

option contract price, denoted as π. The option contracts give the buyer the right

to purchase products at strike price c in Period 2. Depending on the option price,

the buyer decides the quantity of contracts, Q, to purchase. In Period 2, based on Q

and the realization of the demand, the buyer decides how many products to purchase
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under contracts. There are total three decision stages indexed forward in time. Stage 1

is the seller’s decision stage in Period 1. The buyer’s decision stage in Period 1 is

referred as stage 2 and his decision stage in Period 2 is referred as stage 3. The

timeline of this model is shown in Figure 4. We model this situation as a Stackelberg

game and use backward induction to characterize the market equilibrium.

Seller sets the option

price


Buyer decides the quantity of

contracts to purchase


Buyer decides  the quantity to purchase

under contracts


Period1
 Period 2


Demand state revealed


Figure 4: The timeline for the contract market only model

Stage 3 – buyer’s problem

Stage 3 is in Period 2. At this stage, the demand is observed. Given the number

of contracts bought at Period 1, Q, the buyer decides the actual quantity of products

to transact under those contracts. Let qc be the quantity of products that the buyer

decides to purchase under the contracts. Denote the return of the buyer at Period 2

as r2(qc|α). The arguments qc and α indicate that the buyer’s return depends on both

the buyer’s decision qc and the realization of α. The buyer’s problem at this stage is

g2(Q,α) = max
qc

r2(qc|α)

s.t. 0 ≤ qc ≤ Q (3.4.1)

where r2(qc|α) = − q2
c

2β
+ αqc

β
− qcc. Let q∗c be the optimal decision for the buyer.
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Lemma 3.4.1. The buyer’s optimal decision in Period 2 is as follows:

1. If Q > α− βc, then q∗c = α− βc.

2. If Q ≤ α− βc, then q∗c = Q.

The intuition behind Lemma 3.4.1 is clear. In this setting, the buyer only pur-

chases products under contracts that have strike price at c. The quantity of products

the buyer can transact is limited by the contracting quantity Q. If there is no such

restriction, the buyer’s demand is α−βc. If Q is smaller than that demand, the buyer

purchases up to Q. On the other hand, if Q is greater than the demand, the buyer

only purchases α− βc.

Stage 2 – buyer’s problem

Stage 2 is in Period 1. At this stage, the option contract price π is given. The

buyer anticipates the return in Period 2 and determines how many option contracts

to sign. Let Q be the buyer’s decision and r1(Q|π) be the buyer’s return at this stage.

Note we use g2(Q,α) to denote the buyer’s optimal return in Period 2, which depends

on Q and the realization of α. The buyer’s decision problem is

g1(π) = max
Q

r1(Q|π)

s.t. Q ≥ 0 (3.4.2)

where r1(Q|π) = −πQ+E[g2(Q,α)] = −πQ+ pg2(Q,αh)+ (1− p)g2(Q, αl). The first

term in r1(Q|π) is the cost of purchasing the contracts. The second term represents

the expected optimal return as a function of Q at stage 3. Note that the seller never

chooses π < 0. The buyer’s optimal contracting decision Q∗ is as follows.

Lemma 3.4.2. The Buyer’s optimal contracting decision Q∗(π) is a continuous func-

tion of π for any π > 0 and is as follows:

1. If π = 0, then any Q ∈ [αh − βc, +∞) is optimal.
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2. If π ∈
(
0, p(αh−αl)

β

]
, then Q∗ = αh − βc− βπ

p
.

3. If π ∈
(

p(αh−αl)
β

, E(α)−βc
β

]
, then Q∗ = E(α)− β(c + π).

4. If π > E(α)−βc
β

, then Q∗ = 0.

It should be noted that if π ∈ (0, p(αh − αl)/β], then Q∗ = αh − βc − βπ/p ∈
[αl−βc, αh−βc). If π ∈ (p(αh − αl)/β, (E(α)− βc)/β], then Q∗ = E(α)−β(c+π) ∈
[0, αl − βc). Lemma 3.4.2 indicates that the buyer’s optimal decision Q∗(π) is a

continuous function of π and is unique for any π > 0. If the option price π is higher

than (E(α)−βc)/β, the buyer never enters contracts. On the other hand, if the price

is small enough, i.e., 0 < π ≤ p(αh − αl)/β, buyer’s optimal decision Q∗ is dominated

by the demand from the high state and Q∗ ≥ αl − βc. Thus, the buyer will bear the

risk that he may not utilize all the contracts when the demand state turns out to

be low. If the price is fairly high, i.e., p(αh − αl)/β < π ≤ (E(α)− βc)/β, the buyer

buys a moderate quantity of contracts with Q∗ < αl − βc. In this case, the buyer uses

all the contracts in Period 2 no matter the demand state turns out to be high or low.

Note that Q∗(0) is not unique. In this case, the seller doesn’t make any profit. Since

the seller’s sole objective is to maximize her profit, the seller does not chose π = 0

and this never takes place.

Stage 1 – seller’s problem

Stage 1 is in Period 1. Henceforth, we use Q to represent the buyer’s optimal

contracting decision and omit the superscript “*”. Since the strike price is at the

marginal cost and there is no transaction on the spot market, the seller’s profit is

generated only by selling the option contracts. The seller’s first stage maximization

problem is

max
π

R1(π) = πQ(π)

s.t. π ≥ 0 (3.4.3)
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Denote the optimal option price as π∗.

Theorem 3.4.1. The seller’s optimal decision in Period 1 is as follows:

1. If αh − αl < αl−βc√
p

, then π∗ = E(α)−βc
2β

.

2. If αh − αl > αl−βc√
p

, then π∗ = p(αh−βc)
2β

.

3. If αh − αl = αl−βc√
p

, then both πl and πr are optimal, where πl = p(αh−βc)
2β

and

πr = E(α)−βc
2β

.

Note that if αh − αl < (αl − βc)/
√

p, then π∗ ∈ (p(αh − αl)/β, (E(α)− βc)/β)

and Q(π∗) ∈ (0, αl − βc). If αh − αl > (αl − βc)/
√

p, then π∗ ∈ (0, p(αh − αl)/β)

and Q(π∗) ∈ (αl − βc, αh − βc). If αh − αl = (αl − βc)/
√

p, then π∗ ∈ {πl, πr}. Note

R1(πl) = R1(πr), πl ∈ (0, p(αh − αl)/β), Q(πl) ∈ (αl − βc, αh − βc), πr ∈ (p(αh − αl)/β,

(E(α)− βc)/β) and Q(πr) ∈ (0, αl − βc).

It should be noted that R1(π) is a continuous function of π on [0, +∞). If π >

(E(α)−βc)/β, R1(π) = 0. Therefore, π∗ ∈ [0, (E(α)− βc)/β]. The objective function

R1(π) is piecewise concave on [0, p(αh − αl)/β) and [p(αh − αl)/β, (E(α)− βc)/β]

respectively. At the breakpoint π = p(αh − αl)/β, the right derivative is greater or

equal to the left derivative. Whether the optimal solution falls in the first interval or

the second interval depends on the parameters in the model. Theorem 3.4.1 explicitly

characterizes the market equilibrium under different conditions. If the shift of demand

αh−αl is bigger than the threshold (αl−βc)/
√

p, the effect of the high demand state

dominates. Hence, the seller’s optimal decision relies only on the high demand state.

By Lemma 3.4.2, at this option price, the buyer purchases a large number of contracts

with Q(π∗) > αl − βc. Not all those contracts are used if the demand turns out to

be low in Period 2. If the shift is not large, i.e., αh − αl < (αl − βc)/
√

p, the seller’s

decision reflects both the high demand state and the low demand state. Given this

price, the buyer signs a moderate quantity of contracts such that Q(π∗) < αl − βc.
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All of those contracts are used in Period 2 regardless of the state of the market. If

αh − αl = (αl − βc)/
√

p, the optimal option price is not unique.

3.4.1.2 Contract market and spot market with full participation

This subsection considers the case that buyer’s policy is to participate in both mar-

kets, i.e., λ = 1. Similar to the previous case, the sales horizon is divided into two

periods, the contracting period (Period 1) and the spot market period (Period 2).

The sequence of events is as follows. In the contracting period, the seller determines

the option price π with strike price at the marginal cost c. Given this information,

the buyer decides the quantity of contracts to purchase Q. Contracting period ends.

The demand is realized and the spot market period begins. Based on the number of

contracts the buyer reserves, the seller sets the spot price. The buyer determines the

quantity of products to purchase under those contracts and the quantity to purchase

from the spot market. Let s be the spot price set by the seller in Period 2. Denote

the spot price at the high(low) demand state as sh(sl). Compared to the contract

market only setting, there are total four decision stages. The extra one is the seller’s

decision stage in Period 2. We also index the four decision stages moving forward in

time. Stage 1 refers to the seller’s decision stage in Period 1 and stage 2 refers to the

buyer’s decision stage in Period 1. Stage 3 and stage 4 refer to the decision stages

of the seller and the buyer in Period 2 respectively. The timeline of this model is

illustrated in Figure 5.

Stage 4 – buyer’s problem

At stage 4, the number of contracts purchased in Period 1 Q and the spot price s

are given. In addition, the random parameter α in the demand function is realized.

Let qc be the quantity that the buyer decides to purchase under contracts and qs be

the quantity that the buyer decides to purchase from the spot market. Denote the
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Seller sets option price


Buyer decides the quantity of

contracts to purchase


Seller sets spot price


Buyer decides  the quanty to purchase under

contracts and the quantity to purchase in the


spot market


Period 1
 Period 2


Demand state revealed


Figure 5: The timeline for the contract and spot market model

buyer’s return in Period 2 as r2(qc, qs|s, α). The buyer’s problem is

g2(Q, s, α) = max
qc,qs

r2(qc, qs|s, α)

s.t. 0 ≤ qc ≤ Q (3.4.4)

qs ≥ 0

where r2(qc, qs|s, α) = U(qc + qs) − qcc − qss = − (qc+qs)2

2β
+ α(qc+qs)

β
− qcc − qss. It

is assumed that the seller never sells at a price less than the marginal cost, i.e., the

s ≥ c. Denote the optimal solution as (q∗c , q∗s).

Lemma 3.4.3. The buyer’s optimal decision in Period 2 is as follows:

1. If s = c, then any q∗c and q∗s satisfying the following conditions are optimal:

q∗c + q∗s = α− βc

0 ≤ q∗c ≤ Q

q∗s ≥ 0

2. If Q ≥ α− βc and s > c, then q∗c = α− βc and q∗s = 0.
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3. If Q < α − βc and s > c, then q∗c = Q and q∗s = (α − βs − Q)+, where

(α− βs−Q)+ = max{α− βs−Q, 0}.

Lemma 3.4.3 indicates that the buyer’s demand in Period 2 is fulfilled by two

sources, contracts and the spot market. If s = c, the buyer’s optimal decision is not

unique. In this case, the seller doesn’t make any profit on the spot market. If s > c,

the optimal solution (q∗c , q
∗
s) is unique. If the quantity Q is bigger than the demand at

the marginal cost, the buyer only uses contracts to fulfill his demand. If Q is smaller

than that threshold, the buyer uses spot market to fulfil his residual demand according

to the spot price. The buyer’s residual demand function is D′ = (α − βs − Q)+. If

the spot price is less than (α − Q)/β, the residual demand at s is positive, thus the

seller purchases additional products from the spot market. Otherwise, the residual

demand is zero and the buyer doesn’t purchase from the spot market at all.

Stage 3 – seller’s problem

Stage 3 is in Period 2. At this stage, the seller observes the buyer’s demand. Based

on the number of contracts bought by the buyer Q, the seller sets the spot price s.

Denote the seller’s revenue in Period 2 as R2(s|Q,α). Henceforth, we use qc(Q, s, α)

and qs(Q, s, α) to denote the buyer’s optimal response to a given set of (Q, s, α) at

stage 4. The problem for the seller is

G2(Q,α) = max
s

R2(s|Q,α)

s.t. s ≥ c (3.4.5)

where R2(s|Q,α) = qs(Q, s, α)(s− c). Denote the optimal spot price as s∗.

Lemma 3.4.4. The seller’s optimal spot price is as follows:

1. If Q < α− βc, then s∗ = (α + βc−Q)/(2β).

2. If Q ≥ α− βc, then any s ∈ [c, +∞) is optimal.
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Note if Q ≥ α− βc, then R2(s
∗|Q,α) = 0. The above results are intuitively clear.

As the strike price is set at the marginal cost, whether the buyer uses spot market or

not depends on the relationship between the number of contracts Q and the demand

at the marginal cost α− βc. By Lemma 3.4.3, if Q ≥ α− βc, the seller’s profit from

the spot market is zero. Thus, any s ≥ c is optimal. If Q is small, i.e., Q < α− βc,

the buyer uses the spot market to fulfil his residual demand. The seller sets spot price

to maximize her profit. The buyer’s residual demand function on the spot market is

D′ = (α − βs−Q)+. Therefore, the seller sets the spot price at the monopoly price

s = (α + βc−Q)/(2β) with respect to such residual demand function. Note that in

this case, the spot price s decreases in Q. Therefore, as long as Q < α−βc, increasing

Q forces the seller to lower the spot price.

Stage 2 – buyer’s problem

Stage 2 is in Period 1. At this stage, given the option price π, the buyer antici-

pates his return in Period 2 and decides how many contracts to purchase. Without

confusion, denote the the seller’s best response to a given Q as s(Q,α), which also

depends on the realization of α. For simplicity, we use the abbreviation s for s(Q,α).

Let the buyer’s return in Period 1 be r1(Q|π). Thus, the first period problem of the

buyer is

g1(π) = max
Q

r1(Q|π) = −πQ + E[g2(Q, s, α)]

s.t. Q ≥ 0 (3.4.6)

where E[g2(Q, s, α)] = pg2(Q, s, αh) + (1 − p)g2(Q, s, αl). Let the buyer’s optimal

decision at stage 2 be Q∗ .

Lemma 3.4.5. The buyer’s optimal contracting decision Q∗(π) is a continuous func-

tion of π for any π > 0 and is as follows:

1. If π = 0, then any Q ∈ [αh − βc, +∞) is optimal.
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2. If π ∈
(
0, 3p(αh−αl)

4β

]
, then Q∗ = αh − βc− 4βπ

3p
.

3. If π ∈
(

3p(αh−αl)
4β

, 3(E(α)−βc)
4β

]
, then Q∗ = E(α)− βc− 4βπ

3
.

4. If π > 3(E(α)−βc)
4β

, then Q∗ = 0.

Note if π ∈ (0, 3p(αh − αl)/(4β)], then Q∗ ∈ [αl−βc, αh−βc). On the other hand,

if π ∈ (3p(αh − αl)/(4β) , 3(E(α)− βc)/(4β)], then Q∗ ∈ [0, αl − βc). Lemma 3.4.5

shows similar results to Lemma 3.4.2. If π is small, i.e., 0 ≤ π < 3p(αh − αl)/(4β),

the buyer’s decision depends only on the high demand state with Q∗ ≥ αl − βc. In

this case, not all of the contracts are used if the demand turns out to be low. If π

is large, i.e., 3p(αh − αl)/(4β) ≤ π ≤ 3(E(α) − βc)/(4β), then the buyer purchases

a relatively small quantity of contracts and uses all of them in both demand states.

Compared to the results in Lemma 3.4.2, for any given π > 0, the buyer’s response

Q(π) is smaller.

Stage 1 – seller’s problem

Decision stage 1 is in Period 1. At this stage, the buyer’s demand is not observed.

Anticipating her return in Period 2 and the buyer’s response, the seller chooses the

option price π to maximize her revenue. There are two parts in her total revenue.

One part is from the option contracts and the other part is from the spot market.

Let Q(π) be the buyer’s best response to π. The seller’s first stage problem is

max
π

R1(π) = πQ(π) + E[G2(Q(π), α)]

s.t. π ≥ 0 (3.4.7)

where E[G2(Q(π), α)] = pG2(Q(π), αh) + (1− p)G2(Q(π), αl).

It should be noted that function R1(π) is continuous but not concave on [0,∞),

which is similar to that in the contract market only setting. Instead, R1(π) is piece-

wise concave on [0, 3p(αh − αl)/(4β)) and [3p(αh − αl)/(4β), 3(E(α)− βc)/(4β)]. If

π > 3(E(α)− βc)/(4β), by Lemma 3.4.5, Q(π) = 0, thus R1(π) is constant and
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doesn’t depend on π. In that case, all the revenue is obtained from the spot market.

The equilibrium price π∗ is explicitly stated in the following Theorem.

Theorem 3.4.2. The seller’s optimal decision in Period 1 is as follows:

1. If αh − αl < 3(αl−βc)√
p

, then π∗ = 9(E(α)−βc)
16β

.

2. If αh − αl > 3(αl−βc)√
p

, then π∗ = 9p(αh−βc)
16β

.

3. If αh − αl = 3(αl−βc)√
p

, then both πl and πr are optimal, where πl = 9p(αh−βc)
16β

and

πr = 9(E(α)−βc)
16β

.

Note if αh−αl < 3(αl−βc)/
√

p, then π∗ ∈ (3p(αh − αl)/(4β), 3(E(α)− βc)/(4β))

and Q(π∗) ∈ (0, αl − βc). If αh − αl > 3(αl − βc)/
√

p, then π∗ ∈ (0, 3p(αh − αl)/(4β))

and Q(π∗) ∈ (αl − βc, αh − βc). If αh − αl = 3(αl − βc)/
√

p, then π∗ ∈ {πl, πr}.
Note R1(πl) = R1(πr), πl ∈ (0, 3p(αh − αl)/(4β)), Q(πl) ∈ (αl − βc, αh − βc),

πr ∈ (3p(αh − αl)/(4β), 3(E(α)− βc)/(4β)) and Q(πr) ∈ (0, αl − βc)

From above results, we can see similar property in the contract market only setting

with the threshold for the shift of the demand αh−αl three times bigger. For a given

set of parameters αh, αl, β, c and p, the equilibrium price here π∗ is bigger than that

in the contract market only setting and thereby Q∗ is smaller, which indicates the

spot market affects the transactions of contracts. Note Q(π∗) is always positive, i.e.,

at market equilibrium, the buyer buys a positive quantity of contracts regardless of

the parameter values.

Corollary 3.4.1. The buyer’s contracting decision in equilibrium satisfies Q(π∗) > 0.

The intuition behind Corollary 3.4.1 is as follows. In this setting, the seller also

has exclusive power on the spot market. Since the the spot price in Period 2 decreases

in Q (Lemma 3.4.4), holding a positive number of contracts helps the buyer get lower

spot prices. Hence, even the buyer considers to transact on the spot market, the

buyer still enters contracts in Period 1.
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Corollary 3.4.2. The relationship of the option price and the spot prices is as follows:

1. If π ∈
[

3p(αh−αl)
4β

, 3(E(α)−βc)
4β

]
, then the spot prices in both the high demand state

and the low demand state increases as π increases.

2. If π ∈
(
0, 3p(αh−αl)

4β

)
, then the spot price in the high demand state increases as π

increases and no transaction takes place in the spot market in the low demand

state.

If the option price is large, i.e, π ∈
[

3p(αh−αl)
4β

, 3(E(α)−βc)
4β

]
, then the buyer’s con-

tracting quantity Q is smaller than αl−βc. Thereby the buyer will purchase from the

spot market in both demand states. An increase in option price leads lower contract-

ing quantity and in turn results in higher spot prices. If the option price is small, i.e.,

π ∈
(
0, 3p(αh−αl)

4β

)
, the relationship of the option price and the spot price in the high

demand state is the same. As in this case Q > αl − βc, there is no spot transaction

in the low demand state and the corresponding spot price has no practical meanings.

3.4.1.3 Contract market and spot market with partial participation

This section considers a spot market with partial participation, i.e. the buyer par-

ticipates in the spot market with probability λ ∈ (0, 1) for comparison. In Period

1, the seller sets the option contract price. At this stage, the seller doesn’t know

whether the buyer transacts in the spot market or not. The seller only knows that

the buyer will participate in the spot market with probability λ. If the buyer’s policy

is to transact in the spot market, his best response is indicated in Lemma 3.4.5. If

he doesn’t transact in the spot market, his best response is stated in Lemma 3.4.2.

Given π, the buyer decides the quantity of contracts to purchase according to his

policy on the spot market. Before the beginning of Period 2, the buyer’s policy and

demand state are revealed. If the buyer’s policy is to participate in the spot market,

the seller sets the spot price and the buyer makes decision accordingly. If the buyer
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doesn’t purchase in the spot market, he only decides the quantity of products to

transact under the contracts he already has. In this section, we focus our study on

the role of the spot market. Specifically, we investigate the effects of the participation

rate λ on the quantity of contracts purchased and on the surpluses of the seller and

the buyer.

Let QA(π) be the buyer’s best response to π if the buyer transacts in the contract

market and QA(π) is already characterized in Section 3.4.1.1. If the buyer’s policy is

to participate in the spot market, let QB(π) be the buyer’s best response characterized

in Section 3.4.1.2. Denote the seller’s optimal revenue in Period 2 as G2(QB(π), α).

For a given λ ∈ (0, 1), The seller’s decision problem in Period 1 is

max
π

R1(π) = (1− λ)πQA(π) + λ{πQB(π) + E[G2(QB(π), α)]}

s.t. π ≥ 0 (3.4.8)

where E[G2(QB(π), α)] = pG2(QB(π), αh) + (1 − p)G2(QB(π), αl). The first term in

R1(π) is the return in the scenario when the buyer only participates in the contract

market. The second term is the return when the buyer participates in both markets.

For a given λ, denote the optimal solution to above problem as π∗(λ). Let Q∗(λ) =

(1 − λ)QA(π∗(λ)) + λQB(π∗(λ)) be the expected quantity of contracts transacted

in equilibrium. Denote the seller’s surplus as G(λ) and buyer’s surplus as V (λ) =

g1(π
∗(λ)) in equilibrium. Let W (λ) = G(λ) + V (λ) be the total social surplus. We

now investigate the effects of spot market participation rate λ on Q∗(λ), G(λ), V (λ)

and W (λ).

Note that for a fixed λ, since QA(π∗) ≥ QB(π∗), an increase in λ leads a decrease

in Q∗ if the equilibrium price π∗ doesn’t change. However, the equilibrium price π∗

also depends on λ. The following Lemma shows that π∗ increases in λ.

Lemma 3.4.6. As λ increases, the seller’s optimal option price π∗(λ) increases.

Theorem 3.4.3. (Effect on Contract Market)
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As λ increases, the expected quantity of contracts transacted Q∗(λ) decreases.

Theorem 3.4.3 indicates that as λ increases, the expected quantity of contracts

bought by the buyer decreases. In other words, as the buyer’s spot market partici-

pation rate increases, the contract market shrinks. Note that from previous analysis,

even if λ increases to 1, Q∗ is still positive.

Presumably, spot markets may facilitate better dynamic matching of supply and

demand. In spot markets, players can make better use of up-to-date information to

adjust their decisions. Especially, we expect that a higher spot market participation

rate results in a higher surplus of the seller who is the Stackelberg leader in both

markets. Though the buyer also has more information in the spot market, as the

seller has exclusive power on both the contract market and the spot market, it is

unclear how the participation rate affects the buyer’s surplus.

Theorem 3.4.4. (Effect on Seller’s Surplus)

The seller’s surplus G(λ) increases as λ increases.

Theorem 3.4.4 states that an increase in λ always benefits the seller. The rationale

behind this theorem is that as λ increases, the seller has more flexibility by controlling

both the option price and the spot prices. As the buyer is more willing to transact

on the spot market, the seller can make better decision with dynamically updated

information.

In contrast to the monotonicity shown above, the impact of λ on the buyer’s

surplus and on the total social surplus is indeterminate, depending on the parameters

in the model.

Theorem 3.4.5. (Effects on Buyer’s Surplus and Total Social Surplus)

The effects of the buyer’s participation rate λ on the buyer’s total surplus and on

the total social welfare are as follows.
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1. If αh − αl ≥ 3(αl − βc)/p, then the buyer’s surplus V (λ) and the total social

surplus W (λ) increase as λ increases.

2. If αh − αl < 3(αl − βc)/p, then the buyer’s surplus V (λ) and the total social

surplus W (λ) may increase or decrease as λ increases.

Theorem 3.4.5 states in a market with a monopolist seller, spot market partic-

ipation may or may not benefit the buyers, therefore may or may not increase the

total social surplus. The total social surplus is equal to the buyer’s expected utility

minus the manufacturing cost. Since the seller has exclusive market power on the

spot market, she sets the spot price at the monopoly price with respect to the resid-

ual demand, which is relatively high. As the buyer is more willing to transact in the

spot market, the total quantity of products transacted might decrease. Therefore, the

total social surplus might decrease. Example 1 and 2 show that as λ increases, V (λ)

and W (λ) may increase or decrease. Example 3 indicates that even if λ = 1, the total

social surplus and the buyer’s surplus may be less than those in the contract market

only setting λ = 0. In Example 2 and 3, the contracting quantity Q∗(λ), the buyer’s

surplus V (λ) and the total social surplus W (λ) are discontinuous at two values of

λ. This is because that the seller’s objective function is piecewise concave in π. As

λ increases, the optimal option price increases and can jump from one interval to

another on the right. At such jump, the seller is indifferent in charging two different

option prices that result in the same profit. Those two prices are the two local maxi-

mizers in two different intervals. Though both of the prices lead to the same profit to

the seller, the buyer’s surplus and the total social surplus are different. If the seller

chooses the lower price, more option contracts are sold and the residual demand in

the spot market is smaller. Thus, the seller charges a lower spot price with respect to

such residual demand. In this case, the seller sells more products overall. Therefore,

the total social surplus is higher and the buyer is also better off. If the seller chooses
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the higher option price, the buyer is worse off and the total social surplus becomes

lower. As λ keeps increasing from such value, the optimal price stays in the same

interval and the buyer’s surplus and total social surplus become unique again.

Example 1: αh = 8, αl = 4, β = 1, c = 1, and p = 0.5.

Example 2: αh = 12, αl = 9, β = 2, c = 4, and p = 0.3.

Example 3: αh = 5.2, αl = 2, β = 1, c = 1, and p = 0.1.
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Figure 6: Effects of spot market participation for Example 1

In the models discussed in this section, the seller has large capacity. Denote the

seller’s capacity as C. It is easy to show that all the results in this section hold if

C ≥ αh−βc. As the capacity decreases, the analysis of the market equilibrium divides

into a number of cases depending on the capacity level. To investigate the impact of

the capacity factor, we limit our study in the next section to another extreme case

where the capacity is very small, which we expect the the impact is the strongest.

We investigate how the results under this condition deviate from those in the large

(unlimited) capacity case.

95



0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

λ

Q

0 0.2 0.4 0.6 0.8 1
0.55

0.6

0.65

0.7

0.75

λ

G

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

λ

V

0 0.2 0.4 0.6 0.8 1
1

1.5

2

λ

W

Figure 7: Effects of spot market participation for Example 2

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

λ

Q

0 0.2 0.4 0.6 0.8 1
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

λ

G

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

λ

V

0 0.2 0.4 0.6 0.8 1
0.6

0.8

1

1.2

λ

W

Figure 8: Effects of spot market participation for Example 3
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3.4.2 Small capacity case

We still use the same notation as before. It is assumed that the capacity level C

is common knowledge. Assume that the number of contracts sold by the seller in

Period 1 can not exceed the capacity, i.e., Q ≤ C. As the models are very similar to

those in the previous section, we only present the last model for the case λ ∈ (0, 1).

Similar to Section 3.4.1.3, the seller’s stage 1 problem is

max
π

R1(π) = (1− λ)πQA(π) + λ{πQB(π) + E[G2(QB(π), α)]}

s.t. QA(π) ≤ C

QB(π) ≤ C (3.4.9)

π ≥ 0

where E[G2(QB(π), α)] = pG2(QB(π), αh) + (1− p)G2(QB(π), αl).

Let Ca = (αl − βc)/2. For any C ≤ Ca, Lemma 3.4.7, Theorem 3.4.6, Theo-

rem 3.4.7 and Theorem 3.4.8 hold. The effect of the spot market participation rate

on the quantity of contracts transacted is characterized in Theorem 3.4.6. The effects

of the spot market participation rate on the seller’s surplus, on the buyer’s surplus

and on the total social surplus are characterized in Theorem 3.4.7 and Theorem 3.4.8.

Lemma 3.4.7. The seller’s optimal decision in Period 1 satisfies π∗ = (E(α)− βc− C)/β

for all λ ∈ [0, 1].

Theorem 3.4.6. (Effect on Contract Market)

The expected number of contracts transacted Q∗(λ) decreases as λ increases.

Theorem 3.4.7. (Effect on Seller’s Surplus)

The seller’s surplus G(λ) is constant for any λ ∈ [0, 1], G(λ) = C(E(α)−βc−C)
β

.

Theorem 3.4.8. (Effects on Buyer’s Surplus and Total Social Surplus)

The total social surplus W (λ) and the buyer’s surplus V (λ) are constant for any

λ ∈ [0, 1], V (λ) = C2

2β
and W (λ) = C(E(α)−βc−C/2)

β
.
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Theorem 3.4.6 states the same property as that in the uncapacitated case: the

expected quantity of contracts transacted decreases in λ. The different results are

Theorem 3.4.7 and Theorem 3.4.8. They state that as λ increases, both the seller’s

surplus and the buyer’s surplus remain constant. In other words, if the capacity is

small enough such that C ≤ Ca, the participation of the spot market doesn’t affect the

surpluses of the market participants at all. Therefore, both the seller and the buyer

are indifferent to transact in the spot market or under contracts. From Theorem 3.4.7

and Theorem 3.4.8, we can see the seller always extract more surplus than the buyer.

Since C ≤ Ca, the ratio of the seller’s expected surplus to the buyer’s surplus is

2(E(α)− βc− C)/C ≥ 2.

Corollary 3.4.3. For λ ∈ (0, 1], the relationship of the option price and the spot

prices is as follows:

1. For π > (E(α)−βc−C)/β, the expected contracting quantity Q(π) < C and the

spot prices in the subgame in both the high demand state and the low demand

state are constant for any π, sh = (αh − C)/β and sl = (αl − C)/β.

2. For π = (E(α)− βc−C)/β, QA(π) = C and QB(π) can be any value in [0, C].

If QB(π) < C, then the spot prices in the subgame in both the high demand

state and the low demand state are constant for any π, sh = (αh − C)/β and

sl = (αl − C)/β. Otherwise, no transaction takes place in the spot market.

3. For π < (E(α) − βc − C)/β, Q(π) = C and no transaction takes place in the

spot market.

Compared to Corollary 3.4.2, Corollary 3.4.3 says whenever there is remaining

capacity on the spot market, the seller always sets the spot price at (α − C)/β such

that all the capacity is sold.
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3.5 Single seller, a continuum of buyers

This section extends the single buyer model to a setting with a continuum of buyers

indexed by B∞ ≡ [0, N ]. In this setting, there are a “very large” number of buyers

such that a single buyer’s effect is “infinitesimal” relative to the market as a whole.

The sequence of the decisions is almost the same as that in the single-seller single-

buyer model except that all buyers move simultaneously at the buyer’s decision stages

in Period 1 and Period 2.

A single small buyer’s normal utility function is assumed to be quadratic as in

Section 3.4. It is assumed that every buyer’s realization α in Period 2 is the same,

which only depends on the state of the market. Thus, a single buyer’s demand at

price s is

q(s)dµ = (α− βs)dµ (3.5.1)

where dµ represents a single buyer’s mass. The aggregated demand is the integral

over the whole population of the buyers.

∫ N

0

q(s)dµ = N(α− βs) (3.5.2)

Assumption 3.3.1, 3.4.1 and 3.4.2 are also applied to this section.

The spot market participation is modeled by the buyers’ participation rate, λ. A

fraction λ of buyers participate in both the contract market and the spot market.

The remaining 1− λ buyers only enter contracts according to their policy. If λ = 0,

all buyers only enter contracts. If λ = 1, all buyers use both contracts and the spot

market.

In this section, the formulation of the model is very similar to Section 3.4. The

same notation is used in this section. The buyers’ decision variables qc and qs refer

to the quantity of contracts to exercise and the quantity to purchase from the spot

market for per unit of buyers. Similarly, Q represents the contracting quantity per

unit of buyers in Period 1. The organization of this section is the same as Section
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3.4. First, we study the large capacity case. Then, we consider the case with small

capacity.

3.5.1 Large capacity case

This subsection considers the case with large capacity. In all the analysis, the capacity

constraint needs not be considered.

3.5.1.1 Contract market only

All the results in this subsection can be derived directly from Section 3.4.1.1. A

single buyer’s decision problems at stage 2 and stage 3 are the same as those in

Section 3.4.1.1. The results of Lemma 3.4.1 and Lemma 3.4.2 hold.

The seller’s return at the first stage is the profit from selling option contracts to

all buyers. Since every small buyer has the same utility in Period 2, all buyers have

the same decision problems in both periods. Therefore, the best contracting quantity

is the same for every buyer. Denote the best response from a single buyer as Q(π)

for a given π. Thus, the seller’s maximization problem in Period 1 is

max
π

R1(π) =

∫ N

0

πQ(π)dµ

s.t. π ≥ 0 (3.5.3)

Note that
∫ N

0
πQ(π)dµ = NπQ(π). The above problem is basically the same as the

seller’s problem in Section 3.4.1.1. Hence, Theorem 3.4.1 follows. This subsection

says that the seller facing a continuum of buyers is essentially the same as the seller

facing one big aggregated buyer. Since the seller has no action in Period 2, a single

small buyer’s stage 2 decision is exactly the same as that in the single buyer setting

indicated in Lemma 3.4.2. In the next subsection, we will show that this doesn’t hold

anymore when the buyers also participate in the spot market.
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3.5.1.2 Contract market and spot market with full participation

This subsection considers a spot market with λ = 1. In addition to longer term

contracts, all buyers participate in the spot market. The sequence of the events is

as follows. In Period 1, the seller sets the option contract price. Each buyer decides

how many contracts to purchase simultaneously. The demand is revealed. The seller

sets the spot price. Again, the buyers simultaneously decide the quantity to transact

under contracts and the quantity to transact via spot market.

At stage 4, a single buyer’s problem is the same as that in Section 3.4.1.2. The

optimal quantity of contracts to exercise q∗c and the optimal additional quantity to

purchase on the spot market q∗s per unit of buyers are characterized in Lemma 3.4.3.

Decision stage 3 is in Period 2. At this stage, the quantity of contracts sold to the

buyers in Period 1 is given. Also, each buyer’s demand is revealed. Let qc(Q, s, α)

and qs(Q, s, α) be per buyer’s best response in stage 4. The seller sets the spot price

to maximize her profit from spot market. The maximization problem is

G2(Q, α) = max
s

R2(s|Q,α)

s.t. s ≥ c (3.5.4)

where R2(s|Q,α) = (s− c)
∫ N

0
qs(s,Q, α)dµ = N(s− c)qs(s,Q, α). Note this problem

is essentially the same as problem (3.4.5). Therefore, the results in Lemma 3.4.4 hold.

In Period 1, given the option price π, each buyer anticipates his return in Period 2

and decides how many contracts to enter. As a single buyer’s influence is “negligible”,

each buyer doesn’t consider the spot price in Period 2 as an outcome of his decision Q.

Therefore, each buyer takes the spot price as given. Let r1(Q|π) be a single buyer’s

optimal return in Period 1. Each buyer’s problem at this stage is

g1(π) = max
Q

r1(Q|π)

s.t. Q ≥ 0 (3.5.5)

where r1(Q, π) = −πQ + E[g2(Q, s, α)] = −πQ + pg2(Q, s, αh) + (1− p)g2(Q, s, αl).
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Lemma 3.5.1. The buyer’s optimal contracting decision Q∗(π) is a continuous func-

tion of π for any π > 0 and is as follows:

1. If π = 0, then any Q ∈ [αh − βc, +∞) is optimal.

2. If π ∈
(
0, p(αh−αl)

2β

]
, then Q∗ = αh − βc− 2βπ/p.

3. If π ∈
(

p(αh−αl)
2β

, E(α)−βc
2β

]
, then Q∗ = E(α)− βc− 2βπ.

4. If π > E(α)−βc
2β

, then Q∗ = 0.

Note that if π ∈
(
0, p(αh−αl)

2β

]
, then Q∗ ∈ [αl−βc, αh−βc). If π ∈

(
p(αh−αl)

2β
, E(α)−βc

2β

]
,

then Q∗ ∈ [0, αl − βc). Comparing the results in Lemma 3.5.1 to Lemma 3.4.5, for

a given option price π, the optimal Q∗ in this setting is smaller. The intuition is

as follows. Lemma 3.4.4 shows that an increase in Q leads the seller to lower the

spot price in the second period as long as Q ≤ α − βc. When there is a continuum

of buyers, each small buyer is price taker of the spot prices and thereby it has no

impact on the buyers first period decision. However, in the single buyer setting, the

monopolist buyer considers this effect, which results in higher contracting quantity.

Anticipating buyers’ decisions and her own response in spot market, the seller

determines the optimal option price π∗ to maximize her profit. Denote a single

buyer’s best response to a given π as Q(π). Let R1(π) be the seller’s revenue in

Period 1. The seller’s decision problem at this stage is

max
π

R1(π) =

∫ N

0

πQ(π)dµ + E[G2(Q(π), α)]

s.t. π ≥ 0 (3.5.6)

where E[G2(Q(π), α)] = pG2(Q(π), αh)+(1−p)G2(Q(π), αl) and
∫ N

0
πQ(π)dµ = NπQ(π).

Theorem 3.5.1. Any option price π ∈
[
E(α)−βc

2β
,∞

)
is optimal to the seller.
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Note that Q(π∗) = 0. Lemma 3.5.1 states in equilibrium, the seller sets the option

price high enough such that no buyer is willing to enter contracts. Therefore, there

is no contract market at all when the spot market participation is 1. It is different

from the single buyer setting. In that case, even λ = 1, there still exists a positive

quantity of transacted contracts. The relationship of π and the spot prices has the

same property as indicated by Corollary 3.4.2 with the two intervals for π become
[

p(αh−αl)
2β

, E(α)−βc
2β

]
and

(
0, p(αh−αl)

2β

)
.

3.5.1.3 Contract market and spot market with partial participation

Based on the above two models, this section investigates the effects of participation

rate λ on the quantity of transacted contracts, on the seller’s surplus and on the

buyers’ total surplus. In Period 1, the seller sets the option price, knowing that only

a fraction λ of buyers transact on the spot market and the remaining 1 − λ buyers

don’t. Given the price, all buyers decide how many contracts to purchase. The

demand state is then revealed. In Period 2, the seller sets the spot price. The buyers

who do not participate in the spot market only decide the quantity of products to

purchase under contracts. The buyers who consider to transact on the spot market

decide how many to purchase under contracts and how many to purchase from the

spot market. Denote the former buyers as type “A” buyers and the latter buyers as

type “B” buyers. For a given option contract price π, let a single type “A” buyer’s

best response be QA(π), which is characterized in Lemma 3.4.2; let a single type “B”

buyer’s best response be QB(π), which is characterized in Lemma 3.5.1. Denote the

seller’s optimal aggregated revenue in Period 2 as G2(QB(π), α). The seller’s problem

at stage 1 is

max
π

R1(π) = N [(1− λ)πQA(π) + λπQB(π)] + λE(G2(QB(π), α))

s.t. π ≥ 0 (3.5.7)

For a given λ ∈ [0, 1], let π∗(λ) be the optimal solution to the above decision
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problem. Note that when λ = 0, the optimal option price π∗(λ) has been characterized

in Theorem 3.4.1; when λ = 1, the optimal option price π∗(λ) is indicated in Theorem

3.5.1. Let Q∗(λ) be the total quantity of transacted contracts in equilibrium, i.e.,

Q∗(λ) = N [(1− λ)QA(π∗) + λQB(π∗)] (3.5.8)

In the following part, we investigate how the spot market participation rate λ

affects the total contracts transacted Q∗(λ), the seller’s surplus G(λ) , the buyers’

total surplus V (λ) and the total social surplus W (λ).

Lemma 3.5.2. As λ increases, the optimal option price π∗(λ) increases.

Theorem 3.5.2. (Effect on Contract Market)

The total quantity of contracts transacted Q∗(λ) decreases as λ increases.

Theorem 3.5.2 states that as more and more buyers participate in the spot market,

i.e., λ increases, the total number of contracts transacted Q∗ decreases. When λ

increases to 1, Q∗ decreases to 0. The rationale behind this is as follows. The buyers

who consider to transact on the spot market are more willing to postpone their

decision to Period 2 after their demand is realized. Though a decrease in Q allows

the seller to increase the spot prices, each small buyer who is price-taker and doesn’t

take this effect into consideration. Therefore, when all buyers transact on the spot

market, i.e. λ = 1, Q∗ decreases to 0.

Theorem 3.5.3. (Effect on Seller’s Surplus)

The seller’s surplus G(λ) increases in as λ increases.

Theorem 3.5.3 indicates that an increase in the participation rate λ always benefits

the seller. This is consistent with the results indicated in Theorem 3.4.4 in the single

buyer setting.

Theorem 3.5.4. (Effects on Buyers’ Total Surplus and Total Social Surplus)
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The effects of the buyers’s participation rate λ on the buyers’ total surplus and on

the total social welfare are as follows.

1. If αh − αl ≥ αl−βc
p

, both the buyers’ total surplus V (λ) and total social surplus

W (λ) decrease as λ increases.

2. If αh − αl < αl−βc√
p

, both the buyers’ total surplus V (λ) and total social surplus

W (λ) increase as λ increases.

3. If αl−βc√
p

< αh−αl < αl−βc
p

, the buyers’ total surplus V (λ) and total social surplus

W (λ) may increase or decrease as λ increases.

Theorem 3.5.4 indicates similar results in the single buyer setting. An increase in

the spot market participation rate λ may or may not increase the buyers’ total sur-

plus, thereby may or may not improve the total social surplus. Only when the demand

variation is small, an increase in λ benefits the buyers. Compared to Theorem 3.4.5,

the thresholds of the demand variation are different due to the different market struc-

tures. In the single buyer case, the buyer has more market power. However in the

many-buyer case, each small buyer has very small influence.

The effects of the participation rate on Q, G, V and W are illustrated in Example

4 -6.

Example 4: αh = 12, αl = 4, β = 1, c = 1, and p = 0.5. In this example

αh − αl ≥ αl−βc
p

, both V (λ) and W (λ) decrease in λ.

Example 5: αh = 7, αl = 4, β = 1, c = 1, and p = 0.5. In this example αh − αl <

αl−βc√
p

, both V (λ) and W (λ) increase in λ.

Example 6: αh = 9, αl = 4, β = 1, c = 1, and p = 0.5. In this example,

αl−βc√
p

< αh − αl < αl−βc
p

, both V (λ) and W (λ) may increase or decrease in λ
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Figure 9: Effects of spot market participation for Example 4
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Figure 10: Effects of spot market participation for Example 5
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Figure 11: Effects of spot market participation for Example 6

3.5.2 Small capacity case

Similar to Section 3.4.2, this section considers another extreme case when the capac-

ity is very small such that the spot prices are solely determined by the capacity in

Period 2. We also assume the quantity of available contracts equal to the capacity.

If all buyers only transact under longer term contracts, i.e., λ = 0, the decision

problems at stage 2 and stage 3 are exactly the same as those in the large capacity

case. We will show that at stage 1, the seller’s optimal decision is to set the option

price such that all the contracts sold.

However, for the case λ ∈ (0, 1], additional assumptions are needed to make

our model complete. Consider the following situation. For some option price π,

the aggregated contracting quantity submitted by all buyers exceeds the available

contracts. How to allocate the limited contracts among the buyers will affect the

spot prices in the later stage and thereby will influence the contracting decision for

those buyers participating in the spot market.
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There are different ways used in practice when the aggregated demand is larger

than the capacity. One common rationing scheme is first-come first-serve. The seller

can also restrict each buyer’s contracting quantity no larger than the capacity divided

by the market size. Another allocation rule used in practice is to apply the same

fraction to all buyers. Different allocation rules eventually affect the seller’s total

revenue. The first rationing scheme is natural. Suppose the seller chooses the first-

come first-serve rationing rule, only a fraction of the buyers’ contracting decision

can be satisfied if the total demand exceeds the capacity. From a single buyer’s point

view, his request is fulfilled with some probability in this situation. Since a buyer is an

infinitesimal relative to the market as a whole, he will take this probability as given.

Therefore, each buyer will honestly submit the quantity to optimize his return if his

demand is satisfied. The second rule is easy to applied but has flaws. If all buyers are

identical, then it makes sense to do so. However, in our case λ ∈ (0, 1), applying the

same restriction to the two different types of buyers seems unsatisfactory. Though

the third rule is also used in practice, it also has some drawbacks. The third rule is

to apply the same fraction to all buyers. If this is the case, buyers will ask more than

what they really want and thereby inflate the market. It should be pointed out that

all the allocation rules may not be optimal to the seller. Allowing the allocation rule

as the seller’s decision complicates the problem significantly. In this section, we only

study the first two rules.

It should be noted that in the case λ ∈ (0, 1), the capacity constraint of the

seller’s problem in stage 3 makes the problem much more complicated no matter

which allocation rule is used. The surprising result is that in equilibrium, the seller’s

optimal option price as well as the effects of λ on contracting quantity, the seller’s

surplus and the buyers’ total surplus are the same under both rationing rules.

This section is organized as follows. We start with the first rationing scheme,

first-come first-serve. Under this assumption, we study the case in which all buyers
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participate in the spot market, i.e., λ = 1. Then we investigate the case in which all

the buyers only participate in the contract market, i.e., λ = 0. Finally, we consider

part of buyers only participate in the contract market and part of the buyers partici-

pate in both market, 0 < λ < 1. The second rationing scheme is also discussed. Both

rationing schemes reach the same results. Since the models and proofs under the

latter assumption are very similar to the first, we will only highlight the differences.

3.5.2.1 Rationing scheme 1 – first-come first-serve

A. Contract market and spot market with full participation

The decision problem for the buyers at stage 4 is the same as that in the large

capacity case.

If the aggregated contracting quantity QN is larger than C, the seller can only

satisfy a fraction γ of the buyers, where γ = C/(QN). If QN ≤ C, then all the

buyers’ demand is satisfied, i.e., γ = 1. Let qc(Q) denote the quantity of contracts to

exercise in the spot market for the buyers having Q contracts. For those buyers, let

qs(Q, s) denote the extra quantity the buyers decide to purchase from the spot market

at spot price s. For the buyers without any contract, let qs(0, s) denote the quantity

they determine to purchase from the spot market at spot price s. The seller’s problem

at stage 3 is as follows.

G2(Q,α) = max
s

R2(s|Q,α)

s.t. N [γ(qc(Q) + qs(Q, s)) + (1− γ)qs(0, s)] ≤ C (3.5.9)

where R2(s|Q,α) = (s − c)N [γqs(Q, s) + (1− γ)qs(0, s)]. If γ = 1, the problem is

reduced to

G2(Q,α) = max
s

(s− c)qs(Q, s)N

s.t. N [qc(Q) + qs(Q, s)] ≤ C (3.5.10)
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Lemma 3.5.3. If the seller’s capacity C ≤ NCa = N(αl − βc)/2, then the optimal

spot prices are as follows.

1. For Q ∈ [0, C/N ], the optimal spot price in the high demand state is s∗h = αh−C/N
β

and the optimal price in the low demand state is s∗l = αl−C/N
β

.

2. For Q ∈ (C/N, αl − βc], γ < 1 and all the products are sold under contracts in

both demand states. No transaction takes place on the spot market.

3. For Q ∈ (αl − βc, αh − βc], γ < 1, all the products are sold only under con-

tracts in the high demand state. In the low demand state, the optimal price

s∗l = γ(αl−βc)+(1−γ)αl−C/N
β(1−γ)

.

Lemma 3.5.3 states if each buyer’s contracting quantity Q ≤ C/N , then the deci-

sion problem for the seller in Period 2 is essentially the same as facing an aggregated

big buyer with size N . If Q ∈ (C/N, αl − βc], all the products are consumed by the

buyers under contracts in both demand states. If Q ∈ (αl−βc, αh−βc], fraction γ of

all buyers only exercise part of their contracts (αl − βc out of Q) in the low demand

state. The remaining capacity, C − γN(αl − βc), is consumed by the other part of

buyers (1− γ of all buyers) having no contract. It should be noted that in this case,

the seller sets the spot price s∗l at which all the remaining capacity is sold.

A single buyer is very small comparing to the population of all buyers. The

influence of an individual buyer’s decision is negligible and doesn’t affect the spot

prices as well as the probability with which his contracting demand to be satisfied.

Therefore, in a single buyer’s decision problem, he takes the spot prices and γ as

given. With probability γ, the buyer’s demand request Q is fully satisfied. With

probability 1 − γ, the buyer’s demand request is rejected. Let s = (sh, sl) be the

corresponding prices. For any given (π, γ, sh, sl), the buyer’s decision problem at

stage 2 is as follows.

g1(π) = max r1(Q|π) = γ {−πQ + E[g2(Q, s, α)]}+ (1− γ)E[g2(0, s, α)]
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s.t. Q ≥ 0 (3.5.11)

where

E[g2(Q, s, α)] = pg2(Q, sh, αh) + (1− p)g2(Q, sl, αl) (3.5.12)

E[g2(0, s, α)] = pg2(0, sh, αh) + (1− p)g2(0, sl, αl) (3.5.13)

Since s is given, (1−γ)E[g2(0, s, α)] is constant. The decision problem can be reduced

to

g1(π) = max − πQ + E[g2(Q, s, α)]

s.t. Q ≥ 0 (3.5.14)

Denote the optimal decision as Q∗, which is a function of the input parameters

(π, γ, sh, sl). Without confusion, let’s temporarily drop π and denote best response

function as Q̃(γ, sh, sl). For a given Q, γ is implied by the following function.

γ̃(Q) =





1 if Q ≤ C/N

C/(NQ) if Q > C/N

(3.5.15)

Given Q and γ = γ̃(Q), the optimal spot prices are determined by Lemma 3.5.3.

Denote such best response function as s̃h(Q) and s̃l(Q). A set (Q∗, s∗h, s
∗
l , γ

∗) is an

equilibrium for any given π in the subgame must satisfy the following system:

Q∗ = Q̃(γ∗, s∗h, s
∗
l ) (3.5.16)

s∗h = s̃h(Q
∗) (3.5.17)

s∗l = s̃l(Q
∗) (3.5.18)

γ∗ = γ̃(Q∗) (3.5.19)

The optimal contracting quantity Q∗ is a fixed point of function f(Q) = Q̃(γ̃(Q), s̃h(Q), s̃l(Q)),

i.e.,

Q∗ = f(Q∗) = Q̃(γ̃(Q∗), s̃h(Q
∗), s̃l(Q

∗)) (3.5.20)
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Lemma 3.5.4. If the seller’s capacity C ≤ NCa, each buyer’s optimal contracting

quantity is as follows:

1. If π ∈
[
0, p(αh−αl)

β

)
, then Q∗ = αh − βc− βπ/p.

2. If π ∈
[

p(αh−αl)
β

, E(α)−βc−C/N
β

)
, then Q∗ = E(α)− βc− βπ.

3. If π = E(α)−βc−C/N
β

, then any Q ∈ [0, C/N ] is optimal.

4. If π > E(α)−βc−C/N
β

, then Q∗ = 0.

Note that the price E(α)−βc−C/N
β

is equal to the expected spot price minus the

marginal cost under the condition Q = 0, i.e, there is no contracting period. Lemma 3.5.4

says that if the option price is lower than the critical price E(α)−βc−C/N
β

, then the

buyer’s optimal contracting quantity is the same as if the buyers only entering con-

tracts. If the option price is equal to the critical price, then the buyers are indifferent

between entering contracts now or procure from the spot market later since the ex-

pected spot price is the same as the critical price plus the marginal cost. If the option

price is higher than the critical price, then the buyers will not enter contracts at all.

Note the optimal quantity is discontinuous at the critical price. However, the seller’s

revenue at this price is still continuous as we will show next.

For a given π, the buyers’ best response Q(π), which is characterized in Lemma 3.5.4.

If Q(π) > C/N , the seller applies first-come first-serve rationing scheme. The seller’s

problem at the first stage is

max
π

R1(π) = πγ̃(Q(π))NQ(π) + E[G2(Q(π), α)]

s.t. γ̃(Q(π))NQ(π) ≤ C (3.5.21)

π ≥ 0

where E[G2(Q(π), α)] = pG2(Q(π), αh) + (1 − p)G2(Q(π), αl) denotes the optimal

expected return from the spot market.
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Theorem 3.5.5. If the seller’s capacity C ≤ NCa, any π ∈
[
E(α)−βc−C/N

β
,∞

)
is

optimal.

Theorem 3.5.5 basically says if the seller’s capacity is small, then the best strategy

for the seller is to set the price such that the total revenue is the same as putting

all the capacity only on the spot market. This result is consistent with that in the

single-buyer setting.

B. Contract market only

Henceforth, we only consider the case when C ≤ NCa in this section. If the

buyers only participate in the contract market, the decision problems for the buyers

in Period 1 and Period 2 are the same as those in Section 3.5.1.1. At the first stage,

the seller’s decision problem with first-come first-serve rationing scheme is

max R1(π) = πγ̃(Q(π))NQ(π)

s.t. γ̃(Q(π))NQ(π) ≤ C (3.5.22)

π ≥ 0

Theorem 3.5.6. If the seller’s capacity C ≤ NCa, the optimal option price for the

seller π∗ = E(α)−βc−C/N
β

.

C. Contract market and spot market with partial participation

In this section, we study the case in which λ ∈ (0, 1) and we still limit our study to

the small capacity case C ≤ NCa. As in the large capacity case, type A buyers, who

count for 1− λ of all buyers, only participate in the contract market. The remaining

λ of the buyers participate in both contract and spot markets, referred as type B

buyers.

At stage 4, the contracting quantity for type A buyers QA and the contracting

quantity for type B buyers QB are given. Note that QA and QB imply a unique γ by
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the following function.

γ̃(QA, QB) =





1 if (1− λ)QA + λQB ≤ C
N

C
N [(1−λ)QA+λQB ]

if (1− λ)QA + λQB > C
N

(3.5.23)

The decision problem for the seller at this stage is

G2(QA, QB, α) = max
s

R2(s|QA, QB, α)

s.t. D(QA, QB, s) ≤ C (3.5.24)

where D(QA, QB, s) denotes the total quantity of products to be transacted for any

given (QA, QB, s). Let qc,A(QA) denote the number of contracts to be exercised for

a type A buyer who has QA contracts. Similarly, let qc,B(QB) denote the optimal

quantity to be exercised for a type B buyer who has QB contracts. The quantity of

products to be purchased on the spot market is denoted as qs,B(QB, s) for a type B

buyers with QB contracts. Let qs,B(0, s) denote the quantity of products to purchased

from the spot market per type B buyer having no contracts. Thus, the total quantity

is

D(QA, QB, s) = N {(1− λ)γqc,A(QA) + λγ[qc,B(QB) + qs,B(QB, s)]

+λ(1− γ)qs,B(0, s)} (3.5.25)

and the objective function is

R2(s|Q, α) = N(s− c) {λγqs,B(QB, s)) + λ(1− γ)qs,B(0, s)} (3.5.26)

Denote the optimal price for problem (3.5.24) in the high demand state and the

low demand state as a function of the input parameters (QA, QB): s̃h(QA, QB) and

s̃l(QA, QB).

At stage 2, type A buyers’ decision problem and optimal strategy have been

investigated in the previous subsection. For any given (sh, sl, γ), the formulation of

the decision problem for type B buyers is same as problem (3.5.14). Let Q̃B(γ, sh, sl)
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be the optimal solution as a function of (sh, sl, γ). For a given option price π, a set of

values (Q∗
A, Q∗

B, s∗h, s
∗
l , γ

∗) is an equilibrium in the subgame must satisfy the following

system, with Q∗
A determined by Lemma 3.4.1.

Q∗
B = Q̃B(γ∗, s∗h, s

∗
l ) (3.5.27)

s∗h = s̃h(Q
∗
A, Q∗

B) (3.5.28)

s∗l = s̃l(Q
∗
A, Q∗

B) (3.5.29)

γ∗ = γ̃(Q∗
A, Q∗

B) (3.5.30)

Type B buyers’ optimal contracting policy is a fixed point of function

f(QB) = Q̃B(γ̃(Q∗
A, QB), s̃h(Q

∗
A, QB), s̃l(Q

∗
A, QB)) (3.5.31)

Lemma 3.5.5. If seller’s capacity C ≤ NCa, each type B buyer’s optimal contracting

quantity is as follows.

1. If π ∈
[
0, p(αh−αl)

β

)
, then Q∗

B = αh − βc− βπ/p.

2. If π ∈
[

p(αh−αl)
β

, E(α)−βc−C/N
β

)
, then Q∗

B = E(α)− βc− βπ.

3. If π = E(α)−βc−C/N
β

, then any QB ∈ [0, C/N ] is optimal.

4. If π > E(α)−βc−C/N
β

, then Q∗
B = 0.

The results in Lemma 3.5.5 are exactly the same as Lemma 3.5.4. However, the

proof of Lemma 3.5.5 is much more complicated because the capacity constraint in

stage 3. Lemma 3.5.5 states that type B buyers’ best contracting policy for any

λ ∈ (0, 1) is the same as the case λ = 1.

At stage 1, the decision problem for the seller is

max
π

R1(π)

s.t. γ̃(QA, QB)N {(1− λ)QA(π) + λQB(π)} ≤ C (3.5.32)
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π ≥ 0

where

R1(π) = Nγ̃(QA, QB)[(1− λ)πQA(π) + λπQB(π)] + E[G2(QA(π), QB(π), α)]

Note that G2(QA(π), QB(π), α) is the optimal return for the seller in Period 2 for a

given (QA(π), QB(π), α).

Theorem 3.5.7. If C ≤ NCa, for any λ ∈ (0, 1), the optimal option price for the

seller π∗ = E(α)−βc−C/N
β

.

Note at the equilibrium price E(α)−βc−C/N
β

, Q∗
A = C/N , and Q∗

B can be any value

in [0, C/N ]. The spot prices are αh−C/N
β

and αl−C/N
β

. At this price, all the capacity

is sold. Theorem 3.5.7 says regardless of the value of λ, the optimal option price is

constant, π∗ = E(α)−βc−C/N
β

. At this price, a single type A buyer’s contracting quantity

is C/N . A single type B buyer’s contracting quantity can be any value in [0, C/N ],

since the expected spot price is equal to the option price plus the marginal cost.

Under this condition, all the capacity is sold in Period 2. Let Q∗ = (1−λ)Q∗
A +λQ∗

B.

Theorem 3.5.8. If C ≤ NCa, the following results hold:

1. The expected total number of transacted contracts Q∗(λ) decreases in λ.

2. As λ increases, the seller’s total surplus G(λ) doesn’t change, G(λ) = C(E(α)−βc−C/N)
β

.

3. As λ increases, the buyers’ total surplus V (λ) and the total social surplus W (λ)

do not change, V (λ) = C2

2Nβ
and W (λ) = C(E(α)−βc−C/(2N))

β
.

Theorem 3.5.8 is a direct consequence of Theorem 3.5.7. It states the same prop-

erties as in the single-buyer setting. In the undercapacity case, contracts transacted

decreases as more and more buyers participate in both markets. However, the sur-

plus of the seller, the total surplus of the buyers, and the total social surplus do not

change.
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3.5.2.2 Rationing scheme 2 – limiting contracting quantity per buyer

The second possible way is to restrict every buyer’s purchase of contracts no larger

than C/N .

If there are only type A buyers in the market, i.e., λ = 0, it is easy to show

that equilibrium option price is still E(α)−βc−C/N
β

. In the case λ = 1, the results in

Theorem 3.5.5 hold. For λ ∈ (0, 1), though the model formulation is slightly different,

Theorem 3.5.7 still hold. The effects of the buyers’ participation rate on the contracts

transacted, on the seller’s surplus, on the buyers’ total surplus and on the total social

surplus are exactly the same as Theorem 3.5.8.

Surprisingly, although the two rationing rules are very different, the results in

equilibrium are the same if the seller’s capacity is small. Since the second rationing

scheme does not appear to introduce any particularly interesting new phenomena,

the model and the proofs are skipped here.

3.6 Single seller, a continuum of buyers with different util-
ity

This is section considers a market in which there are a single seller and a continuum of

buyers with market size N , which is similar to Section 3.5. In addition to each buyer’s

random utility depending on the state of the market, we also considers the uncertainty

depending on each individual buyer. Define a single buyer’s utility function as

U(q) = − q2

2β
+

(α + φ)q

β
(3.6.1)

where φ and α are independent random variables realized after the contracting pe-

riod. Parameter α represents the uncertainty depending on the state of the market,

which is the same as that in previous sections. With probability p, the state is high

and with probability 1 − p, the state is low. To be consistent with the notation in

pervious sections, we still use σ2 to represent the variance of α. The other param-

eter, φ, models each individual buyer’s random utility. This is an approximation to
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the transportation industry in which there are buyers including different individual

shippers and forwarders from different industry sectors. Thus, besides the influence

of the market environment, each buyer has his own different utility. In this model,

φ of every small buyer is assumed to be an i.i.d random variable and uniformly dis-

tributed on [−φ, φ]. Denote the distribution function as F . Thus, in Period 2, after φ

is revealed, the mass of the buyers with realization of φ below any given φ0 ∈ [−φ, φ]

is

N

∫ φ0

−φ

dF (φ) =
N(φ0 + φ)

2φ
(3.6.2)

Assumption 3.3.1, 3.4.1 and 3.4.2 are also used here. To emphasize different utility

among the buyers, it is also assumed that φ is big.

Assumption 3.6.1. The variation of the utility among different buyers is large,

φ ≥ αh.

Based on the utility function, each single buyer’s normal demand function is s =

− q
β

+ α+φ
β

, i.e., q = α + φ− βs, where s denotes the price. It should be noted that as

φ ≥ αh, if the realization φ is small such that −φ ≤ φ < −α+βc, then α+φ−βc < 0.

That is some buyers do not purchase at all either through contracts or from the spot

market. For a given price s, the aggregated market demand q is as follows. Denote

a single buyer with realization φ has demand q(φ). Depending on the price s, there

are two cases.

1. For s > α+φ
β

, it holds that α + φ− βs < 0 for any φ ∈ [−φ, φ]. Thus, q(φ) = 0

for any φ ∈ [−φ, φ] and the aggregated market demand is

q =
N

2φ

∫ φ

−φ

q(φ)dφ = 0 (3.6.3)

2. For s ∈
[
0, α+φ

β

]
,it holds that q(φ) = 0 for φ < −α + βs and q(φ) = α + φ− βs

for φ ≥ −α + βs. Note −φ ≤ −α + βs ≤ φ. Thus,

q =
N

2φ

∫ φ

−φ

q(φ)dφ
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=
N

2φ

[∫ −α+βs

−φ

0dφ +

∫ φ

−α+βs

(α + φ− βs)dφ

]

=
N(α + φ− βs)2

4φ
(3.6.4)

Presumably, the spot market can provide an opportunity to better allocate re-

source according to buyers’ different utility that is only observed after the contract-

ing period. We term this effect the allocation effect of the spot market. Especially,

when the seller has a very limited capacity, the allocation effect will be strong. Like

previous sections, we first study the large capacity case. Then, the model is extended

to the small capacity case.

3.6.1 Large capacity case

3.6.1.1 Contract market only

This subsection studies the setting when the buyers only transact on the contract

market. At stage 3 in Period 2, the number of contracts purchased by a single

buyer, Q, is given. Also, the random parameters in the utility function, α and φ are

observed. Let qc be the quantity of products that each buyer decides to purchase

under contracts. Denote each buyer’s return in Period 2 as r2(qc|α, φ). A single

buyer’s decision problem is

g2(Q,α, φ) = max
qc

r2(qc|α, φ)

s.t. 0 ≤ qc ≤ Q (3.6.5)

where r2(qc|α, φ) = − q2
c

2β
+ (α+φ)qc

β
− qcc. Let q∗c be the optimal solution to above

problem.

Lemma 3.6.1. The buyers’ optimal decision in Period 2 is as follows.

1. If α + φ− βc ≤ 0, then q∗c = 0.

2. If 0 < α + φ− βc < Q, then q∗c = α + φ− βc.
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3. If Q ≤ α + φ− βc, then q∗c = Q.

Lemma 3.6.1 is similar to Lemma 3.4.1, by replacing α with α + φ. The only

difference is that the unconstrained optimizer α + φ − βc could be negative if φ is

small enough. In that case, the buyer does not purchase any products at all.

At stage 2, both α and φ are not observed. Given the option contract price π, each

buyer anticipates his return in Period 2 and decides how many contracts to purchase.

We use qc(Q, α, φ) to denote the buyers’ best response for a given set of Q, α and φ,

which is characterized in Lemma 3.6.1. And let qc(Q,αh, φ) and qc(Q,αl, φ) denote

each buyer’s best decision in high market state and low market state respectively. A

single buyer’s decision problem is

g1(π) = max
Q

r1(Q|π)

s.t. Q ≥ 0 (3.6.6)

where

r1(Q|π) = −πQ + E[g2(Q,α, φ)]

= −πQ +
p

2φ

∫ φ

−φ

[
−qc(Q,αh, φ)2

2β
+

(αh + φ)qc(Q,αh, φ)

β
− qc(Q, αh, φ)c

]
dφ

+
1− p

2φ

∫ φ

−φ

[
−qc(Q,αl, φ)2

2β
+

(αl + φ)qc(Q,αl, φ)

β
− qc(Q,αl, φ)c

]
dφ

(3.6.7)

Let the buyers’ best response be Q∗.

Lemma 3.6.2. The buyers’ optimal contracting decision Q∗ is as follows.

1. If π ∈
[
0, p(αh−αl)

2

4βφ

)
, then Q∗ = αh + φ− βc−

√
4βφπ

p
.

2. If π ∈
[

p(αh−αl)
2

4βφ
, E(α+φ−βc)2

4βφ

]
, then Q∗ = E(α) + φ− βc−

√
4βφπ − σ2.

3. If π > E(α+φ−βc)2

4βφ
, then Q∗ = 0.
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Note if π ∈
[
0, p(αh−αl)

2

4βφ

)
, then Q∗ ∈ (αl + φ− βc, αh + φ− βc]. If

π ∈
[

p(αh−αl)
2

4βφ
, E(α+φ−βc)2

4βφ

]
, then Q∗ ∈ [0, αl + φ− βc]. Also, at the breakpoint p(αh−αl)

2

4βφ
,

Q∗(π) is continuous. Lemma 3.6.2 indicates that if the option price π is small,

π < p(αh−αl)
2

4βφ
, then each buyer purchases a large number of contracts such that

Q∗ > αl + φ − βc. If the state of the market turns out to be low in Period 2, every

single buyer has unused contracts regardless of the value of φ. If the option price is

higher than p(αh−αl)
2

4βφ
, then each buyer purchases a moderate quantity of contracts.

Some buyers with high φ realization use all the contracts and some buyers with

low φ realization only use part of the contracts. If the option price is high enough,

π > E(α+φ−βc)2

4βφ
, then all of the buyers don’t enter contracts at all.

In Period 1, the seller chooses the option price π to maximize her total revenue.

Note that every buyer’s decision problem at stage 2 is the same, thereby the best

response Q∗(π) is the same. Hence, the aggregated response is NQ∗(π). To simplify

the notation, we use Q(π) to represent Q∗(π) and omit the superscript “*”. The

seller’s optimization problem at this stage is

max
π

R1(π) = N [πQ(π)]

s.t. π ≥ 0 (3.6.8)

Let the optimal option price be π∗.

Theorem 3.6.1. The optimal option price is unique and is determined by the follow-

ing conditions.

1. π∗ ∈
[

p(αh−αl)
2

4βφ
, E(α+φ+βc)2

4βφ

]
.

2. E(α) + φ− βc−
√

4βφπ∗ − σ2 − 2βφπ∗√
4βφπ∗−σ2

= 0.

Theorem 3.6.1 indicates that in market equilibrium, the seller sets the option

contract price such that some of the buyers always use all the contracts no matter
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Period 2 turns to be high market state or low market state. Intuitively, by Assumption

3.6.1, the seller’s optimal decision should not only reflect the variation of α but also

should reflect the variation of φ.

3.6.1.2 Contract market and spot market with full participation

This section studies the case λ = 1, i.e., all buyers participate in both the contract

market and the spot market. At stage 4, the number of contracts purchased in

Period 1, Q, is given and the random variable α are observed by all the buyers.

Parameter φ representing each individual buyer’s random utility is also observed by

every buyer. Given the spot price s buyers decide how many products to purchase

under contracts and how many to purchase from the spot market. Let qc be the

quantity of products to be transacted under contracts and qs be the quantity of

products to be purchased from the spot market. Denote each buyer’s return in Period

2 as r2(qc, qs|s, α, φ). The decision problem for a single buyer is as follows.

g2(Q, s, α, φ) = max
qc,qs

r2(qc, qs, |s, α, φ)

s.t. 0 ≤ qc ≤ Q (3.6.9)

qs ≥ 0

where r2(qc, qs|s, α, φ) = − (qc+qs)2

2β
+ (α+φ)(qc+qs)

β
− qcc− qss.

Lemma 3.6.3. The buyers’ optimal decision in Period 2 is as follows.

1. If α + φ− βc ≤ 0, then q∗c = q∗s = 0

2. If α+φ−βc > 0 and s = c, then any q∗c and q∗s satisfying the following conditions

are optimal:

q∗c + q∗s = α + φ− βc

0 ≤ q∗c ≤ Q

q∗s ≥ 0
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3. If 0 ≤ α + φ− βc ≤ Q and s > c, then q∗c = α + φ− βc and q∗s = 0.

4. If 0 ≤ Q ≤ α + φ− βc and s > c, then q∗c = Q and q∗s = (α + φ− βs−Q)+.

Lemma 3.6.3 is similar to Lemma 3.4.3, by replacing α with α+φ. The difference

is that the unconstrained optimizer α + φ− βc can be negative. In that case, buyers

don’t purchase products at all.

At stage 3, α is revealed. In addition, every single buyer’s random utility parame-

ter φ is observed. Depending on the number of contracts each buyer has, the seller sets

the spot price to maximize her return from the spot market. Since each small buyer’s

utility parameter φ is independent and uniformly distributed on [−φ, φ]. Therefore,

the mass of buyers with φ below any given φ0 ∈ [−φ, φ] is N(φ0+φ)

2φ
. In other words, the

seller observes a continuum of buyers with φ evenly from −φ to φ. Let qc(Q, s, α, φ)

and qs(Q, s, α, φ) be a single buyer’s best response in stage 4 given Q, s, α and φ.

Denote the seller’s revenue in Period 2 as R2(s|Q,α). The seller’s decision problem is

G2(Q, α) = max
s

R2(s|Q,α)

s.t. s ≥ c (3.6.10)

where

R2(s|Q,α) = (s− c)N

∫ φ

−φ

qs(Q, s, α, φ)dF (φ)

=
N(s− c)

2φ

∫ φ

−φ

qs(Q, s, α, φ)dφ (3.6.11)

Lemma 3.6.4. The seller’s optimal spot price is as follows.

1. If Q > α + φ− βc, then any s ≥ c is optimal.

2. If Q ≤ α + φ− βc, then the seller’s optimal price s∗ = α+φ+2βc−Q
3β

.
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The rationale behind Lemma 3.6.4 is as follows. Since the strike price is at the

marginal cost, the buyer with maximum demand is αh + φ − βc. If the number of

contracts that each buyer has is bigger than that quantity, every buyer only trans-

acts under contracts with the lowest possible unit price c. In this case, there is no

transaction at all in the spot market. If Q is smaller than that quantity, then the

buyers with high utility will purchase from the spot market to fulfill their residual

demand. Therefore, the seller sets the spot price to maximize her revenue from the

spot market according to the aggregated residual demand.

Given the option price π, each buyer anticipates his expected return in Period 2

and decides how many contracts to purchase at stage 2. As each buyer is infinitesimal,

a single buyer takes the spot price s as given and doesn’t consider it is a consequence

of his decision Q. The seller’s best response in Period 2 at the high market state

and low market state are denoted as sh and sh for a given Q. Let qc(Q, s, α, φ) and

qs(Q, s, α, φ) be a single buyer’s corresponding best response in stage 4 for a given

set of Q, s, α, and φ. Let r1(Q|π) be a single buyer’s expected return in Period 1. A

single buyer’s decision problem at stage 2 in Period 1 is

g1(π) = max
Q

r1(Q|π) = −πQ + E[g2(Q, s, α, φ)]

s.t. Q ≥ 0 (3.6.12)

where

E[g2(Q, s, α, φ)] =
p

2φ

∫ φ

−φ

[
(qc(Q, s, αh, φ) + qs(Q, s, αh, φ))2

2β
+

(αh + φ)(qc(Q, s, αh, φ) + qs(Q, s, αh, φ))

β

−qc(Q, s, αh, φ)βc + qs(Q, s, αh, φ)βsh

β

]
dφ +

1− p

2φ

∫ φ

−φ

[
(qc(Q, s, αl, φ) + qs(Q, s, αl, φ))2

2β
+

(αl + φ)(qc(Q, s, αl, φ) + qs(Q, s, αl, φ))

β
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−qc(Q, s, αl, φ)βc + qs(Q, s, αl, φ)βsl

β

]
dφ (3.6.13)

Let Q∗ be the buyers’ optimal decision.

Lemma 3.6.5. The buyers’ optimal contracting quantity is as follows.

1. If π ∈
[
0, 5p(αh−αl)

2

36βφ

)
, then Q∗ = αh + φ− βc−

√
36βφπ

5p
.

2. If π ∈
[

5p(αh−αl)
2

36βφ
,

5[E(α+φ−βc)2]
36βφ

]
, then Q∗ = E(α) + φ− βc−

√
36βφπ

5
− σ2.

3. If π >
5[E(α+φ−βc)2]

36βφ
, then Q∗ = 0.

Note in part 1 of Lemma 3.6.5, Q∗ ∈ (αl + φ − βc, αh + φ − βc] and in part 2,

Q∗ ∈ [0, αl + φ − βc]. Lemma 3.6.5 indicates that if the option price is small, i.e.,

π ≤ 5p(αh−αl)
2

36βφ
, each buyer’s best response Q∗ is large. If the state of the market turns

out to be low in Period 2, all buyers only transact under contracts. If the option

price is bigger, i.e., 5p(αh−αl)
2

36βφ
≤ π ≤ 5[E(α+φ−βc)2]

36βφ
, then each buyer purchase a smaller

number of contracts. In that case, some buyers with high utility always purchase on

the spot market in either high state or low state. Compared to the results in Lemma

3.6.2, for a given price π, each buyer purchases fewer contracts and relies more on the

spot market to fulfill his residual demand.

At stage 1, the seller chooses an optimal option price, anticipating her return in

Period 2. Denote the seller’s total revenue as R1(π) and denote each buyer’s best

response at stage 2 as Q(π). The seller’s problem at stage 1 is

max
π

R1(π) = NπQ(π) + E[G2(Q(π), α)]

s.t. π ≥ 0 (3.6.14)

where E[G2(Q(π), α)] = pG2(Q(π), αh) + (1 − p)G2(Q(π), αl). Denote the buyers’

optimal price as π∗.
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Theorem 3.6.2. Seller’s optimal option price is unique and is determined by the

following conditions:

1. π∗ ∈
[

5p(αh−αl)
2

36βφ
, 5E(α+φ−βc)2

36βφ

]
.

2. E(α) + φ− βc−
√

36βφπ∗
5

− σ2 − 18βφπ∗

25

q
36βφπ∗

5
−σ2

= 0

Similar to the results in Theorem 3.6.1, in equilibrium, the seller sets the option

price fairly high such that some buyers always purchase on the spot market no matter

the state is high or low.

3.6.1.3 Contract market and spot market with partial participation

This subsection studies the case when only part of the buyers buy in the spot market.

The previous results on the total contracts transacted and on the seller’s surplus still

hold.

Theorem 3.6.3. (Effect on Contract Market)

The total quantity of contracts transacted Q∗(λ) decreases as λ increases.

Theorem 3.6.4. (Effect on Seller’s Surplus)

The seller’s surplus G(λ) increases as λ increases.

A numerical study is conducted to investigate the effects of the spot market par-

ticipation on the buyers’ total surplus and the total social surplus. We have tested a

variety of data. It is observed that both the buyers’ total surplus and the total social

surplus always increases as λ increases. This is due to the demand variation among

the buyers. Since the buyers’ utilities are observed in the spot market period, the

buyers with higher utilities can purchase additional products from the spot market.

As the demand variation is large, this effect becomes significant and outperforms the

factor that the spot market is dominated by the monopolist seller. Figure 12 presents

the results for one of the examples.

Example 7: αh = 15, αl = 3, φ = 15, β = 1, c = 2, and p = 0.5.
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Figure 12: Effects of spot market participation for Example 7

3.6.2 Small capacity case

In Section 3.5, we have shown that if all buyers have the same utilities and the capacity

is large, an increase in spot market spot market participation rate always benefits the

seller but may or may not benefit the buyers. If the capacity is small enough, then an

increase in spot market participation rate doesn’t change the buyers’ surplus. In this

subsection, we extend the model of many buyers with different utilities to the small

capacity case. Similar to Section 3.5.2, the two rationing schemes are studied. For the

first-come first-serve rationing scheme, a numerical study is conducted to investigate

the effects of the buyers’ spot market participation rate. For the second rationing

rule, analytical results are obtained for λ = 0 and λ = 1. We show that if the seller’s

capacity is smaller than a threshold, it is better for both the seller and the buyers in

the latter case (λ = 1), than in the former case (λ = 0). It is also assumed that the

total number of contracts sold to the buyers can not be larger than C.
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3.6.2.1 Rationing scheme 1 – first-come first-serve

In this section, we first study the case when all buyers participate only in the contract

market. Then we extend the model to the case λ ∈ (0, 1). Since the formulation of

the case λ = 1 is similar, it is not included here.

A. Contract Market Only

This subsection studies the case when all buyers only participate in the contract

market, i.e., λ = 0. At this stage 3 in Period 2, the contracting quantity Q is given.

Also, the random parameters, α and φ, in each buyer’s utility function are observed.

A single buyer’s problem is the same as problem (3.6.5) and Lemma 3.6.1 holds.

Buyers’ stage 2 problem is the same as problem (3.6.6) with the objective function

scaled by γ, which is determined by function (3.5.15) in terms of Q. The buyers’

optimal contracting quantity is characterized by Lemma 3.6.2.

At the first stage, the seller chooses an option price to maximize her total revenue.

Denote each buyer’s best response as Q(π). The seller’s problem is

max
π

R1(π) = πγ̃(Q)NQ(π)

s.t. 0 ≤ γ̃(Q)NQ(π) ≤ C (3.6.15)

π ≥ 0

where γ̃(Q) is defined as function (3.5.15).

B. Contract market and Spot Market with full participation

The stage 4 decision problem for a type B buyers is the same as problem (3.6.10).

For each type A buyer, the decision problem is formulated as problem (3.6.5). Lemma

3.6.1 and Lemma 3.6.3 hold for type A buyers and type B buyers respectively.

At stage 3, the seller chooses the spot price to maximize her return from the spot

prices. At this stage, (QA, QB) is given, which implies γ by function (3.5.23) under

the first-come first-serve scheme. The formulation of the decision problem is the same

as problem (3.5.24) with R2(s|QA, QB, α) and D(QA, QB, s) defined as follows. Let
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Dc,A(QA) denote the total number of contracts exercised by type A buyers. The

best decision for a single type A buyer, who has QA contracts, is characterized in

Lemma 3.6.5 and is denoted as qc,A(QA, φ). Fraction γ of the type B buyers have

QB contracts each. For those buyers, denote the best quantity to purchase under

contracts and from the spot market in stage 4 as qc,B(QB, φ) and qs,B1(QB, s, φ), which

are characterized by Lemma 3.6.3. Denote the aggregated quantity transacted under

contracts from those buyers as Dc,B(QB) and the aggregated quantity transacted

from the spot market as Ds,B1(QB, s). Because of the first-come first-serve rationing

scheme, fraction 1 − γ of the type B buyers are not able to purchase any contract

in Period 1. For those buyers, denote the best quantity to purchase from the spot

market in stage 4 per buyer as qs,B2(0, s, φ) and the aggregated quantity as Ds,B2(0, s).

The total aggregated demand for any (QA, QB, s) is

D(QA, QB, s) = Dc,A(QA) + Dc,B(QB) + Ds,B1(QB, s) + Ds,B2(0, s)

(3.6.16)

where

Dc,A(QA) =
Nγ(1− λ)

2φ

∫ φ

−φ

qc,A(QA, φ)dφ (3.6.17)

Dc,B(QB) =
Nγλ

2φ

∫ φ

−φ

qc,B(QB, φ)dφ (3.6.18)

Ds,B1(QB, s) =
Nγλ

2φ

∫ φ

−φ

qs,B1(QB, s, φ)dφ (3.6.19)

Ds,B2(0, s) =
N(1− γ)λ

2φ

∫ φ

−φ

qs,B2(0, s, φ)dφ (3.6.20)

The objective function for this problem is

R2(s|QA, QB, α) = (s− c)[Ds,B1(QB, s) + Ds,B2(0, s)] (3.6.21)

Denote the optimal price function in terms of (QA, QB) of the above problem in

the high demand state and low demand state as s̃h(QA, QB) and s̃l(QA, QB). The
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following lemma characterizes the condition for the uniqueness of the optimal price

s∗ at stage 3.

Lemma 3.6.6. The optimal spot price s∗ is as follows.

1. If QB ≥ α + φ− βc and γ = 1, then no buyer purchases from the spot market.

2. If QB < α+φ−βc or γ < 1, the following results hold. If equation (3.6.22) has

two roots s1 and s2 with s1 < s2, s1,2 ∈
[

α+φ+2βc−QB

3β
, α+φ−QB

β

]
and s1 satisfies

equation (3.6.23), then both s1 and α+φ+2βc
3β

are optimal. Otherwise, the optimal

price s∗ is unique.

γ(α + φ− βs−QB)(α + φ + 2βc− 3βs−QB)

+ (1− γ)(α + φ− βs)(α + φ + 2βc− 3βs) = 0 (3.6.22)

(s− c)
[
γ(α + φ− βs−QB)2 + (1− γ)(α + φ− βs)2

]

4
=

(1− γ)(α + φ− βc)3

27β
(3.6.23)

The conditions in Lemma 3.6.6 under which there are multiple optimal spot prices

are fairly strong. In most cases, the optimal spot price is unique.

By similar arguments in Section 3.5.2, at stage 2, type B buyers’ decision problem

is formulated the same as problem (3.6.12). Let Q̃B(γ, sh, sl) be the optimal solu-

tion as a function of (sh, sl, γ). For a given option price π, a set (Q∗
A, Q∗

B, s∗h, s
∗
l , γ

∗)

is an equilibrium in the subgame must satisfy the equations (3.5.27)–(3.5.30), with

Q∗
A determined by Lemma 3.6.2, γ̃(QA, QB) defined by function (3.5.23), s̃h(QA, QB)

and s̃l(QA, QB) defined in the previous paragraph. Though it seems there might be

multiple equilibriums in the subgame for a given option price π, such unpredictable

situation never takes place in all the numerical examples tested in the following sub-

section.
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The formulation of the stage 1 decision for the seller is the same as problem (3.5.32),

with QB(π) and QA(π) denoting the best contracting policies defined in this context.

C. Numerical Study

In this subsection, we conduct a numerical study to investigate the effects of the

participation rate on the total contracts transacted, on the seller’s surplus and on the

buyers’ total surplus. Though the results might not hold in general, they still provide

valuable insights in this setting and provide comparison to the results in the previous

sections.

The input parameter values are αh = 10, αl = 5, β = 3, c = 1, φ = 10, p = 0.5.

We compare the results at different capacity levels. From Figure 13 to 16, the seller’s

capacity decreases.

Similar to the previous results, the quantity of the total contracts transacted

always decreases as λ increases from 0 to 1. Compared to the contracts, the spot

market provides an opportunity to better allocate the capacity to the buyers according

to their different utilities that are only observed in Period 2. Thus, the total social

surplus always increases as more and more buyers participate in the spot market

(Figure 13–16). If the capacity is not too small, this also benefits the buyers (Figure 13

and Figure 14). However, if the capacity is considerably small and there are enough

type B buyers in the market, the seller can push the market equilibrium to the spot

market period, i.e., no buyer enters into contracts in advance. The seller can extract

a large amount of profit from the buyers. In that case, the surplus of the buyers

deceases in λ again (Figure 15 and Figure 16).

3.6.2.2 Rationing scheme 2 – limiting contracting quantity per buyer

In this section, we prove that if the seller’s capacity is smaller than a certain threshold,

then both the seller and the buyers are better off in the case λ = 1 compared to λ = 0

under the second rationing scheme. We characterize the threshold with which the
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Figure 13: Effects of spot market participation for Example 8, capacity = 3.6
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Figure 14: Effects of spot market participation for Example 9, capacity = 0.9
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Figure 15: Effects of spot market participation for Example 10, capacity = 0.225
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Figure 16: Effects of spot market participation for Example 11, capacity = 0.1125
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above conclusion holds. Let C be the seller’s capacity. It is assumed that each

buyer’s contracting quantity can not exceed C/N . In this section, we use the same

notation in Section 3.6.

A. Contract market and spot market with full participation

Here we consider the seller’s capacity is small and all buyers participate in the

spot market. At stage 4, the decision problem for the buyers is the same as that in

the large capacity case. The optimal decision is characterized in Lemma 3.6.3.

At stage 3, the seller sets the spot price such that her revenue on the spot market is

maximized and the buyers’ aggregated demand doesn’t exceed the capacity constraint.

Note that the buyers’ demand contains two parts: one part of the demand is fulfilled

by contracts and the other part is fulfilled via spot market. Denote the buyer’s best

response in stage 4 as qc(Q, s, α, φ) and qs(Q, s, α, φ). The seller’s problem is

G2(Q,α) = max
s

R2(s|Q,α)

s.t. N

∫ φ

−φ

[qc(Q, s, α, φ) + qs(Q, s, α, φ)]dF (φ) ≤ C

s ≥ c (3.6.24)

where R2(s|Q,α) = N(s−c)

2φ

∫ φ

−φ
qs(Q, s, α, φ)dφ.

Lemma 3.6.7. If capacity C ≤ N(αl+φ−βc)2

9φ
= Cb, then the seller’s optimal price is

s∗ = 1
β

[
α + φ−Q−

√
(α + φ− βc−Q)2 − (α + φ− βc)2 + 4φC

N

]
.

Note the seller sells all of the remaining capacity in the spot market for any Q ≥ 0

at the optimal spot price. Under this condition, the optimal solution s∗ is always

greater or equal to the optimal spot price when there is no capacity constraint. In

contrast to the previous results, an increase in Q results in a higher spot price. The

intuition is as follows. If there is no capacity constraint, the optimal spot price is the

monopoly price with respect to the aggregated residual demand. Since the capacity

is small, the seller keeps increasing the spot price till the aggregated residual demand
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equal to the leftover capacity in Period 2. As Q increases, the remaining capacity in

Period 2 becomes smaller, which drives the spot price higher.

Based on the seller’s rule, the number of contacts purchased by each buyer Q can

not exceed C/N . Let qc(Q, s, αh, φ) and qs(Q, s, αh, φ) be the buyers’ best response in

the spot market when the market state is high. Let qc(Q, s, αl, φ) and qs(Q, s, αl, φ) be

the buyers’ best response in the spot market when the market state is low. Denote a

single buyer’s expected return in Period 1 as r1(Q|π). Denote the seller’s correspond-

ing equilibrium spot prices as sh and sl. Each buyer’s decision problem at stage 2

is

g1(π) = max
Q

r1(Q|π) = −πQ + E[g2(Q, s, α)]

s.t. 0 ≤ Q ≤ C

N
(3.6.25)

where

E[g2(Q, s, α)] =
p

2φ

∫ φ

−φ

[
−(qc(Q, s, αh, φ) + qs(Q, s, αh, φ))2

2β
+

(αh + φ)(qc(Q, s, αh, φ) + qs(Q, s, αh, φ))

β

−qc(Q, s, αh, φ)βc + qs(Q, s, αh, φ)βsh

β

]
dφ +

1− p

2φ

∫ φ

−φ

[
−(qc(Q, s, αl, φ) + qs(Q, s, αl, φ))2

2β
+

(αl + φ)(qc(Q, s, αl, φ) + qs(Q, s, αl, φ))

β

−qc(Q, s, αl, φ)βc + qs(Q, s, αl, φ)βsl

β

]
dφ (3.6.26)

Similar to Section 3.5 and 3.6, each buyer doesn’t take sh and sl as a function of his

decision Q.

Lemma 3.6.8. If capacity C ≤ Cb, then buyers’ optimal contracting policy is as

follows:

1. If π < E(α+φ−βc)2−4φC/N

4βφ
, then Q∗ = C/N .
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2. If π > E(α+φ−βc)2−4φC/N

4βφ
, then Q∗ = 0.

3. If π = E(α+φ−βc)2−4φC/N

4βφ
, then any Q∗ ∈ [0, C/N ] is optimal.

Lemma 3.6.8 indicates that if the option contract price is less then the threshold

E(α+φ−βc)2−4φC/N

4βφ
, then a single buyer purchases up to C/N . If the option contract

price is greater than the threshold, each buyer only purchase products on the spot

market.

At stage 1, the seller anticipates her expected return in Period 2 and chooses an

option price to maximize her total revenue. Denote each buyer’s best response as

Q(π). Let the seller’s expected return be R1(π). The seller’s decision problem is

max
π

R1(π) = NπQ(π) + E[G2(Q(π), α)]

s.t. 0 ≤ Q(π) ≤ C

N
(3.6.27)

π ≥ 0

where E[G2(Q, s, α)] = pG2(Q(π), αh) + (1− p)G(Q(π), αl). Let Cc = N(E(α)+φ−βc)2

32φ
.

Theorem 3.6.5. If capacity C ≤ min{Cb, Cc}, then any option price in
(
E(α+φ−βc)2−4φC/N

4βφ
, +∞

)
is optimal .

Corollary 3.6.1. No contract is sold in equilibrium, Q(π∗) = 0.

Corollary 3.6.1 states that if the capacity is small enough, i.e., C ≤ min{Cb, Cc},
then in market equilibrium, the seller sets the price high enough such that all the

buyers only purchase products from the spot market.

B. Contract market only

This subsection studies the case when all buyers only participate in the contract

market λ = 0 under the condition C ≤ min{Cb, Cc}.
At stage 3 in Period 2, the decision problem and optimal decision are the same as

those in the large capacity case. At stage 2, given the option price π, a single buyer
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anticipates his return in Period 2 and decides how many contracts to enter. Denote

each buyer’s best response in Period 2 as qc(Q,α, φ). The decision problem is

g1(π) = max
Q

r1(Q|π)

s.t. 0 ≤ Q ≤ C

N
(3.6.28)

where

r1(Q|π) = −πQ + E[g2(Q,α, φ)]

and

E[g2(Q, α, φ)] =
p

2φ

∫ φ

−φ

[
−qc(Q,αh, φ)2

2β
+

(αh + φ)qc(Q,αh, φ)

β
− qc(Q,αh, φ)c

]
dφ +

1− p

2φ

∫ φ

−φ

[
−qc(Q,αl, φ)2

2β
+

(αl + φ)qc(Q,αl, φ)

β
− qc(Q,αl, φ)c

]
dφ

Lemma 3.6.9. Buyers’ optimal contracting decision is as follows.

1. If π ≤ E(α+φ−βc−C/N)2

4βφ
, then Q∗ = C/N .

2. If π ∈
[
E(α+φ−βc−C/N)2

4βφ
, E(α+φ−βc)2

4βφ

]
, then Q∗ = E(α) + φ− βc

√
4βφπ − σ2.

3. If π > E(α+φ−βc)2

4βφ
, then Q∗ = 0.

Lemma 3.6.9 indicates that if the option contract price π is less or equal to the

threshold E(α+φ−βc−C/N)2

4βφ
, then each buyer purchases up to the limit C/N . If the

option price is greater than E(α+φ−βc)2

4βφ
, then buyers do not enter contracts at all.

If the option price falls in between, then each buyer’s best response is a decreasing

function of the option price.

At stage 1, the seller chooses an option price to maximize her total revenue.

Denote each buyer’s best response as Q(π). The seller’s problem is

max
π

R1(π) = N [πQ(π)]

s.t. 0 ≤ Q(π) ≤ C

N
(3.6.29)

π ≥ 0
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Theorem 3.6.6. Seller’s optimal option price π∗ = E(α+φ−βc−C/N)2

4βφ
.

Note Q(π∗) = C/N . Theorem 3.6.6 states that if the capacity is small, in market

equilibrium, the seller sets the option contract price such that each buyer’s best

response is equal to the capacity equally distributed among all buyers. The surplus

of the seller, the total surplus of the buyers and the total social surplus with λ = 1

are compared to those with λ = 0.

Theorem 3.6.7. If the seller’s capacity C ≤ min{Cb, Cc}, then both the seller and the

buyers are better off when λ = 1 compared to λ = 0, i.e., G(1) > G(0), V (1) > V (0)

and W (1) > W (0).

Theorem 3.6.7 shows that when the capacity is small, both the seller and the

buyers are better off with λ = 1 compared to λ = 0. The two thresholds Cb and Cc

are from the case when all buyers participate in the spot market. The first threshold

Cb comes from the seller’s problem at stage 3. If C ≤ Cb, it is the undercapacity case

in both demand states and the optimal spot price is determined solely by the capacity

constraint. The second threshold Cc comes from the seller’s problem at stage 1. If the

capacity is smaller than Cc and Cb, then the best strategy for the seller is to set the

option price high enough such that no buyer enters into contracts at all. The rationale

behind Theorem 3.6.7 is clear. If all buyers only participate in the contract market,

all buyers purchase C/N contracts in Period 1. As the buyers don’t transact on the

spot market, the limited products can’t be efficiently reallocated among the buyers

according to their different utilities in Period 2. Some of the buyers with higher utility

could not purchase extra products and some of them with lower utility hold unused

contracts. On the other hand, the spot market provides an opportunity for the seller

to sell the remaining capacity to the buyers with higher demand. Therefore, total

spot market participation increases both the buyers’ total surplus and the seller’s

surplus, thereby the total social surplus.
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3.7 Two sellers, single buyer

This section studies a market where there are two sellers and a single buyer. We

assume the two sellers have identical capacity C and the same marginal cost c.

The sequence of the decisions is as follows. In the first period, the two sellers choose

the option prices simultaneously. Given the option prices, the buyer decides how many

contracts to enter with each seller. In period 2, demand state is observed. The two

sellers choose the spot prices. The buyer then decides the quantity of contracts to

exercise with each seller. If the buyer’s policy is to participate the spot market, he

also determines the quantity of products to purchase from each seller on the spot

market depending on the spot prices.

The buyer’s normal utility as a function of the total quantity purchased from both

sellers is assumed the same as that in Section 3.4. In order to make the model com-

plete, we will introduce assumptions on buyer’s normal demand (without contracting

stage) in the two-seller setting. In particular, we need to define the demand and profit

for each seller for any given price pair (si, sj) (whenever i and j appear in the same

expression, index i is not equal to j). One widely used assumption in literature, such

as in [40], [34] and [44], is as follows. Suppose the two sellers’ available capacities

are C1 and C2 respectively (C1 and C2 can be different). If the two sellers charge

different prices, si < sj, then the buyer first purchases from seller i at the lower price.

When seller i’s capacity is exhausted, the buyer then turns to seller j. Under this

assumption, the residual demand for the higher price seller j is the minimum of his

available capacity and (α − βsj − Ci)
+. Note this residual demand for seller j does

not depend si anymore. If the two sellers choose the same price, the buyer splits the

total demand between the two sellers proportionally to the sellers’ capacities.

Assumption 3.7.1. For any price pair (si, sj), we assume that the demand for seller
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i is as follows:

Di(si, sj) =





min {Ci, (α− βsi)
+} if si < sj,

min
{

Ci,
Ci

Ci+Cj
(α− βsi)

+
}

if si = sj,

min {Ci, (α− βsi − Cj)
+} if si > sj,

(3.7.1)

Note the above assumption includes the case C1 6= C2, which is necessary to our

model. Even the two sellers have the same capacity, in the two-period problem,

the buyer can purchase and exercise different quantity of contracts with each seller.

Thus, the remaining capacities that the sellers can put on the spot markets might be

different.

For our two-period model, another additional assumption is needed. Let Qi and

Qj be the contracting quantities signed with seller i and seller j respectively. Suppose

in Period 2, the total quantity to purchase under the contracts, denoted as qc, is less

than Qi + Qj (in this case, there is no transaction on the spot market at all), then qc

is divided between the two sellers according to the following assumption. Denote qc,i

and qc,j as the quantities to exercise with seller i and seller j respectively.

Assumption 3.7.2. If the total quantity of contracts the buyer decides to exercise is

less than the total contracting quantity Qi+Qj, then the quantity of products purchased

from each seller is proportional to the contracting levels,

qc,i =
qcQi

Qi + Qj
(3.7.2)

Note that Assumption 3.7.1 and 3.7.2 do not affect the buyer’s payoff. However, they

do affect the way in which the profit splitting between the sellers.

As in previous sections, we will consider the three cases, λ = 0, λ = 1 and

0 < λ < 1. If the sellers’ capacities are large enough, it can be shown that in all three
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cases, the game reaches at the competitive equilibrium. The unique equilibrium is

both sellers charge zero for options and choose the marginal cost as the spot prices if

the buyer participates in the spot markets. In this study, we only investigate if the

two sellers’ capacities smaller than a certain threshold, a pure strategy equilibrium

exits. We first start with λ = 1 and explicitly characterize such threshold.

3.7.1 Contract market and spot market with full participation

In this section, we present our model with λ = 1.

3.7.1.1 Stage 4 – buyer’s problem

Let s1 and s2 denote the spot prices charged by the two sellers. Denote the quantities

of contracts to exercise with each seller as qc,1 and qc,1. Let qs,2 and qs,2 be the

quantities of products the buyer decides to purchase on the spot market from the two

sellers. Given the contracting level pair (Q1, Q2), the buyer’s problem is

g(Q1, Q2, s1, s2, α) = max
qc,1,qc,2,qs,1,qs,2

r2(qc,1, qc,2, qs,1, qs,2|α, s1, s2)

s.t. 0 ≤ qc,1 ≤ Q1

0 ≤ qc,2 ≤ Q2 (3.7.3)

0 ≤ qs,1 ≤ C −Q1

0 ≤ qs,2 ≤ C −Q2

where

r2(qc,1, qc,2, qs,1, qs,2|α, s1, s2) = −(qc,1 + qc,2 + qs,1 + qs,2)
2

2β
+

α(qc,1 + qc,2 + qs,1 + qs,2)

β

−(qc,1 + qc,2)c− qs,1s1 − qs,2s2 (3.7.4)

It is easy to see that only when α − βc > Q1 + Q2, the buyer purchases from

the spot markets. Based on the single-seller single-buyer model, we limit to the case

C ≤ Ca = (αl− βc)/2. Then Q1 + Q2 ≤ α− βc for both high and low states. For the

141



single-seller model, the total residual demand on the spot market is (α−βs−Q1−Q2)
+.

Under Assumption 3.7.1, q∗s,i, i = 1, 2 can be determined in the two-seller case.

Lemma 3.7.1. If each seller’s capacity C ≤ Ca, the buyer’s optimal decision in

Period 2, q∗c,i, q
∗
s,i for i = 1, 2, is as follows.

1. All the contracts are exercised, i.e., q∗c,i = Qi, i = 1, 2.

2. For the quantities to be purchased from the spot market,

q∗s,i =





min {C −Qi, (α− βsi −Qi −Qj)
+} if si < sj,

min
{

C −Qi,
C−Qi

2C−Qi−Qj
(α− βsi −Qi −Qj)

+
}

if si = sj,

min {C −Qi, (α− βsi − C −Qi)
+} if si > sj,

(3.7.5)

3.7.1.2 Stage 3 – sellers’ problem

At this stage, seller i’s return on the spot market for a pair of prices (si, sj) is

R2,i(si, sj|Qi, Qj, α) = (si − c)qs,i(Qi, Qj, si, sj, α) (3.7.6)

where qs,i(Qi, Qj, si, sj, α) denotes the best response characterized in Lemma 3.7.1.

Let s0 be the spot price, such that

α− βs0 −Q1 −Q2 = 2C −Q1 −Q2 (3.7.7)

That is if both sellers choose price s0 = (α− 2C)/β, all the remaining capacities are

sold. We will show that if C is less or equal to a threshold, (s0, s0) is the unique pure

strategy equilibrium for any Qi ∈ [0, C], i = 1, 2.

Lemma 3.7.2. If C ≤ Cd = (αl− βc)/3, then (s0, s0) is the only pure equilibrium in

the subgame.
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3.7.1.3 Stage 2 – buyer’s problem

At stage 2, the buyer decides the best contracting quantities with each seller. The

buyer’s problem is

g1(π1, π2) = max
Q1,Q2

r1(Q1, Q2|π1, π2) = −π1Q1 − π2Q2 + E[g2(Q1, Q2, s1, s2, α)]

s.t. 0 ≤ Q1 ≤ C (3.7.8)

0 ≤ Q2 ≤ C

By Lemma 3.7.1, for any Q1, Q2 ∈ [0, C], it holds that

E[g2(Q1, Q2, s1, s2, α)] = p

[
−(2C)2

2β
+

2Cαh

β
− (Q1 + Q2)c− (2C −Q1 −Q2)s

h
0

]

+ (1− p)

[
−(2C)2

2β
+

2Cαl

β
− (Q1 + Q2)c− (2C −Q1 −Q2)s

l
0

]
(3.7.9)

where sh
0 = (αh − 2C)/β and sl

0 = (αl − 2C)/β.

Lemma 3.7.3. If C ≤ Cd, the buyer’s optimal contracting quantities Q∗
i (π), i = 1, 2

are as follows:

1. If πi = E(α)−βc−2C
β

, then any Qi ∈ [0, C] is optimal.

2. If πi > E(α)−βc−2C
β

, then Q∗
i = 0.

3. If πi < E(α)−βc−2C
β

, then Q∗
i = C.

From Lemma 3.7.3, we can see that the buyer’s optimal contracting demand

Q∗
i (πi, πj) only depends on πi but not on seller j’s option price πj. It is because

the buyer knows no matter how many contracts enter now, all of the remaining ca-

pacities are going to be sold at the expected spot price (E(α)−2C)/β as a consequence

of the competition of the two sellers later. Therefore, the buyer only need to compare

the option prices to the expected spot price minus the marginal cost c.

143



3.7.1.4 stage 1 – sellers’ problem

At this stage, seller i’s problem for a given πj is

max
πi

R1,i(πi, πj) = πiQi(πi, πj)E[G2,i(Qi, Qj, α)]

s.t. πi ≥ 0 (3.7.10)

where Qi and Qj are characterized in Lemma 3.7.3 and E[G2,i(Qi, Qj, α)] denotes the

the expected return from the spot market in equilibrium in the subgame.

Theorem 3.7.1. If both sellers’ capacities are small such that C ≤ Cd, for each

seller, any option price π ≥ (E(α) − βc − 2C)/β is optimal. Each seller’s optimal

revenue is C(E(α)− βc− 2C)/β.

3.7.2 Contract market only

Henceforth, we restrict our study to the case C ≤ Cd. If the buyer only participates

in the contract market, in Period 2, the buyer’s decision problem is

g2(Q1, Q2, α) = max
qc,1,qc,2

r2(qc,1, qc,2|α)

s.t. 0 ≤ qc,1 ≤ Q1 (3.7.11)

0 ≤ qc,2 ≤ Q2

where

r2(qc,1, qc,2|α) = −(qc,1 + qc,2)
2

2β
+

α(qc,1 + qc,2)

β
− (qc,1 + qc,2)c (3.7.12)

Since C ≤ Cd, Qi ≤ C ≤ Cd. Thus, Q1 + Q2 ≤ 2(αl − βc)/3 ≤ αl − βc. All the

contracts are exercised in both demand states.

Lemma 3.7.4. If C ≤ Cd, the best strategy for the buyer is to exercise all the

contracts, i.e., q∗c,1 = Q1 and q∗c,2 = Q2.
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In Period 1, the buyer’s problem is

g1(π1, π2) = max
Q1,Q2

r1(Q1, Q2|π1π2) = −π1Q1 − π2Q2 + E[g2(Q1, Q2, α)]

s.t. 0 ≤ Q1 ≤ C

0 ≤ Q2 ≤ C

By Lemma 3.7.4, for any Q1, Q2 ∈ [0, C], it holds that

E[g2(Q1, Q2, α)] = p

[
−(Q1 + Q2)

2

2β
− αh(Q1 + Q2)

β
− (Q1 + Q2)c

]

+ (1− p)

[
−(Q1 + Q2)

2

2β
− αl(Q1 + Q2)

β
− (Q1 + Q2)c

]
(3.7.13)

Define function Dc(π) as follows, which is the contracting strategy in the single-seller

case.

Dc(π) =





αh − βc− βπ/p if π ∈ [0, p(αh − αl)/β),

E(α)− βc− βπ if π ∈ [p(αh − αl)/β, (E(α)− βc)/β],

0 if π > (E(α)− βc)/β

(3.7.14)

Lemma 3.7.5. If C ≤ Cd, the buyer’s best contracting strategy is as follows:

Q∗
i =





min {C, Dc(πi)} if πi < πj,

min {C, Dc(πi)/2} if πi = πj,

min {C, (Dc(πj)− C)+} if πi > πj

(3.7.15)

In Period 1, for every pair of option prices (πi, πj), the total revenue for seller i is

R1,i(πi, πj) = πiQi(πi, πj) (3.7.16)

where Qi(πi, πj) is determined by Lemma 3.7.5.

Theorem 3.7.2. If both sellers’ capacities are small such that C ≤ Cd, option price

pair (π∗, π∗) is the unique equilibrium where π∗ = (E(α)− βc− 2C)/β. Each seller’s

optimal revenue is C(E(α)− βc− 2C)/β.
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3.7.3 Contract market and spot market with partial participation

This section considers the case in which the buyer participates in the spot market

with some probability λ ∈ (0, 1) for comparison purpose. At stage 1, the sellers don’t

know the buyer’s contracting policy. The decision problem for seller i is

max
πi

R1,i(πi, πj) = (1− λ)R1,i,A(πi, πj) + λR1,i,B(πi, πj)

s.t. πi ≥ 0 (3.7.17)

where R1,i,A(πi, πj) denotes the return if the buyer only participates in the contract

market and R1,i,B(πi, πj) denotes the return if the buyer participates in both markets,

which have been studied in the previous subsections. Based on the previous results,

we can see that option price pair (π∗, π∗), where π∗ = (E(α) − βc − 2C)/β, is the

unique equilibrium if the buyer doesn’t participate in the spot market and it is also

an equilibrium in the case when the buyer participates in both markets. Therefore,

if the sellers do not know whether the buyer participates in the spot market or not,

option price pair (π∗, π∗) is the only equilibrium.

Theorem 3.7.3. If both sellers’ capacities are small, such that C ≤ Cd, the following

results hold:

1. The option price pair (π∗, π∗) is the unique equilibrium, where π∗ = (E(α) −
βc− 2C)/β.

2. The expected number of contracts transacted Q∗(λ) decreases in λ.

3. As λ increases, the sellers’ total surplus G(λ) does not change, G(λ) = 2C(E(α)−
βc− 2C)/β .

4. As λ increases, the buyer’s surplus V (λ) does’t change, V (λ) = 2C2/β. Thus,

the total social surplus W (λ) does not change, W (λ) = 2C(E(α)− βc− C)/β.
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Theorem 3.7.3 is a direct consequence of Theorem 3.7.1 and 3.7.2. Theorem 3.7.3

says that if the sellers’ capacities are small, the spot market participation does not

change the sellers’ total surplus, the buyer’s surplus and the total social welfare. The

results are consistent with those in the single-seller setting.

3.8 A continuum of sellers, a continuum of buyers

This section extends the model to a market where there are many sellers and many

buyers for comparison purpose. Let S∞ = [0, 1] denote the continuum of such sellers

and let B∞ = [0, N ] denote the continuum of such buyers. Each seller is very small

relative to the market as a whole and has capacity Cdξ. The aggregated capacity is

denoted as C,

C =

∫
Cdξ (3.8.1)

It is also assumed that each small seller is relative large compared to the buyers.

If the aggregated contracting quantity is large, a seller applies first-come first-serve

rationing scheme until all of her contracts are sold. The utility function of the buyers

is assumed the same as that in Section 3.6. All sellers move simultaneously in both

periods. The sequence of the decisions of the sellers and the buyers is the same as

before. In this section, we only investigate the first-come first-serve rationing scheme.

A numerical study is conducted to investigate how the previous results change under

this market structure.

The organization of this section is as follows. First, we consider the case all the

buyers only participate in the contract market. Second, we consider the case some of

buyers participate in both markets, i.e., λ ∈ (0, 1). The formulation of the model for

the case λ = 1 is an analogy to λ ∈ (0, 1) and is not repeated here. Last, a numerical

study is presented to illustrate the effects of the participation rate moving from 0 to

1. The results are compared to those in the corresponding single seller market.
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3.8.1 Contract market only

In this setting, the decision problems at stage 3 and stage 2 are the same as those in

Section 3.6. All the results in Lemma 3.6.1 and Lemma 3.6.2 apply in this case. At

stage 1, each seller chooses option prices to maximize her own revenue. An assumption

used here is that if all sellers charge the same price while one of the sellers increases

the price, the buyers do not purchase from that seller at all since a single seller is

very small compared to the market as a whole. The buyers only turn to the other

sellers with lower price.

Theorem 3.8.1. The sellers’ equilibrium prices are as follows.

1. If C/N > αh + φ− βc, all sellers charge the same option price π∗ = 0.

2. If C/N < αh + φ − βc, all sellers charge the same option price such that all

the contracts sold. That is for C/N ∈ [0, αl + φ − βc), π∗ = E(α+φ−βc−C/N)2

4βφ
,

where E(α+φ−βc−C/N)2

4βφ
= p(αh+φ−βc−C/N)2+(1−p)(αl+φ−βc−C/N)2

4βφ
. For C/N ∈ [αl +

φ− βc, αh + φ− βc], π∗ = p(αh+φ−βc−C/N)2

4βφ
.

Theorem 3.8.1 is a direct result from the above assumption under this market

structure. It states that if there are many sellers and the aggregated capacity is not

too large, then in equilibrium all the sellers charge the same option price such that

all the contracts sold. Otherwise, they can only charge zero.

3.8.2 Contract market and spot market with partial participation

In this section, we present the model in the case λ ∈ (0, 1).

3.8.2.1 Stage 4 – buyers’ problem

The type A buyers’ problem at this stage is the same as that in Section 3.6. The

optimal decision for any QA is given by Lemma 3.6.1. The type B buyers’ problem is

the same as that in Section 3.6 and all the results of Lemma 3.6.3 hold.
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3.8.2.2 Stage 3 – sellers’ problem

At the stage, the sellers choose the spot prices simultaneously, given the buyers’

contracting quantity QA and QB. Follow the same notation in Section 3.6.2.1. If

QB ≥ α+φ−βc and γ = 1, then no buyer purchases from the spot market. Otherwise,

let ŝ be the spot price at which all the remaining capacity is sold:

Ds,B1(QB, ŝ) + Ds,B2(0, ŝ) = C −Dc,A(QA)−Dc,B(QB) (3.8.2)

Since Ds,B1(QB, s) + Ds,B2(0, s) strictly decrease in s, ŝ is unique.

Lemma 3.8.1. If QB ≥ α + φ − βc and γ = 1, then no buyer purchases from the

spot market. Otherwise, the sellers charge a unique spot price s∗ = max{ŝ, c} in

equilibrium.

Lemma 3.8.1 states that in equilibrium, all sellers charge the same spot price. If

the remaining capacity compared to the residual demand is small such that ŝ ≥ c,

then all sellers charge ŝ. Otherwise, they charge the marginal cost c. This lemma is

also a direct consequence of the previous assumption.

3.8.2.3 Stage 2 – buyers’ problem

The decision problem and the optimal decision for type A buyers are same as those

in Section 3.6 and all the results in Lemma 3.6.2 hold. The formulation of the type

B buyers’ problem is the same as that for the first-come first-serve rationing rule in

Section 3.6.2, with s̃h(QA, QB) and s̃l(QA, QB) defined as the spot prices from Lemma

3.8.1.

3.8.2.4 Stage 1– sellers’ problem

At this stage, each seller chooses the option price to maximize her own revenue. We

first start with the equilibrium such that all of the sellers charge the same option

price π∗ from which none of the sellers has incentive to deviate. Denote the first
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stage revenue for seller i as R1,i(πi, π−i), where πi denotes the price charged by seller

i and π−i denotes option price charged by all the sellers other than seller i. Then π∗

must satisfy

R1,i(π
∗, π∗) ≥ R1,i(π, π∗), ∀π > 0, π 6= π∗, ∀i (3.8.3)

If one of the sellers raises the option price, then none of her contracts will be

sold. That seller will put all the capacity on the spot market. If the seller lowers her

option price, all of her contracts are sold under the first-come first-serve scheme. In

both cases, the spot prices in the second period do not change since the influence of

a single seller is negligible.

Denote the equilibrium spot prices in the subgame as sh and sl for the high demand

state and the low demand state respectively when all sellers charge the same π. If

seller i decreases the price to π′, π′ < π, then her total revenue is formulated as

follows. Since a single seller is an infinitesimal and other sellers still stay at the same

price, the spot prices do not change. All the buyers try to purchase the contracts

from this particular seller at the lower price first. If their requests are not satisfied,

they will turn to other sellers. Let Q′
A = QA(π′) and Q′

B = QB(π′) denote the best

response with respect to option price π′. Seller i can only satisfy a very small fraction

of the buyers:

γ̃′ =
Cdξ

N [(1− λ)Q′
A + λQ′

B]
(3.8.4)

Let qh
c,A(Q′

A, φ), ql
c,A(Q′

A, φ), qh
c,B(Q′

B, φ) and ql
c,B(Q′

B, φ) denote the corresponding

optimal quantities to purchase under contracts per buyer at stage 4 for the two types

of buyers in the high and low demand states. Define

qh
c,A(Q′

A) =
1

2φ

∫ φ

−φ

qh
c,A(Q′

A, φ)dφ (3.8.5)

ql
c,A(Q′

A) =
1

2φ

∫ φ

−φ

ql
c,A(Q′

A, φ)dφ (3.8.6)
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qh
c,B(Q′

B) =
1

2φ

∫ φ

−φ

qh
c,B(Q′

B, φ)dφ (3.8.7)

ql
c,B(Q′

B) =
1

2φ

∫ φ

−φ

ql
c,B(Q′

B, φ)dφ (3.8.8)

Among those buyers satisfied by seller i, the total contracts exercised by type A

buyers in the high demand state and the low demand state are γ̃′(1 − λ)Nqh
c,A(Q′

A)

and γ̃′(1 − λ)Nql
c,A(Q′

A). The total contracts exercised by type B buyers in the two

demand states are γ̃′λNqh
c,B(Q′

B) and γ̃′λNql
c,B(Q′

B). It follows that revenue for seller

i at the first stage is

R1,i(π
′, π) = π′Cdξ + p(sh − c)Cdξ

[
1− (1− λ)qh

c,A(Q′
A) + λqh

c,B(Q′
B)

(1− λ)Q′
A + λQ′

B

]

+(1− p)(sl − c)Cdξ

[
1− (1− λ)ql

c,A(Q′
A) + λql

c,B(Q′
B)

(1− λ)Q′
A + λQ′

B

]
(3.8.9)

If seller i increases the option price to π′′ with π′′ > π, then the total revenue for that

seller is

R1,i(π
′′, π) = Cdξ[p(sh − c) + (1− p)(sl − c)] (3.8.10)

Therefore, the option price π∗ in equilibrium must satisfy

R1,i(π
∗, π∗) ≥ R1,i(π

′, π∗), ∀π > 0, π′ < π∗, ∀i (3.8.11)

R1,i(π
∗, π∗) ≥ R1,i(π

′′, π∗), ∀π > 0, π′′ > π∗, ∀i (3.8.12)

3.8.3 Numerical study

In this section, a numerical study is used to investigate the effects of the buyers’

participation rate of the spot market. As discussed in the previous section, we need

to consider the uniqueness of the equilibrium in the study. Otherwise, the outcome

of the game is unpredictable. Though it seems there might be multiple equilibriums,

such unpredictable situation never takes place in all the numerical examples tested

here.
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The input parameters are the same as those in Section 3.6.2. The results are

shown in Figure 17–20.

Observation 1 As more and more buyers participate in the spot market, the

aggregated contracting quantity decreases.

Observation 2 As more and more buyers participate in the spot market, the

total social surplus always increases.

Observation 3 As more and more buyers participate in the spot markets, the

sellers’ total surplus may increase/decrease and the buyers’ total surplus may in-

crease/decrease.

As the spot market can make better allocation to the buyers with different utilities,

higher total social surplus can be obtained as more and more buyers participate in the

spot market (Figure 17–20). Compared to the single seller setting, the competition

among the sellers can hurt the sellers if the capacity is large and one type of buyers

dominates the market. However, the balance between the two types of the buyers can

make the sellers better off. Figure 17 shows that the surplus of the sellers increases in

λ on [0.2, 0.4], where the sizes of the two types of buyers become close to each other.

As type B buyers dominate the market, the total surplus of the sellers decreases again.

From Figure 18 to Figure 20, the results approach the single seller case. This is due

to the tight capacity. In that case, the sellers can drive the equilibrium to the spot

market period and exact more profit from the buyers.

Figure 21–24 compare the results to those from the corresponding single seller

setting. The solid lines represent the results of the single seller market from Sec-

tion 3.6.2 and the dotted lines indicate the result of the market with a continuum of

sellers. The results approach to the singe seller setting as the sellers’ total capacity

decreases. Due to the competition among the sellers, the market with many sellers

always achieves higher total social surplus and higher buyers’ total surplus compared

to the single seller market.
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Figure 17: Effects of spot market participation for Example 12, capacity = 3.6

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

λ

Q

0 0.2 0.4 0.6 0.8 1
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

λ

G

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

λ

V

0 0.2 0.4 0.6 0.8 1
1.5

2

2.5

3

3.5

λ

W

Figure 18: Effects of spot market participation for Example 13, capacity = 0.9
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Figure 19: Effects of spot market participation for Example 14, capacity = 0.225
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Figure 20: Effects of spot market participation for Example 15, capacity = 0.1125
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Figure 21: Comparison of Example 8 and 12, capacity = 3.6
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Figure 22: Comparison of Example 9 and 13, capacity = 0.9
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Figure 23: Comparison of Example 10 and 14, capacity = 0.225
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Figure 24: Comparison of Example 11 and 15, capacity = 0.1125
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3.9 Concluding remarks

Though the original motivation of this research comes from the freight transportation

industries, the models are general and applicable to other industries with non-storable

products or service facing demand uncertainty. A key factor considered is the buyers’

participation in the spot market. Our focus is to investigate the role of the spot

market. Specifically, we study the effects of the spot market participation rate on the

quantity of contracts transacted, as well as on the surpluses of all players and on the

total social surplus. As mentioned in previous sections, some literature also addresses

the friction in spot markets from different points of view. Wu et al. [58] consider the

risk factor m for the spot market, which represents the percentage (0 ≤ m ≤ 1) of

the residual output that the seller can sell on the spot market. In their setting, the

contract market exists only if m < 1. In contrast to the results of the single-seller

single-buyer model in [58], the contract market always exists even when λ = 1 in

our single-seller single-buyer setting due to the buyer’s strategic reason. In [42], a

comparable factor studied is the cost of spot trading. It refers to the fact that each

unit a market participant trades drives the price against her. Due to such cost of

trading, the spot market does not push the contracted quantities to zero either.

The effect of the capacity level is also considered. It is assumed that available

contracts do not exceed the capacity level. First, we derive models for the case where

the capacity is large. In this case, the capacity constraint need not be considered at

all. Second, we extend the results to the case where the capacity is small. In the

latter case, all of the capacity is sold no matter the demand state turns out high or

low.

We start with the single-seller single-buyer setting. For comparison purpose, we

also study the case with λ ∈ (0, 1), where λ is interpreted as the buyer’s participation

probability of the spot market. It is found that as the spot market participation rate

increases, the contract market shrinks. Such result holds for both of the capacity
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levels considered. In the large capacity case, the quantity of contracts transacted

remains positive even when λ = 1. As the spot market participation rate increases,

the seller’s surplus strictly increases. The effects of the spot market participation

rate on the buyer’s surplus and on the total social surplus are more complicated.

For the large capacity case, an increase in the spot market participation rate may

or may not benefit the buyer, therefore may or may not increase the total social

surplus. Even when the buyer participates in the spot market with probability 1,

the buyer can be worse off compared to the contract market only setting (λ = 0).

One interesting observation is the relationship between the option price and the spot

price. It is found that as long as the contracting quantity is not too large, an increase

in option price also leads an increase in the spot price. The results for the small

capacity case are fairly different. Since the capacity is small, all the products are sold

in Period 2 regardless of the state of the market. The buyer decides whether to enter

contracts only by comparing the option price to the expected spot price. All values

of λ eventually give the same outcome. That is the surpluses of the seller and the

buyer do not change as the spot market participation rate increases.

Second, we extends the single-buyer model to a continuum of buyers who have the

same utility. We model the spot market participation as a fraction of buyers trans-

acting on the spot market. The results from the single-buyer setting hold in general

in the large capacity case. However, under this setting, the quantity of contracts

transacted decreases to zero as all buyers transact on the spot market. In the small

capacity case, one important issue is the allocation of the limited quantity of con-

tracts among the buyers. We study two rationing schemes that are used in practice,

first-come first-serve and limiting the contracting quantity per buyer. It is found that

the surplus of the seller and the total surplus of the buyers are invariant with respect

to the spot market participation regardless which rationing scheme is applied. The

results are surprisingly the same as those from the single-buyer model.

158



Third, we study a market where there are a single seller and a continuum of

buyers. In addition to the random state of the market, we also consider the demand

uncertainty dependent on each individual buyer. A numerical study is conducted to

investigate the effects of the spot market participation. Though those results may not

hold in general, they still provide valuable insights. The numerical analysis indicates

that the effects of the spot market participation on the contract market and on the

seller’s surplus still hold. However, the buyers’ total surplus always increases in λ.

We also prove that the buyers are always better off when λ = 1 than when λ = 0 in

the undercapacity case with the second rationing rule.

Fourth, we consider a market with two sellers and a single buyer. The underca-

pacity case is studied. It is found that all the results in the undercapacity case of the

single-seller single-buyer setting hold. This again confirms that the outcome does not

change for all values of λ if the capacity level is low enough.

In the last section of this chapter, we extend the model to a market with a con-

tinuum of sellers and a continuum of buyers with different utilities for comparison

purpose. A numerical study is conducted to investigate how the results in this set-

ting differ from those under other market structures. It is found the quantity of

contracts transacted in equilibrium decreases in λ and the buyers’ total surplus may

increase/decrease in λ. In contrast to the single-seller setting, the sellers can be worse

off as more buyers participate in the spot market because of the competition among

the sellers. The total social welfare is observed always increasing in spot market

participation.

From the results under different market structures, we can see that the contract

market always shrinks as spot market participation increases. However, it does’t

guarantee a higher total social surplus. Under different demand variation and different

market structure, the effects of the spot market participation on the surpluses of all

market players may be different.
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APPENDIX A

PROOFS FOR CHAPTER 3

Proof of Lemma 3.4.1 Since the objective function is concave in qc, the Karush-

Kuhn-Tucker (KKT) condition is necessary and sufficient for the optimality of the

buyer’s problem. The derivative of the objective function is dr2(qc|α)
dqc

= − qc

β
+ α

β
− c.

Since dr2(0|α)
dqc

= α
β
−c ≥ 0, q∗c ≥ 0. Depending on whether q∗c is active at the constraint

qc ≤ Q or not, there are two cases.

Case 1: If q∗c is not tight at the constraint, i.e., q∗c < Q, then the optimal solution q∗c

satisfies dr2(qc|α)
dqc

= 0. Thus, q∗c = α− βc < Q.

Case 2: If q∗c is tight at the constraint, i.e., q∗c = Q, then the optimal solution q∗c

satisfies dr2(qc|α)
dqc

≥ 0. Thus, q∗c = Q ≤ α− βc.

Therefore, if Q > α− βc, then q∗c = α− βc. If Q ≤ α− βc, then, q∗c = Q.

Proof of Lemma 3.4.2 Given the option price π, the buyer’s objective function

is as follows.

For Q < αl − βc, it holds that

r1(Q|π) = −πQ + p
[
−Q2

2β
+ αhQ

β
−Qc

]
+ (1− p)

[
−Q2

2β
+ αlQ

β
−Qc

]

dr1(Q|π)
dQ

= −π − Q
β

+ E(α)
β
− c

For αl − βc ≤ Q < αh − βc, it holds that

r1(Q|π) = −πQ + p
[
−Q2

2β
+ αhQ

β
−Qc

]
+ (1−p)(αl−βc)2

2β

dr1(Q|π)
dQ

= −π + p
(
−Q

β
+ αh

β
− c

)

For Q ≥ αh − βc, it holds that

r1(Q|π) = −πQ + p(αh−βc)2

2β
+ (1−p)(αl−βc)2

2β
and dr1(Q|π)

dQ
= −π ≤ 0

Note that the objective function r1(Q|π) is continuous at the breakpoints Q = αl−βc

and Q = αh−βc. Also note that r1(Q|π) is concave on [0, αl−βc), [αl−βc, αh−βc)
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and [αh − βc, +∞) respectively. Let r′1+(Q|π) be the right derivative at Q and let

r′1−(Q|π) be the left derivative at Q. The derivatives at the breakpoints are as follows.

At Q = 0, dr1(0|π)
dQ

= E(α)
β
− π − c.

At Q = αl − βc, r′1−(αl − βc|π) = p(αh−αl)
β

− π = r′1+(αl − βc|π).

At Q = αh − βc, r′1−(αh − βc|π) = −π = r′1+(αh − βc|π).

Since at Q = αl − βc and Q = αh − βc, r′1+(Q|π) = r′1−(Q|π), the objective function

r1(Q|π) is concave on [0, +∞), i.e., dr1(Q|π)
dQ

is a monotonically decreasing function of

Q. Therefore, the buyer’s optimal decision is as follows.

1. If dr1(0|π)
dQ

≤ 0 ( ⇔ π ≥ E(α)−βc
β

), then Q∗ = 0.

2. If dr1(0|π)
dQ

> 0 and dr1(αl−βc|π)
dQ

≤ 0 ( ⇔ p(αh−αl)
β

≤ π < E(α)−βc
β

), then

Q∗ = E(α)− β(c + π). Note that Q∗ ∈ (0, αl − βc].

3. If dr1(αl−βc|π)
dQ

> 0 and dr1(αh−βc|π)
dQ

< 0 (⇔ 0 < π < p(αh−αl)
β

), then

Q∗ = αh − βc− βπ/p. Note that Q∗ ∈ (αl − βc, αh − βc).

4. If dr1(αh−βc|π)
dQ

= 0 (⇔ π = 0), then any Q ∈ [αh − βc,∞) is optimal.

It should be noted that Q∗(π) is a continuous function of π for any π > 0. If π∗ > 0,

Q∗(π) is unique. However, if π = 0, any Q ≥ αh − βc is optimal.

Proof of Theorem 3.4.1 Based on the results of Lemma 3.4.2, Q(π) is a contin-

uous function of π. Therefore, the seller’s objective function R1(π) = πQ(π) is also

continuous in π. For π = 0, R1(π) = 0. For 0 < π < p(αh−αl)
β

, Q(π) = αh−βc−βπ/p,

R1(π) = π (αh − βc− βπ/p) and dR1(π)
dπ

= αh−βc−2βπ/p. For p(αh−αl)
β

≤ π < E(α)−βc
β

,

Q(π) = E(α)− βc− βπ, R1(π) = π(E(α)− βc− πβ), and dR1(π)
dπ

= E(α)− βc− 2βπ.

For π > E(α)−βc
β

, Q(π) = 0 and R1(π) = 0. Note R1(π) is concave on
[
0, p(αh−αl)

β

)
,

[
p(αh−αl)

β
, E(α)−βc

β

)
and

[
E(α)−βc

β
, +∞

)
respectively. The derivatives at the breakpoints

are as follows.

At π = 0, dR1(0)
dπ

= αh − βc > 0
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At π = p(αh−αl)
β

, R′
1−(π) = −(αh−αl)+αl−βc and R′

1+(π) = −p(αh−αl)+αl−βc.

Since p ∈ (0, 1) (assumption 3.4.1), R′
1−(π) < R′

1+(π).

At π = E(α)−βc
β

, R′
1−(π) = −(E(α)− βc) < 0 and R′

1+(π) = 0.

Thus, the optimal price π∗ ∈
(
0, E(α)−βc

β

)
. Since at p(αh−αl)

β
and E(α)−βc

β
, the left

derivative is less than the right derivative, the seller’s objective function R1(π) is not

concave. There are three cases:

Case 1: If R′
1+(p(αh−αl)

β
) ≤ 0, i.e., αh−αl ≥ αl−βc

p
, then π∗ = p(αh−βc)

2β
∈

(
0, p(αh−αl)

β

)
.

Case 2: If R′
1−(p(αh−αl)

β
) ≥ 0, i.e., αh − αl ≤ αl − βc, then π∗ = E(α)−βc

2β
∈

(
p(αh−αl)

β
, E(α)−βc

β

)
.

Case 3: If R′
1+(p(αh−αl)

β
) > 0 and R′

1−(p(αh−αl)
β

) < 0, i.e., αl − βc < αh − αl < αl−βc
p

,

the optimal price π∗ may fall in the first interval
(
0, p(αh−αl)

β

)
or the second interval

(
p(αh−αl)

β
, E(α)−βc

β

)
. Let πl = p(αh−βc)

2β
and πr = E(α)−βc

2β
, π∗ = argmax{R1(πl), R1(πr)},

with R1(πl) = p(αh−βc)2

4β
and R1(πr) = (E(α)−βc)2

4β
. Thus, if αl−βc√

p
< αh − αl < αl−βc

p
,

R1(πl) > Rr(πr), then π∗ = p(αh−βc)
2β

. Note that π∗ ∈
(
0, p(αh−αl)

β

)
. If αl − βc <

αh − αl < αl−βc√
p

, R1(πr) > R1(πl), then π∗ = E(α)−βc
2β

with π∗ ∈
(

p(αh−αl)
β

, E(α)−βc
β

)
. If

αh − αl = αl−βc√
p

, then both πl and πr are optimal.

The results can be summarized as follows.

1. If αh − αl > αl−βc√
p

, then π∗ = p(αh−βc)
2β

. Note π∗ ∈
(
0, p(αh−αl)

β

)
.

2. If αh − αl < αl−βc√
p

, then π∗ = E(α)−βc
2β

. Note π∗ ∈
(

p(αh−αl)
β

E(α)−βc
β

)
.

3. If αh − αl = αl−βc√
p

, then π∗ ∈ {πl, πr} with πl = p(αh−βc)
2β

∈
(
0, p(αh−αl)

β

)
and

πr = E(α)−βc
2β

∈
(

p(αh−αl)
β

E(α)−βc
β

)
.

Proof of Lemma 3.4.3 The buyer’s problem is

max
qc,qs

r2(qc, qs|s, α) = U(qc + qs)− cqc − sqs

s.t. qc −Q ≤ 0
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−qc ≤ 0

−qs ≤ 0

Since the objective function is concave and the all the constraints are linear, the

Karush-Kuhn-Tucker condition is necessary and sufficient for the optimality. Let

ξ1, ξ2 and ξ3 be the lagrange multipliers with the three constraints in the order defined

above. The Karush-Kuhn-Tucker condition is

−(qc + qs)

β
+

α

β
− c− ξ1 + ξ2 = 0

−(qc + qs)

β
+

α

β
− s + ξ3 = 0

ξ1(qc −Q) = 0

ξ2qc = 0

ξ3qs = 0

qc −Q ≤ 0

−qc ≤ 0

−qs ≤ 0

ξ1, ξ2, ξ3 ≥ 0

Note that if s = c, then the buyer is indifferent in purchasing under contracts or

from the spot market, and the seller’s return doesn’t change in either case. Therefore,

if s = c, any solution satisfying the conditions in (1) is optimal. Let’s consider the

case s > c. If constraint qc ≤ Q is not active, then ξ∗1 = 0. Since s > c and ξ2 ≥ 0,

ξ∗3 > 0 and q∗s = 0. Therefore, if q∗c < Q, q∗s = 0. And the problem can be reduced

to an optimization problem with one variable, D = qc + qs. For D < Q, qc = D and

qs = 0. For D ≥ Q, qc = Q and qs = D −Q. Let f(D|s, α) = r2(qc, qs|s, α).

For D < Q, D = qc, f(D|s, α) = −D2

2β
+ αD

β
−Dc and df(D|s,α)

dD
= −D

β
+ α

β
− c.

For D > Q, then qc = Q, D = Q + qs, f(D|s, α) = D2

2β
+ αD

β
− Qc − (D − Q)s,

df(D|s,α)
dD

= −D
β

+ α
β
− s.
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Note that the f(D|s, α) is continuous at Q. Since s > c, f ′+(Q|s, α) ≤ f ′−(Q|s, α),

f(D|s, α) is a continuous concave function of D. The results for s > c are summarized

as follows.

1. If Q ≥ α− βc, i.e. f ′−(Q|s, α) ≤ 0 , then D∗ = q∗c = α− βc and q∗s = 0.

2. If Q < α− βc and s ≤ (α−Q)/β, i.e. f ′+(Q|s, α) ≥ 0, then D∗ = α− βs with

q∗c = Q and q∗s = α− βs−Q.

3. If Q < α− βc and s > (α−Q)/β, i.e. f ′−(Q|s, α) ≥ 0 and f ′+(Q|s, α) < 0, then

D∗ = q∗c = Q and q∗s = 0.

Proof of Lemma 3.4.4 The value of the objective function depends on Q. If

Q ≥ α− βc, R(s|Q,α) = 0 for any s ≥ c. Thus, any s ≥ c is optimal. If Q < α− βc,

then qs(Q, s, α) = (α−βs−Q)+. Note for s ≥ α−Q
β

and s = c, R(s|Q,α) = 0. There-

fore, only s ∈
[
c, α−Q

β

]
is interesting, where qs(Q, s, α) = α− βs−Q. Under this con-

dition, it holds that R2(s|Q,α) = (α− βs−Q)(s− c) and dR2(s|Q,α)
ds

= β(c− 2s) + α−Q.

Therefore, s∗ = α+βc−Q
2β

. Note that s∗ ∈
(
c, α−Q

β

)
.

Proof of Lemma 3.4.5 Note that only when π = 0, Q(π) > αh − βc. In this

case, R1(π) = 0. Therefore, the seller will never set π = 0 and he buyer will never

choose Q > αh − βc. Based on this argument, only Q ∈ [0, αh − βc] need to be

considered. For Q ∈ [0, αl − βc), by Lemma 3.4.4, we have the seller’s best response

s(Q,αh) = αh+βc−Q
2β

and s(Q,αl) = αl+βc−Q
2β

. The objective function and its derivative

are

r1(Q|π) = −πQ + p
[
− (αh−βc+Q)2

8β
+ αh(αh−βc+Q)

2β
−Qc− (αh−βc−Q)(αh+βc−Q)

4β

]

+(1− p)
[
− (αl−βc+Q)2

8β
+ αl(αl−βc+Q)

2β
−Qc− (αl−βc−Q)(αl+βc−Q)

4β

]

dr1(Q|π)
dQ

= −π + 3(E(α)−βc−Q)
4β

For Q ∈ [αl−βc, αh−βc], we have s(Q,αh) = αh+βc−Q
2β

and sl(Q,αh) ∈ [c, +∞). The

objective function and its derivative are
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r1(Q|π) = −πQ+p
[
− (αh−βc+Q)2

8β
+ αh(αh−βc+Q)

2β
−Qc− (αh−βc−Q)(αh+βc−Q)

4β

]
+ (1−p)(αl−βc)2

2β

dr1(Q|π)
dQ

= −π + 3p(αh−βc−Q)
4β

Note both r1(Q|π) and dr1(Q|π)
dQ

are continuous at αl−βc. Thus, r1(Q|π) is a continuous

concave function of Q on [0, αh − βc]. Depending on the value of π, the optimal Q∗

can fall in either of the two intervals.

If dr1(0|π)
dQ

≤ 0, then Q∗ = 0. The condition dr1(0|π)
dQ

≤ 0 holds if and only if

π ≥ 3(E(α)−βc)
4β

.

If dr1(0|π)
dQ

> 0 and dr1(αl−βc|π)
dQ

≤ 0, then Q∗ = E(α) − βc − 4βπ
3

. Conditions

dr1(0|π)
dQ

> 0 and dr1(αl−βc|π)
dQ

≤ 0 hold if and only if 3p(αh−αl)
4β

≤ π < 3(E(α)−βc)
4β

.

If dr1(αl−βc|π)
dQ

> 0, Q∗ = αh−βc− 4βπ
3p

. Condition dr1(αl−βc|π)
dQ

> 0 holds if and only

if π < 3p(αh−αl)
4β

.

In summary, if π = 0, any Q ∈ [αh − βc, +∞) is optimal. As mentioned before,

this will never take place. If π ∈
(
0, 3p(αh−αl)

4β

)
, then Q∗ = αh − βc − 4βπ

3p
. Note

Q∗ ∈ (αl − βc, αh − βc). If π ∈
[

3p(αh−αl)
4β

, 3(E(α)−βc)
4β

]
, then Q∗ = E(α) − βc − 4βπ

3

with Q∗ ∈ [0, αl − βc]. If π > 3(E(α)−βc)
4β

, Q∗ = 0. It should be noted that Q∗(π) is a

continuous function of π on (0, +∞). For any given π ∈ (0, +∞), Q∗(π) is unique.

Proof of Theorem 3.4.2 By Lemma 3.4.5, the buyer’s best response Q(π) is

a piecewise function. Denote the corresponding seller’s best response in stage 3 as

s(Q,α). Let qc(Q, s, α) and qs(Q, s, α) be the buyer’s corresponding best response in

stage 4. For π = 0, R1(π) = 0.

For π ∈
(
0, 3p(αh−αl)

4β

)
, Q(π) = αh−βc− 4βπ

3p
. Note Q(π) ∈ (αl−βc, αh−βc). In the

high demand state, it holds that s(Q,αh) = αh+βc−Q
2β

, qc(Q, s, αh) = Q, qs(Q, s, αh) =

αh−βc−Q
2

. In the low demand state, no transaction takes place in the spot market

qc(Q, s, αl) = αl−βc and qs(Q, s, αl) = 0. Therefore, R1(π) = π(αh−βc− 4βπ
3p

)+ 4βπ2

9p

and dR1(π)
dπ

= αh−βc− 16βπ
9p

. Let π0 = 3p(αh−αl)
4β

. It holds R′
1−(π0) = −αh−αl

3
+αl−βc

and dR1(0)
dπ

= αh − βc ≥ 0.

For π ∈
[

3p(αh−αl)
4β

, 3(E(α)−βc)
4β

]
, Q(π) = E(α)−βc− 4βπ

3
∈ [0, αl−βc]. It holds that
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s(Q,αh) = αh+βc−Q
2β

, s(Q,αl) = αl+βc−Q
2β

, qc(Q, s, αh) = qc(Q, s, αl) = Q, qs(Q, s, αh) =

αh−βc−Q
2

and qs(Q, s, αl) = αl−βc−Q
2

. Thus, the objective function and derivative are

R1(π) = π
(
E(α)− βc− 4βπ

3

)
+ p(αh−E(α)+4βπ/3)2

4β
+ (1−p)(αl−E(α)+4βπ/3)2

4β
and

dR1(π)
dπ

= E(α)− βc− 16βπ
9

It should be noted that R1(π) is continuous on [0, +∞). At the breakpoints π0

and π1 = 3(E(α)−βc)
4β

, R′
1+(π0) = −p(αh−αl)

3
+αl−βc > R′

1−(π0), R′
1−(π1) = −E(α)−βc

4
<

0 = R′
1+(π1). Thus, R1(π) is not concave on π ∈

[
0, 3(E(α)−βc)

4β

]
. Instead, R1(π) is a

piecewise concave function on [0, +∞). For π > π1, R1(π) = R1(π1). Depending on

the values of the derivatives at the breakpoints, there are three cases.

Case 1: If R′
1−(π0) = −αh−αl

3
+αl−βc ≥ 0, i.e., αh−αl

3
≤ αl−βc, then π∗ = 9(E(α)−βc)

16β

and R∗
1 = 9(E(α)−βc)2

64β
+ p

4β

(
αh − E(α)

4
− 3βc

4

)2

+ (1−p)
4β

(
αl − E(α)

4
− 3βc

4

)2

.

Case 2: If R′
1+(π0) = −p(αh−αl)

3
+αl−βc ≤ 0, i.e., (αh−αl)

3
≥ αl−βc

p
, then π∗ = 9p(αh−βc)

16β

and R∗
1 = 9p(αh−βc)2

32β
.

Case 3: If R′
1+(π0) > 0 and R′

1+(π0) < 0, then the optimal π∗ can be either of the two

local maximizers, πl = 9p(αh−βc)
16β

and πr = 9(E(α)−βc)
16β

. Let R∗
1 = max{R1(πr), R1(πl)}.

Let y = αh−αl

3
and x = αl − βc. Note R′

1+(π0) > 0 and R′
1+(π0) < 0 ⇔ x < y < x

p
.

R1(πr)−R1(π0) =
∫ πr

π0

dR1(π)
dπ

dπ =
∫ πr

π0

(
E(α)− βc− 16βπ

9

)
dπ = 9

16β

(
p2y2

2
− pxy + x2

2

)

R1(πl)−R1(π0) =
∫ πl

π0

dR1(π)
dπ

dπ =
∫ πl

π0

(
αh − βc− 16βπ

9p

)
dπ = 9

16β

(
py2

2
− pxy + px2

2

)

R1(πr)−R1(πl) = 9(1−p)(x2−y2p)
32β

Thus, if x < y < x√
p
, π∗ = πr. If x√

p
< y < x

p
, then π∗ = πl. If y = x√

p
, both πl and

πr are optimal. In summary,

1. if αh−αl

3
< αl−βc√

p
, then π∗ = 9(E(α)−βc)

16β
and

R∗
1 = 9(E(α)−βc)2

64β
+ p

4β

(
αh − E(α)

4
− 3βc

4

)2

+ (1−p)
4β

(
αl − E(α)

4
− 3βc

4

)2

;

2. if αh−αl

3
> αl−βc√

p
, then π∗ = 9p(αh−βc)

16β
and R∗

1 = 9p(αh−βc)2

32β
;

3. if αh−αl

3
= αl−βc√

p
, both πl and πr are optimal, where πl = 9p(αh−βc)

16β
, πr = 9(E(α)−βc)

16β
.
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Proof of Corollary 3.4.1 By Theorem 3.4.2, if αh−αl < 3(αl−βc)√
p

, π∗ = 9(E(α)−βc)
16β

.

Note π∗ ∈
[

3p(αh−αl)
4β

, 3(E(α)−βc)
4β

]
. By Lemma 3.4.5, Q(π∗) = E(α) − βc − 4βπ∗

3
=

E(α)−βc
4

> 0. If αh − αl > 3(αl−βc)√
p

, π∗ = 9p(αh−βc)
16β

. Note that π∗ ∈
[
0, 3p(αh−αl)

4β

]
. By

Lemma 3.4.5, Q(π∗) = αh − βc− 4βπ∗
3p

= αh−βc
4

> 0. If αh − αl = 3(αl−βc)√
p

, Q(π∗) > 0

holds based on the above arguments.

Proof of Lemma 3.4.6. The seller’s problem is

max
π

R1(π) = (1− λ)πQA(π) + λ{πQB(π) + E[G2(QB(π), α)]}

s.t. π ≥ 0

Let RA(π) = πQA(π) and RB(π) = πQB(π) + E[G2(QB(π), α)]. Note RA(π) is the

seller’s objective function at stage 1 in Section 3.4.1.1 and RB(π) is the objective

function of the seller’s stage 1 problem in Section 3.4.1.2. Recall that RA(π) is a piece-

wise function of π on intervals
[
0, p(αh−αl)

β

)
and

[
p(αh−αl)

β
, E(α)−βc

β

]
. For π ≥ E(α)−βc

β
,

RA(π) = 0. Similarly, function RB(π) is a piecewise function of π on intervals
[
0, 3p(αh−αl)

4β

)
and

[
3p(αh−αl)

4β
, 3(E(α)−βc)

4β

]
. For π ≥ 3(E(α)−βc)

4β
, RB(π) = RB

(
3(E(α)−βc)

4β

)
.

Both RA(π) and RB(π) are continuous on [0, +∞). Depending on the values of the

breakpoints, there are two cases.

Case 1: 3(E(α)−βc)
4β

≤ p(αh−αl)
β

, i.e. αh − αl ≥ 3(αl−βc)
p

.

For π ∈
[
0, 3p(αh−αl)

4β

]
, it holds that

R1(π) = (1− λ)π
(
αh − βc− βπ

p

)
+ λπ

(
αh − βc− 8βπ

9p

)

dR1(π)
dπ

= (1− λ)
(
αh − βc− 2βπ

p

)
+ λ

(
αh − βc− 16βπ

9p

)

Note that dR1(0)
dπ

= αh − βc > 0.

For π ∈
[

3p(αh−αl)
4β

, 3(E(α)−βc)
4β

]
, it holds that

R1(π) = (1− λ)π
(
αh − βc− βπ

p

)
+ λ

[
π

(
E(α)− βc− 4β

3
π
)

+ 16β2π2/9+σ2

4β

]

dR1(π)
dπ

= (1− λ)
(
αh − βc− 2βπ

p

)
+ λ

(
E(α)− βc− 16βπ

9

)

R′
1−

(
3(E(α)− βc)

4β

)
= (1− λ)

(
αh − βc− 3(E(α)− βc)

2p

)
− λ(E(α)− βc)

3
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= (1− λ)

(
−αh − βc

2
− 3(1− p)(αl − βc)

2p

)
− λ(E(α)− βc)

3

< 0

R′
1+

(
3p(αh − αl)

4β

)
= (αl − βc)− (αh − αl)

(
1

2
− λ

2
+

pλ

3

)

≤ (αl − βc)− p(αh − αl)

3
≤ 0

For π ∈
[

3(E(α)−βc)
4β

, p(αh−αl)
β

]
, it holds that

R1(π) = (1− λ)π
(
αh − βc− βπ

p

)
+ λRB

(
3(E(α)−βc)

4β

)
,

dR1(π)
dπ

= (1− λ)
(
αh − βc− 2βπ

p

)
and

R′
1+

(
3(E(α)−βc)

4β

)
= (1− λ)

(
αh − βc− 3(E(α)−βc)

2p

)
< 0.

For π ∈
[

p(αh−αl)
β

, E(α)−βc
β

]
, it holds that

R1(π) = (1− λ)π (E(α)− βc− βπ) + λRB

(
3(E(α)−βc)

4β

)

dR1(π)
dπ

= (1− λ) (E(α)− βc− 2βπ)

R′
1+

(
p(αh−αl)

β

)
= (1− λ) (−p(αh − αl) + αl − βc) ≤ 0

For π ∈
[
E(α)−βc

β
, +∞

)
, it holds that R1(π) = λRB

(
3(E(α)−βc)

4β

)
.

Thus, the optimal price π∗ ∈
[
0, 3p(αh−αl)

4β

]
and satisfies dR1(π∗)

dπ
= 0 ⇒ π∗ = p(αh−βc)

2β(1−λ
9
)
.

It holds that dπ∗
dλ

= p(αh−βc)
18β(1−λ/9)2

> 0.

Case 2: p(αh−αl)
β

≤ 3(E(α)−βc)
4β

, i.e. αh − αl ≤ 3(αl−βc)
p

.

As R1(0) = 0, π = 0 is not optimal for any λ. Note RA(π) and RB(π) are con-

tinuous and piecewise concave on (0, +∞). Therefore, R1(π) is also continuous and

piecewise concave on (0, +∞). Let I1 =
(
0, 3p(αh−αl)

4β

]
, I2 =

(
3p(αh−αl)

4β
, p(αh−αl)

β

]
, I3 =

(
p(αh−αl)

β
, 3(E(α)−βc)

4β

]
, I4 =

(
3(E(α)−βc)

4β
, E(α)−βc

β

]
, and I5 =

(
E(α)−βc

β
, +∞

)
. Based on

the property of RA(π) and RB(π), it holds that R′
1−(π) ≤ R′

1+(π) at the breakpoints

π = 3p(αh−αl)
4β

, p(αh−αl)
β

, 3(E(α)−βc)
4β

and E(α)−βc
β

. Since R′
1+

(
3(E(α)−βc)

4β

)
= −(1−λ)(E(α)−βc)

2
< 0

and R1(π) = R1

(
E(α)−βc

β

)
for all π ≥ E(α)−βc

β
, we only need to consider

(
0, 3(E(α)−βc)

4β

)
.

In other words, π∗(λ) ∈ I1, I2 or I3 for any λ ∈ [0, 1]. Define π1, π2 and π3 as the local

maximizer on the intervals I1, I2 and I3 respectively. First, we prove the following

claims.
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Claim A.0.1. The seller’s optimal surplus G(λ) is a continuous function of λ on

[0, 1].

Proof of Claim A.0.1. It holds that G(λ) = R1(π
∗(λ)) = max{R1(πi)|i = 1, 2, 3}.

Since πi is a continuous function of λ, R1(πi) is also a continuous function of λ for all

i = 1, 2, 3. Hence R1(π
∗(λ)) and G(λ) are also continuous in λ.

Note that R1(π) also depends on λ. Thus, we can use R1(π, λ) instead. Let

f(π, λ) = ∂R1(π,λ)
∂π

. Let πa = 3p(αh−αl)
4β

and πb = p(αh−αl)
β

. Define open intervals

Ĩ1 =
(
0, 3p(αh−αl)

4β

)
, Ĩ2 =

(
3p(αh−αl)

4β
, p(αh−αl)

β

)
and Ĩ3 =

(
p(αh−αl)

β
, 3(E(α)−βc)

4β

)
. The

next claim says for any fixed π ∈ Ĩ1

⋃
Ĩ2

⋃
Ĩ3, the derivative of the objective function

increases in λ. At the breakpoints, both the right and the left derivative increases as

well.

Claim A.0.2. 1. For any fixed π ∈ Ĩi, i = 1, 2, 3, ∂f(π,λ)
∂λ

> 0 for any λ ∈ [0, 1].

2. For π = πa(πb),
∂f(π,λ)

∂λ

∣∣∣
π+

> 0 and ∂f(π,λ)
∂λ

∣∣∣
π−

> 0 for any λ ∈ [0, 1].

Proof of Claim A.0.2. For π ∈ Ĩ1,
∂f(π,λ)

∂λ
= 2βπ

9p
> 0.

For π ∈ Ĩ2,
∂f(π,λ)

∂λ
= 2βπ

(
1
p
− 8

9

)
−(1−p)(αh−αl) > 2βπa

(
1
p
− 8

9

)
−(1−p)(αh−αl) =

(αh − αl)
(

1
2
− p

3

)
> 0

For π ∈ Ĩ3,
∂f(π,λ)

∂λ
= 2βπ

9
> 0.

For π = πa,
∂f(π,λ)

∂λ

∣∣∣
π−

= 2βπa

9p
> 0 and ∂f(π,λ)

∂λ

∣∣∣
π+

= 2βπa

(
1
p
− 8

9

)
−(1−p)(αh−αl) > 0.

For π = πb,
∂f(π,λ)

∂λ

∣∣∣
π−

= 2βπb

(
1
p
− 8

9

)
−(1−p)(αh−αl) > 0 and ∂f(π,λ)

∂λ

∣∣∣
π+

= 2βπb

9
> 0.

The next claim states that the optimal solution can not be the breakpoints, πa

and πb.

Claim A.0.3. For any λ ∈ (0, 1), the optimal solution π∗(λ) 6= πa(πb).

Proof of Claim A.0.3. If π∗(λ) = πa(πb), R′
1−(π∗) ≥ 0. Note R′

1−(π∗) < R′
1+(π∗)

for any λ ∈ (0, 1). Therefore, R′
1+(π∗) > 0 and πa(πb) can not be optimal.

169



Claim A.0.4. If π∗(λ0) ∈ Ĩi, i = 1, 2 or 3, is the unique optimal solution for some

λ0 ∈ (0, 1), then ∃δ > 0 such that π∗(λ) ∈ Ĩi for any λ ∈ (λ0 − δ, λ0 + δ).

Proof of Claim A.0.4. Note π∗(λ) = argmax{R1(πi(λ))|i = 1, 2, 3}, where πi(λ) is

the local optimizer in Ii. Suppose π∗(λ0) ∈ Ĩk. It holds that R1(πk(λ0)) > R1(πj(λ0)),

j 6= k. Let ε = min{R1(πk(λ0))−R1(πj(λ0))|j 6= k}. By the continuity of R1(πi(λ)),

i = 1, 2, 3, there exist δ1 such that |R1(πk(λ))−R1(πk(λ0))| < ε
2

and π(λ) ∈ Ĩk for any

λ ∈ (λ0−δ1, λ0+δ1). Similarly, there exists δ2 such that |R1(πj(λ))−R1(πj(λ0))| < ε
2
,

j 6= k, for any λ ∈ (λ0 − δ2, λ0 + δ2). Let δ = min{δ1, δ2}. Therefore,

R1(πk(λ)) > R1(πj(λ)) for any λ ∈ (λ0 − δ, λ0 + δ).

Based on above claims, we first prove π∗ increases in λ for any λ ∈ (0, 1).

By Claim A.0.3, π∗(λ) ∈ Ĩi, i = 1, 2, 3. Since R1(π) is strictly concave on Ii,

i = 1, 2, 3, there are only two cases. Either π∗(λ) ∈ Ĩi is the unique optimal so-

lution or π∗(λ) ∈ {πj|j ∈ J} with J ⊆ {1, 2, 3} and |J | > 1. For the former case, by

Claim A.0.4, if λ increases a small amount, π∗ remains in the same interval. We will

prove π∗ increases in that interval as λ increases a small amount. For the latter case,

we will prove that if π∗ jumps from one interval to another when λ increases, π∗ can

only jump to an interval on the right. Last, the case λ = 0, 1 is addressed.

Claim A.0.5. If π∗(λ) is the unique optimal solution at some λ ∈ (0, 1), then π∗(λ)

increases as λ increases a small amount.

Proof of Claim A.0.5. If π∗ ∈ Ĩ1, from above results, we can see π∗ = p(αh−βc)

2β(1−λ
9
)
,

dπ∗
dλ

= p(αh−βc)
18β(1−λ/9)2

> 0.

If π∗ ∈ Ĩ2, π∗ satisfies dR1(π∗)
dπ

= 0. In this interval, it holds

dR1(π)
dπ

= (1− λ)
(
αh − βc− 2βπ

p

)
+ λ

(
E(α)− βc− 16βπ

9

)

Thus π∗ = (1−λ)(αh−βc)+λ(E(α)−βc)

2β( 1−λ
p

+ 8λ
9 )

and dπ∗
dλ

=
(αl−βc)( 9

p
−8)+(αh−αl)

18β( 1−λ
p

+ 8λ
9

)2
> 0.

If π∗ ∈ Ĩ3, π∗ satisfies dR1(π∗)
dπ

= 0. In this interval, it holds that

dR1(π)
dπ

= E(α) − βc − 2βπ
(
1− λ

9

)
. Thus, π∗ = E(α)−βc

2β(1−λ
9
)

and dπ∗
dλ

= E(α)−βc

18β(1−λ
9
)2

> 0.
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Hence, if π∗ moves in the same interval when λ increases, then π∗ increases for any

λ ∈ (0, 1).

Second, we will prove that as λ increases from 0 to 1 and if π∗ jumps from one

interval to another, π∗ can only jump to the right. Suppose π∗ falls in Ĩ2 at some

λ0 < 1. Suppose λ1 is the smallest value such that λ1 > λ0, R1(π1(λ1)) ≥ R1(π2(λ1)).

This could happen only if at π = πa, the left derivative is negative and the right

derivative is positive for all λ ∈ [λ0, λ1]. In this case π1(λ) ∈ Ĩ1 and π2(λ) ∈ Ĩ2 for

any λ ∈ [λ0, λ1].

At λ1, it holds that

R1(π1(λ1))−R1(π2(λ1)) =
∫ πa

π1(λ1)

∣∣∣∂R1(π,λ1)
∂π

∣∣∣ dπ − ∫ π2(λ1)

πa

∂R1(π,λ1)
∂π

dπ ≥ 0

At λ0, it holds that

R1(π2(λ0))−R1(π1(λ0)) =
∫ π2(λ0)

πa

∂R1(π,λ0)
∂π

dπ − ∫ πa

π1(λ0)

∣∣∣∂R1(π,λ0)
∂π

∣∣∣ dπ ≥ 0

As π1 and π2 strictly increases in λ, we know that |π1(λ1)− πa| < |π1(λ0)− πa|
and |π2(λ1)− πa| > |π1(λ0)− πa|. By Claim A.0.2,

∣∣∣∂R1(π,λ1)
∂π

∣∣∣ <
∣∣∣∂R1(π,λ0)

∂π

∣∣∣ for any

fixed π on [π1(λ0), πa] and ∂R1(π,λ1)
∂π

> ∂R1(π,λ0)
∂π

for any fixed π on [πa, π2(λ1)]. Thus,

R1(π2(λ1))−R1(π1(λ1)) > R1(π2(λ0))−R1(π1(λ0)) ≥ 0, which contradicts the state-

ment.

By similar arguments, we can see that if π∗(λ0) falls in Ĩ3 for some λ0 > 0, then

π∗(λ) can not fall in Ĩ2, ∀λ > λ0. Next we will prove π∗(λ) can not fall in Ĩ1 also.

Suppose λ1 is the smallest value such that λ1 > λ0, R1(π1(λ1)) ≥ R1(π3(λ1)). This

holds only if R′
1−(πa) < 0 and R′

1+(πa) > 0 for any λ ∈ (λ0, λ1).

At λ1, it holds that R1(π1(λ1))−R1(π3(λ1)) =
∫ πa

π1(λ1)

∣∣∣∂R1(π,λ1)
∂π

∣∣∣ dπ−∫ πb

πa

∂R1(π,λ1)
∂π

dπ−
∫ π3(λ1)

πb

∂R1(π,λ1)
∂π

dπ ≥ 0

At λ0, it holds that R1(π3(λ0))−R1(π1(λ0)) = − ∫ πa

π1(λ0)

∣∣∣∂R1(π,λ0)
∂π

∣∣∣ dπ+
∫ πb

πa

∂R1(π,λ1)
∂π

dπ+
∫ π3(λ0)

πb

∂R1(π,λ0)
∂π

dπ ≥ 0

As π1 and π3 strictly increases in λ, we know that |π1(λ1)− πa| < |π1(λ0)− πa| and

|π3(λ1)− πb| > |π1(λ0)− πb|. By Claim A.0.2,
∣∣∣∂R1(π,λ1)

∂π

∣∣∣ <
∣∣∣∂R1(π,λ0)

∂π

∣∣∣ for any fixed
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π on [π1(λ0), πa],
∂R1(π,λ1)

∂π
> ∂R1(π,λ0)

∂π
for any fixed π on [πb, π3(λ1)] and ∂R1(π,λ1)

∂π
>

∂R1(π,λ0)
∂π

for any fixed π on (πa, πb) . Thus, R1(π3(λ1))− R1(π1(λ1)) > R1(π3(λ0))−
R1(π1(λ0)) ≥ 0, which contradicts the statement.

Finally, we show that at λ = 0 or 1, π∗ increases in λ. For λ = 0, by Theorem 3.4.1,

π∗ 6= πb. If π∗ ∈ Ĩi, i = 1, 2, 3, the statement holds directly from the above arguments.

If π∗ = πa, R′
1−(πa) = R′

1+(πa) at λ = 0. By Claim A.0.2, as λ increases, both R′
1−(πa)

and R′
1+(πa) increase. Therefore, π∗ moves to the right.

For λ = 1, by Theorem 3.4.2, π∗ 6= πa. If π∗ ∈ Ĩi, i = 1, 2, 3, the statement holds

directly from the above arguments. If π∗ = πb, similar arguments hold.

Combining the results from Case 1 and Case 2, we conclude that π∗(λ) strictly

increases as λ increases.

Proof of Theorem 3.4.3. In the proof of Lemma 3.4.6, we have showed that

depending the values of the breakpoints, there are two cases.

Case 1: 3(E(α)−βc)
4β

≤ p(αh−αl)
β

, i.e. αh − αl ≥ 3(αl−βc)
p

. In this case π∗(λ) = p(αh−βc)

2β(1−λ
9
)

and dπ∗(λ)
dλ

= p(αh−βc)

18β(1−λ
9
)2

> 0. It holds that

Q∗(λ) = αh − βc− βπ∗
p

(
1 + λ

3

)
and dQ∗(λ)

dλ
= −βπ∗

3p
− β

p

(
1 + λ

3

)
dπ∗(λ)

dλ
< 0

Therefore, as λ increases, the price of the option increases and the quantity of options

bought decreases in this interval.

Case 2: p(αh−αl)
β

< 3(E(α)−βc)
4β

, i.e. αh − αl < 3(αl−βc)
p

. By Lemma 3.4.6, we have

showed that if π∗ stays in the same interval as λ increases, then π∗ increases. And if

there is a jump in π∗, π∗ can only jump from one interval to another to the right and

can never jump back. We will first show that in the former case, as λ increases, Q∗

decreases. Then we will show that a jump in π∗ results in a jump down in Q∗.

Case 2.a: If π∗ ∈
[
0, 3p(αh−αl)

4β

)
, dQ∗(λ)

dλ
≤ 0 directly from Case 1.

Case 2.b: If π∗ ∈
[

3p(αh−αl)
4β

, p(αh−αl)
β

)
, π∗(λ) = (αh−βc)−λ(1−p)(αh−αl)

2β( 1−λ
p

+ 8λ
9

)
and
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dπ∗(λ)
dλ

=
(αl−βc)( 9

p
−8)+(αh−αl)

18β( 1−λ
p

+ 8λ
9

)2
> 0. It holds that Q∗(λ) = (1−λ)βπ∗

p
+ λ4βπ∗

9

dQ∗(λ)

dλ
=

−4(αl−βc)
9p

+ (1− λ(1− p))
(

1−λ
p

+ 8λ
9

)(
−1

p
+ 4

9

)
(αh − αl)

2
(

1−λ
p

+ 8λ
9

)2

< − 4(αl − βc)

18p
(

1−λ
p

+ 8λ
9

)2 ≤ 0

Therefore, if the optimal price falls in this interval, then as λ increases, π∗ increases

and Q∗ decreases.

Case 2.c: If π∗ ∈
[

p(αh−αl)
β

, 3(E(α)−βc)
4β

]
, π∗(λ) = E(α)−βc

2β(1−λ
9
)
and dπ∗(λ)

dλ
= E(α)−βc

18β(1−λ
9
)2

> 0. It

holds that Q∗(λ) = E(α)−βc−βπ∗
(
1 + λ

3

)
and dQ∗(λ)

dλ
= −βπ∗

3
−β

(
1 + λ

3

) dπ∗(λ)
dλ

< 0

Thus, if the optimal price falls in this interval, the statement still holds.

In the proof of Lemma 3.4.6, we have shown that π∗ may moves from one interval

to another on the right. That is at some λ, π∗(λ) ∈ {πi, πj} with πi < πj, where

πi(j) is the local maximizer in Ĩi(j) and i < j. In this case both QA(πi) > QA(πj) and

QB(πi) ≥ QB(πj). Therefore, Q∗ strictly decreases in λ.

Proof of Theorem 3.4.4. In the proof of Lemma 3.4.6, we have shown that de-

pending the values of the breakpoints, there are two cases.

Case 1: 3(E(α)−βc)
4β

≤ p(αh−αl)
β

, i.e. αh − αl ≥ 3(αl−βc)
p

. In the proof of Lemma 3.4.6,

we have already shown that π∗(λ) ∈
(
0, 3p(αh−αl)

4β

)
, π∗(λ) = p(αh−βc)

2β(1−λ/9)

G(λ) = (1− λ)π∗
(
αh − βc− βπ∗

p

)
+ λπ∗

(
αh − βc− 8βπ∗

9p

)
. Let F (λ, π∗(λ)) = G(λ).

Note that ∂F (λ,π∗(λ))
∂π∗ = dR1(π∗)

dπ
= 0. Hence,

dG(λ)
dλ

= ∂F (λ,π∗(λ))
∂λ

+ ∂F (λ,π∗(λ))
∂π∗

dπ∗
dλ

= β(π∗)2
9p

> 0 Therefore, G(λ) increases in λ.

Case 2: p(αh−αl)
β

< 3(E(α)−βc)
4β

, i.e. αh − αl < 3(αl−βc)
p

. It has been shown in the

proof of Lemma 3.4.6 that π∗(λ) ∈
(
0, 3(E(α)−βc)

4β

)
for any λ ∈ (0, 1). Depending on

the values of the parameters, for a given λ ∈ (0, 1), the optimal option price π∗(λ)

can fall in any of the intervals Ĩ1, Ĩ2 or Ĩ3 defined in the proof of Lemma 3.4.6. Let

πa = 3p(αh−αl)
4β

and πb = p(αh−αl)
β

. Note that only if λ = 0, π∗ = πa may hold. Only

if λ = 1, π∗ = πb may hold. In both cases, dR1(π∗)
dπ

= 0 holds. In summary, for any
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λ ∈ [0, 1], π∗ may fall in Ĩ1, Î2 = Ĩ2 ∪ {πa} or Î3 = Ĩ3 ∪ {πb} and dR1(π∗)
dπ

= 0 holds.

As shown in the proof of Lemma 3.4.6, when λ increases, π∗ increases from left

to right and may jump from an interval to another interval on the right. We first

prove that in every interval, when λ increases and π∗ stays in the same interval, the

conclusion holds. Also, if there is a jump of π∗ among intervals, G stays the same

before and after the jump because of the continuity of G(λ).

Case 2.a: If π∗(λ) ∈ Ĩ1, then the proof is the same as that in Case 1.

Case 2.b: If π∗(λ) ∈ Î2, then π∗ = (1−λ)(αh−βc)+λ(E(α)−βc)

2β( 1−λ
p

+ 8λ
9

)
. Let σ =

√
p(1− p)(αh − αl)2.

It holds that

G(λ) =
[(1− λ)(αh − βc) + λ(E(α)− βc)]2

4β
(

1−λ
p

+ 8λ
9

) +
λσ2

4β

dG(λ)

dλ
=

[−(αh − βc) + (E(α)− βc)][(1− λ)(αh − βc) + λ(E(α)− βc)]

2β
(

1−λ
p

+ 8λ
9

)

+

(
1
p
− 8

9

)
[(1− λ)(αh − βc) + λ(E(α)− βc)]2

4β
(

1−λ
p

+ 8λ
9

)2 +
σ2

4β

=
l1

4β(1−λ
p

+ 8λ
9

)2

where

l1 = (αh − αl)
2

[
(1− λ + λp)− λ(1− p)(1− λ + 8λp/9)

9

]

+2(αh − αl)(αl − βc)(1− λ + λp)

[
1

9
+ λ

(
1

p
+

8p

9
− 17

9

)]

+(αl − βc)2

(
1

p
− 8

9

)

Since
[

(1−λ+λp)−λ(1−p)(1−λ+8λp/9)
9

]
> 0 and

[
1
9

+ λ
(

1
p

+ 8p
9
− 17

9

)]
≥ 0, dG(λ)

dλ
> 0.

Case 2.c: If π∗(λ) ∈ Î3, then

G(λ) = (1− λ)π∗ (E(α)− βc− βπ∗) + λ
[
π∗

(
E(α)− βc− 8βπ∗

9

)
+ σ2

4β

]

Let F (λ, π∗(λ)) = G(λ). Since ∂F ∗(λ,π∗(λ))
∂π∗ = dR1(π∗)

dπ
= 0,

dG(λ)

dλ
=

∂F ∗(λ, π∗(λ))

∂λ
+

∂F ∗(λ, π∗(λ))

∂π∗
dπ∗(λ)

dλ
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= −π∗(E(α)− βc− βπ∗) + π∗
(
E(α)− βc− 8βπ∗

9

)
+

σ2

4β

=
β(π∗)2

9
+

σ2

4β
> 0

Therefore, dG(λ)
dλ

> 0 for all λ ∈ [0, 1].

Proof of Theorem 3.4.5. Let π∗(λ) be the optimal option price for a given λ ∈ [0, 1].

Let V (λ) = g1(π
∗(λ)) and W = G(λ) + V (λ). Base on the proof of Theorem 3.4.4,

there are two cases as follows.

Case 1: p(αh−αl)
β

≥ 3(E(α)−βc)
4β

, i.e., αh − αl ≥ 3(αl−βc)
p

.

In this case, it follows that π∗(λ) = p(αh−βc)

2β(1−λ
9 )

. Note that π∗(λ) < 3p(αh−αl)
4β

= πa.

Therefore, QA(π∗) = αh − βc − βπ∗
p

, QB(π∗) = αh − βc − 4βπ∗
3p

and αh − βsh =

αh − βc− 2βπ∗
3p

. It holds that

W (λ) = (1− p)

[
−(αl − βc)2

2β
+

(αl − βc)αh

β
− (αl − βc)c

]

+(1− λ)p

(
−QA(π∗)2

2β
+

αhQA(π∗)
β

−QA(π∗)c
)

+λp

[
−(αh − βsh)

2

2β
+

(αh − βsh)αh

β
− (αh − βsh)c

]

= l1 + l2 + l3

where l1 = (1− p)
[
− (αl−βc)2

2β
+ (αl−βc)αl

β
− (αl − βc)c

]
,

l2 = p
[
− (αh−βc−βπ∗/p)2

2β
+ (αh−βc)(αh−βc−βπ∗/p)

β

]
and l3 = λ5β(π∗)2

18p
.

It holds that dl1
dλ

= 0, dl2
dλ

= −βπ∗
p

dπ∗
dλ

and dl3
dλ

= 5β(π∗)2
18p

+ λ5βπ∗
9p

dπ∗
dλ

. Since λ5βπ∗
9p

dπ∗
dλ
≥ 0

and βπ∗
p

dπ∗
dλ

= π∗(αh−βc)

18(1−λ
9 )

2 , 5β(π∗)2
18p

= π∗(αh−βc)

18(1−λ
9 )

2 × 5(1−λ
9 )

2
> βπ∗

p
dπ∗
dλ

, we can conclude

dW (λ)
dλ

= dl1
dλ

+ dl2
dλ

+ dl3
dλ

> 0.

Note W (λ) = G(λ) + V (λ) and dG(λ)
dλ

= β(π∗)2
9p

. It holds

dV (λ)
dλ

= dW (λ)
dλ

− dG(λ)
dλ

= −βπ∗
p

dπ∗
dλ

+ 3β(π∗)2
18p

+ λ5βπ∗
9p

dπ∗
dλ

> 0

Case 2: p(αh−αl)
β

< 3(E(α)−βc)
4β

, i.e., αh − αl < 3(αl−βc)
p

The optimal solution can fall in any of the three intervals,
[
0, 3p(αh−αl)

4β

)
,

[
3p(αh−αl)

4β
, p(αh−αl)

β

)
and

[
p(αh−αl)

β
, 3(E(α)−βc)

4β

]
. If the optimal solution π∗ jumps from
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one interval to another at some λ, by Lemma 3.4.6, total purchased products drops.

Therefore, total social surplus and buyer’s surplus may decrease.

If π∗(λ) for some λ ∈ I ⊂ I1, it has been shown that dW (λ)
dλ

≥ 0 and dV (λ)
dλ

≥ 0.

Therefore, as λ increases, W (λ) and V (λ) may increase or decrease. Such property

is demonstrated in Example 1 and Example 2.

Proof of Lemma 3.4.7 Let RA(π) = πQA(π) and RB(π) = πQB(π)+E[G2(QB(π), α)].

Since QA ≤ C ≤ αl − βc, all QA will be exercised in both demand states in Pe-

riod 2. By simple analysis, we can get QA(π) = C, ∀π ∈
[
0, E(α)−βc−C

β

)
and

QA(π) = E(α)− β(c + π), ∀π ∈
[
E(α)−βc−C

β
, E(α)−βc

β

]
. It follows that the unique opti-

mal solution of RA(π) is E(α)−βc−C
β

.

Similarly, QB ≤ C ≤ αl − βc, all QB will be exercised in both demand states in

Period 2. For any 0 ≤ QB < C, the optimal spot prices in the subgame are αh−C
β

and

αl−C
β

. It follows that for π > E(α)−βc−C
β

, QB(π) = 0; for π < E(α)−βc−C
β

, QB(π) = C;

for π = E(α)−βc−C
β

, any QB(π) ∈ [0, C] is optimal to the buyer. By simple analysis,

we can see any π ≥ E(α)−βc−C
β

is optimal to RB(π).

Therefore, π∗ = E(α)−βc−C
β

is the solution for all λ ∈ [0, 1].

Proof of Theorem 3.4.6 By Lemma 3.4.7, π∗ = E(α)−βc−C
β

for all λ ∈ [0, 1].

And Q∗(λ) = (1 − λ)QA(π∗) + λQB(π∗). Note that QA(π∗) = C and QB(π∗) ≤ C.

Therefore, dQ∗(λ)
dλ

= QB(π∗)−QA(π∗) ≤ 0.

Proof of Theorem 3.4.7 By Lemma 3.4.7, π∗ = E(α)−βc−C
β

for all λ ∈ [0, 1]. The

seller’s surplus G(λ) = (1−λ)RA(π∗)+λRB(π∗). Note that RA(π∗) = RB(π∗) = π∗C.

Therefore, G(λ) = π∗C = C(E(α)−βc−C)
β

for all λ ∈ [0, 1].

Proof of Theorem 3.4.8 By Lemma 3.4.7, π∗ = E(α)−βc−C
β

for all λ ∈ [0, 1]. Let

VA(π∗) be the buyer’s surplus if he doesn’t transact on the spot market and let VB(π∗)

be his surplus if he does. The buyer’s expected surplus V (λ) = (1− λ)VA(π∗) + λVB(π∗).

Note that VA(π∗) = VB(π∗) = C2

2β
for all λ ∈ [0, 1]. Therefore, V (λ) = C2

2β
for all

λ ∈ [0, 1]. The total social surplus W (λ) = C(E(α)−βc−C2/2)
β

for all λ ∈ [0, 1].
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Proof of Lemma 3.5.1 Since no buyer will purchase more than αh − βc, only

Q ∈ [0, αh − βc] is interesting. The outline of the proof is as follows. First, we prove

that for any given π, sh ≥ c and sl ≥ c, the objective function of the buyers’ problem,

r1(Q|π), is concave in Q on [0, αh − βc], thus the first order condition is necessary

and sufficient for optimality. For any given Q, the optimal spot prices in Period 2,

sh and sl, are characterized in Lemma 3.4.4. Combining those results, a set of val-

ues (Q, sh, sl) is an equilibrium in the subgame satisfy the optimal condition for the

buyers’ problem and the seller’s problem at stage 3.

Let g2(Q, s, α) denotes the best return for each buyer in Period 2. The argument

s denotes the spot price that each buyer takes as given and not a function of Q. We

use sh and sl to denote spot prices for the high demand state and low demand state

respectively in this proof. The objective function in the buyers’ problem at stage 2 is

r1(Q|π) = −πQ + pg2(Q, sh, αh) + (1− p)g2(Q, sl, αl)

Since the first term −πQ is linear, it is concave. Next, we will show g2(Q, sh, αh) and

g2(Q, sl, αl) are both concave in Q.

Denote each buyer’s corresponding best response at stage 4 as qc(Q, s, α) and

qs(Q, s, α). It holds that

g2(Q, sh, αh) = −(qc(Q, sh, αh) + qs(Q, sh, αh)))
2

2β

+
αh(qc(Q, sh, αh) + qs(Q, s, αh))

β
− qc(Q, sh, αh)c− qs(Q, sh, αh)sh

Depending on the value of αh − βsh, there are two cases.

Case 1-H: αh − βsh < 0. For Q ∈ [0, αh − βc), g2(Q, sh, αh) = −Q2

2β
+ αhQ

β
− Qc.

Therefore, it is concave.

Case 2-H: 0 ≤ αh − βsh ≤ αh − βc. For Q ∈ [0, αh − βsh), it holds that

g2(Q, sh, αh) = −(αh − βsh)
2

2β
+

αh(αh − βsh)

β
−Qc− (αh − βsh −Q)sh

d(g2(Q, s, αh))

dQ
= sh − c
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For Q ∈ [αh − βsh, αh − βc], it holds that

g2(Q, sh, αh) = −Q2

2β
+

αhQ

β
−Qc

d(g2(Q, sh, αh))

dQ
=

αh − βc−Q

β

At the breakpoint Q = αh− βsh, g2(Q, sh, αh) is continuous and the left derivative is

equal to the right derivative.

g′2−(Q, sh, αh) = g′2+(Q, sh, αh) =
αh − βc−Q

β

Combining both cases, g2(Q, sh, αh) is concave in Q on [0, αh − βc].

Similarly, we can prove g2(Q, sl, αl) is also concave on [0, αh − βc]. Note

g2(Q, sl, αl) = −(qc(Q, sl, αl) + qs(Q, sl, αl)))
2

2β

+
αl(qc(Q, sl, αl) + qs(Q, s, αl))

β
− qc(Q, sl, αl)c− qs(Q, sl, αl)sl

Depending on the values of αl − βsl, there are also two cases, αl − βsl < 0 and

0 ≤ αl − βsl ≤ αl − βc. The proof of the concavity of this term is as follows.

Case 1-L: αl − βsl < 0. For Q ∈ [0, αl − βc], g2(Q, sl, αl) = −Q2

2β
+ αlQ

β
−Qc. Thus,

it is concave. For Q ∈ [αl−βc, αh−βc], g2(Q, sl, αl) = (αl−βc)2

2β
. Note at Q = αl−βc,

g2(Q, sl, αl) is also continuous, and the right derivative and left derivative are both

equal to zero.

Case 2-L: 0 ≤ αl − βsl ≤ αl − βc. For Q ∈ [0, αl − βsl), it holds that

g2(Q, sl, αl) = −(αl − βsl)
2

2β
+

αl(αl − βsl)

β
−Qc− (αl − βsl −Q)sl

dg2(Q, sl, αl)

dQ
= sl − c

For Q ∈ [αl − βsl, αl − βc), it holds that g2(Q, sl, αl) = −Q2

2β
+ αlQ

β
− Qc and

dg2(Q,sl,αl)
dQ

= αl−βc−Q
β

. For Q ∈ [αl − βc, αh − βc], it holds that g2(Q, sl, αl) = (αl−βc)2

2β
.

Note at Q = αl − βsl, g2(Q, sl, αl) is continuous and

g′2−(Q, sl, αl) = g′2+(Q, sl, αl) =
αl − βc−Q

β
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Also at Q = αl − βc, g2(Q, sl, αl) is continuous and

g′2−(Q, sl, αl) = g′2+(Q, sl, αl) = 0

Thus, g2(Q, sl, αl), is concave on [0, αh − βc].

Because the objective function is concave and the constraints are linear , the

Karush-Kuhn-Tucker condition is necessary and sufficient for the optimality in this

problem. Now, let’s consider the seller’s best response for a given Q. We also denote

the best response of the seller in the spot market as sh and sl in the high and low

market states respectively. By Lemma 3.4.4, for any Q ∈ [0, αl − βc], sh = αh+βc−Q
2β

and sl = αl+βc−Q
2β

. If Q ∈ [αl−βc, αh−βc], sh = α+βc−Q
2β

and sl ≥ c. Let (Q∗, s∗h, s
∗
l ) be

an equilibrium, it must satisfy the optimality conditions for both the seller’s problem

and the buyer’s problem.

If Q∗ ∈ (0, αl − βc], the conditions are

s∗h =
αh + βc−Q∗

2β
(A.0.1)

s∗l =
αl + βc−Q∗

2β
(A.0.2)

dr1(Q
∗|π)

dQ
= 0 (A.0.3)

Equations (A.0.1) and (A.0.2) imply Q∗ ≤ αl − βs∗l ≤ αh − βs∗h. Equation (A.0.3)

implies dr1(Q∗|π)
dQ

= −π + p(s∗h − c) + (1 − p)(s∗l − c) = 0. Thus, the system (A.0.1),

(A.0.2) and (A.0.3) requires, for a given π ≥ 0, a market equilibrium Q∗ ∈ (0, αl−βc]

must satisfy −π + E(α)−βc−Q∗
2β

= 0. At the endpoints Q = 0 and Q = αl − βc,

r′1+(0, π) = −π + E(α)−βc
2β

> 0 and r′1−(αl−βc, π) = −π + p(αh−αl)
2β

≤ 0. Such condition

holds if and only if π ∈
[

p(αh−αl)
2β

, E(α)−βc
2β

)
, Q∗ = E(α)− βc− 2βπ.

If Q∗ ∈ (αl − βc, αh − βc], the conditions are

s∗h =
αh + βc−Q∗

2β
(A.0.4)

s∗l ≥ c (A.0.5)
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dr1(Q
∗|π)

dQ
= 0 (A.0.6)

Equations (A.0.4) and (A.0.5) imply Q∗ ≤ αh − βs∗h. Equation (A.0.6) is dr1(Q∗|π)
dQ

=

−π +p(s∗h− c) = 0. Thus, the system (A.0.4), (A.0.5) and (A.0.6) implies, for a given

π ≥ 0, a market equilibrium Q∗ ∈ (αl−βc, αh−βc] must satisfy −π+ p(αh−βc−Q∗)
2β

= 0.

At the endpoints Q = αl − βc and Q = αh − βc, r′1+(αl − βc|π) = −π + p(αh−αl)
2β

> 0

and r1+(αh − βc|π) = −π ≤ 0. Such condition holds if and only if π ∈
[
0, p(αh−αl)

2β

)
,

Q∗ = αh − βc− βπ/p.

If Q∗ = 0, the conditions are

s∗h =
αh + βc−Q∗

2β
(A.0.7)

s∗l =
αl + βc−Q∗

2β
(A.0.8)

dr1(Q
∗|π)

dQ
≤ 0 (A.0.9)

Such condition holds if and only if π ≥ E(α)−βc
2β

.

Based on the above analysis, we summarize the results as follows.

1. If π ∈
(
0, p(αh−αl)

2β

]
, then the equilibrium (Q∗, s∗h, s

∗
l ) in the subgame is

Q∗ = αh − βc− 2βπ
p

, s∗h = αh+βc−Q∗
2β

, and s∗l ≥ c. Note Q∗ ∈ [αl − βc, αh − βc).

2. If π ∈
(

p(αh−αl)
2β

, E(α)−βc
2β

]
, then the unique equilibrium in the subgame is (Q∗, s∗h, s

∗
l ),

where Q∗ = E(α)− βc− 2βπ, s∗h = αh+βc−Q∗
2β

, and s∗l = αh+βc−Q∗
2β

. Note Q∗ ∈
[0, αl − βc).

3. If π > E(α)−βc
2β

, then the unique equilibrium is (Q∗, s∗h, s
∗
l ), where Q∗ = 0, s∗h =

αh+βc
2β

, and s∗l = αh+βc
2β

.

4. If π = 0, then (Q∗, s∗h, s
∗
l ) satisfies Q∗ ≥ αh − βc, s∗h ≥ c, and s∗l ≥ c.

Note, at the breakpoint π = p(αh−αl)
2β

, Q∗ = E(α) − βc − 2βπ = αh − βc − 2βπ
p

.

Also, there are no overlaps among the intervals defined above. Therefore, for any

given π ∈ (0, +∞), Q∗ is unique.
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Proof of Theorem 3.5.1 Let R̂1(π) = R1(π)/N . Since N > 0, the optimization

problem is equivalent to maximize R̂1(π) with the nonnegative constraint. Without

confusion, we useR1(π) as R̂1(π) in the following proof for simplicity.

For π ∈
[
0, p(αh−αl)

2β

)
, by Lemma 3.5.1, Q = αh − βc − 2βπ

p
. The corresponding

spot prices sh = αh+βc−Q
2β

and sl can be any value no smaller than the marginal cost.

It holds that

R1(π) = π

(
αh − βc− 2βπ

p

)
+

p(αh − βc−Q)2

4β

= π

(
αh − βc− βπ

p

)

The derivative of function R1(π) in this interval is dR1(π)
dπ

= αh − βc− 2βπ
p

. At π = 0,

dR1(0)
dπ

= αh − βc > 0. At π = p(αh−αl)
2β

, R′
1−(π) = αl − βc ≥ 0. Therefore, the optimal

solution is not in this interval.

For π ∈
[

p(αh−αl)
2β

, E(α)−βc
2β

]
, Q = E(α)− βc− 2βπ. It holds that

R1(π) = π(E(α)− βc− 2βπ) +
p(αh − βc−Q)2 + (1− p)(αl − βc−Q)2

4β

= π(E(α)− βc− βπ) +
σ2

4β

The derivative is dR1(π)
dπ

= E(α) − βc − 2βπ. At π = p(αh−αl)
2β

, function R1(π) is

continuous and R′
1−(π) = R′

1+(π) = αl−βc ≥ 0. At the end point π = E(α)−βc
2β

, Q = 0

and dR1(π)
dπ

= 0.

For π > E(α)−βc
2β

, Q = 0 and R1(π) = R1

(
E(α)−βc

2β

)
. Therefore, function R1(π)

is a continuous concave function on [0, +∞). Since at the endpoint π = E(α)−βc
2β

,

dR1(π)
dπ

= 0, the optimal option price can be any value in
[
E(α)−βc

2β
,∞

)
. In this price

range, the result is the same as if the buyers do not enter into contracts at all.

Proof of Lemma 3.5.2 To simplify the notation, we first divide R1(π) by N

without changing the problem. Let RA(π) = πQA(π) and RB(π) = πQB(π) +

E(G2(QB(π), α))/N . Note that from the proof of Theorem 3.4.1, RA(π) is a piece-

wise function on
[
0, p(αh−αl)

β

)
and

[
p(αh−αl)

β
, E(α)−βc

β

]
. For π > E(α)−βc

β
, RA(π) =
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RA

(
E(α)−βc

β

)
= 0. Similarly, from Theorem 3.5.1, RB(π) is a piecewise function

on
[
0, p(αh−αl)

2β

)
and

[
p(αh−αl)

2β
, E(α)−βc

2β

]
. For π > E(α)−βc

2β
, RB(π) = RB

(
E(α)−βc

2β

)
.

Therefore, based on the positions of the breakpoints, there are two cases.

Case 1: p(αh−αl)
β

≥ E(α)−βc
2β

⇔ αh − αl ≥ αl−βc
p

.

Let the optimal option price in the contract market only setting be π∗A and the

optimal price in the contract market and spot market with full participation setting

be π∗B. By Theorem 3.4.1, π∗A = p(αh−βc)
2β

. By Theorem 3.5.1, π∗B can be any value

larger or equal to E(α)−βc
2β

. Note π∗A < E(α)−βc
2β

, the optimal solution π∗ should only fall

in
[

p(αh−βc)
2β

, E(α)−βc
2β

]
. Since both RA(π) and RB(π) are concave on

[
p(αh−βc)

2β
, E(α)−βc

2β

]
,

R1(π) is also concave in this interval. Thus, the first order condition is necessary and

sufficient for optimality.

Since p(αh−αl)
2β

≤ p(αh−βc)
2β

, QB(π) = E(α)−βc−2βπ for any π ∈
[

p(αh−βc)
2β

, E(α)−βc
2β

]
.

In this interval, it holds that

R1(π) = (1− λ)π

(
αh − βc− βπ

p

)
+ λ

[
π(E(α)− βc− βπ) +

σ2

4β

]

The derivative of the objective function is

dR1(π)

dπ
= (1− λ)

(
αh − βc− 2βπ

p

)
+ λ(E(α)− βc− 2βπ)

The optimal price π∗ must satisfy dR1(π∗)
dπ

= 0. Therefore, π∗ = (1−λ)(αh−βc)+λ(E(α)−βc)

2β[ 1−λ
p

+λ]

and dπ∗(λ)
dλ

= (1−p)(αl−βc)

2βp( 1−λ
p

+λ)
2 ≥ 0. Hence, in this case, the equilibrium π∗ increases in λ.

Case 2: p(αh−αl)
β

< E(α)−βc
2β

⇔ αh − αl < αl−βc
p

.

Case 2.a: αh − αl ≤ αl−βc√
p

. In this case, π∗A = E(α)−βc
2β

, π∗B = E(α)−βc
2β

, thus

π∗ = E(α)−βc
2β

and does not change as λ changes.

Case 2.b: αl−βc√
p

< αh − αl < αl−βc
p

. In this case π∗A = αh−βc
2β

. Let π∗B = E(α)−βc
2β

,

which is also a local maximizer of RA(π) in the interval
[

p(αh−αl)
β

, E(α)−βc
β

]
. Denote

the intervals Ĩ1 =
(

p(αh−βc)
2β

, p(αh−αl)
β

)
and Ĩ2 =

(
p(αh−αl)

β
, E(α)−βc

2β

)
.

If π∗ ∈ Ĩ1, π∗ = (1−λ)(αh−βc)+λ(E(λ)−βc)

2β[ 1−λ
p

+λ]
. From the results in Case 1, we can get

that π∗ increases in λ if π∗ moves in this interval. If π∗ ∈ Ĩ2, π∗A = π∗B = E(α)−βc
2β

.
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Thus, π∗ = E(α)−βc
2β

. Note π∗ can’t be the breakpoint p(αh−αl)
β

, since at this point the

right derivative is strictly larger than the left derivative. Note for λ = 0, π∗ = αh−βc
2β

and for λ = 1, π∗ = E(α)−βc
2β

. Thus, it is easy to see the result holds.

Next we will show that that when λ increases from 0 to 1, the optimal solution

π∗(λ) can only jump from one interval to the other on the right and can never jump

to the left. The proof is similar to that in Lemma 3.4.6. First, we will show at for a

fixed π, as λ increases, dR1(π)
dπ

increases. Without confusion, let f(π, λ) = dR1(π)
dπ

.

For π ∈ Ĩ1, it holds that

f(π, λ) = (1− λ)

(
αh − βc− 2βπ

p

)
+ λ(E(α)− βc− 2βπ)

∂f(π, λ)

∂λ
=

2βπ

p
− 2βπ > 0

For π ∈ Ĩ2, it holds that

f(π, λ) = E(α)− βc− 2βπ

∂f(π, λ)

∂λ
= 0

Let πl(λ) and πr(λ) be the local maximizers in Ĩ1 and Ĩ2 respectively. For a given

λ, π∗ = argmax{R1(πl), R1(πr)}. Suppose at λ0, π∗ = πr. We will prove that as λ0

increases to 1, π∗ can never fall back to Ĩ1. Suppose at the smallest λ1 such that

λ1 > λ0 and the optimal price becomes πl again. This can happen only if from λ0 to

λ1, R′
1+

(
p(αh−αl)

β

)
> 0 and R′

1−
(

p(αh−αl)
β

)
< 0 always hold. Note that

R1(πl(λ))−Rl(πr(λ)) =

∫ p(αh−αl)

β

πl(λ)

∣∣∣∣
dR1(π)

dπ

∣∣∣∣ dπ −
∫ πr(λ)

p(αh−αl)

β

dR1(π)

dπ
dπ

decreases in λ. Thus, this provides a contradiction. Therefore, we can see that as λ

increases from 0 to 1, π∗(λ) increases from π∗A to π∗B.

Proof of Theorem 3.5.2 To simplify the notation, we first divide Q∗(λ) by N

without changing the problem. Based on the proof of Lemma 3.5.2, we can divide

this proof into two cases according to values of the breakpoints.
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Case 1: p(αh−αl)
β

≥ E(α)−βc
2β

⇔ αh − αl ≥ αl−βc
p

.

In this case, the equilibrium price is π∗ = (1−λ)(αh−βc)+λ(E(α)−βc)

2β[ 1−λ
p

+λ]
. The total con-

tracting quantity in equilibrium is Q∗ = (1−λ)βπ∗
p

. It holds that

dQ∗(λ, π∗(λ))

dλ
=

∂Q∗(λ, π∗(λ))

∂λ
+

∂Q∗(λ, π∗(λ))

∂π∗
dπ∗(λ)

dλ

= −βπ∗

p
+ (1− λ)

β

p

dπ∗(λ)

dλ

where dπ∗(λ)
dλ

= (1−p)(αl−βc)

2βp[ 1−λ
p

+λ]
2 . Substitute dπ∗(λ)

dλ
into above equation, we can get

dQ∗(λ)

dλ
= −(1− λ)(αh − βc) + λ(E(α)− βc)

2 (1− λ + pλ)
+

(1− p)(αl − βc)(1− λ)

2 (1− λ + pλ)2

<
(αl − βc)[(1− λ)(1− p)− (1− λ + pλ)]

2 (1− λ + pλ)2

≤ 0

Therefore, in this case, the total number of contracts transacted decreases as λ in-

creases.

Case 2: p(αh−αl)
β

< E(α)−βc
2β

⇔ αh − αl < αl−βc
p

.

Case 2.a: αh − αl ≤ αl−βc√
p

. In this case, π∗ = E(α)−βc
2β

and

Q∗ = (1− λ)(E(α− βc− βπ∗) + λ(E(α− βc− 2βπ∗) = (1− λ)βπ∗

dQ∗

dλ
= −βπ∗ = −E(α)− βc

2
< 0

Thus, Q∗ decreases in λ.

Case 2.b: αl−βc√
p

< αh − αl < αl−βc
p

. In this case, π∗ ∈
[

p(αh−βc)
2β

, E(α)−βc
β

]
.

If π∗ ∈
[

p(αh−βc)
2β

, p(αh−αl)
β

]
, then using the results in Case 1, we can get that Q∗

decreases in λ if π∗ moves in this interval. If π∗ ∈
[

p(αh−αl)
β

, E(α)−βc
2β

]
, π∗A = π∗B =

E(α)−βc
2β

and π∗ = E(α)−βc
2β

. By using the results in Case 2.a, we can see that Q∗

decreases in λ in this interval. When π∗ jumps from interval Ĩ1 to Ĩ2, both QA(π∗)

and QB(π∗) decrease. Therefore, Q∗ also decreases as λ increases.

Proof of Theorem 3.5.3 To simplify the notation, we first divide G(λ) by N

without changing the problem. Based on the proof of Lemma 3.5.2, we can divide

this proof into two cases according to values of the breakpoints.

184



Case 1: p(αh−αl)
β

≥ E(α)−βc
2β

⇔ αh − αl ≥ αl−βc
p

. It holds that

G(λ) =
p(αh − βc− λ(1− p)(αh − αl))

2

4β(1− λ + λp)
+

λp(1− p)(αh − αl)
2

4β

Let x = αh − βc, y = αh − αl and z = αl − βc. Note x = z + y.

dG(λ)

dλ
=

p(1− p)[(x− λ(1− p)y)(x− (2− λ + λp)y)− (1− λ + λp)2y2]

4β(1− λ + λp)2

Substitute x = z + y into above equation, we get dG(λ)
dλ

= p(1−p)z2

4β(1−λ+λp)2
≥ 0.

Case 2: p(αh−αl)
β

< E(α)−βc
2β

⇔ αh − αl < αl−βc
p

.

Case 2.a: αh − αl ≤ αl−βc√
p

. It holds that π∗ = E(α)−βc
2β

and

G(λ) =
(E(α)− βc)2

4β
+

λp(1− p)(αh − αl)
2

4β

dG(λ)

dλ
=

p(1− p)(αh − αl)
2

4β
=

σ2

4β
> 0

Case 2.b: αl−βc√
p

< αh − αl < αl−βc
p

. By similar arguments in the proof of

Lemma 3.4.6, G(λ) is a continuous function of λ. The optimal option price π∗ may

move from the local maximizer in one interval to another. In this case, G(λ) is the

same at both local maximizer. Also, Lemma 3.5.2 says π∗ increases as λ increases.

Therefore, we only need to show that G(λ) increases in λ if π∗ moves in each interval.

For π∗ ∈
[
0, p(αh−αl)

β

)
, the results in Case 1 hold. For π∗ ∈

[
p(αh−αl)

β
, E(α)−βc

2β

]
, the

proof is the same as Case 2a.

Therefore, G(λ) increases as λ increases for all cases.

Proof of Theorem 3.5.4 To simplify the notation, we first divide V (λ) and

W (λ) by N without changing the problem. This proof is also based on the proofs of

Lemma 3.5.2 and Theorem3.5.2. Consider the following two cases.

Case 1: p(αh−αl)
β

≥ E(α)−βc
2β

⇔ αh − αl ≥ αl−βc
p

. Let π∗(λ) be the option price in

equilibrium. It holds that

W (λ) =
p(αh − βc)2 + (1− p)(αl − βc)2

2β
− 1

2

[
βπ∗2(1− λ + λp)

p
+

λσ2

4β

]
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Note that βπ∗2(1−λ+λp)
p

+ λσ2

4β
= G(λ). Since by Theorem 3.5.3, dG(λ)

dλ
≥ 0, it follows

dW (λ)
dλ

= −1
2

dG(λ)
dλ

≤ 0. Therefore, V (λ) must decrease in λ.

Case 2: p(αh−αl)
β

< E(α)−βc
2β

⇔ αh − αl < αl−βc
p

.

Case 2.a: αh − αl ≤ αl−βc√
p

. It holds that π∗ = E(α)−βc
2β

and

W (λ) =
p(αh − βc)2 + (1− p)(αl − βc)2

2β
− 1

2

[
βπ∗2 +

σ2(1− 3λ/4)

β

]

Thus, dW (λ)
dλ

= 3σ2

8β
> 0. Since dG(λ)

dλ
= σ2

4β
, dV (λ)

dλ
= dW (λ)

dλ
− dG(λ)

dλ
= σ2

8β
> 0.

Case 2.b: αl−βc√
p

< αh − αl < αl−βc
p

. If π∗ jumps from one interval to another, both

W (λ) and V (λ) decrease. Therefore, monotonicity doesn’t hold.

Proof of Lemma 3.5.3 Consider Q ∈ [0, C/N ], which implies γ = 1. It is easy to

show that if the capacity is less or equal to Ca, the optimal solution is determined by

the capacity constraint, s∗h = αh−C/N
β

and s∗l = αl−C/N
β

.

In the high demand state, for Q ∈ [C/N, αh − βc], γ = C/(NQ) < 1 and all the

contracts are exercised since Q ≤ C/N ≤ αh − βc. There is no transaction on the

spot market at all.

In the low demand state, for Q ∈ [C/N, αl−βc], γ = C/(QN) < 1, no transaction

takes place on the spot market by similar arguments. For Q ∈ [αl − βc, αh − βc],

fraction γ of all buyers have Q contracts and exercise only αl − βc. The remaining

fraction 1− γ of the buyers have no contract and will purchase from the spot market

according to the spot price. The seller’s problem is reduced to

max
sl

R2(sl|Q,αl) = (sl − c)N(1− γ)(αl − βsl)
+

s.t. N
[
γ(αl − βc) + (1− γ)(αl − βsl)

+
] ≤ C

It can be shown the unconstrained optimizer (αl + βc)/2 is not feasible. Thus, the

optimal spot price is determined by the capacity constraint s∗l = γ(αl−βc)+(1−γ)αl−C/N
β(1−γ)

.

Proof of Lemma 3.5.4 Let sh and sl denote the spot prices in the hight demand

state and the low demand state respectively. In the proof of the Lemma 3.5.1, it
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has been shown that the objective function r̂1(Q|π) = r1(Q|π)/γ is concave in Q for

any given sh ≥ c, sl ≥ c and π. Therefore, the Karush-Kuhn-Tucker condition is

necessary and sufficient for optimality. Suppose (s∗h, s
∗
l , Q

∗, γ∗) is an equilibrium in

the subgame for a given π. It must satisfy equation (3.5.16) – (3.5.19).

For Q ∈ [0, C/N ], γ = 1, s̃h = αh−C/N
β

and s̃l = αl−C/N
β

. Thus, Q ≤ αh − βsh =

C/N and Q ≤ αl − βsl = C/N . If Q∗ = 0, Equation (3.5.16) - (3.5.19) are

dr̂1(0|π)

dQ
= −π + p(s∗h − c) + (1− p)(s∗l − c) ≤ 0 (A.0.10)

s∗h =
αh − C/N

β
(A.0.11)

s∗l =
αl − C/N

β
(A.0.12)

Such condition is satisfied if and only π ≥ E(α)−βc−C/N
β

. If Q∗ ∈ (0, C/N ], then it

must hold that

dr̂1(Q
∗|π)

dQ
= −π + p(s∗h − c) + (1− p)(s∗l − c) = 0 (A.0.13)

s∗h =
αh − C/N

β
(A.0.14)

s∗l =
αl − C/N

β
(A.0.15)

which implies π = E(α)−βc−C/N
β

.

For any Q∗ ∈ (C/N, αl − βc], there is no transaction on the spot market. It must

hold that

dr̂1(Q
∗|π)

dQ
= 0 (A.0.16)

s∗h ≥ αh −Q∗

β
(A.0.17)

s∗l ≥ αl −Q∗

β
(A.0.18)

With above spot prices, dr̂1(Q∗|π)
dQ

= −π+(E(α)−βc−Q∗)/β. It implies p(αh−αl)/β ≤
π < (E(α)− βc− C/N)/β. Under this condition, Q∗ = E(α)− βc− βπ and γ∗ < 1.
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Similarly, for Q∗ ∈ (αl − βc, αh − βc], (Q∗, s∗h, s
∗
l , γ

∗) must satisfy

dr̂1(Q
∗|π)

dQ
= 0 (A.0.19)

s∗h ≥ αh −Q∗

β
(A.0.20)

s∗l =
γ∗(αl − βc) + (1− γ∗)αl − C/N

β(1− γ∗)
. (A.0.21)

In the low demand state, since Q > αl − βc, the buyer doesn’t purchase on the spot

market if he has Q contracts already. Therefore, dr̂1(Q∗|π)
dQ

= −π + p(αh−βc−Q∗)
β

. It

implies 0 ≤ π < p(αh−αl)
β

. Under this condition, Q∗ = αh − βc− βπ/p with γ∗ < 1.

The results are summarized as follows.

1. If π ∈
[
0, p(αh−αl)

β

)
, then Q∗ = αh − βc− βπ/p and γ∗ < 1.

2. If π ∈
[

p(αh−αl)
β

, E(α)−βc−C/N
β

)
, then Q∗ = E(α)− βc− βπ and γ∗ < 1.

3. If π = E(α)−βc−C/N
β

, then any Q ∈ [0, C/N ] is optimal and γ∗ = 1.

4. If π > E(α)−βc−C/N
β

, then Q∗ = 0 and γ∗ = 1.

Proof of Theorem 3.5.5 For π ≥ E(α)−βc−C/N
β

, R1(π) = C(E(α)−βc−C/N)
β

. For

π ∈
[

p(αh−αl)
β

, E(α)−βc−C/N
β

)
, E[G2(Q(π), α)] = 0. Thus, R1(π) < C(E(α)−βc−C/N)

β

and the optimal option price π∗ can’t fall in this interval. For π ∈
[
0, p(αh−αl)

β

)
,

R1(π) = πC + E[G2(Q(π), α)]. By Lemma 3.5.4 and Lemma 3.5.3, it holds that

E[G2(Q(π), α)] = (1− p)(sl − c)(1− γ)(αl − βsl)N

=
(1− p)(αl − βc− C/N)[C/N − γ(αl − βc)]N

β(1− γ)

<
C(αl − βc− C/N)

β

The last step follows from αl − βc > C/N and 1− p < 1. Since π < p(αh−αl)
β

,

R1(π) = πC + E[G2(Q(π), α)] < C[p(αh−αl)+αl−βc−C/N ]
β

= C(E(α)−βc−C/N)
β

.
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Therefore, the optimal option price can be any value in
[
E(α)−βc−C/N

β
,∞

)
and

R1(π
∗) = C(E(α)−βc−C/N)

β
.

Proof of Theorem 3.5.6 For π ≤ E(α)−βc−C/N
β

, NQ(π) ≥ C. Therefore, γ ≤ 1

and all contracts are exhausted. In this case, R1(π) = πC and R1(π) strictly in-

creases in π to π = E(α)−βc−C/N
β

. For π ≥ E(α)−βc
β

, Q(π) = 0 and R1(π) = 0.

For π ∈
[
E(α)−βc−C/N

β
, E(α)−βc

β

)
, Q(π) = E(α) − βc − βπ and R1(π) = NπQ(π) =

Nπ(E(α) − βc − βπ). Note at E(α)−βc−C/N
β

and E(α)−βc
β

, R1(π) is continuous. For

π ∈
[
E(α)−βc−C/N

β
, E(α)−βc

β

)
, it holds that

dR1(π)

dπ
= N(E(α)− βc− 2βπ) (A.0.22)

At π = E(α)−βc−C/N
β

, the right derivative R′
1+(π) = 2C/N−(E(α)−βc) < 0. Therefore,

π∗ = E(α)−βc−C/N
β

.

Proof of Lemma 3.5.5 For a given option price π, let (Q∗
A, Q∗

B, s∗h, s
∗
l ) be an

equilibrium in the subgame, which must satisfy Equation (3.5.27 ) – (3.5.30). This

proof proceeds as follows. First, based on function QA(π), we divide our proof into

two major cases. Second, according to the value of λ, each case is divided further

into several subcases. In the end, we will show that for a given π, the best response

for each type B buyer Q∗
B(π) is constant for all λ ∈ (0, 1).

Noting type A buyers do not participate in the spot market, the optimal con-

tracting quantity as a function of π for type A buyers is the same as contract market

only case, which is characterized in Lemma 3.4.2. Function QA(π) is a piecewise

function of π on [0, +∞). For π ∈
[
0, p(αh−αl)

β

)
, QA(π) = αh − βc− βπ/p > αl − βc.

For π ∈
[

p(αh−αl)
β

, E(α)−βc
β

)
, QA(π) = E(α) − βc − βπ ≤ αl − βc. For π > E(α)−βc

β
,

QA(π) = 0. Based on this, we can divide the proof into two cases.

Case 1: π ∈
[
0, p(αh−αl)

β

)
.

In this case, QA(π) = αh − βc− βπ/p > αl − βc. For γ = 1, the the optimal spot

prices in Period 2 can be the unconstrained optimizer if QB is small or determined
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by the capacity constraint if QB is large. Define Q0
B, Q1

B and Q2
B as follows. Let Q2

B

be the critical value that γ becomes less than 1 for any QB > Q2
B, i.e.,

(1− λ)QA + λQ2
B = C/N

If Q2
B > 0, the following situation could happen. For small value of QB, the un-

constrained optimizer sh = αh+βc−QB

2β
is feasible in the high demand state. As QB

increases, the capacity constraint becomes tight and the optimal price is solely de-

termined by the capacity constraint. As long as γ = 1, sh = [(1 − λ)QA + λαh −
C/N ]/(βλ), which doesn’t depends on QB. Similarly property holds in the low de-

mand state. Let Q0
B ≤ Q2

B be the breakpoint such that for any QB ≤ Q0
B, γ = 1 and

the optimal spot price in the high state is the unconstrained optimizer, sh = αh+βc−QB

2β
.

Similarly, let Q1
B be the breakpoint for the low state. Noting type A buyers only ex-

ercise αl − βc < QA contracts, we have

(1− λ)QA + λ

(
αh − βc + Q0

B

2

)
=

C

N

⇔ Q0
B =

2

λ

[
C

N
− (1− λ)QA − λ(αh − βc)

2

]

(1− λ)(αl − βc) + λ

(
αl − βc + Q1

B

2

)
=

C

N

⇔ Q1
B =

2

λ

[
C

N
− (1− λ)(αl − βc)− λ(αl − βc)

2

]

Since C/N ≤ (αl − βc)/2 and QA > αl − βc, Q0
B < 0 and Q1

B < 0. Note Q2
B ≥ 0 if

and only if (1− λ)QA ≤ C/N , which implies π ≥ p
β

(
αh − βc− C

N(1−λ)

)
= π1. Since

C/N ≤ (αl − βc)/2 and QA > αl − βc, Q2
B ≤ αl − βc. Price π1 ≤ p(αh − αl)/β if

only if λ ≥ 1− C
N(αl−βc)

. Thus, according to λ, we can further divide Case 1 into two

subcases.

Case 1.a: λ ≥ 1− C
N(αl−βc)

⇔ π1 ∈
[
0, p(αh−αl)

β

)
.

Case 1.a.1: π ∈
(
π1,

p(αh−αl)
β

]
. Under this condition, Q2

B > 0. For any QB ∈
(0, Q2

B], sh = (1−λ)QA+λαh−C/N
βλ

and sl = (1−λ)(αl−βc)+λαl−C/N
βλ

. If Q∗ ∈ (0, Q2
B] (γ = 1),
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it must satisfy
dr1(Q∗B |π)

QB
= 0. If Q∗

B = 0, then dr1(0|π)
QB

< 0 must hold. Note

dr1(QB|π)

dQB

= −π + p(sh − c) + (1− p)(sl − c)

> −π +
p(αh − αl)

β

> 0

Therefore, Q∗
B /∈ [0, Q2

B].

For QB ∈ (Q2
B, αl − βc], γ < 1. In the high demand state, all the capacity is

exhausted under contracts. Therefore, QB ≥ αh − βsh for all QB in this interval.

However, the low demand state is different depending on the value of sl. Noting

sl ≥ c and QB ≥ αl − βc, we obtain for sl ∈ [c, (αl −QB)/β],

dr1(QB|π)

dQB

= γ

[
−π +

p

β
(αh − βc−QB) + (1− p)(sl − c)

]

≥ γ

[
−π +

p(αh − αl)

β

]

> 0

For sl > (αl −QB)/β,

dr1(QB|π)

dQB

= γ

[
−π +

p

β
(αh − βc−QB) +

1− p

β
(αl − βc−QB)

]
> 0

Thus, Q∗
B /∈ (Q2

B, αl − βc].

For QB ∈ (αl − βc, αh − βc], γ < 1.

dr1(QB|π)

dQB

= γ

[
−π +

p

β
(αh − βc−QB)

]

Therefore, the optimal contracting quantity can only fall in this interval, Q∗
B = αh −

βc− βπ/p = QA(π).

Case 1.a.2: π ∈ [0, π1]. Under this condition, Q2
B ≤ 0. Follow the same arguments,

we have Q∗
B = αh−βc−βπ/p = QA(π). Note that at Q∗

B is continuous on
[
0, p(αh−αl

β

)
.

Case 1.b: λ < 1− C
N(αl−βc)

⇔ π1 ≤ 0. For any π ∈
[
0, p(αh−αl

β

)
, QA(π)(1−λ) > C/N

and Q2
B < 0. By previous results, we have Q∗

B = αh − βc− βπ/p = QA(π).
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Case 2: π ∈
(

p(αh−αl)
β

E(α)−βc)
β

]

In this case, QA(π) = E(α)−βc−βπ ≤ αl−βc. Define Q0
B, Q1

B and Q2
B the same

as those in Case 1. Since QA(π) ≤ αl − βc, all the QA(π) contracts are exercised in

both the high demand state and the low demand state. Thus, Q1
B is different from

that in Case 1:

Q1
B =

2

λ

[
C

N
− (1− λ)QA(π)− λ(αl − βc)

2

]

Substituting QA(π) = E(α)− βc− βπ, we obtain

Q0
B =

2

λ

[
C

N
− (1− λ)(E(α)− βc− βπ)− λ(αh − βc)

2

]

Q1
B =

2

λ

[
C

N
− (1− λ)(E(α)− βc− βπ)− λ(αl − βc)

2

]

Q2
B =

1

λ

[
C

N
− (1− λ)(E(α)− βc− β)π

]

Note that Q0
B < Q1

B. According to the positions of Q0
B, Q1

B and Q2
B on [0, αh − βc),

we can find the following breakpoints of π:

πa =
1

(1− λ)β

[
(1− λ)(E(α)− βc)− C

N

]

πb =
1

(1− λ)β

[
λ

2
(αl − βc) + (1− λ)(E(α)− βc)− C

N

]

πc =
1

(1− λ)β

[
λ

2
(αh − βc) + (1− λ)(E(α)− βc)− C

N

]

πd =
1

(1− λ)β

[
λ(αl − βc) + (1− λ)(E(α)− βc)− C

N

]

πe =
1

(1− λ)β

[
λ

2
(αl − 2βc + αh) + (1− λ)(E(α)− βc)− C

N

]

πf =
1

(1− λ)β

[
λ(αh − βc) + (1− λ)(E(α)− βc)− C

N

]

Depending the value of αh and αl, there are two cases, πa < πb < πc ≤ πd < πe < πf

and πa < πb < πd ≤ πc < πe < πf . Compare those breakpoints to p(αh−αl)
β

and

E(α)−βc
β

, we can find the breakpoints for λ. Define λa = 1 − C
N(αl−βc)

, λb = 2C
N(αl−βc)

,

λc = 2C
N(αh−βc)

, λd = C
N(αl−βc)

, λe = 2C
N(αl+αh−2βc)

, and λf = C
N(αh−βc)

. The relationship
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between the breakpoints in QB and π is as follows.

Q2
B ≥ 0 ⇔ π ≥ πa

Q1
B ≥ 0 ⇔ π ≥ πb

Q0
B ≥ 0 ⇔ π ≥ πc

Q2
B ≤ αl − βc ⇔ π ≤ πd

Q2
B ≤ αh − βc ⇔ π ≤ πf

Q1
B ≤ αl − βc ⇔ π ≤ πd

Q1
B ≤ αh − βc ⇔ π ≤ πe

Q0
B ≤ αl − βc ⇔ π ≤ πe

Q0
B ≤ αh − βc ⇔ π ≤ πf

Since C ≤ Ca, πi ≥ p(αh−αl)
β

for all i ∈ {a, b, c, d, e, f}. Also note πa ≤ E(α)−βc
β

. Thus,

we obtain the following relationship between π and λ.

πa ≥ p(αh − αl)

β
⇔ λ ≤ λa

πb ≤ E(α)− βc

β
⇔ λ ≤ λb

πc ≤ E(α)− βc

β
⇔ λ ≤ λc

πd ≤ E(α)− βc

β
⇔ λ ≤ λd

πe ≤ E(α)− βc

β
⇔ λ ≤ λe

πf ≤ E(α)− βc

β
⇔ λ ≤ λf

According to above breakpoints, we divide Case 2 into 5 subcases:

Case 2.a: λf < λe < λd ≤ λc < λb ≤ λa.

Case 2.b: λf < λe < λd ≤ λc ≤ λa ≤ λb.

Case 2.c: λf < λe < λd ≤ λa ≤ λc < λb.

Case 2.d: λf < λe < λc ≤ λd < λb ≤ λa.
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Case 2.e: λf < λe < λc ≤ λd ≤ λa ≤ λb.

We only present the proof for Case 2.a. here. The proof for the other cases is

similar. Consider Case 2.a,

For λ ∈ [0, λf ],
p(αh−αl)

β
< πa < πb < πc ≤ πd < πe < πf ≤ E(α)−βc

β
or

p(αh−αl)
β

< πa < πb < πd ≤ πc < πe < πf ≤ E(α)−βc
β

holds. Consider the former

case p(αh−αl)
β

< πa < πb < πc ≤ πd < πe < πf ≤ E(α)−βc
β

. For π ∈
[
πf ,

E(α)−βc
β

]
, it

holds that Qk
B ≥ αh−βc, k = 0, 1, 2. Note we only need to consider QB ∈ [0, αh−βc].

For any given (sh, sl, γ), dr1(QB |π)
dQB

is a concave function of QB. Let dr1(QB |π)
dQB

=

h(QB, sh, sl, γ). Substituting the best response s̃h(QB), s̃(QB) and function γ̃(QB)

into to h(QB, sh, sl, γ) and define ĥ(QB) = h(QB, s̃h(QB), s̃l(QB), γ̃(QB)). It is easy

to see that ĥ(QB) = h(QB, s̃h(QB), s̃l(QB), γ̃(QB)) is a decreasing function in QB on

[0, αh − βc]. For [0, αl − βc], ĥ(QB) = −π + E(α)−βc−QB

2β
. For QB ∈ [αl − βc, αh − βc],

ĥ(QB) = −π + p(αh−βc−QB)
2β

. Since π ≥ πf , ĥ(QB) < 0 for any QB ∈ [0, αh − βc].

Therefore, Q∗
B = 0 for π ∈

[
πf ,

E(α)−βc
β

]
. For π ∈ [πe, πf ), it holds that 0 ≤ αl− βc ≤

Q0
B ≤ Q2

B ≤ αh − βc ≤ Q1
B. Since only QB ∈ [0, αh − βc] is interesting, we do not

need to consider Q1
B. It is easy to see that ĥ(QB) = h(QB, s̃h(QB), s̃l(QB), γ̃(QB)) is

a decreasing function in QB on [0, Q2
B]. For [0, αl − βc], ĥ(QB) = −π + E(α)−βc−QB

2β
.

For QB ∈ [αl − βc, Q2
B], ĥ(QB) = −π + p(αh−βc−QB)

2β
. For QB ∈ [Q2

B, αh − βc],

ĥ(QB) = C
N [(1−λ)QA+λQB ]

[
−π + p(αh−βc−QB)

β

]
. Note ĥ(QB) is continuous at Q2

B and

αl − βc. Since π ≥ πe, ĥ(QB) < 0 for any QB ∈ [0, αh − βc]. Therefore, Q∗
B = 0 for

π ∈ [πe, πf ). Follow the same arguments for π in the other intervals, we can obtain

the results. The proof for the latter case p(αh−αl)
β

< πa < πb < πd ≤ πc < πe < πf ≤
E(α)−βc

β
is an analogy.

The proof for λ in the other intervals proceeds in the same way: From the value

of λ, we can obtain the breakpoints of π. Considering π in the different intervals,

we can compare the breakpoints Q0
B, Q1

B and Q2
B to 0, αl − βc and αh − βc . By

investigating ĥ(QB) on [0, αh − βc], the equilibrium Q∗
B can be obtained.
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The proofs for Case 2.b – 2.e are similar and are not included here. The results

are summarized as follows.

1. If π ∈
[
0, p(αh−αl)

β

)
, then Q∗

B = αh − βc− βπ/p. Note γ < 1 in this case.

2. If π ∈
[

p(αh−αl)
β

, E(α)−βc−C/N
β

)
, then Q∗

B = E(α) − βc − βπ. Note γ < 1 in this

case.

3. If π = E(α)−βc−C/N
β

, then any QB ∈
[
0, C

N

]
is optimal. In this case, γ = 1.

4. If π > E(α)−βc−C/N
β

, then Q∗
B = 0. In this case, γ = 1.

Proof of Theorem 3.5.7 The proof proceeds as follows. First, we will show that

for π ∈
[

p(αh−αl)
β

, E(α)−βc
β

]
, π∗ = E(α)−βc−C/N

β
is the local maximizer. Second, we will

show that for all π ∈
[
0, p(αh−αl

β

)
, R1(π) < R1(π

∗).

It has been shown in Lemma 3.5.5, at π = E(α)−βc−C/N
β

, QB ∈ [0, C/N ]. R1(π) =

C(E(α)−βc−C/N)
β

. For π ≥ E(α)−βc−C/N
β

, γ = 1. As π slightly increases from E(α)−βc−C/N
β

,

it is shown in the proof of Lemma 3.5.5, the optimal spot prices first active at the

capacity constraints in both demand states. For large λ, the capacity constraints are

always active at stage 3. For smaller λ, the optimal spot prices in the low demand

state and the high demand state may become inactive as π increases. After that, the

return in Period 2 stays constant. Note that R1(π) is continuous in π.

Using the same notation in the proof of Lemma 3.5.5, let πb and πc be the smallest

option prices such that the optimal spot price becomes the unconstrained optimizers

at the low demand and the high demand state respectively.

Henceforth, we divide R1(π) by N to simplify the notation. For large λ, πb ≥
E(α)−βc

β
and πc ≥ E(α)−βc

β
. Then R1(π) is a strictly concave function on

(
E(α)−βc−C/N

β
, E(α)−βc

β

]
.

It holds that

R1(π) = (1− λ)π(E(α)− βc− βπ) +
1

λβ

[
C

N
− (1− λ)(E(α)− βc− βπ)

]
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×
[
(1− λ)(E(α)− βc− βπ)− C

N
+ λ(E(α)− βc)

]

It follows that for all π ≥ E(α)−βc−C/N
β

and λ ∈ (0, 1),

dR1(π)

dπ
=

2(1− λ)(E(α)− βc− βπ − C/N)

λ
≤ 0

For moderate λ such that πb ≤ E(α)−βc
β

and πc > E(α)−βc
β

. It holds that for

π ∈
[
E(α)−βc−C/N

β
, πb

]
, R1(π) and dR1(π)

dπ
are the same as above. For π ∈

(
πb,

E(α)−βc
β

]
,

it follows

R1(π) = (1− λ)π(E(α)− βc− βπ) +
p

λβ

[
C

N
− (1− λ)(E(α)− βc− βπ)

]

×
[
(1− λ)(E(α)− βc− βπ)− C

N
+ λ(αh − βc)

]
+

(1− p)λ(αl − βc)2

4β

dR1(π)

dπ
=

(1− λ)[2(E(α)− βc− βπ − C/N)− (1− p)(αl − βc)]

λ
< 0

For small λ, πb ≤ (E(α) − βc)/β, πc ≤ (E(α) − βc)/β and πb < πc. It holds

that R1(π) strictly decreases in the two intervals
(
E(α)−βc−C/N

β
, πb

]
and (πb, πc], and

becomes constant on
(
πc,

E(α)−βc
β

]
.

Therefore, π∗ is the only maximizer in
[
E(α)−βc−C/N

β
, E(α)−βc

β

]
.

For π ∈
(

p(αh−αl)
β

, E(α)−βc−C/N
β

]
, QA(π) = QB(π) = E(α) − βc − βπ and γ < 1.

Therefore, R1(π) = Cπ and R1(π) strictly increases in π to E(α)−βc−C/N
β

.

For π ∈
[
0, p(αh−αl)

β

)
, QA(π) = QB(π) = α− βc− βπ/p. This is equivalent to the

case λ = 1 and π ∈
[
0, p(αh−αl)

β

)
. It has been shown in the proof of Lemma 3.5.5 that

R1(π) < C(E(α)−βc−C/N)
β

.

Thus, π∗ = E(α)−βc−C/N
β

is the optimal option price for any λ ∈ (0, 1).

Proof of Lemma 3.6.1 Since the objective function is concave in qc, the KKT

condition is necessary and sufficient for the optimality of this problem. Take the

derivative of the objective function, dr2(qc|α,φ)
dqc

= − qc

β
+ α+φ

β
− c. At the endpoints

qc = 0 and qc = Q, it holds that dr2(0|α,φ)
dqc

= α+φ
β
− c and dr2(Q|α,φ)

dqc
= −Q

β
+ α+φ

β
− c.
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Note that constraints qc ≤ Q and qc ≥ 0 can not be active at the same time.

Depending on whether q∗c is active at the constraints or not, there are three cases.

Case 1: If q∗c is not tight at any constraint, i.e., 0 < q∗c < Q, then q∗c must

satisfy dr2(q∗c |α,φ)
dqc

= 0. Such condition holds if and only if q∗c = α + φ − βc and

0 < α + φ− βc < Q.

Case 2: If q∗c = 0, i.e., q∗c is tight at the constraint qc ≥ 0, then dr2(0|α,φ)
dqc

≤ 0. Thus,

α + φ− βc ≤ 0. Note that φ ≥ αh, α + φ− βc ≤ 0 is possible.

Case 3: If q∗c = Q, i.e., q∗c is tight at the constraint qc ≤ Q, then dr2(Q|α,φ)
dqc

≥ 0, which

implies 0 ≤ Q ≤ α + φ− βc.

The results are summarized as follows.

1. If α + φ− βc ≤ 0, then q∗c = 0.

2. If 0 < α + φ− βc < Q, then q∗c = α + φ− βc.

3. If Q ≤ α + φ− βc, then q∗c = Q.

Proof of Lemma 3.6.2 By Lemma 3.6.1, it is easy to see that each buyer never

purchases more than αh + φ− βc. Thus, only Q ∈ [0, αh + φ− βc] is interesting.

First, we will prove that r1(Q|π) is a concave function of Q on [0, αh+φ−βc]. The

first term −πQ is linear, thus it is concave. For the second term, we first calculate

the two integrals. The first integral is

∫ φ

−φ

[
−qc(Q,αh, φ)2

2β
+

(αh + φ)qc(Q,αh, φ)

β
− qc(Q, αh, φ)c

]
dφ (A.0.23)

Note that qc(Q, αh, φ) depends not only on Q, but also on the realization of φ as

follows.

If αh + φ − βc ≤ 0, i.e., φ ≤ −αh + βc, then qc(Q,αh, φ) = 0. Since αh ≤ φ and

αh − βc ≥ 0, −φ ≤ −αh + βc ≤ 0 ≤ φ.
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If 0 ≤ αh+φ−βc ≤ Q, i.e., −αh+βc ≤ φ ≤ Q−αh+βc, then qc(Q,αh, φ) = αh+φ−βc.

Since Q ≤ αh + φ− βc and Q ≥ 0, −φ ≤ Q− αh + βc ≤ φ.

If αh + φ− βc ≥ Q, i.e., φ ≥ Q− αh + βc, then qc(Q, αh, φ) = Q.

Hence,

(A.0.23) =

∫ −αh+βc

−φ

0dφ +

∫ Q−αh+βc

−αh+βc

[
(αh + φ− βc)2

2β

]
dφ

+

∫ φ

Q−αh+βc

[
−Q2

2β
+

(αh + φ)Q

β
−Qc

]
dφ

=
Q3

6β
+

Q

2β
(αh + φ− βc)(αh + φ− βc−Q)

The second integral is

∫ φ

−φ

[
−qc(Q,αl, φ)2

2β
+

(αl + φ)qc(Q,αl, φ)

β
− qc(Q,αl, φ)c

]
dφ (A.0.24)

To calculate the integral, we divide the interval [0, αh + φ − βc] into two pieces,

[0, αl + φ− βc) and [αl + φ− βc, αh + φ− βc]. For Q ∈ [0, αl + φ− βc), by the same

arguments as above, we obtain

(A.0.24) =
Q3

6β
+

Q

2β
(αl + φ− βc)(αl + φ− βc−Q)

For Q ∈ [αl + φ− βc, αh + φ− βc], note Q− αl + βc ≥ φ. It holds that

(A.0.24) =

∫ −αl+βc

−φ

0dφ +

∫ φ

−αl+βc

[
(αl + φ− βc)2

2β

]
dφ

=
(αl + φ− βc)3

6β

Therefore, for Q ∈ [0, αl + φ− βc), it holds that

r1(Q|π) = −πQ +
p

2φ

[
Q3

6β
+

Q

2β
(αh + φ− βc)(αh + φ− βc−Q)

]

+
1− p

2φ

[
Q3

6β
+

Q

2β
(αl + φ− βc)(αl + φ− βc−Q)

]

dr1(Q|π)

dQ
= −π +

p(αh + φ− βc−Q)2

4βφ
+

(1− p)(αl + φ− βc−Q)2

4βφ

In this interval, dr1(Q|π)
dQ

decreases in Q. Thus, r1(Q|π) is a concave function of Q.
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For Q ∈ [αl + φ− βc, αh + φ− βc], it holds that

r1(Q|π) = −πQ +
p

2φ

[
Q3

6β
+

Q

2β
(αh + φ− βc)(αh + φ− βc−Q)

]

+
1− p

2φ

[
(αl + φ− βc)3

6β

]

dr1(Q|π)

dQ
= −π +

p(αh + φ− βc−Q)2

4βφ

Also, in this interval, dr1(Q|π)
dQ

decreases in Q. Hence, r1(Q|π) is a concave function of

Q.

Note that r1(Q|π) is continuous at the breakpoint Q0 = αl + φ − βc and left

derivative is equal to the right derivative,

r′1−(Q0|π) = r′1+(Q0|π) = −π +
p(αh − αl)

2

4βφ

Therefore, r1(Q|π) is a concave function of Q on [0, αh+φ−βc] and the Karush-Kuhn-

Tucker condition is necessary and sufficient for the optimality of this problem. The

derivatives at the three breakpoints are dr1(αh+φ−βc|π)
dQ

= −π, dr1(αl+φ−βc|π)
dQ

= −π + p(αh−αl)
2

4βφ

and dr1(0|π)
dQ

= −π + E(α+φ−βc)2

4βφ
, where E(α+φ−βc)2 = p(αh +φ−βc)2 +(1−p)(αl +

φ− βc)2.

For π ∈
[
0, p(αh−αl)

2

4βφ

)
, dr1(αl+φ−βc|π)

dQ
≥ 0 and dr1(αh+φ−βc|π)

dQ
≤ 0. Thus, Q∗ ∈

(αl + φ− βc, αh + φ− βc] and must satisfy

dr1(Q
∗|π)

dQ
= −π +

p(αh + φ− βc−Q∗)2

4βφ
= 0

⇔ Q∗ = αh + φ− βc−
√

4βφπ

p

For π ∈
[

p(αh−αl)
2

4βφ
, E(α+φ−βc)2

4βφ

]
, dr1(αl+φ−βc|π)

dQ
≤ 0 and dr1(0|π)

dQ
≥ 0. Thus, Q∗ ∈

[0, αl + φ− βc] and must satisfy

dr1(Q
∗|π)

dQ
= −π +

p(αh + φ− βc−Q∗)2

4βφ
+

(1− p)(αl + φ− βc−Q∗)2

4βφ
= 0

⇔ Q∗ = E(α) + φ− βc−
√

4βφπ − σ2
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For π > E(α+φ−βc)2

4βφ
, dr1(0|π)

dQ
< 0. Therefore, Q∗ = 0.

Proof of Theorem 3.6.1 To simplify the notation, we first divide R1(π) by

N without changing the problem. By Lemma 3.6.2, each buyer’s best response at

stage 2 Q(π) is a piecewise continuous function of π. Thus, the objective function

of the seller’s decision problem is a piecewise function of π. The only breakpoint is

π0 = p(αh−αl)
2

4βφ
. At π0, Q(π−0 ) = Q(π+

0 ). Thus, R1(π) is also continuous at π0.

For π ∈
[
0, p(αh−αl)

2

4βφ

)
, Q(π) = αh + φ− βc−

√
4βφπ

p
. It holds that

R1(π) = π


αh + φ− βc−

√
4βφπ

p




dR1(π)

dπ
= αh + φ− βc− 3

√
βφπ

p

In this interval, R1(π) is a concave function of π. At π = π0, the left derivative

R′
1−(π0) = 3

2
αl − 1

2
αh + φ− βc. Since αh ≤ φ, R′

1−(π0) > 0. Therefore, π∗ ≥ π0.

For π > E(α+φ−βc)2

4βφ
, Q(π) = 0. It holds that R1(π) = 0. Thus π∗ ≤ E(α+φ−βc)2

4βφ
.

For π ∈
[

p(αh−αl)
2

4βφ
, E(α+φ−βc)2

4βφ

]
, Q(π) = E(α) + φ − βc −

√
4βφπ − σ2. It holds

that

R1(π) = π

[
E(α) + φ− βc−

√
4βφπ − σ2

]

dR1(π)

dπ
= E(α) + φ− βc−

√
4βφπ − σ2 − 2βφπ√

4βφπ − σ2

d2R(π)

dπ2
=

4βφ(−3βφπ + σ2)

(4βφπ − σ2)3/2

At the breakpoint π0, R′
1−(π0) = R′

1+(π0) > 0. Also at π = E(α+φ−βc)2

4βφ
, R′

1−(π) =

− E(α+φ−βc)2

2(E(α)+φ−βc)
< 0. We have already shown that the optimal π∗ can only fall in this

interval. We now characterize the optimal condition. Note that if π ≥ σ2

3βφ
, then

d2R1(π)
dπ2 ≤ 0 and function R1(π) is concave. Then, the Karush-Kuhn-Tucker condition

is necessary and sufficient for optimality. If π < σ2

3βφ
, then d2R1(π)

dπ2 > 0 and function

R1(π) is convex. Depending the value of the new breakpoint π1 = σ2

3βφ
, there are two

cases. Note π1 < E(α+φ−βc)2

4βφ
.
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Case 1: p(αh−αl)
2

4βφ
≥ σ2

3βφ
. In this case, R1(π) is concave on the whole interval

[
p(αh−αl)

2

4βφ
, E(α+φ−βc)2

4βφ

]
.

Case 2: p(αh−αl)
2

4βφ
< σ2

3βφ
. In this case, the interval is divided into two pieces,

[
p(αh−αl)

2

4βφ
, σ2

3βφ

)
and

[
σ2

3βφ
, E(α+φ−βc)2

4βφ

]
. We will show that the optimal π∗ falls in the

second interval, where R1(π) is concave. Thus, the Karush-Kuhn-Tucker condition is

necessary and sufficient for optimality. If π ∈
[

p(αh−αl)
2

4βφ
, σ2

3φπ

)
, then R1(π) is convex.

Thus, dR1(π)
dπ

increases in π. Since R′
1+(π0) > 0, dR1(π)

dπ
> 0 for all π ∈

[
p(αh−αl)

2

4βφ
, σ2

3φπ

)
.

Hence, π∗ ≥ σ2

3βφ
.

Since in both cases, π∗ falls in an interval on which R1(π) is strictly concave, π∗

is unique. Therefore, π∗ ∈
[

p(αh−αl)
2

4βφ
, E(α+φ−βc)2

4βφ

]
and must satisfy the Karush-Kuhn-

Tucker condition:

dR1(π
∗)

dπ
= E(α) + φ− βc−

√
4βφπ∗ − σ2 − 2βφπ∗√

4βφπ∗ − σ2
= 0

Proof of Lemma 3.6.3 Let q = qc + qs. Denote the optimal solution as (q∗c , q
∗
s)

and q∗ = q∗c + q∗s . First, we reformulate the objective function by considering the

constraint qc ≤ Q.

If q∗ < Q and s > c, then the only optimal solution is q∗c = q∗ and q∗s = 0. Suppose

q∗c < q∗ and q∗s > 0, then r2(q
∗
c + q∗s , 0|s, α, φ) > r2(q

∗
c , q

∗
s |s, α, φ). Thus, q∗c and q∗s can

not be optimal. If q∗ < Q and s = c, then there exists an optimal solution such that

q∗c = q∗ and q∗s = 0. Note in this case since s = c, any (q∗c , q
∗
s) satisfying q∗c + q∗s = q∗,

q∗c ∈ [0, Q] and q∗s ≥ 0 is optimal.

By similar arguments, if q∗ ≥ Q and s > c, then q∗c = Q and q∗s = q∗−Q. Suppose

q∗c < Q and q∗s = q − q∗c > 0, then r2(Q, q∗ − Q|s, α, φ) > r2(q
∗
c , q

∗
s |s, α, φ). Thus,

q∗c and q∗s can not be optimal. If q∗ ≥ Q and s = c, then there exists an optimal

solution such that q∗c = Q and q∗s = q∗ − Q. Also since s = c, any (q∗c , q
∗
s) satisfying

q∗c + q∗s = q∗, q∗c ∈ [0, Q] and q∗s ≥ 0 is optimal.
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Therefore, the problem can be reformulated as follows.

max
q

r̂2(q|s, α, φ)

s.t. q ≥ 0

where r̂2(q|s, α, φ) is defined as follows. For q < Q, r̂2(q|s, α, φ) = − q2

2β
+ (α+φ)q

β
− qc.

For q ≥ Q, r̂2(q|s, α, φ) = − q2

2β
+ (α+φ)q

β
− Qc − (q − Q)s. Function r̂2(q|s, α, φ)

is concave on the two intervals and is continuous at q = Q. In addition, at the

breakpoint, q = Q, the right derivative is less or equal to the left derivative because

s ≥ c. Hence, r̂2(q|s, α, φ) is a concave function of q and the Karush-Kuhn-Tucker

condition is necessary and sufficient for optimality. Solving above problem, we obtain

the following results.

If α + φ− βc ≤ 0, then dr̂2(0|s,α,φ)
dq

≤ 0. Hence q∗ = 0, i.e., q∗c = q∗s = 0. Note that

−φ ≤ −αh, α + φ− βc ≤ 0 is possible.

If α + φ− βc > 0 and s = c, then any q∗c and q∗s satisfying q∗c + q∗s = α + φ− βc,

q∗c ∈ [0, Q] and q∗s ≥ 0 is optimal.

If 0 < α+φ−βc ≤ Q and s > c, then dr̂2(0|s,α,φ)
dq

≥ 0 and r̂′2−(Q|s, α, φ) ≤ 0. Thus,

q∗ ∈ (0, Q] and must satisfy dr̂2(q∗|s,α,φ)
dq

= 0. We obtain q∗ = q∗c = α + φ− βc ≥ 0 and

q∗s = 0.

If 0 < Q ≤ α + φ − βc, Q ≥ α + φ − βs and s > c, then r̂′2−(Q|s, α, φ) ≥ 0 and

r̂′2+(Q|s, α, φ) ≤ 0. Thus q∗ = q∗c = Q and q∗s = 0 .

If 0 < Q ≤ α + φ − βs ≤ α + φ − βc and s > c, then r̂′2+(Q|s, α, φ) ≥ 0. Thus,

q∗ ≥ Q and must satisfy dr̂2(q∗|s,α,φ)
dq

= 0. We obtain q∗ = α + φ − βs, q∗c = Q and

q∗s = α + φ− βs−Q.

Proof of Lemma 3.6.4 The objective function is

R2(s|Q,α) =
N(s− c)

2φ

∫ φ

−φ

qs(Q,α, φ)dφ

=
N(s− c)

2φ

∫ φ

−φ

(α + φ− βs−Q)+dφ
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Note that if s ≥ α+φ−Q
β

, R2(s|Q,α) = 0. Also, at s = c, R2(c|Q,α) = 0. Thus, only

s ∈
[
c, α+φ−Q

β

]
is interesting. Depending on the value of Q, there are two cases.

Case 1: Q > α + φ− βc, qs(Q,α, φ) = (α + φ− βs − Q)+ = 0 for any φ ∈ [−φ, φ].

Thus, R2(s|Q,α) = 0 for any s ≥ c.

Case 2: Q ≤ α + φ − βc. Since s ≤ α+φ−Q
β

, Q − α + βs ≤ φ. Also −α ≥ −φ,

Q − α + βs ≥ −φ. Thus, Q − α + βs ∈ [−φ, φ]. For φ ∈ [−φ,Q − α + βs],

qs(Q,α, φ) = (α + φ − βs − Q)+ = 0. For φ ∈ [Q − α + βs, φ], qs(Q,α, φ) =

(α + φ− βs−Q)+ = α + φ− βs−Q. Therefore, it holds that

R2(s|Q,α) =
N(s− c)

2φ

[∫ Q−α+βs

−φ

0dφ +

∫ φ

Q−α+βs

(α + φ− βs−Q)dφ

]

=
N

4φ
(s− c)(α + φ− βs−Q)2

dR2(s|Q,α)

ds
=

N

4φ
(α + φ−Q− βs)(α + φ−Q + 2βc− 3βs)

Solving dR2(s|Q,α)
ds

= 0, we obtain s1 = α+φ+2βc−Q
3β

and s2 = α+φ−Q
β

. Note c < s1 ≤ s2.

For s ∈ [c, s1],
dR2(s|Q,α)

ds
≥ 0. For s ∈ [s1, s2],

dR2(s|Q,α)
ds

≤ 0. At s = c and s2 = α+φ−Q
β

,

R2(s|Q,α) = 0. Therefore, from c to s1, R2(s|Q,α) increases in s to its maximum.

Then, R2(s|Q,α) decreases in s to 0 at s2. Hence, s∗ = s1 = α+φ+2βc−Q
3β

.

Proof of Lemma 3.6.5 As there are infinitely many buyers, each small buyer’s

decision doesn’t influence the seller’s decision in Period 2. Thus, a single buyer takes

the spot prices as given. Denote the spot price at high market state as sh and the

spot price at low market state as sl. Denote each buyer’s best response at stage 4 as

qc(Q, s, α, φ) and qs(Q, s, α, φ).

First, we prove that for any given π, sh ≥ c and sl ≥ c, r1(Q|π) is a concave

function of Q, ∀Q ≥ 0. Note that, each buyer will never choose Q > αh + φ − βc.

Thus, only values of Q on [0, αh + φ− βc] are interesting. We prove the concavity of

r1(Q|π) term by term. The first term −πQ is linear, thus it is concave. The second
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term is the expected return from Period 2. First, let’s calculate the following integral:

gh(Q) =

∫ φ

−φ

[
−(qc(Q, s, αh, φ) + qs(Q, s, αh, φ))2

2β

+
(αh + φ)(qc(Q, s, αh, φ) + qs(Q, s, αh, φ))

β

− qc(Q, s, αh, φ)c + qs(Q, s, αh, φ)sh

β

]
dφ

Note that c ≤ sh. Depending on the value of αh + φ− βsh, there are two cases.

Case 1-H: 0 ≤ αh + φ− βsh ≤ αh + φ− βc. For Q ∈ [0, αh + φ− βsh), it holds that

gh(Q) =

∫ −αh+βc

−φ

0dφ +

∫ Q−αh+βc

−αh+βc

[
−(αh + φ− βc)2

2β

+
(αh + φ)(αh + φ− βc)

β
− c(αh + φ− βc)

]
dφ

+

∫ Q−αh+βsh

Q−αh+βc

[
−Q2

2β
+

(αh + φ)Q

β
−Qc

]
dφ

+

∫ φ

Q−αh+βsh

[
−(αh + φ− βsh)

2

2β

+
(αh + φ)(αh + φ− βsh)

β
−Qc− (αh + φ− βsh −Q)sh

]
dφ

= Q(sh − c)

(
αh + φ− 1

2
βsh − 1

2
βc− 1

2
Q

)
+

(αh + φ− βsh)
3

6β

This term is a concave function of Q in this interval. For Q ∈ [αh+φ−βsh, αh+φ−βc],

it holds that

gh(Q) =

∫ −αh+βc

−φ

0dφ +

∫ Q−αh+βc

−αh+βc

[
−(αh + φ− βc)2

2β

+
(αh + φ)(αh + φ− βc)

β
− c(αh + φ− βc)

]
dφ

+

∫ φ

Q−αh+βc

[
−Q2

2β
+

(αh + φ)Q

β
−Qc

]
dφ

=
Q3

6β
+

Q

2β
(αh + φ− βc)(αh + φ− βc−Q)

dgh(Q)

dQ
=

(αh + φ− βc−Q)2

2β

Since the buyer will never choose Q > αh + φ− βc, dgh(Q)
dQ

deceases in Q on [αh + φ−
βsh, αh +φ−βc]. Therefore, gh(Q) is also concave on this interval. At the breakpoint
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Q = αh + φ− βsh, gh(Q) is continuous and it holds that

g′h−(Q) = g′h+(Q) =
β(sh − c)2

2

Thus, gh(Q) is concave on [0, αh + φ− βc]

Case 2-H: αh + φ− βsh < 0. Following similar arguments, we can show that gh(Q)

is also concave on [0, αh + φ− βc].

Calculate the integral for the low demand state:

gl(Q) =

∫ φ

−φ

[
−(qc(Q, s, αl, φ) + qs(Q, s, αl, φ))2

2β

+
(αl + φ)(qc(Q, s, αl, φ) + qs(Q, s, αl, φ))

β

−qc(Q, s, αl, φ)βc + qs(Q, s, αl, φ)βsl

β

]
dφ

Since sl ≥ c, αl + φ− βsl ≤ αl + φ− βc. Similarly, there are two cases.

Case 1-L: 0 ≤ αl + φ− βsl ≤ αl + φ− βc. For Q ∈ [0, αl + φ− βsl), it holds that

gl(Q) =

∫ −αl+βc

−φ

0dφ +

∫ Q−αl+βc

−αl+βc

[
−(αl + φ− βc)2

2β

+
(αl + φ)(αl + φ− βc)

β
− c(αl + φ− βc)

]
dφ

+

∫ Q−αl+βsl

Q−αh+βc

[
−Q2

2β
+

(αl + φ)Q

β
−Qc

]
dφ

+

∫ φ

Q−αl+βsl

[
−(αl + φ− βsl)

2

2β

+
(αl + φ)(αl + φ− βsl)

β
−Qc− (αl + φ− βsl −Q)sl

]
dφ

= Q(sl − c)

(
αl + φ− 1

2
βsl − 1

2
βc− 1

2
Q

)
+

(αl + φ− βsl)
3

6β

Note gl(Q) is concave on this interval. For Q ∈ [αl + φ − βsl, αl + φ − βc), it holds

that

gl(Q) =

∫ −αl+βc

−φ

0dφ +

∫ Q−αl+βc

−αl+βc

[
−(αl + φ− βc)2

2β

+
(αl + φ)(αl + φ− βc)

β
− c(αl + φ− βc)

]
dφ
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+

∫ φ

Q−αl+βc

[
−Q2

2β
+

(αl + φ)Q

β
−Qc

]
dφ

=
Q3

6β
+

Q

2β
(αl + φ− βc)(αl + φ− βc−Q)

dgl(Q)

dQ
=

(αl + φ− βc−Q)2

2β

Since Q ≤ αl + φ− βc, this term is also concave on [αl + φ− βsl, αl + φ− βc].

For Q ∈ [αl + φ− βc, αh + φ− βc], it holds that

gl(Q) =

∫ −αl+βc

−φ

0dφ +

∫ φ

−αl+βc

[
(αl + φ− βc)2

2β

]
dφ

=
(αl + φ− βc)3

6β

dgl(Q)

dQ
= 0

Note gl(Q) is concave on each interval. At the breakpoints Q0 = αl + φ− βsl and

Q1 = αl + φ− βc, gl(Q) is continuous and

g′l−(Q0) = g′l+(Q0) =
β(sl − c)2

2

g′l−(Q1) = g′l+(Q1) = 0

Thus, gl(Q) is concave for any Q ∈ [0, αh + φ− βc].

Case 2-L: αl +φ−βsl < 0. Following similar arguments, it can be shown that gl(Q)

is concave on [0, αh + φ− βc].

Therefore, r1(Q|π) is a concave function of Q on [0, αh + φ− βc] and the Karush-

Kuhn-Tucker condition is necessary and sufficient for the optimality of this problem.

Let (Q∗, s∗h, s
∗
l ) be an equilibrium, it must satisfy the optimality conditions for both

the seller’s problem in Period 2 and the buyers’ problem. Note the buyers’ problem

has linear constraints, 0 ≤ Q ≤ αh + φ− βc.

If Q∗ ∈ (0, αl + φ− βc), the equilibrium conditions in the subgame are

s∗h =
αh + φ + 2βc−Q∗

3β
(A.0.25)
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s∗l =
αl + φ + 2βc−Q∗

3β
(A.0.26)

dr1(Q
∗|π)

dQ
= 0 (A.0.27)

Equation (A.0.25) and (A.0.26) imply Q∗ − αh + βs∗h ≤ φ and Q∗ − αl + βs∗l ≤ φ.

Thus,

dr1(Q
∗|π)

dQ
= −π +

p

2φ
(s∗h − c)

(
αh + φ−Q∗ − 1

2
βs∗h −

1

2
βc

)

+
1− p

2φ
(s∗l − c)

(
αl + φ−Q∗ − 1

2
βs∗h −

1

2
βc

)

Substitute (A.0.25)(A.0.26) into (A.0.27). The system is reduced to

dr1(Q
∗|π)

dQ
= −π +

5E(α + φ− βc−Q∗)2

36βφ
= 0

⇒ Q∗ = E(α) + φ− βc−
√

36βφπ

5
− σ2

At the endpoints Q = 0 and Q = αl + φ− βc,

dr1(0|π)

dQ
= −π +

5E(α + φ− βc)2

36βφ

where E(α + φ− βc)2 = p(αh + φ− βc)2 + (1− p)(αl + φ− βc)2,

r′1−(αl + φ− βc|π) = −π +
5p(αh − αl)

2

36βφ

Note if π < 5p(αh−αl)
2

36βφ
, then dr1(Q|π)

dQ
> 0, ∀Q ∈ (0, αl + φ − βc). If π > 5E(α+φ−βc)2

36βφ
,

dr1(Q|π)
dQ

< 0, ∀Q ∈ (0, αl + φ − βc). Thus, to satisfy the equilibrium condition,

π ∈
[

5p(αh−αl)
2

36βφ
, 5E(α+φ−βc)2

36βφ

]
.

If Q∗ ∈ [αl + φ− βc, αh + φ− βc], the conditions are

s∗h =
αh + φ + 2βc−Q∗

3β
(A.0.28)

s∗l ≥ c (A.0.29)

dr1(Q
∗|π)

dQ
= 0 (A.0.30)
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Equations (A.0.28) implies Q∗ − αh + βs∗h ≤ φ. Thus,

dr1(Q
∗|π)

dQ
= −π +

p

2φ
(s∗h − c)(αh + φ−Q∗ − 1

2
βs∗h −

1

2
βc)

The system is reduced to

dr1(Q
∗|π)

dQ
= −π +

5p

36βφ
(αh + φ− βc−Q∗)2 = 0

⇒ Q∗ = αh + φ− βc−
√

36βφπ

5p

At the endpoints Q = αl + φ− βc and Q = αh + φ− βc,

r′1+(αl + φ− βc|π) = −π +
5p(αh − αl)

2

36βφ

r′1−(αh + φ− βc|π) = −π

Note if π > 5p(αh−αl)
2

36βφ
, dr1(Q|π)

dQ
< 0, ∀Q ∈ [αl + φ− βc, αh + φ− βc]. Thus, to satisfy

the equilibrium condition, π ∈
[
0, 5p(αh−αl)

2

36βφ

]
.

If Q∗ = 0, the conditions are

s∗h =
αh + φ + 2βc−Q∗

3β
(A.0.31)

s∗l =
αl + φ + 2βc−Q∗

3β
(A.0.32)

dr1(0|π)

dQ
≤ 0 (A.0.33)

The system implies

−π +
5E(α + φ− βc)2

36βφ
≤ 0

⇒ π ≥ 5E(α + φ− βc)2

36βφ

If Q∗ = αh + φ− βc, the conditions are

s∗h ≥ c (A.0.34)

s∗l ≥ c (A.0.35)
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dr1(αh + φ− βc|π)

dQ
≥ 0 (A.0.36)

The system implies −π ≥ 0 ⇒ π = 0.

The results are summarized as follows.

1. If π ∈
(
0, 5(αh−αl)

2

36βφ

)
, an equilibrium is (Q∗, s∗h, s

∗
l ), where Q∗ = αh + φ − βc −√

36βφπ
5p

, s∗h = αh+φ+2βc−Q∗
3β

and s∗l ≥ c. Note that Q∗ ∈ (αl +φ−βc, αh+φ−βc).

2. If π ∈
[

5(αh−αl)
2

36βφ
, 5E(α+φ−βc)2

36βφ

)
, the unique equilibrium is (Q∗, s∗h, s

∗
l ), where Q∗ =

E(α) + φ − βc −
√

36βφπ
5

− σ2, s∗h = αh+φ+2βc−Q∗
3β

and s∗l = αl+φ+2βc−Q∗
3β

. Note

that Q∗ ∈ (0, αl + φ− βc].

3. If π ≥ 5E(α+φ−βc)2

36βφ
, the unique equilibrium is (Q∗, s∗h, s

∗
l ), where, Q∗ = 0, s∗h =

αh+φ+2βc
3β

and s∗l = αl+φ+2βc
3β

.

4. If π = 0, an equilibrium is (Q∗, s∗h, s
∗
l ), where, Q∗ ≥ αh + φ − βc, s∗h ≥ c and

s∗l ≥ c.

It should be noted that for any given π > 0, Q∗ is unique.

Proof of Theorem 3.6.2 To simplify the notation, we first divide R1(π) by N

without changing the problem. For a given π, denote a single buyer’s best response at

stage 4 as qc(Q,α, φ) and qs(Q,α, φ). Let the equilibrium spot prices in the subgame

be sh and sl for the high demand state and low demand state respectively. The seller’s

problem is

max
π

R1(π) = πQ(π) + E[G2(Q(π), α)]/N

s.t. π ≥ 0

where

E[G2(Q(π), α)] = N

[
p(sh − c)

2φ

∫ φ

φ

qs(Q,αh, φ)dφ +
(1− p)(sl − c)

2φ

∫ φ

φ

qs(Q,αl, φ)dφ

]
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For π ∈
[
0, 5p(αh−αl)

2

36βφ

)
, it holds that

R1(π) = πQ(π) +
p(αh + φ−Q(π)− βc)3

27βφ

Q(π) = αh + φ− βc−
√

36βφπ

5p

dR1(π)

dπ
= αh + φ− βc− 11

10

√
36βφπ

5p

Thus, R1(π) is concave on this interval. At the endpoints π = 0 and π = 5p(αh−αl)
2

36βφ
,

dR1(0)

dπ
= αh + φ− βc > 0

R′
1−

(
5p(αh − αl)

2

36βφ

)
= αl + φ− βc− 1

10
(αh − αl) > 0

Therefore, π∗ ≥ 5p(αh−αl)
2

36βφ
.

For π ∈
[

5p(αh−αl)
2

36βφ
, 5E(α+φ−βc)2

36βφ

]
, it holds that

R1(π) = πQ(π) +
p(αh + φ−Q(π)− βc)3 + (1− p)(αl + φ−Q(π)− βc)3

27βφ

Q(π) = E(α) + φ− βc−
√

36βφπ

5
− σ2

dR1(π)

dπ
= E(α) + φ− βc−

√
36βφπ

5
− σ2 − 18βφπ

25

√
36βφπ

5
− σ2

dR2
1(π)

dπ2
=

108βφ
(
25σ2 − 33βφπ

)

25
(

36βφπ
5

− σ2
)3/2

At the endpoints π = 5p(αh−αl)
2

36βφ
and π = 5E(α+φ−βc)2

36βφ
,

R′
1−

(
5p(αh − αl)

2

36βφ

)
= R′

1+

(
5p(αh − αl)

2

36βφ

)
= αl + φ− βc− 1

10
(αh − αl)

R′
1−

(
5E(α + φ− βc)2

36βφ

)
= − E(α + φ− βc)2

10(E(α) + φ− βc)
< 0

Also, note that R1(π) is continuous at π = 5p(αh−αl)
2

36βφ
and π = 5E(α+φ−βc)2

36βφ
. Thus,

5p(αh−αl)
2

36βφ
≤ π∗ < 5E(α+φ−βc)2

36βφ
. If π ≤ 5σ2

33βφ
, d2R2(π)

dπ2 ≥ 0. Depending on the value of

5σ2

33βφ
, there are two cases.
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Case 1: 5σ2

33βφ
≤ 5p(αh−αl)

2

36βφ
. Then R1(π) is concave on this interval.

Case 2: 5σ2

33βφ
> 5p(αh−αl)

2

36βφ
. The interval is divided into two pieces,

[
5p(αh−αl)

2

36βφ
, 5σ2

33βφ

)

and
[

5σ2

33βφ
, 5E(α+φ−βc)2

36βφ

]
. Since on

[
5p(αh−αl)

2

36βφ
, 5σ2

33βφ

)
R1(π) is convex, dR1(π)

dπ
increases

in π. Therefore at π = 5σ2

33βφ
, dR1(π)

dπ
> 0. The optimal price π∗ falls in the second piece

on which R1(π) is concave.

Since in both cases, π∗ is in an interval on which R1(π) is strictly concave, π∗ is

unique. Therefore, π∗ ∈
[

5p(αh−αl)
2

36βφ
, 5E(α+φ−βc)2

36βφ

]
, such that

dR1(π
∗)

dπ
= 0

⇔ E(α) + φ− βc−
√

36βφπ∗

5
− σ2 − 18βφπ∗

25

√
36βφπ∗

5
− σ2

= 0

Proof of Theorem 3.6.3 Similarly as before, we refer the buyers only purchase

under contracts as type A buyers and the buyers participate in both markets as

type B buyers. It holds that R1(π) = λNRA(π) + (1− λ)NRB(π), where RA(π) and

RB(π) represent the profit from per type A buyer and per type B buyer respectively.

In the proof of Theorem 3.6.1, we have shown that RA(π) is piecewise concave on
[
0, p(αh−αl)

2

4βφ

)
and

[
p(αh−αl)

2

4βφ
, E(α+φ−βc)2

4βφ

]
. In addition, RB(π) is piecewise concave on

[
0, 5p(αh−αl)

2

36βφ

)
and

[
5p(αh−αl)

2

36βφ
, 5E(α+φ−βc)2

36βφ

]
as shown in the proof of Theorem 3.6.2.

First we will show that the optimal option price π∗ > p(αh−αl)
2

4βφ
. Let π0 = p(αh−αl)

2

4βφ
.

In the proof of Theorem 3.6.1, it has been shown that dRA(π)
dπ

> 0 at π0. For dRB(π)
dπ

,

it holds that

dRB(π0)

dπ
= E(α) + φ− βc− (αh − αl)

[√
p(0.8 + p) +

9p

50
√

p(0.8 + p)

]

≥ (1 + p)(αh − αl)− (αh − αl)

[√
p(0.8 + p) +

9p

50
√

p(0.8 + p)

]

Since
√

p(0.8 + p) < 0.8+ p and 9p

50
√

p(0.8+p)
< 0.18, dRB(π0)

dπ
> (αh−αl)[1+ p− (0.8+

p + 0.18)] > 0. Thus, π∗ > π0.
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Next we will show π∗ < 5E(α+φ−βc)2

36βφ
. Let 5E(α+φ−βc)2

36βφ
= π1. The proof of Theo-

rem 3.6.2 has shown dRB(π1)
dπ

< 0. For dRA(π)
dπ

, it holds that

dRA(π1)

dπ
= E(α) + φ− βc− 5E(α + φ− βc)2 − 6σ2

2
√

5E(α + φ− βc)2 − 9σ2

≤ E(α) + φ− βc− 5(E(α) + φ− βc)2 − σ2

2
√

5(E(α) + φ− βc)

= E(α) + φ− βc−
√

5

2
(E(α) + φ− βc) +

σ2

2
√

5(E(α) + φ− βc)

Since σ2 ≤ (E(α) + φ− βc)2/4, dRA(π1)
dπ

≤ (E(α) + φ− βc)(1−√5/2− 1/(8
√

5)) < 0.

Thus, π∗ < π1.

Consider the following cases:

Case 1: 5σ2

33βφ
≥ 5p(αh−αl)

2

36βφ
⇔ p ≤ 1/12.

Case 2: 5σ2

33βφ
≤ 5p(αh−αl)

2

36βφ
and σ2

3βφ
≥ p(αh−αl)

2

4βφ
. This holds if and only if 1/12 ≤ p ≤

1/4.

Case 3: σ2

3βφ
≤ p(αh−αl)

2

4βφ
⇔ p ≥ 1/4.

We will show π∗ > σ2

3βφ
for all cases. Since σ2

3βφ
≤ p(αh−αl)

2

4βφ
in Case 3, the result

follows. For Case 1 and Case 2, it has been shown that dRA(π)
dπ

≥ 0 at σ2

3βφ
. For dRB(π)

dπ
,

it holds that

dRB(π)

dπ
= E(α) + φ− βc− (αh − αl)

√
p(1− p)

(√
1.4 + 6/

√
7
)

≥ (αh − αl)
[
1−

(√
1.4 + 6/

√
7
)

/4
]

> 0

Therefore, π∗ > σ2

3βφ
. Let π2 = max

{
π0,

σ2

3βφ

}
. It holds that π∗ ∈ (π2, π1), on which

R1(π) is concave. The KKT condition is necessary and sufficient for optimality.

Next we will show that dRB(π)
dπ

≥ dRA(π)
dπ

for any π ∈ (π2, π1). Let x = βφπ

dRB(π)

dπ
≥ dRA(π)

dπ

⇔ 6x− σ2

√
4x− σ2

− 7.92x− σ2

√
7.2x− σ2

≥ 0

⇔ 8.2944x3 + 3.6864x2σ2 − 0.64xσ4 ≥ 0
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Note x > 0. Solve 8.2944x3 + 3.6864x2σ2 − 0.64xσ4 = 0. We obtain two roots x1

and x2 with x2 < 0 and x1 ≈ 0.1335. Since βφπ2 > x1,
dRB(π)

dπ
≥ dRA(π)

dπ
for any

π ∈ (π2, π1). On this interval, for a fixed π, dR1(π)
dπ

increases in λ. It follows that π∗(λ)

increases in λ.

Note Q∗(λ) = N [λQB(π∗(λ)) + (1− λ)QA(π∗(λ))], where QA and QB denote the

contracting quantity per type A buyer and per type B buyer respectively. Without

confusion, we divide Q∗(λ) by N to simplify the notation, which doesn’t change the

problem. It holds that

QA(π∗(λ)) = E(α) + φ− βc−
√

4βφπ∗ − σ2

QB(π∗(λ)) = E(α) + φ− βc−
√

7.2βφπ∗ − σ2

dQ∗(λ)

dλ
= QB(π∗(λ))−QA(π∗(λ)) + λ

dQB(π∗(λ))

dπ∗
dπ∗(λ)

dλ

(1− λ)
dQA(π∗(λ))

dπ∗
dπ∗(λ)

dλ

=

√
4βφπ∗ − σ2 −

√
7.2βφπ∗ − σ2 + λ

dQB(π∗(λ))

dπ∗
dπ∗(λ)

dλ
+

(1− λ)
dQA(π∗(λ))

dπ∗
dπ∗(λ)

dλ

= < 0

The last step follows by dQA(π∗(λ))
dπ∗ < 0, dQB(π∗(λ))

dπ∗ < 0 and dπ∗(λ)
dλ

> 0.

Proof of Theorem 3.6.4 This proof is based on the proof of Theorem 3.6.3. It

holds that

RA(π∗(λ)) = π∗
(
E(α) + φ− βc−

√
4βφπ∗ − σ2

)

RB(π∗(λ)) = π∗
(
E(α) + φ− βc−

√
7.2βφπ∗ − σ2

)
+

p

27βφ

[
(1− p)(αh − αl) +

√
7.2βφπ∗ − σ2

]3

+

1− p

27βφ

[
−p(αh − αl) +

√
7.2βφπ∗ − σ2

]3

To simplify the notation, we divide the seller’s surplus G(λ) by N , which doesn’t
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change the problem.

G(λ) = (1− λ)RA(π∗(λ)) + λRB(π∗(λ))

dG(λ)

dπ
= RB(π∗(λ))−RA(π∗(λ)) +

d((1− λ)RA(π∗(λ)) + λRB(π∗(λ))

dπ∗
dπ∗

dλ

= RB(π∗(λ))−RA(π∗(λ))

The last steps follows by d((1−λ)RA(π∗(λ))+λRB(π∗(λ))
dπ∗ = 0.

It has been shown in the previous proof that dRB(π)
dπ

− dRA(π)
dπ

> 0 for all π ∈ (π2, π1),

where π1 = 5E(α+φ−βc)2

36βφ
and π2 = max

{
π0,

σ2

3βφ

}
. Note π∗ ∈ (π2, π1). For Case 1 and

Case 2, π2 = σ2

3βφ
. We will show that RB

(
σ2

3βφ

)
− RA

(
σ2

3βφ

)
≥ 0. Since π∗ > σ2

3βφ
and

dRB(π)
dπ

− dRA(π)
dπ

> 0, RB(π∗(λ))−RA(π∗(λ)) > RB

(
σ2

3βφ

)
−RA

(
σ2

3βφ

)
≥ 0. The result

follows. For Case 3, π2 = π0. Similarly we will show RB(π0) − RA(π0) ≥ 0, which

completes the proof.

Case 1 and Case 2: In this case, p ≤ 1/4 and π2 = σ2

3βφ
. Let π3 = σ2

3βφ
, it holds that

RA(π3) =
σ2

3βφ

[
E(α) + φ− βc−

√
σ2/3

]

RB(π3) =
σ2

3βφ

[
E(α) + φ− βc−

√
1.4σ2

]

+
σ3

27βφ

[
(1− p)1.5

p0.5
− p1.5

(1− p)0.5
+ 3

√
1.4 + 1.41.5

]

RB(π3)−RA(π3) =
σ2

3βφ

[
−
√

1.4 +
√

1/3
]

+

σ2

27βφ

[
(1− p)1.5

p0.5
− p1.5

(1− p)0.5
+ 3

√
1.4 + 1.41.5

]

≥ σ2

3βφ

[
−
√

1.4 +
√

1/3
]

+

σ2

27βφ

[
(1− 1/4)1.5

(1/4)0.5
− (1/4)1.5

(1− 1/4)0.5
+ 3

√
1.4 + 1.41.5

]

≈ 0.0336σ2

3βφ
> 0

Case 3: In this case π2 = π0. At π0, it holds that

RA(π0) =
p(αh − αl)

2

4βφ

[
E(α) + φ− βc− p(αh − αl)

]
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RB(π0) =
p(αh − αl)

2

4βφ

[
E(α) + φ− βc−

√
p(0.8 + p)(αh − αl)

]
+

(αh − αl)
3

27βφ

[
p(1− p)(1− 2p) + 3p(1− p)

√
p(0.8 + p) + (p(0.8 + p))1.5

]

RB(π0)−RA(π0) ≈ p(αh − αl)
3

108βφ

[
−

√
p(0.8 + p)(8p + 11.8) + 8p2 + 15p + 4

]

Since−
√

p(0.8 + p)(8p+11.8)+8p2+15p+4 > 0 for all p ∈ (0, 1), RB(π0)−RA(π0) > 0.

Therefore, dG(λ)
dπ

= RB(π∗(λ))−RA(π∗(λ)) > RB(π2)−RA(π2) > 0 for all cases.

Proof of Lemma 3.6.6 The result in (1) is obvious. We only prove (2). To simplify

the notation, we first divide R2(s|QA, QB, α) by N and drop the arguments QA, QB

and α. Let s0 be the optimal price without considering the capacity constraint and

ŝ be the price at which the capacity constraint is tight. Since D(QA, QB, s) strictly

decrease in s, ŝ is unique. Let s = max{c, ŝ}.
If QB > α + φ − βc, then R2(s) = λ(1−γ)(s−c)(α+φ−βs)2

4φ
. The optimal price s∗ =

max
{

α+φ+2βc
3β

, s
}

is unique.

Now we prove the case QB ≤ α + φ− βc. Note R2(s) is a piecewise function.

For s ≤ α+φ−QB

β
,

R2(s) =
λ(s− c)

[
γ(α + φ− βs−QB)2 + (1− γ)(α + φ− βs)2

]

4φ

For s > α+φ−QB

β
,

R2(s) =
λ(1− γ)(s− c)(α + φ− βs)2

4φ

Case 1: α+φ+2βc
3β

≤ α+φ−QB

β
. In this case, s0 ∈

[
α+φ+2βc−QB

3β
, α+φ+2βc

3β

]
. Since

dR2(s)
ds

< 0 at α+φ−QB

β
, dR2(s)

ds
> 0 at α+φ+2βc−QB

3β
and dR2(s)

ds
is quadratic, equation

dR2(s)
ds

= 0 only has one root in this interval. Such root is s0. Thus, s∗ = {s0, s} and

is unique.

Case 2: α+φ+2βc
3β

> α+φ−QB

β
. For s > α+φ+2βc

β
, dR2(s)

ds
< 0. For s < α+φ+2βc−QB

3β
,

dR2(s)
ds

> 0. Hence, s0 ∈
(

α+φ+2βc−QB

3β
, α+φ+2βc

3β

)
. In addition, dR2(s)

ds
≥ 0 for all

s ∈
[

α+φ−QB

β
, α+φ+2βc

3β

]
.
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Case 2.a: For s ∈
[

α+φ+2βc−QB

3β
, α+φ+2βc

3β

]
, dR2(s)

ds
≥ 0. In this case s0 = α+φ+2βc

3β
.

Thus, s∗ = {s0, s} and is unique.

Case 2.b: For some s ∈
[

α+φ+2βc−QB

3β
, α+φ−QB

β

]
, dR2(s)

ds
< 0. Since dR2(s)

ds
is quadratic

and dR2(s)
ds

> 0 at α+φ+2βc−QB

3β
and α+φ−QB

β
, equation dR2(s)

ds
= 0 has two roots s1 and

s2 with s1 < s2, s1,2 ∈
[

α+φ+2βc−QB

3β
, α+φ−QB

β

]
.

Case 2.b.1: s > α+φ+2βc
3β

. In this case, s∗ = s and is unique.

Case 2.b.2: s ∈
(
s1,

α+φ+2βc
3β

]
. In this case, s∗ = α+φ+2βc

3β
and is unique.

Case 2.b.3: s ≤ s1. In this case, s∗ = argmax
{

R2

(
α+φ+2βc

3β

)
, R2(s1)

}
. Only if

R2

(
α+φ+2βc

3β

)
= R2(s1), then both s1 and α+φ+2βc

3β
can be s∗. Simply R2

(
α+φ+2βc

3β

)
=

R2(s1). We obtain equation (3.6.23).

Proof of Lemma 3.6.7 To simplify the notation, we first divide R2(s|Q,α) by N

without changing the problem. First, recall that by Lemma 3.6.4, the optimal price

to the problem without the capacity constraint is s0 = α+φ+2βc−Q
3β

. The objective

function is

R2(s|Q,α) = (s− c)

∫ φ

−φ

qs(Q, s, α, φ)dF (φ)

=
1

4φ
(s− c)(α + φ−Q− βs)2

dR2(s|Q,α)

ds
=

1

4φ

(
α + φ−Q + 2βc− 3βs

) (
α + φ−Q− βs

)

If there is no capacity constraint, the optimal solution s0 ∈
[
c, α+φ−Q

β

]
. At s = c and

s = α+φ−Q
β

, R2(s|Q,α) = 0. From s = c, R2(s|Q,α) keeps increasing to s0, where it

reaches its maximum. Then, R2(s|Q,α) decreases to 0 at s = α+φ−Q
β

.

Now let’s look at the capacity constraint:

N

∫ φ

−φ

[qc(Q, s, α, φ) + qs(Q, s, α, φ)]dF (φ) ≤ C (A.0.37)

The LHS of the capacity constraint

N

2φ

[∫ φ

−φ

(qc(Q, s, α, φ) + qs(Q, s, α, φ))dφ

]
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=
N

2φ

[∫ −α+βc

−φ

0dφ +

∫ Q−α+βc

−α+βc

(α + φ− βc)dφ

+

∫ Q−α+βs

Q−α+βc

Qdφ +

∫ φ

Q−α+βs

(α + φ− βs)dφ

]

=
N

4φ

[
β2s2 − 2βs(α + φ−Q) + (α + φ)2 − 2Qβc

]
(A.0.38)

If this constraint is tight at s, then

N

4φ

[
β2s2 − 2βs(α + φ−Q) + (α + φ)2 − 2Qβc

]
= C

Solve above equation. We get

s1,2 =
1

β

[
α + φ−Q∓

√
(α + φ− βc−Q)2 − (α + φ− βc)2 + 4φC/N

]

Note that s2 = 1
β

[
α + φ−Q +

√
(α + φ− βc−Q)2 − (α + φ− βc)2 + 4φC/N

]
>

α+φ−Q
β

, thus R2(s|Q,α) = 0. Also, LHS of (A.0.37) decreases in s, if s ≤ s1. Let’s

consider the case when the capacity is small, such that at s0, the capacity con-

straint might be violated. Instead of s0, the optimal solution is determined by the

capacity constraint such that s∗ ≥ s0 and at s∗ constraint (A.0.37) is active. For

s ∈ (s0,
α+φ−Q

β
), dR2(s|Q,α)

ds
< 0. Therefore, s∗ = s1. We now characterize the capacity

threshold, C1, such that the condition holds.

s1 ≥ s0

⇔ 5(α + φ− βc−Q)2

9
≤ (α + φ− βc)2 − 4φC

N
(A.0.39)

Let Q = 0, we get if C ≤ N(α+φ−βc)2

9φ
, then s1 ≥ s0 for any Q ≥ 0. Let C ≤ Cb =

N(αl+φ−βc)2

9φ
, then the condition holds in both high demand state and low demand

state, i.e., both s1(Q,αh) ≥ s0(Q,αh) and s1(Q,αl) ≥ s0(Q,αl), ∀Q ≥ 0.

Proof of Lemma 3.6.8 As there are infinitely many small buyers, each buyer

doesn’t take the seller’s decision in Period 2 as the consequence of his decision in

Period 1. Thus, in each buyer’s problem, the spot prices sh and sl are given. In

Lemma 3.6.5, we have proved that for any given π, sh ≥ c and sl ≥ c, r1(Q|π) is a
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concave function of Q, ∀Q ∈ [0, αh +φ−βc]. Note since C ≤ N(αl+φ−βc)2

9φ
and φ ≥ αh,

C/N ≤ αl + φ − βc. It follows r1(Q|π) is a concave function of Q, ∀Q ∈ [0, C/N ].

Therefore, the Karush-Kuhn-Tucker condition is necessary and sufficient condition

for optimality.

Let (Q∗, s∗h, s
∗
l ) denote an equilibrium for a given π. By Lemma 3.6.7,

s∗h =
1

β

[
αh + φ−Q∗ −

√
(αh + φ−Q∗ − βc)2 − (αh + φ− βc)2 + 4φC/N

]

s∗l =
1

β

[
αl + φ−Q∗ −

√
(αl + φ−Q∗ − βc)2 − (αl + φ− βc)2 + 4φC/N

]

Note that s∗h ≤ αh+φ−Q∗
β

, i.e. Q∗ − αh − βsh ≤ φ and s∗l ≤ αl+φ−Q∗
β

, i.e. Q∗ − αl −
βsh ≤ φ. The market equilibrium (Q∗, s∗h, s

∗
l ) for a given π must satisfy the following

conditions.

If Q∗ ∈ (0, C
N

), then

s∗h =
1

β

[
αh + φ−Q∗ −

√
(αh + φ−Q∗ − βc)2 − (αh + φ− βc)2 + 4φC/N

]

s∗l =
1

β

[
αl + φ−Q∗ −

√
(αl + φ−Q∗ − βc)2 − (αl + φ− βc)2 + 4φC/N

]

dr1(Q
∗|π)

dQ
= 0

where

dr1(Q
∗|π)

dQ
= −π +

p

2φ
(s∗h − c)

(
αh + φ−Q∗ − 1

2
βs∗h −

1

2
βc

)

+
1− p

2φ
(s∗l − c)

(
αl + φ−Q∗ − 1

2
βsl − 1

2
βc

)

Above system is reduced to

−4βφπ + E(α + φ− βc)2 − 4φC

N
= 0

If Q∗ = 0, then

s∗h =
1

β

[
αh + φ−Q∗ −

√
(αh + φ−Q∗ − βc)2 − (αh + φ− βc)2 + 4φC/N

]
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s∗l =
1

β

[
αl + φ−Q∗ −

√
(αl + φ−Q∗ − βc)2 − (αl + φ− βc)2 + 4φC/N

]

dr1(0|π)

dQ
≤ 0

Above system is reduced to

−4βφπ + E(α + φ− βc)2 − 4φC

N
≤ 0

If Q∗ = C/N , then

s∗h =
1

β

[
αh + φ−Q∗ −

√
(αh + φ−Q∗ − βc)2 − (αh + φ− βc)2 + 4φC/N

]

s∗l =
1

β

[
αl + φ−Q∗ −

√
(αl + φ−Q∗ − βc)2 − (αl + φ− βc)2 + 4φC/N

]

dr1(C/N |π)

dQ
≥ 0

Above system is reduced to

−4βφπ + E(α + φ− βc)2 − 4φC

N
≥ 0

In summary, for any given π, buyers’ optimal contracting policy is as follows.

If π < E(α+φ−βc)2−4φC/N

4βφ
, then Q∗ = C/N .

If π > E(α+φ−βc)2−4φC/N

4βφ
, then Q∗ = 0.

If π = E(α+φ−βc)2−4φC/N

4βφ
, then any Q ∈ [0, C/N ] is optimal.

Proof of Theorem 3.6.5 To simplify the notation, we first divide R2(s|Q,α) by

N without changing the problem. In addition, denote the equilibrium spot prices in

the subgame for a given π as sh and sl. And denote a single buyer’s corresponding

equilibrium response at stage 2 as Q(π) and at stage 4 as qc(Q(π), α, φ), qs(Q(π), α, φ).

The seller’s problem is

max
π

R1(π)

s.t. 0 ≤ Q(π) ≤ C/N (A.0.40)

π ≥ 0
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where

R1(π) = πQ(π) +
p(sh − c)

2φ

∫ φ

−φ

qs(Q(π), αh, φ)dφ

+
(1− p)(sl − c)

2φ

∫ φ

−φ

qs(Q(π), αl, φ)dφ (A.0.41)

By Lemma 3.6.3, Lemma 3.6.7 and Lemma 3.6.8,

R1(π) = πQ(π) +
p

4φ
(sh − c)(αh + φ−Q(π)− βsh)

2

+
p

4φ
(sl − c)(αl + φ−Q(π)− βsl)

2

Let π0 = E(α+φ−βc)2−4φC/N

4βφ
. If π < π0, it holds that

Q(π) = C/N

sh =
1

β

[
αh + φ−Q−

√
(αh + φ−Q− βc)2 − (αh + φ− βc)2 + 4φC/N

]

sl =
1

β

[
αl + φ−Q−

√
(αl + φ−Q− βc)2 − (αl + φ− βc)2 + 4φC/N

]

dR1(π)

dπ
= C/N

For π > π0,

Q(π) = 0

sh =
1

β

[
αh + φ−

√
4φC/N

]

sl =
1

β

[
αl + φ−

√
4φC/N

]

dR1(π)

dπ
= 0

At the breakpoint π0, Q(π) ∈ [0, C/N ]. For C is small enough, it can be shown

that R1(π0) strictly increases as Q(π) decreases. Let

yh =

√
(αh + φ− βc−Q)2 − (αh + φ− βc)2 + 4φC/N

yl =

√
(αl + φ− βc−Q)2 − (αl + φ− βc)2 + 4φC/N
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Take the derivative of R1(π0) with respective to Q at π0. We obtain

dR1(π0)

dQ
=

p

4φβ

(−2yh
2 + (αh + φ− βc−Q)(yh − 2sh + 2c + (αh + φ− βc−Q))

)
+

1− p

4φβ

(−2yl
2 + (αl + φ− βc−Q)(yl − 2sl + 2c + (αl + φ− βc−Q))

)

A sufficient condition for dR1(π0)
dQ

≤ 0 is C ≤ N(E(α)+φ−βc)2

32φ
= Cc.

Therefore, if C ≤ Cc, R1(π
−
0 ) ≤ R1(π0) ≤ R1(π), for all π > π0. Thus, any option

price higher than π0 is optimal.

Proof of Lemma 3.6.9 Since Q ≤ C/N ≤ αl + φ− βc,
∫ φ

−φ

[
−qc(Q,αh, φ)2

2β
+

(αh + φ)qc(Q,αh, φ)

β
− qc(Q,αh, φ)c

]
dφ

=

∫ −αh+βc

−φ

0dφ +

∫ Q−αh+βc

−αh+βc

(αh + φ− βc)2

2β
dφ +

∫ φ

Q−αh+βc

[
−Q2

2β
+

(αh + φ)Q

β
−Qc

]

=
Q3

6β
+

Q

2β
(αh + φ− βc)(αh + φ− βc−Q)

Similarly,
∫ φ

−φ

[
−qc(Q,αl, φ)2

2β
+

(αl + φ)qc(Q,αl, φ)

β
− qc(Q,αl, φ)c

]
dφ

=
Q3

6β
+

Q

2β
(αl + φ− βc)(αl + φ− βc−Q)

Therefore,

r1(Q|π) = −πQ +
p

2φ

[
Q3

6β
+

Q

2β
(αh + φ− βc)(αh + φ− βc−Q)

]

+
1− p

2φ

[
Q3

6β
+

Q

2β
(αl + φ− βc)(αl + φ− βc−Q)

]

Differentiate r1,

dr1(Q|π)

dQ
= −π +

1

4βφ

[
p(αh + φ− βc−Q)2 + (1− p)(αl + φ− βc−Q)2

]

= −π +
E(α + φ− βc−Q)2

4βφ

Since Q ≤ C/N ≤ αl +φ−βc, dr1(Q|π)
dQ

decreases in Q. Hence, r1 is a concave function

of Q on [0, C/N ]. The Karush-Kuhn-Tucker condition is necessary and sufficient for

optimality.
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The derivative at the end points Q = 0 and Q = C/N is

dr1(0|π)

dQ
= −π +

E(α + φ− βc)2

4βφ

dr1(C/N |π)

dQ
= −π +

E(α + φ− βc− C/N)2

4βφ

Therefore,

1. If π ≥ E(α+φ−βc)2

4βφ
, then Q∗ = 0.

2. If π ≤ E(α+φ−βc−C/N)2

4βφ
, then Q∗ = C/N .

3. If π ∈ [E(α+φ−βc−C/N)2

4βφ
, E(α+φ−βc)2

4βφ
], then dr1(Q∗|π)

dQ
= 0, thus, Q∗ = E(α) + φ −

βc−
√

4βφπ − σ2.

Proof of Theorem 3.6.6 To simplify the notation, we first divide R1(π) by N

without changing the problem. By Lemma 3.6.9, R1(π) is a piecewise function.

For π < E(α+φ−βc−C/N)2

4βφ
, Q(π) = C/N , R1(π) = πC/N and dR1(π)

dπ
= C/N .

For π > E(α+φ−βc)2

4βφ
, Q(π) = 0, R1(π) = 0.

For π ∈
[
E(α+φ−βc−C/N)2

4βφ
, E(α+φ−βc)2

4βφ

]
, Q(π) = E(α) + φ− βc−

√
4βφπ − σ2.

R(π) = π

[
E(α) + φ− βc−

√
4βφπ − σ2

]
(A.0.42)

At the breakpoints π0 = E(α+φ−βc−C/N)2

4βφ
and π1 = E(α+φ−βc)2

4βφ
,

Q(π+
0 ) = Q(π−0 )

⇒ R1(π
+
0 ) = R1(π

−
0 )

Q(π+
1 ) = Q(π−1 )

⇒ R1(π
+
1 ) = R1(π

−
1 )
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For π < E(α+φ−βc−C/N)2

4βφ
, dR1(π)

dπ
= C/N , π∗ ≥ E(α+φ−βc−C/N)2

4βφ
. In addition, for π >

E(α+φ−βc)2

4βφ
, R1(π) = 0. Therefore, the optimal solution π∗ ∈

[
E(α+φ−βc−C/N)2

4βφ
, E(α+φ−βc)2

4βφ

]
.

We will show that if C/N is small, then π∗ = E(α+φ−βc−C/N)2

4βφ
.

For π ∈
[
E(α+φ−βc−C/N)2

4βφ
, E(α+φ−βc)2

4βφ

]
,

dR1(π)

dπ
=

1√
4βφπ − σ2

[
(E(α) + φ− βc)

√
4βφπ − σ2 − (6βφπ − σ2)

]

Let
√

4βφπ − σ2 = x. Since π ≥ E(α+φ−βc−C/N)2

4βφ
, x > 0. Let dR1(π)

dπ
= 0.

dR1(π)

dπ
= 0

⇔ −3x2

2
+ (E(α) + φ− βc)x− σ2

2
= 0 (A.0.43)

Solve equation (A.0.43). We obtain the two roots:

x1,2 =
1

3

[
E(α) + φ− βc±

√
(E(α) + φ− βc)2 − 3σ2

]
(A.0.44)

Note that σ2 = p(1 − p)(αh − αl)
2 ≤ (αh−αl)

2

4
. Thus, 3σ2 ≤ 3(αh−αl)

2

4
< (E(α) + φ −

βc)2, x1,2 are well defined. Since π ∈
[
E(α+φ−βc−C/N)2

4βφ
, E(α+φ−βc)2

4βφ

]
, the corresponding

x ∈ [E(α) + φ − βc − C/N,E(α) + φ − βc]. If C/N ≤ 1
3
(E(α) + φ − βc), then

the corresponding x ∈ [2
3
(E(α) + φ − βc),E(α) + φ − βc]. Since C ≤ Cb, C/N ≤

1
3
(E(α) + φ − βc) holds. Note x1,2 < 2

3
(E(α) + φ − βc). Therefore, dR1(π)

dπ
< 0,

∀π ∈
[
E(α+φ−βc−C/N)2

4βφ
, E(α+φ−βc)2

4βφ

]
. Hence, π∗ = E(α+φ−βc−C/N)2

4βφ
.

Proof of Theorem 3.6.7 First, we prove G(0) < G(1). Note that

G(0) =
C

4βφ

[
E(α + φ− βc− C/N)2

]

G(1) =
C

4βφ

[
4φ(E(α) + φ− βc−

√
4φC/N)

]

Since C ≤ min{Cb, Cc}, C ≤ N(E(α)+φ−βc)2

16φ
. Thus,

√
4φC/N ≤ E(α)+φ−βc

2
and

G(1) ≥ C

4βφ

[
2φ(E(α) + φ− βc)

]

G(0) =
C

4βφ

[
E(α + φ− βc− C/N)2

]
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<
C

4βφ

[
2φp(αh + φ− βc) + 2φ(1− p)(αl + φ− βc)

]

=
C

4βφ

[
2φ(E(α) + φ− βc)

]

Therefore, G(0) < G(1).

Next, we will prove V (0) < V (1). It holds that

V (0) = C

[
−E(α + φ− β − C/N)2

4βφ
+

C2

12βφN2

+
p

4βφ
(αh + φ− βc)(αh + φ− βc− C/N)

+
(1− p)

4βφ
(αl + φ− βc)(αl + φ− βc− C/N)

]

= C

[
C

4βφN
(E(α) + φ− βc− C/N) +

C2

12βφN2

]

=
C2

[
3(E(α) + φ− βc)− 2C/N

]

12βφN

V (1) =
N

12βφ

[
p(αh + φ− βsh)

3 + (1− p)(αl + φ− βsl)
3
]

where sh = 1
β

[
αh + φ−

√
4φC
N

]
and sl = 1

β

[
αl + φ−

√
4φC
N

]
. Thus,

V (1) =
N

12βφ

[
4φC/N

]3/2

V (1)− V (0) =
C3/2

12βφN1/2

[
8φ

3/2 −
√

C

N

[
3(E(α) + φ− βc)− 2C/N

]
]

Note that C/N ≤ Cb/N = (αl+φ−βc)2

9φ
, C/N ≤ 4φ

9
< φ. Also, αh ≤ φ. Thus

3(E(α) + φ− βc)− 2C/N < 8φ√
C

N
< φ

0.5

⇒ V (1)− V (0) > 0

Since both G(1) > G(0) and V (1) > V (0), total social surplus W (1) > W (0).

Proof of Lemma3.7.2 First we will show that (s0, s0) is an equilibrium. Suppose
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seller 1 lowers the price to s < s0, then her return at this stage is R2,1(s, s0|Q1, Q2, α) =

(s − c)(C − Q1) < R2,1(s0, s0|Q1, Q2, α), which can not be optimal. If the Seller in-

creases the price to s > s0, then for s ≤ (α− C −Q1)/β,

R2,1(s, s0|Q1, Q2, α) = (s− c)(α− βs− C −Q1) (A.0.45)

dR2,1(s, s0|Q1, Q2, α)

ds
= α− 2βs + βc− C −Q1 (A.0.46)

where R2,1(s, s0|Q1, Q2, α) is strictly concave on the interval. For s > (α−C−Q1)/β,

R2,1(s, s0|Q1, Q2, α) = 0. Note R2,1(s, s0|Q1, Q2, α) is continuous on [s0, +∞). For

C ≤ (α−βc)/3, dR2,1(s,s0|Q1,Q2,α)

ds
≤ 0 for s ∈ (s0, (α−C−Q1)/β] and any Qi ∈ [0, C],

i = 1, 2. Therefore, R2,1(s, s0|Q1, Q2, α) < R2,1(s0, s0|Q1, Q2, α) in this case either.

Hence if C ≤ Cd, (s0, s0) is an equilibrium.

Next we will show (s0, s0) is the unique equilibrium in the subgame. Suppose the

equilibrium price is (si, sj) other than (s0, s0) with si ≤ sj. Clearly si and sj can’t

be less than s0. Suppose s0 < si ≤ sj, seller j will lower the price slightly below si,

which would result in a better revenue for her. The two sellers would undercut each

other and both reach s0 eventually.

Proof of Lemma3.7.3 Since all the contracts are exercised in stage 4, it holds

that

∂r1(Q1, Q2|π1, π2)

∂Q1

= −π1 +
E(α)− βc− 2C

β
(A.0.47)

∂r1(Q1, Q2|π, π2)

∂Q2

= −π2 +
E(α)− βc− 2C

β
(A.0.48)

Therefore, the results follow.

Proof of Theorem 3.7.1 By previous results, the buyer’s contracting quantity

for one seller is independent from the other seller’s option price. Therefore, if πi <

(E(α) − βc − 2C)/β, R1,i(πi, πj) = πiC < C(E(α) − βc − 2C)/β. For πi > (E(α) −
βc−2C)/β, Qi(πi, πj) = 0 and R1,i(πi, πj) = C(E(α)−βc−2C)/β. For πi = (E(α)−
βc−2C)/β, Qi(πi, πj) ∈ [0, C]. It still holds that R1,i(πi, πj) = C(E(α)−βc−2C)/β.

Therefore, any option price π ≥ C(E(α)− βc− 2C)/β is optimal.
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